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ABSTRACT

Often in simulation procedures are not proposed unless they are 
supported by a strong mathematical background. As will be shown in this 
thesis, this approach does not always give good results when the procedures 
are applied to complex simulation models, especially on output analysis. For 
this reason we have used an empirical rather than a theoretical approach for 
dealing with some of the output problems of simulation.

The research carried out has dealt mainly with queuing networks. The 
first problem we address is that of the identification of possible unstable 
queues. We also deal with the problem of the identification of queues that 
may require a long simulation run length to reach the steady state.

The method of replications is used for the estimation of terminating and 
sometimes of steady state parameters. In this thesis we study the relationship 
that exists between the number of replications used in the simulation and the 
simulation run length required for the parameter being estimated to reach the 
steady state. We also study the influence of the random number streams on 
the values of the mean estimates as a function of the number of replications.

One of the most commonly discussed problems related to the estimation 
of steady state parameters is that of the initialisation bias problem. Two 
methods are proposed in this thesis to deal with this problem. In one of the 
methods we propose an effective procedure that can be used for the estimation 
of the number of initial observations that are to be deleted. The second 
method, is based on a basic forecasting technique called weighted averages and 
does not require the elimination of any of the initial observations.

Another topic that has been studied in this thesis is the batch means 
method which is employed for the estimation of steady state parameters based 
on a single but very long simulation run. We show how a new sampling 
method called Descriptive Sampling is well suited for the estimation of steady 
state parameters with the batch means method. We also show how some of 
the procedures proposed in the literature for use in the batch means method 
do not work well in simulation models for which no analytical answer exists.

The thesis demonstrates that empirically derived methods can be 
practically effective and could form future theoretical research.
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CHAPTER 1 : INTRODUCnON

1.1. BASIC SIMULATION CONCEPTS

In the last two or three decades there has been a fast and important 

development in computer technology. As a consequence of this, the world has 

been transformed. Computers have become smaller, cheaper and more 

powerful. They are not only a useful tool in today’s world, but they are in 

many ways necessary; airline bookings are not possible when "the system is 

down"; bank transactions are equally affected when the computer is not 

working, just to give two examples of how much businesses rely on computers. 

Most universities, large and small, include in their curriculum at least one 

course on computers. But their use is not limited only to the business and 

academic worlds. Computers are found in households, charity centres, 

hospitals etc. And this popularity and availability of computers has been an 

important factor in the development and use of simulation. (For example, 

Crookes and Valentine (1982) describe a visual colour simulation development 

on APPLE computers carried out to assess an expensive capital installation; 

in Chapter 3, Law and Kelton (1991), give a description of different types of 

software that are currently used in simulation; see also Hollocks (1984)).

1.1.1. WHAT IS SIMULATION?

Several definitions of simulation can be found in the literature. A  very 

basic definition is the following:

"Simulation is the construction of a mathematical model for some 

process, situation, etc, in order to estimate its characteristics or solve problems 

about it probabilistically in terms of the model." (The COLLINS English 

Dictionary, 1986).

A  more formal definition of simulation is the following:
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"Simulation is essentially a controlled statistical sampling technique 

(experiment) that is used, in conjunction with a model, to obtain approximate 

answers for questions about complex, multifactor probabilistic problems." 

(Lewis and Orav, 1989).

However, no matter how formal and complex a definition is, it is always 

possible to identify in all of them the main characteristics of simulation: a 

m odel of the system is developed, and from this model, and using statistical and 

mathematical techniques, some inferences about its behaviour may be drawn.

Although simulation could be performed without a computer, in practice 

the real-world systems that need to be analysed with the help of simulation are 

quite complex, and performing the simulation by hand would take a long time, 

would be tedious and would be a source of errors.

1.1.2. SIMULATION OBJECTIVES : WHEN IS IT USED?

Before starting any research in the area of simulation it is very 

important to understand why and when simulation is used. Basically, it may 

be said that "simulation is run in order to gain an understanding of the 

behaviour of the system under study." (Seila, 1990). A  better understanding 

of the use of simulation can be obtained by mentioning a few of the fields 

where it has been successfully used:

1. Computer Systems.

2. Communication Systems.

3. Environmental and Energy Flow.

4. Crop Management and Ecological Studies.

5. Transportation Systems.

6. Policy Analysis.

7. Project Planning and Control. (See Pritsker, 1984).

Common to all these studies is the fact that the systems are too complex 

and, therefore an analytical answer to the problem(s) does not exist. This last 

point is very important: simulation is used to give an answer to probabilistic 

problems. Due to this probability aspect of simulation, there is some

14



"uncertainty" which is inherent to the results obtained from simulation. 

Therefore if a mathematical technique exists that, without making great 

assumptions (hardly met in practice) can provide an exact answer, this 

technique should be used instead of the more sophisticated but in some ways 

"uncertain" technique of simulation.

The dangers of using simulation when it is not necessary are clearly 

illustrated in the following paragraph, which is part of a letter received by 

Woolsey (1979) as a response to his article : "Whatever Happened to Simple 

Simulation". The author of the letter "wants to remain anonymous, probably 

for reasons of national security." (Woolsey, 1979). In this letter the author 

refers to a problem that was tackled by simulation and "after careful analysis 

of old records which initiated the study in the first place (strangely enough, 

these were found among the belongings of Ramses II), I have concluded that 

simulation wasn’t necessary, as application of simple analytic tools to 

subproblems would have provided excellent results. Anyway, the problem is 

no longer a problem as so much time has passed that the stuff that the 

computer model was to have predicted has happened without the termination 

of life on earth. Unfortunately, if I brought this fact to the attention of 

management I would certainly be locked up "down in the mine" for the rest of 

my bom days."

Some suitable areas of application for simulation are then the following:

1. Analysis of complex systems.

2. Forecasting of possible effects of changes in the number of resources 

or their allocation.

3. Determination of the critical variables in a system and of the way 

they interact in the system.

4. To test a system before it is built because in some cases it may be 

very difficult or even impossible from a practical point of view: for example, 

in the simulation of a naval battle.

15



1.13. TYPES OF SIMULATION

There are several types of simulation models depending on the type of 

variables used (random or deterministic), length of the run (finite or infinite), 

type of change of the state variables (discrete or continuous) etc. Some of 

these types of simulation are defined in this subsection.

STATIC OR DYNAMIC SIMULATION

A simulation model is called static when it represents a system at a 

particular point of time. It is sometimes called a Monte Carlo simulation.

When the simulation model represents a system that changes over time 

it is called dynamic simulation.

DETERMINISTIC OR STOCHASTIC SIMULATION

In a deterministic simulation, the variables are exactly determined; this 

means that they are properly specified instead of being generated from a 

probability function. In a stochastic simulation one or more of the variables 

are random, i.e., they are defined according to a probability density function. 

For example, the arrival of customers in a bank or in a post office may not 

happen at regular intervals of time but might follow a random pattern which 

can be modelled by the exponential distribution. Identifying an adequate input 

distribution may not be easy but nevertheless if simulation is going to be 

successful this is a critical aspect of simulation modelling. Examples of 

research in this field can be found in Cochran and Cheng Chuen-Sheng (1990), 

DeBrota et al (1988), Avramidids and Wilson (1989), DeBrota et al (1989).

DISCRETE OR CONTINUOUS SIMULATION

Law and Kelton (1991) give the following definition:

16



"Discrete Event Simulation concerns the modelling of a system as it 

evolves over time, by a representation in which the state variables change 

instantaneously at separate points in time. (In more mathematical terms, we 

might say that the system can change at only a countable number of points in 

time.) These points in time are the ones at which an event occurs where an 

event is defined to be an instantaneous occurrence that may change the state 

of the system." In a simulation where customers arrive randomly (post office, 

banks, pubs, launderettes, etc.) the number of customers waiting at a particular 

queue to be served constitutes a state of the system. Therefore, the arrival of 

a new customer to a system is an event.

In a "continuous simulation the state variables change continuously over 

time. An example is the head of water behind a dam. During and for some 

time after a rain storm, water flows into the lake behind the dam. Water is 

drawn from the dam for flood control and to make electricity. Evaporation 

also decreases the water level." (Banks and Carson, 1984)

Figures 1.1. and 1.2. illustrate the difference between discrete and 

continuous state variables, and how they change in value over time.

Discrete Continuous
Variable Variable

■i I-----J—ji i i i 1
TIME

FIGURE 1.1 FIGURE 1.2

Figures 1.1 and 12. Discrete and continuous system state variable.
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TERMINATING OR NON-TERMINATING SIMULATION

In some cases the simulation ends when an "special event" occurs. That 

is, "there is a natural event E which specifies the length of each run 

(replication)" (Law, 1990). For example, the simulation of a post office might 

consider the system for a period of 8.30 hours (9.00 a.m. to 5.30 p.m.).

Similarly a bank may be simulated for some pre-specified period of time (say

seven hours: from 9.30 a.m. to 4.30 p.m.). In this case the simulation is called 

terminating. In contrast with this type of simulation, we have non-terminating 

simulations. In this latter type, the simulation run length is not decided by the 

system that is being simulated, but it is a choice of the simulation practitioner. 

In other words, in contrast with terminating simulations, in non-terminating 

simulations there is no natural event E to specify the length of the run.

Although in theory a non-terminating simulation is exactly that: non

terminating, most systems after being simulated for a reasonably long period 

of time tend to become "stable" or, in other words, reach a "steady state". To 

explain this, suppose that the simulation is estimating the waiting time for a 

customer in a system that operates day and night. Let us call W 1, W2, ...Wn 

the waiting time of customers 1, 2, ..n respectively. The "steady state" mean 

waiting time W is given by

( U )_ LAin 1
~ 71- 0© „  2L,n n M

This means that the mean waiting time is the waiting time for a very 

large (infinite) number of customers in the system. After a "long", but finite 

duration, the value of W does not change too much.

However, another way of interpreting "steady state" is by defining the 

steady state as that time "when the distribution of the parameter that is being 

estimated (in this case, the mean waiting time) becomes invariant" (Law and 

Kelton, 1982b). It is important to notice that it is the distribution, and not the 

actual values of the parameter being estimated, that becomes invariant. 

Another way of interpreting this definition of "steady state" is by saying that
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in the "steady state" the system is independent of the initial conditions. This 

means that the distribution of the waiting time is exactly the same, 

independent of the number of customers initially present in the system, and 

when the simulation was started. For example, whether the system has 5 or 

100 customers at the start of the simulation, in the steady state the distribution 

of the waiting times will be exactly the same.

1.1.4. ESTIMATION OF SIMULATION PARAMETERS

Depending on the type of simulation, terminating or steady state, 

different methods are used for the estimation of parameters. We will describe 

in this sub-section some of the most common methods employed for this 

estimation, for these two different types of simulation.

a. Terminating Simulations

In terminating simulations parameters are normally estimated using the 

method of replications. In this method n different replications of the model 

are run, each one using different random number seeds in order to ensure 

independence of the observations. For each replication an estimate Xj is 

obtained. If the parameter being estimated is a mean value X, this will be 

easily estimated as

X = (1-2)
n im i

One of the problems faced by the simulation practitioner is then that of 

deciding how many replications are required to obtain an accurate parameter.

b. Steady state simulations

Several methods have been proposed in the literature for the estimation 

of steady state parameters. Among these methods we can mention the 

following:

1. Replications method.

2. Batch means method.
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3. Regenerative method.

The method of replications has already been described and in this case 

besides the problem of deciding on the number of replications to be used, the 

simulation practitioner faces the problem of how long the simulation run 

should be for the mean estimate to be independent of the initial conditions. 

This problem known as the problem of the initialisation bias is discussed more 

in detail in Section 1.2.2.

As opposed to the replications method, the batch means and the 

regenerative method obtain the steady state mean estimates using a single but 

very long simulation run.

BATCH MEANS METHOD

In the BATCH MEANS method (Fishman, 1976) N observations X v  

X2-.XN are recorded. These observations are grouped into b batches of size 

N/b and the mean Xj of each one of these batches is calculated as:

Nfb V-

X -  y* (1.3)
1 U  m

The mean of the b batches will give the estimate Y for the parameter(s) 

of interest.

b x  

i«I ^

REGENERATIVE PROCEDURES

In the regenerative procedures "the idea is to identify random times at 

which the output stochastic process probabilistically "starts over", i.e., 

regenerates and to use these regeneration points to obtain independent 

random variables (r.v.’s) to which classical statistical analyses can be applied. 

This method was developed simultaneously by Crane and Iglehart (1974a,
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1975a) and Fishman (1973, 1974), although the original idea of the 

regenerative method dates back to Cox and Smith (1961) and Kabak (1968).

Assume for the output process {Yi? i> l} that there is a sequence of 

random indices 1 < Bx < B2 < ... called regeneration points, at which the 

process starts over probabilistically; i.e., the distribution of the process {YBj+i-i, 

i = 1, 2 ,...}  is the same for each j  = 1, 2 ..., and the process from each Bj on 

is assumed to be independent of the process prior to Bj. The portion of the 

process between two successive Bj’s is called a regeneration cycle, and it can 

be shown that successive cycles are independent and identically distributed 

(i.i.d.) replicas of each other. In particular, comparable r.v/s defined over the 

successive cycles are i.i.d. Let Nj = Bj+1 - Bj for j =  1, 2, ... and assume 

E(Nj)<oo. If:

Z = £  Yt (1-5)

the random vectors Uj = (Zj, Nj) are i.i.d. and provided that E( | Zj | ) < «, the

steady state average response u is given by i> = E(Zj)/E(N).„

We now briefly discuss how to obtain a point estimator for u using the 

regenerative method. Suppose we simulate the process {Yj, i > 1} for exactly 

n' regeneration cycles, resulting in the data Zj, ...Z^, and N1? N2,...NQ/. 

Each of these sequences consists of i.i.d. r.v/s; however, in general, Zj and Nj

are not independent. A point estimator for i> is the given by:

*0,1) = (1.6) 
N(n')

Iglehart (1975), Meketon and Heidelberg (1982) and Glynn (1982) 

discuss alternative point estimators for i>." (Law, 1983).

12. SOME PROBLEMS IN SIMULATION

In this section we will describe some of the statistical problems found 

in the applications of both terminating and non-terminating simulations.
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12.1. TERMINATING SIMULATIONS

The method of different and independent replications is used for the 

estimation of parameters in terminating simulations. However, the number of 

replications to be used is decided by the practitioner. Too few replications will 

not give an accurate estimate, and too many replications will be a waste of 

computer time. Although some procedures (discussed in Chapter 3) exist to 

determine the optimal number of replications, they are based on the "classical 

assumptions" of statistics that observations (or results from each replication) 

are identically distributed, independent, and follow a normal distribution. The 

two first assumptions are easily met, by the use of exactly the same parameters 

in all the replications, and by the use of different random number seeds for 

each replication. But the assumption of normality is not always met. Research 

is still being done on the effects of this lack of normality of the simulation 

results.

1 2 2 . NON-TERMINATING SIMULATION

The analysis of non-terminating simulations, or "steady-state" 

simulations as it is sometimes called, is much more difficult than the analysis 

of terminating simulations. Among the problems that arise in this analysis two 

are worth mentioning:

1. INITIALISATION BIAS PROBLEM.

A system is said to be in the steady state when the influence of the 

initial conditions has disappeared. Therefore, when the simulation is started 

from the initial state, these initial conditions will take some time to disappear. 

HOW LONG ? is one of the questions that the simulation practitioner has to 

answer. If steady state estimates are calculated while there is still some 

influence of the initial conditions, the estimate will be biased, and a confidence 

interval, if it is calculated, will be centred around the wrong value. A  possible
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solution to this problem of the Initialisation bias is to delete a number N of the 

initial observations. However, the practitioner faces the new problem of 

finding a value for this number N. Several methods have been proposed in the 

literature. Studies of the state of the art by 1978 show that none of them is 

completely satisfactory (Wilson and Pritsker, 1978b). In the 1980’s some new 

methods were proposed (Schruben,1982; Kelton and Law, 1983; Welch, 1983), 

but most of them are rather complex which makes them difficult to use by the 

user who is not familiar with advanced programming techniques (see discussion 

in Chapter 4). The usefulness of deleting some of the initial observations has 

been questioned. Fishman (1971) shows how this deletion will increase the 

mean square error and will greatly reduce the statistical reliability of the 

results but on the other hand Kelton and Law (1984), question Fishman’s 

results and conclude that deletion of some of the initial observations is useful 

and effective. Further research is necessary using not only simple systems for 

which we can obtain an analytical answer but complex systems that are more 

representative of real world models in order to examine this question.

This problem appears mainly when the replications method is used for 

the estimation of steady state parameters. This is due to the fact that each 

replication starts with the same initial conditions which are usually not 

representative of the steady state conditions. When the estimation is made 

using a single but very long simulation run this problem of starting the 

simulation with the same initial conditions is almost eliminated but when the 

batch means method is used a new problem appears: that of the 

autocorrelation of the observations which is described in point 2 below.

2. AUTOCORRELATION IN THE OBSERVATIONS

This autocorrelation can be intuitively explained by an example. 

Suppose that the system being simulated is a queuing network. Obviously at 

a given time 1, the time a customer has to wait is related to the past history of 

the system. If at time t-1 (assuming discrete event simulation) there are 

several customers waiting to be served, the probability of having to wait to be
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served for the new customer arriving at time t is much higher than if at time 

t-1 there are no customers waiting to be served. "The effect of having 

autocorrelation among the data is to make it difficult to estimate the variation 

in the sample mean." (Seila, 1990) A direct consequence of this is that the 

estimated standard deviation calculated from the sample according to the 

classical formulas from statistics will usually be underestimated and 

consequently, any statistical test based on these values (mean and standard 

deviation) will be biased.

Due to this autocorrelation the main problem with the batch means 

method is to choose a batch size sufficiently large such that successive batches 

are independent. If they are correlated the variance estimator will be biased 

(either positively or negatively) and therefore the confidence interval (c.i.) thus 

calculated will be either too small or too large. This method is extensively 

discussed in Chapter 5.

Although the regenerative method does not present the problem of 

autocorrelation of the observations, it is not always possible, due to the 

characteristics of the method, to use it.

13. RESEARCH OBJECTIVES

Now that the main concepts and problems in the practice of simulation 

output analysis have been explained, we can discuss in more detail WHY 

research in this area is necessary, and what the main objectives of the research 

in this thesis have been.

Research in this area is important because as Alan Pritsker says:

"The analysis of simulation output is a perplexing topic. In practice, it 

appears that an analysis is either very easy or extremely difficult. Sometimes 

this dichotomy is hard to understand. Tremendous strides have been made in 

deriving theoretical results for output analysis and variance reduction. 

However, the results are not often used. The reasons for this are that the 

results are not easy to apply, thorough experimentation in the industrial and 

government sectors is not usually possible due to time constraints, the number
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of pitfalls associated with the applications of the results discourages their use 

and the number of variables and performance measures in a model make it 

difficult to apply the results. As an alternative, there has been a greater 

exploration of graphical means for viewing the outputs of a simulation...This 

has not solved the problem. What is needed is robust statistical techniques 

that can be applied to diverse systems." (Pritsker, 1989)

Having answered the question of WHY research in this area is necessary 

and useful, we can summarise the main objectives of the research reported in 

this thesis.

The first important aspect to take into account is that simulation may 

be used to solve some types of real-world problems for which no analytical 

answer is available. This means that the simulation "client" will not necessarily 

have special knowledge of the field. It would be different if simulation were 

going to be used only in the academic world (for example), where talk of 

"technical terms" and "complicated procedures" would be understood with no 

problems. We can suggest that the simulation user is "the person who interacts 

with the computer to enter a model and carry out simulations...Preferably the 

system user should be the same person who wants the results." (Symons, 1985).

Therefore, if simulation is going to be successful, it should be "user- 

friendly". It means that "the user must be able to communicate this 

information" (the computer requires to give some information to produce the 

results) "quickly" (Symons, 1985). In other words, we must remember that the 

user is the person "who wants to use the system, not make the system, or 

follow long detours to reach this goal." (Symons, 1985). Unfortunately several 

of the procedures formulated to deal with problems in simulation are not easy 

to understand and to use.

A second aspect, also mentioned by Pritsker and which is important to 

take into account is the following: because simulation is used to obtain answers 

to "multifactor probabilistic problems", statistical analysis of simulation output 

is necessary in order to infer how accurate it is. This aspect of statistical 

analysis is quite important but unfortunately many times it is not taken into 

account. "Unfortunately many simulations are run without applying statistical
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analysis to the output...The simulation is run only once for each scenario to be 

analysed, a single value such as the average cost is computed and this number 

is treated as if it is the correct parameter value" (Seila, 1990). "In many 

simulation studies a great deal of time and money is spent on model 

development and "programming", but little effort is made to design appropriate 

simulation runs or to analyse correctly the resulting data." (Law, 1990). These 

are only two quotations among those found in the literature placing emphasis 

on the importance of a good statistical analysis of the simulation output data.

A third important point lies in the way research in simulation has been 

carried out. Frequently research is carried out in a specific area of simulation 

and new procedures are tested for very simple models for which an analytical 

answer exists. Usually the M/M/1 queue is used to test proposed procedures. 

(See for example Minh, (1989), and Kelton and Law, (1985) for just two 

examples of the use of the M/M/1 queue and similar to test new proposed 

procedures). However, the results thus obtained may be misleading because 

simulation should only be applied when systems are too complex to be 

analysed in a different way and where the elements of the system will interact 

with each other. This interaction does not occur when a simple system like the 

M/M/1 queue or any other simple system is used to verify a procedure. A  

typical statement that illustrates the use of only simple models for testing a 

proposed procedure is the following: "The primary purpose of the experiments 

is to assess the validity of the confidence interval estimates. Thus the models 

considered were restricted to those which could be solved by separable balance 

equation models" (Sauer, 1979). There are times when it has even been 

suggested that it is possible to obtain a "suitable approximation for the given 

stochastic model, and, second, we must calculate the asymptotic quantities of 

interest for the approximating model." (Whitt, 1989a).

In summary there are two main purposes for carrying out research in the 

area of simulation:

1. There is a need for simple and easily understandable procedures, not 

always available in those developed up to now.
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2. The statistical analysis of simulation output data is many times 

overlooked but nevertheless, if simulation is going to give good results, this 

analysis should be included as part of the whole simulation process. (See 

Kelton (1983, 1985), Law (1980, 1982) for a discussion on statistical analysis 

of simulation output).

In this research we deal mainly with the first purpose, but using 

different simulation models for which an analytical answer cannot be 

calculated, we also discuss why an analysis previous to the simulation, as well 

as an analysis of the results from the simulation, is important. One of the 

fascinating aspects of research is that the answer to a question brings up 

several other questions, and while studying a phenomenon, several others come 

to light. In this way, when we were applying some statistical tools to the 

simulation output data obtained for terminating (or terminal) simulations, we 

found a simple, and easy to implement, answer to one of the puzzling 

questions in simulation. This point is discussed in Chapter 3.

In conclusion, in this thesis, we show how it is possible to design simple 

procedures to deal with some problems of simulation. Once these problems 

have been dealt with using procedures that work, but that are not time 

consuming, the time saved on collecting the data can be used on a thorough 

statistical analysis of it.

In order to test the general applicability of any procedure it is necessary 

to test it on several complex simulation models, rather than on simple models 

with none, or just very little interaction amongst the elements of the system. 

For this reason our research was applied mainly to simulation models for 

which no analytical answer can be calculated. Although the research described 

in this thesis is not theoretical from a mathematical point of view, it is more 

theoretical than empirical in terms of the models employed because these 

models do not correspond to real life simulations.

1.4. RESEARCH METHODS

In mathematical-related fields emphasis is usually placed in obtaining
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a mathematically accurate and exact solution. As pointed out by Newell, 

(1971): "Mathematicians working for their mutual entertainment will discard 

a problem either if they cannot solve it, or if being soluble it is yet trivial. An 

engineer concerned with the design of a facility cannot discard the problem...I 

have suffered many times the frustration of failing to solve elegantly what 

appeared to be a straightforward practical queueing problem, subsequently to 

discover that I could find very accurate approximations with a reasonable 

effort, and finally that I could obtain some crude estimates with almost no 

effort at all."

The same can be said about the way most problems in simulation have 

been tackled by simulation theoreticians. Procedures are proposed only if they 

have a mathematical background to support them. But one of the main 

characteristics of simulation is that it should be used ONLY when other 

approaches are not possible, and therefore no analytical solution can be found 

due to the complexity of the problem. Therefore, trying to formulate 

procedures having a strong mathematical background seems to be in 

contradiction with the very same nature of simulation.

Taking this into account, as well as the need to develop if possible 

"user-friendly" and simple simulation procedures, this research considers some 

of the problems that a practitioner is very likely to encounter in the 

application of simulation and shows that methods used to deal with these 

problems do not need to be complex and difficult to understand and to use.

However, to do this we are faced with a fundamental problem: we use 

simulation in those cases when an analytical answer cannot be found; for this 

same reason, it is very difficult to test the validity of a procedure that has been 

suggested to deal with a given problem. There are two possibilities in this 

case:

1. Test the procedure against several stochastic systems for which an 

analytical answer exists and if the procedure works reasonably well assume that 

it will work well in other complex systems.

2. Test the procedure in an empirical way against several simulation 

models (i.e., models for which no analytical answer can be calculated) and if
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there are no contradictions, i.e., if all the systems perform according to the 

hypothesis that has been stated, it is reasonable to assume that the procedure 

will in most cases perform well.

Although the first approach has been widely used in simulation, it may 

be misleading. It is well known that a system like the M/M/l queue (a 

favourite system used to test procedures in simulation papers) not only is not 

a "typical" case of a real-world problem, but (and this is valid for most cases 

where an analytical answer is obtained) in order to make the problem 

"mathematically manageable" several assumptions have been made. Therefore, 

the analytical answer will be more an approximation to the real value, than the 

real value itself. For this reason, to test the new procedures we have followed 

in this thesis the second approach described above. This means, that along 

with a procedure, a hypothesis is formulated on what we may expect with 

respect to the behaviour and type of results of the procedure. This is tested 

against several simulation models and most of the analysis in this thesis is 

based on results obtained for these models. If the hypothesis that we have 

formulated performs well for several different types of simulation models, it 

should perform well for other models also. The specific topics discussed in 

this thesis are described in section 1.5.

1.4.1. JOE’S THEOREM

There are two important characteristics of the research reported in this 

thesis: 1. The fact that it uses an empirical (in the sense that it uses models 

for which no analytical answer can be obtained) rather than a mathematical 

approach, and 2. One of its objectives is to show that simple solutions and 

methods exist for dealing with some common simulation problems.

However, there is a risk in this approach, a risk that has been 

mentioned by Grassman, who is the author of different papers in the area of 

operational research, and particularly, in queuing theory. In his article "Is the 

fact that the Emperor wears No Clothes Subject Worthy of Publication?" he 

discusses the problem of "bias against simple methods" (Grassman, 1986). To
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this end he tells us that "I have worked in industry for a few years, and I 

helped to implement some of the most successful operational research projects 

for the company for which I worked. During this time I came to realize how 

important it is to keep things simple. It is good engineering practice to start 

with the simplest approximation one can get away with and add new features 

only if and when they are needed." Continuing with this line of thought he 

formulates a theorem called Joe’s Theorem:

Joe’s Theorem:

Nothing is published in the area, o f queuing theory 

unless it is mathematically interesting. Nothing is 

applied in industry unless it  is mathematically trivial.

Since trivial results are not interesting, and since 

results that cannot be applied are not useful, 

nothing useful will ever be published in queuing 

theory."

And as Grassman says, it is not that we think that mathematicians are 

useless; it is the opposite, they have greatly contributed to the development of 

not only mathematics, operational research and simulation, but of many other 

areas. However, and this is one of the messages of this thesis "mathematical 

models are useful and necessary, but they can never capture all features of the 

system they represent. Consequently there is no guarantee that the optimum 

of the model is also best in real life. This fact is almost always ignored in the 

theoretical literature, but it is essential for any successful application of 

operational research" (and we should add, of simulation). "In order to be 

successful, one should always start with the real-life system never with its 

model." (Grassman, 1988)

This is one of the reasons for the other important objective of this 

thesis: procedures should not be tested for simple models with analytical 

solutions, as these analytical solutions include too many assumptions and 

simplifications. Even though the procedures proposed in this thesis have been
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tested in a more general way, they still may not reflect completely the 

behaviour of a real-life system, but this can only be analysed by the simulation 

practitioner.

1.5. THESIS OUTLINE

This thesis describes research into some topics related to some 

problems, mainly in the area of steady state simulation.

In the Introduction, Chapter 1, some basic concepts and types of 

simulation have been defined. Also some of the problems that may be found 

when using simulation are briefly discussed.

Chapter 2 expands some of the ideas considered in Chapter 1, and some 

of the considerations that the simulation practitioner should make before the 

simulation is run.

Chapter 3 studies the problem of the number of replications that are 

required for the estimation of parameters in terminating and steady state 

simulations.

Chapter 4 gives a more detailed analysis of the Initialisation Bias 

Problem and proposes a method for dealing with it. This method deals with 

this problem by eliminating some of the initial observations which are not 

representative of the steady state conditions.

Chapter 5 discusses the Batch Means Method for the estimation of 

steady state parameters and shows how some of the procedures proposed in 

the literature up to now for the estimation of steady state parameters using 

this method do not work well in practice.

In Chapter 6 we propose another method to deal with the initialisation 

bias problem. Instead of deleting any of the initial observations, the method 

proposed in this chapter is based on the assignment of different weights to the 

observations recorded from the simulation output: initial observations are 

assigned smaller weights.

Finally, Chapter 7 presents the conclusions and areas for future 

research.
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1.6. SUMMARY

This chapter has defined what simulation is, when and where it could 

be used and which are the practical problems that a simulation practitioner is 

likely to face. Two main objectives for this research have been identified: the 

need for simple and easy to understand procedures and the need for testing 

any proposed procedure with complex, and not only with simple, simulation 

models. Another important point to be considered is that these procedures 

should be statistically robust and this can only be confirmed when they have 

been applied to different simulation models. In this thesis we try to develop 

approaches that might successfully contribute to these points. In case that 

there are still some doubts on how useful the simulation approach is to solve 

problems let me quote Pritsker (1989):

'"'We have commercialised the field and demonstrated, without a doubt, 

the benefits obtainable from modelling, analysis and problem solving using 

simulation.

In 1947 Winston Churchill in a speech before the House of Commons 

presented the following view of democracy:

"Many forms of government have been tried, and will be tried in this 

world of sin and foe. No one pretends that democracy is perfect or all-wise. 

Indeed, it is the worst form of Government, except all those other forms that 

have been tried from time to time. " (Churchill, 1947)

I close by paraphrasing Churchill’s statement:

No one pretends that simulation is perfect Indeed, it  has been said that 

simulation is the worst form o f analysis except all those other forms that have 

been tried Grom time to timeT
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CHAPTER 2 : RESEARCH DISCUSSION

2.1. INTRODUCTION

The main topics, and purposes of the research described in this thesis 

are discussed in Chapter 1. We expand some of these ideas in this chapter in 

order to create the scenario required for the discussion that follows in the 

remaining chapters. We also discuss in this chapter some important aspects 

that should be considered by the simulation user before running the 

simulation, and some points that should be taken into account in the analysis 

of the simulation output.

Z1.1. CHAPTER OBJECTIVES

While in Chapters 3 to 6 we deal with specific problems of simulation 

and formulate solutions that are easy and simple to implement, in this chapter 

we try to give a general view of simulation and some practical aspects about 

its application.

One of the main characteristics of the research presented in this thesis 

is the use of complex simulation models for which no analytical answer can be 

calculated. Such an approach requires the appropriate scene setting for it to 

be understood. We intend in this chapter to create such a scenario by 

considering some practical aspects of the use of simulation. This practical 

consideration is important because the good practice of simulation requires 

some previous analysis of the system to be simulated.

Simulation is much more than just running a program on a computer 

and recording the results. If simulation is going to give accurate and 

acceptable solutions for a given problem, it is important to analyse the system 

to be simulated before running the simulation. This analysis prior to the 

simulation is sometimes omitted but, as shown in this chapter it may save 

valuable time; for example, if the objective of the simulation is to estimate the
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steady state parameters, the simulation practitioner should consider before 

running the simulation if such a state can exist.

These types of practical consideration concerning the use of simulation 

are given in this chapter. They are a complement of the approach used in this 

thesis, and create the appropriate framework for the treatment of simulation 

in the following chapters.

2.1.2. CHAPTER OUTLINE

A first point to consider (Section 2.2.) is the nature of the research, as 

this is empirical more than theoretical. As discussed in Chapter 1 simulation 

is used only when an analytical solution cannot be found; for this reason we 

do not propose procedures supported by a sound mathematical theory, but by 

a good empirical performance over a variety of simulation models.

Because of the characteristics of the simulation software (VS6) used 

(Paul and Chew (1987); Crookes et al, 1986), most of the research reported in 

this thesis has been conducted in the area of queuing networks. Section 2.3. 

discusses some of the characteristics of these networks.

In steady state simulations, a simple analytical analysis of the system 

helps the practitioner to determine if such a steady state exists or not. This 

point is discussed in Section 2.4.

One of the problems discussed in this thesis is that of the influence of 

the initial conditions, or Initialisation Bias Problem. Two procedures (See 

Chapters 4 and 6) are proposed to deal with this problem but Section 2.5. 

presents a general discussion about the cases when such a problem may not 

exist or may not be eliminated because of the characteristics of the system 

being simulated.

Section 2.6. discusses some problems found in the statistical analysis of 

the simulation output like, for example, that of a large standard deviation as 

compared to the sample mean.
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22 . WHY SHOULD WE USE SIMULATION MODELS FOR 

WHICH NO ANALYTICAL ANSWER CAN BE CALCULATED ?

The first characteristic of the research described in this thesis is that it 

is not theoretical from a mathematical point of view, but it is based on results 

obtained for some complex simulation models. Based on practical 

observations or on a theoretical analysis of the behaviour of simulation 

models, we formulate a hypothesis or propose a new procedure, which usually 

has no rigorous mathematical support.

In order to study how well this hypothesis works, and how useful it is for 

the solution of the problem under consideration we use different complex 

simulation models and, as a further check, some commonly used systems with 

known analytical answer. We expect that the new proposed procedure will 

provide a "good" solution to the problem of interest in all the different models. 

Sometimes, when we expect the procedure to have some limitations in its 

application, we may also assess it with results obtained from the simulation. 

What "good" means depends on the particular problem under consideration.

Although this non-mathematical approach may not be approved of by 

all simulation theoreticians, it is useful because it permits the identification of 

simple and easy to understand methods. The use of results obtained from the 

simulation, as shown in this thesis, will highlight simple facts of otherwise 

complex problems.

A second advantage of using results obtained for different types of 

simulation models is that sometimes common facts to different models can be 

identified and procedures that do not require the setting of values of certain 

parameters that may be model dependent can be proposed. This point is 

discussed in detail in Chapters 4 and 5.

A third advantage of the approach used in this thesis is that carrying it 

out shows that the necessary modifications to the simulation software can be 

done. Another advantage is that a procedure that, even if giving "good" results, 

may be of little practical use because of the relatively large computer time it 

requires, may be easily identified.
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23. QUEUING NETWORKS

In this section we describe the concept of queuing networks, and some 

parameters of interest (queuing time and queue length) in these networks. 

The first step to follow when simulation is used, is to obtain a m odel of the 

real-world system to be simulated. There are different approaches concerning 

the type of model to use and its choice depends on the simulation practitioner 

and on the software available. A  possible way of describing a system is by 

defining the entities, or elements, of the system; if necessary, individual 

elements belonging to a given class of entity can be identified by assigning an 

attribute to them. The entities are either engaged in an activity or are "idle" 

waiting to start an activity. The type of models that use activities and entities 

in their definition, are especially suited to the description called queuing 

networks (See Section 2.3.1.).

The use of queuing networks is not limited to the area of simulation. 

They also have been used in theoretical studies to model the contention for 

resources, which is usually the dominant factor in the performance of 

computing and communications systems. Some examples of studies in this field 

can be found in Ayani, (1989), Ayani and Rajaei, (1990), Chandy and Sherman, 

(1989), De Vries, (1990), Lin and Lasowska, (1989), Reed et al, (1988), 

Wagner and Lasowska, (1989). References to studies previous to 1980 can be 

found in the bibliography. However, most of these references study queuing 

networks as a Markovian process and under some assumptions try to find 

approximate solutions. Some efforts have been put into the solution of 

queuing networks by simulation. Examples of these studies can be found in 

Rypley, (1988), Glynn, (1988), and Schruben and Yucesan, (1988). Other 

references of studies are given in the bibliography. Studies to assess the 

validity of the confidence interval estimates for queuing models of computer 

systems have also been carried out by Amer (1982), Mamrak (1980), and 

others.
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23.1. STATES OF A  QUEUING NETWORK. 

DEFINITION

The State of a system is the set of variables needed to describe the 

system at any time.

In the simulation of a post office, for example, the possible states are 

the number of customers waiting to be served at a given time and the number 

of busy clerks. Similarly, in a production system where the machines that 

perform the work can break down, the possible states of the system are their 

status: busy, idle, or down. Notice that the word "possible" is underlined to 

suggest that the variables required to describe the behaviour of the system will 

ultimately depend on the objectives of the study.

There are two basic types of states in a queuing network:

a. An Active State, also called an activity, which requires the co

operation of different classes of entity. One characteristic of an active state is 

that its duration is known beforehand. This duration can be either 

deterministic, or can be sampled from a specific probability distribution. One 

example of an active state is, in the simulation of a post office, the period of 

time while a customer is serviced at the counter by a post office clerk.

b. A Dead State, also called a queue is a state in which the entity waits 

for an activity to start. Its main characteristic is that it does not require the 

co-operation of different classes of entity. In contrast with an active state, the 

length of time that an entity remains in a dead state cannot be known 

beforehand. It will depend in general on the interactions of the different 

entities in the system.

Appendix A explains a way of modelling queuing networks in simulation 

using what is called Activity Cycle Diagrams (AC.D.). These diagrams show 

for each entity a cycle of active and dead states that for the sake of clarity will 

alternate, as is explained in Appendix A  Most of the study reported in this 

thesis will refer to queues used in the AC.D.’s of some systems for which no 

analytical answer exists.
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2 3 2 . SOME PARAMETERS OF INTEREST IN A  QUEUING 

NETWORK

In a queuing network the entities or elements of the system are either 

engaged in an activity or waiting to start it. Therefore, the model used to 

represent the system should describe these queues and these activities. Some 

of the steady state parameters that may be of interest in this type of model are 

the queuing time and the queue length.

DEFINITION

a. Queuing time is the average time that a unit of an entity type or 

class waits in a queue to start an activity.

b. Queue length is the average number of units belonging to a given 

class of entity that are waiting in a queue.

Therefore the steady state mean queue length is the number of units 

likely to be found at any time in the queue, provided that this time is very 

large as compared to the time when the system started its operation. Similarly, 

the steady state mean queuing time is the average time that any entity will 

spend in a queue waiting for an activity to start. In unstable systems these two 

parameters will never reach a steady state, but their value will increase with 

an increase in the simulated time.

These parameters are important in a queuing network because they can 

be used to make inferences about the behaviour of the system. The procedures 

proposed in this thesis are verified using results for these two parameters, but 

they can be easily modified and extended to other types of simulation models.

2.4. HOW TO IDENTIFY CRITICAL QUEUES

As discussed in Section 2.2. one of the important aspects of the research 

described in this thesis is its empirical nature, in the sense that we are not 

developing mathematical supported procedures but using results obtained from 

simulation to infer something concerning the problem of interest. We are
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using such an approach to show that the practice of simulation does not 

require the use of complex procedures, but that simple methods can also 

provide a satisfactory answer. However, one of the important aspects of 

simulation, that is many times not taken into account, is that of the need of a 

previous analysis of the system to be simulated; usually this analysis can show 

some characteristics that make the use of simulation unnecessary. If the 

interest of the simulation is to estimate some steady state parameters, we 

should first check, in a quick way, if such a state exists. If such a state exists, 

the practitioner can identify in some cases those queues that may take longer 

than others to reach the steady state. How to carry out such an analysis is 

discussed in this section.

The case where the parameters of a queue may never appear to reach 

a steady state is discussed in Section 2.4.1. In this sub-section, the systems that 

may present this "odd" behaviour (no steady state) are identified. We also give 

some guidelines on how to identify possible queues with this problem.

In other cases, depending on the values of the simulation input 

parameters, like for example the time that the different activities take to be 

executed (called in this thesis "execution time"), the number of "servers" in 

each queue, etc, some queues may take a long time to reach a steady state; 

section 2.4.2. gives some practical guidelines to help the practitioner in the 

identification of some queues that may require a long simulation run length to 

reach the steady state.

2.4.1. QUEUES THAT MAY NEVER APPEAR TO REACH A

STEADY STATE.

Systems can be classified as follows according to the relation of their 

entities to the "outside" world:

1. "CLOSED" systems, for example the STEELWORKS (see Appendix 

A). In this type of system the number of units of each one of the entities is 

limited and is defined at the beginning of the simulation. In other words, they 

are systems that consist only of permanent entities that are always part of the
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system. In this case all the queues will eventually reach the steady state 

because these systems have limited "resources" and therefore the different 

parameters of the queues will never grow without bound. The system is self- 

balancing or self-regulating.

2. "OPEN" systems, are systems where some of the entities are 

perm anent and others are temporary. These ternporary entities come from the 

"outside world" and once they have completed their life cycle they go back to 

the "outside world" becoming an element of no further interest. In this case, 

when the approximate value of the traffic intensity r = A/s/x (s is the number 

of "servers" serving at a rate 11 each) for one of the queues belonging to entity 

A is greater or equal to 1, there is no steady state for one or more of the 

queues belonging to that particular entity (A). It should be noted that queues 

belonging to permanent entities cannot have their queue length (and therefore 

their queuing time) increased without bound; therefore, they will eventually 

reach a state of equilibrium, albeit this is 100% utilisation.

NOTE Although the traffic intensity is usually referred to by the greek 

letter p, in this thesis we have used the greek letter r to refer to it.

It is important to notice that in practice there is no difference in 

simulation between "closed" and "open" systems, as an "open" system is 

modelled as a close one for the sake of simplicity. However, the difference is 

important in our discussion: in an "open" system, the queue length can (at least 

theoretically) increase without bound. This is not possible in a "closed" system. 

But at the same time, "closed" systems will be stable if the parameters are time 

invariant. An example of non time invariant system occurs when a server is 

ageing and cannot always serve at the same rate.

The queues of temporary entities with an infinite supply of units may be 

unstable and the relation X/s(i should be determined in order to check for 

instability. Examples of this behaviour are found in the LAUNDERETTE, the 

FISH PACKING SYSTEM, the BRAZILIAN HOSPITAL and the PUB, 

among others. These simulation models, which are used throughout this thesis, 

are described in Appendix A. Two main reasons for the relation k/sii to be 

greater or equal to 1 are discussed in hypothesis 1 and hypothesis 2.
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HYPOTHESIS 1

A relatively long time o f execution o f one o f the activities, or a small 

interarrival time (o f temporary entities) may cause instability o f one or m ore o f  

the queues belonging to temporary entities.

Clearly when an activity has a relatively long execution time the value 

of ii is smaller and the relation A/s/x gets larger. Similarly, a small interarrival 

time implies a large value of A. and an increase in the relation k/sfi. To 

illustrate this point we use a simulation model of a LAUNDERETTE system.

1. THE LAUNDERETTE.

This system is described in Section A2.2., Appendix A  The 

corresponding AC.D. is given in Figure A 5. In order to explain how a long 

activity execution time, as compared with that of other activities may cause 

instability of one queue, the LAUNDERETTE system is simulated for the 

different conditions shown in Table 2.1. This table gives the execution time 

for the different activities of the launderette model. For example, the arrival 

of customers to the system is assumed to follow a negative exponential 

distribution (NEGEXP) with mean interarrival time of 8 minutes.

Similarly, the execution time of the TRANSPORT activity is sampled 

from a uniform distribution (UNIF) that takes values between 1 and 5. From 

this table we see that the execution time of the activity LOADD increases to 

20 minutes in condition 2.

The number of units of the different permanent entities is the same for 

both conditions, 1 and 2:

ENTITY

Washing machines

Baskets

Driers

Number of Units

7

8 

2
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Activity Execution time Execution time

Condition 1 Condition2

ARRIVAL NEGEXP(8) NEGEXP(8)

LOADW 40 40

UNLOADW UNIF(3,5) UNIF(3,5)

TRANSPORT UNIF(l^) UN IF(l^)

LOADD 4 20

DRY NORMAL(10,4) NORMAL(10,4)

Table 2.1. Probability distributions for the execution time of the 

different activities of the LAUNDERETTE model, for two different 

conditions.

Under these conditions the arrival rate of "customers" to the 

LAUNDERETTE is A. = 7.5 per hour and if we look at the service rate for the 

LOADD activity, = 15 per hour (condition 1) and fi2 =  3 per hour 

(condition 2). The number of servers (driers in this case) is s =  2. In the 

second case X/sfi2 > 1 and therefore we can expect one or more of the queues 

belonging to the entity customer to become unstable. Without any need for 

simulation, but with a simple analysis o f the A.C.D, the simulation practitioner 

can easily conclude that the only possible unstable queue is the WASHQ 

because the maximum queue length of the other queues belonging to the entity 

customer is limited in number by the number of baskets.

This analysis can be confirmed if the system is simulated for the two 

different conditions of Table 2.1. Table 2.2. shows the results corresponding 

to the mean queuing time of the DRYQ and the WASHQ queues as function 

of the simulation run length. From these results it is apparent that when the 

LOADD activity execution time is 20 the WASHQ parameters do not reach 

a steady state.

While numerical data is important it is not always easy to study and to 

draw conclusions from it, especially if we are comparing two different models 

where the numerical range is different. For this reason sometimes we use a
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graphical approach based on the data shown in tables for the analysis of the 

examples discussed in this thesis. The data is presented in a LINE graph of 

the mean estimates (Y-axis) as a function of the simulation run length (X-axis). 

As our objective in this example is the analysis of a simulation model under 

two different conditions and the numerical information obtained lies in 

different ranges, we have used two Y graphical scales for comparing those 

results. Some graphical software, like HARVARD 3.0 or QUATTRO 

(Release 4.0) (used in the graphs of this chapter) has this option. In other 

words, we use two Y axes when we want "to compare series that use different 

units of measure or that vary greatly in magnitude." (Harvard Graphics 3.0 

User’s Manual, 1990).

For this example of the LAUNDERETTE, the graphs drawn for the 

mean queuing time of the WASHQ and the DRYQ queues as a function of the 

simulation run length are given in Figures 2.1. and 2.2. In these graphs one of 

the Y-axes corresponds to a LOADD activity execution time of 4 and the other 

to an execution time of 20. From these graphs it is clear that the mean 

queuing time and, therefore, the mean queue length, for the WASHQ queue 

converges to a steady state value as the simulation run length increases when 

the LOADD activity takes on average 4 minutes to be executed.

On the other hand, when this activity takes 20 minutes to be executed 

there is an increase in the mean value corresponding to an increase in the 

simulation run length which means that there is no convergence to a steady 

state value. For the DRYQ, no matter how long the activity LOADD takes to 

be executed (4 or 20) there is always convergence to a steady state.

The values for the standard deviation of these estimates are not shown 

in these tables but it is interesting to notice that when a queue parameter does 

not reach a steady state, the standard deviation of the estimate increases when 

the run length increases. On the other hand, when a steady state exists for a 

parameter of a queue, the standard deviation will tend to decrease as we 

increase the run length. This may not be always true for short run lengths, 

when there is still some influence of the initial conditions. However, for large 

run lengths there is a reduction in the standard deviation of the estimate.
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WASHQ Mean Queuing lim e Estimates DRYQ Mean Queuing Time Estimates

Run Length LOADD: 4 LOADD: 20 LOADD: 4 LOADD:20

1500 5.644 246.279 12.628 85.064

4500 6.787 932.891 14.601 90342

7500 7352 1625.226 15329 91.483

10500 7.220 2320330 15.362 91.955

13500 7336 3022.872 15.494 92.165

16500 7387 3721346 15.477 92328

19500 7.180 4418.866 15.409 92.432

22500 7340 5117.860 15301 92312

25500 7.449 5819396 15.619 92346

28500 7.467 6518.196 15.636 92391

Table 22 . WASHQ and DRYQ Mean Queuing Time Estimates as a 

function of the simulation run length and of the LOADD activity execution 

time.

Similar examples where instability of the system is attributable to a 

value of k/sfi>l for different simulation models are given in Appendix B. 

Another possible reason for a value of r = A/(s/z) to be larger than 1 in a 

simulation is the following:

HYPOTHESIS 2

When the number o f servers (i.e., barmaids in the PUB m odel) is small, 

some o f the queues belonging to temporary entities that use that server may 

become unstable.

When the number of servers is small the value of A,/sfi may be large and 

this may lead to instability of one or more of the queues, belonging to the 

temporary entity, and that are served by this particular type of server. 

Numerical examples illustrating this case are included in Appendix B.
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Figure 2.1. WASHQ mean queuing time estimates as a function of the 

simulation run length and of the LOADD activity execution time.
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Figure 2.2. DRYQ mean queuing time estimates as a function of the 

simulation run length and of the LOADD activity execution time.
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CONCLUSION

HYPOTHESES 1 and 2 suggest that a previous study of the model can 

and should be done by the simulation user or practitioner before spending 

computer time trying to find a steady state that does not exist. In this way, if 

one of the queues of the simulation model is unstable, an analysis previous to 

running the simulation program can detect the problem and on the other hand, 

if such an analysis is not carried out, the study of the "wrong" queues (for 

example DRYQ) may lead to erroneous conclusions that a steady state exists 

for the system under consideration.

2.4.2. QUEUES THAT MAY TAKE A  RELATIVELY LONG TIME

TO REACH A  STEADY STATE

Closed systems like for example the STEELWORKS, can be called 

"well-behaved" in the sense that they will always reach a steady state and with 

no extreme values of activity execution times or number of units of one of the 

entities of the system, most queues will reach the steady state for not too long 

simulation run lengths. However, in open systems, some queues may take 

considerably longer to reach the steady state depending on the entity they 

belong to, the type of input distribution, etc. In this sub-section we will try to 

give some guidelines for the identification of possible critical queues, where 

by "critical" we mean those queues that may require a long simulation run 

length for the parameters, for example the mean queuing time and the mean

queue length, to reach the steady state. The study will be divided in two parts:

1. Possible critical queues for temporary entities.

2. Possible critical queues for permanent entities.

We will illustrate the conclusions of this sub-section with an example 

corresponding to the PUB simulation model; Appendix B includes additional 

results for the LAUNDERETTE and the FISH PACKING simulation models.

1. POSSIBLE CRITICAL QUEUES FOR TEMPORARY ENTITIES
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In this type of entity, the units "arrive” to the system from the "outside 

world" and once they have finished their life cycle they are of no interest any 

more. From queuing theory, in most cases, random arrivals are modelled by 

a negative exponential distribution. This is a highly skewed distribution; as 

reported by Andrews et al (1972), who studied the robustness of about 70 

different point estimators of location, the sample mean is very sensitive to 

outliers. These are values much larger or much smaller than the rest of the 

values in the data set. Skewed distributions are more likely to produce outliers 

in the simulation output data. Therefore, we can expect that those queues 

used in the A.C.D. to model the arrival of a temporary entity to the system, 

will require long simulation run lengths to reach the steady state, especially if 

the arrival of the entities is modelled using a negative exponential, or any 

other highly skewed distribution.

How critical are other queues belonging to temporary entities is a 

question that does not have an easy answer. In general, due to the interaction 

of the different entities, how long is the simulation run length required for 

these queues to reach the steady state will also depend on the number of units 

of the permanent entities with which the temporary entity interacts, and on the 

time that the activity (or activities), in which that particular queue is involved, 

takes to be executed.

2. POSSIBLE CRITICAL QUEUES FOR PERMANENT ENTITIES

In the case of permanent entities, an important factor on how long is 

the simulation run length required for the parameters of the queue to reach 

the steady state is the number of units of the entity. This is true especially for 

those entities that are described in the A.C.D. by a single queue, like for 

example the entity barmaid in the PUB model, which is described by a single 

queue, called IDLE in the A.C.D. (See Figure A.4) In this case, we can expect 

that the larger the number of barmaids in the system, the shorter the 

simulation run length required for the queue of that particular entity to reach 

the steady state. The main reason for this behaviour is that as the number of
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"servers", s, (i.e. number of units of a permanent entity) increases, the value 

of the traffic intensity, r=A./(/i*s) decreases. As the traffic intensity decreases 

we can expect a better "behaviour" and therefore, with a shorter simulation run 

length the parameters of the queue will reach the steady state. On the other 

hand, as r increases and approaches 1, the simulation run length required for 

the queue to reach the steady state becomes longer. With respect to other 

permanent entities that are represented by more than one queue in the A.C.D. 

how long is the simulation run length required for the parameters of the 

different queues to reach the steady state needs some analysis of the 

characteristics of the system, as well as of the A.C.D.

In Section 2.4.3. we give results corresponding to some of the queues of 

the PUB simulation model, which has been simulated under different 

conditions in order to illustrate the points discussed in this sub-section.

2.43. SIMULATION OF THE PUB MODEL UNDER DIFFERENT

CONDITIONS

The PUB model has been simulated for three different conditions in 

order to study the influence of the number of units of permanent entities and 

of the distribution used for modelling the arrival of customers to the system. 

The following conditions have been used in the different experiments:

Condition Arrival Number of BARMAIDS

1 Negative exponential, mean 15 3

2 Normal, mean 12 and variance 16 3

3 Negative exponential, mean 15 8

For each one of the three conditions the mean queuing time estimates 

of the WAIT (entity : customer), IDLE (entity : barmaid), and CLEAN (entity: 

glass) queues as a function of the simulation run length have been obtained. 

The number of glasses in the system is 50 in all the three different conditions. 

Our objective in these examples is to show that, under some conditions,
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some of the queues will require a longer simulation run length to reach the 

steady state. But however, to show this we face the problem that in most of 

the simulation models that have been used throughout this thesis (like for 

example the PUB) the steady state is unknown. Nevertheless, the real value 

can be obtained if the model is simulated for a very long simulation run length 

and using a very large number of replications. This approach would not be 

feasible in real life due to the extremely large computer time that it requires. 

As discussed in more detail in Section 2.6.2. we will assume that the parameter 

has reached the steady state when the mean estimates fall within 2.5% of the 

real value that we have obtained by simulating the model for a very long 

simulation run length. We have chosen 2.5% as we consider that talking of a 

queue length of 2.0 or a queue length of 2.05 (2.5% of increase) provides, from 

a practical point of view, the same information. In the rest of this sub-section 

we will present and analyse the results obtained for the different conditions 

under which the PUB model has been simulated.

CONDITION 1

In this case we have simulated the arrival of customers to the system 

using a negative exponential distribution. Therefore, we can expect, according 

to the discussion of Section 2.4.2. that the WAIT queue will require a long 

simulation run length to reach the steady state.

Similarly, because the number of barmaids is not too large as compared 

to the number of units of the other permanent entity in the system, the glasses, 

we can expect that a rather long simulation run length is required for the 

parameters of the IDLE queue to reach the steady state.

Finally, as the number of glasses in the system is rather large (50) we 

can expect that the CLEAN queue will reach the steady state for very short 

simulation run lengths.

In Appendix C we obtained the following steady state values for the 

mean queuing time of the queues of interest in this model:
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Queue Steady state value

WAIT 1.141

CLEAN 209.400

IDLE 2.001

Table 2.3. gives the mean queuing time estimates for the three queues 

as a function of the simulation run length. We have underlined the mean 

estimates for which the parameters can be considered to have reached the 

steady state. This means that for the simulation run lengths corresponding to 

the underlined values, as well as for longer run lengths, the mean estimates all 

fall within 2.5% of the real steady state value.

As we expect, the WAIT mean queuing time takes a long simulation run 

length, in fact longer than 25000 minutes, for the mean estimates to fall within 

2.5% of the steady state value.

The IDLE mean queuing time, although it requires a long simulation 

run length to reach the steady state, approximately 20000, gets stable sooner 

than the WAIT mean queuing time parameter.

The CLEAN mean queuing time estimates fall within 2.5% of the steady 

state value for a very short simulation run length (2000), as was also expected.

CONDITION 2.

In this case the arrival of customers to the system has been modelled 

using a normal distribution with mean 12 and standard deviation 4. Table 2.4. 

gives the mean queuing time estimates for the three different queues of 

interest in this model, as a function of the simulation run length, based on 100 

replications. The steady state values, obtained by simulating the system for a 

very long period of time, are the following:

Queue Steady state value

WAIT 1.165

CLEAN 155.700

IDLE 0.502
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PUB - Critical queues.

Mean queuing time estimates

Run Length WATT CLEAN IDLE

1000 0.999 195319 2358

2000 1.007 205.204 2306

3000 0.982 208.675 2.176

4000 1.020 208.962 2.126

5000 1.005 211377 2.152

6000 1.023 212.423 2.164

7000 1.027 212314 2.150

8000 1.043 212.280 2.133

9000 1.035 212397 2.124

10000 1.034 212322 2.103

11000 1.047 211.898 2.086

12000 1.053 211.072 2.067

13000 1.053 211.059 2.073

14000 1.063 210.800 2.059

15000 1.059 210.901 2.055

16000 1.054 211316 2.064

17000 1.055 211.276 2.057

18000 1.054 211314 2.055

19000 1.057 211.320 2.055

20000 1.063 211.047 2.048

Table 23. Mean queuing time estimates for the WAIT, the IDLE, and 

the CLEAN queues, when the arrival is modelled with a negative exponential 

distribution with mean 15, and there are 3 barmaids in the system.
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We have underlined in Table 2.4. those values for which the mean 

estimates start falling within 2.5% of the steady state value. The results of this 

table confirm what we expected: when the arrival distribution is rather 

symmetric, the simulation run length required for the WAIT queue parameters 

to reach the steady state is not as long as it would be in the case of a skewed 

distribution, like the one used in condition 1 above. In this case, the mean 

queuing time of the WAIT queue requires a simulation run length of 9500 

minutes to reach the steady state. When the arrival was modelled using a 

negative exponential distribution a simulation run length longer than 25000 

required for the parameters of this queue to reach the steady state.

Similarly, with a large number of glasses in the system we can expect the 

CLEAN mean queuing time to reach the steady state for a short simulation 

run length (1000 in this case).

With a mean interarrival time of 12 minutes, we can expect the 

barmaids to be rather busy, and therefore, as the initial state is idle for the 

barmaids, there will be a rather large change in this state. This implies that 

the simulation run length required for the mean queuing time of the IDLE 

queue to reach the steady state will be rather long as the larger the change in 

the initial state of the queue, the longer the time it takes to get stable. Or 

using queuing theory, the smaller the value of the number of barmaids (5) the 

larger the value of the traffic intensity, A./(/is). In this case we notice, from the 

underlined values in Table 2.4. that the IDLE mean queuing time requires a 

simulation run length of at least 18000 minutes to reach the steady state.

CONDITION 3.

In this condition the arrival is modelled using a negative exponential 

distribution with mean 15 but we have increased the number of barmaids in 

the system from 3 to 8. Therefore, we expect the mean queuing time of the 

WAIT queue to be very small, as very few customers will have to wait to be 

served. This means that the change in the initial state of the queue, which is 

emply, will be small, and the steady state should be reached for a very short
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simulation run length. Similarly, due to the rather large number of barmaids 

in the system, the change in the initial state of the IDLE queue will not be 

large (or using queuing theory, the traffic intensity will be small), and again 

the steady state should be reached for a short simulation run length. We 

obtained the following approximate values for the real mean steady state 

values:

Queue Steady state value

WAIT 0.005

CLEAN 232.000

IDLE 14.510

Table 2.5. gives the mean queuing time estimates as a function of the 

simulation run length. In this table the underlined values correspond to the 

minimum simulation run length required for the mean estimates to fall within 

2.5% of the real steady state value. Just as expected, the mean queuing time 

estimates of the three different queues require very short simulation run 

lengths to reach the steady state.

25 . INITIALISATION BIAS PROBLEM

One of the problems in the estimation of steady state parameters, when 

the replications method is used, is that of the simulation run length. If it is not 

long enough there will be some influence of the initial conditions still present 

and the estimate will be biased. This problem, known as the Initialisation Bias 

Problem , has been discussed in Chapter 1, and methods to deal with it are 

discussed in Chapters 4 and 6. However, before using one of these methods, 

or any other of the methods that have been proposed for the elimination of 

this problem, the practitioner should consider if it is necessary or possible to 

eliminate it.
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PUB - Critical queues, ARRIVAL: NORMAL(12,4)

Mean queuing time estimates

Run Length WAIT CLEAN IDLE

1000 1.004 155.067 0.767

2000 1.022 158.433 0.666

3000 1.057 158309 0.623

4000 1.079 158.412 0.603

5000 1.115 157374 0388

6000 1.113 157360 0367

7000 1.110 157.109 0358

8000 1.111 156.988 0346

9000 1.129 156.143 0332

9500 1.138 155374 0330

10000 1.145 156.008 0331

11000 1.150 156.197 0330

12000 1.142 156303 0327

13000 1.137 156312 0326

14000 1.141 156.496 0325

15000 1.141 156398 0322

16000 1.139 156.188 0321

17000 1.136 156.020 0318

18000 1.137 155372 0313

19000 1.134 155395 0314

Table 2.4. Mean queuing time estimates for the WAIT, the IDLE, and 

the CLEAN queues, when the arrival is modelled with a normal distribution 

with mean 12, and there are 3 barmaids in the system.
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PUB - Critical queues, ARRIVAL: NEGEXP(15) ; 8 BARMAIDS.

Mean queuing time estimates

Run Length WATT CLEAN IDLE

500 0.003 186.946 15.824

1000 0.004 209346 14.993

1500 0.004 217.989 14.944

2000 0.004 221.890 14.828

2500 0.004 224.026 14.791

3000 0.005 226.460 14.842

3500 0.005 226.826 14.739

4000 0.005 227.760 14.754

4500 0.005 229.294 14.809

5000 0.005 229.913 14.826

5500 0.005 230393 14.814

6000 0.005 231353 14.876

6500 0.005 232.121 14.885

7000 0.005 232.166 14.834

7500 0.005 232.416 14.835

8000 0.005 232.168 14302

8500 0.005 232.064 14.793

9000 0.005 232.382 14.788

9500 0.005 232.094 14.750

10000 0.005 232.158 14.739

10500 0.005 231361 14.698

11000 0.005 231.804 14.686

11500 0.005 231.672 14.672

12000 0.005 231350 14.632

Table Z5. Mean queuing time estimates for the WAIT, the IDLE, and 

the CLEAN queues, when the arrival is modelled with a negative exponential 

distribution with mean 15, and there are 8 barmaids in the system.
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Two cases, discussed in Sections 2.5.1. and 2.5.2, can be identified "a- 

priori" for which methods for the elimination of the initialisation bias problem 

may not work or may not be required.

25.1. OSCILLATORY APPROACH TO THE STEADY STATE

Most queuing networks will have a monotonic, increasing or decreasing, 

approach to the steady state. The queues start empty or "idle" and then their 

queue length, and therefore their queuing time, increases or decreases until 

they reach the steady state.

However, there are other systems in which this approach to the steady 

state is oscillatory; this means that the mean estimates will oscillate around the 

steady state value, with oscillations getting smaller as the simulation run length 

increases. Here, use of a method for the elimination of the influence of the 

initial conditions does not work properly. In most methods the elimination of 

this influence is done by deleting some of the initial observations that are less 

representative of the steady state value. Doing this when the approach to the 

steady state is oscillatory will not eliminate the influence of the initial 

conditions. This is due to the fact that in this case there are local maximums 

followed by local minimums; the influence of the large values will be 

compensated by that of the small values and vice versa. Deletion of 

observations will not have a particular effect on how soon the steady state is 

reached (see analysis in Chapter 4, for the MILITARY model). Similar 

arguments are valid for other methods for the elimination of the influence of 

the initial conditions (see discussion in Chapters 4 and 6 for more details on 

this particular point).

2 5 .2  SMALL CHANGE IN THE INITIAL STATE OF THE QUEUE

In some cases there is not a great change in the state of the queue and 

the initial conditions are similar to the steady state values. In other words, 

there is not a great change in the values of the mean estimates obtained for
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a very long simulation run length with respect to their value at the beginning 

of the simulation. In these cases, the steady state can be reached for very 

short simulation run lengths. Deletion of some of the initial observations is 

not only unnecessary, but a waste of computer time. In practice, these cases 

can be identified by running the simulation model for a long (but not very 

long) simulation run length, and observing the estimates obtained for the 

parameters of interest for a very short run length as well as for the long run 

length. This will give the simulation practitioner an idea of how much is the 

change in their values.

2.6. FURTHER CONSIDERATIONS

In the previous sections we have discussed some points that should be 

considered by the simulation practitioner before starting the simulation. This 

analysis is not always done but it is important and it may save time. In this 

section we mention some additional points that the simulation practitioner has 

to consider if the simulation is to give reliable results.

2.6.1. FURTHER DISCUSSION ON SMALL MEAN ESTIMATES

Sometimes, for example when there are several servers, the steady state 

mean queuing time and mean queue length of the queues belonging to 

temporary entities that interact with this server (like for example, the WAIT 

queue in the PUB model simulated in condition 3 in section 2.4.3., see mean 

estimates in table 2.5.) will be very small in value. In these cases, from a 

statistical point of view, we consider that other types of measurement of the 

"centre" of the distribution should be used instead of the sample mean. The 

reason for this is that the individual observations used by the simulation for 

the calculation of the mean estimate Xj obtained in replication i  (assuming that 

the method of replications is used) are a combination of 0’s and Fs and 

possibly 2’s. This corresponds to a discrete distribution and then instead of 

estimating the mean we should estimate for example the proportion of time
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the queue is empty. As our main concern in this thesis has been to show how 

it is possible to develop simple procedures we have shown it using mean 

estimates. However, the use of other estimates than the sample mean in 

simulation requires further research.

2.62. DETERMINATION OF THE STEADY STATE

The main characteristic of this research is that it uses results obtained 

from the simulation of different models to propose new procedures, or to infer 

something about a particular problem of simulation. A  second important 

characteristic is that using this approach we show that simulation procedures 

do not need to be difficult and theoretically based in order to give satisfactory 

answers to the questions of interest. It is shown that based on the observation 

of characteristics that are common to different simulation models, it is possible 

to formulate simple solutions for simulation problems that until now do not 

have a satisfactory answer. This empirical rather than theoretical approach 

may not always give the optimal answer, but a good one. However, as 

discussed in the Operational Research literature, sometimes the benefits 

obtained with the optimal solution do not justify the time and money spent on 

obtaining it.

For this reason, the steady state of the system is identified in this thesis 

not by the application of one of the sophisticated definitions of steady state, 

like for example, that in "the steady state the probability of each different state 

is known," but by a simple analysis of the simulation output data; as the 

simulation run length increases we can determine the run length for which the 

output data shows convergence to a value considered to be the steady state 

value.

It is important to notice that simulation theoreticians expect that a new 

proposed procedure will give estimates within 0.5% or even less from the real 

value /x, and to show this, they test the procedure with simple systems like the 

M/M/1 queue. However, from a practical point of view, there is often no 

difference between a queue length of 1.25 or 1.28 (2.5% increase). Obviously
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the maximum tolerance (i.e., 2.5% or 1% or less) will depend on the particular 

problem that the simulation is trying to solve. Therefore, and considering that 

the research is not only based on results obtained from the simulation but that 

it tries to give some guidelines about the practical use of simulation, we 

consider for the purposes of this research that the parameters estimated in the 

different experiments are in a steady state if there is not a variation of more 

than 2.5% from the real steady state value.

In the simulation models used to obtain the results (like for example the 

PUB or the STEELWORKS) analysed in the thesis we do not know the steady 

state real value (fi); however, by running the simulation model for extremely 

long simulation run lengths and using a very large number of replications we 

can obtain a good approximation for (i (Appendix C); this approach is not 

desirable in real life as it would greatly increase the cost of the simulation.

2.63. LARGE STANDARD DEVIATION AS COMPARED WITH

THE SAMPLE MEAN

One of the problems faced by the simulation practitioner is that of a 

large standard deviation as compared with the sample mean. It occurs mainly 

in terminating simulations when the simulation run length is short. In some 

cases this may be due only to a phenomenon related to the random number 

seeds. Sometimes, for a particular combination of random number seeds and 

the input values to the specific model that is being simulated, outliers can 

appear in the simulation output. In these cases, the practitioner can identify 

the particular combination of random number seeds for which the problem 

appears and replace it by a different combination. However, in some other 

cases, the process itself has a large variance. Then, the confidence interval 

width will be very large and will not give an accurate idea of where the 

"centre" of the distribution is. This problem requires some special statistical 

treatment. It has been suggested to use the median instead of the mean to 

describe the output distribution as this statistic is less influenced by the 

outliers. It has also been suggested to use the trimmed mean that does not use
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the most extreme values of the sample for the calculation of the sample mean. 

In this case one of the disadvantages is that the statistical analysis of the 

results is not easy and may add to the complexity of the simulation. We have 

not used either of these approaches in this thesis as one of our main objectives 

was to show that simple procedures can work well in simulation, and we have 

done it using the sample means. An area of future research is the extension 

of the procedures proposed in this thesis to other parameters.

Z7. CONCLUSIONS

In this chapter we have given a more detailed picture of what this 

research is about, and created a scenario that is required for the reader to 

understand the approach followed in this research.

Emphasis has been put on the use of results obtained from the 

simulation of different models. It has also been discussed why the new 

proposed procedures do not have a rigorous mathematical justification. By 

doing this, simpler and easier to use procedures can be formulated; 

nevertheless, they give acceptable results at a smaller cost and greater 

simplicity and understandability especially for the user who has no practical 

experience in the application of simulation.

In order to show how simulation should be used in practice, we 

discussed in this chapter some aspects that should be studied by the 

practitioner before running the simulation. We also showed how this analysis 

prior to the simulation, although based on queuing theory for the particular 

examples discussed in this thesis, can be carried out by people with no special 

knowledge of it. In summary, the discussion in this chapter prepares the 

reader for the approach followed in the following chapters.

An important result of this chapter are the different guidelines given for 

the identification of possible critical queues that may apparently never reach 

a steady state or may require a very long simulation run length to reach it. In 

general, we show how the identification of possible unstable queues can be 

carried out in a simple way, we also show how an analysis of the system
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previous to running the simulation can help sometimes to identify those queues 

that may delay the system in reaching the steady state. However, as will be 

shown in Chapter 3, in those queues that may require a very long simulation 

run length to reach the steady state, an increase in the number of replications 

may reduce this required run length. This relationship between simulation run 

length required to reach the steady state and the number of replications, has 

not been discussed, to our knowledge, in the literature.

The message from this chapter is similar to what we can expect in the 

rest of the thesis: simulation does not require sophisticated and complex 

methods for its use and applications. Usually skill and understanding of the 

simulation model is more important than expensive and difficult to use 

software.
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CHAPTER 3 : ESTIMATION OF THE NUMBER OF

REPLICATIONS REQUIRED IN A  PARTICULAR SIMULATION

3.1. INTRODUCTION

One of the most important questions that the simulation practitioner has 

to answer before running the simulation is that of the number of replications 

to use. In terminating simulations, using a small number may give a non- 

accurate estimate. In steady state simulations we found, from empirical 

results, that using a larger number of replications permits the practitioner to 

detect clearly when the curve of the mean estimates as a function of the 

simulation run length becomes horizontal. This detection is not easy when the 

number of replications used is small because of the greater variability in the 

mean estimates; in this case the approach to the steady state is not as smooth 

as it is when we use more replications. Obviously when the variance of the 

estimate is smaller (and this corresponds to an increase in the number of 

replications) the mean estimate will be more accurate and will be closer in 

absolute value to the real steady state value. For example, in Table 2.3., the 

mean queuing time estimates for the WAIT queue did not fall within 2.5% of 

the steady state value for a simulation run length as long as 20000 (although 

it is not shown in the table, they require a simulation run length longer than 

25000 minutes to reach the steady state). The data of this table was obtained 

from 100 replications. However, when 900 replications are used, the estimates 

fall within 2.5% of the steady state value for a simulation run length as short 

as 7000 minutes. Even if we consider that there is some variability in these 

results and that therefore, when different sets of random numbers are used 

these run lengths will be different, the mean estimates obtained for a larger 

number of replications will be more accurate than those obtained for a small 

number of replications.

As the method of replications is used in the following chapters, we 

considered it important to develop a method for the estimation of the number
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of replications to use in a given simulation; this method should be easy to 

apply, not time consuming and if possible should not require assumptions that 

sometimes are not met in practice. It is important to notice that when the 

method of replications is used for the estimation of steady state parameters, 

the first step is to decide on the number of replications to be used; the second 

step is to decide if the influence of the initial conditions is important and if so 

a method to deal with this problem should be used (See Chapters 4 and/or 6).

3.1.1. CHAPTER OBJECTIVES

Using some methods that have been proposed in the literature for the 

estimation of the number of replications we will develop in this chapter a 

method that can be used for the estimation of the number of replications to 

be used for the mean estimates to be sufficiently accurate; use of this number 

of replications will also allow the practitioner to detect the point in time for 

which the steady state is reached, which is equivalently to the point in time for 

which the curve of the mean estimates as a function of the simulation run 

length becomes horizontal.

3.1.2. CHAPTER OUTLINE

In Section 3.2. we give a brief discussion of some of the methods that 

have been proposed in the literature for the estimation of the sample size, or 

number of replications. Section 3.3. shows, from results obtained from the 

simulation, the influence of the number of replications on the curve of the 

mean estimates as a function of the simulation run length and in Section 3.4. 

we explain a method, based on those discussed in Section 3.2, and that can be 

used for the estimation of the number of replications to be used. In Section

3.5. we give empirical results for a simulation model for which no analytical 

answer can be obtained.
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32. ESTIMATING A SINGLE MEAN: SAMPLE SIZE REQUIRED

In the method of replications, we make k  replications, and use the 

average (X) of the values Xv  X2...Xk obtained from the simulation as an 

estimate of the mean. However, when the variance of this mean estimate is 

too large we obtain inconclusive results, in the sense that the confidence 

interval calculated from these values is excessively large and will not give a 

clear idea of where the real value lies. The way of reducing this variance is 

by increasing the number of replications to k l  > k. "Sometimes practitioners 

"solve" the sample-size problem by continuing sampling until (say) the third 

digit after the decimal point does not change (that is, that digit does not 

change for the first time); of course such a procedure is not statistically sound." 

(Kleijnen, 1987). Therefore, there is a need for a procedure to guide the 

practitioner on how many replications to use.

This section describes some of the methods that have been proposed for 

the estimation of the number of replications required to give an "accurate" 

mean estimate. The methods discussed in section 3.2.1. are described by 

Kleijnen (1987) but similar methods can be found in other simulation 

publications (Law and Kelton, 1991; Banks and Carson, 1984; Law et al, 1981). 

In section 3.2.2. we discuss some of the problems associated with the use of 

these methods in practical simulation.

3-2.1. ESTIMATION OF THE NUMBER OF REPLICATIONS

REQUIRED FOR THE ESTIMATION OF A  SINGLE MEAN.

In this section we describe some of the methods currently employed for 

the estimation of the number of replications that are to be used in a simulation 

in order to obtain a confidence interval with a pre-specified width. This 

discussion has been taken from Kleijnen (1987)

"We begin with a simple (unrealistic) situation to illustrate sample-size 

determination. We assume a known variance (of course, we shall drop this 

assumption later) and a single normal population whose mean /xt we wish to
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estimate. We want our estimate X to be less than (say) c units wrong. 

Because of random noise we are never 100% certain of achieving this goal so 

that we settle for (say) 1-a certainty:

where za/2 is the upper 1 - a/2 critical point for a standard normal 

distribution, ox is the standard deviation of the mean estimate and n is the 

sample size.

Hence if we want to meet both Eq. 3.1. and 3.2., then Eq. 3.3. must

hold.

In other words, the desired sample size increases as

1. The noise <rx increases.

2. The confidence interval width decreases (the "half-length" of the 

confidence interval is c).

3. The coverage probability increases (as 1 - a increases, za/2 increases). 

The size of the sample size reacts quadratically to these three factors."

(Kleijnen, 1987)

In practice we have an unknown variance ax . Of course we can estimate 

ox through the sample variance sx2.

When we replace ox by sx2 then we replace z“/2 by t ^ 2 and then Eq.

3.4. transforms into:

P(\X-n\ z c) = 1 -  a (3.1)

The following relation holds (from basic statistic concepts):

(3.2)

c x (3.3)
&

Consequently the sample size n should be:

n = (za/2/ c ) \ 2 (3.4)
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(3.5)

"However, strictly speaking, the last step resulting in Eq. 3.5. is false, 

because in Eq. 3.5. the sample size n has become a stochastic variable (n 

depends on the estimator sx2). In practice Eq. 3.5. often works, which is 

substantiated by a number of statistical studies. These studies prove 

analytically that when sx2 in Eq. 3.5. is updated after each additional 

observation, then for large sample sizes Eq. 3.5. is consistent and efficient. 

"Consistency" means that the confidence interval does indeed cover /xt with 

prespecified probability 1 - a. "Efficiency" means that the expected sample size 

equals the sample size for known <rx2, given in Eq. 3.4. For small samples the 

consistency and efficiency do not change much, as is shown by Monte Carlo 

studies. (Anscombe, 1953; Chow and Robbins, 1965; Starr, 1966; Robbins et 

al, 1967; Srivastava, 1970). This is purely sequential; that is, we update ax2 

after each additional observation i’ (i’ = 2, 3...n)." (Kleijnen, 1987).

A slightly different approach is known as double sequential. In this 

approach we make initially n = iIq replications. We calculate the 

corresponding standard deviation s(n) and the confidence interval relative 

precision, I, which is simply the confidence interval half-width divided by the 

mean estimate. This is mathematically expressed by Eq. 3.6.

where tn_1Gt/2 is the upper l-a/2 critical point from the t-distribution, and 

n-1 degrees of freedom.

If I < c', then we use n = iIq replications. Otherwise, we increase n by 

1, make an additional replication of the simulation, update the standard 

deviation and calculate I. We repeat this procedure until I < c \ In this 

context c' is a pre-assigned positive value chosen by the practitioner and that 

corresponds to the desired c.i. relative precision. Law and Kelton (1991) 

suggest to start the double-sequential approach with = 10 and use c' < 0.15. 

"When we compare the purely sequential approach to the double-sample

(3.6)
X
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approach, we notice a practical problem: How should we choose the pilot 

sample size i^? A large initial sample iIq reduces (as long as % is

smaller than, say 30) and hence it reduces the total sample size. However, 

such a large pilot sample may result in wasted simulation runs, namely, if n0 

exceeds n. Large pilot samples tend to decrease the efficiency (large sample 

size) and to increase the consistency (high coverage probability)." (Kleijnen, 

1987).

33 . INFLUENCE OF THE NUMBER OF REPLICATIONS ON THE

ACCURACY OF THE MEAN ESTIMATES OBTAINED FROM THE

SIMULATION

In section 3.2. we discussed some of the methods that have been 

proposed in the literature for the estimation of the number of replications 

required for the estimation of a parameter. In this section we discuss two 

important aspects identified while studying this influence. Although it has not 

been discussed in the simulation literature, the random number streams used 

to obtain independent observations may have some influence on the accuracy 

of the mean estimate. This problem is discussed in section 3.3.1. A second 

aspect that is studied in section 3.3.2. is the influence of the number of 

replications on the accuracy of the curve of the mean estimates as a function 

of the simulation run length as compared to the real, but in general unknown, 

real curve.

33.1. INFLUENCE OF THE RANDOM NUMBER STREAMS ON

THE ESTIMATES OBTAINED FROM A  SIMULATION

We will discuss in this section the influence of the random number 

streams on the mean estimates obtained from the simulation. We found that 

in practical simulations, when a "small" number of replications is used, the 

mean estimate obtained from the simulation for short simulation run lengths 

will or may depend on the set of random number streams used to obtain k
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independent observations. To show the influence of the random number 

streams on the mean estimates, we simulated the LAUNDERETTE model and 

obtained mean estimates for the WASHQ mean queuing time as a function of 

the simulation run length. The mean estimates were obtained from 100 

independent replications, where the set R.N.[1] = [R1? R2,...R100] of random 

number streams was used. Rt are different and independent random number 

streams. The experiment was repeated for a different set of random number 

streams R.N.[2] = [R^? Rio2?***̂ 2oo]*
Figure 3.1. shows the mean estimates as a function of the simulation 

run length for the two different sets of random number streams. It can be 

seen how the mean estimates differ greatly, especially for short simulation run 

lengths.

WASHQ
No. of replications : 1007.5 n

Legend 

—  R.N.[1] 

  R. N.[2]
5.5

5.5 -

5 -

4.5
500 4500 8500 

Run Length
12500 16500

Figure 3.1. WASHQ mean queuing time estimates as a function of the 

simulation run length, for two different sets of random number streams and 100 

replications.

This influence of the random number streams is due to the presence of 

extreme values, very large or very small, in the observations of some of the 

replications for one of the sets of the random number streams. These extreme
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values do not appear in the set of observations obtained for a different set of 

random number streams. This influence tends to disappear when the number 

of replications is increased, as in this case the influence of extreme values is 

less, and they do not have weight as large as when the mean estimate is the 

average of fewer observations. This is shown in Figure 3.2. which shows the 

WASHQ mean queuing time estimates obtained from 900 replications.

WASHQ
No. of Replications : 9007 -i

Legend 

R.N.J1 ]

R. N.[2]

6 . 5

S.5 -

5 -

500 8500 
Run Length

12500 16500

Figure 3.2. WASHQ mean queuing time estimates as a function of the 

simulation run length for two different sets of random number streams, and 900 

replications.

332 . NUMBER OF REPLICATIONS AND SIMULATION RUN

LENGTH REQUIRED TO OBTAIN A GOOD ESTIMATE OF THE

STEADY STATE

In Section 3.3.1. we discussed how when the number of replications k  

is small, the random number streams used to obtain the k  independent 

observations can have an important influence on the mean estimate obtained 

from the simulation, especially for short simulation run lengths.

We also showed how when the number of replications is increased the
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influence of the random number streams is negligible. A second important 

aspect of the influence of the number of replications is that the curve of the 

mean estimates as a function of the simulation run length becomes closer (i.e., 

is a better approximation) to the real, but unknown curve, as the number of 

replications increases. This in practical terms implies that the approach to the 

steady state is smoother and that it is easier to estimate the simulation run 

length for which the curve becomes horizontal when a larger number of 

replications are used. This is illustrated in Figure 3.3. In this figure we show 

the WASHQ mean queuing time estimates as a function of the simulation run 

length and of the number of replications. We show the results obtained for 

100 replications and two different sets of random number streams and the 

results for 900 replications. In this last case the results are similar 

independent of the random number streams. This graph shows how the 

approach to the steady state is smoother and quicker if 900 replications are 

used.

WASHQ
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e.5
Legend 
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 lOO Rep. (R.N.[2»
-  eoo Rep.

©

s .s  -

5 -

4.6
500 12500 1 6 5 0 0

Figure 3.3. WASHQ mean queuing time estimates as a function of the 

simulation run length, of the number of replications, and of the set of random 

number seeds.
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3.4. ESTIMATION OF THE NUMBER OF REPLICATIONS

REQUIRED FOR THE ACCURATE ESTIMATION OF A

PARAMETER IN SIMULATION

In Section 3.3. we identified two important and practical aspects of the 

influence of the number of replications on the mean estimates: 1. The 

influence of the random number streams on the accuracy of the mean 

estimates and 2. The influence of the number of replications on the shape of 

the curve of the mean estimates as a function of the simulation run length.

These two aspects were the motivation for the present study. To 

overcome these problems we want to develop a simple method for the 

estimation of the number k of replications. We will show how, once this 

number k has been estimated, it can be used in any simulation of this model, 

for this particular parameter, independent of the simulation run length.

This number, if correctly estimated, will give estimates that are 

independent of the random number streams. At the same time, because once 

the influence of the random number streams becomes negligible, the mean 

estimates do not differ too much, this number of replications will give accurate 

mean estimates for both terminating and steady state simulations.

3.4.1. PROPOSED METHOD FOR THE ESTIMATION OF THE

NUMBER XO F REPLICATIONS

The methods discussed in section 3.2. that have been proposed for the 

estimation of the number of replications, or of observations to record in a 

given simulation have been extensively tested, and they seem to perform well 

when applied to simple models for which an analytical answer can be 

calculated. By applying the sequential approach described in Section 3.2. to 

simulation models for which no analytical answer can be calculated we will 

show that they can be used for the estimation of the number of replications 

that is required in order to obtain a good approximation to the real, but 

unknown, curve of the mean values as a function of the simulation run length.
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Our objective is to estimate a GOOD, but not the OPTIMAL, number of 

replications such that this curve will be a close approximation of the real one.

This number of replications can be estimated using the double 

sequential approach described in Section 3.2.1. This can be done for a short 

simulation run length and the value thus estimated can be used then to obtain 

accurate steady state parameters. Some points need to be discussed:

1. What "short simulation run length" means. We found from applying 

the method to different simulation models for which no analytical answer can 

be obtained that "short" depends on the time that the different activities take 

to be executed. If among the mean values of these execution times for the 

different activities the maximum takes D0 units of time, a "short" simulation 

run length can be 10 to 15 times the value of D0.

2. Which value should be used for "c#". The value of c' can be chosen 

to be 0.05 or less as we are using a short simulation run length for the 

estimation of the number of replications to be used in steady state simulations, 

and the estimates for short simulation run lengths tend to have larger variance.

3. Number N  of independent estimates. Although Law and Kelton 

(1991) suggest to start the double sequential approach using = 10, we found 

that in more typical simulation models n0 should be larger. We chose iIq =  

100. Another advantage of choosing iIq > 100 is that then the central limit 

theorem will guarantee that the distribution of the mean values follow a 

normal distribution.

In summary the proposed procedure is as follows: select a short 

simulation run length (obviously there will still be some influence of the 

transient) and make at least 100 replications. Based on the results obtained 

from these replications, and following the double sequential approach, 

estimate the number n of replications to be used for the estimation of steady 

state parameters. This number n will make it easier to estimate the point in 

simulated time for which the curve of the mean estimates as a function of the 

simulated time becomes horizontal.

This procedure was applied to three queues of the PUB simulation 

model and the results are given and discussed in Section 3.5.
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3.5. ANALYSIS OF THE EMPIRICAL RESULTS

Section 3.4.1. proposed a method that can be used to obtain an estimate 

of the number of replications that are required when the objective of the 

simulation is the estimation of steady state parameters. In this section we will 

illustrate the use of this algorithm by applying it to some queues of the PUB 

model. Additional examples are given in Appendix D.

Our main objective in the example given in this section is to show how, 

using the number of replications estimated following the procedure of Section

3.4.1., we obtain a curve of the mean estimates as a function of the simulation 

run length which is a good approximation to the real, but unknown, one. 

Therefore, it will be easier to estimate the simulated time for which the curve 

becomes horizontal if this number of replications is used than if less 

replications are used. In order to show this we will divide the following study 

into two parts:

1. The estimation of the number of replications and

2. The evaluation of the performance of the proposed procedure. We 

expect that the graph of the mean estimates as a function of the simulation run 

length will be "smoother" when the estimated number of replications is used 

than when less replications are used.

3.5.1. ESTIMATION OF THE NUMBER OF REPLICATIONS

Three queues of the PUB model (See Figure A.4., Appendix A) have 

been studied: WAIT, CLEAN and IDLE. For each one of these queues and 

for the mean queuing time parameter, we want to estimate the number of 

replications that should be used for the estimation of accurate steady state 

parameters. For the estimation of this number of replications we chose a short 

simulation run length (500 minutes) and obtained mean estimates for 100 

replications.

Following the procedure described in Section 3.4.1. we used a value of 

c' = 0.025, and obtained the following values for n:
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QUEUE

WAIT

Value of n

850

160

550

CLEAN

IDLE

3.5.2. EVALUATION OF THE PERFORMANCE OF THE

PROPOSED PROCEDURE.

In this section we will show how, when the number of replications 

estimated above are used, the graph of the mean estimates as a function of the 

simulation run length is "smoother” and it is easier to estimate the point in 

simulated time for which the curve becomes horizontal.

To show this we will obtain the mean estimates as a function of the 

simulation run length and of different number of replications and we will show 

the results on a graph. From this graph we should be able to approximate the 

point for which the parameter seems to have reached the steady state. We will 

then obtain c.i. for longer simulation run lengths and compare them in terms 

of their width, and of their coverage (i.e, do they "cover" the real value which 

has been estimated in Appendix C, or not). The real steady state values which 

have been estimated in Appendix C are the following:

Queue Steady state (/i)

Figures 3.4., 3.5., and 3.6. give the mean queuing time estimates of the 

WAIT, CLEAN and IDLE queues respectively as a function of the simulation 

run length and of the number of replications. From these figures it is easier 

to estimate the simulation run length for which the curve of the mean 

estimates becomes horizontal if we use the number of replications estimated 

following the procedure of section 3.4.1. than if we use less replications.

WAIT 1.140

209.400

2.001
CLEAN

IDLE
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W AIT m e a n  q u e u in g  tim e
1.18-1 Estimated number of replications : 850

1. 1 - r '
1 .08 -

-I

1.02 -

0.88
10OO 10000 19000 28000

Hun Isngth

Figure 3.4. WAIT mean queuing time estimates as a function of the 

number of replications and of the simulation run length.

CLEAN mean queuing time

1 OOO 10OOO _  1 9000 28000
n u n  length

Figure 3.5. CLEAN mean queuing time estimates as a function of the 

number of replications and of the simulation run length.
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IDLE mean queuing time
Estimated number of replications : 530

2.1 S -

1000 10000

Figure 3.6. IDLE mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

For example, from figure 3.4. we can notice how the curve becomes 

almost horizontal for a simulation run length of 7000. This is noticeable when 

at least 400 replications are used, although the estimation is more accurate 

when 850 replications are made. Similarly, from Figure 3.6. how the curve 

becomes almost horizontal for a simulation run length of 4000. In this case we 

require 550 replications. The figures also show how an increase in the number 

of replications does not make an important difference on the smoothness of 

the curve.

To show how the number of replications affect the c.i. obtained, tables

3.1., 3.2., and 3.3. give the c.i. half-width, the c.i. lower and upper limit (using 

95% c.i.) and the percentage error for the WAIT, CLEAN, and IDLE mean 

queuing time, for different run lengths and different number of replications.

Although results are not given here, when 100 independent c.i. were 

calculated based on (only) 100 replications for the run lengths approximated 

from the graphs and for which the curve becomes almost horizontal, the 

coverage was close to 100(1 - a)% as expected.
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Results based on 100 o nervations

Run mean std.Dev. c.i.half-w c.i.1.1. c.i.u.1. % error

7000 1.1 0.5 0.09 1.02 131 231

19000 1.1 0.3 0.06 1.07 1.18 1.75

27000 1.1 03 0.05 1.09 1.20 -0.13

Results based on 400 observations

Run mean std.Dev. c.i.half-w c.i.1.1. c.i.u.1. % error

7000 1.1 03 0.05 1.07 1.17 137

19000 1.1 03 0.03 1.11 1.17 0.07

27000 1.2 03 0.03 1.12 1.18 -1.00

Results based on 900 observations

Run mean stdJDev. c.i.half-w c.i.1.1. ci.u.1. % error

7000 1.1 03 0.03 1.08 1.14 2.43

19000 1.1 03 0.02 1.10 1.14 1.46

27000 1.1 03 0.02 1.13 1.17 -0.47

Results based on 1200 observations

Run mean std.Dev. c.i.half-w c.i.1.1. c.i.u.1 % error

7000 1.1 0.4 0.03 1.09 1.14 2.42

19000 1.1 03 0.02 1.11 1.14 138

27000 1.1 0.3 0.02 1.13 1.16 -0.12

Table 3.1. WAIT mean queuing time c.i. half width, c.i. upper and 

lower limit (c.i.1.1. and c.i.u.l.) and percentage error of the mean estimate as 

compared to the real steady state value.
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Results based on 100 o nervations

Run mean stdJDev. c.i.half-w c.i.lJL c.i.u.1. % error

7000 208.8 18.7 3.71 205.1 2123 03

19000 210.2 11.7 233 207.9 2123 -0.4

27000 210.0 10.6 2.10 207.9 212.1 -03

Results based on 200 observations

Run mean stdJDev. c.i.half-w c.i.1.1. ci.u.1. % error

7000 209.0 183 2.57 206.4 211.6 0.2

19000 209.2 11.6 1.61 207.6 210.8 0.1

27000 208.6 10.7 1.48 207.2 210.1 0.4

Results based on 400 observations

Run mean std.Dev. c.i.half-w c .ill c.i.u.1. % error

7000 2083 193 1.92 206.4 210.2 0.5

19000 209.4 11.9 1.17 208.2 210.6 0.0

27000 209.0 10.8 1.05 208.0 210.1 02

Results based on 1200 observations

Run mean std.Dev. c.i.half-w c.i.1.1. c.i.u.1. % error

7000 207.6 19.0 1.08 2063 208.7 0.9

19000 209.2 11.8 0.67 2083 209.9 0.1

27000 208.8 10.3 0.58 208.2 209.4 03

Table 32 . CLEAN mean queuing time c.i. half width, c.i. upper and 

lower limit (c.i.1.1. and c.i.u.1.) and percentage error of the mean estimate as 

compared to the real steady state value.
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Results based on 100 o nervations

Run mean stcLDev. c.i.half-w c.i.1.1. c.i.u.1. % error

7000 2.1 0.4 0.08 2.00 2.15 -3.8

19000 2.0 0.2 0.05 1.99 2.09 -2.0

27000 2.0 0.2 0.04 2.00 2.08 -2.0

Results based on 400 observations

Run mean stdJDev. c.i.half-w c.iJ.L c.i.u.1. % error

7000 2.1 0.4 0.04 2.03 2.11 -3.4

19000 2.0 0.2 0.02 2.01 2.06 -1.7

27000 2.0 0.2 0.02 2.00 2.04 -1.1

Results based on 700 observations

Run mean stdJDev. c.i.half-w c .ill. c.Lu.1. % error

7000 2.1 0.4 0.03 2.02 2.08 -2.5

19000 2.0 0.2 0.02 2.02 2.05 -1.8

27000 2.0 0.2 0.01 2.01 2.04 -12

Results based on 1200 observations

Run mean std-Dev. c.i.half-w c.i.1.1. c.i.u.1. % error

7000 2.1 0.4 0.02 2.03 2.07 -2.5

19000 2.0 0.2 0.01 2.01 2.04 -12

27000 2.0 0.2 0.01 2.00 2.02 -0.6

Table 33. IDLE mean queuing time c.i. half width, c.i. upper and lower 

limit (c.i.1.1. and c.i.u.1.) and percentage error of the mean estimate as 

compared to the real steady state value.
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As can also be seen from the tables, and this conclusion is valid when 

several independent c.i. are calculated, another advantage of obtaining more 

replications is that the mean estimate becomes more accurate. This can be 

seen from the values of the c.i. half-width (or half-length). In general, "if the 

c.i. half-length is less than or equal to 13 (where 13 > 0) then:

1 - a * P(X - half length < ii < X + half length)

= P( | X - fi | < half-length)

< P( | X - ii | < 13) " (Law and Kelton, 1991)

Obviously, and this is confirmed in the tables, as the number of 

replications increases the value of the c.i. half-length decreases, and therefore, 

we can expect a smaller absolute error in the value of the mean estimates.

Additional examples are given in Appendix D that confirm the results 

obtained here.

3.6. CONCLUSIONS

One important aspect not discussed before in the literature has been 

identified in this chapter: the influence of this number of replications on the 

estimation of the simulation run length required for a parameter to reach the 

steady state.

These two points led to the proposal of a simple method for the 

estimation of the number of replications for which the curve of the mean 

estimates as a function of the simulation run length is a good and close 

approximation to the real, but unknown, one. This allows the practitioner to 

estimate the simulated for which the curve becomes almost horizontal, i.e., for 

which the parameter can be considered to reach the steady state. It is 

important to obtain a good estimate of this point because as discussed by Law 

(1977) if the simulation run length is not long enough for the influence of the 

initial conditions to have disappeared, then the mean estimate will be biased, 

and in fact if we increase the number of replications the c.i. coverage (i.e, the 

percentage of c.i. covering the real steady state value) will tend to zero as a
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result of the c.i.’s being built not around the steady state value, but around a 

transient value.

In any case it is important to note that although the first step in a 

simulation, when the number of replications is used, is to estimate this number, 

the next step should be to deal with the influence of the initial conditions, 

especially if this influence is strong. In other words, the results of this chapter 

should not be used on their own, because it is clear that in the method of 

replications we are always starting the simulation with the same conditions 

which are usually not representative of the steady state conditions. However, 

the analysis carried out in this chapter provides the simulation practitioner 

with a starting point.

It may also be argued that instead of using a large number of 

replications it is possible to increase the simulation run length. This is valid, 

but it has the problem that the simulation run length is another parameter 

chosen a priori by the practitioner and it tends to be parameter and model 

dependent. And as shown in the graphs of this chapter when few replications 

are made the estimation of the simulation run length required for the 

parameter to reach the steady state is not easy.

We can think of this chapter as an extension to the topic of critical 

queues discussed in Chapter 2. In those queues identified as critical use of a 

larger number of replications may help to obtain a more accurate estimate.
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CHAPTER 4 : STEADY STATE : REDUCING THE TRANSIENT

PHASE

4.1. INTRODUCTION

Textbooks, articles, conferences and symposiums all discuss the problem 

of the influence of the initial conditions. As discussed in Section 4.2. the 

behaviour of the transient is not representative of the steady state of the 

system. One of the most common ways of dealing with this problem is by 

deleting some of the initial observations which usually will greatly differ from 

the steady state values.

In one of the most complete reviews of the methods found in the 

literature to deal with the problem, Gafarian et al (1978) showed, based on 

five performance measures defined below, that none of the methods that 

existed at that time performed well. (See also, Wilson and Pritsker (1978a)).

The following notation is used to explain these different performance 

measures:

{Xj}: Stochastic process with index (time) parameter t.

L : Truncation point for a time series realisation of {XJ;

lix : Steady State mean of the process {Xt}.

e : preassigned relative tolerance.

We define t* as the minimum time such that:

1 - e < E(Xj)/iix < 1 + e for all t>t*

Choosing e sufficiently small, the stochastic process {XJ can be said to 

be in the steady state for values of t>t*; this means that the expected value Xt 

is close to ilx and E fX J//^ is close to 1.

Depending on the procedure and the random number seeds used, the 

value of L  varies and, therefore, we can think of L as a random variable used 

to estimate t*. Gafarian et al compare the different procedures based on the 

following measures:
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1. Accuracy: a = E(L)/t*  should be equal to one.

2. Precision : p  = a (L)/E(L) should be close to zero.

3. Generality: A truncation point should perform well for a broad range 

of models.

4. C ost: Because some observations are being deleted, the computer 

time taken to do this should not be excessive.

5. Sim plicity: The proposed procedure should be easy to understand 

and easy to use.

When applying these performance measures, some of the procedures 

studied were found to underestimate the truncation point, with the influence 

of the initial conditions remaining and leading to a biased steady state 

estimate. Other procedures were found to overestimate the truncation point 

leading to a waste of resources.

We now discuss some of these performance measures. With respect to 

the cost we must notice that when this study was carried out (1978) the cost of 

computer time could greatly increase the total cost of the project. With the 

development of new and faster technologies, cost is not as much a problem as 

it was some years ago. However, if the computer time spent in the estimation 

of the number of observations to be deleted is kept as small as possible, the 

practitioner can spend more time in taking a larger number of replications 

and/or increasing the total simulation run length. These two factors affect the 

accuracy of the estimate obtained from the simulation, and the larger they are 

the more accurate the estimate is.

If cost is not an important factor in the evaluation of a procedure 

proposed for the elimination of the influence of the initial condition, measures 

of performance 3 (generality) and 5 (simplicity) are still very important. Most 

of the procedures that have been proposed to deal with the initialisation bias 

problem are not shown to be general; they have used simple models, like the 

M/M/1 queue, to show the results. However, complex systems have a 

completely different behaviour. Therefore, the methods so far tested may not 

be expected to work satisfactorily for different types of real and complex 

systems. A second problem with these methods is that some of them, as is
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shown in section 4.3, are not easily implemented and for complex models they 

may require several computations, which will increase the time taken by the 

project (see comment in Section 1.1.2. about simulation projects taking an 

excessively long time). And, due to their complexity, most of these methods 

do not meet the fifth performance measure of simplicity. Two methods (Law 

and Kelton’s and Welch’s) are described in section 4.3. to illustrate these three 

problems (long time taken to finish the project due to complexity, lack of 

generality and lack of simplicity). The description of these two methods in this 

chapter will show how relatively easy it is to implement the method proposed 

in this chapter, and its generality is illustrated by applying it to simple and 

complex models.

Some other problems associated with the deletion of observations as a 

way of dealing with the initialisation bias problem have been discussed in the 

literature. For example, some authors question the usefulness of this method 

and they consider that deleting the transient part of a time series may give a 

biased variance and steady state estimate (Deutsch, et al; 1983). Some other 

authors have shown (based on simple models like the M/M/1 queue) that the 

deletion of some observations will increase the variance of the steady state 

estimate. However, new sampling methods have been proposed recently that 

may reduce the standard deviation of the mean estimate by up to 50% in some 

cases (Saliby, 1990a, 1990b). Law (1977), comparing the batch means with the 

replications method, showed that deletion can increase the bias when the 

simulation run length is not sufficiently large. Blomqvist (1970) showed that 

for the M/M/1 queue and some other simple queues, the mean squared error 

of the estimate increases with the deletion of some of the initial observations. 

This mean squared error is defined as E[X(m,L)-/i]2, where X(m,L) is the 

steady state estimate when m  observations are recorded but, of these m  

observations, L  are deleted. V" is the real, and (usually) unknown value. 

More generally, it has been shown that for a first-order autoregressive process, 

the mean-squared error may increase or decrease depending on the values of 

m and L. (Fishman (1972), Tumquist and Sussman (1977), Wilson and 

Pritsker (1978a), Snell and Schruben (1979), and Kelton and Law (1984)).
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However, further research is needed in this field before rejecting the 

usefulness of the deletion of some of the initial observations, as most of these 

studies are based on observations made on the M/M/1 queue or other similar 

simple models.

4.1.1. CHAPTER OBJECTIVES

As mentioned above, the existing methods to deal with the initialisation 

bias problem do not perform well in practice, or are not easy to employ and 

to apply. Therefore, the objective of this chapter is to seek to develop a 

method for the selection o f a truncation poin t and which at the same time is 

easy to im plem ent and to understand by the user with no previous special 

knowledge o f the Geld.
We do not try to develop a method supported by a rigorous 

mathematical theory as is usually done, but to use an empirical approach for 

it. By analysing different types of simulation models and their behaviour for 

short simulation run lengths we were able to identify a common pattern which 

could be due to the influence of the initial conditions. Further 

experimentation confirmed this point. In this way our method estimates the 

truncation point using results obtained from the simulation. The main 

advantage of this approach is that it does not require complex computations 

or modifications to the simulation software that are difficult to implement.

4.1.2. CHAPTER OUTLINE

Section 4.2. defines the term transient phase and discusses the problem 

of Initialisation Bias, as a consequence of the transient phase. Section 4.3. 

describes some of the methods that have been developed to deal with the 

problem of the transient phase in the calculation of steady state parameters. 

Section 4.4 develops a method to deal with the initialisation bias problem. This 

method in its present form is applied to queuing networks. An area for future 

research could be its extension so that it can be applied to other types of
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simulation models. The method was applied to simulation models for which 

no analytical answer can be calculated and Section 4.5. discusses some of the 

empirical results thus obtained. However, to test if the proposed method has 

some limitations, or if it works for simple models as well as it does for complex 

ones, it was also applied to three systems with known analytical steady state 

values and which are favourites amongst simulation theoreticians; these 

systems are the M/M/1 queue, the M/M/4 queue and a 2-stage queuing 

system (Queues in tandem).

4.2. TRANSIENT PHASE :WHAT IT IS

"A simulated system is considered to be in a steady state if its current 

behaviour is independent of the starting conditions, and if the probability of 

being in one of its states is governed by a fixed probability function. This does 

not mean that the system does not change state, but that the probability of 

being in any of its possible states can be determined.” (Pidd, 1992).

The transient phase is the period of time between the start of the 

simulation and the final or steady state. This is better explained with an 

example. Suppose that a factory starts its operation. In one of its departments 

there is an assembly line where each shift picks up where the previous one left 

off. The first few hours or days of operation will not be really representative 

of the behaviour of the assembly line. This is due to the fact that the "queues" 

(points of the assembly line where the product has to wait for an operator to 

start working on it) will be initially "empty" and the workers will be initially 

"idle". This means that the first few elements to go through the assembly line 

will not have to wait in a queue anywhere, and just the same, some of the 

operators will have to wait longer (will be idle) before starting to work. 

However, as time increases, the flow in the assembly line will tend to stabilise 

and it will be possible to answer questions like how long it takes on the 

average for a product to go through the assembly line, and what percentage of 

time an operator is "idle" in a typical shift, etc. The period of time until the 

operation of the assembly line is "stabilised" is called the transient phase of the
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assembly line. Just the same, if a change is made in the assembly line, for 

example by reducing the number of operators, there will be another transient 

phase while the system readjusts to the new operating conditions. The 

important point here is that the operation of the system during the transient 

phase may be of little consequence when compared to the operation once a 

steady state has been reached.

42.1. DELETION OF SOME OF THE INITIAL OBSERVATIONS

DURING THE TRANSIENT PHASE

While in some cases we are interested in the transient phase (for 

example, in terminating simulations), in other cases, when the main objective 

of the simulation is the study of the behaviour of the system in the long run,

i.e., when we are interested in the estimation of steady state parameters, the 

influence of the transient phase may lead to biased estimates. This is due to 

the fact that the values of the observations during this transient phase are (or 

may be) quite different from the steady state values, and therefore using these 

values will give a sample mean either too small (when at the beginning of the 

simulation the queue is "empty") or too large (all entities in the queue are 

initially "idle") as compared to the real, but unknown, steady state values. 

Obviously, this could be overcome if the system is simulated for an extremely 

long period of time but this procedure will take a long continuous computer 

operation and increase the time taken by the project. Two possible solutions 

have been suggested:

1. Start the simulation with conditions that are more similar to the 

steady state conditions (Madansky, 1976). The problem with this approach is 

that this steady state is not known. In most simulations "the simplest course 

open to the analyst is to begin the simulation with no activity occurring and 

with the queues empty" (Pidd, 1992)

2. Do not record the initial output from the simulation. In other words, 

divide the total simulation time in two periods: an initial period T2 and a 

second period with T3 >>T 2. Do not take any record of the simulation
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output data during time period T2 . (See Figure 4.1)

0 T2 T3

Run-ln-Perlod Data t0 usec* f°r MEAN estimate

Figure 4.1. "Warm-Up" + Data Collection Period

This means that for a period of time T2 we are driving the system into 

conditions which are more representative of the steady state and during this 

period we are not recording any data as this is quite different from the steady 

state values. For practical purposes, due to the type of simulation software 

used in the experiments carried out in this research, this period of time T2 will 

be called the Run-in-period; in practice, simulation output is recorded from the 

beginning of the simulation run, but when the simulated time gets equal to the 

run-in-period, all data collected up to that point is discarded.

The basic problem now is to determine the length of T2. If it is too 

small, the estimate will be biased; if it is too large, the variance of the estimate 

will increase (if the total simulation run length is not increased) and computer 

time will be wasted. Several methods have been developed to calculate this 

period of time.

Some methods, delete a fixed number of observations L in each 

replications, instead of deleting the observations recorded during a fixed 

period of time in each replication. When the first L observations of each 

replications are deleted, the period of time required to record them is a 

random variable that takes different values (although similar) in each 

replication. On the other hand, when a fixed period of time is chosen and the 

observations recorded during this period of time are deleted, the number of 

observations deleted is a random variable that takes different values in each 

replication. In the methods described in Section 4.3. the truncation point is 

given by a fixed number of initial observations L that are deleted in each
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replication. Four of the methods that have been proposed in the literature for 

the estimation of the number L of observations to be deleted have been 

compared by Kimbler and Knight (1985); it is interesting to notice that 

although the methods seem to perform well, at least in the case used to 

compare them, there is "quite a difference in the truncation points given by the 

various methods." This implies that in some cases the truncation point is 

overestimated and its overestimation is undesirable because the variance of the 

estimate increases. To explain this in more detail, if we call L  the number of 

observations deleted, and m the total number of observations recorded from 

the simulation run, the estimate will be obtained from m -L  observations. As 

the variance of the estimate is inversely proportional to the number of 

observations used to calculate the mean estimate, if we keep m  fixed the larger 

the value of L the larger the variance of the mean estimate.

Summarising this section, the initial conditions are not representative 

of the steady state. Therefore they may produce a biased estimator. A  

possible solution which is further discussed in the remainder of this chapter is 

to run the system for an initial period of time called the run-in-period; any 

data recorded during this period of time is discarded. Doing this transforms 

the problem into that of how to obtain a "good value" for this initial period of 

time.

43 . SOME METHODS FOR THE ELIMINATION OF

INITIALISATION BIAS IN SIMULATION

Two methods that have been proposed in the literature for dealing with 

the initialisation bias problem are described in this section. This will give an 

idea of the complexity of the methods that are supported by a strong 

mathematical background. The first method, described in sections 4.3.1. and

4.3.2., is Kelton and Law’s method (Kelton, 1980, 1982, and Kelton and Law, 

1983). The second method is Welch’s method (1983) and it is described in 

Section 4.3.3.
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43.1. KELTON AND LAW’S METHOD

In this method, k replications of length m  (i.e. m observations are 

recorded in each replication) are obtained. To reduce the influence of the 

initial conditions, the first L observations of each replication are deleted. The 

sample mean for replication j  is given by equation 4.1. where Xj(j) is the ith. 

observation obtained in the jth. replication.

xjj) -  7 - ^ 7 7  £ m  i'uuk (4 i )
Vn ~I')i=L+l

Using these values, an estimate of the mean /x is then given by equation

4.2.

*  -  (4 2) Kj=1

The method tries to find a good but not necessarily optimal value for 

L  and for m. A  good value of L and m is a value such that '^(X ^Q )) is 

sufficiently near /x to allow us to treat the XLm(j)’s as being i.i.d. (independent 

and identically distributed), and unbiased for jx in the context of their use in 

a statistical inference problem, e.g., c.i. formation." (Kelton and Law, 1983). 

At the same time, the value of L cannot be too large, as this would mean 

excessively long computer time, and waste of resources. In other words, the 

problem addressed here is not a problem of optimisation, but of determining 

a set of values (L,m) such that the observations used to estimate /x, may give 

a good estimate, and an acceptable confidence interval. "This way of thinking 

about the startup problem differs from that in Gafarian, Ancker, and Morisaku 

(1978), where the problem is defined as finding the minimal i* such that E(Xj) 

is within a specified tolerance of /x for all i>i*; their formulation requires that 

individual points be near 11 in expectation, whereas our goal is to obtain 

averages of points which have expectation near 1 1 ." (Kelton and Law, 1983)
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4 32. KELTON AND LAW’S METHOD: DESCRIPTION

"If E(Xj) * /i for i>q (q  unknown), then in econometric parlance, a 

m odel for Xi? for i>q, is:

Xj = H + lit (1) 
where the tj-’s are r.v.’s" (random variables) "with = 0. If we were to fit

a straight regression line through adjacent X /s over values for i>q, we would 

expect the fitted line to have a slope which would not be distinguishable from 

zero, upon performing a formal hypothesis test for zero slope. This is really 

a test for flatness of the TEF, ( transient expectation function is the plot of 

E(Xj) against i) so should indicate whether the TEF has stabilized, and this

stability should only obtain at the level of fi, in view of our assumption that the

TEF is monotone. A  serious difficulty, however, in fitting such a regression 

line and performing this test is that the X f s  are correlated, so that the tj ’s in 

Equation (1) are also correlated. This is contrary to the usual independence 

assumption made in classical regression so that we cannot simply apply 

ordinary least squares (OLS) to fit the desired line. Instead, we must resort 

to generalized least squares (GLS), which allows for autocorrelation in the 

disturbance terms of the regression model (See Johnston, 1972). A  practical, 

general, and efficient GLS procedure was given by Amemiya (1973) which 

results in an unbiased and efficient (in the sense of minimum variance) slope 

estimator, and an asymptotic theory on which standard error estimates of this 

slope estimator can be obtained, which enables us to perform the desired zero- 

slope hypothesis test." (Kelton and Law, 1983).

Law and Kelton describe the method as follows:

"To state the procedure, we will need the following notation: 

k = number of replications 

mo = initial length of each of the k replications 

Am = number of points added to each one of the k replications (if 

necessary).

m* = maximum replication length, 

b = number of batches
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p* = maximum initial deletion proportion.

p0 = minimum initial deletion proportion.

13 = size of the test for zero slope.

f = maximum number of segments over which a fit is made, including 

initial fit.

The idea behind choosing which segments to use for curve fitting is to 

start near the end  of the Xj series (with, for example, the last half of the data) 

for the initial fit, then move the segment backward toward the beginning of the 

data until it appears that the TEF is no longer flat, as evidenced by rejection 

of the null hypothesis of zero slope. If the line fitted initially to, for example, 

the last half of the data, has a slope estimate which is significantly different 

from zero, then m  must be increased, i.e., each of the k  replications must be 

extended, and we try again...

Before giving a detailed statement of the procedure, one other idea 

warrants discussion. Instead of fitting the regression lines to the X /s 

themselves, we instead group the m  X /s into b  "batches" to form b  batch 

means, each being the average of m /b  adjacent values of the Xj series; these 

batch means then form the points on which the regressions are done...

The initial line is fit to the last 100(l-p*)% of the data, so uses the last 

(l-p*)b batch means. Assuming that the initial zero slope test does not result 

in rejection, we begin consideration of earlier batch means by moving the 

interval over which the next line is fitted backward toward the beginning of the 

time series. To do this, the deleted proportion is reduced by an amount Ap =  

(p* - po/(f-l), so that the next line is fitted to batch means (p* - Ap)b through 

(1 - Ap)b, i.e., the right endpoint is also moved back. If this new line also has 

a slope which cannot be distinguished from zero, the next line is fitted to batch 

means (p* - 2Ap)b through (1 - 2Ap)b. As long as the zero slope tests do not 

indicate rejection, we keep diminishing the deletion proportion by Ap each 

time until rejection occurs, or until the deleted proportion reaches p0. Thus, 

we will do at most /fits in this way, and the interval of interest moves back by 

the constant amount of (Ap)b batches for each fit.

Also, we assume that each value of m, the replication length, is divisible
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by b. Furthermore, it is understood that whenever an index is defined in a way 

in which it might be nonintegral, it is rounded to the nearest integer. Finally, 

the notation is to be read "is replaced by." Then the procedure is as 

follows:

STEP 1. Make k independent replications of length m0 points each, 

average over the replications to obtain the single time series, Xv  X2... 

^  and let m=m0.

STEP Z Group the m  points Xl9 X2 ... X^ into b batches of m /b  

adjacent points each, and compute the b  batch means.

STEP 3. Fit a straight line through batch means p*b+l...b (using the 

Amemiya GLS procedure), and perform a test for zero slope at level 13.

a. If the test fails to reject the null hypothesis of zero slope, go to step 

4.

b. If the test indicates rejection, then:

i. If m + Am < m* then m «- m + Am, and go to step 2.

ii. If m + Am > m*, print a warning that m* is too small, set p

= p* and go to step 6.

STEP 4. Let Ap = (p*-p0)/(f-l) and let p=p*-Ap.

STEP 5. Fit a straight line through batch means pb+1, ... ,(p+l-p*)b 

and perform a test for zero slope at level 13.

a. If the test fails to reject, then

i. If p - Ap > p0 Then p «- p-Ap, go to step 5.

ii. If p - Ap<p0 then go to step 6.

b. If the test indicates rejection then p «- p + Ap and go to step 6.

STEP 6. Let L = pm (to the nearest integer) and return L and m."

(Kelton and Law, 1983).

The first problem with this method is the need to define values for some 

of the parameters, like for example m0, Am, b, p*, p0, 13, f. Assigning values to 

parameters in simulation may sometimes be a problem, as shown in Chapter 

5 for the batch means method, because the parameters may be model 

dependent or even worse, these values may depend on the unknown quantity
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being estimated by the simulation. The authors themselves recognise that their 

selection of parameters may not work well "in every case" (Kelton and Law, 

1983).

A second problem is the lack of generality as this method was tested 

with "a total of 13 stochastic models with known /x". (Kelton and Law, 1983). 

However, in typical simulation applications, the real value /x is not known. If 

it were known there would be no need to use simulation.

A third problem with this method is, as reported in a survey made by 

Kimbler and Knight (1985), that the method is rather complex: "In fact, had 

we not been able to obtain a written coding for the Amemiya GLS method our 

work would have been greatly exaggerated."

Kelton and Law (1983) give the following example of the procedure's 

operation, which is illustrated in Figure 4.2.

20

10

0 250 500

m = 2500

25000 1250

Figure 42 . Law and Kelton’s method: example for an M/M/1 queue 

with r  = 0.9.

m = 500
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"The process being simulated is again the delay in queue for the M/M/1 

queue with r = 0.9 and the initial conditions are empty and idle. We 

implemented the procedure with the following parameters: k = 5, m0 =  500, 

Am =  500, m *  = 3000, b = 125, p*  = 0.5, pQ= 0.1, B = 0.5 and f  = 11. The 

top graph of Figure 4.2. pictures the initial situation, where m  = m0 = 500, so 

the batch means are averages of m /b  = 4 adjacent Xj values each; these are 

plotted as the crosses, and the dashed lines give the level of ii and the exact 

TEF. The initially fitted line, labeled "A," is fitted to batch means 64 through 

125, and the zero slope test indicated rejection at the J3 = 0.5 level. The 

procedure thus executes Step 3b(i), continuing each of the five replications for 

an additional Am = 500 points, and extends the averaged time series to X 1 ... 

Xiooo* Step 2 then forms 125 batch means of eight X /s each and a new line is 

fit to these means of (larger) batches 64 through 125. In this example, the 

zero slope test again indicated rejection; we omit the plot in this case. The 

value of m  was increased in this way, until finally m  = 2500 was reached, and 

Step 2 formed 125 batch means of 20 Xj’s each; this is depicted in the lower 

graph of Figure 4.2. The line fitted to batch means 64 through 125 by Step 3 

finally has slope which is not significantly different from zero; this is line "B." 

Step 3a thus sends us to Step 4, where the interval is moved back toward the 

beginning of the data. The next line fitted is not plotted, for clarity, but also 

resulted in not rejecting the null hypothesis of zero slope. The following line, 

labeled "D" also has an insignificantly nonzero slope. Moving back further, 

however, results in line "E" which leads to rejection of the zero slope 

hypothesis. Step 5b thus readjusts p  to indicate the beginning of the most 

recently fitted line which still appears to be flat, and the procedure returns 

with L  = 1050 and m  = 2500." (Kelton and Law, 1983)

This simple example shows that the method is not simple and easy to 

use and it confirms our previous discussion on the problems of the method. 

It requires complex programming and the setting of parameters that may be 

model dependent. Even more important from a practical point of view is the 

answer to the question: does it work only with simple models or can it be used 

for more complex models? And if it is used for complex models how long does
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the estimation of L and m take ? These are important questions that if not 

answered satisfactorily can make the procedure of little practical value.

4 3 3 . WELCH’S METHOD

In this section we describe a second procedure that has been proposed 

for dealing with the initialisation bias problem and that according to Law 

(1983) "seems promising". Although this method is not as complex as Law and 

Kelton’s method, it still requires some additional computing and the setting of 

some parameters that need to be determined by trial and error. Due to the 

complexity of some simulation models, this setting is not always easy as values 

tend to greatly differ from parameter to parameter and from model to model. 

The method is described by Law (1983) as follows:

"When the steady state average response i> exists, it is also given by 

u=Limi.JE(Yi). The goal of Welch’s (1981,1983) procedure is to determine an 

index, say Lq, such that E(Yj)»u for i>Lg. Then is the number of 

observations that is to be deleted from the beginning of each simulation run. 

The value Lg can be given two interpretations. First it might be considered to 

be a time index beyond which the process Y v  Y2... is approximately covariance 

stationary. Also, the determination of facilitates obtaining an unbiased 

point estimate for i>; in particular, the sample mean of the observations Ylq+1, 

Ylo+2 — Ylq+j should be an approximately unbiased estimator for t>.

In general it is impossible to determine Lq from a single replication of 

the process because of its inherent variability. As a result, Welch’s procedure 

suggests making n independent replications of the simulation (n>5) each of 

length m  observations. Let Y  ̂ be the ith. observation from the jth . replication 

(j= l, 2...n; i= l, 2...m) and let

Yl = Y '^ ‘ i=l,2...m (4.3)
M n

Observe that E(Yj) = E(Yj) and Var(Yi) = Var(Yi)/n; thus, the process 

Y1? Y2 ... has the same expectations (and correlation structure) as the original
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process, but is less variable.

To smooth out the high frequency oscillations in the averaged process 

(but leave the low frequency oscillations in which we are interested), we 

further define the moving average Yj(w) by equation 4.4., where w, the 

"window" of the moving average, should satisfy 10<w<[m/2].

Yfi») = ft—<i-i) J2(*“l  +1)1 (4.4)

if  w+lz i£m-wf
w y  

r >  2 i+k

k~w [2w+l]

Then Y^w) is plotted for i= l, 2...m-w and Lq is chosen to be that value 

of j beyond which {Yj(w)} appear to have converged. The values of n. m. and 

w need to be determined bv trial and error.

In Figure 4.3. we illustrate an application of Welch’s procedure to the 

process Dls D2 ... for the M/M/1 queue with r = 0.8. The overall objective 

of the simulation study was to determine d = LimHJE(Di) = 3.2 and here we 

'chose m  = 470, n =  25 and w = 20. (The vertical lines in Figure 4.3. show the 

90% c.i’s.) From the plot, we subjectively choose to be 150. One drawback 

of Welch’s procedure is that it might require a large number of replications to 

make the plot of {Y J reasonably stable if the process {YJ is highly variable." 

(Law, 1983).

2

delete I. ■ 150 delays
blae Is 1 percent of d

0 10050 150 200 250 300 350 400

Figure 43. Welch’s method applied to the M/M/1 queue with r = 0.9.
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As with Law and Kelton’s method, Welch’s method requires the setting 

of some parameters. This step may not be obvious, and may be model 

dependent. And if they have to be determined by trial and error, the time 

spent in the estimation of the number of observations to be deleted may be too 

long, especially if we are simulating a rather complex system.

To summarise this section, from the computational point of view, both 

methods require some additional computations when compared to the method 

proposed later in this chapter. Although this may not be important for simple 

simulation models, the additional computation may be time consuming for 

complex systems. The main drawback of these methods, specially in Law and 

Kelton’s, is their complexity. Implementing them will require extra effort from 

the simulation practitioner and will also require some extra computer time. 

It is important to notice that complex methods, should, if possible, be avoided 

in this stage of the simulation, because of the additional computer time that 

they require. Elimination of the initialisation bias problem is only a small part 

of the simulation itself; therefore, the computer time spent in dealing with it 

should be only a small fraction of the total computer time spent in the project 

(i.e., elimination of the influence of the initial conditions, running the 

simulation, and analysing the results).

Even though only two methods have been described here, the problem 

of the initialisation bias is extensively discussed in the literature. Procedures 

have been proposed that, using some of these tests to eliminate the initial bias, 

let the simulation practitioner calculate a confidence interval of pre-specified 

width (Heidelberg and Welch, 1983). Additional information on the problem 

and on different procedures can be found in Schruben and Singh (1983), 

Schruben (1982), Glynn and Iglehart, (1987). For procedures proposed before 

1978, see Gafarian et al, (1978) and Wilson and Pritsker, (1978a).

4.4. A  NEW METHOD FOR THE ELIMINATION OF THE

INITIALISATION BIAS PROBLEM

Three main problems were identified with the methods described in
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Section 4.3: insufficient testing for some complex models with no analytical 

answer, complex methods that may require a large computer time just to deal 

with a small part of the total simulation problem and the need to define some 

parameters whose values may be model dependent. These problems arise 

from the fact that in typical simulations there are several entities in the model 

and they interact with each other; in simple models with known analytical 

answer, this interaction does not exist, or is minimal. In the method proposed 

here there are no parameters to be defined and in this way the possible 

dependency of it on the simulation model is eliminated. Likewise the method 

is tested for some typical simulation models (i.e., no known answer), as well 

as for some common models like the M/M/1 queue, the M/M/4 queue and 

a system of queues in tandem. A last advantage of the new method is that it 

is easily implemented as is shown in section 4.4.3.

Section 4.4.1. explains the basic idea behind the new method. Section

4.4.2. explains a method proposed by Gordon (1969) based on the variation of 

the STANDARD DEVIATION and which, being similar to the one proposed 

in this chapter, will be used to compare our results with those of an existing 

method. In this section we also describe one of the first methods proposed in 

the literature by Conway (1963) for the estimation of the number of initial 

observations to be deleted. Section 4.4.3. develops an algorithm for the 

method proposed in this chapter. Section 4.4.4. compares and points out the 

differences between Gordon’s method and ours.

4.4.1. PROPOSED NEW METHOD : ITS BASIS.

The discussion of the previous sections, especially of Section 4.3., shows 

the need for a method that is simple and easy to implement for dealing with 

the initialisation bias problem. At the same time the new method should not 

be time consuming. Following the empirical approach used in this research we 

studied the behaviour of several simulation models for short simulation run 

lengths. If Xj, X2...Xk are the mean estimates obtained from replication i, i= l,

2...k for a particular simulation run length, t, the mean estimate (XJ can be
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calculated as the average of the X*s. We observed that the STANDARD 

DEVIATION of the mean estimate tends to increase for short simulation run 

lengths (i.e., for small values of t); as the simulation run length increases (i.e., 

as the value of t becomes larger) it will reach a maximum value and for longer 

simulation run lengths the standard deviation decreases. If the initial state is 

close to the steady state we can expect an increase in the value of the standard 

deviation (as the variation is minimum at the beginning of the simulation), 

followed very soon by a decrease in its value, as we would expect from basic 

statistics. But when the system is started "idle" and "empty" the influence of 

the initial conditions is strong and the standard deviation will take longer to 

start decreasing. Following this trend of thought we decided to use the point 

in simulated time for which the standard deviation reaches a maximum as the 

run-in-period. Experiments using this approach show, as will be explained 

later, that using the value of the run-in-period thus determined the parameter 

of interest will reach the steady state for shorter simulation run lengths and 

that the difference between the estimate and the real value is smaller than 

when other run-in-periods are used.

It is important to notice that the idea behind the new method proposed 

in this chapter originated from an empirical observation of the behaviour of 

different systems. Some heuristic methods proposed in the literature are based 

on theoretical considerations, like the one proposed by Gordon (1969). In this 

method the identification of a truncation point is based, like ours, on the 

analysis of the variation of the standard deviation of the mean estimate as the 

simulation run length increases. Because of its similarity to the one we 

propose we describe it below, and use it to compare the performance of our 

method to an existing one.

4.42. GORDON’S AND CONWAY’S RULES

In Gordon’s rule we make k  replications; each replication has a sample 

size n, i.e., n observations (xj, i= l, 2..n) are recorded in each replication. The 

value yj corresponds to the average over n observations, in replication j .  IfX n
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is the average of the values yj, j = 1, 2 ...k, we choose the truncation point 

L=n, for which Var[Xn] begins to fall off as 1/n.

This can be expressed in a mathematical form as follows:

(4.5)

and the sample mean estimate ^  is given by Eq. 4.6.

(4.6)

Similarly, using classical statistics formulas, the variance of this mean 

estimate can be estimated by s2 as shown in Eq. 4.7.

From these equations we see that the variance is inversely proportional

bias has disappeared. The reason for this assumption is that if only one 

replication is made, the mean queuing time, for example, would be estimated 

by accumulating the waiting time of n successive entities and dividing by n. 

The variance of the mean estimate is inversely proportional to n and the

the estimate if only one replication is used, Gordon proposes to make k  

replications, but the variance is still a function of (1/n). To identify the cut-off 

point, i.e., when the variance falls by 1/n, or equivalently the standard 

deviation falls by l/n1/2, a graph of Log(s(n)) vs Log(n) is made, and the 

number of initial observations to be deleted is given by the value of n at which 

the graph becomes approximately linear with slope The method is 

illustrated in Figure 4.4. where Gordon’s rule has been applied to the M/M/1 

queue with traffic intensity r  = 10/15 = 0.666. The slope of the graph 

becomes -h for approximately Log(n)=2, which corresponds to n=100.

There are four main problems with this method. The first one is that

(4.7)

to (k-1) and according to Gordon the variance will fall as 1/n once the initial

standard deviation to n 1̂2. In practice, due to the variability in the value of
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from its evaluation made by Gafarian et al (1978) (see as well Wilson and 

Pritsker, 1978b) it appears that the truncation point tends to be overestimated 

although these evaluations have been made only for simple models. The 

second problem is that Gordon does not support his procedure with empirical 

results, except one or two for the M/M/1 queue. A  third problem is that in 

practice, the fall of the standard deviation will rarely have a constant slope 

close to %. The values of this slope tend to oscillate in a rather large range 

and therefore identifying a particular point at which the slope becomes -h is 

very difficult. Appendix E uses Gordon’s method for the estimation of the 

run-in-period of the simulation models used to test the behaviour of the 

procedure proposed in this chapter for dealing with the initialisation bias 

problem, and it shows how very rarely the fall has a constant slope of -%.

M / M / 1 Q u e u e
Q ueue Length

1 . 2
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|  0 .9
</S 0 .8 5

8* °*8 
-* 0 .7 5

0 .7
1.4  1.6 1.8

Log (Number "C ustom ers" in the queue)
2.2 2.6 2.8

5 0  Replications

Figure 4.4. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observation in the 

M/M/1 queue.

However, the most significant of all the problems with Gordon’s method 

is that, like the mean estimates, the standard deviation values are affected by 

the number of replications. And not only the values, but also the rate of
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change in the values, will be different depending on the number of 

replications, as is shown in Figure 4.5. This figure shows the values of the 

standard deviation obtained as a function of the number of replications and of 

the number of "customers" that are waiting to be served in the WASHQ queue 

of the LAUNDERETTE model (See Figure A5, Appendix A). As can be seen 

from this figure, the slope of the graph depends on the number of replications. 

Although the results are not given in this thesis, as we increase the number of 

replications, its influence on the values and the slope of the graph of the 

standard deviation is less. This conclusion is similar to the one discussed in 

Chapter 3, concerning the mean estimates. As is shown in Chapter 3, the 

number of replications required for this influence to be negligible depends on 

the model, and on the parameter. Therefore, Gordon’s method will not work 

well for different types of models. But, as can be seen from the graph, the 

simulated time for which the standard deviation reaches its maximum is not 

greatly influenced by the number of replications.

W ASHQ (LAUNDERETTE)
_ Influence of the number of replications

Legend 

100 Replications 
800 Replications

3 . T  -

3.1 -

2.S
20 180

Number of "ouatomara”

Figure 4.5. STANDARD DEVIATION of the WASHQ mean queuing 

time estimates, as a function of the number of replications, and of the number 

of "customers" being served.

Another method that will be used in the following sections is Conway’s 

method. This method was proposed in 1963 and is described by its author as
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follows:

"I usually truncate a series of measurements until the first of the series 

is neither the maximum nor the minimum of the remaining set. I do not do 

this for every run but rather decide on a stabilization period by examining a 

few pilot runs and thereafter delete this same period of each run." (Conway, 

1963).

This method is better explained by Gafarian et al (1978) as follows: 

"This rule specifies a priori the number of exploratory replications and 

the number of observations per exploratory run, denoted by e and L 

respectively. Then if {x^, x ,̂ ...x^} is the set of observations on the ith. 

exploratory run, one computes 

x^ max {xjk,

and

x^ mm {x^, Xjfc+j, ..x^} 

for k = 1, 2 ...L and determines such that

^ ti ^  *iti < *iti

occurs for the first time. Then the estimate of t* (number of initial 

observations to be deleted in each replication) is given by 

t* = max {tj, t j , ... tL} " (Gafarian et al, 1978)

This method is easier to use than Gordon’s method, but it seems from 

the tests performed by Gafarian et al, result that has been confirmed in this 

research, that it greatly underestimates the truncation point.

4.43. USE OF THE STANDARD DEVIATION TO ESTIMATE A  

"GOOD" RUN-IN-PERIOD : AN ALGORITHM

As discussed in Section 4.4.1. the estimation of the run-in-period can be 

done by studying the change in the value of the variance of Xp as the 

simulation run length increases. Xj is the average of the mean estimates 

obtained from k different replications when the simulation run length is t  units 

of time.

If the method is going to be of practical use, considering that we are

104



dealing with discrete simulations, we cannot estimate the standard deviation 

for each different value of simulated time. In practice we only obtain 

estimates every T1 units of time; the value of T1 cannot be too large as the 

estimate of the run-in-period would not be accurate, but it cannot be too small 

as this would increase the computer time required to obtain this estimate, time 

that we want to keep small. Rules for selecting the value Tj are given in the 

algorithm below, and they are based on the empirical results obtained while 

developing the new method.

Due to the randomness inherent to simulation there may be small 

increases in the value of the standard deviation after it has reached its 

maximum. We found that this problem is overcome and the analysis is made 

easier if we study the change in the values of the standard deviation (Y-axis) 

as a function of the simulation run length (X-axis) in a LINE GRAPH.

We should notice that the value of the standard deviation is influenced 

not only by the initial conditions, but also by the number of replications k  as 

discussed in section 4.4.2. But we found from empirical results that although 

the rate of change in the values of the standard deviation are affected by the 

number of replications, the simulated time for which the standard deviation 

reaches its maximum value does not change too much with the value of k. 

Therefore, as the computer time used for the calculation of the run-in-period 

should be kept as small as possible, we suggest not to take more than 20 to 30 

replications.

We can formulate the above discussion in a formal way in the following 

algorithm. It explains the steps to be followed when the new method is to be 

used for the estimation of a run-in-period as a method for dealing with the 

initialisation bias problem.

ALGORITHM

1. Choose an initial period of time T0, and divide it into N intervals. 

Therefore, each interval has a length of T1 = Tq/N units of time.

2. Make k replications and obtain an estimate of the mean for each one
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of the N intervals. Call Xy the mean estimate in the ith. replication (i= l,

2...k), for a simulated time j*To/N  (j=l,2..N ). This means that Xy is the

cumulative sample mean for a given simulation run length jTo/N, as it takes 

into account all the previous observations.

3. Estimate the mean for each one of the N intervals of time as the

average of Xy over the k replications, applying Eq. 4.8.

<4-8>

4. Estimate the standard deviation for each one of the mean estimates 

obtained in step 3 by applying Eq. 4.9.

S' = N
(4.9)

5. The run-in-period is estimated by the value of j*To/N for which the 

STANDARD DEVIATION reaches a maximum value. We will call this value 

of simulated time t*.

NOTES ON THE ALGORITHM:

1. The method proposed here for dealing with the initialisation bias 

problem is an "off-line" method. This means that it should be used previous 

to running the steady state simulation. In other words, if we suspect that the 

influence of the initial conditions should be eliminated (see discussion in 

Chapter 2), before running the steady state simulation, we use the algorithm 

as proposed above. We estimate a time t*, also called run-in-period, and then 

we run the steady state simulation. In practice, although observations are 

recorded from the beginning of the simulation we discard those recorded 

during the run-in-period; we only use for the estimation of the parameter of 

interest those observations recorded for simulated times t>t*. It should be 

noted that although the usual approach to deal with the problem of the 

initialisation bias is to delete a fixed number of observations L in each
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replication, in the method proposed in this chapter we estimate a fixed period 

of time t*. The number of observations recorded (and then discarded) during 

t* will be a random variable and will differ from replication to replication.

2. In order to estimate the run-in-period we need to determine the 

value of j*To/N for which the standard deviation reaches a maximum value. 

Although this analysis can be done by looking at the numerical values obtained 

from the algorithm, a graphical analysis is easier. In this case we simply obtain 

a line graph of Sj on the Y-axis as a function of the simulation run length, 

j*To/N on the X-axis. The maximum value of Sj is easier to determine in a line 

graph because, as we are dealing with stochastic systems, there may be some 

small increases in the value of the standard deviation for values of j*To/N 

greater than t*; however, after this slight increase, the decrease in its value will 

continue. While a visual observation of the values may not show clearly that 

this is just a slight increase, the graphical method permits an easier 

determination of the point where the value of the standard deviation reaches 

its maximum and then starts to decrease.

3. The use of a spreadsheet to draw the graph is not absolutely 

necessary. Using a high-level language, like PASCAL for example, it is easy 

to program and draw the type of graph that is required for this procedure.

4. If for the selected value T0 the standard deviation has not reached 

a maximum, and if a previous analysis (see Chapter 2) has been carried out to 

rule out the possibility of the system, or at least of that particular parameter, 

to be unstable, then the maximum value should be increased say to 2*T0, while 

keeping the length of each time interval constant. Usually the number N of 

intervals required for the standard deviation to reach its maximum value is 

directly related to the value of the traffic intensity r = X/(sfi). The larger this 

value, the more the number of intervals N that are required. However, as is 

explained in Section 4.5.5. in more detail, there may be some problems 

associated with queues with large values of r.

Similarly, when the initial conditions are similar to the steady state 

conditions the influence of the transient may be very small and in this case the 

graph of the standard deviation as a function of the simulation run length does
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not have a maximum value. In these cases, the practitioner should perform a 

quick test as described in Section 2.5.2. to determine if a run-in-period is 

necessary; if it is necessary then the run-in-period is chosen to be Tv

5. The length of the intervals Tq/N may be chosen so that its value is 

slightly larger than the maximum activity execution time which can be defined 

as follows:

"Maximum Activity Execution Time": As we know, the different

activities of the simulation model take some time to be executed. In some 

cases this time is deterministic, but in most cases it follows a given probability 

distribution, with a specified mean. The Maximum Activity Execution Time 

is the largest of these means.

The initial number of intervals may be chosen to be 30, even though this 

value might have to be increased depending on the influence of the initial 

conditions (See NOTE 4). These values are based on empirical results. The 

advantage of this method is that this choice of parameters is not critical; for 

example, in the simulation of the PUB, the length of the intervals is chosen to 

be four times the maximum activity execution time and the results are still 

quite reasonable. This point will be explained more in detail as we go through 

the different examples used to test the new method.

6. As discussed above, the number of replications k  does not need to 

be large. On the other hand, due to the variability of the mean estimates, 

especially for short simulation run lengths, it cannot be too small. From 

empirical results we found that taking 20 or 30 replications gives good 

estimates for the run-in-period as is shown in the examples of this chapter and 

of Appendix F. There are two possible cases when the simulated time for 

which the standard deviation reaches a maximum is influenced by the number 

of replications. These two cases are discussed in Section 4.4.5.

7. It is important to emphasise the fact that, as with most methods 

proposed in the literature to deal with this problem of the influence of the 

initial conditions, we do not attempt to obtain an "optimal" run-in-period, but 

a "good" one where the influence of the initial conditions is negligible.
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4.4.4. COMPARISON OF OUR METHOD AND GORDON’S 

METHOD FOR THE ESTIMATION OF A  RUN-IN-PERIOD.

The method proposed in this chapter does not have any of the problems 

discussed in section 4.4.2. concerning the use of Gordon’s method; what is 

more important is that from empirical results it can be shown that it works 

quite well for different types of simple and complex simulation models. This 

means that the number of observations that are deleted is not as large as it 

would be if Gordon’s method were used. This has an important implication: 

the total simulation run length that is required to obtain a mean estimate close 

enough to the real but unknown value /i is shortened.

The first difference of the new method as compared to Gordon’s 

method is related to the type of simulation software used in this research. As 

has been explained before, the attempt here is not to determine the number 

L of observations to be deleted, but a period of time (run-in-period) such that 

any observations made before it are discarded. Due to the use of different 

random number seeds in different replications, the number of observations 

recorded during the run-in-period is a random variable that changes from 

replication to replication (or vice versa, different simulation run lengths are 

required to record the same number of observations in different replications).

The second difference is that in Gordon’s method the truncation point 

is given by the point of simulated time where the variance starts falling with 

a slope of 1/n, while in the method proposed in this chapter the truncation 

point is given by the point in simulated time for which the standard deviation 

reaches its maximum value. But the rate of fall at the beginning of the 

decrease in the value of the variance may be different from 1/n and 

consequently, in Gordon’s method the truncation point may happen after a 

longer period of time than in the method proposed here. This point is 

confirmed in the empirical results where in all the examples considered in this 

chapter the truncation point in the method herein proposed will occur earlier 

in simulated time than in Gordon’s method; what is more important is that the 

parameter will reach the steady state for a shorter simulation run length if the
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run-in-period estimated with our method is used than if Gordon’s run-in-period 

is used.

4.4.5. POSSIBLE PROBLEMS WITH THE PROPOSED METHOD

Basically the main problem with the proposed method is if the simulated 

time for which the standard deviation of the parameter is influenced by the 

number of replications as occurs with Gordon’s method. Under normal 

circumstances this should not occur. However, through thorough 

experimentation we have identified two possible cases where this may happen:

1. Sometimes, a certain combination of random number seeds may 

cause extremely large or small values in the simulation output data. By 

observing the values Xj, obtained in replication j, it is possible to identify the 

particular combination of random number seeds that will produce the outliers. 

By avoiding this combination the problem disappears. This is shown 

graphically in Figure 4.6. This figure shows the graph of the standard 

deviation of the mean queuing time parameter of the WAIT queue in the PUB 

model (Figure A.4., Appendix A) as a function of the simulation run length 

and of the number of replications: 20 or 40. In the case of 40 replications we 

observe how when the set of random number seeds R.N.1. is used, there is a 

sudden increase in the value of the standard deviation corresponding to a 

simulation run length of 1240. Looking at the values Xv X#  ... *40 obtained 

from the different replications, we observed that = 5.67, while the other 

values of Xj, i * 24, are all in the range [0.69 , 1.56]. We then replaced the 

combination of random number seeds that was producing this outlier, and 

obtained the mean estimates corresponding to the set of values R.N.2. (this set 

of values is therefore identical to the set of random number seeds R.N.1. 

except in one combination). In this case, there is no sudden increase in the 

value of the standard deviation. Therefore, a successful use of the method 

proposed in this chapter requires the identification of random number seeds 

(one or maximum two) that may produce outliers in the simulation output. 

When the random number seeds that produce, in this particular case the
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outlier X^, are used under different input conditions even in the same model 

the outlier will not necessarily occur. Even more, it may be possible that the 

problem of the outlier will occur only for some simulation run lengths and not 

for every run length. Identification of this phenomenon is only possible with 

an analysis of the individual values obtained from the simulation output and 

that will be used to obtain the mean estimate, X.
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Figure 4.6. STANDARD DEVIATION of the WAIT mean queuing 

time estimates as a function of the simulation run length and of the number 

of replications.

2. A second reason for which the simulated time for which the standard 

deviation reaches its maximum may be influenced by the number of 

replications is related to the value of the traffic intensity. When the traffic 

intensity r  takes large values there are different maximums in the graph of the 

standard deviation as a function of the simulation run length if the number of 

replications used is small. As this number increased, the graph tends to show 

only one maximum value for the standard deviation. Basically the problem is 

due, as discussed in detail in Appendix F, to the large values of the standard 

deviation as compared to the values of the mean estimates. In cases like this,
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where there are more than one maximum in the values of the standard 

deviation as a function of the run length it is necessary to increase the number 

of replications. This may increase in some cases the time required for the 

estimation of the run-in-period, but even with this problem, our method 

compares favourably to other methods, from the point of view of simplicity.

In other cases, the maximum value may change slightly depending on 

the number of replications. However, as has been emphasised in this thesis, 

the objective is not to obtain the optimal but a good run-in-period.

45. EMPIRICAL RESULTS.

In order to evaluate the algorithm proposed in Section 4.4.3. we applied 

it to different simulation models, and the results obtained are given in Section

4.5.2. (LAUNDERETTE) and 4.5.4. (M/M/1 queue). Additional results are 

given in Appendix F. For the evaluation of the performance of the proposed 

method, we define in Section 4.5.1. three measures of performance of a run-in- 

period.

4.5.1. MEASURES OF PERFORMANCE

In this section we define some measures of performance that may be 

used for the evaluation of the method proposed here (or any other method) 

for dealing with the initialisation bias problem. To test how well a run-in- 

period deals with this problem we need to know the real, but generally 

unknown, steady state value ii. As has been explained in Chapter 2, we dealt 

with this problem in an empirical way. In Appendix C we give approximate 

values for /x, for different queues and simulation models. From a practical 

point of view, we will consider a parameter to be in the steady state when all 

the mean estimates fall within e = 2.5% of this value of /x.

With this convention in mind, we can define what a "good" run-in-period 

is. In practice the following three conditions should be met for a run-in-period 

to deal successfully with the initialisation bias problem:
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1. When a run-in-period is used, the mean estimates obtained for short 

simulation run lengths (but obviously longer than the run-in-period) should be 

closer to the steady state value ijl as compared with the mean estimates 

obtained when no run-in-period is used.

2. We are considering that the parameter has reached the steady state 

when the mean estimates fall within e of the real steady state value. When the 

estimated run-in-period is used, the simulation run length required for the 

mean estimates to fall within this value e should be shorter than the simulation 

run length required when no run-in-period or when shorter run-in-periods are 

used. At the same time, the use of a run-in-period longer than the estimated 

one will not shorten the simulation run length required for the parameter to 

reach the steady state.

3. In the case that for different run-in-periods the parameter reaches 

the steady state for approximately the same simulation run length, the run-in- 

period giving estimates closer in absolute value to the steady state value 

performs better.

4 5 2 . ANALYSIS OF THE RESULTS FOR THE LAUNDERETTE

AND THE MILITARY MODELS

In this section we apply the procedure developed in Section 4.4. to the 

LAUNDERETTE model, and we also discuss the MILITARY model. Other 

results for simulation models for which no analytical answer can be obtained 

are given in Appendix F. We discuss now the different results obtained for 

some of the queues of the LAUNDERETTE model.

1. THE LAUNDERETTE MODEL: ANALYSIS

To illustrate the use of the method proposed in Section 4.4.3. and to 

evaluate its performance we obtained the run-in-period for the mean queuing 

time and the mean queue length of the DRYQ queue (See Figure A.5., 

Appendix A). In Appendix F we give similar results for other queues of this
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model. We will divide this study into two parts: the estimation of the run-in- 

period and the evaluation of its performance according to the measures of 

performance discussed in Section 4.5.1.

RUN-IN-PERIOD ESTIMATION FOR THE DRYQ QUEUE

We will obtain estimates of the standard deviation every Tt units of time 

(minutes in this example). This value can be chosen to be slightly larger than 

the maximum execution time (Note 5, Section 4.4.3). Table 4.1. gives the 

probability distributions used to model the time taken by the different 

activities of this model to be executed (execution time). From this table the 

maximum activity execution time, considering only the mean value of the 

probability distribution, takes 40 minutes. We have then chosen = 60 

minutes.

Activity Execution time (Probability Distribution)

ARRIVE NEGATIVE EXPONENTIAL; MEAN : 8;

LOADW 40;

UNLOADW UNIFORM, between 1 and 5;

TRANSPORT UNIFORM between 3 and 5;

LOADD 4

DRY NORMAL; MEAN : 10; Standard Deviation : 3;

Table 4.1. Execution time of the different activities of the 

LAUNDERETTE model.

Making 20 replications we obtained mean estimates and their 

corresponding sample standard deviation for the mean queuing time and the 

mean queue length of the DRYQ queue. Using a spreadsheet the values of 

the standard deviation as a function of the simulation run length were graphed, 

and the maximum values were recorded for both the queuing time and the 

queue length of the DRY queue.
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Although the value of the simulated time for which the standard 

deviation reaches its maximum value can be found from the numerical values 

obtained from the simulation output, it is easier to identify it if we use a line 

graph as explained in Section 4.4.3. Figure 4.7. shows the graph of the 

standard deviation for the estimate of the mean queuing time of the DRY  

queue as a function of the simulation run length.
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Figure 4.7. STANDARD DEVIATION of the Mean DRYQ Queuing 

time estimates, as a function of the simulation run length.

From this graph, the maximum value of the standard deviation occurs 

for a run length of 1380. Using a similar graph for the estimate of the 

standard deviation of the mean queue length parameter of the DRY queue we 

identify a run-in-period of 1380 for this case. That the run-in-period for the 

mean queuing time and the mean queue length parameters is the same for the 

DRYQ queue is a coincidence. In general, they might be different as, 

depending on the steady state mean values, some parameters will require 

longer run-in-periods to eliminate the influence of the initial conditions.

NOTE: Although the standard deviation has been graphed as a 

continuous variable, it is important to remember that it is a function of
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discrete values of the simulation run length, specifically it is a function of 

(j*To/N), where j= l, 2...

RUN-IN-PERIOD PERFORMANCE: EVALUATION

To check how well the estimated run-in-periods for the mean queuing 

time and the mean queue length parameters perform in terms of the 

elimination or reduction of the influence of the initial conditions, we need to 

study the change in the mean queuing time and the mean queue length 

estimates as the simulation run lengtB increases.

In our method we delete the number of observations that are recorded 

during the run-in-period. In Gordon’s method we delete a fixed number of 

observations L in each replication. However, it is useful to be consistent and 

use a single measure for the comparison of both methods; in other words, we 

either obtain the mean estimates corresponding to number of observations in 

each queue of interest or we obtain the mean estimates for periods of time. 

At the same time, although the run length required to collect L observations 

is a random variable that takes different values in different replications the 

values do not differ too much from replication to replication. For these 

reasons we have approximated in Appendix E the run-in-period corresponding 

to the deletion of L observations using Gordon’s method, where the value of 

L is estimated by the number "L" for which the graph of Log(s(L)) vs. Log(L) 

falls with a slope of -%. Using this approximation we obtained a run-in-period 

of 3780 corresponding to the application of Gordon’s method to the mean 

queuing time and the mean queue length parameters of the DRYQ queue.

A similar approximation has been made for the run-in-period estimated 

using Conway’s method. Using the method described in Section 4.2.2. we 

obtained that the number of initial observations to be deleted is 38, which 

corresponds to an approximate simulation run length of 300 minutes.

Following the empirical approach, we will obtain mean estimates for 

different run-in-periods, including the one estimated with the new method, as 

a function of the simulation run length. In this way, by using run-in-periods
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longer and shorter than the one estimated with the new method we can 

compare the performance of different run-in-periods. Hopefully, as discussed 

in Section 4.5.1. if different run-in-periods require approximately the same 

simulation run length for the parameter to reach the steady state, the estimates 

obtained with the run-in-period estimated with the method proposed in this 

chapter will be (usually) closer to the real steady state value.

In order to use the measures of performance defined in Section 4.5.1. 

we need the real steady state mean queuing time and mean queue length 

values ((i); these were estimated in Appendix C; the parameters will be 

considered to be in the steady state when they fall within e = 2.5% of ii. The 

values of ii determined for the mean queuing time and the mean queue length 

of the DRYQ in Appendix C, as well as the range of values that fall within e 

are the following:

Parameter Steady state (ji) Range

Queuing time 17.670 [17.228 ,18.112]

Queue length 2.210 [2.150 , 2.260]

The system was simulated for a simulation run length long enough to 

show the approximate steady state value for the mean queuing time and the 

mean queue length of the DRYQ queue. We used the method proposed in 

Chapter 3 for the estimation of the number of replications required for the 

parameters to reach the steady state for the shortest possible simulation run 

length.

Tables 4.2a (mean queuing time) and 4.2b. (mean queue length) 

summarise the information recorded from the simulation output for the mean 

queuing time and the mean queue length estimates for different run-in-periods 

(Run-In) and for different simulation run lengths (3000, 5000, 7000...), 

including the case when no run-in-period (no deletion of observations) is used.

The column corresponding to the run-in-period estimated making use 

of the new method is indicated in Tables 4.2a and 4.2b. with In these 

tables we have underlined the mean estimates for which the parameter can be
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considered to be in the steady state. This means that for the simulation run 

length corresponding to the underlined values, as well as for longer run 

lengths, the mean estimates all fall within 2.5% of the steady state value.

From the underlined values in Tables 4.2a. and 4.2b we notice that using 

the run-in-period estimated with the new method the mean queuing time and 

the mean queue length estimates fall in the above ranges for simulation run 

lengths as short as 6000 (queuing time) and 4000 (queue length); when no 

observations are deleted longer simulation run lengths (12000 or more) are 

required. Although it is true that for the mean queue length shorter run-in- 

periods could be used for the parameter to reach the steady state in 

approximately the same simulated time, the difference in absolute value 

between the mean estimates and the steady state value [L is in most cases 

smaller when the run-in-period estimated with the new method is used.

When the run-in-period estimated with Gordon’s method (3780) is used 

we obtain the following mean estimates and corresponding standard deviation:

Queuing time estimates Queue length estimates
Run Length Mean Std. Dev. Mean Std. Dev.

5000 17.133 11.943 2.210 1.701

5500 17.176 11.187 2.210 1.587

6000 17.274 10.357 2.211 1.447

From this table we notice that the steady state for the mean queuing 

time parameter is not reached for a shorter simulation run length, as a 

simulation run length of at least 6000 minutes is still required. But the 

standard deviation of the mean estimate is increased as compared to the same 

estimate when the run-in-period estimated with the method proposed in this 

chapter is used; these values, that are not given in Tables 4.2a and 4.2b, are 

the following, for a simulation run length of 6000: 7.567 for the mean queuing 

time estimate and 1.037 for the mean queue length estimate.

With respect to the run-in-period estimated with Conway’s method we 

notice that although the steady state seems to be reached for a shorter 

simulation run length when our run-in-period is used, but the difference is not 

too large.
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DRYQ mean queuing time estimates

Run Length Run-In 0 Run-In 300 Run-In 660 Run-In 1380 Run-In 1500

**

3000 15.594 16.300 16.662 16392 16.426

4000 16.168 16.723 17.019 17.030 16.948

4500 16.291 16.854 17.082 17.107 17.092

5000 16.462 16.915 17.159 17.192 17.143

6000 16.655 17.036 17.241 17.280 17.246

7000 16.843 17.173 17352 17.396 17372

8000 16.939 17.229 17386 17.425 17.405

9000 17.009 17367 17.406 17.443 17.426

10000 17.060 17394 17.419 17.453 17.438

11000 17.124 17338 17.452 17.486 17.473

12000 17.224 17.421 17327 17363 17353

13000 17.351 17335 17.636 17.675 17.668

14000 17.417 17389 17.684 17.723 17.717

15000 17367 17326 17.614 17347 17.641

Table 42a. Mean DRYQ queuing time estimates as a function of the 

simulation run length and of the run-in-period.
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DRYQ mean queue length estimates

Run Length Run-In 0 Run-In 300 Run-In 660 Run-In 1380 Run-In 1500

• *

3000 1.951 2.081 2.125 2.127 2.113

4000 2.023 2.124 2.159 2.169 2.164

5000 2.059 2.141 2.170 2.179 2175

6000 2.085 2.153 2.178 2.186 2184

7000 2.109 2.168 2.189 2.197 2196

8000 2.121 2.173 2.192 2199 2198

9000 2.130 2.177 2.193 2.200 2198

10000 2.137 2.178 2.193 2199 2198

11000 2.145 2.183 2.197 2.202 2201

12000 2.159 2.194 2207 2212 2212

13000 2.174 2.207 2219 2225 2225

14000 2.183 2.213 2225 2230 2230

15000 2.175 2.203 2213 2218 2217

16000 2.176 2.203 2212 2216 2216

17000 2.177 2.202 2211 2215 2214

18000 2.175 2.198 2.207 2210 2.210

Table 4.2b. Mean DRYQ queue length estimates as a function of the 

simulation run length and of the run-in-period.

Other examples showing the performance of our method as compared 

to Gordon’s method as well as to run-in-periods that are longer and shorter 

than the one estimated here are given in Appendix F.

With the examples discussed in this thesis we show that the run-in- 

period estimated with the method proposed in this chapter satisfies the 

measures of performance discussed in Section 4.5.1. In other words the 

following points are confirmed:

1. The mean estimates obtained with the estimated run-in-period are 

closer to the real steady state value, /t, than when no run-in-period is used.

2. The steady state is reached for shorter simulation run lengths when 

the run-in-period estimated with our method is used than if no run-in-period 

is used.
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3. There is usually a smaller difference between the mean estimates 

and the steady state value, ji, when the run-in-period estimated with the 

method proposed here is used than when longer or shorter run-in-periods are 

used.

A last, but important point to notice is that we have not been looking for 

an OPTIMAL, but a GOOD approximation for the run-in-period. Otherwise, 

it could be argued that as we are comparing the behaviour of the run-in-period 

estimated with the method proposed in this chapter to only a few other run-in- 

periods, there may be others with a better behaviour than the one we have 

estimated. However, we have shown that our estimated run-in-period seems 

to perform better than longer and shorter run-in-periods (but obviously we are 

not saying that this is necessarily true for all run-in-periods).

4.6. SIMULATION OF SOME SYSTEMS FOR WHICH AN

ANALYTICAL ANSWER EXISTS

We have placed special emphasis in the fact that most of the procedures 

that are proposed by simulation theoreticians lack generality. They are usually 

substantiated by a rigorous mathematical theory, but they are not extensively 

tested as they tested only with some simple systems with known analytical 

answer. To overcome this problem we have proposed in this chapter a 

procedure to deal with the initialisation bias problem and we used it on 

different simulation models (see example of the LAUNDERETTE in this 

chapter and additional examples in Appendix F). From the results obtained 

we can conclude that the run-in-period thus estimated gives good results in the 

sense that it greatly reduces the simulation run length required for the 

parameter to reach the steady state and it also gives mean estimates with 

smaller bias than if other run-in-periods are used. The method proposed here 

seems to work quite well for complex simulation models where an analytical 

answer is not available. The next question to answer is if there are limitations 

to the applicability of this method. To test this point three queuing systems, 

for which the steady state values can be calculated analytically, were simulated.
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These models are:

1. M/M/1 queue.

2. M/M/4 queue.

3. A  system of two queues in tandem, which can be analysed using 

Jackson's theorem.

We give in section 4.6.1. the analytical solution for these models; in 

section 4.6.2. we make use of the method based on the standard deviation of 

the sample mean to estimate a run-in-period for the M/M/1 example. 

Appendix F gives similar results for the other two models.

4.6.1. ANALYTICAL SOLUTION FOR THE M/M/s AND FOR

QUEUES IN SERIES

The following notation will be used in the discussion of different simple 

models of queues for which an analytical answer can be obtained:

L = average number of customers present in the system.

Lq = average number of customers waiting in line.

W = average time a customer spends in the system.

Wq = average time a customer spends in line.

X = average number of customers entering the system per unit time.

Ii = average number of customers served per unit time.

r = XIil = traffic intensity.

For most queuing systems, Little's queuing formula (Little, 1961) can be 

summarised as follows:

LITTLE'S THEOREM

For any queuing system in which a steady state distribution exists, the 

following relations hold:

L = XW

Lq = AWq
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Making use of this theorem and notation we may explain the following

model:

M/M/1 QUEUE.

This is a queue where both the arrival and the service processes can be 

modelled using an exponential distribution. For a steady state solution to 

exist, the value t=A./m < 1. The value k is known as the arrival rate and it 

has units of arrivals per unit of time. Similarly, the value /i is called the 

service rate and has units of time per customer. The value 1/m is called the 

mean service time for a customer.

From queuing theory we obtain the following values for L, W, Lq, and 

Wq for the M/M/1 queue:

L = t/(1 - t); W = IV A. = 1/(m- A.)

Lq = A2 /[n(n-1)]; w q = Lq/J. = X/ln(n- A)];

With these formulas we can calculate the steady state mean queuing 

time for the customer waiting to be served and the mean queue length in the 

queue of customers waiting to be served.

2. M/M/s QUEUE

This queue is similar to the M/M/l queue except that the number of 

servers is s instead of l. From queuing theory formulas (See Winston, 1987, 

pp887) we know that the average number of customers waiting in the queue 

is given by:

Lq = P(j>s)r/(l-r) (4.10)

where j is the number of customers in the system, and s is the number 

of servers. P(j>s) is given by Eq. 4.11.

P(j*s) = (S*Y P<j=0) (4.11)
(1- t )

In Eq. 4.11. P(j = 0) is the probability that the system is empty and can
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be calculated using Eq.4.12.

1P(j = 0) =
' V i  Mn «">' (4*12)
i=0 sl(l-x)

With the value of Lq given by Eq. 4.10., the value of Wq can be 

calculated using Little’s formula.

3. QUEUES IN SERIES

In this type of systems the arrival undergoes stage 1 service (after 

waiting in line if all stage 1 servers are busy on arrival). After completing 

service in stage 1 the arrival proceeds to stage 2 where if necessary, he waits 

for service. This process continues until the customer has gone through k 

stages. This system is called a k-stage series and can be analysed using 

Jackson’s Theorem (Jackson, 1957).

JACKSON’S THEOREM

If:

1. Interarrival times for a series queuing system are exponential with

rate k;

2. service time for each stage i  server are exponential;

3. each stage has an infinite capacity waiting room,

then interarrival times for arrivals to each stage of the queuing system 

are exponential with rate k.

4.62. ANALYSIS OF THE RESULTS OBTAINED FOR THE M/M/1

QUEUE

In this section we will apply the method proposed in this chapter to the 

M/M/1 queue. As the results obtained for the M/M/4 queue and the Jackson 

system are similar they are given in Appendix F. As discussed in Section 

4.4.5., there seem to be some problems in the application of the proposed
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method to queues with a large value of traffic intensity (r > 0.9). However, 

this requires further research. With this exception, the procedure here 

proposed works well not only with complex systems but also with simple 

systems. Therefore, we feel confident that it will work well for different 

simulation models.

In the simulation of the M/M/1 queue we use A = 1/15, and n =1/10. 

This means that the activity arrive follows a negative exponential distribution 

with mean 15 (i.e., 1/ A = 15). Similarly, the execution time of the activity 

service can be modelled by a negative exponential distribution with mean 10 

(i.e., V\l = 10). Therefore r = (1/15)/(1/10)=10/15. Applying the formulas

for Lq and Wq, we obtain a steady state queue length Lq = 4/3 and a steady 

state waiting time Wq = 20.

Figure 4.10. shows the variation of the standard deviation of the mean 

queuing time estimate for the queue of customers waiting to be served, as a 

function of the simulation run length. From this graph the estimate of the run- 

in-period is 300. Using a similar graphical approach for the mean queue 

length estimates of the same queue, the run-in-period can be taken as 250.

M/M/1 Queue
1S-I

ie-

12 -

10 -

e -
e-

2 -

60 260 660 1060

Figure 4.10. STANDARD DEVIATION of the mean queuing time 

estimates for the M/M/1 queue, as a function of the simulation run length.
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Tables 4.5a (queuing time) and 4.5b. (queue length) give the mean 

estimates for the queuing time and the queue length of this queue as a 

function of the simulation run length and of different run-in-periods. We have 

underlined the mean estimate for which the parameter can be considered to 

be in the steady state. i.e., mean estimates with this or longer simulation run 

lengths all fall within 2.5% of the steady state value.

M /M /l Queue - Mean Queuing Time Estimates

Run Length Run-In 0 Run-In 100 Run-In 250 Run-In 300 Run-In 450

**

500 14.876 16.760 17.487 17.472 16.691

1000 17.686 18.410 18.971 19.054 19.059

1500 18.335 18.855 19251 19301 19343

2000 18.576 18.843 19.133 19.161 19.169

2500 18.866 19.126 19.371 19397 19.407

3000 19.047 19.260 19.473 19500 19509

3500 19.085 19.293 19.477 19515 19509

4000 19.202 19.364 19.526 19547 19557

. 4500 19.350 19.443 19588 19.607 19.618

5000 19.318 19.447 19577 19593 19.602

5500 19.428 19.547 19.667 19.682 19.692

6000 19.459 19.598 19.708 19.722 19.732

6500 19.580 19.715 19.819 19333 19345

Table 4.5a. Mean queuing time estimates for the M/M/1 queue as a 

function of the simulation run length and for different run-in-periods.
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M /M /l Queue - Mean Queue Length Estimates

Run Length Run-In 0 Run-In 100 Run-In 250 Run-In 300 Run-In 450

**

500 1.085 1.240 1.342 1358 1.419

1000 1.249 1.313 1362 1368 1378

1500 1.279 1318 1347 1350 1353

2000 1.281 1306 1326 1327 1327

2500 1.292 1313 1.330 1331 1331

3000 1.297 1314 1327 1328 1327

3500 1.297 1314 1325 1326 1326

4000 1.301 1314 1324 1325 1324

4500 1.309 1317 1326 1327 1326

5000 1304 1315 1322 1323 1323

5500 1310 1320 1327 1328 1328

6000 1.311 1322 1.329 1329 1329

6500 1316 1327 1333 1334 1334

Table 45b. Mean queue length estimates for the M/M/1 queue as a 

function of the simulation run length and for different run-in-periods.

From the underlined values in Tables 4.5a and 4.5b we conclude that 

for a confidence of 2.5% the mean queuing time reaches the steady state for 

a simulation run length of 3000 if the run-in-period is used while it takes up 

to 6500 units of time when no run-in-period is used.

For the mean queue length the influence of the run-in-period is more 

noticeable as the parameter is in the steady state for a simulation run length 

of 500 while when no run-in-period is used it requires a simulation run length 

of 5500 approximately.As in the case of the LAUNDERETTE, the run-in- 

periods estimated with the method proposed in this chapter give mean 

estimates with closer values to the real steady state value and for shorter 

simulation run lengths.
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In Appendix E we approximated a run-in-period of 2500 using Gordon’s 

method. With our method, the mean queuing time requires a simulation run 

length of 3000 to reach the steady state. The difference between a simulation 

run length of 2500 (actually somewhat longer as 2500 is the run-in-period and 

therefore some additional observations have to be recorded) and one of 3000 

is not significant and we can consider that our method performs better than 

Gordon’s method as in most of the examples given in this thesis.

4.6. CONCLUSIONS

In this chapter a method to deal with the initialisation bias problem is 

proposed. The method proposed in this thesis for dealing with the 

initialisation bias problem has several advantages over those already existing: 

it is simple to use as opposed to the complexity, for example, of Law and 

Kelton’s method; it does not require the setting of parameters that may be 

model dependent like for example, in Welch’s method; there is no need to 

modify the simulation software as the method is simply based on observations 

obtained from the simulation when the simulation run length is short; the 

computer time required for the estimation of the run-in-period is just a small 

proportion of the total time spent in the simulation project; and just as 

important, the method has been shown to work well for different simulation 

models, in the sense that when using it, the steady state is reached for shorter 

simulation run lengths and the mean estimates are closer to the steady state 

value than when no run-in-period (or longer or shorter run-in-periods) is used.

The method proposed in this chapter satisfies all those objectives. It is 

based on the fact that during the transient phase the standard deviation of the 

mean estimates tends to increase rather than decrease when the simulation run 

length is increased. A good estimate of the run-in-period is given by the 

simulation run length for which the standard deviation reaches a maximum. 

Recording data at regular intervals of time, the point for which the standard 

deviation reaches its maximum value is easily identified with a line graph. The 

method proposed here is much easier to use than those already in existence
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and, even more important, it is shown that it gives good results for a great 

variety of simulation models in the sense that the steady state is reached for 

shorter simulation run lengths than if no observations are deleted. In some 

cases use of other run-in-periods different to the one estimated with the new 

method also bring the system to steady state for approximately the same 

simulation run length. In this case the empirical results show that usually the 

difference between the mean estimates and the steady state value m is smaller 

for the estimated run-in-period.

It is also important to notice that although the new method is similar 

to the one proposed by Gordon, in that the deletion of observations is based 

on an analysis of the variation in the standard deviation of the mean estimate 

for short simulation run lengths, it does not overestimate the run-in-period as 

Gordon does, and at the same time the identification of the cut-off point is not 

easy with Gordon’s method while in our method this identification is easy and 

simple. From a computational point of view the new method is superior to 

that of Gordon’s, because if the slope of the graph is going to be independent 

of the number of replications, we may require to take a very large number. 

This value, although the results are not reported in this thesis, is related to the 

number of replications required to obtain a non-biased estimate. As discussed 

in Chapter 3, sometimes this number can be as large as 900 or 1000 

replications. The only problem, but this also occurs in Gordon’s method, is in 

those cases when, as discussed in Section 4.5.5., due to the large variation of 

the mean estimate, it may be necessary to increase the number of replications 

in order to obtain a good approximation of the run-in-period.

Further research is required to extend this method to other parameters 

estimated from the simulation, and to estimate the run length that is required 

for the parameter to reach the steady state, as Law and Kelton’s method does. 

Additional research is also required with respect to the problem of the 

initialisation bias considering alternatives like, for example, starting the 

simulation in a state more similar to the steady state, or even on using 

methods for which the standard deviation of the mean estimate is smaller than 

when the standard method is used. As shown by Grassman, the longer the
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simulation run length the smaller the standard deviation of the steady state 

estimate, and as can be expected, the smaller this standard deviation the less 

the influence of the initial bias (Grassman, 1982).
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CHAPTER 5 : CONFIDENCE INTERVALS IN STEADY STATE

SIMULATIONS

5.1. INTRODUCTION

Chapter 1 discussed the need for the statistical analysis of simulation 

output data. However, when using classical statistics techniques to carry out 

this analysis, the observations obtained from the simulation output should be 

independent (and identically distributed). To obtain this independence we 

make use of what is called Random Numbers, or in other words, we use 

Random Sampling to simulate a random behaviour (Mihram, 1983).

A problem with this approach is that it gives a low precision of the 

simulation estimates as the variance of the estimate will sometimes be too 

large; this creates problems when making inferences about the estimate 

because most statistical tests performed on this estimate will be "affected" by 

its large variance and, therefore, it does not give a reliable idea of the real 

value of the parameter that we are estimating. When a large variance of the 

estimate makes the simulation of little practical value a technique to reduce 

this variance is needed. Several variance reduction techniques have been 

proposed in the literature, like the following:

1. Antithetic Variables (Deligonul, (1987),Cheng, (1982); Cheng, 

(1984) discusses the use of Antithetic Variables in terminating simulations);

2. Stratified Sampling (Clark, (1960); Cheng and Davenport, 1988).

3. Control Variates (Sharon and Nelson, (1988); Lavenberg and Welch, 

(1981));

4. Common Random Numbers (Heikes et al (1976), Schruben and 

Margolin, (1978), Wright and Ramsay, (1979));

A good summary of the different techniques for variance reduction can 

be found in James, (1985), Wilson, (1984) and Law and Kelton (1991); other 

references are given in the bibliography of this thesis.

The problem with most of these techniques is that "it is not usually clear
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how they work, and as a consequence, how to use them efficiently." (Saliby, 

1990a)

Descriptive Sampling (D.S.) is an alternative method to random sampling 

proposed by Saliby (1990a), and that, as explained in this chapter, may give a 

better estimate of a parameter in the sense that its variance will be smaller, 

and therefore any inference on this parameter will be more accurate. The 

main characteristic of Descriptive Sampling is that it "is based on a 

deterministic and purposive selection of the input sample values...Contrary to 

common belief, there is no need for a random selection of values in a Monte 

Carlo study, or equivalently, there is nothing wrong with a deterministic 

selection of such values. Once this point is accepted, it becomes evident that 

a deterministic selection of sample values is the most appropriate approach to 

be followed in any Monte Carlo application, including Simulation." (Saliby, 

1990b).

D.S. has been extensively tested by Saliby using the method of 

replications, for the estimation of both terminating and steady state estimates. 

However, it has not been used yet in procedures that estimate the steady state 

parameters using a single but very long simulation run. As will be seen, due 

to its characteristics, D.S. seems particularly well suited to be used with the 

batch means method. Conducting research in this field we also identified some 

important aspects concerning the application of the batch means method that 

are also discussed in this chapter.

5.1.1. CHAPTER OBJECTIVES

Throughout the thesis we have pointed out the need for testing 

procedures not only with simple systems, with known analytical answer, but 

specially with complex models for which no analytical answer is known. 

Therefore, one of the objectives of this chapter is to apply the batch means 

method (described in Chapter 1) to some complex simulation models. On 

doing this we will discuss some of the procedures that have been proposed in 

the literature to be used with the batch means method.
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A second objective of this chapter is to use D.S. with the batch means 

method. Because of the way it is implemented (Section 5.3.) it will give more 

accurate estimates than Random Sampling (R.S.).

5.1.2. CHAPTER OUTLINE

Section 5.2. gives a theoretical background to Descriptive Sampling. 

Section 5.3. describes what Descriptive Sampling is, and how to implement it. 

In Section 5.4 we discuss the Batch Means method and some of the sequential 

procedures proposed in the literature. In Section 5.5. we discuss empirical 

results obtained using this method, and we show how some of those proposed 

in the literature may not work well with complex systems

52. THEORETICAL BACKGROUND

Systems are often represented as a "black box"; a set of n inputs Xj are 

applied to this box and the "black box" transforms these inputs into a set of m 

outputs Yk. (See Figure 5.1.). This means that the outputs are dependent on 

the inputs. This is mathematically expressed as :

Yk = Fk(X1, ^ ...X J , k = 1, 2...m. (5.1)

Simulation can also be thought of as a "black box" where the input 

variables are usually samples Grom pre-spedGed probability distributions and 

where the output variables are the results obtained from the simulation. But 

as the input samples are randomly obtained and, even more, the input samples 

change from replication to replication, we can expect a certain variability in 

the inputs. This means that the variability in simulation outputs will depend 

on the input samples variability. Therefore, by studying the variability of the 

input samples, we get a deeper understanding of the variability that we may 

expect in the simulation outputs, and hence it may be possible to develop some 

methods to reduce this variability.
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X  1 

X  s Simulation

Process

Figure 5.1. The simulation process as a "black box".

With this idea in mind Saliby (1990a) found that "in principle, any input 

sample can be seen as being composed of two global features: the set of input 

values and their sequence."

We will explain these two concepts with an example. Assume that we 

use Random Sampling (as usual in simulation practice) to sample from a 

uniform distribution that takes values between 0 and 1. In a simulation run 

where 7 of these values are generated, we obtain the following sample:

Ux = [0.51, 0.92, 0.21, 0.34, 0.78, 0.13, 0.98]

For this sample, we define the corresponding SET of values as the sample in 

ascending order:

SETj = [0.13, 0.21, 0.34, 0.51, 0.78, 0.92, 0.98]

There are many possible permutations of the values of this set. One possible 

permutation or SEQUENCE is:

SEQj = [4, 6, 2, 3, 5, 1, 7]. What this permutation means is take first 

the element number 4 of SETX (0.51); then take the element number 6 of SETX 

(0.92), and so on. As may be seen this sequence corresponds to sample Ux. 

Similarly another permutation or sequence of SET1?

SEQ2 = [3, 1, 5, 2, 7, 4, 6] 

will correspond to an input sample U2:

U2 = [0.34, 0.13, 0.78, 0.21, 0.98, 0.51, 0.92]

134



Notice that when using Random Sampling the set varies at random. 

Notice also that a sequence is a random permutation of the set values.

But it has been said that the variability of the output depends on the 

variability of the input samples. By breaking down an input sample into a SET 

and a SEQUENCE it is possible to study the influence of each one in the 

variability of the estimate obtained from the simulation output. Continuing 

this line of thought Saliby (1990a) found that the variability of simulation 

estimates due to the effect of the set of values can be explained by the 

deviation of the input sample moments from the corresponding theoretical 

values. In other words, the input sample is assumed to follow a specific 

probability distribution. However due to the randomness of the input sample, 

there is some deviation of the values of this input sample with respect to the 

theoretical values.

As a conclusion to this study, "the set variability can be considered as 

a kind of noise which is introduced during the sampling process. Questioning 

this variability, we derived a new sampling approach in simulation: Descriptive 

Sampling.” (Saliby, 1990a.) In summary, in simulation some of the input 

variables are deterministic, but some others should be sampled from the 

appropriate probability distribution function. When this sampling is made at 

random (as it is usually) the input distribution does not closely follow the 

theoretical distribution it comes from. This will cause an increase in the 

variance of the estimates obtained from the simulation. This problem is 

avoided when we use descriptive sampling.

53. DESCRIPTIVE SAMPLING IMPLEMENTATION

As proposed by Saliby (1990a, 1990b), the basic difference between 

Descriptive Sampling (D.S.) and the most common sampling technique, usually 

called Random Sampling (R.S.) is that in Random Sampling the input samples 

are randomly generated while "Descriptive Sampling is based on a 

deterministic and purposive selection of the sample values - in order to 

conform as closely as possible to the sampled distribution - and the random
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permutation of these values. As such, it represents a fundamental conceptual 

change from Monte Carlo sampling, departing from the "principle" that sample 

values must be randomly generated in order to describe random behaviour." 

(Saliby, 1990b).

Therefore, in Descriptive Sampling we use a deterministic set o f values 

and we obtain random permutations of this set of values every time that a new 

value is needed. The same set o f values is used in all the different replications, 

avoiding in this way the variability that arises in the use of Random Sampling. 

The only requisite of Descriptive Sampling to obtain a "good" and "close" 

representation of the theoretical input probability distribution is to know 

beforehand the input sample size. This means that we have to determine how 

many times the simulation is going to sample from that particular distribution. 

For example, the activity arrive in the PUB example is sampled from a 

negative exponential distribution. In order to use Descriptive Sampling, it is 

necessary to know beforehand how many arrivals to the system will occur for 

the chosen simulation run length. In some simple simulations this value will 

be easily determined. But in more complex simulations the determination of 

this value will not be so straightforward. In this case a few replications are 

made in order to determine an approximate sample size. The method still 

works quite well and, from empirical results not given in this thesis, when the 

simulation run length is long enough, this restriction is not necessary.

The following sub-sections describe the two main steps to take when 

using Descriptive Sampling.

53.1. SET VALUES GENERATION.

These values should be generated in advance. They are generated, as 

in Random Sampling using the general method of inverse transform. The only 

difference is that, because we try to obtain a set of values that is representative 

of the theoretical probability distribution, these values should "cover" the 

whole range of the distribution. Therefore if F is the cumulative distribution 

function and the sample size is n, the set values are obtained as
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Xj = F 1[(i-0.5)/n], i=l..n; (5.2)

NOTE: Equation (5.2) follows from the definition of an empirical 

distribution function if we define the cumulative distribution F(x) as 

F(x)=Pr(X < x), where X is a random variable. "If X has the same distribution 

as the Xj data, a reasonable approximation to F(x) is thus the proportion of the 

Xj’s that are less than or equal to x. In particular we might define an empirical 

distribution function Fn(x) =i/n, since this is the probability of the Xj’s that are 

less or equal to X(i) (where X(i) is the Ah. smallest of the Xj’s). For purposes 

of probability plotting, however, it turns out to be somewhat inconvenient to 

have Fn(X(n))= l, that is, to have an empirical distribution function that is equal 

to 1, for a finite value of x. We therefore make a small adjustment and define

w ~  <5-3>

for i= l, 2,...,n." (Law and Kelton, 1991)

EXAMPLE The following example shows the generation of the set of 

values for a uniform distribution taking values between 4 and 10, and a sample 

size n=50. The formula used to generate uniform distributed variables, by the 

Inverse Transform Method, is the following:

XD[i]=a+((i-0.5)/n)*(b-a)

where a and b are the two end values of the uniform distribution. Using 

this formula with i= l, 2...50 and a = 4, b = 50 we generate the set o f values 

(XD). To obtain independent observations from the simulation output we 

sample at random from these set o f values.

5 3 2 .  RANDOM PERMUTATION

Once the set of values has been generated by the procedure described 

in Section 5.3.1. they "can all be shuffled before carrying out each run, but it 

is more convenient to shuffle them during the run, drawing a set element
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whenever is required. In practice, this sequential process is done by sampling 

the pre-defined set of descriptive values without replacement." (Saliby, 1990b.)

5.4. BATCH MEANS METHOD

In sections 5.2. and 5.3. we have discussed a new sampling method 

called Descriptive Sampling. Its main characteristic is the smaller variance of 

its estimates as compared to those obtained from random sampling. The rest 

of the chapter will deal with the batch means method, as an alternative 

method, based on a single long run, for the estimation of steady state 

parameters. In this section we will describe the method, as well as some of the 

procedures that have been suggested in the literature to be used when the 

batch means method is employed. This, along with the description of the two 

previous sections, will give the theoretical background required for the 

discussion that follows in Section 5.5.

5.4.1. USE OF A  SINGLE LONG RUN FOR THE ESTIMATION OF

STEADY STATE PARAMETERS : GENERAL DISCUSSION.

Several methods have been proposed for the calculation of confidence 

intervals for steady state estimates. The first of these is the method of 

replications which has already been used and discussed in this thesis; however, 

the main problem with it is the influence of the initial conditions. If the 

simulation run length is not long enough to make this influence negligible, or 

if the deletion of some of the initial observations does not eliminate this 

influence, the expected value of the mean values Xj, obtained from replication 

i, will not be /a and therefore the steady state estimate X will be biased. 

Another problem is that when some of the initial observations are deleted the 

variance of the mean estimate increases and, therefore, the length (width) of 

the confidence interval (c.i.) will also increase (relative to a fixed simulation 

run length).

To eliminate the problem due to the influence of the initial conditions
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some methods based on a single very long replication have been developed for 

the estimation of steady state parameters. Some of these methods are briefly 

described here:

1. Batch Means. A detailed study of this method will be carried out in 

this section. (See Schriber and Andrews (1979); Law and Kelton (1982a, 

1984); Law, (1977, 1983)).

2. Autoregressive Representatioa This method, developed by Fishman 

(1973, 1978b) assumes that the process is covariance stationary and can be 

represented by a pth autoregressive method.

3. Spectrum Analysis. "This is a complicated technique and is quite 

expensive due to the large number of covariance estimates which must be 

computed." (Law, and Kelton, 1984). For further discussion on this method 

see Fishman (1969, 1973), Heidelberg and Welch (1981a, 1981b), and Duket 

and Pritsker (1978).

4. Regenerative Cycles. This method was developed simultaneously by 

Crane and Iglehart (1974a, 1974b, 1975a, 1975b) and by Fishman (1973,1974). 

The main problem with it is that regenerative points must be identified 

beforehand, and this may be difficult, and sometimes impossible. (See as well, 

Cinlar, 1975; Karlin and Taylor, 1975; Iglehart, and Stone, (1983)).

5. Standardised Time Series. This method was developed by Schruben 

(1983) and its principle is to collect a sample of size N which can be 

considered as a Time Series and standardise the entire time series. A  variant 

of this method has been recently proposed and, from the results, it seems that 

the confidence interval estimators obtained (basically weightedgeneralisations 

of Schruben’s standardised time series), perform much better in the small 

sample size environment. (Goldsman and Schruben, 1990; Glynn and Iglehart, 

1990)

When we use a method based on a single long run we are eliminating 

one problem (influence of the initial conditions) but at the same time we are 

creating autocorrelation of the observations: the observations obtained from 

the simulation will be correlated and they will in general be non-stationary. 

If we use classical statistics methods the c.i. thus calculated will have a
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probability of covering the real value /i which is much smaller than the 

theoretical one (1-a). This will make the calculation of c.i. for steady state 

parameters very difficult. (As a matter of fact, although this is a problem 

which has not been discussed in this thesis, one of the fields of research in the 

area of simulation is that of obtaining good estimates for the variance of the 

estimator. For references on this problem, see Chan, and Lewis, (1979), Clark, 

(1980) and more recently, Glynn and Iglehart,(1988)).

The methods described above use classical statistics techniques to 

calculate c.i. The main problem with these techniques is that some of their 

assumptions (i.e., normality) are not met in practice and to overcome this the 

use of non-parametric statistics has been suggested. Even though this still 

requires further research, the results obtained so far seem to be quite 

promising (See Chien, 1988; Kleijnen, 1987)

Some variants of the batch means method have been proposed in the 

literature in order to reduce the autocorrelation of the observations which is 

the main problem associated with it. Two of these variants are:

1. The Overlapping Batch Means Method. (Meketon and Schmeiser,

1984)

2. The Spaced Batch Means Method. (Fox et al, 1991)

(See Bibliography for other articles describing these methods).

5.4.2. DESCRIPTION OF THE BATCH MEANS FOR STEADY

STATE PARAMETERS ESTIMATION.

In the batch means method N observations X1? X j,... ,XN are recorded. 

These observations are grouped into b batches of size N/b and the mean X of 

each one of these batches is calculated by equation 5.4.

Nfb Y (5.4)

The mean of the b batches will give the estimate Y (grand batch mean) 

for the parameter(s) of interest, as shown in equation 5.5.
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y - y , - 1  (5 ,5 )
i - i  b

The main problem with this method is to choose a batch size sufficiently 

large such that successive batches are independent. If they are correlated the 

variance estimator will be biased (either positively or negatively) and therefore 

the c.i. thus calculated will be either too short or too large.

5.43. SEQUENTIAL PROCEDURES

When we want to obtain a c.i. for a steady state parameter we may fix 

beforehand the simulation run length and, when using the batch method, 

obtain a number b of independent batches. An important step in this case is 

to carry out a test for autocorrelation of the batch means. Several methods 

have been proposed in the literature. Appendix H describes a test based on 

the Von Neumann statistic and which was used to test the batches for the 

presence of autocorrelation in the experiments reported in this thesis. (See 

also Fishmann, 1978a). From the mean of these b different batches we 

calculate a c.i. for the parameter of interest. However, if the simulation run 

length is too short some problems have been identified in the literature:

1. The estimate obtained may still be part of the transient response. 

In other words, if X{ is the mean value of batch i, it is possible that for a short 

simulation run length E(Xj)#/i and therefore the point estimate will be biased 

and the c.i. will be calculated around the wrong value.

2. The variance and therefore, the standard deviation of the estimate 

may be too large. This means that the c.i. half width length, and the c.i. 

relative half-width length, will be too large to be of practical use.

3. It may not be possible to find a batch sample size such that the 

different batches are independent.

NOTE. The c.i. relative half width, also called, cJ. relative precision, 

is the c.i. half width divided by the mean estimate. The c i. absolute width is 

simply the c.i. half width.
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In order to deal with these problems the use of a sequential approach 

is recommended. In this approach we start with an initial batch size, test the 

batch means for correlation and if they are uncorrelated then calculate a c.i. 

If the c.i. relative half width (in some cases the absolute half width) is too 

large or if there is some autocorrelation, then the batch size is increased.

To illustrate the sequential approach we describe one of the methods 

proposed in the literature by Law and Carson.

LAW AND CARSON’S METHOD

"The goal of the Law and Carson sequential procedure which is based 

on the method of batch means, is to construct a 100(l-a)% c.i. for /x with a 

relative precision of y." (y is the c.i. half width divided by the mean estimate; 

it is also called the c.i. relative precision). "Suppose that m  observations from 

a single simulation run are available. The procedure divides these m 

observations into 400 batches of size k (m is assumed to be divisible by 400). 

If the estimated lag 1 correlation between the resulting 400 batch means is less 

than a threshold value c=0.4, then the same m  observations are divided into 

40 batches of size 10A and the corresponding 40 batch means are considered 

to be uncorrelated. This indirect approach is necessary to obtain a precise 

correlation estimate. The 40 batch means are used to obtain a c.i. for /x using 

the usual batch means approach, and if the relative precision is not less than 

y, then this c.i. is accepted. If the estimate lag 1 correlation is less than 0.4 or 

if the actual relative precision is not less than y, then m  is increased and the 

above steps are repeated. Law and Carson (1979) recommend that the 

procedure be applied with the value of y chosen to be less or equal to 0.075." 

(Law, 1983)

Other methods that have been proposed for the estimation of 

confidence intervals are the Mechanic and McKay procedure (Mechanic and 

McKay, 1966) and a procedure proposed by Adams (1983). The objective in 

Mechanic and McKay’s procedure is the calculation of a valid c.i., while in
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Adams’ procedure the objective is the calculation of a preassigned confidence 

interval, but to this respect, "further work needs to be done to investigate the 

performance of this method when applied to other types of stochastic systems, 

e.g., inventory systems, and job-shop type of systems". (Adam, 1983)

A good survey of both fixed-sample size and sequential procedures for 

the calculation of steady state confidence intervals is given in Law and Kelton, 

(1984, 1982a).

COMMON FEATURES OF THE SEQUENTIAL METHODS

PROPOSED IN THE LITERATURE

All the methods named above, as well as some others not discussed in 

this thesis, including procedures proposed to be used with the regenerative 

method (See Chapter 1), use as a stopping criterion the c.i. absolute or relative 

precision. A  second feature common to these methods is that they are tested 

only for simple models with little interaction among their entities.

We will show how in practical simulations use of a stopping criterion 

related to the c.i. half-width works well, but we will also show how some other 

conclusions that have been obtained using simple models do not equally work 

well when applied to more typical simulation models.

5.5. DISCUSSION OF THE BATCH MEANS METHOD.

In section 5.5.2. we discuss some points concerning the use of the batch 

means method when it is applied to some complex simulation models that do 

not have an analytical solution. In section 5.5.3. we describe the different 

experiments that were performed to illustrate the points of section 5.5.2. The 

empirical results obtained from these experiments are given and analysed in 

section 5.5.4.
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5.5.1. MODIFICATION OF THE BATCH MEANS METHOD

Due to the type of simulation software used in the experiments reported 

in this chapter, the batch means method has been slightly modified. Instead 

of recording N observations and grouping them into b batches, a simulation 

run length T0 is chosen. This simulation run length should be sufficiently long 

for the parameter to reach the steady state. Then, this run length is divided 

into b equal intervals with a sub-run length of Tx = To/b. The batch means 

Xj (j= l, 2,..b) are obtained as the average of the observations recorded during 

the interval of time [(j-l^ T ^ T J . We need to test these batch means for 

autocorrelation, and if necessary, we will have to increase the period of time 

Tj. The estimate Y is given by the average of these batch means Xj, as shown 

in Equation 5.6.

_  * x , (5-6)
r  = E - ^

j-i °

Therefore, with this modification, the batch size defined before as the 

number of observations in each batch becomes a random number but the 

method still works well. We employ the same terminology as with the batch 

means method and the term "batch size" refers to the sub-run length Tv

5 5 2 . POINTS RELATED TO THE APPUCATION OF THE BATCH

MEANS METHOD TO COMPLEX SIMULATION MODELS

As pointed out in Chapter 2, the use of empirical research helps to 

highlight aspects that are common to different simulation models. We have 

also emphasised the importance of applying any proposed procedure to systems 

that show more interaction amongst their entities than simple systems like the 

M/M/1 queue. By doing this we have been able to identify the following 

problems and interesting aspects concerning the use of the batch means 

method:
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1. From the empirical results we will show how there exists a minimum 

total simulation run length, independent of the batch size, that is required for 

a given parameter to reach the steady state.

2. D.S. batch mean estimates will have a smaller variance and for this 

reason they will require shorter simulation run lengths for the c.i. relative 

precision to be smaller than a pre-assigned value c'.

3. Concerning the number of batches, Schmeiser (1982), and Law and 

Carson (1979) suggest that no more than 30 or 40 batches should be used. For 

example, to this respect Schmeiser in his study of the effects of the number of 

batches in the analysis of the simulation output says that "our most 

fundamental conclusion is that 10 < k < 30 (where k  is the number of batches) 

is reasonable for most simulations." And, as described in Section 5.4.3., in Law 

and Carson’s method, a number of 400 batches are obtained and tested for 

autocorrelation, and then the observations are regrouped again to form only 

40 batches in order to obtain the mean estimate and the c.i. Similarly, the 

method described in Appendix H, based on the Von Neumann statistic to test 

for autocorrelation requires at least 100 batches. However, as we will show, 

the number of batches has very little influence with respect to the accuracy of 

the batch mean estimate and the c.i. relative precision, and therefore, there is 

no need of regrouping the observations to form a smaller number of batches 

after the test for autocorrelation has been carried out.

5S 3 . DESCRIPTION OF THE EXPERIMENTS

In order to illustrate the points discussed in section 5.5.2. we carried out 

some experiments that are described in this section. We used different batch 

sizes, different number of batches and different sampling methods, as is 

explained below.

A long simulation run length was chosen (For example 15,000,000 for 

the LAUNDERETTE model studied in this chapter). In each case different 

subrun lengths were used; the value of these subrun lengths is such that 10, 20, 

30, 50 and 100 batch means are obtained for each one of the parameters of
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interest (queuing time or queue length of some of the queues of the model).

The estimate Y is calculated from Equation 5.6., where Xi is the value 

of the mean in batch i and b is the number of batches (10, 20, 30 etc.). For 

each estimate the standard deviation, and the confidence interval relative 

precision (at a 95% confidence level) were also calculated.

One of the important points we show using empirical results is that 

there is a simulation run length R* such that for simulation run lengths shorter 

than this critical value the system does not reach a steady state. To check this 

point in an empirical way we determined the batch mean corresponding to b 

batches (b=10, 20 etc.) and also the batch mean corresponding to b l batches, 

with b l taking values 2, 3...b. The batch mean in this case is easily calculated 

from Equation 5.7.

ih , (5 .7 )
Y(blJ>) = -4—  

bl

Calling T0 the total simulation run length (15,000,000 for the model 

studied in this chapter), Y(bl,b) may be interpreted as the batch mean 

estimate if b l batches are recorded, and where each batch has size To/b.

5.5.4. ANALYSIS OF THE RESULTS OBTAINED FOR THE

LAUNDERETTE MODEL

We obtained the mean queuing time and the mean queue length 

estimates for the following queues of this model:

1. WASHQ;

2. BIDLE;

3. DRYQ;

4. WMIDLE.

Using the results obtained for these queues we will discuss in detail 

each one of the points of section 5.5.2.
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1. Minimum simulation run length required for the parameter that is 

being estimated to reach the steady state.

In Chapter 3 we showed how by increasing the number of replications 

it is possible to obtain a good approximation to the real, but unknown, curve 

of the mean estimates as a function of the simulation run length. In this way 

it is possible to estimate the simulated time for which the curve becomes 

horizontal. A similar graphical approach can be used with the batch means 

method to determine the simulation run length for which the curve becomes 

horizontal. However, in this case this depends only on the total simulation run 

length. To show this, the LAUNDERETTE model was simulated using 

different random number seeds. Figure 5.2. shows the batch mean estimates 

calculated using Equation 5.7. and corresponding to the mean queuing time 

parameter of the WASHQ.

WASHQ
Batch size : 300000

7.2

7-

6.8 -

6.6

6.4

6 . 2  1111111 
eooooo 6900000 13200000 19500000 25800000

Legend 

—  R.N.1

  R.N.2

•*- R.N.3

Run Length

Figure 5.2. WASQ mean queuing time batch estimates obtained using 

different random number seeds.
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From this graph we note that they converge to a value of 6.67 and that 

to obtain this convergence a minimum simulation run length of 13,200,000 

units of time is required. In practice it is not necessary to obtain an estimate 

so close to the real steady state value, and a certain tolerance is allowed. If 

this tolerance is expressed as a percentage of /a, the real but unknown steady 

state value, we can use the c.i. relative precision as a stopping criterion. Based 

on this stopping criterion we describe in detail the algorithm that should be 

followed in order to estimate steady state parameters in Section 5.6. This 

algorithm can be summarised as follows: once a batch size for which the batch 

means are uncorrelated has been identified, we obtain one batch at a time, 

update the c.i. relative precision, I, and compare it to the c.i. relative precision 

c', chosen a priori. If I < c' then we stop; otherwise an additional batch mean 

is obtained. This procedure is continued until I < c \

Figure 5.3. illustrates this procedure and how the use of the c.i. relative 

precision as a stopping criterion gives accurate mean estimates. This figure 

shows the batch mean estimates as a function of the simulation run length and, 

using a second Y-axis, we also give the corresponding c.i. relative precision. 

Also shown in this graph are the limits of the c.i. corresponding to simulation 

run lengths of 5,100,000, 7,500,000, 9,900,000, 12,300,000, and 14,700,000. We 

note how in all the cases the c.i. "covers” the real value, this value, which has 

been approximated in an empirical way in Appendix C, is 6.675.

2. D.S. BATCH MEAN estimates will require shorter simulation run 

lengths for the cJL relative precision to be smaller than a pre-assigned 

value c \

Using different batch sizes we obtained the batch mean estimates as a 

function of the number of batches (as described in Section 5.5.3.), for both 

D.S. and R.S. The information is all similar, and we have summarised it in a 

graphical way by showing the queuing time batch mean estimates for the 

DRYQ as a function of the batch size and of the simulation run length (which 

is related to the number of batches given a fixed batch size).
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WASHQ
Batch  s i ze  : 1 5 0 0 0 0

0.3

7.2 0.25

- 0.2
c 6.8
I
g- 6 .6  
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- 0.1 5

- 0 .1

- 0.056.2

2 1 8 34 50 
Run length

66 82 98

—*■— batch m ean — ■—  c.i. rel. prec.

Figure 53. WASHQ batch queuing time mean estimates, and 

corresponding c.i. relative precision. Limits for the c.i. obtained for different 

simulation run lengths are also shown.

Figures 5.4. (batch size : 1,500,000), 5.5. (batch size : 500000) and 5.6. 

(batch size : 150000), show these mean estimates. From these figures we 

notice that independent of the batch size, the D.S. batch mean estimates 

converge to the steady state for shorter simulation run lengths (i.e., there is a 

smaller change in the value of the mean estimates as the simulation run length 

increases as compared to the change in the R.S. mean estimates). This implies 

that it is possible to use shorter run lengths and obtain mean estimates as 

accurate and close to the real steady state value, i±, if D.S. is used than if R.S. 

is used.

In order to give an idea of the variation in the value of the standard 

deviation when the two sampling methods are used, Figure 5.7. shows this 

variation as a function of the simulation run length for both D.S. and R.S. 

batch mean estimates, and for a batch size of 1,500,000.
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DRVQ - LAUNDERETTE
Sub-Run Length:1,50000018.2-,

Logsnd 

—■— RANDOM SAMP.
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3J 17.8-

17.6-

3000000 8000000 8000000 12000000 16000000
Simulation Run LsngVi

Figure 5.4. Variation in the R.S. and the D.S. batch mean estimates as 

a function of the simulation run length. The total simulation run length has 

been divided in 10 batches.

DRVQ LAUNDERETTE
Sub-Run Length : 500,000

18 -

17.©-
 DESCRIPTIVE SAMP.

17.0-
17.8

6000000
Simulation Run Length

lOOOOOO ©OOOOOO 
Run Length

13000000

Figure 5.5. Variation in the R.S. and the D.S. batch mean estimates as 

a function of the simulation run length, when the total run length has been 

divided in 30 batches.
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DRVQ LAUNDERETTE
Sub-Run Length: 150,000
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Figure 5.6. Variation in the R.S. and the D.S. batch mean estimates as 

a function of the simulation run length, when the run length has been divided 

in 100 batches.
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Figure 5.7. STANDARD DEVIATION corresponding to the batch 

mean estimates of Figure 5.4.
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As we would expect, the standard deviation for the D.S is smaller and 

therefore the c.i. half width is shorter; as the point estimate, when the 

parameter has reached the steady state, is approximately the same, the D.S. c.i. 

relative precision will be smaller.

Therefore, the simulation run length required for the c.i. relative 

precision to be less than or equal to c' is shorter than the corresponding 

simulation run length when R.S. is used.

3. Influence of the number of batches.

In table 5.1 we summarise some of the points that have been discussed 

with respect to the use of the batch means method, and we show that the batch 

mean estimate obtained for a given total simulation run length, as well as the

c.i. relative precision, are independent of the number of batches.

In this table we give the batch mean estimates for a total simulation run 

length of 15,000,000, for different batch sizes and for both R.S. and D.S. We 

also include in this table the values of the 95% c.i. relative precision for each 

one of the different batch sizes. In order to give an idea of how the batch 

means method compares to the replications method we also include the results 

obtained for the queues of this model, when 300 replications are used and the 

total simulation run length is 120000.

From the table we may conclude (and this conclusion is true in all the 

other models studied in this chapter) that for a total simulation run length of 

15,000,000 it is valid that:

1. The point estimate (mean queuing time or mean queue length) is 

approximately the same, independent of the number of batches.

2. The relative precision of the confidence interval is approximately the 

same for a given parameter, independent of the number of batches.

3. When the simulation run length is very long, and it needs to be very 

long for the point estimate not to be biased, the c.i. half-width and the c.i. 

relative precision are smaller than when the replications method is used.

4. Comparing the batch mean results with the steady state values (/i)
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obtained from the results of Appendix C and reproduced in point 1 of this sub

section, the Descriptive Sampling batch means estimates are closer to the real 

steady state value than the Random Sampling estimates. In most cases the 

percentage error of the Descriptive Sampling batch mean estimates is almost 

zero.

5.5.5. SUMMARY OF OUR RESULTS CONCERNING THE USE

OF THE BATCH MEANS METHOD

Based on empirical results (Section 5.5.4. and Appendix G), obtained for 

some typical simulation models, the research reported in this thesis shows some 

new important aspects concerning the use o f the batch means m ethod (Section 

5.5.2). A t the same time, the use o f complex m odels shows why some 

techniques widely used in the batch means m ethod do not always work well in 

practice, in the sense that they are not general enough to be used for different 

types o f problems, and therefore cannot be applied to simulation m odels with 

different characteristics.

5.6. ALGORITHM

In Section 5.5. we confirmed, based on empirical results obtained for 

more typical simulation models, that the c.i. relative precision can be used as 

a stopping criterion in a batch means sequential method. It was also shown 

that the number of batches is not critical as long as the batches are 

uncorrelated and that the batch means follow approximately a normal 

distribution.

In this section we will summarise the procedure to be followed for the 

estimation of steady state parameters using the batch means method.

Based on these facts we propose the following algorithm:

1. Select a large simulation run length, T0. Divide this run length into 

sub-runs lengths of Tq/100. (The value of 100 batches as minimum is 

suggested by Kleijnen).
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RANDOM SAMPLING

Queue Parametei 10 Batches 30 Batches 100 Batches

Batch Std. Dev GI. Half Batch Std. Dev GL Half Batch Std. Dev GL Half

WASH Queue. 6.704 0256 0.027 6.703 0.474 0.026 6.700 0.856 0.025

WASH Queue 0.839 0.033 0.028 0.839 0.061 0.027 0.839 0.112 0.026

BIDLE Queue. 67.141 0.657 0.007 67.144 1.094 0.006 67.156 2.156 0.006

BIDLE Queue 8.399 0.063 0.005 8.399 0.108 0.005 8.399 0209 0.005

DRYQ Queue. 17.779 0.439 0.018 17.778 0.774 0.016 17.771 1.477 0.017

DRYQ Queue 2.224 0.060 0.019 2224 0.104 0.017 2224 0200 0.018

WMIDLE Queue. 12.771 0.150 0.008 12.772 0.247 0.007 12.775 0308 0.008

WMIDLE Queue 1.598 0.015 0.007 1398 0.025 0.006 1398 0.051 0.006

DESCRIPTIVE SAMPLING
Queue Parametei 10 Batches 30 Batches 100 Batches

Batch
Mean

Std. Dev GL Half 
W.

Batch
Mean

Std. Dev GL Half 
W.

Batch
Mean

Std. Dev GL Half 
W.

WASH Queue.
Time

6.586 0.196 0.021 6.631 0.417 0.024 6328 0.714 0.022

WASH Queue
Leneth

0.824 0.025 0.021 0.830 0.052 0.024 0317 0.089 0.022

BIDLE Queue.
Time

67323 0247 0.003 67284 0.392 0.002 67395 1.002 0.003

BIDLE Queue
Leneth

8.422 0.031 0.003 8.418 0.047 0.002 8.430 0.119 0.003

DRYQ Queue.
Time

17.603 0246 0.010 17.626 0369 0.008 17341 0.938 0.011

DRYQ Queue
Leneth

2.202 0.031 0.010 2.205 0.047 0.008 2.194 0.118 0.011

WMIDLE Queue.
Time

12.783 0.023 0.001 12.768 0.061 0.002 12.798 0.137 0.002

WMIDLE Queue
Leneth

1399 0.003 0.001 1398 0.007 0.002 1301 0.014 0.002

REPLICATIONS METHOD (RANDOM SAMPLING)

Queue Parametei Sample
Mean

Std. Dev

WASH Queue
Time

6.653 1.018

WASH Queue
Leneth

0.832 0.131

BIDLE Queue.
Time

67.349 2.278

BIDLE Queue
Leneth

8.417 0.233

DRYQ Queue.
Time

17.671 1.694

DRYQ Queue
T .f.npth

2209 0225

Table 5.1. Mean queuing time and mean queue length estimates using 

the batch means (R.S. and D.S.) and the replications method; the total 

simulation run length for the batch mean estimates is 15,000,000 and it is 

divided into 10, 30 and 100 batches; the total simulation run length for the 

method of replications is 120000.
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2. Obtain 100 batches, each one with batch run length of Tq/100.

3. Test for autocorrelation of the batch means using Von Neumann’s 

statistic (See Appendix H).

4. If the batch means are uncorrelated, test for normality of the means 

(See NOTE "a” below). However, it seems (Law, (1980)) that non-normality 

of the observations does not have a large effect on the estimation of a c.i. 

(This point requires further investigation, because as shown here some of the 

results proposed in the literature do not work well when used with complex 

systems).

5. If the batch means are correlated or if they are highly non-normal, 

increase the simulation run length to say , 2T0; repeat steps 3 and 4.

6. Once a simulation run length for which the batch means are 

uncorrelated has been estimated, calculate the grand mean Y using Eq. 5.6, 

and the c.i. relative precision.

7. If the relative precision, I is less than or equal to a pre-specified 

value c' then stop the simulation and perform an statistical analysis of the 

simulation output. Otherwise, obtain an additional batch mean, update the 

value of I and compare this value to c \ This will be repeated until I < c'.

NOTES

a. Several procedures have been proposed to test a data set for 

normality. Among these tests we have Shapiro and Wilk’s W statistic (1965), 

and its extension proposed by Royston (1981); Stephens (1974) provides a good 

summary and comparison among different goodness of fit tests that can be 

used to test data for other distributions besides the normal distribution. 

Liliefors (1967) discusses the Kolmogorov-Smimov statistic and generalises it 

to make it useful when the mean of the distribution is unknown.

b. Some experiments to deal with the problem of autocorrelation were 

performed using a similar method to the spaced batch means method. The 

results of these experiments are not reported here but in principle, if X v  

X2...Xm are the batch means, we can obtain a mean estimate by considering:
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m/2 y
Y = T  2*M (5.8)

«=i mil

This means that we will have "gaps" in the batch means used to obtain 

the steady state estimate. Although further research is required it seems to 

perform quite well, as the batch size could be smaller and still give 

independent observations.

c. Usually the queues that are more directly influenced by a negative 

exponential input distribution will take longer to reach the steady state, and 

the approach to it may be extremely slow (see for example the mean values 

recorded for the WAIT queue in the PUB model in Appendix G).

d. From the empirical results given in this chapter (and in Appendix G) 

D.S. should be preferably used when the batch means method is used for the 

estimation of steady state parameters as it gives estimates closer to the steady 

state; at the same time, the simulation run length required to obtain a c.i. 

relative precision smaller than a pre-assigned value c' is shorter if D.S. is used 

than if R.S. is used.

e. It was shown how the variation in the D.S. estimates is much smaller 

than that of the R.S. estimates; this is confirmed with the results of Appendix 

G. Therefore, another important advantage of D.S. over R.S. is that the time 

required to collect the data from the simulation can be considerably smaller.

5.7. CONCLUSIONS

The main topic of this chapter has been the batch means method. On 

applying it to some more typical simulation models than those usually used by 

the simulation theoreticians, we have identified some problems and important 

aspects concerning its application.

D.S. performs particularly well when used with the batch means method, 

and shorter simulation run lengths are required to get an accurate estimate of 

the parameter of interest. This is due to the way D.S. is implemented. As 

explained in section 5.2.3. it generates a set of deterministic values, and uses
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them throughout the simulation. In order to generate this set of values the 

sample size should be known in advance. However, we found in this research 

that when the sample size is large enough (we used a maximum of 7500 for the 

sample size) accurate estimates are obtained even if in theory we should use 

a larger sample size. At the same time, the batch means method obtains 

estimates for a given batch size. Therefore, we found that we can generate a 

set of values using a maximum sample size and sample them at random for 

each different batch. Use of a maximum sample size, that may be considerably 

smaller than what would be required, is possible due to the way D.S. has been 

programmed in practice. Sampling is done without replacement until all the 

set of value has been used. If additional sampling is required then the same 

set of values is used again. For this reason, we said in Section 5.1. that D.S. 

seemed particularly well suited to be used in the batch means method.

While in the previous chapters we have obtained steady state estimates 

based on the method of replications, in this chapter this estimation has been 

done using a single, but very long simulation run length. Which method to use 

is more a decision of the practitioner. While the method of replications has 

the problem of the initialisation bias, the batch means method presents the 

problem of the autocorrelation of the observations. In either method the 

simulation practitioner needs to select the simulation run length. When the 

method of replications is used we showed how it is possible to estimate the 

number of replications such that the curve of the variation of the mean 

estimates as a function of the simulation run length is a close approximation 

to the real one. This will permit the identification of the approximate 

simulation run length for which the curve becomes horizontal. But, there is 

an additional problem which the practitioner has to deal with and that is the 

problem of the initialisation bias. Therefore, in most simulations, after the 

number of replications that should be used has been estimated, the 

practitioner needs to identify the number of initial observations to be deleted 

(Chapter 4) or similarly, use the weighted averages method which is described 

in Chapter 6. It seems then that the method of replications requires two 

previous steps before the simulation for the estimation of steady state
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parameters is run: estimation of the number of replications and estimation of 

the number of replications to be deleted. When the batch means method is 

used, we showed in this chapter how the simulation should be continued until 

the c.i. relative precision is less than or equal to a pre-specified value c'. In 

this sense the batch means method is simpler to use than the replications 

method. From the examples showed in this chapter (and in Appendix G) it is 

clear that D.S. should be used in preference to R.S. as the variation in the 

batch means as the simulation run length increases is considerably smaller. In 

both cases, replications and batch means method, it is important to carry out 

an statistical analysis of the simulation output data as discussed in Chapter 1. 

A simple, but good way of doing this is by obtaining the c.i. width, and the c.i. 

relative precision of the mean estimate.

A point that requires more research is that of the simulation run length 

that is required in order to obtain an "accurate" estimator: when using the 

method of replications, if the expected value of the observations Xj is different 

from the real value of the parameter we are estimating, /z, then the c.i. is 

calculated around a value different to the steady state value. When using the 

batch means method the main problem is that of avoiding correlation among 

the batch means. Some procedures have been suggested in the literature 

concerning the optimal simulation run length or equivalently, the number of 

observations Xj required to obtain an accurate estimate. Information about 

some of these procedures can be found in Heidelberg and Welch (1983), 

Adlakha and Fishman (1982), Fishman (1971), and Robinson, (1976). 

However, the proposed procedures have all been tested using simple systems, 

for which an analytical answer exists and as shown in this chapter in practice 

the performance of such procedures may not be as good as expected. For 

example, based on experiments performed with the M/M/1 queue and alike, 

it has been suggested that the number of batches should be less than 30. But, 

as shown in the examples of this chapter, the mean estimate and the c.i. 

relative precision depend on the total simulation run length and not on the 

number of batches.

The methods studied here deal with the calculation of confidence
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intervals for means. However, simulation should not be limited only to the use 

of sample means. As a matter of fact, the literature shows that some research 

has been done on the calculation of confidence intervals for percentiles and 

proportions. It seems from the results obtained in these studies that, as long 

as the sample size is large enough so that asymptotic normal theory can be 

used, a proportion statistic is widely applicable and easy to use (See Mamrak 

and Amer, (1980)). A topic of further research is to extend our results (and 

this is valid not only for this chapter but also for the previous chapters) to the 

use of proportions; considering that we have shown for example the advantages 

of the use of D.S. over R.S. for the estimation of mean parameters, its use 

should also give good results when applied to more general simulations.

Another topic of further research concerning the area of confidence 

intervals is that of the calculation of confidence intervals for the variance 

parameter. New methods are proposed in the literature, where "the new point 

and interval estimators for the variance parameter are compared to the 

classical batch estimator. The results show that the new estimators have 

asymptotic properties, that clearly dominate the classical estimator." (Chen, 

1990).
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CHAFFER 6 : ALTERNATIVE METHODS OF EVALUATING 

STEADY STATE PARAMETERS

6.1. INTRODUCTION

One of the problems, identified in Chapter 4, with the existing methods 

for dealing with the initialisation bias problem is that they require the setting 

of parameters that may be model and parameter dependent. We confirmed 

this point in Chapter 5 by applying the batch means method to complex 

simulation models. Even in the procedure proposed in Chapter 4 for the 

estimation of a run-in-period there may be some problems when the 

parameters for which a run-in-period is to be estimated have a large variance. 

To avoid the problem of setting or even of estimating parameters (like the run- 

in-period in our method) we propose in this chapter a new method to deal with 

the initialisation bias problem. Its main characteristic is the easy and simple 

way in which it deals with the initialisation bias problem, when the method of 

replications is used for the estimation of steady state parameters. In contrast 

with the methods discussed in Chapter 4, it does not delete any of the initial 

observations, it does not need the estimation of any value(s) and it only 

requires a small modification to the simulation software.

Snell and Schruben, (1979, 1985) report some theoretical results based 

on the use of different weights of the observations obtained using a simple 

autoregressive model for the simulated series (instead of the replications 

method which is used in this chapter). The objective of their study is to 

analyse the effect of different weighting schemes based on regression 

techniques. They consider that deleting some of the initial observations is just 

a special case of observation weighting. This is a theoretical study and as they 

add, "topics of further study include extension of these results to more complex 

systems than an AR(1) process, as well as robustness studies of applying these 

estimators to non-AR(l) processes to see how they fare." (Snell and Schruben, 

1985). However, to our knowledge, the method has not been extended for its
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use on more typical simulation models.

6.1.1. CHAPTER OBJECTIVES

We know that the initialisation bias problem is due to the fact that the 

initial observations recorded in a simulation are usually not representative of 

the steady state conditions. Although the usual way of dealing with the 

problem is by deleting some of the initial observations we asked ourselves if 

this deletion was necessary. The second obvious question was, is it necessary 

for these initial observations to have the same influence than those obtained 

for longer simulation run lengths and that are more representative of the 

steady state values ? We want in this chapter to give an answer to these 

questions and to do this we will use the well known concept in forecasting 

techniques of weighted averages. Based on this technique, we want to show 

that it can be easily modified in order to use it in simulation, and that the 

mean estimates thus obtained will reach the steady state for shorter simulation 

run lengths than they would if no attempt is made for dealing with the 

initialisation bias problem.

Although the method is so simple that it may look obvious, to our 

knowledge, when the method of replications is used, nobody has suggested it 

as a way of dealing with the problem of the initialisation bias. As discussed 

above, the experiment of Snell and Schruben is of a theoretical nature, it uses 

an autoregressive representation of the data (see Section 5.4.) and no results 

are given when it is applied to simulation models, especially to complex models 

using the replications method for the estimation of the steady state parameters.

6.1.2. CHAPTER OUTLINE

In Section 6.2 we describe the new method which is based on the 

concept of weighted averages. Section 6.3 discusses the empirical results used 

to check the performance of the new proposed method. A further check of the 

new proposed method is carried out in Section 6.4. using some of the systems
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discussed in Chapter 4 and for which an analytical answer can be calculated.

62. USE OF WEIGHTED AVERAGES TO EVALUATE STEADY

STATE PARAMETERS.

In Section 6.2.1. we explain the concept of weighted averages. In 

Section 6.2.2. we discuss how to use this concept to evaluate simulation steady 

state parameters and how its use helps to diminish the influence of the initial 

conditions.

6.2.1. WEIGHTED AVERAGES

"Weighted Averages are useful when the data you are examining are not 

equally important. You can modify the degree of importance by assigning 

weighting factors to each value. The weighted average is calculated by 

multiplying each data value by the appropriate weighting factor, and dividing 

the total by the sum of the weighting factors. When the weighting factors do 

not sum one (sic), each weighting factor is multiplied by the appropriate 

constant to force the sum to equal one." (1989, STATGRAPHICS, Version 4.0)

62 2 . WEIGHTED AVERAGES IN STEADY STATE SIMULATION

By using the concept of weighted averages it is possible to eliminate, or 

at least greatly reduce, the influence of the initial conditions when we want to 

estimate a steady state parameter in simulation.

When we obtain an estimate Xj in replication j, this estimate is 

calculated as the average of N individual observations. To explain this in more 

detail let us assume that Xj is an estimate of the mean queuing time of queue 

Q. To obtain this estimate we run the simulation for a period of time R. 

Every time that we remove a unit from the queue Q, we record the queuing 

time, Tj, (i= l, 2...N) which is the time spent by unit i  in Q. In this way we 

obtain N different observations. The queuing time estimate in the jth.
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replication, X i s  calculated by Equation 6.1.

N

E  Ti (6 .1)

N

But when we start the simulation, the initial conditions (i.e., queue 

length of the different queues when are simulating a queuing network) are not 

representative of the steady state values. This means that some of the first 

values Tj that we have recorded are quite different from the steady state 

queuing time and therefore, the value of Xj may greatly differ from the steady 

state value.

The basic idea behind the WEIGHTED AVERAGES method is then 

to assign a smaller weight to these initial values so as to minimise their 

influence on the estimate Xj. By doing this the influence of the initial 

conditions is minimised without increasing too much the standard deviation of 

the steady state estimate X, which is obtained as the average of the mean 

estimates Xj. In practice, when we use weighted averages, the estimate Xj 

obtained in replication j  is calculated from the simulation as the weighted 

average of Tj observations (j= l, 2...k) as given by equation (6.2) and where Ta 

is the first observation that is recorded, T2 the second and so on.

In Equation 6.2. Wj is the weight assigned to observation j. In order to 

eliminate the influence of the initial conditions, wx < w2 < w3 ...< wk.

One of the characteristics of this method is that the exact value of the 

weights is not extremely crucial. In other words, in some experiments we used:

while in others we chose exponential values for the weights as shown in 

Equation 6.4.

(6.2)

i=l

(6.3)
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wf = (1 -  e"*2**) (6.4.)

with k2=0.0001, and also smaller or larger values. Experiments using 

different values for k2 were made and this value is not critical in the 

performance of the new method.

63. EMPIRICAL RESULTS.

In this section we discuss the results obtained with the method explained 

in Section 6.2. The simulation models for the experiments and the type of 

results obtained are described in Section 6.3.1. In Section 6.3.2. (and in 

Appendix I) we analyse the results for each one of the different simulation 

models used to test the method proposed in this chapter.

In Section 4.5. we discussed the measures of performance used to 

compare the behaviour of the run-in-period estimated with the method 

proposed in Chapter 4 to that of other nm-in-periods. Similar measures can 

be used to define an "acceptable" or "good" performance of the method of the 

weighted averages as compared to the standard method for the elimination of 

the influence of the initial conditions.

NOTE : The method usually used in simulation where each individual 

observation is assigned the same weight will be called "standard" throughout 

the rest of the chapter.

In this context we consider a procedure to be "good" if the mean 

estimates reach the steady state for shorter simulation run lengths as compared 

to the standard procedure. We also look for mean estimates closer to the 

steady state value, which means that the difference in absolute value between 

the mean estimates obtained with the new procedure and the real steady state 

value fi, is smaller than the same difference for the estimates obtained with the 

standard method.
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63.1. DESCRIPTION OF THE EXPERIMENTS

In order to test the new procedure proposed in this chapter we have 

used some of the simulation models used in the previous chapters. We analyse 

in Section 6.3.2. results obtained for the mean queuing time of some of the 

queues of the PUB model. In Section 6.4. we apply the method to the M/M/1 

queue. Results for other simulation models for which no analytical answer 

exists, as well as for the M/M/4 and the Jackson’s system described in Chapter 

4, are given in Appendix I.

In some cases we compare the performance of the weighted averages 

method where no initial observations are deleted with the performance of the 

system when we use a run-in-period. The run-in-period used in these 

experiments has been evaluated following the procedure proposed in Chapter 

4 which as was shown gives good results in most cases.

Our objective is to establish that the influence of the initial conditions 

is greatly reduced when using the method described in Section 6.2, and that 

therefore not only should the mean estimates for short simulation run lengths 

be close to the steady state value, but this state should be reached for shorter 

simulation run lengths than if all the observations have the same weight or if 

some of them are deleted. To check that the method of weighted averages 

meets these two conditions, tables with the mean estimates as a function of the 

simulation run length are given and as in Chapter 4 we compare them to the 

steady state value which has been approximated in an empirical way in 

Appendix C. For the simulation models used in this research we have 

considered that mean estimate values falling within a value e=2.5% are 

sufficiently close to the steady state value and that a smaller value of e will not 

make an important difference in practice.

6 3 3 . ANALYSIS OF THE RESULTS FOR THE PUB MODEL

In this simulation model results for three queues were obtained: WAIT, 

CLEAN and IDLE. Tables 6.1., 6.2. and 6.3. give the mean queuing time
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estimates for the CLEAN, IDLE and WAIT queues respectively and for three 

different methods: the standard, the weighted averages, and the Run-In-Period 

method. In these tables we have underlined the values of the mean estimates 

for which the parameter can be considered to be in the steady 

state.

The steady state values obtained in Appendix C, as well as the range of 

values for which each parameter can be considered to be in the steady state 

are the following:

Queue Steady state Range

CLEAN 209.400 [204.160 , 214.630]

WAIT 1.141 [1.112 , 1.169]

IDLE 2.001 [1.950 , 2.050]

From the underlined values in the tables we can notice that for all the 

three queues the mean estimates when the new proposed method in this 

chapter is used will reach the steady state for shorter simulation run lengths 

than when the standard method is used: for the CLEAN queuing time the 

parameter can be considered to be in the steady state for a simulation run 

length of 500 when the weighted averages method is used, while with the 

"Standard" method a simulation run length of at least 3000 is required.

For the WAIT queue a simulation run length of 1000 minutes is 

required for the weighted averages estimates to reach the steady state while 

at least a run length of 7500 minutes is required when the "Standard" method 

is used.

For the IDLE queue the difference between the simulation run lengths 

required for the parameter to reach the steady state is similar: a simulation 

run length of 1000 minutes is required for the parameter to reach the steady 

state if the weighted averages are used, while a simulation run length of at 

least 7000 minutes is required if the "Standard" method is used.
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CLEAN Mean Queuing lim e Estimates

Run Length "Standard" "Weighted" Run-In-Period

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

500 182.299 39.137 211.882 52.420

1000 195.886 39.217 208311 50.759 212.953 61.036

1500 200.825 36.219 209.468 43.696 212.297 47.165

2000 203.170 32.180 209.676 38370 211.914 39320

2500 203.921 29.802 208.619 36.744 210.660 34.747

3000 205.451 27.589 209.925 32.418 211.106 31.794

3500 205.709 25.421 209.232 29311 210.464 28326

4000 206.445 24.195 209343 28394 210.631 26.816

4500 207.558 22.950 211.229 26.740 211377 25.212

5000 208.478 21.523 212387 24387 211.961 23.277

5500 208.760 20397 212.149 23.626 211.911 21.993

6000 208.867 19360 211329 24.046 211.744 20.166

6500 208.954 18.828 211.604 22332 211.636 20.166

7000 208.700 18.042 210.711 21.176 211.115 19.074

7500 208.681 17.618 210.450 20.886 210.937 18363

8000 208.443 17.022 209.833 20.253 210353 17.797

8500 208.461 16.207 209.726 19.291 210.441 16.863

9000 208.755 15.723 210.113 18358 210.614 16.276

9500 208.794 15354 210.087 18.616 210358 16.058

10000 208.920 15.329 210.196 18.310 210399 15.800

10500 208.689 15.049 209393 17.815 210.258 15331

Table 6.1. CLEAN mean queuing time estimates as a function of the 

simulation run length and of the method of dealing with the initialisation bias 

problem.
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IDLE Mean Queuing lim e Estimates

Run Length "Standard" "Weighted" Run-In-Period

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

500 2.807 1.557 2.247 1.631 2.465 1323

1000 2.315 1.035 2.013 1.149 2.149 1.033

1500 2.218 0.829 2.040 0.884 2.108 0.828

2000 2.151 0.700 2.017 0.796 2.068 0.701

2500 2.120 0.627 2.020 0.740 2.055 0.628

3000 2.105 0.572 2.025 0.646 2.050 0372

3500 2.080 0.522 2.004 0.590 2.033 0321

4000 2.076 0.494 2.019 0363 2.035 0.493

4500 2.074 0.463 2.028 0519 2.038 0.462

5000 2.072 0.436 2.034 0.488 2.039 0.435

5500 2.067 0.407 2.032 0.463 2.037 0.406

6000 2.059 0.391 2.024 0.462 2.031 0.391

6500 2.052 0.373 2.020 0.442 2.027 0.373

7000 2.045 0.359 2.012 0.430 2.022 0.358

7500 2.048 0.350 2.022 0.418 2.026 0349

8000 2.045 0.333 2.021 0391 2.025 0333

8500 2.046 0.321 2.025 0.375 2.026 0.321

9000 2.039 0.311 2.015 0.359 2.021 0.311

9500 2.037 0.310 2.013 0.365 2.019 0310

10000 2.033 0.303 2.009 0359 2.017 0302

10500 2.026 0.293 1.997 0346 2.010 0.293

11000 2.026 0.283 2.001 0.334 2.011 0.282

11500 2.026 0.274 2.004 0325 2.012 0.273

12000 2.021 0.267 1.995 0317 2.007 0.266

12500 2.018 0.264 1.993 0316 2.005 0.263

13000 2.021 0.261 2.000 0313 2.008 0.260

13500 2.021 0.254 2.002 0.306 2.009 0.253

14000 2.020 0.251 2.002 0.302 2.008 0.251

14500 2.021 0.250 2.006 0305 2.010 0.250

15000 2.020 0.247 2.005 0302 2.009 0.247

Table 62. IDLE mean queuing time estimates as a function of the 

simulation run length and of the method of dealing with the initialisation bias 

problem.
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WAIT Mean Queuing Time Estimates

Run Length "Standard" "Weighted" Run-In-Period

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

500 0.894 0.632 0.982 0.797 0.947 0.716

1000 1.018 0.778 1.112 1.057 1.052 0.847

1500 1.059 0.806 1.121 1.009 1.083 0.855

2000 1.095 0.826 1.151 1.052 1.114 0.862

2500 1.110 0.786 1.150 0.949 1.124 0.816

3000 1.109 0.730 1.134 0.808 1.123 0.754

3500 1.115 0.671 1.137 0.710 1.127 0.690

4000 1.103 0.602 1.113 0.580 1.114 0.617

4500 1.105 0.553 1.112 0.542 1.114 0.565

5000 1.108 0.524 1.114 0.525 1.117 0.534

5500 1.106 0.492 1.110 0.493 1.113 0.502

6000 1.108 0.474 1.111 0.498 1.115 0.482

6500 1.106 0.456 1.113 0.492 1.112 0.464

7000 1.110 0.443 1.118 0.492 1.116 0.450

7500 1.123 0.446 1.144 0.554 1.129 0.453

8000 1.128 0.452 1.150 0.584 1.134 0.458

8500 1.128 0.437 1.146 0.550 1.133 0.442

9000 1.126 0.421 1.140 0.513 1.131 0.426

9500 1.124 0.403 1.134 0.477 1.129 0.407

10000 1.125 0.397 1.134 0.482 1.129 0.401

10500 1.126 0.389 1.136 0.470 1.130 0.393

Table 63. WAIT mean queuing time estimates as a function of the 

simulation run length and of the method of dealing with the initialisation bias 

problem.
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In some cases (see tables above and results for the STEELWORKS and 

the LAUNDERETTE models in Appendix I) the standard deviation of the 

sample mean when the system is already in the steady state is slightly larger 

when weighted averages are used than when some of the initial observations 

are deleted (run-in-period) or when equal weights are assigned to each one of 

the observations (no run-in-period). Nevertheless this slightly larger value of 

the standard deviation when the weighted averages is used is more than 

compensated by the easiness of the new proposed method and by the fact that 

no values (like for example the run-in-period) need to be estimated. When a 

run-in-period is used, this value itself and, in some methods, (see Chapter 4) 

some parameters, need to be estimated. From the computational and practical 

point of view the new method is easier to implement and to use. In order to 

use it we need only to modify some lines in the simulation software. These are 

the lines where the individual observations are recorded during a simulation 

run in order to average them at the end of the simulated time. Appendix J 

gives the PASCAL implementation of the standard method and of the 

modifications that are required to the software in order to use this new 

method.

6.4. WEIGHTED AVERAGES METHOD APPLIED TO A  SYSTEM

WITH KNOWN ANALYTICAL ANSWER.

In this section we apply the method proposed in this chapter to the 

M/M/1 model discussed in Chapters 3 and 4. In Appendix I we give results 

for the M/M/4 and the Jackson’s model also discussed in Chapter 4.

Estimates of the mean queuing time and of the mean queue length of 

the M/M/1 queue with t  = XIil = 10/15 are given in Table 6.5. as a function 

of the simulation run length for the "Standard" method as well as for the new 

proposed method of weighted averages

The steady state mean queuing time is 20, and we consider that the 

system is in steady state if the mean estimates fall within 2.5% of this value,

i.e., if they fall in the range [19.50 , 20.5]. Similarly, the steady state mean
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queue length is 4/3 and the range of values for which we consider that the 

system is in steady state is [1.300 , 1.366]. As in the previous tables, we have 

underlined those values for which the parameter can be considered to be in 

the steady state.

M /M /l Mean Queuing Time estimates Mean Queue Length estimates

Run Length "Standard" "Weighted" "Standard" "Weighted"

500 14.876 16.732 1.085 1.300

1000 17.686 19.066 1.249 1.395

1500 18.335 19.197 1.279 1.373

2000 18.576 19.066 1.281 1.340

2500 18.866 19.295 1292 1.342

3000 19.047 19.401 1.297 1337

3500 19.085 19.322 1297 1329

4000 19.202 19.435 1.301 1331

4500 19.350 19.623 1309 1341

5000 19.318 19.523 1304 1326

5500 19.428 19.630 1310 1.333

6000 19.459 19.636 1311 1333

6500 19.580 19.820 1316 1341

7000 19.564 19.736 1315 1336

7500 19.624 19.820 1.318 1339

8000 19.605 19.743 1315 1332

8500 19.607 19.726 1315 1330

9000 19.676 19.842 1.319 1337

Table 6.6. Mean queuing time and mean queue length estimates for the 

M/M/1 queue as a function of the simulation run length.

From these values we notice that when the weighted averages method 

is used, the mean queuing time parameter reaches the steady state for a 

simulation run length of 4500, while a simulation run length of 6500 at least, 

is required for the parameter to reach the steady state when the standard

171



method is used. The results are similar for the mean queue length: when the 

weighted averages is used, the parameter reaches the steady state for a 

simulation run length of 2000. When the standard method is used we need a 

simulation run length of 4000 units of time.

6.5. CONCLUSIONS

The method of weighted averages proposed in this chapter to evaluate 

steady state parameters is easy to implement as it does not require the 

estimation of any value on the part of the simulation practitioner.

We have checked that the method performs well by comparing the mean 

estimates to the steady state values of the different simulation models used to 

test the procedure. We expect, as discussed in Chapter 4, and also in Section

6.3. that the steady state will be reached for shorter simulation run lengths 

than if the standard procedure is used. The steady state values have been 

obtained from empirical results as reported in Appendix C. From the 

comparison with these values we notice that the weighted averages mean 

estimates reach the steady state for shorter simulation run lengths than the 

standard mean estimates. The experiments of this chapter (see Appendix I as 

well for other examples) show that in all cases, except when the approach to 

the steady state is oscillatory, the mean estimates obtained with the proposed 

method will reach the steady state for shorter simulation run lengths than if 

the standard method is used. There are two possible problems with the 

weighted averages method:

1. There is an increase in the value of the standard deviation as 

compared to the standard deviation when a run-in-period is used. However, 

considering that if a run-in-period is used some time has to be spent in 

estimating its value, we can use this time, that is saved when using the method 

proposed in this chapter, and increase the simulation run length and the 

number of replications. This will reduce the standard deviation.

2. Sometimes modification to the simulation software is not possible or 

they are not easy to carry out. In this case, the only possible solution is to
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estimate the run-in-period with the method proposed in Chapter 4 (or any 

other method, but as we showed, our method is easy and simple to apply and 

works well for different types of models).
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CHAPTER 7 : CONCLUSIONS

7.1. SUMMARY

We have dealt in this thesis with some common problems in simulation 

for which there is still no satisfactory answer.

In Chapter 2 we set the appropriate scenario required for the discussion 

that followed. Considering that one of the main aspects of the research 

reported in this thesis is that it is mainly empirical, we also pointed out in 

Chapter 2 some important points that the simulation practitioner should 

consider both before and after running the simulation. The discussion on 

possible critical queues gives some guidelines to help the practitioner on the 

identification of the queues that may never reach a steady state, and also of 

those queues that may require a long simulation run length to reach the steady 

state.

In Chapter 3 we addressed a question for which there is no satisfactory 

answer: that of the number of replications to be used in a simulation. We 

showed how, when the number of replications is small, the random number 

streams can influence the mean estimates obtained from the simulation. We 

also showed in an empirical way, that the number of replications has some 

influence on the estimation of the simulated time for which the curve of the 

mean estimates becomes horizontal. An increase in this number makes it 

easier to identify this point in time. Obviously, due to the transient period, the 

simulation run length required for a parameter to reach the steady state will 

never become zero; therefore, there exists a number k of replications such that 

taking more replications will not make a significant difference in the values of 

the estimates and in the simulation run length required to reach the steady 

state. In Chapter 3 we gave a simple method that can be used for the 

estimation of this value k  of replications to be used in the simulation of a 

particular parameter.

In Chapters 4 and 6  we dealt with the problem of the initialisation bias.
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In Chapter 4 we suggest a method that can be used for the estimation of a run- 

in-period. The observations recorded during this period are then discarded, 

and only observations for simulation run lengths longer than the run-in-period 

are used for the estimation of the parameter of interest. We showed how the 

proposed method is simple and easy to understand, and to use. It is not time- 

consuming and at the same time it does not require any additional 

programming or complex modifications to the existing simulation software. In 

Chapter 6  we introduce a new method for dealing with the initialisation bias 

problem. It is new in the sense that it does not delete or discard any of the 

observations obtained from the simulations but assigns different "weights” to 

these observations. In this way by assigning smaller weights to those 

observations recorded for short simulation run lengths and that are not 

significant of the steady state values we are reducing their influence on the 

mean estimate obtained from the simulation.

In Chapter 5 we discussed the batch means method as a way of 

estimating steady state parameters. The batch means method as an alternative 

method for the estimation of steady state parameters works better when 

DESCRIPTIVE SAMPLING (D.S.) is used. It was also shown that some of 

the proposed procedures for the use of the batch means method do not work 

well in practice. For example, we showed that the number of batches does not 

make a practical difference in the value of the mean estimate or in the width 

of the c.i. At the same time, as the c.i. relative precision is shorter when D.S. 

is used we will require a shorter simulation run length to obtain an accurate 

estimate if we use D.S. than if we use R.S. The reason why some of the 

procedures proposed in the literature to be used with the batch means method 

do not work well in practice is that they have not been tested for complex 

simulation models.

12. CONCLUSIONS

We may summarise the main general contributions of this thesis to the 

area of simulation as follows:
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1. We show that there is not always the need in simulation for complex, 

sophisticated, and time consuming procedures. Some problems can be dealt 

with simple to use and easy to understand procedures. If we compare the 

methods proposed in this thesis with those that have been proposed in the 

literature, especially those supported by a mathematical theory, ours are 

simple and do not require special modifications to the simulation software. 

This is important because until a method is found to be so useful that it will 

be incorporated in all the simulation software packages, or at least in most of 

them, modifications to the software require time and even programming 

experience. It is true that the proposed methods do not provide the "optimal" 

answer but, on the other hand, it is not known if a given problem has an 

optimal answer and at times it is not even worth to look for an "optimal" 

answer if the one that already exists is sufficiently good.

2. Proposed procedures and techniques in simulation should be tested 

on complex models. The use of simple systems, for which an analytical answer 

exists, may give misleading results. The reason for this is the lack of 

interaction among elements of the simulation, interaction that exists in 

complex models. This point is proved specifically for the batch means method 

where the suggested stopping criterion is related to the confidence interval 

half-width. Unfortunately this value is not only model but parameter 

dependent.

In a more detailed level, the following are the main contribution of this 

thesis to the area of simulation:

1. We have identified some aspects concerning the influence of the 

number of replications on the mean estimates obtained from the simulation 

that to our knowledge have not been mentioned in the literature before. 

Therefore, we have been able to formulate a simple method for the estimation 

of the number of replications to be used in the simulation of a particular 

parameter.

2. Most of the methods proposed in the literature in the 1980’s have a 

strong mathematical support, and therefore, they are either too complex to use 

or they require complex programming in order to use them. However, the
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problem of the initialisation bias is only a small part of the simulation. It can 

be avoided by simply increasing sufficiently the simulation run length. For this 

reason the time spent in dealing with the initialisation bias problem should be 

only a small fraction of the total amount of time spent in the solution of the 

problem of interest. Therefore, if a method is going to be useful it should not 

be complex, and time consuming and it should not require, if possible many 

additional calculations. The two methods proposed in this thesis (Chapters 4 

and 6 ) meet these requirements. At the same time we have showed that they 

work well with different types of models and this proves their generality.

3. We have extended the applications of the new sampling method 

called Descriptive Sampling (D.S.), and we have shown that it performs 

particularly well when used in the batch means method. At the same time we 

have shown why we should avoid, if possible, having to set parameters in order 

to use a particular procedure, like for example using the confidence interval 

relative precision as a stopping criterion in sequential simulations. Because 

D.S. gives mean estimates with smaller standard deviation, the confidence 

interval relative precision will lie in smaller ranges than those when random 

sampling (R.S.) is used.

If we are going to summarise in a few lines the important points of this 

thesis we can say that it is an innovative thesis in the area of simulation. By 

this we mean that the empirical approach that we have followed is one rarely 

used in this area. But, as we have showed with several examples for both 

simple and complex simulation models, it gives good results as it helps the 

researcher in the identification of facts that are common to different types of 

models. In this way we have been able to propose procedures that do not 

require great modifications of the existing simulation software. We are not 

claiming that it is possible to find simple and easy to use procedures to deal 

with all the problems of simulation, but that this empirical approach can help 

sometimes.
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73. FUTURE RESEARCH

As Whitt (1989b) says," Simulation experiments are like exploring trips. 

We usually have goals, but the interesting discoveries often come from the 

unexpected." This means that after the research reported in this thesis several 

questions remain to be answered. As in most research, each question that we 

answer brings out several related questions: What if ? , Can this alternative 

method be used ? , Can we set the initial conditions in a different way ? etc. 

We describe in the rest of this chapter the main points that we think deserve 

further research.

73.1. USE IN VERY COMPLEX SIMULATION MODELS

The different procedures proposed and extended in this research were 

evaluated not only for simple systems with known analytical answer but also 

for more typical simulation models. However, even if the simulation models 

used do not have a known analytical answer, they are still more academic than 

real-life problems. Therefore, an area of future research is the evaluation of 

these new procedures with real-life simulation models, hopefully for which 

some practical data exists. Nevertheless this does not mean that the models 

here employed are all similar and simple. As a matter of fact, the models used 

in the research are of a different nature. Some of them are "closed" (i.e., 

STEELWORKS), while others are "open". In some of them the steady state 

is reached in an oscillatory way (i.e., MILITARY) while in others this 

approach is monotonic. In some of them there is "Feedback" to one of the 

queues which in practical systems may lead to instability and a common thing 

in these models, as opposed to the more commonly used simple systems by the 

simulation theoreticians, is that there are many interactions amongst the 

entities of the system and that at the same time there is random sampling from 

more than two distributions.
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7 3 2 . DIFFERENT PARAMETERS

This thesis proposes different methods and procedures. All of them 

were checked for several simulation models but using only two simulation 

parameters: queuing time and queue length. The next step of this research 

should be the extension of all these procedures to other parameters: entity 

utilization factor, total time in the system, etc.

The simulation models used to obtain the empirical results reported in 

this thesis are all of the queuing networks type. Therefore, further research 

should be done on the generalisation of the different proposed procedures to 

other types of simulation approaches.

73 3 . IMPLEMENTATION OF DESCRIPTIVE SAMPLING

It is clearly shown, as said in Section 7.2, that D.S. performs better than 

R.S. when the batch means method is used for the estimation of steady state 

parameters. Therefore, the next step in the research related with this topic 

should be the implementation of D.S. in different types of simulation software. 

This has already been done for the simulation system VS6 , used in this 

research (See Saliby and Paul, 1992). However, it would be interesting to 

extend this implementation to some of the other popular simulation languages, 

like SIMSCRIPT II.5, GPSS, etc.

73.4. SOFTWARE IMPLEMENTATION

For the methods proposed here to be of some use the existing 

simulation packages should be easily modified to include them. Some work 

has been done (not reported in this thesis), modifying the VS6  simulation 

software to automate it. In that way, terminating simulation can be run until 

some c.i. relative precision is obtained, and for steady state simulations, in a 

completely automatic way, it has been possible to estimate steady state 

parameters using either a run-in-period or weighted averages for dealing with
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the initialisation bias problem. Estimation of the run-in-period does not 

require a spreadsheet, as Pascal (and some other high-level languages as well) 

has excellent graphics management. However, further research on the 

interface of this modification to VS6  is necessary since the package is meant 

to be used by people with no special knowledge on the topic.

1 3 5 .  ALTERNATIVE STATISTICS: BAYESIAN AND NON-

PARAMETRIC

In general we found that in terminating simulations the individual 

observations will very likely contain several outliers. How serious this problem 

is depends on the system itself. But in these cases, the use of the sample mean 

has been seriously questioned. Alternative estimates should be considered, 

like the MEDIAN for example. It should also be interesting to do more 

research in the use of non-parametric statistics in these cases (Efron, 1981; 

Fraser, 1957; Withers, 1983). The reason for this is that they do not require 

the classical assumptions (especially that of normality) to be met in order to 

be valid. Further research would also be useful in the area of trimmed means. 

In the case of trimmed means we simply delete the more extreme observations 

and because of the likely presence of outliers in the output of terminating 

simulation this alternative method of analysis should be further studied. 

Nevertheless this requires a careful and detailed study as in recent research we 

found that sometimes what would be called outliers from an statistical point 

of view, are not so. Without these values the standard deviation and the mean 

estimates will be biased.

Another possible alternative to the classical statistical methods for the 

analysis of simulation output is the use of Bayesian Methodology. Some 

research has been reported in this area (Andrews and Schriber, 1983), but it 

still requires more research.
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73.6. SIMULATION RUN LENGTH

One of the questions that requires more investigation is on how long the 

simulation run length should be if we want to estimate a steady state 

parameter. That was not taken into account in this research and the system 

was considered to be in the steady state when the mean values seem to 

converge to a specific value. Usually this detection has been done with the 

help of a line graph. Although this problem is addressed by Whitt (1989a), he 

applies his method to simple queuing models where the arrival rate to each 

queue is known. Whitt’s approach would not be useful for more complicated 

systems where the arrival rate depends on the interaction of different entities 

and their "fight" for limited resources. A  more promising approach to the 

problem of how long should the simulation be was proposed by Duersch and 

Schruben, (1985) using standardised time series. However, as with most 

procedures results are reported for some simple simulation models: M/M/1 

queue, an (s,S) inventory cost model, and a uniform random number model.

73.7. PROBLEM OF INITIALISATION BIAS: ALTERNATIVES.

In the problem of the initialisation bias several other alternatives can 

be considered like the use of initial conditions more similar to those of the 

steady state. Some research not reported in this thesis was done in this respect 

and it seems apparently that with a single replication it is possible to define 

the range where the steady state values lie and therefore this information can 

be used to set initial conditions more similar to those in the steady state. In 

this respect, Kelton and Law (1985) report that "the optimal state for 

initialization tends to be larger than the mean (which in turn exceeds the 

mode), so that a rough rule of thumb might be to obtain an a priori estimate 

of the mean number in the system, and then initialize with at least that level 

of congestion. While such a rule certainly does not guarantee optimal 

initialization, it should prove better than empty and idle for many models."

When using the batch means method it has been suggested in the
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literature that some initial observations should be deleted in order to eliminate 

the initialisation bias problem. However, no method is suggested in this 

respect. Some experiments not reported in this thesis were carried out, and 

apparently there is not a great improvement when some initial observations 

are deleted because the batch size should be large enough to avoid correlation 

and therefore, the batch mean for the first batch is not greatly influenced by 

the initial conditions. Nevertheless, some research is required in this respect. 

Because the batch size should be large enough for the batch means to be 

uncorrelated, it may not be necessary to delete any observations at all.

73.8. PROPORTIONS RATHER THAN MEAN ESTIMATES.

Although in this research only sample means were used, in Chapter 5 

it is pointed out that if it is possible to formulate the problem in terms of 

proportions they may give a more accurate and reliable estimate (an extensive 

discussion on ratio estimation is given in Fieller (1954) and Tin (1965)). This 

should be another point of future research, especially suited for the use of 

descriptive sampling.

73.9. OPTIMISATION

This is a field particularly suited for descriptive sampling because of the 

smaller variance of its estimates as most of the proposed procedures in the 

area of optimisation require small variance of the estimates. "Simulation is 

commonly used to find the best values for decision variables for problems 

which defy analytical solutions. This objective is similar to that of optimisation 

problems, and thus, mathematical programming techniques may be applied to 

simulation. However, the application of mathematical programming 

techniques to simulation is compounded by the random nature of simulation 

responses." (Safizadeh, 1990). Some research has been done in this area of 

optimisation and one of the most promising methods is based on Response 

Surface Methodology (Biles, 1975; Box and Draper, 1959; Brightman, 1978;
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Carrol, 1961; Cooley and Houck, 1982; Schruben and Cogliano, 1985; other 

references not mentioned here are given in the bibliography). When we are 

interested in single-response optimisation "the random nature of simulation 

observations makes the statistical properties of response surface designs 

appealing to simulation users" (Safizadeh, 1990) as long as a variance 

reduction technique can be adopted. Therefore, due to the great reduction in 

variance when using descriptive sampling the field of optimisation seems tailor- 

made for its use. A  good survey of the optimisation-by-simulation state of the 

art can be found in Safizadeh (1990) and Schruben and Jacobson (1989).

7.4. FINAL WORDS

The material included in this thesis seems incredible simple, especially 

if we compare it to procedures that have been proposed in the literature to 

deal with the same problems. Nevertheless, "we cannot propose complex 

solutions where simple ones would be adequate. Doing this would ruin the 

reputation of science, and rightly so. We would not be much better than the 

car repairman who rebuilds the engine when a tune-up would do. Moreover, 

many simple ideas are the result of extensive research, often including many 

wrong starts and detours. What seems to be simple in the end is often the 

product of hard work. There may be the occasional child who discovers that 

the emperor has no clothes, or similar facts of great importance, but these are 

exceptions rather than the rule. The art is to see where simple solutions are 

adequate. Moreover, even in cases where the underlying phenomena are quite 

complex, the essential results can often be extracted in such a way that 

everyone can use them. The discovery of the normal distribution, for instance, 

was definitely nontrivial. Yet, most first-year students have no problem 

working with it.

The world is complicated, but this does not mean that we have to make 

it even more complicated by rejecting simple solutions as trivial. To the 

contrary, we should strive for simplicity, and we should even try to explain 

complex relations in a simple way." (Grassman, 1986).
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APPENDIX A : ACTIVITY CYCLE DIAGRAMS

A l. INTRODUCTION

The use of simulation to analyse the behaviour of a system requires "the 

setting up of a model of the system under study, in which all relevant 

components are defined, and the way in which they change through time and 

affect each other are exactly defined." (Paul and Balmer, 1985). The type of 

model depends in some way on the type of software that will be used to carry 

out the simulation, as well as on the questions that the simulation is going to 

answer.

The elements of a system will interact through time and this interaction 

should be clearly and carefully described by the model that is used to define 

the system. However, most real-world systems are very complex and as a first 

approach, when describing the system in order to obtain a model, we should 

not try to show all the complexities of the system. In other words, in order to 

obtain a good model of the system it is necessary to understand its basic 

behaviour and, to begin with, we have to describe only those relevant parts of 

the system and how they interact with each other without explaining in detail 

each one of its complexities. This understanding can be obtained with the use 

of an ACTIVITY CYCLE DIAGRAM. Examples of real systems that have 

been modelled using this technique can be found in Chew et al, (1985); El 

Sheik et al, (1985); Williams et al, (1989); Holder and Gittins, (1989) among 

others.

ACTIVITY CYCLE DIAGRAMS are "one way of modelling the 

interactions of system objects and are particularly useful for a strong queuing 

structure." (Paul and Balmer, 1985). An Activity Cycle Diagram shows, in a 

graphical manner the way the different entities of the system interact with each 

other. Using an Activity Cycle Diagram we may describe the different states 

of a system. To draw an Activity Cycle Diagram we use two different symbols. 

A circle represents the periods of time when an entity is "IDLE" (dead state),
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or waiting to start an activity. In this case we say that the entity is in a queue. 

A rectangle represents an activity (active state). By using these two symbols 

it is possible to show the "life story of each class of entity” (Pidd, 1992) and 

to describe how the different classes of entities interact with each other. 

However, it is important to bear in mind that different types of entities will in 

general be engaged in different types of activities. If an Activity Cycle 

Diagram is going to represent this in a clear way, different "paths" or cycles 

should be drawn for different types of entities. This means that "each class of 

entity is considered to have a life cycle which consists of a series of states. 

The entities move from state to state as their life proceeds." (Pidd, 1992). For 

the sake of clarity of the diagram, the following restriction is imposed: in the 

life cycle of any entity, the dead and active states must always alternate. This 

means that when drawing an Activity Cycle Diagram there will always be a 

queue (if necessary, it will be a dummy queue) between two activities. This 

applies to each life cycle.

An Activity Cycle Diagram while very clear has many limitations as it 

does not represent in an exact way all the different characteristics of the real- 

world system. Nevertheless this is not a disadvantage. If the system that is 

being simulated is very complex, trying to deal with all the complexities of the 

system from the very beginning is a potential source of errors and the 

simulation practitioner will be easily confused and lost in what he is doing. On 

the other hand the Activity Cycle Diagram, by giving a somewhat simplified 

vision of the system, will reduce this possible source of errors.

Once an Activity Cycle Diagram has been drawn, it is very easy to 

obtain a simulation code for the model using a program generator such as VS6 . 

(Paul, (1988); Crookes et al, (1986); Paul and Chew, (1986); Balmer and Paul, 

(1986)). This particular program generator VS6  is used throughout this 

research.

A 2 . SOME EXAMPLES

This section describes some systems that can be modelled by an Activity
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Cycle Diagram (A.C.D.). These examples, as well as some additional systems 

that can also be described by an A.C.D. are used to obtain the empirical 

results that are analysed in this thesis.

AJ2.1. The PUB

This is a typical example used in simulation "since its background is 

implicitly understood by most readers." (Balmer and Paul, 1985). To explain 

how an Activity Cycle Diagram is drawn, we will start with an oversimplified 

version of a PUB. In this version there are just three entities: costumers, 

glasses, and barmaids. The customer WAITS until both a glass and a barmaid 

are available to POUR a drink for him and then, he DRINKS it. Similarly, the 

barmaid is either IDLE or POURING a drink. The glass is WAITING to be 

used (EMPTY), is POURED INTO, is FULL, or is DRUNK FROM. From 

this definition of the problem it is possible to identify the different life cycles 

for each class of entity. This is described in the following table:

ENTITY ACTIVE STATES DEAD STATES

Customer Drink Waits

Barmaid Pour Idle

Glass Drink From Empty
Pour into Full

As there are three different classes of entities, there should be three life 

cycles in the A.C.D. (Activity Cycle Diagram), which are shown in Figure 

A.1. Combining these three life cycles we obtain the A.C.D. shown in Figure 

A.2.

We have identified with this simple example the basic steps that should 

be followed in order to draw an A.C.D.; it is now possible to obtain the A.C.D. 

of a more realistic version of the PUB.
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DRINK FROM

BARMAID

Figure A .l. Cycles for the three different entities in a simple PUB 

simulation model.

P O U R

WATT

D RIN K

EMPTY

CU STOM ER
BARMAID
GLA SS

Figure A.2. A.C.D. of a basic simulation model for the PUB system.
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In this new version the customers do not "live" in the pub (notice in the 

above A.C.D. that the customers are always present in the system) but they 

ARRIVE in a random fashion. From statistical theory, this random arrival can 

be modelled using a negative exponential probability distribution. They WATT 

until a glass and a barmaid are available so that a drink can be POURED. 

However in real life some customers will have more drinks than others. To 

model this an ATTRIBUTE is assigned to each customer upon his arrival. 

This is modelled by sampling from the appropriate probability distribution. To 

identify it, unless some data is available, it may be necessary for the simulation 

practitioner to obtain data directly at the pub and to use goodness-of-fit tests 

to determine which probability distribution describes better the pattern of 

drinks of customers. (Several articles have been published concerning the 

problem of identifying a suitable input distribution or in other words, of 

modelling input processes in simulation experiments. Further information can 

be found in DeBrota et al, 1989; Avramidis and Wilson, 1989; DeBrota et al, 

1988; Cochran and Cheng, 1990.)

Once a customer has been served a drink, he will DRINK it. But this 

is the simulation of a real-world problem which means that, at least in theory, 

before a used and therefore dirty glass can be used again to be poured into, 

it should be washed. Only when the barmaid is not engaged pouring drinks 

can she WASH those glasses that are dirty. When the customer has finished 

his drink he will decide if he will have another drink; in simulation this is 

decided according to the value of the attribute that has been assigned to the 

customer upon his entrance to the pub. If he will have another drink he will 

WATT again for a barmaid and a glass to be available. Otherwise he will leave 

the pub.

From this description of the problem we show in Table A.1. the 

different states for each type of entity.

Figure A.3. shows the life cycles for each one of the three different 

classes of entities. Combining these independent life cycles we obtain the 

AC.D. shown in Figure A.4.
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ENTITY ACTIVE STATES DEAD STATES

Customer Arrive wait for drink
Drink ready to drink
Leave

Barmaid Pour drink Idle
Wash glass

Glass Pour Into Full
Drink From Dirty
Washed clean

Table A.1. States of each one of the three entities of the complete PUB

model.

O U T

ARRIVE

WAIT

PO U R

READY

DRINK

PO U R

IDLE

W ASH

CUSTOMER BARMAID

Dll

CLEAN

FULL

PO U R

DRINK

W ASH

C LA SS

Figure A.3. Cycles for the different entities of a complete model for the 

PUB system.
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A.C.D. of THE PUB
SHUT

OUTQ

WATT

READ

FULLIDLE

CLEAN

DIR

DOOR
CUSTOMER
GLASS
BARMAID

Figure A.4. ACD of a simple model for the PUB system.
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A2.2. The LAUNDERETTE Example

"Customers arrive in a launderette and queue for one of N1 washing 

machines (no capacity problems!). On completion of washing, the customer 

puts the washing into a basket (if one of the N2 baskets is available) and 

carries the washing to a drier. There are N3 driers." (Balmer and Paul, 1985) 

The AC.D is shown in Figure A 5.

192



A.C.D. of the LAUNDERETTE
— CUSTOMS*
_ .  DRIER 

BASKET

  DOOR
WASH. MACH.

SHUT

OUTQ

WASHQ

LOAD W
WIDLE

DQDIDLE DDQ

ADUNLOAD

LOADD

BDRYQDRYQ
TRPT

BIDLE

Figure A.5. A.C.D. of the LAUNDERETTE simulation model.
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A2.3. The STEELWORKS example.

This simulation problem deals with the operation of a steelworks. A  

layout of the proposed steelworks is illustrated in Figure A .6  and the A.C.D. 

is given in Figure A.7.

"The functional characteristics are as follows:

a. Blast Furnaces A "cast" is the amount of molten iron that the 

furnace melts in one go and is a stochastic variable as far as this simulation is 

concerned. The time a blast furnace takes to process the iron ore is also a 

stochastic variable.

b. Steel Furnaces

Each of the five steel furnaces takes exactly 100 tonnes of molten iron 

per charge. The time a steel furnace takes to process the iron ore is also a 

stochastic variable.

c. Crane

The crane travels along an overhead gantry and carries a ladle (a large 

spoon shaped vessel) which holds 100 tonnes of molten iron. The crane is 

filled at the pit from one torpedo at a time. The pit is 2-sided to avoid a delay 

if the crane requires more than one torpedo to load it. In the event that two 

torpedoes are insufficient to load the crane, the time taken to discharge the 

second torpedo can be considered sufficient for a third torpedo (if there is 

one) to take the place of the first, ready for unloading. Note: The pit’s 

function is to catch any spillage of molten iron. It does not hold molten iron.

d. Torpedoes

Each torpedo can hold up to 300 tonnes of molten iron. When a blast 

furnace has emptied its blast into the minimum number of torpedoes required 

(if available) all torpedoes with molten iron go to the pit (by railway track) 

This includes partially full torpedoes.

e. The problem

If a torpedo is not available to catch the molten iron when a blast 

furnace blows, the molten iron is dropped on the floor (otherwise the furnace 

would be ruined). (Balmer and Paul, 1985).
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STEELWORKS LAYOUT STEEL FURNACES

BLAST FURNACES

CRANE

TORPEDO

Figure A.6. STEELWORKS layout.
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ACD of the STEELWORKS

tblowq

pltq

cran

cready

loadq

- t o r p e d o

- STEEL-F.
-  PIT
-  BLAST-F.

MELT

BLOW

GOING

CRANE

Figure A.7. A.C.D. of the STEELWORKS simulation model.
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A.2.4. THE FISH PACKING Example

"Fillets arrive randomly with a mean arrival time of 5 minutes at a 

packing station where each one is weighed. The weight of the fish fillets are 

sampled from a normal distribution between 280 - 340 g and the weighing time 

is 2 minutes. After weighing, the fish fillet is packed into one of the available 

boxes that has sufficient capacity, otherwise it is recycled (boxes have a 

capacity of 4000 g). The packing time is normally distributed with a mean of 

5 minutes and a variance of 1 minute. When a box has reached a certain 

minimum capacity, such as 3700g, it is replaced by an empty box. A micro

computer is connected to the scales and instructs a man or mechanism about 

the allocation. Thus the computer knows at all times the current weights of 

the boxes. The problem is to devise a good algorithm which minimises the 

underweight of the boxes." (Chew, 1986). The AC.D. is shown in Figure A 8 .
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ACD of the FISH PACKING MODEL

SHUT

IDLE OUFQ
WAITQ

ALLQ

NFQ

QC

PACK
  FISH FILLET
  SCALE
 BOX
  DOOR

Figure A.8. A.G.D. of the PISH PACKING model.
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A3.J5. THE BRAZILIAN HOSPITAL Example

In this model there are four entity types: patient, doctor, receptionist 

and consultant as shown in Figure A.9.

"Patients arrive in the system every two minutes. They queue for the 

receptionist which takes 10  minutes for reception and then queue for the 

doctor which takes Negexp(2) for the consultation. Upon completion of 

consultation, 50 percent of the patients go to the outside queue; 30 percent of 

the patients go to the queue out as out-patients and queue for one of the 1 0  

consultants which take Normal(40,l) minutes. The remaining patients go to 

the entry queue for the hospital. The entry time to the hospital is Negexp(6 ) 

minutes and the patients stay in the hospital for Normal (72*60,24*60) minutes.

The doctor is idle unless engaged in consultation. The receptionist is 

idle unless engaged in reception, enter or outpatient. Activity outpatient has 

a higher priority than the other two activities. The consultant is idle unless 

engaged in doctor." (Chew, 1986)
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A.C.D. of the HOSPITAL
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Figure A.9. A.C.D. of the BRAZILIAN HOSPITAL model.
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A.2.6. THE MILITARY Example

In this military model, the entity types are day, crew, helicopter, target 

and door, as shown in Figure A.10.

"Targets arrive randomly with a mean arrival time of 20 minutes. They 

queue for one of the 3 helicopters and one of the 3 crews which take 

Normal(30,5) to intercept. If none of the helicopters or crews is available, the 

targets take 1 minute to be missed.

The helicopter is on the ground unless engaged in intercept. For the 

crews, they are idle unless engaged in sleep or intercept. Sleeping time is 8 

hours or 480 minutes. The days awake into the queue moon for the activity 

sleep. After sleeping, the days go to the queue sun and back to the activity 

awake. Awaking time is 16 hours or 960 minutes." (Chew, 1986).
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Figure A.10. A.C.D. of the MILITARY model.
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A2.1. JACKSON’S MODEL

This problem has been taken from Winston (1987). For the sake of 

clarity it is described again in this section. Figure A l l .  gives the 

corresponding AC.D.

"The last two things that are done to a car before its manufacture is 

complete are installing the engine and putting on the tires. An average of 60 

cars per hour arrive, and there is only one worker for the installation of the 

engine; he can serve an average of 54 cars per hour. There are three available 

workers for putting on the tyres, and each one can serve 162 cars per hour."
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Figure A.11. A.C.D. of the Jackson’s model.

204



APPENDIX B : ADDITIONAL EXAMPLES FOR CHAPTER 2

B .l. INTRODUCnON

Chapter 2 expands some of the ideas discussed very briefly in Chapter 

1 and creates the scenario that is required for the reader to easily grasp the 

ideas and concepts of the following chapters.

Because we want to show in this thesis that a successful use of

simulation does not require expensive to run and difficult to understand

methods we discussed in Chapter 2 some problems which the simulation 

practitioner should deal with before the simulation is run. Among these 

problems we have that of identifying beforehand if the steady state for a 

particular system exists or not; if it does, it is important to carry out a further 

analysis previous to the simulation in order to identify possible "CRITICAL 

QUEUES" that may require a long simulation run length to reach the steady 

state. Some guidelines are proposed in Chapter 2 and in this appendix to help 

the practitioner in this identification. As was discussed in Chapter 2, the 

problem of critical queues is directly related to the values of the traffic 

intensity, t = A/(s/z); when this value is greater than 1 there is no steady state, 

and the closer this value is to 1 the longer it takes for some of the queues in 

the system to reach the steady state. We will identify some possible reasons 

for this value to be greater than or very close to 1, and we will illustrate the 

theoretical reasoning with some simulation results.

B2. CRITICAL QUEUES: POSSIBLE REASONS FOR A/sft >  1.

One of the reasons for the traffic intensity to be larger than 1 is the

time taken by the activities to be executed:

A relatively long execution time o f one o f the activities, or a short 

interarrival time, may cause instability o f one or more o f the queues 

belonging to temporary entities.
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The following example illustrates this point. 

THE FISH PACKING model.

This is an example that shows the instability of some of the queues 

belonging to temporary entities due to a large execution time of one of the 

activities. Table B .l. gives four different sets of execution time for the 

activities ARRIVE, WEIGH and PACK. The system was simulated for each 

one of these cases; in some of them when the execution time of one of the 

activities is increased , or the interarrival time decreased, or both, one of the 

queues belonging to the fish fillets becomes unstable (only queues belonging 

to temporary entities can become unstable).

A C T IV IT Y CASE 1 CASE 2 CASE 3 CASE 4

ARRIVE

WEIGH

PACK

REPLACE

NEGEXP(IO) NEGEXP(5)

2 2

NORMAL(5,l) NORMAL(5,l) 

1 1

NEGEXP(IO) NEGEXP(IO)

4 2

NORMAL(5,l) NORMAL(10,2) 

1 1

Table B .l. Time taken to be executed by the different activities of the 

FISH PACKING model.

The WAIT and the ALLQ queues (See Figure A 8., Appendix A) 

belonging both to the FISH entity are studied in this example; for each one of 

these queues the mean queuing time was recorded for different simulation run 

lengths and for the different cases given in Table B.l; they are summarised in 

Tables B.2. and B.3. as follows:

Table Queue Parameter

B.2. WAIT Queuing Time

B.3. ALLQ Queuing Time
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From Table B.2. (WAIT Queue) we notice that when the mean value 

of the arrive activity execution time is changed from 10 to 5 and, therefore, 

more fish fillets arrive to the system, the queuing time (and the queue length 

as well) reaches a steady state as r = A/s/a = (l/5)/(l*(l/2)) =2 / 5  < 1  for

the weigh activity. These two different experiments have been carried out for 

an execution time of the activity weigh of 2 units of time. However, if the 

mean value of the activity arrive is changed to 5 and at the same time the 

execution time of the activity weigh is increased to 6, the WAIT queue 

becomes unstable as r = 6/5 > 1  (mean estimates corresponding to this case 

are not given in Table B.2.)

Run Length Condition 1 Condition 2 Condition 3 Condition 4

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std.

1000 0240 0.091 0.646 0.195 1287 0243 0240 0.091

4000 0.244 0.047 0.670 0.083 1295 0259 0244 0.047

7000 0.252 0.038 0.668 0.049 1229 0.190 0.252 0.038

10000 0.249 0.028 0.671 0.047 1217 0.138 0249 0.028

13000 0.248 0.023 0.677 0.044 1.313 0.107 0248 0.023

16000 0.250 0.022 0.672 0.038 1229 0.108 0250 0.022

19000 0.249 0.019 0.675 0.039 1228 0.092 0249 0.019

22000 0.251 0.018 0.676 0.033 1231 0.088 0.251 0.018

25000 0.252 0.018 0.676 0.030 1231 0.088 0.252 0.018

28000 0.252 0.018 0.678 0.028 1.332 0.081 0252 0.018

29000 0251 0.017 0.677 0.028 1229 0.077 0251 0.017

30000 0251 0.016 0.677 0.026 1229 0.075 0251 0.016

Table B2. Mean WAIT queuing time and standard deviation estimates 

as a function of the simulation run length for the four different conditions 

given in Table B .l.

From Table B.3. we notice that for conditions 2 and 4 the ALLQ queue 

will become unstable, and this is due to the fact that X/sn =  1 for the PACK 

activity. In the results shown in Table B.3. the standard deviation of the mean 

estimates is also given. It can be seen that under conditions 2 and 4 the
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standard deviation will increase when the run length is increased. In general, 

from the empirical results recorded in this research, it was found that unless 

the standard deviation decreases when the run length is increased, the system 

does not reach the steady state. (See explanation for the LAUNDERETTE 

model, Chapter 2). As in the case of the LAUNDERETTE model, the 

instability of some of the queues is due to the large execution time of one of 

the activities as compared to that of the other activities.

Run Condition 1 Condition 2 Condition 3 Condition 4

Mean Std. Mean Std. Mean Std. Mean Std.

1000 3.452 3.549 37398 25.024 2.467 3360 50325 29339

4000 3.130 1386 85.624 37.927 2.143 1361 113.638 68.755

7000 3.043 0.959 122389 49.795 2.026 0.959 155.173 72.014

10000 3.049 0.764 151.024 67.110 2.037 0.775 198.433 79.446

13000 3.027 0.624 176370 83350 2.023 0.640 229.839 95.656

16000 3.006 0337 201.090 98.901 1.993 0348 258363 108.771

19000 3.000 0345 222356 115.699 1.991 0354 283372 124327

22000 2.971 0.481 242.320 129.773 1.960 0.490 309.261 139.015

25000 2.939 0.458 261.621 138.139 1.930 0.474 331.674 153.204

28000 2.949 0.444 282.208 148.181 1.940 0.457 355.291 166.705

Table B3 . Mean ALLQ queuing time and standard deviation estimates 

as a function of the simulation run length, and of the four different 

combinations of the activities execution time considered in Table B .l.

A  second reason for the traffic intensity r  to take values greater than 

1 is related to the number of units in the system of a permanent entity and can 

be expressed as follows:

When the number o f servers o f  a permanent entity is small, the value o f  

the traffic intensity o f those activities where this entity is involved gets larger, 

and one or more o f the queues belonging to temporary entities may become 

unstable.
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The BRAZILIAN HOSPITAL and the PUB simulation models are used 

to illustrate this point.

The BRAZILIAN HOSPITAL model.

In this case (see Figure A.9., Appendix A) the WAIT queue may be 

unstable depending on the number of receptionists available in the RECQ 

queue. In this system, as defined by the problem, the activity outpatient has 

a priority over the activity entry and this one has a priority over the activity 

reception; as a consequence of this, the "customers" arriving to the reception 

will in general have to wait the longer. Due to this priority, when the number 

of receptionists in the Hospital is small (1 or 2 in this case) they will be mostly 

engaged with the outpatient and entry activities and therefore the patients 

arriving to the WAIT queue will take a long time to be serviced which may 

cause the queue length and the queuing time of this queue to increase without 

bound as the simulation run length increases. The above analysis can be done 

by simulation users with no knowledge of queuing theory. The theoretician 

with this knowledge can also identify the critical values of service rates, arrival 

rates and number of units of each entity that will make the system unstable. 

Figure B .l. compares the behaviour of the WAIT queue when there are 2 and 

3 receptionists in RECQ. Two different Y-axis are used as the magnitude of 

the mean estimates for the two different number of receptionists greatly differ 

in value.

The PUB model.

In this case the WAIT queue for the entity customer (temporary entity) 

may show instability. The following example illustrates why and when the 

WAIT queue may become unstable.
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Figure B .l. Mean WAIT queuing time when there are 2 and 3 

receptionists in the RECQ queue.

In the PUB model the arrival of customers is modelled using a negative 

exponential distribution with mean 15, and the POUR activity takes on average 

6 minutes to be executed. In this example the factor that causes instability of 

the WAIT queue is the number of barmaids in the system. When this number 

is two or one the WAIT queue does not reach a steady state because k/s[i = 

15/12 or 15/6 which is greater than 1. A  graph of the results for the WAIT 

queuing time is shown in Figure B.2. In this graph we compare the mean 

values for the WAIT queue as a function of the simulation run length when 

there is only one barmaid in the PUB with the same values when the number 

of barmaids is four.

The graph clearly show the instability of the WAIT queue in the case 

of one barmaid in the system.

CONCLUSION

Queues that may not reach steady state are those belonging to 

temporary entities.
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Figure B.2. Mean WAIT queuing time when there are 4 and 1 

BARMAIDS in the IDLE queue.

This problem of not reaching the steady state, depends on the time that 

it takes to execute the activities where the temporary entity is involved. If one 

or more of these activities takes a long time to be executed as compared to the 

time of execution of the other activities, it may be possible that one of the 

queues of the temporary entity will never reach a steady state. Another 

possible cause of instability in one or more of the queues belonging to a 

temporary entity occurs when the temporary entity interacts with one or more 

permanent entities, with a small number of units in the system. For example, 

in the case of the PUB, the WAIT queue reaches or not a steady state 

depending on the number of barmaids in the system. This is due to the fact 

that the entity customer (to whom the WAIT queue belongs) requires of the 

entity barmaid to be poured a drink. When the number of barmaids is small 

they will not be able to cope at a given time with the incoming customers. The 

same is the case of the queue WAIT in the BRAZILIAN HOSPITAL system. 

In the case studied in this appendix a small number of receptionists will cause 

instability of this queue.
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B 3. QUEUES THAT MAY TAKE A  RELATIVELY LONG TIME 

TO REACH THE STEADY STATE

In Chapter 2 we have identified some possible "critical" queues, that 

may require a long simulation run length to reach the steady state. We also 

showed in Chapter 3 how when we increase the number of replications used 

for the estimation of parameters of these critical queues, the steady state may 

be reached for shorter simulation run lengths. In this section we will give 

some additional examples of possible critical queues. We will also identify 

some other factors for which a queue may require a long simulation run length 

to reach the steady state. These are factors concerning the number of units of 

permanent entities, and also the execution time of some of the activities. In 

Section B.3.1. we will consider those possible critical queues that are due to 

the characteristics of the simulation models themselves, (i.e., we compare 

different queues under the same conditions) while in section B.3.2. we will 

study the influence of the number of units, the time the activities take to be 

executed, etc. and how a change in some of the parameters of the model can 

make a queue critical (i.e., we compare the same queue under different 

conditions).

B3.1. CRITICAL QUEUES DUE TO THE CHARACTERISTICS OF

THE MODEL.

In this section we will give examples of queues that are critical due to 

some characteristics of the simulation model itself. Sometimes it is possible 

to identify them with an analysis previous to running the simulation. Some of 

the factors that we have identified in this study concern permanent entities, 

and others affect the behaviour of temporary entities. We will discuss very 

briefly each one of them, and we will illustrate them with an example of the 

LAUNDERETTE model.
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TEMPORARY ENTITIES

In most cases, the arrival of entities to a system are modelled using the 

negative exponential distribution. In this case, due to the skewness of this 

distribution, the queue in the simulation model to which the temporary entity 

"arrives" from the "outside world" will require a long simulation run length to 

reach the steady state. Identification of other critical queues belonging to 

temporary entities is not so straightforward as in this case we also need to take 

into account the permanent entities with which there is interaction.

PERMANENT ENTITIES

A factor for which queues belonging to permanent entities may require 

a long simulation run length to reach the steady state is that of the number of 

units of the permanent entity. A small number of units, or of "servers" will 

increase the traffic intensity r = k/(s*/x) and sometimes as this value 

increases, the queue of the permanent entity will take longer to reach the 

steady state.

To illustrate these arguments, we use the LAUNDERETTE model. In 

this model, the arrival of customers to the system is modelled with a negative 

exponential distribution; therefore, we can expect the parameters of the 

WASHQ queue to require a long simulation run length to reach the steady 

state. Similarly, because there are 12 baskets in the system the BIDLE queue 

will possibly reach the steady state for a short simulation run length (the 

number of servers, s = 12, and this will give a small value of t; however, in 

analysing queues belonging to permanent entities that interact with several 

other entities we have to be cautious and no generalisation is possible). On 

the other hand, there are only 2 driers in the system, which will give a large 

value of r, and therefore the parameters of the DRIER queue will require a 

long simulation run length to reach the steady state.

Table B.4. gives the mean queuing time estimates as a function of the
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simulation run length for the following queues: WASHQ, BIDLE, DRYQ, 

DRIER and WMIDLE. In Appendix C we give close approximations to the 

real steady state value. As discussed in Chapter 2, we consider that the 

parameters have reached the steady state when the mean estimates all fall 

within 2.5% of this steady state value. These values, along with the ranges for 

which we can consider the parameters to be in the steady state are the 

following:

Queue Steady state value Range

WASHQ 6.675 [6.508 , 6.842]

BIDLE 67.260 [65.578 , 68.94]

WMIDLE 12.780 [12.46 ,13.10]

DRYQ 17.670 [17.228 ,18.112]

DRIER 1.993 [1.943 , 2.04]

In Table B.4. we have underlined those values for which we can 

consider the parameter to be in the steady state. From the underlined values 

we can see that as expected, the WASHQ, the DRYQ, and the DRIER queue 

require long simulation run lengths to reach the steady state (from the values 

in the table we notice that for a simulation run length as long as 22000 minutes 

the steady state has not been reached yet). The mean estimates of this table 

have been obtained from 100 replications. As discussed in Chapter 3, when 

we increase the number of replications, we can expect the steady state to be 

reached sooner. Similarly, from Table B.4. we notice that the BIDLE and the 

WMIDLE queues will reach the steady state for a short simulation run length 

compared to that required for the other queues that we have studied in this 

model. This was expected because of the number of units of these two entities 

as compared to the number of driers.

While in this section we compared different queues under the same 

conditions, in section B.3.2. we will compare the same queue under different 

conditions.
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Mean queuing time estimates

Run Length WASHQ BIDLE WMIDLE DRYQ DRIER

6000 5.876 70.378 13.406 15.555 2.314

6500 6.005 69.938 13.272 15.794 2.274

7000 6.017 69.725 13323 16.034 2.261

7500 6.031 69.461 13.221 16.139 2.223

8000 6.064 69387 13.215 16.234 2218

8500 5.999 69348 13.242 16251 2205

9000 5.986 69.459 13.233 16.134 2.199

9500 6.061 69.417 13.211 16.161 2.195

10000 6.103 69314 13.195 16.249 2.187

10500 6.108 69.304 13.181 16225 2.177

11000 6.117 69.193 13.154 16284 2.167

11500 6.193 68.983 13.078 16.397 2.153

12000 6.306 68.762 13.018 16.553 2.137

12500 6.353 68394 13.009 16.697 2.126

13000 6337 68324 13.008 16.742 2.120

13500 6382 68.446 13.002 16.807 2.114

14000 6.407 68.393 12.982 16.858 2.111

14500 6.406 68.416 13.007 16255 2.112

15000 6.389 68.498 13.023 16.811 2.115

15500 6364 68343 13.009 16.748 2.111

16000 6.372 68.425 12.965 16.793 2.096

16500 6.366 68320 12.952 16.859 2.089

17000 6343 68344 12.970 16.849 2.088

17500 6.307 68.433 13.008 16.806 2.094

18000 6.268 68358 13.039 16.736 2.103

18500 6.234 68.654 13.057 16.679 2.108

19000 6.251 68.608 13.044 16.709 2.105

19500 6.291 68306 13.013 16.760 2.097

20000 6314 68394 13.006 16.853 2.092

20500 6323 68.363 12.996 16.880 2.089

21000 6.333 68.310 12.973 16.895 2.081

21500 6.315 68.304 12.986 16.909 2.082

22000 6.310 68.307 12.971 16.905 2.079

Table B.4. LAUNDERETTE mean queuing time estimates as a 

function of the simulation run length.
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B 3 2 . CRITICAL QUEUES: INFLUENCE OF CHANGES IN THE 

CHARACTERISTICS OF THE MODEL

Sometimes a careful analysis of the A.C.D can give the practitioner an 

idea of which of the queues of the system will take a relatively long simulation 

run length to reach the steady state. In this and the following subsection we 

give some examples showing how a change in the conditions of a system may 

have an important influence on the simulation run length required for the 

parameters of some of the queues to reach the steady state. In this section we 

are interested in studying the change in the simulation run length required for 

a parameter to reach the steady state, for entities that are represented in the 

A.C.D. by a single queue. As was discussed in Section B.3.1, when the number 

of units of this type of entity is small, the queue may take a long time to reach 

the steady state. But while in Section B.3.1. we compared this queue to others 

of the same model, in the examples of this section (for the PUB and the FISH 

PACKING models) we will study the same queue under different conditions,

i.e., for different number of units allocated at the beginning of the simulation 

to the single queue that is used to model the entity in the A.C.D.

THE PUB model

This example was considered, but not explicitly discussed in Section 

2.4.3. In this example, when the PUB was simulated for an arrival that follows 

a negative exponential distribution with mean 15, and the number of barmaids 

in the system is 3, the IDLE queue would not reach the steady state for 

simulation run lengths shorter than 20000 (See Table 2.3). In a second 

experiment, we changed the number of barmaids from 3 to 8. The arrival was 

modelled with a negative exponential distribution with mean 15. In this case, 

from the values of Table 2.5. the mean queuing time of the IDLE queue 

requires only a simulation run length of 2000 to reach the steady state. It is 

important to notice that the entity BARMAID is involved in two activities: 

WASH and POUR. However, in some cases when an entity that is represented
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by a single queue in the A.C.D. interacts only with another entity, and is 

involved in only one activity, like for example, the entity scale in the FISH 

PACKING model, the influence of a change in the number of units of the 

permanent entity (scale in this model) is not as noticeable as in the PUB case 

for the IDLE queue. The following example illustrates this point.

THE FISH PACKING MODEL

In this model, the entity scale is modelled by a single queue in the 

A.C.D (Figure A.8, Appendix A). If the entity is not engaged in the activity 

WEIGH it is idle in the queue.

The system was simulated for different number of scales in the system 

(1, 2 and 5), for an arrival rate of 7, and the results for the mean queuing time 

and the mean queue length estimates of the IDLE (scale entity) queue as a 

function of the simulation run length are given in Table B.5. From this table 

it can be seen that the steady state is reached for very short simulation run 

lengths independent of the number of scales; we know this by looking at the 

mean estimates and noticing that they all show convergence to a value that we 

may assume is very close to the real steady state value. For example, the mean 

queue length estimates are oscillating around the values 0.715 (1 scale), 4.714 

(2 scales) and 4.715 (5 scales). In this case the effect of the number of scales 

on the simulation run length required for the queue to reach the steady state 

is not as noticeable as it is for the IDLE queue in the PUB example discussed 

above.

The main conclusion from this discussion is that although a small 

number of units of a permanent entity represented by a single queue in the 

AC.D. may have an influence on the time required by the queue to reach the 

steady state, there are other factors and characteristics of the model that have 

to be considered. The basic principle of queuing theory that queues for which 

the traffic intensity (r) takes a value larger than 1 are unstable, and that the 

closer it gets to 1 the longer the simulation run length required for the queue 

to reach the steady state, is still valid, but only in the sense that one or more
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of the queues belonging to a temporary entity will be unstable; but as is shown 

in section 2.4.1., and to a lesser extent here, a careful analysis of the A.C.D. 

or of the characteristics of the system is necessary, to determine which 

queue(s) will appear never (or require a long time) to reach the steady state.

IDLE (scale Entitvl
Run Length Mean Queue Length Mean Queuing Time

1 Sc. 2 Sc. 5 Sc. 1 Sc. 2 Sc. 5 Sc.

50 0.679 1.653 4.585 5.156 10.856 20.997

100 0.714 1.712 4.712 6.019 13.200 29.058

150 0.716 1.714 4.713 5.458 12.400 31.188

200 0.713 1.713 4.713 5.225 12.135 31.306

250 0.714 1.714 4.713 5.172 12.072 31.486

300 0.716 1.716 4.716 5.190 12.184 32.160

350 0.720 1.719 4.719 5.274 12.353 32.627

400 0.719 1.718 4.718 5.185 12.243 32.695

450 0.713 1.712 4.712 5.027 11.948 32.143

500 0.712 1.712 4.712 5.024 11.921 32.108

1000 0.715 1.714 4.714 5.052 12.048 32.732

1500 0.714 1.714 4.714 5.014 11.987 32.710

2000 0.716 1.716 4.716 5.056 12.079 33.023

2500 0.716 1.716 4.716 5.050 12.075 33.023

3000 0.717 1.717 4.717 5.076 12.129 33.195

3500 0.716 1.716 4.716 5.039 12.062 33.062

4000 0.715 1.715 4.715 5.029 12.046 33.031

4500 0.715 1.715 4.715 5.021 12.029 32.988

5000 0.714 1.714 4.714 5.003 11.994 32.910

5500 0.713 1.713 4.713 4.987 11.966 32.852

6000 0.714 1.714 4.714 4.996 11.981 32.880

6500 0.714 1.714 4.714 4.995 11.980 32.894

7000 0.714 1.714 4.714 5.003 11.998 32.940

7500 0.715 1.715 4.715 5.015 12.022 33.006

rooo 0.715 1.715 4.715 5 011 17.013 32.900

Table BJ5. IDLE mean queuing time and mean queue length as a 

function of the simulation run length and of the number of scales (Sc.) in the 

system.
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B3 3 . ADDITIONAL CONSIDERATIONS

In this section we show how to proceed with the analysis of queues that 

in the A.C.D alternate with activities, forming a cycle activity - queue - 

activity... One example of such a situation is given by the analysis of the 

STEELWORKS where the queues belonging to the entity torpedo are studied 

as the number of torpedoes in the system is increased, keeping the number of 

units of the other entities constant.

THE STEELWORKS - NUMBER OF TORPEDOES VARIABLE

The system has been simulated for different number of torpedoes (3, 8 

and 16); the number of cranes has been set to 2, the number of pits to 1 and 

the number of steel furnaces to 1.

Two queues of the entity torpedo are of interest, as they are the only 

ones to interact with other entities of the system: TBLOWQ and PITQ (Figure 

A.7., Appendix A). Because there is only one pit we can expect the queue 

length of the PITQ queue to increase as we increase the number of torpedoes, 

and as at the start of the simulation, due to the way the simulation has been 

programmed, the PITQ queue is empty, the change in the state of the queue 

will be large and the more the number of torpedoes in the system, the longer 

it will take for the parameters of the queue to reach the steady state.

A similar analysis can be done for the TBLOWQ queue. At this queue 

the torpedoes will wait for the blast furnaces (there are only two units of this 

entity in the system) to empty their blast (See Figure A.7, Appendix A). But 

due to the small number of blast furnaces, the more the number the torpedoes 

the more they will have to wait for the activity BLOW to be executed.

Figures B.3. and B.4. show the mean queuing time estimates of the 

TBLOWQ and of the PITQ respectively as a function of the simulation run 

length and of the number of torpedoes (3 and 16 torpedoes).
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Figure B3 .  TBLOWQ mean queuing time estimates as a function of 

the simulation run length and of the number of torpedoes.
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PITQ
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Figure B.4. PITQ mean queuing time estimates as a function of the 

simulation run length and of the number of torpedoes

220



From these figures we notice that when the number of torpedoes in the 

system is 3, there is clearly a convergence to the steady state value, but when 

there are 16 torpedoes in the system, the figures show still an increase (PITQ) 

or decrease (TBLOWQ) in the values of the mean estimates.
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APPENDIX C : STEADY STATE VALUES FOR SOME 

SIMULATION MODELS

C l. INTRODUCTION

Most of the research described in this thesis has been carried out in the 

area of steady state simulations; problems like, for example, that of the 

influence of the initial conditions and of the correlation among the 

observations when the batch means method is used are discussed and some 

new procedures are formulated. To test these new procedures, not only simple 

simulation models with known analytical answer but also more diverse 

simulation models are used. To make it easier the evaluation of the new 

procedures it is useful to obtain an accurate estimate of the real, but unknown, 

steady state value. This can be done by running the simulation model for an 

extremely long simulation run length and using a very large number of 

replications. This appendix contains the results thus obtained for the following 

simulation models:

1. The LAUNDERETTE.

2. The PUB.

3. The STEELWORKS model.

4. The MILITARY model.

5. The FISH PACKING model

The steady state mean value here estimated will be taken as the real 

mean value /i; however, it is clear that in practical situations, due to the very 

long computer time that this approach requires, it would not feasible to do it 

and therefore, for practical purposes the practitioner expects that the estimates 

obtained from the simulation will be within a value e of the real, but unknown 

value /i. The value for this parameter e, that will be used to evaluate the 

accuracy of the results obtained using the new proposed procedures, is 

discussed in section C.2. Section C.3. presents the empirical results obtained 

for the different simulation models.
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0 2 . DISCUSSION ON THE VALUE OF e AS AN

APPROXIMATION FOR THE REAL VALUE /i WHICH IS BEING

ESTIMATED.

Usually when a new procedure is evaluated a simple model with known 

steady state value /i for the parameter(s) of interest is used, and the parameter 

is considered to be in the steady state when the simulation estimate falls within 

0.5% (or even less) of ;i. In this research a larger value of e = 2.5% is used 

as a measure of the closeness of the estimate obtained from the simulation to 

the real value fi. This choice of a larger value for this parameter is due to the 

fact that in those cases when simulation is used as a tool, estimating a queue 

length by 10 or by 10.2 (i.e. 2% larger) usually does not make any difference 

from a practical point of view. Obviously, in practice, this value of tolerance 

will depend of each project.

C 3. STEADY STATE ESTIMATES FOR THE VALUE it.

We give in this section the mean estimates for the different queues of 

interest in this research. They were obtained using a very large number of 

replications and a very long simulation run length.

03 .1 . THE LAUNDERETTE.

Tables C.la and O lb give the mean queuing time and the mean queue 

length steady state estimates as a function of the simulation run length, for the 

following queues:

1. WASHQ

2. BIDLE

3. WMIDLE

4. DRYQ

5. DRIER
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LAUNDERETTE - Mean queuing time estimates

WASHQ BIDLE WMIDLE DR.YQ DRIER

Run Length Mean Mean Mean Mean Mean

700000 6.682 67.245 12.777 17.683 1.990

705000 6.681 67.246 12.776 17.680 1.990

710000 6.684 67.247 12.777 17.680 1.990

715000 6.683 67.254 12.778 17.674 1.990

720000 6.684 67.251 12.778 17.678 1.990

725000 6.685 67.249 12.778 17.680 1.990

730000 6.686 67.248 12.779 17.682 1.990

735000 6.684 67.258 12.780 17.675 1.991

740000 6.680 67262 12.781 17.671 1.991

745000 6.677 67268 12.782 17.667 1.991

750000 6.677 67220 12.781 17.664 1.991

755000 6.677 67.264 12.780 17.666 1.991

760000 6.676 67260 12.780 17.668 1.990

765000 6.677 67261 12.780 17.671 1.990

770000 6.674 67.260 12.782 17.665 1.991

775000 6.672 67.263 12.782 17.666 1.991

780000 6.671 67.262 12.783 17.669 1.991

785000 6.671 67.260 12.782 17.671 1.991

790000 6.672 67261 12.781 17.670 1.991

795000 6.671 67.262 12.781 17.672 1.991

800000 6.671 67.257 12.780 17.670 1.990

Table G la. Mean queuing time estimates for different queues of the 

LAUNDERETTE model given as a function of the simulation run length.
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LAUNDERETTE - Mean queuing time estimates

WASHQ BIDLE WMIDLE DRYQ DRIER

Run Length Mean Mean Mean Mean Mean

700000 0.836 8.412 1.598 2212 0249

705000 0.836 8.412 1.598 2.212 0249

710000 0.836 8.412 1.598 2.212 0249

715000 0.836 8.413 1.598 2.211 0249

720000 0.836 8.413 1.598 2212 0249

725000 0.836 8.412 1.598 2212 0249

730000 0.836 8.412 1.599 2212 0249

735000 0.836 8.413 1399 2211 0249

740000 0.836 8.414 1399 2211 0.249

745000 0.835 8.414 1399 2210 0.249

750000 0.835 8.415 1399 2.210 0.249

755000 0.835 8.414 1399 2210 0249

760000 0.835 8.414 1399 2210 0.249

765000 0.835 8.414 1399 2211 0249

770000 0.835 8.414 1399 2210 0.249

775000 0.835 8.415 1399 2210 0249

780000 0.835 8.415 1399 2.210 0.249

785000 0.835 8.414 1399 2.210 0.249

790000 0.835 8.413 1399 2211 0.249

795000 0.835 8.413 1399 2.211 0249

800000 0.835 8.413 1399 2.211 0249

Table C lb . Mean queue length estimates for different queues of the 

LAUNDERETTE model given as a function of the simulation run length.
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The data was obtained using 500 replications and a total simulation run 

length of 800000. From the above tables the following steady state values are 

determined:

Queue Parameter Steady state 

value (fi)

WASHQ Queuing time 6.675

WASHQ Queue Length 0.835

BIDLE Queuing time 67.260

BIDLE Queue length 8.413

WMIDLE Queuing time 12.780

WMIDLE Queue length 1.599

DRYQ Queuing time 17.670

DRYQ Queue length 2.210

DRIER Queuing time 1.990

DRIER Queue length 0.249

0 3 .2 . THE PUB

Using 500 replications and a total simulation run length of 800000, the 

mean queuing time and the mean queue length estimates for the WAIT, the 

CLEAN and the IDLE queues were obtained. Tables C.2a. (mean queuing 

time) and C.2b (mean queue length) show these estimates as a function of the 

simulation run length.

From these tables the following steady state values are determined: 

Queue Parameter Steady state

value (/i)

WAIT Queuing time 1.141

WAIT Queue length 0.228

CLEAN Queuing time 209.400

CLEAN Queue length 41.881

IDLE Queuing time 2.001

IDLE Queue length 0.800
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PUB - Mean queuing time estimates

Run Length WATT CLEAN IDLE

700000 1.135 209.394 2.000

705000 1.138 209.380 2.000

710000 1.139 209.387 2.000

715000 1.140 209395 2.001

720000 1.140 209.375 2.001

725000 1.140 209.380 2.001

730000 1.140 209391 2.001

735000 1.140 209371 2.000

740000 1.140 209382 2.001

745000 1.141 209.402 2.001

750000 1.142 209399 2.001

755000 1.142 209386 2.001

760000 1.141 209382 2.001

765000 1.141 209370 2.001

770000 1.141 209378 2.001

775000 1.141 209.395 2.001

780000 1.140 209.401 2.001

785000 1.140 209.412 2.001

790000 1.140 209.431 2.002

795000 1.141 209.406 2.001

800000 1.141 209.409 2.001

Table G2a. Mean queuing time estimates for different queues of the 

PUB model given as a function of the simulation run length.
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PUB - Mean queue length estimates

Run Length WAIT CLEAN IDLE

700000 0.228 41.884 0.800

705000 0.228 41.882 0.800

710000 0.228 41.882 0.800

715000 0.228 41.882 0.800

720000 0.228 41.879 0200

725000 0228 41.880 0.800

730000 0.228 41.881 0.800

735000 0.228 41.879 0.800

740000 0.228 41.879 0.800

745000 0.228 41.881 0.800

750000 0.228 41.880 0.800

755000 0.228 41.878 0.800

760000 0.228 41.878 0.800

765000 0228 41.877 0.800

770000 0.228 41.878 0.800

775000 0.228 41.880 0.800

780000 0.228 41.881 0.800

785000 0.228 41.882 0.800

790000 0.228 41.883 0.800

795000 0.228 41.881 0.800

800000 0228 41.882 0.800

Table C2b. Mean queue length estimates for different queues of the 

PUB model given as a function of the simulation run length.
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0 3 3 . THE STEELWORKS.

The system was simulated for a total simulation run length of 1300000 

and replicated 350 times. Tables C.3a. and C.3b give the mean queuing time 

and the mean queue length estimates and their corresponding standard 

deviation as a function of the simulation run length.

STEELWORKS - Mean queuing time estimates

Run Length TBLOWQ PITQ LOADQ

Mean Std.Dev. Mean Std.Dev. Mean StdJDev.

1200000 81.622 1.913 38394 0.675 11322 0.059

1205000 81.618 1.911 38.395 0.674 11321 0.059

1210000 81.618 1.908 38.396 0.673 11321 0.059

1215000 81.614 1.907 38.397 0.673 11321 0.059

1220000 81.607 1.907 38.399 0.673 11321 0.059

1225000 81.597 1.911 38.403 0.674 11321 0.059

1230000 81.603 1.900 38.400 0.671 11321 0.059

1235000 81.603 1.894 38.400 0.669 11321 0.058

1240000 81.601 1.893 38.401 0.669 11321 0.058

1245000 81.594 L891 38.403 0.668 11321 0.058

1250000 81.600 1.892 38.401 0.668 11321 0.058

1255000 81.607 1.896 38.398 0.669 11321 0.058

1260000 81.609 1.893 38398 0.669 11321 0.058

1265000 81.601 1.894 38.401 0.670 11321 0.058

1270000 81.596 1.895 38.402 0.670 11321 0.058

1275000 81.593 1.895 38.403 0.669 11321 0.058

1280000 81.593 1.881 38.403 0.665 11321 0.057

1285000 81.589 1.886 38.404 0.666 11321 0.058

1290000 81.588 1.882 38.405 0.664 11321 0.057

1295000 81.589 1.884 38.404 0.665 11321 0.058

1300000 81.588 1.881 38.405 0.663 11321 0.058

Table C3a. Mean queuing time estimates for different queues of the 

STEELWORKS model given as a function of the simulation run length.
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STEELWORKS - Mean queue length estimates

Run Length TBLOWQ PITQ LOADQ

Mean Std.Dev. Mean StdJDev. Mean StdJDev.

1200000 2.675 0.064 3.601 0.064 0.707 0.003

1205000 2.675 0.064 3.601 0.064 0.707 0.003

1210000 2.675 0.064 3.601 0.064 0.707 0.003

1215000 2.675 0.064 3.601 0.064 0.707 0.003

1220000 2.675 0.064 3.601 0.064 0.707 0.003

1225000 2.674 0.064 3.602 0.064 0.707 0.003

1230000 2.674 0.064 3.601 0.064 0.707 0.003

1235000 2.674 0.063 3.601 0.063 0.707 0.003

1240000 2.674 0.063 3.601 0.063 0.707 0.003

1245000 2.674 0.063 3.602 0.063 0.707 0.003

1250000 2.674 0.063 3.601 0.063 0.707 0.003

1255000 2.675 0.063 3.601 0.063 0.707 0.003

1260000 2.675 0.063 3.601 0.063 0.707 0.003

1265000 2.674 0.063 3.601 0.063 0.707 0.003

1270000 2.674 0.063 3.602 0.063 0.707 0.003

1275000 2.674 0.063 3.602 0.063 0.707 0.003

1280000 2.674 0.063 3.602 0.063 0.707 0.003

1285000 2.674 0.063 3.602 0.063 0.707 0.003

1290000 2.674 0.063 3.602 0.063 0.707 0.003

1295000 2.674 0.063 3.602 0.063 0.707 0.003

1300000 2.674 0.063 3.602 0.063 0.707 0.003

Table C3b. Mean queue length estimates for different queues of the 

STEELWORKS model given as a function of the simulation run length.

From these tables we obtain the following values for the steady state 

mean queuing time and mean queue length for the different queues of interest 

in this model:
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Queue Parameter Steady state

value (/i)

TBLOWQ Queuing time 81.558

TBLOWQ Queue length 2.674

PITQ Queuing time 38.404

PITQ Queue length 3.602

LOADQ Queuing time 11.521

LOADQ Queue length 0.707

03 .4 . THE MILITARY MODEL

This simulation model was simulated for a total simulation run length 

of 1000000 using 300 replications. Two queues: WAIT and GROUND are 

studied. Tables C.4a. and C.4b give the mean queuing time and mean queue 

length estimates and their corresponding standard deviation as a function of 

the simulation run length.

MILITARY MODEL - Mean Queuing time estimates

WATT GROUND

Run Length Mean Std. Dev. Mean Std. Dev.

200000 2.872 0.040 19.378 0.068

400000 2.835 0.031 19.321 0.053

600000 2.803 0.026 19.270 0.037

800000 2.781 0.021 19.253 0.031

1000000 2.768 0.018 19.246 0.026

1200000 2.759 0.015 19.239 0.024

1400000 2.753 0.014 19235 0.022

1600000 2.748 0.013 19233 0.020

1800000 2.744 0.012 19.230 0.019

1900000 2.742 0.011 19.229 0.018

2000000 2.741 0.011 19.228 0.017

Table C4a. Mean queuing time estimates for different queues of the 

MILITARY model given as a function of the simulation run length.
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MILITARY MODEL - Mean queue length estimates

WAIT GROUND

Run Length Mean Std. Dev. Mean Std. Dev.

200000 0.180 0.002 1.178 0.002

400000 0.178 0.002 1.175 0.002

600000 0.177 0.002 1.173 0.001

800000 0.175 0.001 1.173 0.001

1000000 0.174 0.001 1.172 0.001

1200000 0.174 0.001 1.172 0.001

1400000 0.174 0.001 1.172 0.001

1600000 0.173 0.001 1.172 0.001

1800000 0.173 0.001 1.172 0.001

1900000 0.173 0.001 1.172 0.001

2000000 0.173 0.001 1.172 0.001

Table G4b. Mean queue length estimates for different queues of the 

MILITARY model given as a function of the simulation run length.

To obtain these values, 5 days of real time continuous computer 

operation were spent. As can be seen, the mean queuing time estimates do 

not show a clear convergence to a value. However, as the real value was not 

used in the examples of this model to determine the minimum simulation run 

length for which the mean estimates fall within 2.5% of this real value, we do 

not increased the run length to obtain a more accurate estimate.

From these tables the following approximate steady state values are 

determined:

Queue

WAIT 

WAIT 

GROUND 

GROUND

Parameter Steady state

value (/i)

Queuing time 2.740

Queue length 0.173

Queuing time 19.220

Queue length 1.172



03.5. THE FISH PACKING MODEL

The steady state mean queuing time and mean queue length estimates 

for the WAIT, ALLQ and IDLE queues (see ACD, Appendix A) have been 

estimated for this model. The time taken by the different activities to be 

executed is as follows:

Activity Execution time (distribution)

ARRIVE NEGEXP(6)

WEIGH 2

PACK NORMAL(5,l)

REPLACE 2

In order to obtain accurate estimates of the mean queuing time and the 

mean queue length the model was simulated for a total simulated time of 

800000 minutes using 300 replications. Table C.5a. gives the mean queuing 

time estimates and Table C.5b the mean queue length estimates for the three 

different queues of interest in this model.

From these tables the following steady state mean values can be 

estimated:

Queue

WAIT

WAIT

ALLQ

ALLQ

IDLE

IDLE

Parameter

Queuing time 

Queue length 

Queuing time 

Queue length 

Queuing time 

Queue length

Steady state 

value (n) 

0.511 

0.085 

14.900 

2.526 

3.990 

0.666
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FISH PACKING - Mcar aueuine time estimates

Run Length WATT ALLQ IDLE

150000 0.510 14.736 3.997

200000 0511 14.820 3.996

250000 0511 14.814 3.995

300000 0511 14.804 3.996

350000 0511 14.837 3.995

400000 0511 14.840 3.994

450000 0511 14.873 3.993

500000 0511 14.869 3.993

550000 0511 14.891 3.993

600000 0511 14.898 3.993

650000 0511 14.901 3.993

700000 0511 14.885 3.993

750000 0511 14.899 3.993

Roooon 0511 14.909 3.993

Table C5a. WAIT, ALLQ and IDLE mean queuing time estimates as 

a function of the simulation run length.

FISH PACKING - Mean queue length estimates

Run Length WATT ALLQ IDLE

150000 0.085 2.498 0.667

200000 0.085 2.513 0.666

250000 0.085 2.512 0.666

300000 0.085 2.510 0.666

350000 0.085 2.516 0.666

400000 0.085 2.517 0.666

450000 0.085 2.523 0.666

500000 0.085 2.522 0.666

550000 0.085 2.526 0.666

600000 0.085 2521 0.666

650000 0.085 2528 0.666

700000 0.085 252S 0.666

750000 0.085 2521 0.666

800000 0.085 2529 0.666

Table C5b. WAIT, ALLQ and IDLE mean queue length estimates as 

a function of the simulation run length.
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APPENDIX D : ADDITIONAL RESULTS CORRESPONDING TO 

THE SIMULATION MODELS USED IN CHAPTER 3.

D .l. INTRODUCTION

In Chapter 3 we showed how, based on the double sequential approach 

described in the literature, it is possible to estimate the number of replications 

to be used for the estimation of a particular parameter of a simulation model. 

This estimation can be done using data obtained for a short simulation run 

length, and the number of replications thus estimated when used for the 

estimation of steady state parameters will give a curve of the mean estimates 

as a function of the simulation run length which is a good approximation to the 

real, but unknown, one. In this way it is easier to estimate the simulated time 

for which the curve becomes horizontal. In this appendix we include some 

additional empirical results obtained for other simulation models that confirm 

the above points.

Y>2. ANALYSIS OF THE EMPIRICAL RESULTS OBTAINED FOR

SOME SIMULATION MODELS.

In this subsection we discuss the results obtained for the mean queuing 

time of some queues of the following simulation models: the

LAUNDERETTE, the FISH PACKING and the STEELWORKS.

The study is divided into two parts: the estimation of the number of 

replications and the evaluation of the performance of this estimated number. 

A  good performance means that the point in simulated time for which the 

curve of the mean estimates becomes horizontal is easier to determine if we 

use the number of replications estimated following the procedure discussed in 

Chapter 3 than if less replications are used; however, an increase in the 

number of replication will not make an appreciable difference in the shape of 

the curve.
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T>2.1. THE LAUNDERETTE MODEL : ESTIMATION OF THE 

NUMBER OF REPLICATIONS.

Three queues of this model have been studied (see Appendix A, Figure 

A.5.): the WASHQ, the BIDLE and the DRYQ queues. Using the double 

sequential approach described in Section 3.2. we obtained the following 

estimates for the number of replications to be used for the estimation of the 

steady state mean queuing time of the queues of interest:

QUEUE No. of Replications

WASHQ 900

BIDLE 200

DRYQ 400

D 2 2 . THE LAUNDERETTE MODEL : EVALUATION OF THE

PERFORMANCE OF THE PROPOSED PROCEDURE

To show how the use of the number of replications estimated in section 

D.2.1. for each one of the different queues of interest in this model gives good 

results we obtained the mean estimates as a function of the simulation run 

length and of the number of replications. Figures D.I., D.2. and D.3. show the 

mean estimates as a function of the simulation run length for the WASHQ, the 

BIDLE and the DRYQ queues.

From these figures it is easy to estimate the following simulation run 

lengths for which the curve becomes horizontal:

Queue Simulation run length

WASHQ 9500

BIDLE 7500

DRYQ 11000
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WASHQ mean queuing time
Estimated number of replications : 900

Legend 

—— 100 Rep.

  400 Rep.

- -* 900 Rep.

6.4
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4.8

5000 9500 14000500
Run length

Figure D.l. WASHQ mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

BIDLE mean queuing time
Estimated number of replications : 20082 -i

Legend 
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200 Rep. 
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70
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Figure D.2. BIDLE mean queuing time estimates as a function of the 

simulation run length and of the number of replications.
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DRYQ mean queuing time
Estimated number of replications : 400

16.5
—— 100 Rep.

  400 Rep.

- -* - 700 Rep. 

• 900 Rep.

Legend

9

500 4500 Run length 8500 12500

figure D.3. DRYQ mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

To show the influence of the number of replications on the c.i. width we 

give in tables D.l.a, D.l.b, and D.l.c. the c.i. half-width and the c.i. lower and 

upper limits as a function of the number of replications for different simulation 

run lengths and for the mean queuing time parameter of each one of the 

queues of interest.

From the tables we note how the c.i. obtained for the different queues, 

for simulation run lengths longer than those for which the curve of the mean 

estimates becomes horizontal, cover the real steady state value, which was 

determined in an empirical way in Appendix C. These steady state values are 

repeated here for the sake of convenience:

QUEUE

WASHQ

BIDLE

DRYQ

Steady state (ji)

6.675

67.260

17.670
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WASHQ mean queuing time

Results based on 150 replications

Run Length Mean Std.Dev. ci. half-width c.i.1.1 c.i.u.1.

7000 6.26 3.03 0.49 5.78 6.75

13000 6.48 221 0.40 6.08 629

19000 6.35 2.01 0.32 6.03 6.67

Results based on 500 replications

Run Length Mean Std.Dev. c.i. half-width cJ.l.L c.i.u.1.

7000 6.32 2.97 0.26 6.06 628

13000 6.53 2.42 021 621 6.74

19000 6.53 2.13 0.19 625 6.72

Results based on 900 replications

Run Length Mean StdDev. c.i. half-width cll.1. c.i.uJ.

7000 6.42 3.37 0.22 620 6.64

13000 6.58 2.61 0.17 6.41 6.75

19000 6.63 2.27 0.15 6.49 6.78

Table D .l.a. WASHQ c.i. width, c.i. lower and upper limits for different 

number of replications and different simulation run lengths.

239



BIDLE mean queuing time parameter

Results based on 200 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.ul.

7000 69.10 836 134 67.76 70.43

13000 68.16 6.49 1.04 67.12 6930

19000 68.25 534 0.89 6737 69.14

Results based on 400 replications

Run Length Mean StdDev. c.i. half-width c.i.1.1. c.i.u.1.

7000 68.44 8.29 0.73 67.72 69.17

13000 67.58 6.35 036 67.03 68.14

19000 67.60 5.49 0.48 67.12 68.08

Results based on 900 replications

Run Length Mean Std.Dev. c.L half-width cj.ll. c.i.u.1.

7000 68.55 837 038 67.97 69.13

13000 67.71 6.61 0.43 67.28 68.15

19000 67.55 5.61 037 67.18 67.91

Table D .l.b. BIDLE c.i. width, and lower and upper c.i. limits for 

different number of replications and different simulation run lengths.
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DRYQ mean queuing time parameter

Results based on 150 replications

Run Length Mean Std.Dev. ci. half-width c.i.1.1. c.i.u.1.

7000 16.49 6.04 0.97 1532 17.45

13000 17.05 4.69 0.75 16.30 17.80

19000 16.98 3.93 0.63 1635 17.61

Results based on 400 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

7000 16.80 5.93 0.52 16.28 17.32

13000 17.38 4.58 0.40 16.98 17.78

19000 17.41 3.95 035 17.06 17.75

Results based on 700 replications

Run Length Mean Std.Dev. c.i. half-width c.y.1. c.i.u.1.

7000 16.85 635 0.41 16.44 17.27

13000 17.39 4.74 0.31 17.08 17.70

19000 17.49 4.02 0.26 17.23 17.75

Table D .l.c. DRYQ c.i. width and lower and upper c.i. limits for 

different simulation run lengths and different number of replications.
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D .23. THE FISH PACKING MODEL : ESTIMATION OF THE 

NUMBER OF REPLICATIONS

Three queues of this model have been studied: the WAIT, the IDLE, 

and the ALLQ queues (see Figure A 8., Appendix A). Following the 

sequential approach we obtained the following estimates for the number of 

replications to be used for the estimation of the mean queuing time of each 

one of the queues:

QUEUE No. of Replications

WAIT 75

ALLQ 600

IDLE 75

D.2.4. THE FISH PACKING MODEL : EVALUATION OF THE 

PERFORMANCE OF THE PROPOSED PROCEDURE

Figures D.4, D.5 and D.6. give the mean queuing time estimates for the 

WAIT, the IDLE and the ALLQ queues respectively, as a function of the 

simulation run length and of the number of replications.

In Appendix C we showed that the steady state mean queuing time 

values for these queues are:

Queue Steady state (/i)

WAIT 0.511

IDLE 3.990

ALLQ 14.900

Although from a statistical point of view, as discussed in Section 2.6.1., 

we should not use the WAIT mean as an estimator due to the small steady 

state value, we show the mean queuing time estimates in Figure D.4. to show 

how, even in cases like this, the procedure we propose gives good results.
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WAIT
Estimated number of replications : 400

0.1

0.01

0.0  -

12000eoo

Figure D.4. WAIT mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

ALLQ
Estimated number of replications : 700

4.03 -

3.00

4000 Run length 3000 12000GOO

Figure D.5. ALLQ mean queuing time estimates as a function of the 

simulation run length and of the number of replications.
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I DLE
Estimated number of replications : 1 OO

I S - i

14.S -

13-

11 . 6 -

10.6

600

Figure D.6. IDLE mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

From these figures we note how when the number of replications 

estimated in section D.2.3. is used it is easy to estimate the simulated time for 

which the curve becomes horizontal. This time is the following for the queues 

of interest:

QUEUE Run length

WAIT 500

ALLQ 8000

IDLE 7000

Tables D.2.a, D.2.b. and D.2.c give the c.i. width and c.i. lower and 

upper limits for different number of replications and different simulation run 

lengths. We note how once the curve has become horizontal the c.i. covers the 

real value. Although the results are not shown, for simulation run lengths 

longer than those given above and for which the curve of the mean estimates 

becomes horizontal, the c.i. coverage is close to the nominal one of 1 - a.
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Results based on 100 replications

Run Length Mean Std.Dev. c.i. half-width c.iJ.1. c.i.u.1.

500 0.51 0.20 0.04 0.47 035

6000 0.50 0.08 0.02 0.49 032

10000 031 0.04 0.01 030 032

Results based on 400 replications

Run Length Mean Std.Dev. c.i. half-width C.LU. c.i.u.1.

500 030 0.18 0.02 0.48 032

6000 031 0.08 0.01 030 032

10000 031 0.04 0.00 031 032

Results based on 700 replications

Run Length Mean Std.Dev. c.L half-width ci.1.1. c.i.u.1.

500 030 0.18 0.01 0.49 032

6000 031 0.08 0.01 030 032

10000 031 0.04 0.00 031 031

Table DJ2.0. WAIT c.i. width and lower and upper c.i. limits for 

different simulation run lengths and different number of replications.
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Results based on 100 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

500 11.86 9.87 1.96 9.90 13.82

6000 13.79 5.77 1.14 12.65 14.94

10000 14.50 3.27 0.65 13.85 15.15

Results based on 400 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

500 11.06 8.15 0.92 10.14 11.99

6000 13.77 5.73 0.65 13.12 14.42

10000 14.58 336 038 14.20 14.96

Results based on 700 replications

Run Length Mean Std.Dev. c.L half-width c.i.1.1. c.i.u.1.

500 10.85 833 0.61 10.24 11.46

6000 14.09 6.45 0.48 13.61 1437

10000 14.72 3.73 0.28 14.45 15.00

Table DJZ.b. ALLQ c.i. width and lower and upper c.i. limits for 

different simulation run lengths and different number of replications.
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Results based on 100 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

500 4.03 0.68 0.13 3.89 4.16

6000 4.05 0.25 0.05 4.00 4.10

10000 4.00 0.14 0.03 3.97 4.03

Results based on 400 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

500 3.99 0.63 0.07 3.92 4.07

6000 4.01 0.25 0.03 3.98 4.04

10000 3.99 0.14 0.02 3.98 4.01

Results based on 700 replications

Run Length Mean Std.Dev. c.i. half-width c.i.1.1. c.i.u.1.

500 4.01 0.67 0.05 3.96 4.06

6000 4.00 0.26 0.02 3.98 4.02

10000 3.99 0.15 0.01 3.98 4.00

Table D.2.C. IDLE c.i. width and lower and upper c.i. limits for 

different simulation run lengths and different number of replications.
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D.2.5. THE STEELWORKS MODEL : ESTIMATION OF THE 

NUMBER OF REPLICATIONS

Two queues have been studied in this model: the TBLOWQ and the 

PITQ queues, both belonging to the TORPEDO entity. Following the double 

sequential approach we have estimated a number of 100 replications in order 

to obtain accurate steady state mean estimates.

D.2.6. THE STEELWORKS MODEL: EVALUATION OF THE

PERFORMANCE OF THE PROPOSED PROCEDURE.

Figures D.7. (TBLOWQ) and D.8. (PITQ) show the mean queuing time 

estimates as a function of the simulation run length and of the number of 

replications. They show how the approximation for the number of replications 

is good and how an increase in the number of replications does not change the 

shape of the curve.

TBLOWQ (3TEELOWRK3)
Estimated number of replications : 10O

Legend 

—*— 100 Repl.

  300 Repl.

-  600 Repl.

130 -

120

IIO-

lOO

SO

80 -Lt-tt 
1600 42000 56600

Simulation run length
6900015000

Figure D.7. TBLOWQ mean queuing time estimates as a function of the 

simulation run length and of the number of replications.

248



37.5

32.5

22.5

PITQ (STEELWORKS)
Estimated number of replications : 10O

Legend 

—— 100 Repl.

  300 Repl.

- ■» 600 Repl.

1500 15000 28500 42000 55500
Simulation run length

69000

figure D.8. PITQ mean queuing time estimates as a function of the 

simulation run length and of the number of replications.
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APPENDIX E: GORDON’S METHOD FOR THE

ELIMINATION OF THE INFLUENCE OF THE INITIAL 

CONDITIONS

E .l. GORDON’S METHOD : DESCRIPTION

This method proposed by Gordon to deal with the initialisation bias 

problem is a heuristic method supported by basic statistical theory. Using the 

method of replications k replications are made. In each replication the sample 

size is n. Therefore k estimates Xl7 X^ ... Xk are obtained where Xj is the 

estimate obtained from replication i.

The mean estimate Y is given by the average of the k different 

estimates X^

_ *
Y = 1 /* * £ * ,

i-1

and the standard deviation of the mean estimate Y is estimated by s:

s  =
E
i-1______________

(* -1)

Gordon states that as the individual values Xj are the average of n 

values, then the variance of Xj is proportional to 1/n or, equivalently, the 

standard deviation will be proportional to (1/n)1/2 once the influence of the 

initial conditions has disappeared. However, due to the high variability of the 

estimates, it is necessary to obtain k replications, and use the average Y as the 

mean estimate for a sample of size n. The variance of Y is also proportional 

to 1/n. Therefore the value of n for which a graph of Log((Var(Y ))K) vs. 

Log(n) for increasing values of n becomes linear with a slope of -h can be 

chosen as the number of initial observations to be deleted.
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B2. DISCUSSION OF GORDON’S METHOD

In order to compare this method to the method proposed in Chapter 4 

some experiments were performed using it, and once the value "n" of the 

number of observations to be deleted was approximately estimated, the 

simulation run length corresponding to this number of observations "n" was 

determined.

The first problem the simulation practitioner faces is that the 

determination of the value n for which the graph becomes linear and with 

slope -h is not straightforward. By this we mean that in general this slope is 

not constant but has a variation over a rather large range of values. On the 

other hand the standard deviation is influenced by the number of replications. 

And because the number of replications that is required for this influence to 

disappear depends on the parameter and on the model, the application of this 

method is not straightforward. This is another reason for which the decrease, 

at least for a number of replications that is not so large as to make the method 

of little practical value, does not have a constant slope. All these problems 

lead to an overestimation of the number of observations to be deleted as is 

shown in Chapter 4 where the run-in-period obtained using Gordon’s method 

is compared to the run-in-period obtained with our method.

E 3. EMPIRICAL RESULTS

Run-in-periods were estimated using this last method for the following 

simulation models:

1. The PUB.

2. The LAUNDERETTE.

3. The STEELWORKS.

4. The M/M/1 queue.

5. The M/M/4 queue.

6. The 2-Stage Queuing System.
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For some of the queues of these models discussed in Chapter 4 (or in 

Appendix F) we show the graph of the logarithm of the standard deviation as 

a function of the logarithm of the number of observations and try to estimate 

the value of n for which the graph is linear with slope -h-

E3.1. THE PUB

Figures E .l. and E.2 apply Gordon’s method to the mean queuing time 

and the mean queue length of the CLEAN queue of the PUB model. From 

these figures the graph becomes approximately linear with slope -h for values 

of n greater than 500 (i.e. Log 500=2.699). This number of observations 

corresponds to a simulation run length of 2520. It is important to notice that 

this value is not exact but an approximation. If the number of observations is 

fixed, the simulation run length required to take the same number of 

observations in different replications becomes a random variable; similarly, 

when we fix the simulation run length the number of observations recorded for 

this simulation run length in different replications becomes a random variable; 

this means that in different replications the corresponding random variable 

(the simulation run length when the number of observations that are recorded 

is fixed, or vice versa) takes different values, but nevertheless they do not 

differ greatly.

To show why it is difficult to estimate the number of "customers" for 

which the standard deviation graph has a slope of -h, Table E.1 gives the 

values of the standard deviation for the CLEAN mean queuing time as a 

function of the number of customers, and it also gives the slope of the graph. 

Data has not been recorded for customers 1, 2... but for groups of L, 2L, 3L... 

customers. With this convention in mind, the "slope" given in Table E.1. is 

calculated as :

LOG(Std. Dev(n+L)) - LOG (Std. Dev. (n))

LOG(n+L) - LOG(n)
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CLEAN (PUB)
Queuing Time

1.8

1.7

1.6

1.5

1.4

^  1.3
CDO
- ■  1 . 2

2.2 2.4 2.6
LOG (Number of Glasses "served")

3.2 3.42.8

Figure E.1. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observations in the 

CLEAN queue.

CLEAN (PUB)
Q ueue Length

0.6

0.55

0.5

® 0.45

0.3o
0.25

0.2
3.2 3.41.8 2 2.2 2.4 2.6 2.8

LOG (Number of Glasses In queue)
31.6

Figure E2. Logarithm of the standard deviation of the mean queue 

length as a function of the logarithm of the number of observations in the 

CLEAN queue.
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PUB - GORDON’S RULE

QUEUING TIME

N.Cust. Std.Dev. Slope

50 50.488

100 41.251 -0.292

150 38.656 -0.160

200 36.863 -0.165

250 35.160 -0.212

300 33.822 -0.213

350 32.690 -0.221

400 32.140 -0.127

450 32.611 0.123

500 33.062 0.130

550 31.537 -0.496

600 29.315 -0.840

650 27.120 -0.972

700 25.794 -0.677

750 25377 -0236

800 24.707 -0.414

850 24.046 -0.448

900 24.058 0.009

950 23384 -0.368

1000 23.485 -0.082

1050 22.816 -0392

1100 21.697 -1.081

1150 20.646 -1.117

1200 20.497 -0.171

1250 20386 0.107

1300 19.924 -0334

Table E.1. STANDARD DEVIATION corresponding to the CLEAN 

mean queuing time as a function of the number of "customers" in the queue.
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where "Std. Dev(n+L)" is the standard deviation when "n+1" "customers” have 

been serviced; if the standard deviation has a constant fall we would expect 

this value of the slope to be a constant, or at least, close to

From this table it can be noted how the slope is far from being constant 

and the value of n=500 chosen as the truncation approximation is a very crude 

approximation.

E3.2. THE LAUNDERETTE

Table E.2. gives the same information of Table E.1. for the DRYQ 

mean queuing time parameter. As in the case of Table E.1. the estimation of 

the value of n for which the slope becomes -h is not easy and we simply use 

a very poor and crude approximation for this value.

Figures E.3. and E.4 give the graphs of the logarithms of the standard 

deviation as a function of the number of observations for the mean queuing 

time and the mean queue length of the DRYQ. A rough approximation gives 

a value of n=200 as the value for which the graph becomes approximately 

linear with a slope of This number of observations corresponds to a 

simulation run length of 3780.

E3 3 .  THE STEELWORKS

In this system we are interested in obtaining a run-in-period for the 

mean queuing time and the mean queue length of the TBLOWQ.

The graph for the mean queuing time parameter is given in Figure E.5 

and from this graph the number of n for which the graph becomes linear with 

slope -h is 220 which roughly corresponds to a simulation run length of 13200. 

A  similar graph for the mean queue length parameter gives an estimated run- 

in-period of 13200.
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LAUNDERETTE - GORDON’S RULE

No. Cust. Std. Dev. Slope No. Cust. Std. Dev. Slope

130 9.492 0.409 470 6.227 -0.769

140 9.711 0308 480 6.153 -0365

150 9.974 0.387 490 6.079 -0386

160 10.262 0.442 500 5.976 -0.847

170 10.519 0.409 510 5.9 -0.645

180 10.74 0.364 520 5.822 -0.687

190 10.757 0.029 530 5.714 -0.983

200 10.639 -0.215 540 5.62 -0.89

210 10.309 -0.646 550 5364 -0349

220 9.889 -0.892 560 5339 -0.245

230 9.512 -0.875 570 5313 -0.265

240 9.183 -0.826 580 5.494 -0.202

250 8.959 -0.607 590 5304 0.111

260 8.778 -0319 600 5327 0.243

270 8.631 -0.447 610 533 0.034

280 8.503 -0.411 620 5326 -0.049

290 8.409 -0.317 630 532 -0.058

300 8.278 -0.465 640 5324 0.045

310 8.136 -0326 650 5352 0324

320 8.004 -0316 660 5372 0.237

330 7.895 -0.443 670 5383 0.134

340 7.812 -0.354 680 5371 -0.145

350 7.787 -0.114 690 5357 -0.174

360 7.743 -0.2 700 5335 -0.278

370 7.565 -0.846 710 5.499 -0.461

380 7.389 -0.885 720 5.446 -0.694

390 7.165 -1.184 730 5.373 -0.98

400 6.95 -1.206 740 5.302 -0.975

410 6.831 -0.7 750 5.242 -0.844

420 6.737 -0371 760 5.175 -0.97

430 6.642 -0.606 770 5.111 -0.964

440 6.561 -0334 780 5.046 -0.994

450 6.442 -0.812 790 5.016 -0.468

460 6.331 -0.792 800 5(11 -0 (IRQ

Table EJ2. STANDARD DEVIATION corresponding to the DRYQ 

mean queuing time as a function of the number of "customers" in the queue.
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DRYQ (LAUNDERETTE)
Q ueuing Tim e

0.9

0.8

0.7

^  0.6  CDo
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0.4
1 . 6 2.4 2.6 2.81 . 2 1.4 1.8 2 2.2 

LOG (Number units "served") •

Figure E3 . Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observations in the 

DRYQ queue.

DRYQ (LAUNDERETTE)
Q ueue Length

0.2

k -o.i
b -0 .2“O
j? -0.3 (/̂
CD —0.4 o I

-0.5

- 0.6
2.6 2.81.4 1.6 1.8 

LOG (Number units "served” )
2.2 2.40

Figure E.4. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observations in the 

DRYQ.
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TBLO W Q  ( S T E E L W O R K S )
Queuing Time

1 .35

1 .25

O 1 .05

0.95
2.6 2.81.8 2 2.2 2.4

L og(N u m b er o f  u n its  ' 's e r v e d '')
1 .4 1 .6

Figure E.5. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observations in the 

TBLOWQ queue.

E3.4. THEM/M/1 QUEUE.

The M/M/1 queue with arrival rate A=1/15 and service rate At=1/10 

was simulated for different number of "customers" waiting to be served, "n".

Figure E.6 gives the graph of the logarithm of the standard deviation of the

mean queuing time as a function of the logarithm of n.

The slope of the graph becomes -h for approximately Log(n)=2, which 

corresponds to n=100. The approximate simulation run length is 2500. The 

graph for the mean queue length parameter is similar and gives the same run- 

in-period of 2500.

E3 5 .  THEM/M/4 QUEUE

This queue with arrival rate of 1/15 and service rate of 1/50 was 

simulated for different number of customers being served, and Figure E.7 gives 

the graph of the logarithm of the standard deviation of the mean queuing time 

as a function of the logarithm of the number of customers being served.
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M / M / 1 Q u e u e
Q ueuing Time

00

1 .1 3 “
.2 1*1

o>

b ° - 9 5  “
O

o °*s  " 
—1 n 7 *=> -

1 .0 0 0  2 .0 7 9  2 .3  
L

62  2 .5 3 1  2 .6 5 3  2 .7 4 8  2 .8 2 6  2 .8 9 2  2 .9 4 9  3 .0  
og (Number "C ustom ers" In the queue)

m 5 0  Replications

Figure E.6. Logarithm of the standard deviation of the mean queueing 

time as a function of logarithm of the number of observations in the M/M/1 

queue.

M / M / 4  QUEUE
G ordon's Rule (Q ueuing T im e)

Cao>25 1.55
o> 1.5
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1  1 .4
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*5 1 .35o
•P  1 *o-aco 1.25

oo_I 1
2 2 .5

LOG (Number of "custom ers served")
3 .51.5

Figure E.7. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of observations in the 

M/M/4 queue.

259



From this graph the slope becomes approximately -h for values of the 

X-axis greater or equal to 2.954, which corresponds to 900 customers being 

served. The corresponding run-in-period can be approximated by 7650.

E3.6. JACKSON’S MODEL

The description of this model has been taken from Winston (1987) and 

was given in Section A2.7.

The queue for the ENGINES being installed has been studied and the 

run-in-period for its mean queuing time has been estimated using Gordon’s 

method. Figure E.8. shows the graph of the logarithm of the standard 

deviation of the mean queuing time as a function of the logarithm of the 

number of cars in this queue.

JACKSON' Model
G ordon's rule (Q ueuing T im e)

2 .4

s  2 .3 5

2 .2 5

2.1 5
2 .6  2 .8  3 3 .2

Log (Number of Engines fitted)
3 .4 3 .6 3 .82.2 2 .4

Figure E.8. Logarithm of the standard deviation of the mean queuing 

time as a function of the logarithm of the number of cars waiting for an 

ENGINE to be fitted.
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From the graph we identify a value of 3.279 as the X-axis for which the 

slope of the curve becomes -%. This corresponds to a number of 1900 cars 

having the engine fitted. For this number the approximate run-in-period is 

114700.
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APPENDIX F : FURTHER ANALYSIS OF THE EMPIRICAL 

RESULTS CORRESPONDING TO THE SIMULATION MODELS 

USED IN CHAPTER 4

F .l. INTRODUCTION

In this appendix, we analyse some additional results used to test the 

method based on the standard deviation of the sample mean for the estimation 

of a suitable run-in-period to reduce the bias due to the influence of the initial 

conditions.

Results have been obtained for some queues of the LAUNDERETTE, 

the PUB, and the STEELWORKS models.

In Section F.2. we summarise some of the important points discussed in 

Chapter 4 concerning the use and evaluation of the method there proposed, 

and in Section F.3. we discuss the additional results obtained to test the 

performance of the run-in-periods estimated with our method.

F.2. MEASURES OF PERFORMANCE.

In this section we define some measures of performance that may be 

used for the evaluation of the new method proposed here (or any other 

method) for dealing with the initialisation bias problem.

As was discussed in Chapter 2, a parameter will be considered to be in 

the steady state when the mean estimates fall within e = 2.5% of the real 

steady state value, m, calculated in an empirical way in Appendix C.

With this convention in mind, we can define what a "good” run-in-period 

is. In practice the following three conditions should be met for a run-in-period 

to deal successfully with the initialisation bias problem:

1. When a run-in-period is used, the observations obtained for short 

simulation run lengths should be closer to the steady state value il as compared 

to the observations obtained when no run-in-period is used.
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2. Estimates that fall within a value e (see discussion above and in 

Chapter 2) of the real steady state value should be obtained for shorter 

simulation run lengths than if no run-in-period or longer or shorter run-in- 

periods are used.

3. In the case that for more than one value of a run-in-period the 

parameter reaches the steady state for approximately the same simulation run 

length, the run-in-period giving estimates closer in absolute value to the steady 

state value performs better.

F3 .  ANALYSIS OF THE RESULTS

In this section we discuss results obtained for some of the queues of the 

different simulation models that have been used in this thesis for testing the 

proposed procedure. The study of these models is divided into two parts: 

estimation of the run-in-period and evaluation of its performance.

F3.1. THE LAUNDERETTE.

Results for the queuing time and the queue length of the DRYQ queue 

were discussed in Chapter 4. In this appendix we present similar results for 

the following queues: WASHQ, DRIER, WMIDLE, BIDLE (See Figure A.5, 

Appendix A).

1. Estimation of the run-in-periods.

In order to obtain an estimate of the run-in-period we make 20 repli

cations and obtain the mean estimates for different simulation run lengths, Tv  

2TV.. From empirical results the value of T\ (where T1 = Tg/N, see section 

4.4.3), which is not critical, can be chosen to be slightly larger than the 

maximum activity execution time which in this example has a mean of 40 

minutes (Activity LOADW). According to this rule we chose Tx = 60. We 

also need to calculate the standard deviation of the mean estimates. By either
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graphing this value as a function of the simulation run length, or by analysing 

the numerical values, the run-in-period to be used is set equal to the 

simulation run length for which the standard deviation reaches a maximum. 

Graphs for the standard deviation corresponding to the mean queuing time of 

the queues of this model studied in this appendix are given in the following 

figures:

FIGURE QUEUE PARAMETER

F.l WASHQ Queuing Time

F.2. BIDLE Queuing Time

F.3. WMIDLE Queuing Time

F.4. DRIER Queuing Time

WAS HQ (LAUNDERETTE)
0.8-1

0 .7 -

EB

0 .5 -

I
0 .3

780  960  1140 1320  1500  1680
Run Length

60 240 420 6 0 0

Figure F .l. STANDARD DEVIATION of the WASHQ mean queuing 

time estimates as a function of the simulation run length.
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BIDLE (LAUNDERETTE)
2 -.

1 . 8 -

1 . 6 -

1 .4 -

1 . 2 -

0. 8 -

0.6 -

0 .4 -

0. 2 -

60 240 420 600 960 1140 1320  1600 1680

Figure F.2. STANDARD DEVIATION of the BIDLE mean queuing 

time estimates as a function of the simulation run length.

WMIDLE (LAUNDERETTE)
1.3-,
1. 2 -

0 .9 -
0.8 -

0 .7 -
0. 6 -

0 .5 -
0 .4 -
0 .3 -
0.2

60 240 420 60 0 780 
R un Length

960  1140 1320  1500  1680

Figure F3 . STANDARD DEVIATION of the WMIDLE mean queuing 

time estimates as a function of the simulation run length.
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DRIER (LAUNDERETTE)
0.21 -i
0 .1 9 -
0 .1 7 -
0 .1 5 -
0 .1 3 -
0.11 -

0 .0 9 -
3  0 .0 7  -
f t  0 .0 5 - 

0 .0 3 -
0.01

1140 1320  1500  163060 240 600 780 960
Run Ljsngth

Figure F.4. STANDARD DEVIATION of the DRIER mean queuing 

time estimates as a function of the simulation run length.

From these graphs, or equivalently, from the numerical values for the 

standard deviation of the mean estimates, given as a function of the simulation 

run length in Tables F .la (mean queuing time) and F.lb (mean queue length), 

the following run-in-periods are obtained:

QUEUE PARAMETER RUN-IN

WASHQ Queuing time 660

WASHQ Queue length 660

BIDLE Queuing time 1320

BIDLE Queue length 1320

WMIDLE Queuing time 120

WMIDLE Queue length 60

DRIER Queuing time 120

DRIER Queue length 300

Table F.2. Run-in-periods estimated for some queues of the 

LAUNDERETTE model.
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LAUNDERETTE: STANDARD DEVIATION (Mean Queuing Time Estimates)

Run Length WASHQ BIDLE WMIDLE DRYQ DRIER

60 2539 2.492 8.680 0.000 1.413

120 3563 8514 12.459 3.146 5598

180 2.944 14.110 10512 2.987 4.925

240 3594 16558 9.779 2.911 3.436

300 3.416 15.090 8.472 3.629 3.184

360 3.427 15.430 7.414 4.703 2351

420 3.460 14.873 6.649 5525 1.883

480 3.398 14.732 5.724 6.772 1.764

540 3.691 14500 5.620 7538 1.473

600 3.988 15.105 5.843 8.231 1.402

660 4.208 15.682 5.903 8567 1396

720 4.019 16530 5580 9547 1385

780 3.845 16.416 4.997 10.131 1399

840 3579 16573 4.853 10515 1.241

900 3.418 16.391 4.867 10.674 1.211

960 3.474 16.430 5.011 10.916 1301

1020 3543 16.784 5.084 11.132 1343

1080 3514 16.962 4.843 11344 1331

1140 3.421 16.958 5.122 11.461 1313

1200 3.487 17.196 5514 11553 1.352

1260 3542 17.877 5.445 11.758 1.434

1320 3517 18.088 5.253 11.967 1398

1380 3552 17.924 4.931 12.039 1357

1440 3.229 17.648 4.927 11.919 1338

Table F .la. STANDARD DEVIATION corresponding to the mean 

queuing time estimates as a function of the simulation run length, for different 

queues of the LAUNDERETTE model.

267



LAUNDERETTE : STANDARD DEVIATION (Mean Queue Length Estimates)

Run Length WASHQ BIDLE WMIDLE DRYQ DRIER

60 0.765 0.251 1.114 0.044 0.037

120 0.642 0.488 1.031 0345 0.148

180 0.475 0302 0.866 0341 0.188

240 0.530 0343 0.878 0.394 0.181

300 0.527 0.673 0.775 0321 0.188

360 0.556 0.825 0.708 0.697 0.166

420 0.529 0.970 0.622 0.858 0.141

480 0341 1.082 0353 0.973 0.138

540 0387 1.193 0347 1.102 0.122

600 0.635 1.287 0375 1.203 0.121

660 0.660 1391 0383 1.285 0.119

720 0.618 1.483 0355 1392 0.122

780 0378 1349 0306 1.459 0.119

840 0337 1387 0.496 1.499 0.117

900 0319 1.608 0302 1325 0.118

960 0334 1.636 0314 1355 0.124

1020 0341 1.676 0317 1388 0.129

1080 0328 1.693 0305 1.616 0.129

1140 0324 1.714 0325 1.631 0.127

1200 0331 1.745 0350 1.657 0.131

1260 0328 1.770 0330 1.689 0.137

1320 0313 1.777 0312 1.697 0.135

1380 0.486 1.774 0.486 1.694 0.132

1440 0.466 1.753 0.478 1.673 0.131

Table F.lb. STANDARD DEVIATION corresponding to the mean 

queue length estimates as a function of the simulation run length, for different 

queues of the LAUNDERETTE model.
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2. Evaluation of the run-in-periods performance

To check in an empirical way how well the estimated run-in-periods 

perform in terms of the elimination or reduction of the influence of the initial 

conditions we need to obtain the mean estimates as a function of the 

simulation run length; to compare the performance of the estimated run-in- 

period to other run-in-periods, we obtain mean estimates not only for this run- 

in-period but also for longer and shorter run-in-periods, and when no run-in- 

period is used. The steady state is reached when the mean estimates fall 

within 2.5% of the steady state value (fi). The value of fi (Appendix C), and 

the range of values for which each parameter can be considered to be in the 

steady state, for each one of the queues of interest in this model are the 

following:

== = = = QUEUING TIME VALUES = = = ==

Queue Steady state (/t) Range

WASHQ 6.675 [6.508 , 6.842]

BIDLE 67.260 [65.578 , 68.940]

WMIDLE 12.780 [12.460 , 13.100]

DRIER 1.990 [1.940 , 2.040]

= = = = QUEUE LENGTH VALUES = = = =

Queue Steady state (jit) Range

WASHQ 0.835 [0.814 ,0.856]

BIDLE 8.413 [8.203 , 8.623]

WMIDLE 1.599 [1.552 , 1.639]

DRIER 0.249 [0.246 , 0.253]

The mean queuing time and the mean queue length estimates as a func

tion of the simulation run length and of different run-in-periods are given in 

tables F.3. (WASHQ), F.4. (BIDLE), F.5. (WMIDLE), and F.6. (DRIER). 

The columns marked with "**" correspond to the mean estimates obtained with 

the run-in-period estimated in this appendix, and given in Table F.2.
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WASHQ mean queuing time estimates

Run Length Run-In 0 Run-In 120 Run-In 300 Run-In 660 Run-In 1100

*•

3000 5.976 6.124 6.183 6.203 6.163

4000 6.122 6.236 6.284 6.307 6.293

5000 6.246 6.339 6.381 6.406 6.408

6000 6.361 6.440 6.478 6309 6.514

7000 6.424 6.493 6.526 6350 6362

8000 6.441 6.502 6330 6352 6361

9000 6.488 6.543 6569 6390 6.600

10000 6.520 6369 6593 6.612 6.622

11000 6.517 6562 6584 6301 6.609

12000 6.533 6575 6595 6.610 6.618

WASHQ mean queue length estimates

Run Length Run-In 0 Run-In 120 Run-In 300 Run-In 660 Run-In 1100

**

3000 0.766 0.785 0.792 0.796 0.794

4000 0.781 0.795 0.801 0.804 0.805

5000 0.794 0.806 0.811 0.814 0.816

6000 0.807 0.817 0.821 0.824 0.827

7000 0.813 0.821 0.825 0.828 0.830

8000 0.814 0.821 0.825 0.827 0.829

9000 0.819 0.826 0.829 0.832 0.833

10000 0.822 0.829 0.831 0.834 0.835

11000 0.821 0.827 0.829 0.831 0.833

Table F 3. WASHQ mean queuing time and mean queue length as a 

function of the simulation run length and of the run-in-period.
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BIDLE mean queuing time estimates

Run Length Run-In 0 Run-In 300 Run-In 660 Run-In 1320 Run-In 1500

**

3000 69.885 68.687 68.280 68.2303 68.290

4000 69.457 68353 68.258 68.2504 68303

5000 69.054 68.321 68.079 68.0448 68.072

6000 68.797 68.181 67.979 67.9371 67.952

7000 68.539 68.006 67.827 67.7739 67.782

8000 68.371 67.901 67.741 67.6877 67.693

9000 68.177 67.756 67.610 673513 67352

10000 68.046 67.664 67330 67.4718 67.470

BIDLE mean queue length estimates

Run Length Run-In 0 Run-In 300 Run-In 660 Run-In 1320 Run-In 1500

• *

3000 8.660 8302 8.451 8.424 8.420

4000 8.614 8.496 8.459 8.444 8.443

5000 8.576 8.480 8.450 8.438 8.437

6000 8.551 8.471 8.446 8.436 8.435

7000 8.526 8.456 8.435 8.425 8.424

8000 8.511 8.450 8.431 8.423 8.422

9000 8.494 8.439 8.422 8.414 8.413

10000 8.482 8.433 8.417 8.409 8.408

Table F.4. BIDLE mean queuing time and mean queue length 

estimates as a function of the simulation run length and of the run-in-period.
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WMIDLE queuing time estimates

Run Length Run-In 0 Run-In 120 Run-In 300 Run-In 660 Run-In 1100

**

3000 13341 13.056 13.021 13.065 13.095

4000 13.255 13.041 13.016 13.047 13.067

5000 13.177 13.005 12.984 13.006 13.015

6000 13.122 12.978 12.961 12.978 12.983

7000 13.059 12.935 12.919 12.932 12.932

8000 13.031 12.923 12.909 12.919 11918

9000 12.984 12.887 12.874 12381 12.878

10000 12.958 12.871 12.859 12.865 11862

WMIDLE mean queue length estimates

Run Length Run-In 0 Run-In 60 Run-In 300 Run-In 660 Run-In 1100

**

3000 1.657 1.611 1.609 1.610 1.608

4000 1.647 1.612 1.611 1.612 1.611

5000 1.639 1.611 1.610 1.611 1.610

6000 1.633 1.610 1.609 1.610 1.609

7000 1.627 1.607 1.606 1.606 1.605

8000 1.624 1.606 1.605 1.606 1.605

9000 1.619 1.604 1.603 1.603 1.602

10000 1.617 1.603 1.602 1.602 1.601

Table F.5. WMIDLE mean queuing time and mean queue length as a 

function of the simulation run length and of the run-in-period.
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DRIER mean queuing time estimates
Run Length Run-In 0 Run-In 120 Run-In 300 Run-In 660 Run-In 1100

• *

3000 2.432 2.105 2.063 2.053 2.057

4000 2.337 2.093 2.062 2.056 2.059

5000 2.269 2.074 2.049 2.043 2.044

6000 2.228 2.066 2.045 2.040 2.041

7000 2.193 2.055 2.037 2.032 2.032

8000 2.166 2.040 2.029 2.025 2.024

9000 2.141 2.034 2.019 2.015 2.014

10000 2.125 2.028 2.015 2.011 2.010

11000 2.110 2.022 2.010 2.006 2.005

12000 2.098 2.017 2.006 2.003 2.002

13000 2.084 2.010 2.000 1.996 1.995

Table F.6. DRIER mean queuing time estimates as a function of the 

simulation run length and of the run-in-period.

We have not given the mean queue length estimates for the DRIER 

queue in Table F.6. as the mean steady state value is very small and as 

discussed in Section 2.6.1. we consider that in these cases a different estimator 

from the mean should be used. We have underlined in the previous tables the 

mean estimates beyond which the parameter can be considered to be in the 

steady state. From these values we can notice how in all the cases, except for 

the DRIER mean queuing time estimates, the steady state is reached for 

shorter simulation run lengths when the estimated run-in-period is used. In 

the case of the DRIER queue if a run-in-period of 660 is used, the steady state 

is reached for a simulation run length of 6000, instead of a simulation run 

length of 7000. The difference is not big enough as to make the proposed 

method useless, and considering that we deal with stochastic systems, there is 

always a small margin of uncertainly which is why we do not expect optimal. 

but good results. But nevertheless, the mean estimates in the columns marked 

"**" are usually closer to the value of n, especially when the steady state is also 

reached for the same simulation run length using a shorter run-in-period (for 

example Table F.4, BIDLE queue).

273



1

F3 2 . THE PUB.

1. Estimation of the run-in-periods

Run-in-periods are estimated for the mean queuing time and the mean 

queue length of three queues of this model: the WAIT, the CLEAN and the 

IDLE queue. Table F.7. gives the different probability distributions of the 

different execution times of the activities of this model:

ACTIVITY EXECUTION TIME (Probability Distribution)

ARRIVE NEGATIVE EXPONENTIAL , MEAN 15;

POUR NORMAL; MEAN : 6; STANDARD DEVIATIONS;

DRINK UNIFORM between 5 and 9;

WASH 5

Table F.7. Probability distributions of the execution time of the 

different activities of the PUB model.

Considering the mean value of the probability distributions which 

appear in Table F.7. the maximum activity execution time takes 15 units of 

time. To show that the selection of the value Tt is not critical as long as it is 

not extremely long, a value of Tj=60 was used (4 times greater than the 

maximum activity execution time). As in previous examples, we graph the 

standard deviation estimates corresponding to the mean queuing time 

parameters as a function of the simulation run length, for periods of time of 

60, 120... minutes. These graphs are given in Figures F.5. (CLEAN), F.6. 

(IDLE), and F.7. (WAIT). Similar graphs can be drawn for the mean queue 

length parameters.

From these graphs (and similar ones for the mean queue length 

parameters) we estimate the following run-in-periods:
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Queue Parameter Estimated Run-In-Period

WAIT Queuing time 120

IDLE Queuing time 60

CLEAN Queuing time 540

WAIT Queue length 120

IDLE Queue length 60

CLEAN Queue length 180

Table F.8. Estimated run-in-periods for the queues of interest in the 

PUB model.

2. Evaluation of the run-in-periods performance.

To evaluate the behaviour of the run-in-periods estimated with our 

method we obtained the mean estimates as a function of the simulation run 

length and for different run-in-periods.

The steady state as well as the range of values that fall within 2.5% of 

the value of [i given in Appendix C, and for which the corresponding 

parameter can be considered to be in the steady state, are the following:

Queue

WAIT

QUEUING TIME VALUES 

Steady state (/i)

1.141

Range 

[1.112 , 1.169]

CLEAN 209.400 [204.1 , 214.6]

IDLE 2.001 [1.950 , 2.05 ]

=------ QUEUE LENGTH VALUES

Queue Steady state (/i) Range

WAIT 0.228 [0.222 , 0.233]

CLEAN 41.880 [40.830 , 42.930]

IDLE 0.800 [0.780 , 0.820]
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CLEAN (PUB)
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Figure F.5. STANDARD DEVIATION of the CLEAN mean queuing 

time estimates as a function of the simulation run length.

IDLEQ (PUB)
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Figure F.6. STANDARD DEVIATION of the IDLE mean queuing 

time estimates as a function of the simulation run length.
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WAITQ (RUB)

0.65-
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Figure F.7. STANDARD DEVIATION of the WAIT mean queuing 

time estimates as a function of the simulation run length.

Tables F.9., F.10. and F .ll. give the mean queuing time and the mean 

queue length estimates for the WAIT, CLEAN, and IDLE queues respectively. 

Columns marked "**" give the mean estimates obtained using the estimated 

run-in-period (See Table F.8). The underlined values correspond to the 

estimates for which the parameter can be considered to be in the steady state, 

i.e., for the simulation run length corresponding to the underlined value, as 

well as for longer run lengths, the mean estimates fall within 2.5% of the 

steady state value.

From the values in Table F.9. for the WAIT mean queuing time 

estimates, we notice that the mean estimates are closer to n when a run-in- 

period of 120, estimated with our method, is used. We have not given the 

results for the mean queue length estimates because of the small steady state 

value. As discussed in Section 2.6.1, from a statistical point of view, a different 

estimator should be used. However, although the results are not included in 

this thesis, when the run-in-period given in Table F.8. was applied to the queue 

length parameter, the steady state was reached for a shorter simulation run 

length than if no run-in-period or longer run-in-periods had been used. This 

confirms the robustness of our method.

277



WATT mean queuing time estimates

Run Length Run-in 0 Run-In 60 Run-In 120 Run-In 300

«*

500 0.894 0.939 0.947 0.948

1000 1.018 1.044 1.052 1.071

1500 1.059 1.077 1.083 1.098

2000 1.095 1.109 1.114 1.128

2500 1.109 1.120 1.124 1.135

3000 1.109 1.119 1.123 1.132

3500 1.115 1.124 1.127 1.135

4000 1.103 1.111 1.114 1.120

4500 1.105 1.111 1.114 1.119

5000 1.108 1.114 1.117 1.121

5500 1.106 1.111 1.113 1.118

6000 1.108 1.113 1.115 1.119

Table F.9. WAIT mean queuing time estimates as a function of the 

simulation run length and of the run-in-period.

From the values in Table F.10. for the CLEAN mean queuing time esti

mates we notice that a run-in-period of 120 would give estimates closer to /z, 

and that would reach the steady state for shorter run lengths than those 

obtained with the run-in-period estimated with our method. However, the 

difference between a simulation run length of 500 and a simulation run length 

of 1500 is not extremely large, and we have to consider that there is always in 

simulation some uncertainty and randomness in the results we do not expect 

the procedure to give perfect results in every single case where it is applied. 

And at the same time we have emphasised that we are looking for good and 

not for optimal run-in-periods. In Appendix E we estimated a run-in-period 

of 2520 for the parameters of the CLEAN queue using Gordon’s method. 

From the underlined values, it is clear that the steady state is reached for 

simulation run lengths shorter than this value. Similarly, using Conway’s 

method the run-in-period is estimated as 200, which in this case gives a better 

approximation than the one determined with our method.
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CLEAN mean queuing time estimates

Run Length Run-in 0 Run-In 120 Run-In 300 Run-In 540

**

500 179302 210.024 224.920

1000 195.265 210374 216338 214.800

1500 200.475 210387 214.027 213.359

2000 202.498 210.041 212.497 212.028

2500 204.161 210.177 212.121 211.777

3000 205.005 209.988 211356 211313

3500 205.260 209304 210.796 210.436

4000 206.076 209.801 210.940 210.637

4500 206.615 209.924 210.932 210.664

5000 206.809 209.780 210.677 210.426

5500 207334 210.044 210.864 210.647

6000 207.943 210.434 211.197 211.021

CLEAN mean queue length estimates

Run Length Run-in 0 Run-In 120 Run-In 180 Run-In 300

**

500 43.337 42.431 42.245 41.927

1000 42.487 41.981 41.875 41.720

1500 42.337 42.001 41.936 41.852

2000 42.154 41.896 41.845 41.779

2500 42.079 41.872 41.831 41.780

3000 42.054 41.882 41.849 41.808

3500 41.998 41.849 41.821 41.785

4000 42.040 41.912 41.888 41.859

4500 42.046 41.932 41.911 41387

5000 42.030 41.927 41.908 41.886

5500 42.050 41.958 41.941 41.922

6000 42.061 41.977 41.961 41.944

6500 42.060 41.982 41.969 41.953

Table F.10. CLEAN mean queuing time and mean queue length 

estimates as a function of the simulation run length and of the run-in-period.
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IDLE mean queuing time estimates

Run Length Run-in 0 Run-In 60 Run-In 120 Run-In 300

**

500 2.839 2.520 2.450 2.608

1000 2.370 2211 2.164 2.145

1500 2.241 2.135 2.102 2.084

2000 2.180 2.101 2.075 2.063

2500 2.151 2.088 2.068 2.058

3000 2.120 2.067 2.050 2.040

3500 2.093 2.048 2.033 2.024

4000 2.088 2.048 2.035 2.028

4500 2.074 2.039 2.028 2.020

5000 2.066 2.035 2.024 2.018

5500 2.066 2.037 2.028 2.022

6000 2.069 2.043 2.034 2.029

6500 2.063 2.039 2.031 2.026

7000 2.058 2.035 2.028 2.023

7500 2.059 2.038 2.031 2.027

8000 2.054 2.034 2.028 2.024

8500 2.055 2.036 2.030 2.027

9000 2.050 2.032 2.026 2.023

9500 2.049 2.033 2.027 2.024

IDLE mean queue length estimates

Run Length Run-in 0 Run-In 60 Run-In 120 Run-In 300

*•

500 0.956 0.849 0.820 0.804

1000 0.868 0.813 0.800 0.787

1500 0.847 0.810 0.801 0.794

2000 0.835 0.807 0.800 0.795

2500 0.830 0.808 0.803 0.799

3000 0.823 0.805 0.800 0.797

3500 0.817 0.801 0.798 0.795

4000 0.817 0.803 0.800 0.797

4500 0.814 0.801 0.799 0.797

5000 0.812 0.801 0.799 0.797

5500 0.813 0.803 0.801 0.799

Table F.11. IDLE mean queuing time and mean queue length estimates 

as a function of the simulation run length and of the run-in-period.
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F3 3 . THE STEELWORKS

1. Estimation of the run-in-periods

Three queues are studied in this model: TBLOWQ, PITQ, and LOADQ. 

Table F.12. gives the different execution times of the activities of the system:

Activity Execution time (Probability Distribution)

MELT NORMAL; MEAN : 110; Standard Deviation: 15;

BLOW 10;

GOING NEGATIVE EXPONENTIAL; MEAN: 10;

FILL 10

LOADIN 10;

REFINE 50 + NEGATIVE EXPONENTIAL, MEAN: 50;

TRAVEL 2;

RETURN 4;

Table F.12. Probability distributions of the execution time of the 

different activities in the STEELWORKS model.

Looking at the different execution times of the activities of this model, 

a value of = 500 was chosen. The standard deviation of the mean estimates 

as a function of the simulation run length were obtained and are given in 

Table F.13. for different simulation run lengths, for each one of the different 

queues (except the TBLOWQ queue), and for both queue parameters: queuing 

time and queue length. However, because the graphical approach is easier to 

analyse, we show in Figure F.8. the graph of the standard deviation of the 

TBLOWQ mean queuing time as a function of the simulation run length.
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STANDARD DEVIATION (STEELWORKS'*

Run Length PITQ PITQ LOADQ LOADQ

Queuing Time Queue Length Queuing Time Queue Length

500 2.954 0.254 7.634 0.182

1000 3.913 0.362 4.431 0.156

1500 5.009 0.463 2.666 0.114

2000 5.074 0.471 2.037 0.095

2500 5.114 0.490 1.776 0.085

3000 5.477 0.532 1322 0.075

3500 6.043 0.581 1.460 0.072

4000 6.420 0.607 1364 0.067

4500 6.565 0.615 1.162 0.059

5000 6.406 0.600 1.055 0.054

5500 6.175 0379 0.955 0.050

6000 5.957 0364 0.827 0.042

6500 5.847 0352 0.702 0.035

7000 5.660 0332 0.605 0.031

7500 5.588 0328 0362 0.028

8000 5.491 0318 0.556 0.028

Table F.13. Standard deviation of the mean queuing time and the mean 

queue length estimates as a function of the simulation run length, for some of 

the queues of the STEELWORKS model.

Using the results of Table F.13. or of graphs similar to the one shown 

in Figure F.8 we obtained the following run-in-periods, corresponding to the 

simulated time for which the STANDARD DEVIATION reaches its maximum:

QUEUE PARAMETER Estimated Run-In-Period

TBLOWQ Queuing Time 6500

TBLOWQ Queue Length 6500

PITQ Queuing Time 4500

PITQ Queue Length 4500

LOADQ Queuing Time 500

LOADQ Queue Length 500
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Figure F.8. STANDARD DEVIATION of the TBLOWQ mean queuing 

time estimates as a function of the simulation run length.

2. Evaluation of the run-in-periods performance

To evaluate the performance of the run-in-periods estimated using the 

proposed method, we obtained the mean estimates as a function of the 

simulation run length for different run-in-periods, including those estimated 

above, and compared them to the real steady state value (/i).

The values of /i as well as the range for which the mean estimates can 

be considered to be in the steady state (2.5% around fi) are the following:

= = = QUEUING TIME VALUES = = =

Queue

TBLOWQ

PITQ

LOADQ

Steady state (/r) 

81.588 

38.404

11.521

Range 

[ 79.548 , 83.628] 

[37.444 , 39.364] 

[11.233 , 11.809]
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= = QUEUE LENGTH VALUES = =
Queue

TBLOWQ

PITQ

LOADQ

Steady state (ji) 

2.674 

3.602 

0.707

Range

[2.607 , 2.741] 

[3.512 ,3.692] 

[0.689 , 0.725]

Tables F.14., F.15., and F.16. give the mean queuing time and the mean 

queue length for the TBLOWQ, PITQ, and LOADQ respectively (for this 

queue we only give the mean queuing time estimates), as a function of the 

simulation run length and of the run-in-periods. The underlined values 

correspond to those for which the parameter can be considered to be in the 

steady state.

The run-in-period (Appendix E) for the TBLOWQ using Gordon's 

method is estimated as 12380. From the values in Table F.14. we can see that 

as in most of the examples already discussed, the steady state is reached for 

a shorter or at least for the same simulation run length if the run-in-period 

estimated with our method than if the run-in period estimated with Gordon’s 

method is used. In this case, for both the mean queuing time and the mean 

queue length parameters the steady state is reached for the same simulation 

run length, but the estimate of the standard deviation is greater when a longer 

run-in-period is used (i.e., Gordon’s run-in-period). The run-in-period 

estimated Conway’s method is 500 which in this case is underestimated.

From the values in Table F.15. for the PITQ queuing time parameter 

we observe that when the run-in-period estimated in this appendix is used the 

parameter reaches the steady state for a simulation run length of 10000 as 

compared to a run length of 50000 that is required when no run-in-period is 

used. At the same time, at least as compared to the other run-in-periods for 

which estimates were obtained in this experiment, the run-in-period for which 

convergence occurs earlier in simulated time is the one estimated with our 

method. Results for the queue length of this queue are similar, and the steady 

state is reached for the same simulation run lengths as the mean queuing time.
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STEELWORKS

TBLOWQ MEAN queuing time estimates

Run Length Run-In 0 Run-In 2500 Run-In 6500 Run-In 13200

*• (Gordon’s)

15000 92.388 85.947 82.328 81.413

20000 89.904 84.968 81329 82.078

25000 88.126 84.059 82314 81.648

30000 87.119 83.706 81.235 81.768

35000 86.500 83.553 81.390 81.990

40000 85.892 83303 81.490 81.921

45000 85.480 83.160 81356 81.961

50000 84.858 82.750 81354 81398

55000 84.685 82.728 81326 81.746

60000 84337 82328 81.317 81.627

65000 84.065 82388 8.130 81349

70000 83.832 82.273 81391 81.487

TBLOWQ mean queue length estimates

Run Length Run-In 0 Run-In 2500 Run-In 6500 Run-In 13200

15000 3.039 2.818 2.697 2.666

20000 2.954 2.785 2.670 2.689

25000 2.894 2.755 2.672 2.676

30000 2360 2.743 2.662 2.679

35000 2.838 2.737 2.668 2.686

40000 2.818 2.729 2.672 2.684

45000 2.805 2.726 2.667 2.687

50000 2.785 2.712 2.666 2.675

55000 2.778 2.711 2.665 2.679

60000 2.766 2.705 2.665 2.675

65000 2.758 2.700 2.658 2.673

70000 2.750 2.696 2.664 2.671

Table F.14. Mean TBLOWQ queuing time estimates as a function of 

the simulation run length and of the run-in-period.
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= = = PITQ mean queuing time estimates -  - -

Run Length Run-In 0 Run-In 500 Run-In 2500 Run-In 4500
**

5000 29382 30340 33.960 35.162

10000 33.614 34.323 36.467 37.470

15000 35.225 35.730 37233 37.910

20000 36.030 36.420 37379 38.072

25000 36.485 36.798 37.747 38.125

30000 36.786 37.051 37.841 38.156

35000 37.027 37.256 37.933 38206

40000 37.254 37.456 38.051 38295

45000 37.329 37307 38.037 38249

50000 37.458 37.622 38.102 38.290

55000 37333 37.685 38.120 38.289

60000 37.626 37.767 38.168 38.321

65000 37.709 37.839 38211 38.353

70000 37.768 37.894 38.235 38366

= = = PITQ mean queue length estimates = = =

Run Length Run-In 0 Run-In 500 Run-In 2500 Run-In 4500
**

5000 2.712 2.889 3.204 3324

10000 3.127 3.233 3.430 3322

15000 3.284 3.359 3.497 3359

20000 3.364 3.422 3328 3373

25000 3.411 3.457 3344 3379

30000 3.440 3.479 3352 3381

35000 3.464 3.498 3360 3385

40000 3.486 3316 3371 3393

45000 3.495 3321 3370 3389

50000 3307 3331 3376 3393

55000 3.515 3337 3377 3392

60000 3324 3344 3381 3395

65000 3332 3351 3385 3398

70000 3338 3356 3387 3399

Table F.15. PITQ mean queuing time and mean queue length estimates 

as a function of the simulation run length and of the run-in-period.
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= = = LOADQ mean queuing time estimates = = =

Run Length Run-In 0 Run-In 500 Run-In 2500 Run-In 4500
**

5000 14.754 12.081 11.602 11.435

10000 13.100 11.775 11334 11.498

15000 12.567 11.686 11329 11308

20000 12.303 11.644 11325 11312

25000 12.136 11.609 11315 11304

30000 12.025 11.585 11306 11.497

35000 11.953 11.577 11309 11302

40000 11.894 11.565 11306 11.499

45000 11.849 11357 11304 11.498

50000 11.824 11361 11314 11309

55000 11.799 11360 11317 11313

60000 11.766 11347 11308 11303

65000 11.743 11341 11305 11301

70000 11.733 11345 11312 11308

Table F.16. LOADQ mean queuing time estimates as a function of the 

simulation run length and of the run-in-period.

In Table F.16. we give only the mean queuing time estimates as the 

steady state mean queue length value is small and will not be used to test this 

procedure (See Section 2.6.1.). For the mean queuing time parameter we 

notice that using the run-in-period estimated in this appendix the parameter 

will reach the steady state for a simulated time of 10000 as compared to a 

simulation run length of 55000 that is required if no run-in-period is used. It 

can also be noticed that using a longer run-in-period, i.e. 4500, the parameter 

will reach the steady state for a shorter simulation run length (5000). But in 

this case, as in several other previous examples, the mean estimates obtained 

with the run-in-period estimated with our method are closer to the real steady 

state value fi, than those obtained with a longer run-in-period. And at the 

same time we must keep in mind that we are not claiming that our method will 

give the optimal, but good results.
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F.4. ANALYSIS OF SOME SYSTEMS WITH KNOWN ANALYTI

CAL STEADY STATE VALUE.

In this appendix we analyse some results obtained for the M/M/4 queue 

and the Jackson’s system discussed in Chapter 4. Both systems have known 

steady state values. Section F.4.1. will give the results for the M/M/4 queue, 

while section F.4.2. will study the Jackson’s model results.

F.4.1. M/M/4 QUEUE

a. Estimation of the run-in-period.

This system was modelled for an arrival rate k =1/15 and a service rate 

/i=1/50; for this case we define r = A/s/x = (l/15)/(4*1/50)=0.833 (s: number

of servers, 4 in this example; r < l for stable systems). From the equations 

given in Chapter 4 for the M/M/s queue, we can estimate Lq and Wq:

P(j>4) = ((sr)T(j > 0))/(1-t) = 0.6574;

Therefore, Lq = 0.6574x0.833/(0.1667)=3.287;

Using Little’s formula, Wq = 3.2481/(1/15)=49.305.

Figure F.9. shows a graph of the standard deviation of the mean queuing 

time estimate for the queue of customers waiting to be served as a function of 

the simulation run length for different number of replications. From this 

graph we notice that while for a small number of replications (20) there are 

two maximum values, when the number of replications is increased (200) there 

exists only one maximum that occurs at 2700. The problem of the influence 

of the number of replications is directly related to the large variance of the 

estimate. In practice this can be noticed from the estimates obtained from the 

simulation if besides obtaining estimates of the standard deviation we also 

estimate the mean corresponding to each one of the intervals of time, jT j. 

To give an example, Table F.17. gives the mean estimates and the standard 

deviation as a function of the simulation run length when the number of
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replications used is 20. From this table we notice that in the best case, the 

standard deviation is half the value of the mean. For a simulation run length 

of 15300 (data not shown in Table F.17.) the standard deviation is 0.66 of the 

mean estimate. In simulation models with a large standard deviation as 

compared to the mean estimate it will be necessary to use more than 20 or 30 

replications, which may be a disadvantage of the method, although computer 

time is not the problem it was some years ago. Another way of identifying the 

problem of the influence of the number of replications is by studying the 

graph. When it has more than one local maximum, like in Figure F.9. when 

20 replications or 40 replications are taken, the number of replications should 

be increased until only one maximum of the standard deviation is detected. 

A similar problem is illustrated in the following example for a two-stage 

queuing system. Therefore, we will use as an estimate of the run-in-period for 

this example of the M/M/4 queue a value of 2700.

Run length

M / M / 4  q u e u e
Mean queuing time

Legend

—— 20 R.

  AO R.

* 200 R.

Figure F.9. STANDARD DEVIATION of the M/M/4 queue mean 

queuing time as a function of the simulation run length and of the number of 

replications.
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M/M/4 mean queuing time and standard deviation estimates
Run length Mean Std.Dev. Run length Mean Std.Dev.

150 7386 8.237 3150 42.69 25.18

300 17.270 13375 3300 42.87 24.91

450 24.696 23.229 3450 43.06 24.72

600 28.941 27.887 3600 43.62 25.19

750 30.665 30.303 3750 4426 2634

900 32.822 30.483 3900 4430 26.66

1050 35.101 31.749 4050 4424 2629

1200 36.822 31.730 4200 4435 26.29

1350 38.003 32.933 4350 44.73 2624

1500 37.455 30.447 4500 44.79 25.26

1650 36.722 27.837 4650 44.98 24.06

1800 36.880 24.829 4800 45.26 23.48

1950 38.053 23256 4950 45.89 2328

2100 39210 22.959 5100 46.17 2337

2250 39.405 24.224 5250 46.29 23.72

2400 40.478 26.270 5400 4639 24.00

2550 40230 27.627 5550 4721 24.74

2700 39.766 26.058 5700 47.64 2520

2850 39.959 24.681 5850 48.36 26.04

3000 41.193 24.648 6000 48.79 2730

Table F.17. M/M/4 mean queuing time and corresponding standard 

deviation mean estimates as a function of the simulation run length.

b. Evaluation of the run-in-period performance

Tables F.18a. and F.18b give the mean queuing time and the mean 

queue length estimates for the M/M/4 queue, as a function of the simulation 

run length, and as a function of the run-in-period.

Using a value of e=2.5% the parameters will be considered to be in the 

steady state if the estimates fall in the following ranges:

Parameter Range

Queuing time [48.072 , 50.537]

Queue length [3.205 , 3.369]
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M/M/4 mean queuing time estimates

Run Length Run-In 0 Run-In 1300 Run-In 2700 Run-In 7650

1500 29.824 39577

2000 33.507 42.221

2500 35.965 43.517

3000 37.738 44302 43.356

3500 38.961 44.701 44.730

4000 39.929 45.075 45.385

4500 40.901 45.625 46.162

5000 41.601 45.905 46.739

5500 42.197 46.178 47.244

6000 42.609 46.274 47380

6500 43.198 46.658 47.931

7000 43.547 46.788 48.152

7500 43.873 46.922 48350

8000 44.155 47.025 48.227 45.493

8500 44.419 47.139 48208 46.018

9000 44.606 47.179 48.146 46.464

9500 44.833 47.284 48.163 47.009

10000 45.139 47.494 48315 47.663

10500 45.376 47.641 48.443 48.036

11000 45.633 47.818 48.606 48.452

11500 45.903 48.015 48.789 48.837

12000 46.046 48.076 48.830 48.893

12500 46.184 48.137 48.830 48.923

13000 46.362 48.250 48.910 49.081

13500 46.514 48.338 48.971 49.168

14000 46.641 48.406 48.988 49241

Table F.18a. Mean queuing time estimates for the M/M/4 queue as a 

function of the simulation run length and for different run-in-periods.
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M/M/4 mean queue length estimates
Run Length Run-In 0 Run-In 1300 Run-In 2700 Run-In 7650

1500 2.118 2.904

2000 2.349 3.001

2500 2.499 3.043

3000 2.607 3.072 3.120

3500 2.684 3.089 3.173

4000 2.739 3.096 3.172

4500 2.799 3.125 3.214

5000 2.843 3.139 3.238

5500 2X76 3.147 3.252

6000 2.896 3.144 3.245

6500 2.930 3.163 3.271

7000 2.950 3.167 3.274

7500 2.967 3.170 3.272

8000 2.985 3.176 3.269 3.267

8500 2.999 3.179 3260 3.239

9000 3.011 3.182 3.253 3232

9500 3.025 3.188 3.253 3247

10000 3.044 3.200 3261 3280

10500 3.058 3.208 3261 3291

11000 3.074 3.218 3.276 3308

11500 3.090 3.229 3.285 3325

12000 3.099 3.233 3.287 3324

12500 3.107 3.235 3.286 3320

13000 3.117 3.242 3.289 3.326

13500 3.126 3.246 3.291 3328

14000 3.134 3.250 3.292 3.330

Table F.18b. Mean queue length estimates for the M/M/4 queue as a 

function of the simulation run length and for different run-in-periods.

The run-in-period using Gordon’s method has been estimated as 7650 

(See Appendix E). From the underlined values in the tables we notice that 

both the mean queuing time and the mean queue length estimates will reach 

the steady state for shorter simulation run lengths if the run-in-period 

estimated with our method is used than if the run-in-period estimated with 

Gordon’s method is used. As in most previous examples the run-in-period 

estimated with Gordon’s method is overestimated. On the other hand, if
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Conway’s method is used the estimated run-in-period is 300 which is clearly 

underestimated.

F.4.2. 2-STAGE QUEUING SYSTEM

This example given in Appendix A is repeated here for convenience:

"The last two things that are done to a car before its manufacture is 

complete are installing the engine and putting on the tires. An average of 60 

cars per hour arrive, and there is only one worker for the installation of the 

engine; he can serve an average of 54 cars per hour. There are three available 

workers for putting on the tyres, and each one can serve 162 cars per hour." 

(Winston, 1987).

For stage 1, the number of servers, s1 = 1; the service rate =  1/54;

and the arrival rate k = 1/60; for stage 2, s2 = 3; /i2 = 1/162;

The system is stable as t1 = k /^  = 54/60 = 0.90 < 1; Similarly, r2 =  

k/(3*(i2) = 162/180 < 1; therefore, the system has a steady state solution.

For stage 1, Lq = r2/(l-r ) = 8.1 cars waiting for the engine to be 

installed. Using Little’s equation, Wq = 8.1/(l/60) = 486.

For stage 2, P(j>3)=0.83. (j:number of cars in stage 2); r2 = 0.90; 

therefore, Lq = 0.83*0.90/(1-0.90) = 7.47 cars. Using Little’s formula,

Wq=420.

a. Estimation and evaluation of the performance of the run-in-period

For this system, only the queue of the cars waiting for the ENGINE to 

be installed has been studied using simulation (See Figure A l l ,  Appendix A). 

In this case the traffic intensity is 0.9. But from some empirical results we 

have found that queues with traffic intensity values of 0.9 or greater are not 

well behaved. Although this requires further research, some previous results 

show that the approach to the steady state is cyclic and not completely 

monotonic as in other queues with smaller values of traffic intensity. And 

from this example as shown in Figure F.10. the run length for which the
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standard deviation of the mean queuing time estimates reaches its maximum 

is greatly influenced by the number of replications.

JACKSON’S model
M e a n  q u e u i n g  t i m e

310 
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fl 130
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1000 1700 33000 49000 65000 81000
Run length

Figure F.10. STANDARD DEVIATION of the ENGINE mean queuing 

time estimates as a function of the simulation run length and of the number 

of replications.

When 40 replications are used several local maximum exist, and the one 

with the largest value corresponds to a simulation run length of 72500. When 

a very large number of replications (160) is used, the standard deviation graph 

shows only one maximum that corresponds to a simulation run length of 33000. 

A similar graph can be drawn for the mean queue length parameter. As 

discussed in Section F.4.3. for the M/M/4 queue, when for a small number of 

replications the graph of the standard deviation shows several local maximum 

points, it is necessary to increase the number of replications, or the run-in- 

period that we estimate may be overestimated.

Mean values have been obtained for different simulation run lengths 

and different run-in-periods, and they are given in Tables F.19a. and F.19b.
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JACKSON'S model: Mean queuing time estimates

Run Length Run-In 0 Run-In 12000 Run-In 33000 Run-In 72500

5000 217.727

10000 288.754

15000 329325 404.855

20000 356.268 421.899

25000 376.750 434.605

30000 392.371 444.119

35000 402.754 448359

40000 411380 452349 460302

45000 419.991 457.808 471343

50000 426.749 461379 475.864

55000 431.832 463.921 476.801

60000 435.950 465.668 477.200

65000 440.236 468.110 479.289

70000 444396 470.717 482.058

75000 448.146 473.048 484.379 483.616

80000 451.179 474.764 485.611 485.069

85000 453308 475.848 486.064 484.708

90000 455.855 477.116 486.991 487.065

95000 458.082 478375 487.937 488.779

100000 460.053 479.468 488.684 489.836

105000 462325 481313 490385 493.057

110000 464.993 483.031 492.134 495.909

Tabic F.19a. Mean queuing time estimates for the JACKSON MODEL 

as a function of the simulation run length and of different run-in-periods.
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JACKSON’S model: Mean queue length estimates

Run Length Run-In 0 Run-In 12000 Run-In 33000 Run-In 72500

5000 3.778

10000 4.938

15000 5.607 7.060

20000 6.051 1262

25000 6.380 7.429

30000 6.621 1539

35000 6.782 7384

40000 6.928 7.650 8.000

45000 7.064 7.726 8.091

50000 7.171 7.779 8.105

55000 7.251 7310 8.090

60000 7.315 7.833 8.076

65000 7387 7371 8.105

70000 7.454 7.911 8.139

75000 7.515 7.948 8.169 8.408

80000 1565 7.974 8.185 8334

85000 7.600 7.987 8.184 8.262

90000 7.643 8.012 8.200 8.292

95000 7.680 8.032 8.213 8307

100000 7.713 8.049 8.223 8312

105000 7.751 8.074 8.244 8345

110000 7.790 8.101 8.269 8380

115000 7.803 8.101 8.257 8345

Table F.19b. Mean queue length estimates for the JACKSON MODEL 

as a function of the simulation run length and of different run-in-periods.
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We will consider the parameters to have reached the steady state if the 

mean estimates fall in the following ranges:

In Tables F.19a. and F.19b we have underlined the mean estimates 

beyond which the mean estimates all fall in these ranges. As can be seen from 

this table a run-in-period of 33000 gives mean queuing time estimates that are 

closer to the real value of 486, than those obtained with shorter run-in-periods. 

A run-in-period of 72500 estimated when the number of replications is 40 is 

clearly overestimated.

In Appendix E we estimated a run-in-period of approximately 114700 

for the mean queuing time and the mean queue length of the queue of CARS 

waiting for the ENGINE to be installed when Gordon’s method is used. As 

in most cases before, this run-in-period is overestimated, as can be seen from 

the results in Tables F.19a. and F.19b.

F.5. CONCLUSIONS

As has been seen from the examples included in this appendix, the run- 

in-period estimated with the method proposed in Section 4.4.3. usually gives 

mean estimates that reach the steady state for shorter simulation run lengths 

than other run-in-periods, shorter or longer. When the mean estimates 

obtained using a shorter run-in-period reach the steady state for the same 

simulation run length then those estimates obtained with the run-in-period 

estimated with our method will be closer to the real steady state value, /a. In 

some cases, there are run-in-periods for which the mean estimates will reach 

the steady state for a shorter simulation run length than when the estimated 

run-in-period is used. In these cases, the difference is small, and this does not 

invalidate our procedure. There is always some uncertainty associated with the

Parameter 

Queuing time 

Queue length

Range 

[473.80 , 498.10] 

[7.90 , 8.30]
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output of the simulation, and for this reason we do not claim that our method 

will always give the best results, but as we showed in the examples of both this 

appendix and of Chapter 4, the steady state is reached sooner if the run-in- 

period estimated with our method is used than if no run-in-period is used. In 

some cases, the difference will be significative, while in others, the use of a 

run-in-period will not shorten the simulation run length required for the 

parameter to reach the steady state in a significative way. This is part of the 

analysis previous to the simulation, as was discussed in Chapter 2 (section

2.5.2.).

There may be a problem with the method when the system, or the 

parameter of interest has a large variance as compared to the mean values. 

In this case, it may be necessary to make more than 20 or 30 replications. The 

problem will be easily identified because the graph of the standard deviation 

when the number of replications is small will show several local maximum 

points. Selecting the largest of these local maximum points will give an 

overestimated run-in-period.
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APPENDIX G : ADDITIONAL RESULTS FOR CHAPTER 5.

G .l. INTRODUCTION

Chapter 5 discusses the BATCH MEANS METHOD. In Section G.2. 

we summarise the points discussed in section 5.5.2. concerning the application 

of the method to complex simulation models. Additional results concerning 

the discussion of Chapter 5 are given in Section G.3.

G 2. STEADY STATE SIMULATION

Section G.2.1. gives a summary of the discussion of this method 

presented in Section 5.5. In section G.2.2. we explain the terminology used in 

this research, as its meaning is slightly different from that found in the 

literature.

G.2.1. DISCUSSION OF THE BATCH MEANS METHOD.

From the empirical results shown in Chapter 5 and in this Appendix we 

show the following:

1. The number of batches is not critical as suggested by some authors 

(see Law and Carson (1979) and Schmeiser, (1982)). What is important is the 

total number of observations, or total simulation run length, and the lack of 

correlation of the batch means.

2. There is a value m* for the number of observations required if the 

estimate is going to be accurate. This value of m* is in general unknown but 

its approximate value can be easily determined using a graphical method. A  

number of observations m<m* will give a biased estimator.

3. Descriptive Sampling (D.S.) can be used to estimate steady state 

parameters using the batch means method. Due to its smaller standard 

deviation, the total number of observations that are required to obtain a non-
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biased mean estimate is less than the number required when Random 

Sampling (R.S) is used.

G 2 2 . MODIFICATION OF THE BATCH MEANS METHOD

In the experiments reported in this thesis the batch means method has 

been slightly modified as will be explained. Instead of recording N  

observations and grouping them into B batches, a simulation run length T0 is 

chosen. This simulation run length should be sufficiently long for the system 

to reach the steady state. We divide this run length into B equal intervals with 

a sub-run length of Tx= Tq/B. The batch means Xj (j= l, 2,..B) are obtained 

as the average of the observations recorded during the interval of time [(j- 

l^ T jjT J . The estimate Y is given by the average of these batch means Xj:

r  = (G .i)
B

Therefore, with this modification, the batch size, defined before as the 

number of observations in each batch, is a random number. However, the 

method still works well. To use the same terminology used with the batch 

means method, the term "batch size" will refer to the sub-run length Tx.

This means that with this modification, instead of trying to determine 

the value of m* (See Section G.2.1.) we will try to determine a value R* for 

the minimum simulation run length for which the estimate converge to the 

steady state value.

G 3. ANALYSIS OF THE RESULTS

In this section we will describe the experiments carried out to illustrate 

the different points of section G.2.1. and we will analyse the results obtained 

for some queues the PUB and the STEELWORKS models.
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G3.1. DESCRIPTION OF THE EXPERIMENTS

In the experiments carried out to confirm the points discussed in Section 

G.2.2. we chose a long simulation run length and divided it into different 

subrun lengths; the value of these subrun lengths is such that 10,20,30,50 and 

100 batch means are obtained for each one of the parameters of interest 

(queuing time or queue length of some of the queues of the model).

The estimate Y is calculated from equation G.I., where is the value 

of the mean in batch i, and B is the number of batches (10, 20, 30, 50 or 100).

For each estimate, the standard deviation, and the confidence interval 

relative precision (at a 95% confidence level) were also calculated.

As pointed out in Section G.2.2. there exists a minimum simulation run 

length R* for the mean estimate to show clearly the convergence to the steady 

state value. To check this point in an empirical way we obtained not only the 

batch mean corresponding to B batches, but also the batch mean 

corresponding to B1 batches, where B1 takes values 2 ,3  ... B. The batch mean 

in this case is easily calculated using equation (G.2).

bi _
T , x i (G.2)

r(S i^ )= — —

B1

Calling T0 the total simulation run length (for example 15’000000 for the 

PUB model), Y(B1,B) can be interpreted as the batch mean for B l batches 

where each batch has size Tq/B. Studying these values it is possible to 

determine the approximate number of batches for which the mean estimates 

converge to the steady state value.

G 3 2 . ANALYSIS OF THE RESULTS.

In this sub-section we analyse results obtained for the PUB and the 

STEELWORKS models.
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1. The PUB

Simulation output data was recorded for the following queues:

1. WAIT.

2. CLEAN.

3. IDLE.

As in the case of the LAUNDERETTE both the queuing time and the 

queue length batch means were estimated. A simulation run length of 

15’000000 was chosen; this run length was divided into sub-runs lengths of 

150000, 300000, 500000, 750000 and F500000. In this way we obtain 100, 50, 

30, 20 and 10 batches. For each batch the mean was estimated and the 

average of all the batch means gives the grand mean Y. As in the study of the 

LAUNDERETTE model carried out in Chapter 5, we will illustrate with 

empirical results the four points discussed in section G.2.2. These results, 

similar to those obtained for the LAUNDERETTE, corroborate the con

clusions given in Chapter 5 concerning the use of the batch means method.

We now discuss each one of these points.

1. Minimum simulation run length required for the parameter that is

being estimated to reach the steady state.

To show the point that there exists for each different parameter, i.e., 

queuing time or queue length, a minimum simulation run length required for 

the parameter to reach the steady state, we obtained the mean estimate Y, as 

a function of the simulation run length, using independent random number 

seeds, and a batch size of 300000. Figure G .l. shows the batch mean estimates 

for the mean queuing time parameter of the WAIT queue as a function of the 

simulation run length. It can be seen from this graph that the mean estimates 

converge to the mean esteady state value of 1.141 (obtained in Appendix C) 

but that for this convergence a simulation run length of at least 18’000000 is 

required.
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Figure G.l. WAIT batch mean queuing time estimates as a function of 

the simulation run length and of the random number seeds.

However, as explained in Chapter 5, in most practical simulations the 

practitioner does not require to estimate the parameter with this accuracy and 

a certain tolerance, for example of 2.5% is allowed. In this case a good 

stopping criterion is the value of the c.i. relative precision. Figure G.2. shows 

the c.i. limits for different simulation run lengths. It can be seen how, as 

expected, they cover the real steady state value and how, as expected also, the 

width of the 95% c.i. decreases as the simulation run length increases. 

Although the results are not shown here, we obtained 100 independent batch 

mean estimates and the coverage of the c.i. is close to the desired value of 1-a, 

where we chose a value a = 0.05.

Therefore, the procedure to follow when the batch means method is 

used for the estimation of steady state parameter is to obtain a batch at a time 

and to check if the c.i. relative precision is smaller than the desired precision. 

The simulation run is stopped when this condition is met. Obviously, a test 

should be performed to test that the batch size is such that the batch means 

are uncorrelated.
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Figure G2. WAIT batch mean queuing time estimates as a function of 

the simulation run length and c.i. limits for different simulation run lengths.

2. D.S. BATCH MEAN estimates will reach the steady state for shorter 

simulation run lengths.

In order to test the performance of D.S. when applied to the batch 

means method, we used different batch sizes and obtained the mean queuing 

time estimates for the queues of interest in this model. The results are shown 

in Figures G.3.(WAIT), G.4. (CLEAN) and G.5. (IDLE), for a batch size of 

500000; these graphs also show the results obtained for R.S. Results for other 

batch sizes provide the same information and are not given in this appendix.

It can be seen from these figures that the D.S. batch mean estimates 

converge to the steady state for shorter simulation run lengths; although results 

for other batch sizes are not given this conclusion is valid independent of the 

batch size.
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Figure G 3. WAIT mean queuing time batch means estimates as a 

function of the simulation run length and of the sampling method. The total 

simulation run length has been divided into 30 batches.
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Figure G.4. CLEAN queuing time batch means estimates as a function 

of the simulation run length and of the sampling method, when the total 

simulation run length has been divided in 30 batches.
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Figure G.5. IDLE queuing time batch means estimates as a function of 

the simulation run length and of the sampling method, when the total 

simulation run length has been divided in 30 batches.

This implies that if D.S. is used, we obtain, with shorter simulation run 

lengths and with a smaller number of batches, estimates as accurate and close 

to the real value, /a, as those obtained with R.S. for longer simulation run 

lengths and greater number of batches.

Although the values of the standard deviation corresponding to the 

batch means given as a function of the simulation run length are not shown, 

if we compare the R.S. and the D.S. values we would expect the standard 

deviation for the D.S estimates to be smaller and therefore the c.i. half width 

will be shorter; as the point estimate is approximately the same, the D.S. c.i. 

relative precision will be smaller and therefore, the simulation run length 

required to obtain an estimate with a given precision will be shorter if D.S. is 

used than if R.S. is used.
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3. Influence of the number of batches.

Table G .l. summarises the results obtained for different batch sizes and 

the different queues. It gives the batch mean based on 10, 30 and 100 batches 

for a total simulation run length of 15*000,000, and the corresponding standard 

deviation and the c.i. relative precision for both Random and Descriptive 

Sampling. The table also gives the mean estimates obtained with the method 

of replications when the run length is 120000.

We can compare the values in table G .l. obtained for a total simulation 

run length of 15*000000 to the real steady state values (obtained in Appendix 

C); we notice that, as in the case of the LAUNDERETTE model, the 

difference between the Descriptive Sampling mean estimates and the 

corresponding value of fi is negligible in most cases.

From table G .l. we may conclude that for a total simulation run length 

of 15*000000 it is valid that:

1. The point estimate (mean queuing time or mean queue length) is 

approximately the same, independent of the number of batches.

2. The relative precision of the confidence interval is approximately the 

same for a given parameter, independent of the number of batches.

3. When the simulation run length is very long, and it needs to be very 

long for the point estimate not to be biased, the c.i. half-width and the c.i. 

relative precision are smaller than when the replications method is used.

4. Comparing the batch means results with the steady state values (ii) 

obtained from the results of Appendix C, the D.S. batch means estimates are 

closer to the real steady state value than the Random Sampling estimates. In 

most cases the percentage error of the Descriptive Sampling batch mean 

estimates is almost zero.
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RANDOM SAMPLING

10 Batches 30 Batches 100 Batches

Queue Parameter Batch Std. Dev. CL Half Batch Std. Dev. C l. Half Batch Std. Dev. C l. Half

WAIT Queue. 1.181 0.059 0.036 1.181 0.081 0.026 1.180 0.158 0.027

WATT Queue 0.237 0.012 0.036 0.237 0.017 0.026 0.237 0.033 0.028

CLEAN Queue. 208.482 1.495 0.005 208.490 2330 0.004 208333 4.751 0.005

CLEAN Queue 41.766 0.185 0.003 41.766 0.260 0.002 41.766 0300 0.002

IDLE Queue. 1.988 0.027 0.010 1.988 0.045 0.009 1.989 0.093 0.009

IDLE Queue 0.796 0.008 0.007 0.796 0.013 0.006 0.796 0.027 0.007

10 Batches 30 Batches 100 Batches

Queue Parameter Batch Std. Dev. C l. Half Batch Std. Dev. C l. Half Batch Std. Dev. CI. Half

WATT Queue. 1.134 0.018 0.011 1.140 0.054 0.018 1.138 0.103 0.018

WATT Queue 0.227 0.004 0.011 0.228 0.011 0.018 0.228 0.021 0.018

CLEAN Queue. 209.368 0.370 0.001 209320 0.635 0.001 209.414 1336 0.002

CLEAN Queue 41.880 0.074 0.001 41.884 0.133 0.001 41.897 0.296 0.001

IDLE Queue. 1.999 0.002 0.001 1.996 0.003 0.001 1.998 0.011 0.001

IDLE Queue 0.800 0.001 0.000 0.799 0.001 0.001 0.799 0.003 0.001

30 Batches

Queue Parameter Batch Std. Dev. CL Half

WAIT Queue. 1.162 0.052 0.017

WATT Queue 0.233 0.011 0.017

CLEAN Queue. 208.771 1.508 0.003

CLEAN Queue 41.804 0.158 0.001

IDLE Queue. 1.991 0.031 0.006

IDLE Queue 0.797 0.009 0.004

Mean Std. Dev. CL Half

WATT Queue. 1.152 0.197 0.019

WATT Queue 0.230 0.038 0.019

CLEAN Queue. 209.250 5.649 0.003

CLEAN Queue 41.856 0.589 0.002

IDLE Queue. 2.000 0.105 0.006

IDLE Queue 0.800 0.030 0.004

Table G .l. Batch mean and replications mean queuing time and mean 

queue length estimates when the total simulation run length for the batch 

mean estimates is 15’000000. Results are given for the total simulation run 

length divided into 10, 30 and 100 batches, and also for a total simulation run 

length of 30’000000 divided into 30 batches.
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2. THE STEELWORKS

Three queues of these model have been analysed:

1. TBLOWQ.

2. PITQ.

3. LOADQ.

Similar to Table G .l. the results comparing the batch means using R.S. 

and D.S., and the sample mean based on 300 replications, are given in Table

G.2. The analysis of these results is similar to those already done, and the 

conclusions obtained from Table G .l. are valid also for the results of Table

G.2.
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RANDOM SAMPLING

Queue Paramete 10 Batches 30 Batches 100 Batches

Batch Std. Dev CI. Half Batch Std. Dev CI. Half Batch Std. Dev CL Half

TBLOW Queue'll 81.2822 1.29 0.0114 81.1607 2.7966 0.0129 81.2603 3.7951 0.0093

TBLOW Queue 2.6642 0.0436 0.0117 2.6604 0.0938 0.0132 2.6636 0.127 0.0095

PITQ Queue. 38.5018 0.4764 0.0089 383363 1.0025 0.0097 383018 13483 0.007

PITQ Queue 3.6117 0.0445 0.0088 3.6153 0.0945 0.0098 3.6122 0.1279 0.007

LOAD Queue. 11.4923 0.0386 0.0024 11.4882 0.0837 0.0027 11.49255 0.127 0.0022

LOAD Queue 0.7052 0.0021 0.0021 0.705 0.0047 0.0025 0.7052 0.007 0.002

Queue Paramete 10 Batches 30 Batches 100 Batches

Batch Std. Dev CI. Half Batch Std. Dev CI. Half Batch Std. Dev CI. Half

TBLOW Queue. 81.2613 0.6285 0.0055 81.4282 1.0426 0.0048 81.2603 3.7951 0.0093

TBLOW Queue 2.6633 0.0203 0.0055 2.6696 0.0342 0.0048 2.6636 0.127 0.0095

PITQ Queue. 38.5192 0.2143 0.004 38.4367 03679 0.0036 383018 13483 0.007

PITQ Queue 3.6125 0.0203 0.004 3.6058 0.0344 0.0036 3.6122 0.1279 0.007

LOAD Queue. 11.512 0.0191 0.0012 11.4972 0.025 0.0008 11.49255 0.127 0.0022

LOAD Queue 0.7062 0.001 0.001 0.7054 0.0013 0.0007 0.7052 0.007 0.002

REPLICATIONS METHOD (Run Length: 150000)

Mean Std. Dev CI. Half

TBLOW Queue. 82.0947 53465 0.0074

TBLOW Queue 2.6911 0.178 0.0075

PITQ Queue. 38.2518 1.877 0.0056

PITQ Queue 3.5858 0.1783 0.0056

LOAD Queue. 11.6082 0.1653 0.0016

LOAD Queue 0.7114 0.009 0.0014

Table G.2. Batch mean and replications mean queuing time an dmean 

queue length estimates when the total simulation run length for the batch 

means estimates is 50*000000. Results are given for the total simulation run 

length divided into 10, 30 and 100 batches. The total simulation run length for 

the method of replications is 120000.
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APPENDIX H : TESTS FOR CORRELATION OF SIMULATION 

OUTPUT DATA

H.1. INTRODUCTION

As explained in Section 5.5.1. if the batch size is not large enough, the 

data may show autocorrelation. Therefore it is important after choosing a 

batch size (or subrun length) to test for independence of the subrun responses. 

Several tests have been proposed in the literature. Law and Kelton (1982) 

suggest a method based on the estimated lag 1 autocorrelation between at 

least 400 batch means. If this lag 1 autocorrelation is smaller than a constant 

c (suggested value: c=0.4.) the batch means can be considered independent. 

Fishman suggests a tests based on the Von Neumann statistic. However, 

empirical tests performed on this method seem to show that it has a poor 

performance. Kleijnen (1982) discusses the possible reasons for this poor 

performance and concludes that it fails because Fishman uses a small number 

of batches. From Monte Carlo experiments, Kleijnen suggests the use of at 

least 100 batches. The method, as proposed by Kleijnen (1987), is described 

in Section 2.

HL2. TEST BASED ON THE VON NEUMANN STATISTIC

Instead of using the usual autocorrelation estimator p1 which has bias 

and shows a high standard error Kleijnen recommends the use of the "VON 

NEUMANN statistic (say q):

E  (xr xi+1)2
q -----------  (H .l)

E M ) 2
i-1

The q statistic reflects the first-order autocorrelation pj. If the variables
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are independent (so that p1= p 2= ...pn=0) then it can be proved that

E (q | independent x) = 2 (H.2)

whatever the distribution ofx. If the variables show first-order autocorrelation 

(p1=0) and the x are normally distributed then

E(q) = 2 - 2 /n  - 2E(Pl) (H.3)

We wish to know whether the observed value of q deviates significantly 

from the value 2 displayed in Equation H.2. Therefore we have to know the 

distribution of q. When the variables x are normally and independently 

distributed then it can be proved that

o\q\x-NID) -  4("~2) (H.4)
(/l-l)(7l+l)

and then the distribution of q is approximately normal for n>20. 

Consequently we reject the hypothesis of independence if the observed q is 

smaller than 2 - z® a(q)" (z® is the upper point a of the normal distribution), 

"where a(q) follows from equation H.4. Based on analysis and Monte Carlo 

experiments we recommend using at least 100 subruns when testing the 

independence of the subrun responses." (Kleijnen, 1988)

H 3. SOME OTHER TESTS FOR CORRELATION.

In a paper presented at the 1988 Winter Simulation Conference, 

Schmidt and Ho propose a new method for testing serial dependence among 

the batch means. As Kleijnen (1987), they conclude that Fishman’s "method 

might not perform well if the sample sequence is too positively 

autocorrelated". This section describes the method proposed by Schmidt and 

Ho to deal with the problem of correlation.

"Schmidt and Ho have proposed a method (1987) of sequential
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systematic sampling to solve the problem of data correlation. Similar to 

replication and batch means, sequential systematic sampling also employs 

uncorrelated observations to assist construction of inferential procedures. 

Nevertheless, its sampling procedure could be viewed as the converse of batch 

means. While batch means groups a sequence of consecutive observations 

(one batch) together, sequential systematic sampling collects observations at 

intervals of some length (say k observations). If the correlation of sample 

sequence dies out at lag k, then observations drawn at intervals of k can be 

considered as essentially uncorrelated. Using a common value k as the batch 

size and the sampling interval, Ho and Schmidt (1987) conducted a simulation 

study of comparing batch means and sequential systematic sampling. The 

comparison is based upon the predictability of confidence interval procedures 

applied to sample observations generated from autoregressive, simple moving 

average and M/M/1 queuing models." (Schmidt, and Ho, 1988). The problem 

of estimating a value for k is discussed in the same paper. The basic problem 

is that of determining when the correlation has died out and it is approached 

in two phases. "In the first phase we propose a correlation estimate. Then we 

determine when the correlation has died out according to the criterion of 

Gross and Harris (1974). Hence a value k can be determined if the correla

tion at lag k is less than a small number. In phase 2 the Von Neumann ratio 

test is used to test whether observations drawn at intervals of k are 

uncorrelated." Schmidt, and Ho (1988)
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APPENDIX I : ADDITIONAL RESULTS FOR CHAPTER 6

1.1. INTRODUCTION

This appendix contains empirical results obtained for some simulation 

models and that are used to illustrate the method proposed in Chapter 6, 

based on weighted averages, for the elimination of the influence of the initial 

conditions. In section 1.1.1. we discuss very briefly the idea behind the new 

method and in section 1.1.2. we discuss the measures of performance used in 

the evaluation of the performance of the new method as compared to methods 

where there is no elimination of the initial conditions or where this elimination 

is based on the deletion of some of the initial observations (run-in-period).

1.1.1. WEIGHTED AVERAGES AND THEIR USE IN SIMULATION

The basic idea behind the weighted averages method is to assign a 

smaller weight to the initial values so as to minimise their influence on the 

estimate Xj in replication j . In practice this estimate has been calculated from 

the simulation as the weighted average of Tj observations (j=l, 2...k) as given 

by equation (1.1) and where T1 is the first observation that is recorded, T2 the 

second and so on.

Xj ------- (1.1)

T Wm
m=l

In Equation 1.1. Wj is the weight assigned to observation i. In order to 

eliminate the influence of the initial conditions, wa < w2 < w3 ...< wk.

One of the characteristics of this method is that the exact value of the 

weights is not extremely crucial. In other words, in some experiments we used:
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Wj =  i (1.2)

while in others we chose exponential values for the weights as shown in 

Equation 1.3.

w, = (1 -  e'*2**) (I-3-)

with k2=0.0001, and also smaller or larger values. Experiments using 

different values for k2 were made and this value is not critical in the 

performance of the new method.

1.1.2. MEASURES OF PERFORMANCE

The problem of the initialisation bias is due to the influence of the 

initial conditions. When the simulation is started "empty" and "idle", as it 

usually is, the initial observations are not representative of the steady state 

values. If the simulation run length is not long enough for this influence to 

disappear, the mean estimates obtained from the simulation will be biased. 

When a method to deal with the initialisation bias problem is used, the 

simulation run length required for the parameters to reach the steady state is 

considerably reduced. The results of the simulation will then be available 

sooner, and the extra computer time, that has been saved when the

initialisation bias problem has been dealt with, can be used to take more

replications. This will reduce the standard deviation of the mean estimate as

well as giving a more accurate estimate.

For the evaluation of the alternative method proposed for the 

elimination of the initialisation bias problem we will compare the run length 

required for the parameter to reach the steady state, using the two different 

methods: standard and weighted averages. Elimination of the influence of the 

initial conditions implies that the run length required to reach the steady state 

is shorter for the method proposed in this chapter.

NOTE : standard is the method commonly used in simulation. In this 

method no attempt is made at reducing the influence of the initial conditions.
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12. EMPIRICAL RESULTS.

In this section we discuss results obtained for the mean queuing time 

and the mean queue length of some of the simulation models previously used 

in this thesis for testing new procedures.

12.1. THE LAUNDERETTE MODEL

We obtained results for the mean queuing time and the mean queue 

length of the WASHQ, the BIDLE, the WMIDLE, and the DRIER queues. 

The mean estimates for these queues obtained as a function of the simulation 

run length and of the method used (run-in-period, weighted averages or 

standard) are given in the following tables:

1.1. (BIDLE), 1.2. (WASHQ), 1.3. (WMIDLE) and 1.4. (DRIER).

In order to compare the simulation run lengths required for a parameter 

to reach the steady state under the different methods (weighted averages, run- 

in-period and standard) we compare the mean estimates to the real steady 

state value calculated in Appendix C. We consider that a parameter is in the 

steady state if the mean estimates fall within 2.5% of /x; the value of /x as well 

as the range of values within 2.5% of /x are the following:

Queue

WASHQ

BIDLE

QUEUING TIME VALUES 

Steady state Range

WMIDLE

DRIER

6.675

67.260

12.780

1.990

[6.508 , 6,842] 

[65.580 , 68.941] 

[12.460 , 13.099] 

[1.940 , 2.040]

Queue

WASHQ

BIDLE

WMIDLE

DRIER

QUEUE LENGTH VALUES 

Steady state Range

0.835

8.413

1.599

0.249

[0.814 , 0.856] 

[8.203 , 8.623] 

[1.559 , 1.639] 

[0.243 , 0.255]
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BIDLE mean queuing time estimates

Run Length Standard Weighted Run-In-Period

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

2000 70.797 13353 67.987 15.636 68373 16393

3000 70.524 12.003 69.172 14.044 69.173 13.906

4000 70.030 10352 68.889 12.637 68.999 11.951

5000 69.495 9.366 68350 10.930 68.613 10.181

6000 69.041 8384 67.857 9.750 68.275 9300

7000 68.892 8.087 67.920 9.422 68.238 8.639

8000 68.761 7.899 67.925 9.649 68.192 8.426

9000 68.761 7336 68.095 9.046 68361 8.003

10000 68.702 6.924 68.107 7.898 68.249 7.293

11000 68.613 6319 68.041 7369 68.196 6.809

12000 68339 6.498 67.610 7.688 67.945 6.755

13000 68.107 6376 67.283 7.794 67.735 6.610

BIDLE mean queue length estimates

Run Length Standard Weighted Run-In-Period

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

2000 8.739 1.247 8.412 1337 8.429 1.604

3000 8.699 1.162 8328 1.424 8311 1380

4000 8.648 1.046 8303 1380 8306 1.197

5000 8.605 0.926 8.472 1.114 8.489 1.030

6000 8371 0.850 8.448 0.978 8.473 0.929

7000 8359 0.797 8.456 0.941 8.475 0.863

8000 8346 0.777 8.452 0.967 8.472 0.837

9000 8349 0.748 8.478 0.918 8.485 0.801

10000 8348 0.689 8.489 0.795 8.490 0.731

11000 8344 0.645 8.491 0.720 8.492 0.679

12000 8317 0.644 8.445 0.767 8.468 0.673

13000 8.493 0.635 8.409 0.788 8.447 0.661

Table 1.1. BIDLE mean queuing time and mean queue length estimates 

(and standard deviation) as a function of the simulation run length and of the 

method used for recording the data (Standard or weighted).
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WASHQ Mean queuing time estimates

Run Length Standard Run-In-Period Weighted Averages

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

500 4.547 5.061 5346 6393

1000 5.320 5.092 5.708 8.790 5.910 6.304

1500 5.691 5.089 6.100 7.088 6.173 6392

2000 5.855 4.635 6.190 5.860 6.257 5361

2500 5.914 4.287 6.202 4.810 6.240 5.175

3000 5.976 4.140 6.203 4310 6.265 5.116

4000 6.122 3.859 6307 4342 6.418 5.027

5000 6246 3.891 6.406 4.279 6.457 5.011

6000 6.361 3.661 6304 3.969 6357 4.497

7000 6.424 3373 6350 3.619 6.612 3.984

8000 6.441 3.178 6352 3378 6.606 3.722

9000 6.488 3.016 6390 3.186 6.663 3378

10000 6.520 2.911 6.612 3.061 6.682 3.383

11000 6.517 2.796 6.601 2.929 6.641 3333

12000 6.533 2.650 6.610 2.766 6.657 3.039

WASHQ Mean queue length estimates

Run Length Standard Run-In-Period Weighted Averages

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

500 0.637 0.796 0.777 1.070

1000 0.712 0.772 0.808 1374 0.811 0.977

1500 0.746 0.745 0312 1.029 0.822 0.917

2000 0.759 0.658 0.806 0.8020 0.820 0.787

2500 0.763 0.608 0.795 0.665 0.815 0.746

3000 0.766 0378 0.796 0.665 0.810 0.717

4000 0.781 0333 0.804 0397 0.826 0.709

5000 0.794 0332 0.814 0383 0.827 0.696

6000 0.807 0.493 0324 0333 0.837 0.609

7000 0.813 0.452 0.828 0.484 0.841 0337

8000 0.814 0.424 0327 0.450 0.839 0304

9000 0.819 0.402 0.832 0.424 0.845 0.482

10000 0.822 0387 0.834 0.406 0347 0.456

11000 0.821 0370 0.831 0387 0.840 0.434

Table L2, WASHQ mean queuing time and mean queue length 

estimates (and standard deviation) as a function of the simulation run length 

and of the method used for recording the data (standard or weighted).
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WMIDLE Mean queuing time estimates
Run Length Standard Run-In-Period Weighted Averages

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

500 15.646 7.113 14.134 8.181 13371 7304

1000 14.253 5.043 13.433 5382 13.120 5.746

1500 13.837 4.202 13.282 4376 13.070 4304

2000 13.535 3.624 13.109 3.728 12.902 4.114

2500 13.381 3.300 13.038 3372 12.856 3.748

3000 13.341 3.012 13.056 3.076 12.946 3.453

4000 13.255 2.637 13.041 2.678 12.975 3.073

5000 13.177 2.405 13.005 2.436 12.948 2.793

6000 13.122 2.184 12.978 2.206 12.929 2337

7000 13.059 2.041 12.935 2.057 12364 2387

8000 13.031 1.940 12.923 1.951 12.854 2.271

9000 12.984 1.816 12.887 1.827 12.806 2.102

10000 12.958 1.713 12.871 1.720 12.789 1.989

WMIDLE Mean queue length estimates

Run Length Standard Run-In-Period Weighted Averages

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

500 1.896 0.636 1.620 0.733 1.608 0.735

1000 1.752 0.476 1.614 0310 1399 0361

1500 1.707 0.402 1.615 0.421 1.604 0.469

2000 1.677 0.349 1.608 0.361 1396 0.405

2500 1.661 0.321 1.605 0.330 1394 0373

3000 1.657 0.295 1.611 0302 1.605 0344

4000 1.647 0259 1.612 0.280 1.609 0306

5000 1.639 0.239 1.611 0.256 1.608 0.282

6000 1.633 0.218 1.610 0.232 1.607 0.255

7000 1.627 0.203 1.606 0314 1302 0.238

8000 1.624 0.192 1.606 0301 1.601 0.227

9000 1.619 0.181 1.603 0.188 1397 0.211

10000 1.617 0.171 1.602 0.177 1396 0.200

Table 13. WMIDLE mean queuing time and mean queue length 

estimates as a function of the simulation run length and of the method used 

for recording the data (Standard or weighted).
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DRIER Mean queuing time estimates

Run Length Standard Run-In-Period Weighted Averages

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

500 4.846 2.215 2.700 2.146 2.611 2.192

1000 3.345 1.445 2.328 1.425 2.220 1530

1500 2.893 1.183 2.229 1.174 2.146 1295

2000 2.649 1.023 2.155 1.015 2.064 1.128

2500 2.513 0.920 2.120 0.915 2.032 1.005

3000 2.432 0.838 2.105 0.835 2.034 0.922

4000 2.337 0.721 2.093 0.718 2.059 0.818

5000 2269 0.644 2.074 0.642 2.042 0.732

6000 2.228 0.587 2.066 0.585 2.036 0.674

7000 2.193 0.548 2.055 0546 2.021 0.637

8000 2.166 0.515 2.045 0513 2.012 0598

9000 2.141 0.486 2.034 0.484 1.998 0556

10000 2.125 0.453 2.028 0.451 1.995 0521

Table 1.4. DRIER mean queuing time estimates as a function of the 

simulation run length and of the method used for recording the data (Standard 

or weighted).

We do not give the mean queue length estimates for this queue as the 

steady state mean queue length value is very small, and as discussed in Section 

2.6.2., we consider that in these cases a different estimator should be used.

To make it easier the comparison of the different methods, in each 

table, and for each case (weighted, run-in-period and standard) we have 

underlined the value for which the parameter can be considered to be already 

in the steady state. This means that the simulation run length corresponding 

to the underlined values is approximately the required run length for the 

parameter to reach the steady state.

From the different tables we can draw conclusions similar to those 

obtained for the PUB model in Chapter 6: with the use of the weighted

320



averages of the individual observations, the parameters can be considered to 

reach the steady state for shorter simulation run lengths than when all the 

observations are assigned the same weight; the weighted averages method 

compared to the run-in-period method behaves just as well for the elimination 

of the influence of the initial conditions. There is some increase in the value 

of the standard deviation as compared to the value of the standard deviation 

of the estimate when a run-in-period is used. However, we can use the time 

that otherwise would have to be spent in the estimation of the run-in-period, 

to obtain more replications and run the simulation for a longer run length. 

This will give smaller estimates of the standard deviation.

122. THE FISH PACKING MODEL.

Three queues have been studied in this model: the WAIT, the ALLQ 

and the IDLE queues. This model was simulated for two different 

combinations of the execution time of the activities that are given in Tables

I.5.a and I.5.b.

Activity Execution time

ARRIVE NEGEXP(7)

WEIGH 4

PACK NORMAL(5,l)

Table L5.a. Execution time for the activities of the FISH PACKING 

model: Set 1.

Activity Execution time

ARRIVE NEGEXP(6)

WEIGH 2

PACK NORMAL(5,l)

Table L5.b. Execution time for the activities of the FISH PACKING 

model: Set 2.
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Table 1.6. gives the mean queuing time estimates for the WAIT, ALLQ 

and IDLE queues as a function of the simulation run length and of the method 

("weighted" or "standard") used when the activity execution times are those 

given in Table I.5.a. Table 1.7. gives the mean queuing time and the mean 

queue length for the ALLQ and the IDLE queues when the values of Table

1.5.b. are used in the simulation.

We consider that a parameter is in the steady state when the mean 

estimates fall within 2.5% of the value of fi, which has been obtained in an 

empirical way, as described in Chapter 2. The following are the values of fi 

as well as the range of values within 2.5% of fi, for the conditions in Table

1.5.a.:
Queue Parameter Value Range

WAIT Queuing time 2.694 [2.626,2.761]

ALLQ Queuing time 5.166 [5.037 , 5.295]

IDLE Queuing time 2.994 [2.919,3.069]

Steady state values for the values of Table I.5.b. are the following: 
Queue Parameter Value Range

ALLQ Queuing time 14.900 [14.257, 15.272]

ALLQ Queue length 2.526 [2.463 , 2.589]

IDLE Queuing time 4.020 [3.919,4.120]

IDLE Queue length 0.666 [0.649 , 0.683]

In Tables 1.6. and 1.7. we have underlined those values for which the 

parameter can be considered to have already reached the steady state (i.e. 

beyond this estimate all fall within 2.5% of the steady state value). In this way 

we identify the required simulation run lengths for each parameter, and for 

each different method, to reach the steady state.

The conclusions from both tables are similar, and they show how when 

the method of weighted averages is used, the simulation run length required 

for the estimates to reach the steady state is shorter than when the standard 

method is used.

322



FISH PACKING model - Mean queuing time estimates

Weighted averages Standard

Run Length WATT ALLQ IDLE WATT ALLQ IDLE

500 2.655 4.670 2.989 2361 4.097 3.074

1000 2.649 4.949 3.023 2.611 4.611 3.047

1500 2.664 5.008 2.999 2.637 4.786 3.023

2000 2.662 5.018 3.001 2.645 4.811 3.017

2500 2.672 5.047 3.001 2.655 4.865 3.013

3000 2.689 5.176 2.996 2.668 4.992 3.008

3500 2.708 5.198 3.000 2.682 5.045 3.008

4000 2.698 5.150 3.006 2.680 5.050 3.010

4500 2.696 5.087 3.008 2.681 5.026 3.010

5000 2.706 5.110 3.006 2.689 5.042 3.009

5500 2.701 5.094 3.010 2.688 5.041 3.010

6000 2.699 5.082 3.013 2.688 5.033 3.012

6500 2.694 5.075 3.010 2.687 5.038 3.010

Table 1.6. Mean queuing time and mean queue length estimates for 

some queues of the FISH PACKING model for the conditions of Table I.5.a, 

as a function of the simulation run length and of the method of collecting the 

data.
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FISH PACKING MODEL - Mean queue length estimates
Weighted averages Standard

Run Length ALLQ IDLE ALLQ IDLE

500 2.281 0.659 1.915 0.664

1000 2.483 0.663 2.212 0.665

1500 2.536 0.664 2.324 0.666

2000 2.517 0.665 2.350 0.666

2500 2354 0.665 2.403 0.666

3000 2370 0.665 2.438 0.666

3500 2339 0.666 2.446 0.666

4000 2309 0.666 2.439 0.666

4500 2309 0.666 2.446 0.666

5000 2301 0.666 2.445 0.667

5500 2303 0.666 2.447 0.667

6000 2309 0.666 2.455 0.667

6500 2330 0366 2.468 0.666

7000 2342 0.666 2.477 0.666

7500 2344 0.666 2.482 0.666

Mean queuing time estimates

Weighted averages Standard

Run Length ALLQ IDLE ALLQ IDLE

500 12321 3.976 10.696 4.007

1000 13.817 3.997 12.600 4.005

1500 14.337 3.993 13367 3.999

2000 14.323 3.995 13368 3.999

2500 14.611 3.993 13.923 3.997

3000 14.775 3.996 14.169 3.998

3500 14.697 4.002 14.260 4.000

4000 14351 4.001 14.241 4.000

4500 14381 4.005 14.304 4.002

5000 14367 4.007 14320 4.004

5500 14393 4.005 14.344 4.003

6000 14.628 4.003 14390 4.002

6500 14.743 3.999 14.465 4.000

7000 14.831 3.998 14326 3.999

7500 14.852 3.998 14363 3.999

8000 14.852 3.996 14386 3.998

8500 14.834 3.999 14392 4.000

Table 1.7. Mean queuing time and mean queue length for some of the 

queues of the FISH PACKING MODEL and the values given in Table I.5.b. 

as a function of the simulation run length and of the method: "Standard" or 

"Weighted" used in the simulation.
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123. THE STEELWORKS MODEL

Estimates for the queuing time and the queue length of the TBLOWQ 

and the PITQ queues were computed. In this simulation model we compare 

the weighted averages method with the run-in-period and with the standard 

method. The PITQ and the TBLOWQ mean queuing time estimates for the 

"Standard", "Weighted" and Run-In-Period methods as a function of the 

simulation run length are given in Table 1.8.

STEELWORKS - Mean queuing time estimates

Run Length PITQ TBLOWQ

Standard Weighted Run-In-P Standard Weighted Run-In-P.

6000 30.6383 333627 36.6799 105.1568 94.1509 86.0791

10000 33.6059 36.4875 37258 962046 86.7813 84.6342

15000 35.2066 373367 37.6838 91.461 83.9873 833879

20000 36.0177 37.9179 37.7791 88.9819 82.8771 833334

25000 36.4746 38.0452 37.9419 873213 82.4236 82.7845

30000 36.7769 38.1152 37.9952 86.6247 823156 82.6745

35000 37.0183 38.1998 38.0113 85.9084 82.1263 82.677

40000 372447 383348 38.0652 8523 81.747 823283

45000 373185 38.2483 38.0727 84.9483 81.9353 82.4617

50000 37.4559 383264 38.1899 843231 81.7024 82.144

55000 37333 383195 38.1802 84.2993 81.7637 82.1859

60000 37.6301 38.3758 382331 84.0088 81.6095 82.0328

65000 37.7108 38.4156 38.2535 83.7519 81.4743 81.9636

70000 37.7751 38.44 38.2935 83.5714 81.4367 81.8657

75000 37.8829 38351 383794 83.2392 81.0803 81.604

Table 1.8. TBLOWQ and PITQ mean queuing time estimates as a 

function of the simulation run length and of the method of dealing with the 

initialisation bias problem.

As in the previous tables, the underlined values correspond to the 

simulation run length for which the parameter can be said to have reached the 

steady state. A  parameter will be considered to be in the steady state if the
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mean estimates fall within 2.5% of the steady state values (calculated in 

Appendix C); these values are the following:

As expected, using the weighted averages method the parameters reach 

the steady state for shorter simulation run lengths: for the PITQ for example, 

the mean estimates will reach this state for a simulation run length of 15000; 

if the standard method is used, a simulation run length longer than 50000 is 

required. The analysis of the results for the TBLOWQ queuing time is similar, 

and again shows that the simulation run length required for the parameter to 

reach the steady state is shorter, and sometimes by a significative amount of 

time, if the weighted averages method is used.

Table 1.9. gives the standard deviation corresponding to the mean 

queuing and the mean queue length of the queues studied in this model, for 

the standard, the weighted averages and the run-in-period methods.

As in the case of the LAUNDERETTE model, the standard deviation 

of the weighted average estimate tends to be slightly larger than that when a 

run-in-period is used. But the difference between the two values is not so 

large as to make this new method useless due to its high variance. However, 

due to the simplicity of the weighted averages method and to the fact that it 

is not always possible to estimate the "optimal" run-in-period , we believe that 

the new method performs quite well as compared to the run-in-period method.

Queue

TBLOWQ

PITQ

Steady state (/i) 

81.588 

38.405

Range

[79.548 , 83.628] 

[37.445 , 39.365]
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STEELWORKS - standard deviation of the mean estimates.
TBLOWQ mean queuing time TBLOWQ mean queue length

Run length Standard Run-In Weighted Standard Run-In Weighted

15000 16.040 20.647 18.876 0332 0.686 0.629

20000 14.184 16.789 17.095 0.471 0360 0371

25000 13.034 14.955 15.974 0.434 0.499 0333

30000 11385 12.694 13.641 0378 0.423 0.457

35000 10.498 11340 12.379 0349 0385 0.415

40000 9.924 10.835 11.970 0330 0361 0.401

45000 9.454 10.168 11.110 0314 0339 0372

50000 9.004 9332 10390 0300 0318 0347

55000 8336 8.803 10.211 0377 0393 0341

60000 8.090 8.490 10314 0.269 0383 0341

65000 7.861 8.257 10.453 0.262 0.275 0.348

PITQ mean queuing time PITQ mean queue length

Run length Standard Run-In Weighted Standard Run-In Weighted

15000 5.655 7.253 6.712 0331 0.684 0.633

20000 5.010 5.933 6.061 0.472 0361 0374

25000 4.614 5.293 5.672 0.435 0301 0336

30000 4.019 4.488 4.876 0379 0.424 0.459

35000 3.700 4.077 4.423 0.350 0.386 0.418

40000 3306 3.832 4372 0331 0362 0.404

45000 3332 3389 3.963 0315 0340 0374

50000 3.186 3.374 3.667 0300 0.318 0347

55000 2.940 3.104 3.602 0377 0.293 0341

60000 2.849 2.993 3399 0.269 0.283 0.341

65000 2.771 2.913 3.660 0.262 0.275 0.347

Table 1.9. Standard deviation of the TBLOWQ and PITQ mean 

estimates as a function of the simulation run length.

12.4. The M/M/4 QUEUE

In Appendix F we obtained the mean queuing time and mean queue 

length estimates for an M/M/4 queue with arrival rate X = 1/15 and service 

rate \i -  1/50. The steady state values are:

Wq = 49.305 

Lq = 3.287

We have obtained mean queuing time and mean queue length estimates 

for this queue as a function of the simulation run length using the weighted
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averages method. These estimates are given in Table 1.10. We have 

underlined the mean estimates for which the parameter can be considered to 

be in the steady state.

The conclusions from this table are similar to those of the previous 

cases considered in Chapter 6 and in this Appendix. When the weighted 

averages method is used, the mean estimates will fall within 2.5% of the steady 

state value for a shorter simulation run length than when the standard method 

is used.

125 . JACKSON’S MODEL

This model was described in Appendix A and results for the run-in- 

period estimated using the procedure proposed in Chapter 4 are given in 

Appendix F. In Table 1.11. we give the mean estimates corresponding to the 

mean queuing time and the mean queue length of the queue of cars waiting 

for the ENGINE to be fitted, for both the standard and the weighted averages 

methods.

The steady state values (/x) and the range of values within 2.5% of /x are 

the following:

We have underlined the values beyond which the parameter can be 

considered to be in the steady state. The conclusion, as in all the previous 

examples is that the method of weighted averages performs better than the 

standard method and the mean estimates will reach the steady state for shorter 

simulation run lengths. While for a simulation run length of 130000 the mean 

estimates for the standard method are not yet within 2.5% of the steady state 

value, the weighted averages estimates reach the steady state for a simulation 

run length of 65000 for the mean queue length parameter.

Steady state (n) 

486.00 

8.10

Range 

[473.85 , 495.15] 

[7.897 , 8.302]
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M/M/4 mean queuing time estimates M/M/4 mean queue length estimates

Run Length Standard Weighted Standard Weighted

1500 29.824 35.195 2.118 2366

2000 33.507 38.725 2349 2.769

2500 35.965 40.865 2.499 2392

3000 37.738 42.270 2.607 2.971

3500 38.961 43.402 2.684 3.039

4000 39.929 44.159 2.739 3.074

4500 40.901 45.035 2.799 3.131

5000 41.601 45.696 2.843 3.172

5500 42.197 46.273 2.876 3.199

6000 42.609 46.484 2.896 3.205

6500 43.198 47.148 2.930 3240

7000 43.547 47.442 2.950 3.250

7500 43.873 47.590 2.967 3251

8000 44.155 47.596 2.985 3251

8500 44.419 47.593 2.999 3242

9000 44.606 47.533 3.011 3236

9500 44.833 47.580 3.025 3238

10000 45.139 47.803 3.044 3251

10500 45.376 47.990 3.058 3261

11000 45.633 48.243 3.074 3.276

11500 45.903 48.522 3.090 3.291

12000 46.046 48J589 3.099 3294

12500 46.184 48387 3.107 3.293

13000 46362 48.705 3.117 3297

13500 46314 48.791 3.126 3201

14000 46.641 48.810 3.134 3202

14500 46.763 48.835 3.142 3.303

15000 46.892 48.877 3.149 3.305

15500 47.016 48.968 3.158 3213

16000 47.153 49.093 3.167 3221

16500 47.293 49.226 3.175 3228

Table L10. M/M/4 mean queuing time and mean queue length

estimates as a function of the simulation run length and of the method of 

obtaining the data.
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Mean queuing time estimates Mean queue length estimates

Run Length Standard Weighted Standard Weighted

5000 217.727 254.676 3.778 4357

10000 288.754 331301 4.938 5.782

15000 329.325 372.133 5.607 6.453

20000 356.268 398.430 6.051 6.878

25000 376.750 417.976 6380 7.183

30000 392.371 432.418 6.621 7385

35000 402.754 439.852 6.782 7.486

40000 411.580 446344 6.928 7399

45000 419.991 454.307 7.064 7.719

50000 426.749 459.826 7.171 7.799

55000 431.832 463.095 7.251 7345

60000 435.950 465384 7315 7.876

65000 440.236 468.737 7387 7.932

70000 444.396 472.456 7.454 7.989

75000 448.146 475.736 7315 8.041

80000 451.179 477.871 7365 8.075

85000 453.508 478.981 7.600 8.085

90000 455.855 480318 7.643 8.116

95000 458.082 482.047 7.680 8.141

100000 460.053 483.300 7.713 8.161

105000 462325 485.728 7.751 8.194

110000 464.993 488.251 7.790 8.232

115000 466.054 488.114 7.803 8.220

120000 466.265 486368 7.807 8.193

125000 466.323 484.953 7.806 8.163

130000 466.872 484.488 7.816 8.155

Table 1.11. JACKSON’S model mean queuing time and mean queue 

length estimates as a function of the simulation run length and of the method 

for collecting the data.

330



Similarly, the weighted averages mean queuing time estimates reach the 

steady state for a simulation run length of 75000. In this particular case, the 

weighted averages method gives better results than the run-in-period method. 

As discussed in Appendix F, systems with a large value of the traffic intensity 

tend to have a large variance and standard deviation of the mean estimates, 

and in these cases, a large number of replications may be required for the 

estimation of the run-in-period.
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APPENDIX J : PASCAL MODIFICATIONS TO USE THE 

METHOD OF WEIGHTED AVERAGES

J.l. INTRODUCTION

This Appendix explains how to modify a simulation software so that the 

method of weighted averages can be used for dealing with the problem of the 

initialisation bias problem. The simulation software used is VS6 and the code 

has been written in PASCAL.

In Section J.2. we explain the code used to record the queuing time 

parameter for a given queue, and in Section J.3. we discuss the procedure used 

to record the queue length of a queue.

J.2. QUEUING TIME PROCEDURE

The procedure in the standard method is called "record_que_qtime" and 

it is called every time that an entity is removed from a queue. The variable 

"qent^.worknum" records the simulated time at which the entity was added to 

the queue. "TIM" is a variable used to represent the simulated time. 

Therefore, the line:

stay := TIM - qent ̂  .worknum; 

represents the time that the unit being removed from the queue has spent in 

the queue. The value of the queuing time returned by the program at the end 

of the simulation is the average of these individual queuing times recorded by 

the variable "stay". To keep track of these values we simply add them to a 

variable called "total", and the number of values (i.e. the number of times the 

procedure is called) added are recorded in the variable "count". Both variables 

have been initialised to "0" at the beginning of the simulation. When the 

variable TIM reaches the value corresponding to the total simulation run 

length, the mean queuing time is calculated as : 

total/count
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and this value is the value returned by VS6 as the mean queuing time 

corresponding to a single simulation run. If the method of replications is used 

we will change the random number seeds in each replications and therefore, 

different values of the mean queuing time are obtained corresponding to 

different replications.

For the weighted averages method (see corresponding procedure) we 

have underlined the two lines of the procedure that are modified to take into 

account the different "weights". The variable TOTAL1 is used along with the 

variable to change the "weights" of the individual observations. The variable 

TOTAL1 is initialised to 0 at the beginning of the simulation and is increased 

by 1 every time that the procedure is called. It can be seen then that the first 

time that the procedure is called, the observation recorded has a value of 0 for 

the queuing time. The second time the procedure is called the variable 

"weight" takes a value of

weight :=l-EXPf-r0.000001*TQTAL:m (tota ll= l now)

= 0.000001; and the variable totall is increased again by 1;

Therefore, the second observation has a small weight, and as in the sta

ndard procedure, these observations are accumulated in the variable TOTAL. 

At the end of the simulation run length, the value returned by VS6 is the 

average of the different observations recorded, but each observation has 

different weight.

However, because of the way the method of weighted averages is used 

in forecasting the average is not given now by 

total/count

but by

total/TOTAL2 , where TOTAL2 is the variable where the 

"weights" are accumulated.

STANDARD PROCEDURE

procedure record_que_qtime(h : quejhistogram; qent : mod_ent); 
var stayrlongint; i:integer;
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begin 
with h'M o 
begin

stay := TIM - qent ~  .worknum; 
cell[i] := cell[i]+l; 
total := total + stay; 
sosq := sosq + stay * stay; 
count := count + 1; 

end; 
end;

WEIGHTED AVERAGES PROCEDURE

procedure record_que_qtime(h : que_histogram; qent : mod_ent); 
var stayrlongint; i:integer;weight:real; 
begin 

with h'M o 
begin

stay := TIM - qent ̂ .worknum; 
cell[i] := cell[i]+l;
weight — l-EXPf-Vo.OOOOQPTOTALUh 
total := total + weight*stav:
TOTAL1:=TOTALl+1;
TOTAL2 :=TOTAL2+weight; 
count :=count+l; 

end; 
end;

33. QUEUE LENGTH PROCEDURE

The procedure called "LogQueData" is similar to that one of the 

queuing time, except that for each observation that is accumulated (i.e., every 

time the procedure is called) we consider not only the queue length at the 

particular moment of time that we call the procedure, but also the queue 

length for each unit of time. In other words, when call the procedure we 

assign the value of the simulated time at that particular time to the variable 

"tflag". We use this variable to count the number of units of time during which 

the length of the queue is not changed. This is shown in the following two 

lines:
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val := qsize(que); 

d := TIM-tflag;

Therefore, the value of the variable "d" is set equal to the number of 

units of time from the last call of the procedure, and the variable "val" 

evaluates the number of units in the queue at the simulated time that we call 

the procedure. This value has remained unchanged for a period of "d" units 

of time, and this value is accumulated in the variable "total" that keeps track 

of the accumulated queue length. At the same time, in the variable "count" is 

not increased by 1 as in the queuing time procedure but by "val" which is the 

number of individual queue lengths that we are adding to the accumulated 

length in the variable "total". This accumulated queue length considers the 

length at each unit of time. When the simulation is finished, the average 

queue length is calculated as before by 

total/count;

The standard procedure is modified in the weighted averages procedure 

below, and the lines that are changed are underlined and are the following: 

weightl:= 1-EXP(-(0.000001*totall)); 

total := total + WEIGHTl*val * d;

The modification is similar to the one of the queuing time parameter. 

The "total" variable which represents the accumulated queue length is 

increased by a the queue length recorded by "val" with a "weight" given by 

"weightl", that changes every time that we call this procedure. In the variable 

"TOTAL2" we keep record of the "weights" that are used. They are accumu

lated and used to obtain the average queue length at the end of the simulation. 

This average queue length is now given by: 

total/TOTAL2.

STANDARD PROCEDURE

procedure LogQueData(que:queue; hnam:strlO); 
var d,val:longint; i:integer; qhist:que_histogram; 
begin 

qhist := que ~  .hist;
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with qhist^do 
begin 

val := qsize(que); 
d := TIM-tflag; 
cell[i] := cell[i] + d; 
total := total + val * d; 
sosq := sosq + val * val * d;
count := count + d; 
tflag := TIM; 

end; 
end;

WEIGHTED AVERAGES PROCEDURE

procedure LogQueData(que:queue; hnam:strlO); 
var d,val:longint; i:integer; qhist:que_histogram;weightl:real; 
begin 

qhist := que ̂  .hist; 
with qhist ̂  do 
begin 

val := qsize(que); 
d := TIM-tflag; 
cellp] := cell[i] + d; 
weightl :==l-EXP(-(0.0000Ql*totalllV. 
total := total + WEIGHTl*val * d:
TOTAL2 :=TOTAL2+weightl*d:
TOTAL1 :=TOTALl+l; 
count := count + d; 
tflag := TIM; 
end; 

end;
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