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ABSTRACT

Often in simulation procedures are not proposed unless they are
supported by a strong mathematical background. As will be shown in this
thesis, this approach does not always give good results when the procedures
are applied to complex simulation models, especially on output analysis. For
this reason we have used an empirical rather than a theoretical approach for
dealing with some of the output problems of simulation.

The research carried out has dealt mainly with queuing networks. The
first problem we address is that of the identification of possible unstable
queues. We also deal with the problem of the identification of queues that
may require a long simulation run length to reach the steady state.

The method of replications is used for the estimation of terminating and
sometimes of steady state parameters. In this thesis we study the relationship
that exists between the number of replications used in the simulation and the
simulation run length required for the parameter being estimated to reach the
steady state. We also study the influence of the random number streams on
the values of the mean estimates as a function of the number of replications.

One of the most commonly discussed problems related to the estimation
of steady state parameters is that of the initialisation bias problem. Two
methods are proposed in this thesis to deal with this problem. In one of the
methods we propose an effective procedure that can be used for the estimation
of the number of initial observations that are to be deleted. The second
method, is based on a basic forecasting technique called weighted averages and
does not require the elimination of any of the initial observations.

Another topic that has been studied in this thesis is the batch means
method which is employed for the estimation of steady state parameters based
on a single but very long simulation run. We show how a new sampling
method called Descriptive Sampling is well suited for the estimation of steady
state parameters with the batch means method. We also show how some of
the procedures proposed in the literature for use in the batch means method
do not work well in simulation models for which no analytical answer exists.

The thesis demonstrates that empirically derived methods can be
practically effective and could form future theoretical research.
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CHAPTER 1 : INTRODUCTION
1.1. BASIC SIMULATION CONCEPTS

In the last two or three decades there has been a fast and important
development in computer technology. As a consequence of this, the world has
been transformed. Computers have become smaller, cheaper and more
powerful. They are not only a useful tool in today’s world, but they are in
many ways necessary; airline bookings are not possible when "the system is
down"; bank transactions are equally affected when the computer is not
working, just to give two examples of how much businesses rely on computers.
Most universities, large and small, include in their curriculum at least one
course on computers. But their use is not limited only to the business and
academic worlds. Computers are found in households, charity centres,
hospitals etc. And this popularity and availability of computers has been an
important factor in the development and use of simulation. (For example,
Crookes and Valentine (1982) describe a visual colour simulation development
on APPLE computers carried out to assess an expensive capital installation;
in Chapter 3, Law and Kelton (1991), give a description of different types of
software that are currently used in simulation; see also Hollocks (1984)).

1.1.1. WHAT IS SIMULATION?

Several definitions of simulation can be found in the literature. A very
basic definition is the following:

"Simulation is the construction of a mathematical model for some
process, situation, etc, in order to estimate its characteristics or solve problems
about it probabilistically in terms of the model." (The COLLINS English
Dictionary, 1986).

A more formal definition of simulation is the following:
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"Simulation is essentially a controlled statistical sampling technique
(experiment) that is used, in conjunction with a model, to obtain approximate
answers for questions about complex, multifactor probabilistic problems."
(Lewis and Orav, 1989).

However, no matter how formal and complex a definition is, it is always
possible to identify in all of them the main characteristics of simulation: a
model of the system is developed, and from this model, and using statistical and
mathematical techniques, some inferences about its behaviour may be drawn.

Although simulation could be performed without a computer, in practice
the real-world systems that need to be analysed with the help of simulation are
quite complex, and performing the simulation by hand would take a long time,

would be tedious and would be a source of errors.
1.12. SIMULATION OBIJECTIVES : WHEN IS IT USED?

Before starting any research in the area of simulation it is very
important to understand why and when simulation is used. Basically, it may
be said that "simulation is run in order to gain an understanding of the
behaviour of the system under study." (Seila, 1990). A better understanding
of the use of simulation can be obtained by mentioning a few of the fields
where it has been successfully used:

1. Computer Systems.

Communication Systems.

Environmental and Energy Flow.

Crop Management and Ecological Studies.

Transportation Systems.

Policy Analysis.

Project Planning and Control. (See Pritsker, 1984).

Common to all these studies is the fact that the systems are too complex

NS N

and, therefore an analytical answer to the problem(s) does not exist. This last
point is very important: simulation is used to give an answer to probabilistic

problems. Due to this probability aspect of simulation, there is some

14



"uncertainty" which is inherent to the results obtained from simulation.
Therefore if a mathematical technique exists that, without making great
assumptions (hardly met in practice) can provide an exact answer, this
technique should be used instead of the more sophisticated but in some ways
"uncertain" technique of simulation.

The dangers of using simulation when it is not necessary are clearly
illustrated in the following paragraph, which is part of a letter received by
Woolsey (1979) as a response to his article : "Whatever Happened to Simple
Simulation". The author of the letter "wants to remain anonymous, probably
for reasons of national security." (Woolsey, 1979). In this letter the author
refers to a problem that was tackled by simulation and "after careful analysis
of old records which initiated the study in the first place (strangely enough,
these were found among the belongings of Ramses II), I have concluded that
simulation wasn’t necessary, as application of simple analytic tools to
subproblems would have provided excellent results. Anyway, the problem is
no longer a problem as so much time has passed that the stuff that the
computer model was to have predicted has happened without the termination
of life on earth. Unfortunately, if I brought this fact to the attention of
management I would certainly be locked up "down in the mine" for the rest of
my born days."

Some suitable areas of application for simulation are then the following:

1. Analysis of complex systems.

2. Forecasting of possible effects of changes in the number of resources
or their allocation.

3. Determination of the critical variables in a system and of the way
they interact in the system.

4, To test a system before it is built because in some cases it may be
very difficult or even impossible from a practical point of view: for example,

in the simulation of a naval battle.
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1.13. TYPES OF SIMULATION

There are several types of simulation models depending on the type of
variables used (random or deterministic), length of the run (finite or infinite),
type of change of the state variables (discrete or continuous) etc. Some of

these types of simulation are defined in this subsection.

STATIC OR DYNAMIC SIMULATION

A simulation model is called static when it represents a system at a
particular point of time. It is sometimes called a Monte Carlo simulation.
When the simulation model represents a system that changes over time

it is called dynamic simulation.

DETERMINISTIC OR STOCHASTIC SIMULATION

In a deterministic simulation, the variables are exactly determined; this
means that they are properly specified instead of being generated from a
probability function. In a stochastic simulation one or more of the variables
are random, i.e., they are defined according to a probability density function.
For example, the arrival of customers in a bank or in a post office may not
happen at regular intervals of time but might follow a random pattern which
can be modelled by the exponential distribution. Identifying an adequate input
distribution may not be easy but nevertheless if simulation is going to be
successful this is a critical aspect of simulation modelling. Examples of
research in this field can be found in Cochran and Cheng Chuen-Sheng (1990),
DeBrota et al (1988), Avramidids and Wilson (1989), DeBrota et al (1989).

DISCRETE OR CONTINUOUS SIMULATION

Law and Kelton (1991) give the following definition:
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"Discrete Event Simulation concerns the modelling of a system as it
evolves over time, by a representation in which the state variables change
instantaneously at separate points in time. (In more mathematical terms, we
might say that the system can change at only a countable number of points in
time.) These points in time are the ones at which an event occurs where an
eventis defined to be an instantaneous occurrence that may change the state
of the system." In a simulation where customers arrive randomly (post office,
banks, pubs, launderettes, etc.) the number of customers waiting at a particular
queue to be served constitutes a state of the system. Therefore, the arrival of
a new customer to a system is an event.

In a "continuous simulation the state variables change continuously over
time. An example is the head of water behind a dam. During and for some
time after a rain storm, water flows into the lake behind the dam. Water is
drawn from the dam for flood control and to make electricity. Evaporation
also decreases the water level." (Banks and Carson, 1984)

Figures 1.1. and 1.2. illustrate the difference between discrete and

continuous state variables, and how they change in value over time.

Discrete Continuous
V ariable Variable

i B

i T o -

FIGURE 1.1 FIGURE 1.2

Figures 1.1 and /2. Discrete and continuous system state variable.
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TERMINATING OR NON-TERMINATING SIMULATION

In some cases the simulation ends when an "special event" occurs. That
is, "there is a natural event E which specifies the length of each run
(replication)" (Law, 1990). For example, the simulation of a post office might
consider the system for a period of 8.30 hours (9.00 am. to 530 p.m.).
Similarly a bank may be simulated for some pre-specified period of time (say
seven hours: from 9.30 a.m. to 4.30 p.m.). In this case the simulation is called
terminating. In contrast with this type of simulation, we have non-terminating
simulations. In this latter type, the simulation run length is not decided by the
system that is being simulated, but it is a choice of the simulation practitioner.
In other words, in contrast with terminating simulations, in non-terminating
simulations there is no natural event E to specify the length of the run.
Although in theory a non-terminating simulation is exactly that: non-
terminating, most systems after being simulated for a reasonably long period
of time tend to become "stable" or, in other words, reach a "steady state". To
explain this, suppose that the simulation is estimating the waiting time for a
customer in a system that operates day and night. Let us call W,, W,, ..W,
the waiting time of customers 1, 2, ..n respectively. The "steady state" mean
waiting time W is given by

—  Lim
W=n_m

N

i=1

This means that the mean waiting time is the waiting time for a very
large (infinite) number of customers in the system. After a "long", but finite
duration, the value of W does not change too much.

However, another way of interpreting "steady state" is by defining the
steady state as that time "when the distribution of the parameter that is being
estimated (in this case, the mean waiting time) becomes invariant" (Law and
Kelton, 1982b). It is important to notice that it is the distribution, and not the
actual values of the parameter being estimated, that becomes invariant.
Another way of interpreting this definition of "steady state" is by saying that
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in the "steady state" the system is independent of the initial conditions. This
means that the distribution of the waiting time is exactly ﬁc same,
independent of the number of customers initially present in the system, and
when the simulation was started. For example, whether the system has 5 or
100 customers at the start of the simulation, in the steady state the distribution
of the waiting times will be exactly the same.

1.1.4. ESTIMATION OF SIMULATION PARAMETERS

Depending on the type of simulation, terminating or steady state,
different methods are used for the estimation of parameters. We will describe
in this sub-section some of the most common methods employed for this
estimation, for these two different types of simulation.

a. Terminating Simulations

In terminating simulations parameters are normally estimated using the
method of replications. In this method n different replications of the model
are run, each one using different random number seeds in order to ensure
independence of the observations. For each replication an estimate X is
obtained. If the parameter being estimated is a mean value )2, this will be
easily estimated as

X = 12": X, (1.2)

One of the problems faced by the simulation practitioner is then that of
deciding how many replications are required to obtain an accurate parameter.

b. Steady state simulations

Several methods have been proposed in the literature for the estimation
of steady state parameters. Among these methods we can mention the
following:

1. Replications method.

2. Batch means method.
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3. Regenerative method.

The method of replications has already been described and in this case
besides the problem of deciding on the number of replications to be used, the
simulation practitioner faces the problem of how long the simulation run
should be for the mean estimate to be independent of the initial conditions.
This problem known as the problem of the initialisation bias is discussed more
in detail in Section 1.2.2.

As opposed to the replications method, the batch means and the
regenerative method obtain the steady state mean estimates using a single but

very long simulation run.
BATCH MEANS METHOD

In the BATCH MEANS method (Fishman, 1976) N observations X,
X,..Xy are recorded. These observations are grouped into b batches of size
N/b and the mean X, of each one of these batches is calculated as:

b
T = j‘:.}_{!ﬂ)&é (1.3)

' 42 NP
The mean of the b batches will give the estimate Y for the parameter(s)

of interest.

z (1.4)
b

b
0>
i=1
REGENERATIVE PROCEDURES

In the regenerative procedures "the idea is to identify random times at
which the output stochastic process probabilistically “starts over", ie.,
regenerates and to use these regeneration points to obtain independent
random variables (r.v.’s) to which classical statistical analyses can be applied.
This method was developed simultaneously by Crane and Iglehart (1974a,

20



1975a) and Fishman (1973, 1974), although the original idea of the
regenerative method dates back to Cox and Smith (1961) and Kabak (1968).

Assume for the output process {Y,, i>1} that there is a sequence of
random indices 1 < B, < B, < ... called regeneration points, at which the
process starts over probabilistically; ie., the distribution of the process {Yg;+i1,
i=1,2, ..} is the same for each j= 1, 2 ..., and the process from each B; on
is assumed to be independent of the process prior to B, The portion of the
process between two successive Bj's is called a regeneration cycle, and it can
be shown that successive cycles are independent and identically distributed
(ii.d.) replicas of each other. In particular, comparable r.v.’s defined over the
successive cycles are iid. Let N, = Bj,, - B, for j =1, 2, .. and assume
E(N)<e. If:

i=(Bjq-1)

z- Y vy, (1.5)

! i=B,
the random vectors U; = (Z;, N)) are iid. and provided that E(|Z;|) < =, the
steady state average response v is given by v = E(Z)/E(N)...
We now briefly discuss how to obtain a point estimator for v using the
regenerative method. Suppose we simulate the process {Y;, i 2 1} for exactly
n’ regeneration cycles, resulting in the data Z,, Z,, ..Z, and N,, N,,...N,,.

Each of these sequences consists of i.i.d. r.v.’s; however, in general, Z; and N;

are not independent. A point estimator for v is the given by:

@) = Z‘ﬁﬁ (1.6)
N@n’)

Iglehart (1975), Meketon and Heidelberg (1982) and Glynn (1982)
discuss alternative point estimators for v. " (Law, 1983).

12. SOME PROBLEMS IN SIMULATION

In this section we will describe some of the statistical problems found
in the applications of both terminating and non-terminating simulations.
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12.1. TERMINATING SIMULATIONS

The method of different and independent replications is used for the
estimation of parameters in terminating simulations. However, the number of
replications to be used is decided by the practitioner. Too few replications will
not give an accurate estimate, and too many replications will be a waste of
computer time. Although some procedures (discussed in Chapter 3) exist to
determine the optimal number of replications, they are based on the "classical
assumptions” of statistics that observations (or results from each replication)
are identically distributed, independent, and follow a normal distribution. The
two first assumptions are easily met, by the use of exactly the same parameters
in all the replications, and by the use of different random number seeds for
each replication. But the assumption of normality is not always met. Research
is still being done on the effects of this lack of normality of the simulation
results.

122. NON-TERMINATING SIMULATION

The analysis of non-terminating simulations, or "steady-state"
simulations as it is sometimes called, is much more difficult than the analysis
of terminating simulations. Among the problems that arise in this analysis two

are worth mentioning:
1. INITIALISATION BIAS PROBLEM.

A system is said to be in the steady state when the influence of the
initial conditions has disappeared. Therefore, when the simulation is started
from the initial state, these initial conditions will take some time to disappear.
HOW LONG ? is one of the questions that the simulation practitioner has to
answer. If steady state estimates are calculated while there is still some
influence of the initial conditions, the estimate will be biased, and a confidence
interval, if it is calculated, will be centred around the wrong value. A possible
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solution to this problem of the Initialisation bias is to delete a number N of the
initial observations. However, the practitioner faces the new problem of
finding a value for this number N. Several methods have been proposed in the
literature. Studies of the state of the art by 1978 show that none of them is
completely satisfactory (Wilson and Pritsker, 1978b). In the 1980’s some new
methods were proposed (Schruben,1982; Kelton and Law, 1983; Welch, 1983),
but most of them are rather complex which makes them difficult to use by the
user who is not familiar with advanced programming techniques (see discussion
in Chapter 4). The usefulness of deleting some of the initial observations has
been questioned. Fishman (1971) shows how this deletion will increase the
mean square error and will greatly reduce the statistical reliability of the
results but on the other hand Kelton and Law (1984), question Fishman’s
results and conclude that deletion of some of the initial observations is useful
and effective. Further research is necessary using not only simple systems for
which we can obtain an analytical answer but complex systems that are more
representative of real world models in order to examine this question.

This problcm‘ appears mainly when the replications method is used for
the estimation of steady state parameters. This is due to the fact that each
replication starts with the same initial conditions which are usually not
representative of the steady state conditions. When the estimation is made
using a single but very long simulation run this problem of starting the
simulation with the same initial conditions is almost eliminated but when the
batch means method is used a new problem appears: that of the
autocorrelation of the observations which is described in point 2 below.

2. AUTOCORRELATION IN THE OBSERVATIONS

This autocorrelation can be intuitively explained by an example.
Suppose that the system being simulated is a queuing network. Obviously at
a given time t, the time a customer has to wait is related to the past history of
the system. If at time t-1 (assuming discrete event simulation) there are

several customers waiting to be served, the probability of having to wait to be
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served for the new customer arriving at time t is much higher than if at time
t-1 there are no customers waiting to be served. "The effect of having
autocorrelation among the data is to make it difficult to estimate the variation
in the sample mean." (Seila, 1990) A direct consequence of this is that the
estimated standard deviation calculated from the sample according to the
classical formulas from statistics will usually be underestimated and
consequently, any statistical test based on these values (mean and standard
deviation) will be biased.

Due to this autocorrelation the main problem with the batch means
method is to choose a batch size sufficiently large such that successive batches
are independent. If they are correlated the variance estimator will be biased
(either positively or negatively) and therefore the confidence interval (c.i.) thus
calculated will be either too small or too large. This method is extensively
discussed in Chapter 5.

Although the regenerative method does not present the problem of
autocorrelation of the observations, it is not always possible, due to the

characteristics of the method, to use it.

13. RESEARCH OBJECTIVES

Now that the main concepts and problems in the practice of simulation
output analysis have been explained, we can discuss in more detaill WHY
research in this area is necessary, and what the main objectives of the research
in this thesis have been.

Research in this area is important because as Alan Pritsker says:

"The analysis of simulation output is a perplexing topic. In practice, it
appears that an analysis is either very easy or extremely difficult. Sometimes
this dichotomy is hard to understand. Tremendous strides have been made in

deriving theoretical results for output analysis and variance reduction.
However, the results are not often used. The reasons for this are that the

results_are not easy to apply, thorough experimentation in the industrial and

government sectors is not usually possible due to time constraints, the number
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of pitfallé associated with the applications of the results discourages their use
and the number of variables and performance measures in a model make it
difficult to apply the results. As an alternative, there has been a greater
exploration of graphical means for viewing the outputs of a simulation...This
has not solved the problem. What is needed is robust statistical techniques
that can be applied to diverse systems." (Pritsker, 1989)

Having answered the question of WHY research in this area is necessary
and useful, we can summarise the main objectives of the research reported in
this thesis.

The first important aspect to take into account is that simulation may
be used to solve some types of realworld problems for which no analytical
answer is available. This means that the simulation “client” will not necessarily
have special knowledge of the field. It would be different if simulation were
going to be used only in the academic world (for example), where talk of
"technical terms" and "complicated procedures” would be understood with no
problems. We can suggest that the simulation user is "the person who interacts
with the computer to enter a model and carry out simulations...Preferably the
system user should be the same person who wants the results." (Symons, 1985).

Therefore, if simulation is going to be successful, it should be "user-
friendly". It means that "the user must be able to communicate this
information" (the computer requires to give some information to produce the
results) "quickly" (Symons, 1985). In other words, we must remember that the
user is the person "who wants to use the system, not make the system, or
follow long detours to reach this goal." (Symons, 1985). Unfortunately several
of the procedures formulated to deal with problems in simulation are not easy
to understand and to use.

A second aspect, also mentioned by Pritsker and which is important to
take into account is the following: because simulation is used to obtain answers
to "multifactor probabilistic problems", statistical analysis of simulation output
is necessary in order to infer how accurate it is. This aspect of statistical
analysis is quite important but unfortunately many times it is not taken into
account. "Unfortunately many simulations are run without applying statistical
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analysis to the output..The simulation is run only once for each scenario to be
analysed, a single value such as the average cost is computed and this number
is treated as if it is the correct parameter value" (Seila, 1990). "In many
simulation studies a great deal of time and money is spent on model
development and "programming", but little effort is made to design appropriate
simulation runs or to analyse correctly the resulting data." (Law, 1990). These
are only two quotations among those found in the literature placing emphasis
on the importance of a good statistical analysis of the simulation output data.

A third important point lies in the way research in simulation has been
carried out. Frequently research is carried out in a specific area of simulation
and new procedures are tested for very simple models for which an analytical
answer exists. Usually the M/M/1 queue is used to test proposed procedures.
(See for example Minh, (1989), and Kelton and Law, (1985) for just two
examples of the use of the M/M/1 queue and similar to test new proposed
procedures). However, the results thus obtained may be misleading because
simulation should only be applied when systems are too complex to be
analysed in a different way and where the elements of the system will interact
with each other. This interaction does not occur when a simple system like the
M/M/1 queue or any other simple system is used to verify a procedure. A
typical statement that illustrates the use of only simple models for testing a
proposed procedure is the following: "The primary purpose of the experiments
is to assess the validity of the confidence interval estimates. Thus the models

considered were restricted to those which could be solved by separable balance
equation models" (Sauer, 1979). There are times when it has even been

suggested that it is possible to obtain a "suitable approximation for the given
stochastic model, and, second, we must calculate the asymptotic quantities of
interest for the approximating model." (Whitt, 1989a).

In summary there are two main purposes for carrying out research in the
area of simulation:

1. There is a need for simple and easily understandable procedures, not

always available in those developed up to now.
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2. The statistical analysis of simulation output data is many times
overlooked but nevertheless, if simulation is going to give good results, this
analysis should be included as part of the whole simulation process. (See
Kelton (1983, 1985), Law (1980, 1982) for a discussion on statistical analysis
of simulation output).

In this research we deal mainly with the first purpose, but using
different simulation models for which an analytical answer cannot be
calculated, we also discuss why an analysis previous to the simulation, as well
as an analysis of the results from the simulation, is important. One of the
fascinating aspects of research is that the answer to a question brings up
several other questions, and while studying a phenomenon, several others come
to light. In this way, when we were applying some statistical tools to the
simulation output data obtained for terminating (or terminal) simulations, we
found a simple, and easy to implement, answer to one of the puzzling
questions in simulation. This point is discussed in Chapter 3.

In conclusion, in this thesis, we show how it is possible to design simple
procedures to deal with some problems of simulation. Once these problems
have been dealt with using procedures that work, but that are not time
consuming, the time saved on collecting the data can be used on a thorough
statistical analysis of it.

In order to test the general applicability of any procedure it is necessary
to test it on several complex simulation models, rather than on simple models
with none, or just very little interaction amongst the elements of the system.
For this reason our research was applied mainly to simulation models for
which no analytical answer can be calculated. Although the research described
in this thesis is not theoretical from a mathematical point of view, it is more
theoretical than empirical in terms of the models employed because these

models do not correspond to real life simulations.
14. RESEARCH METHODS

In mathematical-related fields emphasis is usually placed in obtaining
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a mathematically accurate and exact solution. As pointed out by Newell,
(1971): "Mathematicians working for their mutual entertainment will discard
a problem either if they cannot solve it, or if being soluble it is yet trivial. An
engineer concerned with the design of a facility cannot discard the problem...I
have suffered many times the frustration of failing to solve elegantly what
appeared to be a straightforward practical queueing problem, subsequently to
discover that I could find very accurate approximations with a reasonable
effort, and finally that I could obtain some crude estimates with almost no
effort at all."

The same can be said about the way most problems in simulation have
been tackled by simulation theoreticians. Procedures are proposed only if they
have a mathematical background to support them. But one of the main
characteristics of simulation is that it should be used ONLY when other
approaches are not possible, and therefore no analytical solution can be found
due to the complexity of the problem. Therefore, trying to formulate
procedures having a strong mathematical background seems to be in
contradiction with the very same nature of simulation.

Taking this into account, as well as the need to develop if possible
"user-friendly" and simple simulation procedures, this research considers some
of the problems that a practitioner is very likely to encounter in the
application of simulation and shows that methods used to deal with these
problems do not need to be complex and difficult to understand and to use.

However, to do this we are faced with a fundamental problem: we use
simulation in those cases when an analytical answer cannot be found; for this
same reason, it is very difficult to test the validity of a procedure that has been
suggested to deal with a given problem. There are two possibilities in this
case:

1. Test the procedure against several stochastic systems for which an
analytical answer exists and if the procedure works reasonably well assume that
it will work well in other complex systems.

2. Test the procedure in an empirical way against several simulation
models (i.e., models for which no analytical answer can be calculated) and if
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there are no contradictions, ie., if all the systems perform according to the
hypothesis that has been stated, it is reasonable to assume that the procedure
will in most cases perform well.

Although the first approach has been widely used in simulation, it may
be misleading. It is well known that a system like the M/M/1 queue (a
favourite system used to test procedures in simulation papers) not only is not
a "typical" case of a real-world problem, but (and this is valid for most cases
where an analytical answer is obtained) in order to make the problem
"mathematically manageable" several assumptions have been made. Therefore,
the analytical answer will be more an approximation to the real value, than the
real value itself. For this reason, to test the new procedures wé have followed
in this thesis the second approach described above. This means, that along
with a procedure, a hypothesis is formulated on what we may expect with
respect to the behaviour and type of results of the procedure. This is tested
against several simulation models and most of the analysis in this thesis is
based on results obtained for these models. If the hypothesis that we have
formulated performs well for several different types of simulation models, it
should perform well for other models also. The specific topics discussed in

this thesis are described in section 1.5.
1.4.1. JOE’S THEOREM

There are two important characteristics of the research reported in this
thesis: 1. The fact that it uses an empirical (in the sense that it uses models
for which no analytical answer can be obtained) rather than a mathematical
approach, and 2. One of its objectives is to show that simple solutions and
methods exist for dealing with some common simulation problems.

However, there is a risk in this approach, a risk that has been
mentioned by Grassman, who is the author of different papers in the area of
operational research, and particularly, in queuing theory. In his article "Is the
fact that the Emperor wears No Clothes Subject Worthy of Publication?" he
discusses the problem of "bias against simple methods" (Grassman, 1986). To
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this end he tells us that "I have worked in industry for a few years, and I
helped to implement some of the most successful operational research projects
for the company for which I worked. During this time I came to realize how
important it is to keep things simple. It is good engineering practice to start
with the simplest approximation one can get away with and add new features
only if and when they are needed." Continuing with this line of thought he

formulates a theorem called Joe’s Theorem:

Joe’s Theorem:
Nothing is published in the area of queuing theory
unless it is mathematically interesting. Nothing is
applied in industry unless it is mathematically trivial.
Since trivial results are not interesting, and since
results that cannot be applied are not useful,
nothing useful will ever be published in queuing
theory."

And as Grassman says, it is not that we think that mathematicians are
useless; it is the opposite, they have greatly contributed to the development of
not only mathematics, operational research and simulation, but of many other
areas. However, and this is one of the messages of this thesis "mathematical
models are useful and necessary, but they can never capture all features of the
system they represent. Consequently there is no guarantee that the optimum
of the model is also best in real life. This fact is almost always ignored in the
theoretical literature, but it is essential for any successful application of
operational research" (and we should add, of simulation). "In order to be
successful, one should always start with the real-life system never with its
model." (Grassman, 1988)

This is one of the reasons for the other important objective of this
thesis: procedures should not be tested for simple models with analytical
solutions, as these analyﬁcal solutions include too many assumpﬁons and

simplifications. Even though the procedures proposed in this thesis have been
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tested in a more general way, they still may not reflect completely the
behaviour of a real-life system, but this can only be analysed by the simulation
practitioner.

15. THESIS OUTLINE

This thesis describes research into some topics related to some
problems, mainly in the area of steady state simulation.

In the Introduction, Chapter 1, some basic concepts and types of
simulation have been defined. Also some of the problems that may be found
when using simulation are briefly discussed.

Chapter 2 expands some of the ideas considered in Chapter 1, and some
of the considerations that the simulation practitioner should make before the
simulation is run.

Chapter 3 studies the problem of the number of replications that are
required for the estimation of parameters in terminating and steady state
simulations.

Chapter 4 gives a more detailed analysis of the Initialisation Bias
Problem and proposes a method for dealing with it. This method deals with
this problem by eliminating some of the initial observations which are not
representative of the steady state conditions.

Chapter 5 discusses the Batch Means Method for the estimation of
steady state parameters and shows how some of the procedures proposed in
the literature up to now for the estimation of steady state parameters using
this method do not work well in practice.

In Chapter 6 we propose another method to deal with the initialisation
bias problem. Instead of deleting any of the initial observations, the method
proposed in this chapter is based on the assignment of different weights to the
observations recorded from the simulation output: initial observations are
assigned smaller weights.

Finally, Chapter 7 presents the conclusions and areas for future

research.
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1.6. SUMMARY

This chapter has defined what simulation is, when and where it could
be used and which are the practical problems that a simulation practitioner is
likely to face. Two main objectives for this research have been identified: the
need for simple and easy to understand procedures and the need for testing
any proposed procedure with complex, and not only with simple, simulation
models. Another important point to be considered is that these procedures
should be statistically robust and this can only be confirmed when they have
been applied to different simulation models. In this thesis we try to develop
approaches that might successfully contribute to these points. In case that
there are still some doubts on how useful the simulation approach is to solve
problems let me quote Pritsker (1989):

""We have commercialised the field and demonstrated, without a doubt,
the benefits obtainable from modelling, analysis and problem solving using
simulation.

In 1947 Winston Churchill in a speech before the House of Commons
presented the following view of democracy:

"Many forms of government have been tried, and will be tried in this
world of sin and foe. No one pretends that democracy is perfect or all-wise.
Indeed, it is the worst form of Government, except all those other forms that
have been tried from time to time. " (Churchill, 1947)

I close by paraphrasing Churchill’s statement:
No one pretends that simulation is perfect. Indeed, it has been said that
simulation is the worst form of analysis except all those other forms that have

been tried from time to time.™
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CHAPTER 2 : RESEARCH DISCUSSION

2.1. INTRODUCTION

The main topics, and purposes of the research described in this thesis
are discussed in Chapter 1. We expand some of these ideas in this chapter in
order to create the scenario required for the discussion that follows in the
remaining chapters. We also discuss in this chapter some important aspects
that should be considered by the simulation user before running the
simulation, and some points that should be taken into account in the analysis
of the simulation output.

2.1.1. CHAPTER OBJECTIVES

While in Chapters 3 to 6 we deal with specific problems of simulation
and formulate solutions that are easy and simple to implement, in this chapter
we try to give a general view of simulation and some practical aspects about
its application.

One of the main characteristics of the research presented in this thesis
is the use of complex simulation models for which no analytical answer can be
calculated. Such an approach requires the appropriate scene setting for it to
be understood. We intend in this chapter to create such a scenario by
considering some practical aspects of the use of simulation. This practical
consideration is important because the good practice of simulation requires
some previous analysis of the system to be simulated.

Simulation is much more than just running a program on a computer
and recording the results. If simulation is going to give accurate and
acceptable solutions for a given problem, it is important to analyse the system
to be simulated before running the simulation. This analysis prior to the
simulation is sometimes omitted but, as shown in this chapter it may save
valuable time; for example, if the objective of the simulation is to estimate the
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steady state parameters, the simulation practitioner should consider before
running the simulation if such a state can exist.

These types of practical consideration concerning the use of simulation
are given in this chapter. They are a complement of the approach used in this
thesis, and create the appropriate framework for the treatment of simulation

in the following chapters.

2.12. CHAPTER OUTLINE

A first point to consider (Section 2.2.) is the nature of the research, as
this is empirical more than theoretical. As discussed in Chapter 1 simulation
is used only when an analytical solution cannot be found; for this reason we
do not propose procedures supported by a sound mathematical theory, but by
a good empirical performance over a variety of simulation models.

Because of the characteristics of the simulation software (VS6) used
(Paul and Chew (1987); Crookes et al, 1986), most of the research reported in
this thesis has been conducted in the area of queuing networks. Section 2.3.
discusses some of the characteristics of these networks.

In steady state simulations, a simple analytical analysis of the system
helps the practitioner to determine if such a steady state exists or not. This
point is discussed in Section 2.4.

One of the problems discussed in this thesis is that of the influence of
the initial conditions, or Initialisation Bias Problem. Two procedures (See
Chapters 4 and 6) are proposed to deal with this problem but Section 2.5.
presents a general discussion about the cases when such a problem may not
exist or may not be eliminated because of the characteristics of the system
being simulated.

Section 2.6. discusses some problems found in the statistical analysis of
the simulation output like, for example, that of a large standard deviation as

compared to the sample mean.
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22. WHY SHOULD WE USE SIMULATION MODELS FOR
WHICH NO ANALYTICAL ANSWER CAN BE CALCULATED ?

The first characteristic of the research described in this thesis is that it
is not theoretical from a mathematical point of view, but it is based on results
obtained for some complex simulation models. Based on practical
observations or on a theoretical analysis of the behaviour of simulation
models, we formulate a hypothesis or propose a new procedure, which usually
has no rigorous mathematical support.

In order to study how well this hypothesis works, and how useful it is for
the solution of the problem under consideration we use different complex
simulation models and, as a further check, some commonly used systems with
known analytical answer. We expect that the new proposed procedure will
provide a "good" solution to the problem of interest in all the different models.
Sometimes, when we expect the procedure to have some limitations in its
application, we may also assess it with results obtained from the simulation.
What "good" means depends on the particular problem under consideration.

Although this non-mathematical approach may not be approved of by
all simulation theoreticians, it is useful because it permits the identification of
simple and easy to understand methods. The use of results obtained from the
simulation, as shown in this thesis, will highlight simple facts of otherwise
complex problems.

A second advantage of using results obtained for different types of
simulation models is that sometimes common facts to different models can be
identified and procedures that do not require the setting of values of certain
parameters that may be model dependent can be proposed. This point is
discussed in detail in Chapters 4 and S.

A third advantage of the approach used in this thesis is that carrying it
out shows that the necessary modifications to the simulation software can be
done. Another advantage is that a procedure that, even if giving "good" results,
may be of little practical use because of the relatively large computer time it

requires, may be easily identified.
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23. QUEUING NETWORKS

In this section we describe the concept of queuing networks, and some
parameters of interest (queuing time and queue length) in these networks.
The first step to follow when simulation is used, is to obtain a model of the
real-world system to be simulated. There are different approaches concerning
the type of model to use and its choice depends on the simulation practitioner
and on the software available. A possible way of describing a system is by
defining the endties, or elements, of the system; if necessary, individual
elements belonging to a given class of entity can be identified by assigning an
atribute to them. The entities are either engaged in an activity or are "idle"
waiting to start an activity. The type of models that use activities and entities
in their definition, are especially suited to the description called queuing
networks (See Section 2.3.1.).

The use of queuing networks is not limited to the area of simulation.
They also have been used in theoretical studies to model the contention for
resources, which is usually the dominant factor in the performance of
computing and communications systems. Some examples of studies in this field
can be found in Ayani, (1989), Ayani and Rajaei, (1990), Chandy and Sherman,
(1989), De Vries, (1990), Lin and Lasowska, (1989), Reed et al, (1988),
Wagner and Lasowska, (1989). References to studies previous to 1980 can be
found in the bibliography. However, most of these references study queuing
networks as a Markovian process and under some assumptions try to find
approximate solutions. Some efforts have been put into the solution of
queuing networks by simulation. Examples of these studies can be found in
Rypley, (1988), Glynn, (1988), and Schruben and Yucesan, (1988). Other
references of studies are given in the bibliography. Studies to assess the
validity of the confidence interval estimates for queuing models of computer
systems have also been carried out by Amer (1982), Mamrak (1980), and

others.
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23.1. STATES OF A QUEUING NETWORK.
DEFINITION

The State of a system is the set of variables needed to describe the
system at any time.

In the simulation of a post office, for example, the possible states are
the number of customers waiting to be served at a given time and the number
of busy clerks. Similarly, in a production system where the machines that
perform the work can break down, the possible states of the system are their
status: busy, idle, or down. Notice that the word "possible" is underlined to
suggest that the variables required to describe the behaviour of the system will
ultimately depend on the objectives of the study.

There are two basic types of states in a queuing network:

a. An Active State, also called an activity, which requires the co-
operation of different classes of entity. One characteristic of an active state is
that its duration is known beforechand. This duration can be either
deterministic, or can be sampled from a specific probability distribution. One
example of an active state is, in the simulation of a post office, the period of
time while a customer is serviced at the counter by a post office clerk.

b. A Dead State, also called a queue is a state in which the entity waits
for an activity to start. Its main characteristic is that it does not require the
co-operation of different classes of entity. In contrast with an active state, the
length of time that an entity remains in a dead state cannot be known
beforehand. It will depend in general on the interactions of the different
entities in the system.

Appendix A explains a way of modelling queuing networks in simulation
using what is called Activity Cycle Diagrams (A.C.D.). These diagrams show
for each entity a cycle of active and dead states that for the sake of clarity will
alternate, as is explained in Appendix A. Most of the study reported in this
thesis will refer to queues used in the A.C.D.’s of some systems for which no

analytical answer exists.
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232. SOME PARAMETERS OF INTEREST IN A QUEUING
NETWORK

In a queuing network the entities or elements of the system are either
engaged in an activity or waiting to start it. Therefore, the model used to
represent the system should describe these queues and these activities. Some
of the steady state parameters that may be of interest in this type of model are

the queuing time and the queue length.

DEFINITION

a. Queuing time is the average time that a unit of an entity type or
class waits in a queue to start an activity.

b. Quecue length is the average number of units belonging to a given
class of entity that are waiting in a queue.

Therefore the steady state mean queue length is the number of units
likely to be found at any time in the queue, provided that this time is very
large as compared to the time when the system started its operation. Similarly,
the steady state mean queuing time is the average time that any entity will
spend in a queue waiting for an activity to start. In unstable systems these two
parameters will never reach a steady state, but their value will increase with
an increase in the simulated time.

These parameters are important in a queuing network because they can
be used to make inferences about the behaviour of the system. The procedures
proposed in this thesis are verified using results for these two parameters, but
they can be easily modified and extended to other types of simulation models.

24. HOW TO IDENTIFY CRITICAL QUEUES

As discussed in Section 2.2. one of the important aspects of the research
described in this thesis is its empirical nature, in the sense that we are not
developing mathematical supported procedures but using results obtained from

simulation to infer something concerning the problem of interest. We are
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using such an approach to show that the practice of simulation does not
require the use of complex procedures, but that simple methods can also
provide a satisfactory answer. However, one of the important aspects of
simulation, that is many times not taken into account, is that of the need of a
previous analysis of the system to be simulated; usually this analysis can show
some characteristics that make the use of simulation unnecessary. If the
interest of the simulation is to estimate some steady state parameters, we
should first check, in a quick way, if such a state exists. If such a state exists,
the practitioner can identify in some cases those queues that may take longer
than others to reach the steady state. How to carry out such an analysis is
discussed in this section.

The case where the parameters of a queue may never appear to reach
a steady state is discussed in Section 2.4.1. In this sub-section, the systems that
may present this "odd" behaviour (no steady state) are identified. We also give
some guidelines on how to identify possible queues with this problem.

In other cases, depending on the values of the simulation input
parameters, like for example the time that the different activities take to be
executed (called in this thesis "execution time"), the number of "servers" in
each queue, etc, some queues may take a long time to reach a steady state;
section 2.4.2, gives some practical guidelines to help the practitioner in the
identification of some queues that may require a long simulation run length to

reach the steady state.

24.1. QUEUES THAT MAY NEVER APPEAR TO REACH A
STEADY STATE.

Systems can be classified as follows according to the relation of their
entities to the "outside" world:

1. "CLOSED" systems, for example the STEELWORKS (see Appendix
A). In this type of system the number of units of each one of the entities is
limited and is defined at the beginning of the simulation. In other words, they
are systems that consist only of permanent entities that are always part of the
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system. In this case all the queues will eventually reach the steady state
because these systems have limited "resources" and therefore the different
parameters of the queues will never grow without bound. The system is self-
balancing or self-regulating.

2. "OPEN' systems, are systems where some of the entities are
permanent and others are temporary. These temporary entities come from the
"outside world" and once they have completed their life cycle they go back to
the "outside world" becoming an element of no further interest. In this case,
when the approximate value of the waffic intensity T = A/sp (s is the number
of "servers" serving at a rate p each) for one of the queues belonging to entity
A is greater or equal to 1, there is no steady state for one or more of the
queues belonging to that particular entity (A). It should be noted that queues
belonging to permanent entities cannot have their queue length (and therefore
their queuing time) increased without bound; therefore, they will eventually
reach a state of equilibrium, albeit this is 100% utilisation.

NOTE Although the traffic intensity is usually referred to by the greek
letter p, in this thesis we have used the greek letter 7 to refer to it.

It is important to notice that in practice there is no difference in
simulation between ‘“closed" and "open" systems, as an "open" system is
modelled as a close one for the sake of simplicity. However, the difference is
important in our discussion: in an "open" system, the queue length can (at least
theoretically) increase without bound. This is not possible in a "closed" system.
But at the same time, "closed" systems will be stable if the parameters are time
invariant. An example of non time invariant system occurs when a server is
ageing and cannot always serve at the same rate.

The queues of temporary entities with an infinite supply of units may be
unstable and the relation A/sp should be determined in order to check for
instability. Examples of this behaviour are found in the LAUNDERETTE, the
FISH PACKING SYSTEM, the BRAZILIAN HOSPITAL and the PUB,
among others. These simulation models, which are used throughout this thesis,
are described in Appendix A. Two main reasons for the relation A/sy to be
greater or equal to 1 are discussed in hypothesis 1 and hypothesis 2.

40



HYPOTHESIS 1

A relatively long time of execution of one of the activities, or a small
interarrival time (of temporary entities) may cause instability of one or more of

the queues belonging to temporary entities.

Clearly when an activity has a relatively long execution time the value
of u is smaller and the relation Afsp gets larger. Similarly, a small interarrival
time implies a large value of A and an increase in the relation A/sp. To
illustrate this point we use a simulation model of a LAUNDERETTE system.

1. THE LAUNDERETTE.

This system is described in Section A.2.2, Appendix A. The
corresponding A.C.D. is given in Figure A.5. In order to explain how a long
activity execution time, as compared with that of other activities may cause
instability of one queue, the LAUNDERETTE system is simulated for the
different conditions shown in Table 2.1. This table gives the execution time
for the different activities of the launderette model. For example, the arrival
of customers to the system is assumed to follow a negative exponential
distribution (NEGEXP) with mean interarrival time of 8 minutes.

Similarly, the execution time of the TRANSPORT activity is sampled
from a uniform distribution (UNIF) that takes values between 1 and 5. From
this table we see that the execution time of the activity LOADD increases to
20 minutes in condition 2.

The number of units of the different permanent entities is the same for
both conditions, 1 and 2:

ENTITY Number of Units
Washing machines 7
Baskets 8
Driers 2
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Activity Execution time Execution time
Condition 1 Condition2
ARRIVAL NEGEXP(8) NEGEXP(8)
LOADW 40 40
UNLOADW UNIF(3,5) UNIF(3,5)
TRANSPORT UNIF(1,5) UNIF(1,5)
LOADD 4 20
DRY NORMAL(10,4) NORMAL(10,4)

Table 2.1. Probability distributions for the execution time of the
different activities of the LAUNDERETTE model, for two different
conditions.

Under these conditions the arrival rate of “"customers" to the
LAUNDERETTE is A = 7.5 per hour and if we look at the service rate for the
LOADD activity, g, = 15 per hour (condition 1) and p, = 3 per hour
(condition 2). The number of servers (dders in this case) is s = 2. In the
second case Afsp, > 1 and therefore we can expect one or more of the queues
belonging to the entity customer to become unstable. Without any need for
simulation, but with a simple analysis of the A.C.D, the simulation practitioner
can easily conclude that the only possible unstable queue is the WASHQ
because the maximum queue length of the other queues belonging to the entity
customer is limited in number by the number of baskets.

This analysis can be confirmed if the system is simulated for the two
different conditions of Table 2.1. Table 2.2. shows the results corresponding
to the mean queuing time of the DRYQ and the WASHQ queues as function
of the simulation run length. From these results it is apparent that when the
LOADD activity execution time is 20 the WASHQ parameters do not reach
a steady state.

While numerical data is important it is not always easy to study and to
draw conclusions from it, especially if we are comparing two different models

where the numerical range is different. For this reason sometimes we use a
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graphical approach based on the data shown in tables for the analysis of the
examples discussed in this thesis. The data is presented in a LINE graph of
the mean estimates (Y-axis) as a function of the simulation run length (X-axis).
As our objective in this example is the analysis of a simulation model under
two different conditions and the numerical information obtained. lies in
different ranges, we have used two Y graphical scales for comparing those
results. Some graphical software, like HARVARD 3.0 or QUATTRO
(Release 4.0) (used in the graphs of this chapter) has this option. In other
words, we use two Y axes when we want "to compare series that use different
units of measure or that vary greatly in magnitude." (Harvard Graphics 3.0
User’s Manual, 1990).

For this example of the LAUNDERETTE, the graphs drawn for the
mean queuing time of the WASHQ and the DRYQ queues as a function of the
simulation run length are given in Figures 2.1. and 2.2. In these graphs one of
the Y-axes corresponds to a LOADD activity execution time of 4 and the other
to an exccution time of 20. From these graphs it is clear that the mean
queuing time and, therefore, the mean queue length, for the WASHQ queue
converges to a steady state value as the simulation run length increases when
the LOADD activity takes on average 4 minutes to be executed.

On the other hand, when this activity takes 20 minutes to be executed
there is an increase in the mean value corresponding to an increase in the
simulation run length which means that there is no convergence to a steady
state value. For the DRYQ, no matter how long the activity LOADD takes to
be executed (4 or 20) there is always convergence to a steady state.

The values for the standard deviation of these estimates are not shown
in these tables but it is interesting to notice that when a queue parameter does
not reach a steady state, the standard deviation of the estimate increases when
the run length increases. On the other hand, when a steady state exists for a
parameter of a queue, the standard deviation will tend to decrease as we
increase the run length. This may not be always true for short run lengths,
when there is still some influence of the initial conditions. However, for large

run lengths there is a reduction in the standard deviation of the estimate.
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WASHQ Mean Queuing Time Estimates

DRYQ Mean Quecuing Time Estimates

Run Length LOADD: 4 LOADD: 20 LOADD: 4 LOADD:20
1500 5.644 246.279 12.628 85.064
4500 6.787 932.891 14.601 90.542
7500 7.352 1625.226 15529 91483
10500 7220 2320.230 15.362 91.955
13500 ' 7.336 3022.872 15494 92.165
16500 7287 3721.846 15477 92.328
19500 7.180 4418.866 15.409 92432

22500 7.340 5117.860 15501 92512
25500 7449 5819.596 15.619 92546
28500 7467 6518.196 15.636 92.591

Table 22. WASHQ and DRYQ Mean Queuing Time Estimates as a
function of the simulation run length and of the LOADD activity execution

time.

Similar examples where instability of the system is attributable to a

value of A/su>1 for different simulation models are given in Appendix B.

Another possible reason for a value of r = A/(sp) to be larger than 1in a

simulation is the following:

HYPOTHESIS 2

When the number of servers (i.e., barmaids in the PUB model) is small,

some of the queues belonging to temporary entities that use that server may

become unstable.

When the number of servers is small the value of A/sp may be large and

this may lead to instability of one or more of the queues, belonging to the

temporary entity, and that are served by this particular type of server.

Numerical examples illustrating this case are included in Appendix B.
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Figure 2.1. WASHQ mean queuing time estimates as a function of the

simulation run length and of the LOADD activity execution time.

DRVQ (LAUNDERETTE)

17-1
16.5
16 -
15.5 Legend

16 - — Loadd:4

14.5
Loadd:20
14

13.6
13
12.6
12 -
11.5-
11 -
10.5-

10 -
1500 10500 19500 28500
Run Length

© ONAHK Yo © 0

Figure 2.2. DRYQ mean queuing time estimates as a function of the

simulation run length and of the LOADD activity execution time.
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CONCLUSION

HYPOTHESES 1 and 2 suggest that a previous study of the model can
and should be done by the simulation user or practitioner before spending
computer time trying to find a steady state that does not exist. In this way, if
one of the queues of the simulation model is unstable, an analysis previous to
running the simulation program can detect the problem and on the other hand,
if such an analysis is not carried out, the study of the "wrong" queues (for
example DRYQ) may lead to erroneous conclusions that a steady state exists

for the system under consideration.

242. QUEUES THAT MAY TAKE A RELATIVELY LONG TIME
TO REACH A STEADY STATE

Closed systems like for example the STEELWORKS, can be called
"well-behaved" in the sense that they will always reach a steady state and with
no extreme values of activity execution times or number of units of one of the
entities of the system, most queues will reach the steady state for not too long
simulation run lengths. However, in open systems, some queues may take
considerably longer to reach the steady state depending on the entity they
belong to, the type of input distribution, etc. In this sub-section we will try to
give some guidelines for the identification of possible critical queues, where
by "critical" we mean those queues that may require a long simulation run
length for the parameters, for example the mean queuing time and the mean
queue length, to reach the steady state. The study will be divided in two parts:

1. Possible critical queues for temporary entities.

2. Possible critical queues for permanent entities.

We will illustrate the conclusions of this sub-section with an example
corresponding to the PUB simulation model; Appendix B includes additional
results for the LAUNDERETTE and the FISH PACKING simulation models.

1. POSSIBLE CRITICAL QUEUES FOR TEMPORARY ENTITIES
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In this type of entity, the units "arrive” to the system from the "outside
world" and once they have finished their life cycle they are of no interest any
more. From queuing theory, in most cases, random arrivals are modelled by
a negative exponential distribution. This is a highly skewed distribution; as
reported by Andrews et al (1972), who studied the robustness of about 70
different point estimators of location, the sample mean is very sensitive to
outliers. These are values much larger or much smaller than the rest of the
values in the data set. Skewed distributions are more likely to produce outliers
in the simulation output data. Therefore, we can expect that those queues
used in the A.C.D. to model the arrival of a temporary entity to the system,
will require long simulation run lengths to reach the steady state, especially if
the arrival of the entities is modelled using a negative exponential, or any
other highly skewed distribution.

How critical are other queues belonging to temporary entities is a
question that does not have an easy answer. In general, due to the interaction
of the different entities, how long is the simulation run length required for
these queues to reach the steady state will also depend on the number of units
of the permanent entities with which the temporary entity interacts, and on the
time that the activity (or activities), in which that particular queue is involved,
takes to be executed.

2. POSSIBLE CRITICAL QUEUES FOR PERMANENT ENTITIES

In the case of permanent entities, an important factor on how long is
the simulation run length required for the parameters of the queue to reach
the steady state is the number of units of the entity. This is true especially for
those entities that are described in the A.C.D. by a single queue, like for
example the entity barmaid in the PUB model, which is described by a single
queue, called IDLE in the A.C.D. (See Figure A.4) In this case, we can expect
that the larger the number of barmaids in the system, the shorter the
simulation run length required for the queue of that particular entity to reach

the steady state. The main reason for this behaviour is that as the number of
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"servers”, s, (i.e. number of units of a permanent entity) increases, the value
of the traffic intensity, r=A/(u*s) decreases. As the traffic intensity decreases
we can expect a better "behaviour" and therefore, with a shorter simulation run
length the parameters of the queue will reach the steady state. On the other
hand, as 7 increases and approaches 1, the simulation run length required for
the queue to reach the steady state becomes longer. With respect to other
permanent entities that are represented by more than one queue in the A.C.D.
how long is the simulation run length required for the parameters of the
different queues to reach the steady state needs some analysis of the
characteristics of the system, as well as of the A.C.D.

In Section 2.4.3. we give results corresponding to some of the queues of
the PUB simulation model, which has been simulated under different
conditions in order to illustrate the points discussed in this sub-section.

243. SIMULATION OF THE PUB MODEL UNDER DIFFERENT
CONDITIONS

The PUB model has been simulated for three different conditions in
order to study the influence of the number of units of permanent entities and
of the distribution used for modelling the arrival of customers to the system.

The following conditions have been used in the different experiments:

Condition Arrival Number of BARMAIDS
1 Negative exponential, mean 15 3
2 Normal, mean 12 and variance 16 3
3 Negative exponential, mean 15 8

For each one of the three conditions the mean queuing time estimates
of the WAIT (entity : customer), IDLE (entity : barmaid), and CLEAN (entity:
glass) queues as a function of the simulation run length have been obtained.
The number of glasses in the system is 50 in all the three different conditions.

Our objective in these examples is to show that, under some conditions,

48



some of the queues will require a longer simulation run length to reach the
steady state. But however, to show this we face the problem that in most of
the simulation models that have been used throughout this thesis (like for
example the PUB) the steady state is unknown. Nevertheless, the real value
can be obtained if the model is simulated for a very long simulation run length
and using a very large number of replications. This approach would not be
feasible in real life due to the extremely large computer time that it requires.
As discussed in more detail in Section 2.6.2. we will assume that the parameter
has reached the steady state when the mean estimates fall within 2.5% of the
real value that we have obtained by simulating the model for a very long
simulation run length. We have chosen 2.5% as we consider that talking of a
queue length of 2.0 or a queue length of 2.05 (2.5% of increase) provides, from
a practical point of view, the same information. In the rest of this sub-section
we will present and analyse the results obtained for the different conditions
under which the PUB model has been simulated.

CONDITION 1

In this case we have simulated the arrival of customers to the system
using a negative exponential distribution. Therefore, we can expect, according
to the discussion of Section 2.4.2. that the WAIT queue will require a long
simulation run length to reach the steady state.

Similarly, because the number of barmaids is not too large as compared
to the number of units of the other permanent entity in the system, the glasses,
we can expect that a rather long simulation run length is required for the
parameters of the IDLE queue to reach the steady state.

Finally, as the number of glasses in the system is rather large (50) we
can expect that the CLEAN queue will reach the steady state for very short
simulation run lengths.

In Appendix C we obtained the following steady state values for the

mean queuing time of the queues of interest in this model:
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Queue Steady state value

WAIT 1.141
CLEAN 209.400
IDLE 2.001

Table 2.3. gives the mean queuing time estimates for the three queues
as a function of the simulation run length. We have underlined the mean
estimates for which the parameters can be considered to have reached the
steady state. This means that for the simulation run lengths corresponding to
the underlined values, as well as for longer run lengths, the mean estimates all
fall within 2.5% of the real steady state value.

As we expect, the WAIT mean queuing time takes a long simulation run
length, in fact longer than 25000 minutes, for the mean estimates to fall within
2.5% of the steady state value.

The IDLE mean queuing time, although it requires a long simulation
run length to reach the steady state, approximately 20000, gets stable sooner
than the WAIT mean queuing time parameter.

The CLEAN mean queuing time estimates fall within 2.5% of the steady
state value for a very short simulation run length (2000), as was also expected.

CONDITION 2.

In this case the arrival of customers to the system has been modelled
using a normal distribution with mean 12 and standard deviation 4. Table 2.4.
gives the mean queuing time estimates for the three different queues of
interest in this model, as a function of the simulation run length, based on 100
replications. The steady state values, obtained by simulating the system for a

very long period of time, are the following:

Queue Steady state value
WAIT 1.165
CLEAN 155.700
IDLE 0.502
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PUB - Critical queues.

Mean queuing time estimates
Run Length WAIT CLEAN IDLE
1000 0.999 195319 2358
2000 1.007 205204 2206
|| 3000 0.982 208675 2176
“ 4000 1.020 208962 2126 |
5000 1.005 21157 2.152
6000 1023 212423 2.164
“ 7000 1.027 212814 2150 it
“ 8000 1.043 212280 2.133
" 9000 1.035 212397 2124
II 10000 1034 21232 2103
11000 1047 211.898 2.086
12000 1.053 211.072 2.067
13000 1.053 211.059 207
14000 1.063 210.800 2,059
15000 1.059 210901 2,055
16000 1.054 211316 2,064
17000 1.055 211276 2,057
18000 1.054 211314 2.055
19000 1.057 211320 2,055
20000 1.063 211,047 2,048

Table 2.3. Mean queuing time estimates for the WAIT, the IDLE, and
the CLEAN queues, when the arrival is modelled with a negative exponential

distribution with mean 15, and there are 3 barmaids in the system.
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We have underlined in Table 2.4. those values for which the mean
estimates start falling within 2.5% of the steady state value. The results of this
table confirm what we expected: when the arrival distribution is rather
symmetric, the simulation run length required for the WAIT queue parameters
to reach the steady state is not as long as it would be in the case of a skewed
distribution, like the one used in condition 1 above. In this case, the mean
queuing time of the WAIT queue requires a simulation run length of 9500
minutes to reach the steady state. When the arrival was modelled using a
negative exponential distribution a simulation run length longer than 25000
required for the parameters of this queue to reach the steady state.

Similarly, with a large number of glasses in the system we can expect the
CLEAN mean queuing time to reach the steady state for a short simulation
run length (1000 in this case).

With a mean interarrival time of 12 minutes, we can expect the
barmaids to be rather busy, and therefore, as the initial state is idle for the
barmaids, there will be a rather large change in this state. This implies that
the simulation run length required for the mean queuing time of the IDLE
queue to reach the steady state will be rather long as the larger the change in
the initial state of the queue, the longer the time it takes to get stable. Or
using queuing theory, the smaller the value of the number of barmaids (s) the
larger the value of the traffic intensity, A/(us). In this case we notice, from the
underlined values in Table 2.4. that the IDLE mean queuing time requires a
simulation run length of at least 18000 minutes to reach the steady state.

CONDITION 3.

In this condition the arrival is modelled using a negative exponential
distribution with mean 15 but we have increased the number of barmaids in
the system from 3 to 8. Therefore, we expect the mean queuing time of the
WAIT queue to be very small, as very few customers will have to wait to be
served. This means that the change in the initial state of the queue, which is
empty, will be small, and the steady state should be reached for a very short
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simulation run length. Similarly, due to the rather large number of barmaids
in the system, the change in the initial state of the IDLE queue will not be
large (or using queuing theory, the traffic intensity will be small), and again
the steady state should be reached for a short simulation run length. We

obtained the following approximate values for the real mean steady state

values:
Queue Steady state value
WAIT 0.005
CLEAN 232.000
IDLE 14.510

Table 2.5. gives the mean queuing time estimates as a function of the
simulation run length. In this table the underlined values correspond to the
minimum simulation run length required for the mean estimates to fall within
2.5% of the real steady state value. Just as expected, the mean queuing time
estimates of the three different queues require very short simulation run
lengths to reach the steady state. '

2.5. INITIALISATION BIAS PROBLEM

One of the problems in the estimation of steady state parameters, when
the replications method is used, is that of the simulation run length. If it is not
long enough there will be some influence of the initial conditions still present
and the estimate will be biased. This problem, known as the Initialisation Bias
Problem, has been discussed in Chapter 1, and methods to deal with it are
discussed in Chapters 4 and 6. However, before using one of these methods,
or any other of the methods that have been proposed for the elimination of
this problem, the practitioner should consider if it is necessary or possible to

eliminate it.
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PUB - Critical queues, ARRIVAL : NORMAL(12,4)

Mean queuing time estimates

Run Length WAIT CLEAN IDLE
1000 1.004 155,067 0.767
2000 1022 158433 0.666
3000 1057 158.509 0.623
4000 10M 158412 0.603
5000 1115 157.674 0588
6000 1113 157360 0.567
2000 1110 157.109 0558
8000 1111 156.988 0.546
9000 1129 156.143 0532 |
9500 1138 155874 0530 "
10000 1145 156.008 0531 "
11000 1150 156.197 0530 "
12000 1142 156.303 0527 f
13000 1137 156,512 0526
14000 1141 156.496 0525
15000 1141 156398 0522
16000 1139 156.188 0521
17000 113 156,020 0518
18000 1137 155572 0513
19000 1134 155.595 0514

Table 2.4. Mean queuing time estimates for the WAIT, the IDLE, and
the CLEAN queues, when the arrival is modelled with a normal distribution
with mean 12, and there are 3 barmaids in the system.
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PUB - Ctitical queues, ARRIVAL : NEGEXP(15) ; 8 BARMAIDS.

" Mean queuing time estimates "
I Rt wart czax ———
500 0.003 186.946 15824 "
1000 0.004 209.546 14.993 "

1500 0.004 217.989 14.944

2000 0.004 221.890 14828

2500 0.004 224.026 14.791

3000 0005 226,460 14842

3500 0.005 226.826 14.739

4000 0.005 227.760 14.754

4500 0.005 229.294 14.809

" 5000 0.005 229.913 14.826

5500 0.005 230593 14.814

6000 0.005 231553 14.876

6500 0.005 232121 14.885

7000 0.005 232.166 14.834

7500 0.005 232416 14835

8000 0.005 232.168 14.802

8500 0.005 232,064 14.793
232382 14.788 |

232.094 14.750

232.158 14.739

231.861 14.698

23184 14.686

231672 14.672

231350 14.632

Table 2.5. Mean queuing time estimates for the WAIT, the IDLE, and

the CLEAN queues, when the arrival is modelled with a negative exponential

distribution with mean 15, and there are 8 barmaids in the system.
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Two cases, discussed in Sections 2.5.1. and 2.5.2, can be identified "a-
priori" for which methods for the elimination of the initialisation bias problem

may not work or may not be required.

25.1. OSCILLATORY APPROACH TO THE STEADY STATE

Most queuing networks will have a monotonic, increasing or decreasing,
approach to the steady state. The queues start empty or "idle" and then their
queue length, and therefore their queuing time, increases or decreases until
they reach the steady state.

However, there are other systems in which this approach to the steady
state is oscillatory; this means that the mean estimates will oscillate around the
steady state value, with oscillations getting smaller as the simulation run length
increases. Here, use of a method for the elimination of the influence of the
initial conditions does not work properly. In most methods the elimination of
this influence is done by deleting some of the initial observations that are less
representative of the steady state value. Doing this when the approach to the
steady state is oscillatory will not eliminate the influence of the initial
conditions. This is due to the fact that in this case there are local maximums
followed by local minimums; the influence of the large values will be
compensated by that of the small values and vice versa. Deletion of
observations will not have a particular effect on how soon the steady state is
reached (see analysis in Chapter 4, for the MILITARY model). Similar
arguments are valid for other methods for the elimination of the influence of
the initial conditions (see discussion in Chapters 4 and 6 for more details on
this particular point).

252. SMALL CHANGE IN THE INITIAL STATE OF THE QUEUE

In some cases there is not a great change in the state of the queue and
the initial conditions are similar to the steady state values. In other words,

there is not a great change in the values of the mean estimates obtained for
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a very long simulation run length with respect to their value at the beginning
of the simulation. In these cases, the steady state can be reached for very
short simulation run lengths. Deletion of some of the initial observations is
not only unnecessary, but a waste of computer time. In practice, these cases
can be identified by running the simulation model for a long (but not very
long) simulation run length, and observing the estimates obtained for the
parameters of interest for a very short run length as well as for the long run
length. This will give the simulation practitioner an idea of how much is the

change in their values.

2.6. FURTHER CONSIDERATIONS

In the previous sections we have discussed some points that should be
considered by the simulation practitioner before starting the simulation. This
analysis is not always done but it is important and it may save time. In this
section we mention some additional points that the simulation practitioner has

to consider if the simulation is to give reliable results.

2.6.1. FURTHER DISCUSSION ON SMALL MEAN ESTIMATES

Sometimes, for example when there are several servers, the steady state
mean queuing time and mean queue length of the queues belonging to
temporary entities that interact with this server (like for example, the WAIT
queue in the PUB mode! simulated in condition 3 in section 2.4.3., see mean
estimates in table 2.5.) will be very small in value. In these cases, from a
statistical point of view, we consider that other types of measurement of the
"centre" of the distribution should be used instead of the sample mean. The
reason for this is that the individual observations used by the simulation for
the calculation of the mean estimate X, obtained in replication i(assuming that
the method of replications is used) are a combination of 0’s and 1’s and
possibly 2’s. This corresponds to a discrete distribution and then instead of
estimating the mean we should estimate for example the proportion of time
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the queue is empty. As our main concern in this thesis has been to show how
it is possible to develop simple procedures we have shown it using mean
estimates. However, the use of other estimates than the sample mean in

simulation requires further research.

2.6.2. DETERMINATION OF THE STEADY STATE

The main characteristic of this research is that it uses results obtained

from the simulation of different models to propose new procedures, or to infer
something about a particular problem of simulation. A second important
characteristic is that using this approach we show that simulation procedures
do not need to be difficult and theoretically based in order to give satisfactory
answers to the questions of interest. It is shown that based on the observation
of characteristics that are common to different simulation models, it is possible
to formulate simple solutions for simulation problems that until now do not
have a satisfactory answer. This empirical rather than theoretical approach
may not always give the optimal answer, but a good one. However, as
discussed in the Operational Research literature, sometimes the benefits
obtained with the optimal solution do not justify the time and money spent on
obtaining it.

For this reason, the steady state of the system is identified in this thesis
not by the application of one of the sophisticated definitions of steady state,
like for example, that in "the steady state the probability of each different state
is known," but by a simple analysis of the simulation output data; as the
simulation run length increases we can determine the run length for which the
output data shows convergence to a value considered to be the steady state
value.

It is important to notice that simulation theoreticians expect that a new
proposed procedure will give estimates within 0.5% or even less from the real
value p, and to show this, they test the procedure with simple systems like the
M/M/1 queue. However, from a practical point of view, there is often no
difference between a queue length of 1.:25 or 1.28 (2.5% increase). Obviously
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the maximum tolerance (i.e., 2.5% or 1% or less) will depend on the particular
problem that the simulation is trying to solve. Therefore, and considering that
the research is not only based on results obtained from the simulation but that
it tries to give some guidelines about the practical use of simulation, we
consider for the purposes of this research that the parameters estimated in the
different experiments are in a steady state if there is not a variation of more
than 2.5% from the real steady state value.

In the simulation models used to obtain the results (like for example the
PUB or the STEELWORKS) analysed in the thesis we do not know the steady
state real value (p); however, by running the simulation model for extremely
long simulation run lengths and using a very large number of replications we
can obtain a good approximation for p (Appendix C); this approach is not
desirable in real life as it would greatly increase the cost of the simulation.

263. LARGE STANDARD DEVIATION AS COMPARED WITH
THE SAMPLE MEAN

One of the problems faced by the simulation practitioner is that of a
large standard deviation as compared with the sample mean. It occurs mainly
in terminating simulations when the simulation run length is short. In some
cases this may be due only to a phenomenon related to the random number
seeds. Sometimes, for a particular combination of random number seeds and
the input values to the specific model that is being simulated, outliers can
appear in the simulation output. In these cases, the practitioner can identify
the particular combination of random number seeds for which the problem
appears and replace it by a different combination. However, in some other
cases. the process itself has a large variance. Then, the confidence interval
width will be very large and will not give an accurate idea of where the
"centre" of the distribution is. This problem requires some special statistical
treatment. It has been suggested to use the median instead of the mean to
describe the output distribution as this statistic is less influenced by the
outliers. It has also been suggested to use the trimmed mean that does not use
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the most extreme values of the sample for the calculation of the sample mean.
In this case one of the disadvantages is that the statistical analysis of the
results is not easy and may add to the complexity of the simulation. We have
not used either of these approaches in this thesis as one of our main objectives
was to show that simple procedures can work well in simulation, and we have
done it using the sample means. An area of future research is the extension

of the procedures proposed in this thesis to other parameters.
2.7. CONCLUSIONS

In this chapter we have given a more detailed picture of what this
research is about, and created a scenario that is required for the reader to
understand the approach followed in this research.

Emphasis has been put on the use of results obtained from the
simulation of different models. It has also been discussed why the new
proposed procedures do not have a rigorous mathematical justification. By
doing this, simpler and easier to use procedures can be formulated;
nevertheless, they give acceptable results at a smaller cost and greater
simplicity and understandability especially for the user who has no practical
experience in the application of simulation.

In order to show how simulation should be used in practice, we
discussed in this chapter some aspects that should be studied by the
practitioner before running the simulation. We also showed how this analysis
prior to the simulation, although based on queuing theory for the particular
examples discussed in this thesis, can be carried out by people with no special
knowledge of it. In summary, the discussion in this chapter prepares the
reader for the approach followed in the following chapters.

An important result of this chapter are the different guidelines given for
the identification of possible critical queues that may apparently never reach
a steady state or may require a very long simulation run length to reach it. In
general, we show how the identification of possible unstable queues can be

carried out in a simple way; we also show how an analysis of the system
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previous to running the simulation can help sometimes to identify those queues.
that may delay the system in reaching the steady state. However, as will be
shown in Chapter 3, in those queues that may require a very long simulation
run length to reach the steady state, an increase in the number of replications
may reduce this required run length. This relationship between simulation run
length required to reach the steady state and the number of replications, has
not been discussed, to our knowledge, in the literature.

The message from this chapter is similar to what we can expect in the
rest of the thesis: simulation does not require sophisticated and complex
methods for its use and applications. Usually skill and understanding of the
simulation model is more important than expensive and difficult to use
software.
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CHAPTER 3 : ESTIMATION OF THE NUMBER OF
REPLICATIONS REQUIRED IN A PARTICULAR SIMULATION

3.1. INTRODUCTION

One of the most important questions that the simulation practitioner has
to answer before running the simulation is that of the number of replications
to use. In terminating simulations, using a small number may give a non-
accurate estimate. In steady state simulations we found, from empirical
results, that using a larger number of replications permits the practitioner to
detect clearly when the curve of the mean estimates as a function of the
simulation run length becomes horizontal. This detection is not easy when the
number of replications used is small because of the greater variability in the
mean estimates; in this case the approach to the steady state is not as smooth
as it is when we use more replications. Obviously when the variance of the
estimate is smaller (and this corresponds to an increase in the number of
replications) the mean estimate will be more accurate and will be closer in
absolute value to the real steady state value. For example, in Table 2.3., the
mean queuing time estimates for the WAIT queue did not fall within 2.5% of
the steady state value for a simulation run length as long as 20000 (although
it is not shown in the table, they require a simulation run length longer than
25000 minutes to reach the steady state). The data of this table was obtained
from 100 replications. However, when 900 replications are used, the estimates
fall within 2.5% of the steady state value for a simulation run length as short
as 7000 minutes. Even if we consider that there is some variability in these
results and that therefore, when different sets of random numbers are used
these run lengths will be different, the mean estimates obtained for a larger
number of replications will be more accurate than those obtained for a small
number of replications.

As the method of replications is used in the following chapters, we

considered it important to develop a method for the estimation of the number
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of replications to use in a given simulation; this method should be easy to
apply, not time consuming and if possible should not require assumptions that
sometimes are not met in practice. It is important to notice that when the
method of replications is used for the estimation of steady state parameters,
the first step is to decide on the number of replications to be used; the second
step is to decide if the influence of the initial conditions is important and if so
a method to deal with this problem should be used (See Chapters 4 and/or 6).

3.1.1. CHAPTER OBIJECTIVES

Using some methods that have been proposed in the literature for the
estimation of the number of replications we will develop in this chapter a
method that can be used for the estimation of the number of replications to
be used for the mean estimates to be sufficiently accurate; use of this number
of replications will also allow the practitioner to detect the point in time for
which the steady state is reached, which is equivalently to the point in time for
which the curve of the mean estimates as a function of the simulation run

length becomes horizontal.

3.1.2. CHAPTER OUTLINE

In Section 3.2. we give a brief discussion of some of the methods that
have been proposed in the literature for the estimation of the sample size, or
number of replications. Section 3.3. shows, from results obtained from the
simulation, the influence of the number of replications on the curve of the
mean estimates as a function of the simulation run length and in Section 3.4.
we explain a method, based on those discussed in Section 3.2, and that can be
used for the estimation of the number of replications to be used. In Section
3.5. we give empirical results for a simulation model for which no analytical

answer can be obtained.
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3.2. ESTIMATING A SINGLE MEAN : SAMPLE SIZE REQUIRED

In the method of replications, we make k replications, and use the
average ()_() of the values X, X,..X; obtained from the simulation as an
estimate of the mean. However, when the variance of this mean estimate is
too large we obtain inconclusive results, in the sense that the confidence
interval calculated from these values is excessively large and will not give a
clear idea of where the real value lies. The way of reducing this variance is
by increasing the number of replications to kI > k. "Sometimes practitioners
"solve" the sample-size problem by continuing sampling until (say) the third
digit after the decimal point does not change (that is, that digit does not
change for the first time); of course such a procedure is not statistically sound.”
(Kleijnen, 1987). Therefore, there is a need f6\r a procedure to guide the
practitioner on how many replications to use.

This section describes some of the methods that have been proposed for
the estimation of the number of replications required to give an "accurate"
mean estimate. The methods discussed in section 3.2.1. are described by
Kleijnen (1987) but similar methods can be found in other simulation
publications (Law and Kelton, 1991; Banks and Carson, 1984; Law et al, 1981).
In section 3.2.2. we discuss some of the problems associated with the use of
these methods in practical simulation.

32.1. ESTIMATION OF THE NUMBER OF REPLICATIONS
REQUIRED FOR THE ESTIMATION OF A SINGLE MEAN.

In this section we describe some of the methods currently employed for
the estimation of the number of replications that are to be used in a simulation
in order to obtain a confidence interval with a pre-specified width. This
discussion has been taken from Kleijnen (1987)

"We begin with a simple (unrealistic) situation to illustrate sample-size
determination. We assume a known variance (of course, we shall drop this

assumption later) and a single normal population whose mean p, we wish to
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estimate. We want our estimate X to be less than (say) c units wrong.
Because of random noise we are never 100% certain of achieving this goal so
that we settle for (say) 1-a certainty:

P(X-pl <o) =1-«a (3.1)

The following relation holds (from basic statistic concepts):

P(-p| < 2% =1-a (32)

where z%/? is the upper 1 - a/2 critical point for a standard normal
distribution, o, is the standard deviation of the mean estimate and n is the
sample size.

Hence if we want to meet both Eq. 3.1. and 3.2., then Eq. 3.3. must
hold.

«f2
c=2"9% | (3.3)

Jr
Consequently the sample size n should be:
n = @*c)c? (34)

In other words, the desired sample size increases as

1. The noise o, increases.

2. The confidence interval width decreases (the "half-length" of the
confidence interval is c).

a/f2

3. The coverage probability increases (as 1 - a increases, z*“ increases).

The size of the sample size reacts quadratically to these three factors."
(Kleijnen, 1987)

In practice we have an unknown variance ¢,%. Of course we can estimate
0,2 through the sample variance s>

When we replace 0,2 by s,2 then we replace z*%2 by t_,%? and then Egq.

3.4. transforms into:
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n = (t,_,"oys? (3-5)

"However, strictly speaking, the last step resulting in Eq. 3.5. is false,
because in Eq. 3.5. the sample size n has become a stochastic variable (n
depends on the estimator s.2). In practice Eq. 3.5. often works, which is
substantiated by a number of statistical studies. These studies prove
analytically that when s2? in Eq. 3.5. is updated after each additional
observation, then for large sample sizes Eq. 3.5. is consistent and efficient.
"Consistency" means that the confidence interval does indeed cover p, with
prespecified probability 1 - a. "Efficiency" means that the expected sample size
equals the sample size for known ¢ 2 given in Eq. 3.4. For small samples the
consistency and efficiency do not change much, as is shown by Monte Carlo
studies. (Anscombe, 1953; Chow and Robbins, 1965; Starr, 1966; Robbins et
al, 1967; Srivastava, 1970). This is purely sequential; that is, we update o,
after each additional observation i’ (i = 2, 3..n)." (Kleijnen, 1987).

A slightly different approach is known as double sequential. In this
approach we make initially n = n, replications. = We calculate the
corresponding standard deviation s(n) and the confidence interval relative
precision, I, which is simply the confidence interval half-width divided by the
mean estimate. This is mathematically expressed by Eq. 3.6.

P ) (3.6)

X

where t_,%?is the upper 1-a/2 critical point from the t-distribution, and
n-1 degrees of freedom.

If I < ¢’, then we use n = n, replications. Otherwise, we increase n by
1, make an additional replication of the simulation, update the standard
deviation and calculate I. We repeat this procedure until I < ¢’. In this
context ¢’ is a pre-assigned positive value chosen by the practitioner and that
corresponds to the desired c.i. relative precision. Law and Kelton (1991)
suggest to start the double-sequential approach with n, = 10 and use ¢’ < 0.15.

"When we compare the purely sequential approach to the double-sample
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approach, we notice a practical problem: How should we choose the pilot
sample size n,? A large initial sample n, reduces t,,*? (as long as n, is
smaller than, say 30) and hence it reduces the total sample size. However,
such a large pilot sample may result in wasted simulation runs, namely, if n,
exceeds n. Large pilot samples tend to decrease the efficiency (large sample
size) and to increase the consistency (high coverage probability)." (Kleijnen,
1987).

33. INFLUENCE OF THE NUMBER OF REPLICATIONS ON THE
ACCURACY OF THE MEAN ESTIMATES OBTAINED FROM THE
SIMULATION

In section 3.2. we discussed some of the methods that have been
proposed in the literature for the estimation of the number of replications
required for the estimation of a parameter. In this section we discuss two
important aspects identified while studying this influence. Although it has not
been discussed in the simulation literature, the random number streams used
to obtain independent observations may have some influence on the accuracy
of the mean estimate. This problem is discussed in section 3.3.1. A second
aspect that is studied in section 3.3.2. is the influence of the number of
replications on the accuracy of the curve of the mean estimates as a function
of the simulation run length as compared to the real, but in general unknown,
real curve.

33.1. INFLUENCE OF THE RANDOM NUMBER STREAMS ON
THE ESTIMATES OBTAINED FROM A SIMULATION

We will discuss in this section the influence of the random number
streams on the mean estimates obtained from the simulation. We found that
in practical simulations, when a "small" number of replications is used, the
mean estimate obtained from the simulation for short simulation run lengths

will or may depend on the set of random number streams used to obtain k

67



independent observations. To show the influence of the random number
streams on the mean estimates, we simulated the LAUNDERETTE model and
obtained mean estimates for the WASHQ mean queuing time as a function of
the simulation run length. The mean estimates were obtained from 100
independent replications, where the set RIN.[1] = [RI? R2...R100] of random
number streams was used. Rtare different and independent random number
streams. The experiment was repeated for a different set of random number
streams R.N.[2] = [R"? Rio27**:cof*

Figure 3.1. shows the mean estimates as a function of the simulation
run length for the two different sets of random number streams. It can be

seen how the mean estimates differ greatly, especially for short simulation run

lengths.
7.5n No. of replications : 100
Legend
— R.N.[1]
R. N.|2]
5.5
55 -
s -
4.5
500 4500 8500 12500 16500

Run Length

Figure 3.1. WASHQ mean queuing time estimates as a function of the
simulation run length, for two different sets ofrandom number streams and 100

replications.

This influence of the random number streams is due to the presence of
extreme values, very large or very small, in the observations of some of the

replications for one of the sets of the random number streams. These extreme
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values do not appear in the set of observations obtained for a different set of
random number streams. This influence tends to disappear when the number
of replications is increased, as in this case the influence of extreme values is
less, and they do not have weight as large as when the mean estimate is the
average of fewer observations. This is shown in Figure 3.2. which shows the

WASHQ mean queuing time estimates obtained from 900 replications.

7 4 No. of Replications : 900
Legend
6.5 R.N.J1 ]
R. N.[2]
S.5 -
5
500 8500 12500 16500

Run Length

Figure 3.2. WASHQ mean queuing time estimates as a function of the
simulation run length for two different sets ofrandom number streams, and 900

replications.

332. NUMBER OF REPLICATIONS AND SIMULATION RUN
LENGTH REQUIRED TO OBTAIN A GOOD ESTIMATE OF THE
STEADY STATE

In Section 3.3.1. we discussed how when the number of replications &
is small, the random number streams used to obtain the k independent
observations can have an important influence on the mean estimate obtained
from the simulation, especially for short simulation run lengths.

We also showed how when the number of replications is increased the
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influence of the random number streams is negligible. A second important
aspect of the influence of the number of replications is that the curve of the
mean estimates as a function of the simulation run length becomes closer (i.e.,
is a better approximation) to the real, but unknown curve, as the number of
replications increases. This in practical terms implies that the approach to the
steady state is smoother and that it is easier to estimate the simulation run
length for which the curve becomes horizontal when a larger number of
replications are used. This is illustrated in Figure 3.3. In this figure we show
the WASHQ mean queuing time estimates as a function of the simulation run
length and of the number of replications. We show the results obtained for
100 replications and two different sets of random number streams and the
results for 900 replications. In this last case the results are similar
independent of the random number streams. This graph shows how the
approach to the steady state is smoother and quicker if 900 replications are

used.

T -
e.5
Legend
© —— 100 Rep. (R.N.I1J)
100 Rep. (R.N.[2»
S.S - - eoo Rep.
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4.6
500 12500 16500

Figure 3.3. WASHQ mean queuing time estimates as a function of the
simulation run length, of the number of replications, and of the set of random

number seeds.
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34. ESTIMATION OF THE NUMBER OF REPLICATIONS
REQUIRED FOR THE ACCURATE ESTIMATION OF A
PARAMETER IN SIMULATION

In Section 3.3. we identified two important and practical aspects of the
influence of the number of replications on the mean estimates: 1. The
influence of the random number streams on the accuracy of the mean
estimates and 2. The influence of the number of replicatiohs on the shape of
the curve of the mean estimates as a function of the simulation run length.

These two aspects were the motivation for the present study. To
overcome these problems we want to develop a simple method for the
estimation of the number k of replications. We will show how, once this
number k has been estimated, it can be used in any simulation of this model,
for this particular parameter, independent of the simulation run length.

This number, if correctly estimated, will give estimates that are
independent of the random number streams. At the same time, because once
the influence of the random number streams becomes negligible, the mean
estimates do not differ too much, this number of replications will give accurate
mean estimates for both terminating and steady state simulations.

34.1. PROPOSED METHOD FOR THE ESTIMATION OF THE
NUMBER K OF REPLICATIONS

The methods discussed in section 3.2. that have been proposed for the
estimation of the number of replications, or of observations to record in a
given simulation have been extensively tested, and they seem to perform well
when applied to simple models for which an analytical answer can be
calculated. By applying the sequential approach described in Section 3.2. to
simulation models for which no analytical answer can be calculated we will
show that they can be used for the estimation of the number of replications
that is required in order to obtain a good approximation to the real, but

unknown, curve of the mean values as a function of the simulation run length.
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Our objective is to estimate a GOOD, but not the OPTIMAL, number of
replications such that this curve will be a close approximation of the real one.
This number of replications can be estimated using the double
sequential approach described in Section 3.2.1. This can be done for a short
simulation run length and the value thus estimated can be used then to obtain
accurate steady state parameters. Some points need to be discussed:

1. What "short simulation run length" means. We found from applying
the method to different simulation models for which no analytical answer can
be obtained that "short" depends on the time that the different activities take
to be executed. If among the mean values of these execution times for the
different activitics the maximum takes D, units of time, a "short" simulation
run length can be 10 to 15 times the value of D,

2. Which value should be used for "c¢'". The value of ¢’ can be chosen
to be 0.05 or less as we are using a short simulation run length for the
estimation of the number of replications to be used in steady state simulations,
and the estimates for short simulation run lengths tend to have larger variance.

3. Number N of independent estimates. Although Law and Kelton
(1991) suggest to start the double sequential approach using n; = 10, we found
that in more typical simulation models n, should be larger. We chose n, =
100. Another advantage of choosing n, > 100 is that then the central limit
theorem will guarantee that the distribution of the mean values follow a
normal distribution.

In summary the proposed procedure is as follows: select a short
simulation run length (obviously there will still be some influence of the
transient) and make at least 100 replications. Based on the results obtained
from these replications, and following the double sequential approach,
estimate the number n of replications to be used for the estimation of steady
state parameters. This number n will make it easier to estimate the point in
simulated time for which the curve of the mean estimates as a function of the
simulated time becomes horizontal.

This procedure was applied to three queues of the PUB simulation

model and the results are given and discussed in Section 3.5.
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35. ANALYSIS OF THE EMPIRICAL RESULTS

Section 3.4.1. proposed a method that can be used to obtain an estimate
of the number of replications that are required when the objective of the
simulation is the estimation of steady state parameters. In this section we will
illustrate the use of this algorithm by applying it to some queues of the PUB
model. Additional examples are given in Appendix D.

Our main objective in the example given in this section is to show how,
using the number of replications estimated following the procedure of Section
3.4.1., we obtain a curve of the mean estimates as a function of the simulation
run length which is a good approximation to the real, but unknown, one.
Therefore, it will be easier to estimate the simulated time for which the curve
becomes horizontal if this number of replications is used than if less
replications are used. In order to show this we will divide the following study
into two parts:

1. The estimation of the number of replications and

2. The evaluation of the performance of the proposed procedure. We
expect that the graph of the mean estimates as a function of the simulation run
length will be "smoother" when the estimated number of replications is used

than when less replications are used.

35.1. ESTIMATION OF THE NUMBER OF REPLICATIONS

Three queues of the PUB model (See Figure A.4., Appendix A) have
been studied: WAIT, CLEAN and IDLE. For each one of these queues and
for the mean queuing time parameter, we want to estimate the number of
replications that should be used for the estimation of accurate steady state
parameters. For the estimation of this number of replications we chose a short
simulation run length (500 minutes) and obtained mean estimates for 100
replications.

Following the procedure described in Section 3.4.1. we used a value of

¢’ = 0.025, and obtained the following values for n:
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QUEUE Value of n

WAIT 850
CLEAN 160
IDLE 550

352. EVALUATION OF THE PERFORMANCE OF THE
PROPOSED PROCEDURE.

In this section we will show how, when the number of replications
estimated above are used, the graph of the mean estimates as a function of the
simulation run length is "smoother" and it is easier to estimate the point in
simulated time for which the curve becomes horizontal.

To show this we will obtain the mean estimates as a function of the
simulation run length and of different number of replications and we will show
the results on a graph. From this graph we should be able to approximate the
point for which the parameter seems to have reached the steady state. We will
then obtain c.i. for longer simulation run lengths and compare them in terms
of their width, and of their coverage (i.e, do they "cover" the real value which
has been estimated in Appendix C, or not). The real steady state values which
have been estimated in Appendix C are the following:

Quecue Steady state (p)
WAIT 1.140
CLEAN 209.400
IDLE 2.001

Figures 3.4., 3.5., and 3.6. give the mean queuing time estimates of the
WAIT, CLEAN and IDLE queues respectively as a function of the simulation
run length and of the number of replications. From these figures it is easier
to estimate the simulation run length for which the curve of the mean
estimates becomes horizontal if we use the number of replications estimated

following the procedure of section 3.4.1. than if we use less replications.
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WAIT mean queuing time

1.18-1 Estimated number of replications : 850
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Figure 3.4. WAIT mean queuing time estimates as a function of the

number of replications and of the simulation run length.

CLEAN Mmean queuing time
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Figure 3.5. CLEAN mean queuing time estimates as a function of the

number of replications and of the simulation run length.

75



IDLE mean queuing time

Estimmated number of replications : S30
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Figure 3.6. IDLE mean queuing time estimates as a function of the

simulation run length and of the number of replications.

For example, from figure 3.4. we can notice how the curve becomes
almost horizontal for a simulation run length of 7000. This is noticeable when
at least 400 replications are used, although the estimation is more accurate
when 850 replications are made. Similarly, from Figure 3.6. how the curve
becomes almost horizontal for a simulation run length of4000. In this case we
require 550 replications. The figures also show how an increase in the number
of replications does not make an important difference on the smoothness of
the curve.

To show how the number of replications affect the c.i. obtained, tables
3.1, 3.2, and 3.3. give the c.i. half-width, the c.i. lower and upper limit (using
95% c.i.) and the percentage error for the WAIT, CLEAN, and IDLE mean
queuing time, for different run lengths and different number of replications.

Although results are not given here, when 100 independent c.i. were
calculated based on (only) 100 replications for the run lengths approximated
from the graphs and for which the curve becomes almost horizontal, the

coverage was close to 100(1 - a)% as expected.
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Results based on 100 observations
Run mean std.Dev. | cihalf-w cill ciul % error
7000 11 0.5 0.09 1.02 121 231
19000 11 03 0.06 1.07 1.18 175
27000 11 03 0.05 1.09 1.20 0.13

" Results based on 400 observations

Run mean std.Dev. | cihalf-w cill ciul % error
II 7000 11 05 0.05 107 1.17 157
19000 11 0.3 0.03 111 117 0.07
27000 12 03 0.03 112 118 -1.00

Results based on 900 observations

Run mean stdDev. | cihalf-w cilL ciul % error
7000 11 0.5 0.03 1.08 114 243
19000 11 03 0.02 1.10 114 1.46
27000 11 03 0.02 113 117 -0.47

Results based on 1200 observations

Run mean std.Dev. | cihalf-w cilL ciul % error
7000 11 04 0.03 1.09 114 242
19000 11 03 0.02 111 114 138
27000 1.L== 03 0.02 1.13 1.16 -0.12

Table 3.1. WAIT mean queuing time c.i. half width, c.i. upper and
lower limit (c.ill. and ciu.l.) and percentage error of the mean estimate as

compared to the real steady state value.
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Results based on 100 observations
Run mean stdDev. | cihalf-w cill ciul % error
7000 208.8 18.7 3n 205.1 2125 03
19000 2102 11.7 233 2079 2125 -0.4
27000 2100 10.6 210 2079 2121 03
Results based on 200 observations "
| Run mean std.Dev. | cihalf-w cill ciul % error "
| 7000 209.0 18.5 2.57 206.4 2116 02 I
19000 209.2 11.6 161 207.6 2108 0.1
27000 208.6 10.7 148 2072 210.1 04
Results based on 400 observations
Run mean std.Dev. | cihalf-w cill ciul % error
7000 2083 195 192 206.4 2102 0.5
I 19000 2094 119 117 208.2 210.6 0.0
27000 209.0 10.8 1.05 208.0 2101 02
Results based on 1200 observations
Run mean stdDev. | cihalf-w cill ciul % error
7000 207.6 19.0 1.08 206.5 208.7 0.9
|| 19000 209.2 11.8 0.67 208.5 209.9 0.1
27000 208.8 10.3 0.58 208.2 2094 0.3

Table 32. CLEAN mean queuing time c.i. half width, c.i. upper and

lower limit (c.ill. and c.i.ul) and percentage error of the mean estimate as

compared to the real steady state value.
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Results based on 100 observations
Run mean std.Dev. | cihalf-w cill ciul % error
7000 21 04 0.08 2.00 215 38
19000 20 02 0.05 199 209 20
27000 20 02 0.04 2.00 2,08 20
Results based on 400 observations
Run mean std.Dev. | cihalf-w cill ciul % error
7000 21 04 0.04 2.03 211 -34
19000 20 02 0.02 201 206 -1.7
27000 20 0.2 0.02 2.00 204 -1.1
Results based on 700 observations
Run mean std.Dev. | cihalf-w cilL ciul % error
7000 21 04 0.03 2.02 208 2.5
19000 20 0.2 0.02 202 205 -1.8
27000 20 0.2 0.01 201 204 -12
Results based on 1200 observations
Run mean std.Dev. | cihalf-w cill ciul % error
7000 21 0.4 0.02 2.03 2.07 25
19000 20 0.2 0.01 201 2.04 -12
27000 20 0.2 0.01 2.00 202 -0.6

Table 33. IDLE mean queuing time c.i. half width, c.i. upper and lower
limit (cill. and ciuwl) and percentage error of the mean estimate as

compared to the real steady state value.
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~ As can also be seen from the tables, and this conclusion is valid when
several independent c.i. are calculated, another advantage of obtaining more
replications is that the mean estimate becomes more accurate. This can be
seen from the values of the c.i. half-width (or half-length). In general, "if the
c.i. half-length is less than or equal to 8 (where 8 > 0) then:
1-a = P(X - half length < u < X + half length)
= P(|X - | < half-length)
<P(|X - u| < B) " (Law and Kelton, 1991)
Obviously, and this is confirmed in the tables, as the number of
replications increases the value of the c.i. half-length decreases, and therefore,

we can expect a smaller absolute error in the value of the mean estimates.

Additional examples are given in Appendix D that confirm the results

obtained here.
3.6. CONCLUSIONS

One important aspect not discussed before in the literature has been
identified in this chapter: the influence of this number of replications on the
estimation of the simulation run length required for a parameter to reach the
steady state.

These two points led to the proposal of a simple method for the
estimation of the number of replications for which the curve of the mean
estimates as a function of the simulation run length is a good and close
approximation to the real, but unknown, one. This allows the practitioner to
estimate the simulated for which the curve becomes almost horizontal, i.e., for
which the parameter can be considered to reach the steady state. It is
important to obtain a good estimate of this point because as discussed by Law
(1977) if the simulation run length is not long enough for the influence of the
initial conditions to have disappeared, then the mean estimate will be biased,
and in fact if we increase the number of replications the c.i. coverage (ie, the

percentage of c.i. covering the real steady state value) will tend to zero as a
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result of the c.i’s being built not around the steady state value, but around a
transient value.

In any case it is important to note that although the first step in a
simulation, when the number of replications is used, is to estimate this number,
the next step should be to deal with the influence of the initial conditions,
especially if this influence is strong. In other words, the results of this chapter
should not be used on their own, because it is clear that in the method of
replications we are always starting the simulation with the same conditions
which are usually not representative of the steady state conditions. However,
the analysis carried out in this chapter provides the simulation practitioner
with a starting point.

It may also be argued that instead of using a large number of
replications it is possible to increase the simulation run length. This is valid,
but it has the problem that the simulation run length is another parameter
chosen a priori by the practitioner and it tends to be parameter and model
dependent. And as shown in the graphs of this chapter when few replications
are made the estimation of the simulation run length required for the
parameter to reach the steady state is not easy.

We can think of this chapter as an extension to the topic of critical
queues discussed in Chapter 2. In those queues identified as critical use of a

larger number of replications may help to obtain a more accurate estimate.
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CHAPTER 4 : STEADY STATE : REDUCING THE TRANSIENT
PHASE

4.1. INTRODUCTION

Textbooks, articles, conferences and symposiums all discuss the problem
of the influence of the initial conditions. As discussed in Section 4.2. the
behaviour of the transient is not representative of the steady state of the
system. One of the most common ways of dealing with this problem is by
deleting some of the initial observations which usually will greatly differ from
the steady state values.

In one of the most complete reviews of the methods found in the
literature to deal with the problem, Gafarian et al (1978) showed, based on
five performance measures defined below, that none of the methods that
existed at that time performed well. (See also, Wilson and Pritsker (1978a)).

The following notation is used to explain these different performance
measures:

{X,}: Stochastic process with index (time) parameter t.

L : Truncation point for a time series realisation of {X};

i, : Steady State mean of the process {X}.

€ : preassigned relative tolerance.

We define t* as the minimum time such that:

1-e<EX)p, £1+ €forall t2t*

Choosing e sufficiently small, the stochastic process {X.} can be said to
be in the steady state for values of t>t*; this means that the expected value X,
is close to p, and E{X,}/p, is close to 1.

Depending on the procedure and the random number seeds used, the
value of L varies and, therefore, we can think of L as a random variable used
to estimate t*. Gafarian et al compare the different procedures based on the
following measures:
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1. Accuracy: a = E(L)/t* should be equal to one.

2. Precision : p =0 (L)/E(L) should be close to zero.

3. Generality: A truncation point should perform well for a broad range
of models.

4. Cost : Because some observations are being deleted, the computer
time taken to do this should not be excessive.

5. Simplicity : The proposed procedure should be easy to understand
and easy to use.

When applying these performance measures, some of the procedures
studied were found to underestimate the truncation point, with the influence
of the initial conditions remaining and leading to a biased steady state
estimate, Other procedures were found to overestimate the truncation point
leading to a waste of resources.

We now discuss some of these performance measures. With respect to
the cost we must notice that when this study was carried out (1978) the cost of
computer time could greatly increase the total cost of the project. With the
development of new and faster technologies, cost is not as much a problem as
it was some years ago. However, if the computer time spent in the estimation
of the number of observations to be deleted is kept as small as possible, the
practitioner can spend more time in taking a larger number of replications
and/or increasing the total simulation run length. These two factors affect the
accuracy of the estimate obtained from the simulation, and the larger they are
the more accurate the estimate is. ,

If cost is not an important factor in the evaluation of a procedure
proposed for the elimination of the influence of the initial condition, measures
of performance 3 (generality) and 5 (simplicity) are still very important. Most
of the procedures that have been proposed to deal with the initialisation bias
problem are not shown to be general, they have used simple models, like the
M/M/1 queue, to show the results. However, complex systems have a
completely different behaviour. Therefore, the methods so far tested may not
be expected to work satisfactorily for different types of real and complex
systems. A second problem with these methods is that some of them, as is
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shown in section 4.3, are not easily implemented and for complex models they
may require several computations, which will increase the time taken by the
project (see comment in Section 1.1.2. about simulation projects taking an
excessively long time). And, due to their complexity, most of these methods
do not meet the fifth performance measure of simplicity. Two methods (Law
and Kelton’s and Welch’s) are described in section 4.3. to illustrate these three
problems (long time taken to finish the project due to complexity, lack of
generality and lack of simplicity). The description of these two methods in this
chapter will show how relatively easy it is to implement the method proposed
in this chapter, and its generality is illustrated by applying it to simple and
complex models.

Some other problems associated with the deletion of observations as a
way of dealing with the initialisation bias problem have been discussed in the
literature. For example, some authors question the usefulness of this method
and they consider that deleting the transient part of a time series may give a
biased variance and steady state estimate (Deutsch, et al; 1983). Some other
authors have shown (based on simple models like the M/M/1 queue) that the
deletion of some observations will increase the variance of the steady state
estimate. However, new sampling methods have been proposed recently that
may reduce the standard deviation of the mean estimate by up to 50% in some
cases (Saliby, 1990a, 1990b). Law (1977), comparing the batch means with the
replications method, showed that deletion can increase the bias when the
simulation run length is not sufficiently large. Blomqvist (1970) showed that
for the M/M/1 queue and some other simple queues, the mean squared error
of the estimate increases with the deletion of some of the initial observations.
This mean squared error is defined as E[X(m,L)-u]>, where X(m,L) is the
steady state estimate when m observations are recorded but, of these m
observations, L are deleted. "u" is the real, and (usually) unknown value.
More generally, it has been shown that for a first-order autoregressive process,
the mean-squared error may increase or decrease depending on the values of
m and L. (Fishman (1972), Turnquist and Sussman (1977), Wilson and
Pritsker (1978a), Snell and Schruben (1979), and Kelton and Law (1984)).
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However, further research is needed in this field before rejecting the
usefulness of the deletion of some of the initial observations, as most of these
studies are based on observations made on the M/M/1 queue or other similar
simple models. |

4.1.1. CHAPTER OBJECTIVES

As mentioned above, the existing methods to deal with the initialisation
bias problem do not perform well in practice, or are not easy to employ and
to apply. Therefore, the objective of this chapter is to seek to develop a
method for the selection of a truncation point and which at the same time is
easy to implement and to understand by the user with no previous special
knowledge of the field.

We do not try to develop a method supported by a rigorous
mathematical theory as is usually done, but to use an empirical approach for
it. By analysing different types of simulation models and their behaviour for
short simulation run lengths we were able to identify a common pattern which
could be due to the influence of the initial conditions.  Further
experimentation confirmed this point. In this way our method estimates the
truncation point using results obtained from the simulation. The main
advantage of this approach is that it does not require complex computations

or modifications to the simulation software that are difficult to implement.
412. CHAPTER OUTLINE

Section 4.2. defines the term transient phase and discusses the problem
of Initialisation Bias, as a consequence of the transient phase. Section 4.3.
describes some of the methods that have been developed to deal with the
problem of the transient phase in the calculation of steady state parameters.
Section 4.4 develops a method to deal with the initialisation bias problem. This
method in its present form is applied to queuing networks. An area for future

research could be its extension so that it can be applied to other types of
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simulation models. The method was applied to simulation models for which
no analytical answer can be calculated and Section 4.5. discusses some of the
empirical results thus obtained. However, to test if the proposed method has
some limitations, or if it works for simple models as well as it does for complex
ones, it was also applied to three systems with known analytical steady state
values and which are favourites amongst simulation theoreticians; these
systems are the M/M/1 queue, the M/M/4 queue and a 2-stage queuing
system (Queues in tandem).

42. TRANSIENT PHASE :WHAT IT IS

"A simulated system is considered to be in a steady state if its current
behaviour is independent of the starting conditions, and if the probability of
being in one of its states is governed by a fixed probability function. This does
not mean that the system does not change state, but that the probability of
being in any of its possible states can be determined." (Pidd, 1992).

The transient phase is the period of time between the start of the
simulation and the final or steady state. This is better explained with an
example. Suppose that a factory starts its operation. In one of its departments
there is an assembly line where each shift picks up where the previous one left
off. The first few hours or days of operation will not be really representative
of the behaviour of the assembly line. This is due to the fact that the "queues"
(points of the assembly line where the product has to wait for an operator to
start working on it) will be initially "empty" and the workers will be initially
"idle". This means that the first few elements to go through the assembly line
will not have to wait in a queue anywhere, and just the same, some of the
operators will have to wait longer (will be idle) before starting to work.
However, as time increases, the flow in the assembly line will tend to stabilise
and it will be possible to answer questions like how long it takes on the
average for a product to go through the assembly line, and what percentage of
time an operator is "idle" in a typical shift, etc. The period of time until the
operation of the assembly line is "stabilised" is called the transient phase of the
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assembly line. Just the same, if a change is made in the assembly line, for
example by reducing the number of operators, there will be another transient
phase while the system readjusts to the new operating conditions. The
important point here is that the operation of the system during the transient
phase may be of little consequence when compared to the operation once a

steady state has been reached.

42.1. DELETION OF SOME OF THE INITIAL OBSERVATIONS
DURING THE TRANSIENT PHASE

While in some cases we are interested in the transient phase (for
example, in terminating simulations), in other cases, when the main objective
of the simulation is the study of the behaviour of the system in the long run,
i.e., when we are interested in the estimation of steady state parameters, the
influence of the transient phase may lead to biased estimates. This is due to
the fact that the values of the observations during this transient phase are (or
may be) quite different from the steady state values, and therefore using these
values will give a sample mean either too small (when at the beginning of the
simulation the queue is "empty") or too large (all entities in the queue are
initially "idle") as compared to the real, but unknown, steady state values.
Obviously, this could be overcome if the system is simulated for an extremely
long period of time but this procedure will take a long continuous computer
operation and increase the time taken by the project. Two possible solutions
have been suggested:

1. Start the simulation with conditions that are more similar to the
steady state conditions (Madansky, 1976). The problem with this approach is
that this steady state is not known. In most simulations "the simplest course
open to the analyst is to begin the simulation with no activity occurring and
with the queues empty" (Pidd, 1992)

2. Do not record the initial output from the simulation. In other words,
divide the total simulation time in two periods: an initial period T, and a
second period T, with T, >>T,. Do not take any record of the simulation
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output data during time period T,. (See Figure 4.1)

0 T2 T3
— =

Run-in-Period  Data to be used for the MEAN estimate

Figure 4.1. "Warm-Up" + Data Collection Period

This means that for a period of time T, we are driving the system into
conditions which are more representative of the steady state and during this
period we are not recording any data as this is quite different from the steady
state values. For practical purposes, due to the type of simulation software
used in the experiments carried out in this research, this period of time T, will
be called the Run-in-period; in practice, simulation output is recorded from the
beginning of the simulation run, but when the simulated time gets equal to the
run-in-period, all data collected up to that point is discarded.

The basic problem now is to determine the length of T,. If it is too
small, the estimate will be biased; if it is too large, the variance of the estimate
will increase (if the total simulation run length is not increased) and computer
time will be wasted. Several methods have been developed to calculate this
period of time.

Some methods, delete a fixed number of observations L in each
replications, instead of deleting the observations recorded during a fixed
period of time in each replication. When the first L observations of each
replications are deleted, the period of time required to record them is a
random variable that takes different values (although similar) in each
replication. On the other hand, when a fixed period of time is chosen and the
observations recorded during this period of time are deleted, the number of
observations deleted is a random variable that takes different values in each
replication. In the methods described in Section 4.3. the truncation point is
given by a fixed number of initial observations L that are deleted in each
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replication. Four of the methods that have been proposed in the literature for
the estimation of the number L of observations to be deleted have been
compared by Kimbler and Knight (1985); it is interesting to notice that
although the methods seem to perform well, at least in the case used to
compare them, there is "quite a difference in the truncation points given by the
various methods." This implies that in some cases the truncation point is
overestimated and its overestimation is undesirable’ because the variance of the
estimate increases. To explain this in more detail, if we call L the number of
observations deleted, and m the total number of observations recorded from
the simulation run, the estimate will be obtained from m - L observations. As
the variance of the estimate is inversely proportional to the number of
observations used to calculate the mean estimate, if we keep m fixed the larger
the value of L the larger the variance of the mean estimate.

Summarising this section, the initial conditions are not representative
of the steady state. Therefore they may produce a biased estimator. A
possible solution which is further discussed in the remainder of this chapter is
to run the system for an initial period of time called the run-in-period; any
data recorded during this period of time is discarded. Doing this transforms
the problem into that of how to obtain a "good value" for this initial period of
time.

43. SOME METHODS FOR THE ELIMINATION OF
INITTALISATION BIAS IN SIMULATION

Two methods that have been proposed in the literature for dealing with
the initialisation bias problem are described in this section. This will give an
idea of the complexity of the methods that are supported by a strong
mathematical background. The first method, described in sections 4.3.1. and
4.3.2., is Kelton and Law’s method (Kelton, 1980, 1982, and Kelton and Law,
1983). The second method is Welch’s method (1983) and it is described in
Section 4.3.3.
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43.1. KELTON AND LAW’S METHOD

In this method, k replications of length m (i.e. m observations are
recorded in each replication) are obtained. To reduce the influence of the
initial conditions, the first L observations of each replication are deleted. The
sample mean for replication jis given by equation 4.1. where X(j) is the ith.
observation obtained in the jth. replication.

= 1 - ,
X =——V¥' X =12.k (4.1)
) (m-L),’rh D =12

Using these values, an estimate of the mean p is then given by equation
42,

k
X = 23 %0 (4.2)
J

=1

The method tries to find a good but not necessarily optimal value for
L and for m. A good value of L and m is a value such that “E()E,_m(j)) is
sufficiently near p to allow us to treat the )-ELm(j)’s as being iid. (independent
and identically distributed), and unbiased for p in the context of their use in
a statistical inference problem, e.g., c.i. formation." (Kélton and Law, 1983).
At the same time, the value of L cannot be too large, as this would mean
excessively long computer time, and waste of resources. In other words, the
problem addressed here is not a problem of optimisation, but of determining
a set of values (L,m) such that the observations used to estimate p, may give
a good estimate, and an acceptable confidence interval. "This way of thinking
about the startup problem differs from that in Gafarian, Ancker, and Morisaku
(1978), where the problem is defined as finding the minimal i* such that E(X)
is within a specified tolerance of p for all i>i*; their formulation requires that
individual points be near u in expectation, whereas our goal is to obtain

averages of points which have expectation near p ." (Kelton and Law, 1983)
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432. KELTON AND LAW’S METHOD: DESCRIPTION

"If E(X;) = p for i2q (g unknown), then in econometric parlance, a

model for )_ii, for i2q, is:
X;=p+m ()

where the 7;’s are r.v.’s" (random variables) "with E(n;) = 0. If we were to fit
- a straight regression line through adjacent )—(i’s over values for i2q, we would
expect the fitted line to have a slope which would not be distinguishable from
zero, upon performing a formal hypothesis test for zero slope. This is really
a test for flatness of the TEF, (transient expectation function is the plot of
E(X,) against i) so should indicate whether the TEF has stabilized, and this
stability should only obtain at the level of g, in view of our assumption that the
TEF is monotone. A serious difficulty, however, in fitting such a regression
line and performing this test is that the )—(i’s are correlated, so that the n;’s in
Equation (1) are also correlated. This is contrary to the usual independence
assumption made in classical regression so that we cannot simply apply
ordinary least squares (OLS) to fit the desired line. Instead, we must resort
to generalized least squares (GLS), which allows for autocorrelation in the
disturbance terms of the regression model (See Johnston, 1972). A practical,
general, and efficient GLS procedure was given by Amemiya (1973) which
results in an unbiased and efficient (in the sense of minimum variance) slope
estimator, and an asymptotic theory on which standard error estimates of this
slope estimator can be obtained, which enables us to perform the desired zero-
slope hypothesis test." (Kelton and Law, 1983).

Law and Kelton describe the method as follows:
"To state the procedure, we will need the following notation:

k = number of replications

m, = initial length of each of the k replications

Am = number of points added to each one of the k replications (if
necessary).

m* = maximum replication length.

b = number of batches
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p* = maximum initial deletion proportion.

Po = minimum initial deletion proportion.

B = size of the test for zero slope.

f = maximum number of segments over which a fit is made, including
initial fit.

The idea behind choosing which segments to use for curve fitting is to
start near the end of the )El series (with, for example, the last half of the data)
for the initial fit, then move the segment backward toward the beginning of the
data until it appears that the TEF is no longer flat, as evidenced by rejection
of the null hypothesis of zero slope. If the line fitted initially to, for example,
the last half of the data, has a slope estimate which is significantly different
from zero, then m must be increased, i.e., each of the k replications must be
extended, and we try again...

Before giving a detailed statement of the procedure, one other idea
warrants discussion. Instead of fitting the regression lines to the i{s
themselves, we instead group the m )—(i’s into b "batches" to form b batch
means, each being the average of m/b adjacent values of the )-(, series; these
batch means then form the points on which the regressions are done...

The initial line is fit to the last 100(1-p*)% of the data, so uses the last
(1-p*)b batch means. Assuming that the initial zero slope test does not result
in rejection, we begin consideration of earlier batch means by moving the
interval over which the next line is fitted backward toward the beginning of the
time series. To do this, the deleted proportion is reduced by an amount Ap =
(p* - py/(f-1), so that the next line is fitted to batch means (p* - Ap)b through
(1 - Ap)b, i.e., the right endpoint is also moved back. If this new line also has
a slope which cannot be distinguished from zero, the next line is fitted to batch
means (p* - 2Ap)b through (1 - 2Ap)b. As long as the zero slope tests do not
indicate rejection, we keep diminishing the deletion proportion by Ap each
time until rejection occurs, or until the deleted proportion reaches p,. Thus,
we will do at most Ffits in this way, and the interval of interest moves back by
the constant amount of (Ap)b batches for each fit.

Also, we assume that each value of m, the replication length, is divisible
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by b. Furthermore, it is understood that whenever an index is defined in a way
in which it might be nonintegral, it is rounded to the nearest integer. Finally,
the notation "«" is to be read "is replaced by." Then the procedure is as
follows:
STEP 1. Make k independent replications of length m, points each,
average over the replications to obtain the single time series, )_(.1, )-(2
)_(m and let m=m,.
STEP 2. Group the m points )_(1, )-(2 )—(m into b batches of m/b
adjacent points each, and compute the b batch means.
STEP 3. Fit a straight line through batch means p*b+1..b (using the
Amemiya GLS procedure), and perform a test for zero slope at level 8.
a. If the test fails to reject the null hypothesis of zero slope, go to step
4,
b. If the test indicates rejection, then:
i fm + Am < m* then m + m + Am, and go to step 2.
ii. If m + Am > m*, print a warning that m* is too small, set p
= p* and go to step 6.
STEP 4. Let Ap = (p*-py)/(f-1) and let p=p*-Ap.
STEP 5. Fit a straight line through batch means pb+1, ... ,(p+1-p*)b
and perform a test for zero slope at level 8.
a. If the test fails to reject, then
i. If p- Ap 2 p, Then p « p-Ap, go to step 5.
ii. If p- Ap<p, then go to step 6.
b. If the test indicates rejection then p «~ p + Ap and go to step 6.
STEP 6. Let L = pm (to the nearest integer) and return L and m."
(Kelton and Law, 1983).

The first problem with this method is the need to define values for some
of the parameters, like for example my, Am, b, p*, p,, B, f. Assigning values to
parameters in simulation may sometimes be a problem, as shown in Chapter
S for the batch means method, because the parameters may be model

dependent or even worse, these values may depend on the unknown quantity
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being estimated by the simulation. The authors themselves recognise that their
selection of parameters may not work well "in every case" (Kelton and Law,
1983).

A second problem is the lack of generality as this method was tested
with "a total of 13 stochastic models with known /X". (Kelton and Law, 1983).
However, in typical simulation applications, the real value /xis not known. If
it were known there would be no need to use simulation.

A third problem with this method is, as reported in a survey made by
Kimbler and Knight (1985), that the method is rather complex: "In fact, had
we not been able to obtain a written coding for the Amemiya GLS method our
work would have been greatly exaggerated."

Kelton and Law (1983) give the following example of the procedure's

operation, which is illustrated in Figure 4.2.

20

m=500
10
0 250 500
m=2500
0 1250 2500

Figure 42. Law and Kelton’s method: example for an M/M/1 queue
with r = 0.9.
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"The process being simulated is again the delay in queue for the M/M/1
queue with 7 = 0.9 and the initial conditions are empty and idle. We
implemented the procedure with the following parameters: k = 5, my, = 500,
Am = 500, m* = 3000, b = 125, p* = 0.5, p,= 0.1, 8 = 0.5 and f= 11. The
top graph of Figure 4.2. pictures the initial situation, where m = m, = 500, so
the batch means are averages of m/b = 4 adjacent )_(, values each; these are
plotted as the crosses, and the dashed lines give the level of p and the exact
TEF. The initially fitted line, labeled "A," is fitted to batch means 64 through
125, and the zero slope test indicated rejection at the 8 = 0.5 level. The
procedure thus executes Step 3b(i), continuing each of the five rcplications for
an additional Am = 500 points, and extends the averagcd time series to X1
Xm(,0 Step 2 then forms 125 batch means of eight X. s each and a new line is
fit to these means of (larger) batches 64 through 125. In this example, the
zero slope test again indicated rejection; we omit the plot in this case. The
value of m was increased in this way, until finally m = 2500 was reached, and
Step 2 formed 125 batch means of 20 )_(i’s each; this is depicted in the lower
graph of Figure 4.2. The line fitted to batch means 64 through 125 by Step 3
finally has slope which is not significantly different from zero; this is line "B."
Step 3a thus sends us to Step 4, where the interval is moved back toward the
beginning of the data. The next line fitted is not plotted, for clarity, but also
resulted in not rejecting the null hypothesis of zero slope. The following line,
labeled "D" also has an insignificantly nonzero slope. Moving back further,
however, results in line "E" which leads to rejection of the zero slope
hypothesis. Step 5b thus readjusts p to indicate the beginning of the most
recently fitted line which still appears to be flat, and the procedure returns
with L = 1050 and m = 2500." (Kelton and Law, 1983)

This simple example shows that the method is not simple and easy to
use and it confirms our previous discussion on the problems of the method.
It requires complex programming and the setting of parameters that may be
model dependent. Even more important from a practical point of view is the
answer to the question: does it work only with simple models or can it be used

for more complex models? And if it is used for complex models how long does
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the estimation of L and m take ? These are important questions that if not
answered satisfactorily can make the procedure of little practical value.

433. WELCH'S METHOD

In this section we describe a second procedure that has been proposed
for dealing with the initialisation bias problem and that according to Law
(1983) "seems promising”". Although this method is not as complex as Law and
Kelton’s method, it still requires some additional computing and the setting of
some parameters that need to be determined by trial and error. Due to the
complexity of some simulation models, this setting is not always easy as values
tend to greatly differ from parameter to parameter and from model to model.
The method is described by Law (1983) as follows:

"When the steady state average response v exists, it is also given by
v=Lim, JE(Y,). The goal of Welch’s (1981,1983) procedure is to determine an
index, say L, such that E(Y,)=v for i>L,, Then L, is the number of
observations that is to be deleted from the beginning of each simulation run.
The value L, can be given two interpretations. First it might be considered to
be a time index beyond which the process Y, Y,... is approximately covariance
stationary. Also, the determination of L, facilitates obtaining an unbiased
point estimate for v; in particular, the sample mean of the observations Yy,,;,
Y1042 - Ypg4 should be an approximately unbiased estimator for v.

In general it is impossible to determine L, from a single replication of
the process because of its inherent variability. As a result, Welch’s procedure
suggests making n independent replications of the simulation (n25) each of
length m observations. Let Yj; be the ith. observation from the jith. replication
(=1, 2..n; i=1, 2..m) and let

_ ALY
Y,=Y -2 i=12.m (4.3)
P

Observe that E(l_fi) = E(Y,) and Var(i) = Var(Y,)/n; thus, the process
Y;, Y, ... has the same expectations (and correlation structure) as the original
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process, but is less variable.

To smooth out the high frequency oscillations in the averaged process
(but leave the low frequency oscillations in which we are interested), we
further define the moving average {(i(w) by equation 4.4., where w, the
"window" of the moving average, should satisfy 10<w<[m/2].

[ -1 ¥
—E_if (i<w+1)
Tw) = [0 ;2("1*1)1 (44)
Y . if welsism-w!
& Rwe]

Then ‘5—(i(w) is plotted for i=1, 2..m-w and L is chosen to be that value
of i beyond which {Y;(w)} appear to have converged. The values of n.m, and
w need to be determined by trial and error.

In Figure 4.3. we illustrate an application of Welch’s procedure to the
process D,, D, ... for the M/M/1 queue with 7 = 0.8. The overall objective
of the simulation study was to determine d = Lim, JE(D,) = 3.2 and here we

“chose m = 470, n = 25 and w= 20. (The vertical lines in Figure 4.3. show the
90% c.i’s.) From the plot, we subjectively choose L, to be 150. One drawback
of Welch’s procedure is that it might require a large number of replications to
make the plot of {i} reasonably stable if the process {Y;} is highly variable."
(Law, 1983).

delete lo = 150 delays

bias {s 1 percent of d

Figure 43. Welch’s method applied to the M/M/1 queue with 7 = 0.9.
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As with Law and Kelton’s method, Welch’s method requires the setting
of some parameters. This step may not be obvious, and may be model
dependent. And if they have to be determined by trial and error, the time
spent in the estimation of the number of observations to be deleted may be too
long, especially if we are simulating a rather complex system.

To summarise this section, from the computational point of view, both
methods require some additional computations when compared to the method
proposed later in this chapter. Although this may not be important for simple
simulation models, the additional computation may be time consuming for
complex systems. The main drawback of these methods, specially in Law and
Kelton’s, is their complexity. Implementing them will require extra effort from
the simulation practitioner and will also require some extra computer time.
It is important to notice that complex methods, should, if possible, be avoided
in this stage of the simulation, because of the additional computer time that
they require. Elimination of the initialisation bias problem is only a small part
of the simulation itself; therefore, the computer time spent in dealing with it
should be only a small fraction of the total computer time spent in the project
(i.e., elimination of the influence of the initial conditions, running the
simulation, and analysing the results).

Even though only two methods have been described here, the problem
of the initialisation bias is extensively discussed in the literature. Procedures
have been proposed that, using some of these tests to eliminate the initial bias,
let the simulation practitioner calculate a confidence interval of pre-specified
width (Heidelberg and Welch, 1983). Additional information on the problem
and on different procedures can be found in Schruben and Singh (1983),
Schruben (1982), Glynn and Iglehart, (1987). For procedures proposed before
1978, see Gafarian et al, (1978) and Wilson and Pritsker, (1978a).

44. A NEW METHOD FOR THE ELIMINATION OF THE
INITIALISATION BIAS PROBLEM

Three main problems were identified with the methods described in
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Section 4.3: insufficient testing for some complex models with no analytical
answer, complex methods that may require a large computer time just to deal
with a small part of the total simulation problem and the need to define some
parameters whose values may be model dependent. These problems arise
from the fact that in typical simulations there are several entities in the model
and they interact with each other; in simple models with known analytical
answer, this interaction does not exist, or is minimal. In the method proposed
here there are no parameters to be defined and in this way the possible
dependency of it on the simulation model is eliminated. Likewise the method
is tested for some typical simulation models (i.e., no known answer), as well
as for some common models like the M/M/1 queue, the M/M/4 queue and
a system of queues in tandem. A last advantage of the new method is that it
is easily implemented as is shown in section 4.4.3.

Section 4.4.1. explains the basic idea behind the new method. Section
4.4.2. explains a method proposed by Gordon (1969) based on the variation of
the STANDARD DEVIATION and which, being similar to the one proposed
in this chapter, will be used to compare our results with those of an existing
method. In this section we also describe one of the first methods proposed in
the literature by Conway (1963) for the estimation of the number of initial
observations to be deleted. Section 4.4.3. develops an algorithm for the
method proposed in this chapter. Section 4.4.4. compares and points out the
differences between Gordon’s method and ours.

44.1. PROPOSED NEW METHOD : ITS BASIS.

The discussion of the previous sections, especially of Section 4.3., shows
the need for a method that is simple and easy to implement for dealing with
the initialisation bias problem. At the same time the new method should not
be time consuming. Following the empirical approach used in this research we
studied the behaviour of several simulation models for short simulation run
lengths. If X, X,...X, are the mean estimates obtained from replication i, i=1,
2.k for a particular simulation run length, ¢ the mean estimate (}_{Q can be
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calculated as the average of the X/s. We observed that the STANDARD
DEVIATION of the mean estimate tends to increase for short simulation run
lengths (i.e., for small values of f); as the simulation run length increases (i.e.,
as the value of ¢tbecomes larger) it will reach a maximum value and for longer
simulation run lengths the standard deviation decreases. If the initial state is
close to the steady state we can expect an increase in the value of the standard
deviation (as the variation is minimum at the beginning of the simulation),
followed very soon by a decrease in its value, as we would expect from basic
statistics. But when the system is started "idle" and "empty" the influence of
the initial conditions is strong and the standard deviation will take longer to
start decreasing. Following this trend of thought we decided to use the point
in simulated time for which the standard deviation reaches a maximum as the
run-in-period. Experiments using this approach show, as will be explained
later, that using the value of the run-in-period thus determined the parameter
of interest will reach the steady state for shorter simulation run lengths and
that