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Abstract

Due to the reform of payment systems from netting settlement systems to Real Time

Gross Settlement systems (RTGS) around the world in recent years, there is a dramatic

increase in the interest in modeling the large-valued interbank payment system. Recently

some queueing facilities have been introduced in the response to the liquidity management

within the RTGS systems. Since stochastic process models have been wildly applied in

social networks, and some aspects of which have similar statistical properties with the

payment system, therefore, based on the existing empirical research, a Markov type model

for RTGS payment system with queueing and collateral borrowing facilities was developed.

We analysed the effect on the performance of the payment system of the parameters, such

as the probabilities of payment delay, the initial cash position of participating banks and

the probabilities of cross bank payments. Two models were proposed; one is the simplest

model where payments were assumed to be equally distributed among participating banks,

the other one is a so-called ”cluster” model, that there exists a concentration of payments

flow between a few banks according to the evidence from empirical studies. We have found

that the performance of the system depends on these parameters. A modest amount

of total initial liquidity required by banks would achieve a desired performance, that

minimising the number of unsettled payments by the end of a business day and negligible

average lifetime of the debts.

Because of the change of large-valued interbank payment systems, the concern has

shift from credit risk to liquidity risk, and the payment systems around world started

considering or already implemented different liquidity saving mechanisms to reduce the

high demand of liquidity and maintain the low risk of default in the mean time. We

proposed a specified queueing facility to the ”cluster” model with modification with the

consideration of the feature of the UK RTGS payment system, CHAPS. Some of the



payments would be submitted into a external queue by certain rules, and will be settled

according an algorithm of bilateral or multilateral offsetting. While participating banks’s

post liquidity will be reserved for ”important” payments only. The experiment of using

simulated data showed that the liquidity saving mechanism was not equally beneficial to

every bank, the banks who dominated most of the payment flow even suffered from higher

level of debts at the end of a business day comparing with a pure RTGS system without

any queueing facility. The stability of the structure of the central queue was verified.

There was evidence that banks in the UK payment system would set up limits for other

members to prevent unexpected credit exposure, and with these limits, banks also achieved

a moderate liquidity saving in CHAPS. Both central bank and participating banks are in-

terested in the probability that the limits are excess. The problem can be reduced to

the calculation of boundary crossing probability from a Brownian motion with stochastic

boundaries. Boundary crossing problems are very popular in many fields of Statistics.

With powerful tools, such as martingales and infinitesimal generator of Brownian motion,

we presented an alternative method and derived a set of theorems of boundary crossing

probabilities for a Brownian motion with different kinds of stochastic boundaries, espe-

cially compound Poisson process boundaries. Both the numerical results and simulation

experiments are studies. A variation of the method would be discussed when apply it to

other stochastic boundaries, for instances, Gamma process, Inverse Gaussian process and

Telegraph process. Finally, we provided a brief survey of approximations of Lévy processes.

The boundary crossing probabilities theorems derived earlier could be extended to a fair

general situation with Lévy process boundaries, by using an appropriate approximation.
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Chapter 1

Introduction to large-valued

interbank payment systems

Payments and securities settlement systems are essential complements of any stable

financial markets. In recent years, the interest in analysing the large-valued inter-

bank payment systems has been growing rapidly. Some aspects of these systems

have been investigated in-depth in several papers, for instance, the statistical prop-

erties of the UK and US current payment systems [9], [59] and [64]; the development

of global interbank payment systems [8] and [23], the details will be discussed in the

oncoming chapters.

The explosive growth in the volume of transactions in the national and interna-

tional financial markets resulted in a corresponding increase in interbank payments

flows. Two basic settlement models are applied in interbank (wholesale) payment

systems: Deferred Net Settlement (DNS); and Real Time Gross Settlement (RTGS).

In the Net settlement payment systems, payment orders are achieved at the end of

a period, usually is a business day, on a net basis, and regardless the time they oc-

curred. However, it may give change to build up credit exposures among participants

10



1.1. REFORM OF PAYMENT SYSTEM 11

during the interval prior to settlement. On the other hand, under an RTGS payment

system, each payment is immediately settled on a transaction-by-transaction basis

throughout a business day, but with a higher liquidity demand.

The wholesale payment systems have been reformed during the past decades

around the world [8]. The main reason for such reform is a liquidity management

in large-valued payment systems. A large number of countries have introduced

the Real Time Gross Settlement payment system instead of the Deferred Net Set-

tlement payment system. In some RTGS payment systems, central bank grants

daylight overdrafts to the participating banks in order to guarantee all the outgo-

ing payments, so that maintaining the liquidity and the processing efficiency of net

settlement systems. However, if central bank funds, which are so-called good funds,

or acceptable collateral are not available, then payment orders could be rejected or

delayed until funds become available to cover them. As a result, some RTGS pay-

ment systems have, or are thinking about to implement queueing facilities. In an

RTGS system with queueing facilities, payment orders, for which no cover funding

are available, are put into a queue to be processed when sufficient funds have been

delivered to cover the incoming payments [23].

1.1 Reform of payment system

The basic settlement models are applied in interbank payment systems: Deferred

Net Settlement (DNS); and Real Time Gross Settlement (RTGS). In the net settle-

ment payment systems, payments are accumulated over time and achieved at the

end of a period, usually is a business day, on a bilateral or multilateral net basis,

and regardless the time they occurred. With which banks need to post liquidity

only equal to their net obligations. However, the accumulation of huge number of
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unsettled payments can generate considerable credit exposures among members of

the payment system. Moreover, the largest risk in a netting settlement system is

the risk that the failure to fulfil its obligations by one participant will lead to a

system crash, which is known as the systemic risk. By now, it is well recognized

by the global financial markets, that any interruption in wholesale payment system

leads to ultimate gridlock that could have serious consequences on the real economy.

The concerns from different users of financial market drove the reform of the large-

valued interbank payment systems around the world. Real Time Gross Settlement

payment systems have replaced the netting systems around the world in the recent

decades [8]. An RTGS payment system is defined as a gross settlement system in

which both processing and final settlement of funds transfer orders can take place

on a continuous, transaction-by-transaction basis throughout a business day (i.e. in

real time). As banks could make payment orders at any time during a business day,

comparing with the net settlement payments system, the RTGS payment system

takes the advantage, for which transfers are settled individually, and the system

effects final settlement continuously but not periodically [23]. Hence, it prevents the

sizeable credit exposures between banks, and the credit risk to receiving banks is

at least reduced or even eliminated. This, however, comes at a higher demand for

liquidity.

The two basic risks of a wholesale payment system are credit risk and liquidity

risk1 to the participants in a wholesale payment system. The Deferred Net Setting

system can exacerbate interbank credit risk: if banks credit their customers’ accounts

during the day and before the final settlement has occurred, such risk will appear

as soon as a bank defaults on its net obligation when in due course. An easy way to

mitigate credit risk is to increase the frequency of netting in a DNS system, which

1other types of risk including operational and legal risks.
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in the mean while increases the demand of liquidity unfavorably. Therefore, there

is a trade-off between credit exposures and liquidity demands.

Liquidity risk is the risk that a counterparty will not settle a due payment for full

value on time but at some unspecified time afterwards. The delay could adversely

affect the expected liquidity level of the payee, and it may force the payee to cover

its cash flow shortage by funding from other sources. Since the payee does not

anticipate the delay, the funds used to cover the shortage is short-noticed, which

may lead to a financial loss due to higher financing costs (higher interest rate for

short notice borrowing) or to damage to its reputation. In more extreme cases, the

payee may be unable to cover the cash flow shortage at any price, in which case it

therefore may not be able to meet its obligations to others. Within a large-valued

transaction payment system, the time gap between the execution of the transaction

and its final completion is a main source of the liquidity risk. With the time gap, it

becomes possible that the settlement of individual transactions will not take place

as expected. A participating bank will not be certain what funds it will receive

through the payment system until settlement of transactions is completed. Thus,

the bank will not be sure whether its liquidity is adequate. If a bank overestimates

the value of payments it will receive, it would lead to a shortage of cash, and if the

shortage occurs around the end of a business day, the bank could have significant

difficulty in raising the liquidity it needed from an alternative source.

In wholesale payment systems, central banks are particularly concerned with

systemic risk, which is the failure of one participant to meet its obligation when

due may cause other participants to fail to meet theirs. Such a failure could raise

the financial difficulties and vacillate the stability of the payment system. As a

result, central banks have a particular interest in limiting the systemic risk in large-

valued transactions payment system, this is because that the aggregate exposures
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tend to increase with the aggregate value of transactions, and the potential risk in

large-valued transactions system are significantly higher than those in other systems

[14].

In RTGS payment systems, settlements occur on the books of central bank.

Central bank controls the systemic liquidity and credit risk by providing daylight

overdrafts to participating banks. Central bank grants daylight overdrafts to par-

ticipating banks by guaranteeing all outgoing payments, therefore preserving the

liquidity and the processing efficiency of the net settlement system. Participating

banks can make payments throughout the business day and square their positions

or erase their overdrafts only at the end of the day. However, in the absence of

collateral for such daylight drafts, the central bank assumes credit risk till the over-

drafts are eliminated. Collateral requirements minimise credit risk, but they also

may significantly reduce the liquidity of the system meanwhile. If central bank funds

(so-called good funds) or acceptable collateral are not available, payments could be

rejected or at least delayed till cover is available [14]. In response to such inefficien-

cies associated with the liquidity management, some RTGS payments have or are

going to add queueing facilities. Payment messages, for which no covering fund is

available, enter a queue to be processed when sufficient funds have been delivered to

cover the incoming payments [14]. The most important advantage of RTGS payment

systems with queueing facilities is that they allow for the introduction a searching

mechanism which cancels offsetting payments in queues, thus reducing the amount

of liquidity required by the system.
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1.2 Real Time Gross Settlement payment systems

An RTGS payment system is used by participants to process large-valued payments,

such as payment for the settlement of interbank purchases, sales of government

funds; the purchase, sale and financing of securities transactions; the disbursement

or repayment of loans and the settlement of real estate transactions [59].

For the RTGS payment system with queueing facilities, when the collaterised

borrowing is no longer available, there are two possible ways to treat the payment

orders; one way is for the system to reject the orders and return them to the sending

bank, the rejected orders then will be put into the system again at a later time and

pending payments within their internal systems. This is called the internal queue.

An alternative is a centrally located queue or system queue. The system may tem-

porarily keep the payment orders in its central database instead of rejecting them,

in which case, the pending payments will be released for settlement when covering

funds become available on the basis of predefined rules, which are agreed between

the system and the participants. Rather than distinguishing the queues according

to locations, queues can also differ according to the underling management, in other

words, how a queue is controlled. The management may be carried out by the

central bank (centralised management) or by individual banks (decentralised man-

agement). The combinations of possible locations and managements lead to various

forms of queues. Most RTGS systems including the system considered in the thesis

introduced the centralised queuing facilities.

According to Bank of International Settlements, most centrally located queue

arrangements have adopted a form of the First In First Out (FIFO) rule [14]. Where

the FIFO rule is applied, payment orders are held in the order in which they are

dispatched by the sending bank; the payment at the top of the queue is released
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and settled first when covering funds are available, and the payment behind it will

be considered for settlement only when it fully settled. Besides, there are many

other methods of queue processing and the outcome of the process will be distinct

depending on the method. For instance, ”bypass FIFO”2 rule is a variation of the

FIFO rule, under which the system tries to process the first transfer in the queue,

but if that cannot be executed due to lack of funds it then tries to settle the next

transfer instead. The order of the payments will affect the performance of queueing.

Under the simplest condition, payments are ordered according to the time they

occur. However, the flexibility of the queueing facilities could be improved by using

the priorities of the payments. Payments are placed in the queue on the basis of

the assigned priorities and are released for settlement on a FIFO basis within each

priority level. In other words, no payments of a particular priority will be settled

until all those of a higher priority level have been settled.

Besides prioritisation, queue management could also help the banks to control

the number and value of the queue facilities. In general, there are two approaches

to queue management, which are reordering and optimisation routines [14]. In the

case of the reordering facility, it allows the central bank or the participating bank

to change either the original order or the priority level of the payments in the

queue. The optimisation routine typically attempts to settle payments simultane-

ously rather than in sequence. When a ”cycle” of payments among participating

banks occurs, optimisation routine may be able to provide a more effective solution,

as some offsetting payments could be canceled out.

With centrally located queues, participating banks are provided with a range

of information not only on outgoing transfers in their own queues but also on any

incoming transfers being sent to them that are held in other banks’ outgoing queues

2Belgium RTGS system with central queue, ELLIPS, applies ”bypass FIFO”.
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by the central bank. The transparency of queued incoming orders could effect the

risk and efficiency of the queue process. One view is that transparency could induce

the payee to act upon queued incoming payments (i.e. unsettled payments), hence

potentially generating risks in RTGS systems. The other view emphasises the pos-

sible advantages of transparency in reducing liquidity risk rather than increasing it.

Since, when other things are equal, better information on expected payment flows

may imply a smaller probability of a liquidity shortage. Moreover, greater trans-

parency might enable banks to sequence incoming and outgoing payments in a more

efficient way, thereby additionally improving their liquidity management. However,

the automatic release of the information might involve greater risks, hence some

RTGS system provide the information only on request.

When considering various approaches to queuing, one potentially important ques-

tion is whether the central bank or the individual banks manage the queues. From

the reducing the liquidity demand’s point of view, the more the central bank can

intervene in the queues by using queueing management, the more efficient the queue

should in principle be. This is because the central bank can observe the informa-

tion about the queued payments of all participating banks, thus adjust the queue

configuration systematically, for example, canceling out any offsetting payments or

”cycles” of payments, therefore, minimising the liquidity request and preventing

credit exposures.

1.3 Structure of the thesis

In Chapter 2, we first propose a simple discrete time Markov model for a large-valued

interbank payment system using a dynamic Monte Carlo simulation to investigate

the statistical properties of the payment system with borrowing and queueing facil-
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ities. More precisely, we investigate the performance of the proposed model under

different combinations of characteristic parameters, such as

n the number of participating banks

p the probability for a participating banks to have one unit of cash at the beginning

of an experiment

q the probability that a payment order is submitted to external queue

Under the framework of the simple homogeneous model, with the consideration of

existing studies of modeling social networks, and empirical research about two major

real time large-valued interbank payment systems in the world, Fedwirer Funds

Service of the US and CHAPS of the UK, a modified ”cluster” model is developed,

in which members of a payment system are not identical. With the more parameters

(N , number of groups in a system; Pij , probability of inter-group payments and so

on) are introduced to the ”cluster” model, a more detailed results from the Monte

Carlo simulation would be presented in this chapter.

Given the rapid reform of wholesale payment systems around the world, the risk

of lacking liquidity has attacked great attention from different users of a payment

system, especially central banks. In Chapter 3, we implement a specified liquidity

saving mechanism to a model that captures the most significant features of the

UK Real Time Gross Settlement payment system, CHAPS. The mechanism allows

bilateral or multi-lateral offsetting. The experiment of using simulated data shows

that the liquidity saving mechanism is not equally beneficial to every bank, the

banks who dominate most of the payment flow even suffer from higher level of debts

at the end of a business day comparing with a pure Real Time Gross Settlement

payment system without any queueing facility. The stability of the structure of the
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central queue is verified. Given the constant argument of whether historical data

or artificial data should be used when carrying out a simulation study, we compare

our model against the one where actual data has been used and hence emphasize

the characteristics of our models.

There is evidence that banks in the UK payment system would set up limits for

other members to prevent unexpected credit exposure, and with these limits, banks

also would achieve a moderate liquidity saving in CHAPS [9], [10]. Both central

bank and participating banks are interested in the probability that the limits are

excess. The problem can be reduced to the calculation of a popular question in many

fields of Statistics, the boundary crossing probability for a Brownian motion with

stochastic boundaries. Chapter 4 is on the topic of boundary crossing probabilities.

It is organized in the following ways; an in-depth survey about boundary crossing

probabilities was provided at the beginning of the chapter; Anderson was the first

to obtain the explicit representation for the distribution of the first-passage time of

a Brownian motion through linear boundaries [2]. Recently, a simper formulae and

briefer derivations are obtained by Hall [30]. In the rest of the existing literatures,

some of the special cases of Pu and Pl are studied very well, most of which are

worked on piecewise-linear boundaries. The existing results are generally divided

into two types according to two kinds of boundaries. One is one-sided piecewise-

linear boundary, the unconditional probability that a standard Brownian motion

up-crosses a piecewise linear boundary in a finite time interval [0, T ] is obtained

by Wang and Pötzelberger [61], However, the calculations involves evaluation of

a multiple integral, which cannot always be expressed by an explicit formula and

hence must be solved numerically. In additional to this, Abundo [1], by applying

the time inversion property of Brownian motion, particularly derived a elementarily

simple and explicit formula for the conditional boundary crossing probability of Xt
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and piecewise-linear boundary, u(t), consisting of two lines given that Xs = η over

a limit [0, T ]. The other case is the two-sided boundaries, Abundo [1] also solved

the conditional crossing probability for Xt with two symmetric linear boundaries.

Novikov [43] derived a more general approximated solution by using piecewise-linear

boundaries.

Overall, the explicit form of the probabilities only obtained for a few special non-

linear boundaries, for example, squared root boundaries [61]. The boundary crossing

probability for any other general boundaries only solved numerically. However, in

practices, most of the time, general non-linear boundary is far more realistic, we are

interested in deriving the exact boundary crossing probabilities for general boundary,

in particular, stochastic boundary. We take linear boundaries as examples to present

an alternative method, with powerful tools, such as martingales and infinitesimal

generator of Brownian motion, to target the boundary crossing probability problem.

Our approach allows to derive a simple formula for symmetric/asymmetric linear

boundaries. Thereafter, a set of theorems of boundary crossing probabilities for a

Brownian motion with stochastic boundaries is derived, which is aim at the concern

from members of payment systems about bilateral/multi-lateral limits.

In Chapter 5, we discuss how the method proposed in Chapter 4 could be ap-

plicable to different types of non-decreasing Lévy boundaries, for instance, Gamma

process and Inverse Gaussian process. Nevertheless, Chapter 5 provides a brief sur-

vey of approximations of Lévy processes. The boundary crossing probabilities theo-

rems could be extended to a fair general situation with Lévy process boundaries, by

using an appropriate approximation; finite variation case by Poisson approximation

and infinite variation case by the combination of Poisson approximation and the

small jumps are represented by their mean. Finally, we provide the conclusions in

Chapter 6.



Chapter 2

Markov type model of Real Time

Gross Settlement payment system

In this chapter, we going to propose a simple discrete time Markov model for a

large-valued interbank payment system, which allows us to investigate the statistical

properties of the system with borrowing and queueing facilities. More precisely, we

are going to investigate the performance of the proposed model under different

parameter settings. Furthermore, in the context of the simple homogeneous model,

with the consideration of existing empirical research, we develop a more piratical

model, namely ”cluster” model. Firstly, we present some modeling approaches in the

areas which share similar characteristics as large-valued interbank payment systems,

for example, social networks.

21
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2.1 Some modeling approaches in the area of so-

cial networks

Some aspects of the dynamics of social networks have similar statistical properties as

the RTGS payment systems. Recently, more and more statisticians and sociologists

work cooperatively, and use stochastic processes to model social networks. In this

chapter, we are going to discuss some of the work in the area of social networks, and

compare the proposed models to ones concerted with interbank payment systems.

2.1.1 Stochastic processes

First of all, a social network has been viewed as a general stochastic process in the

existing literatures. We take the work by Wasserman as an example, in which the

inter-personal relationships among a group of people was modeled as a stochastic

process [62]. In this process, individuals are nodes while the appearance of link

between two nodes represents the existence of relationship. Let X(t) be a binary

matrix-valued stochastic process with elements Xij(t) , where

Xij(t) =











1 if individual i chooses individual j at time t

0 otherwise

Consider a group with g members, hence X(t), a (g × g) binary matrix, is of the

form


















0 1 · · · · · · 1

1 0 1 · · · 1

... · · · · · · . . .
...

1 · · · · · · 1 0
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Another property of this stochastic process is that the state space is finite, thought

it is quite large, 2g(g−1).

Consider a specific link between individuals i and j at time t, Xij(t), in a social

network. At a time point t, there are two possible statues of the link, which is either

”on”, indicating there exists a relationship between individual i and j, or ”off”

indicating no relationship. Moreover, under the Markov assumption, the random

variable Xij(t) remains in its 0 or 1 state for an exponentially distributed length of

time.

The dynamics of a social network is viewed as a stochastic process, during a

short time period (t, t+h), an individual evaluates its current position in the group

and makes decision on whether to change or not with different preferences. In the

small time interval, a relationship can change in two ways;

i If there is no link from individual i to j at time t, then such a link may be

present at t + h.

ii On the other hand, a link from i to j at time t may not be present at time

t+ h.

Wasserman has modeled the above processes of evaluation and decision as followed,

i A state, Xij(t), in X(t) receives binary inputs from n other links, say

z1,z2,. . .,zn and they are the elements ofX(t). They are the set of relationships

in the network that influence individual i’s choice of j.

ii Xij(t) examines the length of time τ since it last underwent change.

iii Xij(t)’s decision to change or not is determined by a binary output function

fij.
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iv During the time interval (t, t + h), only one link is allowed to change in the

model.

As other general stochastic process model, the stochastic processes for social

networks have two assumptions. The first is that X(t) is a standard Markov chain

with finite state space S and probability transition matrix P with elements Pxy(t, h),

which is defined as

Pxy(t, h) = P{X(t+ h) = y|X(t) = x} (2.1)

The second assumption is that, for a small interval of time (t, t+ h), the changes in

the relationships between individuals in the group are independent. In other words,

for h→ 0,

Pxy(t, h) =
∏

i,j

P{Xij(t+ h) = yij |X(t) = x} + o(h) (2.2)

Hence, the elements Pxy(t, h), given by equation (2.1), of the probability transi-

tion matrix can be defined further as,

P{Xij(t+ h) = 1|X(t) = x,Xij(t) = 0} = hλ0ij(x, t) + o(h)

P{Xij(t+ h) = 0|X(t) = x,Xij(t) = 1} = hλ1ij(x, t) + o(h)

where λ0ij and λ1ij are the infinitesimal transition rates for the continuous time

Markov chain X(t), which are depended on the current state of the process Xij(t)

and time t.

Based on the foundation of the stochastic process studies by Wasserman [62],

variate models were developed for social networks. For each particular model, a
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simpler stochastic process could be introduced. All of the further stochastic pro-

cess models for social network satisfied the Markov assumption and the conditional

change independence assumption, (2.2), of the general stochastic process. Some

of the examples including reciprocity model, popularity model [62] and stochastic

blockmodels [31], [60].

Further in Wasserman’s paper [62], he considers two stochastic process models

for social network, they correspond to the Markov assumption and the conditional

change independence assumption of the general stochastic process respectively [62].

One is called the reciprocity model. In this model, the tendency over time for a

choice of individual j by individual i (a link from i to j, i→ j) depends on whether

or not there exists a link from j to i only. Hence, the dyads for the pair of nodes

(i, j), as Dij(t) = (Xij(t), Xji(t)), are independent. Thereby, Dij(t) is a stochastic

process, more precisely, a Markov chain with state space D containing the following

four states:

• the mutual state Dij(t) = (1, 1),

• two asymmetric states Dij(t) = (1, 0) and Dij(t) = (0, 1),

• the null state Dij(t) = (0, 0).

The new four-state space stochastic process will be easier to analyse than the stan-

dard stochastic process mentioned earlier in this section.

The other stochastic model is called popularity model, which is an attempt to

postulate how the status of an individual within a group influences the choices made

in reaction of it. In the model of popularity, the transition rate for a change in the

relationship from node i to j depends on how popular node j is, which is measured

by the indegree1 of j, which is defined as, in a directed graph, for a node, the

1The measurement of the ”social status” of the group members.
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number of head endpoints adjacent to a node2. As with the reciprocity model, the

computation of the original stochastic process is very difficult. Hence, instead of

the original stochastic model, Wasserman defined the jth column processes of the

digraph process X(t) as X·j(t) = (X1j(t), X2j(t), · · · , Xgj(t))
T , which is a zero-one

valued vector of length g, and each individual process is a continuous time Markov

chain. The entire process then can be represented as g independent column processes

consisting of the columns of X(t). Derived from the column processes, the indegree

process is defined as Ij(t) =
∑

iXij(t), the number of ones in the jth column process

at time t. Since under the assumption made earlier, an indegree can only increase

by one, decrease by one or remain the same at each time update, Ij(t) is, therefore,

a continuous time birth-and-death process, a special case of general Markov chain.

Nevertheless, in many social networks, individuals can be partitioned into sub-

groups, B1, · · · , Bb, based on one or some of the factors such as race, sex, geographic

location and party affiliation. The stochastic process X(t) will be composed of b2

blocks. The general stochastic model by Wasserman ignores such a nodal infor-

mation completely, therefore, is unable to explain any block structure. Holland et

al. had proposed a simple block-model according to the general stochastic process

model by assuming that the Xij’s are mutually independent and any Xij and Xkl are

identically distributed with a common probability prs if i, k ∈ Br and j, l ∈ Bs, for

some r, s = 1, · · · , b [31]. The second assumption means that the pattern of links in

the data is a direct consequence of the density of links within and across ”internally

homogeneous” blocks. Essentially, any pair of nodes a and b in the same block is

required to have an equivalent structure, i.e., node a relates to every other nodes of

the category in exactly the same way as node b does [60].

To the extent of large-valued interbank payment systems, the dynamics of pay-

2http://en.wikipedia.org/wiki/Directed_graph

http://en.wikipedia.org/wiki/Directed_graph
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ment flows among participating banks in the system is described as a finite state,

discrete-time Markov process. In the environment of payment system, Xij(t) as de-

fined for social networks is the weight of the payment from bank i to j at time t, and

it could equal to any nonnegative integer. Under our assumptions, neither of the

reciprocity model nor the popularity model is applicable, but the blockmodel has

provided us with a rudiment for our model. The model will be studied in Section 2.3

and 2.4 explicitly.

2.1.2 Random graph models

As with the stochastic process model, the dynamics of a general social network

can be represented as graph of nodes and edges (i.e. links). The range of possible

networks and their probability of occurrence under the model are represented by a

probability distribution on the set of all possible graphs with the fixed number of

nodes. By assuming that each link in the network is regarded as a random variable,

a random graph model can be posited for a social network. In a network, for each

pair of nodes i and j, which are distinct members of a set of fixed number nodes,

N , say, there is a random variable Yij(t) such that

Yij(t) =











1 if there is a network tie from node i to j

0 if there is no tie

Moreover, let Y be the matrix of all variable Yij’s, then we can construe a graph

with node set N and the edge set specified by these pairs (i, j) for which Yij = 1.

Y might be directed random graph if Yij is distinguished from Yji or non-directed

for Yij = Yji by definition [12]. Under different assumptions of the random graph

model, specific models are derived by different authors [42], [51] and [52].
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The dependence of edges is the key criteria that classifying a random graph

model. When all the edges are independent, the model is called the Bernoulli

random graph [52]. In this model, all possible distinct links are independent of

another, and they may occur with a fixed probability. The only possible configura-

tions is the set of all single edges Yij . On the other hand, rather than the simple

edges independence, when the dyads (has the same definition in the stochastic case,

Dij(t) = (Xij(t), Xji(t))) are assumed to be independent, the model is called the

dyadic model [52]. With the dyadic independence assumption, there are two types

of configurations, they are single edges and reciprocated edges. The dyadic inde-

pendence is somewhat a more complicated assumption for directed graphs than the

simple edges independence, however, it is still not very realistic [52].

A more realistic assumption, Markov dependence, was introduced by Frank and

Strauss [26]. It says that a possible link from node i to j is assumed to be contingent

on any other possible link involving node i or j, even if the status of all other links

in the network are known. In this case, the two links are said to be conditionally

dependent given the values of all other links. For instance, two network links are

conditionally dependent when they share a common node. Comparing with the

two dependence assumptions above, Markov dependence is more realistic in many

circumstances.

As most social networks, an RTGS payment system could be viewed as a random

graph model as well. The participating banks and directions of payment order

represent the nodes and edges in a random graph respectively. Since the direction

of each payment order is important, the dynamics could be viewed as a directed

random graph.
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2.2 Empirical research on interbank payment sys-

tems

The complexity of interbank payment system attracts statisticians to consider its

statistical properties. Both transaction data from the Fedwirer Funds Service (Fed-

wire) and UK large-valued interbank payment system CHAPS were analyzed to

create a interbank payment network.

Soramäki and Becher proposed the payment flows in both systems as a directed

network and established a link from the sender of payment to the receiver of payment

on the basis of payments sent [59], [9]. Despite the fact that there are far fewer

banks in the United Kingdom than in the United States3, the structures of both

interbank payments are very similar in certain respects: when only considering the

settlement banks in CHAPS, the payment flows in both systems were found to form

a well-connected network, which means every bank is connected to every other bank

by some set of payment flows. Nevertheless, the properties of the well-connected

network change little from day to day.

The empirical studies [59], [9] show that:

• A giant strongly connected component (GSCC) has the largest percentage of

the total banks in both Fedwire and CHAPS, and 90% of the value transferred

occurs within the giant component for Fedwire4, whilst four banks account for

around 80% of CHAPS payments in terms of both value and volume. The

analysis provides insights on the structure of liquidity flows in the payment

system, any disruption in the system could cause serious consequences, espe-

cially in the giant strongly connected component.

3over 7500 participants in the Fedwire Funds Service, while CHAPS consists 15 settlement
banks only in 2008

4the size of the component was varied over the sample period
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• The interbank payment system has the small world phenomenon, which is

common for many complex networks. Small world means that any node can

be reached from any others in only a few steps. The significance is that the

shorter the distances between banks in the network, the easier liquidity can

be recirculated among the banks, on the other hand, a payment system where

liquidity flows fast is also likely to be disrupted easily. Thus, the liquidity

management is the most important reason for our analysis.

• In terms of a degree distribution, most banks have only a few links and a small

number of banks have thousands of links originate from it. Both the payment

systems have a power-law distribution, then the networks to describe the pay-

ment flows are referred to as scale-free networks. Hence, rather than assuming

that the participants in the payment system are identical, we consider a more

realistic assumption for our proposed model, which is the participating banks

in the payment system are not homogeneous.

• It has been shown that the interbank payment system is disassortatice, which

means nodes in a network with a given degree are more unlikely to have links

with nodes of similar degree. The result has provided us the evidence to assume

that, in general, in an RTGS payment system, the decision of the direction of

a transaction is independent from time to time.

Other respects of the topology properties of interbank payment systems were

investigated, some examples are the likelihood that two nodes which are the neigh-

bors of the same node, share a link is another common correlation measure between

nodes; clustering coefficient, link weights and node strength.
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2.3 A simple discrete time Markov model

Several existing papers studied the theoretical behavior in RTGS systems, for exam-

ple, the reaction of banks in an RTGS system in which they face costs of delay and

borrowing was examined and it shows that the equilibria of a system suffered from

excessive delay of payments [3]; a game-theoretic environment is specified and some

equilibria of the system involving heavily delay [7]. The main focus of this section

is to analysis the performance of RTGS systems with various queueing and colla-

terised borrowing facilities, in particular, how different queueing and/or collaterised

borrowing facilities affect the excessive delay at equilibria.

2.3.1 The model

A simple model is proposed to an RTGS system, where all the participating banks

are homogeneous, they experience identical queueing and collateral costs, and the

payment flows are equally distributed among the participants. In other words,

there is no substantial concentration of payment orders between any partition of the

system.

In the simplest model, the dynamics of queues is described by a discrete time

Markov process. A state of the process at a given time represents the payment orders

put in the queue by each participating bank, the list of debts. Particularly, if the

list of debts is empty, the amount of cash accumulated as a surplus from payments

by other banks. For simplicity, we assume that the value of every payment order is

one monetary unit.

At each time update, the state of the Markov process changes according to a

random procedure. This includes two parts, one is the arrival of new payment
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orders5, at each time, only one occurs and is evenly distributed among all banks.

The other is the decision by the receiving bank either to queue the payment or to

settle it by borrowing from the central bank. For payments that are submitted into

the queue, they would be ordered in the time of their appearance. The decisions are

completely independent from time to time, with probability q for queueing and 1−q

for borrowing. The initial state is also a key factor, where every participating bank

is provided with one unit of cash independently with other banks at the beginning

of a business day with probability p. A particular feature of this model is that, at

each time update, the system carries a search for ”cycles” of debt links or ”chains”

that ending at a bank with positive cash position. If such a cycle or chain appears,

the corresponding debts are canceled and the states of the participating banks are

renewed.

2.3.2 Simulation and results

At each step of the Markov process, a commercial bank (in short a bank), say i,

receives a payment order from a customer to transfer a monetary unit to another

participating bank, say j. The payment orders are evenly distributed among all par-

ticipants. Formally, we consider a completely random graph where nodes represent

banks i = 1, · · · , N ; the central bank observes the system from outside. The central

bank acts as a regulator to whom all the information about the past and present

states of the graph is available. We assume that every bank has an account with

central bank which is characterised by three parameters: the cash position, debts

(the outgoing payments put in a queue) and exposure to other participating banks

(the incoming payments that are put in other queues). This means that every node

5requires bank i to make a payment to bank j, bank i is the receiving bank of the payment
order
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is characterised by

• a certain amount of non-negative reserves;

• negative, positive or zero debt (positive debts occurring only when the cash

reserve is zero).

The system evolves in a discrete time with each time slot being numbered. The

arrival of an order of transfer from bank i to j results in appearance of a directed

link i → j. Then, first of all, one checks if there already exists a link j → i; if

yes, the ”oldest” existing link j → i is deleted, together with the newly arrived link

i→ j. Thereby, the debt of j to i is diminished by one.

Now suppose that upon the arrival of link i→ j, there is no link such that j → i.

Then, if bank i in a positive cash position, the new link in instantly discounted, the

cash reserve of node i decreases by one and the cash reserve of node j increases by

one. Otherwise, i.e. if bank i in zero/negative cash position, the outgoing payment

can be paid using collaterised credit, in which case node j again receives a unit of

cash, or put in the central queue till sufficient funds become available from incoming

payments. These two possibilities are chosen at random, with probabilities 1−q and

q, respectively. In the later case (queueing), the positive debt of node i increases by

one, and so does the exposure of node j.

After receiving the unit of cash, bank j uses it to pay its earliest debt, which

results in disappearance of corresponding directed link j → k and transformation of

the unit of cash to bank k. Then bank k acts accordingly and so on, until a cycle is

established (when we return to bank i), or we encounter a bank, say l, with no debt.

In the later case, the cash position of bank l increases by one while the indebtness

of all other banks involved decreases by one. This completes the single Monte Carlo

simulation step.
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As was said before, in a ”real” RTGS payment system, the central bank can

regulate the behavior of the entire system by using available regulatory instruments.

Such instruments include cost of collaterised borrowing, cost of queueing and start-

of-the-day cash positions. In our model, it is reflected in variability of probabilities q

and p measuring banks’ incentives and possibilities to follow one strategy or another.

The search for and cancelation of offsetting payments are functions and responsibility

of central bank who supervises the system.

Queues of outgoing payments for each bank are transparent to the central bank.

This allows central bank to implement a search mechanism in order to enhance

the liquidity of the payment system. The search mechanism identifies offsetting

payments in queues and automatically cancels them out.

The numerical experiments with N = 20 indicate that there are two regimes.

Under the sub-critical regime, where p and q are both strictly between 0 and 1,

the debts survive at the end of a business day and the distribution of the average

lifetime of a single debt has thin tail and converges to zero. This might be because

that the central bank wants complete the payment orders as early as possible in

order to reduce the risk of overnight debts. In this regime, when p is fixed, as q

increases, the average number of uncleared debts is increasing and the probability

to complete the debts at the end of a day is decreasing.

On the other hand, the result for p = 1 is drastically different. The parameter

q becomes irrelevant, all the banks in the system own one unit initial cash, the

payment system is in a critical regime, where the payment system has ultimate

clearance of all payment orders and zero lifetime of debts.

However, under the consideration, it is not clear whether the proposed Markov

process is positive, null recurrent or transient for differen values of N and q. It

maybe the unit cash initial position leads the process to a ”positive recurrent part”
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of its state space. In any case, a dramatic phenomenon presents, an appropriate

amount of total initial liquidity equally distributed among all the banks can achieve

a desired goal, i.e. complete clearance of debts by the end of a business day. Also,

the system is robust comparing to random perturbations.

2.4 The modified model - cluster model

2.4.1 The model

The analyses based on empirical data in section 2.2 suggest that the simplest Markov

process maybe not realistic in some circumstances. Although the nodes in the system

may not be correlated, there is a concentration of links among a few number of banks

[9] and [59]. In other words, the payment flows are not evenly distributed among the

banks. Thus, using the multi-class queues model could give us an improved result.

In the modified model, all the participating banks with the same queueing prob-

ability q and one unit initial cash probability p as in the simplest Markov process

model. The difference is that there are two types of the decisions on where a pay-

ment order goes. It could either be asked to transfer to a bank in the same group, or

there is no preference about the direction. Nevertheless, the choices are independent

from time to time.

Now assuming that the payments are more likely to be transferred between the

banks in the same category than these across different categories, which means that

there is a concentration of payments within the banks in the same category. This

could happen in the real world due to higher cost or longer time for transactions

across different commercial banks. Let Pij denote the probability that a payment

is transferred from bank in category i to a bank belonging to category j, then Pii
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is the probability that a payment moves between the banks in a single category

i. We consider a simple case when Pij’s are identical for all j and Pij = Pji, in

other words once a payment is going to a bank in other groups, the probabilities

of choosing which group are the same. Moreover, Pii’s are all equal for all i. We

assume that the numbers of banks in each category are equal, so if we suggest that

there are n groups among the N banks, then, in each group, there are N
n
banks and

i, j = 1, · · · , n.

The dynamics of payment flows is viewed as a finite-state space, discrete time

Markov process, and the process is determined by the four parameters:

• the number of participating banks N ;

• number of bank categories n;

• the probability of queueing q;

• the probability for a bank owns one unit initial cash p.

The transition probabilities are Pii’s and Pij’s, they have to satisfy the constrains:

N

n
Pii + (N − N

n
)Pij = 1 (2.3)

Pii > Pij (2.4)

which implies that,

Pij =
(1− N

n
Pii)n

(n− 1)N
(2.5)

0 ≤ Pij <
1

N
1

N
< Pii ≤

n

N
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There are two special cases we look at:

1. If Pii = Pij = 1
N

the Markov model returns to the simplest case, where the

participating banks are homogeneous, and the payment orders are equally

distributed among them. The statistic properties of this simplest model has

been discussed in the pervious section.

2. When Pii reaches its extreme value, Pii =
n
N
, Pij = 0, in which case, for a

payment order, it goes to banks in the same category only. This is the case

where all the counterparties hold an account in every group of banks.

Now we can define the transition matrix for the Markov process with N nodes

and n clusters as a block matrix of the form,



















A11 A12 · · · · · · A1n

A21 A22 A23 · · · A1n

...
...

. . .
...

...

An1 · · · · · · · · · Ann



















where Aij’s are submatrics and for i, j = 1, · · · , n and i 6= j,

Aii =



















0 Pii · · · Pii

Pii 0 · · · Pii
...

...
. . .

...

Pii · · · Pii 0



















, Aij =













Pij · · · Pij
...

. . .
...

Pij · · · Pij













Also, Aij = Aji, since Pij = Pji.
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2.4.2 Simulation and results

The aim of this experiment is to find out what the average life of a debt is and

how the debts distributed by the end of a business day for each participant, so that

the central bank could adjust the level of initial liquidity, probability of queueing

and the cost of collaterised borrowing to control the number of debts, consequently

reduce the risk of unsettled payments.

We consider a random graph of N nodes where the nodes represent banks and

each node is classified by three factors: the cash position (could be positive, negative

or zero); number of debts (outgoing payments) and exposure to other participating

banks (incoming payments). Upon an arrival of a payment order, the process that

completes a single step of the Monte Carlo simulation is identical as under the

simplest model in section 2.3.

We use the procedure described as in the simple homogeneous model and a

Monte Carlo method (see more details in Appendix A.1) to simulate a Real Time

Gross Settlement payment system consisting of 40 banks. All of the parameters

have been assigned different values across their range; we notice that the results of

the experiments are similar for parameters over a small interval. Hence, we reported

two sets of numerical experiments with the choices of parameters listed as Table 2.1

only as illustrations. For each combination of the parameters (n, Pii, p and q), the

experiment starts from a random node and observed for 480 iterations. A thousand

trials are carried out and the result is averaged.

The results from every separate procedure is illustrated by two histograms:

Left-hand plots of Figures 2.2 - 2.19, Figures 2.21 - 2.56 The average num-

ber of end-of-the-day debts per node, where the horizontal axis is the number

of nodes and the vertical axis represents the number of debts at the end of a
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parameters values
N 40
n 5 8

Pii
n
N

n/2
N

1
N−1

Pij equation (2.5)
p 0.3 0.7 1
q 0.2 0.5 0.9

Table 2.1: Values of parameters

business day at a particular node after 480 iterations.

Right-hand plots of Figures 2.2 - 2.19, Figures 2.21 - 2.56 The averaged

lifetime of a single debts after 480 Monte Carlo iterations. In this graph,

the number of iteration is along the horizontal axis, while how many debts

on average were ”alive” after a certain number of iterations is given by the

vertical axis.

We get two types of results for different values of Pii, when Pii =
n
N

or Pii 6= n
N
.

Critical case Pii =
n
N

We start the simulation with 40 banks. By dividing the banks into different numbers

of groups, the snap-shot plots of the debt distribution at the end of a business day

in the system are similar, even with different values of p and q. For instance,

Figure 2.1 indicates the debt distribution at the end of an experiment in a system

where p = 0.1, the probability of queueing is 0.6 and there are 8 groups among

the 40 banks, i.e. Pii =
1
5
. Each box in the two-dimensional picture represents the

position of an end-of-the-day debt after 480 iterations. Taking the (n,m)th box as an

example, the colour represents both the direction and volume of the debt(s) between

bank n and bank m6. It notices that given the transition matrix of the Markov

6positive means bank m owes bank n,vice versa
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Figure 2.1: Distribution of end-of-the-day debts when p = 0.1, q = 0.6, n = 8, N =
40, Pii =

1
5

process is diagonal symmetric, the snap-shot plot is symmetric about the diagonal

but with opposite sign. Furthermore, characteristically, the debts are located along

the diagonal, as a linear function. A reason behind the linear relationship is that

Pij = 0, payments are impossible to go to banks in other categories, all the payments

are thus concentrated around a single group. However, Figure 2.1 just shows a

typical behavior of the simulation when Pii =
n
N
, and the linear pattern is sustained

when replacing these parameters (p, q, N , n) with any other values, hence, from

which we could see that there are always unsettled debts at the end of a business

day.

Figure 2.2-Figure 2.10 illustrate the results from the critical case (i.e. pii =
n
N
)
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when n = 8, and Figure 2.11-Figure 2.19 illustrate the results when n = 5. When the

number of categories is unchanged, remaining the value of p resulting an increase of

the average number of end-of-the-day debts as the probability of queueing becoming

larger. It was also observed that the distribution of average lifetime of a single

debt has a massive concentration about short lifetime. Furthermore, as the value

of q goes up, the tail of the average lifetime distribution becomes thinner and the

distribution moves closer to zero with the average number of ”alive” debts increases

at early stage of the simulation.

In addition, it is observed that the average number of end-of-the-day debts

slightly increased from member to member of the system, and one particular mem-

ber suffers from an outstandingly high debts. The experiment does not provide

the statues of every individual bank during the procedure, it therefore was unable

to identify the ”unlucky” member with the largest debts. Nevertheless, a possible

interpretation of such phenomena could be that a small bank with relatively little

business with the rest of the system aggregated a great amount of out-going pay-

ments with far more less incoming payments, the initial one unit of cash was be used

to pay the first order at the beginning of the business day.

Other cases Pii 6= n
N

With allowing payments transiting in between different groups of banks, while re-

maining the priority for same-group-payments, the pattern of the snap-shot plot of

the end-of-the-day debt distribution in a system is random as shown in Figure 2.20,

rather than the clear linear relationship as seen in the extreme case, Figure 2.1.

However, there are more colored boxes near the diagonal, as Pii is always greater

than Pij . The plot is still symmetric about the diagonal and it also suggests that

there are always residual debts at the end of a business day.
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Figure 2.2: n = 8, Pii = 0.2, p = 0.3, q = 0.2
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Figure 2.3: n = 8, Pii = 0.2, p = 0.3, q = 0.5
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Figure 2.4: n = 8, Pii = 0.2, p = 0.3, q = 0.9
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Figure 2.5: n = 8, Pii = 0.2, p = 0.7, q = 0.2
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Figure 2.6: n = 8, Pii = 0.2, p = 0.7, q = 0.5
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Figure 2.7: n = 8, Pii = 0.2, p = 0.7, q = 0.9
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Figure 2.8: n = 8, Pii = 0.2, p = 1.0, q = 0.2
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Figure 2.9: n = 8, Pii = 0.2, p = 1.0, q = 0.2
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Figure 2.10: n = 8, Pii = 0.2, p = 1.0, q = 0.9
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Figure 2.11: n = 5, Pii =
1
8
, p = 0.3,q = 0.2
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Figure 2.12: n = 5, Pii =
1
8
, p = 0.3, q = 0.5
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Figure 2.13: n = 5, Pii =
1
8
, p = 0.3, q = 0.9
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Figure 2.14: n = 5, Pii =

1
8
, p = 0.7,q = 0.2
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Figure 2.15: n = 5, Pii =
1
8
, p = 0.7, q = 0.5
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Figure 2.16: n = 5, Pii =
1
8
, p = 0.7, q = 0.9
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Figure 2.17: n = 5, Pii =

1
8
, p = 1.0,q = 0.2
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Figure 2.18: n = 5, Pii =
1
8
, p = 1.0, q = 0.5
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Figure 2.19: n = 5, Pii =
1
8
, p = 1.0, q = 0.9
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Figure 2.20: A distribution of end-of-the-day debts when Pii 6= n
N

The results from the numerical experiments are analogical in the critical value

case, and the histograms in the case where n = 8 are shown in Figure 2.21 - Fig-

ure 2.38, and Figure 2.39 - Figure 2.56 illustrate the results when there are 5 different

groups of banks. In general, the end-of-the-day debts are positively related to the

possibility of gaining one unit of cash at the very beginning under the same queueing

strategy7. On the other hand, when the initial cash was distributed according to the

parameter q, participating banks could send payments to central queue as less as

possible to reduce the risk of unexpected amount of debts at the close of a business

day. At all events, there is a dramatic boost for one anonymous member as seen in

the extreme case.

7sending the same proportion of incoming payments to central queue
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The distribution of average lifetime of all the debts in the entire system has

changed from the case no inter-group banks are permitted. For a participating bank

with constant possibility of getting one unit of cash, the more payments it submit

to central queue, thinner the tail of the average lifetime distribution is, where the

peak of the distribution moved away from zero, which means payments submit at

the early stage of a day will be more likely to be settled, and late payments will

be difficult to find available source8 to be made. It was suggested that there is an

incentive for participating banks to submit payments to central queue early to have

the opportunity to have it settled.

The right-hand side histograms are right-skewed, hence, we fitted a Gamma

distribution to the average lifetime distribution of a single debt where the param-

eters, shape parameter k and scale parameter θ, are estimated by the method of

moments9. Table 2.2 lists the estimated Gamma distribution when there were 5

subgroups among the 40 banks, and Table 2.3 lists the result of the estimation in

the case where 40 banks are divided to 8 subgroups. The fitted Gamma distributions

are consisted with the pervious conclusions, once all the participating banks are al-

located with 100p% unit of cash, the Gamma distributions become less right-skewed

when more and more payments have to rely on the central queueing facility. As the

difference between the shape parameter k and scale parameter θ is minished along

with increasing q when p is unchanged.

8cash or offsetting payments
9The reason of using method of moments estimation instead of other methods is the fact of the

data collected from the simulations, it was unable to restore the original random variables from it
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Figure 2.21: n = 8, Pii = 0.1, p = 0.3, q = 0.2
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Figure 2.22: n = 8, Pii = 0.1, p = 0.3, q = 0.5
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Figure 2.23: n = 8, Pii = 0.1, p = 0.3, q = 0.9
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Figure 2.24: n = 8, Pii = 0.1, p = 0.7, q = 0.2
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Figure 2.25: n = 8, Pii = 0.1, p = 0.7, q = 0.5
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Figure 2.26: n = 8, Pii = 0.1, p = 0.7, q = 0.9
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Figure 2.27: n = 8, Pii = 0.1, p = 1.0, q = 0.2
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Figure 2.28: n = 8, Pii = 0.1, p = 1.0, q = 0.5
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Figure 2.29: n = 8, Pii = 0.1, p = 1.0, q = 0.9
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Figure 2.30: n = 8, Pii =

1
39
, p = 0.3, q = 0.2
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Figure 2.31: n = 8, Pii =
1
39
, p = 0.3,q = 0.5
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Figure 2.32: n = 8, Pii =
1
39
, p = 0.3,q = 0.9
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Figure 2.33: n = 8, Pii =

1
39
, p = 0.7, q = 0.2
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Figure 2.34: n = 8, Pii =
1
39
, p = 0.7, q = 0.5
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Figure 2.35: n = 8, Pii =
1
39
, p = 0.7, q = 0.9
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Figure 2.36: n = 8, Pii =

1
39
, p = 1.0, q = 0.2
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Figure 2.37: n = 8, Pii =
1
39
, p = 1.0, q = 0.5
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Figure 2.38: n = 8, Pii =
1
39
, p = 1.0, q = 0.9
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Figure 2.39: n = 5, Pii =
1
16
, p = 0.3, q = 0.2
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Figure 2.40: n = 5, Pii =
1
16
, p = 0.3, q = 0.5
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Figure 2.41: n = 5, Pii =
1
16
, p = 0.3, q = 0.9
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Figure 2.42: n = 5, Pii =

1
16
, p = 0.7, q = 0.2
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Figure 2.43: n = 5, Pii =
1
16
, p = 0.7, q = 0.5

10 20 30 40
0

1

2

3

4

5

6

7

8
Ave. End Market Debts

Settlement Banks

A
ve

. E
nd

 M
ar

ke
t D

eb
ts

0 100 200 300 400
0

10

20

30

40

50

60

70

80

90

100
Av. Debt Life Time Distribution

Iterations

A
gg

re
ga

te
d 

D
eb

ts

Figure 2.44: n = 5, Pii =
1
16
, p = 0.7, q = 0.9
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Figure 2.45: n = 5, Pii =

1
16
, p = 1.0, q = 0.2
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Figure 2.46: n = 5, Pii =
1
16
, p = 1.0, q = 0.5
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Figure 2.47: n = 5, Pii =
1
16
, p = 1.0, q = 0.9
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Figure 2.48: n = 5, Pii =
1
39
, p = 0.3, q = 0.2
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Figure 2.49: n = 5, Pii =
1
39
, p = 0.3, q = 0.5
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Figure 2.50: n = 5, Pii =
1
39
, p = 0.3, q = 0.9
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Figure 2.51: n = 5, Pii =

1
39
, p = 0.7, q = 0.2
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Figure 2.52: n = 5, Pii =
1
39
, p = 0.7, q = 0.5
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Figure 2.53: n = 5, Pii =
1
39
, p = 0.7, q = 0.9
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Figure 2.54: n = 5, Pii =

1
39
, p = 1.0, q = 0.2
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Figure 2.55: n = 5, Pii =
1
39
, p = 1.0, q = 0.5
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Figure 2.56: n = 5, Pii =
1
39
, p = 1.0, q = 0.9
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Pii p q k̂ θ̂

1
16

1 0.9 4.0297 52.5439
1 0.5 3.7993 56.6558
1 0.2 3.4175 61.7267
0.7 0.9 3.4259 58.3498
0.7 0.5 3.3221 62.1027
0.7 0.2 2.9681 67.5149
0.3 0.9 2.9109 64.2137
0.3 0.5 2.8906 67.2747
0.3 0.2 2.4802 75.9005

1
39

1 0.9 4.1339 51.8969
1 0.5 3.8536 56.3957
1 0.2 3.3846 62.5070
0.7 0.9 3.5590 57.2439
0.7 0.5 3.3281 61.9059
0.7 0.2 2.8119 70.8081
0.3 0.9 3.0262 63.0463
0.3 0.5 2.8852 67.8596
0.3 0.2 2.4452 76.6149

Table 2.2: Estimated parameter for Gamma distribution when 40 banks dividing to
5 groups

2.5 Conclusions

In this chapter, we have proposed two discrete time Markov-type models to the Real

Time Gross Settlement payment system with queueing facilities. Comparing with

the simple homogeneous model, in the modified ”cluster” model, the participating

banks are not identical, they have been classified into different groups according

to the corresponding business management, therefore, the payment flows are not

distributed evenly in the system. The model takes the management of the central

bank for each group into account.

It has been found that debts are settled at the end of the experiment after 480

iterations, the average number of debts per bank at the end of a business day de-

pends on the parameters. The model has shown an significant linear relationship
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Pii p q k̂ θ̂

1
10

1 0.9 3.9171 53.4689
1 0.5 3.8911 55.6918
1 0.2 3.4052 62.1144
0.7 0.9 3.3762 58.7325
0.7 0.5 3.3683 61.4826
0.7 0.2 2.9136 68.4730
0.3 0.9 2.8502 64.9207
0.3 0.5 2.8918 67.6019
0.3 0.2 2.5429 74.3532

1
39

1 0.9 4.1150 52.1354
1 0.5 3.8718 56.3658
1 0.2 3.3084 63.8024
0.7 0.9 3.5684 57.1059
0.7 0.5 3.3408 61.9793
0.7 0.2 2.8420 69.4956
0.3 0.9 3.0195 63.1586
0.3 0.5 2.8805 67.8822
0.3 0.2 2.4075 77.0545

Table 2.3: Estimated parameters for Gamma distribution when 40 banks dividing
to 8 groups

phenomenon for the position of end-of-the-day debts after the Monte Carlo itera-

tions in the critical case corresponding to Pii =
n
N
, moreover, the linear function

is independent of the rest of the parameters (n, p and q). In the sub-critical cases

(Pii 6= n
N
), the linear relationship does not appear. Note that the simulation re-

sults suggest that the proposed model is stable, since the distribution reaches an

equilibrium (getting to zero) regardless the values of the parameters.

The characteristics feature of the ”cluster” model could help not only the head-

quarters of each groups of banks but also the central bank to make decisive policies

on queueing and borrowing in order to control the payment flows, therefore, manage

the liquidity risk of a system. More comprehensive discussion on the strategy by

participants and central bank is present in Chapter 3.



Chapter 3

Simulation approach to a payment

system with Liquidity Saving

Mechanisms

A specified liquidity saving mechanism is implement to a ”cluster” model that cap-

tures the most significant features of the UK Real Time Gross Settlement payment

system, CHAPS, as a remedy for the risk of lacking liquidity because of the reform.

3.1 Overview of Liquidity Saving Mechanisms

3.1.1 Liquidity risk in large-valued payment system

With Real Time Gross Settlement (RTGS) systems having replaced the netting

settlement systems around the world1, the attention and concern have shifted from

credit risk to liquidity risk. This is because in an RTGS system, payments are settled

on a real time individual basis. It prevents the considerable credit exposures between

1By the end of 2006, 93 of world’s 174 central banks were using RTGS systems already [8].

64
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banks, hence the credit risk to receiving banks is eliminated. In the mean time, banks

are required to post a large amount of liquidity to meet all their obligations. As

a result, the settlement banks’ behavior may depend on the cost of liquidity2. A

number of piece of existing literature [3], [7], [16] and [64] has emphasized the risk of

high liquidity cost. The high liquidity cost will force banks to delay their payments,

and wait for incoming payments to sufficiently cover them. In the extreme, the delay

can lead to girdlock. According to Furfine and Stehm, gridlock is the situation where

the failure of some transfer instructions to be executed prevents the execution of a

substantial number of other instructions [28]. On the other hand, banks may find

delay is costly. Some payments are urgent according to some definitions: failing to

make these, banks will face some financial penalty or reputational damage. If the

information about the bank’s delay behavior is observable by other banks, others

may wish to withhold payments to it. A remedy for this problem is to introduce

a central managed queue, which would hold any payments either insufficient funds

available or that do not need to settle immediately. Such a central queue is called

Liquidity Saving Mechanism (LSM).

3.1.2 Introduction to Liquidity Saving Mechanisms

In contrast to the standard theory of inter temporal trade, there is no market for

short-term (intraday) credit in interbank payment systems. Instead, under par-

ticular arrangements, banks can borrow from the central bank at a fixed price or

delaying payments till sufficient funds are available towards the end of a business

day. Improving the flow of payments is one of the important concern for the policy

markers at central bank. The traditional approach, netting settlement systems, was

seen by policy markers as too prone to cascades of defaults. On the other hand,

2banks may choose to delay settlement, awaiting the flow of incoming funds
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while the risk of cascades of defaults was eliminated in RTGS system, banks require

large amount of liquidity3, consequently it increases the cost of making payments

and potentially increases liquidity risk faced by banks. In broad terms, an archety-

pal LSM aims to combine the advantages of net settlement and RTGS system. In

other words, the central queue is intended to combine the reduced credit risk in

RTGS system and the significantly lower amount of liquidity required in Deferred

Settlement Netting (DNS) payment system.

Liquidity Saving Mechanisms have been on the agenda of policy markers for

about a decade, and now many large-valued interbank payment systems already

have embedded different centeralised queue facilities as a complement to their RTGS

systems4. There are two main types of hybrid systems which combining the advan-

tages of DNS and RTGS systems. One is the Continuous Net Settlement (CNS)5,

which has been developed from DNS. The settlement risk is dramatically reduced

in CNS systems, however, it is not completely eliminated. The other type is an

RTGS system with a queuing facility. The receipt-reactive gross settlement (RRGS)

system [21] proposed by Ercevik and Jackson is an example of this type hybrid sys-

tem. In this RRGS system conditions the settlement of queued payments on the

arrival of incoming payments exclusively, which ensures the liquidity post by a bank

is used to make time-critical payments only. For such RTGS system with queuing

facility, the liquidity risk is reduced, while settlement risk does not rise, but banks

may face extra costs on settlement delays. As in RTGS system, under the condi-

tion that sufficient fund is available, LSMs still provide banks the options between

3For example, according to Bank of England payments database, CHAPS banks require on
average three times more liquidity under RTGS than they would have needed under a DNS

4For instance, European Central Bank launched TARGET 2 on 19 November 2007 and In
October 2008, the Bank of Japan implemented Phase 1 of the Next-Generation RTGS (RTGS-
XG) project, and Phase 2 of the project is scheduled for November 2011.

5the CHIPS system in the US is the leading example of a CNS
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sending a payment directly and delaying the payment. Otherwise, in conjunction

with collateral borrowing facilities, banks are still able to make urgent payments

and pool others together in the central queue. The payments held in the central

queue are released according to some pre-specified algorithms. The most important

functionality of LSMs is bilateral/multilateral off-setting algorithm, by which banks

do not need the full funds to cover their queued payments: if the payment(s) is a

link of a bilateral/multilateral cycle of payments, then banks need the net amounts

only to settle the payments belonging to the cycle. Consequently, LSMs attempt

to reduce the demand for intra-day liquidity in RTGS system. But banks still are

able to make time-critical payments via RTGS system, for example, via liquidity

reservation functionality. The ways of defining a time-critical payment depend on

several factors. a) special-purpose payments, for instance, the payments to CLS6 in

CHAPS, b) some extreme large payments, c) urgent customer payments etc [41].

The LSM research in this chapter satisfies all these criteria. With central queue

facility, it promises to reduce the liquidity by releasing payments via bilateral and

multilateral algorithms upon the arrival of an individual payment on a continuous

basis. Specifically, we are going to consider the implement of a LSM to the UK RTGS

system, CHAPS (Clearing House Automated Payment System)7, and simulating a

simple system of payment flows that captures the most significant feature of CHAPS.

6CLS is the Continuous Linked Settlement system which provides payments settlement of FX
transactions

7It is worth mentioning that although CHAPS does feature a central queue, it is not considered
to be a hybrid system in most circumstance, banks prefer to queue payments in their internal
schedulers rather than submitting them to the central queue. A gridlock has never occurred by
far, due to the posting of ample amounts of liquidity by CHAPS banks at the beginning of each
day.
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3.2 Liquidity Saving Mechanisms

3.2.1 Assumption

CHAPS Sterling system, the UK RTGS system, is one the largest of its kind in the

world. According to the empirical studies in Chapter 2, payments are not generally

evenly distributed among members of a payment system. At the time the work was

carried out, CHAPS comprised 14 members, About 80% of payments in CHAPS is

dominated by four banks in terms of both value and volume over the period from

July 2005 to June 2006. The number of settlement banks has increased from 14

to 188 since 2008. Based on the fact that the payment flows in CHAPS form a

well-connected network and the properties change little from day to day [9], we are

still going to consider a network that consists of 14 members. So in this simulation,

14 banks are split into two groups: one has the four largest banks and the other

contains the rest. When a big bank plans to make a payment, the probability for

the payee to be another big bank is 0.8, and to one of the small banks is 0.2. But

when small banks think about to make payments, all banks are equally likely to be

the recipient. In other words, from the groups of banks’ point of view, the transition

probability matrix9 looks like







big group small group

big group 0.8 0.2

small group 0.5 0.5







Within each group, these probabilities of receiving payments from different banks

8Abbey, ABN Amro Bank quit the system since 2008 and Danske Bank (Northen Bank) and J.
P. Morgan are the new members, the rest of the system are: Bank of America Merrill Lynch, Bank
of England, HBOS, Barclays Bank, Citibank, CLS, Clydesdale, The Co-operative Bank, Deutsche
Bank, HSBC Bank, Lloyds TSB Bank, NatWest Bank, RBS, Santander UK, Standard Charterd
Bank and UBS

9rows are sending banks, and columns describe the receiving banks
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are equally distributed. In general, the transition matrix has the form of







A11 A12

A21 A22






(3.1)

where

• A11 is a 4× 4 matrix where diagonal entries are 0 and the rest is 0.267(= 0.8
3
);

• A12 is a 4× 10 matrix and all the entries equal to 0.02(= 0.2
10
);

• A21 is a 10× 4 matrix and all the entries equal to 0.077(= 1
13
);

• A22 is a 10× 10 matrix with zero diagonal entries and the rest is 0.077(= 1
13
)

In order to investigate the efficiency of the off-setting algorithms, all payments

are assumed to have unit value. At the end of this chapter, we will discuss our result

that used artificial data in the comparison with a pervious studies using historical

data by Ercevik and Jackson [21].

3.2.2 Simulation

In the proposed model, the central bank observes the system from the outside. The

central bank acts as a regulator to whom all the information about the past and

present states of the network is available.

The system evolves in a discrete time with each time slot being numbered. Every

payment is characterised by

• The time when the payment occurs;

• the payer and payee of the payment;
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• the type of the payment (Time-critical payments are type I payments, while

others are non-type-I payments).

At each step of the process, a bank, say m, receives a payment order to transfer a

monetary unit to another bank, n. The arrival of an order of payment from bank m

to n results in appearance of a directed link m→ n. Then, according to its type10,

it will be submitted into the appropriate stream.

RTGS If the payment needs to be made via RTGS payment system11, then the

payment is completed by using the liquidity held by bank m, and the new link

m→ n is instantly settled. It is rare for banks to suffer from lack of liquidity

in UK RTGS system, no queues will not be considered here.

LSM If the payment is not urgent, the payment is submitted into the LSM. First

of all, the programme performs the search of the shortest cycle12 of payments

which is established by the newly arrived payment. In other words, to check

if there already exist bilateral off-setting payments first, and then trilateral

payments and so on. If the programme is successful in identifying a cycle,

payments which are parts of the bilateral/multilateral cycle are cleared without

using any liquidity due to the unit value assumption. Delayed payments are

settled by a First-In-First-Out rule. Otherwise, the payment is kept at the

central queue at the moment and labeled by the submission time.

This completes a single Monte Carlo simulation step. A complete description of the

simulation is included in Appendix B.1.

10determined by the simulation
11there are several different managements of incoming payments, but here the strategy used

by all settlement banks is the same, under which they want to achieve that X% of payments by
volume are made immediately using RTGS

12a cycle is the path where the start node and end node are the same
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The experiment is to simulate a system that consists of 14 banks with 8400

payments13, and the results are averaged over 200 repetitions14.

Our aim is to investigate the potential benefits of implementing a central queue-

ing facility to a system that believed as a proxy of CHAPS. An important parameter

is the proportion of payments that are time-critical, denoted as q, i.e. (1 − q)100%

is the percentage of payments that is going to submitted to LSM. The numerical

experiments are performed for q = 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively.

3.2.3 Results

The results are represented by the following figures and table:

1. In Figure 3.2 - 3.6, each pair of plots represents the result when q equals a

particular value. In the left subplot, the average volumes of ultimate delayed

payments, i.e. the payments left in the LSM queue at the end of the experi-

ment, are shown together with the average volumes of net payments in RTGS.

In the right subplots, there are the maximum values have ever shown during

the experiment. Figure 3.1 consists of the corresponding plots of a pure RTGS

system without central queueing facility. We are going to use it as a baseline

against which to compare liquidity saving when LSM is introduced.

2. The snapshots, Figure 3.7 - 3.11, are used to present the bilateral position of

end-of-the-day delayed payments, where the coordinate and colour of every

box indicate the direction and volume of the payments respectively.

3. Figures 3.12 and 3.13 illustrate the efficiencies of the entire system and indi-

vidual banks when q equals different values.

1310 hours from 6am to 4pm and each bank makes a payment every minute
14with 200 iterations, a steady-state solution could be obtained, since over 200 iterations, the

output of the simulation from one iteration to the next changes negligibly
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4. Table 3.1 lists the mean numbers and probabilities of cycles with particular

lengths.

Volumes and positions of end-of-the-day delayed payments

In Figures 3.2 - 3.6, we observe that the benefit of introducing the central queueing

facility is not evenly distributed for al members of the system. Generally speaking,

the banks that dominated approximately 80% of the payments are less capable to

save liquidity under the proposed LSM. The number of delayed payments in LSM

is more for big banks than small banks, the difference keep growing when more and

more payments are sent to central queue. For small banks, the average saving liquid-

ity is not significant, however, as less payments need to be settlement immediately,

the total liquidity requirement will be dropped slightly. A possible interpretation

of why different size banks act differently with this particular LSM, particularly,

why big banks suffer from extra liquidity requirement is that the payments which

big banks were expected and would have been received from other members in a

pure RTGS system have been sent to the central queue instead. In a pure RTGS

system, with these payments, large banks would be able to finance some of them

outgoing payments, and it is no longer the case in the hybrid system. Nevertheless,

banks are still obligated to make the time-critical payments regardless the statues

of the system. Hence, big banks have to use liquidity reservation functionality to

settle those incoming payments. Small banks would not face a breakdown as serious

as big banks has, because of the relatively small number of payments that small

banks involved. By adding up the RTGS payments on top of LSM payments, the

average amount of liquidity required so that banks are able to meed their targets

set in advance15 is given.

15zero unilateral balance
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Figure 3.1 provides an idea of how much liquidity would be needed to reserve in a

pure RTGS system on average and at maximum, with which we could identify some

necessary change of liquidity reservation in a hybrid system with different queueing

management. The figures illustrated that both average and maximum liquidity have

increased in a manner that inversely correlated with q, in other words, the number

of payments submitted into LSM stream.
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Figure 3.1: Average and maximum volumes of payments in pure RTGS

In addition to the requirement of liquidity, banks could thereby briefly make

individual conclusions on how to manage their liquidity to achieve minimum ultimate

delayed payments. According to Figures 3.2-3.5, the sufficient liquidity required does

not need to be justified on a daily base, since both big and small banks expect similar

amounts of permanent delayed payments in the course of the experiment, which

implied the average amount is not influenced by bank’s policy rapidly16. Otherwise,

16bank’s target to make X% payments via RTGS
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Figure 3.2: Average and maximum volumes of payments in RTGS and LSM q = 0.2
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Figure 3.3: Average and maximum volumes of payments in RTGS and LSM q = 0.4
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Figure 3.4: Average and maximum volumes of payments in RTGS and LSM q = 0.6
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Figure 3.5: Average and maximum volumes of payments in RTGS and LSM q = 0.8
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Figure 3.6: Average and maximum volumes of payments in pure LSM

bank could rely on others, as soon as some of the members use extra liquidity to

make their end-of-the-day delayed payments, it could be able to use the incoming

fund to cover its own queued payments. However, this is heavily dependent to the

visibility of banks’ behaviors: if a bank is unable to see the opportunity that some

banks will use liquidity to clear their payments in the central queue, it would post

extra liquidity itself to avoid any disappointment. Banks can also consider reserving

liquidity according to the maximum valued obtained during the simulation, the right

plots on Figures 3.2-3.6, to prevent any operational accidents.

Under the assumption that the transition probabilities (3.1) are not identical,

payments are not equally distributed among banks: the snapshots, Figures 3.7-3.11,

indicate where the end-of-the-day bilateral delayed payments are in each case. We

notice that when banks are conservative about the central queueing facility, and

only submit a small portion of their daily payments into LSM stream, most of the
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Figure 3.7: Distribution of end-of-the-day delayed payments q = 0.2
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Figure 3.8: Distribution of end-of-the-day delayed payments q = 0.4
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Figure 3.9: Distribution of end-of-the-day delayed payments q = 0.6
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Figure 3.10: Distribution of end-of-the-day delayed payments q = 0.8
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Figure 3.11: Distribution of end-of-the-day delayed payments q = 1

end-of-the-day delayed payments are distributed among these big banks, with more

payments using LSM, the concentration of delayed payment is tend to be dissolved

in the system. The figures suggest that it may be worth to consider an injection of

liquidity by central bank periodically to some members of the system, with which

could cut the number of delayed payment significantly.

Efficiencies of the LSM

We are also interested in investigating the efficiency of the LSM, let us define the

efficiency, denoted by α, by

α =
no. of payments solved with off-setting payments

total no. of payments in LSM
× 100% (3.2)
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Figure 3.12: Efficiencies of LSM by payments

i.e., α = X̄
Ȳ
× 100%, where X̄ and Ȳ are the average number of payments solved in

LSM and total amount of payments in LSM respectively, so α = X̄
8400×q × 100%17.

We can see from Figure 3.12, the proposed central queuing facility could save

approximately 75% of liquidity that central bank needs to lent to members of pay-

ment system at least. Moreover, with more and more payments aggregating at the

central queue, around 97% of queued payments could be settlement without extra

liquidity requirement. In the equation of α (3.2), both the numerator and denom-

inator increase but with different rates. The closer the rates of increase are, the

flatter the plot in Figure 3.12 would look like, as it towards q = 1.

At the beginning of the experiment, payments arriving at the LSM helped to es-

tablish a complete network: banks found it highly likely to have payment(s) netting

17(1 − q)100% of CHAPS payments made via RTGS system
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Figure 3.13: Average delayed payments under different management

to a newly arrived payment, so links occurred during this period have relatively short

lifetime and could be disconnected very quickly. Thus, banks have an incentive to

submit payments in central queue as early as possible to gain more change to offset.

As more and more payments aggregated in LSM, the ten small banks operated as

smoothly as earlier, while big banks suffered from gridlock more and more badly

with possible reasons discuss in the previous section. Figure 3.13 is consistent with

the finding we drew.

Stable proportions of cycles with particular lengths

Table 3.1 lists the average numbers of solved cycles with different lengthes and

the probabilities to settle payments using the particular cycle. The massive ma-

jority of the queued payments could be solved by bilateral or trilateral payments

(≈ 98%). The numbers are positively related to q, but the proportions are more or
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Table 3.1: Probabilities of cycles with different lengthes
q Length 2 Length 3 Length 4 Length ≥ 5

0.2 648.43 88.17% 73.02 9.93% 11.71 1.59% 2.31 0.31%
0.4 1350.30 89.32% 139.10 9.20% 19.20 1.27% 3.10 0.21%
0.6 2085.00 90.40% 193.70 8.40% 24.20 1.05% 3.50 0.15%
0.8 2819.60 91.00% 245.40 7.92% 29.40 0.95% 4.00 0.13%
1 3554.90 91.27% 301.80 7.75% 33.80 0.87% 4.50 0.12%

ave. 90.03% 8.64% 1.15% 0.18%

less unchanged. The stable distribution can be proved by applying a standard χ2

goodness-of-fit test of a multinomial distribution. We have recognised the distribu-

tion is indeed multinomial. Let us set out the following terms:

• pi ≥ 0 for i = 2, 3, 4, 5 be the probabilities that cycle has length 2,3,4 and ≥ 5

respectively,
∑5

i=2 pi = 1.

• ni be the number of cycles with length 2,3,4 and ≥ 5 respectively.

• n =
∑5

i=2 ni.

Hence, the parameters for the multinomial distribution are n and pi’s. The ap-

propriate estimations for the probabilities are the Maximum Likelihood Estimators

(MLSs), and they are p̂i =
ni

n
for i = 2, 3, 4, 5.

To test if the multinomial distribution is stable during the experiment, χ2

goodness-of-fit tests are performed. In the comparisons between each set of pi’s

and the average values, p̄i’s, Table 3.2 tabulates the values of the test statistic and

p-values.

All the p-values indicated that there are no strong evidence against the null

hypothesis of the underlying distribution in each is as same as the averaged dis-

tribution18. In other words, the multinomial distribution is stable across the ex-

18For the χ2 goodness-of-fit test, when q = 0.8 and 1, the last two categories are combined, as
the expected frequencies have to be at least 5.
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Table 3.2: χ2 goodness-of-fit test statistics
q χ2 test statistic p-value

0.2 3.548 0.1697
0.4 0.882 0.6433
0.6 0.384 0.8253
0.8 3.715 0.2939
1 7.830 0.0497∗

periment. It implies that with more payments aggregated at the internal queue,

the total volume of settled payments goes up quickly, still, in terms of proportion,

as shown in Figure 3.12, the percentage of total payments solved remains approx-

imately constant, and the probabilities of finding a cycle with certain length are

almost unchanged. The central bank to which all these information are available,

may consider taking account of this steady distribution of cycles when estimate the

cost of queue management.

3.3 Conclusions

In this chapter, we investigated the potential impact of offering a liquidity saving

solution to the UK large-valued interbank payment system, CHAPS.

3.3.1 In a comparison of simulations using historical data

It has been continuously controversial about should simulations of all kinds use

artificial or historical data. In particular, when analysing payment systems, data

could be difficult to obtain for business and security reasons. The advantages and

disadvantages of both of them have been listed in the book by Manning et al.

[40]. The historical data is realistic, as it defined, however, when verifying some

unusual events using actual data, one always assumes that banks would not later
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their behavior under an alternative scenario [40]. Also, it is impossible to exactly

”repeat the experiment” in search for statistical properties. These downside can

be overcome by using generated data. Therefore, we think it is worth to check our

results with others where actual data was used. Considering the similarity of the

mechanisms between Ercevik and Jackson [21], RRGS, and ours, and the fact that

they have used both real payment data and synthetic data, we are going to put their

work in the comparison.

First of all, here is a short summary of the set up. Ercevik and Jackson applied

the Bank of Finland payment and settlement simulator (BoF-PSS219) to the histor-

ical dataset of December 2006. As similar as we did, they assumed the extreme case

of the liquidity reservation functionality: high profile/time-critical payments would

be made using post liquidity, while low-profile/non-time-critical payments would be

settled by offsetting with other queued payments in the central queue, i.e., by the

arrival of incoming payments. Moreover, incoming funds not only can be used to

finance queued payments but also time-critical payments. Since the actual dataset

has been used, some of the time-critical payments are identifiable, payments from

and to CLS are examples. Not all time-critical payments are stated clearly in the

dataset, they tried to proxy it in two different ways: (a) payments of a size greater

than or equal to a certain value threshold, (b) a proportion of payments (as we

defined the value of q).

They concluded that the benefit of RRGS depends on having a mass of payments

whose settlement is made via the queue-release algorithm. From the entire system’s

point of view, both of liquidity saving and settlement delays increased in the numbers

of payment queued. When less than half of the payments submitted to RRGS, there

is neither liquidity savings nor payment delays. For individual banks, the mean

19details were described in Leinonen and Soramäki [37]
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liquidity requirements increases slightly for the largest two banks; the next two

medium size banks gained moderate mean liquidity saving; at last the rest ten20

small banks are the most beneficial members from RRGS. RRGS can potentially

disrupt the recycling of payments for banks who already use liquidity very efficiently

in a pure RTGS system. To summaries, ”the precise distribution of benefits is

likely to be dependent on a range of factors relating to the structure of individual

banks’ payment flows under RTGS. In the case of CHAPS, we find that banks with

fewer payments typically face a proportionally higher liquidity need to settle these

payments under an RTGS design. It is these banks who would benefit most from the

introduction of a RRGS design. By contrast, a subset of large banks who currently

achieve high recycling ratios would see no savings and may even face a small increase

in their liquidity needs” [21].

3.3.2 The significance of our simulations

Instead of using actual historical payment dataset, we generated a system that cap-

tures one of the most important structure feature of CHAPS dataset based on some

existing studies. Nevertheless, as same as where an actual historical payment dataset

was used, we found that liquidity saving is achieved by implementing this particular

mechanism, however, the efficiencies are not equal for banks with different sizes. Big

banks21 have a low performance throughout the process due to shortage of incom-

ing funds. For individual banks, the total amount of intra-day liquidity are similar

from time to time, and the proportions between RTGS and LSM are needed to be

defined by the value of q and bank’s size. Banks are encouraged to make individual

strategies to post collateral most efficiently, some of which is exclusively relying on

2014 settlement banks of CHAPS excluding Bank of England and CLS
21banks dominate approx. 80% payments
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the transparency of information: if a bank is not being aware of other members’

plans, it will require collateral proactively to avoid any possibility of unsettled pay-

ments. From a central bank’s point of view, the system-wide payments information

is always available, central bank could guide banks on collateral borrowing, so as

to reduce delayed payments significantly. When considering recruiting second-tier

banks, central bank can use these experiences to train the banks and coach them

through the liquidity management process.

Last but not least, the most significance of our work is that despite only the most

simplest possible system was generated, the main results was consistent with where

real historical data was used. In addition to which, the simulation also allows us to

investigate the distribution of particular length cycles, it is particularly interested

by central banks and policy makers. With a stable distribution of cycles, central

bank can estimate the approximate number of particular cycles, therefore calculate

the cost of queue management.



Chapter 4

Boundary crossing probabilities

for Brownian motion

This chapter is particularly motivated by the innovative development in Banking

system, especially, the large-valued interbank payment system as stated in Chapter 1

and 3. In this particular payment system, the participating banks are concerned the

credit risk, and wish to prevent the considerable credit exposure between others1.

Till the time any liquidity saving solution was enforced in the UK large-valued

interbank payment system, CHAPS, it is observed that there is anecdotical evidence

that participating banks would set up bilateral or multi-lateral limits between it and

other members of the system to protect itself from unexpected credit exposures, and

achieved a moderate liquidity saving in RTGS. The limits will be adjusted during the

course of the business day under certain circumstances. Both the participating banks

and central bank are interested in the efficiency of these limits, which leads to the

calculation of boundary crossing probabilities for Brownian motion with stochastic

1Although RTGS system had replaced the Netting settlement system around the world, by the
end of 2006, 93 of world’s 174 central banks were using RTGS systems already [8], the possibility
of unexpected exposures still exists
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boundaries.

First of all, let us define the general boundary crossing problem. Let {Xt}t≥0 be

a standard Brownian motion and two continuous(or piecewise continuous) functions

u(t) and l(t) be the upper boundary and lower boundary respectively. Define τ1 as

the upper first-passage time and τ2 as the lower first-passage time with respect to

the filtration {Ft : t ≥ 0} as below,

τ1 = inf
t>0

{Xt ≥ u(t)} (4.1)

τ2 = inf
t>0

{Xt ≤ l(t)} (4.2)

Moreover, τ1 = ∞ if Xt < u(t) and τ2 = ∞ if Xt > l(t) for all t > 0.

We are interested in the boundary crossing probabilities such that,

P (2)
u = P(τ1 <∞, τ1 < τ2)

P
(2)
l = P(τ2 <∞, τ2 < τ1)

Calculations of this kind of probabilities are very popular in many fields of statis-

tics, they have played an important role in certain sequential statistical analysis [57],

for instance, power-one tests [49], confidence sequences [47], repeated significance

tests [58], sequential probability ratio test [2], non-parametric statistics [56] etc.

Another application is the testing of structural change in regression models, for ex-

ample, the asymptotic local power of cusum test [15] and the fluctuation test [35].

These boundary crossing probabilities also have attacked great amount of attention

in finance. The problem of the pricing of so-called time-dependent barrier options

can be reduced to the calculation of boundary crossing probabilities for a Brow-

nian motion with deterministic function [27], [44] and [50]. Moveover, there are
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applications in other areas such as biophysical models [46].

In Chapter 2, it has been shown that Markov type model is adequate to model

the Real Time Gross Settlement system. Hence, in the content of interbank pay-

ment system, the problem of boundary crossing probabilities can be defined in the

following ways. For a single bank, namely Bank A, let the standard Brownian mo-

tion Xt be the net balance in between Bank A and Bank i at time t. Meanwhile,

ui(t) is the bilateral limit set up by Bank A for Bank i. Therefore, this problem

can be reduced to the calculation of the boundary crossing probability for Brownian

motion with time-determine boundaries. This approach can be adopted by both the

policy makers at central bank and credit control departments of participating banks

to lay down decisive actions.

In this chapter, above all, we are going to provide an alternative method to derive

the boundary crossing probabilities for standard Brownian motion with symmetric

and asymmetric linear boundaries. With powerful tools such as martingales and

infinitesimal generator of Brownian motion, our approach allows to obtain a sim-

ple formula for the two-sided boundaries crossing probabilities. Nevertheless, the

method will be modified to stochastic boundaries and both numerical examples and

simulations will be studied.

4.1 Literature review

In this section we are going to give a detailed summary of the existing literatures.

Anderson was the first to obtain the explicit form of the distribution of the first-

passage time of a Brownian motion through linear boundaries [2]. In his paper,

firstly, the probability for a Brownian motion of touching one boundary before the

other when the process can go without limit (T = ∞) is derived, (in our notations)
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Theorem 4.1 (Anderson 1960). Let {Xt}t≥0 be a standard Brownian motion, then

for b1 > 0, b2 > 0 and c1 ≥ −c2 (not c1 = c2 = 0), the the upper boundary crossing

probability is

P (2)
u =























∑∞
r=1

(

e−2Ar − e−2Br
)

c1 ≥ 0

1−
∑∞

r=1

(

e−2Cr − e−2Dr
)

c1 ≤ 0

e2b1c2−1
e2(b1+b2)c1−1

c1 = −c2 6= 0

(4.3)

where

Ar = (b1 + b2)(c1 + c2)r
2 − [b2(c1 + c2) + c2(b1 + b2)]r + b2c2

Br = (b1 + b2)(c1 + c2)r
2 + (b2c1 − b1c2)r

Cr = (b1 + b2)(c1 + c2)r
2 − [b1(c1 + c2) + c1(b1 + b2)]r + b1c1

Dr = (b1 + b2)(c1 + c2)r
2 + (b1c2 − b2c1)r

For the lower boundary l(t) = −b2 − c2t, the constants b1, b2, c1, c2 > 0 and

b1 6= b2, c1 6= c2, the Corollary follows immediately,

Corollary 4.1 (Anderson 1960). The lower boundary crossing probability is,

P
(2)
l =























∑∞
r=1

(

e−2Cr − e−2Dr
)

c2 ≥ 0

1−
∑∞

r=1

(

e−2Ar − e−2Br
)

c2 ≤ 0

e2b2c1−1
e2(b1+b2)c2−1

c1 = −c2 6= 0

(4.4)

where Ar, Br, Cr, Dr are given in Theorem 4.1.

When comparing equations (4.3) and (4.4), We notice that the subscripts of b

and c are interchanged.

Secondly, Anderson also found the probability for {Xt}t≥0 of touching one line
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first conditional on the path going through a particular point.

Theorem 4.2 (Anderson 1960). If {Xt}t≥0 is a standard Brownian motion, and

if T, b1, b2, c1, c2 are numbers such that b1, b2 > 0, b1 + c1T ≥ −b2 − c2T, T > 0,

the conditional upper boundary crossing probability given XT = η (not b1 + c1T =

−b2 − c2T = η) is

P (2)
u (T |η) =























∑∞
r=1

(

e−
2
T
AT

r − e−
2
T
BT

r

)

b1 + c1T ≥ η

1−
∑∞

r=1

(

e−
2
T
CT

r − e−
2
T
DT

r

)

b1 + c1T ≤ η

e
2
T

b2(b1+c1T−η)−1

e
2
T

(b1+b2)(b1+c1T−η)−1
b1 + c1T = −b2 − c2T 6= η

(4.5)

where

ATr = (b1 + c1T − η)[(b1 + b2)r − b2]r + (b2 + c2T + η)[(b1 + b2)r − b2](r − 1)

BT
r = (b1 + c1T − η)[(b1 + b2)r + b2]r + (b2 + c2T + η)[(b1 + b2)r − b1]r

CT
r = (b1 + c1T − η)[(b1 + b2)r + b1](r − 1) + (b2 + c2T + η)[(b1 + b2)r + b1]r

DT
r = (b1 + c1T − η)[(b1 + b2)r − b2]r + (b2 + c2T + η)[(b1 + b2)r + b1]r

As similar as Corollary 4.1, the formula for P
(2)
l (T |η) can be derived from equa-

tion (4.5) by replacing b1, c1 by b2 and c2.

Finally, in Anderson’s paper, the explicit form of the unconditional probability

of touching one line first over a limit [0, T ] is found.

Theorem 4.3 (Anderson 1960). If {Xt}t≥0 is a standard Brownian motion, and

b1, b2, c1, c2, T are defined in Theorem 4.2, the unconditional upper boundary crossing
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probability is

P (2)
u (T ) = 1− Φ

(

b1T + c1√
T

)

+
∞
∑

r=1

{

e−2ArΦ

(

c1T − 2(r − 1)b2 − (2r − 1)b1√
T

)

−e−2BrΦ

(

c1T − 2rb2 − (2r − 1)b1√
T

)

−e−2Cr

[

1− Φ

(

c1T + 2rb2 + (2r − 1)b1√
T

)]

+e−2Dr

[

1− Φ

(

c1T + (2r + 1)b1 + 2rb2√
T

)]}

where Ar, Br, Cr and Dr are given by the expressions in Theorem 4.1, and Φ(·) is

the cumulative distribution function of a standard Normal distribution.

Hall simplified one of the three conditional probabilities of crossing the upper

linear boundary u(t) = b1 + c1t over an interval [0, T ], as in equation (4.5) [30],

Theorem 4.4 (Hall 1997). Let {Xt}t≥0 be a standard Brownian motion, the proba-

bility of Xt crossing the upper linear boundary u(t) before crossing the lower boundary

given the condition that by a fixed time T , XT = η, is followed,

P (2)
u (T |η) =

∞
∑

j=1

exp

(

2(jc− b2)

[

b(2j − 1) +
η − c̄t− (jc− b2)

T

])

− exp

(

2j

[

2b(jc− b̄) +
(η − c̄t− jc)c

T

])

(4.6)

for η < u(T ), where

b̄ =
b1 − b2

2
c̄ =

c1 − c2
2

c = b1 + b2 b = −c1 + c2
2

Meanwhile, it has been verified that equation (4.6) agrees with the first piece of
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equation (4.5) by Anderson.

Corollary 4.2. Assume η > l(T ), similarly, P
(2)
l (T |η) is given by the formula of

P
(2)
u (T |η) with (b1, c1) replaced by (b2, c2).

In the rest of the existing literatures, the results are generally divided into two

types according to two kinds of boundaries. One is single boundary, most of the

results dealt with linear or (approximated) piecewise linear boundary [1], [38], [54]

and [61], the calculations of these probabilities involves evaluation of a multiple

integral, which can not always be expressed by an explicit formula and hence must

be solved numerically. The explicit form of the boundary crossing probabilities are

only obtained for a few special non-linear boundaries, for example, squared root

boundaries [61] and a particular class of functions [48].

Scheike has derived a set of results in the situation where the single boundary is

of the form u(t) = b+ ct [54].

Theorem 4.5 (Scheike, 1992). Let {Xt}t≥0 be a standard Brownian motion, and

Φ(·) denote the cumulative distribution function of a standard Normal distribution.

When u(t) = b+ ct, then,

1. The one-sided unconditional boundary crossing probability without time limit

is,

P (1)
u =











e−2bc b, c > 0

1 b ≤ 0 or c ≤ 0
(4.7)

2. The one-sided unconditional boundary crossing probability over [0, T ] is,

P (1)
u (T ) =











1− Φ
(

b√
T
+ c

√
T
)

+ e−2bcΦ
(

c
√
T − b√

T

)

b > 0, T <∞

1 b ≤ 0
(4.8)
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3. The one-sided boundary crossing probability conditional on Xs = η over [0, T ]

is,

P (1)
u (T |η) =











e−
2b(b+cT−η)

T b > 0, T <∞, η < b+ cT

1 b ≤ 0
(4.9)

In a more general case, consider that u(t)∀t, is a piecewise continuous function,

and it is a polygonal function on the interval [0, T ]. Let 0 = t0 < t1 < · · · < tn = T ,

assume that u(t) is linear on each of the interval [tj−1, tj ], for j = 1, 2, · · · , n and

u(0) > 0, then denote uj = u(tj) and u = (u1, u2, · · · , un). Wang and Pötzelberger

derived the unconditional probability that a standard Brownian motion up-crosses

a piecewise linear boundary in a finite time interval [0, T ] [61].

Theorem 4.6 (Wang and Pötzelberger 1997). Let {Xt}t≥0 be a standard Brownian

motion, and define that

P (1)
u (T ) = P(Xt ≥ u(t), t < T )

Then the probability of up-crossing the piecewise linear boundary u(t), over the period

[0, T ], is given by

P (1)
u (T ) = 1−

∫ u

−∞

n
∏

j=1

[

1− exp

(

−2(uj−1 − xj−1)(uj − xj)

tj − tj−1

)]

f(x)dx

where Xtj = xj, x = (x1, · · · , xn)′ and

f(x) =
n
∏

j=1

1
√

2π(tj − tj−1)
exp

[

−(xj − xj−1)
2

2(tj − tj−1)

]

To the extent of more general (nonlinear) boundaries, Theorem 4.6 can be used
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to obtain approximated boundary crossing probabilities for these boundaries, which

are uniformly limit to the piecewise linear function u(t).

Theorem 4.7 (Wang and Pötzelberger 1997). For {Xt}t≥0, a standard Brownian

motion, if un(t) → u(t), as t tends to infinity, uniformly on [0, T ], then

P (1)
un (T ) = 1−

∫ u

−∞

n
∏

j=1

(

1− exp

[

−2(uj−1 − xj−1)(uj − xj)

tj − tj−1

])

f(x)dx

where x and f(x) are defined as in Theorem 4.6.

Moreover, Abundo, by applying the time inversion property of Brownian motion,

particularly derived a elementarily simple and explicit formulae for the conditional

boundary crossing probability of {Xt}t≥0 and piecewise-linear boundary, u(t), con-

sisting of two lines given that Xs = η over a limit [0, T ], i.e. P
(1)
u (T |η) = P(Xt ≥

u(t), t < T |Xs = η), where

u(t) =











b1 + c1t 0 ≤ t < N

b′1 + c′1t N ≤ t
(4.10)

and u(0) = b1 > 0 [1].

Theorem 4.8 (Abundo 2002). Let {Xt}t≥0 be a standard Brownian motion, and

given N < T <∞, the probability that Xt up-crosses u(t) in [0, T ] with the condition

that the value of Xt at the instant s > T is equal to η is

P (1)
u (T |η) = 1− φ

(

b′1s+ (c′2s− η)T
√

sT (s− T )

)

+

∫

b′1s+(c′2s−η)T√
sT (s−T )

−∞
J

(

N, T,
y
√

sT (s− T ) + ηT

s

)

e−
y2

2

√
2π
dy
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where J(N, T, ·) is defined as

J(N, T, x) = 1− Φ(hNT ) + exp(−2b′1b
′)Φ((h− 2b′)NT )

+ exp(−2b1b)Φ

(

hN2
T − 2b1
NT

)

− exp[−2b1b− 2(b′1 − 2b1)b
′]Φ

(

(h− 2b′)N2
T − 2b1

NT

)

where

h = min

(

b1 + c1N

N
− x

T
,
b′1 + c′1N

N
− x

T

)

NT =

√

TN

T −N

b = c1 +
b1 − x

T

b′ = c′1 +
b′1 − x

T

The result will be different when s < T .

Theorem 4.9 (Abundo 2002). Let u(t) be defined as in Theorem 4.8, and s < T .

Then, if η < u(t),

P (1)
u (T |η) = P

(1)
u′ (T − s) +

e
η2

2s

√
2πs

[

1− P
(1)
u′ (T − s)

]

×

















e−
η2

2s√
2πs
e−2b1

b1+c1s−η

s 0 < u ≤ N

e−
η2

2s√
2πs
J(N, s, η) N < u < T







where

u′(t) =











(b1 + c1s− η) + c1t 0 ≤ t < N − s

(b′1 + c′1s− η) + c′1t N − s ≤ t ≤ T − s
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and P
(1)
u′ (T − s) can be derived from equation (4.8) in Theorem 4.5. If η ≥ u(t), the

probability is 1.

Robbins and Siegmund have made the use of the martingale
∫∞
0
e−

1
2
ty2+yxdF (y)

to evaluate the probability that {Xt}t≥ would ever cross a certain class of functions

g(t), including which are approximately (2t log log t)
1
2 as t goes to infinity [48].

Let F denote any measure on (0,∞), which is finite on bounded intervals, then

define for x, t and ε > 0

f(x, t) =

∫ ∞

0

e−
1
2
ty2+yxdF (y) (4.11)

g(t, ε) = inf{x : f(x, t) ≥ ε}

f(x, t) is a nonnegative continuous function on D = R× (τ,∞), where 0 ≤ τ <∞.

The infinitesimal generator of the space time Brownian motion is ∂f
∂t

+ 1
2
∂2f
∂x2

= 0

on D, hence f(Xt, t) is a positive martingale. Nevertheless, it is easy to see that

x = g(t, ε) is the unique solution of f(x, t) = ε, and g(t, ε) in this class is increasing,

infinitely differentiable and concave.

Theorem 4.10 (Robbins, Siegmund 1970). 1. For any b, h and ε, if f(b, h) < ε,

then for some t ≥ 0,

P(Xt ≥ g(t+ h, ε)− b) =
f(b, h)

ε
(4.12)
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2. For any b, h, ε and τ < 0, then for some t ≥ ε,

P(Xt ≥ g(t+ h, ε)− b, t ≥ ε)

= 1− Φ

(

g(τ + h, ε)− b√
τ

)

+
1

ε

∫ ∞

0

e−
1
2
hy2+byΦ

(

g(τ + h, ε)− b√
τ

− y
√
τ

)

dF (y)

Robbins and Siegmund [48] also indicated that suppose f(b, 0) <∞ for all b, for

any h ≥ 0 and ε ≥ f(b, h), equation (4.12) implies that

P (1)
g (b) = P(Xt ≥ g(t, ε)|Xh = b) =











f(b,h)
ε

b < g(h, ε)

1 b ≥ g(h, ε)
(4.13)

Lerche [38] further showed that if g(t, ε) is the solution of f(x
t
, 1
t
) = ε, and

∫∞
0
e−

ay
2 dF (y) <∞ for all a > 0, then,

Theorem 4.11 (Lerche 1986). Equation (4.13) becomes

P (1)
g (b) =

f
(

b
h
, 1
h

)

ε

for b < g(h, ε), otherwise the probability is 1.

Note that for F = δ2y, which is the Dirac measure at 2y, g(t, ε) = y + bt where

b = log(ε)
2y

, so the class contains linear boundaries.

The other case is the two-sided boundaries, Abundo also derived the explicit

expressions for the conditional probability for two symmetric linear boundaries [1],

in which case u(t) = −l(t) = b1 + c1t for all t. There are two cases depends on the

value of s.
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Theorem 4.12 (Abundo 2002). Let s > T , define

P (2)
u (T |η) = P

(2)
l (T |η) = P(|Xt| ≥ u(t)|Xs = η)

then,

P (2)
u (T |η) = P

(2)
l (T |η)

= 1 +

∫
u(T )s−ηT√

sT (s−T )

−u(T )s−ηT√
sT (s−T )

[

H

(

y
√

sT (s− T ) + ηT

s
, T

)

− 1

]

e−y
2/2

√
2π

dy

where

H(z, ω) = 1−
∞
∑

n=−∞
(−1)n exp

(

−2b1n

[(

c1 +
b1
ω

)

n− z

ω

])

(4.14)

u(t) = b1 + c1t

On the other hand, when s < T ,

Theorem 4.13 (Abundo 2002). Let s < T , if |η| < u(t), it holds,

P (2)
u (T |η) = P

(2)
l (T |η) =

1− [1−H(η, s)]P





⋂

[0,T−s]
−(u(s) + η + c1t) ≤ Xt ≤ u(s)− η + c1t





where H(η, s) is given by the equation (4.14) in Theorem 4.12 and

P





⋂

[0,T ]

−(α + βt) ≤ Bt ≤ a + bt





=

∫ a+bT

−(α+βT )

e−η
2/2T

√
2πT

G

(

α, β +
a + η

T
, a, b+

a− η

T

)

dη
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The function G is given by the theorem by Doob, 1949.

Last but not least, in addition to u(t), consider another deterministic function,

namely l(t), which is continuous for all t and not necessary be symmetric to u(t).

l(t) is the lower boundary for Xt. Define that

PT (u, l,K) = P(l(t) < Xt < u(t), t ≤ T ;XT > K)

then 1− PT (l, u,K) will be the first-passage time probability of reaching one of the

boundaries u(t) and l(t).

Novikov et al. derived a more general solution in terms of piecewise function

[43]. Given that û(t) and l̂(t) are piecewise linear functions with the nodes 0 = t0 <

t1 < · · · < tn = T , which are considered as approximations of u(t) and l(t). Novikov

et al. found an approximation of PT (l, u,K) by PT (l̂, û, K), hence, 1− PT (l, u,K).

Theorem 4.14 (Novikov, Frishling and Kordzakhia 1999). The first-passage time

probability for a standard Brownian motion with two boundaries u(t) and l(t) is

1− PT (l̂, û, K) = 1− E

[1{Xt>K}

n−1
∏

j=0

P (j, l̂, û|xj , xj+1)

]

where

P (j, l̂, û|xj, xj+1) = P(l̂(t) < Xt < û(t), tj ≤ t ≤ tj+1|Xtj = xj , Xtj+1
= xj+1)

and 1{Xt>K} is an indicator function.

In summary, the existing results are generally divided into two types by two

kinds of boundaries;
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One-sided piecewise-linear boundary in our notations, u(t) is a piecewise lin-

ear function and l(t) = 0, ∀t > 0. The expression of the unconditional prob-

ability is obtained as Theorem 4.6 [61], P
(1)
u (T ) = P(Xt ≥ u(t), t < T ), where

u(t) is a polygonal function on the interval [0, T ], let 0 = t0 < t1 < · · · < tn = T

and u(t) be linear on each of the intervals [tj−1, tj] for j = 1, 2, · · · , n. How-

ever, in the calculations of P 1
u (T ), it involves evaluation of a multiple in-

tegral, which cannot always be expressed by an explicit formula and hence

must be solved numerically. In addition to this, by applying the time inver-

sion property of Brownian motion, Abundo particularly derived a elementarily

simple and explicit formula for the conditional boundary crossing probability

P
(1)
u (T |η) = P(Xt ≥ u(t), t < T |Xs = η), where u(t) is given by equation (4.10)

and u(0) = a1 > 0 by Theorem 4.8 [1].

Two-sided boundaries the conditional crossing probability with two symmetric

linear boundaries, P
(2)
u (T |η) = P

(2)
l (T |η) = P(|Xt| ≥ u(t), t < T |Xs = η),

where u(t) = −l(t) = a + bt for all t, is also studied by Abundo in Theo-

rem 4.12 [1]. A more general solution in terms of piecewise function is de-

rived by Novikov et al. Let û(t) and l̂(t) be the approximations for u(t) and

l(t) respectively, that are piecewise-linear functions with the nodes 0 = t0 <

t1 < · · · < tn = T . Hence, the approximated boundary crossing probabilities

P
(2)
û (T ) and P

(2)

l̂
(T ) can be found accordingly.

Overall, the explicit form of the probabilities only obtained for a few special non-

linear boundaries, for example, squared root boundaries [61]. The boundary crossing

probability for any other general boundaries only solved numerically. However, in

practices, most of the time, general non-linear boundary is far more realistic, we are

interested in deriving the exact boundary crossing probabilities for general boundary,
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in particular, stochastic boundary.

4.2 Linear boundaries

In this section, we are going to provide an alternative method to derive the boundary

crossing probabilities for standard Brownian motion with symmetric and asymmet-

ric linear boundaries. With powerful tools such as martingales and infinitesimal

generator of Brownian motion, our approach allows to obtain a simple formula for

the two-sided boundaries crossing probabilities.

4.2.1 Symmetric linear boundaries

Let {Xt}t≥0 be a standard Brownian motion, where the generater Af(x) acting on

the function f(x, t) is in the form of,

Af =
1

2

∂2f(x, t)

∂x2
+
∂f(x, t)

∂t
(4.15)

And define τ as the first-passage time, such that τ = inft≥0{t : |Xt| ≥ b+ ct}, where

b, c are all nonnegative, and τ = ∞ if |Xt| < b+ ct.

Theorem 4.15. For a standard Brownian motion {Xt}t≥0, the two-sided boundary

crossing probability for a pair of symmetric linear boundaries, u(t) = −l(t) = b+ ct,

is

P(τ <∞) = 1 + 2
∞
∑

i=1

(−1)ie−4bci(2i+1) (4.16)

Proof. The solution of the equation Af = 0 that we are concerned about is in the

form of
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f(t) = e−βt(e
√
2βXt + e−

√
2βXt). This is a martingale indeed, and with the indicator

functions 1{τ<t} and 1{τ≥t}, we get, because of Dood’s optional stopping theorem,

E

[

e−βτ (e
√
2βXτ + e−

√
2βXτ )1{τ<t}

]

+ E

[

e−βt(e
√
2βXt + e−

√
2βXt)1{τ≥t}

]

= E[e
√
2βX0 − e−

√
2βX0]

E

[

e
√
2βb+(−β+

√
2βc)τ1{τ<t}

]

+ E

[

e−
√
2βb+(−β−

√
2βc)τ1{τ<t}

]

+

E

[

e−βt(e
√
2βXt + e−

√
2βXt)1{τ≥t}

]

= E

[

e
√
2βX0 − e−

√
2βX0

]

(4.17)

The last term of the left hand side of equation (4.17) will be vanished when t

tends to infinity, as

lim
t→∞

E

[

e−βt+
√
2βXt1{τ≥t} + e−βt−

√
2βXt1{τ≥t}

]

= E

[

lim
t→∞

e−βt+
√
2βXt1{τ≥t} + lim

t→∞
e−βt−

√
2βXt1{τ≥t}

]

= E

[

exp

(

− lim
t→∞

t(β −
√

2β
Xt

t
)

)1{τ=∞} + exp

(

− lim
t→∞

t(β +
√

2β
Xt

t
)

)1{τ=∞}

]

= 0

since β > 0 and by the Strong Law of Large Numbers for Brownian motion,

limt→∞
Xt

t
= 0. Moreover, by applying the Monotone convergence theorem, equa-

tion (4.17) becomes

e
√
2βbE

[

e(−β+
√
2βc)τ1{τ<∞}

]

+ e−
√
2βbE

[

e(−β−
√
2βc)τ1{τ<∞}

]

= e
√
2βx0 + e−

√
2βx0

where X0 = x0 is the starting point of the standard Brownian motion.

Let
√
2β = κj , then β =

κ2j
2
, where j = 0, 1, 2, . . . , which yields the following set
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of equations,

eκ0bE

[

e(−
κ20
2
+κ0c)τ1{τ<∞}

]

+ e−κ0bE

[

e(−
κ20
2
−κ0c)τ1{τ<∞}

]

= eκ0x0 + e−κ0x0; (4.18)

· · ·

eκjbE

[

e(−
κ2j
2
+κjc)τ1{τ<∞}

]

+ e−κjbE

[

e(−
κ2j
2
−κjc)τ1{τ<∞}

]

= eκjx0 + e−κjx0; (4.19)

eκj+1bE

[

e(−
κ2j+1

2
+κj+1c)τ1{τ<∞}

]

+ e−κj+1bE

[

e(−
κ2j+1

2
−κj+1c)τ1{τ<∞}

]

= eκj+1x0 + e−κj+1x0 (4.20)

In equations (4.19) and (4.20), we choose κj such that
κ2j+1

2
− κj+1c =

κ2j
2
+ κjc,

so κj = 2cj + κ0. Now multiplying equations (4.19) and (4.20) by eκj+1b and e−κjb

respectively, we get

eκj+1beκjbE

[

e(−
κ2j
2
+κjc)τ1{τ<∞}

]

+ eκj+1be−κjbE

[

e(−
κ2j
2
−κjc)τ1{τ<∞}

]

= eκj+1b
(

eκjx0 + e−κjx0
)

e−κjbeκj+1bE

[

e(−
κ2j+1

2
+κj+1c)τ1{τ<∞}

]

+ e−κjbe−κj+1bE

[

e(−
κ2j+1

2
−κj+1c)τ1{τ<∞}

]

= e−κjb
(

eκj+1x0 + e−κj+1x0
)

Subtracting the two equations immediately, we have

e(κj+κj+1)bE

[

e(−
κ2j
2
+κjc)τ1{τ<∞}

]

− e−(κj+κj+1)bE

[

e(−
κ2j+1

2
−κj+1c)τ1{τ<∞}

]

= eκj+1b
(

eκjx0 + e−κjx0
)

− e−κjb
(

eκj+1x0 + e−κj+1x0
)

(4.21)

Now let Aj = E[e(−
κ2j
2
+κjc)τ1{τ<∞}]. Since κj = 2cj + κ0, then

κ2j+1

2
+ κj+1c =
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κ2j+2

2
−κj+2c, hence Aj+2 = E[e(−

κ2j+1
2

−κj+1c)τ1{τ<∞}]. Therefore, with the assumption

that the standard Brownian motion starts from 0, we can write equation (4.21) as

Aj − e−2(κj+κj+1)bAj+2 = 2e−(κj+κj+1)b
(

eκj+1b − e−κjb
)

⇒ Aj = e−(κj+κj+1)b
[

2
(

eκj+1b − e−κjb
)

+ e−(κj+κj+1)bAj+2

]

In general, for j = 0, 1, 2, · · · ,

A0 = 1 + 2

j
∑

i=1

(−1)je−2b
∑2i−1

l=0 κl − e−2b
∑2j+1

k=0 κk
[

1 + A2(j+1)

]

(4.22)

where A0 = E[e(−
κ20
2
+κ0c)τ1{τ<∞}]. In order to find P(τ < ∞), let

κ20
2
− κ0c = 0 in

A0, implies κ0 = 2c, then κj = 2c+ 2cj = 2c(j + 1), and

2i−1
∑

l=0

κl = 2ci(2i+ 1)

2j+1
∑

k=0

κk = 2c(2j + 3)(j + 1)

Equation (4.22) becomes,

A0 = 1 + 2

j
∑

i=1

(−1)ie−4bci(2i+1) − e−4bc(2j+3)(j+1)
[

1 + A2(j+1)

]

(4.23)

As j → ∞ in equation (4.23), e−4bc(2j+3)(j+1)
[

1 + A2(j+1)

]

vanishes, thus given that

both b and c are nonnegative,

P(τ <∞) = 1 + 2
∞
∑

i=1

(−1)ie−4bci(2i+1)
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4.2.2 Asymmetric linear boundaries

In this section, we consider the same standard Brownian motion {Xt}t≥0 which

initially starts from 0, and the time-dependent linear boundaries are

c(t) =











b1 + c1t b1, c1 > 0

−b2 − c2t b2, c2 > 0

Recall the upper first-passage time τ1 and lower first-passage time τ2 defined as

in equations (4.1) and (4.2) defined at the beginning of this chapter, now we are

going to consider the probability that the standard Brownian motion hits the upper

boundary before hitting the lower one without limit.

Theorem 4.16. Let {Xt}t≥0 be a standard Brownian motion with X0 = 0, and two

continuous functions u(t) = b1+c1t and l(t) = −b2−c2t for all t and b1, b2, c1, c2 > 0.

The upper hitting time probability is given by

P (2)
u = e−2b1c1

[

1− e−2b2(2c1+c2)
]

+ e−(2c1+c2)

∞
∑

l=0

(

e−2Bl − e−2Cl
)

(4.24)

where

Bl = (b1 + b2)(c1 + c2)l
2 + [c1(b1 + b2) + 2b2(c1 + c2)]l

Cl = (b1 + b2)(c1 + c2)l
2 + c1(b1 + b2)l − (4c1 + 3c2)b2

Proof. Consider the well-known martingale e−
β2

2
t+βXt , where β is a deterministic

constant. Due to the martingale property and Doob’s optional stopping theorem,
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we get the following,

E

[

e−
β2

2
t+βXt1{(τ1∧τ2)≤t}

]

+ E

[

e−
β2

2
t+βXt1{(τ1∧τ2)≥t}

]

= E
[

eβX0
]

E

[

e−
β2

2
τ1+βXτ11{τ1<t,τ1<τ2}

]

+ E

[

e−
β2

2
τ2+βXτ21{τ2<t,τ2<τ1}

]

+E

[

e−
β2

2
t+βXt1{(τ1∧τ2)≥t}

]

= E
[

eβX0
]

(4.25)

where 1{τ1<t,τ1<τ2}, 1{τ2<t,τ2<τ1} and 1{(τ1∧τ2)≥t} are indicator functions.

Applying the Dominated Convergence Theorem to the third term of equation (4.25),

lim
t→∞

E

[

e−
β2

2
t+βXt1{(τ1∧τ2)≥t}

]

= E

[

lim
t→∞

e−
β2

2
t+βXt1{(τ1∧τ2)≥t}

]

= E

[

e− limt→∞ t(β
2

2
−βXt

t
)1{(τ1∧τ2)=∞}

]

= 0

where limt→∞
Xt

t
= 0 by the Strong Law of Large Number for Brownian motion.

Let I1 = {τ1 < ∞, τ1 < τ2} and I2 = {τ2 < ∞, τ2 < τ1}, and the standard

Brownian motion Xt starts from 0, hence

E

[

e−
β2

2
τ1+β(b1+c1τ1)1I1]+ E

[

e−
β2

2
τ2−β(b2+c2τ2)1I2] = 1

eβb1E

[

e−(β
2

2
−βc1)τ11I1]+ e−βb2E

[

e−(β
2

2
+βc2)τ21I2] = 1 (4.26)

Two substitutions are required, when Xt touches the upper boundary, u(t), first,

let β = kj and
β2

2
=

k2j
2
into equation (4.26), for j = 0, 1, 2, · · · ,

ekjb1E

[

e−(
k2j
2
−kjc1)τ11I1]+ e−kjb2E

[

e−(
k2j
2
+kjc2)τ21I2] = 1 (4.27)
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On the other hand, when Xt reaches the lower boundary, l(t), before reaching u(t),

let β = −k∗j and β2

2
=

k∗j
2

2
in equation (4.26), for j = 0, 1, 2, · · · ,

e−k
∗

j b1E

[

e−(
k∗j

2

2
+k∗j c1)τ11I1]+ ek

∗

j b2E

[

e−(
k∗j

2

2
−k∗j c2)τ21I2] = 1 (4.28)

To find the probability P
(2)
u , we want

k2j
2
+ kjc2 =

k∗j
2

2
− k∗j c2 in equations (4.27)

and (4.28), so k∗j = kj + 2c2. Multiplying the equations by ek
∗

j b2 and e−kjb2 respec-

tively, we have

ekjb1ek
∗

j b2E

[

e−(
k2j
2
−kjc1)τ11I1]+ e−kjb2ek

∗

j b2E

[

e−(
k2j
2
+kjc2)τ21I2] = ek

∗

j b2(4.29)

e−k
∗

j b1e−kjb2E

[

e−(
k∗j

2

2
+k∗j c1)τ11I1]+ ek

∗

j b2e−kjb2E

[

e−(
k∗j

2

2
−k∗j c2)τ21I2]

= e−kjb2 (4.30)

Equation (4.29) subtracts equation (4.30), for j = 0, 1, 2, · · · ,

ekjb1+k
∗

j b2E

[

e−(
k2j
2
−kjc1)τ11I1]− e−(k∗j b1+kjb2)E

[

e−(
k∗j

2

2
+k∗j c1)τ11I1]

= ek
∗

j b2 − e−kjb2 (4.31)

Furthermore, now let us consider the (j+1)th equation of equation (4.27), which is

ekj+1b1E

[

e−(
k2j+1

2
−kj+1c1)τ11I1]+ e−kj+1b2E

[

e−(
k2j+1

2
+kj+1c2)τ11I2] = 1 (4.32)

Moreover, we also wish to have kj+1 such that
k∗j

2

2
+ k∗j c1 =

k2j+1

2
− kj+1c1 in equa-

tions (4.31) and (4.32), so kj+1 = k∗j + 2c1. Denote Aj = E[e−(
k2j
2
−kjc1)τ11I1], so

Aj+1 = E

[

e−(
k2j+1

2
−kj+1c1)τ11I1] = E

[

e−(
k∗j

2

2
+k∗j c1)τ11I1]
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. Therefore, equation (4.31) can be rewritten as

Aj = e−(b1+b2)(kj+k∗j )Aj+1 + e−kjb1
[

1− e−b2(kj+k
∗

j )
]

(4.33)

Since kj+1 = 2c1 + k∗j and k∗j = 2c2 + kj, kj + k∗j = 2(kj + c2), then equation (4.33)

becomes

Aj = e−2(b1+b2)(kj+c2)Aj+1 + e−kjb1
[

1− e−2b2(kj+c2)
]

(4.34)

Summing up the set of equations that in the form of equation (4.34), for j =

0, 1, 2, · · · , in general,

A0 = e−2(b1+b2)
∑j

i=0(ki+c2)Aj+1

+

j
∑

l=0

e−2(b1+b2)
∑l

n=0(kn+c2)−kl+1b1
[

1− e−2b2(kl+1+c2)
]

+e−k0b1
[

1− e−2b2(k0+c2)
]

(4.35)

where A0 = E[e−(
k20
2
−k0c1)τ11I1].

To obtain E[1I1 ] ≡ P
(2)
u , let

k20
2
− k0c1 = 0 in A0, i.e. k0 = 2c1, as kj > 0∀j, and

we have kj = k0 + 2j(c1 + c2), then kj = 2j(c1 + c2) + 2c1. So,

j
∑

i=0

ki + c2 = j(j + 1)(c1 + c2) + j(2c1 + c2)

l
∑

n=0

kn + c2 = l(l + 1)(c1 + c2) + l(2c1 + c2)

kl+1 = 2(l + 1)(c1 + c2) + 2c1

kl+1 + c2 = 2l(c1 + c2) + (4c1 + 3c2)

k0 + c2 = 2c1 + c2
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Substituting these terms into equation (4.35), and as j tends to infinity, equa-

tion (4.24) in Theorem 4.16 follows immediately.

As similar as P
(2)
u , the probability for the standard Brownian motion, Xt, reaches

the lower limit before reaching the upper limit first, P
(2)
l , can be found analogously,

Corollary 4.3. For a standard Brownian motion, {Xt}t≥0, with two continuous

functions u(t) and l(t) (as defined in Theorem 4.16), the lower hitting time proba-

bility is given by

P
(2)
l = e−2b2c2

[

1− e−2b1(c1+2c2)
]

+ e−(2c2+c1)b2

∞
∑

l=0

(

e−2B∗

l − e−2C∗

l

)

(4.36)

where

B∗
l = (b1 + b2)(c1 + c2)l

2 + [(b1 + b2)(2c1 + 3c2)− 2b2(c1 + c2)]l

C∗
l = (b1 + b2)(c1 + c2)l

2 + (b1 + b2)c2l − (4c2 + 3c1)b1

Proof. Let us consider the two equations (4.27) and (4.28) again, and this time we

need to choose kj such that
k2j
2
− kjc1 =

k∗j
2

2
+ k∗j c1, so kj = k∗j +2c1. Similarly, mul-

tiplying the two equations by e−k
∗

j b1 and ekjb1 respectively, and taking substraction

to get the following equation,

ekjb1+k
∗

j b2E

[

e−(
k∗j

2

2
−k∗j c2)τ21I2]− e−(k∗j b1+kjb2)E

[

e−(
k2j
2
+kjc2)τ21I2] =
ekjb1 − e−k

∗

j b1

j = 0, 2, 4, · · ·

In addition, increase j to j+1 in equation (4.28) and let
k2j
2
+ kjc2 =

k∗j+1
2

2
− k∗j+1c2,
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then k∗j+1 = kj + 2c2. We define that A∗
j = E[e−(

k∗j
2

2
−k∗j c2)τ21I2 ], then

A∗
j+1 = E

[

e−(
k∗j+1

2

2
−k∗j+1c2)τ21I2] = E

[

e−(
k2j
2
+kjc2)τ21I2]

Therefore,

A∗
j = e−(b1+b2)(kj+k∗j )A∗

j+1 + e−k
∗

j b2
[

1− e−b1(kj+k
∗

j )
]

= e−2(b1+b2)(k∗j+c1)A∗
j+1 + e−k

∗

j b2
[

1− e−2b1(k∗j+c1)
]

(4.37)

since kj + k∗j = 2(k∗j + c1).

We noticed that equation (4.37) is same to equation (4.34) but b1, c1 and kj are

replaced by b2, c2 and k∗j respectively.

4.3 Stochastic boundaries

4.3.1 Compound Poisson process

General case

Consider the standard Brownian motion {Xt}t≥0 again, with boundaries such that

Zt =
∑N(t)

i=1 Yi + b, where N(t) is a Poisson process with rate λ and the jump

size Yi > 0 has distribution function H(y). Define the first-passage time as τ =

inft>0{t : |Xt| ≥ Zt}, the first time that Xt exceeds one of the two boundaries, with

the convention τ = ∞ if |Xt| < Zt for all t > 0.

Theorem 4.17. Let ϕ(γ) be the Laplace transform of the distribution function of

Yi, then the probability for Xt exceeds any one of the two boundaries, Zt and −Zt
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can be obtained via

E
[

e−θ0Zτ1{τ<∞}
]

= E
[

e−(2γn−θn)Zτ1{τ<∞}
]

+
n
∑

j=0

(−1)je−γjb(ekjx0 + e−kjx0) (4.38)

by letting θ0 = 0 and n → ∞, where γn and kn are the constants of the martingale,

e−γZt
(

ekXt + e−kXt
)

, and,

θ0 = γ0 −
√

2λ(1− ϕ(γ0))

θn = γn −
√

2λ(1− ϕ(γn))

Proof. The martingale that we are interested in is e−γZt(ekXt + e−kXt), where γ

and k are nonnegative constants. To determine them, let ϕ(γ) =
∫∞
0
e−γydH(y) be

the Laplace transform of the distribution function of Yi, H(y). One can find that

λ(1− ϕ(γ)) = 1
2
k2 by equation (4.15), we notice that the two values of k will yield

the identical martingales, so we will let k =
√

2λ(1− ϕ(γ)).

Due to the martingale property,

E
[

e−γZt
(

ekXt + e−kXt
)1{τ<t}

]

+ E
[

e−γZt
(

ekXt + e−kXt
)1{τ≥t}

]

= E
[

e−γZ0
(

ekX0 + e−kX0
)]

(4.39)

E
[

e−γZτ
(

ekXτ + e−kXτ
)1{τ<∞}

]

= e−γb
(

ekx0 + e−kx0
)

(4.40)

When t tends infinity, Xt

t
→ 0 and Zt

t
→ λE(Yi), then the second term on the left
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hand side of equation (4.39) becomes,

lim
t→∞

E
[

e−γZt
(

ekXt + e−kXt
)1{τ≥t}

]

= E

[

lim
t→∞

e−γZt+kXt1{τ≥t} + lim
t→∞

e−γZt−kXt1{τ≥t}

]

= E

[

elimt→∞ −t(γ Zt
t
−kXt

t
)1{tau=∞}

]

+ E

[

elimt→∞ −t(γ Zt
t
+k

Xt
t
)1{τ=∞}

]

= 0

Hence, equation (4.40) follows immediately.

Since we assume that the two stochastic boundaries are symmetric about the

time horizon, consider the set of the following equations only, for j = 0, 1, 2, · · · ,

E
[

e−γ0Zτ
(

ek0Xτ + e−k0Xτ
)1{τ<∞}

]

= e−γ0z0
(

ek0x0 + e−k0x0
)

;

· · ·

E
[

e−γjZτ (ekjXτ + e−kjXτ )1{τ<∞}
]

= e−γjz0
(

ekjx0 + e−kjx0
)

; (4.41)

E
[

e−γj+1Zτ (ekj+1Xτ + e−kj+1Xτ )1{τ<∞}
]

= e−γj+1z0
(

ekj+1x0 + e−kj+1x0
)

(4.42)

as kj =
√

2λ(1− ϕ(γj)), equations (4.41) and (4.42) can be rewritten as,

E

[

e−(γj−
√

2λ(1−ϕ(γj )))Zτ1{τ<∞}

]

+ E

[

e−(γj+
√

2λ(1−ϕ(γj )))Zτ1{τ<∞}

]

= e−γjb
(

ekjx0 + e−kjx0
)

(4.43)

E

[

e−(γj+1−
√

2λ(1−ϕ(γj+1)))Zτ1{τ<∞}

]

+ E

[

e−(γj+1+
√

2λ(1−ϕ(γj+1)))Zτ1{τ<∞}

]

= e−γj+1b
(

ekj+1x0 + e−kj+1x0
)

(4.44)

In equations (4.43) and (4.44), we choose γj such that,

γj +
√

2λ(1− ϕ(γj)) = γj+1 −
√

2λ(1− ϕ(γj+1)) (4.45)
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so when subtracting equation (4.43) from equation (4.44) for j = 0, 2, 4, · · · , we get

the following equations,

E

[

e−(γj−
√

2λ(1−ϕ(γj )))Zτ1{τ<∞}

]

− E

[

e−(γj+1+
√

2λ(1−ϕ(γj+1)))Zτ1{τ<∞}

]

= e−γjb
(

ekjx0 + e−kjx0
)

− e−γj+1b
(

ekj+1x0 + e−kj+1x0
)

(4.46)

Using equation (4.45), when summing up equation (4.46) over j, we have,

E

[

e−(γ0−
√

2λ(1−ϕ(γ0)))Zτ1{τ<∞}

]

− E

[

e−(γn+
√

2λ(1−ϕ(γn)))Zτ1{τ<∞}

]

=

n
∑

j=0

(−1)je−γjb
(

ekjx0 + e−kjx0
)

(4.47)

Now let θ0 = γ0 −
√

2λ(1− ϕ(γ0)), then θn = γn −
√

2λ(1− ϕ(γn)) and γn +
√

2λ(1− ϕ(γn)) = 2γn−θn. The equation (4.47) becomes to (4.38) in Theorem 4.17.

In the rest of the section, we derive the first-passage time probability of bound-

aries with two specific jumps, exponential and constant.

Compound Poisson process with Exponential jumps

Theorem 4.18. Suppose that the standard Brownian motion {Xt}t≥0 with bound-

aries which are compound Poisson processes, such as Zt =
∑N(t)

i=1 Yi + b, and ex-

ponential jump sizes Y ′
i s, initially starts from 0. The first-passage time probability

is

P(τ <∞) = 2
∞
∑

j=0

(−1)je−γjb (4.48)
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where γj =
αk2j

2λ−k2j
and k′js are satisfied the equation (4.49) with k0 =

√
α2+8λ−α

2
,

(2λ− k2j )k
2
j+1 + 2λαkj+1 − 2λαkj + 2λk2j − 4λ2 = 0 (4.49)

λ and 1
α
are rate of Poisson process and mean of exponential jumps respectively.

Proof. The the proof is modification of the proof for Theorem 4.17. When the jump

size, Yi, is exponentially distributed with parameter α, ϕ(γj) =
∫∞
0
e−γjyαe−αydy =

α
α+γj

. Hence the constants of the martingale in Theorem 4.17 are kj =
√

2λγj
α+γj

and

γj =
αk2j

2λ−k2j
. Similarly, we want kj satisfies equation (4.45), which means,

αk2j
2λ− k2j

+ kj =
αk2j+1

2λ− k2j+1

− kj+1

which yields equation (4.49) in Theorem 4.18, hence k′js satisfy the recurrence rela-

tion, such that,

kj+1 =

√

λ2α2 + 2λ(2λ− k2j )(αkj − k2j + 2λ)− αλ

2λ− k2j

Moreover, θj =
αk2j

2λ−k2j
− kj =

kj(k2j+αkj−2λ)

2λ−k2j
in equation (4.38), Theorem 4.17. Letting

θ0 = 0, the initial value, k0, can be found by λ and α only, which is k0 =
√
α2+8λ−α

2
.

Since both the parameters α and λ are nonnegative. Equation (4.38) becomes to,

P(τ <∞) = E
[

e−(2γn−θn)Zτ1{τ<∞}
]

+

n
∑

j=0

(−1)je−γjb
(

ekjx0 + e−k0x0
)

(4.50)

Because that we are concerned about the boundary crossing probability over an

infinity time interval, to the extent of Theorem 4.17, equation (4.49) can be rewritten
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as

(2λ− k2j )(k
2
j+1 − k2j ) + 2λα(kj+1 − kj)− (2λ− k2j )

2 = 0

(2λ− k2j )(k
2
j+1 − 2λ) + 2λα(kj+1 − kj) = 0 (4.51)

Denote limj→∞ kj = k and because of equation (4.51), we get that limj→∞ kj =
√
2λ,

both γj and θj are monotonic functions, then equation (4.50) becomes,

P(τ <∞) =

∞
∑

j=0

2(−1)je−γjb

with the assumption that the process starts from 0, i.e. x0 = 0.

Numerical solutions To illustrate the use of Theorem 4.18, we set the following

example values of the first-passage time probabilities for different combinations of

the variables (λ, α, b) and the outcomes are present by Table 4.1. In Table 4.1,

there are the boundary crossing probabilities, according to equation (4.48), for λ =

0.05, 0.1, 1 and α = 1
50
, 1
20
, 1
10
, with 8 different starting positions of the boundaries,

b = 1,2,3,4,5,10,15,20. We have that the first-passage time probabilities reach the

tabulated values very quickly (smaller value of b, more iterations required, but at

most 16 iterations are sufficient), i.e. in equation (4.48),

P(τ <∞) = 2

∞
∑

j=0

(−1)je−γjb ≈ 2

16
∑

j=0

(−1)je−γjb

Meanwhile, the values of kj (Table C.1-C.9), which are varied by λ, the rate of

Poisson process, particularly, convergence fast.

On the other hand, the values of both θj and γj (Table C.1-C.9) are strictly

increasing. Although, it has not been shown on the tables, if we use more iterations
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Table 4.1: first-passage time probabilities for various values of λ, α, b
b λ = 0.05 λ = 0.1 λ = 1

α = 1
50

1 0.9557 0.9124 0.4633
2 0.8394 0.7116 0.1202
3 0.6897 0.5028 0.0296
4 0.5416 0.3378 0.0073
5 0.4135 0.2219 0.0018
10 0.0932 0.0252 1.59× 10−6

15 0.0202 0.0028 1.42× 10−9

20 0.0044 0.0003 1.27× 10−12

α = 1
20

1 0.9609 0.9191 0.4697
2 0.8547 0.7277 0.1238
3 0.7134 0.5228 0.0309
4 0.5694 0.3570 0.0077
5 0.4419 0.2382 0.0019
10 0.1074 0.0291 1.85× 10−6

15 0.0250 0.0035 1.78× 10−9

20 0.0058 0.0004 1.71× 10−12

α = 1
10

1 0.9685 0.9295 0.4803
2 0.8779 0.7535 0.1299
3 0.7500 0.5559 0.0333
4 0.6148 0.3896 0.0085
5 0.4894 0.2665 0.0022
10 0.1338 0.0366 2.36× 10−6

15 0.0348 0.0050 2.56× 10−9

20 0.0090 0.0006 2.78× 10−12
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(j > 16, j → ∞), both θj and γj are intending to infinity numerically, so does

2γj − θj . Hence, the term E[e−(2γn−θn)Zτ1{τ<∞}] in equation (4.50) will equal to 0

for large n.

Figure 4.1: First-passage probabilities of Theorem 4.18 for various values of b
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Figure 4.1 illustrates the results in Table 4.1 across for various values of b, where

horizontal axis is the value of b and vertical axis represents the probabilities. In

the figure, the plots are separated into different groups. In each group, the three

plots have equal λ in common but α, the lighter the color of the curve, the larger

the value of α. Within groups, from b = 0 till the point where the curves reach

the maximum, they do not apart away from others; after the peak, the probabilities

with the same λ tend to be separated; nevertheless, a confluence is achieved at the

end (i.e b = 20). Among groups of curves, although the maximums occurre over a

short interval of b, the order still can be observed. The green curves, which indicate

λ = 1, show the peak at the first while b is changing, followed by curves with λ
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decreasing. Moreover, when the frequency of changes for boundaries becomes higher

and higher, the difference between first-passage time probabilities are becoming less

and less visible. Figures 4.2-4.5 give extra illustrations over a wilder range of λ and

α. To conclude, it indicates that, in comparison with the effect of the value of λ, the

rate of Poisson process, the values of the mean size of exponential jumps, 1
α
, vary the

probabilities over a more narrower interval. Last but not least, the initial value of

boundaries is the most deterministic factor to the boundary crossing probabilities,

when a boundary starts from b ≥ 20 initially, it is less likely to cross it ultimately.

Monte Carlo simulation results The corresponding simulated results are pro-

vided in this section. A discrete time standard Brownian motion is generated by

Monte Carlo Markov Chain, and the two symmetric compound Poisson processes

with exponential changes are simulated in the same time horizon. In the simulation,

we investigate the number of times when the standard Brownian motion meets up

with one of the boundaries over 1000 simulations. 100 repeats are carried out, the

results are averaged.

Table 4.2 are the simulated corresponding probabilities and the associated vari-

ances are in parentheses. For different values of b, the interval needs to be fined at

different levels for the simulated discrete time standard Brownian motion. However,

generally speaking, the simulated averaged probabilities closely agree with the ones

in Table 4.1.

Compound Poisson process with constant jumps

When the jump sizes are identical and equal to a constant, say c > 0, the boundaries

become to |Zt| = b+ cNt, where Nt is a Poisson process with parameter λ. To find

the probabilities P(τ >∞), by the definition of function ϕ(γj) in Theorem 4.17, we
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Figure 4.2: 1
α
= 1, 1

20
, 1
50
, 1
100
, 1
500
, 1
1000

, λ ∈ [0, 1000]
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Figure 4.3: 1
α
= 1, 1
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, 1
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, 1
1000

, λ ∈ [0.05, 1]



4.3. STOCHASTIC BOUNDARIES 122

Figure 4.4: λ = 1
20
, 1
10
, 1, 10, 100, 1000, α ∈ [ 1

1000
, 1]
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Figure 4.5: λ = 1
20
, 1
10
, 1, 10, 100, 1000, α ∈ [ 1

5000
, 1
1000

]
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Table 4.2: Simulated mean probabilities and its variance
b λ = 0.05 λ = 0.1 λ = 1

α = 1
50

1 0.9554 (0.000046) 0.9141 (0.000088) 0.4633 (0.000224)
2 0.8309 (0.000149) 0.6995 (0.000254) 0.1273 (0.000125)
3 0.6895 (0.000231) 0.5046 (0.000293) 0.0258 (0.000024)
4 0.5412 (0.000238) 0.3311 (0.000195) 0.0071 (0.000007)
5 0.4123 (0.000256) 0.2269 (0.000166) 0.0020 (0.000002)
10 0.0968 (0.000083) 0.0264 (0.000032) 0.0000 (0.000000)
15 0.0274 (0.000026) 0.0029 (0.000003) 0 (0)
20 0.0041 (0.000004) 0.0003 (0.000000) 0 (0)

α = 1
20

1 0.9637 (0.000038) 0.9172 (0.000068) 0.4645 (0.000269)
2 0.8743 (0.000118) 0.7147 (0.000173) 0.1212 (0.000107)
3 0.6880 (0.000206) 0.5229 (0.000198) 0.0307 (0.000029)
4 0.5676 (0.000266) 0.3491 (0.000307) 0.0074 (0.000007)
5 0.4572 (0.000234) 0.2381 (0.000148) 0.0013 (0.000001)
10 0.1037 (0.000116) 0.0310 (0.000027) 0.0000 (0.000000)
15 0.0267 (0.000026) 0.0036 (0.000004) 0 (0)
20 0.0067 (0.000007) 0.0009 (0.000001) 0 (0)

α = 1
10

1 0.9665 (0.000031) 0.9272 (0.000056) 0.4868 (0.000237)
2 0.8767 (0.000105) 0.7553 (0.000176) 0.1317 (0.000117)
3 0.7495 (0.000165) 0.5466 (0.000211) 0.0334 (0.000030)
4 0.6230 (0.000244) 0.3886 (0.000234) 0.0088 (0.000009)
5 0.4904 (0.000187) 0.2610 (0.000227) 0.0028 (0.000003)
10 0.1328 (0.000132) 0.0347 (0.000039) 0.0000 (0.000000)
15 0.0364 (0.000037) 0.0057 (0.000007) 0 (0)
20 0.0090 (0.000008) 0.0009 (0.000001) 0 (0)
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find that, as similar as the proof of Theorem 4.17, ϕ(γj) = E[e−γjc] = e−γjc, and

γj = −1

c
ln

(

1−
k2j
2λ

)

By choosing γj and kj to satisfying equation (4.45), we have,

γj + kj = γj+1 − kj+1

2c− k2j
2c− k2j+1

= ec(kj+kj+1)

The initial k0 can be found by letting γ0 − k0 = 0, in other words,

e−ck0 +
k20
2λ

− 1 = 0

which could not be solved explicitly.

4.3.2 Telegraph process

A telegraph process is the path of a particle starts from the origin with constant

velocity c1 or−c2 with equal probability 1
2
. The switch between positive and negative

velocities is determined by a non-homogeneous Poisson process N(t). The current

velocity V = V (t), t > 0 switches from c1 to −c2 after an exponentially distributed

time with parameter λ1, and from −c2 to c1 after a random time with exponential

distribution with parameter λ2. The time intervals separated by velocity changes

are independent random variables.
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The displacement X(t) is defined by X(t) = v(0)
∫ t

0
(−1)N(s)ds, where

V (0) =











c1 with probability 1
2

−c2 with probability 1
2

Figure 4.6 is an example of a Telegraph process with c1 = c2 and λ1 = λ2 [19].

Figure 4.6: An example sampling of a Telegraph process with c1 = c2, λ1 = λ2

Define the following two functions

f1(x, t)dx = P(X(t) ∈ dx, V (t) = c1)

f2(x, t)dx = P(X(t) ∈ dx, V (t) = −c2)

They are the well-known solutions of the following partial differential equations [34]

∂f1
∂t

= −c1
∂f1
∂x

+ λ2f2 − λ1f1 (4.52)

∂f2
∂t

= c2
∂f2
∂x

+ λ1f1 − λ2f2 (4.53)
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Moreover, define that p = f1 + f2 and w = f1 − f2, it follows that, (4.52)+(4.53):

∂f1
∂t

+
∂f2
∂t

= −c1
∂f1
∂t

+ λ2f2 − λ1f1 + c2
∂f2
∂t

+ λ1f1 − λ2f2

∂p

∂t
= −c1

2

∂p

∂x
− c1

2

∂w

∂x
+
c2
2

∂p

∂x
− c2

2

∂w

∂x
∂p

∂t
= −c1 − c2

2

∂p

∂x
− c1 + c2

2

∂w

∂x
(4.54)

(4.52)-(4.53):

∂f1
∂t

− ∂f2
∂t

= −c1
∂f1
∂x

+ λ2f2 − λ1f1 − c2
∂f2
∂x

− λ1f1 + λ2f2

∂w

∂t
= −c1 + c2

2

∂p

∂x
− c1 − c2

2

∂w

∂x
− 2λ1f1 + 2λ2f2

∂w

∂t
= −c1 + c2

2

∂p

∂x
− c1 − c2

2

∂w

∂x
− (λ1 − λ2)p− (λ1 + λ2)w (4.55)

with subsequent differentiations and substitutions, we could get a second-order hy-

perbolic equation. Firstly, differentiate equation (4.54) with respect to t and x

respectively to get,

∂2p

∂t2
= −c1 − c2

2

∂2p

∂x∂t
− c1 + c2

2

∂2w

∂x∂t
(4.56)

∂2p

∂x∂t
= −c1 − c2

2

∂2p

∂x2
− c1 + c2

2

∂2w

∂x2
(4.57)

and then differentiate equation (4.55) with respect to x,

∂2w

∂x∂t
= −c1 + c2

2

∂2p

∂x2
− c1 − c2

2

∂2w

∂x2
− (λ1 − λ2)

∂p

∂x
− (λ1 + λ2)

∂w

∂x
(4.58)
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Finally, with appropriate substitutions, equation (4.56) becomes

∂2p

∂t2
= −c1 − c2

2

∂2p

∂x∂t
+

(

c1 + c2
2

)2
∂2p

∂x2
+
c1 − c2

2

c1 + c2
2

∂2w

∂x2

+(λ1 − λ2)
c1 + c2

2

∂p

∂x
− (λ1 + λ2)

c1 − c2
2

∂p

∂x
− (λ1 + λ2)

∂p

∂t

= −c1 − c2
2

∂2p

∂x∂t
+

(

c1 + c2
2

)2
∂2p

∂x2
−
(

c1 − c2
2

)2
∂2p

∂x2
− c1 − c2

2

∂2p

∂x∂t

+

[

(λ1 − λ2)
c1 + c2

2
− (λ1 + λ2)

c1 − c2
2

]

∂p

∂x
− (λ1 + λ2)

∂p

∂t

= (c2 − c1)
∂2p

∂x∂t
+ c1c2

∂2p

∂x2
+

1

2
[(λ1 − λ2)(c1 + c2)− (λ1 + λ2)(c1 − c2)]

∂p

∂x

−(λ1 + λ2)
∂p

∂t
(4.59)

where ∂p
∂x

and ∂2p
∂x∂p

are related to the drift of the motion.

In particular, if c1 = c2 = c and λ1 = λ2 = λ, equation (4.59) becomes

1

c

∂2p

∂t2
= c

∂2p

∂x2
− 2λ

c

∂p

∂t
(4.60)

The initial conditions of the telegraph equation are;

p(x, 0) = P(X(t) ∈ dx)

∂p

∂t

∣

∣

∣

∣

t=0

= 0

Equation (4.60) is the so called classical telegraph equation, and it has been stud-

ied in many papers by various authors (e.g. [11] [19] [24] [33] [45]). Most of the

important probabilistic distributions and representations have been obtained by a

number of different methods, in the rest of this section we are particularly going to

state the result by Orsingher [45] 2.

2the reason of picking up this set of result particularly is they are closely related to any further
result in this session
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Theorem 4.19 (Orsingher 1990). The explicit form of p(x, t) of a classical telegraph

equation is

p(x, t;λ, c) =
e−λt

2c

[

λI0

(

λ

c

√
c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√
c2t2 − x2

)]

(4.61)

for |x| < ct, and

I0(x) =

∞
∑

k=0

1

(k!)2

(x

2

)2k

is the Bessel function with imaginary argument of order zero.

Orsingher [45] also derived an alternative form of p(x, t;λ, c)

p(x, t;λ, c) =
λ

c
e−λtI0

(

λ

c

√
c2t2 − x2

)

+
1

2c

∂

∂t

[

e−λtI0

(

λ

c

√
c2t2 − x2

)]

(4.62)

In equation (4.62), the first term can be viewed as an overestimation of the density

which is corrected by its derivative.

There are two special cases of the classical telegraph equation. First of all, when

λ = 0, which means the probability of reversing direction is zero. So if an article

starts moving in one direction, it would never stop. This is a well-known classical

case of vibrating string. The other case is where both λ and c tend to infinity such

that 2λ
c2

= 1
D
, D is a constant. When λ → ∞, it means the velocity changes occur

continuously and 2λ
c2

→ 1
D

means the speed of the moving particle must become

infinite. Then the classical telegraph equation (4.60) becomes,

1

D

∂p

∂t
=
∂2p

∂x2

Hence, the limiting behavior of the telegraph becomes similar to that of Brownian

motion.
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Theorem 4.20 (Orsingher, 1990). If the distribution function of a classical telegraph

equation is given by equation (4.61), then we have

lim
λ→∞, 2λ

c2
→ 2

σ2

p(x, t;λ, c) =
1√

2πσ2t
e−

x

2σ2t

by letting 1
D
= 2

σ2
, which is indeed the transition density of a Brownian motion.

When c1 6= c2 and λ1 6= λ2, the motion differs from the classical case in the way

that it displays a drift, where one component depends on the different velocities and

the other on the different rates. The elimination of the drift requires the Lorentz

transformation of Special Relativity Theory [11], and it allows us to derive the

distribution of p(x, t;λ1, λ2, c1, c2).

Theorem 4.21 (Beghin, Nieddu and Orsingher, 2001). The distribution of the

position of the particle has been derived as

p(x, t;λ1, λ2, c1, c2) =
exp

(

−(λ2c1+λ1c2)
c1+c2

t+ λ2−λ1
c2+c1

x
)

c1 + c2

×
[

λ1 + λ2
2

I0

(

2
√
λ1λ2

c1 + c2

√

(x+ c2t)(c1t− x)

)

+
∂

∂t
I0

(

2
√
λ1λ2

c1 + c2

√

(x+ c2t)(c1t− x)

)

+
c1 − c2

2

∂

∂x
I0

(

2
√
λ1λ2

c1 + c2

√

(x+ c2t)(c1t− x)

)]

+
1

2
e−λ1tδ(x− c1t) +

1

2
e−λ2tδ(x+ c2t) (4.63)

for −c2t ≤ x ≤ c1t, where

I0(x) =
∞
∑

k=0

(x

2

)2k 1

(k!)2

is the zero-order Bessel function with imaginary argument, and Dirac’s Delta func-
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tion δ.

The classical approach based on Fourier transforms permits us to obtain the

characteristic function

F (β, t) =

∫ +∞

−∞
eiβxdp(x, t)

Theorem 4.22 (Beghin, Nieddu and Orsingher, 2001). The characteristic function

is

F (β, t) =
1

2
e−

1
2
[iβ(c2−c1)+(λ1+λ2)]t ×

[(

1 +
λ1 + λ2
B

)

e
t
2
B +

(

1− λ1 + λ2
B

)

e−
t
2
B

]

(4.64)

where

B =
√

(λ1 + λ2)2 − β2(c1 + c2)2 + 2iβ(c1 + c2)(λ2 − λ1)

for β ∈ R and t ≥ 0.

c2 = 0, λ1 ≤ λ2

Assuming that the negative velocity of the telegraph process is zero, c2 = 0, we

could represent the non-decreasing telegraph process as,

Zt =

N1(t)
∑

i=1

∫ si

0

c1dt

N1(t)
∑

i=1

c1si (4.65)

where N(t) is a Poisson process with parameter λ1 and si’s are exponentially dis-

tributed with parameter λ2 according to earlier notations. We notice that expres-

sion (4.65) is very similar to a compound Poisson process but the jumps are time-

dependent. Thus, the boundary crossing probabilities for a standard Brownian mo-

tion with boundaries such as the non-decreasing telegraph processes could be solved
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similarly as problem of the compound Poisson process with exponential jumps.

Corollary 4.4. For a standard Brownian motion {Xt}t≥0 with boundaries which are

symmetric non-decreasing telegraph processes, |Zt|, such that the negative velocity

is zero, and the process switches from increasing to constant over an exponential

distributed time with parameter λ1, and from constant to increasing after a random

time with exponential distribution with parameter λ2 ≥ λ1. The boundary crossing

probability, therefore, is

P (2)
u = P

(2)
l = 2

∞
∑

j=0

(−1)je−γjb

where γj =
k2jλ2

2λ1c1−k2j c1
and kj+1’s are the solutions of

(2λ1c1 − k2j c1)k
2
j+1 + 2λ1λ2kj+1 − 2λ1λ2kj + 2λ1c1k

2
j − 4λ21c1 = 0

with initial value k0 =

√
λ22+8λ1c21−λ2

2c1
.

Proof. Recalling the proof of Theorem 4.18, the Laplace transform ϕ(γ) of the jumps

is ϕ(γ) = λ2
λ2+c1γ

. When considering the martingale e−γZt(ekXt + e−kXt), coefficients

γ and k have to satisfy,

λ1

(

1− λ2
λ2 + c1γ

)

=
1

2
k2

i.e., γ = k2λ2
2λ1c1−k2c1 , we choose kj as equation (4.45) so that,

k2jλ2

2λ1c1 − k2j c1
+ kj =

k2j+1λ2

2λ1c1 − k2j+1c1
− kj+1

Thus, kj+1’s are the solutions of

(2λ1c1 − k2j c1)k
2
j+1 + 2λ1λ2kj+1 − 2λ1λ2kj + 2λ1c1k

2
j − 4λ21c1 = 0
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which is

kj+1 =

√

λ21λ
2
2 + 2λ1c1(2λ1 − k2j )(λ2kj − c1k

2
j + 2λ1)− λ1λ2

2λ1c1 − k2j c1

and k0 is found by solving c1k
2
0 + λ2k0 − 2λ1c1 = 0, so we have

k0 =

√

λ22 + 8λ1c21 − λ2
2c1

A number of probabilities has been calculated for various values of the parameters

λ1, λ2, c1 and b as examples in Table 4.3 - 4.4. Not surprisingly, it is straightforward

to conclude that when the time space between positive velocity c1 and zero velocity

is equal (i.e. λ1 = λ2), higher the positive velocity c1 is, lower the boundary crossing

probabilities are, and no large velocity is required to achieve a pair of ”untouchable”

boundaries in terms of probabilities. Moreover, the equal-valued exponential time

parameter is also important, a small increase of λ1 = λ2 will result a significant

change in the probabilities given all other parameters remain the same. The initial

position of the boundaries b is still crucial as emphasized in the compound Poisson

processes cases.

When the two exponential distribution parameters λ1 and λ2 are not equalled,

we notice that from Table 4.4 as long as λ1 ∝ λ2 at the same rate, for instance, λ1 =

0.5, λ2 = 5 and λ1 = 1, λ2 = 10, given the same positive velocity, the probabilities

are barely changed. Additionally, as expected the positive velocity c1 is negatively

related to the probabilities.
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Table 4.3: Boundary crossing probabilities when λ1 = λ2
λ1 = λ2 = 5

b c1 = 5 c1 = 1 c1 = 0.1
1 0.1337 0.4230 0.9999
2 0.0090 0.0935 0.9877
3 0.0006 0.0202 0.9249
4 0.0000 0.0044 0.8196
5 0.0000 0.0009 0.7012
10 0.0000 0.0000 0.2721
15 0.0000 0.0000 0.1008
20 0.0000 0.0000 0.0372

λ1 = λ2 = 1
b c1 = 5 c1 = 1 c1 = 0.1
1 0.5015 0.6629 0.9997
2 0.1427 0.2676 0.9856
3 0.0384 0.0995 0.9246
4 0.0103 0.0366 0.8232
5 0.0028 0.0135 0.7080
10 0.0000 0.0001 0.2804
15 0.0000 0.0000 0.1055
20 0.0000 0.0000 0.0396

Table 4.4: Some example values of first-passage time probabilities of λ1, λ2, c1 and b

b
c=0.05 c=0.02

λ1=0.5 λ1=1 λ1=3 λ1=0.5 λ1=1 λ1=3

λ2 = 5

1 0.4014 0.6665 0.9335 0.6948 0.8514 0.9734
2 0.1597 0.4405 0.8671 0.4848 0.7241 0.9468
3 0.0629 0.2886 0.8006 0.3369 0.6150 0.9202
4 0.0246 0.1874 0.7332 0.2337 0.5215 0.8937
5 0.0095 0.1207 0.6648 0.1619 0.4417 0.8672
10 0.0001 0.0119 0.3504 0.0253 0.1884 0.7334
15 0.0000 0.0010 0.1610 0.0038 0.0776 0.5962
20 0.0000 0.0001 0.0710 0.0006 0.0310 0.4644

λ2 = 10

1 0.1462 0.4031 0.7888 0.4593 0.6950 0.9104
2 0.0212 0.1610 0.6175 0.2175 0.4851 0.8278
3 0.0030 0.0637 0.4795 0.1012 0.3371 0.7518
4 0.0004 0.0250 0.3690 0.0470 0.2339 0.6820
5 0.0001 0.0097 0.2815 0.0218 0.1621 0.6178
10 0.0000 0.0001 0.0644 0.0005 0.0253 0.3694
15 0.0000 0.0000 0.0130 0.0000 0.0038 0.2131
20 0.0000 0.0000 0.0025 0.0000 0.0006 0.1189



4.4. APPLICATIONS AND CONCLUSIONS 135

4.4 Applications and conclusions

By deriving the unconditional boundary crossing probabilities for a standard Brow-

nian motion with symmetric and asymmetric linear boundaries, we demonstrate an

alternative method by applying the powerful tools as martingales and infinitesimal

generator of Brownian motion that allows to obtain a simple expression. Given the

raise of liquidity risk in large-valued interbank payment systems due to the reform,

we are concentrated on the problem of bilateral/multi-lateral limits exists in the

current UK payment system. The boundary crossing probabilities for a standard

Brownian motion with symmetric stochastic process boundaries are studied.

In the area of large-valued interbank payment systems, one of the potential ap-

plications of the results will be credit control of bilateral/multi-lateral limits, i.e.

Real Time Gross Settlement payment system in most of cases around the world.

Due to the feature of RTGS payment system, participating banks are required to

make payments immediately upon an order from ”customer(s)”, and the fact that

intra-day loan from central bank is costly, the incoming payments by others in the

system are important resources. They wish to use the liquidity in the most effec-

tive way, in the sense of minimizing unnecessary costs. The participating banks

inform central bank that they would generally set up a limit for the net position

with any other banks in the system, which is so called bilateral/multi-lateral limit,

and the limit made at the beginning of a business day are based on pervious busi-

ness day performances [9] [10]. In the course of the day, they would be adjusted

often under some circumstances. To the extent of policy maker on bilateral limits

in payment system, with the consideration of the results, participating banks are

suggested to make decisive regulations. Boundaries with lower boundary crossing

probabilities means that banks are in a strong position to control their exposures to



4.4. APPLICATIONS AND CONCLUSIONS 136

other participants.

Compound Poisson process boundaries Banks may think about changing the

frequency for adjusting the limits rather than making effort to change the

size of every single adjustment. Moreover, the initial position of the limit

should be taken into account. If a bank wishes to be generous and set up a

bilateral/multi-lateral limit where the other(s) are less likely to excess, it can

simply consider putting a relatively high starting value for the boundaries.

Non-decreasing telegraph process boundaries If banks are considering

changing limit over an exponential distributed time with the same parameter,

lower the intensity of changing, it is more likely the limits are surpassed by

others; and the intensity has a high sensitivity to the functionality of the

bilateral/

multi-lateral limits. Banks are also advised to look at their strategy to manage

the frequencies for adjustment. Nevertheless, banks should be aware that

even if the two time intervals are not identically distributed, as long as they

are proportional at the same rate, the efficacy of the limits will be affected

unnoticeably.



Chapter 5

Other non-decreasing Lévy

boundaries

In this chapter, we attempt to apply the methods we proposed in Chapter 4 to

broader and more complex non-decreasing Lévy processes as boundaries. Before

having look of individual subordinators, we will give a brief introduction to Lévy

process.

5.1 Introduction to Lévy process

First of all, we are going to present some of the most important definitions and

theories about Lévy process. Lévy process has right continuous path with left limit,

are initiated from the origin and has stationary and independent increments. The

formal definition is given below,

Definition 5.1. A process {Xt}t≥0 defined on a probability space (Ω,F ,P) is said

to be a Lévy process if it has the following properties:

1. The paths of X are P-almost surely right continuous with left limits.

137
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2. P(X0 = 0) = 1.

3. For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.

4. For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.

Let {Xt}t≥0 denote a Lévy process with triple (a, σ2, ν(dx)), where a ∈ R, σ2 > 0

and ν(dx) is the Lévy measure on R \ {0} and satisfying

∫

(1 ∧ x2)ν(dx) <∞

Now we define for all θ ∈ R, t ≥ 0,

Ψt(θ) = − logE
(

eiθXt
)

and for any Lévy process, we have that for all t ≥ 0,

E
(

eiθXt
)

= e−tΨ(θ)

where Ψ(θ) := Ψ1(θ) is the characteristic exponent of Xt. The Lévy-Khintchine

formula provides an expression of the characteristic exponent for Xt on a probability

space (Ω,F ,P),

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫

R

(

1− eiθx + iθx1{|x|≤1}
)

ν(dx)

Among all Lévy processes, there are ones whose paths are almost surely non-

decreasing, and they are called subordinators. The examples are including compound

Poisson process, Gamma process and Inverse-Gaussian process. The boundary cross-

ing probabilities for compound Poisson processes were discussed in Chapter 4, in rest
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of this chapter, Gamma process and Inverse-Gaussian process will be studied in de-

tails for the specific problem. Finally, we are studying the methods to approximate

a subordinator and extend our approach to a general case.

5.2 Gamma process

Gamma process is an example of subordinator, in which the increments are inde-

pendent and non-negative random variables that have a Gamma distribution with a

constant rate parameter, namely α, and time-dependent shape function, β(t). The

rate parameter α controls the size of increments, while shape parameter β controls

the rate of increments. However, a Gamma process is different from a compound

Poisson process in two ways: firstly, Gamma process’s Lévy measure has infinite total

mass unlike the Lévy measure of a compound Poisson process, which is necessarily

finite and equal to the arrival rate of jumps. Secondly, whilst a compound Poisson

process with positive jumps does have paths, that are almost surely non-decreasing,

it does not have paths that are almost surely strictly increasing [36].

For a Gamma process with parameters (α, β), the Lévy-Khintchine formula takes

the form

Ψ(θ) = β

∫ ∞

0

(1− eiθx)
1

x
e−αxdx = β log(1− iθ

α
)

To derive the boundary crossing probabilities for the standard Brownian motion

{Xt}t≥0 with symmetric Gamma process boundaries, the martingale should be con-

sidered is again of the form, e−γZt(ekXt + e−kXt), thus, the equation about γ and k,

β log
(

1 + γ
α

)

= 1
2
k2, therefore,

γ = α

(

e
k2

2β − 1

)

(5.1)
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We want that kj is chosen to satisfy,

α

(

e
k2j
2β − 1

)

+ kj = α

(

e
k2j+1
2β − 1

)

− kj+1

kj+1 + kj = α

(

e
k2j+1
2β − e

k2j
2β

)

(5.2)

with initial k0 is the root of γ0 − k0 = 0, i.e.,

α

(

e
k20
2β − 1

)

− k0 = 0 (5.3)

and it can be solved numerically. Given that k0 6= 0, some numerical examples are

tabulated in Table 5.1.

Table 5.1: example k0’s for different α and β of equation (5.3)
β α k0

1
1 1.2859
5 0.3853
10 0.1980

10
1 6.3068
5 3.1103
10 1.8362

20
1 9.7458
10 3.4381
20 1.9102

30
5 7.3734
20 2.8073
30 1.9381

50
10 7.4688
20 4.5089
50 1.9618

100
20 8.3558
50 3.8534
100 1.9805

1000
200 9.7636
500 3.9841
1000 1.9980
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Further calculations show that with these initial k0’s, the recurrence relation (5.2)

produces two values of kj; one is the opposite value of kj−1, denoted as k
(1)
j , and

keeps alternating for j = 1, 2, · · · , hence, γ(1)j given by equation (5.1) will remain

unchange. The other one, k
(2)
j , could yield a negative infinite kn for large n, thus,

γ
(2)
j tends to positive infinite at a higher speed.

From the proof of Theorem 4.17, when equation (5.3) holds, we have

P(τ <∞) = E

[

e−(γ
(2)
n +k

(2)
n )zτ1{τ<∞}

]

+ 2
n
∑

j=0

(−1)je−γ
(2)
j b (5.4)

and in the first term of the right-hand side of the equation, as n→ +∞,

γ(2)n + k(2)n = α

(

e
(k

(2)
n )2

2β − 1

)

+ k(2)n → +∞

and the expectation term vanished, therefore, we could only obtain the numerical

values by

P(τ <∞) = 2

+∞
∑

j=0

(−1)je−γ
(2)
j b

5.3 Inverse-Gaussian process

Another well-known example of subordinator is Inverse-Gaussian process, which

describes the time a Brownian motion with positive linear drift takes to hit a posi-

tive level. Assuming that the Brownian motion is in the form of σBt+ νt, where Bt

denotes a standard Brownian motion, then the stopping time τa has an Inverse Gaus-

sian distribution with mean µ = a
ν
and shape parameter λ = a2

σ2
. Its characteristic

exponent takes the form of

Ψ(θ) =
a

σ2

(

ν −
√
ν2 − 2iθ

)
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Thus, an equation about γ and k is, when considering the martingale e−γZt(ekXt +

e−kXt),

λ

µ

(
√

1 +
2µ2γ

λ
− 1

)

=
1

2
k2

Then, γ = (µk2+2λ)2

8λµ2−4λ2
. According to equation (4.45), kj’s have to satisfy the following

equation,

µk3j+1 − µkjk
2
j+1 + (µk2j + 4λ)kj+1 − µk3j − 4λkj − 8µλ = 0 (5.5)

where the solutions are

k
(1)
j+1 =

1

3

Dj

µ
− 2

3

µk2j + 6λ

Dj
+

1

3
kj (5.6)

k
(2)
j+1 = −1

6

Dj

µ
+

1

3

µk2j + 6λ

Dj
+

1

3
kj +

√
3

2
i

(

1

3

Dj

µ
+

2

3

µk2j + 6λ

Dj

)

(5.7)

k
(3)
j+1 = −1

6

Dj

µ
+

1

3

µk2j + 6λ

Dj
+

1

3
kj −

√
3

2
i

(

1

3

Dj

µ
+

2

3

µk2j + 6λ

Dj

)

(5.8)

where

Dj =
[(

10µk3j + 36λkj + 108λµ+ 6
√
3Cj

)

µ2
]

1
3

Cj =

√

µ3k6j + 8µ2k4jλ+ 20µk2jλ
2 + 16λ3 + 20µ3k3jλ+ 72λ2kjµ2 + 108λ2µ3

µ

Because that equation (5.5) would have a real root and two conjugate complex roots

for sure, instead of using the martingale in the form of e−γZt(ekXt +e−kXt), given the

formulae of kj+1, let us consider a new martingale, e−γZteφXt(eiψXt + e−iψXt). With
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such substitutions, we have,

φj+1 = −1

6

Dj

µ
+

1

3

µk2j + 6λ

Dj

+
1

3
kj

ψj+1 =

√
3

2

(

1

3

Dj

µ
+

2

3

µk2j + 6λ

Dj

)

k0 can be found by setting γ0 − k0 = 0, which is the solution of the equation

(5.9) below,

µk30 + 4λk0 − 8µλ = 0 (5.9)

It is clear that equation (5.9) has three roots; one real root and two conjugate

complex roots. The real root k
(+)
0 will be considered only.

5.4 Approximations of Lévy processes

Let {Xt}t≥0 denote a Lévy process with triple (a, σ2, ν(dx)) as defined early in this

chapter. The Lévy-Itô representation reveals the structure of a Lévy process as

Xt = at + σBt + lim
ǫ→0

{

∑

s≤t
J(s)1{|J(s)|>1} − t

∫

ǫ<|x|<1

xν(dx)

}

(5.10)

where Bt denotes a standard Brownian motion that is independent of the jump

process J(s). The Lévy measure, ν(dx), thus is the intensity of jumps of size x.

There exists a probability space on which independent Lévy processes exist, and a

Lévy process can be represented by three components such as

Xt = X(1) +X(2) +X(3)

where
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• X(1) is a linear Brownian motion with drift

• X(2) is a compound Poisson process

• X(3) is a square integrable martingale with an almost surely countable number

of jumps on each finite time interval which are of martingales less than unity.

The Lévy measure ν(dx) indicates how the jumps occur. Jumps of sizes in

the set A occur according to a Poisson process with intensity parameter λA =
∫

A
ν(dx).

When ν(R) < ∞ and
∫

(|x| ∧ 1)ν(dx) < ∞, then
∑

s≤t |J(s)| < ∞ almost surely,

equation (5.10) can be reduced to

Xt = µt+ σBt +
∑

s≤t
J(s) (5.11)

with µ = a−
∫

|x|<1
xν(dx).

Note that since Brownian motion has infinite variation, a Lévy process has

bounded variation on each time interval if and only if it does not have Brownian

component (i.e. σ2 = 0).

Approximated Lévy processes have been applied to option pricing in recent years,

for instance, pricing 50% recovery rate equity default swaps (EDS) contracts [5],

pricing American options in models where a multi-normal model was used to ap-

proximate the general exponential Lévy process that the stock prices followed [39]

and approximation of the prices and sensitivities of barrier options in generalised

exponential Lévy processes [32].
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5.4.1 Methods of approximations

So far, the method we proposed to derive the boundary crossing probabilities when

the boundaries are non-decreasing Lévy processes (subordinators), by using mar-

tingales and the properties of individual subordinators, produced a desirable result

when the boundaries are compound Poisson processes. We are aim to represent most

of the non-decreasing Lévy processes by the compound Poisson processes, thereby,

the method is becoming applicable to more situations. In this section, the three

most well-known techniques will be exploited.

Random walk approximation

Let {Xjh}j=0,1,2,··· be a discrete random walk, if a simulation method (at least an

approximation) of Xh is available, then we could approximate {Xt}t≥0.

In details, let Xt be a Lévy process determined by the Lévy-Khintchine formula,

Ψ(u) = iau− σ2u2

2
+

∫ +∞

−∞

(

eiux − 1− iux1{|x|≤1}
)

ν(dx)

with σ = 0 (no Brownian motion component) and an infinite Lévy measure ν(dx).

The time domain [0, T ) is made into partitions by letting h = T
n
, n ≥ 1, as [jh, (j +

1)h), for j = 0, 1, · · · . The original Lévy process has finite variance over each

interval. Then generate the increments ∆h
jX = Xjh − X(j−1)h as independent and

identically distributed random variables from the distribution Ph(·) = P(Xh ∈ ·),

which is subject to the original Lévy process and can be very complicated with

special functions. For k = 1, · · · , n− 1, let

Xh
t =











0 if t ∈ [0, h)

∑k
j=1∆

h
jX if t ∈ [jh, (j + 1)h)
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Hence, {Xh
t }0≤t<T is a random walk, by the theorems of Khinthine and Skorohod,

it was proved that a random walk can use to approximate a Lévy process [18].

Theorem 5.1 (Khintchine). As ∆k
jX, j = 1, · · · , n be independently identically

distributed with distribution changing with n ≥ 1, and such that ∆h
jX → 0 in

probability as n tends to infinity. If Xh
t → Z in distribution, then Z has a so-called

infinity divisible distribution.

Theorem 5.2 (Skorohod). In Theorem 5.1, j ≥ 1, n ≥ 1, Xh
t =

∑k
j=1∆

h
jX → Xt

in distribution as n→ ∞. Furthermore, X(n) → X where X is a Lévy process.

The biggest drawback of the random walk approximation is that the location

and size of large jumps could not be precisely identified, which causes uncertainties

especially in the heavy tail cases. Moreover, because of the complication of the

density function of Xh, the simulation could be numerically tedious.

Series representations of Lévy processes

Rosiński presented a comprehensive list of generating series representations of Lévy

process [53]. We extend his work to Lévy processes over any arbitrary finite interval

[0, T ].

Consider a Lévy process {Xt}0≤t≤T , by the Lévy-Itô integral representation

(5.10), for every t ≥ 0,

Xt = at +

∫

|x|≤1

x [N([0, t], dx)− tν(dx)] +

∫

|x|>1

xN([0, t], dx) (5.12)

where N is the jump process of Xt, and itself is a Poisson point process.

Suppose that the jumps of Xt are J1, J2, · · · , which are specified by a particular
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distribution, say fj , then N has representation

N =
∞
∑

i=1

δ(Ui, Ji)

where δ(·) denotes the dirac measure, and Ui’s are independent and identically

distributed random variables on [0, T ], which are independent of Ji’s.

Assume that there exists a small number, named ǫ, then if we define

Xt(ǫ) = at +

∫

1
ǫ
≤|x|≤1

x [N([0, t], dx)− tν(dx)] +

∫

|x|>1

xN([0, t], dx) (5.13)

then

Xt(ǫ) =
∑

i∈Λn

Ji1{Ui≤t} − tbn (5.14)

where

bn =

∫

1
ǫ
≤|x|≤1

tν(dx)− a Λn = {i ≥ 1 : |Ji| ≥
1

ǫ
}

Thus,
∑

i∈Λn
Ji1{Ui≤t} − tbn → X(t) almost surely, as n→ ∞.

Generally, a series representation of Xt is obtained by placing the random set

Λn in expression (5.14) by a non-random set {1, 2, · · · , n}, which yields

Xt =

∞
∑

i=1

(

Ji1{Ui≤t} − tci
)

(5.15)

almost surely, for a suitable ci.

Rosiński has investigated various properties of {Xt}0≤t≤T [53]. Most importantly,

in terms of speed of convergence of a series representation, the method of enumerat-

ing Ji’s is a priority that needs to be considered. Beside, other properties such the
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need to center with certain ci’s also depend on the specific representation of Ji’s.

Bondesson proposed a method to obtain a nonnegative infinitely divisible random

variable as a shot noise [13]. In details, defining a probability kernel from (0,∞) to

Rd, namely γ, and let Ji be a set of Rd-valued conditionally independent random

variables given Γk such that

P(Ji ∈ A|{Γk}k≥1, {Jk}k 6=i) = γ(Γi, A), A ∈ B(Rd)

where Γi’s are arrival times in a Poisson process with rate one. The probabilistic

structure of Ji’s can be better understood if we notice that Ji can be expressed as

Ji = H(Γi, Vi)

for some independent and identically distributed random variables Vi’s that are

independent of Ui’s (uniform on [0, T ]) and Γi’s, and a joint measurable Rd-valued

function H , such that

P(H(r, Vi) ∈ A) = γ(r, A), A ∈ B(Rd), r > 0

Therefore, a series representation of the Lévy process Xt, can be written from equa-

tion (5.15) as

Xt =

∞
∑

i=1

[H(Γi, Vi)1{Ui≤t} − tci] (5.16)

The choice of H and Vi’s is not unique, but they have to satisfy the condition

∫ +∞

−∞
f(x)ν(dx) =

1

T

∫ +∞

0

E[f(H(r, V ))]dr
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for a nonnegative Borel function f(·) with f(0) = 0.

The convergence of generalised shot noise series was investigated in the existing

literature [53].

Theorem 5.3 (Rosiński 2001). •
∑∞

i=1H(Γi, Vi) converges almost surely if and

only if

1. Q is a Lévy measure on Rd
0, i.e.

∫

Rd

(|x|2 ∧ 1)Q(dx) <∞

2. a ≡ lims→∞A(s) exists in Rd, where

A(s) =

∫ s

0

∫

|x|<1

xP(H(r, Vi) ∈ dx)dr, s ≥ 0

If (1) and (2) are satisfied, then L(∑∞
i=1H(Γi, Vi)) is infinitely divisible with

characteristic function φ(u) given by

φ(u) = exp

[

iua+

∫

Rd
0

(

eiux − 1− iux1{|x|≤1}
)

Q(dx)

]

(5.17)

• If only (1) holds, then
∑∞

i=1[H(Γi, Vi) − ci] converges almost surely for ci =

A(i) − A(i − 1). The characteristic function is given by equation (5.17) with

a = 0.

The series representations approximations of Lévy process are easy to simulate

in most of the cases. Quite commonly, the largest jumps of a Lévy process would

appear at the early stage of the series. The disadvantage about this method is that

the speed of converge maybe slow for some reasons, consequently, a huge number of
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iterations are needed to be generated to reach a satisfactory approximation, however,

a slow convergence may be not an important issue for some applications.

Poisson and Gaussian approximations

The problem is closely related to the simulation of a Lévy process based on series

representations. When the series converge slowly, the normal/Gaussian approxima-

tion of the small jumps is advisable.

Let us consider the Lévy process {Xt}t≥0 with triple (a, σ2, ν(dx)) again, it can

be decomposed into a sum of two independent Lévy processes,

Xt = Xǫ
t +Xt(ǫ) (5.18)

where {Xǫ
t}t≥0 is a compound Poisson process with a drift, the distribution of jumps

is proportional to νǫ = ν(|x| > ǫ). {Xt(ǫ)}t≥0 has mean µ and Lévy measure

ν(|x| ≤ ǫ). Then Xt(ǫ) can be viewed as the small jumps part of the original

Lévy process, hence we could simulate the right-hand side of equation (5.18) as an

approximation to {Xt}t≥0.

First of all, we discretize the Lévy measure ν(dx) by choosing some small ǫ ∈

(0, 1), then make a partition of R\[−ǫ, ǫ] of the following form, for any ai ∈ R,

a0 < a1 < · · · < ak = −ǫ, ǫ = ak+1 < ak+2 < · · · < ad+1

Jumps that are greater than ǫ, which are parts of Xǫ
t , are approximated by a sum

of independent Poisson processes as described below;

1. Set an independent Poisson processN (i)(t) for each interval [ai−1, ai), 1 ≤ i ≤ k

and [ai, ai+1), k + 1 ≤ i ≤ d, with intensity λi, given by the Lévy measure of
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the interval.

2. Choose a point Ji (the jump size) in each interval such that the variance

of the Poisson process matches the part of the variance of the Lévy process

corresponding to this interval.

In the finite variation case, small jumps do not need to be compensated and

we can use zero truncation function in the Lévy-Khintchine representation (5.10),

therefore,

Xt ≈ Xǫ
t

On the other hand, in the infinite variation case, the approximation of the small

jumps, Xt(ǫ), can simply be their mean value. However, when the intensity of

small jumps is high, this method may require simulating of an enormous number

of jumps to obtain a reasonable accuracy of the approximation. In that case, a

possible improvement is to consider the contribution from the variation of small

jumps. The small jumps are going to be replaced by a Brownian motion with

variance σ2
ǫ =

∫

|x|≤ǫ x
2ν(dx) [55].

The error process of approximating Xt using expression (5.18) is given by

Rǫ
t = −N ǫ

t + lim
δ→0

N δ
t (5.19)

where

N ǫ
t =

∑

s≤t
Js1{ǫ≤|x|≤1} − t

∫

ǫ≤|x|≤1

xν(dx)

and it is an infinity activity Lévy process with bounded jumps and, therefore, finite

variation,

V ar(Rǫ
t) = t

∫

|x|≤ǫ
x2ν(dx) = tσ2

ǫ
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Hence, the quality of the approximation depends on the speed at which σ2
ǫ converges

to zero as ǫ→ 0.

It can be shown that in many cases, the normalised error process, σ−1
ǫ Rǫ con-

verges to a Brownian motion in distribution.

Theorem 5.4 (Asmussen, Rosiński 2001). σ−1
ǫ Rǫ

t
d−→ W as ǫ → ∞ if the condition

holds,

lim
ǫ→∞

σǫ
ǫ

= ∞ (5.20)

Let Y ǫ
t = σ−1

ǫ Rǫ
t , the normalised error process, since the jumps of Rǫ are bounded

by ǫ, condition (5.20) means that the jumps of Y ǫ are bounded by some numbers

that converge to zero. In other words, the limiting process has no jumps. Also,

because Y ǫ, for every ǫ, is a Lévy process with zero mean and the variance of Y ǫ
1

is one, the limiting process will be a continuous Lévy process with mean zero and

variance at time 1 equals to one, thus, a standard Brownian motion. Therefore, a

better approximation will be of the form, when Wt denotes a Brownian motion,

X̃t = Xǫ
t + σǫWt

Asmussen and Rosiński also showed that the Brownian motion approximation of

small jumps is valid if and only if for each κ > 0,

σκσǫ∧ǫ ∼ σǫ as ǫ→ 0 (5.21)

Also, if the Lévy measure, ν(dx), does not have atoms in some neighborhood of the
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origin, then the two conditions (5.20) and (5.21) above are equivalent [4].

Therefore, using the Gaussian approximation, when a series representation is

available, Xt can be approximated by

at +

d
∑

i=1

Ji

(

N
(i)
t − λit1{|Ji|<1}

)

+ σ̃Wt (5.22)

with d independent Poisson processes N
(i)
t with intensity parameter λi, such that,

λi =











ν([ai−1, ai)) for i ∈ [1, k]

ν([ai, ai+1)) for i ∈ [k + 1, d]

J2
i λi =











∫ a−i
ai−1

x2ν(dx) for i ∈ [1, k]
∫ a−i+1

ai
x2ν(dx) for i ∈ [k + 1, d]

and σ̃ = σ when using mean to replace small jumps and σ̃2 = σ2 + σ2
ǫ when using

Gaussian approximation.

Note that in the case where small jumps are approximated simply by their ex-

pected value, if the original Lévy process has no Brownian component (i.e. σ = 0),

then neither does the approximating process. In the Gaussian approximation, a

Brownian term appears even when the original process does not have one.

The choice of the intervals [ai−1, ai) for 1 ≤ i ≤ k, and [ai, ai+1), k + 1 ≤ k ≤ d

is crucial. For Lévy measure on R, we typically set d = 2k, so that the number

of Poisson processes that reflecting a positive jump is same as the one reflecting a

negative jump. There are three different ways of choosing the intervals [55];

Equally spaced intervals We choose intervals that have equal length, i.e. |ai−1−

ai| is kept fixed for all i, i 6= k + 1.

Equally weighted intervals We choose to keep the intensities for the up-jumps
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and down-jumps corresponding to be constant. Thereby, the Lévy measures

of intervals on the negative part of the real line ν([ai−1 − ai)) are kept fixed

for all i ∈ [1, k], for equally weighted intervals. Similarly, the measure of

intervals corresponding to positive jumps ν([ai − ai+1)) is also kept fixed for

all i ∈ [k + 1, d). However, for equally weighted intervals, the outer intervals

can become very large.

Interval with inverse linear boundaries Suppose that the boundaries are given

by ai−1 = −α
i
and a2k+2−i =

α
i
, 1 ≤ i ≤ k + 1 and α > 0. This leads to much

more gradually decaying intensity parameters, λi, and no explosion to infinity

near zero.

To conclude the Poisson and Gaussian approximation, if the small jumps part

of a Lévy process has zero mean, or if the intensity of small jumps is relatively low,

it is, therefore, reasonable to discard them, and approximate the Lévy process by a

compound Poisson process (with a drift). This is so called Poisson approximation.

It converges uniformly in t on every finite interval, the series representations provide

a consistent way to construct such approximation. On the other hand, when neither

the small jumps tend to zero nor the intensity of small jumps is low, dropping them

from an approximation may lead to substantial error. In this case, we can simply

replace them with their mean value, or more precisely, use a Brownian motion with

small variance to approximate the small jumps, and it is called Gaussian approxi-

mation. The Gaussian approximation complements the series representations since

it is applicable particularly when the series converges slowly.
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5.4.2 Boundary crossing probability with approximated Lévy

processes

Given the downside of random walk approximation and the convergence issue of

series representations approximation, we construct an approximation for a Lévy

process by equation (5.18), which composing of d independent compound Poisson

processes with intensity λi, N
(i)
t , and a Brownian motion, Wt, with small variance

σ2 and a linear drift. The jump size of the compound Poisson process, N
(i)
t , is given

by a nonnegative constant ci, i = 1, · · · , d. Therefore, the approximation takes the

form of

|Z(1)
t | = b+

d
∑

i=1

ciN
(i)
t + σWt + at (5.23)

In this section, we investigate the probability for a standard Brownian motion,

{Xt}t≥0, that touches one of the boundaries |Z(1)
t | the first time without time limit

by modifying the method in Chapter 4.

Recall the proof of Theorem 4.17 in Chapter 4, the method of using martingales

and characteristic exponent of Lévy processes works well on non-decreasing Lévy

processes, thus, the result of a finite variation Lévy process can be obtained imme-

diately. As stated earlier in this section, a Lévy process has bounded variance if and

only it does not have any Brownian component. In other words, an approximation

by Poisson approximation of a Lévy process will be,

|Z(1)
t | = b+

d
∑

i=1

ciN
(i)
t (5.24)

The martingale that we are going to consider is e−γZt(ekXt + e−kXt), the equation
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that is needed to be solved for γ and k is

d
∑

i=1

λ1 −
1

γ

d
∑

i=1

λici =
1

2
k2

Then, in terms of k,

γ =
2
∑d

i=1 λici

2
∑d

i=1 λi − k2
(5.25)

with ϕ(γ) as defined in Theorem 4.17, is the Laplace transform of the distribution

function of jump size, ci, which is equal to ci
γ
, as the size of jumps in a single

compound Poisson process is constant.

As similarly as in Theorem 4.17, we choose kj such that,

2
∑d

i=1 λici

2
∑d

i=1 λi − k2j
+ kj =

2
∑d

i=1 λici

2
∑d

i=1 λi − k2j+1

− kj+1 (5.26)

The recurrent relation of kj+1’s is obtained as

kj+1 =

√

(
∑d

i=1 λici)
2 − 4(

∑d
i=1 λi − k2j )[

∑d
i=1 λik

2
j −

∑d
i=1 λicikj − 2(

∑d
i=1 λi)

2]

2
∑d

i=1 λi − k2j

−
∑d

i=1 λici

2
∑d

i=1 λi − k2j

by solving the quadratic equation from equation (5.26)

(

2
d
∑

i=1

λi − k2j

)

k2j+1 + 2
d
∑

i=1

λicikj+1 + 2
d
∑

i=1

λik
2
j

−2

d
∑

i=1

λicikj − 4

(

d
∑

i=1

λi

)2

= 0 (5.27)

We have notice that equation (5.27) is similar as equation (??) that the rate param-
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eter of the single compound Poisson process and constant jump size are substituted

by the terms above. Hence, the corollary follows,

Corollary 5.1. The boundary crossing probability for a pair of symmetric Lévy

boundaries approximated by the Poisson approximations could be obtained vi

P = 2
∞
∑

j=0

(−1)je−γjb

with initial k+0 = 1
3
A0 +

2
∑d

i=1

A0
, where

A0 =






−27

d
∑

i=1

λici + 3

√

√

√

√−24

(

d
∑

i=1

λi

)3

+ 81

(

d
∑

i=1

λici

)2






1
3

and γj is given by equation (5.25).

Note that when d = 1 and ci = cj for i 6= j, Corollary 5.1 is reduced to Corol-

lary ??.

Figure 5.1 illustrates the corollary in an example that d = 5 when ci = cj and

λi = λj. It shows the first-passage time probabilities of the boundaries which are

approximated bounded variation Lévy processes are related to all the parameters

(b, λi, ci) with λi’s being the most sensitive ones.

Extra examples are shown in Figures 5.2 - 5.3. In Figure 5.2, we assume that

the approximation consists of 5 independent compound Poisson processes and each

of them has different rate parameter given by λi, i = 1, · · · , 5 respectively, but the

positive jumps have the same size for all compound Poisson processes. Figure 5.3

gives some instances when the 5 independent compound Poisson processes have

different jump rates but same exponential distributed length of time between jumps,

i.e. λi = λj when i 6= j. In summary, these illustrations, not surprisingly, reveal



5.5. CONCLUSIONS 158

that the first-passage time probabilities are highly correlated to the rate parameters

of the compound Poisson processes, moreover, the correlation is negative.

Despite the enormous number of jumps needed to be simulated to obtain a

reasonable approximation of an infinite variation Lévy process, the approximation

of small jumps can simply be their mean value, say µ > 0. In this case, it is

equivalent to change the starting position of the boundaries from |b| to |b+ µ| and

the Poisson components remains the same, the approximation is

|Z(2)
t | = b+ µ+

d
∑

i=1

ciN
(i)
t

The boundary crossing probabilities for boundaries as |Z(2)
t | are able to be gained

by Corollary 5.1 with b+ µ instead of b.

5.5 Conclusions

In this chapter, we modified our method in Chapter 4 to be applicable to more

complex forms of boundaries. Some non-decreasing Lévy processes, such as Gamma

process, Inverse Gaussian process have been discussed individually;

Gamma process Due to the form of the characteristic exponent of a Gamma pro-

cess, our method only allows to find some numerical values of the boundary

crossing probabilities for a standard Brownian motion.

Inverse Gaussian process Also as the expression of the characteristic exponent

of an Inverse Gaussian process, the martingale has to be adjusted from

e−γZt
(

ekXt + e−kXt
)

to e−γZteφXt
(

eiψXt + e−iψXt
)

, whereafter with which a de-

sirable result is drawn.
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Figure 5.1: First-passage time probabilities of Corollary 5.1
when ci = cj, λi = λj and d = 5
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Figure 5.2: First-passage time probabilities of Corollary 5.1
when d = 5 and λi = 0.01, 0.05, 0.1, 1, 10 for i = 1, · · · , 5
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Figure 5.3: First-passage time probabilities of Corollary 5.1
when d = 5 and ci = 0.01, 0.05, 0.1, 0.5, 1 for i = 1, · · · , 5
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In additional to some of the well-known Lévy processes, we attempted to extend

our approach to boundary crossing probabilities to more general non-decreasing

Lévy processes. Hence, after studying the existing method of approximating a Lévy

process, we applied the method of Poisson approximation to form a non-decreasing

Lévy process with bounded variation. The impact of every parameters of the com-

pound Poisson processes that proxies a non-decreasing Lévy process are investigated;

λi for i = 1, · · · , d is again the most dominated parameters among d, the number of

compound Poisson processes, ci jump size of the ith compound Poisson process.



Chapter 6

Conclusions

In this thesis, firstly, we have proposed a discrete time Markov-type model to a Real

Time Gross Settlement payment system with queueing facilities, which is driven

by the strong interest in analyzing the large-valued interbank payment systems. A

simple homogeneous model was presented, in addition to which a modified ”cluster”

model has been developed, where the participating banks are not identical, they

have been classified into different groups according to the corresponding business

management, therefore, the payment flow was not distributed evenly in the system.

The model took the management of central bank for each group into account.

Especially, we are interested in the relation between the values of the parameters

and the performance of the proposed ”cluster” model. The parameters are

• n, the number of participating banks in a payment system;

• p, the probability that an individual bank has one unit of cash at the beginning

of a business day;

• q, the probability that a payment order is delayed and submit to central queue;
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• Pij, the probability that a payment order requires a bank in group i to make

a payment to a bank in group j.

It has been found that debts are settled at the end of the simulation after 480

iterations, the average number of debts per bank at the end of a business day

depends on the parameters. The model has shown an significant linear relationship

phenomenon for the position of end-of-the-day debts after the Monte Carlo iterations

in the critical case corresponding to Pii = n
N
, moreover, the linear function was

independent of the other parameters (n, p and q). In the sub-critical cases (Pii 6= n
N
),

the linear relationship did not appear. We also notice that the simulation results

suggested that the proposed model was stable, since the distribution reached an

equilibrium (getting to zero) regardless the values of the parameters.

With both the simple homogeneous model and the modified ”cluster” model are

developed under the consideration of some existing empirical research of the UK

and US Real Time Gross Settlement payment systems data, the assumption of the

simulations has been kept at the simplest level. In Chapter 3, we investigated the

potential impact of offering a particular liquidity saving solution to the UK large-

valued interbank payment system, CHAPS, by applying our proposed model. It has

been continuously controversial about should simulations of all kinds use artificial or

historical data. Therefore, we thought it was worth to check our results with others

where actual data has been used. Considering the similarity of the mechanisms,

RRGS by Ercevik and Jackson [21], and ours, and the fact that they have used both

real payment data and synthetic data, we had put their work in the comparison.

Instead of using actual historical payment dataset, we simulated a system that

captured one of the most important structure features of CHAPS dataset. Nonethe-

less, same as where actual historical payment dataset was used, we found that
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liquidity saving was achieved by implementing this particular mechanism. Never-

theless, the efficiencies were not equal for banks with different sizes; big banks1 had

a poor performance throughout the process presumable due to shortage of incoming

funds. For individual banks, the total amount of intra-day liquidity was similar from

time to time, and the proportions of liquidity between Real Time Gross Settlement

payment system and Liquidity Saving Mechanism were needed to be defined by the

value of q and bank’s size. Banks were encouraging to make individual strategies

to post collateral most efficiently, some of which was heavily relying on the trans-

parency of information: if bank is not being aware of other members’ plan2, it would

require collateral proactively to avoid any possibility of unsettled payments. From

a central bank’s point of view, the system-wide payments information is always

available, central bank could guide banks on collateral borrowing, so as to reduce

delayed payments significantly. Particularly in the UK, when considering recruiting

second-tier banks to CHAPS, central bank can use these experiences to train the

banks and coach them through the liquidity management process.

Significantly, despite only the most simplest possible system was studied, the

main result was consistent with the research where real historical data was used. In

addition to which, the simulation also allowed us to investigate the distribution of

particular length cycles, it is potentially interested by central banks and policy mak-

ers. With a stable distribution of cycles, central bank can estimate the approximate

number of particular cycles, therefore calculate the cost of queue management.

Till the time any liquidity saving solution was enforced in the UK large-valued

interbank payment system, CHAPS, there is anecdotical evidence that participating

banks would set up bilateral or multi-lateral limits between it and other members

1banks dominate approx. 80% payments
2schedule of incoming/outgoing payments
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of the system to protect itself from unexpected credit exposures. The interest in the

efficiency of these limits leads to the calculation of boundary crossing probabilities

for a Brownian motion with stochastic boundaries.

After studying the existing literatures about boundary crossing probabilities, by

deriving the unconditional boundary crossing probabilities for a standard Brownian

motion with symmetric and asymmetric linear boundaries, we have

demonstrated an alternative method by applying powerful tools as martingales and

infinitesimal generator of Brownian motions, that allows us to obtain a simple ex-

pression. Furthermore, with the help of characteristic exponent of Lévy processes,

a basic theorem (Theorem 4.17) has been derived when the boundary is a general

compound Poisson process and various corollaries (Corollary 4.18-??) follows when

the jumps have an explicit form.

In the area of large-valued interbank payment systems, one of the potential

applications of the results will be credit control of bilateral/multi-lateral limits.

Due to the feature of Real Time Gross Settlement payment system, participating

banks wish to use the liquidity in the most effective way, in the sense of minimizing

unnecessary costs. The participating banks inform central bank that they would

generally set up a limit for the net position with any other banks in the system,

which is so called bilateral/multi-lateral limit, and the limit made at the beginning

of a business day are based on pervious business day performances. In the course of

the day, they would be adjusted often under some circumstances. To the extent of

policy makers on bilateral limits in payment system, with the consideration of the

results, participating banks are suggested to make decisive regulations. Boundaries

with lower boundary crossing probabilities means that banks are in a strong position

to control their exposures to other participants.
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Compound Poisson process boundaries Banks may think about changing the

frequency for adjusting the limits rather than making effort to change the

size of every single adjustment. Moreover, the initial position of the limit

should be taken into account. If a bank wishes to be generous and set up a

bilateral/multi-lateral limit where the other(s) are less likely to excess, it can

simply consider putting a relatively high starting value for the boundaries.

Non-decreasing telegraph process boundaries If banks are considering

changing limit over an exponential distributed time with the same parame-

ter, lower the intensity of changing, more likely the limits are surpassed by

others; and the intensity has a high sensitivity to the functionality of the

bilateral/multi-lateral limits. Banks are also advised to look at their strategy

to manage the frequencies of adjustment. Nevertheless, banks should be aware

that even if the two time intervals are not identically distributed, as long as

they are proportional and in the same rate, the efficacy of the limits will be

affect unnoticeably.

An immediate extension of the method we derived to find the boundary crossing

probabilities for a standard Brownian motion with stochastic boundaries is general

Lévy process boundaries. With doing a survey of the existing literatures on the

approximation methods of Lévy processes, we has tried to extend the theorems to

an approximated Lévy process; finite variation one as independent sum of compound

Poisson processes and infinite variation one as combination of compound Poisson

processes and linear Brownian motion.

To our knowledge, it is a relatively new task to model the large-valued interbank

payment systems and is eager to be expand, one potential further development

would be assigned values to individual payment orders in both the simple homo-



168

geneous and ”cluster” models, therefore we could acquire more practicable results

of implementing a liquidity saving mechanisms accordingly. Moreover, we sincerely

hope that our models could have been brought to a broader context of investigating

payment systems and the methods we presented to derive the boundary crossing

probabilities would be applicable to other areas of Statistics, such as risk analysis

in Finance.
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of CHAPS Sterling. Bank of England working paper No. 355.

[10] Becher, C., Galbiati, M. and Tudela, M. (2008). The timing and fund-

ing of CHAPS Sterling payments. Economic Policy Review 14, 113–133.

[11] Beghin, L., Nieddu, L. and Orsingher, E. (2001). Probabilitic analysis

of the telegrapher’s process with drift by means of relativistic transformations.

Journal of Applied Mathematics and Stochastic Analysis 41, 11–25.

[12] Bollobás, B. (2001). Random Graphs, second edition, Cambridge University

Press, Cambridge GB.

[13] Bondesson, L. (1982). On simulation from infinitely devisible distributions.

Advances in Applied Probability 14, 855–869.

[14] Bank of International Settlements (1997). Real-Time Gross Settlement Systems.

Committee on Payment and Settlement Systems Pubilication No. 22.

[15] Brwon, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for test-

ing the constancy of regression relationships over time. Journal of the Royal

Statistical Society 37, 149–193.

[16] Buckle, S. and Campbell, E. (2003). Settlement bank behaviour nd

throughput rules in an RTGS payment system with collateralised intraday

credit. Bank of England working paper No. 209.



BIBLIOGRAPHY 171

[17] Carrington, P. J., Scott, J. and Wasserman, S. (2005). Models and

Methods in Social Network Analysis, Cambridge University Press, Cambridge

GB.

[18] Cont, R. and Tankov, P. (2004). Financial modelling with jump processes,
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Appendix A

Chapter 2

A.1 Dynamical Monte Carlo method

Due to the complexity of the dynamics of the payment systems, we use Monte Carlo

methods to obtain an equilibrium properties for the system in the question. How-

ever, Monte Carlo methods can be also used to investigate dynamical phenomena

according to adequate dynamical interpretation of the method.

For an dynamical phenomena, the Monte Carlo method provides a numerical

solution to the Kolmogorov equation,

∂P (i, t)

∂t
=
∑

j

r(j → i)P (j, t)−
∑

j

r(i→ j)P (i, t) (A.1)

where i and j are the successive states of the system, P (i, t) is the probability that

the system is in state i at time t, and r(i → j) is the probability that the system

will undergo a transition from state i to state j per unit time. The solution to the

Kolmogorov equation (A.1) can be found computationally by randomly picking up

a possible transition and accepting particular transitions with appropriate probabil-
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ities. After each transition, time is increased by one unit time τj , which is a function

of transition rates.

At the equilibrium state, the right hand side of equation (A.1) equals to zero, in

other words, the sum of all transitions into a particular state i is equal to the sum

of all transitions out of the state. Moreover, the so-called detailed-balance equation

should hold:

r(j → i)P (j, eq) = r(i→ j)P (i, eq)

with

P (i, eq) =
− exp(−H(i)/ϕ)

Z

where H(i) is the Hamiltonian and Z is the partition function of the system. The

detailed-balance equation ensures that the Monte Carlo transition probabilities can

be constructed in order to guarantee that the system will reach a statistical equilib-

rium. However, it does not specify the unique probabilities.

In dynamical interpretation of Monte Carlo methods, it can be assumed that the

time resolution is so fine that no two events occur at the same time [29]. Hence, we

could just simulate a sequence of distinct events that are separated by certain differ-

ent time intervals. Then we have a list of distinct events, say E = {e1, e2, · · · , en},

which are characterised by average transition rates R = {r1, r2, · · · , rn}. In theory,

any particular transition that becomes possible at time t can occur at any time

t+∆t with a uniform probability based on its rate and is independent of the events

occurred before time t. Thus, the average rate of forward/backward transition can

be expressed as a time density of events. Let ∆t’s be small and identical time inter-

vals of a larger time interval t, say, and t = n∆t. Then the average rate is the limit

of the ratio of the number of intervals that contain events n∆t to the total number

of intervals sampled n per unit time ∆t as ∆t goes to zero and n goes to infinity.
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i.e.

r = lim
∆t→0,n→∞

n∆t

t

In this limit, each interval could contain one event at most, and each time interval

has the same probability r∆t of containing an event, which implies that, in the time

interval t, there are at most n events in total.

Let Nt be a random number that counts the number of events which have oc-

curred within the time t, then the probability that nt events may occur at time t

is

P(Nt = nt) =
nt
n
(r∆t)nt(1− r∆t)n−nt

As we decrease the length of the interval, the stationary series of random, inde-

pendent events with average rate r is of the Poisson process, i.e. as ∆t → 0, we

have

P(Nt = nt) =
(rt)nt

nt!
e−rt

and another useful property of the Poisson process is that the probability density of

time te between successive events is

fte(t) = re−rt

From the above two equations, we could get that the mean number of events occur-

ring within a time t is rt, and the mean time period between successive events is

1
r
.

Furthermore, a group of independent Poisson processes performs as an entire

large Poisson process, therefore, the statistical properties of the entire process could

be formulated in terms of the dynamics of individual processes. Consider L inde-

pendent forward-reverse Poisson processes and each with some finite rate ri→j . Let
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NL be a random number that counts the overall number of events among the L

processes which have occurred within a time interval t, and

NL =

L
∑

i=1

Nt

which means that NL is the sum of number of events occurred during the interval t

in each individual process. The overall probability that nt events occurred in time

t is

P(NL = nt) =
(υt)nt

nt!
e−υt

where υ =
∑L

i=1 ri→j. The logic described is also applicable to systems which are

not stationary or toward equilibrium.

To conclude, we could generalised a system from the above. Consider L types

of agents, which are capable of undergoing I transition events that are classified by

rates R = {r1, r2, · · · , rI}. Hence, the L agents could be divided according to the

various transition events as L = {e1, e2, · · · , eI}, where ei is the number of types of

agents that capable of undergoing a transition with a rate ri→j and L =
∑I

i=1 ei.

This means that a particular configuration of the system at a particular time can

be characterised by the distribution of L over R, and the distribution is constructed

by a Monte Carlo algorithm which selects randomly among various possible events

at each step and which effects the events with appropriate transition probabilities.

When an event is realised, time should be updated by an increment τi selected from

an exponential distribution

τi =
1

∑

i niri
ln(µ)

where µ is a uniform random number between 0 and 1.

Then generate another random number C, we simulate the events from given
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distribution as
k−1
∑

i=1

niri < C
∑

i

niri ≤
k
∑

i=1

niri

A.2 MatLab codes for simulations

Cluster model

clear all

dn=1000;

so=480; s=so; %=====Iteration Number=====

i=40;j=i;

Res=zeros(dn,i); Nr=zeros(dn,1); Nri=zeros(dn,1);

SIn=zeros(1,so);Sn=zeros(1,s);

STa=zeros(1,i); ST=zeros(1,i);

T=0; z2=1;

Cred=0.3; %=====Start Credit Value p=====

Bv=0.2; %=====Queueing Prob q======

B3=zeros(dn,1);

group_No=5; %=====n=====

in_group_prob=1/(i-1); %=====P_{ii}=====

if in_group_prob > group_No/i || in_group_prob < 1/i,

error(’in group probability no in range’);

end

between_group_prob=((1-i*in_group_prob/group_No)*group_No)...

/((group_No-1)*i);
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temp1=in_group_prob*(ones(i/group_No)-eye(i/group_No));

temp2=between_group_prob+zeros(i/group_No);

payment_transition=kron(eye(group_No),temp1)+kron(ones(group_No)...

-eye(group_No),temp2);

clear temp*

for d=1:dn

Ab=zeros(i,j);Ar=zeros(i,j);

% A=zeros(i,j+1);

H=zeros(s,5);

Black=zeros(s,i);

Index=zeros(s,i+1);Ind=zeros(s,i);

Black2=zeros(s,i);Black3=zeros(s,i);

Red=zeros(s,i);

% Redi=sum(Red);

B=zeros(i,j);

N=i^2-i; %=====number of nonzero elements=====

Rd=1-Bv;

Pb=Bv/N; Pr=Rd/N;

Ab(:,:)=Pb; %=====Black Probability Matrix=====

Ar(:,:)=Pr; %=====Red Probability Matrix=====

for k=1:j+1:i^2

Ab(k)=0;
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end

A=[Ab Ar]; %=====United Probability Matrix=====

for o=1:i %=====Start Cash Table Filling=====

P=rand;

if P < Cred

Red(1,o)=1;

end

end

Redi=sum(Red);

for z=1:s

X=zeros(i,2*j); X2=zeros(i,j);

Z2=rand; t=-log(Z2); T=T+t;

Index(z,1)=z;

%=====Start of Trading Procedure=====

%=====Monte I procedure=====

y1=randperm(i); y1=y1(1);

x1=Monte_new(payment_transition(y1,:));

H(z,1)=z; H(z,2)=T; H(z,3)=y1; H(z,4)=x1;

if B(y1,x1)>0 %=====if 2/2=====

for k2=1:z %=====for5=====

if Black2(k2,x1)==-1 %=====if5=====

if Black2(k2,y1)==1 %=====if6=====

Black2(k2,x1)=0; Black2(k2,y1)=0;
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Black3(k2,x1)=0;

Ind(k2,x1)=z-Index(k2,x1+1);

Index(k2,x1+1)=-1;

end %=====end if6======

break %=====break for5=====

end %=====end if5=====

end %=====end for5=====

B(y1,x1)=B(y1,x1)-1; B(x1,y1)=B(x1,y1)+1;

elseif Redi(y1)==0

v=Monte_new(A);%=====Monte II procedure=====

X(v)=1;

[y,x]=find(X);%=====Index Table=====

if rand>Bv %=====Red Arrow - cash paying=====

H(z,5)=x1; Black(z,y1)=0;

Redi(x1)=Redi(x1)+1; Red(z,x1)=1;

r1=x1; r2=y1;

while sum(Black3(1:z,r1))<0

for f2=1:z+i %=====for5=====

if Black3(f2,r1)==-1 %=====if5=====

for f3=1:i

if Black2(f2,f3)==1 %=====if6=====

Black2(f2,r1)=0;

Black2(f2,f3)=0;

Black3(f2,r1)=0;

B(r1,f3)=B(r1,f3)+1;
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B(f3,r1)=B(f3,r1)-1;

Redi(r1)=Redi(r1)-1;

Redi(f3)=Redi(f3)+1;

Ind(f2,r1)=z-Index(f2,r1+1);

Index(f2,r1+1)=-1; r1=f3;

break

end %=====end if6=====

end

break %=====break for5=====

end %=====end if5=====

end %=====end for5=====

end %=====end while=====

%=====Tables Filling=====

%=====MARKET I=====

else %x<=i

Black(z,y1)=-1; Black2(z,y1)=-1;

Index(z,y1+1)=z;

Black2(z,x1)=1; Black3(z,y1)=-1;

B(y1,x1)=B(y1,x1)-1; B(x1,y1)=B(x1,y1)+1;

end

elseif Redi(y1)>0

Redi(x1)=Redi(x1)+1; Redi(y1)=Redi(y1)-1;

r1=x1; r2=y1;

while sum(Black3(1:z,r1))<0

for f2=1:z+i %=====for5=====
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if Black3(f2,r1)==-1 %=====if5=====

for f3=1:i

if Black2(f2,f3)==1 %=====if6=====

Black2(f2,r1)=0;

Black2(f2,f3)=0;

Black3(f2,r1)=0;

Redi(r1)=Redi(r1)-1;

Redi(f3)=Redi(f3)+1;

B(r1,f3)=B(r1,f3)-1;

B(f3,r1)=B(f3,r1)+1;

Ind(f2,r1)=z-Index(f2,r1+1);

Index(f2,r1+1)=-1;

r1=f3;

break

end %=====end if6=====

end

break %=====break for5=====

end %=====end if5=====

end %=====end for5=====

end %=====end while=====

end %=====end if2=====

%=====End of Black Arrow=====

De=sum(Black2);

Deb(z,1:i)=De;

end %=====GLOBAL END=====
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ST=sum(Black3);

if ST==0

B3(d,1)=1;

end

STa=STa+ST; In=Ind’; Sn=sum(In);

debit_time_distribution=zeros(s,i);

for name1=1:s,

for name2=1:i,

debit_time_distribution(name1:min(s,name1+...

Ind(name1,name2)-1),name2)=...

debit_time_distribution(name1:min(s,name1+...

Ind(name1,name2)-1),name2)+1;

end

end

debit_time_distribution=debit_time_distribution(1:so,:);

debit_time_distribution=sum(debit_time_distribution,2);

SIn=SIn+debit_time_distribution’; SIn=SIn+Sn;

end

S3=sum(B3); AvB3=-STa/d; AvDeb=SIn/d;

AvB4=sort(AvB3);

subplot(1,2,1); bar(AvB4);
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title(’Ave. End Market Debts’);

xlabel(’Settlement Banks’); xlim([1,40]);

ylabel(’Ave. End Market Debts’)

subplot(1,2,2); bar(AvDeb);

title(’Av. Debt Life Time Distribution’);

xlabel(’Iterations’);xlim([0,480])

ylabel(’Aggregated Debts’)

Bin=1:480; n=sum(AvDeb); n1=round(n);

Bin=Bin’; Bin2=Bin.^2;

Data1=AvDeb*Bin; Data2=AvDeb*Bin2;

mu=Data1/n1; %=====sample mean=====

sigma=(1/(n1-1))*(Data2-Data1^2/n1); %=====sample variance=====

theta=sigma/mu; %=====scale parameter======

k=mu/theta; %=====shape parameter======

display(theta);display(k)

Function Monte_new

function u=Monte_new(A)

R=sum(A); Z1=rand; Sum=A(1);

for k=1:length(A) %=====for3-n=====

Sum=Sum+A(k);

if Sum>=Z1*R %=====if1=====

break

end %=====end if1=====
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end %=====endfor3-n=====

u=k;



Appendix B

Chapter 3

B.1 Outcomes of simulation

The outcomes of the experiment are the matrices list below

• H, contains the information of every payment row by row, including the order

of the payments, the time if occurred, its payer, payee and the type, which

depends on payments’ statue.

• Red1, the records of RTGS payments column by column. For instance, on

the kth column, the only two nonzero entries are 1 and −1, which are payee

and payer of the payment occurred on the kth iteration respectively.

• Red2, a i-by-i matrix (i is the number of settlement banks, i = 14), the

(m,n)th element indicates the cumulative number of RTGS payments in that

direction (m→ n).

• Green1 and Green2 keep the record of LSM payments in the same manner

as Red1 and Red2 for RTGS payments.

190
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• Black2, the cumulative amount of delayed payments in the internal queue up

to the latest iteration.

• Black3, the cumulative amount of payments made due to offset with other

payments in the internal queue, up to the latest iteration.

At every iteration, a payment is picked up according to the dynamic Monte

Carlo, in the mean time, the decision on if this payment is submitted into LSM is

made. There exist two subsystems, for example, on the jth iteration, the payment

is from bank m to bank n.

If the payment is time-critical and needs to be made via RTGS payment system,

the following steps would execute.

1. Payment which is made in RTGS is denoted as type I payment, H.

2. The record of the payment is kept in the Red1 matrix on the jth column,

where its mth row is rewritten as −1 and nth row is 1.

3. Also, in Red2 matrix the (m,n)th element is increased by 1.

4. The liquidity positions of both banks are updated.

5. Queue in RTGS is not considered here.

6. The jth entries in both Black2 (number of type 0 payments) and Black3 (num-

ber of type II payments) will be calculated according to matrix H.

7. End of the jth iteration.

If the payment is submit into LSM

1. The programme performs the search of the shortest ”cycle” of payments which

is completed by the newly arrived payment.
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2. In the case where the shortest ”cycle” exists, every payment in that ”cycle” is

cleared, so their records in Green1 and Green2 are updated and they become

type II payments.

3. Otherwise, everything remains unchanged, and this is a type 0 payment.

4. The jth entries in both Black2 (number of type 0 payments) and Black3 (num-

ber of type II payments) will be calculated according to matrix H.

5. End of the jth iteration.

B.2 MatLab code of the simulation

LSM simulation

clear all

dn=200; s=8400; i=14; j=i; T=0;

q=1; %=====probability of queueing=====

payment_transition=zeros(i,j); %=====the probability matrix=====

payment_transition(:,:)=1/45; %=====filling the matrix=====

payment_transition(1:4,1:4)=0.267;

payment_transition(5:14,1:4)=0.2;

payment_transition(1:4,5:14)=0.02;

for h=1:j+1:i^2

payment_transition(h)=0; %===the diagonal elements are zero===

end

Green=zeros(i,j); Black=zeros(1,s+1);
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HC=zeros(i,1); Hm=zeros(i,dn); Hr=zeros(i,dn);

queued=zeros(1,s+1); Red=zeros(i,j);

for d=1:dn; %=====repeat the experiment dn times=====

Green1=zeros(i,s); Green2=zeros(i,j);

Red1=zeros(i,s); Red2=zeros(i,j);

Black2=zeros(1,s+1);

Black3=zeros(1,s+1);

Cash=zeros(i,s+1); %===the cash position change over payments===

H=zeros(s,5);

%===H matrix keeps record of all payments happens on that day===

Hc=zeros(i,1);

for k=1:s %=====for every payment=====

X=zeros(i,j);

Z2=rand; %=====generate a uniform random variable=====

t=-log(Z2); %===generate the exponential random variable===

T=T+t; %=====time adds up for every payment=====

n=Monte(i,payment_transition);

X(n)=1; %=====locate the payment in the matrix X=====

[x,y]=find(X); %===find the coordinate of the payment===

%=====x, the sender=====

%=====y, the receiver=====

H(k,1)=k; %=====the order of payment=====

H(k,2)=T; %=====the time when the payment occurred=====
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H(k,3)=x; %=====the payer of the payment=====

H(k,4)=y; %=====the payee of the payment=====

Cash(:,k+1)=Cash(:,k);

%=====cash position change over payments=====

%=====decide if the payment is queued=====

a=rand;

if a>q %===payment submit to RTGS===

H(k,5)=1; %===indicate the RTGS payment===

Red1(x,k)=-1; Red1(y,k)=1;

Red2(x,y)=Red2(x,y)+1;

Cash(x,k+1)=Cash(x,k)-1;

%=====update the cash position of x and y=====

Cash(y,k+1)=Cash(y,k)+1;

else %===payment submit to LSM===

Green1(x,k)=-1; Green1(y,k)=1;

Green2(x,y)=Green2(x,y)+1;

Hk=H(1:k,:); A=Black1(Hk);

[dis path]=graphshortestpath(A,y,x);

if dis<=13

for f=1:length(path)-1

v=path(f); w=path(f+1);

col=find_column(v,w,Green1);

Green1(v,col)=0; Green1(w,col)=0;

Green2(v,w)=Green2(v,w)-1;

H(col,5)=k;

end
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H(k,5)=k;

Green1(x,k)=0; Green1(y,k)=0;

Green2(x,y)=Green2(x,y)-1;

Black2(1,k+1)=Black2(1,k)-dis;

Hc(length(path))=Hc(length(path))+1;

end

Cash(:,k+1)=Cash(:,k);

end

H0=H(1:k,:); H0(H0(:,5)~=0,:)=[];

Black2(1,k+1)=size(H0,1);

H1=H(1:k,:); H1(H1(:,5)<=1,:)=[];

Black3(1,k+1)=size(H1,1);

end

Green=Green+Green2; Black=Black+Black2;

queued=queued+Black3;

Hm(:,d)=sum(Green2,2); Hr(:,d)=sum(Red2,2);

HC=HC+Hc;

Red=Red+Red2; Hg(:,d)=min(Cash,[],2);

CASH=CASH+min(Cash,[],2);

end

figure(1)

queued_payments=sum(Green,2)/d;

cash_payments=sum(CASH,2)/d*(-1);

rtgs_payments=sum(Red,2)/d;
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liquidity=[queued_payments cash_payments];

HM=max(Hm,[],2); HR=max(Hr,[],2); HG=min(Hg,[],2);

subplot(1,2,1)

bar(liquidity,’stack’)

colormap summer

title(’{\bf Ave. Delayed Payments & Ave. RTGS Payments by banks}’)

xlabel(’{Settlement Banks}’); ylabel(’{No. payments}’)

subplot(1,2,2)

Max=[HM HG];

bar(Max,’stack’);

colormap summer

title(’{\bf Max.in LSM & RTGS}’)

xlabel(’{Settlement Banks}’); ylabel(’{No. payments}’)

legend(’location’,’southoutside’, ’Delayed Payments in LSM’,

’Net RTGS Payments’)

ave_life=Black/d; ave_queued=queued/d;

figure(2)

imagesc(Green2)

colorbar(’location’,’eastoutside’)

title(’{\bf Distribution of Delayed Payments}’)

ylabel(’Sending banks’); xlabel(’Receiving banks’)

set(gca,’YDir’,’normal’)
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disp(ave_queued(s+1)); disp(ave_life(s+1)); disp(HC/d);

disp(ave_queued(s+1)/(ave_queued(s+1)+ave_life(s+1)));

Function Monte

function u=Monte(i,A)

A1=sum(A); R=sum(A1); Z1=rand; Sum=A(1);

for k=1:2*i^2 %=====for1=====

Sum=Sum+A(k);

if Sum>=Z1*R %=====if1=====

break

end %=====end if1=====

end %=====end for1=====

u=k;

Function Black1

function A=Black1(H)

sender=H(:,3); receiver=H(:,4); type=H(:,5);

Queue=[sender receiver type];

condition=Queue(:,3)~=0;

Queue(condition,:)=[];

A=zeros(14,14);

for j=1:length(Queue(:,1))

A(Queue(j,1),Queue(j,2))=A(Queue(j,1),Queue(j,2))+1;

end
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for i=1:14

for j=1:14

if A(i,j)>=1;

A(i,j)=1;

end

end

end

A=sparse(A);

Function find_column

function col=find_column(v,w,Green1)

b=find(Green1(v,:)==-1); c=find(Green1(w,:)==1);

for c1=1:length(b)

for c2=1:length(c)

if b(c1)==c(c2)

col=b(c1);

end

if b(c1)==c(c2)

break

end

end

if b(c1)==c(c2)

break

end
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end



Appendix C

Chapter 4

C.1 MatLab codes for simulation results in Ta-

ble 4.2

clear all

T=240; %=====the time interval=====

lambda=5; %=====rate of poisson process=====

alpha=3; %=====parameter of exponential distribution=====

c=0.05; a=1000;

protau=zeros(1,a);

d=0.2; m=100;

Taupro=zeros(1,m);

for m1=1:m;

for l=1:a;

N_t=poissrnd(lambda*T);

200
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%=====simulate the total number of jumps on [0,T]=====

U=unifrnd(0,T,N_t,1); %=====N iid uniform r.v.’s=====

Y=exprnd(alpha,N_t,1);

%=====N iid jump size exponential variables=====

ind=zeros(N_t,1); %=====indicator function=====

X=zeros(T,1); %=====the compound poisson process=====

for t=1:T;

for j=1:N_t;

if U(j)<t;

ind(j)=1;

else ind(j)=0;

end

end

X(t)=sum(ind.*Y);

end

X1=[0; X]; ti=0:d:T; T1=0:T;

Xi=interp1(T1’,X1,ti);

N=size(0:d:T,2);

W=[0 cumsum(randn(1,N-1))]/sqrt(N);

%=====S is running sum of N(0,1/N) variables=====

W=W*sqrt(N); %=====generate Brownian motion=====

b=20; Xi=Xi+b;

p=find(sign(abs(W)-Xi)>=0,1);

if isempty(p)==1;

protau(l)=0;

elseif isempty(p)==0;
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protau(l)=1;

end

end

taupro=sum(protau)/a; Taupro(m1)=taupro;

end

Pro=mean(Taupro); Variance=var(Taupro);

display(Pro); display(Variance);

display(b);display(d);

plot(0:d:T-d, W’);

hold on

plot(0:d:T-d, Xi,’r’); plot(0:d:T-d,-Xi,’r’);

hold off

C.2 Values of kj, θj and γj for Theorem 4.18



C.2. VALUES OF KJ , θJ AND γJ FOR THEOREM ?? 203

Table C.1: values of kj , θj and γj when λ = 0.05, α = 1
50

j kj θj γj
0 0.3064 0 0.3064
1 0.3129 0.6128 0.9256
2 0.3142 1.2385 1.5527
3 0.3148 1.8669 2.1817
4 0.3151 2.4965 2.8116
5 0.3153 3.1267 3.4420
6 0.3155 3.7573 4.0728
7 0.3156 4.3883 4.7038
8 0.3156 5.0194 5.3350
9 0.3157 5.6506 5.9663
10 0.3157 6.2820 6.5978
11 0.3158 6.9135 7.2293
12 0.3158 7.5451 7.8609
13 0.3159 8.1768 0.4926
14 0.3159 8.8085 9.1244
15 0.3159 9.4402 9.7562
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Table C.2: values of kj , θj and γj when λ = 0.05, α = 1
20

j kj θj γj
0 0.2922 0 0.2922
1 0.3077 0.5844 0.8922
2 0.3111 1.1999 1.5110
3 0.3126 1.8221 2.1347
4 0.3134 2.4473 2.7607
5 0.3139 3.0741 3.3880
6 0.3143 3.7019 4.0162
7 0.3145 4.3305 4.6450
8 0.3147 4.9596 5.2743
9 0.3149 5.5891 5.9039
10 0.3150 6.2188 6.5339
11 0.3151 6.8489 7.1640
12 0.3152 7.4792 7.7944
13 0.3153 8.1096 8.4249
14 0.3154 8.7402 9.0555
15 0.3154 9.3709 9.6863

Table C.3: values of kj , θj and γj when λ = 0.05, α = 1
10

j kj θj γj
0 0.2702 0 0.2702
1 0.2990 0.5403 0.8392
2 0.3058 1.1382 1.4440
3 0.3088 1.7498 2.0586
4 0.3105 2.3674 2.6779
5 0.3115 2.9884 3.2999
6 0.3123 3.6115 3.9237
7 0.3128 4.2360 4.5488
8 0.3132 4.8616 5.1748
9 0.3135 5.4881 5.8016
10 0.3138 6.1151 6.4289
11 0.3140 6.7427 7.0567
12 0.3142 7.3708 7.6849
13 0.3143 7.9991 8.3135
14 0.3145 8.6278 8.9423
15 0.3146 9.2568 9.5714
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Table C.4: values of kj, θj and γj when λ = 0.1, α = 1
50

j kj θj γj
0 0.4373 0 0.4373
1 0.4439 0.8747 1.3185
2 0.4452 1.7624 2.2076
3 0.4458 2.6528 3.0986
4 0.4461 3.5443 3.9904
5 0.4463 4.4365 4.8828
6 0.4464 5.3291 5.7756
7 0.4465 6.2220 6.6686
8 0.4466 7.1151 7.5617
9 0.4467 8.0083 8.4550
10 0.4467 8.9017 9.3484
11 0.4468 9.7952 10.2420
12 0.4468 10.6890 11.1360
13 0.4468 11.5820 12.0290
14 0.4469 12.4760 12.9230
15 0.4469 13.3700 13.8170

Table C.5: values of kj, θj and γj when λ = 0.1, α = 1
20

j kj θj γj
0 0.4229 0 0.4229
1 0.4388 0.8458 1.2846
2 0.4421 1.7233 2.1655
3 0.4436 2.6076 3.0512
4 0.4444 3.4948 3.9392
5 0.4449 4.3836 4.8285
6 0.4453 5.2734 5.7187
7 0.4455 6.1640 6.6095
8 0.4457 7.0550 7.5008
9 0.4459 7.9465 8.3924
10 0.4460 8.8383 9.2843
11 0.4461 9.7303 10.1760
12 0.4462 10.6230 11.0690
13 0.4463 11.5150 11.9610
14 0.4463 12.4080 12.8540
15 0.4464 13.3000 13.7470
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Table C.6: values of kj, θj and γj when λ = 0.1, α = 1
10

j kj θj γj
0 0.4000 0 0.4000
1 0.4301 0.8000 1.2301
2 0.4369 1.6601 2.0971
3 0.4399 2.5340 2.9739
4 0.4415 3.4137 3.8553
5 0.4426 4.2968 4.7394
6 0.4433 5.1819 5.6252
7 0.4438 6.0685 6.5123
8 0.4442 6.9561 7.4004
9 0.4445 7.8446 8.2891
10 0.4448 8.7337 8.1785
11 0.4450 9.6233 10.0680
12 0.4452 10.5130 10.9580
13 0.4453 11.4040 11.8490
14 0.4455 12.2940 12.7400
15 0.4456 13.1850 13.6310

Table C.7: values of kj, θj and γj when λ = 1, α = 1
50

j kj θj γj
0 1.3976 0 1.3976
1 1.4086 2.7953 4.2039
2 1.4109 5.6126 4.2039
3 1.4118 8.4343 9.8461
4 1.4124 11.2580 12.6700
5 1.4127 14.0830 15.4950
6 1.4129 16.9080 18.3210
7 1.4131 19.7340 21.1470
8 1.4132 22.5600 23.9730
9 1.4133 25.3870 26.8000
10 1.4134 28.2130 29.6270
11 1.4135 31.0400 32.4540
12 1.4135 33.8670 35.2810
13 1.4136 36.6740 38.1080
14 1.4136 39.5210 40.9350
15 1.4137 42.3490 43.7620
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Table C.8: values of kj, θj and γj when λ = 1, α = 1
20

j kj θj γj
0 1.3894 0 1.3894
1 1.4058 2.7789 4.1847
2 1.4092 5.5905 6.9997
3 1.4106 8.4089 9.8196
4 1.4114 11.2300 13.6420
5 1.4119 14.0530 15.4650
6 1.4123 16.8770 18.2890
7 1.4125 19.7010 21.1140
8 1.4127 22.5270 23.9390
9 1.4129 25.3520 26.7650
10 1.4130 28.1780 29.5910
11 1.4131 31.0040 32.4170
12 1.4132 33.8300 35.2430
13 1.4133 36.6570 38.0700
14 1.4133 39.4830 40.8960
15 1.4134 42.3100 43.7230

Table C.9: values of kj, θj and γj when λ = 1, α = 1
10

j kj θj γj
0 1.3651 0 1.3651
1 1.3974 2.7302 4.1276
2 1.4041 5.5250 6.9291
3 1.4070 8.3332 9.7402
4 1.4086 11.1470 12.5560
5 1.4096 13.9640 15.3740
6 1.4103 16.7840 18.1940
7 1.4109 19.6040 21.0150
8 1.4113 22.4260 23.8370
9 1.4116 25.2490 26.6600
10 1.4118 28.0720 29.4840
11 1.4120 30.8950 32.3070
12 1.4122 33.7190 35.1320
13 1.4124 36.5440 37.9560
14 1.4125 39.3690 40.7810
15 1.4126 42.1940 43.6060
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