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Abstract

This thesis consists of three papers on completion and conflict in three distinct but related

settings.

The first paper develops a model of tax compliance and enforcement where homogenous

agents receive signals about how tolerant the tax authority is of evasion, and where the latter

has imperfect means of detecting evasion. The main results show that increasing the quality of

the information that taxpayers have about the tax authority’s tolerance of evasion may increase

compliance. This is because if the signals are sufficiently informative, taxpayers are engaged

in Bertrand-like competition: if all taxpayers are evading a similar amount, each will have a

strong incentive to evade slightly below that amount in order to escape detection. This logic is

directly opposed to the culture of secrecy that prevails in many tax administrations.

The second paper, jointly written with Madhav Aney, deals with the question of how

specialists in violence like the military or the police can commit not to abuse their coercive

power. The answer that the paper provides is that competition between specialists in violence

creates incentives for them not to expropriate from civilians. The main theoretical results are

that these incentives become stronger as competition becomes more intense, both in terms of

the number of specialists in violence and in the evenness of their strengths. The hypothesis

that greater numbers of specialists in violence leads to less expropriation is tested using cross-

country regressions and found to be strongly consistent with the data, especially for the case

of developing countries.

The third paper analyses the equilibria of two-player imperfectly discriminating contests

of the power-form under incomplete information. This paper develops a method for solving

for the Bayesian Nash equilibria of such games by working backwards from the equilibrium

distributions of effort, rather than forwards from the distributions of the agents’ types. This

method is used to prove that there exist no distributions of type such that effort is an affine

function of the type. The method is used to construct an equilibrium where effort is log-

logistically distributed, carrying out comparative statics. This equilibrium is shown to be

special in that it exhibits a formal equivalence to that in a contest with complete information.
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Introduction

This thesis consists of three chapters, each of which is a standalone paper, modelling compe-

tition in three distinct settings. The first two chapters examine the role of competition in an

institutional setting.

Tax authorities are notoriously secretive about their operations, but how justified is this

attitude? The first paper addresses this question in the context of a model of tax compliance

and enforcement featuring a continuum of taxpayers and a tax authority that can only audit an

exogenously determined proportion of them. Taxpayers receive signals about the tax authority’s

tolerance, i.e., the proportion that will not be audited, and these signals are their only source

of heterogeneity. On the other hand, the tax authority receives signals about each taxpayer’s

evasion and uses this information to select which ones to audit. The main results are that

secrecy is indeed better than openness, but only if the accuracy with which the tax authority

detects evasion is sufficiently high. Furthermore, when this accuracy is very high, increasing the

quality of the information that taxpayers have about the tax authority’s tolerance may increase

compliance. This is because if the signals of tolerance are sufficiently informative, taxpayers

are engaged in Bertrand-like competition: if all taxpayers are evading a similar amount, each

will have a strong incentive to evade slightly below that amount in order to escape detection.

The second chapter, jointly written with Madhav Aney, deals with the question of how

specialists in violence, like the military or the police, can commit not to abuse their coercive

power, i.e., “who guards the guards themselves?” The answer that the paper provides is that

“the guards guard each other”, i.e., competition between these agents is one of the mechanisms

that can deter predation. In our model, even if specialists in violence could expropriate all

output costlessly, it is attractive to protect producers from predators. This is because there is

a marginal defensive advantage and consequently defence is an effective way to potentially

eliminate other specialists in violence, reducing competition and leading to higher future

payoffs. Hence, producers can offer transfers to specialists in violence that make defence a

dominant strategy, resulting in an equilibrium without predation. We therefore show that

internal competition among specialists in violence is enough to keep predatory behaviour at

bay and sustain economic incentives even in the absence of threats external to themselves. The

main theoretical results are that these incentives become stronger as competition becomes

more intense, both in terms of the number of specialists in violence and in the evenness of

their strengths. The hypothesis that greater numbers of specialists in violence leads to less

expropriation is tested using regressions on a panel of countries and is found to be strongly

consistent with the data, especially for the case of developing countries.

Thus, these two chapters show how competition among agents who have an incentive to

1



INTRODUCTION 2

subvert certain institutional arrangements can improve the functioning of these institutions.

The third chapter is more foundational in nature and examines competition per se in the

context of two-player imperfectly discriminating contests of the Tullock or lottery type, i.e.,

contests where the players can increase their probability of winning by increasing their costly

effort, but even the player with the highest effort is not guaranteed to win. Contrary to the

settings described in the first two chapters, competition here is wasteful and decreases the

total surplus, an effect commonly known in the literature as rent dissipation. These contests

have been used extensively to model conflict in settings such as wars, litigation and political

competition, but almost exclusively under the assumption of complete information about

the contestants’ types, viz., their valuation of the prize, or equivalently, the cost of effort.

This chapter studies such contests in their abstract form, in the case where the contestants’

types are private information, about which little is known, especially compared to the case of

perfectly discriminating contests such as first-price all-pay auctions. This is done by solving

for the Bayesian Nash equilibria of these games by working backwards from the equilibrium

distributions of effort, rather than forwards from the distributions of types. This method is used

to prove that there exist no equilibria such that effort is an affine function of type. Moreover,

this chapter constructs an equilibrium such that efforts are log-logistically distributed. This

equilibrium is special in that the equilibrium behaviour is the same as in a game of complete

information where each player faces an opponent of the median type. Furthermore, the log-

logistic equilibrium is shown to have particularly clear and intuitive comparative statics of

effort expenditure and rent dissipation. In particular, it is shown that incomplete information

results in lower rent dissipation than complete information.
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Chapter 1

Signals and secrecy in tax enforcement

1.1 Introduction

Tax agencies are very secretive about their operations and tend to disclose as little information

as possible regarding the methods used for selecting taxpayers for audit and the proportion of

taxpayers that are audited. For example, in the UK, although the Freedom of Information

Act (FOIA) guarantees a right of public access to government information, it “creates an

exemption from the right to know if releasing the information would or would be likely to

prejudice [...] the assessment or collection of tax, duty, or similar imposition.” 1 In the US,

where the corresponding FOIA does not make a specific exemption for the Internal Revenue

Service (IRS), the latter has been involved in extensive and protracted litigation2 to try to

prevent disclosure of information relating to its workings by appealing to various general

exemptions. Tax agencies evidently believe that this secrecy fosters compliance, as the following

passage from Roberts v. IRS (1984), quoted in Reinganum and Wilde (1988), shows:

One of the tools in the arsenal of the IRS which promotes voluntary compliance is

the uncertainty in the minds of the taxpayers as to just how much overstepping

of the boundaries of strict compliance will bring down the enforcement authority

of the agency. The government argues that, by disclosing the guidelines by which

it determines which violations are so egregious as to merit enforcement action, it

will permit the taxpayer bent on unlawful tax avoidance to conform his conduct

not only to the boundary between strict compliance and noncompliance, but also

to the boundary between noncompliance which does not merit enforcement action

by the IRS, and noncompliance which is so egregious as to prompt the agency to

respond.

This passage explains the motivation behind tax agencies withholding information, but

are there any incentives for them to do the opposite? As an illustration, suppose that the tax

authority has pre-audit information (e.g., third-party reports or statistical estimates) about

individual evasion that is sufficiently accurate to allow it to select the most egregious evaders for

audit, and suppose further that taxpayers are identical and perfectly informed about how many

1See Section 31 of the Freedom of Information Act 2000.
2See United States Tax Reporter, P76,556.502, “Freedom of Information Act” for a complete list of such cases.

4



CHAPTER 1. SIGNALS AND SECRECY IN TAX ENFORCEMENT 5

audits will be carried out. In this scenario, for every possible candidate for the equilibrium

level of evasion, each taxpayer has a strong incentive to evade slightly less than that and

significantly reduce their chances of being audited. Therefore, prospective evaders are engaged

in competition á la Bertrand where they all have an incentive to undercut each other’s evasion

amount, leading to an equilibrium with full compliance.

This paper explores the consequences of this logic by developing a model where taxpayers

receive signals about the tax authority’s type, namely its tolerance of evasion, and the tax

authority receives an indicator of each taxpayer’s evasion, which it uses to select individuals

for audit. The main results lend support to the view that secrecy fosters compliance, but only

if the accuracy of the tax agency’s information about individual evasion is sufficiently high

(Proposition 1.11). Even then, we will see that if the tax authority is open enough about how

tolerant of evasion it is, i.e., if the taxpayer’s signals about its type are sufficiently accurate,

more openness leads to more compliance through the aforementioned Bertrand competition

effect (Proposition 1.13).

The present paper is closely related to Reinganum and Wilde (1988), who first analysed the

question of whether taxpayer uncertainty is beneficial for compliance. Their model features a tax

authority that has perfect pre-audit information about taxpayers’ evasion, which corresponds

to section 1.3.3 here. Their main result is that as taxpayer uncertainty about the tax authority’s

cost of audit increases compliance first increases and then decreases, but the logic of why this is

the case is not discussed. In fact, their model lacks any strategic interaction between taxpayers,

so that the competitive effects mentioned above are not present.

Another related paper is Hansen, Krarup, and Russell (2006), who compare the effects

on compliance of no information and full information policies, roughly corresponding to

section 1.3.1 here, in a regulatory context. The present paper is more general as it allows for

individuals to be imperfectly informed about the number of audits the authority carries out,

not just being completely informed or uninformed. Another generalisation here is allowing

the authority to have some pre-audit information about individuals on which it can base its

audit strategy. Lastly, in thir model individuals are faced with a binary decision of whether to

comply or not, whereas here we will consider continuous compliance decisions.

More broadly, the contribution of this paper to the literature on tax compliance is in

incorporating signals of the tax authority’s type and taxpayers’ actions. The importance of the

latter is that it enables the tax authority to select taxpayers for audit based on the potential for

additional revenue, rather than relying on random audits. Such endogenous audit rules result

in a coordination game between taxpayers, which has been analysed in a laboratory setting by

Alm and McKee (2004) and Tan and Yim (2011). Indeed, the empirical findings in the latter

contradict the view that secrecy is conducive to compliance.

On the theoretical side, one paper that incorporates tax agency information about taxpayer

actions is Macho-Stadler and Perez-Castrillo (2002), but in their case the signal is of taxpayers’

income, not evasion. This is in contrast to the most notable example of statistical information

used by tax authorities, namely the IRS’s DIF score: one of the very few publicly divulged

facts about the DIF is that it specifically measures the likelihood of evasion. Also, the present

model allows for continuous taxpayer actions, rather than the three allowed in Macho-Stadler
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and Perez-Castrillo (2002).

There is also a sizeable literature on endogenous audit rules with pre-commitment, i.e., when

the tax authority announces such a rule and commits to it, as in Reinganum and Wilde (1985),

but this literature is fundamentally at odds with the notion of secrecy, since the audit rule must

be publicly declared, so that the question addressed in this paper cannot be examined in that

context.

The presence of signals received by taxpayers about the tax authority’s type makes the

model in this paper a global game, connecting it to the literature on such games summarised

in Morris and Shin (2003). Within that literature, the present paper is most closely related

to the paper on tax evasion by Sanchez-Villalba (2006). The fundamental difference between

that paper and the present one is that in the former, the tax authority chooses whom to audit

based on their income report rather than on pre-audit information about evasion itself. Even

though taxpayers can in principle evade continuous amount, in equilibrium they either evade

or comply fully, with the tax authority’s audit rule being similarly binary in nature, in contrast

with the equilibria of the present paper where there is a continuous distribution of evasion

across taxpayers.

Finally, a more methodological innovation of the current paper is that it considers a signal

of the tax authority’s type that is not the sum of the true type and an independent error,

as is generally the case in the literature on global games and in Sanchez-Villalba (2006), in

particular. As we will see in section 1.2.3, the non-additive structure of the signal offers certain

advantages over the additive one, especially when the underlying type is distributed over a

bounded interval.

The paper is structured as follows: section 1.2 explains the model and its assumptions;

section 1.3 establishes the model’s equilibria and their properties for select values of the key

parameters; section 1.4 analyses the comparative statics of the model, providing the main

results of the paper; section 1.5 discusses these results, pointing out their implications and

limitations; section 1.6 provides concluding remarks and directions for further research. Proofs

and results of a purely mathematical nature are relegated to appendix 1.A.

1.2 Model

We represent the fact that there are many taxpayers by modelling them as a continuum. In

particular, we will denote the set of taxpayers by I and identify it with the unit interval Œ0; 1�.

With this assumption we capture the notion of negligibility of individuals and normalise their

mass to 1.

The tax authority has a private type called tolerance, denoted by the random variable T

that takes values in Œ0; 1�: T is the mass of taxpayers it lets off so that 1 � T are audited and,

if found to have evaded taxes, punished. The distribution of T is assumed to be common

knowledge. After a particular realisation t of T , taxpayers receive a signal S t W I ! Œ0; 1� of

t , where S t .i/ is taxpayer i ’s signal. The relationship between that tax authority’s tolerance

and the signal thereof is common knowledge and is captured by the openness parameter �

described in detail in section 1.2.3.
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Upon learning his signal, each taxpayer updates his beliefs about the value of t and,

simultaneously with all other taxpayers, chooses the amount of tax to evade in order to

maximise expected utility. Taxpayers have identical preferences that are further spelt out in

section 1.2.1. We will use the function X W I ! R denote the amount3 of evasion across the

population of taxpayers, with X.i/ being the amount evaded by taxpayer i 2 I .

After taxpayers make their choices, a signal Y W I ! R is generated, with Y.i/ being

the indicator of taxpayer i ’s evasion X.i/. The process by which Y is generated from X is

common knowledge and is described in detail in section 1.2.2 where we introduce the accuracy

˛ of the indicator. The tax authority uses this indicator to select which taxpayers to audit.

The tax authority’s objective is to maximise the total amount of evaded taxes collected after

audits, together with associated penalties. Upon audit, the full amount of evasion is perfectly

discovered and a taxpayer who is found to have evaded x has to pay .1C p/x, where p > 0 is

a proportional4 penalty.

To summarise, the timing is:

1. Tax authority learns the realised value t of its type.

2. Taxpayers receive signals S t of t .

3. Taxpayers choose evasion simultaneously, forming X .

4. Indicators Y of evasion are generated from true evasion X .

5. Tax authority observes Y and chooses whom to audit.

6. Evaded taxes and penalties are collected.

For notational convenience, we will treat the functions S , X and Y as random variables5

and we will use probabilistic terminology like the cumulative distribution function FX .x/´

Pr.X � x/ of X to express, for example, the mass of taxpayers who evade at most x. Similarly,

we will write X
d
D Y to mean that X and Y have the same distribution.

1.2.1 Taxpayers’ decision

Taxpayers, which could be individuals or firms, choose how much tax to evade, where evasion

consists of anything that illegally reduces tax payments, ranging from underreporting income

to claiming tax deductions to which one is not entitled. Taxpayers are risk neutral so they

maximise expected wealth, or equivalently, minimise expected payments to the tax authority. If

a taxpayer with true tax bill � , who evades an amount x, is audited with probability � , then his

expected payment is .1 � �/.� � x/C �.� C px/ D � � x.1 � .1C p/�/, which is equivalent

to maximising x.1 � .1C p/�/. Dividing throughout by 1C p, the objective of the taxpayer

is to maximise

u.x/ D x
�
1=.1C p/ � �.x// ; (1.1)

3This notation only deals with pure strategies, but we will limit discussion of mixed strategies to section 1.3.1,
where this notation will not cause problems.

4This is standard in the literature and is true for many tax administrations, including the UK and US, where p
is in the order of 20%.

5More formally, we can do this by endowing the set I with measure-theoretic structure through the � -algebra
C of Lebesgue-measurable subsets of I , and the Lebesque measure �, so that we have the standard probability
space .I;C ; �/. Then we would interpret Pr.X � x/ as merely shorthand for �

�
¹i W X.i/ � xº

�
or �

�
X�1.Œ0; x�/

�
.
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with respect to x. Note that in general, � will depend on the taxpayer’s own evasion x, all

taxpayers’ evasion X , the tax authority’s audit strategy and the signal of the tolerance type.

We assume that taxpayers are perfectly informed about their true tax liability and therefore

never overpay; upon audit, overpayment does not attract any “bonus” that compensates

for the probability that it might not be discovered at all, so x must always be non-negative.

Undoubtedly, the assumption that taxpayers cannot make mistakes is rather unrealistic in the

face of the complexities of real-life taxation, but we can nonetheless shed some light on the

question posed in this paper without relaxing it, so we will not do so, in line with the rest of

the literature on the subject.

We will assume that there is an upper bound to the extent of evasion possible, and more

importantly, that this upper bound is common to all taxpayers, and is normalised to 1, resulting

in the following assumption.

Assumption 1.1 Taxpayers can choose evasion x in Œ0; 1�.

This assumption implies that all taxpayers have the same bounded evasion opportunities.

One might object to this on the grounds that if everyone owes the same amount � of taxes,

then anybody who pays less than � will be automatically detected as an evader. To get around

this, we can assume that the true tax bill is unknown to the tax authority prior to an actual

audit, because, for example, incomes or profits vary year by year, as in Sanchez-Villalba (2006).

For this to be plausible the population of taxpayers needs to be restricted to a fairly narrow

audit class, such as self-employed individuals, or firms in a particular sector. In that case,

another way to justify assumption 1.1 is to assume that incomes or profits are homogeneous

but taxpayers differ in terms of eligible deductions, like business expenses or mortgage interest;

maximum evasion would then correspond to claiming enough deductions to reduce taxable

income to zero.

Alternatively, we can think of x as the evaded amount as a proportion of the true tax

liability, with the proviso that taxpayers cannot evade more than what was due. Likewise,

we would have to assume that the tax authority does not consider the worst evaders to be

those who have evaded the greatest absolute amount, but those who have evaded the greatest

proportion of their tax bill. Support for this view comes from the observation that if tax

agencies cared solely about absolute amounts, they would not waste resources auditing “small

fish” who cannot be expected to yield large amounts of additional revenue, something that

actually does occur.

Whichever way we interpret assumption 1.1, its effect is to ensure that differences in the

taxpayers strategies are due solely to differences in the information they receive. This makes

the model a global game6, but we will defer discussing this connection to section 1.5.

1.2.2 Information about evasion

The tax authority selects which taxpayers to audit based on the indicator Y . We can think of

this as a synthesis of all information available to the tax authority regarding an individual’s

6A global game is a coordination game where agents receive a signal about a parameter that affects their payoffs.
See Morris and Shin (2003) for an overview.
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tax compliance prior to an actual audit, such as third-party reporting (i.e., information from

employers, suppliers or financial institutions) and statistical techniques, the leading example of

which is the IRS’s Discriminant Index Function (DIF).7 With a loose enough interpretation,

this information could even include such intangible factors as “gut feelings” that a tax inspector

has about a tax return, based perhaps on past experience. The upshot of this is that the

information embodied inY is in general not verifiable, or at least insufficient to collect additional

revenue or impose any penalties, for which an actual audit is required, perhaps even by law.

Concretely, we will assume that for each taxpayer i 2 I , the indicator Y.i/ gives the correct

amount X.i/ of evasion with probability ˛ and a randomly drawn value X.j / from the overall

distribution of evasion with probability 1 � ˛. As an example of the role of ˛, if all taxpayers

are complying, an individual who deviates and evades a positive amount will be detected with

probability ˛ and will blend in with the others with probability 1 � ˛. In light of this, we will

call ˛ the accuracy of Y in measuring X . Treating X and Y as random variables, we can define

the process more formally as follows.

Assumption 1.2 The indicator Y is generated from X so that

Pr.Y � y j X D x/ D

8<:.1 � ˛/FX .y/ if y < x

.1 � ˛/FX .y/C ˛ if y � x,
(1.2)

where FX .x/ is the cumulative distribution function of X .

Intuitively, this means that the distribution of Y given X D x has a probability mass of

˛ at Y D x, and is otherwise the same as the distribution of X but scaled by the remaining

probability 1 � ˛. The marginal distribution of X and the conditional distribution of Y fully

determine the joint distribution of X and Y , which turns out to be symmetric, as stated in the

following lemma.

Lemma 1.1 Assumption 1.2 implies that (a) the joint distribution of X and Y is symmetric,

and that (b) the correlation between X and Y is ˛.

Proof. See proof 1.A.1 in appendix 1.A. �

Lemma 1.1 has a number of implications for the information carried by Y . Firstly, the fact

that ˛ is the correlation between X and Y confirms our intuition that ˛ measures the accuracy

with which Y reflects X . Secondly, the symmetry of X and Y means that X
d
D Y , so that by

observing Y , the tax authority learns the true distribution of evasion X . Furthermore, we will

show in the proof of proposition 1.1 that Y is strongly informative aboutX in that the posterior

7Jones (2000–2001) provides the following description: “DIF uses a mathematical formula for each class of
return to measure the probability of error on the return. For example, if a taxpayer’s tax return shows more
deductions than normal for the taxpayer’s income, then DIF will select the return for examination. The actual
operation of DIF is highly complex and is a closely guarded secret within the IRS. Basically, the way DIF works
is that various items on a taxpayer’s tax return are compared with information contained in the computer. Tax
returns are, in effect, given a grade and those returns receiving a failing grade are selected for examination. Thus,
all returns are scrutinized in the same uniform way. Each return is scored relative to other returns of the same type
by a formula and, there, automatically classified and assigned or not assigned for examination according to these
relative scores.”
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distribution of X conditional on a higher value of Y first-order stochastically dominates8 that

for a lower value, meaning that for any hypothetical evasion level x, the higher the indicator,

the greater the probability that the taxpayer evaded at least x. This in turn implies that the

conditional expectation of X given Y D y is increasing in y.

1.2.3 Information about tolerance

The tax authority’s type is its tolerance of evasion, which is the proportion of taxpayers it will

not audit, i.e., the complement of the audit rate. This tolerance is a function of budgetary and

other constraints that the tax agency faces every time period, such as the amount of funding

it receives and the allocation of staff to audit versus non-audit roles.9 Taxpayers do not have

full knowledge of these constraints and how they determine audit rates, so they assess the tax

authority’s tolerance using all kinds of information, ranging from public announcements by

the tax agency itself to word-of-mouth or even guesswork. The more open the tax authority

is, for example by releasing credible information about the resources it has available to audit

taxpayers, the closer the their estimates are to the true value of tolerance. Conversely, the more

secretive it is, the greater the role of myths and hearsay10 in shaping taxpayers’ assessments of

their probability of being audited.

We model this by representing the tax authority’s type, viz., its tolerance, by a random

variable T . The taxpayers’ assessment of this is represented by signals S t they receive after a

particular realisation t of T , where S t .i/ is the signal received by taxpayer i 2 I . As mentioned

earlier, we will treat S t as a random variable. Furthermore, we define S ´ ST to be the

random variable11 denoting the ex-ante (before T is realised) values of the signal. This enables

us to write S t � S j T D t and posit a joint distribution12 of S and T . We can then write

T s ´ T j S D s to denote the random variable representing the assessment of T by a taxpayer

who receives a signal S D s.

8For more details on this see Milgrom (1981), who was the first to propose first-order stochastic dominance as
a characterisation of informativeness of signals.

9For example, GAO (2001) notes that: “According to IRS officials, audit rates declined for fiscal years 1996 to
2000 for three main reasons. First, over this period, the number of IRS auditors for individual returns declined by
more than half for reasons such as a decline in total staff and decisions to change staffing priorities to better serve
taxpayers before they file their returns. Second, IRS was more likely to use the remaining auditors in other duties,
such as assisting taxpayers. Third, audits took longer due to additional audit requirements, such as more written
communications with taxpayers about the status of their audit.”

10In the US, there is a cottage industry that churns out books with titles like “What the IRS Doesn’t Want You
to Know” and “How to Beat the I.R.S. at Its Own Game: Strategies to Avoid – and Fight – an Audit”. Given the
vigour with which the IRS engages in litigation to prevent publication of information about its internal procedures
(see footnote 2), the value of such books is dubious at best.

11Formally, if � is the sample space of T , so that T W �! Œ0; 1�, then ST W I ��! Œ0; 1�; .i; !/ 7! ST.!/.i/.
12It is tempting to model the signal for a given t by assuming that there is a continuum of i.i.d. random variables

S ti , one for each taxpayer i , and then appealing to a suitable law of large numbers to assert that the realised values
of the signal across the population of taxpayers have the same distribution as that of S ti . If the number of agents
were countable, this would indeed be the most natural approach and would pose no problems, but Judd (1985) and
Feldman and Gillies (1985) showed that for a continuum of random variables, the required law of large numbers
does not exist in the standard measure-theoretic paradigm. Frameworks where such laws of large numbers do
exist have been proposed, most notably by Sun (1998) and Sun (2006), but they remain largely inaccessible for
non-specialists due to the reliance on non-standard analysis. Since we are not concerned with independence of
individual signals per se, we can instead consider the much simpler scenario where the process that generates the
signals somehow makes sure that they are distributed across the population according to the conditional distribution
of S given T D t . We shall not delve any deeper into the question of how exactly such a process would work, and
simply trust its existence.
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We will assume that the joint distribution of S and T is such that it has a parameter � that

captures the degree of stochastic dependence13 between S and T . In particular, without loss of

generality, we will assume that � ranges from 0 to 1, with � D 0 representing independence

and � D 1 representing perfect dependence or comonotonicity14. Moreover, we require that

the distribution be continuous in �. We will take � to be the openness of the tax agency, with

� D 0 corresponding to the case of complete secrecy and � D 1 to the case where all taxpayers

know the value of the tax authority’s tolerance.

In order to capture the idea that these signals are in some sense “correct”, we will make

the following assumption.

Assumption 1.3 The joint distribution of tax authority’s tolerance T and its signal S is sym-

metric.

The reason why this assumption means the signals are correct is that it implies that S
d
D

T , i.e., that the marginal distributions of T and S are identical, which in turn implies that

ES D ET . Note that we cannot require that the signal be interim-unbiased, i.e., that it be

conditionally unbiased for a given realisation of T so that E.S t / D t for all values of t and �.

As reasonable as that may sound, this requirement is incompatible with the assumption that

the joint distribution is continuous in �, because as �! 0, the joing distribution of S and T

tends towards independence, so that E.S t / tends to E.S/ ¤ t .

In fact, the requirement that we be able to accommodate independence between the distri-

butions of the type and its signal rules out the commonly used assumption that the signal be

the sum of the type and an independent error term. If the type is distributed over a bounded

interval, with a zero-mean additive error, the signal will always convey some information about

the type, since values of the signal in the support of the distribution of the type are more likely

than those outside.

As a consequence of assumption 1.3, the distributions of S jT and of T jS are symmetric,

so we will denote the cdf of both by F. � j � /, so that F.t js/ D Pr.T � t j S D s/. Similarly, we

will denote the cdf of S and T by F. � /, so that F.t/ D Pr.T � t /.

To characterise the informativeness of S as a signal of T , we will make the following

assumption about the posterior distribution of T .

Assumption 1.4 If s1 > s0, the posterior distribution of T conditional on S D s1 dominates

that of T conditional on S D s0 in monotone likelihood ratio (MLR).

Monotone likelihood ratio dominance is widely used in statistics, and more relevantly to

our purposes, in the study of monotone comparative statics. If F.t js/ admits a density15 f .t js/,

assumption 1.4 means that for t1 > t0, the likelihood ratio f .t1js/=f .t0js/ is increasing in s, i.e.,

that the relative likelihood of higher values of the type increases with higher values of the signal.

Note that monotone likelihood ratio dominance is a relatively strong requirement, certainly

13Although the notation � is suggestive of mere correlation, it is meant to capture true stochastic dependence. We
will see in section 1.3.3 a concrete example of how to model this dependence structure. See in particular footnote 22.

14Formally, S and T are comonotonic if there exists an increasing function � such that S D �.T /.
15See Definition 1 in Ormiston and Schlee (1993) for a general, but extremely unwieldy definition of MLR

dominance that accommodates distributions that are not continuous.
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stronger than first-order stochastic dominance, but it cannot be relaxed for the purposes of

this paper, in particular, for proposition 1.2.

Finally, we will make the assumption about average tolerance.

Assumption 1.5 The distribution of tolerance satisfies 1 � ET < 1
1Cp

.

Recall that 1 � T , the complement of tolerance, is the proportion of taxpayers who are

audited. If auditing is random and taxpayers’ signals are completely uninformative then 1�ET

is the exogenous probability of audited, as in the classical case of Allingham and Sandmo (1972).

We see from eq. (1.1) that in this scenario, a risk-neutral taxpayer evade 0 if this probability

exceeds 1=.1C p/ and will evade 1 otherwise. The assumption that 1 � ET < 1=.1C p/ rules

out the uninteresting scenario where the tax authority has such abundant resources that it can

ensure full compliance even in the classical case with risk-neutrality.

1.3 Equilibrium

Having laid out the model, we now turn to analysing its equilibria, and we start by describing

the optimal audit strategy of the tax authority. The equilibrium concept we use is Bayesian

Nash equilibrium, so that the taxpayers’ strategies are functions that map signals to evasion. On

the other hand, in general, the tax authority’s strategy is a function that maps each realisation of

its type and the indicator Y to the set of taxpayers to be audited. Fortunately, as the following

proposition shows, we need not consider strategies in such generality as the optimal audit

strategy is of a particularly simple form.

Proposition 1.1 Suppose ˛ > 0 and that the tax authority’s tolerance is t . Given evasion

indicator Y , let � be the quantile function of Y , defined by �.t/ D inf¹y W Pr.Y � y/ � tº.

Then the best response of the tax authority is to audit all taxpayers i 2 I with Y.i/ > �.t/,

none with Y.i/ < �.t/ and some with Y.i/ D �.t/, if any.

Proof. From lemma 1.1 we know that the distribution of X and Y is symmetric, so that

Pr.X � x j Y D y/ D

8<:.1 � ˛/FX .x/ if x < y

.1 � ˛/FX .x/C ˛ if x � y.
(1.3)

Then, given two taxpayers with indicators y0 and y1, where y0 < y1, the cumulative

distribution functions of X j Y D y0 and X j Y D y1 coincide for x < y0 and x � y1,

but for y0 � x < y1, Pr.X � x j Y D y0/ D .1 � ˛/F.x/C ˛ > .1 � ˛/F.x/ D Pr.X �

x j Y D y1/, since ˛ > 0. Hence Pr.X � x j Y D y0/ � Pr.X � x j Y D y1/ for all

x, which means that X j Y D y1 first-order stochastically dominates X j Y D y0, i.e.,

Pr.X j Y D y1 > x/ � Pr.X j Y D y0 > x/ for all x 2 Œ0; 1�. Therefore, auditing someone

with Y D y1 will bring in at least as much additional revenue as auditing someone with

Y D y0, so it is optimal for the tax authority to audit the top 1 � t of taxpayers and let off

the bottom t , sorted by Y . The threshold �.t/ for audit is therefore the t-th quantile of Y ,

i.e., �.t/ D inf¹y W Pr.Y � y/ � tº. If Pr.Y D �.t// D 0, there is no mass at �.t/ so that

exactly t taxpayers are below �.t/ and 1 � t are above, so having an indicator value greater



CHAPTER 1. SIGNALS AND SECRECY IN TAX ENFORCEMENT 13

than or equal to �.t/ will indeed trigger an audit. On the other hand, if Pr.Y D �.t// > 0,

Pr.Y < �.t// � t so t � Pr.Y < �.t// � 0 of those with Y D �.t/ are not audited, leaving

Pr.Y D �.t// � .t � Pr.Y < �.t/// D Pr.Y � �.t// � t to be audited randomly. �

This shows that if ˛ > 0, i.e., the indicator is not completely uninformative, the tax authority

will employ a cutoff strategy16. Because of the binary nature of the tax authority’s optimal

strategy, we will find it convenient to refer to it simply by the threshold �.t/. Similarly, for

convenience, we will note the following fact.

Corollary 1.1 The audit threshold �.t/ is non-decreasing in t .

Proof. This follows immediately from its definition as the quantile function of Y
d
D X . �

Having characterised the optimal audit strategy of the tax authority, we now establish some

basic properties of the best responses of the taxpayers.

Proposition 1.2 Optimal evasion is non-decreasing in the signal s.

Proof. Given the audit strategy � , a taxpayer with signal s faces a random audit threshold

�.T s/ with cdf F‚.� js/ and chooses x to maximise

U.x; s/ D

Z 1

0

u.x; �/ dF‚.� js/ D

Z 1

0

x.1=.1C p/ � P.x; �// dF‚.� js/ (1.4)

where P.x; �/ is the probability of being audited when the threshold is � and evasion is

x, which, by proposition 1.1 equals 1 if x > � , 0 if x < � , and some number in Œ0; 1�, the

precise value of which is irrelevant, that depends on the evasion of other taxpayers if � D x.

We can then apply a powerful result of Athey (2002, Theorem 2 together with extension (ii)

to Lemma 5) that implies that if u.x; �/ satisfies the single-crossing property with respect

to x; � and s orders F‚.� js/ by monotone likelihood ratio (MLR), then the maximiser of

U.x; s/ is non-decreasing in s, so that in order to prove the result, we need to check that the

conditions on u.x; �/ and F‚.� js/ are satisfied.

Firstly, u.x; �/ satisfies the single-crossing condition with respect to x; � if, for all x1 > x0
and �1 > �0, u.x1; �0/ � u.x0; �0/ implies u.x1; �1/ � u.x0; �1/, with the second inequality

being strict if the first one is. If x1 > �0, then P.x1; �0/ D 1 > 1=.1C p/, so u.x1; �0/ < 0.

This is clearly less than u.x0; �0/ if the latter is non-negative, but this is also true if u.x0; �0/

too is negative, because u.x1; �0/ D �p=.1 C p/x1 < �p=.1 C p/x0 D u.x0; �0/, since

x1 > x0. Therefore, u.x1; �0/ � u.x0; �0/ implies x1 � �0, which in turn implies that

x0 < x1 � �0 < �1. Hence P.x1; �1/ D 0 and P.x0; �1/ D 0, so that u.x1; �1/ D

x1=.1C p/ > x0=.1C p/ D u.x0; �1/, as required. Figure 1.1 illustrates this argument.

Secondly, recall that MLR order is preserved by non-decreasing transformations, so

that if T s1 dominates T s0 in MLR, then �.T s1/ dominates �.T s0/ in MLR. Therefore, by

assumption 1.4 and corollary 1.1, the family of cdfs F‚.� js/ are ordered by s in MLR. �

16This is at first glance similar to what it would do if it could announce and commit to an auditing strategy before
evasion decisions are taken, as in Reinganum and Wilde (1985) and Sanchez and Sobel (1993), but the similarity is
only superficial because in those models the cutoff rule is conditional on the income report of the taxpayer, since
that is the only piece of information available to the authority.
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Figure 1.1: Single-crossing for u.x; �/

Note that u.x; �/ can take any value in Œ�p�=.1C p/; �=.1C p/� when x D �
without affecting this condition.
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Next, if we call equilibria where all taxpayers evade the same amount pooling equilibria,

borrowing the term from adverse selection17, we can state the following proposition about

them.

Proposition 1.3 If ˛ > 0, the only pooling equilibrium consists of full compliance by all

taxpayers.

Proof. Suppose that there is another pooling equilibrium where all taxpayers evade the

same amount x�. Then, the audit threshold is �.t/ D x� for all t , so the payoff of a taxpayer

with signal s is u� D x�
�
1=.1Cp/� .1�ET s/

�
. If this taxpayer deviates to evading Qx < x�,

he is audited only when the indicator takes value x� with probability 1�˛, so that his payoff

is now Qu D Qx
�
1=.1C p/ � .1 � ˛/.1 � ET s/

�
. Any taxpayer with s such that ET s < 1 can

choose Qx sufficiently close to x� to ensure that Qu > u�, thus yielding a strictly profitable

deviation. The only value of x� where this cannot occur is x� D 0, so this must be the only

pooling equilibrium. �

The intuition behind this result is as follows. When all taxpayers are evading the same

amount, each taxpayer has an incentive to slightly undercut everyone else and thus significantly

reduce his audit probability, leading to an equilibrium with no evasion. Thus, if the parameters

are such that in equilibrium taxpayers act homogeneously, they are engaged in a Bertrand-like

game with the familiar “race to the bottom” effect mentioned in the introduction.

The next proposition establishes the conditions under which this zero evasion equilibrium

exists.

Proposition 1.4 Full compliance is an equilibrium if ˛.1C p/ � 1. Moreover, full compliance

17The present model is not an example of adverse selection because although taxpayers’ signals S t are private
information, they do not affect the tax authority’s payoff.
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is an equilibrium if and only if, for ˛ < 1,

ET s �
1 � 1=.1C p/

1 � ˛
for all s 2 supp.S/, (1.5)

where supp.S/ is the support of S .

Proof. Suppose now that all taxpayers evade 0, so that their payoff is 0 and the audit

threshold is �.t/ D 0 for all t . If a taxpayer with signal s deviates to x > 0, his indicator

will take value x with probability ˛ and 0 with probability 1 � ˛, so that he will be audited

with probability ˛ C .1 � ˛/.1 � ET s/ � ˛. Then his payoff from this deviation will

be x
�
1=.1 C p/ � ˛ � .1 � ˛/.1 � ET s/

�
, which is at most the equilibrium payoff 0 iff

1=.1C p/ � ˛ � .1 � ˛/.1 � ET s/ � 0, which is equivalent to eq. (1.5).

If ˛.1Cp/ � 1, 1�1=.1Cp/
1�˛

� 1 � ET s for any s, since supp.T / � Œ0; 1�, so that eq. (1.5)

is satisfied.

Finally, if ˛ D 1, any deviation from 0 will be caught with probability 1, yielding a payoff

of x.1=.1C p/ � 1/ < 0, so that full compliance is indeed an equilibrium. �

This means that zero evasion can be an equilibrium if accuracy and penalties are sufficiently

high, as intuition would suggest.

Having established these general results, we will examine the four extreme values of the

openness and accuracy parameters, viz., ˛ D 0, � D 0, � D 1, and ˛ D 1.

1.3.1 Full secrecy and openness

Consider the case � D 0, where the signal S is independent of type of which it is a signal, T .

We refer to this case as that of full secrecy, since the taxpayers have no information about the

particular realisation of the tax authority’s tolerance and make their evasion decisions based

solely on their commonly known prior information. In this case, the unique pure strategy18

equilibrium is as follows.

Proposition 1.5 For � D 0, if ˛ < 1=.1Cp/�.1�ET /
1�.1�ET / , in the unique pure strategy equilibrium,

taxpayers are indifferent between evading any x 2 Œx; 1� and the distribution of evasion across

taxpayers is given by the cdf

FX .x/ D

8̂̂̂<̂
ˆ̂:
0 if x < x

F�1
�
1
ˇ

�
1 � 1�ˇ

x

��
if x 2 Œx; 1�

1 if x > 1,

(1.6)

18We express the equilibria in this section in terms of asymmetric pure strategies, when perhaps it would be
more natural to express them in terms of symmetric mixed strategies. Intuitively, since there is a continuum of
agents, we would expect these two to be observationally equivalent by appealing to some suitable law of large
numbers, so that there is no loss of generality in considering pure strategies only. But it turns out that problems
similar to those alluded to in footnote 12 plague this reasoning. As a consequence, for the overall distribution
across agents to be the same as that followed by each individual through some idiosyncratic randomisation device,
it must be that these randomisation devices are correlated with each other in such a way that they jointly induce
the required population distribution. Therefore the symmetric equivalent of the pure strategy equilibria discussed
in this section are not mixed strategy ones (where the randomisation is independent across individuals) but more
general correlated equilibria.
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where x D 1� ˇ and ˇ´ ˛=
�
1=.1C p/� .1� ˛/.1�ET /

�
. If ˛ � 1=.1Cp/�.1�ET /

1�.1�ET / , there is

no evasion.

Proof. Since all taxpayers have the same information, in order for them to evade different

amounts it must be that they are indifferent between them. Let x denote the minimum

amount of evasion and note that the maximum amount of evasion must be 1: if it were some

Nx < 1, then evading 1 would yield the same probability of audit as evading Nx, since there

are no taxpayers who evade more than Nx, so that the payoff is strictly higher, resulting in a

profitable deviation.

Let FX be cdf of the distribution of evasion across the population. Assuming FX is

continuous and increasing, the tax authority’s audit threshold will satisfy Pr.X � �.t// D

t D FX .�.t//, so that �.t/ D F�1X .t/. Then the probability of being audited when evading

x is

�.x/ D ˛ Pr.x � �.T //C .1 � ˛/.1 � ET / D ˛ Pr.x � F�1X .T //C .1 � ˛/.1 � ET /

(1.7)

D ˛ Pr.FX .x/ � T /C .1 � ˛/.1 � ET / D ˛F.FX .x//C .1 � ˛/.1 � ET / : (1.8)

Then, for taxpayers to be indifferent between any evasion amount x 2 Œx; 1�, it must be that

for some Nu 2 Œ0; 1�,

u.x/ D x .1=.1C p/ � ˛F.FX .x// � .1 � ˛/.1 � ET /// D Nu for all x 2 Œx; 1�

(1.9)

() FX .x/ D F
�1

�
1

˛

�
1

1C p
� .1 � ˛/.1 � ET / �

Nu

x

��
: (1.10)

Furthermore, since x and 1 are the minimum and maximum evasion levels, FX .x/ D 0 and

FX .1/ D 1, so that

FX .1/ D 1 () Nu D 1=.1C p/ � .1 � ˛/.1 � ET / � ˛ (1.11)

FX .x/ D 0 () x D 1 �
˛

1=.1C p/ � .1 � ˛/.1 � ET /
(1.12)

so that, letting ˇ´ ˛
1=.1Cp/�.1�˛/.1�ET / ,

FX .x/ D F
�1

�
1

ˇ

�
1 �

1 � ˇ

x

��
: (1.13)

For this to be a valid equilibrium we also need x 2 Œ0; 1�, so we need to check when these

conditions are satisfied. Firstly, x � 1 iff ˇ � 0 iff 1=.1C p/ � .1 � ˛/.1 � ET /, which is

always satisfied, since by assumption 1.5, 1=.1C p/ > 1 � ET � .1 � ˛/.1 � ET /. On the

other hand, x � 0 iff ˇ � 1 iff ˛ � 1=.1Cp/�.1�ET /
1�.1�ET / < 1, so accuracy must be sufficiently

low.

Note that as ˛ ! 1=.1Cp/�.1�ET /
1�.1�ET / , ˇ ! 1, so that FX .x/ ! 1 for all x, and the

equilibrium becomes the full compliance one. Indeed, from proposition 1.4, this is an



CHAPTER 1. SIGNALS AND SECRECY IN TAX ENFORCEMENT 17

equilibrium iff ET � 1�1=.1Cp/
1�˛

() ˛ � 1=.1Cp/�.1�ET /
1�.1�ET / . �

Consider next the case of � D 1, where taxpayers’ signals are perfectly accurate. We

refer to this case as full openness since the taxpayers have complete knowledge of the tax

authority’s tolerance, resulting in a game of complete information. The next result describes

the (essentially) unique pure strategy equilibrium in this case.

Proposition 1.6 For � D 1, if t > 1�1=.1Cp/
1�˛

, t taxpayers evade x� and 1� t taxpayers evade 1,

where x� ´ 1 � ˛=
�
1=.1C p/ � .1 � ˛/.1 � t /

�
is the audit threshold. If t D 1�1=.1Cp/

1�˛
, at

least t taxpayers evade 0 and the rest evade 1. If t < 1�1=.1Cp/
1�˛

, there is no evasion.

Proof. Recall that 1 � t is the number of audits that the tax authority can carry out. Since

t is known and by proposition 1.1 the tax authority always follows a cutoff strategy, in

equilibrium the audit threshold is common knowledge.

Suppose that the equilibrium threshold is some �� > 0, so that the probability of being

audited when evading x is .1 � ˛/.1 � t / if x < �� and ˛ C .1 � ˛/.1 � t / if x > ��, and

some intermediate value if x D ��, where .1 � ˛/.1 � t / is the probability of being audited

when the indicator is incorrect.

If t > 1�1=.1Cp/
1�˛

, which is only possible if 1=.1 C p/ > ˛, then it is not optimal to

evade x 2 .��; 1/ because evading 1 has the same probability of audit but with a higher

payoff when not audited, since 1=.1C p/ � ˛ � .1 � ˛/.1 � t / > 0. Furthermore, for the

equilibrium threshold to be ��, at most 1 � t taxpayers must be evading 1 and some must

be evading x D ��, so let x� ´ ��. For this to be the case, taxpayers must be indifferent

between evading x� and 1, which means that u.x�/ D x�.1=.1C p/ � .1 � ˛/.1 � t // D

1=.1Cp/�1� .1�˛/.1� t / D u.1/ which holds iff x� D 1�˛=
�
1=.1Cp/� .1�a/.1� t /

�
.

Note that if t > 1�1=.1Cp/
1�˛

, x� D �� > 0, as supposed, and also x� � 1. Moreover, exactly

1� t taxpayers must be evading 1: if not, then the probability of being audited when evading

x� would be greater than .1 � ˛/.1 � t /, so that deviating to x < �� D x� would yield a

strictly higher payoff for x sufficiently close to x�.

If t D 1�1=.1Cp/
1�˛

, which is only possible if 1=.1Cp/ � ˛, 1=.1Cp/�˛�.1�˛/.1�t / D 0,

so evading x > �� yields a payoff of 0. Suppose that �� > 0, then for �� to be an audit

threshold it must be that some taxpayers are evading x D ��, which implies that 1 � t

taxpayers are evading x > �� by the same reasoning as in the last paragraph. But then,

taxpayers must be indifferent between evading �� and evading x > ��, and since the latter

yields a payoff of 0, whilst the former a payoff of ��.1=.1C p/� ˛/, it must be that �� D 0,

a contradiction. Hence, �� must be 0, so that there must be at least t taxpayers complying,

with the rest evading any positive amount.

If t < 1�1=.1Cp/
1�˛

, by proposition 1.4 full compliance is an equilibrium. It is also the only

equilibrium, because for any audit threshold ��, nobody will evade x > �� as that yields a

negative payoff, since 1=.1C p/ � ˛ � .1 � ˛/.1 � t / < 0. Hence the only possibility is that

everyone evades 0 and the audit threshold is also 0. �

The equilibrium is unique except for the case of t D 1�1=.1Cp/
1�˛

, where there are infinitely

many equilibria, spanning all possibilities between the limits of the equilibria in the other two
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cases, so that the equilibrium varies continuously in t .

1.3.2 Random auditing

Consider the case ˛ D 0. Here, the indicator conveys no information about how much tax each

individual has evaded, so the tax authority must pick taxpayers at random for audit, rather

than using a cutoff rule. The probability of audit is therefore independent of evasion, so that

taxpayers will evade 0 or 1, depending on what their assessment of the tolerance of the tax

authority.

Proposition 1.7 If ˛ D 0, taxpayers with a signal s such that 1 � ET s < 1=.1C p/ evade 1,

those with 1�ET s > 1=.1C p/ evade 0, and those with 1�ET s D 1=.1C p/ are indifferent

between any evasion amount.

Proof. This follows immediately from the fact that the payoff of a taxpayer who receives a

signal s is us.x/ D x
�
1=.1Cp/� .1�ET s/

�
, which is increasing, constant or decreasing in

x depending on whether 1=.1C p/ is greater than, equal to or less than 1 � ET s. �

By assumption 1.5, when � D 0 and taxpayers decide how much to evade based on their

prior about T , there will be full evasion. On the other hand, when � D 1, there will be

full evasion whenever 1 � t < 1=.1 C p/ () t > p=.1 C p/ and full compliance when

t < p=.1C p/, so that ex-ante evasion is less than when � D 0.

1.3.3 Perfect indicator

We now turn to the case where ˛ D 1, i.e., the tax authority has perfect knowledge of a

taxpayer’s evasion before an actual audit19 Here we will make the following specific assumption

about the joint distribution of the type T and signal S .

Assumption 1.6 Let QS and QT have the standard bivariate normal distribution with correlation

coefficient �. Then S ´ ˆ
�p
1 � �2 QSC�ˆ�1.�/

�
and T ´ ˆ

�p
1 � �2 QT C�ˆ�1.�/

�
, where

ˆ is the standard normal cdf, � 2 Œ0; 1/ and � 2 .0; 1/.

Intuitively, T and S are weighted20 averages of a normal random variables and a constant,

transformed by the normal cdf to yield values in the unit interval. The weighting parameter �

captures the concentration of the prior distribution of tolerance: as �! 1, the distribution

become more and more concentrated around �, whereas as � ! 0, the distribution tends

towards the uniform distribution on the unit interval21, commonly used as an ignorance prior.

The fact that QS and QT are standard bivariate normal implies that S and T are symmetric

19Recall that an audit is still necessary to collect the evaded tax because the pre-audit information that the tax
authority has is assumed to be non-verifiable.

20Note that the squares of the weights add up to 1. This merely a cosmetic assumption that makes the prior and
posterior distributions similar in form and easier to manipulate algebraically. Making the weights themselves add
up to 1 does not make any qualitative difference to the results.

21Recall that if X has cdf F , then Pr.F.X/ � u/ D Pr.X � F�1.u// D F.F�1.u// D u, which is the cdf of the
uniform distribution, so that F.X/ � U Œ0; 1�.
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Figure 1.2: Plots of the density f .t js/
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and that � measures the degree of dependence22 between the two, with � D 0 meaning they

are independent and � D 1 meaning that S D T . Moreover, the joint normality of QS and QT

means that conditional distributions S jT and T jS are of an analytically tractable form, as

lemma 1.A.1 shows. Lastly, lemma 1.A.2 shows that assumption 1.6 implies that assumption 1.4

is satisfied.

We begin working towards the equilibria of the model, by setting down the following useful

definitions and result.

Lemma 1.2 Let F�1.sjt / be the inverse of F.sjt / with respect to s and let G.t/´ F�1.t jt /.

Then the inverse G�1.t/ of G.t/ exists for all t 2 Œ0; 1�.

22Recall that ifX and Y are bivariate normal, then their correlation coefficient captures the degree of dependence
between the two. Another way of expressing assumption 1.6 is to say that the dependence structure of S and T is
captured by the bivariate normal copula C. � ; � I �/ so that the joint cdf of S and T is C.F.s/; F.t/I �/. C could in
principle be any copula that includes the independence and comonotonicity ones, but we will use the Gaussian one
because of analytical convenience. Copulas are now widely used in finance and risk management to model the
dependence structure of random variables. See Nelsen (2006) for the theory and McNeil, Frey, and Embrechts
(2005) for applications.
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Proof. See proof 1.A.2 in appendix 1.A �

Since F.sjt / is the cdf of the distribution of signals conditional on the true type of the

tax authority being t , F�1.sjt / is the s-th quantile of the distribution of signals, i.e., a mass s

of taxpayers will receive a signal less than or equal to F�1.sjt /, so that G.t/´ F�1.t jt / is

the threshold value of the signal such the mass of taxpayers who receive a signal below this

threshold is exactly equal to the tax authority’s tolerance. Since by proposition 1.2 evasion is

non-decreasing in the taxpayer signal, we will see that when the tax authority has tolerance t ,

it will choose its audit threshold so that it audits those taxpayers who received a signal above

G.t/, letting off all those who received a signal below G.t/. Hence, G�1.t/ is the value of the

tax authority’s tolerance such that in equilibrium precisely those who receive a signal below t

are let off and those with a signal above t are audited. Conversely, in equilibrium, a taxpayer

who receives a signal t is audited if the tax authority’s tolerance is below G�1.t/ and is let off

if it is above G�1.t/.

We will restrict our attention to symmetric pure strategy equilibria where the taxpayers’

strategies consist of the same function x�.s/ mapping the signal s into evasion. The first result

describes how the tax authority’s equilibrium strategy depends on the taxpayers’.

Lemma 1.3 The audit threshold is �.t/ D x�.G.t//.

Proof. Let x��1 be the quasi-inverse of x� defined by x��1.x/ ´ sup¹s W x�.s/ � xº,

equal to the ordinary inverse if x� is increasing rather than merely non-decreasing, with the

property that Pr.Z � x��1.x// D Pr.x�.Z/ � x/ for any random variable Z with support

Œ0; 1�. Then

�.t/ D inf¹x W Pr.x�.S t / � x/ � tº D inf¹x W Pr.S t � x��1.x// � tº (1.14)

D inf¹x W F.x��1.x/jt / � tº D inf¹x W x��1.x/ � F�1.t jt /º (1.15)

D inf¹x W x � x�
�
F�1.t jt /

�
º D x�

�
F�1.t jt /

�
D x�

�
G.t/

�
; (1.16)

as required. �

Next, we show that taxpayers cannot pool at any level of evasion other than 0.

Lemma 1.4 If there exist s0 < s1 2 Œ0; 1� such that x�.s/ D c for all s 2 Œs0; s1�, then c D 0.

Proof. Let s0 and s1 be the smallest and largest values in Œ0; 1� such that x� takes constant

value c for all s 2 Œs0; s1�. Then, by lemma 1.3, G.t/ 2 Œs0; s1� for all t 2 ŒG�1.s0/; G�1.s1/�,

where G�1s exists for any s 2 Œ0; 1� by lemma 1.2, so that �.t/ D x�.G.t// D c. This means

that for a taxpayer who received a signal s, the probability of being audited when evading c is

Pr.T s < G�1.s0//C Pr.G�1.s0/ � T s � G�1.s1//. But for someone who receives a signal

s 2 Œs0; s1�, c is not the optimal amount of evasion, because by evading c0 < c instead, the

taxpayer faces a probability of audit of only Pr.T s � G�1.x��1.c0/// < Pr.T s < G�1.s0//,

since s0 is the lowest s for which x�.s/ D c and x� is non-decreasing, thus avoiding audit with

probability Pr.G�1.s0/ � T s � G�1.s1// > 0 since s0 < s1. Therefore, for c0 sufficiently
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close to c, the payoff from this deviation is strictly greater than that from c, so that c cannot

be the equilibrium level of evasion for someone receiving signal s 2 Œs0; s1�. The only value

of c for which this argument doesn’t hold is c D 0, so that if x� is constant over an interval

it must be 0. �

This means that the only constant section of x� must be where there is no evasion, i.e., the

distribution of evasion can have a mass point only at x D 0, being continuous everywhere else.

Moreover, by lemma 1.3 and lemma 1.2, this means that there exists a t0 2 Œ0; 1� such that

�.t/ D 0 for all t � t0 and such that �.t/ is strictly increasing for all t > t0.

As the final step before computing the equilibrium, we need the following definitions and

result.

Lemma 1.5 Let H.t js/´ F
�
G�1.t/js

�
and let

H.s/´ H.sjs/ D ˆ

 
�kˆ�1.s/ � �

p
1 � �2

�
.1 � �/

p
1 � �2 C

p
1 � �2

�
ˆ�1.�/

p
1 � �2

p
1 � �2

�
�C
p
1 � �2

p
1 � �2

� !
(1.17)

and k´
p

1 � �2
�
�
p

1 � �2 �
p

1 � �2
�
: (1.18)

Then H 0.s/ D �k Ht .sjs/, where Ht .t js/´ @H.t js/=@t .

Proof. See proof 1.A.3 in appendix 1.A �

Recall that G�1.t/ is such that, in equilibrium, a taxpayer who received a signal t will

be audited if the tax authority’s type is below G�1.t/ and let off if it is above G�1.t/. Also,

F
�
G�1.t/js

�
is the probability that the tax authority’s tolerance is less than or equal to G�1.t/

conditional on having received a signal s. Therefore, H.t js/´ F
�
G�1.t/js

�
is the posterior

probability of audit for a taxpayer who receives a signal s, but who adopts the equilibrium

strategy of someone who received a signal t . Hence,H.s/ is the equilibrium posterior probability

of audit for a taxpayer who receives a signal s.

We are now ready to characterise the pure strategy equilibria.

Proposition 1.8 Let �� ´
p
2 � �2. If � � ��, full compliance is the only pure strategy

equilibrium. If � > ��, for any Nx 2 Œ0; 1�, there is a pure strategy equilibrium with

x�.s/ D

8<: Nx.1 � .1C p/H.s//1=k if s > s

0 if s � s,
(1.19)

where s D H�1.1=.1C p// and H and k are defined in lemma 1.5.

Proof. Let Nx be the maximum amount of evasion in equilibrium. We know from lemma 1.4

that x� is increasing for all s such that x�.s/ > 0, so that the ordinary inverse x��1.x/ exists

for all x 2 .0; Nx�. Then, given that all taxpayers are following the pure strategy x�, the payoff
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of a taxpayer with signal s for x 2 .0; Nx� is

us.x/ D x

�
1

1C p
� Pr

�
x � �.T s/

��
D x

�
1

1C p
� Pr

�
x � x�.G.T s//

��
by lemma 1.3

(1.20)

D x

�
1

1C p
� Pr

�
G�1.x��1.x// � T s

��
D x

�
1

1C p
� F

�
G�1.x��1.x//js

��
(1.21)

D x

�
1

1C p
�H.x��1.x/js/

�
: (1.22)

Assuming that x� is differentiable, we differentiate eq. (1.22) with respect to x to obtain

u0s.x/ D
1

1C p
�H.x��1.x/js/ �

x

x�0.x��1.x//
Ht .x

��1.x/js/ : (1.23)

Assuming further that us.x/ has a unique interior maximum, for x�.s/ to be the optimal

level of evasion for a taxpayer with signal s, the first-order condition u0s.x
�.s// D 0 must

hold, i.e.,

u0s.x
�.s// D

1

1C p
�H.x��1.x�.s//js/ �

x�.s/

x�0.x��1.x�.s///
Ht .x

��1.x�.s//js/ (1.24)

D
1

1C p
�H.sjs/ �

x�.s/

x�0.s/
Ht .sjs/ D 0 : (1.25)

Rearranging eq. (1.25), we have the differential equation

x�0.s/

x�.s/
D

Ht .sjs/

1=.1C p/ �H.sjs/
D
1

k

H 0.s/

1=.1C p/ �H.s/
by lemma 1.5 (1.26)

D
1

k

d

ds
Œlog.1=.1C p/ �H.s//� : (1.27)

Integrating both sides of eq. (1.27) by s, we have

log x�.s/ D
1

k
log

�
1=.1C p/ �H.s/

�
C A (1.28)

() x�.s/ D A
�
1=.1C p/ �H.s/

�1=k
; (1.29)

where A a constant of integration that can be determined by a suitable boundary condition.

The function in eq. (1.29) is qualitatively different depending on the sign of k, which in

turn depends on whether � is less than, equal to or greater than ��´
p
2 � �2, so we will

analyse these three cases separately.

If � < ��, then k < 0 and H.s/ is increasing in s, so that there exists an s such that

1=.1C p/ D H.s/. But then
�
1=.1C p/ �H.s/

�
1=k increases without bound as s ! s so

that eq. (1.29) cannot be an equilibrium. A further reason for why the solution given by

eq. (1.29) cannot be an equilibrium if � < �� is that it will be decreasing in s for some s,

contradicting proposition 1.2. Since by proposition 1.4 full compliance is an equilibrium, it

must be the only one.
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If � D ��, then H.s/ is constant in s, which means that we are in a pooling equilibrium,

but by proposition 1.3, the only possibility is full compliance.

Suppose now that � > ��. Then H.s/ is decreasing in s and H.1/ D 0, so that the

maximum of x�.s/ is x�.1/ D A.1C p/�1=k , since x� is non-decreasing in s. Then, letting

Nx D x�.1/, we have A D Nx.1C p/�1=k , so that

x�.s/ D Nx
�
1 � .1C p/H.s/

�1=k
; (1.30)

if H.s/ � 1=.1 C p/. Since x�.s/ D 0, where s D H�1.1=.1 C p//, for x� to be non-

decreasing it must be that x�.s/ D 0 for all s < s.

To check that this is indeed an equilibrium, we find us.x/ by inverting eq. (1.30) to get

x��1.x/ D H�1
�
1 � .x= Nx/k

1C p

�
for all x 2 .0; Nx�. (1.31)

Since H.s/ and H�1.s/ are both decreasing in s, if H.s/ � 1=.1 C p/ then x��1.x/ >

H�1.1=.1C p// � s for all x 2 .0; Nx�. Then H.x��1.x/js/ > H.sjs/ D H.s/ � 1=.1C p/

since H.t js/ is increasing in t by lemma 1.5, so that us.x/ < 0 for all x 2 .0; Nx�. Hence

x D 0 is optimal if s � s.

Similarly, we must verify that eq. (1.30) gives the unique maximum of eq. (1.22) for all

s > s. Lemma 1.A.6 in appendix 1.A demonstrates this by showing that if � > ��, the payoff

given x� as in eq. (1.30) is strictly quasi-concave in x. �

Note that the maximum amount of evasion Nx in eq. (1.19) can be arbitrarily chosen in

Œ0; 1�, thus resulting in multiple equilibria. This multiplicity is due to the fact that for any Nx, if

everyone else is evading up to Nx, evading x > Nx results in a probability of audit of 1 > 1=.1Cp/,

yielding a negative payoff, meaning that no taxpayer has an incentive to evade more than Nx.

Note also that the equilibrium features a positive mass of taxpayers who are fully compliant.

These are precisely the taxpayers who receive signals of low tolerance such that their equilibrium

probability of audit is greater than 1=.1C p/.

1.4 Comparative statics

We now turn to determining the effect of varying the two main parameters of the model, namely

the accuracy ˛ of the indicator of evasion and the openness � that measures the precision of

the signal of the tax authority’s tolerance.

The first result establishes that under full-secrecy, evasion is decreasing in accuracy.

Proposition 1.9 For � D 0, if ˛0 < ˛1, the distribution of evasion when ˛ D ˛0 first-order

stochastically dominates the distribution of evasion when ˛ D ˛1.

Proof. To prove this we can show that FX .x/ is non-decreasing in ˛ for all x. To do this,

note that ˇ D ˛=.1=.1Cp/� .1�˛/.1�ET // D 1=
�
.1=.1Cp/� .1�ET //=˛C .1�ET /

�
is increasing in ˛ since by assumption 1.5, 1=.1C p/ � .1 � ET / > 0. Then 1

ˇ

�
1 � 1�ˇ

x

�
D

1
ˇ
.1�1=x/C1=x, which is increasing in ˇ and therefore in ˛ since x � 1 () 1�1=x < 0.
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The fact that F is the cdf of T and therefore is non-decreasing means that F�1 is, so that

if FX .x/ > 0 then FX .x/ is indeed non-decreasing. Furthermore, as ˛ ! 1, x.˛/ ! 0

monotonically, so that ifFX .x/ D 0, there exists an ˛0 such thatFX .x/ > 0 if ˛ > a0. Lastly,

if FX .x/ D 1, then FX .x/ stays constant as ˛ increases. Hence FX .x/ is non-decreasing in

x for all x, as required. �

Intuitively, this means that as ˛ increases, for any level of evasion x, the mass of taxpayers

evading x or less increases, so that evasion decreases monotonically across taxpayers, so that

average evasion too decreases monotonically with ˛.

The following proposition establishes an analogous result for the opposite case of � D 1.

Proposition 1.10 If � D 1, for any t , evasion is non-increasing in ˛.

Proof. If t > 1�1=.1Cp/
1�˛

() ˛ < 1=.1Cp/�.1�t/
1�.1�t/

, t taxpayers evade x� D 1 � ˛=
�
1=.1C

p/ � .1 � ˛/.1 � t /
�
D 1 � 1=

�
.1=.1C p/ � .1 � t //=˛ C .1 � t /

�
, which is decreasing in ˛,

while 1 � t taxpayers evade 1, which is constant. On the other hand, if ˛ > 1=.1Cp/�.1�t/
1�.1�t/

,

everybody evades 0, which is constant in ˛. �

We can now compare the two informational regimes of full secrecy and full openness. Since

the information structure of the signals is different, we cannot compare interim evasion in the

two regimes, but must rather compare ex-ante evasion, i.e., before any particular realisation

of the tax authority’s tolerance. The next result shows when we can make this comparison

without making any further assumptions.

Proposition 1.11 If ˛ > 1=.1C p/, there is full compliance both when � D 0 and � D 1. If

1=.1C p/ � c � ˛ � 1=.1C p/, where c D
�
.1 � ET /.1 � 1=.1C p//

�
=ET , ex-ante evasion

when � D 0 is less than when � D 1. Also, there exists an ˛0 such that, ex-ante evasion when

� D 0 is greater than when � D 1 for all ˛ � ˛0.

Proof. For � D 0, the equilibrium tends to full compliance as ˛ goes to 1=.1Cp/�.1�ET /
1�.1�ET / D

1
1Cp
�
.1�ET /.1�1=.1Cp//

ET . On the other hand, for � D 1, ex-ante full compliance, i.e., zero

evasion for all realisations of T , occurs when ˛ � 1=.1C p/ > 1
1Cp
�
.1�ET /.1�1=.1Cp//

ET .

Hence in the given interval of ˛, full compliance is the equilibrium for � D 0 but not for

� D 1:

For the second part, note that when � D 0, ˇ ! 0 as ˛ ! 0, so that FX .x/ ! 0

for all x < 1, thus approaching the full evasion equilibrium. On the other hand, when

� D 1, as ˛ ! 0, the equilibrium becomes the classical one where there is full compliance if

1� t > 1=.1Cp/ and full evasion if 1� t < 1=.1Cp/, so that in ex-ante terms, there is less

evasion when � D 1 than when � D 0. Furthermore, by proposition 1.9 and proposition 1.10,

these extremes are reached monotonically, so that there exists some threshold for ˛ below

which � D 1 yields less average evasion than � D 0. �

This result shows that when comparing the extremes of the informativeness of the taxpayers’

signals of tolerance, full secrecy does indeed lead to greater (in fact, full) compliance than
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complete openness if the tax authority can distinguish taxpayers by evasion with sufficient

accuracy. On the other hand, if the accuracy of the indicator is sufficiently low then full openness

leads to more compliance in ex-ante terms. The reason for the latter is that if indicator accuracy

is too low, the tax authority is essentially auditing at random. In the absence of any information

about the current realisation of the tax authority’s tolerance, taxpayers must rely solely on their

prior beliefs, which, by assumption 1.5 lead them to always evade fully. On the other hand, if

they are perfectly informed about the tax authority type, there will be compliance whenever

the tax authority’s type is low enough to deter evasion.

A similar intuition is behind the next result, which describes how the equilibrium changes

as � varies continuously when auditing is completely random.

Proposition 1.12 Under assumption 1.6, if ˛ D 0, ex-ante evasion is decreasing in �.

Proof. If ˛ D 0, for a given t , those with s such that ET s > 1=.1 C p/ () ET s <

p=.1 C p/ evade 0 and the rest evade 1. Therefore, the mass of compliant taxpayers is

Pr
�
ET S � p=.1C p/

�
and lemma 1.A.5 shows that this is increasing in � if assumption 1.5

holds, giving the result. �

This result shows that, under assumption 1.6, the above logic holds also for intermediate

values of �: as the signals become more accurate, receiving a signal of low tolerance is more

and more informative of a high exogenous probability of audit, leading to more taxpayers

complying23.

At the other opposite extreme, the next result shows how the equilibrium varies as �

varies continuously when the tax authority has perfect pre-audit information about taxpayers’

evasion.

Proposition 1.13 If ˛ D 1, for a fixed signal s, equilibrium evasion tends to zero monotonically

as �! �� and as �! 1.

Proof. See proof 1.A.4 in appendix 1.A. �

Proposition 1.13 shows that for any given signal, if � is sufficiently high, evasion is decreasing

in openness. This result is in direct opposition to the intuitive arguments put forward by the

IRS as quoted in the introduction, so the intuition behind it merits some discussion. We begin

by interpreting the function k.�/ in the exponent of eq. (1.19). To do this, we use lemma 1.5 to

write k as

k D
�H 0.s/

Ht .sjs/
D
�Hs.sjs/

Ht .sjs/
� 1 ; (1.32)

where subscripts denote partial derivatives. Recall from eq. (1.22) that H.t js/ is the audit

probability for a taxpayer who received a signal s and evades like someone who received a

signal t . Therefore, Ht is the rate at which the audit probability rises due to increases in

evasion, capturing the incentive to reduce evasion in order to avoid being audited. On the other

23Recall that the comparative statics are carried out in ex-ante terms, so � does not affect the distribution of
signals, which is always given by the prior distribution of S .
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Figure 1.3: Plots of equilibrium evasion x�.s/

s D 0:5; 0:6; 0:7, p D 0:2. Higher curves correspond to higher s.
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hand, the term �Hs.sjs/ captures a kind of informational rent from the signal. To see this,

let u�.s/´ us.x
�.s// D x�.s/

�
1=.1C p/ �H.s/

�
be the equilibrium payoff for a taxpayer

who receives a signal s. Then u�0.s/ D x�0.s/ u0s.x
�.s// � x�.s/Hs.sjs/ D �x

�.s/Hs.sjs/,

where the last equality follows from the fact that x�.s/ satisfies the first-order condition (1.23).

Therefore, the greater the value of �Hs.sjs/, the greater the benefit of having a higher signal.

Having expressed k as a function of the ratio of �Hs and Ht , we need to understand

how changes in � affect these two. Firstly, under assumption 1.6, �Hs.sjs/ and Ht .sjs/ are

� h.s; �/ and 1=
�p
1 � �2

p
1 � �2C �

�
h.s; �/, respectively, where h is a common term that we

will ignore. On the one hand, we see that �Hs is increasing in �, as we would expect; as the

precision of the signals increases, their informational content increases, so that taxpayers can

gain more from receiving a signal of high tolerance. Since this is a zero-sum game, this gain

must come at the expense of the tax authority, so that we can interpret the fact that �Hs is

increasing in � as embodying the fear of openness exemplified in the passage quoted in the

introduction.
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On the other hand, Ht , the incentive to reduce evasion, also increases in �, for � > ��; as

the spread of the signals decreases, taxpayers become more homogeneous, since the signals

were the only source of heterogeneity. Recall from proposition 1.3 that when taxpayers pool,

it is optimal for them to slightly undercut each other in order to escape audit. As taxpayers

become more homogeneous, this Bertrand-like competition intensifies, reducing the incentives

to evade. Thus, increasing openness � has a beneficial effect for the tax authority that arises

due to the strategic interaction between taxpayers and which counteracts the more obvious

detrimental one described earlier.

The ratio of �Hs and Ht measures the relative strength of these two effects. As � increases,

�Hs increases linearly, whereas Ht increases at an increasing rate24, so that their ratio, and

therefore k.�/, first increases and then decreases with �. Since the reciprocal of k appears as

the exponent of a value less than 1 in eq. (1.19), x� would increase and then decrease in �,

if H.s/ were kept constant. The only difficulty here is that H.s/ depends on � also, and it is

possible for it to decrease when 1=k.�/ decreases, so that it is not analytically clear that x�

first increases and then decreases in � as it would if the only dependence on � were through

k.�/. Nonetheless, the proof of proposition 1.13 shows that whenever the effects of � on x�

through H and k are opposed, the effect through k dominates, so that the intuition outlined

above is indeed the driving force of the result. In fact, numerical simulations25 suggest that x�

is indeed unimodal for a wide range of parameters, even though the exact conditions are at

present undetermined. The examples in fig. 1.3 illustrate this point.

1.5 Discussion

So far, we have characterised the equilibria and analysed their comparative statics along

the edges of the unit square formed by the parameters ˛ and �, but what can we say about

intermediate values of both ˛ and �? A natural starting point is to extend the approach used in

the construction of the equilibrium in the case of a perfect indicator in section 1.3.3 by allowing

˛ to take intermediate values. Unfortunately, we cannot continue assuming that taxpayers

adopt pure strategies because the solution to the suitably generalised foc in eq. (1.23) does not

constitute an equilibrium. Figure 1.4 shows an example of this: the solid line depicts u�, the

payoff obtained by following an evasion strategy given by the foc, whereas the dashed line

shows the payoff obtained by evading x D 1 when everyone else is following the foc strategy;

for some values of the signal s, deviating to evading 1 yields a strictly higher payoff than the

one obtained by following the foc strategy.

Given that the equilibrium for � D 1 and low values of ˛ features mixed strategies, it seems

likely that the equilibrium in the interior of the �-˛ space will also feature mixed strategies, but

the solution to this general problem remains elusive.

Nonetheless, the comparative statics result for the perfect indicator case (proposition 1.13)

shows that the competitive argument behind proposition 1.3 that makes full compliance the

24This is because @Œ
p
1 � �2

p
1 � �2 C ��=@� D 1 �

p
1 � �2�=

p
1 � �2 is decreasing in �, and the reciprocal

of a concave function is convex.
25An interactive Mathematica notebook for exploring the solution x� numerically for any parameter value is

available from the author.
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Figure 1.4: Insufficiency of first order condition when ˛ ¤ 1

Solid line is u� according to the foc and dashed line is u.1/. � D 0:8, ˛ D 0:5 and p D 0:2
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only possible pooling equilibrium exerts its force even when taxpayers are informationally

heterogeneous. This Bertrand-like mechanism is novel in the literature on tax evasion and

is unlikely to have no relevance when the tax authority’s ability to select the most egregious

evaders for audit is less than perfect.

A criticism that could be levelled at the equilibrium in the perfect indicator case is that it is

not unique, unlike the ones usually found in the literature on tax evasion. This multiplicity

is natural in coordination games, although not so in global games which typically feature a

unique equilibrium, but one can argue that the multiple equilibria are qualitatively similar: in

particular, the relative level of evasion across taxpayers is the same in all of them, since the

multiplicity derives from the choice of a multiplicative normalisation constant. Indeed, all

equilibria feature exactly the same comparative statics and therefore yield the same conclusions

about the desirability or otherwise of secrecy.

We saw earlier that the fact that individuals are homogeneous except for receiving private

signals about a fundamental type makes the model considered in this paper a global game.

The contribution to the literature in this area is that this paper considers a structure for the

signal that is radically different from the additive error one commonly used. This comes at the

cost of some analytical tractability, but modelling the joint distribution of the type and the

signal makes it possible to consider the full range of degrees of stochastic dependence between

the two, from full dependence or comonotonicy to independence, something which cannot be

done with an additive error.

The other innovation of this model is the introduction of an indicator of evasion that the

tax authority can use to select taxpayers for audit. As mentioned in the introduction, this

represents a departure from existing models where such information is either absent or about

incomes rather than directly about evasion. One important assumption that the present paper

makes is that the process by which the indicator is generated is known. In reality, taxpayers

are not very well informed about how26 as well as how many individuals are selected for audit.

26Indeed the IRS goes to great lengths to hide details of how DIF is computed, as the following quote from FTC
(2011) shows:

The IRS statistical technique known as discriminant function scores (DIF) is protected from dis-
closure under the investigatory records exception discussed above. DIF scores are used by IRS to
calculate tolerances outside of which audits become more likely. They also are used to determine
whether a fraud investigation should be undertaken and to identify collection methods. Discrimina-
tion function (DIF) scores are exempt from FOIA because they are investigative techniques, the
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This could mean that there is uncertainty about ˛ as well as the t considered here.

Perhaps a more fundamental objection to the model presented here is that the taxpayers are

assumed to be homogeneous except for their signals, so that they all owe the same amount of

taxes. This assumption is obviously not realistic, even within a fairly narrow class of taxpayers,

but it is a useful one, in that it highlights how heterogeneity in information drives evasion

behaviour, rather than the extensively studied heterogeneity in type studied by, for example,

Reinganum and Wilde (1986) and Sanchez and Sobel (1993).

Lastly, how applicable are the results of the current model to contexts other than tax

evasion? In principle, the model could be applied to a general regulatory context similar to

the one in Hansen, Krarup, and Russell (2006). The limiting factors are the features specific

to the taxation context, namely the presence of a very large number of agents to be audited

and the very specific proportional penalty structure. The first feature is integral to the model

because it ensures that an individual cannot alone influence the aggregate, which might not be

the case in scenarios where there is a small number of “big” players, such as large firms. As

for the second feature, the penalty structure could easily be modified to fit a different context,

say to accommodate a fixed, rather than proportional fine. We can see this by noting that the

results, especially proposition 1.13 carry through even if we let p D 0.

1.6 Conclusion

This paper has demonstrated in proposition 1.11 that the relative desirability of policies of

extreme secrecy or openness about how tolerant a tax authority is towards evasion depends

crucially on the accuracy of the information it uses to selects individuals for audit. Although

each type of information has been modelled separately in the literature on tax evasion, this is

the first paper to allow both, generating such a result.

Furthermore, proposition 1.3 and proposition 1.13 show how Bertrand-like competition

among taxpayers to reduce their evasion in order to reduce the probability with which they

are audited improves compliance, with greater information about the tax authority’s tolerance

leading to greater compliance. This competitive mechanism is novel and provides a counter-

argument to the view that a tax agency must strive for secrecy about itself in order to foster

compliance.

This paper could usefully be extended in three directions. Firstly, one could relax the

assumption that the technology used by the tax authority to assess whom to audit is known

to the taxpayers. Secondly, the homogeneity of taxpayers in every respect other than their

information about the tax authority could be relaxed to allow evasion differ by factors other

than information. Thirdly, alternative penalty structures, such as fixed or affine ones could

be considered, in order to improve direct applicability of the results to contexts other than

taxation, where proportional fines are the norm.

release of which would harm IRS ability to enforce the tax laws. E.g., such release could enable
taxpayers to develop plans to avoid flagging of their returns for audit and thus circumvent law
enforcement.
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Appendix 1.A Proofs and mathematical results

Proof 1.A.1 (Proof of lemma 1.1) Firstly, note that because the conditional distribution of Y

given X D x is discontinuous at y D x, we will use the Stieltjes integral27 throughout this

proof.

First we find the joint distribution of X and Y in order to show its symmetry. First we

rewrite eq. (1.2) as

Pr.Y � y j X D x/ D

8<:.1 � ˛/FX .y/ if x > y

.1 � ˛/FX .y/C ˛ if x � y
(1.33)

D .1 � ˛/FX .y/C ˛1Œ0;y�.x/ ; (1.34)

where 1A.x/ equals 1 if x 2 A and 0 otherwise. Then the joint probability that Y � y and

X � x is

Pr.Y � y;X � x/ D
Z x

0

Pr.Y � y j X D ´/ dFX .´/ (1.35)

D .1 � ˛/

Z x

0

FX .y/ dFX .´/C ˛

Z x

0

1Œ0;y�.´/ dFX .´/ (1.36)

D .1 � ˛/FX .y/FX .x/C ˛

Z min.x;y/

0

FX .´/ d (1.37)

D .1 � ˛/FX .y/FX .x/C ˛FX .min.x; y// (1.38)

which is symmetric in x and y.

To find Corr.X; Y / D .E.XY / � E.X/E.Y //=
p

Var.X/Var.Y /, we first use the law of

iterated expectations to write E.XY / D E.XE.Y jX//. Next, rewrite Pr.Y � y j X D x/ as a

function of y and write Fx.y/´ .1 � ˛/FX .y/C ˛1Œx;1�.y/, so that

E.Y j X D x/ D

Z 1

0

y dFx.y/ D .1 � ˛/

Z 1

0

y dFX .y/C ˛

Z 1

0

y d1x.y/ (1.39)

D .1 � ˛/EX C ˛x ; (1.40)

so that E.XY / D EŒX
�
.1� ˛/E.X/C ˛X

�
� D .1� ˛/E.X/2C ˛E.X2/, and hence E.XY /�

E.X/E.Y / D ˛.E.X2/�E.X/2/ D ˛VarX . Then Corr.X; Y / D Cov.X; Y /=
p

VarX VarY D

Cov.X; Y /=VarX D ˛, as required. �

Lemma 1.A.1 Under assumption 1.6, the cdf of T jS D s is

F.t js/ D ˆ

 
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆ�1.�/

p
1 � �2

p
1 � �2

!
; (1.41)

and the marginal cdf of S and T is

F.s/ D ˆ

�
ˆ�1.s/ � �ˆ�1.�/

p
1 � �2

�
: (1.42)

27See Ok (2011) for details.
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Proof. Recall that if QS and QT are standard bivariate normal with correlation �, then QT j QS D s

is normal with mean �� and variance 1��2, so that Pr. QT � t j QS D s/ D ˆ
�
.t ���/=

p
1 � �2

�
.

Then,

Pr.T � t jS D s/ D Pr.ˆ.
p

1 � �2 QT C �ˆ�1.�// � t jˆ.
p

1 � �2 QS C �ˆ�1.�// D s/

(1.43)

D Pr
�
QT �

ˆ�1.t/ � �ˆ�1.�/
p
1 � �2

ˇ̌̌̌
QS �

ˆ�1.s/ � �ˆ�1.�/
p
1 � �2

�
(1.44)

D ˆ

 
ˆ�1.t/ � �ˆ�1.�/ � �.ˆ�1.s/ � �ˆ�1.�//

p
1 � �2

p
1 � �2

!
(1.45)

D ˆ

 
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆı.�/

p
1 � �2

p
1 � �2

!
; (1.46)

as required. The marginal cdf is then obtained by setting � D 0 above. �

Lemma 1.A.2 Under assumption 1.6, F.t js/ satisfies assumption 1.4.

Proof. Since F.t js/ has a density f .t js/, we will show this by proving that f .t js/ is log-

supermodular in s; t , which in turn is equivalent to showing that @2 logf .t js/=@t@s > 0.

Firstly, the density is

f .t js/ D
@

@t
F.t js/ D

1
p
1 � �2

p
1 � �2

� �

 
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆ�1.�/

p
1 � �2

p
1 � �2

!
=�.ˆ�1.t//

(1.47)

H) logf .t js/ D log�

 
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆ�1.�/

p
1 � �2

p
1 � �2

!
C C ; (1.48)

where C is a function of t alone. Since �.x/ D exp.�x2=2/,

@2

@t@s
logf .t js/ D

@2

@t@s

"
�

�
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆ�1.�/

�2
2
�p
1 � �2

p
1 � �2

�2
#

(1.49)

D
@

@t

"
�

�
ˆ�1.t/ � �ˆ�1.s/ � �.1 � �/ˆ�1.�/

�
�.ˆ�1.s//

�p
1 � �2

p
1 � �2

�2
#

(1.50)

D
�

�.ˆ�1.t//�.ˆ�1.s//
�p
1 � �2

p
1 � �2

�2 > 0 ; (1.51)

as required. �

Lemma 1.A.3 If Pr.X � x/ D ˆ
�
.ˆ�1.x/ � a/=b

�
, then EX D ˆ

�
a=
p
1C b2

�
.

Proof. If Pr.X � x/ D ˆ
�
.ˆ�1.x/�a/=b

�
, thenX D ˆ.aCbY /, where Y is standard normal,

since Pr.X � x/ D ˆ
�
.ˆ�1.x/ � a/=b

�
D Pr

�
Y � .ˆ�1.x/ � a/=b

�
D Pr.ˆ.a C bY / � x/.
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Then, EX D EŒˆ.a C bY /� D EŒPr.Z � a C bY j Y /� D Pr.Z � a C bY / D Pr
�
.Z �

bY /=
p
1C b2 � a=

p
1C b2

�
D ˆ

�
a=
p
1C b2

�
, where Z is standard normal. �

Lemma 1.A.4 Under assumption 1.6, ET D ˆ
�
�ˆ�1.�/=

p
2 � �2

�
.

Proof. Follows from lemma 1.A.1 and lemma 1.A.3 �

Lemma 1.A.5 Under assumption 1.6, Pr
�
ET S < p=.1C p/

�
is increasing in �.

Proof. Combining lemma 1.A.1 and lemma 1.A.3, we have

ET S D E.T jS/ D ˆ

 
�ˆ�1.S/C �.1 � �/ˆ�1.�/p

1C .1 � �2/.1 � �2/

!
; (1.52)

so that Pr
�
ET S < p=.1C p/

�
is

D Pr
�
S � ˆ

�p
1C .1 � �2/.1 � �2/ˆ�1.p=.1C p// � .1 � �/�ˆ�1.�/

�
=�
�

(1.53)

D ˆ

 p
1C .1 � �2/.1 � �2/ˆ�1.p=.1C p// � �ˆ�1.�/

�
p
1 � �2

!
(1.54)

D ˆ

0@s1C �2

1 � �2
1

�2
ˆ�1.p=.1C p// �

�
p
1 � �2

1

�
ˆ�1.�/

1A (1.55)

D ˆ

�q
1C `.�/2ˆ�1.p=.1C p// � `.�/ˆ�1.�/

�
; (1.56)

where `.�/ D �=
p
1 � �2 1=�. We need to show that the term insideˆ in eq. (1.56) is increasing

in � and we do this by finding its derivative, which is

`0.�/

 
1p

1C `.�/2
ˆ�1.p=.1C p// �ˆ�1.�/

!
; (1.57)

which is increasing in � iff

ˆ�1.p=.1C p// <

q
1C `.�/2ˆ�1.�/ ; (1.58)

since `.�/ is decreasing in �. Under assumption 1.5, 1 � ET < 1=.1C p/ which implies

ˆ.p=.1C p// <
�

p
2 � �2

ˆ�1.�/ by lemma 1.A.4 (1.59)

< ˆ�1.�/ <

q
1C `.�/2ˆ�1.�/ ; (1.60)

as required. �

Proof 1.A.2 (Proof of lemma 1.2) We invert F.t js/ from lemma 1.A.1, to obtain

F�1.t js/ D ˆ
�p

1 � �2
p

1 � �2ˆ�1.t/C �ˆ�1.s/C �.1 � �/ˆ�1.�/
�
(1.61)

H) G.t/´ F�1.t jt / D ˆ
��p

1 � �2
p

1 � �2 C �
�
ˆ�1.t/C �.1 � �/ˆ�1.�/

�
; (1.62)
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which is strictly increasing and has an inverse

G�1.t/ D ˆ

 
ˆ�1.t/ � �.1 � �/ˆ�1.�/
p
1 � �2

p
1 � �2 C �

!
(1.63)

for any t 2 Œ0; 1� if � < 1. �

Proof 1.A.3 (Proof of lemma 1.5) First we compute H.t js/´ F.G�1.t/js/ D ˆ.�/ and

Ht .t js/´
@H.t js/

@t
D

1
p
1 � �2

p
1 � �2

�p
1 � �2

p
1 � �2 C �

� �.�/
�.ˆ�1.t//

(1.64)

where �´

 
ˆ�1.t/ � �

�p
1 � �2

p

1 � �2 C �
�
ˆ�1.s/

� �
p

1 � �2
�p
1 � �2 C .1 � �/

p

1 � �2
�
ˆ�1.�/

!
p
1 � �2

p
1 � �2

�p
1 � �2

p
1 � �2 C �

� :
(1.65)

Next, we compute H.s/´ H.sjs/ D ˆ.�/ and

H 0.s/ D
�k

p
1 � �2

p
1 � �2

�p
1 � �2

p
1 � �2 C �

� �.�/
�.ˆ�1.s//

(1.66)

where �´
�kˆ�1.s/ � �

p
1 � �2

�p
1 � �2 C .1 � �/

p
1 � �2

�
ˆ�1.�/

p
1 � �2

p
1 � �2

�p
1 � �2

p
1 � �2 C �

� (1.67)

and k´
p

1 � �2
�
�
p

1 � �2 �
p

1 � �2
�
: (1.68)

If t D s, then � D �, so that H 0.s/ D �k Ht .sjs/, as required. �

Lemma 1.A.6 If � > 1=
p
2 � �2, given x� in eq. (1.19), us.x/ is strictly quasi-concave in x.

Proof. Firstly we need to invert x�.s/ in eq. (1.19) to obtain

x��1.x/ D H�1

 
1 � xk

1C p

!
: (1.69)

Furthermore,

H.H�1.t/js/ D ˆ

�
�
1

k
ˆ�1.t/ �

�
p
1 � �2

p
1 � �2

ˆ�1.s/C Cˆ�1.�/

�
; (1.70)

where C ´
��
�
1C �C

p
1 � �2

p
1 � �2

�
.1C �/

p
1 � �2

�p
1 � �2 � �

p
1 � �2

� ; (1.71)

so that,

us.x/ D x

�
1

1C p
�H.x��1.x/js/

�
(1.72)

D x

 
1

1C p
�ˆ

 
�
1

k
ˆ�1

 
1 � xk

1C p

!
CD

!!
; (1.73)

where D´ �
�

p
1 � �2

p
1 � �2

ˆ�1.s/C Cˆ�1.�/ : (1.74)
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Then,

logus.x/ D log x C log

 
1

1C p
�ˆ

 
�
1

k
ˆ�1

 
1 � xk

1C p

!
CD

!!
(1.75)

H)
d

dx
logus.x/ D

1

x
�
xk�1

1C p

�
�
�
1
k
ˆ�1

�
1�xk

1Cp

�
CD

�
=�
�
ˆ�1

�
1�xk

1Cp

��
1

1Cp
�ˆ

�
�
1
k
ˆ�1

�
1�xk

1Cp

�
CD

� (1.76)

D
1

x

 
1 �

�.�´=k CD/
1

1Cp
�ˆ.�´=k CD/

,
�.´/

1
1Cp
�ˆ.´/

!
; (1.77)

where ´ D ˆ�1

 
1 � xk

1C p

!
: (1.78)

Note that �.x/=.1=.1 C p/ � ˆ.x// D .1 � ˆ.x//=.1=.1 C p/ � ˆ.x//�.x/=.1 � ˆ.x// is

increasing since the hazard rate �.x/=.1 � ˆ.x// of the standard normal distribution is in-

creasing and so is .1 � ˆ.x//=.1=.1C p/ � ˆ.x// since 1=.1C p/ < 1. Also, since k > 0 if

� > ��, ´ is decreasing in x, �.�´=k CD/=.1=.1C p/ � ˆ.�´=k CD// is increasing and

�.´/=.1=.1C p/ �ˆ.´// is decreasing in x, so that d logus.x/=dx is decreasing in x. Hence

logus.x/ is strictly concave and therefore strictly quasi-concave. Since strict quasi-concavity is

preserved by increasing transformations, it follows that us.x/ is also strictly quasi-concave.�

Proof 1.A.4 (Proof of proposition 1.13) Since we will be interested in the behaviour of x� as a

function of �, let us rewrite the equilibrium amount of evasion as

�.�/´

8<: .�/1=k.�/ if  .�/ > 0

0 if  .�/ � 0,
(1.79)

where  .�/´ ˆ
�
�.�/

�
� p=.1C p/ ; (1.80)

�.�/´ a.�/ˆ�1.s/C b.�/�ˆ�1.�/ (1.81)

D a.�/
�
ˆ�1.s/ � �ˆ�1.�/

�
C

�ˆ�1.�/

�C
p
1 � �2

p
1 � �2

; (1.82)

and a.�/´
1

p
1 � �2

p
1 � �2� �

p
1 � �2

�C
p
1 � �2

p
1 � �2

; (1.83)

b.�/´
1

p
1 � �2

p
1 � �2.1 � �/C

p
1 � �2

�C
p
1 � �2

p
1 � �2

(1.84)

D
1

�C
p
1 � �2

p
1 � �2

� a.�/ : (1.85)

Note that the expression �.�/ differs from eq. (1.19) in proposition 1.8 only in that the term  

defined in eq. (1.80) is of the form in eq. (1.29), without the normalisation A D Nx.1C p/�1=k ,

which is not required here since we are concerned with the comparative statics with respect to

� and don’t require the maximum amount of evasion to be a particular fixed value.28

28In any case, .1C p/�1=k is increasing in � for low � and decreasing in � for high �, reinforcing the result.
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To prove the result we first note that since k.�/! 0 as �! �� or �! 1, and  .�/ < 1, it

follows that �.�/! 0 as � ! �� or � ! 1. It remains to be proven that this convergence is

monotone.

We will find it convenient to work with Q�, defined by Q�.�/´ log k.�/C Q .�/, where Q .�/´

� log
�
� log .�/

�
. Since � log.� log.x// is increasing in x, showing that � is decreasing is

equivalent to showing that Q� is decreasing, so we compute Q� 0.�/ D .log k/0.�/C Q 0.�/, where

.log k/0.�/ D �
�

1 � �2
C

C1.�/
p
1 � �2

(1.86)

and C1.�/´
�C
p
1 � �2

p
1 � �2

p
1 � �2� �

p
1 � �2

; (1.87)

and Q 0.�/ D
 0.�/

� .�/ log .�/
D

�
�
�.�/

�
� .�/ log .�/

C2.�/
p
1 � �2

(1.88)

where C2.�/´
.2 � �2/

�
ˆ�1.s/ � �ˆ�1.�/

�
C
�p
1 � �2� �

p
1 � �2

�
�ˆ�1.�/

p
1 � �2

�
�C
p
1 � �2

p
1 � �2

�
2

: (1.89)

so that Q� 0.�/ D �
�

1 � �2
C

C1.�/
p
1 � �2

C
�
�
�.�/

�
� .�/ log .�/

C2.�/
p
1 � �2

(1.90)

D

��C
p
1 � �2 C1.�/C

�.�.�//
� .�/ log .�/

p
1 � �2 C2.�/

1 � �2
(1.91)

Suppose first that  .�/! c0 > 0 as �! ��, so that � .�/ log .�/ tends to a finite limit,

since  < 1. Then all the terms in eq. (1.90) tend to a finite value except for C1.�/=
p
1 � �2,

which tends to1 as �! ��, so that Q� 0.�/!1 as well, so that �.�/ decreases towards 0 as �

decreases towards ��.

On the other hand, if  .�/ ! c0 � 0, then there are two cases to consider: since,
p
1 � �2� �

p
1 � �2 in the numerator of C2 is positive and increasing for all � > ��, it

can either be the case that C2 � 0 for all � > ��, or C2 < 0 for all � < � for some � > ��. In

the former case, the last term in eq. (1.90) is non-negative so that the by the same argument

as above, Q� 0.�/ is positive as �! ��. In the latter case,  .�/ is decreasing for all �� < � < �,

but since  .�/! c0 � 0, it must be that �.�/ D 0 for all � in this range. Hence, �.�/! 0 in a

weakly monotonic manner.

Analogously, suppose first that  .�/ ! c0 > 0 as � ! 1, so that � .�/ log .�/ tends

to a finite limit. Since also C1, �.�.�// and C2 tend to finite limits, all terms except �� in

the numerator of eq. (1.91) vanish, so that Q� 0.�/ ! �1 and �.�/ decreases towards 0 as �

increases towards 1.

We now need check that this holds even if  .�/ ! c0 � 0 as � ! 1. Again, there are

two possibilities depending on whether  .�/ is decreasing or increasing as towards c0. In the

former case,  0.�/ ! �1, which only strengthens the fact that � 0.�/ ! �1 as � ! 1. In

the latter case, by a similar logic to the one used above for � ! ��, if  .�/ ! c0 � 0 and

 .�/ > 0 as �! 1, it must be that �.�/ D 0 as �! 1, so that �.�/! 0 in a weakly monotonic

manner. �



Chapter 2

Custodes invicem custodiunt:
Commitment through competition by
specialists in violence

2.1 Introduction

The enforcement of property rights and contractual agreements ultimately depends on the

presence of agents, such as the police or the military, who can use coercive power to punish

those who violate them. But how can these agents commit not to abuse this power for their

own gain? This commitment is important in modern economies where the possibility of ex-

post expropriation would seriously undermine incentives for ex-ante investments leading to

bad economic outcomes1, but where the means of coercive power are solely in the hands of

specialized agents whom we call specialists in violence following the terminology of North,

Wallis, and Weingast (2005). Thus, modern societies have agents whose job it is to guard

property rights and contractual agreements, but “who guards the guards themselves? (quis

custodiet ipsos custodes?)”, as the famous question goes.

Our answer to this question is that “the guards guard each other” (custodes invicem cus-

todiunt), that is, competition between specialists in violence, and in particular, their inability

to commit not to turn against one another, keeps predatory behaviour at bay. In our model,

even if specialists in violence could expropriate all output costlessly, it is attractive to pro-

tect producers from predators. This is because there is a marginal defensive advantage and

consequently defence is an effective way to potentially eliminate other specialists in violence,

reducing competition and leading to higher future payoffs. Producers can therefore engineer a

Prisoner’s dilemma that exploits the desire of specialists in violence to get rid of competitors,

to threaten potential predators with elimination.

To illustrate the basic insight of our model more concretely, suppose there are two generals,

commanding equally powerful armies, with no external threats. If they both decide to predate

they take all output and keep half each. If they both decide to defend then they are paid a

transfer, which we can think of as a tax or salary or even protection money, by the producers

1See Besley and Ghatak (2010) for an overview of links between expropriation and economic outcomes.

36
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and do nothing. But if one of them defends and the other predates, then producers help the

defending general fight against the predating one so that the probabilities of victory are greater

than and less than half, respectively. If the defender wins then he will be the sole general left,

so that he will be able to take all output for himself. Whoever loses the fight gets nothing. In

this game, when the other general is predating, the payoff from defence consists of output

times the probability of winning, which is greater than a half due to the producers’ help. On

the other hand, the payoff from colluding with the predating general is only half of output

since they share output equally. Then producers can avoid predation by offering a transfer that

makes each general prefer taking that transfer and doing nothing to being a predator fighting

against the other general. This is how competition between the two generals lowers the level of

expropriation.

By extending this logic to the case of many specialists in violence, we show that the propor-

tion of output that they obtain in the form of transfers is decreasing in their number. Our model

easily accommodates heterogeneity in strength among specialists in violence and we show how

the level of expropriation is decreasing as the distribution of strength becomes more equal.

Our paper makes the point that increasing competition between specialists in violence, both

by increasing their numbers and making their strengths more equal is beneficial to producers,

which is in line with the intuition that making power more diffuse reduces the incentives to

abuse it. We also generalise the model in a different direction by allowing heterogeneity in the

loyalty that specialists in violence command over their troops.

Finally using only within country variation over time we find that the positive effect of

competition among specialists in violence on expropriation risk that we highlight in the model

holds true for countries at lower levels of development but attenuates at higher levels of

development. This is consistent with the idea that problem of civilian control over specialists

in violence is a salient issue for countries at a less advanced stage of institutional development.

Our paper contributes to the large literature in economics and political science that attempts

to explain the existence of the commitment by those who have power to expropriate from

those who don’t. The main thrust of the existing literature is that commitment arises as a

consequence of the repeated nature of the game that producers and specialists in violence play.

In a one-shot game producers anticipate predation at the end of the period and this leads to

no investment in equilibrium.2 But if this interaction is repeated infinitely, producers can play

trigger strategies that make it attractive for specialists in violence to forgo predation in the

present in exchange for larger payoff in the future. For this mechanism to sustain commitment,

it is necessary that agents have a high enough discount factor, i.e., that they care enough about

future payoffs. In this setup, competition between specialists in violence can be detrimental

to to economic incentives as it can reduce their survival probability and hence the value of

future output. Olson (1993) famously couched this view in terms of “roving bandits” whose

precarious survival leads to full predation versus a “stationary bandit”, an entrenched monarch

who enjoys a long time horizon.3

2It is interesting to note that the problem of commitment becomes salient only in economies where output
depends on ex ante investment. In a pure exchange economy the ability to commit is irrelevant since the equilibrium
is likely to be Pareto efficient even with predation since there are no incentive effects. Piccione and Rubinstein
(2007) present a model that makes this point formally.

3This argument is made formally in McGuire and Olson (1996) and Grossman and Noh (1990).
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Our paper is inspired by the fact that some real world institutional arrangements seem at

odds with this Olsonian view and are predicated on the often-voiced view that diffusion of

power is good. For example, in order to avoid collusion leading to abuses of their power, there

are often strict protocols governing the manner in which the highest ranks of the military meet.

Another famous historical example, which we deal with in more detail later, comes from the

Roman Republic, where ultimate power over the army was typically vested in two consuls with

a view to keep a check on their power. This idea of checks and balances lies at the heart of our

model, where the presence of several specialists in violence keeps each one in check creating a

balance of power conducive to investments.

Our paper is related to Besley and Robinson (2009), who model the interaction between

the military and civilian government when there is the possibility of the former seizing power

through a coup. In their model, a key concern is the ability of the government to commit to pay

the military, whereas our focus is on the commitment of the military. Furthermore, a major

difference is that in our model specialists in violence can collude to expropriate fully without

incurring any costs.

More broadly, our research agenda is similar to Acemoglu and Robinson (2006), but with

the major difference that commitment arises not from the power of a specialist in violence to

tie his own hands but from the existence of other specialists in violence who would stand to

gain by punishing the deviant predator. This formulation enables us to attempt an answer to

the question posed by Acemoglu (2003) about how specialists in violence can commit when

the existence of their power to predate undermines any promises they make not to renege

on their commitment whenever it is convenient. The insight that we formalise here is that

commitment should not be seen as an additional strategy that may or may not be available to

specialists in violence as a result of exogenous institutional arrangements. Instead, we argue

that commitment should be seen as a feature of an equilibrium arising from a game played

between more than one specialist in violence.

Our paper is also related to the large literature on the co-existence of economic activity

and conflict.4 This literature models choices of agents when agents can invest to produce as

well as increase their predatory capacity. Typically some investment occurs even though this is

lower than the first best where agents can commit not to predate. This literature assumes that

all agents work as producers as well as specialists in violence or that within a unit where agents

specialise, the producers and specialists in violence have solved their commitment problem. The

key innovation that distinguishes our paper from this literature is that we attempt to unpack

how commitment between producers and specialists in violence can arise in the first place.

The mechanism at play in our model is reminiscent of Dal Bó (2007), where a lobbyist can

affect the outcome of a vote by a committee by offering members transfers which compensate

voters for voting against their own preferences only when they are pivotal. Since this makes

voting according to the wishes of the lobbyist a dominant strategy, the compensatory transfers

are never paid out. The analogue idea in our model is that producers need to pay the specialists

in violence only their payoff when they are the sole predator fighting against all others, i.e.,

when they are pivotal in predation, making this “bribe” small. On the other hand, our paper

4Examples include Skaperdas (1992), Hirshleifer (1995), and Grossman and Kim (1995). See Garfinkel and
Skaperdas (2007b) for a survey of this literature.
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does not assume the existence of any kind of contract enforcement, which is required in Dal Bó

(2007).

Acemoglu, Egorov, and Sonin (2009) is another paper which incorporates some aspects of

our model, in that it features elimination (through voting, rather than fighting) of competitors

that can potentially improve future conditions, but their objective is to analyse what are stable

configurations of power where no one can eliminate anyone else. In their context, in our

model, any collection of specialists in violence is stable, since any predatory activity (including

attacking others) will be punished by the other specialists who obtain the help of producers.

The paper is structured as follows. Section 2.2 discusses the baseline model with homoge-

neous agents and derives the comparative statics of the equilibrium. Section 2.3 extends the

baseline model to allow heterogeneity in the strength of each specialist in violence. Section 2.4

extends the baseline model by introducing heterogeneity in the loyalty that specialists in vio-

lence command. Section 2.5 is a case study of the historical instution of consulship during

the Roman Republic, which supports the intuition of our argument. Section 2.6 discusses our

empirical results and Section 2.7 provides concluding remarks.

2.2 Model

The economy is populated by an exogenously given number of producers and specialists in

violence. Producers operate a technology that requires some ex-ante investment in order to

generate output. Specialists in violence, henceforth abbreviated to sivs, can fight against each

other and/or expropriate the producers’ output. Specialisation is complete, so that producers

cannot defend themselves against sivs, whilst the latter cannot control the former’s investment

decisions. The interaction between these two groups is modelled as a game that unfolds as

follow.

1. Producers make investments, whilst sivs wait.

2. Output is realised and producers choose a fraction t of total output to offer to each of

the sivs.

3. Each siv independently chooses whether to predate or defend.

4. (a) If all sivs choose to defend then each is paid the transfer t by the producers and the

game ends.

(b) If some sivs choose to predate, there is a fight between predators and defenders,

with defeated sivs obtaining a payoff of 0.

5. (a) If the predators win, they expropriate all output and share it equally among them-

selves, since producers cannot fight back.

(b) If the defenders win, they enter a subgame where they are the only sivs playing the

same game, and producers once again make transfers and the game restarts from

stage 3.

We first model the predation stage (the last three steps in the above timing) where sivs

make the decision of predating or defending. This decision depends on the transfers that are

on offer from the producers. We then go back one step and derive the transfer that producers

offer each siv. After this, we model the stage where producers make ex-ante investments.
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2.2.1 Fighting

Suppose that at this stage, p > 0 sivs have decided to predate and q > 0 sivs have decided to

defend. The probability that the predators win is

p

ıq C p
; (2.1)

whereas the probability that the defenders win is

ıq

ıq C p
: (2.2)

These probabilities are similar to those given by contest success functions commonly used

in the conflict literature, but differ from the latter since they depend solely on the number of

agents on each side of the fight and not on the effort exerted by them. Therefore, fighting is

completely costless in this formulation.5

The parameter ı indicates the degree by which the technology of fighting favours defenders

and we will make use of the following assumption regarding it.

Assumption 2.1 Defending sivs have a combat advantage over predators, so that ı > 1.

This assumption is foundational to our results. We can think of the defensive advantage as

arising out of the possibility that producers help defending sivs in the fight against the predating

ones. Although in our model producers possess no combat ability, they could still provide help

to defending sivs through non-armed resistance in the form of intelligence gathering, sabotage

or strikes, etc. Such activities would be of limited use to producers in protecting themselves

from expropriation but could be a boost to a military force that can take advantage of them.

Alternatively we can also think of the defensive advantage as arising from the possibility that

troops of a siv are more likely to obey a command to protect the producers rather than a

command to predate. Although a defensive advantage is crucial in our model, it should be

noted that this advantage can be arbitrarily small.6

2.2.2 Predation vs defence

Since by this stage output is already realised, we will normalize it to 1, so that all payoffs are

fractions of total output. Consider a siv’s decision to predate or defend when there are p

predators and q defenders. If he joins the predators, their number increases to p C 1 so that

the probability of them winning is pC1
ıqCpC1

. Should they successfully predate, each siv would

5Introducing an exogenous cost to conflict in this framework is straightforward and only strengthens our
result further, since the outside option to co-operation with producers becomes less attractive. On the other hand,
introducing endogenous fighting costs when there are multiple sivs is not quite as straightforward, since the usual
contest function approach cannot be easily extended to the case with many players divided into two factions.

6Note that an alternative way of specifying these probabilities for predators and defenders is .1�
/p
.1�
/pC
q

and

q

.1�
/pCgq
respectively. This is equivalent to our formulation. The assumption analogous to assumption 2.1 that

would ensure a defensive advantage would be 
 > 1=2.
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obtain a share 1
pC1

of output, so that the expected payoff from joining p predators is

…pC1q ´
1

ıq C p C 1
: (2.3)

Should he instead join the defenders, their number rises to q C 1 so that the probability of the

defenders winning is ı.qC1/
ı.qC1/Cp

. After a successful defence, the remaining sivs enter a subgame

where they are offered transfers by producers and then choose to predate or defend. In that

subgame, a siv has the option of predating and getting at least the payoff from being the sole

predator.7 Then, the expected payoff from joining q defenders is at least

�
p
qC1´

ı.q C 1/

ı.q C 1/C p
…1q

D
ı.q C 1/

ı.q C 1/C p

1

ıq C 1
:

(2.4)

Given these payoffs from predation and defence, the following lemma shows that the latter

dominates the former.

Lemma 2.1 Iff ı > 1, �pqC1 � …
pC1
q for all p and q, with strict inequality if p > 0.

Proof. Comparing �pqC1 and …pC1q we have

ı.q C 1/

.ı.q C 1/C p/.ıq C 1/
�

1

ıq C p C 1

()
ıq C p C 1

ıq C 1
� 1C

p

ı.q C 1/

() pı.q C 1/ � p.ıq C 1/

iff ı > 1, with strict inequality if p > 0. �

This lemma shows that when there is a defensive advantage, a siv strictly prefers to join forces

with defending sivs rather than the predators, if there are any of the latter. This is because the

payoff from defending first and predating in the subsequent subgame, where some sivs have

been eliminated, is strictly greater than the payoff from predation. This means that in every

subgame, there will be at most one predator.

2.2.3 Transfers

In the last stage, we saw that, from the point of view of an individual siv, it is always better to

defend than to predate if some of the other sivs are predating. But what about when all the

other sivs are also defending? In that case, the transfers that the producers offer will determine

the choice of whether to predate or defend.

In our model, producers make a take-it-or-leave-it offer to the sivs, who then independently

decide their actions. Then, given that producers have all the bargaining power, it follows that

7Note that for fixed p C q, …pC1q is increasing in p.
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sivs are always pushed to their outside option.8 This means that in every subgame after a

successful defence, the producers’ transfer is exactly equal to an individual sivs payoff from

becoming the sole predator, so that �pqC1 as defined in (2.4) is the actual defence payoff, not

merely its lower bound. Since this makes sivs indifferent between being sole predators and

defenders we will make the following assumption.

Assumption 2.2 sivs who are indifferent between predating and defending choose defence.

We make defence the preferred option in case of indifference in order to rule out equilibria

where only one siv predates and everyone (including the producers) gets exactly the same

expected payoff as in the case where all sivs accept the producers’ offer. 9 However such

equilibria are purely an artifact of the producers pushing the sivs to their outside option,

and disappear as soon as the latter have some bargaining power. Given this assumption, the

preceding arguments lead to the following proposition.

Proposition 2.1 The unique subgame-perfect Nash equilibrium of the game with s C 1 sivs

consists of producers offering each siv a fraction

t D
1

1C ıs
(2.5)

of total output, with all sivs choosing not to predate.

Proof. The proof is established by induction on the number of sivs. Firstly, note that when

there is only one siv, his expected payoff from predation is one, since that is the probability

with which he avoids mutiny and becomes an actual predator. Then, producers can ensure

that he does not predate by t D 1: this would make the siv indifferent between predation

and non-predation, and by assumption 2.1 the siv would not predate.

Next, suppose that we have already managed to prove that the proposition holds whenever

the number of sivs is less than or equal to some number s, and let us examine whether the

proposition still holds if there are s C 1 sivs.

To analyse the predation and defence payoffs of an individual siv, suppose that p � 1

of the other sivs have decided to predate and q � s � 1 have decided to defend. Then his

payoff from joining the p other predators is

p C 1

p C 1C ıq

1

.p C 1/
D …pC1q : (2.6)

On the other hand, the payoff from joining the q defenders is the expected value of the

product of the probability that q C 1 defenders win against p predators and of the payoff in

the subgame where the defenders have won and there are only q C 1 remaining sivs. Since

8The results are robust to changing the bargaining power of the producers and sivs as long as sivs do not have
all the bargaining power. With full bargaining power sivs make a take it or leave it offer leaving producers with
nothing and consequently the incentive for ex-ante investment is destroyed.

9The only difference with these equilibria is that unlike the unique equilibrium in proposition 2.1 with no
predation, these contain a positive probability of predation. However the expected level of expropriation is equal to
the total transfers in the no predation equilibrium and moreover the central message of the paper about decrease in
expropriation through increased competition remains a feature of these equilibria.
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we are considering subgame-perfect equilibria we now that the payoff in that subgame will

be the Nash equilibrium of that subgame. Furthermore, we assumed that the proposition

holds in any game where the number of sivs is at most s so that the Nash equilibrium payoff

in a subgame where there are only q C 1 sivs is 1
1Cıq

. The payoff from defence is then

ı.q C 1/

p C ı.q C 1/

1

1C ıq
D �

p
qC1 (2.7)

By lemma 2.1, �pqC1 > …
pC1
q for all values of p, with strict inequality since p � 1.

Therefore a siv always strictly prefers defence to predation if there is at least one other

potential predator.

Suppose instead that, from the point of view of an individual siv all of the other sivs

are defenders. Then his payoff from predation is 1
ısC1

, whereas that from defence is simply

the transfer t . By assumption 2.2, producers can ensure that this siv does not predate by

offering a transfer exactly equal to his predation payoff. Therefore, when there are sC 1 sivs,

the only equilibrium is one where producers offer t D 1
ısC1

and all sivs do not predate. �

To reiterate, the intuition of this result is as follows. Although a larger number of predating

sivs increases the probability of a successful predation, the payoff conditional on success is

weighed down by the decreased share each siv receives.10 As a result it is more attractive for a

siv to stave off predation with the expectation of the larger share he receives if the defenders

win. Even a marginal defensive advantage ensures that it is a dominant strategy for all sivs

to defend. If all other s sivs are defending the payoff of a lone siv who considers predation is

…1s D
1

1Cıs
. Hence when producers offer him this amount they make him indifferent between

predation and defence and given assumption 2.2, he defends.

It is convenient to define the expropriation rate that the producers face, i.e., the fraction of

total output that they transfer to the sivs as

� ´ .s C 1/t D
s C 1

1C ıs
: (2.8)

Taking the derivative of � with respect to s we find that

@�

@s
D �

ı � 1

.1C ıs/2
< 0 ; (2.9)

since ı > 1 by assumption 2.1. This shows that not only is the transfer paid to an individual

siv decreasing in s, but that the sum of transfers is also decreasing in the number of sivs. This

is because, as the number of sivs increases, the deviation payoff from predation becomes worse,

which in turn decreases the equilibrium transfer paid to sivs.

Remark 2.1 Expropriation is decreasing in the number of specialists in violence.

10It is interesting to note that the reason why the increase in the numerator of the probability of successful
predation is exactly offset by the reduction in the share of each siv is because p enters linearly in the numerator
of the probability of successful predation defined in equation (2.1). Allowing for a more general functional form

f .p/
ıf .q/Cf .p/

changes the results. Typically the uniqueness of equilibrium may no longer be available with a general
f .p/ as multiple stable coalitions between sivs may arise.
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This result captures the mechanism that this paper highlights. Total expropriation tends

to decrease when power is diffuse. In particular, total expropriation decreases in the number

of sivs as the balance of power between them is such that unilateral predation becomes more

and more unattractive. This result is interesting when contrasted with the Olsonian idea

that decreasing the number of sivs decreases their incentives to expropriate fully. The two

mechanisms may be seen as complementary to one another; it is possible to imagine that the

number of sivs arises at a point where these two forces equilibrate one another.

As we would expect, total expropriation is decreasing in the defensive advantage. The

intuition for this is straightforward. As defence becomes easier, the expected payoff from

predation decreases. Consequently sivs are satisfied with a lower transfer and the tax rate the

producers face goes down.

The central message of the model is that competition among specialists in violence creates

a balance of power that makes predation unattractive, leading to a commitment not to predate.

The intuition behind this result is simple: the defensive advantage not only skews the probability

of combat victory towards defence, but makes it profitable to defend first and predate later,

rather than predate at the outset; defence is a way to eliminate competitors and thus guarantee

a bigger payoff for oneself, making it the dominant strategy. The inability to commit to refrain

from using co-operation with producers as a way to get rid of each other places specialists in

violence in a Prisoner’s Dilemma, which the producers can exploit to avoid full predation.

The inability of specialists in violence to commit is a crucial issue in our paper. In societies

like ours, the ability to commit to agreements arises precisely from the existence of agents who

can use their specialisation in violence to punish those who renege on their commitments. But

the commitment not to abuse their power is not available to the very agents who perform this

enforcement function. Appealing to institutions to generate such commitment merely shifts

the burden to the higher level specialists in violence who must support such institutions. This

logic leads to an infinite regress where commitment at one level is sustained by commitment

at a higher one. We have attempted to find a solution to this problem by using a somewhat

different approach. In our model, what underlies the ability of specialists in violence to commit

is not other institutions, but simply material forces that govern the success or failure of an

attack aimed at expropriation, in other words material forces that shape the nature of the game

that specialists in violence play.

2.3 Heterogeneity in strength

In this section we extend the model to allow sivs to have differing strengths. This allows us

to examine how expropriation changes in response to changes in the distribution of strength

between sivs . In particular we find that total expropriation decreases as the distribution of

strengths becomes more equal. This strengthens our main point about the positive impact of

competition between sivs.

Suppose that the sivs are indexed by i , where i D 1; :::; s, and let each siv have strength xi ,

which captures all factors that would contribute to increasing the probability of winning, such

as the number of troops, their level of training or the quality of their equipment. fight between
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predators with total strength P and defenders with total strengthsQ, the probability of victory

are where we have rewritten equations (2.1) and (2.2) by dividing throughout by 1 � ı, so that

ı D ı=.1 � ı/. The assumption that ı > 1=2 now corresponds to ı > 1. Now that strengths

are different, it is natural to assume that victorious predators share output proportionally to

their strengths. Thus a siv with strength x who successfully predated with other sivs who have

total strength P , would get a share of x
xCP

of total output.

We next prove the counterpart to lemma 2.1, showing that defence is a dominant strategy,

being strictly dominant if there is at least one predator already.

Lemma 2.2 Iff ı > 1, x > 0,

ı.QC x/

P C ı.QC x/

x

x C ıQ
�

P C x

P C x C ıQ

x

x C P
(2.10)

with strict inequality if P > 0.

Proof. Inequality (2.10) is true iff

ı.QC x/

P C ı.QC x/

1

x C ıQ
�

1

P C x C ıQ
� 0 (2.11)

.ı � 1/Px

.P C ı.QC x/.x C ıQ/.P C x C ıQ/
� 0 ; (2.12)

which holds with strict inequality iff ı > 1. �

We can now prove the analogue of proposition 2.1.

Proposition 2.2 The unique subgame-perfect Nash equilibrium of the game where each siv

has strength xi is for producers to offer to each siv a transfer

t�i D
xi

xi C ı
P
j¤i xj

; (2.13)

and for all sivs to not predate.

Proof. The proof is the same as that for proposition 2.1 but using lemma 2.2 to establish

that defence is a dominant strategy whenever there is at least one predator, so that producers

only need to offer to each siv their payoff from being the sole predator. �

An interesting feature of the equilibrium is that each siv’s payoff depends not only on

his strength, but also on that of all others. It is then natural to ask how the distribution of

strengths affects the total amount of output that producers end up giving to the sivs. The

following proposition shows that a more equal distribution leads to lower transfers.

Proposition 2.3 Suppose that sivs i and j have strengths xi > xj . Then reducing i ’s strength

to xi � " and increasing j ’s to xj C ", where 0 < " < xi � xj , will reduce total transfers paid

to sivs.
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Proof. Since the redistribution of strength keeps the sum of i and j ’s strengths constant,

the payoff to all other sivs is unaffected. Therefore, it suffices to show that the transfers to i

and j , namely t�i C t
�
j , will fall. Then we need to show that

xi

xi C ıxj C ı
P
k¤i;j xk

C
xj

xj C ıxi C ı
P
k¤i;j xk

�
xi � "

xi � "C ı.xj C "/C ı
P
k¤i;j xk

C
xj C "

xj C "C ı.xi � "/C ı
P
k¤i;j xk

D
xi � "

xi C ıxj C .ı � 1/"C ı
P
k¤i;j xk

C
xj C "

xj C ıxi � .ı � 1/"C ı
P
k¤i;j xk

: (2.14)

Letting �i D xi C ıxj C ı
P
k¤i;j xk and �j D xj C ıxi C ı

P
k¤i;j xk, we need to show

that

xi

�i
C
xj

�j
D
xi�j C xj�i

�i�j
(2.15)

�
xi � "

�i C .ı � 1/"
C

xj C "

�j � .ı � 1/"
(2.16)

D
xi�j C xj�i � 2.ı � 1/"

�
xi � xj � "

�
�i�j C .ı � 1/2"

�
xi � xj � "

� ; (2.17)

which is true if ı > 1 and 0 < " < xi � xj . �

This proposition shows that a Dalton-transfer of strength from a stronger siv to a weaker

one will reduce total transfers. As a consequence, a more equal distribution of strengths yields

lower total transfers to sivs, with the minimum being achieved when all sivs are homogeneous.

Remark 2.2 Expropriation decreases with more equal distribution of strength among special-

ists in violence.

This is in line with the intuitive idea that a balance of power as arising from power being

equally spread out over a number of agents helps in preventing predation. A more even

distribution of power yields more effective competition, strengthening our main point that

competition is the force underlying the ability of sivs to commit. Seen together remarks 2.1

and 2.2 reinforce the positive impact that competition among specialists in violence has on

investment incentives in the economy.

2.4 Heterogeneity in loyalty

In this section, we enrich the model in a different direction by endowing each siv with a type

parameter � that represents the ability of a siv to induce his troops to follow an order that

would be considered predatory, i.e., an order to expropriate output from producers. We add

one stage to the game where, immediately after the sivs have decided whether to predate or

defend, each potential predator independently experiences a revolt or mutiny by his troops

with probability 1� � ; in such an eventuality the siv obtains a payoff of 0 and plays no further

part in the game. We will call a siv whose troops obey his order to predate an actual predator;
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thus a potential predator becomes an actual predator with probability � . Defenders do not

face any possibility of mutiny.

We can interpret the average level of � across sivs embodies institutional factors such as

the professionalism of troops or the extent to which troops respect civilian law: a society where

the military is composed of professional soldiers is likely to have a higher average � than one

where defence is provided by popular militias, since soldiers who are also producers themselves

would be more likely to disobey a command to expropriate output; similarly, generals who

command troops drawn from a society where there is a strict separation between military and

civilian spheres would have on average lower �s than generals whose troops are regularly used

to intervening in civilian matters.

On the other hand, variation across sivs in � captures individual differences in leadership

and charisma between leaders: an example of a high-� siv would be Julius Caesar who, knowing

the loyalty of his veterans from the Gallic Wars, crossed the Rubicon and marched upon Rome

in open defiance of a senatorial command.

The natural question that arises when sivs are heterogeneous is whether their type � is

observable or not. In the following subsection we analyse the case where � is observable by all

agents, including producers. Subsequently we explore what happens in case where a siv’s � is

his own private information. For simplicity, we no longer allow agents to make occupational

choices making s C 1, the number of sivs, exogenously determined. Also, we will normalise

output to 1 and think of all payoffs as fractions of total output.

2.4.1 Complete Information

It is easy to see that the baseline model corresponds to the case where all sivs have their �s

equal to 1, so that there is no possibility of mutiny. It turns out that when we generalise the

baseline model to admit heterogeneity in � that proposition 2.1 extends in a very natural way

to give us the following proposition.

Proposition 2.4 The unique subgame-perfect Nash equilibrium of the complete information

game with s C 1 sivs consists of the producers offering each siv a fraction

t�sC1.�/ D �
1 � ı

.1 � ı/C ıs
(2.18)

of total output, where � is an individual siv’s type, with all sivs choosing not to predate.

Proof. The underlying logic of the proof is the same as the arguments leading up to propo-

sition 2.1, but we prove it formally by induction on the number of sivs.

Firstly, note that when there is only one siv with type � , his expected payoff from

predation is � , since that is the probability with which he avoids mutiny and becomes an

actual predator. Then, producers can ensure that he does not predate by t� D � : this would

make the siv indifferent between predation and non-predation, and by assumption 2.1 the

siv would not predate.

Next, suppose that we have already managed to prove that the proposition holds whenever

the number of sivs is less than or equal to some number s, and let us examine whether the
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proposition still holds if there are s C 1 sivs.

To analyse the predation and defence payoffs of an individual siv with type � , suppose

that p � 1 of the other sivs have decided to predate and q � s � 1 have decided to defend.

Since this siv must decide whether to predate or defend before he observes whether the

other p potential predators’ troops mutiny or not, the number of other actual predators is a

random variable P , ranging from 0 to p. Then his payoff from joining the p other potential

predators is

�E

�
.1 � ı/.P C 1/

.1 � ı/.P C 1/C ıq

1

P C 1

�
D �E

�
…PC1q

�
: (2.19)

On the other hand, the payoff from joining the q defenders is the expected value of the

product of the probability that q C 1 defenders win against P actual predators and of the

payoff in the subgame where the defenders have won and there are only q C 1 remaining

sivs. Since we are considering subgame-perfect equilibria we now that the payoff in that

subgame will be the Nash equilibrium of that subgame. Furthermore, we assumed that

the proposition holds in any game where the number of sivs is at most s so that the Nash

equilibrium payoff in a subgame where there are only q C 1 sivs is � 1�ı
.1�ı/Cıq

. The payoff

from defence is then

E

�
ı.q C 1/

.1 � ı/P C ı.q C 1/
�

1 � ı

.1 � ı/C ıq

�
D �E

�
�PqC1

�
(2.20)

By lemma 2.1, �PqC1 � …PC1q for all values of P , with strict inequality whenever

P > 0, which happens with some probability since P ranges from 0 to p � 1. Therefore

E
�
�PqC1

�
> E

�
…PC1q

�
, so that a siv always strictly prefers defence to predation if there is

at least one other potential predator.

Suppose instead that, from the point of view of an individual siv with type � , all of the

other sivs are defenders. Then his payoff from predation is � 1�ı
ısC.1�ı/

, whereas that from

defence is simply the transfer t�sC1. By assumption 2.2, producers can ensure that this siv

does not predate by offering a transfer exactly equal to his predation payoff. Therefore, when

there are s C 1 sivs, the only equilibrium is one where producers offer t�sC1.�/ D
1�ı

ısC.1�ı/

and all sivs do not predate. �

It might be somewhat surprising at first to see that each siv’s transfer depends only on his

own type and is independent of any other siv’s type. But this is a straightforward consequence of

the logic that sustains the equilibrium: because the defensive advantage excludes the possibility

of there being more than one predator, each siv’s alternative to accepting the trasfer is simply

his payoff from being the sole predator when everyone else defends; since the type is irrelevant

for defence, the defenders’ type is irrelevant to this payoff.

On the other hand, the overall distribution of types becomes important if the type is private

information of each siv, as we discuss in the following section.

2.4.2 Incomplete Information

In this section we allow � to take value �H with probability 
 and �L with probability 1 � 
 .

Furthermore, the value of � is private to each siv, but is fully revealed after a fight between
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predators and defenders. Now the number of predators and defenders, denoted by P and Q,

respectively, are random variables whose value depends on the realisations of the �s of the sivs.

This uncertainty means that, unlike the complete information case, conflict and expropriation

can arise even in equilibrium, as the following proposition shows.

Proposition 2.5 Except when both s D 0 and �H D 1, there exists a threshold 
� such that if


 � 
�, the unique symmetric subgame-perfect Bayesian equilibrium consists of the producers

offering a transfer

t�sC1 D �L…
1
s �

�
�LE

�
�PQC1 �…

PC1
Q

��
=Pr.Q D s/ (2.21)

that makes low-� sivs indifferent between predating and defending, with high-� sivs preferring

predation. In this case, the total payout by producers is

�sC1 D .s C 1/E .�/E
�
…PC1Q

�
: (2.22)

If 
 > 
�, the unique symmetric subgame-perfect Bayesian equilibrium consists of the

producers offering a transfer t�sC1 D �H…
1
s that makes high-� sivs indifferent between predat-

ing and defending, with low-� sivs strictly preferring defence. The total payout in this case is

�sC1 D .s C 1/�H…
1
s .

Proof. Given assumption 2.2, we only need to consider following four candidates for

pure-strategy equilibria: (a) a pooling equilibrium where both types defend; (b) a pooling

equilibrium where both types predate; (c) a separating equilibrium where high-type sivs

predate and low-type ones defend; (d) a separating one where low-type sivs predate and

high-type ones defend.

Consider first case (a), where both types defend. From the perspective of an individual

siv with type � , taking as given the strategy of all other sivs, his payoff from predation

is identical to the complete information case, viz., …1s , whereas his payoff from defence

is simply the transfer that the producers make to the sivs. By assumption 2.2, producers

can avert predation by either type by offering the high-type’s predation payoff, so that the

equilibrium transfer would be t�sC1 D �H…
1
s . In this case, the total payment that producers

make to sivs is

�sC1 D .s C 1/�H…
1
s D �H

.1 � ı/C .1 � ı/s

.1 � ı/C ıs
< 1 (2.23)

since ı > 1=2 and we are excluding the case when both s D 0 and �H D 1.

Consider next case (b) where both types predate. This cannot be an equilibrium because

in this case the producers total payout would be 1; producers can always do better than this

by offering the transfer in the pooling equilibrium of case (a).

Consider next the separating equilibrium of case (c) where high-types predate but low-

types defend. The payoff from predation is then

�P .�/ D E
�
�…PC1Q

�
(2.24)
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since each siv can be a predating high-type with probability 
 and a defending low-type with

probability 1 � 
 . The payoff from defence is

�D.�/ D Pr.Q D s/
�
tsC1 � �…

1
s

�
C E

�
��PQC1

�
(2.25)

where tsC1 is the transfer made by producers should all s other sivs be low-types. The payoff

(2.25) follows from the fact that, since we are considering subgame-perfect equilibria, if a

defender of type � wins, his payoff will be the equilibrium payoff in a complete information

game where all q other sivs have type �L. By proposition 2.4 we know this is t�qC1.�/ D �…
1
q .

To find the lowest transfer t�sC1 that ensures that low-types do not predate, we let

�P .�L/ D �D.�L/ and solve for tsC1 to obtain

t�sC1 D �L

0@…1s � E
�
�PQC1 �…

PC1
Q

�
Pr.Q D s/

1A (2.26)

with E
�
�PQC1 �…

PC1
Q

�
> 0 since �pqC1 > …

pC1
q for all q and for all p > 0 (since we are

excluding the case s D 0) by lemma 2.1.

For t�sC1 to be an equilibrium transfer, it must be high-types prefer predation to defence,

i.e., �P .�H / > �D.�H /, which is equivalent to

�P .�H / � �D.�H / D Pr.Q D s/
�
�H…

1
s � t

�
sC1

�
C �HE

�
…PC1Q ��PQC1

�
D Pr.Q D s/.�H � �L/

0@…1s � E
�
�PQC1 �…

PC1
Q

�
Pr.Q D s/

1A > 0 : (2.27)

This means that a separating equilibrium exists if and only if 
 and �H are such that t�sC1 is

strictly positive. Due to the technical nature of its proof, we show that the total payout in

this separating equilibrium is �sC1 D .s C 1/E
�
�…PC1Q

�
in lemma 2.A.4 in the appendix.

Finally, consider case (d) where low-types predate and high-types don’t. If high-types

prefer not predating it must be that �D.�H / � �P .�L/, which means that, by arguments

analogous to those for (2.25),

tsC1 � �H
�
…1s � E

�
�PQC1 �…

PC1
Q

� �
> �L

�
…1s � E

�
�PQC1 �…

PC1
Q

� �
: (2.28)

This is equivalent to �D.�L/ > �P .�L/ so that low-types too prefer not predating, resulting

in a contradiction. Hence this cannot be an equilibrium.

To conclude the proof we need to show how the type of equilibrium, viz., pooling or

separating, depends on 
 . Suppose 
 and �H are such that both the separating equilibrium

in case (c) and the pooling equilibrium in case (a) exist. Then producers can choose the

equilibrium that results in the lower payout by setting appropriate transfers. Since the payout

� in the pooling equilibrium is independent of 
 , whereas the payout � in the separating

equilibrium is increasing in 
 by lemma 2.A.4, there exists a threshold 
� such that producers

prefer the pooling equilibrium if 
 > 
�. �
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2.4.3 Institutions and transitions

In addition to the prediction that expropriation decreases with the number of specialists in

violence, this model differs from the Olsonian one in another way. In this model the payoff

of specialists in violence is determined by their outside option of predation rather than their

choice of the revenue maximising tax rate. This approach is similar in spirit to Acemoglu

and Robinson (2006), where the payoff of rulers is determined by the constraints on their

rule arising out of the possibility of a coup; this constraint is determined by the possibility of

other generals replacing the king through a coup in the event he decides to increase his payoff

through predation.

Monarchy can be mapped onto our model in a straightforward way by modelling the

monarch as a specialist in violence who has a markedly higher � than the others, i.e., his

generals. This fits well with the idea that � captures the likelihood of predatory orders being

obeyed: historically, kings could draw their authority from special sources, such as divine

right, imbuing their orders with a greater legitimacy than anyone else’s. In such a regime

we would expect the king to secure a high payoff relative to his generals and, as we show in

proposition 2.4, this is indeed the case as the payoff of a specialist in violence is increasing in

his � .

Similarly, we can map the opposite Olsonian scenario of roving banditry. We could think

of each bandit as being a separate specialist in violence, so that he retains full control over his

own actions. This would be a natural interpretation of our baseline model where � D 1 for all

specialists in violence.

In the region where 
 � 
� we can see that the transfer paid to a defending siv is decreasing

in � . We think of � as a parameter that captures the ideological environment. If ideas of justice

and fairness are firmly entrenched in an economy then � , the probability with which troops

obey orders for predation, would be low since troops would see such an order as being unjust

and unfair. In medieval times the powers of the sovereign were believed to be of divine origin.

Consequently the command of the sovereign was seen as being just in and of itself . The late

seventeenth and early eighteenth century saw a change in the ideological environment. This

can be seen in the arrival of social contract theorists such as John Locke and Jean-Jacques

Rousseau who saw the idea of justice and fairness as being independent of the sovereign’s

command. Since this change in the ideological environment can be seen as a decrease in � , it

is possible to understand the reduction in payout to specialists in violence from renaissance

onwards as being ideologically driven.

We have shown that the probability of conflict is non-monotonic in 
 . At high levels of 
 ,

in particular for 
 > 
�, the producers prefer the pooling equilibrium where they pay out a

large transfer to all sivs. In this region there is no conflict although output is quite low. One

can think of this as a relatively stable although highly exploitative feudal regime. The incentives

for investment in such a regime are quite low since producers correctly anticipate that a large

part of their output would need to be paid out to sivs.

When 
 falls below 
� the amount of conflict increases. This is the point at which the

equilibrium shifts from being pooling to separating. The producers prefer paying out a lower

transfer to defenders even though they face a positive probability of predation. In this region
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there would be frequent transitions where one set of sivs fight the others and new regimes are

established and overthrown. Note that although conflict increases, the expected payout by the

producers is lower since the producer’s payout is weakly increasing in 
 . In a historical context,

it is possible to think of this as the early modern period which was charaterised by frequent

regime changes but at the same time lower expropriation than medieval times. Finally as 


decreases further the incidence of conflict decreases and a stage is reached where the expected

payout by the producers is also quite low. It is possible to think of this as a modern stable state

with high incentives for investment where the transfers paid to sivs do not constitute a large

fraction of the GDP.

What are the factors that cause 
 to change? It is possible to think of 
 as arising out of

the occupational choices made by people who have the potential to be charismatic leaders.

When technology of production is primitive, these agents have a low outside option in the

productive sector. This causes them to become specialists in violence. As technology improves

however, these agents move into production thereby reducing 
 . The story that the model

then delivers is consistent with European history over the last five hundred years where large

technological progress and political evolution happened simultaneously. In future work it

would be interesting to embed the incomplete information model in an occupational choice

framework to see whether the model delivers this link from technological parameter ˛ to the

what would be an endogenous 
 .

One of the long standing methodological debates in the discipline of history has been the

one between the structuralist/Marxist view and the agency view. The former sees history as

shaped by forces essentially out of the control of the individual agent. Marx for example sees

the means of production as the driving force of history. As these change over time, changes

in the political super-structure comes about. Interestingly, as Guiso, Sapienza, and Zingales

(2006) points out, this view is also shared by the Chicago School. On the other hand the

agency view states that individual agents such as Napolean, Robespierre, and Julius Ceasar do

substantially alter history. In this view the actions of certain individual can lead history to a

significant long run departure from its path in their absence. Our framework allows us to unify

these two methodological positions. Material forces do affect the probability of a charismatic

leader arising which would consequently lead to transitions and conflict, but at the same time

the existence of these leaders is a necessary ingredient that shapes social dynamics.

2.5 Consuls in the Roman Republic

In this section we examine a particular institutional arrangement from ancient Rome that

resonates quite cleanly with the mechanics of the model presented above. Consuls were the

military and civil heads of the state during the Roman republic. The fasti consulares, a listing

of the names and tenure of consuls, dates its first entry to 509 BC. The time period that fits

our model most closely is from 509 BC when the office was established to around 89 BC.11

11A consul’s power was superseded only in case of military emergency when a dictator was appointed. The
instances of appointment of a dictator were few and short lived in this period. The exception to the rule of two
consuls was the period of 426-367 BC which is known as ‘the conflict of the orders’ when consular power was often
shared between three or more military tribunes. This does not affect our story since the results of our model are
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Although the office of the two consuls persisted well after the establishment of imperial rule in

Rome, the concentration of the imperium in two consuls, that is their status as the joint heads

of the executive, diminished gradually once Sulla assumed dictatorial control in 89 BC. This

decline continued under the appointment of Julius Caesar as a perpetual dictator in 44 BC

and thereafter under the establishment of imperial rule under Augustus in 27 BC.

Two consuls were elected every year and jointly held the imperium. Any decision made by

a consul, such as a declaration of war, was subject to veto by the other consul. As the military

heads, consuls were expected to lead Roman armies in the event of a war. In case both consuls

were in the battlefield at the same time, they would share the command of the army, alternating

as the head on a day to day basis. The election of the consuls was held by an assembly of

soldiers known as the centuria.12 The fact that consuls were elected from within the military

and by the military confirms the primacy of their role as the heads of military. Indeed, their

roles as the civilian heads can be seen as arising from the control they wielded over the military.

It is therefore appropriate to think of them as analogous to the specialists in violence in the

model.

The crucial assumption that we make in the model is ı > 1. This ensures that when the

specialists in violence are evenly divided on both sides in a battle, the side supporting the

producers has at least a marginal advantage. This assumption seems valid in this setting.

During this period in Roman history, a potential soldier needed to prove ownership of a

certain amount of property to be eligible for recruitment in the military. This meant that the

soldiers tended to have close family who were typically engaged in productive activities such as

agriculture. Consequently, if the two consuls disagreed on an order to predate, the military

was at least marginally more likely to obey the order for protection of the producers over an

order for predation. Knowing this both consuls would have preferred protecting the producers

leading to the Prisoner’s Dilemma that we highlight. It is interesting to note that the property

requirement for recruitment into the army was finally relaxed in 107 BC. This was followed

closely by the transition of the republic into a dictatorship first under Sulla in 89 BC followed

later by Julius Caesar and eventually the establishment of a monarchy under Augustus in 27

BC.

This institutional arrangement points to the belief that two military heads would effec-

tively balance each other out. Since together they enjoyed absolute power, there was nothing

preventing them from colluding with each other, other than the architecture of the game itself.

The possibility of collusion can arise either through infinite repetition of the one shot game or

through the possibility of contracting. It is possible to identify the institutional features that

precluded these. Yearly elections ensured a finite time horizon for the consuls. Consuls were

barred from seeking re-elections immediately after serving a year in office. Usually a period of

ten years was expected before they could seek the office again. This term limit preserved the

preserved as long as the number of specialists in violence is strictly greater than 1. We have relied on Hornblower
and Spawforth (2003) as a reference for the historical material used in this case study.

12The assembly had 193 voting units, each unit representing a century, that is a group of one hundred soldiers.
The assembly was composed of 18 centuries of equites that is the cavalry, 170 centuries of pedites that is the infantry
and 5 centuries of non-combatants such as the horn blowers, artisans, etc. The voting order was the equites first
followed by the pedites and lastly the non-combatants. See Taylor (2003) for a detailed exposition of the voting
procedure in the centuria.
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one-shot nature of the game. Second, there was no possibility of contracting since there was

no higher authority than the consuls that could enforce any such contract. It appears that the

consuls were locked in a game where the unique equilibrium was that they did not predate.

2.6 Empirical analysis

In this section we attempt to test part of our model. In particular we can test remark 2.1 that

indicates that we should expect a negative relationship between the risk of expropriation and

the number of sivs. Unfortunately we don’t have the data to test remark 2.2 which shows that

the risk of expropriation is lower when the power of sivs is more equal.

The empirical analysis is based on panel data on World Military Expenditures and Arms

Transfers dataset compiled by the US Department of state.13 The data comprises of 168

countries over an 11 year period from 1995-2005. This contains data on our main explanatory

variable, the number of active troops per one thousand. It also contains data on military and

government expenditure in 2005 US Dollars which we use as controls.

For our outcome variable we rely on the International Country Risk Guide (ICRG) com-

piled by Political Risk Services.14 This contains an index that measures the risk of expropriation

on a scale of 0-12 with a higher score indicating a lower risk. Our baseline specification is

yit D ˛i C ˇt C 
1Armed Forcesit CX 0it�C "it : (2.29)

The variable “Armed Forces” is the log of the number of active troops for one thousand people

in the population. Note that the ideal empirical counterpart to sivs is a variable that captures

the number of military leaders who each command independent units. Since such data is

unavailable we use the log of the number of armed forces instead. If the fraction of military

leaders to armed forces remains constant within a country over the sample period, then there

is no problem with using the armed forces variable. This is because the number of sivs is some

fraction �i of the number of armed forces. To see this mathematically note that

.1 � �it / D ci .�i � # armed forcesit /
1 (2.30)

H) ln.1 � �it / D ln ci C 
1 ln �i C 
1 ln.# armed forcesit / (2.31)

The first two terms on the right hand side constitute the country fixed effect and cannot be

identified separately. However the coefficient on the log of number of armed forces gives us

an estimate of 
1. The assumption underlying this is that the structure of military within a

country, that is the proportion of soldiers and commanders stays constant.

As seen in remark 2.1, we should expect 
1 to be positive. Xit is a vector of time varying

country level controls including income as measured by log per capita GDP, log per capita

government spending, log per capita military spending, log population. Since the risk of

13The data is available at http://www.state.gov/t/avc/rls/rpt/wmeat/2005/index.htm
14The investment profile component in the ICRG dataset has been widely used in the literature as a measure of

risk of expropriation starting from Knack and Keefer (1995). As noted by Acemoglu, Johnson, and Robinson
(2001), although the variable is designed to capture the risk of expropriation is for foreign investment, the correlation
with the risk of expropriation for domestic investment is likely to be high.
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expropriation and the proportion of population in the armed forces could also be correlated to

levels of internal and external conflict, we control for these using indices for these two variables

that are also part of the ICRG dataset. ˛i and ˇt are the country and time fixed effects.

Table 2.1 in the appendix reports the results of this regression. We observe that the estimate

of 
1 is close to zero and statistically insignificant in all specifications. The maintained hypoth-

esis for this regression model is that the competition effect that we model applies equally to

all countries. However it may be possible that the net effect of competition among the sivs

has a differential impact at different levels of development. In particular it is reasonable to

believe that the threat of expropriation is real at lower levels of development when institutions

are not well developed. On the other hand at advanced stages of institutional development,

civilian control over the military is well established and consequently greater numbers within

the armed forces ought not to affect the risk of expropriation. To test this hypothesis we regress

the following specification where we allow the armed forces variable to interact with income

yit D ˛i C ˇt C 
1Armed Forcesit C 
2Armed Forcesit � Incomeit CX 0it�C "it : (2.32)

Table 2.2 reports the results of this regression. We can see that now the estimate of 
1 is

positive and significant indicating that increasing the proportion of population in the armed

forces reduces the risk of expropriation. Moreover the estimate of 
2 indicates that as expected

the competition effect is strong at low levels of development and attenuates with income.

We can also test this hypothesis by allowing the armed forces variable to have a differential

impact if a country is a member of the OECD. We expect the coefficient on the interaction

between OECD and armed forces to be negative since we don’t expect competition among sivs

to affect the risk of expropriation within OECD countries. We run

yit D ˛i C ˇt C 
1Armed Forcesit C 
2Armed Forcesit �OECDi CX
0
it�C "it : (2.33)

Table 2.3 reports the results of this specification. Once again we observe that the estimate

of 
1 is positive and significant whereas the estimate of 
2 is negative and significant. This

indicates that the positive effect of competition among sivs on investment incentives appears

to be true for non OECD countries.

A potential concern with the 1995-2005 time period is that our results may be affected by

the heterogeneous impact of the September 11, 2001 attacks. To address this we run our main

specification from equation (2.32) on a sample restricted to 1995-2001. Table 2.4 reports the

results. We observe that the results are not affected.

Another concern with these results is the endogeneity of variables such as current income,

government and military expenditure, and conflict. We attempt to deal with this concern

in two ways. First by taking an instrumental variables approach, and second by replacing

contemporaneous regressors with their lags.

Our first attempt to address the endogeneity is through estimating the specification from

equation (2.32) by using the lags of all variables on the right hand side. Table 2.5 reports the

results. We see that the pattern of results continues to be the same as seen in table 2.2. 
1
continues to be positive and significant whereas 
2 continues to be negative and significant.
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Table 2.6 reports the results from using the same set of instruments on the specification in

equation (2.33). Once again we see the same pattern of results in relation to 
1 and 
2.

The instrumental variable approach is based on the identifying assumption that the lagged

values of income, government expenditure, etc. do not have a direct impact on expropriation

risk. Since this is unlikely to be entirely correct we also try using the lagged variables as

regressors rather than as instruments. We run

yit D ˛i Cˇt C 
1Armed Forcesit C 
2Armed Forcesit � Incomeit�1CX 0it�1�C "it (2.34)

where all the regressors except armed forces are lagged one period.15 Table 2.7 reports the

results of this regression. We see that although the magnitude of the effect drops, the result

is consistent with the earlier specifications in that we find a positive and significant 
1 and a

negative and significant 
2. Table 2.8 reports the results from regressing the lagged specification

with the OECD indicator.

2.7 Conclusion

The ability to commit is one of the foundations of economic activity. This arises as a result of

agents who specialise in enforcement of commitment through the threat of violence. How do

these agents commit not to use their powers to expropriate others? This paper has attempted

to answer this question. We have argued that commitment arises as an artifact of the Prisoner’s

Dilemma type game form within which these agents find themselves. Even though they could

secure a higher payoff by colluding, they are unable to do so since unilateral adherence to their

role as the protectors of the producers is always individually rational. Moreover our model

shows how it is in the interest of the elite to have more diffuse power structure since that acts

as credible commitment against abuse of power and as such is a first step towards a political

Coase theorem.

Using within country variation to test the model, we find that competition among sivs

reduces the risk of expropriation, but only in developing countries. This is consistent with the

fact that the problem of civilian control over sivs is more salient at lower levels of institutional

development. Our model therefore has implications about how to optimally structure the

armed forces in less developed countries where civilian control over the military may be a

problem.

15Since the model predicts a relationship between contemporaneous numbers in the armed forces and the risk of
expropriation, we have not lagged the armed forces variable. However the results of the regression where the armed
forces variable is also lagged one period are similar to the ones reported in table 2.7.
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Appendix 2.A Mathematical appendix

Lemma 2.A.1 The distribution of P and Q when there are s sivs, and where �H -sivs predate

and �L-sivs defend is given by

Pr.P D p;Q D q/ D
sŠ

pŠqŠ.s � p � q/Š
.
�H /

p.1 � 
/q.
.1 � �H //
s�p�q (2.35)

D

 
s

q

!

s�q.1 � 
/q

 
s � q

p

!
�
p
H .1 � �H /

s�p�q : (2.36)

so that the marginal distribution of Q is Bin.s; 1 � 
/ and the conditional distribution of P

given Q is Bin.s �Q; �H /.

Lemma 2.A.2 If X � Bin.p; nC 1/,

E .Xf .X// D E .X/ E .f .Y C 1// ; (2.37)

where Y � Bin.p; n/.

Proof. The expectation of Xf .X/ is

E .Xf .X// D
nC1X
xD0

.nC 1/Š

xŠ.nC 1 � x/Š
px.1 � p/nC1�xxf .x/

D

nC1X
xD1

.nC 1/nŠ

.x � 1/Š.n � .x � 1//Š
ppx�1.1 � p/n�.x�1/f .x/

D .nC 1/p

nX
yD0

nŠ

yŠ.n � y/Š
py.1 � p/n�yf .y C 1/

D E .X/ E .f .Y C 1// :

(2.38)

Lemma 2.A.3 If X � Bin.1 � p; n/ and f is a monotonically decreasing function, E .f .X//

is increasing in p.

Proof. The derivative of E .f .X// with respect to p is

d

dp
E .f .X// D

d

dp

nX
xD0

nŠ

.n � x/ŠxŠ
pn�x.1 � p/xf .x/

D

n�1X
xD0

nŠ

.n � x � 1/ŠxŠ
pn�x�1.1 � p/xf .x/

�

nX
xD1

nŠ

.n � x/Š.x � 1/Š
pn�x.1 � p/x�1f .x/

D n

n�1X
xD0

 
n � 1

x

!
pn�1�x.1 � p/x.f .x/ � f .x C 1// > 0

(2.39)

if f is monotonically decreasing. �
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Lemma 2.A.4 In a separating equilibrium where high-types predate and low-types defend, the

producers’ total payout is given by

�sC1 D .s C 1/.
�H C .1 � 
/�L/E
�
…PC1Q

�
(2.40)

and this is increasing in 
 .

Proof. Let b�PQ denote a random variable takes value�PQ isQ < sC 1 and tsC1 ifQ D sC 1.

Also, let P 0 and Q0 denote the number of predators and defenders out of s C 1 sivs, rather

than s sivs as for P andQ, and let R0 and R denote the number of high-types out of sC 1 and

s sivs respectively. Then the total payout by producers is

�sC1 D E
�
P 0…P

0

Q0 CQ
0�Lb�P 0Q0� D E

�
P 0…P

0

sC1�R0

�
C E

�
Q0�Lb�P 0Q0�

D E
�
E
�
P 0…P

0

sC1�R0 j R
0
��
C E

�
E
�
Q0�Lb�P 0Q0 j Q0��

by the law of iterated expectations,

D E
�
R0�H E

�
…PC1sC1�R0 j R

0
��
C E

�
Q0�LE

�b�P 0Q0 j Q0��
by lemma 2.A.2 applied to P 0 j R0,

D .s C 1/
�HE
�
…PC1s�R

�
C .s C 1/.1 � 
/�LE

�b�PQC1�
by lemma 2.A.2 applied to R0 and Q0,

D .s C 1/.
�H C .1 � 
/�L/E
�
…PC1Q

�
:

To show that (2.22) is increasing in 
 , let us first rewrite it using the law of iterated expecta-

tions as

�sC1 D .s C 1/.
�H C .1 � 
/�L/E
�
…PC1Q

�
D .s C 1/.
�H C .1 � 
/�L/E

�
E
�
…PC1Q j Q

��
:

(2.41)

Since the marginal distribution of Q in (2.41) is Bin.1 � 
; s/, by lemma 2.A.3, all we need

to show is that E
�
…PC1Q j Q

�
is monotonically decreasing in Q. To show this, let Pq and

PqC1 represent P j Q when Q D q and Q D q C 1, respectively. Then,

…
PqC1
q D

1 � ı

.1 � ı/.Pq C 1/C ıq
(2.42)

D
1 � ı

.1 � ı/.PqC1 C 1/C ıq C .1 � ı/P
and (2.43)

…
PqC1C1
q D

1 � ı

.1 � ı/.PqC1 C 1/C ı.q C 1/
(2.44)

D
1 � ı

.1 � ı/.PqC1 C 1/C ıq C ı
(2.45)
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where P is a Bernoulli random variable with parameter �H , since when there is one fewer

defender there can be one more predator as long as he does not suffer a mutiny. Since ı >

1=2, we see that (2.43) is always stricly greater than (2.45) so we have E
�
…PC1Q j Q D q

�
>

E
�
…PC1Q j Q D q C 1

�
, so that indeed E

�
…PC1Q j Q

�
is decreasing in Q and �
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Appendix 2.B Tables

Table 2.1: OLS, not interacting with level of devel-
opment

1 2 3 4 5

Armed Forces �0:215 0:064 0:030 0:203 0:210

.0:25/ .0:40/ .0:41/ .0:42/ .0:39/

Income 2:921��� 4:136��� 4:039��� 3:900��� 3:860���

.0:69/ .0:75/ .0:73/ .0:78/ .0:74/

Govt Expenditure �0:796�� �0:936�� �0:932�� �1:050���

.0:38/ .0:40/ .0:40/ .0:39/

Military Expenditure 0:360 0:280 0:244

.0:27/ .0:27/ .0:26/

Population �1:962 �2:275

.1:74/ .1:74/

Internal Conflict 0:231��

.0:09/

External Conflict 0:095

.0:14/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.

Table 2.2: OLS, interacting with level of development

1 2 3 4 5

Armed Forces 6:898��� 6:774��� 6:689��� 6:977��� 6:540���

.1:19/ .1:17/ .1:17/ .1:23/ .1:18/

Income 5:197��� 6:090��� 6:013��� 6:217��� 6:062���

.0:71/ .0:77/ .0:76/ .0:91/ .0:90/

Armed Forces � Income �0:714��� �0:683��� �0:676��� �0:717��� �0:670���

.0:12/ .0:12/ .0:12/ .0:14/ .0:13/

Govt Expenditure �0:739�� �0:848�� �0:846�� �0:945��

.0:37/ .0:39/ .0:38/ .0:37/

Military Expenditure 0:262 0:307 0:273

.0:26/ .0:27/ .0:27/

Population 1:229 0:791

.1:90/ .1:89/

Internal Conflict 0:196��

.0:08/

External Conflict 0:039

.0:13/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.
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Table 2.3: OLS, interacting with OECD indicator

1 2 3 4 5

Armed Forces 0:085 0:852�� 0:820�� 0:864�� 0:852��

.0:36/ .0:37/ .0:38/ .0:39/ .0:36/

Income 2:671��� 4:095��� 4:045��� 3:994��� 3:947���

.0:68/ .0:71/ .0:70/ .0:75/ .0:71/

Armed Forces � OECD �2:441��� �3:036��� �2:982��� �2:912��� �2:824���

.0:63/ .0:63/ .0:63/ .0:65/ .0:64/

Govt Expenditure �0:814�� �0:915�� �0:914�� �1:027���

.0:37/ .0:39/ .0:39/ .0:37/

Military Expenditure 0:240 0:213 0:182

.0:25/ .0:25/ .0:25/

Population �0:720 �1:058

.1:78/ .1:77/

Internal Conflict 0:216��

.0:09/

External Conflict 0:099

.0:13/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.

Table 2.4: OLS, sample restricted to 1995–2001

1 2 3 4 5

Armed Forces 6:122��� 4:840�� 4:344� 5:948�� 5:451��

.2:26/ .2:35/ .2:37/ .2:65/ .2:50/

Income 6:069��� 6:955��� 6:574��� 7:679��� 7:255���

.1:07/ .1:09/ .1:07/ .1:30/ .1:27/

Armed Forces � Income �0:578�� �0:467� �0:434� �0:633�� �0:572��

.0:23/ .0:24/ .0:24/ .0:29/ .0:27/

Govt Expenditure �0:980�� �1:215��� �1:275��� �1:436���

.0:44/ .0:44/ .0:44/ .0:47/

Military Expenditure 0:502� 0:582�� 0:498�

.0:28/ .0:29/ .0:28/

Population 5:161� 4:840�

.2:90/ .2:79/

Internal Conflict 0:271��

.0:11/

External Conflict 0:088

.0:17/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.
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Table 2.5: Instrumental variables

1 2 3 4 5

Armed Forces 6:120��� 6:777��� 6:618��� 6:764��� 6:397���

.1:48/ .1:33/ .1:34/ .1:41/ .1:44/

Income 4:765��� 6:068��� 6:055��� 5:974��� 5:842���

.0:63/ .0:69/ .0:71/ .0:73/ .0:75/

Armed Forces � Income �0:654��� �0:687��� �0:672��� �0:702��� �0:672���

.0:14/ .0:13/ .0:13/ .0:14/ .0:14/

Govt Expenditure �0:735��� �0:885��� �0:824��� �0:887���

.0:27/ .0:28/ .0:28/ .0:28/

Military Expenditure 0:245 0:309 0:267

.0:20/ .0:21/ .0:21/

Population 1:207 0:830

.1:21/ .1:23/

Internal Conflict 0:174���

.0:06/

External Conflict 0:024

.0:08/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.
The regressors are instrumented by their lags.

Table 2.6: Instrumental variables with OECD indicator

1 2 3 4 5

Armed Forces 0:371 1:250��� 1:246��� 1:239��� 1:124��

.0:39/ .0:42/ .0:43/ .0:44/ .0:44/

Income 2:090��� 3:811��� 3:906��� 3:798��� 3:691���

.0:50/ .0:58/ .0:59/ .0:58/ .0:59/

Armed Forces � OECD �4:694��� �4:957��� �4:891��� �5:053��� �4:933���

.0:98/ .0:92/ .0:94/ .1:00/ .1:00/

Govt Expenditure �0:694�� �0:810��� �0:775��� �0:842���

.0:28/ .0:28/ .0:28/ .0:28/

Military Expenditure 0:127 0:150 0:119

.0:21/ .0:21/ .0:21/

Population 0:474 0:119

.1:17/ .1:17/

Internal Conflict 0:174���

.0:06/

External Conflict 0:081

.0:08/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.
The regressors are instrumented by their lags.
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Table 2.7: OLS, lagged variables

1 2 3 4 5

Armed Forces 4:482��� 4:899��� 4:836��� 4:827��� 4:782���

.1:18/ .1:18/ .1:21/ .1:22/ .1:23/

Lagged Income 4:393��� 6:152��� 6:064��� 5:826��� 5:916���

.0:94/ .1:03/ .1:07/ .1:15/ .1:15/

Armed Forces � Lagged Income �0:629��� �0:610��� �0:605��� �0:588��� �0:578���

.0:16/ .0:15/ .0:16/ .0:16/ .0:16/

Lagged Govt Expenditure �1:209��� �1:247��� �1:226��� �1:283���

.0:44/ .0:44/ .0:45/ .0:45/

Lagged Military Expenditure 0:144 0:095 0:070

.0:38/ .0:38/ .0:39/

Lagged Population �1:626 �1:782

.1:95/ .1:97/

Lagged Internal Conflict 0:026

.0:08/

Lagged External Conflict �0:006

.0:13/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All specifications
with country and year fixed effects. Dependent variable: risk of expropriation.

Table 2.8: OLS, lagged variables with OECD indicator

1 2 3 4 5

Armed Forces 0:148 1:158��� 1:129�� 1:172�� 1:215���

.0:33/ .0:43/ .0:45/ .0:46/ .0:46/

Lag Income 1:987��� 4:051��� 3:986��� 3:881��� 3:978���

.0:75/ .0:82/ .0:84/ .0:90/ .0:88/

Armed Force � OECD �2:258��� �3:040��� �3:001��� �2:903��� �2:906���

.0:61/ .0:66/ .0:67/ .0:68/ .0:69/

Lagged Govt Expenditure �1:232��� �1:271��� �1:258��� �1:332���

.0:44/ .0:45/ .0:46/ .0:45/

Lagged Military Expenditure 0:136 0:109 0:089

.0:35/ .0:36/ .0:36/

Lagged Population �0:951 �1:081

.2:01/ .2:03/

Lagged Internal Conflict 0:031

.0:08/

Lagged External Conflict 0:029

.0:13/

* p < 0:1, ** p < 0:05, *** p < 0:01. Robust standard errors reported in parentheses. All
specifications with country and year fixed effects. Dependent variable: risk of expropriation.



Chapter 3

Two-player rent-seeking contests with
private values

3.1 Introduction

Following Tullock (1980)’s seminal contribution in the context of rent-seeking, there is now

a large literature that models conflict in settings as varied as warfare, litigation and political

competition, to name a few1, as a contest, viz., a game where players expend effort or some

other costly resources to increase the probability of winning a valuable prize. By and large, this

literature has analysed conflict using contests under the assumption of complete information,

i.e., there is common knowledge about how much contestants value the prize, or equivalently for

the most commonly studied case of risk-neutral agents, how costly effort is. But the assumption

of complete information implies that all parties agree on their respective probabilities of

winning the prize and should therefore be able to come to a Coasian solution that avoids costly

conflict altogether. For example, in the context of intellectual property rights litigation, if there

is agreement on the value of a patent, say, all parties should be willing to agree to a settlement

rather than engage in costly litigation in court.

Indeed, the conventional wisdom, articulated by, for example, Fearon (1995) and Wärneryd

(2010, §5), is that it is precisely asymmetric information that generates conflict. To continue the

above example, litigation might arise because parties possess information about the value of

the patent that cannot be credibly revealed, because each side faces an incentive to exaggerate

the value of the patent to them.

The natural way to model asymmetric information is the independent private values (IPV)

formulation, where each risk-neutral player possesses a privately-known type describing his

valuation of the prize, or equivalently, his marginal cost of effort and where these types are

drawn from commonly-known independent distributions. The IPV model has been extensively

studied in the case of perfectly discriminating contests2 such as (first-price) all-pay auctions,

but it has only recently begun receiving attention in the context of imperfectly discriminating

1For a survey, see Garfinkel and Skaperdas (2007a).
2Using the terminology of Hillman and Riley (1989), a perfectly discriminating contest is one where the player

who exerts the highest effort wins the prize for sure. Imperfectly discriminating contests are ones where even
expending the greatest effort does not guarantee winning the prize.
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contests such as the commonly used Tullock or lottery contest3.

The literature on the IPV model with Tullock contests of the ratio or power form4 began

with the study of binary distributions of type by Hurley and Shogren (1998), who only carried

out numerical computations, and Malueg and Yates (2004), who considered a particular two-

valued distribution that enables an analytical solution. Since then, the only contributions

have been by Ryvkin (2010), who extends Fey (2008) to show existence of a pure-strategy

equilibrium, and by Prada-Sarmiento (2010) and Wasser (2011) who compare rent-dissipation

under complete and incomplete information. Apart from these general results, specific solutions

to the equilibrium of Tullock contests have only been provided in purely numerical terms. The

only exception is Ewerhart (2010), who provides the only known analytical solution arising

from a particular distribution of types with bounded support.

The reason for the paucity of analytical solutions is that solving for the equilibrium strate-

gies starting from a given distribution of types, what we shall call forward solution, poses

formidable mathematical challenges as it involves solving a difficult integral equation. This

paper proposes an alternative approach, which we shall call reverse solution, where we solve for

the distribution of types that gives rise to a given distribution of efforts. The appeal of this

approach is not solely mathematical, but stems also from the same considerations that make

the revelead preference a valid approach to modelling consumer theory. To the extent that

effort or resource expenditure in a contest is more readily observable than the value placed on

a prize or the subjective cost of effort, it is reasonable to ask what must the latter be like in

order for the former to satisfy certain properties.

Using the reverse solution method, this paper constructs a class of symmetric equilibria

for the two-player case, where individual efforts are log-logistically distributed, deriving the

distribution of types that gives rise to efforts of this kind. The log-logistic solution is of special

interest as it is approximately equivalent, in a sense to be made precise later, to the equilibrium

of a complete information contest. Also of note is the fact that these are the first examples in

the literature of solutions where the distribution of efforts or types are not constrained to a

bounded interval.

This reverse solution method also makes it possible to show that the equilibrium strategy,

i.e., the mapping from type to effort, cannot take an affine form. This rules out two possible

avenues for finding a forward solution, viz., assuming that the distribution of effort is of the

same parametric family as that of types and plugging in an affine function into the integral

equation given by first-order condition for the equilibrium.

The paper is structured as follows: section 3.2 lays out the standard two-player Tullock

contest of the ratio form, describing the aforementioned two solution approaches, and proves

the impossibility of affine strategies; section 3.3 constructs a distribution of types that give

rise to log-logistically distributed efforts and carries out comparative statics with respect to

the parameters of the distribution; section 3.4 discusses the results and provides concluding

remarks. Proofs and results that are not essential to the flow of the paper are relegated to

3A Tullock or lottery contest is one where expending effort is akin to buying lottery tickets since the probability
of winning is equal to the ratio of a player’s effort to the total effort of all players.

4As opposed to those of the exponential form, about which even less is known in the case of asymmetric
information.
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appendix 3.A and appendix 3.B.

3.2 Model and general results

In a two-player Tullock or rent-seeking contest, risk-neutral players indexed by i D 1; 2

compete for a prize by expending effort xi with constant marginal cost normalised5 to 1. In

the IPV model, the value that player i assigns to the prize is represented by a non-negative

random variable Vi characterised by cumulative distribution functionFVi , with Vi and Vj being

independent. Each player i learns the realisation vi of his value Vi and chooses simultaneously

the level of effort xi . We will consider contests of the ratio form, where the probability that

player i wins the prize when he exerts effort xi and player j exerts effort xj is given by the

contest success function

�i .xi ; xj / D
xi

xi C xj
: (3.1)

A pure strategy �i of player i is a function that specifies the effort level �i .vi / exerted when

the private value is equal to vi . The interim expected payoff of player i given that his valuation

is vi when exerts effort xi and when player j adopts a strategy �j is then given by

Ui .xi I �j ; vi / D EŒvi�i .xi ; �j .Vj // � xi � (3.2)

D viEŒ�i .xi ; �j .Vj //� � xi (3.3)

D vi

Z 1
0

xi

xi C �j .v/
dFVj .v/ � xi : (3.4)

Differentiating under the integral, we obtain the derivative

U 0i .xi I �j ; vi / D vi

Z 1
0

�j .v/

.xi C �j .v//2
dFVj .v/ � 1 (3.5)

so that player i ’s best response O�i .vi I �j / to �j satisfies the first-order condition

U 0i .
O�i .vi I �j /I �j ; vi / D vi

Z 1
0

�j .v/

. O�i .vi I �j /C �j .v//2
dFVj .v/ � 1 D 0 for all vi > 0. (3.6)

Therefore, a symmetric equilibrium where the players’s values V1 and V2 are identically dis-

tributed and they use the same equilibrium strategy ��.v/must satisfy the first-order conditionZ 1
0

��.u/

.��.v/C ��.u//2
dFV .u/ D

1

v
for all v > 0. (3.7)

The forward solution for a symmetric pure strategy equilibrium therefore entails the formidable

problem of solving for �� in the integral equation (3.7), which is very poorly understood.

To avoid such difficulties we can rewrite the problem by writing Xj D �j .Vj / for the

random variable that gives the effort level of player j , denoting the cdf of Xj by FXj , so that

5In the equivalent private cost formulation the value of the prize is normalised to 1 and the marginal cost of
effort is private to each player.
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player i ’s interim expected probability of winning the prize when exerting effort xi as

PXj .xi / D EŒ�i .xi ; Xj /� D

Z 1
0

xi

xi C x
dFXj .x/ (3.8)

and the marginal probability of winning is given by its derivative

pXj .xi /´ P 0Xj .xi / D

Z 1
0

x

.xi C x/2
dFXj .x/ : (3.9)

The interim expected payoff is then

uXj .xi I vi / D viPXj .xi / � xi D vi

Z 1
0

xi

xi C x
dFXj .x/ � xi (3.10)

and its derivative is

u0Xj .xi I vi / D vipXi .xi / � 1 D vi

Z 1
0

x

.xi C x/2
dFXj .x/ � 1 ; (3.11)

so that the best response Ox.vi IXj / to the opponent’s effortXj satisfies the first-order condition

u0Xj . Ox.vi IXj /I vi / D vipXj . Ox.vi IXj // � 1 D 0 for all vi > 0. (3.12)

In a symmetric equilibrium where both players adopt the same strategy x�, the equilibrium

efforts X�i D x
�.Vi / and X�j D x

�.Vj / are independent and identically distributed random

variables with the same cdf FX . The equilibrium strategy x� is then given by

x�.v/ D Ox.vIX�i / D Ox.vIX
�
j / D p

�1
X .1=v/ where (3.13)

pX .x/ D

Z 1
0

t

.x C t /2
dFX .t/ ; (3.14)

whereas its inverse x��1.x/, giving the value corresponding to equilibrium effort x, is given by

1=v D pX .x
�.v// () x��1.x/ D 1=pX .x/ : (3.15)

Then, letting V stand for either V1 or V2 and X for either X�1 or X�2 , the distribution of V is

given by the cdf

FV .v/ D Pr.V � v/ D Pr
�
X � x�.v/

�
D Pr

�
Xi � p

�1
X .1=v/

�
D FX

�
p�1X .1=v/

�
; (3.16)

or alternatively, by the quantile function

QV .p/ D F
�1
V .p/ D

1

pX
�
F�1X .p/

� D 1

pX
�
QX .p/

� ; (3.17)
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where QX is the quantile function of X , which also follows from the fact that

V D x��1.X/ D
1

pX .X/
: (3.18)

This derivation leads to the following sufficient condition for an equilibrium.

Proposition 3.1 Let the random variables representing the values Vi of players i D 1; 2 be

independent and identically distributed with cdf FV , and suppose there exists a continuous

random variable X with cdf FX and pdf fX such that FV .v/ D FX .p
�1
X .1=v// for all v 2

suppfV , where

pX .x/ D

Z 1
0

t

.x C t /2
fX .t/ dt : (3.19)

Then there exists a symmetric Bayesian equilibrium where effort is given by

x�.v/ D p�1X .1=v/ (3.20)

for all v 2 suppfV , with FX being the equilibrium distribution of effort.

Proof. Firstly, note that for pX defined as in eq. (3.19),

p0X .x/ D

Z 1
0

�2t

.x C t /3
fX .t/ dt < 0 for all x � 0, (3.21)

holds for any pdf fX so pX is strictly monotonically decreasing. Therefore pX has an inverse

p�1X and the strategy x� in eq. (3.20) is well-defined. Suppose now that player j is adopting

the strategy x�, so that player i ’s payoff when he values the prize at v and exerts effort x is

U.xI v/ D v

Z 1
0

x

x C x�.u/
dFV .u/ � x (3.22)

with marginal payoff

U 0.xI v/ D v

Z 1
0

x�.u/

.x C x�.u//2
dFV .u/ � 1 : (3.23)

If we use the substitution t D x�.u/ D p�1X .1=u/, we can rewrite this as

U 0.xI v/ D v

Z 1
0

t

.x C t /2
dFV .1=pX .t// � 1 (3.24)

D v

Z 1
0

t

.x C t /2
fX .t/ dt � 1 (3.25)

since by construction,FV .u/ D FX .p�1X .1=u//, so thatU 0.xI v/ D vpX .x/�1. Furthermore,

by ineq. (3.21), U 00.xI v/ D vp0X .x/ < 0 for all x � 0, so that U.xI v/ is strictly concave in x

and there is a unique x that maximises U.xI v/. Therefore, x�.v/ is an equilibrium strategy

if

U 0.x�.v/I v/ D vpX .x
�.v// � 1 D 0 () x�.v/ D p�1X .1=v/ (3.26)
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holds for all v 2 suppV , which is true by construction. �

This proposition therefore gives us the a reverse method for finding a symmetric equilibrium:

Reverse solution method:

1. Choose a cdf FX for the equilibrium level of effort that allows one to compute pX in

eq. (3.19).

2. If pX has a closed-form inverse p�1X , find the equilibrium effort x� using eq. (3.20) and

the cdf of V using eq. (3.16).

3. Otherwise, find the inverse equilibrium effort x��1 from eq. (3.15) and quantile function

of V using eq. (3.17), as long as the quantile function QX has a closed-form expression.

To find a closed-form solution, therefore one needs to be able to evaluate the integral in

eq. (3.19) analytically. This is obviously a much more mathematically tractable problem than

the forward solution, as it involves plain integration rather than solving integral equations,

and the examples in section 3.3 attest to this.

When putting this method in practice, it will often turn out to be the case that pX cannot

be inverted analytically. Although this means that we will be able to obtain a closed-form

expression only for the inverse equilibrium effort x��1, this will still enable us to carry out

comparative statics with respect to the parameters of the model. To do this, suppose that pX
and x� depend on some parameter � , then we can rewrite eq. (3.15) as

1=v D pX .x
�.vI �/I �/ (3.27)

and differentiate it with respect to � , obtaining

@�pX .x
�.vI �/I �/C @xpX .x

�.vI �/I �/ @xx
�.vI �/ D 0 (3.28)

() @�x
�.vI �/ D �

@�pX .x
�.vI �/I �/

@xpX .x�.vI �/I �/
(3.29)

where @x and @� represent partial derivatives with respect to the first and second arguments of

x� and pX . Since pX is monotonically decreasing by ineq. (3.21), the sign of the change in the

equilibrium strategy due to a change in a parameter will be the same as that of the derivative

of pX with respect to that parameter.

In order to obtain an expression for pX to be able to analyse the equilibrium, the choice of

distribution forX is absolutely crucial. To aid in the choice of a suitableFX in the above method,

we will show that the probability PX of winning satisfies certain distributional properties, but

first we describe a distribution that will play a special role in the sequel.

Definition 3.1 A random variable X has log-logistic distribution6 with scale parameter ˛ and

6This distribution is also known as the Fisk distribution in economics. For more details see Kleiber and Kotz
(2003, Chapter 6).
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shape parameter ˇ, written X � LL.˛; ˇ/, if it has cdf

FX .x/ D
1

1C .x=˛/�ˇ
D

xˇ

˛ˇ C xˇ
: (3.30)

The median is ˛ and the mean is finite iff ˇ > 1, in which case it is given by

E.X/ D
�=ˇ

sin.�=ˇ/
: (3.31)

The quantile function, or inverse cdf, is

QX .p/ D ˛

�
p

1 � p

� 1
ˇ

: (3.32)

A standard log-logistic random variable is one with scale and shape parameters both equal to

1.

We can now state the following property of PX .

Lemma 3.1 The probability PX .x/ of winning the prize when exerting effort x and when the

opponent’s effort is given by the random variable X is equal to Pr.LX � x/, where L is a

standard log-logistic random variable independent of X .

Proof. LetL be log-logistic with scale and shape parameters 1 so that its cdf isFL.`/ D `
1C`

.

Then then the cdf of LX is

Pr.LX � x/ D Pr.L � x=X/ D EŒPr.L � x=X j X/� D EŒFL.x=X/� (3.33)

D

Z 1
0

FL.x=t/ dFX .t/ D

Z 1
0

x=t

1C x=t
dFX .t/ D

Z 1
0

x

x C t
dFX .t/ ; (3.34)

which coincides with the definition of PX in eq. (3.8). �

An immediate consequence of lemma 3.1 is that the marginal probability pX that links the

distribution of types and the equilibrium efforts is given by the pdf of LX .

Rather than working directly with the product LX and its corresponding pdf pX , we will

find it convenient to work with the sum logLX D logLC logX and its pdf  X . Using the

substitutions x D e� , t D e� , this leads to rewriting eq. (3.19) as

pX .x/ D

Z 1
0

t

.x C t /2
fX .t/ dt (3.35)

() e�pX .e
�/ D

Z 1
�1

e���

.1C e��� /2
e�fX .e

� / d� (3.36)

()  X .�/ D

Z 1
�1

�L.� � �/�X .�/ d� (3.37)

()  X .�/ D .�L � �X /.�/ (3.38)
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where � is the convolution operator and

 X .�/ D e
�pX .e

�/ ; (3.39a)

�X .�/ D e
�fX .e

� / is the pdf of logX and (3.39b)

�L.´/ D
e´

.1C e´/2
is the standard logistic pdf. (3.39c)

This transformation can be useful for choosing a suitable distribution for X since it is often

easier to work with the sum rather than the product of random variables. Furthermore, using

the transformed functions in eq. (3.39), we can show the following result.

Proposition 3.2 Suppose that the distribution of values has a probability density function that

is continuous on its support. Then the equilibrium effort cannot be an affine function of value.

Proof. We will prove the result by contradiction. Suppose that x�.v/ D aC bv, with b > 0

since x� is increasing. Since the distribution of V has a continuous pdf over its support,

effort X will also have a continuous pdf, with a continuous pdf f over its support Œx; xx�,

where we will write x D �1 and xx D1 to mean that the support is unbounded below and

above, respectively. Note then that the density � of the log of effort is continuous and has

support Œ�; x��, where � D ln x and x� D ln xx.

By the first-order condition (3.20), x�.v/ D p�1.1=v/ for all v in the support of V , so

the function p must satisfy p.x/ D b
x�a

for all x 2 Œx; xx�, and the function  .�/ D e�p.e�/

must satisfy

 .�/ D e�p.e�/ D
be�

e� � a
D

b

1 � ae��
D 1C

b C ae��

1 � ae��
for all � 2 Œ�; x��. (3.40)

Suppose that X is unbounded above, i.e., xx is infinite, then x� is infinite so eq. (3.40) must

be satisfied for all � 2 Œ�;1/. But  .�/ > 1 for all � > ln a, whereas by eq. (3.38),  .�/ is

a density function over Œ�;1/ which implies that  .�/ ! 0 as � ! 1. Hence xx must be

finite.

Suppose next that a � 0, so that be�

e��a
is increasing everywhere if a < 0, or constant if

a D 0. But, differentiating eq. (3.37) and evaluating at x�, we have

 0.x�/ D

Z x�
�

�0L.
x� � �/�.�/ d� < 0 (3.41)

where �L.`/ D e`

.1Ce`/2
, since �0L.`/ < 0 for all ` > 0 and since � < x� inside the integral.

Hence,  0 < 0 for � sufficiently close to x� by continuity of k0 and �. This means that  

must be decreasing in the neighbourhood of x� so that it cannot equal be�

e��a
there, violating

eq. (3.40). Hence it must be that a > 0. Since we must have x � a for b
x�a

to be non-negative,

it follows that x > 0.

The fact that x � a > 0, implies that � is finite and that be�

e��a
is decreasing for all � > �.
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On the other hand we have

 0.�/ D

Z x�
�

�0L.� � �/�.�/ d� > 0 (3.42)

since � > � inside the integral and �0L.`/ > 0 for ` < 0, which means that  0 > 0 for �

sufficiently close to �, by continuity of �0L and �. This means that  must be increasing

in � in the neighbourhood of � so that it cannot equal be�

e��a
in that region, thus violating

eq. (3.40). Hence for no f will  coincide with be�

e��a
on its support. �

This implies that the distribution of effort will not in general be in the same family as the

distribution of value. Furthermore, it rules out the most obvious way of attempting to solve

for the equilibrium, namely by substituting the simplest possible equilibrium strategy.

3.3 Log-logistic model

3.3.1 Preliminaries

Suppose we take �X in eq. (3.37) to be a logistic pdf, so that  X is the pdf of the sum of two

logistic random variables. Since the logistic distribution is in many respects similar to the

normal distribution, and since the sum of two normal random variables is itself normal7, one

might be tempted to think that the sum of two logistic random variables is also logistic, but

this is not the case. On the other hand, the sum can be very closely approximated by a logistic

random variable, as shown in appendix 3.A. Therefore, if we assume X to be log-logistically

distributed then pX will be very close to a log-logistic pdf, giving us the following.

Lemma 3.2 If X � LL.˛; ˇ/ then the probability and marginal probability of winning the

prize are approximately given by

PX .x/ D
x


˛
 C x

(3.43)

pX .x/ D
1

x


 .x=˛/


.1C .x=˛/
 /2
; (3.44)

where 
 ´ 1p
1C1=ˇ2

is strictly less than 1 for all ˇ > 0.

Proof. See proof 3.A.1 in appendix 3.A. �

Since the analysis in appendix 3.A indicates that the approximation is very precise, we will

use the expressions in eq. (3.43) and eq. (3.44) as if they were exact for PX and pX , without

necessarily qualifying them as being approximate.

7This suggests using the normal distribution as an approximation, so that pX would be a log-normal pdf. But
such an approximation would be a qualitatively poor one since for no value of its parameters is a log-normal pdf
monotonically decreasing over its support, as required by ineq. (3.21). For similar reasons, although the contest
success function �i .xi ; xj / D ˆ.log.xi=xj // would give us an exact expression for the marginal probability of
winning the prize when effort is log-normally distributed, this would mean that the expected payoff is not concave
in own effort, leading to problems when using the first-order condition.
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Note that, since 
 < 1 for all ˇ > 0, the marginal probability of winning pX is mono-

tonically decreasing for all x > 0, which is consistent with ineq. (3.21). Also pX becomes

arbitrarily large as x tends to 0 and tends to 0 as x !1. Since V D 1=pX .X/, by eq. (3.18),

this means that the distribution of values has support equal to Œ0;1/. In fact, using eq. (3.18)

and eq. (3.44) we can write

V D
1

pX .X/
D
X




.1C .X=˛/
 /2

.X=˛/

(3.45)

D
X




�
2C .X=˛/�
 C .X=˛/


�
(3.46)

D
1



.2X C ˛
X1�
 C ˛�
X1C
 / : (3.47)

Before continuining our characterisation of V we will need the following result.

Lemma 3.3 If X � LL.˛; ˇ/ then X
 � LL.˛
 ; ˇ=
/.

Proof. See proof 3.B.1 in appendix 3.B. �

Combining eq. (3.47), lemma 3.3 and eq. (3.32), we find that the quantile function QV of V is

QV .p/ D
1




 
˛
˛1�


�
p

1 � p

� 1�

ˇ

C ˛�
˛1C

�

p

1 � p

� 1C

ˇ

C 2˛

�
p

1 � p

� 1
ˇ

!
(3.48)

D
˛




 �
p

1 � p

�.1C
/z

C

�
p

1 � p

�.1�
/z

C 2

�
p

1 � p

�z
!
; (3.49)

where z
 D 1=ˇ D
p
1 � 
2=
 .

3.3.2 Equilibrium

We can now define the distribution of values that will give the desired equilibrium.

Definition 3.2 A random variable V has VL distribution with scale parameter ˛ > 0 and shape

parameter 
 2 .0; 1/, written V � VL.˛; 
/, iff

V D
˛




�
Y .1�
/z
 C 2Y z
 C Y .1C
/z


�
; (3.50)

where z
 ´
p
1 � 
2=
 and Y is a standard logistic random variable.

Lemma 3.4 If V � VL.˛; 
/,

(a) the pdf fV of V is unimodal;

(b) the median of V is 4˛=
 ;

(c) the expectation of V is

E.V / D
˛




�
�.1 � 
/z


sin.�.1 � 
/z
/
C 2

� z


sin.� z
/
C

�.1C 
/z


sin.�.1C 
/z
/

�
; (3.51)

if 
 > 
�, where 
� � 0:883 is the unique positive root of 
4 C 2
3 C 
2 � 2
 � 1 D 0.
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Figure 3.1: Plot of density fV .v/ of prize values

˛ D 1 and 
 D 1=2; 2=3; 4=5; 9=10 (dashed), 
 D 0:95; 0:975; 0:99 (solid). Curves with modes
further to the right correspond to higher 
 .
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Proof. See proof 3.B.4 in appendix 3.B. �

Having derived the distribution of values that leads to log-logistic efforts we can now

formally describe the equilibrium.

Proposition 3.3 If the valuations V1 and V2 are i.i.d., with Vi � VL.˛; 
/, ˛ > 0, 0 < 
 < 1,

the inverse of the equilibrium strategy is approximately given by

x��1.x/ D
x




��x
˛

��

C 2C

�x
˛

�
�
; (3.52)

with the equilibrium efforts X�1 and X�2 having distribution X�i � LL.˛; ˇ/, where ˇ D


=
p
1 � 
2.

Proof. By construction, we can apply proposition 3.1 with pX given by lemma 3.2. �

Unfortunately, it is not in general possible to invert x��1 in eq. (3.52) to obtain a closed-

form expression for x�.v/, but for rational 
 , x� corresponds to a root of a polynomial so that

it can be plotted with arbitrary precision8, as is done in fig. 3.2.

3.3.3 Comparative statics

In order to analyse how the equilibrium varies as the distribution of values changes, we first

need to understand the role that the parameters ˛ and 
 play. From the definition of V in

eq. (3.50) it is clear that ˛ is indeed a simple scale parameter, so that higher ˛ leads to V taking

proportionally larger values. In fact, since X and V share the same scale parameter ˛, any

quantities that are homogeneous functions of X and V will be proportional to ˛. On the other

hand, the role of 
 is not so obvious.

8By the Abel-Ruffini theorem, there is no general algebraic solution to polynomials of degree greater than 4, but
the numerical analysis of roots of polynomials is well-understood, to the extent that all major computer algebra
systems offer reliable tools for manipulating them.
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Figure 3.2: Plot of equilibrium effort x�.v/

˛ D 1 and 
 D 1=2; 2=3; 4=5; 9=10; 0:95; 0:99. Curves with higher right endpoints correspond
to higher 
 . The dashed line represents the limit as 
 ! 1, given by

p
v � 1.
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Inspecting fig. 3.1, greater values of 
 seem to correspond to a distribution that is less

disperse. In order to make this more precise we will use the Lorenz ordering of distributions,

defined as follows.

Definition 3.3 If X1 and X2 are two random variables with finite expectations, we say that X1
exhibits less inequality than X2 in the Lorenz sense, denoted X1 �L X2, if LX1.p/ � LX2.p/

for all p 2 Œ0; 1�, where LXi is the Lorenz curve of Xi defined by

LXi .p/ D
1

E.Xi /

Z p

0

QXi .q/ dq (3.53)

and QXi is the quantile function of Xi .

Since Atkinson (1970)’s seminal paper, the Lorenz ordering has become one of the standard

criteria used to compare income distributions in terms of their inequality. Applied to the present

context, saying thatX1 �L X2 means that the distribution ofX1 is less unequal or less disperse

than that of X2. The Lorenz ordering can only rank distributions whose Lorenz curves do not

cross, but in the case of log-logistic distributions, the order turns out to be total.

Lemma 3.5 Suppose X1 � LL.˛1; ˇ1/ and X2 � LL.˛2; ˇ2/, with ˇ1 > 1 and ˇ2 > 1. Then

ˇ1 � ˇ2 () X1 �L X2. Also, if X � LL.˛; ˇ/, the Gini coefficient for X is 1=ˇ.

Proof. See Kleiber and Kotz (2003, p. 224) and the concluding remarks in Wilfling (1996).�

This shows that log-logistic distributions are completely ordered in the Lorenz-sense by

the shape parameter ˇ and that 1=ˇ is a direct measure of dispersion. Indeed, as ˇ !1, the

distribution degenerates into a point mass at ˛. It also turns out the shape parameter 
 has an

equivalent role in the VL distribution in definition 3.2.

Lemma 3.6 Suppose V1 � VL.˛1; 
1/ and V2 � VL.˛2; 
2/, with both E.V1/ and E.V2/ finite.

Then 
1 � 
2 () V1 �L V2.
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Figure 3.3: Plot of quantile function QX .p/ of effort

˛ D 1 and 
 D 1=2; 2=3; 4=5; 9=10; 0:95; 0:99. Higher values of 
 correspond to curves that
are lower for p < 1=2 and higher for p > 1=2.
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Proof. See proof 3.B.5 in appendix 3.B. �

Hence, the family of VL distributions is also totally ordered in the Lorenz sense by 
 , with

higher 
 indicating lower dispersion. We therefore have the following comparative statics.

Proposition 3.4 As ˛ increases, the distributions of values and equilibrium efforts scale up in

the same proportion. As 
 increases, the distribution of effort become less disperse.

Proof. The first statement is obvious because ˛ is the same scale parameter of both distribu-

tions. For the second statement, by proposition 3.3, the shape parameter of the log-logistic

equilibrium distribution of effort is ˇ D 
=
p
1 � 
2, which is increasing in 
 . Therefore, by

lemma 3.5, the equilibrium distribution of effort becomes less disperse. �

Figure 3.3 plots the quantile functions of equilibrium effort as 
 increases, showing how

they become flatter and flatter, tending to 1 as 
 ! 1.

Remark 3.1 As 
 ! 1, X
p
! V=4.

Proof. As 
 ! 1, all the powers in eq. (3.50) tend to 0, so that V tends in probability to

4˛, whereas ˇ !1 so that X tends in probability to ˛. �

This shows that as uncertainty about values disappears, the equilibrium strategy tends

towards that under complete information9, as we would expect.

We can also analyse how changes in ˛ and 
 affect the interim equilibrium efforts, i.e.,

effort once the value of the prize is realised. Although we cannot invert eq. (3.52) analytically

to obtain x�, we can still use eq. (3.29) to determine carry out comparative statics.

Proposition 3.5 For constant value v, a small increase in ˛, i.e., a small proportional increase

in the distribution of values, leads to an increase in equilibrium effort if the value is above the

median and a decrease if the value is below the median.
9See Wärneryd (2010) for a derivation of the complete information equilibrium.
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Proof. Using eq. (3.29) we know that the sign of @˛x�.vI˛; 
/ is the same as that of

@˛pX .xI˛; 
/ D
@

@˛

1

x


 .x=˛/


.1C .x=˛/
 /2
D 
2

˛
�1x
�1

.˛
 C x
 /3
.x
 � ˛
 / (3.54)

which is positive if x > ˛ and negative if x < ˛. Since ˛ is the median of the equilibrium

distribution of effort, this means that @˛x� is positive if the realised value is above the median

and negative if it’s below. �

This result shows that scaling up the distribution of values by a small amount increases

effort in equilibrium only if a player has a realised value that is above the median, since that is

when a scaling up will make it more likely that the opponent’s value is close the player’s thus

increasing the marginal benefit of effort.

Proposition 3.6 For constant value v, a small increase in 
 , i.e., a small decrease in the disper-

sion of the distribution of values, leads to a decrease in equilibrium effort if the value is in the

top or bottom ı.
/ quantile and to an increase in effort otherwise, where ı.
/ 2 .0; 1=2� is a

decreasing function.

Proof. See proof 3.B.6 in appendix 3.B. �

This states that when uncertainty about values decreases by a small amount, a contestant

who has an interim value in some interval around the median increases his effort, since the

probability that the opponent’s value is close to his increases, thus increasing the marginal

benefit of effort. Figure 3.4 depicts the conditions under which effort increases with a reduction

in dispersion.10

Figure 3.4: Sign of @
x�

¶ x*

¶ Γ
> 0

¶Γx*
<0

¶Γx*
<0
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0.8

1.0

p

Proposition 3.7 For 
 > 
�, a mean-preserving spread in the distribution of values decreases

expected equilibrium effort.

10Note that the ı quantiles of V are so large that they are not in the range of values in fig. 3.2, which does not
show x� decreasing for large v.



INCOMPLETE INFORMATION CONTESTS 78

Proof. See proof 3.B.7 in appendix 3.B. �

Figure 3.5: Normalised mean effort EX=EV
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A mean-preserving spread in V consists of a fall in 
 accompanied by a fall in ˛. As


 ! 
� from above, EV becomes arbitrarily large, so that to keep the mean constant, ˛ ! 0,

which explains why EX ! 0 as well in fig. 3.5.

An important quantity in the study of rent-seeking contests is the willingness to waste,

defined as the ratio of the effort expenditure to the value of the prize, which measures the

amount of rent that is dissipated by each player. For the present case of log-logistic effort we

have the following result.

Proposition 3.8 The willingness to waste is a hump-shaped function of value, attaining its

maximum of 
=4 when v D 4˛=
 . Its quantile function is given by

wX .p/ D


�
.1 � p/p

�p
1�
2�

.1 � p/
p
1�
2 C p

p
1�
2

�
2
; (3.55)

which is increasing in 
 for all p.

Proof. See proof 3.B.8 in appendix 3.B. �

This result shows that the willingness to waste is highest when a contestant has the median

value for the prize, since this is when he is most likely to be faced with an evenly matched

opponent. As the realised value becomes more and more extreme, the contest becomes more

and more lopsided, decreasing the incentive to exert effort.

Furthermore, as 
 increases, uncertainty decreases and the distribution of the willingness

to waste increases uniformly, in the sense that all its quantiles increase, as shown in fig. 3.6.

This means that greater uncertainty reduces rent-dissipation by reducing the incentives to

expend effort.

3.3.4 Correspondence between incomplete and complete information

To develop an intuition for this result it is useful to look at the expression in eq. (3.43) (re-

produced below) for the probability of winning the prize when the opponent is following the
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Figure 3.6: Willingness to waste


 D 1=2; 2=3; 4=5; 9=10; 0:95; 0:99. Higher curves correspond to higher 
 .
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equilibrium strategy, which is

PX .x/ D
x


x
 C ˛

: (3.43)

Consider now a complete information contest where the contest success function giving the

probability that a player wins when he exerts effort x and his opponent exerts effort y is of the

generalized ratio-form

�.xIy/ D
x


x
 C y

: (3.56)

Then, it is clear that the probability of winning when faced with an opponent whose prize

value is distributed according to definition 3.2 and who is following the equilibrium strategy is

equal to the probability of winning in a generalized complete information contest when faced

with an opponent who exerts effort ˛. Moreover, since ˛ is the median level of equilibrium

effort under incomplete information, the contestants’ incentives are as if they were facing

opponents of the median type. More precisely, this means that the equilibrium strategy x�.v/

under incomplete information is identical to the reaction function under complete information

but with the generalized contest success function in eq. (3.56).

This equivalence makes the effect of the parameter 
 intuitively clear: as 
 decreases,

the probability of winning becomes less and less responsive to effort. Ceteris paribus, this

decreases the incentive to expend effort so that in the limit as 
 ! 0 effort expenditure tends

to 0. Conversely, as 
 ! 1, the probability of winning becomes more and more responsive

to effort, which we can see also in the shape of the equilibrium strategy x�.v/ as depicted in

fig. 3.2. Indeed, as 
 ! 1, x�.v/!
p
v � ˛, which is the reaction function under complete

information.
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3.4 Discussion and conclusion

The log-logistic model in section 3.3 shows how the reverse solution method proposed in

section 3.2 can be put to use to find an equilibrium of a two-player incomplete information

contest in analytical, rather than purely numerical, form. The attractions of the log-logistic

model thus solved are several. Firstly, the model exhibits a formal correspondence with a

suitably generalized complete information contest, in the sense that each player can replace the

probability of winning, which is an expectation over the opponent’s effort, by the probability

of winning against an opponent of the median type following the equilibrium strategy. Thi

s shows that the equilibrium with log-logistic effort we have examined is not an arbitrary

example chosen merely for its analytical tractability; rather, section 3.3.4 demonstrates a more

fundamental connection with contests under complete information.

Secondly, even though only the inverse of the equilibrium strategy has a closed-form

expression and not the equilibrium strategy itself, the quantiles of the distribution of values,

of effort and of the willingness to waste have simple functional forms. In fact, the lack of a

closed-form expression for the equilibrium strategy is a direct consequence of the fact that even

under complete information, there is no closed-form expression for reaction function of each

player when the power in the contest-success function is less than 1, and is not a complication

introduced by incomplete information.

Thirdly, the comparative statics of the equilibrium are particularly simple and intuitive, to

wit:

1. scaling the distribution of values up, scales the distribution of efforts up by the same

proportion, keeping rent dissipation constant;

2. increasing the dispersion of the distribution of values, increases the dispersion of the

distribution of efforts, where dispersion is measured according to the Lorenz criterion;

3. increasing uncertainty in the values decreases mean effort expenditure and rent dissipa-

tion.

These results contrast with the only other existing analytical solution to a Tullock contest

under incomplete information, namely that of Ewerhart (2010)11, where changes in the param-

eters of the distribution of values do not yield simple, unambiguous changes in the distribution

of effort. Also of note, is the fact that this paper provides the first solution, numerical or

analytical, where the distribution of values and that of effort has support over the whole of the

positive real line, rather than on some bounded interval.

The major limitations of the approach in the present paper are that it is restricted to the

case of two players only and to symmetric equilibria where the two players have the same

distribution of values. Although symmetric distributions of values are standard, the literature

has studied the general case of more than two players. Extending the paper’s approach, and the

log-logistic model to the general case of several players should provide an avenue for fruitful

reseach.
11In fact, the solution obtained by Ewerhart (2010) can be derived using the method presented here by letting

�X be uniform, so that X is log-uniformly distributed.
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Appendix 3.A Accuracy of the logistic approximation

In this section, we study the accuracy of the approximation used in lemma 3.2.

Except for certain special cases, it is not possible to derive closed-form expressions for

the cdf or the pdf of the sum of logistic random variables, so we will instead have to rely on

characteristic functions12, defined as follows.

Definition 3.A.1 The characteristic function 'X W R! C of a random variable X is defined

by 'X .t/ D E.eitX /, and is equal to

'X .t/ D

Z 1
�1

eitxfX .x/ dx (3.57)

if X has a pdf fX .

The usefulness of characteristic functions in the present context lies in the fact that the

characteristic function of the sum of two independent random variables is the product of the

characteristic functions of the random variables, which follows immediately from the fact that

E
�
eit.XCY /

�
D E

�
eitXeitY

�
D E

�
eitX

�
E
�
eitY

�
; (3.58)

by independence of X and Y .

Before proceding further, let us define a parametrization of the logistic function and state

some of its properties that we will need.

Definition 3.A.2 If a random variable X has logistic distribution with location parameter �

and scale parameter s, written X � L.�; s/, its cdf and characteristic function are

FX .x/ D
1

1C e�.x��/=s
(3.59)

and 'X .t/ D e
it� �st

sinh.�st/
; (3.60)

respectively. Its mean is � and its variance is �
2

3
s2.

If zL D logL � L.0; 1/ and zX D logX � L.�; s/ are independent, then E.zLC zX/ D � and

Var.zLC zX/ D �2

3
.1C s2/, which suggests using ALCX � L

�
�;
p
1C s2

�
as an approximation

to zLC zX . The next result establishes the upper bound on the error in this approximation.

Lemma 3.A.1 Let zL � L.0; 1/, zX � L.�; s/ be independent and let ALCX � L
�
�;
p
1C s2

�
.

Then the absolute difference � of the characteristic functions z' and ' of ALCX and zLC zX ,

respectively, is

� D jz' � 'j � 0:0355072 (3.61)

for all t 2 R and for all s > 0, where the maximum is attained when s D 1.

12See Billingsley (1995, p. 342) for more details.
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Figure 3.7: Absolute error� of characteristic function approximation
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Proof. See proof 3.B.2 in appendix 3.B. �

Furthermore, fig. 3.7 shows that the error falls rapidly from the upper bound both as t

increases and as s moves away from 1.

This approximation gives us a formula for X , but we are really after ispX . Having assumed

that zX D logX is logistic, it follows that X D e zX is log-logistic and LX D e zLC zX
d
� eeLCX is

approximately log-logistic. We can then establish lemma 3.2.

Proof 3.A.1 (Proof of lemma 3.2) Comparing definition 3.1 and definition 3.A.2, we see that

if X is log-logistic with scale parameter ˛ and shape parameter ˇ, zX D logX has location

parameter log˛ and scale parameter 1=ˇ. Therefore, the logistic approximation ALCX to
zLC zX has location parameter log˛ and scale parameter

p
1C ˇ�2, so that the log-logistic

random variable eeLCX has scale parameter ˛ and shape parameter 1=
p
1C ˇ�2. Using the

approximation ALCX d
� zL C zX , we have eeLCX d

� e
zLC zX D LX so that by lemma 3.1, PX

and pX are approximately the cdf and pdf of a log-logistic random variable with the given

parameters. �

We should check that the approximation remains valid under the transformation from  X

to pX . Fortunately, it turns out that PX and pX can be computed exactly for the special case

of ˛ D ˇ D 1.

Lemma 3.A.2 If X � LL.1; 1/ then

PX .x/ D
x.x � 1 � ln x/

.x � 1/2
(3.62)

and pX .x/ D
.1C x/ ln x � 2.x � 1/

.x � 1/3
: (3.63)

Proof. See proof 3.B.3 �

Recall from lemma 3.A.1 that the maximum error in the logistic approximation occurs

when scale parameter of logX is 1. Since this corresponds to the shape parameter ofX being 1,

we can compare the exact expressions in lemma 3.A.2 with the approximate ones in lemma 3.2

for the worst case ˛ D ˇ D 1. Visual inspection of the plot of the two in fig. 3.8 suggests

that the approximation is rather accurate. Confirming this, panels (a) and (b) in fig. 3.9 show

that for values of x greater than about 0:2, the absolute error � is less than about 0:015 in

magnitude, declining very rapidly as x increases. On the other hand, since both the exact and

approximate expressions for pX become arbitrarily large as x tends to 0, the absolute error

also becomes arbitrarily large. In this case, the relative error ı provides a better indicator of

the accuracy of the approximation. Panels (c) and (d) show that for x larger than 0:002 this is

at most 0:1.
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Figure 3.8: Comparison of exact and approximate expressions for pX

˛ D 1; ˇ D 1. Solid line: exact, dashed line: approximate
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Figure 3.9: Approximation error for pX
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Appendix 3.B Proofs

Proof 3.B.1 (Proof of lemma 3.3) IfX � LL.˛; ˇ/ then logX � L.log˛; 1=ˇ/. Since logX
 D


 logX and

Pr.
 logX � x/ D Pr.logX � x=
/ D
1

1C e�.x=
�log˛/ˇ
(3.64)

D
1

1C e�.x�
 log˛/ˇ=

D FL.log˛
 ;b=
/.x/ ; (3.65)

it follows that X
 � LL.˛
 ; ˇ=
/. �

Proof 3.B.2 (Proof of lemma 3.A.1) The characteristic functions of ALCX and zLC zX are given

by

z'.t/ D eit�
�t
p
1C s2

sinh
�
�t
p
1C s2

� (3.66)

'.t/ D 'zL.t/ ' zX .t/ D e
it� �t

sinh.�t/
�ts

sinh.�ts/
(3.67)

so that their difference is

z'.t/ � '.t/ D eit�

 
�t
p
1C s2

sinh
�
�t
p
1C s2

� � �t

sinh.�t/
�ts

sinh.�ts/

!
: (3.68)

Since jeit�j D 1 for all real t and since the term in parentheses above is real,

�.t; s/ D
ˇ̌
z'.t/ � '.t/

ˇ̌
D

�t
p
1C s2

sinh
�
�t
p
1C s2

� � �t

sinh.�t/
�ts

sinh.�ts/
; (3.69)

which is independent of �. Note also that x= sinh.x/ is symmetric about x D 0, so that �.t; s/

will also be symmetric about t D 0 and we therefore only need to consider t � 0. To determine

the maximum of � we plot it against t for different values of s, the results of which are shown

in fig. 3.7. We notice that� is unimodal and falls quickly after its peak and it appears to attain

its maximum when s D 1. To confirm this, rewrite � as

�.t; s/ D G.t
p
1C s2/ �G.t/G.ts/ ; (3.70)

where G.x/ D �x= sinh.�x/. Then the maximiser t�.s/ of � for a given s satisfies the first-

order condition

�t .t
�.s/; s/ D

p
1C s2G0.t�

p
1C s2/ � sG.t�/G0.t�s/ �G0.t�/G.t�s/ D 0 : (3.71)

By the envelope theorem, the derivative with respect to s of maximum value of � is

d

ds
�.t�.s/; s/ D �s.t

�.s/; s/ D
t�s

p
1C s2

G0.t
p
1C s2/ � t�G.t�/G0.t�s/ ; (3.72)
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so that the values t� and s� that maximise � for all t and s satisfy the two conditionsp
1C s�2G0.t�

p
1C s�2/ D s�G.t�/G0.t�s�/ �G0.t�/G.t�s�/ (3.73)

t�s�
p
1C s�2

G0.t
p
1C s�2/ D t�G.t�/G0.t�s�/ : (3.74)

Dividing eq. (3.73) by eq. (3.74) we have

1C s�2

s�
D s� C

G.t�/G.t�s�/

G.t�/G0.t�s�/
(3.75)

H) G0.t�s�/G.t�/ D s�G0.t�/G.t�s�/ ; (3.76)

which is satisfied by s� D 1. The upper bound on � is then found by solving the first-order

condition eq. (3.71) numerically (an analytical solution does not seem possible) when s D 1.�

Proof 3.B.3 (Proof of lemma 3.A.2) If ˛ D 1 and ˇ D 1, then fX .t/ D 1=.1C t /2 and we can

find PX .x/ by evaluating the integral in eq. (3.8) directly:

PX .x/ D

Z 1
0

x

x C t

1

.1C t /2
dt (3.77)

D

Z 1
0

x

.x � 1/2

�
x � 1

.1C t /2
�

1

1C t
C

1

x C t

�
dt (3.78)

D
x

.x � 1/2

�
�
x � 1

1C t
C

ln.x C t /
ln.1C t /

�1
0

(3.79)

D
x.x � 1 � ln x/

.x � 1/2
: (3.80)

To evaluate the integral we have used the partial fraction expansion

1

.x C t /.1C t /2
D

A

.1C t /2
C

B

1C t
C

C

x C t
(3.81)

D
.Ax C Bx C c/C .AC B C Bx C 2C /t C .B C C/t2

.x C t /.1C t /2
; (3.82)

D
1

.x � 1/2

�
x � 1

.1C t /2
�

1

1C t
C

1

x C t

�
; (3.83)

obtained by settingC D �B andA D �B.x�1/ to eliminate all the terms in t in the numerator

of the right-hand side of eq. (3.82), which gives B D �1=.x � 1/2.

Differentiating PX .x/ with respect to x gives pX .x/. �

Proof 3.B.4 (Proof of lemma 3.4) To show that fV is unimodal we need to show that either fV
is decreasing for all v � 0 or that fV increases and then decreases as v increases from 0. To do

this, note that

qV .p/ D Q
0
V .p/ D .F

�1
V /0.p/ D

1

fV .F
�1
V .p//

() fV .v/ D
1

qV .FV .v//
(3.84)
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so that

f 0V .v/ D �
1

q.FV .v//2
fV .v/ q

0.FV .v// D �
q0V .FV .v//

qV .FV .v//3
: (3.85)

Hence fV is increasing iff the quantile density qV .v/ D Q0V .v/ is increasing. Differentiating

QV in eq. (3.49) twice with respect to p we can plot the sign of q0V .p/ for all values of p < 1

(since QV is not differentiable for p D 1) and 
 . Figure 3.10 shows that indeed qV has one

minimum over p 2 Œ0; 1/, which means that fV has one maximum, which is 0 for 
 below a

certain threshold.

Figure 3.10: Sign of q0V .p/
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The median of V is easily computed by substituting p D 1=2 into the quantile function of

V in eq. (3.49), yielding 4˛=
 , as required.

To compute the mean of V , we use eq. (3.50) so that

E.V / D
˛




�
E
�
Y .1�
/z


�
C 2E

�
Y z

�
C E

�
Y .1C
/z


��
(3.86)

D
˛




�
�.1 � 
/z


sin.�.1 � 
/z
/
C 2

� z


sin.� z
/
C

�.1C 
/z


sin.�.1C 
/z
/

�
; (3.87)

where we have used lemma 3.3 and the expression for the mean in definition 3.1. Now this

expression is only valid if the powers inside the parentheses in eq. (3.86) are strictly less than 1.

This occurs if the largest of the three, namely .1C 
/z
 , is less than 1, i.e.,

.1C 
/z
 D .1C 
/

q
1 � 
2=
 < 1 () .1C 
/2.1 � 
2/ < 
2 (3.88)

() 
4 C 2
3 C 
2 � 2
 � 1 > 0 : (3.89)

Figure 3.11 shows that for 
 2 .0; 1/, this holds if 
 is larger than a threshold 
�, which is

about 0:883.



INCOMPLETE INFORMATION CONTESTS 88

Figure 3.11: Plot of 
4 C 2
3 C 
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Proof 3.B.5 (Proof of lemma 3.6) Theorem 3 in Wilfling (1996) states that if g; h W RC ! RC

are positive, continuous and increasing transformations and g.x/=h.x/ is decreasing on RC,

then g.X/ �L h.X/ if g.X/ and h.X/ have finite expectation.

Since the Lorenz order is scale-invariant, without loss of generality, we can normalise the

scale parameter to 1. Then, if V1 � VL.1; 
1/ and V2 � LL.1; 
2/, by eq. (3.50), Vi
d
D gi .Y /

where

gi .x/ D
1


i

�
x.1�
i /z
i C 2xz
i C x.1C
i /z
i

�
(3.90)

D
1


i
x.1�
i /z
i

�
1C 2x
i z
i C x2
i z
i

�
(3.91)

D
1


i
x.1�
i /z
i

�
1C x
i z
i

�
2 : (3.92)

Then

g1.x/

g2.x/
D

2


1
x.1�
1/z
1�.1�
2/z
2

 
1C x
1z
1

1C x
2z
2

!2
: (3.93)

Since 
1 > 
2 () z
1 < z
2, 
1 > 
2 () .1 � 
1/z
1 < .1 � 
2/z
2 and 
1 > 
2 ()


1z
1 < 
2z
2, so that g1.x/=g2.x/ is monotonically decreasing iff 
1 > 
2, so that applying

Theorem 3 in Wilfling (1996) gives the result. �

Proof 3.B.6 (Proof of proposition 3.6) Using eq. (3.29) we know that the sign of @
x�.vI˛; 
/

is the same as that of

@
pX .xI˛; 
/ D
@

@


1

x


 .x=˛/


.1C .x=˛/
 /2
(3.94)

D
.x=˛/


x.1C .x=˛/
 /3

�
.x=˛/
 C 1 �

�
.x=˛/
 � 1

�

 log.x=˛/

�
(3.95)

so that @
x�.QX .p/I˛; 
/, the sign of @
x� at the p-th quantile of X , is equal to the sign of

S.pI 
/´

�
p

1 � p

�p1�
2
C 1 �

0@� p

1 � p

�p1�
2
� 1

1Aq1 � 
2 log
�

p

1 � p

�
; (3.96)
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which is obtained by substituting the expression for QX in eq. (3.32). Note that S.pI 
/ is

symmetric in p about p D 1=2. To see this, note that

S.1 � pI 
/ D

�
1 � p

p

�p1�
2
C 1 �

0@�1 � p
p

�p1�
2
� 1

1Aq1 � 
2 log
�
1 � p

p

�
(3.97)

D 1C

�
p

1 � p

�p1�
2
C

0@1 � � p

1 � p

�p1�
21Aq1 � 
2 log
�

p

1 � p

�
(3.98)

D S.pI 
/ : (3.99)

Therefore, the sign of @
x� is the same for the top and bottom quantiles of effort and therefore

values. Also, note that S.1=2I 
/ D 2 > 0 for all 
 , so @
x�.QX .p// > 0 for all p 2

.1=2 � ı.
/; 1=2C ı.
//, where p D 1=2 � ı.
/ and p D 1=2C ı.
/ are the two solutions to

S.pI 
/ D 0. To see how ı changes with 
 , note that S is a function of p and 
 only through

.p=.1 � p//
p
1�
 , so that to keep S.p; 
/ D 0 when 
 increases, p=.1 � p/ and therefore p

must decrease. �

Proof 3.B.7 (Proof of proposition 3.7) Firstly, in order for the expectation of V to be well-

defined, we need 
 > 
�. In that case, letting � D EV , the scale parameter ˛ must satisfy

˛ D �=H.
/ D �


�
�.1 � 
/z


sin.�.1 � 
/z
/
C 2

� z


sin.� z
/
C

�.1C 
/z


sin.�.1C 
/z
/

��1
; (3.100)

so that

EX

EV
D ˛=�

� z


sin.� z
/
D 


� z


sin.� z
/

�
�.1 � 
/z


sin.�.1 � 
/z
/
C 2

� z


sin.� z
/
C

�.1C 
/z


sin.�.1C 
/z
/

��1
:

(3.101)

Since eq. (3.101) is a function of one variable over a bounded interval, rather than differentiating

with respect to 
 , we can simply plot it to show that it’s monotonically increasing, as in fig. 3.5.�

Proof 3.B.8 (Proof of proposition 3.8) If we multiply eq. (3.15) by x�, we have

x�.v/

v
D x�.v/ pX .x

�.v// D

.x�.v/=˛/


.1C .x�.v/=˛/
 /2
; (3.102)

which indeed hump-shaped since its derivative with respect to v is

x�0.v/.x�.v/=˛/
�1

.1 � .x�.v/=˛/
 /

.1C .x�.v/=˛/
 /3
; (3.103)

which is positive if x�.v/ < ˛ and negative if x�.v/ > ˛, so that it has a maximum of 
=4 at
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median effort and hence median value. We can also write it as

wX .p/ D wX .QX .p// D


�
p
1�p

�p1�
2
 
1C

�
p
1�p

�p1�
2!2 : (3.104)

Now

d

d


�
p
1�p

�p1�
2
 
1C

�
p
1�p

�p1�
2!2 D


�
p
1�p

�p1�
2
 
1C

�
p
1�p

�p1�
2!3



 �
p
1�p

�p1�
2
� 1

!
log

�
p
1�p

�
p
1 � 
2

;

(3.105)

which is always non-negative, since .p=.1� p//
p
1�
2 � 1 and log.p=.1� p// always have the

same sign. Hence wX .p/ is non-decreasing in 
 . �
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