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Abstract

This thesis consists of a collection of studies investigating various aspects of the 

interplay between the markets for derivative securities and their respective underlying 

assets in the presence of market imperfections. The classic theory of derivative pricing 

and hedging hinges on three rather unrealistic assumptions regarding the market 

for the underlying asset. Markets are assumed to be perfectly elastic, complete 

and frictionless. This thesis studies some effects of relaxing one or more of these 

assumptions. Chapter 1 provides an introduction to the thesis, details the structure of 

what follows, and gives a selective review of the relevant literature. Chapter 2 focuses 

on the effects that the implementation of hedging strategies has on equilibrium asset 

prices when markets are imperfectly elastic. The results show that the feedback 

effect caused by such hedging strategies generates excess volatility of equilibrium 

asset prices, thus violating the very assumptions from which these strategies are 

derived. However, it is shown that hedging is nonetheless possible, albeit at a slightly 

higher price. In Chapter 3, a model is developed which describes equilibrium asset 

prices when market participants use technical trading rules. The results confirm that 

technical trading leads to the emergence of speculative price “bubbles”. However, 

it is shown that although technical trading rules are irrational ex-ante, they turn 

out to be profitable ex-post. In Chapter 4, a general framework is developed in 

which the optimal trading behaviour of a large, informed trader can be studied in
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an environment where markets are imperfectly elastic. It is shown how the optimal 

trading pattern changes when the large trader is allowed to hold options written on 

the traded asset. In Chapter 5, the results of the preceding chapter are used to study 

the interplay between options markets and the markets for the underlying assets 

when prices are set by a market maker. It turns out that the existence of the option 

creates an incentive for the informed trader to manipulate markets, which implies that 

equilibrium on both markets can only exist when option prices are adjusted to reflect 

this incentive. This requirement of price alignment explains the “smile” pattern of 

implied volatility, an empirically observed phenomenon that has recently been the 

focus of extensive research. Chapter 6 finally addresses recent proposals by some 

researchers suggesting that central banks should issue options in order to stabilise 

exchange rates. The argument, in line with the findings of Chapter 2, is based on the 

fact that hedging a long option position requires countercyclical trading that would 

reduce volatility. However, the results of Chapter 6 show that the option creates an 

incentive for market manipulation which, rather than protecting against speculative 

attacks, in fact creates an additional vehicle for such attacks. Chapter 7 concludes.
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Foreword

The chapters of this thesis are derived from several research papers, some of which 

are the result of joint work, and some of which have subsequently been published. 

Chapter 2 is an extended version of a working paper entitled “Portfolio Insurance and 

Volatility”, written jointly by Rudiger Frey and myself. An updated version of this 

paper has been published in Mathematical Finance under the title “Market Volatility 

and Feedback Effects from Dynamic Hedging”. Rudiger Frey was also partly involved 

in the very early stages of the development of Chapter 3. Chapter 5 is the result of 

joint work with Asbj0rn Hansen and has been submitted to the Review of Financial 

Studies. All other chapters are my own work.

As a result of the attem pt to keep each chapter self-contained, some arguments which 

are needed in more than one chapter are at least in part repeated accordingly. This 

applies in particular to the proof of Theorem 4.3.1, variants of which appear in Sec

tions 5.3.3 and 6.3.3. The reader is encouraged to skip those sections if appropriate.

London, January 1999
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Chapter 1

Introduction

This thesis consists of a collection of studies investigating various aspects of the 

interplay between the markets for derivative securities and their respective underlying 

assets in the presence of market imperfections. Classic theory of derivatives pricing 

and hedging hinges on three key assumptions regarding the market for the underlying 

asset. Markets are assumed to be perfectly elastic (traders can trade arbitrarily large 

quantities without affecting prices), frictionless (there are no transaction costs), and 

complete (all contingent claims can be replicated). Clearly, this is a very stylised 

view of real financial markets, where these assumptions are satisfied only to a very 

limited extent. This is why in recent years, a rapidly growing strand of literature has 

focused on studying the implications of relaxing one or more of these assumptions.

Throughout this thesis, we assume that markets for the underlying asset are imper

fectly elastic, i.e. agents’ trading activities have an effect on equilibrium prices. We 

investigate the manner in which the dynamic properties of equilibrium asset prices 

are affected by different types of trading behaviour. More specifically, we consider 

cases in which market participants implement dynamic trading strategies designed
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Chapter 1. Introduction 15

to hedge option positions, follow technical trading rules, or strategically exploit their 

market power in order to maximise expected profits.

Classic option pricing theory is based on the concept of replication. Based on the 

stochastic law governing the dynamics of the underlying asset’s price, a self-financing, 

dynamic trading strategy is constructed which replicates the option’s pay-offs. How

ever, in imperfectly elastic markets, the implementation of such strategies is likely to 

affect the underlying equilibrium price process, thus perturbing the very model they 

are derived from. The Group of Ten (1993) for example reports that the strategies 

related to option hedging or replication do indeed have significant impact on prices, 

in particular on volatility. Moreover, typical hedging strategies require selling into 

falling markets and buying into rising markets and are thus likely to have destabil

ising effects on prices. In fact, hedging has been blamed as one of the contributing 

factors in the October 1987 stock market crash.

Similar arguments have been put forward with regards to the implications of techni

cal trading. While economic theory generally classifies technical trading as irrational, 

empirical evidence underlines its importance, in particular in foreign exchange mar

kets; see Allen and Taylor (1992). Like hedging, technical trading creates positive 

feedback effects of past returns on current prices, and is hence seen as one of the 

contributing factors in recent market crashes. Moreover, in contrast to the predic

tions of most of the theoretical literature, empirical evidence seems to prove that 

technical trading rules are indeed profitable; see Levich and Thomas (1993), Brock, 

Lakonishok, and LeBaron (1992), and Sweeney (1986).

The implications of finitely elastic markets and the inherent opportunities for market 

manipulation become particularly important in the presence of asymmetric informa

tion. While extensive literature has arisen in recent years which studies the effects of



Chapter 1. Introduction 16

asymmetric information on asset prices, comparatively little has been said about the 

implications of information asymmetries for the pricing of options. In classic models 

of optimal trading under asymmetric information such as Kyle (1985), the informed 

trader always has an incentive to move prices towards the asset’s expected true value, 

thus partially revealing her private information. However, if the informed trader holds 

an option, written on the underlying asset, this may no longer be true. Intuitively, 

such an option would create an incentive for the informed trader to manipulate prices, 

thus pushing the option into the money. The gains from this manipulation will be 

traded off against potential losses made in the underlying market. This manipula

tion incentive is likely to have important implications on the amount of information 

revealed by the informed trader’s actions. Moreover, the value of the option to the 

informed trader will incorporate potential gains from manipulation and will hence 

be different from the option’s arbitrage price. This has important consequences for 

the pricing of options in the context of asymmetric information and market power.

The effects outlined in the preceding sections are likely to have important implications 

in many other situations. For example, recent suggestions for central banks to use 

options as exchange rate policy instruments will have to be re-evaluated in light 

of the market manipulation incentives created by such options. Empirical studies 

suggest that the main objectives of central bank intervention on the foreign exchange 

market is to stabilise nominal rates and keep them in a certain “target zone”; see for 

instance Edison (1993) or Almekinders (1995). The use of options as instruments of 

exchange rate policy was first proposed by Taylor (1995). He suggests that central 

banks should buy put options, written on the domestic currency. When the domestic 

currency depreciates as a result of a speculative attack, Taylor argues, the option 

is deep in the money allowing the central bank to buy foreign currency at deflated 

rates, which can then be sold in the spot market to support the domestic currency.
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Breuer (1997) identifies five main drawbacks of the approach suggested by Taylor, 

the most important of which is the destabilising effect of “delta hedging”. Market 

participants who have written the options bought by the central bank would typically 

hedge their position by appropriate strategies in the spot market. Following the 

arguments made earlier, this type of trading activity is likely to have destabilising 

effects on equilibrium exchange rates. Empirical evidence supporting the importance 

of such effects has been reported, amongst others, by Malz (1995). In view of this, 

Wiseman (1996) and Breuer (1997) propose an alternative way of utilising options as 

exchange rate policy instruments. Rather then buying put options, they argue, the 

central bank should write call options. As a result, when hedging their long option 

position, market participants would be required to sell in rising markets and buy in 

falling markets, thus stabilising exchange rates. However, this argument rests on the 

assumption that the buyers of such options indeed content themselves with hedging 

their position. In light of the arguments made earlier, the following question arises: 

While it is true that the option induces extremely risk-averse market participants to 

hedge their positions thus stabilising rates, the situation might change drastically if 

instead the option is held by speculators who, being risk-neutral, have no incentive 

to hedge risk but to maximise expected profits.

In Chapter 2, we study the manner in which the additional demand generated by 

strategies designed to hedge an option position affects the underlying asset’s equi

librium price, and in particular its volatility structure. There have been a number 

of studies on the impact of dynamic hedging on the price of the underlying asset. 

Grossman (1988) focuses on informational differences between buying an option and 

running the corresponding replicating strategy. Gennotte and Leland (1990) study 

the effects of hedging in an asymmetric information model similar to the one con

sidered by Grossman and Stiglitz (1980). Jarrow (1994) analyzes, in a discrete-time
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model, how standard option pricing theory can be extended to the situation where 

hedging does affect the underlying price process. The results have subsequently been 

extended to the continuous-time case in Frey (1996). Platen and Schweizer (1998) 

use the feedback effect of portfolio insurance to explain the “smile pattern” of implied 

volatility. Their model relies to a large extent on the model outlined in Chapter 2, 

and previously published in Frey and Stremme (1997). The study by Brennan and 

Schwartz (1989) is the one most closely related to the one presented in Chapter 2. 

However, while in their model optimal trading is solely based on exogenous infor

mation on the long-term, fundamental prospects of the underlying assets, we allow 

expectations to be affected by current prices. This approach is supported by empiri

cal evidence, as reported for example by the Group of Ten (1993), Allen and Taylor 

(1992), or De Long, Shleifer, Summers, and Waldmann (1990a).

As analytical framework for our analysis, we first construct a discrete-time equi

librium model in which myopic, profit-maximising agents interact with “program 

traders” who follow dynamic hedging strategies. To facilitate the qualitative analy

sis, we then pass to the continuous-time limit. This approach to the construction of 

diffusion models for asset prices was first proposed by Follmer and Schweizer (1993). 

While in the absence of hedging, equilibrium prices follow a geometric Brownian mo

tion as in the classic Black-Scholes model, the introduction of program traders causes 

market volatility to increase and become time and price dependent. The magnitude 

of this effect is much greater than that observed by Brennan and Schwartz (1989). 

Our findings are in line with empirical observations, as reported for example by the 

Group of Ten (1993).

The transformation of volatility as predicted by our model has important implications 

for practical applications. While replicating strategies can still be shown to exist, 

they can no longer be calculated explicitly. This is why most practioners rely on the
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simple strategies prescribed by the Black-Scholes formula. This bears the obvious 

question as to how well these strategies perform if in fact the feedback effect caused 

by their implementation violates the very assumptions they are derived from. Using 

an idea of El Karoui, Jeanblanc-Picque, and Shreve (1998) we show that while perfect 

replication is impossible, simple Black-Scholes strategies can nonetheless be used to 

“super-replicate” the option’s pay-off.

In Chapter 3, we consider an equilibrium model for exchange rates in which some 

agents follow technical trading rules. There have been a number of theoretical stud

ies analysing the effects of technical trading. In Day and Huang (1990), rational 

“information traders” interact with technical traders, and equilibrium is determined 

by a market maker. Unlike in the model considered here, Day and Huang do not in

troduce any source of noise into the market. As a result, prices in their model follow 

deterministic chaotic dynamics. In Lux (1995), traders act upon rumours and fads 

rather than technical analysis. Contagious mood swings cause cyclical fluctuations 

of equilibrium prices.

As analytical framework for our study, we first construct a discrete-time equilibrium 

model in which technical traders interact with pure “noise traders” . To facilitate 

the analysis of the resulting equilibrium exchange rate process, we then pass to the 

continuous-time limit. It turns out that, as long as technical traders are active, 

bubbles will always emerge. Exchange rate fluctuations caused by noise are picked 

up by technical analysis and amplified by the buy or sell signals generated by the 

corresponding trading rules. However, we also show that any bubble will always 

burst within finite time.

We demonstrate that, while the expected profit from simple buy-and-hold strategies 

is zero, technical trading rules themselves are profitable on average. In other words,
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technical trading can be seen as a type of “self-fulfilling prophecy”. These results are 

in line with the empirical findings of Levich and Thomas (1993), Brock, Lakonishok, 

and LeBaron (1992), and Sweeney (1986).

In Chapter 5, we investigate the manner in which an option, held by a large, informed 

trader, changes the nature of equilibrium prices for the underlying asset, and how 

this feeds back into option prices. As analytical framework, we choose the model 

developed in Chapter 4, which in turn is based on continuous-time Kyle (1985) 

model. A large trader, who receives a private signal about the fundamental value of 

the traded asset, interacts with pure noise traders. Prices are set by a risk-neutral 

competitive market maker. In this type of model, the informed trader typically drives 

prices towards the expected value of the asset, thus successively revealing the private 

information to the market maker. We extend the Back (1992) model by introducing 

an over-the-counter market on which options can be traded prior to trading in the 

underlying asset.

Unsurprisingly, it turns out that the presence of the option creates an incentive for 

the informed trader to manipulate prices of the underlying asset in order to increase 

the option’s pay-off. Uninformed traders might hence face a price mark-up over the 

expected true value of the asset. In other words, the informed trader creates a price 

bubble at the expense of uninformed traders. It is the potential existence of such 

bubbles which constitutes the main difference between our model and the model by 

Back (1993), in which this kind of manipulation is precluded by the existence of a 

liquid options market with additional noise.

In our model, the only feasible equilibrium requires that the market maker does not 

believe the informed trader to have an incentive to manipulate prices. This belief 

can only be rational if equilibrium option prices are “synchronised” with prices on
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the underlying market. As a consequence, option prices are non-linear in quantity. 

This is in line with the findings in Jarrow (1994) and Frey (1996), where option 

prices are determined by the cost of replication, and thus non-linearity arises as a 

consequence of finite elasticity of the underlying market. It is also consistent with 

empirical observations made in the OTC market for options, in particular for large 

quantities. We derive an explicit expression for implied volatility. We show that the 

implied volatility pattern generated by equilibrium prices in our model displays the 

famous “skew smile pattern”, which has been observed in most financial markets ever 

since the October 1987 crash.

There have been a number of studies that explain the smile pattern of implied 

volatility. While most of these explain the smile pattern by exogenously altering 

the volatility structure of the underlying price process, no assumptions regarding 

the underlying price volatility are needed in our model. The smile pattern rather 

occurs endogenously as a consequence of the market structure. To the best of our 

knowledge the only other paper in which the smile has been obtained endogenously 

is the paper by Platen and Schweizer (1998). Their analysis is based on a modified 

version of the feedback model developed in Chapter 2 and published previously in 

Frey and Stremme (1997). However, in order to explain the smile pattern, Platen 

and Schweizer have to assume an upward-sloping demand curve for the underlying 

asset, which implies that the equilibrium they obtain is highly unstable.

The emergence of the skew smile pattern in our model is a result of the attem pt to 

prevent market breakdowns. Empirically, the skewness is a feature which has only 

been observed after the October 1987 stock market crash. The explanation offered 

by our analysis could be that after the crash, market participants and regulators 

implemented measures aimed at preventing similar events in the future. This might 

have brought option prices more in line with the markets for the underlying asset.
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According to our findings, such an increased level of price synchronicity would indeed 

result in the implied volatility pattern that has been observed since the crash.

In Chapter 6, we analyse the possible implications of using options as central bank 

exchange rate policy instrument. We model the situation in which a speculator, 

having bought the option issued by the central bank, instead of simply hedging her 

position, strategically exploits the leveraged position in the market provided by the 

option. As theoretical framework, we chose the continuous-time model developed in 

Chapter 4, with prices given by Walrasian equilibrium. The risk-neutral speculator 

interacts with “information traders” , who base their demand for foreign exchange on 

the flow of fundamental “news”. We assume that the central bank’s objective is to 

stabilise exchange rates and to keep them within a given “target zone”, which is in 

line with the empirical findings of Edison (1993). In order to achieve their objective, 

the central bank can intervene using spot transactions or by issuing options. In 

addition to trading in the spot market, the speculator may purchase the options 

issued by the central bank.

It turns out that in the absence of options, the speculator has no incentive to manip

ulate markets. In fact, in this case it is optimal not to trade at all. An option issued 

by the central bank however creates an alternative way for the speculator to realise 

the gains from market manipulation. Upon arrival of “bad news”, when information 

traders cause the domestic currency to depreciate, the option creates an incentive for 

the speculator to squeeze exchange rates even further. Scenarios can arise in which 

without speculation, the central bank’s foreign currency reserves would have been 

sufficient to support the domestic currency, while they cannot sustain the additional 

pressure arising from the speculator’s manipulation. In other words, instead of pro

tecting against speculative attacks, options issued by the central bank in fact create 

an additional vehicle for such attacks.



Chapter 2

Feedback Effects from  

Dynam ic Hedging

2.1 Introduction

Standard derivative pricing theory is based on arbitrage arguments, which in turn 

rest on three key hypotheses about the markets for the underlying asset. Markets 

are assumed to be complete, frictionless and perfectly elastic. Clearly, this is a very 

stylised view of real financial markets, in which these assumptions are satisfied only 

up to a certain extent. This is why a rapidly growing literature has concentrated 

on the implications of relaxing one or more of them. In this chapter we drop the 

elasticity assumption and study the manner in which dynamic hedging strategies 

affects the underlying asset’s equilibrium price, in particular its volatility structure.

Hedging strategies are derived from specific assumptions on the stochastic law that 

governs the underlying price dynamics. In practice they are seen both as theoretical

23



Chapter 2. Feedback Effects from Dynamic Hedging 24

concept for option pricing and, more importantly for our analysis, as device to manage 

risk as incurred for instance by selling OTC derivative contracts.

We believe an analysis of the feedback effects caused by dynamic hedging in im

perfectly elastic markets to be important for a number of reasons. To begin with, 

when carried out on a large scale, dynamic hedging is most likely to perturb the 

very stochastic law it is based upon. We ask how hedging strategies perform when 

we allow the underlying price process to be affected by their implementation, even 

if this effect is not fully taken into account in designing them. Moreover, hedging is 

mostly used to replicate payoffs that are convex functions of the underlying asset’s 

price, requiring the investor to sell shares of the underlying asset when its price de

clines and to buy when its price goes up.1 Therefore one should expect an increase 

of market volatility under the impact of such trading behaviour. Dynamic hedging 

is thus likely to have a destabilising effect on prices.

There have been a number of studies on the impact of dynamic hedging on the price of 

the underlying asset. Grossman (1988) focuses on informational differences between 

buying an option and running the corresponding replicating strategy. Gennotte and 

Leland (1990) study the effects of portfolio insurance in a model with asymmetric 

information similar to the one considered by Grossman and Stiglitz (1980). They 

find that the better this activity is understood by the other market participants, the 

weaker is the effect of hedging.

Jarrow (1994) analyses, in a discrete-time model, how standard option pricing theory 

can be extended to a situation where there are feedback effects from the demand of 

a “large trader” on the underlying price process. Platen and Schweizer (1998) use

1This kind of trading behaviour is also referred to as “Portfolio Insurance”.
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the feedback effect of portfolio insurance to explain the “smile pattern” of implied 

volatilities that is observed in practice. Their model relies to a large extent on the 

model developed here and previously published in (Frey and Stremme 1994) and 

(Frey and Stremme 1997).

Brennan and Schwartz (1989) address an issue very similar to the one discussed here. 

They analyse the transformation of market volatility under the impact of portfolio 

insurance in a finite-horizon economy in which securities are traded continuously but 

consumption takes place only at the terminal date. Agents are hence only concerned 

about the long-term prospects of the asset. Since the risky asset’s terminal value is 

entirely determined by an exogeneously given random variable, which is interpreted 

as the fundamental value of the asset, agents’ expectations axe solely driven by the 

successively revealed information about the value of this state variable. In partic

ular, agents do not alter their expectations in reaction to changes in current price. 

Markets are thus very liquid, causing the feedback effect of hedging on volatility to 

be relatively small.

Empirical evidence however suggests that in many situations there is “an enormous 

amount of short-term position taking”, whereas the funds dedicated to long-term 

investment are limited by uncertainty and agents’ risk aversion; see for instance 

Goodhart (1988). A theoretical justification for this kind of trading behaviour is given 

by De Long, Shleifer, Summers, and Waldmann (1990b). Moreover, when making 

trading decisions for very short periods, like in intra-day dealing, investors seem 

to rely more on the information conveyed by current price movements than on the 

long-term fundamental prospects of the assets. This “Keynesian” view of investment 

is supported by evidence reported by the Group of Ten (1993) or Allen and Taylor 

(1992). In fact there is evidence for a positive feedback effect of current price changes 

on expectations, see De Long, Shleifer, Summers, and Waldmann (1990a).
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In the present chapter we develop a framework in which the effect of dynamic hedging 

on the underlying asset’s price process can be studied. We start by constructing a 

general discrete-time temporary equilibrium model in which short-term investment 

can be modelled. To get a clearer picture of the equilibrium price process, and in 

particular of its volatility, we then pass to a limiting continuous-time diffusion. This 

approach to the construction of diffusion models for asset prices was first proposed 

by Follmer and Schweizer (1993).

As a special case we consider an economy populated by traders whose preferences 

over future wealth exhibit constant relative risk-aversion as in the Brennan-Schwartz 

study. Agents take changes in current prices as signals for future price movements. 

If they were the only traders in the market the equilibrium price process would be 

a geometric Brownian motion as in the classic Black-Scholes option pricing model. 

However, if they interact with program traders who are running dynamic hedging 

strategies, the structure of the limiting equilibrium price process becomes more com

plex: while it still can be represented as an Ito process, its volatility increases and be

comes time and price dependent. A comparison reveals that the increase in volatility 

is much more pronounced in our study than that observed by Brennan and Schwartz 

(1989). This finding underlines the importance of agents’ expectations in determining 

the liquidity of the market. Moreover it illustrates that there exist realistic scenarios 

in which the effect of hedging is far larger than predicted by Brennan and Schwartz.

We derive an explicit expression for the transformation of market volatility under 

the impact of hedging. We use this transformation rule to study in particular the 

feedback effects generated by the strategies derived from the classic Black-Scholes 

formula. It also allows us to study the importance of different payoff structures 

being hedged. We show that increasing heterogeneity of the distribution of hedged 

contracts reduces both level and price sensitivity of volatility.
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As reported by the Group of Ten (1993) the effects predicted by our analysis are 

indeed observed in practice:

“[T]he existence of options and related dynamic hedging could increase 

volatility, especially in the smaller and less liquid currency segments, as 

the spot exchange rate approaches the strike price. When strike prices 

and/or option maturities are highly concentrated, a large volume of one

way hedging could occur in a short period. Market participants reported 

that sharp [ . . .  ] movements in spot prices were frequently observed as 

a result of such concentrations.”

Price dependent volatility, as results from hedging in our model, causes problems in 

practical application. While hedging strategies can still be shown to exist they can 

no longer be calculated explicitly. This is why most practioners rely on the classic 

Black-Scholes formula. Using an idea of El Karoui, Jeanblanc-Picque, and Shreve 

(1998) we are able to show that simple strategies derived from a constant-volatility 

Black-Scholes model are still sufficient to completely hedge the risk incurred by selling 

OTC derivatives. This remains true even if their implementation causes the actual 

volatility to be price dependent, as is the case in our model. However, the misper

ception of the feedback effect on volatility generates a “tracking error”: the terminal 

value of the hedge portfolio might exceed the payoff it was supposed to replicate, 

thus requiring an initial “over-investment” in the strategy. But again, heterogeneity 

proves to be beneficial: the tracking error and hence the over-investment diminishes 

with increasing heterogeneity of the distribution of hedged payoffs.

The remainder of the chapter is organised as follows. In Section 2.2 we develop the 

general discrete-time temporary equilibrium framework. We then specify a concrete 

sample economy in which agents whose preferences exhibit constant relative risk-
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aversion interact with program traders who run dynamic hedging strategies. Section 

2.3 is devoted to the passage to the continuous-time limit. We characterise the limit

ing price process as the solution of an Ito type Stochastic Differential Equation, thus 

obtaining an explicit expression for its volatility. In Section 2.4 we conduct a detailed 

study of the feedback effect caused by the implementation of Black-Scholes hedging 

strategies and directly compare our findings to those of Brennan and Schwartz (1989). 

Section 2.5 concludes.

2.2 The Discrete-Tim e M odel

We consider a sequence of discrete-time infinite-horizon economies. More precisely, 

for each n = 1, 2 , . . .  there is a sequence of times 0 =  <  t" < . . .  <  t% < . . .  at

which trading takes place on a Walrasian market. In view of the intended passage to 

a continuous-time limit diffusion we assume that

An := sup(££+1 — t l )  — y 0 as n —y oo.
k

T r a d e d  A s s e t s :

There are two assets in the economy, a riskless one (typically a bond or money 

market account), and a risky one (typically a stock or foreign exchange rate). We 

take the riskless asset as numeraire, thereby making interest rates implicit in our 

model. Moreover, we assume the market for the riskless security to be perfectly 

elastic. This is an idealisation of the fact that money markets are far more liquid 

than those for the typical risky asset considered here. The equilibrium price at time 

f l  of the risky asset, accounted in units of the numeraire, is denoted by X%.

In the present paper we are only interested in the feedback effect of hedging on the
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underlying asset’s volatility, and not in developing a pricing theory. In finitely liquid 

markets it is no longer obvious how to derive option prices from the prices of the 

underlying. To avoid the price inconsistencies that can arise from an inadequate 

modelling of the relationship between stock and options markets we assume that 

there is no liquid market for options on the risky asset.

A g g r e g a t e  D e m a n d  S c h e d u l e :

At any time tJ the aggregate demand function for the risky asset is assumed to be 

given by a smooth function Gn : [0, oo) x 1R+— »-IR in the form

x * G * ( t l ,F £ , x ) .  (2 .1)

Here, x is the (proposed) Walrasian price. (F£)k=o,\,... is a stochastic process describ

ing the current state of the economy, to be specified in more detail later. Note that 

the above form of the demand function implies in particular that all the information 

necessary for the investors to form their demand can be summarised in F£ and x.

E q u il ib r iu m :

We normalise total supply of the risky asset to one, hence the equilibrium price X% 

at time is determined by the market clearing equation

cr(rk,F ? ,x i) =  i. (2.2)

The following assumptions are of technical nature. They ensure existence and unique

ness of equilibria and guarantee convergence of the equilibrium price processes (see 

Section 2.3). We will see later how these assumption can be achieved in a more 

concrete specification of the economy (see Section 2 .2.1 and Corollary 2.3.4).

A ssu m p tio n  2 .2 .1  The functions Gn are smooth, and the sequence {Gn}n=1)2,... con

verges uniformly on compacts to a smooth function G : [0,00) xIR++ —► 1R. Moreover,
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1. For every (f, / )  € [0, oo) x IR++ the equations Gn(t, / ,  x) = 1 and G(t, / ,  x) =  1 

have exactly one solution in x, denoted by i>n( t , f )  and xp(t,f), respectively.

2. For every compact set K  CC IR++ the sequence {V,n}n=i,2,... is relatively com

pact in the space of all bounded functions on K  endowed with the supremum 

norm.

3. For any fixed t and f , the derivatives of Gn satisfy “in equilibrium”:

dGn
dx

9Gn
< 0  and - r r f i ,  / ,  x)

x = 1pn ( t , f )  j
> 0,

x=4>n { t j )

and the analogous statements hold for the limit function G.

REMARKS: Note that (1) guarantees that there is a unique solution to the market 

clearing equation in each discrete-time economy characterised by Gn as well as in 

the continuous-time limit economy characterised by G. The first inequality in (3) 

together with the Implicit Function Theorem implies in particular that the solution in 

the limit economy depends smoothly on / ,  i.e. the function xp : [0 , oo) x IR++— >-IR is 

smooth. The second inequality in (3) implies in addition that for fixed t the mapping 

/  i—̂ f )  is invertible, i.e. there exists a smooth function xj)-1 : [0 , oo) x IR++— >-IR 

such that x!>~l {t, xj)(t, / ) )  =  /  and xl>(t,xl)~l(t,x))  =  x  for all t , f  and x. Finally note 

that differentiability of the Gn together with (3) implies that the ij)n are differentiable, 

too. The Arzela-Ascoli Theorem then implies that (2) holds if the ipn and their first 

derivatives are uniformly bounded on compacts.

A g e n t s :

There are two groups of agents in the market, called “reference traders” and “pro

gram traders”, respectively. The economy in which there are only reference traders 

active constitutes the benchmark case for our analysis. It will be compared with the
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case in which reference traders interact with program traders, who are running dy

namic hedging strategies. To measure the relative market weights of the two groups 

we introduce the parameter p E [0,1], which denotes the relative market share of 

program traders, thus leaving a share of 1 — p to the reference traders. The total 

aggregate demand function can then be written in the form

G“(t, / ,  *) =  (1 -  p)D "(f, x) +  P4f‘(t, x), (2.3)

where Dn( f ,x )  and <f>n(t,x)  are normalised2 aggregate demand functions for the 

reference traders and program traders, respectively. We neglect the aggregation 

problem and specify a representative reference trader whose (normalised) demand 

function takes the form x i-y Dn(F^,x).  A more detailed specification in which the 

reference trader’s preferences exhibit constant relative risk-aversion will be given in 

Section 2.2.1.

A typical program trader might be a bank hedging a portfolio of written OTC con

tracts by running a dynamic trading strategy in the underlying asset. Since the 

majority of the demand for such contracts is motivated by considerations beyond the 

scope of our model,3 we take the extreme view that the hedging objectives of our 

program traders are exogenously given. Moreover, the hedging strategy for a portfo

lio of payoffs is just the portfolio of the hedging strategies for the individual payoffs. 

Thus we can concentrate on a representative program trader, whose (normalised) 

demand function takes the form x t-> 0n(Q ,x). We make the following assumptions 

on the strategy functions (f>n:

2Normalised in the sense that, if reference resp. program traders were the only agents in the

market, D n resp. <j>n would be their demand function. When both groups interact, their demand

functions are weighted by their respective market weights, 1 — p and p.
3The Group of Ten (1993) for example reports that “derivative instruments were primarily used

for risk hedging purposes” .
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A ssu m p tio n  2 .2 .2  The functions <j)n are smooth, and the sequence {<̂ n}n=i,2,... con

verges uniformly on compacts to a smooth function <j>: [0, oo) xIR++— ^IR. Moreover,

1. for every compact set K  C [0, oo) x IR++ we have

d(j>
sup sup

n ( t , x ) £ K dt
(t,x) < oo,

2. 4>n is increasing in the underlying price, i.e.

d(j)n
r. (t, x'j ^  0 for 3,111 ^  0 and all x £ IR++5 
ox

3. and <j>n is normalised in such a way that

sup |<j>n(t, :r)| =  1.
t , x

Finally, the limit (f) satisfies the analogous conditions to (2) and (3).

Note that by (3) p also determines the fraction of the total supply of the risky asset 

that is subject to portfolio insurance. Also note that (2) reflects the fact that a 

typical hedging strategy requires that shares of the underlying be sold when its price 

has declined and vice versa, as was mentioned in the introduction.

Assumption (2.2.2) is satisfied in particular if <fn and cf> are mixtures of hedging strate

gies as given by the Black-Scholes formula. It is also possible to consider strategies 

<j)n derived from the discrete state-space model of Cox, Ross, and Rubinstein (1979). 

Convergence of such strategies to their continuous-time counterpart (f> follows, for 

instance, from results by He (1990).
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2.2.1 A Case with Constant Relative Risk Aversion

In this section we provide a concrete specification of the preferences and beliefs of the 

representative reference trader. The assumptions introduced in this section ensure 

that the aggregate demand functions of this particular economy satisfy Assumption

(2 .2 .1) (see Corollary 2.3.4 below). The model considered here is closely related to the 

kind of temporary equilibrium models discussed by De Long, Shleifer, Summers, and 

Waldmann (1990b). Consider an overlapping generations model without bequests, in 

which agents live for two periods. When young, the representative reference trader 

receives an exogenous stochastic income F£ which she invests in the available assets. 

When old, she just consumes all her wealth and then disappears from the market. 

Thus, at any time f% the young agent chooses the number d of shares of the risky 

asset she wants to hold in order to maximise expected utility of next period’s wealth. 

Given her income is / ,  her demand function will be

Dn{f ,x )  = B x g m * x E [ u ( j r + d-(X%+1( x ) - x ) >)  ] ,

where u is her von Neumann-Morgenstern utility function and A£+1(:c) the agent’s 

belief about next period’s price. Note here that we allow the expected future price to 

depend explicitly on the current price x , i.e. agents may update their expectations 

in reaction to changes in current prices.

Of course this overlapping generations scenario must not be taken literally. It is a 

stylised model of a market where agents’ investment decisions are made sequentially 

over time and where each decision is determined mainly by myopic optimisation. 

For example, market participants might be managers of investment funds who are 

managing a stochastically fluctuating amount of funds. Typically fund managers 

are (at least partly) compensated according to the performance of their portfolio, 

evaluated at certain predetermined dates. Therefore their investment decisions are
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often predominantly aimed at the next evaluation date.

A ssu m p tio n  2.2.3 Reference traders’ beliefs and preferences and the evolution of 

their income over time are assumed to be given as follows:

1. The representative reference trader’s preferences exhibit constant relative risk 

aversion, i.e. her von Neumann-Morgenstern utility function u satisfies u'(z) =  

z -1 for some 7  > 0 .

2. Given current price x, the agent believes next period’s price X%+1(x) to be of 

the form  X£+1(:r) =  x • fjj for some random variable (%. We assume (fJ)fc=o,i,... 

to be serially independent and independent of x, and that >  1 .

3. Given current income F%, next period’s income F£+1 is given by F£+1 =

for some random shock Q  > 0 . We assume (Ck)k=0,1,... to be serially indepen

dent.

Note that by (2) there is a positive feedback from current price x into agents’ expecta

tions: after a rise of x  they anticipate a rise in future prices and in the case of a price 

decline they expect future prices to fall as well. A list of striking observations which 

emphasise the importance of such extrapolative expectations on financial markets has 

been compiled by De Long, Shleifer, Summers, and Waldmann (1990a). We will see 

in Section 2.4.3 that this way of expectation formation leads to destabilising effects 

of dynamic hedging which are much larger than those observed in the framework of 

Brennan and Schwartz (1989).

By Assumption (2.2.3) the solution to the agent’s utility maximisation problem, given
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income /  and proposed price x, is uniquely determined by the first order condition

0 =  E ' u' ( f  + d • (X?+1 (*) -  *)) • ( X ^  (*) -  *) ] (2.4)

=  £ [ ( /  +  < / . * • ( f f - i ) p . * - ( g * - i ) ] .

As an immediate consequence of this characterisation we get

Lem m a 2.2.4 Under Assumption (2.2.3) the representative reference trader’s de

mand function Dn satisfies the following homogeneity properties:

1. Dn( a f ,x )  =  aD n( f ,x )  for all a, and

2. Dn(a f ,a x )  = Dn( f ,x )  for all a.

In particular, using these homogeneities we find

Dn( f ,x )  = Dn(x -^ - ,x )  = i - - D n( l , l ) - X - D : .  (2.5)
X X  X

Note that, due to homogeneity, the weighted demand function (1 — p)Dn(F£,x)  can 

also be written as Dn((l — p)FJ), x). It can hence be interpreted as the demand of a 

representative reference trader who has only a fraction 1 — p of the aggregate wealth 

FJ) at her disposal. Thus p plays the same role in our model as does the parameter 

a  in the model of Brennan and Schwartz (1989).

E q u il ib r iu m  w it h o u t  P r o g r a m  T r a d e r s :

In the absence of program traders the market clearing equation takes the form

i = d :  ■ H  =► x s  =  d : -  f*". (2.6)
A k

Using Assumption (2.2.3) (3) this implies X % + 1  =  DJ • F£+l =  D* • • Q  =  XJ) • ££.

We summarise this in the following
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Lem m a 2.2.5 In the economy specified in Assumption (2.2.3), the equilibrium price 

process (X%)k=o,i,... in the absence of program traders is given by

* 1 +1 =  XS ■ Q .  (2.7)

In particular, expectations are rational if  and only t / f j  =  for all k.

As an example of income dynamics consider the sequence

Q  =  exP ( ( f1 -  y f W k + i  -  t l )  +  >/%/<*+1 -  t l  ■ ®*+i) .

where (£k)k=o,i,... is an i.i.d. sequence of random variables. If, for instance, the are 

standard-normally distributed, then prices follow a discretised geometric Brownian 

Motion. If, on the other hand, the eJJ are just the increments of a random walk, then 

prices are given by a geometric random walk as in Cox, Ross, and Rubinstein (1979).

E q u il ib r iu m  w it h  P r o g r a m  T r a d e r s :

In the presence of program traders the market clearing equation becomes

i = ( i - p ) . D: - § ; + p - r ( t nk, x z ) .  (2 .8)

In order to ensure existence of a unique equlibrium we have to make an additional

technical assumption. It will turn out later that this is mainly a restriction on the

market weight p of program traders (see Section 2.4 below).

A ssum ption 2.2.6 There exists a constant k > 0 such that for each n

dd>n
1 — p • 4>n(t, x) — p • x ——(t , x) > k for alH  > 0 and x E IR++. (2-9)

Moreover, we require (2.9) also to hold for the limit function cf).
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Proposition 2.2.7 Given Assumption (2.2.6), there exists for every market weight 

p £ (0,1) a unique equilibrium in the economy specified in Assumptions (2.2.3) and 

(2 .2.2) .

REMARKS: As the proof of Proposition 2.2.7 below shows, condition (2.9) guaran

tees that in equilibrium the aggregate demand function is strictly decreasing in x , 

such that equilibrium prices will depend smoothly on the reference trader’s income 

FJ). This rules out price jumps and “crashes” of the kind discussed by Gennotte and 

Leland (1990) and Schonbucher (1993). Moreover, (2.9) ensures that the equilibrium 

is stable under the usual Walrasian tatonnement process. We believe that this is 

an important feature of our model, which contrasts with the analysis of Platen and 

Schweizer (1994). In order for them to explain volatility smiles by feedback effects 

from dynamic hedging they have to assume an (excess) demand function for their 

reference traders that is increasing in price. Not only does this result in the equi

librium being unstable, it even gives rise to arbitrage opportunities for the program 

traders in the sense of Jarrow (1994).

PROOF: Existence follows from continuity of the demand functions and 

limsup ((1 — p)Dn(f,  x) +  p4>n(t, x)) < p < 1,
x - ¥o o

lim ((l - p ) D n( f ,x )  + p(j>n(t,x))  =  +oox—̂0

for all t , f >  0. For uniqueness it is sufficient to show that whenever t , /  and x  solve

the market clearing equation (2.8), we have ^  ((1 — p)Dn( f , x )  +  p(f>n(t,x))  <  0 . A

direct computation using Lemma 2.2.4 gives

2 -  ((l -  p)Dn(f,  x) + p<f>"(t, x)) = - 1  • ((1  -  p)Dn{f, x) -  * ) )  •

The term in the brackets on the right-hand side equals 1 — p<j>n(t , x) — p x ^ - ( t ,  x) in 

equilibrium, which is positive by Assumption (2.2.6). □
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2.3 The Continuous-Time M odel

In order to get a clearer picture of the equilibrium price process and in particular of 

its volatility structure, we will now pass to the limiting continuous-time model. This 

also brings us closer to the original Black-Scholes model. To maintain a maximal level 

of generality we turn back to the situation described in the beginning of Section 2 .2 . 

That is, we assume a general aggregate demand function of the form (2.1) satisfying 

Assumption (2.2.1). For each n = 1,2, . . .  let (X£)jt=o,i,... be the unique equilibrium 

price process, i.e. solution to the market clearing equation (2 .2), which we know 

exists by Assumption (2.2.1) (1).

In order to formulate our results we need a common base space on which the distribu

tions of all these processes can be compared. Let 2>d[0, oo) denote the d-dimensional 

Skorohod-Space; cf. Jacod and Shiryaev (1987). We identify any sequence • • •

defined for times £[}, £f , . . .  with the RCLL function

oo

6 * • ! « * < « « ) •
k=0

Let (Afn)*>0 and (Ftn)*>o denote the RCLL versions of (X%)k=o,i,... and (F£)k=o,i,..., 

respectively. For the passage to the limit we require the state variable processes 

(Fg)k=o,i,... to converge to a continuous-time limit. Remember that for the CRRA 

case without program traders the equilibrium price process (X^)k=oti t... 1S propor

tional to (F£)k= ; cf. Lemma 2.2.5. Since our objective is to study the effect 

of hedging in a Black-Scholes type environment we assume that the limiting state 

variable process is a geometric Brownian Motion.4

4The main result of this section, Theorem 2.3.2, easily carries over to more general diffusion 

processes.
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A ssu m p tio n  2.3.1 Suppose that the sequence {F n}n=1,2,... of state variable processes 

converges in distribution to a geometric Brownian Motion with constant drift and 

volatility parameters p and rj, respectively.

We are now ready to state the main result of this section:

T h eo rem  2.3.2 Suppose the sequences {Gn}n=1,2,... and { F n}n=i,2 of aggregate de

mand functions and state variable processes satisfy Assumptions (2.2.1) and (2.3.1), 

respectively.

Then the sequence {Xn}n=i)2,... of equilibrium price processes converges in distribu

tion, and the limit distribution is uniquely characterised as the law of the solution 

{Xt)t>0 of the SDE

ao(s ,F „ X ,)
Xt = Xo -  / Z  ■ ■ dw ,  (2 .10)

§g , 
a/ 1

to \ ° £ ( s , f s , x s ) ' d£ ( s ,F „ x sy

where 0 is a standard Wiener process, (Ft)t>0 is just short for Ft =  0 -1(£, X t),

and H  is a smooth function that depends only on first and second order derivatives 

of G. In particular, the instantaneous volatility of the process (X t)t>0 at time t is 

given by

8£(t ,rl(t,xt),xt) r ^ Xt) 
v ( t , X t ) - r )  : =  -  X   t ; --------»?• (2.11)d G

d x

PROOF: By Assumption (2.2.1) (1) the equilibrium price process in economy n is 

given by X f  =  ^ ( t ”, F ”), where rj) =  if t \  <  t < t j+1. We first show that the 

ipn converge:
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Lem m a 2.3.3 The sequence {'0n}n=i,2,... converges uniformly on compacts to the 

smooth function ip defined by the relation G(t, f,ip(t,  / ) )  =  1 .

Smoothness of ip follows from the Implicit Function Theorem and Assumption (2.2.1) 

(3). Convergence is shown in Appendix 2.A. By Assumption (2.3.1) the sequence 

{ F n}n=i,2 ,... converges in distribution by to a process (Ft)t>o satisfying

Ft = F0 + f  r)Fs dWs + f pFs ds (2 .12)
Jo Jo

for some standard Wiener process (W*)*>o. A version of the Continuous Mapping 

Theorem then implies convergence in distribution of the triplet (t/1, F f,ip n(Tf, Ff ) )  

to {t, Ft,ip(t,Ft)). To characterise the limiting distribution on D3 [0, oo) we apply 

Ito’s Lemma to ip(t, Ft) and use (2.12) to obtain

=  xl>(0,Fo) + f ‘ ( ^ { s , F s)r ,F ^ dW,

+ J *  F.) + FS)»FS +  F .tfF p )  ds.

By differentiating the defining equation G(t, f,ip(t,  / ) )  =  1, the derivatives of ip can 

be expressed in terms of those of G , proving that X t =  ip(t, Ft) indeed solves the 

SDE (2.10). Expression (2.11) for the volatility is obtained by simply plugging Ft = 

ip~l (t, X t) back into (2.10). To complete the proof note that the drift and dispersion 

functions in equation (2.10) are smooth by assumption and thus locally Lipschitz. 

This implies pathwise uniqueness of (2.10) and hence uniqueness in distribution. 

□

We now relate the concrete specification with CRRA utility as outlined in Assump

tions (2.2.3) and (2.2.2) to the general situation characterised by Assumption (2.2.1), 

and deduce the shape of the volatility in this special case.
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Corollary 2.3.4 Suppose that the sequence of discrete-time economies specified in 

Assumptions (2.2.3) and (2.2.2) satisfies in addition Assumption (2.2.6). I f  the 

DJ from (2.5) converge to some D* as n — ►oo, then the corresponding sequence 

{Gn}n=1,2,... of demand functions satisfies (2.2.1) with a limiting demand function G 

of the form

G(t, / ,  x) = (1 -  p) • D* • -  +  p • <j)(t, x ).
x

Hence, under (2.3.1) the corresponding sequence of price processes { ^ n}n=i,2,... by 

Theorem 2.3.2 converges in distribution to a continuous-time diffusion process (X t)t>o 

whose instantaneous volatility at any time t is given by

v ( t ,X , ) - t ] : = ---------- 1 ~ P^ t’X i l i  v- (2-13)

In particular, volatility is increasing in the market weight p of program traders, 

bounded below by the “reference volatility” r) and bounded above by t]/k . Note also 

that in the absence of program traders, i.e. when p = 0, v ( t ,X t) =  1. Market 

volatility then equals the volatility 77 of the exogenous state variable process (Ft)t>o-

PROOF: The convergence of Gn to G is obvious by the assumed convergence of D™ 

to D* and (2.2.2). It is easily seen that (2.2.6) implies (2.2.1) (1) and (3). Finally

(2 .2 .1) (2 ) follows since the ipn and their first derivatives are uniformly bounded on 

compacts by (2.2.6) and (2.2.2) (1). The form of the volatility function is derived in 

Appendix 2.A. □

REMARKS: Of course, when taken literally, the overlapping generations scenario of 

Section 2 .2.1 does no longer make sense when passing to the continuous-time limit, 

since the lifespan of every generation becomes infinitesimal. However, in the specific 

case considered there, we view the discrete-time model as the main focus of our 

interest, and the continuous-time model merely as a useful tool for analysing its
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properties. The reason for taking this view is that we want to contrast the study of 

Brennan and Schwartz (1989) by a temporary equilibrium model in which investors’ 

decisions are driven by myopic considerations. One could, for instance, fix a time 

discretisation, i.e. an index N  £ IN, and keep the reference traders’ demand functions 

fixed: Dn = DN for all n £ IN. The convergence results, Theorem 2.3.2 and Corollary 

2.3.4, provide the necessary link between the discrete-time and the continuous-time 

model, thus permitting the use of the limiting diffusion as a tool for the analysis. Note 

that the above construction does not necessarily imply that we restrict the program 

traders to the same fixed discretisation. Their strategy functions may converge to 

continuous trading as n — »oo.

In our model, the Brownian Motion driving the dynamics of the state variable process 

(Ft)t>o is the only source uncertainty. However, had we allowed the aggregate hedging 

function 0  or the weight p to depend on some exogenous uncertainty, we would 

typically have ended up with a “Stochastic Volatility Model”. Such models recently 

have become a focus of attention, see for example Hull and White (1987), Follmer 

and Schweizer (1990), or Ball and Roma (1994).

2.4 Feedback-Effects from Black-Scholes Trading

Price dependent volatility—as generated by dynamic hedging in our model—causes 

major problems in practical applications of option pricing theory. Although hedging 

strategies may still be shown to exist they can in most cases no longer be calculated 

explicitly. This is why in practice most investors base their trading on the classi

cal Black-Scholes Formula, which postulates constant volatility. In this section we 

therefore study in more detail the feedback effect generated by the corresponding 

strategies and analyse the extent to which they are still appropriate, when the effect
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of their implementation on prices is taken into account.

We work directly in the limiting diffusion model, because the explicit expression for 

the volatility faciliates the analysis. Therefore we contend ourselves with specifying 

properties only of the limiting demand function G which we assume to be of the 

form G =  (1 — p)D +  p(j> with (j> being a mixture of Black-Scholes trading strategies. 

We remark, however, that under Assumption (2.2.2) the weak convergence of the 

equilibrium price processes implies the convergence of the corresponding gains from 

trade; see Duffie and Protter (1992). Hence our results on the performance of hedge 

strategies are also meaningful for the discrete-time models of Section 2.2.

2.4.1 Hedge Dem and Generated by Black-Scholes Strategies

First we want to specify the strategy used by the representative program trader in 

more detail. As shown by Leland (1980), every convex payoff can be represented 

as the terminal value of a portfolio consisting of a mixture of European call options 

and a static position in the underlying. Therefore we concentrate on such portfolios. 

Consider first the problem of replicating the payoff of one single call option with 

strike price K  and maturity date T. As was shown in the seminal paper by Black and 

Scholes (1973), if the trading decisions are based on the assumption of the underlying 

asset price following a geometric Brownian Motion with constant volatility cr, the 

corresponding price at any time t is given by the solution c ( t ,X t) of the terminal 

value problem

î t + \cr2x2lx̂ )c(<t’x̂ ~0, C(T ’X) =  [x _  A’]+> (2-14)

and the corresponding strategy is fj(£, X t). We denote the price and strategy func

tionals for a fixed contract (K , T) by C(cr, K ,T  — t, x ) and </>(cr, K ,T  — t, x ), respec
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tively.5 The terminal value problem (2.14) is explicitly solvable and the strategy 

function is given by

<p(o, K , r, x) := N  ^  ’ 2̂' 15^

where Af is the standard normal distribution function and r  denotes the time to

m aturity T  — t. In the sequel we will refer to cr also as the input volatility, since it is 

the volatility used for the computation of hedging strategies.

We assume that the aggregate demand of our representative program trader is in

dependent of time. This models the scenario of many program traders entering and 

leaving the market at random times, so that the average composition of payoffs be

ing replicated is constant over time. Formally, the representative program trader’s 

demand is given by p<j>(cry x) where p is the market weight and

<̂ >(cr, x) =  a -f I (p(cr, K, r, x) v(dK  (g) dr). (2.16)
Jjr2+

Here, a represents the static position in the underlying and v  is a measure on IR+ 

that describes the distribution of strike prices K  and times-to-maturity r  in the 

portfolio. For convenience we define T(<7 We want to show that

the feedback effects of portfolio insurance are mitigated if the distribution of strike 

prices and times to maturity is relatively heterogeneous. To this end we concentrate 

on the following extreme case:

5 Note that both value and strategy function depend on current time t  and maturity time T  only

via their difference, the time-to-maturity r =  T  — t.
6In the standard option pricing theory the price derivative of a strategy function is known as

the strategy’s “gamma”, which motivates this notation.
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A ssu m p tio n  2.4.1 v has a smooth density with respect to the Lebesgue-measure,

i.e. v is of the form v(dK  <S> dr) =  g(K , r) dK  ® dr , where g : IR+ x [0, oo) — > IR+ 

is a smooth density function having compact support in 1R+ x [0 , oo) .7

Next we want to verify that Assumption (2.4.1) ensures that for p sufficiently small 

there is a unique equilibrium in the economy with CRRA agents (i.e. that As

sumption (2.2.6) holds). Observe first that on the single contract level the function 

x ^ ( a ,  K, r , x) explodes when x - ^ K  and r —>-0. This corresponds to the well-known 

fact that option hedging strategies require extremely large changes of the hedge 

portfolio when the option is at the money and close to maturity. Surprisingly, this 

problem disappears in the aggregate, if the distribution v is non-singular. The fol

lowing proposition shows that bounds on r(:r,<7) can be found that depend only on 

the degree of heterogeneity of the distribution v\

P ro p o sitio n  2.4.2 Suppose that a  > 77 for some 77 > 0. Under Assumption (2.4-1) 

we have the following estimates for all x E 1R++;

( 0  |r(<T’l ) l - / 0° i ° °  \j k {K9 ( k ' t ) )
dK  dr,

(**) £ r ( c , x )
c\ poo poo  I Q2

dK  dr.

The proof is given in Appendix 2.B. Because of (i) we can achieve Assumption 

(2 .2 .6) without further restrictions on the distribution v  simply by requiring the 

porfolio insurance weight p not to be too large. Calculations with some sample 

density functions have shown that any reasonable value for p can be permitted.

7Note that we explicitly allow g ( K , 0) >  0 for some K , i.e. arbitrarily small times to maturity.
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REMARK: By dK  = K d (log K ) the expression on the right-hand side of (i) above can 

be interpreted as a measure of the heterogeneity of the distribution of logarithmic 

strike prices, averaged over the time to maturity r. An inspection of equation (2.17) 

below reveals that the feedback effect of dynamic hedging on market volatility mainly 

manifests itself through the appearence of r(<r, x) in the denominator of v(cr, x). 

Hence by (i) we see that this “disturbance” is controlled by the degree of heterogeneity 

of v. This is most apparent in the economy with CRRA agents. Here we get from 

Corrollary 2.3.4

1 -p</>(q,x) 1 - pV ( (j x  ) =  ------------------------------------ -------------------------------
’ 1 — x) — pT(o,x) ~  1 — p — p sup T(cr, x ) ’

such that even the maximal increase in volatility is controlled by the degree of het

erogeneity of i/.

2.4.2 Rational Black-Scholes Trading

We now investigate the extent to which the Black-Scholes formula is still appropriate 

for the design of hedge strategies in our setting. We work with a limiting demand 

function of the form8

G(<7, / ,  x) =  (1 -  p) • D(f ,  x) -f- p • <j>((7, x),

where <f>(cr,x) is as in (2.16). Throughout the rest of this section we require only 

Assumptions (2.2.1) and (2.4.1) to hold. In particular we do not require the specific 

CRRA utility. By Theorem 2.3.2 the volatility of the limiting diffusion is

(1 — p)^r  (̂ >- 1(x), x)

• r { x )  ■»  (2‘17)

8In the subsequent analysis a  is a parameter which does not vary with /  or x. Its appearence 

does not alter the validity of Theorem 2.3.2.
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As a first step, we use an idea of El Karoui, Jeanblanc-Picque, and Shreve (1998) 

to derive a formula for the “tracking error”. This number measures the difference 

between the actual and the theoretical value of a self-financing hedge portfolio for a 

European call calculated from the Black-Scholes formula with constant volatility <r. 

Recall that the theoretical value is given by Ct := C(cr,K,T  — t , X t). The actual 

value Vt of the self-financing portfolio defined by initially investing Vo =  Co and 

holding ip (a ,K ,T  — t , X t) shares of the underlying at any time t < T  is given by the 

cumulative gains from trade, i.e.

V5 =  V0 +  [ \ { v , K , T - s , X s) d Xs 
Jo

The tracking error et is then defined as the difference between actual and theoretical 

value:

et := Vt -  Ct.

Since Ct  =  [Xt  — K ]+, c t  measures the deviation of the hedge portfolio’s terminal 

value from the payoff it is supposed to replicate. In particular, if the tracking error 

is always positive, the terminal value of the hedge portfolio of an investor following 

the strategy cp(o, K ,T  — t, X t) always completely covers the option’s payoff. The 

following is a simplified version of Theorem 6.2 in El Karoui, Jeanblanc-Picque, and 

Shreve (1998).

P roposition  2.4.3 Suppose that the underlying asset’s price follows a diffusion with 

volatility (2.17). Then the tracking error for a single option is given by 

i r* fp n
e< =  j  J  ~  ' A V , * .) )  ' X2. f c ¥ {a' K ’T ~ S' ds■ <2-18)

In particular, i f  a  >  r)v(cr, x), the tracking error is always positive.
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PROOF: By Ito’s Lemma,

\ { a , K , T - s , X s)dXs 

= Vt

+ f  K ,T  — s ,X ,)  + l-r? v 2(<T, X ,)  • X 2^ ( < r ,  K ,T  -  s, X .) )  ds.

Substituting (2.14) into the above equation yields the desired expression for the 

tracking error. Moreover, C(<7, K ,T  — t, x ) being convex in x , its second derivative is 

always positive. Hence by (2.18) the sign of the tracking error is entirely determined 

by the sign of the volatility difference o 2 — r]2v2(o, x ) .  □

Proposition 2.4.3 shows that in the presence of the feedback effect, simple Black- 

Scholes hedging strategies, (i.e. strategies based on the assumption of constant 

volatility,) are no longer sufficient to perfectly replicate a derviative security’s payoff: 

the tracking-error is almost surely non-zero. Given this observation, there are then 

two possible directions in which one could proceed. First, retaining the restriction to 

the class of Black-Scholes strategies, one can study the tracking error and its deter

minants, thus addressing the question how well hedging performs within this class. 

Second, one can ask whether the class of strategies can be enlarged in such a way 

that perfect hedging becomes possible again. Or, in other words, whether rational 

agents who understand the feedback effect caused by their trading, could fully take 

it into account when designing their hedging strategies.

In this paper we take the first route, for the following reasons. The replication 

problem in finitely elastic markets becomes very complex, since the feedback effect 

on volatility introduces non-linearities in the partial differential equation that has to 

be solved in order to obtain hedging strategies. Not only does solving this problem 

exceed the scope of this paper, it is also true that practitioners rely almost exclusively 

on Black-Scholes type models. We therefore believe it a valid and important question

Ct — Cq +  f  
Jo
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to ask how well Black-Scholes hedging can perform in the presence of a feedback effect, 

even if perfect replication is impossible. However, solving the replication problem in 

finitely elastic markets is a very promising area for future research.

As we have just seen, if the terminal value of the hedge portfolio is to be no smaller 

than the payoff it is supposed to cover, the input volatility cr used for the computation 

of the hedging strategy must be no smaller than the actual market volatility. On 

the other hand, following the Black-Scholes strategy corresponding to a certain input 

volatility o requires an initial investment of C(cr, K, T, Xo). Since C is increasing in 

cr, to keep the initial “over-investment” as low as possible, investors should seek to 

find the smallest such cr. This motivates the following

D efinition 2.4.4 The constant a is called a super-volatility if  a is the smallest 

positive solution of the equation

cr =  sup { r]v(a, x) : x  € IR++ } • (2.19)

Note the recursive structure: Since the choice of the input volatility and hence of 

the trading strategy affects the actual volatility, cr appears on both sides of (2.19). 

It will turn out that sufficient for the existence of a super-volatility is the following

A ssum ption 2.4.5 The volatility function (2.17) has the following properties:

1. There are constants O < 77< 7 7 < 0 0  so that 77 < v(a ,x) < rj, V cr £ [77, fj],

V x E IR++ >

2. There is a positive constant (d so that rj • |^(<j, x ) <  1 — f3, V cr £  [77, 77],

V x  G 1R++.
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Essentially (ii) means that variations in the input volatility do not affect the actual 

market volatility too much. Since ^T(cr, x) is bounded according to Proposition 

2.4.2, this assumption holds as long as p is not too large. Of course to check if (i) is 

satisfied one has to know the function D. In case of the economy with CRRA agents 

(i) is implied by Assumption (2.2.6).

Proposition 2.4.6 Suppose Assumption (2 .4 -5)  holds. Then the super-volatility in 

the sense of Definition 2 -4-4 exists and is given by

a := sup{<7*(a;) : x G IR++},

where cr*(x) is the unique solution of the fixed point problem rjv(a,x) =  cr.

PROOF: Assumption (2 .4 .5 ) implies that the equation rjv(a,x) — cr =  0 has a unique 

solution cr*(x) for each x > 0. Now by definition a > cr*(x) for any x  G IR++. Since 

by Assumption (2 .4 .5 ) (ii) the mapping a 77u(cr, x) — cr is strictly decreasing, we 

get

77u(a, x) — cr < r]v(cr*(x), x) — &*(x) =  0

for all x  G IR++, hence a is indeed an upper bound for rjv(a^ x). It is also the smallest 

such bound. This is obvious in the case when the supremum in (2.19) is attained 

for some x , and it follows from Assumption (2.4.5) (ii) in the general case. To prove 

that <r is also the smallest solution to (2.19), simply note that by definition a*(x) 

gets arbitrarily close to <7. Hence for cr < <f there is always an x with a < v*(x) such 

that by monotonicity

r}v(d, x) — a > rjv(<r*(x), x) — cr*(x) =  0.

□
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REMARK: From a practioner’s viewpoint it is reasonable to use a Black-Scholes 

strategy based on the supervolatility o  for hedging purposes as long as the difference 

between o and inf{771;(if, #), x  € 1R++} and hence the possible initial overinvestment 

is relatively small. As we will see in the simulations reported below, this issue, and 

hence the robustness of the Black-Scholes Formula with respect to the feedback from 

dynamic hedging, depends largely on the heterogeneity of the insured payoffs.

2.4.3 Comparison w ith the Brennan and Schwartz Study

Using explicit numerical computations (see below for details) we can compare our 

results to those obtained by Brennan and Schwartz (1989). Table 2.1 lists the ratios of 

the volatility in the presence of program traders to that in the benchmark economy 

without program traders. While the utility functions, and hence notably the risk 

aversion, of the reference traders are identical in both models, an inspection of Table 

2.1 shows that the effects of program trading on volatility are much stronger in our 

model. As was explained in the introduction this is due to the different expectation 

formation of the reference traders in the two models.

2.4.4 Num erical Com putations

First we computed the resulting volatility function r)h(o, a:) as a function of x , using 

as hedging input the super-volatility W for a variety of different weights p, different 

reference volatilities 77, and different levels of heterogeneity of p. Figures 2.1 and 2.2 

show the dramatic effect of heterogeneity. Here, we graphed the reference volatility 

“0” and the resulting volatility against the current price using a value of p =
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10%.9 All numerical results, including those not featured in this paper, support our 

findings from the qualitative analysis: Volatility increases with the market share p 

of portfolio insurance as well as with reference volatility rj. Both the level of increase 

and the price dependency are reduced by heterogeneity.

We then ran Monte Carlo simulations to generate sample price paths and used the 

tracking error formula (2.18) to compute the terminal value of a hedging portfolio 

based on the super-volatility a. We compared the results to the payoff of the option it 

was supposed to duplicate, again for a variety of different parameter constellations. 

Figures 2.3 and 2.4 again capture the striking effect of heterogeneity. For every 

sample path we graphed the terminal value of the portfolio against the terminal 

price of the underlying. The straight line depicts the exact option payoff. Again 

all results we obtained strongly support our qualitative findings: The tracking error 

is largest around the option’s striking price and almost vanishes as the option gets 

deeper in the money or out of the money. We see that even a comparatively low level 

of heterogeneity is sufficient for the super-hedging portfolio to duplicate the option’s 

payoff almost perfectly.

9The fraction of the aggregate equity value subject to formal portfolio insurance prior to the 

events of October 1987 was approximately 5%. However, one should bear in mind that the amount 

of “informal” portfolio insurance may have amounted to considerabely more than this. Moreover, 

part of the aggregate equity supply is held because of the associated control rights and not for 

speculative reasons, such that the actual “supply” should be considered smaller than aggregate 

equities. Hence the “actual” market weight of program trading might be larger than just these 5%.



Chapter 2. Feedback Effects from Dynamic Hedging 53

2.5 Conclusions

In this paper we have analysed the feedback effect of dynamic hedging strategies 

on the equilibrium price process of the underlying asset in an economy where the 

market for the latter is only finitely elastic. We gave an explicit expression for the 

transformation of market volatility which allowed us to carry out a detailed study 

of the feedback effects caused by dynamic hedging. A comparison with the analysis 

of Brennan and Schwartz revealed the importance of agents’ expectations in deter

mining market liquidity and hence the amplitude of the feedback effect on volatility. 

Adding to the existing literature, we identified heterogeneity of the distribution of 

hedged contracts as one of the key determinants for the transformation of volatility. 

Moreover, we showed that simple hedging strategies derived from the assumption of 

constant volatility may still be appropriate even though their implementation obvi

ously violates this assumption. However, investors might have to “over-invest” in 

their hedging strategies. To sum up, we find that classical Black-Scholes theory is 

quite robust with respect to the feedback effects discussed, as long as the distribution 

of different payoff claims being hedged does not become too homogeneous. Nonethe

less future research is needed to extend the work of Jarrow (1994) on option pricing 

theory in an economy where agents’ hedging strategies affect the underlying asset’s 

price process.

2.A Appendix: Complements to Section 2.3

PROOF OF Lemma 2.3.3: First we prove the pointwise convergence of the ipn to 

ip. For t and /  fixed, every subsequence of the sequence xn := ipn( t , f )  contains a 

further subsequence { ^ ^ '= 1,2,... which converges to some x £ IR+ by Assumption
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(2.2.1) (2). Now we have the following estimate:

<  |Gni( t , f , x nj) -  G ( t , f ,x nj)| +  |G ( t , f ,x nj) -  G ( t , f ,x ) | .

The first term on the right-hand side tends to zero for j — »-oo because Gn converges 

to G uniformly on compacts. The second term tends to zero because of the uniform 

continuity of G on compacts. It follows that G (t ,f ,x )  = limj Gnj(t, f , x nj) = 1 and 

hence x = Now by Assumption (2.2.1) (2) the sequence {tpn}n- 1,2,... also

converges uniformly on compacts to □

PROOF of Corollary 2.3.4: Using (2.11) and the particular form of the limiting 

demand function together with Ft =  •0 ~1(f,Xf) we get

, ' | f ( t , r \ t , X t),Xt) 4 , - \ t ,Xt) - ( 1  - p ) D . - %
I ^ - l( t ,x t) , x t)'  x t - ( 1  - p ) D. - %  + pXt%(t,Xty

Using the market clearing equation 1 =  (1 — +  p<f>(t,Xt) to substitute for

(1 — p)D^Y~t in the above expression gives the desired shape of the volatility of the 

limiting diffusion. □

2.B Appendix: Complements to Section 2.4

ESTIMATES for T(cr, z): Observe first that by (2.15) we have
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which implies:

r°° r°° d
r(cr,x) =  j  I x — ip (a ,K ,T ,x )g (K ,T )d K d r  

f°° f°° d
= ~  Jo J  K ’d K V ( a ’ K ’ T’ x ) 9 ( K ’ T ) d K d T 

=  lo L  v (a’K i Ti x ) - ^ ( K 9 (K i T)) dK  dT

by partial integration and the assumption of g having compact support. But since 

0 <  V7 <  1 by (2.15), this implies

lr (<r,x)\< J ~ \ ^ ( K 9 (K, t ) )  dKdr.

ESTIMATES FOR (cr,x): Observe first that by (2.15) we have

d d
(Td a <P̂  K ’T’X  ̂ =  2r K ’T’

which together with the results from the previous paragraph implies

d f°° f°° d  d
r(<7 ,i) =  j  ̂ J  — t p ( < r , K , T , x ) j j f ( K g ( K , T ) )  d K d r

/OO poo  Q Q

Jo 2 - ^ ^ , K , T,x)M {Kg(K,T)) dKdi-
2 /*oo poo  p p

=  - -  J o J o < p (^ ,K ,T ,x ) -^ ^ (T K g (K ,T ) )  d K dr

again by partial integration and the assumption of g having compact support. But 

since 0 <  ip <  1 by (2.15) and furthermore cr > rj, this implies

2 p o o  p o o  I pp.

- v L  L  \ d ^ K { T K 9 ( K ’ T))
d K  dr.
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P ro g ra m  T ra d e r’s 

M ark e t W eight

1 % 5 % 1 0 %

P rice F-S

B-S

F-S

B-S

F-S

B-S

80 1.01 1.00 1.06 1.02 1.13 1.04

90 1.02 1.00 1.08 1.02 1.18 1.04

100 1.02 1.00 1.09 1.02 1.19 1.05

110 1.02 1.00 1.08 1.02 1.18 1.05

120 1.01 1.00 1.06 1.02 1.14 1.05

Table 2.1: Comparison with the Results of Brennan and Schwartz.

This table shows the ratios of actual to reference volatility in our model (F-S) and the 

Brennan-Schwartz model (B-S) for different market weights of the program trader.
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Figure 2.1: Volatility if Hedged Contracts are Concentrated.

This graph shows the actual market volatility (•) compared to reference volatility (o) 

when hedging is based on the super-volatility <7 . The variances of strike prices and 

times-to-maturity are 0.0625, i.e. the distribution is highly concentrated. The market 

weight of portfolio insurance is p =  10%.
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Figure 2.2: Volatility if Hedged Contracts are Heterogeneous.

This graph shows the actual market volatility (•) compared to reference volatility

(o) when hedging is based on the super-volatility a. The variances of strike prices 

and times-to-maturity are 0.5, i.e. the distribution is relatively heterogeneous. The 

market weight of portfolio insurance is p = 10%.
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Figure 2.3: Tracking Error if Hedged Contracts are Concentrated.

This graph shows for 100 sample paths the terminal value (•) of a portfolio designed to 

hedge a European call with strike price 100.0, based on the super-volatility a , compared 

to the option’s pay-off itself. The variances of strike prices and times-to-maturity are 

0.0625, i.e. the distribution is highly concentrated. The market weight of portfolio 

insurance is p = 10%.
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Figure 2.4: Tracking Error if Hedged Contracts are Heterogeneous.

This graph shows for 100 sample paths the terminal value (•) of a portfolio designed to 

hedge a European call with strike price 100.0, based on the super-volatility a , compared 

to the option’s pay-off itself. The variances of strike prices and times-to-maturity are

0.5, i.e. the distribution is relatively heterogeneous. The market weight of portfolio 

insurance is p =  10%.



Chapter 3

Technical Trading in 

Foreign Exchange Markets

3.1 Introduction

Technical Trading has always enjoyed a higher reputation amongst practitioners than 

amongst economists. This is so mainly because the theory of efficient markets leaves 

no scope for profits to be made on basis of technical analysis of historical price pat

terns. If money can be made by predicting future returns based on past prices only, 

one should expect market participants to take advantage of this opportunity, causing 

current prices to adjust thus eradicating any such profit opportunity. However, two 

important facts have brought technical trading into the focus of attention of a grow

ing strand of economic research. First, technical trading and its inherent positive 

feedback effect of past returns on current prices have been blamed for causing or at 

least aggravating some of the market crashes in recent history; as reported amongst

61
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others by the Group of Ten (1993). Second, empirical evidence shows that technical 

trading rules are indeed widely used by market participants, in particular on foreign 

exchange markets and, more importantly, the trading activity triggered by such rules 

has significant effects on prices; see for example Allen and Taylor (1992).

Two main questions arise in this context. First, if market participants do follow tech

nical trading rules, what is the effect on equilibrium exchange rates? Second, can the 

use of technical trading rules be rationalised? Empirical evidence seems to suggest 

that profits can indeed be made by following technical trading rules, see Levich and 

Thomas (1993), Brock, Lakonishok, and LeBaron (1992), and Sweeney (1986). This 

chapter addresses these questions from a theoretical viewpoint. We consider an equi

librium model for exchange rates in which some agents follow technical trading rules. 

As analytical framework, we choose the discrete-time equilibrium model developed in 

Follmer and Schweizer (1993). Technical traders interact with pure “noise traders” , 

and exchange rates are determined by Walrasian equilibrium. To analyse the proper

ties of the resulting equilibrium exchange rate process in more detail, we then pass to 

the continuous-time limit. It turns out that, as long as technical traders are active, 

bubbles will always emerge. In other words, exchange rate fluctuations caused by 

noise will be picked up by technical analysis and amplified by the buy or sell signals 

generated by the corresponding trading rules. However, whether these bubbles can 

grow into market crashes depends on how far traders are willing to go in following 

their technical trading rules. If there is a certain amount of “fundamentalism” in the 

market, i.e. traders who expect a trend reversal when exchange rates have moved 

too far from their fundamental level, bubbles will always burst.

There have been a number of theoretical studies analysing the effects of technical 

trading. In Day and Huang (1990), rational “information traders” interact with 

technical traders. Equilibrium is determined by a market maker who sets asset
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prices such as to maintain a target inventory. Unlike the model considered here, Day 

and Huang do not introduce noise. As a result, equilibrium prices in their model 

follow deterministic “chaotic” dynamics. The qualitative behaviour of equilibrium 

prices however is similar to that obtained here. In Lux (1995), traders act upon 

rumours and fads rather than technical analysis. Two types of agents, “optimistic” 

and “pessimistic” traders interact with one-another. Contagious mood swings cause 

equilibrium prices to fluctuate cyclically. While both these papers explain the emer

gence of price bubbles, neither addresses the rationality of agent’s behaviour and the 

profitability of the resulting trading strategies.

Interestingly, despite that fact that technical trading obviously introduces a substan

tial amount of autocorrelation of returns, it can be shown that expected returns over 

any finite horizon are nonetheless zero. However, while no profits can be made using 

simple buy-and-hold strategies, the existence of technical trading causes technical 

trading rules themselves to be profitable. In other words, technical trading can be 

seen as a kind of “self-fulfilling prophecy”: If market participants believe in technical 

trading rules, then they are indeed profitable. That is, although markets are efficient 

ex-ante, the use of technical trading rules can be rationalised by their ex-post prof

itability. These results are in line with the empirical findings of Levich and Thomas 

(1993), Brock, Lakonishok, and LeBaron (1992), and Sweeney (1986). Profitability 

of support and resistance rules was shown in Curcio and Goodhart (1992).

The remainder of this chapter is organised as follows. In Section 3.2 we introduce the 

model and the mathematical framework for our analysis. In the following section we 

formalise the demand arising from technical trading rules and discuss its properties. 

Section 3.4 analyses the structure of equilibria and the stochastic properties of the 

resulting equlibrium exchange rate process. The profitability of technical trading 

rules is studied in 3.4.4. Section 3.5 concludes.
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3.2 The M odel

We employ the discrete-time framework introduced in Follmer and Schweizer (1993). 

We will model the dynamics of equilibrium exchange rates in discrete time and then 

pass to the continuous-time limit to facilitate the qualitative analysis (see Section 

3.4). More specifically, we consider a sequence of discrete-time economies for n = 

1 ,2 , . . .  with trading intervals A tn > 0 . In a given economy n , trading takes place at 

times t% := k- A tn, (k = 0 ,1 , . . . ) .  In view of the intended passage to the continuous

time limit we furthermore assume that

A tn — > 0 as n —» oo.

T r a d e d  A s s e t s :

There are two assets in the economy, a riskless one (typically a domestic bond or 

money market account), and a risky one. We normalise the price of the riskless 

asset to one, thereby making interest rates implicit in our model. Since our focus in 

this chapter is the foreign exchange market, we think of the risky asset as a foreign 

currency, and refer to its price sometimes as exchange rate. Note that this is the 

inverse of the notion of exchange rate as it is used in the U.K., where it specifies 

the amount of foreign currency one can buy with one unit of domestic currency. 

We would like to stress that although we interpret our analysis in the context of 

foreign exchange markets, the results are also applicable to other scenarios such as 

for example equity markets. The price of the foreign currency at any trading date 

is denoted X%.

A g e n t s :

There are two types of agents active in the market; noise traders and information
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or technical traders. At any time £JJ, noise traders’ aggregate demand for the foreign 

currency is given by a random variable which we assume to be serially independent

and independent of the price history.

T e c h n ic a l  T r a d e r s :

There are m  technical traders in the economy, denoted i =  1, . . .  ,m. Each agent i 

is characterised by an element 0, £  0  C IRP of some p-dimensional parameter space, 

to be made more specific later. The 0{ are assumed to be drawn independently from 

a probability distribution p on 0 . Agent Vs trading behaviour is expressed in terms 

of a demand function for the foreign currency. More specifically, if at time an 

exchange rate of X  is quoted, agent i will demand an amount

a ^ e K X - A )

of foreign currency. Here, a{9{) is the “market weight” of agent z, and e jp f ,  0t) is 

agent Vs normalised demand function. Note that eJJ can (and will) depend on the

history of past prices, X%_l t X%_2, __  The aggregate demand from all technical

traders is then m

i'=l

L o g -L in e a r  D e m a n d :

In order to be able to model explicitly the demand arising from technical trading 

rules, we assume individual agents’ demand functions to be log-linear:

el(X-A) =  l o g ^ l .

We interpret X%(9i) as agent Vs view on what the exchange rate should be. The above 

demand specification then says that agent i will buy the foreign currency if its price 

is below X%(9i) and sell if it is above. We will refer to X%(0i) as agent z’s reference
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A

level at time t%. Note that, by the very nature of technical trading rules, X£(0i) will

depend on the price history   We will formalise this in more detail

later in Section 3.3. Although the assumption of log-linear demand functions seems 

arbitrary, it is very common in Monetary Economics, see for example Gourieroux, 

Laffont, and Monfort (1982), and is thus in line with our focus on foreign exchange
A

markets. It will be convenient to express agents’ reference levels X^(0i) in terms of 

return projections. More precisely, we define agent z’s return projection i2jj(0i) at 

time f l  implicitly so that we can write

*?(*.-) =  X k-1 ■ exp (Hue, )  • A i») .

Note that, by explicitly including the time interval A£n, we have effectively nor

malised R%(0i) to reflect the projected return per unit of time. We can now re-write 

the model in logarithmic terms. Defining Yjf := logX J, Yk{Qi) := logX%(Qi), etc., 

we can write agent’s z’s excess demand function in logarithmic form as

ek(X; Si) =  ( n - 1  - Y  + %(SS) • a  r ) .

Note that, in slight abuse of notation, we use the same symbol eJJ for the demand 

function in logarithmic terms.

E q u il ib r iu m :

Denote by p £ [0,1] the relative share of total demand attributable to technical 

trading. In the context of foreign exchange markets, it is appropriate to assume that 

the total supply of foreign currency is zero, reflecting the fact that all that m atters is 

the net balance of foreign currency held by domestic traders versus domestic currency 

held by traders in the foreign country. The equilibrium exchange rate at any time ijj 

is then given as the solution X% of the market clearing equation
m

p  ■ £  p T (*0eZ(AT; 0i) +  ( l - p ) -  51 =  0. (3.1)
i=l
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Here, (3m(6i) is the normalised relative market weight of agent i, defined as

ot(6i)rm :=

£  a (°i)i= 1

W ith the log-linear demand specification, the market clearing equation takes the 

form
m 1

A Y ?  = T r W R l W A t "  +  ■ Snk . (3.2)
£ ?  p

Note that is as yet unspecified, so that by suitable rescaling we can assume that 

the term  (1 — p)/p  equals one. In order to write the equilibrium equation in form of 

a Stochastic Difference Equation, we define the cumulative noise demand process as

2 ? : = £  +  -  +  ss-

The market clearing equation then takes the form

m

A 1 7  =  £ /?“ (0O£2(0.) • A<" +  AZJ. (3.3)
1= 1

Since Rk(Qi) depends on the price history YJJli, VJ12, . . . ,  equation (3.3) for the (log

arithmic) price process (l'in)jfc=olif... can be seen as a Stochastic Delay Equation.

REMARK: For large m, the Law of Large Numbers implies

m  -j2pm(mw)-*X--= /  awAsw/.(<»)
*=i

We will later make use of this limiting argument to analyse the behaviour of the 

equilibrium exchange rate process. In the following Section 3.3, we will give examples
A

of some explicit specifications of Rjj(0t) for a variety of technical trading rules, and 

derive a set of basic properties. In Section 3.4 we will then use these properties 

to characterise the dynamic behaviour of the equilibrium exchange rate process and
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analyse the profitability of different trading strategies. In the limit, for very large 

numbers of technical traders, the equilibrium equation hence takes the simple form

A Y ? = T k • A tn +  A Z f.

In particular, in the absence of technical trading, we have A Y£ =  A ZJ, i.e. exchange 

rate fluctuations are driven by noise alone. This implies

Ek-1 [ x n  = X U  • E [ exp (AZf) ].

In order to focus on the effect of technical trading, we assume that in the absence of 

technical trading, the expected return on the exchange rate is zero, E k-1[ AZ£ ] =  1. 

Thus, exchange rates in this case satisfy the Efficient Market Hypothesis in its weak 

form, i.e. E k- 1[ X k ] =  X k- \ .

3.3 Technical Trading Rules

In this section, we will formalise the demand arising from technical trading rules. 

Consider for a moment the situation where all agents believe in the Efficient Market 

Hypothesis in the weak form, i.e. the current price is the best estimate of next 

period’s price. Formally, this would be expressed as R k ( 0 i )  =  0 for all i. In this case, 

the market clearing equation (3.3) implies

A Y ? = A  Z l

In other words, =  X%_t • exp(AZ£), i.e. changes in price are purely driven by 

noise. By assumption, Ek-\[  exp(AZjf) ] =  1, so that

Ek-! [ X U  = X U
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In other words, if agents believe in market efficiency, then it turns out that markets 

are in fact efficient. In view of this, “taking a position” in the market means diverting 

from the assumption of efficiency, which is formalised by a non-zero return projection

k m .

B o u n d e d  M e m o r y :

Technical trading rules are typically based on past price patterns. Therefore, the re

turn projection R jj at any time tJJ depends on the history of past prices, Y£_x, Yjf_2, . . .  

To facilitate the analysis, we will however require R j  to display bounded memory, i.e. 

to depend on price observations only up to a certain time in the past. We formalise 

this as follows:

A ssum ption 3.3.1 We assume there exists a fixed depth of memory T  >  0 and 

a deterministic function R n : 0  x IRZ— ÎR such that for any 0* £ 0  the return
A

projection R % ( 0 i )  can be expressed as

b n (  n  \    pn ( o  . V"n V n
R k W i )  ~  R  ( V t ,  Y k - h  • • • > Y k - l )  > 

where I is the largest integer such that I • A tn < T .

Note that I depends on n, but for notational convenience we omit the superscript n. 

It is also worth mentioning that we assume the function R n to be independent of k ,

i.e. trading rules are only allowed to depend on price patterns but not directly on 

time. This assumption is made for computational convenience only and could easily 

be relaxed.

In other words, we assume that the return projection at time depends only on past 

price realisations no longer than T  in the past. Note in particular that we assume 

demand memory to be bounded uniformly accross all agents. Note also that we
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assume T  to be independent of n, so that also the trading rules in the continuous

time limit will have a memory bounded by T. For notational convenience, we denote 

the relevant price history at time tJJ by

so that we can write =  For the remainder of the chapter, we

will express everything in terms of the generic function P 71, and we will omit the 

argument whenever it is unambiguous.

3.3.1 Generic Trading Rules

Generically, the majority of technical trading rules can be described as a combination 

of a signal rule and a set of actions. The signal rule determines, as a function of past 

price patterns, when an action is to be taken. The action taken typically consists of 

taking a position in the market, i.e. buying or selling a certain quantity of foreign 

currency when the price is below or above some projection. For example, a simple 

Trend Chasing rule generates a “buy” signal whenever past price patterns seem to 

show an upward trend, and a “sell” signal in case of a downward trend.

Specifically, let j  indicate a specific trading rule. Denote by P" the return projection 

corresponding to the application of rule j ,  i.e. an agent i who bases her trading 

exclusively on rule j  would be characterised by P n(0t) =  P". Note that in prac

tice, the majority of traders would not follow any one rule exclusively, but rather 

implement a “mix” of different rules according to the price patterns observed. We 

will model this type of behaviour below, after discussing some examples of specific 

trading rules most widely used in practice. For further reference regarding specific 

technical trading rules see the survey by Neely (1997).
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3.3.2 Support and Resistance Levels

Support and Resistance (S&R) rules are among the most widely used technical trad

ing rules. Resistance levels are thresholds set above the maximum of past exchange 

rates over a certain period, while the support levels are set below the minimum of 

past exchange rates. The S&R rule generates a buy signal when exchange rates rise 

beyond the resistance level, and a sell signal when rates fall below the support level. 

Formally,

if Y£_x > max +  M  then P? = 1 M  >  0,
t= 2 , . . . ,/

if < min Y ^  -  M  then P f  =  - 7 M  < 0,
i—2,... ,1

for some positive constant 7 .

3.3.3 M oving Average Rules

Besides support and resistence levels, the moving average (MA) rule is probably 

the most commonly used technical trading rule in foreign exchange markets. A 

trader following an MA rule tracks a short-term and a long-term moving average of 

past exchange rates. Whenever the short-term average moves above the long-term 

average, the rule generates a buy signal. Analogously, a sell signal is produced when 

the short-term average falls below the long-term average. Formally,

1

if w ’ Y k - i  >  M  then P i  =  7 V  > 0,
t'=l

I
if w iY ^  < - M  then P? = - 7 M  < 0,

1 = 1

for some positive constant 7 . Here, w\ >  • • • >  wi are weights with u;i > 0 > w\.
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3.3.4 Other Rules

There are many other technical trading rules. Oscillator rules for example generate 

buy or sell signals whenever the difference between the short and the long moving 

average reverses its trend. Charting techniques on the other hand generate buy or sell 

signals when certain price patterns are detected. Examples include so-called “Head- 

and-Shoulders”, “V-Base” or “Saucer” patterns. Instead of formalising all possible 

rules explicitly, we summarise their key features in the follwing

A ssu m p tio n  3.3.2 The Pp are uniformly bounded, and for fixed Y£_i, . . .  , Y£_2,

as y*n_i — > +  oo, P f  > 0 eventually

as Yjp_i — > — oo, P f < 0 eventually

In other words, technical trading rules generate buy signals when current rates in

crease by a sufficient margin beyond their past maximum, and sell signals when 

current rates fall by a sufficient margin below their past minimum.

3.3.5 Fundamentalism

Most practitioners trust technical analysis only up to a certain point. When exchange 

rates move too far away from what is perceived as their “fundamental” level, many 

traders anticipate a trend reversal. To model this kind of behaviour, we introduce 

an additional trading rule j  = 0 as

if min Yfcn_t- > F  -f M  then P0n =  - 7 M  < 0,

if max YjP_i < F — M  then P£ =  7 M  > 0,
t=l,...,Z
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for some positive constant 7 . In other words, when exchange rates move too far 

away from the “fundamental” level F , traders expect the trend to revert towards 

that level.

In practice, most traders will be neither pure “fundamentalists” nor pure technical 

traders. Therefore, we allow agents to “mix” different rules. Formally, we assume 

that agent z’s total return projection is of the form

R n(0,) = Y l SJ(e>')-p "-
j

For any given rule j ,  the indicator SJ(0{) determines whether to apply rule j  or 

not, contingent on the observed pattern of past rates. Note that we allow Sj(0i) to 

depend on 0,-, i.e. the choice of trading rule may vary accross agents. Moreover, we 

do not restrict to take values only in {0 , 1}, i.e. an individual agent may apply

a weighted mix of different rules. For example, agents might follow pure technical 

rules as long as rates stay within reasonable distance of their fundamental level, while 

gradually shifting to fundamentalism as rates move further away.

3.4 Equilibrium

3.4.1 Aggregation

To facilitate our analysis, we now move to the limiting case which is characterised by 

an infinity of agents, i.e. we consider the aggregate demand of technical traders as 

their number, m, tends to infinity. Assuming sufficient regularity, the Law of Large 

Numbers implies
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T h eo rem  3.4.1 For any given t) 6  IR',

8i) — b 7T (tj) :=  I  a(9)Hn(t); 9) n(d9) as m — >00.
J 0

Although an individual agent’s return projection R n(6{) may well be a discontinuous 

function, we assume for what follows that in the aggregate, : 0  x IR/ — ^IR is suffi

ciently smooth. For what follows, we will work with the limit economy characterised 

by TV. This should be seen as an approximation of the situation where there is a 

comparatively large number of heterogeneous technical traders active in the market.

3.4.2 D iscrete-Tim e Equilibrium

In the limit economy, we can then write the equilibrium equation for the (logarithmic) 

exchange rate process as

A l^  =  B ® ; ) . A t n +  AZJ. (3.4)

In order to derive qualitative results regarding the dynamic behaviour of the price 

process, we will focus our attention on the IR*-valued process (2}JJ)fc=o,i,... of price 

histories, rather than on the price process itself. It is obvious that, since # ” (2)2) 

depends on the price history, the exchange rate process (Yk)k=o,i,... itself cannot be 

Markovian. However, it can be shown that the process (2)J)a:=o,i,... of price histories 

is a Markov process, see Scheutzow (1984). We will now define the concepts of 

recurrence and transience, which we will use to characterise the dynamic behaviour 

of the equilibrium exchange rate process.
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D efin ition  3.4.2 The process (2)J)fc=o,i,... is called

(i) recurrent if  for all bounded Borel sets A  C IR* with non-zero Lebesgue-measure, 

there exists a sequence k{— >oo such that

2)£. G A for all i

almost surely; and

(ii) transient if  for all bounded Borel sets A C E 1 with non-zero Lebesgue-measure,

2)]J ^  A for sufficiently large k

almost surely.

In other words, the process is recurrent if it visits any set A  C IR* of price histories 

infinitely often. In particular, a recurrent process cannot converge as k — >oo. A 

transient process on the other hand eventually leaves any bounded set A  C IR*, i.e. 

transient processes must diverge as k — ►oo.

T h e o rem  3.4.3 Let be a solution to the Stochastic Delay Equation (3.4)-

I f  the function R  : IR/— »IR is locally bounded and measurable, then (2}jJ)fc=o,i,... is 

either recurrent or transient. Morover, in the recurrent case there exists a unique 

stationary probability distribution tt* on IR*.

PROOF: Scheutzow (1984, Theorem 10). □

This remarkable theorem says that the exchange rate process (V̂ n)A:=o,i,... can only 

display either of two radically different types of asymptotic behaviour. Exchange 

rates either fluctuate randomly, with bubbles emerging and bursting, or they drift
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off to infinity. The theorem also implies that, however strong the fundamentalism 

is in the market, it can never keep exchange rates within a certain region, unless 

traders have unlimited funds. It is intuitively clear that whether the exchange rate 

process is recurrent or transient will depend on the relative weight of technical trading 

versus fundamentalism. In order to analyse the dynamic behaviour of the equilibrium 

exchange rate process, in particular to derive sufficient conditions for recurrence, we 

will now pass to the continuous-time limit as the trading intervals, A tn, tend to zero.

3.4.3 Continuous-Time Equilibrium

In order to facilitate the passage to the limit, we have to choose a common base 

space on which the distributions of the equilibrium exchange rate processes can be 

studied for every n. Denote by V d[0, T] and £>d[0, oo) the d-dimensional Skorohod 

Space of Unvalued RCLL functions on [0, T] respectively [0,oo); cf. Jacod and 

Shiryaev (1987). To simplify notation, we write simply T>[0, T] and £>[0,00 ) in the 

case where d =  1 . With any given sequence numbers we associate the

RCLL function

for tnk < t < t nk+1.

In this fashion, we identify the discrete-time processes JJ, Y£  and with their 

respective continuous-time counterparts r" , Ytn, and Z", all having paths in T>[0 ,00). 

In the same way, we identify the price history with an element 2)? in V[0, T]. 

Finally, we need to extend in the obvious way the aggregate return projection R” to 

be defined on £>[0,T]. To ensure the convergence of the equilibrium exchange rate 

processes as n — >-oo, we have to make the following
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A ssu m p tio n  3.4.4

(i) There exists a continuous, uniformly bounded function R  : C[0, T ]— ► IR with 

the following property: Whenever t)n E P[0,T] and t) E C[0,T] are such that 

X)n — > t) in D[0,T], then

— y R (tj) as n — »-oo.

(ii) The sequence of processes {Zn}n=i,2,... converges in distribution on T>[0, oo) to 

a continuous semi-martingale Z.

Part (i) of this assumption merely states that technical traders react in a similar 

fashion to a given exchange rate pattern in continuous time as they would to a 

discrete-time approximation of the same pattern. We are now ready to state the 

desired convergence result.

T h e o rem  3.4.5 Suppose that Assumption 3-4-4 holds. Then the triplet (T f ,Z f ,Y tn) 

of processes is tight in oo); and any limit ( t ,Z t,Yt) is a weak solution to the 

Stochastic Delay Equation

dYt = R(%)t) dt +  dZt, (3*5)

where 2)* E C[0,T] is defined in the obvious way. Moreover, if  (3.5) admits a unique 

weak solution, then (T f,Z f ,Y tn) converges in distribution to ( t ,Z t,Y t) as n — >oo.

PROOF: Memin and Slominski (1991, Theorem 2.10). □

In order to study the qualitative behaviour of the equilibrium exchange rate process, 

we will now define the concepts of recurrence and transience in continuous time.
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D efin ition  3.4.6 The process (2)0*>o is called

(i) recurrent if  for all bounded Borel sets A  C C[0,T] with non-zero Lebesgue- 

measure, there exists a sequence t{— ^oo such that

2)*, G A for all i

almost surely; and

(ii) transient if  for all bounded Borel sets A  C C[0,T] with non-zero Lebesgue- 

measure,

2)* ^  A for sufficiently large t

almost surely.

The interpretation of recurrence and transience is essentially the same as in discrete 

time. A recurrent process will always return to any given set A  C C[0,T] of price 

histories, while a transient process eventually leaves every bounded set.

In order to be able to explicitly study the dynamic behaviour of the equilibrium 

exchange rate process, we will have to assume a more concrete specification of the 

cumulative demand of noise traders. As is common in the literature, we will assume 

that noise traders’ demand is actually driven by white noise, so that the cumulative 

demand process is a generalised Brownian motion. More specifically, we assume that 

the process Zt satisfies a Stochastic Differential Equation of the form

dZt =  A dt +  a dW t ,

where Wt is a standard Brownian motion, and A and a are constants. The equation 

describing the dynamics of logarithmic exchange rates, Yt , then becomes:

dYt =  (A + R  (2)0) dt A a dWt. (3.6)
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Ito’s Lemma implies that the actual exchange rate process itself, X t := exp(l*), 

satisfies

dXt = (m +  R  (2)*)) X t dt +  crXt dWt , with m := A +  ^cr2. (3.7)

Note in particular that the exchange rate model we have thus obtained is in fact dy

namically complete in the sense of Harrison and Pliska (1981). In particular, although 

the exchange rate in our model may display cyclical fluctuations and bubbles, from 

the point of view of derivatives pricing, it “looks” just like the classic Black-Scholes 

model.

Theorem  3.4.7 Let (lf)*>o be a solution to the Stochastic Delay Equation (3 .6) .  

I f  the function R  : C [0 ,T ]— ÎR is locally bounded and measurable, then (2)f)*>o is 

e ith er  recurrent or transient. Moreover, in the recurrent case there exists a unique 

stationary probability distribution 7r* on C [0 ,T ], and for any initial distribution 7To of 

2)o the distribution 7rt ofVQt converges in total variation to n*.

PROOF: Sch eu tzow  (1984, T heorem  3). □

W e are now  in  th e  p osition  to  derive sufficient con d ition s for th e  recurrence o f  th e  

eq u ilib riu m  exch an ge rate process. For any elem en t t) E C[0, T ], define

ti :=  m in  ti(f); fi :=  m a x  n(£);
-  0< t < T  V n  0< t < T  V n

Theorem  3.4.8 Suppose the function R  : C[0, T]— ÎR has the following properties:

(A -|- R(t})) • X)— > — oo as X)— >■ +  oo,

(A +  R(x))) • tj— y — oo as X)— y — oo.

Then the process (2)*)t>o is recurrent.
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PROOF: Scheutzow (1984, Theorem 5). □

Note that the recurrence on IR of the logarithmic exchange rate process Yt obviously 

implies recurrence on IR+ of the exchange rate process X t itself. In light of Sec

tions 3 .3 .4  and 3 .3 .5 , it is obvious that the condition for recurrence translates into a 

requirement regarding the relative balance of fundamentalism versus pure technical 

trading. More precisely, if on average fundamentalism becomes dominant eventually 

when rates become arbitrarily high or low, then the resulting equilibrium exchange 

rate process will be recurrent. For what follows, we will assume that the hypotheses 

of Theorem 3 .4 .8  are satisfied.

3.4.4 Profitability o f Trading Strategies

We will now study the profitability of different trading strategies in an environment 

in which technical traders are active. For the purpose of doing so, we consider a 

small investor, i.e. one whose trading does not affect equilibrium prices. Let 0(f) 

be a trading strategy, i.e. at time t , the amount of foreign currency held is given by 

0(f). We assume that 0(f) is adapted and predictable with respect to the filtration 

generated by the exchange rate process X t. Note that predictability merely reflects 

the intuition that the decision on the amount of currency held over any given period 

must be based on the information available at the beginning of that period. However, 

beyond the intuition, predictability is also an important technical requirement in 

order for the gains from trade to be well-defined; see Harrison and Pliska (1981) for a 

detailed elaboration on the issue of admissibility of trading strategies. For any given 

trading strategy 0(f), we can now define the gains from trade as
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Note that, by running a suitable strategy in the domestic money market, we can 

always make the trading strategy self-financing. Hence, since we have normalised 

the price of the domestic bond to one, the process Gt{4>) indeed describes the gain 

made from following the trading strategy <fi(t).

BUY-AND-HOLD:

Let use first consider a simple “buy-and-hold” strategy, i.e. <j>= 1. Recall that from 

Theorem 3.4 .8  we know that the exchange rate process X t is ergodic. The Ergodic 

Theorem then implies that the expected gain over any finite period is the same as 

the long-term average gain along any given trajectory. More precisely,

1 n_1
E  [ ] =  lim -

n—►oo Tl
k=0

Here, dkt is the shift operator, i.e. X t o d kt =  X(k+i)t- We are now in the position to 

study the profitability of the buy-and-hold strategy:

P ro p o sitio n  3.4.9 Over any finite period t, the expected gain from the buy-and-hold 

strategy is zero,

E [ ] =  0.

PROOF: For the buy-and-hold strategy, the gains from trade over any finite period t 

are simply Gt{4>) = X t — Xo. Hence we obtain
1 n—1

E[G,(<j>)] = lim — Y  (X(fc+1)< — Xm)
n —►oo Tl — 

k=0

=  lim -  (X nt -  X 0) =  lim - X nt.
n—► oo n  n—►oo Tl

Hence, the limit of X nt/n  as n — >-oo must exist. But since Xt  is recurrent, this limit 

can only be zero, since otherwise X t would have to diverge to infinity which would 

contradict recurrence. □

Gt((f>) of lkt, alsmost surely.
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The interpretation of this result is interesting. Even though we allow the noise de

mand to impose a non-zero trend on the exchange rate process, and even though one 

would expect that such a trend will be amplified by technical trading, the expected 

return on investment in the foreign currency is nonetheless zero.

T e c h n ic a l  T r a d i n g :

In this section, we will investigate the profitability of technical trading rules them

selves. More specifically, suppose an investor simply “mimics” the trading behaviour 

of the “average trader”,

<f)(t) =  (m +  #(?)*)) .

P r o p o s i t i o n  3 .4 .1 0  The expected gains from  the average m arket stra tegy are posi

tive,

E [ G t{4>)]> 0.

PROOF: U sing  th e  defin ition  o f  th e  gains from  trade process to g e th er  w ith  th e  equ i

libriu m  eq u ation  (3 .7 ) for th e  exchan ge rate process, w e ob ta in

Gt(<t>) = f  (J4,{S) dW s + f  (m  +  # ( 2 ) a)) <£(s) ds.
Jo Jo

Upon taking expectations, the integral with respect to the Wiener process vanishes, 

and we obtain
f t  v______ _

xx2 ds > 0E [ G t(<t>))= f  E \ ( m  + R(Z)s)) 
Jo L

□
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3.5 Conclusions

We have studied the dynamic properties of equilibrium exchange rates when market 

participants follow technical trading rules. By its very nature, technical trading leads 

to feedback effects similar to those inherent in the implementation of dynamic hedging 

strategies. As a consequence, technical trading causes exchange rate fluctuations of 

a magnitude far beyond the level justified by changes in the economic fundamentals. 

In other words, technical trading leads to the emergence of irrational price bubbles. 

However, if there is a sufficient level of fundamentalism in the market, it can be 

shown that bubbles will always burst in finite time.

Moreover, our results demonstrate that, while being ex-ante irrational, their very ex

istence can make technical trading rules ex-post profitable. In other words, technical 

trading can be seen as a kind of “self-fulfilling prophecy”. These results are in line 

with the empirical evidence.



Chapter 4

Optim al Trading for a 

Large Trader

4.1 Introduction

The purpose of the present chapter is twofold. First, it provides a unified generic 

framework in which the optimal trading pattern of a large trader who might possess 

private information can be studied. The framework is general enough to encompass a 

wide variety of standard models, most notably classic micro structure models such as 

Kyle (1985), as well as general equilibrium models. Second, it analyses the manner 

in which the optimal trading pattern changes if the large trader holds an option, 

written on the traded asset.

The equilibrium price setting mechanism is specified in reduced-form, encompassing 

as special cases price-setting by a competitive market maker as in Kyle (1985), Back 

(1992) or Chapter 5, as well as Walrasian equilibrium models like the ones considered

84
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in Chapters 2 and 6. The results of this chapter will be used in the subsequent chap

ters to study the interplay between options markets and the market for the underlying 

asset in the presence of asymmetric information, and to analyse the implications of 

market power for the use of options as exchange rate policy instruments.

The remainder of this chapter is organised as follows. In Section 4.2, we introduce 

the model and the mathematical framework for our analysis. The next section gives 

a detailed account of the large trader’s optimisation problem. The main result of this 

section is the characterisation of the large trader’s optimal trading strategy in the 

presence of an option, (Theorem 4.3.1). Section 4.4 analyses the value of the option 

to the informed trader and compares it to its arbitrage price.

4.2 The M odel

We will outline the model here in its most general form. More detailed specifications 

and interpretations of its components will be given later, see Chapters 5 and 6. The 

structure of the model is closely related to the model developed in Back (1992) and 

Back and Pedersen (1996). Their model in turn is essentially a continuous-time 

extension of the classic Kyle (1985) model. While prices in these models are set by a 

competitive market maker, we consider in this chapter a reduced-form specification 

in which prices are given by a generic reaction function. Obviously, price setting 

by a market maker is included in this setup as a special case, but our formulation 

allows also for alternative price setting mechanisms such as for example Walrasian 

equilibrium.
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T r a d e d  A s s e t s :

Two assets are traded continuously over the period from time zero to some final date 

T. The first asset is a riskless bond or money market account. We use the bond 

as numeraire, normalising its price to one, thus making interest rates implicit in our 

model. The second asset is risky, typically a stock or a foreign currency. After time 

T, the risky asset yields a random pay-off Vt . While the distribution of Vt  is common 

knowledge, its actual value is unknown ex ante.

A g e n t s :

There is a single, risk-neutral, large trader active in the market. For the sake of 

generality, we specify the model in reduced form from the point of view of the large 

trader. At any time t € [0, T], we denote the total demand of the large trader by X t. 

Trades at time t take place at price Pt . In the reduced form specification, we assume 

that prices are given by a reaction function in the form

Pt = H ( t ,X t,Z t).

Here, Zt is the value of some exogenous stochastic factor process, to be made more 

specific later. In lack of anything better, we will refer to Zt as the “noise” process. 

We will see in the applications how this type of reduced form pricing can be obtained 

as a result of a market equilibrium in which the large trader interacts with other 

economic agents and prices are determined by a market maker or a Walrasian auction 

mechanism, see Chapters 5 and 6, and Section 4.2.2. Note that the fact that the 

large trader’s actions may affect prices is reflected by the fact that X t appears as an 

argument of the pricing rule. More specifically, we will assume that
r \  a

- ^ H { t , x , z ) >  0; - ^ H ( t , x , z ) >  0. (4.1)

In other words, we assume that the price of the risky asset is positively related
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to both the factor Zt as well as the large trader’s demand, X t. In addition to 

observing the process Zt , the large trader may also receive a signal St• The large 

trader’s expectation at time t of the terminal value of the risky asset, based on 

the information available, is denoted by F(t,  St, Zt). Note that the signal will be 

informative for the large trader only in some of the applications considered below. 

In these cases, we will refer to the large trader also as the informed trader. Based on 

the information available at time t , the large trader forms his or her demand X t for 

the risky asset. For reasons of expositional simplicity, we restrict the large trader to 

using trading strategies 6(t) so that the demand X t is given by d X t = 0(t) dt. Note 

in particular that this assumption forces the demand process X t to be absolutely 

continuous. Although this assumption might seem unnecessarily restrictive, it can 

be shown that even if the large trader is allowed to choose from a more general set of 

strategies, the optimal strategy will turn out to be absolutely continuous; see Back

(1992).

The main difference to the Back and Pedersen (1996) model is the following; In 

addition to trading in the market for the risky asset, the large trader may hold an 

option which, if exercised, pays off an amount <p ( P t ) at time T.  Note that we assume 

the pay-off to depend on the terminal price of the asset, Pt,  and not its true value. A 

simple example would be a cash-settled European call option with strike K , in which 

case <p(Pr) = (Pt — K).  In addition to the trading strategy 0(t), the large trader 

hence has to choose an exercise policy I  for the option, which we assume to take on 

the value 1 if the option is exercised, and 0 if not. The large trader’s objective is 

then to choose a trading strategy $(t) and an exercise policy I  for the option such as 

to maximise expected terminal wealth. We will formalise the large trader’s problem 

formally in the next section. Note that we do not model the options market here, 

since this chapter focuses primarily on the large trader’s optimal trading strategy.
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The way in which the results developed here relate to equilibrium on the options 

market and what implications they have for the pricing of options is discussed in 

detail in Chapter 5.

We will now discuss briefly some examples of equilibrium models which would lead 

to the reduced form pricing rule given above.

4.2.1 Market Maker

In the models developed in Kyle (1985) and Back (1992), and further extended in 

Chapter 5, the large trader interacts with noise traders whose demand for the risky 

asset, Z t , is exogenously given. A competitive market maker observes aggregate order 

flow, Yt = X t +  Zt, and sets prices according to a pricing rule of the form

Pt = H(t ,Y t).

It is obvious that from the large trader’s point of view, this specification constitutes 

a special case of the generic framework introduced in the preceding section. In the 

next chapter, we analyse the interplay between equilibrium on the underlying market 

and the options market within this framework. We show that the existence of the 

option creates an incentive for the large trader to manipulate prices away from the 

expected true value. As a consequence, the only feasible equilibrium requires option 

prices to be alighned with the prices for the underlying asset in a way which gives 

rise to the famous “smile pattern” of implied volatility, see Chapter 5 for details.
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4.2.2 Walrasian Equilibrium

As a second example, we consider the case in which the large trader interacts with an

other group of agents, and prices are set by a Walrasian auction mechanism. Without 

being specific about the nature of these other traders, we assume that their demand 

at time t for the risky asset, given a quoted price p, is given by the demand function

pt- t  D ( t ,Z t ,p). (4.2)

Here, the process Zt could be interpreted either as the randomly fluctuating income 

of these traders, as a noise term driving liquidity demand, or as a process describing 

some fundamental information on which traders base their expectations about the 

terminal value of the asset. We will give more explicit examples of such demand 

functions D(t , Zt,p) below. At any time t the equilibrium price is the solution Pt of 

the market clearing equation

D ( t ,Z u Pt) + X t = l. (4.3)

Here, we have normalised the total supply of the risky asset to one. In other words, 

in this scenario the pricing function H (t ,x , z )  is defined implicitly by the relation

D(t , x , H (t , x , z)) +  x =  1.

Differentiating this relation it is obvious that sufficient for Assumption (4.1) to hold 

is that the demand function D(t,z ,p)  is differentiable with
O  r \

— D(t, z,p)  > 0, Z’P) < °- (4*4)

In this scenario, the value at time T  of the risky asset to the large trader is given 

by the price at which the terminal position X t can be “unloaded” in the market, i.e. 

Vt  =  h(0, Zt ). Note that in this setting, the signalling process St does not play any 

role at all. In Chapter 6, I use the framework developed in this section to study the 

use of currency options as exchange rate policy instruments.
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4.2.3 M athem atical Setup and N otation

For expositional simplicity, we will assume that both the signalling process, St, as 

well as the noise process, Z t , are given by generalised Brownian motions. More 

specifically, we assume that St and Zt are solutions to the stochastic differential 

equations

dSt = <rs(t) d W f  and dZt =  crz{t) d W f , (4.5)

where W f  and W f  are independent standard Brownian motions, and crs(t) and <?z{t) 

are deterministic functions. Note however that the results of this chapter can easily 

be extended to more general diffusion processes. A trading strategy is a process 0(t), 

adapted to the filtration generated by St and Zt, such that the corresponding demand 

process

X t  ~ x ° +  f  0{s) ds (4.6)
Jo

is well-defined.

Let P*'x,z be a weak solution to (4.5) and (4.6) conditional on St = s, Zt = z 

and X f  =  x , defined on some suitable measurable space (Q,JF). We will omit the 

superscripts s, x or  z whenever there is no ambiguity, and we also write P s'x'z for 

PqX,z. Denote by {^Ft)t>o the filtration on (D ,^7) generated by St and Zt , augmented 

to satisfy the “usual conditions”, see Karatzas and Shreve (1988, Section 1.2) for 

details. Finally, for notational convenience we introduce the following convention: 

whenever we are given a function which depends on the state variables and time 

t , we will use lowercase letters to denote the value of this function at time T.  For 

example, we write f ( s , z )  := F (T , s , z )  and h(x,z )  := H (T ,x , z ) .
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4.3 The Large Trader’s Problem

We develop a precise formulation of the large trader’s maximisation problem in Sec

tions 4 .3 .1 , 4 .3 .2  and 4 .3 .3 . The main result is stated at the end of Section 4 .3 .3  

(Theorem 4 .3 .1 ). An intuitive derivation is provided in Sections 4 .3 .4  . . .  4 .3 .7 , while 

a rigorous proof is given in Appendix 4 .A.

4.3.1 W ealth Dynam ics

Suppose first that the large trader changes her position X t in the risky asset only at 

discrete times 0 =  to < t\ < . . .  < tn =  T. Denote by Xk  the number of shares held 

over the period from tk to tk+1 , and by By. the number of bonds. Trade at time tk 

in the risky asset takes place at price P*. The budget identity for the large trader is 

hence

Bk-i = Bk +  Pk * A Xk,

where AX k  := Xk — X k - i . That is, the wealth from previous period’s bond position, 

Bk-1, is used to finance the change in the position in the risky asset, Pk • A X k , and 

any remaining funds are re-invested in bonds, Bk . We can rewrite this as

A Bk =  - P k ■ A X k =  - P k - 1 * AXfc -  A Pk • AXfc. (4 .7)

The continuous-time equivalent of this equation is

dBt =  - P -  dX t -  d[P, X ] ( , (4 .8 )

where P~ denotes the left-continuous version of P. Note that, under the working 

assumption of absolute continuity of the large trader’s strategy, dXt =  6{t) dt , the 

covariation term vanishes and the budget dynamics become dBt =  —Pf6( t )d t .
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4.3.2 Objective Function

The large trader’s objective is to maximise expected terminal wealth. Ignoring the 

option for the moment, the large trader’s terminal wealth is given by

Bt  +  VT ■ X T = B0 +  VT ■ X 0 + f  (VT -  P f )  0(t) dt. (4.9)
Jo

Since Bo and X o  are exogenously given and thus irrelevant for the optimisation 

problem, we will assume Bo = Xo = 0 and focus on the last term in the above 

expression. Given any strategy 6(t) and the associated demand process dXf  =  0(t) dt, 

prices are set according to the rule Pt = H(t , X \ , Zt). Note here that since X f  and Zt 

are by definition continuous, so is the price process Pt. Recall also that given a final 

value S t  of the signalling process, the expected value of Vt  is given by 

Using the law of iterated expectations, we can hence write the expected terminal 

wealth of the large trader for given starting values *So =  5, Xo =  x, Z q =  z, and given 

strategy 6(t) as

T

I  (VT -P , )0 ( t )d t  
Jo

= E' '*A f T ( F ( t , S „ Z , ) - H ( t , x ! , Z t))$(t)dt  
[ Jo '-------------------v------------------- '

=: n  ( t , s „ x f , z t)

Note that the function II(£, St, X f , Zt) has an economic interpretation: It describes 

the expected marginal benefit of holding an extra unit of the risky asset, F(t, St, Zt), 

minus the current purchasing price, H ( t ,X f , Zt). Following our convention, we write

E s , x , z

7r(s, re, z) := II(T, s , x , z) = f ( s , z) — h(x , z).

W e now  incorporate th e  op tion  in to  th e  large trader’s o b jec tiv e  fu n ctio n . S in ce we 

do n ot m o d el th e  m arket for op tion s, w e treat th e  num ber o f  o p tio n s h eld  by th e
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large trader as exogenous for the large trader’s optimisation problem. Recall that the

option, if exercised, pays off an amount ip(Pr) at time T, and the price Pt  at time

T  is set according to the rule Pt =  h(Xj.,ZT).  Since from the large trader’s point

of view the pricing rule h(x, z) is exogenously given, we shorten notation by setting

4>(x,z) := <p(h(x, z)). Hence, if the large trader holds p units of such an option, his

expected terminal wealth becomes
•Tf  n (i, St, X t , Zt)9(t) dt + pI4>{XsT, Zt) 

Jo
(4.10)

Here, I  denotes the exercise policy, which we assume to be =  1 if the option is 

exercised, and =  0 if not. The exercise policy will be determined endogenously later, 

see Section 4.3.6.

4.3.3 Admissible Strategies

The choice variables for the large trader are the trading strategy 9(t) and the exercise 

policy I. Note that due to our assumption of absolute continuity, the demand process 

X t is automatically predictable. This is in line with the intuition that the decision 

on what assets to hold over any period of time must be based upon the information 

available at the beginning of that period. It is also important for technical reasons, 

see for example Harrison and Pliska (1981) for a detailed elaboration on this issue. 

On the other hand, since the decision whether to exercise the option or not is made 

at time T, it can be contingent on all information available to the large trader at 

that time.

Formally, an admissible policy is a pair (0, /) ,  where I  is an .Fr-measurable random 

variable taking values in {0,1}, and 0(t) is a process adapted to o such that
.  Jl .

J  n(r, ST, X ST, Zt )$(t) dr  +  PI<j>(XeT, ZT)
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is well-defined for every s, x, z E IR and t E [0, T). We can interpret V 6,I(t , s, x , z) as

the gain that is made starting at St =  s, X t = x and Zt = z  at time t and following

trading strategy 6 and exercise policy I  thereafter. The large trader’s problem is 

thus to find an admissible policy (0,1) which maximises V e,I(t, s, x, z). As usual in 

the theory of stochastic control, we define the value function of the problem as

V*(t, s, x , z) := sup V 6,I(t , s , x , z). (4.11)
(0,i)

We are now ready to state the main result of this section.

T h e o rem  4.3.1 (O p tim al S tra teg y ) There exists a non-degenerate solution to 

the large trader’s problem if  and only if  the pricing rule satisfies the no-arbitrage 

condition H ( t ,x , z )  =  E%[ h(x,ZT)  ]. In this case, there exist functions X * ( t , s , z )  

and I*(s ,z ) such that the optimum is attained by exercise policy I* =  I*(St , Zt )> 

and any trading strategy of the form

9(t) := a(t) ( X ‘(t, S„ Zt) -  X et ) , (4.12)

where a(t) is any deterministic function such that X f  — > X *( t , St, Z t) as t — > T.

The following Sections 4.3.4 . . .  4.3.7 provide an intuitive derivation of this result, 

while a rigorous proof is given in Appendix 4.A. It makes use of standard results 

from the theory of controlled diffusion processes. For reference, see Fleming and 

Soner (1993) or Krylov (1980).

4.3.4 Bellman Equation

The key to finding the large trader’s optimal policy is the Bellman equation, a partial 

differential equation which characterises the value function of the problem. We will
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give an intuitive derivation of this equation, and refer to the standard literature on 

stochastic control theory for the rigorous proofs. We will see that the boundary 

condition of the Bellman equation can be used to pinpoint the optimal policy.

To develop an intuitive motivation for the Bellman equation, consider first any arbi

trary strategy 6(t). By optimality of V* we see that

V*(t, s, x , z)

/
tf+5

n ( r ,  ST, x ° ,  Z t )9(t ) dr  +  E [ V ( t  + S, S t+s, X°+s, Zt+S) ]

with equality at the optimum. If the value function is sufficiently smooth, we can 

divide both sides of this inequality by 8 and pass to the limit as 8 — > 0 to obtain

( J ^  +  l { ^  V*(t, s, X , z) +  n ( t ,  5, X , z)9 < 0. (4 .13)

Here, Let is the infinitesimal generator (see for example Karatzas and Shreve (1988) 

for the precise definition) of the joint stochastic process ( S t , X f , Zt), i.e.

L‘:=̂ +K4w£ +a|(<)£)- ( 4 - i 4 )

Since 6 was arbitrary, inequality (4 .13) holds for all strategies. Intuitively, an op

timal strategy should attain equality, so that we should expect the value function 

V*(t, s, x, z) to be a solution V  of the following partial differential equation:

d_
e t

This equation is known as the “Bellman Equation” associated with the large trader’s 

optimisation problem. Indeed, it can be shown that if the value function V*(t , s, x , z) 

is finite and sufficiently regular, then it must be a solution to the Bellman equation 

(4 .1 5 ), at least in a generalised sense.1 Conversely, if a function V ( t , s, x , z) is a solu

tion to (4 .15) under suitable boundary conditions, then it can be shown to coincide

sup<| ( ^  +  / , A y  +  I w j = 0 .  (4.15)

1This result is known as “Bellman’s Principle” .
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with the value function, i.e. V(t, s, x, z) = V*(t, s, z, z)?  See Fleming and Soner

(1993) or Krylov (1980) for a rigorous mathematical derivation of these results. Let 

us now take a closer look at the Bellman equation: Substituting the definition of L\  

back into (4.15) we get

T  \ v, + l  ^ zV" + +  (v* + n) 4  = °-
We see that the above equation is linear in 9, i.e. in order for the supremum to be 

finite the co-efficient of 0 must be zero. We can thus split up the Bellman Equation 

into the following two separate equations:

Vt + l  =  0, (4.16)

Vx + n  = 0. (4.17)

Equation (4.16) is just the heat equation associated with two-dimensional Brownian 

motion. The Feynman-Kac formula (see e.g. Karatzas and Shreve (1988)) allows us 

to write its solution (if it exists) in the following form:

V { t , s , x , z )  = E ’/ [ V ( T , S t , x , Z t ) } ,

Note that the right-hand-side of this equation corresponds to the expected terminal 

value of V,  given that the large trader’s position x is kept constant from time t 

onwards. Equation (4.17) has a more economic interpretation. It states that the 

marginal gain Vx(t, s, x, z) from holding an extra unit of the risky asset at time t , 

must equal the purchasing cost, H (t ,x , z ) ,  minus the expected marginal benefit, 

F(t , s , z ) .  To see the intuition behind this, recall that the function V(t,  5, x, z) is 

supposed to give the maximal gain achievable by starting at St =  s, X t — x, and

2Results of this kind are called “Verification Theorems”.
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Zt = z y and trading optimally hence. Now assume that the equation was violated, 

say Vx( t , s ,x , z )  +  Tl( t ,s,x,z)  < 0. The large trader could then short 8 units of the 

risky asset at time t , and trade optimally from the new starting point Xt  =  x — 8, 

which would yield a gain of V ( t , s , x  — 8, z) «  V ( t , s , x , z )  — 8Vx( t , s ,x , z ) .  The 

approximate loss thus incurred, 8Vx(t, s, x, 2), is by assumption smaller than the 

expected gain, — <£II(i, 5 , x, z). We have thus constructed a strategy which yields a 

higher gain starting from Xt  =  x than the original V ( t , s, x , 2 ), and hence V ( t , 5 , x , z) 

cannot have been the maximal achievable gain.

4.3.5 Boundary Condition

We will now try to get a better intuition for the boundary condition for the Bellman 

equation and see how it can help us pinpoint the optimal strategy. Let V ( t , s , x ,  z) 

be any solution to (4.16) and (4.17). For a given admissible strategy 6 consider the 

process V ( t ,S t ,X f ,Z t ) .  Ito’s Lemma gives:

d v  = {Vt + \  (?zV„ + ° l v ss) } d t  + V J  dt + az Vz dWtz  + c sVa d W f
'-------------- v-------------- '

=  0 by (4.16)

=  -110 dt +  (tz Vx d W f  +  (75 K  d W f ,

where we have omitted the arguments (t^St^Xf^Zt)  of V  and its derivatives. Upon 

taking expectations, the integrals with respect to the Wiener processes vanish,

[ y (Tj 5r! x sr , ZT) ] -  K (0,5, x, z)

=  - E s ,x , z f  n ( t , s , x 6,, z t)e(t)dt 
Jo

= - V s'1 (0, s , X, z) +  E°*'z [ P H { X ^  Z t ) ] .
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Now suppose the value function V*(t, s, x, z) exists and is sufficiently smooth. We 

then know that it solves the Bellman Equations (4.16) and (4.17), so that we can 

substitute V*(t, 5, x, z) for V ( t , s , x , z )  in the above equation to obtain

V"*(0, s , x , z )  (4.18)

=  V»-'(0, s, X, z) +  \ V*(T, S t ,  X eT, ZT) -  pI<t>{XeT, ZT) '
L s ^  ✓ J

=:q '{ST, X 9T, Z r , I )

This equation has the following interpretation; the quantity E s,x,z[ q*(Sx, X?,  Zt \ I )]  

measures the difference between the value V0,/(O, s, x, z) of any given policy pair (6, 1) 

and the maximal achievable value ^*(0, s, x, z). The function q*(Sr,X^,  I)  can 

thus be identified as the loss incurred by the large trader by deviating from the 

optimal strategy. In particular we deduce that E s,x,z[ q*(Sr, Zt ', I) ] must be 

non-negative, and zero at the optimum. We will reverse this argument to construct 

the optimal policy and value function. More specifically, we will construct a function 

q*(s, x, z-1) and “optimality conditions” x*(s,z) and I*(s,z) in such a way that 

q*(s, x , z; I) > 0 and =  0 if and only if x =  x*(s, z) and I  =  /*(s, z), see Section 4.3.6 

below. Based on this we use (4.16) and the Feynman-Kac representation to construct 

a candidate V*(t, s, x , z) for the value function which satisfies (4.18), see Section 4.3.7 

below. From this and the above arguments we can conclude that an exercise policy 

I*(St , Z t ) and a trading strategy which ensures that X?  =  x*(St , Z t ) will attain 

the optimum, and that V*(t, s, x , z) is indeed the value function of the large trader’s 

problem. The formal proofs for all these statements can be found in Appendix 4.A. 

We interpret x*(s, z) as the optimal “target position” towards which the large trader 

should drive his position X f  in the market as t — >■ T, conditional on St  = s and 

Zt =  2 - This is similar to the arguments presented in Back (1992) and Back and 

Pedersen (1996).
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Let us begin our analysis by noting that we can deduce the shape of q*(s,x, z; I)  

from the Bellman equations: Evaluating (4.17) at t = T  implies:
r \  a

— q*(s, x , z; I) = z) - pl(j)\x, z). (4.19)
'--------- V--------- '

=  — 7r(s, £, z)

Given any functions x*(s,z) and I*(s ,z ), it easy to check that

r x * ( s , z )

q*(s,x ,z ;I )  = ir(s,£,z)d(  + pl*(s,z)<f>(x*(s,z),z) -  pl<j>(x,z) (4.20)
J x

satisfies (4.19) with “boundary condition” q*(s, x*(s, z), z\ /*($, z)) =  0. We can give 

an intuitive interpretation of (4.20). Recall that we think of z*(.s,z) as an optimal 

“target position” towards which the large trader should drive X f  as t — >T. Recall 

also that q*(s,x,z; I) measures the “loss” incurred by the large trader by deviating 

from the optimal policy. Any marginal decrease in x away from x*(5 , z) for example 

yields an expected marginal loss of f ( s , z )  due to the reduced position in the risky 

asset, contrasted by a marginal gain of h(x,z)  due to lower cost of acquiring this 

position. The total marginal loss from deviation in x is hence n(s ,x ,z ) .  Iterating 

this argument motivates the integral term in (4.20). Similarly, implementing exercise 

rule I  at x instead of I*(x,z)  at x*(s,z) results in losing pl*(s, z)(f>(x*(s, z), z) while 

gaining pl(j>(x,z), which motivates the remaining terms in (4.20).

4.3.6 Optimal Policy

By construction, we have q*(s,x*(s,z),z\  I*(s, z)) =  0. Our remaining task is hence 

to find x*(s,z)  and I*(s,z)  in such a way that the mapping (x , I )  i->- q*(s,x,z; I) 

has a global minimum at x = x*(s,z) and I  = I*(s,z).  We will proceed in two 

stages. First we keep the exercise decision fixed and derive optimal positions arj(s, z )
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and z j(s ,z )  conditional on no exercise respectively exercise. We then determine the 

optimal exercise policy /*(s,z) endogenously.

N e v e r  E x e r c i s e :

Let us consider first the case in which the large trader never exercises the option, 

i.e. I* =  0. We define the conditional loss function as

q0(s,x ,z-,I ,x ')  := /  7r(s, f, z) d£ -  plcj)(x, z).
J X

Note that we made the dependency on the target position x l explicit since this is the 

variable we need to determine. Intuitively, for any given x , the optimal x' should be 

the one for which the loss from deviating is maximal. Therefore we set

a:2(s,z) := arg max q0(s ,x ,z ;  I ,  x ' ) .  (4-21)X1

The necessary first-order condition for this problem is

/ ( s ,  z) = h(xl(s,  z), z). (4.22)

Note that, since we assume that h(x, z) is monotonically increasing in x , the mapping 

x' i-»- qo(s,x, z; I ,x ' )  will be concave, so that the first order condition (4.22) is also 

sufficient to uniquely characterise the maximum. Note also that a:J(,s, z) indeed does 

not depend on x or / ,  so that our notation is justified. We now substitute the 

maximum back into the conditional loss function and define

q*(s, x , z; I) := q0(s, x, z; / ,  ^ ( s ,  z)).

Finally, since h(x , z) is monotonically increasing in x , differentiating the first-order 

condition (4.22) shows that a;J(5,z) is monotonically increasing in 5.



Chapter 4. Optimal Trading for a Large Trader 101

A l w a y s  E x e r c i s e :

Analogously, we now consider the case in which the large trader always exercises the 

option, i.e. I* =  1. We define the conditional loss function as

q i ( s , x , z ; I , x f) :=  /  7r(s, f ,  z) d£ +  p<t>(x\ z) -  pl<t>{x, z).
J X

Again, x' is the variable we need to determine. As before, we set

x\(s ,z )  := argmax<?i(,s, :r, z; I , x r). (4.23)
X *

The necessary first-order condition for this problem is

/ ( s ,  z) =  h(xl(s,  z), z) -  p(j>x(x\(s, z), z). (4.24)

If <j)(xy z) is weakly concave in x, the mapping x' qi(s, x, z; I , x r) will be concave, 

so that the first order condition (4.24) is also sufficient to uniquely characterise the 

maximum. Note also that xl(s ,z)  indeed does not depend on x or / ,  so that our 

notation is justified. We now substitute the maximum back into the conditional loss 

function and define

q t ( s ,x , z ; I )  := qi(s,x ,z;  I ,x \ (s ,z ) ) .

An argument similar to the one used in the preceding paragraph shows that mono

tonicity of h(x, z) and weak concavity of <f>(x, z) imply that x l ( s , z) is also increasing 

in s. Moreover, a direct computation shows that x l(s ,z )  > a:J(s,^).

E n d o g e n o u s  E x e r c i s e :

Continuing our intuitive argument of maximising the loss at the optimum, we should 

seek to determine the exercise policy I*(s, z) in such a way that the option is exercised 

if and only if qj(s, x , z] I) > <?J(s, z, z\ / ) ,  or, equivalently, if and only if

/  *r(s, f , z) < p<t>{x\(s, z), z). (4.25)
J x \ { s , z )



Chapter 4. Optimal Trading for a Large Trader 102

Note that this condition shows that the optimal exercise policy depends only on s 

and z, and not on x or I. The economic interpretation of (4.25) is as follows. Recall 

that Xq(s , z ) is the optimal target position conditional on no exercise. Hence the 

left-hand side of (4.25) is the loss incurred by trading towards x j(s ,z ) instead of 

x j ^ z ) .  The right-hand side however represents the gain made from the option’s 

pay-off. Hence (4.25) states that the large trader should exercise the option if and 

only if the loss incurred by deviating from the optimal position is outweighed by the 

option’s pay-off.

Using the first-order conditions for xj(,s,z) and x j(s ,z ), we show in the appendix 

(Proposition 4.A.2) that for every 2 there exists a unique cut-off point s(z), defined 

by the equality

ql(s, x, z ; I) = q*(s, x, z ; I ), (4.26)

such that q$(s, x , z; I) > q ^ s , x , z; I)  if and only if s > s(z). Note also that by (4.25) 

the cut-off point does not depend on x or I. We can hence formalise the optimal 

exercise policy in the following way;

1 if s > s (z )
(4.27)

0 otherwise

By construction, x j(s ,z) and x \(s , z )  are the optimal target positions conditional on 

no exercise respectively exercise. Intuitively, the unconditional target £*(s, z) should 

hence equal xj(s, z) if exercising the option is optimal, and X q ( s , z) if not. Therefore 

we define

x*(s,z)  := I*(s,z)x*1(s,z)  +  (1 -  /*(s,z))a;J(s,z).

A similar argument regarding the loss function motivates setting

q*(s, x, z; I) := I*(s , z)q{(s, x, z; / )  +  ( ! -  I*(s, z))q£(s, x, z; I).
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It is easy to check that q*(s,x,z', I)  is indeed of the form (4.20). In the appendix 

(Proposition 4.A.3) we show that for any s and z, the mapping (x , I)  i->- q*(s, x , z\ I) 

indeed has a global minimum at x  =  x*(s,z) and I  = I*(s,z),  which qualifies 

q*(s, x , z; I)  as our loss function.

We argued in Section 4.3.5 that any strategy 9 which ensures that X f  — > x*(St , Zt ) 

as t — > T  is a candidate for the optimum. It is hence natural to construct 9 in such 

a way that X 6 behaves like a Brownian Bridge with random target. More precisely, 

set X*(t, s ,z )  := E f ’z[ x*(St ->Zt ) ] and define

e(t) := a(t) • ( X ‘(t, St , Zt) -  X f )  ,

where a(t) is some adjustment speed factor with a(t)  — > oo as t — > T  fast enough 

to make X f  converge to x*(St , Zt ). We show in Appendix 4.A that this strategy is 

indeed optimal.

REMARK: From the above we see that we can write the overall first-order condition 

for the large trader’s terminal position in the following form:

h (x*(ST, ZT), Zt ) = f { S T, ZT) +  pI*(ST, ZT)<f>x (x*(ST, ZT), ZT) . (4.28)

Since for an optimal strategy, we have X ? =  x*(St , Zt ), the above equation im

plies that the terminal price of the asset, /i(X |-,Z t), equals its expected true value, 

/ ( St , Z t ), plus a mark-up pI*(St , Zt )4>'{Xt , Z t )- Thus, unlike in the models of 

Kyle (1985) or Back and Pedersen (1996), the existence of the option implies that 

the large trader has an incentive to drive prices away from the true expected value 

of the asset.
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4.3.7 Value Function

We will now construct a candidate for the value function V *( t ,s ,x ,z )  based on the 

analysis in the preceding sections. Guided by (4.18) we conjecture that the boundary 

condition for the value function be given by

u*(s, x , z) := q*(s, x , z\ I) +  pl<t>(x, z). (4.29)

Obviously, v*(s,x,z)  is smooth in x and 0 , and smooth in s for s 6 IR \  {s(z)}. 

Moreover, a straight-forward calculation, using the first-order conditions for #5(3 , 2) 

and x\(s ,z) ,  shows

lim v*(s,x,z)  — lim v*(s,x, z) = ql(s(z),x,  z; I) — qQ(s(z),x, z] I) = 0,

so that v*(s,x,z)  is continuous also at 3 =  3(2). In view of (4.16), we define a 

candidate for the value function via the Feynman-Kac representation formula:

V m(t, 3 , #, z) := E;* [ v*(ST, *, ZT) ] (4.30)

We will show in the appendix (Proposition 4.A.4) that under some additional assump

tions the function thus defined indeed solves the Bellman Equation (4.15). From the 

analysis in the preceding sections it should then be clear that V*(t, 3, x, z) is the 

value function, and that the strategy defined above is an optimal strategy. Although 

the formal proof is deferred to the appendix, one remark is due here: A direct com

putation shows that

r V ( « ,  *, *) = m  [ h(x, ZT) ] =  — E T  [ f (ST, ZT) } . oy s ✓
=  F ( t , s , z )

Recall that in order to satisfy the Bellman Equation, V*( t ,s ,x ,z )  must in partic

ular solve (4.17). From the above we see that this is possible only if H ( t ,x , z )  =  

E*[ h(x, Z t ) ]• We have thus found a condition that the pricing rule must satisfy in 

order for the large trader’s problem to have a non-degenerate solution.
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4.4 Option Valuation

In this section we will make use of the results of the previous sections to derive the 

value of the option to the large trader. It will turn out that in contrast to classic 

derivatives pricing theory, the unit price of the option depends on the quantity held,

i.e. the price schedule is non-linear in quantity.

4.4.1 Pricing the Option

The value of the option to the large trader is obviously given by the expected gain 

that he or she derives from holding it. Denote by V* the value function associated 

with the large trader’s problem for a given option position p. Recall that from (4.18) 

we have

v ;  = v e’1 + E [ q ; ( s T, x >T, z r , i ) } ,

where q* is the “loss-function” for the given p, and (0 ,1) is any policy pair. Taking 

in particular $ to be the optimal trading strategy in the absence of the option, and 

I  = 0, we find that the value to the large trader of p units of the option which pays 

off (p(Pr) if exercised is given by

(y;-Vo) = e

= E
»x *(St ,Zt )

I*p( S t , Z t ) \  I k (S t ,  f, Z r ) d ^  +  p</>(xI(St,Zt),Zt)
x o(ST ,ZT )

= : i ’p ( I ( S t , Z t ))

Note that by the large trader’s first-order conditions, the term in the brackets indeed 

only depends on / ( S t ^ Z t ) ,  so that our notation is justified. By definition of the 

exercise policy, I* (S t , Z t )  =  1 if and only if ^ p( / { S t ,  Z t))  >  0. Thus,

(V; -  V0*) = E [ t f  ( f ( S T, Zt )) },
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which in particular shows that the value of the option to the large trader is positive. 

The above expectation can be seen to be the Black-Scholes price of a derivative which 

pays off an amount ^ v ( / ( S r , Z t ))  if exercised. Indeed, consider the ficticious price 

process Pt := F ( t , St, Zt). Note that Pt represents the best estimate of the true value 

of the asset, given the large trader’s information at time t. Using Feynman-Kac and 

Ito we find

dPt = <7s(t)F,(t , St, Zt) d W f  + <rz{t)Fz(t, St, Z t ) dWtz .

In other words, the process Pt is a martingale under the original measure. We 

summarise these results in the following

Proposition  4.4.1 The value to the large trader of p units of the option is given by

E  [ #  ( / ( S t ,  Z t )) ] ,

which can be identified as the Black-Scholes price of an option with pay-off pattern 

'tpp(pT); written on the (expected) true value Pt =  F ( t ,S t ,Z t) of the underlying asset.

4.A Appendix: Complements to Section 4.3

A ssum ption 4.A .1 Throughout this appendix, we make the following assumptions:

1. The function h(x,z)  is twice continuously differentiable in x, non-negative and 

strictly increasing in x, i.e. h(x ,z )  > 0 and hx(x ,z)  > 0 for all x , z .

2. The function 4>(x,z) is twice continuously differentiable in x, strictly increasing 

and weakly concave in x, i.e. (f>x(x ,z)  > 0 and <f)xx(x ,z)  <  0 for all x , z .
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Note that (2) is in particular satisfied if in addition to (1), h(x,z )  is weakly concave 

and <p(p) is strictly increasing and weakly concave in p. The latter is in particular 

true for the European call option pay-off <p(p) =  (p — K).

Proposition  4 .A .2 (Cut-O ff Point) Let q^s ,  x, z; I) and q^(s,x, z\ I) be defined 

as in Section 4-3.6. Then there exists a unique cut-off point s(z), independent of x 

and I , such that

ql(s,x,  z; I) > qQ(s,x,z; I)  if and only if s >  5(2)

PROOF: From the definitions of gj(s, £, z ; /)  and <?J(s, x, z\ I)  and the first-order 

conditions (4.22) and (4.24) for a;5(.s,z) and x\(s ,z )  we find
Q

—  (<?i(s, x , 2 ; I) -  qo{s, x, z; /))  =  (®;(s, z) -  ^ ( s ,  z)) f a(s, z) > 0, 

since f ' ( s )  > 0 by assumption, and a:J(s,z) > yo(s,z) as was shown in Section 4.3.6.

□

Proposition  4. A .3 (Loss Function) Let the function q*(s ,x ,z \ I)  be defined as in 

Section 4-3.6. Then, for any fixed s and z, the mapping (x , I ) *-> q*(s,x,z; I) has a 

global minimum at x =  x*(s,z) and I  =  /*(s,z).

PROOF: We consider the two cases, I*(s,z)  =  0 and I*(s,z)  =  1, separately.

Case (1): I*(s,z) =  0. Here, x*(s,z) =  z2(s,z) and q*(s,x,z;I )  =  <?J(s, x, z; I). We 

have
Q

— (q l{s ,x ,z ] I ) =  -7T (s,x,z)-pl<t>x(x ,z )  (4.31)
^2

— ql(s ,x ,z ' ,I )  = hx(x,z)  -  pl<j>xx{x,z)  (4.32)
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Hence, since <j>xx <  0 by assumption, gj(5, #, z; I)  is strictly convex in x  by (4.32), so 

that for each I  there exists a unique global minimum. From (4.31) we see that the 

minimum is attained at x =  a;J(s, z) if I  =  0, and at x =  #J(5, z) if /  =  1. We need 

to show that the overall minimum is at I  =  0, i.e. that

q£(s, xl(s,  2 ), z ; 1) > q*(s, x*(s, 2 ), 2 ; 0) =  0.

Since /*(s, z) =  0, we know already by definition that #J(s, x , 2 ; I) > ql(s , x , 2 ; I)  for

all x and I. Choosing x = #^(5 , 2) and I  = 1, this implies

qo(s, Xi(s, z), z; 1) > ^ ( s ,  a?;(s, z), z; 1) =  0 =  q^s ,  #5(5, 2 ), 2 ; 0),

which is what we had to show.

Case (2): I*(s,z) =  1. Here, x*(s,z) =  #^(5 , 2) and q*(s,x, z; I) = ql(s ,x ,  z; I). We 

have

d
— qi(s ,x ,z ; I )  = -n(s ,x ,z ) -p l< f>x(x,z )  (4.33)
Q2

— q \(s , x , z \ I )  = hx(x ,z)  -  pl(f>xx{x,z) (4.34)

Hence, since </>xx <  0 by assumption, ql(s, x , 2 ; I) is strictly convex in x  by (4.34), so

that for each I  there exists a unique global minimum. From (4.33) we see that the

minimum is attained at x =  z) if /  =  0, and at x =  #J(5, z) if I  = 1. We need

to show that the overall minimum is at /  =  1, i.e. that

0 =  q*(s ,x l(s ,z ) ,z; l)  < ^ ( 5 , #5(5 , 2 ), 2 ; 0).

Since /*(s, z) =  1, we know already by definition that #J(s, x , z\ I)  <  q$(s, x , z; I)  for 

all x and I. Choosing x  =  #5(5 , 2) and /  =  0, this implies

<71(5, # 1(5, z), z; 1) =  0 =  qg(s, x£(s, 2), z; 0) <  ^ (5 ,  #5(5,2) , 2; 0),
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which is what we had to show.

□

Proposition  4 .A .4 (Value Function) Let V*( t ,s ,x ,z )  be defined as in Section 

4-3.7. I f  the market maker’s pricing rule satisfies H ( t ,x , z )  =  E*[ h(x ,Zx)  ], then 

V*(t ,s ,x ,  z) satisfies the Bellman Equation (4.15) in the classical sense, with bound

ary condition

V*(T, s , x , z) = v*(s, x , z).

PROOF: We have seen in Section 4.3.7 that the function v*(s ,x ,z ) is continuous. 

Results from the theory of linear parabolic differential equations ensure that there ex

ists a classical solution to (4.16) with boundary condition V*(T, s, x, z) = v*(s,x,z).  

From the Feynman-Kac representation theorem (see for example Karatzas and Shreve 

(1988, Thm 5.7.6, page 366)) we know that the solution can be represented as

V ' ( t , 8 , x , z )  : = E 3t 'z [v*(ST, x , Z T)] .

A direct computation then shows that
A

V ' ( t , s , x , z )  = E ‘ [h (x ,Z T)} .  = -  E ‘t [ f ( S T) \

= F \ t , s {

Hence, if H (t , x , z) =  E%[ h(x, Z j )  ], the right-hand side of the above equation equals 

n ( t , s ,x , z ) ,  so that V*( t ,s ,x ,z )  also satisfies (4.17). Following the arguments made 

in section 4.3.4, this implies that V*(t ,s ,x ,z )  is in fact a solution of the Bellman 

Equation (4.15), which was to be shown.

□

P roof of Theorem  4.3.1: Define the function V*(t , s, x , z) as in Proposition 4.A.4. 

Under our assumption regarding the market maker’s pricing rule, we have seen in
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Proposition 4.A.4 that V*(t, s , x , z) solves (4.16) and (4.17). Let (6, 1) be an arbitrary 

admissible policy. Repeating the arguments made in Section 4.3.5, we apply Ito’s 

Lemma to the process V*(t1S t , X ^  Zt) and take expectations to obtain

V*(0,s , x , z )  = V s'1 (0 ,s,X ,z) +  [ < A S t,X 6t , Z t -,I)].

From Proposition 4.A.3 we know that q*{St) Z t \  /)  >  0 with equality if X j  =  

x * ( S t , Z t ) and /  =  7 * (5 t,^ t)-  But this is true by construction for the policy pair 

(6*, I*). Hence we conclude that

V 6,I{t^s^x^z) < V*( t ,s ,x ,z ) ,

with equality if 6 = 0* and I  =  I*. This shows that the policy pair (6*, I*) indeed 

maximises V e,I(t , 5, x, z), which is what we had to show. We also see that the function 

V*(t , s, x, z) constructed in Section 4.3.7 is indeed the value function associated with 

the informed trader’s problem, as defined in (4.11).

□



Chapter 5

A sym m etric Information and 

the “Sm ile” Pattern

5.1 Introduction

In recent years, a fast growing literature has arisen which studies the effects of asym

metric information on asset prices. However, comparatively little has been said about 

the impact of asymmetric information on the pricing of derivative securities. The 

present paper investigates the manner in which an option, held by a large, informed 

trader, changes the nature of equilibrium prices for the underlying asset, and how 

this feeds back into option prices. As analytical framework, we choose an extension 

of the continuous-time Kyle (1985) model as laid out in Back (1992) and later ex

tended by Back (1993) and Back and Pedersen (1996). Here, a large trader, who 

receives a private signal about the fundamental value of the traded asset, interacts 

with pure noise traders. Prices are set by a risk-neutral competitive market maker.

I l l
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As in the asymmetric information model of Glosten and Milgrom (1985) the prices 

set by the market maker naturally satisfy a zero expected profit condition. In this 

type of model, the informed trader typically drives prices towards the expected value 

of the asset, thus successively revealing the private information to the market maker. 

We extend the Back (1992) model by introducing an over-the-counter (OTC) mar

ket on which derivative securities can be traded prior to trading in the underlying 

asset. There is no liquid market for options once trading in the underlying market 

has commenced. In fact we can show that allowing options to be traded while there 

is asymmetric information regarding the underlying asset would cause market break

down. Hence, closing the options market as soon as the underlying market opens 

can be justified endogenously in our model. Unlike Back (1993), we do not introduce 

additional noise in the options market. The focus of our attention is the endogenous 

effect that options held by the informed trader have on the underlying market equi

librium and how this feeds back into option prices. These effects would be washed 

out by additional noise in the options market.

Unsurprisingly, it turns out that the presence of the option creates an incentive for 

the informed trader to manipulate prices of the underlying asset in order to increase 

the option’s pay-off. Uninformed traders might hence face a price mark-up over the 

expected true value of the asset. In other words, the informed trader creates a price 

bubble at the expense of uninformed traders. The size of this bubble is determined 

by the trade-off faced by the informed trader: On one hand, the informed trader 

gains from upward price manipulation due to the increased option pay-off. On the 

other hand, the informed trader incurs a loss from manipulation because he has to 

buy the underlying asset at prices higher than its expected value. It is the potential 

existence of such bubbles which constitutes the main difference between our model 

and the model by Back (1993), in which this kind of manipulation is precluded by
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the existence of a liquid options market with additional noise.

We derive necessary and sufficient conditions for the existence of equilibria. It turns 

out that the only feasible equilibrium on both markets requires that the market maker 

does not believe the informed trader to have an incentive to manipulate prices. This 

belief can only be rational if equilibrium option prices are “synchronised” with prices 

on the underlying market. While this synchronicity has to be assumed in Jarrow 

(1994) and Frey (1996), it is an endogenous consequence in our model. This has two 

important implications.

First, it turns out that equilibrium option prices are non-linear in quantity. This is 

in line with the findings in Jarrow (1994) and Frey (1996), where option prices are 

determined by the cost of replication, and thus non-linearity arises as a consequence 

of finite elasticity of the underlying market. It is also consistent with empirical 

observations made in the OTC market for options, in particular for large quantities.

Second, for a special case, the equilibrium price process for the underlying asset can 

be shown to follow a generalised geometric Brownian Motion. This allows us to 

compare our findings with the classic Black-Scholes analysis. In particular, we are 

able to derive an explicit expression for implied volatility. We show that the implied 

volatility pattern generated by equilibrium prices in our model displays the famous 

“skew smile pattern”, which has been observed in most financial markets ever since 

the October 1987 crash. There have been a number of other studies that explain the 

smile pattern of implied volatility. Most of these obtain the smile by exogenously 

altering the volatility structure of the underlying price process. Examples include 

Stochastic Volatility or ARCH models. The reasoning here is quite different. Here, 

no assumptions are needed regarding the underlying price volatility, the smile pat

tern rather occurs endogenously as a consequence of the market structure. To the
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best of our knowledge the only other paper in which the smile has been obtained 

endogenously is the paper by Platen and Schweizer (1998). Their analysis is based 

on a modified version of the feedback model developed in Chapter 2 and published 

previously in Frey and Stremme (1994) and Frey and Stremme (1997). However, in 

order to explain the smile pattern, Platen and Schweizer have to assume an upward- 

sloping demand curve for the underlying asset, which implies that the equilibrium 

they obtain is highly unstable. In other words, Platen and Schweizer have to assume 

an unstable equilibrium in order to explain the smile, while in our model the smile 

arises as a consequence of preventing instability.

The emergence of the skew smile pattern in our model is a result of the attem pt to 

prevent market breakdowns. Empirically, the skewness is a feature which has only 

been observed after the October 1987 stock market crash. The explanation offered 

by our analysis could be that after the crash, market participants and regulators 

implemented measures aimed at preventing similar events in the future. This might 

have brought option prices more in line with the markets for the underlying asset. 

According to our findings, such an increased level of price synchronicity would indeed 

result in precisely the implied volatility pattern that has been observed since the 

crash.

The remainder of this chapter is organised as follows. In Section 5.2, we introduce 

the model and the mathematical framework for our analysis. The next section gives a 

brief account of the informed trader’s optimisation problem, following the arguments 

developed in Chapter 4. Section 5.4 analyses the structure of equilibria on both 

markets, and the implications for the pricing of the option. The resulting price 

schedule for options and the implied volatility pattern are studied in detail in Section 

5.5. Section 5.6 finally concludes.
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5.2 The M odel

The model is closely related to the one developed by Back (1992) and Back and 

Pedersen (1996). Their model in turn is an extended continuous-time version of 

the classic Kyle (1985) model. A single risky asset and a riskless bond are traded 

continuously over the period from time zero to some final date T. We take the riskless 

bond as numeraire, thus making interest rates implicit in our model. After time T, 

the risky asset is liquidated and yields a (random) pay-off Vt . While the distribution 

of Vt is common knowledge, the actual value is unknown ex ante. There are two 

agents in the market, a representative noise trader whose demand for the risky asset 

is exogenously given, and a single, large, informed trader, who receives a signal about 

the true value of the asset, V f . At any time t £ [0, T], we denote the noise trader’s 

demand for the asset by Z*, and that of the informed trader by X t. Let Yt :=  Xt  +  Zt 

denote the aggregate demand at time t. Trades at time t take place at price Pt , which 

is set by a competitive market maker. As in Back (1992) and Back and Pedersen 

(1996) we assume that the market maker only observes aggregate orders Yt and not 

individual orders X t or Zt.

We extend on the model presented in Back (1992) and Back and Pedersen (1996) by 

introducing an over-the-counter options market. Prior to trading in the underlying 

asset, agents can purchase options which, if exercised, pay off an amount <p (Pt ) 

at time T.  Note that we assume the option’s pay-off to depend on the terminal 

price of the asset, Pt , and not its true value, Vt . A simple example would be a 

cash-settled European call option with strike /T, in which case <p (Pt ) =  (Pt  ~  K).  

Options are issued by the market maker and traded over the counter; there is no 

liquid options market. Moreover, we assume that options cannot be traded once the 

market for the underlying asset has opened. We will see later that this restriction
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is necessary for the existence of equilibria: the closure of the options market is an 

endogenous consequence of the presence of asymmetric information, see Section 5.4 

for details. Note here that we deliberately chose to focus on OTC derivatives, since 

the results we obtain are radically different from those that pertain in the presence 

of a liquid options market, as studied for example in Back (1993). Since the options 

are sold over the counter, the market maker can distinguish individual orders. We 

maintain however that the market maker does not know whether an individual buyer 

is informed or just a liquidity trader. The price at which the market maker is willing 

to sell a quantity p of the option is therefore independent of the buyer’s identity. We 

denote this price by pHo(p), so that the price for one unit of the option contract is 

Ho(p).

5.2.1 Informed Trader

As in Back and Pedersen (1996), the informed trader is assumed to receive a contin

uous signal St, successively revealing information about the terminal asset value, Vt. 

At any point in time t , the expected terminal value of the risky asset, conditional 

on the current signal St, is given by a function F(t, St). Based upon the information 

available at time t, the informed trader forms his or her demand X t for the risky 

asset. As in Back and Pedersen (1996) we restrict the informed trader to choosing 

trading strategies 6{t) such that the demand X t is given by dX t =  6(t) dt. Note 

in particular that this assumption forces the demand process X t to be absolutely 

continuous. Although this assumption may seem unnecessarily restrictive, it can be 

shown that even if the informed trader is allowed to choose from a more general set 

of strategies, the optimal trading strategy will turn out to be absolutely continuous; 

see Back (1992).
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The main difference to the Back and Pedersen (1996) model is the following; In 

addition to trading in the risky asset, the informed trader may decide to hold a 

quantity p of the option contract. In addition to the trading strategy 6(t), the 

informed trader hence has to choose an exercise policy I  for the option, which we 

assume to take on the value 1 if the option is exercised, and 0 if not. The informed 

trader’s objective is thus to choose a quantity of options p, a trading strategy 0, and 

an exercise policy for the option I  such as to maximise expected terminal wealth. We 

will solve the informed trader’s optimisation problem in two stages via a backward 

induction argument: For the second stage (which we will address first), we take the 

quantity p of options held by the informed trader as given and solve for the optimal 

strategy 6 and exercise policy / .  This will enable us to quantify the benefit that the 

informed trader derives from holding a certain number of options, so that we can 

then determine the optimal option position to solve the first stage of the problem. 

For the second stage, we will make use of the results derived in Chapter 4, see Section 

5.3 below. The first stage is dealt with in Section 5.4.2.

5.2.2 Market Maker

The price Pt at which the asset trades at time t is set by the market maker. As 

in Back (1992) and Back and Pedersen (1996) we assume that the market maker 

can only observe aggregate orders, Yt, and not the individual orders X t or Z t , or 

the informed traders signal St. Therefore we restrict the market maker to setting 

prices according to a pricing rule of the form Pt = H(t ,Y t). Also as in Back (1992) 

and Back and Pedersen (1996) we assume that the market maker acts perfectly 

competitive, i.e. that prices are set equal to the expected terminal value of the 

asset, conditional on the information available to the market maker. In addition to 

setting prices on the market for the risky asset, the market maker also maintains
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the over-the-counter market for option contracts. That is, the market maker has to 

choose a pricing schedule H0(p) for the option contract. We extend the requirement 

of competitive pricing to the options market, i.e. we assume that the price Ho(p) 

reflects the expected value of p units of the option. However, it is worth stressing 

that this assumption can be justified endogenously: it can be shown to be necessary 

for the existence of equilibria, see Section 5.4.

5.2.3 M athem atical Setup and N otation

We will formulate the model within the framework developed in Chapter 4. Note first 

that the informed trader can invert the market maker’s pricing rule H ( t , V*) to infer 

the aggregate order flow Yt and thus the noise trader’s demand Zt from quoted prices 

Pt . From the informed trader’s point of view, St and Yt thus form a sufficient statistic 

for the current state of the economy. We can hence formulate the model entirely in 

terms of the two processes St and Yt . For expositional simplicity, we assume that 

both the noise trader’s demand process, Zt , as well as the informed trader’s signal, 

St , are generalised Brownian Motions. It is worth noting however that our results 

can easily be extended to more general diffusion processes. Formally, we assume that 

St solves the stochastic differential equation

dSt =  <7 s( t )dWts , (5.1)

where W f  is a standard Brownian motion and (Ts{t) is a deterministic function. A 

trading strategy is an adapted process 9(t) such that there exists a unique solution 

to the equation

dYt6 = 0(t) dt + oz (t) dWtz , (5.2)

where Wtz  is a standard Brownian motion, independent of W f ,  and crz(t) is a deter

ministic function. The solution Yf.  to (5.2) is the aggregate order flow that results
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if the informed trader follows trading strategy 0(t). The noise trader’s demand is 

reflected in the diffusion term crz(t)dWtz  =: dZt in (5.2). As a special case, denote 

by Yt° the aggregate demand process corresponding to the “do-nothing” strategy 

6(t) = 0. Obviously, the dynamics of this process are simply dYt° = (Tz(t) d W z , i.e. 

identical to the dynamics of the noise trader’s demand process, Zt.

Let P*'y be a weak solution to (5.1) and (5.2) conditional on St =  s and Yte = y , 

defined on some suitable measurable space We will omit the superscripts

s or y whenever there is no ambiguity, and we also write P s,y for Pq V. Denote by 

(Ft)t>0 the filtration on (D,.F) generated by St and Yt , augmented to satisfy the 

“usual conditions” , see Karatzas and Shreve (1988, Section 1.2) for details. Finally, 

for notational convenience we introduce the following convention: whenever we are 

given a function which depends on the state variables and time t , we will use lowercase 

letters to denote the value of this function at time T.  For example, we write f ( s )  := 

F(T,s)  and h(y) := H(T,y) .

5.2.4 Equilibrium

The choice variables for the informed trader in our model are, the quantity of option 

contracts held, p, the trading strategy in the underlying asset, 9(t), and the exercise 

policy for the option, / .  We refer to the triple (p, 0 ,1) as the informed trader’s policy 

choice. The market maker on the other hand sets pricing schedules Ho(p) for the 

option contract and H(t ,Y t) for the underlying asset. We are now ready to define 

tie  concept of equilibrium in our model:
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D efin ition  5.2.1 (E qu ilib rium ) An equilibrium is a tupel (H0, H',p,0,1) such that

(i) Given the market maker’s pricing schedule (Ho,H), the informed trader’s pol

icy choice (p,0, I)  is optimal, i.e. maximises the informed trader’s expected 

terminal wealth.

(a) Given the informed trader’s policy choice (p, 0 ,/) ,  the market maker’s pricing 

schedule (Ho,H)  is rational, i.e. reflects the assets’ expected value, conditional 

on the market maker’s information.

5.3 The Informed Trader’s Problem

In this section, we derive the solution to the second stage of the informed trader’s 

problem, i.e. we take the number p of options held as given and solve for the optimal 

trading strategy $(t) and exercise policy I. Note that from the informed trader’s 

perspective, the market maker’s pricing rule H (t ,Y t) can be considered exogenously 

given, so that the informed trader’s optimisation problem is a special case of the 

problem considered in Chapter 4. Therefore, we will give here only a brief outline of 

the main result, Theorem 5.3.1. A detailed exposition can be found in Chapter 4.

5.3.1 O bjective Function

The informed trader’s objective is to maximise expected terminal wealth. Following 

the intuition developed in Chapter 4, terminal wealth in the absence of the option is 

given by

B t +  VT • X T =  B0 +  VT • X0 +  f T (VT -  Pt~) 0(t)dt.  (5.3)
Jo
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Since Bo and X 0 are exogenously given and thus irrelevant for the optimisation 

problem, we will assume Bo =  X q =  0 and focus on the last term in the above 

expression. Given any strategy 0(t), the dynamics of the aggregate demand process, 

Yte, are given by (5.2). The market maker sets prices according to the rule Pt =  

H (t , Yt) .  Note here that since Y f  is by definition continuous, so is the price process 

Pt . Recall also that given a final value St of the signalling process, the expected 

value of Vt  is given by /(S r)-  Using the law of iterated expectations, we can hence 

write the expected terminal wealth of the informed trader for given starting values 

So = s, Y0 = y and given strategy 0(t) as

E’A  I (yT -P,)6(t)dt  = E ' A  I (F(t, S t ) -  H(t,Yt' ) )0(t)dt
[ ./0 J J o  y------------ V-------------'

=: n(«,5(,r/)
Note that the function II(£, 5*, Yte) has an economic interpretation: It describes the 

expected marginal benefit of holding an extra unit of the risky asset, F ( t , St), minus 

the current purchasing price, H(t ,Y td). Following our convention, we write

7T(s,y) := n(T,s,y) = f ( s )  -  h(y).

We now incorporate the option into the informed trader’s objective function. Since 

there is no market for options after time 0, we can treat the number of options held 

by the informed trader as exogenous for the informed trader’s optimisation problem. 

We will analyse the options market in more detail in Section 5.5. Recall that the 

option, if exercised, pays off an amount tp(Pt ) at time T. The price Pt at time T  

is assumed to be set according to the rule Pt  =  h(Y}).  Since from the informed 

trader’s point of view the pricing rule h(y) is exogenously given, we shorten notation 

by setting <j>(y) := <p(h(y)). Hence, if the informed trader holds p units of such an 

option, expected terminal wealth becomes

E s , y

p / J i  .

I n(t,StX)9( t )d t  + pI<j>(Yf)
. Jo

(5.4)
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Here, I  denotes the exercise policy, which we assume to be =  1 if the option is 

exercised, and =  0 if not. The exercise policy will be determined endogenously later, 

see Section 5.3.3.

5.3.2 Admissible Strategies

The choice variables for the informed trader are the trading strategy 0(t) and the 

exercise policy I. Note that due to our assumption of absolute continuity, the demand 

process X t is automatically predictable. This is in line with the intuition that the 

decision on what assets to hold over any period of time must be based upon the 

information available at the beginning of that period. It is also important for technical 

reasons, see for example Harrison and Pliska (1981) for a detailed elaboration on this 

issue. On the other hand, since the decision whether to exercise the option or not 

is made at time T, it can be contingent on all information available to the informed 

trader at that time.

Formally, an admissible policy is a pair (6, /) , where I  is an .^-m easurable random 

variable taking values in {0,1}, and 0(t) is a process adapted to (fFt)t>o such that

V 6’!(t, s ,y)  := E ?  r  II(r, ST, Y?)9{t ) dr + pI<t>{Y°)

is well-defined for every s ,y  E IR and t E [0, T\. We can interpret V 9,I(t, s, y) as the 

gain that is made starting at St = s and Yt6 =  y at time t and following trading 

strategy 6 and exercise policy I  thereafter. The large trader’s problem is thus to find 

an admissible policy (0,1) which maximises V 6,I(t ,s ,y) .  As usual in the theory of 

stochastic control, we define the value function of the problem as

V*(t, s , y) := sup V 9J(t, s,y).  (5.5)
m
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We are now ready to state the main result of this section.

T h eo rem  5.3.1 (O p tim al S tra teg y ) There exists a non-degenerate solution to 

the informed trader’s problem if and only if  the market maker’s pricing rule sat

isfies H( t ,y )  =  E\[ h(Yj!) ]. In this case, there exist functions Y*(t,s) and I*(s) 

such that the optimum is attained by exercise policy I * =  I*(St ), and any trading 

strategy of the form

9 ( t ) : = a ( t ) ( Y % t , S , ) - Y f ) ,  (5.6)

where a(t) is any deterministic function with a(£) — > oo as t — > T  fast enough to 

force the solution Y f  of (5.2) to converge to Y*(t,St) as t — > T.

We give a brief outline of the proof of this theorem in the following section. A 

detailed exposition can be found in Section 4.3. For general reference on the theory 

of controlled diffusion processes see Fleming and Soner (1993) or Krylov (1980).

5.3.3 P roof o f Theorem 5.3.1

The proof of Theorem 5.3.1 is essentially an application of Theorem 4.3.1 in Chapter 

4. As discussed there, the value function V*(t ,s,y)  can be characterised as the 

solution to the Bellman equation subject to appropriate boundary conditions. In the 

case considered here, the Bellman equation takes the form

T  I 14 +  \  ^ zVyv +  ^ +  (Vi  +  n ) f l |  = 0 .  (5.7)

Since this equation is linear in 0, in order for the supremum to be finite the co

efficient of 0 must be zero. We can thus split up the Bellman Equation into the
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following two separate equations:

Vt +  \  (o*zV„ + =  0, (5.8)

Vy +  n  =  0. (5 .9 )

Equation (5.8) is just the heat equation associated with two-dimensional Brownian 

motion. The Feynman-Kac representation theorem (see Karatzas and Shreve (1988, 

Theorem 4.4.2)) allows us to write its solution (if it exists) in the following form:

V(t , s ,y )  = E t ’y [ V ( T ,S T, y ? ) ] ,

where Yt° is a solution of (5.2) corresponding to 0 = 0, i.e. it follows the simplified 

dynamics dYt° = crz(t) d W f .  Equation (5.9) has a more economic interpretation. It 

states that the marginal gain Vy(t , s , y) from holding an extra unit of the risky asset 

at time t , must equal the purchasing cost, H(t,y) ,  minus the expected marginal 

benefit, F(t ,s).  For a detailed elaboration on the intuition behind this, see Section 

4.3.4.

O p t i m a l  S t r a t e g y

We will now intuitively derive the appropriate boundary condition for the Bellman 

equation and see how it can help us pinpoint the optimal strategy. Suppose the 

value function V*(t ,s,y)  exists and is sufficiently smooth. We know then that is 

must solve the Bellman equations (5.8) and (5.9). For any given admissible strategy 

6(t) consider now the process V*(t, S t ,Y f) .  Following the arguments outlined in 

Chapter 4, an application of Ito’s Lemma in conjunction with equations (5.8) and 

(5.9) allows us to write

y*(0 ,S,y) =  V(''/ (0,3,3/) +  £:*->'f V ‘(T ,S T,Y°)-pI<l>(Y°)].  (5.10)
L '------------------ v------------------ ' J

=: q*{ST,Y°-,I)
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Here, V 0,I(O,s,y) is the value function for the arbitrarily chosen policy (0,1). The 

above equation has the following interpretation; the quantity E s,y[ q*(Srf I) ] 

measures the difference between the value V^’̂ O, s, y) of any given policy pair (0, 1) 

and the maximal achievable value V*(0, s , y ). The function q*(Sr, Yf; I) can thus be 

identified as the loss incurred by the informed trader by deviating from the optimal 

strategy. In particular we deduce that E a,y[ q*(Sx, Yft; -0 ] must be non-negative, and 

zero at the optimum. We will reverse this argument to construct the optimal policy 

and value function. More specifically, we will construct a function q*(s,y; I)  and 

“optimality conditions” y*(s) and I*(s) in such a way that q*(s,y; I) > 0 and =  0 if 

and only if y = 2/*(«s) and I  = I*(s). Based on this we use (5.8) and the Feynman- 

Kac representation to construct a candidate V*(t ,s,y)  for the value function which 

satisfies (5.7). From this and the above arguments we can conclude that an exercise 

policy I*(St) and a trading strategy which ensures that =  y*(Sr) will attain the 

optimum, and that V*(t,s ,y)  is indeed the value function of the informed trader’s 

problem. The formal proofs for all these statements can be found in Chapter 4. We 

interpret y*(s) as the optimal “target position” towards which the informed trader 

should drive the aggregate position Yte in the market as t — »• T, conditional on 

S t  =  s. This is similar to the arguments presented in Back (1992) and Back and 

Pedersen (1996).

As shown in Chapter 4, evaluating the Bellman equation (5.9) at t = T  implies that 

the loss function q*(s,y; I) must be of the form

/*»•(»)
q*(s ,y]I)=  / n(s,r})dri +pl*(s)(/>(y*(s)) -  pl<fr(y), (5.11)

Jy
for suitably chosen y*(s) and I*(s). The intuitive interpretation of this equation is 

the same as the one discussed in Chapter 4: For any marginal deviation in y away 

from the optimal y*(s), the informed trader incurs a marginal loss of f ( s )  due to the 

reduced position in the risky asset, while gaining a marginal h(y) due to the lower
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cost of acquiring that position.

By construction, the loss function defined in (5.11) satisfies the desired “boundary 

conditions” q*(s,y*(s); = 0. Our remaining task is hence to determine y*(s)

and I*(s) in such a way that for each s the mapping (y, I) q*(s,y; I) has a global 

minimum at y = y*(s) and I  =  I*(s). Following the arguments developed in Chapter 

4, we first keep the option exercise decision fixed and construct optimal targets yj^s) 

and yj(s) conditional on the option being exercised or not, respectively. We can then 

establish the optimal exercise decision I*(s) endogenously. As shown in Chapter 4, 

the conditional target positions yj(s) and yj^s) can be characterised via the first- 

order conditions

f ( s )  =  h(yo(s)), and (5.12)

f ( s )  =  h(yl(s))-p<l/(yt(s)).  (5.13)

It can be shown that both yj(s) and yi(s) are increasing functions of the signal s , 

and that yj(s) < yj(^). As shown in Chapter 4, it is then optimal for the informed 

trader to exercise the option if and only if

rvo(s)
/  ir(s,r})drj < pc/>(yt(s)). (5.14)

Note that this condition shows that the optimal exercise policy depends only on s 

and not on y or I. The economic interpretation of (5.14) is as follows. Recall that 

yj(-s) is the optimal target position conditional on no exercise. Hence the left-hand 

side of (5.14) is the loss incurred by trading towards yl(s)  instead of yj(s). The 

right-hand side however represents the gain made from the option’s pay-off. Hence

(5.14) states that the informed trader should exercise the option if and only if the

loss incurred by deviating from the optimal position is outweighed by the option’s

pay-off.
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It is straight-forward to show that there exists a unique cut-off point s such that

(5.14) is satisfied if and only if s >  s. We can hence define the optimal exercise 

policy I*(s) to be =  1 if and only if s > s, and =  0 otherwise. Intuitively, the 

unconditional target y*(s) should then equal yl(.s) whenever exercising the option is 

optimal, and yj(s) otherwise. Therefore we define

if ( s )  := r (s )y l ( s )  +  (1 -  /*(s))yS(s).

The loss function q*{s,y\I) defined via (5.11) can then indeed be shown to have 

a global minimum at y =  y*(s) and I  =  /*(«s), see Proposition 4.A.3. From the 

arguments outlined in the beginning of this section it should now be intuitively clear 

that any strategy 6{t) which ensures that Y f  — )■ y*(Sr) as t — > T  is a candidate 

for the optimum. We hence set Y*(t,s) := E*[ y*(Sr) ] and define

e(t) := a(t)  (Y*(t, St) -  Yf )  ,

where a(t)  is a deterministic function with a(t)  — > oo as t — > T  fast enough to 

make Ytd converge to y*(Sr) as t — > T.  A rigorous proof for the optimality of 6(t) 

is given in the appendix to Chapter 4.

REMARK: W e can  w rite  th e  overall first-order con d ition  for th e  in form ed  tra d er’s 

term in a l p o sitio n  in  th e  follow ing form:

h (y*(ST)) =  f ( S T) +  p l ' i S r W  (jy*(ST)). (5.15)

Since for an optimal strategy, we have Y f  = y*(5r), the above equation implies that 

the terminal price of the asset, /i(V^), equals its expected true value, f ( S r ) ,  plus 

a mark-up pI*(St )<I>,(Yj '). Thus, unlike in the models of Kyle (1985), Back (1992) 

or Back and Pedersen (1996), the existence of the option implies that the informed 

trader has an incentive to drive prices away from the true expected value of the asset.
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V a l u e  F u n c t io n

Finally, we can now construct a candidate for the value function V*(^,s,y) based 

on the analysis in the preceding sections. Guided by (5.10) we conjecture that the 

boundary condition for the value function be given by

v*(s, y) := q*(s, y; I) +  pl<j>(y). (5.16)

Obviously, v*(s,y) is smooth in y, and smooth in s for s E 1R \  {s}. Moreover, 

a straight-forward calculation, using the first-order conditions for yj(-s) and yl(s),  

shows that v*(s, y) is continuous also at s =  s. In view of (5.8), we define a candidate 

for the value function via the Feynman-Kac representation formula:

V ( t , s , y )  :=  E ’"> [ »*(,&., V?) ] • (5.17)

It can be shown that the function thus defined indeed solves the Bellman Equation 

(5.7), see Proposition 4.A.4. From the analysis in the preceding sections it should 

then be clear that V*(t,s ,y)  is the value function, and that the strategy defined 

above is an optimal strategy.

REMARK: A  d irect co m p u ta tio n  show s th at

V) = E't [ f ( S T) ) - E !  { h ( Y ° ) }.

— E(t,  s)

Recall that in order to satisfy the Bellman Equation, Vr*(f,s,y) must in particular 

solve (5.9). From the above we see that this is possible only if H (t ,y )  =  E%[ h(YJ?) ]. 

We have thus found a condition that the market maker’s pricing rule must satisfy in 

order for the informed trader’s problem to have a non-degenerate solution.
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5.4 Equilibrium

In this section we characterise equilibria on both the market for the underlying asset 

as well as the OTC options market. Again we proceed in two stages. We first 

analyse equilibria on the market for the underlying asset, taking the informed trader’s 

option position as given. We then solve for the overall equilibrium on both markets, 

endogenising the informed trader’s option position.

Recall that equilibrium requires the market maker’s pricing rule to be rational, i.e. to 

reflect the expected true value of the asset, conditional on the available information. 

For fixed p, denote the by i^(p; ds) the distribution of St , conditional on p and the 

observed order flow up to time t. If we denote by p(dp) the market maker’s beliefs 

about p, then the beliefs regarding the joint distribution of p and St can be written 

as At(dp,ds) = p(dp) ® vt(p;ds). Rationality of the market maker’s pricing rule for 

the underlying asset can then be expressed as

H(t ,Y t) =  f  F(t ,s )  p(dp) <g> vt(p,ds). (5.18)
J B2

To characterise the dynamics of A*, we will make use of the theory of linear filtering. 

For general reference, see Kallianpur and Karandikar (1985).

5.4.1 Equilibrium on the Underlying Market

As benchmark, we first consider the two extreme cases in which the market maker 

either is not aware of the existence of options at all, or possesses perfect information 

regarding the informed trader’s option position. Note that although these extreme 

cases do not exactly reflect the structure of our model, they nonetheless provide valu

able insights and will help us later determine the joint equilibrium on both markets.
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Not surprisingly, in the former case an equilibrium exists in which prices are set in 

the same way as in Back and Pedersen (1996). However, the latter perfect informa

tion case only permits an equilibrium in the degenerate situation where no options 

are held by the informed trader. The main focus of this section, however, will be the 

case in which the market maker is aware of the existence of options, but is uncertain 

about the number held by the informed trader.

Throughout this section we will take the informed trader’s position p in option con

tracts as given and assume that it is fixed over the entire time interval [0,T]. We 

will endogenise the informed trader’s position in Section 5.4.2.

I n c o m p l e t e  In f o r m a t io n

Consider the case in which the market maker is unaware of the existence of OTC 

derivatives. Formally, we can express this as p =  <£{o}. Due to this misperception of 

the true market structure, systematic errors might arise in the expectations formed. 

As a consequence, we shall see that situations might arise in which the informed trader 

realises increased profits at the market maker’s expense. This happens because in 

some situations it becomes profitable for the informed trader to create a bubble, 

pushing the options held (further) into the money. The market maker will not react 

to this mechanism as he is unaware of the existence of the options. We summarise 

the result in the following theorem.

T h e o rem  5.4.1 (In co m p le te  In fo rm atio n  E q u ilib riu m ) Define

S(t) =  £  (o iM  “  <?2s{s))ds.

By rescaling St (and adjusting F(t,St) accordingly), we can assume E(t) > 0 for all 

t. Then, in the case of incomplete information, an equilibrium on the underlying
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market is given by the triple (H,0 ,I ) ,  where I  =  I*(St ),

H(t ,y)  = E » [ f { Y ,? ) ] ,  and 

8{t) =  a ( t ) ( Y - ( t , S , ) - Y f ) .

Here, a(2) =  <7|(£ )/£ (£), and Y*(t,S t) and I*(St ) are defined as in Section 5.3.3. 

In particular, the terminal pricing rule is given by h = f .

PROOF: Optimality of the informed trader’s strategy follows from Theorem 5.3.1. 

The required convergence of Y f  to t/*(5r) as t — > T  for the chosen a(£) follows from 

the Law of Iterated Logarithms, see Back and Pedersen (1996, Lemma 2) for details. 

The proof of rationality of the pricing rule follows the lines of the proof in Back 

and Pedersen (1996). Details are given in Lemma 5.A.1 and Corollary 5.A.2 in the 

appendix.

□

Note that, even though the market maker’s pricing rule is the same as the one 

obtained in Back and Pedersen (1996), the informed trader’s incentive to manipulate 

markets is reflected in the term  Y*(t , St) in the optimal trading strategy. Recall from 

Section 5.3.3, that the informed trader’s first-order conditions imply

h (Y°)  =  / ( S t )  +  p I*{St )4> ( Y f ) .

That is, the informed trader creates a price bubble which manifests itself in the 

mark-up pI*{St )^{Xt ) over r̂ue expected value of the asset, /(S 't)-

The qualitative conclusion from the analysis in this subsection is interesting. If in 

the presence of asymmetric information derivative markets are not properly aligned 

with the underlying market, informed traders will exploit this miss-alignment, thus 

creating price bubbles in the market for the underlying asset. These bubble arises
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because the informational content on the derivatives market is not transferred to the 

market for the underlying asset. This lack of informational synchronicity between 

the underlying and the options market makes up the difference between the analysis 

in this section and the equilibrium analysis in Back (1993). There, the market maker 

can also observe the order flow on the options market, which makes it impossible 

for the informed trader to profitably manipulate markets. In light of this, one might 

think that letting the market maker audit the order flows on attached OTC markets 

should lead to more rational price setting. This conclusion is however not necessarily 

true. To see why this is so, and to understand better the results of Back (1993), we 

will need the analysis from the following subsection.

C o m p l e t e  a n d  P e r f e c t  In f o r m a t i o n

We now consider the situation where the market maker is fully aware of the existence 

of OTC contracts and knows the exact quantity held by the informed trader; formally 

fi =  <£{p}. We maintain however the assumption that the market maker cannot

observe the informed trader’s private signal St. In this situation equilibria can be

characterised as follows.

T h eo rem  5.4.2 (P erfec t In fo rm atio n  E q u ilib riu m ) In the case of complete and 

perfect information an equilibrium exists if and only if p =  0, i.e. i f  the informed 

trader holds no options at all. In this case, the equilibrium reduces to the one de

scribed in Theorem 5.4-1 with Y*(t ,S t) = St, that is

H(t,y)  =  E ? [ f ( Y ? ) ] ,  and

6(t) = a (t) (St — Y/) .

In particular, the terminal pricing rule is given by h = f .

Note that this equilibrium is, not surprisingly, identical to the one obtained in Back
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(1992) and Back and Pedersen (1996).

PROOF: We may assume that h \y )  > 0. Note from (5.15) that the necessary first 

order condition for the informed trader’s problem can be written as

/ ( S t )  =  h(YT) -  Pr ( S TW (YT). (5.19)

Together with the rationality requirement (5.18) this implies

h(Yr) = f  f ( s ) v T(p;ds)
J]R

=  h(YT) - p f  I* (s)<f/(Yt ) vT{p\ ds).Jm
Consequently we can conclude that

p f  I*(s)(j>,(Yr ) vt(p\ ds) =  0
R

is a necessary condition for existence of equilibria. Since h'(y) > 0 and thus > 0, 

and since I*(s) =  1 at least for some values of s whenever p ^  0, we can finally 

conclude that p =  0 is necessary for the existence of equilibria. The sufficiency 

follows easily from the analysis in the preceding section.

□

The intuition behind the non-existence of equilibrium lies in the the informed trader’s 

incentive to manipulate prices and the fact that in this scenario the market maker 

anticipates this. From (5.19) we see that it is optimal for the informed trader is 

to mark up prices relative to the expected true value by an amount pI*(St )(/>,(Yi ). 

The market maker, anticipating this, would have to adjust prices to account for the 

price mark-up, only to see the informed trader increase demand to push prices even 

further up. Hence, no rational pricing rule can exist in this situation.

The results derived in this section are dramatically different from those obtained 

in Back (1993). If the order flow on the options market is fully observable, no non
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degenerate equilibrium can exist in our model, while in Back (1993) this observability 

in fact increases price accuracy by providing the market maker with additional in

formation regarding the underlying asset. This qualitative difference arises because 

the equilibrium in Back (1993) is upheld by the assumption of additional exogenous 

noise in form of stochastic volatility. Without this additional noise term the results 

in Back (1993) reduce to the non-existence result established here.

In summary we conclude that situations where market makers can identify trades on 

the derivatives market, but where prices on the two markets are not aligned, might 

cause market failure. A stable market equilibrium for the underlying asset can only 

be sustained if the prices for OTC derivatives are set in such a way that an informed 

trader would never find them worth holding. This requirement of price synchronicity 

necessary to prevent manipulative bubbles has previously been addressed in discrete

time models by Jarrow (1992) and Jarrow (1994), and in the related continuous-time 

generalisation by Frey (1996). However, while Jarrow and Frey simply assume price 

synchronicity, it is an endogenous consequence of the market microstructure of our 

model.

5.4.2 Full Equilibrium

We now return to the scenario in which the market maker is aware of the existence 

of the options market, but does not know the exact quantity p of options held by 

the informed trader. This is in line with the structure of our model, since we assume 

that the market maker maintains the OTC options market but cannot distinguish 

the identity of individual buyers of options. Following the arguments of the previous 

section, we find that rationality of the market maker’s pricing rule together with the
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informed trader’s first-order conditions imply

h(YT) = f  f ( s )  p(dp) ® vt(p\ ds)
J B2

= ĥ  ~ I jrP ( I n  V T d s ^ dp}'
Following the arguments of the preceding section we can conclude that this is only 

possible if p =  0 almost surely with respect to p. In other words, given the informed 

trader’s optimal strategy, rational pricing on the underlying market is only possible if 

the market maker believes that the informed trader holds no options. The intuition 

behind this result is analogous to the perfect information case: Whenever the in

formed trader does hold an option, there will be an incentive to manipulate markets 

and create a price bubble. Hence, if the market maker has reason to believe that 

options are held by the informed trader, rationality would require prices to adjust 

to  counteract this manipulation incentive. This in turn would induce the informed 

trader to increase demand even further. Hence, no rational pricing rule could exist.

As a consequence of this, we can conclude that the only feasible equilibrium is one 

in which it is rational for the market maker to believe that no options are held by 

the informed trader. This however is only possible if option prices are set in such a 

way that the informed trader is indifferent between holding or not holding options. 

In other words, the price of the option must equal the expected additional benefit 

that the informed trader could derive from holding it. We have thus established the 

main result of this section:

T h e o rem  5.4.3 (Full E q u ilib riu m ) The full equilibrium on both markets is given 

by the quintupel (Ho, H; p, 6 ,1), where p = 0 and 1 = 0, and

(1) The option pricing schedule, Ho(p), is set such that the informed trader is

indifferent between holding or not holding options.
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(2) The market maker’s pricing rule H (t,Y t) and the informed trader’s trading 

strategy 0(t) are set as in Theorem 5.4-2.

Moreover, there exists no equilibrium in which the informed trader finds it optiomal 

to hold options.

PROOF: It is clear from Theorem 5.4.1 that (H, 9, 1) is an equlibrium on the under

lying market, if the market maker believes that the informed trader holds no options. 

This belief on the other hand is rational, since option prices are set in such a way 

that holding options does not provide any benefit for the informed trader. This in 

turn implies optimality of the informed trader’s option position.

□

The interpretation of this result is very much the same as in the perfect information 

case. The presence of asymmetric information imposes a requirement of synchronicity 

between prices on the options market and the market for the underlying asset. Failure 

to guarantee this synchronicity leads to market breakdown. Hence, equilibrium in our 

model endogenously determines a price schedule for OTC derivatives which differs 

drastically from classic option pricing theory. While in the latter, the price of an 

option reflects its value from the point of view of a price-taker, in our study option 

prices account for the value of the manipulation opportunity they provide. In the 

next section, we will analyse the equilibrium option prices predicted by our model in 

more detail and show that they give rise to the “smile pattern” of implied volatility.
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5.5 Option Pricing and the Smile Pattern

In this section we will make explicit the implications that the equilibrium conditions 

derived in the preceding sections have on the pricing of options. From Section 5.4 

we know that the only feasible equilibrium requires option prices to be aligned with 

the underlying market in such a way that the informed trader cannot derive any 

additional benefit from holding options. In other words, the equilibrium price pHo(p) 

of a quantity p of option contracts must equal the value that these contracts would 

have to the informed trader. In contrast to classic option pricing theory, the resulting 

pricing schedule turns out to be non-linear in quantity, i.e. the price per unit depends 

on the amount demanded. Moreover, in a special case in which equilibrium prices 

of the underlying asset are given by a classic Black-Scholes model, we are able to 

explicitly characterise the “implied volatility” and show that it displays the famous 

“smile pattern” .

5.5.1 Arbitrage Option Price

We begin with establishing as a benchmark the arbitrage price of the option in our 

model. Recall from Section 5.4 that the equilibrium pricing rule for the underlying 

asset is given by

Assuming that the function H (t , y) is sufficiently regular, the Feynman-Kac repre

sentation theorem, (see Karatzas and Shreve (1988, Theorem 5.7.6)), implies that 

H (t,y )  solves the partial differential equation Ht +  ^cr^Hyy = 0. Hence, by Ito’s 

Lemma the price process Pf := H (t,Y te) for any given strategy Q(t) satisfies

dP° = Hv( t ,Y f )d Y te.
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Inverting H (t,y )  we can write Yt9 = G(t, Pf), so that

dP? = Hy(t, G(t, Pf)) {8(t) dt + <TZ(t) d w f j  . (5.20)

' =: A(t, Pf)  '

This formulation implies that the market thus described is in fact complete, (see 

Harrison and Pliska (1981)), which ensures the existence of a unique equivalent mar

tingale measure (EMM). In analogy with the above, we define the process Pt° by 

Pt° := H(t,Y®), i.e. the price process corresponding to the “do nothing” strategy. 

Obviously,

dP° = crz (t)X(t,P°)dW tz .

From (5.20) it is hence clear that the process P 6 under the EMM is distributionally 

equivalent with the process P° under the original measure. From standard derivatives 

pricing theory we know that the arbitrage-price of an option can be expressed as its 

expected terminal pay-off under the EMM. The above arguments imply that this is 

equivalent to the expected pay-off under the original measure with P 9 replaced by 

P°. We have thus shown:

Proposition  5.5.1 (Arbitrage Price) In equilibrium, the arbitrage price of an op

tion which promises to pay an amount <p(Pt) tf  exercised, is given by

B  [ v +( i? )  ] =  E [ V+(f(Y°))  ] . (5.21)

In particular, this price does not depend on the informed trader’s strategy.

The arbitrage price for the option constitutes the benchmark with which we compare 

the equilibrium option price in our model. Note that the theory of derivatives pricing 

by arbitrage is based, amongst others, on the assumption of perfectly elastic mar

kets for the underlying asset. This assumption is clearly not satisfied in the model 

considered here. Hence we expect equilibrium option prices to differ from arbitrage 

prices. This difference gives rise to the “smile pattern” of implied volatilities.
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5.5.2 Equilibrium Option Price

Recall that the equilibrium price of the option is equal to the expected gain the 

informed trader could derive from holding it. Denote by V* the value function 

associated with the informed trader’s problem for a given quantity of options held, 

p. Following the argument developed in Chapter 4, we use (5.10) to write

v ;  = v y  + E [ q;(sT,Y°;i)].

Here, q* is the “loss-function” for the given p (see Section 5.3.3), and (0,1) is any 

admissible policy pair. Taking in particular 6(t) to be the optimal trading strategy 

in the absence of the option, and I  =  0, we find that the value to the informed trader 

of p units of the option is given by

( v ; - v 0*) =  e

= E

q : ( S T , y l { S T ) \ i )

*2/* (St)
I Tr(ST,r))dri + p(t>(yl(ST))
Vo (St)

= : i ’p ( f ( S T))

Note that by the informed trader’s first-order conditions, the term in the brackets 

indeed only depends on /(*Sr)5 so that our notation is justified. Note also that by 

definition of the exercise policy, we have that Ip(Sr) =  1 if and only if ̂ p(/(.S t)) >  0. 

We can thus write

(V; -  V0‘) = E[j>+ { /(S t )) ] , (5.22)

which in particular shows that the value of the option to the informed trader is non

negative. The above expectation can be seen to be the arbitrage price of a derivative 

which pays off an amount ^ p ( f(S r )) if exercised. Indeed, consider the fictitious price 

process Pt := F(t, St). Note that Pt represents the best estimate of the true value of
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the asset, given the informed trader’s signal. Using Feynman-Kac and Ito we find

dPt = as (t)Fa( t ,S t)d W f .

In other words, the process Pt is a martingale under the original measure, so that
A

(5.22) is indeed the arbitrage price of the derivative that pays off iPp(Pt ) if exercised. 

We summarise our findings in the following

P ro p o sitio n  5.5.2 (E q u ilib riu m  P rice ) The equilibrium price of the option is 

given by

Ho(fi) = - E  [ (f ( S T)) ] . (5.23)P

This expression can be interpreted as the arbitrage price of an option which pays off 

an amount iI>p(Pt ) i f  exercised, written on the (expected) true value of the underlying 

asset, Pt = F(t, St).

Note in particular that the option price Ho(p) may depend on the quantity demanded, 

p. This reflects the fact that the equilibrium price of the option, unlike its arbitrage 

price, is indeed affected by the informed trader’s actions.

5.5.3 Implied Volatility and the Smile Pattern

Throughout this section, we restrict our analysis to the special case in which the 

option in question is a standard European call option, i.e. <p (Pt ) =  (Pt  — K)- To 

make the dependence on the strike price explicit, we denote the equilibrium price of 

such an option by H(f(p; K). Also, in order to be able to compare our results with 

those of classic Black-Scholes theory, we consider the special case where /  =  exp.
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In this case, the fictitious price process Pt follows a generalised geometric Brownian 

Motion:

^  =  v s (t) dWts . (5.24)
Pt

Note that this is just the standard Black-Scholes model with zero interest rates. 

Recall that in equilibrium, the market maker’s pricing rule is set to h = f  = exp. It 

is now straight-forward to see that the informed trader’s first-order conditions (5.12) 

and (5.13) in this case take on the following form:

y j ( s ) = 5  and yl(s) = s -  log(l  -  p).

In order to calculate the unit price of the option, we need to evaluate the term 

iPp ( P t ) / p . A direct computation yields

- M P t ) =  - { - P T l o g ( l - p ) - p K }

>-------------------' >---------V------—'
= :  k (p ) =  1/ k (p )

That is, the pay-off of the fictitious derivative which represents the equilibrium option 

price in our model can be expressed as a multiple of a simple European call option 

with a modified strike price K / k (p ). We have thus established the main result of 

this section:

T h e o rem  5.5.3 In the case where the informed trader’s expectations of the true 

value of the asset follow a geometric Brownian Motion, i.e. f  =  exp, the equilibrium 

price H q (p ; K ) of a European call option with strike price K  is given by

H fip ;  K)  =  k(p)Cb s(E0s , Po, K / k(P)) = CBS(Sjf, n(p)Po, K). (5.25)
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Here CBS(£ , P, K ) denotes the Black-Scholes price of a European call option with 

strike price K , given initial price P and price volatility S. Note that we need to use 

the Black-Scholes pricing theory for time-dependent volatility, with

:= /  as(T) dT■

The fact that we can identify the equilibrium price of the option as the Black-Scholes 

price of an option with modified strike price allows us to establish the usual compar

ative statics results:

C o ro lla ry  5.5.4 (C o m p ara tiv e  S ta tics) The equilibrium price Hq (p ; K ) o f the 

European call option is decreasing in the strike price K , increasing in the signal 

volatility a s , and increasing in the initial level of the signal, So. Moreover, it is 

increasing in the number of options demanded, p.

All these results follow immediately from the corresponding properties of standard 

Black-Scholes option prices. Only the last, the dependence of the option price on 

quantity, is new compared to standard derivatives pricing theory. It is this property 

which is responsible for the emergence of the “smile pattern” of implied volatility in 

our model. By virtue of the above theorem, it is clear that implied volatility can be 

defined as the solution Eomp(/o; K )  of

CBS(EB k(p)P0, K)  =  CBS( £ r >(/>; K), P0, K )  (5.26)

This explicit expression allows us to examine the shape of the “smile pattern” analyt

ically. It can be shown that for most reasonable parameter values, implied volatility is 

a decreasing function of the option’s strike price, cf. Appendix 5.B. These analytical 

results are confirmed by numerical computations. Calculations for different choices
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of the model parameters show an implied volatility curve which is monotonically 

decreasing and convex as a function of the option’s strike price. Figure 5.1 shows an 

example. Both the theoretical as well as the numerical results are consistent with 

the “skew smile pattern” which has been observed in most financial markets since 

the October 1987 crash.

As a final point, let us mention that our story of the smile being a consequence of more 

aligned derivative prices is consistent with recent empirical findings of Christensen 

and Prabala (1998). They find that after the October 87 crash implied volatilities 

have become far better predictors of realised volatilities and hence that option pricing 

schedules have been more consistent and stable after the crash.

5.6 Conclusions

We have studied the manner in which an option, held by a large, informed trader, 

changes the nature of equilibrium prices for the derivative and the underlying asset. 

We have shown that in the presence of such an option, the informed trader has 

an incentive to manipulate prices to push the option into the money, thus creating 

a price mark-up over the expected true value of the underlying asset. The cost 

of this manipulative bubble would have to be borne by uninformed traders. As 

a consequence, it is impossible for the market maker to sustain a stable market 

equilibrium if he has reason to believe that options are held by the informed trader. 

The implication of this is that in equilibrium, option prices have to be in line with 

the market for the underlying asset. We have demonstrated that this synchronicity 

requirement gives rise to a pricing schedule for options which is non-linear in quantity. 

Moreover, we were able to derive an explicit expression for implied volatility, and show 

that it displays the famous “skew smile pattern” which is one of the most prominent
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empirical puzzles in the theory of financial markets.

There are several conclusions that can be drawn from our analysis. To begin with, 

our results show that in the presence of asymmetric information, an OTC market for 

derivative securities which is insufficiently aligned with the market for the underlying 

can cause market failure. Moreover, bringing the OTC derivatives market in line is 

only possible as long as private information has not yet arrived. As soon as private 

information is present, the market maker is unable to set derivatives prices in such 

way that informed traders can be deterred from manipulating prices and thus cause 

market equilibrium to break down. Although this problem could be circumvented by 

introducing additional noise into the options market as in Back (1993), we believe our 

results to be important and interesting both from a theoretical as well as a practical 

point of view, in particular in view of the current debate concerning the regulation 

of derivatives markets. One extreme implication of our results is that derivatives 

markets would have to be closed down whenever there is asymmetric information 

regarding the underlying asset. This would be necessary to maintain stability in the 

underlying market.

We have shown how the smile pattern of implied volatility arises endogenously as a 

consequence of maintaining market stability. This is in contrast with the majority 

of the existing literature, where the smile is a result of additional exogenous noise 

or, as is the case in Platen and Schweizer (1998), of an equilibrium which is inher

ently unstable. The shape of the smile pattern predicted by our model displays the 

same skewness that has been observed in most financial markets since the October 

1987 crash. This provides an interesting new angle on the interpretation of this phe

nomenon. Our model explains the smile as a consequence of the attem pt to ensure 

market stability. This is consistent with market participants and regulators, hav

ing been alerted by the 1987 crash, have implemented measures to reduce market
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manipulation and increase market stability.

5.A Appendix: Complements to  Section 5.4

L em m a 5.A .1 (F ilte rin g  P ro b lem ) Suppose the terminal pricing rule is given by 

h =  / ,  and that the informed trader follows the strategy defined in Theorem 5.4-1- In 

the case where no options are held, i.e. p = 0, the distribution 0, •) of the informed 

trader’s signal, St, conditional on the market maker’s information set, is normal with 

mean Y f  and variance

T
£(*) =  £  ds- 

In particular, at the terminal date T, the market maker can infer the signal St  with 

certainty, since St  = Yj> almost surely.

PROOF: The proof is identical to the one in Back and Pedersen (1996). For p =  0 and 

h =  / ,  the first-order conditions (5.12) and (5.13) for the informed trader’s problem 

simplify to j/*(6'r) =  S t ,  so that the informed trader’s strategy takes the form

6{t) =  a(t) (St -  Yts) .

Let := St — Yt; clearly,

d£t =  -a ( t )£ t dt -  oz {t) dWtz  +  <rs (t) dWts , 

dY* = a{t)it d tY (Tz{t)dW tz .

These can be interpreted as the transition and measurement equations of a linear 

continuous-time filtering problem. By linearity, the conditional distribution of
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given Yt9 is normal. Denote its mean by £t and its variance by E t . The correspond

ing Kushner equation (cf. Kallianpur and Karandikar (1985)) implies the following
A A

system of equations for and E t:

d£t = -<*(<)?, dt +  -^ r-r  (a(t)E« -  <r|(i)) dUt,

^ Vt =  -2 a (f)E , +  o | ( i )  +  ( o t ( i ) t ,  -  a |( i ) )  .

Here, Ut is the innovation process, which is a standard Wiener process with respect 

to the filtration generated by the market maker’s information. It is easy to see that
A A

this system is solved by ( t = 0 and E t =  E(f), see Back and Pedersen (1996, Lemma

3).

□

Corollary 5. A .2 (R ationality) Under the assumptions of Lemma 5.A.1, the pric

ing rule defined in Theorem 5.4-1 is rational, i.e. prices reflect expected terminal 

asset values conditional on the market maker’s information.

PROOF: From Lemma 5.A.1 we know that St conditional on Y f  is normal with mean 

Yte and variance E(f). Hence, S t  conditional on Yte is also normal with mean Y f and 

variance

E (t) +  cr|(s) ds = o2z (s) ds ,

which is the variance of Y% conditional on Y f . Hence, the expected terminal asset

value, conditional of Yte =  y , is

E l [ /Or) ],
which was to be shown.
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5.B Appendix: Complements to Section 5.5

P ro p o sitio n  5.B .1 (Sm ile P a tte rn )  For K  sufficiently small,

d K <p; K) <  o

PROOF: From the Black-Scholes option pricing formula it is immediate to see that

n n B S  f ) C B S

P - g p - V ,  P, K )  =  P, K) .

Differentiating (5.26) with respect to K , we find

oydmp F t r B S  .

= (£o, «(p)A, K)  -  ^ W p> A ,K )

=  i  (~K ’ *(*) a . K ) + ^ ( sorap, A, jo)

It is well-known that a European call option’s “vega”, i.e. the derivative of its Black- 

Scholes price with respect to volatility, is positive. Hence,

/  oy im p  \  /  f ) C B S  .  f ) C B S  • a \
sig“ ( K A  =  s‘gn \ ^ - K( p ) - g p ~ ( S o,  K(p)  A, K )  +  ~ g p - ( Eo"P> A, K ) j  .

Finally, it is straight-forward to see that

Hence, since K,(p) > 1, the term in the brackets eventually becomes negative for K  

small enough. This proves the desired result.

□
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Strike

Figure 5.1: The Smile Pattern 

This graph shows the implied volatility ( • )  compared to the signal volatility (o) as 

a function of  the option’s strike price. The informed trader is assumed to hold an 

option on 25% of the market.



C hapter 6

O ptions as Exchange R ate  

Policy Instrum ents

6.1 Introduction

Traditionally, central bank interventions in the foreign exchange market are imple

mented almost exclusively by spot transactions. Historically, the intensity of inter

vention increased steadily after the collapse of the Bretton Woods treaty. In the 

80’s, while the US adopted a “laissez-faire” approach, European central banks had 

to rely on intervention to keep exchange rates within the bounds of the Exchange 

Rate Mechanism. Europen intervention culminated in 1985, when the (G5) coun

tries1 decided to “depreciate the dollar in an orderly fashion”, and even more in the 

late 80’s, when the (G6) agreed in the Louvre Accord of February 1987 to “stabilise

1US, Japan, Germany, France, UK
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exchange rates around their exisiting levels” .

The mechanics of traditional central bank intervention are comparatively straight

forward. Central banks would simply buy or sell foreign currency in the spot market, 

thereby affecting money supply. In a “sterilised” intervention, this transaction is neu

tralised by an offsetting domestic transaction. The survey by Edison (1993) studies 

the objectives and effectiveness of central bank intervention in the foreign exchange 

markets. Edison concludes that most central banks’ main objective is to “smooth 

nominal [and real] exchange rates and to achieve a target level of nominal exchange 

rates.” While the evidence with regards to sterilised interventions is inconclusive, 

unsterilised intervention has proven effective in controlling exchange rates. See also 

Almekinders (1995).

The use of options as instruments of exchange rate policy was first proposed by Tay

lor (1995). He suggests that central banks should buy put options, written on the 

domestic currency. When the domestic currency depreciates as a result of a specula

tive attack, Taylor argues, the option is deep in the money allowing the central bank 

to buy foreign currency at deflated rates, which can then be sold in the spot market 

to support the domestic currency. Breuer (1997) identifies five main drawbacks of 

the approach suggested by Taylor, the most important of which is related to what is 

called the destabilising effect of “delta hedging”: The options that the central bank 

buys are issued by market makers, who incur substantial risk from this transaction. 

To manage this risk, market makers would typically adopt trading strategies designed 

to replicate the option’s pay-off in order to eliminate the potential liability arising 

from their short option position. This kind of activity is usually referred to as “delta 

hedging” . In the scenario discussed here, the hedging strategy would require market 

makers to buy in rising markets and to sell when markets fall. Thus, the implemen

tation of such strategies creates a positive feedback effect, amplifying exchange rate
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fluctuations. A detailed theoretical analysis of the destabilising effects of dynamic 

hedging is provided in Chapter 2. Empirical evidence supporting the importance 

of such effects has been reported, amongst others, by Malz (1995). He finds that 

even in large, extremely liquid foreign exchange markets, hedging activities can have 

a significant impact on exchange rates. Similar results have been reported by the 

Group of Ten (1993).

In view of this, both Wiseman (1996) and Breuer (1997) independently proposed 

an alternative way of utilising options as exchange rate policy instruments. Rather 

then buying put options, they argue, the central bank should write call options. As 

a result, market participants (other than the central bank itself) would end up with 

a net long position in option contracts. Strategies designed to hedge the risk in

herent in such a position would exhibit negative elasticity, requiring the hedger to 

buy in falling markets and to sell when markets rise. Thus, Wiseman and Breuer 

argue, by issuing options the central bank could induce market participants to sta

bilise exchange rates by delta hedging. The results of Chapter 2 confirm that if 

market participants content themselves with hedging their long position in currency 

options, a stabilising effect could indeed be achieved. However, the mechanism pro

posed by Wiseman (1996) and Breuer (1997) makes very explicit use of the fact that 

exchange rates are affected by the hedgers’ trading activities. In other words, market 

manipulation is not an unwanted side-effect but rather the very tool by which the 

mechanism is implemented. This raises an important question: While it is true that 

the option induces extremely risk-averse market participants to hedge their positions 

thus stabilising rates, the situation might change drastically if instead the option is 

held by speculators who, being risk-neutral, have no incentive to hedge risk but to 

maximise expected profits.

In this chapter, we consider the situation in which a speculator, having bought the
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option issued by the central bank, instead of simply hedging her position strategically 

exploits the leveraged position in the market provided by the option. As theoretical 

framework, we chose the continuous-time model developed in Chapter 4, which in 

turn is based on the Back (1992) model. In contrast to the latter however, we assume 

prices to be given by Walrasian equilibrium rather than set by a market maker. The 

risk-neutral speculator interacts with “information traders” , who base their demand 

for foreign exchange on the flow of fundamental “news”. We assume that the central 

bank’s objective is to stabilise exchange rates and to keep them within a given “target 

zone”. While it is debatable whether this objective is in line with maximising social 

welfare, the discussion of this question is well beyond the scope of this chapter. We 

rather content ourselves with noting that this type of objective on behalf of central 

banks is supported by the empirical evidence, as outlined for example in Edison

(1993). In order to achieve their objective, the central bank can intervene using spot 

transactions or by issuing options. In addition to trading in the spot market, the 

speculator may purchase the options issued by the central bank.

It turns out that in the absence of options, the speculator has no incentive to manip

ulate markets. In fact, in this case it is optimal not to trade at all in the spot foreign 

exchange market. The reason for this is that any potential gain from manipulation 

is neutralised by the price pressure that results when the speculator “unwinds” her 

position to realise these gains. In other words, in the absence of options it is only 

the arrival of “bad news” and the reaction to this by information traders that might 

push exchange rates outside the target zone. The violation of the target zone hence 

occurs as a consequence of rational behaviour based on the fundamental value of the 

domestic currency, rather than as the result of a speculative attack. An option issued 

by the central bank however creates an alternative way for the speculator to realise 

the gains from market manipulation. Upon arrival of “bad news”, when information
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traders cause the domestic currency to depreciate, the option creates an incentive for 

the speculator to squeeze exchange rates even further. Scenarios can arise in which 

without speculation, the central bank’s foreign currency reserves would have been 

sufficient to support the domestic currency, while they cannot sustain the additional 

pressure arising from the speculator’s manipulation. In other words, instead of pro

tecting against speculative attacks, options issued by the central bank in fact create 

an additional vehicle for such attacks.

The remainder of this chapter is organised as follows. In Section 6.2, we introduce 

the model and the mathematical framework for our analysis. The following section 

gives a brief account of the speculator’s optimisation problem, following closely the 

arguments developed in Chapter 4. Section 6.4 analyses the structure of equilibria in 

our model. Two distinct cases are considered; first the case in which the speculator 

simply hedges her option position, and second the case in which she acts strategically. 

Section 6.5 concludes.

6.2 The M odel

We formulate the model in the general framework developed in Chapter 4, which in 

turn is based on the model introduced in Kyle (1985) and Back (1992). However, 

while in the latter prices are set by a competitive market maker, we consider here a 

Walrasian auction mechanism to determine equilibrium prices.

T r a d e d  A s s e t s :

Two assets are traded continuously over the period from time zero to some final date 

T. The first asset is a riskless domestic bond or money market account. We use the 

bond as numeraire, normalising its price to one thus making interest rates implicit in
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our model. The second asset, which we shall refer to as “foreign currency”, is risky. 

We denote the foreign currency’s price at time t by Pt , and refer to Pt sometimes 

also as the exchange rate. Note that this is the inverse of the notion of exchange rate 

as it is used in the U.K., where it specifies the amount of foreign currency that can 

be bought with one unit of domestic currency.

A g e n t s :

There are three types of agents in the economy, information traders, the central 

bank, and a rational speculator. Without at this point being specific about the 

precise nature of information traders, we assume that their demand for the foreign 

currency at any time t , given a quoted exchange rate p, is given by the demand 

function

p*-¥ D (t ,Z u p). (6.1)

Here, Zt summarises the information available to information traders, which deter

mines their perception of the “true” value of the exchange rate. We can interpret Zt 

as a flow of macroeconomic “news” affecting the fundamental value of the domestic 

versus the foreign currency. We will provide more specific examples of such demand 

functions in later sections. For the moment, we content ourselves with assuming that 

D (t,z ,p )  is differentiable and

£ d >  0, ± D < t .  (6.2)

In other words, a decline in Zt means “bad news” for the foreign currency and “good 

news” for the domestic currency, causing information traders to short some of their 

foreign currency holdings.

The central bank on the other hand, implements an exchange rate policy aimed at 

stabilising exchange rates. In order to achieve this, the central bank may trade on
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the foreign exchange market. More specifically, the central bank’s demand at time t 

for the foreign currency, given a quoted rate p , is given by the policy function

pi-» C (t ,Z u p). (6.3)

Note in particular that we allow the central bank’s exchange rate policy to depend 

on Zt , i.e. we assume (quite reasonably) that macroeconomic news are observable 

by the central bank. Since the central bank seeks to stabilise exchange rates, it is 

reasonable to assume that it sells foreign currency when its price is too high, and 

buys it when the price is low. More specifically, we assume

| c < ° ,  | c <  0. (6 .4 )

Note in particular that, since the central bank’s objective is exchange rate stabil

isation, it might be forced to act against fundamental macroeconomic news. This 

is reflected in the non-positive relation between the information process Zt and the 

central bank’s intervention function. In order to study speculative attacks on the 

domestic currency, we also assume that the central bank’s reserves of foreign cur

rency are limited. Formally, we express this by assuming that C (t,z ,p )  is bounded 

from below, C (t , z,p) > —C_ for some constant C_> 0. We will provide more explicit 

specifications of the central bank’s policy function later.

The third player in the market, the rational speculator, is assumed to be a risk- 

neutral, perfectly informed profit maximiser. The speculator in this model plays 

the role of the “large trader” in Chapter 4. At any time t , the speculator observes 

Zt and determines his or her demand X t for the foreign currency. For reasons of 

expositional simplicity, we restrict the speculator to using trading strategies 0(t) so 

that the demand Xt is given by dXt =  6(t) dt. Note in particular that this assumption 

forces the demand process Xt  to be absolutely continuous. Although this assumption 

might seem unnecessarily restrictive, it can be shown that even if the speculator is
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allowed to choose from a larger strategy set, the optimal strategy will turn out to be 

absolutely continuous; see Back (1992).

In order to be able to study the effectiveness of options used as exchange rate policy 

instrument, we furthermore allow the central bank to issue options, written on the 

foreign currency. We assume that at the time when the central bank issues these 

options, it cannot observe whether the buyer is an information trader or a speculator. 

We assume that the option, if exercised, pays off an amount (p(Pr) at time T. A 

simple example would be a European call option with strike price K , in which case 

<p (Pt ) =  (Pt — K).  Options are sold only at date zero, and cannot be traded 

thereafter. In addition to the trading strategy 6(t), the speculator hence has to 

choose an exercise policy I  for the option, which we assume to be =  1 if the option 

is exercised and =  0 if not. As in Chapter 4, the speculator’s objective is then to 

choose a trading strategy 6(t) and an exercise policy I  such as to maximise expected 

terminal wealth. Note that both the optimal strategy as well as the exercise policy 

will depend on the number of options the speculator holds (which could be zero).

E q u il ib r iu m :

In the context of foreign exchange markets, it is appropriate to assume that the total 

supply of foreign currency is zero, reflecting the fact that all that matters is the net 

balance of foreign currency held by domestic traders versus domestic currency held 

by traders in the foreign country. The equilibrium exchange rate at any time t is then 

given as the solution Pt of the market clearing equation

D (t , Zf, Pt) +  C{t, Z*, Pt) +  Xt = 0. (6.5)

In order to bring the speculator’s profit maximisation problem into the formal frame

work of Chapter 4, we define the pricing rule H ( t , z, x) associated with the equilib
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rium equation (6.5) implicitly via

D (t , 2 , H (t , x , z)) +  C(£, 2 , H (t , x, z)) +  a; =  0. (6.6)

By differentiating this equation, we find that the hypotheses (4.1) imposed on the 

pricing rule in Chapter 4, are satisfied if

-^-D + ^ -C >  0 .
OZ oz

As we did in Chapters 4 and 5, we denote by corresponding lowercase letters any 

function evaluated at the terminal date T, for example, we write h(x , z) =  H (T , x, z). 

The terminal value to the speculator of the foreign currency is, just as in Section 4.2.2, 

the price at which the speculator can “unwind” his or her position in the market at 

time T. Denote this price by P£. Obviously, P£ =  /i(0, Zt ). Since there is no 

informational asymmetry in this model, the speculator’s expectation at time T  of 

the terminal value of the asset is hence also given by P%. Note that this notion of 

“unwind price” is in contrast with the majority of the literature. In most studies of 

similar problems of optimal trading, the terminal value of the asset is simply given 

by its current market price. In other words, this approach neglects the price pressure 

arising from the attem pt to actually realise potential gains from trade. We therefore 

believe our specification to be more realistic. Note also that this specification actually 

reduces the speculator’s incentive to manipulate markets, a fact which allows us to 

place more emphasis on the effect of options as central bank policy instrument. More 

precisely, in the absence of the option, any potential gain from market manipulation 

is consumed by the depreciation caused by the supply pressure that arises when 

the speculator “unloads” her position in the market. The option however allows 

the speculator to realise the gains from market manipulation without affecting the 

underlying exchange rates.

Finally, we define the “fundamental value” of the foreign currency as the equilibrium
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price that would obtain in the absence of both the speculator as well as the central 

bank. Denote this value at time t by P F. Obviously, P F =  H F{t, Z t), where H F(t , z) 

is the solution of the equation

D ( t ,z ,H F(t,z)) = 0.

We introduce this value only as a benchmark, since it reflects the information traders’ 

perception of what the exchange rate should be in the absence of speculation or 

intervention, given their information. We will use this benchmark in Section 6.4 to 

demonstrate how in our model situations are likely to occure in which,

(a) the fundamental exchange rate is well within the central bank’s target zone, so 

that in the absence of speculation no intervention would be necessary,

(b) even when the speculator is active, there is no incentive for manipulation, so 

that still no intervention is needed, but

(c) if the speculator holds an option, the manipulation incentive thus created is 

strong enough for the exchange rate to be pushed outside the target zone even 

though the central bank exhausts all its foreign currency reserves in the attem pt 

to support the domestic currency.

6.2.1 M athem atical Setup and N otation

As in Chapter 4, we will assume for expositional simplicity that the fundamental 

news process, Z t, is given by a generalised Brownian motion. More specifically, we 

assume that Zt is a solution to the stochastic differential equation

dZt = crz(t) dWtz , (6.7)



Chapter 6. Options as Exchange Rate Policy Instruments 159

where W f  is a standard Brownian motion, and crz(t) is a deterministic function. 

Note however that the results of this chapter can easily be extended to more general 

diffusion processes. A trading strategy for the speculator is a process 6(t), adapted 

to the filtration generated by Zt, such that the corresponding demand process

X f  : = X ° +  f  6{s)ds (6.8)
Jo

is well-defined. Note that we assume the speculator to possess perfect information 

regarding the structure of the economy, in particular the information trader’s demand 

function D (t,z ,p )  and the central bank’s policy function C (t,z ,p ) .  Thus, the news 

process Zt is a sufficient state variable for the speculator’s optimisation problem.

Let Pt'z be a weak solution to (6.7) and (6.8) conditional on Zt = z and X f  = x , 

defined on some suitable measurable space (f2, F).  We will omit the superscripts x or 

z whenever there is no ambiguity, and we also write P x,z for Pq'z. Denote by (Ft)t>o 

the filtration on (D ,^ ) generated by Zt, augmented to satisfy the “usual conditions” , 

see Karatzas and Shreve (1988, Section 1.2) for details.

6.3 The Speculator’s Problem

In this section, we will outline the solution of the speculator’s optimisation problem. 

From the speculator’s point of view, the equilibrium pricing rule H (t,X t,  Zt) can 

be considered exogenously given, so that the optimisation problem to be solved is a 

special case of the problem considered in Chapter 4. Therefore, we give here only a 

brief outline of the main result, Theorem 6.3.1. A detailed exposition can be found 

in Chapter 4.
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6.3.1 O bjective Function

The speculator’s objective is to maximise expected terminal wealth. Following the 

intuition developed in Chapter 4, terminal wealth in the absence of the option is 

given by

TBt + Vt-Xt = B0 + Vt-X0+ I (VT - P t-)9(t)dt.  (6.9)
Jo

Since Bo and Xo are exogenously given and thus irrelevant for the optimisation prob

lem, we will assume Bo =  Xo =  0 and focus on the last term in the above expression. 

Given any strategy 0{t), the dynamics of the speculator’s demand process, X f ,  are 

given by (6.8). Equilibrium prices are given by the pricing rule Pt =  H ( t , X f , Zt). 

Recall that from the speculator’s point of view, the terminal value of the foreign 

currency is given by the “unwind value” P£ =  h(0, Z t) .  In the context of Chapter 

4, we can formalise this as f ( z )  =  h(0,z). Consequently, the expected terminal value 

at any earlier point in time t < T  is given by F ( t , z ) = Ef[ f (Z x )  ]. Using the law 

of iterated expectations, we can write the speculator’s expected terminal wealth for 

given strategy 0{t), conditional on Xo =  x, Z q =  z, as

, z t) - H ( t , x ° , z t) )e(t) dt 

=: n  ( t ,x ° , z t)

Note that the function I l ( t ,X f , Zt) has an economic interpretation: It describes the 

expected marginal benefit of holding an extra unit of the risky asset, F ( t , Zt), minus 

the current purchasing price, H ( t ,X f  ,Z t). Following our convention, we write

7r(x ,z)  := II(T, x ,z )  =  f ( z )  — h(x,z).

We now incorporate the option into the speculator’s objective function. For this part 

of the analysis, we take the number of options held by the speculator as exogenously

E x' f T (P£ -  Pt) 0{t) dt = E x,z f  (F{t 
Jo Jo v-----
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given. Recall that the option, if exercised, pays off an amount <p(Pr) at time T. 

Since the price Pt at time T  is given by Pt  =  we shorten notation by

setting ^>(x, z) := <p(h(x, z)). Hence, if the speculator holds p units of such an option, 

expected terminal wealth becomes

E x’z f  n ( t , X ? , Z t)0(t )d t  +  pI<t>{X%.,ZT) . (6.10)
. Jo J

Here, I  denotes the exercise policy, which we assume to be =  1 if the option is 

exercised, and =  0 if not.

6.3.2 Adm issible Strategies

The choice variables for the speculator are the trading strategy 6{t) and the exercise 

policy I. Note that due to our assumption of absolute continuity, the demand process 

X t is automatically predictable. This is in line with the intuition that the decision 

on what assets to hold over any period of time must be based upon the information 

available at the beginning of that period. It is also important for technical reasons, 

see for example Harrison and Pliska (1981) for a detailed elaboration on this issue. 

On the other hand, since the decision whether to exercise the option or not is made 

at time T, it can be contingent on all information available to the speculator at that 

time.

Formally, an admissible policy is a pair (9, /) , where I  is an .^-m easurable random 

variable taking values in {0,1}, and 0{t) is a process adapted to (Ft)t>o such that

•T
V 9' % x , z )  := E\ J  n(r, X eT, Z t ) 0 ( t ) dr + pI<j>{XeT, ZT)

is well-defined for every x , z  £ IR and t € [0,T]. We can interpret V e,r(t, x, z) as the 

gain that is made starting at Zt = z  and X f  = x at time t and following trading
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strategy 6 and exercise policy I  thereafter. The speculator’s problem is thus to find 

an admissible policy (0,1) which maximises V 6,I(t, x, z). As usual in the theory of 

stochastic control, we define the value function of the problem as

V*(t, x , z) := sup V e,I(t , x , z). (6.11)
(6J)

We are now ready to state the main result of this section.

Theorem  6.3.1 (O ptim al Strategy) There exists a non-degenerate solution to 

the speculator’s problem if and only if  the equilibrium pricing rule satisfies H ( t , x, z) =  

E*[ h(x,ZT)  ]. In this case, there exist functions X *(t,z )  and I*(z) such that the 

optimum is attained by exercise policy I * =  I*(Zt), and any trading strategy of the 

form

8 ( t ) := a ( t ) (X * ( t ,Z t) - X > ) ,  (6.12)

where a(£) is any deterministic function with a(t)  — Y oo as t — Y T  fast enough to 

force the demand process X f  to converge to X*(t, Zt) as t — Y T.

Note that the necessary condition, H ( t ,x , z ) =  Ef[ h (x ,Z x)  ] can be interpreted as 

a no-arbitrage condition, since it requires the equilibrium exchange rate process in 

the absence of the speculator to be a martingale. In the examples considered below, 

this condition is satisfied by construction.

We give a brief outline of the proof of this theorem in the following section. A

detailed exposition can be found in Section 4.3. For general reference on the theory

of controlled diffusion processes see Fleming and Soner (1993) or Krylov (1980).
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6.3.3 P roof o f Theorem 6.3.1

The proof of Theorem 6.3.1 is essentially an application of Theorem 4.3.1 in Chapter 

4. As discussed there, the value function V *(t,x ,z )  can be characterised as the 

solution to the Bellman equation subject to appropriate boundary conditions. In the 

case considered here, the Bellman equation takes the form

s'y’{v< + \ a2zv” + (v* + Tl)0} = °- (6-13)
Since this equation is linear in 0, in order for the supremum to be finite the co

efficient of 6 must be zero. We can thus split up the Bellman Equation into the

following two separate equations:

V, +  ~a2z Vzz =  0, (6.14)

V* +  n  =  0. (6.15)

Equation (6.14) is just the heat equation associated with two-dimensional Brownian 

motion. The Feynman-Kac representation theorem (see Karatzas and Shreve (1988, 

Theorem 4.4.2)) allows us to write its solution (if it exists) in the following form:

V ( t ,x ,z )  = E t t V ( T , x , Z T)} .

Equation (6.15) has a more economic interpretation. It states that the marginal 

gain Vy( t ,x ,z )  from holding an extra unit of the risky asset at time t , must equal 

the purchasing cost, H (t ,x ,z ) ,  minus the expected marginal benefit, F{t,z) .  For a 

detailed elaboration on the intuition behind this, see Section 4.3.4.

O p t i m a l  S t r a t e g y

Following the arguments developed in Section 4.3.5, the boundary condition for the 

Bellman equation will help us pinpoint the optimal strategy. Suppose the value
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function V * ( t ,x ,z ) exists and is sufficiently smooth. We know then that is must 

solve the Bellman equations (6.14) and (6.15). For any given admissible strategy 

6(t), Ito’s Lemma applied to the process V *(t,X f,  Zt), together with (6.14) and 

(6.15) allows us to write

V (0 , x, z) =  y ^ ( 0 ,  x, z) +  E z \ V*(T, X 9t , Zt ) -  pH ( X bt , Zt ) 1. (6.16)

=: q\X°T, Zr, I)

The above equation has the following interpretation; the quantity E z[ q*(Xj<, Z t ', I)  ] 

measures the difference between the value Vfl,/(0, x , z) of any given policy pair (0 ,1) 

and the maximal achievable value V*(0,x,z). The function q*(Xj; Z t ] I)  can thus 

be identified as the loss incurred by the speculator by deviating from the optimal 

strategy. In particular we deduce that E z[ q*(X%<, Z t ‘, I)]  must be non-negative, and 

zero at the optimum. We will reverse this argument to construct the optimal policy 

and value function. More specifically, we will construct a function q*(x,z]I)  and 

“optimality conditions” x*{z) and I*(z) in such a way that q*(x, z\ I)  >  0 and =  0 if 

and only if x =  x*(z) and I  =  I*(z). Based on this we use (6.14) and the Feynman- 

Kac representation to construct a candidate V *(t,x ,z )  for the value function which 

satisfies (6.13). From this and the above arguments we can conclude that an exercise 

policy I * ( Z t ) and a trading strategy which ensures that Xj> =  x * ( Z t ) will attain 

the optimum, and that V"*(^,s,y) is indeed the value function of the speculator’s 

problem. The formal proofs for all these statements can be found in Chapter 4. We 

interpret a;*(s) as the optimal “target position” towards which the speculator should 

trade as t — > T, conditional on Z t  = z. This is similar to the arguments presented 

in Back (1992) and Back and Pedersen (1996).

As shown in Chapter 4, evaluating the Bellman equation (6.15) at t — T  implies that
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the loss function q*(x, z; I)  must be of the form

p x * ( z )

q * (x ,z] I)=  /  7T(( ,z)d£  + pl*(z)<l>(x*(z),z)-pl(/>(x,z), (6.17)
*/ X

for suitably chosen x*(z) and I*(z). An intuitive interpretation of this equation is 

given in Chapter 4. By construction, the loss function defined in (6.17) satisfies 

the desired “boundary conditions” q*(x*(z), z; I*(z)) =  0. Our remaining task is 

hence to determine x*(z) and I*(z) in such a way that for each z the mapping

(x , I ) q*(x,z;I)  has a global minimum at x =  x*(z) and I  = I*(z). Following

the arguments developed in Chapter 4, we first keep the option exercise decision 

fixed and construct optimal targets x\(z)  and x$(z) conditional on the option being 

exercised or not, respectively. We can then establish the optimal exercise decision 

I*(z) endogenously. As shown in Chapter 4, the conditional target positions X q ( z )  

and x'Kz) can be characterised via the first-order conditions

f ( z )  =  h(xl(z),z) ,  and (6.18)

f ( z )  = h(x \(z),z)  -  p(j>x(xl(z),z) .  (6.19)

As shown in Chapter 4, it is then optimal for the speculator to exercise the option if 

and only if

[  *r(f, z) < p</>(xl(z), z). (6.20)
J x \ ( z )

The economic interpretation of (6.20) is as follows. Recall that X q ( z )  is the optimal 

target position conditional on no exercise. Hence the left-hand side of (6.20) is the 

loss incurred by trading towards x\(z)  instead of X q ( z ) .  The right-hand side however 

represents the gain made from the option’s pay-off. Hence (6.20) states that the 

speculator should exercise the option if and only if the loss incurred by deviating from 

the optimal position is outweighed by the option’s pay-off. Since by (6.20), optimality 

of exercise depends only on z, we can define the optimal exercise indicator I*(z) in
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the obvious way. Intuitively, the unconditional target x*(z) should then equal x\(z)  

whenever exercising the option is optimal, and X q ( z )  otherwise. Therefore we define

x*(z) := I*(z)x\(z)  +  (1 -  I*(z))x*Q{z).

The loss function q*(x,z',I) defined via (6.17) can then indeed be shown to have 

a global minimum at x =  x*{z) and I  = I*(z), see Proposition 4.A.3. From the 

arguments outlined in the beginning of this section it should now be intuitively clear 

that any strategy 0(t) which ensures that X f  — > x * ( Z t ) as t — > T  is a candidate 

for the optimum. We hence set X *(t,z )  := Ef[ x * ( Z t ) ] and define

9( t )  :=  a ( t )  ( X * ( t ,  Zt) -  X •) ,

where a(t) is a deterministic function with a(t) — > oo as t — > T  fast enough to 

make X f  converge to x * ( Z t ) as t — > T. A rigorous proof for the optimality of 6(t) 

is given in the appendix to Chapter 4.

6.4 Equilibrium

In this section, we will analyse the structure of the equilibria that arise in two quite 

different scenarios. First, we consider the case in which the speculator does not 

exploit her market power but instead simply hedges the option position, as assumed 

in Wiseman (1996) and Breuer (1997). Second, we study the case in which the 

speculator takes advantage of the fact that the option provides an opportunity to 

benefit from market manipulation. This case will be the main focus of our attention. 

Unsurprisingly, in the former case the presence of the option indeed does dampen 

the fluctuations caused by fundamental news, thus achieving the desired stabilisation 

of exchange rates. In the latter, speculative case however, the effect is reversed:
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While in the absence of the option, the speculator has no incentive to manipulate 

markets and may even act in the central bank’s favour, the introduction of the option 

provides a way to benefit from manipulation and thus creates an additional vehicle 

for speculative attacks on the domestic currency.

6.4.1 H edging Equilibrium

As a benchmark, we consider the case in which the speculator does not fully exploit 

her market power but simply implements a strategy designed to hedge the long 

option position. Note that, since the speculator’s trades affect underlying equilibrium 

exchange rates, solving the hedging problem is far more involved then in the classic 

Black-Scholes model. According to the classic theory, the strategy needed to replicate 

an option’s pay-off can be characterised as the solution to a linear partial differential 

equation. However, if the underlying market is imperfectly elastic, the activity of 

option hedging or replication creates a feedback effect which affects the underlying 

equilibrium price process. See Chapter 2 for a detailed elaboration on this issue.

The hedging problem in finitely elastic markets was solved by Jarrow (1994) in dis

crete time, and later by Frey (1996) in continuous time. Frey considers a reduced-form 

equilibrium specification, in which prices are given by a “reaction function”, depend

ing on the large trader’s position and some exogenous stochastic factor. The pricing 

rule derived in (6.6) is a special case of such a reaction function, where the role of the 

stochastic factor is played by the news process Zt. Frey shows that, if the option’s 

pay-off function is sufficiently regular, there exists a unique replicating strategy for 

the large trader. This strategy is characterised by a non-linear partial differential 

equation, which implies in particular that the cost of replication is not additive, i.e. 

replicating two options does not necessarily cost twice as much as replicating one.
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However, the one feature of replicating strategies which is essential for the analy

sis here remains valid even in this more complex situation: Strategies designed to 

replicate convex pay-off patterns exhibit positive price elasticity, they require buying 

in a rising market and selling when prices fall. See Frey (1996) for details. Con

versely, a strategy designed to hedge the risk of an option position exhibits negative 

price elasticity. As a consequence, if the speculator hedges her position, the result

ing equilibrium exchange rate, Pt , is less volatile than its fundamental level, P f . 

In other words, the speculator’s hedging activity indeed serves to stabilise exchange 

rates. In particular, when fundamental news are bad, and information traders would 

sell domestic currency thus pushing rates outside the central bank’s target zone, the 

speculator’s hedging strategy requires selling foreign currency thus supporting the 

domestic currency.

6.4.2 Speculative Equilibrium

We now turn to the case which is the main focus of our attention. We assume that 

rather than simply hedging the option’s pay-off, the speculator acts strategically 

such as to maximise expected terminal wealth. We have seen in Section 6.3 that the 

speculator’s optimal strategy can be characterised in terms of a “target position” 

x * ( Z t ) towards which she should trade, conditional on the news process Z t . The 

target position is characterised by the first-order condition

f ( Z T) = h(x*(Zr), ZT) -  p r ( Z T) M ^ ( Z T), ZT) . (6.21)

=: r T

In equilibrium, we have X t  =  x * ( Z t ) ,  so  that the first term on the right-hand side 

of the above equation is simply the equilibrium exchange rate, h(x*(ZT), Z t)  =  Pt- 

Recall that the value of the speculator’s foreign currency position is determined by
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the price at which this position can be “unwound” in the market. Formally, this can 

be written as f (Z x )  =  P so that the first-order condition takes the form

Pt =  Pt +  P^t - (6.22)

The supply pressure resulting from unwinding a large position will cause exchange 

rates to depreciate, thus neutralizing any potential gain the speculator could have 

derived from manipulating exchange rates. Thus, in the absence of the option (p =  0), 

the speculator has no incentive to trade at all. More precisely, if p =  0, condition 

(6.22) simply requires Pt =  P }, which implies x*(Zt ) =  0. Hence we can interpret 

the term  Ft  as the additional price pressure resulting from the speculator’s incentive 

to manipulate exchange rates when she holds an option.

P ro p o s itio n  6.4.1 (E qu ilib rium ) In equilibrium, exchange rates satisfy

Pt  =  Pt  pFt -

In particular, in the absence of options (p = 0), the speculator does not trade at all.

Note that, since Ft  > 0, the above equilibrium equation implies that Pj< > Pf?. In 

other words, the equilibrium exchange rate in the absence of speculation will always 

be below the fundamental level. However, if the speculator holds options (p >  0), 

situations are likely to occur in which

P% <  P f  <  P% +  pVT .

In other words, while in the absence of the option, exchange rates would not exceed 

their fundamental level, P%', the existence of the option creates an incentive for the 

speculator to push exchange rates beyond P%. The intuition behind this result is as 

follows. From the analysis in Section 6.3 we know that the speculator’s incentive to
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manipulate exchange rates is stronger the more the option is likely to end up in the 

money. In other words, the speculator responds to the arrival of bad news regarding 

the domestic currency by manipulating against it, i.e. by increasing her position in 

the foreign currency. This effect is entirely due to the existence of the option! Rather 

than protecting the domestic currency from speculative attacks, options issued by the 

central banks in fact create an additional vehicle for such an attack.

6.4.3 A n Example with Linear Dem and

In this section we will analyse a specific example in which we assume for simplicity 

that the information traders’ demand function is linear. More precisely, recall that 

the “fundamental” exchange rate is given by P F =  H F(t, Zt). We assume that 

information traders buy foreign currency if the exchange rate is below its fundamental 

level and sell if it is above. Formally, we assume

D (t,z ,p )  = -  (H F(t,z)  - p )  ,
K

which is obviously compatible with the definition of H F(t,z).  To give an explicit 

example, we may assume that P F =  H F(t, Zt) is simply an exponential martingale,

H F(t, Zt) =  £t(Zt) := exp ( z t -  i  j f  a2z (s)ds^ .

Moreover, we assume the central bank’s exchange rate policy to be of a very simple 

form. Suppose the central bank’s objective simply is to ensure that the exchange rate 

at the terminal date, Pt , does not exceed some intervention level Pj<. To simplify 

m atters even further, we assume that at the terminal date T, the central bank does 

nothing if the exchange rate is in the target zone (below Py), but sells all foreign 

currency reserves if it is not. In other words, the central bank’s policy function at
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tim e T  can be written as

1
0 i f p < P z

-Cif

Strictly speaking, this example violates the differentiability assumptions made in Sec

tion 6.2. However, the arguments developed below can be obtained by approximating 

the central bank’s policy function by sufficiently smooth functions and passing to the 

limit. Figure 6.1 shows the pricing rule at the terminal date arising from this spec

ification. It is straight-forward to see that the speculator’s first-order conditions in

Price

P i -

Figure 6.1: Pricing Rule

this case are given by

Pj = h(xg, Zt )for /  =  0,

P} =  h(x\,Zi •) — pfor /  =  1.
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From this we can deduce that Xq =  0, and

if +  pK , < then x\  =  p, and

if P j  +  p K  >  P^, then =  C_ +  p .

In other words, if there is no option, then the speculator will have no incentive to 

trade, and the terminal exchange rate will be h(0, Zt ). However, if the speculator

does hold an option, it might be optimal to hold foreign currency. The intuition

behind this is simple. Without the option, the speculator cannot realise any gain 

from manipulating the exchange rate, since any potential gain will be neutralised 

by the price decline arising from the supply pressure when the speculator’s position 

in foreign currency is “unloaded” in the market. However, the option provides an 

alternative way to benefit from market manipulation, since its pay-off is settled at 

the equilibrium exchange rate before the speculator unwinds his or her position.

P ro p o s itio n  6.4.2 For any choice of parameters for which the option’s strike price, 

K , is below the intervention threshold, P f, there always exist outcomes with positive 

probability such that

(a) the fundamental exchange rate is within the central bank’s target zone, P% < 

P f, so that in the absence of speculation, intervention is not necessary,

(b) even when the speculator is active, without the option (p = 0) there is no 

incentive for manipultation, so that the equilibrium exchange rate equals the 

fundamental exchange rate, Pt  =  P>f < P?, and no intervention is necessary, 

but

(c) i f  the speculator does hold an option (p > 0), the equilibrium exchange rate 

will be pushed outside the target zone, Pt  > P f, even though the central bank 

exhausts all its foreign currency reserves to support the domestic currency.
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PROOF: We focus on those values of Z j  for which P^ =  < Pj-, but P^ + np > P f,

i.e.

h(0, Z t ) < P? < h(0, Z t ) +  Kp.

In other words, the fundamental exchange rate is within the target zone, but the 

marginal benefit from the option carries the exchange rate outside this region. An 

example of such a situation is depicted in Figure 6.2. Obviously, since K p  > 0, the set 

of such Zt:  is non-empty. In this case, the optimal trading targets for the speculator 

are #5 =  0 and x\ — C_ + p. Note that if the speculator trades towards X t  = 

the equilibrium exchange rate would be P£ +  Kp > P^. That is, although the central 

bank in this case sells off all its foreign currency reserves, it does not succeed in 

keeping the exchange rate within the target zone.

Recall from Section 6.3.3 that x\  is the speculator’s optimal trading target only in 

the case when it is optimal to exercise the option. It hence remains to show that 

there exists a set of Z t  with positive probability for which it is optimal to exercise. 

From Section 6.3.3 we also know that it is optimal to exercise the option if and only 

if

f  {Pt -  *(£, Zt )) d t < p  {h{x\, ZT) - K ) .  (6.23)
J X*

It is immediate to see that the integral on the left-hand side of inequality (6.23) 

corresponds to the shaded area in Figure 6.2. A straight-forward calculation gives

j P  {Pt -  ZT)) dt = Q  (P j -  J ? )  +  \ kP2.

The right-hand side of (6.23) is obviously equal to p (P j — K)  +  We can hence 

conclude that sufficient for optimality of exercise is
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Note that the right-hand side of (6.24) is simply a weighted average of K  and jRf. 

Since by assumption, K  < P?, it is obviously always possible to find a range of Z t 

for which

Pj + Kp > Pj > Pj >
P  +  L l

Since by construction, the distribution of P% has full support on IR+, it follows that 

the set of Zt for which the above inequality is satisfied has positive probability.

□

Price

Pi -

x\ — C_ +  p

Figure 6.2: Optimal Exercise Decision

6.5 Conclusion

We have studied the theoretical implications of the proposal by Wiseman (1996) 

and Breuer (1997), according to which central banks should issue options in order 

to stabilise foreign exchange rates. We have shown that the desired stabilisation 

effect relies on the assumption that the buyers of such options content themselves
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Price

optimum with option

P i -

pO   jdF
I rp  ---- I  rp

optimum without option

Figure 6.3: Equilibrium

with hedging their positions, rather than exploit strategically the levaraged position 

in the market provided by the option. Our results confirm that, if this assumption 

is true, the implementation of the corresponding hedging strategies would indeed 

reduce exchange rate volatility.

More importantly however, we have shown that if the assumption fails to hold, i.e. 

if speculators strategically exploit their market power, the existence of such options 

might in fact achieve the opposite of the desired stabilisation effect. In the ab

sence of options, there is no incentive for speculators to manipulate exchange rates, 

and fluctuations merely reflect changes in the economic fundamentals. By issuing 

options, the central bank in fact creates an additional incentive for market manip

ulation. Upon arrival of “bad news” , when rational traders adjust their positions 

thus causing the domestic currency to depreciate, the option creates an incentive for 

the speculator to squeeze exchange rates even further. Scenarios can arise in which 

without speculation, the central bank’s foreign currency reserves would have been 

sufficient to support the domestic currency, while they cannot sustain the additional
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pressure arising from the speculator’s manipulation. In other words, instead of pro

tecting against speculative attacks, options issued by the central bank in fact create 

an additional vehicle for such an attack.

While the mechanism proposed by Wiseman (1996) and Breuer (1997) can be shown 

to achieve the desired exchange rate stabilisation in some circumstances, it possesses 

an even greater potential for destabilisation in others. We therefore believe that de

spite its potential benefits, the risk inherent in the proposed meachnism is intolerably 

high.

An obvious question ensuing from the discussion in this chapter is whether there are 

alternative ways in which options could be used as exchange rate policy instruments 

without creating an unnecessary risk exposure. More specifically, future research 

should aim at determining endogenously the optimal strategy for the central bank, 

given their objective.



Chapter 7

Conclusions

In this thesis, we have studied the manner in which different types of trading be

haviour affects the nature of equilibrium prices when markets are imperfectly elastic.

We have seen that the additional demand generated by dynamic hedging strategies 

creates feedback effects which alter the volatility structure of the underlying price 

process, thus destabilising prices. These results are in line with the empirical evi

dence. Due to this effect, simple Black-Scholes strategies are no longer sufficient to 

perfectly replicate an option’s pay-offs. However, we were able to demonstrate that 

such strategies can still be used to “super-replicate” the option’s pay-off, even if their 

implementation causes a violation of the very assumptions they are derived from.

Further, we have investigated the manner in which technical trading affects equi

librium exchange rates. Technical trading leads to feedback effects similar to those 

inherent in the implementation of dynamic hedging strategies. As a consequence, 

technical trading causes exchange rate fluctuations of a magnitude far beyond the 

level justified by changes in the economic fundamentals. In other words, technical

177
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trading leads to the emergence of irrational price bubbles. Our results demonstrate 

that, while being ex-ante irrational, their very existence can make technical trading 

rules ex-post profitable. In other words, technical trading can be seen as a kind of 

“self-fulfilling prophecy”. These results are in line with the empirical evidence.

We have analysed the interplay between options markets and the markets for the 

underlying asset in the presence of asymmetric information. An option, held by a 

large, informed trader, creates an incentive for this trader to manipulate prices in 

order to push the option into the money. In other words, the option induces the 

informed trader to create a manipulative price bubble on the underlying market 

at the expense of uninformed traders. As a consequence, equilibria can only exist 

if the potential gain from manipulation is incorporated into the option’s price. The 

resulting equilibrium option price schedule gives rise to the “smile pattern” of implied 

volatility. The particular shape of the smile pattern predicted by our model is in line 

with the empirical observations made after the 1987 market crash. In view of our 

results, the post-crash shape of the smile could be interpreted as an indication that 

increased awareness amongst market participants and regulators has lead to a better 

alignment of option prices with the markets for the underlying.

Finally, we have analysed the implications of imperfect elasticity for the use of options 

as central bank exchange rate policy instrument. Following up on recent suggestions 

for central banks to write call options in order to induce stabilising “delta hedging”, 

we demonstrated the potential danger inherent in such a strategy. While an option 

issued by the central bank would indeed induce highly risk-averse market participants 

to reduce exchange rate volatility by hedging their option position, this is certainly 

not true if the option is instead used as a speculative instrument. A speculator, having 

bought the option from the central bank, would have a strong incentive to manipulate 

exchange rates in order to push the option deeper into the money. Thus, rather then
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protecting against speculative attacks on the domestic currency, the option instead 

creates an additional vehicle for such an attack.
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