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Abstract

The goal of this thesis is to investigate the relation between mathematics and 

physics and the role this relation plays in what physics does best, that is in scientific 

explanations. The case of gauge theories, which are highly mathematical, is used as 

an extended case study of how mathematics relates to physics and to the world and 

these relations are examined from both a historical and a philosophical perspective.

Gauge theories originated from an idea of Weyl which turned out to be wrong, 

or in other words, empirically inadequate. That original idea underwent a dramatic 

metamorphosis that turned the awkward caterpillar into a beautiful butterfly called 

gauge theories, which were very successful and dominated theoretical physics dur­

ing the second half of the twentieth century. The only leftover from Weyl’s faux pas 

was the very name of the theories and the question how it is possible for something 

as wrong as his original idea to result in a theory so relevant to the world. We argue 

that it is thanks to a very dynamic and dialectic relation between mathematicians 

and physicists, both theoretical and experimental, that the resulting theory turned 

out to be so successful.

From a more philosophical perspective, we take the view that the relation 

between mathematics and physics has a structuralist character, in general, and we 

recognize that what we call ambiguity of representation of the third type lies at the 

heart of gauge theories. Our claim is that it is precisely this type of ambiguity of 

representation and the non-physical entities that it inevitably introduces which ex-
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plain the physical facts. However, the non-physical entities should be attributed a 

non-causal status in order to provide valid and legitimate scientific explanations. 

The fibre bundles formulation of gauge theories is considered to be their unique 

formulation that allows for this shift and the Aharonov-Bohm effect which is ex­

amined within the fibre bundle context provides a narrower yet very fruitful case 

study.
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Introduction

The motivation behind this thesis has been my wonderment while I was still doing 

my degree in physics and I was first introduced to the notion of covariant derivative in an 

undergraduate course on general relativity. The idea that spacetime itself is modified when 

there are sources of gravitational field present I found extraordinarily illuminating. A year 

later, while I was working on a project on elementary particles, I was introduced to gauge 

theories and I was surprised when I saw that the notion of covariant derivative was so far- 

reaching that it appeared there as well. Since then, I have been trying to understand what 

was the connection between gravity, on one hand, and quantum field theory, on the other, 

that appeared in the form of the covariant derivative that was present in, what I perceived 

then as, two theories. My curiosity about and my reasons for being attracted to theories 

that involve covariant derivatives, along with the conclusions I have reached are presented 

in the thesis that follows.

To the amazement of many who are interested in history of ideas, there appear to 

be many incidents in the history of physics where the mathematics that was needed for 

the accurate formulation of a physical theory was already there when physicists needed it. 

Something like that seemed to have happened in the case of the physical gauge theories 

and the mathematical fibre bundles, because although there was no apparent interaction 

between the two communities, when gauge theories were mature enough to make use of 

the fibre bundles formalism, the formalism was already there, mature and ready. But those 

who would like to tell a story like this actually overlook that at the heart of both theories

1
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lies the same idea, an idea of Herman Weyl. His original idea, dated back to 1918, did 

not apply to the world, as Einstein pointed out immediately after Weyl formulated it. Yet 

despite the Einstein’s criticism, which he expressed in a series of letters he exchanged with 

Weyl and which we examine in the first chapter of this thesis, the idea was adopted by 

others and hammered into something different that maintained the original spirit though. 

The aim of this idea was to bring together electromagnetism and general relativity, the two 

then known fundamental theories of nature, something which was eventually achieved very 

successfully and very fruitfully when Weyl’s original scale factor became a phase factor. 

Both the original and the transformed ideas were related to symmetry transformations and 

parallel transport. These were ideas that were adopted and developed by mathematicians as 

well, who delivered the theory of fibre bundles within three decades, while the physicists 

had to spend five or six decades at a much slower pace before their theory was able to 

meet with the fibre bundles. These are the main ideas about the dialectic relation between 

physics and mathematics explored and analyzed in the first chapter.

From the second chapter onwards the thesis takes a different turn and investigates the 

relation between physics and mathematics from a philosophical perspective. In that chapter 

we are asking whether we can do science without mathematics, as Field claims. We argue 

that at least in the case of gauge theories this is not possible and since we answer in the 

negative, we take on board Redhead’s structuralist ideas. According to these ideas, mathe­

matical structures relate to physical systems through mappings and involve what Redhead 

calls ambiguity of representation, which comes in three types. This approach fits our case 

study very well for two reasons. The first is that gauge theories, especially when they are
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formulated using fibre bundles, deal with nothing other than mappings, between the space­

time manifold -or the real world, we might say- and the bundles, or between the bundles 

themselves. Our second reason for favouring this approach is that the ambiguity of repre­

sentation of the third type always involves surplus structure and if gauge theories are known 

for something this is their own surplus structure, namely the gauge potentials themselves. 

So if mathematics relates to the world with mappings we’d better have a look at those map­

pings and if the surplus structure has something to say about how things are and how they 

behave ’down’ in the structure and in the world, we’d better find out what this is.

Gauge theories may be formulated in three ways: as constrained Hamiltonian sys­

tems, as Yang-Mills theories and using fibre bundles. The three formalisms are intertrans- 

latable to each other, yet, in our view, it is in the last two formulations that we may see 

more clearly what is the role that the various entities of the theory play. In the third chap­

ter we discuss them all but we emphasize on the last two because from the second we can 

see easily how the interaction terms arise from symmetry considerations, while from the 

third we get the most general picture of the entire theory, with its mappings and its surplus 

structure.

The surplus structure and its own role in both ’controlling’ the physical system and 

providing scientific explanations is the main topic of the fourth chapter. We dedicate quite 

a long discussion on the Aharonov-Bohm effect in it because electromagnetism is the sim­

plest of the gauge theories and because the effect itself provided the first inkling that objects 

of the surplus structure may be something more than just disposable mathematical artifacts 

that only simplify calculations. If it turned out that the objects of the surplus structure are
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indeed more than mere devices, then their status in the theory and their explanatory and 

predictive roles would reveal a lot about the relation between the mathematical and the 

physical.

Ever since it was discovered, the effect required an explanation that is valid and 

meaningful. From the very existence of the effect, it became clear that the electromag­

netic field does not suffice to give a local and causal explanation, hence some other entity 

should provide that kind of service. The first idea was that since the effect is described by 

the gauge potential, which is present in all the regions concerned, the gauge potential itself 

might do the trick. However, there are difficulties in assigning to that field any local and/or 

real character; hence something else might be necessary, either another entity that would 

be able to play the local-causal role or a different interpretation of the gauge potential and 

its role. We argue that the right answer may be found in the second suggestion because if 

we consider that the surplus structure ’controls’ the physical only in an informative and de­

scriptive, rather than causal, sense and that what it describes is topological properties, then 

we get holistic topological explanations. Topological explanations are a distinctive kind of 

explanation and so far as classical field theory is concerned they are not good explanations, 

not even as approximations. Things change, however, in the case of relativistic quantum 

field theory where the holistic explanations are valid and far reaching.

The fact that this adjustment in the way we interpret the status of the gauge potential 

provides a valid explanation of an admittedly significant effect reveals one more aspect 

of the dialectic relation between physics and mathematics, we argue. Theories are used 

for explaining certain phenomena and predicting other, yet undiscovered, phenomena even
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though interpretational issues may still be subject to debate and revision. The explanatory 

power of these theories increases as further evidence comes -or is expected to come- into 

light and guides us towards further modification of our views and of our interpretations.



Chapter 1 
Some History

A gauge, according to the dictionary, is ”a standard measurement, dimension, capac­

ity or quantity; a standard or means for assessing”. It is also ”any of various devices used 

to check for conformity with a standard measurement”. The term gauge as a noun seems 

to have been used in physics in three different contexts. We measure pressure using a pres­

sure gauge; Maxwell’s equations of electromagnetism are known to be invariant under a 

symmetry transformation called a gauge transformation; and finally, we describe the fun­

damental forces of nature using gauge theories, gauge symmetries and gauge fields. The 

common denominator in all the uses of the word ’gauge’ above is that there is an element 

of arbitrariness of choice involved. A standard measurement, for example, is standard be­

cause we have chosen it to be so, but this choice is arbitrary. The way we have calibrated 

the pressure gauge is also arbitrary, in the sense that we could choose any other scale. In 

classical electromagnetism, since the gauge transformation is a symmetry transformation, 

that is to say leaves the equations unchanged, the choice of a specific gauge is also arbi­

trary and a matter of convention. Finally, in the case of fundamental interactions there is 

also some arbitrariness involved, which is related to the fact that these interactions are de­

scribed using gauge symmetries, but this arbitrariness will be examined in detail later in 

this thesis, since it is in the context of gauge theories that the term gauge has been used the 

most extensively in modem physics.

6
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In this chapter we will delineate the surfacing of gauge theories in physics and we 

will focus on the dispute that the first attempt to give a unified theory of gravitational and 

electromagnetic interactions produced between Weyl and Einstein, while at the same time 

we will try to specify the meaning of the term ’gauge’ in the various periods that it was 

used. In the last section we will also try to shed light on how a whole new branch of 

differential geometry, which accommodates gauge theories in a most comprehensive way, 

developed almost in parallel with them.

1.1 The Quest for the holy Grail of a Unified Theory

It all started with electromagnetism, general relativity and Weyl’s quest for the holy grail of 

a unified theory of the two. Or rather the quest for an ’’archetype geometry” , as Ryckman 

(2001) calls it, that could accommodate all possibilities of physics. During the time Weyl 

was working on his geometry, there were known only two interactions which were consid­

ered to be elementary: the electromagnetic and the gravitational. Hence, these two were 

the possibilities of physics that should be described by his geometry. Electromagnetism 

was known to be a gauge invariant theory since its discovery, but this property of the theory 

was not given any geometrical significance or physical interpretation. Instead, the formula­

tion of Maxwell’s equations in terms of the gauge field, then known as the vector potential, 

was used merely because it made certain calculations easier. But Weyl’s quest for a unified 

geometry that should be able to account for both the gravitational and the electromagnetic 

interactions led to a theory in which a geometrical significance was attributed to that field.
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Weyl completed his endeavour by 1918, and the main idea in it was that since Rie- 

mannian geometry described successfully the gravitational field, maybe a more general 

affine geometry2 would describe both gravitation and electromagnetism in a unified way. 

The question that had to be answered was, of course, which affine geometry. Weyl begins

his 1918 paper as follows.

’’According to Riemann, geometry is based on the following two facts:
1. Space is a three dimensional continuum, the manifold of its points is therefore 

represented in a smooth manner by the values of the three coordinates x \ , x 2, x 3.
2. {Pythagorean Theorem) The square of the distance between two infinitesimally 

separated points

P  =  (xi, x 2, x 3) and P' =  {xx +  d x i ,x 2 +  dx2, x 3 +  dx3) (1) 

is (in any coordinate system) a quadratic form in the relative coordinates dxf. 

ds2 = ^ 2  9 ikdxidxk (gik =  gki) (2)
ik

We express the second fact briefly by saying: the space is a metrical continuum. In 
the spirit of modem local physics we take the Pythagorean theorem to be strictly valid 
only in the infinitesimal limit.

Special relativity leads to the insight that time should be included as a fourth co­
ordinate x 0 on the same footing as the three space-coordinates, and thus the stage for 
physical events, the world, is a four-dimensional, metrical continuum. The quadratic 
form (2) that defines the world-geometry is not positive-definite as in the case of 
three-dimensional geometry, but it has a positive index-3. Riemann already expressed 
the idea that the metric should be regarded as something physically meaningful since 
it manifests itself as an effective force for material bodies, in centrifugal forces for 
example, and that one should therefore take into account that it interacts with matter; 
whereas previously all geometers and philosophers believed that the metric was an in­
trinsic property of the space, independent of the matter contained within it. It was on 
the basis of that idea, for which the possibility of fulfillment was not available to Rie­
mann, that in our time Einstein (independently from Riemann) erected the grandiose 
structure of general relativity. According to Einstein the phenomena of gravitation 
can be attributed to the world-metric, and the laws through which matter and metric 
interact are nothing but the laws of gravitation; the gik in (2) are the components of 
the gravitational potential.-Whereas the gravitational potentials are the components 
of an invariant quadratic differential form, electromagnetic phenomena are controlled 
by a four-potential, whose components are components of an invariant linear dif-

2 Affine meaning length preserving.
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ferential form &&&%• However, both phenomena, gravitation and electricity, have
i

remained completely isolated from one another up to now”3.

Ryckman (2001) has argued that although phenomenological evidence was impor­

tant, most crucial for Weyl were sensation and intuition. Truth for him was identified with 

the experience of truth, which did not have to rely necessarily on perception. Hence, despite 

the fact that it had not been observed, Weyl considered as a leading principle the a priori 

relativity of length and claimed that ”[a] true infinitesimal geometry should, however, rec­

ognize only a principle o f transferring the magnitude o f a vector to an infinitesimally close 

point and then, on transfer to an arbitrarily distant point, the integrability of the magnitude 

of a vector is no more to be expected than the integrability of its direction. On the removal 

of this inconsistency there appears a geometry that, surprisingly, when applied to the world, 

explains not only the gravitational phenomena but also the electrical. According to the re­

sultant theory, both spring from the same source, indeed in general one cannot separate 

gravitation and electromagnetism in an arbitrary manner. In this theory all physical quan­

tities have a world-geometrical meaning; the action appears from the beginning as a pure 

number; it leads to an essentially unique universal law; it even allows us to understand 

in a certain sense why the world is four-dimensionaF4. This requirement for relativity of 

length involves the arbitrariness of choice of what one should call a unit of length -hence 

the term gauge becomes relevant- and gives an affine geometry which differs from the Rie- 

mannian in the following sense. While in Riemannian geometry the inner product between 

vectors is invariant, in Weyl’s affine and metrical vector-space the invariant scalar product

3 Weyl, 1918.
4 Weyl, 1918.
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of two vectors defined at a point P

x-n = v-x = E  gihxrf
ik

”is determined only up to an arbitrary positive proportionality-factor”5. Hence, the metric 

at P  determines not the components gik themselves, but the ratios of the components. This 

entails that at each point of a manifold one has the freedom to choose the coordinate system 

as well as the proportionality factor of gik. If one requires that every formula of the theory 

is invariant under both arbitrary smooth coordinate transformations and the transformation 

gik Agik and also one defines the parallel transfer of a vector at Pi to a neighboring point 

at P2 by the following axioms:

1. the parallel transfer of the vectors at Pi to vectors at P2 defines a similarity map
 >

2. if Pi and P2 are two neighboring points to P  and if the infinitesimal vectors P P 2 

and PPibecom e P iP i2 and P2P2i , on parallel-transfer to P2 an Pi respectively, then P i2 

and P2i coincide (commutativity)

then for a vector £*—►£' +  one gets

dc =  -  E
r

The second axiom requires that the drfT are linear differential forms

H  =E r*™*.
s

where
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If  two vectors are parallel transferred, the part of axiom 1 that goes beyond affinity to 

include similarity requires that the scalar product of the original vectors f 1 and rf is propor­

tional to the scalar product of the transferred vectors £*+df*, rf+drf .  If the proportionality 

factor is (1 4- d(f>) we get

(9ik +  dgi]c) (C  +  dC)(rjk +  d r f )  gik£ i f
ik ik

(s* + d9 * W  + < *eW  +  dr,k) =  (1 +  <ty) £  gikC t f
ik ik

and finally we have

dgik ~  (d^ki + d j ik) =  gikd<f) (6)

From this expression follows that d<f) is a differential form:

d(t> fadxi  (7)
i

When is known, then the quantities V are determined by the equation

Ti.fcr +  T k,ir =  ~  9ik<t>r -o x r

Hence, ”the metrical connection o f the space depends not only on the quadratic form (2) 

but on the linear form (7)”6. So, as a result of the additional requirement for similarity -that 

goes beyond affinity- the quantities T depend not only on the derivatives of the metric, but 

also on a vector field </>. The physical significance that can be attributed to these quantities 

arises then from the following considerations.

If, first of all, we consider a transformation of the metric gik —> Agik and keep the 

coordinates the same, the d f r remain the same, d^ir —> X d j ir, and dgik —> Xdgik +  gikdX.

6 Weyl, 1918.
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Varying equation (6) then we get

dip +  =  dip +  d(In A).

Hence, for the linear form fadxi the arbitrariness takes the form of an additive total differ­

ential rather than a proportionality factor that would be determined by a choice of scale. 

This tells us that the forms

gikdxidxk and (pidxi 

in Weyl’s geometry are equivalent to the forms

A gikdxidxk and di(p{ +  d(ln A)

respectively. The quantity that remains invariant under the scalar factor transformation is 

therefore the antisymmetric tensor

p  d<t>i d<t>k
" ik OXk uXi

This antisymmetric tensor satisfies the first set of Maxwell equations and hence it could 

be identified with the electromagnetic field. When the coordinates do not undergo a trans­

formation and the parallel transfer of a vector does not depend on its path, then gik can be 

chosen so that <pt vanishes. In this case, r*s is the Christoffel 3-index symbol. As Weyl 

points out, ’’once the concept of parallel-transfer is defined the geometry and tensor calcu­

lus is easily deduced”7. Here we will not take the trouble to show how this is done8, but we 

feel obliged to mention how both gravity and electromagnetism arise in the same way from 

this one geometry.

7 Weyl, 1918.
8 The reader may look at Weyl’s original paper.



1.2 The Weyl-Einstein Debate 13

Assuming that ’’the whole set of natural laws is based on a definite integral-invariant,

the action”, Weyl writes an action of the form

J  Wdw =  J  B ijklR ikldu> =  J  Wyfgdx  =  J  W d x

where R^kl = P*kl — \b)Fki are the components of the analogue of the Riemann curvature

electromagnetic field. In general, W  =  0 only in the Euclidean space. "The actual world' 

Weyl writes, ”is selected from the class o f all possible worlds by the fact that the Action 

is extremal in every region with respect to the variations of the action which vanish on 

the boundary of that region”9. Varying this action, therefore, and requiring the variation to 

vanish on the boundary we have

from which we get the field equations

W ik = 0  and w* =  0 

which are the equations for the gravitational and the electromagnetic field respectively.

der infinitesimal coordinate transformations and under scale transformation. These, obvi­

ously, correspond to invariance properties of the action and hence are dubbed superfluous 

by Weyl. Yet, these equations correspond to the conservation law of the electromagnetic 

charge and the energy-momentum conservation equations.

tensor where Pjkl = 0 in the absence of gravitational field, while Fm = 0 in the absence of

Five out of these equations may be obtained if  one requires invariance of the action un-

9 Ibid.
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1.2 The Weyl-Einstein Debate

In 1918, Weyl was working on his geometry, but as he foresaw that the ’’calculational 

execution of the theory”10 would take him quite sometime before it was completed, he 

decided to publish a report on its foundations beforehand. For that reason he contacted 

Einstein with the request that he might present it to the Berlin Academy. Einstein responded 

swiftly to Weyl’s request, to whom he wrote in the following day that his work was ”a first- 

class stroke of genius”11. But Einstein only took nine days to formulate what he called his 

”measuring-rod objection”12. Einstein’s main concern was agreement with reality and on 

the 15th of April 1918 he was able to assert confidently that ”[a]s pretty as your idea is, I 

must frankly say that in my opinion it is out of the question that the theory corresponded to 

nature”13. The reason for Einstein’s objection lies at the heart of Weyl’s geometry, namely 

his assumption that the action remains invariant under a re-scaling of the metric. Such a 

rescaling, as we have seen, renders ds and Ads equivalent. But for Einstein, ”ds itself has 

real meaning”14 in the sense that if two rigid rods of equal length travelling from point 

P , where they were at relative rest, to point P ', were they are at relative rest again, their 

relative lengths must be equal. But with Weyl’s A-factor that is arbitrary, the ratio of the 

two lengths would depend on the paths the two rods follow -or on the arbitrary scale related 

to those paths. Einstein’s original argument was about clocks and is the following.

10 Letter from Elmshom, 5th April 1918.
11 Letter to Weyl, 6 April 1918.
12 Ibid.
13 Letter to Weyl, 15 April 1918.
14 Ibid.
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’’Imagine two clocks running equally fast at rest relative to each other. If they are 

separated from each other, moved in any way you liked and then brought together again, 

they will again run equally (fast), i.e. their relative rates do not depend on their prehistories.

Imagine two points P \hP 2 that can be connected by a timelike line. The timelike 

elements ds\ and ds2 linked to P \h P 2 can then be connected by a number of timelike 

lines upon which they are lying. Clocks travelling along these lines give a fixed relation 

dsi : ds2 independent of which connecting line is chosen. If the relation between ds and 

the measuring -rod and clock measurements is dropped, the theory of relativity loses its 

empirical basis altogether”15.

Apparently, Einstein was not the only one to object to Weyl’s idea. In his 19th of April 

1918 letter to Weyl, Einstein reports that when he presented the paper on the 11th of April, 

Nemst ’’stood up and protested against acceptance of the paper without further comment; 

he demanded that I at least attach a note in which I describe my different standpoint. Planck 

then suggested I consider the matter for a week and then submit the paper again, with or 

without comment, as I consider appropriate”. Finally, Einstein suggested that Weyl should 

include his objection as a postscript and in the same letter he phrases this as follows.

”If light rays were the only means of establishing empirically the metric conditions in 

the vicinity of a space-time point, a factor would indeed remain undefined in the distance ds 

(as well as in the s). This indefiniteness would not exist, however, if  the measurement 

results gained from (infinitesimal) rigid bodies (measuring rods) and clocks are used in the

15 Ibid.
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definition of ds. A timelike ds can then be measured directly through a standard clock 

whose world line contains ds.

Such a definition for the elementary distance ds would only become illusory if the 

concepts ’standard measuring rod’ and ’standard clock’ were based on a patently false as­

sumption; this would be the case if the length of a standard measuring rod (or the rate of 

a standard clock) depended on its prehistory. If  this really were the case in nature, then no 

chemical elements with spectral lines of a specific frequency could exist, but rather the rel­

ative frequencies of two (spatially adjacent) atoms of the same sort would, in general, have 

to differ. As this is not the case, the fundamental hypothesis of the theory unfortunately 

seems to me not acceptable, the profundity and boldness of which must nevertheless instill 

admiration in every reader”16.

This note was, in fact, included as a postscript to Weyl’s paper when it was published 

by the Academy and it was followed by Weyl’s reply, who did not seem to agree with 

Einstein’s point after all. Weyl disagreed because he considered that rods and clocks may 

undergo changes as they move into electromagnetic and gravitational fields, hence they 

do not constitute appropriate experimental evidence that there is no place for an arbitrary 

scale factor in the theory. Light signals, on the other hand, determine the absolute values 

of the metric, yet he considered it an assumption that ds was normalized the way it was, 

i.e. so that the scale factor was equal to unit in the absence of electromagnetic field or 

in the presence of a static one. This assumption, Weyl believed, was in need for both 

an explicit dynamical calculation, in Einstein’s theory as well as his, and experimental

16 Letter to Weyl, 19th April 1918.
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verification. The experimental verification would be the red shift of atomic spectral lines in 

the neighborhood of large masses. A very interesting thing about Weyl was his persistence 

in his theory even after he found out that the eagerly awaited red shift was not observed, 

as he reported to Einstein in a letter written on the 18th of September 1918. As a matter 

of fact, his response to Einstein’s objection was posted on November the 16th 1918, two 

months after he found out that there was no red shift, and yet in it he still insisted on his 

position and on the need for further experimental verification.

But what was it that gave Weyl the courage to defend his position? He himself ad­

mitted in his 10th of December 1918 letter to Einstein that he was ’’now in a really difficult 

position; through my upbringing so conciliatory by nature that I am almost incapable of 

discussion, I must now fight on all fronts”. Weyl felt he had to fight on both the mathe­

matics’ and the physics’ fronts since his analysis and original idea were attacked by the 

mathematicians, while the physical implications of his geometry raised a debate within -or 

attack from- the physicists community. To our knowledge, the best explanation was given 

by T. Ryckman (2001), who claims that Weyl’s persistence in his idea arose from a deep 

philosophical and metaphysical guiding principle rather than ’reality’ and physical intu­

ition. What we may get out of this all -apart from the very fact that this mistaken first 

attempt became Ariadne’s thread that lead to gauge theories as we know them today- is 

that Weyl realized that there might be a way of unifying the electromagnetic and the grav­

itational interactions rather accidentally. As he himself confessed17 to Einstein, he ended 

up introducing the linear differential form along the quadratic one because he wanted to re­

17 Letter to Einstein, 10th December 1918.
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move what he called an ’’inconsequence”18. In his own words, ”[i]ncidentally, you must not 

believe that I came via physics to introducing the linear differential form d(f) in the geometry 

alongside the quadratic form; rather, I really wanted finally to remove this ’inconsequence’ 

which had always been a thom in my side, and then noticed to my own astonishment: it 

looks as if this explains electricity”.

Does this historical incident tell us anything about the relation of physics to mathe­

matics? It is definitely revealing of the interaction between the two as a theory emerges 

and it may tell that, in this specific case, two theories seemingly irrelevant to each other, a 

discovery that we might think of as accidental, and the persistence of one brilliant mathe­

matician in his wrong idea, all contributed to the instigation of what turned out to become 

the most fruitful physical theory of the second half of the twentieth century. But then, just 

one idea -even more so, when this idea is a wrong one- cannot be held responsible for 

any progress in physics by itself. What we shall see shortly, though, is that, at least in 

this specific episode in the history of physics, there has been a dynamic relation between 

physics and mathematics, an exchange of ideas between theoretical physicists, phenome- 

nologists and mathematicians. It all started with the quest for the holy grail of unification 

-unification of the two then known fundamental forces was the leading principle for scien­

tists in the early twentieth century. But then, there was more than just an all encompassing 

geometry that was required, as the Einstein-Weyl debate shows us. And the necessary re­

18 As we have seen above, the ’’inconsequence” Weyl refers to is the fact that in Riemannian geometry the 
magnitudes of parallel transported vectors are path independent, in contrast to their directions. Apparently, 
Weyl considered this to be a residue of Euclidean geometry that prevented Riemannian geometry from being 
truly infinitesimal.
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quirement was that the theory corresponded to nature. How Weyl’s idea was modified and 

what amendments were made to it will be the topic of the following section.

1.3 The Metamorphosis of WeyPs Idea

Weyl’s original idea of unifying the two forces using scale invariance was wrong, despite 

the fact that it was bold and appealing. It was bold because it introduced the new concept 

of gauge and appealing because of its unifying effect. O’Raifeartaigh, in his definitive his­

tory of the development of gauge theories, considers the choice of the word gauge to be 

’’quite appropriate since the scale factor attached to the metric changed the measurement of 

length and the word gauge was in common use for measurements of length, e.g. the width 

of railway tracks”19. But then, after Weyl’s idea of gauge turned out to be wrong and the 

concept ’metamorphosed’ into something different, as we shall see, the name remained the 

same and some may even claim that it is misleading. In any case, this is quite common 

in physics, where examples of similar cases abound. Such examples are the word mass, 

whose content changed from the classical into the relativistic one in the first two decades 

of the twentieth century, and the word field , whose meaning changed dramatically in the 

last half of the same century. Weyl’s theory was appealing despite its falsity because it did 

manage to unify by treating gravity and electromagnetism in the same way: both interac­

tions arose as a result of some invariance. A very strong point in favor of his idea was the 

fact that through Noether’s theorem, the scale invariance led to conservation of the corre­

late of electromagnetic current, while invariance under spacetime transformations led to

19 O’Raifeartaigh, The Dawning o f Gauge Theory, p.42.
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conservation of energy-momentum. Although very different from the phenomenological 

point of view, both laws had been given a common geometrical basis and this prospect of 

unification appealed to Weyl. It was probably because of this appeal that the idea was not 

completely forgotten, despite the fact that Einstein’s objection showed that the theory had 

no correspondence to how things appeared to be in the real world.

As years went by, quantum mechanics’ advent changed things in physics’ landscape 

and along with it the perspective of physicists also changed. The first one to relate Weyl’s 

scalar factor to something else was Schrodinger. In a 1922 paper, Schrodinger noticed that 

the exponent Weyl’s non-integrable factor became quantized in systems that satisfied the 

Bohr-Sommerfeld quantization conditions. Schrodinger then suggested that the quantiza­

tion unit, which he called 7 , was equal to ih. This choice was fine in terms of units -it 

has dimensions of action as it should- and would restore the experimental single-valudness 

of the scale, the lack of which was what doomed Weyl’s idea. ’’Strangely enough” writes 

O’Raifeartaigh ’’Schrodinger does not refer to his 1922 observation in his classic 1926 pa­

pers, but that it played a role in his invention of wave mechanics is known from a letter20 

that he wrote to London in 1927”21.

London, who was aware of Schrodinger’s 1922 paper, took Weyl’s idea about the 

scale factor and Schrodinger’s idea of its new application a step further and showed, in 

his 1927 paper, that in the presence of an electromagnetic field, the wave function should 

acquire a phase factor, which was nothing other than the transmuted Weyl factor. The 

general message of London’s paper was clear: ’’the actual problem was not the presence of

20 V. Raman and R Forman, Hist. Studies Phys. Sci. 1 (1969) 291.
21 O’Raifeartaigh, The Dawning o f Gauge Theory, p.79.
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Weyl’s non-integrable scale factor but the fact that, according to Weyl is should be real and 

applied to the metric. If it was converted to a phase-factor and applied to the wave function 

instead the problem was removed. In fact, London’s rather cumbersome argument was not 

really necessary and his proposal can be summarized by saying that in the presence of an 

electromagnetic field, the wave function should acquire a phase factor,

0 —> e

Thus the Weyl factor, which by 1927 had been abandoned even by Weyl, acquired a new 

lease of life as the London phase factor”22. Although the factor that gave the correct theory 

was a phase factor, rather than the original scale one, what made the former a recognized 

successor of the latter was the fact that it too gave rise to coupling terms and conserved 

quantities as a result of applying the same variational principles and similar requirements 

for covariance of the resulting theories under local transformations.

Sometime between Schrodinger’s 1922 idea about the scalar factor becoming a phase 

factor and London’s 1927 idea about applying it not to the metric but to the wavefunction 

came Schrodinger’s 1926 papers on how to introduce electromagnetism in wave mechanics. 

Schrodinger generalized the relativistic electromagnetic Hamilton-Jacobi equation to the 

relativistic electromagnetic Klein-Gordon equation by replacing the variables of the former 

by operators acting on the wave function. Although he did not mention it, by doing so 

Schrodinger was employing what is usually called the minimal principle23 and though he 

did not emphasize the role of gauge invariance in the resulting theory, others did. These

22 Ibid., p.81.
23 The minimal principle is the principle by which the effect of an electromagnetic field on a particle of 
charge e is obtained by changing to p^ +  eAfl(x). See, for example, O’Raifeartaigh, p.17.
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were first of all Kaluza (1921), who anticipated the other attempts, Klein (1926), Fock 

(1926, 1927) and most notably Dirac (1928).

Kaluza, Klein and Fock attempted a generalization of Einstein’s theory that included 

a fifth coordinate. By considering five coordinates, instead of the four for spacetime, they 

arrived at quantum-mechanical equations for particles in electromagnetic fields that take 

the form of geodesic equations. But in doing so they had, of course, to reduce the five 

dimensions into four spatiotemporal ones and faced major difficulties in explaining why 

the fields should not depend on the fifth coordinate, which was transformed out of the 

picture. Moreover, their theory did not yield any new predictions and left the gravitational 

and the electromagnetic coupling constants unrelated; hence their idea remained marginal. 

Regardless of the original failure of the idea of dimensional reduction to blossom into a 

successful theory, it is worth mentioning that it did play a role in London’s discovery of 

the successful interpretation of Weyl’s original idea; after all their gauge transformations in 

spacetime may be considered as transformations in higher dimensional spaces, as we shall 

see later in this thesis. Moreover, the idea has been revived and applied in two major areas 

of modem theoretical physics, namely phase transitions and string theory. The success of 

the application is such that it makes one wonder if  the history of physics is repeating itself 

in a way, and something similar to what happened in the case of Weyl’s idea is happening 

here as well. In both cases the resulting theories are so successful in explaining and so far 

reaching in their predictions that it makes it difficult to believe that the relation between the 

original, mistaken ideas and their final successful reformulations is a mere accident. Rather,
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it seems that in both cases the general direction was right from the beginning although the 

first turning taken was not.

Dirac, on the other hand, begins with the free equation for spinors with half integer

spin

(7^  +  m) =  0

and by using the minimal principle, namely by substituting — ieAM he

derives electromagnetic interaction terms.

Weyl himself took the new applications and interpretations of his old idea a step 

further, in his 1929 paper, and developed a complete theory out of it. A striking similarity 

between the theories of electromagnetism and gravitation is that charge conservation in the 

first and energy-momentum conservation in the second are derived in the same way: by 

requiring invariance of the theory under certain variations. This similarity was enough to 

convince Weyl that the two are closely related and to drive him to the complete and explicit 

formulation of the analogies between the two theories by means of the tetrad formalism in 

1929. Moreover, by adopting London’s reinterpretation of the non-integrable scale factor 

of the metric as a non-integrable phase factor of the wavefunction, he was able to overcome 

the objection that threatened to abolish the original theory, but he also went a step further 

by proposing that electromagnetism is derived from the gauge principle. This idea proved 

to be extremely fruitful later on, in the study of weak and strong interactions. Here is a 

summary of what Weyl did in that paper.

First of all he introduced the concept of the two component spinor in a different way 

than that of Dirac. In this mathematical framework he discussed time reversal -his spinors’
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theory violated time reversal- and violated parity as well and though at that time parity vio­

lation was out of the question, later on it turned out to be true. In order to integrate the two 

component spinor theory with gravitational theory, Weyl followed Wigner’s idea of using 

local tetrads, a concept that had been introduced by Einstein not long before. The tetrad for­

malism is very useful because it does not only allow for handling spinors on curved spaces 

but also it allows for deriving the energy-momentum conservation laws and it makes the 

analogy between electromagnetism and gravity manifest. Moreover, given that each tetrad 

has sixteen degrees of freedom -count ten for the Riemannian metric and six for the Lorentz 

group- the tetrads are determined by the metrics up to a local Lorentz transformation. This 

formulation allows for an algebraic treatment of differential geometry and a major advan­

tage is that it exhibits the resemblances between gravity and gauge theories. Then, Weyl 

discusses spinors in curved space and although he did not mention Noether and her theo­

rems in his paper, he applied them in his tetrad formalism to derive the conservation laws 

for their momentum, both linear and angular that result from invariance under coordinate 

transformations and internal Lorenz transformations of the tetrad respectively. Then he ex­

pressed gravity in the tetrad formalism so that the analogy between electromagnetism and 

gravity became apparent. Finally, he went on with the derivation of electromagnetism from 

what is now known as the gauge principle.

In this last part of his paper Weyl takes three steps. The first one justifies the rigid 

(global) phase invariance of the spinor theory on the basis that the spinors are defined as 

representations of the S L (2, C )24 which is a subgroup of the G L(2, C), hence the intrinsic

24 ’C ’ stands for complex.
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gauge freedom in the spinor theory which does not distinguish between ^{x)  and ela,ip(x). 

The second step explicates that as it is ’natural’ to generalize from the rigid Minkowski 

tetrad to a local tetrad, so it is to generalize from a rigid a to a local a(x) that allows for 

ip(x) —» eia^'ip(x). The exponent here is independent of the tetrads and this manifests the 

fact that the locality of the phase parameter is intrinsic. In the third step, the gauge principle 

is used to obtain electrodynamics. According to it, it is required that a theory with an action 

invariant under a rigid phase transformation remains invariant when the transformation 

becomes local in way similar to that of diffeomorphisms. Namely, just as when requiring 

invariance under local diffeomorphisms the derivative should change into the covariant 

derivative =  dp -f r /i(x), so when requiring invariance under the local U( 1) group the 

derivative should be modified accordingly: A^ —► =  A^ — —cA^{x), where A^(x)

is the connection of the Abelian group, also known as the gauge group. Hence, considering 

the gauge principle, electromagnetic interactions are derived from a geometrical principle, 

just like gravitational interactions25. What was particularly appealing to Weyl was the fact 

that this time round the principle of gauge invariance ’’derives not from speculation but 

from experiment”26, whence his new brain child was no longer vulnerable to the criticism 

that it does not agree with nature.

So what does the term gauge mean, after all, and what are its appropriate uses?

As we saw, in the 1918 Weyl paper, where the term was first introduced, it had a mean­

ing and an application very similar to its every day use; it was a (symmetry) scale factor of

25 Notice, however, that the problem with the gauge principle is that it is only an assumption, because 
although if a theory is invariant under local gauge transformations is also invariant under global gauge trans­
formations, the inverse is not necessarily true. Later on in this thesis we will get back to this point.

26 Weyl, 1929.
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the metric and hence it affected the scale of length measurements. But since then, the scale 

factor metamorphosed to a phase factor and thus the meaning of the term lost its relevance. 

However, the term itself survived in the notions of gauge symmetries, gauge transforma­

tion and the gauge field or simply the gauge. When we talk about gauge symmetries in the 

context of theoretical physics we mean symmetry transformations that leave the action of 

matter and interactive fields invariant; these may be related to either spatiotemporal trans­

formations or transformations of internal degrees of freedom and although only in the latter 

there is a phase factor involved, they all give rise to interaction terms by using the so called 

covariant derivative and the expected conservation laws as a result of Noether’s theorems. 

The fact that spatiotemporal diffeomorphisms do not make any use of phase factors mul­

tiplying the wavefunction makes them look different from the other gauge transformation 

that definitely deserve the name gauge and it poses questions about how legitimate it is for 

these transformations to be considered as part of the gauge family.

One point we want to clarify here is that although the presence of initially a scalar 

and later a phase factor worked as a heuristic assumption at the beginning of the gauge the­

ories, the truly crucial elements that probably have been guiding principles for Weyl and 

the others were the similarities in the description of gravity and electromagnetism, namely 

the derivation of conservation laws and the restoration of invariance -and manifestation of 

coupling terms that could be interpreted as interactions- when the ’flat’ derivative was re­

placed by the covariant derivative. If we define gauge symmetry to be a symmetry that 

involves a phase factor multiplying the wavefunction, then gravity and diffeomorphism in­

variance have no place there. But to our view, which is also the view of physicists and
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mathematicians that have worked on these fields since their discovery, the most impor­

tant aspect common in both is the presence of an arbitrary function, the connection; hence 

the term has been and should be broader than that. Therefore, gravity can be considered 

as a gauge theory provided we bear in mind the broader picture. In the chapters to fol­

low, we will take a closer look at gauge theories, in order to clarify and expand on what 

we mean by the term. But in the last part of this chapter, we would like to continue the 

brief historical introduction by giving a brief account of what happened after 1929, since 

it was in the second half of the twentieth century that the tremendous phenomenological 

and experimental success of gauge theories became apparent. A last remark concerning the 

Weyl-Einstein debate we are obliged to make here and postpone any further discussion un­

til we get to chapter four. Einstein’s objection transformed to a very successful prediction 

after the modification of Weyl’s original idea. In view of London’s reinterpretation, and 

fifty three years later, C. N. Yang pointed out that in the new interpretation where Einstein 

was talking about scales, we would now have to consider phases and while the original ob­

jection was that two rods taken along different paths would not have different scales, two 

electrons -the microscopic equivalent of charged rods!- taken along different paths would 

have different phases. This, of course, was the question that Aharonov and Bohm asked 

in 1959, and apparently they asked it independently and without reference to the original 

objection of Einstein. As we shall see, the experiments that were conducted concluded 

that the prediction was indeed correct and its success is highly regarded as an endorsement 

about the validity of the theory that predicted it.
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1.4 Swimming Against the Phenomenological Tide27

In this section, we will attempt a brief account of what happened from 1929 until the 1980s 

in the world of theoretical physics. There is a very good reason, though, why we have to 

include it here -no matter how incomplete and sketchy. So far we have discussed the onset 

only of gauge theories and we have said nothing about the weak and the strong interactions 

that were integrated into the picture of gauge theories later. The inclusion of these two 

interactions in the gauge theories’ picture was the major success of the theory and turned 

it into the most influential theory of, at least, the twentieth century; influential in the sense 

that it changed dramatically the way we perceive the world. If we do not mention the 

intellectual achievements of that period and the interactions, influences and dialectics in 

the scientific community that led to them, we will fail to get a comprehensive impression 

of the dynamics in the relation between physics and mathematics; the relation that led to 

beautiful mathematical structures that are very successful in describing the world.

Between 1929 and 1936 there was nothing new from the experimental physics front, 

which meant that there was no indication that the nuclear force fields might exhibit some 

sort of vector character and hence might be described by using gauge potentials as well. 

However, in 1936 Yukawa suggested that as atomic forces are mediated by photons, so the 

strong nuclear forces might be mediated by massive mesons. Although we do not know 

what gave Yukawa this idea, we think it is plausible to speculate that the existing theory

and its success played a heuristic role in this case. It was possibly an argument by analogy

27 The title of this section is borrowed from a phrase that can be found in O’Raifeartaigh’s The
Dawning o f Gauge Theory, p.7. O’Raifeartaigh’s book is highly recommended as a wonderful 
resource for more precise and complete historical detail. For a standard physics introduction to this 
material reference may be made to Aitchison & Hey’s Gauge Theories in Particle Physics.
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and it was a valid and legitimate one since it contained what Hesse calls neutral analogies29 

that could be tested against experiment. Those tests would decide whether the idea was 

correct or not.

Two years later, in 1938, Klein was pursuing further his 1926 ideas and in 1939 he 

presented the first attempt to generalize gauge theories so that they incorporated the Yukawa 

meson. Klein ended up with what we would recognize nowadays as a S U (2) gauge struc­

ture and, as though this was not enough, responding to a comment by the audience he antic­

ipated the gauge group used in the standard model by generalizing the S U (2) Lie algebra 

of the meson fields to SU (2) x U (1). But Klein’s work was forgotten and O’Raifeartaigh 

speculates that this happened because the paper was never published, it was only presented 

in the 1939 Conference on New Theories in Physics in Poland, its ideas were not appreci­

ated by the eminent physicists that were present and the second world war occurred shortly 

after the paper was presented. As we mentioned before, Klein attempted this generaliza­

tion by introducing a fifth coordinate, which then he had to ’reduce’ and at that time the 

physical significance of that was not clear. So despite the fact that the dimensional reduc­

tion provided some means for constructing what later on was recognized as non-Abelian 

field strengths, at that time this point was not fully appreciated.

Nevertheless, ten years down the line, three independent attempts to include non- 

Abelian Lie groups in gauge theories appeared and apparently each one was motivated in 

different ways. The one that came first was that by Yang and Mills and as a matter of fact 

the non-Abelian gauge theories are called Yang-Mills after them. Yang, who was working

29 Analogies will be discussed in some detail in chapter four.
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as a graduate student on field theories, studied Pauli’s review articles31 on the subject and 

impressed by the two main ideas of the theory, namely that conservation of charge followed 

from the gauge (phase) invariance of the theory and that interaction terms arise when ap­

plying the gauge principle, he tried to generalize it to include isospin interactions. Along 

with Mills, they successfully constructed a non-Abelian gauge theory in 1953, which was 

published in their 1954 paper. As it turned out later, when the axial-vector character of 

weak interactions manifested itself to phenomenologists -that happened in 1958- it started 

to become clear that the Yang-Mills field was not appropriate for the description of weak 

isospin interactions but of weak interactions instead and the theory fully blossomed only 

when they sorted out the problem of giving mass to the connections -or gauge fields- by 

symmetry breaking and when it was shown that the theory as a whole was renormalizable; 

but these two last issues are another story. So once again here, as in the case of Weyl, 

agreement with the experimental results was the crucial arbiter and in the light of disagree­

ment they had to reconsider the applicability and the application of the theory and shift it 

from weak isospin to weak interactions. In this case though they did not have to revise the 

theory.

Shaw’s successful attempt that led to the same conclusions as that of Yang and Mills 

was inspired by a manuscript of Schwinger’s. Shaw wrote about this: ’’[Schwinger] in­

troduced electromagnetic interaction in this way -he used real spinors and so had SO (2), 

rather than 17(1), invariance and the generalization to S U (2) invariance seemed to shout it­

31 It is worth noting that Pauli was initially one of the opponents of Weyl’s idea, but finally he was enthralled
by it and became one of its foremost proponents, as can be seen in his (1941) as well as in his later works on 
dimensional reduction (1953).



1.4 Swimming Against the Phenomenological Tide36 31

self out!”33 He too, like Yang and Mills, was concerned with isotopic spin and noticed that 

the rigid SU  (2) invariance of it would give connection terms and a covariant derivative if it 

was made local. Hence, given that his PhD thesis, where his approach was first published, 

was dated 1955, he arrived at the same result only a year later.

So did Utiyama, who reached the same conclusions too about non-Abelian gauge 

theories by extending Weyl’s gauge principle to general Lie groups. Utiyama’s approach 

was more comprehensive since it included gravity, however his paper appeared later than 

Yang and Mill’s, as well as of Shaw’s. Even before 1954, Utiyama was working on general 

gauge theory stimulated by Yukawa’s theory. Though he did give a talk in Kyoto university 

in 1954, he was not happy with his results because they did not seem to agree with Yukawa’s 

-the problem of the mass-less-ness of the gauge fields, that is- and because in this case 

things seemed to go the other way round: in this case there seemed to be a physical law 

following from gauge invariance and not the other way round. So, Utiyama did not publish 

his paper, to his regret apparently.

In any case, by 1955 the physics community had the general formulation of gauge 

theories that included non-Abelian Lie groups, while at the same time the mathematics 

community was developing the fibre bundles formalism, a formalism that encompassed 

gauge theories. The development in mathematics was motivated for different reasons, 

namely mathematicians were interested in the study of manifolds with topological anoma­

lies. But it took twenty more years of developments in physics -experimental and phe­

nomenological at first and with further modifications, adaptations and alterations of the

33 Shaw in a letter to Kemmer, 26th May 1982.
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mathematical parts then- before the whole picture was complete. And apparently, it was 

only in 1958 that phenomenological evidence of the axial-vector character of the weak 

interactions made the dialectics between the already existing Yang-Mills theory and exper­

iment possible. It is in this sense that those who constructed gauge theory ’’were swimming 

against the phenomenological tide”35, and yet, they proceeded regardless! But then, this 

exhibits one of the biggest strengths of a successful theory: it probes and anticipates and 

predicts and guides.

Why does this happen? How does this happen? We do not propose a complete 

answer in the present work. But one thing is certain, along with physical and mathematical 

intuitions, that we cannot explain how exactly they arise, experiment and agreement with 

it lie at the heart of this amazing structure that is called gauge theories. It was precisely 

this requirement of agreement with experience that inspired Einstein’s justified criticism of 

Weyl’s original idea and it was thanks to this criticism that Weyl realized he had taken a 

wrong turning. On the basis of this criticism the idea was then successfully transformed.

1.5 A very Brief History of Fibre Bundles

The results of Weyl’s ideas were far reaching in physics, as we have seen, but what is even 

more amazing is that they did not influence physics only; they also motivated progress in 

an area of mathematics currently known as fibre bundles. Fibre bundles is a branch of dif­

ferential geometry, it is the mathematical tool that is extensively used in the description 

of gauge theories in physics and, roughly speaking, deals with manifolds and symmetry

35 O’Raifeartaigh, p.7.
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groups acting on those manifolds. It is widely considered to be the most appropriate math­

ematical formalism for the description of elementary particles (or shall we say fields?) and 

fundamental forces, whether they are described using non-Abelian gauge symmetries or 

other more elaborate physical theories, like for example string theories. The fibre bundle 

formulation of gauge theories is a fairly recent development in theoretical physics, it only 

dates back to the mid 1970’s. As a matter of fact, it seemed as though physicists ’came 

across’ a ready made formalism, that of fibre bundles, after they had discovered and de­

veloped gauge theories independently. Quite miraculously, it seemed, they realized that a 

formalism that suited their needs and purposes was already there and so they adopted it. 

But the truth, although hidden by the debris of the several incidents that mark scientific 

discovery, is that non-Riemannian geometries, in general, and fibre bundles, in particular, 

were inspired by physics and developed in parallel with, albeit faster than, gauge theories. 

Although the routes of the two enterprises were not always connected, and at times were 

even independent, they crossed again and again. In this section we will briefly delineate the 

route that led to the fibre bundles and to their deployment by the theoretical physicists and 

we will try to reveal the interactive relation between the two, the physical gauge theories 

and the mathematical fibre bundles.

As we have seen, Einstein’s theory of general relativity inspired Weyl to produce a 

geometry that would accommodate both gravitational and electromagnetic interactions in 

a unified way. Although Einstein’s theory was based on Riemannian geometry, it never­

theless inspired Levi-Civita, at first, and Weyl and Cartan shortly afterwards, to pursue the 

notion of parallel transport further, so that it did not contain ”a residual element of rigid ge­
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ometry”37. In 1917, one year after Einstein’s theory of gravitation, the mathematician Levi- 

Civita introduced the concept of parallel transfer. Inspired by ”la grandiosa concezione di 

Einstein”, apparently, Levi-Civita realized that the covariance of the Riemannian deriva­

tive and the Riemannian tensor was not due to the fact that the Christoffel connection was 

derived from the metric; rather, the covariance was the outcome of the transformation prop­

erties of the Christoffel connection with respect to coordinate transformations. That fact 

declared the status of the connections as independent entities. Weyl was the one who in­

troduced the notions of connection and parallel transport to physicists through his 1918 

paper and his later works, while Cartan was one of the mathematician-pioneers of what be­

came modem differential geometry. Very enthusiastically, O’Raifeartaigh points out that 

’’the significance of the Levi-Civita-Weyl-Cartan development can hardly be overestimated. 

From the point of view of mathematics, it liberated Riemannian geometry from the met­

ric and thus opened the way to a much more general concept of differential geometry, with 

the emphasis on differentiable manifolds and on their topological properties. This led to 

a sustained mathematical development which culminated about 1950 in the theory of fibre 

bundles. [...] From the point of view of physics, the Levi-Civita-Weyl-Cartan development 

paved the way for a geometrical understanding of electromagnetism and the weak and the 

strong interactions and for understanding their common structure”38. The connection in 

gravity is related to the derivative of the metric, but in the rest of the fundamental interac­

tions it is defined independently and it represents the interacting field, as we shall see when 

we present the formalism. However, thanks to Weyl’s idea and to its subsequent extensions

37 Weyl, 1918.
38 Ibid., p.40.
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by Utiyama, Yang and Mills, it became known that even in the case of the other interac­

tions, the covariance is the outcome of the transformation properties of the gauge field with 

respect to local phase transformations and the gauge field itself is related to parallel trans­

port. Hence the mathematical research on the relations between the properties of a space 

and the properties of the symmetry groups acting on that space was bound to be relevant to 

these theories too.

1.5.1 From Sphere Spaces to Sphere Bundles to Fibre Bundles

In mathematics, then, during the 1920’s and the 1930’s there was work going on in the ar­

eas of symmetry groups, topology and differentiable manifolds. Along with Elie Cartan, 

who by 1929 had become aware of and appreciated the fact that -what he called- the invari­

ant integrals of certain homogeneous spaces were related to topological properties of those 

spaces39, C. Ehresmann, H. Hopf and H. Whitney were also becoming aware that ”[t]he 

properties of a homogeneous space in which acts a Lie group simply expresses the prop­

erties of this group”40. As Ehresmann points out in his 1934 paper, ”[i]t would be very 

interesting if we knew the relations between the topology of such a space and the prop­

erties of its structure group”41 but their knowledge on the subject at the time was limited. 

”In the mean time, in his research concerning simple groups and homogeneous symmet­

ric spaces, Mr. E. Cartan has reached remarkable conclusions/results that reveal some of

39 See Sur les invariants integraux de certain espaces homogenes clos et les proprietes topologique des ces 
espaces (Ann. Soc. pol. Math., 8 (1929) 181-225).

40 C. Ehresmann, Sur la topologie de certain espaces homogenes, Annals of Mathematics, 35, no.2, 1934, 
396-443.

41 Ibid.
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these relations”42 and with these conclusions he was laying the foundations of what was to 

become modem differential geometry and the fibre bundles approach. Ehresmann’s paper 

continued to investigate the topological properties of such spaces, while on the other side 

of the Atlantic, Whitney was publishing a year later (1935) a paper where a direct ancestor 

of the fibre bundles first appeared, under the name sphere spaces. In the opening section of 

this paper, Whitney wrote: ’’Spaces often occur in which points themselves are spaces of 

some simple sort, for instance spheres of a given dimension. The set of all great circles on 

a sphere is such a space. Some general types of sphere-spaces are given in !q3 below, and 

some specific examples in t]8. Locally, sphere-spaces are product spaces; but in the large, 

this may no longer hold. In this note we define invariants which serve to distinguish dif­

ferent sphere-spaces when they have the same ’base space’ ”43. One of the examples of 

sphere-spaces he gives is what we now recognize as the tangent bundle.

By 1939, and while mathematicians like Hopf were investigating the relations be­

tween the topology and differential geometry of analytic Riemannian manifolds, Feldbau 

published the paper Sur la Classification des Espaces Fibres, where, for the first time, 

appears the term fibres (adjective), which will be adopted as fibre (noun) in English. Ehres­

mann and Feldbau, in a joint paper that was published only two years later, give the first 

definition of a bundle, a definition that had not yet discarded references to coordinate func­

tions and equivalence classes. By 1940, Whitney had renamed his sphere-spaces as sphere- 

bundles and he also defined the term fibre bundle.

42 Ibid.
43 H. Whitney, Sphere-spaces, Proc. Nat. Ac. Sci., 21 (1935) 464-468.
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The first monograph on fibre bundles came under the title The Topology o f Fibre 

Bundles, was written by Norman Steenrod and it was published in 1951. In his introduction, 

Steenrod calls attention to the fact that ”[t]he literature is in a state of partial confusion, due 

mainly to the experimentation with a variety of definitions of ’fibre bundle’. It has not been 

clear that any one definition would suffice for all results”44. What Steenrod attempted to do 

with his monograph was to provide an organization of the material that had been published 

between the years 1935-1948, and gave in it the first direct definition of a fibre bundle that 

avoids coordinate functions and equivalence classes.

Apart from the work on fibre bundles, at the same time there was research done 

on Lie groups, differential forms and connections, an area that naturally became part of 

modem differential geometry. We will not attempt even a brief historical account of the 

subject here, but we would like just to mention an acknowledgment to the contribution of 

Weyl in the subject. Claude Chevalley dedicated his 1949 book Theory o f Lie Groups to 

Elie Cartan and Hermann Weyl. Although there are hardly any references in the text, in 

the introduction he clearly states that certain of the ideas of the book have been inspired by 

the two mathematicians. We are mentioning this at this point as a reminder that, basically, 

this very powerful mathematical theory, modem differential geometry, has got certain of 

its fundamental ideas traced back to mathematicians like Levi-Civita and Weyl who were 

interested not just in advancing a mathematical theory per se, but in developing a theory 

that might find applications in physics. There was some strong physical intuition hidden 

behind the work of these mathematicians.

44 N. Steenrod, The Topology o f Fibre Bundles, v.
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By the end of 1960s the mathematical theory had been completed and the two vol­

umes of Kobayashi and Nomizu, Foundations o f Differential Geometry, resolved any pos­

sible disputes about definitions and terminology. Nevertheless, the physics’ front was ad­

vancing at a slower pace and hence the fact that the two were following parallel routes did 

not become apparent but only since the mid 1970s. The main reason why physics was lag­

ging behind, at least so far as the fundamental forces except gravity were concerned, was 

lack of experimental input. Let us not forget that for years physicists did swim against the 

phenomenological tide. But when the time came, differential geometry and fibre bundles 

were used and proved to be very successful and heuristically extremely fertile, to the extent 

that they amazed everyone in the scientific community as well as in the mathematical and 

the philosophical ones. And the question that arose then was: what’s the relation between 

the two? This question we will try to answer from a philosophical perspective in the fol­

lowing chapters, but the main thing to remember from this brief historical introduction is 

that both gauge theories and differential geometry share some ideas as part of their origins.

1.6 The Aftermath

As we have already seen, gauge theories cropped up from an idea, an intuition, that oc­

curred in the mind of a mathematician and originally it was wrong: it did not agree with 

experiment. Since the pursuit was not purely mathematical but in relation to physical prob­

lems, the theory could have been discarded. However, the theory was hammered but not 

destroyed by experimental considerations and the dynamic interactions between its authors
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and others, that took place in a period of eleven years, put the heart of the idea into the 

appropriate mathematical framework and shaped up an attractive theory45.

Something similar happened in the second part of the development of gauge theo­

ries; similar with respect to the interactions between mathematicians, theoretical physicists 

and phenomenologists. Similar, yet not the same because no two incidents in the history 

of physics and mathematics are exactly the same. In this case too, at the beginning the 

physicists produced an extension to gauge theories that did not agree with experimental 

data and phenomenological propositions. Nevertheless, nature rather than humans, this 

time, provided further evidence that theorists were on the right tracks. Further experi­

mental evidence and further theoretical adaptation -but not metamorphosis- were required 

before Glashow, Iliopoulos and Maiani, at first, and Weinberg and Salam, finally, devel­

oped the standard model for the electroweak interactions. And then more interactive work 

between experimental and theoretical physicists and mathematicians took us to unification 

theories that included the strong interactions and the fibre bundle formalism. And the story 

continues with greater unification schemes that aim to include gravity in the picture in a 

non-problematic way.

The similarities in the two phases of the creation of gauge theories are the following. 

In both cases it all started in disagreement with the known phenomenology. Intellectual 

interaction clarified the situation and put things right, so that the final theoretical result was

in agreement with observation. The difference is that while in the first phase the initially

45 We mention in passing here that in at least one more case this kind of interaction between a mathematician 
-Emmy Noether- and physicists led to an extraordinary and very influential (in physics) piece of mathemat­
ical work, namely Noether’s theorems, at around the same period. Although her name is not particularly 
referred to in the works of Weyl and others who worked on field theories, it is almost certain that there was 
communication and interaction between them.
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proposed theory had to undergo a partial, though substantial, transformation in order to 

match, in the second phase the theoretical basis was already established and what was 

important was the input of new data mainly from the experimentalists’ side. Yet in both 

phases -and probably in all successful theories in physics- the mathematical ideas are based 

on a physical consideration -there was physics in the heart of the idea of the connection.



Chapter 2 
Mathematical Representations of Physics

The relation between science and mathematics has always been a very successful and 

fruitful one, yet at the same time, one that raises several philosophical questions, mostly 

with non-conclusive answers. The success of this long term relation makes it almost nec­

essary for one to admit that the fact that mathematics describes, explains and even predicts, 

physical matters of fact is not an accident. However, at least so far as physics is con­

cerned46, mathematics by itself cannot give an adequate explanation of a physical event, 

for that reason some linkage is needed. Roughly speaking -and for the time being let it be 

like that- the prevailing suggestion among the physicists is that this linkage, this connec­

tion is provided by the interpretations of the theory. But then, the question that arises is, 

what do we mean by interpretation? In this chapter we are investigating precisely this re­

lation between mathematics and physics, and one thing we are arguing for is that so far as 

theoretical physics is concerned, the nature o f this relation is one that does not allow us to 

separate completely the mathematical from the physical aspects o f  a theory. The two are 

so inextricably entangled that one cannot strip a physical theory of its mathematics and just 

keep the physics because as we shall see, one does not know exactly where to draw the line 

between the two. In chapter 4 of this thesis, we will return to the issue of interpretations 

and examine it within the context of gauge field theories.

46 Here we are only concerned with the relation between physics and mathematics and not the rest of science.
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2.1 The Mathematical and the Physical

2.1.1 Raising the Issues

In his book Thinking about Mathematics, Shapiro distinguishes two major questions that 

those concerned with the relation between physics and mathematics should tackle. The first 

one is a ’how’ while the second is a ’what’ question.

’’How is mathematics applied in scientific explanations and descriptions? ”41 is the 

first question and Shapiro, to clarify things, talks about applications of two different types 

of mathematical entities, namely, concepts and theorems. Since ”we apply the concepts 

of mathematics -e.g. numbers, functions, derivatives, integrals, Hilbert spaces etc.- in de­

scribing non-mathematical phenomena”48 and ”we apply the theorems of mathematics in 

determining facts about the world and how it works”49, our how-question could fork into 

two. How are mathematical concepts applied in scientific explanations and descriptions of 

non-mathematical phenomena? How are theorems applied in deducing and/or determining 

facts about the world and how it works?

The what-question is phrased by Shapiro as follows: ’’what is the philosophical

explanation fo r  the applicability o f mathematics to science? ”50 Or, in other words, what is 

the philosophical explanation for the applicability of mathematical concepts in explanations 

and for the applicability of theorems in deductions (which could be perceived by many

47 Shapiro, 2000, p.36.
48 Ibid.
49 Ibid.
50 Ibid.
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as explanations too). In this thesis we will not deal with the what-question, but we will 

attempt to give some answers to the how-questions. These answers will be based mainly 

on conclusions drawn from the application of differential geometry in field theories.

A somewhat different, yet compatible with Shapiro’s, classification of the problems 

related to the application of mathematics is based on Steiner (1995), who recognizes prob­

lems of meaning (or semantics), problems about the relation of mathematical to physical 

objects (or metaphysical) and problems about physical reality and mathematical objects (or 

how physics relates to mathematics).

The first type of problems is about interpreting mathematical terms. In scientific 

explanations, especially in physics, we use both mathematical and physical terms. The 

mathematical terms employed ought to be interpreted in such a way that they have some 

sort of physical meaning per se or as they are used in mathematical proofs and derivations, 

so that they become relevant and meaningful in scientific descriptions, explanations and 

predictions. Once we have interpreted the mathematical terms, we are able then to use 

them directly in derivations that we label scientific, rather than mathematical. We will 

get back to this issue in chapter 4, where we will explore possible interpretations of the 

fibre bundle formalism, a purely mathematical ’construction’ which is used in gauge field 

theories.

The second type of question arises if  we presuppose that there are mathematical as 

well as physical objects and that they are distinct. Then the challenge we face is to account 

for the nature of mathematical objects that allows them to relate to and apply in the physical 

world.
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Finally, if  we reverse subject and object in the last type of question, we express the 

last sort of problem related to the applicability of mathematics to science. Namely, the 

issue now is to account for the nature/properties (or what else do we call them?) of the 

physical world that makes specific concepts and formalisms of mathematics so applicable 

to it. Some more specific questions that could be asked within this context, as Shapiro 

put it, are these. ’’What is it about the physical world that makes arithmetic so applicable? 

What is it about the physical world that makes group theory and Hilbert spaces so central 

to describing it?”51 According to Steiner, for each concept and every successfully applied 

formalism we should expect a different answer.

Without too much emphasis on the second type of problems and with Steiner’s last 

remark in mind, in this chapter we will attempt to shed light on certain properties of 

some physical objects that allow for specific applications of mathematical concepts and 

formalisms. From the various philosophical approaches to the relation between mathemat­

ics and physics, we will focus on two: Field’s programme and M. Redhead’s structuralist 

ideas of surplus structure. The reason we chose these two approaches is that they both deal 

plainly with representation of physics by mathematics. Field’s main thesis is that at least 

in principle, it is possible to reformulate physical theories so that the mathematical entities 

are avoided, while Redhead’s is that not only this is not possible, but also it is the purely 

mathematical surplus structure that ’controls’ the physical, as we shall see. Hence we will 

discuss Field’s programme and criticisms against it, and then M. Redhead’s. From this per-

51 Ibid.
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spective we will then investigate how the notion of symmetry is applied and what we can 

get out of this application.

Each of these problems may occur on several levels. So, we may ask how it is that 

a particular mathematical fact can serve as an explanation of a non-mathematical fact, or 

what is the relevance of a given mathematical/scientific theory as a whole, or why is the 

entirety of mathematics essential to science. In this chapter we are discussing issues related 

mostly to the second level -we will only touch upon the third- while in chapters 3 and 4 we 

will also focus on the first, discussing particular facts.

One last remark before we move on. Shapiro points out that ’’occasionally, areas 

of pure mathematics, such as abstract algebra and analysis, find unexpected applications 

long after their mathematical maturity. Mathematicians have an uncanny ability to come 

up with structures, concepts and disciplines that find unexpected application in science”52. 

This is yet another issue that can be illustrated by several examples from the history of 

science. A notable example that is related to this thesis is the development of the fibre 

bundle formalism of differential geometry that found applications in physics almost two 

decades after it reached its maturity in the minds and the interests of the mathematicians. 

Once again, we will come back to this point in the last chapter of this thesis, after we have 

developed the fibre bundle formalism, anticipating to get some insights on how the relation 

between physics and mathematics developed, at least in that specific example.

52 Ibid., p.39.
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2.1.2 The Question of Choice: Which Mathematical Representation 
and Why?

As is well known, a physical theory may have more than one mathematical representation. 

This problem we call ambiguity o f  representation and examples from physics abound. Take 

for instance the case of classical mechanics. There we are accustomed to using Euclidean 

geometry, but other metric geometries, like for example Riemannian geometry, would do 

as well. The question, hence, is which one to choose and on what grounds. Nagel, in The 

Structure o f  Science, puts forward two different attitudes towards answering this question. 

The one he supports is known as conventionalism. Conventionalism advocates that if Eu­

clidean and Riemannian geometries are like languages which are intertranslatable into each 

other, ’’the sole difference between the two systems of statements obtained in this way is 

that the same facts receive different formulations”53. So, ”as far as the empirical facts to be 

codified and predicted are concerned it will make not an iota of difference which language 

to adopt. However, we may find one language more convenient than another, perhaps for 

several reasons”54. On the other hand, if we consider that the two different systems of state­

ments are mutually incompatible, ’’the above question can now be taken to mean ’Since the 

alternative applied geometries cannot all be true, is there any way of deciding between 

them, and are there any considerations based on the empirical facts that make the adoption 

of one system quite compelling?’ ”55. To answer the question in this case, one has to iden­

tify the geometry that is true and this should be based on empirical facts only. Yet such an

53 E. Nagel, The Structure o f Science, p.253.
54 Ibid., pp253-4.
55 Ibid., p.254.
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inductive step gives rise to several problems that plague this one, along with any other re­

alist approach. For the purpose of this thesis, we will not expand on these two approaches. 

Nevertheless, we will see what could be said about the issue of ambiguity of representa­

tion in Field’s nominalist programme, in Shapiro’s structuralist approach and in Redhead’s 

’second order’ structuralism.

Aside from this type of ambiguity in the representation of physical theories, we also 

encounter another one, the ambiguity that a specified representation allows for, within the 

same mathematical representation. This second type of ambiguity is one that has physical 

import and we will discuss it in more detail later on in this chapter. But for now, we 

will go back to the question "How is mathematics applied in physical explanations and 

descriptions? ” and discuss some of the attempts to answer it.

2.2 Field’s Idea

Field’s idea, by and large, was that in doing science we can dispense with numbers, which 

are nothing more than a conservative extension of the theory itself. This view he calls 

nominalism. His programme for nominalizing science has been criticized and Shapiro has 

shown it to suffer the same faux pas as Hilbert’s programme for mathematics, to which it is 

structurally analogous. For Hilbert, the basis was finitary mathematics, the instrument was 

ideal mathematics and the necessary condition was consistency. In Field’s programme, on 

the other hand, the basis is nominalistic science, the instrument used is mathematics and 

the necessary condition is conservativeness. Hilbert’s programme suffered a severe blow 

from Godel (1931,1934) and his incompleteness theorem, while Field’s attempt was found
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to be non-conservative when Shapiro (1983) discovered a counterexample, a sentence G in 

the nominalistic language that could be derived within the extension at the same time that 

it was not a theorem of the synthetic physics.

Despite the problems, Field’s book is admittedly ’’one of the few serious, sustained 

attempts to show how mathematics is applied to sciences”56. For this reason, we are pre­

senting, examining and adding to the criticisms against his idea.

2.2.1 Science Without Numbers: a Defence of Nominalism

In his introduction, Field defines nominalism as”the doctrine that there are no abstract 

entities”57, like for example numbers, functions, sets, or any similar entities. Since such 

entities do not exist, the argument goes, it is not legitimate to use such ’’terms that purport 

to refer to such entities, or variables that purport to range over such entities, in our ultimate 

account of what the world is really like”58. Taking into consideration another assumption, 

namely that physical theories describe the world the way it really is, we then face a problem. 

The problem is that, as a matter of fact, in developing physical theories one has to use 

mathematics and along with mathematics, references to and quantifications over the kinds 

of objects that are not supposed to exist. So, how is it possible that we give an ultimate 

account of what the world is really like if we use in our account entities that do not really 

exist?

56 Shapiro, Thinking about Mathematics, p.237.
57 Hartry H. Field, Science without Numbers, Princeton University Press, 1980, p.l.
58 Ibid.
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A popular resolution among the nominalists is to actually interpret the mathematics 

involved in physical theories so that the mathematical terms involved do not make reference 

to ’forbidden’, abstract entities, but only to other types of entities, like for example physi­

cal objects, linguistic expressions and mental constructions. Field’s approach, however, is 

different. As he writes, ”1 do not propose to reinterpret any part of classical mathematics; 

instead, I propose to show that the mathematics needed for the application to the physical 

world does not include anything which evenprima facie contains references to (or quantifi­

cations over) abstract entities -and this includes virtually all of conventional mathematics- 

I adopt a fictionalist attitude: that is, I see no reason to regard this part of mathematics as 

true”59.

To do so, Field introduces the notion of conservative extension, and while he outlines 

his strategy, at the same time he tries to counteract the already existing arguments against 

the nominalist position. The task that the advocates of his position face then is that of 

reformulating all of science, in general, and physics, in particular, so that it does not refer 

to nor does it quantify over abstract entities. Field’s attempt has been criticized in particular 

by Shapiro who in his 1983 showed that the idea of mathematics as a conservative extension 

of a theory fails. But before we proceed to the criticisms of Field’s programme, let us 

outline the programme itself.

It is worth noting that the book is a long reductio ad absurdum against the Quine- 

Putnam indispensability argument. The indispensability argument, roughly, states that 

since mathematics is essential for science, it must be true and since it is true we should

59 Ibid., p.2.
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believe in the existence even of the abstract entities that it involves.60 Hence, Field be­

gins with the assumption that standard mathematics is correct and attempts to show that, 

nevertheless, mathematics is not indispensable to science.

On the other hand, the main argument for nominalism is the so-called epistemologi- 

cal argument and in Field’s formulation it runs as follows. What we may call ’the reliability 

thesis’ claims that when mathematicians believe a claim about mathematical objects, then 

the claim is true. If the reliability thesis is true then it must be explained. But the reliability 

thesis cannot be explained, therefore is not true. This ’destructive’ argument only manages 

to justify -not without controversy, of course- why the nominalists would not want to retain 

current theories. However, it does not provide any motivation for embarking on a project 

of reconstructing mathematics in a nominalistic way. This motivation is to be found as a 

response to the above mentioned indispensability argument, which, according to Burgess 

and Rosen, implies that we should believe in abstract entities only because we do not have 

nominalistic alternatives to current scientific theories and hence ”it makes a major conces­

sion to nominalism, essentially the concession that if nominalistic alternatives to standard 

scientific theories could be developed, then they should be adopted”61.

In the first chapter of his book, Field tries to establish that while mathematics does 

not yield genuinely new conclusions about observable entities, physical theories do yield 

genuinely new claims about observables. To do so, physical theories make use of theoret­

ical entities, however, these theoretical entities are dispensable, he argues. His first task

60 For a detailed discusion of the argument see, for example, Putnam’s Philosophy o f Logic.
61 Burgess & Rosen, A Subject with no Object, Clarendon Press, 1997, p.64.
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is, therefore, to demonstrate that the utility of mathematical entities is different from the 

utility of physical entities, and here is how he does it.

2.2.2 In What Ways ’Utility of Mathematical Entities’ is Different 
from ’Utility of Theoretical Entities’

Field argues that if logic does not yield genuinely new conclusions, we can give a clear 

and precise sense to the idea that along the same lines ’’the part of mathematics that does 

make reference to mathematical entities can be applied but without yielding any genuinely 

new conclusions about non-mathematical entities”62. For him, the only reason why mathe­

matics is important relies on the fact that it is truth preserving and therefore it can be used 

to deduce consequences from premises. However, mathematical entities are dispensable 

in the following sense. Consider that a nominalistic assertion is one that makes no refer­

ence at all to abstract mathematical entities, then ”if you take any body of nominalistically 

stated assertions N  and supplement it with a mathematical theory S, you don’t get any 

nominalistically-stateable conclusions that you wouldn’t get from N  alone”63. On the other 

hand, theoretical entities that appear in physical theories play an essential role in them and 

in the deduction of a wide range of phenomena from them, he claims, and since there are 

no alternative theories known that make no use of similar entities, they are indispensable to 

them.

In order to show that mathematics is conservative, Field points out that number the­

ories or pure set theories are of no interest, since they do not apply directly to the physical

62 Shapiro, Thinking about Mathematics, p. 16.
63 Field, Science without Numbers, p.9.
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world, in other words they do not enable us to deduce nominalistically-stateable conse­

quences from nominalistically-stateable premises. However, in order to make use of this 

attribute of mathematics, he requires some sort of bridge between the pure objects of the 

world and the abstract entities of mathematics; this bridge is provided by what he calls ’im­

pure abstract entities’, which are, for example, ’’functions that map physical objects into 

pure abstract entities”64. Hence, the mathematical theories that he considers ’’include at 

least a minimal amount of set theory with urelements (a urelement being a non-set which 

can be a member of sets)” and they ’’must also allow for non-mathematical vocabulary to 

appear in the comprehension axioms”65 so that at the end they involve both the mathemat­

ical and the physical vocabulary together. After having established what a mathematical 

theory and what a nominalistic physical theory are, along with the bridge, the one-place 

predicates M (x) meaning ’x is a mathematical entity’ and nM (x) meaning ’x is a non- 

mathematical entity’, that is required to link the two, he states the following theorem that 

shows mathematics to be just the conservative extension of the physical theory and hence 

renders it dispensable.

Theorem 1 (Principle C (for conservativeness))For A  any nominalistically-stated asser­

tion let A* be its corresponding restricted assertion in which each o f its quantifiers has 

been restricted with the formula 'notM (xi) and fo r  N  any nominalistically-stated body 

o f assertions let N* consist o f all assertions A*; and let S  be any mathematical theory. 

Then A* isn’t a consequence o f N* +  S  +' 3x"1M (x)/ unless A  is a consequence o f  N.

64 Ibid.
65 Ibid.
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Notice that the inclusion of the axiom f3x’1M (x)' is necessary so that the mathemat­

ical form of the physical theory is really a conservative extension of N . Without it, TV -f S' 

may be inconsistent since N  as a nominalistic theory may rule out the existence of ab­

stract entities. If we restrict each quantifier of the nominalistically-stated assertions A  of 

N  with the formula and call the resulting ones A* and N* respectively, then N* is

an ’agnostic’ version of N  which allows for statements that may include both mathemat­

ical and non-mathematical entities. Hence, this formula allows for A* statements like ’all 

non-mathematical objects obey Newton’s laws’ but at the same time it allows for the pos­

sibility that there may be mathematical objects that do not; this possibility does not exist in 

N.

The theorem above follows from the stronger theorem

Theorem 2 (Principle C ) Let A b e  a nominalistically-stateable assertion, and N  any 

body o f  such assertions. Then i f  A* is a consequence o f N* +  S, it is a consequence o f N* 

alone. (N* +  S  b A* => N* h A*)

which in turn is equivalent to the following:

Theorem 3 (Principle C ”) Let A b e  a nominalistically-stateable assertion. Then A* isn’t 

a consequence o f S  unless it is logically true.

What follows then from these theorems is that A* is not a consequence of N* +  

S  + ' 3x~iM (x)' unless A  is a consequence of N  and therefore, mathematics constitutes just 

the conservative extension of the theory. This is also known as the conservative extension 

theorem and lies at the heart of Field’s argument.
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To demonstrate in what way the mathematical fictions may be useful, Field examines 

arithmetic, geometry and distance.

2.2.3 Illustration of Why Mathematical Entities are Useful: 
Arithmetic, Geometry and Distance.

Using the examples of arithmetic and of geometry, Field shows how, by using mathemat­

ics, one can construct a conservative extension of these two, otherwise nominalistically 

formulated bodies of assertions. Then he uses these extensions -and therefore abstract, 

mathematical premises- to prove claims that rely only on the original nominalistic ones. 

In these proofs, which could be done even without using abstract mathematics, numeri­

cal claims are just abstract counterparts of purely arithmetical or geometrical claims and 

this indicates, according to Field, that they are actually not necessary, just useful and truth- 

preserving devices. But the fact that mathematics (or the theory of real numbers plus set 

theory) is truth preserving does not entail that it must be true as well. And therefore, he 

concludes, we only need to assume that it is conservative. Moreover, it is a rather restricted 

form of conservativeness that is actually needed, and this restricted form follows from the 

consistency of set theory alone.

At this point we would like to agree with Fields that there is no logical necessity 

indicating that mathematics must be true. Yet, we can see a ’’utility-necessity” of numbers 

and set theory if we want to make measurements of the kind we are used to in physics66.

And measurement, we believe, is above all, what geometry and arithmetic are about -at

66 Hilbert’s representation theorem aknowledges a certain utility of real numbers in geometric reasoning 
and even Field agrees witht that. Given this utility and ignoring for the time being the weaknesses of both 
Hilbert’s and Field’s programmes one can see that numbers are usefull devices even if  they are nothing more 
than just that.
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least in their applications in physics. Just bear in mind that the word Geometry itself means 

precisely that: to measure the earth!

2.2.4 Nominalism and the Structure of Physical Space

So far, Field has tried to establish that numbers are not necessary in doing physics. Instead, 

he claims, the quantifiers that we need in order to derive what we want range over space­

time points that do exist. From a Platonic point of view, our knowledge of mathematical 

structures is a priori, while our knowledge of the structure of physical space(time) is an em­

pirical fact, subject to experientially-based revision. Moreover, the postulate of points of 

space is less rich than that of real numbers, for the simple reason that the operations of ad­

dition and multiplication that go together with the postulate of the real numbers, do not go 

with space; for we cannot define addition of two points, nor multiplication. The similarity 

in structure between space(time) points and mathematical objects should be of no surprise 

to anyone, Field claims, nor should be regarded it as an amazing coincidence, because all 

the mathematical artifacts, like real numbers, differentiation and so on were developed in 

response to certain theories developed in order to deal with space and time. As a result 

of this close connection, one should expect that these mathematical theories have strong 

structural similarities to the physical structure of space and time.

Based on this conviction, he claims that relationalist views of spacetime would be

a violation of nominalism, as opposed to the substantivalist view67, and that the problem

67 According to the substantivalist view, space-time points and regions are entities that exist in their own 
right.

According to the relational view, spacetime is characterised in terms of physical objects -actual or possible- 
and it takes one of the two forms: reductive and eliminative relationalism. Reductive relationalism claims 
that space-time points and regions do not have a separate existence but they are some kind of set-theoretic
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for relationalism is especially acute in the context of field theories. ”If the field is defined 

as an assignment of some property to each spacetime point”, he writes, ’’this assumes that 

there are spacetime points. So a relationalist would have to either avoid postulating fields or 

come up with some different way of describing them”68. Further, he nominalizes the Hilbert 

formulation of Euclidean geometry by allowing the first order variables to range over points 

or regions of the spacetime only, and both the first and the second order quantifiers to range 

only over regions of spacetime.

The issue Field raises here is very interesting and highly controversial for more than 

one reason and from more than one aspect. Shapiro and Malament have attacked both 

the view that using spacetime points instead of numbers makes a real difference and that 

substantivalism is necessarily the position to adopt about spacetime points, as we shall see 

shortly. We, on the other hand, will come back to the point he makes about fields in chapter 

four.

In a way analogous to the one already used to nominalize geometry, Field tries to 

nominalize physics as well. The principle he employs in this attempt is that ’’underlying 

every good extrinsic explanation there is an intrinsic explanation”69, where by extrinsic 

he means explanations -or functions- that use certain extrinsic constant numbers, like for 

example the gravitational constant70. If the principle is correct, he claims, the real numbers

construction which is based on the physical objects and their parts. According to eliminative relationalism, 
on the other hand, it is illegitimate to quantify over unoccupied space-time points or regions, while quantifi­
cation over occupied ones is fine since this could be regarded as equivalent to quantifying over the objects 
that occupy them. (Field, p.34 & 114)

68 Ibid., p.35.
69 Ibid., p.44.
70 Field associates the extrinsic ’quality’ of a constant with the fact that as it is just a real number, it does not 
play any causal role in the forces acting between two bodies.



2.2 Field’s Idea 57

must be eliminated from physical explanations; and they have to be eliminated because 

otherwise the explanations are arbitrary and hence unsatisfactory. In the meantime, he does 

not exclude altogether the use of mathematics in scientific explanations, because they are 

truth preserving and as such they may be used as auxiliary devices in inferences; in this 

sense they are part of the extrinsic explanation and therefore they are dispensable. For 

that reason and considering the description of fields using tensors, Field does not like the 

arbitrariness of choosing units of distance, although he approves, of course, of the fact that 

we do not need to use numbers with them. But as we just said, we will return to his views 

about fields later on, when we have presented fibre bundles and the description of gauge 

theories through them.

2.2.5 A nominalistic Treatment of Newtonian Gravitational Theory

Briefly, we outline in this section Field’s strategy to nominalize Newtonian spacetime, and 

we do so because we need the main ideas in order to understand the criticisms against his 

proposal. Field considers that we need three axioms in order to account for betweenness, 

congruence and simultaneity, and these are his primitives. All other genuine spacetime re­

lations, he believes, are defined in terms of them. Using the example of temperature as a 

typical physical quantity, he introduces temperature-betweenness, temperature-congruence 

and temperature-less relations among spacetime points -rather than introducing between­

ness and congruence among temperature properties. Doing it this way, he claims, one gets 

the desired representation and uniqueness theorems that are necessary in a theory of mea­

surement. Having done that, he defines any scalar primitives, like the gravitational potential
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and the mass density in this specific case, in the same way that he does with temperature. 

Then he is able to introduce a joint axiom system, what he calls JAS71, which contains all 

the necessary primitives and nothing more. All these are defined on the same set of space­

time points and thus he creates a working model. For each such system with appropriate 

axioms there is both a spatiotemporal function <p from spacetime onto R4 and a scalar rep­

resentation function 'ip also from spacetime and onto an interval of the real numbers. Each 

of these functions is unique up to the appropriate class of transformations. The physical 

laws are usually expressed as functions T  = 'ip o p ~ l mapping quadruples of real numbers 

into real numbers (a one-to-one map) and they express the interrelation between the two 

functions. So, laws about T  can be restated as laws about the interrelation of (p and 'ip and 

vice versa; and since the two functions can be restated in terms of the axioms of the JAS, 

so can their interrelations.

Let us come back to a point we raised before. It seems that what Field fails to rec­

ognize here is that the numbers are there to represent measurable properties of the physical 

entities. Without the numbers, or something like them, there is no chance of relating the­

ories to physical world. Choosing spacetime points as the real and truly existing entities, 

we just require an extra, intermediate step when measuring, say, distance between two such 

points. And although a device like that allows for measurement, we tend to believe that the 

measurability should be intrinsic to any good theory, because we believe that a scientific 

theory is an intertwined combination of mathematics, interpretations and connections with 

the world, where connections are the experiment and the measurement.

71 p.59
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2.2.6 Criticism of Field’s programme by Malament

Field’s programme, though very imposing and ambitious, has been criticized ever since 

it appeared. Malament, in his 1982 review of the book criticizes the programme from 

three different perspectives. Using the example of the Klein-Gordon field and calling T  a 

nominalist reformulation of the theory, in other words a set of sentences in an appropriate 

nominalist language L  (a second-order language with variables for individuals as well as 

the sets of individuals and the relation symbols ’=’, ’Seg-Cong’, ’Scale-Bet’, ’Scale-Cong’, 

’ E  ’, ’< ’), S  some fact about the field and S l  its nominalist reformulation in L , Malament 

claims that in order for T  to rebut the indispensability argument at least three conditions 

must be met:

1. L  qualifies as a nominalist language.

2. All assertions concerning the space-time distance function and the Klein-Gordon 

field which are essential for the purposes of science can be reformulated in L.

3. Given any sentence in L, if it is derivable from the theory of the Klein-Gordon 

field in its original formulation, then it is a logical consequence of T.

Condition (3) is guaranteed by the representation theorem, claims Malament, but in 

his view the other two are highly controversial. Condition (2) restricts the claims that can 

be made far too much. If we accept that the Klein-Gordon field determines a set of models 

of the form ((M, d ) ^ ) ,  where (M, d) is a Minkowski spacetime and ^  is a smooth real­

valued function on M  satisfying the Klein-Gordon equation, there are three different types 

of theorems about this set:

A. Propositions which report generic features of individual models.
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B. Propositions that establish the existence of models with special features.

C. Propositions that make essential reference to more than one model.

At best, Field can reformulate in his language only theorems in the first category 

because even if he enriched his language L  to allow reference to other qualitative rela­

tions apart from congruence and betweenness, ”he cannot do anything except assert gen­

eral truths about what goes on within arbitrary models”. In other words, he cannot establish 

the existence of, say, a Klein-Gordon field that is non-constant nor can he establish that two 

models ((M, d) , i p )  and ((M, d) , i p ' )  may be deterministically linked. The reason he cannot 

do the first is that although he can define non-congruence between spacetime points -and 

hence between fields defined over these points- the statement can only capture the fact that 

the Klein-Gordon field is non-constant in all cases. As for the second, determinism in­

volves ’agreement’ between the two models on a simultaneity slice H  in (M, d) such that 

”if i p  and ip ' agree on H  and if  their time derivatives (i.e. directional derivatives orthogonal 

to the slice) agree there, then ip  and ip ' agree everywhere”. What Malament calls ’agree­

ment’ is a direct relation between ip  and ip ' and it is a lot richer than can be captured by 

congruence and betweenness.

So far as condition (1) is concerned, the language L  needed for the description of 

something as complex as the Klein-Gordon field, or Hamiltonian mechanics or quantum 

mechanics, is too rich for nominalism, Malament claims and we entirely agree. For one 

reason, in the case of the Klein-Gordon field, the language admits second order quantifiers, 

quantifying over both spacetime points and sets of spacetime points. Field disputes this 

point claiming that the quantifiers range over regions o f  spacetime points rather than sets,
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even though he recognizes that the character of logical-consequence in L  is thus rendered 

problematic: second order logic is not complete, i.e. it is not recursively axiomatizable and 

this he would rather avoid. Field conjectures that one might be able to do physics with a 

weakened, first-order version; however, if this conjecture fails, one would rather keep the 

logical resources of the nominalistic language than abandon nominalism altogether. But 

this is exactly where the problem lies, as Malament points out, because ’’the logical conse­

quence relation cannot be recovered in terms of a formal derivation system”72. Moreover, 

even if we brushed aside those problems, it is hard to see how a nominalist could justify the 

quantification over either spacetime points or spacetime regions. Though Field attempts to 

justify this by asserting that the substantivalist view of spacetime is the correct one, Mala­

ment finds the response unsatisfactory, and that not only because the controversy between 

substantivalists and relationalists is not conclusive. Rather, it is the claim that spacetime 

points, unlike abstract mathematical objects, are concrete entities that exist in their own 

right to which he objects. As he put it: ’’But I, for one, begin to lose my grip on the dis­

tinction when thinking about such things as ’spacetime points’. It would have helped me to 

understand his conception of nominalism if Field had explained how he draws the line and 

made clear why spacetime points are so much better than, for example, sets and qualities. 

If what constitutes a nominalistic language in the case of the Klein-Gordon field is hard to 

pin down, then things become completely out of hand in classical Hamiltonian mechanics 

and in nonrelativistic quantum mechanics. In the first case one would have to quantify over 

possible dynamical state, while in the second even if they could think of the theory as deter­

72 At this point Malament anticipates Shapiro’s criticism and the application of Godel’s incpmletness theo­
rem.
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mining a set of model -each a Hilbert space- one would not be able to find a representation 

theorem”.

The issues Malament raises are very important and directly related to how Field’s 

programme might (not) be applied in field theories in general, but to this we will come 

back in chapter three. In the mean time, we will examine Shapiro’s objections to Field’s 

nominalization programme, which are based on the problems that arise from Malament’s 

condition (3).

2.2.7 Criticism of Field’s programme by Shapiro

According to Shapiro, Field’s programme for the development of a synthetic science fails 

for a similar reason that Hilbert’s finitary mathematics fails as well. Since the two pro­

grammes are structurally analogous, the same criticism applies to both, and hence they 

both falter over Godel’s incompleteness theorem. More specifically, Shapiro shows in his 

paper Conservativeness and Incompleteness that there is an ambiguity in the formulation 

of conservativeness ’’which involves the distinction between semantic consequence and 

deductive consequence”, a distinction that Field himself pointed out too73. Field’s nomi­

nalistic physics is formulated in second order, as we have seen, whose first order variables 

range over spacetime points while its second order range over spacetime regions -rather 

than sets of points, although in the last chapter of his book he proposes a nominalization 

using just first-order language. These formal theories have to be recursively axiomatizable

73 There are two senses of consequence (or implication) in logic, the syntactic, usually denoted by the simple 
turnstile b and the semantic, usually denoted by the double turnstile \=. The syntactic consequence A h  0 
suggests that (j> can be proved formally from (axioms) in A, while the syntactic consequence A |=  <f> suggests 
that 4> is true in every model of A.
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and complete. However, second order theories are known to be incomplete, since Godel’s 

completeness theorem does not hold for them74. This means that in theories such as Field’s 

nominalistic N  and extended N  + S  ’’conservativeness is ambiguous as to whether it in­

volves proof-theoretic derivability in N  and N  + S  or semantic consequence in N  and 

N  +  5 ”. Field himself has established only the semantic conservativeness, but this is not 

enough to guarantee that S  is just the conservative extension of N . Shapiro, as a matter 

of fact, provides a counterexample that refutes the deductive conservativeness of S  over 

N , by finding a sentence 6 formulated in the language of N  such that S  +  N  h 6 but 

S  ¥■ 6, and he points out that ’’given semantic conservativeness, 9 is true in all models of 

N  but it is not deducible in AT” . Hence, for second order theories he shows that deductive 

conservativeness is not coextensive with semantic conservativeness.

If one tried to stick to first-order version of nominalistic theories, on the other hand, 

one cannot prove the existence of homomorphisms from spacetime points to R A, which was 

another necessary requirement for the formulation of nominalistic physics, even though 

one maintains deductive conservativeness. Hence, either way, Field’s programme runs into 

apparently insurmountable problems.

The question that arises, then, is that if  Field’s programme runs into such difficulties, 

why should we get into the trouble of discussing it? Despite the flaws of the programme, 

Field’s denial of the indispensability of mathematics is an idea that is worth investigating.

74 The theorem could be stated as follows:

A \~2 <f> =>■ A 1=2 (j)

but it is possible that
A \=2 (f> and A Y~2

where b 2  stands for provable and ( = 2  for semantic consequence, while the subindex 2 indicates second order 
logic.
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Putting the logical arguments aside, or maybe along with them, we will see later on in this 

thesis that within the context of quantum field theories what Field would consider as purely 

mathematical structure -and hence dispensable- is essential and it contains vital information 

about the physical systems that the rest of the theory -its physical part- does not.

2.3 Structuralism

The main philosophical idea behind structuralism is that the essence of mathematical ob­

jects is their relations to other mathematical objects and the structures75 in which they are 

arranged. Mathematical objects, like the natural numbers for example, are ontologically 

dependent in the sense that they only exist -if at all76- in relation to other natural numbers. 

As Shapiro put it: ’’The subject-matter of arithmetic is a single abstract structure, the pat­

tern common to any infinite collection of objects that has a successor relation, the unique 

initial object, and satisfies the induction principle. The number 2 is no more or less than 

the second position in the natural number structure; and 6 is the sixth position. Neither 

of them has any independence from the structure in which they are positions, and as po­

sitions in this structure, neither number is independent of the other”77. And according to 

Resnik, another proponent of structuralism, natural numbers ”have no identity or features 

outside a structure”, so they must be regarded as ’’structureless points or positions in struc-

75 Resnick, in his 1997, declares a preference for the term ’pattern’ rather than ’structure’, because, as he puts 
it, he finds ”it more suggestive to speak of mathematical patterns and their positions, rather than structure”
(p.202).

76 Stmcutralists’ views over the existence of mathematical objects differ. So, Shapiro and Resnik, for exam­
ple, are realists in ontology, while Benacerraf and Heilman are realists in truth value only.

77 Shapiro, Thinking about Mathematics, p.258.
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tures”78. Hence, unlike the ontological Platonist, who could say that mathematical objects, 

like the numbers, are ontologically independent from each other -just like a physical ob­

ject is ontologically independent form another physical object- a structuralist would insist 

that such objects are not ontologically independent, because the essence of their existence 

is their relations to other objects of the structure they belong to and hence they are nothing 

other than places within the structures. Yet, numbers are epistemically independent since 

one may know about a specific number -say 8- while at the same time may not know about 

another -for example 1786.

Shapiro defines79 ”a system to be a collection of objects with certain relations among 

them” and ”a pattern or structure to be the abstract form of a system, highlighting the in­

terrelationships among the objects and ignoring any features of them that do not affect how 

they relate to other objects in the system”. Then, he claims, we understand structures via 

a process of abstraction, where we focus on the relations between the objects. Obviously, 

more than one system may exemplify one structure, hence a structure is one-over-many. 

As Shapiro points out, ’’the traditional examplar of one-over-many is a property, some­

times called an attribute, a universal or a Form”80. Hence, from the structuralist’s point of 

view, ”a system is a collection of objects with some relations between them and a structure 

is the form of a system”81.

A Platonic view of universals, known as ante rem realism, advocates that the exis­

tence of some universals is independent of whether their instances exist or not, hence, the

78 Resnik, 1981.
79 Thinking about Mathematics, p.259.
80 Ibid. p.262.
81 Ibid.
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’one-over-many’ comes first, while the ’many’ comes second. Contrary to this view and in 

accordance with the Aristotelian in re realism, the universals are nothing more or less than 

their instances, in which case the ’many’ is prior to the ’one-over-many’. The conceptu- 

alists believe that the universals are mental constructions, while the traditional nominalists 

either consider them as non-existent or think of them as linguistic constructions.

Although the discussion about what we mean when we say that structures exist in­

dependent of the systems or objects that exemplify them, and about how we get to know 

them, is long, for the purpose of this thesis suffice it to say that we will be considering 

the structures in an ante rem sense, that is to say, as existing prior to and independent from 

their instances. As for the epistemological question, it will do to say that we get to know 

these structures via pattern recognition and through abstractions.

2.4 Michael Redhead’s Surplus Structure

Michael Redhead (2001) claims that the relation between physics and mathematics is of a 

structural character. He talks about two different types of structure, a mathematical struc­

ture M  and a physical structure P  both of which could be regarded as models for an un­

interpreted calculus C. The mathematical structure M  may be considered as consisting of 

isomorphism classes of concrete mathematical structures ’’where two concrete structures in 

the same isomorphism class are related by a bijective correspondence which preserves its 

system of relations in the sense that if  in the one structure the elements x \x 2, ...xn satisfy 

the n-ary relation R, then the corresponding elements yi, y2, yn in the second structure 

satisfy R'(yi, 2/2, •••, 2/n )  if and only if R( x ix 2, where R' is the n-ary relation in the
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second structure that corresponds to R in the first structure”82. The abstract structure, then, 

may be considered to be the universal or form that is shared by all the concrete structures 

in an isomorphism class. This second-order abstract structure, he claims, is what is associ­

ated with physical reality and it ’’can be thought of as a second-order property of the ’true 

relations’ rather than the true relations themselves”83. This notion of abstract structure, 

Redhead points out, dates back to the early writings of the empiricist tradition84.

As to the question of what exactly is a concrete mathematical structure, Redhead 

acknowledges that the question is formally problematic85 and distinguishes mathematical 

structures which are specified categorically in an intuitive Platonic sense. Thus, Redhead’s 

concrete mathematical structures belong to a unique isomorphism class and are different 

from Shapiro’s algebraic structures which involve many isomorphism classes.

Redhead believes that this kind of concrete abstract structure reveals to us the relation 

between mathematics and physics, since an abstract structure is associated with a physical 

system as well as with a mathematical structure; hence, structures involving the natural or 

the real numbers, may belong to the same isomorphism class that maps a specific physical 

structure onto each of these mathematical structures. Therefore, a mathematical structure 

can be used to represent a physical structure.

82 M. Redhead, 2001.
83 Ibid.
84 See, for example, Russell (1927) or Carnap (1929).
85 The problem, as we have seen, originates from the fact that second order logic is not complete, while first 
order logic which is comlete cannot provide categorical models.
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To show how mathematical structures are used to represent physical structures in the 

context of measurement, he uses -among other- the examples of temperature and mass as

they are measured by natural numbers. He writes:

Consider the case of ratio scales of extensive quantities, such as mass. Such quan­
tities map onto a one-dimensional vector space spanned, for example, by the unit of 
mass. Given the choice of unit (base vector), the measure, i.e. the ratio between 
the quantity and the unit, is specified by a dimensionless number which represents 
the physical mass relative to the choice of unit. But again, the representation is not 
unique. Changing the unit by a factor a  rescales the measure by a factor a~l .
Another very familiar example of the underdetermination of mathematical represen­
tations is the variety in the choice of coordinate maps or charts for the (local) repre­
sentation of a physical manifold, such as the phase space in mechanics or the space­
time manifold. The choice of chart is a matter of convention, and is to be decided by 
pragmatic considerations of convenience, simplicity and so on.
Or, as a final example consider interval scales such as are used to measure temper­
ature. Both the unit and the zero of the scale, are arbitrary and hence the numerical 
representation is unique only up to a linear transformation. For example, consider the 
conversion of temperature Tc of the Centigrade scale to T f  of the Fahrenheit scale by 
the transformation Tc = 5 /9 (Tf — 32).

One thing that becomes apparent from the above examples is that the choice of the 

mathematical concrete structure that represents a given physical structure is not unique. 

There is no necessity whatsoever to dictate that only one out of the many mathematical 

structures which belong to the same isomorphism class with the physical structure is its 

’correct’ representative.

Field in his programme tries to avoid this problem86 by getting rid of all arbitrary 

constants (conventions as he calls them) together with all the other numbers. In Shapiro, 

on the other hand, all the members of a structure share the same relations, so the different

86 From Field’s nominalistic point of view, the use of any numbers, constant or not, is forbiden -numbers 
should play no essential role in science. The structural underdetermination, however, involves the use of 
constants for conversions from one scale to another and this should be avoided if one wanted a unique repre­
sentation of physics by nominalistic mathematics.
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representations are not essentially different since they exemplify the same bunch of proper­

ties. The members of Redhead’s isomorphism class share the same relations too, through 

bijective correspondence, something that makes it also into a many-over-one. So, in an 

isomorphism class the n-ary relations obtaining in one structure in the class correspond 

to n-ary relations that are shared by the objects of the other structures in it. In this man­

ner, the ambiguity of representation of this type is a consequence of the fact that there are 

more than one concrete mathematical structures isomorphic to a given physical structure. 

Schematically this may be represented as follows.

Mi

P

Figure 1
Ambiguity of Representation of the First Type

The fact that the choice of a representative for a physical structure is decisively con­

ventional and, therefore non-unique, raises the question: has the conventional choice of
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mathematical representation of a physical system got to do anything with physics? The an­

swer to this question will come after we have considered ambiguity of representation of a 

different kind, one which is related to the notion of symmetry.

Apart from the aforementioned ambiguity, which we will call it ambiguity of the first 

type, or ambiguity o f which mathematical structure to choose and which is, as we have 

already mentioned, the end result of having too many concrete mathematical structures in 

the isomorphism class which includes the physical structure that we are aiming to represent, 

in physics we have two more types of ambiguity. The second one, which we call ambiguity 

within the same structure, is related to the notion of symmetry, which in turn are related to 

conservations of physical quantities. The third type is also related to the notion of symmetry 

and has considerable physical import, since, as we shall see, certain symmetries of physical 

systems are related not only to conservations of physical quantities but also to interactions. 

But, first things first, we need to examine the notion of symmetry.

2.4.1 Symmetries

Using the map-terminology, symmetries are expressed as bijective structure-preserving 

maps of a structure onto itself -an automorphism of the structure. This kind of symme­

try, is related to ambiguity of representation within a given mathematical structure where 

the same object of P , the physical structure, can be mapped on two different objects of 

the same mathematical structure M  through two different isomorphisms x : P  —* M  and 

y : P  —> M. Then, y_1 o x  : P  —► P  is an automorphism of P  and y o x~l : M  —> M  

is an automorphism of M. In spacetime models, the automorphism y~l o x  : P  —> P  of
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P  is referred to as a point transformation or as an active symmetry of P 87, while the map 

y  o x ~ x : M  —► M  is known as coordinate transformation or passive symmetry of M 88.

The symmetries of the physical system P  express important structural properties of 

P . A structure, as we have seen, is a collection of objects with their relations. A symmetry 

within a physical system expresses the fact that two distinct parts of this structure can be 

mapped onto each other, or the fact that these two parts are indistinguishable with respect 

to certain properties. So, take for example a physical system that contains all objects which 

interact according to Newton’s laws of motion and the universal law of gravity, along with 

their classical -i.e. non-relativistic- spatiotemporal relations. Consider within this structure 

a system S  comprising two bodies with mass m* and rrij respectively that occupy some 

spacetime region r. Using the automorphism y-1 o x  : P  —> P , map this system onto 

another distinct system S ' , which contains two bodies with masses m' =  rrii and m'- =  

rrij in region r'. The automorphism is preserving the relations inside the two systems, 

which means not only that the two bodies in each system obey the same laws but also 

that the exact values of -say- their velocities and relative positions are the same. This, 

in turn, indicates that within this structure the space points are indistinguishable or that 

space is homogeneous and isotropic -in other words, the background gravitational field 

is constant. So, in this case the invariance under space translations and rotations reveals 

homogeneity and isotropy, which is a structural property of P  indeed. In this case, the 

ambiguity of representation is expressed through the automorphism y  o x~ l : M  —> M

87 Active because it maps one object of the physical structure into a different ofbject.
88 Passive transformation because it maps one coordinate system onto another. This transformation takes 
place within the mathematical structure and does not involve any transformations of the physical structure.
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which basically reflects precisely this structural property of P  and is backed by the fact that 

the two structures have the same property, that is to say, the space vectors which represent 

coordinate systems are invariant under rotations and translations.

With these examples it has become clearer, we believe, that ambiguity in the repre­

sentation of physics by mathematics is inevitably there, but we need to clarify how ambi­

guity within the same structure has physical significance. Discussion of this second point 

will become clear after we introduce the notion of surplus structure.

2.4.2 Surplus Structure and Gauges

In many cases in physics, the mathematical structure M  that is isomorphic to the physical 

structure P  is a substructure of a wider structure M '. This basically means that the objects 

and the relations between them that can be found in P  have corresponding objects and 

relations in M  alone. The rest of the structure M ' is what Redhead calls surplus structure 

and it includes objects as well as relations both between elements of the surplus structure 

only and between them and the objects of M. Hence, the surplus structure is a structure 

indeed and not just a set of (excessive) elements.

There are several examples from the practice of physics where this happens. For ex­

ample, Redhead mentions (2001) the use of complex currents and impedances in alternating 

current theory and the 5 -matrix theory of elementary particles scattering which makes use 

of the complex plane. In both cases, the physical system is mapped onto the real part of 

the complex plane, yet the use of complex numbers facilitates calculations and derivations. 

Other examples, like that of the total energy, i.e. the sum of kinetic and potential, of a me-
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chanical system, illustrate how some entities initially believed to be members of the surplus 

structure eventually became part of the physical structure itself.

One such case where some quantity from the surplus structure tries to break into 

the physical system itself is the case of electromagnetism, which is a theory with a gauge 

symmetry, and the quantity is nothing other than the gauge potential, which we usually 

denote by A^. In chapters three and four we will examine in detail different ways of 

interpreting this kind of symmetry and attributing physical significance to the terms that 

appear there. For now though we will only attempt a comparison between the nominalist 

and the structuralist views using the three examples we have just mentioned, plus a fourth 

one that will help us illustrate the differences and the similarities between them.

This other physical system that will be of interest to us in the following chapters is 

one which contains all objects that carry electric charge. Take a system Si with two of these 

objects of P  with charges e* and ej respectively. An automorphism y~x ox  : P  —> P  would 

be one that takes S\ onto another system S 2 with same charges and electromagnetic fields. 

In the mathematical structure, there is one more element associated with the electromag­

netic fields, the potential -or gauge field- and there is a freedom as to which gauge we may 

pick for any specific electromagnetic field. In other words, there is a symmetry present in 

the mathematical structure. The objects in the two systems have the same equations of mo­

tion and the mapping preserves their relations. But the presence of the potentials gives rise 

to coupling terms that allow for a description of the interactions between them, as we shall 

see in detail in the following chapter. The very fact that they interact can be considered to 

be a structural property of the structure P  where they belong and the invariance of the elec­
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tromagnetic field under a local change of the gauge can be considered as an expression of 

this property. In the mathematical structure that belongs to the same isomorphism class as 

the objects with charge, this structural property is expressed by what we call covariance of 

its objects under the local group of U (1) transformations and since the two are structurally 

the same, we can conclude that a mathematical structure with covariance under local U( 1) 

transformations allows for description of electromagnetic interactions, albeit this descrip­

tion comes from what we call the surplus structure, that is, the part of the mathematical 

structure that does not have a physical counterpart89.

So, once again, ambiguity in the representation, but this time within a given mathe­

matical structure, gives away/reveals/describes physical relations or, in this case, interac­

tions that are a structural property of P. The difference, though, between what we have 

described here and the symmetry example of the previous section is that in the previous 

case change might occur in either the physical system or the mathematical structure, while 

in the case we are considering here change occurs in the mathematical surplus structure 

only and this in a sense controls the physical system since it allows for the description of 

interactions that take place in it. Hence, although this third type of ambiguity resembles 

that of the second type in the sense that both relate to symmetries present in the structures 

and both give rise to conservation laws, the third type of ambiguity occurs in structures 

with symmetry transformations that do not affect -that is to say, do not actively change- the 

physical system nor the objects in it but they give rise to coupling terms that, as we shall

89 One might object at this point that had we adopted a realist view of the gauge field and an active inter­
pretation of the gauge transformation, the different gauge fields could be considered as different physical 
entities. However, anticipating the arguments that will unfold in chapter 4, we are assuming here that this 
option is not viable.
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see, are usually interpreted as interactions; hence we will call it ambiguity that gives rise to 

couplings. Although a drawing will not do justice to what is really happening in this rather 

complicated case of symmetry, a very schematic way of representing it is attempted in the 

following diagram, where we have just depicted symmetry transformations in the surplus 

structure.

M'

Figure 2
Symmetry Trans formation of Surplus Structure

Before we conclude this section, let us try to clarify how one may understand this 

illustration of symmetry transformations in the surplus structure. M  stands for the mathe­

matical structure, while M ' corresponds to the surplus structure. There may be maps that 

take you from M  to M ' and back, which map one element of the structure to a bunch of el­

ements in the surplus structure. The images are equivalent in the sense that correspond to 

the same entity of M . Certain elements of M ’ that describe the transformations between a 

and b are also used for the description of interactions between the structures of M.
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2.4.3 Comparing Field & Redhead

At first sight, Field’s and Redhead’s approaches seem very similar. One question that arises 

then is how is M. Redhead’s surplus structure different from Field’s conservative exten­

sion? In order to point out the differences, let us indicate the similarities between the two 

approaches first. Consider the example of the temperature we mentioned above. Field, in 

this case, would say that for a nominalistic account we take the spacetime points to be prim­

itive objects and we define temperature-congruence and temperature-betweenness relations 

between spacetime points, thus defining the scalar primitive temperature. This combina­

tion has been given the name JAS. Then, ’’for any model of the combined system there is 

both a 1-1 spatiotemporal function p  onto R 4 and a scalar-representation function ip onto 

an interval, each function unique up to (but only up to) the appropriate class of transforma­

tions. Now, physical laws governing a scalar like temperature are often expressed as laws 

about a scalar function T  = ip • p~l mapping quadruples of real numbers into real num­

bers”90. Therefore, laws about T  could be expressed as laws about p  and ip alone, while 

we can always go to R 4 or to R  to calculate, derive and so on, whenever this is necessary. 

Schematically this could be represented as follows:

Spacetime

s  \

<p

/  \  
—T  =  ip • ¥>-1— >

90 Field, p.59.
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For Redhead, on the other hand, physical bodies with the property ‘temperature’ 

constitute a physical structure P , which belongs to the same isomorphism class as the 

structure of the real numbers M. The two share the same properties and through a mapping 

T  we can go back and forth. Schematically:

In this case, one could claim that basically the two are similar if we considered Field’s 

JAS and R4 to be the same as Redhead’s P  and T  to be the same as T  = 'ijj - ip~l . Despite 

the similarity of the two approaches in this simple case, if  we go to a more complicated 

and richer physical structure, like the one of objects which interact electromagnetically, 

for example, the differences between the two approaches become manifest; let us see how. 

Redhead would claim that in the case of electromagnetism, the physical structure contains 

charged particles, electromagnetic fields and their relations. The mathematical structure 

would be that of £7(1), along with the surplus structure it involves, and that the gauge field 

which allows for the interactions in P  belongs in this surplus structure (for the moment we 

leave aside, once again, the controversy of whether the gauge field is indeed part of the 

surplus structure or not and just take it to belong there). Once again, the two structures be­

long to the same isomorphism class and they are related through a relation preserving map. 

The surplus structure, as we saw above, allows for the description of interactions between 

the physical objects in P  and the gauge potential plays a crucial role, as we shall see 

in chapter four. From Field’s perspective, one could claim that it is possible to nominalize 

electromagnetism and its interactions by using a similar, though inevitably more compli­
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cated, approach as before. Then again, as we see it, Field’s nominalistic programme faces 

a major difficulty here. His primitives are spacetime points with scalar or vector relations 

among them. In the charge-free case his programme is better off because there one could 

consider the electromagnetic field as relations of a vector character between the spacetime 

points, and then using appropriate maps onto R 4 and R  one could get all the laws that gov­

ern it. However, in the case of electromagnetic field with charges, one might be able to get 

the relations between charges -the sources- and fields -their effects- only if one considered 

both the charges and the electromagnetic field as primitive relations among spacetime and 

presupposed that they are related to each other via the already known equations of motion; 

at least that is how he did in the case of Newtonian gravity. But then he would be hard 

pressed to also introduce the gauge potential as a primitive relation as well in order to ac­

count for the effects on electrons passing from areas where the actual electromagnetic field 

is zero whereas the A M field is not, and this field does not correspond to a physical quan­

tity. Moreover, if  the gauge field makes the transition from the surplus structure into the 

physical structure P , Field’s approach will be proved unable to accommodate it.

On a more fundamental level, Redhead and Field differ in the following. Redhead 

considers the physical structure to consist of concrete objects and the theory to consist of 

all true statements about these objects. The statements of the theory, as he perceives it, are 

closed under deduction or in other words the theory is complete, but he does not assume 

the theory to be axiomatizable. He understands that in a rather intuitive Platonic sense and 

although he recognizes the problem of incompleteness of a second order formulation he 

does not attempt to offer any solutions to it. Field, on the other hand, begins assuming that
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the theory is axiomatizable and hence he runs into the problem of incompleteness, that does 

not allow him to prove that the mathematical part of it is just the conservative extension.

The failure of Field’s programme, as Shapiro showed, was due to the existence of 

a counterexample which was part of what he called the nominalistic assertions N  without 

being a provable theorem in the original system. Contrary to that, the counterexample was 

derivable from the theoretical structure S  alone. In chapter 4, we will attempt to show that 

in the context of gauge theories such a counterexample in fact exists.



Chapter 3 
Formulations of Gauge Symmetries

3.1 Ambiguity of Representation of the Second Type and the 
Third Type: More Canonical Variables/Degrees of 
Freedom than the Ones Needed?

The aim of contemporary theoretical physics is to describe physical systems that interact91 

-after all, it is through interactions that we ’observe’ physical phenomena in general and, in 

particular, phenomena that occur at very small scales92 involving the so called elementary 

particles and nature’s fundamental forces. These particular types of interactive systems 

have been successfully described using quantum mechanics and the notion of symmetry, 

which plays a crucial role as we shall see shortly.

In the previous chapter, we mentioned that the ambiguity of representation of the 

second type is related to notions of symmetry and symmetry transformations that may be 

considered to be active, i.e. transformations of the physical structure, or passive, that is 

mappings of the mathematical structure onto itself such that they do not correspond to any 

change of the physical system.

A very general idea of what a symmetry transformation is may be captured by the 

following simple illustration.

91 Here we are referring to high energy theoretical physics that deals with elementary particles -or should 
we say fields?- and fundamental forces.

92 Examples of what we mean when we are reffering to small scales: size of nucleous ~  10-14m, size of 
quarks ~  10-18m.
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y . x

Figure 3
Ambiguity of Representation of the Second Type

P  stands for the physical structure and M  for a single mathematical structure that 

represents P. Between P  and M  there are more than one distinct isomorphisms -here 

depicted by x  and y- that illustrate the ambiguity of representation of the second type. 

Associated with these two isomorphisms are automorphisms in both P  and M  - y~x o x  : 

P  —> P  and y o x~ l : M  —* M  respectively, that map elements of each structure onto 

elements of the structure itself. These automorphisms represent what we call symmetry 

transformations and they are considered to be active when they take place in P  (i.e. ?/-1 • x) 

and passive when in M  (i.e.?/ • x~l).

The presence of symmetries in the mathematical representation -or description- of 

physical systems often manifests itself with the presence of more canonical coordinates 

-or degrees of freedom- than the ones necessary for the description of the physical system. 

This results in excessive mathematical structure which constitutes, as we have seen, an 

example of what Redhead calls the surplus structure in the mathematical representation of 

the physical system. Symmetry transformations affecting just the elements of the surplus
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structure, but reducing to the identity on those mathematical elements directly correlated 

with the elements of the physical system are illustrated schematically bellow.

M'

Figure 4
Ambiguity of Representation of the Third Type

This is the situation that arises in the case of gauge symmetries as we shall see in a 

moment and this is the case of what we are referring to as ambiguity of the third type.

In everyday manner of speaking, when one uses the term gauge one refers to either 

the measure or the unit of a quantity. If we generalized this notion93 we could consider that 

the mathematical representation of any physical structure is the gauge for that structure. 

Ambiguity of representation of the first two types involves different unit-gauges, while am­

biguity of representation of the third type results in different measure-gauges. In physics, 

however, we are used to narrower definitions of the notion of gauge. Leaving uses as in 

pressure gauge aside, we will focus on the notion of gauge as this became known in modem

93 As Redhead in 2001.
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theoretical physics, where it is inseparably connected to the notion of symmetry involving 

surplus structure. This type of symmetry, the gauge symmetry, has as a main characteris­

tic the invariance of the theory under phase transformations. As it turns out, mathematical 

structures with gauge symmetries have been proved to be the most fruitful ones for the de­

scription of interactive fields, the elementary entities of nature, some would claim. In the 

course of their development, gauge theories have been formulated in various different ways 

but the ones that most often occur in the literature are the following. Gauge theories may be 

described as constrained Hamiltonian systems, a description involving presymplectic man­

ifolds and in the philosophical literature it is favored by Belot (1996, 1998) and Earman 

(2000). In this description, gauge transformations are viewed as symmetries of constraints 

and are held responsible for the indeterministic nature of the first gauge theory to be exam­

ined, namely electromagnetism. The formulation in the form of Yang-Mills gauge theories 

introduces interaction fields in order to maintain covariance of the theory under phase trans­

formations; these will turn out to be connections on a principle fibre bundle. This second 

formulation is favored by Lyre who uses the notion of gauge freedom , as a much more gen­

eral notion than that of gauge transformation. However, the most general formulation of 

gauge theories is provided by the fibre bundle formalism , which features the advantages of 

all the aforementioned descriptions, plus a lot more as we shall see.

In what follows, we will present the formalisms with the intention of clarifying the 

role of symmetries in the representation of interactive physical structures and of raising 

the philosophical issues involved. But before we proceed, let us conclude this section 

with a brief comment on the notion of gauge. As we just mentioned, according to Red­
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head (2001), gauge may be considered to be a mathematical representation of any physical 

structure, while gauge freedom is the ambiguity of either the first or the second or the third 

type involved in it. Hence, the notion of gauge freedom thus put forward accommodates 

all the three types of ambiguity. The problem here is that by giving the notion of gauge 

such a big scope one loses contact with the theory Weyl initiated; on the other hand, one 

re-introduces the original meaning of the word gauge, at least so far as ambiguity of the 

first type is concerned. Regardless of the advantages the more general use of the term may 

have, in this thesis we will be using the term gauge in its narrower sense, which is related 

to ambiguity of representation of the third type.

3.2 Gauge Symmetries and Constrained Hamiltonian 
Systems or Structures

The main purpose of this chapter is to set the framework in which gauge theories were first 

formulated and flourished. At present, all dynamic physical systems are described using 

variational calculus. There are two different approaches to the description of mechanical 

systems. One would begin with the equations of motion of the systems one is examining 

and then obtain the variational principle as a theorem, or, alternatively, one would assume 

the variational principle and derive the Hamilton-Jacobi or the Euler-Lagrange equations as 

theorems. So far there have been no indication that one of the two approaches is preferable 

to the other. There seems to be no physical necessity endorsing the second and as for the 

first, although the equations of motion entail the variational principle, there is no logical
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necessity involved in that either. The belief that nature always acts in the simplest way, a 

belief shared by many, remains just a metaphysical predilection.

As it is well known, in non-relativistic quantum mechanics -aiming to describe par­

ticles with no spatial extension- one begins with the Hamiltonian of the classical system 

and proceeds in quantization by promoting the classical momentum and position to non­

commuting operators. Aspiring to describe spatially extended but at the same time very 

small physical objects, or fields94, physicists considered the Hamiltonians of classical fields 

and proceeded to what is sometimes referred to as second quantization. Roughly, the pro­

cess of second quantization involves treating fields as though they were operators and thus 

giving them the status of quantum fields. So, in the case of fields, we quantize the field and 

its derivatives rather than the position and the momentum of the particle. Gauge quantum 

field theories evolved from constrained Hamiltonian systems, something that one familiar 

with the techniques used in classical quantum mechanics would expect. In this thesis we 

will not discuss the quantization processes of fields nor the problems that are involved in 

it95. However, we will probe deeply into the Hamiltonian systems, first, and then into their 

’heirs’, the fibre bundles, that are used in these theories. In this sense, the discussion that 

follows will be restricted to classical systems, yet we have at the back of our minds the

94 The wavelengths of the objects under consideration are of the order of 10-14 — 10-16 meters.
95 Dirac, in his Lectures on Quantum Mechanics,Belfer Graduate School of Science, Yeshiva University, 
New York, 1964, writes about these problems: ’’Some people are so much impressed by the difficulties of 
passing over from Hamiltonian classical mechanics to quantum mechanics that they think that maybe the 
whole method of working form Hamiltonian classical theory is a bad method”. And further down, comment­
ing on some alternative approaches, he continues: ’’Still, I feel that these alternative methods, although they 
go quite a long way towards accounting for experimental results, will not lead to a final solution to the prob­
lem. I feel that there will always be something missing from them which we can only get by working from 
a Hamiltonian, or maybe from some generalization of the concept of a Hamiltonian. So I take the point of 
view that the Hamiltonian is really very important for quantum theory”.
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fact that quantization is only a step further and that one way of doing it is by using the so 

called canonical quantization procedure, which is based on Dirac’s treatment of constrained 

Hamiltonian systems.

In field theory, the typical procedure is the following. We begin with the Lagrangian 

of our system and not with the Hamiltonian. The reason for this is that if we started 

with the Hamiltonian it would be difficult to formulate the conditions for the theory to 

be relativistic96, so we begin with the Lagrangian, construct an invariant action integral and 

proceed to get the Hamiltonian and equations of motion for the dynamic variables of the 

system/structure. One might ask why bother and make the transition from Lagrangian to 

Hamiltonian at all. After all the Euler-Lagrange equations are equally good. But then, this 

is just an intermediate step before quantization, and in order to quantize we need quan­

tities that are first order in time derivatives; these quantities we get from the Hamiltonian 

systems. Thus, the route starts from a Lagrangian and a relativistically invariant action inte­

gral, continues through the Hamiltonian formulation and finishes at the quantization of the 

system. In passing, it is worth mentioning here that the two formulations -the Lagrangian 

and the Hamiltonian- are mathematically equivalent and the transition from the one to the 

other is done with the help of the so called Legendre transformations. As we shall see in 

a while, the invertibility or not of Legendre transformations is related closely to the pres­

ence or not of further relations that may hold between the canonical variables of the theory, 

which in turn determine whether the mathematical description of the physical structure is 

deterministic or not and allows for the description of interactions.

16 For a more extensive discussion, see Dirac, p.5.
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In quantum field theory we deal with systems with infinite degrees of freedom, which 

could be viewed as a generalization of systems with a finite number of degrees of freedom. 

N  particles or degrees of freedom give a phase space -i.e. space of all possible position and 

momenta of the N  particles- of dimension 2 N , which is a 2iV-dimensional manifold. A 

field could be considered as the limiting case of an AT-particle system as N  —> oo. In this 

case, the phase space is an infinite dimensional manifold.

A general way to think about a Hamiltonian system is as a triplet (M, uj, H), where 

(M, cj) is a symplectic manifold -corresponding to the phase space- with a non-degenerate 

two-form u  and H  is a distinguished C°° function on (M, a;), which induces a global 

Hamiltonian vector field X h on M . The integral curves of the vector field X H are called 

the dynamical trajectories of (M, a;, H) and are the solutions to Hamilton’s equations. In 

other words, what this means is the following. Consider that we want to describe a physical 

system with, say, N  degrees of freedom. The whereabouts of such a system will ’define’ 

the so called dynamical trajectories on the 2N  — dim manifold M  of the phase space of 

the system. For a Hamiltonian system, this phase space is the cotangent bundle T*Q of 

its N  — dim configuration space Q. The dynamical trajectories depend, of course, on 

the Hamiltonian of the system, which thus defines a vector field, and could be visualized 

as Tines’ in that 2N  — dim cotangent bundle. We use the lower case letter q to denote 

coordinates and p  to denote momenta and their number represents of course the dimension 

of the phase space as well as the degrees of freedom of the physical system/structure. 

The Lagrangian of the system, on the other hand, defines a vector field on the tangent 

bundle TQ, which constitutes the dual space to that of T*Q and the elements of one space
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are mapped onto the other by what we have called the Legendre transformation, and the 

fact of whether it is or it is not invertible is related to the presence of constraints in the 

system. When there are certain constraints present, not only is the determinant of the 

transformation zero but also the two-form defined on the manifold97 is degenerate. In this 

case, the manifold is said to be a presymplectic manifold.

A classical example of a constrained physical system consists of a bead confined 

to move round a circular ring which has only one degree of freedom on the configuration 

space, rather than the original three of the spatial coordinates. This reduction in the original 

number of the canonical coordinates has the following results.

The accelerations at a given time are not uniquely determined by the positions and 

the velocities at that time and the general solution of the equations of motion contain, there­

fore, arbitrary functions of time. The resulting non-uniqueness of the equations of motion 

entails two things. First, that the state of the system is not uniquely determined by the 

equations of motion and the initial conditions. For the given system, this means that al­

though we know where on the ring we may find the bead, we could find the whole system 

at any height from the origin. Second, that the determinant of the Legendre transforma­

tion -which is of the form det (qxIqx\) - is zero, hence the transformation is non-invertible. 

The importance of these two outcomes becomes very prominent in field theory, in Hamil­

tonian systems constrained by gauge symmetries, which we will examine shortly. Before 

we do that, however, we need to clarify what we mean in general by the term constrained

97 The two-forms are mathematical objects that are dual to the vectors and while the vector fields correspond 
to what we would understand as the ’position vectors’, the forms -and the connections to which they give rise- 
inform us about the ’motion’ of the objects that are defined on the manifold.
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Hamiltonian systems. In the physics literature the notion of constraint is a general one 

that embraces classical cases like the example we gave above as well as other kinds of 

constraints, like the ones related to gauge symmetries. According to Henneaux & Teitel- 

boim, ’’the presence of arbitrary functions of time in the general solution of the equations 

of motion implies that the canonical variables are not all independent. Rather, there are 

relations among them called constraints. Thus, a gauge system is always a constrained 

Hamiltonian system. The converse, however, is not true. Not all conceivable constraints 

of a Hamiltonian system arise from gauge invariance”98. However, for some in the philo­

sophical literature99 ”a constrained Hamiltonian system is a gauge theory (TV, o, H) where 

(N , cr) is a regular submanifold of a symplectic manifold (N , cj)”. We favor the former, 

more general -though less formal- account for what constitutes a constrained Hamiltonian 

system and we consider a gauge theory to be a field theory whose action is invariant under 

gauge transformations.

For a system with infinite degrees of freedom and with a gauge symmetry, on the 

other hand, the constraints express relations between the original infinitely many degrees 

of freedom that define equivalence classes on the phase space (which we will call gauge or­

bits). The idea is that within each equivalence class the physical system does not change al­

though the variables associated with it do. The presence of those further relations manifests 

itself as follows. Given the Lagrangian L  describing a physical system, the Hamiltonian H  

is defined as

H  =qn pn -  L

98 Henneaux & Teitelboim, Quantization o f Gauge Systems, p.4.
99 As in Belot’s PhD Thesis, for instance.
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where q are the velocities of the canonical coordinates while p  are the canonical momenta 

and are defined as

dL  
Vn =  ~ — ■ 

d qn

If  we vary H  we get

SH =qn 6pn +  8 q n pn - S  qn Sq“f |  =qn Spn -  8qn
d qn oqn oqn

from which we see that the 8 qnis appear only implicitly since pn =  pn(q, Q). This means 

that the Hamiltonian is a function of the p ’s and the q’s only and not of the velocities. When 

the generalized momenta are not all independent functions of the velocities, there are cer­

tain relations connecting the momentum variables and are of the type <pm(p, q) =  0100. One 

can understand these relations as resulting from the variation of the action and the relation 

=  ^  follows from a variation of L. When the Lagrangian does not depend 

explicitly on the coordinate qn, then J^(— ) =  0 and this results in a relation of the type
dqn

(fmiPi Q) = 0- These are what we call first class constraints101 and according to Noether’s 

theorems they are the reason for conservation of the generalized momenta associated with 

them. Then, the total Hamiltonian of the system -which is not uniquely determined anyway- 

is Ht  =  H  +  umq>m. Further, imposing the condition that the equations of motion do not 

involve inconsistency, from the Poisson bracket of [HT, (pm] ^  0 we get one out of the 

three following possibilities: 0 =  0, which is satisfied identically with the help of primary 

constraints, or xiQiP) = 0? or neither. The equations of the form xiQiP) =  0 imply that

i°° This corresponds to the property that the Lagrangian is uncertain to within a total time derivative of an 
arbitrary function of the coordinates, possibly the momenta, and the time.

101 Goldstein, in his Classical Mechanics, calls them holonomic constraints and their conjugate coordinates 
cyclic (p. 11, 55).
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we have further constraints on the Hamiltonian. These are known as secondary constraints 

and they differ from the primary in that the primary constraints are direct consequences of 

the definition of momentum, while to derive the secondary, one uses the equations of mo­

tion as well. On the other hand, any dynamical variable R (p , q) is said to be first-class if it 

has zero Poisson brackets with all the primary constraints, i.e. [R, cpj] «  O102, j  = 1,..., J. 

Otherwise, R  is said to be second class. The constraints that are of interest to us are the 

primary first class constraints, which are arbitrary functions of time, they are the generat­

ing functions of what Dirac calls infinitesimal contact transformations103 and fall under the 

more general heading of symmetry transformations since they lead to changes in p ’s and 

q’s that do not affect the physical state of the system. The transformations we call gauge 

are of this type.

One thing we get from the discussion above is that the Hamiltonian H  =qn pn — L 

”is well defined only on the submanifold defined by the primary constraints and can be ex­

tended arbitrarily off that manifold. It follows that the formalism should remain unchanged 

by the replacement

With the addition of the new variables um(p, q) we restore invertibility of the Legendre 

transformation but the cost we actually pay is that there are now many sets of values of 

the canonical variables that represent a given physical state. This means that if  we were

102 The symbol ’« ’ reads ’weakly equal’ and it means that one has to work the Poisson bracket first and then 
take the constraints to be equal to zero; in other words, one considers the Poisson brackets on the constraint 
surfaces.

103 These are what Goldstein calls canonical transformations and points out the fact that the terminology in 
the literature is not standard {Classical Mechanics, p.381).

104 Henneaux & Teitelboim, Quantization o f Gauge Systems, p. 11.
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given an initial set of values for our canonical variables at some time we would not be 

able to determine uniquely the physical state of the system at other times. This kind of in­

determinism is inherent to the formulation of the theory and for that reason different from 

indeterminism that results from the random nature of certain physical phenomena, like ra­

dioactivity for example, or probabilism, as this manifests in quantum mechanics, say. One 

last consequence of the non-invertibility of Legendre transformations is that the Lagrange 

equations of motion are non-integrable. All these consequences, along with attempts to 

cure the lack of indeterminism will be discussed in the rest of this chapter and in the next.

For the transition from a system/structure with finite -say n- to a system/structure 

with infinite degrees of freedom, we take the limit n  —> oo and c^cp, instead of p ’s

and q’s, where x^s play the role of parameters -a role similar to that of £ in the finite case. 

So far as the constraints are concerned, in the infinite case they take the form of divergence 

conditions105.One important thing to bear in mind is that, as Dirac points out,’’from a prac­

tical point of view, one can tell from the general transformation properties of the action 

integral what arbitrary functions of the time will occur in the general solution of the equa­

tions of motion. To each of these functions of the time there must correspond some primary 

first class constraint”106. To illustrate what we have just said, we proceed now to consider 

an example of an infinite dimensional Hamiltonian system with constraints, namely, the 

classical free electromagnetic field, which is of major interest to us for reasons that will 

become clear later.

105 See, for example, Goldstein, pp.555-6.
106 Dirac, Lectures on Quantum Mechanics, p. 19.
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3.2.1 The Free Electromagnetic Field

The dynamical coordinates in this case are the potentials A ^ x ) ,  where we will consider x 

to stand for the three spatial coordinates a;1, a;2, a;3, at a given time x° = t. The generalized 

velocities are, then, the time derivatives OqA ^ x ) of the dynamical/generalized coordinates. 

The Lagrangian density is given by C = — (J) F ^ F ^ ,  where F^u — A ^ v — A û  is what 

we call the electromagnetic field tensor. The Lagrangian of the system is L = J  Cd3x = 

— ( |) J  FpyF^dPx and as we can see it does not depend explicitly on the generalized coor­

dinates. Hence, we are expecting that certain constraints will apply. If we take the variation 

of the Lagrangian, now, and we define the momenta LF as =  F^0, we can see that from 

the antisymmetry of the electromagnetic field tensor follows immediately that B°(x) =  0. 

This is a primary constraint for which we can write B°(x) «  0 and given that x  repre­

sents a point in a three-dimensional Euclidean manifold, the relation refers to an infinity of 

primary constraints: each value of x  will give a different primary constraint!

The other momenta, B r(x) =  F r0 = dr A Q — dQA r, r = 1,2,3, are just the compo­

nents of the electric field and if we rewrite the Lagrangian applying the constraint, we may 

get an expression for the Hamiltonian that does not involve velocities any more, just the 

rest of the generalized momenta -i.e. spatial derivatives of the field107. As it turns out, the 

variables A0, B 0 are not of any physical significance and, therefore, they are redundant108. 

This redundancy is precisely the result of the constraints that apply in the system and it

107 The Hamiltonian we get using the relation H  =  p q —L and in this case H  =  —L because it does not 
depend explicitely on the generalized coordinates.

108 The electromagnetic field has only two (transverse) components, as revealed by the two directions of 
polarization of light.
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is related, as we shall see in the following section, with certain symmetries and symmetry 

transformations, known as gauge, that leave the action of the system invariant.

From a matching relativistic treatment of the same system we get the following re­

sults. The relativistically invariant Lagrangian is

which we call global gauge transformation109. The very fact of invariance of the Lagrangian 

under the above symmetry transformation entails that the system is constrained.

3.3 Symmetries, Conserved Quantities and Interactions

The notion of symmetry is very important in contemporary physics for two reasons. One

ture, is that Noether’s theorems associate symmetries with conserved quantities and con­

servation principles. The second is that the so called local symmetries allow for coupling 

terms that are interpreted as interactions. But let us examine each of these two reasons in 

some depth.

109 This type of transformation is called global because the parameter AM of the transformation does not have 
any spacetime dependence.

and apparently it is invariant under the transformation

reason, which despite its importance has been rather neglected in the philosophical litera-
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3.3.1 Noether’s First Theorem and Conservation Laws

As we have already mentioned, a Hamiltonian system with primary first class constraints 

is subject to gauge transformations that leave the physical state of the system unaffected. 

Noether’s three theorems110 connect symmetries of Lagrangian systems111 with conserva­

tion laws as follows. The first theorem concerns systems with continuous symmetries de­

pending on constant parameters and it states that in such a system, and given that all (mat­

ter) fields that are affected by symmetry transformation satisfy the Euler-Lagrange equa­

tions, we can derive a continuity equation. From this equation we can get a conservation 

law by performing an integration. Examples of such conservation laws are those of energy, 

momentum and electric charge. From an algebraic point of view, the terms that appear in 

the conserved currents or in the continuity equations are the generators of the infinitesimal 

symmetry transformations that leave the physical system unaffected112. Taking as an exam­

ple a physical system/structure involving complex scalar fields we will be able to see how 

symmetries of the mathematical structure deliver conservation laws for energy-momentum 

and something that we would like to identify with the electric charge.

Consider a scalar field of the form113

110 As a matter of fact, it is only the first two theorems that were derived by Noether herself, the derivation of 
the third was due to Utiyama. Nevertheless, all the three of them follow from Noether’s variational problem. 
For an extended discussion see Brading and Brown (2001).

111 Note that in order to discuss Noether’s theorems we go back to the Lagrangian systems. This is not a 
drawback, as it may seem at the beginning, since the two approaches are in fact equivalent. It is only a matter 
of convenience which one might choose.

112 These infinitesimal transformations can of course be integrated to give us the finite symmetry transforma­
tions.

113 In this presentation, we follow Ryder’s Quantum Field Theory pp.93.
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(V’l _  *^2)

where =  <p(x) and (p* = <p*(x) we regard as independent fields and ’trace out’ a region 

R  of the 4 — dim spacetime manifold. Then a relativistic invariant Lagrangian density that 

we could write for this field is the following:

C = ( d p i p ) -  m 2(p*(p

and the Euler-Lagrange equations of motion, which are derived by requiring 6S = 6 J  £d4x, 

give the two Klein-Gordon equations:

(□ +  m 2)(p =  0 

(□ +  m 2)(p* =  0.

This is done as follows. Varying the action integral with respect to both the coordinates and 

the field -a variation which vanishes at the boundary dR  of the region R- we get:

6 S =  { -  c U - -tt— -]S(pd4x}  +  /  [^7̂ — r<5</?+ £8x^]da„+complex conjugate =
J r. VV OyynV) J dR u(Op(p)

The boundary term vanishes anyway because Sip =  0 and 8x^ =  0 there. So, from the 

requirement that the action is stationary we get the Euler-Lagrange equations of motion for 

the two fields, while for the boundary term we can write the following equation:

l R{W Jp ) [ S i p + “ {W M dv* ~ s"c]SxV}da- + c-c- = °-
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Taking the total variation of the field (p to be 6<p +  (dv(p)6xv = Atp = where Slj1*

is an arbitrary constant variable, and — 8^C =$„, the equation above becomes

[  “  tfif>xv}d(Tti +  c. c. = 0
JdR d(dp<P)

Suppose, now, that the transformations under which the action integral is invariant take the 

form

A x * = X £8uv and A(p =

Then

I  t f l lr h * 1' ~  + c. c. = 0
J d R  0 \ y i W )

which, because the parameter of the transformation 8uv is arbitrary, we can rewrite as

j ; d x =  ot j £  = ^ -  r Kx™ *  (*)

As we can see, the contains a term emerging as a result of spatiotemporal variation and 

a term coming forward as a result of variation of the ^-fields. Applying Gauss’s theorem 

we finally get

[  J^dcT, =  f  < V £  =  0
JdR JR

from which follows that d^JjJ =  0 since R  is arbitrary. This last equation tells us that 

we have a conserved current J£ which is the result of the invariance of the action under 

the transformations A x^ = X £8uu and A (p = If we integrate this current over a

spacelike hypersurface crM we get a conserved quantity, or charge,

Q v =  [  J u dcrfiJ a

114 We also get a similar result involving the complex conjugate field ip*.
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as expected from Noether’s first theorem. The relation = 0, which is a divergency 

term, apparently represents a constraint of our system and to classify it one has just to check 

its commutation relation with the Hamiltonian of the system, but this is beyond the scope 

of this presentation. Now, the question is what does this conserved quantity represents, or 

to put it in the terminology of the second chapter, is the relation =  0 mapped onto 

some physical relation or does it belong to the surplus structure? The transformation of the 

coordinates, when interpreted in an active way, corresponds to a change of the spacetime 

region on which our physical structure is defined. Consider now that the transformation of 

the coordinates is such an active translation, while for the tp field A ip =  0 —> =  0. Then,

we can recognize the energy-momentum tensor in the generator of the infinitesimal 

transformation A x M =  X ^8 u u. Hence, the conserved current in this case is nothing other 

than the energy and the linear and angular momentum of the system.

Consider now that =  0, i.e. that Xjf =  0, and that the tp fields undergo the 

transformation <p —» e~%Ap  and ip* —► elAp*. The infinitesimal form of this transformation 

is

6<p =  —iA<p and 8p* = iAp*

so that

$  =  —i(p and <$* =  ip*.

Using the general relation for that we derived before (equation (*)) we get

■ dC . * DC
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This relation, in conjunction with the Klein-Gordon field equations, gives us =  0 and 

a corresponding conserved quantity

as a result of a symmetry transformation, a gauge transformation with constant transforma­

tion variable, which represents a rotation in an internal space. This internal rotation does 

not seem to correspond to anything physical, and so it is responsible for ambiguity of repre­

sentation of the third kind. Still these internal symmetry transformations will play a crucial 

role in the description of interactions when we allow the parameter of the transformation to 

vary with spacetime, as we shall see shortly. As a last remark let us mention, again, that the 

relation =  0 is a constraint whose nature we could identify by checking its Poisson 

brackets with the Hamiltonian of the system.

3.3.2 Noether’s Second and Third Theorems and Interactions

The second and the third theorems concern the case of symmetry transformations whose 

parameters depend smoothly on arbitrary functions of spacetime and their derivatives. The 

general expression we get from the variational problem in a case like this consists of an inte­

rior contribution and of a boundary contribution that must vanish independently. When we 

require each of them to vanish, we get Noether’s second theorem from the vanishing inte­

rior contribution and the third theorem from the vanishing boundary contribution116. Brown

115 This quantity, as a matter of fact, does not contain anything that could be identified as the charge of the 
field <£, nor anything that could be interpeted as quantization of the charge. In the following section, when 
we talk about ’local’ gauge transformations we will get back to this point.

116 For a detailed derivation see Brading and Brown, Noether Theorems and Gauge Symmetries.

This conserved quantity, which we would like to identify with electric charge115, appears
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and Brading have shown in their 2001 that from the third theorem follow three equations 

which could be interpreted as follows. The first one says that given the gauge field equa­

tions, a conserved current expressed in terms of the matter fields may be derived, which 

is independent of the matter field equations. The second says that given the gauge field 

equations, this conserved current acts as the source of the gauge fields. Finally, the third 

expresses a constraint on the form of the gauge fields. The second theorem combined, with 

the first of the three equations of the third theorem shows that, given the matter field equa­

tions ,another conserved current may be derived independently of the gauge field equations 

So, aside from the conservation relations, in the case of local gauge transformations117 we 

also get coupling terms, that is terms that join gauge with matter fields and it is precisely 

these terms that can be interpreted as describing interactions. To illustrate all these, we will 

cite as example the case of the complex scalar field and the electromagnetic field in one 

system.

For a complex scalar field in an electromagnetic field we could begin with a La­

grangian density that combines £  = — (J) the Lagrangian density of the free

electromagnetic field as we have seen, with the one of the free scalar field, namely £  = 

— m 2(p*(p. So, the Lagrangian density £  of the system takes the form

C = (8„<p)(0V) -  m W  -

117 This kind of gauge transformations are called local because the parameter(s) of the transformation have 
spacetime dependence and not because they are related to localized currents or local conservations laws. 
There are two different issues here, as a matter of fact, to which will come back in the next chapter.
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Apparently, this system is invariant under global transformations of both the scalar and the 

gauge fields, but if we consider the following local transformations,

(p —>

A* A* + <9/xA(x,Q

this is not so. Although each of the two constituent-Lagrangians are invariant under both 

global and local transformation, the derivatives of the scalar fields in total Lagrangian ’hit’ 

the transformation parameter and produce extra terms. But this downside can be sorted 

out if we make amendments to our original Lagrangian. And to do this, we only need to 

replace the partial derivatives by what we call the covariant derivatives which are of 

the form

0 ^  = 8 ^ -  iAp.

The presence of this extra term restores invariance in the Lagrangian density, which now 

takes the form

C = (i^)(DV) -  m W  -  
From Noether’s second and third theorems and the Lagrangian density above we get 

the following result

when the matter field Euler-Lagrange equations hold. But also we can arrive at the con­

served current when the gauge field Euler-Lagrange equations hold. Hence, we can con­

clude that although the Euler-lagrange equations of the matter fields are sufficient for the 

derivation of a conserved current, they are not necessary. This divergency condition rep­
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resents a constraint, which we were able to derive as a consequence of the symmetries of 

the Lagrangian and because we used the Euler-Lagrange equations in its derivation, it is a 

secondary one. Moreover, since

where the symbol ’= ’ means that the equality holds independently of any Euler-Lagrange 

equations,we can identify this conserved current with the electric current, since what we 

can read off from this equation is that the conserved current is the source of the electromag­

netic field. This last result, as Brading and Brown point out, is an instance of a more general 

result that follows from Noether’s third theorem given satisfaction of the Euler-Lagrange 

equations of all those fields whose transformations depend on the derivatives of the arbi­

trary variables-functions, i.e. on ^ A (x , t). This result gives us what they call coupledfield 

equations which we then interpret as interaction terms. Hence, that’s how interactions arise 

as a result of the local gauge invariance of the system.

One thing worth noticing here is that, as a matter of fact, the electric charge or cou­

pling constant q does not come up as a consequence of gauging. The only reason why it 

should appear is because we want the conserved quantity that we calculate from the con­

served current -by integration- to represent the total charge of our system. Hence the cou­

pling constant is introduced in the mathematical structure as a further constraint imposed 

by ’external’ physical requirements.

Let us conclude this section by connecting it also to the discussion of the previous 

chapter. The physical system we want to describe, here, consists of matter-fields that inter­

act electromagnetically, while the mathematical structure we are using is this of the con­



3.3 Symmetries, Conserved Quantities and Interactions 103

strained Hamiltonian systems. The concrete mathematical structure we employ here is an 

infinite dimensional manifold, a presymplectic manifold to be precise, and what happens 

is that we map a state of the physical system to a point in the manifold, which is a concrete 

mathematical object. The presence of constraints in the mathematical algebraic structure 

means that we have a plethora of mathematical objects in the manifold that constitute an 

equivalence class onto which a single state of a physical object is mapped. This, of course, 

is an instance of the third type of ambiguity we have mentioned, which here we call sym­

metry because the changes it dictates do not affect the physical system we are studying. 

This ambiguity is also related to the notion of surplus structure in the sense that the Hamil­

tonian systems that we choose each time to represent a physical system have more degrees 

of freedom than the ones required by the physical system for its description. This is re­

flected by the presence of redundant degrees of freedom, which one could claim belong to 

the so-called surplus structure.

Yet, it is precisely this ambiguity, the presence of symmetry, that delivers conserved 

currents and coupling terms in the algebraic structure. We use these conserved quantities, 

along with a further, external, requirement to represent sources of the interaction-fields, 

while the coupled terms that arise when we require invariance under the symmetry trans­

formations represent interactions.

3.3.3 Symmetry, Ambiguity of Representation and Indeterminism

The very fact that in constrained Hamiltonian systems we have more field-degrees of free­

dom than the ones we need in order to describe the physical system entails interaction
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terms, as we have seen. On the other hand, though, it conceals a lack of determinism which 

is considered by many to be a problem. Let us see how this indeterminism comes about, 

first, and then discuss possible attitudes towards it.

The issue is that since we have at our disposal more coordinates than we need, the 

structure is inevitably non-deterministic. The initial value problem is underdetermined and 

hence the time evolution of the physical system is not uniquely determined. One way to un­

derstand this is by considering that for each symmetry of the mathematical structure, there 

are certain equivalence classes defined in it. These classes in the case of gauge symmetries 

are also called gauge orbits. Now, the idea is that all elements of a class correspond to the 

same state of the physical system they represent, hence if we know where we started, we 

can never be sure on which element of a class the time evolution of the system will take us 

to. For structures with gauge symmetries, a remedy would be to fix the gauge. The gauge 

fixing is basically to choose one out of the infinitely many gauges of an equivalence class 

and treat the evolution of the physical structure taking it as constant. This solution, how­

ever tempting, involves a problem that will become clearer in what follows, after we have 

talked about fibre bundles. For the time being, though, suffice it to say that in some cases 

we are not able to specify the gauge throughout the spacetime manifold, so we cannot fix 

the gauge uniquely.

Another way to treat indeterminism is by considering that the actual physical objects 

are described by gauge invariant quantities. This, however, deprives our explanations from 

causal pictures and, as we shall see in the next chapter, leads to non-locality. But for now 

let us just say that in this case the problem is that, apparently, there is more information
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in the structure-as-a-whole than the nearby neighboring points can give us which results in 

the problem of non-locality.

3.4 Local Symmetries Giving Rise to Interactions

In the discussion above we pointed out that constrained Hamiltonian systems are associated 

with symmetries that may be of a local or of a global nature and with conserved currents 

and quantities. We also saw that it is global symmetries that generate currents and local 

symmetries that produce coupling or interaction terms, although local symmetries are also 

associated with conserved currents but for currents to emerge out of the variations we need 

to take a few more steps. To our knowledge, the use of the terms ’local’ and ’global’ has 

created some sort of confusion in the literature which we would like to clarify and which 

resulted in a misunderstanding that we will try to put an end to before we proceed any 

further. The main culprit for this confusion and misunderstanding is that while there are 

two different notions of locality that arise in the discussion of symmetries and interactions, 

they are often muddled. So, what is the difference between local and global in this context 

and why local symmetries as opposed to global? The answer to the question ’why local’ 

comes in two parts. The first part is concerned with the notion of charge and its local 

conservation, while the second is concerned with the notion of interaction. So, at this point 

we should distinguish between the two ’localities’ that have appeared so far, so that the 

differences and the relations between ’local charge conservation’ and ’local symmetries' 

become clear.



3.4 Local Symmetries Giving Rise to Interactions 106

’Local charge conservation’ refers to conservation of charge, as the words suggest, 

which is described using currents localized in spacetime. The point why we should ex­

pect the charge to be conserved locally may be argued for using relativistic considerations, 

and this is typically done as follows118. Special relativity theory tells us that it is impossi­

ble to tell the difference in physical laws whether we are moving or not. If conservation of 

electric charge was non-local, that is if charge was to disappear from one place and simul­

taneously appeared in another, this would be so for just one special observer. For any other 

observer in relative motion to the special one, appearance and disappearance would not be 

simultaneous. Therefore, one could tell by this difference whether the two observers were 

in relative motion to each other or not. But according to relativity theory it is impossible 

to tell, therefore the special observer cannot exist and hence the conservation of electric 

charge must be local.

Meanwhile, Noether’s Theorems tell us that local conservation laws arise as a result 

of symmetries which may be global as well as local -in the latter case, Noether’s 2nd 

theorem gives a generic relation-constraint which is usually read as a linear combination 

of identities and conservation laws119. So, if  we describe the events using the notion of 

symmetry, we get conservation laws that allow for local conservation of the electric charge, 

that is to say, we get currents which describe how charge is transported from one ’place 

and time’ to another continuously. Taking global symmetries into account, the conservation 

currents and the conserved quantities follow as a result of Noether’s 1 st theorem. From this

118 For further details see Aitcison & Hey, Gauge Theories in Particle Physics, or Feynman, The Character 
o f Physical Law.

119 For a detailed discussion see M. Bremer, Notes on D = l l  Supergravity and C. Brading, Which Symmetry?
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perspective, not only the total charge is conserved but also what the charge does complies 

with relativity principles and it satisfies relativistic equations, which is what one would 

expect it to do. So, through Noether’s theorems, local conservation laws are derived, as we 

have seen: in the case of global gauge transformations Noether’s first theorem guarantees 

that there will be some conserved currents that satisfy relativistic requirements and are local 

in this sense, while in the case of local gauge transformations, her second theorem discloses 

some identities through which we may identify conserved quantities which are also local in 

the same sense. Global or local symmetries, therefore and Noether’s theorems are sufficient 

for derivation of localized conservation currents and conserved quantities. But there is a 

difference between global and local symmetry transformations as to what kind of physical 

structures they may describe. What we need to clarify next is precisely the meaning of and 

the differences between the notions of global and local symmetry transformations.

When we talk about ’local symmetry transformations’ we actually refer to transfor­

mations of the Lagrangian and the equations of motion of our system with a transformation 

parameter that has spacetime dependence and thus may vary as we move from spacetime 

point to spacetime point, hence they are local in this sense. On the other hand, the param­

eter in the so called global symmetry transformations has no spacetime dependence and 

therefore once it is chosen it is fixed throughout the spacetime manifold. The transforma­

tions we have in mind here take place in some internal space, not in the actual spacetime, 

and they are not directly related to local charge conservations. So, arguments that try to 

employ local charge conservation as a justification for the use of local symmetry transfor­

mations just mix up two different things that are not relevant to each other in the sense
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sometimes claimed. Both local symmetries as well as the global ones account for con­

tinuity of ’charge transportation’. Nevertheless, considerations of global symmetries are 

unable to account for any interactions and hence it is only local symmetries that give rise 

to coupling terms that are mapped to interactions.

We would like to emphasize once again that the presence of interaction terms is nec­

essary, since it is through physical interactions that we observe the physical entities. Within 

the context of the Hamiltonian formalism, interaction terms appear straightforwardly when 

we require certain global symmetries of the theory to acquire a local character. So, given 

the mathematical tools we currently have, we may describe interactions if we use local 

symmetries. The use of local gauge symmetries is a sufficient and consistent way of ’gen­

erating’ interaction terms and, therefore, of describing/representing interactions.

This doesn’t mean to say that the action of gauge fields -as thus dictated by the theory- 

is local. As we shall see in the next chapter, it is not possible to give an interpretation that 

allows for local action of the gauge fields and this results from the fact that Legendre trans­

formations are non-invertible and therefore the equations of motion are non-integrable. 

However, this is, once again, a different issue that does not interfere with their local char­

acter as we have expressed it here.

3.4.1 Spacetime, Matter, Interactions and Numbers

In (quantum) field theory, the objects or fields which eventually may be interpreted as 

elementary particles and carriers of the forces, are rather elaborate objects with various 

different properties that need to be taken into account. All these properties indicate how
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they interact with each other and, as a consequence, they must manifest themselves in their 

mathematical description. Revealing just the spatiotemporal whereabouts of physical ob­

jects is not all the information we need nor all we can get. We are arguing, therefore, 

that the spacetime indices do not give a sufficient description of the fields because other 

specifications are needed as well. The specifications we are referring to concern physi­

cal quantities like spin, weak isospin, strangeness, lepton number, color etc. These other 

properties which need to be taken into account are successfully described by complicated 

’multiple vectors’ with both spacetime and tensorial indices. Therefore, interacting fields 

need both spacetime and further specifications.

Here, we cannot say that we actually need tensorial indices because there are other 

theories, like the (j)4 theory, which describe interactions without using them. But the truth 

is that these other theories make use of mathematical apparatus that is by no means simpler 

than the tensors, nor more fruitful. In (j)4 theory, for example, physicists use Grassmann 

algebras and some other mathematical artifacts called Grassmann variables in order to de­

scribe fermions. These mathematical objects are not easier to handle than tensors and on 

the top of that they do not have other virtues of tensor calculus. For example, one can­

not read directly from a <j)4 the difference between matter and interacting fields, nor one 

can get a unified picture -no matter how inadequate. Hence, this stuff, we argue, is bet­

ter -although not uniquely- described using differential geometry. The word ’better’ in this 

context means, basically, more convenient from a mathematical point of view as it has a 

unifying effect and more economical, from a physical point of view, because all the rele­

vant properties are accounted for, interactions arise predictably from the formalism, and the
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physically apparent difference between matter and interaction fields120 is innate in the for­

malism. Moreover, the heuristic virtues of this formalism have proved unparalleled in both 

physical and mathematical directions. Towards the mathematical direction, basically all 

attempts for unification of the fundamental forces -including string theory- have departed 

from this starting point. And in the physical direction, the experimental verification of the 

existence of, say, the weak bosons relied heavily on theoretical predictions of the standard 

model, which is plausibly incorporated in and enriched by the fibre bundle formalism.

One more advantage of the description of a physical structure of interactive fields 

using differential geometry and fibre bundles as opposed to constrained Hamiltonian sys­

tems is that in the first case we have a top-bottom approach, while in the second we have a 

bottom-up. Let us explain the latter here and leave the former until after we have introduced 

the fibre bundle formalism. In physics textbooks, usually, they start with the equations of 

motion of the fields they intend to describe and from them, they build the Lagrangian of 

the system, from which the equations are derived using variations. If one knows that the 

physical structures obey certain conservation laws, one makes implicit use of Noether’s 

theorems and searches for the symmetries that are associated with the system. Then, rather 

than identifying the constraints and hence the symmetries of the system, they first recog­

nize the symmetries and then derive the constraints, mainly in the form of divergency -or 

conservation- relations. In the case of electromagnetism, at least, they first work out the 

global symmetry transformations and then impose the requirement that the parameters have 

spacetime dependence, hence deriving coupling terms to account for interactions. Interac­

120 Matter fields have mass and are directly observable, while interaction field are usually massless -the weak 
field aside- and observable through currents.
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tion terms are essential because it is only the very presence of the interaction terms which 

allows us to calculate quantities that are experimentally observable and observed. Let us 

describe now how electromagnetic interaction terms arise as a result of rendering the gauge 

symmetry of the classical theory local.

Complex Scalar and Electromagnetic Fields

This is just a simple example of a field with zero spin, which we are using here to 

illustrate how by making use of the variational principles and the requirement of gauge 

invariance we may describe interactions. For that reason, we do not deal with global trans­

formations at all; instead, we examine directly the ’local* case121.

If the scalar field has two components, we may express it as follows.

<t> = 7 5 (0 1 + ^ 2)

=  75 (& -< & )■

We start off with the simplest action S  we can think of, which will give the two 

Klein-Gordon equations for the <j) and its conjugate <f>*. So, from the Lagrangian density

C = ( d ^ W P )  -  m2#*

we get the equations of motion

(□  +  m 2)(j) = 0 

(□  +  m 2)0* =  0.

121 For further reading on variational principle and its applications to field theory, see for example Gold­
stein, Classical Mechanics, Guillemin & Sternberg, Symplectic Techniques in Physics, Ryder, Quantum Field 
Theory and L.I. Schiff, Quantum Mechanics.
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We now require from the action S  to be invariant under what we call a local gauge 

transformation with parameter A, under which the fields are transformed as follows:

0  _> and <j>* ->

The infinitesimal form of this transformation is this

S(j> = —iA (xfJ')(j) and 8(f)* = iA (xfl)(f).

The action is no longer invariant under this transformation and this comes as a result of the 

dependence of A on As a matter of fact, the change in Lagrangian is

= id^ A ( < ^ 0 - < ^ * )

=  J ^ A

To make the action invariant under these transformations, we introduce a new 4-vector 

which couples directly to the current giving an extra term in the Lagrangian:

A  =  —eJ^Ap

The coupling constant e has units such that A M has the same units as d jdx^. For this new 

field we require that it transforms as follows:

Afj, —> Ap +  IdpA

so that

8 Ci  =  — e  {SJ^) — J^d^A
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But then, in order to counteract the consequences of the transformation on C\, we 

add another term to our Lagrangian, namely

C2 =

for which

8C2 = 2eA^(d/iA )0 >

and hence

8/1 4- 8/11 -f- 8 / l 2 — 0 .

For the total Lagrangian 8C +  8C\ +  8C2 =  0 by virtue of our having introduced a field 

A^which couples to the current of the complex field 0. This Lagrangian is a good can­

didate for describing interactions - the coupling term L \ =  —eJ^A ^  could be interpreted 

as an interaction term between the current of a field/particle <f> and the field AM which we 

may manage to interpret as a force field. Actually, it is not difficult to interpret A^ as the 

electromagnetic field; one only needs to introduce one more term in the total Lagrangian 

such that it is gauge invariant and it gives the equations of motion of the electromagnetic 

field. This term is

c 3 = - I

where

= - d uAtl

is the electromagnetic field tensor.

From what we have done so far, it comes to light how the electromagnetic field ap­

pears as an interactive field by simply demanding invariance of the action under local gauge 

transformations. The question that may arise here is what is it that it makes it worthwhile
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to require local gauge invariance? We would like to be able to answer by saying ”a ne­

cessity of nature dictated by the gauge principle”, but we do not believe that we can, nor 

can anyone else for that matter. The only argument that comes anywhere near necessity is 

that all fundamental interactions known to us so far are interactions described in this way. 

But aside from that, to our view, there are two features that make the requirement of lo­

cal gauge invariance plausible, although the effortlessness with which the interaction terms 

appear is not dictated by any physical necessity. First of all, it is the fact that the equa­

tions of motion for both the matter and the electromagnetic fields, as well as the interaction 

terms, arise from the same variational treatment of a single Lagrangian, which is invari­

ant under both spatiotemporal and internal symmetry transformations. In so far as we have 

accepted that matter fields may be described using variational principles, it is credible to 

make use of the same technique in order to describe the electromagnetic field and its inter­

actions despite the fact that the two types of field have different properties. The interaction 

fields behave differently from the matter fields in that the former display a bosonic behav­

ior (associated with integer spin) while the latter a fermionic one (which means half integer 

spin) and also in that the former often are massless while the latter are usually massive122. 

What is worthwhile, then, in this approach is the fact that by using just one principle - 

6S = 0- and the appropriate Lagrangian, one may derive all the equations needed in or­

der to describe a specific kind of physical interactive structures, which takes into account

122 As a matter of fact, the weak interaction carriers are gauge bosons with mass -the fact that they must have 
mass is dictated by their short range. In the formalism, the acquisition of mass of the weak gauge bosons is 
accommodated by what is known as spontaneous symmetry breaking. When the original gauge symmetry 
is broken, or hidden, the bosons obtain mass; the price to be paid, though, is that another field -the Higgs- 
appears in the formalism and it requires some counterpart in nature. So far, the existence of the Higgs field 
has not been confirmed by experiment.
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the different properties the two display. So we have a unified treatment of equations of mo­

tion and of interactions, which we may say is ’natural’ from a mathematician’s point of 

view. That is to say, we derive everything we need deductively, using first principles and 

’plausible guesses’ with only requirement that must later be justified experimentally.

Furthermore, the internal symmetry which was used in order to derive the interaction 

terms, that is to say the gauge symmetry, has been known to be an inherent property of 

the electromagnetic theory since the times of Maxwell. Of course, the A^ field appears 

explicitly in this description and the controversy is about whether itself is a natural 

field at all. How could we possibly claim that a quantity which is not even gauge invariant 

is something more than a mathematical artifact? Or, to use our terminology, could we 

hint, or even more, would it be possible to show that the space where the gauge fields live 

and are transformed is something more that just the surplus structure, an already elaborate 

mathematical structure?

It is essential to figure out if  the appearance of the newcomer A M makes sense in the 

physics we already have, but for the time being we would like to postpone any arguments 

about the possible interpretations that one could ascribe to/associate with this (originally 

mathematical) object. The reason is that we would like first to examine what this field 

does when we adopt the fibre bundle approach and then try to convince you that what we 

actually gain is a lot more than what we seem to lose. We will try to argue, then, that the 

losses are not real losses. What really goes on, as a matter of fact, is that we are just moving 

away from an old approach giving up some of its limitations -and/or constraints- while at 

the same time we are embracing a new approach which is much more fruitful in terms of
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predictions and explanations, more comprehensive and more open to new perspectives and 

possibilities.

After having completed this task, we will come back to the issue of whether is 

a natural field and then we will consider some possible interpretations of this field and of 

some other objects that we will have encountered by then. But until then, let us continue 

our examination of the mathematical properties and relations of these fields.

So far, we have argued that interactions are described successfully and sufficiently123 

using local symmetries. There, the matter fields are described by tensors, while the carriers 

of the interactions appear as correcting terms. At first sight, the two types of fields are not 

that very different, since they both exhibit a tensorial character. Yet, physically speaking, 

we want them to do two different jobs and therefore it would help if, mathematically speak­

ing, they were also of a different nature. These two distinct functions of the two types of 

fields are unfolded in an exemplary way in the context of the fibre bundles. In this context, 

the material tensor fields of all types appear as what we will call ’cross-sections’, while 

for the carriers of the interaction -or force fields- we can employ the so called connections, 

which are another type of objects dwelling in the fibre bundle ’zoo’.

3.4.2 Yang-Mills Theories: the Weak and the Strong

In the previous sections we discussed the case of electromagnetism and we saw how in­

teractions arise when we use the notion of gauge symmetry. Electromagnetic interactions 

arise when we require the Lagrangian of the system to be invariant under local gauge trans-

123 Even if it is only in the sense that using this theory we got good explanations and very successful experi­
mental predictions.
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formations. This type of transformations belong to a larger class of transformations that we 

call Abelian because the group of transformations involved is the Abelian group £7(1). All 

the other fundamental interactions we know that occur in nature are described also by gauge 

symmetries, only these are more complicated since the groups involved are non-Abelian. 

These theories are also known as Yang-Mills theories because the first ones to employ them 

in the form they are known nowadays were Yang and Mills in their 1954 paper124. The only 

fundamental interaction that seems to be somewhat different is the gravitational, but we 

are not concerned with this issue in this thesis. In what follows we will concentrate on the 

Yang-Mills theories that are used in the description of the weak and the strong interactions, 

which employ the S U (2) and the S U (3) groups respectively, and once again we will only 

discuss the main ideas behind the formalism, rather than presenting it fully125.

As we have seen, the starting point for the description of electromagnetic interactions 

was the observation of the invariance of the Lagrangian under global phase transformations 

<p —► e~zAip of the wavefunction. By rendering the transformations local, ip —> e~lA^ ( p ,  

from the transformation requirements of the gauge fields, +  <9^A(x, t) ,we got

coupling terms that allowed for the description of interactions. In the case of weak inter­

actions we follow a similar process, but here the matter fields are multiplets, rather than 

scalars, and hence the transformation operators take the form of matrices, while the trans­

formation parameters or gauge fields are vectors is some internal space. Hence, the trans­

124 We have already seen in chapter 1 of this thesis that Klein anticipated Yang-Mills theories by fifteen 
years Utiyama discovered them independently and almost simultaneously with them and Shaw developed 
something similar right after them (1955). Nevertheless, Klein’s work does not go as far as the work of 
Yang and Mills and Utiyama publicized his own a year after Yang and Mills. For more on the issue see 
O’Raifeartaigh, The Dawning o f Gauge Theory.

125 For detailed analysis see Aitchison & Hey, Gauge Theories in Particle Physics, or Ryder, Quantum Field 
Theory, or Balin & Love, Introduction to Gauge Field Theory.
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formation for the matter field takes the form

p  —> p '  =  U p

where U  is a unitary matrix n x n. For a scalar field and n = 1 we get the Abelian 

case we have already examined. Putting the transformation in exponential form we get the 

expression

2
= e x p ( -a  • r )p '

where a  represent the transformation variables and r  are the generators of the (infinites­

imal) S U (2) transformations. When the transformation variables acquire spatiotemporal 

dependence, the gauge transformations become local and take the form

2
=  ex p (-a (x )  • T)p'.

To restore invariance of the Lagrangian under local gauge transformation we have to modify 

the transformation rules for the derivative as follows:

d/i -► Dp =  • WM(x)
where is understood to be multiplied by an n x n matrix and the W M(x) are three 

independent gauge fields W*) when we deal with the S U (2) group which

describes weak interactions. These are the generalization of the A^ electromagnetic field 

and they are called Yang-Mills fields. The non-Abelian character of the Yang-Mills fields 

is displayed by the commutation relations

that do not exist in the Abelian U( 1) case of the electromagnetic field.
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Infinitesimal SU  (2) transformations take to

v' = (! + 2 r  ' v(.x))v>

and to

w; = w„ -  a ^ i x )  -  (V (x)  ■ w„).

As we can see, the first term in the transformation law for the gauge field is the generaliza­

tion of the electromagnetic case. The second term reveals the fact that the three components 

of W M form the components of a triplet representation of S U (2). The covariant derivative 

Dfj, of the matter field transforms in the same way as the field itself, namely

DW  =  (i +  • n { x ) ) D ^

and this restores invariance in the Lagrangian which before this modification had the gen­

eral form £  =  £(</?, W, d^W ).

The strong interaction terms arise when we require invariance of the Lagrangian un­

der S U (3) symmetry transformations, in which case the above generalize as follows126. The 

S U (3) group has eight generators, which means that the matter fields transform according 

to the law

ip' =  exp(zG • ct)ip.

The scalar product in the exponential involves 8-component vectors, G  for the generators 

and ol for the transformation variables. Once again, the generators do not commute, instead 

they satisfy an algebra of the form

[Gj, Gj] zCjjTjG/;.

126 Here we follow Aitchison & Hey.
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To make the above transformation local, we introduce eight gauge fields W *,..., and 

define the covariant derivative

Dp = dp + iG  -W (x )

where the G  are some set of matrices of appropriate dimension to act on ip. The infinitesi­

mal transformation law for the Yang-Mills gauge fields is then

w; -  wf = w;- d„Vi(z) -  # krfw£(x)

where we can see, once again, that the first term of the transformed Yang-Mills field is 

the generalization of the electromagnetic case, while the second term tells us that the eight 

gauge fields W M transform in such a way that the transformation coefficients are the struc­

ture constants of the group; because of the way they transform, we say that they belong to 

the regular representation of the group.

The difference of transformation laws between the non-Abelian and the Abelian 

gauge fields results in self-coupling terms in the Lagrangians of the former. In other words, 

in the non-Abelian case the Yang-Mills fields interact with themselves. Hence, a non- 

Abelian gauge system without matter fields has non-trivial interactions and therefore it is 

not free. This means that, basically, the gauge fields correspond to physical interactive en­

tities in a straightforward manner. Unlike the Abelian case where the status of the gauge 

field is dubious and object of a major debate, as we shall see in the next chapter, in the case 

of the weak and the strong interactions the currents that are associated with the gauge fields 

are measurable and in this sense existing fundamental entities that interact directly with 

either matter fields or with each other. Hence, in the case of the weak and the strong inter­
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actions, the surplus structure of the electromagnetic gauge theory becomes mathematical 

structure with elements corresponding to elements of the physical system.

The analysis above is just a very brief summary of what the generalization of Abelian 

gauge theories looks like. To do justice to the theory one would have to study it in detail 

and discuss the notions of symmetry breaking and asymptotic freedom, both necessary in 

order for the correspondence between the mathematical and the physical to be understood 

fully. But for the purposes of this thesis, this rather sketchy presentation suffices.

One thing that we would like to mention here is that the above formalism provides 

a counterexample to Field’s programme. In chapter two, we presented Field’s programme 

and Shapiro’s criticism of it. Shapiro proved that it is possible to find an expression that 

is derivable from the supposedly conservative extension of the theory and yet it belongs 

to the actual physical part of it. Our view is that in the weak and the strong interactions, 

the gauge fields themselves exemplify such a case. Assuming that a nominalist is able 

to overcome Malament’s objections and define congruence and betweenness that would 

allow for a full field theory to be expressed in a nominalistic way involving a mathematical 

and a physical part, one should be able to dispense with the conservative extension of 

the theory and derive all the physically significant results from its theoretical part only. 

The gauge fields live as cross-sections in the mathematical structure called the principal 

bundle and although they, themselves, are not just mathematical artifacts that one could 

dispense with127, they are derivable from what could be considered to be the extension of 

the mathematical formalism only. The reason is that they emerge only if we consider that

127 At least, the gauge fields would qualify as theoretical entities, in Field’s terms, and theoretical entities are 
not dispensable.
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there is a symmetry group in operation, namely the SU (2) group for weak interactions. 

Then, given the gauge freedom of the theory, the connections -or gauge fields- are derived 

by the mere requirement that the theory is covariant under local S U (2) transformations. 

There is no way of anticipating the existence of gauge fields and of their corresponding 

currents from the ’physical’ part of the theory only. Yet, when we study weak interactions 

experimentally, the gauge fields appear to be as physical as any other interacting field; 

not only they ’click’ but they also interact weakly or even electromagnetically128. In M. 

Redhead’s terminology, the connections could be said to ’move across’ the surplus structure 

boundary, thus descending from the mathematical to the physical realm.

3.5 Constrained Hamiltonian Systems or Fibre Bundles?

It is a common place view in physics that physical objects interact and it is through their 

interactions that we observe them. Therefore we need a description that accounts for these 

interactions and explains our observations. One very fruitful129 way of describing interac­

tions is by using variational calculus and local symmetries. So far in this chapter, we have 

become acquainted with the notion of symmetry as this occurs in the context of constrained 

Hamiltonian systems and we have already shown how symmetries allow for the description 

of interactions. But aside from this, or rather subsequent to it, there is another more elab­

orate formalism, the fibre bundle formalism which, we will argue, is more appropriate for 

describing interactive and interacting fields.

128 Two out of the three carriers o f the weak force have electromagnetic charge as well.
129 Fruitfulness from this perspective means that it has given good descriptions/explanations and accurate 

predictions.
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The Hamiltonian systems with gauge symmetries -Abelian or Yang-Mills- are con­

strained Hamiltonian systems. In their present form they first appeared in the Yang-Mills 

1954 paper, as we have seen, and they came to the forefront of research in physics from 

the late 1960’s onwards. In the mean time, since the 1930’s, mathematicians who were 

studying relations between topology and geometry, and then from the 1950s onwards topo­

logically non-trivial manifolds, developed the so called fibre bundle formalism, a generic 

geometrical approach that encompasses the mathematical structures that describe systems 

with constraints imposed by gauge symmetries. Fibre bundles were explicitly utilized in 

the formulation of gauge theories for the first time by Wu and Yang (1975), who compiled 

a ’dictionary’ translating between the physicist’s terminology and the new mathematical 

terminology. Here we have one more example of mathematical structures that develop re­

gardless of the needs of the physicists’ community, which find applications in physics later 

on. As we have already seen in the first chapter, in this particular historical incident a cru­

cial idea that was (one of) the main motivations for the programme was common in physics 

and in mathematics. The reason why the development of the physical theory was slower 

than that of the mathematical, we argued, was the fact that there had not been much support 

from the experimentalists’ front for a few decades. On the other hand, mathematicians who 

do not need phenomenological pick-ups to motivate their research proceeded immediately 

after the first ideas were presented and hence got there first.

Our aim in this section is to comprehend how systems with gauge symmetries are 

described in this formalism and what are the advantages of it when compared with the
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constrained Hamiltonian formalism we introduced previously. What is more, we will try to 

do this using no mathematics at all.

3.5.1 Explaining Fibre Bundles

Is it possible to understand the fibre bundle formalism without using loads of mathematics? 

A simple answer to this question is ’no’! It is known since the times of Euclid’s that there 

is no royal way to geometry, and things have changed little since then. For someone to un­

derstand and appreciate the fibre bundle formalism fully, one has to study it thoroughly, 

because it is only through study that one gets clear insights into certain geometrical con­

cepts. In my view, this understanding comes in a non-verbal way and it is therefore rather 

difficult to put in words. But what I am hoping to do in the first part of this section is to 

give a description of the concepts involved and, where possible, to illustrate them by giv­

ing examples that are fairly easy to visualize, thus developing a pictorial understanding of 

some parts of the formalism. Then, one may be able to extend those intuitive images and 

complete the picture as much as possible, always bearing in mind that this is not the whole 

story, nor the correct/true one. Nevertheless, let us try to do this.

What a Fibre Bundle Is

Fibre bundles are a generalization of the Cartesian product in the following sense. 

A fibre bundle is a triplet (Af, 7r, E) where M  is what we call the base manifold, E  is 

the total space and ir is a projection map 7r : E  \— ► M .  The inverse image 7r-1 of the 

map 7r takes you from a point x  G M  to E  and it is called the fibre F  := 7r_1({:r}) 

over x. The total space E  is M  itself along with the bundle of all the fibres over all
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x  G M ,  or E  :=  UxzmFx-  In certain ca ses , the total space E  is  the product space M  x  

F  w h ich  is  a generalization  o f  the Cartesian product indeed . A s  w e  know , i f  M \  and 

M 2 are d ifferentiable m anifolds, then M . \ x M .2 can be g iv en  a m an ifo ld  structure w here  

d im (A /l i x A l 2 ) =  d im (.M i)  +  dim (.A d2 ). B ut in fibre bundles the total space is not, in  

general, a product space and this w ill  be m ade clear by  tw o illustrative exam ples.

T he first exam ple is that o f  the product bu n d le130. T he product bundle is on e o f  the 

s im p lest exam p les o f  a fibre bundle and its three e lem ents are: M , 7r =  pr i  is  the p rojection  

m ap taking you  from  any point o f  F„, the fibre over x,  to the point x  on  the m anifold , and

Figure 5 
Product Bundle

A nother exam ple o f  a fibre bundle is  the M obius strip. H ere, the base space M  is  

the c irc le  S^and the fibre could  be taken to b e  the interval [—1 ,1 ]. B u t the total space E is  

not the product space M  x [—1 ,1 ] , nor is it hom eom orphic to it b ecau se  the total space is  

130 For more details see C. Isham, M o d e rn  d if fe r e n tia l  G e o m e tr y  f o r  P h y s ic is t s ,  pp.204-6.
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tw isted . It can b e  represented, instead, b y  a rectangle w h o se  short ed g es id en tify  as show n  

in the picture.

-I SI

Figure 6  
The Mobius Strip

Cross-Sections

T he n otion  o f  cross-section  is very  crucial in both the fibre-bundle form alism  and its  

application  in  p h ysics, s in ce all the m atter fie ld s are defined  as cro ss-sec tio n s o f  the tangent 

bundle; the tangent bundle, a special ca se  o f  a fibre bundle, w e  w ill b e  d iscu ssin g  in  the 

n ext section . T he cross-section  is a m ap s  : M  i— * E  such  that the im age  o f  each point 

x  €  M.  lie s  in  7r- 1 ({ :c }). tt and s are inverse to each  other:

7T O 5 — i d j ^

S o , here w e  are talk ing about som e m athem atical object (a  fie ld  ) w h ich  takes som e spe­

cific va lu es across the fibres as its location  on the base m an ifo ld  ch an ges too. So far as
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the product bundle is concerned, the cross-section  is defined  u n iq u ely  and con tin u ou sly  

everyw here.

Figure 7
Cross Section o f  a Product Bundle 

B ut in the ca se  o f  the M obius-strip-bundle, w h ich  is  a non-orientab le surface, this is

not the case as w e  can see.

i SI

Figure 8
A Cross Section of a Mobius Bundle
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Here it becomes obvious from the picture that the cross-section is not continuous, 

as we can see from the figure above. In other words, the cross-section is equivalent to a 

function from S 1 to [—1,1] which is antiperiodic around the (circle) base manifold. The 

Mobius strip is just an example of a non-orientable fibre-bundle, but from that we can see 

how the cross-section and its continuity depend upon the topology of the total space. At this 

point we have to make a leap. In general, in the cases of the so called principal fibre bundles 

where the bundles have the special structure of a vector space, the following theorem holds.

Theorem 4 A principal fibre bundle has a continuous cross-section i f  and only i f  it is 

trivial131.

One of the two things this theorem tells us is that when the topology of the base 

manifold is non-trivial, we will not find a continuous cross-section. So, if we take the base 

manifold to represent spacetime, then if the topology there is not trivial, we are not able to 

define vector fields continuously all over it, and this, as we shall see, is related to the well 

known problem in gauge theories, the so-called Gribov obstruction, which does not allow 

us to determine the gauge everywhere at once. But on this point, more discussion follows 

later in this chapter.

Principal Bundles, Vector Bundles and Connections

At this point we need to make another leap and try to visualize two more complicated 

examples of fibre bundles, having as a starting point the simple cases of the product and 

the Mobius bundle. The first case is that of the tangent bundle, which is the bundle of the

131 For a proof of this theorem, see C. Isham, Modem Differential Geometry for Physicists, 2nd ed., p.230.
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tangent sp aces at all points o f  a b ase m anifo ld , w h ile  the secon d  is  the bundle o f  fram es, 

w h ich , as its nam e indicates, is  the bundle o f  a ll fram es at all p o in ts on  the b ase  m anifold . 

In order to get a v isu a l idea o f  w hat the various objects in vo lved  represent, w e  w ill u se  the 

fo llo w in g  illustration132.

T angent B undle
Associated Bundle

Spacetime Manifold

Figure 9
Associated and Tangent Bundles 

The Tangent Bundle: a Special Example of a Vector Bundle

T he base space M  o f  the tangent b undle m ay b e con sid ered  as the 4 — d im  spacetim e  

m an ifo ld . T he fibre Fx over each point x  o f  the m anifo ld  is  the tangent sp ace TXM  to M  

at the poin t x  w h ich  is generated b y  all the tangent vectors at th is point; or in  other w ords, 

b y  the vectors o f  all the curves w h ich  pass through the poin t x  and are tangent to x. T he  

total sp ace E  , or the tangent bundle T M ,  is  defined  as T M  =  U X£m TxM ,  the union o f

132 This illustration is based on the figure B3 of p.220 of Sunny Auyang’s " H o w  is  Q u a n tu m  F i le d  T h e o ry  
P o s s ib le ? ”
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all tangent spaces at all points of the manifold M  . Each fibre Fx, or in this case TXM ,  is 

nothing other than the set o f all vectors that are tangent to the manifold at that point. For 

each tangent space, the following theorem holds.

Theorem 5 The tangent space TXM  carries a structure o f a real vector space.

It can also be shown133 that the tangent bundle T M  has a natural structure of a 2m- 

dimensional differentiable manifold, where m  is the dimension of the manifold M  itself.

The cross-sections 0 of this vector bundle are used for the description of matter fields 

with phase 6. Along each cross-section, the wavefunction of the matter field may take 

different values, but its phase remains the same, i.e. d(x).  The information encoded here 

is that as we move along a curve 7 on the base manifold, the phase of the field may or 

may not change and this depends on the interactions which may be accounted for by the 

connections, as we shall see shortly.

The Bundle of Frames: a Special Example of a Principal Fibre Bundle

A more complicated case of a fibre bundle is the bundle of frames, which is a spe­

cial case of what mathematicians call a principal bundle. A principal fibre bundle is one 

whose fibres are Lie groups in a specific way. The principal fibre bundles ’’have the im­

portant property that all non-principal bundles are associated with an underlying principal 

bundle. Furthermore, the twists in a bundle associated with a particular principal bundle 

are uniquely determined by the twists in the latter, and hence the topological implications

133 See C. Isham, p.89.
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of fibre bundle theory are essentially coded into the theory of principal fibre bundles”134. 

A typical example of a principal fibre bundle is the bundle of frames.

In the case of the bundle of frames, the base space M  is, once again, an ra-dimensional 

differentiable manifold which we may consider to be the 4 — dim  spacetime manifold. A 

linear frame, or base, at the point x  e  M  is an ordered set (&i, b2, ..., bm) of basis vectors 

for the tangent space TXM .  In this case, the projection map ir : B(A4) —► M  is defined to 

be the function that takes a frame into the point x  in M  to which it is attached. The fibre 

over x  € M. is, of course, the inverse image under the map 7r and it comprises the set of all 

the local frames that are associated with the point x  e  M .  The total space of the bundle of 

frames, which we denote by B(A4), is the set of all frames at all points of M.. B (A f) is 

a right G-space, where the group acting on it is the GL(ra, R), as well as a differentiable 

manifold of dimension m  +  m 2.

In our graphic representation of the principal fibre bundle we can see the following. 

’Over’ each point x  of the base space M. there is the fibre of rr, represented as a line with 

cp(x) at the top. The cross-sections of this fibre bundle are depicted by the 7-lines and they 

introduce a specific coordinate system along the curve 7 so that as we are moving along 

the curve we have a fixed coordinate system or frame -this could be understood as an active 

transformation where the actual system is ’moving’ but the frame remains the same. As 

we move along the fibre, the value of the field </> does not change but the frames do -this is 

what we could understand as a passive transformation where the physical system remains 

fixed but its description changes.

134 C. Isham, Modem Differential Geometry for Physicists, 2nd edition, p.220.
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If, instead of the bundle of frames, we had chosen a fibre bundle with symmetry 

group the S U (2), we would have the S U (2)-bundle of the Yang-Mills theory. In this case, 

selecting a specific cross section is also known as gauge choice or gauge fixing.

Connection on the Bundles or Moving Around

Next, we need the notions of the connection and of the pull-back. The connection 

tells us all about how we move around in the bundle, while the pull-back is the operation 

we need in order to be able to ’move’ from the total to the base space and the other way 

round.

The connection is a field defined on the bundle space and, as its name indicates, 

basically we need it so that we can connect or compare points in ’neighboring’ fibres in a 

way that is not dependent on any particular local bundle trivialization (i.e. choice of frame). 

This suggests that we should look for vector fields on the bundle space P  that ’point’ from 

one fibre to another135. What is needed, therefore, is some way of constructing vectors that 

point away from the fibre, i.e., elements of TpP  that complement the vertical vectors in 

VpP.

In general, in the bundle of frames, the symmetry transformations are diffeomor- 

phisms on the bundle space. These transformations we could view in two ways, active or 

passive. Active transformations take the point x  of the manifold M  to the x', while the 

passive transformations change things on the bundle space but leave x unaltered, so that 

the only thing that changes is the coordinate patches. One may then ask: and what can 

we actually do with the connections? Well, in the active case, and while still on the bun-

135 See C. Isham, p.253 for a more detailed discussion.
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die of frames, the connections describe how the field of frames changes as we move along 

a spacetime path and therefore ’hop’ from one fibre onto another. As a physical system 

moves along a spacetime curve 7 , the tangent spaces change and so do the frame-fibres. 

In general, these tangent spaces are not in any natural relation to each other. The connec­

tion, represented by VM, allows us to compare these spaces, by expressing how changes 

as we ’cross’ different bundles. If the local representative of the connection was given the 

name A*136, this could be represented in a diagram as follows:

a ;  > A;
t  T

X --------- > x '

All change is determined by the connection but, as we should expect, this is done in 

a non-deterministic way; if there is no necessity to impose a choice of a specific cross- 

section, the evolved system may start from any point of the initial fibre and be found on 

any point of the final. However, as we can see from our illustration, when moving along 

7 and at the same time staying on the same cross-section, the initial coordination remains 

the same; which means that we know exactly where we will find our system when we are 

looking for it in the total space.

The passive view of the transformation is somewhat more difficult to describe cor­

rectly here, because the actual illustration is inaccurate and incomplete137; but the intuitive

136 As a matter of fact, the connection is usually associated with a certain L(G)-valued one-form oj on the 
bundle space P, while by T we denote the associated L(GL(m , R ) ) -valued one-form on U C M  and the 
symbol A“ is used specifically for the Yang-Mills field, which can be regarded as a Lie-algebra valued one- 
form on At, at least locally. In this paper, we chose to use the symbol A* for simplicity and to give some 
sort of unity. I would like to make it clear, though, that this ’unified’ use of one symbol is not accurate and I 
would like to warn the reader that this may be confusing if they study, for example, C. Isham’s book.

137 For more extended discussion see C.Isham (1999).
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idea is the following. For the description of the same spacetime point, we may use more 

than one different coordinations, which are related to each other by the action of the group 

GL(m, R). Thus the ’location’ on the bundle space, or the local trivialization, changes, 

while the physical system remains where it was in the spacetime manifold. In this case, 

the connections corresponding to the two different local trivializations are the transform of 

each other under the action of the group. In the form of a diagram, the situation could be 

illustrated as follows:

A l > A'*

\ s
X

In general relativity, the role of the connection is played by the well-known Christof- 

fel symbols. In Yang-Mills theories, on the other hand, where the principal bundle is one 

with a Lie group acting on it, the role of the connection is played by the Yang-Mills field 

itself.

Gauge Transformations

If we want to be more accurate, we have to say that the connection is an L(G)-valued 

one-form on a principal bundle138 and it is such that it can be decomposed locally as the 

sum of a Yang-Mills field on M  plus a fixed L(G)-valued one-form on G. Since the latter 

L(G )-valued one-form is fixed when we know the Yang-Mills field, basically, we know the 

connection, at least locally. So, in this informal sense, we could ’identify’ the connection 

with a Yang-Mills field -as we have done above. What we need to look at here is how

138 For a detailed discussion see, for example, C. Isham (1999), pp.254-262.
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gauge transformations come up in fibre bundles and how the constraints and hence how the 

conserved currents are represented.

In general, a gauge transformation is considered to be any automorphism of the bun­

dle. In the case of passive transformations the actual transformation map </> : P  —> P  

takes you from a coordinate chart to another -the two have overlapping domains U and U'. 

Then, it can be shown that the transformed connection is also a connection and that the 

transformation of the local representatives of the connection, i.e. of the Yang-Mills field, 

is our familiar gauge transformation. Along the same lines, when we consider active au­

tomorphisms of the bundle, the transformation on the bundle induces a transformation of 

the connection that locally is exactly like the familiar gauge transformation of the gauge 

field; the only difference here is that the diffeomorphism is defined on the manifold M  as 

h : M  M .

Mathematically speaking, the two different ways of viewing transformations, aka the 

active and the passive, are equivalent. Yet, when we use this formalism to represent phys­

ical structures a problem arises. The active transformation is considered to correspond to 

actual transportation of the physical system from one spacetime region to another. The 

passive transformation, on the other hand, changes only the description of the system, the 

coordination one could say. In what sense, then, are the two equivalent when we talk 

physics? If we claimed that a transformation/change in the description of a structure cor­

responds to an altogether new ’reality’ in a sense, similar to that of a physical structure 

that has been transported to a new spacetime region, would we do justice to the mathemat­

ical equivalence? Or is this a far fetched assumption? Because in the active case, there is
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some actual change of the physical structure we study, but in the passive case there does not 

seem to be any. Except, if some of the mathematical objects that live in the bundle space 

and undergo a change, the connections for example, did correspond to physical structures. 

If  that was the case, we could comprehend how the two types of transformation are equiv­

alent in a physical sense. But the question of whether the connections have physical status 

is one to which we cannot give a straightforward answer, at least not right now, because al­

though we make use of the connections to represent the interactive fields, we cannot say 

before we give it some further thought that these are indeed ’tangible’ physical objects. 

Note in passing that the same sort of question is addressed by Redhead (2001) who claims 

that when the automorphisms of the physical and the mathematical structure are in one-one 

correspondence and since the symmetries of the physical structure express important struc­

tural properties of it, so would do the symmetries of the mathematical structure. Things 

are somewhat different, though, when symmetries are present in the surplus structure, in 

which case the mathematical symmetry gives interaction terms in the physical structure. 

It remains to show how this relation between the two manifests itself, but we cannot do 

this before we investigate the role of the connection in the description and explanation of 

certain physical processes; so, we will try to answer this question later on, mainly in the 

following chapter.

Finally, let us turn now to the idea of the constraint, as this may be understood in 

the fibre bundle context. In Hamiltonian systems where symmetry transformations leave 

their action unaltered, we get, according to Noether’s theorems, conservation laws and con­

straints. The conservation laws, as we have seen, involve derivatives of the fields involved
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and hence they impose the symmetry conditions that define the bundle space. Hence, we 

could understand the constraints as restrictions that are imposed on the evolution of our 

original system and on its ’behavior’ in the bundle space, or in other words as the gauge 

orbits.

Associations

The tangent bundle and the principal fibre bundle that can be seen on the illustration, 

are associated bundles. In general, the basic intuition that underlies their association is that 

’’given a particular principal bundle (P, 7r, M )  with structure group G, we can form a fibre 

bundle with fibre F  for each space F  on which G acts as a group of transformations”139. 

In our specific example, the group of the bundle of frames G L(m , R) acts on the tangent 

space on each point of M. and the result of the action is the change of the mathematical 

expression of the local coordinate chart in a passive way, if x  does not change and therefore 

we are still on the same fibre, or in an active way, when x  changes as well. So, for the 

same x , a symmetry transformation could take the connection field A* (z) to A'*(x), while 

an active one could take it to A^(x') or A!*{x') depending on whether we stayed on the 

same cross-section or not. These changes on the principal bundle are linked with changes 

on the associated tangent bundle in the following way. When we are considering passive 

transformations, the action of G L(m , R) on the vector space of the tangent bundle can be 

understood as changing the direction of the tangent vector on x , while still remaining on the 

same tangent ’plane’ or fibre; so it takes you from ip(x) to ip'(x). When the transformations 

are active, there is a total change of the ^-field -i.e. change which affects both the spacetime

139 Isham (1999) p.232.
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point and the fibre. So, if the transformation leaves the field on the same cross-section, the 

transformed field will be ip(x') while if  not on the same cross-section, the transformed field 

will be ip'fa').

When the group acting on the principal bundle is a gauge group, the action of the 

group on the associated bundle will be expressed as a change of the phase of the matter field 

-with or without simultaneous change of its spacetime location, depending on whether the 

transformation is considered as active of passive respectively. In the active case, starting 

with phase $(x), we end up to one with phase $(x'). On the other hand, an active action 

of the group projects the original point of the total space to some other point which lies 

on a different fibre altogether. In this case, if we are still on the same cross-section, the 

transformed phase will be ^(x '), while if we are not, the new phase will be d'(x').

This association between principal and vector bundles is what allows coupling terms 

to appear; it is precisely these terms that can be interpreted as interaction terms when we 

are using the formalism to describe interactive fields in field theories.

In concluding this section we need to address an important question. If we should 

take realistically one of the two spaces, namely E  and M ,  what should we consider as 

physically real, the spacetime manifold or the total bundle? This is an issue similar to 

one that has already been addressed in the context of general relativity and is known as 

substantivalism. I am leaving the question unanswered for the moment and we will get 

back to it later o n .
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3.5.2 Science With Numbers, but not Necessarily With Coordinates

One further advantage of using Fibre Bundles is that the formalism is such that we do 

not need any reference to any kind of coordinates and reference frames. We are enabled, 

therefore, to express the laws in a coordinate-free way and thus to have them in their most 

general form.

For example, instead of the familiar form of Maxwell’s equations in classical physics 

which is coordinate dependent, using exterior calculus we may formulate them in an in­

trinsic, coordinate-free way. So, Maxwell’s first and fourth equations curlE  =  — and 

divB  =  0 become drj =  O140.

In the previous chapter we discussed Field’s objection to using numbers and his sug­

gestion to consider spacetime points as the fundamental entities of physics. His idea was 

that we could consider spacetime points, instead of numbers, as fundamental entities and 

attribute properties to them and therefore account for everything happening using mathe­

matics as a conservative extension of the physical theories. We also mentioned there that 

Field favored the use of tensor calculus because by employing tensors one does not have 

to appeal to numbers; the drawback of using tensors, though, is that one does not avoid 

the use of scalar magnitudes that may be chosen arbitrarily and hence his own nominalistic 

approach does better than tensors in avoiding arbitrary choices.

After the discussion in this chapter it has become clear, we suppose, that, first of all, 

in order to describe interactions we need two different types of entities acting together at the 

same regions of spacetime points. Hence, according to Field’s programme we would have

140 See also Darling, Differential Forms and Connections.
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to ascribe to the same physical entity two different bunches of properties, which are not the 

same as ascribing, say, extension and temperature. For, while in the case of extension and 

temperature we would just attribute two different properties to the same entity, in this case 

we would have to impose on the same object the characteristics of an interactive entity and 

of the interacted one at the same time. Hence, in our view, by doing something like that 

we basically remove the possibility to account for distinct physical objects whose existence 

has been verified experimentally and to give causal explanations. In other words, we should 

not be able to do physics any more.

So, in a nutshell, what we are trying to say is this. In quantum field theories, in­

teractions are essential, since it is through them that we observe the physical structures. 

From the physics literature we see that gauge theories can describe field theories and in­

teractions in them successfully. Interactions arise naturally as the solution of a variational 

problem. Fields carry tensor as well as spatiotemporal specifications to account both for 

’where &when’ (on the manifold) as well as for ’interactions’. Tensor fields spontaneously 

arise as cross-sections in fibre bundle theories, while the force fields are identified with 

the connections and this happens in a deductive top-bottom way. Using differential geom­

etry -and more specifically, the fibre bundle approach- we may express interactions in a 

coordinate-free way, which is important because then they do not depend on any specific 

system of reference. For all the above reasons, it is obvious that differential geometry and 

the fibre bundles formalism are a ’natural’ environment for gauge theories to flourish. They 

provide the most appropriate and agreeable formalism at present and we might even claim
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that it is also a necessary one141. Moreover, the interaction fields behave differently from 

the matter fields -the former display a bosonic behavior (associated with integer spin) while 

the latter a fermionic one (which means half integer spin). It is clear that we do not really 

need any gauge principle in order to justify this approach. We do not need anywhere the 

claim that ’all fundamental interactions in nature obey a/the gauge principle’ or that ’the 

gauge principle dictates the interactions’. To our view, what really happens is that the no­

tion of gauge symmetries, rather than dictating to us how, it enables us to describe some 

specific types of interactions in a consistent, deductive way -a top-bottom approach, the 

holy grail of theoretical physics- and at the same time it allows us to investigate the pos­

sibility of describing all the fundamental forces in the same way. This is a whole research 

programme in its own right and it has proved a very successful one. Hence, one could claim 

that the gauge principle has been confirmed and established in an a posteriori way and we 

have to accept it as such, but not as a necessary principle imposed by nature.

141 If there truly are in nature topologically non-trivial entities, then the fibre bundle formalism becomes 
indispensable. For more on this, see chapter 4.



Chapter 4 
Scientific Explanation: Four Ways to the 

Aharonov-Bohm Effect

Up until now, we have discussed the relation between mathematics and physics and 

we have seen how some aspects of this relation are exemplified by quantum field theories 

when they are expressed in the form of constrained Hamiltonian systems; we have also 

illustrated how the same physical systems are described using a more elaborate tool, namely 

the fibre bundles formalism. Next we will examine more thoroughly the relation between 

this latter mathematical structure and the physical systems it represents in the context of 

the discussion of the second chapter and we will draw our attention to the advantages and 

the disadvantages of this formalism.

One of the major advantages of the fibre bundles formalism is that it provides a 

unified -in the sense of top-bottom- approach to the whole picture of interacting fields and 

hence it allows for what we will call holistic explanations of certain physical events; this is 

an aspect that the constrained Hamiltonian formalism fails to capture. Aiming to bring to 

light this advantage, in this chapter we will use as a case study the Aharonov-Bohm effect 

and after we look at three suggested explanations and the problems they encounter, we will 

examine a fourth approach. This kind of explanation does not clearly fit any of the models 

of scientific explanation set forth by philosophers and hence is a sui generis type worth 

examining in some detail. For this reason, we will begin this chapter discussing the notion 

of scientific explanation and the problems this concept encounters in philosophy of science

142
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and then we will expand on this fourth explanation of the Aharonov-Bohm142 effect, an 

explanation which uses the fibre bundles formalism.

4.1 Scientific Explanation

So far as scientific explanation is concerned, ’’the current situation is an embarrassment for 

the philosophy of science143” and it is so because although there have been several better 

or worse accounts about what scientific explanation is, there is still missing a single theory 

of explanation that could cover all possible examples. It may be the case, of course, that it 

is not viable to search for a single theory because there are, and always will be, scientific 

explanations of different kinds. Nevertheless, the purpose of this thesis is not to argue for 

or against the possible existence of a single theory of explanation. Instead, our intention 

is to examine the nature of a specific example of scientific explanation, test it out against 

the existing theories and evaluate its status with respect to those theories. Having this 

purpose in mind, we will run through the main proposals that are currently discussed and 

either endorsed or criticized by the philosophical community without trying to remedy their 

problems.

As one would expect, the classification of the approaches as to what scientific expla­

nation is differ, according to various authors. But a reputable classification -and one that 

serves the purposes of this thesis as well- would be the very recent one by W. H. Newton- 

Smith (2000)144. There, he cites the following approaches.

142 Henceforth, we will refer to the Aharonov-Bohm effect as the A-B effect.
143 W. H. Newton-Smith (ed.), A Companion to the Philosophy o f Science, Blackwell, 2000, p. 132.
144 For detailed discussions on and different approaches to scientific explanation see, for example, Achinstein
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First of all, is the so called deductive-nomological, or D-N, model of scientific ex­

planation, introduced by Hempel. According to this model, a scientific explanation of a 

particular fact is nothing other than a deductive argument, where the premises comprise 

general laws as well as statements describing other particular facts and the conclusion fol­

lows from the premises. Such an argument is a scientific explanation just in case it is 

deductively valid. The main problem of this model of explanation is that it fails to accord 

with the fact that explanations are asymmetric, in the sense that when A  explains B, then 

B  cannot explain A.

An alternative to the D-N model of scientific explanation is the so called causal- 

relevance model, or C-R. This model emphasizes precisely the very fact of asymmetry and, 

according to it, explanations are no longer considered to be deductive arguments, but an ac­

count of the causal mechanisms that are responsible -partly or fully- for the phenomenon 

to be explained, the explanandum. The difficulties that this model faces are, first of all the 

fact that the notion of causation is at least as obscure and problematic as that of explana­

tion itself, and second the fact that a great many of scientific explanations are not causal 

explanations, despite the fact that causal relations and factors may be involved.

Types of explanation that are not causal are explanations by identification, explana­

tions using models and analogies, explanations by unification and explanations focusing 

on pragmatic aspects. In certain cases, the explanandum is explained by identifying some 

of its features with other observable facts and quantities that are better understood. For 

example, by identifying temperature with molecular motion, one can explain how the tem­

P., The Nature o f Explanation, OUP, 1983, Cartwright N., How the Laws o f Physics Lie, Clarendon Press, 
1986, Ruben D.-H. (ed.), Explanation, OUP, 1994, Salmon W.C., Causality and Explanation, OUP, 1998.
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perature of a gas increases when the average molecular speed increases as well. Our under­

standing of a complicated physical structure is improved when it is modeled by a simpler 

structure the workings of which we know. On the other hand, unification of, say, Newton’s 

laws of motion and the universal law of gravity explains Kepler’s laws of planetary motion 

by making them deductive consequences of a bigger structure145. This type of explanation 

is still open to further elaboration and refinement and its relations to the C-R model needs 

to be examined146. Finally, the view that focuses on pragmatic aspects takes into account 

the fact that the explanation which we would consider as satisfactory depends heavily on 

the context and good explanatory answers must be relevant. The problem with this last one 

is that the notion of relevance, as this was articulated by van Fraassen, is unconstrained and 

hence it virtually allows for anything to explain anything!

From what we can see so far, causation -never mind how problematic this notion 

may still be- plays quite an important role even in approaches to explanation that are not 

genuinely causal. So, in the cases of explanation by identification and of explanation using 

models, at some point or another one will appeal to causal factors that are involved. And 

even for the unification approach, Salmon (1998) has suggested that unification and C- 

R may be complementary rather than competing. In what follows, we will examine the 

relations between the two in the specific example of the A-B effect. Also, within the same

145 The fact that a strict application of Newton’s laws, applied to planetary models, must be amended by 
idealizations and approximations in order to yield Kepler’s laws, strictly speaking, means that the deduction 
we are referring to above is not really a deduction. However, if we assumed the laws to be true -as we often 
do in physics- then Kepler’s laws are deduced from Newton’s.

146 We will come back to explanations by analogy in the last chapter of this thesis.
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context we will examine how well the specific explanation we have in mind fits with the 

D-N model.

4.1.1 Holistic vs Causal

In a somewhat different -as well as older- approach, Nagel (1961) distinguishes four types 

of scientific explanation: explanations that fall under the heading the deductive model, 

which is the same as the D-N model mentioned above, probabilistic explanations, func­

tional or teleological explanations and genetic explanations. Probabilistic explanations are 

explanations that are definitely not of deductive form. In them, the explanans do not de­

ductively imply the explanandum but they render it highly probable, or at any rate more 

probable than in the absence of explanans. Most statistical explanations in physics and in 

other sciences are of this type. For example, most of the explanations in nuclear physics 

and many in quantum mechanics could be considered to fall under this category. Genetic 

explanations, on the other hand, explain by describing the sequence of events that lead to 

the evolution of one system into another.

Finally, functional or teleological are characterized as the explanations that appeal to 

a final goal of the system we examine. Phrases that are common in such explanations are ’in 

order that’ or ’for the sake of*. Nagel points out, though, that despite the common belief, 

teleological explanations are not necessarily anthropomorphic and that they do not demand 

that ’’the future is an agent in its own realization”. And then he argues that although this 

kind of explanation is common in biological sciences, it is not exclusive to them for even 

in physics we do have explanations that share the main characteristics of teleological ex­
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planations. The main examples he gives from physics are those of mechanical systems that 

employ the principle of least action and variational calculus. The systems that we have ex­

amined in the previous chapter are such systems, thus it is worth expanding on the notion 

of teleological explanation as this is explicated by Nagel and then, using the example of 

what we call the topological explanation to the A-B effect, relate this example to the teleo­

logical and compare it to the D-N and the C-R models of explanation. It is worth noting at 

this point that the explanation of the A-B effect we are offering here is not the only topo­

logical explanation that exists. Certain topological solutions of Yang-Mills theories are 

essentially topological but so are certain attempts to explain ’handedness’ and projectile 

motion in classical mechanics. Postponing the discussion of all these topological expla­

nations for later, let us now examine in some detail the notion of teleological explanation 

before we turn to the specific topological explanation of the A-B effect.

Teleological Explanations

Teleological explanations occur mainly in biology, as Nagel indicates, where pro­

cesses are directed towards attaining certain end-products. Explanations in physics, on the 

other hand, are unlike the ones in biology since the notion of final cause is not considered 

at all in the study of physical phenomena. But then the question that arises is whether this 

disparity entails that there are no teleological explanations at all in physics and thus render 

biology an absolutely autonomous discipline. The answer he gives is ’no’ and here is how 

he supports it.
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First of all, he claims, teleological explanations are not equivalent to non-teleological 

ones. This can be seen easily when we consider first that although a teleological statement 

implies a non-teleological one147, the inverse is not always true, therefore there must be 

some important difference between the two. So far as physical sciences are concerned, they 

do employ formulations that have at least the appearance of teleological statements, e.g. by 

using what he calls extremal principles -or the principles of least action, as are usually 

called. Principles of least action state that certain physical systems evolve so that their 

action, a magnitude from which all the possible configurations of a system are deduced, 

takes its smallest value. However, ’’such teleological interpretations of extremal principles 

are now almost universally recognized to be entirely gratuitous”148 because even in physical 

systems obeying extremal principles there are no purposes or dynamic operations acting on 

their own right and directing the system towards a specified and specific goal. This lack 

of purposes is revealed by the fact that the dynamical structure of physical systems can be 

considered as the effect of constituent elements and contributory processes and not as the 

outcome of certain global properties of the system as a whole. The lack or the presence of 

global properties in a system taken as a whole will provide one of the ultimate distinctions 

between teleological and non-teleological explanations as they are usually enunciated. But 

before we elaborate on that, let us point out some more observations Nagel made about the 

differences between teleological and non-teleological systems.

147 For example, a teleological explanation of the fact that humans sweat when it is hot is that the human 
body maintains its temperature constant. A non-teleological explanation that follows from the teleological 
one is that when hot one puts on less cloths, seeks cooler spots, drink cold drinks etc. and all these help them 
maintain the temperature of the body constant.

148 Nagel, The Structure o f Science, p.407.
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In biology, usually we are concerned with a special class of organized bodies, like 

for example the pancreas, and we seek explanations about their functions which, in turn, 

lead us to investigate the conditions making for the persistence of this specific system. So, 

a statement of the type ’the secretion of insulin regulates the feeling of hunger so that the 

organism gets the food it needs for its maintenance’ would constitute an explanation the 

explanatory power of which lies on the fact that there is a goal behind the response of the 

system: this kind of biological system responds to changes triggered by its environment 

by altering its functions so that its goal is sustained. The physical sciences, on the other 

hand, are not concerned with selected physical systems, nor with special classes of bodies. 

Instead they study the effects of certain conditions and processes on an unbounded variety 

of physical objects. Hence, when we study the radiation of the sun, for example, we may 

discuss its effects on a wide variety of physical systems and no such system is considered 

as more important. Moreover, there is no underlying goal in the systems and the processes 

concerned in this example: we do not ’explain’ the average radiation per square meter 

on the surface of the earth on the basis of the maintenance of the average temperature 

of the earth. Nor do we claim that this quantity fluctuates according to the damage we 

-human beings- have done to the ozone layer so that the temperature of the planet and the 

amount of ultraviolet radiation arriving at its surface remain constant. This major difference 

between physical and biological systems, namely the fact that ’’living things exhibit in 

varying degrees adaptive and regulative structures and activities, while the physical systems
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do not -so it is frequently claimed”149 justifies the fact that teleological explanations seem 

’’peculiarly appropriate” for biological but not for physical systems.

Yet physical systems that are self-regulating and self-maintaining have been con­

structed. Examples of such systems are automatic pilots, electronic calculators and ther­

mostats, to mention just a few, and these systems resemble living organisms. So one may 

be justified to claim that there are non-vital systems that could be characterized as tele­

ological and hence one needs criteria that would enable one to distinguish between them 

and non-teleological non-vital systems. Bearing in mind that physical scientists are justi­

fied to find objectionable the assumptions about underlying purposes in physical processes, 

we would be able to attribute a kind of ’goal-directedness’ to physical as well as to biolog­

ical systems only if  it was possible to formulate the structure of ’goal-directed’ physical 

systems in such a way that the analysis is neutral with respect to assumptions concerning 

the existence of purposes. This is possible, according to Nagel, when we characterize such 

systems as teleological on the basis of certain assumptions that render teleology into an an- 

alyzable category. The assumptions are the following: (i) the system S  can be analyzed 

into a set of related parts or processes that are causally relevant, yet they can be assigned 

independently, to the occurrence of some property or mode of behavior G150 of the system, 

(ii) a change (with time) in any of the variables that characterize the G state of S  takes S  

out of this state; we call this change a primary variation, (iii) when a primary variation oc­

curs in one or some of the parameters, the remaining parameters also vary so that they only

149 Ibid., p.408.
150 G contains in the form of variables -not necessarily numerical- all the independent parts of S  that are 

causally relevant to the state of the system.
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take values from certain classes of their range and we call this an adaptive variation, (iv) 

the values that the primary variation has assigned to the initially changed variables corre­

spond to the values the adaptive variation has assigned to the adaptively changed variables 

so that S  is eventually in a G state again. ’’When a system S  satisfies all these assump­

tions for every pair of initial and subsequent instants in a time interval T, the parts of S  

causally relevant to G will be said to be ’directively organized’ (during the interval T  with 

respect to G)”151. This definition can now be used to characterize biological as well as 

non-vital systems152 and the distinction it makes is that teleological systems are necessar­

ily directively organized. Thus, teleological explanations are concerned with systems such 

that their variations satisfy the above assumptions.

The above analysis guarantees now the equivalence between the non-teleological and 

the teleological explanations that may be given for the evolution of a directively organized 

and/or goal-directed system. It still seems problematic, though, that in physics there is 

a preference for non-teleological explanations. The reason for this is that a teleological 

explanation requires the further assumption that the system under consideration needs to

be treated not just as a directively organized system but also as a whole. As Nagel put i t 153,

’’teleological explanations focus attention on the culminations and products of spe­
cific processes and in particular upon the contributions of various parts of a system to 
the maintenance of its global properties or modes of behavior. They view the opera­
tions of things from the perspective of certain selected ’wholes’ or integrated systems 
to which the things belong; and they are therefore concerned with characteristics of 
the parts of such wholes, only insofar as those traits of the parts are relevant to the

151 Nagel, The Structure o f Science, p.415.
152 Admittedly, this definition is highly vague and systems, either teleological or nonteleological ones, may be 

found that do not satisfy the definition. However, the definition ’’formulates the abstract structure commonly 
held to be distinctive of ’goal-directed’ systems” (p.421).

153 Ibid., pp.421-2.
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various complex features or activities assumed to be distinctive to those wholes.
Non-teleological explanations, on the other hand, direct attention to the conditions 

under which specified processes are initiated or persist, and to the factors upon which 
their continued manifestations of certain inclusive traits of a system are contingent. 
They seek to exhibit the integrated behaviors of complex systems as the resultants 
of more elementary factors often identified as constituent parts of those systems; and 
they are therefore concerned with traits of the complex wholes almost exclusively to 
the extent that these traits are dependent on assumed characteristics of the elementary 
factors.

In brief, the difference between teleological and non-teleological explanations, as 
has already been suggested, is one of emphasis and perspective in formulation”

Hence in teleological explanations the focus is on the entirety o f a physical structure 

and the characteristics of their parts are studied only to the extent that these explain the 

behavior of the whole. On the other hand, in non-teleological explanations, where we omit 

the assumption that the physical systems or structures are directively organized and hence 

we may study the sub-systems of our physical system separately, the focus is on factors that 

affect specific parts o f  a physical structure rather than the whole. To sum up, in both cases 

we study causal factors and processes, yet in the first case one adopts a holistic approach 

while in the latter a bit-by-bit or fragmented approach.

An example of such a physical system which can be described only as a (functional) 

whole is an insulated conductor of an arbitrary shape154. When charge is brought to the 

conductor, it will distribute itself on its surface of the conductor so that the surface forms 

an equipotential, while at the same time the charge density on the surface is not uniform; it 

depends on the shape of the conductor. As a matter of fact, the charge will be distributed 

so that areas with greater curvature have greater density and those with smaller curvature 

have smaller density. The interesting feature of this system is that the pattern of the charge

154 The example was first given by Kohler (1942) and reproduced in Nagel (1961), p.391.
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distribution on the surface of the conductor cannot be built bit-by-bit. In other words, if 

we brought charge to one part of the conductor and then to another and then to another, 

thus trying to build the pattern it finally has, we would find that each amount of charge, 

however small, would distribute itself on the surface so that the density pattern was the one 

we described. Along the same lines, if we removed some of the existing charge from one 

part of the surface, the remaining charge would redistribute itself so that the surface would 

still be an equipotential and the distribution as described.

Other examples of physical systems155 that behave as a whole are the surfaces as­

sumed by soap films. Given the boundary condition, soap films will form surfaces of min­

imum area. So, a soap bubble will assume the shape of a sphere as this is the shape with 

minimum surface for a given volume. If we could remove part of this sphere with circu­

lar boundaries, the surface would turn to a plane, as this has the minimum surface for the 

given boundaries. On the other hand, if we could bring and attach another spherical bubble 

to the first one, the two would give a new sphere of greater volume. In both examples it is 

obvious that the conditions (i)-(iv) hold, so the systems can be considered to be directively 

organized ones.

It is imperative, for the purposes of this thesis, that we address at once the question 

whether a constrained Hamiltonian system could be considered as such a directively orga­

nized system and this for the reason that we want to classify a specific type of explanation 

that arises in such systems. Nagel considers the example of a simple pendulum -a bob sus­

pended by a string, experiencing gravitational forces- that is affected by a gust of wind.

155 This example is due to Nagel (1961), p.392.
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The system S  is initially in a state of equilibrium G. The variables we need in order to 

fully describe the system are the independent coordinates and the forces acting on it. When 

the wind blows, the bob performs oscillatory motion due to the forces acting on the bob 

and these are the gravitational attraction, the tension of the string -or the force due to the 

constraints of the system- the coefficient of dumping and the impulsive force of the gust of 

the wind. The gravitational force, the damping and the tension result in the so called restor­

ing force. Nagel asserts that this system fails to be a directively organized system because 

the restoring and the impulsive forces acting on it are not independent, as it was expected 

in order to satisfy assumption (z) for the variables, because as soon as we know the impul­

sive force, we also know the restoring force. But if we considered that the impulsive force 

is some environmental causal influence and the restoring force is just the response of the 

pendulum to the change of its position, then the pendulum can be considered as a direc­

tively organized system indeed. This is possible to do if we make the following alterations 

to Nagel’s account.

The system S  is a pendulum in equilibrium and the various external forces acting on 

it; this state of the system is G. Consider that all the causally relevant parts or processes 

are: the pendulum (along with the forces acting on it when it is in equilibrium) and the en­

vironment. The environmental forces acting on it and the ’internal’ forces are independent 

in the sense that we could vary either of the two parts independently. Yet, for whatever 

primary variation there is an adaptive variation as follows. If we vary one of the environ­

mental forces acting on the pendulum, say if  there is a sudden gust, then the remaining 

forces from the environment (i.e. the resistive forces) along with the ’internal’ forces of the
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pendulum will vary adaptively, and in accordance with assumptions so that at a

later time the system will be in state G again. Hence, the system is a directively organized 

system.

The pendulum is only a specific case of a constrained Hamiltonian system. The ques­

tion we addressed previously, though, is concerned with general constrained Hamiltonian 

systems: are they directively organized systems too? If we consider that only the uncon­

strained degrees of freedom are independent, in the sense of assumption (z), and in addition 

to that if we take into account all the laws, principles, environmental factors etc. that con­

strain the system further, we could claim that such a system is a directively organized one 

and hence treat it as ’whole’. This way, one may tell a nice causal story and hence give a 

very good holistic explanation about certain events that occur in a physical structure taking 

into account what’s going on in the entire structure and not just in some small part of it. In 

the first place, it was not the word ’teleological’ that we found most appealing here, rather, 

it was the word ’holistic’. Yet, Nagel’s proposal to understand goal-directed systems as di­

rectively organized ones that do not need purposes and goals as dynamic agents may allow 

us to accommodate explanations from physics that do not fit any of the other suggested 

models of scientific explanation. Even more, this model may be able to embrace explana­

tions having some of the characteristics of the D-N or the C-R models but not fitting them
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4.2 Abstraction, Approximation and Idealization:
the Laws of Physics do not Lie, it’s Just that the Mappings 
are Not-All-Inclusive and Non-Exact

We turn now to a very important aspect of explanation, namely that the explanandum is of­

ten explained only up to some degree of approximation and correspondingly the explanans 

may not be strictly true. Although at this stage the link between this section and what fol­

lows may not become apparent, after we have discussed the A-B effect and its suggested 

explanations we will come back to the notions of approximation and idealization and then 

the hidden link will be revealed. To preempt the reader, though, let us just say that a certain 

gloss of the topological explanation of the A-B effect will turn out to be non-exact, hence 

we will criticize it on the basis of what is generally accepted as a fair approximation.

4.2.1 Galileo and the Problem of Accidents

Since Aristotle, who claimed that science’s aim is to discover the essences, there seems 

to have been made a distinction between accidental and essential properties of physical 

objects. This very distinction is also important for Galileo, although, as Koertge points out, 

’’his conception of accident is interestingly different from Aristotle’s”156. In this section we 

will focus on Galileo’s views on accidents157 and on the process that leads from observations 

of phenomena infected by accidents to discovery of the essences.

Galileo was talking about three different types of accidents. The first is what he called 

physical accidents and these consist of irregularities operating causally in real physical sit­

156 N. Koertge, (1984).
157 The reader is referred to Koertge’s paper for a detailed analysis.
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uations but are deliberately ignored by the theory. One example of a physical accident are 

the frictional forces acting on an otherwise freely falling body. Then there are the acci­

dents o f  observation, that is to say certain factors involved in the observation that limit the 

precision of our perception. ’’Perhaps the most dramatic example”, Koertge writes, ”is the 

case of irradiation in which adventitious rays from the stars are refracted by the moisture 

in our eye and make the stars appear to be twinkling and larger than they really are”158. 

Finally there are the mathematical accidents, which are nothing other than discrepancies 

between the properties of mathematical objects and the properties of the physical ones. So, 

a real spherical object is not a ’real sphere’ whose surface points are all equidistant from its 

centre. These accidents, according to Galileo, hide and obscure essences and so the naive 

observer cannot discover them. Throughout his life, then, ’’Galileo struggled with what 

[Koertge calls] ’the problem of accidents’: because of physical, observational and mathe­

matical accidents we do not find nor expect to find an exact match between ideal, simple 

scientific laws and what we actually observe. How then can we use experience to appraise 

our proposed scientific theories?” During this lifelong struggle, Galileo passed through 

various stages of reflection on the problem which we could roughly summarize as follows. 

He supported the view that science should be both mathematical and based on experience, 

yet one should give proofs which are less mathematical and more physical since one would 

then use assumptions based on observed matters of fact. Whether these assumptions are 

legitimate, though, depends on our ability to foresee and remove accidents, physical to be­

gin with. Nevertheless, one should not expect theories to match exactly the real world

158 N. Koertge, (1984)
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experiments because theories are idealizations, so there will always be an observation gap 

caused by physical accidents. Laws, which are the result of such idealizations, hold only 

for accident-free situations. Moreover, the gap widens by the presence of mathematical ac­

cidents or mathematical approximations that, once again, we inevitably make. One way 

for removing accidents, he suggests, is by improving our experimental techniques, when­

ever this is possible. When this is not possible, like in the case of the omnipresent frictional 

forces for example, one may vary the ’degree’ of accident and check the results. When the 

accidents are small and irregular, one has to just ignore them. And he goes on to suggest 

that in certain cases we may even have to abstract from major interferences, almost as big 

as the effect itself. Two things would make an answer probable to Galileo: simplicity con­

siderations and, most significantly, whether the theorems on which the answers were based 

were anchored on observation and experimentation.

So, we could summarize Galileo’s beliefs about how one may arrive at a theory as 

follows. Since one has to deal with accidents, of which one may find an infinite amount, 

it is necessary to abstract from them and then use the abstractions with the limitations that 

experience teaches us. In order to abstract, the ’recipe’ to follow is the this: vary the degree 

of perturbation, note the resultant effect, extrapolate to the limiting case where perturbation 

is absent. In this process approximations are perfectly legitimate whenever the effects are 

too small -at least comparatively. Also, one has to deal with experimental error by doing 

controlled experiments and by eliminating as much as possible the accidents of observation.
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An idealization, which is the result of this process, is the ’’quantitative extrapolation from 

real-life experimental situations to the ideal-theoretical-limiting case”159.

What one can undoubtedly notice here is that for Galileo, there is a two-way process 

going on when doing science. One first goes from observation and experimentation to 

idealization, through abstraction (or elimination of accidents) and approximation. Then, 

starting from theory, one may go back to observation using approximations whenever we 

cannot improve the experimental situation any further, and acknowledging and accepting 

that the experimental results will never match exactly the theoretical predictions. Galileo’s 

views about how one arrives at a theory -an idealized view of the world?- is similar to 

Shapiro’s views about how we ever get to know abstract mathematical structures. If Shapiro 

gets it right about mathematics, as we believe he does, and if Galileo gets it right about 

physics, then new theories in both disciplines are likely to be inspired by observation of 

the same physical systems from which they abstract. Hence it should come as no surprise 

that often, and even in cases where there seems to be no dynamic interaction between 

physics and mathematics, it is as though mathematical theories, already developed, have 

been waiting on a display for several years before they are picked to be employed in the 

formulation of some physical theory. After all, a deep connection between mathematics 

and physics can be found in the very ideas or intuitions that he in the very foundations of 

the theories and in the fact that abstraction follows similar paths in both.

Before we conclude this section we would like to make two further remarks. One 

concerns the surplus structure that certain physical theories acquire once they are expressed

159 Ibid.
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in mathematical language. Apart from the kind of abstraction that Galileo is talking about, 

which results in an ’impoverished’ version of physical systems, there seems to be some 

different, albeit parallel, process that results in something reminiscent of what we have 

called surplus structure. Koperski in his (2001)160 suggests that artifacts -which correspond 

to objects belonging to our surplus structure- ’’are the false properties or relations that can 

result from idealizations. An artefact is not an abstraction built into the model; it is a 

(possible) consequence of simplifying assumptions”161. Consequence of the simplifying 

assumptions, or of something different, the point is that those objects often appear to have 

an explanatory and predictive power that we would like to try and explain in the last sections 

of this chapter. Partly, the power of the surplus structure may be justified if  we considered it 

to be necessary for encoding all the information needed for the description of the physical 

system, without corresponding to some real physical entity.

4.2.2 Models and Analogies in Science

Mary Hesse, in her Models and Analogies, claims that there is more to models than being 

just mere aids to theory construction, as a Duhemist would suggest. Adopting a Campbel- 

lian view, she asserts that theories are expected to fulfill more than just being a mathemat­

ical system with deductive structure. A theory, if it is to be an explanation of phenomena, 

ought to be intellectually satisfying in the sense that it provides interpretation in terms of 

models, to be mathematically intelligible and maybe simple and ’economic’. Moreover, 

theories are dynamic in the sense that they are extended and modified in order to make pre­

160 In this, Koperski follows Wilson (1991).
161 J. Koperski, 2001.
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dictions and account for new phenomena. According to Hesse, that would not be possible 

if for extending the theories one did not use analogies with the already existing models, 

for without models theories cannot be genuinely predictive. Hence models are essential to 

the logic of science.

A model is analogous to the physical system it models, or to some other model, or to 

a theory, in three ways, Hesse claims. First, there is the so-called positive analogy which 

refers to the properties of the model that are found in the system as well, then there is the 

negative analogy, which reflects properties of the model that are not found in the system 

and finally there is the neutral analogy, which is what allows for predictions and which 

refers to analogies that we do not know yet whether they are positive or negative. She 

emphasizes that while in an accepted theory we will find only positive analogies between 

theory and a physical system, in what she calls models which "is the way we are imagining 

the phenomena themselves”162, we will find both positive and neutral analogies, whereas 

in the so-called mode/2 we may find all the three types of analogy present. The observed 

properties and the observed analogies between models and physical systems, or models of 

one physical system and models of another physical system, are the sources of information 

that help both in explanation and in theory construction. But the explanatory role is played 

by the positive and the neutral analogies only; in her own words, ”[w]hen we consider a 

theory based on a model as an explanation for a set of phenomena, we are considering the 

positive and neutral analogies, not the negative analogy”163. In addition, it is the neutral 

analogies that have predictive strength and hence may show the way towards new theories.

162 M. Hesse, Models and Analogies, p. 11.
163 Ibid.
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These analogies between the properties of two analogues we may call ’horizontal’. Analo­

gies have one more feature: there are relations between the properties of the same object or 

model that are causally linked, which we will call ’vertical’.

Hesse distinguishes further between two types of analogy which she calls formal and 

material. A formal analogy is a one-to-one correspondence between different interpreta­

tions (or models) of the same theory. It is a post-theoretic analogy in the sense that it can be 

identified as such after the theory has been established and the models have been invented. 

On the other hand, material analogies are pre-theoretic analogies between observables; pre- 

theoretic in the sense that such analogies can be identified between two models before a 

theory has been established for one of the two, the one that we call the explanandum. Mate­

rial analogies between established model and explanandum, then, enable scientists to make 

predictions of a new theory.

Let us examine now how material analogies combine with positive and neutral in 

explanation and how they are used in predictions. To do that, we will use the following 

example. Suppose that we are aware of the wave theory which is expressed by the wave 

equation y = a sin 27vfx,  where a is the amplitude of the wave and /  its frequency. We are 

also aware that the theory is interpreted successfully in what we could call sound model2, 

which contains all observational properties, such as loudness, pitch, detected by ear, prop­

agated in air and so on. Furthermore, we acknowledge that light observables like inten­

sity, color, propagated in aether and so on may be interpreted using the same wave theory. 

Hence, before we establish any theory of light, we recognize that there exist pre-theoretic 

material analogies between model2 and light observable properties. Rendering this bunch
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of properties of the sound waves into a modeli, we may now attempt an explanation of the 

wave properties of light in terms of a new wave-theory of light that will be based on the 

positive and neutral analogies between modeli and model2. This theory leaves out of the 

analogy strategy the negative analogies that inevitably exist between the sound-model2 and 

the light-modeli. The fact that there are some negative analogies present in model2 is not 

sufficient by itself to ban the model, so far as the properties to which they refer and which 

they causally affect are not essential164. What is important to point out, though, is that in 

predicting and probing the wave theory of sound to account for light, one begins of course 

with the known positive analogies, but one has to rely on the neutral analogies to formulate 

hypotheses that may or may not be refuted afterwards by experimental evidence. So, the 

’horizontal’ similarity relations that hold between the two models allow for predictions and 

inferences in the ’vertical’, causal direction; predictions that involve the neutral and maybe 

the negative analogue properties of modeli.

4.2.3 The Chaos Case

In Explaining Chaos, Peter Smith addresses the question of what constitutes a good sci­

entific explanation of chaotic systems and his case study is very relevant to ours in that in 

chaos theory, the mathematical structure involved has got what he calls surplus content, 

which is very similar to our own surplus structure. In his own words, the mathemati-

164 Hesse does not provide a clear-cut answer to what it means for a property to be essential. But she does 
consider the following three suggestions (p. 100-1). First, essential are properties that are causally closely 
related to the positive analogy of the model. Second, if a property is so closely related to the neutral analogy 
that it would render it negative if  the property in question was shown to be negative, then it is also essential. 
Finally, a model with some negative analogy may be retained even when the negative analogy affects the 
neutral, just in case there are no alternative models available.
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cal structure with the surplus content ”is like a map with an unlimited amount of excess, 

necessarily fictional, content”165. The problem that one faces is that the theory, which he 

considers to be an idealization of nature, provides models which ’’misrepresent the facts by 

involving patterns of dynamical behavior which have an intricacy that the modelled phe­

nomena must typically lack”166. How, then, could such a theory provide explanations? His 

response comes in three parts.

First of all, he considers that chaotic theories can be ’’richly predictive in a variety of 

ways”, hence useful in the sense that they put the theory back into empirical work and for 

that reason they may reveal correlations between parameters and dynamical features that 

do play an explanatory role. Moreover, though not strictly true, they are still approximately 

true. One reason why a theory, in general, and chaotic theories, in particular, cannot be 

strictly true is that the infinite theoretical precision of the idealized theory will be only 

and always met by finite physical/experimental accuracy, he claims, and with this claim he 

reminds us of Galileo’s mathematical and observational accidents. In order to define the 

notion of approximate truth, Smith distinguishes between two different types of structure. 

The one, which represents, consists of the bundle of abstract trajectories and it is the 

structure that is doing the actual modeling, while the other, which is represented, is the 

structure encoding what needs to be modelled and it consists of all the physically possible 

time evolutions of the real-world dynamical system. ”If these two are replicas, then we say 

that the dynamical theory that postulates such a model is true, period. And if  the structures 

are similar enough, we can say that the dynamical theory in question is approximately

165 P. Smith, Explaining Chaos, p.43.
166 Ibid., p.51.
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true”167. Of course this rough definition and the phrase ’similar enough’ in it opens up a 

whole philosophical debate168, but this is beyond the scope of this thesis and hence we will 

not pursue it. For his own purposes, the definition does the job of attributing to the models 

approximate truth. Finally, he points out that certain properties -like for example period- 

doubling leading to apparent chaos- present in the mathematical model are universal in the 

sense that they are shared by a wide class of physical cases as well, which are empirically 

observed, and this is, of course, reminiscent of Hesse’s analogies. So what requires an 

explanation ”is how the universal features of a family of discrete maps are related to the 

modelling of real-world continuous processes”169. Examining the models with the universal 

feature and the relation of the parameters responsible for the resulting chaotic behavior to 

the theory as a whole, Smith concludes that we are getting a partial explanation of why the 

dynamics turns out to be chaotic by referring to more general principles of the theory. One 

objection to this partial explanation might be that it is qualitative rather than quantitative, 

but this is not alien to scientific practice, he claims.

An issue that is related to both the notion of approximate truth and the notion of 

universality is that according to a certain equation of the theory, the Navier-Stokes equation, 

very small changes in the initial conditions can have unpredictably big effects. The models 

that are based on this equation are usually derived by throwing away all the higher order 

terms that are responsible for the unpredictably big effects. But then the problem one 

faces is one of credibility of the resulting approximation. Smith’s response is that ’’some

167 Ibid., p.72.
168 For detailed discussions see P. Smith, Explaining Chaos, D. Lewis, On the Plurality o f  Worlds, D. Miller, 

Critical Rationalism.
169 P. Smith, Explaining Chaos, p. 102.
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features of the model may be relatively robust, i.e. be features which are also shared by 

variant models where other perturbing terms are thrown in to make the defining equations 

somewhat more realistic. And we might be able to appeal to those more robust features 

to extract useful predictions about the kinds of behavior and the kinds of transition to be 

found in the physical system. Universality results establish that certain features can be 

particularly robust”170. He suggests, therefore, that the features to be taken seriously are the 

robust features and not the ones that belong to the surplus content of the theory. Comparing, 

once again, with Hesse’s terminology, we could say that the robust features correspond to 

positive analogies.

The question that is raised from all that is whether the part of the mathematical struc­

ture in chaotic models that does the explaining makes use of a neutral or a negative analogy. 

And as it is the case in the A-B effect as well, as we shall see shortly, there is indeed a neg­

ative analogy at the heart of this explanation, since the mathematical structure that models 

the physical system, namely the fractal structure, is infinitely intricate, while the physical 

system is not, apparently. Smith claims that fractal attractors -the negative analogy- do not 

have to be interpreted realistically and they may even be left out as uninterpreted mathemat­

ical objects. This, in Hesse’s terminology, means that the positive and the neutral analogies 

of our model will not be ’causally’ affected by the non-inclusion of the fractal attractors 

and hence the model will not be fatally affected.

Along the same lines with Smith’s views are Orly Shenker’s who argues in her (1994) 

’’that fractal geometry can only be approximately applied to natural forms” because even

170 Ibid., p. 125.
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when the geometrical structures seem to match physical forms amazingly, these actual ge­

ometrical structures are not fractals. Fractals are primitive geometrical objects that possess 

infinitely many details in a finite volume -i.e. they have infinite complexity- and they may 

be described as geometrical processes that continue ad infinitum. However, she argues, the 

geometrical objects that are used as representations of physical forms neither possess infi­

nite details nor could the process of their construction continue for ever -there is a cut off 

that renders them into an approximation of fractals that, in turn, approximate natural forms. 

Hence, she concludes, ’’they resemble natural forms due to their not being fractals”. But 

even if  we accepted as legitimate the approximation of physical forms by an approxima­

tion of the actual mathematical structures, the latter have hardly any of the properties of the 

former. For if one tried to, say, magnify the ’fractals’ that resemble a landscape one would 

realize that the previously apparent resemblance between the two now vanishes. Moreover, 

chaos theory has no coherent interpretation, hence, no far-reaching physical conclusions 

can be drawn, and being a theory of infinite detail it is not consistent with the atomic hy­

pothesis. All the above considerations, as examples of what Hesse would call negative 

analogies, lead her to the conclusion that fractal geometry is not the geometry of nature. 

To anticipate our discussion of analogies in the case of the A-B effect we would like to 

point out that despite the similarities that we may find between the two cases, there is a ma­

jor difference, namely that in the A-B case there is a whole theory related to it and a very 

successful one indeed.
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4.3 Three Attempts for an Explanation of the A-B Effect

The Aharonov-Bohm effect, also known as the A-B effect, is an effect one finds in every 

quantum field theory book since everybody appeals to it in order to justify why one should 

consider that the gauge field in electromagnetism is actually a real physical entity. The pre­

diction and subsequently the experimental verification of the A-B effect have been crucial 

cornerstones in the history of physics since they suggested that the connection, or the AM 

field, might be interpreted as a real field171, rather than just a mathematical artefact. Hence, 

ever since its discovery, physicists take it for granted that does represent something as 

tangible as -at least- any matter field. But this is just the physicists’ view, which means that 

there is quite a lot of dirt left under the carpet, dirt that we aim at clearing up in this sec­

tion. But first things first, we give an account of the effect itself, before we attempt to give 

some explanation for it.

4.3.1 The Effect

The setting for the A-B effect is very similar to the two-slit experiment with just one differ­

ence: right outside the two slits and in between them there is a very fine and long solenoid, 

ideally infinitely long, producing a magnetic field that is confined entirely within the tube 

of the solenoid.

The configuration in the two-slit experiment is depicted below.

171 This is what I call the second approach to the A-B effect. According to this approach, the effect may be 
accounted for by considering that the field is a real physical field which acts on the passing electrons and 
causes a phase shift on them.
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electron source

Figure 10 
The Two-Slit Experiment

If we consider that electrons may pass from either slit, but each electron passes from 

one slit only, the interference pattern that appears on the ’screen’ of the two-slit experiment 

may be explained as a result of the phase difference between the wavefunctions of the 

electrons that arrive there. So, if the phase factor of an electron which passes from slit 1 

is et$1 and the phase factor of an electron that passes from slit 2 is el$2, then the phase 

difference of the two ’waves’ is given by

27ra 2iv}cd
S =  —  =  ~ L \

where a  is the difference in the path length for the electrons going through the two slits, 

d is the distance between the two slits, x  is the distance from the axis of symmetry of the 

’screen’, A is the wavelength and L  is the distance between two-slits and ’screen’.

When a solenoid is inserted in-between the slits, the configuration changes as follows.
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solenoidelectron source

Figure 11 
The Aharanov-Bohm Experiment

Now that we have a magnetic field present in the area, there is a change in the phase 

of the electrons that pass by, which is equal to ^ Strajectary A  • di. So both phases 3>i and 

$2 o f the electrons that pass through each of the two slits respectively will become:

$ 1 =  $ 1(B =  0) +  |  f  A M  
n j m

and

$ 2 =  $ 2(B =  0) +  j  [  A  M
h j ( 2 )

Since the interference of the waves on the ’screen* depends on their phase difference, there 

will be a new pattern determined by the difference of the new phases:

s  =  $ x - $ 2 =  5(B =  0) +  | ^  A - d t - l f  A  M= 6 ( B  =  0) +  l j > A  M

This equation tells us how the electron motion changes when some magnetic field is present. 

(NB. Any choice o f  A  which has the correct curl gives the correct physics.) If we use Stoke’s 

theorem at this point, the equation above becomes:
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6 = -  <!>2=<5(B =  0) +  |  j  A  ■ d i =S(B =  0) +  |  J  V x  A-ds =

—  <5(B =  0) +  j -  [flux o f B between (l)and(2)\ 
n

Since the flux of B does not depend on which pair of paths we may choose, provided 

that they surround the solenoid, for every arrival point there is the same phase change 

x 0 = ux o f B between (1) and (2)\. This means that the entire pattern is shifted by x0.

These are the general ideas involved in the A-B effect and the main consequences 

are two. The first one is that if the magnetic field, which is confined inside the solenoid 

only, accounted for the effect, then we would have action at a distance that, clearly, violates 

locality. The second is that the A  field may thus be considered as real in the sense that 

”it is what must be specified at the position of the particle(electron) in order to get the 

motion”172.

Since the Aharonov-Bohm original publication in 1959 quite a lot of discussion has 

been going on about the effect itself and its experimental verification. Some, like for ex­

ample Bocchieri and Loinger (1978), have challenged the validity of at least the early ex­

periments and even have gone as far as to claim that the effect does not exist. The early 

experiments, conducted in the early 1960s, made use of very thin solenoids and whiskers173, 

but their validity was challenged on the basis that since the solenoids were not infinitely 

long, there should be some ’flux leakage’ from the two ends, which in turn would affect the

172 Feynman Lectures on Physics, 11-15-12.
173 Whiskers are very fine permanent magnets with diameter of the order of lfim.  The magnetic flux inside 

the whisker is proportional to its cross section. The idea in these experiments was to put a tapered whisker in 
the shadow of a solenoid and check die deflection of the electrons.
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electrons and could be held responsible for the effect. In response to criticisms and in or­

der to avoid possible leakages, toroidal solenoids were used in later experiments, and their 

use enabled the experimenters to measure the effect of the potential -rather than the effect 

of the field that leaked- with undisputable accuracy174.

4.3.2 The Three Attitudes Towards the A-B Effect

There are three (plus one) different ways of explaining what is going on in the A-B effect, 

but they all meet philosophical reservations and criticism. The discussion and philosophical 

examination of the fourth one is our contribution to the debate175. A common physicists’ 

story, which is a paraphrase of the conclusion of the previous section, contains two out of 

the three approaches, and goes as follows. Given the facts, there are two possible ways of 

explaining what is going on. According to the first one, if we take the magnetic field B as 

the only existing interactive field, then we would have to succumb to action at a distance 

and hence to non-locality. To remedy this action at a distance thing, which no one really 

likes because one cannot tell a nice causal story that explains the facts, one has to consider 

as true the assumption that the physically interacting field is the vector potential A, and 

this constitutes the main assumption of the second approach. At first sight, this second 

approach is problematic because the A  field which is held responsible for the effect is not 

gauge invariant and hence if we were to consider as real only the gauge invariant objects of

the theory, this one does not qualify. In the third approach, one considers as the real causal

174 For a detailed discussion of the A-B effect, the experiments conducted to measure it and the discussions 
that followed them see Peshkin & Tonomura, The Aharonov-Bohm Effect.

175 We would like to stress here that the fourth way has been discussed in the physics literature but not in 
the philosophical. The discussion of the fourth way from a philosophical perspective constitutes our own 
contribution to the debate.
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agent the so called Dirac phase. But taking a slightly closer look at these arguments we 

find that there is more that needs to be said in order to make this a good explanation of the 

effect and quite a lot that is missing.

The Three Ways as Discussed in Healey and in Lyre

All the three approaches are discussed in some detail in Healey (1997, 1999, 2001) 

and in Lyre (2001).

Healey claims that since the A-B effect involves some kind of interaction between 

either electromagnetic fields or potentials and electrons, if either the interaction or the 

fields or the potentials are not local, then neither is the effect. His aim, then, is to show 

that in both the cases we mentioned above there is violation of locality of some sort or 

another176. But before we go on to examine Healey’s argument, we need to make clear 

what he refers to when he talks about locality.

Locality and Separability in Healey

Healey, in accordance with Einstein, discerns two different notions concerned with 

locality, both necessary for a process to be local. He calls them local action and separability 

and he gives them the status of principles. So, for him, locality holds just in case both local 

action and separability hold.

176 Note in passing that in his (1997) paper Healey not only investigates the notion of locality in the quantum 
domain of gauge theories, but he also compares and tries to draw the parallels between the A-B effect and the 
case of the Bell inequalities. The focus of this thesis is on the former aspect so we will not refer at all to the 
comparative aspect of Healey’s work. However, for more information see Tim Maudlin (1998).
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The principle of local action is expressed as follows: ”If A  and B  are spatially distant 

objects, then an external influence on A has no immediate effect on B ”177. A little later, 

Healey writes that ’’the idea behind local action is that if  an external influence on A  is to 

have any effect on B, that effect must propagate from A  to B  via some continuous physical 

process. Any such mediation must occur via some (invariantly) temporally ordered and 

continuous sequence of stages of this process”178.

What Healey means when he talks about ’the principle of local action’ is that if A  

and B  are things separated in a way that they cannot influence each-other instantaneously, 

there must be some physical process that propagates the effect of some influence from A  

to B. This process can propagate with some finite velocity (less than or equal to the ve­

locity of light) and, therefore, it can influence B  only after the lapse of some finite time 

interval. In relativistic language, this leaves the influence within the light cone and main­

tains the causal order for observers in all inertial frames. So, in order for local action to 

hold, two requirements must hold: influences (i) are mediated by physical processes and 

(ii) propagate with sub-luminal velocities. These two necessary conditions re-express the 

principle.

Violation of Local Action in the First and the Second Ways

Let us assume, first, that electromagnetism is described by the ’real’ (electro)magnetic 

fields, in accordance with the first way of understanding the effect. In this case, the princi­

ple of local action entails that a change in current (in the solenoid) has immediate (i.e. not

177 Healey, 1997.
178 Ibid.
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mediated) effect on the electrons outside it, because as we have seen, the magnetic field is 

confined within the tube of the solenoid, and this means that this field itself cannot ’me­

diate’ an influence affected by the change of the current and hence of the magnetic field. 

Since the only physical entity we are considering here is the magnetic field, the influence is 

not mediated by a physical process and, therefore, it violates the principle of local action.

On the other hand, if we assume that the A-B effect is accounted for by the gauge 

covariant vector potential, we face two difficulties. The first one is that the A  field is not 

a physically real field, so how it could mediate anything at all, and the second is that, 

regardless of its physically non-real nature, it does not act on the electrons directly either! 

But more on the violation of local action by the A  field later.

Separability

A common understanding of separability involves ’entangled’ quantum systems, which 

are non-separable in the sense that they must be described by a tensor-product state-vector 

which does not factorize into a vector for each of the individual systems that compose it. 

i.e. ^ 12...n 7̂  0  ® ... ® The non-factorizablity, on the other hand, means that

the state of the system whose constituents are the T'i , does not supervene on

the states of its constituents; in other words, knowing the states of the constituent systems 

does not suffice to know the state of the entangled system179. Hence, in this common un­

derstanding, two or more, spatially separated systems are non-separable i f  and only i f  the 

state of the compound system does not supervene on the state of each of the constituents.

179 In fact, the constituent states in a composite entangled state are not even pure states but the so-called 
improper mixtures.
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Nevertheless, Healey is up to some different notion of separability180, which is based 

on what he calls the ’principle of separability’ and it does not refer to entangled quantum 

systems only. The principle is expressed as follows: ’’Any physical process occurring 

in spacetime region R  is separable just in case it is supervenient upon an assignment of 

qualitative intrinsic physical properties at spacetime points in R \

Of course the notions ’qualitative’ and ’intrinsic’ are far from being straightforward, 

and Healey is well aware of this fact. He suggests, though, an intuitive and inconclusive 

resolution. Intrinsic, he says, is a property that an object has in and of itself. For example, 

the presence of some specific magnetic field both inside and outside the core of an electro­

magnet is an intrinsic property of the electromagnet, (compare extrinsic, properties that an 

object has in virtue of its relations. E.g. the attraction of iron fillings by an electromagnet is 

not an intrinsic property of the iron fillings, because it depends on the presence of the mag­

net close enough to the iron fillings.) Qualitative, as opposed to individual, is a property 

just in case it does not depend on the existence of any particular individual. E.g. behaving 

like an electromagnet does not depend on any particular electromagnet.

Despite the fact that his resolution is not conclusive, qualitative intrinsic properties 

(QIPs for the sake of brevity) are exactly what science is looking for, he claims. Then sci­

ence characterizes the various objects as certain kinds of physical systems and specifies 

their state by ascribing to them those properties. Fundamental physics, in particular, which 

investigates the basic kinds of physical systems, aims at characterizing their states com­

pletely, so that the physical properties of the more complicated systems that these constitute

180 For a detailed discussion for the difference between the two notions of separability see Healey (1997, 
1999) and Maudlin (1998).
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are then determined. In other words, Healey believes that the properties of the complicated 

systems supervene upon those of their more basic constituents, and it is in this sense that 

systems may be separable, that is to say, just in case their properties supervene upon those 

of their constituents. Physical processes, on the other hand, consist of suitably continu­

ous sets of stages that involve one or more enduring (physical) systems. Thus, the physical 

processes are separable just in case they supervene upon qualitative intrinsic properties of 

(objects) at spacetime points in the region where they take place.

Violation of the Principle of Separability in the Second and the Third Ways

The (electro)magnetic field in the A-B effect is non-local in the sense that it violates 

the principle of local action. Yet, if we adopted the second view, namely that the interactive 

field is the potential, in order to settle the locality issue, the explanation would have to meet 

the challenges that the above notion of separability has in store. And this means that if 

either the process by which each electron passes through the region outside the solenoid or 

the electromagnetic potential there throughout the time of its passage do not supervene on 

QIPs of (objects at) points in that spacetime region, then the alleged local explanation of 

the effect violates the notion of separability. For this reason, he examines how separability 

is challenged by some ’acceptable’ form(s) of the gauge potential, first, and then by the 

process by which the electrons pass through the apparatus. A very similar approach to 

these two notions we find in Lyre’s approach as we shall see shortly.

Healey’s argument is the following. The A-B effect involves some kind of interac­

tion between electromagnetic fields or potentials and electrons. If  either the fields or the
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potentials or any other mathematical quantity we use for the explanation of the effect are 

non-local, then so is the effect181. Local action is violated both by the electromagnetic field 

and by the A field itself i f  we take it to be real. Separability, on the other hand, is violated 

by the A field as well as by some other, gauge invariant, form o f the A field. Therefore, 

in either case, the two approaches are characterized by non-locality. And here is how he 

supports the above conclusions.

First, he shows that if we take the magnetic field B to account for the A-B effect, 

then we have obvious violation of local action, without much ado. The magnetic field is 

confined inside the solenoid while the electrons pass outside it. So this non-locality is just a 

straightforward consequence of the electromagnetic theory and the particular experimental 

set up, as we have already seen.

Then, he goes on to show that the ’bare’ A  field does not act on the electrons locally 

either. The electrons, he argues, follow specific paths. The shift of the interference pattern 

in the A-B effect is produced by a direct local interaction between electrons and the gauge 

potential outside the solenoid. The A-B effect is local only i f  A  is a physically real field 

and it is capable of acting on the electrons directly. But since is a gauge dependent 

field, it is not a physically real field, because the physically meaningful quantities must be 

gauge invariant. A  is not gauge invariant, which means that both A  and A ' =  A  +  Vx 

{should) specify the same physical state. Hence the field is not a physical object. As 

Maudlin (1998) pointed out in his response to Healey’s (1997) paper, the soundness of this 

explanation of the effect depends on his interpretation of gauge theories. This is quite an

181 His initial claim is that if the effect is local then either the E&Ms or the A’s or the process are local. (C —►
A i V A 2 V B). So, i( j4 i V A 2 V B ) - >  ->C).
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important point but we will come back to it shortly. For the time being, let us carry on with 

Healey’s argument.

”If one nevertheless maintains that in some way A  represents a physically real field”, 

he continues, ’’the following argument appears to establish that its gauge-dependence ex­

cludes local action”182. Assume that, somehow, A  is a physical field capable of carrying the 

influence from a change of the magnetic field inside the solenoid to the electrons that pass 

around it. But A  does not act on each electron directly, because each time an electron fol­

lows a particular path we can choose a local gauge transformation that sets the gauge zero 

along that path. Obviously, this approach violates the principle of separability and hence 

the description is still non-local.

Maudlin, in his (1998), discussing precisely this point claims that Healy’s ’’argument 

establishes nothing at all” because in theories where the wavefunction is complete, the 

electrons take both paths around the solenoid and even if  one considered theories where 

the electrons take specific paths, the electron-wavefunction is still affected and hence in­

fluences the path. But although local action may thus be established, still, the physical 

reality of the gauge fields is not established because they are not gauge invariant quantities. 

Maudlin suggests that gauge freedom, along with the question ’’why gauge invariance is a 

sine qua non for physical reality?” is at the heart of the problem. He then proposes that 

if one was willing to accept that there is ONE TRUE GAUGE describing the effect at any 

time, one would have an explanation both local and separable, albeit one would face epis- 

temological inaccessibility -cannot know which gauge by observation- and indeterminism

182 Healey, 1997.
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-if the local gauge transformations were considered in an active way. But as we shall see 

shortly, Gribov (1978) and Singer (1978) showed that even the idea that there might exist a 

one true gauge is not feasible.

The next step Healey takes is to argue that since the A^ field does not manage to 

account for some kind of local interaction directly, and since this happens because of 

its gauge-dependence, one could expect that some gauge invariant quantity involving 

might do the trick. The Dirac phase factor is a good candidate because, after all, this 

is what measures the phase shift. The Dirac phase factor is expressed by the integral 

S(C)  =  exp[—(ie/h) §c A(r) • dr], where the integral is taken over each closed loop C  

in spacetime. Hence, Healey considers the integral 1(C) = §c A(r) • dr as the quantity that 

expresses an intrinsic property of C, provided that C  is a non-intersecting closed curve183. 

But the problem in this approach is that the I (C )s ”do not supervene on any assignment of 

qualitative intrinsic properties at spacetime points in the region concerned”, because by its 

definition each I  (C ) supervenes upon the spacetime points of an arbitrary curve C = ds 

which encircles the solenoid and not on the spacetime points through which a single elec­

tron passes. Therefore, he concludes, if we choose the loop integral I (C ) to describe the 

A-B effect, we have violation of separability because for a physical process to be sepa­

rable, it must supervene upon an assignment of qualitative intrinsic physical properties at 

spacetime points that define the trajectory of the electron. So, ’’irrespective of the quan­

tum description of the electrons, the A-B effect manifests non-locality either because it is

183 He takes 1(C),  rather than S(C ), in order to get rid of the electronic charge e, and he chooses non­
intersecting closed curves in order to avoid the difficulty arising by the fact that closed curves do not corre­
spond uniquely to regions of space.
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taken to be completely described by the electromagnetic field (i.e. violation of local ac­

tion), or because electromagnetism is taken to be completely described by (something like) 

the Dirac phase factor (i.e. violation of separability)”184.

Comments on Lyre’s Approach and Beyond

Lyre’s approach is very similar to that of Healey. In his papers versus B! Topological 

Non-Separability and the A-B Effect (2001a) he too talks about the same three approaches 

which he calls B , A  and C  respectively. Using similar notions for local action and sepa­

rability he concludes as well that the B  approach violates local action, while the A  and C  

approaches violate separability; the violation arises because ’’the observable effect of the 

shift of the interference fringe cannot be reduced to properties associated to spacetime re­

gions”. He claims that this lack of consensus about which explanation is the best -if one 

exists at all- along with the fact that each one of them has elements not present in the 

other two are evidence that the A-B effect and its tentative explanation are a typical case of 

unerdetermination of theory by evidence.

The ’loopy’ or C  approach, which is favoured by Lyre, as well as by Healey in his 

most recent work (2001), is based on precisely the realization that the A-B effect is a 

Jglobal ’ effect and to our view this is a good attempt to take the global nature of the phe­

nomenon into account. We put the word global in inverted commas because it is a little bit 

too heavy for the actual meaning it has in this context. By that we mean that the word global 

in this context means comprehensive or inclusive, and not universal, in the sense that the 

net effect on the phase of the electron is the result of the loop integral 1(C) =  §  A  (r) • dr

184 Healey, 1997.
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along a curve that surrounds the solenoid, which is also known as the holonomy. The curve 

along which we integrate is arbitrary and can get as close to or as far from the solenoid as 

we like; it is in this sense that the phenomenon is global, and not universal. Lyre, along with 

Drienschner and Eynck in their (2001) define prepotentials to be ”non-separable equiva­

lence classes of gauge potentials in the whole of space” and consider the prepotentials to 

be real on the basis that if they are altered there is a physical effect and that they act lo­

cally, since they are to be found where the electrons pass from, though non-separably. To 

their view, prepotentials provide the proper ontological description of the A-B effect when 

they are considered to be the fundamental entities in gauge physics and their use has the 

advantage that ’’avoids the introduction of mysterious surplus structure”185.

Although this is a good attempt for an explanation of the A-B effect, there are a few 

misunderstandings in it, we believe. First of all, the prepotentials as defined in Drienschner, 

Eynck and Lyre’s paper are not exactly the same object as the holonomies, even though 

the two are related. The gauge fields are, as we have seen, the Lie algebra valued one- 

forms, while the holonomies are their loopy integrals I (C ). Using Stoke’s theorem for the 

electromagnetic case, we see that

1(C) = j> A (r) ■ dr — J  V  x A-ds = J  B • ds = [flux o f  B],

or in words, we see that the holonomy, i.e. the phase-integral around the loop is the same 

quantity as the flux of the magnetic -or curvature two-form- field from a surface that in­

tersects the solenoid and whose boundaries surround it; this is nothing other than the hor­

izontal lift of the wavefimction when parallel transported over a closed curve. Of course

185 Lyre, (2001a).
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one could claim that a prepotential, that is a specific equivalence class of gauge potentials, 

is real in the sense that Lyre attributes to the term real, but then this only says that if we 

alter the class, we describe a different magnetic field which will have a different physi­

cal effect, of course. From this perspective, therefore, the prepotentials contain exactly the 

same amount of physical information as the magnetic field itself. If Lyre considers the 

prepotentials to be identical with the holonomies, on the other hand, then in them there 

is something more, namely quantitative information about the horizontal shift as we have 

said. However, even that does not give a good reason why holonomies could be considered 

as physical objects for they only measure a shift, after all. It is hard to see how something 

that is not physically detectable, something that constitutes just a measure of the effects of 

the parallel transport of a physical object along a closed curve, may be given the status of a 

physical object. At the same time, as mathematical objects they signify properties of space­

time that, in turn, describe or even determine, one might say, the effects of some sources 

on the electrons that pass around them. Finally, we would like to remark that the use of 

holonomies does not avoid surplus structure, for holonomies themselves do come in equiv­

alence classes of mathematical objects that do not correspond directly to physical objects 

and define a transformation group, the so-called holonomy group. The very occurrence of 

a transformation group signals the presence of ambiguity of representation of either sec­

ond or third type, and since the transformations in this case cannot be taken to be active, it 

is definitely of the third type, hence there is surplus structure involved.

So, what the above discussion leaves us with is that the A-B effect is inherently 

non-local and this is a characteristic that any good explanation of it needs to account for.
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Although it doesn’t follow that we have to adopt a holistic explanation, attempting to give 

one is a good bet because we need to explain a global effect. Lyre et Al, write in their 

(2001) that ’’this indicates the deep topological nature of the A-B effect -stemming from 

the topology of the gauge group C/(l)’% while Lyre himself writes in his (2001a) ’’were 

it not for the non-trivial topology of both the base space and the gauge group, any two 

magnetic fields confined to the inside of a solenoid would necessarily have to have the 

same (null) effect on the interference pattern. Therefore, only the non-trivial topology of 

both spaces produces the A-B effect and its peculiar type of nonlocality is best addressed 

as topological non-separability”. With these comments, Lyre et Al rather confuse the 

holonomy approach, which does not involve topological considerations in explaining the 

phenomenon, with our fourth way, which is a purely topological interpretation of the effect. 

However, they anticipate the fourth way and indicate that the holonomies are linked to 

topological considerations that, we will argue, justify their usage in an explanation of the 

effect. This justification will become clear, we believe, once we have discussed holonomies 

from the perspective of fibre bundles, a discussion that will illuminate two things: first, the 

fact that holonomies describe a change rather than producing it and second, the relation 

between holonomies and one attempt to provide a topological explanation.

Although we are already able to see how the need for another attempt, of a purely 

topological explanation this time, arises from these considerations, we leave it here for the 

moment to turn to some interpretational issues of gauge theories, which will endorse, we 

believe, our position that a holistic, purely topological explanation of the A-B effect may 

be the best we can get. The reason for this digression is that one may wonder whether
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adopting a different interpretation would provide an adequate explanation within the three 

approaches we have already discussed.

4.3.3 Active and Passive Interpretations of Gauge Symmetries

As we saw above when we considered gauge transformations, a gauge transformation may 

be active or passive according to whether we transform-transport the entire physical system 

changing its spacetime region or we just transform the fields inside the bundle. There we 

mentioned that mathematically the two are equivalent, yet we said that we need to discuss 

whether this mathematical equivalence makes any physical sense. In keeping with these 

two approaches, the gauge fields themselves may be interpreted in either an active or a 

passive way. For the sake of completeness of the account, let us have a look at the two 

interpretations and their advantages and disadvantages.

The Active

Interpreting actively the symmetry of a system means that it is in fact the physical 

system that changes, not the coordinates, and thus one can tell between the different states 

of the system186. In other words, one must actually ’do’ something to the system in order 

to take it from one state to the other. One example of symmetries that receive only active 

interpretations is that of the discrete symmetries. Take for example the case of reflections. 

The way to understand this intuitively is by considering that one cannot make her left hand

186 Of course a symmetry transformation is one that leaves the system unaffected in the sense that one cannot 
tell the difference between the original and the transformed. However, here we are trying to stress that in an 
active transformation the physical system does undergo some actual change.
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coincide with her right hand unless one reflects it in a mirror. In other words, the left hand 

remains left and you can always tell it is left unless you look at it through a mirror.

With regard to the gauge symmetries, on the other hand, when the physical system 

is in a gauge does Took’ like a similar system in a gauge +  d^X, however, we may 

accept that the two represent different physical systems or the same physical system in two 

different and distinct states. Redhead, in his review of Auyang’s How is Quantum Field 

Theory Possible? suggested we should adopt an active interpretation of gauge symmetries 

even when we have to take the holonomies, rather than the gauge fields, as the real physical 

objects. In either case, we must transcend the observable, which is the electromagnetic 

field, and consider the gauge potentials and/or the holonomies as part o f the world’s basic 

systems that supervene only on the geometric properties o f the spacetime points. The only 

price we would have to pay if we considered that either the gauge fields themselves or the 

holonomies represent some sort of real object on their own would be that then we would 

have to take on board the existence of some sort of ’metaphysical sub-stratum’ in the world, 

which controls the behavior of the physical, claims Redhead. This increase of metaphysics 

would not be that bad if it restored locality. But does it? To this question we will return 

shortly.

The Passive

In a passive interpretation we understand the gauge fields to be some sort of coordi­

nates, so that any transformation that affects them without changing the physical charac­

teristics of the system is just a change of the description, not of the system. Such a trans­
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formation, therefore, maps the same physical state of the system to different but equivalent 

mathematical representations of it. So, coming back to the discussion in the second chap­

ter, we can say that we have ambiguity of representation of the third type, where while the 

physical system remains the same, there are within the same mathematical structure more 

than one equivalent mathematical representations of it.

Their problems

The main problem of the attempted active interpretations of gauge theories is the fact 

that the gauge fields do not seem to correspond directly to something physical, not even 

when we consider holonomies, hence by considering them as real, one has to cope with an 

increase in the metaphysics involved in explanations and understanding. Then, a problem 

that follows is how one could justify the fact that very many of these (meta)physical degrees 

of freedom need to be eliminated in order to get correspondence between them and physical 

objects, on one hand, and in order to quantize what needs to be quantized, on the other. To 

be more specific, in the case of quantum electrodynamics, in order to map the photon to the 

gauge field A M one has to eliminate two degrees of freedom in order to take into account its 

transverse nature. And even then, physicists have to choose a gauge in order to eliminate 

the infinite degrees of freedom that are involved and then employ complicated techniques, 

like the Gupta-Bleuler formalism, in order to quantize it. After all this fuss one is able to 

calculate measurable quantities, to actually ’measure’ the photons.

One might think that the passive interpretation of gauge theories is less problematic 

than the active one, in the sense that here one does not have to put up with metaphysics.
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However, even though we do not have to put up with metaphysics, this is far from being 

true, because in this case, one has to deal with gauge fixing for two reasons, and this is 

problematic in its own right. First of all, we want to deal with physical objects or degrees 

of freedom and it is only a complete set of independent gauge fixed functions that provides 

one with a complete set of gauge invariant observables187. Doughty in his book Lagrangian

Interaction writes the following about gauge fixing.

”[T]he existence of a gauge invariance in a system of dynamical equations always 
implies that one or more of the equations of motion is not a true dynamical equation 
but a constraint on the initial data. Conversely, equations of motion that contain 
certain types of constraints on the initial data contain gauge invariances. The choice 
of an explicit condition to eliminate the gauge freedom of systems is referred to as 
gauge fixing and the condition is referred to as a gauge condition, which should not 
be confused with a constraint, although the two are closely related”188.

And further down:

”To reduce the second-order electromagnetic potentials to a set which are physical, 
we must impose a restriction in order to remove the gauge freedom. The new sets of 
variables will be referred to as being in a particular gauge and the restriction is called 
gauge-fixing condition. However, we cannot use an arbitrary restriction which just 
happens to give the correct number of physical degrees of freedom. Instead we must 
use only gauge-fixing conditions which lead to new dynamical variables which can 
be related to the original gauge fields by a gauge transformation.”189.

So, we see that a first restriction in the choice of gauge is imposed by the symmetry 

itself, as we should expect. But even if we pick up a gauge in accordance with this restric­

tion, and even if  in the case o f U (I) electromagnetism we are able to do so everywhere, in 

the case of non-Abelian symmetries we are bound to face the so called Gribov obstruction

or ambiguity, which does not allow us to choose a single gauge all over the manifold190.

187 For a detailed discussion, see Henneaux & Teitelboim, Quantization o f Gauge Systems, Appendix 2.A.
188 Doughty, Lagrangian Interaction, p.306
189 Ibid., p.398.

190 The so called Gribov Obstruction or Ambiguity was introduced by Gribov (1977) & (1978) and extended
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This difficulty arises due to the substantially non-linear character of non-Abelian gauge 

theories, when one considers appropriate conditions at oo. What Gribov (1977) showed 

was that the so-called Coulomb gauge intersected the gauge orbit twice: once at the cho­

sen gauge, as it was expected, and once at a large distance from it. This means that after 

the gauge has been chosen, the same gauge potential is mapped onto two different, instead 

of one, gauge equivalent fields A^. Shortly afterwards, Singer (1978) put the whole dis­

cussion into a fibre bundle perspective and asked whether a true gauge existed in general. 

By extending the discussion to gauges other than the Coulomb he showed that ’’topological 

considerations imply that no gauge exists”191 when conditions at infinity are imposed.

The second reason is that one wants to be able to quantize the system and a straight­

forward way of trying to quantize a classical theory like electromagnetism is by quantizing 

the gauge invariant quantities. It is difficult to do this unless one fixes the gauge because 

in order ”to carry out this quantization, one must find a complete set o f Gauge Invariant 

Functions...” 192. ”In practice, it is extremely difficult to find a complete set of observables. 

Indeed this amounts to solving the differential equations

[F,Ga] « 0

which may not be tractable”193. Less difficult, indeed, is to achieve quantization by a differ­

ent method, that which fixes the gauge by hand! This method works when Gribov obstruc­

by Jackiw et al. (1978) and Singer (1978). For detailed discussion of the consequences of it in quantum 
field theories see Henneaux & Teitelboim, Quantization o f  Gauge Systems, Jakiw et al., Current Algebra and  
Anomalies and Weinberg The Quantum Theory o f  Fields, vol.2.

191 I. M. Singer, Some Remarks on the Gribov Ambiguity, Commun. Math. Phys., vol.60, 7-12, (1978).
192 Teitelboim & Hennaux, Quantization o f  Gauge Systems, p.275
193 Ibid.
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tions do not prevent us from fixing the gauge globally, and it simply consists of imposing 

canonical gauge conditions

X o =  0 .

This is legitimate because any function of the canonical variables can be viewed, after 

complete gauge fixing, as the restriction in that gauge of a gauge invariant function. Hence, 

once the gauge is fixed, one is effectively working with gauge invariant functions. Further­

more, one finds that the Dirac bracket associated with the constraints (Ga =  0) and the 

gauge conditions (xa =  0) is just the Poisson bracket of the corresponding gauge invariant 

functions, so that the Dirac bracket yields the correct bracket in the reduced phase space. 

’’With canonical gauge conditions, the reduced phase space quantization becomes identical 

to the quantization of the 2nd class constraints” 194, because after the conditions have been 

imposed, the symmetry is gone and the constraints that remain -including the gauge fixing 

conditions- behave as second class.

However, the gauge fixing or reduced phase space approach may suffer from draw­

backs other than the Gribov obstruction. The elimination of the gauge degrees of freedom 

-i.e. the fixing of a complete set of gauge invariant observables- may spoil manifest in­

variance195 under an important symmetry and hence one may lose important information. 

Moreover, the brackets of the complete set of observables that one has found may be com­

plicated functions of these observables, and their quantum mechanical generalizations may 

not be straightforward. Similarly, the Hamiltonian in terms of the independent degrees of

194 Ibid., p.276.
195 Manifest here means linear.
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freedom may turn out such that it is impossible to give a quantum mechanical definition of 

it.

Of course, there are other ways to proceed to quantization like for example the Dirac 

approach where the gauge degrees of freedom are not eliminated, or the Dirac-Fock ap­

proach where the constraints are implemented differently196 which fix the gauge at the end. 

But even within these approaches the problems abound. In the first one, for example, the 

fact that the gauge degrees of freedom are not eliminated entails that the representation 

space carries information that does not correspond to anything physical and hence fur­

ther assumptions are required; by doing so, Dirac’s approach and the reduced phase space 

method are formally equivalent, hence the problems that infect the first are present in the 

second as well. As for the Dirac-Fock approach, the price one has to pay there is that some 

of the resulting operators produce states that do not correspond to anything physical.

The conclusion that follows from this discussion, then, is that within an active inter­

pretation of the gauge theories, the gauge fields acquire the status of physical objects, but 

then more metaphysics is involved in the explanations. The problem of indeterminism is 

not solved, local action may be satisfied, but separability is not. As for the passive inter­

pretation, in it gauge fields have to be eliminated either using gauge fixing - which in the 

theories we are concerned with cannot be done due to Gribov obstruction- or by some other 

mathematical manipulations of the theory which involve their own problems. Non-locality 

cannot be avoided here either and the problem of indeterminism depends on whether the

196 For more details see Henneaux & Teitelboim, Quantization o f Gauge Systems.
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one gauge can be found -in the first and Dirac’s approaches- or is overshadowed by the 

existence of non-physical states -in the Dirac-Fock approach.

After the discussion about active and passive interpretations of gauge theories the 

question that remains open is whether different interpretations impinge on the attempted 

explanations of the A-B effect. If we adopt what Lyre calls the A explanation, the problem 

is non-locality due to violation of local action. In this case, adopting the passive interpre­

tation we have unequivocal violation of local action, as Healey showed. One would expect 

that adopting the active interpretation one would manage to get around this difficulty, and 

this is what Redhead anticipated. But if we give it a second thought, we realize that al­

though adopting an active interpretation remedies the problem of supervenience, it does 

not guarantee local action, because the crucial point is not only whether the tentative phys­

ical entities supervene or not on geometric properties of spacetime points but also whether 

they are where they should be, namely along the path of the electron. If the ’one true gauge’ 

was the one suggested by Healey, then non-locality is still present. But this very idea of the 

existence of ’one true gauge’ is loaded with metaphysics since there is no physical neces­

sity that dictates its existence nor any indication that there might be. It is inspired, rather 

than dictated, by the wish to solve the problem of determinism of gauge theories, but de­

terminism does not need gauge fixing; let alone that the requirement of determinism itself 

is more of an assumption than of a physical necessity. Moreover, if  such a thing as the 

’one true gauge’ existed, it should be defined all over the manifold at once because fixing 

the gauge means picking up one out of the infinitely many divergencies that comprise the 

gauge trajectories. This, in fibre bundle language means choosing a cross section and this
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has to be done all over. But the Gribov problem makes it impossible, as we have already 

mentioned. Hence, even if one was willing to pay the price of increased metaphysics, one 

has not established the sought after locality. So far as the C  approach is concerned, whether 

we choose active or passive makes no difference to the problem of non-separability. The 

very fact that the physically significant entity is a loop implies that one should not expect 

explanations involving separable processes.

We may now conclude that none of the suggested interpretations and approaches 

managed to solve the problems raised. However, to our view, the elusiveness of locality 

constitutes no problem at all since it only points towards a holistic explanation, where the 

gauge field is not perceived to be a localized causal agent any more. Its role, as we shall see, 

is that it informs us about the interactions that occur in the physical system. Finally, let us 

remark that after this discussion, the reason behind our anticipation, in chapter two where 

we discussed the surplus structure and the ambiguity of the third type, of passive interpre­

tations of gauge symmetries becomes clear: an active interpretation of gauge symmetries 

not only would solve none of the problems but it would also increase the metaphysics. And 

now we may proceed to discuss a fourth way to the A-B effect.

4.4 A 4th Way to the A-B Effect

The fourth way to the A-B effect provides a holistic explanation of the phenomenon. This 

kind of explanation does not fit any of the D-N, C-R or unification models of scientific 

explanation. As it takes into consideration the entire system rather than small parts of it 

causally related to each other, one naturally wonders if it fits the model of teleological
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explanation. Here we show that it does not. Hence the explanation of the A-B effect 

stands as a distinctive kind of explanation, which we call topological. But let us state 

the explanation first, and then see how it does not fit any of the aforementioned patterns 

although at the same time it does have certain characteristics that partly match them.

4.4.1 Holistic Approach in a Topological Explanation

The fourth explanation about what is going on in the A-B effect is based on topological 

considerations and one may find very good reasons for both liking it and not liking it. It is 

the approach favored by many mathematical physicists197 and we were directed towards it 

for several reasons. The fact that there does not seem to be a satisfactory bit-by-bit causal 

account of the phenomenon, which is the result of the non-separability present in any other 

attempts to explain the effect, indicates that we should take more into account than just 

the (speculated) events and physical processes along the path of the electron. Knowing 

what is going on in some parts of our physical structure is not enough since this knowledge 

leaves out pieces of information that cannot be retrieved. Therefore we require a formalism 

that contains all the necessary information for a good comprehension of the events. This 

formalism, we suggest, is the fibre bundle formalism, in which the mathematical entities 

of the surplus structure register all the information -not just bits-and-pieces of it- about 

the topology of the base manifold. Consequently, the mathematical objects involved do 

not dictate the behavior of physical objects as though they were the causal agents acting on 

those physical objects, nor they are held responsible for a signalling process that takes place

197 For topological accounts and explanations of the effect see, for example, Nakahara, Geometry, Topology 
and Physics, Nash & Sen, Topology and Geometry fo r  Phycisists, Ryder, Quantum Field Theory.
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-allegedly- between solenoid and electrons. Instead, they are descriptive tools that encode 

all the information of the properties of spacetime and for this reason they account for the 

effect in terms of the relations between the spacetime points and the physical objects, i.e. 

the electrons, involved. From this perspective one could say that the solenoid has modified 

not just the spacetime points that it occupies, but also the region around it. The shift in the 

phase of the electrons happens because the spacetime points along its trajectory are thus 

modified. The gauge field does not participate in this modification, it just encodes it and it 

gives us a mathematical tool that allows for measuring the results this change brings about. 

A measure of the results is provided by the holonomies. In this way, we gain full awareness 

of all the elements involved and the factors affecting the electron and a good understanding 

of its behavior. But let us examine how this is done.

Holonomies, Homotopy and the U(l) Group of Electromagnetism

As we have already seen, the fibre bundles involve mappings between a base and 

some other manifold and these mappings carry all the information about the structural 

characteristics, or the topology, of these spaces. The discussion there is related closely to 

the discussion on the topological non-separability of the A-B effect and the holonomies 

that are involved, and, among other things, it is quite revealing about the relation between 

mathematics and physics. We will leave the discussion for the relation between physics 

and mathematics for the next chapter but let us explore here how the discussion on loop 

integrals in topologically non-trivial manifolds fits in the more general picture of the fibre 

bundles and how it relates to the A-B effect.
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One account that aims at explaining the A-B effect could be the following. Assume 

that the base space in our discussion is the spacetime manifold with a solenoid in it. For 

the sake of simplicity, we can consider a slice of it, which is described mathematically as 

a plane with a hole. The hole represents the area occupied by the solenoid that is inacces­

sible to the electron. At the same time, the presence of the hole renders the configuration 

space topologically non-trivial or, in other words, not simply connected. This only de­

scribes the fact that the hole is a region that the electron cannot access. The infinitely many 

curves surrounding the solenoid are equivalent in the sense that they can be deformed into 

each other continuously, but they cannot become zero. We say that the functions repre­

senting these curves are homotopic -i.e. map preserving- and they belong to a group called 

the fundamental group or first homotopy group. The functions describing the curves have 

parameters that take values from the interval [0,1]. Hence, this space, call it X , topolog­

ically corresponds to the direct product of the line R 1 and the circle S'1, namely R 1xS'1. 

The electromagnetic field that is involved in the origination of the phenomenon is a phys­

ical entity that is described using the U(l)  group G, and the topology associated with our 

group is also that of the circle S 1. A fibre bundle is generated by the base manifold and the 

group and its structure is as was described above. The connection in this fibre bundle is the 

field A f 9S and the electromagnetic field is represented by the four-dimensional curl of 

which is also known as the curvature. Given that the actual magnetic field, or curvature, is 

zero everywhere on the manifold, we are talking about vacuum here, where the curvature 

is zero, but the connection not necessarily so.

198 The connection follows the general transformation rule A 1 —> A 1 -I- d^x- Because in our case we are in 
vacuum, we can write that A 1 =  d^x-
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Ryder199 writes that ’’the gauge function x  is a mapping from the group space G onto 

the configuration space X:  x  • G —> X  whose non-trivial part is given by x : S 1 —> S'1”. 

In the terminology we have introduced above, this means that this is a connection one-form 

pulled back to our base space. We have already said that the fibre bundles as formalism are 

so structured that all the information about the topology of the base space is included in the 

structure of the bundle space and vice versa. Here we can see how this is realized in the 

A-B case, where the non-trivial topology of the base space is reflected by the non-trivial 

topology of the group used to define the principal bundle. Ryder argues that the fact that the 

electromagnetic field is zero outside the solenoid, along with the fact that the gauge field x  

is not, entail that x  is not single-valued. If  x  is not single-valued then the G space is non- 

simply connected. If x  was single-valued then the loop integral would be zero. But the loop 

integral is not zero, hence x  is non-single-valued and therefore G is non-simply-connected. 

And hence, he concludes, ”it is an essential condition for the A-B effect to occur that the 

configuration space of the vacuum is not simply connected”200, where the term vacuum 

refers to the absence of magnetic field in the configuration space outside the solenoid. 

Along the same lines was Lyre’s conclusion, as we have already seen. But in both cases, 

the necessity they argue for does not follow. Only as an assumption or a crude induction 

one could claim that the electromagnetic field is zero and at the same time the gauge field is 

not zero only i f  the topology of the base space X  is non-trivial; for the topology of the base 

space in the case of the A-B effect is trivial indeed: the presence of the solenoid does not

199 Ryder, Quantum Field Theory, p. 107.
200 Ibid, p. 105.
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create a hole in spacetime. One might claim that, nevertheless, the following approximation 

provides a valid topological explanation of the effect.

Topological Explanation (1)

There are two variations of what we may consider as a topological explanation of 

the A-B effect. First of all, one notices that the difference in magnitude between the elec­

tron and the solenoid is of the order of 1010. Given that the energies we are talking about 

are very low, this means that a very big chunk of space, 10,000,000,000 bigger than the 

electron itself, cannot be accessed by it. So, from the perspective of the electron, it is as i f  

spacetime is topologically non-trivial where the solenoid is, and that might be considered 

as a very good approximation. Moreover, even from our point of view, treating the space 

outside the solenoid as topologically non-trivial is not a far-fetched idea if one considers 

the limiting case where the solenoid is shrunk to a point. The point-solenoid cannot be 

made to disappear completely and hence one has to accept that the spacetime manifold is 

not simply connected. Non-simply connected manifolds have non-vanishing holonomies, 

which means that the parallel transport of a matter field along a closed curve that surrounds 

the ’hole’ results in a shift on the phase of the field. One then could claim that the reason 

for the shift is that spacetime has been modified as a result of the non-trivial topology and 

the description of -or the information about- this modification is given -or encoded- by the 

gauge potential; the potential, though, does not cause the shift. Therefore, an explanation 

of the phenomenon involving non-trivial topology that entails non-vanishing holonomies 

might be appropriate since anything else -that is, the zero magnetic field or the non-physical
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gauge potentials - would not adequately describe what is happening there. From the pre- 

spective of the fibre bundles, the non-trivial topology of the base space is associated with 

a non-trivial bundle space where a cross-section cannot be defined continuously all over it. 

So the connection on the principal bundle changes as we move around the solenoid and the 

consequence of it is that the phase of the matter field -defined on the associated bundle- 

changes as well.

One important point to clarify here is that what is really important for the effect to 

happen is not just the material presence of the solenoid in the set-up, for one then might 

claim that even when the solenoid is switched off the region inside it is still inaccessible 

to the electron and yet there is no A-B effect. What is crucial for the effect to happen 

is the flux of electromagnetic field inside that apparently modifies the connection of the 

spacetime around it and one could assume that this modification takes place in a way that is 

in accord with relativity theory. Hence we might approximate the inaccessibility due to the 

presence of a solenoid with a magnetic field in it with a spacetime which is topologically 

non-trivial.

Topological Explanation (2)

The topological explanation of the effect may be given a different gloss. One may 

assert that in this case it is not the presence of the solenoid that makes the topology of 

M  non-trivial, rather, it is the topology of the bundle vacuum itself -and hence of the 

configuration vacuum- that is non-trivial and as a consequence the phase of the electron- 

field is shifted as it passes through, where vacuum in this context is defined as a region
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where the energy of the electromagnetic field is zero. The connection of the principal 

bundle -that is to say, the gauge field A /x- describes how the phase shift occurs and it is 

not the causal agent responsible for the shift but an information bearer instead: it just 

contains all the information about how the matter fields should behave as they move along 

the spacetime manifold. The curvature of the total space is nothing other than the familiar 

electromagnetic field, which cannot be considered to be a causal agent either, as we have 

seen. Instead, it may be regarded as a property of the spacetime points, conferred to them 

by the modified topology of the base manifold.

This version of the fourth way differs from the second, or A, explanation of the A- 

B effect because here we do not need to rely on the reality or the locality of the gauge 

field. What matters in this case is the non-triviality of the base manifold which affects the 

bundle space by changing the value of the connection in it and this describes a change, a 

shift, to the phase of the matter field. Once again, one is able to tell a story about how 

this modification occurred that is perfectly compatible with relativity principles. Moreover, 

since we do not need to rely on the reality of the holonomy either, it differs from the 

C approach as well: it is the topology, rather than the holonomy, which constrains and 

controls the effects on the physical objects. As the explanation we are considering here is 

purely topological, we do not need to consider the holonomies as the fundamental causal 

entities either; it suffices to say that the non-trivial topology of the vacuum, which results 

in phase shift or non-vanishing holonomies, accounts for the effect and, once again, the 

holonomies are merely a measure of the effect. Hence in this way of explaining things we 

obtain a holistic causal picture where the ultimate ’cause’ of the shift is the topology. The
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modified topology endows the spacetime with some properties, which in turn affect the 

physical objects that move around in it. The importance of the fibre bundle formalism is 

that it provides a complete tool for the precise description of the phenomenon and for the 

calculation of quantities that are measurable.

We said at the beginning of this section that there are several reasons why one may or 

may not like the approach we just presented. First of all, and before we actually assess the 

topological explanation, we would like to mention two possible objections to -or reasons for 

not liking- it that would persist even if the topological explanation turned out to be a bona 

fide explanation. The first one is that we give up completely the idea of ever getting a local 

causal account -at least within this formalism- while the second is that we also part with 

determinism in the sense that since up there, in the bundle space, we have more entities than 

down here, there are infinitely many gauge fields corresponding to one electromagnetic 

field, hence starting from well defined initial conditions, we may end up in one out of 

infinitely many possible final states of the total space. But if  this is a problem, then it seems 

that it is inherent to the way physical objects are represented by mathematical entities, at 

least within the context of gauge theories. Remember the discussion in the third chapter 

about what we called ambiguity of the third kind, which seems always to be present in this 

type of physical theory.

4.4.2 Teleological and Topological Explanation

Is this holistic explanation a teleological explanation as well? If we regard as teleolog­

ical the type of explanations that we discussed previously in this chapter, the topological
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explanation would also be teleological provided that the system under consideration was 

a directively organized system, that is if it satisfied the four requirements set by Nagel. 

The first three assumptions are more or less satisfied if we consider the following corre­

spondences. If  we take the spacetime manifold and the electrons that move in there as 

the causally relevant parts of the system, then the first assumption is satisfied. These are 

independent in the sense that we could change either of the two without an immediate nec­

essary change in the other; for example we could change the properties of the manifold or 

the number of the electrons independently from each other. However, if we vary the topol­

ogy of the physical structure, then this would result in an adaptive variation to the behavior 

of the electrons; hence the third assumption is also satisfied. So the issue in this case is 

whether the fourth assumption is also satisfied. As a matter of fact, it is not, and here is 

the reason. According to the last assumption, the values that the primary variation has as­

signed to the initially changed variables correspond to the values the adaptive variation 

has assigned to the adaptively changed variables so that S is eventually in a G state again. 

But this assumption is not satisfied by the A-B set-up and its states. The initial state of 

the system is a state with the electrons on one side of the solenoid with a certain phase, 

while the final state contains the same electrons in some other spacetime location with a 

different phase. So even if the spatiotemporal coordinates of the physical entities were not 

considered as independent variables, their phases should. Hence the system undergoes an 

adaptive variation that does not take it back to its initial state G and, therefore, our holistic 

explanation does not fit Nagel’s idea of teleological explanation.
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Nonetheless, although Nagel’s fourth condition seems to be essential in biological 

systems that are sustainable only when a change in their state is followed by adaptable 

processes that will return the system in its previous state, it does not seem necessary in a 

physical system like that in an A-B setting. The behavior of the electrons in such a system 

may be considered to be goal-oriented, where the goal is the electron’s phase shift while 

the reason, the cause we dare saying, behind the shift, is just the topology of the base space 

or the vacuum. This way one may explain why -but not how- the shift occurs. When we 

discussed Nagel’s teleological explanations we mentioned that in his account he tried to 

avoid any reference to final causes, because physicists do not like their explanations to 

rely on such obscure metaphysical notions. With our suggested modification of Nagel’s 

account have we managed to avoid such references? Given that the topology of the bundle 

space for the U(l) group is non-trivial, if  the topology of the base space turned out to be 

non-trivial as well, we would have good reasons to claim that our suggestion constitutes an 

explanation free of metaphysical considerations. But if the base-space manifold is trivial, as 

we will argue in a while, our acceptance of a teleological explanation would rely heavily on 

metaphysical assumptions. Hence a claim about the goal-orientation of a system like ours 

is one loaded with metaphysics and we do not want to commit ourselves to it, especially 

since it does not serve any purpose.

4.4.3 D-N Model and Topological Explanation

According to the D-N model, an event is explained by subsuming it under general laws. 

The explanation is a valid argument, the premises of which are those general laws and
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statements describing particular facts. In our case study, the explanation we offer is defi­

nitely not of this type. The claim is that what is responsible for the effect is held to be a 

certain change in the topology of the spacetime manifold, and this is clearly not a law-like 

statement. On the other hand, one could not claim lightheartedly that it is a fact either. 

As we shall see shortly, we may consider it to be, at most, an idealization concerning the 

boundary conditions. In the full explanation of the effect we definitely rely on law-like gen­

eralizations. One is that all interactive physical systems are described by Lagrangians that 

are invariant under variations at the boundaries. Another one is that all the fundamental 

interactions in nature arise when we require that the actions describing the physical sys­

tems are gauge invariant. The fibre bundles formulation of gauge field theories is a perfect 

deductive system. But although we take these two generalizations and the equations of mo­

tion of the fields to be true, they do not explain the effect by themselves. The topological 

considerations, on the other hand, though they may be formulated as a general statement, 

they are specific to each particular problem and hence do not qualify as laws. Moreover, the 

theory as a whole involves gauge fields -our connections- that play an eminent role in the 

derivations, yet they do not take specific values. One could claim that since the treatment 

so far has been classical and since it is only gauge invariant quantities that really matter, the 

gauge fields are only used in sub-derivations so they do not spoil the deductive character of 

the explanation. Nevertheless, one should bear in mind that the main purpose of these the­

ories is the study of relativistic quantum fields and it is explanations involving these kind 

of fields that we try to assess here. In these conditions, then, the connections do participate 

in the explanations not as auxiliary assumptions, nor as causal agents, but definitely as part
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of the ontology and since they cannot be attributed a definite value, certain statements that 

include them -like for example the gauge fixing conditions- cannot be given a definite truth 

value.

4.4.4 C-R Model and Topological Explanation

The C-R model advocates that by citing the causally relevant factors and mechanisms that 

are responsible for the phenomenon we explain it. The three previous attempts to pro­

vide an explanation for the phenomenon were doing precisely that, they were seeking for 

legitimate causal mechanisms. The underlying assumption in all these attempts was that 

the causally relevant factors act locally. But as we saw, all these attempts failed. In our 

fourth explanation, one of the main aims was to avoid precisely the use of any dubious 

causal mechanisms in it. Hence this explanation, though it may involve causal relations 

and mechanisms, it is not a C-R explanation.

4.4.5 Unification and Topological Explanation

The theory that supports the topological explanation of the A-B effect is that of electromag­

netic interactions and, as we saw above, it is part of a larger family of physical theories, 

namely the theories of the fundamental interactions which are mathematically formulated 

using the structure of the fibre bundles. The fibre bundles provide all the mathematical 

tools we need for the description of fundamental interactions -along with some surplus 

structure, which in the case of electromagnetic interactions we had some difficulty in inter­

preting as physical. However, from the perspective of our topological explanation it is this
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very surplus structure that provides a full description of the new properties of the spacetime 

manifold, which are due to the presence of a solenoid in it or, mathematically speaking, due 

to its non-trivial topology; and it is this description that tells us not just that the shift oc­

curs, but also what its magnitude is. In this explanation, one cannot consider the A-B effect 

to be a mere consequence of the bigger unified picture because the fibre bundle formalism 

only tells you that all the information about the topology of the base manifold is contained 

in the bundles as well in a specific way, that is using the principal bundle. It also tells you 

that all the information about the matter fields and their whereabouts is contained in the 

tangent bundle. But there is nothing said about the particular situation we face when we 

examine the phenomenon. Hence, the bigger, unifying picture puts the phenomenon into a 

larger perspective, but it does not explain it; at least not on its own. On the other hand, as 

we observe things in this bigger picture we realize that this unified approach is revealing 

about the relation between the mathematical and the physical: the connections control for­

mally -but not causally- the physical in the sense that accurately describe what is happening 

there.

4.5 A First Assessment of the Topological Explanation

One thing that arises from this discussion is that in topological explanation we use elements 

from all the models of explanation we have discussed, namely teleological, D-N, C-R and 

unification. Yet, the explanation stands in a category on its own, thus we could maintain 

the special name topological explanation. One might argue that we could give it the name 

non-local or holistic instead. A closer look at it, though, shows that this explanation is not
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really non-local in the sense that the actual topology is described locally and there is no 

kind of action at a distance involved in it because the entities of the theory that could be 

held responsible for non-locality either do not play a causal role or they are not needed at 

all.

The topological explanation relies on laws and derivations from them, contains ref­

erences to causal elements, and the particular events that we examine may fit in a more 

general unified theory; but there are also two more things in it than just these. First of all, 

we have to take into account the entire physical system, not just what we might consider to 

be the assembly of ’causally relevant’ elements of it -hence it is holistic. The reason why 

we prefer the name topological rather than holistic is that although it is holistic there is 

more to it, namely the consideration that the actual effect takes place because of a change 

in the topology. Second, we use a mathematical structure, which although it seems to rep­

resent the physical entities involved along with a whole lot of surplus structure, as a matter 

of fact it minimally encodes all the information of the entire system, albeit using some enti­

ties topological in nature that may not correspond directly to physical entities; nevertheless, 

these entities, as the objects that encode the entirety-of-information, dictate the behavior of 

the physical. Do they govern it? No! But we do not see a problem in it because in physics 

we do not necessarily use the ultimate causes in order to explain physical events. Often, 

we only look for information that may reveal possible causal links between the objects in­

volved and theories that help us predict behaviors as well as measurable quantities. In our 

case, gauge theories and their formulation in terms of fibre bundles do both, very success­

fully indeed. Encoded in the form of the gauge fields -or connections- is all the information
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about how the base space has been modified due to the presence of sources and hence those 

fields reveal the link between their presence and the change in the behavior of the electrons, 

while at the same time the predictive power of the complete theory has been proved to be 

overwhelming.

This theory with its double success links the physical (i.e. everything that happens 

in the actual world) with the mathematical (i.e. a lot of information -if not all- about the 

physical objects and their relations is contained in here) and uses experiments and mea­

surements to validate this relation. To our view, one should seek the very deep connection 

between physics and mathematics in here, in the fact that once a theory is formulated in a 

mathematical language, it provides measurable properties and it allows for quantitative in­

ferences and measurements. But some further elaboration of this point needs to wait until 

the following chapter. In the mean time, one is more than justified to ask: does the claim 

that the topology is non-trivial provide a deep explanation? If by ’deep’ we mean an ex­

planation where all the factors involved are known and all the statements are true, then the 

answer is no, at least so far as the A-B effect is concerned; for, to begin with, the topological 

claims in the attempted explanations of the A-B effect are not true.

4.5.1 Assessment of Topological Explanation (1)

So far as our first attempt is concerned, there is a crucial disparity between the alleged 

approximate explanation of the A-B effect and the legitimate approximate explanations that 

were discussed previously in this chapter. In this case, like in the case of chaos theory, we 

make use of a model that clearly involves a negative analogy between the model we use and
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the physical system we aim to describe, namely we consider that a spacetime manifold with 

a solenoid in it is non-trivial. However, unlike the chaotic examples, here we require from 

this very analogy to causally explain the physical events, hence it is essential since its non­

inclusion would undermine even the positive analogies. From Hesse’s perspective, the only 

reason we would have to accept this explanation is that we have no better alternative. There 

is a striking success of this type of explanation, though, that makes one wonder whether 

there is a slightly different, legitimate, way of accounting for the effect. The success is 

that when used as a formal analogy, it predicted the weak vector currents and gave rise to 

the unified theory of the electroweak interactions, and one guess for the different account 

might be what we called topological explanation (2).

To conclude this section, we would like to state clearly that tempting though the 

approximation may be, it does not constitute a legitimate explanation. Yet, at the same time, 

there two things in this account that we should bear in mind. The first is the fact that the 

holonomies are non-vanishing. Although this is not a necessary condition for explanations 

that involve nontrivial topologies, it is a good indication that there is something about the 

electromagnetic field that points towards explanations that are holistic in character. On the 

other hand, the topological considerations that are sufficient for non-vanishing holonomies 

provide very far reaching heuristic, or formal, analogies.

4.5.2 Assessment of Topological Explanation (2)

The vacuum state that this interpretation of the topological explanation requires is a state 

where the electromagnetic field is zero. The fact that there is a solenoid with electromag­
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netic flux inside in some finite region of spacetime means that one could consider that 

vacuum extends over the rest of spacetime except from the region occupied by the solenoid 

itself. But surely, in this second attempt to provide a topological explanation, the alleged 

vacuum is not really a vacuum due to the presence of the solenoid and therefore things 

seem to be at least as bad as in the previous attempt because although now one might con­

sider the claim that there is a vacuum outside the solenoid as true, the fact is that vacuum in 

quantum field theories is a global state of the field. This fact does not allow for any conces­

sions because if the state was really a vacuum state, then the global vacuum would imply 

local vacua. However, the presence of electromagnetic field at some region of spacetime 

spoils the vacuum state altogether and no notion of approximation can save it. It seems, 

therefore, that once again our attempts to salvage the topological explanation of the A-B 

effect using approximation have failed.

The situation we encounter in the explanation of the A-B effect could be compared 

to the classical case of projectile motion201. In projectile motion, in order to explain the 

parabolic trajectories, one has to ignore the ’accidental’ frictional forces and to assume 

that the gravitational field strength g is constant throughout the path of the projectile and 

with direction perpendicular to the surface of the flat earth. So, one considers the curvature 

of the earth to be zero, locally, and hence one changes its global topology from that of a 

sphere to that of a plane. In both the A-B and the projectile cases, we have exchanged the 

actual topology of the physical system with a different one and we therefore use a negative 

analogy for explanatory purposes. At the same time, in the A-B case, as well as in the

201 This analogy was an idea of Professor M. Redhead, to whom I am grateful for it.
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gravitational, it is not the change in the topology that provides the deep -that is to say the 

true causal- explanation for the phenomena, rather it the presence of the solenoid in the 

former and that of the gravitational field in the latter.

Nevertheless, one may claim that there is a major difference between the two ap­

proaches: in the A-B case either there is or there is not vacuum, while in the projectile 

motion case the change of topology may be thought of as just an approximation where 

the gravitational field lines are approximately parallel lines and the surface of the earth is 

approximately a plane, therefore the trajectory is approximately part of a parabola. The 

argument goes then that in the case of projectile motion we just approximate the actual 

physical situation with some mathematical structure that does not essentially misrepresent 

it and this is because the negative analogy in this case does not causally affect essential 

properties of the system. The truth of the matter, though, is that the negative analogy does 

affect the essential property that the gravitational field strength is inversely proportional 

to r 2; and the conclusion that follows is that although we might consider a gravitational 

field with parallel lines near the surface of the earth as a good approximation, the alleged 

change in topology fails to serve any explanatory purposes. In both cases, then, by using 

topological considerations one exceeds by far what one might consider as reasonable lim­

its of approximation and idealization. Yet, in both cases we get useful and fruitful -in an 

explanatory sense- insights about the relations between the physical objects involved in the 

processes, while from the formalism as a whole we get very good predictions about their 

future behavior and certain measurable quantities.
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Are we justified to say that a topological explanation like the one we employed for 

the A-B effect misrepresents reality? Literally speaking, yes we are. For one reason, the 

base space manifold is trivial despite the presence of the solenoid in it and for another, the 

vacuum is not really a vacuum for exactly the same reason. However, this ’failure’ of the 

non-trivial topology of the mathematical structure to ’explain’ the physical events is not a 

sufficient reason to reject the theory or to undermine its heuristic power. In the following 

chapter we will discuss again and at some length the notions of idealization, approximation 

and abstraction that are involved in scientific explanations in general and in topological 

explanations in particular and we will see then that although not true, and hence not a good 

explanation from this perspective, the topological account of the A-B effect is a very useful 

device for other reasons.

Things, however, take a different turning in relativistic quantum field theories be­

cause, as Redhead showed (1995a), (1995b), the straightforward relation between the global 

and the local vacuum state that we mentioned above breaks down in there. Of course once 

again we make a leap and starting from a classical discussion we draw conclusions about 

relativistic quantum objects, but we are justified in doing so because whatever we have dis­

cussed so far applies in the quantum case as well and because we are not really interested in 

what is going on in the classical cases only; these just provide a stepping stone. What could 

we say then about the topological explanation (2) of the A-B effect in the case of a rela­

tivistic vacuum, where a global vacuum state does not prevent observables from exhibiting 

quantum fluctuations? Since ’’these vacuum fluctuations of local observables are a charac­



4.5 A First Assessment of the Topological Explanation 213

teristic feature of the relativistic vacuum”202 one is justified to claim that in the A-B case 

the state of the field is indeed a vacuum state despite the fact that locally it takes non-zero 

values. To take the old Aristotelian line of argument, one could claim here that the vac­

uum state of the relativistic quantum fields is not space(time) empty of objects. Rather, it 

is a field defined over spacetime that allows for either manifestation or not of observables, 

locally, due to its quantum fluctuations. Hence a vacuum state that is compatible with the 

presence of objects in it is reminiscent of Aristotle’s wooden cube immersed in the water, 

only in this case the water-field penetrates the cube-solenoid throughout its extent and so 

interpenetration and therefore coexistence become possible203.

We feel compelled at this point to stress that the main aim of gauge theories is to 

describe elementary particles and the fundamental interactions, both of which are quantum 

and relativistic physical entities, in a unified way, if possible, and to a great extent they 

have done so. In these attempts, topological considerations and non-trivial topologies are 

used as positive or neutral analogies and play a fundamental role in explaining as well as 

in probing the theories.

4.5.3 Topological Solutions

The above discussion about the vacuum state of fields and the possibility of a base space 

with a non-trivial topology become legitimate and worthwhile reflections when one consid­

ers stable extended solutions to the Euler-Lagrange equations of motion of non-linear field

202 Redhead, (1995b).
203 For detailed discussions about vacuum see Aristotle, Physics, Jammer, Concepts o f Space and Grant, 

Much Ado About Nothing.
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theories. The Yang-Mills theories are non-linear and the topological solutions offered are 

well defined topological objects with finite energy, which have the general name solitons; 

monopoles and instantons -orpseudo-particles- are soliton solutions too. Soliton solutions 

have been given serious thought by theoretical physicists over the past twenty five years or 

so because they sidestep the problems of infinities and renormalization; these problems im­

pair quantum field theories that describe basic matter fields of nature as though they were 

point objects. However successful these theories of point-objects may be, the quest for 

something more satisfactory continues and the stability and finitarity of the topological so­

lutions has been very promising, in terms of the explanations it provides, and alluring, so 

far as its heuristic powers are concerned.

The first one to introduce the term monopole was Dirac (1931) and his main incentive 

was to remedy Maxwell’s equations from an apparent asymmetry: though they allow for 

electric charge, they do not allow for magnetic charge in the form of magnetic monopoles. 

By introducing a radial magnetic field, Dirac made the equations symmetric and arrived at 

the monopole solutions and the quantization condition of the electric charge that is guar­

anteed by the presence of magnetic monopoles. In the case of electromagnetism, where 

the symmetry group is U(l), although the presence of monopoles makes it more symmetric 

between electricity and magnetism, their very presence is not necessary. Hence, the exis­

tence of magnetic monopoles is not determined -not even on this theoretical level- by the 

possibility that they can be accounted for by the theory. However, in the case of Yang- 

Mills gauge theories, especially when spontaneous symmetry breaking is introduced, there 

emerge solutions to the field equations -the Higgs fields- with magnetic charge, despite the
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fact that the only charges present in the matter fields of the theory are electric. So, where 

does this magnetic charge come from? The origin of such magnetic charge, or rather of 

such magnetic monopoles, is topological and their theoretical possibility was discovered 

by Polyakov (1974) a n d ’t Hooft (1974). The main idea behind them is this. Both the 

Yang-Mills action and the Euler-Lagrange equations are non-linear and for a theory with 

gauge group U(n) they take the general form

S  =  " T  /  t r F I U ,F ^ d v
M

[D„F» 1 =  0 (a)

or in terms of two-forms

S =  — J  trF  A* Fdv
MD*F = 0 (6)

respectively. The Euler-Lagrange equations (a) and (b) are non-linear equations contain­

ing quadratic and cubic terms in A, the connection, and in general they are not solvable. 

However, if  there is a connection such that

F = A*F
for some With these conditions, the map

g : S 3 -  SU(2)

falls into homotopy classes or, in other words, every g is labeled by an integer k , which 

is called the degree of g  and classifies principal bundles with group SU(2) over S4. ^d u e  

to the boundary conditions may be considered as a non-contractible sphere made of two
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overlapping and contractible hemispheres. These mappings, or hemispheres in our case, 

are not continuously deformable into one another and hence they are topologically distinct. 

In the areas of overlap A^s are related through gauge transformations. Hence, the integer 

k labels both asymptotic data of A^fx) and the bundle P  to which A^(x) belongs. The 

result is that the topology is no longer trivial and the soliton solutions that emerge carry 

magnetic charge. Abelian, as well as non-Abelian monopoles are constructed in a similar 

manner. One very important non-Abelian monopole is the Yang-Mills-Higgs monopole 

whose discovery or not will determine whether the so-called standard model is really viable.

With their reformulation of Dirac’s theory using fibre bundles, Wu and Yang (1975) 

revealed the similarities between Dirac’s idea and the monopoles in the non-Abelian gauge 

theories, as well as their differences. The main difference between them is that in the U(l) 

case monopoles are inserted into the theory while in the non-Abelian cases they become a 

necessity once the boundary conditions are set. A very important feature of these solutions 

is that they are stable and their stability is a result of the fact that the boundary conditions 

fall into distinct classes, those labeled by k, only one of which corresponds to the vacuum 

state that is, of course, global and degenerate. The fact that they are stable and with fi­

nite energy makes these mathematical objects very appealing because they do not run into 

the infinite-energy problems that the point-entities we nowadays identify with the elemen­

tary particles do, hence renormalizability is rendered irrelevant, and therefore they may be 

proved to be the ’real’ fundamental entities of nature. Moreover, quantization of the elec­

tric charge would follow from that and the quark confinement would be accounted for. So, 

if nature concedes to this view by giving us some experimental evidence that monopoles
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exist, the far reaching topological explanations will prove to be indispensable, very good 

explanations with true premises and, therefore, true conclusions.

4.5.4 What More There Is in the Fibre Bundle Approach?

The attempt to explain the A-B effect is just a simple example which illustrates what one 

may do with a formalism as rich as the fibre bundles. However, there are a lot more possi­

bilities in this formalism and we would like to give a brief account of some of them in this 

section.

One very basic assumption in physics is that we observe fundamental fields through 

their interactions, therefore any theory that purports to describe these fields must allow 

for their description. Gauge theories describe interactions successfully and when exam­

ined form the fibre bundles’ point of view, they give a unified picture of all the known 

interactions. The thing with the fibre bundles is that they allow for many possibilities, in­

finitely many as a matter of fact. With the idea of the fibres over each point of the base 

-or spacetime- manifold, it is as if a whole new world opens up over every single point: 

a world that describes what is happening on the base manifold by using the plethora of 

the tools available in it but not in the base manifold. Moreover, all the information can be 

readdressed and conveyed back and forth.

The coupling terms, which can be used to describe interactions, arise when we re­

quire certain theories to be invariant under specific symmetry transformations. In this case, 

just by using variational techniques we get equations for both the matter fields as well as 

the fields with which they interact. The matter fields in the fibre bundle formalism are
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represented by tensor fields -which are cross-sections on the tangent bundle- while the 

interaction-carriers are viewed as connections on the principal bundle, with which the tan­

gent bundle of the matter fields is associated. Thus we express interactions in a unified and 

coordinate-free way while at the same time we get a clear distinction between the matter 

and the interaction fields, which we would expect to be different. This theory can accom­

modate electromagnetic, weak and strong interactions as well as gravitational interactions 

-though the latter are somewhat different and in the case of the weak and the strong inter­

actions further properties of the interactions require some modifications of the theory204.

204 Here I am referring to short-range of the weak interactions -which led to spontaneous symmetry breaking- 
and to the quark confinement. However, I will not discuss these issues here, because they fall beyond the 
present purposes.



Chapter 5 
Conclusions

In this final chapter we will try to pull together everything we have discussed so far 

including all the historical information we have presented and some further philosophi­

cal insights. The goal of this thesis is an extended exploration of the relation between 

mathematics and physics and we attempted to address the issue from two perspectives, 

one historical and another philosophical. Our main conclusion from the history of gauge 

theories and fibre bundles was that although the mathematical theory developed quite inde­

pendently from the physical, there was a strong physical intuition that was at its very heart. 

Was that physical intuition, then, what made the mathematical structure so relevant to the 

world? Yes but not on its own, for there is also the process of abstraction involved, the in­

evitable route that takes us from the world as we experience it to the world as we theorize 

about it. Via this route, physicists and mathematicians together have brought to fruition 

the remarkable, very mathematical gauge theories of elementary particles and fundamen­

tal interactions, which boast a very rich surplus structure and provide good evidence that, 

at least in their context, we cannot do physics without mathematics.

From the discussion in the second chapter we gathered that mathematics relates to 

physics through mappings. In our examination of this relation we discerned three different 

kinds of ambiguity concerning the representation of physics by mathematics. The ambi­

guity of the first kind, or ambiguity o f  which mathematical structure to choose, is the end 

result of having more than one concrete mathematical structures, which are all adequate

219
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therefore, that the different structures we use in ambiguities of the first and of the second 

type have the same representational content.

However, in the third kind of ambiguity we saw that there is a conventional choice 

of a particular gauge from an equivalence class of gauges within the same structure, but 

the gauges ’live’ in the surplus structure and are not mapped -at least not directly- to any 

physical objects whatsoever. What is more, we cannot do physics without referring to these 

surplus entities, hence the one-to-one correspondence between the mathematical entities 

and the physical objects breaks down in this case. Given that the choice of gauge seems 

to be conventional, the question we then asked was: What has the conventional choice o f  

mathematical representation o f a physical system got to do with physics? This question we 

will try to answer now that we have examined physical systems that are described using 

mathematical surplus structure, that is to say, systems with gauge symmetries.

The mathematical formalisms available to gauge theories were examined in the third 

chapter where we argued that at present, the best one available is that of fibre bundles. If 

we restricted our view of gauge theories and considered them to be constrained Hamilto­

nian systems, there would not be much that could be said about the relation of the surplus 

structure to physics. The answer to the question above, then, would have to be something 

pedestrian, like ’the conventional choice of the mathematical representation has got noth­

ing to do with physics, it is just one among the many ways we could use in order to describe 

the system under examination’. The advantage that the unified and top-bottom fibre bun­

dles formalism offers, on the other hand, is that the relations between the entities that live 

in the surplus structure and those that occur in the rest of the mathematical structure only
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are expressed clearly in the form of mappings which, we believe, help us clarify the func­

tion of the surplus entities in the theory as a whole. These mappings reveal the function of 

the connections -or gauge fields- as information bearers and help us break free from the vi­

cious circle of trying to attribute to them a causal character. This function of the connection 

is highlighted by our examination of the A-B effect and by our investigation of the possi­

ble explanations that one may give. Moreover, the purpose of the surplus structure as the 

descriptive tool-kit of the theory becomes manifest and help us to understand the sense in 

which the mathematical controls the physical.

5.1 Is Topological Explanation Justified?

The existent models of scientific explanation have been proved insufficient for several rea­

sons, as we saw in chapter 4. Gauge theories as they stand today challenge them further 

because their inherently non-separable character requires holistic, rather than bit-by-bit, 

explanations and the existing models are not suited. This problem was elucidated when 

we examined the three existing attempts to provide an explanation for the A-B effect. The 

most promising of the three was the third one, dubbed the C approach by Lyre, which al­

leges that it is the non-vanishing loop integrals of the connections, or holonomies, around 

the solenoid that explain the effect. Although they did not provide a satisfactory explana­

tion, holonomies gave a very good indication that there is more to the spacetime around 

the solenoid responsible for the effect than just the magnetic field which is confined inside 

it. The conclusion one may draw from the non-vanishing holonomies is that zero magnetic 

field, or zero curvature, does not imply trivial parallel transport necessarily. From the fibre
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bundles theory it is known that if a region of the base or spacetime manifold is not simply 

connected then there appear non-trivial holonomies that describe the A-B effect in a quan­

titative way. There are two problems with the C approach. The first one is that it asserts 

that the non-vanishing holonomy explains the effect. To our view, if  one uses Stokes the­

orem, one realizes that the holonomy states that somewhere within the boundaries there is 

some magnetic flux. But this very fact cannot explain what is happening, it only affirms 

some physical fact, which by the way was our starting point anyway.

The second is that it turned a sufficiency argument into a necessity one by claim­

ing that if the holonomies are non-vanishing then the region they surround is not simply 

connected; but this conclusion does not follow because there may be other physical enti­

ties present, entities of which we are not aware, that are responsible for the effect. It may 

as well be the case that it is the nature of the electromagnetic field, which we do not re­

ally know, that is responsible for the A-B effect. In the A-B effect we get non-local results 

when either gauge or the electromagnetic fields are involved. Can we say from this that 

nature behaves in a non-local way necessarily? We don’t really know, say some eminent 

physicists when asked205. The necessity they try to establish is desirable because this way 

we would know that the relation between the physical structure and the surplus structure is 

exact and that the surplus structure actually governs the physical realm. But what we can 

see is nothing like that. Rather, it is a consistent picture that can be used for explaining 

how certain physical objects (e.g. the B-field) affect the behaviour of other physical ob­

jects (e.g. the electrons) even though these objects do not interact directly with each other.

205 In private conversations, Lee Smolin and K. Stelle have admitted this elusive necessity that does not seem 
to be required by nature itself.
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It id for this reason that these considerations lead to the inevitable conclusion that ’’there 

is a sense in which the connection is a more fundamental object in nature than the curva­

ture, even though a connection is gauge dependent and not directly measurable”, as Nash 

and Sen put it206, and hence to the quest for another explanation of the A-B effect.

In the physics literature, though not in the philosophical, there have been suggestions 

for a holistic, topological explanation of the effect, that may be explicated in two ways, as 

we have seen. One may claim that the topology of the base space is non-trivial because of 

the presence of the solenoid, a fact that results in non-vanishing holonomies that account 

for the effect, or one may assert that since there is a U(l) group acting in the structure, 

the topology of the vacuum is non-trivial and as a result we get the effect. We argued that 

in a classical context, none of these constitutes a legitimate scientific explanation because 

the presence of the solenoid dose not render the base space non-trivial, in the first case, 

while in the second the very presence of the solenoid prevents one from considering that 

the state of the fields is a vacuum. Hence in both cases negative analogies are contained 

that undermine the explanatory power of the arguments. However, when we shifted our 

point of view from classical to quantum relativistic we realized that there it did make sense 

to talk about vacuum state despite the presence of a solenoid with a magnetic field in it. At 

last, the topological explanation seems to work thanks to the quantum fluctuations of the 

relativistic vacuum. In other cases in gauge field theories where the vacuum state is global 

right from the start and where the solutions of the equations of motion are topological

206 Nash & Sen, Topology and Geometry for Physicists, p. 302. Bold letters in the original.
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objects, the model of topological explanation which uses global topological considerations 

plays a genuine explanatory role, we argued.

Where does this leave topological explanations, one may ask. First of all, the sug­

gested type of explanation certainly does not cover all possible explanations in physics, 

since there are plenty of examples of explanations that are not covered by it. To just men­

tion one, take explanations in atomic physics. We saw in the previous chapter that alleged 

topological explanations, like the one given in the case of projectile motion in the gravita­

tional field near the surface of the earth, do not provide any explanatory service at all. In 

other cases, aside from those in gauge theories, like for example in the case of ’handedness’, 

global topological considerations that provide good explanations have been employed since 

the times of Kant. In The Shape o f Space Nerlich, following Kant (1768), argues that since 

the property of being a left, or a right, hand cannot be a property intrinsic to hands, nor can 

it be some relation which they bear to other objects or to parts of space, ”it must lie in a 

relation between hand and space as a whole, in virtue of its topology”207 that turns out to 

be an aspect of its shape. If space is orientable, then the existence of incongruous coun­

terparts, like left and right hands, is justified globally; if, however, space is non-orientable, 

then although locally there seem to exist incongruous counterparts, its topology does not 

allow for their existence globally208. Hence topology does a very good explanatory job in 

this case. Finally, in the case of gauge theories, so far as the A-B effect is concerned topo­

logical considerations in the classical case may provide only fictional, and for this reason

207 Nerlich, The Shape o f Space, p.5.
208 Here we are not concerned with the philosophical debate about substantivalism and relationism that takes 

place around this issue. For details about this debate see Nerlich (1994) and Hoefer (2000).
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not satisfactory, explanations but in the case of relativistic quantum field theories and of 

solitons topological explanations are not only legitimate but also the best we can get.

5.2 Reassessing the Relation Between Physics and 
Mathematics

From the perspective of fibre bundles, the connections, or gauge fields, have been attributed 

a different status. The challenge that all the three attempts to explain the A-B failed to meet 

was to attribute to the gauge potential some causal status,which, within the context of con­

strained Hamiltonian systems, seemed an inevitable step, especially because there seemed 

to be no other -obvious- way of interpreting it. By shifting our perspective and examining 

the effect using a different mathematical structure, we were able to actually understand the 

gauge field as having a different function and therefore a different status. In the fibre bun­

dle context, the gauge potentials become the objects of the surplus structure that encode 

and contain all the information about the change in the topology of spacetime, that is all 

the information about any change in physics, the story one could tell in this context is that 

the connections ’communicate’ to matter fields the fact that the topology is non-trivial not 

by causally affecting them but by ’instructing’ them how to modify their phase. They do 

not govern the behaviour of the electrons, this is actually done by the magnetic field which 

constrains the choice of the gauge orbits that are allowed. Either of the possible gauges, 

though, can and do convey the message. Hence, if  the gauge fields are given the status of 

information bearers, rather than causal agents, we may claim that the surplus structure is 

not just a superfluous mathematical artefact; rather, it contains all the information that is
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necessary in order to predict the behavior of our physical system and to explain what is 

the cause of it -i.e. the non-trivial topology associated with the magnetic field- and how 

it affects it. It provides us with a quantitative method, or in other words with an entity 

-the connection- that predicts and describes the effects and hence enables the calculation 

of measurable quantities. It is the resulting non-vanishing holonomies that calculate pre­

cisely the shift in the phase of the electron, after all. The conclusion that follows from all 

these is that the gauge fields cannot be given the status of truly existing fields, i.e. real 

fields that act locally, nor can they be understood as merely objects of a purely mathemat­

ical surplus structure that has no relation to the physical system, but as objects encoding 

all the necessary information that is not contained in the part of the mathematical struc­

ture which is adequate for the description of the physical fields. Although the choice of a 

specific gauge may still seem purely conventional, the actual functional role of the gauge 

fields themselves in the theory goes, therefore, beyond mere convention.

The situation here is reminiscent of something that happens quite a lot in mathemat­

ics, where an extended mathematical structure describes and explains what is going on 

in a ’reduced’ one -so much that it seems as though the extended controls the ’reduced’. 

Michael Redhead in his Unseen World (2001) discusses two such examples: the proof of 

Desargues’ theorem in plane projective geometry and the binomial expansion of the func­

tion In the case of Desargues’ theorem, in order to prove it one moves from two to

three dimensions by introducing a point outside the plane; then one has only to assume the 

axioms of incidence to prove the theorem in the plane. As for the binomial expansion, its 

convergency properties are explained -or controlled, as Redhead put it- once we extend the
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mathematical structure from the real numbers’ line to the complex plane. A similar exam­

ple from mathematics that finds application in scattering theories occurs when one tries to 

solve certain singular differential equations, where once again is the complex plane rather 

than the real number line that explains -or controls- the behavior of the functions involved. 

In all the cases mentioned here the surplus structure is apparently more informative and 

hence more powerful than the ’reduced’ and the same holds in the case of gauge theories, 

of course.

But now let us investigate what other conclusions we may draw from this change of 

our perspective about the ambiguity of the third kind in gauge theories. The choice of a 

specific gauge in a given problem is conventional in the sense that since gauge orbits de­

fine equivalent classes, any member of an appropriate class would do. In the case of gauge 

theories, the question ’What has the conventional choice o f mathematical representation 

o f a physical system got to do with physics? ’ can be rephrased as follows. Since the con­

ventional choice of gauge has such an import in our understanding of the phenomena and 

since it is because of this possibility that we get description of interactions and, maybe, 

acceptable, approximate topological explanations, what can we say about the relation be­

tween the two, i.e. the relation between mathematics and physics? What we would like to 

claim here is that it is not the conventional choice per se that allows us to do so, rather it is 

the freedom to choose our gauge, or ’unit of measurement’ in a broad sense if you prefer, 

that enables a complete description of what is happening or is going to happen. Allowing 

for freedom of choice of the available ’measuring tools’ we are able to capture all the in­

formation that is needed and that is available. One should be reminded here the case of
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impedances that we mentioned in chapter 2 and compare it with the case of the gauge the­

ories. In that case the mathematical structure was also richer than the physical and with 

more possibilities -in the form of relations- to handle the entities involved. However, in the 

case of gauge theories we have a mathematical structure which, thanks to the symmetries 

present, is also richer in its ontology in the sense that it contains mathematical entities that 

do not directly correspond to the physical ones.

The fibre bundle formalism provides us with a plethora of tools and non-physical en­

tities, or information bearers as we like to call them, which Tive’ in a richer structure than 

that of the constrained Hamiltonian systems, or even that which we perceive as physical. 

This richer and hence filled-with-more-possibilities structure gives the opportunity to ex­

plain events that we are aware of using objects or descriptive tools that initially we were not 

aware of. Is this relation between mathematics and physics accidental? No, definitely not! 

So far as gauge theories are concerned, an indication that this relation is non-accidental is 

provided by the remarkable heuristic success of gauge theories. The discovery of all the 

three massive gauge fields that mediate the weak interactions, as well as of the quarks that 

are the messengers of the strong interactions, relied on theoretical predictions based on the 

’natural’ extensions of the U(l)  theory of electromagnetism. Of course, as the experimen­

tal data indicated discrepancies between theory and experiment, or nature, modifications of 

the theories followed promptly so that the disagreement ceased. One such modification was 

dictated by the fact that the weak gauge bosons were massive; gauge theories, on the other 

hand, predicted massless gauge potentials. The way out of this difficulty was provided by 

the so-called spontaneous symmetry breaking, which requires that a choice of gauge has
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occurred such that the gauge potentials assume a fixed value and hence they acquire mass. 

Apart from the fact that experimental import modified the theoretical interpretation of the 

theory, this incident is very important for another reason. Nature indicated that in the case 

of weak interactions the weak interaction information bearers produced massive, measur­

able currents, which means that the mathematical entities corresponded to physically real 

particles with directly measurable properties. A possible reading of this is that the gauge 

fixing, which this specific kind of interactions required and which is impossible when the 

symmetries are still present, obliges us to move from a world of possibilities and informa­

tion bearers to the world of actualities and gauge fields that correspond to physical objects.

The relation between physics and mathematics, on one hand, and physics and na­

ture, on the other, is a dynamic relation where the choice of a particular mathematical 

framework for a physical theory depends on the needs and the progress of the theory on a 

merely theoretical but also on a phenomenological level, while often, the development of 

a particular branch of mathematics is also influenced by advances of some physical the­

ory -and experiment- that made use of them. In either case, there has been an interaction 

between physics and mathematics. From the history of physics, the cases that exemplify 

this two-way relation abound. Take the startling case of general relativity, to begin with. 

When Einstein started on the road to this theory and looked for an appropriate mathematical 

framework, tensor calculus was already available for him to use. Another example where 

mathematics and physics developed hand in hand was Newtonian mechanics and differen­

tial calculus. But also, there are examples where mathematics developed after physics, in 

order to accommodate physics. One well known example is the case of quantum mechanics
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and Dirac’s formulation, which triggered research in mathematics that led to the develop­

ment of the theory of distributions. Another example, which we have already mentioned 

and is perhaps less well known but very important to our case study of gauge theories, is 

Noether’s work on variational principles and variational calculus. It was work in progress 

in physics and interaction with physicists who were working on that area that guided her 

mathematical research; of course one should not neglect the role of her intuition. Most of 

all, in the first chapter we discussed to some extent the history behind the genesis of gauge 

theories and we saw there that the mathematical framework of these theories matured not 

on its own but with persistent and diligent work and a lot of communication between math­

ematicians and physicists. But then, one may ask, what is it in this relation that makes an 

interaction like this possible? A key word that, to our view, is revealing of the nature of 

this relation is dialectic. The relation between physics -theoretical as well as experimental- 

and mathematics is a dialectic relation in which input and feedback play a crucial role.
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