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A bstract

The thesis studies robust methods for estimating location and scatter of multi

variate distributions and contributes to the development of some aspects regarding 

the detection of multiple outliers.

A variety of methods have been designed for detecting single point outliers which, 

when applied to groups of contaminated data, lead to problems of “masking” , that 

is when an outlier appears as a “good” data. Robust high-breakdown estimators 

overcome the masking effect, also allowing for a high tolerance of “bad” data. The 

Minimum Volume Ellipsoid (MVE) and the Minimum Covariance Determinant es

timator (MCD) are the most widely used high-breakdown estimators.

The central problem when identifying an anomaly is setting a decision rule. The 

exact distribution of the MCD and MVE is not known, implying th a t the diag

nostics constructed as a function of these robust estimates have also an unknown 

distribution. Single point oultiers can be recognized using Mahalanobis distances; 

multivariate outliers are detected by robust (via MCD and MVE) distances of Ma

halanobis type. The thesis obtains the small sample distribution of the first ones in 

an alternative simpler way than the proof existing in the literature. Furthermore, 

some empirical evidences show the need of a correction factor to  improve the ap

proximation to the expected distribution. Some graphical devices are suggested to 

enhance the results.

One of the limiting aspects of the literature on robustness is the lack of real data 

applications beside the literature examples. The personal interest in financial sub

jects has driven the thesis to consider applications in this area. Particular attention 

is paid to methods for optimal selection of financial portfolios. Mean-Variance port

folio theory selects the assets which maximize the return and minimize the risk of 

the investment using Maximum Likelihood Estimates (MLE). However, MLE are 

known to be sensitive to relatively small fractions of outliers. Furthermore, a wide 

financial literature provides evidence of the non-gaussian distribution of the stock



returns. All these reasons motivate the construction of a robust portfolio selection 

model proposed in the thesis.
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Chapter 1 

Introduction

The word robustness is widely used in many fields of scientific research to signify 

the most diverse meanings. Scientific experiment are constructed according to a 
framework which determines the validity of the results. Sometimes these initial 
assumptions are too restrictive and do not match what happens in reality. In general, 
the results of an experiment are termed robust if they are not affected by changes 
in the initial framework. This section clarifies the meaning of statistical robustness 

and how it is related to outlier diagnostics.
Huber (1981) defines the word robust as

insensitive to small deviations from statistical assumptions.

Hampel, Ronchetti, Rousseeuw, and Stahel (1986) restrict the concept of robustness 
in the following way:

robust statistics, as a collection of related theories, is the statistics of 
approximate parametric methods.

According to Hampel’s definition, robust statistics does not include semiparametric 

and non parametric models. These two models are generalizations of the paramet

ric methods obtained by relaxing some distributional assumptions. Non parametric 

methods allow for a wider range of probability distributions than semiparametric 

ones. In other words, robust statistics is considered as a broader class of parametric 

statistics, including also “approximate” models, that are neighborhoods of paramet

ric models where some initial assumptions do not hold. Although there is a fine fine
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between semiparametric and robust models, we believe that, in general terms, the 

former models allow for a wider range of distributions than the latter models. Fur

thermore, while semiparametric methods model all the data, the robust statistics 

reject the observations believed to be inconsistent with the reference model or, at 

least, reduce their importance through down-weighting. There are various impli

cations on the properties of the robust and semiparametric estimators which can 

be studied referring to the specific literature: Bickel, Klaassen, Ritov, and Wellner

(1993), Horowitz (1998), Powell (1994). For the reasons explained above, Hampel’s 
definition seems more appropriate than the Huber’s to describe the robust tools 

studied in this thesis.
The approximations of parametric models are determined by gross errors that 

are measurement or transcription errors, distributional mis-specifications, rounding 

or grouping, or by the presence of some correlation structure in the data. These 

errors generate outliers or “strange” observations. The outlier diagnostic literature 
is vast and includes many different approaches mainly depending on the model 
considered. Most of the studies concern regression models, although there is an 
increasing amount of work on time series and categorical data.

1.1 The Outlier Problem

The most common definition of an outlier is

an observation lying far from the rest of the data,

although this is not sufficient to identify an anomaly. A remote observation is 

an outlier only if it is judged inconsistent with the remainder of the data. The 

purpose of statistical methods is to introduce some objectivity in the identification 

and treatment of the “strange” points.

Regarding the treatment of outliers, rejection of strange points is not always the 

optimal solution. The most common criticism from the “antagonists” of robust 

methods is that blind deletion could result in a loss of some relevant information. 
Simply, if these points are generated from errors in reading, recording or grouping,
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they should be eliminated from the data. In other cases, when the anomalies derive 

from a different probability distribution or a different deterministic model, there 

are various approaches for treating the outliers other than plain deletion. A first 
approach consists in applying a transformation, when possible and appropriate, in 

order to adapt the model to the furthest points. A second approach is to reduce the 

importance of outliers through down-weighting.

Huber’s data offers a simple and clear example of how even only one distant 

observation can influence the model’s fit. The observations are only six for each of 

the two variables (Table 1.1). A linear model, y  =  XT/3, where y  is the ( 6 x 1 )  

response vector and X the (6 x 2) matrix of carriers, including the dependent variable 
and a constant term, is fitted. Panel (a) suggests that there might be one outlier, 
observation 6, in the direction of the x axis. These types of outliers are called 

leverage points. It is also an influential observation since it changes the direction of 

the fitted fine. Panels (b) and (c) are the Q-Q Normal plots of the residuals from 

a linear and quadratic fit: yi =  J2l=o Pkxii * =  1,2, ...,6. The second fit appears 
to be a better solution than the first one: the residuals lie closer to the straight 
line. A good result comes also from fitting a straight fine after the deletion of the 
“bad” observation shown in panel (d). Further investigations are needed to decide 
between the two approaches. In addition, the data axe not enough to show if the 

extreme point is an outlier or simply a sample vaxiation of the data.

The meanings of some terms that will be recurrent in the thesis have been implic

itly defined. An extreme observation is a point fax from the rest of the data. This 

is an outlier if the distance is considered “unusual” . There axe different types of 

anomalies according to how these points are related to the model considered: lever
age points and influential observations (sometimes called good and bad leverage 

points) are outliers for a regression model.

1.2 Contribution of the Thesis

The thesis studies robust modelling methods for estimating location and scatter 

of multivariate distributions and contributes to the development of some aspects
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regarding the detection of multiple outliers. The computational work is substantial. 

Large use is also made of graphical tools, which are the most direct and simple 

approach to detect anomalies.

The identification of multivariate outliers is a particularly difficult topic to cope 

with. A variety of methods have been designed for detecting single point outliers 
which, when applied to groups of contaminated data, lead to problems of “masking” 

(meaning when an outlier appears as a “good” datum). Robust high-breakdown esti

mators overcome the masking effect, also allowing for a high tolerance of “bad” data. 

On the contrary, most of the robust statistics have breakdown at a fraction l / (p + l)  

of contaminated data, where p is the dimension. Therefore, high-breakdown estima
tors are particularly useful in high dimensional sets. Many different methods have 
been offered by the literature as well as feasible algorithms for their computation. 
The Minimum Volume Ellipsoid (MVE) and the Minimum Covariance Determinant 
estimator (MCD) are the most popular ones (Chapter 3). The second one has better 
statistical properties than the first one, but its use has been limited by the lack of 
a fast and efficient algorithm. There are three main algorithms developed for the 
computation of MCD estimates: the FSA (Feasible Solution Algorithm) by Hawkins
(1994) is computationally heavy and relatively slow; the Fast Algorithm (Rousseeuw 
and Van Driessen 1999) solves problems of speed; and the Forward Search for the 
MCD (Atkinson and Cheng 2000) applies a simple and efficient criterion. In addition 
to increasing the velocity of the algorithm on which various authors seem mostly 
focused, there are other computational aspects to be discussed. The first one is the 

choice of the size of the starting subset which is the outlier-free set. Including too 

few data in the initial set can compromise the efficiency of the estimates. However, 
if we start with too many data, including outliers, the result is a loss of robustness. 

We discuss this problem and propose some practical solutions.

Robust methods allow us both to find estimates for the location and the variability 

of a multivariate cloud according to robustness criteria and to detect groups of 

outliers at the same time. The central problem when identifying an anomaly is 

setting a decision rule. In this context, the distributional aspects of the robust 

diagnostics become very important. The asymptotic properties have been studied
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in the literature, although the exact distribution of the MCD and MVE is not 

known. This implies that the outlier diagnostics constructed as a function of the 

robust estimates also have an unknown distribution. Single outlying points can be 

recognised using Mahalanobis distances as a diagnostic tool; multivariate outliers 

are detected by the robust (via MCD and MVE) distances of Mahalanobis type 

(Chapter 4). The thesis obtains the small sample distribution of the Mahalanobis 

distances in an alternative simpler way than the proof existing in the literature. 
Furthermore, some empirical experiments show the need of a correction factor for the 

approximation of the robust distances to their asymptotic distribution. Simulation 

envelopes, introduced for the first time by Atkinson (1985) in regression models, 

are found to be a valuable tool to detect outliers, overcoming the problems deriving 
from the unsatisfactory approximation of the robust distances by the theoretical 

distribution.
It has been noted that one of the limiting aspects of the literature on robust

ness is the lack of real data applications beside the canonical examples that are 
usually referred to by experts in the topic. My personal interest in financial sub
jects has driven the thesis to consider applications in this area. In particular, the 
attention is on methods for optimal selection of financial portfolios. The objective 

of these methods is to select the quota of the budget to invest in different finan
cial assets (stocks, bonds etc.). Markowitz (1952) develops what is known as the 
Mean-Variance theory whose general and simple idea is to select the portfolio which 
maximizes the return and minimizes the risk of the investment, requiring estimates 

for the mean and variance-covariance matrix of asset returns. Markowitz (1952) 

considers Maximum Likelihood Estimates (MLE), known to be sensitive to rela

tively small fractions of outliers. Furthermore, a wide financial literature provides 

evidence of the non-gaussian distribution of the stock returns. Finally, there are mo

tivations lying in the difference between tactical and strategic portfolios. Strategic 

portfolios are long-term portfolios, determining the general investment policy of the 

financial institution. Tactical portfolios are those trying to anticipate the market 

movements in the short term. From a strategic point of view, it is desirable that 

the composition of the portfolio does not vary much over time, mainly because of
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the high transaction costs. All these points motivate the construction of a robust 

portfolio selection model as proposed in the thesis.

It has been mentioned that stock returns follow a non-gaussian distributional 

model. Although various authors disagree on the specific distribution, the common 

idea is that returns are longer-tailed than the Normal. The Student-t is suggested 

as a possible model. The advantages of using such a distribution compared to other 

long-tailed forms derive mainly from its simplicity and closeness to the Normal. The 

thesis explores the possibility of robust modelling using the multivariate Student-^ 

and compares it with the high-breakdown optimizer. Some distributional aspects of 
the estimates are also discussed.

1.3 The Outline

Chapter 2 explores a financial data set which will be often used in the thesis.
The literature regarding robust estimators of multivariate location and scatter 

is reviewed in Chapter 3, with particular attention to the MVE and the MCD 
estimators. This Chapter also examines some computational aspects of the MCD 
method regarding the choice of the size of the initial set.

The detection of groups of outliers in multivariate data is studied in Chapter 

4. The diagnostics used in the literature are reviewed and the distribution of Ma

halanobis distances is analytically derived. The critical regions commonly used to 

detect outliers in a multivariate data set are quantiles of the Chisquare. It is shown 
that this approximation leads to the rejection of too many points, with a consequent 
loss in efficiency of the estimator. Analytical and empirical evidence are provided.

Chapter 5 studies an alternative way of modelling robustly via the Student- 

t distribution. Obtaining the MLE for a multivariate-^ requires the use of the 

EM algorithm traditionally used when there are some missing observations in the 

data assumed Normal and non-contaminated. The EM can also be adapted to the 

framework of the multivariate t distribution. Finally, detection of multiple outliers 

is explored and the goodness of this model is compared in some applications with 
the high-breakdown estimator methods.
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The robust construction of a model for optimisation of portfolios is proposed in 

Chapter 6. The Chapter provides analytical and empirical motivations for the use of 

a robust model. The performances of the model are analysed through a simulation 

study and an example using real data.

In Chapter 7, we summarize the results found in the thesis and propose ideas for 

further extension of the work.
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Table 1.1: Huber’s data (a) and residuals from the linear (lm), quadratic (qm) and 
linear without outlier fits (b)-(d).

observation x y residual (lm) residual (qm)
1 -4 2.48 2.09 0.25
2 -3 0.73 0.41 -0.26
3 -2 -0.04 -0.27 0.05
4 -1 -1.44 -1.59 -0.44
5 0 -1.32 -1.39 0.42
6 10 0.00 0.75 -0.01

Figure 1.1: Huber’s data example: scatter-plot, (a), and Q-Q plots, (b)-(d). 
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Chapter 2 

A Financial D ata Set

2.1 Introduction

This Chapter introduces a data set coming from a real investment decision problem. 
The data is a recurrent example in the thesis. It consists of 10 monthly price indexes 
of the bond and stock markets. For each type of asset, there are indexes on 5 coun
tries: United Kingdom, Japan, USA, Germany and Switzerland. The bond market 
indexes are provided by Salomon and the stock data by Morgan Stanley, with the 
exception of the stocks for Europe, produced by BSI (Banca della Svizzera Italiana). 
The observations are 175: from January 1985 to July 1999 and are expressed in local 
currencies.

The interest is on returns rather than asset prices. Therefore, each variable has 
been transformed applying differences of logarithms of the prices in two subsequent 
times:

yt = ln(pt_i/pt),

where y is the rate of return and pt is the price at time t. The resulting observations 

are then expressed as annualized percentages, that is yt x 1200, where yt is the return 

of one asset at time t. The currency of reference is Swiss Francs. The final data 

set is displayed in Table 2.1, Table 2.2 and Table 2.3, where the variable names are 

Datastream codes.
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2.2 D ata Description

There is a considerable amount of financial literature describing financial return 

data, particularly stocks. These are shown to be longer tailed than the Normal 

distribution and weakly autocorrelated.
Our data are indexes and, therefore, better behaved than series of single stocks. 

There are no significant autocorrelations of order one, although it is still possible 

to find some correlations of higher order or of some function of the initial variables 

(Figure 2.1). This means that the observations are not independent, although, as a 

first approximation, they will be treated as such.

Since we assume the assets are time independent, the scatter-matrix plot is a 
very useful graph to display the data structure and the relationship between pairs 
of variables. On the diagonal panels, there are the box-plots for each asset-market. 
The bond distribution is symmetrical and approximates quite well the Normal. 
The stock indexes are roughly symmetrical, but more scattered than the Normal 
distribution. These results are confirmed by looking at the Q-Q plots of Figure
2.2 and at Table 2.4. The skewness and kurtosis in Table 2.4 are computed using 

moment sample estimates:

* - !  W '
* - [iK^T]-3’

where y is the average return and o is the sample standard deviation. Values around 

0 indicate that the distribution is symmetric and mesokurtic. The kurtosis coefficient 

is positive for all the stocks, which means that the distribution is leptokurtic. The 
negative 71 shows that the distribution of the stocks is also skewed to the left, which 

is confirmed by the Q-Q plots.

The panels in the off-diagonals are scatter-plots of each pair of assets. These 

show high correlation among the stock markets (the last five rows and column 

panels). The bonds appear less highly associated, although the pairwise correlation
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coefficients are still significant (Table 2.5). The only exception is the Swiss bond 

index, which appears to be significantly related to the German bond one.

Both the scatter and the Q-Q plots evidence a couple of observations lying far 

from the bulk of the data. This confirms what we expected: because the data are 

monthly indexes (weighted averages of single stocks resulting from aggregations of 

daily data) there are only a few outliers. October 1987 represents the well known 

crash of the New York Stock Exchange, the largest drop of the returns after 1929, 
which affected most of European and Asian markets. August 1998 represents the 
Russian crisis, following the crash of the Asian markets, which extended to Europe 

and the US.

2.3 Comments

The description of the data confirms what it is well known in the literature on 
finance: stock returns are non Gaussian. Their distribution is rather longer tailed 
than the Normal. Because the data are indexes, there are only a few outliers. We 
leave further exploration of the data set to the following chapters.
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Table 2.1: Monthly stock and bond indexes (yt ). Source: Data Stream, BSI.

L E G E N D
B o n d s S to c k s

S w itzerla n d SB SZ 37L M S S W IT L (R I)
U n ited  S ta te s S B U S37L M IS S A L (R I)
G erm any, E urope SB D M 37L S T O X X E U 5 0 B S I
U n ited  K ingd om SB U K 37L M U T U A L (R I)
Japan SB JY 37L M E S C A L (R I)

D a te SB S Z 37L S B U S 3 7 L SB D M 37L SB U K 37L S B JY 37L M S S W IT L (R I) M IS S A L (R l) S T O X X E U 5 0 B S I M U T U A L (R I) M E SC A L (R I)
1 / 1 / 8 5 2 .5 1 7 4 5 6 .2395 26 .7255 -1 .1 5 0 8 25 .4 8 4 0 7 6 .7 0 2 5 1 2 6 .1 9 7 4 1 2 6 .0549 6 2 .4 2 5 3 30 .9 4 1 3
2 / 1 / 8 5 -7 .3 2 7 0 59 .6 1 2 1 -0 .5 1 1 6 27 .9873 4 4 .0 4 6 8 1.6221 9 3 .2 4 8 3 4 6 .8 1 1 3 6 .8 6 2 2 113 .6219
3 / 1 / 8 5 7 .8 0 5 9 -9 1 .7 7 6 9 1.9017 68 .4115 •5 4 .6 5 6 7 0 .7 4 2 7 -1 1 0 .4 2 0 7 0 .8 2 3 2 7 4 .1 9 1 3 -4 0 .0 1 5 9
4 / 1 / 8 5 9 .1 8 1 7 2 8 .3 7 4 3 8 .9213 25 .5755 3 .0 6 1 3 4 4 .0 6 1 4 -1 .7 5 4 1 3 2 .5 1 3 3 2 2 .4 2 9 7 •4 5 .7 1 0 3
5 / 1 / 8 5 7 .3 4 2 4 4 4 .7 2 5 7 22 .6118 44 .6741 6 .9 4 8 6 45 .0 6 7 1 6 1 .6 9 1 7 51 .7 5 1 2 6 2 .6 1 6 6 3 5 .1 5 8 7
8 / 1 / 8 5 1 .6875 -3 .1 5 5 6 10.3021 15.7650 7 .0215 7 1 .0 3 8 6 0 .4 1 7 6 5 .7 0 0 2 -6 8 .5 9 9 7 3 1 .5 3 1 8
7 / 1 / 8 5 5 .5 2 7 5 -1 2 2 .3 3 1 9 -5 .7 3 9 6 2 .5853 -5 2 .5 1 0 9 2 2 .5 6 9 3 -1 2 0 .5 5 7 0 -4 7 .6 4 6 7 7 .9 9 7 5 -1 1 2 .7 7 3 9
8 / 1 / 8 5 1 0 .6304 2 0 .4 9 0 6 23 .1 1 9 6 5 .7 6 8 7 4 .8271 6 3 .2 4 4 6 -8 .6 4 3 1 4 9 .4 0 6 8 7 4 .3 0 6 3 2 4 .6 0 4 3
B / l / 8 5 3 .9 4 7 8 -4 7 .7 6 9 2 8 .5456 -3 3 .7 4 0 3 7 4 .1518 -5 4 .5 4 4 7 -9 8 .7 5 5 0 -6 .2 0 0 0 -9 5 .8 8 7 3 6 9 .1 9 0 7

1 0 /1 /8 5 7 .8 5 6 8 -4 .3 1 6 1 -1 5 .1 8 5 4 10.9701 -3 0 .7 6 6 6 1 3 1 .6 5 1 6 2 8 .3 9 9 9 74 .3 2 8 2 9 3 .0 6 9 3 8 .9 7 1 9
1 1 /1 /8 5 6 .8 6 0 0 -1 4 .2 0 8 1 2 6 .3975 3 .2563 4 0 .0 0 9 3 9 2 .0 3 3 9 4 1 .8 9 9 2 7 1 .0 0 1 9 5 6 .0 5 8 9 -1 8 .0 6 7 7
1 2 /1 /8 5 9 .2 3 9 2 20 .2 4 9 3 32 .9 6 0 3 -5 2 .4 2 2 6 2 2 .1 5 4 5 1 1 0 .9 9 0 0 4 8 .1 3 9 9 97 .0 0 6 0 -0 2 .0 3 8 7 5 9 .4 6 9 7

1 / 1 / 8 8 6 .9 1 1 2 -1 0 .0 9 5 1 18.5053 •5 2 .3 1 4 4 3 6 .1 4 3 2 -6 2 .0 7 5 0 -1 1 .3 1 1 8 3 0 .1 3 0 7 -2 0 .4 1 2 0 12 .6846
2 / 1 / 8 8 9 .6 7 6 6 -5 2 .2 3 2 4 18 .0537 -6 .5 8 3 1 3 1 .7 3 5 3 -2 6 .5 8 1 8 2 .0 8 8 3 55 .7 4 0 5 3 8 .3 4 0 9 4 6 .3 2 7 8
3 / 1 / 8 8 3 .6 9 2 5 76 .3 2 1 6 6 .2 2 5 9 130.4371 7 1 .7382 9 3 .2 7 6 9 1 0 2 .4 0 5 3 1 5 7 .9 0 2 0 1 6 3 .8412 2 6 2 .8 5 0 0
4 / 1 / 8 8 -3 .1 3 2 3 -7 8 .4 3 1 7 15.3041 2 .1 9 1 6 2 .4 8 7 8 5 .4 8 0 0 -1 0 3 .4 3 0 1 65 .0 9 5 5 -2 8 .2 1 8 4 -2 4 .8 5 5 7
5 / 1 / 8 8 -1 .1 2 0 7 5 1 .8 3 6 2 -2 3 .3 0 0 5 15.8785 5 .7 2 1 6 -8 .4 8 8 3 1 3 4 .9 3 2 3 -4 3 .7 7 1 1 -2 6 .5 9 0 0 61 .5 3 3 1
8 / 1 / 8 8 5 .4 8 1 2 -5 3 .7 6 8 3 •1 3 .3 7 6 7 -4 5 .2 8 2 3 3 .3 2 5 0 •2 1 .1 0 3 0 -7 2 .2 1 3 3 -5 7 .8 1 2 8 3 .4 4 5 8 3 2 .6 2 1 8
7 / 1 / 8 8 7 .3 4 3 6 -6 4 .4 6 2 2 -8 .5 3 0 6 -1 2 0 .3 6 6 5 1 .3274 -9 7 .5 1 1 8 -1 4 8 .3 3 7 3 -1 .0 1 9 4 -1 8 7 .5 7 2 1 6 4 .7 9 0 5
8 / 1 / 8 8 8 .8 4 1 4 7 .1 8 4 0 2 1 .6 9 2 6 -1 2 .7 4 9 8 -1 2 .6 6 1 9 1 2 1 .6 5 0 7 6 1 .1 5 3 1 1 2 7 .0 4 9 7 4 7 .3 9 4 6 7 8 .5381
0 / 1 / 8 8 2 .9 6 9 3 -1 3 .7 0 9 4 8 .8 7 2 2 -9 4 .4 3 6 1 1.3402 -4 7 .7 3 9 0 -1 0 3 .7 6 1 5 -6 6 .7 4 5 0 -1 0 3 .5 1 4 2 3 3 .3 8 9 8

1 0 /1 /8 8 7 .6 6 4 3 6 6 .0 3 4 8 23 .7 0 2 0 23 .4 3 5 3 -4 .5 0 5 3 6 2 .6 9 9 2 1 1 4 .3 1 8 1 3 9 .1 1 1 1 7 3 .3 3 4 0 -1 2 0 .5 6 9 8
1 1 /1 /8 8 4 .5 7 5 2 -3 6 .6 4 2 6 10.0290 -2 3 .1 3 2 7 -3 1 .9 2 1 4 4 0 .9 8 5 3 -2 2 .8 9 3 1 26 .4 3 0 5 -1 0 .4 7 1 8 2 2 .8 4 4 6
1 2 /1 /8 8 6 .8 3 0 2 -2 0 .9 0 3 0 15 .2072 50 .4 7 3 7 15 .9695 4 .1 9 2 5 -5 3 .2 5 8 1 9 .1 0 4 1 4 8 .0 3 6 9 7 5 .2 4 5 5

1 / 1 / 8 7 8 .8 3 2 3 -4 0 .1 5 9 1 2 8 .3492 2 .4842 3 .4 9 8 5 -4 0 .2 8 5 2 9 7 .9 2 0 8 2 .9 7 5 7 7 6 .0 1 3 7 118 .0991
2 / 1 / 8 7 1 .0 7 2 7 1 .5449 2 .0 0 7 8 5 3 .4525 19 .2528 -4 8 .4 5 7 5 3 6 .1 8 4 7 -1 1 .5 2 8 7 1 2 0 .4 7 2 3 13 .1643
3 / 1 / 8 7 1 .1788 -3 2 .0 7 8 9 9 .0 3 0 2 57 .1 0 2 6 5 6 .0 5 9 8 1 9 .8 9 4 9 1 0 .7 2 3 7 4 6 .4 9 4 6 3 7 .1 9 7 7 104 .7951
4 / 1 / 8 7 6 .4 5 0 4 -4 7 .4 9 4 3 -9 .9 0 9 3 37 .6072 2 9 .0 1 7 0 -3 4 .5 5 3 1 -3 6 .8 5 1 0 -8 .2 6 7 2 6 1 .4 2 7 4 14 8 .5 1 1 7
8 / 1 / 8 7 4 .4 7 0 1 2 3 .5 1 3 6 2 2 .3 4 3 7 19.6423 7 .4 5 5 6 -1 5 .0 4 6 4 3 6 .0 9 9 0 -6 .6 5 4 5 9 5 .4 9 4 7 2 4 .1 2 6 7
C / l / 8 7 4 .2 4 1 8 1 5 .7 6 3 0 -7 .4 4 4 4 •2 0 .0 0 8 5 -4 0 .8 5 8 8 6 6 .1 2 2 2 6 2 .9 6 1 8 2 5 .9 8 8 4 4 1 .0 7 1 9 -8 7 .9 2 1 6
7 / 1 / 8 7 4 .3 3 2 3 19 .1541 -7 .6 2 4 4 -1 6 .4 2 9 0 -2 3 .6 6 7 9 9 7 .7 5 7 1 7 4 .2 8 2 2 5 8 .3 7 2 8 4 2 .9 2 3 7 -2 4 .8 0 9 7
8 / 1 / 8 7 0 .4 2 1 8 -4 0 .3 7 5 3 -6 .1 9 2 7 •2 8 .0 4 3 8 26 .1 3 7 2 -1 .0 6 9 3 9 .3 9 8 5 -3 .9 0 2 9 -6 1 .3 2 2 9 103 .5110
8 / 1 / 8 7 -3 .3 7 8 8 13 .3 6 5 3 7 .7130 4 7 .7 0 1 9 -4 2 .3 0 5 4 4 9 .5 4 8 5 7 .9 9 5 6 •1 4 .9 4 7 0 9 3 .9 1 6 4 -9 .5 8 0 7

1 0 / 1 / 8 7 15 .9 6 5 2 -4 4 .7 4 0 1 2 .4 2 8 7 35 .5661 23 .2 4 3 5 -3 1 7 .1 8 6 1 -3 7 1 .2 0 4 6 -3 0 0 .0 3 4 4 -3 7 5 .8 9 2 6 •1 7 5 .8 8 0 1
1 1 / 1 / 8 7 1 0 .0 7 8 4 -6 7 .3 9 6 2 12 .4906 19.8633 -2 .2 2 9 8 -1 4 0 .9 5 4 1 -1 7 9 .9 6 1 1 -1 1 7 .3 0 8 8 -1 3 1 .5 5 2 8 -3 0 .6 6 7 7
1 2 / 1 / 8 7 1 .8609 -5 0 .2 8 7 6 -9 .9 3 0 6 -3 6 .7 7 2 2 5 4 .2 7 1 7 -3 6 .8 5 7 1 1 7 .9660 -2 6 .6 2 8 2 8 1 .5 7 0 3 •4 6 .1 1 7 9

1 / 1 / 8 8 7 .6 2 6 7 12 0 .0 1 0 0 17.9760 26 .7023 3 3 .0 4 9 3 8 .5 9 1 7 1 3 4 .1 1 2 3 -1 6 .0 2 6 3 7 3 .9 9 4 7 1 4 5 .3859
2 / 1 / 8 6 6 .2 4 4 4 3 4 .7 2 2 0 3 0 .7 1 8 7 30 .6374 2 2 .8 6 7 6 9 3 .8 2 3 1 7 0 .1 8 7 9 1 4 1 .0486 13 .1 3 0 7 1 0 8 .9576
3 / 1 / 8 8 -2 .8 6 2 3 -3 3 .0 4 6 9 3 .0 1 5 0 7 3 .3 4 0 4 3 0 .0 7 5 9 -4 0 .0 7 9 4 •6 4 .7 0 3 2 -1 0 .3 3 3 9 3 3 .4 6 6 0 6 4 .7 8 9 2
4 / 1 / 8 8 9 .5 8 2 1 2 1 .6 1 9 6 6 .8 2 3 6 22 .1 3 9 7 28 .3 7 1 3 1 6 .5 6 5 6 3 7 .1 0 6 0 5 6 .7 1 7 0 5 7 .3 2 5 7 3 7 .4 7 6 0
6 / 1 / 8 8 -4 .9 8 5 4 3 6 .2 9 9 0 3 .2 1 2 0 23 .3551 2 8 .2 6 8 5 0 .5 1 0 0 52 .6 4 9 9 23 .8 2 7 1 5 .9 6 1 1 -1 3 .0 1 4 1
6 / 1 / 8 8 4 .4 7 7 6 7 2 .5 1 6 4 -9 .5 6 3 4 -5 6 .0 0 2 1 -3 4 .0 1 9 3 7 1 .2 8 2 9 1 0 6 .2 3 6 7 7 2 .1 7 8 5 1 4 .2 2 5 7 6 .6 6 9 3
7 / 1 / 8 8 -6 .0 0 7 9 36 .7 5 0 2 -7 .2 4 6 8 4 7 .5168 5 4 .0 5 5 0 13 .7 0 3 7 3 7 .9 7 0 7 3 0 .0 8 7 8 5 2 .1 2 4 2 9 1 .3 9 9 9
8 / 1 / 8 8 4 .0 7 6 4 1 8 .0 3 4 0 20 .1 1 7 6 -1 3 .9 9 6 0 •1 9 .4 6 3 4 -4 .4 2 5 2 -2 2 .1 7 6 6 -1 4 .1 4 4 2 -6 1 .3 7 0 8 -7 0 .9 8 1 5
9 / 1 / 8 8 7 .4 0 4 0 2 1 .5 7 8 7 20 .8 9 6 6 28 .5 8 6 6 3 4 .3 7 0 3 4 4 .5 2 0 1 4 8 .6 2 2 5 6 6 .6 0 5 4 5 5 .4695 5 3 .8 2 0 4

1 0 /1 /8 8 8 .3 6 3 1 -4 4 .9 2 0 4 17 .9699 6 .4333 3 1 .9 2 1 2 4 5 .7 4 1 5 -2 7 .0 6 0 7 4 1 .0 9 6 5 18 .9351 2 3 .2 3 5 2
1 1 /1 /8 8 -0 .6 0 2 2 -5 3 .1 0 1 5 -1 1 .4 8 3 1 -1 0 .9 2 8 5 8 .2 5 7 2 -8 .3 8 1 1 -5 7 .3 0 2 5 -2 5 .5 1 9 1 -1 7 .4 8 1 2 6 9 .6 0 6 1
1 2 /1 /8 8 2 .1 0 7 6 3 7 .6 3 3 6 10 .1822 29 .5229 11 .2157 3 5 .9 5 8 1 5 8 .6 4 0 3 6 4 .4 2 8 5 15 .9 6 3 0 4 5 .3 4 9 0

1 / 1 / 8 0 -1 6 .6 4 4 3 88 .3 5 8 5 -6 .7 8 3 5 6 5 .0622 2 0 .8 9 5 4 3 6 .0 4 9 1 1 6 3 .5 5 3 8 6 1 .1 9 3 5 2 0 0 .6 7 2 2 7 1 .2 6 6 9
2 / 1 / 8 9 -6 .0 9 0 4 -4 1 .5 8 7 7 -1 1 .1 6 1 9 -4 3 .9 3 2 8 -1 8 .1 0 7 8 -5 .8 3 8 5 -7 0 .4 0 9 7 -4 2 .2 6 4 7 -6 2 .7 8 1 0 -5 .7 5 2 2
3 / 1 / 8 9 1 .5 2 9 4 8 5 .2 4 2 9 4 4 .5 7 2 9 4 8 .6040 26 .7 3 4 2 7 0 .0 3 0 7 1 0 6 .4 6 1 0 9 3 .6 3 2 1 8 7 .4 2 4 0 3 9 .6 6 3 0
4 / 1 / 8 9 -6 .2 3 1 7 3 1 .7 8 8 1 26 .7 5 7 2 13 .1862 7 .9345 4 6 .4 8 8 2 7 1 .3 3 8 5 5 8 .5 7 7 0 2 7 .9 4 4 6 6 .7 4 3 1
5 / 1 / 8 9 -1 4 .2 1 8 4 51 .8 1 5 5 -4 1 .9 6 1 4 -6 7 .7 2 6 3 -6 3 .2 6 6 8 -4 4 .4 6 9 7 6 9 .1 1 2 3 -1 3 .7 8 1 7 -6 1 .6 7 0 1 -4 0 .5 0 6 3
6 / 1 / 8 9 22 .8 9 3 0 16 .8 9 6 2 10.5582 -2 0 .1 3 7 7 •3 8 .6 9 4 6 1 2 9 .5 7 7 7 -2 3 .9 0 3 0 19 .3891 -1 7 .3 3 8 4 -8 5 .2 7 4 1
7 / 1 / 8 9 5 .4 7 8 5 -2 2 .9 0 0 3 1 8 .4656 7 3 .4627 2 6 .0 1 0 4 9 8 .9 1 1 3 52 .8 0 1 6 5 9 .7 9 8 2 12 1 .1 4 0 2 9 8 .8 2 5 4
8 / 1 / 8 9 -4 .4 6 2 1 3 5 .5 6 9 7 -2 .0 6 6 7 -7 .2 6 4 0 -4 .4 8 6 6 5 6 .8 0 8 0 7 7 .9 0 8 1 5 3 .4 2 5 7 3 0 .1 8 0 3 •2 5 .9 0 9 1
9 / 1 / 8 9 -8 .1 5 5 7 -4 2 .9 7 2 3 -0 .1 9 8 1 -3 4 .6 6 9 5 -7 .2 5 9 6 -4 5 .4 7 0 0 -5 0 .8 1 4 3 6 .5 7 8 5 -5 7 .9 1 3 6 26 .0 5 5 2

1 0 /1 /8 9 3 .7 7 8 9 2 2 .6 6 8 7 12.0546 -1 6 .9 5 8 2 -4 5 .9 3 7 1 -6 9 .5 1 0 3 -3 3 .3 2 9 2 -6 0 .4 2 2 4 -1 2 3 .9 9 1 9 •3 7 .4 8 6 5
1 1 /1 /8 9 4 .2 7 5 2 -5 .5 8 2 3 16.8399 -3 0 .6 0 5 2 -2 2 .5 0 8 7 5 0 .5 2 3 1 6 .4 5 7 4 6 1 .9 8 8 3 4 7 .7 8 5 4 4 0 .7 2 9 9
1 2 /1 /8 9 -3 .7 6 5 4 -3 4 .5 0 7 6 3 5 .1 1 4 8 19 .1094 -4 7 .7 5 9 7 -3 .2 4 8 7 -9 .6 8 0 3 9 0 .7 7 7 9 7 6 .8 8 0 6 -3 5 .3 0 0 5

1 / 1 / 9 0 -1 9 .5 2 4 3 -4 2 .7 3 9 1 -4 0 .7 6 9 0 0 .9 8 3 8 -6 6 .2 2 3 1 -3 8 .5 1 7 2 -1 1 1 .6 6 1 1 -7 2 .0 6 3 8 -2 3 .1 1 2 6 • 107 .4553
2 / 1 / 9 0 -1 3 .0 2 0 4 -7 .9 1 4 6 -4 4 .8 3 8 6 -1 3 .9 2 9 2 -4 8 .9 0 0 9 -1 .3 2 0 0 8 .2 0 8 2 -4 5 .6 8 6 6 -3 9 .7 9 0 0 -1 3 9 .3 4 5 1
3 / 1 / 9 0 2 .8 2 4 4 3 .6 6 9 3 2 5 .5509 -4 5 .7 2 3 9 -7 9 .4 3 6 9 -3 1 .5 5 6 5 3 1 .0 1 6 3 6 8 .5 8 6 9 -3 0 .1 0 4 4 -2 5 1 .7 6 7 5
4 / 1 / 9 0 2 .9 2 2 0 -4 1 .3 9 1 0 -3 1 .5 0 9 6 -5 2 .3 4 7 1 -3 2 .2 0 5 9 -5 5 .5 9 8 3 -5 9 .6 6 4 2 -3 5 .8 5 9 7 -1 1 7 .4 4 3 5 -2 3 .4 9 4 4
6 / 1 / 9 0 3 0 .9 7 0 1 1 2 .2 0 1 7 -1 9 .1 3 5 6 7 1 .0775 6 1 .5 3 6 7 1 5 8 .2 1 4 5 9 0 .2 7 3 1 10 .9 2 4 1 1 4 6 .9 8 0 3 141 .7156
6 / 1 / 9 0 9 .5 1 0 2 3 .5 2 6 8 23 .9 0 7 3 0 3 .7 7 0 8 -1 9 .9 3 3 7 13 .1 8 2 8 -1 8 .4 4 7 4 3 .3 4 4 8 5 5 .2 1 2 4 -7 3 .4 5 0 9
7 / 1 / 9 0 11 .0341 -3 9 .0 5 3 5 16 .6371 27 .6 8 2 4 -2 2 .2 7 6 3 -3 3 .8 0 7 2 -6 0 .6 3 0 8 •1 2 .2 9 1 9 -5 .2 3 5 2 -6 9 .1 6 3 8
8 / 1 / 9 0 -1 5 .2 7 4 0 -4 5 .6 5 0 8 -3 6 .0 3 8 6 -3 .9 8 0 4 -4 3 .9 5 7 2 -1 7 8 .3 0 2 6 -1 5 1 .4 5 1 9 -1 8 5 .9 6 6 3 -1 0 2 .2 2 9 7 -1 6 3 .3 1 1 3
9 / 1 / 9 0 10 .4716 4 .0 5 9 0 0 .5 5 0 7 -1 6 .2 2 7 2 31 .6 4 8 4 -1 5 6 .1 6 8 6 -6 5 .5 4 5 0 -1 4 2 .7 3 9 9 -1 2 0 .1 8 0 2 -2 2 2 .5 0 3 3

1 0 /1 /9 0 4 .7 0 2 6 7 .5 4 0 6 4 5 .0 2 6 8 79 .2005 1 1 2 .4993 6 2 .5 3 9 6 -1 5 .0 9 9 6 9 2 .9 7 8 1 81 .2 7 2 2 24 9 .5 9 3 6
1 1 /1 /9 0 3 .2 9 0 8 1 2 .0 0 2 7 12 .2366 17.3181 -1 9 .9 2 4 4 -3 0 .5 4 7 5 6 8 .3 8 7 9 -1 5 .1 8 4 7 53 .5 4 7 1 -1 5 8 .0 8 0 6
1 2 /1 /9 0 4 .2 7 4 5 16 .0 7 1 4 0 .2 4 5 7 -8 .1 7 4 5 -4 .3 2 6 4 1 .4 2 9 5 3 0 .3 0 4 0 •2 0 .9 2 6 9 -8 .8 6 2 4 5 3 .8 6 4 4
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Table 2.2: Monthly stock and bond indexes (yt). Source: Data Stream, BSI.

D a te SB S Z 37L S B U S37L SB D M 37L SB U K 37L SB JY 37L M S S W IT L (R I) M IS S A L (R I) S T O X X E U 5 0 B S I M U T U A L (R I) M E S C A L (R I)

l / l 01 21 .9 2 6 9 -3 .9 3 4 0 13.7939 41 .0428 3 9 .4 8 1 5 52 .9 0 2 5 3 9 .3 2 6 5 5 .6 8 3 6 2 8 .3 6 7 0 17 .6252
2 /1 91 12 .6 0 0 1 6 8 .0 4 8 3 4 8 .6 1 7 1 53.1921 6 3 .4 7 8 7 1 2 8 .5694 1 4 4 .0 4 4 3 1 5 9 .1 3 2 6 1 5 1 .7 2 0 9 199 .3105
3 /1 91 1 0 .1 7 6 9 117 .5825 *14.4970 9 .7043 3 2 .4 1 8 3 52 .6 8 3 4 1 4 0 .6 6 0 9 2 2 .5 3 2 0 4 3 .5 4 5 8 3 3 .3 7 5 6
4 /1 91 8 .3 8 3 6 9 .3 6 6 9 -2 .4 4 5 6 *10.1275 4 0 .2 2 4 5 18 .8 3 4 7 -0 .3 6 0 5 5 .6 7 8 4 -3 .4 8 2 5 3 4 .3092
5 /1 91 1 6 .2 1 9 0 33 .3 9 8 0 25 .1 5 4 9 16.2848 19 .8578 55 .9981 76 .0 3 8 1 5 4 .1 2 9 0 17 .2 4 8 2 14.5341
6 /1 91 *1.4995 5 9 .5751 7 .3 3 6 7 5 .5342 6 1 .2 5 5 7 -5 2 .1 1 2 3 4 .0 4 0 9 *35 .9040 -3 9 .7 5 9 6 *28.0126
7 /1 91 4 .2 1 2 7 -9 .4 1 3 8 19.2985 45 .4066 *0.5326 45 .3 7 6 5 2 9 .3 7 0 9 2 9 .2 1 9 9 1 1 0 .4 8 8 5 14.8732
8 /1 01 1 .1209 26 .8 4 0 7 13.3842 20 .2864 2 7 .1 6 5 3 2 .2096 3 0 .5 3 7 3 2 1 .7 8 1 3 3 0 .6 1 2 3 -6 7 .5 5 3 9
0 /1 91 3 .4 4 9 5 -3 8 .0 1 9 9 6 .5401 12.4674 -1 .6 3 8 0 *47.5795 * 8 3 .7940 -1 3 .7 4 2 4 -1 6 .6 9 5 5 37 .6 2 0 9

1 0 /1 91 * 2 0 .2790 27 .6 1 9 6 18.0893 11.9623 4 2 .8 8 5 2 16 .5 4 3 4 3 3 .6 7 5 6 7 .9 0 1 6 -1 5 .4 2 7 2 6 9 .4 5 2 1
1 1 /1 91 1 5 .1 4 7 8 -6 .7 8 8 2 15.6063 -9 .3 0 9 3 *8.0789 -4 0 .4 0 6 2 -7 3 .0 1 6 3 * 31 .4313 -8 3 .0 3 6 1 -1 1 7 .6 1 8 1
1 2 /1 91 2 1 .0 3 7 7 -3 6 .2 9 2 9 32 .6541 9 .7774 1 .6635 2 9 .2 2 4 4 5 9 .8 1 5 8 1 9 .9 9 5 6 2 9 .4 9 0 6 *32.8112

1 /1 92 12 .9 7 5 1 4 7 .1 8 3 5 15 .4033 38.0221 7 1 .3 4 1 5 7 0 .6 5 5 5 4 3 .5 9 9 8 6 4 .7 1 4 9 5 1 .7 5 9 5 4 .5 2 5 1
2 /1 9 2 4 .8 9 7 6 4 8 .8 0 6 3 3 2 .0 8 3 4 40 .7 3 0 2 15 .7643 5 2 .1 6 5 0 5 9 .2 6 7 8 6 6 .3 3 7 0 2 8 .7 5 5 6 *55 .9177
3 /1 9 2 -1 7 .1 3 7 9 5 .1 9 5 3 6 .5941 -2 5 .0 1 9 2 * 11 .8886 *6.8599 * 8 .7066 * 10 .6213 -5 6 .0 9 1 0 -1 2 3 .5 3 1 9
4 /1 9 2 6 .0 4 4 4 2 6 .2 5 0 0 1 2 .9234 84 .8490 8 .3883 3 2 .4 2 4 4 4 7 .6 0 6 2 5 0 .5 3 0 0 1 5 1 .8 8 3 0 * 63 .8457
5 /1 9 2 *7 .7902 -2 7 .7 7 3 3 -5 .7 9 9 5 10.0079 1 2 .2 7 3 4 3 8 .5 7 2 8 -4 3 .6 4 9 9 4 .4 4 9 2 1 6 .7 1 0 2 4 4 .9 4 0 6
6 /1 92 0 .5 5 1 6 *48.7045 *3.3493 *21.7630 *31.9153 *31.1015 -8 8 .2 7 9 6 -7 1 .8 2 4 0 -1 1 4 .5 5 5 9 -1 8 4 .5 2 7 4
7 /1 92 9 .7 9 3 7 *23.0146 -1 2 .3 2 2 9 -4 4 .1 0 8 3 -3 4 .2 6 7 2 -3 1 .8 7 9 1 * 0 .5631 -9 2 .6 8 8 5 * 9 8 .0967 -6 5 .3 5 3 1
8 /1 02 1 2 .0631 *30.1341 1 7 .5207 -2 5 .0 5 5 8 *3.6014 -3 2 .9 6 0 8 -8 5 .1 3 7 5 -3 3 .7 3 2 5 -6 0 .7 1 8 4 1 3 9 .4384
0 /1 9 2 3 5 .9 1 6 5 -3 .2 0 7 1 8 .3 3 6 0 *63.5481 2 1 .5 8 6 8 7 1 .7 1 2 5 * 9 .9935 * 20 .1949 -3 9 .8 3 8 3 -5 1 .4 3 7 4

1 0 /1 92 3 0 .7 8 2 0 1 12 .6141 55 .7 1 5 3 35 .4 4 1 6 1 0 8 .7 6 4 4 1 8 .3 6 1 2 1 3 9 .9 5 4 6 4 9 .4 1 1 1 2 8 .3 5 8 3 7 8 .0 5 5 5
H / 1 92 2 .2 1 7 5 4 1 .2 5 2 9 20 .2530 2 .0637 4 3 .3 0 1 3 9 .2 9 6 2 8 8 .6 2 1 7 4 0 .2 1 5 1 6 9 .6 0 2 2 8 1 .5 3 7 0
1 2 /1 92 2 5 .0 4 3 9 3 9 .9 3 9 9 19.1821 44 .3983 2 5 .2501 9 8 .2 7 0 1 3 6 .0 3 2 9 3 5 .0 0 7 2 6 7 .7 7 0 0 1 .8945

1 /1 93 2 0 .3 5 4 9 4 6 .9 9 4 8 38 .3291 21 .8148 3 6 .3 5 3 9 5 .6 6 1 9 2 8 .0 2 8 7 3 8 .9 5 0 4 *11 .8021 13.8944
2 /1 9 3 2 1 .0 6 3 9 5 2 .9 6 8 6 3 7 .1928 *2.1188 1 1 9 .0 5 0 6 1 8 .0 2 4 7 4 7 .9 7 5 1 9 8 .2 2 0 2 8 .4 4 6 6 8 3 .2 8 2 3
3 /1 9 3 1 6 .4 1 3 9 -2 1 .0 6 0 0 3 .3796 44 .6 5 1 7 -9 .2 4 7 7 5 2 .1 3 6 0 * 1 .0829 2 1 .0 7 5 2 5 7 .3 9 8 4 13 3 .0 5 0 7
4 /1 93 2 .3 0 3 9 * 37 .3904 -2 9 .3 9 3 3 -1 4 .3 6 5 5 *9.8542 *21 .5688 * 7 6 .3183 * 4 8 .0170 -1 5 .9 9 6 4 143.8181
5 /1 93 8 .3 8 3 9 *18.8368 *11.5344 *9.9605 2 8 .6 9 6 7 8 2 .6 8 8 8 1 6 .3 7 5 0 *4.6024 -4 .6 3 9 1 2 1 .5 9 2 0
6 /1 0 3 8 .5 6 0 5 0 6 .6 4 1 7 6 .3 0 3 4 46 .1 0 1 6 1 0 0 .2 8 9 8 6 0 .3 3 0 6 7 9 .6 3 1 5 4 0 .1 6 1 1 5 1 .3 9 4 0 4 6 .4 1 1 8
7 /1 03 3 .5 1 6 4 1 1 .0311 -2 .6 3 5 4 24 .4798 4 7 .1 4 4 3 19 .0 2 7 7 8 .2 5 1 0 4 6 .3 0 7 9 2 2 .5 0 1 8 93 .0 5 7 6
8 /1 93 7 .7 7 7 6 -1 0 .6 0 7 3 29 .8291 -1 0 .1 5 4 3 *13.1885 4 4 .7 2 3 7 9 .6 8 9 8 9 6 .2 0 4 9 4 1 .7 0 2 4 -3 .6 6 3 9
0 /1 93 9 .7 2 8 5 -3 7 .3 3 4 9 -2 .5 0 3 7 -3 2 .1 2 7 7 -3 7 .7 0 8 4 -2 .7 7 2 0 *54 .2091 -5 2 .7 5 5 0 -5 5 .7 8 6 0 -1 0 4 .9 8 7 8

1 0 /1 93 1 3 .1 5 4 2 4 7 .6051 3 4 .7 1 5 4 5 4 .5854 3 8 .2 2 1 9 1 1 0 .2156 6 6 .8 5 4 2 8 8 .1 2 3 7 9 2 .9 8 0 6 4 2 .9 8 7 8
H / 1 93 4 .9 3 3 7 4 .4 0 1 0 -1 .0 7 3 2 24.9922 3 0 .4 6 1 9 16 .5059 4 .3 9 7 1 * 3 8 .2517 1 6 .3 6 5 6 *204 .2103
1 2 /1 93 8 .1 5 3 0 -7 .3 4 6 8 -1 3 .4 7 5 4 10.1561 -2 8 .9 2 2 6 8 9 .6 7 4 6 2 .0 6 7 4 6 6 .6 0 2 5 7 7 .1 0 9 7 26 .1 9 6 9

1 /1 9 4 3 .6 8 0 9 •0 .5 3 6 7 -1 8 .7 3 5 7 3 .2728 -2 2 .1 1 1 3 9 1 .1 3 2 3 2 7 .9 9 0 0 3 2 .6 2 6 1 3 7 .6 6 5 7 1 6 4 .7496
2 /1 9 4 -9 .6 3 9 2 -5 2 .5 0 5 4 -2 5 .0 8 0 8 -6 3 .7 1 9 8 10 .5419 -1 0 4 .0 2 5 8 * 6 5 .9328 *51 .4671 -9 2 .6 5 1 7 2 2 .0041
3 /1 94 0 .0 7 5 6 -3 9 .9 9 2 9 12 .0669 *49.4968 11 .3829 -3 0 .1 1 0 8 -6 9 .3 0 7 7 -3 0 .8 7 3 2 * 9 9 .4447 *68.6742

V I 04 *6 .4437 -1 1 .3 6 2 9 3 .3451 16.4360 11 .3683 -1 7 .7 6 5 1 1 5 .8 8 4 3 6 4 .0 3 6 5 4 1 .6 4 2 2 49 .0 8 9 3
5 /1 04 1 .4434 -2 .9 2 7 0 -1 .8 7 1 4 -3 1 .6 5 9 0 *25 .9560 -2 .1 5 8 0 1 5 .7 4 9 5 -5 4 .6 2 9 4 -6 8 .6 5 3 1 21 .6 9 5 9
6 /1 94 -1 0 .1 4 0 2 *57.2593 -2 2 .7 3 6 1 *26.6974 *2.9768 -4 4 .3 2 8 7 -9 0 .6 2 9 1 -8 2 .8 6 5 3 *52 .3929 1 .3320
7 /1 94 7 .7 8 4 3 2 3 .8498 27 .1 8 4 2 11.6834 -1 2 .8 8 9 8 -2 0 .8 5 9 6 4 6 .8 4 3 5 8 7 .1 3 3 7 6 9 .6 5 9 6 *36 .9499
8 /1 9 4 -1 0 .6 2 0 6 -1 0 .7 0 6 7 -1 5 .8 6 2 9 *6.1810 -3 1 .8 8 5 6 3 5 .7 9 9 9 3 2 .5 3 2 1 9 .0 6 3 5 5 2 .8 6 4 4 *5.6673
0 /1 94 0 .7 6 7 2 *52.4703 *26 .9118 *12.8165 -8 .4 2 7 0 -4 6 .1 4 2 4 -6 4 .1 4 0 8 * 9 0 .9353 *95 .4126 -6 8 .5 4 1 0

1 0 /1 94 3 .6 7 5 8 -2 8 .9 1 3 7 12.9379 2 3 .5042 *6.8441 -1 6 .2 2 8 9 -0 .5 1 8 4 2 5 .3 5 6 1 3 9 .8 3 0 2 4 .5 7 1 1
1 1 /1 94 1 2 .3 0 9 1 5 6 .9781 33 .6911 37 .3 2 8 9 5 0 .3 6 6 4 4 0 .1 6 4 1 2 3 .8 9 4 6 2 0 .0 7 1 9 1 2 .1 5 0 1 3 .5 2 3 6
1 2 /1 94 1 0 .3 9 8 2 -1 3 .1 3 2 0 -1 0 .9 9 0 7 *22.5869 -1 8 .1 1 6 3 11 .9 8 9 4 -0 .2 7 6 9 *10 .5168 •1 6 .6 6 6 4 *4.1299

1 /1 95 6 .6 5 8 6 -7 .7 3 7 1 15 .7 9 2 7 2 .1810 *15.3986 -3 9 .6 6 4 8 2 .4 5 7 7 -2 1 .9 9 6 0 -4 8 .6 7 0 7 -1 0 2 .3 7 1 3
2 /1 95 8 .4 0 1 3 -6 .2 8 4 4 20 .5 3 0 5 *32.1282 1 2 .4414 3 7 .0 8 7 3 1 3 .5 9 3 0 6 .8 8 7 0 *26 .2372 *92 .3188
3 /1 95 1 4 .0 4 6 4 -1 1 0 .6 0 3 2 *8.0610 *64.5568 6 0 .7 1 2 0 -4 1 .6 9 5 5 * 8 4 .8 7 6 5 -5 0 .1 6 1 0 *29 .5574 *11 .1194
4 /1 95 1 8 .2 2 6 7 3 2 .5 0 3 0 19 .9577 14.7441 6 4 .5 4 0 6 4 0 .2 1 3 2 5 4 .3 0 2 2 6 2 .6 6 5 3 3 3 .5 9 0 0 74 .3 1 6 9
5 /1 95 1 1 .3 3 3 0 6 7 .8 6 9 3 25 .7 8 5 3 4 6 .7 2 7 4 58 .2 9 2 1 8 2 .0 9 8 5 7 2 .7 4 3 0 3 1 .7 9 9 2 5 4 .1 0 9 6 *50 .1508
6 /1 95 6 .6 2 1 0 -7 .5 2 3 1 •1 .0 5 8 6 *28.4046 *17 .5388 19.3661 1 3 .5 0 2 0 * 1 2 .3947 *14 .6371 *74 .5386
7 /1 95 0 .6 1 7 0 -7 .2 8 8 8 14 .6506 25.4001 -4 6 .1 8 7 7 6 .8 5 7 9 3 4 .5 0 2 1 5 3 .1 9 5 9 5 9 .4 2 8 3 8 6 .2 2 4 6
8 /1 95 1 1 .4 2 5 7 7 1 .0 7 1 6 0 .3 3 5 3 38 .9 2 3 8 -7 8 .7 3 8 3 3 1 .4 8 3 7 6 1 .0 7 1 6 * 1 5 .0867 3 2 .2 5 7 4 11.6753
0 /1 95 2 1 .4 3 4 1 -4 9 .9 8 1 7 *4.8565 *23.4955 *36.8644 4 2 .1 4 4 8 * 5 .1820 * 3 3 .3795 -2 2 .3 5 2 3 -4 7 .8 4 5 7

1 0 /1 95 1 2 .6 1 1 2 2 .2 6 8 1 15 .3322 0 .3 0 7 2 -5 4 .3 6 9 3 3 6 .8 0 8 3 -1 3 .4 2 7 8 *21 .1067 -1 4 .5 3 2 6 *82 .0277
H / 1 95 1 5 .3 6 2 4 5 7 .0 7 5 3 3 2 .9349 3 0 .2079 6 2 .9 4 8 0 5 4 .2 3 2 6 9 0 .5 3 6 0 4 6 .7 2 6 9 4 5 .9 9 3 4 1 0 7 .8038
1 2 /1 95 0 .8 7 0 0 -1 1 .3 0 2 8 -1 .4 2 2 5 6 .2972 -5 6 .6 3 8 4 2 2 .8 3 3 8 -5 .4 9 2 2 2 7 .7 3 5 1 7 .6 3 4 1 3 6 .2 7 0 0

1 /1 96 2 .1 3 8 9 7 2 .0 6 1 7 2 6 .0 3 3 3 3 4 .7 5 3 6 11 .1246 -1 3 .4 7 1 2 1 0 2 .7 1 8 4 8 7 .2 3 3 3 5 8 .6 2 3 8 4 4 .6 2 7 0
2 /1 96 6 .2 6 1 1 -2 6 .9 5 3 9 -1 4 .5 2 3 7 -9 .1 5 6 8 -6 .8 0 2 9 4 1 .1 5 0 5 1 .1 2 6 4 8 .9 1 2 8 -1 .7 9 6 7 -3 2 .9 7 1 4
3 /1 96 5 .7 6 5 9 -1 8 .6 5 1 8 -5 .2 9 0 9 -1 5 .2 4 7 6 -6 .7 4 0 7 9 3 .0 7 0 5 4 .2 1 1 9 9 .8 0 9 6 * 1 4 .7856 3 3 .6 2 3 2
4 /1 96 8 .9 5 8 2 4 6 .2 8 4 7 2 0 .3 9 9 4 46 .6 0 7 7 6 4 .1 3 7 0 6 .1 4 0 4 7 1 .3 0 1 4 6 3 .2 5 4 2 7 6 .6 3 2 0 119 .9641
5 /1 96 -2 1 .0 5 2 0 5 .1 9 6 0 13.2138 49 .1 2 9 8 -1 6 .5 6 3 9 -3 3 .1 7 1 4 3 9 .1 7 6 7 3 1 .4 9 4 9 2 1 .2 4 0 8 *56.0033
6 /1 96 5 .3 9 7 5 13.3221 2 .3172 2 3 .3763 -1 4 .1 9 2 7 5 8 .1 2 2 7 6 .7 3 3 9 1 3 .5 9 3 2 * 7 .6114 5 .9 3 3 3
7 /1 96 8 .4 1 4 1 *50.6485 -1 .3 8 4 3 *42.7201 *22 .8833 -7 7 .5 5 0 1 * 1 0 7 .2 5 3 4 -7 6 .5 4 3 5 * 4 5 .1 6 1 4 -1 0 8 .3 9 6 5
8 /1 96 1 1 .3 6 7 6 0 .6 8 4 8 7 .3778 17.1901 4 .7 4 1 2 5 2 .0 8 5 2 2 7 .4 3 4 3 8 .5 1 3 5 6 1 .1 6 7 0 *54.1154
0 /1 96 1 9 .6253 72 .8 4 5 5 3 6 .2 5 2 5 6 8 .5 2 6 0 3 2 .1 8 9 3 2 6 .0 3 9 2 1 2 0 .3 9 6 3 8 9 .1 6 6 1 8 2 .2 7 3 4 9 5 .7 5 4 0

1 0 /1 96 9 .2 9 3 7 2 8 .6 8 5 8 23 .6 2 9 6 5 5 .0 1 1 0 *1.9412 1 .8845 3 5 .5 0 3 8 2 4 .2 7 4 3 6 0 .4 6 2 1 *78.2250
1 1 /1 96 -0 .5 7 4 8 5 7 .2 7 8 4 4 4 .9 2 9 2 9 3 .7 1 7 4 4 7 .1 4 5 2 5 1 .4 9 4 6 1 2 8 .5 3 1 2 1 1 2 .3 6 0 2 1 0 7 .4 3 5 1 6 3 .6 8 6 9
1 2 /1 96 1 2 .0 1 2 5 2 6 .3 4 2 4 32 .8 6 8 8 5 5 .3996 7 .6341 13 .1 3 0 9 1 3 .9 5 6 9 6 1 .5 0 6 4 7 7 .3 7 5 0 *49.1412
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Table 2.3: Monthly stock and bond indexes (y t). Source: Data Stream, BSI.

D a te SB SZ 37L SB U S37L SB D M 37L SB U K 37L S B JY 37L M S S W IT L (R I) M IS S A L (R I) S T O X X E U 5 0 B S I M U T U A L (R I)_ M E S C A L (R I)
1 / 1 / 9 7 9 .5 7 4 4 7 4 .7019 11 .7894 7 .4 7 6 7 2 9 .8 7 9 0 10 5 .6 0 0 6 1 4 9 .6007 7 9 .7 3 4 5 3 4 .2 2 5 9 -6 8 .2 4 4 0
2 / 1 / 9 7 21 .0821 4 2 .7 4 0 9 13 .3528 75 .6 2 2 8 5 1 .6 8 9 9 5 8 .2 1 6 5 5 1 .5 8 3 7 6 2 .4 5 1 2 7 9 .8 9 9 7 7 0 .7 7 1 3
3 / 1 / 9 7 -9 .8 4 2 0 -3 7 .8 8 1 5 -2 1 .9 1 2 9 -3 1 .6 7 1 8 -5 6 .2 2 4 6 3 9 .8 6 9 4 -8 3 .0 2 9 2 11 .7 4 3 8 -1 5 .7 4 9 6 -6 8 .3 5 0 5
4 / 1 / 9 7 8 .7 3 1 8 4 1 .9 0 7 9 -5 .3 1 9 1 29 .4 8 5 6 -7 .6 1 1 3 5 6 .1 3 7 4 1 0 3 .7971 8 .0 9 0 3 4 8 .8 4 3 4 6 9 .9 2 0 9
5 / 1 / 9 7 11 .1777 -3 9 .1 8 3 0 -2 9 .1 0 3 6 -2 7 .8 1 9 7 4 3 .1 0 8 7 3 7 .9 5 8 4 17 .5542 -2 .1 5 6 5 4 .9 5 4 9 7 7 .0 8 4 2
6 / 1 / 9 7 2 .7 4 7 7 47 .6 0 8 3 2 6 .1180 62 .7 4 5 2 70 .6 1 4 9 13 0 .5 4 6 4 89 .7 0 7 2 1 2 1 .3 8 2 7 52 .4 1 0 2 1 2 2 .6449
7 / 1 / 9 7 0 .8 5 3 6 71 .6684 -1 5 .8 3 7 7 33 .4 0 6 8 18 .4470 6 2 .0 0 4 0 1 3 5 .4158 1 0 7 .3 4 4 6 9 8 .8 2 7 9 6 .9011
8 / 1 / 9 7 -3 .1 1 2 4 -3 0 .5 7 0 2 -1 .7 0 5 5 -2 8 .2 9 7 7 -3 3 .0 9 1 5 -1 3 9 .1 0 6 5 -9 5 .6 4 0 6 -1 2 4 .4 5 7 8 -4 2 .1 7 1 3 -1 3 1 .1 4 1 5
9 / 1 / 9 7 0 .8 5 5 2 -1 0 .5 5 9 6 3 .8 7 5 5 -1 .8 4 1 7 -2 3 .6 8 0 6 9 1 .3 6 1 2 3 5 .3 0 0 7 8 7 .7 3 4 8 7 3 .8 9 3 2 -4 4 .1 1 3 6

1 0 /1 /9 7 -5 .0 1 7 6 •3 0 .6 6 9 2 -1 8 .0 2 3 6 -1 .5 0 1 9 -3 1 .6 2 8 3 -5 4 .0 3 7 5 -8 0 .0 4 2 8 -1 1 9 .5 1 4 8 -9 3 .5 3 5 5 -1 6 4 .2 5 7 9
1 1 /1 /9 7 6 .6 6 5 2 26 .7 8 4 6 1 .3417 31 .4 5 9 3 -4 7 .4 3 3 5 62 .3 6 9 1 8 1 .8 8 0 4 4 0 .5 5 5 0 3 0 .8 2 1 0 -5 0 .9 1 0 6
1 2 / 1 / 9 7 16 .8335 38 .8 0 6 9 16 .5029 16.4291 5 .6 7 3 3 9 2 .9 4 3 0 4 6 .2 0 2 8 6 7 .8 3 3 2 7 1 .6 9 2 2 -4 3 .1 1 7 2

1 / 1 /9 8 21 .1 5 8 3 3 3 .5 4 0 7 14.0026 2 5 .7112 38 .6 2 6 1 5 9 .0 9 6 5 29 .4 8 1 9 5 1 .6 1 4 6 7 0 .9 2 6 0 11 6 .5 9 8 3
2 / 1 / 9 8 10 .1187 -1 0 .5 2 7 2 9 .0 9 2 8 2 .4684 6 .8 3 1 3 1 0 2 .6 9 2 9 75 .0 4 5 5 9 8 .7 4 6 6 7 4 .0 0 2 8 -0 .1 1 1 5
3 / 1 / 9 8 -9 .8 8 2 4 4 8 .9 5 8 7 2 6 .4 7 0 1 80 .6 9 1 6 -1 4 .4 1 3 3 7 1 .6 7 9 2 1 0 6 .5 0 8 7 1 3 6 .1 5 8 2 1 0 7 .2 6 5 9 -3 8 .6 9 6 6
4 / 1 / 9 8 -6 .8 7 1 4 -1 3 .8 9 9 7 16 .1756 -1 0 .3 3 4 3 -0 .4 8 9 4 -2 5 .3 5 0 3 -6 .3 4 4 8 1 5 .2 0 8 8 -1 6 .8 9 2 0 -2 4 .2 4 2 7
5 / 1 / 9 8 7 .8751 -8 .1 8 6 7 2 .7 0 3 7 -3 7 .3 8 7 4 -6 1 .2 5 2 2 3 3 .5 8 4 0 -4 1 .2 9 6 9 4 3 .6 1 6 4 -6 2 .2 0 8 4 -8 4 .8 1 6 4
6 / 1 / 9 8 -5 .2 6 4 1 3 9 .3403 23 .9 5 0 9 4 6 .5 5 1 6 2 2 .0 8 5 4 3 1 .1 9 1 6 8 1 .2 9 2 3 3 1 .0 0 8 4 4 8 .9 6 8 9 4 7 .5 2 1 5
7 / 1 / 9 8 5 .5001 -1 6 .7 5 3 7 4 .7 6 5 4 -3 3 .7 3 2 1 -6 2 .7 5 7 5 6 4 .0 4 3 7 -3 2 .7 4 0 5 6 .1 2 8 6 -4 5 .1 9 9 9 -3 6 .6 7 7 3
8 / 1 / 9 8 16.4671 -8 .0 6 5 6 -0 .3 8 4 6 21 .7 0 1 9 0 .4 8 4 3 •2 4 0 .0 9 4 2 -2 1 5 .7 8 3 2 -2 1 2 .9 1 4 9 -1 2 6 .5 0 5 6 -1 8 1 .2 6 0 1
9 / 1 / 9 8 10 .2577 -1 7 .9 8 9 1 24 .7 9 5 9 -6 .1 0 4 9 3 .5 2 9 6 -1 6 0 .9 7 7 4 2 3 .9 9 3 7 -1 1 2 .9 1 3 4 -7 7 .1 8 3 7 -8 5 .5 7 2 7

1 0 /1 /9 8 8 .7 9 6 7 -2 4 .4 1 3 8 -1 4 .3 3 1 1 -3 4 .1 5 0 6 1 6 1 .9383 13 6 .6 5 8 1 6 3 .1 6 0 4 6 4 .2 9 8 1 4 4 .5 2 0 5 15 9 .8 1 8 0
1 1 /1 /9 8 2 .6322 2 6 .0439 19 .4500 2 8 .7 5 0 5 -3 6 .6 2 1 5 9 0 .9 0 5 0 1 1 1 .7035 1 0 4 .0 8 6 0 8 5 .1 6 6 4 6 6 .4 9 9 8
1 2 /1 /9 8 2 .2 8 4 2 -1 1 .6 6 9 8 11 .4512 1 5 .8598 4 7 .0 7 9 9 23 .0 6 5 9 53 .3 3 4 9 5 4 .1 7 0 1 2 1 .7 2 9 9 3 0 .1 7 3 1

1 / 1 / 9 9 7 .3 9 3 7 4 6 .1 2 4 6 13.8651 36 .7 5 8 4 1 0 .4095 1 1 .3 3 7 0 90 .1 6 3 1 6 .6 1 2 2 2 6 .8 2 1 4 4 8 .1 8 7 9
2 / 1 / 9 9 2 .8 3 1 7 0 .1 8 8 9 -2 8 .0 2 7 3 -2 0 .8 0 5 8 1 7 .2463 -1 4 .3 8 6 1 -9 .0 1 8 2 -1 7 .7 4 1 6 5 1 .2 8 6 7 -1 .4 9 8 5
3 / 1 / 9 9 0 .7 3 5 1 3 4 .0 3 4 6 17.1439 4 2 .0591 4 3 .1 0 6 9 12 .4 1 9 0 7 4 .3 2 4 4 3 2 .0 3 2 1 6 2 .1 3 9 2 1 8 1 .4 3 8 8
4 / 1 / 9 9 6 .1 4 6 2 37 .0 5 1 3 21 .8782 2 4 .5044 3 8 .0 2 7 0 3 1 .1 4 7 4 7 6 .5 6 7 5 8 0 .6 4 6 9 7 9 .5 1 8 8 6 3 .1 6 6 9
5 / 1 / 9 9 •5 .8 6 3 6 -9 .8 2 1 3 -1 9 .1 9 9 1 -7 .6 2 9 4 -1 6 .0 3 3 8 -5 9 .2 6 5 8 -2 5 .7 0 4 9 -4 9 .7 7 4 2 -6 5 .7 6 9 0 -6 6 .9 2 9 9
6 / 1 / 9 9 -1 9 .8 8 8 9 17 .9177 -1 2 .9 7 7 6 -1 0 .3 8 3 7 9 .5 9 9 9 3 .1 4 2 4 8 5 .4 1 8 4 4 0 .8 5 4 7 2 5 .6 3 4 3 1 3 1 .1 9 7 9
7 / 1 / 9 9 -2 .4 1 5 9 -4 1 .1 0 9 9 -1 0 .1 3 9 5 -2 1 .8 9 4 9 14 .3 1 4 3 -1 .6 7 0 9 -6 8 .0 2 6 2 -4 1 .2 9 3 2 -3 0 .4 8 6 4 6 5 .8 1 7 1

Table 2.4: Annualized return data summary.
SB S Z 37L  S B U S37L  SB D M 37L  S B U K 37L  S B J Y 3 7 L  M S S W IT L .R I. M SU S A M L .R I. St 6 x XEU50BSI M S U T D K L .R I. M SJPANL.RTT

Min: -3 1 .0 6 2 0 -1 2 2 .3 3 1 9 •4 4 .8 3 8 0 -1 2 0 .3 6 6 6 -7 9 .4 3 6 9 -3 1 7 .1 8 6 1 -3 7 1 .2 0 4 6 -3 0 0 .0 3 4 4 -3 7 5 .8 9 2 6 -2 5 1 .7 6 7 5
W t Q u.: 0 .8 0 2 6 -2 8 .3 4 3 6 -5 .5 2 9 3 -1 6 .3 2 8 1 -1 8 .1 1 2 0 -3 0 .9 8 1 3 -2 3 .3 9 8 0 -1 5 .1 3 5 7 -2 6 .4 1 3 9 -4 9 .6 4 6 0

M ean: 6 .0 3 6 5 4 .8 0 2 8 7 .2131 8 .4 4 1 7 7 .0 6 3 8 1 5 .5 5 3 6 1 3 .5 3 0 4 1 5 .5 7 2 7 13 .1 7 7 8 6.2621
M edian: 5 .4 8 1 2 1.6449 8 .9213 10 .0079 6 .8 3 1 3 1 9 .0 2 7 7 17 .9 6 6 0 2 1 .0 7 5 2 2 6 .8 2 1 4 1 2 .6846
3rd  Q u.: 9 .0 4 6 8 3 5 .9 3 4 3 20 .0 3 7 0 34 .0 8 0 2 3 1 .6 9 1 9 5 6 .4 7 2 7 6 3 .0 6 1 1 5 8 .4 7 4 9 5 9 .0 2 6 0 64 .7 8 9 8

M ax: 36 .9 1 0 5 120 .0100 5 5 .7153 130 .4371 161.93B 3 1 5 8 .2 1 4 5 1 6 3 .6 5 3 8 1 5 9 .1 3 2 6 2 0 0 .6 7 2 2 2 6 2 .8 5 0 0
S td  D ev .: 9 .4 7 0 6 4 3 .1 8 8 3 18.7356 38 .1 2 7 9 3 9 .1 7 5 0 6 6 .7 9 6 9 7 5 .6 9 9 8 6 5 .3 6 8 7 7 1 .7 1 1 4 8 7 .4 4 5 3
Skew ness: -0 .1 1 4 0 0 .0 9 3 2 -0 .2 7 3 4 -0 .1 2 5 7 0 .4 9 4 7 -1 .2 7 6 6 -1 .0 4 3 2 -1 .0 6 7 3 -1 .0 8 3 0 -0 .1 2 8 7
K u rto sis: 1 .1800 0 .0 1 3 1 0 .0079 0 .5 1 9 9 1 .0360 4 .1 8 5 2 3 .2 0 6 7 3 .3 6 5 1 4 .2 6 8 1 0 .4331

Table 2.5: Annualized return data correlations.
SB SZ 37L SB U S37L S B D M 37L S B U K 37L S B J Y 3 7 L M S S W IT L .R I. M S U S A M L .R I. S T O X X E U 5 0 B S I M S U T D K L .R I.

S B U S37L 0 .1 2 4 5
(0 .1 0 0 6 )*

S B D M 37L 0 .3 7 5 4
(0 .0 0 0 0 )

0 .3 9 5 6
(0 .0 0 0 0 )

S B U K 37L 0 .0 9 0 6
(0 .2 3 3 0 )

0 .4 5 3 9
(0 .0 0 0 0 )

0 .4 1 3 8
(0 .0 0 0 0 )

SB JY 37L 0 .2 7 0 5
(0 .0 0 0 3 )

0 .3 2 6 9
(0 .0 0 0 0 )

0 .3 3 9 0
(0 .0 0 0 0 )

0 .3 1 2 8
(0 .0 0 0 0 )

M S S W IT L .R I. 0 .2 2 2 1
(0 .0 0 3 1 )

0 .3 9 8 9
(0 .0 0 0 0 )

0 .2 3 3 0
(0 .0 0 1 9 )

0 .2 6 7 7
(0 .0 0 0 3 )

0 .1 7 2 3
(0 .0 2 2 6 )

M SU SA M L .R I. 0 .0 6 8 7 0 .7661 0 .3 4 3 3 0 .3 8 9 4 0 .2 9 2 2 0 .6 6 4 8
(0 .3 6 6 6 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 1 ) (0 .0 0 0 0 )

S T O X X E U 5 0 B S I 0 .0 8 4 5 0 .4 9 3 0 0 .4 9 7 5 0 .3 7 1 7 0 .2 8 7 0 0 .7 8 4 9 0 .7 3 5 3
(0 .2 6 6 4 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) 0 .0 0 0 1 (0 .0 0 0 0 ) (0 .0 0 0 0 )

M S U T D K L .R I. 0 .0 8 0 8 0 .4562 0 .3 2 3 5 0 .6 2 5 7 0 .2 5 4 7 0 .6 6 8 8 0 .7 2 6 0 0 .7 3 6 3
(0 .2 8 7 6 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 7 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 )

M S JP A N L .R I. 0 .0 7 9 1 0 .2425 0 .1 7 1 2 0 .2 9 9 9 0 .5 2 4 0 0 .4 0 4 3 0 .3 9 4 2 0 .5 0 3 1 0 .4 4 5 3
(0 .2 9 7 9 ) (0 .0 0 1 2 ) (0 .0 2 3 5 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 ) (0 .0 0 0 0 )

* p-values for the test on the correlation using Pearson coefficient.
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Figure 2.1: Autocorrelation function for annual return data. Squared total return 
for Swiss bonds (a), squared total return for Swiss stocks (b), absolute total returns 
for Japanese bonds (c) and cube total returns for UK bonds (d).
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Figure 2.2: Q-Q plots of the annual returns. The panels on the left are the bonds 
indexes; those on the right are the stock data.
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Figure 2.3: Scatter and boxplots of the annual returns.
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Chapter 3

Background for Robust 
M ultivariate Estim ation and 
Computational Issues

3.1 Basic Concepts

The literature on robust statistics has produced a considerable amount of work on 
multivariate estimation of location and dispersion matrices, mainly because they 
allow for a wide range of applications. Let us consider a sample of n points, 

Y  =  {yi,y2, j yn}> independent and identically distributed, observed on a p- 
dimensional real space. The sample mean vector and the variance-covariance matrix 

o fY  axe:

y(«) = C3-1)
n i=l

s (") =  ^ E ( y i - y ( n) ) (y i-y (« )) r . (3-2)
n *=1

where the notation y(n) and S(n) emphasises that the estimates are calculated

on a sample of size n. Multivariate data analysis techniques are based on sample

estimates that are known to be “highly” sensitive to “small” fractions of outliers 

(Huber 1981). This motivates the search for robust alternatives.

The underlying class of distributions we are interested in includes only elliptical 

families (multinormal, cauchy, gamma, multivariate-t, etc.), although some of the
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robust statistics that are here illustrated can be generalized to a broader class. Our 

objective is estimating robustly the parameters /i and E  characterizing the elliptical 

distribution F ^  £  with density of the form:

/ ( y; g) =  (det(E))~1/2p{(y -  /x)r E _1(y -/* )} , (3.3)

where g is a non-negative function; fi £ Rp and E £ PDS(p), the set of positive 

definite symmetric matrices of dimensions p x p. These models are obtained starting 
from a spherically symmetric density:

/(x , g) = (det(E))"1/2y{xTx}, (3.4)

where X =  {xi, x2, ..., x„} and replacing x with E -1(y — /x), that is applying some 
type of affine transformation. An affine transformation is a linear transformation 
in a multivariate space, equivalent to stretching, rotating or translating the axes. 
In the Normal model 7V(/i, E), E  is the variance-covariance matrix. For the whole 
class of elliptical distributions E  is called the pseudo-covariance matrix or, even 
more generally, the scatter matrix, while /x is the location.

Robust inference includes methods of estimation unaffected by outliers. There 

are some desirable properties that a robust estimator should satisfy: a condition for 
most robust estimators is equivariance under some transformations. If T (Y ) £ 

is a location estimate for Y, T  is translation equivariant if T(Y  +  b) = T(Y) +  b 

for all b £  where Y  + b = {yx + b ,y2 +  b , ...,yn -I-b}. For all non-singular p x p  

matrices A and for b £ 5RP, if

T(AY + b) =  AT(Y) +  b 

holds, then T  is an affine equivariant estimator, where

AY + b = {Ay! +  b, Ay2 +  b , ..., Ayn +  b}.
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A P D S  covariance matrix estimate C(Y) is affine equivariant if

C(AY + b) =  AC(Y)At

for all b  G 3ftp. Although some robust estimators are not affine equivariant, this 
property is useful in many applications, for example, in robust principal component 

analysis, when one may wish to commute the estimator with the rotation and scaling 

of the axis.

Any estimator, robust and non-robust, should be consistent in the sense that

^
F  is the underlying theoretical distribution and Fn is the empirical one (edf) defined 
by:

F „ (Y )= n -1f ; A yi, (3.5)
1=1

where Ay is the point mass 1 at y, that is the probability distribution concentrated 
in y  G 3£p. Estimators are often represented as functions of the edf. Therefore, for 
Tn =  Tn(y!,y2, y „ )  we can write:

T„ =  T(F„),

where T  is computed assuming the model described by Fn. In robustness, consis

tency is usually intended according to Fisher’s definition. Let T  be an estimator 

and Y  a sample whose underlying distribution is elliptical. T  is said to be Fisher 
consistent if

r ( ^ , s )  =  ( p .s ) .

This means that under the cumulative distribution function (edf) F ^  the esti

mator asymptotically tends to the true population values.

20



Because robust estimators deal with mixed distribution models, it is difficult to 

know their behaviour in small samples. Therefore, the focus is on the asymptotic 

distribution. In many cases asymptotic normality is assumed:

Vn(T(F„) -  T(F)) N (0 ,V (T ,F )),

where indicates convergence in distribution and 0 is the p-dimensional null 

vector, T(F) is Fisher consistent, and V(T, F ) is the asymptotic variance of T(Fn). 
Asymptotic variances are generally computed using the expression:

V(T, F) = J  IF (  y, T, F )IF (  y, T, F fd F (  y).

IF  is the influence function of the multivariate estimator T  at the distribution F  

and is defined as follows:

r m T((l -  e)F +  eAy) -  T(F)IF (  y; T, F) = lim ^ ------K—L,

where e G [0,1].
We can rewrite (3.6) as:

r _, _  v T(F  +  e(Ay — F)) — T(F) IF(y; T, F) = lim v y ^

which, for a finite sample of n observations, becomes:

Urn n +  i  (Ay -  F _ ,) )  -  ,

since e tends to 0 when the sample becomes infinitely large. Furthermore:

+  l/n (A y -  F„_!)) -  r(F„_,)}

= n ^ l / n A y  + C n - l V n F n - O J - T ^ , ) }
=  n {T (F „ )-T (F n^ ) } .

(3.6)

21



Provided that the limit exists (Hampel, Ronchetti, Rousseeuw, and Stahel 1986), 

if e =  1/n and F  is replaced by the empirical distribution Fn_i, we find the expres

sion for the sensitivity curve that measures how much T  changes when we add one 

observation y  to the sample of size n — 1. In other words, the influence function 

describes the stability of the estimates towards an infinitesimal e at the point mass 

y, where the effect of the contamination size is eliminated through standardization.

The efficiency of an estimator is computed by means of the asymptotic variance 
and, therefore, of the influence function. The efficiency of the diagonal element of 
a generic variance covariance matrix estimator C is defined by Hampel, Ronchetti, 

Rousseeuw, and Stahel (1986) as:

where i =  1,2, ...,n and J(T, F) is the Fisher information matrix. For a generic 

vector of parameters 0 = {#i, #2 , 9P}:

7 ( r ,F fl) =  £ ( g ) ( g ) r,

where L =  ln f(Y \6 )  and f(Y \0 )  is the density of Y  with respect to 0. However, 
the thesis will refer to a relative, rather than absolute efficiency. The asymptotic 

relative efficiency (AREFF) is defined as:

A R E F F ^ = W $ '
where S is the MLE under normality.

When constructing a robust estimator, the first condition to satisfy is that its 

influence function is bounded, so that the estimates do not explode (—► oo) or 

implode (—♦ 0) at a contaminated distribution. The upper bound of the asymptotic 

bias is defined as gross error sensitivity:

7 * =  s u p { | | / F ( y , T , F ) | | } ,



where ||.|| is the Euclidean norm. The maximum fraction of outliers that can be 

tolerated by T  before the asymptotic bias becomes unbounded is the breakdown-point 
of the estimator:

e* (T, Y) =  min j —; bias(m; T , Y) is infinite j ,

where m  is the number of outliers. In other words, the breakdown is the smallest 

fraction of contamination that can cause T  to take values arbitrarily far from T(Y).

Under the point of view of global robustness, that is the general stability of 
the model, given any neighbourhood of a generic model P  under a metric d, the 

breakdown point e*(T, Y )ls  defined as:

e;(T, P, d) = inf ie  > 0 : sup H ^ P 7) || =  oo
I P'€Bt(P,d)

where the expression Be(P, d) defines the neighbourhood of P  under the metric d as 
the following:

P e(P,d) =  { P ':d (P ,P /)< e } .

3.2 M  and S'-Estimators

The idea behind constructing a robust estimator is weighting the remote observa

tions to obtain a bounded asymptotic bias. Historically, the first class of multivariate 
robust estimators is a generalization of the maximum likelihood estimators for lo

cation and scatter (/x, E) of elliptical distributions, (3.3), introduced by Maronna 

(1976). It is presented as the solutions t  € and V  G PDS(p) to the simultaneous 

set of equations:

t _  E"=i viiMDJyi
E?=1fi (MA) ’ 1 }

v  "  r u ^ M D o  ’ (3-8)
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where Vi, v2 and v$ axe real valued non-negative functions and

is the Mahalanobis Distance of the ith observation, i — 1,2,..., n.
The class of 5-estimators for multivariate location and scatter was introduced 

for the first time by Davies (1987), who extended the idea of the 5-estimators for 

regression (Rousseeuw and Yohai 1984). They are defined as the solution (t, V) G  

W  x PDS(p) to:

mindet(V), (3.9)

subject to

~ '£ p (M D i) = b0, (3.10)
"  i

where bo > 0 and p is a symmetric, continuously differentiable and non decreasing 
function of MD{ (Lopuhaa 1989).

The properties of M and 5-estimators have been widely discussed in the litera

ture. Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Lopuhaa (1989) and Tyler 

(1991) are some of the main references. The uniqueness of a solution for the sys
tem of equations (3.7)-(3.8) has been shown in Maronna (1976) and Huber (1981) 

only for v$ =  1 . This is consistent at a n -1/2 rate and asymptotically Normal. 
M-estimators axe locally robust since their influence function is bounded, but have 

a breakdown of e =  l/(p + T ), which means they cannot tolerate many outliers in 

high dimensions.

5-estimators axe also asymptotically Normal and n1/2 consistent, but their break

down is higher than the M-estimators, reaching asymptotically 50% of the data.

It can be shown (Lopuhaa 1989) that the solution to the minimization problem 
for the 5-estimators satisfies also the system of equations (3.7) and (3.8). In other 
words, 5-estimators satisfy the first order conditions for the M-estimators as defined
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in Huber (1981). This result might lead one to believe that any solution of the 

minimization problem (3.9)-(3.10) is an M-estimate. However, M-estimators have 

generally low breakdown points, which is not the case for the 5-estimators. The 

difference lies in the specification of the weights v(.). Huber (1981) chooses v2 > 

to be monotone and v$ to be equal to a constant to prove the uniqueness of the 

solution for the M-estimator equation set. However, (3.9) and (3.10) do not satisfy 

those restrictions, as shown in Lopuhaa (1989). In other words, S-estimates are a 

solution (not the only one) with high breakdown points, that satisfy simultaneously 

the system of equations (3.7)-(3.8) and the minimization problem (3.9)-(3.10).

3.3 The MVE and M CD Estimators: the General 
Idea

If p is taken as an indicator function assuming values {0,1}, (3.9) and (3.10) define 
what in the literature is known as the Minimum Volume Ellipsoid (MVE) estimator. 
Introduced for the first time by Rousseeuw (1983) and Rousseeuw (1985), the MVE 
is described as:

T( Y )  = centre or scatter of the ellipsoid with minimum

volume covering at least h points of the sample Y.

The volume of a dataset is the square rooted determinant of its scatter matrix 

(Woodruff and Rocke 1994). If M  is a subset of size m, where m =  p -f 1, ...,n, 

generating the sample estimates y(m) and S (m), the volume of the ellipsoid covering 
h points is:

V(h) =  {det(S(ro)) x m ^ } 1/2, (3.11)

where mM is a correction ensuring that h points are included in the set with covari
ance S(m) and mean y(m): tum is the h-th order statistic of the squared Maha- 

lanobis distance , the smallest h-th distance for all the ellipsoids of size m. In
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general, the squared Mahalanobis distance of the fc-th observation from the subset 

of m points is given by:

M D2k(m) = (yk -  y M ) TS_1(m)(yfc -  y(m)), (3.12)

where k =  1,2,

Rousseeuw (1983) defines h, the proportion of the data for which the MVE has 

the maximum breakdown, as h = [n/2] +  1, where [.] is the largest integer part 

of n/2. Later, Rousseeuw and Leroy (1987) show that the MVE has maximum 

breakdown when h =  [(n+p +1)/2], which asymptotically reaches half of the data.
If i f  is the subset of Y  with minimum volume, then the MVE estimates are the 

sample estimates for H :

}U W  = i X >  (3-13)
n ieH

Smue(^) =   ̂^ ~ ^ ] (yi ymve(h)) (y» ymue(h))}, (3.14)
n i£H

where the covariance is scaled with the constant c to attain consistency to the 
multivariate Normal distribution. The problem of scaling the estimates will be 

broadly examined in Chapter 4.

Similarly to the MVE, the Minimum Covariance Determinant (MCD) estimator 

(Rousseeuw 1983 and Rousseeuw 1985) is the centre and scatter of the data of size 

h whose covariance matrix has minimum determinant.
The objective function to be minimized is the same as for the MVE. The difference 

is that the resulting covariance estimate for the MCD is constrained to cover 50% 
of the data, rather than the covariance defining an ellipsoid covering the half. This 

implies that, when the fraction of outliers e —► 0, the MVE tends to the centre 

(or covariance) of the smallest ellipsoid covering all the data, whereas the MCD 

converges to the sample estimates.

As far as the breakdown point of the MCD is concerned, it is the same as for the 
MVE, that is e =  ([n/2] — p +  l)/n .
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3.4 The MVE and M CD Estimators: Some Prop
erties

Davies (1992) and Nolan (1991) study the asymptotic properties of the MVE. The 

first work raises an interesting point of discussion regarding the existence and unique
ness of the MVE solution, although the main result concerns its asymptotic be

haviour. The MVE solutions for location and scatter are shown to be consistent 

for the population values, although they converge weakly, at a rate of n-1//3, to a 

non-gaussian random process. The consequence of this result affects the efficiency 
of the estimates: small perturbations in the data determine large perturbations in 
the estimate Maronna and Yohai (1998). This characteristic makes the MVE less 
attractive than the MCD.

For the theoretical properties of the MCD we will mainly refer to three works: 
Croux and Rouseeuw (1992), Butler, Davies, and Juhn (1993) (BDJ) and Croux 

and Haesbroeck (1999).
BDJ shows that for elliptical symmetric distributions, defined as in (3.3), where 

the derivative g' is assumed to be strictly negative in order to have a unimodal 
distribution, the MCD problem has a unique solution, given by the ellipsoid:

E =  {y : (y -  M)rS _1(y -  m) < &},

where e G [0,1] is the fraction of the data not determining the MCD: qe is chosen so 

that the probability of being included in the ball of centre 0 and radius y/ql is 1 — e, 

where h =  n (l — e).

In addition, BDJ also shows that the MCD estimates satisfy:

T (FH,x) = V’ 

where for a bounded measurable set A:
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JAydF(y)
1 — e ’

v, f n  Ja (v -  Ta (m y  -  TA{F))TdF(y))SaCF) =  -------------------— ------------------- .

To obtain Fisher consistency at the theoretical distribution F, ce is chosen so that 

E (F^ j]) =  S , that is:

1 -  6

In addition to the uniqueness and consistency of the MCD solution, BDJ show 
that both the location and the scatter estimators converge weakly to a Gaussian 

random variable and obtain a form for the asymptotic variance of the first one.

Croux and Haesbroeck (1999) obtain a form for the influence function of both lo
cation and scatter estimators. The IF  for location in the univariate case was already 
derived by Croux and Rouseeuw (1992). Furthermore, they complete the results of 
BDJ by obtaining an expression for the asymptotic variance of the MCD scatter 
matrix. This last is used to compute the asymptotic efficiency of the estimator.

It is noted that the efficiency varies depending on both the dimension p and the 
trimmed proportion of the data e. In the paper it is shown that increasing the 

fraction trimmed the efficiency decreases when the data do not contain outliers. 

The loss is particularly high for low dimensions and when e »  0.5, the maximum 
breakdown. This motivates the authors suggestion of considering e =  0.25 as “a 

compromise between robustness and efficiency”, according to a rule of thumb.

The trade-off between global reliability and accuracy of robust estimates has 

been the object of several studies. Extensions of ^-estimators, such as r-estimators 

(Lopuhaa 1991), M (CM)-estimators (Kent and Tyler 1996) and compound esti

mators (Woodruff and Rocke 1994) manage to combine high-breakdown with effi

ciency. Another way of keeping a high breakdown while improving the efficiency 

is to reweight the estimates. Rousseeuw and Van Driessen (1999) use a weighting 
function W{ defined as follows:
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= /  o when RD?(h) > Xp, 0.975
* |  1 otherwise, (3.15)

where:

RDl(h) =  (;Yi -  ymcd{h))TS ^ cd(h)(yi -  y mcd(/i)) (3.16)

is the Mahalanobis distances computed on the MCD estimates; ymCd{h) and Smcd{h) 
were defined in the previous paragraph, where h = n( 1 — e). The reweighted esti

mates are given by:

y , # )  =  E ? = l U , i y i

S m c d ( ^ )  —  C X

E?=i Wi
_ 1  Wi(yi  y m c d ( ^ ) ) ( y *  y m c d ( ^ ) )j n u

E?=iW i-  l

Lopuhaa (1999) derives the asymptotic properties of the MCD reweighted estimates 
and in Croux and Haesbroeck (1997) the asymptotic efficiencies of the reweighted 
estimates, sample and S-estimates are compared in a simulation study.

3.5 M CD Estimator: Com putation

The literature on robust estimators has produced a large amount of work on the 

search for fast and efficient algorithms. Woodruff and Rocke (1994) underline the 

importance of the computational aspect by writing that “an algorithm is an estima

tor itself’, implying that using different algorithms is like using different estimators. 

Woodruff and Rocke (1994) refer to probabilistic algorithms, for which there is not 

a unique solution, but a set of feasible ones. For example, the “ideal” algorithm 

for the MCD would select all the possible subsets of size h and retain the solution 

with the lowest determinant. For computational cost reasons, an algorithm of this 

type cannot be used in practice unless very small sample sizes and dimensions are
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considered. As a consequence, the global optimum is replaced by an approximate 

solution, chosen, within a feasible set, according to different possible criteria.

The MCD has better theoretical properties than the MVE and only recently the 

problems concerning its computation have found a solution. This section describes 

the main algorithms proposed in the literature.

The framework is a mixed distribution model with a sample Y  =  {yi, y2, y n} 

of p-dimensional observations where there are h “good cases” following a multinor
mal distribution, E), and a remaining n — h (the outliers) belonging to some 

other model.

The Feasible Solution Algorithms (FSA) for the MVE and MCD (Hawkins 1993 
and Hawkins 1994) provide a computationally efficient solution obtained from a 
combinatorial algorithm. The FSA for the MCD starts from a trial subset of size 
h and retains its mean and variance-covariance matrix. In a following step, the 

algorithm selects all the possible pairwise swaps with observations from subsets of 
size n — h and chooses the set whose scatter matrix has minimum determinant. 
The chances of getting the global optimum solution are increased by considering 
different initial choices. The algorithm has been recently refined by considering 
sorted Mahalanobis distances in order to identify the minimum determinant subset 
(Hawkins and Olive 1999).

Atkinson (1994) and Atkinson and Cheng (2000) propose a Forward Search (FS) 
algorithm for the MVE and MCD. The search starts from a random subset M  of 

size m  =  a  x n, where 0 < a < 1. Usually m = p +  1, the smallest size allowing 

a non-zero covariance matrix determinant. At each step, M  is incremented by s 

observations, usually s = 1. The added observations are those having the smallest 

Mahalanobis distances, computed with respect to the location and scale of the M  set. 
Griibel (1988) shows that the smallest Mahalanobis distances characterize the subset 

with minimum covariance matrix determinant. The FS was born as a algorithm 

to detect groups of outliers, opposing the backward selection methods, which can 

generate problems of “masking”. At each step, the outliers are detected by the 

largest Mahalanobis distances.

Rousseeuw and Van Driessen (1999) propose a Fast algorithm for the MCD. The
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kernel of the algorithm is the C-step:

•  Step O', start from a subset H0 of size h, with h < n, whose location and 

scatter are given by (y0(h), So(h)). The Ho-set is constructed from a subset 

M  of size m = p +  1, where det(S(m)) > 0. The Mahalanobis distances are 

computed as in (3.12), where k =  1 , 2 , n, and sorted. The H-set will include 

the observations with minimum distances:

{MDfyim), MDf2](m) , ..., MDfh](m)},

where (m) is the i-th smallest distance calculated on the basis of sample 

estimates on a set of size ra.

• Step 1: update the Hq set by calculating:

MDl(h)  =  (y* -  y0(h))rSo 1̂ W(y* -  yoM),

with k =  1,2, ...,n. The smallest h-th distances characterize the updated set 

Hl

• Step 2: repeat Step 1 many times until there is no longer a significant reduction 

in the determinant of S.

Steps 0-2 are repeated for different random choices of M. The algorithm also treats 
cases of “exact fit” , that is when at least h observations lie on a hyperplane, which 
implies that the MCD covariance matrix is singular. If the sample size is very 

large (usually n > 600) the velocity of the algorithm is increased by using a nested 

structure similar to the “Branch and Bound” algorithm by Agullo (1996). The 

’’Branch and Bound” structure starts from a set of N  initial solutions. The algorithm 

is run simultaneously on the N  sets, which at the next step are reduced to N  — K\ 
the algorithm repeats until reaching a unique solution.

Some computational issues regarding the MCD are worth a deeper discussion.
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3.5.1 Forward Search for the Choice o f the Initial Set

The computation of the MCD or MVE requires the choice of h, the number of 

observations to be included in the “good set”. Ideally, we should know in advance 

the number of outliers in the data, which is very unlikely to happen in practice.

Usually, there are two possible ways of setting h. The first one considers the 

“worst case scenario” , that is when the breakdown is maximum. Therefore, the 

subset size is h = [(n + p +  l)/2]. The alternative consists in using some prior 

information. For example, previous experiences on similar sets of data could suggest 

that no more than a fixed proportion of outliers can appear. The first method has 
a drawback: if too many data are trimmed, leaving out some “good” observations 
as well as outliers, the resulting estimates would lose efficiency while still being 

consistent. On the other hand, if h is too big, the estimates would, as a result, be 
biased by the inclusion of some outliers in the “good set”. The trade-off between 

robustness and efficiency has been long discussed with no real solution.
We suggest a third method, consisting in comparing the stability of the estimates 

for different choices of h, according to a Forward Search approach. Figure 3.1 (a) and 
(b) display how changes in the size of the h affect the robust estimate of the scatter 
matrix, under two possible contamination sizes. The simulation study generates 100 

replicates of size 100 from a mixture of two bivariate normals with shifted mean and 

different covariance structure:

and

good

outlier

N

N

'  0 ' ' .5 0 '

0 0 .5

'  0 ' .5 .2 '
5 .2 .5

At each iteration the size of the good set is incremented by one observation. The 

graph shows that the variability of the robust scatter matrix does not inflate when 

the proportion of fitted data does not exceed the “good set” of observations. In 

addition, the determinants remain stable even when few outliers are included in the 

fit.
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Having chosen h, the next step would be deciding how the if-set is selected. The 

FSA simply performs a random selection, while both in the Fast-MCD and FS, the 

algorithm starts from a random M-set of small size, usually m  =  p +  1. Following 

the last method, the M-set is more likely to be outlier-free. The size of M  is then 

increased by choosing the h observations with the smallest distances from the M-set. 

The second approach is more sensible, although it poses the problem of choosing m. 

We suggest the use of the FS algorithm to show the differences in the estimates for 

increasing dimensions of M. The procedure works as follows:

•  Step 0 Choose an initial subset of size m + 1

• Step 1 Estimate the sample mean and covariance, y(m) and S(m)

• Step 2 Compute Mahalanobis distances as functions of y(m) and S(m)

• Step 3 Choose i f  the set of the h-th smallest sorted distances

• Step 4 Take as MCD estimates the centre and covariance of the H-subset

• Step 5 Repeat steps 1-4 for m =  m  +  1 until m — n

Figure Figure 3.2, panels (a) and (b), plots the determinants of the if-sets result
ing from the above procedure. The samples are generated in the same way as in the 

previous example. The plot shows that the determinants converge to a unique solu

tion when m increases approaching n. Therefore, the smaller is m  the more different 

are the initial if-sets. When the initial subset size approaches that of whole sample, 

the random choices of M become similar in variability, leading to the same choice 

of the if-set. The reason for the increase in the determinants after the convergence 
of the algorithm is that the outliers, being the observations with largest distances, 
are included in the if-set only at the end, producing the change in the variability 

visible at the right end side of the plot. The convergence to the unique solution is 

faster for a smaller number of outliers.
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3.6 Conclusions

The development of robust statistics has been particularly intensive in the past 

twenty years. In addition to the high-breakdown and affine equivariance, most of 

the endeavours are focused on the problems of high dimensionality, efficiency and 

algorithms for optimization of the objective functions. It is understood that an 

affine equivariant estimator with high-breakdown point is an essential property.

There is no perfect estimator fulfilling all the desired properties of robustness 

(Davies 1993). For this reasons, some authors have directed their efforts towards 

compound estimators, trying to incorporate both high-breakdown and efficiency. 
Nevertheless, a “very robust” estimator may sometimes fail to identify observations 

lying too fax from the bulk of the data because of some defects in the algorithm. 
The computational aspect is, therefore, as important as the estimator itself.

One of the problems arising in the computation of a robust estimator is selecting 
starting set. The consequences of including some outliers, although a small error 
is admissible, is a dramatic increase of the determinant of the robust scatter, in
dicating a large bias of the covariance matrix estimate. It is common practice to 
take advantage of some apriori knowledge of the data and on the possible number 
of outliers. Alternatively, we propose to use a Forward Search approach that offers 

a profile of solutions according to different choices of A, allowing us to choose the 

maximum size of the H -set before the bias explodes. The FS is again used to com

pare the differences in the estimates for different initial choices of M . The results 
confirm that the best approach is choosing m  as small as possible to guarantee that 
the different choices of the if-sets are heterogeneous.
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Figure 3.1: The change in the MCD covariance determinant for increasing sizes of 
the “good set” . The simulated data are sampled from a mixture of two Normal 
distributions. The size of the contamination is 15% in(a); 25% in (b).

(a) e = 0.15

p ro p o r tio n  o f  d a t a  in t h e  " g o o d  s e t "

(b) € =  0.25

c  oo -  ■
.9

T ~

0.5
— I—

0.6 0.7  0.8

p ro p o r tio n  o f  d a t a  in t h e  " g o o d  s e t "

0.9 1.0

35



de
te

rm
in

an
t 

de
te

rm
in

an
t

Figure 3.2: The change in the H-set covariance determinant for increasing sizes of 
the initial M - set. The data  have 45% in (a) and 15% in (b).
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Chapter 4 

D etection of M ultivariate Outliers

4.1 Introduction

The identification of multiple outliers is a widely discussed topic mainly because of 
the difficulties involved with the “traditional” methods of detection. These prob
lems are known as “masking” and “swamping” effects. For a long time squared 

Mahalanobis Distances, (3.12), from now on referred as MD, have been the most 
common diagnostic: a large distance for a point may indicate that this observation 
is an outlier. However, these distances axe functions of the sample estimates for 
the mean and variance-covariance matrix, that are highly sensitive to outliers. If a 
group of observations is lying “far” from the bulk of the data, the mean will shift in 
the direction of the small cluster and the covariance will inflate. As a consequence, 
some distances may have small values for observations belonging to the small cluster 

(“masking”) and some others large values for cases belonging to the main bulk of 

the data (“swamping”). Furthermore, the difficulty in detecting multivaxiate out

liers also depends on the way these points are arranged in the data in addition to 

the size of the sample and the dimensions. Woodruff and Rocke (1996) give good 
insights about this matter.

A first improvement of the literature is due to Campbell (1980) who introduces 

a diagnostic obtained from MD as functions of the robust M-estimates. Another 

step forward was using high-breakdown point estimators of location and scatter 

Rousseeuw and Van Zomeren (1991). The robust approach solves the masking 
problem meanwhile raising new issues. One concern is how to determine when a
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point is too extreme to be consistent with the majority of the data. The literature 

follows a parametric approach: the distances are approximated by a Chisquare 

distribution and the cut-off is at the 0.975 tolerance ellipsoid.
This Chapter examines the distribution of the main diagnostics already existing in 

the literature. For small samples, we obtain the distribution of MD in an alternative 

simpler way than the proof of Wilks (1962). An extensive simulation work studies 

the convergence of some diagnostics to the theoretical distribution. Furthermore, 

we propose the use of simulation envelopes (Atkinson 1985) as a diagnostic plot for 

multivariate outliers. The Chapter is concluded with some examples on simulated 

and real data sets already popular in the literature.

4.2 Standardized Residuals

The diagnostics for multivariate outliers can be derived from the classical linear 
regression model:

y = x/3 +  c,

where there are n independent cases on the continuous response y  =  (2/1, 2/2> •■•>2/n)> 
X =  {xi,X2, ...jXn} is the matrix of regressors of dimensions n  x p and e is the 
vector of errors.

The studentized residuals are defined as:

V i-V i

where s =  (y> — Vi)2/ (n — p) is the residual mean square and hi = x j (XTX )_1Xj

is the diagonal element of the hat matrix H, often used to detect leverage points. 

A point of high leverage has extreme values for one or more explanatory variables 

and has the effect of driving the model close to the response observed for that point. 
The variance of the residuals is cr2(l — hi) and a2hi is the variance of the fitted value
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lli, implying that points with high leverage have a smaller residual variance while 

the variance of the fitted value is high.

Cook and Weiseberg (1986) define the standardized residuals in a slight different 

way:

_ Vi ~  V% 
s j i i - v i ) ’

where Vi =  x j (XTX)_1:Ej. The r[ are referred as internally studentized residuals, 
although their distribution is not a Student-t. In §2.2 they show that the distribution 
of rj 2/{n —p), where rj 2 € [0, (n—p)], is a beta with parameters 1/2 and (n—p—1)/2. 

Since the maximum value is bounded, although homoskedastic, the residuals are not 
independent.

4.2.1 D eletion  Residuals

An alternative way of standardizing the regression residuals is dividing by a variance 
estimator that is independent of e*. This is obtained by computing the residual 
mean square after deleting the i-th observation. The residual sum of squares can be 
written as:

(n -  p)s2 = yTy -  fiTX Ty. (4.1)

After deletion of the i-th row, (4.1) becomes:

(:n - p -  1)4) =  yTy - V i -  4 « (X r y  -  xfyi), (4.2)

where:

0 m =  (X(i)TX(i))~1(XTy  -  x f t t ) =  0  -  (Xr X )-1xiei/ ( l  -  ft,), (4.3)

since e* =  (1 — h*)^ and X ^ X ^ )  =  X TX  — x^Xj. Combining (4.2) and (4.3)
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(■n - p -  1)4) =. (n -  p)s2 -  e - /(l -  hi) (4.4)

and therefore:

(4.5)

For a complete analytical derivation the reader can refer to Atkinson (1985) §2.2 or 

(Atkinson and Riani 2000) .
Finally, the expression for the deletion studentized residuals is:

where the supremum of r* is unbounded. Since e* follows a N (0, (1 — hi)a2) and 
is independent of e*, we can rearrange the above expression in order to obtain:

Therefore, the distribution of r* is a Student-t with (n — p —1) degrees of freedom.

4.3 Mahalanobis Distances

This section studies the distribution of the M D 2 (MD), (3.12), from which most 

of the robust diagnostics derive. Asymptotically, the distances follow a Chisquare. 

However, our interest is rather focused on the small sample distribution, known 

in the literature by two results: Wilks (1962) and Penny (1996). The proof of 

Wilks (1962) is rather cumbersome; we propose an alternative simpler method. Our 

derivation makes use of two diagnostics referred to as out-of-sample and deletion 

MD introduced in the next two subsections.

Vi ~  Vi r — ------------ (4.6)

where the numerator is a iV(0,1) and the denominator is yX(n- P-i) /(n ~ P ~  !)•
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4.3.1 Out-of-sam ple M D

If the linear regression model fits only the constant, the squared standardized resid

uals become:

2 =  (Vi ~  V)2 
*  5

where y =  J 2 i V i / (4.7) is the expression for the squared “classical” MD of a 
sample of n points independently observed on the y variable. Generalizing for a 

sample of size n drawn from a p-variate Normal population, Y  ~  Âp(/x, E), the 
M D  of an extra observation y ^ ,  of dimension p x 1, independent of Y, is:

M£)L .  =  (y°»t -  y)r S -1(y<ra, -  y)> (4.8)

where y  =  n-1(Yr l)  and S = (n — l) -1[Yr Y  — nyyr ] are the sample unbiased 
estimates of fi and E. This is a simpler notation from that in (3.1) and (3.2), where 
in the new notation it is implicit that the estimates are computed on a sample of n
observations. If the sample estimates are replaced by the population moments, it is
straightforward that, being a sum of squares of standardized normals,

(y o u t ~  M)TS ~ 1(y Gut -  ^ )  ~  X p -

Definition 4.3.1

The Hotelling T 2 distribution with parameters p and m is defined as the following:

mdTM _1d ~  T 2(p, m) (4.9)

where d and M  are independently distributed as Np(0,1) and a standard Wishart

Definition 4.3.2

A matrix M  is said to have a Wishart distribution with scale matrix E  and degrees of
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freedom m  if  it can be written as M  =  Xr X, where X  of size m x p  has distribution 

JVp(0,E ). / /  E  =  I, then the Wishart distribution is said to be of the standard form 

(Mardia, Kent, and Bibby 1982, page 66).

Since (y^t — y) ~  Np(0, £ (n  + 1 )/n) and (n — 1)S ~  WP(E, n — 1) (Mardia, Kent, 

and Bibby 1982, page 68-69), by setting:

and

M* =  (n -  1)S~1/2S E "1/2, 

we satisfy the requirements for (4.9). Therefore, we can write:

(n -  lJd ^ M '^ d *  ~  T 2^ ,  n -  1),

which leads to:

( n T l )  (y<mt ~  y ^ S _ y ) ~  T2^ ’n ~  ^

Furthermore, by Theorem 3.5.2 (Mardia, Kent, and Bibby 1982, page 74):

r 2( p ,n - l )  =  p ( "  X)FP,„_P,
n — p

where FP)n_p is a Fisher distribution with p and n — p degrees of freedom respec
tively. Therefore, trivially:

MDL < ~ % ^ F^ - r -  (4-10)

When the sample size grows, p being constant,
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P Fp, n—p * Xp ’

The result follows by considering that FPin_p =  (xl/p)/(Xn-P/( n ~P))  and that

£  = ± z?/ n »j% h
n  i= i

where z* *~d N(0,1). Usually, good approximations are already attained when 
n / p  > 5, for n  > 5.

4.3.2 D eletion  MD

Similarly to the deletion studentized residuals (4.6), deletion MD are defined as the 
following:

=  (y< -  y(a)Ts«)(yi  -  y«>)>

where:

71
y i -  y (i) =  f (yi -  y ) (4.11)

and in a similar way as the derivation of (4.4), it is possible to get the diagonal and 
off-diagonal elements of S:

(n  — 2 ) S ( i ) j j  =  (n — l ) S j j  — ^  >

(n ~  2 ) S =  (n — 1)Sjk — ^  (jjij ~  V.j)(Vik ~  y.k)•

Generalizing:

(n -  2)S(jj =  (n -  1)S -  ( ^ y )  e .e f , 
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where the e* =  yt — y. The inverse of S(q can be found by applying the formula for 

updating the inverse of a matrix of the type A +  aTb:

(A +  aTb)-1 =  A -1 -  A -1aT(I +  bA _1aT)“1bA “1 (4-13)

where A is a full rank (m x m) matrix and a, b  are (q x m) of rank q. The formula 

(4.13) can be applied to (4.12) by letting A =  (n —1)S, a  =  —{n /(n — l)} 1̂ 2(y —y )T 
and b  =  {n/(n—l)}1/2(y—y). The resulting expression for SjjJ, together with (4.11), 
substituted in (4.8), allows deriving the squared deletion distances as a monotone 
function of the classical MD (Atkinson and Mulira 1993):

2 (n -  2)n* f M P'j \
-  („ _  i)3 \  i  _  nM D \l{n  -  1)* J  ' (<U4)

Deletion distances do not add much more informative value than classical MD  as 
a diagnostic tool. However, our interest is not in their interpretation but rather 
in their properties that will be useful for the derivation of the MD critical points 
discussed in the next subsection.

4.3.3 In-sam ple M D

In Section 4.3.1 we showed that, in small samples, MD follow an F  rather than a 

X2 distribution. However, in

(yout -  y)TS_1(youf -  y) ~  {Cn2 - 1 ) p / H n  -  p)]}Fp,n- p

Yout does not belong the data. This condition is obviously not true when testing 

to detect outliers. Penny (1996) discusses this problem and obtains new critical 

values for the M D  when y is not independent from the rest of the sample. The 

paper refers to Wilks (1962), who gives the distribution of the scatter ratio for 

multivariate Normal samples. The ratio is defined as:



where:

A =  Y t Y  -  nyyT =  (n -  1)S

and Ai  =  ^zi(y i — y)(yi — y)T is A computed with the i-th observation of Y 
deleted. The ratio is computed for each observation of the sample; the furthest 

point from the bulk of the data is the observation with the greatest reduction in the 

determinant |A| and, therefore, will have the smallest scatter ratio Ri.
By using the moment generating function of the Wishart distribution, Wilks 

(1962) shows that:

1). m
Penny (1996) refers to (4.15) to show that:

M D 2 -  p K ~  ; ___ .
1 n { n - p - l + p  FP)„_P_ i)

Furthermore, empirical results evidence that there is a significant difference in the 

outliers detected with this critical region rather than p (n — l) / (n  — p)FP)n- p-  
Alternatively, we provide a simpler way of obtaining the same critical points. 

From (4.14):

-("  ~  y*, M D ^  =  M D \  {1 -  n M D f )(n -  2)n2 w 1 [ (n -  l )2 1J

and therefore:

1 n  (n — 2) n2
MD\  ( n - 1 ) 2 ( n - l f M D f a '  ( 1

Since y* is independent of y^) and S(i) we can use the result of Mardia, Kent, and 
Bibby (1982), (4.10), to derive the distribution of the deletion distances:
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(n — l)(n — p — 1) 

The substitution of (4.17) in (4.16) gives

1 n (n — p — 1) n
~    — +M D .? (n — l)2 ( n - ^ F ^ . !

leading to the same result as Penny (1996):

* n ( n - p -  H - p F p>n_p_i)'

The F  distribution is a scaled ratio of Chisquares, so:

f  P  \  p    X p    X p  4~ X n —p —l    i

\ n - p - l )  »n-p- 1 ~  Xl-p-i ~  Xl-p-1

r s jThe Beta distribution can also be written as a ratio of Chisquares. If X\  
and X 2 ~  T(/3, S) are independent Gammas with the same scale parameter,

Y = x ? h r r Be{a'0)

Furthermore, x l  — F (§, 2 ). Therefore:

I ) ,

which, together with (4.20), leads to:

Substituting (4.21) in (4.19):

(4.17)

(4.18)

(4.19)

(4.20) 

r(a,<5)

(4.21)
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(1;22)

Knowing the distribution of the MD, we can easily derive that of the scatter ratio. 

This last can be rewritten according to (4.12) in the following way:

|Aj| |a  -  (s^r) (y> — y)(y< ~ y ) r l
*  W ---------------- jAj----------------- • (423)

If a matrix Z can be partitioned in the following way:

Z   | rp
C a
aT -1

where C is a p x p  matrix and a  is a p x 1 vector, then Cook and Weiseberg (1986) 
show that:

|Z| =  —| — C — aar |.

Setting C =  —A, a =  (y, — y)(^zi)1/2> and Z =  A*, we find (4.23). 
Rao (1973) for the same partition shows:

|Z| =  —|C|{1 +  aTC _1a}.

(4.24) is referred to as expansion of a bordered determinant, and therefore:

IAi| =  |A|{1 -  ( ^ )  (yj -  y)T-A_1(yi -  y)}

Since A =  (n — 1)S, we can write:

f t - 1 - 0 ^ 4 ) 5
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Finally:

p  n - p - l _______
^  i i i ?  i ’n — p — l + p  Fp,n — p — 1 

from which, using the relation between F  and Beta distributions, we obtain:

confirming the same result as Wilks (1962).

4.4 Robust MD

This section is dedicated to the distribution of the RD. These are MD written as 

functions of the MCD estimator for multivariate location and scatter (ymcd and 
SjvfC£>)- The expression for the RDf(h) (RD), already seen in (3.16), is:

RD?(h) = (y< -  ?MCD{h))TS ^ CD(h)(yi -  y MCD{h)),

where i =  1,2,..., n and h is the number of observations fitted with the MCD 
method. The small sample distribution of the estimates is not known; however, we 
will refer to the asymptotic results provided by the literature. Butler, Davies, and
Juhn (1993) show Fisher consistency for the location estimator, that is:

y  MCDiFpZ;) =  M (4.24)

and:

Smcd(F^2 >) = cS, (4.25)

where the robust estimators are written as functionals of the elliptical distribution 

The scatter matrix needs to be scaled for consistency. This result has been
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generalized by Griibel and Rocke (1990) to any affine equivariant estimator. (4.24) 

and (4.25) can be rewritten as:

{yMCD,  SmC£>) (m»c^)» (4-26)

where denotes convergence in probability. According to Slutzky theorem, for any 

random variables X n, X  and continuous function p,

if X n ^ X ,  then g(Xn)**g{X).

The theorem can be applied to (4.26) to obtain:

{(y< -  yMCD(h))TSMCD{h)~l (yi -  y m c d W )}  ^  c x {(yi -  /x)r E -1(y< -  /x)J4.27)

In other words, we can either scale the distances or the covariance estimates to the 
shape of the Normal distribution. Rousseeuw and Van Driessen (1999) standardize 
by the median robust distance. Similar forms of scaling have been used by Woodruff 
and Rocke (1996) who standardize by the h-th order statistics divided by the h/n  
quantile of a y/Xp> where h = [(n +  p +  l)/2]. Atkinson (1994) uses the sum of the 
squared distances, p(n — 1), divided by the average of the total distances over k 
simulations.

4.5 Simulation Envelopes for Robust and Maha- 
lanobis Distances

According to (4.27), the robust distance asymptotic distribution is some scaled form 

of a Chisquare. MD also converge to a Chisquare. These approximations set the 

critical regions for multiple outlier detection: the common approach of the literature 

chooses a cut-off at the 97.5% percentile. Furthermore, in the Fast-algorithm for 

the computation of the MCD, the 97.5% tolerance ellipse is the decision rule for 

reweighting the observations (3.15).
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In Section 4.6, Section 4.7 and in this section, we show empirically that this 

approximation is not satisfactory.

Figure 4.1 includes some descriptive graphs of Mahalanobis and RD. The data 
are a sample of 100 observations generated from a standard bivariate Normal dis

tribution. In the Q-Q plots, the RD deviate more than MD from the expected 

Chisquare. The differences appear to be more evident on the upper tail, where the 

observations lie far above the 45 degrees line. The box-plots, panels (g) and (h), 

confirm that the RD have longer tails than the classical MD.

In some cases the sampling distortions make it difficult, just by looking at the 

Q-Q plots, to assess whether the points are distributed as expected. To cope with 
this problem, Atkinson (1985) introduces the simulation envelopes, a graphical tool 
applied to the residual diagnostic in linear regression. The idea is to generate an 
empirical region where the points should be included, if they are well-behaved.

We suggest a different use of simulation envelopes, that is to compare the empir

ical distribution of the 0.975 quantile of Mahalanobis and RD with the theoretical 
one.

The simulation envelope for the distances is constructed as follows: a sample of 
n distance quantiles is replicated k times from a p-variate Normal. As a result, we 
obtain an array of dimension (kxn) .  Next, the array is ordered within the columns, 
obtaining k ordered vectors of n distances ordered from the smallest to the largest. 

The envelope is built so that the probabilities of one observation falling outside the 

lower and the upper bounds are respectively 2.5% and 97.5%. In other words, if 

119 quantiles are generated, the lower and upper bounds will be respectively the 

3-rd smallest and the 117-th largest vector of quantiles, since 3/120 =  0.025 and 

117/120 =  0.975. So, if is the i-th. ordered distance generated in the k-th 
simulation, the bounds of the envelope in 119 simulations are:

d? =  4 ]W > 4 |[2] 4 ]M

4  =  ^ W 1]. 4i7]W -

If the distribution of the distances is well approximated by the Chisquare, we
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would expect that the lower and upper bound of the envelopes were sufficiently 

close to the correspondent order statistics of the theoretical distribution.

Figure 4.2 displays the envelope: the upper and lower bounds are plotted against 

the quantiles of a Chisquare distribution. The solid line is the vector of average 

distances over the simulations.The plot shows that while MD are well behaved, 

the robust distance (computed using the Fast-algorithm) cut-off at 97.5% lies well 

above the Chisquare distribution, confirming that they axe longer tailed than the 

null distribution. The Chisquare approximation is still poor for a relatively large 

spread between n and p (Figure 4.1, panel (d)). The consequence in outlier detection 

is that the use of the Chisquare tolerance ellipse leads to an “overestimation” of the 

number of outliers. In Section 4.6 a simulation experiment gives further evidence of 
this result.

4.6 Further Empirical Evidence

As a confirmation of what has been evidenced in the previous section, this simulation 

study reports the average number of observations lying outside the Xp,0.975 tolerance 
ellipse.

The experiment replicates 500 samples of n RD from a p-variate standard Normal. 

For each sample, the observations labelled as outliers are those for which:

RD?{h) > Xp,0.975

where i =  1,2, ...,n.

If the distances follow the theoretical distribution and in presence of no outliers, 

about 2.5% of the data will fall outside the chosen tolerance region. Table 4.1 shows 

that, for relatively small samples and dimensions, the proportion of observations 

that is not covered by the tolerance region is higher than expected. However, the 

results sensibly improve when the sample size grows compared to the dimensions.

Figure 4.3 plots the distribution of the mean and the median robust and MD 

against x§- The RD show a change in the pattern around the h-th point: the reason 
is that the MCD ellipsoids are constrained to cover at least h observations. The
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smallest h distances will be, therefore, closer to each other. This irregularity in the 

plot becomes less evident when the spread between n and p increases.

Table 4.1: Average and median proportion of observations lying outside the toler
ance ellipse of xl,0.975-

n P mean median

20 2 0.23 0.25
50 2 0.11 0.10

100 2 0.06 0.07
150 2 0.04 0.05

20 3 0.30 0.32
50 3 0.15 0.14

100 3 0.07 0.07
150 3 0.06 0.05

20 4 0.37 0.4
50 4 0.21 0.20

100 4 0.09 0.08
150 4 0.06 0.06

4.7 A M onte Carlo Test

In order to support the graphics with some data, we carry out a goodness-of-fit test 

for the distribution of the RD. There are three parameters affecting the convergence 
to the asymptotic distribution: the sample size, the dimensions and the proportion of 

observations fitted robustly. In simple terms, the question is for which combination 

of n, p and h the distances approximate to a xl- The convergence of the RD is 

compared with that of the MD.

The test performed is the Anderson-Darling based on the comparison between 

the theoretical and the empirical cumulative distributions. The following expression 

describes the whole class of Cramer-von Mises measures of discrepancy:

/oo
{F„(y ) -F (y )}2rP(y)dF(y),

-OO

(4.28)



where F(y) is the cdf and Fn(y) is the edf defined as in (3.5). The Anderson-Darling 

statistic A2 is obtained by replacing ip(y) = [{-F(2/)}{1 — F(y)}]~1 in (4.28). The 

weighting function ^  has the effect of giving a greater importance to the tails of 

the distribution, which attributes good power properties to the test. The statistic 

is computed by:

A2 = —n — (1/n) ^ {2 z  -  l}{ln^(i) +  ln(l -  z(n+i_i))} (4.29)
i = l

where z^) are the ordered values of z = F(y). Further computational aspects are 
discussed in D’Agostino and Stephens (1986).

The simulation experiment starts by generating a sample of K=1000 vectors of 

distances from a multivariate standard Normal distribution. The MCD is computed 
using the Fast-algorithm. We have tested each vector of distances and counted how 
many times the null distribution, has been rejected over the K replications. 
Having set the level of significance at a  =  0.05, if the distances are distributed as a 
Chisquare, we expect the simulated proportion of rejection to be very close to a.

The distribution of the A2 is known, also for finite samples, in the case where the 
parameters of the null distribution are fully specified. The percentage points are 
found assuming that the z ^  have a uniform distribution under the null hypothesis. 

However, if there are one or more unknown parameters, the z(*) are no longer uni
formly distributed, but rather have a higher density on low values. By consequence, 
also the percentage points of A2 change. These depend on the distribution tested, 

the sample size and the method of estimation. As a result, if (4.29) is calculated on 

the sample moments or other type of estimates of the population parameters, even 

for large samples, the test produces exceptionally small p-values. This odd situation 

does not occur if the estimates are replaced by the population moments.

The appropriate correction factors, in addition to the tables of percentage points 

for the Anderson-Darling and other quadratic edf statistics, are available for a lim

ited number of distribution functions and in the case when one or all the parameters 

are estimated by maximum likelihood (D’Agostino and Stephens 1986). For the dis

tribution of MD, we refer to the tables of the Gamma when the scale parameter
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a  is known and the shape (3 is unknown. This is equivalent to testing if yi scaled 

for an unknown constant belongs to a x£ with known degrees of freedom and where 

a = p/ 2 and (3 = 2. For the robust estimates there are no available tables. The 

half-sample method (Stephens 1978) offers a possibility of dealing with unknown 

population parameters. It consists in using only a random half of the sample to 

estimate the parameters. The A 2 statistic is then computed using the whole data 

set. Stephens (1978) shows that, under these circumstances, the A2 converges quite 
fast (n > 20) to the distribution where all the parameters are known.

The simulation experiment tests a sample of distances where the observations 

come from a common parent population with unknown parameters, although they 

are not independent. However, the comparisons of the results between simulated 

independent and correlated distances showed insignificant differences. D’Agostino 

and Stephens (1986) also refers to a similar case where a sample of linear regression 
residuals are tested for normality and conclude that when n > 20 the correlation 
among the observations does not change much the asymptotic points of the A2 
statistic.

4.7.1 The Test R esults

The first two rows of Table 4.2 are the sample size and the dimensions. S is the 
proportion of observations fitted through the MCD, that should be at least around 
50% of the data. When <5 =  1 the unweighted MCD are equal to the sample 
estimates, implying that when the size of the fitted set increases the RD approach 

to the classical MD. The percentage of rejections in the Anderson-Darling test are 

computed for MD, MCD estimates and the one step re-weighted MCD and compared 

with the results for the theoretical distribution.

The table confirms that for a relatively small sample size of 50 and 2 up to 4 

dimensions, MD are well approximated by the Chisquare. When the number of 

variables increase from 4 to 6, the sample size must grow of four times to achieve 

the convergence. The numbers in brackets refer to the half-sample method. These 

do not deviate much from the results from the available tables for small dimensions 
(p =  2). However, when the dimensions grow the convergence is much slower.
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The RD also cover only half of the sample, although the test results for the two 

fits are completely different. While the half-sample method looks for a random 

subset, the MCD is the solution to an optimization procedure leading to the subset 

with minimum volume. The test is rejected more than 50% of the times, even for 

relatively large spreads between n  and p. When 5 is increased, the test improves 

sensibly. Croux and Haesbroeck (1997) provide an empirical study where it is shown 

that the efficiency of the MCD improves with 6 approaching 1 and agree that 5 = 
0.75 is a reasonable compromise between robustness and efficiency. When 5 = 1 
the unweighted MCD are the sample estimates: the table shows that in this case 
the percentage of rejections are perfectly in fine with those for the MD. However, 

excluding the case of 6 = 1, Table 4.2 shows that, even when the efficiency is 

improved by including more observations in the fit, the probability of rejection is 

still extremely high: approximately 86% when n = 100, p = 2 and 5 = 0.9, implying 
a very poor approximation.

An alternative way of improving the fit while 8 is unchanged is to re-weight the 
estimates. The approximation to the theoretical distribution of the re-weighted 
MCD is better than the un-weighted estimates, although still not satisfactory. The 
test is never rejected less than 45% of the times.

The empirical results suggests that a correction factor is needed to improve the 
approximation of the Chisquare distribution to the RD. This factor can be computed 
empirically by following a similar approach used by Rousseeuw and Van Zomeren 

(1991) for the MVE.

4.7.2 A ccuracy o f the R esults

The relative precision of the rejection proportions depends on the assumption that 

the distances are Chisquare random variables. Under the null hypothesis, we expect 

the percentage to be as close as possible to the theoretical a = 5%, although we need 

to consider the sampling error. At our simulation model the number of rejections 

is a binomial B ( K ,a ), where K  is the number of drawn samples. Therefore, the 

number of rejections would fall in the 95% confidence interval:
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using the central limit theorem. In other words, 95% of the probability of rejections 

at the null distribution are within 0.036 and 0.063. This is a reasonable error margin, 

although it could still be improved by increasing the number of simulations.

4.8 Robust Envelopes for Outlier D etection

The empirical results show that the Chisquare does not provide a good asymptotic 

approximation of the robust distance distribution. The evidences provided in Sec

tion 4.6 and Section 4.5 show that the distances axe longer tailed than expected, 
leading to exclude “good” data as well as outliers. We suggest the use of empirical 
tolerance regions to cope with this problem. In Section 4.5 simulation envelopes 
were used as a diagnostic tool to compare the quantiles of the sample data with the 
theoretical distribution. In this section we propose the use of simulation envelopes 
as a diagnostic tool for multivariate outliers.

4.8.1 T he M ean Shift Outlier M odel

When simulating a contaminated data set, the outliers can be arranged in different 
ways. According to the mean shift outlier model, in a p-variate sample Y  of n cases, 
there are h “good” observations following a Normal distribution N(fi,  52) and n — h 
misplaced points from a N(fj, -I- £). In other words:

Y  ~  (1 -  e)N(ii, S) +  eN(fi +  /*>, 51),

where e = (n — h)/n  is the mixture proportion.

This situation is the worst case scenario. According to Woodruff and Rocke 

(1996), the type of outliers hardest to detect is the one with the same shape as the 

“good” data. In this case, MD of the “bad” data have a smaller expected value 

than in the case where also the covariance matrix is inflated. The result is that the 

outliers are “masked” among the “good” observations.
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For outliers that are easier to detect, less sophisticated methods, other than the 

robust ones, can be used. For most of these cases, it is sufficient to look at the 

classical MD.

As a first example Figure 4.4, we consider a bivariate Normal distribution. The 

data are 50 observations of which the last five 5 are outliers. These are already 

evident in the scatter plot on the top right corner of panel (a). The simulation 

envelopes, panel (b), separate quite clearly the group of “good” data from the 
outliers. However, there are still a few observations lying above the 97.5% cut-off.

4.8.2 Exam ple 1: M odified W ood G ravity D ata

The wood gravity data often recurs in the literature on outlier diagnostic. The 
original set from Draper and Smith (1966) consists of five explanatory variables 
and one response framed in a linear regression model. Rousseeuw and Leroy (1987) 
contaminated the data by replacing some of the cases with outliers. The “bad” 
observations are units 4, 6, 8 and 19. Since these axe leverage points, the response 
variable is redundant. Therefore, our data set includes only the five carriers.

The computed MCD covariances are singular. This usually occurs when one or 
more eigenvalues is zero or approaches the machine precision and, therefore, rounded 
off to zero. As a result, it is impossible to compute the inverse of the covariance 

matrix:

S"1 =  U[diag(l/Aj-)]UT

where U is the column-orthogonal matrix of eigenvectors and [diag(l/Aj)] is the 

diagonal matrix whose elements are the reciprocals of the eigenvalues. To remove 

this inconvenience, the diagonal elements of the covariance have been multiplied by 

the machine floating-point precision 10-6. This is probably not the most correct 
way of solving the problem. A better solution would have been multiplying the 
whole matrix by a scalar.

Figure 4.5, panel (b), is a Distance-Distance plot (Rousseeuw and Van Driessen 

1999) where the MD are plotted against the robust diagnostics. The two lines are the
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cut-off values at the xl  0.975- ^  the data did not contain outliers, all the observations 
would fall within the lower left rectangle. Furthermore, since the classical and RD 

have different distributions and because of the relatively small size of the sample, 

in an outlier-free set we would not expect the points to He on the 45 degrees line. 

MD don’t detect any anomalies, although observations 8 and 19 are very close to 

the cut-off line. However, there are 7 observations lying beyond the boundary of the 

RD, with observations 4,6,8 and 19 being the most extreme points.
Figure 4.6, panels (a) and (b), are the simulation envelopes for Mahalanobis and 

RD plotted on a logarithmic scale. Also in this case, MD don’t reveal any extreme 

points. Differently from the MD, the RD have a twisted pattern which deviates from 
a straight line, because of the presence of the outliers. In panel (a), observations 

4,6,8 and 19 are outside the envelope with case 19 very close to the boundary. 
However, after deleting the 4 outliers panel (b), no observations fall outside the 
robust envelope. The pattern of the distances is still rather far from the expected 
distribution due to the relatively small size of the sample.

The shape of the simulated envelope looks very different from the envelope of the 
expected x l • This last is marked by the dotted line and lie far below the envelope, 
revealing 3 extra outliers, which confirms what has previously appeared from the 
D-D plot.

4.8.3 Exam ple 2: Hawkins, Bradu and K ass D ata

The data (Bradu, Hawkins, and Kass 1984) is artificial: there are 75 observations on 

3 explanatory variables and one response. For our purposes, we have considered only 

the matrix of regressors. The first 14 observations in the sample are leverage points. 
These are already evident in the scatter matrix plot, Figure 4.8, panel (a). The data 

allows showing how effective the RD are, even when the size of the contamination 

is quite large.

The classical MD detect only two extreme points: observations 12 and 14. How

ever, RD evidence clearly the group of outlying points. In this case, the outliers lie 

very distant from the rest of the observations and can be identified by the Chisquare 

critical points. No additional information is provided by the robust envelopes of the
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RD.

4.8 .4  Exam ple 3: Stack Loss D ata

The stackloss data (Brownlee 1965) is another classical example coming from outlier 
diagnostic in linear regression. There are 20 observations on 4 variables, of which 3 

regressors and 1 dependent variable. In this case , we consider the whole data set 

without excluding the response Figure 4.9, panel (a). The four outliers known from 

the previous literature (1,3,4 and 21) are not leverage points, implying that they 

can’t be detected if analyzing the matrix of the carriers only.

The Distance-Distance plot looks very similar to that for the woodgravity data. 

There are 8 points lying beyond the cut-off for the RD, split in two small clusters. 
The furthest four observations are the known outliers; cases 20, 14 and 13 are closer 
to the boundary and observation 2 is in between the two groups. MD don’t detect 
any outliers.

The 97.5% envelope for the distances excludes 3 observations (3,21,1) and obser
vations 4, 20, 2 are lying on the border.

4.9 Conclusions

The Chapter has discussed the distributional properties of the main multivariate 
outlier diagnostics. We have provided a proof for the small sample distribution of 

in-sample MD. The result agree with the cumbersome proof existing in the literature.

Empirical evidences have shown that the approximation of the RD to the Chisquare 

is poor. Increasing the efficiency of the estimates by including more observations 

in the fit via MCD or by re-weighting the estimates does not lead to significant 

improvements. We conclude that a correction factor, which can be found via simu
lation, is needed.

Because RD are longer tailed, the use of Chisquare tolerance regions leads to 

reject too many points. We have proposed the use of robust simulation envelopes 

as a possible graphical tool to detect groups of outliers avoiding problems of “over

identifications” .
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Table 4.2: Proportion of rejections for the AD test on Mahalanobis Distances (MD) and Robust Distances (RD). The 
unweighted RD are obtained from the MCD estimates not reweighted for efficiency. The size of the test is a  for 1000 
replications. 8 is the proportion of observations fitted robustly.

S  p 2 4 6
n 50 100 200 50 100 200 60 100 200 500 800

expected 0.041 0.050 0.060 0.054 0.051 0.046 0.052 0.049 0.054 0.060 0.040
MD 0.040 0.056 0.036 0.047 0.048 0.061 0.076 0.066 0.050 0.052 0.050

MD (H-S) (0.086) (0.084) (0.062) (0.210) (0.105) (0.083) (0.374) (0.262) (0.138) (0.104) (0.062)

0.5 RD (H-S) (0.895) (0.786) (0.706) (0.999) (0.982) (0.915) (1) (0.999) (0.992) (0.924) (0.946)
unwght RD (H-S) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

0.7 RD (H-S) (0.775) (0.654) (0.581) (0.995) (0.920) (0.805) (1) (0.995) (0.950) (0.846) (0.898)
unwght RD (H-S) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

0.75 RD (H-S) (0.722) (0.616) (0.54) (0.947) (0.883) (0.759) (0.998) (0.979) (0.922) (0.820) (0.880)
unwght RD (H-S) (1) (0.998) (1) (0.999) (1) (1) (1) (1) (1) (1) (1)

0.85 RD (H-S) (0.595) (0.536) (0.489) (0.919) (0.774) (0.669) (0.992) (0.954) (0.848) (0.774) (0.848)
unwght RD (H-S) (0.987) (0.994) (1) (0.983) (0.994) (1) (1) (1) (1) (1) (1)

0.90 RD (H-S) (0.547) (0.478) (0.460) (0.862) (0.715) (0.615) (0.948) (0.910) (0.804) (0.744) (0.840)
unwght RD (H-S) (0.811) (0.868) (0.990) (0.932) (0.930) (0.994) (0.970) (0.982) (0.998) (1) (1)

1 RD (H-S) (0.055) (0.230) (0.295) (0.303) (0.293) (0.332) (0.476) (0.426) (0.436) (0.544) (0.704)
unwght RD (H-S) (0.086) (0.084) (0.062) (0.210) (0.105) (0.083) (0.374) (0.262) (0.138) (0.104) (0.062)
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Figure 4.1: Q-Q and Box Plots for Mahalanobis and robust distances in three inde
pendent samples from a simulated Normal distribution.
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Figure 4.2: 97.5% Simulation envelopes for Mahalanobis and robust distances gen
erated from simulated Normal data and theoretical order statistics of the xj,-
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Figure 4.4: Mean-shift outlier model,

(a) Scatter plot

2 e•2 0 4

X1

(b) Simulation Envelope

4 »

/V

-3 -2 •1 0 1 2-4

O rder s tatistics Log Expected Distances
- Envelope



Figure 4.5: Example 1, Woodgravity data,
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Figure 4.6: Example 1, Woodgravity data, simulation envelopes,
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Figure 4.7: Example 2, Hawkins, Bradu and Kass data,
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Figure 4.8: Example 2, Hawkins, Bradu and Kass data, simulation envelopes,

(a) 97.5% Simulation E nvelopes for Mahalanobis D istances
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Figure 4.9: Example 3, Stackloss data,
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Chapter 5 

Robust D etection of Outliers 
using the Student-t distribution

5.1 Introduction

Chapter 4 has underlined the sensitivity of the Normal distribution to extreme points 
and how this can affect the detection of multiple outliers. We have coped with this 
problem by estimating robustly the location and scatter of the distribution, which 
also allows us to detect groups of outliers avoiding masking and swamping effects. 
The underlying assumption is that the majority of the data is normally distributed.

An alternative method to deal with extreme points is to remove the assumption 
of normality and replace it with a more “robust” one. The approach considered 
consists in assuming a multivariate Student-t distribution, longer tailed than the 

Normal, in statistical models. The Chapter gives the literature background: the 
first three sections introduce the multivariate Student-t distribution and examine 
the properties of the MLE for its parameters. Dempster, Laird, and Rubin (1977) 

show how to use the EM algorithm to find MLE for the Student-t distribution; an 

illustration of the method follows in Section 5.4. In addition to the literature, some 

empirical results on the efficiency of the estimates are shown in Section 5.3.1 and 

Section 5.5. Finally, we compare this method with high-breakdown point estimators 

in outlier detection.
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5.2 The Multivariate Student-t D istribution

The univariate central t distribution is defined as:

(5.1)

where z  ~  N (0,1) and is independent from xl-
A generalization of the Student-t distribution comes from considering a vector

introduce a covariance structure, it is assumed that the vector x =  (xi, x2, ..., xp) has 

a joint multivariate Normal distribution with some nonzero covariances. Therefore, 

let Y  =  {yi, y2, ..., yn} be a sample where y* G 3ftp, i =  1,2,..., n. The multivariate

the following way:

y i = ~y= for i =  l ,2 , . . . ,n ,  (5.2)
y/n

where x* ~  Np{^iy/r^ T') and VT{ ~  xl- Furthermore, r» and x* axe independent.

If the vector r  =  (ti, t2, ...,rn) is considered as observed, Y  has a weighted 
Normal distribution, that is:

It should be noted that if Gamma(a,/3), where the

density of X  ~  Gamma(a, /?) is defined as:

of independent univariate fs, yj =  Xj(\Jxl/l>) \  where j  =  1,2, ...,p, where the 
joint density of the p-variates is the product of the individual densities. In order to

Student-t distribution is generated from a multinormal sample of observations in

y N p ^ y / T i )  for i =  l ,2 , . . . ,n . (5.3)

f(x;a,{3) =  —^ / ? axQ 1 exp{ /?x}.r(a)
where, for k > 0:
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Therefore, by setting Z  =  (z//2)r , a  =  v/2 and (3 =  v/2 , it follows that:

T{ ~  Gamma{y/2, ^/2). (5.4)

The density function of a multivariate Student-1 with parameters /x, ^  and z/, 

y ~  tp(/x, tf, i/) is:

/ (y ;f l’* ' I/) =  r ( j~ )(^ )U  x x <1 + 1  (5-5)

where <5̂ =  (y -  /x)Tl3'-1(y -  /x).
If z/ =  1, (5.5) defines the Cauchy distribution with non-existing moments. If 

z/ > 1, /x is the mean vector, VP is the inner-product matrix and v the degrees of 

freedom. If z/ > 2, the variance covariance matrix, similarly to the univariate case, 
is given by v / iy  — 2)\Er.

5.3 Maximum Likelihood Estim ation

The log-likelihood function of the model in (5.5) is:

Zr(/x, *£, v\Y) =  constant +  n In ( r  )  — n ^  — ^  1̂ 1

where 5? = (y* -  /x )^_1(y* -  /x)r .

If the vector of weights is considered as a vector of observations as well as Y, the 
likelihood can be expressed in an alternative form. In this case, the whole data is 

{yij y 2, •••,yn;/7‘i,72> ...,rn}. Therefore, the density of the data is given by:



/ (Y ,r ;  /x, i/) = /jv(Y|r) x / G(r).

As a result, the likelihood of the model can be factorized as follows:

ZT(/z, v\ Y) =  lN{n, Y, r) +  lG(v\ r), 

where, from (5.3) and (5.4):

n 1 n
Z tf(/i,¥ ;Y ,r) =  constant -  -  In |^ |  -  -  -  /i)T^ _1(y< -  /x)

 ̂  ̂*=i

nTia~1 £  r*y< -   ̂ X) r< (5-7)

and

^g(^; t)  =  constant -  n In ( 0  +  ^  In ( 0  +  ^  ^ { ln (ri)  -  r j .  (5.8)

The maximization of (5.7) leads to the following estimates of the location and inner- 
product matrix:

_  E " = l TiYi
H'MLE ~ E"=lTi

1 n
^ M L E  — — X/ Ti ( y i  ~  fii M L E ) ( y i  ~  P ‘ML e ) T -

For the multivariate Student-t, p>MLE ^ mle are the weighted MLE (sample mean 

and variance-covariance matrix) of the Normal model. Conditions for the unique
ness of the solution to the location-scatter estimation problem in the multivariate 

Student-t case are discussed in Kent, Tyler, and Vardi (1994).
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Since there is no analytical solution, the degrees of freedom v are estimated 

by solving, via some numerical methods (Newton-Raphson, bisection, etc.), the 

following equation:

Assuming that the vector of weights r  = Ti, r2, ..., rn is known, the distribution of

where 1 is a n x 1 vector of ones.
We show that, as in the multinormal case, the conditional distribution of the 

covariance matrix is a Wishart (Definition 4.3.1).

1 n 1 n 
^ M L E  ~  ~  5̂ 7i(yi — P'MLE^i.yi ~  P m L e )T =  ~  5 — P m L eP ^ M L e )’

Let D be a diagonal matrix

(5.9)

5.3.1 D istribution of / I m l e  and ^ m l e

P'MLE 1S:

P m l e \  t  ~  Np(n, ( r r l)  J^ ) ,

0
D =

0

Then:

& m l e  = n-1{Yr DY -  Y r D l l r D Y (rTl ) -1},

where:

P m l e
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Letting H  =  D — D l l r D(Tr l)  \  the covariance matrix is rewritten as

nifMLE = Y t HY. (5.10)

D is a diagonal matrix, symmetric but not idempotent and H  has elements:

ha T i - T i / Y ^ n  
i

h i j  = - T i T j / Y ^ T i ,  for i ^ j .
i

Since H  is symmetric but not idempotent the distribution of (5.10) is a weighted 

sum of independent Wishart distributions where the weights are the eigenvalues of 

H  (Mardia, Kent, and Bibby 1982, Theorem 3.4.4(a)). Some simulation studies are 

carried out to describe the efficiency and bias of Amle ^ d  ^ m l e  in Section 5.5.

5.4 The EM algorithm: general idea

The EM is an iterative procedure designed to provide MLE when the data have 
some missing observations. The framework comprises two sample spaces X  and Y  
which generate two sets of realizations: a complete set, x  and a latent, or incomplete 

one, y. The algorithm works on a data augmentation principle: at each iteration 
the observed (incomplete) data are augmented by missing data and/or parameter 
estimates allowing the updating of the maximum-likelihood estimates. In other 

words, the complete set can’t be observed directly, but only through y.

Let 0 =  {0i, 02} •••} 0n} be a set of parameters and g(y; 0) the density of the vector 
of observations y, that is the likelihood for 0, given the set of observed data, L(0| y). 

At each step, the incomplete set is “estimated” through the relationship:

0 (y ;0)=  /  /(x;0)dx, (5.11)•/ y
where /(x ; 0) is the density of the complete data vector. Therefore, given a set y 

of observations, the purpose of the algorithm is to find the parameter estimate that 

maximizes the likelihood of y, found through (5.11).
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The algorithm consists of two stages. The expectation step involves the computa

tion of the log-likelihood for the parameter 6 from the complete data, log /(x). Since 

the latter are not observed, the likelihood is replaced by its conditional expectation.

Let Q(0® | be the expectation of the log-likelihood function at iteration t,
given the current estimate of the parameter. The E-step computes:

Q(0 «)| 0 (»-D) =  £ [log /(x  I y ,0 (‘>)|

where 0® is the parameter estimates at the step t.
In the maximization step the aim is finding 9 that maximizes Q{9\ 9®), where

Q(9\ e(l)) = /(*;«)•

The parameter estimates allow updating the conditional expectations in the E-step. 
The E and M-steps are iterated until the difference

L(9(l+1)) -  L(9(t>)

is small, the accuracy being chosen arbitrarily.
The paper by Dempster, Laird, and Rubin (1977) discusses some basic properties 

of the EM. It is shown that in two subsequent steps of the algorithm the likelihood 

is not decreased, that is:

L(0(t+1>) >  L(9(t>), 

where the equality holds if the conditional expected likelihood satisfies:

Q(0(,+1>| 9m) > Q{9\ em).

The paper also gives evidence of convergence of the estimates to the maximum 

of the likelihood function, where the rate depends on the information about 6 con

tained in the observed data. This implies that if there are many data missing the 

convergence to the optimum will be slower.
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5.4.1 ML estim ation w ith  known degrees o f freedom

In Section 5.2, when defining the multivariate Student-i t distribution, the vector r  
was assumed to be known. Nevertheless, in practice, r  is a latent, rather than an 

observed variable. In the simplest case, r  is missing and v is known so that “only” 

the MLE for {/x, ’J'} need to be found.

The E-Step imputes the missing observations ( ti, T2 , ...,rn} with their conditional 

expectation given the observed data Y  and the {P>mle> &mle}- Prom (5.6) it follows 
that, at step (t +  1):

t r ^ E i
1/ +  0*

where 8i K) is a function of the current estimates for /x and \Er. The procedure 
can be easily extended to the case where there are some missing observations in 
Y. Therefore, the E-step would also compute the conditional expectations for the 
missing data.

The M-step finds the MLE of the parameters by calculating:

- (t+i) _  2-jj=\ ~j y t
2L>i=i r i

'*f(1+1) = ~ i t  (y« -  AmlI) to  ~
n  i= l

that are the weighted least squares estimators for {/x, Tr}.

The algorithm iterates until convergence of the likelihood (5.6).

In the case of v fixed, the EM algorithm involves the calculation of the weights f», 

given the observations Y  and the current estimate { f i^ \  4 ^ } .  When v is known, the 

likelihood has the form of an exponential family (5.7) where the sufficient statistics 

for the parameters are STy =  STyy =  'TiYiyJ and ST =  1^7*. Therefore,
the weighted least squares estimates at the M-step (t +  1) are:



*<(+1) = I  - ̂ s£+1)(̂ +1)f) .

Arslan, Constable, and Kent (1995) propose two alternative ways of accelerat

ing the EM algorithm for estimation of location and scatter, given the degrees of 

freedom.

5.4.2 ML estim ation w ith  unknown degrees o f freedom

When v is not observed, the EM finds simultaneously the MLE for {jx, SF, v}. The 

algorithm is modified as follows: in the E-step, v is replaced by the current estimate 

v®. Therefore,

f (‘+‘) =  E (t . | 0«)f $<*>f £(0) =  ^  ’ +P
+

From (5.8) the sufficient statistics for v is STT =  D?=i{hi(r<) — r,}.
The estimation of the degrees of freedom requires the computation of the condi

tional expectation of STT, given the observed data and the current estimates for the 
parameters {/x, SF, v}\

!/»<*>, * (V > )  =

+ E w < r i) - r } l
1 = 1

where <t>{x) =  d\n(T(x))/d(x).
The M-step consists in the separate maximization of the Ln (5.7) with respect to 

(ft, \F) and of Lq (5.8) over v. Therefore, the M-step for (/x, \F) in case of unknown 

degrees of freedom is the same as for v fixed. The estimation of v requires a more 

difficult and computationally expensive procedure, that is finding the root of the 

equation:

- 0 ( 0 + l n ( | ) + l & T +  l =  O. (5.12)
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(5.12) differs from the corresponding (5.9) by the replacement of the sufficient statis

tics for Ti with their conditional expectations and by an additional term that can be 

interpreted as a correction for the mean value imputation for the missing observa

tions 7i,T2, For further reference regarding this problem, see Liu and Rubin 

(1995).
Therefore, the E-step is the same as in Section 5.4.1 with the exception of the 

additional calculation of the conditional expectations for the sufficient statistics of 
v. The M-step differs from the previous case because it requires the maximization 

of the Gamma likelihood to find the current estimate of v.
The convergence of the EM when the degrees of freedom are unknown is very slow, 

since the convergence of two likelihood functions is required. There is a variety of 

studies on possible extensions of the EM that can be more efficient. The ECM 
algorithm by Meng and Rubin (1993), the ECME by Meng and Rubin (1993) and 
a further expansion of this last by Liu and Rubin (1995) are some of the main 
suggestions offered by the literature.

5.5 Empirical Results on ( l M L e  and m l e

An empirical study on the bias and efficiency (relative to the Normal distribution) 
has been conducted. The results are summarized in Table 5.1 to Table 5.8.

In Table 5.1 and Table 5.2 the data are simulated from a multivariate Student-£ 
with 3 degrees of freedom from which we have drawn 500 independent samples. 
The MLE for the multivariate Student-£, t3, are assumed to be known. These are 

compared with the MLE from a Normal model and with the robust estimates via 

MCD. In other words, the aim is to measure the drop in the bias and the change in 

the variability of the estimates when we fit a Normal or a robust MCD model. We 

also observe the differences in the variability and bias for increasing sample sizes 

and dimensions.

Table 5.1 shows the bias range across the different models. As expected, the bias 
is minimum for the Student-£, where the difference between the model performances 

is greater for ^  than for p. The MCD fit has a better bias and variability than
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the Normal on a t .  With the sample size growing, the performances of the models 

become more similar.

Table 5.2 reflects the same behaviour of the estimates as Table 5.1.

The same study is repeated in Table 5.3 to Table 5.4, where bias of the first two 

elements in the mean vector and that of the first diagonal and off-diagonal elements 

in the scatter matrix are displayed. In order to reduce the sample variability 
new observations are added to the data, rather than sampling independent sets of 
observations. The results confirm those in Table 5.1 and Table 5.2: the Normal 
model has a larger bias compared to the other two models (t3 and MCD). The 

difference in the performance improves when sample size increases with respect to 

the dimension. The bias for the Normal fit is the same for increasing dimensions 

since we are considering only the first two variables. When n grows from 20 to 50 

the bias for both the mean vector and the scatter matrix increase before smoothing 
down for n=100. The jump in the variability occurs when the furthest observations 
are included in the sample. This is confirmed by Figure 5.1 that plots the change 
in the determinant of the sample variance-covariance matrix for increasing sample 

sizes. The graph shows the behaviour of one sample, although different samples 
would have a similar pattern, that is one or a few peak occurring when the most 

remote observations are included in the sample.
Table 5.7 compares the range in bias and efficiency (with respect to the Normal 

model) similarly to Table 5.1. In this case sample size and dimensions are fixed: 
500 samples of 100 observations on 3 variables are replicated from a multivariate 
Student-t with 4 degrees of freedom. The results of fitting Student-t by fixing differ

ent values of degrees of freedom are compared with the adaptive robust procedure, 

where v is estimated, and with the Normal model, for which the average estimate 

of v and, in brackets, its standard deviation are calculated. The table show that a 

“wrong guess” of the degrees of freedom does not affect significantly the bias and the 

efficiency of the MLE for fi. On the contrary, bias and efficiency of ^ mle increase 
sensibly to changes in v. The estimate for the degrees of freedom have a reasonably 
small bias, .65, although they vary quite significantly over the samples.

The same experiment is repeated in Table 5.8, where the bias and efficiency of
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some single elements of fi and ^  are compared. The comments are similar to those 

for Table 5.7.

The results found from this simulation study appear in favour of the model with 

unknown degrees of freedom, if we look at the efficiency for the MLE of n  and 

Nevertheless, the degrees of freedom are estimated with low precision.
Furthermore, the bias and the standard deviation of the estimates are much 

smaller compared to the Normal model, particularly for the inner product matrix 

This confirms that the Normal model is not well suited for data with extreme 

points.

5.6 Outlier Diagnostics: W eighted Mahalanobis 
Distances

Assuming r  known, we define the Weighted Mahalanobis Distances (WMD) as:

WMDi =  =  Ti(yi -  /z)T^ -1(yi -  /x),

where is the scaling parameter that, mixed with a Normal distribution, gives the 
Student-t, defined as in (5.2). If these weights are observed, then:

~  X l  (5.13)

Alternatively, i/t* is a random variable with distribution xl- From (5.13), 6f is a 

Xp, assuming 7* are 1 for all z’s. Therefore:

fii/TiP ~  Fp, v  (5.14)

When v —► oo, converges to 1 and y* becomes a multinormal with mean fi and 

variance covariance matrix The WMD are equivalent to the MDi for a Normal 

distribution, described in (3.12). As a result, t* can be interpreted as a robustifying 

parameter, assigning low weights to the observations with large distances. This last 

result can be observed from the expression for the expected value of r :

81



EMllt9 iV)^Ji+p, 1 + EzR.
r“> v  +  ^2 v  +  £2

For large distances the difference p —6f is negative with the result of down-weighting 
the z-th observation.

In addition to r , also v affects the robustness of the model. From (5.14), for 

lower v the degree with which the observations are down-weighted increases.

The behaviour of the Mahalanobis-like distances is explained by Figure 5.2. The 

plot shows the maximum, 99, 98.5, 98 and 97.5% envelopes of the distances and 
their average for four different combinations of sample sizes and dimensions. The 

quantiles are plotted against the Chisquare, that is the asymptotic distribution. The 
Weighted Mahalanobis Distances are longer tailed than the equivalent distances for 
the Normal case, with the extreme points lying far from the remaining observations. 
Increasing the degrees of freedom, the envelope becomes more narrow approaching 
to the Normal model type, Figure 4.2. On the contrary, when the dimension grows, 
the distribution becomes longer tailed. In conclusion, when tuning the parameter 
r  for robustness, dimension and size of the sample in addition to the degrees of 
freedom should be taken into account.

5.7 Example 1: Univariate Linear Regression on 
Stackloss Data

This example refers to Lange, Little, and Taylor (1989). It is linear regression model 
where the dependent variable has a longer tailed distribution than the Normal:

2/i %~  for z =  1,2, ...,n . (5.15)

y =  {j/i,2/2, •••,yn] depends linearly on a matrix n x p o f  regressors, X, and (3 is the 
vector of parameters, k x 1, therefore, /z(/3, x^) =  xf/3. Similarly to (5.3):

Vi | n  N(p{(.3, Xi), tf2/ n ) for z =  1,2,..., n .
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The maximum likelihood estimates are obtained via the EM given that v is known. 

The general idea is to find the parameter estimates by fitting re-weighted least 

squares iteratively, until convergence of the likelihood. At iteration (£), the E-step 

computes the weights, that is the conditional expectation of r»:

f?+1) = E(n I (V )  = JL337ij.
v +  Si

where 5? ^  =  {yi — xf/3^}/4/2 W. Given the estimates of the weights, the M-Step 
finds the parameter estimates by minimizing a weighted sum of squares:

0 {t+1) =  - x f / 3 ) 2}.
P i

The parameter \P2 is updated as it follows:

71 i

The log-likelihood has a very similar form as the Normal model. Considering v 
observed and ignoring constants:

Z(ft * )  OC ~  ln (* 2) x f/3 )2.

The Stackloss data set has been presented in Section 4.8.4. There are 3 regressors 
and one dependent variable observed on 21 units. The outliers identified by the 
literature are observations 1, 3, 4 and 21. Table 5.9 illustrates the results from 

fitting Student-t models with different degrees of freedom and the Normal model. 

The fit of the Student-t model is good: the log-likelihoods appear to be between the 

Normal and the Normal fitted without the 4 outliers. Furthermore, the likelihoods 

of the i-models are closer to the Normal without outliers than to the Normal fit.

Figure 5.3 is a plot of the sorted weights. The smallest 4 weights are the outliers, 

that correspond to those identified by Brownlee and previously in Chapter 4. For 

these observations, clearly separated from the rest of the data, the weights are 0.44,
0.36, 0.19 and 0.13 (Table 5.12).
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5.7.1 Exam ple 2: Stackloss D ata

The stackloss data example is here proposed assuming there is no linear relationship 

between the stackloss and the carriers. The fitted models give robust estimates for 

the mean and the scatter matrix of the data, including both the regressors and the 

dependent variable. Table 5.10 displays the result from the fit. For v = 10 the 

t-model provides estimates for the mean that are very close to the Normal model. 

The convergence of appears, instead, slower. The table displays also the results 

from the robust MCD estimates. The coefficients for these lasts are very close 

to the outlier-free ones, showing a better fit than the Student-t. Compared to the 
regression model, there are 2 more outliers detected from the t3 model: observations 

2 and 17. Observation number 2 is also labelled as an outlier in the MCD model of 

Figure 4.9.
Figure 5.4 is the profile likelihood as a function of the degrees of freedom. The 

plot shows the t-model convergence to the Normal (top line) for increasing degrees 
of freedom.

5.7.2 Exam ple 3: Hawkins, Bradu and K ass

This artificial data set evidences clearly the outliers (the first fourteen observations) 

just by a simple scatter plot of the data, Section 4.8.3. This justifies its popularity 
in the robust statistic literature.

The results from the fit of the Normal and robust models are shown in Table 
5.11, commented in a similar way as those for the Stackloss data example. The best 

fit in this case comes from the MCD providing the closest estimates to the fit of the 

Normal outlier-free model.
The last two graphs (Figure 5.6, panels (a) and (b)) are Distance-Distance plots 

for the Normal, Student-t and MCD fits. The solid line is the Chisquare 0.975 

quantile. The MCD model seems the “most robust”, clearly separating the data 

into two groups of observations. The Weighted Mahalanobis Distances are able to 

detect the outliers, but they are closer to the Normal model. The classical MD are 

not able to separate the outliers from the main data.
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5.8 Conclusions

The Chapter explores outlier detection and robust modelling using the multivariate 

Student-t. The distributions of the MLE for the mean and inner product matrix are 

discussed. Since it is not possible to find a theoretical form for the distribution of 

a simulation study has been carried out. If we assume v fixed (not estimated), it 

is found that the efficiency of the estimates for the mean does not vary significantly 

for changes in the degrees of freedom. On the contrary, bias and efficiency of are 

highly affected by a “wrong guess” of v. In addition the precision of the estimate 
of v is very low.

Furthermore, some real data examples of maximum likelihood estimation of the 

Student-t parameters are compared to the estimates from the Normal and “very” 

robust model (MCD). The results confirm the Student-t ability of dealing with 

outliers in a wide range of settings. The quality of the fits appears good and close 
to the Normal model without outliers.

The purpose of using a Student-t distribution is to build a model capable to cap
ture the observations lying far from the center of the distribution. Allowing different 
degrees of freedom, it is possible to vary the “longtailness” of the distribution.

Given sufficient data, v can be estimated, as well as fx and \F, by likelihood 
methods, Section 5.4.2. However, the approach used in this Chapter chooses the 

degrees of freedom a priori. The computational effort and the low accuracy of 

the estimates for v make this method less attractive for practical purposes. Since 
usually v varies in 5R+, the estimates will correspond to local rather than global 
maxima. Furthermore, the EM algorithm can sometimes converge to points where 
the likelihood is not bounded, as shown in a study of radioimmunossay data (Lange, 

Little, and Taylor 1989, Fernandez and Steel 1999; Lange and Sinsheimer 1993).

It can be argued that there are distributions, other than the t, that could be used 

for the same purpose. Some authors consider the slash or other Normal/independent 

type distributions. Lange and Sinsheimer (1993) describe the properties of the 

Normal/independent type and compare their performances in some robust regression 
examples on real data sets. A common feature of these distributions, in addition
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to the long tails, is the possibility of applying the EM algorithm to get maximum 

likelihood estimates of the parameters. We have chosen the Student-t because of its 

simplicity: the likelihood has a simple form, similar to the Normal distribution (if v 

is fixed, that is not estimated) and there is only one parameter, v, to robustify the 

distribution.
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Table 5.1: Minimum and maximum (.) bias for P>mle and ^ mle on a multivariate 
Student-t with v =  3. t3 is estimated by fixing the degrees of freedom.

P-MLE
a 20 50 100 20 50 100 20 50 100
P 2 4 8

t3 -0.2439 -0.2655 -0.2448 -0.1716 -0.1922 -0.1788 -0.0171 -0.013 -0.0073
(0.1718) (0.1624) (0.1563) (0.1858) (0.1692) (0.1774) (0.0208) (0.0112) (0.0067)

Normal -0.2537 -0.2619 -0.2396 -0.1855 -0.1834 -0.1718 -0.0179 -0.0108 -0.0159
(-0.1907) (0.1665) (0.1588) (0.1922) (0.1774) (0.1738) (0.0181) (0.0096) (0.0116)

MOD -0.239 -0.2607 -0.2462 -0.1705 -0.1868 -0.1803 -0.0314 -0.0086 -0.009
(0.164) (0.158) (0.1588) (0.165) (0.17) (0.178) (0.0237) (0.0157) (0.013)

& M L E
n 20 50 100 20 50 100 20 50 100
P 2 4 8

t3 0.2396 0.1416 0.1003 0.2386 0.1526 0.1039 0.2328 0.1385 0.0921
(0.2761) (0.1668) (0.1117) (0.2952) (0.1713) (0.1247) (0.2952) (0.1668) (0.122)

Normal 0.3597 0.2257 0.1478 0.3409 0.2148 0.1534 0.3473 0.2018 0.1508
(0.4111) (0.252) (0.1575) (0.4424) (0.2761) (0.1916) (0.4458) (0.2679) (0.1899)

MCD 0.2852 0.1603 0.1111 0.2875 0.1775 0.119 0.2776 0.1663 0.1059
(0.3399) (0.1835) (0.1241) (0.3631) (0.2041) (0.142) (0.3499) (0.2027) (0.1424)

Table 5.2: Minimum and maximum (.) standard deviation for P>m l e  ^ d  4 ? m l e •

A
n 20 50 100 20 50 100 20 50 100
P 2 4 8

t3 -0.4545 -0.4397 -0.4501 -1.383 -1.3871 -1.3808 -0.0774 -0.0789 -0.0759
(1.143) (1.1045) (1.0989) (1.3092) (1.3087) (1.2801) (0.1701) (0.1127) (0.1151)

Normal -0.4659 -0.076 -0.0447 -1.7176 -1.76 -1.7371 -0.6705 -0.5031 -0.4221
(3.4077) (3.0229) (2.9054) (3.4285) (3.6703) (3.9302) (2.4579) (2.2589) (2.4757)

MCD -0.6045 -0.4856 -0.4436 -1.3348 -1.3568 -1.3712 -0.094 -0.2652 -0.2094
(0.9548) (1.0425) (1.1125) (1.0724) (1.1584) (1.2372) (0.293) (0.0649) (0.0664)

Q 20 50 100 20 50 100 20 50 100
P 2 4 8

t3 0.2551 0.157 0.0995 0.2476 0.1465 0.104 0.2339 0.1304 0.096
(0.4833) (0.2684) (0.1941) (0.5129) (0.32) (0.2291) (0.5749) (0.3364) (0.2256)

Normal 6.7486 1.5283 0.9494 1.4031 1.8588 1.7061 1.8176 1.1128 0.8577
(8.3417) (4.0192) (1.7286) (4.1135) (4.7136) (7.4994) (7.3008) (10.1487) (4.2035)

MCD 0.3576 0.224 0.1635 0.3324 0.1912 0.1386 0.3512 0.1593 0.1161
(0.5837) (0.3486) (0.2688) (0.6256) (0.3819) (0.2747) (1.0513) (0.3622) (0.2601)
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Table 5.3: Bias of the first two elements of the estimated location vector of a simu
lated multivariate Student-1

n 20 50 100 20 50 100 20 50 100
P 2 4 8

Ai(t3) 0.2021 0.1305 0.0929 0.1930 0.1244 0.0881 0.1952 0.1201 0.0872
£ 2(t3) 0.2302 0.1388 0.1025 0.2130 0.1356 0.0970 0.2157 0.1292 0.0914

Ai (Normal) 0.2762 0.1929 0.1345 0.2762 0.1929 0.1345 0.2762 0.1929 0.1345
f t 2 (Normal) 0.3049 0.1987 0.1450 0.3049 0.1987 0.1450 0.3049 0.1987 0.1450

Ai(MCD) 0.2478 0.1478 0.0997 0.2323 0.1481 0.0993 0.2394 0.1489 0.1008
£a(MCD) 0.2740 0.1633 0.1182 0.2758 0.1649 0.1101 0.2602 0.1615 0.1067

Table 5.4: Bias of the first diagonal and off-diagonal elements of the estimated
scatter matrix of a simulated multivariate Student-£

n 20 50 100 20 50 100 20 50 100
p 2 4 8

0.3307 0.2135 0.1516 0.3181 0.1993 0.1435 0.3190 0.1936 0.1381
* i l2(t3) 0.2332 0.1440 0.1100 0.2242 0.1404 0.1051 0.2177 0.1395 0.1002

* i , i  (Normal) 1.6823 2.0068 1.9147 1.6823 2.0068 1.9147 1.6823 2.0068 1.9147
* 1,1 (Normal) 0.8417 0.8599 0.6454 0.8417 0.8599 0.6454 0.8417 0.8599 0.6454

£ i , i  (MCD) 0.4417 0.2893 0.2079 0.4099 0.2600 0.1814 0.4529 0.2545 0.1766
# i , i  (MCD) 0.3391 0.2343 0.1671 0.3090 0.1927 0.1398 0.3313 0.1703 0.1204

Table 5.5: Efficiency of the first two elements of the estimated location vector of a 
simulated multivariate Student-1

n 20 50 100 20 50 100 20 50 100
P 2 4 8

Ai(t3) 0.5331 0.4612 0.4537 0.4754 0.4171 0.4037 0.4798 0.3949 0.3935
A2(t3) 0.5437 0.4718 0.5004 0.4885 0.4386 0.4432 0.4948 0.4059 0.3919

Ai(MCD) 0.8139 0.5834 0.5369 0.7022 0.5804 0.5107 0.7144 0.5751 0.5375
A2(MCD) 0.7535 0.6469 0.6365 0.7975 0.6618 0.5673 0.6943 0.6217 0.5385

Table 5.6: Efficiency of the first diagonal and off-diagonal elements of the estimated 
scatter matrix of a simulated multivariate Student-1

n 20 50 100 20 50 100 20 50 100
P 2 4 8

®i,i (t3) 0.0181 0.0055 0.0082 0.0169 0.0050 0.0073 0.0178 0.0047 0.0068
* i ,2(t3) 0.0313 0.0061 0.0099 0.0284 0.0057 0.0091 0.0280 0.0057 0.0082

#i,i(M CD) 0.0305 0.0103 0.0148 0.0248 0.0073 0.0120 0.0406 0.0061 0.0097
$ 1i2(MCD) 0.0702 0.0174 0.0241 0.0574 0.0104 0.0168 0.0695 0.0089 0.0127
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Table 5.7: Minimum and Maximum bias and efficiency of the MLE for /z and on 
a simulated multivariate Student-i with v  =  3.

Model V A
Min Bias Max Bias Min EfF. Max EfF.

t3 3 0.0486 0.2084 0.0018 0.0195
t4 4 0.1389 0.3409 0.0148 0.0457
t5 5 0.2094 0.4484 0.0336 0.0748
t6 6 0.2682 0.5393 0.0551 0.1045
t7 7 0.3177 0.6171 0.0773 0.1334
t8 8 0.3604 0.6851 0.0995 0.1613
t£ 4.65 (1.67)* 0.1565 0.3849 0.0188 0.0552

Normal - 1.1426 1.8903 - -

Model V ¥
Min Bias Max Bias Min EfF. Max EfF.

t3 3 4.6003 142.2621 0.0061 0.0022
t4 4 2.9822 8.7962 0.0000 0.0009
t5 5 9.1313 131.2022 0.0052 0.0086
t6 6 14.2782 233.3098 0.0164 0.0211
t7 7 18.6811 320.3971 0.0309 0.0362
t8 8 22.5087 395.9063 0.0472 0.052510 4.65 (1.67)* 4.6739 46.3114 0.0006 0.0023

Normal - 98.2385 1822.9992 - -

Table 5.8: Bias and efficiency of the MLE for the first two elements of n  and 
a diagonal and off-diagonal element of obtained from a simulated multivariate 
Student-t with v — 3.

Bias Efficiency
Model V A (i) A(2) A (i) A(2)

t3 3 0.0881 0.0970 0.4037 0.4432
t4 4 0.0886 0.0971 0.4071 0.4453
t5 5 0.0893 0.0975 0.4131 0.4505
t6 6 0.0901 0.0981 0.4202 0.4571
t7 7 0.0908 0.0988 0.4276 0.4644
t8 8 0.0916 0.0996 0.4351 0.4719
ti> 3.23 (0.78)* 0.0881 0.0973 0.4043 0.4481

Normal - 1.4146 1.9103 - -

Bias Efficiency
Model V *1,1 *1,2 * 1,1 *1,2

t3 3 0.1435 0.1051 0.0073 0.0091
t4 4 0.1819 0.1150 0.0087 0.0108
t5 5 0.2340 0.1240 0.0101 0.0125
t6 6 0.2867 0.1322 0.0115 0.0141
t7 7 0.3365 0.1397 0.0129 0.0157
t8 8 0.3826 0.1465 0.0143 0.0172
t£> 3.24 (0.78)* 0.1531 0.1068 0.0082 0.0095

Normal - 0.6350 1.5936 - -

* Average and (standard deviation) for the MLE of u; v  is estimated simultaneously as / i  and * .
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Table 5.9: Estimates from fitting a regression on Stackloss Data.

Model Intercept Airflow Temperature Acid log-likelihood
t3 -39.10 0.90 0.70 -0.10 -31.80
t4 -40.10 0.90 0.70 -0.10 -32.10
t5 -40.50 0.80 0.80 -0.10 -32.30
t6 -40.70 0.80 0.90 -0.10 -32.50
t7 -40.70 0.80 0.90 -0.10 -32.60
t8 -40.70 0.80 1.00 -0.10 -32.70

Normal -39.90 0.70 1.30 -0.20 -33.00
Normal minus outliers -37.70 0.80 0.60 -0.10 -10.10

Table 5.10: Results from the fit of the multivariate Student-t model on Stackloss 
Data.

Model fa fa fa fa * i,i *1,2 COH

&

*1,4 Log-L
t3 58.44 20.69 85.97 15.48 51.37 14.61 17.03 51.93 -236.79
t4 58.72 20.74 86.01 15.81 56.43 15.96 17.87 57.72 -235.91
t5 58.95 20.79 86.05 16.07 60.18 16.95 18.52 61.95 -235.37
t6 59.13 20.83 86.08 16.27 62.99 17.68 19.04 65.06 -235
t7 59.28 20.86 86.11 16.43 65.16 18.24 19.45 67.42 -234.74
t8 59.39 20.89 86.13 16.56 66.82 18.65 19.79 69.19 -234.54
t9 59.49 20.91 86.14 16.66 68.16 18.99 20.08 70.6 -234.39

tio 59.57 20.92 86.16 16.74 69.27 19.26 20.32 71.74 -234.26
MCD 56.15 20.23 85.38 13.15 28.31 8.79 20.1 24.64 N/A

Normal 60.43 21.1 86.29 17.52 84.06 22.66 24.57 85.76 -233.2
Normal minus outliers 53.71 19.14 82.71 10 56.57 3.71 26.9 21.67 -36.87

Table 5.11: Results from the fit of the multivariate Student-t model on Hawkins, 
Bradu and Kass data.

Model fa fa fa * 1,1 * 1 ,2 * 1 ,3 Log-L
t3 1.81 2.4 2.53 3.24 5.15 7.83 -526.99
t4 2.07 2.97 3.41 5.36 9.82 14.85 -527.87
t5 2.25 3.39 4.05 6.82 13.03 19.66 -528.08
t6 2.39 3.69 4.5 7.8 15.2 22.91 -528.21
t7 2.48 3.9 4.83 8.5 16.75 25.23 -528.37
t8 2.56 4.07 5.08 9.03 17.92 26.97 -528.57
t9 2.62 4.2 5.28 9.44 18.83 28.31 -528.8

t i o 2.66 4.31 5.44 9.76 19.56 29.39 -529.05
MCD 1.54 1.8 1.66 1.11 0 0.16 N/A

Normal 3.19 5.6 7.23 13.38 28.5 41.32 -541.38
Normal minus outliers 1.52 1.78 1.69 1.12 0.02 0.12 -98.97
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Figure 5.1: Determinant for the sample variance-covariance matrix of a simulated 
multivariate Student-t data. The dimensions of the sample varies from 20 to 200 
observations on 4 variables.
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Figure 5.2: Maximum, 99, 98.5, 98 and 97.5% simulation envelopes for Mahalanobis 
distances on multivariate Student-t data.
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Table 5.12: Example 1: Stackloss data. Weights of the t3 model. The odd 
columns are the observations; the even columns the weight values.

obs weight obs weight obs weight
1 0.445 8 1.333 15 0.977
2 1.246 9 1.076 16 1.295
3 0.361 10 1.333 17 1.286
4 0.191 11 1.202 18 1.330
5 1.141 12 1.290 19 1.285
6 0.958 13 0.740 20 1.024
7 1.217 14 1.144 21 0.127
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Figure 5.4: Profile Likelihood for the multivariate Student-t degrees of freedom.
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Figure 5.5: Plot of the sorted weights for the multivariate Student-t with v 
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Figure 5.6: D-D Plot of Mahalanobis-type Distances fitted on Bradu Hawkins and 
Kass data. The solid lines is the 97.5% Chisquare quantile.
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Chapter 6

Robust M odelling for Financial 
Portfolio Selection

6.1 Introduction

Despite of criticism of the well established Mean-Variance models for the selection 
of financial portfolios, they are still widely used in practice. These models require 
the estimation of the covariance matrix and the mean vector of asset returns.

Generally, the literature tends to consider the sample estimates that are maxi
mum likelihood when the returns have a multivariate Normal distribution. It is well 
known that equity returns have heavier tails than the Normal distribution. Kon 
(1984), Roll (1988), Fama (1965) or, more recently, Linden (2001), Vilasuso and 
Katz (2000) are some examples of works reporting evidence on the distribution of 
stock returns. It is also known that the sample estimates are very sensitive to the 

presence of outliers (Huber 1981).

The first section of the Chapter gives an overview of the classical portfolio se

lection problem and motivations for a robust solution. The second section explains 

the robust models. Finally, we give some performances on both simulated and real 

data.

6.1.1 Basic N otions on Financial Portfolios

There are many different ways of investing in financial markets. For simplicity, 

we will consider the direct form of investments, for which the investor purchases
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a security directly from a government or a private institution. The direct invest

ments include both money market instruments, that are high liquidity securities and 

capital market securities, which have maturity of more than one year (corporate, 

government bonds) or no maturity at all, like the stocks. These are the instruments 

considered in our portfolio analysis. Other types of capital market securities, which 

we exclude from our portfolios, are the derivatives. These are contracts (options or 

futures) whose value depends on an underlying security.
Any security is described by a return and a risk over a time period. The return, 

generally expressed as a percentage, is meant as the change in the value of a security 

plus any income received during that time divided by the initial value of the security. 

The risk is the uncertainty in the outcome of an operation and is measured by 

the variability, usually the standard deviation, of the returns. Some assets are 
more risky than others depending generally on the length of the maturity and on 

the issuer. Assets with a longer maturity are more risky than short term debt 
instruments. Stocks have more risk than bonds because the issuer has a higher risk. 
As a consequence of this, the risk-less assets are those able to guarantee a constant 
return over time.

The portfolio selection problem is the decision of the quota of the available bud
get to invest within a set of assets. There are two parameters to consider in this 
framework: the time of duration of the investment and the number of assets. Both 
of them are assumed to be finite. Time is indicated by t (t — 1,2, ...,T) and the 

assets by i {i =  1,2, ...,p). Let W  be the wealth of the investor; at time t the 
investor can spend:

=  w ,
i

where V{ is the quantity of asset i and pi is its price. It is often convenient to 

normalize by the total amount of wealth, that is:

l rw — 1,
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where w =  {w \ ,W 2 , . . . ,wp) and Wi = ViPi/W  is the portfolio weight assigned to the 

asset i. The normalization constraint is also called budget constraint. It is possible, 

although unlikely in practice, that the one or more weights are negative. In that case 

the assets are sold “short”. The general idea of a short-sale is that the investor can 

sell assets that he does not own by borrowing them from another investor with the 

promise to make payments compensating those due on the assets (for example the 

dividends in the case of a stock) and to re-purchase and replace the assets when the 

transaction is closed. Short positions are often motivated by speculative reasons: if 

a short seller expects the price of the security to go down and he wants to profit from 

the decrease in the price. Sometimes short sales are accompanied by long positions 

in order to diversify the market risk exposure. Models that exclude the possibility 

of speculative operations impose the restriction of no short sales by setting Wi > 0, 
i =  1,2,...,p.

6.1.2 N otation

Mean-variance theory has historically been one of the earliest formalizations of the 
portfolio selection problem (Markowitz 1952).

The general idea is to determine the quota to be invested in each asset according 
to a “mean-variance efficiency” criterion. In other words, the aim is to find the com
bination of assets giving the optimal equilibrium between the risk and the expected 
return of the portfolio.

The starting point is that investors make their choices under uncertainty, that is: 

every market operation is characterized by an expected return and a risk.

Markowitz defines the return and the risk of a portfolio in the following way: the 

portfolio expected return is the weighted average of the returns on the individual 

assets, where the weights are the quota invested in each asset.

p

pP =  EtQ 2 Wiyit)
i= 1

where i — 1,2, ...,p and t =  1,2,..., T. yu is the return on asset i at time t; Wi is the 
weight assigned to the asset i.
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The portfolio risk depends on the risk of the individual assets and on their joint 

risk. The risk of the individual assets is defined as their variance and the joint risk 

of two assets i and k as their covariance:

of =  Et(yit -  Hi)2,

crik = Et[{yit — fa){ykt — Mfc)];

where i =  1,2, ...,p, k =  1,2, ...,p, with k ^  i, and fa =  Et(yu). According to 

Markowitz, when investing in a “basket” of assets, the risk of having bad outcomes 

is reduced if the assets are “diversified” . This principle, that may appear com

mon sense, is fundamental in mean-variance theory and motivates the definition of 
pair-wise covariances as a measure of the joint risk. High covariances between the 
assets indicate a less diversified portfolio, that translates into a high risk exposure. 
Therefore, the portfolio risk is:

4  =  X > M  + £ £  WiWka ik.
i = l  i—1 k^i

The above notation holds since Markowitz theory assumes normality of the asset 
returns. Since the portfolio is a weighted linear combination of the returns and, 
since the Normal distribution is completely characterized by its mean and variance, 
all portfolios coming from those assets are defined by their means and variances.

6.2 Standard Mean-Variance Portfolio Problem

Risk and return can be rewritten in matrix notation:

Op =  wTSw, (6.1)

fiP =  w Tfa (6.2)

where w is the vector of asset weights, that is the quota of the budget invested in

each asset. Furthermore, y ~  Np(fx, S), where y =  (2/1, 2/2 , •••> Up)-
As a basic example, we consider the simplest model. The assumptions are:
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1. Absence of riskless assets

2. Possibility of short-selling

3. The expected return level is fixed

4. There are no transaction costs

Although it is realized that most of these assumptions are not realistic, this model is 

only considered as a first approximation. However, extensions to more complicated 

situations axe still possible (the absence of risk-less assets and fixed level of expected 

returns are removed in Section 6.4).

The selected portfolio is the one that maximizes the utility function of the investor. 
Since, according to the mean-variance theory, there is a trade-off between risk and 
return, the optimal portfolio maximizes the asset returns for a fixed level of risk or, 
equivalently, minimizes the risk for given expected return objective.

The formulation due to Merton (1972) is:

min wr Sw
W

subject to:

wr l  =  1, (6.4)

wr p  =  g, (6.5)

where 1 is the unit vector and q is the level of expected return required to the port
folio. The solution of the problem for this case is simple, since it is an optimization

with linear constraints. We proceed by forming the Lagrangian:

L =  w t E w  + Ai(l — wTl)  -f X2(q — wT pf) 

from which the first-order conditions are:

(6.3)
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i =  1,2 ,...,p; j  =  1,2. 
The solution is:

(6.7)

where:

A  =  1TS  11, J3 =  1TS  1/Lt and C =  /lit E x/i. (6.8)

The above system allows solutions provided that:

1. E  is non-singular and, therefore, invertible.

2. i.e. the assets do not have the same mean, therefore, AC  — B 2 ^  0.

Substituting the above results in the expression for the portfolio variance (6.1), we 

obtain:

The plot of dp for each value of q is the parabola of all minimum-variance portfolios, 

the Mean-Variance Frontier. Usually the frontier is plotted in a mean-standard 

deviation, rather than in a mean-variance space. The result is an hyperbola instead 

of a parabola, Figure 6.1, panel (a). The efficient solutions are the portfolios on the 
positive slope frontier, for which the return increases with a higher risk exposure. In 
addition to the efficient solutions, it desirable to choose portfolios that are closer to 

the minimum rather than to the top end of the frontier, where for moderate increase 

in the risk the returns grow at a lower rate.

Empirical and theoretical results have shown that the efficient frontier has a 

convex shape and it is absolutely differentiable (Ingersoll 1987). In other words,



it allows a global optimum, which is the portfolio with global minimum risk. The 

minimum weights are function of the variance-covariance matrix only:

^ m in  — - j T j ] - 1 ! ' ( 6 .1 0 )

6.2.1 M otivations for a R obust M odel

The Markowitz optimizer takes as inputs the expected returns and their variance- 

covariance matrix and gives an output vector of weights. This method poses the 

problem of estimating the first two moments of the return distribution.

The sample estimates, commonly used, are maximum-likelihood when the un

derlying distribution is multivariate Normal. The financial literature has produced 

large evidences that the equity returns axe not Normal, but rather tend to a heavy 
tailed and skewed distribution. Many studies support the assumption of a mixture of 
Normals: Fama (1965), Kon (1984), Roll (1988) and Richardson and Smith (1994).

Secondly, sample estimates axe very sensitive to outliers, Huber (1981). The 
consequence is that an “extremely” good or bad outcome for even a single time- 
observation would bias the estimates of the weights.

Finally, there is a “practical” motivation. Every time the portfolio is re-balanced, 
that is when new weights axe assigned to the assets, there axe transaction costs in
volved. These costs axe reduced by controlling the variability of the portfolio weights. 
These axe function of (/x, £). In other words, transaction costs axe decreased by ob

taining relatively stable estimates for the return location and scatter.

The example in Figure 6.2 shows the sensitivity of the mean-variance frontier to 

deviations from the Normal distribution. In panel (a) the data axe generated from 

a shifted-mean model (Section 4.8.1): it is a sample of 200 observations on 4 vari

ables from a Normal distribution where there are 2 outliers. The data are generated 

with the parameters being equal to the sample mean and variance-covariance ma

trix of the data illustrated in Chapter 2, reduced to the first 4 bond markets. The 

plots compare the mean-variance frontiers. The outliers, extremely high returns, axe 

shifted upwards; this causes the efficient frontier to shift upwards as well when the 

contamination is included in the data. Figure 6.2 (b) shows the opposite situation
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when the outliers axe extremely bad outcomes. In both cases, the contaminated 

frontiers are more to the right than the true and outlier-free ones, which means that 

for fixed expected returns (that vary within moderate values) the risk exposure is 

higher than for the outlier-free frontier. Furthermore, the latter is closer to the true 

one, which gives motivation for robust modelling. For higher return objectives, the 
contaminated frontier lies above the other two frontiers and the outlier-free fron

tier lies further from the true portfolios than the contaminated frontier. However, 
portfolios with very high returns are not interesting since they are not realistically 

achievable in terms of risk tolerance.

Panel (c) shows the sensitivity of the optimal portfolio when the underlying 
distribution has heavy tails. The data are generated from a multivariate Student-t 
distribution with 3 degrees of freedom (Chapter 5); mean and inner-product matrix 
are the same as the two moments of the Normal distribution in panel (a) and (b). 
The frontier fitted with maximum-likelihood estimates on a Normal model is shifted 
far to the right from the true frontier and to the fit on the multivariate Student-t 
(assuming the degrees of freedom are known). This last is closer to the true portfolios 

towards the global minimum solution. The results are in line with those found in 
the examples of panel (a) and (b).

6.2.2 The R obust M odels

The Chapter proposes two alternative ways of selecting a robust portfolio. The first 

one assumes that the portfolio returns have a multivariate Student-t distribution. 
Therefore:

y t ~  V)  =  N p (fJL, ¥ / T t )

defined as in (5.3), where rt are the “latent” weights for the time-observations. 
(6.11) implies:

p  =  wTy ~  Np(wTp ,  r“1wTTfw),
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that is:

P  ~  tp(wTfj,, w T^fw, v). (6.11)

Estimates of fi and ^  replace those for fi and S  in the Normal model. MLE for 

the multivariate Student-t are obtained as it was shown in Section 5.3.

The second model assumes that the “majority” of the data is normally distributed 

and estimates (^t, S) robustly via the MCD method (Section 3.3).

6.3 The Influence of Outliers on Markowitz Port
folio

The influence function described Chapter 3 measures the sensitiveness of an esti
mator to an infinitely small contamination. Martin (1999) computes the IF  for the 
mean-variance frontier based on classical Normal maximum-likelihood estimates; 
following his result we recalculate the IF  for the multivariate Student-i portfolio. 

Let us consider a mixed distribution:

Fe = (1 — e)F +  eAy. (6.12)

The majority of the data 1 — e has distribution F  =  N(fi, S ) and a smaller 

contaminated fraction of observations e, density mass Ay, (3.5). Under normality, 

the portfolio has the form:

wTy ~  NQip, a2P),

where fip and op are given by (6.2) and (6.1). The minimum variance portfolio is 

given by (6.10), that substituted in (6.1) and (6.2), leads to the following expressions:

a%(Fe) =  ( l r E(F€)-1l ) -1 

M F C) =  ( lTV{Ft) -1l ) - 1l TE(F .)-1n(F.), 
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where the parameter estimates are written as functionals of the contaminated model:

*x(F«) = J . . . J y d F .  

S (F.) = J . . . f ( y - n ( F €) ) ( y - n ( F t ))TdF€.

The influence function defined in (3.6) is the differential of the contaminated 

model at e =  0. Therefore:

d0p(Fe)
de

e = 0

Analogously for /ip.The result is:

,-i dX(Ft)
de e=0

(6.13)

IF„P = IFa, l TE(F .) -1n(F') + o3P(Ft ) x

lrS (Ft)-i dtx{Fe)
de

lrS (F.) - i  dE(Fe)
e = 0

de
e = 0

, (6.14)

where d £ -1(Fe)/de =  —S(Fe)-1dl](Fe)/c?eI3(Fc)_1. From (6.13) and (6.14), it is 

concluded that the asymptotic bias of the portfolio minimum variance depends on 
the influence function of /i(Fe) and S(FC). Therefore, the solution will be more or 

less robust depending on the robustness of the estimator for location and scatter.

In our model, it is assumed normality for the majority of the observations. The 
sensitivities for /x and S  at the mixed model (6.12) are just a generalization of the 
sample mean and variance sensitivities in the univariate case:

rfS (fi)
de

d»(Ft) 
de

6 = 0

=  - S ( F )  + ( y - lx(F))(y-f i (F)) '

=  y - K F ) ,

(6.15)

(6.16)
6 = 0

104



where F  is the Normal distribution and:

/i(F) = J - j y d F  

S (F) = J . . . J ( y - n ( F ) ) ( y - » ( F ) ) TdF..

Substituting (6.15) and (6.16) in (6.13) and (6.14), we finally find the expression for 

the IF  of the minimum variance portfolio. We conclude that the asymptotic bias is 

unbounded for infinitely large values of y.
We recalculate the influence function for the parameter assuming that F, the 

distribution for the majority of the data is a multivariate Student-t, \F, v). 
The estimates for the variance-covariance matrix and mean are replaced by those 

for ii and defined as:

d!i{F€)
de

9(F .)
de

where:

=  Tvy - n ( F )

=  _ ^ ( F ) +  ri/(y _ M(F ))(y _ ^ ( i r) )r

mCF) =  J - f r y y d F

9 (F ) = J . . . J ry(y -  n(F ))(y -  ix(F )fdF .

The degrees of freedom are assumed known. The portfolio distribution changes as 
described in (6.11).

As expected, the sensitivity of the robust portfolio depends on the weights ry: when 

the latter approach 1, the IF  of the portfolio approaches the one of the classical 

Markowitz model. On the contrary, the smaller are the weights, the more bounded 

becomes the influence function. The robustifying parameter is the degrees of free

dom, as shown in Figure 6.4 and Figure 6.3. These are plots of the influence func

tions for the moments of the minimum variance portfolio of a bivariate Normal and 
Student-t distributions with mean and variance respectively:

105



_  , . (  .0025 .00125 \
A» l - i , -11. ^  ^ .00125 .0025 ) '

The IF of the maximum-likelihood portfolio on the Normal distribution is un

bounded. For the multivariate Student-t model the function is smoother on the 

edges, showing good robustness properties. When the degrees of freedom increase 

from 3 to 10 the shape approaches that for the Normal model. Since the weights ry 
are unknown, they have been estimated through EM, with an accuracy of (0.9533, 
1.0467), computed as the following:

f , ± 2 x %  
y y/n

6.4 The W eights

Figure 6.5 shows the boxplots of weights obtained from 500 optimizations on multi
variate Normal samples of 200 observations. The data are generated from the first 
two sample moments of the return data described in Chapter 2, of which we con
sider only the first four assets. Panel (a) is the optimal solution for a 1% monthly 
expected return constraint. Panel (b) is the global minimum variance solution. The 

solid dots are the true parameters. Panel (a) shows a considerably high variability 

of the estimates, which causes a slow convergence to the true values. The global 
minimum solution does not evidence the same problem. Although Merton’s for

mulation, (6.3)-(6.5), looks very appealing thanks to its simplicity, it imposes little 
constraint, therefore allowing for the portfolio composition to vary appreciably. The 

model is therefore modified by setting additional constraints.

It is assumed the possibility of holding a cash position at a fixed interest rate 

R. Since the cash could also finance the positions in financial assets, the budget 

constraint is removed. The new model is:

min dp  =  wTS w  (6.17)
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with the constraint:

(/x — R1)tw  = fip — R, (6.18)

which leads to the optimal solution:

w =  7 S  1 (/x — R l). (6.19)

Substituting the latter in (6.18) and (6.17) gives:

lip — R  =  7  (fi — i?l)r E  *(/x — R l)  

a2P ~  7 2(/x — R l)T'E~1(fi — R l).

(6 .20)

(6 .21)

Prom (6.20), letting S h =  (/x — i?l)TE *(/x — 721), it is found that 7  =  (/xp — R )/Sh  
which, replaced in (6 .2 1 ), gives the solution in the mean-standard deviation space:

This is geometrically represented as two rays with common origin R and slopes

first model (6.9) represents the investment made of risky assets only. This solution 

is the portfolio that, for a fixed R, maximizes the Sharpe-Ratio Sh, that is the 

standardized excess return over the risk-free investment. The ratio was introduced

for the risk. Replacing (6 .8 ) in the expression for the Sharpe ratio leads Sh = 

C -  2RB  +  R2A.
Since the tangency solution contains only risky assets, it must satisfy the budget 

constraint wTl  =  1 which, replaced in (6.19), gives 7  =  (B — AR)~l and, therefore, 

the risky portfolio weights:

±y/Sh  (Figure 6.1). The tangency point with the mean-variance frontier of the

for the first time by Sharpe (1975) as a measure of fund performance adjusted
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The interest is obviously in the efficient set of solutions, that is the tangents to 

the positive-slope ray. Huang and Litzenberger (1988) show that positive tangents 

axe only for risk-free rates R  less than B/A , the global minimum variance portfolio 

return.

Figure 6.6 and Figure 6.7 compare the distribution of the weights from the classi

cal model with MLE on a Normal distribution and the robust optimizations (MCD 

and M-t). The simulated samples have the same dimension as in the previous ex

ample: 200 x 4 replicated 500 times. The solutions considered axe both the global 
minimum variance and the tangency portfolio with a fixed annual R  =  .3%.

In absence of outliers (panels (a) and (c)), the distribution of the ML and robust 

weights do not differ significantly. After introducing a contamination (mean-shift 

outliers), the robust portfolios out-perform the classical optimizer since they axe 

consistent to the true parameters. Furthermore, the robust MCD performs better 
than the M-t for higher fractions of outliers. However, this last model improves 
when e is small. The plots also show that the robust weights have longer tailed 
distribution than the ML ones. Within the robust portfolios, the multivariate-t 
(M-t) weights appear to be longer tailed than the MCD ones. After introducing 
contamination (mean-shift outliers),

6.5 Performances: Turnover, Risk and Return

The performances axe evaluated by three variables: the turnover, the portfolio risk 
and return. The turnover is the average absolute difference of the weights in two 
subsequent periods. Risk and return axe evaluated as in (6.1) and (6.2), where E 

and /x axe replaced by the sample estimates.

6.5.1 Perform ances for the N orm al and O utlier-shift m odels

The average performances on a sample of 200 independent portfolios axe displayed 

in Table 6.1, Table 6.2 and Table 6.5.

In Table 6.1, the data are generated from a Normal distribution whose centre and 
location axe the sample estimates of a real set of assets (Chapter 2). The dimension
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of the samples is 120 x 10. The performances of the “classical” tangency portfolio 

are compared with the robust MCD and multivariate Student-t ones. The turnover 

increases for all models with the number of assets increasing. When the portfolio 

includes only few assets, the model performances do not differ much one from the 

other. For higher dimensions, the robust (MCD) portfolios have a higher turnover 

and a higher risk than the other models. This is motivated by the fact that the 

efficiency of the robust estimates becomes worse when p grows large (Croux and 
Haesbroeck 1999).

Table 6.2 considers a mixed distribution. The simulated data include 10% of 

mean-shift-outliers. The MCD portfolio out-performs the other two models in both 

turnover and risk. The performances for the global minimum portfolio are closer 
to one another in the case of smaller dimensions, 2 and 4 assets, while they differ 
more sensibly when 6 or 10 assets are included in the set of choices. The Student-t 
estimates are less variable than those on the Normal distribution. Also in this case, 
the turnover improves with higher dimensions because the decrease in the efficiency.

Table 6.5 reports the sensitivity of the MCD performances to the size of the fitted 
“good” set of observations. According to the results, we are allowed for a 10 or 20% 
error in “guessing” the number of outliers in the data without affecting the estimates 
sensibly. The performances are trivially optimal for 90% of fitted observation, since 

we included 10% of outliers in the simulated set.
Finally, Table 6.6 shows the convergence of the performances of the robust 

Student-t model to the “classical” ones for increasing degrees of freedom.

6.5.2 Performances for the M ultivariate-^ M odel

The same experiment has been repeated when the underlying distribution is a mul

tivariate Student-t with 3 degrees of freedom. Table 6.3 displays the results. The 

Student-t model has better performances than the MCD and the Normal model, 

although there is still a “large” difference from the true portfolio parameters. The 
bias increases with the growing of the dimensions.

Table 5.1 to Table 5.8 are a simulation study on the efficiency and bias of the 
multivariate Student-t. The bias of the inner product matrix SP is reported to be
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high compared to p. Figure 6.8 and Figure 6.9 show the squared bias and the 

standard deviation of the estimates when the sample size increase from 80 to 800 

and for 3 dimensions. The draws for different dimensions are not independent: 

some extrarobservations are added to the initial set to increase the sample size. 

This method has been chosen in order to produce plots with a reduced sampling 
variability.

The bias for the inner-product matrix estimate is higher compared to the mean. A 

considerably large sample, at least 400 observations, must be chosen to obtain a good 

convergence to the true parameter values. The variability of the estimates (Figure 

6.9) is also considerably higher for & than for p, although it sensibly improves when 

the sample size grows.

6.6 Out-of-Sample performances

This section discusses a more “realistic” simulation framework. A buy-and-hold 
strategy is followed, consisting of selecting a portfolio at time t on the basis of the 
previous t — 120 observations. The portfolio is then held constant until time t + 12 
(out-of-sample period), when it is liquidated and the process starts all over again.

The result of the experiment is a sample of weights vectors whose performances 

axe tested. Our interest is particularly focused on the “out-of-sample” period, that is 
the 12 months when the portfolio does not change. The attention is on the portfolio 

standard deviation and the weights distribution.

Table 6.4 reports the result on a simulated set and Table 6.7 shows a real data 

example.

The size of the simulated sample is around 2400 on 4 variables, which leads to 

a sample of 194 portfolios. The performances confirm what we have found previ
ously when simulating a distribution of independent portfolios. The models behave 

as expected: the classical Markowitz portfolio performs better on Normal data. 

The robust MCD model has better performances on a distribution contaminated 

with mean-shift outliers and the M-t model out-performs the others on a simulated 

multivariate-t distribution.
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The real data are monthly return indexes on 5 markets from April 1970 to Febru

ary 2000. From the scatter matrix Figure 6.10, the data seem to have few outliers 

and appear generally more scattered than the Normal distribution. Therefore, it is 

expected that a long tailed distribution model would perform well. On the contrary, 

the MCD would give less good performances being more robust but less efficient 

than the ML estimators.

The turnover is lowest for the multivariate Student-t portfolio, although the dif

ference is not small if compared to the classical Markowitz model. On the contrary, 

MCD definitely performs worse than the other two optimizers, confirming what 

expected.

The risk is lower in average and variability for the multivariate Student-t case, 
which also has the highest expected return with the lowest variability in both the 
tangency and global minimum variance portfolio.

Figure 6.11 is the plot of Mahalanobis distances on the fitted Student-t parame
ters. The outliers detected have a economic meaning: 1975 and 1987 were notori
ously two critical dates for the international financial markets.

6.7 Conclusion

Financial data are notoriously not normally distributed. Robust alternatives to the 
classical maximum likelihood estimates perform better in the modelling of financial 
portfolios. According to our simulations, the robust optimization produce portfolios 

with a lower risk and turnover. The performances are still in favour of the robust 

approach when the number of assets is increased.

The choice of the robust model depends on the assumptions and on the type of 

data. The MCD works better on large data with many outliers, where the high 

robustness properties can compensate the lack of efficiency. When the data are 

longer tailed than the Normal distribution and have few outliers, the multivariate-i 

model out-performs the robust MCD one. Nevertheless, MLE for the inner-product 

matrix has a large sample variability and not very good consistency properties. 
When selecting more than 4 assets the sample size has to be above 600 observations
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in order to stabilize the sample variance.

However, there is a main drawback: the Markowitz model assumes that the 

observations are independent and identically distributed. Although financial returns 

show absence of autocorrelation, since their distribution is not Gaussian, this is not 

enough to ensure independence. Further possible extension of the work could be 

directed towards a robust model for the volatility.
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Table 6.1: Turnover, return and risk of the tangency and global minimum variance 
portfolios from a simulated Normal distribution without outliers. Risk free rate= .2

tangency solution minimum variance solution
p method turnover risk return turnover risk return
2 Markowitz 0.21 0.83 0.45 0.05 0.78 0.42

MCD 0.31 0.8 0.46 0.08 0.7 0.43
M-t 0.25 0.71 0.46 0.05 0.64 0.42
true - 0.79 0.42 - 0.79 0.42

4 Markowitz 0.78 0.98 0.58 0.18 0.76 0.44
MCD 1.57 1.12 0.63 0.28 0.69 0.44

M-t 0.85 0.87 0.59 0.19 0.66 0.44
true - 0.81 0.47 - 0.78 0.44

6 Markowitz 1.17 1.23 0.73 0.24 0.74 0.42
MCD 2.78 1.56 0.76 0.36 0.67 0.42

M-t 1.3 1.13 0.76 0.25 0.66 0.42
true - 0.83 0.49 - 0.83 0.49

10 Markowitz 1.98 1.35 0.88 0.42 0.72 0.42
MCD 5.45 2.1 1.19 0.72 0.63 0.42

M-t 2.1 1.27 0.92 0.45 0.66 0.42
true - 0.85 0.53 - 0.76 0.42

Table 6.2: Turnover, return and risk of the tangency and global minimum variance 
portfolios from a simulated Normal distribution with 10% outliers. Risk free rate= 
.03 (monthly)

tangency solution minimum variance solution
P method turnover risk return turnover risk return
2 Markowitz 0.4 3.16 1.47 0.2 3.1 1.42

MCD 0.15 0.75 0.44 0.07 0.72 0.42
M-t 0.22 1 0.51 0.05 0.96 0.48
true - 0.79 0.42 - 0.79 0.42

4 Markowitz 1.64 3.41 1.77 0.73 3.07 1.44
MCD 0.51 0.79 0.53 0.26 0.71 0.44

M-t 1.01 1.41 0.76 0.22 1.19 0.55
true - 0.81 0.47 - 0.78 0.44

6 Markowitz 2.21 3.73 2.1 0.95 3.04 1.4
MCD 0.73 0.86 0.6 0.32 0.69 0.41

M-t 1.77 2.02 1.13 0.35 1.45 0.6
true - 0.83 0.49 - 0.83 0.49

10 Markowitz 4.17 4.01 2.51 1.74 2.98 1.4
MCD 1.51 0.94 0.77 0.66 0.65 0.41

M-t 3.91 2.98 1.85 0.93 1.93 0.8
true - 0.85 0.53 - 0.76 0.42
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Table 6.3: Turnover, return and risk of the tangency and global minimum variance 
portfolios from a simulated multivariate Student-t distribution with 3 degrees of 
freedom. Risk free rate= .003

tangency solution minimum variance solution
p method turnover risk return turnover risk return
2 Maxkowitz 0.95 4.78 0.5 0.13 3.04 0.45

MCD 1.28 3.43 0.8 0.1 1.85 0.43
M-t 1.46 3.8 0.48 0.06 1.83 0.43
true - 0.79 0.42 - 0.79 0.42

4 Maxkowitz 4.34 7.32 1.26 0.5 2.67 0.5
MCD 1.71 2.4 0.86 0.42 1.65 0.48
M-t 1.35 2.35 0.76 0.28 1.68 0.49
true - 0.81 0.47 - 0.78 0.44

6 Maxkowitz 7.95 10.2 0.69 0.63 2.37 0.37
MCD 8.07 6.18 0.18 0.5 1.44 0.36
M-t 6.93 5.78 2.1 0.35 1.53 0.36
true - 0.83 0.49 - 0.83 0.49

10 Maxkowitz 1.29 1.57 1.19 0.78 1.24 0.77
MCD 1.22 0.93 1.17 0.79 0.74 0.77
M-t 0.83 1.02 1.12 0.51 0.85 0.78
true - 0.85 0.53 - 0.76 0.42

Table 6.4: Out-of-sample performances on four assets portfolios. Risk free rate= 
.03

tangency solution minimum variance solution
model method turnover risk return turnover risk return

Normal Maxkowitz 0.13 0.81 0.46 0.06 0.74 0.43
MCD 0.27 0.76 0.46 0.13 0.65 0.43
M-t 0.14 0.7 0.47 0.06 0.63 0.43

mixed Markowitz 0.55 1.6 1.51 0.17 0.92 1.38
MCD 0.24 0.76 1.42 0.11 0.68 1.38
M-t 0.33 0.96 1.45 0.07 0.64 1.38

Student-t Markowitz 3.03 7.64 0.1 0.11 2.58 0.36
MCD 2.18 3.53 0.38 0.18 1.8 0.43
M-t 0.8 2.8 0.44 0.08 1.76 0.4
true - 0.81 0.47 - 0.78 0.44
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Table 6.5: Sensitivity of the robust MCD model performances to h, the size of the 
fitted set. The proportion of the “good” observations in the simulated data is 0.9. 
Risk free rate= .03 (monthly), p=4.

tangency solution minimum variance solution
h/n turnover risk return turnover risk return
0.5 0.51 0.79 0.53 0.26 0.71 0.44
0.7 0.45 0.81 0.52 0.21 0.73 0.44
0.8 0.45 0.81 0.52 0.2 0.74 0.44
0.9 0.43 0.83 0.52 0.19 0.75 0.44

0.95 0.44 0.84 0.52 0.19 0.76 0.44
1 1.53 2.68 1.3 0.56 2.34 0.99

Table 6.6: Sensitivity of the robust M-t model performances to the fitted degrees of 
freedom. Risk free rate= .03 (monthly), p=4.

tangency solution minimum variance solution
df turnover risk return turnover risk return
4 0.83 0.88 0.59 0.19 0.67 0.44
8 0.79 0.91 0.58 0.18 0.7 0.44

15 0.78 0.93 0.58 0.18 0.72 0.44
30 0.78 0.95 0.58 0.18 0.74 0.44

Markowitz 0.78 0.98 0.58 0.18 0.76 0.44

Table 6.7: Out-of-sample performances of the tangency portfolio on a real data set. 
Risk free rate= .03

method turnover risk st. dev. risk return st. dev. return 
Markowitz 0.62 2.03 078 055 055"

MCD 0.69 1.53 0.53 0.58 0.58
M-t 0.58 1.56 0.53 0.63 0.63

Table 6.8: Out-of-sample performances of the global minimum variance portfolio.

method turnover risk st. dev. risk return st. dev. return
Markowitz 0.15 1.68 0.67 0.56 0.43

MCD 0.27 1.40 0.52 0.64 0.65
M-t 0.14 1.35 0.42 0.67 0.46
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Figure 6.1: Portfolio frontiers.
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Figure 6.2: Contaminated and outlier-free portfolio mean-variance frontiers.
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Figure 6.3: Influence function for the ML mean of the global minimum-variance
portfolio from a bivariate Normal distribution and a Student-t.

(a) Multivariate Normal distribution

(b) Multivariate Student-t with 10 degrees of freedom

(c) Multivariate Student-t with 3 degrees of freedom
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Figure 6.4: Influence function for the ML variance of the global miniraum-variance
portfolio from a bivariate Normal distribution and Student-t.

(a) Multivariate Normal distribution

(b) Multivariate Student-t with 10 degrees of freedom

(c) Multivariate Student-t with 3 degrees of freedom
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Figure 6.5: Distribution of the weights for Merton’s model (6.3)-(6.5) on Normal 
data. n=200, p=4, q=12% annual.
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Figure 6.6: (a) Average mean-variance frontiers
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Figure 6.7: (a) Average mean-variance frontiers
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Figure 6.9: Average standard deviation for the MLE on a multivariate Student-t. 
The sample size varies from 80 to 800 observations, the number of replications are 
120.
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Figure 6.10: Morgan Stanley monthly stock return indexes of 5 countries.
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Figure 6.11: Mahalanobis distances on the Student-t fit for the stock data.

oco

07 /11l(1987o
CO

o
•cr

•  •  •

o

20155 100
chisquare

125

-10
0 

0 
-10

0 
0 

100
 

-1
00



Chapter 7 

Conclusions

7.1 The Results of the Thesis

The thesis studies robust methods of estimating the location and scatter for multi
variate data and suggests possible applications.

Very robust estimates are applied to the detection of multivariate outliers because 
they avoid swamping and masking problems. The thesis gives evidence that the 
Chisquare confidence regions for outliers do not well approximate the distribution of 
the robust distances based on the high-breakdown center and scatter-matrix. These 
tolerance regions lead to the rejection of outliers as well as “good” observations. 
Because the Chisquare cut-offs are also a decision rule to reweight the observations 

in the Fast-Algorithm (Rousseeuw and Van Driessen 1999), the result is a loss in 
the efficiency of the robust estimates. An extensive simulation study shows that 

improving the variability of the estimates by reweighting or increasing the number 
of observations included in the fit does not produce “significant” changes in the 
approximation. The solution to this problem is a correction factor, which can be 

found via some Monte Carlo experiments. The simulation envelope, introduced as a 

diagnostic for residuals in linear regession (Atkinson 1985), is suggested to compare 

the asymptotic and the empirical distribution of the robust distances, enhancing the 

results of the Monte Carlo Test. The envelopes are also applied for the first time 

to the robust distances for multivariate outliers detection avoiding the problems of 

overidentification. In small samples, the distribution of the Mahalanobis distances is 

known: Penny (1996) provides the critical points on the basis of the result of Wilks
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(1962) for the scatter ratio, a diagnostic used to detect a single outlying point, 

although the proof is rather difficult. The thesis offers a simpler way to find the 

small sample behaviour of the distances, agreeing with the results of Penny (1996) 

and Wilks (1962).
The computational aspect of the robust estimates is as important as their theo

retical properties. A clue issue which has not yet found a clear solution is the choice 

of the subset of data from which the search for the minimum covariance-determinant 

solution starts. The consequence of a wrong choice is a loss in robustness or efficiency 

of the estimates, depending on whether we include too many or too few observations 

in the “good” set. In the context of the robust portfolio model, the performances 
do not seem to be very sensitive to relatively small errors in estimating the number 

of outliers. However, in Chapter 3, we suggest an application of the Forward Search 

algorithm (Atkinson 1994) to identify the initial set of maximum size which does 
not bias the estimates.

In Chapter 6, high-breakdown point estimates are used to construct a model for 
selecting optimal financial portfolios. From an exploratory analysis of a real data 
set, we have shown that stock returns have longer tails than the Normal distribution. 
This is a “stylized” fact in the financial literature. In presence of few, either positive 
or negative, outliers the classical Markowitz portfolio produces biased estimates of 
the true portfolio weights. The same result is shown if the underlying distribution 
is a Student-t, longer tailed than the Normal. The Influence Function derived on 

the Markowitz “classical” optimizer shows high sensitivity to outliers. This result is 

expected since the function depends on the Normal maximum likelihood estimates 
for location and scatter, known to be non-robust (Huber 1981).

We explore the performances of two robust models: one is based on the MCD 

estimates of location and scatter and the other assumes a multivariate Student- 

t distribution for the stock returns. These performances are compared with the 

classical Markowitz optimizer (Markowitz 1952) via a simulation study, focusing 

on the distribution of the weights, which determine the budget quota to invest in 

each asset. When there are no outliers, the results of the robust and the “classical” 
portfolio models are very similar, with a negligible loss in efficiency for the robust
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method. In presence of contaminated data, the robust weights are more stable 

overtime and the risk is minimum. Under these conditions, the robust portfolios 

are also shown to be consistent for the true parameters, differently from the weights 

produced by the “classical” optimizer that are biased by the presence of outliers. 

From comparing the performances of the two robust methods, the MCD estimates 
produce less risky and more stable portfolios when it is possible to identify two 

groups of observations in the data: a main bulk of points and a smaller group 

generated from a different model. The multivariate Student-t portfolios are however 
preferable when there are very few or no outliers and the data indicate a longer tailed 
distribution than the Normal. The results of the simulation studies are confirmed 

by an example on a real data set introduced in Chapter 2.

The Student-t estimates are produced assuming the degrees of freedom are ob

served. However, with sufficient data, these can be estimated from the data simul
taneously to the mean and inner-product matrix (adaptive procedure). It is shown 
that the adaptive procedure, in addition to being a computationally heavy method, 
also provides estimates with a high variability. Even when the degrees of freedom 
are known, the estimates are less efficient than the Normal distribution. The high 
sampling variabilty, which is particularly evident for the MLE for \Ir, also deter
mines a slow convergence to the true parameter values. Generally, a large sample 

size is needed to be to produce “good” estimates. However, in the portfolio selection 
context, this is not feasible since we are treating monthly observations.

7.2 Suggestions for further Studies

The thesis leaves many open questions. Further work is required for the robust 

optimizer. The high-breakdown point estimators work under the assumption that 

the majority of the data are normally distributed and the observations are inde

pendent. This restrictive assumption also underlies the Maxkowitz Mean-Variance 

theory. Even though stock returns have very low autocorrelations, this does not im

ply independence. We have shown, although it is well known in the literature, the 
existence of correlations of higher order or of some function of the initial variables
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(Figure 2.1). In other words, we can model the volatility of the returns, which sug

gests a possible robust dynamic optimizer, definitely worth exploring. The Forward 

Search, because of its dynamic structure, could be a possible application of robust 

computation to time series.

Furthermore, the applications of high-breakdown estimators are numerous and 

still not thoroughly studied. Little has been done on the applications to categorical 

data models.
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