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Abstract

The objective of this thesis is to develop and analyse two stochastic control problems

arising in the context of investment capacity expansion. In both problems the under-

lying market fluctuations are modelled by a geometric Brownian motion. The decision

maker’s aim is to determine admissible capacity expansion strategies that maximise

appropriate expected present-value performance criteria.

In the first model, capacity expansion has price/demand impact and involves pro-

portional costs. The resulting optimisation problem takes the form of a singular

stochastic control problem. In the second model, capacity expansion has no impact on

price/demand but is associated with fixed as well as proportional costs, thus resulting

in an impulse control problem.

Both problems are completely solved and the optimal strategies are fully charac-

terised. In particular, the value functions are constructed explicitly as suitable classical

solutions to the associated Hamilton-Jacobi-Bellman equations.
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Chapter 1

Introduction

A standard capacity expansion model, which is a special case of the model studied by

Kobila (1993), can be described as follows. We model market uncertainty by means of

the geometric Brownian motion given by

dX0
t = bX0

t dt+
√
2σX0

t dWt, X0
0 = x > 0, (1.1)

for some constants b and σ 6= 0, where W is a standard one-dimensional Brownian

motion. The random variable X0
t can represent an economic indicator such as the

price of or the demand for one unit of a given investment project’s output at time

t. The firm behind the project can invest additional capital at proportional costs at

any time, but cannot disinvest from the project. We denote by y the project’s initial

capital at time 0 and by ζt the total additional capital invested by time t. We assume

that there is no capital depreciation, so the total capital invested at time t is

Yt = y + ζt, Y0 = y ≥ 0. (1.2)

The investor’s objective is to maximise the total expected discounted payoff resulting

from the project’s management, which is given by the performance index

J0
x,y(ζ) = E

[
∫ ∞

0

e−rth(X0
t , Yt) dt−K

∫

[0,∞[

e−rt dζt

]

, (1.3)

over all capacity expansion strategies ζ . The discounting rate r > 0 and the cost of

each additional unit of capital K > 0 are constants, while h is an appropriate running

payoff function.
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Chapter 1. Introduction 2

Under suitable assumptions on the problem data, the solution to this stochastic

control problem is characterised by a threshold given by a strictly increasing free-

boundary function G0 : R+ → R+. In the special case that arises when h(x, y) = xαyβ,

for some α > 0 and β ∈ ]0, 1[, namely, when h is a so-called Cobb-Douglas production

function,

G0(y) =

(

rK(α−m)

−mβ

) 1
α

y
1−β

α for y ≥ 0,

where m < 0 is an appropriate constant. If the initial condition (x, y) is strictly below

the graph of the function G0 in the x-y plane, then it is optimal to invest so that

the joint process (X0, Y ) has a jump at time 0 that positions it in the graph of G0.

Otherwise, it is optimal to take minimal action so that the process (X0, Y ) does not fall

below the graph of G0, which amounts to reflecting it in G0 in the positive y-direction.

Irreversible capacity expansion models have attracted considerable interest and can

be traced back to Manne (1961) (see Mieghem (2003) for a survey). More relevant to

this thesis models have been studied by several authors in the economics literature: see

Dixit and Pindyck (1994, Chapter 11) and references therein. Related models that have

been studied in the mathematics literature include Davis et al. (1987), Davis (1993),

Øksendal (2000), Wang (2003), Chiarolla and Haussmann (2005), Bank (2005), Alvarez

(2006, 2010), Løkka and Zervos (2011b) and references therein. Furthermore, capacity

expansion models with costly reversibility were introduced by Abel and Eberly (1996),

and were further studied by Guo and Pham (2005), Merhi and Zervos (2007), Guo and

Tomecek (2008b,a), Guo et al. (2011) and Løkka and Zervos (2011a).

In the model that we have briefly discussed above, additional investment does not

influence the underlying economic indicator, which is unrealistic if one considers sup-

ply and demand issues. The nature of the optimal strategy is such that, if b < σ2,

then limt→∞X0
t = 0 and the investment’s maximal optimal capacity level remains

finite for realistic choices of the problem data. On the other hand, if b ≥ σ2, then

lim supt→∞X0
t = ∞ and the optimal capacity level typically converges to ∞ as t → ∞.

The model that we study in Chapter 2 assumes that additional investment has a

strictly negative effect on the value of the underlying economic indicator. In particular,
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we model market uncertainty by the solution to the SDE

dXt = bXt dt−Xt ◦ dζt +
√
2σXt dWt, X0 = x > 0, (1.4)

where
∫ t

0

Xs ◦ dζs = c

∫ t

0

Xs dζ
c
s +

∑

0≤s<t

Xs

(

1− e−c∆ζs
)

,

for some constant c > 0, in which expression, ζc denotes the continuous part of the in-

creasing process ζ . The objective is to maximise over all admissible capacity expansion

strategies ζ the performance criterion

Jx,y(ζ) = E

[
∫ ∞

0

e−rth(Xt, Yt) dt−K

∫

[0,∞[

e−rt dζt

]

, (1.5)

where r,K > 0 are constants and the running payoff function h satisfies Assump-

tion 2.1.1 in Chapter 2.

The solution to this problem is again characterised by a threshold defined by a

strictly increasing free-boundary function G. Informally, the optimal strategy can be

described as the one in the problem defined by (1.1)–(1.3). However, reflection in the

free-boundary G is oblong rather than in the positive y-direction (see Figures 2.5.1–

2.5.3). Furthermore, the negative effect that additional investment has on the underly-

ing economic indicator X results in a maximal optimal capacity level that is bounded

in cases of special interest, such as the ones arising, e.g., when the running payoff

function h is a Codd-Douglass production function (see Example 2.2.1).

From a stochastic control theoretic perspective, the problem that we solve in Chap-

ter 2 has the features of singular stochastic control, which was introduced by Bather

and Chernoff (1967) who considered a simplified model of spaceship control. In their

seminal paper, Beneš et al. (1980) were the first to solve rigorously an example of a

finite-fuel singular control problem. Since then, the area has attracted considerable

interest in the literature. Apart from references that we have discussed in the context

of capacity expansion models, Bahlali et al. (2009) Chiarolla and Haussmann (1994),

Chow et al. (1985), Davis and Zervos (1998), Fleming and Soner (1993, Chapter VIII),

Haussmann and Suo (1995a,b), Harrison and Taksar (1983), Jack et al. (2008), Jacka

(1983, 2002), Karatzas (1983), Ma (1992), Menaldi and Robin (1983), Øksendal (2000),
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Shreve et al. (1984), Soner and Shreve (1989), Sun (1987) and Zhu (1992), provide an

alphabetically ordered list of further contributions.

In the references discussed above, the controlled process affects the state dynamics

in a purely additive way: the change of the state process due to control action does

not depend on the state process itself. Singular stochastic control models in which

changes of the state process due to control action may depend on the state process were

introduced and studied by Dufour and Miller (2002) and Motta and Sartori (2007). To

the best of our knowledge, problems with state dynamics such as the ones given by

(1.4) have not been considered in the literature before. Furthermore, the problem that

we solve is the very first one that involves control action that does not affect the state

dynamics in a purely additive way and admits an explicit solution.

The model that we study in Chapter 3, takes a different perspective. In this case, we

assume that additional investment does not affect the value of the underlying economic

indicator. In particular, we model market uncertainty by means of the geometric

Brownian motion given by (1.1). The objective of the stochastic control problem

that we study is to maximise over all admissible capacity expansion strategies ζ the

performance criterion

Jx, y(Z) = E

[

∫ ∞

0

e−rt[(X0
t )

αY β
t −K1Yt] dt−

∑

0≤t

e−rt(K2∆Zt + c)1{∆ζt>0}

]

(1.6)

where r, α > 0 and β ∈ ]0, 1[, K1 ≥ 0 and K2, c > 0 are constants.

The solution to this problem is now characterized by two free-boundary functions

G0, G1 : R+ → R+ such that G1(y) < G0(y) for all y ≥ 0. If the initial condition (x, y)

is below the graph of G0 in the x-y plane, then it is optimal to invest so that the joint

process (X0, Y ) has a jump at time 0 that positions it in the graph of G1. After time 0,

it is optimal to invest each time (X0, Y ) hits the graph G0 so that the process (X0, Y )

has a jump in the vertical direction of the x-y plane that positions it inside the graph

of G1.

The model that we study in Chapter 3 was introduced by Merhi (2006, Chapter 3)

who considered a general running payoff function (x, y) 7→ h(x, y) rather than the

Cobb-Douglas running payoff function (x, y) 7→ xαyβ that we consider here. The anal-
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ysis of Merhi (2006, Chapter 3) failed to determine the free-boundary functions G0 and

G1 in a satisfactory way. The possibility of solving completely an important special

case of the more general problem was the motivation for the study we present in Chap-

ter 3. Unfortunately, the complete solution to the problem still remains elusive (see

the assumptions of Lemma 3.3.1). Plainly, the problem formulation and the Hamilton-

Jacobi-Bellman equation, which takes the form of a quasi-variational inequalities, that

we present in Chapter 3 follow very closely the corresponding parts of Merhi (2006,

Chapter 3). However, the rest of the analysis is different.

From a stochastic control theoretic perspective, the problem that we analyse in

Chapter 3 has the features of a genuinely two-dimensional impulse control problem.

Stochastic impulse control problems have been studied in the context of various fields,

including mathematical finance, economic and operations research. The study of im-

pulse control problems by means of quasi-variational inequalities was introduced by

Bensoussan and Lions (1973). The corresponding theory is developed extensively in

the book by Bensoussan and Lions (1984). Recent expositions of the general theory of

stochastic impulse control can be found in the books by Øksendal and Sulem (2007)

and Pham (2009).

The impulse control of one-dimensional diffusions has attracted considered interest

in the literature. Notable contributions include Richard (1977), Harrison et al. (1983),

Jeanblanc-Picqué and Shiryaev (1995), Mundaca and Øksendal (1998), Cadenillas and

Zapatero (1999), Korn (1999), Bar-Ilan et al. (2002), Alvarez (2004), Bar-Ilan et al.

(2004), Ohnishi and Tsujimura (2006), Alvarez and Koskela (2007), Cadenillas et al.

(2010), Djehiche et al. (2010) and Feng and Muthuraman (2010). To the best of our

knowledge, the problem studied by Merhi (2006) and by this thesis is the first genuinely

two-dimensional one that has been analysed with mathematical rigour at the depth we

present here with a view to an explicit solution.



Chapter 2

Irreversible capital accumulation

with economic impact

2.1 Problem formulation

We fix a probability space (Ω,F ,P) equipped with a filtration (Ft) satisfying the usual

conditions of right continuity and augmentation by P-negligible sets, and carrying a

standard one-dimensional (Ft)-Brownian motion W . We denote by Z the family of all

increasing càglàd (Ft)-adapted processes ζ such that ζ0 = 0.

We consider an investment project that produces a given commodity and we assume

that the project’s capacity, namely, its rate of output, can be increased at any given

time and by any finite amount up to a maximum level ȳ ∈ ]0,∞]. We denote by Yt the

project’s capacity at time t and we model cumulative capacity increases by a process

ζ ∈ Z. In particular, given times 0 ≤ s ≤ t, ζt+ − ζs is the total capacity increase

incurred by the project management’s decisions during the time interval [s, t]. The

project’s capacity process Y is therefore given by

Yt = y + ζt, Y0 = y ≥ 0, (2.1)

where y ≥ 0 is the project’s initial capacity.

We assume that all randomness associated with the project’s operation can be

6



2.1. Problem formulation 7

captured by a state process X that satisfies the SDE

dXt = bXt dt−Xt ◦ dζt +
√
2σXt dWt, X0 = x > 0, (2.2)

for some constants b and σ 6= 0, where

∫ t

0

Xs ◦ dζs = c

∫ t

0

Xs dζ
c
s +

∑

0≤s<t

Xs

(

1− e−c∆ζs
)

, (2.3)

for some constant c > 0, in which expression, ζc denotes the continuous part of the

increasing process ζ . In practice, Xt can be an economic indicator reflecting, e.g., the

value of one unit of the output commodity or the output commodity’s demand or both,

at time t. Using Itô’s formula, we can check that

Xt = X0
t e

−cζct
∏

0≤s<t

e−c∆ζs = X0
t e

−cζt, (2.4)

where X0 is the geometric Brownian motion defined by

dX0
t = bX0

t dt+
√
2σX0

t dWt, X0
0 = x > 0. (2.5)

To simplify the notation, we denote by S the problem’s state space, so that

S =
{

(x, y) ∈ R
2 | x > 0 and 0 ≤ y ≤ ȳ

}

.

With each decision policy ζ we associate the performance criterion

Jx,y(ζ) = E

[
∫ ∞

0

e−rth(Xt, Yt) dt−K

∫

[0,∞[

e−rt dζt

]

, (2.6)

where h : S → R is a given function and K, r > 0 are constants. Here, h models

the running payoff resulting from the project’s operation, while K models the costs

associated with increasing the project’s capacity level.

Definition 2.1.1 The set A of all admissible strategies is the family of all processes

ζ ∈ Z such that

E

[
∫

[0,∞[

e−rt dζt

]

< ∞ (2.7)

and Yt ∈ [0, ȳ] ∩ R+ for all t ≥ 0. 2
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The objective of the control problem is to maximise the performance index Jx,y over

all admissible strategies ζ ∈ A. Accordingly, we define the problem’s value function v

by

v(x, y) = sup
ζ∈A

Jx,y(ζ), for (x, y) ∈ S. (2.8)

For the stochastic control problem to be well-defined, we make the following assump-

tion.

Assumption 2.1.1 K > 0, the function h is C3,

h(·, y) is increasing for all y ∈ [0, ȳ] ∩ R+, (2.9)
∫ x

0

s−m−1 |h(s, y)| ds+
∫ ∞

x

s−n−1 |h(s, y)| ds < ∞ for all x > 0 and y ∈ [0, ȳ] ∩ R+,

(2.10)

where the constants m < 0 < n are defined by (2.75) in Appendix II (see also (2.78)–

(2.79) in Appendix II). If we define

H(x, y) = hy(x, y)− cxhx(x, y)− rK, for x > 0 and y ∈ ]0, ȳ[, (2.11)

then there exists a point x0 ≥ 0 and a continuous strictly increasing function y† :

]x0,∞[ → R+ such that

0 ≤ y0 := lim
x↓x0

y†(x) < lim
x→∞

y†(x) =: y∞ ≤ ȳ, y0 = 0 if x0 > 0, (2.12)

H(x, y)



























< 0, if (x, y) ∈ H−,

= 0, if (x, y) ∈ S \ (H− ∪H+),

> 0, if (x, y) ∈ H+,

(2.13)

lim inf
x→∞

H(x, y) > 0 for all y ∈ ]y0, y∞[, (2.14)

the function H(x, ·) is strictly decreasing for all y ∈ ]y0, y∞[, (2.15)

where

H− =
{

(x, y) ∈ S | x ≤ x0 or x > x0 and y > y†(x)
}

,

H+ =
{

(x, y) ∈ S | x > x0 and y < y†(x)
}

,



2.1. Problem formulation 9

and the function x† is defined by

x†(y) =



























0, if 0 ≤ y < y0,

(y†)−1(x), if y0 ≤ y < y∞,

∞, if y∞ ≤ y < ȳ.

(2.16)

Also, there exist a decreasing function Ψ : ]y0, y∞[ → ]0,∞[ such that limy↓0Ψ(y) < ∞
if x0 > 0 as well as constants C0 > 0 and ϑ ∈ ]0, n[ such that

−C0(1 + y) ≤ h(x, y) ≤ C0(1 + y)
(

1 + xn−ϑ
)

for all (x, y) ∈ S, (2.17)

H(x, y) ≤ Ψ(y)
(

1 + xn−ϑ
)

for all x > 0 and y ∈ ]0, ȳ[, (2.18)

where n > 0 is given by (2.75) in Appendix II. 2

Example 2.1.1 Suppose that ȳ = ∞ and h is a so-called Cobb-Douglas function,

given by

h(x, y) = xαyβ, for (x, y) ∈ S, (2.19)

where α ∈ ]0, n[ and β ∈ ]0, 1] are constants. In this case, we can check that

H(x, y) =
(

βy−1 − cα
)

xαyβ − rK.

If we define

y0 = 0, y∞ =
β

cα
and x0 =











(rK)1/α, if β = 1,

0, if β ∈ ]0, 1[,

then we can see that the calculations

∂H(x, y)

∂x
= α

(

βy−1 − cα
)

xα−1yβ











> 0 for all y ∈ ]y0, y∞[,

< 0 for all y > y∞,

(2.20)

lim
x↓0

H(x, y) = −rK < 0 for all y > 0, and

lim
x→∞

H(x, y) =











∞, for all y ∈ ]y0, y∞[,

−∞, for all y > y∞,

(2.21)
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imply that there exists a unique function y† : ]x0,∞[ → R+ such that (2.12)–(2.13)

hold true. Furthermore, differentiating the identity H
(

x, y†(x)
)

= 0 with respect to x,

we can see that the derivative ẏ† of y† satisfies

ẏ†(x) =
αy(β − cαy)

βx
[

(1− β) + cαy
] > 0 for all y ∈ ]y0, y∞[,

so y† is indeed strictly increasing. Also, it is straightforward to check that (2.14)–(2.15)

and (2.17)–(2.18) are all satisfied. Indeed, (2.14) (resp., (2.15)) follows immediately

from (2.21) (resp., (2.20)), while (2.17)–(2.18) follow from (2.19) and (2.20) for the

choices ϑ = n− α and

Ψ(y) =











1, if β = 1,

y−(1−β), if β ∈ ]0, 1[.

2

2.2 The solution to the control problem

We solve the stochastic control problem that we consider by constructing an appropriate

classical solution w : S → R to the Hamilton-Jacobi-Bellman (HJB) equation

max
{

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + h(x, y),

wy(x, y)− cxwx(x, y)−K
}

= 0, (x, y) ∈ S, (2.22)

where wy(x, 0) = limy↓0wy(x, y). To obtain qualitative understanding of this equation,

we consider the following heuristic arguments. At time 0, the project’s management has

two options. The first one is to wait for a short time ∆t and then continue optimally.

Bellman’s principle of optimality implies that this option, which is not necessarily

optimal, is associated with the inequality

v(x, y) ≥ E

[∫ ∆t

0

e−rth(X0
t , y) dt+ e−r∆tv

(

X0
∆t, y

)

]

.

Applying Itô’s formula to the second term in the expectation, and dividing by ∆t before

letting ∆t ↓ 0, we obtain

σ2x2vxx(x, y) + bxvx(x, y)− rv(x, y) + h(x, y) ≤ 0. (2.23)
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The second option is to increase capacity by ε > 0, and then continue optimally. This

action is associated with the inequality

v(x, y) ≥ v(x− cxε, y + ε)−Kε.

Rearranging terms and letting ε ↓ 0, we obtain

vy(x, y)− cxvx(x, y)−K ≤ 0. (2.24)

Furthermore, the Markovian character of the problem implies that one of these options

should be optimal and one of (2.23), (2.24) should hold with equality at any point in

the state space S. It follows that the problem’s value function v should identify with

an appropriate solution w of the HJB equation (2.22).

To construct the solution w to (2.22) that identifies with the value function v,

we first consider the existence of a strictly increasing function G : ]y0, y∞[ → ]0,∞[

that partitions the state space S into two regions, the “waiting” region W and the

“investment” region I, defined by

W =
{

(x, 0) | 0 < x ≤ x0 if x0 > 0
}

∪
{

(x, y) | y ∈ ]y0, y∞[ and 0 < x ≤ G(y)
}

∪
{

(x, y) | x > 0 and y ∈ [y∞, ȳ] ∩ R
}

,

I =
{

(x, 0) | x > x0 if x0 > 0
}

∪
{

(x, y) | x > 0 and y ∈ [0, y0] if y0 > 0
}

∪
{

(x, y) | y ∈ ]y0, y∞[ and x > G(y)
}

.

(see Figures 2.5.1–2.5.3 in Appendix III). Inside the region W, the heuristic arguments

that we have briefly discussed above suggest that w should satisfy the differential

equation

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + h(x, y) = 0. (2.25)

In light of the theory that we review in Appendix II and the intuitive idea that the

value function should remain bounded as x ↓ 0, every relevant solution to this ODE is

given by

w(x, y) = A(y)xn +R(x, y), (2.26)
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for some function A, where n is given by (2.75) and R(·, y) is defined by (2.80) for

k = h(·, y), i.e.,

R(x, y) =
1

σ2(n−m)

[

xm

∫ x

0

s−m−1h(s, y) ds+ xn

∫ ∞

x

s−n−1h(s, y) ds

]

. (2.27)

On the other hand, w should satisfy

wy(x, y)− cxwx(x, y) = K, for (x, y) ∈ I, (2.28)

which implies that

wyx(x, y)− cxwxx(x, y)− cwx(x, y) = 0, for (x, y) ∈ I. (2.29)

Remark 2.2.1 At this point, it is worth making a comment on the qualitative depen-

dence of the optimal strategy arising from the considerations above and depicted by

Figure 2.5.1 on the parameters c and K. The constant c > 0 determines the magnitude

of the effect that investment has on the state process X (see (2.2)-(2.3)). Therefore,

as c ↓ 0, we expect that the curved arrows in Figure 2.5.1 become vertical because

additional investment has less and less effect on the state dynamics. On the other

hand, as c → ∞, we expect that the curved arrows in Figure 2.5.1 bend more and

more towards the horizontal axis because additional investment has increasing effect

on the dynamics of X . The constant K > 0 determines the degree at which additional

investment is penalised by the performance criterion defined by (2.6). As K ↓ 0, we

expect that the free-boundary G moves higher and higher in the x-y plane and the

investment region I spreads to cover the entire R
2
+ because additional investment is

penalized less and less. On the other hand, as K → ∞, we expect that G moves lower

and lower in the x-y plane and the investment region I shrinks because additional

investment is increasingly penalized.

To determine A and G, we postulate that w is C2,1, in particular, along the free-

boundary G. Such a requirement and (2.26)–(2.29) yield the system of equations

[

Ȧ(y)− ncA(y)
]

Gn(y) = −
[

Ry

(

G(y), y
)

− cG(y)Rx

(

G(y), y
)

−K
]

, (2.30)

[

Ȧ(y)− ncA(y)
]

Gn(y) = −G(y)

n

[

Ryx

(

G(y), y
)

− cG(y)Rxx

(

G(y), y
)

− cRx

(

G(y), y
)

]

. (2.31)
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In view of the definition (2.27) of R, the associated expression (2.85) for the function

x 7→ xRx(x, y) and (2.84), we can see that this system is equivalent to

q
(

G(y), y
)

= 0, (2.32)

Ȧ(y) = ncA(y)− 1

σ2(n−m)

∫ ∞

G(y)

s−n−1H(s, y) ds, (2.33)

where H is defined by (2.11) and

q(x, y) =

∫ x

0

s−m−1H(s, y) ds. (2.34)

We can also check that the solution to (2.33) is given by

A(y) =
ecny

σ2(n−m)

∫ y∞

y

e−cnu

∫ ∞

G(u)

s−n−1H(s, u) ds du, for y0 < y < y∞, (2.35)

if the integrals converge.

The following result, the proof of which we develop in Appendix I, is concerned

with the solution to the system of equations (2.32)–(2.33).

Lemma 2.2.1 Suppose that Assumption 2.1.1 holds true. The equation q(x, y) = 0

for x > 0 defines uniquely a strictly increasing C1 function G : ]y0, y∞[ → ]0,∞[, which

satisfies

x†(y) < G(y) for all y ∈ ]y0, y∞[, lim
y↓y0

G(y) = 0, if y0 > 0, and lim
y↑y∞

G(y) = ∞,

(2.36)

where x† is defined by (2.16). Furthermore, the function A given by (2.35) is well-

defined and real-valued, and there exists a constant C1 > 0 such that

0 < A(y)Gn(y) ≤ C1Ψ(y)
[

1 +Gn−ϑ(y)
]

for all y ∈ ]y0, y∞[, (2.37)

where the decreasing function Ψ and the constant ϑ > 0 are as in (2.18), and

g−1(x) +
[

1 + g−1(x)
]

Gn−ϑ
(

g−1(x)
)

≤ C1

[

1 + xn−ϑ
]

for all x > x0, (2.38)

where g−1 is the inverse of the strictly increasing function g that is defined by

g(y) = ecyG(y), for y ∈ ]y0, y∞[. (2.39)
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Example 2.2.1 Suppose that h is a Cobb-Douglas function given by (2.19) in Exam-

ple 2.1.1. In this case, we can check that

G(y) =

[

rK(α−m)

−m

y1−β

β − αcy

]1/α

, for y ∈ ]y0, y∞[ ≡ ]0, β/cα[. (2.40)

Figures 2.5.2 and 2.5.3 illustrate this example. 2

To complete the construction of the solution w to the HJB equation (2.22) that

identifies with the problem’s value function v, we note that there exists a mapping

z : I → R+ such that

z(x, y) ∈ ](y0 − y)+, y∞ − y[ and xe−cz(x,y) = G
(

y + z(x, y)
)

for all (x, y) ∈ I.
(2.41)

Indeed, this claim follows immediately from the calculations

lim
z↑y∞−y

[

xe−cz −G(y + z)
]

= −∞,

∂

∂z

[

xe−cz −G(y + z)
]

= −cxe−cz −G′(y + z) < 0, for z ∈ ](y0 − y)+, y∞ − y[,

lim
z↓(y0−y)+

[

xe−cz −G(y + z)
]

=











xe−c(y0−y) − limu↓y0 G(u), if y ≤ y0,

x−G(y), if y > y0











> 0,

in which, we have used (2.36) and the fact that G is increasing. We prove the following

result in Appendix I.

Lemma 2.2.2 Suppose that Assumption 2.1.1 holds true. The function w defined by

w(x, y) =



























R(x, y), if (x, y) ∈ W ∩
(

R+ × [y∞, ȳ]
)

,

A(y)xn + R(x, y), if (x, y) ∈ W ∩
(

R+ × [y0, y∞[
)

,

w
(

xe−cz(x,y), y + z(x, y)
)

−Kz(x, y), if (x, y) ∈ I,
(2.42)

where A is defined by (2.35) and z is given by (2.41), is a C2,1 solution to the HJB

equation (2.22). Furthermore, the function w(·, y) is increasing and there exists a

constant C2 > 0 such that

−C2(1 + y) ≤ w(x, y) for all (x, y) ∈ S, (2.43)

w
(

G(y), y
)

≤ C2[Ψ(y) + y]
[

1 +Gn−ϑ(y)
]

for all y ∈ ]y0, y∞[, (2.44)
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where the decreasing function Ψ is as in (2.17)–(2.18).

We can now establish the main result of the paper.

Theorem 2.2.1 Suppose that Assumption 2.1.1 holds true. The value function v of

the control problem formulated in Section 2.1 identifies with the solution w to the HJB

equation (2.22) given by (2.42) in Lemma 2.2.2 and the optimal capacity expansion

strategy ζo is given by

ζot =











0, if y > y0 and ecy sup0≤s≤tX
0
s ≤ g(y),

g−1
(

ecy sup0≤s≤tX
0
s

)

, if y < y∞ and ecy sup0≤s≤tX
0
s > g(y),

for t > 0,

(2.45)

where

g(y) =



























0, if y0 > 0 and y ≤ y0,

g(y), if y ∈ ]y0, y∞[,

∞, if y ∈ [y∞, ȳ] ∩ R+,

(2.46)

g is defined by (2.39), and X0 is the geometric Brownian motion given by (2.5).

Proof. Fix any initial condition (x, y) ∈ S and any admissible strategy ζ ∈ A. In

view of Itô-Tanaka-Meyer’s formula and the left-continuity of the processes X , Y , we

can see that

e−rTw(XT+, YT+) = w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt)− rw(Xt, Yt)

]

dt

+

∫

[0,T ]

[

wy(Xt, Yt)− cXtwx(Xt, Yt)
]

dζct +MT

+
∑

0≤t≤T

e−rt
[

w(Xt+, Yt+)− w(Xt, Yt)
]

,

where

MT =
√
2σ

∫ T

0

e−rtXtwx(Xt, Yt) dWt. (2.47)

Combining this calculation with the observation that

w(Xt+, Yt+)− w(Xt, Yt)
(2.4)
=

∫ ∆ζt

0

dw
(

Xte
−cs, Yt + s

)

ds
ds,

=

∫ ∆ζt

0

[

wy

(

Xte
−cs, Yt + s

)

− cXte
−cswx

(

Xte
−cs, Yt + s

)]

ds,
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we obtain

∫ T

0

e−rth(Xt, Yt) dt−K

∫

[0,T ]

e−rt dζt + e−rTw(XT+, YT+)

= w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt)− rw(Xt, Yt) + h(Xt, Yt)

]

dt

+

∫

[0,T ]

[

wy(Xt, Yt)− cXtwx(Xt, Yt)−K
]

dζct +MT

+
∑

0≤t≤T

e−rt

∫ ∆ζt

0

[

wy

(

Xte
−cs, Yt + s

)

− cXte
−cswx

(

Xte
−cs, Yt + s

)

−K
]

ds.

(2.48)

Since w satisfies the HJB equation (2.22), it follows that

∫ T

0

e−rth(Xt, Yt) dt−K

∫

[0,T ]

e−rt dζt + e−rTw(XT+, YT+) ≤ w(x, y) +MT . (2.49)

In view of the integration by parts formula and (2.1), we can see that

e−rTYT+ − y = −r

∫ T

0

e−rtYt dt+

∫

[0,T ]

e−rt dζt. (2.50)

This identity, the admissibility condition (2.7) in Definition 2.1.1 and the monotone

convergence theorem imply that

E

[∫ ∞

0

e−rtYt dt

]

= lim
T→∞

E

[∫ T

0

e−rtYt dt

]

≤ lim
T→∞

(

y

r
+

1

r
E

[
∫

[0,T ]

e−rt dζt

])

=
y

r
+

1

r
E

[
∫

[0,∞[

e−rt dζt

]

< ∞, (2.51)

which implies that

lim inf
T→∞

E
[

e−rTYT+

]

= 0. (2.52)
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The lower bound in (2.17), the estimate (2.43) and (2.50) imply that
∫ T

0

e−rth(Xt, Yt) dt−K

∫

[0,T ]

e−rt dζt + e−rTw(XT+, YT+)

≥ −C0

∫ T

0

e−rt(1 + Yt) dt−K

∫

[0,T ]

e−rt dζt − C2e
−rT (1 + YT+)

≥ −C0

∫ T

0

e−rt(1 + Yt) dt− (K + C2)

∫

[0,T ]

e−rt dζt − C2(1 + y)

≥ −
(

C0

r
+ C2 + C2y

)

− C0

∫ ∞

0

e−rtYt dt− (K + C2)

∫

[0,∞[

e−rt dζt.

The admissibility condition (2.7) and (2.51) imply that the random variable on the

right-hand side of these inequalities has finite expectation. Combining this observation

with (2.49), we can see that E [infT≥0MT ] > −∞. Therefore, the stochastic integral

M is a supermartingale and E [MT ] ≤ 0 for all T > 0. Furthermore, Fatou’s lemma

implies that

Jx,y(ζ) ≤ lim inf
T→∞

E

[
∫ T

0

e−rth(Xt, Yt) dt−K

∫

[0,T ]

e−rt dζt

]

.

Taking expectations in (2.49) and passing to the limit, we obtain

Jx,y(ζ) ≤ w(x, y) + lim inf
T→∞

e−rT
E [−w(XT+, YT+)] .

The inequality Jx,y(ζ) ≤ w(x, y) now follows because the estimate (2.43) implies that

lim inf
T→∞

e−rTE
[

−w(XT+, YT+)
]

≤ lim
T→∞

C2e
−rT + C2 lim inf

T→∞
e−rTE [YT+]

(2.52)
= 0.

Thus, we have proved that v(x, y) ≤ w(x, y).

To prove the reverse inequality and establish the optimality of the process ζo given

by (2.45), we first consider the possibility that [y∞, ȳ]∩R+ 6= ∅ and y ∈ [y∞, ȳ]. In this

case, ζot = 0 for all t ≥ 0, and

Jx,y(ζ
o) = E

[
∫ ∞

0

e−rth(X0
t , y) dt

]

(2.27),(2.82)
= R(x, y)

(2.42)
= w(x, y),

which establish the required claims.

In the rest of the proof, we assume that y < y∞. In this case,

Y o
t =











y, if y ∈ ]y0, y∞[ and ecy sup0≤s≤tX
0
s ≤ g(y),

g−1
(

ecy sup0≤s≤tX
0
s

)

, if ecy sup0≤s≤tX
0
s > g(y),

(2.53)
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for all t > 0, and, apart from a possible initial jump of size (g−1(ecyx) − y)+ at time

0, the process (ecyX0, Y o) is reflecting in the free-boundary g in the positive direction.

In particular,

Y o
t ∈ [y0, y∞[, ecyX0

t ≤ g(Y o
t ) and ζot − ζo0 =

∫

]0,t[

1{ecyX0
s=g(Y o

s )} dζ
o
s for all t > 0.

In view of (2.4) and the definition (2.39) of g, we can see that

ecyX0
t ≤ g(Y o

t ) ⇔ Xo
t ≤ G(Y o

t ) and {ecyX0
t = g(Y o

t )} = {Xo
t = G(Y o

t )},

where Xo is the solution of (2.2) given by (2.4). It follows that the process (Xo, Y o)

satisfies

Y o
t ∈ [y0, y∞[, Xo

t ≤ G(Y o
t ) and ζot − ζo0 =

∫

]0,t[

1{Xo
s=G(Y o

s )} dζ
o
s for all t > 0.

(2.54)

Since the function g is strictly increasing, ζo0 > 0 if and only if xecy > g(y)
(2.39)
= ecyG(y).

Therefore,

ζo0 =
(

g−1(ecyx)− y
)+

> 0 if and only if (x, y) ∈ I. (2.55)

Furthermore, given any (x, y) ∈ I, we note that

z = g−1(xecy)− y ⇔ xecy = ec(y+z)G(y + z) ⇔ xe−cz = G(y + z),

which implies that ζo0 = z(x, y), where the function z is given by (2.41). It follows that

w(Xo
0+, Y

o
0+)− w(x, y) = w

(

xe−cz(x,y), y + z(x, y)
)

− w(x, y)
(2.42)
= Kz(x, y). (2.56)

In light of (2.54)–(2.56) and the construction of the solution w of the HJB equation

(2.22), we can see that (2.48) implies that

∫ T

0

e−rth
(

Xo
t , Y

o
t

)

dt−K

∫

[0,T ]

e−rt dζot + e−rTw
(

Xo
T , Y

o
T

)

= w(x, y) +Mo
T (2.57)

for all T > 0, where the local martingale Mo is defined as in (3.45).

To show that ζo is indeed admissible, we use (2.38) and (2.53) to calculate

Y o
t = y1{Y o

t =y} + g−1

(

ecy sup
0≤s≤t

X0
s

)

1{Y o
t >y} ≤ y + C1 + C1e

c(n−ϑ)y

(

sup
0≤s≤t

X0
s

)n−ϑ

.
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Combining these inequalities with the first estimate in (2.77), we can see that

lim
T→∞

E
[

e−rTY o
T

]

= 0 and E

[
∫ ∞

0

e−rtY o
t dt

]

< ∞.

It follows that

E

[∫

[0,∞[

e−rt dζot

]

= lim
T→∞

E

[∫

[0,T ]

e−rt dζot

]

(2.50)
= lim

T→∞

(

E
[

e−rTY o
T

]

+ rE

[
∫ T

0

e−rtY o
t dt

]

− y

)

< ∞, (2.58)

which proves that ζo ∈ A.

To proceed further, we note that the inequality in (2.54), the fact that w(·, y) is

increasing and the bound given by (2.44) imply that, given any t > 0,

w(Xo
t , Y

o
t ) ≤ w

(

G(Y o
t ), Y

o
t

)

≤ C2

[

Ψ(Y o
t ) + Y o

t

][

1 +Gn−ϑ(Y o
t )
]

≤ C2

[

Ψ(Y0+) + Y o
t

][

1 +Gn−ϑ(Y o
t )
]

,

the last inequality following because Ψ is decreasing. Also, (2.17) and (2.54) imply

that

h(Xo
t , Y

o
t ) ≤ C0(1 + Y o

t )(1 +Xo
t
n−ϑ) ≤ C0(1 + Y o

t )
[

1 +Gn−ϑ(Y o
t )
]

.

The estimate (2.38) and (2.53) imply that

(1 + Y o
t )G

n−ϑ(Y o
t ) = (1 + y)Gn−ϑ(y)1{Y o

t =y}

+

[

1 + g−1

(

ecy sup
0≤s≤t

X0
s

)]

Gn−ϑ

(

g−1

(

ecy sup
0≤s≤t

X0
s

))

1{Y o
t >y}

≤ (1 + y)Gn−ϑ(y)1{y>y0} + C1 + C1e
c(n−ϑ)y

(

sup
0≤s≤t

X0
s

)n−ϑ

.

It follows that there exists a constant C3 = C3(y) such that

w(Xo
t , Y

o
t ) ≤ C3

[

1 +

(

sup
0≤s≤t

X0
s

)n−ϑ
]

and h(Xo
t , Y

o
t ) ≤ C3

[

1 +

(

sup
0≤s≤t

X0
s

)n−ϑ
]
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for all t > 0. These inequalities and the estimates (2.77) imply that

E

[

sup
T>0

(
∫ T

0

e−rth
(

Xo
t , Y

o
t

)

dt+ e−rTw
(

Xo
T , Y

o
T

)

)]

≤ C3

(

(1 + r)

r
+

∫ ∞

0

E

[

e−rt

(

sup
0≤s≤t

X0
s

)n−ϑ
]

dt+ E

[

sup
T>0

e−rT

(

sup
0≤s≤T

X0
s

)n−ϑ
])

< ∞, (2.59)

and

lim inf
T→∞

e−rT
E
[

−w(Xo
T , Y

o
T )
]

≥ −C3 lim
T→∞

e−rT

(

1 + E

[

(

sup
0≤s≤T

X0
s

)n−ϑ
])

= 0. (2.60)

In view of (2.57) and (2.59), we can see that E [supT>0M
o
T ] < ∞. Therefore, the

stochastic integral Mo is a submartingale and E [Mo
T ] ≥ 0 for all T > 0. Furthermore,

Fatou’s lemma implies that

Jx,y(ζ
o) ≥ lim sup

T→∞
E

[
∫ T

0

e−rth(Xo
t , Y

o
t ) dt−K

∫

[0,T ]

e−rt dζot

]

.

In view of these observations and (2.60), we can take expectations in (2.57) and pass

to the limit to obtain

Jx,y(ζ
o) ≥ w(x, y) + lim sup

T→∞
e−rT

E [−w(Xo
T , Y

o
T )] ≥ w(x, y).

This result and the inequality v(x, y) ≤ w(x, y) that we have proved above, imply that

v(x, y) = w(x, y) and that ζo is optimal. 2

2.3 Appendix I: proof of Lemmas 2.2.1 and 2.2.2

Proof of Lemma 2.2.1. Given any y ∈ ]y0, y∞[, we observe that

∂

∂x
q(x, y) = x−m−1H(x, y)



























< 0, for all x ∈ ]0, x†(y)[,

= 0, for all x = x†(y),

> 0, for all x > x†(y),

where x† is defined by (2.16) in Assumption 2.1.1. Also, we note that (2.13) and (2.14)

in Assumption 2.1.1 imply that there exist constants ε1 = ε1(y) and x1 = x1(y) > x†(y)
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such that H(x, y) ≥ ε1 for all x ≥ x1. Given such a choice of constants, we calculate

lim
x→∞

q(x, y) = lim
x→∞

[

q(x1, y) +

∫ x

x1

s−m−1H(s, y) ds

]

≥ lim
x→∞

[

q(x1, y) +
ε1
m
x−m
1 − ε1

m
x−m

]

= ∞,

because m < 0. Combining these observations with the fact that q(0, y) = 0, we can

see that the equation q(x, y) = 0 for x > 0 has a unique solution G(y) > x†(y) for all

y ∈ ]y0, y∞[, and that G satisfies (2.36).

To see that the function G : ]y0, y∞[ → ]0,∞[ is C1 and strictly increasing, we

differentiate the identity q
(

G(y), y
)

= 0 with respect to y to obtain

Ġ(y) = −Gm+1(y)H−1
(

G(y), y
)

∫ G(y)

0

s−m−1Hy(s, y) ds > 0, (2.61)

the inequality following from (2.15) in Assumption 2.1.1.

To establish (2.38), we note that

lim
y↓y0

Gn−ϑ(y) = e−c(n−ϑ)y0 lim
y↓y0

gn−ϑ(y) ≤ lim
y↓y0

gn−ϑ(y)

and

0 ≤ lim
y↑y∞

(1 + y)g−n+ϑ(y) ≤ lim
y↑y∞

(1 + y)Gn−ϑ(y)g−n+ϑ(y) = lim
y↑y∞

(1 + y)e−c(n−ϑ)y < ∞,

where we have used (2.36) and the facts that G is increasing and n−ϑ > 0. Combining

these inequalities with the fact that G and g are continuous increasing functions with

the same domain ]y0, y∞[, we can see that there exists a constant C1 > 0 such that

1 + y + (1 + y)Gn−ϑ(y) ≤ C1

[

1 + gn−ϑ(y)
]

for all y ∈ ]y0, y∞[.

For x > x0 and y = g−1(x), this inequality implies the estimate in (2.38).

In view of (2.18) and the fact that the functions G, −Ψ are increasing, we can see

that, given any y ∈ ]y0, y∞[,

A(y)Gn(y) ≤ ecny

σ2(n−m)
Gn(y)

∫ y∞

y

e−cnuΨ(u)

[

1

n
G−n(u) +

1

ϑ
G−ϑ(u)

]

du

≤ ecny

σ2(n−m)

[

1

n

∫ y∞

y

e−cnuΨ(u) du+
1

ϑ
Gn−ϑ(y)

∫ y∞

y

e−cnuΨ(u) du

]

≤ 1

σ2(n−m)
Ψ(y)

[

1

cn2
+

1

cnϑ
Gn−ϑ(y)

]

,
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which implies (2.37). Finally, the strict positivity of A follows from (2.13) and the

inequality in (2.36). 2

Proof of Lemma 2.2.2. In view of its construction, we will prove that w is C2,1 if we

show that wy, wx and wxx are continuous along the free-boundary G. To this end, we

consider any (x, y) ∈ I, we recall the definition (2.42) of w and the definition (2.41) of

z, and we use (2.28)–(2.29) to calculate

wy(x, y) =
∂

∂y

[

w
(

xe−cz(x,y), y + z(x, y)
)

−Kz(x, y)
]

= wy

(

xe−cz(x,y), y + z(x, y)
)

+
[

wy

(

xe−cz(x,y), y + z(x, y)
)

− cxe−cz(x,y)wx

(

xe−cz(x,y), y + z(x, y)
)

−K
]

zy(x, y)

= wy

(

xe−cz(x,y), y + z(x, y)
)

, (2.62)

wx(x, y) =
∂

∂x

[

w
(

xe−cz(x,y), y + z(x, y)
)

−Kz(x, y)
]

= wx

(

xe−cz(x,y), y + z(x, y)
)

e−cz(x,y)

+
[

wy

(

xe−cz(x,y), y + z(x, y)
)

− cxe−cz(x,y)wx

(

xe−cz(x,y), y + z(x, y)
)

−K
]

zx(x, y)

= wx

(

xe−cz(x,y), y + z(x, y)
)

e−cz(x,y) (2.63)

and

wxx(x, y) =
∂

∂x

[

wx

(

xe−cz(x,y), y + z(x, y)
)

e−cz(x,y)
]

= wxx

(

xe−cz(x,y), y + z(x, y)
)

e−2cz(x,y)

+
[

wxy

(

xe−cz(x,y), y + z(x, y)
)

− cxe−cz(x,y)wxx

(

xe−cz(x,y), y + z(x, y)
)

− cwx

(

xe−cz(x,y), y + z(x, y)
)

]

e−cz(x,y)zx(x, y)

= wxx

(

xe−cz(x,y), y + z(x, y)
)

e−2cz(x,y) (2.64)

These calculations imply the required continuity results because limn→∞ z(xn, yn) = 0

for every convergent sequence (xn, yn) in I such that limn→∞ xn = limn→∞G(yn).

To prove (2.43)–(2.44), we note that the bounds of h in (2.17), the definition (2.27)

of R and the identity σ2mn = −r imply that

−C0

r
(1 + y) ≤ R(x, y) ≤ C0(1 + y)

[

1

r
+

1

σ2(n−m− ϑ)ϑ
xn−ϑ

]

. (2.65)
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The lower of these bounds and the positivity of A (see (2.37)) imply that

−C0

r
(1 + y) ≤ A(y)xn +R(x, y) = w(x, y) for all (x, y) ∈ W. (2.66)

In light of (2.9) and (2.83) in Appendix II, we can see that R(·, y) is increasing for all

y ∈ [0, ȳ] ∩ R. Combining this observation with the inequalities A > 0 and n > 0, we

deduce that wx(x, y) ≥ 0 for all (x, y) ∈ W. This result, (2.41) and (2.63) imply that

w(·, y) is increasing for all y ∈ [0, ȳ] ∩ R, which, combined with (2.66), implies (2.43).

Also, (2.44) follows immediately from (2.37) and the upper bound in (2.65).

It remains to show that w satisfies the HJB equation (2.22). By the construction

and the C2,1 continuity of w, we will achieve this if we show that

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + h(x, y) ≤ 0 for all (x, y) ∈ I, (2.67)

wy(x, y)− cxwx(x, y)−K ≤ 0 for all (x, y) ∈ W ∩
(

R+ × ]y0, ȳ[
)

. (2.68)

To see (2.67), we consider any (x, y) ∈ I and we use (2.42), (2.63)–(2.64) and the fact

that w satisfies the ODE (2.25) inside W to calculate

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + h(x, y)

= σ2
[

xe−cz(x,y)
]2
wxx

(

xe−cz(x,y), y + z(x, y)
)

+ b
[

xe−cz(x,y)
]

wx

(

xe−cz(x,y), y + z(x, y)
)

− rw
(

xe−cz(x,y), y + z(x, y)
)

+ rKz(x, y) + h(x, y)

= − h
(

xe−cz(x,y), y + z(x, y)
)

+ h(x, y) + rKz(x, y)

= −
∫ z(x,y)

0

[

∂h
(

xe−cu, y + u
)

∂u
− rK

]

du

(2.11)
= −

∫ z(x,y)

0

H
(

xe−cu, y + u
)

du.

These calculations, (2.13), (2.36), (2.41) and the continuity of z imply (2.67).

To prove (2.68), we first consider the possibility that y∞ < ȳ. In this case, we use

the fact that w = R inside W∩
(

R+× [y∞, ȳ]
)

, the definition (2.27) of R, the associated

expression (2.85) for the function x 7→ xRx(x, y) and (2.84) to calculate

wy(x, y)− cxwx(x, y)−K = Ry(x, y)− cxRx(x, y)−K

=
1

σ2(n−m)

[

xm

∫ x

0

s−m−1H(s, y) ds+ xn

∫ ∞

x

s−n−1H(s, y) ds

]

≤ 0 for all (x, y) ∈ W ∩
(

R+ × [y∞, ȳ[
)

, (2.69)
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the inequality following thanks to (2.13) in Assumption 2.1.1.

To proceed further, we note that, inside W ∩
(

R+ × ]y0, y∞[
)

, the definition (2.42)

of w, (2.30), (2.32), calculations similar to the ones in (2.69) and the definition (2.11)

of H imply that

%(x, y) := wy(x, y)− cxwx(x, y)−K

=
1

σ2(n−m)

[

−xm

∫ G(y)

x

s−m−1H(s, y) ds+ xn

∫ G(y)

x

s−n−1H(s, y) ds

]

.

(2.70)

In light of (2.13), (2.36) and the fact that m < 0 < n, we can see that

%x(x, y) =
1

σ2(n−m)

[

−mxm−1

∫ G(y)

x

s−m−1H(s, y) ds+ nxn−1

∫ G(y)

x

s−n−1H(s, y) ds

]

≥ 0 for all x ∈ [x†(y), G(y)],

which, combined with the identity %
(

G(y), y
)

= 0, implies that

%(x, y) ≤ 0 for all x ∈ [x†(y), G(y)]. (2.71)

Also, we can use the inequality
∫ G(y)

x

s−m−1H(s, y) ds > 0 for all x ∈ ]0, G(y)[,

which follows from (2.13) in Assumption 2.1.1 and (2.32), to calculate

lim
x↓0

%(x, y) ≤ 1

σ2(n−m)
lim
x↓0

xn

∫ G(y)

x

s−n−1H(s, y) ds

=
1

σ2(n−m)
lim
x↓0

xn

∫ x†(y)

x

s−n−1H(s, y) ds

≤ 0, (2.72)

the inequality following from (2.13) and the fact that n > 0.

Finally, we can use the fact that m, n are the solutions of the quadratic equation

(2.74) and straightforward calculations to obtain

σ2x2%xx(x, y) + bx%x(x, y)− r%(x, y) = −H(x, y) > 0 for all x ∈ ]0, x†(y)[.

This inequality and the maximum principle imply that the function % has no positive

maximum inside ]0, x†(y)[, which, combined with (2.71)–(2.72), implies that %(x, y) ≤ 0

for all y ∈ ]y0, y∞[ and x ∈ ]0, G(y)], and (2.68) follows. 2
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2.4 Appendix II: a second order linear ODE

In this section, we review certain results regarding the solvability of a second order

linear ODE on which our analysis has been based. All of the claims that we do not

prove here are standard and can be found in several references (e.g., with the exception

of (2.77), which is proved in Merhi and Zervos (2007, Lemma 1), all results can be found

in Knudsen et al. (1998)).

Every solution of the homogeneous ODE

σ2x2u′′(x) + bxu′(x)− ru(x) = 0 (2.73)

is given by

u(x) = Axn +Bxm,

for some A,B ∈ R, where the constants m < 0 < n are the solutions of the quadratic

equation

σ2λ2 + (b− σ2)λ− r = 0, (2.74)

given by

m,n =
−(b− σ2)±

√

(b− σ2)2 + 4σ2r

2σ2
. (2.75)

It follows that, if λ is a constant, then

E

[
∫ ∞

0

e−rt
(

X0
t

)λ
dt

]

= xλ

∫ ∞

0

e[σ
2λ2+(b−σ2)λ−r]t

E

[

e−σ2λ2t+
√
2σλWt

]

dt

=











∞, if λ ≤ m or λ ≥ n,

−xλ/ [σ2λ2 + (b− σ2)λ− r] , if λ ∈ ]m,n[,

(2.76)

where X0 is the geometric Brownian motion given by (2.5). Furthermore, for all

λ ∈ ]0, n[, there exist constants ε, C > 0 such that

e−rT
E

[

(

sup
0≤t≤T

X0
t

)λ
]

≤ Cxλe−εT and E

[

sup
T≥0

e−rT

(

sup
0≤t≤T

X0
t

)λ
]

≤ Cxλ (2.77)

for all x > 0.

A Borel measurable function k : ]0,∞[ → R satisfies

E

[
∫ ∞

0

e−rt
∣

∣k(X0
t )
∣

∣ dt

]

< ∞ for all x > 0, (2.78)
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if and only if

∫ x

0

s−m−1 |k(s)| ds+
∫ ∞

x

s−n−1 |k(s)| ds < ∞ for all x > 0. (2.79)

In the presence of these equivalent integrability conditions, the function R defined by

R(x) =
1

σ2(n−m)

[

xm

∫ x

0

s−m−1k(s) ds+ xn

∫ ∞

x

s−n−1k(s) ds

]

, for x > 0, (2.80)

is a special solution to the non-homogeneous ODE

σ2x2u′′(x) + bxu′(x)− ru(x) + k(x) = 0 (2.81)

that admits the probabilistic expression

R(x) = E

[
∫ ∞

0

e−rtk(X0
t ) dt

]

. (2.82)

Furthermore,

if k is increasing, then R is increasing, (2.83)

and, if k is constant, then rR(x) = k for all x > 0. (2.84)

In our analysis we have used the following result.

Lemma 2.4.1 Consider any C1 function k : ]0,∞[ → R satisfying the equivalent

integrability conditions (2.78)–(2.79) and suppose that there exists ε > 0 such that

∀x < ε, either k′(x) ≥ 0 or k′(x) ≤ 0 and ∀x > ε−1, either k′(x) ≥ 0 or k′(x) ≤ 0.

Then

xR′(x) =
1

σ2(n−m)

[

xm

∫ x

0

s−mk′(s) ds+ xn

∫ ∞

x

s−nk′(s) ds

]

, for all x > 0.

(2.85)

Proof. We first note that the integrability condition (2.79) implies that the limits

lim
z↓0

∫ x

z

s−m−1k(s) ds and lim
z→∞

∫ z

x

s−n−1k(s) ds

exist and that

lim inf
z↓0

z−m|k(z)| = 0 and lim inf
z→∞

z−n|k(z)| = 0. (2.86)
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To see the latter claim, suppose that lim infz↓0 z
−m|k(z)| > 0. In such a case, there

exist constants ε, z1 > 0 such that z−m|k(z)| ≥ ε for all z ≤ z1. Therefore,

∫ z1

0

s−m−1|k(s)| ds ≥ ε

∫ z1

0

s−1 ds = ∞,

which contradicts (2.79). We can argue similarly by contradiction to prove the second

limit in (2.86).

Using the integration by parts formula, we calculate

x−mk(x)− z−mk(z) = −m

∫ x

z

s−m−1k(s) ds+

∫ x

z

s−mk′(s) ds for all 0 < z < x.

(2.87)

The assumptions that we have made on k′ and the monotone convergence theorem

imply that the limit limz↓0
∫ x

z
s−mk′(s) ds exists. Therefore, we can pass to the limit

as z ↓ 0 in (2.87) to obtain

x−mk(x) = −m

∫ x

0

s−m−1k(s) ds+

∫ x

0

s−mk′(s) ds for all x > 0.

Similarly, we can see that

−x−nk(x) = −n

∫ ∞

x

s−n−1k(s) ds+

∫ ∞

x

s−nk′(s) ds for all x > 0.

The required result follows immediately from these calculations and the expression

xR′(x) =
1

σ2(n−m)

[

mxm

∫ x

0

s−m−1k(s) ds+ nxn

∫ ∞

x

s−n−1k(s) ds

]

.

2
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2.5 Appendix III: Illustration of the free boundary

function

-
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y†(x) ≡ x†(y)
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Figure 2.5.1 Graph of the free-boundary function G in the general context. If

the initial condition (x, y) is inside the “investment” region I, then it is optimal

to invest so that the joint process (X◦, Y ◦) has a jump at time 0 that positions

it in the graph of G along the curved arrows. It is optimal to take no action, i.e.,

wait, as long as the process (X◦, Y ◦) takes values in the interior of the waiting

region W . Otherwise, it is optimal to take minimal action so that the process

(X◦, Y ◦) does not fall below the graph of G, which amounts to reflecting it in G

in the direction indicated by the curved arrows.
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Figure 2.5.2 Graph of G when h is a Cobb-Douglass function with β ∈ ]0, 1[.

The qualitative nature of the optimal strategy can be described in the same

way as in Figure 2.5.1. In this case, y0 = 0, ȳ = y∞ = ∞ and G is given by

(2.40) in Example 2.1.1.
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Figure 2.5.3 Graph of G when h is a Cobb-Douglass function with β = 1.

The qualitative nature of the optimal strategy can be described in the same

way as in the previous figures. In this case, y0 = 0, ȳ = y∞ = 1

cα
and G is

given by (2.40) in Example 2.1.1. Comparing with Figures 2.5.2, it is worth

noting that the free-boundary function does not intersect the y-axis in

this example.



Chapter 3

Impulsive irreversible capacity

expansion

3.1 Problem formulation

We fix a probability space (Ω,F ,P) equipped with a filtration (Ft) satisfying the usual

conditions of right continuity and augmentation by P-negligible sets, and carrying a

standard one-dimensional (Ft)-Brownian motion W . We denote by Z the family of all

càglàd (Ft)-adapted increasing and piecewise constant processes Z such that Z0 = 0.

We consider an investment project that produces a given commodity, and we assume

that the project’s capacity, namely its rate of output, can be increased at any given

time and by any amount. We denote by Yt the project’s capacity at time t, and we

model capacity increases by the jumps of an impulse control process Z ∈ Z. The

capacity process Y is therefore given by

Yt = y + Zt, Y0 = y ≥ 0, (3.1)

where y ≥ 0 is the project’s initial capacity. Every process Z ∈ Z is characterised by

the collection (τ1, τ2, ..., τn, ...; ∆Zτ1 ,∆Zτ2, ...,∆Zτn , ...) where τn is the (Ft)-stopping

time at which the n-th jump of Z occurs, while ∆Zτn is the associated jump size. If

the project’s management adopts the capacity expansion strategy modelled by Z, then

the project’s capacity is increased at the times τn by an amount ∆Yτn = ∆Zτn > 0, for

31
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n ≥ 1.

We assume that all randomness associated with the project’s operation can be

captured by a state process X that satisfies the SDE

dXt = bXt dt+
√
2σXt dWt, X0 = x > 0, (3.2)

for some constants b and σ. In practice, Xt can be an economic indicator reflecting,

e.g., the value of one unit of the output commodity or the output commodity’s demand

or both, at time t.

To simplify the notation, we define

S =
{

(x, y) ∈ R
2 | x > 0, y ≥ 0

}

,

so that S is the set of all possible initial conditions. With each decision policy Z we

associate the performance criterion

Jx,y(Z) = E

[

∫ ∞

0

e−rt
(

Xα
t Y

β
t −K1Yt

)

dt−
∑

0≤t

e−rt
(

K2∆Zt + c
)

1{∆Zt>0}

]

, (3.3)

where r, α > 0, β ∈ ]0, 1[, K1 ≥ 0 and K2, c > 0 are given constants. In particular,

K2 and c provide a proportional and a fixed cost incurred each time that the project’s

capacity level is changed.

Definition 3.1.1 An investment strategy Z ∈ Z is admissible if

E

[

∑

0≤t

e−rt
(

∆Zt + 1
)

1{∆Zt>0}

]

< ∞. (3.4)

We denote by A the family of all admissible decision policies. 2

The objective is to maximise this performance index over all admissible capacity

expansion strategies Z ∈ A. The value function of the resulting optimisation problem

is defined by

v(x, y) = sup
Z∈A

Jx,y(Z). (3.5)

For the control problem to be well-posed, we make the following assumption on the

problem data.
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Assumption 3.1.1 r, α > 0, β ∈ ]0, 1[, K1 ≥ 0, K2, c > 0 and

α

1− β
∈ ]0, n[ ⇔ nβ

n− α
∈ ]0, 1[, (3.6)

where n > 0 is given by (3.11) in the next section. 2

3.2 Well-posedness of the control problem

It is well-known that every solution to the Euler ODE

σ2x2u′′(x) + bxu′(x)− ru(x) + xα = 0 (3.7)

is given by

u(x) = Axn +Bxm + Γxα, (3.8)

for some constants A,B ∈ R, where

Γ =
1

σ2(α−m)(n− α)
> 0, (3.9)

and the constants m < 0 < n are the solutions to the quadratic equation

σ2k2 + (b− σ2)k − r = 0, (3.10)

given by

m,n =
−(b− σ2)±

√

(b− σ2)2 + 4σ2r

2σ2
. (3.11)

Also, given any constant λ ∈ R,

E

[
∫ ∞

0

e−rtXλ
t dt

]

= xλ

∫ ∞

0

e[σ
2λ2+(b−σ2)λ−r]t

E

[

e−σ2λ2t+
√
2σλWt

]

dt

=











∞, if λ ≤ m or λ ≥ n,

−xλ/ [σ2λ2 + (b− σ2)λ− r] , if λ ∈ ]m,n[,

(3.12)

and, if λ ∈ [0, n[, then there exist constants ε1, ε2 > 0 such that

E
[

e−rtX̄λ
t

]

≤ σ2λ2 + ε2
ε2

xλe−ε1t and E

[

sup
t≥0

e−rtX̄λ
t

]

≤ σ2λ2 + ε2
ε2

xλ, (3.13)

where X̄t = sups≤tXs (for the latter claim, see Lemma 1 in Merhi and Zervos (2007)).

The following result is concerned with the well-posedness of the control problem as

well as with its reformulation to a simpler one.
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Lemma 3.2.1 Consider the stochastic control problem formulated in Section 3.1. The

capacity process Y that is associated with any admissible investment strategy Z ∈ A
is such that

lim inf
T→∞

E
[

e−rTYT

]

= 0. (3.14)

Given any initial condition (x, y) ∈ S,

0 ≤ v(x, y) = ṽ(x, y)− K1

r
y < ∞, (3.15)

where ṽ is the value function defined by

ṽ(x, y) = sup
Z∈A

E

[

∫ ∞

0

e−rtXα
t Y

β
t dt−

∑

0≤t

e−rt
(

K∆Zt + c
)

1{∆Zt>0}

]

,

with

K =
K1

r
+K2 > 0. (3.16)

Proof. Throughout the proof, we fix any initial condition (x, y) ∈ S. Also, we note

that (3.12) and (3.6) imply that

E

[
∫ ∞

0

e−rtX
α/(1−β)
t dt

]

< ∞. (3.17)

Given any admissible investment strategy Z ∈ A, we can use the integration by parts

formula and (3.1) to calculate

∑

0≤t≤T

e−rt∆Zt1{∆Zt>0} =

∫

[0,T ]

e−rt dZt

= e−rTZT+ + r

∫

[0,T ]

e−rtZt dt

= r

∫

[0,T ]

e−rtYt dt+ e−rTYT+ − y. (3.18)

Combining this result with (3.4) and the monotone convergence theorem, we can see

that

E

[
∫ ∞

0

e−rtYt dt

]

≤ y

r
+

1

r
E

[

∑

0≤t

e−rt∆Zt1{∆Zt>0}

]

< ∞, (3.19)

which implies (3.14). Furthermore, we can see that (3.18), (3.14) and the monotone

convergence theorem imply that

E

[

∑

0≤t

e−rt∆Zt1{∆Zt>0}

]

= rE

[
∫ ∞

0

e−rtYt dt

]

− y.
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It follows that the prerformance index defined by (3.3) admits the expression

Jx,y(Z) = E

[

∫ ∞

0

e−rtXα
t Y

β
t dt−

∑

0≤t

e−rt (K∆Zt + c)1{∆Zt>0}

]

+
K1

r
y

= E

[

∫ ∞

0

e−rt
(

Xα
t Y

β
t − rKYt

)

dt−
∑

0≤t

e−rtc1{∆Zt>0}

]

+K2y, (3.20)

where K is defined by (3.16), and the identity in (3.15) has been established.

Given any constant Q > 0, we can verify that

Qzβ − rKz ≤ rK(1− β)

β

(

β

rK

)1/(1−β)

Q1/(1−β) for all z ≥ 0.

Combining this inequality with (3.19), (3.20) and Hölder’s inequality, we obtain

Jx,y(Z) ≤ E

[
∫ ∞

0

e−rtXα
t Y

β
t dt

]

− rKE

[
∫ ∞

0

e−rtYt dt

]

+K2y

≤
(

E

[
∫ ∞

0

e−rtX
α/(1−β)
t dt

])1−β (

E

[
∫ ∞

0

e−rtYt dt

])β

− rKE

[
∫ ∞

0

e−rtYt dt

]

+K2y

≤ rK(1− β)

β

(

β

rK

)1/(1−β)

E

[
∫ ∞

0

e−rtX
α/(1−β)
t dt

]

+K2y,

which proves that v(x, y) < ∞ because the right-hand side of these inequalities is finite

and independent of Z. Finally, the positivity of v(x, y) follows immediately from the

observation that the strategy Z ≡ 0, which involves no capacity changes, has positive

payoff. 2

We conclude this section by showing that (3.6) in Assumption 3.1.1 is essential for

the value function of our optimisation problem to be finite.

Lemma 3.2.2 Consider the stochastic control problem formulated in Section 3.1, and

suppose that n < α
1−β

. Then v(x, y) = ∞ for every initial condition (x, y) ∈ S.

Proof. Throughout the proof, we fix any initial condition (x, y) ∈ S. If x < 1, then

we we define ix = 0, otherwise, we denote by ix the unique integer such that

2ix−1 ≤ x < 2ix. (3.21)
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If n ≤ α, then we can see that the strategy Z ≡ 0, which involves no capacity changes,

has payoff

Jx,y(Z) = yβE

[
∫ ∞

0

e−rtXα
t dt

]

+
K1

r
y = ∞,

the second identity following from (3.12). We therefore assume that α < n < α
1−β

in

what follows, we define λ = n−α
β

> 0 and we note that λ < n. We consider the capacity

expansion strategy given by

Zt+ = 1{X̄t<1} +

∞
∑

j=1

2λj1{X̄t∈[2j−1,2j [}, for t ≥ 0,

where X̄t = sups≤tXs and Zt+ = lims↓t Zs. The associated capacity level process

satisfies

Y β
t+1{X̄t<1} = (y + 1)β1{X̄t<1} ≥ Xn−α

t 1{X̄t<1}

and

Y β
t+1{X̄t∈[2j−1,2j [} = (y + 2λj)β1{X̄t∈[2j−1,2j [}

≥
(

y + X̄λ
t

)β
1{X̄t∈[2j−1,2j [}

≥ Xt
n−α1{X̄t∈[2j−1,2j [}.

Combining these inequalities with (3.12), we can see that

E

[
∫ ∞

0

e−rtXα
t Y

β
t dt

]

≥ E

[
∫ ∞

0

e−rtXn
t dt

]

= ∞. (3.22)

Next, we define the sequence of stopping times

τj = inf
{

t ≥ 0 | Xt ≥ 2j
}

= inf

{

t ≥ 0
∣

∣

∣

b− σ2

√
2|σ|

t+
σ

|σ|Wt ≥
1√
2|σ|

ln

(

2j

x

)}

, for j = ix, ix + 1, . . . .

Since the process σ
|σ|W is a standard Brownian motion, we can use Exercise 3.5.10 in

Karatzas and Shreve (1991) and the definition (3.11) of n > 0 to calculate

E
[

e−rτj
]

= exp

(

b− σ2

2σ2
ln

(

2j

x

)

− 1√
2|σ|

ln

(

2j

x

)

√

(b− σ2)2

2σ2
+ 2r

)

=
( x

2j

)n

.
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In view of this calculation and (3.21), we can see that

E

[

∑

0≤t

e−rt
(

K∆Zt + c
)

1{∆Zt>0}

]

= K2λix + c+ E

[ ∞
∑

j=ix

e−rτj
[

K
(

2(j+1)λ − 2jλ
)

+ c
]

]

= K2λix + c+
∞
∑

j=ix

[

K(2λ − 1)2λj + c
]

E
[

e−rτj
]

= K2λix + c+K(2λ − 1)xn
∞
∑

j=ix

(

1

2n−λ

)j

+ cxn
∞
∑

j=ix

(

1

2n

)j

< ∞,

the inequality being true because n−λ > 0. Combining this result with (3.22), we can

see that Jx,y(Z) = ∞. 2

3.3 The solution to the control problem

In view of Lemma 3.2.1, we may assume that K1 = 0 and K2 = K > 0 in what follows.

We solve the resulting control problem by constructing a solution to its Hamilton-

Jacobi-Bellman (HJB) equation

max
{

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + xαyβ,

− w(x, y)− c+ sup
z>0

[

w(x, y + z)−Kz
]}

= 0, (x, y) ∈ S. (3.23)

To get a qualitative feeling about the origins of this equation, observe that, at time 0,

the project’s management has two options. The first one is to wait for a short time ∆t

and then continue optimally. In view of Bellman’s principle of optimality, this option,

which is not necessarily optimal, is associated with the inequality

v(x, y) ≥ E

[
∫ ∆t

0

e−rtXα
t y

β dt+ e−r∆tv(X∆t, y)

]

.

Applying Itô’s formula to the second term in the expectation, and dividing by ∆t before

letting ∆t ↓ 0, we obtain

σ2x2vxx(x, y) + bxvx(x, y)− rv(x, y) + xαyβ ≤ 0. (3.24)



3.3. The solution to the control problem 38

The second option is to increase capacity by ∆Z0 = z > 0, and then continue optimally.

Since such a capacity increase is not necessarily optimal, this action is associated with

the inequality

v(x, y) ≥ v(x, y + z)−Kz − c,

which implies that

sup
z>0

[

v(x, y + z)−Kz
]

− v(x, y)− c ≤ 0, (3.25)

because z > 0 has been arbitrary. Since these two are the only options available, we

expect that, given any initial condition (x, y) ∈ S, one of them should be optimal, so

that one of the inequalities (3.24)–(3.25) should hold with equality. This observation

and (3.24)–(3.25) suggest that the value function v should identify with a solution w

to the HJB equation (3.23).

We postulate that the optimal strategy is characterised by two strictly increasing

C∞ functions G0, G1 : R+ → R+ such that G1(y) < G0(y) for all y ≥ 0. The func-

tion G0 separates the state space S into two regions, the waiting region W and the

investment region I, while the function G1 provides the capacity level that should be

reached whenever it is optimal to increase the project’s capacity (see Figure 3.5.1 in

Appendix V). We denote by G0, G1 the inverses of the functions G0, G1, so that

Gi

(

Gi(x)
)

= x for all x ≥ Gi(0) and Gi

(

Gi(y)
)

= y for all y ≥ 0. (3.26)

Remark 3.3.1 It is worth making a comment on the qualitative dependence of the

optimal strategy that we have considered above, which is depicted by Figure 3.5.1,

on the parameter c. The constant c > 0 provides the fixed cost that each additional

investment incurs. Therefore, as c ↓ 0, we expect that the free-boundary functions

G0, G1 move closer and closer together until they confound because the fixed costs

become negligible relative to the proportional costs. On the other hand, as c takes

larger and larger values, we expect that G0 and G1 move further and further apart

because increasing fixed costs discourage frequent investment.

In light of the heuristic arguments discussed above, we look for a solution to the
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HJB equation (3.23) that satisfies

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + xαyβ = 0 (3.27)

in the interior of W and is given by

w(x, y) = w
(

x,G1(x)
)

−K
[

G1(x)− y
]

− c, for (x, y) ∈ I. (3.28)

Every solution to (3.27) that remains bounded as x ↓ 0 is given by

w(x, y) = A(y)xn + Γxαyβ, (3.29)

for some function A, where the constants Γ, n > 0 are given by (3.9), (3.11). To

determine the functions A, G0 and G1, we first note that (3.28) for y = G0(x) and the

inequality

w
(

x,G0(x) + z
)

− w
(

x,G0(x)
)

−Kz − c ≤ 0 for all z > 0,

which is associated with the HJB equation (3.23), imply that the function

z 7→ w
(

x,G0(x) + z
)

− w
(

x,G0(x)
)

−Kz − c

has a local maximum at z = G1(x)− G0(x). Therefore,

wy

(

x,G1(x)
)

≡ Ȧ
(

G1(x)
)

xn + βΓxαGβ−1
1 (x) = K. (3.30)

Next, we postulate that w is C1,1 at the free-boundary G0. The requirement that wy

should be continuous yields

lim
u↓G0(x)

wy(x, u) ≡ Ȧ
(

G0(x)
)

xn + βΓxαGβ−1
0 (x) = K ≡ lim

u↑G0(x)
wy(x, u), (3.31)

while the requirement that wx should be continuous gives rise to the identities

lim
u→G0(x)

wx

(

x, u
)

≡ nA
(

G0(x)
)

xn−1 + αΓxα−1Gβ
0 (x)

= lim
ε↓0

w
(

x+ ε,G0(x)
)

− w
(

x,G0(x)
)

ε

= lim
ε↓0

w
(

x+ ε,G1(x+ ε)
)

− w
(

x,G1(x)
)

−K
[

G1(x+ ε)− G1(x)
]

ε
(3.30)
= wx

(

x,G1(x)
)

= nA
(

G1(x)
)

xn−1 + αΓxα−1Gβ
1 (x),
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which imply that

A
(

G0(x)
)

xn +
αΓ

n
xαGβ

0 (x) = A
(

G1(x)
)

xn +
αΓ

n
xαGβ

1 (x). (3.32)

Recalling the notation introduced by (3.26), we can see that (3.30) and (3.31) are

equivalent to

Ȧ(y)Gn
1(y) + βΓyβ−1Gα

1 (y) = K, for y ≥ G1

(

G0(0)
)

(3.33)

and

Ȧ(y)Gn
0(y) + βΓyβ−1Gα

0 (y) = K, for y ≥ 0. (3.34)

These identities imply that G0 and G1 should satisfy

F
(

y−
1−β
α G1(y), y

− 1−β
α G0(y)

)

= 0 for all y ≥ G1

(

G0(0)
)

, (3.35)

where

F (z1, z0) = z−n
0 (βΓzα0 −K)− z−n

1 (βΓzα1 −K) . (3.36)

On the other hand, combining (3.28) for y = G0(x) with (3.32), we can see that G0 and

G1 should satisfy

Φ
(

x, x− α
1−βG0(x), x

− α
1−βG1(x)

)

= 0 for all x ≥ G0(0), (3.37)

where

Φ(x, p0, p1) = pβ1 − pβ0 −
nK

(n− α)Γ
(p1 − p0)−

nc

(n− α)Γ
x− α

1−β . (3.38)

To summarise the heuristic discussion above, suppose that there exist strictly in-

creasing functions G0, G1 : R+ → R+ satisfying (3.35) and (3.37). Both of G0 and G1

are C∞ because F and Φ are C∞. If we choose

A(y) = βΓ

∫ ∞

y

u−(1−β)G
−(n−α)
0 (u) du−K

∫ ∞

y

G−n
0 (u) du

= βΓ

∫ ∞

y

G−n
0 (u)

[

(

u− 1−β

α G0(u)
)α

− K

βΓ

]

du, (3.39)

then, assuming the integrals are well-defined and finite, (3.30)–(3.32) and the function

w, defined by (3.28) if (x, y) ∈ I and by (3.29) if (x, y) ∈ W, is C1,1 along the free-

boundary G0 and satisfies the HJB equation (3.23).

The next result, which we prove in Appendix IV, is concerned with this construction.



3.3. The solution to the control problem 41

Lemma 3.3.1 Suppose that Assumption 3.1.1 holds, K1 = 0 and K2 = K > 0. Also,

assume that there exist strictly increasing functions G0, G1 : R+ → R+ satisfying the

system of equations (3.35) and (3.37). Such functions G0, G1 are C∞,

(

K

βΓ

)
1
α

y
1−β

α < G1(y) <

(

nK

(n− α)βΓ

)
1
α

y
1−β

α for all y ≥ 0, (3.40)

or, equivalently,

(

(n− α)βΓ

nK

)
1

1−β

x
α

1−β < G1(x) <

(

βΓ

K

)
1

1−β

x
α

1−β for all x > 0, (3.41)

and there exist strictly positive constants C < C such that

C
(

1 ∨ y
1−β

α

)

< G0(y) < C
(

1 ∨ y
1−β

α

)

for all y ≥ 0. (3.42)

The function w : S → R defined by

w(x, y) =











A(y)xn + Γxαyβ, if x < G0(y),

w
(

x,G1(x)
)

−K
[

G1(x)− y
]

− c, if x ≥ G0(y),

(3.43)

where the constants Γ, n > 0 are given by (3.9), (3.11) and A > 0 is given by (3.39),

is C1,1 and C∞,∞ outside the graph of G0. Also, w is a classical solution to the HJB

equation (3.23) such that

0 < w(x, y) ≤ C
(

1 + y + xαyβ + x
α

1−β

)

for all (x, y) ∈ S, (3.44)

for some constant C > 0, and the function w(·, y) is strictly increasing for all y ≥ 0.

We can now prove the main result of the paper.

Theorem 3.3.1 Consider the capacity control problem formulated in Section 3.1 and

suppose, without loss of generality, that K1 = 0 and K2 = K > 0. Also assume that

there exist strictly increasing functions G0, G1 : R+ → R+ satisfying the system of

equations (3.35) and (3.37). The value function v identifies with the solution to the

HJB equation (3.23) given by (3.43) in Lemma 3.3.1. Apart from an initial jump of

size
[

G1(x) − y
]+

at time 0, the optimal capacity level process Y ◦ has jumps of sizes

provided by the function G1−G0 that occur at the (Ft)-stopping times when the process

(X, Y ◦) hits the graph of G0, and is given by (3.48)–(3.50) in the proof below.
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Proof. Fix any initial condition (x, y) ∈ S and any admissible strategy Z ∈ A. Since

Y is piecewise constant and w(·, y) is C1 along the free-boundary G0 and C2 outside

the graph of G0, for all y ≥ 0, we can use the Itô-Tanaka-Meyer formula and the fact

that X has continuous sample paths to obtain

e−rTw(XT , YT+) = w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt)− rw(Xt, Yt)

]

dt

+MT +
∑

0≤t≤T

e−rt [w(Xt, Yt+)− w(Xt, Yt)] ,

where

MT =
√
2σ

∫ T

0

e−rtXtwx(Xt, Yt) dWt. (3.45)

This implies that

∫ T

0

e−rtXα
t Y

β
t dt−

∑

0≤t≤T

e−rt
(

K∆Zt + c
)

1{∆Zt>0} + e−rTw(XT , YT+)

= w(x, y) +

∫ T

0

e−rt
[

σ2X2
t wxx(Xt, Yt) + bXtwx(Xt, Yt)− rw(Xt, Yt) +Xα

t Y
β
t

]

dt

+MT +
∑

0≤t≤T

e−rt
[

w(Xt, Yt +∆Zt)− w(Xt, Yt)−K∆Zt − c
]

1{∆Zt>0}.

(3.46)

Since w is positive and satisfies the HJB equation (3.23), we can see that

∫ T

0

e−rtXα
t Y

β
t dt−

∑

0≤t≤T

e−rt
(

K∆Zt + c
)

1{∆Zt>0} ≤ w(x, y) +MT , (3.47)

which implies that

inf
T≥0

MT ≥ −w(x, y)−
∑

0≤t≤T

e−rt
(

K∆Zt + c
)

1{∆Zt>0}.

The random variable on the right hand side of this inequality has finite expectation

thanks to (3.4). It follows that the stochastic integral M is a supermartingale, and

therefore, E [MT ] ≤ 0 for all T > 0. Taking expectations in (3.47) and passing to the

limit using the monotone convergence theorem, we obtain

Jx,y(Z) ≤ w(x, y),

and the inequality v(x, y) ≤ w(x, y) follows.
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To establish the reverse inequality, we let

τ0 = 0 and Z0
t =

[

G1(x)− y
]

1{y<G0(x)}1{0<t}, (3.48)

and we define iteratively the (Ft)-stopping times τ` and the processes Z` by

τ`+1 = inf
{

t ≥ τ` | Xt ≥ G0

(

y + Z
(`)
t

)

}

, for ` = 0, 1, . . . , (3.49)

Z
(`+1)
t = Z

(`)
t +

[

G1(Xτ`+1
)− G0(Xτ`+1

)
]

1{t>τ`+1}, for ` = 0, 1, . . . . (3.50)

Observing that lim`→∞ τ` = ∞, P-a.s., we define the capacity expansion process Zo by

Zo
t = Z

(`)
t for t < τ`, and we note that the associated capacity process Y o satisfies

Y o
t ≤ y1{X̄t≤G0(y)} + G1(X̄t)1{X̄t>G0(y)},

where X̄t = sups≤tXs. This inequality and (3.41) imply that

Y o
t ≤ y +

(

βΓ

K

)
1

1−β

X̄
α

1−β

t

and

Xα
t

(

Y o
t

)β ≤ X̄α
t

(

Y o
t

)β ≤ yβX̄α
t + X̄α

t Gβ
1 (X̄t) ≤ yβX̄α

t +

(

βΓ

K

)
β

1−β

X̄
α

1−β

t .

In view of the estimate (3.44) of w, we can therefore see that there exists a constant

C̃ > 0 such that

0 < w(XT , Y
o
T+) ≤ C̃

(

1 + X̄α
t + X̄

α
1−β

T

)

. (3.51)

Recalling Assumption 3.1.1, we can combine these inequalities with (3.13) to obtain

E

[
∫ ∞

0

e−rtXα
t

(

Y o
t

)β
dt+ sup

T>0
e−rTw(XT , Y

o
T+)

]

< ∞. (3.52)

In light of the construction of Y o, we can see that (3.46) implies

∫ T

0

e−rtXα
t ,
(

Y o
t

)β
dt−

∑

0≤t≤T

e−rt
(

K∆Zo
t + c

)

1{∆Zo
t >0}

+ e−rTw(XT , Y
o
T+) = w(x, y) +Mo

T , (3.53)
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where Mo is defined by (3.45) for Y = Y o. This identity and (3.52) imply that

E [supT>0M
o
T ] < ∞, so the stochastic integral Mo is a submartingale. In view of this

observation, we can take expectations in (3.53) to obtain

E

[
∫ T

0

e−rtXα
t ,
(

Y o
t

)β
dt

]

− E

[

∑

0≤t≤T

e−rt
(

K∆Zo
t + c

)

1{∆Zo
t >0}

]

+ E
[

e−rTw(XT , Y
o
T+)
]

≥ w(x, y). (3.54)

The first inequality in (3.13) and (3.51) imply that

lim
T→∞

e−rT
E
[

w(XT , Y
o
T+)
]

= 0.

Combining this result with (3.52), (3.54) and the monotone convergence theorem, we

can see that

E

[

∑

0≤t

e−rt
(

K∆Zo
t + c

)

1{∆Zo
t >0}

]

< ∞,

which implies that Zo ∈ A (see Definition 3.1.1). In particular, we can pass to the

limit in (3.54) using the monotone convergence theorem to obtain

Jx,y(Z
o) ≥ w(x, y).

Recalling the inequality v(x, y) ≤ w(x, y) that we proved above, we deduce that

v(x, y) = w(x, y) and that Zo is optimal. 2

3.4 Appendix IV: Proof of Lemma 3.3.1

To establish Lemma 3.3.1, we first need to consider a pair of preliminary results. The

first one is concerned with a study of the function F defined by (3.36).

Lemma 3.4.1 Suppose that Assumption 3.1.1 holds. Given z1 > 0 fixed, equation

(3.36) has a solution z0 > z1 if and only if z1 ∈ DF , where

DF =

]

(

K

βΓ

)
1
α

,

(

nK

(n− α)βΓ

)
1
α

[

.
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In particular, there exists a strictly decreasing C∞ function LF : DF → R+ such that

(

nK

(n− α)βΓ

) 1
α

< LF (z1) and F
(

z1, LF (z1)
)

= 0 for all z1 ∈ DF , (3.55)

lim
z1↓( K

βΓ)
1
α

LF (z1) = ∞, lim
z1↑( nK

(n−α)βΓ)
1
α

LF (z1) =

(

nK

(n− α)βΓ

)
1
α

(3.56)

and

F
(

u, LF (z1)
)

=











> 0, if u < z1

< 0, if u > z1











for all z1 ∈ DF . (3.57)

Proof. In view of the definition (3.36) of F and the assumption that α < n, we

calculate

F (z1, z1) = 0

and

lim
z0→∞

F (z1, z0) = −βΓz−n
1

(

zα1 − K

βΓ

)











> 0, if z1 <
(

K
βΓ

) 1
α

,

< 0, if z1 >
(

K
βΓ

)
1
α

.

Combining these observations with the calculation

∂

∂z0
F (z1, z0) = −(n− α)βΓz−n−1

0

(

zα0 − nK

(n− α)βΓ

)











< 0, if z0 <
(

nK
(n−α)βΓ

)
1
α

,

> 0, if z0 >
(

nK
(n−α)βΓ

)
1
α

,

we can see that the equation F (z1, z0) = 0 has a solution z0 > z1 if and only if z1 ∈ DF ,

and that there exists a unique function LF : D1 → R+ satisfying (3.55) as well as (3.56).

Differentiating F
(

z1, LF (z1)
)

= 0 with respect to z1, we obtain

L̇F (z1) =
z−n−1
1

[

zα1 − nK
(n−α)βΓ

]

L−n−1
F (z1)

[

Lα
F (z1)− nK

(n−α)βΓ

] < 0 for all z1 ∈ DF ,

which proves that LF is strictly decreasing. Finally, (3.57) follows from the calculation

∂

∂u
F
(

u, LF (z1)
)

= (n− α)βΓu−n−1

(

uα − nK

(n− α)βΓ

)











< 0, if u <
(

nK
(n−α)βΓ

)
1
α

,

> 0, if u >
(

nK
(n−α)βΓ

)
1
α

,
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and the identities

F
(

z1, LF (z1)
)

= F
(

LF (z1), LF (z1)
)

= 0.

2

The next result is concerned with a study of the function Φ defined by (3.38).

Lemma 3.4.2 Suppose that Assumption 3.1.1 holds, consider the points

p
1
< p

1
< p1 < p1,

given by

p
1
= 0, p

1
=

(

(n− α)βΓ

nK

)
1

1−β

, p1 =

(

βΓ

K

)
1

1−β

and p1 =

(

(n− α)Γ

nK

)
1

1−β

,

(3.58)

and define

DΦ =
{

(x, y) ∈ S | p
1
< p1 < p1 and x ≥ X(p1)

}

,

where

X(p1) =

[

(n− α)Γ

nc
pβ1

(

1− nK

(n− α)Γ
p1−β
1

)]− 1−β

α

, for p1 ∈
]

p
1
, p1

[

.

Given (x, p1) ∈ S, equation (3.38) has a solution p0 < p1 if and only if (x, p1) ∈ DΦ. In

particular, there exists a C∞ function LΦ : DΦ → R+ such that

LΦ(x, p1) < p1 ∧ p
1

and Φ
(

x, LΦ(x, p1), p1
)

= 0 for all (x, p1) ∈ DΦ. (3.59)

Furthermore,

lim
x→∞

LΦ

(

x, p
1

)

= p
1
, (3.60)

∂

∂x
LΦ(x, p1) > 0 for all p1 ∈

]

p
1
, p1

[

and
∂

∂p1
LΦ(x, p1) < 0 for all p1 ∈

]

p
1
, p1

[

.

(3.61)

Proof. Recalling the definition (3.38) of Φ and Assumption 3.1.1, we calculate

Φ(x, p1, p1) = − nc

(n− α)Γ
x− α

1−β < 0,

∂

∂p0
Φ(x, p0, p1) = −βp

−(1−β)
0

(

1− nK

(n− α)βΓ
p1−β
0

)

= −βp
−(1−β)
0



1−
(

p0
p
1

)1−β














< 0, if p0 < p
1
,

> 0, if p0 > p
1
,
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and

Φ(x, 0, p1) = pβ1

(

1− nK

(n− α)Γ
p1−β
1

)

− nc

(n− α)Γ
x− α

1−β .

Noting that

Φ(x, 0, p1) = − nc

(n− α)Γ
x− α

1−β

(

1−
(

x

X(p1)

)
α

1−β

)

, if p1 ∈
]

p
1
, p1

[

,

we can see that these results imply that

if p1 ≥ p1, then there exist no x > 0 and p0 ∈ [0, p1] such that Φ(x, p0, p1) = 0,

if p1 < p1, then there exists a unique p0 ∈ ]0, p1[ such that Φ(x, p0, p1) = 0

if and only if x > X(p1),

and, in the latter case, the solution p0 of Φ(x, p0, p1) = 0 is strictly less than p
1
. It

follows that equation (3.38) defines uniquely a function LΦ : DΦ → R+ such that (3.59)

as well as (3.60) hold true. This function is C∞ because Φ is.

Differentiating the identity Φ
(

x, LΦ(x, p1), p1
)

= 0 with respect to x, we obtain

∂

∂x
LΦ(x, p1) = − ncαx− α

1−β
−1

(n− α)β(1− β)ΓL
−(1−β)
Φ (x, p1)

[

1−
(

LΦ(x,p1)
p
1

)1−β
] ,

and the first inequality in (3.61) follows thanks to the first inequality in (3.59). Simi-

larly, we can see that the calculation

∂

∂p1
LΦ(x, p1) =

p
−(1−β)
1

(

1−
(

p1
p
1

)1−β
)

L
−(1−β)(x,p1)
Φ

(

1−
(

LΦ(x,p1)
p
1

)1−β
)

implies the second inequality in (3.61). 2

Proof of Lemma 3.3.1. The assumption that that there exists functions G0, G1 :

R+ → R+ satisfying the system of equations (3.35), (3.37) and Lemmas 3.4.1, 3.4.2

imply that

G0(y) = y
1−β

α LF

(

y−
1−β

α G1(y)
)

for all y ≥ 0, (3.62)
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and

G0(x) = x
α

1−βLΦ

(

x, x− α
1−βG1(x)

)

for all x ≥ G0(y).

Furthermore, Lemma 3.4.1 implies that G1 satisfies (3.40). In view of (3.41), we can

see that

p
1
< x− α

1−βG1(x) < p1,

where p
1
and p1 are given by (3.58). Combining this observation with the fact that

p1 7→ LΦ(x, p1) is strictly decreasing in ]p
1
, p1[ (see the second inequality in (3.61)), we

obtain

LΦ

(

x, p1
)

< x− α
1−βG0(x) ≡ LΦ

(

x, x− α
1−βG1(x)

)

< LΦ

(

x, p
1

)

(3.63)

textfor all x ≥ X(p1) > G0(y) > X(p
1
). Since the functionx 7→ LΦ(x, p1) is strictly

increasing (see the first inequality in (3.61)), we can see that, given any x∗ > X(p1),

G0(x) ≥ LΦ

(

x∗, p1
)

x
α

1−β for all x ≥ x∗.

Therefore,

G0(y) ≤ L
− 1−β

α

Φ

(

x∗, p1
)

y
1−β

α for all y ≥ G0(x∗).

Combining this result with the inequality

G0(y) ≤ G0

(

G0(x∗)
)

for all y ≤ G0(x∗),

which follows from the assumption that G0 is increasing, we obtain the upper bound

in (3.42). Similarly, we can see that the upper bound in (3.63) implies that

G0(x) < x
α

1−β lim
x→∞

LΦ

(

x, p
1

) (3.60)
= p

1
x

α
1−β for all x ≥ G0(0).

It follows that

p
− 1−β

α

1 y
1−β

α < G0(y) for all y ≥ 0,

which, combined with the inequalities G0(0) > X(p
1
) > 0 and the fact that G0 is

increasing, implies the lower bound in (3.42).
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The lower bound in (3.40), the fact that G1 < G0 and the definition (3.39) of A

imply that A(y) > 0 for all y ≥ 0. In view of (3.6) in Assumption 3.1.1 and the lower

bound in (3.42), we can see that

A(y) < βΓ

∫ ∞

y

u−(1−β)G
−(n−α)
0 (u) du

< βΓC−(n−α)

∫ ∞

y

u−(1−β)u− (n−α)(1−β)
α du

=
αβΓC−(n−α)

n− α− nβ
y−

n−α−nβ

α for all y ≥ 1.

It follows that there exist a constant C1 > 0 such that

A(y) < C1

(

1 ∧ y−
n−α−nβ

α

)

for all y ≥ 0.

Combining this estimate with the upper bound in (3.42), we can see that

A(y)Gn
1(y) < A(y)Gn

0(y) < C1C (1 ∨ y) for all y ≥ 0. (3.64)

Given any (x, y) ∈ W, we can use the strict positivity of A and (3.64) to calculate

w(x, y) = A(y)xn + Γxαyβ

≤ A(y)Gn
0(y) + Γxαyβ

≤ C1C(1 + y) + Γxαyβ.

On the other hand, if (x, y) ∈ I, then we can use the expression for w given by (3.43)

and (3.64) to obtain

w(x, y) ≤ w
(

x,G1(x)
)

= A
(

G1(x)
)

xn + ΓxαGβ
1 (x)

< C1C
(

1 + G1(x)
)

+ ΓxαGβ
1 (x)

(3.41)
< C1C

(

1 +

(

βΓ

K

)
1

1−β

x
α

1−β

)

+ Γ

(

βΓ

K

)
β

1−β

x
α

1−β .

It follows that w admits an upper bound such as the one given by (3.44).

By construction, we will prove that w satisfies the HJB equation (3.23) if we show

that

σ2x2wxx(x, y) + bxwx(x, y)− rw(x, y) + xαyβ ≤ 0 for all (x, y) ∈ I, (3.65)



3.4. Appendix IV: Proof of Lemma 3.3.1 50

and

−w(x, y)− c+ sup
z>0

[

w(x, y + z)−Kz
]

≤ 0 for all (x, y) ∈ W. (3.66)

To this end, we consider any (x, y) ∈ W and we observe that (3.34) and the definition

(3.36) of F imply that

wy(x, y)−K = Ȧ(y)xn + βΓxαyβ−1 −K

= −xnG−n
0 (y)

[

βΓ
(

y−
1−β

α G0(y)
)α

−K
]

+ βΓ
(

y−
1−β

α x
)α

−K

= −xny−
n(1−β)

α F
(

y−
1−β

α x, y−
1−β

α G0(y)
)

(3.62)
= −xny−

n(1−β)
α F

(

y−
1−β

α x, LF

(

y−
1−β

α G1(y)
))

.

Combining this calculation with (3.57), we can see that

wy(x, y)−K =



























< 0, if x < G1(y) ⇔ y > G1(x),

> 0, if x ∈ ]G1(y), G0(y)[

⇔ y > G0(x), if x ≥ G1

(

G0(0)
)

, and y < G1(x),

(3.67)

which implies that

wyy

(

x,G1(x)
)

≤ 0 for all x ≥ G0(y). (3.68)

In view of (3.28) and (3.67), we can see that, given any (x, y) ∈ W and z > 0,

−w(x, y)− c + w(x, y + z)−Kz

=

∫ y+z

y

[

wy(x, u)−K
]

du−
∫ G1(x)

G0(x)

[

wy(x, u)−K
]

du

=



























−
∫ y

G0(x)

[

wy(x, u)−K
]

du−
∫ G1(x)

y+z

[

wy(x, u)−K
]

du, if y + z ≤ G1(x),

−
∫ y

G0(x)

[

wy(x, u)−K
]

du+
∫ y+z

G1(x)

[

wy(x, u)−K
]

du, if y ≤ G1(x) < y + z,

∫ y+z

y

[

wy(x, u)−K
]

du−
∫ G1(x)

G0(x)

[

wy(x, u)−K
]

du, if G1(x) < y,

≤ 0,

and (3.65) follows.
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To establish (3.65), we first differentiate the identity wy

(

x,G1(x)
)

= K with respect

to x to obtain

wxy

(

x,G1(x)
)

= −wyy

(

x,G1(x)
)

G ′
1(x) ≥ 0,

the inequality following thanks to (3.68) and the fact that G1 is strictly increasing.

Using the definition (3.43) of w and this inequality we can see that, given any (x, y) ∈ I,

wx(x, y) = wx

(

x,G1(x)
)

+
[

wy

(

x,G1(x)
)

−K
]

G ′
1(x)

= wx

(

x,G1(x)
)

(3.69)

and

wxx(x, y) = wxx

(

x,G1(x)
)

+ wxy

(

x,G1(x)
)

G ′
1(x)

≤ wxx

(

x,G1(x)
)

.

In light of these inequalities, we can see that (3.65) will be established if we show that

σ2x2wxx

(

x,G1(x)
)

+ bxwx

(

x,G1(x)
)

− rw
(

x,G1(x)
)

+ xαGβ
1 (x)

+xαyβ − xαGβ
1 (x) + rK

[

G1(x)− y
]

+ rc ≤ 0 for all (x, y) ∈ I.

Combining the fact that w satisfies (3.27) in W with the identities

rK
[

G1(x)− G0(x)
]

+ rc =
r(n− α)Γ

n
xα
[

Gβ
1 (x)− Gβ

0 (x)
]

= − m

α−m
xα
[

Gβ
1 (x)− Gβ

0 (x)
]

,

which follow from (3.37) and the definition (3.9) of Γ, we can see that this inequality

is equivalent to

yβ − Gβ
1 (x)−

m

α−m

[

Gβ
1 (x)− Gβ

0 (x)
]

≤ 0 for all (x, y) ∈ I,

which is indeed true because y < G1(x) for all (x, y) ∈ I.
Finally, we can combine the calculation

wx(x, y) = nA(y)xn−1 + αΓxα−1yβ > 0 for all (x, y) ∈ W,

with (3.69) to conclude that the function w(·, y) is strictly increasing for all y ≥ 0 and

that w(x, y) > 0 for all (x, y) ∈ S. 2
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3.5 Appendix V: Illustration of the free boundary

functions
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Figure 3.5.1 Graph of the free-boundary functions G0 and G1. If the initial

condition (x, y) is below the graph of G0, then it is optimal to invest so that

the joint process (X◦, Y ◦) has a jump at time 0 that positions it in the graph

of G1 along the arrows. After time 0, it is optimal to invest each time that

(X◦, Y ◦) hits the graph of G0 so that the process (X◦, Y ◦) has a jump that

positions it inside the graph of G1 along the arrows.
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