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Time, they say, is the answer. But I don’t believe them.

Sly Stone, Time



Abstract

This thesis examines several issues that arise from the state space rep-

resentation of a multivariate time series model.

Original proofs of the algorithms for obtaining interpolated estimates
of the state and observation vectors from the Kalman filter smoother
(KFS) output are presented, particularly for the formulae for which rig-
orous proofs do not appear in the existing literature. The notion of
partially interpolated estimates is introduced and algorithms for con-

structing these estimates are established.

An existing method for constructing a univariate representation (UR)
of a multivariate model is developed further, and applied to a wider
class of state space models. The computational benefits of filtering and
smoothing with the UR, rather than the original multivariate model,
are discussed. The UR KFS recursions produce useful quantities that
cannot be obtained from the original multivariate model. The mathe-
matical properties of these quantities are examined and the process of

reconstructing the original multivariate KFS output is demonstrated

By reversing the UR process, a time-invariant state space form (SSF)
is proposed for models with periodic system matrices. This SSF is used
to explore the novel concept of periodic convergence of the KFS. Neces-
sary and sufficient conditions for periodic convergence are asserted and

proved.

The techniques developed are then applied to the problem of missing-
value estimation in long multivariate temperature series, which can arise
due to gaps in the historical records. These missing values are a hin-
drance to the study of weather risk and pricing of weather derivatives,
as well as the development of climate-dependent models. The proposed
model-based techniques are compared to existing methods in the field,

as well as an original ad hoc approach.

The relative performance of these methods is assessed by their appli-
cation to data from weather stations in the state of Texas, for daily

maximum temperatures from 1950 to 2001.
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Chapter 1

Introduction

In recent years, structural models and the state space form (SSF) have
had a profound effect on time series analysis. Together, they form a
complete framework for the analysis of time series which can be used as
an alternative to the traditional ARIMA methodology.

ARIMA modelling, also known as the Box-Jenkins approach, after the
work of Box & Jenkins (1970), relies on differencing a time series to
eliminate trend, seasonality and other such time-varying behaviour. The
aim is to reduce the data to a stationary series, that is, one where the

moments (mean, covariance, etc.) are time-invariant.

Box-Jenkins models can be difficult to identify, since the model choice
depends entirely on the data, not the structure of the system. The
model parameters relate to abstract quantites and >rarely have an intu-
itive interpretation. In addition, the models can be difficult to estimate,
particularly if there are missing observations in the time series. Model
fitting is heavily reliant on the sample autocorrelation function (ACF)
and partial autocorrelation function (PACF), both of which can be very
noisy. Perhaps most importantly, the process of differencing to achieve

stationarity tends to eliminate the salient features of the time series.

The basis of state space modelling can be found in the work of Kalman
(1960). Initial developments took place in the field of engineering, par-
ticularly the branch of control theory. The pioneering work of Harvey
(1989) introduced structural models and applied the concept of state

space modelling within the framework of time series analysis. With



the structural approach, the different components (trend, seasonality,
explanatory variables, interventions) are modelled separately and then

combined to form the complete model.

Structural models provide explicit information about the individual com-
ponents, such as the seasonal pattern, which are very often of interest
in themselves. The process of model selection is more natural, because
the components reflect the real-life structure of the time series. Fur-
thermore, the transparency of the structural approach makes it easy to
check the components individually and ensure that their behaviour is
realistic. The model parameters relate to interpretable quantities and
can be allowed to evolve over time, in marked contrast to the rigidity
of the ARIMA approach. Estimation, forecasting and interpolation are
all straightforward once a structural time series model is in state space

form, by use of the Kalman filter recursions.



Chapter 2

Technical Introduction

2.1 Introduction

In this chapter we provide the reader with the theoretical background
of the thesis. We begin by examining a subclass of Box-Jenkins models,
that of autoregressive models, and describing the process by which these
are estimated. We are particularly interested in the different multivari-

ate extensions of the the univariate model.

In subsequent sections, we introduce structural time series analysis and
give examples of different structural models. We define the state space
representation of a time series, focusing on the more general state space
form (SSF) introduced by de Jong (1991), and demonstrate that struc-

tural and Box-Jenkins models can be expressed in SSF.

Later in the chapter, we consider the Kalman filter (KF) and its im-
portance in model estimation, filtering and forecasting. We prove the
key linear estimation results which then allow us to derive the KF re-
cursions. We identify the parallels between the KF and the Cholesky
decomposition, which serve to explain the computational efficiency of
the KF.

We conclude by discussing the problem of smoothing, that is, obtaining
parameter estimates conditional on the entire sample. We derive the
Kalman filter smoother (KFS) recursions, which, by augmenting the

KF, allow us to obtain these estimates in a straightforward manner.



2.2 Autoregressive Models

Autoregressive models are ones where each observation is considered to
be equal to a weighted sum of past observations plus an error term. They
have several advantages: specifying a parsimonious model is simple, and
we can often use standard techniques from linear regression theory to fit
it to the data. Obtaining forecasts is easy and, in many cases, the models
produce reasonably good short-term predictions. Furthermore, general-
isation to multivariate models (such as VAR and SUAR, discussed later

in this section) is straightforward.

2.2.1 AR(p)

A p*h-order autoregression, denoted AR(p), has model equation

Yt = P1Yt—1 + d2yt—2... + Gpyt—p + €4 (2.1)

where {g;} ~ WN(0, 0?). Using the backshift operator B, (2.1) can be

expressed as

®(B)y = e (2.2)

where ®(B) =1 — ¢1B — ... — ¢,BP is the autoregressive polynomial.
If the roots of ®(z) lie outside the unit circle, then the series {y:} is
stationary. The parameters ¢1,...,¢, are estimated by ordinary least
squares (OLS), regressing y; on its p first lags. The AR(p) model does
not satisfy the basic assumptions of least squares regression (for example,
the predictor variables are stochastic and depend on past errors), so the
resulting parameter estimates are biased. However, the estimates are
consistent and yield asymptotically valid tests of hypotheses about the

autoregressive parameters (e.g. Hamilton, 1994).



2.2.2 VAR(p)

A pth-order vector autoregression, denoted VAR(p), has model equation

Y =21y + oy g+ Bpy;_p + & (2.3)

where y, is the vector of observations at time ¢, the autoregressive co-
efficients ®1,...,®, are square matrices, and the error vector {e;} ~
WN(0, X,) has the same length as y,. As before, the autoregressive

parameters are estimated by OLS, regressing vy, on its p first lags.

2.2.3 SUAR(p)

A system of p"-order seemingly unrelated autoregressions, denoted by

SUAR(p), consists of the autoregressive processes

Yit = Gi1Vit—1 + Pi2Vit—2--- + Piplit—p + Eit (2.4)

for i = 1,...,k, where {e;} = {(e1,ts-.-,€kt)'} ~ WN(0,X%,). The
matrix ¥, is assumed to be non-diagonal, thus contemporaneous errors
in the different processes are correlated. Note that a SUAR(p) model is
equivalent to a VAR(p) model where the coefficient matrices ®4,...,®,

are diagonal.

Let ¢; = (¢i1 --- ¢ip) and @it = (Yit—1 --- Yit—p), SO We can express
equation (2.4) as yi; = TitP; + €ir. We also define y; = (Y1t - .- Ykt)
and X¢ = (', ... ;). SUAR models are commonly estimated using
a method introduced by Zellner (1962):

1. Obtain an initial (OLS) set of estimates &50) by regressing y; + on
its first p lags, @ ;.

2. Construct the residuals €

ple variance f](l)

~ (1
glt) =Yit— a:i,tqbg ) and calculate the sam-

of the vector of residuals &" = (égl)t - ég’)t)’ .



o

3. Compute the Cholesky decomposition 33 = LO(LOY,

4. Obtain an updated set of estimates &)ﬁ’“) by OLS regression of
l - l —
vie = {(LO)y,)i on &l = (L) X},

where {...}; denotes the i*® row of a matrix. Steps 2 — 4 are repeated
until the algorithm converges. The initial OLS parameter estimates are

biased, but all further estimates (}5&1), &22), ... are unbiased.

2.3 Structural Time Series Models

2.3.1 Introduction

A structural time series model is set up in terms of directly interpretable
components, which are then modelled as stochastic processes. Each
observation y; is expressed as a sum of unobserved components, such as
the current level, seasonal effect and noise. It is common to assume that
the unobserved components are uncorrelated, but this is not strictly
necessary; in fact, the relationship between these components can be

modelled explicitly.

2.3.2 Examples of Structural Models

We will now consider some basic structural models. These are the build-
ing blocks of structural time series analysis and can be used to construct

more complex models.

Local Level Model (LLM)

The simplest strutural model is one where the mean of a time series
follows a random walk. This is known as the Local Level Model or a

”random walk plus noise”:



Yt = pt + €t
Hit1 = e+ M (2.5)

where p: is the level and the error series {e;} ~ WN(0,02), {n:} ~

WN(0, 072]) are assumed to be mutually uncorrelated at all lags.

Local Linear Trend (LLT)

If we include a slope term which also follows a random walk, we obtain
the Local Linear Trend model:

Y = Mt + &
Mee1 = Mgt B+ (2.6)
Bry1 = Bt + Gt

where (; is the slope and p; is the trend. The error series {e:} ~
WN(0,02), {n:} ~ WN(0,0’%), {G} ~ WN(O,U%) are mutually uncorre-
lated at all lags.

Dummy Seasonal Model
A straightforward way to model seasonal time series is to introduce
additive seasonal effects at each time period. Let 7: be the seasonal

effect at time t. We could assume that the seasonal effects sum to zero

over a whole period, thus:

s—1
Ve == Z%—j (2.7)
=1

If we include this seasonal term in the LLM we obtain



Yt = Mt + e
P+l = P+ +

s—1
Y41 = — Z Vi+1-j (2.8)
j=1

The error terms {e;:} ~ WN(0,02), {n:} ~ WN(0,03) are mutually un-
correlated at all lags. It is often useful to allow the seasonal terms to
evolve stochastically. We can accomplish this by introducing another

error term {w;} ~ WN(0,02) and setting

s—1
M= = Z Ye-j + wi (2.9)
J=1

In this case, the sum of seasonal effects over a whole period is equal to

this error term.

2.4 State Space Representation

2.4.1 Definitions

Structural time series models, such as those described in the previous
section, are estimated by putting them in state space form. The funda-
mental concept of the state space approach is that the observation y,
can be expressed as a linear function of an unobserved vector a; (known
as the state vector) and an error term &;. The state vectors follow a
first-order autoregression, which has the Markov property. Thus, the
SSF can be thought of as a Hidden Markov Model.

We will use the SSF defined by de Jong (1991):



Y = Zioy + Giey (2.10)

a1 = Tag + H;e; (211)
for t = 1,2,...,. The dimensions of y,,a; and €; are p x 1, ¢ x 1 and
r X 1, respectively. The errors €1,€9,... form a white noise process

with unit variance, denoted by {e;} ~ WN(0,I,). The system matri-
ces Z;, Gy, Ty, H; are deterministic quantities and depend on unknown

parameters, which are estimated by maximum likelihood.

Equation (2.10) is known as the measurement equation, and describes
the process by which the observation vector is calculated from the corre-
sponding state vector. Equation (2.11) is the transition equation, which
describes the process by which the state vector evolves over time. We
will refer to Ge; as the measurement error, and He; as the transi-
tion error. A necessary and sufficient condition for contemporaneous

measurement and transition errors to be uncorrelated is G,H; = 0.

Relaxing the restriction on the variance of e; is not necessary. If for a
particular model it is more natural to define an error term with non-unit

variance, say {e;} ~ WN(0, V) then we can set

ét = .Dt_1€t, ét = GtDt, f{t = HtDt (212)

where D; is the Cholesky decomposition of V7, that is, V; = D;Dj.
The new error series {&;} is a white noise process with unit variance, as

required, and the model is unchanged.

We allow the system matrices to evolve over time; this allows the SSF to
represent a wide variety of models. However, many important time series
models can be expressed in SSF with time-invariant system matrices.
For example, consider the LLT model defined in (2.6). This can be put
in SSF by setting



Zt=(1 o), Gt=(as 0 0), {1} ~ WN(0,1I5)

e (11 _ [0 oy 0
e(3) m(i1) w37 2) oo

In the following subsection we will demonstrate how the autoregressive

models described in this chapter can also be cast in SSF.

2.4.2 Autoregressive Models in State Space Form
AR(p)

Consider the AR(p) model as a special case of a moving-average autore-
gressive process, denoted ARMA (p, ¢), which includes both an autogres-

sive and a moving-average component:

Yt = G1Yt-1+ P2Yt—2. .. + dpyt-p+ & + 01641 + bagg2... + 4e1 4
(2.14)

or, in lag operator form

where {g;} ~ WN(0,02), ®(B) is the autoregressive polynomial and
©(B) =1-60,B—...—0,B is the moving-average polynomial. Similarly
to the AR(p) model, the series {y;} is stationary if the roots of ®(z) lie

outside the unit circle.

We want to express this model in the form

10



Yyt = Zoy + Gey
o1 =Toag+ Hey (216)

The most common state space representations in time series literature
(e.g. Brockwell & Davis, 1987; Harvey, 1993; Box et al., 1994; Hamilton,
1994) involve a state vector a; of dimension m = max(p,q+ 1). One

such representation (Box et al., 1994) is

[0 1 0 0 )
0 0 1
Z =(1,0,...,0), T= : 0
0o 0 - 0 1
\qu bmo1 o e ¢1)
G=0, H=1,%1,...,%m-1) (2.17)

where the {1;} are the leading coefficients in the polynomial expansion
of ©(B)/¥(B), and are functions of the hyperparameters. De Jong
& Penzer (2004) argue in favour of a m = maz(p,q) representation

originally proposed by Pearlman (1980). This has system matrices

[ ¢ 1 0 - 0)
é2 0 1 .o
Z=(1,0,...,0), T= SRR
b1 0 - 0 1
\ bm O -0 - 0)
G=1, H=(01+¢1,...,0m+¢m) (2.18)

Note that in this representation, GH’ # 0, thus measurement and tran-

sition errors are correlated. In the special case of an AR(p) model, the

11



moving average coeflicients are all equal to zero and we set

H=(d1,...,0p) (2.19)

The other system matrices are the same as in (2.18).

VAR(p)

The SSF for the VAR(p) model is very similar to (2.18); the system

matrices can be expressed in block form as

[ ® 1 o 0 |
&, 0 I :
Z=[0,...,0, T=| : : - -
®,, 0 0 I
| @, o 0
G=1, H=[®,... o) (2.20)

where I is the identity matrix (de Jong & Penzer, 2004). If the observa-

tion vector y, consists of kK components, then the state vector has length

kp.

SUAR(p)
Assume we observe k contemporaneous time series {y1,+}, {y2.t}, -, {Ukt}
for t =1,...,n and we want to model these as a system of seemingly-

unrelated autoregressions. We first define the observation vector y, =
(Y1,ts - - -+ Yk,t)" and the matrices of parameters ®; = diag(d1,5,. .., Pk,;),
j=1,...,p, where ¢;1,...,¢;p are the autoregressive parameters corre-
sponding to {y;:}. The system matrices for the VAR(p) model in (2.20)
then define a suitable state space representation for the SUAR(p) model.

12



2.5 The Kalman Filter

2.5.1 Introduction

In its basic form, the Kalman filter produces a linear estimate of the cur-
rent state vector and its associated mean squared error (MSE), condi-
tional on all data currently available. However, given the simple Marko-
vian structure of the state recursion, it is trivial to extend this filtered
estimate into a forecast of future states. Additionally, in the Gaussian
case, the likelihood function can be calculated using the KF output, in

a way that results in considerable computational savings.

The Kalman filter smoother (KFS), an additional recursive algorithm
closely related to the KF, can be used to estimate past states and error
terms conditional on the data currently available. In Chapter 4 we
demonstrate that the KFS output is essential for estimating missing

observations in a data set (interpolation).

2.5.2 Linear Estimation

The following lemmas from linear estimation theory provide the basis

for the treatment of the Kalman filter and smoother:

Lemma 2.5.1. Let z,y be random vectors. The minimum mean-square

linear estimator (MMSLE) of x given y is

L(z|y) = E(z) + Cov(z,y) Var(y) [y — E(y)] (2.21)

and its MSE as an estimator of x is

MgE[L(aﬂy)] = Var(z) — Cov(z,y)Var(y) 'Cov(y, ) (2.22)

Proof. A proof can be found in Duncan & Horn (1972).

13



If x,y are uncorrelated, then L(x|y) = E(x). Furthermore, it is trivial
to verify that, for random vectors &1, 29,y and any constant matrix C,

the MMSLE operator L(.|y) has the following properties:

L(Cz1ly) = CL(zly) (2.23)
L(z1 + z2|y) = L(z1]y) + L(z2]y) (2.24)

Thus L(.|y) is a linear operator. Furthermore, the MMSLE L(z|y) is

an unbiased estimator of x, in the sense that

E[L(z|y)] = E(z) + Cov(z, y)Var(y) ' [E(y) — E(y)]
= E(x) (2.25)

This is analogous to the law of iterated expectations. Because of the
similarities between the properties of the MMSLE and the conditional
expectation E(x|y), we will also refer to L(z|y) as the linear ezpectation

of x given y.

Corollary 2.5.2. The linear estimation error x—L(x|y) is uncorrelated

with y.

Proof. Directly from formula (2.5.1), we have:

Cov [y, ~ L(aly)] = Cov [y, ~ E(z) ~ Cov(=, y)Var(y) ™ {y ~ Ew))]
= Cov(y, z) — Cov{y, Cov(x, y)Var(y) "'y}
= Cov(y, x) — Cov(y, y) Var(y) ' Cov(z,y)’
= Cov(y,x) — Var(y)Var(y) ™ 'Cov(y, x)
=0 (2.26)

O

In the special case where z,y are jointly normally distributed, the fol-

14



lowing result holds:

Lemma 2.5.3. Let [ T~ N(u, X) where

Yy

b= [ E(x) ] and 5 = [ Var(z) Cov(z,y) (2.27)

E(y) Cov(y,z) Var(y)

then the distribution of  conditional on y is also multivariate normal

with mean

E(z|y) = E(z) + Cov(z,y)Var(y) [y — E(y)] (2.28)

and variance matriz

Var(z|y) = Var(z) — Cov(z, y)Var(y) ' Cov(y, z) (2.29)
Proof. A proof can be found in Anderson & Moore (1979). a

Thus, in the Gaussian case, we have L(z|y) = E(x|y) and MgE[L(a:|y)] =
Var(zx|y). This result is significant because the conditional expectation
E(z|y) is also the minimum mean-square estimator (MMSE) of & given
y (Lehmann & Casella, 1990). Hence, in this case, the MMSLE is the
MMSE. Furthermore, Corollary 2.5.2 now states that the conditional
estimation error « — E(x|y) is uncorrelated with y — these vectors are

normally distributed and uncorrelated, hence they must be independent.

Corollary 2.5.4. Let x,y, z be random vectors, and y, z uncorrelated.
Then:

L(z|y, z) = L(z|y) + Cov(z, z)Var(z) " [z — E(2)] (2.30)

and its MSE as an estimator of  is
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MgE[L(wly, z)] = MgE[L(a;|y)] — Cov(z, z)Var(z) ' Cov(z,z) (2.31)

Proof. We apply Lemma 2.5.1 to the vectors & and [ Y ] :
z

el DT (212)

Var(y) ™! 0 ] [ y—E(y) ]

= E(z) + [Cov(z,y), Cov(z, 2)] 0 Var(z)1

= E(x) + Cov(zx, y)Var(y) [y — E(y)] + Cov(z, z)Var(z)_l[z — E(2)]
= L(z|y) + Cov(x, z)Var(z) [z — E(2)] (2.32)

Similarly for the MSE:

MSEL(z|y, =]

= Var(x) — Cov (m, [

)elz] e ([2])

[ Var(y)~! ov
= Var(z) — [Cov(z, y), Cov(z, z)] v (:) Var(.;)_l ] [ govg:; ]

= Var(x) — Cov(z, y)Var(y) " Cov(y, z) — Cov(x, z) Var(z) "' Cov(z, =)

= MgE[L(:l:|y)] — Cov(z, z)Var(z) " 'Cov(z, ) (2.33)
O
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It follows that, in the Gaussian case, these results simplify to

E(zly, z) = E(z|y) + Cov(z, z)Var(2) " [z — E(2)]
Var(x|y, z) = Var(z|y) — Cov(z, z)Var(z) "'Cov(z, x) (2.34)

2.5.3 Derivation

We will now derive the Kalman filter recursions. Let Yy = {yq,..., Y},
t =1,...,n. The KF obtains the one-step ahead MMSLE of the state
vector ai+1 = L(a41|Y:) and its MSE Pyyq = %E}P(atﬂ)’ for t =
1,...,n. In the Gaussian case, the errors {€;} are normally distributed,
all observations are normally distributed, hence conditional distribu-
tions of any subset are also normal. Lemma 2.5.3 implies a;41|Y¢ ~
N(a¢+1, Pt+1), thus a;4; is the one-step ahead MMSE of a4 and the
quantities a;+1, Py+1 are all we require to fully define the conditional

distribution of a1 given past observations Y.

Define the innovations:

Ve =Y — Ztat (235)

Their expectation and variance are
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E(vt) = E(y; — Z:a:)
= E[Zi(at — at) + Giey)
= Zi[BE(o:) — E(az)] + GiE(et)
= Z[E(oz) — E{L(a|Y¢-1)}] + G:E(et)
=0

Var(v;) = Var[Zi(o — at) + Giey)
= Z;Var(a; — at)Z; + GtVar(e;) G,
= Zt NJ&SE(at)ZZ + GtG;
t

= ZtPtZQ + GtG;
=F, (2.36)

Each innovation v; has the same dimension as the corresponding obser-
vation y, and is equal to the one-step-ahead prediction error for y;. In
other words, v; is the “new” part of y;, which cannot be predicted using
the past (Y;-1):

Cov(ve, Yi—1) = E(v,Y}_;) — E(v)E(Y:-1)
= E[L(v¢Y?_1|Y¢-1)]
=E[L{Z;(a; — at) + Gt|[Y -1} Y]
= ZE[{L(0|Y-1) ~ L(a:|Y'¢-1)} Y 4]
= Z:E[(a; — a))Y_4]
=0 (2.37)

The span of Y, is the same as the span of Y;_1, v;, which are uncorre-

lated, so we can apply Corollary 2.5.4 to obtain
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a1 = L{a11]Yy)
= L(a41|Y ¢-1,v¢)

= L(as1|Y—1) + Cov(aygsr, vs) Var(vy) " vy — E(vy)]  (2.38)

where the linear expectation on the RHS is

L{o¢41|Y¢-1) = L(Tios + Higt| Y1)
= TiL(o¢|Y¢—1) + HiL(e¢|Y:—1)
= Tia; + HE(e;)
= T,a, (2.39)

since &; is independent of Y;_;. The final term is

Cov(ayy1,vi) Var(vy) ™! = Cov[Tiou + Hier, Zi(oy — az) + Greg Fy !
= [TyCov(a, oy — a;) Z}, + HVar(e;) G} F; !
= (T\P:Z, + H,G})F;*
= K, (2.40)

because

Cov(at, a: — at) = E|ai(at — at)’]
= E[(a¢ — at)(as — ar)'] + E[a:(a: — at)’]
= MO%E(at) + E[L{at(as — a;)'|Y ¢-1}]
= Py + Ela{L(at|Y'¢-1) — L(a:|Y'¢-1)}']
= P; + Ela;{a; — a;}']
- P, (2.41)
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The quantity K is known as the Kalman gain. Substituting back into
(2.38) yields

ai+1 = Tia; + Kyvg

(2.42)

This is the updating equation for the filtered state estimate. Its MSE

as a predictor of a4 is

Piy1 = MSE[L(as41]Y4)]
(8 ZNS]
= MSE[L(at41|Y t-1, vs)]
[s 7R%]

= %tSJr]?[L(at_,_llYt_l)] — Cov(agy1,v:) Var(vy) " Cov(vg, agy1)

(2.43)
The only term that has not already been evaluated is
%SE[L(at+1|Yt_1)] = MSE(Ttat)
t41 Ay
= Var(ay4+1 — Tiay)
= Var[Tt(at - at) + Htst]
= TtVar(at — at)Tg + HtVar(et)Hé
Substituting into (2.43) yields
Py = T:P.T,+ H.H, — (K.F;)F; (KF;)
= TtPtT; + HtH; —_ KtFtK;' (245)

We define the matrix
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Lt = Tt — KtZt (2.46)

which allows us to write

Py = TtPtT; + HtHg — KtFtK;'
=T.P,(L, + Z,K;) + HH, — (T\P,Z, + H,G})F;'F,K,
= TtPtL; + Ht(Ht - Kth)l (247)

Grouped together, equations (2.35), (2.36), (2.40), (2.46), (2.42) and
(2.45) define the Kalman filter (KF) recursions:

v =Y, — Ziay
Fy= Z,P.Z, + GG,
K; = (T:P:Z, + H,G,)F; !
L,=T,— K.Z,
a1 = Tias + Kyvy
Piy1 = TP Ly + Hy(H; — K(Gt) (2.48)

The KF recursions are initialised with the unconditional mean and vari-
ance of a; (a; and P, respectively) and run forwards for t =1,...,n.
The variance matrix P; often contains diffuse elements (de Jong, 1991;
Durbin & Koopman, 2001). A numerical approach to modelling a time

series with diffuse initial conditions is to define

P, =P, + kP (2.49)

where P,, P, are symmetric matrices of the same dimensions as Pj,
and k is a very large number (for example, k = 108). P, accounts for the

variance of the non-diffuse components, whereas P, is a diagonal matrix
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with unity values at the entries corresponding to the diffuse elements of

o1, and zero values elsewhere.

This simple method produces an approximation to the KF recursions
with diffuse initial conditions. Introducing large numbers into the re-
cursions can potentially lead to numerical instability; Ansley & Kohn
(1985) and de Jong (1991b) propose alternative approaches which over-

come this problem.

2.5.4 Cholesky Decomposition

The span of Y,_; is the same as the span of vy,...,v,_1, thus v, is
uncorrelated with past innovations. Applying this argument recursively,
we can deduce that all the innovations are pairwise uncorrelated. Fur-

thermore, by repeated application of the KF recursions, we have

vy =Y, — Ziay
=vy; — Z;L(o|Y1—1)

t—1
=Y~ Z Wiy, (2.50)
j=1

for suitable weights W ;. Thus, each innovation v; can be expressed as
a linear combination of the observations up to time ¢. This implies that
v = Ly, where L is a block-lower-triangular matrix and y, v are the
stack vectors of observations and innovations, respectively. The matrix
L is of full rank because it is block-triangular and has unit matrices
along the main diagonal (W, = I), thus the linear transformation of
the observations y into innovations v is non-singular. If we define the

variance matrices X = Var(y) and F = Var(v), we can write

F = Var(Ly) = LXL’
e X=L"'FI)! (2.51)
&Y =QFQ (2.52)
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where Q = L~ ! is also a block-lower-triangular matrix. The matrix
F = diag{F1,..., F.} is block-diagonal, thus we can say that the KF
implicitly computes the Cholesky decomposition of ¥ . This is the
root of the computational efficiency of the KF. The linear estimation
formulae require us to compute the variance matrix of the vectors we
are conditioning on. Rather than computing MMSLEs by conditioning
on the observations, we condition on the innovations, which have the
same span (thus yield the same results), but are uncorrelated. This
way, we avoid the computationally costly step of inverting the variance

matrix of observations, and instead invert the block-diagonal matrix F'.

2.5.5 Model Estimation

Time series models in state space form can be estimated by maximizing
the likelihood. Consider the likelihood function for the entire sample;

by successive conditioning, we can write

f(:’h, . ayn) = lng(yn, yn—la L ',yl)
= log {f(ynlyn—l, ceey yl)f(yn—llyn—27 e »yl) e f(yl)}

=Y log f(y;|Ys-1) (2.53)
t=1

where the final term is f(y;|Y o) = f(y;). The advantage of this for-
mulation is that, in the Gaussian case, the conditional distribution of vy,
given Y;_; is also Gaussian, with expectation E(y;|Y:-1) = Z:a; and
variance Var(y;|Y:-1) = Z;P;Z; + G:G}, = F;. Thus:

_ _ 1 -
Fd¥ ) = @r) PRI e {4 0, - Zead P u, - Zea |

= (2m)"P?|Fy|~ ' exp {—%v;Ft‘lvt} (2.54)

Substituting into (2.53) yields
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UYn) = 27 log(2m) —

N | =

n
> (log |Fy| + viF; vy) (2.55)
t=1

This expression for the log-likelihood is known as the prediction error
decomposition (Harvey, 1993). Given a set of parameter values, it en-
ables us to compute the log-likelihood in a single forward pass of the

Kalman filter.

2.6 The Kalman Filter Smoother

2.6.1 Fixed-Interval Smoothing

We now consider the problem known as fired-interval smoothing: given
the observations ¥y, . .., ¥,, we want to find the MMSLE of the state o
and its MSE, conditional on the whole sample. We have:

dt = L(at|Yn)

= L(atIYt_l, Uity oo - ,’Un)

V¢ V¢ Ut Uy
= L(ot|Y¢-1) + Cov(a, | @ |[)Var | : ({ : [-E| : |)
vn vn vn 'vn
-1
F, vt
= a¢ + [Cov(a, vt) ... Cov(ay, vy)]
F, Vn
n
=a;+ Z Cov(ay, vs) Fy v (2.56)

s=t

We will now prove the following lemma:

Lemma 2.6.1. Ifs=tt+1,...n then
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Cov(au, vs) = PoLly, 12, (2.57)

Cov(ay, as —as) = PtL,t,3_1 (2.58)

where we define

L;... ;_1 S:t+2,t+3,...
—It,s—l = ; s=t+1 (2'59)
I s=t

Proof. By induction on s. For s = t, we have already proved the result

Cov(ay, ay — ay) = P;. We also have

Cov(ay, vt) = Covia, Zi(ar — az) + Giey)
= Cov(ay, s — a4) Z; + Cov(ay, 1) G,

=P.Z, (2.60)

thus the statements hold. Assuming both statements are true for all

integers up to s — 1, the inductive step is

Cov|ay, as — as)

= Covlay, Ts—1(0s—1 —as—1) + Hs_165-1 — Ks_1v5_1]

= Cov]ay, as—1 — as-1]T%_; — Cov(ay,vs-1)K',_,

= PtL’t,s—ZT;—l - PtL,t,s—QZ;—lK;—l

=PLy; o(Ty 1 — Zs_1 K1)

=P LL—,t,s——2L.I9—1

=PL,;, (2.61)

which implies
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Cov(ai,vs) = Cov|ay, Zs(as — as) + Gges)
= Cov|ay, a5 — as) Z,

- PL,, \Z, (2.6

Substituting the expression from Lemma 2.6.1 into (2.56) yields

n
~ / 1 p—1
w=ar+Py Ly, 1Z,F; v,

s=t
=a;+ Pt"'t—l (263)
where we define the quantity v, = 3 3_,.; L} +1,s_1Z;Fs_1'vs for
t =0,...,n— 1. It is possible to calculate r; recursively, using the
identity
n
Py = Z L, \Z,F;'v,
s=t
n
= > L, 1 Z,F; v, + Z}F; v,
s=t+1
n
= L Z L1501 ZoF; vs + ZiF o,
s=t+1
=Liri+ Z,F; v, (2.64)
which is initialised with , = 0 and runs backwards fort = n,n—1,...,1.

The MSE of &; as a predictor of oy is
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N{_!StE(at)
= MSE[L(cx|Yn)]

= MSE[L(e|Ys-1,0s, ., vn)]

-1

V¢ V¢ V¢
= MaSE[L(at|Yt_1)] —Cov(ay, | + |)Var| : Cov(| : |,o)
t
Un Un Un
-1
F, Cov(vy, o)
= Pt - [Cov(at, 'Ut) e COV(O!t, ’Un)]
F, Cov(vp, at)
n
= Pt - ZCOV(at, vS)FS_lCOV(vsa at)
s=t
n
=P — ZPtL’t,s—IZ.,sF;lZSLt,s—lpt
s=t
=Py — PN, P} (2.65)

where we define the quantity Ne =0, L'y 1, 1 Z,F;'Z,L .

fort =0,...,n — 1. The matrix N; is calculated recursively, using the

identity

n
N1 = ZL't,s—lzlst—lzsLt,s—l

s=t

n
> Lo 1ZoF 2Ly o+ ZiF; ' 2y

s=t+1
n
= LQ( > L’t+1,s—IZ;F;1ZSLt+1,s—1)Lt +Z,F;Z,
s=t+1
= L,N.Li+ Z,F;'Z,; - (2.66)

which is initialised with N,, = 0 and runs backwards for ¢t = n,n —

1,...,1. The quantity INV; is also the variance of r;:
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n
Var('rt) = Var ( Z _L_It+1,s—IZ;FS—1’U$)
s=t+1

n
_ ’ 1 p—1 -1
= Z —t+l,S—IZSFS Var('vs)Fs ZSLt-}-l,S—l
s=t+1

n
=Y Lo 1ZiF; 2oLy,
s=t+1
N, (2.67)

Grouped together, equations (2.64), (2.66), (2.63) and (2.65) define the
basic form of the Kalman filter smoother (KFS) recursions (de Jong,
1988; de Jong 1989; Kohn & Ansley, 1989):

Tt—1 = Lé'l‘t + Z;Ft_lvt
N1 =L,N.L:+ Z,F;'Z,
dt =a;+ Pt"'t—l

MSE(é&:) = P, — P.N¢_1P, (2.68)
t

The KFS recursions use the output from the forward pass of the KF.
They are initialised with r, = 0, N, = 0 and run backwards for
t = n,n—1,...,1. The filtered state estimates and their MSE, the
innovations and their variance, and the Kalman gain (a¢, Py, v, Fy, K4,
respectively), need to be stored during the forward pass. The terms L,
can be recovered from K, so we prefer to store the g X p matrices K,
rather than the g x ¢ matrices L;. This is because, in practice, the length
of the observation vector (p) tends to be smaller than the length of the

state vector (g), sometimes considerably so.

2.6.2 Disturbance Smoothing

We will now derive smoothed estimates of the error terms conditional on

the whole sample. This is known as disturbance smoothing (Koopman,
1993). The MMSLE of &; is
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€t = L(e|Yn)

= L(€t|Yt—1,’0t, cey ’Un)

V¢ Ut V¢ V¢
=L(e¢|Y¢-1)+Cov(es, | ¢ |)Var| ¢ | (| ¢ |-E| : |)
Vn Vn Un Un
-1
Ft Ut
= [COV(Et, 'Ut) “e COV(Et, ’Un)] :
F, Un
n
= Cov(er,vs)F; v, (2.69)

s=t

The first covariance term, for s = t, is

COV(€t, ’Ut) = COV(St, Zt(at — at) + Gtet)
= Cov(er,€))G,
=G, (2.70)

For s=t+1,...n, we have

Cov(et,vs) = Cov|o, Zs(as — as) + Gses)
= Covles, as — ag] Z,, (2.71)

The remaining covariance term can now be evaluated:
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Covlet, as — ag)

= Covlet, Ts—1(as—1 — as—1) + Ho_165-1 — K5 105-1]

= Covles, as_1 — as—1|T%_y — Cov(es, vs_1) Ky

= Covles, as_1 — as_1|T,_; — Covles, a1 — as_1)Z5_1 K5y

= COV[Et, Qg—-1 — a3—1]L,s_l

= Cov[et, art1 — arp1)Ly1 51

= Covles, Te(os — ar + Hier — Kyvg) L'y 1 5

= [Cov(ey, e¢)H}; — Cov(ey, vt)K{‘,]L_,t+1,s—1

= (H,— GK)L't11 41 (2.72)

Hence, for s=t+1,...,n, we can write

COV(Et,'US) = (Hé - GQK;)L,t+1,s—-1Z.,s (273)

Substituting into (2.69) yields

n
g = Cov(st,vt)Ft_lvt + Z Cov(es, vs)F; v,
s=t+1

n
= GiF; v + Z (H, — GiK)L' 1 51 Z,F; ' vs
s=t+1

= GiF; v+ (H — GiKy)ry
= G’t(Ft_l'Ut - K;’rt) + H;'I‘t
= Gus + Hyry (2.74)

where we define

ur = Ft_l'vt - K;’I‘t (275)
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for t = 1,...n. The quantities u; are known as smoothations and have
the same dimension as the observations y,. The variance of the smootha-

tions is

Var(u;) = Var(F; 'vs + K'r;)
= F;WVar(v)F;' + K} Var(r) K
=F;'+ K|N;K;
=M, (2.76)

It is possible to simplify the calculations by expressing r;— as a function

of u;:

ri_y = ZF; vy + Liry
= Z,F; v+ (T, — Z,K})r:
= Z\(F; vy — Kiry) + Tirs
= Zuy + Tyry (2.77)

The MSE of &; is
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MSE(&,)
= MSE[L(ec|Y u)]

= M€SE[L(€t|Yt—17 Vtyro oy ’Un)]

t

vy U (%
= M€SE[L(st|Yt_1)] —Cov(e, | + |)Var | : Cov(| : |,o)
t
-1

F; Cov(vy, €t)

= Var(e;)—[Cov(e, vs) ... Cov(ey, vy)] :
F, Cov(vp, &)

n
=1- ZCov(et,vs)Fs—lCov(vs,et)

s=t

n
=1I- Cov(et,vt)F;’ICov(vt,st) — Z Cov(et, vs)F; 1Cov(vs, 1)
s=t+1

=1-G,F;'G;
n
=Y (Hi— GK)Ly1 1 ZF; ZoLyy1 o (H: — KiGy)
s=t+1
=1-GiF;'G; - (H, - GiK})N,(H, — K;G) (2.78)

Grouped together, equations (2.75), (2.76), (2.77), along with (2.66),
define the extended KFS recursions (de Jong & Penzer, 1998):

U = Ft_lvt b K;'I’t
M;=F;'+ K;N:K;

/ /
T—1 = Ztut + Tt"'t

N ,=L,N,L+ Z,F;'Z, (2.79)

which are initialised with r, = 0, N, = 0, as before.

32



Chapter 3

Interpolated Estimates

3.1 Introduction

In the analysis of time series, it is often useful to treat an observation
as missing and estimate it from the rest of the data. The resulting es-
timates, which we will refer to as interpolated estimates, have several
applications, such as the detection of unusual observations (de Jong &
Penzer, 1998; Proietti, 2003; Penzer, 2007). A simple, though compu-
tationally inefficient technique for obtaining interpolated estimates is to
perform a pass of the filtering and smoothing recursions, omitting a sin-
gle observation y, (Brockwell & Davis, 1996). The resulting smoothed
estimates of the state and disturbance vectors (&; and &, respectively)
will be the linear expectations of these quantities conditional on the en-
tire sample apart from y;. Thus, the interpolated estimate of y,; can be
evaluated as Z;&; + G€;. This procedure, including the forward and
backward pass of the recursions, needs to be repeated for each interpo-

lated estimate.

A much more elegant method is to use the quantities My, u; from the
Kalman filter smoother recursions to compute the interpolated estimates
directly. This is far more efficient, since we only require a single forward
and backward pass of the KF'S to obtain interpolated estimates for the
whole sample. However, a general and theoretically sound proof of the
fundamental result linking the KFS output with interpolated estimates

does not appear in time series literature. Existing proofs either consider
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only the special case of the SSF with uncorrelated measurement and
transition errors (de Jong, 1989) or are insufficiently formal (de Jong &
Penzer, 1998).

In this chapter, we establish a novel proof of the key result for the
interpolated estimates of the observation vector (Theorem 3.2.1) and
use a similar argument to construct the corresponding estimate of the
state vector (Theorem 3.2.3). In addition, we consider the problem
of constructing partially interpolated estimates of y, and oy, that is,
interpolated estimates conditional on the data available at time m, where

t < m < n. We establish formulae for these in Theorems 3.3.2 and 3.3.3.

3.2 Interpolation

3.2.1 Introduction

Consider the time series {y,} in the general SSF (de Jong, 1991):

Yy = Ziog + Gy
at+1=Ttat+Htst y t=1,...,n (31)

where {&;} ~ WN(0,0?I,) and ] has mean a; and variance P;. We
define the punctured space Yﬁi) ={yy,- - Yi-1rYis1s---1 Yz} We will
now proceed to establish formulae for the interpolated MMSLE of the

state and observation vectors, which we define as

&y = L(ag|[YD) (3.2)
Yo = Ly |YY) (3.3)

3.2.2 Observation Estimate

We establish the following theorem for the general SSF:
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Theorem 3.2.1. The interpolated MMSLE of observation y, is given
by

Y=Yy — Mt_l'“'t (3.4)

and its mean square error is M, 1 where us, My are obtained from the

extended KFS recursions.

A special case of Theorem 3.2.1 is proved by de Jong (1989); it applies to
the SSF where the measurement and transition errors are uncorrelated
(GtH}; = 0). The general result appears in de Jong & Penzer (1998),
but the outline proof provided is not as rigorous as that of the special
case. Their argument relies on a particular representation of the KF and

KFS recursions:

Yt ] (3.5)

Ut =yt—Ztat }<=>|: (4 ]:[ I —Zt
(1 PO | =Ktyt+Ltat ag4+1 Kt Lt a

l
ur = Ft_l'vt - K;'I‘t o —Ut _ I —Zt —Ft"l'ut
Tt—1 = ZtFt_l'vt + L;’f’t Tt—1 Kt Lt Tt
(3.6)

Thus, expressed in this form, the operations at each step of the smoother
can be thought of as the transpose of the operations at the correspond-
ing step of the filter. De Jong & Penzer extend this argument to the
overall output of the filter and smoother in stack vector form. Using
the notation from the technical introduction, if the effect of the KF re-
cursions can be summarised as v = Ly, then the equivalent form for
the KFS recursions is —u = L'(—F~'v), where u is the stack vector of
{u:}. Thus:

35



u=LF v
=L'F 'Ly
=Xy (3.7)

This intermediate result, which is equivalent to expression (3.22) in our

proof, is the most important step in establishing the main result.

We will now construct a more rigorous proof of Theorem (3.2.1).

Proof. Let x; be the signal at time ¢, the observation minus the associ-
ated measurement noise, defined as x; = Z;a;. The smoothed estimate

of the signal is

:it = L(mtIYn)
= ZtL(at|Yn)

The smoothed estimate of the measurement error G;€; is the difference
between the observation y,; and the smoothed signal estimate &;. It can

be expressed in terms of the KFS output:

Y — T = Ziay + vy — Zi1oy (defn. of ’Ut)

= Ziay + vy — Zg(ay + Pyri_q)

= vy — L1 Piry

= F,(u, + Kir,) — Z:Py(Zu, + Tr,) (defn. of ug, )

= (Fy— Z,P.Z})u, + (F,K; — Z,P,T})r, (3.9)
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We can simplify the matrices in this expression by considering the defi-

nitions of F; and Kj:

K, = (T,P,Z{+ H,G))F;"
= K, = F;'(Z,P,T; + G,H})

These expressions allow us to write

Note that the RHS is equal to G:&;, where & = L(e¢|Y,) are the
smoothed estimates of the errors, as shown in (2.74). De Jong (1989)
establishes an analogous result to (3.12) for the special case where con-

temporaneous measurement and transition errors are uncorrelated (that

iS, GtHé = 0).

Now suppose that y, o, €, and & are (respectively) the stacked vectors
of y;, at, ¢, ¢ and & for t = 1,...,n. We also define the block-diagonal
matrices G = diag{G},...,Gr} and Z = diag{Z1,...,Z,}. The mea-
surement equation can be written in stack vector form as y = x+ Ge =

Za + Ge. Using the linear expectation formula, we have

& = L(zly) = E(z) + Cov(z,y)Var(y) "' {y — E(y)} (3.13)

Clearly, E(e) = 0 so E(z) = E(y). We can write the covariance matrix

of x and y as
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Cov(z,y) = Cov(y — Ge, y)
= Var(y) — GCov(e, y)
= Var(y) — GCov(e, Za + Ge)
= Var(y) — GCov(e,a)Z’ — GVar(e)G'
=% -GSZ -GG’ (3.14)

where ¥ = Var(y), as before, and S = Cov(e,a). Substituting back
into (3.13), we have

& =E(y)+ (- GSZ - GG {y - E(y)}
=E(y) + {y - E(y)} - (GSZ' + GG {y — E(y)}
=y—(GSZ' + GG~ {y - E(y)} (3.15)

We can rearrange (3.15) as

y-2=(GSZ' +GG)= 'y - E(y)} (3-16)

Note that the LHS of (3.12) is the t** vector component of the LHS
of (3.16), thus the same must hold for the RHS. We will now evaluate

tth vector component of X~{y — E(y)}. For convenience of

wy, the
notation, we rearrange the stack vector of observations and write it in
the form y = [y, y;]', where y\, is the stack vector with observation y;

omitted. Using standard block-matrix inversion results, we have
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Sy - E(y)}

e g

l w\: — E(y\) ]

A I\t,t X yt"E(yt)

_ * * ] [ Y\t — E(y\t) ]
| —Eal\tzt»\tz\—tl 2ﬁl\t y: — E(y,)
*

= ] (3.17)

wy

where X; = Var(y;), >3\t = Var(y\t), E\t,t = COV(y\t,yt) and

S\ =t — z'\t,tz\-tl S\t

= Var(y,) — Cov(y;, y\+) Var(y\;) ' Cov(y\s, y¢)
= MSE[L(y./y,)
t

= MSE(#,) (3.18)

Thus, w;, the component corresponding to y,, is

we = _zal\tz,\t,tz\_tl [v\: — E(y\o)] + 2t_|1\t [y: — E(y;)]
= MSE(y)™" [~ B:) — Cov(yo 11 Var(w) ™ {wy ~ B}
t

= MSE(?It)_l [yt - L(ytly\t)]
Y,
= MSE(3) ™ (3~ ) 3.19)
t
To proceed further, we need to evaluate S and hence the block matrix
A = GSZ' + GG'. Each state a; only depends on errors up to time

t — 1, thus Cov(etyr,¢) = 0, for 7 > 0. For error terms prior to time ¢,

the covariance is
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Cov(et—r, ar) = Cov(et—r, Tt-10-1 + Ht_16¢-1)
= Cov(gt—r,4—1)T;_;
= Cov(et—r, 0tt—r41)T}_rt1--- Tty
= Cov(es—r,Tt—rot_r + Hi_res_ )Ty 11144
S ; VS (3-20)

where 7> 0,and T';_,,,, ; is defined as

Tt_1...Tt_T+1 T=3,4,...
Ty r1101=§ T T= (3.21)
I T=1

Thus, the (i, 5)*" block of S is H;T,, ;_; for i < j and zero otherwise.
The matrices G and Z are both block-diagonal, hence the (i, 5)** block
of GSZ' is equal to G;HT"; ., ;1 Z for i < j and zero otherwise. The

matrix GG’ is also block-diagonal. Grouping these results together, we

can write
[ G,\G, GH:\Z, G H\T)Z} --- GH\T,, Z,]
0 G,G, G,H,Z; -+ G,HT';, 2,
A= 0 0 G;G; o GyH3T'y, 1Z),
| o 0 0 G,G,
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The matrix A is invertible because it is block-upper-triangular and all
the diagonal blocks are non-degenerate variance matrices, hence of full
rank. If we let d; = G,G}u; + G Hr, and define w, d as the stacked

vectors of wy, d; (respectively) for t = 1,...,n, we can write

d=Aw (3.22)

We will now prove that w; = u; (from the KFS) is the unique solution
to equation (3.22). Since A is invertible, we can write w = A~1d, so the
equation has a unique solution. Thus, it suffices to prove that w; = wu;
satisfies (3.22).

Repeated application of the KFS recursions yields

o y
e =2y U +Ti7eq

ot / ' ’

=Z Uiy + T1(Zh oty + TiyoTiyo)

_ ! ! ! / ! ! !

=Zi U + T Z oo + Ty Thyo(Zh Ui + ThigTeys)

ot / ’ / ’ /
=Zip U T diouyyot ...+ T 1Zpuy + T4 17

n

— , , -
= Z Tyy15-1Z25u;
j=t+1

because T, = 0. Thus, if we set w; = u, the t** vector component of
the RHS of (3.22) is
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ui

[ 0O --- 0 GtG:‘, GtHé ;+1 GtHé_It+1,n—1Z;z ]
Un
n
=G,Gjui+GH; Y Ty, 1Z5u;
j=t+1
= G,G\u, + G,H'r,
_d, (3.23)

as required. Completing the proof of Theorem 3.2.1 is now straightfor-

ward. We can write

Uy = MySE(?)t)_l(yt — )
t

> Y=Y — MySE(Qt)ut (3-24)
t

Thus, the MSE of 9, as an estimator of y, is

MSE(y,) = MSE{y, — MSE(4
v (¥:) o {y, 0, (Y)ue}
= Var{MSE(¥,)u,}
Y,
= MSE(4;) Var(u;) MSE(¥,)
Y. Y,
= MSE(y,) = Var(u,)" (3.25)
t

In the technical introduction we established that M; = Var(u;). Sub-
stituting into (3.24) and (3.25) yields
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Y=Y — Mt_lu't (3.26)
and

MSE(y,) = My ' (3-27)
t

as required.

3.2.3 State Estimate

We will now establish a formula for the interpolated MMSLE of the state

vector. We will rely on the following simple corollary of (2.5.2):

Corollary 3.2.2. Let a,b be random vectors. If g(b) is a linear function
of b, then

Cov [g(b),a — L(alb)] =0 (3.28)

Proof. The function g(b) is linear, thus we can write g(b) = Cb + k,

where C, k are constants. We have

Cov [g(b),a — L(a|b)] = Cov[C b+ k,a — L(a|b)]
= CCov [b,a — L(a|b)]
=0 (3.29)

because the linear estimation error a — L(a|b) is uncorrelated with b.

O

The intuitive interpretation of this corollary is: the linear estimation

error must be uncorrelated with any linear function of the known variable
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b. If this were not the case, the function g(b) could be used to predict
the error, thus it could be incorporated into L(a|b) to produce a linear
estimator with smaller MSE. However, the linear expectation L(a|b)
minimises the MSE within the class of all linear estimators of a given

b, so this cannot be possible.

If a, b are jointly normally distributed, Corollary 3.2.2 can be extended
to any function g(b), as long as it is uniquely defined by b. By a similar
argument, the estimation error @ — E(a|b) is uncorrelated with g(b),

since it is not possible to improve on the MMSE estimator E(a|b).
Theorem 3.2.3. The interpolated MMSLE of state oy is given by

and its mean square error as an estimator of oy is

MSE(d) = P, + P,R,M;'R,P, (3.31)
t

where R, = Z,F;'! — L\N,K,.

Proof. Leta =y, and b = Yg), so that L(a|b) = ¥,. Setting g(b) = y;,

for j # t, satisfies the conditions of Corollary 3.2.2 and we can deduce:
Cov(y; — ?)t,yj) =0

Furthermore, ¥, is a linear combination of the elements of Yff ), hence
the span of {Ygf), Y;} is the same as the span of {Yg), Y:— Y} We can

make use of this fact to write
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by =L(a]Y ), y,)
=L(a|Y P,y — )
= L(at|Y§f)) + Cov(ext, y, — ;) Var(y, — gt)—l(yt )
= &y + Cov(ay, y;, — ¥) MyStE(?)t)_l(yt — )
= &t + Cov(a, Yy — Yp)us
& &t = & — Cov(at, Yy, — Yy )u (3.32)

The covariance term in this expression is

Cov(at,y; — ¥,) = Cov(ay, My 'uy)
= Cov(ay, u,) M; !
= Cov(a, F;'v, — Kir,)M;?
= {Cov(a;,v,)F; ! — Cov(ay, ) K, }M;'  (3.33)
The remaining terms are straightforward to evaluate:
Cov(ay,v) = PtL’t,t—IZ;,
=P,Z, (3.34)

by definition of L,,. For the final term, we apply Corollary 3.2.2 to

a=ay b=Y,, and g(b) = r¢. In this case L(alb) = &, so we can
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write Cov(a — &y, 1¢) = 0. The vector r; is a weighted sum of future
innovations v;41, . . . , U, hence is uncorrelated to the estimator a;, which
(as can be seen in the KF recursions) is a weighted sum of innovations

v1,...,0:. We have

Cov(at, Tt) = COV(at — Gy + ay, Tt)

= Cov(at — Gy, ’f't) + COV(dt, 1”t)

= Cov(a,t + Pt"'t—l, ’I"t)

= Cov(ay, 1¢) + PiCov(ri—1,74)

= P,Cov(Z,F; v + L}r,,m})

= P,Z,F; 'Cov(vs, ) + Py L} Var(r;)

= P,L,N, (3.35)

Substituting expressions (3.33), (3.34) and (3.35) into (3.32) yields

&y = éy — (P, ZiF;' — P.LLNK,)M; 'y,

=é&;— Py(Z,F;' — LN K;)M;  u; (3.36)

and the expression inside the brackets is equal to Ry, by definition.
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3.3 Partially Interpolated Estimates

3.3.1 Introduction

Assume that we wish to find the interpolated estimate of y;, but we
only want to take into account the data observed by time m, where
t <m < n. We define yy,,, = E(yt|Y§,tl)) and &y, = E(at|Y£,tL)). Note

that ¥, = ¥, and &y),, = &. We will first prove the following lemma:

Lemma 3.3.1.

m
' ' ) gt ! Y
Iipim— Z Tir1;1Z2;K;L 5 m=Ly ., (3.37)
j=t+1

forO<t<m<n

Proof. By backward induction on ¢t. For t = m—1 the expression reduces

to

T -7 K -IL. (3.38)

which is true by definition of L;. We now assume the result holds for

t =7 > 1 and consider the expression for t =7 — 1
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/ ! gl
—'T, ZTT_’) 1Z K _7+1m

j=T7
m
=T .- T, ;12K Z' K
- =T1,m =T713j-1 ]+1m T+1m
j=7+1

7! / ! gt ! gt
- T'r -T—-r+1,m Z TT+1 J— 1Z K J-I-l m Z K T+1 m
j=1+1

=T. -Z' KL .1

T+1m
= (T — Z;K7)L 11 m

=L!

T-—T+1 m

=1

=T,m

3.3.2 Observation Estimate

Theorem 3.3.2. The interpolated estimate of y, conditional on the
(t)

punctured space Y, is given by

Yom = Yo — My Uy, (3.39)

and its mean square error is M 57}1, where

Ui = Uy + Ki—-lt+1,mrm (3'40)
M, =M; - KLy nNnLmK, (341)

tlm
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Proof. Define &, = L(¢|Ym) and éyjy, = L(a¢|Y'm), the smoothed
estimate of the signal and state vectors conditional on data up to time

m. We have

f!t = L(atIYn)
= L{(at|]Y m, Um+1,- -, Un)

n
=L{oy|Ym)+ Z Cov(at,vs)Fs_lvs

s=m+1

n
=byn+ Y. Pl Z,F; v,

s=m+1

thus

Etjm = L(2¢|Y'm)
= ZL(a|Y m)
= Zy(6y ~ PL'y 1)
=&y — Z,PyLy T (3.43)

We can use this result to write

Y — Bypm = Yy — &t + ZtPtL’t,m""m
= G,Gus+ G,Hir, + ZtPtL'tymrm (3.44)

where the expression for y, — &; is from the proof of Theorem 3.2.1. We
now define stacked vectors in a similar way. Suppose that Y[m]> O[m)>
€[m]> Z[m] and &y are (respectively) the stacked vectors of y;, o, &, x4
and &y, for t = 1,...,m. We also define the block-diagonal matrices
G = diag{G1,...,Gn} and Z, = diag{Z1,...,Zm}. As before,
we can write the measurement equation in stack vector form as yp, =
Z(m) + G m)€m] = ZLim]¥[m] T Gjm)€m]- Using the linear statistics results

from the technical introduction, we have
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E(m) = L(Z(m)|Ypm)
= E(@m)) + Cov((m}> Yjm)) VarYim)) ™ {Ypm) — E(Wm)}  (3.45)

As before, E(€)) = 0, thus E(x}y) = E(ypy). We can write the
covariance matrix of &, and Y, as
Cov(T(m), Ym)) = COV(Yim) — Gim|Em) Yjm))
= Var(Ym)) — Gim)Cov(Epm), Yim))
= Var(yjm)) = Gim) Cov({m)> Zim)[m] + Gimi€(m))

= Var(Y(y)) — Gim)CoV(Efm], Ajm)) Zjm)
— Gy Var(em)) Gl

= B} — Gm)Simi Zjm) — GimGim) (3.46)

where X, = Var(yy,) and Spy,) = Cov(g[m], am)- Substituting back
into (3.45), we have

) = B(Ym) + (Zim) — Gy Sim) Ziom) — Cim) Clon)) E a) (¥ — EWpm) )}

= E(Y(m)) + {Y[m] — E(ym)}
— (GimiSimiZim) + CimiGlm)) i) ¥im) — EWpm)}

= Ypm) — (Gpn)Simi Zfm) + G Glon)) Eiy Wim) — EWpm))} (3:47)
[m]

which can be rearranged to give
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Yim) ~ &m) = (Cim)SimZ + Gimi G ) Eia {Ym) — EWpm))} (348

The LHS of (3.44) is the t!* vector component of the LHS of (3.48), thus
the same must hold for the RHS. Let wy),,, be the tth vector component
of E[_"i] {Y{m) — E(y|m))}- From the previous proofs, we know that it is

equal to

Wim = M?JSE(@t|m)_l(yt - @t|m) (3~49)
t

The matrix Ajpy) = G(mSim)Z’ + Gim _Ci{m] has the form

[ G\G\ G\H\Z, G H\T,Z; --- GH\T,, Z, |

0 G,G;  GHZ; - G,H,T;, ,Z;,

Am=| 0 0 G3G; - G3H3T'y,, Z;,
| o 0 0 G,G. |

The matrix Ay, is block-upper-triangular and the diagonal blocks are all
invertible matrices, hence Ay is invertible. If we let dy,,, = G,Giu; +
G.Hir,+ Z,P,L; ,,v,,, and define ), djm) as the stacked vectors of

Wy, dym (respectively) for ¢ =1,...,m, we can write

d[m] = A[m]w[m] (3.50)

We will now proceed to prove that wyj,, = Uy, is the unique solution to

equation (3.50). Since Ay, is invertible, we can write W, = A[—ni]d[m]’
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so the equation has a unique solution. It now suffices to prove that

Wy|m = Uy, Satisfies (3.50).

It needs to be shown that the t** vector component of AU is equal

t0 Vyjr,. We have

m
{A[m]u[m]}t = Gth‘.uﬂm + GtHg Z I,t+1,j—1z.,1uj|m
j=t+1

= GtG;(ut + K;th+l,mrm)

m
+GH, Z I,t+1,j—1z_’7'(uj + K9L1j+1,m7'm)
j=t+1

m
_ ' 1 / / ! A !
= G,Guu,+G H, Z Tit1-125u;+GG KLy Ty
j=t+1

m
! ! /! ! !
+GH, > Ty ; 1 Z5K L T
j=tr1

m
_ ! ! / ! ! ! i
= G,Gu,+G H, Z T 11j1Z5u;+GG KLy () Ty,
j=t+1

+GH (T, 11— L1 )T (3.51)

using Lemma 3.37. The sum in this expression can be evaluated by

noting that
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o /
e =2y Uy T

ol y / /

=Zi g + T (24 0up 0+ Thyomy o)

Y / / / ’ / ’

=Zyp U+ Tip1 2y ot o + T Ty o(Zh 3y 3 + ThysTeys)

Y ’ / v ’ ’
=Zi U+ T Zy o+ A Dy 12Uy + T T,

m
! ! !
= Z T j1Z5u; =7 — Ty mTm (3.52)
j=t+1

Substituting into (3.51) yields
+ GtHf‘, (—,t+1,m - L/t+1,m)7'm

= GGy, + G Hyri + G,G,K L', 1 ,n7r,

! i
-G,H,L t+1,mTm

= G,Giu; + G H;r: + (G,G,K — GtHi)thJrl,m"'m
(3.53)

The expression in the brackets can be simplified using the Kalman filter

equations. We have
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G,G\K; - G,H, = G,G{ K} — (FtKé - Z,P,T})
= (GtG; - Ft)Ké - ZtPtT;:
=Z,P,Z,K,— Z,P,T,
=Z,P,L, (3.54)

Hence

{Apmumi} = G,Giuy, + G Hyry + Z, P Ly L'y o7, = dyy, (3.55)

Thus, u[,, satisfies equation (3.50) and we can write

Upm = M?/SE(?)t|m)_1(yt - Zilt|m)
t

SYtm =Yg — MySE(i/t|m)ut|m (3.56)
t

To complete the proof, we need to compute the MSE of ytlm:

MSE(Yjm) = MSE (’yt - M?RE(@t|m)ut|m)

= Cov (MySE(\yﬂm)uﬂm)
t

= MSE(Yyp) Var(ttyn) MSE(ltyn) — (357)
t t
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= M;,E(yﬂm) = Var(utlm)_l
t

= Var(u, + K;L’Hl,m"'m)—l

= (M¢~ KiL'yyymNmL o1 Ky) ™
(3.58)

because Var(u,) = My, Var(r,,) = Np, and

Cov(ug, rm) = Cov(F; v, — Ky, )
= —KCov(r,,Tp)
= —K{Cov(Z}41F 1 veyy + LipaTog, Tm)

! !
= —Kt.Lt+]_COV('rt+1, "'m)

— —K,_,t+1’mNm (3.59)

Thus, MySE(g)tlm) = M, as required.
t

tim

3.3.3 State Estimate

We will now evaluate the corresponding partially interpolated state es-

timates Cy)p,:

Theorem 3.3.3. The interpolated MMSLE of a conditional on the
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punctured space Yg,t,) is given by

S -1
Oyjm = Oy, = PRy My wy

and its mean square error is

+ P,R, M,'R, P,

|m tlm tlm

MSE(ém) = P

tlm

where

R,.=R,+ L\, NnL; K,

tlm
~ —_ A !
oy = 0y — PiLy 1y,

P = MaStE(dtlm) = Pt + Pt—L—’t,mNmLt‘mPt

tim

Proof. Similarly to the proof of Theorem 3.2.3, we have
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Ay = L(at|Y§fz)’yt)
= L(Oét|Y$rtL)’ Yy — ?)t|m)
= L(at|Yg;)) + Cov(a, y; — @tlm)var(yt - gtlm)_l(yt - yﬂm)
= Qyym + Cov(as, Y; — Ygym) M?EE(yt[m)_l(yt ~ Ygjm)
= &y + Cov(a, Yy — yt|m)ut|m
= Oyjm + Cov(a, Mt_|,lnut|m)“t|m
= Ay + Cov(ag, uy + K;L_’H-l,mrm)Mt—lrlnutlm

= &yjpy, + [Cov(as, ) + Cov(as, Tr) L gyy m K] Mty

(3.65)

We have already evaluated Cov(ay,u;) = P,R;. The remaining covari-

ance term in the expression is

Cov(at, Trm) = Cov(ay — G + Gy, )
= Cov(ay — &, 7)) + Cov(éit, Tm)
= Cov(a¢ + Pri—1,Tm)
= Cov(as, rm) + PiCov(ri—1,7m)

= P,L',;uNm (3.66)
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using results from the proof of Theorem 3.2.3. We can thus deduce

Gym = Ot + Py (Ry+ L'y NmL o Ky) Mt_|11nutlm (3.67)

where the expression inside the brackets is equal to Ry,,. This proves
the first part of Theorem 3.3.3. Proof of the second part follows di-
rectly, since the estimation error @y, — a is independent of uy,,. The

associated MSE matrix is

MSE(éxjm) = Var(étym — P, R, M} - ay)
t

|m t]mu’t|m

= Var (&, — ) + Var(P,R Ma}nut,m)

tim

= Var(&; — P,L, ,,7, — i) + P,R, M, R, P,

|m tlm " “tjm

= Var(&; — o) + Var(P, L ,,7,,) + PR, M, Ry P,

tlm ™~ “tlm

=pP,+P,L, R,L,, P,+PR, M.'R, P, (3.68)

tm="" tjm " tm

which completes the proof of the theorem.

3.4 Conclusions

The theorems proved in this chapter are powerful tools which further
extend the usefulness of the KFS by providing us with additional meth-
ods for utilising the output quantities. We have provided a novel proof
for the general case of the fundamental interpolation result, which meets

the same standards of rigour as earlier proofs of the special case.

The partial-interpolation formulae can be viewed as generalisations of
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the main result, and allow us greater flexibility when choosing subsets
of the data on which to condition our estimates. The estimators intro-
duced are computationally efficient to construct, as they only require the

output from a single forward and backward pass of the KFS recursions.

In Chapter 4, the partial-interpolation results allow us to make full use of
the KFS output from the univariate representation of a multivariate time
series and construct estimators with desirable properties. These results
then form the basis of the various model-based methods for estimation

of missing temperature data in Chapter 6.
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Chapter 4

The Univariate
Representation of a

Multivariate Time Series

4.1 Introduction

When a time series model is in state space form, the Kalman filter can
be used to obtain filtered or smoothed estimates of the underlying states
a; given the observed series. In this chapter we demonstrate how the
multivariate series Yq,Yg,--.,Yn, Where Yy = (Y16, Y2ty - -» Yps,t)’» CAD
be treated as the univariate series y1,1,¥2,1,--,¥p1,1,Y1,2) - - - » Ypn,n fOT
the purposes of filtering and smoothing. We will refer to {y,} as the
multivariate representation (MR) and {y;;} as the univariate represen-

tation (UR) of the time series.

Anderson & Moore (1979) introduce the concept of decomposing the
vector y,; into vectors of smaller dimension, which they term sequential
processing. An application of a similar method to longitudinal models is
explored by Fahrmeir & Tutz (1994). Koopman & Durbin (2000) offer
a more detailed treatment of the UR, but their approach only focuses
on the basic state space representation, where the measurement and

transition errors are uncorrelated.

We expand on their work by modifying the UR so that it can be applied
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to the more general SSF of de Jong (1991). We examine the output
of the UR Kalman filter and smoother in detail, and discuss how it is
related to the MR filter and smoother output.

Finally, we extend the concept of the UR to any time series where sev-
eral terms are observed contemporaneously. We demonstrate how this
approach can be used to partition the variance of the state MLE (or, in
the non-Gaussian case, the MSE of the state MMSLE) into contempo-
raneous and non-contemporaneous components, as a starting point for

analysis of variance.

4.2 Motivation

Use of the UR has several advantages:

1. In the MR Kalman filter, if the single point y;; is missing, the
whole vector y; needs to be treated as missing. In the UR, the con-
temporaneous observations yit,...,¥i—1,t, Yi+1,t)- - - Yps,t Still en-
ter the filter, thus improving the accuracy of smoothed estimates.
Additionally, the ability of the UR Kalman filter to ignore indi-
vidual components of the vector y, allows us to compute deletion
residuals that result from removing individual points or patches of

observations from the sample.

2. The initial MR state vector may contain both diffuse and non-
diffuse elements. Implementation of the Kalman filter with these
partially-diffuse initial conditions is more straightforward with the
UR (Durbin & Koopman, 2001).

3. If the components of y, are not observed at the same time, the
UR makes it possible to update the estimates as soon as new data

arrives.

4. The computations required for the MR Kalman filter involve calcu-
lating F'; ! the inverse of the innovation variance, for every value
of t. The innovations have the same dimension as the observations,
thus each step of the filter will involve inverting a p; x p; matrix.
In the UR, no matrix inversions are necessary, since the innovation

variances {F; .} are scalar. Koopman & Durbin (2000) give results
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purporting to show that this leads to considerable computational
gains, however, despite appreciable reprogramming, it has been

impossible to reproduce their results.

4.3 Reformulating the State Space Model

4.3.1 The Koopman-Durbin Approach

Koopman and Durbin (2000) specify the state space model as:

Yt = Zio + &t
o411 — Ttat + Rtnt t= 1, P (] (41)

where {e;} ~ WN(0, H;), {n,} ~ WN(0, S;) and Cov(et,n,) = 0 for all
t,s =1,...,n. Asin the general SSF, the first state a; has (uncondi-
tional) mean a; and variance P;. If the components of the measurement
error €; are uncorrelated (i.e. if H; is a diagonal matrix), the model is
easy to reformulate. Let Z; be the ith row of the measurement matrix
Z;, that is,

Zit
Z=| (4.2)
Zpivt

The model can be expressed in the form

Yit = Lig0Gg+ €t

T« t+ Rin if i=1
Qi1 = P ¢ L (4.3)
&i—1,t+1 if 1= 2, 3, v ooy Pt1
for t = 1,...,n, where a;; = ;. This is the SSF of the univariate
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representation of a multivariate time series.

From time (1, ¢) to (p¢, t), the UR state ;s stays constant; the transition
matrix is the unit matrix and the transition error is zero. At each
time period (4,t), the relevant part of the state vector is measured by
premultiplying a;; by the rows of the measurement matrix, Z;:, and
adding the measurement error ¢;;. This simple sequential approach is
possible because contemporaneous measurement errors are uncorrelated,
thus there is no need for them to enter the model simultaneously (as the

vector &¢).

The transition from ay, ¢ to & ¢41 in the UR is identical to the transition
from a; to aiyy in the MR, since the corresponding transition and

transition error matrices are the same.

4.3.2 Non-diagonal Measurement Error Variance

If the components of the measurement error are correlated, i.e. H,
is non-diagonal, the simple sequential approach is not directly applica-
ble, because the elements of £; need to enter the model simultaneously.
Koopman and Durbin propose augmenting the state vector a; by incor-

porating the error term ;. We adapt their method by defining

~ - [s 7 ~ Tt 0
Z=|2 1|, at=[€t], Tt—[o 0]
. [ Rmr o 1 . S, 0
Rt= t P ﬁt=|: K ) St=|: ! ]
| 0 I, Et41 | 0 H;y
- ) p -
a= ||, B=| Tt 0 (4.4)
| 0 0 H; |

In this formulation, both elements required to calculate observation y,
(the state vector a; and the error €;) are contained in the augmented
state vector &;. Thus, the noise term is eliminated from the measure-

ment equation and the MR model can be written in the form

63



Y = Zta’t
ay1 = Tiéy + Ry, t=1,...,n (4.5)

where {7,} ~ WN(0, S;), and the first state é&; has unconditional mean
and variance ~ (@, P;), respectively.

The advantage of our parameterisation is that Koopman and Durbin

define the transition error and variance of the series as

- S 0
ﬁt= e , St= i
€t 0 H;

This is incorrect; the state vector a;4+; on the LHS of the transition

(4.6)

equation involves the term €,4,, so this needs to appear in the associated
error term on the RHS. A more serious problem is that the Koopman-
Durbin formulation violates the conditions of the SSF since the state o
is no longer independent of all transition errors 79, for i = 1...¢, because

a; and 7); both contain the component ;.

Furthermore, the simple SSF (4.1) is inadequate, as the measurement
and transition errors are necessarily uncorrelated. Allowing for possible
correlation is essential for a wide variety of state space models (Harvey,
1989), such as the max(p,q) representation of an ARMA(p,q) model
(Pearlman, 1980; de Jong & Penzer, 2004).

4.3.3 A More General State Space Model

Consider the SSF as defined by de Jong and Penzer (1998):

Y = Zias + Giey
(s 708 | =Ttat+Htst s t=1,...,n (47)

64



where {e;} ~ WN(0,0%I,) and a; has mean a; and variance P;. The
error terms G&; and H e, have variance 0°G,G}, and o> H, H, respec-
tively. We will assume 02 = 1 without loss of generality, redefining G
and H; if necessary. The correlation between measurement and tran-
sition errors is made explicit by using the same r X 1 error vector &
in both the measurement and the transition equation and introducing

matrices Gy, H;.

The correlation between contemporaneous measurement and transition
errors is Cov(Giey, Hier) = GiVar(e) Hy, = GiH;. If Gy and H, are
orthogonal, this is equal to zero, the errors are uncorrelated and we
can use the Koopman-Durbin approach to provide a UR. This becomes
clearer if the term Gie; is replaced by the px1 vector ¢, ~ WN(0, G;G}),

which is independent of He;. The model is now

yt = Ztat + Ct
o1 = Tioy + Hyey t=1,...,n (48)

and is equivalent to the simple SSF (4.1) up to a relabelling of the system

matrices.

4.3.4 Correlation between Measurement Error and Tran-

sition error

If there is correlation between the measurement error and the transition
error (G¢H} # 0), the UR can be constructed by incorporating the
common error term &; into the state vector. The new system matrices,

state vector and error term are
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. 0 . a o P, 0
H; = , & =¢€tq1, 1= ' , P1= !
I 0 0 I

The resulting state space model is

dt+1 =Ttdt+-f{tgt y t= 1,...,']’l (4:9)

where {€:} ~ WN(0,1,) and &; has mean a; and variance P;. Because
of the change in the index of the error term, &; is independent of &, so

the model is still in SSF. There is no measurement error, thus the UR is

Vit = LitOig

o Ttdpt,t + Htgt lf 1=1
Ait41 =

s . . (4'10)
G141 if i=23,...,pt1

where &;; = &; and we define G;;, Z;; as the i row of Gy, Z,

respectively:

th Zl,t Gl,t

Z,=| : | =] : : (4.11)
Zpt,t Zpt,t Gpt,t

Conceptually, this model is similar to the simple sequential UR, in that
the state vector stays constant from (1,t) to (p,t) as the relevant parts
are read off. The only difference is in the transition step, from (pt,t) to
(1,t+1), as the error term &;4; is sampled and stored in the augmented

state vector & ¢41.
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4.4 Filtering

4.4.1 Univariate Filtering

In the previous section we establish that the measurement error can
always be eliminated from the model by incorporating into the state
vector. Hence, in the interest of notational simplicity, the general SSF

(4.7) can be expressed as

Y = Zioy
Aty = Ttat + HtEt s t= ]., NN () (412)

without loss of generality. In the absence of measurement noise, the

Kalman filter equations can be simplified considerably:

v =y, — Ziay
F,=Z,P,Z,
K,=T,P,Z,F;*
L,=T, - K,Z,
aiyy = Tia; + Ko,

P,.,=T,P,L,+ H.H, (4.13)

Note that the p; x p; matrix F'; needs to be inverted at each time period

t. This is the most computationally expensive step in the recursions.

The univariate representation corresponding to (4.12) has state space

form:

Yit = Zituig

Ttapt,t + Htet if 1=1
Qi1 =

o (4.14)
Qi 1t+1 if i=23,...,pt11
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where Z;; is the ith row of Z; and a; i = o. The Kalman filter recur-

sions for the UR run forwards fromi=1,...,p; foreacht =1,...,n:

Vit = Yit — LitQit

i T /
Fiy=2,,P;Z;,

» -1 S
i{i,t _ { Pz-,tZQ,tFi,t if i=1,2,...,p:—1

T 1 -1 : s
Ttht,tht,t Pt,t lf 1= pt

. 1-K,,Z,, if i=1,2,...,p—1
L;;= S

Zpt,t lf 1 =Dt

pert
~ Ttdpt,t + i{pt,t'ng,t if 1=1
ait+1 = - ~ " . .
ai—1441 + Kic1p410-1041 if 1=2,3,...,pt41
~ ~1
- T.,P, .L HH, if i=1
P = { _tput gt - (4.15)
P; y41Li g1 if i=23,...,p11
fort =1,...,n. Koopman and Durbin identify certain cases where the

innovation variance is zero in some steps of the filter recursions. This
could occur, for example, if there is an observation y;; which is a linear
combination of “past-contemporaneous” terms {y1s,...,¥i—1,}. In that
case, the Kalman gain in the UR is equal to zero (K. i,t = 0), so the state

estimate and its variance do not need to be updated.

The advantage of the UR Kalman filter lies in the fact that I:"',-,t is a scalar,
hence no matrix inversions are necessary. The output of the univariate
filter is different to that of the multivariate filter; for example, if v;; is
the " element of v;, we have Uit 7# vit- In the following subsection we

show how these terms are related.
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4.4.2 Filtered State Estimate

Define Y, = {y1ts---,Yit}, with Yo, = ¢ and Y, = Y We will

refer to Y, as the contemporaneous past of observation y;; because

it consists 0; ’tall the elements of y, which, in the UR, enter the model
before time (i,t). We also define Y;; = {Y¢-1,y ; t}, with Yot =Y¢1
and Yy, ¢t = {Yi-1,y:} = Y. We term Y;_;; the augmented past of
observation y;;. The UR Kalman filter produces the MMSLE of the
state a;; conditional on the augmented past Y;_;;. For i = 1, this

MMSLE and its associated MSE are

a1t =L{a1:|Yo;) = L{ay|Y¢—1) = a;
P1; = MSE(ay;) = MSE(a;) = P, (4.16)
(8 238" o,

The terms @iz, agg,...,ap,: are all estimates of the same state a;.
The MR state estimator a; only depends on past information (Y;_1),
whereas the UR estimator a;: also takes into account the contempo-
raneous past (y i1, t)' As the contemporaneous observations enter the

model, the variance is updated as follows:

=/

z',tLi,t

Pi,t - ﬁz’,tzg,tf{;,t

P, — P;,Z; F'F K,

=P, - j{i,tvaf(f’i,t)k;,t

= P;, — Var(K, ;) (4.17)

Ny

Pz =

Thus, the MSE matrix Pi+1,t is smaller than P,—,t, in the sense that
the difference Pi,t - 13,'+1,t is equal to a variance (i.e. positive semi-
definite) matrix. Hence, each diagonal element of 13141,,5 is smaller than
or equal to the corresponding element of pi,t- They are equal only in
the situation where y;; is a linear function of past observations Y';_ 4,

in which case the Kalman gain is zero and P;;1¢ = P,;,. In general,
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the strict inequality holds, which means that the MSE of a;11: as an
estimator of the state a; is smaller than the MSE of a;; as an estimator
of the same state. This is intuitively reasonable; if the state is constant
and there is no measurement noise, the estimate of the state is improved

as more data enters the KF.

We can also write

=P,L,, (4.18)

where L ;t = i/“ cee i:t Repeated application of identity (4.18) pro-

duces 1~:’p ot = Pti’ which can be substituted into (4.15) to yield

= pe,t?

Piy1=Pig = TtPtL;,t,t + H,H, (4.19)

Expression (4.19) is equivalent to the MR recursion

This appears to suggest that the product of the accumulated f;i,t ma-
trices from (1,¢) to (p¢,t) in the UR filter is equal to the corresponding
matrix in the MR filter, that is,

LmJ=Lt (4.21)

However, (4.21) cannot be deduced directly from (4.19) and (4.20) be-
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cause the matrix T'; is not necessarily invertible. In the following chapter

we prove a general result of which (4.21) is a special case.

4.4.3 Innovations

The innovations v; from the MR can be reconstructed from the UR

output, since

Vi =Y — Ztat =Y — thl,t (422)

Using the notation v; = (vip4,...,Up,t)’, We can see that ;¢ = vy 4. For
i > 1, we have

Uit = it — L(¥it]Yi-1,6) (4.23)

The it* observation at time ¢ can be written in terms of the correspond-
ing UR innovation as y; ¢ = 05t + L(yi+|Y i—1,t). The term L(y;+|Yi—1,t)
is a function of Y;_;; and the system matrices only. Thus, when
(Yi-1,,0i) is fixed, Y;; is fixed and vice versa. The same is true
for (Yi—o,,¥i—1,t,0it) and Y. Applying this argument recursively, we
can see that if (Y¢—1,014,...,Di4) is fixed, then Y;; is fixed and vice

versa. Thus, equation (4.23) can be written as

fh‘,t =Yit — L(yi,t|Yt—1, 171,t, sy z~)z'—l,t) (4~24)

In direct analogy to the MR Kalman filter, the innovations from the
UR #14,...,0;—1,¢ have zero mean, are pairwise independent and also

independent of Y;_1, thus
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Vit = Yit — L(Wit|Yt—1, 0185+ - -, Viz1t)

i—1
=yt — Ligl Yio1) — > Cov(yi s, Be) Var(Bke) ™ (B, — E(Bk,s)}
k=1
i—1 _
= Vit — Z Cov(yi,t, Uk,t) Fy, tlf)k,t (4.25)
k=1

Since a; ¢+ = o, the covariance term on the RHS of (4.25) is

Cov(yit, Ukt) = Cov|[Z; s, Z 1okt — k)]
= Zi1Cov(ayy, gy — x ) Ly, (4.26)

where

Cov(at,t, 0kt — G )
= Elay (ks — art)']
= E[(aks — akt) (@t — @) + Elag ¢ (ars — Gr,t)]

= MSE(Gy,:) + E[L{ak (ke — @) [V k-1,}]

= Py + Elag{L(okt|Y k-1,) — @r,e}]
= Py s+ Elar{@xt — Grs}]

=Py, (4.27)

’

Substituting into (4.25), we obtain

i-1
~ D I —1x~
k=1
i1
& Vit = Uit + Z Z; 1 K Ukt (4.28)
k=1
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Thus, the MR innovation v;; is equal to ¥;; plus a weighted sum of

past-contemporaneous UR innovations.

Define the vector of UR innovations ¥y = (01,4, . - ., Up,,t)’, which has the
same dimension as the MR innovation vector v;. The relation between

¥; and v; can be expressed as

v = Q¢ (4.29)
where
[ 1 0 0 - 0)
Zy: K1, 1 0 0
Qi=| Zs:K1: Z3:Koy 1 - 0 (4.30)
\ Zp K1y ZpKor Zp, Ksp - 1 )

This is analogous to the expression y = Qu from the technical intro-

duction, as will be discussed in the following subsection.

4.4.4 Innovation Variance

Let {F}; be the (4, )" element of the innovation variance matrix F;.
Its diagonal terms can be computed by taking the variance on both sides
of (4.28), because the terms on the right hand side are uncorrelated. Let

F;+ = {F:}i; denote the diagonal terms. We have

i—1

Var(v; ) = Var(¥;z) + Z Var (Zi,tlz'k,tf)k,o
k=1
= Fy=F+Y ZiKiFo Ki 2, (4.31)
k=1
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where Fy; and Ky are from the univariate filter. All the terms inside

the sum in (4.31) are non-negative. This implies

Fe>FE, Yi=1,...,n; (4.32)

b -_ 4
As expected, the innovation variance decreases as more past contempo-
raneous data enters the KF.

The non-diagonal terms can also be obtained using (4.28). Consider the

case where ¢ > j:

{F+t}ij = Cov(vit, vjt)

= E(vi,1vj,) — E(vi,t) E(vj)’

i1 j-1
=E (ﬁi,t +Y ZiK k,tﬁk,t) ('Dj,t +Y Z; K z,tf)z,t)

/

k=1 =1
(4.33)

By the properties of innovations, only terms of the form 771%,t will have

non-zero expectation, thus

-1
~ ~ 5 -~/
{Fi}i; =E [Zi,tKj,tng',t] +E | Zi K04, Ky, 25,

k=1
j-1 ,
=Zi 1 KjFjo+ Y Zii K1 Frp Ky, 25
k=1
j—1
. o
=Zi1PjiZ;1+ Y ZisKi P Ky, 25 (4.34)
k=1

When ¢ = j, the term Zi,tlsj,th,t is equal to ﬁ',-,t, so (4.34) is just a
special case of (4.31). Finally, when ¢ < j we can use {F}i; = {Ft}ji.

Expression (4.34) can be written more concisely by exploiting the rela-
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tion between v; and ¥;. Define the matrix F; = Var(?;). The compo-
nents of ¥; are uncorrelated, thus F; = diag{F,..., Fp, +}. Equation
(4.29) implies

F; = Var(v;)
= Var(Q,:)
= Q,Var(9,)Q,
= Q,F,Q, (4.35)

This is analogous to the expression ¥ = QFQ’ from the technical in-
troduction. The MR Kalman filter takes n steps to implicitly compute
the Cholesky decomposition of the n x n-block variance matrix X, thus
avoiding inverting ¥ directly. Similarly, the UR KF takes p; steps to
implicitly compute the Cholesky decomposition of the p; x p; variance

matrix Fy, thus avoiding inverting F; directly.

4.5 Smoothing

4.5.1 Univariate Smoothing

The KFS recursions for the UR (4.14) run backwards from ¢ = p,...,1

foreacht=mn,...,1

— Zg,ta‘i,t + "N'iyt if i=12,... ypr—1
_1’t - ~ ~ . .
1 Z;t,tupt,t + T{‘,rpt,t if i=p;
~ -~ - -~ / -~ —~
N 1.=Z F1'Z; + LiyN, Ly, (4.36)
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where we define 70t = 7p,_,¢-1 and Nos = Np,_, -1 for notational
convenience. The recursions are initialised with 7, » = 0 and N, , =

0. Alternatively, we can use the form

- ~_ 1~ =/ _
Ti1t = Zg,tFi,tl’Ui,t + L; ;74 (4.37)

The smoothed state estimates and their associated MSE are

ot L(ai,t|Yn) = di,t + Pi,t';'i—l,t (4.38)

%S?(ai,t) =Py — PiyNi_ 1P, (4.39)

All the UR state estimates at time t are equal, since neither the data

taken into account nor the state itself changes:

apht = dp‘ht + Ppht’;'pt_lyt

t

~ ~ ~ ~l -
=0y, 14+ Ky 140,14+ Pp_14Lp,1:Tp, 14

~ -~ ~ 1 ~—1 - ~ ~/ .
Ap, 14+ Pp 142 p1Fp,~14Vp,—1t + Pp,—1,6Lp,—1,tTp,—1,1

Gp,—1,t + Pp,—14Tp,—21

&pg—l,t

i

Qv
iy
o~

(4.40)

Trivially, the smoothed state estimates from the MR and UR KFS are
the same: &i,t = L(cit|[Yn) = L(0¢|Yn) = &y, for i = 1,...,p,. We

can deduce
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Qv

1t = Oy
& a1+ Pty 0-1 = ai + Piry g
< ap+ Ptf'pt_ht—l =a; + Piri_q

=4 ’Fpt_l,t_l =Ti-1 (441)

because the (positive semi-definite) matrix P41 is invertible. This result
implies that r,, ; and 7; are equal for all values of ¢, as are their variance
matrices Ny, ; and N;. This is intuitively reasonable: #p, ; and Ny, ;
are dependent only on the future of the series, so they will be equal to
the equivalent MR quantities when we do not consider contemporaneous
data. This occurs at the “end” of each vector y,, in the same way that
a;; and 13,-,1‘, only depend on the past, so they will be equal to the
corresponding MR quantities when ¢ = 1, at the “beginning” of y,.
This fact allows us to express the MR smoothations and their variance
in terms of the output from the UR KFS:

ut = F;lvt — K;"'t
~ o~ o~ 1A ~ / ~
= (QFQ;) " Q:v, — K7y, t
/-1 = =1 =1~ _ -
=Q; F, Q, Qv,— K;rpt,t

~/—1~-1_ J ~
=Q; F, v,— K;rp,:

(4.42)
M,=F;'+K,N,K,
~r—1=-1~=-1 ~
=Q; F, Q, +K,N, K, (4.43)
where K, can be written as
K, = TtPtZQFt_l
~ ~ o~ o~
= TtPI,th‘.(QtFtQt) '
~ =71z —1~-1
= Ttpl,tZ;Qt F, Q (4.44)
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4.5.2 Deletion Residuals

In many practical applications, such as detecting outliers or structural
breaks in a time series, it is useful to treat y;; as a missing observation
and estimate it from the rest of the data (de Jong & Penzer, 1998,;
Proietti, 2003; Penzer, 2007). We are particularly interested in the
residual obtained by taking the difference between this estimate and the
true value of y;:. This approach can also be used to assess the quality
of a given dataset; if the observation y; ; is unusual, its deletion residual

tends to be large.

Let y\;; be Y excluding y;: and also let y,; be y, excluding y; .
The UR KFS allows us to construct several different deletion residuals,

depending on which part of the data we wish to condition on.

Past-only

If we only consider data up to time ¢ — 1, the deletion residual is in fact
the innovation v;; obtained through the MR KF:

Vit — L(yit|Yi-1) = vig = yit — Ziaq (4.45)

By definition, its variance is equal to Fj;.

Present-only

If we condition on the data y,;, the resulting residual is

Yit — L(¥itlyni) (4.46)

This can be computed by putting the series y1 ¢, . . ., Yp, : through the UR
KFS. The forward recursion must be initialised with the unconditional

mean of a; and its variance. Let these be a;” and P} respectively. They
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can be obtained through the recursions

a;:_l = E(Ttat + HtEt) = Tta?_
P}, =Var(T,o, + H,e,) = T,P{ T, + H,H, (4.47)

for t = 1,...,n, initialised with a} = a;, P{ = P;. Once the forward
pass of the KF is complete, the UR KFS will run backwards from yj, ;.
The backward recursion is initialised with i';,t =0and N ;;,t =0. We
thus obtain the smoothation ﬁ: . and its variance Mf’;. The resulting

deletion residual is

)

Uit — L(@iglyn) = (M) 74, (4.48)

and has variance equal to (Mz‘;)”l

Past and present

This is the estimate we obtain if we take into account all the data up
to time ¢, excluding y; . To compute it, we start by running the UR
Kalman filter recursions on the series y1,1,...,Yp,t- Once this is com-
plete, we smooth backwards from y,, 1, initialising the KF'S with Tt =0
and N, ; = 0. This will yield the smoothation %, and its variance M;,

which in turn allows us to construct the deletion residual

Yit — L(yi,tIYt—l,yt\i) = (Mi:‘, _1'&’1:t (4.49)

which has variance equal to (]\Zz,_t)“1

A better method is to use the partial-interpolation formulae from Chap-
ter 3 to construct the “past-and-present” residuals for the whole sample

in a single pass of the KF'S. Applying Theorem 3.3.2, we can write
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Vit — Lt Ye-1,900) = My, i tip o (4.50)

where

~ o~ ~ 1 =1 =/ .
Ui tpe,t = Wit T K i,tLi+1,t e Lpt,trpt,t

’o= =) =~ =~ = ~
Mi,tIpt,t = Mi,t - Ki,tLH-l,t vee Lpt,tht,tLPt,t - Li+1,tKi,t (4.51)

The quantities U 4p, ¢, M; t|p,,+ are the UR equivalent of wsjy,, My, in

the notation of Chapter 3.

Past and future
If we condition on the entire sample apart from data at time ¢, we

obtain the interpolated estimate of y; ; from the MR KFS. The resulting

deletion residual is

Yit — L(yi,tIYg)) = {Mt_l’ut}i (4.52)

that is, the it* element of the vector M 'u;. Its variance is Mi_tl, the

ith diagonal element of M;!.

Past, present and future
Finally, we can condition on the entire sample excluding the point y; ;.

This estimate can be obtained from the UR KFS, with the recursions
described in (4.36). This yields the residual

Vit — L(yiplynes) = MMy (4.53)
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with variance Mi_tl.
)

4.6 Contemporaneous Observations

4.6.1 Introduction

In the previous section we consider a univariate representation of a mul-
tivariate time series. This representation has the property that some of
the elements of the univariate series are observed simultaneously, even
though they are brought in one at a time. Specifically, at each time
period ¢, the consecutive observations y14,...,yp,,: are observed simul-
taneously. The UR Kalman filter recursions illustrate how, if the point
of interest is y; ¢, the estimate of the state a; can be improved by con-
ditioning on the data contemporaneous to y;;. This approach can be

generalised to all time series with the same property.

4.6.2 The General Model

Consider the time series {y,}, t = 1,2,... which has the general SSF

Y = Ziay + Gieg
Q41 = Ttat+Htet y t= 1,...,n (454)

Now assume that data y,_,,...,y, are observed simultaneously. These
represent the “present” of the series, whereas Y ,_,._1 represents the
“past”. We are interested in how the past and present of the series

contribute to the forecast of the current state as and its MSE.

We must first begin by considering the covariance between the current

state as and past innovations v,_;:

Lemma 4.6.1.

Cov(as, 'Us_j) = Is—j+1,s—lKS—st—j (4.55)
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forj=1,2,... and

Proof. By induction on j. For j = 1 we have

Cov(a,vs-1)

= Cov(Ts—105—1 + Hs-185-1,Y5 1 — Z5-105-1)

= Cov(Ts_10s-1 + He_165-1,Zs 10051+ Gs_165-1 — Z5_105-1)
= Cov{Ts-105-1,Zs_1(as—1 — as—1)} + Cov(H,_165_1, Gs_1€5-1)
=T, 1Cov(as_1,05-1 —as_1)Z_; + Hs 1G;_;

=Ty 1P, 1 Z, ,+H, ,G;_,;

= Ks-1Fs (4.56)

For j > 1, assuming the statement is true for all integers up to j — 1,

the inductive step is

Cov(ay, 'vs—j) = Cov(Ts_ 1051 + Hs_165-1, 'Us—j)

=T 1Cov(as_1, 'Us—j)

=T, 1Cov(0tg-1,vs-;) coee )

=T;s_1Cov(ag, vy_(j-1)) (settings’ = s — 1)

=T 1Ty (j-1)+1,¢-1Ks—-1)Fo—(j-1)

=Te 1T, 116 oKs jFs '4.57)
O

4.6.3 Filtering
State Estimate
Define the (r + 1)-step-ahead forecast ays—,—1 = L(cts|Y;_r_1). This is

the MMSLE of the current state as given only the past of the series. It

is equal to
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Agls—r—1 = L(aSIYS-T—l)
= L(Ts—las—l + Hs—les—llys—-r—l)
= Ts—lL(as—1|Ys—r—1)

Il

Ts—l e Ts——'rL(as—'rle—r—l)
Is—'r,s—las—’r (458)

Using linear estimation results from the technical introduction, we have

as = L(as|Ys_1)

= L(aSIYs—T—h Vs—ry--. ,'Us—l)

r
= L(as|Y s—r-1) + Z Cov(ats, vs—j)Var(vs—;) " vs—;
j=1

r
= Is—r,s—las—r + ZI.s—j+1,s—1KS—jFS—J'Fs_—1j'US—j (4'59)

Jj=1
which can be written as
r
As = Qg)s—r—1+ E :Is—j+1,s—1K8—jvS—j (4'60)
N =1 N ~ ,
past contemporaneous

We have thus succeeded in expressing a; as a sum of the (r + 1)-step-
ahead state estimator a,;_,_; and the contribution of the contempora-

neous terms.
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State Estimate MSE

It is possible to separate the MSE of a, into past and present components

in a similar way:

MaSsE(as)

= IV(I,;!SE[L(aslys—r—la Vs—ryovey 'Us—l)]

= I\/EISE[L(a5|Y3_T_1)] - Z Cov(as, vs—j)Var(vs—;) " Cov(vs_j, as)
3 =

r
= IVIaSsE(aS|3—T—1) o ZIs—j+1,s—le—st—jK;—jIIS_j_;_l’s_l (4.61)
j=1

Let Pgs_r_1 be the MSE of ay,_,_; as a predictor of a;. It can be

computed recursively:

Pys r 1= Var(as — as|s—r—1)
= Var(Ts—10s-1 + Hs_165-1 — Ts-1@5_1|5—r-1)
=T 1Var(os—1 — @5_1js—r—1)T5_1 + Hs_1Var(e;_1)H,_,
=Ts 1Py yjor 1Ty 1+ Hs 1 Hy_4 (4.62)

Substituting into (4.61) yields

r
Ps= Ps]s—r—l - Zls—j+1,s—1Ks—st—jK{s—jl‘-ls—j+l,s—l (4'63)
—— o .

e
past contemporaneous

The summation term in this expression represents the reduction in MSE

which results from taking into account the contemporaneous terms.
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Observation Forecast

The state estimate a; can be used to construct the corresponding one-
step-ahead forecast of y,, which is y,,_; = L(y,|Ys-1). It is easy to

see that

Ys|s—1 = L(Zsas + Gses|Y s-1) = Zsa, (4.64)

since €, is independent of Y ;_;. The associated prediction error is the

innovation v, so the MSE is

l\%SE(yﬂs_l) = Var(vs) = F; (4.65)

Similarly to the state estimate, it is possible to separate the 1-step-ahead
observation estimate y,,_; and its MSE into past and contemporaneous

components. The (r + 1)-step-ahead predictor of y, is

Ysls—r-1 = L(ys|Y s—r-1)
=L(Zsas + Gses|Y s—r—1)
= Zsas|s—r—1

= ZSIs—r,s—laS—T (4.66)

Using the decomposition (4.60) for as, the 1-step-ahead predictor y,,_,

is

Ys|s—1 = L(ys|Ys—1)

= Zsas

r
=ZT s—r,s—1@s—r + Z Z,T s—j+1,s—1Ks—j'Us—j (4-67)
j=1
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Observation Forecast MSE

The MSE of y,,_,_; as an estimator of y, is

N%/SE(ysLs—r—l) = Var(y, — ys|s—r—1)

= Var(Zsas + Gses — ZsQg5_r—1)
= Z Var(as — ag5—_r-1) 2 + GsVar(e,)G,
= ZSPs|s—r—IZ; + GsG; (4.68)

Using decomposition (4.63) we can write

MySsE(ysls—l)
= Z,P,Z. +G,G,

=Z.Py, , 12, +G,G,

r
’ ! /
- Z ZS-CI—1s—j+1,s—l'Kvs—j‘Fs—jI{s--jI s—j+1,s—lZs
=1

r
= I\%SE(yﬂs—r—l) - Z Z,T s-—j+l,s—1Ks—jFs—jK{s—jI/s—j+1,s—1Z;
8 j=1 - -

~
— contemporaneous
past

(4.69)

As before, the summation term represents the reduction in the MSE

that results from taking into account contemporaneous terms.

4.7 Conclusions

We have demonstrated how to construct the UR of any multivariate time

series model that can be expressed in the general SSF. The technique of
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incorporating the error term into the state vector allows us to sidestep

the issue of correlated measurement and transition errors.

While the UR itself is not a novel concept, previous treatments have
not considered the output from the UR KFS in its own right, but only
as a means of obtaining the output of the MR KFS. We examined the
theoretical properties of the output quantities, particularly the UR in-
novations, and illustrated how they can be used to construct estimators
and deletion residuals that cannot be obtained directly from the MR
KFS.

In Chapter 5 we continue this theoretical treatment by considering the
UR in the context of the steady-state Kalman filter and examining the
behaviour of the UR filter when the MR filter converges. Finally, several
of the methods for estimation of missing temperature data in Chapter
6 rely heavily on the results established in this chapter, particularly the
various deletion residuals obtained through the UR KFS.
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Chapter 5

The Steady-State Filter

and Periodic Convergence

5.1 Introduction

There are many situations where the system matrices in the SSF of a
time series do not evolve over time. Some examples are the autoregres-
sive models and the simple structural models discussed in the technical
introduction. If the matrices Z;, T, G: and H; do not depend on ¢,
their subscripts are omitted and the model is said to be time-invariant.
The updating equations in the KF for a time-invariant model often be-
come redundant, as the output matrices converge to constant quantities
(Harvey, 1989). This is an attractive property of the KF because it can
drastically reduce the number of operations required at each recursive

step.

In the first part of this chapter we examine the conditions on the system
matrices for convergence to take place. The theoretical background of
this topic is in control engineering (e.g. Caines & Mayne, 1970; Chan
et al., 1984) and applies to a different form of the state-space model,
where there is assumed to be no measurement error (that is, Gy = 0).
We discuss how this framework can be adapted to the general SSF of
de Jong (1991) by using the technique of putting the error term in the

state vector (see Chapter 4).

In the second part of the chapter, we consider the issues arising from
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the fact that the UR of a time-invariant multivariate time series is, by
construction, not time-invariant; for example, the UR transition matrix
is equal to the MR transition matrix T at the end of each time period
(pt,t), and equal to I otherwise. We prove that when the MR filter
converges, the UR filter output matrices take a simple form and explain
how it is possible to retain the computational savings of the steady-state
KF even in this case. We then extend this approach to all state-space
models where the system matrices vary periodically, and introduce the

notion of periodic convergence of the KF.

We conclude by establishing a set of conditions on the system matrices
of a periodic model, under which periodic convergence of the KF is

achieved.

5.2 Filter Steady State

5.2.1 Time-invariant Models

A general SSF for a time series model with time-invariant system ma-

trices is

Y = Zat+Gst
a1 =Toy+He, , t=1,...,n (5.1)

where, as before, {€;} ~ WN(0, 0?I,) and a; has mean a; and variance

P;. The Kalman filter recursions for this model are
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vt =Y, — Zias
F,=ZP,Z + GG
K,=(TP,Z' + HG)F;}
L,=T-K,Z
a1 = Ta, + Ko,

It can be shown that, under certain conditions, the MSE of the 1-step-

ahead state predictor converges to a constant matrix, that is,

lim P, = P (5.3)

t—oo

When this occurs, it is said that the KF is in a steady state. It is easy
to see that, if Py — P, then F; » F,K; — K and L; — L as t — oo,

where

F=2ZPZ +GG
K =(TPZ'+ HG)F ™'
L=T-KZ (5.4)

hence the KF output matrices are all time-invariant once P; converges to
a constant matrix. This means that their recursions are redundant and
only the quantities v; and a; need to be updated at each time period.
In practice, we monitor the recursions until the difference Py — Py is
small enough to deem the filter to have converged. Storing the steady-
state matrices and omitting the corresponding recursions then leads to

considerable computational savings (Harvey, 1989).
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5.2.2 Definitions

The updating equation for the MSE of the 1-step-ahead state MMSLE

can be written in the form

P =TPT' — (TP,Z' + HG'K,+ HH')

= TP, T-TP,Z-HG'(ZP;Z'+GG') (TP, Z'+HG')~ HH'
(5.5)

The Kalman filter has a steady-state solution if there exists a time-
invariant MSE matrix P which is unchanged by the updating equation.
If such a solution exists, equation (5.5) can be expressed in the form of

an algebraic Riccati equation (ARE):

P-TPT+TPZ'+HG (ZPZ'+GG) Y (TPZ'+HG')+HH =0
(5.6)

In practice, the ARE is difficult to solve in all but the simplest models
(e.g. Brogan, 1991). Despite this, it is possible to establish sufficient
conditions for convergence by considering the properties of the system

matrices.

We define the following matrix properties, where A is a n X n matrix,

B is a n x m matrix and C is a m X n matrix:

e The matrix A is stable if |A\;(A)| < 1 for ¢ = 1,...,n; that is, all

of its eigenvalues lie within the unit circle.

e The matrix system (A, B) is controllable if the rows of the n x mn
control matriz [B, AB, ..., A" ! B] are linearly independent. We
can also use the equivalent definition: (A, B) is controllable if
Vi € {1,...,n} such that \;(A) # 0, we have B'v()\;) # 0, where
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v();) is the eigenvector corresponding to A;; that is, when all eigen-
vectors of A’ corresponding to non-zero eigenvalues lie outside the
kernel of B’.

e The matrix system (A, B) is stabilisable if there exists a m x n
matrix S such that |A\;(A+ BS)| <1fori=1,...,n. An equiva-
lent definition is: (A, B) is stabilisable if Vi € {1,...,n} such that
[Xi(A)| > 1, we have B'v();) # 0; that is, when all eigenvectors of
A’ corresponding to eigenvalues outside the unit circle lie outside
the kernel of B'.

e The matrix system (A, C) is observable if the rows of the n x mn
observation matriz [C',(CA),...,(CA™ )] are linearly inde-
pendent. Equivalently: (A,C) is controllable if Vi € {1,...,n}
such that A;(A) # 0, we have Cv();) # 0.

e The matrix system (A, C) is detectable if there exists a n x m ma-
trix D such that |\;(A+ DC)| < 1 fori=1,...,n. Equivalently:
(A, C) is stabilisable if Vi € {1,...,n} such that |[A\;(A)| > 1, we
have Cv(\;) # 0.

From these definitions, we can deduce the following:

1. Controllability implies stabilisability, and observability implies de-
tectability, but not vice versa. A sufficient, but not necessary con-
dition for the converse to hold is det(A) # 0. In this case, A =0

is not an eigenvalue of A, so the conditions are equivalent.

2. If the rows of B are linearly independent, then, for any choice of
A, the rows of the control matrix are also linearly independent,
hence (A, B) is controllable. Similarly, if the columns of C are
linearly independent, then, for any choice of A, the rows of the
observation matrix are also linearly independent, hence (A, C) is

observable.
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3. If A is stable, then it is both stabilisable and detectable; setting
D =0 and S = 0 is enough to satisfy the conditions.

4. Stabilisability and detectability are dual properties; if (A, B) is
stabilisable then (A’, B') is detectable, and vice versa. This can
be verified by setting D = S’. Similarly, the properties of control-

lability and observability are also dual.

5.2.3 Conditions for Convergence

We now consider the model

Yy = Loy
a1 = Tiap + Hyey (57)

This representation has its basis in control theory and does not include
an error term in the measurement equation. Also, the interpretation of
the model is different: the aim here is to choose appropriate values for
the control variables {€1,...,&;} to steer the model towards a particular
state a;+1, with the added difficulty that the state is observed only

through its effect on the measurements {y;}.

Based on the properties of the system matrices of (5.7), we define the

following properties:

Stability : The model is stable if the matrix T is stable.
Controllability : The model is controllable if (T', H) is controllable.
Observability : The model is observable if (T, Z) is observable.
Stabilisability : The model is stabilisable if (T, H) is stabilisable.

Detectability : The model is detectable if (T, Z) is detectable.

Caines & Mayne (1970) prove that, if the initial variance matrix P;
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is positive semi-definite and the model is stable then the MSE matrix
P, converges to P exponentially fast, as long as P is the only positive
semi-definite solution to the ARE. Anderson & Moore (1979) show that
this also holds if the system is detectable and stabilisable, but not nec-
essarily stable. This is a more general result, because stability implies
detectability and stabilisability, but not vice versa. Chan et al. (1984)
establish that if the system is observable and if P, — P is positive definite
or zero, then P; still converges to P, but not necessarily exponentially
fast.

5.2.4 General SSF

We now examine how the properties for model (5.7) translate into prop-

erties for the more general state-space model. Recall that the model

Y, = Zioy + Grey
Qi1 = Tio; + Hey (58)

can be written in the form
at
w-lz o]
€t

Q1 _ Tt Ht Ot 0
EIR A I N R

and let Et,f’t, H ¢ (and E:t = 0) be the system matrices in this repre-

sentation. The characteristic polynomial of the transition matrix is
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T:— ) H,

det(T; — M) =
@, >\ o

= —Adet(T; — ) (5.10)

Its roots are the eigenvalues of T'; and zero, thus i’t is stable iff T is
stable.

Now let v(A) = [ v} I v, |’ be an eigenvector of Ty, for A # 0. The

vector v() is partitioned conformally to the block matrix T,. By defi-

nition:
det(T; — \T)v()) = 0
o Tt e | Ht Vi1 -0
0 .\ | V2

N (Tt — /\I)’U]_ + Ht’vg —0
—)\’02

) ] 6511)

where vi()) is an eigenvector of T, corresponding to the same eigen-

value A. Consider the expression
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= Zt'vl()\) (5.12)

This is non-zero iff Z;v;()) is non-zero, so we can deduce that (T, Z¢)
is detectable (observable) iff (T, Z;) is detectable (observable).

1 /-\l
Finally, let w(\) = [ w} ' w) ]’ be an eigenvector of T';, for A # 0. We

have:

~1!

det(T, — N)w(\) =0

- Té -2l 0 w1 -0
H, || w

wi () ] (5.13)

w() =
= v [%H;wl(x)

where w; () is an eigenvector of T, corresponding to the same eigen-

value A. Consider the expression

~1 1 A
Haw()\) = [ 0 I ] [ %thn)()\) }

- % Hiwi()) (5.14)
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This is non-zero iff Hjw; () is non-zero, so we can deduce that (IA’t, H t)
is stabilisable (controllable) iff (T';, H}) is stabilisable (controllable).

Thus, it is not necessary to eliminate the measurement error. The defi-
nitions of all the properties we examined can be applied directly to the

general state-space model.

5.2.5 Application

We will now examine how convergence of the MR KF affects the UR
filter recursions. It is clear that the regular definitions of convergence
do not apply, since the UR does not have time-invariant system matri-
ces. For example, the transition matrix T';; is equal to T when ¢ = p
and I; otherwise. However, since the system matrices vary in a very
simple way, it is possible to adapt the definition of convergence to this
situation. Note that we have to impose the additional condition p; = p.
A multivariate model where the size of the observation vector varies over

time cannot have time-invariant system matrices.

The UR of a time-invariant model is

Yit = Zz'ai,t
Top:+ He; if i=1
Qi1 = P o (5.15)
QG—1,t+1 if i=23,...,p

where Z; is the it" row of Z. Assume that the multivariate filter con-
verges. We have already established that Pi,t is equal to P; when i=1,
since both matrices are equal to the MSE of the MMSLE of «; given

Y:—1. Now consider the recursive step at time (1,t):

97



D1t =yt — L1814
ﬁ‘l,t == 211_)2,1 = Fl
I~{11t = TPZ'lff'l_l =K,

t
=Py (5.16)

We use the notation Fi, K 1, P, to indicate that these matrices do not
depend on t. Repeating the step again, we find Fy, Ko, P3. These are
also time-invariant; they only depend on i, the current position in the
multivariate vector. Repeating the recursive steps at time ¢+ 1 will only
yield the same sequence of Fj, K;, P;. This implies that the UR filter

recursions converge periodically in the sense that

lim ﬁi,t = E
—00
lim f{ it = R i
t—oo !
lim P;; = P; (5.17)
t—o0
for i = 1,...,p— 1. Thus, it is far more efficient computationally to

store these matrices once the KF converges, rather than calculate them
at each pass. An important advantage to this approach is that the
calculation of partially-interpolated estimators will involve much fewer

operations.

For example, constructing the “past-and-present” estimator L(y; +|Yt—1, yt\i)

;t,t’ where 1~}i,t =
Tt — K;i1Z;;, the rest of the terms being readily available from the
KF and KFS output. If the UR filter converges periodically, the matrix

products become

involves evaluating the matrix product i}; +1,t...1~}

=/ =~/ = - -
Liyy4..-Ly,=Liyy...Ly=Liy, (5.18)
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The terms f,“p, i =1,...,p, do not depend on ¢t. Thus we can store
them once the filter converges and construct the estimates directly from
the KF'S output.

5.3 Generalisation to Periodic Models

5.3.1 Introduction

In the previous section we exploited the periodic structure of the UR SSF
to simplify the KF recursions if the MR filter converges. It is possible to
generalise this method to all other time series models where the system
matrices are periodic. Consider a model where the system matrices
Z,T:, Gy, H; contain periodic elements, with period s. We can use

double-subscript notation to make the periodic structure explicit:

Yip = Ziait + Gigig

Tsas,t + HSES.,t if Z = 1
ai,t+1 = (519)
Tiyoi 141 +Hi166_1441 if i=2,...,s
fori=1,...,sand t =1,...,n, where a1 ~ (a1,1,P1,1). The UR can

be thought of as a special case of this model, with G; =0fori=1,...,s
and T; =1, H; =0fori=1,...,s — 1. The KF recursions for the

periodic model are
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Vit = Y1 — Lilig

Fit=Z;Pi;Z} + G;G;

K= (TiPi:Z; + Gng)Fi_,tl
L =T - Ki:Z;

Tsas,t + Ks,,g'vs,t if i=1
ait+1 =
Tic1ai1t41 + Kic1p410i-1041 if i=2,...,s
TsPstLss+ Hsy(Hsy — Ks3Gst) if i=1
Pt =
T; 1Piyt+1Li-1441 e
, if i=2,...,s
+H;i 1 41(Hic1041 — Kic1441Gi-1,t41)
(5.20)

In the exceptional case where the periodic elements of the system ma-
trices do not have the same period, we can define s to be the lowest
common multiple of the different periods. This situation could arise, for
example, if y, ; are hourly observations and Z; has hourly seasonality,

while T'; has daily seasonality.

5.3.2 Periodic Convergence

As in the UR, the system matrices are not constant, so the Kalman
filter will not converge to a steady state in the strict sense. However, it

is possible that it will converge periodically, in the sense that

lim P;; = P; (5.21)
t—o0

for i = 1,...,p. In direct analogy to the way the scalar observations
of the UR are stacked to form the MR, we can stack the (vector) ob-
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servations of the periodic model to form a time-invariant state-space

model:

alt
Qs t
Y1t
. —z | __
ys,t
€1t
L ss’t -
a1,t+1 Lt
Qg t+1 Qg t
oo €1t
————— =T|----|+H
€3t
€1,t+1 €1t
| Est+1 | | Est |
where we define the following system matrices:
Zl [ Gl
—~ |
Z = I
!
Zs Gs
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0 0 T, io 0 H,
L
0 0 T, ... T;10 0 T, ,..T,H,
|
0 0 T,.T; 0 0 T,. T.H,
|
7
1
0 0 ' 0 0
|
|
1
i
|
_0 0 1 0 0 ]
(5.24)
] . o
H, 0
T3H, H; 0
Ts T3H2 Ts.. T4H3 Hs O
H = I (5.25)
I
= I-

The time-invariant model has longer state and observation vectors, so
filtering and smoothing will involve inverting larger matrices. For this
reason we prefer to work directly with the periodic model in practice.
However, the structure of the time-invariant model (constant system
matrices, no measurement error) allows us to establish conditions for
periodic convergence which can be expressed in terms of the system

matrices of the periodic model.

We begin by proving that steady-state convergence in the time-invariant

model is equivalent to periodic convergence in the periodic model. The
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KF recursions for the time-invariant model will output the 1-step-ahead
MMSLE of the state a;. This is

E(e14|Ys¢-1)

| E(es,tlys,t—l) ]

=|------ (5.26)

where a; 4;_, is the i-step-ahead predictor of v; ¢, and we write f’t_l =
Y ;:—1 for consistency of notation. The KF recursions will also produce
the MSE of a;4;—; as an estimator of c; ;. Define the ith component of
estimation error as Aay s;—1 = @y ;1 — @1+ We can express the MSE

matrix as
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P, = MSE(a,)
a,

=E[(@; — a;)(a: — )]

E(Aal,t|t—1Aall,t|t—1) e E(Aal,t[t—lAals,tu—l) :
: : :
|
E(Aas,ﬂt—lAa’/l,tlt—l) ”' E(Aas,tlt—lAa;,ﬂt—l) :
|
R T T T ey 4|
|
E[(0-e10)Aa] y, 4] -+ E[0- El,t)Aals,t|t—1] !
: : :
|
| E[(0— esyt)Aa’ll,t]t-l] -« E[(0- ss,t)Aa’s_t[t_l] !
' E[Aayy, 1 (0—e1s)] -+ ElAa;y, (0 —esy)] ]
: : :
]
: E[Aa’s,tlt—l(o —e1t)] - E[Aas,tlt—l(o —€s.1)’]
b o e o o el (5.27)
I
|
'E[(0—€1:)(0—€14)] -+ E[0—¢€1:)(0—¢sz)]
: : ' :
|
1E[(0—e5,¢)(0—€1,)'] -+ E[(0—e5:)(0—es¢)] |

Tthe top-left-hand block of 13:: is equal to

E[(a1t—1 — 01,t)(@14¢—1 — @1,¢)'] = Var(@y g¢—1 — o)

= %?F(amt—l)

= Pl,t (528)

If 13t converges to a steady-state solution, then all of its component
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blocks must also converge. Thus, P;; — P, as t — oco. Using the
same argument as in the previous section, the fact that P;; converges
implies that P;; — P, as t — oo, for all the other values of i. Hence

the periodic KF will converge periodically.

To prove the converse, we begin by assuming periodic convergence of
the periodic KF. It suffices to show that all of the blocks that comprise

13,5 will converge. Using results from the previous section:

I ifi=j
E[(0—€:0)(0—€jz)] = (5.29)
0 if i#j

Ti_l...Tj_;.lHj ifi>j
E[(a; -1 — i) (0 —€54)] = (5.30)
0 if i<j

which are all independent of t. To find the remaining terms, assume,

without loss of generality, ¢ > j. We have

E[(ai,tlt—l - ai,t)(aj,ﬂt—l - aj,t)l]
=Ti.. ‘T]'E[(aj,tlt—l - aj,t)(aj,t|t-1 - aj,t),]

= Ti—l e Tj héI!S,E(a‘j,tIt—l) (5.31)
It

We established previously that the MSE of the j-step-ahead predictor
of a;; depends only on the system matrices and P;;. The system
matrices do not depend on t and we have assumed that P;; — P;.
Thus, as t — oo none of the elements of 13t depend on ¢ and the KF

converges to a steady state.
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5.3.3 Stability

We will first examine the conditions under which the matrix T is stable.

The characteristic polynomial is

det(T — AI)
A --- 0 T, : 0O --- 0 H;
: : : Lo .o :
0 Al Ty .. Ty , 0 -+ 0 Ts..ToH;
0 0 T,.. Ti—M, 0 0 T,.. T.H,
1o 0 TOAI - 0
1
|
1
I
|
0 0 0 I
= (=N)2"ldet(Ts... T1 — M)
= (=A%~ ldet(T — AI) (5.32)

where we define the summary matrix T = T5...T;. We can deduce
that the eigenvalues of T are the eigenvalues of T and zero. Thus, the

matrix T is stable if and only if T is stable.

An interesting corollary of this result arises when the transition matrix
is time-invariant, that is Ty = ... = T3 = T'. There are many situations
where such a model is appropriate; for example, if we want to model
a process with time-invariant structure that is affected by seasonal er-
rors, we might choose to make T', Z time-invariant and restrict periodic
behaviour to G, H;.

In this case, we have T = T'°. However, if T has eigenvalues {1, ..., Aq},
then T has eigenvalues {){,...,A7}. Thus:
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T stable < |A\j|<1 Vje{l,2,...,q}
s NF<l VYie{L,2,...,q} (5-33)

& T stable

regardless of the structure of the measurement matrix Z; or the errors.

As an illustration, consider the periodic AR(1) model

Yir =it + Gigig
¢sas,t + Hsss,t if 1=1
Qi1 = (5.34)

di—10i-1 041+ Hi18i-1441 if i=2,...,s

The transition “matrix” is the scalar quantity ¢;, so the summary “ma-
trix” is T = ¢ ... ¢s, the product of the autoregressive parameters over
a whole period. If this parameter is time-invariant, the process is stable
iff |¢| < 1. This is exactly the same as in the (non-periodic) AR(1)
model, so the parameters that define the periodic behaviour of the mea-
surement and transition errors have no effect on the stability of the
process. On the other hand, if we allow the autoregressive parameter to
vary periodically, the process is stable iff |¢; ... ¢s| < 1. This is some-
what surprising; for example, a suitable choice of ¢; can ensure that the

process is stable even if |¢;| > 1fori=2,...,s.

5.3.4 Detectability and Observability

In order to establish whether or not the time-invariant process is de-
tectable, we need to consider the eigenvectors of the matrix T. Let

-~ !

u = [uj...u, 1 v]...v. ] be such an eigenvector and A the corre-

sponding eigenvalue. We have
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(T - AX)z=0

AL -0 T :
. . . :
0 A Te,...T: |
0 T,...T;— M,
____________________ !
0 e 0 |
I
|
|
I
|
0 0 I
0 0 H, 1 )
: . u
: :
) 0 T, ,. .T.H,
. 0 0 T,. T.H, Us—1 .
Y 0 L
| 'Ul
|
I .
|
| .
| L YUs ]
0 -l

—Auy + Thus + Hyv,
—Aug + T9Tus + ToH v,

. 1
u, = XTlus

Us—-1 = %Ts—l oo Tl'us
< (Tus—M) = 0 > (5.35)
0

v =
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Thus, us is an eigenvector of T'. We ignore the cases A =0 and us =0

because, for detectability, we only need to examine eigenvectors cor-

responding to eigenvalues

eigenvector and consider

Z Xe
— |
Zu = |
i
Zg!
ZTus
,\Zs 1Ts-1... T1us
= Zsug
0
| 0

outside the unit circle. Let ug; be such an

(5.36)

The process is detectable iff u # 0 implies Zu # 0. This condition can

be summarised as

(i‘, z ) is detectable & {

where u, is the corresponding eigenvector.

Vie{l,...,s}st. [N(T)] >1
He{l,...,s}st. Z;T;.. Tius #0

(5.37)

The condition for observability is very similar, but we need to test the

eigenvectors corresponding to all non-zero eigenvalues, not just the ones

outside the unit circle. This can be summarised as:

109



Vie{l,...,s}st. A;(T)#0
di e {1,...,8} st. Z;T;... Trugs #0
(5.38)

(i’, VA ) is observable & {

where u; is the corresponding eigenvector.

5.3.5 Stabilisability

To determine whether or not the time-invariant process is stabilisable, we

~1! '
need to consider the eigenvectorsof T'. Let w = [ w/ ... w) 1 2}...2. |

be such an eigenvector and A the corresponding eigenvalue. We have

~1!
(T —XM)a=0

~AI 0 0 |
. |
. i
0 Y | 0 I
i
ol T T)..Tey  T'-AL
0 0 0 |
|
1
0 0 0 |
|
| H H\T,... T, , H\T,. T,
i 0 0 ]
: wy
| 0 :
|
i__q________g__ (Ws =0
 —AI 0 2
1
I
: _zs_
0 ~AI |
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Ws—1
(I’ - AI)’IDS

z1

Zs-1

—/\’w1

—Aws_1
T’l'wl + ...+ Tll .. .T;_l’ws_l + (I/ — AI)'ws

0

s (5.39)

1 ! ! ’
XH1T2...TS'U)3 )

This time, w, is an eigenvector of TV and the eigenvector w is non-zero

iff w, is non-zero. Note that the eigenvalues of T/ are the same as the

eigenvalues of T'. We now consider the expression
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)
g)

] . ]
(01 H) HiT, - HiT,..T, 1 ] (;
0 Hy - H4T,..T,
_ :| . : | ____E‘Jf _____
.: ., : 0
0. H, |
Fr—+r—-—-—-—---"—-"—-"—-—"—-"=-"—-—"=—-"=-"=-"===-== 1
0/0 0 0 : I
- : - 0
| SHTS ... Tiw, |

H,TY ... T.w;
" (5.40)
H w;
%H’IT’Q T,

~ 1
The process is stabilisable iff w # 0 implies H w # 0. We can hence

summarise the condition as:

Vie{l,...,s} st [N(T)] >1
Fe{l,... s}st. HT;,,.. Tsw, #0
(5.41)

(T, H ) is stabilisable {

where w; is the corresponding eigenvector of T'. Similarly, the condition

for controllability is:

Vie{l,...,s}st. N(T)#0
Fe{l,...,s}st. HiT;,,.. Tyw, #0
(5.42)

(i’, H ) is controllable < {

where wy is the corresponding eigenvector of T'.
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5.4 Conclusions

Steady-steady convergence is an important computational advantage of
the Kalman filter. In most practical examples of time-invariant mod-
els, the matrix P; tends to converge to a constant value very quickly,

rendering part of the filter recursions redundant.

The method described in this chapter makes it possible to benefit from
the computational efficiency of the UR and the steady-state filter simul-
taneously. This can lead to considerable savings, both in the number of
operations involved and in the amount of stored data required for the
backward pass of the KFS. The improvement is particularly noticeable
in long multivariate time series, such as the temperature data in Chapter
6.

The technique of incorporating the error term into the state vector serves
to demonstrate the equivalence between the control theory state-space
model and the general time series SSF. We have shown that this equiv-
alence provides rigorous justification for the use of the standard conver-

gence conditions.

The novel concept of periodic convergence allows us to extend the com-
putational benefit of steady-state convergence to a wide class of seasonal
models. The set of conditions established in the last part of this chapter

provide a framework for the treatment of these models.

113



Chapter 6

Estimation of Missing

Temperature Data

6.1 Introduction

Serially complete and reliable temperature records are essential for the
detection of global climate change and are also required for the develop-
ment of climate-dependent models for soil erosion, crop development and
other such processes (DeGaetano et al., 1995). Furthermore, without a
large amount of high-quality weather data, management of weather risk
and pricing of weather derivatives would be unfeasible (Dunis & Karalis,
2003). However, the gaps that are often encountered in long tempera-
ture series are a serious hindrance to these endeavours. In addition,
climatic models can be extremely sensitive to outliers and errant values,

which can arise in the data from a variety of sources.

In the past, missing values were replaced arbitrarily or with crude es-
timation techniques, which obviously affected the accuracy of the final
models and impaired the comparison of results obtained with differ-
ent modelling approaches. This has led researchers to develop a large
number of methods which produce far more realistic daily temperature
estimates. The estimated data can then be used to fill gaps in the
records and also to identify outliers by drawing attention to cases where
there are large discrepancies between observed and estimated tempera-

ture readings.
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In the first part of this chapter, we begin by reviewing some of the
most important existing approaches for estimation of missing tempera-
ture observations (Kemp et al., 1983; De Gaetano et al., 1995). These
tend to be non-parametric methods, and do not make any attempt to
model the temperature series directly. We examine the relative accuracy
of different estimation techniques and propose a simple improvement
which can lead more accurate results, without a significant increase in
computational cost. Additionally, we consider the use of the Nearest-
Neighbours approach (Edelsbrunner, 1987; Kleinberg, 1997; Indyk &
Motwani, 1999) and introduce novel approximate methods for nearest-
neighbour search, which go some way towards alleviating the “curse of

dimensionality”.

In the second part of the chapter, we consider a model-based approach
to missing temperature estimation. Seasonal models are used to remove
the long-term cyclical (climate) patterns from the series, thus enabling
us to focus on the more volatile weather effects. These weather se-
ries tend to show evidence of long-memory behaviour (Caballero et al.,
2001). We consider heuristic and likelihood-based methods for filtering
out long memory (Hosking, 1981; Beran, 1989 & 1994; Taqqu et al.,
1995). The resulting series can be adequately modelled using the au-
toregressive models discussed in the technical introduction. We focus
on fitting multivariate models to several series simultaneously, which al-
lows us to improve estimation accuracy by exploiting the high degree of
correlation between temperature series at locations that are near each

other.

All models are then applied to a long multivariate time series, consisting
of daily maximum temperatures at weather stations in the state of Texas,

from 1950 to 2001. Numerical results are given in the Appendix.

6.1.1 Definitions

The problem of estimating missing daily temperatures can be formulated

as follows:

We observe p contemporaneous univariate time series. Let Y; denote

the stacked observations of the i*? series:
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{Y}i=Winvi2 - vin) i=1,...,p (6.1)

an x 1 vector. The {Y'}; are the columns of the n x p matrix Y, defined
as

y — [ (Yh {Y} - {Y} ] (6.2)

Using the previous definitions, we can also express Y as

(6.3)

where y; is the px 1 vector of observations at time t. The stacked vector
of observations y is equal to vec(Y).

Finally, we need to define the (n — 1) x 1 vector

{Yhae = @il s Uig—1, Yist41, -+ » Yimn) (6.4)

the (p — 1) x 1 vector

yt\i = (yl,t yer ey Yi—1t Yit1t,--- ayp,t), (65)

which are the same as {Y'}; and y,, respectively, but with observation
yi,¢ omitted, and the (np — 1) x 1 stack vector
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Wit = Y- Y1 Yovis Yo 1o -+ -1 Yn) (6.6)

which is the same as y, but with observation y;; omitted. We will
consider the problem where a single observation y; ; is missing and needs

to be estimated.

6.2 Ad-hoc Approach

6.2.1 Existing Methods

Kemp et al. (1983) make an early attempt to classify and compare differ-
ent methods for estimating maximum and minimum daily temperatures.
They examined several methods, which they divide into three broad cat-

egories: 1) within-station, 2) between-station, and 3) regression-based.

Within-Station Methods

Within-station methods involve estimating a missing observation by only
taking into account temperatures recorded on previous and subsequent
days at the same weather station. For example, the maximum temper-
ature on 15 May could be estimated by the average of the maximum
temperatures on 14 May and 16 May. Similarly, it is possible to cal-
culate averages by considering more than one day on either side of the
missing observation, or by assigning different weights to the days. Al-
though these methods can produce satisfactory results when calculating
monthly or longer period averages, they tend to result in large estimation

errors for daily temperatures and are generally deemed inadequate.

Between-Station Methods: Temperature Departures
Between-station methods are multivariate approaches to estimating miss-

ing observations. Broadly speaking, they take advantage of the correla-

tion between the components of y, to improve the estimate of y; ;.
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For example, Kemp et al. (1983) describe a procedure which is based on
the assumption that daily temperatures in neighbouring stations differ,
on average, by an amount equal to the difference between their corre-
sponding average monthly temperatures. DeGaetano et al. (1995) use
a more accurate method which involves calculating standard departures

for each observation.

The standard departure z;[ . for station i on day ¢ is defined as:

A = Yit — Yie (6.7)
Sit

it =
where y;; is the daily maximum (or minimum) temperature at station
i on that day and #;, s;; are estimates of the mean daily maximum
(or minimum) for that day and its standard deviation, respectively. In
practice, estimates of the monthly means and standard deviations are
used to calculate the daily means and standard deviations. For days in
the second and third weeks of each month ¥; ¢, s;; are taken to be equal
to the corresponding monthly estimates, while for days in the first (or
last) week they are obtained by averaging the estimates for the current
and preceding (or following) month. The standard departure é{t for the

station with missing data is then estimated as

where the sum is over all neighbouring stations, p — 1 stations in total.

-I.

The estimate of the missing data g, , is:

@I,t = Si,tflt + Yit (6.9)

where ¢, s;+ are the corresponding daily mean and standard deviation

at the target station. Clearly, the choice of stations to include in the
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model is of great importance to the overall accuracy of the estimate.
DeGaetano et al. (1995) start by looking for any weather stations within
0.1° of latitude radius of the target station, then increase the search
radius until at least three stations are found or the radius exceeds 1°.
They demonstrate that this is a significantly better approach than older

methods where stations are selected based on political boundaries.

Regression-based Methods: Least Absolute Deviations

With regression-based methods, missing observations are estimated by
fitting a regression model which uses the temperatures at neighbouring
stations as predictors. Kemp et al. (1983) and Eischeid et al (1995)
consider a number of more robust regression criteria in addition to or-
dinary least squares and conclude that least absolute deviation (LAD)
regression produces the best results. LAD regression (also known as L1
regression) is a robust version of ordinary least squares and consists of
choosing the parameter estimates which minimize the sum of the ab-
solute deviations (rather than the squared deviations) of y from the

predicted values. The model equation is

Vie=YpiB+m, t=1,...,n (6.10)

where 3 is a (p—1) x 1 vector of parameters. The errors 7; are assumed
to be independent and have zero mean and constant variance. The

parameters 3 are estimated according to the LAD criterion:

Yi,s — ys\i:6 ys\iﬂ (6'11)
s#t

[‘J = arg min Z
ﬁ s=1

The resulting estimate for y; ; is then

Jie = ypiB (6.12)
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The LAD method is implemented using the algorithms of Barrodale &
Roberts (1973). The spatial structure of the series can change drastically
over the course of the year. For example, depending on the direction
of warm/cold fronts, a particular neighbouring station may be the best
predictor for the target station in December but not in July. To account
for this, 12 different sets of regression coefficients ,3 were calculated —

one for each month.

6.2.2 The Harmonic Model
Harmonic Component

Since the temperature series exhibit strong periodic behaviour, it is rea-
sonable to model the long-term cycles with a trigonometric component.
We first subtract the average temperature, to make the mean of the

series equal to zero, then consider the simple trigonometric model:

ug = pe + Gt
pt = Reos(wt+¢), t=0,...,N—1 (6.13)

Periodograms of daily temperature series have a very strong peak at
a frequency of w = 27/T = 0.0172, which is an indication of cyclical
behaviour in the data (Bloomfield, 1976). In this case, the highest peak
corresponds to a period of T' = 365.2422 observations — the number of
days in the mean tropical year, as expected (Figure A.1). We will now
proceed to show how the model parameters can be estimated using the

equivalent form

py = Acoswt + Bsinwt (6.14)

The coefficients A and B can be estimated by minimizing the sum of

squares:
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N-1
S(A,B) = Z (uz — Acoswt — Bsinwt)? (6.15)
t=0

The partial derivatives with respect to the two unknowns are

38 N-1

34 = -2 tzzo coswt(ug — A coswt — Bsinwt)

9S N-1

3= -2 ;:0 sinwt(ut — A coswt — B sinwt) (6.16)

Setting these equal to zero produces the solutions:

1 N-1 N-1
- . 9
B = A l( E utsmwt> < E cos wt)

t=0 t=0
N-1 N-1
- (Z Uy coswt) (Z coswtsinwt)] (6.17)
t=0 t=0

where

N-1 N-1 N—1 2
A= (Z sin? wt) (Z cos? wt) — (Z cos wt sin wt)
t=0 t=0

t=0

To evaluate the trigonometric terms in A, consider
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N-1
(cos(wt) + isin(wt))

=0
N—

exp(iwt)
0

[

_ e):<p(in) -1

exp(iw) — 1
— ex i(N — 1w exp(iNw/2) — exp(—iNw/2)
—oP ( 2 ) exp(iw/2) — exp(—iw/2)

o (50 o (5

where i = /(—1). Comparing the real and imaginary parts yields

N-1
(N - 1w
cos(wt) = N cos { ———— | Dy (w)
(557
N-1
. . (N —=1w
sin(wt) = Nsin | ————— ) Dn(w) (6.19
et = (557 o >
where
Dy (w) = % (6.20)

Now the terms can be computed:
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N-1 1 N-1
2
cos“ wt = — E cos(2wt) + 1

= g [1 4+ Dn(2w) cos(N — 1)w]

N—

2
L

sin(2wt)

N =

coswtsinwt =
t=

o+
Il
o

|2

Dy (2w)sin(N — 1)w

=
L
P

@
=]
L")
€
&+
|

[1 — cos(2wt)]

L
Il
o
N =
g
I
=

[1 — Dn(2w) cos(N — 1)w] (6.21)

o2

If the frequency w is known, Dy(w) can be evaluated exactly. In the
general case, since |[NDpy(w)| < 1/ sin(w/2), the terms involving Dy are
all small compared to N/2, provided that N is large and w is not too
close to zero. We can thus omit these terms to obtain a simpler set of
equations (Bloomfield, 1976):

_ 2 N-1
A= — Uz cos wit
N
t=0
. g -l
B=— ug sinwt (6.22)
N t=0

Multiple Periodicities

Constructing more complex periodic models is straightforward if the

simple model is expanded to:
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up = g+ Gt

h
ut=Zchos(wjt+¢j), t=0,...,N-1 (6.23)
j=1

for h frequencies. As in the simple trigonometric case, this can be written

as:

h
Pt = Z (A;j coswjt + Bjsinw;t) (6.24)
=1

There is a similar set of approximations that can be used in this case —

consider the sum of squares:

2
-1 h
S = ut — Y (Ajcosw;t + Bjsinw;t) (6.25)
=0 j=1
This yields the following partial derivatives:
Py N-1 h
Eyva -2 Z cos wjt (ut - (A; coswjt + B;sin wit))
7 t=0 i=1
a8 N-1 h
3B = -2 Z sinw;t (ut - Z (A; cosw;t + B; sin wit)> (6.26)
J t=0 i=1
for j =1,2,...,h. Terms of the form }_ cos?w;t, > cosw;tsinw,t and
j j j

> sin®w;t can be computed as before. Consider the ‘cross’ terms, i.e.
those involving summations of trigonometric functions of two different
frequencies . They can be computed using standard trigonometric for-

mulae and the previous results:
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z
L

Z cos wjt cos w;t
t=0
| N1
=5 2 (cos Q;;t + cos Q(ij)t)
1 N —1)Q;; (N — 1)
= |cos ((—2)”-) Dn(§2i5) + cos (_.__é)_ﬁ_?l) DN(Q(,'J-))]
(6.27)
N-1
Z sin w;t sin w;t
t=0
L N=1
= 3 2 (COS Q(ij)t — cos Qijt)
1 N —-1)Q;; N — 1)
=3 [cos ((__2)_@) Dy (Qi5)) — cos (L‘—Q‘—)—ﬂ) DN(Qij)]

(6.28)

z
L

]

cos w;t sinw;t

I
Z
L

(sin €25t — sin Q(ij)t)

sin (M> Dy (§i5) — sin (EN__M) DN(Q(ij))]

2 2
(6.29)

o~
Il
o

N~ = ©

where Q;; = w; + wj, (i) = wi — wj and i # j. These terms all involve
Dy hence, under similar assumptions as before, they are small compared
with N/2 and can be ignored. Thus, the partial derivatives are reduced

to
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as -
- =2 Z coswjt(ug — Aj cosw;t — Bjsinwjt)

0A; P

s N-1

3B = -2 Z sinw;t(us — Aj cosw;t — Bj sinwt)
J t=0

which yield the approximate solutions:

N-1

- 2

Aj= N ug cos wjt
t=0

5 g N1

B; = N ug sinw;t
t=0

(6.30)

(6.31)

In this model, w; = 0.0172 is the fundamental frequency, we = 2w;

the first harmonic, w3 = 3w; the second harmonic, etc. depending on

the number of harmonics included in the model, h, which is chosen

arbitrarily. In practice, a total of two or three frequencies are required

in order to remove the seasonality from the monthly means (Figure A.2).

The resulting model is thus

Vit = o + it + i

h
it = Z R; jcos(wijt+¢ij), t=1,...,n
j=1

where the constant term ¢; is the mean of the series {Y'},.

126

(6.32)



Linear Trend

In addition to the trigonometric component, it is sensible to include a
linear trend in order to model possible long-term shifts in the underlying
mean. The resulting model, assuming there is no interaction between

the trend and harmonic components, can be written as:

h
Yie = i+ Bit+ Y Rigsin(wijt — ¢i) + i (6.33)
j=1
fort =1,...,n, where (;; is a process with zero mean and variance 0’1-2,t.

Again, the model can be fitted using the equivalent form:

h
Yit = o + Bit + Z {ci,j cos(wi jt) + ds jsin(wi jt) } + Ci (6.34)
i=1
fort =1,...,n. Parameters o, G;, ¢i1,...,¢p and d; 1, ..., d;p (a total

of | = 2h + 2 parameters) need to be estimated. The formulae in the
previous section cannot be applied, because of the introduction of the
slope term, so we need to use least squares regression. By defining the
l x 1 parameter vector v; = (&, 5, ¢i1,di1,.--,Cihydip), the model

equation can be written in matrix notation as:

{Y}i =X~ +¢; (6-35)

where X is the n x [ matrix:

2r s 2T 2hm s 2hm
1 1 cos = sin%g -+ cos S sin <~
1 2 cos %"2 sin 2%2 -+ COS %T”n sin 2"%2
X=1 . ) . ) ) (6.36)
1 n cos QT”n sin 277'71 <ee COS %T”n sin %T"n
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Thus, the parameter estimates are given by 4; = (X'X) 1 X'{Y}..
Referring back to equation (6.34), the original parameters R;1,...,R;p

and ¢;1,...,¢;n can now be estimated using the identities

2 _ 2 2
Rij =ci; +di;

tan ¢; ; = —2’% (6.37)
2%}

for j = 1,...,h. We obtain a unique estimate for ¢;; by introducing
the condition ¢; ; € [0, 7).

Trigonometric Model with Interactions

It is also possible to allow for interaction between the trend and seasonal

components. A suitable formulation of the model is

h h

Vit = a; + Bit + Z a; j sin(w; jt — ¢s ;) + Z b; jt sin(ws jt — @i 5) + Git
j=1 j=1

(6.38)

for t=1,...,n. In this model, the dependent variable cannot be written
as a matrix product of the independent variables and the parameters,
so, unlike in the previous case, the parameters cannot be estimated with
least squares regression. However, we can sidestep this issue by replacing
the phase parameters ¢; 1, .. ., ¢; p, with their estimates éi,l, ceey d;i,h from
the previous model and then treating them as constants. The matrix

form of the regression equation is now

(Y} = X[ +¢ (6.39)

Ak,
where v} = (ai,,@i,a,',l, . ,ai,h,b,-,l, - ,bi,h)’, al x 1 vector, and X, is

the n x | matrix
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11 sin(QT"—qgi,l) sin(zT”——qAﬁi,h)

|
|
. 1 2 sin(gTEQ - ¢i,1) oo sin(z%rQ - d’i,h) :
X,” = . . |
. I
~ ~ I
1 n sin(2T”n —¢i1) - sin(%”n — i) !
sin(ZE - i) - sin(ZE — din)
| T 7,1 T i,h
' 28in(Z — ¢i1) - 2sin(ZE - i
 28in(F — o) (T = un) (6.40)
|
| ~ ~
! nsin(%7r —¢i1) - nSin(QTﬂ — dih)

The parameter estimates are given by 4F = [(X; )’X:]_l(f( : Y{Y };,
which yields the estimated values {f’}: = X : 4% and the
residuals ¢ = {Y'}; — {l}}:

Deseasonalising the Variance

The residuals (', still exhibit strong seasonal behaviour in the second
moment, since winter temperatures usually have higher variance than
summer temperatures. This can be deduced from the fact that tempera-
ture series tend to have peaks in the periodogram of (Ci*,t)2 (Figure A.3).
Thus, it is necessary to fit another harmonic model, this time to the

variance terms Uﬁt. Let the model be

h

af,t =ag,; + Z {Ca,-,,- cos(w; jt) + do, ; sin(w,-,jt)} +m:, t=1,...,n
=1

(6.41)

Since the ¢}, have zero mean and variance azt, this model can be fitted
to the squares of the residuals (Q‘:t)Z. The parameters are estimated
in a similar way to model (6.34) and, once estimates 61-2,t are obtained,
the (', are deseasonalised by dividing them by their estimated standard

deviation. Denote the residuals from this model as z; ¢, where
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zitzL’t, t=1,...,n (6.42)

Once again, only a small number of frequencies are required, as can be
deduced from the periodogram of z;; for different values of h, (Fig-
ure A.4).

The Proposed Method — Harmonic Departures

After fitting both parts of the harmonic model to the data, temperature
estimates can be obtained in a similar way to the departure method.
We introduce the harmonic departure z; s of observation y;; this is the
residual from the full trigonometric model at time ¢, location i. The
harmonic departure for the station with missing data is then estimated

as

. 1 <
g =——7 DT (6.43)
P14
J#i

The estimate of the missing data g;; is thus

it = flig + GieZig (6.44)
where
A h | ~ h ~ -~
fit = 6; + Bit + Z a; j sin(w; jt — ¢; 5) + Z bi jtsin(w; jt — ¢ ;)
i=1 j=1
(6.45)

In direct correspondence to the departures method, fi;; and &;; are the
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harmonic model estimates for the mean and standard deviation on day

t at location 1.

6.2.3 k-Nearest Neighbour Methods
Introduction

A different approach to estimating daily temperatures is through k-
Nearest Neighbour (NN) methods. As a nonparametric method, NN
has an important advantage over Temperature Departures or LAD re-
gression in that it relies on a far less rigid set of assumptions. In all
of these methods, filling in the missing data in temperature records is
essentially treated as a problem in function approximation, that is, we

assume there exists a function f such that

Yit = f(y\i,t) (6.46)

and estimate this function.

LAD assumes that f(y,;) is linear in its inputs (or is well-approximated
by such a function), while the Departures methods places a similar con-
dition on the deseasonalised inputs and response. k-Nearest Neighbours
only assumes that f(y,;;) is well-approximated by a locally constant

function.

Basic k-Nearest Neighbours
In the simplest form of k-NN, we define days v; as vectors of the form
vt = yp; and use a distance metric to find the k most similar days to

the one of interest. The set of these days is the neighbourhood Ny (v:)

of day vy, its set of nearest neighbours:

Ni(ve) = {vs: d(ve,v5) < D(ve) ey } (6.47)
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where d(v:,vs) is the distance between v; and vs. The most commonly

used metric is Euclidean distance:

1/2

p
d(vi,vs) = | Y (Wie — ¥5.5)° (6.48)
—
=

though there are situations where other measures, e.g. max distance,

Mahalanobis distance or Manhattan distance, might be more suitable.

D(v;) is the set of distances between v; and all other days in the dataset:

D(vt) = {d('vt,'vs)v s=1,...,n, s#t} (6.49)

and D(v;) ) is the k" smallest distance in D(v;). The observation Vit
can then be estimated as the average of the y; ; corresponding to this

neighbourhood:

. 1
Yit =7 Z Yi,s (6.50)
8:VsENK(Vy)

Computational Considerations

Using Euclidean distance, the problem of obtaining the neighbourhood
of v; is equivalent to the problem of, given a set of points in RP~1-
space, finding the k nearest ones to a particular point; this is a standard
problem in analytic geometry and is of major importance to several dif-
ferent applications, such as data compression, pattern recognition (e.g.

handwriting classification), data mining and machine learning.

The most straightforward approach is to calculate and sort all the dis-
tances in D(v;). This can be very time-consuming and tends to make
the method very slow and hence unsuitable for large datasets. There

are a number of different ways for dealing with this problem, depending
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on the size of p — 1. If the number of dimensions is not too large (gen-
erally speaking, smaller than logn) there are methods for obtaining the
neighbourhood which can drastically reduce the number of operations

and hence the time required (Edelsbrunner, 1987).

In higher dimensions, the current solutions are far less satisfactory due
to the “curse of dimensionality”. One of the more successful recent ap-
proaches (Kleinberg, 1997) makes use of a simple geometric fact: if we
project points onto a line then, generally speaking, points with projec-
tions that are close to each other are likelier to be near in RP~l-space
than points whose projections are far. Because of this, it is possible to
reduce the search time by projecting the points onto a series of random
lines through the origin and giving priority in the search to points whose

projections are near the projection of the target point.

e-Approximate Nearest Neighbours

It is also possible to simplify the problem by relaxing the condition
on points entering the neighbourhood of v;. Because of the similarity
between many days in the dataset, replacing, say, the 2"¢ most similar
day with the 10** would not seriously affect the estimate. Of course, this
is only the case in relatively low dimensions; as the number of predictors
increases, the training sample populates the input space sparsely, so the

nearest neighbours are not necessarily very near at all.

A well-established method is to look for e-Approzimate Nearest Neigh-
bours (e-ANN) of the input. We say that vs is an e-ANN of v; if
d(vt,vs) < (14+€)D(vt)(x)- Indyk & Motwani (1999) propose an e-ANN
algorithm, also based on random projections, which avoids the common

problem of exponential dependence on p — 1.

The Seasonal Window Method

We introduce a different approach to simplifying the search by exploiting
the structure of temperature series. We reduce the number of distances
to be sorted by only looking for neighbours among days that are likely
to be similar to ¢t — summer days tend to be similar to summer days,

and so on. This idea is the basis of the Seasonal Window.
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To use this method, the window half-width w must first be specified.
The potential neighbours of v, are the observations which are within w
days of v|, 1), where T is the period, c= ..., —1,0,1,.... For example,
if w = 10 and day t falls on June 17th, we would look at June 7th to
27th for each year. The method then proceeds the same way as simple
k-NN.

The Threshold Method

We also propose another approach to the problem, which is to simplify
the search by allowing the size of the neighbourhood to vary. We term
this the Threshold method. To begin with, we need to specify acceptable
lower and upper bounds for the number of points in the neighbourhood
of v;. Denote these as k; and k,, respectively. Then, for each vy, all the
distances are calculated and the points v with distance from v; smaller
than some given threshold r; (d(v¢,vs) < 1¢) are included in the test
neighbourhood of v;. Let the size of this neighbourhood be k'. If k' < k;
we need to raise the threshold r; by a small amount; if &' > k,, we need
to lower it. If k' € [k;, ky], then the threshold is deemed acceptable and
the k’-NN estimate is calculated. We then set r¢; = r; and proceed the

same way for v;y1. The first threshold is set arbitrarily.

The main computational advantage of this method is that, because of
the similarity of consecutive daily temperatures, if k; and k, are far
enough apart, then the threshold will not need to be adjusted very often
— most of the time, an acceptable value for r; will also be an acceptable
value for 7;y;. This tends to make up for the cost of calculating all
the distances. Clearly, the larger the difference between k; and k, the
faster this process will be. Another advantage is that we are likely to
pick larger neighbourhoods for points with many close neighbours and
smaller ones for points with few close neighbours, which is a more natural

way of dealing with the bias-variance trade-off.
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6.3 Modelling Daily Temperature Series

6.3.1 Motivation

In the ad hoc methods described so far, we make no attempt to model
daily temperatures directly, apart from accounting for fixed-cycle peri-
odic changes in the daily mean and variance. We will now approach the
problem of missing-temperature estimation in a different way. We will

first model the deseasonalised daily temperatures {z;:} directly.

In daily temperature series, the sample autocorrelations tend to be sig-
nificantly different from 0 even for very large lags (Figure A.5), which
means that these series can not be adequately modelled with a small
number of ARMA parameters. For this reason, we choose to apply a

long-memory model to the series.

We demonstrate that it is possible to filter the deseasonalised series in
a way that eliminates the long-memory behaviour, but preserves the
short-term autocorrelation structure. Subsequently, we will approach
the resulting series using the various autoregressive models described
in the technical introduction. These models can then be cast in state-
space form, which enables us to make use of the UR representation
(Chapter 4), as well as the filtering, smoothing and interpolation results

(Chapter 3) to improve the accuracy of the estimates.

6.3.2 The ARFIMA Model

For the series {z;:}, the autoregressive fractionally integrated moving
average (ARFIMA) model is defined as:

®(B)(1 — B (zis —vig) = OBz, t=1,...,n (6.51)

where
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®(B)=1-¢B—...— ¢pB" (6.52)

is the autoregressive polynomial,

OB)=1+6:B+...+0,B (6.53)

is the moving average polynomial, v;; is the mean of z;¢, B is the back-
ward shift operator, p, g are non-negative integers, and the errors are a
white noise process ({t;:} ~ WN(0,0?2)). We require that the ARMA
part of the model is stationary and invertible, which is equivalent to
requiring that the roots of ®(z) = 0 and ©(z) = 0 lie outside the unit
circle. We assume that the polynomials ®(z) and ©(z) have no com-
mon factors — if they do, a model with identical properties can be

constructed by reducing both p and g by one.

The model equation (6.51) is identical to that of an ARIMA(p,d,q)
model except that in the ARFIMA model we allow the differencing pa-
rameter d to take any real value. The fractional difference operator

(1 — B)? is defined by the binomial expansion

(1-B)¢= 1+;%Bk (6.54)

where I'(r) is the gamma function, I'(r) = (r — 1)! if r is a positive
integer. Using the property I'(r) = (r — 1)I'(r — 1), the expansion can

be written as:
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k—d-1D(k-d-2)...(k—d—-k)X(-d
(I_B)d=1+;( )( I‘(—)d)k!( )I( )Bk

:1+§:(k—d—1)(k—d;!2)...(1—d)(—d)Bk

k=1

=l—dB—-;—d(l—d)B2—%d(l—d)(2—d)B3—...

(6.55)

One of the key properties of time series that display long-memory be-
haviour is the slow decay of the correlations. The slow decay of the
coeflicients in expansion (6.55) allows ARFIMA to model long mem-
ory processes such as daily temperature series while only using a small

number of parameters.

6.3.3 Estimation of d - Aggregated Variance

Hosking (1981) proves that the autocorrelation function p(7) of an
ARFIMA(p,d,q) process decreases hyperbolically if d € (0,1), that

is,

p(r) = Cr% 1 as 100 (6.56)

where C is a constant. This is considerably slower than the standard
ARMA case, where the correlations decay exponentially after the largest
lag of the MA component. Beran (1989) shows that, if the correlations
of a stationary process decay like 7272 (where H = d + % € (0,1)
is known as the Hurst parameter), then the variance of an n-member
sample mean will decay like n?7=2 rather than n~!. The ARFIMA
process is stationary for d < % so, given n consecutive observations

21,22, - %in, We have
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n
Var(«i—& z; Zi,t> ~Cn? ! as n-o oo (6.57)
1=

This result can be used to estimate d in long data series. The algorithm

proposed by Beran (1994) consists of the following steps:

1. Divide the series into &k = n/m blocks of size m

2. Compute Z; y(m), the m-member mean of each block

km
_ 1
Zik(m) = Z Zit (6.58)
t=(k—1)m+1

3. Estimate s?(m), the variance of the block mean (Z;. is the overall

mean)

n/m
2 — 1 - — \2
s*(m) = nfm—1 ; (Zi k(m) — Z-) (6.59)

4. Repeat for several values of m and then regress log s2(m) on logm
— the slope of the least-squares line will yield an estimate of 2d—1,

and hence an estimate of d.

If the series does not display long-memory behaviour, the slope of the
log-log line will be approximately equal to —1 (corresponding to d =~ 0).
This procedure is known as the aggregated variance (AV) method (Fig-
ure A.6). If the data are relatively homogeneous (as we would expect for
temperature data), the AV estimate of d tends to be close to the max-
imum likelihood (ML) estimate. The advantage is that the AV method
involves a much smaller number of computations, which makes it signif-

icantly faster.

In practice, the choice of upper and lower bounds for m is crucial. If
the value of m is low, then the blocks used to estimate the sample mean

variance are very small, which can introduce bias due to short range
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effects. On the other hand, if the value of m is very large, then the
small number of blocks (n/m) will make the estimate of s?(m) unstable
(Park et al., 2004).

6.3.4 Differenced Variance

Another disadvantage of the AV method, as well as other heuristic esti-
mators, is that it will occasionally produce a positive estimate for d even
in the absence of long memory (Bhattacharya et al, 1983). Series that
contain slowly decaying trends or shifts in the mean are most susceptible

to this problem.

An improved method for estimating d was proposed by Teverovsky and
Taqqu (1997). It involves fitting a straight line to a log-log plot of
the first-order differences of s%(m;) versus m;, where mi, mo,... are

logarithmically spaced.

For any smooth function f(z) in a small interval (z;,z2), we have

$@| . fa) ~ fa)
dx =11 o — I
si@)-fe)s LD @moz)  (660)

We now apply (6.60) to the function s?>(m) on the interval (mj, mjt1),

and take logarithms on both sides:

32 m
log (s*(mj41) — s*(m;)) ~ log (d dr(n ) ) +log(m;j+1 — m;)

m=m;

(6.61)

We know that s2(m) ~ Cm??~! for some constant C, so:

139



ds?(m)
dm

~ (2d — 1)Cm3*? (6.62)

m=m;

Since the points are logarithmically spaced, the ratio between consecu-
tive points is equal to some constant C7. Thus, the second term on the
RHS of (6.61) yields:

log(m;+1 — m;) = log(Cym; — m;)
= log{m;(C1 — 1)}
=logm; + log Ca (6.63)
where C5 is also a constant. Hence
log (s%(mj11) — s%(m;)) ~ log {(2d — 1)C} + (2d — 2) log m;
+ logm; + log Co
= log (s*(m;41) — sQ(mj)) ~ (2d — 1) logm; + C3 (6.64)

for some constant C3. Thus, a log-log plot of the first-order differences
s%(mj+1) — s2(m;) versus m; will also produce a straight line with slope
2d — 1. This is known as the differenced variance (DV) method. Dif-
ferencing the series increases scatter (Montanari et al., 1997) so it is
necessary to fit the line using a method more robust than least squares,
such as LAD. The points corresponding to a negative difference of vari-

ances must be ignored, as they have no logarithm.
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6.3.5 Maximum-Likelihood Methods

The methods used for estimating d are heuristic; they are are straight-
forward to apply and intuitive, since they take advantage of the key
properties of long-memory series. They have the additional advantage of
not requiring us to place distributional assumptions on the error terms.
Finally, they allow us to estimate d independently of the other model
parameters. However, it is far from easy to establish the theoretical
properties of the resulting estimators or use them to construct confi-

dence intervals for d.

Exact maximum-likelihood estimation (EML) involves estimating d jointly
with the AR and MA parameters. If we assume that the errors are Gaus-

sian, the p.d.f. of Z; = (21, 2i2,...,%in) is

f(2,8) = 2m) 28| 2 exp (—%Z’S‘IZ) (6.65)

where S is the n X n covariance matrix. z;; is stationary, so

7(0) (1) ¥(n—-1)
g '7(.1) 7(.2) v(n - 1) (6.66)
¥(n—=1) y(n-2) 7(0)
The log-likelihood is
¢, 0,d) = —g log(2m) — %log IS | — %Z’S‘lz (6.67)

where ¢ = (¢1,...,¢p) and 8 = (61,...,60;). The matrix S is a func-
tion of the autoregressive, moving average and fractional differencing
parameters. The core of the EML approach is the computation of S as
a function of these parameters (Doornik & Ooms, 2004). EML is often

prohibitively expensive from a computational viewpoint, but there are a
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number of approximate maximum-likelihood methods that can be used

instead.

6.3.6 Removing Long Memory

Because the deseasonalised series {z;:} has zero mean, the ARFIMA

model equation can be written in the form

1-B)¥zi=wiz, t=1,...,n (6.68)

where the filtered series {w;+} is stationary. Fitting an ARFIMA(p, d, q)
model to the series {z;:} is equivalent to fitting an ARMA(p, ¢) model

to the filtered series. {w;+} can be obtained using the equation

wiy = (1 — B)%iy

= {1—dB—%d(1 —d)B? - }zt

1
= Zit— dZi,t_]_ - §d(1 - d)zi,t_g = (669)

This approach is successful in removing the long-term dependence from
temperature series, in the sense that there is no evidence of long memory
in the filtered series. However, the first two sample partial autocorrela-
tions of {w;i;} tend to be high, because of the short-term structure in
temperature series (Figure A.7). This needs to be modelled separately,

with the inclusion of an autoregressive component.

We consider three different autoregressive models: a univariate AR(p)
model for each temperature series {w;:} (note that this is equivalent
to fitting a ARFIMA(p,d,0) model to {z;:}); a system of seemingly-
unrelated autoregressions (SUAR) for the series {wis},...,{wp}; and

a full vector autoregression (VAR) for the multivariate series {w;} =
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{(wigt,...,wpt)}. These models allow for different degrees of interde-

pendence between temperature series at neighbouring locations.

6.3.7 Model-based Estimation
General Approach

The autoregressive models can be expressed in state space form, so in
theory we could apply the Kalman filter smoother recursions to obtain
an interpolated estimate of observation wj;;, conditional on the whole
sample. Let this be w;¢. Note that this is the interpolated estimate
obtained by removing a single component of the vector wy, thus it is

essential to use the UR of the series.
The long-memory structure can then be reconstructed using the equation
.+ = (1 — B)4z
wit = ( )2it

& 2zip = (1 — B) *wy
= {1 +dB+%d(1+d)B2+ ...}w,,t

1
= wit +dwig1 + Ed(l + dywit—2+ ... (6.70)

Let z;¢ be the estimate of the temperature departure obtained from
equation (6.70) if we substitute w;; for w;;. The missing temperature

it Will thus be estimated from the estimated departure as

Uit = fit + Oi it (6.71)

in direct analogy to the harmonic departures method.
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The Algorithm

We soon encounter a practical problem in the application of this method.
If observation y; ¢ is missing, then the departure z;; will be unknown.
In the filtered series, the terms w;;, w; ¢+1, - .., w;n depend on z;; hence
they will also be unknown. This makes it impossible to produce the
filtered series and hence apply the smoothing and interpolation results

directly.

To overcome this problem, we propose the following algorithm:

1. Estimate the long-memory parameter d using the DV method,

ignoring the blocks which include the missing value z; ¢.

2. Filter the deseasonalised series up to time ¢ — 1 to remove the

long-memory structure and obtain terms w; 1,...,w;t—1.

3. Fit an AR(2) model to w; 1, ..., w;¢1, estimating the autoregres-
sive parameters using least-squares regression, and express the

model in state-space form.

4. Compute the initial estimate 12152) = L(wit¢|wi1,...,wit—1) using

the Kalman filter recursions.

5. Estimate the remaining terms of the filtered series w;¢41,...,Win

using expression (6.69), replacing w;; with its estimate w(J ). Let

the new series be w1, ..., w;—1,W fjt), wz(’rz.
’

6. Update the estimates of the autoregressive parameters using the

new series, and apply the UR KFS recursions to produce the inter-

(J+1) L(wi,tlwi,la yWit—1, W, z(t)+1? 'fjrz)

polated estimate w;
7. Update the autoregressive parameters by fitting an AR(2) model

1
to {wi,h y Wit—1, W (J+ )7w£]t+1) (]))

Steps 5-7 need to be repeated until the estimate converges. In prac-

tice, it was found that a single iteration of the algorithm is sufficient:

subsequent estimates wl( t),wl( t)’ . do not differ greatly from the first

interpolated estimate wz(,lt).
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SUAR and VAR models

If the chosen autoregressive model is multivariate, we need to make a
few slight modifications to the algorithm. We will use the univariate
representation of the multivariate state space model, as described in

Chapter 4. The following changes are required:

e In step 4, we can compute the contemporaneous terms of the fil-
tered series wy; = (Wi, ..., Wim1,t, Wit1t,---,Wie) , thus we can
replace the initial estimate of w;; with the partially interpolated
estimate (Chapter 3)

0 = Ewiglwy, . .., we1,wy,)- (6.72)

e In step 5, the terms w44\, . - ., Wyy\; do not depend on w; ¢ so they

can be computed directly

(F+1)

e In step 6, the updated value w;’ is the smoothed estimate

S+ _ e 5 (7)
Wiy = E(wigwr, . wee, w5 W\ Wiy - - Wity)

(6.73)

which is produced by the univariate representation of the Kalman

filter smoother.

The UR Kalman filter converges periodically to a steady state very
quickly (Chapter 5), which drastically reduces the volume of data to
be stored during the forward pass. We only require the output matrices

P;s, K s, F; s until periodic convergence is achieved.

6.4 Results and Conclusions

6.4.1 Station selection

A standard approach for assessing the accuracy of the different methods
is to take a serially complete temperature series, treat each observation
as missing and estimate it from the rest of the data. This estimate can

then be compared to the true temperature on that day.
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The data used in this application are daily maximum temperatures from
January 1950 to December 2001 at locations ELP (El Paso, TX) and
LBB (Lubbock, TX). These locations are displayed in Figure A.8.

The climate in Texas varies widely, from arid to wet. Extreme weather
phenomena such as tornadoes, hurricanes and thunderstorms can cause
violent sudden changes in temperature, particularly in the northernmost
regions. Additionally, Texas produces more greenhouse gases than any

other U.S. state, and is affected by climate change as a result.

The choice of locations is deliberate and was designed to illustrate how
the models behave under significantly different circumstances. LBB is
closer to the northwestern part of Texas, where the station density is
high the nearest weather station, AMA (Amarillo, TX), is around 100
miles away and the two temperature series are very highly correlated
(r = 0.96). On the other hand, ELP is the westernmost station in
the record and is significantly further from its neighbours . The weather
stations included in the model for LBB, chosen according to the selection
criteria recommended by DeGaetano et al. (1995), were ABI (Abilene,
TX), AMA (Amarillo, TX) and MAF (Midland, TX). Similarly, the
neighbours of ELP were taken to be AMA, LBB and MAF.

Monthly summary statistics for the two main series can be seen in Table
B.1. The series AMA is also included in this table, to illustrate the
difference in temperature between the Northern Plains region of the
state, where AMA is located, and the more arid western region (ELP).
Series ELP displays considerable lower variability within each month

compared to the other two series.

6.4.2 Ad-hoc Methods

Comparison of Existing Methods

We begin by comparing the performance of the Departures and LAD
methods. In the following tables, ‘mean’ and ‘med’ refer to the the mean
and median of the errors y; ; — i ; MAE and mdAE are, respectively, the
mean and the median of the absolute errors |y; ; — ¥i|; sd and sdA are

the estimated standard deviations of the errors and the absolute errors,
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respectively, while MSE is the mean square error %Et(yi,t —9it)% As
a baseline, we also provide summary statistics for the following simple
models: Mean (§; ¢+ = fli+, the daily mean) and 2pMA (9is = (yiz—1 +

¥it+1)/2, a 2-point moving average)

As can be seen in Tables B.2 and B.3, the LAD approach is slightly
more biased than the departure approach in terms of the mean error,
but performs better in almost every other category (errors have units
of degrees Fahrenheit). These results confirm that the LAD method
achieves much smaller mean and median absolute errors than the depar-
ture method and also that its estimates have smaller variance. As would
be expected, both techniques produce far more accurate results for LBB
than for ELP, due to the proximity of its neighbouring stations. Note
that this is not affected by the higher variance of the daily temperatures
at LBB.

Harmonic Departures

We will now assess the accuracy of the harmonic departures method,
denoted by ‘Harm’. Tables B.4 and B.5 demonstrate that, despite be-
ing based on. the same principle as De Gaetano’s departure method,
Harmonic Departures are noticeably more accurate. In fact, for LBB
the Harmonic Departure model produces error statistics comparable
to those from the LAD method. This is a significant result because
between-station methods tend to be computationally efficient compared
with LAD, which involves calculating a set of regression coefficients, and

hence solving a quadratic programming problem, for each month.

k-Nearest Neighbours and Approximations

The results from the models in this section are summarised in Tables B.6
and B.7. Two of the previous models — Harmonic Departures and LAD
— are also included for ease of comparison. In the following table NN(k)
denotes the basic k-Nearest Neighbours model; T(k;, k,) denotes the
Threshold method, with neighbourhood size lower bound k; and upper
bound k,; and W(k,w) is the Seasonal Window, with neighbourhood
size k and window half-width w.
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All of these methods result in similar error statistics; they generally out-
perform Harmonic Departures by a substantial margin and are compa-
rable to LAD, the best model so far. Surprisingly, the Seasonal Window
method occasionally does a little bit better than k-NN, the method it is

approximating. This needs to be discussed in more detail.

Seasonal Window Results

The Seasonal Window often results in better error statistics than simple
k-NN, even though it only uses a small subset of the original training
sample to construct the estimates. This phenomenon can be explained
through the structure of the data: say we are trying to estimate the tem-
perature on y; ¢, a summer day, at location ELP and the j** predictor
variable is location AMA. If the weather at AMA happens to be unsea-
sonably cold on that day, y;: could easily be closer to, say, a relatively
warm spring day y; s rather than other summer days. If the number of
predictors is small, the effect of this on the overall distance metric could

be enough to lead to vs being included in the neighbourhood of v;.

However, it is a well-documented fact (e.g. Allen & DeGaetano, 2001)
that, given the temperature at AMA is extreme, it is still much likelier
that the temperature at nearby ELP will not be extreme. Thus, the
difference between y;; and y; ; will potentially be large, resulting in a
larger prediction error. With the Seasonal Window method, y; s would
automatically be excluded from the estimation process and, more often

than not, replaced by days with temperatures closer to y; ;.

6.4.3 Model-based Methods

We now compare the estimates produced by the model-based autore-
gressive methods. Only the autoregressive coeflicients corresponding to
the first two lags are significantly different from zero. Thus, the models
fitted are AR(2), SUAR(2) and VAR(2). Tables B.8 and B.9 contain
summary statistics of the residuals resulting from a single iteration of

the algorithm.

By the classification given in 4.2.1, the AR(2) model is a within-station

method and the estimates it produces are, unsurprisingly, substantially

148



less accurate than those from the multivariate autoregressive models.
Note that, in terms of its residuals, it is virtually indistinguishable from
a simple 2-point moving average, which does not take into account the
long-memory structure. We can also see that the SUAR- and VAR-
based estimation methods are comparable to the most accurate ad-hoc

approach, LAD.

The numerical results in this section were generated using programs
written in Ox, an object-oriented matrix programming language with a
comprehensive mathematical and statistical function library (Doornik,
2002). Full details and program code can be found on the author’s thesis
page — http://stats.Ise.ac.uk/milt /phd
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Appendix A

Figures

Figure A.l: Periodogram of (Lubbock, TX)
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Figure A.2: Periodogram of (Q,#) (Lubbock, TX)
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Figure A.3: Periodogram of (0 )2 (Lubbock, TX)
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Figure A.4: Periodogram of z*t (Lubbock, TX)
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Figure A.5: ACF of the deseasonalised series (Lubbock, TX)
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Figure A.6: Aggregated Variance log-log plot (Lubbock, TX)
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Figure A.7: Partial ACF of ywiy} (Lubbock, TX)
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Figure A.8: Map of Texas
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Appendix B

Tables

Table B.1: Summary statistics (El Paso, TX and Lubbock, TX)

ELP | ELP || LBB | LBB | AMA | AMA

mean | s.d. mean | s.d. mean | s.d.
Jan 57.94 | 8.73 || 53.34 | 13.55 || 49.50 | 14.13
Feb 63.38 | 8.91 || 58.15 | 13.58 || 53.85 | 14.38
Mar 69.95 | 8.77 | 65.62 | 12.51 || 61.32 | 13.45
Apr 78.69 | 8.07 || 75.09 | 10.87 || 70.98 | 11.59
May 87.39 | 6.82 || 83.17 | 9.57 || 79.16 | 10.23
Jun 95.87 | 6.10 || 90.62 | 7.88 | 87.87 | 8.42
Jul 95.24 | 5.48 | 9243 | 6.24 || 91.36 | 6.51
Aug 93.03 | 5.31 || 90.58 | 6.25 || 89.42 | 6.81
Sep 87.92 | 6.91 | 83.87 | 8.96 | 82.29 | 9.78
Oct 78.75 | 8.14 || 75.02 | 10.27 || 72.48 | 11.24
Nov 66.11 | 8.94 || 62.55 | 11.97 || 59.08 | 12.80
Dec 58.08 | 8.64 | 54.66 | 12.55 {| 50.78 | 13.26

Overall || 77.75 | 15.70 || 73.83 | 17.53 || 70.75 | 18.67

Table B.2: Results from existing estimation methods (El Paso, TX)

Model | mean | MAE | med | mdAE sd sdA | MSE

Mean | 0.000 | 5.653 | 0.850 | 4.616 | 7.319 | 4.648 | 53.561

2pMA | -0.001 | 3.204 | 0.000 | 2.000 | 4.441 | 3.075 | 19.720
Dep | -0.016 | 4.012 | -0.233 | 3.173 | 5.271 | 3.419 | 27.786
LAD | 0.031 | 2.945 | 0.000 | 2.263 | 3.957 | 2.643 | 15.657
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Table B.3: Results from existing estimation methods (Lubbock, TX)

Model | mean | MAE | med | mdAE sd sdA MSE
Mean | 0.000 | 8.067 | 1.165 | 6.486 | 10.400 | 6.564 | 108.170
2pMA | 0.000 | 5.173 | 0.500 | 3.500 | 7.118 | 4.890 | 50.670
Dep | 0.015 | 3.279 | 0.111 | 2.611 | 4.257 | 2.714 | 18.118
LAD | -0.061 | 2.237 | 0.000 | 1.684 | 3.040 | 2.060 | 9.245

Table B.4: Results from Harmonic Departures methods (El Paso, TX)

Model | mean | MAE | med | mdAE sd sdA | MSE

Dep | -0.016 | 4.012 | -0.233 | 3.173 | 5.271 | 3.419 | 27.786
Harm | -0.002 | 3.401 | -0.162 | 2.641 | 4.535 | 3.000 | 20.568
LAD | 0.031 | 2,945 | 0.000 | 2.263 | 3.957 | 2.643 | 15.657

Table B.5: Results from Harmonic Departures methods (Lubbock, TX)

Model | mean | MAE | med | mdAE | sd sdA | MSE
Dep 0.015 | 3.279 | 0.111 | 2.611 | 4.257 | 2.714 | 18.118
Harm | 0.000 | 2.440 { 0.172 | 1.875 | 3.267 | 2.173 | 10.673
LAD | -0.061 | 2.237 | 0.000 | 1.684 | 3.040 | 2.060 | 9.245

Table B.6: Results from NN Methods (El Paso, TX)

Model mean | MAE | med | mdAE | sd sdA | MSE
Harm -0.002 | 3.401 | -0.162 | 2.641 | 4.535 | 3.000 | 20.568
LAD 0.031 | 2.945 | 0.000 | 2.263 | 3.957 | 2.643 | 15.657
NN(10) 0.041 | 3.071 | 0.050 | 2.389 | 4.095 | 2.709 | 16.770
NN(50) 0.088 | 3.011 | 0.082 | 2.327 | 4.022 | 2.668 | 16.182
T(1,100) | 0.031 | 3.153 | 0.000 | 2.412 | 4.240 | 2.835 | 17.981
T(5,200) | 0.069 | 3.027 | 0.050 | 2.333 | 4.047 | 2.688 | 16.386
T(10,100) | 0.071 | 3.029 | 0.075 | 2.348 | 4.044 | 2.680 | 16.359
W(10,5) | 0.078 | 3.083 | 0.200 | 2.400 | 4.126 | 2.744 | 17.033
W(10,15) | 0.060 | 3.008 | 0.100 | 2.300 | 4.037 | 2.693 | 16.299
W(10,30) | 0.072 | 2.995 | 0.100 | 2.300 | 4.021 | 2.683 | 16.173
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Table B.7: Results from NN Methods (Lubbock, TX)

Model mean | MAE | med | mdAE | sd sdA | MSE
Harm 0.000 | 2.440 | 0.172 | 1.875 | 3.267 | 2.173 | 10.673
LAD -0.061 | 2.237 | 0.000 | 1.684 | 3.040 | 2.060 | 9.245
NN(10) |-0.012 | 2.355 | 0.071 | 1.813 | 3.172 | 2.124 | 10.061
NN(50) |-0.027 | 2.294 | 0.061 | 1.755 | 3.094 | 2.076 | 9.575
T(1,100) |-0.018 | 2.421 | 0.050 | 1.846 | 3.302 | 2.246 | 10.906
T(5,200) |-0.018 | 2.315 | 0.083 | 1.781 | 3.124 | 2.098 | 9.762
T(10,100) | -0.025 | 2.310 | 0.065 | 1.767 | 3.114 | 2.089 | 9.699
W(10,5) | -0.080 | 2.395 | 0.000 | 1.800 | 3.223 | 2.159 | 10.396
W(10,15) | -0.041 | 2.329 | 0.000 | 1.800 | 3.146 | 2.115 | 9.900
W(10,30) | -0.025 | 2.315 | 0.100 | 1.700 | 3.123 | 2.096 | 9.752

Table B.8: Results from model-based methods (El Paso, TX)

Model | mean | MAE | med | mdAE sd sdA MSE
2pMA | -0.001 | 3.204 | 0.000 | 2.000 | 4.441 | 3.075 | 19.720
Harm | -0.002 | 3.401 | -0.162 | 2.641 | 4.535 | 3.000 | 20.568
LAD | 0.031 | 2.945 | 0.000 | 2.263 | 3.957 | 2.643 | 15.657
AR | -0.001 | 3.174 | 0.358 | 2.259 | 4.375 | 3.010 | 19.138
SUAR | 0.000 | 2.445 | 0.063 | 1.798 | 3.330 | 2.261 | 11.090
VAR | 0.000 | 2.375 | 0.090 | 1.767 | 3.243 | 2.208 | 10.520

Table B.9: Results from model-based methods (Lubbock, TX)

Model | mean | MAE | med | mdAE | sd sdA | MSE
2pMA | 0.000 | 5.173 | 0.500 | 3.500 | 7.118 | 4.890 | 50.670
Harm | 0.000 | 2.440 | 0.172 | 1.875 | 3.267 | 2.173 | 10.673
LAD | -0.061 | 2.237 | 0.000 | 1.684 | 3.040 | 2.060 | 9.245
AR 0.000 | 5.154 | 0.469 | 3.717 | 7.017 | 4.761 | 49.239
SUAR | -0.001 | 2.034 | 0.033 | 1.462 | 2.832 | 1.971 | 8.020
VAR | -0.001 | 1.998 | 0.049 | 1.438 | 2.785 | 1.940 | 7.757

157




Bibliography

[1] Allen, R. J. and DeGaetano, A. T., 2001, Estimating Missing Daily
Temperature Extremes Using an Optimized Regression Approach,
International Journal of Climatology 21, 1305-1319

[2] Anderson, B. D. O. and Moore, J. B., 1979, Optimal Filtering, En-
glewood Cliffs, NJ: Prentice-Hall

[3] Ansley, C. F. and Kohn, R., 1985, Estimation, Filtering and Smooth-
ing in State Space Models With Incompletely Specified Initial Con-
ditions, Annals of Statistics, 13, 1286-1316

[4] Barrodale, I. and Roberts, F. D. K., 1973, An Improved Algorithm
for Discrete L1 Linear Approximations, SIAM Journal of Numerical
Analysis 10, 511-547.

[5] Beran J., 1989, A Test of Location for Data with Slowly Decaying
Serial Correlations, Biometrika 76, 261-269

[6] Beran J., 1994, Statistics for Long-Memory Processes, Chapman &
Hall

[7] Bhattacharya, R. N., Gupta, V. K. and Waymire, E., 1983, The
Hurst Effect under Trends, Journal of Applied Probability 20,
649662

[8] Bloomfield, P., 1976, Fourier Analysis of Time Series: An Introduc-

tion Wiley: Interscience

[9] Box, G. E. P., Jenkins, G. M., 1970, Time Series Analysis: Forecast-
ing and Control, San Francisco: Holden-Day

[10] Box, G. E. P., Jenkins, G. M., Reinsel, G. C., 1994, Time Series
Analysis: Forecasting and Control, Englewood Cliffs, NJ: Prentice-
Hall

158



[11] Brockwell, P. J. and Davis, R. A., 1987, Time Series: Theory and
Models, Springer, New York

[12] Brockwell, P. J. and Davis, R. A., 1996, Introduction to Time Series

and Forecasting, Springer, New York
[13] Brogan, W. L., 1991, Modern Control Theory, Prentice Hall

[14] Caballero, R., Jewson, S. and Brix, A., 2001, Long Memory in
Surface Air Temperature: Detection, Modelling, and Application to
Weather Derivative Valuation, Climate Research 21, 127-140

[15] Caines, P. E., and Mayne, D. Q., 1970, On the Discrete Time Ma-
trix Riccati Equation of Optimal Control, International Journal of
Control 12, 785-794

[16] Chan, S.W., Goodwin, G.C. and Sin, K.S., 1984, Convergence Prop-
erties of the Riccati Difference Equation in Optimal Filtering of Non-
stabilizable Systems, IEEE Transactions on Automatic Control 29,
110-118

[17) DeGaetano, A. T. and Eggleston, K. L. and Knapp, W. W., 1995,
A Method to Estimate Missing Daily Maximum and Minimum Tem-
perature Observations, Journal of Applied Meteorology 34, 363-387

[18] De Jong, P., 1988, A Cross-Validation Filter for Time Series Models,
Biometrika 75, 594-600

[19] De Jong, P., 1989, Smoothing and Interpolation with the State-
Space Model, Journal of the American Statistical Association 84,
1085-1088

[20] De Jong, P., 1991, The Diffuse Kalman Filter, Annals of Statistics
2, 1073-1083

[21] De Jong, P., 1991b, Stable Algorithms for the State Space Model,
Journal of Time Series Analysisn 12, 143-157

[22] De Jong, P. and Penzer, J., 1998, Diagnosing Shocks in Time Series,
Journal of the American Statistical Association 93, 796-806

[23] De Jong, P. and Penzer, J., 2004, The ARMA Model in State Space
form, Statistics & Probability Letters, 70, Issue 1, 119-125

159



[24] Doornik, J. A., 2002, , Object-Oriented Matrix Programming Using
Ox, 3rd ed., London: Timberlake Consultants Press and Oxford:

www.doornik.com

[25] Doornik, J. A. and Ooms, M., 2004, Inference and Forecasting for
ARFIMA Models with an Application to US and UK Inflation, Stud-

ies in Nonlinear Dynamics & Econometrics 8, Issue 2, Article 14

[26] Duncan, D. B. and Horn, S. D., 1972, Linear Dynamic Recursive
Estimation from the Viewpoint of Regression Analysis, Journal of
the American Statistical Association 67, 815-821.

[27] Dunis, C. L. and Karalis, V., 2003, Weather Derivatives Pricing
and Filling Analysis for Missing Temperature Data, Derivatives Use,
Trading and Regulation 9/1, 61-83

[28] Durbin, J. and Koopman, S. J., 2001, Time Series Analysis by State
Space Methods, Oxford University Press

[29] Edelsbrunner, H., 1987, Algorithms in Combinatorial Geometry
Springer-Verlag

[30] Eischeid, J. K. and Baker, C. B. and Karl, T. R. and Diaz, H.
F., 1995, The Quality Control of Long-Term Climatological Data
using Objective Data Analysis Journal of Applied Meteorology 34,
2787-2795

[31] Fahrmeir, L. and Tutz, G., 1994, Multivariate Statistical Modelling
Based on Generalized Linear Models, New York:Springer-Verlag.

[32] Hamilton, J. D., 1994, Time Series Analysis, Princeton University

Press

[33] Harvey, A. C., 1989, Forecasting, Structural Time Series Models
and the Kalman Filter, Cambridge University Press

[34] Harvey, A. C., 1993, Time Series Models, Harvester Wheatsheaf
[35] Hosking, J., 1981, Fractional Differencing, Biometrika 68, 165-176

[36] Indyk, P. and Motwani, R., 1999, Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality Proceedings of the
Thirtieth Annual ACM Symposium On theory of Computing, 604 -
613

160


http://www.doornik.com

[37] Kalman, R. E., 1960, A New Approach to Linear Filtering and
Prediction Problems, Transactions of the ASME — Journal of Basic
Engineering 82D, 35-45

[38] Kemp W. P., Burnell, D. G. and Everson, D. O. and Thompson, A.
J., 1983, Estimating Missing Daily Maximum and Minimum Temper-
atures, Journal of Climate and Applied Meteorology 22, 1744-1763

[39] Kleinberg M. K., 1997, Two Algorithms for Nearest-Neighbor
Search in High Dimensions, Proceedings of the Twenty-Ninth An-
nual ACM Symposium On theory of Computing

[40] Kohn, R. and Ansley, C. F., 1989, A Fast Algorithm for Signal
Extraction, Influence and Cross-Validation in State-Space Models,
Biometrika 76, 65-79

[41] Koopman, S. J., 1993, Disturbance Smoother for State Space Mod-
els, Biometrika 80, 117-126

[42] Koopman, S. J. and Durbin, J., 2000, Fast Filtering and Smoothing
for Multivariate State Space Models, Journal of Time Series Analysis
21, 281-296

[43] Lehmann, E. L. and Casella, G., 1990, Theory of Point Estimation,
Springer

[44] Montanari, A., Rosso, R. and Taqqu, M. S., 1997, Fractionally Dif-
ferenced Arima Models Applied to Hydrologic Time Series: Identi-
fication, Estimation and Simulation, Water Resources Research 33,
1035-1044

[45] Park, C., Hernandez Campos, F., Le, L., Marron, J. S., Park, J.,
Pipiras, V., Smith, F. D., Smith, R. L., Trovero, M. and Zhu, Z., 2004
Long-Range Dependence Analysis of Internet Traffic, Submitted to

Statistical Science

[46] Pearlman, G. K., 1980, An Algorithm for the Exact Likelihood of a
High-Order Autoregressive-Moving Average Process, Biometrika 67
(1), 232-233

[47] Penzer, J., 2007, State Space Models of Time Series with Patches
of Unusual Observations, Journal of Time Series Analysis 28 (5),
629-645

161



[48] Proietti, T., 2003, Leave-k-out Diagnostics in State-Space Models,
Journal of Time Series Analysis 24, 221-236

[49] Taqqu, M. S, Teverovsky, V. and Willinger, W., 1995, Estimators
for Long-Range Dependence: An Empirical Study, Fractals 3, 785-
798

[60] Teverovsky, V. and Taqqu, M. S., 1997, Testing for Long-Range
Dependence in the Presence of Shifting Means or a Slowly Declining

Trend Using a Variance Type Estimator, Journal of Time Series
Analysis 18, 279-304

[61] Zellner, A., 1962, An Efficient Method of Estimating Seemingly Un-
related Regression Equations and Tests for Aggregation Bias, Jour-
nal of the American Statistical Association 57, 348-368

162



