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Time, they say, is the answer. But I  don’t believe them.

Sly Stone, Time
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Abstract

This thesis examines several issues that arise from the state space rep
resentation of a multivariate time series model.

Original proofs of the algorithms for obtaining interpolated estimates 
of the state and observation vectors from the Kalman filter smoother 
(KFS) output are presented, particularly for the formulae for which rig
orous proofs do not appear in the existing literature. The notion of 
partially interpolated estimates is introduced and algorithms for con
structing these estimates are established.

An existing method for constructing a univariate representation (UR) 
of a multivariate model is developed further, and applied to a wider 
class of state space models. The computational benefits of filtering and 
smoothing with the UR, rather than the original multivariate model, 
are discussed. The UR KFS recursions produce useful quantities that 
cannot be obtained from the original multivariate model. The mathe
matical properties of these quantities are examined and the process of 
reconstructing the original multivariate KFS output is demonstrated

By reversing the UR process, a time-invariant state space form (SSF) 
is proposed for models with periodic system matrices. This SSF is used 
to explore the novel concept of periodic convergence of the KFS. Neces
sary and sufficient conditions for periodic convergence are asserted and 
proved.

The techniques developed are then applied to the problem of missing- 
value estimation in long multivariate temperature series, which can arise 
due to gaps in the historical records. These missing values are a hin
drance to the study of weather risk and pricing of weather derivatives, 
as well as the development of climate-dependent models. The proposed 
model-based techniques are compared to existing methods in the field, 
as well as an original ad hoc approach.

The relative performance of these methods is assessed by their appli
cation to data from weather stations in the state of Texas, for daily 
maximum temperatures from 1950 to 2001.
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Chapter 1

Introduction

In recent years, structural models and the state space form (SSF) have 
had a profound effect on time series analysis. Together, they form a 
complete framework for the analysis of time series which can be used as 
an alternative to the traditional ARIMA methodology.

ARIMA modelling, also known as the Box-Jenkins approach, after the 
work of Box & Jenkins (1970), relies on differencing a time series to 
eliminate trend, seasonality and other such time-varying behaviour. The 
aim is to reduce the data to a stationary series, that is, one where the 
moments (mean, covariance, etc.) are time-invariant.

Box-Jenkins models can be difficult to identify, since the model choice 
depends entirely on the data, not the structure of the system. The 
model parameters relate to abstract quantites and rarely have an intu
itive interpretation. In addition, the models can be difficult to estimate, 
particularly if there are missing observations in the time series. Model 
fitting is heavily reliant on the sample autocorrelation function (ACF) 
and partial autocorrelation function (PACF), both of which can be very 
noisy. Perhaps most importantly, the process of differencing to achieve 
stationarity tends to eliminate the salient features of the time series.

The basis of state space modelling can be found in the work of Kalman 
(1960). Initial developments took place in the field of engineering, par
ticularly the branch of control theory. The pioneering work of Harvey 
(1989) introduced structural models and applied the concept of state 
space modelling within the framework of time series analysis. With
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the structural approach, the different components (trend, seasonality, 
explanatory variables, interventions) are modelled separately and then 
combined to form the complete model.

Structural models provide explicit information about the individual com
ponents, such as the seasonal pattern, which are very often of interest 
in themselves. The process of model selection is more natural, because 
the components reflect the real-life structure of the time series. Fur
thermore, the transparency of the structural approach makes it easy to 
check the components individually and ensure that their behaviour is 
realistic. The model parameters relate to interpretable quantities and 
can be allowed to evolve over time, in marked contrast to the rigidity 
of the ARIMA approach. Estimation, forecasting and interpolation are 
all straightforward once a structural time series model is in state space 
form, by use of the Kalman filter recursions.
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Chapter 2

Technical Introduction

2.1 Introduction

In this chapter we provide the reader with the theoretical background 
of the thesis. We begin by examining a subclass of Box-Jenkins models, 
that of autoregressive models, and describing the process by which these 
are estimated. We are particularly interested in the different multivari
ate extensions of the the univariate model.

In subsequent sections, we introduce structural time series analysis and 
give examples of different structural models. We define the state space 
representation of a time series, focusing on the more general state space 
form (SSF) introduced by de Jong (1991), and demonstrate that struc
tural and Box-Jenkins models can be expressed in SSF.

Later in the chapter, we consider the Kalman filter (KF) and its im
portance in model estimation, filtering and forecasting. We prove the 
key linear estimation results which then allow us to derive the KF re
cursions. We identify the parallels between the KF and the Cholesky 
decomposition, which serve to explain the computational efficiency of 
the KF.

We conclude by discussing the problem of smoothing, that is, obtaining 
parameter estimates conditional on the entire sample. We derive the 
Kalman filter smoother (KFS) recursions, which, by augmenting the 
KF, allow us to obtain these estimates in a straightforward manner.

3



2.2 Autoregressive M odels

Autoregressive models are ones where each observation is considered to 
be equal to a weighted sum of past observations plus an error term. They 
have several advantages: specifying a parsimonious model is simple, and 
we can often use standard techniques from linear regression theory to fit 
it to the data. Obtaining forecasts is easy and, in many cases, the models 
produce reasonably good short-term predictions. Furthermore, general
isation to multivariate models (such as VAR and SUAR, discussed later 
in this section) is straightforward.

2.2.1 A R  (p)

A pth-order autoregression, denoted AR(p), has model equation

Vt — 4> iy t - i + 022/t-2 • • • + (f>pVt-p + (2.1)

where {e*} ~  WN(0, a2). Using the backshift operator B , (2.1) can be 
expressed as

*{B)yt =  et (2.2)

where &(B) = 1 — (j>\B — . . .  — 4>PB P is the autoregressive polynomial 
If the roots of ${z) lie outside the unit circle, then the series {yt} is 
stationary. The parameters <j) \ , . . . ,  (f)p are estimated by ordinary least 
squares (OLS), regressing yt on its p first lags. The AR(p) model does 
not satisfy the basic assumptions of least squares regression (for example, 
the predictor variables are stochastic and depend on past errors), so the 
resulting parameter estimates are biased. However, the estimates are 
consistent and yield asymptotically valid tests of hypotheses about the 
autoregressive parameters (e.g. Hamilton, 1994).
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2 .2 .2  V A R (p)

A pth-order vector autoregression, denoted VAR(p), has model equation

y t = & iy t- i  +  $22/*-2 • • • +  QpVt-p +  £t (2.3)

where y t is the vector of observations at time t, the autoregressive co
efficients $ 1, . . . ,  3>p are square matrices, and the error vector {e*} ~  
WN(0, S e) has the same length as y t . As before, the autoregressive 
parameters are estimated by OLS, regressing y t on its p  first lags.

2.2 .3  SU A R (p )

A system of p th-ordeT seemingly unrelated autoregressions, denoted by 
SUAR(p), consists of the autoregressive processes

Vi,t == —1 “I” 0z,22/i,t—2 • • ■ T p T £i,t (2*4)

for i = 1 , . . . ,&,  where {e*} =  {(ei.t,. . . ,  £k,t)'} ~  WN(0, £ e). The 
matrix is assumed to be non-diagonal, thus contemporaneous errors 
in the different processes are correlated. Note that a SUAR(p) model is 
equivalent to a VAR(p) model where the coefficient matrices 3>i,. . . ,  
are diagonal.

Let fa = i . . .  <f>i j t y  and x^ t = (yi,t-i • • • Vi,t-P), so we can express 
equation (2.4) as yiit =  +  £i,t- We also define y t = (yiyt . . .  yk,tY
and X t  = (x'l t . . .  x'k t)'. SUAR models are commonly estimated using 
a method introduced by Zellner (1962):

1. Obtain an initial (OLS) set of estimates by regressing ^ )t on 
its first p  lags, Xi j -

2. Construct the residuals ef\ = y^t — Xi^cjJf* and calculate the sam

ple variance of the vector of residuals £^  =  (£^\ . . .
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3. Compute the Cholesky decomposition = L^l\ L ^ ) ' .

4. Obtain an updated set of estimates by OLS regression of 

ViJ =  { (£ (0)-12/t}i on x iJ =  { ( L( l ) ) ~ l x t } i

where {.. .}* denotes the ith row of a matrix. Steps 2 — 4 are repeated 
until the algorithm converges. The initial OLS parameter estimates axe 
biased, but all further estimates 4>i \  • •. are unbiased.

2.3 Structural Time Series M odels

2.3 .1  In trod u ction

A structural time series model is set up in terms of directly interpretable 
components, which are then modelled as stochastic processes. Each 
observation yt is expressed as a sum of unobserved components, such as 
the current level, seasonal effect and noise. It is common to assume that 
the unobserved components are uncorrelated, but this is not strictly 
necessary; in fact, the relationship between these components can be 
modelled explicitly.

2.3 .2  E xam p les o f  S tructural M odels

We will now consider some basic structural models. These are the build
ing blocks of structural time series analysis and can be used to construct 
more complex models.

Local Level M odel (LLM)

The simplest strutural model is one where the mean of a time series 
follows a random walk. This is known as the Local Level Model or a 
’’random walk plus noise” :
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y t  — V t + £ t

Mt+i — +  Vt (2.5)

where fit is the level and the error series {e*} ~  WN(0, erf), {77*} ~  
WN(0, cr̂ ) are assumed to be mutually uncorrelated at all lags.

Local Linear Trend (LLT)

If we include a slope term which also follows a random walk, we obtain 
the Local Linear Trend model:

Vt — Pt +  £t
V>t+1 =  Ht+ fit +  Vt (2-6)
fit+i = fit +  Ct

where fit is the slope and /it is the trend. The error series {^} ~  
WN(0, cr )̂, {rjt] ~  WN(0, cr^), {Ct} ~  WN(0 , cr̂ ) are mutually uncorre
lated at all lags.

Dummy Seasonal M odel

A straightforward way to model seasonal time series is to introduce 
additive seasonal effects at each time period. Let 71 be the seasonal
effect at time t. We could assume that the seasonal effects sum to zero
over a whole period, thus:

s —1

7t = ~ J 2 l t - j  (2-7)
j =1

If we include this seasonal term in the LLM we obtain

7



yt  — +  £t

fH+l =  IH +  I t  +  Vt
s—1

7t+l =  ~  ^  Tt+l-j (2-8)
J=1

The error terms {s*} rs_/ WN(0, of), {t/j} ~  WN(0, <j ^) are mutually un
correlated at all lags. It is often useful to allow the seasonal terms to
evolve stochastically. We can accomplish this by introducing another 
error term {u;t} ~  WN(0, cr^) and setting

s —1

I t  =  ~ y ^ 7 t - j  + U t  (2.9)
3= 1

In this case, the sum of seasonal effects over a whole period is equal to 
this error term.

2.4 State Space Representation

2.4 .1  D efin ition s

Structural time series models, such as those described in the previous
section, are estimated by putting them in state space form. The funda
mental concept of the state space approach is that the observation y t 
can be expressed as a linear function of an unobserved vector ott (known 
as the state vector) and an error term e*. The state vectors follow a 
first-order autoregression, which has the Markov property. Thus, the 
SSF can be thought of as a Hidden Markov Model.

We will use the SSF defined by de Jong (1991):
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Vt — Zt&t +  Gt£t

act+i =  T tott +  H tet

(2.10)

(2 .11)

for t = 1,2, . . . , .  The dimensions of y t , at  and St are p x 1, q x 1 and 
r x 1, respectively. The errors £i ,£2j--- form a white noise process 
with unit variance, denoted by {e*} ~  W N(0,Ir ). The system matri
ces Z u G u T u H t are deterministic quantities and depend on unknown 
parameters, which are estimated by maximum likelihood.

Equation (2.10) is known as the measurement equation, and describes 
the process by which the observation vector is calculated from the corre
sponding state vector. Equation (2.11) is the transition equation, which 
describes the process by which the state vector evolves over time. We 
will refer to Gt£t as the measurement error, and Ht£t  as the transi
tion error. A necessary and sufficient condition for contemporaneous 
measurement and transition errors to be uncorrelated is G tH[ = 0.

Relaxing the restriction on the variance of £t is not necessary. If for a 
particular model it is more natural to define an error term with non-unit 
variance, say {e^} ~  WN(0, Vt)  then we can set

et = D J 1e t , G t = G tD t, H t = H tD t (2.12)

where Dt  is the Cholesky decomposition of Vt,  that is, V t = DtD't. 
The new error series {§*} is a white noise process with unit variance, as 
required, and the model is unchanged.

We allow the system matrices to evolve over time; this allows the SSF to 
represent a wide variety of models. However, many important time series 
models can be expressed in SSF with time-invariant system matrices. 
For example, consider the LLT model defined in (2.6). This can be put 
in SSF by setting

9



Z t = (  1 o ) ,  Gt = ( a c 0 o ) ,  {£ t}~W N (0 ,I3)

OCt =
0 av 0 
0 0

(2.13)

In the following subsection we will demonstrate how the autoregressive 
models described in this chapter can also be cast in SSF.

2.4 .2  A utoregressive  M odels in  S ta te  Space Form

Consider the AR(p) model as a special case of a moving-average autore
gressive process, denoted ARMA(p, q), which includes both an autogres- 
sive and a moving-average component:

Vt — +  023/4-2 • • • +  (fipyt-p +  St +  0 \ £ t - l  +  #2£t— 2  • • • +  OqEt-q

where {e*} ~  WN(0, cr2), <&(B) is the autoregressive polynomial and 
0(B ) = l — #iB - . . . — 9qB q is the moving-average polynomial Similarly 
to the AR(p) model, the series {yt} is stationary if the roots of 3>(2) lie 
outside the unit circle.

We want to express this model in the form

AR(p)

(2.14)

or, in lag operator form

$(B)jft =  0 (B )et (2.15)

10



yt = Za.t +  G et

ott+i = Tott +  H e t (2 .16)

The most common state space representations in time series literature 
(e.g. Brockwell & Davis, 1987; Harvey, 1993; Box et al., 1994; Hamilton, 
1994) involve a state vector a t  of dimension m = max(p,q +  1). One 
such representation (Box et al., 1994) is

Z  =  (1,0, . . . ,0) ,  T  =

(  0 1 0

0 0 1

0 0

0m 0m—1

0 \

0 

1

01 j

G  = 0, H  = ( l , 0 i , . . . , 0 m_i)' (2.17)

where the {ipj} are the leading coefficients in the polynomial expansion 
of B (B )/^ (B ), and are functions of the hyperparameters. De Jong 
& Penzer (2004) argue in favour of a m  = max(p,q) representation 
originally proposed by Pearlman (1980). This has system matrices

Z  =  (1,0, . . . ,0) ,  T  =

(( f )  i 1 0 ••• o \  
02 0 1

0m—1 0 ' ’ '
0m 0 .............  0 J

0

0 1

G — 1, H  — (6i +  0 i , . . . ,  9m +  0m/ (2.18)

Note that in this representation, G H ' ^  0, thus measurement and tran
sition errors are correlated. In the special case of an AR(p) model, the
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moving average coefficients are all equal to zero and we set

H  =  > „ ) ' (2.19)

The other system matrices are the same as in (2.18).

VAR (p)

The SSF for the VAR(p) model is very similar to (2.18); the system 
matrices can be expressed in block form as

Z  = [1,0, . . .  ,0], T  =

$

I 0 

0 I

p-l U 
0

g  =  i , i f  = (2.20)

where I  is the identity matrix (de Jong & Penzer, 2004). If the observa
tion vector y t consists of k components, then the state vector has length 
kp.

SUAR(p)

Assume we observe k contemporaneous time series {2/1,*}, {2/2,t}, • • •, {yk,t}i 
for t =  1 , . . . ,  n and we want to model these as a system of seemingly- 
unrelated autoregressions. We first define the observation vector y t = 

(2/1,ti • • • 5 Vk,tY and the matrices of parameters &j = d iag(0i j , . . . ,  (pk,j), 
j  = 1, . . .  ,p, where (f>it 1, . . . ,  <f)̂ p are the autoregressive parameters corre
sponding to {yi,t}- The system matrices for the VAR(p) model in (2.20) 
then define a suitable state space representation for the SUAR(p) model.
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2.5 The Kalman Filter

2.5 .1  In trod u ction

In its basic form, the Kalman filter produces a linear estimate of the cur
rent state vector and its associated mean squared error (MSE), condi
tional on all data currently available. However, given the simple Marko
vian structure of the state recursion, it is trivial to extend this filtered 
estimate into a forecast of future states. Additionally, in the Gaussian 
case, the likelihood function can be calculated using the KF output, in 
a way that results in considerable computational savings.

The Kalman filter smoother (KFS), an additional recursive algorithm 
closely related to the KF, can be used to estimate past states and error 
terms conditional on the data currently available. In Chapter 4 we 
demonstrate that the KFS output is essential for estimating missing 
observations in a data set (interpolation).

2.5 .2  Linear E stim ation

The following lemmas from linear estimation theory provide the basis 
for the treatment of the Kalman filter and smoother:

Lemma 2.5.1. Let x , y  be random vectors. The minimum mean-square 
linear estimator (MMSLE) of x  given y  is

L(x\y) = E(aj) T Cov(a?, i/)Var(?/)—1 [y E(t/)] (2.21)

and its MSE as an estimator of x  is

MSE[L(cc|y)] =  Var(£c) — Cov(aj, y)Vai(y)~1Cov(y, x)  (2.22) 

Proof. A proof can be found in Duncan & Horn (1972).

□
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If x, y  are uncorrelated, then h{x\y) = E(a;). Furthermore, it is trivial 
to verify that, for random vectors x \ ,  x 2, y  and any constant matrix C , 
the MMSLE operator L(.|x/) has the following properties:

L{Cxi\y) = C L(xi\y)  (2.23)

L(*i + x 2\y) = L(®i| y) +  L(x2\y) (2.24)

Thus L(.|j/) is a linear operator. Furthermore, the MMSLE L(x\y) is 
an unbiased estimator of x, in the sense that

E[L(x\y)} = E(®) + Cov(£c, y)Var(y) 1\E(y) -  E(j/)]

=  E(®) (2.25)

This is analogous to the law of iterated expectations. Because of the 
similarities between the properties of the MMSLE and the conditional 
expectation E(x\y), we will also refer to L(x\y)  as the linear expectation 
of x  given y.

Corollary 2.5.2. The linear estimation error x —L(x\y) is uncorrelated 
with y.

Proof. Directly from formula (2.5.1), we have:

Cov [y, x  -  L (* |y)] = Cov y, x  -  E(*) -  Cov(x, y)Var(y) x{y -  E(y)}j

=  Cov(y, x) -  Cov{2/, Cov(x, y)V&r(y)~1y}

= Cov(y, x) -  Cov(y, y)'Var(y)~1Cov(x, y)'

= Cov(y, x) — Vai(y)Vax(y)~1Cov(y, x)

= 0 (2.26)

□

In the special case where x , y  are jointly normally distributed, the fol-
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lowing result holds: 

Lem m a 2.5.3. Let
x

y
N(/x,S) where

P =
' E(x) ‘

and £  -
Var(£c) Cov(cc, y)

.  E ( y ) . _ Cov(y,aj) Var (y)
(2.27)

then the distribution of x  conditional on y  is also multivariate normal 
with mean

E(x\y) = E(sc) +  Cov(x, y)Var(y) 1 [y -  E(y)] (2.28)

and variance matrix

Var(cc|y) =  Var(aj) — Cov(x, y)Var(y)_1Cov(t/, x)  (2.29)

Proof A proof can be found in Anderson &; Moore (1979). □

Thus, in the Gaussian case, we have L(x\y) = E(x\y)  and MSE[L(®|y)] =tZ)
Var(£c|y). This result is significant because the conditional expectation 
E(x\y)  is also the minimum mean-square estimator (MMSE) of x  given 
y  (Lehmann h  Casella, 1990). Hence, in this case, the MMSLE is the 
MMSE. Furthermore, Corollary 2.5.2 now states that the conditional 
estimation error x  — E(x\y)  is uncorrelated with y  — these vectors are 
normally distributed and uncorrelated, hence they must be independent.

C orollary  2.5.4. Let x , y , z  be random vectors, and y , z  uncorrelated. 
Then:

L(sc|y,z) = L(aj|y) +  Cov(a;,z)Var(^) Y\z — E(z)] (2.30)

and its MSE as an estimator of x  is

15



MSE[L(a;|t/, z )] =  MSE[L(cc|i/)] — Cov(cc, z)Var(z) 1Cov(2 , x ) (2.31)

Proof. We apply Lemma 2.5.1 to the vectors x  and

L(x| y ,z )

= E(cc) +  Cov ( x, y | Var y
' (

y - E y
z / z \ Z z

= E(a;) +  [Cov(®, y), Cov(x, z)]
Var (2/) 1 0 y  ~  E(y)

0 V ar(z)"1

—
1

2w1**1

= E(x) +  Cov(x, y)Yar(y) 1 [y -  E(i/)] +  Cov(a;, z ) Var(z) 1 [z -  E (z)\- ii

=  L(x\y)  +  Cov(a;,2:)Var(z) 1[z — E(z)] 

Similarly for the MSE:

(2.32)

MSEtLOcIi/,*)]

=  Var(cc) — Cov I x, y ) Var y Cov ( y
z / z V Z

> x

= Var(x) — [Cov(®, y), Cov(x, z)\
Var(y) 1 0

0 Var ( z ) - 1
Co v(y, x) 
Cov(z, x)

= Var(cc) — Cov(cc, y)Vai(y) 1Cov(y,x) — Cov(x, z)Va,r(z) 1Cov(z,x)

MSE[L(x|y)] — Cov(cc, z)Vai(z) 1Cov(z, x) (2.33)

□
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It follows that, in the Gaussian case, these results simplify to

E (* |y ,z )  = E(x\y)  +  Cov(a;,^)Var(z) l [z -  E (z)\

Vai(x\y, z) = Yai(x\y)  — Cov(x, z)Var(z)-1Cov(;z, x)  (2.34)

2.5 .3  D erivation

We will now derive the Kalman filter recursions. Let Y t  = { y , yt}, 
t =  1 , . . . , n .  The KF obtains the one-step ahead MMSLE of the state 
vector dt+i =  L(ott+i\Yt) and its MSE Pt+i = MSE(a*+i), for t =OLt+i
1, . . . ,  n. In the Gaussian case, the errors {e*} are normally distributed, 
all observations are normally distributed, hence conditional distribu
tions of any subset are also normal. Lemma 2.5.3 implies ~
N(aj+i, P t+i), thus dt+i is the one-step ahead MMSE of c*t+i and the 
quantities a,t+\,Pt+i are all we require to fully define the conditional 
distribution of at+i given past observations Yt-

Define the innovations:

v t = y t -  Z ta t (2.35)

Their expectation and variance are

17



E(t)t) =  E(yt -  Z ta t)

— E[Zt(ott — at) +  GtSt]

= Z t [E(at) - E ( a t)] + G tE(st)

=  Z4[E(a,) -  E{L(at |r ,_ 1)}] +  G(E(et)

=  0

Var(yt) = Var[Z((a ( -  a t) +  G (e(]

=  Z 4V ar(a4 -  a t)Z't + G tVar(e()G't 

= Z t MSE(at)Z't + G tG'tOLt
=  z , p tz ’t +  g (g ;

=  Ft (2.36)

Each innovation Vt has the same dimension as the corresponding obser
vation y t and is equal to the one-step-ahead prediction error for y t . In 
other words, Vt is the “new” part of y t , which cannot be predicted using 
the past (Y 't-i):

Cov(vt, Y t- 1) =  E(i>tV't-i) -  E(t>t)E (y t- i ) ' 

=  E[L(t),y;_1| r t- 1)]

=  E[L{Z4(a 4 -  at) +  G tet \Y  t - ^ Y ' t - t ]

=  Z tE[{L(at|V t- i )  -  H a tlV t- iJ iy 't .! ]

=  Z ,E[(at -  a t)y ;_ i]

=  0 (2.37)

The span of V t is the same as the span of Y t - i , v i ,  which are uncorre
lated, so we can apply Corollary 2.5.4 to obtain
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®<+i =  L (at+ i|Y  <)

=  h (a t+i\Y t - \ , v t)

= L (a t+ i\Y (_i) +  Cov(a(+i,wt)Var(t>()-1 [wt -  E(t>8)] (2.38)

where the linear expectation on the RHS is

L (a ,+ l|Y ,_i) =  L (T ta t + H t£ t\Y t- i)

= T tL tad Y t-r)  +  J ftL fo lY ,-!)

=  T (O t + H (E(et)

=  T tat (2.39)

since £t is independent of Y t - \ .  The final term is

C ov(a8+i ,n t)Var(n() 1 =  Cov[Tta t +  H tet, Z t (a t -  a t) + G tet)Ft 1

=  [T,Cov(at, a t -  at)Z't + H  tVex{et)G't\ F t X 

= (T tP tZ't + H tG't) F ^

= K t (2.40)

because

Cov(at , OLt -  at) = E [a t(a t -  a t)']

=  E[(at -  at)(ott -  at)'] +  E[at( a t -  a t)']

= MSE(eif) +  E[L{a*(af -  a t) ' \Y t^ } ]Ott
= P t + E la J L fo lY t- ! )  -  L(at |Y i_1)}'] 

= P t + E[at{at -  a (}']

=  Pt  (2.41)
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The quantity K t  is known as the Kalman gain. Substituting back into 
(2.38) yields

<H+i —T tat + KtVt

(2.42)

This is the updating equation for the filtered state estimate. Its MSE 
as a predictor of a^+i is

Pt+i — MSE[L(at+i|Y*)]OLt+1

=  MSE[L(at+ i |y t_ i ,v t)]
OLt+i

= MSE[L(at+i | y t_i)] -  Cov(af+i,t ; t)Var(vt)_1Cov(t;f,a4+i)
t x t + 1

(2.43)

The only term that has not already been evaluated is

MSE[L(a(+11K (_i)] =  M SE(T,a()CKt+1 Ott+1

= V ar(a t+1 -  T ta t)

=  Var[Tf(at -  a t) +  H tet]

=  T tVar(a* -  a t)T't +  H tVai(et)H't 

=  T tP tT ’t +  H tH't (2.44)

Substituting into (2.43) yields

P t+1 =  T tP tT lt +  H tH't -  ( K tF t) F ; \ K tF ty

= T tP tT ’t + H tH't - K tF tK't (2.45)

We define the matrix
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L t = T t -  K tZ t (2.46)

which allows us to write

P t+i = T tP tT't +  H tH't -  K tF tK[

= T tP t(L't + Z ’tK t) + H tH't -  (T tP tZ't + H tG't) F ^ F tK't 

= T tP tL't + H t (H t - K tG t)' (2.47)

Grouped together, equations (2.35), (2.36), (2.40), (2.46), (2.42) and 
(2.45) define the Kalman filter (KF) recursions:

v t = y t -  Z ta t 

F t = Z tP tZ 't  +  G tG't 

K t = {TtP tZ't + H tG't) F ; 1 

Lt = T t — K tZ t

at-i-i =  T tat +  K tvt

P t+i = T t P t K  +  H t( H t -  K tG ty  (2.48)

The KF recursions are initialised with the unconditional mean and vari
ance of o l \  ( gl\ and P i ,  respectively) and run forwards for t = 1, . . . ,  n. 
The variance matrix P i  often contains diffuse elements (de Jong, 1991; 
Durbin & Koopman, 2001). A numerical approach to modelling a time 
series with diffuse initial conditions is to define

P i  =  P* + kP qo (2.49)

where P*,Pqo are symmetric matrices of the same dimensions as P i ,  
and k is a very large number (for example, k = 106). P* accounts for the 
variance of the non-diffuse components, whereas P Q0 is a diagonal matrix
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with unity values at the entries corresponding to the diffuse elements of 
« i ,  and zero values elsewhere.

This simple method produces an approximation to the KF recursions 
with diffuse initial conditions. Introducing large numbers into the re
cursions can potentially lead to numerical instability; Ansley Sz Kohn 
(1985) and de Jong (1991b) propose alternative approaches which over
come this problem.

2 .5 .4  C holesky D ecom p osition

The span of l^n_i is the same as the span of Vi , . . .  , vn-i? thus v n is 
uncorrelated with past innovations. Applying this argument recursively, 
we can deduce that all the innovations are pairwise uncorrelated. Fur
thermore, by repeated application of the KF recursions, we have

v t = y t -  Z ta t

=  y t - Z M a t \ Y t- i )
t - 1

= v t - ' E w >yt-j (2-5°)
3 =1

for suitable weights W j. Thus, each innovation v% can be expressed as 
a linear combination of the observations up to time t. This implies that
v = L y , where L  is a block-lower-triangular matrix and y , v  are the
stack vectors of observations and innovations, respectively. The matrix 
L  is of full rank because it is block-triangular and has unit matrices 
along the main diagonal (W 0 =  I), thus the linear transformation of 
the observations y  into innovations v  is non-singular. If we define the 
variance matrices X =  Var(y) and F  = Var(v), we can write

F  = Var(Ly) =  L S I /

X =  L ~ l F { L ') -1 (2.51)

<£> X -  Q F Q '  (2.52)
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where Q = L  1 is also a block-lower-triangular matrix. The matrix
F  = diag{.Fi,. . . ,  F t} is block-diagonal, thus we can say that the KF 
implicitly computes the Cholesky decomposition of E  . This is the 
root of the computational efficiency of the KF. The linear estimation 
formulae require us to compute the variance matrix of the vectors we 
are conditioning on. Rather than computing MMSLEs by conditioning 
on the observations, we condition on the innovations, which have the 
same span (thus yield the same results), but are uncorrelated. This 
way, we avoid the computationally costly step of inverting the variance 
matrix of observations, and instead invert the block-diagonal matrix F.

2.5 .5  M od el E stim ation

Time series models in state space form can be estimated by maximizing 
the likelihood. Consider the likelihood function for the entire sample; 
by successive conditioning, we can write

t ( y  1> • • ' > Vn) = loS /(l/n> 2/n-l. • • • > Vl)

=  log { f i y j v n - t , . . . ,  y  i) f  {y n—\\y  n—2i • • •, !/i) • • • f ( y  l)}

where the final term is f{y \ \Y o )  = f { y i). The advantage of this for
mulation is that, in the Gaussian case, the conditional distribution of y t 
given Y t - i  is also Gaussian, with expectation ~E(yt \Y t - i)  — Z td t  and 
variance Yar(yt \Y t- i )  = Z tP tZ t +  G tG't = F t . Thus:

n

(2.53)
t=l

f ( y t \Y t^ )  =  (2»)-p/21F(|“ 1/2exp ( —̂ (y ( -  Z ta t) ' F ; \ y t -  Z ta t) )  

=  (27r)-'>/ 2|F (| - 1/2e x p | - ^ ; F t- 1« t )  (2.54(2.54)

Substituting into (2.53) yields
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£(Y n) = — ■ log(27r) -  i  ^ ( l o g \Ft \ +  v'tF t 1v t) (2.55)
t=1

This expression for the log-likelihood is known as the prediction error 
decomposition (Harvey, 1993). Given a set of parameter values, it en
ables us to compute the log-likelihood in a single forward pass of the 
Kalman filter.

2.6 The Kalman Filter Sm oother

2.6.1 F ixed -In terval S m ooth in g

We now consider the problem known as fixed-interval smoothing: given 
the observations y 1, . . . ,  y n, we want to find the MMSLE of the state att 
and its MSE, conditional on the whole sample. We have:

ô t — L (a t |F  n)

= L ( a t | F t_ i , v t , . . . , wn)

L (a t |F t - i )  +  Cov(at ,

v t
)Var

v t

(

Vt
- E

v t

v n v n Vn
-l r

Vn

- l

at +  [Cov(at, v t) . . .  Cov(at , vn)]

n
at +  J ^ C o v (olu v s)F s l v s

v t

v r

(2.56)
s=t

We will now prove the following lemma: 

L em m a 2.6.1. I f  s = t, t +  1, . . .  n then
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C o v { o l u v s ) = P tL't^s_1Z fs (2.57)

Cov(a^, cts -  a s) = P tU t^ - \  (2-58)

where we define

=  <

£'t 1
L't
i

s — t +  2, t -|- 3, 
s = t + 1 
s = t

(2.59)

Proof. By induction on s. For s = t, we have already proved the result 
Cov(at, cat — af) =  P t • We also have

Cov(at, v t) =  Cov [at, Z t(a t -  at) +  G tet]

= Cov(at , a t  -  a t)Z't +  Cov(at, e t)G't 

=  (2.60)

thus the statements hold. Assuming both statements are true for all 
integers up to s — 1 , the inductive step is

Cov [at, a s -  a s]

=  C ov[at,Ts_ i( a s_i -  a 8- i)  +  H a- i e a- i  -  K a- i v a-i]

= C ov[a t,as_i -  a a- i] T ,8_1 -  C o v fa u V s - i jK g ^

=  P t l f t ^ T ' s - l  -  P t L l t , s - 2 Z ' s - 1  K 's - 1  

=  P t£ f t ,s -2 iT U  -  Z 'g ^K 'g ^ )

= P t£ /tta-2L'a- l

= PtHt,s-1 (2.61)

which implies
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Cov (at, v s) =  Cov[at , Z s(a s -  a s) +  G se J  

=  Cov [a*, a s -  a s]Z's

= P tU t,s-xZ's (2.62)

□

Substituting the expression from Lemma 2.6.1 into (2.56) yields

a t — at + P  t ^ ^ L ' t,s- iZ 'sF  s 1v i
s= t

= at + P tr t-1 (2.63)

where we define the quantity r t = H ^ t+ iL 't+ ^s - iZ 'sF s 'v s  for 
t =  0, . . . , n  — 1. It is possible to calculate rt recursively, using the 
identity

n

n - \  = Y , ^ t , s- i z 'sF 7 lv s
s—t

n

= E  Ut,s-iZ 'sF - 1v s + Z'tF ^ v t
S = t + 1

n

= L[ E  Z'sF - lv s + Z'tF ^ v t
S=t+1

= L'tr t +  Z ' t F ^ v t  (2.64)

which is initialised with r n = 0 and runs backwards for t = n, n —1, . . . ,  1. 

The MSE of a t  as a predictor of a t  is

26



M SE (at)
OLt

= MSE[L(a( |K n)]
OLt

=  MSE[L(at |Y t_ i , t> t , . . . ,v n)]
OLt

= MSE[L(a( |r ,_ i ) ] - C o v ( a t,
OLt

= P t -  [Cov(at , Cov(at , vn)]

n
=  P t - ^ 2  C o V ( a *’ V a ) F j 1C o v ( v 8 , OLt )

s=t
n

= Pi  -  Z ’sF ^ Z sL Us_xP t
S = t

= P t -  P tN t- iP 't

Vt v t
- l

v t
)Var Cov(

v n v n v n

,ott)

' F t
-1

Cov(vt , OLt)

Fn  . _Cov('Un, OLt) _

(2.65)

where we define the quantity N t = YTs^ t+ \^ t+ \,s - iz 'sF s l ZsLt+\,s-\ 
for t = 0 , . . . ,  n — 1. The matrix N t  is calculated recursively, using the 
identity

J V t - 1  =  E 4 - 1  Z ' , F 7 1Z , L m _ i

s—t
n

= E  £ t , , - i z '.P71z * L t , . - i  + z ' tF r l z t
s=t+1

=  l ; (  e  ) i t +
v S = t + l

= L'tN tL t + Z'tF ; 1Z t (2 .66)

which is initialised with N n = 0 and runs backwards for t = n ,n  — 
The quantity N t  is also the variance of r t ’.
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Var(r*f) =  Var | L fi
. s=t+ 1

n

■=■ t+l,s—1

n

1+1 ,s—1 s sZ'3F - 1V&t(vs) F - 1Z sL
s=t+l

n
^ - t + l , s - l ^ s T  s Z j s M t + l , s - lz ' f : 1z sl

s=t+l

= N t (2.67)

Grouped together, equations (2.64), (2.66), (2.63) and (2.65) define the 
basic form of the Kalman filter smoother (KFS) recursions (de Jong, 
1988; de Jong 1989; Kohn &; Ansley, 1989):

The KFS recursions use the output from the forward pass of the KF. 
They are initialised with r n = 0, N n = 0 and run backwards for 
t = n ,n  — 1, . . . ,1 .  The filtered state estimates and their MSE, the 
innovations and their variance, and the Kalman gain (a*, Pt,Vt, Ft, K t ,  
respectively), need to be stored during the forward pass. The terms L t 
can be recovered from K t , so we prefer to store the q x p matrices K t 
rather than the q x q matrices Lt. This is because, in practice, the length 
of the observation vector (p) tends to be smaller than the length of the 
state vector (q), sometimes considerably so.

2 .6 .2  D istu rb an ce S m ooth in g

We will now derive smoothed estimates of the error terms conditional on 
the whole sample. This is known as disturbance smoothing (Koopman,

r t -1  =  L[rt +  Z'tF t lv t 

N t~i = L'tN tL t +  Z'tF ^ l Z t

6tt = a t + P tr t- i

MSE(dt) = P t -  P tN t- iP ' t (2 .68)

1993). The MMSLE of et is
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i t  = L(et | Y n)

= L{et \Y t- i , v t , . . . , v n)

v t v t
- 1

v t v t
L(et | y t_i) +  Cov(et ,

V n

)Var

V n

(

V n

- E

V n

- 1  r

= [Cov(et , v t) . . .  Cov(et , v n)]

n
= ^2 C o v{e t, v s) F j 1v s

v t

V r

s=t

The first covariance term, for s = t, is

(2.69)

Cov(et,Vt) — Cov(e*, Zt(ott — at) +  Gt£t) 

= Cov(e*, £t)G't 

=  G't (2.70)

For s = t +  1, . . .  n, we have

Cov(et , v s) =  Cov[a*, Z s (ols -  a s) +  G s e J  

=  Cov[e*,as -  a j Z ' (2.71)

The remaining covariance term can now be evaluated:
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Cov[et, ots -  a3]

=  Cov[et,T s-i(oLs- i  — as- i )  +  H s- \£ s - \  ~ K s - i v s-i) 

= Cov[£t,as_i -  a s - i jT ^ !  -  Cov(et,

=  C ov[et,«s-i — 0 's-\\T's- i  — C ov[et,as_i — O g -ijZ '.!  

=  Cov[et , a s_i — as- i]L ,s_1

=  C ov[et,at+i -  at+ iU u+M -i 

=  Cov[et,Tt(at -  a t  +  H t £ t  ~  -K’tVt]f/t+ i,s-i 

=  [Cov(et,e t)iTj -  Cov(et, v t) i f  ;]!/*+i,s-i

=  (h ; -

Hence, for s =  £ +  1, . . . ,  n, we can write

cov(et ,v s) =  ( if ;  -  

Substituting into (2.69) yields

n
i t = Cov(et iv t) F t 1v t + ^ 2  Cov(et , v s) F j 1v s

8 = t + 1

=  G'tF - lv t +  £  (H{ -  G,tK't)L't+1',_1Z ' ,F ; 1v.
S = t + 1

=  G't (F t- 1» t - - K 'W  +  H ' r t 

=  G'(ttt +  H'tr t

where we define

u *  ee  F t 1v t -  K [ r t

s—1

(2.72)

(2.73)

(2.74)

(2.75)
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for £ =  1, . . .  n. The quantities Ut are known as smoothations and have 
the same dimension as the observations y t . The variance of the smootha
tions is

Var(wt) =  Var(Ft 1v t +  K'tr t)

= F ^ V a x i v J F ; 1 +  K'tVax(rt) K t 

= F ^  + K'tN tK t

= M i (2.76)

It is possible to simplify the calculations by expressing r t - 1 as a function 
of u t :

r t -1  =  Z'tF t 1v t + L'tr t

=  Z'tF f lvt + (Tj — Z'tK't)rt 

= Z't { F ^ v t - K ' tr t) + T'tTt 

= Z'tu t + T'tr t (2.77)

The MSE of i t  is
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MSE(e()
C-t

MSE[L(et | r n)]
t t

MSE|L(et | l V i ,t t

=  Var(et)— [Cov(et , v t) . . .  Cov(et , »n)l

Vt

)Var
v t

1 h-1
Q o

1
...

 
cj C-K

1

. Vn . . Vn .
—1 r

.  Vn .

,«t )

Cov(vt , et) 

Cov(i;n,£t)

I “  X! Cov(et> Vs)F s ^O V ^a, £*)
s= t

n
I -  Cov(et , v t) F t l Cov(vt , et) -  Cov(et , V sJF ^C  ov(vSl et)

s= t+ l

I -  G 'tF ^ G t

~ G ,tK't)L't+1<3_1Z'aF J 1Z . L t+^ _ 1( H t -  K ,G t)
S = t + 1

I -  G jF ^ G , -  (H't -  G'tK't) N t{H t -  K tG t) (2.78)

Grouped together, equations (2.75), (2.76), (2.77), along with (2.66), 
define the extended KFS recursions (de Jong & Penzer, 1998):

u t =  F t 1v t -  K'tr t 

M t =  F - l + K 'tN tK t

n -1  =  Z'tu t + T'tr t

N  t—i =  L'tN tL t + Z ' t F ^ Z t  (2.79)

which are initialised with r n = 0, N n = 0, as before.
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Chapter 3

Interpolated Estim ates

3.1 Introduction

In the analysis of time series, it is often useful to treat an observation 
as missing and estimate it from the rest of the data. The resulting es
timates, which we will refer to as interpolated estimates, have several 
applications, such as the detection of unusual observations (de Jong & 
Penzer, 1998; Proietti, 2003; Penzer, 2007). A simple, though compu
tationally inefficient technique for obtaining interpolated estimates is to 
perform a pass of the filtering and smoothing recursions, omitting a sin
gle observation y t (Brockwell & Davis, 1996). The resulting smoothed 
estimates of the state and disturbance vectors (d£ and , respectively) 
will be the linear expectations of these quantities conditional on the en
tire sample apart from y t . Thus, the interpolated estimate of y t can be 
evaluated as Z toc*t +  G tif .  This procedure, including the forward and 
backward pass of the recursions, needs to be repeated for each interpo
lated estimate.

A much more elegant method is to use the quantities Aft, Ut from the 
Kalman filter smoother recursions to compute the interpolated estimates 
directly. This is far more efficient, since we only require a single forward 
and backward pass of the KFS to obtain interpolated estimates for the 
whole sample. However, a general and theoretically sound proof of the 
fundamental result linking the KFS output with interpolated estimates 
does not appear in time series literature. Existing proofs either consider
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only the special case of the SSF with uncorrelated measurement and 
transition errors (de Jong, 1989) or are insufficiently formal (de Jong & 
Penzer, 1998).

In this chapter, we establish a novel proof of the key result for the 
interpolated estimates of the observation vector (Theorem 3.2.1) and 
use a similar argument to construct the corresponding estimate of the 
state vector (Theorem 3.2.3). In addition, we consider the problem 
of constructing partially interpolated estimates of y t and act, that is, 
interpolated estimates conditional on the data available at time m, where 
t < m  < n. We establish formulae for these in Theorems 3.3.2 and 3.3.3.

3.2 Interpolation

3.2 .1  In trod u ction

Consider the time series {y t} in the general SSF (de Jong, 1991):

Vt =  ZtOLt + GtEt 

at+i — TtOt-t +  Hf£t  j £ =  l , . . . , n  (3-1)

where {e*} ~  WN(0,<r2Ir ) and ol\ has mean a\ and variance P i .  We
define the punctured space Y ^  = {y ^, . . . ,  T/i_1, y i+15. . . ,  y t}. We will
now proceed to establish formulae for the interpolated MMSLE of the 
state and observation vectors, which we define as

a t =  L (a t |y t> ) (3.2)

Vt = H V t \Y $ )  (3.3)

3.2 .2  O bservation  E stim ate

We establish the following theorem for the general SSF:
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T heorem  3.2.1. The interpolated MMSLE of observation y t is given 
by

v t  = y t ~  M
- i u + (3.4)

and its mean square error is M t 1, where Ut, M t  are obtained from the 
extended KFS recursions.

A special case of Theorem 3.2.1 is proved by de Jong (1989); it applies to 
the SSF where the measurement and transition errors are uncorrelated 
(GtH't = 0 ). The general result appears in de Jong &; Penzer (1998), 
but the outline proof provided is not as rigorous as that of the special 
case. Their argument relies on a particular representation of the KF and 
KFS recursions:

v t = y t -  Z ta t 

a>t+\ = K tVt +  L tat
Vt

a t+1

J - z t Vt

l at
(3.5)

u t = F t v t -  K [ r t 

r t- i  = Z t F ^ v t  +  L'tr t
~ u t I - z t '

/
'  - F ^ v t '

_r t-1 . .  K t L t .
(3.6)

Thus, expressed in this form, the operations at each step of the smoother 
can be thought of as the transpose of the operations at the correspond
ing step of the filter. De Jong Sz Penzer extend this argument to the 
overall output of the filter and smoother in stack vector form. Using 
the notation from the technical introduction, if the effect of the KF re
cursions can be summarised as v = L y , then the equivalent form for 
the KFS recursions is —u  = L ’(—F ~ lv), where u  is the stack vector of 
{u*}. Thus:
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u  = L 'F  lv  

=  L ’F ~ lL y  

= V y (3.7)

This intermediate result, which is equivalent to expression (3.22) in our 
proof, is the most important step in establishing the main result.

We will now construct a more rigorous proof of Theorem (3.2.1).

Proof. Let Xt be the signal at time £, the observation minus the associ
ated measurement noise, defined as Xt = Z ta .f  The smoothed estimate 
of the signal is

The smoothed estimate of the measurement error Gt£t is the difference 
between the observation y t and the smoothed signal estimate Xt- It can 
be expressed in terms of the KFS output:

x t = L (x t \Y n)

= Z tL (a t \Y n) 

—  Z tOLt (3.8)

y t - x t =  Z ta t +  v t -  Z tOLt (defn. of vt)

— Z t a t  +  v t ~  Z t {a t  +  Pt'f’t - 1)

= v t -  Z tP tr t-1

= F t (ut +  K'tr t) -  Z tPt(Z'tUt +  T'tr t) (defn. of u u r t)

= (F t -  Z tP tZ't)u t +  (F tK't -  Z tP tT ’t)r t (3.9)
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We can simplify the matrices in this expression by considering the defi
nitions of F t and K t:

F t =  ZtP tZ 't  +  GtG't 

=► G tG't = F t -  Z tP tZ't (3.10)

K t = (T tP tZ't + H tG't)F-[1 

^ K ' t = F T \ Z tP tT't + G tH't)

=» G tH[  =  F tK't -  Z tP tT't (3.11)

These expressions allow us to write

y t - x t = G tG'tu t + G tH'tr t (3.12)

Note that the RHS is equal to Gtit,  where i t  =  L(et|Y^) are the 
smoothed estimates of the errors, as shown in (2.74). De Jong (1989) 
establishes an analogous result to (3.12) for the special case where con
temporaneous measurement and transition errors are uncorrelated (that 
is, G tH ft = 0).

Now suppose that y , a ,  e, x  and x  are (respectively) the stacked vectors 
of y t,OLt,et, x t  and xt for t = 1, . . . ,  n. We also define the block-diagonal 
matrices G = d iag{G i,. . . ,  Gn} and Z_ =  diag{Zi , . . . ,  Z n}. The mea
surement equation can be written in stack vector form as y  = x  +  Ge = 
Z ol +  Ge. Using the linear expectation formula, we have

x  = L(x\y) = E(x) +  Cov(x, y)VaT(y)~1 {y  -  E (y)} (3.13)

Clearly, E(e) =  0 so E(;c) =  E(y). We can write the covariance matrix 
of x  and y  as
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Cov(x, y) = Cov(y -  G e , y)

=  Var(y) -  GCov(e, y)

=  Var (y) — GCov(e, Z a  +  Ge)

=  Var(2/) GCov(e, a ) Z ' GVar(e)G'

=  S  -  G S Z '  -  G G ; (3.14)

where 5] =  Var(?/), as before, and S  = Cov(e,a). Substituting back 
into (3.13), we have

*  =  E(v) +  (S  -  G S Z ' -  G G ')S _1{y -  E(y)}

=  E(») +  {y -  E(y)} -  (GSZ_' +  GG')E_1{y -  E(y)}

= y - ( G S Z '  +  G G ') E '1{ y -E (y )}  (3.15)

We can rearrange (3.15) as

y  -  x  = (G SZ! + G G ')E _1{y -  E(y)} (3.16)

Note that the LHS of (3.12) is the tih vector component of the LHS 
of (3.16), thus the same must hold for the RHS. We will now evaluate 
Wt, the t th vector component of S ~l {y — E(j/)}. For convenience of 
notation, we rearrange the stack vector of observations and write it in 
the form y  = [y' t̂ y^]', where y \ t is the stack vector with observation y t 
omitted. Using standard block-matrix inversion results, we have
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S - ' { y  -  E(y)}

s \t S V,( 

S ‘

-1
y\ t  -  E (y\t)
Vt -  E (Vt)

- S t T x t W x t 1 S *T\*

w t

y\ t  -  E(y \ t )

yt -  E (yt)

(3.17)

where £ t =  V ar(yt), =  V ar(yv ), S \ i>t =  Cov ( y \ t i y t) and

S*| \t — S t -

=  Var(yt) -  Cov(yt , y\«)Var(y\t)_1Cov(y\t , y t)

= MSE[L(yt |y \t)]
yt

= MSE(y() (3.18)
yt

Thus, Wt, the component corresponding to y t , is

+ S t|\t[W‘ -  E(Wt)]

=  MSE(y,)_1 y t -  E (yt) -  Cov(yt, y \t)Var(yv )_1 {y , t -  E (y\t)}l
y t l  v J  J

=  MSE(yt) - 1 y t - L ( y t \yv )
yt  L

= MSE(yt) 1(yt - y t )yt
(3.19)

To proceed further, we need to evaluate S  and hence the block matrix 
A =  G S Z '[ +  G G '. Each state a* only depends on errors up to time 
t — 1, thus Cov(et+T, ott) = 0, for r  > 0. For error terms prior to time t, 
the covariance is
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Cov(e t-T,OLt) = Cov(£*_r , Tt- ia t t - i  +

= Cov(et_T, a t_ i ) r #t_1 

=  C ov(£ t-r , c x t - T + i^ t—r+i • • • T t~ i  

= Cov(£^_r , T  t—TOLt—T +  H t—T£t—T)T_

=  H ' _ r r t _ T + 1 ,t _ 1 ( 3 . 2 0 )

where r  > 0, and T f-r+ i,t- i  defined as

=
T t _ i . . .  T t-T+i
T t- i
I

t  =  3 , 4 ,  

T  =  2

T  =  1

( 3 . 2 1 )

Thus, the (i , j ) th block of S  is H'jT̂ i+1j_ 1 for i < j  and zero otherwise. 
The matrices G  and Z  are both block-diagonal, hence the (i , j ) th block 
of G S Z [ is equal to •T/i+1j _ 1Z ' for i < j  and zero otherwise. The 
matrix G G ' is also block-diagonal. Grouping these results together, we 
can write

A  =

G /~tl TtI ryf rrf  m/ ryfiCji 2 ^ 1 ^ 1 ^  2^3

0 g 2g ’2 g 2h 2z 3

0

0

0

0

G 3G'3

0

• G 2H ^ n_xZ'n

• G 3H'3Z?4, „ - X

G nG ’n
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The matrix A is invertible because it is block-upper-triangular and all 
the diagonal blocks are non-degenerate variance matrices, hence of full 
rank. If we let dt = GtG'tu t +  G tH'tr t and define w, d as the stacked 
vectors of Wt, dt (respectively) for t = 1, . . . ,  n, we can write

We will now prove that Wt — Ut (from the KFS) is the unique solution 
to equation (3.22). Since A is invertible, we can write w =  A -1d, so the 
equation has a unique solution. Thus, it suffices to prove that Wt = ut 
satisfies (3.22).

Repeated application of the KFS recursions yields

d =  Aw (3.22)

r t — Zt+iu t+i +  ^Yfir it+i* t+i

—  Z t+1Ut+1 + T t+1(Z ,t+2u t+2 + T t+2r t+2)

n

j=t+1

because r n = 0. Thus, if we set Wt =  u t , the t th vector component of 
the RHS of (3.22) is
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U l

4Ur

G tG'tu t + G tH't J 2  H t+ij-iZ 'jU j
j=t+1

=  G tG'tu t + G tH'tr ,

=  dt (3.23)

as required. Completing the proof of Theorem 3.2.1 is now straightfor
ward. We can write

u t = MSE{yt) (y t -  y t)
Ut

Vt = y t -  MSE(i/*)u* (3.24)
yt

Thus, the MSE of y t as an estimator of y t is

MSE(yt) =  MSE{yt -  M S E (y > t}
yt yt yt

=  Var{MSE(j/t)« t}
Vt

=  MSE(y()Var(«()MSE(j/() 
yt yt

MSE (yt) = V ar(^ )-1 (3.25)
Vt

In the technical introduction we established that M t  — Var(ut). Sub
stituting into (3.24) and (3.25) yields
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y t =  y t ~ M t l u t (3.26)

and

MSE(y() =
yt

(3.27)

as required.

□

3.2 .3  S ta te  E s t im a te

We will now establish a formula for the interpolated MMSLE of the state 
vector. We will rely on the following simple corollary of (2.5.2):

C orollary  3.2.2. Let a, b be random vectors. I f  gib) is a linear function 
of b, then

Proof. The function g(b) is linear, thus we can write g(b) = C b +  k, 
where C, k are constants. We have

because the linear estimation error a — L (a|6) is uncorrelated with b.

The intuitive interpretation of this corollary is: the linear estimation 
error must be uncorrelated with any linear function of the known variable

Cov [g{b), a — L (a|6)] =  0 (3.28)

Cov [g{b), a — L (a |6)] =  Cov [C b +  k, a  — L(a|b)] 

=  C Cov [6 , a — L (a |6)]

=  0 (3.29)

□
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b. If this were not the case, the function g{b) could be used to predict 
the error, thus it could be incorporated into L (a|6) to produce a linear 
estimator with smaller MSE. However, the linear expectation L (a|6) 
minimises the MSE within the class of all linear estimators of a given 
6 , so this cannot be possible.

If a, b are jointly normally distributed, Corollary 3.2.2 can be extended 
to any function g(b), as long as it is uniquely defined by b. By a similar 
argument, the estimation error a  — E (a |6) is uncorrelated with g{b), 
since it is not possible to improve on the MMSE estimator E (a |6).

T heorem  3.2.3. The interpolated MMSLE of state a t  is given by

a t =  a t — P tR tM t lu t (3.30)

and its mean square error as an estimator of a t  is

M SE(at) = P t + P  tR tM J 1P!tP  t (3.31)
Ott

where R t = Z'tF f l — L [ N tK t .

Proof. Let a = y t and b = Y n \  so that L (a |6) =  y t . Setting g(b) = yj,  
for j  7̂  t, satisfies the conditions of Corollary 3.2.2 and we can deduce:

Cov{yt - y u yj) = 0

Furthermore, y t a linear combination of the elements of Y n \  hence 
the span of { Y n \ y t} is the same as the span of { Y n \ y t — y t}. We can 
make use of this fact to write
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cxt = H<xt\Y%\yt)

= L(act \ Y ^ , y t - y t)

= H a t \ Y ^ )  +  Cov (a*, y t -  y t)Yax(yt -  y t)~l (yt -  y t)

= act + Cov(at , y t -  y t) MSE(yt)_1(2/t -  y t)
yt

= ott + Cov(a*, y t -  y t)u t 

<^ott = a t -  Cov(a^, y t -  y t)u t (3.32)

The covariance term in this expression is

Cov(at , y t -  y t) = Cov(a*, M ^ u t)

= Cov{oLt, u t) M i l 

=  Cov(at , F ^ lv t — K'tr t) M ^ 1 

= {Cov(a^, v t)F ~ l -  Cov(at , r J F f j M ' 1 (3.33) 

The remaining terms are straightforward to evaluate:

Cov (a t , v t) = P  tL't't- iZ ' t

= P tZ't (3.34)

by definition of L s t . For the final term, we apply Corollary 3.2.2 to 
a =  act , b =  Y n, and #(&) =  r t .  In this case L(a|6) =  act , so we can
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write Cov(att — &t, rt) — 0- The vector rt is a weighted sum of future 
innovations Vt+i,. . .  , v n hence is uncorrelated to the estimator at, which 
(as can be seen in the KF recursions) is a weighted sum of innovations 
v \ , . . . ,  Vt- We have

Cov (a*, r t) =  Cov(at -  a t +  a t , r t)

= Cov(a* -  dtt , rt) +  Cov(at , r t)

= Cov(at +  P tr t_ i , r t)

=  Cov ( a t ,  rt) +  PtCov(rt- i , r t)

= P tGov(Z'tF ~ lv t + L'tr t, r,)

= P tZ'tFf 1Cov(vt, r t) + PtL'tV&r(rt)

= P tL'tN t (3.35)

Substituting expressions (3.33), (3.34) and (3.35) into (3.32) yields

a t =  &t —  (P tZ 'tF t1 -  P tL'tN tK t) M t lut

= a t -  P t{Z ’tF ?  -  L'tN tK t) M t lut (3.36)

and the expression inside the brackets is equal to Rt,  by definition.

□
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3.3 Partially Interpolated Estim ates

3.3 .1  In trod u ction

Assume that we wish to find the interpolated estimate of y t , but we 
only want to take into account the data observed by time m, where 
t < m < n. We define y t\m =  E(yt \Y $ )  and a t|m =  E(att \Ym )• Note 
that y t |n =  y t and d t|n =  d^. We will first prove the following lemma:

L em m a 3.3.1.

m
—  t+ l , m  ~  =  L ' t + l , m  (3-37)

j  =  t+  1

for 0 < t < m  < n

Proof. By backward induction on t. For t = m —1 the expression reduces 
to

T'm -  Z'mK 'm = L'm (3.38)

which is true by definition of L t . We now assume the result holds for 
t = t > 1 and consider the expression for t = r  — 1
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j=T

  rrif \  A rril iyl t/-I r  / <7/ jv-/ r  /
— i-T,m  _  2 ^  —  t , j — l j ^  j — j + 1 ,m -  z , r A r ^ r + l , m

j=r+l

=  T ' T 'r + l , m

m

E
j = r + l

= T ’rlJT+hm -  Z'TK'rH T+i ,

= (T't -  Z'TK'T)V T+U

= L ' L ' . ,  mt —  r + l , m

_ r '
—  T,m

□

3 .3 .2  O bservation  E stim ate

T heorem  3.3.2. The interpolated estimate of y t conditional on the 

punctured space Y m  is given by

Vt\m = V t~  M t\mUt\m t\m (3.39)

and its mean square error is M t where

u t\m = u t + K [L 't— t+ l ,m  m

M t\m ~  M t  K tL t+lmN mL t+lTnK t

(3.40)

(3.41)
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Proof. Define x t\m =  L (x t \Y m) and 6tt |m = L(at|ym), the smoothed 
estimate of the signal and state vectors conditional on data up to time 
m. We have

~  L(QJt|V"n)

=  L ( a t \ Y m ,  . . . ,  v n )

n

= L(ctt\Ym)+  X  Cov(at , v s) F J 1v s 
s=m+1

n

=  & t \ m +  X
s=m+l

= £*t|m "I" ■̂>t^-t,mr m (3.42)

thus

Xt\m = L (x t \Y  m)

= Z M a t \Ym)

= Z t{pLt -  P tU t mr m)

=  xt — Z tP tL'tm r m (3.43)

We can use this result to write

Vt -  *t|rn =  Vt -  +  Z tP tlJ t mr m

= G tG'tu t + G tH [r t + Z tP tL \ mr m (3.44)

where the expression for y t — xt  is from the proof of Theorem 3.2.1. We 
now define stacked vectors in a similar way. Suppose that 2/[mp 
£[m], cc[mj and £C[m] are (respectively) the stacked vectors of y t,ctt,£t, x t 
and Xt\m for £ =  1, . . . ,  m. We also define the block-diagonal matrices 
Q.[m] = d iag{G i,. . . ,  G m} and Z [m] = d iag{Z i,. . . ,  Z m}. As before, 
we can write the measurement equation in stack vector form as y ^  = 

X[m] + G[m]£[m] = —[m\® H  +Q\rn]e [m\- Using the linear statistics results 
from the technical introduction, we have
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*[m] L(aj[m] |2/[m])

=  E (*[m]) "I" Cov(a?[m], t/[7n])Var(?/[Tn]) {2/[m] — E (2/[7ra])} (3.45)

As before, E(e[m]) =  0, thus E(*[m]) =  We can write the

covariance m atrix of £C[m] and as

Cov(aJ[m], 2/[m]) Cov(y[m] —[m]̂ [m] 5 y [m])

Var(?/[mj) ^[m]Cov(£[m], 2/[mj)

=  Var(?/[mj) Gjyn]Cov(£jmj, +  Gqm]£[mj)

=  Var(?/[m]) — ^[m] Cov(£[mj,

-  G [m \ Var(e[m])Gjmj

=  S [m] -  —[m] [̂m]—[m] “  ^[m]^[m] (3.46)

where E[m] =  Var(j/[mj) and S[m] =  Cov(£[m] , a m). Substituting back 

into (3.45), we have

*[m] =  E (2/[m]) +  (E[m]— G[m] Ŝ m]^[m]— G[m] G[m])E[m] — E(i/[m])}

E (y[m]) 4” {2/[m] E (2/[m])}

-  (<2[m]S[m]Zjm] “  E(2/[m])}

= 2/[rn] “  (^[m]S[m] [̂m] +  ^ [ m]^[m])S [ m ] “  E(^[m])} (3-47) 

which can be rearranged to give
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V[m] ~  *[m] = {Q\m}S[m}Z!. +  Q.[m]Q![m])^[m] {V[m] ~  E (l/[m])} (3.48)

The LHS of (3.44) is the tih vector component of the LHS of (3.48), thus 
the same must hold for the RHS. Let w t\m be the tth vector component 
of — E(?/[m])}. From the previous proofs, we know that it is
equal to

w t\m = MSE(yt,m) \ y t -  y t,m) 
yt

(3.49)

The matrix A[m] i— — [m] ̂ [m] z !  +  —[m] —[m] has the form

' G XG\ g xh \ z '2 G ^ T ' Z ' G . H ' . T ' ^ yZ*1 771

0 g 2g '2 G 2H'2Z'3 . . .  G 2H 2T '3m_1 z '1 771

> £ II 0 0 g 3g '3 . . .  G 3H ’3T \ m_ i z 'm1 771

0 0 0 . . .  C  C1'

The matrix A[m] is block-upper-triangular and the diagonal blocks are all 
invertible matrices, hence A[mj is invertible. If we let dt\m =  G tG'tUt +  
G tH'tr t -f Z tP tL/t mr m and define W[m], d[m] as the stacked vectors of 

w t\mi dt\m (respectively) for t = 1 , . . . ,  m, we can write

[̂m] w [m] (3.50)

We will now proceed to prove that w t\m = u t\m is the unique solution to 
equation (3.50). Since A[m] is invertible, we can write W[m] =  A ^ d [ m],
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so the equation has a unique solution. It now suffices to prove that 

v>t\m =  u t\m satisfies (3.50).

It needs to be shown that the tth vector component of is equal
to v t\m. We have

m
G^G^U^m “I” G^H^  ^  ^ T_£_j_i j_-^ZjUj\m 

j=t+1

= GtG't(ut + K'tL't+hmr rn)
m

+ GtH[ ^  T!t+l,j-lZ j i u j +  K'j£/j+l,mr m) 
j=t+l

= GtG'ut+ G tH't J 2  I lt+ ij^ Z 'jU j+ G & K 'tL 't+ ^ r ,
j=t+1

771

+ GtH ’t Y .
j=t+l

= GtG'tut + G tH ’t Y  T!t+1j _ lZ'j u:j+ G tG'tK'tlJw ,mr m
j=t+1

+  G tH t( T t+i,m — Llt+\,m)r m (3.51)

using Lemma 3.37. The sum in this expression can be evaluated by- 
noting that
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r t — Z t + i u t+ i  +  ^ t + i r t+ i

=  Z t+1 Ut+ i  +  T t+1(Z t+2u t+2  + T t+2r t+2) 

= Z't+1 u t+1 +  T rt+lZ't+2u t+ 2 +  ’̂ 't+l'^t+2{Zt+3Ut+3 +  T 't+3r t+ 3)

=  ^ t+ lw£+l +  ^ V |-l^ + 2u £+2 +  • • • +  T - t + l , m - \ Z  m u m  +  ^ t+ l,m r r

' —t+ l, j - l^ jUJ ~  rt — — t+l,mr m (3.52)
j=t+1

Substituting into (3.51) yields

{A[m]U[m]}f — G tG'tUt + G tH't (r t — T ' t+ i ,m r m)  +

+  ^ ( ^ ( X t + l .m  — h t + l , m ) r m

=  G tG[ut + G tH'tr t +

— G t H t £ ±  t+ l ,m r m

=  G tG[ut + G ^ r *  + (GtG ftK [  -  G tH ft)Lft+hmr m

(3.53)

The expression in the brackets can be simplified using the Kalman filter 
equations. We have
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= z tP  A

Hence

{-A-[m]U[m]}t G'tGt'U't "f" G tH tr t +  Z tP tL tL  t+l,mr m dt\m 

Thus, U[m] satisfies equation (3.50) and we can write

u t\m = MSE(s/1|m)“ 1(j/( -  y t]m)
Ut

=*Vt\m = V t~  MSE(y(|m)tt(|m
lit

To complete the proof, we need to compute the MSE of y t|m:

= MSE(y(| J V a r ( u t|m) MSE(y(|m)
yt yt

(3.54)

(3.55)

(3.56)

(3.57)



M S E ^ iJ  =  Var(ttt|m)
f/t

-1

= Vax(ut + K'tL't+lmr m) 1 

=  (M i -  K ’tU t+i,mN mL t+ltmK ty l

because Vai(ut) =  M t,  Var(rm) = iVm and

Cov(«tj r m) = Cov { F f lv t -  K'tr t , r m)

=  - K 'tCov(rt , r m)

— ~~KtC°v (Z t+iFt+lVt+l +  -^t+lr i+l? r rn) 

=  -^ t^ t+ iC o v ( r t+1, r m)

(3.58)

=  - K [ I / t+hmN m (3.59)

Thus, MSE(jft|m) =  M t|m as required.

□

3.3 .3  S ta te  E stim ate

We will now evaluate the corresponding partially interpolated state es
timates cx.t |m:

T heorem  3.3.3. The interpolated MMSLE of a* conditional on the
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punctured space Y $  is given by

&t\m ~  & t\m P t R t \ m M t \mU t\m

and its mean square error is

OLt

where

R t \m  =  R t  +  L ! t ,m ^ r n L . t+ l ,m ^ - t  

^*t\m =  ~̂*t— t,mTm

Pt\m =  M SE(at|m) = P t +  P tL tm N mL trnP t 

Proof. Similarly to the proof of Theorem 3.2.3, we have

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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^■t\m L(q£̂  | Vt)

= L(ott \ Y (£ , y t - y t\m)

= L(att\Y$)  +  Cov{a.u y t -  y Am)Vax(yt -  y t\m)~l {yt -  y t]m)

= a t\m +  Cov(at , y t -  y t{rn) MSE{yt\m)~l {yt -  y t]m)
yt

*-*t\m “1“ Cov(at, y^

= O L t \ m  + Cov (a*, M ^ u tlm)ut]m 

~  ^t]m “t” Cov(at jUt +  Kt£± t+l,m'^Tn)t\mV't\m 

= oct\m +  [Cov(at ,« t) +  Cov(at , r m)L't+ljmK t]

(3.65)

We have already evaluated Cov(af, u t) =  P tR t The remaining covari
ance term in the expression is

Cov(a*, r m) — Cov(at -  att +  a t , r m)

=  Cov (a* -  a t, r m) +  Co v (d t , r m)

=  Cov (at +  P t r t - i ,  r m)

=  Cov (at, r m) +  P tC ov(rt_ i, r m)

=  P t H t ^ N m  (3-66)
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using results from the proof of Theorem 3.2.3. We can thus deduce

C*t\m — &t\m  +  P f  ( P t  — t ,m ,N m L L t+ l ,m ^ t )  ^ t \ m U t\m (3.67)

where the expression inside the brackets is equal to R t \m• This proves 
the first part of Theorem 3.3.3. Proof of the second part follows di
rectly, since the estimation error a t\m — a t  is independent of u t\m. The 
associated MSE matrix is

M SE(at|m) =  Var(df|m -  P tR tlmM - ^ u tlm -  ott)

= Var(d*|m -  a t) +  Var(P*Pf|mM ^ u t|J  

=  Var(dt -  P tL/t mr rn -  a t) +  P tR tlmM - ^ R ' tlmP t 

= Var(df -  a t) +  Vai(PtlJt m̂r m) +  P tP t|mM ^ P j lmP t

=  P t  +  P tL / t ,m R m — t,m P  t +  P t R t\mM t\L R t \ m P t  (3-68) 

which completes the proof of the theorem.

□

3.4 Conclusions

The theorems proved in this chapter are powerful tools which further 
extend the usefulness of the KFS by providing us with additional meth
ods for utilising the output quantities. We have provided a novel proof 
for the general case of the fundamental interpolation result, which meets 
the same standards of rigour as earlier proofs of the special case.

The partial-interpolation formulae can be viewed as generalisations of
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the main result, and allow us greater flexibility when choosing subsets 
of the data on which to condition our estimates. The estimators intro
duced are computationally efficient to construct, as they only require the 
output from a single forward and backward pass of the KFS recursions.

In Chapter 4, the partial-interpolation results allow us to make full use of 
the KFS output from the univariate representation of a multivariate time 
series and construct estimators with desirable properties. These results 
then form the basis of the various model-based methods for estimation 
of missing temperature data in Chapter 6.
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Chapter 4

The Univariate 
R epresentation of a 
M ultivariate Tim e Series

4.1 Introduction

When a time series model is in state space form, the Kalman filter can 
be used to obtain filtered or smoothed estimates of the underlying states 
cx.t given the observed series. In this chapter we demonstrate how the 

multivariate series 2/1, y 2, . . . ,  2/n> where y t = (3/1,4, 3/2,t, • • • ,yPt,t)', can 
be treated as the univariate series 2/1,1, 2/2,1? • • •, 2/pa,i? 2/i,2> • • • > yPn,n f°r 
the purposes of filtering and smoothing. We will refer to {y t} as the 
multivariate representation (MR) and {yi,t} as the univariate represen
tation (UR) of the time series.

Anderson & Moore (1979) introduce the concept of decomposing the 
vector y t into vectors of smaller dimension, which they term sequential 
processing. An application of a similar method to longitudinal models is 
explored by Fahrmeir & Tutz (1994). Koopman &; Durbin (2000) offer 
a more detailed treatment of the UR, but their approach only focuses 
on the basic state space representation, where the measurement and 
transition errors are uncorrelated.

We expand on their work by modifying the UR so that it can be applied
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to the more general SSF of de Jong (1991). We examine the output 
of the UR Kalman filter and smoother in detail, and discuss how it is 
related to the MR filter and smoother output.

Finally, we extend the concept of the UR to any time series where sev
eral terms are observed contemporaneously. We demonstrate how this 
approach can be used to partition the variance of the state MLE (or, in 
the non-Gaussian case, the MSE of the state MMSLE) into contempo
raneous and non-contemporaneous components, as a starting point for 
analysis of variance.

4.2 M otivation

Use of the UR has several advantages:

1. In the MR Kalman filter, if the single point y^t is missing, the 
whole vector y t needs to be treated as missing. In the UR, the con

temporaneous observations y \ , t , • • •, 2/z-i.t, Vi+i,t, • • •, y Pt,t still en
ter the filter, thus improving the accuracy of smoothed estimates. 
Additionally, the ability of the UR Kalman filter to ignore indi
vidual components of the vector y t allows us to compute deletion 
residuals that result from removing individual points or patches of 
observations from the sample.

2. The initial MR state vector may contain both diffuse and non- 
diffuse elements. Implementation of the Kalman filter with these 
partially-diffuse initial conditions is more straightforward with the 
UR (Durbin &; Koopman, 2001).

3. If the components of y t are not observed at the same time, the 
UR makes it possible to update the estimates as soon as new data 
arrives.

4. The computations required for the MR Kalman filter involve calcu
lating F ^ 1, the inverse of the innovation variance, for every value 
of t. The innovations have the same dimension as the observations, 
thus each step of the filter will involve inverting a pt x Pt matrix. 
In the UR, no matrix inversions are necessary, since the innovation 
variances {F^t} are scalar. Koopman & Durbin (2000) give results
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purporting to show that this leads to considerable computational 
gains, however, despite appreciable reprogramming, it has been 
impossible to reproduce their results.

4.3 Reformulating the State Space M odel

4.3 .1  T h e K oopm an-D u rb in  A pproach

Koopman and Durbin (2000) specify the state space model as:

y t = Z tOLt +  et 

a t+i = T ta t +  R tr)t t = l , . . . , n  (4.1)

where {et} ~  WN(0, H t)y {rjt} ~  WN(0, St)  and Cov(et, rjs) = 0 for all 
t, s = 1 , . . . ,  n. As in the general SSF, the first state cx\ has (uncondi
tional) mean at and variance P*. If the components of the measurement 
error e* are uncorrelated (i.e. if H t  is a diagonal matrix), the model is 
easy to reformulate. Let Z i jt be the ith row of the measurement matrix 
Z t , that is,

Z t =
i,t

'Pt,t _

(4.2)

The model can be expressed in the form

Vi,t — T

f  T tOLVut +  RtVt if i =  1 /. q\
I Oi_i5t+i if i — 2,3, . . .  iPt+1

for t = 1 , . . . ,  n, where otiti =  a i .  This is the SSF of the univariate
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representation of a multivariate time series.

From time (1, t) to (pt, £), the UR state ot^t stays constant; the transition 
matrix is the unit matrix and the transition error is zero. At each 
time period the relevant part of the state vector is measured by 
premultiplying ot^t by the rows of the measurement matrix, Z^t, and 
adding the measurement error This simple sequential approach is 
possible because contemporaneous measurement errors are uncorrelated, 
thus there is no need for them to enter the model simultaneously (as the 
vector £t).

The transition from otpt>t to aq^+i in the UR is identical to the transition 
from a.t to ott+i in the MR, since the corresponding transition and 
transition error matrices are the same.

4 .3 .2  N on-d iagonal M easurem ent Error V ariance

If the components of the measurement error are correlated, i.e. H t  
is non-diagonal, the simple sequential approach is not directly applica
ble, because the elements of Et need to enter the model simultaneously. 
Koopman and Durbin propose augmenting the state vector ott by incor
porating the error term et . We adapt their method by defining

Z t = z t Ipt

R t  =
Rt 0

0

ai
d i  =

0
5

ott T t 0 "

5 Ott = , T t =
£t 0 0

fit ' St 0
> Vt = ? St  —

0 H t+1 ..  £t+1

P i =
P i  0 
0 H i

(4.4)

In this formulation, both elements required to calculate observation y t 
(the state vector ott and the error Et) are contained in the augmented 
state vector ott- Thus, the noise term is eliminated from the measure
ment equation and the MR model can be written in the form
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y t = Z tOLt

at+i = f tatt +  R tfit t = 1 , . . . ,  n (4.5)

where {f/t} ~  WN(0, St), and the first state 6t\ has unconditional mean 
and variance ~  (d i ,P i ) ,  respectively.

The advantage of our parameterisation is that Koopman and Durbin 
define the transition error and variance of the series as

Vt , S t =
' St 0

. £t .
0

This is incorrect; the state vector ott+i on the LHS of the transition 
equation involves the term et+1, so this needs to appear in the associated 
error term on the RHS. A more serious problem is that the Koopman- 
Durbin formulation violates the conditions of the SSF since the state ott 
is no longer independent of all transition errors for i = 1 . . .  t, because 
ott and fit both contain the component e*.

Furthermore, the simple SSF (4.1) is inadequate, as the measurement 
and transition errors are necessarily uncorrelated. Allowing for possible 
correlation is essential for a wide variety of state space models (Harvey, 
1989), such as the max(p, q) representation of an ARMA(p, q) model 
(Pearlman, 1980; de Jong Sz Penzer, 2004).

4.3 .3  A  M ore G eneral S ta te  Space M od el

Consider the SSF as defined by de Jong and Penzer (1998):

Vt — Zt&t +  Gt£t 

OLt+i =  T t o t t +  H t£t j t = l , . . . , n (4.7)
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where { e t }  ~  WN(0,<r2Ir ) and o l \  has mean a \  and variance P i .  The 
error terms Gt^t and Ht£t  have variance a2G tG't and a 2H tH't respec
tively. We will assume a2 = 1 without loss of generality, redefining Gt 
and H t  if necessary. The correlation between measurement and tran
sition errors is made explicit by using the same r x 1 error vector £t 
in both the measurement and the transition equation and introducing 
matrices Gt, H t .

The correlation between contemporaneous measurement and transition 
errors is Cov(Gt£t, H t£t) = GtVaT(£t)H't = GtH't . If G t and H t  are 
orthogonal, this is equal to zero, the errors are uncorrelated and we 
can use the Koopman-Durbin approach to provide a UR. This becomes 
clearer if the term Gt£t is replaced by the px. 1 vector £t ~  WN(0, GtG't), 
which is independent of H t£ t• The model is now

Vt — ZtOLt +  C t 

OLt+1 = T tott +  H t£t (4.8)

and is equivalent to the simple SSF (4.1) up to a relabelling of the system 
matrices.

4 .3 .4  C orrelation  b etw een  M easurem ent Error and Tran
s ition  error

If there is correlation between the measurement error and the transition 
error (GtH't ^  0), the UR can be constructed by incorporating the 
common error term £t into the state vector. The new system matrices, 
state vector and error term are



0 '

, i t — £ t + i  » d i =
a i w

, P i  =
P i 0 "

l r 0 0 I r

The resulting state space model is

Vt =  Z tdit

& t + i  = f t & t  + H t i t  > t = l , . . . , n  (4.9)

where {e*} ~  W N(0,l q) and o l\  has mean di and variance P i .  Because 
of the change in the index of the error term, i t is independent of at, so 
the model is still in SSF. There is no measurement error, thus the UR is

Vi,t 

&i,t+1

w , i v-/
where ol\ ;i =  a \  and we define G^t, Z ^ t as the im row of Gt, Z t, 
respectively:

Z iytOli,t

( f ta put +  H tet if * =  1 
1 if i — 2,3, . . .  ,pt+i

(4.10)

Z t =

r w n
'  Z u t G i , t  '

3*
 

■  

1 £IS]1 1

(4.11)

Conceptually, this model is similar to the simple sequential UR, in that 
the state vector stays constant from (1, t) to (pt, t) as the relevant parts 
are read off. The only difference is in the transition step, from (pt, t) to 
(1, £ +1), as the error term £t+1 is sampled and stored in the augmented 
state vector a^t+i-

66



4.4 Filtering

4.4 .1  U n ivariate  F ilterin g

In the previous section we establish that the measurement error can 
always be eliminated from the model by incorporating into the state 
vector. Hence, in the interest of notational simplicity, the general SSF 
(4.7) can be expressed as

without loss of generality. In the absence of measurement noise, the 
Kalman filter equations can be simplified considerably:

Note that the pt x pt matrix F t needs to be inverted at each time period 
t. This is the most computationally expensive step in the recursions.

The univariate representation corresponding to (4.12) has state space 
form:

Vt = Ztoct 

a t+i = T toct + H tet , t =  l , . . . , n (4.12)

(4.13)

Vi,t — Zi^OLit

if i = 1
if i — 2 ,3 , . . . ,  Pt+i

(4.14)
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where Z^t  is the ith row of Z t  and cx^t = ott. The Kalman filter recur
sions for the UR run forwards from i = 1, . . .  ,pt for each t =  1, . . . ,  n:

Vi,t — Vi,t î,tO>i,t 

Fi,t —

k  r K t z i* K t  if * = i>2>• • • >pt- 1
W 1 if i = Pt

L i,t =

a>i,t+1 =

I - K ijtZ itt if i = 1 ,2 ,. . .  ,pt — 1

T t ~ K putz pt,t if i =P t

TtQiptj T K ptftVpt,t if i = 1
Oi-ij+i +  Ki-i,t+iVi-i,t+i if i — 2,3, . . .  ,pt+i

T f P ^ t L ' t  +  HfH't  if i = 1tx ptit-^ptt ~  t*x ti,t+i — \ ~ (4.15)

for t = 1 , . . . ,  n. Koopman and Durbin identify certain cases where the 
innovation variance is zero in some steps of the filter recursions. This 
could occur, for example, if there is an observation y^t which is a linear 

combination of “past-contemporaneous” terms {2/1,t , . . . ,  2/i—i,t}> In that 
case, the Kalman gain in the UR is equal to zero (K ^t  =  0), so the state 
estimate and its variance do not need to be updated.

The advantage of the UR Kalman filter lies in the fact that F^t is a scalar, 
hence no matrix inversions are necessary. The output of the univariate 
filter is different to that of the multivariate filter; for example, if v^t is 
the ith element of Vt, we have Vij ^  Vj^. In the following subsection we 
show how these terms are related.
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4.4.2 Filtered State Estimate

Define y .  f =  {ylft, . . . ,  yiyt}, with ^  =  0 and y ^  =  y t . We will 
refer to 3/ as the contemporaneous past of observation y^t because 
it consists of all the elements of y t which, in the UR, enter the model 

before time We also define Y ^ t  =  { Y t - i , y  i t }, with Yo,t = Y t - 1 

and Ypt,t = { Y t~ i ,y t} = Y t . We term Y’i-i,* the augmented past of 
observation The UR Kalman filter produces the MMSLE of the 
state &itt conditional on the augmented past Y i - 1̂ . For i = 1, this 
MMSLE and its associated MSE are

01 ,t — L (a i)t|yo,t) — L (a t |y rt- i )  — a>t

P u  = MSE(oi,t) =  MSE(at) =  P t (4.16)
OLi,t Ott

The terms di,*, &2,t, • • • 5 o,Pt,t are all estimates of the same state a*.
The MR state estimator at only depends on past information ( Y t~ 1),
whereas the UR estimator a^  also takes into account the contempo
raneous past (2/ i_l t )- As the contemporaneous observations enter the 
model, the variance is updated as follows:

Pi+l,t

“  Pi,t ~

~  Pi,t ~
= P ift -  k ijVa,r(vi,t) k [ t 

= P iit- V a i ( K ittvitt) (4.17)

Thus, the MSE matrix Pi+i,t is smaller than P^t, in the sense that 
the difference — Pi+i,t is equal to a variance (i.e. positive semi- 
definite) matrix. Hence, each diagonal element of Pi+i,t is smaller than 
or equal to the corresponding element of They are equal only in 
the situation where y^t is a linear function of past observations Y  
in which case the Kalman gain is zero and Pi+ij  — Pit-  I*1 general,
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the strict inequality holds, which means that the MSE of d*+i,t as an 
estimator of the state a* is smaller than the MSE of d^* as an estimator 
of the same state. This is intuitively reasonable; if the state is constant 
and there is no measurement noise, the estimate of the state is improved 
as more data enters the KF.

We can also write

p ,  ,£ '1 ,t— i,t

= P,L'i,t (4.18)

~  /  ~  /
where L i t = L l t . . .  L i t . Repeated application of identity (4.18) pro

duces P pt t — Pti±pt,ti which can be substituted into (4.15) to yield

P t+1 =  Pi,t+1 =  T tP tL'put + H tH't (4.19)

Expression (4.19) is equivalent to the MR recursion

P t+1= T tP tL't + H tH't (4.20)

This appears to suggest that the product of the accumulated L^t ma
trices from (l , t ) to (p t, t) in the UR filter is equal to the corresponding 
matrix in the MR filter, that is,

l n ,t = Lt (4.21)

However, (4.21) cannot be deduced directly from (4.19) and (4.20) be-
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cause the matrix T t  is not necessarily invertible. In the following chapter 
we prove a general result of which (4.21) is a special case.

4 .4 .3  Innovations

The innovations Vt from the MR can be reconstructed from the UR 
output, since

v t = y t -  Z tat = y t -  Z td 1>t (4.22)

Using the notation Vt = {vi,u • • • > vpt,tY> we can see that vi,t — vi,t- For
i > 1, we have

Vi,t — Vi,t l^ i—l,t) (4-23)

The ith observation at time t can be written in terms of the correspond
ing UR innovation as y^t =  Vi,t +  L(yi,t\Y . The term L(y^t \Y i - i it) 
is a function of and the system matrices only. Thus, when
( Y t is fixed, Y is fixed and vice versa. The same is true
for ( Y V i j )  and Y Applying this argument recursively, we 
can see that if ( Y t - i ,  ui,f, • • •, ^i,t) ls fixed, then Y is fixed and vice
versa. Thus, equation (4.23) can be written as

Vi,t = Vi,t ~  L (y itt \ Y t- i> v itt, • • •, Vi-i,t) (4.24)

In direct analogy to the MR Kalman filter, the innovations from the 
UR . . . ,  have zero mean, are pairwise independent and also 
independent of Y t - i ,  thus
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Vi,t — Vi,t Y t —1, Vltti • • • 7 Vi—l , t )

i —1

=  y ijt -  L{yi , t \ Y t - i )  -  C o v ( y itU v k,t ) V a i { v kjt) 1{ v k)t -
k= 1

i —1

=  Vi,t ~  ^ 2  C o v f e ’ V k ' t W k j V k t
k=l

Since =  afc,t? the covariance term on the RHS of (4.25) is

C o v(y i , t , v k,t) =  C o v [ Z t , ta j )t, Z fc)(( a fc)t -  a kjt)]

— ^i,tCov(Q'fc)t, Otkj

where

Cov(o:/t)t, Qlfc,t @'k,t)

=  &k,t) ]

— Q,k,t){S*k,t ^k,t) ] ”1“ 0,k,t) ]

=  +  E [L {flfc^ (o :fc )f Q*k,t) l^ f c —i ,t } ]
CX-k,t

=  P k , t  ~I-  { L ( o : / (;)f flfcjt} ]

=  P k , t  “I” ]

=  P k , t

Substituting into (4.25), we obtain

i—1

=  ^  y Z i j P k , t ^ k , t P k , t  ^k,t
k—1 
i—1

^  ~  ^z,t “I” ^   ̂ Zi , tKk, tVk,t
k= 1

^(f^t)}

(4.25)

(4.26)

(4.27)

(4.28)
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Thus, the MR innovation v^t is equal to v^t plus a weighted sum of 
past-contemporaneous UR innovations.

Define the vector of UR innovations Vt = • • • ? Vpt,tY: which has the
same dimension as the MR innovation vector Vt. The relation between 
Vt and Vt can be expressed as

where

vt = Qtvt (4.29)

1 0 0 • 0

Z 2 ,tK\,t 1 0 • 0

Zz,tKi,t Zs,tK2,t 1 • 0

Zpt,tKi,t Zpt,tKs,t • 1

This is analogous to the expression y  = Qv  from the technical intro
duction, as will be discussed in the following subsection.

4 .4 .4  Innovation  V ariance

Let {Ft}ij be the (i , j ) th element of the innovation variance matrix F t . 
Its diagonal terms can be computed by taking the variance on both sides 
of (4.28), because the terms on the right hand side are uncorrelated. Let 
Fij — {Ft}a  denote the diagonal terms. We have

Var(uM) = Var(i5i>t) +  ^  Var ( Z ijtK k,tVk,tj 
k= 1

i—1
=> Fij = Fij +  ZijKk,tFk,tKk,tZ'i,t (4-31)

k=1
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where F^t and Kk,t are from the univariate filter. All the terms inside 
the sum in (4.31) are non-negative. This implies

Fi,t>Fi,t Vz =  l , . . . , p t  (4.32)

As expected, the innovation variance decreases as more past contempo
raneous data enters the KF.

The non-diagonal terms can also be obtained using (4.28). Consider the 
case where i > j:

{F t}ij = Cov(vitt, V j t t )

= E (vittVjtt) -  E(vi|t)E(uj>t)/ 

=  E &i,t T ^  ̂Z i j K k , t ^ k , t  J I Vj,t + ^  ̂Z j j K i j V i t  I 
k= 1 /  V / = !  /

(4.33)

By the properties of innovations, only terms of the form v  ̂f will have 
non-zero expectation, thus

+  E
j - 1
y !  Zi,tKk,tVkyt-Kk,tZj,t 

lk—1

—  ZijKjjFjj  T ^   ̂Zi,tKk,tFk,tKk,tZj,t 
k=l 
j - i

= Zi,tPj,tZj,t + y] Zi,tKk,tFk,tKk,tZj,t 
fc=i

(4.34)

When i = j ,  the term Z i j P j j Z j j  is equal to Fi)t, so (4.34) is just a 
special case of (4.31). Finally, when i < j  we can use {F th j  = {F t}j( .

Expression (4.34) can be written more concisely by exploiting the rela
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tion between vt and Vt- Define the matrix F t = Var(ih). The compo
nents of Vt are uncorrelated, thus F t = d iag jF i^ ,. . . ,  FPt,t}- Equation 
(4.29) implies

F t = Var(vt)

=  Var (Qtvt)

= QtVax(i;t)Qt

=  QtFtQ't (4-35)

This is analogous to the expression £  =  Q F Q '  from the technical in
troduction. The MR Kalman filter takes n steps to implicitly compute 
the Cholesky decomposition of the n x n-block variance matrix £ , thus 
avoiding inverting £  directly. Similarly, the UR KF takes pt steps to 
implicitly compute the Cholesky decomposition of the pt x pt variance 
matrix Ft, thus avoiding inverting Ft  directly.

4.5 Sm oothing

4.5 .1  U n ivariate  S m ooth in g

The KFS recursions for the UR (4.14) run backwards from i = pt, . . . ,  1 
for each t = n , . . . ,  1

i- l ,t
+ *»,< if * =  1, 2, .. . ,pt — 1

r̂'t'*’pt,t ^  ® Pi

(4.36)
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where we define f*o,t =  Tpt-i , t - i  an(4 ^o ,t  = -2Vpt_i,t-i for notational 
convenience. The recursions are initialised with rPnin = 0 and N Pn,n — 
0. Alternatively, we can use the form

The smoothed state estimates and their associated MSE are

&i,t — L(c*z,f|Yn) — a^t P  i—i,i (4.38)

M SE(ai>t) =  P itt -  Pi,tN i - i ftPi,t (4.39)

All the UR state estimates at time t are equal, since neither the data 
taken into account nor the state itself changes:

^Pt,t — ®Pt,t T Pptf tTpt—i t

~  ^pt—i,t 4“ ^ p t —i,t^pt—i,t 4” ^ p t —i ^ p t —\,t^pt—i,t

— a pt - i , t  4" P p t - i , t Z p t - i t F p t _ ^ t vpt - i t  4" P p t - i j L p t - i t T p t - i t

— CLpt-l,t 4- P p t - l , t^pt~2,t

=  Otpt — i,t

— a l,t (4.40)

Trivially, the smoothed state estimates from the MR and UR KFS are 
the same: a i>t =  L (a ^ |Y n) =  L (a t |Yn) =  a t , for i = We
can deduce
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OL\,t — Ott

a i tt +  P i , t fpt_ltt - i  = at + P tr t- 1 

a t + P tr pt_ut- 1 =  at +  P tr t- i  

** rPt_ut- i  = r t- i  (4.41)

because the (positive semi-definite) matrix Pt+i is invertible. This result 
implies that r Put and rt are equal for all values of t, as are their variance 
matrices N pt,t and N f.  This is intuitively reasonable: rPut and N Put 
are dependent only on the future of the series, so they will be equal to 
the equivalent MR quantities when we do not consider contemporaneous 
data. This occurs at the “end” of each vector y t , in the same way that 
ti ij and P i j  only depend on the past, so they will be equal to the 
corresponding MR quantities when i = 1, at the “beginning” of y t. 
This fact allows us to express the MR smoothations and their variance 
in terms of the output from the UR KFS:

u t = F i l v t -  K [ r t

=  ( Q t & t Q t )  1Q f i t  ~  ^ t ^ Pt,t 

— Q t  Q t  Q t ^ t ~  K tTPt,t

M t = F ^  +  K ’tN tK t

= Q't~1F ; 1Q ; 1 + K'tN p a K t

where K t can be written as

K t = T tP tZ'tF ^

= T tP u Z\{QtF tcit) - 1 

= T tP lttZ'tQ ’t- l F - l Q T1 (4-44)

( 4 . 4 2 )

( 4 . 4 3 )
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4.5.2 Deletion Residuals

In many practical applications, such as detecting outliers or structural 
breaks in a time series, it is useful to treat y^t as a missing observation 
and estimate it from the rest of the data (de Jong & Penzer, 1998; 
Proietti, 2003; Penzer, 2007). We are particularly interested in the 
residual obtained by taking the difference between this estimate and the 
true value of y^t- This approach can also be used to assess the quality 
of a given dataset; if the observation y^t is unusual, its deletion residual 
tends to be large.

Let y \ i t be Y n excluding yi^ and also let y t\  ̂ be y t excluding yijt. 
The UR KFS allows us to construct several different deletion residuals, 
depending on which part of the data we wish to condition on.

Past-only

If we only consider data up to time t — 1, the deletion residual is in fact 
the innovation v^t obtained through the MR KF:

Vi,t t—l )  — Vi,t — Vi,t ZijQ't (4.45)

By definition, its variance is equal to F ^ .

Present-only

If we condition on the data y t\i, the resulting residual is

y i}t - L ( y i , t \ y t \ i )  (4.46)

This can be computed by putting the series yi,t, • - -, y Pt,t through the UR 
KFS. The forward recursion must be initialised with the unconditional 
mean of a* and its variance. Let these be and respectively. They
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can be obtained through the recursions

a t+i — E(Tta t  +  H ts t) — T ta £

P+. i = Var(Tta , + H te() =  T tP+T't +  H tH't (4.47)

for t = 1 , . . . ,  n, initialised with a*  =  a l5 P^" =  P i .  Once the forward 
pass of the KF is complete, the UR KFS will run backwards from yPt,t- 
The backward recursion is initialised with r^f t = 0 and N pf t = 0. We 
thus obtain the smoothation u^t and its variance M-+t . The resulting 
deletion residual is

Vi,t ~  H Vi,t\V t\i) =  (4-48)

and has variance equal to

Past and present

This is the estimate we obtain if we take into account all the data up 
to time t , excluding yi .̂ To compute it, we start by running the UR 
Kalman filter recursions on the series f/^ i,. . .  ,yPt,t. Once this is com
plete, we smooth backwards from yPut, initialising the KFS with r~t t = 0 
and N pt t = 0. This will yield the smoothation u^t and its variance M fv  
which in turn allows us to construct the deletion residual

Vi,t ~ L{yi,t \Y t- i , y t\J  =  (M~t)~lu^t (4.49)

which has variance equal to

A better method is to use the partial-interpolation formulae from Chap
ter 3 to construct the “past-and-present” residuals for the whole sample 
in a single pass of the KFS. Applying Theorem 3.3.2, we can write
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yi,t -  U y i , t \Y t - i ,y t\i) = (4.50)

where

The quantities Ui7t\pt,u ^i,t\pt,t are the UR equivalent of in
the notation of Chapter 3.

Past and future

If we condition on the entire sample apart from data at time £, we 
obtain the interpolated estimate of from the MR KFS. The resulting 
deletion residual is

ith diagonal element of M t 1.

Past, present and future

Finally, we can condition on the entire sample excluding the point y ^ .  
This estimate can be obtained from the UR KFS, with the recursions 
described in (4.36). This yields the residual

(4.52)

that is, the ith element of the vector M t 1Ut. Its variance is tJ, the

(4.53)
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with variance Mi ^ .

4.6 Contem poraneous Observations

4.6 .1  In trod u ction

In the previous section we consider a univariate representation of a mul
tivariate time series. This representation has the property that some of 
the elements of the univariate series are observed simultaneously, even 
though they are brought in one at a time. Specifically, at each time 
period t , the consecutive observations y i j , . . . ,  yPtj  are observed simul
taneously. The UR Kalman filter recursions illustrate how, if the point 
of interest is the estimate of the state a* can be improved by con
ditioning on the data contemporaneous to y^f. This approach can be 
generalised to all time series with the same property.

4.6 .2  T h e G eneral M odel

Consider the time series {y t}, t = 1 ,2 ,... which has the general SSF

Vt  — ZtOLt +  G t £ t  

ctt+i =  T tcxt +  H tet , t = 1 , . . . ,  n (4.54)

Now assume that data y s_r , . . . ,  y s are observed simultaneously. These 
represent the “present” of the series, whereas Y s- r- \  represents the 
“past”. We are interested in how the past and present of the series 
contribute to the forecast of the current state ots and its MSE.

We must first begin by considering the covariance between the current 
state cts and past innovations v s-ji

Lemma 4.6.1.

Cov(o!s, v s—j) = T s_j+ls_1K s_ jF  s—j (4.55)
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for j  = 1 ,2 ,... and

Proof. By induction on j .  For j  = 1 we have 

Cov(as,u s_i)

= Cov(Ts_ ia s_i +  H s-iE s_i, y s i Z  s—\ cls—\)

= Cov(Ts_ ia s_i +  H s- i£ s~i, Z s- i Ols- i +  G s- i e s- i  — Z s- \ a s- \ ) 

=  Cov{Ts_ ia s_i, Z s- i (ols- i — a s_i)} +  C ov(iJs_ ies_i, G s_i£s_i) 

=  T s_iC ov(as_i, a s_i — a s_i )Z's_l +  H s-iG 's_i

For j  > 1, assuming the statement is true for all integers up to j  — 1, 
the inductive step is

Cov(a*, v s- j ) =  Cov(Ts_ ia s_i +  H s- i£ s- i , v s- j)

4.6 .3  F ilterin g  

State Estim ate

Define the (r +  l)-step-ahead forecast a s|s_r_i =  L (a s|ys_r_i). This is 
the MMSLE of the current state a s given only the past of the series. It 
is equal to

= T s_ iP s_iZ 's_i +  H s- iG 'g ^

= K s- \ F s- \ (4.56)

T a_iC ov(aa_ i,u s_j)

T a_iC ov(aa/, vy-O '-1)) (settings' = s -  1)

T  s-\T- s-j+l,s-2K s - jF  s- j

(4.57)

□
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® s|s—t —1 L(o:s|Yr s - r - l )

— L(Ts_ ia s_i + H  s—i£s—i \ Y  s_r_i)

=  T  s—iL(o:s_ i | l /rs_r_ i)

= T s—i ... Ts_rL(as_r|yrs_r_i)

— T . s - r , s - i a s - r  (4.58)

Using linear estimation results from the technical introduction, we have

a s =  L(as|* V i)

— L(d:s |y rs—r—1) Vs—r , . . . , Us_i) 

r

=  L(as|‘K s_r_i) + ^  Cov(as, ^g-jQVar^g-j)"1̂ ^
3=1 

r

= T  s - r , s - l a s - r  +  (4.59)
3=1

which can be written as

a s — a s |s -r - l  +  X  3- 7+ 1,s - 1-K̂  s - j v s - j  (4.60)
V V  y j — l s  v  '

past contemporaneous

We have thus succeeded in expressing a s  as a sum of the (r +  1  ^step-
ahead state estimator a s|s_r_! and the contribution of the contempora
neous terms.
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S ta te  E stim ate  M SE

It is possible to separate the MSE of as into past and present components 
in a similar way:

MSE(as)CXs

=  M S E [ L ( o : s |Y s —r _ l ? Vs-Ti  • • • 5 Vs—l ) ]

r
= MSE[L(as|Y'a_r_i)] -  ^ C o v ( a s, vs_j)Var(vs_ j)_1Cov(i;s_ j , a s)

3=1

r
= MSE(as|s_r_!) -  y ^ . T s_ i+l 3_lK a_ iF s_iK's_iT!3_i+l s_l (4.61)

3 =  1

Let P s|s_r_1 be the MSE of a s|s_r_i as a predictor of ats. It can be 
computed recursively:

P s \ s —r —l V ar(as os|s_r_i)

Var(Ts_ ia s_i T H s—iE§—\ T s—1 —11s—r*—1)

= T s_iV ar(as_i -  +  H s_iVar(es_

= T ._ 1P s_i|,_r_1T',_1 +  (4.62)

Substituting into (4.61) yields

r

P s  — P s \ s - r - l  ~  ^ s - j + l , s - l  (4.63)
past  ̂  ̂ contemporaneous

The summation term in this expression represents the reduction in MSE 
which results from taking into account the contemporaneous terms.
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Observation Forecast

The state estimate aa can be used to construct the corresponding one- 
step-ahead forecast of y s, which is y s\s- \  = L (ys\Y s- i) .  It is easy to 
see that

ys\s—i — ^ (Z sqls C7S£S|Y’"s—i) — Z sd s (4.64)

since es is independent of Y ^-i. The associated prediction error is the 
innovation v s, so the MSE is

MSE(ys\s-i) = Var(vs) =  F s (4.65)
y s

Similarly to the state estimate, it is possible to separate the 1-step-ahead 
observation estimate 3/s|s_i and its MSE into past and contemporaneous 
components. The (r +  l)-step-ahead predictor of y s is

y s\s-r-l = H y s\Y s-r- l)

— L{Z sOLa T G s£s\Y s—̂—i)

— Z  SCLS |s —r —1

= Z  ST_ s_rs_ ia s—r (4.66)

Using the decomposition (4.60) for a s, the 1-step-ahead predictor 2/s|s—l 
is

v 8 \ 8 - i  = H y s\Y s-i)

= Z  sQ>s
r

— Z sT _ s _ r , s - la s - r  +  % ST  s - j + l , s - l K 8- j v s - j  (4-67)
3=1
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Observation Forecast MSE

The MSE of y s\s_r_i as an estimator of y s is

M S E ^ i ^ . ! )  =  Var{ys -  y s|s_r_i) 
y s

Var(Zsa s GrgSg Z scls ŝ—

= ZgVai(ots — Q>g\g-r-\)Z's +  G sYax{Eg)G’s 

= Z SP  s|s_r_ 1Z /s +  GgG's (4.68)

Using decomposition (4.63) we can write

MSE(!/s|s_i) 
y  s

= Z g P sZ s +  GgG's 

= Z SP  a| g_r_iZ's +  G SG'S
r

j = i

r

=  MSE(ys|s_r_1) — Z sT .s - j+ i ,s - i^ s - j^ 's - j^ 's - jT !s - j+ i ,s - iZ >g
v Us__________ , j  =  l '----------------------------  'v contemporaneous

past

(4.69)

As before, the summation term represents the reduction in the MSE 
that results from taking into account contemporaneous terms.

4.7 Conclusions

We have demonstrated how to construct the UR of any multivariate time 
series model that can be expressed in the general SSF. The technique of
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incorporating the error term into the state vector allows us to sidestep 
the issue of correlated measurement and transition errors.

While the UR itself is not a novel concept, previous treatments have 
not considered the output from the UR KFS in its own right, but only 
as a means of obtaining the output of the MR KFS. We examined the 
theoretical properties of the output quantities, particularly the UR in
novations, and illustrated how they can be used to construct estimators 
and deletion residuals that cannot be obtained directly from the MR 
KFS.

In Chapter 5 we continue this theoretical treatment by considering the 
UR in the context of the steady-state Kalman filter and examining the 
behaviour of the UR filter when the MR filter converges. Finally, several 
of the methods for estimation of missing temperature data in Chapter 
6 rely heavily on the results established in this chapter, particularly the 
various deletion residuals obtained through the UR KFS.
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Chapter 5

The Steady-State Filter 
and Periodic Convergence

5.1 Introduction

There are many situations where the system matrices in the SSF of a 
time series do not evolve over time. Some examples are the autoregres
sive models and the simple structural models discussed in the technical 
introduction. If the matrices Z t ,T t ,G t  and H t  do not depend on t, 
their subscripts are omitted and the model is said to be time-invariant. 
The updating equations in the KF for a time-invariant model often be
come redundant, as the output matrices converge to constant quantities 
(Harvey, 1989). This is an attractive property of the KF because it can 
drastically reduce the number of operations required at each recursive 
step.

In the first part of this chapter we examine the conditions on the system 
matrices for convergence to take place. The theoretical background of 
this topic is in control engineering (e.g. Caines & Mayne, 1970; Chan 
et al., 1984) and applies to a different form of the state-space model, 
where there is assumed to be no measurement error (that is, Gt =  0). 
We discuss how this framework can be adapted to the general SSF of 
de Jong (1991) by using the technique of putting the error term in the 
state vector (see Chapter 4).

In the second part of the chapter, we consider the issues arising from



the fact that the UR of a time-invariant multivariate time series is, by 
construction, not time-invariant; for example, the UR transition matrix 
is equal to the MR transition matrix T  at the end of each time period 
(pt,£), and equal to I otherwise. We prove that when the MR filter 
converges, the UR filter output matrices take a simple form and explain 
how it is possible to retain the computational savings of the steady-state 
KF even in this case. We then extend this approach to all state-space 
models where the system matrices vary periodically, and introduce the 
notion of periodic convergence of the KF.

We conclude by establishing a set of conditions on the system matrices 
of a periodic model, under which periodic convergence of the KF is 
achieved.

5.2 Filter Steady State

5.2 .1  T im e-invariant M odels

A general SSF for a time series model with time-invariant system ma
trices is

Vt — Z&t +  Get 

a t+i = T a tt + H e t , t =  l , . . . , r a  (5.1)

where, as before, {et} ~  WN(0, a2Ir ) and a i  has mean a\ and variance 
P i .  The Kalman filter recursions for this model are
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v t = y t -  Z tat 

F t = Z P tZ '  +  GG' 

K t = ( T P tZ '  + H  G ')Ft 1 

L t = T  -  K tZ  

a m  = T a t + K , v t

P t+1 = T P tL't + H ( H - K tG)' (5.2)

It can be shown that, under certain conditions, the MSE of the 1-step- 
ahead state predictor converges to a constant matrix, that is,

lim P t = P  (5.3)t—► oo

When this occurs, it is said that the KF is in a steady state. It is easy 
to see that, if P t —*■ P , then Ft  —̂ F, K t  —> K  and Lt —> L  as t —► oo, 
where

F  =  Z P Z '  +  GG'

K  = (T P Z ' +  H G ')F ~ l 

L = T -  K Z  (5.4)

hence the KF output matrices are all time-invariant once P t  converges to 
a constant matrix. This means that their recursions axe redundant and 
only the quantities Vt and at need to be updated at each time period. 
In practice, we monitor the recursions until the difference Pt+i — P t  is 
small enough to deem the filter to have converged. Storing the steady- 
state matrices and omitting the corresponding recursions then leads to 
considerable computational savings (Harvey, 1989).
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5.2.2 Definitions

The updating equation for the MSE of the 1-step-ahead state MMSLE 
can be written in the form

P t+i =  T P tT' -  (T P tZ f + H G ' K ’t + H H ') 

=  T P tT — T P t Z'~ H G ' { Z P t Z'+ GG') ~1 (T P t Z '+H G') ' -  H H '

(5.5)

The Kalman filter has a steady-state solution if there exists a time- 
invariant MSE matrix P  which is unchanged by the updating equation. 
If such a solution exists, equation (5.5) can be expressed in the form of 
an algebraic Riccati equation (ARE):

P - T P T ' + T P Z ' + H G ' { Z P Z ' + G G ' ) l { T P Z ' + H G ' ) ' + H H '  =  0

(5.6)

In practice, the ARE is difficult to solve in all but the simplest models 
(e.g. Brogan, 1991). Despite this, it is possible to establish sufficient 
conditions for convergence by considering the properties of the system 
matrices.

We define the following matrix properties, where A is a n x n matrix, 
B  is a n x m  matrix and C  is a m x n matrix:

• The matrix A  is stable if |Aj(A)| < 1 for i = 1 , . . . ,  n; that is, all 
of its eigenvalues lie within the unit circle.

• The matrix system (A, B )  is controllable if the rows of the n x ran 
control matrix [B, A B , . . . ,  A n~1B] are linearly independent. We 
can also use the equivalent definition: (A, B )  is controllable if 
Vz G { 1 ,...,  n} such that Ai{A)' /  0, we have B'v(Xi) ^  0, where
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v(Xi) is the eigenvector corresponding to Ai; that is, when all eigen
vectors of A ' corresponding to non-zero eigenvalues lie outside the 
kernel of B ' .

• The matrix system (A , B ) is stabilisable if there exists a m  x n 
matrix S  such that |A*(A +  B S )  | < 1 for i = 1 , . . . ,  n. An equiva
lent definition is: (A ,B ) is stabilisable if Vi G { 1 ,...,  n} such that 
|A4(A)'| > 1, we have B'v{Xi) ^  0; that is, when all eigenvectors of 
A ' corresponding to eigenvalues outside the unit circle lie outside 
the kernel of B ' .

• The matrix system (A, C) is observable if the rows of the n x ran 
observation matrix [ C ' , ( C A Y , . . . , ( C A n- 1Y] are linearly inde
pendent. Equivalently: (A, C) is controllable if Vi G { l , . . . ,n }  
such that Xi{A) /  0, we have Cv(Xi) ^  0.

• The matrix system (A, C ) is detectable if there exists a n  x m  ma
trix D  such that |Aj(A +  DC)\  < 1 for i =  1 , . . . ,  n. Equivalently: 
(A, C) is stabilisable if Vi € {1 ,... ,n} such that |Aj(A)| > 1, we 
have Cv(Xi) ^  0.

From these definitions, we can deduce the following:

1. Controllability implies stabilisability, and observability implies de
tectability, but not vice versa. A sufficient, but not necessary con
dition for the converse to hold is det(A) /  0. In this case, A =  0 
is not an eigenvalue of A, so the conditions are equivalent.

2. If the rows of B  are linearly independent, then, for any choice of 
A, the rows of the control matrix are also linearly independent, 
hence (A ,B )  is controllable. Similarly, if the columns of C  are 
linearly independent, then, for any choice of A, the rows of the 
observation matrix are also linearly independent, hence (A, C) is 
observable.
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3. If A  is stable, then it is both stabilisable and detectable; setting 
D  = 0 and S  =  0 is enough to satisfy the conditions.

4. Stabilisability and detectability are dual properties; if (A, B )  is 
stabilisable then (A ' , B ’) is detectable, and vice versa. This can 
be verified by setting D  =  S'. Similarly, the properties of control
lability and observability are also dual.

5.2 .3  C ond ition s for C onvergence

We now consider the model

y t =  Z tOLt

&t+i = T td t  +  H  t£t (5-7)

This representation has its basis in control theory and does not include 
an error term in the measurement equation. Also, the interpretation of 
the model is different: the aim here is to choose appropriate values for 
the control variables {ei, ...,£*} to steer the model towards a particular 
state a i+ i, with the added difficulty that the state is observed only 
through its effect on the measurements {yt}-

Based on the properties of the system matrices of (5.7), we define the 
following properties:

Stability : The model is stable if the matrix T  is stable.

Controllability : The model is controllable if (T, H )  is controllable.

Observability : The model is observable if (T, Z )  is observable.

Stabilisability : The model is stabilisable if (T, H )  is stabilisable.

D etectability : The model is detectable if (T, Z)  is detectable. 

Caines & Mayne (1970) prove that, if the initial variance matrix P i
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is positive semi-definite and the model is stable then the MSE matrix 
P t  converges to P  exponentially fast, as long as P  is the only positive 
semi-definite solution to the ARE. Anderson &; Moore (1979) show that 
this also holds if the system is detectable and stabilisable, but not nec
essarily stable. This is a more general result, because stability implies 
detectability and stabilisability, but not vice versa. Chan et al. (1984) 
establish that if the system is observable and if P i  — P  is positive definite 
or zero, then P t  still converges to P , but not necessarily exponentially 
fast.

5.2 .4  G eneral SSF

We now examine how the properties for model (5.7) translate into prop
erties for the more general state-space model. Recall that the model

Vt — Ztott +  Gt£t 

&t+i = T t(Xt +  H t£t (5.8)

can be written in the form

Vt = Z t Gt
OLt
£t

Ott-1-1 ' T t  H t OLt
+

’  0 "=
£t+1 0 0 . £ t . I

£t+1 (5.9)

and let Z t ,T f ,H t  (and Gt = 0) be the system matrices in this repre
sentation. The characteristic polynomial of the transition matrix is
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det(Tt -  AI) =
T t -  XI H t 

0 -A I

=  — Adet(Tf -  AI) (5.10)

Its roots are the eigenvalues of T t and zero, thus T t  is stable iff Tt  is 
stable.

Now let v(X) = [ v[ 1 v'2 ] ’ be an eigenvector of Tt,  for A ^  0. The 

vector i;(A) is partitioned conformally to the block matrix T t . By defi
nition:

det(Tt -  AI)v(A) =  0

T t -  XI H t V\

i— 0 1 V
 

1—1 1 . v 2 .

=  0

<̂>
(T t -  AI)vi +  H tV2 

~XV2
=  0

v(X) =
wi(A)

0
(5.11)

where 'Ui(A) is an eigenvector of Tt, corresponding to the same eigen
value A. Consider the expression
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Z t v ( \ )  = Z ,  G,
ui(A)

0

=  z tv  j(A) (5.12)

This is non-zero iff Z t v i(A) is non-zero, so we can deduce that (Tt, Z t) 
is detectable (observable) iff (Tt, Zt)  is detectable (observable).

i

Finally, let w{A) = [ w[ ' w'2 ]' be an eigenvector of T t , for A ^  0. We 
have:

det(Tf -  \ l ) w { \ )  = 0
1

o1—
(1

h

I

W \

1--
---

---
---

1 V 1—
1

1 .  W2 .
= 0

<̂>
(t ; -  Aijtui

H'tW\ — \W 2
= 0

A) =
w  i(A) 

i ^ i ( A )
(5.13)

where iui(A) is an eigenvector of T ’t , corresponding to the same eigen
value A. Consider the expression

H tw( A) = 0 I
w  i(A) 

j H ’tw  ,(A)

= ^ f f > i( A ) (5.14)
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This is non-zero iff H'tw i(A) is non-zero, so we can deduce that (T*, H t)  
is stabilisable (controllable) iff (T t , H t ) is stabilisable (controllable).

Thus, it is not necessary to eliminate the measurement error. The defi
nitions of all the properties we examined can be applied directly to the 
general state-space model.

5.2 .5  A p p lica tion

We will now examine how convergence of the MR KF affects the UR 
filter recursions. It is clear that the regular definitions of convergence 
do not apply, since the UR does not have time-invariant system matri
ces. For example, the transition matrix is equal to T t when i = p 
and l q otherwise. However, since the system matrices vary in a very 
simple way, it is possible to adapt the definition of convergence to this 
situation. Note that we have to impose the additional condition pt =  p. 
A multivariate model where the size of the observation vector varies over 
time cannot have time-invariant system matrices.

The UR of a time-invariant model is

Vi ,t — ZiOLi t̂

T a Pjt +  H e t if

oci~i,t+i if

where Z{ is the ith row of Z .  Assume that the multivariate filter con
verges. We have already established that P^t is equal to P t  when i= l, 
since both matrices are equal to the MSE of the MMSLE of oct given 
Y t- 1- Now consider the recursive step at time (l,t):

i =  1
i =  2,3, . . . , p

(5.15)
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v i  ,t = y i , t  — Z \ d i  )t 
■̂ l.t = Z lP Z l = F\

k u  =  t p z [ f r 1 =  K j

fl2,t — fli,t +  -R îTi, t

P %t = P -  P Z [ K [  = P 2 (5.16)

We use the notation F \ , K \ , P 2 to indicate that these matrices do not 
depend on t. Repeating the step again, we find F2, K 2,P s.  These are 
also time-invariant; they only depend on i, the current position in the 
multivariate vector. Repeating the recursive steps at time t + 1 will only 
yield the same sequence of F i,K i ,P i .  This implies that the UR filter 
recursions converge periodically in the sense that

lim Fi t =  Fit—*00

lim K i  t — K
t—>00

lim P i t = Pi
t—► 00

(5.17)

for i = 1, . . .  ,p — 1. Thus, it is far more efficient computationally to 
store these matrices once the KF converges, rather than calculate them 
at each pass. An important advantage to this approach is that the 
calculation of partially-interpolated estimators will involve much fewer 
operations.

For example, constructing the “past-and-present” estimator L ^ ^ lY ^ -i, y t\i) 
involves evaluating the matrix product L'i+l t . . .  L'pt t , where L^t =
T i j  — K i j Z i j ,  the rest of the terms being readily available from the 
KF and KFS output. If the UR filter converges periodically, the matrix 
products become

^pt,t L i+1.. .  Lp = (5.18)
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The terms i = 1, . . .  ,p, do not depend on t. Thus we can store 
them once the filter converges and construct the estimates directly from 
the KFS output.

5.3 Generalisation to  Periodic M odels

5.3.1 In trod u ction

In the previous section we exploited the periodic structure of the UR SSF 
to simplify the KF recursions if the MR filter converges. It is possible to 
generalise this method to all other time series models where the system 
matrices are periodic. Consider a model where the system matrices 
Z u T u G u H t contain periodic elements, with period s. We can use 
double-subscript notation to make the periodic structure explicit:

for i =  1 , . . . ,  s and t = 1, . . . ,  n, where a ^ i ~  (ai.i, Pi,i)» The UR can 
be thought of as a special case of this model, with Gi = 0 for i = 1 , . . . ,  s 
and Ti = I, H i = 0 for i = 1, . . . ,  s — 1. The KF recursions for the 
periodic model are

(5.19)
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^i,t  — Vi,t ZiQ>ij 

F itt =  Z i P i j Z ' t  +  G i G \

n - l
tK itt = (T iP i,tZ'i + G iH ’i)F7 

Li,t — Ti K i,tZ i

a>i,t+ 1 =  <

T  g C L g J  “ 1“  K g j V g J if 2 =  1

T'i-ittz-i.t+i +  -K’z-i,t+i'Ui-i,t+i if i = 2 , . . . , s

Pi , t+1 — <

T SP  s,tPs,t +  H s>t( H Sit K sjG g j)  if i — 1

if i = 2 , . . .  ,s

(5.20)

In the exceptional case where the periodic elements of the system ma
trices do not have the same period, we can define s to be the lowest 
common multiple of the different periods. This situation could arise, for 
example, if y i t are hourly observations and Zi  has hourly seasonality, 
while T{ has daily seasonality.

5.3 .2  P eriod ic  C onvergence

As in the UR, the system matrices are not constant, so the Kalman 
filter will not converge to a steady state in the strict sense. However, it 
is possible that it will converge periodically, in the sense that

lim Pi t = Pi  (5.21)
t—► oo

for i = 1 , . . . ,  p. In direct analogy to the way the scalar observations 
of the UR are stacked to form the MR, we can stack the (vector) ob-
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servations of the periodic model to form a time-invariant state-space 
model:

OL\,t

V i , t  

Us,t _

&s,t

£ i,t

£s,t

a l , t+ l OL\,t

a s,t+1 &s,t

=  T --------

£ l , t+ l £ l,t

£ s , t+ l £s,t

+  H

£ i,t

£s,t

(5.22)

where we define the following system matrices:

Z  =

"  Z i ' G !
i

G s

(5.23)
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0 0 T  i 0 •• 0 H  i

0 • 0 T s_ i . . . T ! 0 • 0 T s_ 1 . . . T 2H 1

0 • 0 t s . . . tt 0 •• 0 T s .. . T 2H \

0 •• 0 0 •• 0

0 0 0 0

(5.24)

H  =

T s . . . T 3H 2 T S . . T ± H  3
(5.25)

I

I

The time-invariant model has longer state and observation vectors, so 
filtering and smoothing will involve inverting larger matrices. For this 
reason we prefer to work directly with the periodic model in practice. 
However, the structure of the time-invariant model (constant system 
matrices, no measurement error) allows us to establish conditions for 
periodic convergence which can be expressed in terms of the system 
matrices of the periodic model.

We begin by proving that steady-state convergence in the time-invariant 
model is equivalent to periodic convergence in the periodic model. The
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KF recursions for the time-invariant model will output the 1-step-ahead 
MMSLE of the state a*. This is

a t  =  E(at|lV i)

E (a i)t | l r s,t-1) 

E (o ts tt | y  s,t—1)

^ > ( ^ i , t \ Y  s , t —1)  

E ( e a, t \ Y  s , t—1)

0

(5.26)

where is the «-step-ahead predictor of and we write Y t -1 =
Y Sjt - i  for consistency of notation. The KF recursions will also produce 
the MSE of as an estimator of cx^t- Define the i th component of
estimation error as Adi =  a — cni.t- We can express the MSE 
matrix as

103



P t =M SE(St)
OLt

=E[(St -  OLt ) ( a t  -  OLt )' ]

E(A°l,tlt-lA°l,tlt-l)

E(Aa«,t|t-lAo/l,(|f-l)

E(Aalt |t_1Aa^t|(_1)

E(AaJit|j_1AaJit|t_1)

E[(0 -  ei,()Aa'1(|(_1] • •• E[(0 -  ®i,t)Aoi,t|t-i]

_E [(0-e ,,t)Ao'M|t_1] •• • E[(0 -  e J A a '^ .! ]

E[A ai,t|t-i(° ~ £i,0'] •• E[A°1,t|t_i(0 — £s,i) 1

1-

• E[Aa,i(|t_1(0-e»,i)']

E [(0 -e i,() ( 0 - e w )'] •• ■ E [ (0 -e u )(0

E[(0-e»,t) (0 - e i , t)'] •• • E[(0 -  es,t)(0 -  £«,()']

Tthe top-left-hand block of P t  is equal to

E[(oi,t|t-i — «i,t)(oi,t|t-i — &itt)'] — Vax(ai>t|t_! — Qi,t)

= Pi, t  (5.28)

If P t  converges to a steady-state solution, then all of its component
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blocks must also converge. Thus, P i j  —> P 1 as t —> oo. Using the 
same argument as in the previous section, the fact that P\,t converges 
implies that P ^ t —» Pi  as t —> oo, for all the other values of i. Hence 
the periodic KF will converge periodically.

To prove the converse, we begin by assuming periodic convergence of 
the periodic KF. It suffices to show that all of the blocks that comprise 
P t  will converge. Using results from the previous section:

if i = j

0 if i ^  j

(5.29)

P i—l • • ’T j+ iH j  if i > j

if i < j
(5.30)

which are all independent of t. To find the remaining terms, assume, 
without loss of generality, i > j .  We have

E [(o» ,t|t-i — — OLj j ) ' ]

— P i —1 • • • P j ^ [ { a j,t\t—l ~  1 — tXjit) ]

=  T i_ i . . . T J-MSE(ai>t|t_ 1) (5.31)

We established previously that the MSE of the jf-step-ahead predictor 
of aijj depends only on the system matrices and Pi,t- The system 
matrices do not depend on t and we have assumed that P \ j  —> Pi- 
Thus, as t —> oo none of the elements of P t  depend on t and the KF 
converges to a steady state.
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5.3.3 Stability

We will first examine the conditions under which the matrix T  is stable. 
The characteristic polynomial is

det(T -  AI)

-A I •• 0 T i ii 0  •• 0 H l

0  •• -A I T s - \ . ■ .T \  \ 0  • 0 T s- i . . . T 2H 1

0  • 0 T s . . .T i  —AI ! 0  • 0 T s . . . T 2H l
-r

0 0  1
1

: i
H

H
...

1

0

0  ••
: i 

i
0  i 0

1—
t

...
1

= (-A )2s~1det(Ts . . .T i  -  AI)

=  (-A )2s_1 det(T -  AI) (5.32)

where we define the summary matrix T  = T s .. ,T \ .  We can deduce
that the eigenvalues of T  are the eigenvalues of T  and zero. Thus, the
matrix T  is stable if and only if T  is stable.

An interesting corollary of this result arises when the transition matrix 
is time-invariant, that is T \  =  . . .  =  T s = T .  There are many situations 
where such a model is appropriate; for example, if we want to model 
a process with time-invariant structure that is affected by seasonal er
rors, we might choose to make T, Z  time-invariant and restrict periodic 
behaviour to G t , H t .

In this case, we have T  = T S. However, if T  has eigenvalues {Ai,. . . ,  Xq}, 
then T s has eigenvalues {Af, . . . ,  A*}. Thus:
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T  stable ^  |Aj| < 1 V7" E { 1 ,2 , . . . ,q}

■S.|Aj|s < l  Vj 6  {1 ,2 ,. . .  ,q} (5.33)

^  T s stable

regardless of the structure of the measurement matrix Z\  or the errors. 
As an illustration, consider the periodic AR(1) model

Vi,t ~  a i,t +  G i £ i,t

4*s®-s,t T H s & s ,t

a i,t+1

if i = 1

(5.34)

(pi-\OLi-1^+1 +  if i — 2 , . . . ,  s

The transition “matrix” is the scalar quantity (pi, so the summary “ma
trix” is T  = 4>\. . .  4>s, the product of the autoregressive parameters over 
a whole period. If this parameter is time-invariant, the process is stable 
iff |<p| < 1. This is exactly the same as in the (non-periodic) AR(1) 
model, so the parameters that define the periodic behaviour of the mea
surement and transition errors have no effect on the stability of the 
process. On the other hand, if we allow the autoregressive parameter to 
vary periodically, the process is stable iff \(f>i. . .  </>s\ < 1. This is some
what surprising; for example, a suitable choice of (p\ can ensure that the 
process is stable even if \<f>i\ > 1 for i = 2 , . . . ,  s.

5.3 .4  D e tec ta b ility  and O bservab ility

In order to establish whether or not the time-invariant process is de
tectable, we need to consider the eigenvectors of the matrix T. Let 
u  =  [ u[ .. .u's ' v[ .. .v's ]7 be such an eigenvector and A the corre
sponding eigenvalue. We have
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(T  -  AI)u  = 0

-A I •• 0 Tl !

0  •• -A I T g - l  . . . T \  \

0 0 T S . . . T i  — XI \
i

0 0  i

0  •• o !

0  • 0

0  • 0 T g - l  . • . T 2 H 1

0 0 t s . . t 2h 1

H
H

...
1

0

0  • -A I

-Awi + T i u s + H  i v a 

—Xu2 +  T  2  T  + T  2  H  it;s

<=> —\ u a +  T a . . . T i u a +  T 8 . . . T 2 H \ v 8 
—\ v \

-Aw.

^s - 1
^  (T u s — AI)

v s =  0 
108
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Thus, u s is an eigenvector of T. We ignore the cases A =  0 and u s = 0 
because, for detectability, we only need to examine eigenvectors cor
responding to eigenvalues outside the unit circle. Let u s be such an 
eigenvector and consider

Z u  = ---
---

---
---

---
---

-1

I—1

1

Gg

j Z \ T \ u s

\ Z S—\ T s — \ . . .  T \ u s 
Z  gUg 

0

0

t T iu s

•^Ts_ i . . .  T \ u s
Ug
0

0

(5.36)

The process is detectable iff u, /  0 implies Z u  ^  0. This condition can 
be summarised as

(T, Z)  is detectable f Vj e  {i, - - ., s} s.t. |Aj(T)| > 1
I 3i € {1 ,...,«}  s.t. Z i T i . . . T i u s ±  0

(5.37)

where u s is the corresponding eigenvector.

The condition for observability is very similar, but we need to test the 
eigenvectors corresponding to all non-zero eigenvalues, not just the ones 
outside the unit circle. This can be summarised as:
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(T ,Z)  is o b s e r v a b l e f  Y? e  { l , . . . , s }  s.t. A} (T) f  0
I 3i e  {1,. . . ,  s }  s.t. Z i T i . ..  T \ U S ±  0

(5.38)

where u s is the corresponding eigenvector.

5.3 .5  S tab ilisab ility

To determine whether or not the time-invariant process is stabilisable, we 
need to consider the eigenvectors of T  . Let w  =  [ w [  . . .  w ' s ' z [  . . .  z's ]' 

be such an eigenvector and A the corresponding eigenvalue. We have

(T -  AI) u  = 0

1—1 1
1

0 0 i

0 . -A I o !

T'l • 
0

• T i - . - T U  

0

T ' -  AI !
-------------------------------_i

0 1

0 0 o !

.  H [ • H ,1r 2 . . . T ,s_ i H iT '2 . . .T 's !

0  ............  o ■

W \

0

0 ............  0 w s

-A I ............  0 Z l

: :
. Zs

0 ............  -A I
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—Xwi

Xwg—i
T [w i  +  . . .  +  T[  . . .  T'g^Wg-1 +  (T ' -  AI)w t 

—Xz\
=  0

\ z s—\
H [ Wl + . . .  +  H [T '2 . . .  T'sw s -  Xzt

w  i = 0

w s- 1 
(T ' -  XI)ws 

z i
(5.39)

Z s - l

Z s

= 0

=  i H [ r 2 . . . r sw s ,

This time, w 3 is an eigenvector of T '  and the eigenvector w  is non-zero 
iff w s is non-zero. Note that the eigenvalues of T '  are the same as the 
eigenvalues of T . We now consider the expression
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H w

rjrf rrl rril
-“ 2 2 3

H'*

0

o l  0 0

i J 'T ' . . . T ' s 
H'3T'4 . . . T fs

H '

0

0

0

LA

H'2T f3 . . .T 'sw s

H'sw s
\ H '1T ,2 . . . T ’sw t

(5.40)

The process is stabilisable iff w  ^  0 implies H  w  ^  0. We can hence 
summarise the condition as:

( f ,  H )  is stabilisable •» /  V̂" e  t 1** • * > s-t - lAi ( I  )l ^  1
(_ 3 > 6 { l , . . . , s } s . t .  H 'T '+1 . . . 2 > s / 0

(5.41)

where w s is the corresponding eigenvector of T '. Similarly, the condition 
for controllability is:

(T, H )  is controllable j  V-? e  {1> • • • >«} s.t. Ai ( Z ) ¥= 0
\  3« £ { l , . . . , s }  s.t. H'iT'i+1. . .T 'sw s l tO

(5.42)

where w s is the corresponding eigenvector of T f.
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5.4 Conclusions

Steady-steady convergence is an important computational advantage of 
the Kalman filter. In most practical examples of time-invariant mod
els, the matrix P t  tends to converge to a constant value very quickly, 
rendering part of the filter recursions redundant.

The method described in this chapter makes it possible to benefit from 
the computational efficiency of the UR and the steady-state filter simul
taneously. This can lead to considerable savings, both in the number of 
operations involved and in the amount of stored data required for the 
backward pass of the KFS. The improvement is particularly noticeable 
in long multivariate time series, such as the temperature data in Chapter 
6 .

The technique of incorporating the error term into the state vector serves 
to demonstrate the equivalence between the control theory state-space 
model and the general time series SSF. We have shown that this equiv
alence provides rigorous justification for the use of the standard conver
gence conditions.

The novel concept of periodic convergence allows us to extend the com
putational benefit of steady-state convergence to a wide class of seasonal 
models. The set of conditions established in the last part of this chapter 
provide a framework for the treatment of these models.
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Chapter 6

Estim ation of M issing  
Tem perature D ata

6.1 Introduction

Serially complete and reliable temperature records are essential for the 
detection of global climate change and are also required for the develop
ment of climate-dependent models for soil erosion, crop development and 
other such processes (DeGaetano et al., 1995). Furthermore, without a 
large amount of high-quality weather data, management of weather risk 
and pricing of weather derivatives would be unfeasible (Dunis & Karalis, 
2003). However, the gaps that are often encountered in long tempera
ture series are a serious hindrance to these endeavours. In addition, 
climatic models can be extremely sensitive to outliers and errant values, 
which can arise in the data from a variety of sources.

In the past, missing values were replaced arbitrarily or with crude es
timation techniques, which obviously affected the accuracy of the final 
models and impaired the comparison of results obtained with differ
ent modelling approaches. This has led researchers to develop a large 
number of methods which produce far more realistic daily temperature 
estimates. The estimated data can then be used to fill gaps in the 
records and also to identify outliers by drawing attention to cases where 
there are large discrepancies between observed and estimated tempera
ture readings.
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In the first part of this chapter, we begin by reviewing some of the 
most important existing approaches for estimation of missing tempera
ture observations (Kemp et al, 1983; De Gaetano et al., 1995). These 
tend to be non-parametric methods, and do not make any attempt to 
model the temperature series directly. We examine the relative accuracy 
of different estimation techniques and propose a simple improvement 
which can lead more accurate results, without a significant increase in 
computational cost. Additionally, we consider the use of the Nearest- 
Neighbours approach (Edelsbrunner, 1987; Kleinberg, 1997; Indyk & 
Motwani, 1999) and introduce novel approximate methods for nearest- 
neighbour search, which go some way towards alleviating the “curse of 
dimensionality” .

In the second part of the chapter, we consider a model-based approach 
to missing temperature estimation. Seasonal models are used to remove 
the long-term cyclical (climate) patterns from the series, thus enabling 
us to focus on the more volatile weather effects. These weather se
ries tend to show evidence of long-memory behaviour (Caballero et al., 
2001). We consider heuristic and likelihood-based methods for filtering 
out long memory (Hosking, 1981; Beran, 1989 & 1994; Taqqu et al., 
1995). The resulting series can be adequately modelled using the au
toregressive models discussed in the technical introduction. We focus 
on fitting multivariate models to several series simultaneously, which al
lows us to improve estimation accuracy by exploiting the high degree of 
correlation between temperature series at locations that are near each 
other.

All models are then applied to a long multivariate time series, consisting 
of daily maximum temperatures at weather stations in the state of Texas, 
from 1950 to 2001. Numerical results are given in the Appendix.

6.1.1 D efin ition s

The problem of estimating missing daily temperatures can be formulated 
as follows:

We observe p contemporaneous univariate time series. Let Y \ denote 
the stacked observations of the ith series:
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{Y} i  =  (3/i,l»2/i,2J---,2/t,n)/ « =  l , . . . , p  (6.1)

a n x 1 vector. The { Y  }* are the columns of the n x p  matrix Y , defined 
as

Y  = (6 .2)

Using the previous definitions, we can also express Y  as

Y  =

y \
3/2

Vn

(6.3)

where y t is the p x 1 vector of observations at time t. The stacked vector 
of observations y  is equal to vec(Y).

Finally, we need to define the (n — 1) x 1 vector

— (Vi, 1j • • • 3 2/i.t-l, Vi,t+1? • • • ) Ui,n) (®-4)

the (p — 1) x 1 vector

2/t\i =  (2/1,t 3 • • • 3 2/i-i,t 3 2/i+i,t 3 • • • 3 2/p,t)' (6-5)

which are the same as {Y }i and y t , respectively, but with observation 
y^t omitted, and the (np — 1) x 1 stack vector
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V\i,t (?/1 ’ • • • 5 Vt—l ’ Vt\i’ 2/t+i’ • • • 5 2/n) (6.6)

which is the same as y, but with observation yij  omitted. We will 
consider the problem where a single observation y^t is missing and needs 
to be estimated.

6.2 Ad-hoc Approach

6.2 .1  E x istin g  M eth od s

Kemp et al. (1983) make an early attempt to classify and compare differ
ent methods for estimating maximum and minimum daily temperatures. 
They examined several methods, which they divide into three broad cat
egories: 1) within-station, 2) between-station, and 3) regression-based.

W ithin-Station M ethods

Within-station methods involve estimating a missing observation by only 
taking into account temperatures recorded on previous and subsequent 
days at the same weather station. For example, the maximum temper
ature on 15 May could be estimated by the average of the maximum 
temperatures on 14 May and 16 May. Similarly, it is possible to cal
culate averages by considering more than one day on either side of the 
missing observation, or by assigning different weights to the days. Al
though these methods can produce satisfactory results when calculating 
monthly or longer period averages, they tend to result in large estimation 
errors for daily temperatures and are generally deemed inadequate.

Between-Station M ethods: Temperature Departures

Between-station methods are multivariate approaches to estimating miss
ing observations. Broadly speaking, they take advantage of the correla
tion between the components of y t to improve the estimate of y^t-
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For example, Kemp et al. (1983) describe a procedure which is based on 
the assumption that daily temperatures in neighbouring stations differ, 
on average, by an amount equal to the difference between their corre
sponding average monthly temperatures. DeGaetano et al. (1995) use 
a more accurate method which involves calculating standard departures 
for each observation.

The standard departure z \ t for station i on day t  is defined as:

where y\^ is the daily maximum (or minimum) temperature at station 
i on that day and y^t, Sij are estimates of the mean daily maximum 
(or minimum) for that day and its standard deviation, respectively. In 
practice, estimates of the monthly means and standard deviations are 
used to calculate the daily means and standard deviations. For days in 
the second and third weeks of each month y i^  s^t are taken to be equal 
to the corresponding monthly estimates, while for days in the first (or 
last) week they are obtained by averaging the estimates for the current 
and preceding (or following) month. The standard departure z j t for the 
station with missing data is then estimated as

where the sum is over all neighbouring stations, p — 1 stations in total.

where y^t, sij are the corresponding daily mean and standard deviation 
at the target station. Clearly, the choice of stations to include in the

(6.8)

The estimate of the missing data y \ t is:

y},t — +  Ui,t (6.9)

118



model is of great importance to the overall accuracy of the estimate. 
DeGaetano et al. (1995) start by looking for any weather stations within 
0 .1° of latitude radius of the target station, then increase the search 
radius until at least three stations are found or the radius exceeds 1°.

methods where stations are selected based on political boundaries.

Regression-based M ethods: Least Absolute Deviations

With regression-based methods, missing observations are estimated by 
fitting a regression model which uses the temperatures at neighbouring 
stations as predictors. Kemp et al. (1983) and Eischeid et al (1995) 
consider a number of more robust regression criteria in addition to or
dinary least squares and conclude that least absolute deviation (LAD) 
regression produces the best results. LAD regression (also known as LI 
regression) is a robust version of ordinary least squares and consists of 
choosing the parameter estimates which minimize the sum of the ab
solute deviations (rather than the squared deviations) of y from the 
predicted values. The model equation is

where /3 is a (p — 1) x 1 vector of parameters. The errors ry are assumed 
to be independent and have zero mean and constant variance. The 
parameters (5 are estimated according to the LAD criterion:

They demonstrate that this is a significantly better approach than older

yi,t = Vt\iP +  Vt, £ =  1, . . . ,  n (6 .10)

n
(3 = argmin L  s -

P  S = 1

(6 .11)

S^t

The resulting estimate for y^t is then

Vi,t = Vt\iP (6.12)
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The LAD method is implemented using the algorithms of Barrodale & 
Roberts (1973). The spatial structure of the series can change drastically 
over the course of the year. For example, depending on the direction 
of warm/cold fronts, a particular neighbouring station may be the best 
predictor for the target station in December but not in July. To account 
for this, 12 different sets of regression coefficients (3 were calculated — 
one for each month.

6.2 .2  T h e H arm onic M odel 

Harmonic Component

Since the temperature series exhibit strong periodic behaviour, it is rea
sonable to model the long-term cycles with a trigonometric component. 
We first subtract the average temperature, to make the mean of the 
series equal to zero, then consider the simple trigonometric model:

Periodograms of daily temperature series have a very strong peak at 
a frequency of u  = 2ix/T 0.0172, which is an indication of cyclical
behaviour in the data (Bloomfield, 1976). In this case, the highest peak 
corresponds to a period of T  «  365.2422 observations — the number of 
days in the mean tropical year, as expected (Figure A.l). We will now 
proceed to show how the model parameters can be estimated using the 
equivalent form

The coefficients A  and B  can be estimated by minimizing the sum of 
squares:

u t — Vt  +  Ct

fit = R  cos(u)t +  (j>) , t = 0 , . . . ,  N  — 1 (6.13)

fit = A  cos u t  +  B  sin u t (6.14)
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N - 1

S(A, B ) =  (ut — Acoscut — Bsinujty
t=o

The partial derivatives with respect to the two unknowns are

dS N - 1

= —2 cos ut(ut — A cos cut — B  sin cut)
t=o

iV - l

——- = —2 V  sin cut( ut — Acoscut — B  sin cut) 
oB  't=o

Setting these equal to zero produces the solutions:

a = a
\=J ■ 2 \y ut cos cut j i y , sin u t  I 
*=o J \ t =0 J

\
— I y  Ut sin cut I I y  cos cut sin cut

t=0 t=0

b  =  a

. \ f N~ l 2 '
I y  Ut sin cut I I y ^  cos cut 

A t = o  /  \ < = o  >
N - 1 \  /AT-1

— I Ut cos cut I J cos cut sin cut
t=0 t=0

where

fN - 1 'TV—1 7V -1

A =  I sin2 cut J I cos2 cut I — I cos cut sin cut
t=o t=0 t=0

To evaluate the trigonometric terms in A, consider

(6.15)

(6.16)

(6.17)
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N - 1

^  (cos(a;£) +  zsin(u;£))
t = o

N - l

= exp(za;t)
t=0
exp(ziVa;) — 1

= exp

exp(zu;) — 1
i(N  — l)u ;\ exp(iNuj/2) — exp(—iNcj/2)

( N —1)uj\  . . { (N — l)u
cos | -----    ) +  z sin

exp{iuj/2) — exp(—zu;/2)
2z sin(iVa;/2) 
2zsin(a;/2) (6.18)

where i = -v/(—1). Comparing the real and imaginary parts yields

^  cos (cut) -- N  cos Djsr(u>)

sin(a;i) =  AT sin D jv(w) (6.19)
t=0 '  '

where

Dn (cu) =
sin(Nu>/2)
iVsin(a;/2)

(6 .20)

Now the terms can be computed:
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N - 1 j  AT—1

^  cos2 cut — — [cos(2u;£) +  1]
*=0 t—0

= — [1 +  Dn (2uj) cos(iV — l)u;]

y v _ 1  7 V - 1

t=0  t=0

=  — D n (2u>) sm(N — l)u; 
z

N - 1 . JV—1
X  ̂ . 9  J- \  ^y  sin2 cut = -  [1 — cos(2u;£)]

Zt=0 t=0

= — [1 — D n (2cu) cos(iV — l)u;] (6.21)
z

If the frequency a; is known, D n (cu) can be evaluated exactly. In the 
general case, since |7V\Dtv(^)| < 1/  sin(u;/2), the terms involving Djy are 
all small compared to N /2 , provided that N  is large and cu is not too 
close to zero. We can thus omit these terms to obtain a simpler set of 
equations (Bloomfield, 1976):

M ultiple Periodicities

Constructing more complex periodic models is straightforward if the 
simple model is expanded to:

N - 1

N - 1

(6 .22)
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ut  =  fJ>t +  Ct 
h

fit = Rj cos(ujjt +  4>j) , t = 0 , . . . ,  N  — 1 (6.23)
j =i

for h frequencies. As in the simple trigonometric case, this can be written 
as:

h
fit =  (Aj cosujjt +  Bj sinujjt) (6.24)

3=i

There is a similar set of approximations that can be used in this case — 
consider the sum of squares:

N - l  I h

^  ( A j  cosuijt +  B j  sinujjt) > (6.25)
t=o I 1

This yields the following partial derivatives:

dS
dAj

N- 1 /  h \
= —2 costUjt I Ut — (At cos LJit +  Bi sin a;*t) I

t=0 \  z=l /

*  1
- =  —2 sincjjt J ttt — (Aj cosuJit +  Bi sinu^t) I (6.26)

d B ?̂ <=0 \  i=l

for j  =  1 ,2 ,. . . ,  h. Terms of the form ^  cos2 ujjt, ^2 cos ujjt sinujjt and 
^}sin2a)jt can be computed as before. Consider the ‘cross’ terms, i.e. 
those involving summations of trigonometric functions of two different 
frequencies . They can be computed using standard trigonometric for
mulae and the previous results:
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N - 1

y ]  cos LJit cos o;jt
t=0

AT-1
=  ^ (cosQijt +  c o s Q ^ t )

t=0

cos | D N (Qij)  + cos f -------J  (u) ) D N (Q^j))

(6.27)

JV-1

y  sinu^tsinu^t 
t=o

x iV - l

= -  (cos — cos^ij^)

cos , (iV ZJN(fi(y)) -  cos ( (JV 21)fiij)  iJjvCfii.Ij)

(6.28)

JV-1

y  cos cJit sin ujjt
t=o

AT—1

=  i  ^  ( s i n ^ t  -  sin Q ^ t )
t=o

(iV - 1 ) ^ A  „  N . /r(iV- 1)n (y) 1 n  /r» \sm (    - I D N ( S l i j )  -  sin ( ---------— ^  J D N ( Q ^ j ))

(6.29)

where Qij — uji+ ujj, = u>i — ujj and i /  j .  These terms all involve
Dn  hence, under similar assumptions as before, they are small compared 
with N/2  and can be ignored. Thus, the partial derivatives are reduced 
to
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OS N 1
=  — 2 cosu>jt(ut — Aj cosu>jt — Bj sinujjt)dA', —

3 £=0

a s  jV_1
- =  —2 sin ujjt{ut — Aj cos ujjt — Bj sinedjt) (6.30)dB«3 t—o

which yield the approximate solutions:

2 jV_1 
Aj = J f ^ 2  UtCOSUJj t  

t=o

2 jV_1
= ut sinujjt (6.31)

t=o

In this model, u ji =  0.0172 is the fundamental frequency, u >2 = 2uq 
the first harmonic, u>3 = 3a;i the second harmonic, etc. depending on 
the number of harmonics included in the model, h, which is chosen 
arbitrarily. In practice, a total of two or three frequencies are required 
in order to remove the seasonality from the monthly means (Figure A.2).

The resulting model is thus

Vi,t — OLi +  fl iyt +  Ci,t

h
m,t = ^>2 R ij  cosfaijt + <t>i,j) , t = 1 , . . . ,  n (6.32)

3=i

where the constant term ai is the mean of the series {1 }̂*.
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L inear T rend

In addition to the trigonometric component, it is sensible to include a 
linear trend in order to model possible long-term shifts in the underlying 
mean. The resulting model, assuming there is no interaction between 
the trend and harmonic components, can be written as:

h

Vi,t = (*i + fiit + ^ 2  R i j  sin(wiji -  +  Ci,t (6.33)
j = 1

for t = 1 where Qj is a process with zero mean and variance a f t.
Again, the model can be fitted using the equivalent form:

h

yi,t = oti + /3it + ' ^ / {Cij cos(u>itjt) +  dij  sin(u>ijt)} + Qjt (6.34)
3= 1

for t = 1 , . . . ,  n. Parameters a*, Pi, c^i , . . . ,  and d^ \ , . . . ,  d^h (a total 
of I = 2h +  2 parameters) need to be estimated. The formulae in the 
previous section cannot be applied, because of the introduction of the 
slope term, so we need to use least squares regression. By defining the 
I x 1 parameter vector 7  ̂ =  (c^, Pi, c^i, d^ \ , . . . ,  c ^ ,  d^h)', the model 
equation can be written in matrix notation as:

{y } i =  A'7i +  C< (6.35)

where X  is the n x I matrix:



Thus, the parameter estimates are given by 7  ̂ =  (X '  X ) ~ l X '  {Y}i.  
Referring back to equation (6.34), the original parameters . . . ,  R4 ^  
and 0^1, . . . ,  can now be estimated using the identities

t >i  _  -i , j l
i,j ' i,j

tan = (6.37)
di,j

for j  = 1 , . . . ,  h. We obtain a unique estimate for 0 jj by introducing 
the condition 4>i,j € [0 , 7r).

Trigonometric M odel w ith Interactions

It is also possible to allow for interaction between the trend and seasonal 
components. A suitable formulation of the model is

h h
Vi,t =  a i  +  (3it +  ^ 2  a i,j s i n b i j t s mf a j t  -  0 ^ )  +  Q, t  

j = 1 j = 1

(6.38)

for t = l , . .. ,n. In this model, the dependent variable cannot be written 
as a matrix product of the independent variables and the parameters, 
so, unlike in the previous case, the parameters cannot be estimated with 
least squares regression. However, we can sidestep this issue by replacing 
the phase parameters 0  ̂1, . . . ,  0^  with their estimates 0^1, . . . ,  0^  from 
the previous model and then treating them as constants. The matrix 
form of the regression equation is now

{Y } ,  =  x W i  +  Ci (6.39)

where 7 * =  (a*, $ ,  a ^ i , . . . ,  a^h, bit 1, . . . ,  b^h)', a Z x 1 vector, and X*  is 
the n x I matrix
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K

^ 1 1  s in (^  -  4>iti) 
1 2 sin(Y-2 —

sin (^  -  fcth) 
sin( ^ 2  -  4>ith)

\y 1 n s i n f ^ n  -  ^ i )  ••• s i n ^ n  -2i r ,

s in (^  -  1)
2 s in (^  -  0U )

n s i n ( ^  -  0^1) ••• n s i n ( ^ - 0i>fc) )

s in (^  -  < ^ )  ^ 
2 s in (^  -  4>ith)

2ir

(6.40)

The parameter estimates are given by 7 * =  [ ( X ^ 'X ^  1(X*)'{"K}i, 
which yields the estimated values {V}^ =  and the
residuals C* = { Y} i  -  {Y}*.

Deseasonalising the Variance

The residuals Q t still exhibit strong seasonal behaviour in the second 
moment, since winter temperatures usually have higher variance than 
summer temperatures. This can be deduced from the fact that tempera
ture series tend to have peaks in the periodogram of (Qt)2 (Figure A.3). 
Thus, it is necessary to fit another harmonic model, this time to the 
variance terms a f t . Let the model be

fh(j
a i,t =  ®cTi +  ^ 2  { c <7i,i c o s ( w i j * )  +  d <Ti,j s i n ^ z j * ) }  + v% , t ,  t = l , . . . , n

3 = 1

(6.41)

Since the Q t have zero mean and variance of t , this model can be fitted 
to the squares of the residuals (Q t)2. The parameters are estimated 
in a similar way to model (6.34) and, once estimates a f t are obtained, 
the Q t are deseasonalised by dividing them by their estimated standard 
deviation. Denote the residuals from this model as z^t, where
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Once again, only a small number of frequencies are required, as can be 
deduced from the periodogram of z^t for different values of ha (Fig
ure A.4).

The Proposed M ethod — Harmonic Departures

After fitting both parts of the harmonic model to the data, temperature 
estimates can be obtained in a similar way to the departure method. 
We introduce the harmonic departure z^t of observation y^t\ this is the 
residual from the full trigonometric model at time t , location i. The 
harmonic departure for the station with missing data is then estimated
as

j =1 
j#*

(6.43)

The estimate of the missing data y^t is thus

(6.44)

where

h h
Pi,t — dtj T Pit T ^   ̂Q'hj sin(co,2)j t  0z,j) T ^   ̂bi^jt sin(uj^t

3=1

(6.45)

In direct correspondence to the departures method, ji^t and are the



harmonic model estimates for the mean and standard deviation on day 
t at location i.

6 .2 .3  A:-Nearest N eigh b ou r M eth od s  

Introduction

A different approach to estimating daily temperatures is through k- 
Nearest Neighbour (NN) methods. As a nonparametric method, NN 
has an important advantage over Temperature Departures or LAD re
gression in that it relies on a far less rigid set of assumptions. In all 
of these methods, filling in the missing data in temperature records is 
essentially treated as a problem in function approximation, that is, we 
assume there exists a function /  such that

and estimate this function.

LAD assumes that is linear in its inputs (or is well-approximated
by such a function), while the Departures methods places a similar con
dition on the deseasonalised inputs and response. fc-Nearest Neighbours 
only assumes that is well-approximated by a locally constant
function.

Basic /c-Nearest Neighbours

In the simplest form of fc-NN, we define days Vt as vectors of the form 
v t =  y t\i and use a distance metric to find the k most similar days to 
the one of interest. The set of these days is the neighbourhood Nk(vt) 
of day Vt, its set of nearest neighbours:

(6.46)

Nk(vt) = : d{vu v s) < D (vt){k)} (6.47)
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where d (v t,v s) is the distance between Vt and v s. The most commonly 
used metric is Euclidean distance:

d(vu v s) =

(  \ 1/2v
2yi (yj,t yj,s) (6.48)

though, there are situations where other measures, e.g. max distance, 
Mahalanobis distance or Manhattan distance, might be more suitable.

D (vt) is the set of distances between Vt and all other days in the dataset:

D (vt) = {d(vt , v s), s = 1, . . . ,  n , s ^ t }  (6.49)

and D(vi)(k) is the kth smallest distance in D (yt). The observation yij 
can then be estimated as the average of the yî s corresponding to this 
neighbourhood:

yi,i = \  ^ 2  yi>s (6-50)
s : Vs E Nk ( Vt)

Computational Considerations

Using Euclidean distance, the problem of obtaining the neighbourhood 
of Vt is equivalent to the problem of, given a set of points in 
space, finding the k nearest ones to a particular point; this is a standard 
problem in analytic geometry and is of major importance to several dif
ferent applications, such as data compression, pattern recognition (e.g. 
handwriting classification), data mining and machine learning.

The most straightforward approach is to calculate and sort all the dis
tances in D (vt). This can be very time-consuming and tends to make 
the method very slow and hence unsuitable for large datasets. There 
are a number of different ways for dealing with this problem, depending
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on the size of p — 1. If the number of dimensions is not too large (gen
erally speaking, smaller than log n) there are methods for obtaining the 
neighbourhood which can drastically reduce the number of operations 
and hence the time required (Edelsbrunner, 1987).

In higher dimensions, the current solutions are far less satisfactory due 
to the “curse of dimensionality”. One of the more successful recent ap
proaches (Kleinberg, 1997) makes use of a simple geometric fact: if we 
project points onto a line then, generally speaking, points with projec
tions that are close to each other are likelier to be near in 3£p-1-space 
than points whose projections are far. Because of this, it is possible to 
reduce the search time by projecting the points onto a series of random 
lines through the origin and giving priority in the search to points whose 
projections are near the projection of the target point.

£>Approximate Nearest Neighbours

It is also possible to simplify the problem by relaxing the condition 
on points entering the neighbourhood of v t . Because of the similarity 
between many days in the dataset, replacing, say, the 2 nd most similar 
day with the 1 0 th would not seriously affect the estimate. Of course, this 
is only the case in relatively low dimensions; as the number of predictors 
increases, the training sample populates the input space sparsely, so the 
nearest neighbours are not necessarily very near at all.

A well-established method is to look for e-Approximate Nearest Neigh
bours (e-ANN) of the input. We say that v s is an e-ANN of Vt if 

d{vt,vs) < (1 -\-e)D(vt)(k)- Indyk & Motwani (1999) propose an e-ANN 
algorithm, also based on random projections, which avoids the common 
problem of exponential dependence on p — 1.

The Seasonal W indow M ethod

We introduce a different approach to simplifying the search by exploiting 
the structure of temperature series. We reduce the number of distances 
to be sorted by only looking for neighbours among days that are likely 
to be similar to t — summer days tend to be similar to summer days, 
and so on. This idea is the basis of the Seasonal Window.
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To use this method, the window half-width w must first be specified. 
The potential neighbours of vt are the observations which are within w 
days o iv[t+cTj , where T  is the period, c=  . . . , —1,0,1, —  For example, 
if w = 10 and day t falls on June 17th, we would look at June 7th to 
27th for each year. The method then proceeds the same way as simple 
fc-NN.

The Threshold M ethod

We also propose another approach to the problem, which is to simplify 
the search by allowing the size of the neighbourhood to vary. We term 
this the Threshold method. To begin with, we need to specify acceptable 
lower and upper bounds for the number of points in the neighbourhood 
of Vt. Denote these as ki and ku respectively. Then, for each Vt, all the 
distances are calculated and the points v s with distance from v t smaller 
than some given threshold rt (d (vt,vs) < rt) are included in the test 
neighbourhood of Vt. Let the size of this neighbourhood be k'. If k' < ki 
we need to raise the threshold rt by a small amount; if k' > ku, we need 
to lower it. If k' E [ki, ku\, then the threshold is deemed acceptable and 
the k'-NN estimate is calculated. We then set rt+1 =  rt and proceed the 
same way for Vt+i- The first threshold is set arbitrarily.

The main computational advantage of this method is that, because of 
the similarity of consecutive daily temperatures, if ki and ku are far 
enough apart, then the threshold will not need to be adjusted very often 
— most of the time, an acceptable value for rt will also be an acceptable 
value for rt+1- This tends to make up for the cost of calculating all 
the distances. Clearly, the larger the difference between ki and ku the 
faster this process will be. Another advantage is that we are likely to 
pick larger neighbourhoods for points with many close neighbours and 
smaller ones for points with few close neighbours, which is a more natural 
way of dealing with the bias-variance trade-off.
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6.3 M odelling Daily Temperature Series

6.3 .1  M otivation

In the ad hoc methods described so far, we make no attempt to model 
daily temperatures directly, apart from accounting for fixed-cycle peri
odic changes in the daily mean and variance. We will now approach the 
problem of missing-temperature estimation in a different way. We will 
first model the deseasonalised daily temperatures {zij}  directly.

In daily temperature series, the sample autocorrelations tend to be sig
nificantly different from 0 even for very large lags (Figure A.5), which 
means that these series can not be adequately modelled with a small 
number of ARMA parameters. For this reason, we choose to apply a 
long-memory model to the series.

We demonstrate that it is possible to filter the deseasonalised series in 
a way that eliminates the long-memory behaviour, but preserves the 
short-term autocorrelation structure. Subsequently, we will approach 
the resulting series using the various autoregressive models described 
in the technical introduction. These models can then be cast in state- 
space form, which enables us to make use of the UR representation 
(Chapter 4), as well as the filtering, smoothing and interpolation results 
(Chapter 3) to improve the accuracy of the estimates.

6.3 .2  T h e A R F IM A  M odel

For the series {z^t}, the autoregressive fractionally integrated moving 
average (ARFIMA) model is defined as:

$(J3)(1 -  B )d(zijt -  Vi,t) =  9 (B )iitt , t =  1, . . . ,  n (6.51)

where
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$ (5 )  =  1 -  fa B  -  . . .  -  4>pBp (6.52)

is the autoregressive polynomial,

&{B) = \ + 6 iB  + . . .  + QqB q (6.53)

is the moving average polynomial, is the mean of z^t, B  is the back
ward shift operator, p, q are non-negative integers, and the errors are a 
white noise process {{n,t} ~  WN(0, of)). We require that the ARMA 
part of the model is stationary and invertible, which is equivalent to 
requiring that the roots of $(x) =  0 and 0 (x) =  0 lie outside the unit 
circle. We assume that the polynomials <h(:r) and O(x) have no com
mon factors — if they do, a model with identical properties can be 
constructed by reducing both p and q by one.

The model equation (6.51) is identical to that of an ARIMA(p, d, q) 
model except that in the ARFIMA model we allow the differencing pa
rameter d to take any real value. The fractional difference operator 
(1 — B )d is defined by the binomial expansion

P - ^  =  1 +  E r t . y + /  <6-54)

where T(r) is the gamma function, T(r) =  (r — 1)! if r is a positive 
integer. Using the property T(r) = (r — l)T(r — 1), the expansion can 
be written as:
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„  m l , , ^ ( k - d - l ) ( k - d - 2 ) . . . ( k - d - k ) n - d )  (1 - B )  = 1 + 2 ,----------- ----------------
k=1 
oo

= 1+E
fc=l

r  (~d)k!

( k - d -  l )(k -  d -  2) . . .  (1 -  d)(-d ) 
k\

B

B

= 1 - d B -  \ d{  1 -  d)B2 -  i d{l d){2 -  d)B3 -  . . .  
z o

(6.55)

One of the key properties of time series that display long-memory be
haviour is the slow decay of the correlations. The slow decay of the 
coefficients in expansion (6.55) allows ARFIMA to model long mem
ory processes such as daily temperature series while only using a small 
number of parameters.

6 .3 .3  E stim ation  o f  d - A ggregated  V ariance

Hosking (1981) proves that the autocorrelation function p{r) of an 
ARFIMA(p,d,q)  process decreases hyperbolically if d € (0,1), that 
is,

p { r )  «  C t 2d—1 as r oo (6.56)

where C is a constant. This is considerably slower than the standard 
ARMA case, where the correlations decay exponentially after the largest 
lag of the MA component. Beran (1989) shows that, if the correlations 
of a stationary process decay like r 2 H ~ 2 (where H  = d +   ̂ G (0,1) 
is known as the Hurst parameter), then the variance of an n-member 
sample mean will decay like n2H~2, rather than n -1 . The ARFIMA 
process is stationary for d < \  so, given n consecutive observations 

Zi,l, z%,2, • • •, zi>n, we have
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Var Z j ^  ~  Cn2d 1 as n —> oo (6.57)

This result can be used to estimate d in long data series. The algorithm 
proposed by Beran (1994) consists of the following steps:

1. Divide the series into k = n /m  blocks of size m

2. Compute z ^ m ) ,  the m-member mean of each block

 ̂ k m

* i  , k ( m )  =  ~  (6 -58)
t = ( k — l )m+l

3. Estimate s2(m), the variance of the block mean (Z{. is the overall 
mean)

n / m

*2 =  — 7 ^ 2  ( * i M m )  -  Z i . ) 2  (6.59)n /m  — 1 f—'

4. Repeat for several values of m  and then regress log s2(m) on logm 
— the slope of the least-squares line will yield an estimate of 2d — 1, 
and hence an estimate of d.

If the series does not display long-memory behaviour, the slope of the 
log-log line will be approximately equal to —1 (corresponding to d «  0). 
This procedure is known as the aggregated variance (AV) method (Fig
ure A.6). If the data are relatively homogeneous (as we would expect for 
temperature data), the AV estimate of d tends to be close to the max
imum likelihood (ML) estimate. The advantage is that the AV method 
involves a much smaller number of computations, which makes it signif
icantly faster.

In practice, the choice of upper and lower bounds for m  is crucial. If 
the value of m  is low, then the blocks used to estimate the sample mean 
variance are very small, which can introduce bias due to short range
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effects. On the other hand, if the value of m  is very large, then the 
small number of blocks ( n / m )  will make the estimate of s2(m) unstable 
(Park et a l , 2004).

6.3 .4  D ifferenced V ariance

Another disadvantage of the AV method, as well as other heuristic esti
mators, is that it will occasionally produce a positive estimate for d even 
in the absence of long memory (Bhattacharya et al, 1983). Series that 
contain slowly decaying trends or shifts in the mean are most susceptible 
to this problem.

An improved method for estimating d was proposed by Teverovsky and 
Taqqu (1997). It involves fitting a straight line to a log-log plot of 
the first-order differences of s 2( m j )  versus m j , where m i , m 2, . . .  are 
logarithmically spaced.

For any smooth function f (x)  in a small interval (x\ ,X2 ), we have

df ( x ) ~  f ( x 2) “  f ( x  1)-------------- rs«/ ’

d x  x = x x X2 -  X I

&  f (X2 ) ~ f (x i )  «  (X2 - X 1) (6.60)

We now apply (6.60) to the function s2(m) on the interval (mj,mj+i) 
and take logarithms on both sides:

+  log(mj+ i -  mj)

(6.61)

We know that s2(m) «  C m 2d 1 for some constant C , so:
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Since the points are logarithmically spaced, the ratio between consecu
tive points is equal to some constant C \ .  Thus, the second term on the 
RHS of (6.61) yields:

log(raj+i — rrij) = log (Ci raj — rrij)

= log{raj(Ci -  1)}

= log rrij + log C 2 (6.63)

where C 2 is also a constant. Hence

log (s2(raj+1) — s 2(rrij))  «  log {(2d — 1 ) C }  +  (2d — 2) log raj

+ log 77lj +  log C2

=>■ log (s2(raj+i) — s2(raj)) «  (2d — 1) log raj +  C3 (6.64)

for some constant C3. Thus, a log-log plot of the first-order differences 
s2(raj+i) — s 2(rrij) versus rrij will also produce a straight line with slope 
2d — 1. This is known as the differenced variance (DV) method. Dif
ferencing the series increases scatter (Montanari et al., 1997) so it is 
necessary to fit the line using a method more robust than least squares, 
such as LAD. The points corresponding to a negative difference of vari
ances must be ignored, as they have no logarithm.



6.3.5 Maximum-Likelihood M ethods

The methods used for estimating d are heuristic; they are are straight
forward to apply and intuitive, since they take advantage of the key 
properties of long-memory series. They have the additional advantage of 
not requiring us to place distributional assumptions on the error terms. 
Finally, they allow us to estimate d independently of the other model 
parameters. However, it is far from easy to establish the theoretical 
properties of the resulting estimators or use them to construct confi
dence intervals for d.

Exact maximum-likelihood estimation (EML) involves estimating d jointly 
with the AR and MA parameters. If we assume that the errors are Gaus

sian, the p.d.f. of Zi  =  (z^i, Zit2 , • • •, 2»,n) is

f ( Z ,  S ) =  (27T)-"/2|S |1''2exp ( - - Z ' S ^ z )  (6.65)

where S  is the n x n covariance matrix, Zij is stationary, so

S  =

(  7(0)

7(1)

7(1)
7(2)

\  l ( n ~  1) 7 (n ~  2)

7 (n — 1) ^ 
7 (n -  1)

7(0) )

(6 .66)

The log-likelihood is

((<!>,0,d) = - |lo g (2 * r) -  i  log |ST | -  l- Z 'S ~ l Z  (6.67)

where </> =  ((f)i , . . . ,  4>p) and 6  =  (0i , . . . ,  0q). The matrix S  is a func
tion of the autoregressive, moving average and fractional differencing 
parameters. The core of the EML approach is the computation of S  as 
a function of these parameters (Doornik & Ooms, 2 0 0 4 ) .  EML is often 
prohibitively expensive from a computational viewpoint, but there are a
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number of approximate maximum-likelihood methods that can be used 
instead.

6 .3 .6  R em ovin g  Long M em ory

Because the deseasonalised series {zi,t} has zero mean, the ARFIMA 
model equation can be written in the form

where the filtered series {w^t] is stationary. Fitting an ARFIMA (p, d , q) 
model to the series {z^t} is equivalent to fitting an ARMA(p,q) model 
to the filtered series, {w^t} can be obtained using the equation

This approach is successful in removing the long-term dependence from 
temperature series, in the sense that there is no evidence of long memory 
in the filtered series. However, the first two sample partial autocorrela
tions of tend to be high, because of the short-term structure in
temperature series (Figure A.7). This needs to be modelled separately, 
with the inclusion of an autoregressive component.

We consider three different autoregressive models: a univariate AR(p) 
model for each temperature series {^.t}  (note that this is equivalent 
to fitting a ARFIMA(p, d, 0) model to {zi.t}); a system of seemingly- 
unrelated autoregressions (SUAR) for the series {uq,t},. . . ,  {wp,t}', and 
a full vector autoregression (VAR) for the multivariate series {wt} =

(1 -  B )dZi,t = wiit , t = 1, . . . ,  n (6 .68)

wiit =  (1 -  B )dZi,t
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{(wi,t, • • •, wPjt)}- These models allow for different degrees of interde
pendence between temperature series at neighbouring locations.

6 .3 .7  M odel-b ased  E stim ation  

General Approach

The autoregressive models can be expressed in state space form, so in 
theory we could apply the Kalman filter smoother recursions to obtain 
an interpolated estimate of observation conditional on the whole 
sample. Let this be Wij- Note that this is the interpolated estimate 
obtained by removing a single component of the vector w t , thus it is 
essential to use the UR of the series.

The long-memory structure can then be reconstructed using the equation

Let Zi,t be the estimate of the temperature departure obtained from 
equation (6.70) if we substitute Wij for Wi,t- The missing temperature 
yijt will thus be estimated from the estimated departure as

Wi,t =  (1 -  B )dZi,t

Vi,t — T (6.71)

in direct analogy to the harmonic departures method.
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The Algorithm

We soon encounter a practical problem in the application of this method. 
If observation yij is missing, then the departure z^t will be unknown. 

In the filtered series, the terms w^t, Wi,t+i> • • • ? Wi,n depend on z^t hence 
they will also be unknown. This makes it impossible to produce the 
filtered series and hence apply the smoothing and interpolation results 
directly.

To overcome this problem, we propose the following algorithm:

1. Estimate the long-memory parameter d using the DV method, 
ignoring the blocks which include the missing value z^t-

2. Filter the deseasonalised series up to time t — 1 to remove the 
long-memory structure and obtain terms i , . . . ,  W ij-i-

3. Fit an AR(2) model to i , . . .  , Wj,£-i , estimating the autoregres
sive parameters using least-squares regression, and express the 
model in state-space form.

4. Compute the initial estimate . . .  ,W ij-i) using 
the Kalman filter recursions.

5. Estimate the remaining terms of the filtered series w^t+i, . •., WijU 
using expression (6.69), replacing w^t with its estimate . Let 
the new series be iu^i,. . . ,  w ^t-u  , . . .  w ^ .

6. Update the estimates of the autoregressive parameters using the 
new series, and apply the UR KFS recursions to produce the inter

polated estimate d^f+1) =  L(w^t \w^i, . . . ,  w^t- 1, « ^ +1, • • • «>»>)•

7. Update the autoregressive parameters by fitting an AR(2) model 
to {witi , . . . ,  Witt-l,W § +1),W $+v . . .  w fy .

Steps 5-7 need to be repeated until the estimate converges. In prac
tice, it was found that a single iteration of the algorithm is sufficient: 
subsequent estimates , . . .  do not differ greatly from the first
interpolated estimate .
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SUAR and VAR models

If the chosen autoregressive model is multivariate, we need to make a 
few slight modifications to the algorithm. We will use the univariate 
representation of the multivariate state space model, as described in 
Chapter 4. The following changes are required:

• In step 4, we can compute the contemporaneous terms of the fil

tered series w t\j = (wi,t,. . . ,  Wz-i,t, Wi+\,t, • • • > Wi,tY, thus we can 
replace the initial estimate of w^t with the partially interpolated 
estimate (Chapter 3)

w f^  =  E (w ij\w i, . . . ,  w t- i , w t\i). (6.72)

• In step 5, the terms . . . ,  w n\i do not depend on w^t so they 
can be computed directly

• In step 6 , the updated value is the smoothed estimate

= E(«7i,t|tl7i, . . . ,  w t- i ,w t\i , . . . ,  Wn\i, ih-J+i, . . . w fy

(6.73)

which is produced by the univariate representation of the Kalman 
filter smoother.

The UR Kalman filter converges periodically to a steady state very 
quickly (Chapter 5), which drastically reduces the volume of data to 
be stored during the forward pass. We only require the output matrices 
Pj,s, K j )S, Fj,s until periodic convergence is achieved.

6.4 R esults and Conclusions

6.4.1 S ta tion  selection

A standard approach for assessing the accuracy of the different methods 
is to take a serially complete temperature series, treat each observation 
as missing and estimate it from the rest of the data. This estimate can 
then be compared to the true temperature on that day.
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The data used in this application are daily maximum temperatures from 
January 1950 to December 2001 at locations ELP (El Paso, TX) and 
LBB (Lubbock, TX). These locations are displayed in Figure A.8 .

The climate in Texas varies widely, from arid to wet. Extreme weather 
phenomena such as tornadoes, hurricanes and thunderstorms can cause 
violent sudden changes in temperature, particularly in the northernmost 
regions. Additionally, Texas produces more greenhouse gases than any 
other U.S. state, and is affected by climate change as a result.

The choice of locations is deliberate and was designed to illustrate how 
the models behave under significantly different circumstances. LBB is 
closer to the northwestern part of Texas, where the station density is 
high the nearest weather station, AMA (Amarillo, TX), is around 100 
miles away and the two temperature series are very highly correlated 
(r =  0.96). On the other hand, ELP is the westernmost station in 
the record and is significantly further from its neighbours . The weather 
stations included in the model for LBB, chosen according to the selection 
criteria recommended by DeGaetano et al (1995), were ABI (Abilene, 
TX), AMA (Amarillo, TX) and MAF (Midland, TX). Similarly, the 
neighbours of ELP were taken to be AMA, LBB and MAF.

Monthly summary statistics for the two main series can be seen in Table 
B.l. The series AMA is also included in this table, to illustrate the 
difference in temperature between the Northern Plains region of the 
state, where AMA is located, and the more arid western region (ELP). 
Series ELP displays considerable lower variability within each month 
compared to the other two series.

6.4 .2  A d -h oc M eth od s  

Comparison o f Existing M ethods

We begin by comparing the performance of the Departures and LAD 
methods. In the following tables, ‘mean’ and ‘med’ refer to the the mean 
and median of the errors y^t — y^t; MAE and mdAE are, respectively, the 
mean and the median of the absolute errors |y^t — Vi,t\\ sd and sdA are 
the estimated standard deviations of the errors and the absolute errors,
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respectively, while MSE is the mean square error ^ Xlt(?/*,£ — Vi,t)2’ As 
a baseline, we also provide summary statistics for the following simple 
models: Mean the daily mean) and 2pMA =  {yi,t-1 +
Vi,t+1) /2 , a 2-point moving average)

As can be seen in Tables B.2 and B.3, the LAD approach is slightly 
more biased than the departure approach in terms of the mean error, 
but performs better in almost every other category (errors have units 
of degrees Fahrenheit). These results confirm that the LAD method 
achieves much smaller mean and median absolute errors than the depar
ture method and also that its estimates have smaller variance. As would 
be expected, both techniques produce far more accurate results for LBB 
than for ELP, due to the proximity of its neighbouring stations. Note 
that this is not affected by the higher variance of the daily temperatures 
at LBB.

Harmonic Departures

We will now assess the accuracy of the harmonic departures method, 
denoted by ‘Harm’. Tables B.4 and B.5 demonstrate that, despite be
ing based on the same principle as De Gaetano’s departure method, 
Harmonic Departures are noticeably more accurate. In fact, for LBB 
the Harmonic Departure model produces error statistics comparable 
to those from the LAD method. This is a significant result because 
between-station methods tend to be computationally efficient compared 
with LAD, which involves calculating a set of regression coefficients, and 
hence solving a quadratic programming problem, for each month.

fc-Nearest Neighbours and Approximations

The results from the models in this section are summarised in Tables B .6 

and B.7. Two of the previous models — Harmonic Departures and LAD 
— are also included for ease of comparison. In the following table NN(fc) 
denotes the basic /c-Nearest Neighbours model; T(fcj, ku) denotes the 
Threshold method, with neighbourhood size lower bound ki and upper 
bound ku; and W (k,w)  is the Seasonal Window, with neighbourhood 
size k and window half-width w .
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All of these methods result in similar error statistics; they generally out
perform Harmonic Departures by a substantial margin and are compa
rable to LAD, the best model so far. Surprisingly, the Seasonal Window 
method occasionally does a little bit better than k-NN, the method it is 
approximating. This needs to be discussed in more detail.

Seasonal W indow Results

The Seasonal Window often results in better error statistics than simple 
fc-NN, even though it only uses a small subset of the original training 
sample to construct the estimates. This phenomenon can be explained 
through the structure of the data: say we are trying to estimate the tem
perature on yi,t, a summer day, at location ELP and the j th predictor 
variable is location AMA. If the weather at AMA happens to be unsea
sonably cold on that day, y jj could easily be closer to, say, a relatively 
warm spring day rather than other summer days. If the number of 
predictors is small, the effect of this on the overall distance metric could 
be enough to lead to v s being included in the neighbourhood of Vt.

However, it is a well-documented fact (e.g. Allen &; DeGaetano, 2001) 
that, given the temperature at AMA is extreme, it is still much likelier 
that the temperature at nearby ELP will not be extreme. Thus, the 
difference between y^t and y^s will potentially be large, resulting in a 
larger prediction error. With the Seasonal Window method, yi,s would 
automatically be excluded from the estimation process and, more often 
than not, replaced by days with temperatures closer to y^t.

6.4 .3  M od el-b ased  M eth od s

We now compare the estimates produced by the model-based autore
gressive methods. Only the autoregressive coefficients corresponding to 
the first two lags are significantly different from zero. Thus, the models 
fitted are AR(2), SUAR(2) and VAR(2). Tables B .8 and B.9 contain 
summary statistics of the residuals resulting from a single iteration of 
the algorithm.

By the classification given in 4.2.1, the AR(2) model is a within-station 
method and the estimates it produces are, unsurprisingly, substantially
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less accurate than those from the multivariate autoregressive models. 
Note that, in terms of its residuals, it is virtually indistinguishable from 
a simple 2-point moving average, which does not take into account the 
long-memory structure. We can also see that the SUAR- and VAR- 
based estimation methods are comparable to the most accurate ad-hoc 
approach, LAD.

The numerical results in this section were generated using programs 
written in Ox, an object-oriented matrix programming language with a 
comprehensive mathematical and statistical function library (Doornik, 
2002). Full details and program code can be found on the author’s thesis 
page — http://stats.lse.ac.uk/m ilt/phd
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A ppendix A

Figures

Figure A .l: Periodogram of (Lubbock, TX)
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Figure A.2: Periodogram of (Q,t) (Lubbock, TX)
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Figure A.3: Periodogram of ( Q t ) 2 (Lubbock, TX)

200000

175000

150000

125000

100000

75000

50000

25000

1.0

151



Figure A.4: Periodogram of z^t (Lubbock, TX)
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Figure A.5: ACF of the deseasonalised series (Lubbock, TX)
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Figure A.6: Aggregated Variance log-log plot (Lubbock, TX)
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Figure A .7: Partial ACF of { w i yt }  (Lubbock, TX)
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A ppendix B

Tables

Table B.l: Summary statistics (El Paso, TX and Lubbock, TX)

ELP
mean

ELP
s.d.

LBB
mean

LBB
s.d.

AMA
mean

AMA
s.d.

Jan 57.94 8.73 53.34 13.55 49.50 14.13
Feb 63.38 8.91 58.15 13.58 53.85 14.38
Mar 69.95 8.77 65.62 12.51 61.32 13.45
Apr 78.69 8.07 75.09 10.87 70.98 11.59
May 87.39 6.82 83.17 9.57 79.16 10.23
Jun 95.87 6.10 90.62 7.88 87.87 8.42
Jul 95.24 5.48 92.43 6.24 91.36 6.51
Aug 93.03 5.31 90.58 6.25 89.42 6.81
Sep 87.92 6.91 83.87 8.96 82.29 9.78
Oct 78.75 8.14 75.02 10.27 72.48 11.24
Nov 66.11 8.94 62.55 11.97 59.08 12.80
Dec 58.08 8.64 54.66 12.55 50.78 13.26

Overall 77.75 15.70 73.83 17.53 70.75 18.67

Table B.2: Results from existing estimation methods (El Paso, TX)

Model mean MAE med mdAE sd sdA MSE
Mean
2pMA
Dep
LAD

0.000
-0.001
-0.016
0.031

5.653
3.204
4.012
2.945

0.850
0.000
-0.233
0.000

4.616
2.000
3.173
2.263

7.319
4.441
5.271
3.957

4.648
3.075
3.419
2.643

53.561
19.720
27.786
15.657
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Table B.3: Results from existing estimation methods (Lubbock, TX)

Model mean MAE med mdAE sd sdA MSE
Mean
2pMA
Dep
LAD

0.000
0.000
0.015
-0.061

8.067
5.173
3.279
2.237

1.165
0.500
0.111
0.000

6.486
3.500
2.611
1.684

10.400
7.118
4.257
3.040

6.564
4.890
2.714
2.060

108.170
50.670
18.118
9.245

Table B.4: Results from Harmonic Departures methods (El Paso, TX)

Model mean MAE med mdAE sd sdA MSE
Dep

Harm
LAD

-0.016
-0.002
0.031

4.012
3.401
2.945

-0.233
-0.162
0.000

3.173
2.641
2.263

5.271
4.535
3.957

3.419
3.000
2.643

27.786
20.568
15.657

Table B.5: Results from Harmonic Departures methods (Lubbock, TX)

Model mean MAE med mdAE sd sdA MSE
Dep

Harm
LAD

0.015
0.000
-0.061

3.279
2.440
2.237

0.111
0.172
0.000

2.611
1.875
1.684

4.257
3.267
3.040

2.714
2.173
2.060

18.118
10.673
9.245

Table B.6 : Results from NN Methods (El Paso, TX)

Model mean MAE med mdAE sd sdA MSE
Harm
LAD

-0.002
0.031

3.401
2.945

-0.162
0.000

2.641
2.263

4.535
3.957

3.000
2.643

20.568
15.657

NN(10)
NN(50)

0.041
0.088

3.071
3.011

0.050
0.082

2.389
2.327

4.095
4.022

2.709
2.668

16.770
16.182

T(l,100)
T(5,200)

T(10,100)

0.031
0.069
0.071

3.153
3.027
3.029

0.000
0.050
0.075

2.412
2.333
2.348

4.240
4.047
4.044

2.835
2.688
2.680

17.981
16.386
16.359

W(10,5)
W(10,15)
W(10,30)

0.078
0.060
0.072

3.083
3.008
2.995

0.200
0.100
0.100

2.400
2.300
2.300

4.126
4.037
4.021

2.744
2.693
2.683

17.033
16.299
16.173
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Table B.7: Results from NN Methods (Lubbock, TX)

Model mean MAE med mdAE sd sdA MSE
Harm
LAD

0.000
-0.061

2.440
2.237

0.172
0.000

1.875
1.684

3.267
3.040

2.173
2.060

10.673
9.245

NN(10)
NN(50)

-0.012
-0.027

2.355
2.294

0.071
0.061

1.813
1.755

3.172
3.094

2.124
2.076

10.061
9.575

T(l,100)
T(5,200)
T(10,100)

-0.018
-0.018
-0.025

2.421
2.315
2.310

0.050
0.083
0.065

1.846
1.781
1.767

3.302
3.124
3.114

2.246
2.098
2.089

10.906
9.762
9.699

W(10,5)
W(10,15)
W(10,30)

-0.080
-0.041
-0.025

2.395
2.329
2.315

0.000
0.000
0.100

1.800
1.800
1.700

3.223
3.146
3.123

2.159
2.115
2.096

10.396
9.900
9.752

Table B.8 : Results from model-based methods (El Paso, TX)

Model mean MAE med mdAE sd sdA MSE
2pMA
Harm
LAD

-0.001
-0.002
0.031

3.204
3.401
2.945

0.000
-0.162
0.000

2.000
2.641
2.263

4.441
4.535
3.957

3.075
3.000
2.643

19.720
20.568
15.657

AR
SUAR
VAR

-0.001
0.000
0.000

3.174
2.445
2.375

0.358
0.063
0.090

2.259
1.798
1.767

4.375
3.330
3.243

3.010
2.261
2.208

19.138
11.090
10.520

Table B.9: Results from model-based methods (Lubbock, TX)

Model mean MAE med mdAE sd sdA MSE
2pMA
Harm
LAD

0.000
0.000
-0.061

5.173
2.440
2.237

0.500
0.172
0.000

3.500
1.875
1.684

7.118
3.267
3.040

4.890
2.173
2.060

50.670
10.673
9.245

AR
SUAR
VAR

0.000
-0.001
-0.001

5.154
2.034
1.998

0.469
0.033
0.049

3.717
1.462
1.438

7.017
2.832
2.785

4.761
1.971
1.940

49.239
8.020
7.757
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