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Abstract

The thesis is made up of three essays which study three related topics. The first essay 
examines the welfare effect of a non-discrimination policy, which bans using gender 
in pricing insurance in the context of motor insurance markets. It comprises two 
models. The first models comprehensive insurance markets, in which motorists decide 
whether to buy insurance that offers full coverage. The second model examines third- 
party insurance markets, in which motorists must be fully insured and agents decide 
whether to drive. The essay examines the welfare effects of the non-discrimination 
policy by examining the change of aggregate social welfare before and after the 
policy is implemented. It shows that in comprehensive insurance market typical 
adverse selection happens. Aggregate social welfare may increase or decrease. In 
third-party insurance market, advantageous selection happens. Aggregate social 
welfare may decrease after the policy implemented.

The second essay endogenizes insurance coverage and finds the optimal allocation 
which maximizes aggregate social welfare. Agents can now choose whether to drive 
and whether to buy insurance, and insurers are allowed to offer a menu of cross­
subsidizing insurance contracts in competitive insurance markets. The author finds 
pooling allocation can never maximize aggregate social welfare and the market may 
end up with too much insurance.

The third essay examines market equilibrium and market efficiency in competitive 
insurance markets when agents differ in both risk probabilities and risk preferences, 
and can choose whether to participate in risky activity and whether to buy insurance. 
With different levels of risk probabilities, risk preferences, and driving benefit, the 
market may end up with four different separating equilibria, partial-pooling 
equilibrium, or even no equilibrium. The partial-pooling equilibrium is Pareto 
efficient under certain conditions. If it is inefficient, taxing insurance breaks the 
equilibrium and separating equilibrium arises, which leads to Pareto gain.

3



Acknowledgement

Many a people have helped me kindly. Among them, I am deeply indebted to my 

supervisor, Professor David de Meza, who is the best supervisor I can ever imagine. 

He is a great thinker with so many inspiring thoughts. Every talk with him opens a 

door of thinking for me. I could never finish this research without his guidance.

I am also very grateful to Professor Diane Reyniers and Professor Jom Rothe, who 

always believe in me and encourage me. Their belief in me has encouraged me to 

overcome the difficulties I have encountered.

I would also like to thank Marta Coelho, Daniel Peppiatt, Terri Natale, Kartik 

Kumaramangalam, Keith Postler, Dominic Chai, Darline Augustine. I have been away 

from home for thousands of miles. The Managerial Economics and Strategy Group is 

like my family here. I have enjoyed a good time.

I owe great gratitude to my parents, my sisters and my wife. Their love has no 

reservation for me. My parents and sisters have spent all their saving on my study. My 

wife has left her job and family and flied thousands of miles to join me and support 

me here. I could never imagine what my life would be without them.

4



Contents

Abstract....................................................................................................................... 3
Acknowledgement...................................................................................................... 4
Chapter 1 Introduction................................................................................................ 7
Chapter 2 Gender discrimination and participation option.........................................10

2.1 Introduction..................................................................................................10
2.2 To insure or not to insure............................................................................. 14

2.2.1 Insurance decision............................................................................. 14
2.2.2 Equilibria when gender is observable................................................16
2.2.3 The equilibrium when gender is unobservable.................................. 16
2.2.4 Possibility of multiple equilibria........................................................18
2.2.5 Welfare property when gender is observable..................................... 19
2.2.6 Welfare change from implementing the policy.................................21
2.2.7 Simulation........................................................................................ 22

2.3 To drive or not to drive................................................................................26
2.3.1 Participation decision........................................................................26
2.3.2 The equilibria when gender is observable........................................ 28
2.3.3 The equilibrium when gender is unobservable..................................28
2.3.4 The possibility of multiple equilibria................................................ 29
2.3.5 Welfare property when gender is observable.....................................31
2.3.6 Welfare change from implementing the policy.................................32
2.3.7 Simulation........................................................................................ 34

2.4 Conclusion.................................................................................................. 37
Chapter 3 Optimal allocation and participation option.............................................. 39

3.1 Introduction................................................................................................. 39
3.2 Market equilibrium......................................................................................43

3.2.1 Reservation utility and participation decision....................................44
3.2.2 Separating equilibrium......................................................................46

3.3 Conditions for market equilibrium...............................................................47
3.3.1 Separating equilibrium and pooling contract.....................................47
3.3.2 Separating equilibrium and cross-subsidization................................49

3.4 Cross-subsidization taxation and the aggregate social welfare..................... 52
3.5 The high-risks opt out while the low-risks participate..................................53

3.5.1 To tax or to subsidize insurance policies...........................................55
3.5.1.1 Redistribution effect and efficiency effect..............................55
3.5.1.2 Condition on whether to tax or to subsidize the insurance 58
3.5.1.3 Numerical examples...............................................................60

3.5.2 The optimal tax level and efficient allocation....................................61
3.5.3 Pooling full insurance coverage is never efficient.............................61
3.5.4 Too much insurance..........................................................................63

3.6 Extreme case: utility from driving with full insurance is the same as 
reservation utility.............................................................................................. 65
3.7 Extreme case: the high-risks opt out while the low-risks are indifferent 65
3.8 Conclusion...................................................................................................67

Chapter 4 Partial-pooling Nash equilibrium and participation option........................68
4.1 Introduction..................................................................................................68
4.2 The model....................................................................................................69

4.2.1 Insurance demand........................................................................... 70

5



4.2.2 Participation option and reservation utility......................................71
4.3 Market equilibrium......................................................................................72

4.3.1 Full pooling allocation can never be a Nash equilibrium.................. 72
4.3.2 Separating equilibrium...................................................................... 72

4.3.2.1 Separating equilibrium -  type 1............................................. 74
4.3.2.2 Separating equilibrium -  type 2 ............................................. 75
4.3.2.3 Separating equilibrium -  type 3 ............................................. 77
4.3.2.4 Separating equilibrium -  type 4 ............................................. 78

4.3.3 Partial-pooling equilibrium............................................................... 79
4.3.4 Conditions of partial-pooling equilibrium.........................................81

4.3.4.1 Two partial-pooling contracts.................................................81
4.3.4.2 Partial-pooling equilibrium and separating equilibrium..........82
4.3.4.3 No deviation...........................................................................83

4.4 Market efficiency.........................................................................................83
4.4.1 From partial-pooling equilibrium to partial-pooling equilibrium 84
4.4.2 From partial-pooling equilibrium to separating equlibrium...............88

4.4.2.1 From partial-pooling to type 1 separating equilibrium............88
4.4.2.2 From partial-pooling to type 2 separating equilibrium............90
4.4.2.3 From partial-pooling to type 3 separating equilibrium........... 91
4.4.2.4 From partial-pooling to type 4 separating equilibrium........... 92
4.4.2.5 Conditions for efficient partial-pooling equilibrium............... 93

4.4.3 Efficient partial-pooling Nash equilibrium: an example.................... 93
4.5 Inefficient market equilibrium..................................................................... 94

4.5.1 The existence of inefficient market equilibrium................................ 94
4.5.2 Policy implication.............................................................................96

4.6 Conclusion...................................................................................................97
Chapter 5 Conclusion.................................................................................................98
Appendix..................................................................................................................100

Appendix 2.1 Welfare change with loss level..................................................100
Appendix 2.2 Welfare change with risk range 1...............................................102
Appendix 2.3 Welfare change with risk range 2............................................... 104
Appendix 2.4 Welfare change with loss level 2 ............................................... 106
Appendix 2.5 Welfare change with risk range 3............................................... 108
Appendix 2.6 Welfare change with risk range 4............................................... 110
Appendix 3.1 Aggregate social welfare increases with positive T ....................112
Appendix 3.2 Aggregate social welfare increases with negative T 1 ................118
Appendix 3.3 Aggregate social welfare increases with negative T 2 ................120
Appendix 4.1 Numerical examples of efficient partial-pooling Nash equilibrium
..........................................................................................................................125
Appendix 4.2 From partial-pooling equilibrium to type 1 separating equilibrium
 128
Appendix 4.3 From partial-pooling equilibrium to type 2 separating equilibrium
..........................................................................................................................130
Appendix 4.4 From partial-pooling equilibrium to type 3 separating equilibrium
..........................................................................................................................133
Appendix 4.5 From partial-pooling equilibrium to type 4 separating equilibrium
..........................................................................................................................135
Appendix 4.6 Further tax................................................................................. 138

References................................................................................................................141



Gender discrimination, optimal allocation and partial-pooling Nash 

equilibrium: essays on insurance markets with a participation option

Chapter 1 Introduction

Since the seminal work of Rothschild and Stiglitz (1976), there has been a 

substantial amount of research on market equilibrium and market efficiency in 

insurance markets under asymmetric information. To the author’s knowledge, none of 

these works considers participation option. Agents are assumed to engage in risky 

activities. They can mitigate risk by taking unobservable precautions and buying 

insurance against observable losses.

The present work conducts research on three related topics in insurance markets 

where agents have participation options. The first essay introduces participation 

option but contains results with contract form exogenous. It examines the welfare 

effect of a non-discrimination policy, which bans using gender in pricing insurance. 

The context is motor insurance markets where people can choose whether to drive and 

whether to buy more than the legal minimum of insurance. It comprises two models. 

The first models comprehensive insurance markets, in which motorists decide 

whether to buy insurance that offers full coverage. The second model examines third- 

party insurance markets, in which motorists must be fully insured and agents decide 

whether to drive. Agents are risk-averse and are identical except for risk probabilities 

which are private information. The distribution of risk probabilities of the two types 

of agents (men and women) differ and this is public information.

As gender is observable before the policy is implemented, the markets are 

separated with women charged a relatively lower premium. After the policy is 

introduced, the two markets merge into one market in which gender is in effect 

unobservable. The essay examines the welfare effects of the non-discrimination 

policy by examining the change of aggregate social welfare before and after the 

policy implemented.

The second essay extends the research of the first one by endogenizing insurance 

coverage. But as the only heterogeneity is in hazard rate, only separating equilibrium 

can arise. Cross-subsidies are allowed, so policy intervention may raise aggregate 

social welfare but can not yield strict Pareto gain.
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It finds the optimal allocation which maximizes aggregate social welfare. As in 

standard Rothschild-Stiglitz model, risk-averse agents are identical except for risk 

probabilities. Furthermore, agents can now choose whether to drive and whether to 

buy insurance, and insurers are allowed to offer a menu of cross-subsidizing insurance 

contracts which earns normal profit overall. In such competitive insurance markets, 

received wisdom has it there is too little insurance available in the market due to the 

asymmetric information problem and that a pooling allocation maximizes aggregate 

social welfare. The present analysis finds that with a participation option a pooling 

allocation can never maximize aggregate social welfare and the market may end up 

with too much insurance.

The third essay endogenises insurance contract form and allows two types of 

hidden information. So partial-pooling equilibrium can emerge. It shows new source 

of gain from taxation of insurance. No cross-subsidization is allowed so Pareto gain 

realizes by expelling the high-risk types.

It extends the research by assuming agents differ in two dimensions: risk 

probability and risk preference. In addition, agents have choices now on whether to 

take risk activity and on whether to buy insurance in competitive insurance markets. 

With agents differing in both risk probabilities and risk preferences, the single­

crossing property of indifference curves of agents may not hold. This gives rise to 

partial-pooling Nash equilibrium. Due to differing risk preferences, the same financial 

loss causes different changes in utilities of agents. Along with the participation option, 

this results in four different types of separating equilibrium.

The essay examines when the partial-pooling Nash equilibrium is Pareto efficient, 

and, if it is inefficient, whether taxing insurance can drive out the high-risks and lead 

to a Pareto improvement.

In more detail, the rest of the thesis is structured as follows. Chapter 2 examines the 

welfare effect of the non-discrimination policy. Section 2.1 introduces the topic and 

provides a literature review. Section 2.2 specifies the first model. It finds the market 

equilibrium before and after the non-discrimination policy, and then conducts welfare 

analysis. Section 2.3 specifies and analyzes the second model. Section 2.4 concludes.

Chapter 3 integrates the participation choice with endogenous contractual form and 

finds the optimal allocation which maximizes aggregate social welfare. Section 3.1 

introduces the topic and provides a literature review. Section 3.2 finds the market 

equilibrium in an insurance market with adverse selection and participation option.



Section 3.3 examines conditions for such an equilibrium to exist. Section 3.4 

introduces the tax-subsidy scheme into the model. Section 3.5 analyzes the tax- 

subsidy scheme and gives the most important findings of this paper. Section 3.6 and 

Section 3.7 considers two extreme contingencies: full-insurance pooling contract and 

over-insurance contract. Section 3.8 concludes.

Chapter 4 examines the market equilibrium and market efficiency in competitive 

insurance markets when agents differ in both risk probabilities and risk preferences, 

and can choose whether to participate in the risky activity and whether to buy 

insurance. Section 4.1 introduces the topic and provides a literature review. Section

4.2 specifies the model. Section 4.3 finds the partial-pooling Nash equilibrium as well 

as the four separating equilibria. It also finds the conditions of the partial-pooling 

equilibrium. Section 4.4 analyzes the efficiency of the partial-pooling equilibrium and 

demonstrates that it is Pareto efficient under certain conditions. Section 4.5 shows that 

inefficient partial-pooling equilibrium exists and taxing insurance leads to Pareto gain.

Chapter 5 concludes the three essays.
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Chapter 2 Gender discrimination and participation option

2.1 Introduction

Statistics show that female motorists on average are less risky than male motorists, 

especially for young drivers. According to Diamond Insurance, who specialises in 

covering female drivers, men are convicted of 92% of driving offences and account 

for 98% of dangerous driving convictions.1 This is reflected on insurance premium. 

Other things equal, female motorists pay less than male motorists. However, Anna 

Diamantopoulou, the then social affairs commissioner of the EC in 2003, considered 

this a form of gender discrimination and proposed a non-discrimination policy which 

bans using gender in setting premium.

The proposal met strong opposition in the UK. Insurance companies, the 

Association of British Insurers (ABI), the British government, and the Financial 

Services Authority (FSA) were all strongly against the proposal, claiming that the 

proposed directive forbade best market practice and would cause adverse selection. 

The FSA estimated that young women drivers were likely to see their premiums rise 

by between 10% and 30% if the proposal became law. The European Union 

Committee of House of Lords even estimated an up to 40% rise of young women 

drivers’ car insurance premium.3 What was even more interesting was that a survey 

shown most motorists, even male motorists who were supposed to benefit from this 

proposal, supported the market practice and were against the proposal.4

With a British-led rebellion against the proposal, the EC compromised and allowed 

the insurance industry to opt out from the directive. Insurance companies can continue 

using gender in pricing insurance as long as they can justify their methods are based 

on actuarial facts. A regular review of the issue will be held, comprising the industry, 

anti-discrimination bodies and member states, when insurers have to explain 

discriminatory pricing policies.5

But this policy deserves further research. For instance, will the market suffer from 

adverse selection problem, or even collapse as some people have predicted, if the

1 Guardian (4 January 2005), “Women keep deal on lower car insurance”.
2 Financial Times (3 November 2003), “Insurers to fight Brussels over bar on sex discrimination”.
3 Guardian (22 September 2004), “Women drivers to pay more under EU equality plans, warn peers”.
4 Observer (18 April 2004); “Men should pay higher insurance”; Financial Services Review (November 2004), 
“Equal opportunities”.
5 Financial Times (4 October 2004), “Women drivers to enjoy lower premiums”.
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policy is carried out? Furthermore, what is the policy’s impact on social welfare from 

a Utilitarian point of view?

As gender is observable prior to the policy, the markets are separated and reach two 

equilibria, one for women who are charged at a relatively lower premium, the other 

for men who are charged at a relatively higher premium. After the policy is 

implemented, the two markets merge into one market in which gender in effect is 

unobservable.

It is difficult to think that prohibiting using gender in pricing insurance would 

actually result in complete market collapse. This has not occurred in Denmark, Greece, 

Luxembourg, the Netherlands and Sweden, where unisex motor insurance has already 

been established. Actually, as the House of Lords committee noted, this “did not seem 

to create any particular problems.”6 So most likely there would be a pooling 

equilibrium in which both genders get the same level of insurance coverage at the 

same premium.

Other things equal, pooling the risks increases aggregate social welfare as it 

redistributes to the worse off. But what if motorists are allowed to opt out of insurance 

market although they still drive? Furthermore, what if motorists must be insured but 

they are allowed to quit driving? This essay attempts to answer these questions by 

constructing two related models.

The first model analyzes motorists’ decision on whether to buy full coverage 

insurance where everyone drives regardless of being insured or not. Consider, as an 

example, comprehensive insurance market where motorists decide whether to buy 

insurance which offers comprehensive coverage. In the model, we have a number of 

male and female drivers, each of whom has a risk probability uniformly distributed in 

a risk range. On average, male motorists are more risky than female motorists and the 

variance of their risk distribution is greater than the female one. The insurance market 

is perfectly competitive. Insurers offer an insurance policy of full coverage. An 

accident causes a financial loss to the motorist. Everyone is risk averse with the same 

utility function and initial wealth. There is no moral hazard. Everyone drives no 

matter insured or not. The motorist needs to decide whether to purchase full coverage 

insurance.

6 European Union Committee, House o f Lords (22 September 2004), “Sexual Equality in Access to Goods and 
Services”, 27th Report o f Session 2003-04
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The second model analyzes agents’ decision on whether to drive when motorists 

must be fully insured. Consider, as another example, third-party insurance market 

where insurance coverage is compulsory for motorists. In Italy, more than 60% of the 

insurance companies do not offer deductibles at all on third-party insurance products. 

The remaining firms offer minimal deductibles. Furthermore, the minimum indemnity 

limit has to be approximately $1 million, which covers virtually all accidents in 

practice. The setup of the second model is similar to the first one except that people 

now choose whether to become a motorist instead of choosing whether to get insured. 

Each person has a reservation utility if they choose not to drive. An accident causes a 

non-pecuniary cost in addition to a financial loss.

As Crocker and Snow (2000) have noted, “the efficiency and equity effects of risk 

classification in insurance markets have been a source of substantial debate, both 

amongst economists and in the public policy arena.” Hoy (1982) is the first attempt to 

analyze the welfare implications of imperfectly categorizing risks in the insurance 

industry under conditions of asymmetric information. Hoy considers the pure strategy 

Nash equilibrium of Rothschild and Stiglitz (1976), the anticipatory equilibrium of 

Wilson (1977), and the Miyazaki-Spence separating equilibrium suggested by 

Miyazaki (1977) and Spence (1978). He finds the welfare effect of risk classification 

is ambiguous. Only in the case where the initial equilibrium is of the Nash no-subsidy 

type is there a strict Pareto-type improvement in welfare.

In contrast to Hoy, Crocker and Snow (1986) examine the efficiency effect of risk 

classification by comparing the utilities possibilities frontier for the regime where risk 

categorization is permitted to the one in which it is not. They demonstrate that 

costless imperfect risk categorization enhances efficiency by showing that the utility 

possibility frontier after the categorization lies somewhere outside of and nowhere 

inside of the frontier before the categorization. Both Hoy (1982) and Crocker and 

Snow (1986) use the standard setup as in Rothschild and Stiglitz (1976), in which 

there are two risk types.

Hoy, Polbom and Sadanand (2006) explicitly consider the effects of regulations 

that prohibit the use of information to risk-rate premiums in a life insurance market. 

Using a dynamic three period model, they show that legislation prohibiting the use of 

results from genetic screening tests for ratemaking purposes in the life insurance

7 Buzzacchi and Valletti (2005), “Strategic Price Discrimination in Compulsory Insurance Markets”, The Geneva 
Risk and Insurance Review, 30: 71-97,2005.
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market may increase aggregate social welfare despite the fact that such regulations 

create adverse selection costs. Their research differs from the previous works not only 

in the setup of multi-period stages but also in the linear pricing insurance contracts.

Hoy (2006) analyzes the policy effects of restrictions on risk classification with 

canonical models of Rothschild and Stiglitz (1976) and Wilson (1977). Similar to this 

paper, Hoy analyzes the aggregate social welfare using a Utilitarian social welfare 

function. It is actually an extension of Hoy (1982) and has derived some explicit 

conditions that determine when such regulations are either welfare enhancing or 

detrimental.

Close to the present essay, de Meza (2002) considers the effects of equal 

opportunity legislation. After checking scenarios of hidden types and/or hidden 

actions, he concludes that banning discrimination, when combined with mandatory 

protection against failure, may well be the best way of effecting redistribution of 

income. The present essay is inspired by his work on reservation utility and 

participation option.

Deviated from the standard line of research, Buzzacchi and Valletti (2005) offer an 

interesting study on the problem of risk classification when insurers do not observe a 

customer’s type but only some other variable correlated to it. They consider an 

insurance market with no adverse selection where there is full market participation 

and full insurance coverage. In particular, they study the strategic interaction between 

imperfectly competitive firms that may decide whether to adopt classification 

variables. They find that discrimination based on immutable characteristics such as 

gender is a dominant strategy.

The present essay differs from the above works in three aspects. First, it extends the 

standard setup of Rothschild and Stiglitz (1976) by assuming a number of agents with 

risk probabilities distributed in two ranges. Second, it avoids the unsettled issue on the 

concept of market equilibrium by assuming full insurance coverage. Last and most 

importantly, it incorporates a participation option by allowing agents to opt out of 

risky activity.

The rest of the essay is structured as follows. Section 2.2 specifies the first model.

It finds the market equilibrium before and after the non-discrimination policy, and 

then conducts welfare analysis. Section 2.3 specifies and analyzes the second model. 

Section 2.4 concludes.

13



2.2 To insure or not to insure

Suppose we have NM number of men and Nw number of women. For a male 

driver /, his accident probability is x f1, where x f  e \x2,x^\, i = . For a

female driver j , her accident probability is x j , where x j  e \x x,x ?\, j  = ,

and 0 < x x < x 2 < x 3 < x 4 < 1. People with different accident probabilities are 

distributed uniformly within the risk probability range. So for any accident probability 

x  * in the range, the number of female motorists whose accident probability are less

than or equal to x* is N* = f  —d x . Similarly, it is N* = f  — dx  for
x z — x x ^  x 4 — x 2

male motorists. Suppose male motorists have a greater variance of accident 

probability distribution, hence we assume x A - x 2 = T { x 3 - x x ), where T  > 1.

Accident probability is private information but insurers know the population 

distributions.

Insurers offer an insurance with coverage q at premium p . Each person has an 

initial wealth y . An accident causes a financial loss of L to the motorist. The utility 

function, the same for everybody, is u(c).

Everybody drives no matter with insurance or not. The motorist needs to decide 

whether to get insured.

2.2.1 Insurance decision

Suppose only comprehensive insurance is available. So q = L if insured, q = 0 

otherwise. An Individual’s expected utility with no insurance is

His expected utility with insurance will be 

vi {^nP) = ̂ - x i\u { y - p q ) + x r u ( y - L - p q  + q)

With full coverage, the utility becomes 

^ ( p ) = “0 , - p i )
The motorist will buy the insurance if

D = y2(P) - v lM > o

Checking the properties of D with respect to p  and x , we have

14



-T- = —L-u'(y—pL)<0, ^ r = L1 -u"{y-pL)< 0 
op op

dD / \ / T\ n d2D ~—  = u (y ) -u (y -L )> 0, t " T  = 0
on on

So the utility difference decreases monotonically in insurance premium p  and 

increases monotonically in risk probability n . At comers,

D = u(y)-u(y) = 0 when p  = 0 and n = 0,

D = u (y ) -u (y -L )> 0 when p = 0 and n - 1,

D = u{y -L )—u(y)< 0 when p = 1 and n = 0,

D ~ u { y -L ) -u { y -L )  = 0 when p -1  and n = 1.

Consider the marginal buyer whose utility difference satisfies 

D = vi ( p ) - vx{^i) = ̂  i e - u ( y - p L ) - ^ - n l) -u (y ) -n i -u(y-L) = 0 

This yields

Checking the variation of n  with p  gives

dn u’(y-pL)-L d 2n - L 2-u”{y-pL)
dp u(y) -u (y -L)  ’ dp2 u(y) -u (y -L)

So for a given premium />*, we can find a unique risk probability n* which 

satisfies D = V2(p*) - Tj(;r*)= 0. For the people whose risk probability is equal to or 

greater than n *, their utility difference from buying the insurance will be equal to or 

greater than zero, i.e., D = V2 (p*) -  V] (nt) > 0, where ni > n *. This leads to the 

following proposition.

Proposition 1: for a given insurance premium, p*, an Individual customer will buy 

the insurance if his own risk probability, n t is greater than or equal to the threshold 

risk probability n *, i.e. nt > n *, where

K- =M A y - P ' L )  (2.2.2)
u[y)-u[y-L)
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2.2.2 Equilibria when gender is observable

Consider the market for male motorists first. For an insurance premium pM, denote 

the risk probability of the marginal buyer in the male motorists market as nM.

Restrict the analysis on interior solutions, i.e., the case where the market is partially 

covered by insurance before and after the non-discrimination policy implemented, i.e.

f t  M G  ( f t  2 > f t  4 )  *

Equation (2.2.2) gives the threshold risk probability value as

In competitive insurance market, insurers offer contracts that break even, i.e. the 

total premium proceeds insurers receive are equal to the total expected loss from the 

insureds. This gives

Equation (2.2.3) and (2.2.4) give the conditions for the equilibrium in the male 

motorist insurance market. Similarly, we have the conditions for the female market as

2.2.3 The equilibrium when gender is unobservable

After the non-discrimination policy is implemented, gender is effectively 

unobservable. The two markets of male and female motorists hence merge into one. 

In this new merged market, both genders are changed premiums of the same level. 

Similar to the analysis in Section 2.2.1 Insurance decision, we can find the 

relationship between the threshold risk probability and a given level of premium as 

follows

_  _ u(y)-u(y-PuL)
M  ~  /  \  /  _ \

“  u(y) -u (y -L)
(2.2.3)

(2.2.4)

_ _ u ( y ) - u ( y - p wL)
** w  — /  \ /  _ \

u(y)-u(y -L)
(2.2.5)

Pw ~  2  (ft  3 + ftw ) (2.2.6)

where nw e

(2.2.7)
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= u(y-L)-u(y)

where partial coverage condition requires k e (x2,/r3).

In competitive markets, insurers offer contracts that break even, i.e. the total 

premiums they receive from both male and female customers are equal to the 

expected loss from them. This gives

f p  Nm dn + p  p L = f a t +n )-L-p  N f  
\ ^ p K a - 7 z 7 * p 7Z-k - k x J  2  2  ^ p K ^ - jz^

[pP -fat +*,)]• p d* + [pp -T fa + )1 • P N" dx =0 (2-2-8)
\  2 J p 7T 4 712 V 2 )  p 7T̂  71 x

D = u(y)-u(y -  L)

Figure 2.1

Figure 2.1 shows the equilibria when gender is observable and the equilibrium 

when it is not. When it is observable female motorists with risk probability ranging 

between \nw, ;r3 ] purchase the insurance at the premium p w while male motorists

17



between [ftM,n4\ purchase at p M. When it is unobservable both are charged at p p. 

The risk range of female customers is [/rp,^3J while it is \kp, ;r4 j for male motorists.

2.2.4 Possibility of multiple equilibria

Take the male motorists market as an example. When gender is observable, from

(2.2.4), we have = - .  From (2.2.3), we have - 4  > 0 and
d*M 2 dp u u{y)-u(y-L)

> 0. Taking into consideration that (2.2.4) givesd ftm _ L 'u {y Pm^)
dp i  u (y)-u(y -L)

p M = ̂ 7r4 when n M -  0 and (2.2.3) gives nM -  0 when p M = 0, we can not rule out

the possibility of no interior equilibrium or multiple quilibria.8 Figure 2.2 illustrates 

the possibility of the existence of multiple equilibria.

P m ~  ~ + )

0 1 P m

Figure 2.2

When gender is unobservable, from (2.2.8), we have

J>0 Tjl + T X ^ - ^ J
dnp 2  [tt4 - t t p + T{7t3 -  7rp )f dnp [714 - n p + -  n p )f

From (2.2.7), we have

dxc u '{ y -p DL)'L d 27i D - L 2-un( y - p BL)
—  = -T T - i 7L-L^ >0  f =  t \ ■ / \ >°dp„ u(y) -u (y -L)  dpp u{y)-u{y-L)

8 An equilibrium must surely exist but it may involve all motorists insured. Take the premium which makes worst 
motorist just willing to insure. As risk averse this must be profitable. So premium must fall. Profits may rise as 
better types enter but when every one in further falls in premium must lower profitability.
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0 1 Pp

Figure 2.3

Taking into consideration that (2.2.8) gives p when np = 0 and

(2.2.7) gives n  = 0 when p p = 0, we can not rule out the possibility of no interior

equilibrium or multiple quilibria. Figure 2.3 illustrates the existence of multiple 

equilibria.

One interesting feature of the pooling equilibrium figure is the possible kink which 

happens when one or the other group ceases to be present. Figure 2.3 illustrates one 

possibility when the accident probability is so high that the female motorists cease to 

be present. Then the market has only male motorists left and hence the line kinks. 

However, this research focuses on the interior equilibrium and does not go further on 

analyzing the equilibrium in the kink part.

2.2.5 Welfare property when gender is observable

First consider the male motorists insurance market. An Individual driver with no 

insurance has the expected utility )"G ') -\-7ii -u(y-L)  where
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ni e [̂ t2,/t4] . After purchasing the insurance his utility is fixed at

V2 (pM) = u(y -  p ML). In the partially covered market the threshold risk probability

n m G ( ^ 2. * 4)-

Utility
v\ k  ) = {^-ni\u{y)+7cr u{y-L)

Figure 2.4

Denote the number of the uninsured motorists and the insured as A, and N2 

respectively. Then Nx = T" —f a  and N2 =NM - N } = f 4 —d x .
* 2  714 — ^ 2

Similarly, denote the aggregate utility of the uninsured motorists and the insured as 

AU1 and AU2 respectively. Then the aggregate utility of the market is 

AU = AU1+AU2 (2.2.9)

Where

' 4 ^ 2  ^ 4  /4,2

E ±
7Z 4 — 712

Given Vl {ni) = (l -  7ui)• u(y) + ni • u(y - L )  is linear, A Ul can be expressed as 

N„ 1

* 2  7Ta —7U2 7Ta —712 * 2

AU2 =V2{pM)-N2 = u ( y - p uL)- [ ' - E * - d K
•ITju 77" —  77"

(2.2.10)

(2.2.11)

AU,= M

TĈ TC 2 2 - * 2) (2.2.12)

where FJ(;r2)= (l- 7r^)-u(y)+ ni ■ w(y- L) and

v\(*M)= ( !■-■) '«{y\+Km ■■«(y--■L) = '■"O'-- PmL)
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Similarly, the aggregate utility of the female motorists market is AU = AUX+ AU2, 

where

As above, AU] is expressed as

AU, = J ^ ± { v,{z ,)+V,{kw) \k w - * , )  (2.2.15)
'| Z

where Vl ) = (l -  nx)• u(y)+7r] • u(y -  L) and 

v i { * w ) = (! -  ■* w ) ■•:« (y ) ■+ ■ “O' -  ■̂ ) ■= “(y  -  P w L )

2.2.6 Welfare change from implementing the policy

Male drivers benefit from the non-discrimination policy which leads to a decrease 

of insurance premium. The already insured motorists benefit from the lower cost. 

Some previously uninsured motorists join the market and gain from the higher utility. 

Oppositely, female motorists suffer a welfare loss from the increase of insurance 

premium. The existing customers suffer from the higher cost. Some of them even 

drop out of the insurance market.

(2.2.13)

(2.2.14)

Utility

0 n\ ^2

Figure 2.5

The welfare loss is
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^  = fc G v ) -F 2(p„))- [ ' 2 ^ „ + v , ( j > w). [ ' - O x - d x - O s - .  [ ’v f c f a
•Wn TT — TT *Zw TT — TT TT — 7T *Zw

Nn N „

p TTj — 7t j v  ; r 3 — 7tx

N ,w
f c  ( P w ) ~ V 2 ( P p  )X*3 -  * p  )+ V 2 ( P w  ' f o p  ~  * W  ) -  £  V , { * ,  )**]

or

WL = - -1 N,w
2 7rz — nx 

The welfare gain is

(Pw)-V2(Pp]f?*3~*W ~XP) (2.2.16)

^G  = (F2( p J - F 2(pM)> f  ̂ - ^ ^ r  + F2(pJ-  * « _ .  f r f a f a
* at n 6i- jz2 *> nA-7t ,  n A-7t^ *p

E±
4 ~ /4,2 ' 4 ~ / , '2

iV

^4 ^2
or

WG = - -1 JVA/ (p ,) -  ̂  (p« )X2ff4 -  x u - x p) (2.2.17)

Whether the aggregate welfare of both markets increases depends on which effect 

dominates.

2.2.7 Simulation

Specifying the utility function as Constant Relative Risk Averse (CRRA) utility 

function as
1-*

u(c) = - — , 0>O 
w  1 - 0

In order to check whether the welfare gain dominates the loss, we check WG -  WL, 

where

1 N  
WG = — M

w lJ -  n "

( ^ i p p I - ^ i P M ^ X t  ~ x M- x p) and

(^2(Pfr) — ̂ 2 ( P p ~ x w p)

With the assumptions that n4 —/r2 = T(x, -  kx), we only need to check the 

tendency of

NM (V2(pp) - ^ ( P m)X2X 4 - x m - x p) - N w(r2{pw)-V2(pp)\2x3 - n w- x p)

which for brevity we write as
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N  

where

D, = ^ - { v p- V M){2̂ -km - x p) - N w{vw - V p\ l n ,  - n w

v  = ^  PwL)   p = - U  = )
1 -0  ’ ^  2 [ , W l ’ W y '~ * - (y -L)'-°

v  _ iy~PpLV  _ _ y ]'e -(y-Ppi-
n -  » “  n ~\-ep y ' - ° - ( y - L

^jr(x. 4- x j ^ P ,  - \ { x .  + *,)) +Nlr + *,)} = <>

v  = (z -P m ^ T  = I (  +;r )
1 -0  ’ Pu2 "  / * - ( ? - £ )

M
!-0~

For y = 100, 0 = 0.8, r̂, = 0.1, ;r3 = 0.7 , /r2 = 0.2, x A= 0.8, T = 1 and A/^ = N w,

we have the following figure depicting the relationship between welfare change and 

loss level.9

Welfare change

0 . 01

0. 005

0
& -0.005

-0. 015
Loss level

Figure 2.6

Figure 2.6 illustrates that the welfare change is ambiguous which can be either 

positive or negative with different loss levels and the welfare change increases 

monotonically in loss level. This is consistent with the intuition: pooling effect 

increases by redistributing more income with loss level increasing.

9 Appendix 2.1 provides detailed simulation results.
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Number of Insureds

50 55 60 65 70 75 80 85 90 95 99

Loss level

Figure 2.7

Figure 2.7 shows that between loss level of 50 and 99, the number of insureds when 

gender is unobservable is always less than that when gender is observable. Roughly at 

the loss level of 87, the aggregate social welfare when gender is unobservable is equal 

to that when observable, although there are less insureds when unobservable. This 

illustrates that pooling can generate higher aggregate utility with other things equal. 

For y = 100, 0 = 0.8, L -  90, /r, =0.1, ;r3 = 0 .7 , 7  = 1 and NM =NW, we have

the following figure depicting the relationship between welfare change and risk 

range.10

Welfare change

O)
o.o:

§  -0.005

Figure 2.8

10 Appendix 2.2 provides detailed simulation results.
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W elfare c h a n g e
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0.0003 -

0.0002 j 
0.0001  -

I -0.0001 -J ° 001- ° 01- 
£  0.601 0.61/
|  -0.0002 - /

-0.0003 J

0.05- 0.09- 0.10-
0.65 0.69 0.70

0 . 11-

0.71
0.15-
0.75

-0.0004

-0.0005
R isk range

Figure 2.9

Num ber of Insureds

1.35
 NS

1.25 NP

1.15

Risk range

Figure 2.10

Figure 2.8 shows how the welfare change varies with the risk range while Figure 

2.9 is a part of it. Figure 2.10 shows the variation of the number of the insureds with 

risk range. The number of motorists when gender is unobservable is always less than 

that when gender is observable except the point where both risk range overlap.

For y  = 100, 6 = 0.7, L -  95, /r, = 0.1, /r3 = 0.6, 7  = 1 and N M = N w , we have

the following figure depicting the relationship between welfare change and risk 

range.11

W elfare c h a n g e

0.01- 0.05-
0.51 0.55/

6.09- 0.10- 0.11-
0.59 0.60 0.61

0.20- 0.25-
0.70 0.75

- 0.0002  -

-0.0004 -

-0.0006

-0.0008

- 0.001  -

-0.0012  -

-0.0014

-0.0016

-0.0018 -

- 0 .0 0 2  J

Risk range

11 Appendix 2.3 provides detailed simulation results.
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Figure 2.11

Number of Insureds

0)-Q

1.6 -  

1.5 - ******
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E 1.4 -
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1.3
1.2 -I !----- 1----- .----- 1----- ,----- .----- r

Risk range

Figure 2.12

Figure 2.11 shows how the welfare change varies with the risk. Figure 2.12 shows 

the variation of the number of insureds with risk range. The number of motorists 

when gender is unobservable is always less than that when gender is observable 

except the point where both risk range overlap.

2.3 To drive or not to drive

Consider now a scenario in which every assumption is the same as section 2 except 

there is a mandatory requirement that motorists must be fully insured. Instead of 

choosing whether to get insured, people now choose whether to become a motorist. 

Everyone has a reservation utility V if not a motorist. Accidents cause a non- 

pecuniary cost C which is not insurable in addition to a financial loss L which is 

insurable.12

2.3.1 Participation decision

A motorist has expected utility

Y,{xt,Pt)=(i-*,yu(y-Piq)+x,(u(y-Piq-L+<i)-c)
When fully insured the utility becomes

v, > P i ) =u( y-  pf i \ ~ nf i

An individual will become a motorist and purchase insurance if the utility from be a 

motorist is greater than the reservation utility:

12 Externalities could mean that individual accident probabilities depend on the number o f motorists but to focus 
on pure insurance issues this possibility is ignored.
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Checking the properties of D2 with respect to p  and n , we have

^ -  = -L-u’{y -p ,L )<0, ^ 2 -  = L2 u"(y-p,L)<0 
dp, dp,

® ,  = _C < 0 , ^  = 0
dni dni

So the utility difference decreases monotonically in both insurance premium, p , 

and risk probability, n . To ensure interior solutions, make the further assumption 

u(y-L )<V  <u(y)<C + V 

Therefore, for comers,

D2 = u(y)~ V > 0 when p = 0 and n  = 0,

D2 -  u(y)-C -  V < 0 when p = 0 and n  = 1,

D2 = u(y -  L ) -V  <0 when p = 1 and ;r = 0,

D2 = u ( y - L ) - C - V  <0 when p = 1 and ;r = l.

The marginal buyer receives the same level of utility from driving as the 

reservation utility. So we have D2 = Vi(ni,pt) - V  = 0, i.e.

u(y -  Pjl^-KiC -  V = 0, which gives

K = u ( y - p A - V  (231)

Check the variation of n  with p  gives

^ L = - 7 " “ '0>-p,L)<0, ^ p r  = ~ u ’{y-p,L)<0  dp, C dp, C

So for a given premium p *, we can find a unique risk probability n'  which 

satisfies D2 = V = 0. For the people whose risk probability is equal to or

less than n *, their utility difference from becoming a motorist with full insurance will 

be equal to or greater than zero, i.e., D2 = Vi {ni,/?,■)- V > 0, where ni < 7t*. This 

leads to the following proposition.

Proposition 2: for a given insurance premium p*, an Individual customer will 

become a motorist and buy the insurance if his own risk probability ni is lower than 

or equal to the threshold risk probability n *, i.e. ni < n *, where
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4 y - p ' L ) - V  (2.3.2)
c

2.3.2 The equilibria when gender is observable

Consider the male market first. For an insurance premium, p M, set the risk 

probability of the marginal buyer in the male motorists market as nM. Consider the 

case where the market is partially covered by insurance before the equality policy is 

implemented, i.e. ttm e(;r2,/r4).

Equation (2.3.2) gives the threshold risk probability as

x M = u(y- pf - V  (2.3.3)

In a competitive insurance market, insurers offer contracts that break even. This 

gives

p ML • J*" N"  dm = -U>r2 + Xu )• L • p  - M dn
* 2  71 ̂  —7Z2 2  2 — 712

Ot p „ = U x 2+/cM) (2.3.4)

Equation (2.3.3) and (2.3.4) give the conditions for the equilibrium in male motorist 

insurance market. Similarly, we have the conditions for the female market as 

Kw = u ( y - p „L)-V  (235)

p w +7rw), where nw e (^ ,,7r3) (2.3.6)

2.3.3 The equilibrium when gender is unobservable

After the policy, the two markets of male and female motorists merge into one as 

gender is now effectively unobservable. Both genders are charged at the same 

premium. From (2.3.2), we have 

u ( y - p bl ) - v

*P= c  —  ( 2 ' 3 J )

where partial coverage condition requires 7i &(7r2,7i3).
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Figure 2.13 

For the contract to break even we have

(r; +c  + + *, )• * • £

P p + * , ) )  + * , ) )  - ° (2 -3-8)

Equation (2.3.7) and (2.3.8) give the conditions for the pooling equilibrium.

Figure 2.13 illustrates the separating equilibria and the pooling equilibrium. In the 

separating equilibria female motorists with risk probability ranging between \xx, n w ]

purchase the insurance at the premium p w while male motorists between \n2, nM ]

purchase at p M. In the pooling equilibrium both are charged at p p. The risk range of

female customers is \nx, n p J while it is \x297rp \ for male motorists.

2.3.4 The possibility of multiple equilibria

Take the male motorists market as an example. When gender is observable, from

(2.3.4), we have = —. From (2.3.3), we have
dxM 2

d* “ = - ~ u ' { y - p u L)<0,
2

L = t
2dpu C
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Taking into consideration that (2.3.4) gives p M = — when nM — 0 and (2.3.3)

gives u(y)-V 0 when p M = 0, we can not rule out the possibility of no

interior equilibrium but multiple quilibria are impossible. Figure 2.14 illustrates the 

non-existence of multiple equilibria.

Figure 2.14

When gender is unobservable, from (2.3.8), we have

dpP (1 + r)tk . +7’(;rp
dnp l\np - n 1 + t (jtp - ^ ,) f

>0 and

d 2P  r ( i+ r X ^ - / r , ) 2 , 0

dn\ [* -*j+r(;r ,)J*l "L ' -

From (2.3.7), we have 

^  L ,— — — —— ' U f( y - p  l ) < 0 ,  and • u”(y -  p  L]< 0
dpp C V  Fp 1 dp] C V  Fp }

^ 2
Taking into consideration that (2.3.8) gives p  = —̂ ------ W when np =0 and

2\7U2 +Ttt])

u(y)—V(2.3.7) gives n -  - ^ -L > 0 when p  -  0, we can not rule out the possibility of
C

no interior equilibrium but multiple quilibria are impossible. Figure 2.15 illustrates 

the non-existence of multiple equilibria.13

13 The feature o f kink applies to this scenario as well. But, again, we focus on the interior solution in this research.
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Figure 2.15

2.3.5 Welfare property when gender is observable

First consider the male motorists insurance market. An Individual who chooses not 

to become a motorist has a reserve utility V . After becoming a motorist with full 

insurance his expected utility is Vi(/ri,pi) = u ( y - p iL)-7riC , where n  e  [7r297r4]. ^

the partially covered market the threshold risk probability ttm e (n2, nA).

Set the number of the fully insured motorists and the non-motorists as Nl and N2

respectively. Then —dit and N2 =NM - N ] = f 4 —d n .
7Ta — 712 m 71A — 712

Similarly, set the aggregate utility of the motorists and the non-motorists as AUl 

and AU2 respectively. Then the aggregate utility of the market is

AU = AU]+AU2 (2.3.9)

Where

AU, = f"  Nu -V(xt)d7c= Nm ■ [ “V(jrt)dx (2.3.10)
** 7tA—7t2 7tA—n 2 2

AU1 = V -N 1= V - P  — da  (2.3.11)
7Ta — 7t 2
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Utility

K >.p,)= “(v -

Figure 2.16

Given V(xi) = u ( y - p jL)-7riC is linear, equation (2.3.10) can be expressed as 

AU, - * 2) (2-3.12)
^ 7Z 2 ^

where V{7i2) = u ( y - p ML)-7T2C and V(xM) = u ( y - p ML ) - x MC = V

Similarly, the aggregate utility of the female motorists market is AU = AUl + AU2.

Where

AU2 =V-N2=V- P —-Z— dx  (2.3.13)

AU, = P  Nw ■v{x,)djt= Nw ■ [ 'v (x ,)d x  (2.3.14)
—nx * 1

As the above, AUX is expressed as

AU, = J ^ ± ( v ( x , ) +V{xw)X,tw - * .)  (2.3.15)

where V(x]) = u ( y - p wL ) - n xC and V(xw) = u ( y - p wL)-7twC = V

2.3.6 Welfare change from implementing the policy

For existing motorists, male drivers gain from the policy with lower premiums 

while female drivers suffer a welfare loss with higher premiums. Furthermore, as a
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result of the premium change (decrease for man and increase for woman), some 

relatively safer man would choose to become a motorist while some relatively riskier 

woman would stop driving.14

Utility A

v, (x,'f p w) = u ( y - p wL ) - n lC
IV I
| V,(x,’Pr )= u(y-P PL)-n  

V<(x»p>,)=u(y-PML) -

77x 71 j  71M 7 t p 7 tw 77

Figure 2.17

The welfare loss hence consists of two parts: loss for existing female motorists 

from higher premium and loss for former female motorists who drop out of driving:

The welfare gain similarly consists of two parts: gain for existing male motorists 

from lower premium and gain for new male motorists who now choose to drive:

14 The whole society gains with the relatively riskier female drivers replaced by relatively safer male drivers. This 
can be seen as a positive externality brought by the policy. However, this present research focuses on the aggregate 
welfare change o f the man and woman agent groups and hence does not seek to quantify the benefits o f this 
positive externality.

2 77 ̂  77 j
(2.3.16)



WG = - ? t K -  • P V{ni ,p f a -  ■ P  F(jt, -F • (* ,-* « )
nit-K 1 *2 7tA —fi’* *2 Ka-TC-,

N_;
'4 “ /l'2

-
4 — ̂ r2

ATM

7tA 7Z 2

1 AT or*FG = — M

> Pp)+ > A  -* 2 )-T (F fo ,/v )+ F (> rM,/>M)X*-M - * 2)

-F  •(* ,-**)

* p ~ ^M M ~^^p~ ̂ 2  )2 /r ̂ 2
(2.3.17)

Whether the aggregate welfare of both markets increases depends on which effect 

dominates.

2.3.7 Simulation

Set the utility function as
\-e

w(c) = ------, 0>O
W \ - 0

In order to check whether the welfare gain dominates the loss, we check WG -  WL, 

where

1 N  
WG = — ' M

WL = - -  Nw

■ c{np -  nM \n u +Kp -  2 n l ) and

G \ftfv — )(̂ V ftp  ~~ '2 ^ \)2 7t̂  T̂j

With the assumption that nA - tr2 = T(nr3 ), we only need to check the tendency

of D,

A  ^ - y - i x p - x f a u + K p  ~ l K l ) ~ N w f a w - X p X ^ W  + * ,  - 2 ^ l )

where

W \ 1TV — ~ \F\ + /> — ^  ‘
( y - P w ^ V  y  

1 -0

^f - {xp - \ ^ 2  + ^ ) j  + Arr ( ^ - *i \Pp  ~ ( * i  + * , ) ]  = <>

/T = ----
p c

{y-PpLJ~0 j- 
1-0

1 f \  1
Pm ~  2 v^2 +  /> ~  ^  ’

( y - P u LV
1 -0
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For 7  = 100, 0 = 0.8, C = 5, V =11, nx =0.1, n3 = 0 .7 , n2 = 0 .2 , =0.8 ,

T = 1 and , we have figure 2.18 and 2.19 depicting the relationship between

welfare change and loss level.15

Welfare change

-0. 0001

0.0002

® -0.00033:
-0.0004

Loss level

Figure 2.18

Number of Insureds

0.4

NS

NP

Loss level

Figure 2.19

Figure 2.18 illustrates that the welfare change decreases monotonically in loss 

level. Figure 2.19 shows that between loss level of 50 and 99, the number of insureds 

when gender is unobservable is always greater than that when gender is observable.

For 7  = 100, 0 = 0.7, L = 60, C = 5, F = l l ,  =0.1, tt3= 0.7, T = 1 and 

N m = N w, we have figure 2.20, 2.21, and 2.22 depicting the relationship between 

welfare change and the distribution of the risk range of male motorists.16

15 Appendix 2.4 provides detailed simulation results.
16 Appendix 2.5 provides detailed simulation results.
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Welfare change
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Figure 2.20
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Figure 2.21

Number o f Insureds
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Figure 2.22

Figure 2.20 illustrates that the welfare change first increases in the risk range then 

decreases. Figure 2.21 shows that when gender is observable, the number of male 

motorists decreases as the risk range move into greater area. Figure 2.22 shows that 

the total number of motorists decreases in risk range both when gender is observable 

and when unobservable while the number of motorists when gender is unobservable is 

always greater than that when gender is observable except the point where both risk 

range overlap.
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For >> = 100, 0 = 0.6, 7  = 80, C = 5, V =11, n x =0.2, ;r3 = 0.7, 7  = 1 and 

N m = N w, we have the following figures depicting the similar relationship between 

welfare change and the distribution of the risk range of male motorists.17

Welfare change

5  - 0.002 0.1- 0.15- 0.19- 0.2- 0.21- 0.25- 0.3^ 0.4- 0.44-

-0.004
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Risk range

Figure 2.23
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Figure 2.24
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0.65 0.69 0.71 0.75 0.85 0.94

Risk range

Figure 2.25

2.4 Conclusion

When everyone drives and decides whether to purchase insurance, typical adverse 

selection happens. High-risk motorists will purchase insurance while the low-risks 

will not. After the unisex premium policy is implemented, more male motorists 

purchase insurance with lower premium while some female motorists drop out of the

17 Appendix 2.6 provides detailed simulation results.
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insurance market as the premium increased. Simulations show the total number of the 

insured is less than before the policy is implemented. The policy has no effect on 

insurers who always earn normal profit in the competitive industry. The aggregate 

social welfare may increase or decrease. There is no effect on road safety since 

everyone drives whether or not insured and there is no moral hazard.

When motorists must be insured and people choose whether to become a motorist, 

advantageous selection happens. Low-risk people become motorists and purchase 

insurance while the high-risks will not. After the policy is implemented, more 

relatively safer men become motorist while some relatively riskier women stop 

driving. From the simulations, the total number of motorists is greater than before the 

policy is implemented. The policy has no effect on insurers. Simulations show that the 

aggregate social welfare decreases after the policy is implemented.
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Chapter 3 Optimal allocation and participation option

3.1 Introduction

It has become an established truth that information asymmetry causes efficiency 

loss. One application is to insurance markets. Traditional research finds that 

insufficient insurance coverage occurs in an insurance market with adverse selection 

and hence the insurance policy should be subsidized. The only reason to tax is to 

allow cross-subsidization: the low-risks pay tax for their insurance policy and the 

proceeds is used to subsidize the insurance policy purchased by the high-risks. The 

purpose of this cross-subsidization is still to improve insurance coverage for both risk 

types. Moreover, the full-insurance pooling contract is the first best allocation and 

maximizes total social welfare. Does this conclusion still hold when people can opt 

out of insurance market and even quit the risky activity? Is there always too little 

insurance in the market equilibrium?

This essay attempts to answer these questions in the context of motor insurance 

markets. Consider a model with the set up as in the standard Rothschild and Stiglitz 

model where there are two types of agents who are identical except for risk 

probability and the form of insurance contracts is fully endogenized. Let us now 

extend the model by allowing people to choose whether to drive and motorists to 

choose whether to insure. Motorists enjoy the benefits from driving but may suffer a 

financial loss from engaging in the risky activity, while non-motorists receive 

reservation utility which is the same for everyone but have no driving benefits.

If the reservation utility is too low, then both agent types would choose to drive and 

buy insurance, the outcome would be the same as the Rothschild and Stiglitz model. If, 

on the contrary, the reservation utility is too high, both types would stop driving. The 

insurance market therefore disappears.

Let us focus on the more interesting scenario where the low-risks choose to drive 

and buy insurance while the high-risks choose to stay out of the risky activity. 

Furthermore, insurers are allowed to offer a menu of cross-subsidizing contracts that 

earns normal profit overall. Therefore, contracts at the equilibrium must be Pareto 

efficient and policy intervention may raise aggregate social welfare but can not yield 

strict Pareto gain.
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At the equilibrium, the low-risks enjoy higher utility than the high-risks because of 

the driving benefits they receive from driving, but their expected income is actually 

lower than the high-risks because of the expected loss from engaging in the risky 

activity. Therefore, the low-risks actually have higher marginal utility than the high- 

risks.

Now let us bring in a balanced budget tax and subsidy scheme which taxes 

insurance policies and uses the proceeds to subsidize the whole population. Such a 

scheme effectively redistributes the income from the motorists, i.e. the low-risks, to 

the non-motorists, i.e. the high-risks. It will have two effects: redistribution effect and 

efficiency effect.

On redistribution effect, the scheme redistributes the income from the low-risks 

who have higher marginal utility to the high-risks who have lower marginal utility. 

Hence the net redistribution effect on the aggregate social welfare is negative. On 

efficiency effect, the scheme improves the economic efficiency by allowing the low- 

risks to buy more insurance coverage. As existing research shows, the presence of the 

high-risks imposes a negative externality on the insurance coverage that the low-risks 

are allowed to purchase, as insurers have to restrict the coverage to discourage the 

high-risks from buying the insurance. Taxing insurance makes it more expensive and 

hence less attractive to the high-risks while subsidizing the whole population raises 

the reservation utility and hence makes the opt-out option more attractive to the high- 

risks. So insurers can now raise the insurance coverage to a higher level without 

attracting the high-risks into buying it. The low-risks can now buy more insurance 

coverage, which increases their utility.

When the efficiency effect dominates the redistribution effect, taxing insurance and 

subsidizing the whole population therefore increases the aggregate social welfare. 

Counter-intuitively, the scheme increases the insurance coverage sold on the market 

by making the insurance more expensive. However, the present research shows that a 

pooling allocation with full insurance coverage never maximizes the total welfare.

When the redistribution effect dominates the efficiency effect, taxing the whole 

population and subsidizing the motorists therefore increases the aggregate social 

welfare. So, surprisingly, in this case there is too much insurance in the market being 

sold too expensively and it would increase the total social welfare by decreasing 

insurance coverage.
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Research on information asymmetry has long been a topic of tremendous debates 

ever since the seminal works by Akerlof (1970), Spence (1973) and Rothschild and 

Stiglitz (1976). Akerlof (1970) shows that adverse selection happens under 

asymmetric information. Bad quality goods (lemons) drive good quality goods out of 

market and the market size generally shrinks. The present essay challenges this 

conclusion in the context of insurance.

Rothschild and Stiglitz (1976) investigate two interesting issues: the existence of 

market equilibrium under asymmetric information and the efficiency of such 

equilibrium. They assume there are two types of agents in the risky activity, who are 

identical except the probability of having an accident. They find there might be no 

Nash equilibrium in the market, and if there is, it must be separating equilibrium. As 

part of the efforts to establish the conditions for market equilibrium to exist, they give 

the condition of when the market equilibrium is Pareto efficient, but did not go further 

into finding the allocation that maximizes aggregate social welfare, which is the most 

desirable outcome from the utilitarian point of view.

Following their work, there have been many papers focusing on the existence 

problem and the efficiency analysis18. Among them, Crocker and Snow provide key 

efficiency results.

Starting from the setup of Rothschild and Stiglitz, Crocker and Snow (1985a) 

introduce a tax and subsidy system, which ensures that the Miyazaki equilibrium can 

always be supported as a Nash equilibrium. They show that more than one Nash 

equilibrium is open to the regulator, but do not analyze the distributional effects and 

do not discuss which equilibrium is optimal. Furthermore, some of their conclusions 

are not robust as they do not allow cross-subsidization. For instance, a Pareto 

improvement is impossible once cross-subsidization is allowed.

18 To name a few examples, Wilson (1977) found pooling equilibrium could exist if  an “anticipatory equilibrium”, 
a non-Nash equilibrium type o f equilibrium, is adopted. Riley (1979) introduced “reactive equilibrium”, another 
form o f  non-Nash equilibrium, which results in the same allocation as that o f Rothschild and Stiglitz for any 
proportion o f the high risks. Engers and Fernandez (1987) generalized the reactive equilibrium. Grossman (1979) 
proposed “dissembling equilibrium”, which sustains the same allocation as Wilson’s anticipatory equilibrium, 
although the mechanism is different. Miyazaki (1977) relaxed the assumptions o f Rothschild and Stiglitz by 
allowing insurers to offer a menu o f contracts which allows cross-subsidization, and adopting Wilson’s 
anticipatory equilibrium instead o f Nash equilibrium. It shows the only market equilibrium is Pareto efficient 
separating equilibrium, which is the same as that o f Rothschild and Stiglitz (1976) when there is no cross­
subsidization, or an interior allocation which maximizes the utility o f the low-risks when cross-subsidization is 
involved. Spence (1978) applied this analysis to the insurance market. Other than the above work which focuses on 
non-Nash type equilibrium, Cho and Kreps (1987) and Hellwig (1987) give game theoretic foundation for the 
equilibrium.

41



Crocker and Snow (1985b) apply the definition proposed by Harris and Townsend 

(1981) to check the relationship between competitive equilibrium and efficient 

allocation in an insurance market. They find utility possibility frontier and show that 

full insurance pooling allocation maximizes aggregate social welfare. However, this 

present essay shows that pooling allocation is never optimal once the participation 

option is included. Furthermore, it could be optimal that nobody buys insurance, 

which is certainly not optimal in their setup.

Crocker and Snow (1986 and 2000) consider the efficiency effects of categorical 

discrimination in insurance market. They demonstrate costless risk categorization 

enhances efficiency and they further state that full insurance pooling allocation can 

never be improved on by the introduction of categorization. This present essay shows 

that when insurers are allowed to offer cross-subsidizing contracts, the market 

allocation must be Pareto efficient for there to be a Nash equilibrium. Therefore, the 

interior solution in Crocker and Snow (1986) does not exist. Moreover, the sufficient 

condition they claimed to allow costless risk classification to enhance efficiency does 

not hold either.

Crocker and Snow (2006) show that multidimensional screening reduces the 

externality cost of adverse selection and enhances the efficiency of insurance 

contracting. They recognize the impact of cross-subsidization on the existence of pure 

strategy Nash equilibrium and notice that it would be efficient for the high-risks to 

subsidize the low-risks under certain parameter values. However, as their model does 

not consider the participation option, such subsidization can not hold as a Nash 

equilibrium.

In addition to the above studies which do not consider participation option at all, 

there are several papers that, to some degree, involve a participation option.

Abadie and Franc (2004) explicitly consider whether it is welfare improving to opt 

out of public insurance. However, public insurance is very different from the private 

insurance that this present essay considers. Furthermore, they assume insurers can 

observe the individual type of risk, which makes their research fundamentally 

different from this present essay.

Gollier (2003) considers a participation option in the context of insurance demand 

in a lifecycle model. However, his research is actually on the choice between self- 

insurance and purchasing an insurance policy from private insurers. The agents 

always engage in the risky activity.
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Kim and Schlesinger (2005) examine the individuals’ demand for insurance 

coverage on the assumption that individuals receive the benefit of some type of 

potential government assistance that guarantees them a minimum level of wealth. This 

may seem similar to the reservation utility of this present paper at first sight, but it is 

actually completely different. In their model, agents always take up risky activity, and 

there is no government budget constraint. So the government assistance is in effect 

free insurance.

The structure of this essay is as follows: Section 3.2 finds the market equilibrium in 

an insurance market with adverse selection and a participation option. Section 3.3 

finds conditions for such equilibrium to exist. Section 3.4 introduces the tax-subsidy 

scheme into the model. Section 3.5 analyzes the tax-subsidy scheme and gives the 

most important findings of this essay. Section 3.6 and Section 3.7 considers two 

extreme cases: full-insurance pooling contract and an over-insurance contract. Section 

3.8 concludes.

3.2 Market equilibrium

Consider the market for motor insurance. Suppose there are two types of agent, 

low-risk type with accident probability of nL and high-risk type with nH, where 

kh > nL' The proportion of the high-risk type in the population is X e (0,l). Everyone 

has an initial wealth W .

The market equilibrium is the result of a two-stage sequential game. In the first 

stage, insurance companies offer insurance policies. The insurance market is assumed 

to be perfectly competitive and insurers are allowed to offer a menu of contracts 

which can cross-subsidize each other but earn zero profit as a whole.

In the second stage, agents decide whether to drive or not. If he chooses not to drive, 

he receives a reservation utility u(fV), which is assumed to be the same for all. If he 

chooses to drive, he receives a utility benefit of B from driving but with probability 

jvi ,i  = H,L  may suffer a financial loss as a result of an accident of D }9 Motorists

then need to decide whether to purchase the insurance policy which is offered by 

insurers in the first stage.

19 Here I ignore an interesting factor: a pecuniary cost related to driving such as the cost to purchase a car. Such a 
cost tends to move down the budget line o f motorists along 45 degree line. The disposable income o f drivers will 
be lower even in the absence o f an accident, so the redistribution effect o f an income tax will be strengthened, but 
the analysis will not be fundamentally changed.
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3.2.1 Reservation utility and participation decision

Consider the result of the second stage game first. When motorists decide whether 

to get insured, they need to compare the utility with and without insurance, and buy 

insurance if it is beneficial.

As Rothschild and Stiglitz (1976) show, the contracts which can stand as a Nash 

equilibrium in the insurance market must be separating contracts. Pooling contract 

may disturb the separating equilibrium but can never themselves be a Nash 

equilibrium. In the competitive insurance market, insurers can not charge more than 

fair premium, for others can cut the price and earn positive profit. Hence, a menu of 

cross-subsidizing contracts, in which the profits from profitable contracts offset the 

loss from contracts of loss, can not constitute a Nash equilibrium, even though such a 

menu of contracts may disturb the separating equilibrium when it can result in strict 

Pareto improvement. Therefore, in the competitive insurance market, insurance 

contracts, if offered, must be separating contracts at fair premium.

Expecting insurance coverage at fair premium, motorists will buy the insurance 

contracts since such policies increase motorists’ utility compared with being 

uninsured.

For both risk types, if they choose to drive and get insured, the minimum utility 

they can get is U = B + u(fV -  D7tH), for they can always reveal their risk type as 

high-risk and buy insurance policy at the fair premium. If the reservation utility 

u(\V )<U, both risk types will choose to drive and get insured. Figure 3.1 illustrates 

this case.

UH =U = B + u (W -D kh )

Figure 3.1
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In this case, insurers offer lull insurance coverage to the high-risks and yet only 

partial coverage to the low-risks. The insurance premium p  is fair for both

types: p { =0i - D x i,i  = H ,L , where 0 < 0t < 1 is the percentage of insurance 

coverage. The high-risks are fully insured and receive the utility 

UH = B + u(fV -  Dtth ). The low-risks are partially insured and receive the utility 

UL = B + (l -  ttL )u(w -  0lDxl )+ x Lu(W -  6lDtil -  (l -  0L )£>) while U„<UL. The 

outcome at the equilibrium is the same as in the standard Rothschild and Stiglitz 

model since the reservation utility is at so low a level that it does not affect the 

participation decision of both agent types.20

The highest utility motorists can get is U = B + u(W -  DnL), as the best insurance 

policy insurers are willing to offer is full coverage contract with fair premium for the 

low-risks. If the reservation utility u{\V) > U = B + u(jV -  Dkl ), the highest utility 

agents can receive when they drive, both risk types will stop driving. Figure 3.2 

illustrates.

20 Given our tax and subsidy scheme, which taxes motorists and uses the proceeds to subsidize the population, a 
small tax and subsidy won’t have any effect in this case. But when the tax and subsidy are large enough as a whole, 
the subsidized reservation utility becomes greater than the utility o f the high risks from driving, i.e.

u(w +{l-A )t)  > U f j  = B + u { w - D j t f j )  where t is the tax, the high-risks will opt out o f  the market and become

non-motorists. So one effect o f such a policy is that road safety will increase. But it is more difficult to increase the

aggregate social welfare in this case compared to the case we are going to further discuss where U < u (fv)<  U .
Consider the marginal case where the subsidized reservation utility is equal to the utility o f the high-risks from

driving, i.e. u{w+(\-A)t)  = UH  = B + u{w ~Dkh  ) .  The high-risks are indifferent before and after the policy

implemented but the low-risks are strictly worse off. So there is a strict Pareto loss in this scenario. There is 
obviously no efficiency effect here and the redistribution effect is purely negative. This is because the low-risks 
have to pay an extra cost to the high-risks to compensate them for give up driving, before the high-risks can be 
better off from this subsidy. So besides the redistribution effect and the efficiency effect in the case o f

U_ < m(it) < U , this case involves an extra efficiency loss related to this compensation payment.
If the total social welfare from the tax and subsidized allocation is greater than the initial allocation, the optimal 

allocation when the tax and subsidy are positive should involve more wealth transfer from the low-risks to the

high-risks compared to the case U < u (w >)  < U to cover the extra compensation cost, but it should be less than the

sum of the optimal wealth transfer in the case U _<u{w)<U  and the extra compensation cost. Because after 
having paid the compensation cost, the low-risks have less disposable income and hence higher marginal utility 

than in the case U < u {w )  < U . No insurance can never be the optimal allocation any more because the high-risks 
can always opt back to be motorists and neutralise the tax and subsidy scheme.

I will leave the technical analysis for future work.
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UL =U = B + u(W -D jtl )

Figure 3.2

If the reservation utility is such that U < u(w)< U , the high-risks will rather opt 

out of market and receive the reservation utility. The low-risks will choose to become 

motorists and get insured. Figure 3.3 illustrates this case. The following analysis of 

this essay focuses on the reservation utility of this range.

Figure 3.3

3.2.2 Separating equilibrium

Given the result of the second stage game, when U < u(w)< U , insurers will offer 

a single contract which offers partial coverage at the fair premium of the low-risks. 

The high-risks will opt out of the insurance market and stop driving while the low- 

risks will drive and buy the insurance contract.

At the separating equilibrium of the competitive insurance market, insurers offer
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contracts that maximizes the low-risk type’s utility subject to the high-risk types 

preferring not to choose it (and to stay out of the market).

MaxUL = B + (l -  nL )u(W -  6Dtzl )+ x Lu(W -  6t>nL -  (l -  d)D)0

s.t. U„=B + ( \ - tch)u( W - 6Dnt )+ n Hu(W -  6Dttl -  (l -  0)d ) < u(w)

The constraint is binding, therefore UH =u(w), which gives the optimal 6’ . 

Figure 3.4 illustrates the market equilibrium.

Figure 3.4

At the equilibrium, the high-risks opt out of driving and receive the reservation 

utility u(fV) while the low-risks choose to drive and receive

Ul =B + ( \ - kl)u(tr- $'Dxl )+ x Lu{w- 0'Dxl - (l- 0")d )

3.3 Conditions for market equilibrium

The market may not have equilibrium under certain circumstances.

3.3.1 Separating equilibrium and pooling contract

As Rothschild and Stiglitz (1976) show, a pooling contract that Pareto dominates 

the separating contract can disturb the separating equilibrium but can not itself 

constitutes a Nash equilibrium. Hence, no Nash equilibrium in pure strategies exists if 

the low-risks receive greater utility from the pooling contract than from the separating 

contract.

The optimal pooling contract is found by maximizing the low-risk types’ utility 

while keeping the insurers break even.
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MaxUL = B + (l - nL)u(W -  0pDttp)+ttlu(W -  OpDnp -  (l -Op)d )BP

s.t. nP -  2,71 H + (l -  2)71 L 

Solving the optimization problem gives the optimal 0P.

The optimal pooling contract offers partial insurance coverage to both risk types 

(0 < 0P < 1) at pooling premium, p p = 2pH + (l -2,)pL = 0PD7iP, where 

7iP = 2,71 H + (l -  2)71 L is the weighted average of each type’s accident probability. 

With the pooling contract, agents receive the utility

U’ = B + (1 - K,)u(w- 9pLmp)+ - 0'pLnP - (l-0'p)l ), i = H,L

Figure 3.5 illustrates the case.

Figure 3.5

So a separating equilibrium arises when

UPL <USL (3.1) 

where

U[ = B + (1 -  x L )u(w -  0pDkp )+ x Lu{w -  0’pDitp - ( l - ^ ; ) o )

u [ = b + -  0'sd x l)+xlu{w  -  0-sd x l -  (1 -  ̂ ;)d)

Different parameter values may result in different equilibrium. Take the proportion 

of high-risk types for example. The threshold value of X  is found by solving (3.1) as 

an equation. There is a separating equilibrium when 2, > X . Figure 3.6 illustrates such 

a case. When 2,>X, the low-risks receive higher utility from the separating contract 

S than from the pooling contract P (U SL > UPL ), so the pooling contract can not 

disturb the separating equilibrium which dominates the pooling allocation.
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Figure 3.6

3.3.2 Separating equilibrium and cross-subsidization

When insurers are allowed to offer a menu of cross-subsidizing insurance policies 

that earns normal profit overall, i.e., they are allowed to charge the low-risks greater 

than fair premium and use the proceeds to subsidize the policies sold to the high-risks, 

there may exist room for a set of break even policies that leads to a strict Pareto 

improvement. Figure 3.7 illustrates.

Figure 3.7

The initial no cross-subsidization market equilibrium would be at S . Insurers can 

then charge the low risks greater than fair premium and use the proceeds to subsidize 

the high risks. This cross-subsidization will lead to a new allocation S' which Pareto-
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dominates the previous allocation S .21 At first sight, this new allocation appears to be 

an equilibrium at which both types are better off than at S . However, S' can not be 

Nash equilibrium as insurers can profit from deviating from S' to C . Under such 

circumstance, there will be no equilibrium. So the allocation resulting from market 

force must be Pareto efficient to be a Nash equilibrium.

One way to check whether the initial market allocation S is Pareto efficient is by 

introducing a balanced budget tax and subsidy scheme, which taxes the insurance and 

uses the proceeds to subsidize the whole population. If such a scheme can achieve 

Pareto improvement, then there exists room for the cross-subsidizing contracts and the 

separating allocation can be disturbed by these contracts. If there is no positive tax 

that can improve the welfare of the low-risks, i.e. the optimal tax for the low-risks is 

zero, such cross-subsidizing contracts do not exist and the separating equilibrium is 

indeed a Nash equilibrium.

Suppose a lump sum tax t > 0 is imposed for drivers per capita. The proceeds are 

used to subsidize the whole population, s = (l -  X) t , where s is the subsidy per 

capita. The net tax for drivers is t - s  = A t . The reservation utility after the subsidy is 

then u (fV + (l -  A )t).

As the market equilibrium must be Pareto efficient when insurers are allowed to 

offer cross-subsidization contracts, this means t = 0 for the following optimal 

allocation problem:

MaxUL =B + ( \ - x l)u{W-0Dxl -Zt)+7rLu(jV-6D7tL - ( l - 0 )D -X t)
0

s.t.

U„ =B + ( i - x H)u{)V-6DnL-Xt)+ n„u(W -6Dkl - ( l-0 )D -X t)< u(W  + ( l -X)t )  

t > 0

For brevity, let’s set 

Y = W + ( l -  X ) t  

X  = W -  6D k l -  Xt  

Z  = W -  9D k l -  Xt -  (l -  0) D  

Obviously, X  > Z  and hence u'(x)<u'(z).

The problem can be rewritten as the following

21 At S' the high risks are paid not to take insurance from any company. Enforcement o f such a contract maiy be 
infeasible or illegal.

50



MaxUL = B + (l — nL)u(x)+7zlu(Z)
0

s.t. UH = B + ( l - x H)u(x)+xHu(z)<u(Y) (3.2)

t > 0 (3.3)

The Lagrangian is

L = B + (\.-ttl )w(2f)+ ttlu(z )+S(u(y ) - B -  ( l - x H ) u (x ) - x Hu(z))

The Kuhn-Tucker condition gives the necessary conditions

—  = -A(l -  nL)u'(X)-Zklu'(z )+<?((l -  A)w'(y)+ X(\ -  n„ )u'(x)+U„u'{z)) < 0 
dt

t > 0 and t —  = 0 (3.4)
dt

H  = xLD(l - n L )u'{z )-7clD{\ - n L )u'{x)

+ S(Dttl (l -  nH )u'(X ) -  D( 1 -  nL )7thu'{Z )) < 0

0  > 0 and £» —  = 0 (3.5)
80

^ -  = u{y ) - B - ( \ - kh \ { X ) - khu{z )=0 (3.6)
CO

We are interested in positive insurance coverage so we set 0 > 0 . Therefore

dL 
dO

-  0 which gives

^  » t ( l - ^ M Z ) - U ' ( X ) )  ( 3 ? )

* h (l -  M z )~ n L (l ~ n H y { X  )

The sufficient condition for the market allocation to be efficient is t = 0 at the

, dL . . dL ^  _optunum and  < 0 . The necessary condition i s  < 0 .
dt dt

Substituting (3.7) into (3.4) gives

-  i ( l  -  nL )u'(X)-X7Clu'(Z)+

( l ^ W "  i)w'(y )+^  ~ < 0

This is the sufficient condition for that there is no room for government 

intervention. The condition can be simplified as following

Mk h - X l ) A « '(z ) - u'(x ))u'(y ) f38.
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Since u'{Y)<u'{fV)<u'(x)<u'(z), and u'(z)<u'(fV-D) if we assume

t < (Obviously, t = 0 is consistent with this assumption), it always holdsX
that

(u'(tV-d)-u'(fV)y(tV) (iu \z ) -u '{ x )y (Y ) 
w '(^ M ^ ) > u \z )u \x )

Therefore, there exist values of X large enough to satisfy (3.8). For these values, a

Pareto efficient separating market equilibrium exists.

3.4 Cross-subsidization taxation and the aggregate social welfare

Pareto efficiency is not enough if the government’s goal is to maximize the 

aggregate social welfare. Assuming the government is subject to the same information 

asymmetry constraint as the insurers and uses a balanced tax-subsidy, its problem is: 

MaxAUH+ { \ - X p L

s.t. B + (1-jch)u(x )+7chu(z )<u(y ) (3.9)

B + {l-7tL)u(x)+7rLu{z)>u{y) (3.10)

Here we do not require t > 0 . The constraint on balanced tax system is already 

embedded in the equations. The self-selection constraints cannot hold with strict 

inequality for both risk types at a solution, for then a Pareto improvement would be 

possible. Hence, either (3.9) or (3.10), or both, must hold in equality.

The Lagrangian is

L = W(Y)+(\ -  X \B + (l-xL )/(x )+ *lu(z))+Ph (u(Y)-B-{\-tih )u {x)-it„u{z)) 
+ P L (B + (l -  kl )»(X)+ nLu{z)~ u(Y))

The Kuhn-Tucker condition gives the first-order condition for an interior solution:

h SL^ = f lLSL_ SL 8L 
dp dp1 d0 dt

With the assumption that 6 > 0, we have:

H  = (1 - X)nL(1 - nLl u ' ( z ) - u ' ( x ) h P " k ( l - M * ) “ 0 - K “ '(z ))(3 n )

+pL{\-nL)xL{u'{z)-u'{x))=0 
The optimal tax must maximize the aggregate social welfare, so we have
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*W(r)-Ai - *X(» - VW+%«'(z))ut
+ y5"((l-/l> /'( l" )+ -i(l-^ )w W + ^H "'(z )) (3.12)
+ p L (-  A(l -  )u'(jf) -  /brLu'(z)- (l -  t)u'(Y))=0

From (3.11), we have

r  0 1 3 )7tL{i-7tL\u (Z)-U  (X))

Substituting (3.13) into (3.12) gives

OH = _____________ ^ ( l - ^ X l - A V W f r W W ) ______________ n  , «
(*„ -  nL i M { x y { z ) +  (1 -  ztXl -  XL y(Y)u'(z)+(1 -  i y Lu'(Y)u'{x))

(3.13) and (3.14) give

M _____________________________
{nH-x̂ httxy{z)+{l-ZX\-nLWW) -̂*)*LAvy{X)) 

' M k G - ^ LW M z ) - A x ) ) - ^ H - ^ ) u ' { x y ( z y  ( ■ )

+ Xu'(Y'ixH (1 -  n L y(z)~ n L (l -  n H y{x))

3.5 The high-risks opt out while the low-risks participate

As Section 3.4 Cross-subsidization taxation and the aggregate social welfare shows, 

a government that uses a balanced budget tax and subsidy scheme to maximize the 

aggregate social welfare faces the following problem:

M a x W H + t ± - X p L

s.t. B + {l-7rH)u(x)+7rHu{z)<u(Y) (3.9)

B + (l-  nL )u{x)+ttlu(z ) > u(Y) (3.10)

As the self-selection constraints cannot hold with strict inequality for both risk 

types at a solution, we first consider the most interesting case -  the high-risks opt out 

of the risky activity while the low-risks choose to participate in the risky activity and 

buy insurance, i.e. condition (3.9) binds whilst (3.10) does not.

At the market equilibrium, the high-risks are indifferent between driving and not 

driving, and we assume they choose not to drive and receive the reservation utility 

u(w). The low-risks drive and receive B + ( \ -  xL)u(x)+ nLu(Z) > u(W).

Welfare maximization allocation may involve a positive tax on insurance and 

subsidy from the low-risks to the high-risks, as figure 3.8 illustrates. The laissez-faire 

market equilibrium is at S . A positive tax on insurance shifts down the indifference
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curve of the low-risks from UL to U*L but pushes up that of the high-risks from UH 

to U*H. The optimal allocation under the policy intervention that maximizes the 

aggregate social welfare may end up at S *.

Figure 3.8

Or it may involve a negative tax on the insurance and subsidy from the high risks to 

the low risks, as figure 3.9 illustrates. The laissez-faire market equilibrium is at S . A  

negative tax on insurance shifts up the indifference curve of the low-risks from UL to

U*L but pushes down that of the high-risks from UH to U*H . The optimal allocation 

under the policy intervention that maximizes the aggregate social welfare may end up 

at S *.

Figure 3.9
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In both cases, the high-risks opt out of the risky activity while the low-risks choose 

to participate in the risky activity and buy insurance, i.e. condition (3.9) binds whilst 

(3.10) does not, i.e.

B + (l -  nH )u(x)+ 7rHu(z) = u(Y  )

B + ( \ - n L )u(x)+7tLu{z) > w(7)

3.5.1 To tax or to subsidize insurance policies

As the section above discusses, in order to maximize the aggregate social welfare, 

the tax and subsidy scheme may involve a positive tax on insurance and subsidy from 

the low-risks to the high-risks or a negative tax (effectively a subsidy) on insurance 

and subsidy from the high-risks to the low-risks. Therefore, an interesting question is 

when to tax or subsidize insurance policies.

When condition (3.9) is binding but (3.10) is not, p L -  0. The welfare 

maximization problem can be rewritten as 

Max XUH + (l -  Z)UL

s.t. B + ( \- ttH)u{x)+nHu{z)<u(Y)

The Lagrangian is simplified into 

L = X U ( y ) + ( \ - +  ( \ - n L)u(x)+ 7tLu(z))+pH(u (Y ) -B - ( \-n „  )u(x)-!i„u{Z))

And we have

^=2(i-2y(y)-2(i-2X(i-%y(x)+ 4̂z)) (316)
+ p H ((i-2y(y)+2(1 -  )u'(x )+a.x hu'(z ))

For 6 * 0, we have 

= (1 -  2 k  (1 -  n L y ( z ) - u ( x ) ) +p H (kl (1 -  k„ )»'(X)- (1 -  k l )xhu'(z))=0
DO

(3.17)

Equation (3.17) gives

0 h - * M z ) - « ' ( x ) )
*H ( ! - nL )u'{z) - kl (l-x„)u''(x)

3.5.1.1 Redistribution effect and efficiency effect

It is more straightforward to analyze the effects of the taxation by rewriting (3.16)

as
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8L = X(\ -  X)u'{Y)dt -  /t(l -  /lX(l -  irL)u'(x)+ 7iLu\Z))dt 
+ p H{ { \ - i y ( Y ) + A(l -  n„ )«'(*)+ XnHu'{z))dt

= ^ a + ( Q. w )

dt
dt ' n/ dt dt

The effect of taxation on total social welfare can be decomposed into two effects:

redistribution effect X ——- dt + (l -  x { (l -  nL ^  5m(z) ^  an(j efpcjency
dt I dt dt /

effect p H
, 8t y H> dt M 8t

d t .

The redistribution effect measures the utility change from transferring wealth 

between the high-risks and the low-risks, weighted by the ratios of the population 

respectively. A positive tax and subsidy will transfer wealth from the low-risks to the 

high-risks, and decrease (increase) the utility of the low-risks (the high-risks) 

accordingly. A negative tax and subsidy works in the same way but in the opposite 

direction. Whether the redistribution effect is positive or negative is dependant on 

whether the weighted utility gain is more than offset by the weighted utility loss or 

not.

If we rewrite the redistribution effect as X(\ -  X)(ur(Y)-((l-  7rL)u,(x)+ x Lu'(z)))dt, 

we can see that the redistribution effect is actually dependent on whether the marginal 

utility of the high-risks is greater than the expected marginal utility of the low-risks.

At the equilibrium, the low-risks enjoy higher utility than the high-risks because of 

the driving benefits they receive from driving. However, their expected income is 

actually less than the high-risks because of the expected loss from engaging in the 

risky activity. So the expected marginal utility of the low-risks is greater than the 

high-risks. As the result, the net effect of the redistribution is negative.22

Besides the redistribution effect, such a tax and subsidy scheme also has an 

efficiency effect: The presence of the high-risks imposes a negative externality on the 

insurance coverage that the low-risks are allowed to purchase, as insurers have to 

restrict the coverage to discourage the high-risks from buying the insurance. Taxing 

insurance makes it more expensive and hence less attractive to the high-risks while 

subsidizing the whole population raises the reservation utility and hence makes the

This is a feature o f the additive utility function.
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opt-out option more attractive to the high-risks. So insurers can now raise the 

insurance coverage to a higher level without attracting the high-risks into buying it. 

The low-risks can now buy more insurance coverage, which increases their utility.

Techincally, the efficiency effect measures the utility change from relaxing the 

incentive constraint caused by the information asymmetry. Unlike the redistribution 

effect, as we can see below, the efficiency effect is positive for positive tax and 

subsidy. Because a tax allows the low risks greater insurance coverage, the 

compensating variation is less than the value of the subsidy to the high risks. In this 

setting, the deadweight cost of taxes is negative.

For interior solutions, i.e., 6 * 1 and X  * Z , we have from equation (3.18)

oh -*Mz)-u'{x)) , 0
(l -  ■xL )»''{Z ) -  kl (l -.nH )w1(X )

As we know, the Lagrangian multiplier measures the marginal change of the 

objective function caused by the marginal change of the constraint value. Before the 

insurance coverage reaches full insurance (0 = 1 and X  = Z ), we always have 

J3h >  0 ,  s o  positive tax and subsidy, which increases the reservation utility of the 

high risks and hence relaxes the incentive constraint, always increases the aggregate 

social welfare.

The marginal change of the incentive constraint to the marginal change of tax is

measured by
J , dt v dt H dt

, i.e.,

((l -  X)u'(y)+ A(l -  7rH )u'(X)+ X7thu'(Z)), which is clearly positive.

Put together, the efficiency effect is measured by the marginal change of tax, times 

the marginal change of the incentive constraint to the marginal change of tax, times 

the marginal change of the objective function to the marginal change of the incentive 

constraint:

dt
dt v dt n dt

The overall effect of taxation on total social welfare depends on whether the 

redistribution effect is more than offset by the efficiency effect. The next section gives 

the condition on when the overall effect is positive or negative.
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3.5.1.2 Condition on whether to tax or to subsidize the insurance

As the analysis in the section above shows, the tax and subsidy scheme has two 

effects: the redistribution effect which reduces the aggregate social welfare and the 

efficiency effect which increases the aggregate social welfare. When the efficiency 

effect dominates the redistribution effect, taxing insurance and subsidizing the whole 

population increases the aggregate social welfare. When, on the contrary, the 

redistribution effect dominates the efficiency effect, taxing the whole population and 

subsidizing the insurance increases the aggregate social welfare. The following 

technical analysis examines when to tax or to subsidize the insurance in order to 

maximize the total social welfare.

Substitute (3.18) into (3.16) and rearrange it, we have

5 = 4 -  * V (r)+  4  -  ** y ( x ) + A x Hu'(z))
dt (!-*„)<  (.AT)

- A ( 1 - A X ( 1  - tvl)u'(X)+xlu'{z ))
or

d L _________________( l - A )

dt 7Th{ 1 7Zl )w (z) ^ ( l  (^0 ^
'( l -A K (l-^ X Wt^ ) -« W V (T )-A (^ - x L)u'{z)u'{x]\
+ \ tth (l -  nL )u'(z)-  7TL (l -  nH )u\X))

It is straightforward that nH(l - n L)u'(z)-7tl(l- nH)u'(X)> 0, so the sign of

(3.19) is dependent on the sign of

(1-A M i - x l M z ) - u ' { x M y ) - X { t t h - z l )u'(z)u'{x)

+M y^ h (i-- Mz)-** (i-- Mri)
The necessary efficiency condition of the market equilibrium gives

*l) -  (u'(z ) - u'(x M y ) ; e_
(l- /lV L(l-/r t ) u'(Z)u'{X)

(l -  Z)xL(1 - x L tu'{z)-u'(x))u'{y)- X(uH - nL)u'(z)u'(x) < 0

Clearly, the first part of (3.20) is negative while the second part is positive, so

(3.20) could be either positive or negative. We can rewrite (3.19) as

dL (i - aM *V(z)
dt n„ (l -  nL y (Z ) - i tL(l -  n„ )u'(x)

+ (l- ^ K ) - Wl " *«)+(* ~ ~ )) ~ ■*(*» ~*l)

(3.19’)

The sign of (3.19’) is dependent on the sign of
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(3.21)

u(X ) u(Z)
(3.20’)

(3.20’) can be rewritten as

u'(Y) 1 /(7 )^  _ v _ ft - \
' / V \  r/<7 \ V  +  * l ) )   ̂ r ( 7 \  K l )u(X ) u (Z)J { u (Z)J

When t = 0,

Y = W , X  = W -  ODx l , Z = W -  0 D x l -  ( \ -  9 )D  

So Y > X  >Z and hence u'(y )<u'(x )<u'(z ). Therefore,

4 l ) _ i ^ > 0 a n d l - ^ > 0
u'(X) u'(Z) u ' ( z f

S o ^
dt

(<)0 when
1=0

«'(y) A y)
u'{x) u'{z)

i  AY)
»'{Z)

(<)
Z \J tH 71L ) (3.22)

So the optimal tax could be positive or negative, depending on the parameter values.

When

«'(Y) u'(Y) 
u j x )  u'(z)

I U\Y ) > ( l -7 r , ix ,  + M*h -X l))  
u'(z)

We have —
dt

> 0 , i.e. the aggregate social welfare increases with tax t , so the
1=0

efficiency effect dominates the redistribution effect. A positive tax on the insurance

and subsidy from the low-risks to the high-risks increases the aggregate social welfare.

Similarly, when

u'(Y) u'(Y)
U'(X) U'(Z) ,

i U'{Y) (l -  n L \ n L +Z(tt„ -  nL ))
U’(Z)

The redistribution effect dominates the efficiency effect. A negative tax on the 

insurance and subsidy from the high-risks to the low-risks increases the total social 

welfare.
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3.5.1.3 Numerical examples

Set u(x) = lnx . When W = 100, B = 1, D = 90, ^  = 0.8, ;rL = 0.3, A = 0.3, the 

left hand side of (3.22) equals 0.8832 and the right hand side is 0.47619, so a positive 

tax increases social welfare. For example, a positive tax T = 17.857143 increases the 

aggregate social welfare from 9.7815 to 9.8708.23 Figure 3.10 illustrates. The laissez 

faire market equilibrium is at S . A positive tax on insurance shifts down the 

indifference curve of the low-risks from UL to U*L but pushes up that of the high- 

risks from UH to U*H. The optimal allocation under the policy intervention that 

maximizes the aggregate social welfare may end up at S*.

Figure 3.10

When W = 100, B = 1, D = 99, nH-  0.9, 7tL = 0.3, A = 0.83, the left hand side is 

0.79082 and the right hand side is 0.89151, so negative tax increases social welfare. 

For example, a negative tax T = -1 increases the aggregate social welfare from 

9.7771 to 9.7844.24 Figure 3.11 illustrates. The laissez-faire market equilibrium is at 

S . A negative tax on insurance shifts up the indifference curve of the low-risks from 

UL to U*L but pushes down that of the high-risks from UH to U*H. The optimal 

allocation under the policy intervention that maximizes the aggregate social welfare 

may end up at S *.

23 Appendix 3.1 provides detailed simulation results.
24 Appendix 3.2 provides detailed simulation results.
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Figure 3.11

3.5.2 The optimal tax level and efficient allocation

Section 3.5.1 finds the condition on whether to tax or to subsidize the insurance in 

order to maximize the aggregate social welfare. However, it does not answer what is 

the optimal level of the tax or the subsidy (i.e. negative tax). This section finds the 

optimal level for an interior solution.

From (3.21), we know that for an interior solution, t must satisfies

When equation (3.22) holds, p L = 0 and —  = 0. The solution clearly satisfies the
dt

Kuhn-Tucker conditions. Equation (3.22) therefore fixes the optimal allocation and 

hence the optimal tax and subsidy.

3.5.3 Pooling full insurance coverage is never efficient

When agents can decide whether to participate in the risky activity and whether to 

buy insurance, full insurance can never maximize the total social welfare.

u'{Y) u'(Y)
u j x )  u'(Z) l ( n H- x t )

1 UXY) (l -  x L \ n L + X(n„ -  itL))
(3.22)
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Full insurance would be optimal only when increasing tax always increases the 

aggregate social welfare or at least does not reduce the welfare, which implies at the

dLfull insurance —  > 0 , i.e.
dt

«'(r) «'(r)
u {x)  u (z) ___ ~ kl)  /■.

1 u'(¥) (l -  -  X, ))
u ' ( z )

At full insurance, X  = Z = W -  nLD -A t ,  so the left hand side of (3.23) is 0 while

dLthe right hand side is positive. This violates the condition of —  > 0.
dt

Intuitively, under full insurance, X  = Z , so 

p H -  71 ̂ = ® ’ there is no efficiency effect from

the taxation: relaxing the incentive constraint has no efficiency effect now since the 

insurance contract has reached full coverage. All that matters is the redistribution 

effect. As we know, motorists have higher marginal utility than the non-motorists and 

hence the redistribution effect is negative. Therefore, the overall effect of the taxation

. . dLat full msurance must be negative, i.e. —
dt

< 0 .
x=z

Clearly, when t > 0 increases social welfare, an optimal allocation involves cross 

subsidization from the low-risks to the high-risks, but only with partial insurance. In 

the previous simulation example that m(x)= lnx, W = 100, B = 1, D = 90, nH =0.8, 

nL = 0.3, A = 0.3, aggregate social welfare first increases with the tax but then 

decreases before reaching full insurance. A positive tax at about t = 59 maximizes the 

aggregate social welfare.25 Figure 3.12 illustrates: the laissez faire market equilibrium 

is at S . A positive tax t > 0 on the insurance and subsidy from the low-risks to the 

high-risks increase the total social welfare, which is maximised at S* before reaching 

the full insurance coverage.

25 Appendix 3.1 provides detailed simulation results.
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Figure 3.12

3.5.4 Too much insurance

As section 3.5.1 shows, when the redistribution effect dominates the efficiency 

effect, a negative tax increases the total social welfare, i.e. when

In this case, there is too much insurance being sold too expensively in the market 

equilibrium. The effect of the negative tax is to reduce the insurance coverage and the 

insurance premium at the same time, which increases total welfare. Under certain 

circumstances, the market only needs infinitesimal insurance coverage. In this case, 

“almost no insurance” is the optimal allocation.26 

As in the full insurance extreme, “almost no insurance” is optimal when decreasing

SLthe tax always increases the social welfare. So at 6 = 0, —  < 0.

26 As we can see below, reducing insurance increases aggregate social welfare, which is actually highest when 
there is no insurance at all. However, as the present research set the tax and subsidy scheme on insurance policies, 
there would be no such a scheme when insurance is completely eliminated. Therefore, “almost no insurance” 
becomes the optimal allocation. If the tax-subsidy scheme was set on the motoring activity, insurance could be 
eliminated completely then. Since this only has trivial technical effects on the comer solution, the present research 
sticks to the current tax and subsidy scheme.

u'{Y) u’(Y)

1 ( l  -  71 L X * I  ~  X L ) )

dt
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When 0 = 0 and t < - D , u,(x)< u '(z)< u,{Y) and U (—1 -  > 0 and
u \X )  u(Z)

1---7—r < 0, so —  > 0, which contradicts —  < 0. Therefore, “almost no insurance’
u'{z) dt dt

cannot be optimal. Instead, an interior solution exists.

When 0 = 0 and t > - D , u'(x )<u'{y )<u'(z ) and U > 0 and
u \X )  u(Z)

t u’{Y) n d L ^ . .  v1---7—r > 0 , so —  < 0 implies
u(Z) dt F

A y )  w{y )
A x )  w ( z ) , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

l A y )  (l -  trL \ t tL + /t(*v - 71L))
A z )

(3.24)

It is possible to satisfy (3.24) so “almost no insurance” could be optimal. For 

instance, when u(x) = lnx , W = 100, B = 1, D = 90, jch -  0.8, tul = 0.3, X = 0.8, 

the aggregate social welfare increases monotonically with the absolute value of 

negative tax.27 Figure 3.13 illustrates: the laissez faire market equilibrium is at S . A 

negative tax t < 0 on the insurance and subsidy from the high-risks to the low-risks 

increase the total social welfare, which is maximised at S*, which is infinitesimally 

close to no insurance at all.

Figure 3.13

27 Appendix 3.3 provides detailed simulation results.
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3.6 Extreme case: utility from driving with full insurance is the same as 
reservation utility

As we know, (3.9) and (3.10) cannot both hold with strict inequality at a solution. If 

they both bind, we have

B + (l -  nH M ^)+ xHu(z ) = U(Y) (3-25)

5 + (\ - k l )u(x)+7TLu(z) = u(y ) (3.26)

(3.25) and (3.26) give X  = Z , i.e., full insurance, which in turn gives 

B + u(W -  Dx l -  At)= u(W + (l -  l)f )

Figure 3.14

Figure 3.14 illustrates the allocation. The utility the low-risks receive from driving 

is at the same level as the reservation utility after the tax and subsidy scheme is 

implemented. This is actually just a special case of section 3.5 where t > 0 is such 

that it makes 9 = 1. However, as we have seen in section 3.5.3, full insurance can 

never maximize total welfare.

3.7 Extreme case: the high-risks opt out while the low-risks are indifferent

Another extreme case happens when (3.10) binds but (3.9) does not. If 

B + ( l - x H)u(x)+xHu(z)<u(Y),then B  + (1-xl )u(x)+xl u(z) = u ( y )  and p H =0. So 

the high-risks will not drive. p H = 0 implies u'(z) = u ' ( x ) . So the low-risks receive 

full insurance and are indifferent between driving and not driving.

With full insurance coverage, the low-risks, who are motorists, receive utility 

B + u(W -  DnL -  At) while the high-risks do not drive and receive the reservation
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utility u(fV + (l-A)t).  Since B + ( l - x L )u(x)+xLu(z) = u(y ) , we have, with full 

insurance coverage, B +u(W -  Dttl -At) = u(W + (l -  A)t). So there is a full insurance 

allocation as figure 3.14 illustrates of section 3.6.

But what is the optimal tax scheme in this case? Does it increase the total welfare if 

the low risks are taxed to subsidize the high risks and result in an allocation as figure 

3.15 illustrates?

Figure 3.15

In this case, the welfare maximization problem can be rewritten as 

MaxXU„+(\-X)UL

Where U„ = u(W + (l -A)/) and UL — B + u(lV-DttL -A t)

Set L = AUjf + (l -  A.)[/l

-  = A.(l- Atu'(W + (l -  AV)-u'(lV -  Dir, -  At)) 
dt

&L c)Tj
For t > 0, we have —  < 0. Actually, for any t > -D kl , we have —  < 0. So a 

dt dt

positive tax clearly decreases the total social welfare. Actually, a positive tax which

moves allocation from 5" to S” violates incentive constraint and will stop the

motorists from driving. Clearly, allocations such as S” can not be efficient.

dLWhen t < -D n L, we have —  > 0: taxing the high-risks to subsidize the low-risks
dt

increases the total welfare. It immediately involves (3.9) binding and (3.10) not (that 

is, B + (l- nH)u(x )+ 7tHu{z) = w(f) and B + (l- 7tL)u(x)+7tLu{z)> w(f)), a scenario

66



we have discussed in section 3.5. Such a tax in effect moves the allocation from the 

full insurance S' to the partial insurance coverage S*, as figure 3.16 illustrates.

u[u:

Figure 3.16

3.8 Conclusion

This chapter shows, introducing a participation option into traditional models of 

adverse selection causes significant changes. Due to their high probability of incurring 

loss, which makes the reservation utility more attractive, the high-risks drop out of the 

risky activity. Instead of being stuck with the low-risks, the market is now filled with 

the good-risks -  the “lemon” market has turned into “peach” market. Taxing 

insurance makes participation less attractive for the high risks, allowing the low risks 

to extend coverage. Thus the tax has an offsetting benefit to those paying it creating 

an efficiency gain. When the redistribution effect dominates the efficiency effect, 

redistributing the wealth from the high-risks to the low-risks is optimal. This requires 

an insurance subsidy, which paradoxically decreases the insurance coverage in the 

market equilibrium. For certain parameter values, it would maximize total social 

welfare to eliminate the whole insurance market. The market equilibrium involves too 

much insurance.

Another interesting finding is that full insurance pooling allocation never 

maximizes the aggregate social welfare. Although the high-risks enjoy higher 

reservation utility in the allocation, there is no efficiency gain at all for the whole 

society, and there is only redistribution effect which is always negative.
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Chapter 4 Partial-pooling Nash equilibrium and participation option

4.1 Introduction

Since Rothschild and Stiglitz (1976) found that a pooling Nash equilibrium can not 

exist in competitive insurance markets, explaining how pooling can arise has become 

a notoriously difficult task in insurance studies. Wilson (1977) adopts “anticipatory 

equilibrium”, a different equilibrium concept from Nash equilibrium, and finds a 

pooling equilibrium in the same setup as Rothschild and Stiglitz. However, his 

assumption on the strategic behaviour of insurers is inconsistent with the assumption 

of competitive insurance markets. Wambach (2000) extends the Rothschild-Stiglitz 

model by introducing unobservable wealth in addition to the differing risks, which, 

under the assumption of constant relative risk aversion, in effect changes agents’ risk 

preferences. Wambach shows that for large wealth differences, partial risk pooling 

contracts, in which one type chooses different contracts in equilibrium, are feasible. 

Furthermore, complete risk pooling contracts can also occur.

Smart (2000) explicitly introduces different risk preference into the Rothschild- 

Stiglitz model. With the double crossing property of indifference curves, he finds that 

different risk types can be pooled in Nash equilibrium if differences in risk aversion 

are sufficiently large. Similar to his work, de Meza (2002) also finds the partial- 

pooling Nash equilibrium. Their works lay the foundation on equilibrium analysis for 

the present essay.

In contrast to the works above, de Meza and Webb (2001) find partial-pooling Nash 

equilibrium assuming heterogeneous risk preferences and hidden action. More risk- 

averse agents choose higher precautionary effort which leads to different risk 

probabilities. Risk-tolerant agents are drawn into a pooling equilibrium by the low 

premiums created by the presence of safer, more risk-averse types. Their welfare 

analysis shows that taxing insurance drives out the reckless agents, allowing a strict 

Pareto gain, however administrative costs are necessary for this result.

This present essay introduces participation option and differing risk preferences 

into the Rothschild-Stiglitz model. Agents not only differ in risk preferences and risk 

probabilities, they also have choices on whether to take the risk activity and whether 

to buy insurance in competitive insurance markets where insurers offer single 

contracts with endogenous contract form.
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Because of differing risk preferences, the same financial loss resulted from the 

risky activity results in different changes in the utilities of agents. This together with 

the reservation utility from the participation option, and the driving benefit from the 

risky activity, gives rise to four different separating equilibria, partial-pooling 

equilibrium, and sometimes no equilibrium at all in the market.

At the partial-pooling equilibrium, the timid high-risks do not drive to avoid the 

possible financial loss resulted from the accident which is more likely to happen to 

them and receive the reservation utility, the bold high-risks are attracted into driving 

and buying insurance because of the low insurance premium resulted from the 

presence of the timid low-risks, and the timid low-risks, as the bold high-risks, choose 

to drive and buy insurance.

The essay demonstrates that the partial-pooling Nash equilibrium is Pareto efficient 

under certain conditions. But if it is inefficient, a tax and subsidy scheme which taxes 

insurance and uses the proceeds to subsidize the whole population may achieve Pareto 

improvement: taxing insurance makes it more expensive and hence less attractive to 

the bold high-risks who would now opt to stop driving and receive the reservation 

utility which is now higher because of the subsidy. So taxing insurance drives the 

bold high-risks out of the insurance contract. This will in turn lower the insurance 

premium for the timid low-risks who will continue driving and buying insurance. The 

timid high-risks will become better off as well because of the raised reservation utility. 

Therefore, a Pareto improvement is achieved.

This result complements the case for taxing insurance by extending it to pooling 

equilibrium where the efficiency problem is the wrong composition of extents.

The essay is organized as follows. Section 4.2 specifies the model. Section 4.3 

finds the partial-pooling Nash equilibrium as well as the four separating equilibria. It 

also finds conditions of the partial-pooling equilibrium. Section 4.4 analyzes the 

efficiency of the partial-pooling equilibrium and demonstrates that it is Pareto 

efficient under certain conditions. Section 4.5 shows that inefficient partial-pooling 

equilibrium exists and taxing insurance leads to Pareto gain.

4.2 The model

There are many insurance companies in the market. Agents are identical except for 

accident probability and risk aversion, which are unobservable. Accident probability
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ni and risk aversion 0. each take on one of two values in the population,

ij e {L,H}x with 0 < kl < nH < 1 and 0B<0T. The coefficient of absolute risk

u"
aversion is defined as 0. = — - , j  = B ,T , where u represents utility function and uT

U J

always has greater degree of risk aversion than uB. Furthermore, we assume 0B = 0, 

so uB is a linear utility function to simplify the analysis without losing any general 

implications. Everyone has an initial wealth W .

So there are four types of agents in the insurance market: Nw agents with low 

accident probability and low risk aversion LB (the bold low-risks); NLT agents with 

low accident probability and high risk aversion LT (the timid low-risks); NHB agents 

with high accident probability and low risk aversion HB (the bold high-risks); 

agents with high accident probability and high risk aversion HT (the timid high-risks) 

The market equilibrium is the outcome of a two-stage game. In the first stage, each 

insurance company offers a single insurance policy a  — {/,/?}, which specifies 

insurance indemnity /  and premium p . Agents then choose whether to drive and, if 

drive, whether to purchase insurance. If they do not drive, they receive a reservation 

utility Uj(W) ,  j  = B ,T . If they drive, they enjoy a utility benefit B from driving but

may incur a pecuniary loss D with probability ni, i = L ,H .

4.2.1 Insurance demand

The bold low-risks LB receive the reservation utility uB(w) if they choose not to 

drive. If they drive without insurance, they receive

ULB = B + 7ijUB(W -  D) + (l -  7iL )uB(w). Since uB is assumed to be linear, ULB can be 

simplified as ULB = B + uB(w -  ttlD). If they drive with insurance, they receive 

Ujj = B + 7tlub (W -  D -  p  + /)+  (l -  7rL )ub(W -  p ) , which can be simplified as 

Ulb =B + ub(W-7tlD + 7tl I  -  p). Hence if the bold low-risks drive, they will buy 

insurance policy if p < til I  . But this policy will not be offered since it surely results 

in loss to insurers. The best premium they can get is the fair premium p  = nLI , at 

which they are indifferent between buying and not buying insurance.
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For the timid low-risks LT, they receive a reservation utility ULT =uT(fV) if they 

choose not to drive. If they drive without insurance, they receive 

UlT = B + nLuT (W -  D)+ (l -  7tl )uT(fV). If they drive with insurance, they receive 

ULT =B + 7zlut (fV -  D -  p  + 1)+ (l -  7tL )ut (W — p ) . If they drive with full insurance 

coverage at a fair premium, i.e., I  -  D and p = 7tLD , they will receive 

ULT = B + uT(jV - ttlD).

For the bold high-risks HB, their reservation utility is uB (fV) if they do not drive. 

They receive Um = B + tthub (W -  D)+ (l -  nH )uB (lT), i.e., UHB = B + uB(lV -  nHD ) , 

if they drive without insurance. If they drive with insurance, they receive 

Um = B + x HuB( l V - D - p  + l ) + ( l - x H)iiB(W -p),i.e .,

UHB = B + ub(W -  7rHD + 7tHI  -  p). Therefore, when they drive, they will buy 

insurance if 7rHI -  p  > 0 and will be indifferent if nHl  -  p  = 0.

For the timid high-risks HT, their reservation utility is uT(w) if they don’t drive. If 

they drive without insurance, it is Um  = B + 7rHuT(W- D)+(\-7th )ut (w), and it is 

Um = B + 7rHuT (W -  D -  p  +1)+ (l -  nH )uT (W -  p) if they drive with insurance. 

Hence they would choose to drive with insurance if

B + 7rHuT ( W - D -  p  + l)+(\-7rH)uT(W -  p )> uT(w). If offered full insurance 

coverage at fair premium, i.e., I  = D and p  = 7rHD , their utility is 

Um  = B + uT(W-7rHD).

4.2.2 Participation option and reservation utility

With different levels of reservation utility, agents may choose to drive or not to 

drive. This paper makes further assumptions of reservation utility as follows.

Um = B + uB(W -  tthD)< ub(w )<Ulb =B + ub(W - ttlD)

Ujjt = B + uT(j¥-7ThD)< ut(w )<Ult = B + ut (W -  7TlD) 

where uB(w) is the reservation utility of the bold and uT(w) is the reservation 

utility of the timid. The bold high-risks HB will stop driving if offered insurance 

coverage at their fair premium, but they will drive with insurance if 

B + ub(W -  nhD + 7iHI  -  p) > uB (w ) . The bold low-risks LB will definitely choose to 

drive. As we have seen in Section 1.1, the bold low-risks are indifferent between
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buying and not buying fair insurance when they drive. Since insurance is never better 

than fair for the low risks, the LB have no impact on the equilibrium. So we drop out 

the bold low-risks in the rest of the analysis.

It is straightforward that the timid high-risks HT will not drive but it is ambiguous 

whether the timid low-risks LT will drive. The following equilibrium analysis gives 

answer for that.

4.3 Market equilibrium

4.3.1 Full pooling allocation can never be a Nash equilibrium

One possible equilibrium is the full pooling allocation: the timid high-risks, the 

bold high-risks and the timid low-risks are all offered the same insurance contract and 

hence are pooled into a full pooling allocation. But can it constitute a Nash 

equilibrium?

The slopes of the indifference curves of the timids are , i = L ,H ,
u t W i )

where W] represents the wealth in good state where there is no accident and W2 the 

wealth in bad state where there is an accident, W}<W and W2 > W - D . Clearly, the 

timid low-risks LT have steeper slope of indifference curve than the timid high-risks 

H t at any wealth allocation, so their indifference curves cross only once. Therefore, 

for any contract that pools both the types, insurers can always find a deviation 

offering cheaper premium with more deductible, which is attractive to the timid low- 

risks LT but not to the timid high-risks H T. So a full pooling allocation can never 

constitute a Nash equilibrium.

4.3.2 Separating equilibrium

Another possibility is separating equilibrium: each type of agents is offered a 

insurance contract different from one another. The following analysis shows there 

may be four different separating equilibria.

In the models where agents only differ in risk probabilities, indifference curves of 

different agent types cross only once. However, with differing risk preferences, the 

difference curves may cross twice. This gives rises to the existence of partial-pooling 

equilibrium.
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Technically, the slopes of the indifference curves of the bolds are —71 ̂  ub(^ i) ^
ubW.2 )

i.e., —— , i - L , H , since their utility function is assumed linear. It is

straightforward that the slope of the indifference curve of the bold low-risks LB is

always steeper than that of the timid low-risks LT, i.e., ?
nL nL ut(W2)

V Wx > W2, WX<W and W2 > W -  D . However, it is ambiguous whether or not the 

slope of the indifference curve of the bold high-risks HB is steeper than that of the 

timid low-risks Lr . With different wealth allocation {W1, W2} in the region that

Wl >W2 fW1<W and W2 > W - D , |g r e a te r  or less than
7iL u'T(W2)

——— , dependent on the wealth allocation and the degree of risk aversion of the
71H

timid low-risks LT. If -  uM i ) ; v  W, > W2, W, < W and
" h nL “rWi)

W2 > W -  D , the indifference curves of the timid low-risks LT and the bold high-risks

Hr, cross only once. If < - - - — Mr(^1 ) for some wealth allocations
n„ nL u'T(W2)

{W„W2} in the region that WX>W2, WX<W and W2> W - D , they will cross twice.

( l-7rL) n Mr ^  1 d ul{W,)As —- — > --------—, 0 < ; ; < 1 ,  T}~ { < 0 , one can always find a 0
tth 7il u't(W2) dOu'T{W2)

that is large enough to make ut( ^ i) for a given wealth
7Th 71 l U'T(IV2)

allocation { ^ , }.

Differing risk preferences also affects equilibrium from another aspect. With 

different degrees of risk aversion, the utility functions of the bolds and the timids give 

different scales of utility. Hence the same wealth change may result in different 

changes in utility. This together with a fixed utility benefit B o f driving may have 

very different effects on the bolds and the timids. As a result, the indifference curve of 

reservation utility of the HB may lie above (like V ), cross (like I ”), or below (like

I m) that of the HT ( ) ,  as figure 4.1 illustrates.
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HT

Figure 4.1

4.3.2.1 Separating equilibrium -  type 1

Accordingly, there can be four types of separating equilibrium as section 4.3.2.1 -  

section 4.3.2.4 show. When the indifference curve of reservation utility of the HB lies 

below that of the HT, the reservation utility of the bold high-risks constitutes the 

binding constraint for the insurance coverage offered to the timid low-risks. The 

equilibrium allocation is therefore the allocation that maximizes the utility of the 

timid low-risks whilst keeps the bold high-risks indifferent. When the indifference 

curves of the bold high-risks and the timid low-risks cross only once, the optimal 

allocation involves no insurance for the bold high-risk, partial insurance coverage for 

the timid low-risks and zero profit for the insurers.

In the competitive market, insurers offer contracts that maximise the utility of the 

timid low-risks subject to the bold high-risks are indifferent between buying the 

insurance and receiving the reservation utility. Consider the following maximization 

problem

Max U[T = B + ttlut( W - D - p l + ttl)ut(W- p})
!\>P\

S t. p, = nLIx

B + ̂ HUB(f v - D - p l +ll)+(l-7rH)uB( W - p l)=ul>(lV) i.e.

B + ub(W -!thD + (xh - ^ J / , ) = u B(iF) 

set {/; , p* |  as the solution to the problem.
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If the indifference curve of the timid low-riks only cross once that of the bold high-

risks, i.e. - —— > ---—^ — r and the bold high-risks are 
K„ itL u'T\ f v - D - p ^ i ; y

indifferent between buying the insurance contract and receiving the reservation utility,

i.e. B + nHuT(jV- D - p\ + 1*)+ (l- nH)uT(f¥- p*)< uT( w ) ,  {/*,p *} constitutes a

separating equilibrium, which we call type 1 separating equilibrium. In this

equilibrium, both the HB and the H T will stop driving, and the LT will drive with

partial insurance coverage at their fair premium. Figure 4.2 illustrates the equilibrium.

HT

HB

LT

Figure 4.2

4.3.2.2 Separating equilibrium -  type 2

As the timid low-risks become more risk averse, their indifference curves become 

more curved and may double cross the indifference curves of the bold high-risks. 

Technically, as the degree of risk aversion of the LT increases,

(1 -^ 0  Uj{fV-p\) . ^  . uu . -----——r—  £-LL—n  mcreases: they are willing to give up more wealth m
ttl uT\ fV - D - p l + /, j

exchange for a given wealth increase in the bad state. After a critical value, we will 

have < ( l - * J n . There then exists profitable deviation

from a type 1 equilibrium a type 2 separating equilibrium in which high risks do not 

drive and low risks drive with partial coverage. At the type 2 separating equilibrium, 

insurers offer contract Z* rather than the type 1 separating contract Z\ , as it is
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preferred by the timid low-risks. Also, insurers make more than normal profits from 

Z*, as it is below the fair offer curve of the timid low-risks. The equilibrium can be 

defined as the outcome of the following maximization problem.

Max U\T =B + KLuT( W - D - p 2 + I2)+ ( l-n L)uT(jV -p2)
hiPi

S.t. f r - * * )  U 't ( W - P 2 )

7tH Kl ut (W — D — p2+ / 2)

B + x HuB{ W - D - p 2+I2)+ ( \-x H)uB( W - p 2)=uB(w) i.e.

B + uB(W- tthD + tthI2 - p 2) = uB(jV)

Set {i^pl}  as the solution to the problem.

If the bold high-risks are indifferent between buying the insurance contract and 

receiving the reservation utility, i.e.

B + 7tHuTt y - D - p\ +!])+({-n n fy j t y - p\)< uT(lV), constitutes what we

delegate type 2 separating equilibrium. In this equilibrium, the LT receive a utility of 

U\T = B + srLuT( w - D - p 2 +1*2)+ (l- nL)wr(w - p*2). The LT would pay more than 

their actuarially fair premium to get more insurance coverage.28 Figure 4.3 illustrates 

this equilibrium.

HT

LT

HB

Figure 4.3

28 One odd feature o f  this knife-edge equilibrium is the positive profit for insurers, which contradicts the perfect 
competition assumption, de Meza and Webb (2001) offer a way to smooth this odd feature by adding in “trivial 
costs” -  low heterogeneous costs such as the cost o f filling in application forms. Such a modification will remove 
this odd feature. Since the modification will make the technical analysis very complicated and will not 
fundamentally change the current analysis, the present research does not add in the “trivial cost”.
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4.3.2.3 Separating equilibrium -  type 3

When the indifference curve of reservation utility of the H r , 1̂ ,  lies below that 

of the Hb, /#B,i.e. B + 7rHuT(jY -D -p*  + /j*)+(l- n H)uT ffV-/>,*)-ut we have

a case as figure 4.4 illustrates.

HB

HT

LT

Figure 4.4

In this case, the reservation utility of the timid high-risks constitutes the binding 

constraint for the insurance offered to the timid low-risks. At the equilibrium 

allocation, the timid and bold high-risks do not have insurance and the timid low-risks 

are partially insured. Thus, the double-crossing property does not matter in this case,

i.e. no matter whether — t —-t, the equilibrium,
nH nL u'r ( W - D - p 1 + / J

which we delegate as type 3 separating equilibrium, is solely determined by the

reservation utility of the HT and the offer curve of the LT, which can be summarized

as the following maximization problem.

Max U\T = B + nLuT(W -  D -  p3 + nL)uT(j¥ -  p3)
h>Pi

S t. Pi —

B + 7Thut ( W - D - p 3+I3)+(}-7rH)uT(W ~ P 3)  =  ut (w)

77



4.3.2.4 Separating equilibrium -  type 4

When the indifference curve of the reservation utility of the bold high-risks I*B

crosses that of the timid high risks I„T, and double-crosses the indifference curve of

the timid low-risks IBT, as illustrated in figure 4.5, i.e.

B + 7rHuT{w - D - p* +1*)+ ( l- nH)uT(w -p*)<  uT(fV)
< B + x HuT(fV -  D -  p \  + 1\ )+ (l -  7T„ )uT (w -  p \ )

. ( i - ^ J  «'Aw - p i )
tth nL u't{ W - D - p ; + /,*)’

H T
LT

HB

Figure 4.5

We will have a case as figure 4.5 illustrates. The reservation utilities of the bold 

high-risks and the timid high-risks both constitute binding constraints for the 

insurance offered to the timid low-risks. The equilibrium contract needs to maximize 

the utility of the timid low-risks whilst keep both the bold and the timid high-risks 

indifferent. Hence it can be found by solving the following maximization problem: 

Max Ualt = B + 71l ut (W - D -  p 4 + / 4)+ (l - k l )ut (W - p 4)
h’P4

s.t. B + 7THuT{W - D - p t +li )+(}-xH)uT{W -p ,)  = uT(w)

B + ̂ U s iW - D - P i  + l M l - X H M W - p ^ U s i W )  i.e.

B + uB(W - khD + nHIt -  pt )=uB(w)

When EP, the pooling offer curve of the HB and the LT, lies below Z* , and EP3, 

the pooling offer curve of the H T and the LT, lies below l \ T, the indifference curve
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of the LT that passes through Z*, Z* constitutes a separating equilibrium, which we 

call as type 4 separating equilibrium. Since the position of Z\ is independent of Nm  

and Nhb , the number of the HT and HB, we can always find a Nm  and a NHB that 

is large enough to make EP lie below Z\ and EP3 lie below l \T.

In the following sections, we focus our analysis on the case that

( l - * Q < (l-ay) ti'r(fV-P;)
k h n L u't[ W - D ~ p '  + I ' ) ’

B + hhut{$V-D- p 2+i;)+( i - * H)uT{ w - p 2)<uT{w)

Figure 4.6 illustrates such a typical case.

HT

LT

HB

Figure 4.6

4.3.3 Partial-pooling equilibrium

Consider the case that the indifference curve of the reservation utility of the bold 

high-risks I^B lies below that of the timid high-risks and double-crosses the 

indifference curve of the timid low-risks, as Figure 4.7 illustrates. If the pooling offer 

line EP lies above Z \ , the tangent point of the indifference curves of the bold high- 

risks I^B and the timid low risks, insurers in the competitive market will offer 

insurance contracts along EP which make both the bold high-risks and the timid low- 

risks better off. Competition will push up the insurance coverage until the timid low- 

risks are indifferent between buying and not buying the insurance contract. The
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reservation utility of the bold low-risks constitutes the binding constraint for the 

partial-pooling insurance offered to both the timid low-risks and the bold high-risks.

At the partial-pooling equilibrium, the timid high-risks opt out of the risky activity, 

the timid low-risks and the bold high-risks drive and buy the insurance contract Z'p 

which in effect cross-subsidizes the bold high-risks from the timid low-risks. The 

timid low-risks pay greater than fair premium but get more insurance coverage than 

Z*2 in the type 2 separating equilibrium.

The partial-pooling equilibrium can be defined as the following maximization 

problem.

curve of the HB passing through the partial-pooling allocation Zp, must lie above 

lfjB, their indifferent curve of reservation utility. That is,

Max U[T = B + nLuT(W- D - pp +Ip)+ ( l-x L)uT(W- pp)

B + 7rHuT(W -  D -  pp + Ip)+ (l -  kh )ut (W -  pP) = uT(W)

r P  
HB

r R 
HT

wx0

Figure 4.7

Set \l*pip*p\ as the solution to the problem. Then, the LT receive a utility of 

UBT =B + 7iLuT (fF -  D -  pp + Ip)+ (l -  k l )u t (fV -  pp) in the partial-pooling 

equilibrium. The H B receive from the partial-pooling contract a utility of 

^HB = + ftHUB(j^ ~ D — Pp + fp)+ (l — ftn ')̂ b -  pp), which can be simplified as

Uhb = B + u b (W — nHD + ftHI*P ~Pp)- It is straightforward that I^B, the indifference
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Uphb=B + ub {w - 7ThD + nHVP ~ P * p ) >  uB(w). So the HB will drive and buy the 

insurance as well. Figure 4.7 illustrates the equilibrium.

4.3.4 Conditions of partial-pooling equilibrium

4.3.4.1 Two partial-pooling contracts

There are some conditions for a partial-pooling allocation to be a Nash equilibrium. 

First, as Figure 4.8 illustrates, EP3, the pooling offer curve of the LT and the H T,

must lie below the indifference curve IBT of the LT that passes through Z*p, the 

partial-pooling contract. Otherwise, a deviating contract such as C will break the 

partial-pooling equilibrium. As the proportion of the HT is independent of the

position of the indifference curve l [T, we can always find a that is large enough 

to make EP3 lie below IBT.

HTLT

HB

Figure 4.8

Technically, the partial pooling contract of the HT and the LT can be found by the 

maximization problem

Max U5lt = B + x LuT( W - D - p 5+I5) + ( l - x L)uT( W - p s)
h>Ps

s.t. p 5 = NLT 7Tl +
N

— - —Nlt + Nfjj j

Set {/5,/?5} as the solution to the problem. Then, the LT receive a utility of 

USLT =B + 7rLuTt y - D  - p ] + I l )+ ( \ - x L)uT{w - p\)  in this allocation. The partial-
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pooling allocation of the HB and the LT must dominate this allocation for it to be a 

Nash equilibrium. Thus, we must have

exists a Nm  large enough to make (4.1) hold.

4.3.4.2 Partial-pooling equilibrium and separating equilibrium

The LT must receive greater utility from the partial-pooling allocation than from 

the separating allocation Z\ for the partial-pooling allocation to be a Nash 

equilibrium.

As figure 4.9 illustrates, if EP', the pooling offer curve of the LT and the HB, 

intercepts the indifference curve 1 ^  of the HT at a point that is below the 

indifference I 2LT of the Lr that passes through the separating contract Z \ , the 

separating equilibrium will dominate the partial pooling equilibrium. That is, we must 

have

UpLT=B + 7tLuT{ fV - D - P’p +rpy { \ - n L)uTifV-p'p)> 
u[T =  b + x lut (w - d - p ; + i ; ) + ( i - x l )u t {i v - p ; )

(4.1)

k„ L  increases in N,

USLT = B + 7rLuT{ W - D - p 5+I5)+[\.-7tL)uT{W- p5) decreases in p , and

U[T =B + 7rLuT(jV - D - p*p + Ip)+ (l- 7iL)uT(fV -pB) is independent of , there

->
Wt0

Figure 4.9
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ULT — B + 7rLuT(f¥ D pp + Ip)+(l 7rL)ur(jy p p)> (4 2)
UlT =B + 7rLuT{ w - D - p l + r 2)+ ( l-x L)uT( w - p 2)

As the position of I 2LT is independent of Nm , the number of the bold high-risks

H b , there exists a NHB that is small enough to make the pooling offer curve intercept

the I^j at a point that is above the I 2LT. That is,

U2lt =B + 7rLuT(f¥- D - p\ + V2)+ (l-  JiL)uT(fV-pi)  is independent of NHB, while

P =
r N N  ^ t i n  n  +  tlm  n
yNLT+NHB l n lt+n hb \

I  increases in Nm  and

Ub t=B + nLuT(w-D -p*p+ rp)+(l-7rL)uT(w -p p )  decreases in NHB, so there 

exists a NHB small enough to make (4.2) hold.

4.3.4.3 No deviation

Furthermore, at the partial-pooling contract Z *p, the slope of the indifference curve 

1PLT of the Lt must be flatter than that of the HB to deter potential deviation. That is, 

we must have

( ! - * » )  ;  0 - ^ )  u ’ t( w ~ P p )  (4 3)

*h *l “' M - D - P r  + i;)

As —Ef}— the slope of l fT at Z"P, increases in 9, there
nL uT{W -D -p p  + Ip)

exists a 0 large enough to make (4.3) hold.

4.4 Market efficiency

The partial-pooling equilibrium can be Pareto-efficient under certain conditions. 

One way to check whether it is Pareto-efficient is to check whether government can 

use a tax-subsidy scheme to achieve Pareto improvement.

Suppose the government has initiated a balanced budget taxation which taxes 

insurance policies and uses the proceeds to subsidise the whole population. Motorists 

have to pay a lump sum tax t for the insurance policy they buy. Every one receives a 

lump sum subsidy s .
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4.4.1 From partial-pooling equilibrium to partial-pooling equilibrium

We first consider the case that the tax and subsidy scheme does not break the

As non-motorists pay no tax and receive subsidy, their reservation utility surely 

increases with the amount of tax and subsidy. Tax increases the cost of insurance and 

shifts down the pooling offer curve along the 45 degree line. However, as the non- 

motorists’ reservation utility increases, the insurance coverage the motorists can buy 

increases as well. Thus, with increased premium and increased indemnity, it is 

ambiguous whether or not the motorists will be better off under the tax and subsidy 

scheme.

Figure 4.10 illustrates a possibility of Pareto improvement from the laissez faire 

partial-pooling equilibrium Z'P to the new partial-pooling equilibrium Z TP under the 

policy intervention. The subsidy increases the reservation utility of non-motorists and 

hence relaxes the restriction on the insurance coverage that motorists are allowed to 

purchase, while the tax increases the cost of insurance and hence shifts down the offer 

curve. The following argument shows, under certain conditions, it is impossible for 

the motorists to receive greater utility from the new partial-pooling contract.

Figure 4.10

The partial-pooling equilibrium is the solution to the following maximization 

problem

partial-pooling equilibrium, hence we have s = t and the net payout

of motorists is then t -  s = ---------- — 1.
N lt + N  HB + N  HT

->
W,0
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Max UPLT = B + ;rLuT(W -  D -  pp + Ip)+(l-7rL)uT{fV -  pp)
b’Pp

s.t. pp = NLT ■7t, +■ NHB -7Zi
V +  ^ H B  N Lt  +  ^ H B  J

B + 7rHuT(jV -  D -  pp + Ip)+ (l -  7th )ut (W -  pp) = uT(W) 

which is equivalent to the following problem 

Max UPHB = B + uB(W- 7tHD + 7ThIp - p P)
h’Pp

S.t. pp = N,LT ■7Tj +■ NHB ■7Tr
V ̂ L T  +  N HB N l t  +  N h b  J

B + 7ThUt ( W - D - P p + I p ) + ( l - 7 T H)uT(W  -  P p )  = uT(fV)

After the tax and subsidy scheme implemented, the maximization problem becomes

Max UPJR = B + Ur,
jp,Pp HB B

W -  7ThD + 7THI Tp -  Pp - NHT
Nlt + Nhb + Njjj j

s.t. Pp = N LT -7T, +■ N,HB '711
\  ̂ lt + N hb Nlt + Nhb j

(4.4)

B + 7ThUt W — D — pp+Ip —

= un N tt +N:

N.HT
Nlt + Nhb + Nm j

+ (l 7tH )m7 W - p Tp - NHT
Nlt + Nhb + Nfjj j

j j f  ! * 'L T  ' HB
\  Nlt + Nhb + Njpj. j

Substitute (4.4) into the problem and we get

Max U„l = B + ub
ip W - x „ D  +  — - L r  { k h  - k l %  -

NHT
Nlt + Nhb Nlt + Nhb + Nm j

s.t.
r

B + 7ThUt W -D  + ( i - * S
\ \N lt + NfjB Nlt + Nhb

T1 -  LP
N.HT

Nlt + Nhb + Njjj j

+  { \ - 7 C h )u 1
NLT

■n r  + ■
NHB '7C,

= Un w+-

V V n lt + Nhb Nlt + Nhb j

Nlt + Nfjg

f  -1p
NHT

N LT +  N HB +  N jjj. J

N LT +  N HB +  N f f p  J

For brevity, set

N
4  = ----^ ----

Nlt + Nhb , 1-4  =
N HB

Nlt + Nhb
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N N  +N1 _  l y  HT 1 1 _  LT ' J v HB
A1 ~~Tt----- Tr----- Tt---’ Y~ A2 ~

N l t  +  ^ h b  +  N h t  N l t  +  N h b  +

Wp - W - tthD + \ ( n H - x L)lTp -

W,T = W-(A,XL +(1- ^ ) 1; - j y

W* = W -  D + { \  (1 -  nL) + (1 -  4  f t -  n„ )]lTP -  y

W^=W + ( l - ^ ) t

The problem can then be rewritten as 

M axU Z= B  + uB{wTp )
Ip

s.t. B + nHuT (fV2r )+ (l -  kh )wr (wf ) = uT ifVl)

The Lagrangian is then

L = B + uB(iVp )+ /3(ut{w * ) - B - x hut(w2t) - { 1 - x h)ut(w,t )) 

The Kuhn-Tucker condition for an interior solution gives

dL t t dL< 0, / I  >0 , and I TP— 7r = 0
dITp ’ P ’ p dITp

For an interior solution I D > 0, we have — = 0 

dL

8fP

dfp
— Ug (W p  ^  { f t  7tL )

+ 1 -  nH K  {w,T X \x L + (l - .A, y „  ) -  n„u'T {w2t ))) = 0
Solving it for p  gives

0  =____ . . ub^ p ] \(k h -K l)_______________________ _>0
7lHuT (^2 7I'l)+(\~  ̂ lX^- ^ h))~ 0 — ̂ H^T^X jfal^L + (l — K )^H )

V W? > Wl (4.5)

Differentiate the Lagrangian w.r.t. t gives

^  ) + b {u't{wstXi - A 2) + ^ hu't(w2t K  + ( l - % K ( ^ r K )  ( 4 .6 )

Substitute (4.5) into (4.6) gives

d L _ _ _ «  t ( jt/ T  \  U B t y p  ) ^ 1  { ^ H  ~  K L X̂ r )(̂  ~  ^ 2  )  +  n H U T  ( ^ 2  +  ( ^  ~  71H  Vr ( ^ 1  j'O
d t * * *  ' >  n Hu'T{ w j X A ( l - ^ ) + ( l - ^ ,  Xl -  (1 -  h K K J( V t  +  ( l  “  4  K

or

dL U' ( y ; U ( \ - K h H - x M ( K ) - ^ A i - * J u ' M ) - u ' r k T))) ( 4 7 )
dt 7THu'T{wl
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Clearly, the sign o f  (4.7) is dependent on the sign o f (4.8)

i.e., —  > 0 if (4.9) holds
dt

u'T(j¥x) V „ ( l - g „ )
f  i - u 'r K )  > 4(l-^X *W  - * i )

When t = 0, we have

» ? = it -  d + u  (i -  ̂ )+ (i -  ̂  Xi -  *« M

wH=w

Since W° > W -D , W2° < f¥ , we have

» ; ( < )  »;Qf )
« r K ° ) - “r (^ ° )< u'r{W)-u'r(W -D )

Therefore, there always exists a large enough to make (4.10) hold and hence it is 

impossible for the tax and subsidy scheme to achieve a Pareto-improving partial- 

pooling equilibrium.

^i(l Xwr (^2 ) uTty\ )) (4.8)

It holds for a large enough X2 that  Mr(^ )____  ̂ 71h)
u 't{w ) - u 't(w - d )  X,(l

uT(fVR) r̂w(l
« ;(if/ ) - « ; « )

(4.10)

In fact, section 4.3.4.3 gives - ( l - * J  - ( l ~ * J  u't(w - P p ) j e
*„ tcl u'T( w - D - P; + i ; y  ' "

(i-x,.)wT(w;( w ° )

W ) ’
from which we have u'T(w°)-u'T(jV°) > ^r". )

So

Ph ni

(;r" < 71TL

87



Clearly, when ^  > 0.5, (l -  ̂ ) -  X, X^// ” Vr(^1?) < 0. So when ^  > 0.5, 

i.e., when the HT are more than half of the population,

4  (l - X ^ n H-  nL )u'T (wb ) - 1,71 H (l -  7iH X«; (w2°) -  uT {fV*)) < 0 and there is no Pareto- 

improving partial-pooling allocation.

4.4.2 From partial-pooling equilibrium to separating equlibrium

There is another possibility. It could be that the LT and the HB get worse off when 

the tax is imposed. As the tax increases, the pooling offer curve shifts further down. It 

eventually lies below the indifference curve of the LT that passes through the 

subsidized separating contract. Therefore, the pooling equilibrium will be dominated 

by the separating equilibrium. As the indifference curves of reservation utility of the 

H b and the HT after subsidy moves to different positions, there might be four 

different separating equilibria that lead to Pareto improvement.

When the HB stop driving, only the LT drive and buy the insurance, so the subsidy 

Ns is now s =----------—--------1 and the net payout of motorists is then
Nlt + Nhb + Nht

t _ s = — — t . Set A4 = --------^ -------- ,29 then
Nlt + Nhb + Nm Nlt + Nhb + Nm

J ,  =  n hb+ ^ ht  s = , t t - s  = (l-A A)t.30
NLT + Nm + Nm

4.4.2.1 From partial-pooling to type 1 separating equilibrium

Let’s first consider the case where the indifference curve of the H r goes up at the 

same pace as or faster than that of the HB. When the reservation utility of the H B 

after subsidy reaches the same level as in the partial-pooling equilibrium before the 

taxation, the high-risks are no worse-off. It could be that the LT are better off. Figure

29 Again, from the definitions o f \  and Aj , we have n hb = - — j-j------- -  and n l t =— , which give

= accordingly-
30 Recall that we have set \= — — , \-A~=— ^22— , A-=------------- , i-A~=— NLT.+NHB— .

n l t +n h b  n l t +n h b  n l t +n h b +n h t  n l t +n h b +n h t
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4.11 illustrates such a case where the indifference curve of the LT passing through the 

subsidized separating contract Z T crosses the indifference curve U*HB twice. The tax 

and subsidy scheme breaks the laissez faire partial-pooling equilibrium Z*p into type 1 

separating equilibrium Z\ . The LT and the H T are better off and the H B are no 

worse off. Insurers earn normal profit.

HT

HT
LT

RT
HB

Figure 4.11

The possibility can be formalized as the following maximization problem

MaxU"T = B + x LuT( w - D - p l
h ’Pi

s.t. p i  = nLl \

B + uB(w -  khD +  (nH -  x L) / ,r - ( 1 - / 1 ,  V )

Pp — +  ( l  — )xn )1 P 

B + nHuT(W -D -p P + IP)+ {\-xH)uT(W -p p) = uT{W)

Up — B  +  UB (jV  — jrH D  +  TT p I  p — (

uT(W + Xtt)>B + 7rHuT{ w - D - p l  + /,r

Set {/,r*, p i '} as the solution to the above problem. If

( l-Xjr) UjiW ~ . . . . .  ,- -  — >   —— 7— T-±---- ^ \ — 4/_7— the equilibrium is then a
/r„ u ' { W - D - Pr + i r - (  1 - ^ 4 »

separating equilibrium in which both the high risks do not drive while the LT drive, 

buy insurance at their fair premium and pay the tax. If
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U"' = B  + k lut{w -D-pT  +  / f  - ( 1  ■-A4 » +  (1 -  K  - ( l - » >

U[T = B + 7rLuT(W - D -  pp + Ip)+(\-;rL)uT(W -  pp)

then there is a Pareto improvement.

4.4.2.2 From partial-pooling to type 2 separating equilibrium

Figure 4.12 illustrates another case. The tax and subsidy scheme breaks the laissez 

faire partial-pooling equilibrium Z*p into type 2 separating equilibrium Z\  where the 

indifference curve of the LT passing through the subsidized separating contract Z \  is 

tangent to the indifference curve U*HB, i.e.

( l - O  ( l - * t ) < ( ^ - A r , - ( l  - A , »
71, nL u \{W ~ D -p] '  + 1 ] ' - ( \ - h ) t )

. The LT and the H T are better

off and the H B are no worse off. Insurers earn above normal profit.

R T
H T

H T
L T

r R T  
HB

Figure 4.12
The possibility can be defined as the following maximization problem

Max U% = B + nLuT (w -  D -  p \ + / [  -  (l -  » +  (l -  -  - (l -  »
h -ft

s t  f t-* * ) ft-**) » ; ( y - / g - ( i - 4 , »
"  %  u'T( W - D - p T2 + i ; - { l - X j t )

B + ub(w - z„ D +  n Hll-  p i  -  (1 ■- X4>) = (W + I j )

Pp =  ( M l ■*"( l — A

B + nHuT(W-D-p,, +  / , ) +  (1 - x H)uT( W - p p)=

ub( ^ B ~ XffD+7THIp
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uT{W + X,t) >B + !Thut{w  - D - p l  + / 2r - ( l - / l 4> ) + ( l - ^ ff)»r (», -j9 27' - ( l  -A4>) 
Again, if

Ull' =B + xLuT{ w - D - p l '  + I T2' - { l - A A)t)+{\-nL)uT{w -p l ' - ( l -X , ) t )>
Ult =  B + nLuT (W -  D -  pp +  Ip ) + ( l  -  jil )

then there is a Pareto improvement.

4.4.2.3 From partial-pooling to type 3 separating equilibrium

When the indifference curve of the HT goes up slower than that of the H B, the 

partial-pooling equilibrium may break into type 3 or type 4 separating equilibrium.

Figure 4.13 illustrates a case where the laissez faire partial-pooling equilibrium Z*p 

breaks into type 3 separating equilibrium Z3r .

H T

LT

■R T  
H B

HB

Figure 4.13

The possibility can be defined as the following maximization problem 

MaxUZ =B  + x l uT( f T - D - p l  + / [ - ( l - / l 4» + ( l - ( l - i 4>)
h >P3

s.t. p i  = r t j ]

B +  n„uT (W - D - p l  + l l - ( \ - A t ) t )+ ( l -x H ( l - 4 , > )  =  +  V )

Pp = (Ml "*■ 0 — \)̂h Vp
B +x„uT(W - D  - p P +  / „ ) + ( 1  )uT(W =

uB(W + Ztt)>B + uB(W-7rHD + x HIp- p p)

uT(W + Aj)<B^7rHuT( w - D - p l  + J l - ^ - ^ ) l ) + ( i - ’rHy M - p ! - ^ - ^ ) ‘)
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I f u %  = B + ttlut(w - D -  p i'  +  / [ •  - ( l - A 4» + ( l -  R (w - ( l - /l4» >
UplT = B + 7rLuT( W - D - p p + Ip) + ( \ - x L)uT(}V - p p)

there is then a Pareto improvement.

4.4.2.4 From partial-pooling to type 4 separating equilibrium

The tax and subsidy scheme may also lead to type 4 separating equilibrium. Figure 

4.14 illustrates such a case where the laissez faire partial-pooling equilibrium Z*p 

breaks to type 4 separating equilibrium Z4.

Figure 4.14

The possibility can be defined as the following maximization problem

M a x U " = B  + KLuT{ w - D - p l  + / | - ( l _ ^ » + ( l - ^ ) Wr( f F - p [ - ( l - A 4»
U >P*

S.t.

B + x HuB(w ~ D -  p T, + I I  x H )us(fV -  p i  - ( ] -  At )l) = u„(lV + Ztt)

i.e . ,  B + uB (w -  jthD  +  > r„ /4 -  p \  - (l -  )()  =  4f )

P p  = ( ^ l ^ L  + 0  — \  H Vp

B + x„ut{ W -D -pp + Ie)+ {\-nH)uT(W -Pp) = uT{w)

uB(W + Xj)  >B + ub(W-71 hD + nHl p -

(i zial< » ; ( y - * , »
*« *l«; ( ^ - z ) - p 4r + /4r - ( i - / i4»
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B + nHuT{$V- D - px +/, — — — - ( l - X 4)t)<uT(j¥+ X4t)
<B + x HuT{ lV -D -p 2+I2- ( l - X 4)t)+(l-?rH)uT(lV -p2- ( l - X 4})

Again, there will exist a Pareto improvement if

U% =B + x LuT{ w - D - p l  + / J - ( l - A 4> ) + ( l - ^ K ( ^ - p 4r - ( l-A 4>)>

U i t  ~  B + K j U t ~ ^ ~ P p  P p )

4A.2.5 Conditions for efficient partial-pooling equilibrium

In all the above four possibilities, it will involve the HB opting out of driving and 

receiving the subsidized reservation utility. However, since X2 = ______________ HT____________

N lt + N HB + N jjj 

Nand X4 = ----------—-------- , for a given NLT and NHB, when —> cx>, ^  —> 1, and
N l t + N h b + N ht

X4 —» 0. Hence uB(W + X4t) —>uB(w) as t < W . As shown in section 4.3.3, we have 

UHB = B + uB(jV -  xHD + x Hrp -  Pp)> uB(w), so there exists a Nm  large enough to 

make uB(W + X4t)< B + uB(W - tthD + nHl p - pp).

Therefore, under certain conditions, it is impossible to achieve Pareto improvement, 

and the market equilibrium is hence Pareto efficient.

4.4.3 Efficient partial-pooling Nash equilibrium: an example

One straightforward way to see an efficient partial-pooling Nash equilibrium exists 

is through numerical examples. Suppose uT(w) = - e ~ m , uB(w )= W , nH = 0.5, 

nL =0.2, 0 = 20, W = 0.2, 5  = 0.09, D = 0.19, Xi =0.9, X, =0.5,

2̂ = a,( l - v t , = 0-47368, X4 = ^)+(i_a, )(i-̂ )+a,Aj = 0-47368,

( 2    -Vir 1 __ 2    ^ h b  2 _______ ^ h t   2    1   2    ^ LT I
v ^ l  “  N LT+Nm  > 1 * 1  -  N l t+Nhb > 2 -  N l t+Nhb+Nht ’ ^  -  N LT+N ffr ^  -  N LT+Nm  } '

From the definitions o f Aj and A3 , we can easily find that n hb = - — — -  Nm  and NLT = N ^ ,

which give a2 NLT+NHB+Nm  \  (i-Aj and nl t +nh b +nh t  \  V'h'b

accordingly.
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For these parameter values, a partial-pooling allocation constitutes Nash 

equilibrium. Since — ut̂ r ) — = 0.17178 < —^ l7tn w , = 0.83333,
U r i ^ h u ^ K )

QL—  <0 and there is no Pareto-improving partial-pooling contract available.
dt

The tax-subsidy scheme breaks the partial-pooling equilibrium to type 3 separating 

equilibrium. The subsidy raises the reservation utility of the HB to the same level as 

when they drive and buy insurance (W + \ t  = B + (W -  7tHD + 7rHIp - P p) -  0.22078 ). 

The reservation utility of the HT increases from -0.018316 to -0.012088, but the 

utility of the LT decreases from 0.029625 to 0.019481. Clearly, there is no way to 

make every one better off by breaking the partial-pooling equilibrium into separating 

equilibrium.32

Therefore, the partial-pooling Nash equilibrium is efficient.

4.5 Inefficient market equilibrium

Section 4.4 has demonstrated that the partial-pooling Nash equilibrium can be 

Pareto efficient under certain conditions, but that does not mean inefficient partial- 

pooling Nash equilibrium does not exist.

4.5.1 The existence of inefficient market equilibrium

If the parameter values are such that / \— 71 >., there
u ' M ) - uA wn

then exist Pareto-improving partial-pooling allocations. Or if one of the four possible 

separating equilibria exists, there is then room for the tax-subsidy scheme to achieve 

Pareto improvement.

For instance, the market equilibrium is inefficient if there exists a solution to the 

following problem

M a xU "  =B + x LuT( w - D - p T2 + / [ - ( l - A t )t)+(l-?rL)uT( w - p T2 - ( l - / l 4»
h>Pi

s t  (i - jQ
n H nL u'T[ W - D - p l  + /2r - ( l - A 4)t)

B + uB( w - n HD + x Hl Z - p l - ( l - A , A)t) = uB(W + Jl4t)

Appendix 4.1 provides detailed simulation results.
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Pp — (Ml + 0- \  )̂ h
B + 7rHuT(W -  D -  pp + Ip)+ (l -  nH )uT(W -  pp) = uT(W) 

uB(jV + XAt) > B + uB(fV- 7iHD + 7tHIp ~Pp)

Upty + A ^ B  + X H U p ty -D -p l+ ll - t l -A ^ y ^ -T r n y p ifV  - p I - ( i - 'O O
U% - B + t:lut{w - D - p i  + / [ - ( l - A 4> )+ ( l-^ )« r(» '-p 2r - ( l - / l 4>)>

U[T = B + ?rLuT(W -  D -  pp + Ip)+ (\- 7rL)uT(jV -  pP)

If there exists a solution to this problem, the tax-subsidy scheme can then break the 

partial-pooling equilibrium into to type 2 separating equilibrium, which leads to 

Pareto improvement.

One straightforward way to demonstrate that such a solution exists is, again, 

through a numerical example. Consider a case where uT(w)=-e~0tv, uB(fV)= W , 

nH =0.4, nL =0.1, 0 = 30, fF = 0.15, 5  = 0.04, £> = 0.14, \  =0.75, ^  =0.4,

= 0.33333, A4 = 0.5. The laissez-faire market equilibrium with these parameter 

values is a partial-pooling equilibrium.

However, if we impose a tax of t = 3.976171992 x 10-3 and use the proceeds to 

subsidize the whole population, we can break the ex ante partial-pooling equilibrium 

to an ex post type 2 separating equilibrium.

The ex ante utility of the HT, the HB, and the LT is -1.110899654 x 10-2, 

0.1519880860, and 1.454 567 626 x 10-2 respectively. After the tax-subsidy scheme, 

their ex post utility is -1.046579896 xlO-2, 0.1519880860, and 1.454597154xl0'2 

respectively.33 The HB is not worse off, but the HT and the LT are better off due to 

this scheme.

Moreover, if uT(fV) = -e~m , uB(ir)=W, k h =0.4, nL =0.1, 6 = 30, !F = 0.15,

5  = 0.04, £> = 0.14, \  =0.75, ^  = 0.733, a tax of / = 8.108710298xl0-3 breaks 

the partial-pooling equilibrium to a type 1 separating equilibrium. The utility of the 

£fr ,the Hb, and the LT goes from -1.110899654xl0-2, 0.1519880860, and 

1.454567626xl0-2 to -1.046579896xl0"2, 0.1519880860 and 

1.454595 041 x 10-2 respectively.

33 Appendix 4.3 provides detailed simulation results.
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I f uT(w) = -e-ar, U,(W)=W,n„  =0.4, itL =0.1, 0 = 30, W = 0.15, £  = 0.04,

D = 0.14, A, = 0.75, Aj = 0.4, a tax of t = 0.008 will break the partial-pooling 

equilibrium to a type 3 separating equilibrium. The utility of the HT, the HB, and the 

Lt goes from -1.110899654xl0'2, 0.1519880860, and 1.454567626xl0'2 to 

-9.852796 061xl0'3, 0.154 and 1.565564196xl0-2 respectively.

If uT(w) = -e~0fV, ub{w )= W ,x h =0A, tzl =0.1, <9 = 30, JF = 0.15, 5  = 0.04,

D = 0.14, A, = 0.9, Aj = 0.35, a tax of t = 6.8703 xlO-3 breaks the partial-pooling 

equilibrium to a type 4 separating equilibrium. The utility of the HT, the HB, and the 

Lt goes from -1.1109xl0-2, 0.15416, and 1.6074xl0‘2 to -9.8042xl0‘3, 

0.15416 and 1.6123xlO-2 respectively.34

The above numerical simulations have clearly demonstrated that the inefficient 

partial-pooling equilibrium does exist and a tax-subsidy scheme can break it to one of 

the four possible separating equilibria.

4.5.2 Policy implication

It is widely known that the presence of the high-risks exerts negative externality to 

the low-risks: their insurance coverage has to be restricted to prevent the high-risks 

from taking it. When there exist bold high-risks in addition to timid high-risks and 

potential pooling emerges, the situation becomes even worse for the timid low-risks: 

in addition to the restriction on insurance coverage, they have to pay more than their 

actuarially fair premium to get the insurance, because the bold high-risks are now 

taking the insurance as well.

As having been shown in section 4.5.1, a tax-subsidy scheme can eliminate the 

externality caused by the partial-pooling of the HB and the LT, when the market 

equilibrium is not Pareto efficient and can break to separating equilibrium. As 

motorists pay the tax and non-motorists receive the subsidy, the reservation utility of 

the H b will exceed their utility from driving after some critical value of tax and 

subsidy, and hence the HB will stop driving. With the HB choose not to drive, the 

premium rate (premium/indemnity) the LT pay for insurance could be much cheaper, 

sometimes even with the tax they have paid. For example, in the case when the

34 Appendix 4.2,4.4,4.5 provide the detailed results of these numerical simulations.
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partial-pooling equilibrium can break to a type 3 separating equilibrium, the ex ante 

premium rate is ^  = 0.1750000001 , but the ex post premium rate is only

= = 0.1510897740 even with the tax included. Clearly, the
h  7.829355446x10 2 J 9

tax-subsidy scheme can achieve Pareto gain in such cases.

An interesting case happens when insurers earn positive profit in the equilibrium 

after the tax-subsidy scheme. For insurance, in the case that the scheme breaks the 

partial-pooling equilibrium to a type 2 separating equilibrium, insurers earn positive 

profit because the LT are paying more than their actuarially fair premium for the

insurance. If we increase the tax from t = 3.975 6 x 10~3 to t = 0.0045, the utility of 

the HT, the H B and the LT increases to -e~0̂w+̂  =-1.038388701 xlO-2,

W + A4t = 0.15225, and

B + x l (- (l -  ?r£ )(- '̂* )= 1.474519 084 x 10“2

respectively. All consumers are better off except the insurers: the premium they can 

charge is now closer to the fair one. So this move is clearly not Pareto improvement. 

Whether government should increase the tax from t = 3.975 6 xlO-3 to t = 0.0045 is 

dependent on the weight of the welfare being they put on the insurers.

4.6 Conclusion

When agents differ in risk preferences and risk probabilities and have an option 

whether to take the risky activity and whether to buy insurance, the timid high-risks 

may choose not to drive, even though under full information driving brings utility 

benefit. With different levels of risk probabilities, risk preferences, and driving benefit, 

the market may end up with four different separating equilibria, partial-pooling 

equilibrium, or even no pure-strategy equilibrium.

The partial-pooling equilibrium is Pareto efficient under certain conditions, notably, 

when the timid high-risks account for a large proportion of the population. When the 

partial-pooling equilibrium is inefficient, taxing insurance may create a separating 

equilibrium. The bold high-risks are driven out of the insurance market and stop 

driving. Everyone may be better off.

35 Appendix 4.6 provides detailed simulation results.
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Chapter § Conclusion

Chapter 2 examines the welfare effects of a non-discrimination policy which 

requires unisex premium for insurance. It shows that in comprehensive insurance 

market, when everybody drives and decides whether to purchase insurance, typical 

adverse selection happens. High-risk motorists will purchase the insurance while the 

low-risks will not. After the unisex premium policy is implemented, more male 

motorists purchase insurance with lower premium while some female motorists drop 

out of the insurance market with the premium increased. Simulations show the total 

number of the insured is less than that before the policy is implemented. The policy 

has no effect on insurers who always earn normal profit in competitive industry. The 

aggregate social welfare may increase or decrease. There is no effect on road safety 

since everybody drives whether insured or not.

In third-party insurance market where motorists must be insured and people choose 

whether to become a motorist, advantageous selection happens. Low-risk people 

become motorists and purchase insurance while the high-risks will not. After the 

policy is implemented, more relatively safe men become motorist while some 

relatively risky women stop driving. Roads are safer. From the simulations, the total 

number of motorists is greater than that before the policy. The policy has no effect on 

insurers. Simulations show that the aggregate social welfare decreases after the policy 

is implemented.

Chapter 3 extends the research and finds the optimal allocation which maximizes 

aggregate social welfare. Agents are identical except in risk probabilities and they can 

choose whether to participate in risky activity and whether to buy insurance. Due to 

their high probability of incurring loss, which makes the reservation utility more 

attractive, the high-risks now choose not to engage in the risky activity. Instead of 

being stuck with the low-risks, the market is now filled with the good-risks -  the 

“lemon” market has turned into “peach” market. Moreover, when the redistribution 

effect dominates the efficiency effect, it would increase the total social welfare by 

redistributing the wealth from the high-risks to the low-risks and hence decreasing the 

insurance coverage in the market equilibrium. For certain parameter values, it would 

increase the total social welfare by reducing insurance -  instead of a shrunk market 

under optimal level, we have got too much insurance.
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Another interesting finding is that full insurance pooling allocation never 

maximizes the aggregate social welfare. Although the high-risks enjoy higher 

reservation utility in the allocation, there is no efficiency gain at all for the whole 

society and there is only redistribution effect which is always negative.

Chapter 4 examines the market equilibrium and market efficiency in competitive 

insurance markets when agents differ in both risk probabilities and risk preferences, 

and can choose whether to participate in risky activity and whether to buy insurance.

It is shown that the timid high-risks will stop driving for reservation utility, even 

though driving brings utility benefit. With different levels of risk probabilities, risk 

preferences, and driving benefit, the market may end up with four different separating 

equilibria, partial-pooling equilibrium, or even no equilibrium.

The partial-pooling equilibrium is Pareto efficient under certain conditions. 

Particularly, when the timid high-risks account for a large proportion of the 

population, it is impossible to achieve Pareto improvement. When the partial-pooling 

equilibrium is inefficient, taxing insurance breaks the equilibrium and separating 

equilibrium arises. The bold high-risks are driven out of the insurance market and stop 

driving. Everyone could be better off.
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Appendix

Appendix 2.1 Welfare change with loss level
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D = -9.7253xlO-\Fr  =11.311, Pw = 0.58229, ic2 = 0.46459,
Vp =11.137, Pp =0.64522,^ =0.52912,
Vu = 1 1 .0 1 5 ,=  0.68733,^5 = 0.57466,

[ = 0 .7 ,^  =0.8,F = 100.0,1 = 70.0,^ = 0.8 J
Z) = -7.4215xl0~3-2.5917xl0~2Oi,F„, =11.245,/^ =0.56605,=0.43209, 

F„ =11.066,P„ =0.62542 + 1.3598x10"2O!,^„ =0.49117 + 1.5664xlO_20i,p  ’ p ’ p ’
FM =10.929,Pw =0.66804,^ =0.53609,

;r3 = 0.7, ;r6 = 0.8,7 = 100.0,1 = 75.0,6 = 0.8

Td = -4.486 x10-3,F^ = 11.191,P* = 0.54799, n2 = 0.39598,1 
Vp =11.007, Pp = 0 .60368= 0 .44906 ,

= 10 .860 ,= 0 .645  89,/t5 =0.49178,
L /r3 =0.7, ;r6 =0.8,7 = 100.0, L = 80.0,0 = 0.8 J

j~Z) = —1.2131xl0~3 -  4.0lx\0~20 i,Vw = 11.150,P^ = 0.52773,/t2 =0.35546,1 
Vp = 10.966, Pp =0.57952 +1.2692 xlO"20/ , ^  = 0.40186 +1.4154 xlO'20*, 

Fm = 10.811,P„ =0.62042,^ =0.44083,
[ /r3 = 0.7, =0.8,7 = 100.0,1 = 85.0,(9 = 0.8 J

Td = 1.9642x10'3,F^ =11.128,P^ = 0.50444,;t2 =0.30888,1 
Vp =10.948, Pp =0.55198, np =0.34774,
VM = 1 0 .792^  = 0.5907,/r5 = 0.3814,

[ =0.7, x 6 =0.8,7 = 100.0,1 = 90.0,6  = 0.8 J
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[ = 0.7,/r6 =0.8,7 = 100.0, L = 99.0, 0 = 0.8 J
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Appendix 2.2 Welfare change with risk range 1
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Appendix 2.3 Welfare change with risk range 2
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Appendix 2.4 Welfare change with loss level 2
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Appendix 2.5 Welfare change with risk range 3
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T Pw = 0.22146,/z> = 0 .34292^  = 0.20166,P4 =16.0, T 
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Pw = 0 .22146,=0.34292, PM =0.2175 ,R4 =16.0, 
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R, = 10.081,% =0.25, % =0.1,0  = 0.7,1  = 60.0, C = 5.0 J
T Pw =0.22146,%, = 0 .34292,= 0.30025, Rt =16.0, T

%, = 0.30051, F = 11.0, R, =13.27, Pp =0.23219, R2 =11.0, 
y = 100.0,% =0.33724, D, = -1 .3397x l0 '\

[ R, = 10.081, % = 0.3, % = 0.1,6 = 0.7, L = 60.0, C = 5.0 J
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Appendix 2.6 Welfare change with risk range 4

D l  =  (*, -  X^M + K p  ~  2 k 1 )~ ~  71 p  X*Pr + * , -  l7t\)
Pw = 4-(̂ Ti +^(f)

7tw —
i Kr-**r -V

{*P -  * 2 )[p, “  2 + X p  ) ] +  (xp -  X, )[p, -  T fa  + * , )] = 0
'{y-PpLf

p

x P=-b ~ V_ 
Pm = ‘ffa2 Xm ) .

_ 1 \{y-PMLV y77 x* —M  ~  C 

* ,=
1-0 

_ iy-LV 
1-0

r 2 =v

^ = h -
R ,= C  + V 

/r, = 0.2 
712 = 0.05 
y  —100 
0  =  0.6 
1 = 80 
C = 5 
F = 11

=0.37048,^  = 0 .54097,=0.33956,
P4 =16.0,F = 1 1 .0 ,^  = 0.57912,P3 = 15.774,P2 =11.0,

Pp = 0.35318, = 100.0,P, =8.2861,Z)3 =-6.3967xl0"4+6.5107x10'^/, 
=0.56241,^ =0.1,^, = 0.2,0 = 0.6,L = 80.0,C = 5.0

P^ = 0.37048,/z> = 0.54097,PM = 0.35505,
P4 =16.0,F = 1 1 .0 ,^  =0.5601,P3 =15.774,P2 =11.0,

v - 2 4 .

Pp = 0.36226,j> = 100.0,P, =8.2861,Z)3 =-1.6087xl0-4 +4.6623x10"^, 
=0.55119,^ = 0.15,^ =0.2,0 = 0.6, L = 80.0, C = 5.0

Pw =0.37048,^  = 0.54097,P„ =0.3674,
P4 =16.0,F = 11.0,/rM = 0.5448,P3 = 15.774,P2 =11.0,

v - 2 2 .

P = 0.36892-1.0082xl0~2Oi,^  = 100.0,1?, = 8.2861,.D, =-6.5005x10'" +9.5005xl0“2,<,-6 * -2 1

n ,  = 0 . 5 4 2 9 1 + 1 . 3 6 5 4 x 1 0 " 2° i> 2 =  0 . 1 9 , ;r, = 0 . 2 , 0  =  0 . 6 , 1  =  8 0 . 0 ,  C = 5 . 0
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Pw = 0.37048,;z> = 0.54097, PM =0.37048,
P4 = 16.0,1  ̂= 11.0,;^ =0.54097,P3 =15.774, R2 =11.0,

Pp =0.37048-2.0471x10"2°z,>; = 100.0, R1 =8.2861, D3 = 1.741xlO'20+1.8899X10'20/, 
ttp =0.54097 + 2.7712x10-2° j> 2 =0.2 ,^ = 0.2,(9 = 0.6,Z, = 80.0,C = 5.0

= 0.37048,^  = 0.54097, P„ =0.37356,
P4 =16.0,1^ = 1 1 .0 ,^  = 0.53712,P3 = 15.774,P2 =11.0,

Pp =0.37200-4.0219x10‘2° / , j  = 100.0,P] = 8.2861, Z)3 = -6.5515xl0'6 +3.6361xlO-20/, 
;rp = 0.539 07 + 5.442 3 x 1 O'20 i, ;r2 = 0.21, *r, = 0.2,0  = 0.6,1 = 80.0, C = 5.0

T = 0.37048,;z> = 0.54097,PM = 0.38585, j
P4 =16.0,F = 11.0,7t M =0.52171, P3 =15.774, P2 =11.0,
Pp =0.37755,j  = 100.0,P, =8.2861,Z)3 =-1.6766xl0-4, 
np = 0.53214,^2 = 0.25,;r, = 0.2,6 = 0.6, L = 80.0,C = 5.0

T P*, = 0.37048,^ = 0 .54097^  = 0.40116, j  
P4 = 16.0,P = 11.0,** =0.50232, P3 = 15.774,P2 =11.0,
Pp =0.38307, >> = 100.0, P, =8.2861, Z>3 =-7.052 xlO"4,
;rp =0.52521,^2 =0.3,^ = 0.2,9 = 0.6, L -  80.0, C = 5.0

T P^ = 0.37048,^ = 0.54097,PM = 0.4164, T 
P4 =16.0,P = 1 1 .0 ,^  =0.4828,P3 =15.774,P2 =11.0,
Pp =0.3865,^ = 100.0, R, =8.2861, Z>3 = -1.7261xl0_\

7tp =0.52088,^2 =0.35,^ = 0.2,6  = 0.6, L = 80.0, C = 5.0

T PF =0.37048,;z> =0.54097,PM =0.43158, T
P4 =16.0,F = 1 1 .0 ,^  =0.46316,P3 =15.774,P2 =11.0,
Pp =0.38724,^ = 100.0,^ =8.2861,Z)3 =-3.4890xl0"3,
;rp =0.51995,^2 =0.4,^, =0.2,(9 = 0.6,L = 80.0, C = 5.0

T P^ =0.37048,^ = 0 .54097^  =0.44367, j
P4 = 16.0,F = 11.0,** =0.44735, P3 = 15.774,P2 =11.0,
Pp =0.38548,^ = 100.0,^ =8.2861,Z)3 =-5.7596xl0"3, 
np =0.52218,^2 =0.44,^ = 0.2, G = 0.6, L = 80.0, C = 5.0
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Appendix 3.1 Aggregate social welfare increases with positive T

The high risks don't drive while the low risks drive before and after the taxation 

The constraint on the high risks is binding, ie, v(nH,ocH) = v(kh,aL) 

u{x) = lnx, W = 100, B = 1, D = 90, tth =0.8, nL =0.3, A = 0.3,

UH=B + ln(W -D xH)
Ux=]nW 

Ul =B + ln(lF -  D7rL)
B + (l -  nH )ln(lT -  exDnL)+ nH ]n[W -  0xDkl -  (l -  0X )£>] = In W 
Us =B + (1 -  xL)\n ty  -  0xDxL)+xL In [W -  0xDnL -  (l -  0X )D]

TVp ^*7V"h |  TV̂
*i(l - xr ){w - 0pDnP) - (1 - rrL)xp[lV - 0pDitp - (l - 8p)d }= 0 
Up =B + ( l - x L)]n{w- 9pD xp)+ kl In [w -  0pDnp - ( l -0 „  )l>]

U2=\n(W + ( \ -X ) f )
B + ( \ - k„)ln{W- 02Dkl - XT)+n„ ]n[W-02DnL - (l- 0 2)D -XT]  = b {W + ( l- X)T) 

Ut =B + ( \ - x L)]n(W- 02Djcl -X T )+ vl ln[W- 82Dtil - ( l- 0 2)D -XT]
P _

1 0 
E = —

2/  w \

d x= ux- u h 
A  = u L - u x 

A  = u s - u p

D4 =E] E2 
D5 = 6t -  02

A  = u T - u s 

A  — U 2 ~ u x 

d s = ut + u2- u s - u x

T = 10
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0, =0.30595,02 =1.013, e T =0.78571, 0, =0.59933,
£), =0.27297, D2 = 0.68529,£, =1.0204,

D3 = 4.3134 x10_2,£ 2 = 0.9,£>4 =0.12041, Ds =-0.22731, 
D6 =-0.20228,D7 = 0.37981, £>g =0.17753, 

nP =0.45,^ = 4.605 2, U2 =4.9850, 77„ =4.3322,
UL = 5.2905,775 = 5.1763,77,. =4.974, 77, =5.1332

(9, =O.3O595,02 =1.0,0T = 0.78571,0, =0.59933,
£>, =0.27297,Z)2 =0.685 29, £, =1.0204,

Z)3 = 4.3134xl0_2,£’2 = 0.9,£>4 =0.12041, £>5 =-0.21429, 
£>6 = -0.19634, £>7 = 0.374 78, £>8 =0.17844, 

nP = 0.45,77, = 4.605 2,772 = 4.9799,77„ =4.3322,
77L = 5.2905,77s = 5.1763,77,. = 4.9799, 77, =5.1332

0, =0.30595,02 = 0.95165,0r =0.78571,0, =0.59933, 
£>, =0.27297,£)2 = 0.68529,£, =1.0204,

Z)3 =4.3134x10‘2,£,2 = 0.9,£>4 =0.12041, £>5 =-0.16594, 
£>6 =-0.17510,Z)7 =0.35557,Z)8 =0.18047,

/rp =0.45,77, = 4.6052,772 =4.9607,17* =4.3322,
UL =5.2905, = 5.1763, UT =5.0012,77, =5.1332

0, =0.30595,02 =0.93961,0r =0.78571,0, =0.59933, 
£>, = 0.27297, D2 =0.685 29, £, =1.0204,

£>3 =4.3134xl0-2,£ 2 =0.9,Z)4 =0.12041,£)5 =-0.15389, 
£>6 =-0.17001, £>7 = 0.35066, £>g =0.18065, 
=0.45,77, = 4.605 2, U2 =4.9558, UH =4.3322,

UL = 5.2905, Us =5.1763,77r =5.0063,77, =5.1332

0, =0.30595,02 =0.93361,0r =0.78571,0, =0.59933,
£>, =0.27297, £>2 =0.68529, £, =1.0204,

£)3 =4.3134x10'2,£ 2 =0.9,D4 =0.12041, £>5 =-0.14790, 
£)6 =-0.167 50, £>7 = 0.34819,£>8 =0.18069,

;rp =0.45,77, = 4.605 2, U2 = 4.9534,77„ =4.3322,
UL = 5.2905,77s =5.1763,77r =5.0088,77, =5.1332

0, =0.30595,02 =0.927 63,0r =0.78571,0, =0.59933, 
£>, =0.27297, D2 =0.68529,£, =1.0204,

Z)3 =4.3134x10'2,£'2 =0.9, £>4 = 0.12041,£>5 =-0.14192, 
£>6 =-0.16502,£>7 =0.34572,£>8 =0.18070, 

jrp =0.45,77, =4.605 2,772 = 4.9509, 77„ =4.3322,
UL = 5.2905, T75 =5.1763,77r =5.0113,77, =5.1332

£  =  66

= 64.953

£ = 61

£ = 60

= 59.5

£  = 59
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<9, = 0.30595, e2 = 0.92167,0T =0.78571, Op =0.59933,
Z), = 0.27297, D2 =0.685 29, Ex =1.0204,

Z)3 =4.3134x10 ~\E2 =0.9, D4 =0.12041, Z)5 =-0.13596,
D6 = -0.16256, D7 =0.343 24, Ds =0.18067, 1

ttp = 0.45,C/, =4.605 2, U2 = 4.9484, £/„ =4.3322,
UL = 5.2905, t/5 =5.1763, C/r = 5.0137, t /p =5.1332

T 0, = 0.305 95,02 = O.91573,0r = 0.785 7 l,0p =0.59933, j  
Di = 0.27297, D2 =0.68529, £, =1.0204,

Z)3 = 4.3134xl0_2,£ 2 =0.9, £>4 =0.12041, Ds =-0.13002,
D6 =-0.16013, Z)7 =0.34075, D% =0.18062,
= 0.45,17, =4.605 2, U2 =4.9459,UH =4.3322,

UL = 5.2905, Us = 5.1763,C/r = 5.0162, Up =5.1332

(9, = 0.305 95,02 = 0.88042,0T = 0.78571,=0.59933,
Z), =0.27297, £>2 =0.68529,^ =1.0204,

D3 = 4.3134x10'2,£ 2 = 0.9,D4 =0.12041,^ = -9.4705 xlO-2, 
D6 =-0.14607,D7 = 0.325 7,D8 =0.17963,

;z> =0.45,£7, =4.605 2, U2 =4.9309,1/* =4.3322,
C/£ = 5.2905,C/5 = 5.1763,C/r = 5.0302, Up =5.1332

(9, = 0.30595,02 =0.8228, <9r = 0.78571, Op =0.59933,
Z), = 0.27297, D2 =0.685 29, £, =1.0204,

£>3 =4.3134x10_2,£ 2 =0.9,Z)4 =0.12041, Z)5 =-3.7091 xlO'2, 
Z)6 =-0.12449,Z)7 = 0.300 l,Dg =0.17561,

7tp = 0.45,£/, = 4.605 2,£/2 = 4 .9053,=4 .3322,
= 5.2905,C/s = 5.1763, CZr = 5.0518, Up =5.1332

0, =0.30595,^2 = 0.76659, <9r = 0.78571,0p =0.59933,
Z} = 0.27297, Z>2 =0.685 29, £, =1.0204,

Z)3 =4.3134x10'2,£ 2 =0.9,Z)4 =0.12041,D5 =1.9128x10"2, 
Z)6 =-0.10500,Z)7 = 0.27384,Z)8 =0.16884,

^  = 0.45,17, =4.6052,C/2 = 4.879,£/„ =4.3322,
UL =5.2905, C/5 = 5.1763, t/r =5.0713,^ =5.1332

(9, =0.30595,^2 = 0.71162,0r =0.78571,0, =0.59933,
£>, = 0.27297, D2 = 0.685 29,£, =1.0204,

Z)3 =4.3134xl0‘2, E2 =0.9, Z)4 =0.12041, Z)5 =7.4094xl0"2, 
D6 =-8.7395 x10_2,Z)7 =0.24686, Z)8 =0.15947, 
np = 0.45,£/, = 4.605 2,t/2 =4.852, =4.3322,

UL =5.2905, C/s = 5.1763, C/r = 5.0889, Up =5.1332

= 58.5

= 58

^r = 55

^r=50

^r = 45

^r=40
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0, =0.305 95,02 =0.657 79,0T = 0.785 7 l,0p =0.59933, 
Z), = 0.27297,Z>2 =0.68529=1.0204 ,

Z>3 = 4.3134xl0'2,£ 2 =0.9, Z>4 =0.12041, Z)5 =0.12793, 
Z>6 =-7.1516x10-2,£>7 = 0.21914, Z>8 =0.14762,

* p  =0 .45 ,C7 ,  = 4 . 6 0 5  2,  U2 = 4 . 8 2 4 3 ,  17* = 4 . 3 3 2 2 ,

C/z = 5.2905, C/5 =5.1763,C/r = 5.1048, Up =5.1332

0, = 0.30595,02 =0.60499,0T = 0.78571,0, =0.59933, 
^  = 0.27297, D2 = 0.68529,£, =1.0204,

Z>3 =4.3134x10_2,£ 2 = 0.9, Z)4 =0.12041, Ds =0.18073, 
Z>6 =-5.7227xl0 '2,Z)7 = 0.190 62, Z>8 =0.13339,
7tP = 0.45,17, =4.605 2, U2 = 4 .7958 ,=4 .3322 ,

UL = 5.2905, £/* =5.1763, UT = 5.119 W ,  =5.1332

0, =0.30595,02 = 0.55314,0r = 0.78571,0, =0.59933, 
Z), =0.27297, D2 =0 .68529=1.0204,

Z>3 =4.3134xl0'2,Z:2 =0.9,Z)4 =0.12041,D5 =0.23258, 
D6 =-4.4419 x10'2,D7 =0.16127, Z)8 =0.11685,
/rp =0.45,t/, =4.6052,C/2 = 4.7664,£7W =4.3322,

UL = 5.2905, C/5 =5.1763, UT = 5.1319, Up =5.1332

0, = 0.30595,02= 0.50216,0r = 0.78571,0, =0.59933, 
Z>, = 0.27297, Z)2 =0.685 29, Ex =1.0204,

Z>3 =4.3134x10-2,2s2 =0.9,Z)4 =0.12041, Z>5 =0.28355, 
Z)6 =-3.3002 xlO"2,Z>7 = 0.13103,Z>8 =9.8026x10‘2, 

^  =0.45,Z7, =4.605 2, U2 =4.7362, t7* =4.3322, 
t7z = 5.2905,C/5 = 5.1763,C/r = 5.1433, Up =5.1332

(9, =O.3O595,02 =0.48057, 0r = 0.78571,0, =0.59933,
Z} =0.27297, Z)2 = 0.68529,Z, =1.0204,

Z>3 = 4.3134 x l0 '2,£ 2 = 0.9, Z>4 =0.12041, Z)5 =0.30514,
Z)6 =-2.8517 x10"2,Z)7 =0.11778,Z)8 =8.9266x10"2,

^p =0.45,17, =4.605 2, U2 = 4.7230,£/„ =4.3322,
UL = 5 . 2 9 0 5 , =  5.1763, C7r = 5.1478,17, =5.1332

6X =O.3O595,02 = 0.46198,0r =0.78571, 0, =0.59933, 
Z), = 0.27297, Z>2 =0.68529, Z, =1.0204,

Z>3 =4.3134x10_2,Z:2 =0.9,Z)4 =0.120 41, Ds =0.32374, 
Z)6 =-2.4821 x10‘2,Z)7 =0.10616,Z)8 =8.1339x10'2, 

=0.45,17, =4.6052, U2 =4.7113,17* =4.3322,
C7* = 5.2905, C7S =5.1763, UT = 5.1515, Up =5.1332

^r=35

^r=30

^r=25

^r=20

17.857143

}T = 16
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T = 9

T = 5

T = 1

0, = 0.30595,02 =0.39283,0T = 0.78571,0, =0.59933,
£>, = 0.27297, D2 = 0.68529,£, =1.0204,

£)3 = 4.3134xl0'2,£2 = 0.9,£>4 = 0.12041,£>5 =0.39289,
D6 =-1.2446 x10~2,£>7 = 6.1095 x10"2,£>8 =4.8649 xlO-2 

^  =0.45,C/, =4.605 2, U2 = 4.6663,£/„ =4.3322,
UL = 5.2905, C/5 = 5 . 1 7 6 3 , =  5.1638, Up =5.1332

(9, = 0.30595,02 =0.35394,0r =0.78571,0, =0.59933,
£>, = 0.27297,D2 =0.68529,£, =1.0204,

Z)3 = 4.3134xl0~2,£2 = 0.9, £>4 = 0.12041, £>5 =0.43177,
£>6 =-6.4434 xl0~3,£>7 = 3.4401 xl0_2,£>8 =2.7958xl0-2 

np =0.45,1/, =4.605 2, U2 =4.639 6,1/* =4.3322,
UL = 5.2905,C/s = 5.1763, t / ,  = 5.1698, Up =5.1332

0, = 0.30595,02 =0.31549, 0r =0.78571, 0, =0.59933,
£>, = 0.27297,£>2 = 0.68529,£, =1.0204,

£>3 =4.3134x10-2,£ 2 =0.9,£)4 =0.12041,D5 =0.47022,
£>6 =-1.1956 xlO_3,£>7 = 6.9756 x10"3,£>8 =5.7800x10‘3 

;z> = 0.45,t/, =4.605 2, t/2 = 4.6121,//„ =4.3322,
UL = 5.2905,C/5 = 5.1763, UT = 5.1751,//, =5.1332

(9j = 0.30595,02 =0.3069, 0r = 0.78571,0, =0.59933,
£>, =0.27297, £>2 =0.68529,£, =1.0204,

£)3 =4.3134xl0"2,£ 2 =0.9,£>4 =0.12041,£>5 =0.47881,
£>6 =-1.1748xl0“4 -  9.5581 x10~24j,£>7 = 6.9976x1 0 '\

Z)8 = 5.8227xlO-4 -9.5581 xlO-24/,
7ZP =0.45,17, = 4.605 2, //2 = 4.6059,//„ = 4.3322, UL =5.2905,

Us = 5.1763, UT =5.1162,Up =5.1332

0, =0.30595,02 =0.30604,0T = 0.78571,0, =0.59933,
£>, =0.27297,£)2 = 0.685 29, £, =1.0204,

£>3 =4.3134x10"2,£'2 = 0.9,£>4 =0.120 41, £>5 =0.47967,
£>6 =-1.1727xl0"5 -2.4151 x10"25z,£)7 = 6.9998 x10"5,£>8 =5.827x10 

7CP = 0.45,//, =4.6052,Z/2 = 4.6052,//* =4.3322,
UL = 5.2905,Us = 5.1763, Z/r = 5.1763,//, =5.1332

0, =0.30595,02 = 0.30596,0r =0.78571,0, =0.59933,
Z), =0.27297, D2 = 0.68529,£, =1.0204,

£)3 =4.3134xl0"2,£ 2 =0.9,£)4 =0.12041,£)5 =0.47976,
£>6 =-1.1725xl0-6 -  2.1499 x10~26j,£)7 = 7.0000x10~6,£>8 = 5.8274xl0~6 

np = 0.45,//, =4.605 2, U2 = 4.6052,UH =4.3322,
UL = 5.2905,//5 = 5.1763, //r =5.1763, / / ,  =5.1332

£  =  0.1

\ - 5 £ = 0.01

= 0.001
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0, = 0.30595,02 =0.30594,0T =0.78571, Op =0.59933,
Z), =0.27297, D2 = 0.68529, Ex =1.0204,

Z)3 = 4.3134xl0_2,Zs2 = 0.9,D4 = 0.12041, D5 = 0.47978,
D6 = 1.1725 xlO-6 + 2.0962 x 1 0 -26z, D 7 = -7 .0x10_6,A  =-5.8275 x l0 '6; 

nP =0.45,C7, =4.6052,[/2 =4.6052,(7^ =4.3322, 
t /L = 5.2905,C/5 = 5.1763, C/r = 5 .1 7 6 3 ,^  =5.1332

T  =  -0 .0 0 1

100 T
y

1 0 - -

0 10 20 30 90 10040 50 60 70 80
X

Figure 3.10 Positive tax increases total social welfare (Scientific Workplace driven)

100 t
y

1 0 ”

100

Figure 3.12 Full insurance coverage is not optimal (Scientific Workplace driven)
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Appendix 3.2 Aggregate social welfare increases with negative T 1

T h e  h i g h  r i s k s  d o n ' t  d r i v e  w h i l e  t h e  l o w  r i s k s  d r i v e  b e f o r e  a n d  a f t e r  t h e  t a x a t i o n  

T h e  c o n s t r a i n t  o n  t h e  h i g h  r i s k s  i s  b i n d i n g ,  i e ,  v(tth ,a H) = v(nH ,  a L )  

w ( x ) =  l n x ,  W =  1 0 0 ,  B = 1 ,  D = 9 9 ,  nH =  0 . 9 ,  nL-  0 . 3 ,  X =  0 . 8 3 ,  T — — 1

UH =B + \n(jV-DKjj)
Ux = l n  W 

UL = B + ln(j¥ -D xl )
B + ( \- i t„ )ln(W- 0lDnL)+nH In[W-0(DxL 
Us =B + ( \ - n L )\n(W -  9,DxL)+xL in[w -  0,DxL -  (l -  0, )£»]

7Lp —

x L{ \ - x p) ^ - 9 pD xp) - { \ - x L)xp^ - 9 pD xp - ^ - 9 p)D}=0 
Up =B + { l - x L)U fV -9 pD xp)+xL\ n ty - 9 pDx p - ^ - 9 p)d ]

U2 = kt(W + (l-X)T)
B + ( l - x H)ln( w - 92DnL - XT)+ x H\n[W-02DxL - (l- 9 2)D-XT] = In(W + (l- X)t)  

UT = B + (l- nL)ln{W- 92D xL -  XT)+ nL l n ^ - 92D kl - ( l - 9 2)D-XT]
F  — *(xh ~*l)

1 (1-̂ K(1 -*i)

f h
d ,= u , - u h

D2 = UL~Ul
D,=Us - U p 
Da = Ex - E 2
d 5 = oT - e 2 

d 6 =u t - u s 
d 7 = u 2- u x

Ds =UT+U2- U S- U ]

Gx =  0 . 4 6 8 5 7 ,  e2 =  O . 4 5 4 9 2  +  7 . 6 9 2 7 x l O " 2 1 / , 0 r  = 0 . 2 8 8 5 7 ,  Qp = 0 . 3 4 4 7 3 , 1  

Dx =  1 . 2 1 6 4 ,  D2 = 0 . 6 4 7  6 ,  Ex = 1 3 . 9 5 0 ,

D3 = 0 . 5 5 1 0 4 , ^ 2  = 0 . 9 9 ,  Z > 4  = 1 2 . 9 6 0 ,  D5 = - 0 . 1 6 6 3 5 - 7 . 6 9 2 7  x l O - 2 1 / ,

D6 = 8 . 9 3 2 8 x 1 0 ' 3 - 2 . 0 2 3 9 x 1 0 " 2 , z , Z ) 7  = - 1 . 7 0 1 4 x l 0 ~ 3 ,

D 8  = 7 . 2 3 1 3 x 1 0 " 3 - 2 . 0 2 3 9 x 1 0 _ 2 I z ,

/ z >  = 0 . 7 9 8 ,  Ux =  4 . 6 0 5  2 ,  U2 =  4 . 6 0 3  5 , = 3 . 3 8 8 8 ,

C / L  =  5.252$,US =  5 . 1 7 1 9 , ^  =  5 . 1 8 0 9 ,  £ / p  =  4 . 6 2 0 9

f t
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Figure 3.11 Negative tax increases total social welfare (Scientific Workplace driven)
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Appendix 3.3 Aggregate social welfare increases with negative T 2

The high risks don't drive while the low risks drive before and after the taxation 

The constraint on the high risks is binding, ie, v (tth  , a H )  =  v ( n H , aL)

«(x) = lnx, W = 100, B - 1, £> = 90, nH =0.8, nL =0.3, X = 0.8,

UH=B + \n ty -D 7 r H)
Ux=\nW 

Ul =B + ]n(jV -  DnL)
B + (l -  nH )]n(W -  OxDnL)+ nH ]n[W - 0xDttl -  (l -  0X)d ] = In W 
Us = B + (l - nL)h\(W -  0xDttl)+ nL \n[W - 0xDxL -  (l-  0X)£>] 

tvp ^  "h X)?rL
*t (l -  kp ){W -  6pDnP ) -  (1 -  ̂  )n P f r  ~ epDnp -  (l -  <?„ )/>]= 0 
Up =B + ( \ - n L )\n(w -  9pD xp)+ k l la[w -  0pD xp - { \ - 0 p )l>]

U2 = ln(W + (l -  X)t )
B + ( \ - t ih )]n(W~62Djil -XT)+n„ \n[W - eiDnL - { \ - $ 2)D -  XT] = \n(W + ( \ -X ) t )  

Ut =B + ( \ - kl)ln{W- 92D kl - XT)+ itL In[W- 62Dtcl - ( \ - 0 2)D-XT]
P  _

E = —
( w \

d i =U]- U h

d 2=u l - u x

D3=Us - U p

d 4 =e x ~ e 2
D5=6t -  02 

De=UT- U s 
D-j —U2 -U x 

Di =UT+U2- U s - U l

0X =0.30595,02 =-7.0264xl0“2, ^  =0.42857,^ =0.21693,"
£>, =0.272 97, D2 =0.685 29, Ex =9.5238,

£)3 = 0.22645,£2 =0.9,
£>4 = 8.6238, £>5 =0.49884,

D6 =0.15841, £)7 =-5.1293xl0'2,£)8 =0.10711,
7tp = 0.7,C/j =4.6052,U2 = 4.5539, £/„ =4.3322,

UL =5.2905, Us = 5.1763, UT =5.334 7, Up =4.9498

£  = -25
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0] = 0.30595,02 = -l.lO 53x l(r2,0r =0.42857,9p =0.21693 
Dl =0.272 97, D2 = 0.685 29,£, =9.5238,

£>3 = 0.226 45, £ 2 = 0.9,
£>4 = 8.6238,£)5 =0.43962,

£>6 =0.13645, £>7 =-4.2908x10"2,Z)8 = 9.3542xl0-2, 
np = 0.7,Z7, =4.605 2,Z/2 = 4.5623,Z/„ =4.3322,

UL =5.2905, Z/5 =5.1763, Z/r = 5.3127, Up =4.9498

0, = 0.305 95,02 = -3.629 9 x 10"3, = 0.428 5 7 , =  0.216 93,
£>, =0.27297,£>2 =0.685 29, £, =9.5238,

Z)3 = 0.22645,£ 2 =0.9,
£>4 = 8.623 8, £>5 =0.4322,

£>6 =0.13363, £)7 = - 4 . 1 8 6 4 x 1 0 ' 2,£>8 = 9 . 1 7 6 3 x 1 0 ' 2, 

np = 0.7,Z/, =4.6052,Z/2 = 4 .5633 ,=4 .3322 ,
UL = 5.2905,Z/5 = 5.1763, t/r =5 .3099 ,^  =4.9498

0, =0.30595,#2 =-6 .5912x10^*,=  0.428 57, dp =0.21693, 
D, =0.27297,£>2 =0.685 29,£, =9.5238,

£)3 = 0.226 45, £ 2 =0.9,
£>4 = 8.6238, Z)5 =0.42923,

Z)6 =0.13249, £>7 =-4.1447 x l0 '2,£>8 =9.1046xl0"2, 
=0.7,t/j = 4.605 2,Z/2 = 4.5637,Z/„ =4.3322,

Z/L = 5.2905,Z/5 =5.176 3,Z/r = 5.3088,Z/p =4.9498

<9, =0.30595,02 = 8.2659x10^,<9r = 0.42857,0, =0.21693,’ 
£>, =0.272 97, D2 =0.685 29, £, =9.5238,

£)3 = 0.226 45, £ 2 =0.9,
£>4 = 8.623 8, £>5 =0.42774,

£>6 =0.13193, £>7 = -4.1239xl0‘2,£>8 = 9 . 0 6 8 7 x 1 0 -2 , 

np = 0.7, Z/j = 4.605 2, U2 =4.5639, Z/„ =4.3322,
UL =5.290 5,Z/5 = 5.1763, Z/r =5.308 2, Up =4.9498

(9, = 0.30595, 02 = 2.3125xlO'3,07. =0.42857,0, =0.21693,' 
£)] = 0.272 97, £)2 =0.685 29, ̂  =9.5238,

£)3 = 0.22645,£ 2 =0.9,
£>4 = 8.6238,£)5 = 0.42626,

£)6 =0.13136,£>7 =-0.04103,Z)8 =9.0327xl0-2,
7TP =0.7,Z/j =4.605 2,Z/2 = 4 .5 6 4 1 ^  =4.3322,

UL =5.290 5,Z/5 = 5.176 3, Z/r =5.307 6, Up =4.9498

= -21

= -20.5

= -20.3

=  - 20.2

=  - 20.1
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ex = 0 . 3 0 5  9 5 , 0 2  =  3 . 7 9 8 6 x l O _ 3 , 0 r  = 0 . 4 2 8 5 7 , 0p = 0 . 2 1 6 9 3 ,  

£ > ,  =  0 . 2 7 2  9 7 ,  D2 =  0 . 6 8 5  2 9 ,  £ ,  = 9 . 5 2 3 8 ,

£ > 3  =  0 . 2 2 6  4 5 ,  £ 2  = 0 . 9 ,

Z ) 4  =  8 . 6 2 3  8 ,  £ ) 5 = 0 . 4 2 4 7 7 ,

£ > 6  = 0 . 1 3 0 7 9 , £ > 7 = - 4 . 0 8 2 2 x l 0 “ 2 , £ > 8 = 8 . 9 9 6 6 x l 0 " 2 ,  

t i p = 0 . 1 , U x = 4 . 6 0 5 2 , £ / 2  =  4 . 5 6 4  3 , £ / „  = 4 . 3 3 2 2 ,  

t / z  =  5 . 2 9 0 5 ,  t / 5  = 5 . 1 7 6  3 ,  t / r  =  5 . 3 0 7 1 ,  Up = 4 . 9 4 9 8

(9 ,  =  0 . 3 0 5 9 5 , 0 2  =  7 . 8 3 7 9 x l O ' 2 , 0 r  = 0 . 4 2 8 5 7 ,  Gp = 0 . 2 1 6 9 3 , '  

£ > ,  =  0 . 2 7 2  9 7 ,  £ > 2  = 0 . 6 8 5  2 9 ,  £ ,  = 9 . 5 2 3 8 ,

£ > 3 = 0 . 2 2 6  4 5 ,  E2 = 0 . 9 ,

£ > 4  =  8 . 6 2 3 8 , £ > 5 = 0 . 3 5 0 1 9 ,

Z ) 6  = 0 . 1 0 1 3 7 , D 7  = - 3 . 0 4 5 9  x 1 0 ~ 2 , £ > 8 =  7 . 0 9 1 3 x l 0 ~ 2 ,

7ip = 0 . 7 , t / ,  = 4 . 6 0 5  2,U2 = 4.5141,Uh = 4 . 3 3 2 2 ,

UL =  5 . 2 9 0 5 , C / 5  = 5 . 1 7 6 3 , C / r  = 5.2111,Up = 4 . 9 4 9 8

0 ,  = 0 . 3 0 5 9 5 , 0 2  = 0 . 1 5 3 5 4 , 0 r  = 0 . 4 2 8 5 7 , 0 p  = 0 . 2 1 6 9 3 ,

£ > ,  = 0 . 2 7 2  9 7 ,  £ > 2  = 0 . 6 8 5  2 9 ,  £ ,  = 9 . 5 2 3 8 ,

£ > 3  =  0 . 2 2 6  4 5 ,  £ 2  = 0 . 9 ,

Z ) 4  =  8 . 6 2 3  8 ,  £ > 5 = 0 . 2 7 5 0 3 ,

£ > 6  =  6 . 9 9 4 8  x 1 0 " 2 , £ > 7  = - 2 . 0 2 0 3 x 1 0 _ 2 , £ > 8 = 4 . 9 7 4 5 x 1 0 - 2 ,  

Tip = 0 . 7 , C 7 ,  =  4 . 6 0 5  2 ,  U2 =  4 . 5 8 5 0 , = 4 . 3 3 2 2 ,

UL =  5 . 2 9 0 5 ,  =  5 . 1 7 6 3 ,  C / r  = 5 . 2 4 6  2 ,  Up = 4 . 9 4 9 8

0 ,  = 0 . 3 0 5  9 5 , 0 2  = 0 . 2 2 9  3 7 , 0 r  =  0 . 4 2 8  5 7 , 0 p  = 0 . 2 1 6 9 3 ,

Z ) ,  = 0 . 2 7 2  9 7 ,  £ > 2  = 0 . 6 8 5  2 9 ,  £ ,  = 9 . 5 2 3 8 ,

£ > 3 =  0 . 2 2 6  4 5 ,  E2 = 0 . 9 ,

£ > 4  = 8 . 6 2 3  8 , £ > 5 = 0 . 1 9 9 2 1 , £ =
£>6 = 3 . 6 2 5 9 x 1 0 _2,£>7 = -0.01005, £>8 =2.6209 xlO"2,

Tip =0.7, £/, =4.605 2, U2 = 4.5951,UH =4.3322,
= 5.2905, t/5 = 5.1763, UT =5.2\25,Up =4.9498

0, =0.30595,02 = 0.29057,0r = 0.42857, Op =0.21693,
£>, =0.27297,£>2 =0.685 29,£, =9.5238,£>3 =0.22645,£ 2 =0.9, 

Z)4 = 8.6238,£>5 =0.13801,
£>6 = 7 . 4 7 4 6 x 1 0 ' 3,£>7 = - 2 . 0 0 2 x 1 0 ' 3, D 8 = 5 . 4 7 2 6 x 1 0 ‘ 3,

Tip =0.7,C/j =4.605 2, U2 = 4.603 2,£/„ = 4.3322,
UL = 5 . 2 9 0 5 , = 5 . 1 7 6 3 , =  5.183 8, £/ =4.9498
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r  =  - o . o i

0, =O.3O595,02 = 0.30441,0,. = 0.42857,0, =0.21693,
A = 0.272 97, D2 = 0.685 29, £, =9.5238,

A  =0.226 45, A  =0.9,
A  =8.6238,A  =0.12416, k  = -0.1

A  = 7.527xlO_4,A  = -2.0002x10~4,A  = 5.5268x10~4
;z> =0.7,A =4.6052,t/2 =4.6050, A  =4.3322,

A  = 5.2905, A  = 5.176 3, A  =5.177, Up =4.9498

=0.305 95,02 =0.305 79,0r =0.42857,0, =0.21693,
D, =0.27297, A  = 0.68529, A =9.5238,

A  =0.22645, A  =0.9,
A  =8.623 8, A  =0.12278,

A  =7.5323x10_5,A  =-0.00002, A  =5.5323x10-5,
=0.7, A  = 4.6052, A  = 4.6052, A  =4.3322,

A  =5.2905, A  =5.176 3, A  =5.1764, A  =4.9498

0, =O.3O595,02 = 0.30593,0r = 0.42857,0, =0.21693,
A  =0.272 97, A  =0.685 29, A =9.5238,

A  =0.226 45, A  =0.9,
A  =8.6238, A  =0.12264,

A  =7.5329x10'6,A  = -2 .0 x10_6,A  = 5.5329x10-6,
=0.7, A  =4.605 2, A  =4.605 2, A  =4.3322,

A  =5.2905, A  =5.1763, A  =5.1763, A  =4.9498 

0, = 0.305 95,02 =0.305 96,0r = 0.42857,0, =0.21693,
A =0.272 97, A  =0.685 29, A =9.5238,

A  =0.226 45, A  =0.9,
A  = 8.623 8, A  = 0.122 61, = 0.001

A  =-7.5330x10"6,A  =2.0000x10_6,A  =-5.5330x10 
=0.7,A =4.605 2,A  =4.6052, A  =4.3322,

A  =5.290 5, A  =5.1763, A  =5.1763, A  =4.9498

r  = -0.001

- 6
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Figure 3.13 Almost no insurance (Scientific Workplace driven)
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Appendix 4.1 Numerical examples of efficient partial-pooling Nash equilibrium

uT(w) = - e ar, uB(W) = W, K„ = 0.5, tcl  =0.2, 0 = 20, W = 0.2, 0  = 0.09,

D = 0.19, >1, = 0.9, 3̂ =0.5, 2̂  = -7,^7, = 0.47368,

-* 4  =  = ° - 4 7 3 6 8 ,  +  ( ! - »  * 3 = ( J - ^ K + V h

(3  =  — ££tz  1 _  3 =    3 —____ ^ hl____  3 =    1 _  3 =    3 = _______  \
^  N lt+Nhb > ^ 2  N LT+NHB+NH T ->'h, NLT+Nm  >1 * 3  A ^ + A ^  > ^  N ^ + N ^ + N ^ )

U, =B + (W -tthD), U2= B - e ~e{'r-*‘<D), I/3 = -e ’" ' , t/4 = 0 -

Z), = nHD -  B
D2 = u , - u 2
d , = u a- u ,

Solutionis: Jo, =0.005,D2 =1.4141xl0_2,£>3 = 6.9152xl0-2 J

P\ — 771 11

B + (W-7THD + (7rH-7rL) l l) = W
n  - l~',» '~'L «-*1*’-111

4 k h n L g-e(w-D-f\+ii)

Solutionis: f/>4 =0.87512,/, = 1.6667xl0‘\/>  = 3.3333xl0-3}

0  + (lF -7tHD + 7tHI2 -P2)=W
\ - tth  \ - n L e-^w -P j) 

n H n  L g-ety-o-Pi+h)

U5=B + xl {- e-ef-w-D- ^ ) +  (l - * j ( -  e ^ - V )
1 -7T3   1 -1 tL g
77$ 771 g-OiW-D-irsIi+I-i)

Ut = B + 77L(-e-et-w-D-”̂ h)y  (1 e * w-’M )
B + ̂ h (- e - 0 { W - D - { X x77L +0-A,)n H ) / 4  +/4)j+ ^ _  e - e { W - { l xx L + (1 -A , ) t t„ )/4) J_  _e~M

PA = + (l — \  )7Ch ) / 4
U1 = B + 71 L (- e-0(w-D~(^L +0-̂ i )*h K+/4)j+ (i -?rL)(- e~e{w~^*L +(l_Al ),r")/4))

n    1 -7Ch  1 -71L g-OiW-iMtL+i'-M )*H V4 )
5 — )/4+/4)

d 6=u 7- u 6
d 7 = u , - u ;
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Solution is:

Ds = 0.39614, D6 =4.7858x1(T3,£>7 = 2.8268xl02, 
/ ,  =0.12069,/, =0.15164,/. = 9.5465 x l0‘\

P, =5.5343x10-2,/> = 2.1957x10-2,- 2

Vs =1.3575x10“3,C/6 = 2.4839xl0~2,t/7 =2.9625x10v- 2

l p = 9.5465xl0~2, Pp = 2.1957xlO'2

____________ Qe~m_____________ — n 1 71 78 <" 0 ~*h) _ Q'3'5'2'3
I, (I-*! Ml-4 )(l ~*H ))lp H  )*» )>P) U . l / 1 / 5  A, (l-J j ) (* „ -J r j  U .B J.3 .J .3

®° ut(W'r) — _ =  0 . 1 7 1 7 8  < — w— n H  ̂ , = 0 . 8 3 3 3 3  and there is no
u’M h u ’A ^ )  4 (j

Pareto-improving partial-pooling equilibrium.

The following simulation shows the LT are worse off when the tax breaks the 

partial-pooling equilibrium into separating equilibrium. Therefore, the market 

equilibrium is Pareto efficient.

W + A4t = B + (W-7rHD + 7rHIP-Pp)
B + (jV-ftHD + (?rH - n L)l5 - ( l -  J,4)t) = W + A4t

^5 ~ 5
U, = B + Xl{-e-ei-w-D-F̂ < ' - ^ ) +  (1 - n L

r-v   1 - n L g-^OP-JS-O-^tV) 1 -7 tH
8  — n L e -o(w-D-Ps+i 5- 0 - 44),)

Solution is:
t = 4.3859xl0-2,Z)g =1.3247,A  =-2.6249 x l O2,-2

/, = 0 . 1 6 2 8 6 , = 3.2573xl0~2,t/g =2.6214x10v- 2

IT + >l4/ = B + (W -ftHD + 7rHIp-Pp)

5  +

Solutionis: $r = 4.3859xl0~2, / 6 =0.13299,P6 =2.6599xl0‘2,//, = 1.9481xl0'2}

_ A  T O  0 - ^ 4 ) , + / > 6  _  ( l - A4 ) 4 .3 8 5 9 x 1 0 - 2  + 2 .6 5 9 9x]0~ 2 _ n m i  COI — U. Z J ,  j — 0.13299 — U . i / J J O
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Figure 4.15 Laissez faire partial-pooling equilibrium (Scientific Workplace driven)
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Figure 4.16 From partial-pooling to type 3 separating equilibrium (Scientific

Workplace driven)
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Appendix 4.2 From partial-pooling equilibrium to type 1 separating equilibrium

uT(w) = -e-(Wi uB(w )= W , nH =0.4, nL =0.1, 0 = 30, W = 0A5, 5  = 0.04,

D = 0.14, Aj = 0.75, /I3 = 0.733, X2 = 9 ̂  = a, (1-^mi-4 X1-^ ’

/Tj = + (l— \  )^// J ^3 = (l — ̂ 3

I 2 — Nlt 1   2 — ^ HB 2    NhT 2 — ^ HT 1   2 — Nlt 2 — NLT
Y h  -  N LT+Nm  'H  -  JVtr+^fl, ’ ^ 2  -  Nlt+Nfjs+Nfjr 9 * 3  ~  N LT+N„r * 3  ~  NLT+Nm  ’ ^ 4  NLT+Nm +Nm  -

(7, = S  + (», -^ „D ), U2= B - e m ~’“D), £7, = - e m ,U A= B -

D] = 7rHD -  B

d 2 = u 3- u 2
d , = u a- u ,

Solutionis: {£>, =0.016,D2 =8.4969xl0‘3,D3 = 3.4202xl0‘2)

7 | — 7tLlx
B + {W-!rHD + (^H- ^ ) l t) = }V

r>  — x~n H ]-* L  e-g(r - /l)
4 n H 7t L e -e{w-D-P\+i\)

Solutionis: Jd 4 =0.83154,7, =5.3333xl0'2,^  = 5.3333xl0_3|

B + (W -  x„D + x„I2 -  P2) = IT
1- * / /  _  \ - n L e -o ty-P i)  

n H ~  n L «,-*(>r-D-Pi+i2)

U5=B + x l (- e-<*w-D- ^ ) +  (1 -  Xl)(-
1 -*3   !-«■£ e-®(*̂-*373)

•̂3 (»P—/>—̂373+73 )

£  + ̂  e-^~D-{^L +(1-A, K  )/4 +/4 )̂ + ̂  _ ̂  )(- +0-̂ 1 K  )74 ) J =

4̂ = i^l^L + ~ \  )^H )A
C/7 = 5  + nL (- e ê w' D' ^ ni +̂ ^  )/4 +/4})+ (l -  ̂  )(- e~0{JV~^*L +{}~*')>lH *)

5 ~  ~  e -fl(»'-M'll*L+(l-'li )*«)/4+/4)

d 6 =u 2- u 6
d 2=u 2- u 5

Solution is:
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Ds = 1.467137501xl0~2,.D6 = 1.011665336xl0“2, |
D1 = 1.564035298xl0_3, /2 =8.027 468436xl(T2,
/ 3  = 9 . 1 8 0 8 3 4 6 0 0 x l ( r 2 , / 4  = 7 . 9 9 4 7 0 4 8 8 9 x l 0 ~ 2 ,

P2 =1.610987374xl0-2,/> =1.399073356xl0"2,
Us =1.298164096x10"2,{76 = 4.429022896x10"3,

[ U7 = 1.454567 626 x lO2 J
IP = 7.994704889xl0‘\  Pp =1.399073356xl0‘2

= 0.1801027864<-, |(t ^ ; ; ] t) -  2.196254682

W + X4t = B + (W -  tthD + nHIp -Pp)
B + ( W - xhD + (x h - 7rL) l5 - ( l -X 4)t)=W + A,4t

U8=B + x l ( -  )r))+ ̂  ^  e - e ( w - P 5- ( ^ ) t ) )

A  = \ - n ,
„L e-o(iv-D-f$+/}-(i-M)i) nH

D, = -(B  + x H (- e-e{'r-D- ^ ,> - ^ ) +  (1 -  )(- »  ))
U9 = - e- ^ +̂ )
U]0 = W + X4t 

Dl0 =U%- \ .  454567 626xl0'2

/),2 = PF + A4f-(i? + (pF-;r//Z) + ;r/// /, - P P))

Solution is:

t = 8.108710298x10 ,Z)8 = 3.950942783x10 , 
A  =3.887 48849xKr\Z)]0 =2.741518324x10 - 7

Dn =6 .431975761x10'4,D12 =-3.069603385x10 -3 2

I5 =8.036236766x10~\P5 = 8.036236766x10 , 
A  = 1.454595041xl0~2,£/9 =-1.046 579 896x1 O'2, 

0.15:

-^ = 0.1750000001, = M JiJp 7 1-j

U]0 =0.1519880860

8.108 710 298x10“3 +8.036 236 766x1 O'

8 .036236766xl0 ‘ 2
= 0.176162817
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Appendix 4.3 From partial-pooling equilibrium to type 2 separating equilibrium

uT(w) = -e -<w, uB( w ) = W , nH =0.4, nL =0.1, 0 = 30, W = 0.15, 5  = 0.04,

D = 0.14, X, =0.75, Xj =0.4, X2 = a,(1-̂ 3)+(i-a, > ( i = 0-33333,

4̂ = A, (1-̂ 3)+0-̂  Xl-̂ 3M4> = = + (̂  “  4  );r// » ̂ 3 = & ”  ̂ 3 +

(3 — Ull  1 _ x  =  ^   X. =  Nfir X. = Nfrr 1 — X. =  ^   X____ = _^ __
\ h  N l t +N[{b  * ^  N LT+Nf{B * ^ 2  N L T + N fjB + N jrr  ’ J ^ L T +^H T  9 ^ L T +^H T  9 ^ ̂ L T +^H B +^H T

U, =B + ( W -x HD), U2= B ^e-Mŵ " D), U, = - e m , C/4 = S - e _e('F_'r‘D)

X>j = tthD -  B
d 2 =u,~u 2

D3 =Ut -U}

Solutionis: {[/>, = 0.016,£>., = 8.4969xl0'3,Z>3 =3.4202x10^]}

B + (lV—nHD + (nH - nL) l])=W
r y  _  1-*/.

4 ~  ^  e-tf (»'-£>-/!+/!)

Solutionis: {/>„ =0.83154,/, = 5.3333xl0~2,/^ = 5.3333xl0-3]}

B + (W-xHD + irHI2 -P2)=W
1-»„ _  \ - x L €-«W-*i) 

n H n L g -e^-D -P i+ ii)

-me

n H n L e -e(w-n-Pi+h)

US=B + x L(-e-e(w-D-p̂ ) +  (1 -  * ,)(-  e e{w- ^ )
1—*3   1—n L e -°{w-*3l3)

71 ̂  71L g-QiW-D-xih+h )

U6 =B + 7rl ( - e « w-D-’‘,'*,’))+ (1 -  j tJ ( -  e-«w-’”,'))
B + ^h{- e-0(W~D-i^L +(1-A K  )h+I*)^+^_7J.H) (- e-0̂ - ^  + 0 - ■*. W K ) J

P4 = (Xjttl + (l — X| )?rH ) / 4 

Un = B + nL (- e~^w~D̂ XL +(1_'*1 ̂ H >)h+h))+ (l -  ttl )(- e~^w~ ^ L +(l~̂  ̂ H )7*))
n    1 -71H 1-7Tl e-*(ir-(M*L+(l-*t)*H)U)

5 _  ^  c-4(» '-D -(V i+(4)*/,)/4t/4)

d 6 =u2 -u,
D1=U1-U,

'6 
h

Solution is
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£>5 =1.467137501xl0'2,D(i =8.547349737xl0‘J',Z)7 =1.564035298xl0‘3, 
/ 2 = 8.027 468436xl0"2, /3 =0.1089480599,/ 4 =7.994704889xlO-J,

P2 = 1.610987374 xlO-2,/^ = 1.399073356 xl0~2,
U, =1.298164 096x10_2,[/6 = 1.369094128x10'2,C/7 =1.454567 626xl0-2

Ip =7.994704889xl0’2, Pp =1.399073356xl0‘2

 & rw  — A  i  p m  A
(i-xi M .-4 )d-*h  ))'p )*h Up ) W .1 0 U 1

W + AAt = B + (jV-7rHD + 7rHIp -P P)
B + (W-7rHD + (n;H - x L) l5 - ( l -A 4)t)=W + A4t 

P5 =  7Tl I 5

r>  _  1 -^ i  ] _ ^
8  ~  e -e(w-D-Pi*is-(\-M )i) tch

Dw = - e * ŵ - { B  + K „ {-e*w-D-p'*,'-('-x‘'>')y (

Solution is:

V = 3.976171992 x10“3,D8 = -0.505144942 7, Dl0 = 1.027 812 533 x 1 O'2,
/ 5 = 6.658723997 xl0‘2,/> = 6.658723997xl0‘\

Us =1.401476008xl0“2

W + A.at = B + (W -  khD + nHIp —Pp)
B + {W -  x„D +ttglg -  P6 -  (1 -  24 )<) = W + Xjt

n H ~  n L e -e(ff-D -^+ i6-( 1-A4 V)

TT — -.o ~ d ŵ+A^  iy]0 — e
Uu =W + A4t

D„ = U9 - 1 . 4 5 4 5 6 7 6 2 6 x l 0 ”2 

A 2= ^ o - ( - ^ " ' )
A 3 = u u - ( B  + {W-7ZHD + 7rHIp - P p))

Solution is:

< =  3 .9 7 6 1 7 1 9 9 2 x l0 " 3,

D, = 4 . 4 2 2 5 7 9 5 0 5 x 1 0 - “,£>„ =  2 .9 5 2 8 3 7  0 4 5 x 1 0 ‘ 7,

0 ,2  = 6 . 4 3 1 9 7 5 7 6 1 x 10"4, A 3 =  - 2 . 3 6 6 5 8 2 7 1 6 x 1 0 ‘ 3\

/„  = 8 .0 2 7  4 6 8 4 3 6 x 10_2,/>6 =  1 .2 1 3 3 7 0 1 7 5 x 10~2,

A  = 1 .4 5 4 5 9 7 1 5 4 x 1 0 '2,(7 io = - 1 . 0 4 6 5 7 9 8 9 6 x 1 0 ‘ 2,C/i1 = 0 .1 5 1 9 8 8 0 8 6 0

f  =  0 .1 7 5 0 0 0 0 0 0 1  M i l l i n  =  (■-*)3.i»7«l7iag»l0^1.2l337017»l^  =
b  ’ As 8.027 468436x] 0
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X

Figure 4.17 Laissez faire partial-pooling equilibrium (Scientific Workplace driven)

y

0 .1 2 "

0 .0 6 "

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
X

Figure 4.18 From partial-pooling to type 2 separating equilibrium (Scientific

Workplace driven)
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Appendix 4.4 From partial-pooling equilibrium to type 3 separating equilibrium

uT(fV) = -e~ ^ , uB(fV)=W ,tth =0.4, ^  =0.1, 6 = 30, 1F = 0.15, 5  = 0.04,

Z) = 0.14, A, =0.75, =0.4, X2 = 0.33333,

^4 = Aj(1-4)+0-A,Xl-^3= ̂  ^  = + ^  — ̂  * ^3 = (l ~ 3̂ K  + ̂ 3̂ 77

(2   Nlt i  2   ^HB 2 — Nm 2 — 1_2 _ ^LT 2 _ Nlt
\ 4  N lt+Nhb ’ ‘ N LT+Nf[B * ^ 2  N iT+N[fB+NfjT ’ ' j  NLt +N/h  ’ -3 N Lt +Nht ’ 4 ^ lt+^ hb+^ ht

U,=B + ( W - khD), U2= B - e a{w-""D\  U3 = - e m ,U t =B-e~e{ŵ LD)

Dl = 7rHD  -  B
D2=U3- U 2
D3=Ut -U ,

Solutionis: | d, =0.016,Z)2 =8.4969x10‘3,£)3 = 3,4202x 10“2]}

p \ = * J l  
B + {W -x„D + (nH- n L)L) = W

n -  x~*« l-*L ^,|H)
4 a-j. e -e(w-D-/)+y,)

Solutionis: |[d 4 =0.83154,/, = 5.3333xlO‘\ / ;  =5.3333xl0"3]}

B + (f¥—xhD + jthI2—P2)= W
\-7TH \ - X L e -0(W-Pl)

n „  n L e -o(w-D-Pi+i2 )

U5=B + % (-e-i'(’p-°-'i+;>))+ (1 -  * i)(- e- ^ ) )
1-W3   1- ^ i  ^-^ (^ -* 3/3 )

JT3 x L e -0(W-D-triIi+l3 )

t/6 = B + (1 -  « i)(-
^  + njj (_ e-0(W-D-(lxxL +(1-2, )*„ )/4 +/4)j+ ̂  ^  +0--*i K  K) J =

■̂4 = ( M l )^// )A
t/7 = B + 7Tl (- e-0(w-D-(̂ *L+{l-A: )xH )h+h) j+ Q ^  e-0(r-(ML+(l-A )*„)/«) J

  1 - n H \ - tcl )*h  )U )
5 ~  * £ )*H )'4+'4)

D6= U ,-U 6
D i = U i - U 5

Solution is:
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Z>5 = 1 . 4 6 7 1 3 7  5 0 1 x 1 0 ‘ 2 , D 6 =  8 . 5 4 7 3 4 9 7 3 7 x 1 0 ^ . 0 ,  =  1 . 5 6 4 0 3 5 2 9 8 x 1 0 ~ \  

/ 2 = 8 . 0 2 7  4 6 8 4 3 6  x l 0 _2, / 3 = 0 . 1 0 8 9 4 8 0 5 9 9 , / „  =  7 . 9 9 4  7 0 4 8 8 9 x l 0 ~ 2 ,

P2 = 1 . 6 1 0 9 8 7 3 7 4 x 1 0 “2 , P 4 =  1 . 3 9 9 0 7 3 3 5 6 x 1 0 ' 2 ,

_U 5 = 1 . 2 9 8 1 6 4 0 9 6 x l 0 ‘ 2 , £ / 4 =  1 . 3 6 9 0 9 4 1 2 8 x 1 0 _2, [ 7 ,  = 1 . 4 5 4 5 6 7  6 2 6 x l 0 ~ 2

I p =  7 . 9 9 4  7 0 4 8 8 9 x l 0 ~ 2 , Pf  =  1 . 3 9 9 0 7 3 3 5 6 x l 0 -2

____________ 6e~m —01801 <r V g P - ^ g )  _  o
(inri, m m  X ihti, ) ) i P  y a r ’ i r - t o ' L *  )»g >'/> > W A O U A

(r  + V  = (5 + (^ -% £ »  + % / , , - ^ ) )  .Solutionis: t = 3.976171992xl0“3 

Set t =  0 .0 0 8

B + ( fV -tthD + (x h - kl)I5 - ( l -A 4)t)=W + A4t

^ 5  =  5

17, = B  + nL (- e-"("'-D-',»+'>-('-2.)'))+ (i _ ̂ )(_ ),))
T\ _ 1-̂ t

8 — **  e -fl(»p-£)-/%+/5-(i->i4 V) Xh

Dw = -  (g+/r„ (_c-«»'-»-'W.-0-*>'>)+ (j _ ̂

S o l u t i o n  i s :
Z)8 = - 1 . 2 3 1 0 0 0 6 0 1 x 1 0 _2,Z ) ]0 = - 1 . 7 6 8 0 2 9 8 6 6  x 1 0 ~ 3 ,

/ 5 =  0 . 0 8 ,  P5 = 0 . 0 0 8 ,  U .  = 1 . 6 0 3 6 6 6 9 8 2 x 1 0
-2

P6 = Klh

£7, = B  + (1 -  ̂  )(- )'))
TJ — _f,-0(w+̂<)0,0 — e

C/,, = W + X4t 
D9 = U 9 - 1 . 4 5 4 5 6 7 6 2 6 x 1 0

- 2

D 10 =  - e - ' ,(’,'+2<'l - ( - e - w )

O m =  I F  +  Xtt — (B + (W — k hD  + k hIp -  Pp))

S o l u t i o n  i s :

D, =  1 . 1 0 9 9 6 5 7 0 3 x l 0 _3, O , 0 = 1 . 2 5 6 2 0 0 4 7 7 x 1  O’ 3 , D „  =  2 . 0 1 1 9 1 4 0 0 4 x l 0 ‘ 3 

I 6 = 7 . 8 2 9 3 5 5 4 4 6 x 1 0 _2, 7 >6 =  7 . 8 2 9 3 5 5 4 4 6 x 1 0 ~ 3,

£7,  =  1 . 5 6 5 5 6 4 1 9 6 x 1 0" 2 ,£ 7 io = - 9 . 8 5 2  7 9 6 0 6 1 x l 0 _3, £ / n  = 0 . 1 5 4

- ^  =  0 . 1 7 5 0 0 0 0 0 0 1  ,
‘ P

(l-A 4)/+P6 _  (l-A 4)/+7.829355446xl0 3  Q 1 5  1 0 8 9  7 7 4 0
h  7.829355446xl(T2 ~~ '
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Appendix 4.5 From partial-pooling equilibrium to type 4 separating equilibrium

uT( w )  = -e-(W, uB( w )  = W ,x H =0.4, nL =0.1, 0 = 30, W = 0.15, 5  = 0.04,

Z) = 0.14, Ai =0.9, ^  =0.35, ^  = 0.32642,

^4 =  A, (l-^3 KO-̂ 1 Kl-^ =  0 - 6 0 6 2 2 ,  /T, =  + ( l  — » ^3 =  (  ̂— H

( l  —  Um .  1 _  7 =  ^ 2 ___  5 = _____ Ue l _____ 7 — Nht ] — 7 =    2  = _____ ________NlT+NhB ’ ^  NLT+Nm *̂ 2 NLT+Nf]B+NffT ’ j ^lt+̂ht ’ •' ^lt+̂ht 9  ̂ ^lt+̂hb+̂ht •
U,=B + ( W - xhD), U2 = B - e e{w- ’ “D), U} = - e m , UA = B - e e{ŵ LD)

D x =  7rHD  -  B

d 2=u , - u 2
d 3=u 4- u ,

Solutionis: |d ,  =0.016,D2 = 8.4969xl0~\.D3 = 3.4202xl0'2]}

B + {W - x hD + {kh - x l)Ix) = W
r \  _

4 Kfi tcl e -e(w-D-r\*ii)

Solutionis: flD„ =0.83154,7, = 5.3333xl0'\7> =5.3333x10'’]}

S  + (W-  jihD + !zhI2 -P 2) = W
1 - k h  _  1 - g f ,  e - g ( y - ^ )

; rw jr£ e -8(w-D-p1+i2 )

Us =B + nL(- e- ^ - D- ^  >)+ (1 ■-.nL )(- e 6{ŵ  >)
1 - f l - s  _  1 -7 1 L e -* (y -« 3 /3 )

^ 3  e -8{W-D-ir$]-i+lT, )

U6 = B + x L(-e-«w-D-’’̂ ) +  (1- « i)(-
5  +  ^  ( _  e -0 iW -D -{X ^L + (1 -4  K  ) /4 + /4 ) j  +  ^  j  e -e{W -{kxnL +(1-A, )*„ ) /4) ^ _  _ g - 0 P

P4 = + (l — Ay ) /4
g-0(W-(ZlXL+(l-Al)xn)l4)'̂

r»  _  l~jrH x~ni
5 ~ ~ 1 T h  ~  e -e (W -D -(^L+(\-kx )nH )/4+/4 )

D6=U2- U 6
d 7 = u 2- u s

Solution is:
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A  = 0.23157,A  = 1.1074xlO“3,A  = 3.0922x10‘3,
/ ,  =8 .0275 x10“2, / 3 =0.11194,/, = 7 .4685xl0’2,

P2 =  1 .6 1 1 0 x 1 0 " 2,/>4 = 9 .7 0 9 1 x 1 0 ' 3,

t / 5 = 1 . 2 9 8 2 x 1 0 ‘ 2, / / 6 = 1 . 4 9 6 6 x l 0 ‘ 2, f / 7 = 1 .6 0 7 4 x l 0 " 2-2 \ -2

I p =  7 .4 6 8 5 x l 0 ~ 2 , Pp  = 9 .7 0 9 1 x 1 0 -3

__________________ 9e~m  _  n  <r _  r\ A '* ( \n n
fe-0(ir-D+(Ai (i-n  Hi-M Ki - h )*h Vp ) U .1 0 H 3 1  4 (1- ^  )(**-*■*)

PT  + A 4f  = B + ( W - t th D  +  7zh I p -  P p )

B + ( W - 7 r ffD  + (nH- n L)l5 - ( l - X 4) t ) = W  + X4t  

P5 = niJ 5
Ut =B-\-x l (- e~ê w~D~!‘i ,,))+ (l -  ̂  )(- e~ei-w~p‘ ^  )

|-»   1—.itL 1 -rtff
8 — nL e-e\W-D-%+is-(\-*A)i) 7^ ~

A o = -e"f’(’r+V)- ( 5 + ^ ( - e - 9('r-D-',s+,«-(1-'1*)')) + ( l - ^ ) ( - e - " ,r-,'>-(,-'1‘)' ))) 

Solution is: /  =  6 .8 7 0 3 x 1 0 - 3, D .  = - 0 . 1 7 1 2 3 ,  A> =  3 .1 2 2 0 x 1 0 ^ ,'> 10
/ 5 = 7 .6234 x10'2,P5 = 7.6234x10"3,C/8 = 1.6113xl(r2

W +  Z 4t  =  B +  (W -  7Th D  +  7THI p  -  P p )

B + ( f F - 7th D  +  7tHl 6 - P6 - ( l  - X4) t )  =  W + X4t
_ 1 “*£
—  nL e-e(w -D -p^i6-( 1- 4 4 )/)

A, = 2? + %(- (1 -  ̂  )(-
A  = - (»  + *„ (- e-e(fe-D-p‘*,‘< '-^ )+  (1 -  nH )(-

Solution is:

/ = 6.8703 xlO-3, A  =-2.1144xl0"3,
I6 =8.0275xl0-2,/^ = 9.2396xl0~3,A  =1.6155x10“2
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W + A4f = B + (w -  n„D + nHIP -  Pp)
B + { W -n HD + !iHI1 —Pf — (l — A4)t) = W + Att

£  + *■„(- */, -(.-a4 ),))+ (j _ _e-«(^v)

Uu = - e-'’<’F+',*'>

Uj2 = "t"
Du =UW -1 .6074xl0 '2

a 2= ^ , - ( - « - ~ )
Z)]3 =  t / | 2 — {B +  ( jV  — 7THD  +  7lHl p  — PpJ)

Solution is:

T / = 6.8703 xlO-3, T
Dn = 4.8581xl0~5,.D]2 = 1 . 3 0 4 8 x 1 0 -3,£>,3 = - 3 . 0 5 6 8 x 1 0 -3°,

/ ,  =7.6733x10‘2,.P7 =7.8230xl0-3,
[  Ul0 = 1.6123xlO"2,t/M = —9.8042x10”3,J712 =0.15416 J

-£- = 0.13
JP

( l - A 4 ) /+ P 7 _  0 - /1 4 )6.87O3x1O"3+7.823O x1O "3 1 ^ 7  T l
h  ~  7.6733x10-2 - U . 1 J / Z 1
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Appendix 4.6 Further tax

uT(w) = - e m , uB(w )= W , nH =0.4, nL =0.1, 0 = 30, W = 0.15, 5  = 0.04, 

D = 0.14, = 0.75, Aj = 0.4, ^(i-x,)f(i^)(i-A3= 0.33333,

^4 =  Aj (1-^3 )+i-A, Kl-^3 )+A,̂ 3 =  ^  ’ ^1 =  +  ( l  — ̂ 1 ) ;r//  » ^3 =  ( l  “  ^3 ) ;ri  +

I >) —  Nlt 1   2  _  n hb 2  _  Nht 2  —  Nht 1   2 —  ^  —
V 1! “  A ^ + ^ h b  ’ ^  “  Nu +Nub “  N ^ + N ^ + N uj- “  ^ lt+^ ht ’  ^  “  ^ r + ^ r  ’ ^ 4  “

{/, =-B + (Pr-/r„£>), t/2 =B-e~B{w" KD), U, = - e m , UA = B-e~e{w~’LD)

D] = nHD -  B 
D2=U3- U 2
d , = u 4- u ,

Solutionis: {/>, =0.016,Z>2 =8.4969xl0'3,D3 =3.4202xl0‘2{

S + (IF -  ;rH/> + (>r„ -  ̂  )/,) = W
t>    \ - n H 1 - n L e-* lw- ^ )

4 — n H ~  tcl e-e(tr-D-Pi*h)

Solutionis: fl/)4 =0.83154,/, =5.3333xl0‘2,/; =5.3333xl0“3)

B-vi^V-xHD-\-7CHI1 -P 2) = W
1 ~*h  — X~n L
n H ~  7CL e-t>(W-D-Pl+l2 )

Us = B + xL(-e-*(w-D-p̂ ) +  { l - x J i - e - t" -* ')
1 —f f 3   \ - X L  e - e ( w - ’Fi I ‘i  )

n-$ 7Ci g-tHiy-D-*!1!*1!)
U6 =B + x l (- e-«lw-D-* M  ) )+ ( i -^ t )(-  

B + 7Cjf (_ e-e{w-D-(^L+(\-K)*H)h+h)̂ + ̂  e-o{w-{^A\-K)*H)h)^= _e-w

P4 = {fatL + (l — Aj )?rH ) /4 
U1 = B + nL (- £-0( -̂MV/+O-4 K  )/4+/4) j + ̂  ^  g-^MVz+MK to) j

r i    l - t f £ e-B(U'-(/i^i +(l-^i )*// )/4 )
5 — JCL e-0(W-D-(*i*L+(i-M )*H )U+U)

d 6=u , - u 6 
d 7 =£/7 - t / 5

Solution is:
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£>, = 1.467137501 x l0 '2,£>6 = 8.547349737x10^,£>, =1.564035298x10 
I2 = 8.027468436x10‘2, / 3 = 0.1089480599,/ 4 = 7.994704889xl0‘2, 

P2 =1.610987374xl0-2,/>4 =1.399073356x10‘2,
_U 5 = 1.298164096 xl0~2,t /6 = 1.369094128xl0~\t/7 =1.454567626x10

l p = 7.994704889xl0“2, Pp =1.399073356xl0“2

— 0.1801 < = 0.53333

W +  Xt t =  B  +  (W - k h D  +  x HI P - P p )

B +  {W- n HD  + ( j th - x L) l 5 - ( l - Z 4) t )  =  W + A j  

Ps =  x LI s

U t = B  +  KL{~ (1  -  * t ) ( -

S o l u t i o n  i s :

/~v   1—71L \~ n H8 — nL e-e(w-D-P5+i5-(\-M)>)

t  = 3.9756 x 10~\Dg = -0.5052,
D5 — W.W-'U-/ ~  -iv ,1 /JI5 = 6.6585 X 10"2,P5 = 6.6585 x 10'3,J/8 = 1.4014 x 10‘2

W  + XAt = B  + {W- 7tHD + 7tHIp - Pp)
B  + { W -7rHD + 7rHI6- P 6 - ( l - A 4)t)  =  W  +  A4t

1 ~*H — X~*L
n H ~  n L e -0(ir-D-p6+i6-(i-M )')

D ,  =  - e * ^  - { b  +  x h ( -  e -el~w-D-p‘t '‘< ' - ^ ) +  (1  -  n H ) ( -  )]

S o l u t i o n  i s :

t  = 0.0039756, Dq =4.426049417x10'
I ,  =8.027468436x 10‘2, / >6 =1.213427374x10‘2,{/„ = 1.454575315x10"

■̂  = 0.1750000001 , =  t | - ^ ) O M 3 9 7 5 M . 2 l 3 4 2 7 i 7 4 x l 0 - i  _ 0.1759218844
Jp ’ h  8 .027 468 436x1O '2

W  + X4t =  B  + (fV -7THD + 7rHIp - P P),  S o l u t i o n i s  : t  = 3.9756x10 

S e t  t  = 0.0045

-3

B  + (J V -7 th D  + (7th - n L) l 5 - ( l  - X 4) t ) = W  + A4t  

P5 =  7tLl5
U t = B  +  x L(~ » ) +  ( j  _  ^

A o  =  - e - eiw^  - { b  +  x „  ( -  e ^ w~DA * ' A - ^ ) ) +  ( j  _ ^ ) ( _
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D8 =-0.45164258, Dl0 =8.466574595x10 - 3

Solution is: / 5 =6.833333333 x lO '\P 5 =6.833333333x10 
Ua = 1.434577182 xlO-2

- 3

B + ( W - x HD+nHI6 -P t - ( l - A 4)<)=fT + /l4<
_ 1-«i

n H ~  n L ~~0(fy-D-p6+i6- ( i - ^ ) , )

U9=B + x l (- e ^ w-D-p> * '^ » ) +  (1 -  kl )

Dn = U9 -1.454575315xl0~2 
Dn = W + V  -  {B+(W -  n„D + K„lr -P f ))

n  =  _ g - « ( » ,+V )  _  L e -«(»'+^3.975fc<10-, ) |

Solution is:

A, = 1.25731309x10^, Dn = 1.994376892x10^,' 
Z>12 = 2.61914004x10-4,Z)|3 = 8.200174529 xlO-5, 
I6 = 8.027 468436xl0“\ P 6 = 1.160987374x10^,

U9 =1.474519084x10 -2

When < = 3.9756xl0~3

The Hb : B + (jV-x„D + jr„Ip -Pp)=0.15m80S60,

The H t : -  e'"{‘r*^') = —e-6'(tt'+̂ 3 97S6'i0'3) = -1.046588876 x 10‘2

The Lt : S + ̂ I ( - e 's(’r‘D' ,,tt'«'(,",4)'))+ ( l-^ £)(-e '9(","'>t"('"2‘,'))=1.454575315xl0

When t — 0.0045

The H„ : W + XAt = 0.15225

The Ht : - e ~ ^ +v) =-1.038388701 xlO'2

The Lt : 5  + nL (- e-9(w~D-p̂ h - { ^ ) t ) ^ ^  j = l .474519084 x 10-2
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