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Abstract

The thesis is made up of three essays which study three related topics. The first essay
examines the welfare effect of a non-discrimination policy, which bans using gender
in pricing insurance in the context of motor insurance markets. It comprises two
models. The first models comprehensive insurance markets, in which motorists decide
whether to buy insurance that offers full coverage. The second model examines third-
party insurance markets, in which motorists must be fully insured and agents decide
whether to drive. The essay examines the welfare effects of the non-discrimination
policy by examining the change of aggregate social welfare before and after the
policy is implemented. It shows that in comprehensive insurance market typical
adverse selection happens. Aggregate social welfare may increase or decrease. In
third-party insurance market, advantageous selection happens. Aggregate social
welfare may decrease after the policy implemented.

The second essay endogenizes insurance coverage and finds the optimal allocation
which maximizes aggregate social welfare. Agents can now choose whether to drive
and whether to buy insurance, and insurers are allowed to offer a menu of cross-
subsidizing insurance contracts in competitive insurance markets. The author finds
pooling allocation can never maximize aggregate social welfare and the market may
end up with too much insurance.

The third essay examines market equilibrium and market efficiency in competitive
insurance markets when agents differ in both risk probabilities and risk preferences,
and can choose whether to participate in risky activity and whether to buy insurance.
With different levels of risk probabilities, risk preferences, and driving benefit, the
market may end up with four different separating equilibria, partial-pooling
equilibrium, or even no equilibrium. The partial-pooling equilibrium is Pareto
efficient under certain conditions. If it is inefficient, taxing insurance breaks the
equilibrium and separating equilibrium arises, which leads to Pareto gain.
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Gender discrimination, optimal allocation and partial-pooling Nash

equilibrium: essays on insurance markets with a participation option

Chapter 1 Introduction

Since the seminal work of Rothschild and Stiglitz (1976), there has been a
substantial amount of research on market equilibrium and market efficiency in
insurance markets under asymmetric information. To the author’s knowledge, none of
these works considers participation option. Agents are assumed to engage in risky
activities. They can mitigate risk by taking unobservable precautions and buying
insurance against observable losses.

The present work conducts research on three related topics in insurance markets
where agents have participation options. The first essay introduces participation
option but contains results with contract form exogenous. It examines the welfare
effect of a non-discrimination policy, which bans using gender in pricing insurance.
The context is motor insurance markets where people can choose whether to drive and
whether to buy more than the legal minimum of insurance. It comprises two models.
The first models comprehensive insurance markets, in which motorists decide
whether to buy insurance that offers full coverage. The second model examines third-
party insurance markets, in which motorists must be fully insured and agents decide
whether to drive. Agents are risk-averse and are identical except for risk probabilities
which are private information. The distribution of risk probabilities of the two types
of agents (men and women) differ and this is public information.

As gender is observable before the policy is implemented, the markets are
separated with women charged a relatively lower premium. After the policy is
introduced, the two markets merge into one market in which gender is in effect
unobservable. The essay examines the welfare effects of the non-discrimination
policy by examining the change of aggregate social welfare before and after the
policy implemented.

The second essay extends the research of the first one by endogenizing insurance
coverage. But as the only heterogeneity is in hazard rate, only separating equilibrium
can arise. Cross-subsidies are allowed, so policy intervention may raise aggregate

social welfare but can not yield strict Pareto gain.



It finds the optimal allocation which maximizes aggregate social welfare. As in
standard Rothschild-Stiglitz model, risk-averse agents are identical except for risk
probabilities. Furthermore, agents can now choose whether to drive and whether to
buy insurance, and insurers are allowed to offer a menu of cross-subsidizing insurance
contracts which earns normal profit overall. In such competitive insurance markets,
received wisdom has it there is too little insurance available in the market due to the
asymmetric information problem and that a pooling allocation maximizes aggregate
social welfare. The present analysis finds that with a participation option a pooling
allocation can never maximize aggregate social welfare and the market may end up
with too much insurance.

The third essay endogenises insurance contract form and allows two types of
hidden information. So partial-pooling equilibrium can emerge. It shows new source
of gain from taxation of insurance. No cross-subsidization is allowed so Pareto gain
realizes by expelling the high-risk types.

It extends the research by assuming agents differ in two dimensions: risk
probability and risk preference. In addition, agents have choices now on whether to
take risk activity and on whether to buy insurance in competitive insurance markets.
With agents differing in both risk probabilities and risk preferences, the single-
crossing property of indifference curves of agents may not hold. This gives rise to
partial-pooling Nash equilibrium. Due to differing risk preferences, the same financial
loss causes different changes in utilities of agents. Along with the participation option,
this results in four different types of separating equilibrium.

The essay examines when the partial-pooling Nash equilibrium is Pareto efficient,
and, if it is inefficient, whether taxing insurance can drive out the high-risks and lead
to a Pareto improvement.

In more detail, the rest of the thesis is structured as follows. Chapter 2 examines the
welfare effect of the non-discrimination policy. Section 2.1 introduces the topic and
provides a literature review. Section 2.2 specifies the first model. It finds the market
equilibrium before and after the non-discrimination policy, and then conducts welfare
analysis. Section 2.3 specifies and analyzes the second model. Section 2.4 concludes.

Chapter 3 integrates the participation choice with endogenous contractual form and
finds the optimal allocation which maximizes aggregate social welfare. Section 3.1
introduces the topic and provides a literature review. Section 3.2 finds the market

equilibrium in an insurance market with adverse selection and participation option.



Section 3.3 examines conditions for such an equilibrium to exist. Section 3.4
introduces the tax-subsidy scheme into the model. Section 3.5 analyzes the tax-
subsidy scheme and gives the most important findings of this paper. Section 3.6 and
Section 3.7 considers two extreme contingencies: full-insurance pooling contract and
over-insurance contract. Section 3.8 concludes.

Chapter 4 examines the market equilibrium and market efficiency in competitive
insurance markets when agents differ in both risk probabilities and risk preferences,
and can choose whether to participate in the risky activity and whether to buy
insurance. Section 4.1 introduces the topic and provides a literature review. Section
4.2 specifies the model. Section 4.3 finds the partial-pooling Nash equilibrium as well
as the four separating equilibria. It also finds the conditions of the partial-pooling
equilibrium. Section 4.4 analyzes the efficiency of the partial-pooling equilibrium and
demonstrates that it is Pareto efficient under certain conditions. Section 4.5 shows that
inefficient partial-pooling equilibrium exists and taxing insurance leads to Pareto gain.

Chapter 5 concludes the three essays.



Chapter 2 Gender discrimination and participation option
2.1 Introduction

Statistics show that female motorists on average are less risky than male motorists,
especially for young drivers. According to Diamond Insurance, who specialises in
covering female drivers, men are convicted of 92% of driving offences and account
for 98% of dangerous driving convictions." This is reflected on insurance premium.
Other things equal, female motorists pay less than male motorists. However, Anna
Diamantopoulou, the then social affairs commissioner of the EC in 2003, considered
this a form of gender discrimination and proposed a non-discrimination policy which
bans using gender in setting premium.’

The proposal met strong opposition in the UK. Insurance companies, the
Association of British Insurers (ABI), the British government, and the Financial
Services Authority (FSA) were all strongly against the proposal, claiming that the
proposed directive forbade best market practice and would cause adverse selection.
The FSA estimated that young women drivers were likely to see their premiums rise
by between 10% and 30% if the proposal became law. The European Union
Committee of House of Lords even estimated an up to 40% rise of young women
drivers’ car insurance premium.’ What was even more interesting was that a survey
shown most motorists, even male motorists who were supposed to benefit from this
proposal, supported the market practice and were against the proposal.*

With a British-led rebellion against the proposal, the EC compromised and allowed
the insurance industry to opt out from the directive. Insurance companies can continue
using gender in pricing insurance as long as they can justify their methods are based
on actuarial facts. A regular review of the issue will be held, comprising the industry,
anti-discrimination bodies and member states, when insurers have to explain
discriminatory pricing policies.’

But this policy deserves further research. For instance, will the market suffer from

adverse selection problem, or even collapse as some people have predicted, if the

! Guardian (4 January 2005), “Women keep deal on lower car insurance”.

2 Financial Times (3 November 2003), “Insurers to fight Brussels over bar on sex discrimination”.

3 Guardian (22 September 2004), “Women drivers to pay more under EU equality plans, warn peers”.

* Observer (18 April 2004); “Men should pay higher insurance”; Financial Services Review (November 2004),
“Equal opportunities”.

* Financial Times (4 October 2004), “Women drivers to enjoy lower premiums”.
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policy is carried out? Furthermore, what is the policy’s impact on social welfare from
a Utilitarian point of view?

As gender is observable prior to the policy, the markets are separated and reach two
equilibria, one for women who are charged at a relatively lower premium, the other
for men who are charged at a relatively higher premium. After the policy is
implemented, the two markets merge into one market in which gender in effect is
unobservable.

It is difficult to think that prohibiting using gender in pricing insurance would
actually result in complete market collapse. This has not occurred in Denmark, Greece,
Luxembourg, the Netherlands and Sweden, where unisex motor insurance has already
been established. Actually, as the House of Lords committee noted, this “did not seem
to create any particular problems.”® So most likely there would be a pooling
equilibrium in which both genders get the same level of insurance coverage at the
same premium.

Other things equal, pooling the risks increases aggregate social welfare as it
redistributes to the worse off. But what if motorists are allowed to opt out of insurance
market although they still drive? Furthermore, what if motorists must be insured but
they are allowed to quit driving? This essay attempts to answer these questions by
constructing two related models.

The first model analyzes motorists’ decision on whether to buy full coverage
insurance where everyone drives regardless of being insured or not. Consider, as an
example, comprehensive insurance market where motorists decide whether to buy
insurance which offers comprehensive coverage. In the model, we have a number of
male and female drivers, each of whom has a risk probability uniformly distributed in
arisk range. On average, male motorists are more risky than female motorists and the
variance of their risk distribution is greater than the female one. The insurance market
is perfectly competitive. Insurers offer an insurance policy of full coverage. An
accident causes a financial loss to the motorist. Everyone is risk averse with the same
utility function and initial wealth. There is no moral hazard. Everyone drives no
matter insured or not. The motorist needs to decide whether to purchase full coverage

insurance.

¢ European Union Committee, House of Lords (22 September 2004), “Sexual Equality in Access to Goods and
Services”, 27® Report of Session 2003-04
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The second model analyzes agents’ decision on whether to drive when motorists
must be fully insured. Consider, as another example, third-party insurance market
where insurance coverage is compulsory for motorists. In Italy, more than 60% of the
insurance companies do not offer deductibles at all on third-party insurance products.
The remaining firms offer minimal deductibles. Furthermore, the minimum indemnity
limit has to be approximately $1 million, which covers virtually all accidents in
practice.” The setup of the second model is similar to the first one except that people
now choose whether to become a motorist instead of choosing whether to get insured.
Each person has a reservation utility if they choose not to drive. An accident causes a
non-pecuniary cost in addition to a financial loss.

As Crocker and Snow (2000) have noted, “the efficiency and equity effects of risk
classification in insurance markets have been a source of substantial debate, both
amongst economists and in the public policy arena.” Hoy (1982) is the first attempt to
analyze the welfare implications of imperfectly categorizing risks in the insurance
industry under conditions of asymmetric information. Hoy considers the pure strategy
Nash equilibrium of Rothschild and Stiglitz (1976), the anticipatory equilibrium of
Wilson (1977), and the Miyazaki-Spence separating equilibrium suggested by
Miyazaki (1977) and Spence (1978). He finds the welfare effect of risk classification
is ambiguous. Only in the case where the initial equilibrium is of the Nash no-subsidy
type is there a strict Pareto-type improvement in welfare.

In contrast to Hoy, Crocker and Snow (1986) examine the efficiency effect of risk
classification by comparing the utilities possibilities frontier for the regime where risk
categorization is permitted to the one in which it is not. They demonstrate that
costless imperfect risk categorization enhances efficiency by showing that the utility
possibility frontier after the categorization lies somewhere outside of and nowhere
inside of the frontier before the categorization. Both Hoy (1982) and Crocker and
Snow (1986) use the standard setup as in Rothschild and Stiglitz (1976), in which
there are two risk types.

Hoy, Polborn and Sadanand (2006) explicitly consider the effects of regulations
that prohibit the use of information to risk-rate premiums in a life insurance market.
Using a dynamic three period model, they show that legislation prohibiting the use of

results from genetic screening tests for ratemaking purposes in the life insurance

7 Buzzacchi and Valletti (2005), “Strategic Price Discrimination in Compulsory Insurance Markets”, The Geneva
Risk and Insurance Review, 30: 71-97, 2005.
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market may increase aggregate social welfare despite the fact that such regulations
create adverse selection costs. Their research differs from the previous works not only
in the setup of multi-period stages but also in the linear pricing insurance contracts.

Hoy (2006) analyzes the policy effects of restrictions on risk classification with
canonical models of Rothschild and Stiglitz (1976) and Wilson (1977). Similar to this
paper, Hoy analyzes the aggregate social welfare using a Utilitarian social welfare
function. It is actually an extension of Hoy (1982) and has derived some explicit
conditions that determine when such regulations are either welfare enhancing or
detrimental.

Close to the present essay, de Meza (2002) considers the effects of equal
opportunity legislation. After checking scenarios of hidden types and/or hidden
actions, he concludes that banning discrimination, when combined with mandatory
protection against failure, may well be the best way of effecting redistribution of
income. The present essay is inspired by his work on reservation utility and
participation option.

Deviated from the standard line of research, Buzzacchi and Valletti (2005) offer an
interesting study on the problem of risk classification when insurers do not observe a
customer’s type but only some other variable correlated to it. They consider an
insurance market with no adverse selection where there is full market participation
and full insurance coverage. In particular, they study the strategic interaction between
imperfectly competitive firms that may decide whether to adopt classification
variables. They find that discrimination based on immutable characteristics such as
gender is a dominant strategy.

The present essay differs from the above works in three aspects. First, it extends the
standard setup of Rothschild and Stiglitz (1976) by assuming a number of agents with
risk probabilities distributed in two ranges. Second, it avoids the unsettled issue on the
concept of market equilibrium by assuming full insurance coverage. Last and most
importantly, it incorporates a participation option by allowing agents to opt out of
risky activity.

The rest of the essay is structured as follows. Section 2.2 specifies the first model.
It finds the market equilibrium before and after the non-discrimination policy, and
then conducts welfare analysis. Section 2.3 specifies and analyzes the second model.

Section 2.4 concludes.

13



2.2 To insure or not to insure

Suppose we have N,, number of men and N, number of women. For a male
driver i, his accident probability is z}*, where z¥ €[r,,x,], i=1,---,N,,. Fora
female driver j, her accident probability is z] , where 7} € [7,7,), j=1---,N,,
and O0< 7, <7, < 7w, <7, <1. People with different accident probabilities are

distributed uniformly within the risk probability range. So for any accident probability

z" in the range, the number of female motorists whose accident probability are less

e e[ N N
than or equalto z° is N =f .4 M
IR B Ty~ 7,

dr . Similarly, itis N* = f dr for

male motorists. Suppose male motorists have a greater variance of accident

probability distribution, hence we assume 7z, — 7, = Tz, — 7, ), where T >1.

Accident probability is private information but insurers know the population
distributions.

Insurers offer an insurance with coverage g at premium p . Each person has an
initial wealth y . An accident causes a financial loss of L to the motorist. The utility
function, the same for everybody, is u(c).

Everybody drives no matter with insurance or not. The motorist needs to decide

whether to get insured.

2.2.1 Insurance decision

Suppose only comprehensive insurance is available. So ¢ =L if insured, g =0
otherwise. An Individual’s expected utility with no insurance is

Vl(”i)= (1_”i)'u()")+”i -u(y—L)

His expected utility with insurance will be

V(7. p)=(=7,)-u(y—pg)+7,-u(y—L-pg+9q)

With full coverage, the utility becomes

V,(p)=uly-pL)

The motorist will buy the insurance if

D=Vy(p)-¥(7;)20

Checking the properties of D with respectto p and 7, we have

14



2
a—D=—L-u'(y—pL)<0, a—?=L2 -u"(y-pL)<0
op op
éD o’D
a—‘u(J') u(y-L)>0, a_ﬂ,2=0

So the utility difference decreases monotonically in insurance premium p and
increases monotonically in risk probability 7. At corners,

D=u(y)-u(y)=0 when p=0 and 7=0,

D= u(y)—u(y—L)> 0 when p=0 and 7 =1,

D =u(y—-L)—u(y)< 0 when p=1and 7=0,

D=u(y—L)-u(y—L)=0 when p=1and z=1.

Consider the marginal buyer whose utility difference satisfies

D=V,(p)-V,(z,)=0ie. u(y—pL)-(-x,)-u(y)-=, -u(y—L)=0

This yields

7= ”zf(yj)—_ "tf(yy __pLL)) 2.2.1)

Checking the variation of 7 with p gives

d;r u'(y—pL)-L >0, d27r =L u(y- pL)

Tup)-ub-1) TW0) 1)

So for a given premium p°, we can find a unique risk probability 7 which

satisfies D=V, (p' )— 4 (ﬂ‘)= 0. For the people whose risk probability is equal to or
greater than z°, their utility difference from buying the insurance will be equal to or
greater than zero, i.e., D=V, (p' )— V,(z,)>0, where 7, > z". This leads to the

following proposition.

Proposition 1: for a given insurance premium, p°, an Individual customer will buy

the insurance if his own risk probability, 7, is greater than or equal to the threshold

risk probability z*,ie. 7, 27", where

o _uly)-uly-p'L) | 2.2.2)

u(y)-uly-L)
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2.2.2 Equilibria when gender is observable

Consider the market for male motorists first. For an insurance premium p,,, denote
the risk probability of the marginal buyer in the male motorists market as =,,.
Restrict the analysis on interior solutions, i.e., the case where the market is partially
covered by insurance before and after the non-discrimination policy implemented, i.e.
z, €(r,,7,).

Equation (2.2.2) gives the threshold risk probability value as

In competitive insurance market, insurers offer contracts that break even, i.e. the

total premium proceeds insurers receive are equal to the total expected loss from the

insureds. This gives

pML. ‘_—NM_dﬂ'—_—l(”4+7z'M).L ‘Ldﬂ'
MTTy— T, M, — 7,
or p,, =%(7r4 +7,,) (2.2.4)

Equation (2.2.3) and (2.2.4) give the conditions for the equilibrium in the male

motorist insurance market. Similarly, we have the conditions for the female market as

i u(Ja)u(V(y pz) L) (2.2.5)
Pw Z%(’Q +7y) (2.2.6)

where 7, €(z,,7,).

2.2.3 The equilibrium when gender is unobservable

After the non-discrimination policy is implemented, gender is effectively
unobservable. The two markets of male and female motorists hence merge into one.
In this new merged market, both genders are changed premiums of the same level.
Similar to the analysis in Section 2.2.1 Insurance decision, we can find the
relationship between the threshold risk probability and a given level of premium as
follows

_uly)-uly-p,L)
u(y)-uly-L)

(22.7)
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where partial coverage condition requires X e (x2,/73).

In competitive markets, insurers offer contracts that break even, i.e. the total
premiums they receive from both male and female customers are equal to the

expected loss from them. This gives

fp Nm dn+p pL=fat+n p
\NPKA-727 *PTLK- KX J 2 2

@Q ]fdt +*’)].B;7r4 712 vV o2 ) p7 71x6f<_@§‘fa+ )I.P N dC:O

D=u(y)-u(y-L)

~"pPK N-gzh

=u(y-L)-u(y)

Figure 2.1
Figure 2.1 shows the equilibria when gender is observable and the equilibrium
when it is not. When it is observable female motorists with risk probability ranging

between \nw,;r3] purchase the insurance at the premium pw while male motorists

029
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between [r,,,7, | purchase at p,, . When it is unobservable both are charged at p b

The risk range of female customers is |_7rp,7r3J while it is [71' p,IZ'4J for male motorists.

2.2.4 Possibility of multiple equilibria
Take the male motorists market as an example. When gender is observable, from

(2.2.4), we have alo_M=l From (2.2.3), we have a7y _ w(y—pyL)L >0 and
dzy 2 dp,,  uly)-uly-L)
d’my _—L-u"(y-pyL)
dpy,  uly)-u(y-L)

> (0. Taking into consideration that (2.2.4) gives

Py =%7z4 when 7,, =0 and (2.2.3) gives z,, =0 when p,, =0, we can not rule out
the possibility of no interior equilibrium or multiple quilibria.® Figure 2.2 illustrates
the possibility of the existence of multiple equilibria.

YZY'N
1

uy)-u(y-p,L)

M) uly-1)

1
Pu =5(”4 +7[M)

0 1 Pu
Figure 2.2
When gender is unobservable, from (2.2.8), we have
dp, _ 1+7)z, —z, ) +T(z, _””)ZJ>0 and d’p, _ T(+T)z,—=,) -0
dr, 2[7:4 —7Z'p+T(ﬂ'3—ﬂ'p) dr, rr4—7zp+T(ﬂ3—7rp)]3

From (2.2.7), we have
dr, u'(y—ppL)-L

dp, u(y)-uly-L)

# An equilibrium must surely exist but it may involve all motorists insured. Take the premium which makes worst
motorist just willing to insure. As risk averse this must be profitable. So premium must fall. Profits may rise as
better types enter but when every one in further falls in premium must lower profitability.

d’r, -L -u"(y—ppL)

>0 and =
dp:  u(y)-uly-L)

>0
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o
1
_ 7Tl -1+ Tl
b A=, 410, 7,)
g = u(y)ruly-p,L)
* uly)-uly-I)
0 1 P,
Figure 2.3
.. e . xl+Tx?
Taking into consideration that (2.2.8) gives p, =m——) when 7, =0 and
7z, +Trm,

(2.2.7) gives 7, =0 when p, =0, we can not rule out the possibility of no interior

equilibrium or multiple quilibria. Figure 2.3 illustrates the existence of multiple
equilibria. _
One interesting feature of the pooling equilibrium figure is the possible kink which
happens when one or the other group ceases to be present. Figure 2.3 illustrates one
possibility when the accident probability is so high that the female motorists cease to
be present. Then the market has only male motorists left and hence the line kinks.
However, this research focuses on the interior equilibrium and does not go further on

analyzing the equilibrium in the kink part.

2.2.5 Welfare property when gender is observable

First consider the male motorists insurance market. An Individual driver with no

insurance has the expected utility ¥,(z,)=(1-7,)-u(y)+ 7, -u(y— L) where

19



7, €[x,,7,). After purchasing the insurance his utility is fixed at
v,(p,, ) = u(y -p ML). In the partially covered market the threshold risk probability

Ty G(”zs”4)-

Utilitf
Vl(”i)=(1_”i)'u()’)+”i -u(y—L)
\ V2(PM)=u(y_PML)
0 7T, ”'M T4 7%
Figure 2.4
Denote the number of the uninsured motorists and the insured as N, and N,
. w N, « N,
respectively. Then N, = f —*—dr and N,=N,, —N,=| ——dr.

Similarly, denote the aggregate utility of the uninsured motorists and the insured as

AU, and AU, respectively. Then the aggregate utility of the market is

AU = AU, + AU, (2.2.9)
Where
AU, = [ N V,(z, Yr = N '-f"V,(n,.)dn (2.2.10)
2 Wy —7, y—7, 2
. N
AU, =V,(py)- N, =u(y-pyL)- [ ——dz (2.2.11)
My — 7y

Given ¥;(7,)=(1-7,)-u(y)+z,-u(y — L) is linear, AU, can be expressed as

NM

AU, = '%(Vl(ﬂz)-l-Vl(”M)XﬂM_”Z) (2.2.12)

where V,(rrz)= (l—ﬂ'z)-u(y)+ 7T, -u(y —L) and

Vi )=(1-7y )-uly)+ 7y -uly—L)=u(y- py L)
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Similarly, the aggregate utility of the female motorists market is AU = AU, + AU,,

where
AU, = f ﬂj\:Wﬂl V(7 = E:V_W”] : E”Vl(zr,.)dn (2.2.13)
AU, =V,(p, )-N, =u(y - p, L)- ;%dﬂ (22.19)
As above, AU, is expressed as
AU, == 20 ) o o ) (2215)

where V,(7,)=(1-7,)-u(y)+ 7, -u(y - L) and

VJ(”W)=(1_”W)"‘(}’)+”W -u(y—L)=u(y—pWL)

2.2.6 Welfare change from implementing the policy

Male drivers benefit from the non-discrimination policy which leads to a decrease
of insurance premium. The already insured motorists benefit from the lower cost.
Some previously uninsured motorists join the market and gain from the higher utility.
Oppositely, female motorists suffer a welfare loss from the increase of insurance
premium. The existing customers suffer from the higher cost. Some of them even

drop out of the insurance market.

Utilith : :
E Vl(”i)=(1_”i)'u(y)+”i'u(J’"L)i
E Vz(I W)=u(y_pWL)
¥(p,)=uly-p,L)
é EVZ(pM)=u(y_pML)
i R

0 7 7, Ty E, iy T, 7 e
Figure 2.5

The welfare loss is
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WI:(Vz(PW)—Vz(pp))' E%d”*'llz(PW)' fp Ny —drn - Ny fWV(” )d”

L R Ty~
= ﬂjv_wﬂl l:(Vz(PW)_Vz(Pp) 7Ty _”p)+V2(PWX”p _”W)— f:Vl(ﬂ',)dﬂ'}
or
m%.ﬂj"_wﬁl v, (pw)-73(p, o7, - 7 - 7,) (2.2.16)

The welfare gain is

WG=(V2(p) V(pM f———dﬂ'+V(p f”—,,zd”_ f iz
=”4A£M”2|:(V(p ) V(pM X7r4 7rM +V(p Xer -7, ]
WG=%-”ACM” v, (p,)-V,(ps oz, -7, - 7,) 2.2.17)

Whether the aggregate welfare of both markets increases depends on which effect

dominates.

2.2.7 Simulation

Specifying the utility function as Constant Relative Risk Averse (CRRA) utility
function as

cl—0
u(c)= m, >0

In order to check whether the welfare gain dominates the loss, we check WG —-WL ,

where

WG—2 (V(p ) Vz(pM)X27[4-7rM—7Z'p) and

Ty —7,

(V( w)- V(p )X2”3 ”W‘”p)

With the assumptions that 7, —z, = T(z, — 7, ), we only need to check the

27:‘3]

tendency of

%(Vz(pp)_ Vz(PM)X2”4 L YA )_NW(VZ(pW )—Vz(pp)X2”3 7w _”p)

which for brevity we write as
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N
D, =ANAvp-VM{2kM- xp)-Nwiw-Vp\in, -nw

where

y =A » =.0= )
1-0 TN 2/, Wi~ Wp y'~*-(y-L)-°

% _iy~PplL _ _yle-(y-Ppi-

” ' \oep y'-°-(y-L

Nr(x.4-xj P, -\{x. +%*))) +NIrt*,)} ==

v =(z-PmAT  =1( +r ) M
1-0 g noE(2-g) 0

For y =100, 0=0.8, 1, =0.1, ;r3=0.7, /12=0.2, xA=0.8, T=1and A/* =Nw,

we have the following figure depicting the relationship between welfare change and

loss level.9

Welfare change

Loss level

Figure 2.6
Figure 2.6 illustrates that the welfare change is ambiguous which can be either
positive or negative with different loss levels and the welfare change increases
monotonically in loss level. This is consistent with the intuition: pooling effect

increases by redistributing more income with loss level increasing.

9 Appendix 2.1 provides detailed simulation results.
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Number of Insureds

50 55 60 65 70 75 80 85 90 95 99

Loss level

Figure 2.7
Figure 2.7 shows that between loss level of 50 and 99, the number ofinsureds when
gender is unobservable is always less than that when gender is observable. Roughly at
the loss level of 87, the aggregate social welfare when gender is unobservable is equal
to that when observable, although there are less insureds when unobservable. This
illustrates that pooling can generate higher aggregate utility with other things equal.

For y=100, 0=0.8, L- 90, /i, =0.1, ;r3=0.7, 7=1and NM=NW, we have

the following figure depicting the relationship between welfare change and risk

range.10

Welfare change

Qo

§ -0.005

Figure 2.8

10 Appendix 2.2 provides detailed simulation results.
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Figure 2.9
Number of Insureds
1.35
1.25
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Welfare change

Risk range

Figure 2.10

0.15-
0.75

NS
NP

Figure 2.8 shows how the welfare change varies with the risk range while Figure

2.9 is a part of'it. Figure 2.10 shows the variation ofthe number ofthe insureds with

risk range. The number of motorists when gender is unobservable is always less than

that when gender is observable except the point where both risk range overlap.

For y =100, 6=0.7, L- 95, /1, =0.1, /3=0.6, 7 =1 and NM=Nw, we have

the following figure depicting the relationship between welfare change and risk

range. 1l

Welfare change

6.09-
0.59

0.10-  0.11-
0.60  0.61

0.01-  0.05-
20.0002 -
0.000 0.51 0.55/
-0.0004 -

-0.0006
-0.0008
-0.001 -
-0.0012 -
-0.0014
-0.0016
-0.0018 -

-0.002 J
Risk range

11 Appendix 2.3 provides detailed simulation results.
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Figure 2.11
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Figure 2.12
Figure 2.11 shows how the welfare change varies with the risk. Figure 2.12 shows
the variation ofthe number of insureds with risk range. The number of motorists
when gender is unobservable is always less than that when gender is observable

except the point where both risk range overlap.

2.3 To drive or not to drive

Consider now a scenario in which every assumption is the same as section 2 except
there is a mandatory requirement that motorists must be fully insured. Instead of
choosing whether to get insured, people now choose whether to become a motorist.
Everyone has a reservation utility V' ifnot a motorist. Accidents cause a non-
pecuniary cost C which is not insurable in addition to a financial loss L which is

insurable. 2

2.3.1 Participation decision

A motorist has expected utility

Y, {xt, P)~(i-*,yu(y-Piq)+x; (u(y-Pig-L+<i)-c)

When fully insured the utility becomes

v, > P i) =u(y- pfil~ Sii
An individual will become a motorist and purchase insurance if the utility from be a

motorist is greater than the reservation utility:

2 Externalities could mean that individual accident probabilities depend on the number ofmotorists but to focus
on pure insurance issues this possibility is ignored.
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Checking the properties of D, with respectto p and 7, we have

2
D, _ =-L-u'(y-p,L)<0, oD =L -u"(y-p,L)<0
6p1 apl
2
D, _ oo EDi_g
or; o’

i

So the utility difference decreases monotonically in both insurance premium, p,
and risk probability, 7. To ensure interior solutions, make the further assumption

u(y-L)<V <u(y)<C+V

Therefore, for corners,

D, =u(y)-V >0 when p=0 and 7=0,

D, =u(y)-C-V <0 when p=0 and z=1,

D, =u(y—L)-V <0 when p=1and z=0,

D, =u(y—L)-C—-V <0 when p=1and z=1.

The marginal buyer receives the same level of utility from driving as the
reservation utility. So we have D, =V,(z,,p,)-V =0, i.c.

u(y - p,L)-,C -V =0, which gives

- @.3.1)
C

Check the variation of z with p gives

dr, L d’n, L2

—=——u'ly-p.L)<0, —L=—

So for a given premium p°, we can find a unique risk probability 7" which
satisfies D, = ¥,(x,, p,)—V =0. For the people whose risk probability is equal to or

less than 7", their utility difference from becoming a motorist with full insurance will
be equal to or greater than zero, i.e., D, =¥,(x,,p,)-V >0, where 7, <z". This

leads to the following proposition.

Proposition 2: for a given insurance premium p*, an Individual customer will

become a motorist and buy the insurance if his own risk probability 7, is lower than

or equal to the threshold risk probability z*,i.e. 7, <z", where

27



= (2.3.2)

2.3.2 The equilibria when gender is observable

Consider the male market first. For an insurance premium, p,,, set the risk
probability of the marginal buyer in the male motorists market as r,,. Consider the
case where the market is partially covered by insurance before the equality policy is
implemented, i.e. 7,, €(7,,7,).

Equation (2.3.2) gives the threshold risk probability as

_uy-pyL)-V (233)
s 3.

In a competitive insurance market, insurers offer contracts that break even. This

Ty

gives

oL ”Ld,z=l(ﬂ-2+,,M).L. ”Ldﬂ
2 T, — 7T, 2 2 Ty =TT,

1
or p,, =5(7Z'2 +7,,) 234

Equation (2.3.3) and (2.3.4) give the conditions for the equilibrium in male motorist

insurance market. Similarly, we have the conditions for the female market as

= uly- ng)— 4 (2.3.5)
Dy = %(ﬂl + 7y ), where 7, e(z,,7,) (2.3.6)

2.3.3 The equilibrium when gender is unobservable

After the policy, the two markets of male and female motorists merge into one as
gender is now effectively unobservable. Both genders are charged at the same

premium. From (2.3.2), we have

z, =w 2.3.7)

where partial coverage condition requires 7, € (7,,7,).
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Figure 2.13

For the contract to break even we have

(r; +e R A
P p +%*))) +%.)) -° (2-3-8)

Equation (2.3.7) and (2.3.8) give the conditions for the pooling equilibrium.
Figure 2.13 illustrates the separating equilibria and the pooling equilibrium. In the

separating equilibria female motorists with risk probability ranging between \xxnw/
purchase the insurance at the premium pw while male motorists between \n2,nM)]
purchase at p M. In the pooling equilibrium both are charged at pp. The risk range of

female customers is \nx,npl while it is \x297%p| for male motorists.

2.3.4 The possibility of multiple equilibria

Take the male motorists market as an example. When gender is observable, from

(2.3.4), we have =—. From (2.3.3), we have
dxM 2
L=t
d*“ =-~u'{y-pul)<0, -
o {y-puL) 2
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Taking into consideration that (2.3.4) gives p,, = %nz when 7,, =0 and (2.3.3)

gives 7, = &%‘i >0 when p,, =0, we can not rule out the possibility of no
interior equilibrium but multiple quilibria are impossible. Figure 2.14 illustrates the

non-existence of multiple equilibria.

VN
1

Figure 2.14

When gender is unobservable, from (2.3.8), we have

dp, =(1+T)[(ﬂp—ﬂz)z+T(ﬂp-”1)zJ

>0 and

dz, z—l.;rp _”2+T(”p_”1)]2

dzpp _ T(l"'TX”z "”1)2 <0

dr, [ﬂp—ﬂ'2+T %, -7,

~ From (2.3.7), we have
dr L d’r. 2
P =———.u'ly-p L)<0,and P ——_.y"\y-p L)<O

xl+Tn!

Taking into consideration that (2.3.8) gives p, =—~2——~ when 7z, =0 and
2(71'2 +T7r,)

u(y )—V >0 when p, =0, we can not rule out the possibility of

(2.3.7) gives 7, =

no interior equilibrium but multiple quilibria are impossible. Figure 2.15 illustrates

the non-existence of multiple equilibria.”

13 The feature of kink applies to this scenario as well. But, again, we focus on the interior solution in this research.
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Figure 2.15

2.3.5 Welfare property when gender is observable

First consider the male motorists insurance market. An Individual who chooses not
to become a motorist has a reserve utility ¥ . After becoming a motorist with full
insurance his expected utility is ¥,(z,, p,)=u(y - p,L)-7,C , where 7 € [7,,7,]. In
the partially covered market the threshold risk probability z,, €(z,,7,).

Set the number of the fully insured motorists and the non-motorists as N, and N,

respectively. Then N, = | Ny dr and N,=N,-N,=|' Ny
1 T —TT 2 M 1 T T
4 2 MIy =%,y

dar.

Similarly, set the aggregate utility of the motorists and the non-motorists as AU,

and AU, respectively. Then the aggregate utility of the market is

AU =AU, + AU, (2.3.9)
Where
v N N ™
AU, = M_ V(i dr= M.V V(. 2.3.10
1 '[12 7[4 "7[2 (7[1 )d 7[4 _ ﬂz _[: (7[1 )dﬂ. ( )
— « Ny
AU, =V N, =V ar (2.3.11)
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Utility

I/i(ﬂ-i’pi)=u(y—piL)_ﬂiC

N

3V

0] T, Ty T,
Figure 2.16

Given ¥(z,)=u(y— p,L)-#,C is linear, equation (2.3.10) can be expressed as

AU, =—Nu .%(V(ﬂ2)+V(ﬂM))(”M_”2) 2.3.12)

4 2

where V(z,)=u(y - p,,L)-,C and V(z, )=u(y-p,/L)-7,C=V
Similarly, the aggregate utility of the female motorists market is AU = AU, + AU,.
Where

AU, =V -N,=7-[" ”iﬂ’ﬂl Vd;: (2.3.13)
)d;r = f V(z,)dr (2.3.14)

As the above, AU, is expressed as

40~ L (e ) sy Ny ) @)

where V(n',) u(y- pyL)-=,C and ¥V(z, )=u(y- p,L)-7,C=V

2.3.6 Welfare change from implementing the policy

For existing motorists, male drivers gain from the policy with lower premiums

while female drivers suffer a welfare loss with higher premiums. Furthermore, as a
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result of the premium change (decrease for man and increase for woman), some
relatively safer man would choose to become a motorist while some relatively riskier

woman would stop driving.'*

Utility | ; :
: 4
i \\ I/,(”'E,pw)zu(y—pWL)_”'C
i ~
: \ ; Vi(z..p,)=uly-p,L)-7.C
E \E V,-(ﬂ,-,pM)=u(y—pML)—7[iC
0 7z =y 7, x e —>
Figure 2.17

The welfare loss hence consists of two parts: loss for existing female motorists

from higher premium and loss for former female motorists who drop out of driving:

Ny . Ny [ N, =
= 7Ty —Wiz'l -[: V(ﬂ,-,pw)dn'—”s _W”I ’ ,[: V(ﬂ'i’pp)d”"”3 _Wﬂ'l 'V'(”W _”p)

Ny, %(V(”lapW)"-V(”W’pW)XﬂW _”1)_%(V(”1’pp)+ V(”p’Pp)X”p _”1)

Clwy -7, Yy +7, ~21,) (2.3.16)

The welfare gain similarly consists of two parts: gain for existing male motorists

from lower premium and gain for new male motorists who now choose to drive:

' The whole society gains with the relatively riskier female drivers replaced by relatively safer male drivers. This
can be seen as a positive externality brought by the policy. However, this present research focuses on the aggregate
welfare change of the man and woman agent groups and hence does not seek to quantify the benefits of this
positive externality.
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N 2 N M N —
WG = 7, _Mﬂz : ,[: V(”iapp}i”—”4 _Mﬂ_z : '[: V(ﬂiapM)d”—”4 —Myzz -V '(”p _”M)
__Ny %(V(”Ppp)"'V(”p’pp)X”p _”2)_%(V(”2’PM)+ V(7ss e Wors = 17,)
T _7'(”'1»"”1%) |
or WG:é'%.C(ﬂp -ﬂMXnM+7rp—27r2) (23.17)

Whether the aggregate welfare of both markets increases depends on which effect

dominates.

2.3.7 Simulation

Set the utility function as
cl-B
ulc)= ,0>0

In order to check whether the welfare gain dominates the loss, we check WG —WL,

where
we=1. Nu -C(ﬂ' - Xn' +7 —27z)and
2 n,—-nm, P TMTM e 2
WL:é.ﬂj\:Wﬂ, -C(rzw —ﬂpXﬂ'W +7, ——2n‘,)

With the assumption that 7, — 7, = Tz, — z, ), we only need to check the tendency

of D,:
N
D, =TM(7rp —erX:rzM +7, —272'2)—NW(7:W —ﬂPXﬂW +7, —27:,)
where
1 1 —-p, L)% _
Pw =§(”1 +”W)’ Tw =E'[('V_IP_WOT)_—V]

NTM(”p —”2{‘% —%(7[2 +7rp))+NW(7rp -7, {pp —%(ﬂ', +7rp)) =0
_ -9
. =%.{M_V)

1-6
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For 7 =100, 0=0.8, C=5, V=11, nx=0.1, n3=0.7, n2=0.2, =0.8,

T=1and , we have figure 2.18 and 2.19 depicting the relationship between

welfare change and loss level.15

Welfare change

-0. 0001
0.0002
? -0.0003
-0.0004
Loss level
Figure 2.18
Number of Insureds
0.4
NS
NP

Loss level

Figure 2.19
Figure 2.18 illustrates that the welfare change decreases monotonically in loss
level. Figure 2.19 shows that between loss level of 50 and 99, the number of insureds

when gender is unobservable is always greater than that when gender is observable.
For 7 =100, 0=0.7, L=60, C=5, F=11, =0.1, m3=0.7, T =1 and
NM=Nw, we have figure 2.20, 2.21, and 2.22 depicting the relationship between

welfare change and the distribution of'the risk range of male motorists.16

15 Appendix 2.4 provides detailed simulation results.
16 Appendix 2.5 provides detailed simulation results.
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Figure 2.20
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Figure 2.22
Figure 2.20 illustrates that the welfare change first increases in the risk range then
decreases. Figure 2.21 shows that when gender is observable, the number of male
motorists decreases as the risk range move into greater area. Figure 2.22 shows that
the total number of motorists decreases in risk range both when gender is observable
and when unobservable while the number of motorists when gender is unobservable is

always greater than that when gender is observable except the point where both risk

range overlap.

36



For >=100, 0 =0.6, 7=80, C=5, V=11, nx=0.2, ;xr3=0.7, 7 =1 and
NM= Nw, we have the following figures depicting the similar relationship between
welfare change and the distribution ofthe risk range of male motorists.17

Welfare change

5 .0.002 0.1- 0.15- 0.19- 0.2- 0.21- 0.25- 0.3* 0.4- 0.44-
-0.004
* -0.006
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Figure 2.23
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Figure 2.24
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0.65 0.69 0.71 0.75 0.85 0.94

Risk range

Figure 2.25

2.4 Conclusion

When everyone drives and decides whether to purchase insurance, typical adverse
selection happens. High-risk motorists will purchase insurance while the low-risks
will not. After the unisex premium policy is implemented, more male motorists

purchase insurance with lower premium while some female motorists drop out ofthe

17 Appendix 2.6 provides detailed simulation results.

37



insurance market as the premium increased. Simulations show the total number of the
insured is less than before the policy is implemented. The policy has no effect on
insurers who always earn normal profit in the competitive industry. The aggregate
social welfare may increase or decrease. There is no effect on road safety since
everyone drives whether or not insured and there is no moral hazard.

When motorists must be insured and people choose whether to become a motorist,
advantageous selection happens. Low-risk people become motorists and purchase
insurance while the high-risks will not. After the policy is implemented, more
relatively safer men become motorist while some relatively riskier women stop
driving. From the simulations, the total number of motorists is greater than before the
policy is implemented. The policy has no effect on insurers. Simulations show that the

aggregate social welfare decreases after the policy is implemented.
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Chapter 3 Optimal allocation and participation option
3.1 Introduction

It has become an established truth that information asymmetry causes efficiency
loss. One application is to insurance markets. Traditional research finds that
insufficient insurance coverage occurs in an insurance market with adverse selection
and hence the insurance policy should be subsidized. The only reason to tax is to
allow cross-subsidization: the low-risks pay tax for their insurance policy and the
proceeds is used to subsidize the insurance policy purchased by the high-risks. The
purpose of this cross-subsidization is still to improve insurance coverage for both risk
types. Moreover, the full-insurance pooling contract is the first best allocation and
maximizes total social welfare. Does this conclusion still hold when people can opt
out of insurance market and even quit the risky activity? Is there always too little
insurance in the market equilibrium?

This essay attempts to answer these questions in the context of motor insurance
markets. Consider a model with the set up as in the standard Rothschild and Stiglitz
model where there are two types of agents who are identical except for risk
probability and the form of insurance contracts is fully endogenized. Let us now
extend the model by allowing people to choose whether to drive and motorists to
choose whether to insure. Motorists enjoy the benefits from driving but may suffer a
financial loss from engaging in the risky activity, while non-motorists receive
reservation utility which is the same for everyone but have no driving benefits.

If the reservation utility is too low, then both agent types would choose to drive and
buy insurance, the outcome would be the same as the Rothschild and Stiglitz model. If,
on the contrary, the reservation utility is too high, both types would stop driving. The
insurance market therefore disappears.

Let us focus on the more interesting scenario where the low-risks choose to drive
and buy insurance while the high-risks choose to stay out of the risky activity.
Furthermore, insurers are allowed to offer a menu of cross-subsidizing contracts that
earns normal profit overall. Therefore, contracts at the equilibrium must be Pareto
efficient and policy intervention may raise aggregate social welfare but can not yield

strict Pareto gain.
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At the equilibrium, the low-risks enjoy higher utility than the high-risks because of
the driving benefits they receive from driving, but their expected income is actually
lower than the high-risks because of the expected loss from engaging in the risky
activity. Therefore, the low-risks actually have higher marginal utility than the high-
risks.

Now let us bring in a balanced budget tax and subsidy scheme which taxes
insurance policies and uses the proceeds to subsidize the whole population. Such a
scheme effectively redistributes the income from the motorists, i.e. the low-risks, to
the non-motorists, i.e. the high-risks. It will have two effects: redistribution effect and
efficiency effect.

On redistribution effect, the scheme redistributes the income from the low-risks
who have higher marginal utility to the high-risks who have lower marginal utility.
Hence the net redistribution effect on the aggregate social welfare is negative. On
efficiency effect, the scheme improves the economic efficiency by allowing the low-
risks to buy more insurance coverage. As existing research shows, the presence of the
high-risks imposes a negative externality on the insurance coverage that the low-risks
are allowed to purchase, as insurers have to restrict the coverage to discourage the
high-risks from buying the insurance. Taxing insurance makes it more expensive and
hence less attractive to the high-risks while subsidizing the whole population raises
the reservation utility and hence makes the opt-out option more attractive to the high-
risks. So insurers can now raise the insurance coverage to a higher level without
attracting the high-risks into buying it. The low-risks can now buy more insurance
coverage, which increases their utility.

When the efficiency effect dominates the redistribution effect, taxing insurance and
subsidizing the whole population therefore increases the aggregate social welfare.
Counter-intuitively, the scheme increases the insurance coverage sold on the market
by making the insurance more expensive. However, the present research shows that a
pooling allocation with full insurance coverage never maximizes the total welfare.

When the redistribution effect dominates the efficiency effect, taxing the whole
population and subsidizing the motorists therefore increases the aggregate social
welfare. So, surprisingly, in this case there is too much insurance in the market being
sold too expensively and it would increase the total social welfare by decreasing

insurance coverage.
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Research on information asymmetry has long been a topic of tremendous debates
ever since the seminal works by Akerlof (1970), Spence (1973) and Rothschild and
Stiglitz (1976). Akerlof (1970) shows that adverse selection happens under
asymmetric information. Bad quality goods (Iemons) drive good quality goods out of
market and the market size generally shrinks. The present essay challenges this
conclusion in the context of insurance.

Rothschild and Stiglitz (1976) investigate two interesting issues: the existence of
market equilibrium under asymmetric information and the efficiency of such
equilibrium. They assume there are two types of agents in the risky activity, who are
identical except the probability of having an accident. They find there might be no
Nash equilibrium in the market, and if there is, it must be separating equilibrium. As
part of the efforts to establish the conditions for market equilibrium to exist, they give
the condition of when the market equilibrium is Pareto efficient, but did not go further
into finding the allocation that maximizes aggregate social welfare, which is the most
desirable outcome from the utilitarian point of view.

Following their work, there have been many papers focusing on the existence
problem and the efficiency analysis'®. Among them, Crocker and Snow provide key
efficiency results.

Starting from the setup of Rothschild and Stiglitz, Crocker and Snow (1985a)
introduce a tax and subsidy system, which ensures that the Miyazaki equilibrium can
always be supported as a Nash equilibrium. They show that more than one Nash
equilibrium is open to the regulator, but do not analyze the distributional effects and
do not discuss which equilibrium is optimal. Furthermore, some of their conclusions
are not robust as they do not allow cross-subsidization. For instance, a Pareto

improvement is impossible once cross-subsidization is allowed.

18 To name a few examples, Wilson (1977) found pooling equilibrium could exist if an “anticipatory equilibrium”,
a non-Nash equilibrium type of equilibrium, is adopted. Riley (1979) introduced “reactive equilibrium”, another
form of non-Nash equilibrium, which results in the same allocation as that of Rothschild and Stiglitz for any
proportion of the high risks. Engers and Fernandez (1987) generalized the reactive equilibrium. Grossman (1979)
proposed “dissembling equilibrium”, which sustains the same allocation as Wilson’s anticipatory equilibrium,
although the mechanism is different. Miyazaki (1977) relaxed the assumptions of Rothschild and Stiglitz by
allowing insurers to offer a menu of contracts which allows cross-subsidization, and adopting Wilson’s
anticipatory equilibrium instead of Nash equilibrium. It shows the only market equilibrium is Pareto efficient
separating equilibrium, which is the same as that of Rothschild and Stiglitz (1976) when there is no cross-
subsidization, or an interior allocation which maximizes the utility of the low-risks when cross-subsidization is
involved. Spence (1978) applied this analysis to the insurance market. Other than the above work which focuses on
non-Nash type equilibrium, Cho and Kreps (1987) and Hellwig (1987) give game theoretic foundation for the
equilibrium.
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Crocker and Snow (1985b) apply the definition proposed by Harris and Townsend
(1981) to check the relationship between competitive equilibrium and efficient
allocation in an insurance market. They find utility possibility frontier and show that
full insurance pooling allocation maximizes aggregate social welfare. However, this
present essay shows that pooling allocation is never optimal once the participation
option is included. Furthermore, it could be optimal that nobody buys insurance,
which is certainly not optimal in their setup.

Crocker and Snow (1986 and 2000) consider the efficiency effects of categorical
discrimination in insurance market. They demonstrate costless risk categorization
enhances efficiency and they further state that full insurance pooling allocation can
never be improved on by the introduction of categorization. This present essay shows
that when insurers are allowed to offer cross-subsidizing contracts, the market
allocation must be Pareto efficient for there to be a Nash equilibrium. Therefore, the
interior solution in Crocker and Snow (1986) does not exist. Moreover, the sufficient
condition they claimed to allow costless risk classification to enhance efficiency does
not hold either.

Crocker and Snow (2006) show that multidimensional screening reduces the
externality cost of adverse selection and enhances the efficiency of insurance
contracting. They recognize the impact of cross-subsidization on the existence of pure
strategy Nash equilibrium and notice that it would be efficient for the high-risks to
subsidize the low-risks under certain parameter values. However, as their model does
not consider the participation option, such subsidization can not hold as a Nash
equilibrium.

In addition to the above studies which do not consider participation option at all,
there are several papers that, to some degree, involve a participation option.

Abadie and Franc (2004) explicitly consider whether it is welfare improving to opt
out of public insurance. However, public insurance is very different from the private
insurance that this present essay considers. Furthermore, they assume insurers can
observe the individual type of risk, which makes their research fundamentally
different from this present essay.

Gollier (2003) considers a participation option in the context of insurance demand
in a lifecycle model. However, his research is actually on the choice between self-
insurance and purchasing an insurance policy from private insurers. The agents

always engage in the risky activity.
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Kim and Schlesinger (2005) examine the individuals’ demand for insurance
coverage on the assumption that individuals receive the benefit of some type of
potential government assistance that guarantees them a minimum level of wealth. This
may seem similar to the reservation utility of this present paper at first sight, but it is
actually completely different. In their model, agents always take up risky activity, and
there is no government budget constraint. So the government assistance is in effect
free insurance.

The structure of this essay is as follows: Section 3.2 finds the market equilibrium in
an insurance market with adverse selection and a participation option. Section 3.3
finds conditions for such equilibrium to exist. Section 3.4 introduces the tax-subsidy
scheme into the model. Section 3.5 analyzes the tax-subsidy scheme and gives the
most important findings of this essay. Section 3.6 and Section 3.7 considers two
extreme cases: full-insurance pooling contract and an over-insurance contract. Section

3.8 concludes.

3.2 Market equilibrium

Consider the market for motor insurance. Suppose there are two types of agent,
low-risk type with accident probability of z;, and high-risk type with =, , where
7y > 7, . The proportion of the high-risk type in the populationis A € (0,1). Everyone
has an initial wealth W .

The market equilibrium is the result of a two-stage sequential game. In the first
stage, insurance companies offer insurance policies. The insurance market is assumed
to be perfectly competitive and insurers are allowed to offer a menu of contracts
which can cross-subsidize each other but earn zero profit as a whole.

In the second stage, agents decide whether to drive or not. If he chooses not to drive,

he receives a reservation utility (W ), which is assumed to be the same for all. If he
chooses to drive, he receives a utility benefit of B from driving but with probability
7;,i=H,L may suffer a financial loss as a result of an accident of D .1® Motorists

then need to decide whether to purchase the insurance policy which is offered by

insurers in the first stage.

1% Here I ignore an interesting factor: a pecuniary cost related to driving such as the cost to purchase a car. Such a
cost tends to move down the budget line of motorists along 45 degree line. The disposable income of drivers will

be lower even in the absence of an accident, so the redistribution effect of an income tax will be strengthened, but
the analysis will not be fundamentally changed.
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3.2.1 Reservation utility and participation decision

Consider the result of the second stage game first. When motorists decide whether
to get insured, they need to compare the utility with and without insurance, and buy
insurance if it is beneficial.

As Rothschild and Stiglitz (1976) show, the contracts which can stand as a Nash
equilibrium in the insurance market must be separating contracts. Pooling contract
may disturb the separating equilibrium but can never themselves be a Nash
equilibrium. In the competitive insurance market, insurers can not charge more than
fair premium, for others can cut the price and earn positive profit. Hence, a menu of
cross-subsidizing contracts, in which the profits from profitable contracts offset the
loss from contracts of loss, can not constitute a Nash equilibrium, even though such a
menu of contracts may disturb the separating equilibrium when it can result in strict
Pareto improvement. Therefore, in the competitive insurance market, insurance
contracts, if offered, must be separating contracts at fair premium.

Expecting insurance coverage at fair premium, motorists will buy the insurance
contracts since such policies increase motorists’ utility compared with being
uninsured.

For both risk types, if they choose to drive and get insured, the minimum utility
they can get is U = B+u(W — Dx,,), for they can always reveal their risk type as
high-risk and buy insurance policy at the fair premium. If the reservation utility

u(W)< U, both risk types will choose to drive and get insured. Figure 3.1 illustrates

this case.
W
UL
L
U, =U=B+u(W-Dz,)
u()
0 7
Figure 3.1



In this case, insurers offer full insurance coverage to the high-risks and yet only

partial coverage to the low-risks. The insurance premium p is fair for both

types: p, =6.-D-x,,i=H,L,where 0<6, <1 is the percentage of insurance
coverage. The high-risks are fully insured and receive the utility

U,=B+ u(W —Dr,,). The low-risks are partially insured and receive the utility
U,=B+(1-z,)u(W-6,Dx,)+z,u(W—6,Dx, —(1-6,)D) while U,, <U, . The
outcome at the equilibrium is the same as in the standard Rothschild and Stiglitz

model since the reservation utility is at so low a level that it does not affect the

participation decision of both agent types.?®

The highest utility motorists can get is U=B+ u(W -Dr, ), as the best insurance
policy insurers are willing to offer is full coverage contract with fair premium for the
low-risks. If the reservation utility u(W) >U=B+ u(W -Dr, ) , the highest utility

agents can receive when they drive, both risk types will stop driving. Figure 3.2
illustrates.

20 Given our tax and subsidy scheme, which taxes motorists and uses the proceeds to subsidize the population, a
small tax and subsidy won’t have any effect in this case. But when the tax and subsidy are large enough as a whole,
the subsidized reservation utility becomes greater than the utility of the high risks from driving, i.e.

u(W+(1—,1)t) >Uy =B+ u(W—Dﬂ'H) where ¢ is the tax, the high-risks will opt out of the market and become
non-motorists. So one effect of such a policy is that road safety will increase. But it is more difficult to increase the
aggregate social welfare in this case compared to the case we are going to further discuss where U < u(W) < L_I .
Consider the marginal case where the subsidized reservation utility is equal to the utility of the high-risks from
driving, i.e. u(W+(1—/1.)t) =Uy =B+ u(W -Dry ) . The high-risks are indifferent before and after the policy

implemented but the low-risks are strictly worse off. So there is a strict Pareto loss in this scenario. There is
obviously no efficiency effect here and the redistribution effect is purely negative. This is because the low-risks
have to pay an extra cost to the high-risks to compensate them for give up driving, before the high-risks can be
better off from this subsidy. So besides the redistribution effect and the efficiency effect in the case of
U< u(W) < U , this case involves an extra efficiency loss related to this compensation payment.

If the total social welfare from the tax and subsidized allocation is greater than the initial allocation, the optimal
allocation when the tax and subsidy are positive should involve more wealth transfer from the low-risks to the

high-risks compared to the case U < u(W) < U to cover the extra compensation cost, but it should be less than the
sum of the optimal wealth transfer in the case U < u(W) < U and the extra compensation cost. Because after
having paid the compensation cost, the low-risks have less disposable income and hence higher marginal utility

than in the case U < u(W) < U . No insurance can never be the optimal allocation any more because the high-risks

can always opt back to be motorists and neutralise the tax and subsidy scheme.
I will leave the technical analysis for future work.
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U,=U=B+u(W-Dx,)
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Figure 3.2

If the reservation utility is such that U < u(W) <U, the high-risks will rather opt
out of market and receive the reservation utility. The low-risks will choose to become
motorists and get insured. Figure 3.3 illustrates this case. The following analysis of

this essay focuses on the reservation utility of this range.

Wop
U,
U=B+u(W-Dx,)
Uy = u(W)
U=B+u(W~Dx,)
0 ,

Figure 3.3

3.2.2 Separating equilibrium

Given the result of the second stage game, when U < u(W) < U, insurers will offer
a single contract which offers partial coverage at the fair premium of the low-risks.
The high-risks will opt out of the insurance market and stop driving while the low-

risks will drive and buy the insurance contract.

At the separating equilibrium of the competitive insurance market, insurers offer
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contracts that maximizes the low-risk type’s utility subject to the high-risk types
preferring not to choose it (and to stay out of the market).
MaxU, = B+(-7z, u(W -6Dx, )+ n,u(W — 6Dz, —(1-6)D)
st. Uy =B+(1-7, u(W -6Dx, )+ z,u(W - 6Dz, —(1-8)D)< u(W)
The constraint is binding, therefore U,, = (), which gives the optimal 6" .

Figure 3.4 illustrates the market equilibrium.

Wn
UL
L U,= u(W)
0 W,
Figure 3.4

At the equilibrium, the high-risks opt out of driving and receive the reservation

utility «() while the low-risks choose to drive and receive

U, =B+(1-z, (W -6"Dx, )+ z,ulW -6'Dz, —(1-6")D)

3.3 Conditions for market equilibrium

The market may not have equilibrium under certain circumstances.

3.3.1 Separating equilibrium and pooling contract

As Rothschild and Stiglitz (1976) show, a pooling contract that Pareto dominates
the separating contract can disturb the separating equilibrium but can not itself
constitutes a Nash equilibrium. Hence, no Nash equilibrium in pure strategies exists if
the low-risks receive greater utility from the pooling contract than from the separating
contract.

The optimal pooling contract is found by maximizing the low-risk types’ utility

while keeping the insurers break even.
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MaxU, =B+ (-7, )u(W -6,Dx,)+ n,u(W - 6,Dr, —(1-6,)D)

st. p=Amy +(1-A)7,

Solving the optimization problem gives the optimal &, .

The optimal pooling contract offers partial insurance coverage to both risk types
(0<8; <1) at pooling premium, p, = Ap, +(1-21)p, =0,Dx,, where
Tp=Ay + (1 - ﬂ)fr , 1s the weighted average of each type’s accident probability.
With the pooling contract, agents receive the utility

U =B+(1—7z, (W -0;Lx, )+ ruW -6;Lx, -(1-6})L), i=H,L

Figure 3.5 illustrates the case.

W2/\
P
UH
UL
0 7,
Figure 3.5
So a separating equilibrium arises when
U, <U; 3.1)

where

U? = B+(1-x, u(W - 6;Dx, )+ m,ulW - 6;Dx,—(1-6;)D)

US =B+(1—z, W - 6;Dx, )+ m,ulW - 6;Dx, - (1- 6;)D)

Different parameter values may result in different equilibrium. Take the proportion
of high-risk types for example. The threshold value of A" is found by solving (3.1) as
an equation. There is a separating equilibrium when A > 1. Figure 3.6 illustrates such
a case. When A > 4", the low-risks receive higher utility from the separating contract
S than from the pooling contract P (U} >U7T), so the pooling contract can not

disturb the separating equilibrium which dominates the pooling allocation.
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Figure 3.6

3.3.2 Separating equilibrium and cross-subsidization

When insurers are allowed to offer a menu of cross-subsidizing insurance policies
that earns normal profit overall, i.e., they are allowed to charge the low-risks greater
than fair premium and use the proceeds to subsidize the policies sold to the high-risks,
there may exist room for a set of break even policies that leads to a strict Pareto
improvement. Figure 3.7 illustrates.

Wop

S
Sw
-~

Figure 3.7
The initial no cross-subsidization market equilibrium would be at S. Insurers can
then charge the low risks greater than fair premium and use the proceeds to subsidize

the high risks. This cross-subsidization will lead to a new allocation S’ which Pareto-
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dominates the previous allocation S 21 At first sight, this new allocation appears to be
an equilibrium at which both types are better off than at S . However, S’ can not be
Nash equilibrium as insurers can profit from deviating from S’ to C. Under such
circumstance, there will be no equilibrium. So the allocation resulting from market
force must be Pareto efficient to be a Nash equilibrium.

One way to check whether the initial market allocation S is Pareto efficient is by
introducing a balanced budget tax and subsidy scheme, which taxes the insurance and
uses the proceeds to subsidize the whole population. If such a scheme can achieve
Pareto improvement, then there exists room for the cross-subsidizing contracts and the
separating allocation can be disturbed by these contracts. If there is no positive tax
that can improve the welfare of the low-risks, i.e. the optimal tax for the low-risks is
zero, such cross-subsidizing contracts do not exist and the separating equilibrium is
indeed a Nash equilibrium.

Suppose a lump sum tax £ > 0 is imposed for drivers per capita. The proceeds are

used to subsidize the whole population. s =(1-1)¢, where s is the subsidy per
capita. The net tax for drivers is #—s = A ¢. The reservation utility after the subsidy is
then u(@ + (1-A)).

As the market equilibrium must be Pareto efficient when insurers are allowed to
offer cross-subsidization contracts, this means ¢ =0 for the following optimal

allocation problem:
MaxU, = B+(1~7, (W ~ Dz, ~ A1)+ m,u(W — 6Dz, ~(1~6)D~ A1)
s.t.
Uy =B+(—n, u(W-6Dr, - At)+m,uW -6Dx, ~(1-0)D—At)<u(W +(1- A)z)
t>0
For brevity, let’s set
Y=W+(@0-2)t
X=W-6Dr, - At
Z=W -6Dzx,-At-(1-6)D
Obviously, X > Z and hence u'(X)<u'(Z).

The problem can be rewritten as the following

2 At S the high risks are paid not to take insurance from any company. Enforcement of such a contract may be
infeasible or illegal.
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MaxU, =B+ (-7, (X)) +7,u(Z)

st. Uy =B+(1-7, u(X)+z,u(Z)<u(Y) (3.2)
t20 (3.3)
The Lagrangian is

L=B+(1-7, u(X)+7,u(Z)+8W(¥)-B-(1-7, u(X)-7,u(Z))

The Kuhn-Tucker condition gives the necessary conditions

oAl W 0)~ Al (23 81 AW (1) A1 W (X)+ 2,0 (2)) SO
t>20 andta—L=0 34
ot

2L _ D1 (D) 7,Dl1-m ) (x)

+8(Dz,(1-7, W'(X)-D(1 -7, )r,u'(2))< 0

oL

620ad b —=0 3.5

an 50 3.5)
oL
5" u(¥)-B—(1-7, u(X)-7,u(Z)=0 (3.6)
We are interested in positive insurance coverage so we set & > 0 . Therefore

-g—z— = 0 which gives

5= 7, (1-7, Nu'(2)-u'(X)) >0 3.7

Q- W (2)- (- (X))
The sufficient condition for the market allocation to be efficientis ¢ = 0 at the

optimum and z—f < 0. The necessary condition is g—lt' <0.

Substituting (3.7) into (3.4) gives
~ M-z, W' (X)-Az,u'(Z)+

7, (1=7, Ju'(2)-u'(X)) (-2’ (¥)+ 20 -7, o' (X )+ Az u'(Z))< 0

”H(l_”L)“'(Z)_”L(l"”H )”’(X)

This is the sufficient condition for that there is no room for government

intervention. The condition can be simplified as following

My -n,) | @(Z)-w'(X)'(Y) _
CAmi-r) «@w() G9)
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Since '(Y)<u'(W)<u'(X)<u'(Z), and u'(Z)<u'(W — D) if we assume

< 6D(1-7,)

7 (Obviously, ¢ = 0 is consistent with this assumption), it always holds

t

that

W@ —d)-u'W)') | W(2)-u'(X)'[)
u' (W ' (W) w'(Z)'(X)

Therefore, there exist values of A large enough to satisfy (3.8). For these values, a

Pareto efficient separating market equilibrium exists.

3.4 Cross-subsidization taxation and the aggregate social welfare

Pareto efficiency is not enough if the government’s goal is to maximize the
aggregate social welfare. Assuming the government is subject to the same information

asymmetry constraint as the insurers and uses a balanced tax-subsidy, its problem is:

MaxAUy, + (1-A),

st. B+(1-m, u(X)+ z,u(Z)<u(Y) (3.9)
B+(1-7z u(X)+z,u(Z)2u(Y) (3.10)
Here we do not require ¢ 2 0 . The constraint on balanced tax system is already
embedded in the equations. The self-selection constraints cannot hold with strict
inequality for both risk types at a solution, for then a Pareto improvement would be
possible. Hence, either (3.9) or (3.10), or both, must hold in equality.

The Lagrangian is
L=2U(Y)+(1-A)XB+(1—7, (X)) + z,u(2))+ B" @(¥)- B (17, Ju(X) - 7,u(Z))

+ B B+ -7, u(X)+ 7,u(Z)~u(Y))

The Kuhn-Tucker condition gives the first-order condition for an interior solution:
n OL t 0L _ 0L _ ; oL _

op” op* 06 ot

With the assumption that & > 0, we have:
oL ' ' ' '
55=(1—/1)”L(1—”L)(u (Z)_“ (X))"'ﬂﬁ(”L(l_”H)“ (X)_(l—”L)”Hu (Z))

+ﬂL(1—”L )zz'L(u'(Z)—u'(X))___ 0

The optimal tax must maximize the aggregate social welfare, so we have

B =p

(3.11)
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%% =A=' ()~ A0 - 21 -7, p'(X )+ 72,4/(Z))
+ 87 (1= A (V) + A0 -7, W' (X)+ A7, u'(Z)) (3.12)
+ (- A -7, ' (X)- A7, (2)- - 2'(¥)) =0

From (3.11), we have

Lo_(1-1)+ BY 2y (=7 '(2) -7, (1—7, ' (X)

A e = n ) k) 1

Substituting (3.13) into (3.12) gives

g = 7, (=7 )= A (V)u'(Z)-u'(X))
(7 =7, X' (X' (Z)+ (1= AN -7, W' (V' (Z)+ (1= A ), (V' (X))

(3.13) and (3.14) give

(3.14)

L _ (1_'1)
N T 7 7 ¥ 7 P () (P W % P (BB % (% 9) 5.15)
y [(1—/1)@ (-7, ' (¥ Yot (Z) - (X)) - Az -, (X ' (Z )} '
+ (¥ Ny (1= 7, W' (2) -7, (17, Ju' (X))

3.5 The high-risks opt out while the low-risks participate

As Section 3.4 Cross-subsidization taxation and the aggregate social welfare shows,
a government that uses a balanced budget tax and subsidy scheme to maximize the
aggregate social welfare faces the following problem:

Max AU, +(1-A,

st. B+ (-7, u(X)+7z,u(Z)<u(Y) (3.9)
B+(1-z ) u(X)+7z,u(Z)>u(Y) (3.10)

As the self-selection constraints cannot hold with strict inequality for both risk
types at a solution, we first consider the most interesting case — the high-risks opt out
of the risky activity while the low-risks choose to participate in the risky activity and
buy insurance, i.e. condition (3.9) binds whilst (3.10) does not.

At the market equilibrium, the high-risks are indifferent between driving and not
driving, and we assume they choose not to drive and receive the reservation utility
u(W). The low-risks drive and receive B+ (1— 7z, Ju(X )+ z,u(Z)> u(W).

Welfare maximization allocation may involve a positive tax on insurance and
subsidy from the low-risks to the high-risks, as figure 3.8 illustrates. The laissez-faire

market equilibrium is at S . A positive tax on insurance shifts down the indifference
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curve of the low-risks from U, to U; but pushes up that of the high-risks from U,
to U, . The optimal allocation under the policy intervention that maximizes the

aggregate social welfare may endup at S*.
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Figure 3.8

Or it may involve a negative tax on the insurance and subsidy from the high risks to
the low risks, as figure 3.9 illustrates. The laissez-faire market equilibrium is at S. A
negative tax on insurance shifts up the indifference curve of the low-risks from U, to
U; but pushes down that of the high-risks from U,, to U}, . The optimal allocation
under the policy intervention that maximizes the aggregate social welfare may end up
at S*.
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Figure 3.9
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In both cases, the high-risks opt out of the risky activity while the low-risks choose
to participate in the risky activity and buy insurance, i.e. condition (3.9) binds whilst
(3.10) does not, i.e.

B+ (l—7z,,)u(X)+ ﬂHu(Z)= u(Y)

B+ (l—7z,_)u(X)+7z’Lu(Z)> u(Y)

3.5.1 To tax or to subsidize insurance policies

As the section above discusses, in order to maximize the aggregate social welfare,
the tax and subsidy scheme may involve a positive tax on insurance and subsidy from
the low-risks to the high-risks or a negative tax (effectively a subsidy) on insurance
and subsidy from the high-risks to the low-risks. Therefore, an interesting question is
when to tax or subsidize insurance policies.

When condition (3.9) is binding but (3.10) is not, #* =0. The welfare

maximization problem can be rewritten as
Max AU, + (1-A)u,
st. B+(1-z, u(X)+z,u(Z)<u(Y)
The Lagrangian is simplified into
L=2U¥)+Q1-2)B+(1 -7 Ju(X)+ zu(Z))+ " ()~ B- (-7, u(X)- 7,u(Z))

And we have
OL ' ' !
=5 = A= (1)-20- 200~ 72, ' (X)+ 7,/(2)) (3.16)

+ B (- W)+ A, W (X)+ A, (2)

For 6 # 0, we have

Z—Z ==z, (-7, Yo' (2)~uw' X))+ B7 (2, (1~ 7 W' (X)~ (1= 7, ), (Z))= 0
3.17)
Equation (3.17) gives

w__m (-7, 1-2)u'(2)-u'(X))
B T 2y 0=n W' (2)-7, (-7, W'(X) (3.18)

3.5.1.1 Redistribution effect and efficiency effect

It is more straightforward to analyze the effects of the taxation by rewriting (3.16)

as
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AL = A1- A ' (Y)ot — A1 = AN(1 - 7, ' (X) + ' (2t

+ B (- A’ (V) + A =7, W' (X )+ Az ' (2ot

- Amam(l—l{(l—m)au()( )iz, a”(Z))at (3.16)
or ot o |
+ 87 (M—(l—ﬂﬂ )au(X)_”H a"(Z))at
or or or

The effect of taxation on total social welfare can be decomposed into two effects:

redistribution effect a%at +(1- ,1{(1 -, )a“a(f ) +m, 5”;2 )Jat and efficiency

effect p” (—a—ug ~-(1-7,) aua(f() ~ 7y au;f)jat .

The redistribution effect measures the utility change from transferring wealth
between the high-risks and the low-risks, weighted by the ratios of the population
respectively. A positive tax and subsidy will transfer wealth from the low-risks to the
high-risks, and decrease (increase) the utility of the low-risks (the high-risks)
accordingly. A negative tax and subsidy works in the same way but in the opposite
direction. Whether the redistribution effect is positive or negative is dependant on
whether the weighted utility gain is more than offset by the weighted utility loss or
not.

If we rewrite the redistribution effect as 2(1— A )u'(Y)—((1- 7, Ju'(X)+ 7,4'(Z)))or,
we can see that the redistribution effect is actually dependent on whether the marginal
utility of the high-risks is greater than the expected marginal utility of the low-risks.

At the equilibrium, the low-risks enjoy higher utility than the high-risks because of
the driving benefits they receive from driving. However, their expected income is
actually less than the high-risks because of the expected loss from engaging in the
risky activity. So the expected marginal utility of the low-risks is greater than the
high-risks. As the result, the net effect of the redistribution is negative.?

Besides the redistribution effect, such a tax and subsidy scheme also has an
efficiency effect: The presence of the high-risks imposes a negative externality on the
insurance coverage that the low-risks are allowed to purchase, as insurers have to
restrict the coverage to discourage the high-risks from buying the insurance. Taxing
insurance makes it more expensive and hence less attractive to the high-risks while

subsidizing the whole population raises the reservation utility and hence makes the

22 This is a feature of the additive utility function.
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opt-out option more attractive to the high-risks. So insurers can now raise the
insurance coverage to a higher level without attracting the high-risks into buying it.
The low-risks can now buy more insurance coverage, which increases their utility.

Techincally, the efficiency effect measures the utility change from relaxing the
incentive constraint caused by the information asymmetry. Unlike the redistribution
effect, as we can see below, the efficiency effect is positive for positive tax and
subsidy. Because a tax allows the low risks greater insurance coverage, the
compensating variation is less than the value of the subsidy to the high risks. In this
setting, the deadweight cost of taxes is negative.

For interior solutions, i.e., # #1 and X # Z, we have from equation (3.18)

B = 2, (=7, N1- A (2)-u' (X)) >0
7wy (-7, u'(Z) -7, (17, Ju'(X)

As we know, the Lagrangian multiplier measures the marginal change of the

objective function caused by the marginal change of the constraint value. Before the
insurance coverage reaches full insurance (6 =1 and X = Z '), we always have

B >0, so positive tax and subsidy, which increases the reservation utility of the
high risks and hence relaxes the incentive constraint, always increases the aggregate
social welfare.

The marginal change of the incentive constraint to the marginal change of tax is

measured by (g—ué(;—)—(l—ﬂ )6u(X)—7z' 6u(Z)), ie.,

oo T o
((-2)'(¥)+ 20— 7, ' (X )+ Az ,u'(Z)), which is clearly positive.

Put together, the efficiency effect is measured by the marginal change of tax, times
the marginal change of the incentive constraint to the marginal change of tax, times

the marginal change of the objective function to the marginal change of the incentive

constraint:
o) o \aulx)  auz)
’B( ot (-7y) o H g o

The overall effect of taxation on total social welfare depends on whether the
redistribution effect is more than offset by the efficiency effect. The next section gives

the condition on when the overall effect is positive or negative.
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3.5.1.2 Condition on whether to tax or to subsidize the insurance

As the analysis in the section above shows, the tax and subsidy scheme has two
effects: the redistribution effect which reduces the aggregate social welfare and the
efficiency effect which increases the aggregate social welfare. When the efficiency
effect dominates the redistribution effect, taxing insurance and subsidizing the whole
population increases the aggregate social welfare. When, on the contrary, the
redistribution effect dominates the efficiency effect, taxing the whole population and
subsidizing the insurance increases the aggregate social welfare. The following
technical analysis examines when to tax or to subsidize the insurance in order to
maximize the total social welfare.

Substitute (3.18) into (3.16) and rearrange it, we have
2 - - apote)ZU IR ML D1 1)1, W (1) dmy(2)

~A1- AN~z ' (X)+ 72,4(Z)

aL (1-2
”H(l ”L)"(Z)-”L(l ”H)“( ) (3.19)
|:(1 }“)”L(l 7, N (Z) u (X))“ ( )_ﬂ'(”H “”L)“'(Z)”'(X):I
+ 2 (Y Yy (1= 72, W'(Z) - 7, (1 -, Ju' (X))

It is straightforward that 7z, (1- 7, u'(2)-z,(1- 7, )u'(X)> 0, so the sign of

(3.19) is dependent on the sign of

(1~ 2)z, (1~ 7, Yo' (Z)~ (X' (V) - Ay 7, Ju'(Z)'(X)
+ (¥ Yy (-7, (Z) 7, (1~ 70 Ju' (X))
The necessary efficiency condition of the market equilibrium gives

Mry-m) , W@)-w (W) ;.
A l-m)  w@WQE)

(-2, (-7, ) (2) - w' (X ' (7 )~ Az -7, Ju' (2 ' (X ) < 0

Clearly, the first part of (3.20) is negative while the second part is positive, so

(3.20)

(3.20) could be either positive or negative. We can rewrite (3.19) as

oL _ (1-Ap'(X'(2)
ot ”H(l_”l.)“( ) ”L(l ”H)"‘(X)

| 8h -7, Yam, +(0- D)= 57, 0=, )+ 0= =) Ay, )]
(3.19°)
The sign of (3.19) is dependent on the sign of

58



u'(¥) u(Y)
u'(X)(l ”LX’I”H'*'(I ’?')”L) (Z)”L(’?'(l ”H) (1_'1)(1_”2))_'1(7[}1_”1.)

(3.20°)

(3.20’) can be rewritten as

(:"éig"%](l_”L Y, + Alzy -7, ))‘( Z:g;)l(ﬂﬂ ~1;) (3.21)

When =0,
Y=W ,X=W-6Drn,,Z=W -6Dz,-(1-6)D

So Y > X > Z and hence »'(Y)<u'(X)<u'(Z). Therefore,
W) #() 0 ana1-2®)

) w2 ()
So %L > (<)0 when
w(¥) _u(Y)

(X) u(Z) ’?'(”H_”L)
3.22
W) T Y, v, —7,) 62
u(2)
So the optimal tax could be positive or negative, depending on the parameter values.
When
u'(Y) u(r)
(x) @), Mmy-n,)
u (Y) (1_”LX”L +’1(7[H “”L))

()

We have aii > 0, i.e. the aggregate social welfare increases with tax ¢, so the
1=0

efficiency effect dominates the redistribution effect. A positive tax on the insurance

and subsidy from the low-risks to the high-risks increases the aggregate social welfare.
Similarly, when
u'(¥) _u(Y)
(x)‘m< A, ~1,)
u(Y) (1_”LX”L+/1(”H_”L))

u(Z)

The redistribution effect dominates the efficiency effect. A negative tax on the

insurance and subsidy from the high-risks to the low-risks increases the total social

welfare.
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3.5.1.3 Numerical examples

Set u(x)=Inx. When W =100, B=1, D=90, z, =0.8, 7, =0.3, 1=0.3, the
left hand side of (3.22) equals 0.8832 and the right hand side is 0.47619, so a positive
tax increases social welfare. For example, a positive tax 7'=17.857143 increases the
aggregate social welfare from 9.7815 to 9.8708.% Figure 3.10 illustrates. The laissez

faire market equilibrium is at S . A positive tax on insurance shifts down the

indifference curve of the low-risks from U, to U; but pushes up that of the high-
risks from U, to U, . The optimal allocation under the policy intervention that

maximizes the aggregate social welfare may end up at S”.

W2/ N\

o
S|V

Figure 3.10
When W =100, B=1, D=99, x,, =09, z, =0.3, 4 =0.83, the left hand side is

0.79082 and the right hand side is 0.89151, so negative tax increases social welfare.
For example, a negative tax T =—1 increases the aggregate social welfare from
9.7771 to 9.7844.% Figure 3.11 illustrates. The laissez-faire market equilibrium is at
S . A negative tax on insurance shifts up the indifference curve of the low-risks from
U, to U; but pushes down that of the high-risks from U,, to Uy, . The optimal
allocation under the policy intervention that maximizes the aggregate social welfare

may endup at S”.

2 Appendix 3.1 provides detailed simulation results.
2* Appendix 3.2 provides detailed simulation results.
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3.5.2 The optimal tax level and efficient allocation

Section 3.5.1 finds the condition on whether to tax or to subsidize the insurance in
order to maximize the aggregate social welfare. However, it does not answer what is
the optimal level of the tax or the subsidy (i.e. negative tax). This section finds the
optimal level for an interior solution.

From (3.21), we know that for an interior solution, # must satisfies
’ Y [ Y ’ Y .
(:’((X))— :{Zz](l—”l' X”L +2'(7[H -7y ))_(1 —%]A(ﬂﬂ —7Z'L)= 0, 1.e.
uw(Y) u'(¥)

w(X) w@)_  May-m,)
]-&? (l—ﬂLX”L'{'ﬂ'(”H "”L))

(3.22)

When equation (3.22) holds, #* =0 and g—f =0. The solution clearly satisfies the

Kuhn-Tucker conditions. Equation (3.22) therefore fixes the optimal allocation and
hence the optimal tax and subsidy.

3.5.3 Pooling full insurance coverage is never efficient

When agents can decide whether to participate in the risky activity and whether to

buy insurance, full insurance can never maximize the total social welfare.
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Full insurance would be optimal only when increasing tax always increases the

aggregate social welfare or at least does not reduce the welfare, which implies at the

full insurance %li >0,1e.

u(X) (), Mry—7,) (3.23)

At full insurance, X =Z =W —x, D — At so the left hand side of (3.23) is 0 while
the right hand side is positive. This violates the condition of % >0.

Intuitively, under full insurance, X =Z, so

g -l - ' (2) - (x)
P e ¥ ey G

the taxation: relaxing the incentive constraint has no efficiency effect now since the

) =0, i.e., there is no efficiency effect from

insurance contract has reached full coverage. All that matters is the redistribution
effect. As we know, motorists have higher marginal utility than the non-motorists and
hence the redistribution effect is negative. Therefore, the overall effect of the taxation
at full insurance must be negative, i.e. o <0.
X=Z

Clearly, when ¢ > 0 increases social welfare, an optimal allocation involves cross
subsidization from the low-risks to the high-risks, but only with partial insurance. In
the previous simulation example that u(x)=Inx, W =100, B=1, D=90, z,, =0.8,
7z, =0.3, 1 =0.3, aggregate social welfare first increases with the tax but then

decreases before reaching full insurance. A positive tax at about # =59 maximizes the
aggregate social welfare.? Figure 3.12 illustrates: the laissez faire market equilibrium

isat S. A positive tax >0 on the insurance and subsidy from the low-risks to the

high-risks increase the total social welfare, which is maximised at S* before reaching

the full insurance coverage.

25 Appendix 3.1 provides detailed simulation results.
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Figure 3.12

3.5.4 Too much insurance

As section 3.5.1 shows, when the redistribution effect dominates the efficiency

effect, a negative tax increases the total social welfare, i.e. when

w(Y) «(¥)

w(X) w(z)
_4(Y)

u'(Z)

In this case, there is too much insurance being sold too expensively in the market

’1(”11 _”L)
(1 —7 )(”L +Mzy —7,))

<

equilibrium. The effect of the negative tax is to reduce the insurance coverage and the
insurance premium at the same time, which increases total welfare. Under certain
circumstances, the market only needs infinitesimal insurance coverage. In this case,
“almost no insurance” is the optimal allocation.®

As in the full insurance extreme, “almost no insurance” is optimal when decreasing

the tax always increases the social welfare. So at 8=0, -a—lt' <0.

26 As we can see below, reducing insurance increases aggregate social welfare, which is actually highest when
there is no insurance at all. However, as the present research set the tax and subsidy scheme on insurance policies,
there would be no such a scheme when insurance is completely eliminated. Therefore, “almost no insurance”
becomes the optimal allocation. If the tax-subsidy scheme was set on the motoring activity, insurance could be
eliminated completely then. Since this only has trivial technical effects on the corner solution, the present research
sticks to the current tax and subsidy scheme.
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When =0 and t<-D, u'(X)<u'(Z)<u'(Y) and u(¥) () >0 and

w(x) w(2)”
u'(Y)

( ) <0,s0 — L > 0, which contradicts Z—f <0. Therefore, “almost no insurance”
u

cannot be optimal. Instead, an interior solution exists.

When #=0 and ¢>-D, u'(X)<u'(Y)<u'(Z) and w(¥) _u(¥) >0 and

u'(X) u'(2)
- u'(Y) >0, so0 6_L <0 implies
u

(z

(( () E g A )

X) ulZ Ty 7y

u (Y) (l 7, )(zL +1(ﬂH —x, )) (3.29)

u(@)

It is possible to satisfy (3.24) so “almost no insurance” could be optimal. For

instance, when u(x)=1nx, W =100, B=1, D=90, 7, =08, 7, =03, 1=0.8,

the aggregate social welfare increases monotonically with the absolute value of
negative tax.?’ Figure 3.13 illustrates: the laissez faire market equilibrium is at S. A
negative tax £ <0 on the insurance and subsidy from the high-risks to the low-risks

increase the total social welfare, which is maximised at S*, which is infinitesimally

close to no insurance at all.

VVZ/\
U
UL\
U
0 ,
Figure 3.13

2 Appendix 3.3 provides detailed simulation results.



3.6 Extreme case: utility from driving with full insurance is the same as
reservation utility

As we know, (3.9) and (3.10) cannot both hold with strict inequality at a solution. If
they both bind, we have

B+(1-7, u(X)+ z,u(Z)=u(Y) (3.25)

B+(1-7z, u(X)+7,u(Z)=u(Y) (3.26)

(3.25) and (3.26) give X =Z, i.e., full insurance, which in turn gives

B+u(W —Dr,~t)=u(W +(1- 1))

Won
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Figure 3.14

Figure 3.14 illustrates the allocation. The utility the low-risks receive from driving
is at the same level as the reservation utility after the tax and subsidy scheme is
implemented. This is actually just a special case of section 3.5 where ¢ > 0 is such
that it makes @ =1. However, as we have seen in section 3.5.3, full insurance can

never maximize total welfare.

3.7 Extreme case: the high-risks opt out while the low-risks are indifferent
Another extreme case happens when (3.10) binds but (3.9) does not. If

B+ (-7, (X)) + 7, u(Z) < u(Y), then B+(1—7, u(X)+7,u(Z)=u(Y) and B =0. So

the high-risks will not drive. #” =0 implies %'(Z)=u'(X). So the low-risks receive

full insurance and are indifferent between driving and not driving.

With full insurance coverage, the low-risks, who are motorists, receive utility

B+u(W — Dz, — ) while the high-risks do not drive and receive the reservation
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utility u(# +(1-2)). Since B +(1- 7, Ju(X)+ z,u(Z)=u(Y), we have, with full
insurance coverage, B+u(W —Dzx, —At)=u(W +(1- A)). So there is a full insurance
allocation as figure 3.14 illustrates of section 3.6.

But what is the optimal tax scheme in this case? Does it increase the total welfare if

the low risks are taxed to subsidize the high risks and result in an allocation as figure
3.15 illustrates?
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Figure 3.15

In this case, the welfare maximization problem can be rewritten as
Max AU, +(1-A)U,
t

Where U, =u(# +(1-A)) and U, = B+u(W —Dx, — At)
Set L =AU, +(1-A)U,

‘Z—It'=},(1—l)(u'(W+(1—,l)t)—u'(W—D7fL—'1’))

For ¢t > 0, we have %<0. Actually, for any ¢ >—-Drx, , we have %Ii<0. Soa

positive tax clearly decreases the total social welfare. Actually, a positive tax which
moves allocation from S’ to S” violates incentive constraint and will stop the

motorists from driving. Clearly, allocations such as §” can not be efficient.
When ¢t < -Dx,, we have Z—f > 0 : taxing the high-risks to subsidize the low-risks

increases the total welfare. It immediately involves (3.9) binding and (3.10) not (that
is, B+(1-7, Ju(X)+ 7z,u(Z)=u(Y) and B+(1— 7, u(X)+ z,u(Z)>u(Y)), a scenario
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we have discussed in section 3.5. Such a tax in effect moves the allocation from the

full insurance S’ to the partial insurance coverage S°, as figure 3.16 illustrates.
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Figure 3.16

3.8 Conclusion

This chapter shows, introducing a participation option into traditional models of
adverse selection causes significant changes. Due to their high probability of incurring
loss, which makes the reservation utility more attractive, the high-risks drop out of the
risky activity. Instead of being stuck with the low-risks, the market is now filled with
the good-risks — the “lemon” market has turned into “peach” market. Taxing
insurance makes participation less attractive for the high risks, allowing the low risks
to extend coverage. Thus the tax has an offsetting benefit to those paying it creating
an efficiency gain. When the redistribution effect dominates the efficiency effect,
redistributing the wealth from the high-risks to the low-risks is optimal. This requires
an insurance subsidy, which paradoxically decreases the insurance coverage in the
market equilibrium. For certain parameter values, it would maximize total social
welfare to eliminate the whole insurance market. The market equilibrium involves too
much insurance.

Another interesting finding is that full insurance pooling allocation never
maximizes the aggregate social welfare. Although the high-risks enjoy higher
reservation utility in the allocation, there is no efficiency gain at all for the whole

society, and there is only redistribution effect which is always negative.
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Chapter 4 Partial-pooling Nash equilibrium and participation option
4.1 Introduction

Since Rothschild and Stiglitz (1976) found that a pooling Nash equilibrium can not
exist in competitive insurance markets, explaining how pooling can arise has become
a notoriously difficult task in insurance studies. Wilson (1977) adopts “anticipatory
equilibrium”, a different equilibrium concept from Nash equilibrium, and finds a
pooling equilibrium in the same setup as Rothschild and Stiglitz. However, his
assumption on the strategic behaviour of insurers is inconsistent with the assumption
of competitive insurance markets. Wambach (2000) extends the Rothschild-Stiglitz
model by introducing unobservable wealth in addition to the differing risks, which,
under the assumption of constant relative risk aversion, in effect changes agents’ risk
preferences. Wambach shows that for large wealth differences, partial risk pooling
contracts, in which one type chooses different contracts in equilibrium, are feasible.
Furthermore, complete risk pooling contracts can also occur.

Smart (2000) explicitly introduces different risk preference into the Rothschild-
Stiglitz model. With the double crossing property of indifference curves, he finds that
different risk types can be pooled in Nash equilibrium if differences in risk aversion
are sufficiently large. Similar to his work, de Meza (2002) also finds the partial-
pooling Nash equilibrium. Their works lay the foundation on equilibrium analysis for
the present essay.

In contrast to the works above, de Meza and Webb (2001) find partial-pooling Nash
equilibrium assuming heterogeneous risk preferences and hidden action. More risk-
averse agents choose higher precautionary effort which leads to different risk
probabilities. Risk-tolerant agents are drawn into a pooling equilibrium by the low
premiums created by the presence of safer, more risk-averse types. Their welfare
analysis shows that taxing insurance drives out the reckless agents, allowing a strict
Pareto gain, however administrative costs are necessary for this result.

This present essay introduces participation option and differing risk preferences
into the Rothschild-Stiglitz model. Agents not only differ in risk preferences and risk
probabilities, they also have choices on whether to take the risk activity and whether
to buy insurance in competitive insurance markets where insurers offer single

contracts with endogenous contract form.
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Because of differing risk preferences, the same financial loss resulted from the
risky activity results in different changes in the utilities of agents. This together with
the reservation utility from the participation option, and the driving benefit from the
risky activity, gives rise to four different separating equilibria, partial-pooling
equilibrium, and sometimes no equilibrium at all in the market.

At the partial-pooling equilibrium, the timid high-risks do not drive to avoid the
possible financial loss resulted from the accident which is more likely to happen to
them and receive the reservation utility, the bold high-risks are attracted into driving
and buying insurance because of the low insurance premium resulted from the
presence of the timid low-risks, and the timid low-risks, as the bold high-risks, choose
to drive and buy insurance.

The essay demonstrates that the partial-pooling Nash equilibrium is Pareto efficient
under certain conditions. But if it is inefficient, a tax and subsidy scheme which taxes
insurance and uses the proceeds to subsidize the whole population may achieve Pareto
improvement: taxing insurance makes it more expensive and hence less attractive to
the bold high-risks who would now opt to stop driving and receive the reservation
utility which is now higher because of the subsidy. So taxing insurance drives the
bold high-risks out of the insurance contract. This will in turn lower the insurance
premium for the timid low-risks who will continue driving and buying insurance. The
timid high-risks will become better off as well because of the raised reservation utility.
Therefore, a Pareto improvement is achieved.

This result complements the case for taxing insurance by extending it to pooling
equilibrium where the efficiency problem is the wrong composition of extents.

The essay is organized as follows. Section 4.2 specifies the model. Section 4.3
finds the partial-pooling Nash equilibrium as well as the four separating equilibria. It
also finds conditions of the partial-pooling equilibrium. Section 4.4 analyzes the
efficiency of the partial-pooling equilibrium and demonstrates that it is Pareto
efficient under certain conditions. Section 4.5 shows that inefficient partial-pooling

equilibrium exists and taxing insurance leads to Pareto gain.

4.2 The model

There are many insurance companies in the market. Agents are identical except for

accident probability and risk aversion, which are unobservable. Accident probability
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; and risk aversion 6, each take on one of two values in the population,

ij e {L,H}x{B,T}, with 0< 7, <7, <1 and 6, < 6, . The coefficient of absolute risk

aversion is defined as 6, = ——%, j=B,T , where u represents utility function and u,
u'
J

always has greater degree of risk aversion than u, . Furthermore, we assume 6, =0,
so uy is a linear utility function to simplify the analysis without losing any general

implications. Everyone has an initial wealth .

So there are four types of agents in the insurance market: N,, agents with low
accident probability and low risk aversion L, (the bold low-risks); N,, agents with
low accident probability and high risk aversion L, (the timid low-risks); N, agents
with high accident probability and low risk aversion H, (the bold high-risks); N,
agents with high accident probability and high risk aversion H, (the timid high-risks).

The market equilibrium is the outcome of a two-stage game. In the first stage, each
insurance company offers a single insurance policy a = {I , p} , which specifies
insurance indemnity 7 and premium p . Agents then choose whether to drive and, if
drive, whether to purchase insurance. If they do not drive, they receive a reservation
utility u; (W) , J =B,T .If they drive, they enjoy a utility benefit B from driving but

may incur a pecuniary loss D with probability z,, i=L,H .

4.2.1 Insurance demand

The bold low-risks L, receive the reservation utility u, (/) if they choose not to
drive. If they drive without insurance, they receive
U, = B+7zu,(W—D)+(1-7, Ju,(W). Since u, is assumed to be linear, U,, can be
simplified as U, = B+u,(W — z,D). If they drive with insurance, they receive
Uy =B+xuy(W—D— p+1I)+(1-7, Ju,(W - p), which can be simplified as
U, = B+uy,(W —z,D+ I - p). Hence if the bold low-risks drive, they will buy
insurance policy if p < z,1 . But this policy will not be offered since it surely results
in loss to insurers. The best premium they can get is the fair premium p =7,/ , at

which they are indifferent between buying and not buying insurance.

70



For the timid low-risks L, , they receive a reservation utility U, = u, (W) if they
choose not to drive. If they drive without insurance, they receive
U,, = B+m,u,(W-D)+(1- 7z, )Ju,(W). If they drive with insurance, they receive
U, =B+zu.(W-D-p+1)+(1-z, Ju, (W - p). If they drive with full insurance
coverage at a fair premium, i.e., / =D and p =z, D, they will receive
U,r = B+uT(W—7t,_D).

For the bold high-risks H, , their reservation utility is u, () if they do not drive.
They receive U, = B+ zu,(W — D)+ (1- 7, u,(W), ie., Uy, = B+u,(W — z,,D),
if they drive without insurance. If they drive with insurance, they receive
Uy =B+a,u,(W-D—p+1)+(1-7,u,(W-p),ie.,

U,z = B+uy(W -z, D+x,I - p). Therefore, when they drive, they will buy
insurance if 7,/ — p>0 and will be indifferent if 7,/ —p=0.

For the timid high-risks H, their reservation utility is «, (/) if they don’t drive. If
they drive without insurance, it is U, = B+ 7,u, (W — D)+ (1- 7, Ju, (W), and it is
U,z = B+m,u,(W—D- p+1)+(1-7, Ju (W - p) if they drive with insurance.
Hence they would choose to drive with insurance if
B+m,u,(W-D—-p+I)+(1-n, u;(W — p)>u,(W). If offered full insurance
coverage at fair premium, i.e., / =D and p = 7, D, their utility is

U, = B+u,(W-z,D).

4.2.2 Participation option and reservation utility

With different levels of reservation utility, agents may choose to drive or not to
drive. This paper makes further assumptions of reservation utility as follows.

Uy =B+u,(W—z,D)<u,(W)<U,, = B+u,(W-z,D)

Uyr = B+u,(W-z,D)<u,(W)< U, = B+u, (W -z,D)

where u,, () is the reservation utility of the bold and u, () is the reservation
utility of the timid. The bold high-risks H, will stop driving if offered insurance
coverage at their fair premium, but they will drive with insurance if
B+uy(W —n,D+ 7, I - p)>ug(W). The bold low-risks L, will definitely choose to

drive. As we have seen in Section 1.1, the bold low-risks are indifferent between
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buying and not buying fair insurance when they drive. Since insurance is never better
than fair for the low risks, the L, have no impact on the equilibrium. So we drop out
the bold low-risks in the rest of the analysis.

It is straightforward that the timid high-risks H, will not drive but it is ambiguous
whether the timid low-risks L, will drive. The following equilibrium analysis gives

answer for that.

4.3 Market equilibrium
4.3.1 Full pooling allocation can never be a Nash equilibrium

One possible equilibrium is the full pooling allocation: the timid high-risks, the
bold high-risks and the timid low-risks are all offered the same insurance contract and
hence are pooled into a full pooling allocation. But can it constitute a Nash

equilibrium?

The slopes of the indifference curves of the timids are —(i_—”'—)-u:’—mi)— ,i=LH,
Z; Ur (Wz )

where W, represents the wealth in good state where there is no accident and W, the

wealth in bad state where there is an accident, W, <W and W, 2W — D . Clearly, the
timid low-risks L, have steeper slope of indifference curve than the timid high-risks
H, at any wealth allocation, so their indifference curves cross only once. Therefore,

for any contract that pools both the types, insurers can always find a deviation
offering cheaper premium with more deductible, which is attractive to the timid low-

risks L, but not to the timid high-risks H, . So a full pooling allocation can never

constitute a Nash equilibrium.

4.3.2 Separating equilibrium

Another possibility is separating equilibrium: each type of agents is offered a
insurance contract different from one another. The following analysis shows there
may be four different separating equilibria.

In the models where agents only differ in risk probabilities, indifference curves of
different agent types cross only once. However, with differing risk preferences, the
difference curves may cross twice. This gives rises to the existence of partial-pooling

equilibrium.
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Technically, the slopes of the indifference curves of the bolds are —MM ,
T Up (n/z )
(1 —7; )

ie., ———* i=L, H, since their utility function is assumed linear. It is
”i
straightforward that the slope of the indifference curve of the bold low-risks L, is

(-m) (=) ue%)
7L 7L “’T(Wz)’

always steeper than that of the timid low-risks L., i.e., —

VW, 2W,, W <W and W, 2W — D . However, it is ambiguous whether or not the
slope of the indifference curve of the bold high-risks H, is steeper than that of the

timid low-risks L. With different wealth allocation {¥, W,} in the region that

W,2W,, W,<W and W, 2W -D, —MM might be greater or less than
7, u ()
_(i-7,)

Ty

, dependent on the wealth allocation and the degree of risk aversion of the

timid low-risks L, . 1f - 0=7) 5 _(=7,) (%)

) Y W, 2 W,, W, <W and
Ty 73 “T(Wz)

W, 2W — D, the indifference curves of the timid low-risks L, and the bold high-risks
(=) (=) (%)
Ty RAA)

{w,,w,} in the region that W, >W,, W, <W and W, >W - D, they will cross twice.

po lm) | m) o ), 4 )
Ty T ur(Wz) de “T(Wz)

H cross only once. If for some wealth allocations

< 0, one can always find a 8

that is large enough to make — (1 —7u ) <- (1 — ”L) u:’ (W‘) for a given wealth
Ty T, Uur (Wz)

allocation {W,,W,}.

Differing risk preferences also affects equilibrium from another aspect. With
different degrees of risk aversion, the utility functions of the bolds and the timids give
different scales of utility. Hence the same wealth change may result in different
changes in utility. This together with a fixed utility benefit B of driving may have
very different effects on the bolds and the timids. As a result, the indifference curve of

reservation utility of the H, may lie above (like '), cross (like /"), or below (like

I™) that of the H,. (I},), as figure 4.1 illustrates.

73



o
S|V

Figure 4.1

4.3.2.1 Separating equilibrium — type 1

Accordingly, there can be four types of separating equilibrium as section 4.3.2.1 —
section 4.3.2.4 show. When the indifference curve of reservation utility of the H, lies
below that of the H,, the reservation utility of the bold high-risks constitutes the
binding constraint for the insurance coverage offered to the timid low-risks. The
equilibrium allocation is therefore the allocation that maximizes the utility of the
timid low-risks whilst keeps the bold high-risks indifferent. When the indifference
curves of the bold high-risks and the timid low-risks cross only once, the optimal
allocation involves no insurance for the bold high-risk, partial insurance coverage for
the timid low-risks and zero profit for the insurers.

In the competitive market, insurers offer contracts that maximise the utility of the
timid low-risks subject to the bold high-risks are indifferent between buying the
insurance and receiving the reservation utility. Consider the following maximization

problem

Js{zx UII.T =B+”L“T(W_D_P1 +Il)+(1_”L)“T(W_P1)

st. p=n.1,
B+zyu,(W—-D—-p, +1)+(l-z, uy(W - p,) = u, (W) ie.
B+uB(W—rrHD+(7rH —JZL)I])= uB(W)

Set \),p, } as the solution to the problem.
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If the indifference curve of the timid low-riks only cross once that of the bold high-

risks, .o ~U=7n)  _(127) “'T(W‘pf) __ and the bold high-risks are
Ty T, uT(W—D—p1+ID

indifferent between buying the insurance contract and receiving the reservation utility,
i.e. B+, (W —D—p; +I7 )+ (1=, ur (W = p; )< u, (W), {I, p;} constitutes a
separating equilibrium, which we call type 1 separating equilibrium. In this
equilibrium, both the H, and the H, will stop driving, and the L, will drive with

partial insurance coverage at their fair premium. Figure 4.2 illustrates the equilibrium.

WZ/\
Z‘
1 11’-;7‘
Ly
Iir
E
0 ,

Figure 4.2

4.3.2.2 Separating equilibrium — type 2

As the timid low-risks become more risk averse, their indifference curves become
more curved and may double cross the indifference curves of the bold high-risks.
Technically, as the degree of risk aversion of the L, increases,

_(l_”L) u;(W_Pl.)
7, u'T(W—D—p,' +I,')

increases: they are willing to give up more wealth in

exchange for a given wealth increase in the bad state. After a critical value, we will

(1_”H)<_(1_”L) u;'(W_pl‘)
Ty 7, w,W-D-p/+I

have — ) There then exists profitable deviation

from a type 1 equilibrium a type 2 separating equilibrium in which high risks do not
drive and low risks drive with partial coverage. At the type 2 separating equilibrium,

insurers offer contract Z, rather than the type 1 separating contract Z; , as it is
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preferred by the timid low-risks. Also, insurers make more than normal profits from
Z, , as it is below the fair offer curve of the timid low-risks. The equilibrium can be
defined as the outcome of the following maximization problem.

J}{c:;x UIZ,T =B+”L”T(W_D—P2 +12)+(1_”L)”T(W—P2)

s.t. —(1—””)=_(1"”L) uy (W - p,)

Ty n, u(W-D-p,+1I,)
B+ myuy(W —D—p,+ 1)+ (1- 7 Juy (W — p,) = u, (W) ie.
B+uy(W =7y D+ 7yl, = p;) =5 (W)
Set {12' , D> } as the solution to the problem.

If the bold high-risks are indifferent between buying the insurance contract and

receiving the reservation utility, i.e.

B +7zHu,(W—D—p; +1, )+ (1 —ﬂH)uT(W—p;)S u, (W), {I;,p;} constitutes what we
delegate type 2 separating equilibrium. In this equilibrium, the L, receive a utility of
Ui, =B+ ﬂLuT(W—D -pi+ Iz')+ (1-n, )uT(W —p;). The L, would pay more than
their actuarially fair premium to get more insurance coverage.?® Figure 4.3 illustrates

this equilibrium.

Wan
\ Zz Zl.
N IR
\\\‘ Ié-,T
- ]LT
< ILT
E II'R}B
0 7,

Figure 4.3

28 One odd feature of this knife-edge equilibrium is the positive profit for insurers, which contradicts the perfect
competition assumption. de Meza and Webb (2001) offer a way to smooth this odd feature by adding in “trivial
costs” — low heterogeneous costs such as the cost of filling in application forms. Such a modification will remove
this odd feature. Since the modification will make the technical analysis very complicated and will not
fundamentally change the current analysis, the present research does not add in the “trivial cost”.
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4.3.2.3 Separating equilibrium — type 3

When the indifference curve of reservation utility of the H,, I}, lies below that
ofthe Hy, I}, ie. B+7z',,u,(W—D—pl’ +I,‘)+ (l—ﬂH)uT(W—p;)Z uy (W), we have

a case as figure 4.4 illustrates.

Wan
Z;
I
Iy
Iy
E
0 W,

Figure 4.4
In this case, the reservation utility of the timid high-risks constitutes the binding
constraint for the insurance offered to the timid low-risks. At the equilibrium
allocation, the timid and bold high-risks do not have insurance and the timid low-risks
are partially insured. Thus, the double-crossing property does not matter in this case,

(1_”H)>_(1_”L) u'T(W—pf) — ., the equilibrium,
Ty z, u(W-D-p+1I,

i.e. no matter whether —

which we delegate as type 3 separating equilibrium, is solely determined by the

reservation utility of the H, and the offer curve of the L,, which can be summarized

as the following maximization problem.

%‘:sx Uir = B"'”L“T(W—D"'Pz +13)+(1‘”L)"T(W_p3)

st. py=m,1,

B+”H”T(W_D_P3 +13)+(1_”H)HT(W_p3)=uT(W)
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4.3.2.4 Separating equilibrium — type 4

When the indifference curve of the reservation utility of the bold high-risks I},
crosses that of the timid high risks 7, and double-crosses the indifference curve of
the timid low-risks I, as illustrated in figure 4.5, i.e.

By~ D i (- ey O — 7)<, )

< B+ (W =D pi+ 3+ (1=, u, (7 - p3)

(1_”11) (l_”L) uIT(W"p:)

- <—‘ * * 1
T, z, uW-D-pf+1)
Won
X z
AP\ Ze e
N ‘\ Z]
~ \\ R
N ‘\\ [LT IHT
\\\\t ISB
E
0 W,
Figure 4.5

We will have a case as figure 4.5 illustrates. The reservation utilities of the bold
high-risks and the timid high-risks both constitute binding constraints for the
insurance offered to the timid low-risks. The equilibrium contract needs to maximize
the utility of the timid low-risks whilst keep both the bold and the timid high-risks

indifferent. Hence it can be found by solving the following maximization problem:

Max UZT :B'*'”Lur(W—D_p«z +I4)+(1_”L)“T(W‘P4)

L.ps
st. B+zu,(W-D—p,+1,)+(1~7, u;(W - p,) = u, (W)
B+muy(W-D-p,+1)+(1~7, u,(W-p,)=u,(W) i.e.
B+u,(W-n,D+x,1,~p,)=u,(W)
When EP, the pooling offer curve of the H, and the L,, lies below Z;, and EP,,

the pooling offer curve of the H, and the L, lies below I, the indifference curve
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of the L, that passes through Z,, Z; constitutes a separating equilibrium, which we
call as type 4 separating equilibrium. Since the position of Z, is independent of N,
and N,;, the number of the H, and H,, we can always find a N, and a N, that

is large enough to make EP lie below Z; and EP, lie below I};.

In the following sections, we focus our analysis on the case that

_(1—”H)<_(1_”L) u}(W—p,') ,
Ty 7, u(W-D-p;+I)

B"'”H“T(W ~D-p; +I;)+ (1_”H)“T(W‘P;)< uT(W)
Figure 4.6 illustrates such a typical case.

N
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0 W,

Figure 4.6

4.3.3 Partial-pooling equilibrium

Consider the case that the indifference curve of the reservation utility of the bold
high-risks I}, lies below that of the timid high-risks 5. and double-crosses the
indifference curve of the timid low-risks, as Figure 4.7 illustrates. If the pooling offer
line EP lies above Z, , the tangent point of the indifference curves of the bold high-

risks I}, and the timid low risks, insurers in the competitive market will offer

insurance contracts along EP which make both the bold high-risks and the timid low-
risks better off. Competition will push up the insurance coverage until the timid low-

risks are indifferent between buying and not buying the insurance contract. The
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reservation utility of the bold low-risks constitutes the binding constraint for the
partial-pooling insurance offered to both the timid low-risks and the bold high-risks.

At the partial-pooling equilibrium, the timid high-risks opt out of the risky activity,
the timid low-risks and the bold high-risks drive and buy the insurance contract Z,
which in effect cross-subsidizes the bold high-risks from the timid low-risks. The
timid low-risks pay greater than fair premium but get more insurance coverage than
Z, in the type 2 separating equilibrium.

The partial-pooling equilibrium can be defined as the following maximization
problem.

j}lax Ufr =B+”Lur(W_D_PP +IP)+(1_”L)"T(W_PP)

p:Pp

st pp= ( Nyr 7+ N ﬂHJIP
NLT + NHB NLT + NHB

B'*‘”H”T(W_D_PP +IP)+(1‘”H)“T(W—PP)=uT(W)

wp
P
Z;

Ly

z; Iy

P

HB
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E HB

0 ,
Figure 4.7

Set {I,',, p,‘,} as the solution to the problem. Then, the L, receive a utility of
UL, = B+mu,(W - D- p, + I )+ (1- 7, Ju, (W — p;) in the partial-pooling
equilibrium. The H, receive from the partial-pooling contract a utility of

Ul, =B+ xHuB(W -D-p,+ I;)+ (1 —zH)uB(W - p;,), which can be simplified as
Ujs =B+u, (W ~zyD+7,1, - p; ) It is straightforward that I, the indifference

curve of the H, passing through the partial-pooling allocation Z;, must lie above

I%, , their indifferent curve of reservation utility. That is,
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Ul =B+uB(W—7rHD+n'HI,',—p;,)> uy(W). So the H, will drive and buy the

insurance as well. Figure 4.7 illustrates the equilibrium.

4.3.4 Conditions of partial-pooling equilibrium
4.3.4.1 Two partial-pooling contracts

There are some conditions for a partial-pooling allocation to be a Nash equilibrium.
First, as Figure 4.8 illustrates, EP,, the pooling offer curve of the L, and the H,,

must lie below the indifference curve I}, of the L, that passes through Z;, the
partial-pooling contract. Otherwise, a deviating contract such as C will break the
partial-pooling equilibrium. As the proportion of the H, is independent of the
position of the indifference curve I;,., we can always find a N, that is large enough

to make EP, lie below I};.

Wop
P> ¢
\\\ Z;
\“\ IR
N ILPT H
\ I 1};3
E
0 ,
Figure 4.8
Technically, the partial pooling contract of the H, and the L, can be found by the
maximization problem
]}{‘:sx Upr = B+ (W—D- p; +Is)+(1_”L)"T(W_P5)

s.t. psz[ Nys 7T+ Nor nHJIS
N +Ny, N+ Ny

Set {I o p;} as the solution to the problem. Then, the L, receive a utility of

U;; =B+rmu, (W -D-ps+1I; )+ (1 -, )uT(W - p;) in this allocation. The partial-
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pooling allocation of the H, and the L, must dominate this allocation for it to be a

Nash equilibrium. Thus, we must have
UL = B+”L“T(W"’D_P; +1;)+(1‘”L)"T(W_P;)Z

.. ] 4.1
UZT = B+7r,‘uT(W—D—p5 + 1 )+(1—7rL)uT(W—p5

NLT ”L+ NHT
NLT+NHT NLT+NHT

ﬂ'HJIS increases in N,

Ui =B+mu,(W—-D-p,+1,)+(1-7, Ju, (W - p,) decreases in p, and
Ul = B+7zLuT(W ~-D-p; +I,',)+ (l—rrL)uT(W——p;) is independent of N, there

exists a N, large enough to make (4.1) hold.

4.3.4.2 Partial-pooling equilibrium and separating equilibrium

The L, must receive greater utility from the partial-pooling allocation than from

the separating allocation Z, for the partial-pooling allocation to be a Nash

equilibrium.
LETN
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Ly

I
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0 ,
Figure 4.9

As figure 4.9 illustrates, if EP', the pooling offer curve of the L, and the H,
intercepts the indifference curve I, of the H, at a point that is below the

indifference I7, ofthe L, that passes through the separating contract Z; , the
separating equilibrium will dominate the partial pooling equilibrium. That is, we must

have
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UL, =B+mu,(W-D-pj+ 1)+ (-7, ), (W - p}) 2 “2)
Uzr=B+”L“T(W"D"P;+I;)+(1_”L)"T(W_P;) '
As the position of 17, is independent of N, , the number of the bold high-risks
H, there exists a N, that is small enough to make the pooling offer curve intercept
the I ata point that is above the I7,.. That is,

Ul = B+7rLuT(W -D-p;+1, )+ (-, )uT(W—p;) is independent of N, , while

p =( Nir T+ N Ty JI increases in N, and
NLT + NHB NLT + NHB
UL, =B+ mu, (W - D—ph+ I, )+(1— 7, Ju, (W — p}) decreases in N, , so there

exists a N, small enough to make (4.2) hold.

4.3.4.3 No deviation

Furthermore, at the partial-pooling contract Z,, the slope of the indifference curve
I}, ofthe L, must be flatter than that of the H, to deter potential deviation. That is,

we must have

emy) Qo) u'r(W—P‘é) : (4.3)
T, z, u\W-D-p+1;)

As _(-m,) , uT(W—pf) —, the slope of I}, at Z;, increases in @, there
49 uT(W_D_pP+IP

exists a & large enough to make (4.3) hold.

4.4 Market efficiency

The partial-pooling equilibrium can be Pareto-efficient under certain conditions.
One way to check whether it is Pareto-efficient is to check whether government can
use a tax-subsidy scheme to achieve Pareto improvement.

Suppose the government has initiated a balanced budget taxation which taxes
insurance policies and uses the proceeds to subsidise the whole population. Motorists
have to pay a lump sum tax ¢ for the insurance policy they buy. Every one receives a

lump sum subsidy s .
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4.4.1 From partial-pooling equilibrium to partial-pooling equilibrium
We first consider the case that the tax and subsidy scheme does not break the

partial-pooling equilibrium, hence we have s = ¢t and the net payout

ofmotorists is then ¢- § = ————-——--- — 1.
NIT+ NFB+NH

As non-motorists pay no tax and receive subsidy, their reservation utility surely
increases with the amount oftax and subsidy. Tax increases the cost of insurance and
shifts down the pooling offer curve along the 45 degree line. However, as the non-
motorists’ reservation utility increases, the insurance coverage the motorists can buy
increases as well. Thus, with increased premium and increased indemnity, it is
ambiguous whether or not the motorists will be better off under the tax and subsidy
scheme.

Figure 4.10 illustrates a possibility of Pareto improvement from the laissez faire

partial-pooling equilibrium Z'P to the new partial-pooling equilibrium Z P under the

policy intervention. The subsidy increases the reservation utility ofnon-motorists and
hence relaxes the restriction on the insurance coverage that motorists are allowed to
purchase, while the tax increases the cost of insurance and hence shifts down the offer
curve. The following argument shows, under certain conditions, it is impossible for

the motorists to receive greater utility from the new partial-pooling contract.

Figure 4.10
The partial-pooling equilibrium is the solution to the following maximization

problem
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Max U, =B+ zu,(W—D—p,+1,)+ (-, Ju,(W - p,)

Ip.pp

s.t. pp =( Nir 7+ N Ty JIP
NLT + NHB NLT + NHB

B+ ”HuT(W—D ~Pp +IP)+ (1_”H)"‘T(W _PP) = uT(W)
which is equivalent to the following problem

MaxUl, = B+u,(W -z,D+n,1,-p,)

Ip.pp

s.t. pp =( Nir 7T+ N ﬂHJI,,
NLT +NHB NLT +NHB

B+7[HuT(W_D_pP +IP)+(1_”H)Z‘T(W_PP)= uT(W)

After the tax and subsidy scheme implemented, the maximization problem becomes

N
MaxUT =B+u |W—-n,D+xn, 1. - pf - Hr t
];g;x HB ux( H Hlp —Pp N, + N+ Ny,
s.t. pf.:( Nyr mL+ N ﬂH]I,f 4.4)
Ny +Nyg Nir+ Ny
N N
B+mu|W-D-pl+1% - HT t|+(1-7 w—pt - HL t
’”( Prtie NL,+N,,,,+N,,,J (=2 Jur| W =} N, +N,+N,,
=u | W+ Nir+ Ny t
Ny +Ny+Nyp
Substitute (4.4) into the problem and we get
Max U} =B+u, W—zr,,D+L(zzH—nL)1;— Nor t
It N+ Ny N +Ny+ Ny
s.t.
B+rzHuT{W—D+(A—(I—QHA(I—EH)]I,{ - N t]
Nir+ Ny Nyr+ Ny Nip+ Ny +Nyp

+(1—7rH)uT(W—-[ Ne , ) 7[,,}1,{— Ner t]

Lt HE
N+ Ny N+ Ny

culwe—Nu+Nw
T N, +Ny+ N,y

For brevity, set

A= Ny

,l_ll_ NHB
NLT+NHB

NLT+NHB
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Nyr 1__,12= NLT+NHB
N, +N,+N,’ N, +Ng+N,,

A=
Wy =W = 2yD+A(my — 7, )7 - At

W =W — (A, + (1= 2y I = Aot

Wy =W -D+(A(1-7,)+(1= A X1-7, I} - Aot
Wy =W +(1-4)

The problem can then be rewritten as

)

s.t. B+7[H“T(W,2T)+ (1'”H)”r(WlT)= uT(WRT)
The Lagrangian is then
L=B+ uB(WPT)+ ﬂ(”r(WRT)_ B _”HuT(WzT)— (1 _ﬂH)uT(VVIT))

The Kuhn-Tucker condition for an interior solution gives

6—L<0,1,Zzo,and I;a—l;
ar’

< =0
oI

N : L
For an interior solution I} >0, we have _6_T =0
P

o =l =)
+ﬂ((l—7rﬂ)u;'(n/1TXA1ﬂ-L +(1_’?‘l)”H)—”Hu;‘(szTXAI(l_”L)'l—(l_j'lxl—ﬂﬂ))): 0
Solving it for S gives
B = “;(Wiz)'{l(”ﬁ_”l.) >0
”Hu'r(Wszﬂl(l_”L)"'(l—llxl_”H))_(I_EH)‘;(MTXA”L +(1_Z1)”H) ’

VYW >w] 4.5)

Differentiate the Lagrangian w.r.t. ¢ gives
& a0 )+ B T 1= 2t 7 O Yo+ (- B 46)

Substitute (4.5) into (4.6) gives

“;(W:%(”H _”L)(u;(WRTXI_A'z)"'”Hu;'(WzT)'lz +(1_”H )“'T(WlT)'lz)
”H“'T(W2TX21(1_”L)'*’(l—AIXI_”H))_(I_”H)“'T(WTTXA]”L +(1_’1|)”H)

2 a7+

or

L __ w7 Ya 0= A Yoy =, s ] )~ Ao, (= Yo 7)o @) 4 9y
ot ”Hu;'(u/zTX’ll(l_”L)'i'(l_j'lxl_”ﬂ))_(l_”H)";(VVITXA‘I”L+(1_’11)”H)

86



Clearly, the sign of (4.7) is dependent on the sign of (4.8)

/11(1_12)(”11 _”L)”'T(WRT)_ AZ”H(I_”H )(u'r(WzT)_”'T(WlT» (4.8)
ie., 2L 50 if (4.9) holds

o

”'T(WRT) Ay (-7y) 4.9
7 (7 Wl 73 MY (WP ey @)

When =0, we have

W =W =, +(1- 2y )7

Wy =W -D+(41-z,)+01-A4)1-7,))I7
We=W

Since W, >W —D, W, <W , we have

) . uw()
u, )~ ur W)~ uy (W) —u,# - D)

Uy (W) }“Z”IH(I_HH)
It holds for a large enough A, that — L < .
’ uT(W)_uT(W_D) ll(l_]'ZX”H _”L)

Therefore, there always exists a A4, large enough to make (4.10) hold and hence it is

impossible for the tax and subsidy scheme to achieve a Pareto-improving partial-
pooling equilibrium.

u’T(WRT) AQ”H(I_”H) 4.10
o 20 e 20 Y (W ey @19

In fact, section 4.3.4.3 gives —(1—””) < (I_EL) - u}(W—pE,) —, ie.,
Ty 7, uT(W—D—p,,+I,,)

- _ (o0 L
d ”:H) > ( I:L) z; Egﬁzog, from which we have u; (Wzo)_ ul, (Wlo)> (”H(l _72'7,;314); (LWl ) '

So
A= 2 Yy =7 oy (2 ) A (1=, Yoy 072 - (7)) <
A=~ Y 0 -2y P () <

L

N 1 ) A AN T B

L

(&(1—@)—@%”—}(@—@»;(W:) <

L
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(b= 2)= 2 Xy =7, (77)
Clearly, when 4, > 0.5, (4,(1-4,)— 4, Xy — 7, )i, (W) < 0. So when 4, > 0.5,
i.e., when the H, are more than half of the population,
A=A )z, -7, )u}(W,f )— L, (1-7, Xu’T (Wz")— uj, (W,o )) <0 and there is no Pareto-

improving partial-pooling allocation.

4.4.2 From partial-pooling equilibrium to separating equlibrium

There is another possibility. It could be that the L, and the H, get worse off when
the tax is imposed. As the tax increases, the pooling offer curve shifts further down. It
eventually lies below the indifference curve of the L, that passes through the
subsidized separating contract. Therefore, the pooling equilibrium will be dominated
by the separating equilibrium. As the indifference curves of reservation utility of the
H, and the H, after subsidy moves to different positions, there might be four
different separating equilibria that lead to Pareto improvement.

When the H, stop driving, only the L, drive and buy the insurance, so the subsidy

s isnow s = Nyr ¢t and the net payout of motorists is then
N,y + Ny + Ny
t-s= Nip + N t.Set A, = Nyr ,% then
Ny +Ny+ Ny N+ Ny + Ny
1= 4, = Ny +Nyr ,50 s=A2, t-s=(1-2,) %
Ny +Nyp+ Ny,

4.4.2.1 From partial-pooling to type 1 separating equilibrium

Let’s first consider the case where the indifference curve of the H, goes up at the
same pace as or faster than that of the H,. When the reservation utility of the H,

after subsidy reaches the same level as in the partial-pooling equilibrium before the

taxation, the high-risks are no worse-off. It could be that the L, are better off. Figure

2 Again, from the definitions of 4 and 4, we have Ny =

Nir "1_(“ 1

(-4)(-4)
BN

Nyp and NLT%NHT , which give

A= = accordingly.
N AN, N = 7
4" Npr+Npp+Nyr gy
N N N N, ptN
30 Recall that we have set 4 IT__ -4 HE | 4, HT , 1= LT HB
Nir+Nyp Npr+Nyg Npp+Ngp+Ngr Npr+Nyp+Nyr
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4.11 illustrates such a case where the indifference curve ofthe LT passing through the
subsidized separating contract Z T crosses the indifference curve U8B twice. The tax
and subsidy scheme breaks the laissez faire partial-pooling equilibrium Zp into type 1

separating equilibrium Z\ . The LT and the H T are better offand the H B are no

worse off. Insurers earn normal profit.

HT

HT
LT

RT
HB

Figure 4.11
The possibility can be formalized as the following maximization problem

hBMaxU"TZB +xwT(w-D-pl

s.t. pi = nll)

B +uB(w - KhD+ (mH - xJir-(1-/1, V)
Pp— +(1— )xn)IP

B+nH/T(W -D -p P+IP)+ {\-x Hul{ W -pp) =uT{W)

Up — B+ UB (jV — JjrHD + TlpIp— (

uliW+Xit)>B +7HuT{w-D -pl+/r

Set {/r* p Y} as the solution to the above problem. If
(&) BT A/ 4 7—  the equilibrium is then a
/r,, u'{W-D-Pr+ir-(1-"4y»

separating equilibrium in which both the high risks do not drive while the L7 drive,

buy insurance at their fair premium and pay the tax. If
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v =B +KLut{w i +/ f -(1 m-A4» + (1- K - (1= » >
U[T=B+Hul(W-D - pp+Ip)+(\-;rul(W- pp)

then there is a Pareto improvement.

4.4.2.2 From partial-pooling to type 2 separating equilibrium

Figure 4.12 illustrates another case. The tax and subsidy scheme breaks the laissez
faire partial-pooling equilibrium Zb into type 2 separating equilibrium Z\| where the
indifference curve ofthe L7 passing through the subsidized separating contract Z\ is

tangent to the indifference curve UFB i.e.

(1-0 (I-*1) <(h-ATL-(L-A Ly .The LT and the HT are better
71, nL u\{W~D-p]'+1]'-(\-h)t)

off and the H B are no worse off. Insurers earn above normal profit.

RT
HT

LT

RT
HB

Figure 4.12
The possibility can be defined as the following maximization problem
I Max U%= B+ nluTw -D -p\+/[-(1A- »+ (-
-ft
st ft-**)  ft-**) »i;(y-/g-(i-4.,»
" % UTTW -D -pT+i;-{l-Xjt)
B+ub(w-z, D+ n Hpi-(1eX)= (W+Ij)
Pp= (M Lu(1— A
B + nHT®+/,)+ (1-x Hul{fW-pp)=
u( ~ B ~ XffD+7THIp
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uT{W+Xt) >B +!Thur{w -D -p | +/2-(1-/14>)+ (1-"fO»r(»,-j92-(1 -A4>)
Again, if

o’ =B+xluTfw-D-pl' +IT-{I-AAt)+{\-nDul{w-pl'-(I-X,)t)>
uLr B nmluT (W - D -pp Ip ) +i - JL

then there is a Pareto improvement.

4.4.2.3 From partial-pooling to type 3 separating equilibrium

When the indifference curve ofthe H 7 goes up slower than that ofthe H B, the
partial-pooling equilibrium may break into type 3 or type 4 separating equilibrium.
Figure 4.13 illustrates a case where the laissez faire partial-pooling equilibrium Zp

breaks into type 3 separating equilibrium Z3 .

LT

mT
HB

HB

Figure 4.13

The possibility can be defined as the following maximization problem

MaxUZ =B +xlul(fT-D-pl+/[-(1-/14» + (1 - (1 - i 4>
h -
s.t. pi=rtj]
B+ n,uT W -D-pl+Ill-(\-At)t)+(I-xH1-4 ,>) = +V )
+x,, u (W -D-p P /)+(1 JuT(W-=

uB(W+7tt)>B +uB(W-7vrHD +x Hlp-p p)

uT(W+Aj)<B TrEuT(w-D -pl +J1-N- ) 1)+ (i-rHy M -p [ -"-") )
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Ifu% =B+TIUT(W -D -pi'+ /[« -(1-A 4» + (1- R (W- (1- 14»>
UPr' =B +7uT(W -D -pp+Ip) + (\-x DuT(}V- pp)

there is then a Pareto improvement.

4.4.2.4 From partial-pooling to type 4 separating equilibrium

The tax and subsidy scheme may also lead to type 4 separating equilibrium. Figure
4.14 illustrates such a case where the laissez faire partial-pooling equilibrium Zp

breaks to type 4 separating equilibrium Z4.

Figure 4.14
The possibility can be defined as the following maximization problem

MaxU"=B +KluTfw-D -pl+/|-(1_"»+ (1-2)Wr(fF-p[-(1-A 4»

U >P*
St.
B+xHiBw~D- pT+II xHus(fV- pi -(]- At)l) =u,, AV +Ztt)
ie., B + uBw -JmhD+>r,/4 -pl- (1- H0= af)
Pp= AL +0 —+ HVDp

B+x, ur{ W-D -pp +le)+ {\-n QuT(W - Pp) =uT{w)

uB(w +Xj) >B +uBflh D + nHp -
@ . » 3 (y -*,»
*« *Lg(N-z)-ph+/4-(i-/1d
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B+myu (W —D—p, +1, —(1— 2, ) )+ (1= 7y Yty (7 = p, —(1= 2, ) < 4, (W + A1)
<B+myu, (W=D =p, + 1, —(1=2))+ (1= 7 uy (7 = p, — (1= 2, ¥)
Again, there will exist a Pareto improvement if
Uit = B+ mu(W —D— pl + 1T ~(1- A, )+ (1— 7, up (7 - pT —(1- 4, )t)2
Uy = B+ (W=D~ pp+ 1)+ (=7, Ju; (W ~ p,)

4.4.2.5 Conditions for efficient partial-pooling equilibrium

In all the above four possibilities, it will involve the H, opting out of driving and

receiving the subsidized reservation utility. However, since A, = N
Ny +Ny+ Ny,
and 4, = Ny , foragiven N,, and N,,,when N, > o, 4, > 1, and
N+ Ny + Ny

A, = 0. Hence u, (W + A,t) - u,(W) as t <W . As shown in section 4.3.3, we have
Ul =B+ uB(W— wyD+ 7,1, —p,',)> uy(W), so there exists a N,,, large enough to
make u, (W +A,t)< B+u,(W —n,D+7x,1, - p;).

Therefore, under certain conditions, it is impossible to achieve Pareto improvement,

and the market equilibrium is hence Pareto efficient.

4.4.3 Efficient partial-pooling Nash equilibrium: an example

One straightforward way to see an efficient partial-pooling Nash equilibrium exists
is through numerical examples. Suppose u,(W)=-e* , u,(W)=W , z, =0.5,

7,=02,0=20,WW =02, B=0.09, D=0.19, 4, =09, 4, =0.5,

= Ay = - A (1-4) _ 3
& = qmrreaas = 047368, 4 =itz li-zmyas = 047368,

__ N 2 —_ N - Nur — _ Nur _ — M )
()’l " Nyr+Npg ’1 ﬂ'] T Ny+Npg ”?’2 ~ Nyp+Npg+Ngr ’A'.i ~ Ny+Ng ’1 Z’s = Ny+Ngr J*

-4

-2 )(1-
*! From the definitions of 4 and 4, , we can easily find that ¥, = _(.%‘QN,” and Nz =—=Nprs
ich ei ¥ ) Nir Al-4)
hich HT / N’ / 3 d i, = =
e B N e Ny Ny AU A A 1 4 NNyt B AN

accordingly.
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For these parameter values, a partial-pooling allocation constitutes Nash

equilibrium. Since - 0.17178 < T Amy(l-my) _ 0.83333,

urr(Wzr)_u'r(WlT (1_12)(”11 _”L)

Z—It' < 0 and there is no Pareto-improving partial-pooling contract available.

The tax-subsidy scheme breaks the partial-pooling equilibrium to type 3 separating
equilibrium. The subsidy raises the reservation utility of the 4, to the same level as
when they drive and buy insurance (W + A,t = B+ (W ~z,D+ z, 1, — P,) = 0.22078).
The reservation utility of the H, increases from —0.018316 to —0.012088, but the
utility of the L, decreases from 0.029625 to 0.019481. Clearly, there is no way to

make every one better off by breaking the partial-pooling equilibrium into separating
equilibrium.*?

Therefore, the partial-pooling Nash equilibrium is efficient.

4.5 Inefficient market equilibrium

Section 4.4 has demonstrated that the partial-pooling Nash equilibrium can be
Pareto efficient under certain conditions, but that does not mean inefficient partial-

pooling Nash equilibrium does not exist.

4.5.1 The existence of inefficient market equilibrium

u, (w7 A, (-7,)
70 (720 B 723 RS Y (R P R

then exist Pareto-improving partial-pooling allocations. Or if one of the four possible

If the parameter values are such that

separating equilibria exists, there is then room for the tax-subsidy scheme to achieve
Pareto improvement.
For instance, the market equilibrium is inefficient if there exists a solution to the

following problem

Ma%‘Ug =B+7rLuT(W—D—p;+IZT _(1_’14)’)"'(1_7[1,)"7(W_P2T _(1"3'4))

lzT P2

_(1_7[H)=_(1—”L) u'T(W—pZT—(l—l4)t)
Ty 7T u;'(W_D_PzT‘*'IzT_(l_]%)t)

s.t.

B+uB(W—7z'HD+7[H12T -p; —(1—/14)t)=uB(W+/l4t)

32 Appendix 4.1 provides detailed simulation results.
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pp =z, +(1=2)7,)I,
B+ ”H“T(W"D —Pp +Ip)+ (l_”H )“T(W _PP) = uT(W)
uy(W+A,2)2 B+u,(W —-nyD+x,l, - p,)
up (W + A2) 2 B+ myun (W = D= pI + 17 = (1= A, ))+ (17, u, (% - pT —(1- A, %)
Ui =B +”L"T(W_D -p, +1; _(1"'14)’)"' (1_”L)”T(W—P2T —(1 _'14)t)2
Ufy = B+ mur(W—D—pp+1,)+ (-7, u, (W - p,)
If there exists a solution to this problem, the tax-subsidy scheme can then break the
partial-pooling equilibrium into to type 2 separating equilibrium, which leads to
Pareto improvement.

One straightforward way to demonstrate that such a solution exists is, again,
through a numerical example. Consider a case where u, (W) =—e ", u, (W) =W,
7, =04, 7,=0.1,60=30, W=0.15, B=0.04, D=0.14, 4, =0.75, 4, =04,

A, =0.33333, 4, =0.5. The laissez-faire market equilibrium with these parameter
values is a partial-pooling equilibrium.

However, if we impose a tax of ¢ =3.976171992x10~ and use the proceeds to
subsidize the whole population, we can break the ex ante partial-pooling equilibrium
to an ex post type 2 separating equilibrium.

The ex ante utility of the H,, the H,, and the L, is —1.110899654x1072,
0.1519880860, and 1.454567 626 x107* respectively. After the tax-subsidy scheme,
their ex post utility is —1.046579896x1072, 0.1519880860, and 1.454597154x107*
respectively.’> The H,, is not worse off, but the H, and the L, are better off due to
this scheme. |

Moreover, if u,(W)=-e , u,(W)=W, n, =0.4, 7, =0.1, =30, W =0.15,
B=0.04, D=0.14, 4, =0.75, A, =0.733, a tax of # =8.108710298x10~° breaks
the partial-pooling equilibrium to a type 1 separating equilibrium. The utility of the
H,,the H,,and the L, goes from —1.110899654x107, 0.1519880860, and
1.454567626x107 to —1.046579896x107, 0.1519880860 and
1.454595041x107* respectively.

33 Appendix 4.3 provides detailed simulation results.
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If u,(W)=—-e", u,(W)=W,z, =04, 7, =0.1, #=30, W =0.15, B=0.04,
D=0.14, 2, =0.75, 4, =0.4, atax of # =0.008 will break the partial-pooling
equilibrium to a type 3 separating equilibrium. The utility of the H,, the H,, and the
L, goes from —1.110899654x107%, 0.1519880860, and 1.454567626x107* to
—9.852796061x107, 0.154 and 1.565564196x107* respectively.

If u,(W)=—", u,(W)=W ,z, =04, 7, =0.1, =30, W =0.15, B=0.04,
D=0.14, 1,=0.9, 4, =0.35, atax of #=6.8703x10" breaks the partial-pooling
equilibrium to a type 4 separating equilibrium. The utility of the H,,the H, and the
L, goes from —1.1109x1072, 0.15416, and 1.6074x107 to —9.8042x107,
0.15416 and 1.6123x107? respectively.**

The above numerical simulations have clearly demonstrated that the inefficient
partial-pooling equilibrium does exist and a tax-subsidy scheme can break it to one of

the four possible separating equilibria.

4.5.2 Policy implication

It is widely known that the presence of the high-risks exerts negative externality to
the low-risks: their insurance coverage has to be restricted to prevent the high-risks
from taking it. When there exist bold high-risks in addition to timid high-risks and
potential pooling emerges, the situation becomes even worse for the timid low-risks:
in addition to the restriction on insurance coverage, they have to pay more than their
actuarially fair premium to get the insurance, because the bold high-risks are now
taking the insurance as well.

As having been shown in section 4.5.1, a tax-subsidy scheme can eliminate the
externality caused by the partial-pooling of the H, and the L, , when the market
equilibrium is not Pareto efficient and can break to separating equilibrium. As
motorists pay the tax and non-motorists receive the subsidy, the reservation utility of

the H, will exceed their utility from driving after some critical value of tax and
subsidy, and hence the H, will stop driving. With the H, choose not to drive, the
premium rate (premium/indemnity) the L, pay for insurance could be much cheaper,

sometimes even with the tax they have paid. For example, in the case when the

34 Appendix 4.2, 4.4, 4.5 provide the detailed results of these numerical simulations.

96



partial-pooling equilibrium can break to a type 3 separating equilibrium, the ex ante

premium rate is % =0.1750000001 , but the ex post premium rate is only

0"‘}2'“’“ = {1z 78355464007 _ () 1510897740 even with the tax included. Clearly, the

7.829355446x107
tax-subsidy scheme can achieve Pareto gain in such cases.

An interesting case happens when insurers earn positive profit in the equilibrium
after the tax-subsidy scheme. For insurance, in the case that the scheme breaks the
partial-pooling equilibrium to a type 2 separating equilibrium, insurers earn positive
profit because the L, are paying more than their actuarially fair premium for the
insurance. If we increase the tax from 7 =3.9756x10™ to ¢ = 0.0045, the utility of
the H,,the H, and the L, increases to —e " **) = _1.038388701x1072,

W+ A,t=0.15225, and

B+, (- e DR (1 7, )(- e 0P -RA-20) )= 1.474519084x 107
respectively.®® All consumers are better off except the insurers: the premium they can
charge is now closer to the fair one. So this move is clearly not Pareto improvement.
Whether government should increase the tax from ¢ =3.9756x107 to ¢ = 0.0045 is

dependent on the weight of the welfare being they put on the insurers.

4.6 Conclusion

When agents differ in risk preferences and risk probabilities and have an option
whether to take the risky activity and whether to buy insurance, the timid high-risks
may choose not to drive, even though under full information driving brings utility
benefit. With different levels of risk probabilities, risk preferences, and driving benefit,
the market may end up with four different separating equilibria, partial-pooling
equilibrium, or even no pure-strategy equilibrium.

The partial-pooling equilibrium is Pareto efficient under certain conditions, notably,
when the timid high-risks account for a large proportion of the population. When the
partial-pooling equilibrium is inefficient, taxing insurance may create a separating
equilibrium. The bold high-risks are driven out of the insurance market and stop

driving. Everyone may be better off.

35 Appendix 4.6 provides detailed simulation results.
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Chapter 5 Conclusion

Chapter 2 examines the welfare effects of a non-discrimination policy which
requires unisex premium for insurance. It shows that in comprehensive insurance
market, when everybody drives and decides whether to purchase insurance, typical
adverse selection happens. High-risk motorists will purchase the insurance while the
low-risks will not. After the unisex premium policy is implemented, more male
motorists purchase insurance with lower premium while some female motorists drop
out of the insurance market with the premium increased. Simulations show the total
number of the insured is less than that before the policy is implemented. The policy
has no effect on insurers who always earn normal profit in competitive industry. The
aggregate social welfare may increase or decrease. There is no effect on road safety
since everybody drives whether insured or not.

In third-party insurance market where motorists must be insured and people choose
whether to become a motorist, advantageous selection happens. Low-risk people
become motorists and purchase insurance while the high-risks will not. After the
policy is implemented, more relatively safe men become motorist while some
relatively risky women stop driving. Roads are safer. From the simulations, the total
number of motorists is greater than that before the policy. The policy has no effect on
insurers. Simulations show that the aggregate social welfare decreases after the policy
is implemented.

Chapter 3 extends the research and finds the optimal allocation which maximizes
aggregate social welfare. Agents are identical except in risk probabilities and they can
choose whether to participate in risky activity and whether to buy insurance. Due to
their high probability of incurring loss, which makes the reservation utility more
attractive, the high-risks now choose not to engage in the risky activity. Instead of
being stuck with the low-risks, the market is now filled with the good-risks — the
“lemon” market has turned into “peach” market. Moreover, when the redistribution
effect dominates the efficiency effect, it would increase the total social welfare by
redistributing the wealth from the high-risks to the low-risks and hence decreasing the
insurance coverage in the market equilibrium. For certain parameter values, it would
increase the total social welfare by reducing insurance — instead of a shrunk market

under optimal level, we have got too much insurance.

98



Another interesting finding is that full insurance pooling allocation never
maximizes the aggregate social welfare. Although the high-risks enjoy higher
reservation utility in the allocation, there is no efficiency gain at all for the whole
society and there is only redistribution effect which is always negative.

Chapter 4 examines the market equilibrium and market efficiency in competitive
insurance markets when agents differ in both risk probabilities and risk preferences,
and can choose whether to participate in risky activity and whether to buy insurance.
It is shown that the timid high-risks will stop driving for reservation utility, even
though driving brings utility benefit. With different levels of risk probabilities, risk
preferences, and driving benefit, the market may end up with four different separating
equilibria, partial-pooling equilibrium, or even no equilibrium.

The partial-pooling equilibrium is Pareto efficient under certain conditions.
Particularly, when the timid high-risks account for a large proportion of the
population, it is impossible to achieve Pareto improvement. When the partial-pooling
equilibrium is inefficient, taxing insurance breaks the equilibrium and separating
equilibrium arises. The bold high-risks are driven out of the insurance market and stop

driving. Everyone could be better off.
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Appendix

Appendix 2.1 Welfare change with loss level

D=y, -v,)er,~z,-=)-W, -V, )2z, -7, ~7,)
A e 2
W 1-6
B, = '12'(”3 + 7[2)
_YOAr-pL)”
Yl-o_(y_L)l—o
v = (v-p,L)?
P 168
(”6 —ﬂlp)[Pp _%(”6 +ﬂp)]+ (ﬂ _”p)[Pp _%(”3 +7[p)]= 0
_r(y-pL)}?
”p - yl-a_(y_L):-a

- -8
V= = ffeL)l

1

Py = 3(”6 +75)
_Yo(y-p,Ly?
s ="y —(y-L)~

7wy, =0.7
s =028
Y =100
6=0.8
L=85

7,

V,=11.495,P, =0.71534,7, =0.6545,
V, =11.447,P, =0.74211, 7, = 0.68422,
7, =0.7,7, =0.8,Y =100.0,L = 50.0,6 = 0.8

- -

[D=-1.2618x107?,V, =11.55,B, =0.62225,7, = 0.54449,}

[D=-1.3111x10"¥,, =11.639, B, =0.63311, 7, 0.56622,}

V,=11.40L, P, =0.69743,7,=0.62487,
Vy =11.332,P,, =0.73119, 7, = 0.66239,
7, =0.7,74=0.8,Y =100.0,L =55.0,6 = 0.8

L -

[D=-1.2176x102,V,, =11.465,P, =0.61024, r, =0.5204T

v, =11.308,P, =0.68067,7z, =0.59519,
v, =11.219,P, =0.71861, 7, =0.63722,
I 7, =0.7,m, =0.8,Y =100.0,L = 60.0,6 = 0.8

D=-1.1288x10"2,V,, =11.385,P, =0.59697, 7, = 0.49394}

v, =11.219,P, =0.66349, 7, = 0.56357,
v, =11.113,P, =0.70409, z, = 0.60817,
7, =0.7,7,=0.8,Y =100.0,L = 65.0,0 = 0.8
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D =-9.7253x10",V,, =11.311, B, =0.58229, 7, = 0.46459,
V,=11.137,P, = 0.64522,7, = 0.52912,
v,  =11.015,P, = 0.68733, 7, = 0.57466,
7y =0.7,7, = 0.8,Y =100.0,L = 70.0,0 = 0.8

D =-7.4215%x10" -2.5917x107},¥,, =11.245, B, = 0.56605,, = 0.43209,
V,=11.066,P, = 0.62542+1.3598x10'2°i,7rp =0.49117 +1.5664x107i,
Ve =10.929, P, =0.66804, 7, = 0.53609,
7,=0.7,7,=0.8,Y =100.0,L =75.0,6 =0.8

D=-4.486x107,V,, =11.191, P, =0.54799, 7, = 0.39598,
v, =11.007,P, = 0.60368,7, = 0.44906,
V,, =10.860, P, =0.64589, 7, =0.49178,
7, =0.7,7, =0.8,Y =100.0,L =80.0,6 = 0.8

D =-1.2131x107 -4.01x107},V,, =11.150, B, =0.52773,7z, = 0.35546,
V,=10.966,P, =0.57952+1.2692x10°i, 7, = 0.40186 +1.4154 107},
Vi =10.811, P, =0.62042, 7, = 0.44083,

73 =0.7,7,=0.8,Y =100.0,L =85.0,6 = 0.8
[D=1.9642x107,7, =11.128, B, =0.50444,7, = 0.30888,
V,=10.948,P, =0.55198,7, = 034774,

V) =10.792,P,, =0.5907, 7, =0.3814,

L 7y =0.7,7, =0.8,Y =100.0,L =90.0,6 = 0.8
[D=4.5401x102,%, =11.136,F, =0.47571,7, =0.25141,
v, =10.966,P, =0.51837, 7, = 0.28141,

Vy =10.816, P, =0.55397, 7, =0.30795,

i 7y =0.7,7, =0.8,Y =100.0,L =95.0,6 = 0.8

D=5.6718x107,V,, =11.203, B, =0.43973, 1, =0.17945,
V,=11.053,P, =0.47692,7, =0.19931,
v, =10.918,P, =0.50854, 7, =0.21707,
m,=0.7,7, =0.8,Y =100.0,L.=99.0,6 = 0.8
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Appendix 2.2 Welfare change with risk range 1

D= (Vp - VM)(2756 -7, = 7[5)—(VW -V, )(27r3 -7, - np)
V. = W-Rel)”?
W= 1-0
Fy =%(”3 + ”2)
_ Y (y-R L)’
2= Yl-a_(y_L)l-o
(r-p,L}*
Vp = 1-6
(7[6 —”p)[Pp _';_(7[6 +7zp)]+(” _”p)[Pp _%(”3 +7[p)]= 0
_ Y (y-pL)}?
p yl-o_(y_ L)l—0

Vu = (Y_l;f; =

1

Py —3(”6 +”s)
_Y*-(v-p, L)~
T = e

7y, =0.7

s =0.99
Y =100

6=0.8

L=90

T

D=2.9231x107,
V,y =11.128,F, = 0.50444, 7, = 0.30888,
V,=10.522,P, =0.65257, 7, = 0.4396,
v, =10.062,P, =0.74444, 7, = 0.53887,
| 7,=0.7,7,=0.95,Y =100.0,L =90.0,§ = 0.8 ||

T D=1.3954x107,

v, =11.128,P, = 0.50444, 7, = 0.30888,
V,=10.694,P, =0.6138, 7, =0.40245,
v, =10.355,P, = 0.68781, 7, =0.47562,
|7, =0.7,7,=0.9,Y =100.0,L =90.0,6 = 0.8 |

(T N

D=5.9598x107,

V,, =11.128,B, =0.50444, 7, = 0.308 88,
v, =10.832,P, =0.58079, 7, =0.3726,
V, =10.591, P, =0.63738, 7, = 0.424 75,
| 7,=0.7, 7, =0.85,Y =100.0,L =90.0,60 = 0.8 ||

A
v

A
v°

A
~
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A

A

A

A

A

A

T N

|7, =0.7,7, = 0.601,Y =100.0,L = 90.0,0 = 0.8 |

i D=1.9642x10", 1
V., =11.128,P, =0.50444, , = 0.30888,
1| ¥, =10.948 P, =0.55198,7, =0.34774,
v, =10.792,P, =0.5907, , = 0.3814,

L7, =0.7,7,=0.8,Y =100.0,L =90.0,6 = 0.8 |

r— —_

D=3.3895x10",
V,, =11.128,P, =0.50444, 7, =0.30888,
V,=11.045,P, =0.52664,7, =0.32671,
v, =10.969, P, =0.54661, 7, = 0.34322,
| 7,=0.7,7, =0.75,Y =100.0,L =90.0,0 = 0.8 |

fl D=8.9378x10"%,

Vy =11.128, B, =0.50444, 7, = 0.30888,
v, =11.112,P, =0.50864,7, = 0.31221,
V, =11.097,R, =0.51274,7, =0.31548,
|7, =0.7,7, =0.71,Y =100.0,L = 90.0, = 0.8 |

- 3

D=6.6514x107%,
V, =11.128,P, =0.50444, 7, =0.30888,
V, =11.143,P, =0.50036, 7, = 0.30566,
V, =11.158,P, =0.49619, 7z, =0.30238,
| 7, =0.7, 7, =0.69,Y =100.0,L =90.0,6 =0.8 |

- -1

D=5.0789x107,
V,y =11.128, B, =0.50444, 7, = 0.30888,
V, =11.197,P, = 0.48526, 7, = 0.29389,
Vi =11.273,P, =0.46375, 7, =0.2775,
7, =0.7,7, =0.65,Y =100.0,L =90.0,6 = 0.8 ||

- 3

D=-2.2505x107",
V,, =11.128, B, =0.50444, 7, = 0.308 88,
V,=11.244,P, =0.47215, 7, = 0.28385,
vV, =11.381,P, =0.43208, 7, = 0.25416,
|7, =0.7,7, =0.61,Y =100.0,L =90.0,6 =0.8 ||

v

v

~—

v

v

g

D=-3.8262x107*,
V,, =11.128,P, =0.50444,z, = 0.30888,
V,=11.253,P, =0.46949,7, = 0.28183,
V,, =11.405,P, =0.42505,z, =0.24909,

v
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Appendix 2.3 Welfare change with risk range 2

D= (Vp -Vy )(27[6 -z, —n’s)— (VW —Vp)(27r3 -7, —Il'p)
V. = (r-pyL)”?
w18
F, =%(”3 + ”2)
_ YO (y-R, L)
T, = Yo (y-L)~
(r-p,L}*
Vp = 1-6
(”6 _”p)[Pp _%(7[6 +”p) + (7[ _”p)[Pp _%(773 +”p)]: 0
_ o (y-pL)}?
”p - y]-o_(y_L):-a

Vi = (y-ﬁ’; =

|

Py “?(”6 +7’5)
_ Y (r-p,1)”*
s = Ly

7, =0.6
s =0.501
Y =100
6=0.7
L=95

[D=-1.7417x102,%, =11.395, B, =0.41917, z, = 0.23835, |
v, =11.551,P, =0.38975,z, =0.21849,
v, =11.745,P, =0.35192, 7, =0.19383,

7, =0.6,m, =0.51,Y =100.0,L =95.0,6 =0.7

[D=-4.2208x10",V,, =11.395, P, =0.41917, 7, =0.23835, |
v, =11.489,P, =0.4016,7, = 0.22641,
v, =11.594,P, =0.38152, 7, =0.21304,
7, =0.6,7, =0.55,Y =100.0,L =95.0,0 =0.7

[D=-1.3004x10",¥,, =11.395, P, =0.41917,, =0.23835, ]
v, =11.415,P, =0.41543,7, =0.23578,
V,, =11.436,P, =0.41158, , = 0.23316,
Il 7, = 0.6,7, =0.59,Y =100.0,L =95.0,§ = 0.7 ]
D=-1.1298x10",¥, =11.395, P, =0.41917, 7, = 0.23835, |
V,=11.374,P, =0.42303,7, = 0.241,
V,, =11.354,P,, =0.42680, 7, = 0.24360,
7, =0.6,7, =0.61,Y =100.0,L =95.0,0 = 0.7
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=

D =-2.0753x10",V,, =11.395,P, =0.41917, 7, =0.23835, ||
v, =11.283,P, =0.43960, 7, = 0.25252,
v, =11.183,P, =0.45766, 7, =0.26533,

Il 7, =0.6,1, =0.65,Y =100.0,L =95.0,6 =0.7 1

[D=-5.2832x10"*,V,, =11.395,P, =0.41917, z, = 0.23835, |
V,=11.154,P, =0.46279,7, =0.26901,
v, =10.955,P, =0.49716, 7, =0.29431,

I 7, =0.6,7, =0.7,Y =100.0,L =95.0,8 = 0.7 |

(D =-6.9674x10™,V,, =11.395,P, =0.41917, 7, =0.23835, ||
v, =11.004, P, = 0.48880, 7, =0.28806,
v, =10.707,P, =0.53788, 7, =0.32575,

7, =0.6,7, =0.75,Y =100.0,L =95.0,6 = 0.7
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Appendix 2.4 Welfare change with loss level 2

D, =(7rp —ﬂM)(ﬂ'M +7, —272‘2)—(72'W —ﬂp)(ﬂ'w +7, —Zﬁ,)

V=11

B, =0.18437,7, =0.26875,P,, =0.22893,
R,=16.0,V =11.0,7,, =0.25786,R, =12.559,R, =11.0,
P, =0.19703,y =100.0,R, =11.144,D, =—6.2498x 10,
| 7,=026567,7,=02,7,=0.1,0=0.8,L =45.0,C =5.0
( B, =0.16262, 7, =0.22523,P, =0.20133,

R, =16.0,V =11.0,7,, =0.20266,R, =12.559,R, =11.0,
P,=0.16852,y =100.0,R, =5.0,D, =-3.6748x107*,
7, =022184,7, =0.2,7,=0.1,§ =0.8,L =99.0,C=5.0 ||
B, =0.16409, 7, =0.22818,P, =0.20321,
R,=16.0,V =11.0,7,, =0.20641,R, =12.559,R, =11.0,
P, =0.17056,y =100.0, R, = 6.8986,D, =-3.3191x107*,
| 7,=022463,7,=0.2,7,=0.1,§=0.8,L =95.0,C=5.0 ||

T P, =0.16596,7, =0.23192,P,, =0.20559,
R,=16.0,V =11.0,7,, =0.21117,R, =12.559,R, =11.0,
P, =0.17313,y =100.0,R, =7.9245,D, =-2.9122x10™,
| 7,=0.22822,7,=02,7,=0.1,6=0.8,L =90.0,C=5.0

]
—
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A

P, =0.16786, 7, =0.23573,P,, =0.20801,
R, =160,V =11.0,7,, =0.21602,R, =12.559,R, =11.0,
P,=0.1757,y =100.0,R, =8.5939,D, = —2.5433x10™,
7, =023193,7, =0.2,7, =0.1,§ =0.8,L =85.0,C = 5.0

P, =0.1698,z,, =0.2396,P,, =0.21047, Il
R, =16.0,V =11.0,7,, =0.22095,R, =12.559,R, =11.0,
P, =0.17830,y =100.0, R, =9.1028,D, =-2.2087x10,
| 7,=023575,7,=02,7,=0.1,§=08,L=80.0,C=5.0

P, =0.17177, 1, =0.24355,P,, =0.21298,
R, =16.0,V =11.0,7,, =0.22596, R, =12.559,R, =11.0,
P, =0.18091,y =100.0, R, =9.5183,D, =-1.9056x10,
| 7,=0.23969,7,=02,7,=0.1,§=08,L =75.0,C=5.0 |

T P, =0.17378, 1, =0.24756,P,, = 0.21553,

R, =16.0,V =11.0,7,, =0.23106,R, =12.559,R, =11.0,
P, =0.18354,y =100.0, R, =9.8718,D, =—1.6313x107%, |
| 7,=024374,7,=02,7,=0.1,§=08,L =70.0,C=5.0

B, =0.17583, 7, =0.25165,P,, =0.21812,
R,=16.0,V =11.0,7,, =0.23624,R, =12.559,R, =11.0,
P,=0.18619,y =100.0,R, =10.181,D, =~1.3835x 1074,
z,=024791,7,=02,7,=0.1,6§=0.8,L =65.0,C = 5.0_‘

P, =0.17791, 7, =0.25581,P,, =0.22076,
R,=16.0,V =11.0,7,, =0.24151,R, =12.559,R, =11.0,
P, =0.18886, =100.0, R, =10.456,D, =-1.1605x10*, |
| 7, =0.25219,7,=02,7,=0.1,6=0.8,L =60.0,C=5.0 |

I P, =0.18002, 7, =0.26005, P, =0.22343, T
R,=16.0,V =11.0,7,, =0.24687,R, =12.559,R, =11.0,

P, =0.19156,y =100.0, R, =10.706, D, =-9.6063x10, |
| 7, =0.25657,7, =0.2,7,=0.,=08,L=55.0,C=5.0

I P, =0.18218, 7, =0.26436, P, =0.22616,
R,=16.0,V =11.0,7, =0.25232,R, =12.559,R, =11.0,
P, =0.19428,y =100.0,R, =10.934,D, =—7.8250x10™",

| 7,=026107,7,=02,7,=0.1,6=0.8,L =50.0,C =5.0

-7
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Appendix 2.5 Welfare change with risk range 3

D, =(ﬂ' —II.'M 7tM+7t 27:2 IZ'W T )(ﬁw+7rp—27r])

_(”1+”W)
=%L~"i’$’ 4
(e, -, - +fr,,) m )P, ~4(m +,)]=0

1 (- PL)H’
?

P, =0.22146, 7, =0.34292, P, =0.18222,R, =16.0,
|| 72 =036344,¥ =11.0,R, =13.27,P, =0.19867,R, =11.0, ||
y=100.0,7, =0.35489,D, =—1.7119x10™,

R, =10.081,7, =0.001,7, =0.1,6 =0.7,L = 60.0,C = 5.0
P, =0.22146, 7, =0.34292,P,, =0.18579,R, =16.0,

)| 7 =036159,7 =110, =13.27,F, = 0.20096,R, =11.0, ||
y=100.0,7, =0.35369,D, =—1.4153x10™*,

R, =10.081,7, =0.01, 7, =0.1,6=0.7,L = 60.0,C = 5.0

P, =0.22146,7, =0.34292,P,, =0.20166,R, =16.0, ]
)| 7 =0.35332,7 =11.0,R, =13.27, B, = 021066, R, =11.0, ||
y=100.0,7, =0.34861,D, = —4.3925x10%,
| R, =10.081,7, =0.05,7, =0.1,6=0.7,L = 60.0,C =5.0

L
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P, =0.22146,1,, =0.34292, P, =0.2175,R, =16.0,
71 =0.34501,V =11.0,R, =13.27,P, =0.21944,R, =11.0,
y=100.0,7, =0.34399,D, =—1.7846x10™° +7.8107x10%*;,
R, =10.081,7, =0.09,7, =0.1,6=0.7,L = 60.0,C = 5.0

P, =0.22146, 7, =0.34292,P, =0.22146,R, =16.0,

7y =0.34292,V =11.0,R, =13.27,P, = 0.22146,R, =11.0,

y=100.0,7, =0.34292,D, = 5.4956 x107> +4.2661x 107>,
R =10.081, 7, =0.1,7, =0.1,6=0.7,L = 60.0,C =5.0

[ B, =0.22146,1, =0.34292, P, = 0.22542,R, =16.0,
7y, =0.34083,V =11.0,R, =13.27,F, =0.22340,R, =110, ||

y=100.0,7, =0.34190,D, =—-1.8091x10* —1.9729x107%},
R, =10.081,7,=0.11,7,=0.1,6=0.7,L = 60.0,C =5.0

F, =0.22146, 7, =0.34292,P,, =0.24122,R, =16.0,
7y =0.33244,V =11.0,R, =13.27,P, =0.23019, R, =11.0,
y=100.0,7, =0.33831,D, =—4.7308x107,

R, =10.081,7, =0.15,7, =0.1,6 =0.7,L =60.0,C =5.0

B, =0.22146,7, =0.34292,P,, =0.26094,R, =16.0,
7y =0.32188,V =11.0,R, =13.27,P, = 0.23589 + 4.6048x107*'i, R, =11.0,
y=100.0,7, =0.33528,D, =-2.1031x10™* —9.639x 107},

R =10.081,7,=02,7, =0.1,6 =0.7,L =60.0,C =5.0

P, =0.22146, 7, =0.34292,P,, =0.28062,R, =16.0,
7y =0.31124,V =11.0,R, =13.27,P, =0.23717+1.6546 101, R, =11.0,
y=100.0,7, =0.33460—9.4339x107%'i, D; =-5.6969x10™* —2.8637x107*';,
R, =10.081,7, =0.25,7, =0.1,6 =0.7,L = 60.0,C = 5.0

P, =0.22146, 7, =0.34292, P,, =0.30025, R, =16.0,
71 =0.3005LV =11.0,R, =13.27,P, =0.23219,R, =11.0,
»=100.0,7, =0.33724,D, =—1.3397x107%,

R =10.081,7, =0.3,7,=0.1,6 =0.7,L =60.0,C = 5.0

]

-J

—
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Appendix 2.6 Welfare change with risk range 4

D, =(ﬂp _”M)(”M +t7, _2”2)_(”W "”p)(”w +z, _2”1)

(e, - )P, ~4 e+, )+, — [P, 4 7, )= 0

P, =0.37048, 7, =0.54097, P, =0.33956,
R, =160,V =11.0, 7, =0.57912,R, =15.774,R, =11.0,
P, =0.35318, =100.0,R, =8.2861,D, =—6.3967x10™* +6.5107x107},
7, =0.56241,7, =0.,7, =0.2,6 = 0.6,L =80.0,C =5.0

(r~ NN

B, =0.37048, 7, =0.54097,P,, =0.35505,
R, =16.0,V =11.0, 7, =0.5601,R, =15.774,R, =11.0,
P, =0.36226,y =100.0,R, =8.2861,D, = -1.6087x107* +4.6623x107%,
z,=055119,7, =0.15,7, =0.2,6 = 0.6,L =80.0,C =5.0 ]

P, =0.37048, 7, =0.54097,P,, =0.3674,
R, =160,V =11.0,7, =0.5448,R, =15.774,R, =11.0,
P, =0.36892-1.0082x107}, y =100.0, R, =8.2861,D, =~6.5005x10™ +9.5005x10"""},
7, =0.54291+1.3654x1072i,z, = 0.19, 7, =0.2,0 = 0.6,L =80.0,C = 5.0

L -1J

(L
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A

\

P, =0.37048,1,, =0.54097, P, =0.37048,
R, =16.0,V =11.0,7,, =0.54097,R, =15.774,R, =11.0,
P, =0.37048-2.0471x10"4, y =100.0, R, =8.2861,D, =1.741x10"> +1.8899x1072;,
#, =0.54097 +2.7712x10i, 7, = 0.2,7, =0.2,60 = 0.6,L =80.0,C = 5.0
P, =0.37048, 7, =0.54097, P, = 0.37356,
R, =16.0,V =11.0,z, =0.53712, R, =15.774,R, =11.0,
P, =0.37200-4.0219x107i,y =100.0, R, = 8.2861,D, = ~6.5515x10™° +3.6361x10™},

7, =0.53907+5.4423x10""}, 7, =0.21,7, =0.2,0 = 0.6,L =80.0,C = 5.0

P, =0.37048, 7,, =0.54097, P,, = 0.38585,
R,=16.0,V =11.0,7,, =0.52171,R, =15.774,R, =11.0,
P, =0.37755,y =100.0,R, =8.2861,D, =—1.6766x10™,
| 7,=053214,7,=0.25,7,=02,6 = 0.6,L =80.0,C =5.0

B, =0.37048, 7, =0.54097,P,, =0.40116,
{ R,=16.0,V =11.0,7,, =0.50232,R, =15.774,R, =11.0,
P, =0.38307,y=100.0, R, =8.2861,D, =—7.052x 107,
z,=0.52521,7,=0.3,7,=0.2,6 =0.6,L =80.0,C =5.0

P, =0.37048, ,, =0.54097, P, =0.4164,
R,=16.0,V =11.0,7,, =0.4828 R, =15.774,R, =11.0,
P, =0.3865,y =100.0, R, =8.2861,D, =—1.7261x10~,
| 7, =0.52088,7, =0.35,7, =02,6 =0.6,L =80.0,C =5.0
i P, =0.37048, ,, =0.54097, P,, =0.43158,

R, =16.0,V =11.0,7,, =0.46316,R, =15.774,R, =11.0,
P, =0.38724,y =100.0,R, =8.2861,D, =-3.4890x10™%, |
| 7, =051995,7, =0.4,7,=0.2,0=0.6,L =80.0,C=5.0 ||

B, =0.37048,7, =0.54097,P,, =0.44367, |
R, =16.0,V =11.0,7,, =0.44735,R, =15.774,R, =11.0,
P, =0.38548,y =100.0, R, =8.2861,D, =—5.7596x107, |
|7, =0.52218,7, =0.44,7,=02,0=0.6,L =80.0,C=5.0 |

L
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Appendix 3.1 Aggregate social welfare increases with positive T

The high risks don't drive while the low risks drive before and after the taxation
The constraint on the high risks is binding, ie, Wz, )=v(7,,2;,)

u(x)=Inx, W =100, B=1, D=90, z,, =08, 7, =0.3, A=0.3,

U,=B+WIn(W-Dx,)
U=hw
U,=B+Wn(W-Dx,)

B+(1-z,)n(W -6Dx,)+z, m[W —6,Dx, —(1-6,)D]=n W
U;=B+(1-7z,)n(W -6Dx, )+, n[W -6.Dx, —(1-6,)D]
mp=Any +(1-A)7,

(- x,)W -6,Dx,)-(1-,)z,[W -6,D7,-(1-6,)D]=0
U,=B+(1-7,)n(# -6,Dx, )+, n[w -6,Dx, —(1-6,)D
U,=In(W +(1-2)T)

B+(1-z,)n(W —-6,Dz, — AT )+ 7, W —-6,Dx, —(1-6,)D - AT]=In(W +(1-1)T)
U, =B+(-z,)n(W -6,Dx, - AT)+z, n[W —6,Dz, —(1-6,) D - AT]

E = AMmy-7,)
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[ 6,=030595,8,=1.0636,, = 0.78571,6, = 0.59933,
D, =0.27297,D, = 0.68529, E, =1.0204,
D, =4.3134x107, E, =0.9,D, =0.12041, D, =—0.27793,
D, =—0.22628,D, = 0.39878, D, =0.17250,
7, =045U, =4.6052,U, =5.0039,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =4.95,U, =5.1332

e T =70

[ —

\
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D, =4.3134x10",E, =0.9,D, =0.12041,D, = —0.21429,

L

[ 6,=0.30595,6, =0.95165,6, =0.78571,6, =0.59933, ]|

[ 6,=0.30595,6, =0.93961,, =0.78571,6, =0.59933, ]|

6,=0.30595,6, =1.013,6, =0.78571,8, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x10"%,E, =0.9,D, =0.12041, D, =—0.22731,
D, =—0.20228,D, =0.37981,D, =0.17753,
7, =0.45,U, =4.6052,U, = 4.9850,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =4.974,U, =5.1332

6, =0.30595,8, =1.0,6, =0.78571,6, = 0.59933,
D, =0.27297,D, = 0.68529, E, =1.0204,

-l

L

T
D, =—0.19634,D, =0.37478, D, =0.17844, ’

7, =0.45,U, =4.6052,U, =4.9799,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =4.9799,U, =5.1332

-

D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x10% E, =0.9,D, =0.12041, D, =—-0.16594,
D, =—0.17510,D, =0.35557, D, =0.18047,
7, =0.45,U, =4.6052,U, =4.9607,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0012,U, =5.1332

D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x107,E, =0.9,D, =0.12041, D, = —0.15389,
D, =—0.17001,D, =0.35066, D, =0.18065,
7, =045U, =4.6052,U, =4.9558,U,, =4.3322,

L

L

[ 6,=0.30595,6, =0.93361,6, =0.78571,8, =0.59933, ]

U, =5.2905,U; =5.1763,U, =5.0063,U,, =5.1332

D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x102,E, =0.9,D, =0.12041, D, =—0.14790,
D, =-0.16750,D, =0.34819, D, =0.18069,
7, =0.45U, =4.6052,U, =4.9534,U,, = 4.3322,
U, =5.2905,U; =5.1763,U, =5.0088,U, =5.1332 ||

[ 6,=0.30595,6, =0.92763,6, = 0.78571,6, =0.59933, ]
D, =0.27297,D, =0.68529,E, =1.0204,
D, =43134x107,E, =0.9,D, =0.12041, D, =—0.14192,
D, =-0.16502,D, =0.34572,D, =0.18070,
7, =0.45,U, =4.6052,U, =4.9509,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0113,U, =5.1332
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[ 6,=0.30595,6, =0.92167,6, =0.78571,6, =0.59933, |
D, =0.27297,D, = 0.68529,E, =1.0204,
D, =4.3134x107,E, =0.9,D, =0.12041,D, =-0.13596,
D, =-0.16256,D, =0.34324,D, =0.18067,
7, =0.45U, =4.6052,U, =4.9484,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0137,U,, =5.1332

- -

[ 6,=0.30595,8, =0.91573,6, =0.78571,6, =0.59933, ]
D, =0.27297,D, =0.68529,E, =1.0204,
D, =4.3134x107%,E, =0.9,D, =0.12041, D, =—0.13002,

T

-

D, =—-0.16013,D, = 0.34075,D, = 0.18062,
7, =0.45U, =4.6052,U, =4.9459,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0162,U,, =5.1332

6, =0.30595,6, =0.88042,6, = 0.78571,6, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x10"%,E, =0.9,D, =0.12041, D, =—9.4705x107?,
D, =—0.14607,D, =0.3257,D, =0.17963,
7, =0.45U, =4.6052,U, = 4.9309,U,, =4.3322,

=58.5

< T =58

T =55

U, =5.2905,U; =5.1763,U, =5.0302,U, =5.1332

6, =0.30595,6, =0.8228,6, =0.78571,6, = 0.59933,
D, =0.27297,D, =0.68529,E, =1.0204,
D, =4.3134x107%,E, =0.9,D, =0.12041,D, =-3.7091x102,
D, =-0.12449,D, = 0.3001, D, =0.17561,
7, =0.45,U, =4.6052,U, =4.9053,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0518,U , =5.1332

6, = 0.30595,8, =0.76659,8, = 0.78571,6, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,
D, =43134x107,E, =0.9,D, =0.12041,D, =1.9128x1072,
D, =—0.10500, D, =0.27384, D, =0.16884,
7, =0.45U, =4.6052,U, =4.879,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.0713,U, =5.1332
6, =0.30595,6, =0.71162,6, = 0.78571,6, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,
D, =43134x107,E, =0.9,D, =0.12041, D, =7.4094x1072,
D, =-8.7395x107%,D, =0.24686,D, =0.15947,
7, =0.45,U, =4.6052,U, =4.852,U,, =4.3322,

T =50

T =45

LT = 40

U, =5.2905,U; =5.1763,U; =5.0889,U , =5.1332
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[ 6,=0.30595,6, =0.65779,8, =0.78571,8, =0.59933, ]
D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x107,E, =0.9,D, =0.12041,D, =0.12793,
D, =-17.1516x107%,D, =0.21914, D, =0.14762,
7, =0.45,U, =4.6052,U, =4.8243,U,, =4.3322,
U, =5.2905,U; =5.1763,U; =5.1048,U,, =5.1332

[ 6,=0.30595,8, =0.60499,8, =0.78571,8, =0.59933, |
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107,E, =0.9,D, =0.12041,D, =0.18073,

|| D, =-5.7227x10"2,D, =0.19062, D, = 0.13339,

7, =0.45U, =4.6052,U, =4.7958,U, =4.3322,

U, =5.2905,U; =5.1763,U; =5.119L,U, =5.1332 ||

[ 6,=0.30595,6, =0.55314,6, = 0.78571,8, = 0.59933, ]|
D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x107%,E, =0.9,D, = 0.12041,D, =0.23258,
D, =—4.4419x1072,D, =0.16127,D, =0.11685,
7, =0.45U, =4.6052,U, =4.7664,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.1319,U,, =5.1332

[ 6,=0.30595,8, =0.50216,6, =0.78571,8, = 0.59933, ||
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107%,E, =0.9, D, = 0.12041, D, = 0.28355,
D, =-3.3002x107%,D, =0.13103,D, =9.8026x1072,
7, =0.45U, =4.6052,U, =4.7362,U,, =4.3322,

| U, =5.2905U; =5.1763,U, =5.1433,U , =5.1332

[ 6,=0.30595,6, =0.48057,6, =0.78571,6, =0.59933, ]
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107%,E, =0.9,D, =0.12041,D, =0.30514,
D, =-2.8517x10%,D, =0.11778,D, =8.9266x107%,
7, =045U, =4.6052,U, =4.7230,U,, =4.3322,

U, =5.2905U; =5.1763,U, =5.1478,U, =5.1332 ||

[ 6,=0.30595,6, =0.46198,6, =0.78571,6, = 0.59933, |
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107%,E, =09,D, =0.12041, D, =0.32374,
D, =-2.4821x10"%,D, =0.10616, D, =8.1339x1072,
7, =0.45U, =4.6052,U, =4.7113,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.1515,U, =5.1332

- -t

T =35

L7=30

T =25

T =20

-4J

o T =17.857143

+T =16
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L

D¢ =

D, =

6, =0.30595,6, =0.39283,6, =0.78571,8, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107,E, =0.9,D, =0.12041, D, = 0.39289,
D, =-1.2446x107%,D, =6.1095x1072,D, = 4.8649x107,
7, =0.45,U, =4.6052,U, =4.6663,U,, =4.3322,

U, =5.2905,Us =5.1763,U, =51638,U, =5.1332 ||

6, =0.30595,8, =0.35394,6, = 0.78571,6, =0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x107,E, =0.9,D, =0.12041,D, = 0.43177,
D, =—6.4434x107*,D, =3.4401x1072, D, =2.7958 x107?,
7, =0.45U, =4.6052,U, =4.6396,U,, =4.3322,

U, =5.2905,U5 =5.1763,U, =5.1698,U, =5.1332

6, =0.30595,6, =0.31549,8, =0.78571,6, = 0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,

D, =4.3134x10,E, =0.9,D, =0.12041,D, =0.47022,
D, =-1.1956x10,D, =6.9756x107°,D, =5.7800x107,
7, =045,U, =4.6052,U, =4.6121,U,, =4.3322,

U, =5.2905,U; =5.1763,U, =5.175L,U,, =5.1332

6, =0.30595,6, =0.3069,6, =0.78571,8, =0.59933,
D, =0.27297,D, =0.68529,E, =1.0204,
D, =4.3134x107,E, =0.9,D, =0.12041,D, = 0.47881,
D, =-1.1748x107* -9.5581x107*i,D, =6.9976x10™,  |3T =0.
D, =5.8227x107* —9.5581x107%;,
7, =0.45U, =4.6052,U, =4.6059,U,, =4.3322,U, =5.2905,
Us =5.1763,U; =5.1762,U, =5.1332

6, =0.30595,6, = 0.30604,8, = 0.78571,6, = 0.59933,
D, =0.27297,D, = 0.68529, E, =1.0204,
D, =4.3134x1072,E, =0.9,D, =0.12041, D, =0.47967,
~1.1727x107 —2.4151x10"%}, D, = 6.9998x10~*, D, =5.827x10°5,
7, =045U, =4.6052,U, =4.6052,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.1763,U, =5.1332

6, =0.30595,6, =0.30596,6, =0.78571,8, =0.59933,
D, =0.27297,D, =0.68529, E, =1.0204,
D, =4.3134x107%,E, =0.9,D, =0.12041,D, = 0.47976,
-1.1725x107° - 2.1499x107%%i,D, = 7.0000x107°, D, = 5.8274x107°,
np =0.45U, =4.6052,U, =4.6052,U,, =4.3322,

1]
p—

3
]
O

~J
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1

+T=0.01

»T =0.001

U, =5.2905,U; =5.1763,U, =5.1763,U,, =5.1332
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0, =0.30595,02=0.30594,07=0.78571,(p =0.59933,
7),=0.27297,D2=0.68529, Ex=1.0204,
7)3=4.3134x10 272 =0.9,D4=0.12041,D5=0.47978,
D6=1.1725x10-6 +2.0962 x10-262D7=-7.0x10_6,A =-5.8275 x10'6; T =000
nP=0.45,C7,=4.6052,[/2=4.6052,(7" =4.3322,
t/L=5.2905,C05=5.1763,Cr =5.1763,~ =5.1332
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Figure 3.10 Positive tax increases total social welfare (Scientific Workplace driven)
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Figure 3.12 Full insurance coverage is not optimal (Scientific Workplace driven)
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Appendix 3.2 Aggregate social welfare increases with negative T 1

The high risks don't drive while the low risks drive before and after the taxation
The constraint on the high risks is binding, ie, v(z,,a,)=w7,,2,)

u(x)=Inx, W =100, B=1, D=99, 7, =09, 7, =03, 1=0.83, T =-1

U, =B+Wn(W-Dx,)
U =W
U,=B+Wn(W-Dr,)
B+(1-z,)n(W —-6,Dx, )+ z,, n[W —6,Dx, —(1-6,)D]=In W
Us =B+(1-7z,)n(W —6,Dz, )+ 7, In[W —6,Dz, —(1-6,)D]
mp=Am, +(1-2)7,
#,(1-7,)# -6,Dx,)-(1-r, )7, 7 -6,Dz,-(1-6,)D]=0
U, =B+(1-7,)n(# -8,Dx, )+, W —6,Dz, -(1-6,)D]
U, =In(W +(1-1)T)
B+(1-x, )n(W -8,Dx, - AT)+ z,, W[W —6,Dx, —(1-8,)D - AT]=In(W +(1-1)T)
U, =B+(1-z,)n(W -8,Dx, — AT)+z, n[|W - 6,Dx, —(1-6,)D— AT]
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[6, =0.46857,0, = 0.45492 +7.6927x10';,6, = 0.28857,6, = 0.34473,
D, =1.2164,D, = 0.6476,E, =13.950,

D, =0.55104,E, = 0.99, D, =12.960, D, = —0.16635—7.6927x107';,
3 D, =8.9328x10 -2.0239x107%4,D, = —1.7014x107, >
D, =7.2313x107° - 2.0239x10™';,

7, =0.798,U, = 4.6052,U, = 4.6035,U,, =3.3888,
U, =5.2528,U; = 5.1719,U, = 5.1809,U, = 4.6209
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Figure 3.11 Negative tax increases total social welfare (Scientific Workplace driven)
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Appendix 3.3 Aggregate social welfare increases with negative T 2

The high risks don't drive while the low risks drive before and after the taxation

The constraint on the high risks is binding, ie, W(7,,a, )=(7;,a,)

u(x)=Inx, =100, B=1, D=90, 7, =0.8, 7, =0.3, 1=028,

U,=B+m(W-Dx,)
U, =InW
U,=B+Wn(W-Dr,)

B+(1-7,)n(W —6,Dx,)+ 7, In[W —6,Dz, —(1-6,)D]=nW
Us=B+(1-7z,)n(W -6,Dx, )+ z, n[W - 6,Dx, —(1-6,)D]
mp=Azy +(1- )7,

#,(1-7,)# -6,Dx,)-(1-,)7,[W -6,Dx, —(1-6,)D]=0
U, =B+(1-x,)n(# -6,Dx, )+ z, W -6,Dx, -(1-6,)D]

U, =In(W +(1-4)T)

B+(1-7z,)n(W —8,Dx, —AT)+ x,, n[W —6,Dz, —(1-6,)D - AT]|=n(% +(1- 2)T)
U, =B+(1-z,)n(W -6,Dx, — AT)+ =, n[W - 8,Dx, —(1-6,)D - AT]
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oy N
S S <
rog |
SEISIRS
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Il
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qq \.b o\b u'b &w wb Nw
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[6,=0.30595,6, =-7.0264x107,6, = 0.42857,6, = 0.21693, ]
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E,=0.9,
< D, =8.6238,D, =0.49884, T =25
D, =0.15841,D, =—5.1293x10, D, = 0.10711,
7, =0.7,U, =4.6052,U, =4.5539,U,, = 4.3322,
U, =5.2905,U; =5.1763,U, =5.3347,U,, =4.9498
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D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,
4 D, =8.6238,D, = 0.43962,
D, =0.13645,D, =—4.2908x1072, D, =9.3542x107%,
7, =0.7,U, =4.6052,U, =4.5623,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.3127,U, = 4.9498

\L

[6,=0.30595,6, =-3.6299x107,6, =0.42857,6, = 0.21693, |

D, =0.27297,D, = 0.68529, E, =9.5238,

" D, =0.22645,E, =0.9,

< D, =8.6238,D, =0.4322,

D, =0.13363,D, =—4.1864x107%, D, =9.1763x1072,
7, =0.7,U, =4.6052,U, =4.5633,U,, =4.3322,

U, =5.2905,U; =5.1763,U, =5.3099,U, = 4.9498

-J

(6, =0.30595,8, = —6.5912x10,6, =0.42857,6, = 0.21693, |
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

D, =0.13249,D, =—4.1447x107,D, =9.1046x107%,
7, =0.7,U, =4.6052,U, =4.5637,U,, =4.3322,

[6,=0.30595,6, =—1.1053x10?,6, = 0.42857,6, =0.21693, |

VT =-21

T =-20.5

: D, =8.6238,D, =0.42923, T =-203

| U, =5.2905,U; =5.1763,U; =5.3088,U, =4.9498

[6,=0.30595,6, =8.2659x10,6, =0.42857,6, = 0.21693, |
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

) D, =8.6238,D, =0.42774, Y
D, =0.13193,D, =-4.1239x107,D, =9.0687x1072,
7, =0.7,U, =4.6052,U, =4.5639,U,, =4.3322,
U, =5.2905,U; =5.1763,U; =5.3082,U, = 4.9498

-/

[6,=0.30595,6, =2.3125x107,6, =0.42857,6, = 0.21693, |
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

D, =0.13136, D, =—0.04103, D, =9.0327x1072,
7, =0.7,U, =4.6052,U, =4.5641,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.3076,U,, = 4.9498

-/
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[6,=0.30595,6, =3.7986x10,6, = 0.42857,6, = 0.21693,]
D, =0.27297,D, = 0.68529, E, =9.5238,
D, =0.22645,E,=0.9,
4 D, =8.6238,D, =0.42477,
D, =0.13079,D, =—4.0822x1072, D, =8.9966x102,
7, =0.7,U, =4.6052,U, =4.5643,U,, =4.3322,
U, =5.2905,U; =5.1763,U; =5.307L,U, =4.9498

[6,=0.30595,6, =7.8379x102,6, = 0.42857,6, = 0.21693, |
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,
) D, =8.6238,D, =0.35019,
D, =0.10137,D, =—3.0459x1072, D, = 7.0913x1072,
7, =0.7,U, =4.6052,U, =4.5747,U,, =4.3322,

—

T =-20

T =-15

U, =5.2905,U; =5.1763,U, =5.2777,U , =4.9498

6, =0.30595,6, = 0.15354,0, =0.42857,6, =0.21693, |
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,
) D, =8.6238,D, =0.27503,
D, =6.9948x107*,D, =-2.0203x107%, D, =4.9745x107,
7, =0.7,U, =4.6052,U, = 4.5850,U,, =4.3322,

U, =5.2905,Us =5.1763,U; =5.2462,U, =4.9498 |
[6, =0.30595,6, = 0.22937,6, =0.42857,6, = 0.21693, ]
D, =0.27297,D, = 0.68529, E, =9.5238,

D, =0.22645,E,=0.9,

L

D, =3.6259x1072, D, =—0.01005, D, = 2.6209x1072,
7, =0.7,U, =4.6052,U, = 4.5951,U,, =4.3322,
U, =5.2905,U; =5.1763,U; =5.2125,U, =4.9498 |

6,=0.30595,6, =0.29057,6, =0.42857,8, = 0.21693,

D, =0.27297,D, =0.68529, E, =9.5238, D, =0.22645,E, =0.9,

D, =8.6238,D;, =0.13801,
D, =7.4746x107,D, =-2.002x107, D, =5.4726x10°,
7, =0.7,U, =4.6052,U, =4.6032,U,, = 4.3322,
U, =5.2905,U; =5.1763,U, =5.1838,U, =4.9498
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D, =0.27297,D, = 0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

[ 6,=0.30595,6, =0.30441,6, = 0.42857,6, =0.21693, ||

D, =7.5323x107°,D, =—-0.00002, D, =5.5323x107°,
7, =0.7,U, =4.6052,U, = 4.6052,U,, =4.3322,
| U, =5.2905,U; =5.1763,U; =5.1764,U,, = 4.9498 |

[6,=0.30595,6, =0.30593,6, = 0.42857,8, = 0.21693,]
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

) D, =8.6238,D, =0.12264, LT
D, =7.5329x107%, D, =-2.0x107%, D, =5.5329x107,
7, =0.7,U, =4.6052,U, =4.6052,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.1763,U,, = 4.9498

6, =0.30595,68, =0.30596,6, =0.42857,8, =0.21693,
D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,
D, =8.6238,D, =0.12261,
D, =-7.5330x107°,D, =2.0000x10°%, D, =—5.5330x10"°,
7, =0.7,U, =4.6052,U, =4.6052,U,, =4.3322,
U, =5.2905,U; =5.1763,U, =5.1763,U,, =4.9498

'/

-1J
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]
—

) D, =8.6238,D, =0.12416, LT =—0.1
D, =7.527x10"*,D, =-2.0002x10™, D, =5.5268x10™*,
7, =0.7,U, =4.6052,U, = 4.6050,U,, =4.3322,

| U.=52905U=5.1763,U, =5177,U, =4.9498 ||

[6,=0.30595,8, =0.30579,6, = 0.42857,6, = 0.21693,]]

D, =0.27297,D, =0.68529, E, =9.5238,
D, =0.22645,E, =0.9,

) D, =8.6238,D, =0.12278, T = —0.01

=-0.001

»T =0.001




100T

Figure 3.13 Almost no insurance (Scientific Workplace driven)
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Appendix 4.1 Numerical examples of efficient partial-pooling Nash equilibrium

u,(W)=-", u,(W)=W, z,=05, 7, =02, 6=20, W =02, B=0.09,
D=0.19, 4, =09, 4, =05, 4, =

iy _
A LR A = 047368,

Ay = A(l—jghgfz;zl)—lgﬁﬂqh =0.47368, 7, = A7, "'(1_/?1)”1-1 > 73 =(1_'13)”L + A4y

N N N, N, N N,
— LT 1 = HB — HT — HT _ — LT — LT
(/11 T Ny+Ngg ’l ﬂ'] T Nyr+Nyp 91’2 = Nyr+Npg+Nyr ’/13 " Nyr+Ngr ’1 23 ~ Nyp+Nygr ’2'4 - N,_T+NH;,+NHT)

U = B+(W— Ty D), U,=B- e—ﬁ(W—nHD), U, = e, U,=B- o0 -m.D)

D, =n,D-B
D,=U,-U,
D3 =U4_U3

Solution is: {D, =0.005,D, =1.4141x107,D; =6.9152x10™

R=ml
B+W-n,D+(n, —n,)1,)=W
D. = -7y -z o 9W-R)
4= Tzy 7L g OW-D-A)

Solution is: {{D, =0.87512,1, =1.6667x102, B, =3.3333x10™

B+(W -z ,D+x,l,-B)=W
l-7y 1=z, o O(#-R)
7L g dF-DFiT)

U,=B+ er(— e’:g(W'D'P2+"))+ (1- ﬂ'L)(— e'a(W'PZ))

lom,  o0W-xys)

1-75

P e =)
U =B+ ”L(‘ e-0(W-D—7;,I;+13)) + (1_ ”L)(_ e—9(W—7r3]3))

B+ 7Ty (_ e—g(W‘D—(ll"L +1-2 )7y )14+14))+ (1 —n, )(_ e'9(W'(/11"L +(-4) 7y )14 ))___ _e-W
P, =(Am, +(1-4) 7, )1,
U7 =B+ ”L (_ e-e(W—D-('{l”L +(-2y )y )I4+14))+ (l _ ”L )(_ e—o(W'('ll”L +(-2)) 7y )’4))

D. = Iz l-xy o SF{lm -k )en M)
57 zy 7y O W-DLhrL+(1-2)xp Yar1s)

D6 =U7_U6
D,=U,-U;
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D, =0.39614,D, =4.7858x107, D, =2.8268x107,
I, =0.12069,1, =0.15164,1, =9.5465x107,
P, =5.5343x107%,P, =2.1957x107?,
U; =1.3575x107,U, =2.4839x107%,U, =2.9625x107>

Solution is:

1,=9.5465x10", P, =2.1957x10>

 ud =0.17178 < 2aelera) o~ 0.83333

GO -D+(4 (1= (=4 0-xp W1p }-e =0 P AL H1=3 )z )1p)

so ) ___ 17178« —2m0=%0) 3333 and there is no
uy ()~ ur (W) A= Yz - 7,)
Pareto-improving partial-pooling equilibrium.

The following simulation shows the L, are worse off when the tax breaks the
partial-pooling equilibrium into separating equilibrium. Therefore, the market
equilibrium is Pareto efficient.

W+At=B+W-zn,D+x,1,-P,)
B+(W-z,D+(z, -7, ), —(1=24,)t)=W + A,
B=ml

U,=B+x, (_ o 0 =D-P+1s—(1-2,)1) )+ (-7, )(_ o~ -P~(-1, ):))
D. = 1-7;, o 0W-B-(1-d4)) -7y
8 T Tx, gOW-D-AIU-4Y) gz,

D, =- o0 +aut) _ (B +7, (_ e—0(W—D—P5+15—(l—/14)1)) + (1 7, )(_ o0 -P~(-2, ):)))

.. ||t=4.3859x107,D, =1.3247,D, =-2.6249x107?,
Solution is: ) _2
I;,=0.16286,P, =3.2573x107°,U, =2.6214x10

W+At=B+(W-n,D+x,1,-P,)
Fo=ml
B+, (_ o0 -D-Ferl{1-4y )t)) (-7, )(_ e—G(W—Ps-(l—,{,)l)) (2%

U,=B+x, (_ e—e(W-D-iM—(I—A.)r)) +(1-7, )(_ e-e(W_IHI_A),))

Solution is: {[t=4.3859x10’2,16 =0.13299, P, =2.6599x1072,U, =1.9481x107*

P _ (1-A)r+P; _ (1-1,)4.3859x1072+2.6599x102 _
=023, LAk o s =0.37358
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X

Figure 4.15 Laissez faire partial-pooling equilibrium (Scientific Workplace driven)

0.18

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
X

Figure 4.16 From partial-pooling to type 3 separating equilibrium (Scientific
Workplace driven)
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Appendix 4.2 From partial-pooling equilibrium to type 1 separating equilibrium

u,(W)=—", u,(W)=w, z,, =04, 7, =0.1, =30, W =0.15, B=0.04,

_ _ 40-4)
D=0.14, 4 =075, % =0.733, % = 5ramisfinras » 4 = Z0AR-A XA

T =A7, +(1“’11)”H’ 7Ty =(1_33)”L + 7y

(ﬂ,=—N“7—1—/1,=—N”L-/7-Z= Nyr ]3 _23 —._NLT_)
Nyr+Nyp 2 Nyp+Nyg ? Nyr+Nyg+Nyp NL,+N,,T NLT+N,,,, > 4 Nyp+Nyp+Nyr

U =B+W-z,D), U,=B-e"™P") U =% U,=B-e "D

D =7n,D-B
D,=U,-U,
D,=U,-U,

Solution is: {[D, =0.016,D, =8.4969x107,D, =3.4202x10™*

A=l
B+W -nyD+(n, —7,),)=W
D — l—ﬂ'" ﬂ[; e"(”‘ﬂ)
=

™ 7L -0W-D-A+i)

Solution is: {D, =0.83154,1, =5.3333x102, B, =5.3333x10™

B+W -zyD+n,l,-B)=W
l—:rH -z, o#-R)
T Tr e-a(w DR+l3)

U, =B+”L( -a(W D- Pz+12))+(1 T )( —B(W-Pz))

1-;:3 _1-m,  gtW-mb)
~ —0(W—D—z3]3+13)

U, =B+ ”L( 0(W D—7r313+13)) (1 —7 )(_ e-a(w-;:;l,))
B+, (- e 00 P-lm i)l 1)) 4 (1 1, Yo @ 0 -l O-t)ea)l) ) gm0
P =&z, +(1-4)7,)1,
U,=B+, (_ o0 -D~(hm, +(1-4, )”H)]A*'h)) +(1- ,,L)(_ & O~ +1-4 )nﬁ)u))

D. = -y -z o OFamL+(-2)xp)la)
ST Zg 7y o OW-D{ax+(-4)wn Matla)

D, =U, U
D, =U7 _Us

Solution is:
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D, =1.467137501x1072, D, =1.011665336x107, |

D, =1.564035298x107,1, = 8.027468436x1072,

I, =9.180834600x107%,1, = 7.994 704889 x1072,

P, =1.610987374x1072, P, =1.399073356x1072,

U, =1.298164096x1072,U, = 4.429022896x107,
U, =1.454567626x10™

I,=7.994704889x107%, P, =1.399073356x1072

d =0.1801027864 <572r"n)<— 2 196254 682

o0 B ~D+(1 (151 (1-4 Yu-mpr \ip }-e~ 0 {aamsx=h)en i)

W+At=B+W-z,D+x,1,-P,)
B+(W -z, D+(ny 7, ), —(1-2,)t)=W + At

P =nx,
U,=B+7, (_ o~ -D-Pi+ls~(1-4, r)) (1 g )( —0(W—P5—(l—,l4)1))
D. = -7, o 0(W-B~(-a4)) I-7y
8~ =x e-@(W-Mqu—a):) N

D, = —e~ "% +4) —(B +7, (_ e—o(W—D-gus-(]-z‘):)) +(-7, )(_ e—a(W—Ps—(l—/I‘)t)))
U9 -_ e—e(wu.x)
Uo=W+ At
Dy, =U, —~1.454567626x107*
D, =Uy-(-¢)
D,=W+At—(B+(W -z,D+n,1,-P,))

Solution is:

+=8.108710298x107, D, = 3.950942783x1072,
D, =3.88748849x10™*,D,, =2.741518324x107,
D, =6.431975761x10™,D,, =-3.069603385x107%,
1, =8.036236766x1072, P, =8.036236766x10,
U, =1.454595041x1072,U, = -1.046579896x1072,
U,, =0.1519880860

-1J

L

(- /14 ):+P7 (1—2.4)8.108710298x10'3+8.036236766x10'3 =0.176162817

7. =0.1750000001, 8.036236766x10~
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Appendix 4.3 From partial-pooling equilibrium to type 2 separating equilibrium

u,(W)=-", u,(W)=W, 7, =04, 7, =0.1, §=30, W =0.15, B=0.04,
D=0.14, 4, =0.75, 4,

- - Ay -
=04, 4, = zrzpianeayas = 033333,

Ay =i = 0.5, 1= A, + (= Ay, 1y =(1=2)7, + Ay

N, N, N, N, N, N,
— LT ] - - 'HB — HI HT LT LT
(’?'l T Ny+Ngg ’l ﬂ’l  Nyr+Ny ’j’l T Nyr+Ngg+Npr ’ﬂ'j Nyr+Nyr ° 1 A‘A Nyr+Nyr ’2’4 N,_,-+N,,,+N,,,)

U, =B +(W_7'[HD), U2 — B_e—G(W—ﬂHD)’ U3 =—e -ow , (]4 =B-e -0(W-z,D)

D =r,D-B
D,=U,-U,
D,=U,-U,

Solution is: {D, =0.016,D, =8.4969x10™, D, =3.4202x1072

R=ml,
B+ (W 7Z'HD+(7Z'H —n'L)I,)=W

D l-zy  l-zm,  O(F-R)
Ty L e-0(W—D-I1+l|i

Solution is: {ID4 =0.83154,1, =5.3333x107, P, =5.3333x10™

B+(W-z,D+x,I,—B)=W
l-ItH _ 1=z, W-R)
T np o fW-D-P+lz)

U, =B+”L( ow-p- Pz+lz))+ (-7 )( -a(W-P,))

l—lr3 _ l-nL e F-m3l3)

m
U =B+m,(-e -6l-D-sa1s 1 N+ (1-7,)(ce®m)

Bty (o e PD-moi o1} (1 7 ) g0 Laristn) ) oo
P, =(Am, +(1-4)x, )1,
U7 =B+7TL( =6 —D~(A 7, +(1-2)my 1441, ) (1 T )( (W_(A'I”L"'(]"{l)”ﬂ)lt))

D. = l-my  l-z oW tm+(-4)mg )I4)
e e‘o(W‘D‘(‘l’H('-l])m)14+l4)

D,=U,-U,
D,=U,-U,

Solution is:
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D; =1.467137501x107,D, = 8.547349737x10™*, D, =1.564035298x10,
I,=8.027468436x107,1, = 0.1089480599,1, = 7.994704889x107,
P, =1.610987374x1072, P, =1.399073356x1072,
U, =1.298164096x107%,U, =1.369094128x107%,U, =1.454567 626 x10™>

1,=7.994704889x1072, P, =1.399073356x1072

-
GO -D+{is (-7, (121 1-rpg 1p -0~ 0% ~hinL +0-i)ari ) p

7 =0.1801 < fslemel s 0.53333

M- )N7xy -7

W+At=B+W-n,D+z,1,-P,)
B+(W-zyD+(my —m, ) I, —(1-24,)f)=W + At

Fi=nl
—9(W-D- ~(1- —-o(W-P.—(1-
U, =B+,[L(_e 6(W-D-Py+15-(1 ‘4)’))+(1—er)(—e o(w-P—-(1 /u)r))
D, = lom A ey
8~ g, OW-D-Bs{-4Y)  x,

D, =~ o0 +4) —(B +7, (_ e—ﬂ(W—D—Psd-Is—(l—l‘)t)) + (1_ 7, )(_ o7 -P —(l—l,)r)))
Solution is:

t=3.976171992x107, D, =—0.5051449427,D,, =1.027812533x1072,
I,=6.658723997x107%, P, = 6.658723997x10°,
U, =1.401476008x102

W+At=B+W-n,D+rx,1,-P,)
B+(W—-nyD+r, I, ~P,—(1-2,)t)=W + At

-z _ d-m, o OW-R-li-i))
7y gP(W-D-Ryrlg{1-4a¥)

U, =B+, (_ e-o(W”-HD-&uaf(l-z‘ )z)) . (l 7 )(_e-e(W-P6 —(1-14):))
D, =~ o007 +i) —(B +7, (_ o0 -D-Py+1s~(1-4, )r)) + (1 _ ”H)(_ e—ﬁ(W—Ps—(l—A)t)))
U,=- e—B(W+,14z)
U,=W+,t
D,, =U, -1.454567626x107*
D, =U, _(_e-ew)
D, =U, _(B+(W‘”HD+7THIP _Pp))

Solution is:

-

t=3.976171992x107,
D, =4.422579505x107,D,, = 2.952837045x107,
J D, =6.431975761x107,D,; = -2.366582716x107>,
I, =8.027468436x107%, P, =1.213370175x1072,
LUs =1.454597154x107,U,, =-1.046579896x107,U,, = 0.1519880860 | |

P _ (1=24)1+Ps _ (1-2,)3.976171992x107+1.213370175x1072 _
7£=0.1750000001 , S2k% — e =0.1759183217
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Figure 4.17 Laissez faire partial-pooling equilibrium (Scientific Workplace driven)
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Figure 4.18 From partial-pooling to type 2 separating equilibrium (Scientific

Workplace driven)
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Appendix 4.4 From partial-pooling equilibrium to type 3 separating equilibrium

u(W)=-e, u,(W)=W ,z, =04, 7, =0.1, §=30, W =0.15, B=0.04,

D=0.14, 4, =0.75, A, =04, 4, = iy = 033333,

Ay = = a40= zgyﬁl(;,;zl)zg),»;,,ag =05, 7, = A7, +(1_21)”H9 7Ty =(1_'1’3)7[L + 47y

N, N, N, N, N, N,
- 1 ———HB_ _ - - Hr___ 1 = LT LT
(A'l T Nyr+Ngg ’1 ]‘l = Ny+Ngg 9A2 = Nyr+Nyg+Nyr ’ﬂ‘i = Nyr+Ngr ’1 }“3 Nyr+Nyr ’/?’4 N,J+NH,,+NHT)

Ul =B+(W_”HD)’ U2 =B_e-9(W—7rHD), U3 =___e—9W, U4 =B_e—3(W -x,D)

D, =z,D-B
D,=U,-U,
D,=U,-U,

Solution is: {[D =0.016,D, =8.4969x107,D, =3.4202x107

R =nl
B+(W -, D+(zny—7,),)=W
D, = -7y -z #(F-R)

n x, g OW-D-A+N)

Solution is: {D, =0.83154,1, =5.3333x107, P, =5.3333x10"

B+W -n,D+n,I,-P)=W
- fr,, _l-my  gO-R)
T e-a(W-D —Py+l7)

U, =B+7’L( -a(W D- P2+12))+ (1 . )( —H(W-Pz))

1- 7r3 _l-m, g tF-m3n)

7 WD T
U, =B+ ”L( W —D-my 1y +1, ) (1 . )( —0(W -1, )

B+ 7Ty (_ ~0(W-D—~(4 7, +(1-2 )7y )1, +’4))+ (1 _ ”H)(— —0(W —(A7y +(1-4y )7y )’4))= _e—aW
P =(Am, +(1~4)7,)1,
U7 =B+7[L( —0(W -D-(4y7, +(1-2y )m g ) o +1, ) (1 T )( -0 (A7, +(1-4 )my )14))

D. = 1-ny 1wy o OWarp+(-d )npr i)
5T xy 7 e-o(W-D-(l-xﬂL*(l—il)’rH)lA+l4)

D,=U,-U,
D,=U,-U,

Solution is:
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D, =1.467137501x107%,D, =8.547349737x10™*,D, =1.564035298x107°,
1, =8.027468436x107%,1, = 0.1089480599,1, = 7.994704889x1072,
P, =1.610987374x1072, P, =1.399073356x1072,
U; =1.298164096x1072,U, =1.369094128x1072,U, =1.454567626x10™

1,=17.994704889x107*, P, =1.399073356x1072

&-HW

o0 (F-D+(4 (1-xL }(1-2 1-x5 ))Ip

e = 01801 < famlemn) = 0,53333

W+ At=(B+(W -z,D+x,I,—P,)) , Solution is: ¢ =3.976171992x10
Set £ =0.008
B+(W-n,D+(zy~7, ), —(1-4,)1)=W + At

F=r1
U,=B+x, (_ o0 -D-P+Is—(1-4, )r)) +(1-7, )(_ o0 -P—(-4, )t))
D. = I-m;, o OF-A-(1-44)) 1-zy
8 _;rL_ o OW-D-R+is-(-1}) 1,

Dy =- o0 +34) _ (B v, (_ o0 -D-P+15—(1-4, )z)) + (1 — 7, )(_ o OF-P=(1-44 )1)))

. Dy =-1.231000601x1072,D,, =-1.768029866x107,
Solution is: I
I;,=0.08,P, =0.008,U; =1.603666982x10

F=ml
B+, (__ e—ﬂ(W—D—P6+16—(l—/14)t)) + (1 _ ”H)(_ e—o(W—PG—(l—i.‘)t))= e O A)
U,=B+x, (_ o0 -D-, +16—(1-z4):)) + (1 —z, )(_ o W -F~(1-14 )x))
Uno - e—B(WH.‘I)
U,=W+,t
D, =U, -1.454567626x10*
D, = _e 0 +aa) _ (__ e-aw)

D,=W+Ait—(B+(W-n,D+n,1,-B,))
Solution is:

D, =1.109965703x107,D,, =1.256200477x107,D,, = 2.011914004x107,
I, =17.829355446x107, P, = 7.829355446x107,
U, =1.565564196x107%,U,, = -9.852796061x107,U,, = 0.154

#£=0.1750000001 ,

(=A )Py _ (1-4,)1+7.829355446x10° 0.1510897740

Ts 7.829355446x1072
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Appendix 4.5 From partial-pooling equilibrium to type 4 separating equilibrium

u (W)=, u,(W)=W ,z, =04, 7, =0.1, =30, W =0.15, B=0.04,
D=0.14, 4,=09, 4,=035, 4, =

Ads _
AR RANs)gs = 0-32642,

A= %f;‘;q%)%% =0.60622, 7, = Az, +(1- A7y , 7y = (1= A)7, + A7y,

- _ —_ Nyt Nyr — ] —=_ N7 Nir )
(h =7t 1A = 5,y = e Ay = it 1= Ay = i, Ay =

Npr+Nyp+Nyr
U, —B+(W—7rHD), U,=B-e*"") U =™, U, =B-e"" "

D =rn,D-B
D, =U,-U,
D,=U,-U,

Solution is: {[D1 =0.016,D, =8.4969x107,D, =3.4202x107

P =l
B+W -7y D+(wy —7,),)=W
_lemy  l-m,  0%-R)

D,

Ty 7, g 0W-D-A+N)

Solution is: {{D, = 0.83154,1, =5.3333x107, B, =5.3333x10™

B+W -z,D+z,l,-B)=W
1—7;,, _l-my  O-R)
- 7L -B(W-D Py+ly)

U5=B+7rL( ~otw-p- PZ*'Z))+(1 ﬂL)(—e"g(W'P’))

1-my _ l-m, e 0W-mi3)
—a(W D-m3l3+I3)}

Uy=B+7,(- "’(W""””’*’z’) (1- 7, ) e-m)
B+my (‘ g /Dl rlA ) )I‘”‘))+ [ T L )14))= e
P, =(Am, +(1-A)7y),
A O Al )
D. = I-zy 1=y W aas(-2)ag )ia)

ry 7wy e 0W-DN{aL+{1-4)xp Ja+la)
Dy = U,-Us
D, =U,-U;

Solution is:
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D, =0.23157,D, =1.1074x107,D, =3.0922x107,
I, =8.0275x107,1, =0.11194,1, = 7.4685x1072,
P, =1.6110x107,P, =9.7091x107,
U, =1.2982x107,U, =1.4966x107,U, =1.6074x107>

I, =7.4685%x107, P, =9.7091x10™

& ey = 0.16451 < Amlemn) - 0.43077

Ge~O(W-D+(4y (1=, W(1~4 1w ))ip -0 -2 )7y -7,

W+At=B+W-n,D+n,l,—F)
B+(W—n,D+(m, — 7z, ), —(1-2,)t)=W + At

P =nrlI,
U, =B+ ,;L( ~6(¥~D-~ Ps+’s‘(l'44)’)) (1—7&)(— e—e(W—Ps—(l-z‘).))
D. = 1-m; g OW-A-(1-24)) -7y

T Th, OWDRs(-a)) 1«

D, =- o0 +u) _ ( B+ ”: (_ o0 -D-Pi+I—(1-3, )r)) + (1 ~ 1y )(_ o 0 -R~(1-4)1) ))

.. t =6.8703><10'3,D8 =-0.17123,D,, =3.1220x107*,
Solution is: ) s
I, =7.6234x10",P, =7.6234%x107,U, =1.6113x107?

W+At=B+W-z,D+x,I,—P,)
B+W —7yD+ 7yl ~P,—(1-2,)t)=W + A,

l—frﬁ I—rrL o~O(F-Fs—(1-24 1)
- —o!w D-Pg+lg-U-24)1)

U,=B+ ”L( 0(W—D—P6+]6-(1—14)1)) (1 . )( W—Po—(l—}g)t))
D, =- o0 +d) _ (B + 7, (_e w —D-Pg+16—{1—1‘)1)) (l _ ”H)(_ e—0(W—P6-(l-l‘)t)))

Solution is:

1=6.8703x107,D, =-2.1144x10,
I, =8.0275x107%,P, =9.2396x107,U, =1.6155x1072
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W+At=B+W-z,D+x,1,-P,)
B+(W —n,D+ 7z l,—P,—(1-2,)t)=W + At
B+, (_ e—B(W—D—P-,+I7—(1—14)l)) + (1_ ”H)(_ e-0(W—P,—(1—14)1))___ _e 0 +A)
U,=B+x, (_ o0 -D-Py+1~(1-14 ):)) +(1-7, )(_ o0 -P=(-4, ),))
U“ —_ e—a(W+,1‘1)
U,=W+A,t
D, =U,,—1.6074x1072
D, =U,, _(_ e_W)
D;=U, —(B + (W —ayD+7yl, _PP))

Solution is:

t=6.8703x107,
D, =4.8581x107°,D,, =1.3048x107,D,, =-3.0568x107,
I, =7.6733x107*,P, = 7.8230x107,
U, =1.6123x102,U,, = —9.8042x107,U,, =0.15416

Py
77 =0.13

(1-A)r+P, _ (1-4,)6.8703x10+7.8230x10
L 7.6733x1072 =0.13721
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Appendix 4.6 Further tax

u,(W)=—-e", u,(W)=W, z, =04, 7, =0.1, =30, W =0.15, B=0.04,
D=0.14, 4, =075, 1, =04, A, =

Ay _
AR Aws = 0-33333,

Ay = v }3)+(I(IZ;)(])—/13)+Z,L, 0.5, m =Ax, +(1_’11)7[H’ 7Ty =(1_/13)7[L + 47y

— N - N _LN
(’11 N,_,-+N,,m 1 2’1 N,_,+N,.m 1‘2 - N,_T+N,,E,IZ,+NHT ’/13 - NLTf]TIHT 1- 1'3 N,_r+Nm ’ 4 )

Nir+Nyp+Nur
U, —B+(W—7z'HD), U, _B_e-o(W-nHD), U, =_e—9W’ U, =B_e—6(W -x,D)

D =r,D-B
D,=U,-U,
D,=U,-U,

Solution is: {[Dl =0.016,D, =8.4969x107, D, =3.4202x107*

R=ml
B+ (W ﬂ'HD+(7'[H z ))=W
-6(W-R)

D l-ay _Imp ¢
Ty 7, ¢ PW-D-A+N)

Solution is: {D, =0.83154,I, =5.3333x10, B, =5.3333x10°

B+(W-z,D+x,I,-B)=W

Iy _ 1-my e P-R)
Ty 7L _-ﬁ(m)'

U, =B+ ,,L( -e(W-D-Pz+lz)) (- ,,L)(_ e—ﬂ(W-Pz))

l-:r3 1—7!! ~0(W-m3l3)
-0 W-D-x3l3+13

U, =B+ ”L( —9(W—D-n313+z,)) + (1 ju )( -a(W—ng,))
B+m, (_ o O W -D-{Aim, {12y )14+14)) (-7, )(_ -0 ~(am +{1-)my )14))= _e™
P, = (’117[1. +(1_)'l)”H)I4
U,=B+x, (_ o0 -D-ms (=4 )y )14+14)) +(1- ,,L)(_ o O+ -2)my )14))

_lmy 1wy O Am0-A)ra Ma)
D, = T AL g P DAL A AR TatIa)

Dg=U,-U,
D7 =U7 _Us

Solution is:
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D, =1.467137501x107%,D, =8.547349737x10™*, D, =1.564035298x107?,
1, =8.027468436x107%,1, =0.1089480599, 1, = 7.994704889x1072,
P, =1.610987374x107%, P, =1.399073356x1072,
U, =1.298164096x107%,U, =1.369094128 x1072,U, =1.454567626x10™>

I, =7.994704889x1072, P, =1.399073356x10

il _ wy{l-7, —
GO -D+ay (17 J(1-20 Y-y Nip }-a~ 0¥ HAme(1-a)ax)1p) ™ 0.1801 < %04 é(frﬂ = 0.53333

W+At=B+W-n,D+nx,1,-P,)
B+(W-z,D+(m, —m,)I,—(1-2,)t)=W + At

F=ml
U,=B+ ”L( —o(W—D-P5+15—(1—,14)1)) (1 7, )(_ e-o(W-Ps—(l-z.,):))
D, = L ey — 22
.. t=3.9756x10,D, = -0.5052,
Solution is: 5 , )
I, =6.6585x107%,P, = 6.6585x10' , Uy =1.4014x10°

W+At=B+W~z,D+x,I,—P,)
B+(W -z D+, I,~P,—(1-4,)t)=W + At

l—zr,, _ l—;rL e~ OF=-Ps~(1-24)1)
- e =)
(J9 = B+7‘[L( '0(W‘D‘as+]6‘(l‘14)’))+ (1 T )( e-ﬁ(W -P,—(1-4,)t)

D, =- o0 +1d) —(B + ”H( —O(W-D-P,+1,~(1-4,) 1)) (1 p )( —0(W—P6—(1—/L)I)))

Solution is:

t=0.0039756,D, = 4.426049417x107*,
I =8.027468436x107%, P, =1.213427374x107%,U, =1.454575315x102

P,, =0.175 0000001 (1—/14)tﬂ __ (1-2,)0.003975 6+1.213427374x102 =0.1759218844

8.027 468 436x1072

W+At=B+W-n,D+n,l,-P,),Solution is : t=3.9756x107
Set ¢ = 0.0045

B+(W -z, D+(m, -7, ), —(1-2,)t)=W + At

P =m];
U,=B+7, (_ e WD) (1 )(_ e—o(W—Hl—n.)r))
D. = ez, o W-R{1-24)) l—nﬂ
8~ 7 e —olw DRl {124 ))

Dlo =_e—0(W+,1.t) (B +7z ( —-8(W-D-P,+1,—1-4, )I)) (1 e )( —9(W-Ps-(l—/14)t ))
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D, =—0.45164258,D,, =8.466574595x107,
Solution is: {| I; =6.833333333x107%, P, = 6.833333333x10°%,
U, =1.434577182x1072

B+(W—ryD+ryli~P,—(1—2,)t)=W + At
lmy _lomy  o-n-a))

TH 7y, g O -DFerlg1-24 )]
Us,=B+rx, (_ o 0 -D-Fetls(i-2, )r)) + (l _;L )(_ PB4, ),))

D,=- o0 +a) —(B + 7, (_ e-e(W-D-zz+16-(1-z4):)) + (1_ 7, )(_ e-a(w-a-(l-/u)z)))
D, =U,-1.454575315x10
D,=W+At—(B+(W-x,D+x,1,-P,))

D, = _e-G(W+/141) _ (_ e—ﬂ(W+143.9756x10‘3))

D, =1.25731309x107*,D,, =1.994376892x107*,

D,, =2.61914004x10™*,D,, =8.200174529x107,

I, =8.027468436x1072, P, =1.160987374x1072,
U, =1.474519084x1072

Solution is;

When ¢=3.9756x10"

The H,: B+(W -z,D+x,1, — P,)=0.1519880860,

The H,: —e P4 = _o-o+23515640°) _ 1 046588876107

The L,: B+, (- " PRtecl-200)y (1 7, ) e 0 R-0-40)) =1 4545753151072

When ¢ = 0.0045
The Hy: W+ A4,t =0.15225

The H,: —e ™) =_1.038388701x10™
The L;: B+, (- " PR+e-l-20 )y (1 7 ) e 0 R-0-4))) =1 474519084 x102
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