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Abstract

This thesis is an empirical study o f the volatility and correlation in financial markets, and consists 

of two parts: The first part is on econometric modeling o f the volatility and correlation (Chapter 1). 

The second part is on the pricing implication o f the correlation and volatility as risk factors 

(Chapter 2 and 3). The thesis begins with proposing a regime-switching multivariate GARCH 

model o f volatilities and correlation. We incorporate the Markov-switching mechanism into the 

Constant Conditional Correlation model (CCC). The proposed model allows us to capture the 

different dynamics in both the volatilities and correlations in different regimes. It is particularly 

useful in examining the contemporaneous relationship between the unobservable volatility and 

correlation processes. We apply our model to the stock market index paired with two bond market 

indexes.

Then in the second chapter, we estimate the risk premium for the average correlation in the 

cross-section o f the US stock market. The average correlation is the cross-sectional average o f the 

correlations between each pair o f stocks in the stock market. We find there is a negative and 

statistically significant risk premium for the average correlation controlling for other factors such 

as Fama-French’s SMB and HML as well as the liquidity factor and momentum factor.

The third chapter focuses on the risk-retum relation using a set o f variance-related risk 

measures. We combine two lines o f literature both o f which find significant forecasting power o f  

some risk measures for stock market returns: variance risk premium literature and studies on 

average variance-correlation decomposition .We illustrate how these two approaches can be 

related to each other, and empirically evaluate the relative importance o f two approaches.
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Introduction

The market risk o f financial assets is generally measured by the second moment o f their returns. For 

a portfolio with multiple assets, its risk is jointly determined by the variances o f individual assets 

and the correlations between each pair o f assets. For an investor with a typical risk-averse utility, he 

will optimize his asset holdings taking into account o f the correlations and variances o f  all the assets 

in his portfolio. This thesis is an empirical study on the econometric modeling and empirical pricing 

of the volatility and correlation in financial markets.

In chapter 1, we study the correlation and volatilities o f the bond and stock markets in a 

regime-switching bivariate GARCH model. There are a few early attempts o f incorporating the 

Markov-switching (MS) mechanism into GARCH-type models, such as Cai (1994), Hamilton and 

Susmel (1994), Gray (1996), and Haas, Mittnik and Paolella (2004). The only literature combining 

GARCH with regime-switching in a multivariate context is Hass and Mittnik (2007). In this paper, 

we extend the univariate Markov-Switching GARCH of Haas, Mittnik and Paolella (2004) into a 

bivariate MS-GARCH model with Conditional Constant Correlation (CCC) specification within 

each regime, though the correlation may change across regimes. Our model allows separate state 

variable governing each o f the three processes: bond volatility, stock volatility and bond-stock 

correlation. This specification allows us to study both the intertemporal and contemporaneous 

relationships among the tree latent variables, which is not feasible in the traditional GARCH setup. 

Our main findings include: A separate state variable for the bond-stock correlation is needed while 

the two volatility processes could largely share a common state variable. The "low-to-highM 

switching in stock volatility is more likely to be associated with the "high-to-low" switching in 

bond-stock correlation while the "low-to-high" switching in bond volatility is likely to be associated 

with the "low-to-high" switching in correlation. The bond-stock correlation is significantly lower 

when the stock market volatility is in its high regime, but higher when the bond volatility is in its 

high regime.

Then in Chapter 2, we estimate the risk premium for the correlation risk in the US equity



market. The risk premium for the variance of market index in equity market has been studied By 

Harvey and Siddique (2000), and more recently by Ang, Hodrick, Xing and Zhang (2006). Using 

the average correlation instead o f the variance of market index as the aggregate risk measure, this 

project is motivated by the latest empirical finding that the cross-sectional average correlation and 

average variance might have very different pricing implications in the equity market. For example, 

Pollet and Wilson (2009) show that the average variance has negative correlation with future market 

returns while the average correlation positively predicts future market returns. By studying the 

option data, Driessen, Maenhout and Vilkov (2009) indirectly show that the (average) correlation 

risk is priced while the (average) variance risk is not. Recognizing that the average correlation 

might be a better measure for the aggregate market risk, we are o f the first in studying the pricing 

implication o f the average correlation in the cross-section o f the equity market. We find that the 

estimate o f correlation risk premium is significantly negative after controlling for the Fama- 

French.s SMB and HML factors as well as the liquidity and momentum factors. The annual return 

spread between the high correlation-beta stock portfolio and the low correlation-beta stock portfolio 

varies between -2% and -6% controlling for other risk factors.

Finally, in Chapter 3 we extensively examine the risk-retum relation by employing a set o f 

variance-related risk measures, which are recently found important in forecasting future market 

returns. These risk measures are mainly developed in two separate lines o f literature. Among the 

first line o f literature, Pollet and Wilson (2009) decompose the market variance into the average 

correlation and average variance, and find the two components can positively and negatively 

forecast future market returns respectively. The second line o f literature, represented by Bollerslev, 

Tauchen and Zhou (2009), finds that the variance risk premium, defined as the difference between 

implied variance and realized variance, can significantly forecast future market returns. We 

illustrate that these two approaches can be related to each other and empirically evaluate the relative 

importance o f the two approaches. Our evidence indicates that two components o f variance risk 

premium (implied market variance and realized market variance) contain very similar information



to that o f the average correlation and average variance respectively. A combination o f the average 

variance and implied market variance provides the best forecast o f future stock market returns, 

beating the performance o f variance risk premium or the average correlation-variance combination, 

and stays significant after controlling for traditional risk factors. Our findings indicate that the 

variance-correlation decomposition can be the potential driving force o f the forecastability o f the 

variance risk premium.
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Abstract

This paper studies the correlation and volatilities of the bond and stock markets in a regime- 

switching bivariate GARCH model. We extend the univariate Markov-Switching GARCH of Haas, 

Mittnik and Paolella (2004) into a bivariate Markov-switching GARCH model with Constant Con­

ditional Correlation (CCC) specification within each regime, though the correlation may change 

across regimes. Our model allows separate state variable governing each of the three processes: 

bond volatility, stock volatility and bond-stock correlation. We find that a separate state variable 

for the correlation is needed while the two volatility processes could largely share a common state 

variable, especially for the 10-year bond paired with S&P500. The "low-to-high" switching in stock 

volatility is more likely to be associated with the "high-to-low" switching in correlation while the 

"low-to-high" switching in bond volatility is likely to be associated with the "low-to-high" switching 

in correlation. The bond-stock correlation is significantly lower when the stock market volatility is 

in the high regime, but higher when the bond volatility is in its high regime.

Keywords: Regime-Switching, GARCH, DCC, CCC, Bond-Stock Market Correlation
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1 Introduction

The correlation between bond and stock markets plays an important role in asset allocation as well 

as risk management. In tranquil time, investors would choose to invest more in equity markets 

to seek higher returns while they might "flee" to bond markets in turbulent market condition. So 

accurate modeling of the bond-stock correlation can provide investors with better diversification 

or hedging benefit. The most common econometric approaches in modeling correlations of multi­

ple assets are the multivariate versions of the general autoregressive conditional heteroskedasticity 

(GARCH) type models of Engle (1982) and Bollerslev (1986)1. The GARCH type models have a 

fixed persistence level for the covariance process throughout the whole sample. However, there is 

evidence that volatility is less auto-correlated and has larger response to a shock when the volatil­

ity is in a higher level. For example, Hamilton and Susmel (1994) distinguish a low-, moderate-, 

and high-volatility regime in weekly stock returns, with the high-volatility regime being associated 

with economic recessions. However, very few papers have studied regime-switching in correlation. 

Because of the hedging relation between the bond and stock markets, bond-stock returns might 

have distinct relation in tranquil and turbulent market conditions. So allowing regime-switching in 

both volatility and correlation might provide better insight into the dynamic properties of the co­

movement of the stock and bond markets. Another motivation for using regime-switching GARCH 

model is that forecast errors are much more costly in high-correlation state than in low-correlation 

state for a risk averse investor, which is shown by Engle and Collacito (2006). Regime-switching 

would be better in capture extreme swings in correlation.

In this paper, we investigate the bond-stock correlation in a regime-switching bivariate GARCH 

model that has separate state variable for each of the three latent processes: bond volatility, 

stock volatility and bond-stock correlation. The model allows us to study the intertemporal and 

contemporary relation among the three state variables, such as the correlations in different market 

conditions characterized by the volatilities of the two markets. In the literature, even not limited to 

the bond-stock context, there is no study on these kinds of effects. In a study of international stock 

markets, Haas and Mittnik (2007) estimate a diagonal regime-switching GARCH model2. In their 

specification, all the individual variance and covariance processes share the same latent Markov

^ o r  a survey of multivariate GARCH, see Bauwens, Laurent and Rombouts (2006).
2The actually sepcification in their paper is BEKK model of Engle and Kroner (1995), which guarantees positive- 

definetiveness of the covariance matrix.
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state variable. Even though it can nest a similar model to ours by increasing the number of states 

in their model, it is very difficult to recover the regime-switching parameters of the correlation from 

their model. Regime-switching in covariance could be caused by switching either in variance or in 

correlation. Our model is able to separate these two effects by allowing a separate latent state 

variable for each latent process.

Using the returns from a one-year bond, ten-year bond, and the S&P500 index, we study the 

bond-stock correlations for bonds with different maturities. Our main findings include: First, the 

contemporary state correlations indicate that a separate state variable for the bond-stock correlation 

is needed while the two volatility processes could largely share a common state variable, especially 

for the 10-year bond paired with S&P500. Second, the "low-to-high" switching in stock volatility 

is more likely to be associated with the "high-to-low" switching in correlation while the "low-to- 

high" switching in bond volatility is likely to be associated with the "low-to-high" switching in 

correlation. As a result, the expected bond-stock correlation conditional on stock’s high volatility 

state is significant lower than that conditional on stock’s low volatility state. However, the results 

are opposite for those conditional on bond’s volatility states. Since shocks to the bond price must 

be mainly related shocks to the discount factor, which will move the bond and stock prices in the 

same direction, the bond-stock correlation will increase as a result. However, when there are shocks 

to the stock price, they should be mainly related to the cash flow news, which affect the bond and 

stock prices largely in the opposite direction3. As a result, the bond-stock correlation will decrease. 

Finally, we find that when the bond market is in its high volatility state and the stock market is 

in its low volatility state, the estimates of bond-stock correlation in both high and low correlation- 

states are non-negative. But when both the bond and stock markets are in high volatility state, 

the bond-stock correlation has the highest correlation estimate at its high correlation-state and 

almost lowest correlation estimate at its low correlation-state. This might be attributed to the 

relative impacts of shocks to the cash flow and shocks to the discount factor on the pricing of bonds 

and stocks at different stages of the business cycle. According to the findings of Boyd, Hu and 

Jagannathan (2005), stocks are dominated by the cash flow effect during recessions while respond 

mainly to the discount rate news during expansions. As a result, the bond-stock correlation should

3 Cash flow news ultimately will also affect discount factor indirectly. A positve cash flow news will increase 

both the growth expectation and the discount factor. The increasing growth expecation and discount factor work in 

opposite way on the price of stock. When the former dominates the latter, the bond and stock move in opposite way.
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be positive during expansions and negative during recessions, which is also consistent with the 

findings of Anderson, Bollerslev, Diebold, and Vega (2007). However, we also find large swings 

in the bond-stock correlation between positive and negative values after 2003, which can not be 

explained by business cycles, and possibly can be driven by the time-varying equity premium.

The paper is laid out as follows: Section 2 presents a review of the recent literature on bond-stock 

correlation and regime-switching GARCH, while section 3 covers the econometric methodology 

employed in this paper. In section 4, the data and estimation method is explained while some 

comparative quantities are also introduced. Section 5 presents the empirical results and section 6 

concludes and discusses areas for further research.

2 Literature R eview

The main econometric model in this paper is a multivariate extension of univariate Markov- 

switching (MS) GARCH model of Haas, Mittnik and Paolella (2004). The basic idea of their 

approach is to assume there are several parallel GARCH processes, and the volatility is switch­

ing among these processes. Haas and Mittnik (2007) also propose a multivariate extension of the 

model. Their extension models the covariance matrix directly, which is governed by a single regime- 

switching state variable. In our simple bivariate context, we are able to  assume both volatilities and 

correlation have their own state variables. This generalization allows ms to answer more interesting 

questions about the bond-stock correlation. Pelletier (2006) proposes a regime-switching constant 

correlation model and claim to have better fit than Dynamic Conditional Correlation (DCC) model 

of Engle (2002). However he does not apply the model to study the bond-stock correlations. We are 

similar in the correlation part of the model but we further allow regime-switching in each volatility 

series.

Regime-switching modeling of volatility is relatively new in literature. As mentioned above, 

GARCH type models are the main approaches in modeling volatility of financial asset returns. 

However, it has been argued that the close-to-unity of the persistence parameter estimate in many 

GARCH models could be due to the regime-switching in volatility- For example, Diebold and 

Inoue (2001) analytically show that non-persistent series with stochastic regime switching can 

appear to have strong persistence, or long memory. In the volatility context, Mikosch and Starica 

(2004) show that deterministic shifts in the unconditional variance do indeed drive the estimate of
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persistence parameter toward unity. A natural step forward is to combine a GARCH type model 

with Markov-switching mechanism, which has been widely adopted in economics since Hamilton

(1989). Cai (1994) and Hamilton aond Susmel (1994) are among the first to combine an ARCH 

model with Markov-switching. The reason why they restrict their attention to ARCH structures 

within each regime rather than a GAiRCH-type structure is due to the problem of path-dependence 

of GARCH, which makes maximum Uikelihood estimation infeasible (to be detailed later). The first 

attempt to combine the GARCH wiith Markov-switching is Gray (1996), which is essentially an 

approximation. Haas, Mittnik and Paolella (2004) propose an approach where regime-switching 

is both on parameters and the latent process, and so it is able to avoid the path-dependence 

problem while keeping the GARCH structure. In this paper, We adopt their approach and make a 

multivariate extension for our study of bond-stock correlations.

On bond-stock correlations, the jpast literature is mainly using the GARCH-type models. Cap- 

piello, Engle and Sheppard (2006) propose an extension of the DCC model to allow for different 

structure parameters for different correlation pairs. They estimate the model using weekly returns 

on the FTSE All-World equity indices for 21 countries and government bond indices for 13 coun­

tries, and find a significant asymmetric affect in the conditional correlation between stock and 

bond return, and that the correlations tend to decrease following an increase in stock volatility or 

a negative stock return. De Goeij amd Marquering (2004) employ a similar approach to Cappiello, 

et al. (2006). They estimate a diagonal VECH extension of Glosten, Jagannathan and Runkle 

(1993) model using daily returns om a short-term bond, a long-term bond , and the returns on 

the S&P 500 and NASDAQ indexes. They find strong evidence of time-varying conditional co- 

variance between stock and bond m;arket returns. Their results indicate that not only variances, 

but also covariances respond asymmetrically to return shocks. But they do not study the implied 

correlation dynamics from the VECH framework. Gulko (2002) studies the change in correlation 

between stock and bond market around period of market crashes. He finds that stock and bond 

correlations change from weakly positive in normal time to strongly negative during stock market 

crashes, which means treasure bonds could act as a hedging vehicle against stock market crashes. 

Li (2000) studies the impacts of various macroeconomic factors on stock and bond correlations. He 

first uses daily data to construct a non-parametric estimate of the correlation for a given month, 

the so-called "realized correlation", then regresses the realized correlation on various macro factors. 

He finds that long-term expected inflation and real interest rate has the largest (positive) impact



on the stock-bond correlation. Baur and Lucey (2006) study the daily stock-bond correlations of 

seven European countries. They first estimate the DCC model of Engle (2002) to obtain a time 

series of estimated conditional correlations between each stock and bond return series, and then 

regress these estimated conditional correlations on some factors to study the sources of variation in 

correlations. Although suffering from econometric problems by using estimated correlations in the 

second-stage regression, they find that the correlation for US markets are about 0.5 at the normal 

time and -0.4 at the 1997 crisis. Finally, the recent work of Anderson, Bollerslev, Diebold, and 

Vega (2007) find that during the expansion the stock-bond correlations are positive albeit small, 

whereas during the contraction they are negative and large4, which is largely consistent with our 

results.

3 Econom etric M ethodology

3.1 U nivariate M arkov-sw itching G A R C H  (M S-G A R C H )

To model the regime-switching behavior in the univariate volatility process, we start with the 

standard two-state Markov-switching GARCH(1,1) model:

Pt — +  e*

€t ~  N(0,Vt)

Vt = ^s{t) +

P(s(t) =  i\s(t — 1) =  j )  = Pij with i = 0,1 and j  = 0,1 (1)

This model allows the volatility process to have different dynamics with different persistence

and level parameters in different regimes. And the latent Markov state variable s(t) determines 

which regime prevails at each point in time. Model (1) look apparently simple and intuitively 

straightforward. But because the recursive structure of GARCH, current conditional variance is 

decided by the complete history of the state variable. So the (conditional) likelihood of observa­

tion at time t, ft{Rt\0\ s(0)), needs to be computed from ft(R t, s(l)|0; R[t-i,o]} s (0))

4 They calculated the unconditional correlations separately for the expansion period from July 1998 through 

February 2001 and the contraction period from March 2001 through December 2002. And determination of contraction 

and expansion could be found in their paper.
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through integration on s(l) up to s(t). So as the number of observations increases, the integra­

tion dimension increases, which makes Maximum likelihood estimation of this Markov-switching 

GARCH essentially infeasible in practice. To avoid the path-dependence problem while maintain­

ing the GARCH feature of modeling, we adopt an approach proposed by Haas Mittnik and Paolella 

(2004). The idea, for a two-state model, is to model two parallel volatility processes, each of which 

has the GARCH dynamics. The latent Markov state variable determines which process is selected 

for each time. Its trick is switching on both parameters and processes while the standard MS model 

only switches on parameters. Formally, it is as follows:

R t  =  P't +  et 

et ~  N( 0, Vs

Vi,t = +  fijV if-1 +  &i€t-\ i = 0,1

P(s(t) =  i\s(t — 1) =  j)  = Pij with i = 0,1 and j  = 0,1 (2)

The benefit of this approach is to be able to avoid the path-dependence problem so we are 

able to compute the likelihood function without integration over the whole path of the volatility 

process. As suggested in Haas, Mittnik and Paolella (2004), the interpretation of and on are still 

the persistence parameters in each regime. But the unconditional level in each regime is not only 

characterized by the three parameters of the GARCH formula. The transition probability Pij, which 

determines how often the process is in a regime, also determines the expected volatility level of a 

regime. The formula for computing the unconditional level of volatility is in the Appendix. Another 

property of this model is that one of the regimes could be non-stationary, i.e. f$i + ati >= 1, but

the whole system could still be stationary if the transition matrix together with all the persistence

parameters satisfies a certain condition, which is also detailed in the Appendix.

3.2 T he m ain  m odel: M arkov-sw itching C C C -G A R C H (M SC C C )

A direct multivariate generalization of model (2) is illustrated in Haas and Mittnik (2007). They 

base the regime-switching on the BEKK model of Engle and Kroner (1995) model. But their 

setup is not well-suited for our research purpose. Since volatility may have different dynamics to 

correlation, we would like to have an explicit process for the correlation, as well as a corresponding

10



state variable. So we adopt the Constant Conditional Correlation (CCC) model of Bollerslev

(1990) as the base model, and allow both the individual volatility processes and correlation process 

to switch among different states. While using the DCC Model as the base model would be more 

general, we will explain later why we use CCC as base model.

To be specific, we model the covariance of the bond and stock markets as three components: 

stock market volatility, Vt3, bond market volatility, Vtb, and the correlation between two markets, 

Ct- Let SI be a two-state variable governing the regime-switching of Vt3, and a two-state variable 

S b governing that of V b. Then for each of the four combinations of S 3 and S b ( hereinafter called 

"combined states"), we further split it into two "sub-states" which correspond to high and low 

correlation regimes within each combined state. Finally, to represent the regime-switching of the 

whole covariance matrix, we define a general state variable St with eight states to govern the 

regime-switching of the covariance matrix. The GARCH parameters of stock volatility are the 

same in states {1; 2; 3; 4} or {5; 6; 7; 8} , the bond volatility has the same set of GARCH parameters 

in {1; 2; 5; 6} or in {3; 4; 7; 8} .And we do not restrict the low and high correlation level in those four 

combined states to be equal. So there are eight possible values for correlation. Table 1 provides 

detailed definition on St. This specification allows us to investigate how the regime-switching of 

two volatility processes responds to each other, and between what levels the correlations would 

switch within each of the four combined sates.

With the definition of St, we formally define our general bivariate Markov-Switching Constant 

Conditional Correlation model (MSCCC). Let R* = j denote the returns of stock index

and bond, either 1-year bond or 10-year bond, and ^  ^  j be conditional mean vector,
T

be the residual vector. Then the main model is as follows:

11



R t  — Pt  +  e *

€t ~  N(0, V 3(t),t)

with 0 =
0

and V s(t),t = ia
S J? e*
.

iS
l

'e-
K A

t
'c-

K

0 V bs(t),t

V£ =  w? +  PiV*t-i + a i(e- t - i f  i =  1 .2 -8  and k =  s(stock),b(bond)

Ci,t = Ci i=  1,,2...8 (3)

P(s(t) = i\s(t — 1) =  j)  =  with i and j =  1,2 • • • 8

Model (3) is different from Haas and Mittnik (2007) mainly in two ways. First, our base model 

is the Constant Conditional Correlation model (CCC), which means that we explicitly model the 

correlation. This provides us direct observation of how correlation interacts with the volatilities 

in both markets. As mentioned earlier, Haas and Mittnik (2007) use BEKK as their base model. 

Although their approach is very flexible in that it allows any interaction of the squared terms and 

cross product, it is very difficult to recover the regime-switching parameters of the correlation from 

their model. Their model could only tell how the covariance switches among different regimes, 

instead of the correlation. The covariance could appear to have a jump because of either one or 

both of the volatility processes have a jump even when the correlation remains constant. Our 

setup enables us to disentangle these two effects neatly. Secondly, our setup allows us to do two- 

stage maximum likelihood estimation, which is useful in higher dimension problem or robustness 

for complex model estimation. The justifications for the two-stage estimation of the model are 

similar to those of CCC or DCC5. During the estimation, for identification purpose we restrict 

the unconditional stock-volatility level in {1; 2; 3; 4} to be lower than that in {5; 6; 7; 8}, and the 

bond-volatility level in {1; 2; 5; 6} lower than that in {3; 4; 7; 8} . Then in each of the four "combined 

states", the correlation level in states labelled in smaller number is higher than that in state labeled 

by larger number (See Table 1 for full details).

5 We have not formally derived the stationarity conditions for the joint model. But since the correlation part of 

the model does not affect stationarity, the stationarity conditions for the joint model are similar to the conditions for 

the univariate model in Haas, Mittnik and Paolella (2004). Basically if both of the non-stationary states of the two 

volatility processes are transient and have high probability to switch to the stationary states, then the joint model is 

stationary.
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3.3  D iscussion  on  m odel specification

A common concern about regime-switching models is the number of regimes for the models. By 

allowing each latent process to be governed by its own state variable, our joint state variable 

St needs to have eight states to characterize the joint model. Although as mentioned before, 

our model is much more restricted than the general 8-state model without restrictions since the 

GARCH parameters in our model are only switching between two sets of values. However, it is still 

natural to consider smaller models by shrinking the general one, which is a way of assessing the 

importance of having different state variable for different process. We could restrict St in various 

ways, which would result in different restricted models. For example, the simplest restriction is 

to let the volatility processes of both markets and the correlation share the same two-regime state 

variable. Alternatively, we could allow two volatility processes share the same state variable, but 

the correlation has a separate state variable. The full set of specifications we considered in this 

paper are detailed in Table 2.

On the choice of the "base model", a more general framework would be building the regime- 

switching upon the DCC, which allows for time-varying correlation within each correlation regime. 

But because DCC has a volatility-standardized term in its recursive formula, combining DCC with 

the regime-switching GARCH would hugely complicate the already complicated model structure. 

And as we will see in the result section below, three out of the four combined states are only 

visited in very low frequency. Adding 16 extra DCC parameters would not likely produce a great 

improvement. And we believe eight correlation states should capture well the variation in the 

bond-stock correlation. As results from Pelletier (2006) suggest, switching constant correlation is 

adequate to capture the dependence in the correlation.

4 E stim ation and Com parative Statistics

4.1 D a ta  and estim ation

We use daily returns from both the stock and bond markets to estimate the model. Stock market 

returns are computed as daily returns on S&P500 index from WRDS. For the bond market, two 

series of daily returns are computed from bond yields on 10-year and 1-year US government bond, 

which are available from federal reserve bank in Chicago. The sample period is from January 5,

13



1986 to December 29, 2006. Table 3 presents the statistics summary of the two return series.

Before estimation of the volatility models, we filter each return series by an ARMA(p,q) model, 

with p and q chosen to have the best fit according to Bayesian Information Criterion (BIC). The 

optimal filtering orders are also presented in Table 3. Because bond returns are computed from 

bond yield, which itself is computed by some interpolations of "rolling bond" returns, there are 

some autocorrelations in the bond returns, which does not necessarily mean there are any arbitrage 

opportunities in the market.

After we estimate the conditional mean by an ARMA model, we can estimate the main Markov- 

Switching volatility model (3). The estimation are done in a two-step procedure. First, for each 

of the two time series, a univariate two-regime MS-GARCH model (2) is estimated. Then with 

w k, and a k fixed at the estimates from the previous stage, the rest of the parameters of model 

(3) are estimated.

With 6 GARCH parameters for each volatility process, 8 correlations and 7 * 8 — 56 transition 

probabilities, the general model has 76 free parameters. The two-step procedure could separate the 

problem in a lower dimension sub-problem, which could provide robustness in estimation. However 

there are still 64 free parameters in the second stage estimation, and the numerical standard errors 

of the estimates are difficult to compute. To get a more robust standard error estimate of the general 

transition matrix, we further fix those transition probabilities with second-stage estimate less than 

0.0001 to be zero. This results in a estimation problem with only half of the parameters. The specific 

maximum likelihood estimation algorithm is standard. It combines a Markov-switching estimation 

algorithm with GARCH likelihood calculation. The details can be found in the Appendix.

4.2 C om parative sta tistics

Once we finish the estimation of the joint model, we analyze the intertemporal and contemporary 

relationships among the three state variables and three latent processes by the following comparative 

statistics. All of them are mainly derived from the general transition matrix of the main model, 

and their calculations are detailed in Appendix.

Conditional transition probabilities

As ways of analyzing the information contained in the transition matrix, we compute two types 

of "conditional transition probability". The first one is t — conditional transition probability,
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which is conditional on time t information. It is the probability of one state variable’s regime- 

switching from t t o t + 1 given the state of another state variable at time t. For example, Pr(S^+1 = 

high\Sl = low; S$ = high) is the transition probability of bond volatility switching from low to 

high regimes conditional on the current stock volatility state being in high regime. So this kind 

of conditional transition probabilities can reveal the forecasting benefit of joint modeling. If this 

transition probabilities are significant different from the marginal transition probabilities implied 

by the transition matrix, then by joint modelling, we have better forecasting power for the future 

state of the considered variable. Due to the focus of the paper, we only compute the t —conditional 

transition probabilities of the bond-stock correlation conditional on volatility states in the bond 

and stock markets.

The second one is £+1 — conditional transition •probability, which is conditional on information 

of up to time t +  1. It is the probability of one state variable’s regime-switching from t to t +  1 

given that there is a regime-switching from t to t +  1 in another state variable. For example, 

Pr(5f+1 =  high\St+1 = high; {S% =  low ; S% = low}) is the transition probability of bond volatility 

switching from low to high regime conditional on stock volatility’s switching from low to high 

regimes. These conditional transition probabilities are ways of measuring how two considered state 

variables jump together in their own directions. While the t — conditionals are on intertemporal 

relationships, t +  1 — conditionals are evaluating the contemporary relationships among the state 

variables.

Conditional expected correlations

Another type of statistics we are interested in is the expected correlation conditional on the 

contemporary volatility state in either market. For example, E{Ct\Sf =  low) is the expected 

correlation given a low volatility state in stock market. In the result section, we further com­

pute the expected correlations conditional on regimes of both volatility state variables, such as 

E(Ct\Sf = low; S$ = low). So these quantities can tell us the bond-stock correlation given all 

four "combined states", and such have important implications for portfolio diversification. Similar 

relation between correlation and volatility can not be measured in the traditional GARCH-type 

models.

As we can see, all above "conditional quantities" can be derived only when we allow separate 

state variable for each of the three latent processes. So we can not derive similar quantities from the
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model of Haas and Mittnik (2007). And the empirical results of the paper will be mainly focusing 

on these aspects of the model.

5 Empirical R esults

In this section, we first present the estimation results on the univariate model. Second, the results 

on the joint model are demonstrated, mainly around the "conditional quantities" introduced pre­

viously. Third, we compare the filtered bond-stock correlation from our model with that estimated 

from the DCC model. Finally, we discuss the results on goodness of fit for various restricted model.

5.1 R esu lts on  univariate m odel estim ations

The estimation results of the univariate MS-GARCH model (2) using S&P500 daily returns are 

presented in Table 4, while Table 5 and 6 show the results for 1-year bond and 10-year bond 

returns. The parameter estimates of the conditional mean are not shown, which will also applies to 

other tables of the results. The same model has been estimated by Mittnik and Paolella (2004) on 

foreign exchange returns. We find similar results on equity return data. First, there is a significant 

difference in the persistence levels of the GARCH processes of the two regimes. When the volatility 

process is in the low-volatility regime, the GARCH coefficient f3 is larger, but far away from unity, 

which is usually the case when one fits a simple GARCH model to daily stock return data. The 

ARCH coefficient a  is much smaller than that of the high-volatility regime, less than one-tenth of 

the latter6. So in tranquil periods, the volatility remains very stable, and the shock has very small 

effect on the conditional variance of the next day. But in volatile periods, the impact of today’s 

shock has much larger effect on next day’s conditional variance. The total persistence level of each 

process are measured by the sum of a and /3. We could see in the table that in the low-volatility 

regime, the GARCH process has persistence level smaller than unit, which means it is stationary. 

But as found in Mittnik and Paolella (2004), the volatile regime has larger-than-unity persistence 

level, so the GARCH process of the high-volatility regime itself is not stationary. The stationarity

6More precisely, the comparable quantity should be the standardized impact coefficient, which is the ARCH 

coefficient devided by the t-1 conditional variance of the regime. Considering the ratio of unconditional level of the 

high-volatility regime to that of low-volatility regime is much smaller than the ratio of their ARCH coefficients, the 

standardized impact of shock in high-volatility regime is still much higher.
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of the whole system is determined jointly by the transition matrix and the two sets of persistence 

parameters in both regimes, which is summarized by the largest eigenvalue of the matrix M, which 

is explained in Appendix. We can see that all three univariate models are stationary with eig(M) 

less than one. The stationary probability of low-volatility regime is higher than those found in 

exchange return, which is mostly less than 0.8. The expected level of volatility in high-volatility 

regime is about 4 times the expected level of low-volatility regime.

Table 5 and 6 report the estimation results of univariate MS-GARCH on the two bond return 

series. The difference between the two regimes is similar to that found in stock index return. Higher 

level of persistence, smaller (3 estimate and larger a  estimate are associated with high-volatility 

regime The persistence levels in the high-volatility regime of both bond series are larger than unity 

as well. For 10-year bond returns the difference in /3 estimates is not significant. The difference 

in (3 estimates for one-year bond is small as well, compared to that found in stock market. So for 

bond market, the volatility dynamics of the two regimes mainly distinguish from each other in their 

response to shocks. For one-year bond returns, the ratio of expected volatility in the high regime 

to the low regime is much higher than that of the stock index return or ten-year bond return. Thus 

the one-year bond would experience much larger jump upon regime-switching than stock return, 

while 10-year bond behaves more similar to stock return.

5.2 R esu lts  on  estim ation s o f  th e  jo in t m odel

We have studied the difference of the bond and stock markets in the univariate MS-GARCH model 

in last section. Now we discuss their relation in the joint model. The joint model allows us to 

see how the two state variables correspond to each other, and how the bond-stock correlation 

behaves within the 4 "combined states". First, we present the main estimation results of model (3) 

using two pairs of stock-bond returns in Table 7 and Table 8. The first two blocks in the tables 

are the regime-switching GARCH parameter estimates for the stock and bond series in the joint 

estimation. The third block reports the constant correlation levels in each of the eight regimes. 

The last block is the transition matrix estimate, together with the stationary probabilities of each 

regime. In both tables, the estimates of GARCH parameters are similar to those from the univariate 

estimations, but with smaller standard deviations due to efficiency increase by using more data. 

And here we focus on the results on the joint part of the model. Then in Table 9 to Table 12, 

some derived statistics are presented to better understand the intertemporal and contemporary
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relationships among the three latent processes. Finally, we have some discussions on the results of 

the bond-stock correlations in a simple discounted cash-flow model for the bond and stock prices.

5.2.1 Stationary probabilities and correlations within the combined states

First, we can indirectly see how likely the two volatility processes switch together by comparing the 

stationary probabilities of the four "combined states". These can be obtained simply by summing 

up the stationary probabilities of St states two by two. For the one-year bond pair, in about 76% of 

time both the stock and bond return are in low-volatility regime, and in about 3.6% of time both of 

them are in high-volatility regime. So there is about 20% of time that they are in different volatility 

regimes. For the 10-year bond pair, the proportions of time that bond and stock volatilities are in 

the same regime is similar to the one-year bond case. The main difference is that there is a much 

larger percentage, about 8%, of time when both bond and stock are in high-volatility regimes. This 

feature of ten-year bonds is a disadvantage for diversification. Large stationary probability of two 

volatilities in the same regime for both pairs indicates that two volatility state variables correspond 

to each other to a certain extent, which will be re-confirmed by the following results. We can also 

see the smoothed probabilities of each state across time in Figure 1 and 27.

Next, we compare the levels of correlation within the four "combined states". The two cor­

relation levels in the two "sub-states" of all four "combined states" are all significantly different. 

These results indirectly suggest a separate state variable is needed for both stock-bond correla­

tion processes. Taking into account of estimation errors, only in the "low-stock-high-bond" state 

are both of the two correlation estimates non-negative. And in the "high-stock-high-bond" state, 

the high and low correlation estimates are the highest and lowest respectively among the eight 

correlation estimates for the one-year bond paired with stock. Similar results are found for the 

10-year paired with the stock. We will further discuss these findings in more details later. Finally, 

for the one-year bond pair, taking into account of standard errors, we could see there are mainly 

four correlation regimes: one extremely high at about 0.8, one negative at -0.4, and the other two 

in between are around 0.35 and 0.05. A similar state reduction for correlation could be done for 

ten-year bond pair, and we examine this formally in section 5.5.

7The "smoothed" state probabilities of each state across time in the whole sample is computed as in Kim (1994), 

which is recited in Appendix.
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5.2.2 C onditional tran sitio n  probabilities

R esu lts  on th e  t —conditional transition  probabilities We study the intertemporal relations 

between correlation state variable and the volatility state variables in two market through the 

t  — conditional transition probabilities reported in Table 9. Comparing these numbers with the 

"unconditional transition probabilities" in Table 10 can reveal the forecasting benefit of allowing 

correlation to have separate state variable. First, we look at the transition probabilities of Ct < 0 to 

Ct+i ^  0 given different volatility states in different markets. The correlation transition probability 

is higher when conditional on high volatility state in either bond or stock than conditional on low 

volatility state. And the difference is more significant for the one-year bond case. Comparing the 

information contained in different markets, the correlation transition probabilities conditional on 

low volatility states in two markets are not significant different for both pairs. However, correlation 

transition probability conditional on high volatility states in one-year bond is larger than that 

conditional on high volatility state in stock market. And for 10-year bond paired with stock 

market, conditioning on either market produces similar correlation transition probabilities. So it 

seems that only correlation between the 1-year bond and stock has very different conditional "low to 

high" transition probabilities for conditioning on different markets or different volatility states, and 

the high volatility state of 1-year bond is mostly likely to be followed by a jump up in correlation.

Next, we turn to the transition probabilities of C* ^  0 to Ct+i < 0 given various volatility 

states. The correlation transition probability conditional on bond’s high volatility state is significant 

higher than that conditional on bond’s low volatility state for both pairs. But the two volatility 

states in stock market has similar information on the correlation transition probability, which is 

different from above "high-to-low" case. Similar to the "high-to-low" case, there is no significant 

difference in conditioning on the low volatility state of either stock or bond market for both pairs, 

and conditioning on high volatility states in both bond markets has higher correlation transition 

probabilities than conditioning on high volatility state in stock market.

To summarize, high volatility states of bond markets, especially 1-year bond, imply higher 

t-conditional transition probabilities of bond-stock correlation for both "low-to-high" and "high- 

to-low" cases. And the differences between these numbers and those "unconditional transition 

probabilities" in Table 10 are statistically significant. But there is no significant difference in 

conditioning on today’s high and low volatility states in stock market in terms of predicting regime-
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switching of the bond-stock correlation.

R esults on th e  t +  1—conditional transition  probabilities The contemporary relations 

among the three state variables can be measured through the estimates of t +  1 — conditional 

transition probabilities reported in Table 11. The first row of both panel is on how correlation 

switches conditional on a regime-switching in bond or stock volatility, which can again be com­

pared with the unconditional ones in Table 10. For both bond pairs, when stock market volatility 

jumps from low to high, the transition probabilities of correlation switching from high to low is 

significantly higher than the unconditional ones while "high-to-low" correlation (conditional) tran­

sition probabilities are lower than the unconditional ones. However, conditioning on a "low-to-high" 

jump in bond volatility has the opposite results: the correlation (conditional) transition probability 

is higher, than the unconditional one for the "low-to-high" switching in correlation, and lower for 

"high-to-low" case. So the "low-to-high" switching in stock volatility is more likely to be associated 

with "high-to-low" switching in correlation while the "low-to-high" switching in bond volatility is 

likely to be associated with "low-to-high" switching in correlation. The second row of both panels 

evaluate how both of the volatility state variables switches conditioning on a regime-switching in 

bond-stock correlation, which can be compared with the "unconditional (or marginal) transition 

probabilities" in Table 4-6. The results are similar to those of first row since they inherit the main 

properties of the quantities in first row by definition.

The last row of both panels describes how likely the two volatility processes would jump in the 

same direction together. For ten-year bond, it tends to jump with stock in either direction with 

high probability. But for one-year bond, it has high probability to jump down with stock, but very 

low probability to jump up together. So the one-year bond does not always react the information 

from stock market. But if it does react, probably to extreme shock, it resolves the uncertainty 

together with stock market. Comparing these numbers to those in Table 4-6 also indicates that 

only the case of "low-to-high" conditioning in the 1-year bond pair does not provide significant 

more information than the marginal ones. So the two volatility state variables correspond to each 

other quite well, especially for the 10-year bond pair.

The contemporary relationship revealed in above results indicate that the correlation state 

variable has very different switching behavior from the volatility state variables while two volatility 

processes can largely share the same state variable, especially for the 10-year bond paired with
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S&P500.

5.2.3 Conditional expected correlations

An important feature of the general model is that it is able to capture the contemporary relations 

among the correlation and volatilities in two markets. We quantify these relations through the 

conditional expected correlations which are reported in Table 12.

First, we compare the expected correlations conditional on a single volatility state variable, 

which are presented in the last row and column of both panels. For both pairs, the expected 

correlation conditional on stock’s high volatility state is significant lower than that conditional 

on stock’s low volatility state, although the difference is significant only for the 1-year bond pair. 

But the results are opposite for those conditional on bond volatility states. Judging from the 

differences in conditioning on high and low volatility-states, it seems that stock market has larger 

contemporary impact on the bond-stock correlation than bond market. A related observation is 

that only the expected correlation between 1-year bond and stock conditional on the high volatility 

state in stock market has a negative point estimate. This reflects that during "flight to safety" 

period, investors transfer money from stock market more to bonds with shorter maturities than 

to bonds with longer maturities. This is again due to the fact that long-term bond is more like a 

stock.

Table 12 also presents results on the "joint-conditional" expected correlations. These results 

reveal the expected correlations in four "combined states", which is basically to aggregate the eight 

correlation estimates from Table 7 and Table 8 into four correlation levels. For both pairs, the 

"high-stock-low-bond" state has the lowest expected correlation while the "high-bond-low-stock" 

state has the highest one. And in the most volatile market condition characterized as the "high- 

stock-high-bond" state, the expected correlation is surprisingly low, even lower than the peaceful 

"low-stock-low-bond" state. In the high stock volatility state, the difference in expected correlations 

is not significant between conditioning on the high and low volatility states of the bond market. 

But the difference is significant when the stock market is in low volatility state. In contrast, the 

difference in the expected correlation is more significant between conditioning on stock’s high and 

low volatility states when the bond market is in the high volatility state, especially for the 1- 

year bond case. So when the stock market is very volatile, the bond-stock correlation is mainly 

dominated by the stock market, usually with low correlation level. And the effect of the stock
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volatility on the bond-stock correlation becomes more prominent when the bond market is also in 

volatile condition.

5.2.4 Discussions on the bond-stock correlations

Above empirical findings can be explained in a simple discounted cash-flow model for both the 

bond and stock prices. The bond price is the expected value of the discounted factor while the 

stock price is co-driven by the future cash flow and discount factor8. So the high bond-volatility 

state is when the expected discount rate has high volatility. But for the stock volatility, it comes 

from either one or both of the two shocks, cash-flow news and discount factor news. The recent 

findings of Boyd, Hu and Jagannathan (2005) show that the stock price is dominated by the cash 

flow effect during recessions while it mainly responds to discount rate news during expansions. Our 

results are consistent with their findings. In the "high-bond-low-stock" state, the shock must come 

form discount factor which will make the bond and stock prices move in same direction irrespective 

of business cycle. This is confirmed by the result in Table 7. Only in the "high-bond-low-stock" 

state can we have positive point estimates for both the high and low correlation states9. So when 

we average them across the whole sample, we have highest unconditional correlation in the "high- 

bond-low-stock" state as in Table 12.

However, for the "high-stock-high-bond" state, we have two different situations since the source 

of the stock volatility is dependent on the business cycle. During expansions, both the bond and 

stock prices are mainly driven by discount rate news. So we will have highest correlation during 

expansions; But during recessions, the stock price is mainly dominated by the cash flow effect, 

which works in the opposite direction for bond price as rising future cash flow will increase the 

discount rate and lower the bond price. As a result, we have lowest bond-stock correlation during 

recessions. This is confirmed by the regime correlation estimates in Table 7. And when we average 

the correlations across the whole sample, the correlation is close to zero in the "high-bond-high- 

stock" state as in Table 12. Results in the other two "combined states" can be explained similarly 

by the relative effect of shocks to discount factor and cash flow in the discounted cash-flow model.

8 Different from discount factor for bond, the discount factor for stock is sum of equity premium and the risk-free

rate. But for ease of illustration, we assume they are the same.
9 Since 10-year bond have stock-like characteristics, we mainly focus on 1-year bond in expaining our findings in

the discounted cash flow model.
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If we further differentiate the discount factors for the bond and stock prices, then the time-varying 

equity premium will also help to explain the time-varying bond-stock correlations. This is especially 

relevant for explaining the bond-stock correlation in sample after 2003 when it frequently swings 

between large positive values and large negative values, which can not be explained by the business 

cycle. A structural model is needed to measure the effect of time-varying equity premium on the 

bond-stock correlation, which is out of the scope of this paper.

5.3 E stim ated  correlations from  th e  M SC C C  m odel

Although we assume constant correlation within each regime, the correlation estimated from our 

model has quite rich dynamics. Figure 3 and 4 provides the view of the correlation dynamic for 

both pair over the past 20 years. Both correlations appear to jump to a negative level when there 

is a crisis in equity market. As mentioned previously, since after 2003 negative correlations happen 

very frequently, irrespective of having a stock market crisis or not. We believe it might be because 

that the time-varying equity premium is becoming more important for the bond-stock correlation 

after 2003. As a comparison, we plot the MSCCC correlations together with correlations estimated 

from DCC. As shown in Figure 5.1 and 6.1, the main difference between DCC’s correlations and 

the MSCCC correlations is that the MSCCC correlations reveal more extreme, both positive and 

negative, correlation level than the DCC. And forecast error in such situation are most costly 

as pointed out by Engle and Collacito (2006). As another view for comparison, we fit the DCC 

correlations by an 4-order polynomials of MSCCC correlations in Figure 5.2 and 6.2. We could see 

DCC correlation usually has downward bias for day with high smoothed correlation, and upward 

bias for day with low smoothed correlation. Although our model is not developed for forecasting, it 

does point out potential way of improvement for the traditional GARCH type dynamic correlation 

models, especially for modeling bond-stock correlation.

5.4 R esu lts  on  restr icted  m odels

Although all above analysis is based on the general model, we also estimate some restricted models 

specified in Table 4 to compare their goodness of fit10. Table 13 reports the goodness-of-fit results

10We do not conduct formal tests for the number of regimes. As indicated in Hansen(1992) and McLachlam and 

Peel (2002), the standard likelihood ratio test is not valid for testing the number of regimes. And test on regime 

number still remains very difficult even in much simpler setups. A more recent study on regime number test is Cho
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on all considered models. We rank all the model according to AIC and BIC. For one-year bond 

pair, the most general model MSCCC(2,2,8), is the best model according to AIC. But according 

to BIC, which penalize heavily extra parameters, MSCCC(2,2,4) is the best model, in which two 

volatility process share the same Markov state variable but the correlation has a separate one. The 

same best models are identified under the two criterion for ten-year bond paired with S&P500. So 

generally according AIC, we do need three separate state variables for volatilities and correlation, 

which justifies our main model. According to BIC the most general model still rank second for 

the ten-year bond case, but very poorly for the one-year bond case. The MSCCC(2,2,4) is always 

the best under BIC and the second under AIC. So while a separate state variable for correlation 

is very important, stock and bond volatilities could share the same state variable without too 

much loss in goodness of fit. This seems to reflect the information could be transmitted across 

two markets efficiently within a day. The good performance of MSCCC(2,2,4) could also make it 

a good candidate as a multivariate regime-switching GARCH model in forecasting exercise since it 

is quite parsimonious, having only 28 parameters.

5.5 D iagnostic analysis o f  th e  standardized residuals

In this section, we carry out the ARCH Lagrange multiplier (LM) test proposed by Engle (1982) 

on the three residuals standardized by the conditional volatilities of the MSCCC model. As a naive 

comparison, the same test is implemented for residuals standardized by conditional volatilities of 

the DCC model. For all the tests, the number of lags is 5. The results are in Table 14. We can 

see that the our regime-switching model has the p-values smaller than those of the DCC model 

for almost all the lags for all three series. And only in the case of S&P 500 returns at the first 

lag, the test statistics is significant only at 10% level for the MSCCC model. In contrast, the 

DCC-standardized residuals have a significant statistics at 5% for the S&P return at the first lag. 

From these results, we conclude that the proposed model has good performance in filtering out the 

correlation in the return volatility, 

and White(2007).
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6 Concluding Remarks

To study the bond-stock correlation and its relation with volatilities in the two markets, we extend 

the univariate Markov-Switching GARCH of Haas Mittnik and Paolella (2004) into a bivariate 

MS-GARCH model with Conditional Constant Correlation (CCC) specification. Our specification 

allows a separate state variable governing each of the three processes: bond volatility, stock volatility 

and bond-stock correlation, which is different from other multivariate generalizations of their model. 

We estimate our model using two pairs of daily returns: S&P500 with one-year bond and S&P500 

with ten-year bond, to study the difference in bond-stock correlation for different bond maturities.

From the univariate model estimation, we find both volatility processes switch between a sta­

tionary and a non-stationary state while the whole system is till stationary, similar to the findings 

in Haas Mittnik and Paolella (2004). By allowing different latent process to have separate Markov 

state variable, the results from the joint model estimation has the following main findings: First, we 

find that a separate state variable for the bond-stock correlation is needed while the two volatility 

processes could largely share a common state variable, especially for the 1 0 -year bond paired with 

S&P500. Second, the "low-to-high" switching in stock volatility is more likely to be associated with 

the "high-to-low" switching in correlation while the "low-to-high" switching in bond volatility is 

likely to be associated with the "low-to-high" switching in correlation. As a result, we show that the 

expected bond-stock correlation conditional on stock’s high volatility state is significant lower than 

that conditional on stock’s low volatility state. But the results are opposite for those conditional 

on bond’s volatility state. Finally, we find that when the bond market is in its high volatility state 

and the stock market is in its low volatility state, the estimates of bond-stock correlation in both 

high and low correlations states are non-negative. But when both bond and stock markets are 

in high volatility state, the bond-stock correlation has the highest correlation estimate at its high 

correlation-state and almost lowest correlation estimate at its low correlation-state. This might be 

attributed to the relative impacts of shocks to the cash flow and shocks to the discount factor on 

the pricing of bonds and stocks at different stages of business cycles. But we also find large swings 

in the bond-stock correlation between positive and negative values after 2003, which can not be 

explained by the business cycle, and possibly can be driven by the time-varying equity premium.

The proposed model assumes constant correlation within each state. The estimate correlations 

suggest that smaller number of correlation states is needed if we allow time-varying correlation
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within each state. So modeling the correlation as two-state regime-switching DCC may be adequate 

to capture both the structural break in the level of the correlation and the variation within each 

regime. Future work will consider how to effectively incorporate DCC in this regime-switching 

GARCH framework in a way that is parsimonious and numerically tractable. A better covariance 

forecasting model could also be developed in a similar approach. Another interesting research topic 

will be comparing the filtered states with the macro news announcement. For example, the state-7 

should be related to the discount rate news in expansion while state- 8  should be related to cash 

flow news in recession. Finally, our model might also be applied to study the contagion effect in 

international markets.
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Appendix: D etails

A l:  d eta ils  o f  m axim um  likelihood estim ation

The general model could be estimated by maximum likelihood method. The algebra is standard, as 

in Hamilton (1994). Let 0  =  a*, /3 PijCi} with i =  1,2 . . . 8  and k = s or b, be the parameter

space of model (3). And is the whole history of return from 0 to t. Then the likelihood of the

observed return pairs at time t can be written as:

N

=  s t =  i | e ; 4 _w])
i=1 
N

= £ >  w ,  i # 0 ;  St = i; 4 _ li0]) * Pr(St =  i|0 ; JJft_ li0], J $ _ li0])
1=1
N N

= flf |0 ; S, =  <; flft_li0J) * 5 > r ( S t =  <|6 ; S t- i = j )  * Pr(S«-i =  j |0 ;  4 _ i , 0])]
t=l j=1

N N

= * f t- i |t- iC 0 ]
T= 1  j=1

where rjt (i) = i ^ | 0 ; St = »; R s[t_ lfi], #ft_ i>0])> Phi =  P r(& =  *|©; S*—i =  j) , and

=  Pr(S«_i =
Then could be calculated as the usual GARCH likelihood function for the subset of the 

parameters © where St =  given the whole history of past returns. And Pij is just the entries of 

the transition matrix, which is part of 0 . To compute the remaining £t_i|*_iC?), let

£t|t—iO) =  P*(St = J I©; flft-1,0], 4 -1 ,0])

Then £^(.7) is computed as:
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Pr (P? 5 4  I®’ R[t-1,0]’ ^ ft-1,0])

_  Pr(i2f, i^|@; St = j ; 4 - i ,o ] ’ 4 —1,0]) * Pf ( ^  =  '̂l®> -^[t-i.op 4 —L0])

J2 ft(R$» 4 l®> St = j\ 4 -i,o]> -^ft-i,o]) * p r ( ^  =  ^ - 1,0]’4 - 1,0])j=1

m ti) * Zt\t-i(J)
N

E JfcC7')*£t|t-i0‘)i=l
So given rjt{j) and we could compute £t\tU)- Finally, the Markov property of the state

variable results in the following relation between £*|£_i and :

Ct|£—1 0 ) = P * £ t-l\t-l

So the likelihood function could be computed by iterating £t\t-i and from t= l  to T. And

the maximum likelihood estimator of 0  is simply as:

T

0  =  argmax J^ lo g {/*(#£, 4 l©; 4 - i,o]> ^ft-i,0])>
0  t=i

In this paper, we numerically maximize this log-likelihood function. And standard error of para­

meter estimates are also obtained numerically.

With the estimate of the transition matrix, the "smoothed probability" £t|T, of the states at t 

are computed as in Kim (1993):

€t\r = £t|t © {P * [£t+i|r("0 £i+i|*]} (4)

where sign © denotes element-by-element multiplication, and (-r) denotes element-by-element 

division. The smoothed probabilities could be computed by iterating on [4] backward from t= T  to 

1 .

A2: S tationarity  cond ition  and unconditioned volatility

This part of appendix is reproduced from Haas, Mittnik and Paolella (2004) Let Pij be the ith row 

and jth  column element of the transition matrix, and a  and (3 are 2 byl vectors of the ARCH and
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GARCH parameters for two states. Then define

- M\,\ M i)2 • 
M  = 

- M 2,i  M 2,2 ■

Mh3 =  Pij(P +  a  * eW'). hJ  =  b  2

where e(i) is a vector with ith element equal to one and the rest being zero 

Then model (2) is stationary if largest eigenvalue of matrix M, denoted as eig(M) is less than 

one. If this stationarity condition holds, then the unconditional expectation of two volatility 

processes is given by

E(V) =  [/2 / 2K/4  -  Af)-1(P ®w)

where Ik is k by k identity matrix, P  is the unconditional state probability vector to be computed 

in A3, u) is defined as in model (2). and <g> is the Kronecker product operator. The proof for above 

result could be found in Haas Mittnik and Paolella (2004).

A3: A lgebra for com parative analysis:

Expected correlation conditional on volatility regime

To compute the expected correlation level conditional on volatility regime, we first need to compute 

the unconditional probability implied by the transition matrix. Let N  =  8  be the number of state, 

P  be the N by N transition matrix, and C is N by 1 vector of correlation. The unconditional state 

probability P  can be computed as:

where A
(N+l)xN

P = {A A) lA  ejv+i 
In  ~  P\

T

with In  being the N by N identity matrix, €n + 1 being the (N  +  1 )th column of I n +1 , and 1 being 

N by 1 vector of Is.

With the unconditional state probability vector,and the transition matrix, we can calculate the 

expected correlation conditional volatility regime as follows, for the case of low volatility regime:
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E(Ct \Sk = low) = Ci *PT(SZ = i\S f = lmu)
{i\St=i',St=low}

c { * P r^* *’ s * =  low^
«| P l(s* = lom)

c i *~ FT(s t = h s t = iow)
h Pr(5f =  i, S t = low)

{i\St=i;St =low} {i\St=i;S*=low}

where Pr(S'^ = i,S]f = low) is one entry in the N by 1 unconditional state probability P, and k = s 

for conditioning on stock volatility regime and k = b for conditioning on bonding volatility regime.

Similar calculations can be done for expected correlation conditioned on both of Sf and S b, 

such as E(Ct\Ss =  low-, S b = low).

t — Conditional and t  +  1 — conditional transition probabilities

There are two types of conditional transition probabilities we consider. One is the usual transition 

probability conditional on observing today’s realization on other state variable, such as Pr(5f+ 1  =  

low\St = high;S* = low).We call this t — conditional transition probability. The second one is 

conditional on t +  1 information. It is the transition probabilities of one process conditioning on 

there is an regime-switching in another process, such as Pr(5 +̂ 1  =  low\S*+1 = high;{S* =  low ; 

Sb = high}).We call this t +  1 — conditional transition probability. Both of these quantities can 

be derived from the general transition matrix.

First, we calculate the t — conditional transition probability as follows:

Pr(5 +̂ 1  =  low\Sf — high; S% =  low)

= Pv(St+1 = J  | St = I) 

with {w|5f-|-i(a;) =  J} =  [w | S%+1(u) =  low};

{o;|5t(a;) =  /} =  {a; | S^(u) = high;Sf{u>) = low }

We can derive the t +  1 — conditional transition probability in a similar way. For example, the 

probability of t + l ’s correlation would be in low regime conditioned on the stock volatility switching 

from low regime (at t) to high regime (at t+ 1 ), and t ’s correlation is in high regime:
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Pr(5£+ 1  =  low\S*+i — high; {S'* — low ; S% =  high})
Pr(5 +̂ 1  =  low ; S*+1 =  high \ S$ = low ; =  high)

Pt(S*+1 = high \ S f = low ; S% = high)
Pi(St+i = J \  St = I)
P r(St+i = V \  St = I) 

with {o;|S't+i(o;) =  J} = {u \ S^+1(uj) = low ;S'*+1 (a;) =  high };

{u  | St(w) = 1} = {w | S*(w) — low ; St(u) = high }

[uj | St+ i(w) =  V] = {w | S '+1(u) = high }

Finally, for both the t — and t + 1 — conditional transition probability, we can use the stationary

probabilities Pr(Sf =  i) to compute:

Pr(St+i -  J\St = I)

= [Pr(5t+i =  J\S t = h )  * Pr(5t =  h )  +  .... Pr(S,+i = J\St = h )  * Pr (St = / /) ] / Pr(5t =  I)

E  { E [P r(5 m  =  j\S t = i)} * Pr(5t =  i) 1 
i S l  {je./ J

E Pr(Si = <)
i S l

where Pr(S*+i =  j  | St = i) is the j  th row and i th  column of the transition matrix P. And 

I, J, V  are numbers from 1 to 8  So we could compute all the relevant quantities from the transition 

matrix in a similar way.

Note that by S£+1 = low, we mean those states with significantly negative correlation. So for 

both bond-stock pairs, this includes St = 2,6 and 8 , as could be seen in Table 9-10. Even though 

C4<0 for ten-year bond, it is not significant less than zero. So we still treat St = 4 to be the low 

state for ten-year bond. This would make easier the comparison of bonds with different maturities.
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7 Tables and Figures:

Table 1: State variable definitions for the general model

For volatility state variables, 0 indicates low level regime, and 1 indicate regime with high level. For 

correlation state, the actual level of high or low state in different "general state" are different. So correlation 

state variable Sc is the same as the general state variable S, both of which have eight states.

S  (General State) S s (stock vol) •S^bond vol) S° (Correlation)

1 0 0 highl

2 0 0 lowl

3 0 1 high2

4 0 1 low2

5 1 0 high3

6 1 0 low3

7 1 1 high4

8 1 1 low4

Table 2: State specifications of all models

This table specifies different model’s restrictions on each of the three individual state variables among 

various states of the general state variable S. The general model is in the first row. The remaining rows 

present the more restricted models. The numbers in the same curly bracket represent in which states of S  

individual state variable has the same value. So the collection of curl bracketed-subsets represents the finest 

c t— algebra of each state variable in different model specification.

Model Num. of Regimes Restriction on Ss Restriction on S Restriction on S c

MSCCC(2,2,8) 8 {1,2 ,3 ,4}{5 ,6 ,7 ,8} {1 ,2 ,5 ,6}{3,4,7,8} {1}{2}{3}{4}{5}{6}{7}{8}

MSCCC(2,2,4) 4 {1,2 ,3 ,4}{5 ,6 ,7 ,8} {1,2,5,6}{3,4,7,8} {1,2}{3,4}{5,6}{7,8}

MSCCC(2,2,2) 4 {1,2 ,3 ,4}{5 ,6 ,7 ,8} {1,2,5,6}{3,4,7,8} {1 ,2 ,3 ,4}{5,6,7,8}

MSCCC(2,2,2) 4 {1,2 ,3,4}{5,6,7,8} {1,2,5,6}{3,4,7,8> {1,2 ,5 ,6}{3 ,4 ,7 ,8}

MSCCC(2,2,4) 4 {1 .2}{7 ,8} {1,2}{7,8} {1 }{2 }{7 }{8 }

MSCCC (2,2,2) 2 {1 ,2}{7 ,8} {1 ,2}{7,8} {1 .2}{7 ,8}
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Table 3: Descriptive Statistics and Optimal Filtering Orders

This table gives descriptive statistics as well as the optimal ARM A filtering orders (p* and q*) 

for the returns on the S&;P 500 index and 1-year Treasury bond and the 10-year Treasury bond, for 

the period of January 2, 1986 to December 31 2006. All returns are daily returns in percentages.

l-year bond 1 0 -year bond S&P 500

Mean 0 .0 2 1 0 2 1 0.032231 0.042042

Std. dev. 0.054204 0.45427 1.0665

Minimum -0.31801 -2.6762 -20.467

Maximum 0.80969 4.8227 9.0994

Skewness 1.1069 -0:042843 -1.4327

Kurtosis 18.573 7.3358 33.622

Jarque-Bera 54052 4107 2.0667e+005

P* 1 0 0

q* 2 1 0
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Table 4: Parameters estimates for the MS-GARCH model: S&P500

This table reports the parameter estimates of the MS-GARCH model for S&P500 daily return 

series. The sample period is from January 5, 1986 to December 29, 2006. Standard deviation 

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated 

model is stationary if eig(M) < 1 The unconditional expectation of the each state’s probability 

and volatility level in each regime are also reported.

0 , Vg.t ) ,  5* = 0  or 1

' V£t = 0.0026 + 0.9528 0.0321 * (e^ ) 2

(0.0015) (0.0083) (0.0071)

<

V£t =  0.2522 +  0.7146 * +  0.6216 * {eat_xf

(0.1523) (0.0811) (0.2249)

low high

0.8745
0.9217

(0.0603)

0.0783
0.1255

(0.0501)

loglikelihood=-6806.98; eig(M) =0.9913 

P0°° =0.8803; E(V0) =0.7781 

Pf° =0.1197; E(V i) =3.1949
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Table 5: Parameters estimates for the MS-GARCH model: one-year bond

This table reports the parameter estimates of the MS-GARCH model for 1-year bond daily 

return series. The sample period is from January 5,1986 to December 29,2006. Standard deviation 

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated 

model is stationary if eig(M) < 1 The unconditional expectation of the each state’s probability 

and volatility level in each regime are also reported.

4 ~ j v f  0, V  S? = 0 o r l

Vfit = 0.1359* + 0.9546 * +  0.0219 * (e*_i) 2

(0.0397)* (0.0081) (0.0043)

V£t =  0.4251* +  0.9095 * Vjt_i +  0.3480 * (c£_i) 2

(0.2127)* (0.0167) (0.0936)

low high

0.8671
0.8377

(0.0232)

0.1627
0.1329

(0.0602)

loglikelihood=8693.43; eig(M) =  0.9967. 

P0°° =0.8630; E(V0) =0.0033 

P f0 =0.1370; E{Vi) =0.0241 

f: these numbers are multiplied by 1 0 4.



Table 6: Parameters estim ates for the MS-GARCH model: 10-year bond

This table reports the parameter estimates of the MS-GARCH model for 10-year bond daily 

return series, the sample period is from January 5,1986 to December 29,2006. Standard deviation 

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated 

model is stationary if eig(M) < 1 The unconditional expectation of the each state’s probability 

and volatility level in each regime are also reported.

4 ~ r t f o ,  V £ t ) ,  S} = Oo r l

' v£t = 0.0018 +  0.9437 *V£t_1+ 0.0242 * (e^ ) 2

(0.0007) (0.0104) (0.0045)

<

v{f t= 0.0123 +  0.9202 * Vjt_! +  0.1314 * (e^ ) 2

(0.0077) (0.0315) (0.0490)

low high

0.7268
0.8851

(0.0539)

0.1149
0.2732

(0.0531)

loglikelihood=-2958.43; eig(M) =0.9810 

P0°° =  0.7641; E(V0) = 0.1216 

PP° =  0.2359; E(V i) =0.4990
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Table 7: Parameters estimates for the MSCCC(8) model: S&P500 and 1-year bond

This table reports the parameter estimates of the MSCCC(2,2,8) model for S&P500 and 1-year bond 

returns. The sample period is from January 5,1986 to December 29,2006. Standard deviation of the estimate 

is in parenthesis. The unconditional expectation of the each state’s probability is also reported.

' V03)t=  0.0033 +  0.9548 *Vr0s)f_ 1 + 0.0302 * ( 4 - l ) 2

(0.0011) (0.0065) (0.0045)

V£t =  0.4179 +  0.6629 *V£t_i + 0.5349 * ( 4 - i  )2

(0.1405) (0.0775) (0.1395)

V t̂ =  0.1406+ + 0.9524 + 0.0233 * ( 4 - i ) 2

<
(0.0375)+ (0.0073) (0.0038)

Vjt =  0.3177+ + 0.9306 * F 1*t_ 1 + 0.2551 * ( 4 - i ) 2

(0.1579)+ (0.0129) (0.0629)

(Ss = 0, S b = 0) (Ss = 0 ,Sb =  l) (S s = 1, S b =  0) (Ss =  l , S b =  1 ) '

0.2839 0.4323 0.0569 0.8264
h ig h  co rr

(0.0271) (0.0539) (0.1005) (0.0831)

-0.3530 0.0795 -0.2444 -0.4856
lo w  c o rr

(0.0637) (0.1401) (0.1307) (0.1392)

(low,low,1) (low,low,2) (low,high,3) (low,high,4) (high,low,5) (high,low,6] (high,high,7) (high,high,8)
(low,low,1) 0.8222 0.0093 0.6161 0.6366 0.8285

(0.0215) (0.0028) (0.0858) (0.1006) (0.0035)
(low,low,2) 0.7918 0.7058 0.7493 0.8175

(0.0507) (0.2130) (0.0752) (0.0477)
(low,high,3) 0.1338 0.3100

(0.0147) (0.1329)
(low,high,4) 0.0243 0.0113 0.0836 0.1269 0.1825

(0.0255) (0.1135) (0.0974) (0.0667) (0.0477)
(high,low,5) 0.0440 0.2247 0.1174 0.0534

(0.0173) (0.0844) (0.1071) (0.0478)
(high,low,6) 0.1180 0.1655

(0.0373) (0.1847)
(high,high,7) 0.1592

(0.0215)
(high,high,8) 0.0566 0.1671 0.0446

(0.0225) (0.0831) (0.0485)

| 0.53044 0.24959 0.084875 0.015237 0.044823 0.038193 0.013515 0.023326|

Log Likelihood: 2132.1 AIC:-4112.2 BIC:-3613.2
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Table 8: Parameters estimates for the MSCCC(8) model: S&P and 10-year bond

This table reports the parameter estimates of the MSCCC(2,2,8) model for S&P500 and 10-year bond 

returns. The sample period is from January 5,1986 to December 29,2006. Standard deviation of the estimate 

is in parenthesis. The unconditional expectation of the each state’s probability is also reported.

high corr

low corr

V{t =  0.0028 + 0.9597 ♦V& - 1  + 0.0263

(0.0010) (0.0061) (0.0041)

V£t = 0.2151 + 0.7423 * Vz,t-1 + 0.5420 * (e |-1 )2

(0.0958) (0.0619) (0.1183)

r V}j t= 0.0020 + 0.9441 0.0228 * (4-i)2
(0.0007)

/
(0.0101) (0.0040)

v}t t=  0.0125 + 0.9259 * ^2,t-1 + 0.1140 * (4-i)2
(0.0071) (0.0271) (0.0370)

(Ss = 0, Sb =  0) (S' = 0, Sb = 1 ) = 1 , Sb = 0) (S s = l , S b

0.4334 0.5501 0.2978 0.6931

(0.0326) (0.0554) (0.1484) (0.0691)

-0.2810 -0.0641 -0.5121 -0.5062

(0.0399) (0.1188) (0.1247) (0.0965)

(low,low,1) (low,low,2) (low,high,3) (low,high,4) (high,low,5) (high,low,6) (high,high,7) (high,high,8)
(low,low,1) 0.7206 0.7117 0.5618 0.9779

(0.0208) (0.0660) (0.2162) (0.0231)
(low,low,2) 0.0014 0.7547 0.0052 0.6249 0.7829

(0.0033) (0.0365) (0.0134) (0.1780) (0.2015)
(low,high,3) 0.1948 0.0151 0.0286 0.3842

(0.0208) (0.0048) (0.0380) (0.2158)
(low,high,4) 0.0976 0.1351 0.3673 0.2171

(0.0397) (0.2499) (0.1508) (0,2015)
(high,low,5) 0.2400

(0.0590)
(high,low,6) 0.0027 0.0431 0.6327 0.0221

(0.0029) (0.0499) (0.1508) (0.0231)
(high,high,7) 0.0805 0.0146 0.0540

(0.0151) (0.0380) (0.0760)
(high,high,8) 0.1326 0.1969

(0.0335) (0.1638)

unconditional 0.490211 0.23586I 0.112671 0.0412141 0.027035I 0.0110661 0.042557I 0.039381

Log Likelihood: -9329.29 AIC: 18811 BIC: 19310
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Table 9: t — Conditional Transition Probabilities for Correlation

This table reports the transition probabilities of correlation state variable conditioned on ob­

serving the volatility state variable. We denote stock-vol, bond-vol and their correlation by S, B and 

C respectively. So P(C+)_|S,o) =  P(Ct+ 1 < 0|Ct ^  0; =  0), and similar meaning for other notations.

Note that by C < 0, we means those states with significantly negative correlation. So for both 

bond-stock pairs, this includes St = 2,6 and 8 . Standard deviations of the estimation are in parenthesis. 

All these are derived from the general transition matrix in Table 9-10.

1-year bond and S&P500

C - ^ C + P(C _l+|So) P(C_J+|Si) P (C _l+|Bo) P(C_f+|Bi)

0.0336

(0.0219)

0 .1 2 1 1

(0.0547)

0.0403

(0 .0 2 0 1 )

0.1825

(0.0477)

C+ =>C- P(C+,-|5o) P(C+,-|Si) P(C +l_|Bo) P(C+i_|B i)

0.0242

(0.0366)

0.0103

(0.0108)

0

(-f)

0.1394

(0.0798)

10-year bond and S&P500

C-=>C+ P(C-,+|So) P(C_,+|51) P(C_f+|Bo) P(C_,+|Bi)

0.1128

(0.0391)

0.2500

(0.1346)

0.1242

(0.0400)

0.2171

(0.1784)

C+=>C- P(C+1-|S„) P(C+f_ |5 1) P(C+,-|B0) P(C+,_|Bi)

0.0594

(0.0474)

0.0135

(0.0124)

0.0039

(0.0032)

0.1892

(0.0937)

fNo standard deviations due to the zero constraints on the transition matrix, same as reported in Table 

9-10.
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Table 10: Correlation transition matrix

This table reports the correlation transition matrix estimates. All these are derived from the 

general transition matrix in Table 9-10. Note that by C < 0, we means those states with significantly 

negative correlation. So for both bond-stock pairs, this includes St = 2 , 6  and 8 . Even though C4 < 0  

for ten-year bond, it is not significant less than zero. So we still treat St =  4 to be one of state 

in {C  ^  0} for ten-year bond. This would make easier the comparison of bonds with different 

maturities.

1 0 -year bond and S&P500

c ^ o C < 0

0
0.9451

(0.0447)
0.1370

C < 0 0.0549
0.8630

(0.0407)

1-year bond and S&P500

0 C < 0

0
0.9770

(0.0359)
0.0509

C < 0 0.0230
0.9491

(0.0174)
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Table 11: t  +  1—Conditional Transition Probabilities

This table reports the transition probabilities of one state variable conditioned on there is a switching in 

other state variables. We denote stock-vol, bond-vol and their correlation by S, B and C respectively. 

So P(C + _|So,i) =  P{Ct+i <  0 |Ct > 0 ; S$ =  0 ; S/+1 =  1 ), and similar meaning for other notations. 

Note that by C <  0, we means those states with significantly negative correlation. So for both bond-stock 

pairs, this includes St =  2 ,6  and 8. Standard deviations of the estimation are in parenthesis.

1-year bond and S&P500

S /B  => C P(C+I_|Sb.i) P(C+)- |£ 0)i) P(C-,+|So,i) P(C_J+|B0fi)

0.1632 

(0.0987 )

0

(-)*

0

(-)

0.3110 

(0.1996 )

C => S /B P(So,i|C +_) P(B0)i|C +,_) P(So,i|C_>+) P(Bo,i|C _l+)

0.7163

(0.2194)

NA*

(NA)

0

(-)

0.7999

(0.1639)

S & B P(Bo,i|Sb,i) P(Bi,o|Si)0) P(So,i|Bb,i) P(Si,o |B i|0)

0 .2 1 1 2

(0.0929)

0.8352

(0.0481)

0.1551

(0.0779)

1

(-)

10-year bond and S&P500

S /B  => C P(C+f_|Sb,i) P(C+,-|-B0 |i) P(C_f+|50 |i) P(C_>+|Bb,i)

0.1416

(0.0996)

0

(-)f

0

(-)

0.4951

(0.1284)

C=> S /B P(S0 ,i|C+_) P(Bo,i|C+,_) P(So,i|C_l+) P(Bo,i|C _1+)

0.2936 

(0.1395 )

0

(-)

0

(-)

1

(-)
S & B P(Bo,i|Sb,i) P(Bi,o|Sil0) P(So,i|B0)i) P(Si,o|B lto)

0.9813

(0.0156)

0.8945

(0.0974)

0.3668

(0.0516)

0.9872

(0.0096)

f No standard deviations due to the zero constraints on the transition matrix as in Table 9-10. 

|The conditioning event is an empty set. So there is no estimate for such conditional probability
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Table 12: Expected correlation conditioned on volatility regime

This table reports the expected bond-stock correlation conditioned on contemporary volatility 

states in bond and stock markets. The upper panel is for 1-year bond and the lower panel for 10- 

year bond. For both panels, the last row and last column are the expected correlation conditioned 

on only one volatility state variable. Standard deviations of the estimation are in parenthesis.

1-year bond and S&;P

Ss = 0 S3 = 1 E(Ct \Sb)

S b = 0
0.0801

(0.0642)

-0.0817

(0.1580)

0.0645

(0.0582)

S b = 1
0.3786

(0.0524)

-0.0043

(0.1464)

0.2756

(0.0711)

E{Ct \S3)
0.1140

(0.0596)

-0.0579

(0.1191)

10-year bond and S&;P

Ss = 0 S s = 1 E(Ct \Sb)

S b = 0
0.2013

(0.0694)

0.0626

(0.1602)

0.1944

(0.0703)

S b = 1
0.3856

(0.0904)

0.1167

(0.1427)

0.2922

(0.0934)

E(Ct \Ss)
0.2336

(0.0673)

0.0995

(0.1229)
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Table 13: Likelihood-based Goodness-of-fit

This table shows the likelihood-based goodness-of-fit for models fitted to two pairs of stock and 

bond return series. The specifications for each model notation in the first column are detailed in 

Table 2. "loglike" is the value of the maximum log-likelihood value. For parameter number K and 

sample size T, we calculated the Akaike information criterion (1973) as A IC  = —2*loglike + 2 * K , 

and the Bayesian Information criterion as B IC  =  — 2 * loglike +  log(T) * k. For both criteria, the 

ranking of each model is show in parenthesis. Boldface entries indicate the best model for each 

criterion.

S&P500 and 1 -year bond

Model Num. of Regimes Parameter number loglike AIC (rank) BIC (rank)

MSCCC(2,2,8) 8 76 2132.1 -4112.2(1) -3613.2(5)

MSCCC(2,2,4) 4 28 1972 -3528(6) -3344.2(6)

MSCCC(2,2,2) 4 26 1964.55 -3877.1(4) -3706.4(3)

MSCCC(2,2,2) 4 26 1952.82 -3853.6(5) -3682.9(4)

MSCCC (2,2 ,4) 4 28 2083.6 -4111.3(2) -3927.4(1)

MSCCC (2,2,2) 2 16 1956.4 -3880.7(3) -3775.7(2)

S&P 500 and  1 0 -year bond

Model Num. of Regimes Parameter number loglike AIC (rank) BIC (rank)

MSCCC(2 ,2 ,8 ) 8 76 -9329.29 18811(1) 19310(2)

MSCCC(2,2,4) 4 28 -9579.99 19216(3) 19400(4)

MSCCC(2 ,2 ,2 ) 4 26 -9645.61 19343(6) 19514(6)

MSCCC(2 ,2 ,2 ) 4 26 -9627.6 19307(5) 19478(5)

MSCCC(2,2,4) 4 28 -9402.46 18861(2) 19045(1)

MSCCC(2,2,2) 2 16 -9610.36 19253(4) 19358(3)
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Table 14: ARCH-LM tests

This table reports the P-values of the ARCH-LM tests on the residuals standardized by the 

conditional volatilities of MSCCC model and DCC model. For each of the three return series, we 

report the test statistics for lag of 5.

S&P 500

Q 1 2 3 4 5

M SCCC 0.089 0.174 0.305 0.448 0.582

D CC 0.033 0.064 0.138 0.225 0.335

1 -year bond

Q 1 2 3 4 5

M SCCC 0.846 0.741 0.645 0.795 0.540

D CC 0.619 0.574 0.775 0.350 0.050

1 0 -year bond

Q 1 2 3 4 5

M SCCC 0.639 0.871 0.461 0.136 0 .2 0 2

D CC 0.428 0.686 0.450 0.081 0.109
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Figure 1: state probabilities of correlation: 1-year bond and S&P500
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Figure 3: smoothed correlation: 1-year bond and S&P500
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1 Introduction

When the cross-sectional average of the correlations among equity returns is high, the variance 

of a diversified portfolio will be large as rising average correlation implies diminishing benefit 

from diversification. As a result, the cross-sectional average correlation of the stock market plays 

an important role in portfolio optimization for risk-averse investors. Stocks with higher pay-offs 

when the average correlation is high become more attractive to investors than stocks with lower 

pay-offs in high correlation states. In equilibrium, all other things equal, investors would pay a 

premium for stocks that have higher pay-offs in high correlation states. So these stocks should 

have lower expected returns than stocks with lower exposure to the correlation factor. In other 

words, the average correlation should have a negative risk premium in the market with a risk-averse 

representative agent.

The main goal of this paper is to construct an average correlation measure for the US equity 

market, and test whether this risk measure is priced in the cross-section of the equity market with 

a negative risk premium according to standard asset pricing theories. We are the first in rigorously 

estimating the risk premium of the average correlation constructed from the whole cross-section of 

the US equities. The risk premium for the variance of equity market index has been studied recently 

by Ang, Hodrick, Xing and Zhang (2006). But they choose the VIX index from the option market as 

their variance risk measure1. A more direct study of variance risk premium is Harvey and Siddique 

(2000). Their co-skewness measure is essentially stock return’s beta on market variance. But they 

only find weak evidence of pricing for co-skewness2. If we decompose the market variance into 

average correlation and average variance, high correlation exposure should correspond to high co­

skewness with the market return holding constant the average variance. Recently, Pollet and Wilson 

(2009) show the average variance of the whole market has negative correlation with future market 

returns while the average correlation positively predicts future market index returns. Similarly, 

Guo and Savickas (2008) also find idiosyncratic volatility negatively predicts future market index 

returns. These results suggest that only the average correlation part of the market variance has

1 This choice means their findings are not directly on the market variance risk because VIX is the risk-adjusted 

expectation of the market variance, and contains information about the time-varying variance risk premium in option

market. So their results could be mainly driven by the time-varying variance risk premium.
2 Using several measures of co-skewness, they find that the premium estimate for co-skewness risk is only significant

for stocks with short return history, usually less then 60 months.
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the "correct" sign of risk premium on the index level3. The weak results of Harvey and Siddique 

(2 0 0 0 ) could be lue to the opposite pricing implications of the two components of market variance, 

average correlatbn and average variance. In this paper, we propose that the average correlation 

might be at more accurate and cleaner measure of the aggregate risk level of whole stock market. 

By focusing the average correlation, we expect the results of our cross-sectional study might be 

stronger. Howewr, from a theoretical point of view, if we treat the average correlation as a proxy 

for some unobsewable macro information, then the fact that it both predicts future market return 

and future marlet variance makes our study more interesting. Under the I-CAPM of Chen (2003), 

average correlatbn should have a negative risk premium for its role of positively predicting future 

market variance but a positive risk premium for its role of positively predicting future market 

return. As a result, the net pricing effect of average correlation will depend on A) its relative 

forecasting; power for future market return and market variance, and B) the risk-aversion level of 

the representative agent. For a given level of risk aversion, if the average correlation has a much 

larger forecasting power for future market returns than for the market variance, the aggregate risk 

premium will become more positive. On the other hand, if the relative forecasting power is fixed, 

then for a very risk-averse agent , the average correlation’s role of predicting future market variance 

will dominate, aid the net correlation risk premium will be negative. This is because an asset 

with pay-offs positively correlated with average correlation, and so also positively correlated with 

high future marlet variance, could act as a hedging against adverse states with poor diversification 

opportunity. rTh3 results of this paper can be interpreted as an evaluation on the relative importance 

of these two oppsite pricing effects.

In this papei, we adopt the General Method of Moment (GMM) approach of Hansen (1982) to 

estimate the crorelation risk premium and correlation betas jointly. The GMM approach allows us 

to avoid the e:rrcrs-in-variable (e.i.v.) problem. Using data from 1963 to 2006, we find that there is 

a significantly nigative correlation risk premium in the cross-section of the US equity market. The 

results are rofoui to controlling for Fama-French (FF) (1993)’s SMB and HML factors, which are 

pay-offs on loing-short spreads constructed by sorting stocks according to market capitalization and 

book-to-markret ratio, as well as the momentum factor of Carhart (1997), and the liquidity factor

3The reason w b average variance negatively predicts future market return has been extensivly studied in both 

empirical and tlheoEtical literature in recent years. But there is still no concensus. And this is beyond the scope of 

this paper.
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of Pastor and Stambaugh (2003). The results of the sub-sample before 1983 are more significant 

than those of sub-sample after 1983. Even though there is a high correlation between the liquidity 

factor and the correlation factor, at about -0.4, the average correlation does contain an independent 

source of risk. The annual return spread between the portfolio of high and low correlation-beta 

varies from -2% to -6% controlling for other risk factors.

Our paper is also related to the study on downside beta of Ang, Chen, and Xing (2006). They 

relate the expected equity return to market-beta conditional on the sign of the market return4. 

They show that the cross-section of stock returns reflects a premium for bearing downside risk, 

but fail to find a significant discount for stocks that have high covariance with upside movements 

of the market. Driessen, Maenhout and Vilkov (2009) use data on S&P100 index options, as well 

as options on all index components, to study the pricing of correlation risk in the option market. 

They find indirect evidence of priced correlation risk by showing that index variance risk is priced 

while individual variance risk is not. They suggest that correlation risk may be priced in the 

cross-section of stock returns. In this analysis, we directly study the pricing of the correlation risk 

in cross-section of the equity market. Our paper is also related to the contagion literature. A 

sudden increase in the average correlation could also be considered as contagion effect if the shock 

comes from a subset of the market instead of representing some market-wide information. Forbes 

and Rigobon (2002) show that heteroskedasticity would bias the estimate of empirical correlation. 

They find there is no significant increase in cross-country correlation during several financial crises 

once they adjust for the higher volatility during the crises. To rule out that our measure of average 

correlation would suffer from the same problem, we also compute the adjusted average correlation, 

similar to the "conditional correlation" of Forbes and Rigobon (2002). We find our results are 

robust to this adjustment.

The paper is organized as follows. We first illustrate how we construct the correlation risk 

measure and show its empirical features in section 2. In section 3 we form portfolios basing on 

stocks’ correlation betas, and indirectly evaluate the significance of correlation risk through post­

ranking alpha estimates. In section 4, we formally estimate the correlation risk premium using 

GMM for the returns of ten stock portfolios sorted on correlation-betas. Finally Section .5 concludes 

and discusses areas for further research.
4 This measure is different from co-skewness of Harvey and Siddique (2000) because co-skewness is mnconditional 

on direction of the market.
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2 C onstructing the Correlation Risk Proxy

2.1 D escrip tion  o f th e  d ata

The sample period we examine is from July 1963 to December 2006. The starting date is the same 

as the Fama-French (1992, 1993) papers. This can make our results comparable to other studies 

that examine other factors in explaining the cross-section of expected stock returns.

The first data set we use is the CRSP daily stock data. We use the daily returns of stocks of 

NYSE and AMEX to compute the average correlation risk measure as well as the average variance. 

The same data set in monthly frequency is used to estimate the factor loadings and construct the 

portfolio deciles. To be included in the regression sample, we require the stocks satisfy certain rules 

which are detailed in the following section. The second data set consists of monthly observations of 

the Fama-French factors (SMB and HML), the momentum factor (MOM), and the liquidity factor 

(LIQ) of Pastor and Stambaugh (2003).

Finally, we also want to examine what macroeconomic factors might explain the variation in 

the average correlation. From the Federal Reserve Board we get data on the composite rates of 

long term (over 1 0  years) bonds and rates of the three-month treasury bill, and compute the term 

spread as the difference between these two series. We get data on credit spread, which is the yield 

spread between corporate bonds with credit rating of BAA and AAA, and data on the Industrial 

Production Index from the FRED database of the Federal Reserve Bank of st. Louis. The US 

Business Cycle dates are from the NBER.

2.2 C onstructing  th e  average correlation

We first calculate the average correlation and average variance from the US equity market. Later 

in this section, we will investigate the relationship between these two series. We construct the 

monthly average correlation and average variance series using the daily returns of cross-section 

of stocks for each month in the sample. To be specific, for each month, we compute the sample 

correlation for each pair of stocks using their daily returns. The variance of each stock is computed 

as the sum of squared daily returns within the month5. Then we construct the average correlation 

as the equal-weighted or value-weighted average of the sample correlations of each pair of stocks,

5 So the variance series are on monthly horizon. We treat the daily correlation within a month as the proxy for 

the realized correlation in the month.

56



and the average variance as the equal-weighted or value-weighted average of individual variances 

of all the stocks in the sample. The value-weighted average for variance is computed in standard 

way while we need to define how we do the value-weighted average of the correlation. Let p\,J be 

the sample correlation of asset i and j  for month t, and Cap\ the capitalization of firm i. Then the 

value-weighted average correlation is:

Nt- 1 Nt Nt - 1  Nt
°orrY = —  2̂ Y2 (CaPtCaPt) Pt3with Mt — ^  ^  Cap\CapPt ioT t = 1,2....T (1 )

 ̂ i = 1 j = i + 1 i= l  j = i + 1

where Nt is the number of eligible stocks in month t.

The value-weighting scheme here is the same as Pollet and Wilson (2009). The scheme tries 

to reflect the magnitude of the effect of correlation risk on the aggregate volatility of the market 

portfolio. To make the components used in the calculation more stable, we clean the data every 

year as follows: A stock is only included in our sample for month t if it meets all the following 

conditions: (1 ) it is fisted in NYSE or AMEX; (2) It is a common stock; (3) it has less than 3 daily 

observations missing in any month, and has 12 months of observations in this year6; (4) the last 

price of the year is larger than 5 and smaller than 1000. As a robustness check, we also construct 

both the value-weighted and equal-weighted average correlation series using only the 500 largest 

firms.

As mentioned earlier, Forbes and Rigobon (2002) show that heteroskedasticity would bias the 

estimate of the empirical correlation. Under some assumptions, they show that high volatility 

would bias the correlation upward. As a robust check, we also compute the "adjusted correlation", 

similar to the "conditional correlation" of Forbes and Rigobon (2002). Let corrt be the unadjusted 

correlation, computed in the standard way, then the adjusted correlation is:

*  I l + 8tcorrt = corrt ̂
1 +  St * corrf

with St =  7 7  -  1 (2)

where Vt is the average volatility across all stocks at month t, and Vo is the mean of the average 

variance across time.
We apply this rule to keep the number of stocks included for computation of average correlation for each month 

more stable.
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Note that because we do the adjustment at the aggregate level, this adjustment is not exact 

under the assumptions of Forbes and Rigobon (2002), though it does reflect the main idea of their 

paper.

2.3 T he correlation  risk factor: innovations in  th e average correlation

Once we have constructed the average correlation series, we need a model to filter the correlation 

series to get the innovations as the correlation risk factor. But there is no consensus about which 

model to use in obtaining the innovations. In theory, the chosen model should reflect the information 

set of the representative agent. By examining the dependence structure of the average correlation 

series, we choose the following AR{5) model, which has the best in-sample fit according to the 

Bayesian Information Criterion (BIC) for all the auto-regressive models with orders of less than 10.

corrt = a + bicorrt- \  +  b2Corrt - 2  +  bscorrt-3 +  b±corrt~± +  b5corrt ~ 5 +  e°t (3)

After estimating (3), we define the correlation risk factor used in this paper as Ct = which is 

the residual estimate from the above regression. The main results are obtained by using the value- 

weighted average of equity correlations. The equal-weighted average will be used as a robustness 

check.

2.4 Em pirical features o f th e  average correlation

First we can see the dynamics of the value-weighted and equal-weighted average correlation in 

Figure 1A, together with the US business cycle. The average correlation (corrt) spikes up in any 

financial crisis. And once it spikes up, it takes a long time to decay, especially for the value- 

weighted average correlation. Two corrt series are tracking each other quite closely, and the sample 

correlation between them is 0.76. But the value-weighted corrt has a higher mean than the equal- 

weighted one, reflecting the fact that the large firms move together more closely.

To see the relative contribution of the corrt and average variance to the market variance, we 

report their correlations in Table 1. For both the value-weighted corrt and equal-weighted corrt, 

their correlations with market variance are lower than those with average variances. And the 

correlation between corrt and average variance is quite low especially for the equal-weighted ones. 

Since the correlation between market variance and corrt is only about 0.5, our results could be
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quite different from those of variance risk or co-skewness risk studies.

We also compute the correlation between corrt and other risk factors extensively studied in 

the literature. As shown in Table 2, corrt is negatively correlated with almost all the factors 

while it has the largest correlation (in absolute value) with the liquidity factor. The correlation 

(in absolute value) between market factor and corrt is quite large as well. Considering the corrt 

series are strongly auto-correlated, as shown in Figure 2, this might indicate that corrt has strong 

predictive power for market return, which is consistent with Pollet and Wilson (2009). To examine 

what macroeconomic information corrt can proxy for, we regress the corrt on the macro variables 

including GDP, CPI, term spread, and credit spread. From Table 3, we can see that only credit 

spread has weakly significant explanatory power for the value-weighted corrt. But equal-weighted 

corrt is more significantly explained by CPI and GDP.

Apart from the contemporary relation with other factors, we also study the intertemporal 

relation among the average correlation, average variance and liquidity. The reason why we choose 

the other two series is due to their direct economic connections with the average correlation. A 

change in average variance reflects an information shock, while the liquidity level represents how 

deep the market is for a given information shock. If the information shock is large, we expect the 

correlation to increase. And if the liquidity is low, we expect the correlation to have further increase 

for a given information shock. We perform the vector auto-regression (VAR) analysis on the three 

variables. The number of lags is 5, chosen by likelihood ratio test. Figure 3 is the impulse response 

functions (IRF) from the VAR estimates. We standardize each series by its standard deviation. 

We can see from the middle panel of Figure 3 that both average correlation and liquidity have a 

sizable response to a shock to average variance. But a shock to average correlation or liquidity has 

limited effect on the other two variables. The Granger Causality Tests results in Table 4 confirm 

these findings.

Finally, Figure IB compares the unadjusted average correlation and adjusted average correla­

tion defined as (2). The sample correlation between them is 0.9569, which is evidence that the 

adjustment does not have a significant effect, and our proxy reflects the real variation in general 

diversification effect of the whole market. Also, our results from IRF analysis seem to be in favour 

of contagion story, which is different from Forbes and Rigobon (2002)7.

7 Of course this is not direct evidence on contagion effect, since an increase in average volatility could be from 

news affecting the fundamentals of the whole market.
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3 Sorting Portfolios by Correlation Betas

To implement the GMM estimation in the next section, we group all the eligible stocks into port­

folios according to their sensitivities to the innovations of the average correlation, the correlation 

betas. Let r^t denote stock i 's  excess return, C t the innovation of the average correlation, and Ft 

a vector of other factors. Then the correlation beta, (3*1, of each stock is defined as in the following 

regression:

r u - f i  + P fF t + PiCt + ent (4)

At the end of each month, starting from January 1968, we sort stocks into ten portfolios basing

on their historical correlation beta estimates. Each month’s historical betas are obtained from the

regression (4) using data in the past 60 month in a rolling-window way. The post-formation monthly 

returns on these portfolios are then finked across months and years to form a single return series for 

each decile portfolio. These returns of decile portfolios will form the basis for the GMM estimation 

of correlation risk premium in next section. Our sample includes all common shares traded on the 

NYSE and AMEX. As a common practice in large cross-sectional studies of equity returns, we also 

exclude stocks with prices below $5 or above $1000. To be include into the portfolios of a month, 

a stock also has to have at least 30 monthly returns up to last month.

The factors, Ft, considered in this paper include the market factor, MATT*, which is the market 

return in excess of the 3-month treasure bill rate, Fama-French’s H M Lt and SM B tl the momentum 

factor, M O M t, and the liquidity factor, LIQt. So /3? will capture the stock’s comovement with 

the average correlation in the market that is distinct from its comovement with these factors. The 

same factors will be included in the model for GMM estimation in the next section.

Before we formally estimate the correlation risk premium, we first regress the returns of the 10 

portfolios sorted by correlation-betas on the vectors Ft , and study the intercept estimate aj, the 

"excess return", in the following regression:

rj,t =  otj + f t j  Ft + e^t for j  = 1,2,3....10 (5)

If a stock’s sensitivity to the innovations of the average correlation is related to its expected return, 

the returns on the 10 beta portfolios should have significantly different alpha estimates. As a 

benchmark case, we report in Table 5 the alpha estimates of (5) for the ten beta portfolios when Ft
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only includes M K T t, H M L t and SM B t. If the correlation risk premium is negative, there should 

be a monotonic decreasing pattern in alpha estimates. Since stocks with high correlation betas 

provide some sort of insurance against adverse market environment of high average correlation, 

investors would pay a premium for these stocks in equilibrium. This implies that stocks with 

higher correlation betas should have lower expected returns after controlling for other risk factors. 

But from the results in Table 5, it seems that there is no clear pattern in alpha estimates although 

we do find some alpha estimates significantly different from zero. Overall, we can not find strong 

evidence in favour of priced correlation risk only from these post-ranking alpha estimates. Results 

of alpha estimates for Ft including more factors also do not show any clear pattern, and are not 

reported in the paper.

In the next section, we formally estimate the correlation risk premium with the ten return series 

of portfolios sorted by correlation-betas. Note that we always include the same set of risk factors 

in Ft during portfolio-sorting stage and the following estimation stage.

4 G M M  Estim ation o f the Correlation Risk Prem ium

In the previous section, we try to infer the correlation risk premium through the spreads in the 

expected returns of the decile portfolios. Now we formally estimate the correlation risk premium 

using all 10 portfolios sorted on correlation-betas. The two-pass regression procedure of Fama- 

MacBeth (1973) is widely used in risk factor studies due to its easy implementation. But using the 

beta estimates as observations in the second-stage regression produces the classical errors-in-variable 

problem. Shanken (1992) develops a correction procedure to correct for the errors-in-variable 

problem. But his method relies on the assumption of i.i.d. errors in the time series regression, 

which is very strict considering the vast literature on conditional heteroskedasticity modelling of 

financial returns. To completely avoid the e.i.v. problem and make minimum assumptions on the 

distribution of the errors term, we adopt the GMM framework of Hansen (1982) to estimate the 

correlation betas and correlation risk premium (Ac) in one pass. The same approach has been used 

by Pastor and Stambaugh (2003) in their study of liquidity risk pricing.

In this section, we first describe the GMM estimation procedure, and then present the main 

empirical results. Finally, we do robustness test on the results by using alternative correlation risk 

measures.
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4.1 T he G M M  estim ation  procedure

The basic idea of the GMM procedure is to use the pricing relation constraints as moment conditions 

to jointly estimate the correlation betas of all ten portfolios as well as the correlation risk premium 

in the factor models. First, define the multivariate regression:

rt = ft o + BFt +  pcCt +  et (6)

where r* is a 1 0  x 1 vector containing the excess returns on the tested portfolios, and Ft is a 

k x 1 vector of the realizations of k traded factors. B  is a 10 x k coefficient matrix, while (30 and 

Pc are 10 x 1 vectors of intercepts and correlation-betas respectively. According to the standard 

non-arbitrage pricing theory, portfolios are priced by their returns’ sensitivities to the factors, as 

follows:

E{rt) = B \ F + 0cXc  (7)

To impose the pricing constraint on the parameters in equation (6 ), we take expectations of 

both sides of equation (6 ), and substitute fi0 using equation (7). This gives us:

f i o  =  £°[Ac -  A*d w i t h  ALc  =  E ( C t ) (8)

Equation (8 ) results from the fact that Ft is a vector of traded factors such that their risk 

premiums XF are equal to their expectations E(Ft). But the correlation risk factor is not tradable, 

so its risk premium is not equal to its expectation8. In the following estimation, the mean of the 

correlation factor is zero by construction because Ct is the innovation of the level process. To apply

the GMM method, we first define the moments to be equal to zero from the multivariate regression

with constraint (8 ). Let Q = (B,/3c, \ c )  be the unknown parameters to be estimated, then the 

sample moments are defined as g(0) — (1/T) Ylt=i ft(&) with :

8 The liquidity factor we use is not tradable either. So for the case of including liquidity factor, the constraint (8 ) 

becomes: /30 =  /3c[ \ c  — /%] +  /3L[Al — g L] wi th nc  =  E{Ct)  and fxL =  E(L IQ t ), where /3L is liquidity beta and Al 

is the liquidity risk premium.
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ft(0) = ht ® et (9)

with h't = (  1 Ft Ct )  ,

et = rt - P cXc - B F t - P cCt

The moments in (9) reflect the pricing constraint (8 ) through the definition of et in the last fine 

of (9). Now we define the GMM estimator as:

Qg m m  = argirnn g{6)'Wg{6)u
where W  is a consistent estimator of the optimal weighting matrix, which is estimated as the inverse 

of (1 /T ) Ylt=i ft(Q)ft(9)' where 6 is a consistent estimator of 6. During the actual estimation, we 

can choose what factors to include in Ft as controls, which would be same set of factors used during 

the portfolio sorting stage.

4.2  Em pirical resu lts o f th e  G M M  estim ation

The main results are reported in Tables 6 , 7 and 8 , for different sets of risk factors Ft. The focus 

of this paper is the estimate of the correlation risk premium, Ac, with different sets of controlling 

variables. A negative and significant estimate will be consistent with the standard asset pricing 

theory. To show the actual magnitude of the annual compensation for exposure to the correlation 

risk, we report the "1 0 -1 " return spread, which goes long on decile 1 0  (stocks with highest correlation 

betas) and short on decile 1 (stocks with lowest correlation betas). We also report the "9-2" return 

spread defined in a similar way. The GMM procedure also provides us the correlation beta estimate 

/3° for each portfolio. In each table, we also divide the sample into two sub-samples defined as the 

periods before and after Jan. 19839.

We first discuss the case in which Ft only includes M K T t, H M Lt and SM Bt. The estimation 

results are reported in Table 6 . In the full sample, the estimate of correlation risk premium Ac  is 

negative and significant at 10% level; the annual "10-1" and "9-2" spreads are -2.07% and -4.08% 

respectively, both of which are significant at 10% level. However, the "9-2" spread is larger and

9 This is the same as Pastor and Stambaugh (2003). And this sub-sampling date is also adopted in many macro 

studies as the US monetary policy has experienced important structural changes and unusual operating procedures 

around 1983 (see Bagliano and Favero, 1998, and Clarida et al, 2000).
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more significant than the "10-1" spread. Since the return spread is the product of Ac  and the 

difference in correlation betas, this suggests that the correlation beta estimates are not monotonic 

along the portfolio deciles, which is the case in the results. This also explains why there is no 

monotonic pattern in the post-ranking alpha estimates in the results of the previous section10. 

From the results in the two sub-samples, we can see that the estimates of the correlation risk 

premium as well as portfolio spreads are more significant for the period before 1983 than for the 

period after 1983. There axe also more significant estimates of f3c in the first sub-sample.

Next, we report in Table 7 the results of the estimations when Ft includes M K Tt, H M L t , 

S M B t , and the momentum factor MOMt. Comparing the results with those in Table 6 , we can see 

tha t the estimates of the correlation risk premium as well as the portfolio spreads are even more 

significant when we control for the momentum factor. But the correlation beta estimates are still 

not very significant or monotonic across the portfolios. The relative strength of the results in two 

sub-samples is similar to the previous case: the first sub-sample has stronger results.

Finally, we further add the liquidity factor in Ft and estimate the correlation risk premium in a 

six-factor model. Since the liquidity factor has the highest (absolute) correlation with the average 

correlation among all considered factors, inclusion of the liquidity factor might "explain away" some 

of the variation in the expected returns and reduce the significance level of the correlation premium 

estimates. This is confirmed by the results reported in Table 8 . Estimates of the correlation risk 

premium and portfolio spreads are still significant, but less so than those in Table 7. However, 

their significance levels are comparable to those shown in Table 6  where Ft includes only the 

market factor and FF factors. But as in the previous two tables, the correlation beta estimates are 

not very significant.

Overall, we find a negative and significant correlation risk premium in the full sample and 

the first sub-sample. The return spread between high correlation-beta stocks and low correlation 

beta stocks is about -2% to -6 % annually, depending on the controlling factors and samples. This 

magnitude is comparable to the liquidity premium found in the literature. For example, Pastor 

and Stambaugh (2003) estimate a return spread of 7.5% between the high liquidity-sensitive stock 

portfolio and the low liquidity-sensitive stock portfolio. Acharya and Pedersen (2005) find that there 

is a difference between the highest and lowest liquidity portfolio return corrected for the other risk

10 So it is likely that our results can not pass a stricter test which penalises the lack of monotonicity in beta 

estimates, such as Patton and Timmermann (2008)
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factors, of 4.6% per year. So the correlation risk premium found in this paper is also economically 

significant. As mentioned in the introduction section, if we view the average correlation as a 

proxy for some unobservable macro variables, the exact sign of the risk premium of the average 

correlation depends on the representative agent’s risk aversion and the average correlation’s relative 

forecasting power on market returns and market variance. The above results indicate that the 

average correlation’s role as a risk forecaster dominates its role as a forecaster for future market 

return.

The results are generally less significant in the second sub-sample, which is difficult to explain. 

If investors’ investment in stock markets is becoming more and more diversified, we should expect 

to find stronger result in the more recent sample period. One explanation is that the stock market 

index is not an accurate proxy for the "market portfolio" of the CAPM or ICAPM. So the average 

correlation we calculate by using only the US equity returns does not fully reflect the time-varying 

diversification opportunity that US investors face in the actual world. This obviously becomes 

more true in the second sub-sample as global asset allocation is becoming an increasingly common 

practice in the investment industry. So a stock with high sensitivity to the local aggregate asset 

correlation might have low sensitivity to the global aggregate asset correlation. If this is possible, 

other empirical studies focusing on local risk measures might suffer similar problems. Another 

explanation is related to the results on the correlation-beta estimates. Considering both the full 

sample and the two sub-samples, we do not find a monotonic pattern in correlation-beta estimates. 

Since the portfolios are sorted on correlation-betas estimated from the most recent 60 months, 

the fact that the monotonic pattern in beta breaks down in the following month indicates that 

there is large variation in the correlation betas. A larger variation in the correlation-beta in the 

second sub-sample could produce the weaker results in the second sub-sample. To explore these 

two possibilities, we would need to modify our data and estimation procedure, which we leave for 

future research.

4.3 R obustness te s ts

Our robustness tests mainly consist of using different correlation risk measures. First, we repeat the 

whole estimation procedure using the equal-weighted average correlation. Since the value-weighted 

average correlation might place too much emphasis on the correlation between large firms, using 

equal-weighted average correlation might give us different results. We only report the results for
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the case of Ft containing all of the six factors we consider, presented in Table 9. The results are 

very similar to those using the value-weighted average correlation both in the full sample and in 

the two sub-samples. The correlation risk premium estimate is still significantly negative.

As a further robustness check, we use only the 500 biggest companies to construct the average 

correlation, both value-weighted and equal-weighted. Again, we only report the results of estimation 

in a six-factor model. The value-weighted case is presented in Table 10 while Table 11 presents 

the equal-weighted case. The results in both tables are very similar to those in Table 8  and 

Table 9. There is evidence of a significantly negative correlation risk premium. The significance 

of the estimates is stronger in the sample before 1983. The "9-2" spread is mostly larger than 

"10-1" spread, and more statistically significant. But only very few correlation beta estimates are 

significant. We do not find a monotonic pattern in beta estimates. The above results suggest that 

our main findings in the previous section are not affected by the method and type of stocks included 

in constructing the average correlation series.

Finally, we also conduct a test on the significance of return difference in the decile portfolios 

sorted on correlation-betas estimated in the six factors model. As we can see in Table 8 , we have 

significant estimates of the product of beta-difference and risk premium (lambda). However, since 

most of the beta estimates are not significant, the significance of the lambda estimates (and also 

the product estimates) might not be reliable. To have another check on the result of Table 8 , we 

construct the returns of the long-short portfolios, with "1 0 -1 " portfolio consisting of longing 1 0 th 

decile stocks and shorting 1st decile stocks, and similar definition for the "9-2" portfolio. Note that 

the decile portfolios are sorted in the same way as we do for Table 8 . Then, we regress the two 

"long-short" portfolio returns on the same set of risk factors used in sorting the decile portfolio but 

excluding the correlation risk factor. Finally, we get the estimates of the intercept (alpha) of the 

regressions for both of the two "long-short" portfolios. If the correlation risk is priced we should 

expect a significant estimate of alpha, which should be similar to the estimate of the product of 

the beta-difference and lambda. The results are reported in Table 12, which should be compared 

with the results of Table 8 . We can see the results are much weaker than those of Table 12. And 

we only find marginally significant alpha estimate for the "9-2" portfolio, although the signs of all 

the estimates are still negative, consistent with standard asset pricing theories’ prediction.

i
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5 Concluding Remarks

The average correlation in equity markets is an important risk factor investors face when making 

investment decisions. Recent empirical findings suggest that the average correlation instead of 

market index variance might be a better proxy for the general risk level in the whole market. 

In this paper, we investigate the pricing implication of the average (correlation in the US equity 

market. We estimate the correlation risk premium in a GMM framework, which jointly estimates 

the correlation betas and correlation risk premium to avoid the classical errors-in-variable problem 

of the two-pass regression approach. Using the cross-section of US 'equity returns from 1963 to 

2006, we find that there is a significantly negative correlation risk premium in the cross-section of 

the US equity market in the full sample. This result is robust to controlling for Fama-French (FF)

(1993)’s SMB and HML factors, as well as Carhart (1997) momentum factor and the liquidity 

factor of Pastor and Stambaugh (2003). The return spread between the high correlation-beta stock 

portfolio and the low correlation-beta stock portfolio is about -2 % to -6% annually, depending on the 

samples and controlling factors. The magnitude is comparable to the premium found for other risk 

factors in the literature. The results are stronger in the sub-period before 1983. There are mainly 

two issues in this analysis that could be further explored: First, the results in the sub-sample after 

1983 are less significant. This might be due to the increasing globalization of investment industry, 

which makes the average correlation constructed using only US equities an inaccurate measure 

to represent the time-varying diversification opportunities investors actually face today. Another 

potential problem is that we fail to find monotonic estimates of the correlation-betas. This might 

be due to the large variation of the correlation-beta across time. Future research could investigate 

the correlation risk premium by constructing a global aggregate correlation series, and estimate the 

premium in a time-varying beta model .
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A ppend ix: graphs and  tab les

Figure 1 : Average correlations

This figure shows the average correlations from Jan. 1963 to Dec. 2006. Panel A shows the value-weighted 

and equal-weighted average correlations, together with NBER recession periods indicated by vertical lines. 

Panel B shows the unadjusted average correlations and the adjusted ones according to (2). Both are value- 

weighted average.

Panel A: Value-weighted and equal-weighted average correlations

|
o

year

Panel B: A djusted and unadjusted average correlations
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Figure 2 Sample autocorrelation function

This picture plots the sample autocorrelation of the average correlation and variance of market index. 

The average correlation are value-weighted average of daily correlations for each pair of return across all 

assets for each month. Variance of the market index and the monthly realized variance of the value-weighted 

market index. Sample period is from Jan. 1961 to Dec. 2006.
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Figure 3: Impulse response function: average correlation with average variance

This figure plots the impulse response functions from the estimations of a vector-auto regression 

of order 5 (VAR(5)) for the three series: average correlation, average variance and liquidity factor. 

And the "average" here means value-weighted average.

m  t «cto*en
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Table 1: Correlation between Market Variance, Average Variance and Average

Correlation

This table reports the correlation between the market (index) variance, average correlation and 

average variance. The market variance a2M is computed as the sum of squared daily returns of 

valued-weight market index within each month. The average variance o \  is the average of variance 

of all individual stock while the variance of each stock is computed as the sum of squared daily 

returns within each month. The average correlation pA is the average of daily correlation for each 

pair of stocks within each month. Both value-weighted average and equal-weighted average are 

computed for o \  and pA. The table also reports the mean, minimum and maximum of each series.

Value-weighted average

a M ° A Pa mean min. max

a M 1 0.723 0.520 0.00154 0.0000718 0.05760

° A 0.723 1 0.293 0.0087 0.0024 0.0926

Pa 0.520 0.293 1 0.1951 -0.0423 0.6474

Equal-weighted average

Pa mean min max

1 0.560 0.537 0.00154 0.0000718 0.05760

° A 0.560 1 0.242 0.0165 0.0062 0.0885

Pa 0.537 0.242 1 0.1476 0.0129 0.8273

Table 2: Correlation between the Average Correlation and Other Risk Factors

This table summarizes the correlation between the correlation risk proxy and other factors, 

which include Fama-French’s SMB and HML factors, liquidity factor of Pastor and Stambaugh 

(2 0 0 2 ), and the momentum factor.

Value-weighted average correlation

Market SMB HML Momentum Liquidity

Average Correlation -0.282 -0.252 -0.007 -0.008 -0.415

Equal-weighted average correlation

Market SMB HML Momentum Liquidity

Average Correlation -0.385 -0.166 0.134 -0.171 -0.437

71



Table 3: Results on Regressions of the Average Correlations on Macro Variables

This table reports the result of regressions of the average correlations on selected macro vari­

ables. The upper table is for value-weighted correlations and lower table for equal-weighted corre­

lations. The t-statistics are in parentheses

Value-weighted average correlation

Intercept GDP CPI Term Spread Credit Spread adj. R2

0.1723 -0.6958 -2.5203 0.0042 0.0357 0.032

(6.7897) (-0.6484) (-0.8838) (0.4845) (1.7968)

Equal-weighted average correlation

Intercept GDP CPI Term Spread Credit Spread adj. R2

0.1359 -1.5663 -6.3166 0.0034 0.0208 0.034

(5.4790) (-1.7177) (-2.4320) (0.3112) (1.0373)

Table 4: G ranger Causality Tests

This table reports the F statistics of Granger causality tests in a vector-auto regression of order 

5 (VAR(5)) for the three series: average correlation, average variance and liquidity factor. And the 

"average" here means value-weighted average. The p-values are in parentheses.

Shock variables Response variables

Average Correlation Average Variance Liquidity Factor

Average Correlation 34.29 1.29 0.29

(0 .0 0 0 ) (0.262) (0.913)

Average Variance 4.86 267.07 3.38

(0 .0 0 0 ) (0 .0 0 0 ) (0.005)

Liquidity Factor 1.16 1.08 5.67

(0.323) (0.367) (0 .0 0 0 )
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Table 5

Alphas of Value-Weighted Portfolios Sorted on Correlation Betas

For each month between 1968 and 2006, eligible stocks are sorted into 10 portfolios according to their historical correlation betas estimated 

in the regression below using monthly returns in the immediately past 5 years. Eligible stocks are defined as ordinary common shares traded 

on NYSE, AMEX, and NASDAQ with at least three years of monthly returns, and with the stock prices between $5 and $1,000. The monthly 

post-ranking portfolio returns are then linked across months and years to form series of post-ranking returns for each decile. The table reports 

the decile portfolios’ post-ranking alphas which is the intercept estimate by regressing portfolios’ excess returns only on Ft. All alphas are 

multiplied by 100. The t-statistics are in parentheses.

rt = a + BFt +  f3cCt +  et 

with Ft = [.M KTt SM B t H M Lt]

alpha

1 2 3 4 5 6 7 8 9 10

Jan. 1968-Dec 2006 -0.11

(0.33)

0.00

(0.10)

-0.07

(-1.01)

0.01

(0.22)

-0.05

(-0.74)

0.02

(0.29)

-0.01

(-1.41)

0.13

(1.70)

-0.10

(-1.33)

-0.19

(-1.90)

Jan. 1968-Dec. 1982 0.05

(-0.58)

-0.04

(-0.38)

-0.08

(-0.73)

-0.06

(-0.56)

0.01

(0.13)

-0.12

(-1.25)

0.13

(1.41)

0.15

(1.67)

-0.09

(-0.82)

-0.02

(-0.12)

Jan. 1983-Dec 2006 -0.23 0.03 -0.06 0.09 -0.06 0.13 -0.25 0.12 -0.10 -0.27

(-1.66) (0.26) (-0.73) (1.11) (-0.72) (1.57) (-2.31) (1.14) (-1.06) (-2.16)



Table 6

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in a Four-factor Model

—value-weighted correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and the correlation beta of each decile portfolio, as well as the 

contribution of correlation risk to the expected return on the "10-1" spread and "9-2" spread. The model includes four factors: the market 

factor MKTt, the FF’s SMBt and HMLt, and the value-weighted correlation factor Ct- Stocks are sorted into 10 portfolios by their 

historical correlation betas at end of each month. The premium Ac is the GMM estimate using post-ranking returns on all 10 portfolios. j3° is 

the correlation beta estimate of each portfolio. The contribution of correlation risk premium to the portfolio’s expected return, Ac X A/3C, is 

multiplied by 1200, so that it is the annual percentage return. The t-statistics are in parentheses.

rt — Pq +  BFt +  P°Ct +  et

^  with Ft =  [MKTt SMBt HMLt]
£»-

P c Ac Ac x A pc

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 0.005 

(0.71)

-0.003

(-0.49)

0.006

(1.10)

-0.003

(-0.61)

0.000

(0.04)

-0.001

(-0.23)

0.006

(1.06)

-0.008

(-1.24)

0.010

(1.50)

0.014

(1.44)

-0.127

(-1.85)

-2.07

(-1.81)

-4.08

(-3.32)

Jan. 1968-Dec. 1982 -0.018 

(-1.14)

-0.001

(-0.09)

0.005

(0.42)

0.004

(0.36)

0.002

(0.15)

0.015

(1.31)

-0.006

(-0.53)

-0.019

(-1.64)

0.043

(3.39)

0.011

(0.52)

-0.034

(-2.15)

-2.43

(-2.16)

-3.70

(-3.47)

Jan. 1983-Dec 2006 0.006 0.000 0.002 -0.003 -0.000 -0.003 0.006 -0.002 0.003 0.009 -0.324 -1.93 -2.24

(0.82) (0.05) (0.59) (-0.86) (-0.00) (-0.79) (0.92) (-0.64) (0.71) (0.89) (-1.01) (-0.90) (-1.15)



Table 7

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in the Five-factor Model

—value-weighted average correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and correlation beta of each decile portfolio, as well as the contribution 

of correlation risk to the expected return on the "10-1" spread and "9-2" spread. The model includes four factors: the market factor M KTt, 

the FF’s SM Bt and H M Lt, the momentum factor MOMt, and the value-weighted correlation factor Cf. Stocks are sorted into 10 portfolios 

by their historical correlation betas at end of each month. The premium Ac is the GMM estimate using post-ranking returns on all 10 

portfolios. (3° is the correlation beta estimate of each portfolio. The contribution of correlation risk premium to the portfolio’s expected 

return, Ac X A/3C, is multiplied by 1200, so that it is the annual percentage return. The t-statistics are in parentheses.

rt — A) + BFt +  P°Ct +  et 

with Ft =  [MKTt SM B t H M Lt MOMt\

/r Ac Ac x A (3C

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 0.007

(0.97)

-0.008

(-1.19)

0.004

(0.60)

-0.003

(-0.79)

0 .0 0 0

(0 .2 0 )

-0 .0 0 2

(-0.53)

0.007

(1.17)

-0.006

(-1.13)

0 .0 1 2

(1.65)

0.013

(1.44)

-0.125

(-2 .0 2 )

-1.63

(-1.05)

-6.25

(-4.61)

Jan. 1968-Dec. 1982 -0.006

(-0.43)

-0.004

(-0.27)

-0 .0 0 2

(-0.19)

0 .0 0 2

(0 .2 2 )

0.005

(0.47)

0.014

(1 .2 2 )

-0.006

(-0.51)

-0.017

(-1.51)

0.044

(3.44)

0.018

(0 .8 6 )

-0.041

(-2.37)

-2.50

(-1.90)

-4.77

(-3.99)

Jan. 1983-Dec 2006 0 .0 1 1

(1.08)

-0.008

(-0.98)

0.006

(0.81)

-0.006

(-1.25)

-0 .0 0 0

(-0.09)

-0.009

(-1.29)

0 .0 1 1

(1.41)

-0.004

(-0.77)

0.006

(0.89)

0.128

(1.33)

-0.164

(-2.03)

-0.60

(-0.29)

-5.51

(-2.67)



Table 8

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in the Six-factor Model

—value-weighted average correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and correlation beta of each decile portfolio, as well as the contribution 

of correlation risk to the expected return on the "10-1 " spread and "9-2" spread. The model includes four factors: the market factor M K T t> 

the FF’s SM Bt and H M Lt, the momentum factor MOMt, the liquidity factor LIQt, and the value-weighted correlation factor Ct- Stocks 

are sorted into 10 portfolios by their historical correlation betas at end of each month. The premium Ac is the GMM estimate using 

post-ranking returns on all 10 portfolios. (3C is the correlation beta estimate of each portfolio. The contribution of correlation risk premium to 

the portfolio’s expected return, Ac X A/3C, is multiplied by 1200, so that it is the annual percentage return. The t-statistics are in parentheses.

rt — (3q +  BFt +  (3cCt + e-t 

with -  '[MKTt SM B t H M Lt MOMt LIQ t]

/3C Ac Ac x A f3c

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 0.007

(0.84)

-0.003

(-0.41)

0.009

(1.13)

-0.007

(-1.37)

0 .0 0 1

(0.27)

-0.005

(-0.85)

0.015

(1.69)

-0.007

(-1 .0 0 )

0.013

(1.81)

0.009 

( 0.89)

-0.132

(-1 .8 8 )

-0 .6 6  

(-0.36)

-5.48

(-3.51)

Jan. 1968-Dec. 1982 -0.008

(-0.45)

-0 .0 0 0

(-0 .0 1 )

0.006

(0.48)

0.003

(0.26)

-0 .0 0 1

(-0.14)

0.008

(0.63)

0.004

(0.32)

-0.013

(-1.04)

0.050

(3.44)

0.007

(0.32)

-0.045

(-2.08)

-1.74

(-1.07)

-5.51

(-3.16)

Jan. 1983-Dec 2006 0 .0 1 0

(0 .8 8 )

-0 .0 0 1

(-0.16)

0.009

(1.06)

-0 .0 1 2

(-1.76)

0 .0 0 1

(0.25)

-0 .0 1 2

(-1.55)

0.015

(1.54)

-0.007 

(-1.06)

0.003

(0.46)

0.009

(0.75)

-0.170

(-1.80)

0.52

(0 .2 1 )

-2.17

(-0.73)



Table 9: Robustness Check (l)-equal-weighted correlation 

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in the Six-factor Model

—equal-weighted correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and correlation beta of each decile portfolio, as well as the contribution 

of correlation risk to the expected return on the "10-1 " spread and "9-2" spread. The model includes four factors: the market factor M K Tt, 

the FF’s SM Bt and H M Lt, the momentum factor M OM t, the liquidity factor LIQ t> and the equal-weighted correlation factor Ct. Stocks 

are sorted into 10 portfolios by their historical correlation betas at end of each month. The premium Ac is the GMM estimate using 

post-ranking returns on all 10 portfolios. /3° is the correlation beta estimate of each portfolio. The contribution of correlation risk premium to 

the portfolio’s expected return, Ac x A/3C, is multiplied by 1200, so that it is the annual percentage return. The t-statistics are in parentheses.

rt — Po +  +  (3cCt + et

with Ft = [MKTt SM B t H M Lt MOMt LIQ t}

P° Ac Ac x A/3C

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 -0 .0 2 2

(-2.09)

-0.003

(-0.32)

0.008

(0.87)

0 .0 0 2

(0.23)

-0.004

(-0.50)

-0.015

(-1.61)

-0.015

(-1.38)

-0.019

(-1.81)

-0.000

(-0 .0 2 )

-0 .0 0 2

(-0 .2 2 )

-0.047

(-1 .6 8 )

-2.30

(-1 .8 8 )

-0.38

(-0.40)

Jan. 1968-Dec 1982 -0 .0 2 0

(-1.65)

-0.013

(-1 .2 1 )

0 .0 0 1

(0 .1 2)

-0.003

(-0.32)

-0.000

(-0.04)

-0.000

(-0.08)

0 .0 1 0

(1 .2 0 )

-0.033

(-2 .8 6 )

0 .0 2 2

(1.69)

-0.003

(-0 .2 0 )

-0.083

(-3.34)

-3.50

(-1.98)

-7.05

(-3.73)

Jan. 1983-Dec 2006 -0.026

(-1.74)

0.000

(0 .0 0 )

0.015

(1 .1 2)

0 .0 2 0

(2.15)

-0.006

(-0.51)

-0 .0 2 1

(-1 .6 8 )

-0.025

(-1.79)

-0.018

(-1.29)

-0.026 

( -1.90)

-0 .0 1 2

(-0.79)

-0.007

(-0.19)

-0.24

(-0.34)

0.46

(0.37)



Table 10: Robustness Check (2)-Average correlation of 500 largest firms 

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in the Six-factor Model

—value-weighted correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and correlation beta of each decile portfolio, as well as the contribution 

of correlation risk to the expected return on the "10-1 " spread and "9-2" spread. The model includes four factors: the market factor M KTt, 

the FF’s SM Bt and H M Lt, the momentum factor MOMt, the liquidity factor LIQt, and the value-weighted correlation factor Ct, 

constructed from the 500 largest firms. Stocks are sorted into 10 portfolios by their historical correlation betas at end of each month. The 

premium Ac is the GMM estimate using post-ranking returns on all 10 portfolios. /3C is the correlation beta estimate of each portfolio. The 

contribution of correlation risk premium to the portfolio’s expected return, Ac X A/3C, is multiplied by 1200, so that it is the annual percentage

return. The t-statistics are in parentheses.

rt = /30 + BFt + pcCt + et

with Ft =  [MKTt S M B t H M Lt MOMt LIQ t)

Pc Ac Ac x A fic

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 0 .0 1 0

(0.90)

-0.003

(-0.42)

0.007

(0 .8 8 )

-0 .0 1 0

(-1.60)

-0.003

(-0.60)

0 .0 0 1

(0.08)

0.018

(2.26)

-0.003

(-0.43)

0.023

(2.89)

0 .0 1 2

(1 .1 2)

-0.113

(-1.71)

-0.47

(-0.228)

-7.33

(-2.92)

Jan. 1968-Dec. 1982 0.018

(1.19)

-0.004

(-0.43)

0 .0 0 1

(0 .1 0)

0 .0 0 2

(0.23)

-0.003

(-0.39)

0 .0 1 1

(1.03)

0 .0 0 1  

( 0.14)

-0.003

(-0.30)

0.042

(4.43)

0 .0 1 1

(0.62)

-0.083

(-2.71)

1.51

(0.69)

-9.41

(-4.73)

Jan. 1983-Dec 2006 0 .0 2 0

(1 .6 6 )

-0 .0 0 1

(-0.18)

0 .0 1 0

(1.36)

-0.007 

( -1-42)

-0 .0 0 1

(-0.43)

-0 .0 1 0

(-1.58)

0 .0 1 0

(1.46)

0 .0 0 2

(0.30)

-0 .0 0 0

(-0 .1 0)

0 .0 1 1

(1.24)

-0.154

(-2.14)

3.31

(1.61)

-0.30

(-0.17)



Table 11: Robustness Check (3)-Average correlation of 500 firms 

Correlation Risk Premium Estimate and its Contribution to Equity Expected Return in the Six-factor Model

—equal-weighted correlation as correlation risk proxy—

This table reports the GMM estimates of the correlation risk premium and correlation beta of each decile portfolio, as well as the contribution 

of correlation risk to the expected return on the "10-1 " spread and "9-2" spread. The model includes four factors: the market factor M K T t, 

the FF’s SM Bt and H M Lt, the momentum factor MOMt, the liquidity factor LIQt, and the equal-weighted correlation factor Ct, 

constructed from the 500 largest firms. Stocks are sorted into 10 portfolios by their historical correlation betas at end of each month. The 

premium Ac is the GMM estimate using post-ranking returns on all 10 portfolios. /3C is the correlation beta estimate of each portfolio. The 

contribution of correlation risk premium to the portfolio’s expected return, Ac X A/3C, is multiplied by 1200, so that it is the annual percentage

return. The t-statistics are in parentheses.

rt =  fio +  BFt +  ficCt +  e*

with Ft = [MKTt SM B t H M Lt MOMt LIQ t]

Ac Ac x A /3C

1 2 3 4 5 6 7 8 9 10 10-1 9-2

Jan. 1968-Dec 2006 0 .0 0 2

(0.52)

-0 .0 1 0

(-1.96)

0.007

(1.98)

-0 .0 0 0

(-0.17)

0 .0 0 0

(0 .0 2 )

-0 .0 0 2

(-0.71)

0.004

(0.97)

-0 .0 0 1

(-0 .2 0 )

0.004

(0.85)

0.007

(1.24)

-0.198

(-2.69)

-2.26

(-1.25)

-6.34

(-4.04)

Jan. 1968-Dec. 1982 -0 .0 1 0

(-1 .2 0 )

-0.013

(-1.78)

-0.003

(-0.48)

0.008

(1.05)

0.004

(0.87)

-0.003

(-0.40)

0.004

(0.65)

-0 .0 1 2

(-1.51)

0.014

(1.71)

0.015

(1.31)

-0.068

(-1.80)

-3.97

(-2 .8 6 )

-4.49

(-3.12)

Jan. 1983-Dec 2006 0.006

(0.93)

-0.016

(-2.17)

0.006

(1.18)

0.008

(1.65)

-0.005

(-1 .0 0 )

-0 .0 0 2

(-0.41)

0 .0 0 0

(0 .0 0 )

0 .0 0 0

(0 .1 1)

-0.007

(-1.24)

-0 .0 0 2

(-0.33)

0 .0 1 2

(0 .1 2 )

-0.28

(-0 .2 2 )

0.25

(0 .2 2 )



Table 12: Robustness Check (4)-Alpha Estimates of the "long-short" Portfolios

This table reports the intercept estimates of the regressions of "long-short" portfolios’ returns 

on five risk factors, which are the market factor M K Tt, the FF’s SM B t and H M Lt, the momentum 

factor MOMt, the liquidity factor LIQ t• Stocks are sorted into 10 portfolios by their historical 

correlation betas at end of each month. The correlation betas are the coefficient estimates on 

equal-weighted correlation factor Ct in the regression of Table 8 . The "10-1" portfolio consists of 

longing the 10th decile stocks and shoring the 1st decile stocks. And the "9-2" portfolio is longing 

the 9th and shorting the 2nd stocks. We report the results for the full sample and two sub-samples. 

The t-statistics are in parenthesis.

1 0 -1 9-2

Jan. 1968-Dec 2006 0.0004

(-0.28)

-0.0024

(-2 .0 1 )

Jan. 1968-Dec. 1982 -0.0007

(-0.32)

-0.0028

(-1.90)

Jan. 1983-Dec 2006 -0 .0 0 0 1

(-0.05)

-0.0018

(-1.14)
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Abstract

We forecast stock market returns using a set of variance measures. As argued by previous 

studies, the stock market index can be an inaccurate proxy for the true market portfolio, thus the 

cross-sectional average correlation of stock returns would capture the variation in aggregate risk 

better than the variance of stock market index. In this paper, we first study the separate forecasting 

power of cross-sectional average correlation and cross-sectional average variance, and identify a 

significant positive risk/correlation-return relation at relatively short horizons. On the other hand, 

recent research found variance risk premium could also predict future movement of stock market 

returns. While many attribute this forecastability to unique information contained in variance 

risk premium, such as changing risk aversion and risk premium required to compensate stochastic 

volatility, we relate the variance risk premium to the average correlation and average variance. Our 

evidence indicates that two components of variance risk premium contain very similar information 

to that of average correlation and average variance. A combination of average variance and VIX 

index provides the best forecast of future stock market returns, beating the performance of variance 

risk premium and average correlation/average variance, and stays significant after controlling for 

traditional risk factors.

Keywords: variance risk prem ium , stock market return predictability, average correlation, average vari­

ance, VIX.
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1 Introduction

The intertemporal risk-return relation is an age old question, and there hs ongoing debate about how 

much, or even in which direction, variance could move stock prices. A Large empirical literature has 

estimated a linear relation between the conditional mean and variance of return on the aggregate 

stock market. Following the ICAPM model derived in Campbell (1993)), excess stock market return 

depends on market variance and the covariance with the changing future investment opportunities:

E t ( r m .t+ 1) — r f , t +1 H — 7  V m m ,t +  (1)

where Kmm)t is the market variance, Vmh,t is covariance of market return with revisions in expected 

future returns and 7  is the coefficient of relative risk aversion and 6 is a function of parameters from 

the model1. Under certain conditions, the hedge component Vmhft cam be omitted or represented 

as a linear function of market variance Vmmf.• Then the equation collapses to the test of variance 

in mean relation for stock market return.

Studies that have tried to determine this empirical relation between risk and return for broad 

stock market indices produce mixed evidences. French, Schwert, and Stambaugh (1987) measures 

the expected stock market returns conditional on predetermined predictive variables and models 

the volatility as a GARCH process. They find a negative relation.. Campbell (1987), Breen, 

Glosten, and Jagannathan (1989), Pagan and Hong (1991), Glostem, Jaganathan, and Runkle

(1993), Whitelaw (1994), Goyal and Santa-Clara (2003), Lettau and Ludvigson (2002), Brandt 

and Kang (2004), also find a negative or insignificant relation using different methodologies to 

capture the first and second moment variations of stock market returns. For example, Whitelaw

(1994) models the conditional mean and variance as functions of lagged instrumental variables and 

estimates correlation between the fitted values of the two. Lettau and Liudvigson (2002) increase the 

forecasting power by using more accurate measures. Market variance is given by quarterly realized 

volatility. They also construct a consumption wealth ratio proxy called "CAY", together with other 

traditional forecasting variables as conditioning information, to predict: market return and variance 

and then evaluate the risk-return relation. Instead of employing the idea of conditioning on state

*In the first three cases in Campbell (1993) paper, 6 =  7  — 1, while in the last case when the intercept of 

consumption growth is a linear function of the expected return on the market, 6 =  ' 7  — 1 — Fore details, refer to 

Campbell(1993).
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variables, Brandt and Kang (2004) assume conditional return and variance are latent and follow a 

bivaxiate Gaussian first-order VAR, and estimate the relation using a filtering algorithm. Contrary 

to the above results, Bollerslev, Engle and Wooldridge (1988), Bah and Peng (2006) and Ghysels, 

Santa-Clara and Valkanov (2005) find a positive relation between conditional mean and variance. 

More recent studies such as Bah and Peng (2006) use intraday data to evaluate risk-return trade-off 

at a daily frequency. Ghysels, Santa-Clara and Valkanov (2005) claim to be able to extract more 

information from higher frequency data using mixed data sampling regression so as to give a more 

accurate estimate of risk-return relation.

Those conflicting findings are not a coincidence. As Harvey (2001) points out, the sign of 

risk-return relation depends on the variance model being used. He finds that relation between 

the conditional mean and conditional volatility is sensitive to whether one uses nonparametric 

density estimation, or GARCH estimation, or forming an estimator based on monthly or quarterly 

variance of daily returns. The relation is significantly negative for all the estimators that depend 

on conditioning information. Furthermore, as Lettau and Ludvigson (2002) prove, when variables 

that forecast both mean and variance axe used, this relation is negative as weh. On the other hand, 

recent variance estimators based on high frequency return data all identify a significant positive 

relation.

Such confusion lies in the fact that conditional mean and conditional variance axe both unob- 

sexvable. While we can xeplace the conditional mean by ex post stock maxket return and add an 

error term on the right hand side of (1 ), the conditional variance doesn’t have a directly observable 

ex post measure. The parametric structures that conditioning information models and GARCH 

models put on to the conditional variance could influence the evaluation of risk-return trade-off 

severely. Fortunately, the recent realized volatility literature has shed fight on the measurement 

of second moment of stock market return. As demonstrated in literature (Anderson, Bollerslev, 

Diebold and Ebens (2001); Barndorff-Nielsen and Shephard (2004), Meddahi (2002)), the model- 

free realized volatility measure constructed from intraday data affords a much more accurate ex 

post measure of actual return variation than those from the fitted value of second moment in regres­

sions or GARCH model, and is also better than the traditional sample variance based on daily or 

lower frequency returns. In this paper, we use intraday stock return data to construct our market 

variance measures. Consistent with results of Bali and Peng (2006) and Ghysels, Santa-Clara and 

Valkanov (2005), we find a positive risk-return relationship with our realized risk measures.
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Even though the realized volatility based on intraday data could provide an accurate model- 

free estimate of stock market variance, another approximation error might arise if we start from 

ICAPM model. The market variance component V m m ,t of equation (1) is the variance of true 

market portfolio by definition. Since the true market portfolio is unknown, most empirical papers 

use a broad stock market index as proxy, e.g. S&P500, CRSP equal-weighted or value-weighted 

indices. If the variance of returns for the true market portfolio is only weakly related to variance 

of a particular stock market index, then as Pollet and Wilson (2009) argue, the cross-sectional 

average correlation of the stock market is a better measure of aggregate market risk, and has a 

positive risk-return relation. And the other component of the market index’s variance, the cross- 

sectional average variance, can have a negative relation with future returns of the market index2. 

They show in their empirical study that it is indeed the case. Average correlation can predict 

subsequent quarterly stock market excess returns and the relation is significantly positive. The 

average variance have a negative relation with future excess returns. This paper has the same 

findings, which we believe can potentially reconcile the mixed findings in the risk-return literature: 

On one hand, the positive risk-return relation implied by most theoretical models can be supported 

by a positive relation between stock market return and aggregate risk represented by cross-sectional 

average correlation. On the other hand, the negative relation identified by previous research might 

be due to the dominant negative effect of average variance component, which is a correction for the 

part of stock market variance that is unrelated to aggregate risk.

The decomposition of stock market variance into average correlation and average variance makes 

both components significant in forecasting future returns with opposite signs. In this paper, we 

propose another decomposition which we believe is closely related and also found important in 

forecasting future market returns. In particular, Bollerslev, Tauchen and Zhou (2009) find the

2 They derive in their paper a new version ICAPM with unobservable market portfolio. The stock market index’s 

variance could be decomposed into two parts: the pairwise correlation between any two stocks (average correlation) 

and cross-sectional average of the variance of individual stocks (average variance). While higher aggregate risk can be 

revealed by higher average correlation between stocks, the changes in average variances can work in both directions: 

higher average variance implies higher risk of the stock market, but lower covariance between stock market and the 

true market portfolio. Thus the average variance of the stock market can be negatively related to future excess 

returns if the latter effect dominates.

87



variance risk premium, defined as the difference between implied and realized variances (V R P  = 

IV  — R V ), is able to explain more than fifteen percent of the future variation in quarterly excess 

returns on the market portfolio over the sample period of 1990 to 2005. They interpret their results 

as the evidence of pricing of the variance risk in the market. In this paper, instead of interpreting 

the variance risk premium as an independent priced factor, we examine its two components (IV  

and RV) separately. This decomposition is also motivated by the empirical evidence from Drissen, 

Maenhout and Vilkov (2009). They find exposure to the aggregate correlation risk accounts for 

a substantial part of the cross-sectional variation in average excess returns of the index options, 

while the individual variance risk is not significantly priced. If only the correlation risk is priced 

in index option, VIX index, a proxy for implied variance (IV), would act as a good measure 

for the risk-neutral expectation of average correlation (IV  ~  V IX  ~  E®(AC)), thus is related 

to average correlation effect. On the other hand, the realized variance component (RV) is the 

product of average correlation and average variance. And the empirical evidence indicates that 

variation in the stock market volatility is dominated by changes in average variance3, thus realized 

variance (RV) is more related to average variance effect. As a result, we believe the positive average 

correlation-return relation is closely related to the positive forecasting power of implied variance, 

while the negative average variance-return relation might be related to the negative sign of realized 

variance in forecasting future returns. If the forecastability of variance risk premium measure can 

be dominated by the correlation-variance decomposition, it might indicate that the variance risk 

premium measure does not represent an independent risk factor priced in the market.

We are the first in relating and empirically comparing these two decompositions in forecasting 

future market returns, both of which have attracted lots of attention in both theoretical and 

empirical literature recently. By comparing the forecasting performance of different combinations of 

components of the two decompositions (variance risk premium, implied variance, realized variance, 

average variance and average correlation), we are able to provide empirical evidence on whether 

there is a different channel by which variance risk premium is related to future stock market return 

variations. Our results indeed show that variance-correlation decomposition, instead of the variance 

risk premium, is driving the forecasting power of considered risk measure. The combination of

3 We can see from Table 2 that the correlation between equal-weighting average variance and the realized variance 

of stock market is 0 .8 8 , while the correlation between equal-weighting average correlation and the realized variance 

of stock market is only 0.13.
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average variance and VIX index provides the best forecast of future stock market returns, beating 

the performance of variance risk premium and average correlation/average variance, and stays 

significant after controlling for traditional risk factors. Different from previous literature, our 

analysis use intraday returns in constructing our risk measure. We construct the ‘realized’ average 

correlation and average variance measures from 5-minute firm specific returns for all the stocks in 

S&P 500 index. The realized measures could provide us with more accurate estimates of variances 

and covariances.

The paper is structured as follows. Section 2 introduces the theory of correlation-variance 

decomposition and the definition of variance risk premium. Section 3 describes data and estimation. 

Section 4 presents the main empirical results. Section 5 includes the discussion of possible economic 

explanations of our empirical findings. Section 6  concludes.

2 Theories on Risk-return Trade-off

In this section, we introduce the theories behind the two decompositions we are going to explore 

empirically later. First we show how the variance-correlation decomposition of the stock market 

variance arises within ICAPM when the market portfolio is unobservable. Then we briefly illustrate 

the theory for variance risk premium which induces our second decomposition.

2.1 IC A P M  w ith  unobservable m arket portfolio

Campbell (1993) gives the following expression for a portfolio i :

Et{ri,t+1) — rf,t+ 1  H— =  7Vim,t +  8Vih,t (2 )

As in Pollet and Wilson (2009) , we decompose the stock market return when the true market 

portfolio is unobservable. Let stock market be an asset s, and the true market portfolio is asset m. 

Then (2) becomes the following equation,

E t( T s Jt + 1) r  f , t+1 2 — CO +  Ci VSm ,t

=  Co +  c i C o v t ( ratt+ i ,  r m>t+ i )

(3)

(4)



Replace the conditional covariance of rSjt+ 1 and rmit+i with covariance in levels and then de­

compose the covariance into two parts. The true market portfolio is composed of stock market 

(asset s) and an unobservable part (asset u).

Et{? s,t+1) T’/ji+l "b 2  — *̂ 0 "b ClCoVt(Rs,t+li Rm,t+l) (5)

=  co + ciCovt(Rs>t+iwsR3>t+i +  (1 -  ws)Rutt+1)

=  Co +  ci(wsVart {Rs,t+i) +  (1 -  w*)Cout(Ra>t+i, i^ t+ i))

Furthermore, assume there are N identical stocks in the stock market, Rs,t+ 1 =  ^  Ri,t+i, 

then we have aSit = Vart(Rs,t+i) — otPti where pt is the average correlation between any pair of 

stocks and at is the average variance of all stocks. Covt(RStt+i, Ru,t+i) can also be represented 

by the combination of pt and at, after a linear approximation4. Finally we obtain the following 

equation,

p ,  „ . .  . . c i E t f )  E t f )  Cl( g ( f t ) ~  e) E( p t) . 2
Et(rs,t+i) rf,t+i ~  +  2 P(1 -  6) 2

=  (f)Q +  <j>iPt + <f>2 °t

Now the expected stock market excess return is a linear combination of average correlation and 

average variance. For plausible parameter values, (f>i is positive, and 4>2 is negative. The positiveness 

of (j>1 is straight-forward since average correlation is after all a risk measure. The negativeness of 

<j>2 is less intuitive. The key mechanism is that a sudden increase in average variance can be 

accompanied with a decrease in the covariance between stock market and the unobservable true 

market portfolio. We have more detailed discussion on this in section 5.

2.2 V ariance risk prem ium  and tim e varying risk-return relation

The variance risk premium is defined as the difference between realized variance and the implied 

variance, as proposed in Bollerslev, Tauchen and Zhou (2009). The implied variance is the risk- 

neutral expectation of realized variation between time t and t +  1 conditional on information 

available until time t. As shown by Carr and Wu (2009), this implied variance can be approximated 

by the value of the options.

lThe rigirous derivation of the model could be found in the Pollet and Wilson ( 2009) paper.
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t f ( * » W  =  r h j w B w d K + £  (7)
0

In practice, the implied variance (IVt) is usually expressed in a “model free” discrete time 

fashion as follows,

iv ,  =  £
i=1 

K,

Bfat+i)) Ct{t, Ct (t +  1, ) Ct(£, )B(t,t)

*?
K \ r> (4- K

K 2 A i f  (8)

Ct(£ +  1 , D/f t I 1\ ) _  Ct(t, .N )
2  I — ------    - B{tQ dK a s m -*  oo

, / *  + 1 , B(M+i};
J  K 2

K q

— >• E®(RVttt+i) as K m —> oo and K q —» 0

where B (t,T ) denotes the time-t price of a bond paying one dollar at T, C t(T,K ) denotes the 

time-t value of an out-of-the-money option with strike price K  > 0 and T  > t, and e denotes the 

approximation error. In (8 ) AK  = (K m — Ko)/m  and K{ = K q +  iA K . m  denotes the number 

of strike prices spanned in the discrete version. Previous studies has shown that with few different 

strikes, the risk-neutral expectation of realized variance can be well approximated.

Another component of variance risk premium is realized variance RVt-\j- The realized variance 

between t — 1 and t interval can be defined as follows,

771 771 . -

R V , - ! , ,  e e  £ [ P t - i + £ - P < - i + ^ l 2  =  I > ( t - 1  +  ^ ) 2  ' 0 )

j = 1 j = 1

— > u2(t — 1 , t) as m  oo

where pt denotes the logarithmic price, m  is the number of price observations between t — 1 and t, 

and v2{t — l, t )  denotes the ex post volatility over [t— 1 , t\, which is usually the object of interest 

in financial econometrics. However, microstructure noise could restrict the use of highest feasible 

frequency data as it would bias the estimate. It has been found by previous empirical research that 

returns sampled at 5 minute interval has the right balance between avoiding microstructure noise 

contamination and preserving the accuracy of realized variance measure5.

5See Hansen and Lunde (2006) and Ait-Sahalia, Mykland and Zhang (2005) for details.
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Finally, the variance risk premium is usually defined as the difference between the risk-neutral 

and objective expectations of quadratic variation over the sample interval, E f(R V t,t) — E f  {RVtpp). 

In practice, this definition can be slightly different. Bollerslev, Gibson and Zhou (2006) extract 

the variance risk premium parameter A from moment restrictions for IVt and E^(RVtj+i) within a 

one-factor stochastic volatility model framework, and in turn relate A to a set of macro-finance state 

variables. Carr and Wu (2009) measure the variance risk premium as difference between IVt and ex 

post RVt7t+1 . Bollerslev and Zhou (2007) use the measure VRPt =  IVt — RVt-i,t- In this paper, we 

adopt a similar measure with Bollerslev, Tauchen and Zhou (2009). The reason we didn’t subtract 

ex post realized variance from implied variance is because the focus of our paper is the forecasting 

of future stock market return, thus we need to use information available at time t instead of the 

ex post measure. As demonstrated in Bollerslev, Tauchen and Zhou (2009), Bollerslev, Gibson 

and Zhou (2009) and Carr and Wu ( 2009), variance risk premium is significantly negative, and 

closely related to investor risk aversion and a set of macroeconomic variables. Thus they claim 

it is an independent factor market prices heavily. In this paper, we construct the same variance 

risk premium measure. But more importantly, we do the decomposition and include the IVt and 

RVt-i,t in our study to detect their connection to correlation risk and individual variance risk.

As we mentioned in the introduction, if only correlation risk is priced in index option, then 

I V t  — V I X t  — E f{p t+1), and R V t - i , t  =  &s,t — <*tPt- If ° t  dominates the changes in R V t - i , t  and 

has a negative relation with expected return, V R P t  =  I V t  — R V t - i , t  would play very similar role as 

4>iPt +4> 2(Jt  of (6 ), with positive (f)1, and negative (j)2- As I V t  is a forward-looking measure, it could 

provide more information about the correlation risk than pt in predictive regressions. We would 

examine the relation between I V t ,  R V t - \ , t  , &t and pt in detail in the next sections.

3 D ata  and Estim ation

3.1 D ata  descrip tion

To construct the risk measures used in this analysis, we use four sets of data. First, for the left- 

hand side of (6 ), we use natural log of stock market returns minus three-month T-bill returns. The 

weekly and monthly stock market returns are constructed from the daily excess market returns 

based on CRSP value-weighted portfolio and S&P 500. The daily stock market returns are from 

CRSP and T-bill rates are obtained from website of Federal Reserve Bank of St. Louis.
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Second, we rely on high-frequency data for all the stocks in S&P 500 index from TAQ. The 

raw data consists of quotes of all the stocks in S&P 500 during the sample period from 1995 to 

2006. As in Andersen, Bollerslev, Diebold and Ebens (2001), the use of equally-spaced five-minute 

returns strikes a satisfactory balance between the accuracy of the continuous-record asymptotics 

underlying the construction of realized volatility measures and the confounding influences from 

market microstructure friction. We construct five-minute returns of the mid-quotes6 for each of the 

500 stocks in S&P 500. Every day from 1995 to 2006, we estimate the first two components on the 

right-hand side of (6 ) from the five-minute returns of all the stocks in S&P 500.

Similar to the approximation in Pollet and Wilson (2009), the variance of the stock market is 

given by

N N
a s,t =  E E  (10)

j = l  i=1

N
Assume the symmetry of stocks, OjtOi t — oH2 = jj  E  ajti  then we have

3=1 ’
N N

v 2s,t =  E  E  =  ° l 2Pi (11)
j = 1 i= l

Thus we use the equal-weighted average variance and value-weighted average correlation in the 

estimation of expression (6 ). As a robustness check, we also use the equal-weighted average variance 

and equal-weighted average correlation as predictors. For each stock j  in trading day t, we calculate 

the realized variance as the summation of five-minute squared returns:

J Tl d  . o  / v

° j , t =  E  +  —) (12)
d=  1 771

where m  is the number of five-minute returns for the stock covering the normal trading hours from 

9:30am to 4:00pm, together with the close-to-open overnight return. And the empirical proxy for 

the equal-weighted and valued-weighted average variance are as follows:

(13)

6Here we use quotes from all markets (NBBO).

500

son E  a3,t

A yvw  =

1
500 ^  

500 
E
7 =  1
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The correlation between any two stocks i and j  is p,-,-* =  p — J**#  where —
m
E  rj{t — 1 +  — 1 +  ^ ) .  Then we can calculate the equal-weighted and value-weighted
d=l
average correlation as

1 500An — _____ ______
500(500+ l ) £ i i?y -
500

ACt = E E  w3,tWi,tPij,t
j = 1 i^j

To illustrate, we plot the time series of market index variance, average correlation and average 

variance on a daily basis in Figure 1. As in Pollet and Wilson, our measure of average variance 

does not exhibit a pronounced upward time trend. And average variance and average correlation 

don’t always move together, especially after 2003. In contrast, the time series of average variance 

and market variance exhibit very similar patterns and follow each other closely. This again reveals 

that the variation in market variance is mainly caused by changes in average variance.

Third, when it comes to the variance risk premium, we utilize daily and monthly data of the VIX 

index to quantify the risk-neutral implied variance measure. The VIX index is based on the highly 

liquid S&P 500 index options along with the model free approach expressed in (8 ) to replicate the 

implied variance of the index over a fixed 30-day period. The data is available from the Chicago 

Board of Options Exchange (CBOE).

The realized variance term in variance risk premium is the summation of the five-minute squared 

return of a fund tracking S&P 500 composite index7. Although using the high-frequency return of 

the tracking fund increases efficiency, it might also induce bias. So we also use the summation of 

daily squared return of the S&P 500 index itself as an alternative measure. The difference between 

the estimated implied variance and realized variance is our measure of variance risk premium. 

Figure 2 depicts the time series of implied volatility and realized volatility, we can see the difference 

between the two is almost always positive, indicating there is a systematic variance risk premium.

Finally, we combine the variance measures with some other predictors such as the dividend 

price ratio, the default spread (i.e., the yield spread between BAA-rated and AAA-rated bonds), 

the term spread (i.e., the yield spread between long term and short term Treasury securities), the

7We don’t have intra-day trading data for the index. So we rely on the intra-day data of a fund which closely 

track the index. The fund we use has ticker "SPY" in TAQ.

E Pii.t (14)
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consumption-wealth ratio (cay) from Lettau and Ludvigson (2002), and stochastically detrended 

risk-free rate (RREL), which is used in many previous papers including Guo and Whitelaw (2006), 

and is defined as

RRELt =  ru  -

The definitions of all the above predictors are given in Table 1.

3.2 E stim ation  fram ework

To analyze the relative importance of the two decompositions and various risk measure, we estimate 

the following predictive regressions which include various combinations of the average correlation, 

average variance, the variance risk premium, implied market variance and realized market variance.

rt + i ~ rt+i =  <t>o +  <f>iVRPt +  £t+i  (15)

rt + i ~ rt+i =  +  <t>\VIXt +  faRVt +  £ * + i

rt+ 1 — rt+ 1 =  ^ 0  +  IX t  +  +  <f>3 ACt  +  £t+ 1

rt+ 1 — rt+ 1 =  ^ 0  +  QlV IX t  +  <f>2 AVt +  <f>3̂ t +  £t+\

rt+l — f't+ l =  $0  + <t>\VRPt + <t>2 A V t + 4>3-^t + £*+1

Note we also include in the regression X t~h,t as control variables which are DP, TMSP, DFSP, 

RREL and CAY.

We compare the forecasting power of VRPt alone and the separate effect of V IX t  and RVt- 

Further decompose RVt into AVt and A C t, we combine V RPt  or V I X t  with them to see which 

part of the information is overlapping. Control variables that are found to be useful in predict­

ing market returns are included. The estimation method is OLS with t-statistics corrected for 

heteroscedasticity using Newey-West standard errors.
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4 Empirical R esults

4.1 Sum m ary sta tistics

The basic summary statistics are given in Table 2. The mean excess return on the CRSP value- 

weighted portfolio over the sample is 5.46 percent annually. The sample mean for the implied 

volatilities is 37.31, and the means for the two realized variances measures axe 24.89 and 25.62, 

correspondingly, the means for variance risk premium axe 12.71 and 11.63. The means for equal- 

weighted and value-weighted average variances axe 139.39 and 167.84, much higher than market 

realized variances, which means a large portion of individual risk has been diversified in the market 

portfolio. All of the measures have been scaled whenever appropriate. The value-weighted average 

correlations between any pair of stocks have a mean of 0 .2 2  and it is higher than the mean 0.16 

of equal-weighted correlations. As for the correlation matrix, implied volatility, realized variance, 

and variance risk premium are all negatively correlated with the contemporaneous excess returns8. 

The correlation between the implied volatility and the excess returns is as large as -0.51. Average 

correlation and average variance also exhibit negative correlations with excess returns. The real­

ized market volatility is highly correlated to the average variance, the sample correlation is 0.87, 

compared to 0.26 with the average correlation.

4.2 R esu lts o f th e  m onthly  forecasting regressions

In the monthly univariate regressions reported in Panel A of Table 3, most of the variables have 

an insignificant impact on the changes of future stock market returns at monthly frequency. The 

only exception is dividend ratio, which is negatively correlated to the next period excess market 

return, with a t-statistics of -3.02 and adjusted R 2 of 3.17 percent. We can see that the coefficients 

for two variance risk premium measures are both positive. The average variance (AVt) has a 

negative relation with future return, while this relation is positive for average correlation (ACt), 

though both variables stay insignificant. In multiple regressions of monthly data, we first regress 

excess return of the S&P 500 index on VIXt  together with RVt- Now VIXt  becomes significant in 

predicting market return with a positive sign and t-statistics of 2 .0 2 , while realized variance still 

remains insignificant. As we argued in the second section, realized variance contains two parts, 

average correlation and average variance, which work in opposite directions in forecasting future

8Note that these are contemporaneous correlations, which is different from the forecasting relations we focus on.
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market returns. This might make coefficient of the realized variance term  insignificant. As a result, 

we further split realized variance into average variance and average (correlation. V I Xt  becomes 

more significant. The t-statistics increases to 3.57 and overall they account for 3.58 percent of the 

variation in monthly returns, much higher than the 0.73 percent that VJRPt alone provides. Another 

interesting feature is that, the average variance has a significant negative relation with the future 

returns as expected9, but the forecasting power of average correlation disappears after we control 

for the VIXt-  This result is very intuitive. It is evidence that VI X t  contains information about the 

correlation between any two stocks in the market, yet it has better forecasting power than average 

correlation perhaps due to the fact that it is forward looking. If we exclude the average correlation 

from above regression, the adjusted R 2 is even higher at 4.16% monthly. As we have showed in the 

univariate regression, traditional predictors such as PD ratio are also useful in forecasting returns. 

Combining PD ratio with V I Xt  and AVt produces the adjusted R 2 of 6.05, and three predictors 

all remain significant. Although RR EL  is not significant in the univariate regression, it provides 

marginal improvement in the multiple regression, resulting the best adjusted R2 of 6.37. We also 

run the regressions on VRPt and PD ratio and RREL. The results further confirm that V I X t 

and AVt combination provides a better specification than VRPt in capturing the second-moment- 

associated forecasting power. Since few of traditional predictors have implications over monthly 

horizon, the predictability implied variance and average variance provide seems rather impressive. 

And above result seems to lend more support for the variance-correlation decomposition, with 

VIXt  as a measure of average correlation than variance risk premium theory.

4.3  R esu lts  o f  th e  quarterly forecasting regressions

Panel A of Table 4 is the univariate regressions of quarterly stock market returns on all the pre­

dictors. Variance risk premium remain a strong predictor. It explains 15.41 percent changes in 

future returns, higher than R 2s of its two components respectively. These results are in line with 

findings in Bollerslev, Tauchen and Zhou (2009). As for the traditional predictors, PD ratio and 

the consumption wealth ratio (CAY)  from Lettau and Ludvigson (2002) are also highly significant, 

and the relative risk-free rate (RREL)  is marginally significant with a t-statistics of 1.94. The

9In the columns (2)-(5), we try different combination of equal-weighted and value-weighted measures and the results 

don’t change significantly. In the following part of this paper, we only report the iresults from best combination of 

equal-weighted or value-weighted measures.
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default spread and term spread are insignificant and provide little information for future returns.

Furthermore, in the multiple regressions of Panel B of Table 4, VIXt  and AVt combination beats 

VRPt with an adjusted R 2 as high as 26.47 percent. Together with traditional predictors, they still 

perform better than variance risk premium. Best adjusted R 2 we could get is 43.32 percent. In the 

column (10) of Panel B10, we can see the useful predictors are VIXt ,  AVt CAY, and RREL. We 

can interpret VIXt  and AVt, as variables related to market variance term in traditional ICAPM. 

Referring to (1) in section one, we can see that there are also a hedge component, which is omitted 

in Pollet and Wilson (2009) when they examine the average variance and average correlation effect. 

The extra predictability R R E L  and C A Y  provide here could be attributed to the hedge component 

of expected return. This conforms with the empirical results from Guo and Whitelaw (2006). In 

their study, R R E L  and C A Y  are the two state variables used to calculate hedge component, 

and they also proves that these two variables contain little information about the variance term. 

Consistent with the results from the monthly regression, VIXt  and AVt remain significant and 

exhibit a stronger forecasting performance than variance risk premium measure. Although our 

results can not reject the theory in Bollerslev, Tauchen and Zhou (2009), they do imply that there 

might be another channel through which VRPt is useful in predicting stock market returns.

To summarize, our results from both monthly and quarterly forecasting regressions indicate that 

the variance-correlation decomposition is driving the forecasting power on the stock market returns 

more than the variance risk premium explanation. And it is robust after controlling for other 

traditional forecasting variables. But theoretically why the variance-correlation decomposition 

works well is still an open question. Pollet and Wilson (2009) is only one of the possible explanations 

we are going discuss in next section.

4.4 R esu lts w ith  a lternative sam pling frequency

In this section, we repeat the quarterly multivariate forecasting regressions with realized proxies 

sampling at every 25 minutes. If the trading frequencies of some S&P 500 stocks are substantially 

lower than 5 minutes, our previous results would be biased. For realized variance, sampling every 

5 minutes might be less a concern. However, the average correlation series could be significantly

10Although the column (9) provides us the best adjusted R-square, the result from column (10) is comparatively 

as good as that in column (9), and also the four independent variables are all highly significant. We emphasis on 

column (10) because of its connection with the results from Guo and Whitelaw (2006).
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downward-biased. After re-computing the average variance and average correlation series with the 

25 minutes sampling frequency, we repeat the multivariate regressions using the quarterly data. 

The main results are reported in Table 5. We labelled the regressions in the same way as in Panel 

B of Table 4 such that the two set of results can be compared. As we can see, the results of both 

sampling frequencies are very similar. The results for monthly regressions are also similar for the 

two sampling frequencies, and not reported11.

5 D iscussions

In this section, we discuss possible theoretical explanations for the positive average-correlation(VIX)- 

retum and negative variance-return relation we found in the data, including Pollet and Wilson 

(2009) which motivates our study.

5.1 A verage C orrelation /A verage Variance D ecom position

In Pollet and Wilson (2009) setting, stock market is only part of the true market portfolio. Ac­

cording to ICAPM, the expected return of stock market is proportional to its covariance with the 

true market portfolio, which can be divided into two parts, the first part is the stock market return 

variance itself, and the second part is the covariance between stock market and non-stock market 

returns. The average-correlation-return relation is in the same direction as aggregate risk-return 

relation since all the assets co-move with the true market portfolio. Average correlation only affects 

stock market return through its own variance term. On the other hand, a positive shock in average 

variance not only increases the aggregate stock market risk but also reduce the covariance between 

stock market and the non-stock market returns. The later effect makes stock market more ‘immune’ 

to the uncertainties in the rest of the true market portfolio, i.e., makes stock market safer, and 

earns a lower expected return. If this effect dominates, the average-variance-return relation could 

works in the opposite direction to the true risk-return trade-off. As a result, average correlation 

alone better captures the aggregate risk. A positive average-correlation-return relation indicates 

that investors require higher expected return when the aggregate risk increases. A negative average- 

variance-return relation comes from the fact that investors would accept a lower expected return if

11 When sampling every 25 minutes, the means of the average variance remain the same while the value-weighted 

and equal-weighted average correlation increase by 0 .0 1  and 0 .0 2  respectively.
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stock market is less exposed to the systematic non-stock market risk.

5.2 A sym m etric  correlation: an em pirical exp lanation

The critical assumption of Pollet and Wilson (2009) is that stock market is only part of the true 

market portfolio. In fact, many investors might only trade within stock market, and the evidence of 

reduction in covariance between stock market and non-stock market returns when average variance 

increases is only partial in their empirical studies12.

Aside from the above story, an increase in average correlation can be seen as a market-wide 

reduction in diversification benefits, which means higher correlation is more expensive for investors. 

Empirical evidence from Ang and Chen (2001) and Hong, Tu and Zhou (2007) indicates that the 

correlation in stock market is higher during the downward movement than that during upward 

movement. This might be due to the fact that the diversification/hedging benefit is more important 

in the downside moves. Also, we know the market variance is quite persistent. A change in stock 

market variance could only be due to the changes in its two components, average correlation and 

average variance. If a higher average correlation is more associated with downside moves than 

upside moves of prices, and the aggregate market variance doesn’t change drastically, then it would 

be the case for a higher average variance to be more related to upside moves than downside moves 

of prices. This will induce a positive relation between average correlation and future market return, 

and a negative relation for average variance.

5.3 H edge correlation, pursue volatility: a  behavioral exp lanation

One may argue that a high average correlation not necessarily implies a lower average variance. 

We can see from Table 2  that the contemporaneous correlation between ACt and AVt is -0.16, but 

the correlation between VI Xt  and AVt is 0.73. Since VIXt  is a forward looking measure, this high 

positive correlation can not fully reject the possibility of the explanation in last section. However, in 

our empirical study, after controlling for V I X t , why is there a significant negative relation between 

the average variance and expected returns? One answer might be that investors tend to treat 

correlation as the main risk in stock market index. After they hedged against correlation, or in other 

words, controlled their exposure to possible deterioration in diversification benefits, their preference

12 They found some reduction in stock-bond return covariance, but the argument is not complete as long as ve 

don’t know exactly what the non-stock part of true market portfilo is.
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would become option-like, and they would pursue volatility to speculate and gamble, and derive 

additional non-wealth utility from it. There are financial news that describes the increasing number 

of high frequency algorithm traders as investors who don’t care about dividend and fundamental 

but pursue volatility instead. Our findings thus can be seen as an evidence of such kind of behavior.

Another possible behavioral reason for the presence of negative average-variance-return relation 

is that investors might derive extra utility from realized gains (sell a stock when its price exceeds 

the purchase price), as proposed in the theoretical model of Barberis and Xiong (2008). In their 

model, investors would like to purchase a stock even with negative expected returns as long as its 

volatility is high because high volatility means "it will always come back". High volatility makes 

the "realized gains" in the future more likely. Even their model is more suitable for individual 

stock pricing, here in our case, we could think investors have realized utility preference after they 

hedge away the correlation risk in market index. Then when average volatility is high, stock index 

will experience excessive buying and price will increase, which results in a lower expected return.

In a word, we think the negative average-variance-return relation identified in our study is a very 

interesting phenomenon. The explanation of this still remains an open question. To relate average 

variance and average correlation to different types of information or certain trading behavior could 

be the future direction of our research.

6 Conclusion

The identification of the risk-return relation is a challenge in empirical asset pricing. Pollet and 

Wilson (2009) find that if we decompose stock market variance into average variance and average 

correlation, we are able to have a clearer result on the risk-return relation. On the other hand, the 

recent variance risk premium literature also finds significant risk-return relation by using option 

data. These two approaches might be related, which can be inferred from the results of Drissen, 

Maenhout and Vilkov (2009), who find that variance risk premium is mainly attributed to cor­

relation risk instead of variance risk. We empirically study the relative importance of these two 

approaches in terms of forecasting market index returns. Among all combinations of different parts 

of market variance (both under P-measure and Q-measure) we considered, average variance coupled 

with VIXt  is the best in forecasting market returns. While average variance negatively forecasts 

future market returns, the VI Xt  is positively related to future market returns. If we treat V I Xt
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as a better predictor for aggregate correlation in the market, our result is consistent with Pollet 

and Wilson (2009). More importantly, our results suggest the forecasting power for the market 

return is driven more by variance-correlation decomposition than variance risk premium. And this 

is true for both monthly and quarterly regressions. Interesting future research would be to build a 

asset pricing model which can incorporate the main findings in this paper, especially the negative 

relation between the average variance and future market return, on which the existing theories still 

have difficulties in providing a convincing explanation.
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Figurel: Daily Average Correlations and Average Variance

This figure plots the daily realized market variance, average variance and average correlation 

among the components of S&P 500. Both average are equal-weighted averages.
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Figure2: Monthly Implied Variance and Realized Variance

This figure plot the monthly observation of the realized market variance, implied market variance 

and their difference, the variance risk premium. The

realized market variances are scaled up by 10000 while the Implied market variance is computed 

as : (VJX/100) 2 x 30/365
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Table 1 Definitions for All Variables

R m t ~  R f t  : Annualized return of S&P500 in excess of 3-month T-bill rate (multiplied by 100)

V I X t : Implied S&P500 variance over one month ( multiplied by 10000)

KVt : Realized S&P 500 variance over one month constructed by daily returns (multiplied by 10000)

RVt '• Realized S&P 500 variance over one month constructed by 5-min returns(multiplied by 10000)

V R P l ‘. Monthly variance risk premium, as difference between VI Xt  and RV^

VRPt ’. Monthly variance risk premium, as difference between V I X t  and RV^

AV™  : sum of daily value-weighted average variance over one month(multiplied by 10000)

AVtew : sum of daily equal-weighted average variance over one month (multiplied by 10000)

AC™ : average of daily value-weighted average correlation over one month.(multiplied by 10000)

AC™ : average of daily equal-weighted average correlation over one month.(multiplied by 10000)

PD: log price dividend ratio of the value-weighted market index (multiplied by 12)

DFSP: default spread, defined as the difference between BAA and AAA bond yields (multiplied by 1200) 

TMSP: term spread, defined as the difference between 10-year and 3-month treasury yields 

(multiplied by 1 2 0 0 )

RREL: detrended risk-free rate, defined as 1-month treasure yield minus its past 12 month 

average (multiplied by 1 2 0 0 )

CAY: consumption-wealth ratio, defined as in Lettau and Ludvigson (2002) (multiplied by 100)
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Table 2. Summary Statistics for Key Variables

This table report the summary statistics for all the variables at quarterly frequency during the period of Jan. 1995 to Dec. 2006. 

All the numbers are annualized when appropriate. The definition of each variable is as in Table 1 .

VIX, VRP,' VRP,2 RV,' RV,2 AV," Avr ACT A cr PD DFSP TMSP RREL CAY

Summary Statistics

Mean 5.46 37.31 12.71 11.63 24.89 25.62 139.39 167.84 0.22 0.16 79.24 9.98 15.72 0.07 -0.49

Std. Dev. 32.32 27.53 13.71 13.05 20.58 19.57 95.42 106.21 0.08 0.08 2.87 2.56 13.89 0.74 1.46

Skewness -0.65 1.83 1.18 1.21 1.75 1.38 1.26 1.16 0.42 0.50 0.78 0.85 0.42 -1.02 0.19

Kurtosis 3.45 7.11 6.68 6.48 6.78 4.75 3.68 3.46 3.21 2.49 3.10 2.84 2.15 4.04 2.36

Correlation Matrix
R*u —R/i 1.00 -0.51 -0.26 -0.36 -0.50 -0.47 -0.45 -0.44 -0.18 -0.16 -0.17 -0.19 0.01 0.05 -0.04

VIX, 1.00 0.69 0.76 0.87 0.89 0.67 0.73 0.38 0.20 0.17 0.24 0.06 -0.26 -0.04

vr p ; 1.00 0.92 0.24 0.34 0.11 0.14 0.14 0.02 -0.10 -0.03 0.09 -0.14 0.08

VRP,1 1.00 0.39 0.39 0.15 0.22 0.34 0.24 -0.10 0.10 0.20 -0.11 0.05

RV,' 1.00 0.97 0.82 0.87 0.41 0.26 0.28 0.34 0.00 -0.25 -0.11

RV2 1.00 0.84 0.88 0.30 0.13 0.30 0.27 -0.07 -0.30 -0.10

A v r 1.00 0.97 -0.02 -0.16 0.61 0.17 -0.21 -0.23 -0.25

A v r 1.00 0.13 -0.01 0.53 0.34 -0.06 -0.32 -0.20

A c r 1.00 0.96 -0.13 0.61 0.54 -0.16 -0.13

A c r 1.00 -0.26 0.61 0.53 -0.07 -0.05

PD 1.00 0.08 -0.20 -0.30 -0.63

DFSP 1.00 0.50 -0.39 -0.11

TMSP 1.00 -0.47 0.12

RREL 1.00 -0.17

CAY 1.00



Table 3. Forecast Regressions for Monthly Stock Market Return

This table reports the forecast regression of monthly S&P500 returns on various predictive 

variables. The sample period extends from January, 1995 to December,2006. Newey-West robust 

t-statistics with 4 lags are reported in parentheses. All the regressors are defined in Tablel. Coef­

ficients of A C ™  and A C ™  are multiplied by 1 0 0 0 0 .

Panel A Monthly Simple Regressions

Regressors beta est. t-stat R2(%) R2 _adj(%)

V I X t 0.199 (1.34) 1 .0 2 0.32

R V t1 0.057 (0.30) 0.08 -0.63

R V ? 0.176 (0.95) 0.83 0.13

V R P 1 0.378 (1.80) 1.43 0.73

V R P } 0.131 (0.621) 0.18 -0.53
A V vw -0.040 (-0.90) 0.75 0.05

A V tew -0.032 (-0.84) 0.60 -0 .1 0

A C r 0.004 (0.76) 0.56 -0.15

A C ™ 0.004 (0 .6 8 ) 0.34 -0.36

PD -2.754 (-3.02) 3.85 3.17

DFSP -2.168 (-1.24) 1 .2 2 0.52

TMSP -0.153 (-0.41) 0.17 -0.54

RREL 4.874 (0 .8 8 ) 0.52 -0.19
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Panel B: M onthly Multiple Regression

M o d e l (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

V I X t 0.430 0.636 0.620 0.628 0.625 0.585 0.577 0.659

(2.02) (3.57) (3.68) (3.87) (4.04) (3.35) (3.93) (4.34)

R V J -0.302

-1.26

V R P \ 0.350

(1.61)

0.419

(1.83)
AVvw -0.142

(-2.94)

-0.142

(-3.00)

-0.135

(-2.96)

A V T 3 -0.128

(-3.07)

-0.128

(-3.06)

-0.087

(-1.76)

-0.092

(-1.78)

A C T 3 -0.002

(-0.42)

0.000

(0.00)

A C T 3 -0.002

(-0.46)

0.000

(0.07)

PD -2.682

(-3.03)

-2.466

(-2.50)

-2.471

(-2.19)

-2.257

(-1.96)

RREL 5.089

(0.99)

7.203

(1.54)

R2(%) 1.80 5.62 5.61 5.61 5.61 5.51 5.08 5.57 8.03 9.00

R2_adj (%) 0.40 3.58 3.57 3.57 3.57 4.16 3.72 3.53 6.05 6.37
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Table 4. Forecast Regressions for Quarterly Stock Market Return

This table reports the forecast regression of quarterly S&P500 returns on various predictive 

variables. The sample period extends from January,1995 to December,2006. Newey-West ro­

bust t-statistics with 3 lags are reported in parentheses. All the regressors are defined as in Ta- 

blel.Coefficients of ACvtw and A C are multiplied by 10000.

Panel A; Quarterly Simple Regression

Regressors beta est. t-stat R2(%) R2 _adj(%)

VIXt 0.301 (2.03) 6.54 4.46

RVt1 0 .1 0 1 (0.45) 0.41 -1.80

RVt2 0.157 (0.69) 0.97 -1.23

VRP} 0.983 (4.09) 17.25 15.41

VRP} 0.957 (3.68) 14.14 12.94

AVtvw -0.064 (-1.48) 3.57 1.43

AVtew -0.056 (-1.42) 3.42 1.28

A C r 0.006 (1.08) 2.45 0.28

ACtw 0.006 (1.08) 1.84 -0.34

PD -5.659 (-4.94) 25.13 23.47

DFSP -2.665 (-1.27) 4.50 2.38

TMSP -0.140 (-0.28) 0.35 -1.87

RREL 10.065 (1.94) 5.30 3.20

CAY 7.214 (4.16) 10.71 8.73
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Panel B: Quarterly Multiple Regression

M odel ( 1 ) (2 ) (3) (4) (5) (6 ) (7) (8 ) (9) (1 0 )

V I X t 1.004 0.941 0.901 1.024 1.000 0.807 0.804 0.920

(3.68) (5.61) (6.15) (5.44) (5.84) (6.05) (4.52) (6 .0 2 )

R V ] -1.063

-2.65

V R P ] 0.871

(3.50)

1.044

(3.93)

A V vt w -0.246

(-4.60)

-0.245

(-4.78)

-0.219

(-5.27)

A V T -0.247

(-5.13)

-0.245

(-5.24)

-0.150

(-2.36)

-0.183

(-3.91)

A C T -0.006

(-1.28)

-0.003

(-0.62)

A C T -0 .006

(-1.33)

-0 .0 0 2

(-0.51)

P D -5.712

(-5.40)

-4.604

(-3.42)

T M SP -0.485

(-1.49)

-0.529

(-1.79)

RREL 15.475

(3.52)

12.816

(3.70)

CAY 7.854

(4.80)

6.42

(4.04)

R 2(%) 17.39 31.55 31.29 36.00 35.80 29.67 41.88 38.15 48.25 47.29

R 2_ ad j (%) 11.63 26.78 26.50 31.53 31.32 26.47 37.82 33.83 43.32 42.27
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Table 5. Robustness Check: Alternative Sampling Frequency

In estimation of AV™, AV™, AC™ and AC™, we sample the equity returns every 25 minutes. 

The result of quarterly multiple regressions related to the 4 variables are reported in the following 

table. For ease of comparison with Panel B of Table 4, we labelled the regressions in the same way.

Q uarterly  M ultip le Regression (25min)

M odel (2 ) (3) (4) (5) (6 ) (9) (1 0)

V I X t 0.924 0.904 1.024 0.987 0.924 0.763 0.865

(5.43) (6.08) (5.43) (6.04) (6.61) (4.53) (6.03)
A yvw -0.252

(-4.23)

-0.253

(-4.62)

-0.246

(-5.36)

AV™ -0.262

(-4.69)

-0.262

(-4.97)

-0.151

(-2.03)

-0.181

(-3.69)

AC™ -0.006

(-1.15)

-0.004

(-0.78)

A C f 3 -0.006

(-1.40)

-0.004

(-0.90)

PD -4.440

(-2.81)

TMSP -0.560

(-1.81)

RREL 12.755

(3.55)

CAY 5.948

(3.57)

R2(%) 31.97 31.20 35.59 35.61 34.87 46.72 45.20

R2_adj (%) 26.15 26:40 31.10 31.12 31.91 41.65 39.98
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