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Abstract

Dynamic models of forward looking agents, whose goal is to  maximize expected in

tertem poral payoffs, are useful modelling frameworks in economics. W ith an exception 

of a small class of dynamic decision processes, the estimation of the primitives in these 

models is computationally burdensome due to the presence of the value functions that 

has no closed form. We follow a popular two-step approach which estimates the func

tions of interest rather than use direct numerical approximation.

The first chapter, joint with Oliver Linton, considers a class of dynamic discrete 

choice models tha t contain observable continuously distributed state variables. Most 

papers on the estimation of dynamic discrete choice models assume th a t the observable 

state variables can only take finitely many values. We show th a t the extension to 

the infinite dimensional case leads to a well-posed inverse problem. We derive the 

distribution theory for the finite and the infinite dimensional parameters.

Dynamic models with continuous choice can sometimes avoid the numerical issues 

related to  the value function through the use of Euler’s equation. The second chapter 

considers models with continuous choice that do not necessarily belong to the Euler class 

but frequently arise in applied problems. In this chapter, a class of minimum distance 

estimators is proposed, their distribution theory along with the infinite dimensional 

parameters of the decision models are derived.

The third chapter demonstrates how the methodology developed for the discrete 

and continuous choice problems can be adapted to  estimate a variety of other dynamic 

models.

The final chapter discusses an im portant problem, and provides an example, where 

some well-known estimation procedures in the literature may fail to  consistently esti

m ate an identified model. The estimation methodologies I propose in the preceding 

chapters may not suffer from the problems of this kind.
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1 Dynamic Discrete Choice Problems with Continuous

State

1.1 Introduction

The inadequacy of static frameworks to model economic phenomena led to  the de

velopment of recursive methods in economics. The mathematical theory underlying 

discrete time modelling is dynamic programming (DP) developed by Bellman (1957); 

for a review of its prevalence in modern economic theory, see Stokey and Lucas (1989). 

In  this chapter we study the estimation of structural parameters and their functionals 

th a t underlie Markov decision processes (MDP) with discrete controls and time in the 

infinite horizon setting. The econometrics involved can be seen as an extension of the 

classical discrete choice analysis to  a dynamic framework. Such models are popular in 

applied work, in particular in labor and industrial organization.

Discrete choice modelling has a long established history in the structural analysis 

of behavioral economics. McFadden (1974) pioneered the theory and methods of ana

lyzing discrete choice in a static framework. The difficulty of estimating these discrete 

choice models parametrically arises in the form of computing multiple integrals. When 

estimating the finite dimensional parameters in a dynamic environment, these problems 

persist and are exacerbated by the need for researchers to estimate the (conditional) 

value functions defined recursively through the Bellman Equation. The treatm ent of 

these value functions determines the computational feasibility specific to  the dynamic 

model. Our chapter contributes to the literature tha t deals with the computational 

complexity of this la tter category.

The seminal paper of Rust (1988) proposed additive separability (AS) and condi

tional independence (Cl) assumptions for the estimation of this type of dynamic models. 

These assumptions preserve the familiar structure of discrete choice problems of the



static framework and have since served as the usual starting point for many applied and 

theoretical research th a t follow in the literature. In particular, Rust proposed a Nested 

Fixed Point (NFP) algorithm to estimate his parametric model by the maximum like

lihood method. However, in practice, this method can post a considerable obstacle 

due to  its requirement to repeatedly solve for the fixed point of some nonlinear map to 

obtain the value functions. Hotz and Miller (1993) avoided solving out for the value 

functions directly by showing the existence of an inversion map between the normalized 

value functions and the (conditional) choice probabilities. The value functions could 

be approximated, using nonparametric estimates of the choice probabilities, and used 

to  estimate the structural parameters based on the method of moments. The nature of 

the inversion map is determined by the distribution of the unobserved state variables 

and will generally be nonlinear except for some special cases.

The semiparametric approach of Hotz and Miller significantly reduces the com

putational burden relative to the NFP algorithm. Their idea is central to several 

methodologies tha t followed, especially in the recent development of the estimation of 

dynamic games. A class of stationary infinite horizon Markovian games can be defined 

to include the MDP of interest as a special case. Various estimation procedures have 

been proposed to estimate the structural parameters of such empirical games. Pakes, 

Ostrovsky and Berry (2004), and Aguirregabiria and Mira (2007), considered two-step 

method of moments and pseudo maximum likelihood estimators respectively, which are 

included in the general class of minimum distance estimators defined by Pesendorfer and 

Schmidt-Dengler (2008). Bajari, Benkard and Levin (2007) generalizes the simulation- 

based estimators of Hotz et al. (1994) to  the multiple agent setting. However, when 

the required transition density of the observed state variables is not specified param et

rically, in both single and multiple agent settings, the aforementioned work assumed 

the observed state space is finite whenever the time horizon is infinite. As noted by
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Aguirregabiria and Mira (2002,2007), we should be able to relax this requirement and 

allow for uncountable observable state space. The distinct attractive feature of the 

infinite horizon framework is tha t the value function is implicitly defined as a solution 

to  a type II integral equation. This linear equation defines the value function through 

the smoothed (or integrated) Bellman equation (SBE) under the optimal decision rule, 

it is also known as the policy value equation (PVE). When the observable state space 

is finite, this linear equation is just a m atrix equation whose statistical properties are 

well understood. The extension to allow for an uncountable state space is non-trivial.

We also need to address the issue of the curse of dimensionality theoretically as well as 

in practice.

In this chapter, we propose a simple two-step semiparametric approach tha t falls 

in the general class of profiled semiparametric estimation discussed in Pakes and Ol- 

ley (1995), and Chen, Linton and van Keilegom (2003). The criterion function will 

be based on some conditional moment restrictions that requires consistent estimators 

of the value functions. The additional difficulty here is due to  the fact tha t the infi

nite dimensional parameter is defined through an integral equation. The study of the 

statistical properties of solutions to integral equations falls under the recent topic of 

research on inverse problem in econometrics, see Carrasco, Florens and Renault (2007) 

for a survey.1 Type II integral equations are found, amongst others, in the study of 

additive models, see Mammen, Linton and Nielson (1995). We show th a t our problem 

is generally well-posed and utilize the approach similar to Linton and Mammen (2005) 

to  estimate and provide the distribution theory for the infinite dimensional parameters 

of interest.

Our estimation strategy can be seen as a direct generalization of the unifying method 

of Pesendorfer and Schmidt-Dengler (2008), to  estimate their Markovian games, that

1 See also Carrasco’s webpage on Inverse Problems in Econometrics at
https: //www. webdepot. umontreal. ca/Usagers/carrascm/MonDepotPublic/carrascm/inverse/index. html
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allows for continuous components in the observable state space. The main idea is to 

use the linearity of the policy value operator, where solving for the conditional value 

functions only requires the solving of some matrix equations when the state space is 

finite, to  provide feasible estimator for the choice probabilities. To generalize this, we 

simply note th a t such m atrix equations are linear integral equations in a finite dimen

sional space. We show th a t solving the analogous problem in an infinite dimensional 

space is also a well-posed problem for both population and empirical versions (at least 

for large sample size). In the first step, we flexibly estimate the integral equation using 

the method of kernel smoothing. The estimated PVE can be solved empirically, so we 

can provide estimates of the choice probabilities for any value of the structural parame

ter. The second stage involves minimizing some analogues of the moment restrictions 

over the param eter space based on feasible choice probabilities. The solving of the 

empirical integral equation in the first step requires us to approximate an inverse of a 

potentially large but invertible matrix but we only require to approximate this inverse 

once. We note tha t an independent work of Bajari, Chernozhukov, Hong and Nekipelov 

(2008) also proposes another estimation methodology th a t can estimate semiparametric 

Markovian games, based on the method of sieves, tha t allows for continuous observable 

state space. They focus on the case where the per period payoff utility function is 

linear in parameters and generate moment conditions based on the conditional value 

functions, some simple identification results are also provided in their paper. Therefore 

our methods are complementary in filling this gap in the literature. However, we feel 

that our estimation strategy, like its predecessor, is simpler and intuitive and by using 

the local approach of kernel smoothing, we can obtain the pointwise distribution theory 

of the infinite dimensional parameters tha t would otherwise be elusive with the series 

or splines expansion. Since the infinite dimensional parameters in MDP are the value 

functions, they may be of considerable interest themselves. Another advantage for the
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local estimator includes the optimality in the minimax sense for local linear estimators, 

see Fan (1993). In addition, we explicitly work under time series framework and provide 

the type of primitive conditions required for the validity of the methodology.

Since the main idea can be fully illustrated in the single agent setup, for most parts 

of the chapter, we initially consider the single agent setup and leave the discussion 

of the Markovian game estimation to  the la tter section. The chapter is organized as 

follows. Section 1.2 defines the MDP of interest and discusses SBE, PVE and the related 

linear inverse problem. Section 1.3 describes in detail the practical implementation 

of the procedure to obtain the feasible conditional choice probabilities. In Section 

1.4, Primitive conditions and the consequent asymptotic distribution are provided, the 

semiparametric profiled likelihood estimator is illustrated as a special case. Section 1.5 

discusses the extension to the dynamic games setting. Section 1.6 concludes.

1.2 M arkov D ecision Processes

We first define our time homogeneous MDP and introduce the main modelling assump

tions and notation used throughout the chapter. We next outline the main issue of 

computational complexity for estimating MDP. The sources of the computational com

plexity are briefly reviewed and we introduce our estimator through the SBE and PVE 

tha t we view as an integral equation in 1.2.2 and discuss the inverse problem associated 

with solving such integral equations in 1.2.3.

1.2.1 D efin itions and A ssum ptions

We index time by t, the agent is forward looking in solving the following infinite horizon 

intertemporal problem. The random variables in the model are the control and state 

variables, denoted by a* and s* respectively. The control variable, a*, belongs to a 

finite set of alternatives A = { 1 , . . .  ,K } .  The state variables, st , is an element in
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M.J+K. At each period £, the agent observes s* and chooses an action at in order to 

maximize her discounted expected utility. The present period utility is time separable 

and is represented by u® (at, st), for 6 6  ©  C and her action today directly affects 

the uncertain future states according to  the (first order) Markovian transition density 

p (d s t+i\st,at). The next period utility is subjected to discounting at the rate /? E 

(0,1). Formally, the agent is assumed to  behave according to an optimal decision rule, 

A t  = {&t (st)}?=T, in solving the following sequential problem (SP) for any time r

(st )  =  sup E ^ 2  f t  n't, (at , st )
t — T

(1)

Under some regularity conditions, see Bertsekas and Shreve (1978) and Rust (1988), 

Blackwell’s Theorem and its generalization ensure the following im portant properties. 

Firstly, there exists a deterministic and stationary Markovian optimal decision rule 

Op (•) so th a t alp (st ) =  ajj (st+T) for any st =  s*+r and any t, r ,  i.e.

o$ i st) = argm ax {uQe (a, st) +  P E  [V̂0 (st+i) |s*, at = a] } for all t > 1. (2)aeA

Secondly, the value function, V̂0, is the imique solution to the Bellman’s equation (BE)

Vq (st ) =  max {^0 (a, st) +  PE \V§ (st+ i) | su at = a]} . (3)
a£A

In order to make this a more tractable econometric problem, the following set of 

conditions for the class of MDP of interest are imposed:

A s s u m p t i o n  M l.l :  The observed data for each individual {at,Xt}T=i are the

controlled stochastic processes satisfying (2) with exogenously known p.

A s s u m p t i o n  M l.2: (Conditional Independence) The transitional distribution has
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the following factorization: p (xt+\, £t+i\xt , eti at ) = q (et+\ |x*+i) fx '\x ,A  ix t+i \xt, at) 

fo r  all t.

A s s u m p t i o n  M l . 3: st = ix t ,£t) €  X  x  M.K , where X  =  X c  x X D is a compact 

subset of R*7. X c  includes intervals and X D is finite, they denote the observable state 

space with continuous and discrete components respectively. £t is a vector o f unobserved 

state variables, whose dimension is K , the cardinality o f A. The distribution of £t is 

also known and is absolutely continuous with respect to some Lebesgue measure with 

Radon Nikodym density q(et\xt) with support R7̂

A s s u m p t io n  M l . 4: (Additive Separability) The per period payoff function u# : 

A  x  S  —* R is specified upto some unknown parameters 0 6 0  C Rp .and is additive 

separable w.r.t. unobservable state variables, Uq (at,Xt,£t) =  (a t ,x t ) + £ at,t-

Conditions M l.l is a standard simplification to keep the model tractable. The knowl

edge of (3 is im portant as it is generally not identified in MDP models. The popular 

infinite time framework yields us an elegant and simple linear equation to  work with. 

We discuss the solving of such equations below; The fundamental assumption in the 

current literature is M l.2, the (Cl) assumption of Rust (1988). The combination of 

M l.2 and M l.4 allows us to  set our model in the familiar framework of static discrete 

choice modelling; The observable state space of M l.3 is usually assumed to  be finite 

but we allow for it to  include intervals. Compactness X c  is not necessary, imposed 

here for the ease of exposition; The additive structure on the payoff function in M l.4 

is also imposed by Rust (1994).

It is our goal to estimate the structural param eters as well as some functionals 

depending on them. Conditions M l.l - M1.4 are crucial to  the estimation methodol

ogy we propose. These conditions are standard in the literature. In particular, M l.3 

is weaker than the usual finite X  assumption when no parametric assumption is as-
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siimed on fx '\x ,A  (x t+i\%t, &t) in the infinite horizon framework. For departures of 

this framework see the discussion in the survey of Aguirregabiria and Mira (2008) and 

the references therein. Henceforth Conditions M l.l - M l.4 will be assumed and later 

strengthened as appropriate.

1.2.2 P o licy  Value Equation

Similarly to  the static discrete choice models, the estimation of our controlled process 

requires us to  compute the choice probabilities. There are two numerical aspects th a t we 

need to consider in the evaluation of the choice probabilities. The first are the multiple 

integrals, th a t also arise in the static framework, where in practice many researchers 

avoid this issue via the use of conditional logit assumption of McFadden2 (1974). The 

second is th a t we must compute the value function, directly or indirectly, as defined in 

(1) and (3) - this is unique to the dynamic setup. First we introduce what we also call, 

with an abuse of a terminology, the value function defined on the observed variables, 

Vq, which is a stationary solution to the policy value equation when for any 0, cf. (3)

Ve (st) = u° (at, st ) + 0 E  (Ve (st+1) H  , (4)

so that

Ve (st ) = E ]T /3 r tUg (aT, sT) st
T = t

In particular, we have must have Vq0 (st ) =  Vq (st) and at = a$o (st ). We stress tha t 

the equation above is also well defined for any Q th a t is not equal to 6q\ then Vq is 

interpreted as the value function for an economic agent whose underlying preference is 

6  but is using the policy function tha t is optimal with respect to  6q. T o see precisely 

the difficulty we face, we first update our BE under the assumptions M l.l - M1.4, M l.2

2Unlike in static models, we do not suffer from the undesirable I.I.A. when use i.i.d. extreme values 
errors of type I in the dynamic framework.
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implies:

E  [Vg (st+1) \st, at] = E  [E [Vg (st+1) \xt+1] \xt , at] .

Denote ug (at, x t ) +  j.3E [E [Vg (s*+i) |z*+i] \xt, at] by vg (at, xt), we can define the model 

implied policy function ag  by

ag (xt , et ) = at & v 0 (at , x t ) +  £at,t > v0 (a, x t ) +  £a,t for a ^  at . (5)

Again, we must have ag0 (s*) =  (s*). The above is familiar from the static multino

mial choice framework. In order to compute the choice probabilities we need to  integrate 

across the domain of the unobservable states satisfying (5) as well as provide the values 

for vg, for each 0, denoting the conditional choice probabilities by {P  (at\xt , 0)}

P  (at \xt , 6) =  P r [vg (at , x t ) +  eaut >  ve (a, x t ) +  ea,t for a ^  at \xt] (6) 

=  J  1 [ag (xt , et ) = at] q (det \xt ) .

Generally, suppose th a t we know vg, (6) will have no closed form and the task of 

performing multiple integrals numerically is often non-trivial.3 Under M l.3, we can 

make distributional assumptions on the error terms, for example using the popular 

i.i.d. extreme value of type I - then we can avoid the multiple integrals as (6) has the 

well known multinomial logit form

=  (7)
2 ^  exp (vg (a, Xt)) 
a e A

Our estimation strategy accommodates for general form of distribution per M7. How

ever, the problem we want to focus on is the fact tha t we generally do not know vg.  For

3 See the discussion of Hajivassiliou and Ruud (1994) where they provided some form of escape via 
simulation methods.
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vg (at , Xt) contains E  [E [Vg (st+1) |zt+i] \xt , a*], which we denote by gg (at , £f), defined 

through some nonlinear functional equation tha t we need to solve for.

Under the rationality assumption of M l.l, we define the conditional value function 

by taking conditional expectation on (4) w.r.t. xt,

E[Ve (st) \ x t] =  £ [ 4 (04, 3^ ] + PE[E{Ve {st+l) \su at\\xt\ (8)

=  E  [v!g (at , s t ) \xt] + /3E [E [Ve (sl+i) |x(+i) |x4] .

The latter equality follows from M l.2. Therefore we can express (8) generally as a 

linear integral equation of type II. Imposing the structural parameterization of M l.4 

we can represent (8) by

m e = rg +  Cme, (9)

where for any given 9 and x  C X :  mg (x) is the ex-ante (conditional) expected value

function E  [Vg (st) \xt =  x). rg (x) is the ex-ante expected immediate payoff given state

x t = x , namely E  [itg (a t,s t) \xt = x]. The integral operator C generates discounted 

expected next period values of its operands, e.g. Cmg (x) =  j3E [mg (xt+1) \xt = x\. If 

we could solve for mg then we need another level of smoothing on mg to  obtain the 

continuation value vg as defined in the previous subsection. In particular, we can define 

gg through the following linear transform

gg =  H m g , (10)

where for any given 6 and (x, a) 6 X  x A, gg (a, x) is the ex-ante expected value function 

E  [Vg (sf+i) \xt = x ,a t = a] (=  E  [mg (xt+i) \xt = x, at = a]) and the integral operator 

7i generates the expected next period values of its operands (cf. C). The continuation
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value, net of unobserved shock, can be written in a linear functional notation

vq =  U0 +  j3Hrri0. (11)

Before we can discuss the estimation of ug, we need to  address some issues regarding 

the solution of integral equations since mg is defined as a solution to the integral 

equation (9). It is natural to  ask the fundamental question whether our problem is 

well-posed in the sense of Hadamard, namely, whether the solution of (9) exist and if 

so, whether it is unique and stable. The study of the solution to such integral equations 

falls in the general framework of linear inverse problems, and in what follows we show 

th a t our inverse problem is well-posed.

1.2.3 Linear Inverse Problem s

The study of inverse problems is an old problem in applied mathematics. The type 

of inverse problems one commonly encounters in econometrics are integral equations. 

Carrasco et al. (2007) focused their discussion on ill-posed problems of integral equa

tions o f type I where recent works often needed regularizations in Hilbert Spaces to  

stabilize their solutions. Here we face an integral equation of type II, which is easier to 

handle, and in addition, the convenient structure of SBE allows us to  easily show that 

the problem is well-posed in a familiar Banach Space. We now define the normed linear 

space and the operator of interest, and proof this claim. We shall simply sta te  relevant 

results from the theory of integral equations. For definitions, proofs and further details 

on integral equations, readers are referred to Kress (1999) and the references therein.

From the Riesz Theory of operator equations of the second kind with compact 

operators on a normed space, say A :  X  —> X ,  we know tha t I  — A  is injective if and 

only if it is surjective, and if it is bijective, then the inverse operator (I  — A ) -1 : X  —► X  

is bounded. We will be working on the Banach space (B , ||-|[), where B  = C  (X) is a

18



space of continuous functions defined on the compact subset of R J , equipped with the 

sup-norm, i.e. ||0 || =  supx6^  |<f> (x)|. £  is a hnear map, £  : C  (X ) —► C  (X ) , such that, 

for any (f> £ C  (X) and x £ X ,

C(f>{x)=P [  0 (x') f x , |X (dx'\x) ,
J x

where /x |x  (dxt+i\xt) denotes the conditional density of x t+i given xt.

In fact, the compactness of the operator is not required in this case since we know 

the existence, uniqueness and stability of the solution to (9) are assured as we can show 

£  is a contraction. To see this, take any 4> £ C  (X ) and x  £ X ,

\C(j>{x)\<P [  \(f> (x') | f x ,\x  (dx'\x) < (3 sup \<j> ( x ) |,
J X  x £ X

since the discounting factor /? £  (0 , 1) , '

||£ 0 || < P U \\  =* \\c\\ < / ? <  1.

This implies tha t our inverse problem is well-posed. Further, the contraction property 

means we can represent the solution to  (9) using the Neumann series,

m s = ( I - C y ' r e  (12)
T

= lim ^ 2 CTr9- (13)1 >oo '
T — 1

Therefore (13) provides one obvious way of approximating the solution to the integral 

equation which will converge geometrically fast to  the true function. If X  is countable, 

then £ r  would be represented by a r-step  ahead transition m atrix (scaled by /3T). Note

tha t the operator for the (uncountable) infinite dimensional case share the analogous
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interpretation of r-step  ahead transition operator with discounting.

Since our problem is well-posed, then it is reasonable to  expect tha t with sufficiently 

good estimates of ( m g , £ , 7 i )  our estimated integral equation is also well-posed and will 

lead to  (uniform) consistent estimators for (gg, vg).  Our strategy is to use nonparametric 

methods to generate the empirical versions of (9) and (10), then use them to provide 

an approximate for vg necessary for computing the choice probabilities.

1.3 E stim ation  o f Conditional Choice Probabilities

In this section we discuss the estimation of the nonparametric components necessary for 

the computation of the model implied choice probabilities. Our objective is to  construct 

an estimator of vg as defined by (9), (10) and (11) from a time series { a t ,  xt }J= 1 . A pure 

time series approach is assumed for notational simplicity, this can be trivially extended 

with N  independent realizations of the same controlled process. We proceed in two 

steps. First, we nonparametrically compute estimates of the kernels of C,T~t and for 

each 6, estimate r g . Then obtain the estimate of mg  by solving the empirical version 

of the integral equation (9) and estimate gg analogously from an empirical version of 

(10).

There are numerous choices available for empirically solving the integral equation 

in (9). We need to  first decide on the nonparametric method. We will focus on the 

method of kernel smoothing due to its simplicity of use as well as its well established 

theoretical grounding. Our nonparametric estimation of the conditional expectations 

will be based on the Nadaraya-Watson estimator. The local constant estimator is 

chosen for its familiarity and simplicity of notation. However, since we will be working 

on bounded sets, it is necessary to address the boundary effects. The treatm ent of 

the boundary issues is straightforward, the precise trimming condition is described in 

Section 4. So we will assume to  work on a smaller space X t  C X  where X t  = (X p, X DJ
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denotes a set where the support of the uncountable component is some strict compact 

subset of X c  but increases to X c  in T. W hen allowing for discrete components, we 

simply use the frequency approach, smoothing over the discrete components is also 

possible, see Aitchison and Aitken (1976). We will also need to make a decision on how 

to  define and interpolate the solution to the empirical version of (9) in practice. We 

discuss two asymptotically equivalent options for this la tte r choice, whether the size of 

the empirical integral equation does or does not depend on the sample size, as one may 

have a preference given the relative size of the number of observations.

E s t i m a t i o n  o f  re,£  a n d  H:

We now define the nonparametric estimators, H), of (re ,£ ,7 i) .  Any generic

density of a mixed continuous-discrete random vector wt = (u f , w f ) , f w : R*C x R l°  -> 

R+ for some positive integers lc  and lD, is estimated as follows,

1 T

fw ( w c, w d ĵ =  — K h {Wt -  w ° ) 1 [w t =  w<i 
t=l

where K  is some user chosen symmetric probability density function, h is a positive

bandwidth and for simplicity independent of wc. Kh (•) =  K  {-/h) / h and if lc  > 1 

l°  (  \then Kh (wf — wc) = ]~I Kht ( w ^  — wf ) ,  1 [•] denotes the indicator function, namely
l=i '  ' '

1 [A] = 1 if event A  occurs and takes value zero otherwise. Similar to the product 

kernel, the contribution from a multivariate discrete variable is represented by products 

of indicator functions. The conditional densities/probabilities are estimated using the 

ratio of the joint and marginal densities. The local constant estimator of any generic 

regression function, E  [zt\wt = w] is defined by,

? r  i t T T tt= i z t K h { w ^ - w c) l [ w f  =  w d]
E  [zt \wt = w] =  ------------------------   !=-----------   (14)

fw  M
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(I) E s t im a t io n  o f  re:

For any x  6 X t ,

re (x ) =  E  [u0te (at , st ) \xt = x]

= E  [ue (at , xf) |xt =  x] +  E  [eat \xt = x]

=  +

The first term  can be estimated by

Pi1o(x ) = ' 5 2 P ( a \x ) ue ( a , x ) 1 (15)
a€A

or, alternatively, the Nadaraya-Watson estimator,

pi e (x) = E  [ue (at , x t ) \xt = x ] .

In (15), | p ( a | x ) |   ̂ is a sequence kernel estimator of the conditional choice proba

bilities, and equivalently the Nadaraya-Watson estimator. Generally, by the inversion 

theorem of Hotz and Miller, it will be more convenient to use (15) since we have to

compute < P  (a\x) > in any case, as we shall see below.
I ) aeA

The conditional mean of the unobserved states, p2 e, generally non-zero due to 

selectivity. By the inversion theorem of Hotz and Miller, we know p2 q can be expressed 

as a known smooth function of the choice probabilities. For example, the i.i.d. type I 

extreme value errors assumption will imply that

P2,e (x ) = 'y + ^ 2 p  (a k )  loS (P  ( « k ) ) , (16)
aeA

where 7  is the Euler’s constant. An estimator of p2 q can therefore be obtained by
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plugging in the local constant (linear) estimator of the choice probabilities.

Alternatively, we could use another consistent estimator, where the estim ator of 

the conditional choice probability, < P  (alx) j> , can be estimated by the Nadaraya-l J a£A

Watson estimator of the regression of 1 [at = a] on xt = x. This approach may be more 

convenient when sample size is relatively small, and we want to  solve the empirical 

version of (9) by using purely nonparametric methods for interpolation, where we could 

use the local linear estimator to address the boundary effects.

(II) E s t im a t io n  o f  £  a n d  H:

Suppose X D is empty. For the integral operators £  and 7i, if we would like 

to  use the numerical integration to approximate the integral, we only need to pro

vide the nonparametric estimators of their kernels, respectively, f x f\x (dxt+i\xt) and 

fx'\x-,A (dxt+.i\xt,.at).

For any <f> £  C  (X t ), the empirical operators are defined as,

C(j>{x) = [  <p(x' ) fX r \ x ( dx ' \ x ) ,  (17)
J x T

Û > (a, x) = f  (f) (x f) f x >\x,A (dx'\x, a) . (18)
J x T

So £  and Tl are linear operators on the Banach space of continuous functions on X t  

with range C (X t ) and C ( A x  X t ) respectively under sup-norm. Alternatively, we 

could use the Nadar ay a-Watson estimator, defined in (14), to  estimate the operators,

C(j>(x) = E[(f>(xt+i) \xt = x ] ,

T-L(f)(a,x) — E[(f>(xt+i ) \ x t = x ,a t = a].

Note that, if X  is finite then the integrals in (17) and (18) will be defined with 

respect to discrete measures, then (C,TC) and (£,77) can be equivalently represented
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by the same stochastic matrices.

E s t i m a t i o n  o f  m g ,g e a n d  v e :

We first describe the procedure used in Linton and Mammen (2005), by using 

(C , l i to solve the empirical integral equation. We define rhg as any sequence of 

random functions defined on X t  that approximately solves m g = rg +  Crhg.  Formally, 

we shall assume tha t rhg is any random sequence of functions tha t satisfy

sup \ ( l  -  rhg (x ) -  rg (x ) =  op ( t ~ 1/2)  . (19)

In practice, we solve the integral equation on a finite grid points, which reduces it to 

a large linear system. Next we use rhg to  define gg, specifically we define gg as any 

random sequence of functions tha t satisfy

sup
0e&,a€A,x£XT

90 (a, x ) -  Hfhg (a, x) =  op ^T 2/2j  . (20)

Once we obtain ggy the estimator of vg is defined by

sup I Vg (a, x) -  Ug (a, x) -  pgg (a, x)\ = op (T _1/2 ) .
0eQ,aeA,x€XT '  '

For illustrational purposes, ignoring the trimming factors, we will assume tha t X  =  

[x, x\ c  R.

For any integrable function (f) on X , define J  {(f)) =  /  4>{t)dt. Given an ordered 

sequence of n  nodes C [a, 6], and a corresponding sequence of weights {uj,n}
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such th a t 52j=i Wj,n = b — a, a valid integration rule would satisfy

lim Jn ((/>) =  J  ((f))n—>00
n

=  ^  ^  { t j ,n )  >

J=1

for example Simpson’s rule and Gaussian quadrature both satisfy this property for 

smooth 0. Therefore the empirical version of (9) can be approximated for any x  € [a, b] 

by
n

m e (x) =  r 0 ( x ) + / 3 ^  Uj,nJx>\x (tj,n\x ) me f e , n ) , (21)
3 = 1

so the desired solution th a t approximately solves the empirical integral equation will 

satisfy the equation below a t each node {fyn},

mQ {ti^n) — +  P  ^  ^ ^ j , n f x ' \ X  (J'j,n\ti,n) m,Q ( f y n )  • ( 2 2 )

j =1

This is equivalent to  solving a system of n  equations with n variables, the system of

(22) can be w ritten in a matrix notation as

ih0 = T0-h L m dy (23)

where m 0 =  (fhe (fyn) , . . . ,  fhe (tn,n))T , *o = (% ( f y n ) , • • • , r0 (£n,n ))T , In is an identity 

matrix of order n  and L is a square n  matrix such th a t (L)ij =  fiw j,njx '\x  (tj,n\U,n)• 

Since f x f\x is a proper density for any x, with a sufficiently large n, (I n — L) is 

invertible by dominant diagonal theorem. So there is a unique solution to  the system

(23) for a given tq. In practice we have a variety of ways to  solve for m# with one 

obvious candidate being the successive approximation as mentioned in (13). Once we 

obtain m^, we can approximate (x) for any x  e  X  by substituting m# into the
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RHS of (21). This is known as the Nystrom interpolation. We need to  approximate 

another integral to estimate gg. This could be done using the conventional method of 

kernel regression as discussed in Section 3.1, or by appropriately selecting sequences of 

r  nodes {qj,r} and weights {Cj,n} so tha t

90 U, x) = J 2  C j,nfx'\x,A  (9j,r\x,j) rhe (gi>r) , (24)
j =i

where the computation for the system of (24) is trivial. See Judd (1998) for a more 

extensive review of the methods and issues of approximating integrals and also the 

discussion of iterative approaches in Linton and Mammen (2003) for large grid sizes.

Alternatively, (again, ignoring the trimmed observations) we can form a m atrix 

equation of size T  — 1,

mg =  r 0 -f Lrhfl,

to  estimate (9) at the. observed points with the t-th element defined below,

m 9 (xt) = re (xt ) + P T Y a = i  m e (x t+ 1) K h (art ~  x)  

t=T £ r = l  K h  ( x T ~  x t )

By the dominant diagonal theorem, the m atrix equation above always has a unique 

solution for any T  > 2. Once solved, the estimators of mg can be interpolated by

m e (x) = r6 (x) + f3E [m (xt+i) \xt =  x ] ,

for any x E X t - Similarly, gg and vg can be estimated nonparametrically without 

introducing any additional numerical error. Clearly, the more observation we have, the 

la tter method will be more difficult as dimension of the m atrix representing L is large 

whilst the grid points for the former empirical equation is user-chosen.
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P r a c t i c a l  D i s c u s s i o n :

We reflect on the computational effort required of the proposed method. I t will be 

helpful to  have in mind the methodology of Pesendorfer and Schmidt-Dengler (2008) 

as our methods coincide when the X  is finite and there is only 1 player in the game 

(vice versa, extending from a single agent decision process to a dynamic game). For 

each 6 , the nonparametric estimates of (r#, £ , 7i) have closed form and are very easy 

to compute even with large dimensions, further, the empirical integral operators (or 

their approximations) only need to be computed once at the required nodes since they 

do not depend on 0. Solving the empirical integral equation to  obtain rhg, in (23), is 

the only potential complication tha t does not exist in a static problem. However, in 

this setup, this reduces to the need to invert a large m atrix th a t approximates (I  — C) 

tha t only need to be done once at the beginning and stored for future computation 

with any other 9.  Estimators of ( m g ,g g ,v g )  are obtained trivially for any 6, by simple 

matrix multiplication, once the empirical operator of ( /  — £ ) -1 is obtained. We note 

further computational gain is possible if uq is linear in 6. The reason for this is clear, 

from (15) and (16), linearity in 6 implies rg = ®irli utilizing the fact th a t the 

inverse of (I  — C) is a linear operator so we have mg  = XlzLi (I  ~  £ )_1 where, 

once again, 11 — f* only need to be computed once for each I. See Hotz, Miller, 

Sanders and Smith (1994) and Bajari, Benkard and Levin (2007) for related utilization 

of the repeated substitution concept.

However, it is im portant to note that, as we have decided on the kernel smoothing 

approach there is an issue of bandwidth selection which is im portant for small sample 

properties. Further, it is easy to  see th a t the invertibility of the matrix ( /  — L) and 

(I — L) are not dependent on the number of continuous and/or discrete components. 

Clearly, there are a lot of choices available regarding integral approximation and matrix 

inversion methods. I t is beyond the scope of this chapter to  analyze the finite sample
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performance of these various methodologies.

1.4 D istribution Theory

In this section we provide the type of primitives sufficient to  obtain the distribution 

theory for both finite and infinite dimensional parameters of interest. A class of criterion 

functions can be generated from the following conditional moment restrictions,

E  [1 [at =  a] -  P0O (a\xt ) \xt] = 0. (25)

We focus on a specific example of a profiled likelihood estim ator.4 In terms of the 

dimensionality of X , we restrict X c  C R, the reason being this is the scenario tha t 

applied researchers may prefer to work with. This does not limit the usefulness of the 

primitives provided. For other estimation criterions, since two-step estimation problems 

of this type can be compartmentalized into nonparametric first stage and optimization 

in the second stage, the primitives below will be directly applicable. There might be 

other intrinsically continuous observable state variables tha t require discretizing but 

with increasing dimension in X c , the practitioners will need to employ higher order 

kernels and/or undersmooth in order to obtain the parametric rate of convergence for’ 

the finite structural parameters, adaptation of the primitives are straightforward and 

will be discussed accordingly.

There are general large sample theory of profiled semiparametric estimators avail

able th a t trea t the estimators defined in our models. In particular, the work of Pakes 

and Olley (1995) and Chen, Linton and van Keilegom (2003) provide high level con

ditions for obtaining root—T  consistent estimators are directly applicable. The rele

vant large sample properties for the nonparametric first stage, under the time series

4 This estimator can be derived from some conditional moment restrictions if the zero of the first 
order condition identifies the true parameter.
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framework, for the pointwise results see the results of Roussas (1967,1969), Rosenblatt 

(1970,1971) and Robinson (1983). Roussas first provided central limit results for kernel 

estimates of Markov sequences, Rosenblatt established the asymptotic independence 

and Robinson generalized such results to the a-mixing case. The uniform rates have 

been obtained for the class of polynomial estimators by Masry (1996), in particular, 

our method is closely related to the recent framework of Linton and Mammen (2005) 

who obtained the uniform rates and pointwise distribution theory for the solution of a 

linear integral equation of type II. We assume to possess a time series data 

generated from the MDP described in Section 1.2.

In f in it e  D im e n sio n a l  P a r a m e t e r s :

We begin with some primitives. In addition to  M l.l - M1.4, the following sufficient 

conditions are weak enough to accommodate most of the existing empirical works in 

applied labor and industrial organization involving estimation of MDP.

We denote the strong mixing coefficient as

a  (k) = sup sup |Pr (A  D B) — P r (A) P r (B)| for k 6 T,,
t€N

where T \  denotes the sigma-algebra generated by {at , Xt)\=a- 

B l . l  X  x © is a compact subset o f R*7 x R7, with X c  = \x ,x \.

B1.2 The process { a t , X t }t=1 is strictly stationary and strongly mixing, with a mixing 

coefficient a  (k),such that for some C > 0 and some, possibly large \  > 0, a  (k ) < 

C k~x .

B1.3 The density o f Xt is absolutely continuous f x c ,x D (dx t->x t)  f or each £ X D. 

The joint density o f (a t,x t) is bounded away from zero on X c  and is twice
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continuously differentiable over X c  for each [x f,a t)  6  X D x A . The jo in t den

sity o f (xt+ i,X t,at) is twice continuously differentiable over X c  x X c  for each 

(xf+1,x f ,a t) 6 X D x X D x A.

B1.4 The mean of the per period payoff function ug (at,X t) is twice continuously dif

ferentiable on X c  x 0  for each (x f, at) e  X D x A .

B1.5 The kernel function is a symmetric probability density function with bounded sup

port such that for some constant C , \K  (-it) — K  (v)\ < C \u — v\. Define fij (K ) =  

f  u^K  (u) du and Kj (K ) =  J K J (u ) du.

Bl.fi The bandwidth sequence hx  satisfies hx  =  7o (T ) T -1 /5 and 70 (T) bounded away 

from zero and infinity.

B1.7 The triangular array o f trimming factors {c t,x} defined such that c t,x  =  1 \x^ 6 X j,]  

where X x  =  [x +  c x ,x  — cx] and {cx} is any positive sequence converging monoton- 

ically to zero such that hx  <  cx-

B1.8 The distribution of £t is known to be distributed as i.i.d. extreme value of type I  

across K  alternatives, and is mean independent o f Xt and is i.i.d. across t.

The compactness of the parameter space in B l . l  is standard. Compactness of 

the continuous component of the observable state space can be relaxed by using an 

increasing sequence of compact sets tha t cover the whole real line, see Linton and 

Mammen (2005) for the modelling in the tails of the distribution. The dimension of 

is assumed to be 1 for expositional simplicity, discussion on this is follows the 

theorems below. On the other hand, it is a trivial m atter to  add arbitrary (finite) 

number of discrete components to  X D.

Condition B1.2 is quite weak despite the value of \  can be large.
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The assumptions of B1.3, B1.4 and B1.5 are standard in the kernel smoothing 

literature using second order kernel.

Here in B1.6 we use the bandwidth with the optimal MSE rate for a regular 1- 

dimensional nonparametric estimates.

The trimming factor in B1.7 provides the necessary treatm ent of the boundary 

effects. This would ensure all the uniform convergence results on the expanding compact 

subset {X t } whose limit is X . In practice we will want to minimize the trimming out 

of the data, we can choose ct close enough to  h,T to  do this.

Condition B1.8 is not necessary for consistency and asymptotic normality for any 

of the parameters below, only M I.3 is required. In particular, B1.8 yields us the simple 

multinomial logit form, (7), tha t is often used in practice. For other distribution will 

result in the use of a more complicated inversion map, for example see Pesendorfer and 

Schmidt-Dengler (2003) for the Gaussian case.

Next we provide pointwise distribution theory for the nonparametric estimators 

obtained from the first stage, as described in Section 3, for any given set of values 

of the structural parameters. The bias and the variance term s are complicated, the 

explicit formulae can be found along with all proofs in the Appendix.

T h e o r e m  1.1. Suppose B  1.1 — B  1.8 hold. Then for each 0 € 0  and x  6  in t (X ), 

there exists deterministic functions r/m  ̂ and uimj such that

where rhg (x) is defined as in (19) and

lm ,e (x) = ( I - £ )  1 {Vr,o +  Vc,e)(x )>

(/32var (m e (xt+i) \xt = x) +  ujt# (x))
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Some components of the bias and variance are complicated, in particular the explicit 

form  o f T)r q, rj£ 0 and u)r g can be found in (45), (54) and (46) respectively, rhg (x ) and 

rhg (x ' ) are also asymptotically independent fo r any x  =£ x r. Furthermore,

sup |rhg (x) -  mg (x)| =  op .
( i ,0 )G X r x 0  V '

The rate of convergence, J 1-2/ 5, is the usual optimal rate (in the MSE sense) of 

a  1—dimensional nonparametric function. The above is obtained by using analogous 

arguments of Linton and Mammen (2005) after showing tha t the conditional density 

estim ator tha t define the empirical integral operator converges uniformly (see Masry 

(1996)) over its domain. Similar to Theorem 1, we also obtain the following results for 

the estimator of gg.

T h eo re m  1.2. Suppose B  1.1 — 51.8 hold. Then for each 0 6  0 , x £  in t (X )  and 

a £ A,

T 2/5 (ge (a, x) -  ge (a, x)  -  (a> x )^j => M  (0, u 9te (a, x ) ) ,

where gg (a, x) is defined as in (20) and

’n9,e(a>x ) = -  £ )~ l {gr,g + 'nCfi){a ,x )  + r}n f i {a ,x ),

Ug g (a, x) =     rvar (mg (xt+i) \xt = x ,a t = a ).
fx ,A  (x, a)

The explicit form  of r)r g, rj^ g and rj-̂  g can be found in (45), (54) and (55) respectively, 

fjg (a ,x ) and 'gg (a ',x ') are also asymptotically independent for any x  ^  x' and any a. 

Furthermore,

sup \ge (a ,x) -  ge (a,x)\ = op ( t ~ 1/4)  .
(a:,a ,0 )G X 7 'X y4x©
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We end with a brief discussion of the change in primitives required to accommodate 

the case when the dimension of X c  is higher than 1. Clearly, using the optimal (MSE) 

rates for dim {X c } cannot exceed 3 with second order kernel if we were to have 

the uniform rate of convergence for our nonparametric estimates to be faster than 

T -1/4 th a t is necessary for y /T —consistency of the finite dimensional parameters. It 

is possible to overcome this by exploiting additional smoothness (if available) of our 

densities. This can be done by using higher order kernels to  control the order of the 

bias, for details of their constructions and usages see Robinson (1988) and also Powell, 

Stock and Stoker (1989).

F in it e  D im e n s io n a l  P a r a m e t e r s :

We first provide the notation for the objective functions:

1 ^  1 ^
QT {6) = -  ^ q (a*,x t ; 9 ,ge) ; QT (d) = Ct>T q X t > 9 e )  >

t=l t=l

where q denotes the log-likelihood function, Q t  is the feasible criterion function, Qx 

is identical to Q t  when the infinite dimensional component g$ = ge. Here, {c^t} is 

a triangular array of trimming factors, cf. B1.7. Define also the limiting objective 

function Q (0) =  lim7’_>00 E Q t (0 ) , which is assumed to  exist. We define our estimator 

for the finite dimensional structural parameters, 6, to be any sequence tha t satisfy the 

following inequality,

Qt @) > sup Qt  (8) -  Op ( t - 1' 2)  .

In order to obtain consistency result and the parametric rate of convergence for 6, 

we need to adjust some assumptions described in the previous subsection and add an 

identification assumption. Consider:

B1.6r The bandwidth sequence hx  satisfies hx — 7 i (T) T -1 /4/  logT  and ry1 (T ) bounded
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away from  zero and infinity.

B1.9 The value Oq € in t (0 ) is defined by, for any e > 0

sup Q ( Oq)  - Q ( 0 ) >  0.
||*-0o||>e

The rate of undersmoothing (relative to  B1.6) in Condition B1.6' ensures th a t the 

bias from the nonparametric estimation disappears sufficiently quickly to obtain para

metric rate of convergence for 0. To accommodate for higher dimension of X c , we 

generally cannot just proceed by undersmoothing but combining this with the use 

higher order kernels, again, see Robinson (1988) and also Powell, Stock and Stoker 

(1989).

Condition B1.9 assumes the identification of the param etric part. This is a high 

level assumption tha t might not be easy to verify due to the complication with the 

value function. In practice we will have to  check for local maxima for robustness. We 

note tha t this is the only assumption concerning the criterion function, for other type 

of objective functions, obvious analogous identification conditions will be required.

The properties of 0 can be obtained by application of the asymptotic theory for 

semiparametric profile estimators. This requires uniform expansion 'go (and hence rh$) 

and their derivatives with respect to 9.

T h e o r e m  1.3. Suppose 51.1 — B 1.5 ,51 .6 ' and 51 .7  — 51.9  hold. Then

VT (e -  0O)  = *  m  (o, j - ' i j - 1) ,

where T  is a complicated term representing the asymptotic variance of the leading terms 

in
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t= 1

J  =  E
d2q(at ,x t ]6o,gg0)

dOdO'

The root-T rate of convergence is common for such semiparametric estimators when 

the dimension of the continuous component of X  is not too large under some smoothness 

assumptions. We note that, unlike mg and 'gg, the asymptotic variance of 9 is rather 

complicated.

And finally we have,

T h e o r e m  1.4. Suppose B l . l  — 51.5, 5 1 .6 ' and 51 .7  — 51.9  hold. Then for any 

arbitrary estimator 9 such that \\9 — 9q\\ = Op (1) and x  6 in t (X ),

s /T h r  ^rhg (x) -  mg0 (a;) -  (x) )  = *  ^  (Ô m ,0o (x )) >

where fhgtTf^g and ujmjg are defined as those in Theorem 1.1 and, m g (x) and m g (x') 

are asymptotically independent for any x  ^  x'.

Similarly, for gg we have,

T h e o r e m  1.5. Suppose 51.1 — 5 1 .5 ,5 1 .6 ' and 51 .7  — 51.9  hold. Then for any

arbitrary estimator 9 such that \\9 — #o|| =  Op (1) , x  6 in t (X ) and a E A,

y /T h r  (dg (a.Tx) ~  9e0 (a>x) ~ \l*“ih r lg fo  (a>x) j  M ( ° > 0 (a, * )),

where gg,r]g g and u)9jg are defined as those in Theorem 2 and, <7̂ (a , x) and x')

are asymptotically independent for any x / x '  and any a.

Given the explicit forms of the bias and variance terms provided in the above
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Theorems 1.1 - 1.2 and Theorems 1.4 - 1.5, inference can be conducted using large 

sample approximation based on obvious plug-in estimators. These expressions are 

useful as they provide insights into to the variation in the bias and variance of our 

estimators. However, for the estimator of 0 in Theorem 1.3, due to their complicated 

form, bootstrap procedures would most likely be preferred in practice. Later in Chapter 

2.4, we propose a bootstrap algorithm to estimate a class of dynamic models where the 

control variable is continuously distributed, the procedure can be readily adapted to 

estimate a discrete choice problem.

1.5 Sim ulation Study

In this section we illustrate some finite sample properties of our proposed estimator 

in a small scale Monte Carlo experiment. We replicate the setup of the bus engine 

replacement problem studied in Rust (1987).

T h e  R e n e w a l  P r o b l e m :

Consider the decision problem of a manager who owns a bus tha t operates in each 

period. The observable state variable x t is the mileage reading from the machine’s 

odometer. The manager’s decision is to decide whether to  replace the machine (at = 1) 

or maintain it (a* =  0). In addition, the manager also takes into the account the net 

cost of goodwill gained/lost from her decision whether to take it out of service, which 

we denote by (£it,£2t)- The manager per period profit

uO)0 (a, x t ,e t ) — <
—0\ +  £U if a = 1, 

—02 xt + 621 otherwise.

Therefore 6\ is the replacement cost of the machine engine while 62 reflects the scal

ing factor for the cost of maintaining the machine, which depends on the machine’s
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odometer reading. The evolution of the mileage x t  is assumed to follow a regenerative 

random walk, in particular we assume

Irjt if at = 1, 

x t  +  r]t  otherwise,

where rjt  ex p (l). This regenerative property is essential for maintaining the 

stationary structure we need to  carry out our estimation procedure.

Given the framework above, we set (#1, 0%) =  (5,0.5) and use the fixed point it

eration method of Rust (1987) to approximate the true continuation value function 

necessary to  generate the data. Although the support of X t  is the positive half-line we 

only restrict outselves to  [0, 20], and we base our approximation of functions on this 

interval by using 1000 equally-spaced grid points. We generate 1000 replications of 

such controlled Markov processes for various sizes of T  G {100,500,1000,2500,5000).

I m p l e m e n t a t io n :

We are interested in obtain estimates for the demand parameters (0i, #2) when only

r p

{a*, %t}t=1 are observed. In estimating the nonparametric estimator of <70, we use a trun

cated Gaussian kernel with 3 different bandwidths {h^ = 1.06s (N T )~ q : q = | ,  |} ,

r p

where s  is the standard deviation of observed {x t }t=1. Note tha t the rate of decay

for h i is as specified in B1.6' to ensure root—T  consistent estimation of 0 based on 
4

using a second order kernel. For the conditional density of x t + i  given x t ,  we recall tha t 

X t + i  —  x t  =  rft  so we base our estimation of the conditional density on the density of the

r p

random sample { r ) t } t = 1 . For estimating the nonparametric conditional choice probabil

ities we use the Nadaraya-Watson estimator for the regression function of 1 [a* =  1] on 

x t .  And to deal with the boundary issue (from below), we employ the following simple
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boundary corrected kernel

K h  ( x t  ~ x ) =  <

K h{xt x) Q̂r x  p  ^
Jv=-x/hK(V)dv

Kh (Xt — x ) otherwise,

where K  denotes the truncated Gaussian kernel. In addition, due to  small number 

observations for large values of x, we set the values for the kernel estimators in the 

top 5—th  percentile (of the observed data) to be equal to  obtained from the 95—th  

percentile.

r p

We also estimate the model-by manually discretizing {x*}t=1. We do this by parti

tioning the support of X  by various grid points based on various number of grids (d). 

In  particular, for different values of d:

• d = 2 ,X  =  [0,3] U [3, oo)

• d =  3, X  = [0,2.5] U [2.5,5] U [5, oo)

• d =  4, X  =  [0,2] U [2,4] U [4,6] U [6 ,oo)

• d = b ,X  = [0,1.5] U [1.5,3] U  [3,4.5] U [4.5,6] U  [6,oo)

The corresponding values for the discrete support is simply the mid-point values 

when the upper bound of the discretized is finite, otherwise it takes the following values 

{6, 7 ,8, 8} for d =  {2,3,4,5} respectively.

C o m m e n t s  a n d  R e s u l t s :

The Tables can be found at the end of the chapter. We report the bias, median of 

the bias, standard deviation and interquartile range (scaled by 1.349) for the estimators 

of 6\ and 62- For Tables 1 and 2, the rows are arranged according to  the total sample 

size and bandwidths. We have the following general observations for both estimators:

(i) the median of the bias is similar to  the mean; (ii) the estimators converge to the true
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values as N  increases and their respective standard deviations are converging to  zero; 

(iii) the standard deviation figures are similar to  the corresponding scaled interquartile 

range.5 However, using the bandwidth tha t decays at the rate specified in B1.6' (Section 

1.4) as the benchmark, undersmoothing seems to  provide marginally better results in 

the MSE sense whilst the results for oversmoothing actually perform rather poorly as 

the bias term  dominates the MSE, this is somewhat expected since the estimators are 

biased for the bandwidth with tha t rate.

We also report analogous summary statistics from using the manually discretized 

data.. As expected, generally, larger support of the discretized state yields relative lower 

bias while increasing the variance. The estimates for 6\ and 62 indicate tha t these 

estimators are typically inconsistent. Although an exception exists for the particular 

design with 4 discrete state appears to provide estimates tha t concentrates close to the 

true 0 (only) for 62-

1.6 M arkovian G am es

The development of empirical dynamic games is of recent interest especially in the 

empirical industrial organization literature. See Ackerberg et al. (2005) for an excellent 

survey. A class of Markovian games with discrete action and time can be defined 

by considering a finite set of endogenously linked MDP, whose interactions are to  be 

made precise below. For some examples of the estimation techniques for such games 

see Aguirregabiria and Mira (2007), Bajari et al. (2008), Pakes et al. (2002), and 

Pesendorfer and Schmidt-Dengler (2008). Similarly to  the single agent MDP, these 

papers, with the exception of Bajari et al., assume finite observable state space. In this 

section we discuss how we can use the methodology discussed in previous sections to 

estimate Markovian games.

5 (iii) is a characteristic of a normal random variable.
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(Cf. Section 1.2.1) For each period t there are N  players, indexed by the ordered 

set {i}. Each player i is forward looking in solving her intertemporal problem. At 

each period £,each player obtains some information s^t and chooses an action a^t in 

order to  maximize her discounted expected utility. The present period utility is time 

separable and is represented by u®0 (at, st ) for 0 6  9  C Kp , where at =  (at, a-*,*), and 

a_iyt denotes the actions of all other players except player i, St is defined analogously. 

The actions of all players today directly affect their uncertain future information ac

cording to  the Markovian transition density p(dst+ i\st, at). The next period utility 

is. subjected to  discounting at the rate 6 (0,1). Briefly, the stationary Markovian 

games of interest can be defined by assuming tha t the decision process of each player 

i is characterized by the following amendments of Conditions M l.l - M1.4:

M l.l ' Player i is represented by a triple (v%,Pi,Pi) and £ (0,1) and T  = oo, both 

are exogenously given and assumed to be known. The observed data {xt,an}J=1 

is the controlled stochastic processes satisfying

°i)  =  m a *  { E  [ u i , 9  («<> a-ity »it) ai \ a i] +  PiE  [ ^ 0  (sft+15 <7i) ai ’, ° i\ } •Q/%

(26)

M l.2' (Conditional Independence) conditional independence of the state variables 

p (d x t+ i,d£t+ i\xt,et,s.t) = q(d£t+i\x t+i) f x r\x,A (dxt+i\xt,&)

M l.3' S{ = (x,£i) 6 X  x R ^  where X  = X c  x X D is a subset o f ~RJ . X c  includes inter

vals and X D is finite, they denote the space o f public information with continuous 

and discrete components respectively. £ is a vector o f private information, whose 

dimension is K  , the cardinality o f A , the number o f actions player i can choose 

in each period.6 The distribution of £u is known and is absolutely continuous

6Note that the choice of the notation for the state variables (x ,s )  is consistent with that of Rust 
(1988) but the role of x  and s  is some times reveresed in some game papers.
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with respect to some Lebesgue measure with Radon Nikodym density q\ (dea\xt)

M l.4' (Additive Separability) per period payoff function u®d : A N x S  —>■ R is specified 

upto some unknown parameters 0 6 0  and is additive separable w.r.t. unobserv

able state variables j u^ g {an, &—n^ Sit') — ^ i.6 {^titi it? it) d-

M l.5' (Private Values) et is also jointly independent across all players, i.e. q{et) =

n £ i  #(**)•

The immediate observation on the Conditions M l.l ' - M l.4' reveals that, for each

r p

player i, the controlled process {a n ,x t} t=1 only differs from the single agent case in that 

the per period payoff function and transition densities are affected by other players’ 

actions, and each player forms an expectation, in (26), using the beliefs she has over the 

distribution of other players’ actions. Although the private value assumption limits the 

applicability of our estimator j most of the existing literature on dynamic estimation of 

the same class of models make use of this assumption. We denote the distribution of 

beliefs of player i over a_j by <7j. We define the equilibrium concept through the notion 

of best response. The best response function is a map a® g : S  —> A  defined by

®i , d ( ~  ®i t  (P' iti Sit] &i)  £ iat , t ^  ̂ i ,0 (®*> Sit] ̂ ») “1“ £ ia,t for all (Zj 6 A , (27)

where v®e computes the expected utility given any action and states for agent i given 

her belief cri, namely the choice-specific continuation value, for any {sn, an, G{)

^ i,0 {Q'iti Sit] &i)  =  E  [Ui Q {a^t, 0,—it ,  Xi t )  a n J < T i] - f -  fi^E \Vif i  ( ^ z t + l j  &i)  ®it ] 0"t] •

(28)

D efin ition  1 (Markov Perfect Equibrium) A collection (a, cr) =  (<ii,. . . ,  a j^a \, • • -, ctn) 

is a Markov Perfect Equibrium if
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(i) fo r  all i,a i is a best response to a_i given the beliefs Gi at any state Xi

(ii) all players use Markovian strategies

(iii) for all i , the beliefs ai are consistent with the strategies a_j

See Maskin and Tirole (2001) for more details. As shown in Pesendorfer and 

Schmidt-Dengler (2008), we can also characterize our equilibrium concept through the 

choice probabilities conditioning on the public information.7 These choice probabilities 

can be obtained from the definition of best response (27) by marginalizing out the 

private information of all the other players,

Pi {a>it\xt \ 9, = J 1 [a^g (sit; a{) = ait] q{ (deit\xt ) . (29)

Collecting the choice probabilities in (29), for each player and across the action space, 

we have a map : C —» C, where C is a space of an N  - K — vector of functions with 

each function mapping X  to [0,1]. This nonlinear operator maps the beliefs of the 

players into the choice probabilities of their actions determined as a consequence of 

their beliefs:

p =  #0  ( a ) .

Assuming we observe equilibrium play p must be a fixed point of This equilibrium 

condition, which is a set of conditional moment restrictions, leads to a class of minimum 

distance type criterion functions tha t we can use to estimate the structural parame

ters as discussed in Section 1.4. See Pesendorfer and Schmidt-Dengler for a thorough 

treatm ent of this idea when X  is finite. Dropping the dependence on cr̂ , as seen from

(27), (28) and (29), the computation of the choice probabilities will again depend on

7There are some fixed point theorems available for the case of infinite dimensional spaces, for 
example, Schauder fixed point theorem.
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the model implied value functions E  [V^g (sit+i) \su, an] , similar to (4), where 

Vi ,0  ( s i t ) =  E  7 s i t ) |s ii} “1“ P{E \Yi,$ (S it+ l)  l^it] •

Therefore, fundamentally, the practical aspect of the estimation problem is essentially 

the same as in the single agent case. Our strategy will be the same as before. For each 

player i, by marginalizing out the private information of all the other players of (26) in 

the model implied equilibrium (cf. (8)), we have the generalized PVE

E  [Vi}g (sit) \xt] = E  [E [u0iif  (au sit) M  \xt] +(3iE [E [V if ( s it+1) |sit] \xt] (30) 

=  E  [u0^g  (a*, sit) M  +  PiE  [E [V^g (sif+i) |art+i] \xt] .

As seen previously, for each z, (8) can be expressed as ,8

= rite +  Cimitg,

where (m i g ,ritg,Ci) have, by now, obvious meaning. By the same arguments used in 

Section 1.2.4, will be a sequence of contraction maps. Therefore these integral

equations can be estimated and solved independently. Hence we only need to approx

im ate the operator ( /  — £ j) -1 once for each player, where the only difference between 

the kernels of the integral operator of different players is their discounting factors. Note 

th a t there are some additional smoothings required for the per period payoff since, un

like the single agent case, players make decisions based on expected payoffs, see (28) 

and (30). For a direct comparison with the single agent case, under M l.2' - M l.3', we

8This is a direct generalization of the matrix equation ((6)) of Pesendorfer and Schmidt-Dengler 
(2008).
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can write the expected choice-specific continuation value (28) as

Vifi {an, x t ) = E  [ui}9 {aiu x t) \xu ait] +  fo E  [m ^  (x*+1) \xu ait\ .

This can be written in a linear functional notation (cf. (11))

^i,0 = "b

where Ki and Ci denote linear operators where the former is a conditional expectation 

operator of a_n  given (xt, an) and the la tter is a conditional expectation on xt+1 given 

(Xt, an).

Therefore we can use the model implied continuation value functions to  construct 

the model implied best response and choice probabilities respectively

(^it) =  a%t Vi,0- {ait, Sn) “b £iat,t- — {ai, Sit) “b £ia,t for all (2̂  £ ./4,

Pi {an\xt‘, 0, ai) — J" 1 [otit$ {sn] Oi) =  an] Qi {dsn\xt) ,

which can be used to  define an analogous two-step semiparametric method as discussed 

in Section 1.3 and 1.4.

1.7 Conclusion

In this chapter, we provide a method to estimate a class of Markov decision processes 

that allows for continuous observable state space. The type of primitive conditions are 

provided the inference of the finite and infinite dimensional parameters in the model. 

Our estimation technique relies on the convenient well-posed linear inverse problem 

presented by the policy value equation. It inherits the computational simplicity of 

Pesendorfer and Schmidt-Dengler tha t is independent of the parameterization of the per
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period utility function. We also illustrate how this method can be extended naturally 

to the estimation of Markovian games in a similar setting to  th a t of Bajari et al. Their 

identification results directly apply here.

There are some practical aspects of our estimators worth exploring. Although we 

performed some limited Monte Carlo experiment, it would be interesting to  try  to  study 

the role of numerical error brought upon by approximating the integral in the case tha t 

we have large sample size compared to  the purely nonparametric approximation. Second 

is to see how our estimator performs in practice relative to more extensive discretization 

schemes. Thirdly, some efficiency bounds should be obtainable in the special case of 

conditional logit assumption.
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1.8 Proofs o f Theorem s

In this section, we provide a set of high level assumptions (A l.l - A1.6) and their

consequences (C l.l - C1.4) of the nonparametric estimators described in Section 3. We 

outline the stochastic expansions required to  obtain the asymptotic properties of ra# 

and 'go. The high level assumptions are then proved under the primitives of M l.l - 

M l.4 and B l . l  - B1.8. Consequences are simple and their proofs are omitted. In what 

follows, we refer frequently to Bosq (1998), Linton and Mammen (2005), Masry (1996) 

and Robinson (1983), so for brevity, we denote their references by [B], [LM], [M] and 

[RJ respectively.

1.8.1 O utline o f A sym p totic  A pproach

For notational simplicity we work on a Banach space, {C (X ) , ||-||), where X  =  X c x X D 

,the continuous part of X  is a compact set [x + e ,x  — e\ for some arbitrarily small 

e >  0. We denote B l . l ',  the analogous condition to B l . l  when we replace X  by X . 

The approach taken here is similar to [LM], who worked on the L 2 Hilbert Space. The 

main difference between our problem and theirs is, after getting consistent estimates 

of (9), we require another level of smoothing (10) before plugging it into the criterion 

function. The first part here follows [LM].

A s s u m p t i o n  A l . l .  Suppose tha t for some sequence St  = ° (1 ) :

i.e., we have,

for any m  6 C (X).
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C o n s e q u e n c e  C l. Under A l.l:

vn =  °p(St ) •

The rate of uniform approximation of the linear operator gets transferred to the 

inverse of ( I  — C). This is summarized by C l. l  and is proven in [LM].

We supposed that tq (x)  —  r# (x)  can be decomposed into the following term s with 

some properties.

A s s u m p t i o n  A1.2. For each x  eX:

re (x) -  re (x) =  rtf (x) +  rtf (x) +  rtf (x) ,>D (31)

where r tf, r tf  and rtf satisfy:

sup \rtf.{x)\ .  
(;x,e)€X*e

sup | re (x)|
(x , 6 )£Xx Q

sup
( x , 9 ) eXxe

£ ( l - c r 1r g tx )

sup \ r f  (x)|
(x,6)eXxG

Op ( t  w ith r# deterministic, (32)

Op r r -2/ 5+^  for any f  >  0, (33)

° p  ( t ~2/ 5)  , (34)

op ( T - 2̂ 5)  . (35)

This is the standard bias+variance+remainder of local constant kernel estimates of the 

regression function under some smoothness assumptions. The intuition behind (34), 

as provided in [LM], is tha t the operator applies averaging to  a local smoother and 

transforms it into a global average thereby reducing its variance. These terms are used 

to  obtain the components of me (x ), for j  =  B , C, D , the terms fh3e (x) are solutions to 

the integral equations,

=  r*g +  CrhJe (36)
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and from writing the solution mg m f  to  the integral equation

(m 6 +  rhg) = r e + £  (mg +  rhg) . (37)

The existence and uniqueness of the solutions to (36) and (37) are assured, a t least 

w.p.a. 1, under thet contraction property of the integral operator, so it follows from 

the linearity of ( j  — tha t

rhg =  m g  +  rhg +  rhg +  rhg +  fhff.

These components can be approximated by simpler terms. Define also m f ,  as the 

solution to

m f  = r f  + Crfig . (38)

C o n s e q u e n c e  C l .2. Under A l.l  - A1.2:

sup \fhg ( x )  — m f  (x)| 
( x , 0) €Xxe

sup \rhg (x)  — rg (x ) |  
(x,e)exxe

sup | m f  (x)|
( x , 6 ) g X x Q

° p ( r _ 2 / 5 ) . 

Op ( t - 2/ 5)  ,

op ( t - 2/ 5)  .

(39)

(40)

(41)

(39) and (41) follow immediately from (32), (35) and C l.l .  (40) follows from (34), A l.l  

and C l.l ,  as we can easily show that,

£ ( i - £ )  - c i i - c y 1 =  op (6t ) •

We next, also, approximate rhg by simpler terms, subtracting (9) from (37) yields

fhe = — £ j  mg + Crhg (42)
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A s s u m p t i o n  A1.3. F or a n y  x e  X:

( Z - C ^ j  m e (ar) =  f f  (x) +  r f  (ar) + rff (x ) ,

where rf ', r# and f ^  satisfy:

sup
{x,o}€Xxe

sup | f f ( z ) |  =  O p (T  2̂ 5)  with ff 'determ inistic ,
(x,0)€Xxe '  '

sup I rg (a:) | =  op  ( 71-2/ 5+£^ for any £ >  0 ,
(x ,0)gX x Q '  '

£ ( / - £ ) - 1 f | ’ (x)| =  0p ( T - 2/5) ,

s u p  | r » ( x ) |  =  op ( t ~ 2/5) .
(x,e)cxxe  v J

These terms are obtained by decomposing the conditional density estimates (cf. A1.2), 

then proceed as done previously, we define fh3e (x) for j  = E , F ,G  as the unique solutions 

to  the estimated integral equation of (36), solving (42) we have,

m g  =  ( /  -  C'j ( c  — C ĵ mg

=  frig +  m g  +  frig .

Such terms are asymptotically equivalent to more convenient terms (cf. C l.2), define 

also m f  as the solution to the analogous integral equation of (38).

C o n s e q u e n c e  C l .3. Under A l.l  - A1.3:

sup | frig ( x )  -  m f  (x)| =  op ( t  2/5)  ,
(x , 0 )€ X x G v  '

sup \ mg ( x ) - r ^  ( x) \  =  op ( t ~ 2/5) ,
( x , 0 )G Xx e  K '

sup Im $  ( x) \  =  op ( t  2 /5) .
( x , 0 ) eX x G x '

C1.3 can be shown using the same reasonings used to obtain C1.2.
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Combining these assumptions leads to Proposition 1 of [LMJ.

P r o p o s i t i o n  1.1. Suppose tha t [A l.l - A1.3] holds for some estimators rg and £ .  

Define m g  as any solution of rhg =  rg +  C m g .  Then the following expansion holds for 

fh9

sup | fhe (x) -  m e (x) -  mg (x) -  m f  (x ) -  r f  (x) -  r f  (x)| =  op ,
(x , 0) (=Xxe v y

where all of the terms above have been defined previously.

The uniform expansion for the nonparametric estimators required in [LM] ends here. 

However, to  obtain the uniform expansion of gg defined in (20), we need another level 

of smoothing. Note tha t the integral operator, 7i, has a different range,

H  : C (X ) C (A x  X ) ,

where C (A  x X )  denotes a space of functions, say g (a, x), which are continuous on 

X for each a E A. So the relevant Banach Space is equipped with the sup-norm over 

A x X , which we also denote by ||-|| though this should not lead to  any confusion. For 

notational simplicity, we first define,

m f  (x) =  m f  (x) +  m f  (x ) ,

(x ) =  r ? ( x )+  ?e (x ) >

m f  (x) = mg (x) — mg (x) — m f  (x) — m f  (x ) .

We next define various components of the transformations (20), analogously to (36)
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and (38), for j  =  B , C , D  th e  term s are elem ents o f th e  in tegral transform ,

% =  fimgy

s i  =

and g f  is defined  by

H m e = go + gg.

It follows from linearity of H  tha t

9e — 9 o +  9e +  9e +  9e +  9®■

A s s u m p t io n  A l .4 .  Suppose th a t for som e sequence St  as in  A l . l :  

sup  \ ( H  — H ) m e (a, x) = op (St ) ,
( a , x , 9 ) € A x X x G * ' '

i.e ., ( h  — 7 ij  m || =  op ( S t )  for any m  6  C  (A ).

A l.4  assum es th e  desirable properties o f th e  con d ition al d en sity  estim ators (cf. A l . l  

and A I.3 ) .

C o n s e q u e n c e  C l . 4 . U nder A l . l  - A l.4 :

sup \g f  (a, x) -  g f  (a, x) \ = op ( t  2/5)  ,
(a,x,9)<EAxXxG v '

sup \g$ (a, x) -  g$  (a, x) \ = op ( t ~2/5)  ,
(a , x , 9) sAx X x Q  ' '

sup \g$ (a, x)\ =  op ( t ~ 2/5)  .
(a,x,0)€AxXxG  v J

This follows immediately from A1.5 and the properties of the elements defined in 

me (* ) •
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A s s u m p t io n  A1.5. Suppose that:

sup |g$  (a, x ) \=  op ( t  2/5)  .
( a , x , 6 ) e A x X x Q ' 7

A l.5 follows since the operator 7i is a global smooth, hence it reduces the variance of

9g-

A s w ith  m f  w e can  approxim ate 'gf by sim pler term s.

ASSUMPTION A 1 .6 . For any m  E C  (A') and for each (a ,x) E A  x  X:

g f  (a, x) = ( f t  -  7 ij m e (a, x)

=  9e (a>x ) +  9e K x ) +  9e (a>x ) >

where gjf, g f  and <7̂  satisfy:

sup |g f  (a ,x)\ = Op ( T  2/ 5) with g f  deterministic,
{a,x,d)<=AxXxQ ' 7

SUP 19e (a >x)| =  °p (T ~ 2/5+t )  for any £ >  0,
(a,x,e)€AxXx 0  V 7

sup \gg{a,x) \  = op ( t ~ 2/5)  .
(o,x,0)e,4xArxe v 7

A1.6 follows from standard decomposition of the kernel conditional density estima

tor (cf. A1.3).

P r o p o s it io n  1.2. Suppose tha t A l.l  - A1.6 holds for some estimators rg, C and

H. Define rhg as any solution of fhg =  rg +  Crhg and gg = TLfhg. Then the following 

expansion holds for 'gg

sup |ge (a, x) -  gg (a, x) -  g f  (a, x) -  gg (a, x)  -  g f  (a, x)\ = op ( T  2/5 j , 
( a , x , 9 ) £ A x X x Q ' 7

where all of the terms above have been defined previously, in particular g f  and g f  are
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non-stochastic and the leading variance terms is g f .  This can be rewritten in a similar 

notation to  previously:

g f  (a, x)  =  g f  (a , x) +  g f  (a, x ) ,

9e K  x) = g f  (a, x ) ,

g f  (a, x)  =  ge (a, x) -  ge (a, x)  -  g f  (a, x) -  g f  (a, x ) .

1.8.2 P ro o fs  o f T h e o re m s 1.1 - 1.2

We assume B l . l f and B1.2 - B1.6 throughout this subsection. Set St  = X^-3/ 10, 

this rate is arbitrarily close to the rate of convergence of 1-dimensional nonparametric 

density estimates when Ht  decays at the rate specified by B1.6. For the ease of notation, 

we assume tha t X D is empty. The presence of discrete states do not affect any of the 

results below, we can simply replace any formula involving the density (and analogously 

for the conditional density) /  (dxt) by /  {dxt, x f ) .  We shall denote generic constants by 

Co tha t may take different values in different places. The uniform rate of convergence 

proof of various components utilize some exponential inequalities found in [B] as done 

in [LM], the details are deferred to Section 1.7.8.

PROOF OF T h eo rem  1.1. We proceed by providing the pointwise distribution 

theory for P(a\x) ,  for any a £ A  and x  6 int  (X) ,  and the functionals thereof. These 

are used to  proof Theorem 1 and 2 and verify the high level conditions. P  (a\x) is the 

usual local constant regression estimator (or equivalently, the conditional probability 

estim ator).

1 T
P  {a\x) -  P  (a\x) = - ^ 2 ( l [ a t = a] -  P  (a\x)) K h (xt -  x) / f x  {x) ,

t=l
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focusing on the numerator

T  T

^  1 3  (x [at = a ] - P  (a\x)) K h (xt -  x)  =  i  (P  (a |x t) -  P  (a|x)) K h (xt -  x) 
t=1 t=i

1 T
T t=a

=  ^l,a,T (z) +  A 2,a,T (*) ,

where ea?t =  1 [a* = a] — P  (a|xt). The term (x) is dominated by the bias, by the

usual change of variables and Taylor’s expansion,

E  [Aha,T (s)I =  E  [(P  (a|xt) -  P  (a|x)) K h (xt -  x)]

1 ,  ,2  ( n d p (a \x ) d f x { x )  d2P(a\x )  \  , 2 .

Recall tha t E  [e0(*|xt] =  0 for all a and t. We next compute the variance of A 2fClyt  {x ), 

this is dominated by the variances as covariance terms are of smaller order, e.g. see 

[M].

var (A2,a,T (x)) =  var ^  ea,tK h (xt -  x) j

=  ^ v a r  (eaitK h (xt -  x)) +  o ( 7^ ; )  

=  f E  [a2a (xt) K h (xt -  x)] +  o 

;*2 (*) f x  (x) +  O >
K2 2

T h T C

note tha t

* U X) =  E [ e 2a t \xt = x\

=  var (1 [at =  a] |x* =  x) 

=  P  (a|x) (1 — P  (a|x)) .
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For the CLT, Lemma 7.1 of [R] can be used repeated throughout this section, using 

Bernstein blocking technique we obtain,

y /T h T (^P (a |z) -  P  (a|x) -  ^ h r V P a  M  j  =>  N  (0, u Pa (x) ) ,

where

dP(a\x) d fx ( x )  ar>2 ( I \
n D (x ) -  o dx y  - | d P 2 (a\x)
1 p A )  ~  f x ( x )  +  d x 2 ’ (4dj

/ x G\  ( X )UPa (z) =  K2-f x ( x )

For any 0 6 0 , recall from (15) and (16)

( x )  =  ^  ( P  M * ) )  >
a e A

where,

Cx,a,e (t) =  t (u 9 (a, x) +  log*) +  7 ,  

by mean value theorem (MVT),

Cx,a,9 ( ^ W X ) )  -  Cx,a,9 ( p  ( a \x ) +  h r V P a ( x )

=  Cx,a,9 { P  ( a k ) )  ( P  ( a \x )  -  P  ( a \X ) ~  \ t * 2  h T l P a ( x ) j  +  °P  C1 )  ,

and

Cx,a,9 W =  u 9 (a, ®) +  log* +  1. (44)

By using MVT again, we can approximate a Q (P (a |x ) +  ^//2hj^r}pa (a:)) more conve-
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niently as follows,

CX,a,0 +  \ v “l h r ^ P a  ( * ) )  =  Cx,a,0 (P (a \x ) ) + \ v ‘2hT'nPa (x )  Cx,a,9 i P  (a \x ) ) + ° P  ( hT )

To obtain the asymptotic distribution for rg (x), we now provide the joint distribution 

of | p ( a |x ) | .  It follows immediately, following [R], from Cramer-Wold device tha t

y / f h ,

M

^ P W x ) - P ( M x )-l(J>2hT1lP i(X) ^

[  P  (K\x)  -  P  (K\x) -  \ ^ h ? Tr!PK (x) )

^ 4 i W  ••• ^

0,
K2

f x ( x )

\

a \ 2 (x)

\ ° \ , K  (X )

a ^C,K- 1 (X) 

ffK-lJC (X) a K (*) )

where &j(x) = P  (j\x) (1 — P  (j\x))  and cr?k (x) = o \ ^ { x )  = —P ( j \ x ) P ( k \ x )  for 

j ,  k E A.  There are a couple of things to notice here, first there exist negative correlation 

between | p  O l^ ) | across A,  and the covariance matrix in the above display is rank 

deficient due to the constraint that i P  U\x ) = 1 f°r any x  ^ ^  P 0 -  Using thet 

information from the display above, we have

\ f T h r  ^  (ar) -  re (x) -  => N  (°> (*)) >
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where

Vr,o(x ) = ^2 'npj (x )Cx,j,e(p t i \x )),  
jeA

‘  E ie > , ( O ( ^ 0 » ) ) 2^ ( x )

(4 5 )

u r,e (*) f x ( x )
 ̂ - 2 T ,j ^kCxj , e (p U\x ))Cx,k,e(p (k \x ) ) p (j\x ) p (k \x ) )

C46)

where jr/p. |  and {Cx j e } jej\  are defined (45) and (44) respectively. Note we can 

relate components of the expansion of tq ( x ) ,  in (31), to the terms above as follows,

£ c ^ ( ^ 0 ' W ) ,
jeA

re {x)

?F ( X) = ^ 2  ̂ k o l 1)-

dc (x) = £
jeA

C'x,j,e(P U\x ))
f x ( x ) x i ^ Y l e^ K h (x t - x )

(47)

(48)

(49)

We next provide the statistical properties for fh$ (x). F irst, ^C — Cj tuq ( x ):

( £  -  ^ )  m e (x) =  (3 J m e (x;) (JX’\x (dx'\x) -  f x ,\X (dx '|x ))

=  f a { x )  I me ^  f t X,X (dx' ' x  ̂ ~  f x , x  (dx>' x) )

~ l x (x) X ^  ~  ^ X ^  /  me ^  ^X%X ^dX'\X} +  °P ( T_2/5)

=  B 1A T (x) + B 2A T (x) + op ( T - 2/5y

To analyze B\  e,r (x )> proceed with the usual decomposition of f x >tX (x7, x ) —fx>,x ix \  x) 

then integrate it over, note th a t the integral reduces the variance to tha t of a 1 dimen

sional nonparametric estimator, we have

B i ,o,t  (x ) = B ? e,T (*) +  p i,e,T (x ) +  °p ( T  2/5) »
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where

d b  1  u2 o [  f m o ( x ') ( d 2f x ' , x { x ' , x )  , d 2f x ' , x ( x ' , x ) \ \  ^  , Km
=  2 ^ J  [ j d x )  {  ft& ---------+ ----- W --------) ) d x ’ (50)

b ? a t ( x )  -  i h i
\

r r r S  /  ’” « (* ')
t =1

( \ \K h (xt+1 -  x') K h (xt -  x)

 ̂ - E  [Kh (xt+\ -  x') K h (xt -  ®)] J
m

and it can be shown that

. 2 v

y / T h r B ^ e T (x) = »  Jsf ^0, yK2 J  (me (a /))2 f x >\X (dx ' \x ) j  .

For -&2,0,r (x )> this is just the kernel density estimator of f x  (x) multiplied by a non

stochastic term,

B 2,e,T M  =  B $ e t  {x ) +  B § e T (x ) +  op (y ~2/5)  ,

where

B f,e,T (x )  =  ~ \ » 2 hT d-  j^ 2 ~  J m ° M  f x '\x  (dx'M )  ’ (52)
T

B 2 ,0 ,t  M  J  7719 M fx'\x (dx'\x)} f  Y2 (Kh (Xt ~X)~E \K h  (x t  -  affl?)

and it can be shown that

y / T h r B ^ g p  (x) = »  N  ^0, K2f x  (x) J m o M  fx>\x (dx'\x)^  j

Combining these we have,

rhQ (x) = m d (x) +  m f  (a;) +  m f  (x) +  op ( t  2/ 5^ ,
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where

m B■g(x) = (I — £ )_1 (Bi'g'T +  B 2,e,T +  rg)  ( x ) , 

(x ) =  B ?,e,T (x ) + B 2,s,t (x ) +  r f ’ (x ) ■

Note also tha t

V ^ h r  (£ i> fr  (x ) +  B 2' a t  M )  ==* N  fx^{x)VaT^  ^Xt+1  ̂^  =  X^

Cov  ( y / f h T  (B?a t  ( x )  +  B $ 9T ( x ) )  , y / f h ^ j ^  ( x ) .^

and

0 as ft —► oo.

This provides us with the pointwise theory for fhe for any x 6 int  (X)  and 6 G 0 .

y / T h r  (rhe M  -  rne (x) -  ^ 2hTVm,e ==> ■A/' (0, ajmfi (x ) ) ,

where

Vmfi (x ) = i1 ~  £)  1 {vr,e +  Vc,e) (x) >

v m,e (x) = t - T T  (/^2var (m9 (xt+\) \xt =  x) +  (*)) ,
Jx  [x)

where r)r 9 and u)r£  are defined in (45) and (46), and

Vc,0 (x ) = P
(  1 , f m i ( x ' )  I d2fx ' ,x (x’,x) \TxTiJ J mo \ x )  ̂ ai72 1 dx2 ) dx

\ ~  } % )  f  me (x ') f x ' i x  (dx'\x) J

(54)

r]r g, are defined in (45) - (46). The proof of pairwise asymptotic independence

across distinct x is obvious. ■

PROOF OF T h e o r e m  1.2. From the decomposition from Theorem 1 we obtain the
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pointwise results for 7}g (a, x). Similarly to the decomposition of ( c  — C j  mg (x), we 

have

( i i  -  H ) m e (a, x) =  J  m e (s ') (da/1®, a) -  (da/|x, a ))

=  C l ,0 ,T  (a > x ) +  ̂ 2 ,0 ,T (a» a1) +  °P ( t ~ 2^  .

The properties for C\f ip  and are closely related to tha t of B i  g ?  and £?2,0,t-

Ci,g,T (a, x) = C f 9 T (a, x) +  C ^ Q T (a, x)  +  op ( r _2/5)  ,

w here

( \
K h (x t+i -  x f) K h (x t - x ) l  [at = a] 1

 ̂ - E  [Kh (xt+i -  x') K h (x t - x ) l  [at =  a]] J

and as in th e  case ^ 1,0 ,T

y j T h T Ci g T (a, x)  = >  J\f ^ 0 , J  (m 9 (a/ ) ) 2  f X '\x,A (dx'\x,  a )^  .

S im ilarly for C ^ /T j

^ 2 , e , T ( ° i x ) =  ~ \ t o & d  ( f X A \ x , a ) / m e  ( x ') f x '\x -A ( d x 'lx - a ) )  >

C fA T  ( a ,x )  = -  L —  ̂J m e (x ') f x ,\X ,A ( ‘f e ' K “ ) )  |  X )

(
Kh (xt -  x)  1  [at =  a]

 ̂ - E  [Kh (x t - x ) l  [at =  a]]
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and

y /T h T C$e T (a , x) =>  N  ^0, ^  ^  ^  J  (me (x ' ) )2 f X '\x,A {dx'\x, a )^

Combining these we have,

ge (a, x)  = ge (a, x)  +  g f  (a, x)  +  g f  (a, x)  +  op ( t  2/5)  ,

where

g f  (a, x)  = C f e T (a, x)  +  C f e,r  (a > * )  +  'H*f  (a>x ) > 

f f f  (<*,*) =  C\,o,t  (®> * )  +  C2,9,t  (a >x ) •

This provides us with the pointwise distribution theory for <7 for any x 6 int  ( X ) , a E A  

and 0 6  0 .

y / T h x  (a, x) -  g (a, x) -  i/x2^ 5,0 (a > = >  ^  (0, (a, x ) ) ,

where,

=  H ( I - C )  1 (»7r>e +  ^ )  ( a ,x ) +  77̂ 0 (0 , x ) ,

(a, x) =  - — ^  rvar (mg (xt+i) \xt = x , a t = a) ,
JX,A (a, x)

7jr e and r)£ 0 are as defined in the proof of Theorem 1, and

n (  d 2fx ' ,x ,A  (*', x,  a) d 2f X ’,x,A (^', x, a)/ \ 1 [  ( a  /  & f x ' ,x ,A  (x', x, a) d 2f X ',x,A (xr, x, a) \
=  h j M J m e { x ) {  a v  + ----------^

d2fx,A' 
dJa

f x ,A  (•

<Pfx,A(?,a) r

: ^ ( x ; a ) j  m « ( x ') - fr ' i* .*  ( d x 'lx >a )  •
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Pairwise asymptotic independence, across distinct x , completes the proof.

1.8 .3  P ro o fs  o f  H ig h  Level C o n d itio n s  A l . l  - A 1 .6  

P r o o f  o f  A l . l .  I t suffices to  show tha t

sup
(x' ,x)€XxX

f x f,x (%', %) -  f x ' , x  x) = op (St ) ,

sup
x€X

f x  (%) ~  f x  (x) = Op (St)  .

These uniform rates are bounded by the rates for the bias squared and the rates of the 

centred process. The former is standard, and holds uniformly over X  x X  (and X).

See the Additional Proofs section below, where proof of A l.l  falls under Case 1. ■

P r o o f  OF A 1.2. The components for the decomposition have been provided by 

(47) - (49). By uniform boundedness of rjPa and Cx,a0 over A  x X  x  0  and triangle 

inequalities, the order of the leading bias and remainder terms axe as stated in (32) and 

(35) respectively. For the stochastic term, we can utilize the exponential inequality, 

see Case 2 of the Additional Proofs section. We next check (34). [LM] use eigen- 

expansion to  construct the kernel of the new integral operator and showed tha t it had 

nice properties in their problem. We use the Neumann’s series to construct our kernel, 

for any 0 e  C (X)
oo

C { I - C ) - l<t> = Y,V<t>, (56)
i =1

where C3 represents a linear operator of a j-step  ahead predictor with discounting, 

this follows from Chapman-Kolmogorov equation for homogeneous Markov chains, for 

r  >  1

CT(f)(x) =  /3T J  4>(x') / (t) (dx'\x) (57)

f  T_1/(r) (x t+r\x t) — I f x r\X (xt+r\xt+T—\) fx ' \X  (^Xt+T—k\x t+r— k— l) >
fc=l
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where /(r ) (dxt+T\xt) denotes the conditional density of r-steps ahead. First, we note 

tha t £  ( I  — £ )~ l (f> € C (X),  this is always true since for any </> 6  C (X)  and x  E X  

since:

<

<

oo „
]T /3 T /  ^ M / ( r )  (dx'\x)
T—1 ^
OO

Y l  PT J  At) (rfx'lx) Ml 

Ml

r = l

1 - /3  

<  oo.

We denote the kernel of the integral transform (56) by the limit, (f, of the partial sum,

T

VT (x ' , x ) = ' } Z ^ Tf(r) {x '\x ) > (58)
T= 1

where ip is continuous on X  x X.  This is easy to  see since /(T) is continuous and is uni

formly bounded for all j  by sup(x,jX)zxxX  1/ ix '\x )\i by completeness, <pj converges to  a 

continuous function (with Lipschitz constant no larger than  suP(i/,x)€«VxA' 1/ (a'/ |x )l)' 

To proof (34), for details see Case 3 of the Additional Proofs section, we apply expo

nential inequality to bound

P r \ t t=i
(59)

for some positive sequence, St  = o ( T  2/5), where v (xt, x)  is defined as

v ( x t ,x)  = / K h (xt - x ' )  f ^  ^

- h W v { d x ' x)
(60)

<p(xt,x)
f x  (xt)

+  O (Ht ) ,

and the la tter equality holds uniformly on X.
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PROOF o f  A1.3. Following the decomposition of f  (x'\x) we obtain the leading 

bias and variance terms are sum of (50) and (52), and, (51) and (53) respectively. The 

results rates of convergence follow similarly to  the proof of A 1.2. ■

P r o o f  o f  A l.4 . This is essentially the same as proof of A l.l .  ■

PROOF o f  A1.5. Notice th a t rn% consists of r# and r£.  We need to show,

sup iHrfi (a,x)\ = op ( t  2/5)
(a ,x )& A xX ' '

sup \Htq (a,x)\  = op ( t  2/5 V
(a ,x)(EAxX

The proof follows from exponential inequalities, see the Additional Proofs section. ■ 

PROOF o f  A6. This is essentially the same as proof of Al.3. ■

1.8.4 P roofs o f  T heorem s 1.3 - 1.5

We begin with two lemmas for the uniform expansion of some partial derivatives of rhg 

and gg.

L e m m a  1.1: U nder con d ition s B  1.1', B1.2 - B1.6 hold . T hen  th e  follow ing exp an 

sion  holds for k = 0 , 1 , 2 and j  =  1 , . . . ,  L,

max sup 
i< j<£(X)0)e*x©

dkrhg (x ) dkmg (a;) dkm f  (x ) dkm% (x)
e e l 06] 06 06]

where dJIt9 is defined as the solution to 
8 9 *

dkm e d kre ^ ^ d kmg
d6« dQKj

(61)

and d̂ 0 defined as the solution to the analogous empirical integral equation. Standard 

definition for partial derivative applies for with b = B , C .  Notice, when * =  0,
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this coincides with the terms previously defined in Proposition 1.1. Further,

max sup 
1<3<L (x,0)£Xxe

max sup 
1<J<L (ar,0)e*xe

dkm $  (x )

dkm $  (x)

=  Or with * " » ? ( « )^ -2 /5 ^
dOk

deterministic,

=  op ( t ^ 2/5^ for any £ >  0.

PROOF OF L em m a  1.1. Comparing integral equations in (9) and (61), we notice 

that, these are just the integral equations with the same kernel but different intercepts. 

Since Cx,j,9 and ttiq are twice continuously differentiable in 0 on 0  over A  x X ,

Dominated Convergence Theorem (DCT) can be utilized throughout, all arguments 

used to verify the definition of d and their uniformity results analogous to  A1.2

-A 1.3 follow immediately. ■

L e m m a  1.2: Under conditions 51 .1 ', B1.2 - B l.6  hold. Then the following expan

sion holds for k = 0 ,1 ,2  and j  = 1 , . . . ,  L,

max sup 
1 <3<L (x,a,e)€AxXxe

dkg9 (a,x) dkgg (a,x)  dkg f  (a,x)  d kg £ ( a , x )
d9] <90 d 6\ <90:

=  o„ ( r - 2/5) ,

where all of the terms above are defined analogously to  those found in Lemma 1.1 and, 

for k = 1,2

max sup
1 < j < L (x ,a ,d ) €Ax Xx Q

max sup
1 < 3 < L ( x , a , 6 ) e A x X x e

d g& («, x)

dkgS  (a, x)

=  Op with ® ^  ’—- deterministic,
89]

= op ( t  ̂ 2/ 5^ for any £ > 0.

P r o o f  o f  L em m a  1.2: Same as the proof of Lemma 1.1. ■

P r o o f  o f  T h e o r e m  1.3: We first proceed to  show the consistency result of the 

estimator.

C o n s is t e n c y .
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Consider any estimator 9t  of 0q th a t asymptotically maximizes Qt  (#):

Q t  (Qt) >  sup Qt  (6) - o p ( 1). 
0€0

Under B l. l  and B1.9, by standard arguments for example see McFadden and Newey 

(1994), consistency of such extremum estimators can be obtained if we have

sup I Qt  {0) -  Q {9) I =  op (1). (62)
0€0 1 1

By triangle inequality, (62) is implied by

s u p [Q t(# > -  <2(0)| =  op (1) (63)

sup \Qt  (9-} — Qt  (&) = op ( 1). (64)
0 < E 0  1

For (63), since g : i x J x 6 ^ R i s  continuous on the compact set X  x 0 ,  for any 

a E A,  hence by Weierstrass Theorem

max sup \q (a, x;9, go)\ < oo. (65)
a^A xex,0£e

This ensures tha t E  \q (at ,xt' ,9,ve)\  < oo, and by the LLN for ergodic and stationary 

processes we have

Qt  (0) Q (0) for each 0 6 0 .

The convergence above can be made uniform since Q t  is stochastic equicontinuous and 

Q is uniformly continuous by DCT, with a majorant in (65). To proof (64) we partition 

Q t  (6) — Q t  (#) into two components

t  t
^ 1 -y .. 1
Q t  (O)-Qt(O) =  j ,  ct,T (<Z (at, %t]9, gg) -  q ( a t , x t ',9,gd) ) + -  ] T  (1 -  ctyT) q ( a t , x f , 9 , g e) ,

t=l t=i
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where the second term  is op (1). This follows since, we denote 1 — ct,T by th,T, ,

1 T
(at , x t ;0,ge)

t-1

1 T
< max sup \q(a,x;0,ge) \ -  

a^A xex,d£Q 1 ^

=  ° p ( ! ) •

The first inequality holds w.p.a. 1 and the equality is the result of dt,T — °p ($ r)  f°r 

any rate d? —* oo. To proof (64), now it suffices to show,

max sup \q (a ,x;0,g0) - q ( a , x ; 0,ge)\ = op ( 1). 
a^A xex.ee©

Recall tha t

t / n V - / V  / {Y ,a € A exP(V0 & x ) ) \q(a, x; &,gg)~ q (a , x; 0, g0) -  ve (a, x)  -  ve (a, x)  +  log   ,
\ T , a e A exP (v 9 ( a >x ) ) J

vB (a, x) = ug (a, x) +  ge (a, x ) ,

Vg (a, x) = Ug (a, x)  +  gg (a, x ) .

All the listed functions are in C  (A7). We have shown earlier tha t for some St  = o (1)

max sup |ge (a, x) -  gg ( a ,x)\ = op (ST ) ,
aeA xeX,d€Q

so we have uniform convergence for v to  v a t the same rate. We know for any continu

ously differentiable function (j> (in this case, exp (•) and log(*)), by MVT,

max sup \(j) (vg (a, x)) -  <f> (vg (a, x))\ = op (St) ■ 
a^A x £ X , e e e
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So we have

sup
x£X,0eQ

V  exp ( v e (a,  x ) )  -  V  exp ( v0 (a,  x ) )
aeA a€A

— Op (1) ,

and since we have, at least w.p.a. 1, exp (u# (a, x ) )  and exp (vq (a, x ) )  are positive a.s.

T t e A  eXP (VO ( a >x ) )
- 1 Y2  exP ( v e  ( a ,  X ) )  -  Y2  exP ( w  (a>x))

q€j4.

and by W ierstrass Theorem, w.p.a. 1,

min inf exp (va (a,  x ) )  > 0, 
a e A x e x , 0 e e

hence we have

sup
xeX.eeQ

E o eA exP (v* (a >*))
Y,aeA exp (%(<*,»))

-  1 — Op (1)

The proof of (64) is completed once we apply another mean value expansion, as done 

previously, to obtain

sup
xeX,9eO

i f ' E a e A exP ( ve (a’x ))
^ V E s ^ « P p f c ( 5 . * ) )

— Op (1)

A s y m p t o t i c  N o r m a l i t y

Consider the first order condition

OQt  (0

90
— Op (1),

from MVT we have
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We show tha t for any sequence ex —*■ 0 there exists some positive C  such tha t

inf Amin ( -  ) >  C +  op (1)
\\o-e0\\<eT \  0606' I F

/ f ®QT (0q)
ee =  Op( l )

(66)

(67)

This implies

V t ( ? - 0 o)  = O p ( l)

To proof (66), we first show

9 2 Q t ( 8 )sup
|[0—0oll<tT 0606'

E
02q(at , x t -,6,ge)

0606'
—  op (1) (68)

Since the second derivative o l q : A x X x Q —»■ R is continuous on the compact set 

X  x © and for each a e A ,  standard arguments for uniform convergence implies tha t

sup
||0 —<?o||<£T

02Qx(6)
060O'

- E
02q ((at , x t ;6,g0)

dOdO*
=  op ( 1)

By triangle inequality, (68) will hold if we can show,

d2QT (6) d2QT (8)
sup

||0 —Oo\\<tT dode' deoe' — Op (1)

This is similar to showing (64), as the above condition is implied by,

max sup 
a^A xex,\\e-e0\\<eT

The expressions for the score of q is,

d 2q {at, x t ’ 6, go) d2q{at , x t ;O,g0)
0606' 0606'

op (I ) .  (69)

dq (at , x t ;6,g0) _  Ov0 (at , x t) ^)  exP (v0 (Q>Xt))
06 06 E ae^exP K f t xt))

(70)

69



and for the Hessian

0V «.,*K 9,9») d2ve (at,xt ) ZaeA ^  9V° $ X,))  <*P f a  (5. * ) )
d m ' dOdO' E ae ,4 exP (V0 (at x t ))

Z a t A  e x p  {v$ (a, x,))*
2

(E ae^ exP K(a»**)))

Proceed along the same line of arguments for proving (64), we show (69) holds by 

tedious but straightforward calculations. Essentially we need uniform convergence of 

the following partial derivatives,

max sup 
a(zA , l< j< L  X£X ,d£&

dkV0 (a, x ) dkVQ (a, x )
00; dB)

— Op (1) for fc == 0 ,1 ,2 , (71)

(69) follows from repeated mean value expansions as done in the proof of (64). The 

uniform convergence in (71) follows from Lemmas 1.1 and 1.2, this implies (66).

For (67),

V t
dQr {Oo) 

dO

T1 dq (at, x t;0Qj go0)
V r ^ Ct'T do

T_  1 dq(at , x t ]Oo,g00)

v t= l de

11 \  (  dq (flf, Xt, 0 q ,  Q0O) dq {cit, , 0 o ?  Q0o)
—  2 ^  Ct’T ^  ^  ^

1 T dq{at,Xt’,Oo,g0 0)
V ' f j z f "  90

=  ^1,T +  T>2,T +  -C>3,T,

The term  D\^t  is asymptotically normal with mean zero and finite variance by the CLT 

for stationary and geometric mixing process,

D \tr  = >  -V (0, A i) ,
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where

Ai = E dq (at , x t ; 6>0, ) dQ (at , x t ;Oo,S0O)'

t = 1

E

+ E

dq(at ,xt -,6o,ggQ ) dq (xo,ao;0o,9o0 ) '  
86 89

8q(at ,xt -,6o,ggQ )  dq(x0,a0;0o,ggQ )  '
W 86

J 7

Note tha t E dq (a t ,xf,60,gg0) 
86 =  0 by definition of 6q. Next we show tha t Z?2,r also 

converges to  a normal vector at the rate  1/y/T.  Consider the j -th  element of Z ^ .t, 

using the expression from the score function defined in (70),

(£>2,t L =

linearizing,

(Z^2,T )j

1 T

v <=i

T T

(a, ^t) _  dvd{ 
dOi

o
dQj. J

^ ( E s Gj4 8*9° w * t)' exp(v*o (a , x t ) ) )  /  ( E s g ^  ex P (%  (a > * t) ) )

\  - ( E a e > 4 ^ ?̂ ^ exP ( ,;0o(«»a;* )))/-(E o G ^ exP (V0o(5 »a;«))) j

T1 (a t, x t) du0o (at, xt ) \
V ^  w ,  j

_  * £  £  C( tV>i (_  Xt) f d v $0 (a, *<) 3v„0 (a, xt)
v  ‘T  t=l ~€A

T ̂ 1
- ^ E E  ct,r^2j (a> (% (a> **) ~  vo0 (a, ®*))

t = i a e , 4

+ ^ E E  Ct,T̂ 2,j (a, ®t) I Y  P  (“I®*) (^ ° ( “’ Xt) ~ Vd° (a> Xt) )  I +  °P ^
V \ U a )

~7= Y  + ~ 7=Y  +  ~pf Y  (Es + iE*,t,T)j +  Op (1) ,
V  t= l  v  1 t= l V 1 t= 1 V  t = l
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where

(a ,x t ) = P{a \x t ) ,  (72)

ip2J {a,xt ) = P{a \x t) (73)

and the remainder terms are of smaller order since our nonparametric estimates con

verge uniformly to  the true at the rate faster than T -1/4 on the trimming set, as proven 

in Theorem 1 and 2.

The asymptotic properties of these terms are tedious but simple to  obtain. We 

utilize the projection results and law of large numbers for U-statistics, see Lee (1990). 

We also note tha t all of the relevant kernels for our statistics are uniformly bounded, 

along with the assumption [Bl.l], this ensures the residuals from the projections can be 

ignored. Now we give some details for deriving the distribution of Ylt=i {Ei,t,T)j- 

First we linearize 9 f%° — Q f 1° for k = 0,1,ddf ddj ’ ’

9 % o _ d % „ f i dkm ea dhmo0
oe)  oe)  de)  oe)

\  J de* ’ v /  d6kj

this expansion is valid, uniformly on the trimming set, inspite of the scaling of order 

y/T.  Consider the normalized sum of (li. 9 > with further linearization, see

the decomposition C — C and TL — H  in the proof of [Al], we can obtain the following
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U-statistics, scaled by \/T , representation,

v t= 1 L J

1 1 T—1

i

= VT

t= 1

/  \ -1
T  — 1

2

\

^m flo(Xs+i) # fe(xa-xt)l[aa=at] E, [ 9mj0(it+i) ]
— 535--------- /*,*(*..«.)------- h [ fl»j x,,atj

------------- fxA*u«t)-----------h  I— Wi— | x*’a‘J

\
+  Op (1)

( \

T - l

E E *t=l s>t

(

\

_ C(,r £  [ ^ ± i > | x t ,a t]

+ c5,t
^ 0(xt+l) jCh(xt-xa)l[at=aa]

69, -  c’*t E  [

f dmgQ (xt+i)
69j

-1

-y/T. .
T -  1 

2

T - l

7
E E ^
t  = 1 5><

^ .. /Cfe(xa-xt)l[oa=at]-/x,>i(xt)at) e , f 9m«0(i(+i) _ „ 1 ^
C*>T----------- fx,A(*t,at)----------- E [— m,j—  x t>at\
, „ _/<'h(xt- x a)l[o i= aa] - / ( x a,aa) j? f 6mg0(xt+ i ) 

V +  S’T  f ( x s ,as ) ^  [  69j •Esi 0,s
+  Or

7

Hoeffding (H-)decomposition provides the following as leading term, disposing the trim 

ming factor,

_J_  „ (si+ i)
dBj

- E
' d m eo {xt+i)

Xt , <X$
[ dOj

(74)

To obtain the projection of the second term is more labor intensive. We first split it 

up into two parts,

E  “ x  [w (* -  £ ) - ' ( £ - c )

fifl?

The summands of the first term  takes the following form

d krric

f x r\x,A (dx' \xt ,a t ) ,

\  g ^ > | x (+1 =  x'] j

with standard change of variable and usual symmetrization, this leads to the following
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kernel for the U-statistic,

d m 0 (x3+i ) f x \ x , A ( X3\Xt’at ) „ El r IP r 0™eo(*t+2) _ 1 1 _  _ 1
ct.T fc-  Ct’r E  [B L ^   , + 1 J I *’ ‘ J

dm* (xt+i) r TP r drug (xs.
+C S,T— Wj -J^  c s,t E [ E [  9 0 -

£
2 9m*0(xt+i)

d0,+C. <,t E [

X ,

x t

fx\X,A^X3̂Xt,at^

*^S+lj | Xg, flgj

dmgQ{xt+2) 
j
(*3+2)

] | art, a*]

Xs , 0'S j

\

The leading terra from H-decomposition leads to  the following centered process

T - 1

T t P (

d m eo (xt+1) 
dOi

- E
d m do (x t+ i)

dOj xt (75)

notice the conditional expectation term is a two-step ahead predictor, zero mean follows 

from stationarity assumption and the law of iterated expectation. As for the second 

part of the second term, using the Neumann series representation, see (56) and (57), 

the kernel of the relevant U-statistics is,

x t ,a

x.

f  w * .  «<> -  c l i  p e  [e  [

+Cs>T£mf^ ± i) J- (dx' lXst a 3) -  ca,T  ,  P E  [ e  [ » a ^ t l l 2 )  I x s+ ;

H t E  I *.] J  * f f i $ r xvc<A (dx'\xt ,<H) -  ct ,T  £ “  , P E  [E

+ C s ,t E  /  $ $ $ f x \ x , A  -  c s , r E “ ,  [ £

where 99 is defined as the limit of discounted sum of the conditional densities, see (58). 

The projection of the U-statistic with the above kernel yields,

m m

d m eQ (rrt+i) 

Odd
- E

d m eQ (xt+i)  
dO, x t ) (76)
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The last term  of 2 t = i  (-®t,t,T)j can I16 treated similarly, recall we have

n ( i - c y,- i  ( atr90
x 89) 89) J

_  „  / ^ r » o \  w f r  n - l  / d kT0o d kTg0

-  n + n c { I ~ c )

Ignoring the bias term, tha t is negligible under assumptions B1.6 and B1.7,

^ ( d kreo dkro0\  ,  N 

* ( 1 ^ — K x t )

1 f  (  ^ x̂,S,0o (P  (a \x')) Za,sKh(xS ~ 3?) \ ,,  ̂ ^
=  T - l E E y   S -----------------M ^ ) f x lx , A ( ^ M + op {T

1 V " *  f  £x,a,00 ( - ^  ( a lX ) )  e a,sE h (%s ~  X*) \  f ,

v ^
_  1 ' - I -  ^ \ ^ k^ s , a , e 0 (P (^ \X) )  e a,s , ^  A r - l M-  r ^ i E E  f x l x ,A (x3\xt>at) ---------- - j -----------, ^ + o ^ T  / j .

S o l .* .  96j  f x ^

Normalizing the projection of the corresponding U-statistics obtains

_L j -  H  f 9^ .  _ \  (a„ X() = 4= E  E  d*Ĉ *°(f (5|X‘))ea * + oP (1) •
(77)

The same can be done ..to the remaining term, in particular we obtain

T v  h c (i - c ) - '
i / f ^ J  V 96J

-7= E  E  /  « ^ ^ ‘,S,8° T  (° |Xt)) 051 +  Op (1) • (78)89k, ’ p w  ' 'V T i d e

Collecting (74) - (78), for k = l,we obtain the leading terms of -^= Ylt=i (E i,t,T)j- 

For y f  Ya=\ (e 2, t , T ) j  and ^  Ya=i  we aSain use the projection technique of

the U-statistics to obtain their leading terms. We gave a lot of details for the former 

case as remaining terms in (E^2,t) can be treated in a similar fashion. In particular, 

it is simple to  show th a t the projections of various relevant U-statistics, defined below 

with some elements e  C ( X ) , ^  e C ( A x  X )  and a € A,  have the following linear



representation:

1 • 7 f  E L  (“ . * ( ) [ ( w  -  ?<) w k (a, Xt )]

=  j f  E L 7  (Wjfc (x,+1) -  £  [w* (xl+1)| x„ a, =  2])

+Op (1) .

2* -J f  T l =  i Sfc (S , x*) w k (a, Xt )

=  £  ET=1 P ( M / ^ J ( „k (x1+1) -  £  [w t  (xt+1)| xt])

+op (1) .

3* E L i Sfc (a, [w £ (J -  £ ) _1 Ce7fc (a, xt)j

1 ^ T - l a /rf fS k (V’“M XtMfx\X,A(dw\dv& fx (dv) \ ,  f \ Tp t ( \\ 1\=  ^  E t= i P  ( ------------------- 7^ 7) ) (^fc (xt+i) -  £  [™k (x t+ 1)| z t])

+op (1 ) .

In correspondence of (Ek+\,t,T)j f°r A: =  1,2, we have in mind

Si (0 =  V>i (a, • ) ,

dmeo (•)
tx7i (•) =

dOj  ’

and

S2 (*) =  j  (a, •) ,

072 (•) =  m 0o (•) ,

where tfj1 and ^ 2j- are defined in (72) - (73). Similarly, we also have

4- ^  E L  «  (5, *«)« ( j f r  -  (5, x,)

=  ( j , k ( v , a ) f X I X A (Xtl v ,S ) f x  ( * ) )  8‘(' - y ,l>)^ ,

+ O p (1) •

s- j r  £ f =  i *  <5 ’ **) [W£ (J  -  £ )-1 ( ^  -  ^ )  (2 - x‘)

=  ^ E « - 6 J  E t e i  [ /  J  Sk (v, a) tp ( x ,H  /jf  |xij4 (dtu|i», 2) f x  (&>)] 8 (- t .s V f(a |x,))

+ O p  ( 1 )  .

ea*,t
fx(xt)
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Notice th a t leading terms from all the projections above are mean zero processes. 

Collecting these terms, lots of covariance. Clearly Ylt=i (Ek,t,r)j =  0 P (1) for k  =  

1 ,2 ,3  and j  =  1 , . . . ,  q, this ensures the root-T consistency 6. The term D ^ t  is °p (1) 

since dq(a*,x*^0,9eo) js uniformly bounded and Qt,T — op ^ \/T ^  for all t. In sum,

■JtE>2, t  => N  (0, A2) ,

A2 =  lim Var I —=  V '  + E 2,t,T +  ■E'3,(,t ) ) .

, /T  ( ? -  0O)  =*• JV (0, J - ' l J - 1) ,

lim Var ( D i p  +  >
T—»oo ’ ’

J  = E d 2q (at , x t ; #0, p0o)
d0d<9'

P r o o f  o f  T h e o r e m  1.4 a n d  1.5: Under the assumed smoothness assumptions, 

the results simply follow from MVT. ■

1.8.5 A d d itio n a l P ro o fs

We now show various centered processes in the previous section converge uniformly 

at desired rates on a compact set X. We outline the main steps below and proof the 

results for relevant cases. The methodology here is similar to [LM] who employed the 

exponential inequality from [B] for various quantities similar to  ours.

Consider some process It  (x ) — (x t , x ), where I (x t , x) has mean zero. For some

positive sequence, St , converging monotonically to zero, we first show tha t |lj- (x)| =  

op (St ) pointwise on X, then we use the continuity property of I (xt ,x)  to show th a t 

this rate of convergence is preserved uniformly over X.
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To obtain the pointwise rates, specializing Theorem 1.3 of [B], we have the following 

inequality.

P r(M * ) |> * r )  < 4 e x p ( - i U y) + 2 2 ( l + J ) 1/2T ^ ( [ ^ j )

< exp (—Gi,t) +  G 2 ,t ,

for some

P e (0, 1),

br = O I sup I (a/, x ) 1 ,
y(x',x)eA'xA' /

/  [^+ij

(79)

v (/?) =  var

To have the first term  converging to zero, at an exponential rate, we need G \ j  —» oo. 

The main calculation here is the variance term in v2. Following [M], we can generally 

show th a t the uniform order of such term  comes from the variances and the covariances 

terms are of smaller order. We note tha t the bounds on these variances are independent 

on the trimming set; For our purposes, the natural choice of 5^ often reduces us to 

choosing /? to  satisfy bdr = o ( ^ T ^ ) . The rate of G ^ t is easy to control since all 

of the quanitities involved increase (decrease) at a power rate, the mixing coefficient 

can be made to  decay sufficiently fast so G<l,t  — O (T ~v) for some rj > 0, hence 

P r( |lT (-»)|>  W  =  0(T-*»).

To obtain the uniform rates over X ,  compactness implies there exist an increasing 

number, Q t , of shrinking hyper-cubes {I q t } whose length of each side is {ej-} with 

centres These cubes cover X,  namely for some Co and d,

Ct Qt  <  Cq < oo.
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In particular, we will have Q t  grow at a power rate in our applications. Then we have

P r ( sup ll^ (x)| >  8t  J <  P r [ max |lr ( x 9) | >  J +  P r [ max sup 11̂  (x) — \? (x9)| >  St  
\  x J  \ i <q<Qr J  y i<q<QTxelq

= G ^ t  +  G^Tt

where = O (Qt T _7,) by Bonferroni Inequality. Provided the rate of decay of the 

mixing coefficient, i.e. 77, is sufficiently large relative to the rate Qt  grows we shall 

have Qt  = o (T 11). For the second term, since the opposing behavior of (€t ,Q t ) is 

independent of the mixing coefficient, maxi<g<QT supxe/<j |lt  {x ) — It  (£9)| =  o (St ) can 

be shown using Liptschitz continuity when the hyper cubes shrink sufficiently fast.

Before we proceed with the specific cases we validate our treatm ent of the trimming 

factor. The pointwise rates are clearly unaffected by bias at the boundary so long 

x  G i n t ( X ) .  The technique used to  obtain uniformity also accommodates expanding 

space X ,  so long we use the sequence {c^} to satisfy condition stated in [B1.9]. The 

uniform rate of convergence is also unaffected, when replace X  with X t ,  since the 

covering of an expanding of a compact subsets of a compact set can still grow (and 

shrink) at the same rate in each of the cases below. Therefore we could replace X  

everywhere by X t -

Combining the results of uniform convergence of the zero mean processes and their 

biases, the uniform rates to  various quantities in the previous section can now be 

established. We note tha t the treatm ent to allow for additional discrete observable 

states only requires trivial extension. We provide illustrate this for the first case of 

kernel density estimation, and for brevity, thenceforth assume tha t we only have purely 

continuous observable state variables.

C a s e  1

Here we deal with density estimators such as f x  (x) , f x ' , x  {x>, x)  and fx>,x,A (xf, x , j ) :
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We first establish the pointwise rate of convergence of a de-meaned kernel density 

estimator.

I t (x ) = f x ( x ) -  E f x  (ar),
d- 1 d- 1

l ( x t , x)  =
z=o z=o

The main elements for studying the rate of G i ,t  are

1
w  =  =  .

y /T f?

8t  = T^zu for some £ >  0, 

br =  o ( h ~d) ,

-w2 f r* 3)  =  O  V T i w h ~ d' ) .

We obtain from simple algebra

/
G i, t  -  O (^1-/3  +  rp£T \ /2h- d/2

As mentioned in the previous section, we have d = 2 and h = O (T-1/ 5). This means 

8t  = T^-3 / 10, and if f3 € (7/10,1) then we have G iyr  —> oo . Clearly, the same choice 

of (3 will suffice for d = 1 as well.

To make this uniform on X t , with product kernels and the Lipschitz continuity of 

K , we have for any (x, x q) 6 Iq,

|K h (xt - x ) - K h (xt - x q) l < j ± e T .
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So it follows that

^ 11“ < e x ^ ,,T(x)_ lT(X?)' =  ° f e )

_  /  T ~ ^ 2 \0  I T s - 9 / i o  J  '

Define Qt  = T*>, for some (  >  0, this requires 9/5 <  C <  77-

We can allow for additional discrete control variable and /or observable state vari

ables. As an illustration, consider the density estimator of one continuous random 

variable and some discrete random variable, we have

I t  (^) =  f x c , x D (x ct x d) — E f x c , x D {x ci x d) ,

I (xt , x) =  K h (xCjt -  x c) 1 (xd,t =  Xd) ~  E K h (x Cjt -  x c) 1 (xd,t =  x d) .

Same rates as the purely continuous case apply. For the point wise part, the variance is 

clearly of the same order. For the bounds on the uniform rates observe tha t,

\Kh (x c,t Xc) 1 {?Cd,t ~  Xd) Eh. (Xc,t Xqc) 1 (xd,t — Xd)\ ^  \Kh Xc) Kh  (#c,t ^c)l •

Same reasoning also applies for the kernel estimator of the density of the control and 

observable state variables.

C a se  2

Here we deal with 9 °  (or) :

k x . x ) _ e»,tK h ( x i - x ) 
l (Xt ’X ) -  f x (x) ■

Since {e^r} is uniformly bounded (a.s.) it follows, as shown in Case 1, the choice 

/? € (3/5,1) will do to have G itr  —► oo.
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To make this uniform on X t ,  by boundedness of {e^r}, Lipschitz continuity of K , /  

and their appropriate bounds, we have for any (x, x q) G I q,

C2
|K h (xt - x ) - K h (xt -  x q)\ < -p-eT.

So it follows tha t

= ° { ^ m )

=  0 (1),

for some £ > 0, this requires 7/10 < £ <  rj.

C a s e  3

Here we deal with C (I — C)~l r ^ (x) :

l(x t ,x ) =  eg>ti/(x t ,x ) ,

where the definition of v is provided in (60). Using Billingsley’s Inequality, it is 

straightforward to show th a t with the additional smoothing, the variance of 1̂  is of 

parametric rate uniformly on X t -  Selecting (3 G (1/2,1) will yield G \,t oo for 

Pr (11̂  (a:)| >  T -2/5) =  o(l ) ,  for any x  G X t -

To make this uniform on X t ,  by boundedness of {eg^}  and Lipschitz continuity 

of ip, we have for any (x, x q) G Iq,

Iee,tv {xt, x) -  eg^v (xt , x q)\ < C^eT-
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So it follows tha t

^ 1 i<“ <Qr |lT W " 'T W l = °  ( f i )  ’

for some £ > 0, this requires 2/5 <  £ < rj.

C a s e  4

Here we deal with m ^ 0 (a:) :

b  (*) = 'f e ( x )  J  { f x '’x  “  E ? x r,x  (x 'i ^ ) )  m 9 (x ') dx '-

As mentioned in the previous section, under our smoothness assumptions, we have 

uniformly on X t ,

T — 1
f  Tx',x {x ',x )  m e (x ') dx1- = j- ^  K h (X t -  x )m # (X t+i) +  O (h2) .
d t=l

The exact same choices found in Case 2 apply.

83



1.9 Tables

T bias
0i

mbias std iqr mse
100 1/8 -0.1835 0.1103 1.4220 1.1469 2.0558

1/4 -0.2401 0.0520 1.4792 1.2459 2.2458
3/8 -0.1745 0.1242 1.3846 1.1022 1.9476

500 1/8 0.0857 0.1171 0.5254 0.4897 0.2834
1/4 0.0176 0.0560 0.5418 0.5120 0.2939
3/8 0.0245 0.0517 Q.5676 0.5197 0.3228

1000 1/8 0.1725 0.1936 0.3602 0.3437 0.1595
1/4 0.1011 0.1275 0.3664 0.3491 0.1445
3/8 0.0970 0.1244 0.3753 0.3663 0.1503

2500 1/8 0.1580 0.1605 0.2232 0.2309 0.0748
1/4 0.0884 0.0910 0.2277 0.2404 0.0597
3/8 0.0793 0.0866 0.2316 0.2369 0.0599

5000 1/8 0.1438 0.1436 0.1647 0.1645 0.0478
1/4 0.0764 0.0804 0.1684 0.1640 0.0342
3/8 0.0668 0.0683 0.1714 0.1638 0.0338

Table l i  =? 1.06&(1VT) ? is the bandwidth,, for various choices, of <;, used in the ., 
nonparametric estimation, s = denotes the standard deviation of {xt}tLi-
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T C bias
02

mbias std iqr mse
100 1/8 -0.1495 -0.1163 0.2357 0.2137 0.0779

1/4 -0.0958 -0.0676 0.2211 0.1931 0.0580
3/8 -0.0425 -0.0083 0.1953 0.1577 0.0399

500 1/8 -0.0878 -0.0840 0.0885 0.0867 0.0155
1/4 -0.0433 -0.0396 0.0802 0.0763 0.0083
3/8 -0.0157 -0.0124 0.0830 0.0728 0.0071

1000 1/8 -0.0736 -0.0728 0.0596 0.0592 0.0090
1/4 -0.0328 -0.0316 0.0536 0.0548 0.0040
3/8 -0.0133 -0.0138 0.0541 0.0538 0.0031

2500 1/8 -0.0615 -0.0605 0.0351 0.0358 0.0050
1/4 -0.0243 -0.0240 0.0314 0.0321 0.0016
3/8 -0.0110 -0.0111- - 0.0314 0.0315 0.0012

5000 1/8 -0.0573 -0.0570 0.0256 0.0252 0.0039
1/4 -0.0228 -0.0227 0.0232 0.0236 0.0011
3/8 -0.0129 -0.0129 0.0231 0.0234 0.0007

Table 2: hq =  1.06s(N T )  * is the bandwidth, for various choices of s, used in the 
nonparametric estimation, s =  denotes the standard deviation of {xt}t=i-
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T d bias
Si

mbias std iqr mse
100 2 1.7648 1.8530 0.6279 0.5871 3.5087

3 1.6858 1.7495 1.0170 0.7800 3.8763
4 2.0527 2.4576 1.0616 1.0683 5.3403
5 1.8074 2.2551 1.2407 1.3758 4.8061

500 2 1.8606 1.8722 0.2469 0.2388 3.5227
3 1.5970 1.6170 0.3036 0.2977 2.6424
4 1.2602 1.2383 0.5112 0.3621 1.8494
5 0.9338 0.8911 0.5825 0.4268 1.2113

1000 2 1.8878 1.8948 0.1811 0.1859 3.5966
3 1.6311 1.6463 0.2069 0.2131 2.7035
4 1.2393 1.2495 0.2690 0.2577 1.6083
5 0.8906 0.9043 0.3093 0.3009 0.8889

2500 2 1.9075 1.9082 0.1103 0.1077 3.6509
3 1.6532 1.6577 0.1280 0.1278 2.7494
4 1.2528 1.2603 0.1589 0.1634 1.5948
5 0.9177 0.9251 0.1773 0.1793 0.8736

5000 2 1.9045 1.9055 0.0807 0.0763 3.6335
3 1.6495 1.6521 0.0924 0.0906 2.7295
4 1.2513 1.2566 0.1161 0.1145 1.5793
5 0.9124 0.9139 0.1323 0.1275 0.8500

Table 3: d is the number of discretized support of X .
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T bias
02

mbias std iqr mse
100 2 0.0262 0.0364 0.1164 0.1050 0.0142

3 0.0840 0.0883 0.1815 0.1405 0.0400
4 0.1755 0.1915 0.1850 0.2097 0.0650
5 0.1646 0.1843 0.1976 0.2394 0.0661

500 2 0.0451 0.0465 0.0472 0.0474 0.0043
3 0.0486 0.0521 0.0571 0.0587 0.0056
4 -0.0031 -0.0108 0.0959 0.0708 0.0092
5 -0.0327 -0.0364 0.1059 0.0757 0.0123

1000 2 0.0490 0.0492 0.0333 0.0337 0.0035
3 0.0525 0.0545 0.0380 0.0387 0.0042
4 -0.0105 -0.0081 0.0491 0.0465 0.0025
5 -0.0443 -0.0433 0.0541 0.0536 0.0049

2500 2 0.0533 0.0532 0.0210 0.0207 0.0033
3 0.0573 0.0586 0.0237 0.0237 0.0038
4 -0.0077 -0.0072 0.0285 0.0273 0.0009
5 -0.0395 -0.0379 0.0309 0.0314 0.0025

5000 2 0.0522 0.0522 0.0152 0.0151 0.0030
3 0.0562 0.0564 0.0167 0.0165 0.0034
4 -0.0087 -0.0085 0.0210 0.0206 0.0005
5 -0.0408 -0.0399 0.0229 0.0240 0.0022

Table 4: d is the number of discretized support of X .
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2 Dynamic Models with Continuous Control

2.1 Introduction

In this chapter, we develop a new estimator tha t is capable of estimating a class of 

Markovian decision processes with purely continuous control when one cannot utilize 

the Euler equation. Our estimation procedure is intuitive and it is also simple to 

implement since it does not solve the model equilibrium and, unlike the other existing 

estimator in the literature, we do not impose any parametric distributional assumption 

on the observables.

A well known obstacle in the estimation of many structural dynamic models in the 

empirical labor and industrial organization literature, regardless whether the controls 

are continuous, discrete or mixed, is the presence of the value functions. As seen in 

the previous chapter, the value functions and their corresponding continuation values 

generally have no closed form but are defined as solutions to  some nonlinear functional 

equations. We show here how, analogous to  the discrete choice framework, a two-step 

approach can be employed to  estimate the value functions and continuation values in 

the first stage in order to reduce the burden of having to solve the model equilibrium. 

In particular, instead of solving out for the conditional value functions, one can use 

the linear characterization of the conditional value functions on the optimal path  (i.e. 

the policy value equation) tha t is simple to  estimate and solve. In a discrete choice 

setting, the policy value equation can be estimated nonparametrically by using Hotz 

and Miller’s “inversion theorem” . Of particular relevance to  our methodology is the 

estimation of infinite horizon dynamic games with discrete actions, of Pesendorfer and 

Schmidt-Dengler (2008) who use Hotz and Miller’s inversion theorem to estimate the 

conditional value function as a solution to  some m atrix equation in the first stage; the 

continuation value can then be estimated trivially and used to  construct some least



square criterion in the second stage.

We comment tha t there is comparatively less work on the development of estimation 

methodology with purely continuous control th a t have to  deal with the presence of value 

functions.9 This is in contrast to  the well known subclass of a general Markov decision 

processes known as the Euler class, where one can bypass the issue of solving the 

Bellman’s equation and use the Euler equation to  generate some moment restrictions, 

for example see Hansen and Singleton (1982). However the general Markov decision 

models of significant economic interest do not fall into this class, for more details see 

Rust (1996). Our framework is more closely related to the study of dynamic auction 

and oligopoly models, which often allow for discrete choice as well (e.g. entry/exit 

decisions);10 we refer to the surveys of Pakes (1994), and more recently, Ackerberg, 

Benkard, Berry and Pakes (2005).

Extending the idea of. Hotz, Millerr Sanders and Smith (1994), Bajari, Benkard 

and Levin (2007), hereafter BBL, propose a closely related simulation estimator that 

is capable of estimating a large class of dynamic models tha t allows for continuous or 

discrete or mixed continuous-discrete controls. The “forward simulation” method of 

BBL uses the preliminary estimates of the policy function (optimal decision rule) and 

transition densities to simulate series of value functions for a given set of structural pa

rameters; these simulated value functions are then used in constructing some minimum 

distance criterion based on the equilibrium conditions. The main assumption BBL 

use in estimating models tha t contain continuous control is tha t of monotone choice. 

We show th a t the monotone choice assumption can also be used to  nonparametrically 

estimate the policy value equation, hence our methodology adopts HM’s approach in

9 The other two papers that we are aware of that estimates purely continuous control problem in 
the I.O. literature is Berry and Pakes (2002) and Hong and Shum (2009) but they are based on quite 
a different sets of assumptions.

10To our knowledge, Jofre-Bonet and Pesendorfer (2003) are the first to show that two-step estimation 
procedures can be used to estimate a dynamic game in their study of a repeated auction game.
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the first stage estimation to  estimate a continuous control problem. In addition, our 

estimator does not require any param etric specification of the transition law of the 

observables. This extra flexibility is of fundamental importance since the transition 

law is one of the model primitives th a t is required in the first stage estimation. In con

trast, BBL explicitly require their preliminary estimator to  converge at the parametric 

rate, this condition rules out the nonparametric estimation of the transition law on the 

observables whenever the control or the (observable) state variables are continuously 

distributed.

Although in this chapter we focus on models with observable state variables tha t 

take finitely many values, our estimator can also accommodate continuous state vari

able. As seen from the first chapter, we can easily allow the observable state variables 

to be continuously distributed. The main technical, extension is tha t the policy value 

equation becomes an integral equation of, type IIr given the. discounting factor, th e  

solving of such equation is a well-posed inverse problem.

Our estimator originates from the large literature on minimum distance estimation, 

see the monograph by Koul (2002) for a review, where our criterion function measures 

the divergence between two estimators of the conditional distribution function. More 

specifically, we minimize some L 2— distance between the nonparametric estimate of 

the conditional distribution function (implied by the data) to a simulated semipara- 

metric counterpart (implied by the structural model). In finite samples, Monte Carlo 

integration causes our objective function to  be discontinuous in the parameter, we use 

empirical process theory to ensure tha t our estimator converges to a normal random 

variable at the rate of y/~N after an appropriate normalization. However, the asymptotic 

variance will generally be a complicated function(al) of various parameters; we discuss 

and propose the use of a semiparametric bootstrap method to estimate the standard 

errors. The analysis of the statistical properties of our estimator is similar to  the work
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of Brown and Wegkamp (2002) on minimum distance from independence estimator, 

first introduced by Manski (1983). Brown and Wegkamp also show tha t nonparamet

ric bootstrap can be used for inference in their problem. However, the estim ator of 

Brown and Wegkamp does not depend on any preliminary estimator th a t converges 

slower than  the rate of \/JV, so the treatm ent is essentially parametric. More recently, 

Komunjer and Santos (2009) consider the semiparametric problem of minimum dis

tance estimators of nonseparable models under independence assumption. In this sense 

their work is more closely related to  our estimator than tha t of Brown and Wegkamp. 

However, Komunjer and Santos use the method of sieves to  simultaneously estimate 

their finite dimensional parameters and the infinite dimensional parameters in some 

sieve space and do not discuss estimation of the asymptotic variance. In our case, it 

is natural to take a two-step approach. The infinite dimensional param eter here is the 

continuation value function,, which is defined as the regression of some unobervables to 

be estimated, and its structural relationship with the finite dimensional param eter is an 

essential feature in the methodology in this literature. We estimate the continuation 

value function using a simple Nadaraya-Watson estimator and provide its pointwise 

distribution theory.

The chapter proceeds as follows. The next section begins by describing the Markov 

decision model of interest for a single agent problem and provides a simple example 

that motivates our methodology, it then outlines the estimation strategy and discusses 

the computational aspect. Section 2.3 provides the conditions sufficient to obtain the 

desired distribution theory. We discuss inference based on semiparametric bootstrap 

in Section 2.4. Section 2.5 reports a Monte Carlo study of our estimator and illustrates 

the affects of ignoring the model dynamics. Section 2.6 concludes. The proofs of all 

theorems can be found in the Section 2.7. We collect the Figures and Tables a t the end 

of the paper.
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In this chapter: for any m atrix B  = (bij), define |[5|| to be the Euclidean norm, 

namely ^/Amax (B ’B ); when Q is a class of real valued functions g : A  x © —> R, con

tinuously defined on some compact Euclidean domain A  x 0 ,  then denote \\g\\g =

suP0G© Il0(*>0)lloo> where IIpIIoo =  suPaeA |p(a )l is tlie usual supremum norm, and 

\\g\\g = Halloo when g does not depend on 9; when QJ is a class of continuous RJ 

valued functions (<7j  (-,#)), then denote \\g\\g =  m axi< j< j sup0G0  ||pj (*, 0)11^, where 

\Moo =  m axi<j<j supoeA |gj (a)|, and, |\g\\g = when g does not depend on 9.

2.2 Markov D ecision Processes  

2.2.1 B asic Framework

The random variables in the  model are the control and state variables, denoted by 

a t  and st respectively. The support of eontrol variable is a convex set A  C K. and 

th e  sta te  space S  is a subset of ML+1. Time is indexed by t, the economic agent is 

forward looking in solving an infinite horizon intertemporal problem. In each period, 

the economic agent observes st and chooses an action at in order to  maximize her 

discounted expected utility. The per period utility is time separable and is represented 

by a parametric function u q  (a t>  s t )  for 9  6 0  C The agent’s action today affects the 

uncertain future states according to a Markovian transition law p (d s t+ i\st,a t). Next 

period’s utility is subjected to discounting at a rate /3 € (0 , 1), which is assumed to 

be known. Formally the agent is represented by a triple of primitives (u,p, /3), who is 

assumed to behave according to an optimal decision rule, A t = {ar  ( s r ) } ^ j  in solving 

the following sequential problem for any time r

vl> (»t) =  max E
{ q ( s t ) } t _ j

^ 2 /3 t  tU0 (a (sT) , sT)
T—t

S t ,s .t .  a  (St) E A  for all t.
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Under some regularity conditions, there exists a stationary Markovian optimal decision 

rule olq (-) so that

o$ (st ) =  argm ax {u e (a, st ) +  (3E [V̂0 (s*+i) | st , at = a}} . (80)
a £A  ^

Furthermore, the value function, V̂ °, is the unique solution to the Bellman’s equation 

Vq (st ) =  max {u e (a, st) +  /3E [V̂0 {st+1) |s*,at = a]} . (81)
aeA

More details of related Markov decision models tha t are commonly used in economics 

can be found in Pakes (1994) and Rust (1994,1996). In order to  avoid a degenerate 

model, we assume th a t the state variables st = (xt, et) can be separated into two parts, 

which are observable and unobservable respectively to the econometrician, see Rust 

(1994) for various interpretations of the unobserved heterogeneity. We next provide an 

economic example tha t naturally fits in our dynamic decision making framework.

D y n a m i c  P r i c e  S e t t i n g  E x a m p l e :

Consider a dynamic price setting problem for a firm. At the beginning of each period 

t, the firm faces a demand described by D (at, xt, £t) where: at denotes the price tha t is 

assumed to belong to some subset of R; xt is some measure of the consumer’s satisfaction 

tha t affects the level of the demand for the immediate period tha t is publically observed; 

et is the firm’s private demand shock. W ithin each period, the firm sets a price and 

earns the following immediate profit

u (a, x t , £t ) = D (at , x t , £t) (at -  c) , 

where c denotes a constant marginal cost. The price setting decision in period t affects

93



the future sentiment of the demand of the consumers for the next period, Xt+i, tha t 

can be modelled by some Markov process. So the firm chooses price at to maximize its 

discounted expected profit

at = argm ax { u ( a ,x t ,e t ) + /3E [V (x t+ \,e t+\ ) \xt ,e t ,a t = a]}
a€A

In Section 2.5, we focus on a specific example of this dynamic price setting decision 

problem and use a Monte Carlo experiment to  illustrate the finite sample behavior of 

our estimator as well as the effects of ignoring the underlying dynamics in the DGP.

Unless stated otherwise, we assume the following set of assumptions, which are 

common in this literature, throughout the paper.

ASSUMPTION M 2.1: The observed data for each individual { a t ,x t } J ^  are the

controlled stochastic processes satisfying (80) fo r some 6q 6 © with exogenously known

P-

A s s u m p t i o n  M2.2: (Conditional Independence) The transitional distribution has 

the following factorization: p (xt+\, £t+i\xt, et, a*) =  Q i^t+ i)P x ' \ x , A  (xt+i\xt, a*)-

A s s u m p t i o n  M2.3: The support of st =  (x t ,£t) is X  x E, where X  = { 1 , . . . ,  J} 

for some J  < oo that denotes the observable state space and £ is a (potentially strict) 

subset o f JR. The distribution o f et, denoted by Q, is known, it is also independent of 

xt and is absolutely continuous with respect to some Lebesgue measure with a positive 

Radon-Nikodym density q on E.

ASSUMPTION M 2.4: (Monotone Choice) The per period payoff function uq : A x  

X  x E —» R has increasing differences in (a, e) for all x  and 0 .

The first two assumptions are familiar from the discrete control problems; M2.2 

is introduced by Rust (1987). Finiteness of X  is imposed for the sake of simplicity,
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the generalization to more general compact set is discussed in Section 2.6. Notice that, 

unlike under the discrete choice setting, the estimation problem still requires an estima

tion of some infinite dimensional elements despite assuming tha t X  has finite elements 

since A  now includes an interval. The distribution of £t is required to  be known, this 

is a standard assumption in the estimation of structural dynamic programming models 

whether the control is continuous or discrete. The independence between x t and et 

can be weakened to the knowledge of the conditional distribution of £* given xt upto 

some finite dimensional unknown parameters. However, unlike dynamic discrete choice 

models, the support of et need not. be unbounded, since the unboundedness of 8  is 

required to utilize HM inversion theorem. In fact, as we shall see below, in many cases 

it is more natural to  assume tha t £  is a compact and convex subset of R when A  is also 

compact and convex. .More im portant is the monotone choice assumption in M2.4, sim

ilar to  Bajari et al. (2QQ7) and Hong and Shum (2009), the monotonocity assumption, 

is crucial in our methodology since e typically enters ug non-additively. However, this 

condition can be empirically motivated, in particular, the implication of M2.2 together 

with M2.4 is tha t policy function is increasing on £. To see this, from (80) we have

«]}

«]} .

since the function to be maximized on the RHS is supermodular in (a, e) for all x  and 

9, the claim follows from Topkis’ theorem (see Topkis (1998)).

2.3 Estim ation M ethodology

Given a balanced panel data {ait,%it} of N  i.i.d. agents, our estimation strategy pro

ceeds in two stages. First, we construct the model implied conditional distribution

o$(sf) =  argm axjufl {a,st) + /3E [V̂0 (st+i) =
a€A

= arg max {ug (a, st ) +  (3E \Vq (st+1) \xt , at = 
a€A L
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functions (CDFs). We then minimize the distance between CDFs obtained in the first 

stage with th a t from the data. The innovation tha t distinguishes most two-step es

timators in this literature arises in the non-optimization first stage. Our first stage 

consists of three steps: (1) we estimate the model implied continuation value functions; 

(2) these functions are used to approximate the policy functions; (3) we simulate the 

CDFs from the policy functions. In more details:

S t e p  1: V a l u e  F u n c t i o n

Based on the observed {a^}, which corresponds to {ajjo (s^)}, for any 0 6 0  we 

define a model implied value function, denoted by Wg, as a stationary solution to the 

following linear equation (cf. (81))

V q (& it) —  Ug (ujf, S n ) ”1“ P E  \Vg (st£-|-i) |Sjf] , (82)

where Vg. can be w ritten as

Vg (sit) = E ^  P Ug ((LiT, Sjr )
T—t

Sit

Therefore we must have Vg0 (su) = Vqo (so). We can interpret Vg as the value function 

for an economic agent whose underlying preference is 0 but is using the policy function 

that is optimal with respect to 6q. Marginalizing out the unobserved states in (82), 

under M2.2, we have the following characterization of the model implied conditional 

value functions

E  [Vg (sit) Ix it] = E  [ug (flit, S it )  \x it] +  PE [E [Vg (sit4-1) \xit+i] \xit] .

Since \X\ = J, the equation above can be conveniently summarized by a matrix equa-
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tion  as

me =  re +  Cm0. (83)

w here for each j , k  =  1 , . . . ,  J: r0 (j ) d en otes E  [u0 (an, sn ) \xn =  j]; C is a  J  x J  sto 

chastic m atr ix  w hose (k, j )  — th  entry represents /3P r [xn+i = j \x n  =  k]; me (j)  denotes  

E  Wo (sit) \x it — j]- N o te  th a t (I  — C) is invertib le by th e  dom inant d iagonal theorem , 

so  th e  so lu tio n  to  (83) ex ists  th a t un iquely  defines th e  conditional va lue fu n ction . 1 1  To  

obtain  th e  m odel im plied  continuation value function, again by M 2.2, th is  function  can  

be w ritten  as

E  Wo (® it+l) | x iti =  E  [E Wo (® if+l) Uit] .

In  a linear functional notation, the  continuation value function can be defined by the 

following linear transformation

g& — Time-. (84)

Here Ti. is a conditional expectation operator that maps M.J to a space of vector valued 

functions defined on A, so g0 = (go,j (*, 0))Ĵ V In particular, for any m  £ we have 

Tim (j, a) = m k P r [xn+i = k\xu  =  j ,  an = a] for 1 <  j  < J  and a e  A .

Given {an,Xit}, to estimate g0, we first estimate and solve (83) and transform the 

solution using the empirical counterpart of (84). First note that, we do not observe 

}» which is not separable from u0, using the monotonicity assumption we generate 

their nonparametric estimates from the following relation

£it =  Q 7 1 ( FA\x  (M * ii))  » (85)

11A square matrix P  =  (pij) of size n is said to be (strictly) diagonally dominant if \pu\ >  ^j^t i  \Pij\ 
for all i. It is a standard result in linear algebra that a diagonally dominant matrix is non-singular, for 
example see Taussky (1977).
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where Qe is the known distribution function of en; and F ^ x  (a \j) = w r  Yli=2t=1 witN (j)  1 [ait <  a 

is an estim ator for the true CDF of an given xn, where wun (j ) =  with

P x (j) = X ^ T ,t= i1 lx a = j ]-12 Given {ait,X it,£it}?= ijli, we can estimate re by

r e U )  =  j j j ,  ^ 2  WitN t i )  u o ( a i t , x i t , e i t ) . (86)
i = l , t = l

Assuming further tha t p x  (j) > 0 for j  = 1 , . . . ,  J , we simply use the frequency estima

tors to estim ate each elements in C. The dominant diagonal theorem implies ^7 — C  ̂

exists, we can then uniquely estimate the conditional value function by the relation

m e = ( j  -  j t j  rQ. (87)

A s seen  above, there are also m any nonparam etric estim ators available for th e  regression  

fu n ction , for sim p licity  we use th e  N adaraya W atson  estim ator  to  approxim ate th e  

operator 77, therefore

9e = Hrhe, (88)

such th a t, for any 1  < j , k <  J  and a 6  in t  (A)

~  ( a\ V ' ~  fu \P X ',X ,A (k ’F a)
9 j (a ,0 )  =  - > (89)“  Px,A{3,a)

1 N ,T

Px',x,A {k, j ,  a) = —  ^ 2  1  [x it+i =  x it = j] K h (ait -  a ) ,
i = l , t = l

N ,T

Px,A  (j , a) = —  ^ 2  1 lx it = j] K h iflit -  a) ,
t=l,i=l

w here px ',x ,A  d en otes our choice o f estim ate  for Px ',x ,Aj th e  m ixed-continuous jo in t  

d en sity  o f  {xn+i-, xn ,  an); px,A  and px,A  are defined sim ilarly; Kh  (•) =  \ K  (^ ) d en otes

12 BBL also uses the one to one correspondence between an and en in their forward simulation method, 
where they draw {e&} and generate the corresponding optimal choice from (Qe (eb) |xfc)|, for

any state Xb-
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a user-chosen kernel and h is the bandwidth tha t depends on the sample size but for the 

ease of notation we suppress this dependence. Regardless of the nature of the support 

of A, we may want to  trim  off the estimates near the boundaries or the tails of the 

distribution, this discussion is deferred until Section 3.

S t e p  2: P o l ic y  F u n c t io n

For any 0 6 0 ,  j  =  1 , . . . ,  J  and gj e  (/, where Q is a space of functions mapping A  

to R, we can define a generic objective function 7Tj (•, •, gj) where

7Tj (a, e, 0, gj) = UQ (a, j , e) +  figj (a) ,

so th a t 0 indexes the current period payoff function and gj (that may also depend on

0) summarizes the future expected payoff. Let da denote the partial derivative for

each y, we can approximate the model implied policy function , denoted by a j (•, 0, dag j), 

to be the function tha t maximizes 7Tj (a, -,0, gj) over A  by substituting gj (-,0), from 

Step 1, in place of g j.13 Since dim (A) =  1, the approximation can be done by direct 

grid-search or from finding the zero to the first derivative of 7Tj,

da'Kj (a, e, (9, dagj) = dau0 (a, j ,  e) +  (3dagj ( a ) .

The model implied policy function is deliberately written to  depend on the derivative 

of gj. It will be convenient, at least for theoretical analysis, to  assume tha t the optimal 

rule is characterized by the first order condition from differentiating itj w.r.t. a. This 

also has an im portant practical implication, in particular with regards to the bandwidth

13First note that, when xu  =  j ,  an must be equal to a j  (£i t ,0o,goj  (-,do)), where goj  (-,0) denotes 
the true continuation value function as defined in (84). Also note that, under M2.1, M2.2 and M2.4, 
we can write (81) as

Vqo ( j ,£i t)  =  max7Tj (a,£it , 0o,goj  (•,0o)) for x  =  j  =  1 , . . . ,  J.a£A
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choice, as it follow s from  th e  im plicit function  th eorem  in B anach space th a t th e  effective  

rate o f  convergence o f th e  p o licy  function  w ill b e  determ ined  by th e  rate  o f convergence  

of dagj (•, 0).u  N o te  th a t th e  la st sta tem en t is true irrespective o f how  w e approxim ate  

{a j  (•, 9 , da9j (*, $ ))}•

S t e p  3: D is t r ib u t io n  F u n c t io n

G iven  a p o licy  fu n ction , for any 9 G 0 ,  j  =  1 , . . . ,  J  and gj 6  Q, w e can define th e  

corresponding m odel im plied  conditional distribution function  as follow s

Fa \x  M j ;  0, da9j) =  P r [otj {eiu G, dagj) < a]

= E [  1 [aj (e a , 9, dagj) < a]].

In th is  n o ta tio n , th e  true C D F  th a t w e w rite as F ^ x  (a \j)  m ust be equaled  to  FA\x dago,j

T h e in tegral above can b e  approxim ated  to  any arbitrary degree o f accuracy by M onte  

C arlo in tegration , since w e assum e th e  know ledge o f Qe. In th is  paper, for sim p ly  w e 

use

1  R
Fa \x  H j ;  0, da9j) =  1  [a^ (er , 9 , dagj) < a] , (90)

r— 1

w here {er }R=1 is a random  sam ple from  Q. N o te  th a t th e  indicator function  in troduces  

som e d iscon tin u ities in Fa \x  (particu larly w ith  respect to  9).

S e c o n d  S t a g e  O p t im iz a t io n

Sim ilar to  H otz and M iller (1993), our estim ator  is derived from  th e  follow ing con

d ition a l m om ent restrictions

E  [ l  [an < a] ~  FA\X  (a \ j ;9 , dago,j (', 0 )) | %it = j]  = 0 ,  for a € A  and j  =  1 , . . . ,  J  w hen 9 — 90.

(91)

14 The implicit function theorem in Banach space is a well established result. The sufficient conditions 
for its validity generalizes the standard conditions used in Euclidean space, e.g. see Zeidler (1986).
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The condition above represents a continuum of moment restrictions, cf. Carrasco and 

Florens (2000), however, no general theory for semiparametric moment estimation with 

a continuum of moments is available a t present. Since we can equivalently write (91) 

as

F a \x  M  j )  =  F a \x  #0, dagoj (*, 0o)) for a e  A  and j  =  1 , . . . ,  J  when 6 = 0O,

we focus on a class of minimum distance estimators.15 Wolfowitz (1953) introduce the 

minimum distance method tha t since has developed into a general estimation technique 

that has well known robustness and efficiency properties, see Koul (2002) for a review. 

In this paper, we define a class of estimators tha t minimize the following Cramer von- 

Mises type objective function tha t defines some L 2—distance between the CDF implied 

the model and tha t of the data

M n  (6, 9 (•, »)) = J 2  f  P v  (“Ij;e> (•’ *)) -  (“U)l2 (do-) ■ (92)
j=l J a

Here {l*j} is a sequence of user chosen sigma-finite (for now, assume non-random) 

measures on A. Clearly the property of 6 will depend on the choice of {p . In Section 

3, we provide a discussion on how to select the measures to  ensure consistent estimation 

under some regularity conditions, we leave the issue of choosing {pj} efficiently for 

future work.

15 Another alternative to  the moment based estimator is to  maximize the conditional maximum 
likelihood function, however the maximum likelihood estimator (MLE) is much more computationally 
demanding. Although one can proceed with our minimum distance approach and perform Newton 
Ralphson type iterations to ensure we get the same first order asymptotic distribution as the conditional 
MLE.

101



2.4 Practical A spects

First note th a t all elements we require to solve and transform the linear equations in 

(83) and (84) have explicit functional forms, so they are easy to program. In addition, 

similar to  Hotz et al. (1994) and BBL, we can also take advantage of the linear structure

the policy value equation. In particular, if the parameterization of 9 in u is linear, rg (j)

1 T  ^  f
can be writen as X]*=i t=\ whn  ( j ) u (ait, 9 for each j , and we can write the

vector rg =  Wug — W^O for some m atrix W%. To estimate the conditional value

function fhg = ( j  — C j W%0, since we estimate C nonparametrically, we only have

to compute the m atrix ( j  — Wq once as it does not depend on 9.

It is also straightforward to carry out our methodology in a parametric framework.

One can choose to parameterize the transition law Px'\x,A  for some Qtr th a t may

have common elements with 6. The continuation value function still satisfies (84) where

the conditional expectation operator becomes 7igtr. For fix 0*r , we can estim ate gg

using the relation (88) by simply replacing in (89) by P xf\x,A (^<r)- Although the

conditional expectation operator 7ig tr depends on 0*r , it does not affect how we estimate

fhg. Note also tha t all the  subsequent stages of the methodology only assume we have gg

and not how they are obtained, therefore the remaining steps in our procedure remains

unchanged.

2.5 A sym ptotic Theory

Our minimum distance estimator falls in the class of a profiled semiparametric M- 

estimator with non-smooth objective function since (90) is discontinuous in 9. There 

are a few recent econometrics papers tha t treat general theories of semiparametric esti

mation tha t allows for non-smooth criterions; Chen, Linton and Van Keilegom (2003) 

provide some general theorems for a class of Z-estimators; Ichimura and Lee (2006) 

obtain the characterization of the asymptotic distribution of M-estimators; Chen and

102



Pouzo (2008) extend the results of Ai and Chen (2003), on conditional moments mod

els, to the case with non-smooth residuals. The aforementioned papers put special 

emphasis on the criterion tha t is based on sample averages. However, minimum dis

tance criterions generally do not fall into this category, for instance consider (92) when 

is a sequence of non-random measures. Although the focus of our chapter is 

not on the general theory of estimation, we find it convenient to proceed by providing a 

general asymptotic normality theorem for semiparametric M-estimators tha t naturally 

include minimum distance estimators as well as many others commonly used objective 

functions. We then provide a set of sufficient, more primitive, conditions specific to our 

problem. We note, as an alternative, the discontinuity in many criterion functions can 

be overcome by smoothing,, e.g. see Horowitz (1998), and in some cases there may be 

statistical gains for doing so, e.g. a reduction in finite sample MSE. More specifically, 

we can overcome, the discontinuity problem by smoothing over the indicators in (90), 

however, the use of unsmoothed empirical function is the most common approach we 

see in practice.

To analyze our estimator, it is necessary to  introduce the notion of functional deriv

ative in order to capture the effects from the nonparametric estimate. We denote 

the (partial-) Frechet differential operators by D q, Dg, D qq, D q9 and Dgg, where the 

indices denote the argument(s) used in differentiating and double indexing denotes 

second derivative. For any map T  : X  —» Y  and some Banach spaces X  and Y , 

we say tha t T  is Frechet differentiable at x, tha t belongs to some open neighborhood 

of X , if and only if there exists a linear bounded map D t  : X  —* Y  such tha t 

T { x  + f )  — T {x )  =  D t  (x) f  + o ( ||/i |)  with ||/ | |  —► 0 for all f  in some neighborhood 

of x] we denote the Frechet differential at x  in a particular direction /  by D t  M  [/]• 

Since 9 is a finite dimensional Euclidean element, the first and second Frechet deriva

tives coincide with the usual (partial-) derivatives. For Theorem G below, let 0q and
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go denote the true finite and infinite dimensional param eters tha t lie in 0  and Q re

spectively. Since we only need to  focus on the local behavior around (60, go)? for any

6 > 0 we define 0a =  {9 6 © : \\9 — 0o|| <  5} and Q& = {g  6 Q : ||p — pollp < <5}, here 

S can also be replaced by some positive sequence 8n  = o (1). The pseudo-norm on

Qs can be suitably modified to reflect the smaller param eter space 0a, and the choice

of S for 0a  and Qs can he distinct, but for notational simplicity we ignore this. Let

M  (9, g (•, 0)) denote the population objective function th a t is minimized at 9 = 60, and

M n  (0,g  (•, 9)) denote the sample counterpart. Further, we denote D qM  (9,g  (•, 9)) by

S  (0,9  0)) and D eeM  (0, g (•, 0)) by H  (0, g (■, 0)).

THEOREM G: Suppose that 9 9q, and for some positive sequence Sn =  o ( l) ,

G1 M n  ( ? ,?  ( • ,? ) )  <  in f^ e  M n  0)) +  op ( I V 1)

GZ For a l l  6 ,g (-,0 )  6 QsN w.p.a. 1 and sup„ee ||g(-,0) -9 o (- ,0 )] |oo =  op (/V~1/4)

G3 For some 6 > 0, M  (9, g) is twice continuously differentiable in 9 at 9o fo r all 

9 £ Qb- H  {9,g) is continuous in g at go for 9 € 0a- Further, S  (9o,go (’,^o)) — 0 and 

Ho = H  (9o,go (•>#())) positive definite.

G4 For some 8 > 0 , S  (0, g (-, 9)) is (partial-) Frechet differentiable with respect to g, 

for any 9 e  0a and for all g e  Qs- Further \\S (90,g  (-, 0o)) -  DgS  (9o,go(-,9o)) [p(',0o) -0o (-,0o )] 

B n  x sup0G0 ||p (•, 9) -  go (•, 0 ) ||^  for some B N = Op (1).

G5 (Stochastic Differentiability)

||0-0o|l«*iv 1 +  y/N \\9  -  0o|[

where there exist some sequence Cn , so that

VN (0,g(-,e)) (93)

s /N
[Mn (6,9 (-,$)) -  Mn  (0o,?(-,0o)) -  (M (8,9 (■,$)) -  M (0o,?(-,0o))) -  (0 -  e0)'CN]

l i e - S o i l
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G6 For some finite positive definite matrices fio and we have the following weak 

convergence V N C n  => N  (0,Qq) and \ /N D n  = y/N  (Cn + DgS  (Oo,9o(-,9q)) [g — go]) => 

A f (  0 , « ) .

Then

V n  (d  -  00 W  N  (0, H o 'Q H o ') .

C o m m e n t s  o n  T h e o r e m  G:

Under the identification assumption and sufficient conditions for asymptotic nor

mality, one can often show the consistency of the finite dimensional param eter in such 

models directly so we do not provide a separate theorem for it. Theorem G extends 

Theorem 7.1 in Newey and McFadden (1994) to a two-step semiparametric framework. 

G1 is the definition of the estimator. The way G1 - G4 accommodate for the prelim

inary nonparametric estimator is standard, cf. Chen et al. (2003), in fact, a weaker 

notion of functional derivative such as the Gateaux derivative will also suffice here. 

G5 extends the stochastic differentiability condition of Pollard (1985) and Newey and 

McFadden (1994) to this more general case. We note tha t this is not the only way to  

impose the stochastic differentiability condition; we pose our equicontinuity condition 

in anticipation of a sequential stochastic expansion whilst Ichimura and Lee (2006) em

ploy an expansion on both Euclidean and functional parameters simultaneously. Also, 

the first order properties of C n , the stochastic derivative in (93), will be the same as 

the case th a t go(-,0) is known.16

A s s u m p t i o n  E l :

TNT T1 1 1(i) {ait, x it)i=\ t=\ 25 i-i-d. across i, within each i {a it,x it)t=\ a strictly sta

tionary realizations o f the controlled Markov process for a fixed periods of T  +  1 with

16 An important special case of this theorem is when the preliminary function is independent of 9. 
The formulation of the conditions for Theorem G remains valid since the profiling effects are implicit 
in the notation of D$ and Dee.
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exogenous initial values;

(ii) A  and £ are compact and convex subsets of R;

(Hi) 0  is a compact subset of RL then the following holds fo r all j  = 1 , . . . ,  J  

(•, 0, dago,j (*, 0)) = a j (•, 0O, dago,j (•, 0o)) Q ~  a.e.

i f  and only i f  9 = 0o where 6q 6 in t  (0 ) ;

(iv) For all j  = 1 , . . . ,  J, Pj is a finite measure on A that dominates Q and has zero 

measure on the boundary o f A;

(v) For all j  = 1 , . . . ,  J , the density px,A  0? *) is 5— times continuously differentiable 

on A  and infoG>i px ,A (j , a) >  0;

(vi) For all j , k  = 1 , . . . ,  J , the density P x ',x ,A (k ,j ,’) is 5—times continuously 

differentiable on A;

(vii) The distribution function o f en, Q£, is Lipschitz continuous and twice contin

uously differentiable;

(viii) For all j  = 1 , . . . ,  J ,  uq (a ,j, e) is twice continuously differentiable in 6 and 

a, once continuously differentiable in e, these continuous derivatives exist fo r  all a, e 

and 6. In addition we assume (a, j ,  e) >  0 and gJ?g£2 ud (Q? j , £) exists and is

continuous for all a, e and 6;

(ix) K  is a 4~th order even and continuously differentiable kernel function with 

support [—1,1], we denote f  w*K (u)du  and f  i P  (u)du  by p j (K ) and Kj (K ) respec

tively;

(x) The bandwidth sequence hx  satisfies hx  = dN N ~q for  1 /8  <  <7 <  1/6, with d ^  

is a sequence of real numbers that is bounded away from zero and infinity;

(xi) Trimming factor = o ( l )  and hn  = o ( j N);

(xii) The simulation size R  satisfies N /R  = o ( l ) ;
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C o m m e n t s  on  E l :

(i) assumes we have a large N  and small T  framework, common in microeconometric 

applications, and for simplicity we assume T  is the same for all i;

(ii) The dimension of A  determines the rate of convergence of the nonparametric 

estimate, if dim (A) >  1 we can adjust our conditions in a straightforward way to  ensure 

the root—N  consistency of finite dimensional parameters, e.g. see Robinson (1988) and 

Andrews (1995). Compactness of A  and £  is also assumed for the sake of simplicity. We 

can use a well known trimming argument in nonparametric kernel literature if A  and £  

are both unbounded , see Robinson (1988); all of our theoretical results and techniques 

in this chapter hold on any compact subset of A  and £, the compact support can then 

be made to increase without bounds at some appropriate rate;

(iii) is the main identification condition for ^o. We assume there does not exist any 

other 9 € 0 \  {0o} th a t can generate the same policy profile which 0& generates when 

{da9oj (’,&)) is known. It can be shown directly tha t the conditions we impose on the 

policy functions is equivalent to imposing tha t (91) holds if and only if 9 = 9o, which is 

the standard identification assumption in a parametric conditional moment model; in 

the case tha t xn  and eu are not independent we simply change Q — a.e. to  Q£\Xj ~  a-e-i 

where Qe\Xj denotes the conditional distribution of en given xn  =  j .  Lastly, given 0, 

under some primitive conditions on the DGP (contained in E l) (dago,j (*, #)) will be 

nonparametrically identified hence we only have to consider the identification of Oo;

(iv) ensures th a t the identification condition of (iii) is not lost through the user 

chosen measures, cf. Dominguez and Lobato (2004). One simple choice of {/xJ-}^_1 

tha t satisfies this condition is a sequence of measures which are dominated by the 

Lebesgue measure on the interior of A  and has zero measure on the boundary. We 

can also allow the support of an to  depend on the conditioning state variable xn  but 

common support is assumed for notational simplicity;
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(v)-(vi) impose standard smoothness and boundedness restrictions on the underly

ing distribution of the observed random variables in the kernel estimation literature. 

They ensure we can carry out the usual expansion on our nonparametric estimators of 

Px,A and px',x ,A  and their derivatives in anticipation of using a 4-th order kernel;

(vii) imposes standard smoothness on Q£ tha t is necessary for our statistical analy

sis;

(viii) imposes standard smoothness assumptions on the per period utility function, 

to be used in conjunction with earlier conditions, to obtain uniform rates of convergence 

for our nonparametric estimates. The cross partial derivative is the analytical equiva

lence of M2.4. We note tha t these conditions appear particularly straightforward, this 

is due to the fact tha t u is a continuous function on a compact domain, so boundedness 

makes, it simple to obtain uniform convergence results. On the other hand, had we 

allowed for unbounded A  and £ r then  we will need some conditions to  ensure the tail 

probability of uq (an, xn, en) is sufficiently small. For example, one sufficient condition 

would be th a t all the functions mentioned belong in L 2 (P ), and there exists a function 

|uq (a,x, e)| <  U (a ,x ,e )  for all a ,x ,e  and 6 such tha t E  [exp{CU (an,xn,£u)}] < oo 

for some C > 0. The latter is equivalent to  the Cramer’s condition, see Arak and Zaiz- 

sev (1988), tha t allows us to  use Bernstein type inequalities for obtaining the uniform 

rate of convergence of the nonparametric estimates;

(ix) The use of a 4-th order kernel is necessary to ensure the asymptotic bias will 

disappear for certain range of bandwidths. The compact support assumption on the 

kernel is made to  keep our proofs simple, other 4-th order kernel with unbounded 

support can also be used, e.g. if it satisfies the tail conditions of Robinson (1988);

(x) imposes the necessary condition on the rate of decay of the bandwidth corre

sponding to  using a 4-th order kernel. The specified rate ensures the uniform con

vergence of the first two derivatives of a regular 1-dimension nonparametric density
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estimate, as well as, the uniform convergence of \\dag — dag\\g at a rate faster than 

TV- 1 / 4 and for the asymptotic bias (of order \ / iV 7i4 ) to converge to zero;

(xi) This is the rate tha t the trimming factor diminishes, it suffices to  only trim  

out the region in a neighborhood the boundary where the order of the bias differs from 

other interior points;

(xii) The simulation size must increase at a faster rate than N  to ensure the simu

lation error from using (90) does not affect our first order asymptotic theory.

In relation to  Theorem G, beyond the identification conditions (iii) - (iv), most of 

the conditions in Assumption E l will ensure tha t G2 holds. We now must impose some 

additional smoothness conditions on (a j)  to satisfy the other conditions of Theorem 

G. In particular, in order to apply the results from empirical processes literature, we 

need to restrict the size of the class of functions tha t the continuation value functions 

belong to. For a general subset of some metric space (£, |H |^), two measures of the 

size, or level of complexity, of Q tha t are commonly used in the empirical processes lit

erature are the covering number N  (e, Q, ||-||g) and the covering number with bracketing 

TVj] (e,Q, |H|g) respectively, see van der Vaart and Wellner (1996) for their definitions. 

We need the covering numbers of (Q, f[-|[g) to not increase too rapidly as e —> 0 (to be 

made precise below) and this possible, for example, if the functions in Q satisfy some 

smoothness conditions. We now define a class of real valued functions tha t is popular 

in nonparametric estimation, suppose A  C  R Lj4, let 77 be the largest integer smaller 

than 77, and

100,77 =  max sup 
\v\<n a

. f t ( a ) - f t ( a ' )
+  max s u p   ------- — — , (94)

\n\=g_a£a' | |a —a' lp  5

where d ft  = d ^ /d a ^ 1 and I77I =  Yli^iW h  then A ) denotes the set of

all continuous functions g : A —*■ R with H^llo^ < M  < 00; let l°° (A) denotes the
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class of bounded functions on A. If Q — C7̂  (A ), then by Corollary 2.7.3 of van der 

Vaart and Wellner log (N  (e, G, ||-||^)) <  const, x  £~La^2. For our purposes, the precise 

condition for controlling the complexity of the class of functions is summarized by the

follow ing uniform  entropy cond ition  f£°  y  log iV  (e, G,  [|-|(g)d£: < 0 0 . So Q sa tisfies th e  

uniform  entropy cond ition  if 77 >  L a / 2. G iven th e  assum ptions in  E l  w e can  now  

b e com p lete ly  exp licit regarding our space o f functions and its  norm . It is now  clear  

th a t Q o j  C  Cm (.4 ) C  I00 (A )  for som e M  >  0 for each j  =  1, . . . ,  J  w .r.t. to  th e  

norm  ||-||g described in  th e  in troduction . N ex t, since w e are required to  define th e  

notion  o f functioned derivatives, it w ill b e  necessary to  let our class o f fu n ction s be  

an arbitrary open  and convex set o f functions th a t conta ins Go- So w e define for all 

j  =  1 Gj =  {g(-) e  C 2m {A) : s u p ^ l l s O - s o j  (-^ lloo <  6 for any 0 €  0 }  

for som e <5 >  0 , th e n .it  is also natural to  also have Gj  endow ed w ith  th e  norm  | | - | | ^ . 1 7  

F inally , sin ce  w e w ill.b e  using results from  em pirical processes for a class o f  functions  

th a t are indexed  by param eters in A  x  © x  G, w e define th e  norm  for each elem ent 

( a , 0 , 0 ) by 11(0 , 0 , 0 ) 11,, =  | |( a , 0 )|| +  \\g\\g .

A s s u m p t io n  E 2:

(xiii) For all j  = 1 , . . . ,  J , the inverse of the policy function p j i A x & x G j —* K 

twice Frechet differentiable on A x Q x Q j  and sup9 ag.eQXAxgj (a , 0, || <  00/

(xiv) For some j  = 1 , . . . ,  J , the following L  x  L matrix

I [q{pj(a, 0O, da9j (-, 9o)))]2D e{pj a, 0O, dagoj  (•, Oo))DoPj(a, 0O, dago,j (-, 0o))V? ida)
J  A

is positive definite;

(xv) For all j  = 1 , . . . ,  J , the Frechet differential o f pj w.r.t. dag in the direction

17Note that for any g €  Gj for any jr, ||<7||g <  S +  m axi<j<j suPe,ae>ixe 19i (a > )̂l <  00 holds by the 
triangle inequality.
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[dagj (•, #o) — dago,j ('j 0o)] is asymptotically linear: in particular fo r  any a € in t (A)

1 N,T
Dgpj (a, Q0, dagj  (•, 0o)) [da9j (•, 0o) -  dago,j (•, 0o)] =  jp r  S  ^ ,j fa t ,  x iu a)+op ( iV " 1/2)  ,

i=i,t=i
(95)

with E  [ipoj fat,Xit',a)\ =  0 and E  \i>Qj fa t ,Xi t‘,a )] <  oo for all i , t ;  in addition, the 

display above holds uniformly on any compact subset A n  of A  and fa t ,  x it\ •) 6 

where ^ j v  is some class of functions on A n  that is a Donsker class for all N .

Comments on E2:

We first note tha t although it would appear more primitive to impose conditions on 

the policy function but the notation will be very cumbersome. Given the existence and 

smoothness o f  the inverse map we instead work with the inverse of the policy function, 

this is done without any loss of generality by using implicit, inverse and Taylor’s theo

rems in Banach space.18 Although these assumptions are hard to verify in practice, they 

are mostly mild conditions on the smoothness of p th a t one would be quite comfortable 

in imposing if Q belongs to a Euclidean space (at least for (xii) - (xiii)); in a similar spirit 

the same can b e  said regarding (xiv). For each j  and a, Dgpj (a, 6q, dagj (•, Oo)) is a 

bounded linear functional and [dagj (•, Oo) — dago,j (•, 00)] is a continuous and square in- 

tegrable function in I?  (A , II),19 by Riesz representation theorem there exists some Qj 6 

L 2 (A, II) such tha t Dgpj (a, 0O, dagj (•, 0o)) [dadj (•, 0o) -  dagoj  (•, 0o)] =  /  Qj (a'; a) dagj (a', 0O) 

—dago,j fa ,  Oo) d ll (a1). Given our assumptions, for a smooth Qj, it is not difficult to 

show the validity of (95) since dagj (•, 0o) — dago,j (■, 0o) has an asymptotic linear form.

This is not an uncommon approach when dealing with a general semiparametric es

timator, see Newey (1994), Chen and Shen (1998), Ai and Chen (2003) and Chen 

et al. (2003), and in particular, Ichimura and Lee (2006) for the characterization of

18 See Chapter 4 of Ziedler (1986) for these results.
19Here L2 (A, II) denotes a Banach space of measurable functions defined on A  that is square inte- 

grable w.r.t. some measure II.
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a valid linearization. However, since our (p^) does not have a closed form it is not

clear how one can obtain (£>j). Once we obtain (95), standard CLT yields point-

wise convergence in distribution (for each a, x)  but this is still not enough for our

minimum distance estimator since we will need a full weak convergence result, i.e. let

S*=i,t= i V'o.j (aiti x it; •) be a random element in l°° (A) we need

as N  —*• oo, where denotes weak convergence and ipj is some tight Gaussian process

that belongs to  l°° (.4). The Donsker property can be satisfied for a large class of

functions, see Van der Vaart and Wellner (1996). We note also tha t joint normality

condition of G 6 in Theorem G will also be easy to verify since we will end up working

with sums of two Gaussian processes, each underlying asymptotic is driven by averages

N  T  1 1of zero mean functions of {(a2t,Xit)}i=l1 J=1.

T H E O R E M  2.1: Under El :  For any a 6  int  ( A ) , 9 G  0  and j  =  1 , . . . , J  , * /  gj ( - ,  9) 

satisfies (88) then

S N h  (gj (a, 6) -  g0j  (a, 6) -  B N>j (a; m e)) => N  ( 0, ^  . var (me (xit+i) \xit =  j ,  ait
\  l p x , A ( j , a )

where

D  ̂ 1 l4 , v -  11 \ (  £*Px ' ,x ,a  (k, j , a) Px',x,A (k, j , a) ^ p x , A  (j,  a)
(a; % )  =  5 » M , ( K ) E  «  (  p x M j , a )  + ------------------------------------------

furthermore, gj (a, 9) and g^ (a', 9) are asymptotically independent when k ^  j  or a' ^  

a.

We note tha t, for each j , the pointwise asymptotic property of gj (a, 9) in Theorem 

1 is identical to tha t of a Nadaraya-Watson estimator of E  [mg (xn+i) \xa — j,  an = a] 

when mg is known. In other words, the nonparametric estimation of mg, as well as the 

generation of the nonparametric residuals (85), does not affect the first order asymptotic
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of (gj (•, &)). The reason behind this is due to the fact th a t ^rQ,fh$,C^ converges 

uniformly (over 0  x X )  in probability to  mg, at the rate close to iV-1/2, which 

is much faster than 1/Nh.

In order to apply Theorem G, we now define the population and sample objec

tive functions for our estimator. For any 0 6 ©  and g (-, 0) 6 G, we have defined 

M n  (0,g(-,0))  earlier (see (92)), its population analogue is

M  (9, g (•, 9)) =  V  [  [FA{X (o |j; 9, dagj ( ; 9 ) ) ~  Fm  (a |j)]2 ^  ( d a ) .

3=1 f A

T h eo rem  2.2: Under E1-E2: For (<7(-,0o)) that satisfies (88), i f  0 satisfies

G1 with M n  (0, g (*, 0)} as defined in (92} then- 9^+0$.

T h eo rem  2.3: Under E1-E2: For (<?(•, 0o)) that satisfies (88), i f  0 satisfies

G1 with M n  (0, g (•, 0)) as defined in (92) then

V n  (?  — 9o) => N  (0, H g lU H a j  ,

where

lim var
N —>oo

\ D oF a \x  ( a \ j ;  0 o , d ago,j (*, 0o))]

y/N

H0 =

( f A\x  (a \J) ~  FA\x  M j ) )

~  (DgFA\x (a\j; 0o, d ago,j  (•, 0o)) [da9 j  (•, 0o) -  d ago,j  (•, 0o)]’ 

2 ^ 2  [  (d oFa \x  H i;  0o, dago,j (•, 0O))) ( D qFA\x  M j ;  0o, dago,j (*, 0o))) V j  (d a ) •
3 = 1  J A

Next theorem provides the pointwise distribution theory of (gj 0 ^  tha t can be 

used to estimate (goj (-,0o))-
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T h e o r e m  2.4: Under E1-E2: For any a e  i n t (A )  and j  = 1 J  , i f  gj(-,9)  

satisfies (88)  and 9 satisfies Gl then

y/Nh (gj (a, 9^ -  g0j  (a, 90) -  B NJ (a; m 0o)̂ J => f i f  ^0, Q) var (m0o (x u+i) \xa = 3> Oi* =  ‘

where B n j  (a;mg0) has the same expression as in Theorem 1 when 9 = 9q. Further

more, gj (a , 9̂ j and gf~ (a', 9̂ j are asymptotically independent when k ^  j  or a' ^  a.

Theorem 4 implies tha t (g j  and (gj (•, 9q)) have the same first order asymp

totic. This follows since g (and g) is smooth in 9, and 9 converges to 9q at a faster 

rate than 1/y /Nh.  Note tha t, if we want to construct consistent confidence intervals 

for g&,j(a, 9q), we may use a different bandwidth in estimating g to the one used in 

computing 9.

2.6 B ootstrap  Standard Errors

The asymptotic variance of the finite dimensional estimator in semiparametric models 

can have a complicated form tha t generally is a functional of the infinite dimensional 

parameters and their derivatives. Not only it is difficult to  estimate such object, the 

estimate often works poorly in finite sample. In this section we propose to use semi

parametric bootstrap to  estimate the sampling distribution of the estimator described 

in this chapter.

The original bootstrap method was proposed by Efron (1979). The bootstrap is 

a general method tha t is very useful in statistics, for samples of its scope see the 

monographs by Hall (1992), Efron and Tibshirani (1993), as well as Horowitz (2001) for 

a survey th a t is specialized for an econometrics audience. In this chapter we concentrate 

on the use of bootstrap as a tool to estimate the standard error of 9 defined in Theorem 

3. Generally, bootstrap methods under i.i.d. framework are simpler to implement but
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are not appropriate for dependent data  as it fails to  capture the dependence structure of 

the underlying DGP. One well known exception to  this rule is the case of the parametric 

bootstrap. Bose (1988, 1990) show that bootstrap approximation is valid and obtain 

higher order refinements for AR and MA processes. The main feature of an ARM A 

model is th a t the DGP is driven by the noise terms, since consistent estimators for 

the ARMA coefficients can be obtained under weak conditions, it is easy to  construct 

bootstrap samples tha t mimic the dependence structure of the true DGP when the 

distribution of the noise terms is assumed.

The structural models we are interested in seem to possess enough structures suit

able for a resampling scheme akin to  th a t of the param etric bootstrap. Indeed, Kasa- 

haxa and Shimotsu (2008a) has recently developed a bootstrap procedure for parametric 

discrete Markov decision modelsr where they use param etric bootstrap framework of 

Andrews (2002,2005) to  obtain higher order refinements of their nested pseudo like

lihood estimators. However, our problem is a semiparametric one. Recall tha t the 

primitives of the controlled Markov decision processes is the triple ((3,ug,p), since we 

assume the complete knowledge of the discounting factor and the law of the unobserved 

error, the remaining primitives are 9 and P x’\x,A-> both of which can be consistently 

estimated as shown in the previous sections. Therefore the semiparametric bootstrap 

seems to  be a natural resampling method to use since we know the DGP for the con

trolled processes up to  an estimation error. We now give the details to obtain the 

bootstrap samples.

S t e p  1:

Given the observations {an, we obtain the estimators ^0, p ^ * ,0 ^  as

described in Section 2.

S t e p  2:
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We use to  construct the empirical distribution of the initial states, F^°

and draw (with replacement) N  bootstrap samples {£*1} ^ .  These are to be used as 

the bootstrap initial states for each i to construct N  series of length T  +  1.

S t e p  3:

For each i, e*t is independently drawn from Q. Using the estimated policy profile 

(a j  0, dgj 0 j j j , w e  compute for each x*t = j , a*t = a j  (e*t ; 0, dgj 0 ^ .  Also for 

each x*t = j  and a*t , x*t+1 is drawn from the nonparametric estimate of the transitional 

distribution px' ,x,A {x it+ii3iait) /Px,A (J , a*t ). Beginning with t = 0, this process is 

continued successively to obtain {a*t ,

S t e p  4:

7\I 'T’-l— 1 \Using {a*t , J=1 to obtain the bootstrap estimates ,g* (•, 0) J as done with

the original data.

S t e p  5r

Steps 2-4 is repeated B —times to obtain B —bootstrap estimates of

Then {#(&)> 0(b) (•> can be use<̂  33 a basis to estimate the statistic of in

terest. One should be able to show that the method described above can be used to 

show the sampling distribution of y / N T  (0  — 0o^ can be consistently estimated by 

y /N T  (0 — , possibly with an additional bias correction term. The proof strategy

analogous to the arguments of Arcones and Gine (1992), see also Brown and Wegkamp 

(2002), can be shown to accommodate a two-step semiparametric M-estimators consid

ered in this chapter.

2.7 Sim ulation Study

In this section we illustrate some finite sample properties of our proposed estimator 

in a small scale Monte Carlo experiment. Since the generation of controlled Markov
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processes can be quite complicated, for simplicity, we consider a dynamic price setting 

problem for a  representative firm described in Section 2 with the following specification.

D e s ig n :

Each firm faces the following demand

D  (a*, x t , £t) = D  -  0\Ot +  02 [xt +  £t) •

such tha t at belongs to some compact and convex set A  C R; xt takes value either 1 or 

—1, where 1 signifies an increase in demand towards the firm’s product and vice versa; 

the firm’s private shock in demand et has a known distribution. D  can be interpreted as 

the upper bound of the supply and ($i, 62) are the parameters representing the market 

elasticities. Unlike x t , the evolution of the private shocks e*, are completely random 

and transitory. The distribution of the consumer satisfaction measure depends on the 

previous period’s price set by the firm, which is summarized by P r [xt+1 =  —1|xt, at] = 

where a and a denote the minimum and maximum possible prices respectively. 

It is a simple exercise to show that the policy function can be characterized in terms 

of the conditional value function E  \Vq (xt+i,£t+i) |zt], in particular, the firm’s optimal 

pricing strategy has the following explicit form

where XeA = E[Ve (xt+i,£ t+i) \xt+i = 1] and A0)2 =  E  [V0 {xt+i,£ t+i) \xt+i = -1 ]. It 

can be shown tha t D  (at,xt,£t) {at — c) will be is supermodular in (at,£t) if (^1,^ 2) 

is positive, as expected from Topkis’ theorem, the policy function above will then be 

strictly increasing in £t. If we ignore that the firm is forward looking, the optimal static

c* (Xt, £t) — ( D  +  62 (Xt +  £t) +  c61 — f3
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profit can be characterized by the following pricing policy

a s (Xt,£t) — (D  +  62 {xt +  £t) +  c$i) /2# i. (97)

Intuitively, we expect firms which do not take into the account of the consumer’s adverse 

response to high prices will overprice relative to their forward looking counterparts. 

This is confirmed by the expressions in the displays above since we expect A^i — Xq̂ , 

(and 0\) to  be positive, i.e. the latter implies a s (x,e)  > a ( x , e )  for any pair of 

(x , e ). From (96) - (97), identification issue aside, we also note tha t performing linear 

regression of an on xn  will yield estimable objects th a t are functions of the model 

primitives (D, 0i ,# 2,c) tha t may have little economic interpretation.

In our design, we assign the following values to  the parameters

D  =  3,0i =  1,02 =  1 /2 ,c = l ,

and let £t ~  Uni  [—1,1]. It can be shown tha t a — a =  1 and

C =  /?■
^ P r [xt+i =  l \xt = 1] P r [xt+1 = - l \ x t =  1] ^

P r[x t+i =  l \x t = -1 ] P r [xf+i =  —l\xt = —1] J  

\
0.25 0.75 

0.75 0.25

A numerical method that mirrors our estimation of the policy value equation in Section 

2 can be used to show tha t A^i — Â 2 =  1/1.45. Combining these information, it is then 

straightforward to  simulate the controlled Markov processes tha t are consistent with 

optimal pricing behavior in (96) tha t underlies the dynamic problem of interest. We 

generate 1000 replications of such controlled Markov processes with for various sizes
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of N  € {20,100,200,500} random samples of decision series over 5 time periods; this 

leads to five sets of experiments with the total sample size, N T ,  of 100,500,1000 and 

2500.

I m p l e m e n t a t i o n :

We are interested in obtain estimates for the demand parameters (61, 62) and as

sume the knowledge of (D ,c ). In estimating the nonparametric estimator of go (•, 6), 

we construct a truncated 4-th order kernel based on the density of a standard normal 

random variable, see Rao (1983). For each replication, we experiment with 5 different 

bandwidths {/ic =  1.06s (iVT)-<; : c =  We provide two estimators for each

of (61, 62), one without trimming and another one th a t trims out calculations involv

ing g (', 6) for a tha t lies within a bandwidth neighborhood of the boundary. For the 

simulation of Fa\x (a | j \  6, dgj), we take R  =  iVlog (N)  random draws from Q. We ap

proximate the model implied policy function by using grid-search instead of computing 

the derivative of the continuation value. The measures (^ 1, ^ 2) we use i*1 constructing 

the minimum distance estimator in (92) simply put equal weights on all a and x. It 

is much simpler to  estimate the parameters when we assume the underlying model is 

static. Note th a t the policy function in such framework has a closed form as shown 

in (97), therefore we can simulate the model implied conditional distribution function 

directly from a s.

C o m m e n t s  a n d  R e s u l t s :

The first observation is th a t our simulation design does not satisfy all of the con

ditions of E l. In particular, the support of price differs depending on the observable 

level of the popularity measure. This knowledge can be used in the estimation proce

dure without affecting any of our asymptotic results, as we commented in the previous 

sections, we assume common full support for each state for simplicity.
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All of the Figures and Tables can be found at the end of the chapter. We report the 

bias, median of the bias, standard deviation and interquartile range (scaled by 1.349) 

for the estimators of 9\ and 02* The rows are arranged according to the to tal sample 

size and bandwidths. We have the following general observations for both estimators 

regardless of bandwidth choice and trimming: (i) the median of the bias is similar to the 

mean; (ii) the estimators converge to the true values as N  increases and their respective 

standard deviations are converging to zero; (iii) the standard deviation figures are sim

ilar to  the corresponding scaled interquartile range.20 However, the effect of trimming 

is unclear. In the case of the estimator of 9\, the magnitude of the bias is significantly 

reduced by trimming tha t appear to far outweights the increase in variation in the 

MSK sense. On the contrary, trimming generally slightly increase the bias of the esti

m ator for #2* We check the  distribution of our estimators by using QQ-plots. We only 

provide QQ-plots .of the numerical results for. th e  case of the trimmed estimator using 

^ =  1/7 for the bandwidth h ^  Figures 1-4 plot the quantiles of (d\ — E 9 \ j  / S E  

with tha t of a standard normal for different sample sizes, where the dashed line de

notes the 45 line and plots are marked by *+’; Figures 5-8 do the same for 02- The 

distributional approximation supports our theory tha t 9 behaves more like a normal 

random variable as N  increases. We find tha t the untrimmed estimators produce sim

ilar plots to their untrimmed counterparts across all bandwidths considered especially 

for the larger sample sizes, however, the quality of the QQ-plots varies across different 

bandwidth choices.

We also report analogous summary statistics for the structural estimation assuming 

the model is static, they can also be found in Table 5 and 6 in the rows labelled static. 

Note that the estimation of the static model does not involve the continuation value 

function so it does not depend on the bandwidth choice. I t is clear tha t the estimators

20 (iii) is a characteristic of a normal random variable.
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under static environment do not converge to  (#i, #2) =  (1,0.5), instead they converge 

to some values around (1.26,0.68) with very small standard  errors. Since our minimum 

distance estimators reflect the model tha t best fit the observed data, the upwards bias 

of the elasticity parameters estimates is highly plausible. To see this, first recall from 

(97) th a t firms who do not take into the account of the future dynamics will overprice 

relative to  the forward looking firms. The firms tha t only maximize their static profits 

will therefore, on average, need to expect the market elasticities to  be more sensitive in 

order to  generate more conservative pricing^schemes consistent with the behaviors of 

their forward looking counterparts. Thus, in this example, ignoring the model dynamics 

leads to  overestimating the elasticity parameters.

2.8 Conclusion

In this chapter we develop a new two-step estimator for a class of Markov decision 

processes with continuous control tha t forms a basis to estimate a larger class of struc

tural dynamic models. Our criterion function has a simple interpretation and is also 

simple to construct; we minimize a minimum distance criterion tha t measures the diver

gence between two estimators of the conditional distribution function of the observables. 

In particular, we compare the conditional distribution functions, one implied purely by 

the data  with another constructed from the structural model. We provide some prim

itive conditions to ensure our estimator is consistent for the structure parameter of 

interest when the model is identified. As an alternative estimator to  BBL, which is 

designed to estimate the same class of models without having to  solve for the equilib

rium, in a parametric model we can simply use the empirical measure to  construct our 

objective functions hence there is no additional decisions to  be made by the practition

ers (e.g. choosing classes of inequalities). We also explicitly work with the framework 

where we do not need to impose any distributional assumptions on the transition law
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of the observables. This additional flexibility is im portant since the transition law is a 

model primitive. We provide the distribution theory of both  the finite dimensional pa

rameters as well as the conditional value functions and propose to use semiparametric 

bootstrap to  estimate the standard error for inference. We illustrate the performance 

of our estimator in a Monte Carlo experiment on a dynamic pricing problem, where we 

provide an intuition, based on our criterion function, for the direction of the biased of 

the estimator which ignore the model dynamics. We also demonstrate how the general 

approach we take to  estimate dynamic models with continuous control, analogous to 

the discrete choice counterparts proposed by Hotz and Miller (1993) and Pesendorfer 

and Schmidt-Dengler (2008), can easily be adapted to  estimate other class of interesting 

and practically relevant dynamic models.

There, are also other im portant aspects of dynamic models we do not discuss in 

this paper. We end with a brief note of two issues th a t are  particularly relevant to our 

framework. The first is regarding unobserved heterogeneity. The absence of unobserved 

heterogeneity has long been the main criticism against two-step approaches developed 

along the line of HM. Recently, finite mixtures have been used to add unobserved com

ponents in related two-step estimation methodologies, for example see Aguirregabiria 

and Mira (2007) and Arcidiacono and Miller (2008), K asahara and Shimotsu (2008a,b). 

Finite m ixture models can also be used with the estimator developed in this paper. Sec

ondly, our paper focuses on estimation and assumes the model is identified. There are 

ongoing research on the nonparametric and semiparametric identification of dynamic 

decision models of single and multiple agents, for some samples, we refer interested 

readers to  Aguirregabiria (2008), Bajari et al. (2009), Heckman and Navarro (2007) 

and Hu and Shum (2009) for examples.
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2.9 Proofs o f Theorem s

2.9.1 P ro o f o f T heorem  G

The argument proceeds in a similar fashion to the case with no preliminary estimates 

of Newey and McFadden (1994, Theorem 7.1), see also Pollard (1985), by first show

ing th a t 9 converge to  Oo at rate AT-1 /2. By definition of the estimator, we have 

M n  (?, <7 (> ,? ))  -  M N (0o,g(-,0o)) < op (AT1), and

M n  ^0 ,g^ -,0^J -  M n  (9o,g(',9o))

M  (?, g ( • , ? ) ) -  M  (0o, g) +  C'N ( ?  -  0O)  +  A T1/2 0 - 0 0 V N ( 0 , 9 ( J ) )

> ( CN + S  (00,9 (e -  9o) +  Co ||? -  0 o f  (1 +  op (1)) +  A T 1/2 ||?  -  0O\\ V N (o,g  6

=  Op ( a t - 1/ 2) '  ( o -  0O)  +  Co || 9 -  O o f  +  Op ( a t 1/2 9 - 9  o + 9 - 9  o ')■

The first equality follows from the definition of T>n  in (93). For the inequality, we 

expand M  (o, g 0^  around 6o, since H  (9, g) is continuous around (9o, <7o) and Ho is 

positive definite by G3, there exists some Co > 0 such tha t, w.p.a. 1, (9 — Oo)' H  (0o,9 (*, #o)) (0 — 0c 

°p (ll^ — ^o||2)  >  Cq |\9 — 9o\\2. Notice tha t C n + S  (0o,9 (-,0o)) = Op (iV-1/2), the first 

term follows from assumption G6 and the latter by G3 and G6 since

| [ S ( 0 o , ? M o ) ) l l  <  \ \ S ( 0 o M M ) - D g S ( 0 Otg o ^ 0 o ) ) \ g ( - M - 9 o ( ^ o ) ] \ \

+  ||DgS  (0o, 90 (; 0o)) [g (•, 0o) -  go ( ;  *o)] ||

<  op ( a t - 1/ 2)  +  Op ( jv - 1/2)

=  O p ( at- 1/ 2) .

By completing the square

( I ? -  0O|  +  Op (A T 172) ) 2 +  op ^Af-1/2 0 - 0 0 + 0 - 0 o < op (AT"1) ,
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thus 0 — 0o =  Op (iV-1/2). To obtain the asymptotic distribution we define the 

following related criterion, Jn  (6) = D n  (0 — Oo) 4- \  {9 — Oq)' H q (6 — 6o), note tha t 

Jn  (6) is defined for each g (•, 6) tha t satisfies the conditions of Theorem G2, implicit in 

Dpf. Jn  (6) is a quadratic approximation of Mjq (0, # (-, 9)) — M n  (Oo,g(’, Oo)), whose 

unique minimizer is 9 =  Oo — H ^ D n , and y /N  ^9 — 0o^ =>■ (0, H ^ Q H q 1). Next,

we show the approximation error of Jn  (0) from M n  (0,g (-,9)) — M n  (0o,g(-,0)) is 

small. For any On  =  0o +  Op (iV-1/2) in OsN,

M n  (0n , 9 ( ’,0n )) — M n  (0o,g(',0o))

= M  (0n ,9 ( - ,0 n )) ~  M(6o,g( ' ,0o))  +  C’N (On  -  Oo) +  - N /— ° - 'Dn  (0n ,9(*,0n ))
V N

= (Cn  +  S  (0o,?(~, Oq))}' (On  -  0o) + j  (On  -  Oo)' H  (0, <7 (- ,0)) (On  -  Oo) +  ̂ °

— D'n (On -  0o) +  2 (&n — &o)' Hq (0}v -  0o) +  op ^  +  ||0tv -  0o||2^

=  Jn  (On ) +  op ^ .

The equalities in the display follow straightforwardly from the definition of the T>n, 

G3, G4 and G5. In particular, this implies tha t M n  (On->9 (-, On)) — M n  (0o> 9 (•, 0o)) =  

Jn. (On) +  op ( j f )  for On = 0 and 0, hence we have

J n  (o^j = ( J n  (o^j — (M n  (On, 9 (̂ , On)) -  M n  (0o,?(*,0o)))) 

+  (M n (On, 9 (’, On)) -  M n  (Oo, g (*, 0o)))

1
< Jn  (0 ) +  op t N

V n  (On
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where the inequality follows from the relation derived from the previous display and 

G l. Since J n  (&') <  Jn  ( 9 \

=  Jn ( 0 ) - J n [0

= D N ( d -  0O)  +  \  (b -  e0)  Ho (9 -  <?<,) - D N ( e -  e0)  -  \  (e  -  e0)  h 0 (0 -  eB)  

=  - ( e -  O o ) ' H o  ( d  -  B o )  +  \  (? -  B o )  H o  ( e  -  0O) + i  (? -  8 0 )  H o  (? -  6 0 )

this implies that e - e =  Op (jj)- Since t/ N  9 — 9q̂  has the desired asymptotic 

distribution, this completes the proof.■

For the proof of Theorems 2 and 3 we find it convenient to introduce the follow

ing notations: M  (0 ,g(-,0)) =  I a  d*9j ('»9)) dpj where Ej (9, da9j (•, 9)) =

Fa \x =>{Q, da9j (•> 6 ) ) - F A\X =jy mid, FA x̂ ^ { 9 yda9j (•, &)) and FA\X=j are functions de

fined on A  tha t are the shorthand notations for FA\x  (-,^)) and FA{x (.|j) re

spectively; M n  (9, g (-, 9)) = i fA E%d (9, dagj (•, 9)) dpj  where E N,j (9, <9a£, (•, 9)) =

^4 |x = i (0, 9a9j (•, 6>)) -FU |X =J, and, FA]x=j (0, (•, 0)) and FA\X=j are functions de

fined on A  tha t are the shorthand notations for FA\X (-\j',0,da9j {',0)) and FA]X (-|j) 

respectively; Foj  is a function defined on A  tha t is the shorthand notation for Fq (-|j). In 

addition, for j  = 1 , . . . ,  J,  we define the class of functions Fj  =  {1 [• < pj (a, 9, da9j)\ : a e A , 9 e Q  

and let v r j  denote the empirical process indexed by (9, da9j) 6 0  x to be a random 

element tha t takes value over A , i.e. ur j  (9, da9j) = Ylr=i 1 \£r <  Pj (*> 9a9j)\ —

Qe (pj (•, 9, dagj))- We will continue to use the multi-index notation to  define higher 

order derivatives and of a and 9 respectively for some natural number 7], as 

seen in (94).
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2.9.2 P ro o fs  o f T h e o re m s 2.1 - 2.4

We next present the following lemmas tha t will be useful in proofing Theorems 2.1-2.3.

L em m a 2.1. Under E l C - C =  Op ( N ~ 1/ 2) .

L em m a 2 .2 . Under El :  For any rg 6 IZq and j  = 1 , . . . ,  J,  rg (j) = rg (j ) +  r$  (j) 

such that maxi<7< j sup0e@ |rff ( j) | =  op (N ~x) for any A < 1/2.

L e m m a  2,3. Under El :  For any trq e M o  ctnd j  =  1 , . . . ,  J, ra# (j) = tuq (j) + 

77\q j such that incixi^j^j sup^Q  |?n^ j | — Op |iV |  f*or any A ^  1/2.

L e m m a  2.4. Under El:  For any 0 6 0 ,  j  =  1 , . . . , J ,  and a 6 A,  gj (a, 6) = 

gj (a, 0) -(- g f  (a, 0) +  g f  (a, 0) +  g f  (a, 6) such that

max sup \g f  (a, 0) I — Op (h4) ,
0,a€0xAjv

max sup [<?f(a,0)|
i <3<Je,aeexAN

max sup \g f(a,0) \
1<J<J 0,aeexAN

= op I h N t
V n E

L e m m a  2.5. Under El :  For all j  = 1, — , J, max0</<2,i< j< j s u p ^ e * ^  d \ ( a ,  0) -  d ^go j

Op (1 ) .

L e m m a  2.6. Under E l :  max0<r,p<2,i< j< j sup0 aG0xylN W d ^ g j  (a, 0) -  9o,j(a,0)\

Op (1).

L e m m a  2.7. Under E l  and E2: for all j  =  1 , . . . ,  J , T j  is a Donsker class.

L e m m a  2.8 Under E l  and E2: For any j  =  1 and some positive sequence 

&N — *>('!) as N  —> oo

lim sup
Ar_K5°

IK a '-a^ '-^daSj-da^H c^fV

^  E i l l  ( X [£i < Pj -  Qe (pj ( a>, 9’ 1 dag'j^y^

~7f E i l l  ( !  [£i <  Pj (a > ^aPi)] -  Qe (Pj (a , 0, da9j)))

=  0.

126



L em m a 2.9 Under E l: For any j  =  1,..., J

' f N  (-FA\x=j ~  FA\x=j^ ^

where F j is a tight Gaussian process that belongs to l°° (A).

LEMMA 2.10: Under E l  and E2: For any j  = 1 , . . . ,  J

' f N ( F A\x=j (#o, da9j (*, 0o)) — FA\X =j (0o, da9o,j (', #o))) Gj,

where Gj is a tight Gaussian process tha t belongs to  l°° (A).

PROOF o f  T h e o r e m  2.1. This follows from Lemma 2.4. For the asymptotic distri

bution, we only have to calculate the variance of (105), the rest follows by standard CLT. 

Asymptotic independence will follow if  we can show y/Nhcov(gj  (a, 6) , 9k(o!,6)) = o(  1) 

for any k ^  j  and a' ^  a , this is trivial to show.W

P r o o f  o f  T h e o r e m  2.2. We first show tha t M  (0, <7o(*, 0)) has a well sepa

rated minimum at 6q. By assumption (ii) - (iii) and (vii) we have M  (0, <70 (•,#)) >  

M  (0o, <7o (*, 0o)) f°r all 0 in the compact set 0  with equality only holds for 0 =  0o- For 

each a and j ,  we have FA\x (a bi &■> da9j {', 0)) — Qe (Pj (a, 0, dago (-, 0))) which is con

tinuous in 0 given assumptions (vii) and (xiii), this ensures a well-separated minimum. 

By standard arguments, consistency will now follow if we can show

sup |M n  (0, £(-, 0)) -  M  (0, <70 (•, 0))\ = op (1). (98)
dee
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By the triangle inequality, we have

3 f
| M j v ( 0 , s M ) ) - M ( 0 , 9 o M ) ) |  <  4 ^  \ F A \ x = j ( 8 , d < 3 A - , t ) ) - F A \ x = j ( 8 , d a 9 A - > m d l ‘ j

j=i

+ 4  5 3  /* |^ |X = j  (̂ > QaPj (•> ^)) — FA\X=j (Q, dagO,j (', 0))| df. 
3=1 J

3 r
Y 1  j  \Fa \X=j -  FA\X=j d\lj

3=1 
J

+ 4 '
3=1

= A.\ +  A-2 +  A%.

For A\ ,  for each j  and any 77 >  0 we have

P r

<  P r

sup
L0ee

Fa \x  (a k ; 0, dag{-, 0)) -  FA]x  (a|ar; 9, dag (•, 9)) > V

sup
&,a€QxAjy

1 R
— ^ 2  1 [£r < Pj (a > 07 da9j)] -  Qe (Pj (a , 0 , dadj))

r= 1
> g

< Pr sup
( i )9,a,dag j £ Q x A N x Q j

+  Pr [0«& -M ) * 0 j1}]

1 R
-  ^ 2  1 [ r̂ <  Pj (a, & # )]  -  Qe (Pj (a, 9, dagj))

r=l
> g

From Lemma 2.7, ^ j  is Q—Glivenko-Cantelli by Slutsky’s theorem, therefore the first 

term  of the last inequality above converges to  zero as R  —» oo by assumption (xii).

By Lemma 2.6, P r ^dadj (•, 9) £ ^ j 1̂ ] =  °(1 ) hence by finiteness of \ij it follows tha t 

\Ai\ =  op (1) uniformly over 0 .  For A 2, for each j  we have

\FA\x=j. (9, dadj (•, 0)) -  FA{x=j (0, dagj (•, 9)) | =  \Qe (Pj (a, 0, dagj (-, 9))) -  Qe (pj (a , 9, dagoj (

< Co |pj (a, 9, dadj 9)) ~  (Pj (a, 9, dago,j (•, 0)))

where the inequality follows from the mean value theorem (MVT) and the fact tha t 

the derivative of Qe is uniformly bounded. Given the smoothness assumption on 

(pj) in assumption (xiii), by MVT in Banach space supaGj4jv \pj (a, 6, dagj 9)) —
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(p j ( a ,M a £ O jM ) ) )  I < SUP(9,a,dagjGOxAxQj(i> ||D dagPj (a, Q, da9j) || x sup0, a€@xAff  I d ag j ( a , d ) -

dago,j {a, 0) |- Since has zero measure on the boundary of A,  by Lemma 2.5, J  \FA\x=j (#> dagj (-, 6 

*A|x=j (<?, dago,j (•, 0)) Idfij < Co sup# ,a€0Xv4jv l^a?j (a, 0)-da0o,j (a, 0) 1+2fij ( A \ A n ) = 

op ( l) . So we also have j ^ l  — op ( 1 ) uniformly over 0 .  Lastly for A%, for each j  we

By Lemma 2 .9 , the class of functions { 1  [• <  a, xu  =  j ]  — FAjx  (' ,3) : a €  ^4} is a l s °  a  

Glivenko-Cantelli class, so: the first term  on the RHS of the inequality above converges 

in probability to zero; the second term also converges in probability to  zero since 

P x (j) ~  P x  (j) = op ( 1) for each x  6 X .  Since ^3 is independent of 9, the uniform 

convergence in (9 8 )  holds and consistency follows.■

P r o o f  o f  T h eo rem  2.3. To proof Theorem 2.3 we set out to show tha t our 

assumptions imply we satisfy all the conditions of Theorem G. We showed consis

tency in Theorem 2.2. G1 is the definition of the estimator. For G2, it suffices to 

show dagj (•, 0) G Gsn j  w.p.a. 1 and sup0G0 \\dagj (•, 9) -  dago,j (-, 0)11^ =  op (AT-1/4) 

for all j  = 1 , . . . ,  J .  The former is implied by Lemma 2.6, from the proof of Lemma 

2.5, the la tter holds if h4 4- J ^ h3 = o (iV-1/4), this is certainly the case when h is in

write

rjp
where FA]X (« ,i )  =  77̂  J 2 i = i , t = i1 [a n  ^  x a  = A  then w.p.a. 1

max sup FA\X (a\j) -  FA\X (a\j)

—---------------—  max sup FA x
m in i< j< jp x  U ) 1 <J<JaeA

max sup FAtx  (a , j ) -  FAjX (a,j)

m a x i< j< j  \px  ( j )  ~  Px  (j)]  
m m i< j<jpx  (j )
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the suggested range. G3 and G4 simply requires translating the smoothness we impose 

in E l and E2 to satisfy these conditions. Now we show G5, in particular we need to 

show tha t

Mn  (0,?(-,0)) -  Mn (00,? Mo)) -  (M(0,?(-,0» -  M  (0o,?M o))) -  (0 -  0o)'(09)

=  °P ( l |0 - 0 o |t  2 + l̂ M  + ^ ) ,

holds uniformly for ||0 — 0o|| <  $N- Then for any pair (0, dagj (•, &)) we can write

Ej  (0, daQj (•, 0)) — Ej  (Oo, dagj (•, $o)) =  (Fa \x =j (@, (*, 0)) — Fa \x =j (Oo, da9j (*> 0o))) x

(EA\x=j (0, da9j (*, 0)) +  FA\x=j (Oo, da9j (•, Oo)) -  2FA

and analogously

E 2N j  (i9, da9j (•, 0)) -  (Oo, dagj (•, 0O)) =  (^ 4 |* = i (0, (*, 0)) -  FA]x=j (0o, dagj (•, 0O))) >

(•^4|X=j (0, da9j (•, 0)) +  (001 (•, 0q)) “
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Combing these we have

- £ /3=1 J

M n  ( 0 , ? ( ' , 0 ) )  -  M n  ( 0 o , ? ( ' , 0 o ) )

R ~ 1/2 ( v R , j  (0, d a d j  (*, 0)) -  V R j  ( 0 O, d a d j  (*, 0o)))

+  (FA\x=j  (0, d a #  ( • ,  0)) -  Fa \x =j (00, d tt#  ( • ,  0o))) 

R ~ 1/2 {vR,j {0, dagj ( • , 0)) +  VRj  ( 0 0 ,  d a #  ( • , 0 O) ) )

+  ( f .A\X=j  (0 , d a#  (', 0 ) )  +  F A \X = j  (0 0 , d a #  ( ’> 0 o ) )  ~  2 F > i | x = j )

=  E  [  EJ &  d*3i C‘, 0)) -  («o, da#  (•, 0o)) dgj
3=1 J

J r
- 2  ^  (0, d a #  (•, 0)) -  Fa\X=3 (00, dagj ( ' , 0o))) (^4|X =j -  dg,j

3=1 J

WR,j (0, dagj (•, 0)) -  J'flj (00, da#  (', 0o))]

^ 4 i x = j  (0 ,  d a g j  (•, 0 ) )  d f i j
<

+ ^4[x= j (0o, dagj (•, 0o)) -  2F>i|_y=j

(0, d a #  (*, 0)) +  VR,j (00, d a #  ( • ,  0o))] 

x [ - ^ a [ x = j  (0, d a #  (*, 0)) — FA\x=j  (0o, d a #  (*, 0o))]

[i / j j j . ( 0 r d ft#  ( • ,  0 ) )  T- ( 0 0 ,  d o #  ( • ,  0 O) ) ]

dVj

+ R
3=1 J

+ « - 1/2E /
3=1 J

d/i,

+RT * E /
j= l ^ x (0, dagj (•, 0)) +  (00, do# (•, 0o))]

— M  (0, g (•, 0)) — M  (0o, <7 (•, 0o)) +  +  #2 +  #3 +

dfij

We now show th a t, out of {-Bi}^=1, B\  is the leading term tha t contains Cn  in (99), the 

rest are of smaller stochastic order. Since we are only interested in what happens as 

||0 — 0o|| - 0 ,  in what follows, the little ‘o’ and big ‘O’ terms will be implicitly assumed 

to  hold with ||0 — 0o|| —* 0 and N  —► oo.

For B\  :
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By mean value expansion

B \ = - 2 ( 6  -  0O) ' £  S  DeFA\X =j (i9 j,dagj (->Qj)) ( f A\x= j — FA\x= jj  dp.j 
j = i J

3 r
= - 2 ( 6  — 0o)' ̂  j  DoFA\X =j (0o, dago,j (*, #o)) (FA\x=j — FA\x=j} dp,

3=1

J

- 2 ( e - e 0) X  [
3=1 3

= B \ \  +  B\2 i

[DdFA\X =j (0j, dagj (•, 6j))  -  D eFA\X =j (0o, dagoj (•, 0o))] 

x  [^ 4 |X = j “  ^ k |X = j]

d»3

where for each j ,  6j  is some intermediate value between 0 and 0o th a t corresponds to 

the MVT w.r.t. the j  — th  summand. We first show tha t B n  is the leading term  tha t is 

equal to (0 — 6o)' Cm in (99) and that y/NCm converges to  a normal random variable. 

By Lemma 2.9 y /N  (^FA\x=j ~  FA\x=jj  Fj where Fj is a tight Gaussian process 

th a t belongs to l°° (A) for all j ,  by Slutsky theorem and a similar argument used in 

the proof of Lemma 2.9, it is easy to show th a t DgFA\x=j (00, dago,j (•, 0o)) V N ( F A\x=j 

-  FA|X= j ) also converges weakly to a tight Gaussian process. To see the latter, note 

th a t for any dagj (-, 0) 6

F>oFA\x  (a U; 0, dagj (-, 0))

=  <1 (Pj (a, 0, dagj (•, 0))) (depj (a, 0, dagj (•, 0)) +  D q̂ pj (a, 0, dagj (•, 0)) [dgdag (•, 0)]) ,

where, d$ denotes the ordinary L —dimensional partial derivative, d /d 6 , w.r.t. in the ar

gument 0. This is continuous on A  for any j .  Now, if we define a linear continuous map 

T j  : l°° (A)  -»  R (w.r.t. sup-norm) so that Tj f  =  J  D eFA\X =j (0o, dago,j (', 0o)) f d p  for 

any /  6 l°° (A) then the map is linear and continuous, the boundedness follows from 

the observation tha t supoGj4 \\DgFA\X =j (Oo,dagoj  (',^o))|| < oo. Then, by continuous
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mapping theorem (CMT)

J  D $ F A \X = j  {9o, daQo,j (;do)) y /N  ( F A \ x = j  ~  ^ 4 |x = j) dpg J  D 0F A \X = j  (&o, dago:j  { ‘, 9 o ) ) ¥ j d p j

Furthermore, the limit is also Gaussian since we know Gaussianity is preserved for any 

tight Gaussian process tha t is transformed by a linear continuous map, see Lemma

3.9.8 of VW. So we let

J ,

V~NCn  = D0FA\x=j {Oo, dago,j (*, Oo)) y /N  {FA\x=j — ^A\x=ij  dpg, (100)
3=1 J

then y /N Cjv also converges a Gaussian variable.

For # 12, for each j ,  by Cauchy Schwarz inequality we have

{0 — Oo)' J  (D0FA^x=j (0j , dagj (•, 0j)) — D0FA\X =j {Oo, 8ago,j {-, Oo))) (FA\x=j — FA\X =j} <

< (0 - e oy j

J

{DeFA\X =j {0j,dagj {-,0j)) -  D0FA\X =j {Oo,dago,j {-,0o))) 

x {D0FA\x=j (0j,dagj (-,0j)) -  D0FA\X =j {0o,dago,j (•, Oo)))
dfij {9 -  do)

F A \ X = j  -  FA\x=j l 2
= j \  dg-j

1/2

where for each j , 6j is some intermediate value between 9j and 6qj tha t corresponds to 

the MVT w.r.t. the j  — th  summand. Let d0l denotes the I—th  element of d0 then

<

D 0lFA\X =j (0j,dagj (•, 0 j )) -  D0lFA\X =j {0o,dago,j (•,0o))| 

q ( p j  {a, 6j , dagj (•,0 j )))  d0lPj (a ,0 j,d a§? (-,9j))

—q {pj (a, do, dago,j (*, #o))) d0lpj {a, Oo, 8agoj {-, Oo))

q (pj (a, 6j , dagj (•, 0 j )))  DdagPj {a,0 ^ , 8 ^  {-,9)) [d0ldagj (-,0j)] 

- q  {pj (a, 00, dago,j (•, 0o))) Ddagpj {a , 0O, dago,j (•, 0o)) [d0l8ago,j {-, 0o)]
+
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First note th a t the terms on the RHS are uniformly bounded, it is easy to  see th a t the 

terms on the RHS of the inequality are o (1) as ||#j — 0o|| —> 0 since (Oj, dagj (■, Oj)) 

(00, dago,j (', 0o)) by Lemma 2.5 and continuity in 0 of dagoj (-, 0). Then it will follow 

by DCT th a t

(8 -  80)' f
[DqFA\x  (0j , (', 0 j)) -  F)qFA\x  (00, ^a^0,i (', 0o))]

dfi (0 -  Oo)
J

x \D$FA\x  (0j->dagj ( ’,0 j))  — F)qFA\x  (0o?dago,j (’,0o))]

1/2

=  Or

s F A \ X = j  ~  FA \X=jFrom Lemma 2.9 and CMT, 

have finite j  then I.B12I =  op (AT-1/ 2 ||0 — 0o||)- 

For i?2 :

For each j

1/2
=j j dfi = Op (N  1/ 2) . Since we

FA\X=j (0, da,dj (', 0)) +  FA\X=j (0O» dagj (', 0o)) ~  2FA\X =j

— (FA \ x = j  (0, d ag j  (•, 0)) — F A \X = j  (0o, d ag j  (•, 0o))) 

+2 (F A \X = j  (&o, dadj (•, 0o)) -  F A \ x  (0o, d ago,j (•, 0o)))

- 2(FA\x=j ~  FA\X

then we can write B 2 as

B 2 * - 1/2E  /
3=1 J

dfi.
W r j  ( 0 , d ad j  (•, 0))  -  URJ (0 0 , dad j  (', 0o))] 

x \Fa\X=j (0 , d ad j  (-7 0 ) )  -  F A \ x = j  (007 d ag j  (’7 0o ))]

Wr J  (0 , d a d j  (•, 0 ))  -  V R j  (00, d a d j  ( ’, 0o))]

x [FA\X=j (00, ( ', 0o)) -  FA\x (00, ^a^Oj ( ', 0o))]

- 2 i T 1/2 j  (v Rtj (0, dadj (-7 0 )) -  V R j  (00, dadj (-7 0o))) ( F a \ x = j  -  FA\X=j) dVj
3=1 J

B 21 +  B 22 +  B 23-

+2 R ~1/2£ /  
3= i J

dfi.
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We first show /  [uRj  (Q, dadj (•, 0)) -  i / r j  (0o, dadj (•, 0o))]2 dfij = op ( 1 )  for any j .  By 

Lemma 2.6 dagj € Q ^  w.p.a. 1, and by Lemma 2.8 it suffices to  show th a t \\dadj (•, 0) — dadj (*, 0o)|| 

0 as ||0 — $o||. This follows from the triangle inequality since ||dadj (•, 0) — dagj (•, 0o) || is 

bounded above by \\dagj (•, 0) -  dago,j (•, Q)\\+\\dadj (•, 00) -  dago,j (•, 0o)|| +  \\dago,j (•, 0) ~  dago,j (*, 

and the fact tha t the first two terms of the majorant converge to  zero by Lemma 2.5 

and the last term  converges to zero by the continuity of dagoj (*, 0) in 0. For f?2i

B21 = 2^ " 1/2E  /
3=1 J

2ir1/2̂  f
3=1

WR,j (0, dagj ( ’, 0 ))  -  VR,j (00, dadj  (', ^o))] 

x \Fa \X=j (0j ('j 0)) -  ^4|X=j (00, dadj (', 0o))]

d / i

[^ ,j  (0, da d j  (-,■ 0)) -  »R, j  (00,  dad j  (■, 00))] 

( 0 j i d a 9 j  (•, 0j))

d/x (0 -  0q) ,

by Cauchy Schwarz inequality

max
i < j < J

|Bai| <  op (_R-]/2)  x

( d  —  d o )' J  ^DeFA\x =j (5j,dagj (•,dj)) DqFa \x=] ( d j , 9 0 <?j (>dj)) ] d f i  ( d  —  d o )  

=■ ^ ( i r ^ c v a i ^ - d o l f )

=  O p  ( n - 1 / 2 | | d  — d 0 | | )  ,

the first inequality follows from the stochastic equicontinuity condition of Lemma 2.8, 

then it is easy to  show the outer product term  inside the integral is also bounded in 

probability and the last equality follows from N  = o ( R ). This same argument using 

Cauchy Schwarz inequality again be applied for B 22 and B 2 3 , in particular, it follows 

from Lemma 2.10 and Lemma 2.9 respectively tha t IB22I =  o (iV-1 ) and |£?23| =  

o ( N ~ 1).

For B3 :
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For each j

VR,j (0, da9j (•, 0)) + v r j  (0o, da9j (•, 0o)) =  2v r  (0o, dago,j (•, 0o))

+  ( v r j  (0, dadj (■, 0)) -  v r  (0O, dago,j (•, 0o)))

+ (vRj (00, dadj (*, #o)) -  vr (0o, dagoj (•, 0o))) ,

then we can write B 3 as

Bs = 2S  1 / /2  ^  J  v r j  (0o, dago,j (', #o)) (#, dadj (•, 0)) -  ^4|x=j (#o, da?j (•, 0o))) dg3
j= 1

+*_1/2E  /
2 = 1  J

+-r_1/2E  /j=iJ
=  Z?3i +  B 32 +  B33.

[^#,j (0, dadj (•, 0)) ~  (0o, dago,j (-, 0o))]

x [-̂ 4fX=y (0, (•, 0)) — -FU|̂ r=/ (#0, d a d j  (■, 0o))]

[̂ /Zj (0o, dadj ('1 #o)) -  (0o, dago,j (•, 0o))]

X [̂ A\X=j (0, d a d j  (', 0)) — f  A\X=j (#0, (', 0q))]

dfi,

dHj

r 12 1 /̂2
For each j : we have | /  [i^|x=i (0, dadj (■, 0)) ~ *U|x=j (00, da?j (•, 0o))J

Op (||0 — 0o ||) by Cauchy Schwarz inequality; from Donsker theorem and CMT, | f  [v r  ( 0 o ,  dago,j (', (■ 

Op (1). Then it follows tha t I-B31I <  op (AT-1/ 2 ||0 — 0o||)> By a similar argument, using 

Cauchy Schwarz inequality, continuity of dag(-,0)  in 0, Lemmas 2.5, 2.6 and 2.8, IB32I 

and I-B33I are also op (iV-1 / 2 ||0 — 0o||), in particular as we can use the triangle inequality 

to show ||(0, dadj (', 0)) -  (0o, dago,j (•, ^o))!^ and ||(0O, dagj (•, 0o)) -  (0o, dago,j (•, ^o))!^ 

converge in probability to  0 as ||0 — 0o|| —► 0 for all j .

For B 4 :
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By the same argument above, we can re-express B 4

£4  = 25f 1 5 Z  /  VRj  ^ ° ’ (', Oo)) (vR,j (0, dadj (', 0)) -  v r j  (Oo, da9j (', Oo))) dfij
j = i J

+#-1̂  J  iuR j (0 ,  dadj ( ' , 0 ) ) - i y R,j(e0, dagj ( ^ e o ^ f d f i j
j =1

j
+ i r * E /

3=

[vr j  (0q, dadj ('»Oo)) -  v r  (Oq, dago,j (*, 0o))]

X W r j  (0, da d j  ( ’, 0 ) )  -  V R j  (Oo, dad j  (*, 0o))]
dlLj

— B 41 +  B 42 +  B 4 3 .

By repeatedly using Cauchy Schwarz inequality, continuity of dag (’,0) in 0, and Lem

mas 2.5, 2.6 and 2.8, as seen in the analysis of B 2 and B 3, it follows easily that 

\Ba  f =  op (iV -1) for i  =  1,2,3.

G6 then follows from Lemma 2.10 J I  

P r o o f  o f  T h e o r e m  2.4 . Prom (88) we have

9e ~  Mo =  W ( /  -  f )  (rg -  r„0)

where the expansion above follows from MVT and 0 denotes some intermediate value 

between 0 and 0q. It is easy to see tha t, for j  = 1 , . . . ,  J

=  O p( jV -V 2) ,

since H  ( i  — C j = Op (1), ||r*01| =  Op (1) and y /N h  = o ( N 1/2) , then y /N h  | gj  (a, o'j — d j  (a , Oo 

= op (1). I t remains to show the asymptotic independence between any pair (dj (a, o'j , dk ( a', o'j ̂
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for any k  ^  j  and a ' ^  a.  Since

cov (gj (a ,o )  ,gk ( a ', ? ) )

=  cov (gj (a, &o), 9k (a', Oo)) +  cov (gj (a, 0O) , gk (a' ,#)  -  gk (a', 0o))

+ C O V  (gk ( a ' , 0 o )  ,gj (a ,? )  - g j  ( a , 0 o ) )  +  cov (gj ( a , d )  - g j  ( a,60) , g k ( a ' , d )  - g k ( a ' , 0 o ) )

by Cauchy-Schwarz inequality, it suffices to  show var ( y /N h  (jjk (a', 9)  — gk (a', Oo))) =  

o(  1); this follows since ||</j ~  9j i'^Oo) = Op (iV-1/ 2).B

2.9.3 P roofs o f  Lem m as 2.1 - 2.10

These lemmas are used in the proofs of Theorem 2.1 - 2.3. In what follows we let: £ >  0 

be a number tha t is arbitrarily close to 0; Co  denotes a positive constant tha t may take 

different values in various places; VW abbreviates van der Vaart and Wellner (1996).

P r o o f  o f  L e m m a  2.1. W e ca n  w r ite , for an y  1 < k , j  < J

/, i-x /,.-x Pxf,x {k, j )  —px>,x (k, j )  Px '\x W j ) /.x ( .xx
Px>\x (k\j) - p x ' \ x  (k\j) = ------------- — t t x --------------- „ (Px (j) ~  Px  (j)) •

P x { j )  Px  ( j ) Px  u )

Given the simple nature of our DGP, by standard CLT and LLN, we have p x r,x (k, j )  — 

Px>,x (k, j )  = Op (IV- 1 / 2) ,px  (j) -  Px  (3) =  Op (iV- 1 / 2) and px  O')-1 =  Op (1), so it 

follows th a t p x r\x (k\ j} — Px' \x {k\j) — Op (AT-1/2) for any k and j .  Since £  is a linear 

map on to RJ , for any vector m  6 R*7 we have ( ( M  = £ E i t = i ( p W ) -  

p{k\ j))mi = O p (iV - 1 / 2) for all j  then it follows from the definition of an operator

norm that C - C — Op  (iV_1/ 2) . «

P r o o f  o f  L e m m a  2.2. For any j  = 1 , . . . ,< /  and 6 6 ©, rg ( j )  is defined in (86)

TV Twith w itN ( j )  =  1 [xit =  j ]  / p x  ( j )  and define r e (j ) =  E ; = i ,* = i  w %tN (3 ) u e ( a it ,  x u ,  e*t).
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Then we write

re U) ~  re {j) =  (r0 ( j)  -  re ( j) )  +  (re ( j )  -  r6 { j ) ) , (101)

the first term  is the usual term had we observed { e i f } ,  the la tter term  arises due to the 

use of generated residuals. Treating them  separately, for the first term

1 1 -1 \
?o (j)  -  re (j)  = V  1 [%it =  j] (y-e (a.t, xiu £,t) -  rg (j ))

P x ( ] ) N T J ^ =1

N ,T

=  ¥ 7 u ) N f  . ^  =

where for each 9, vqh = uq (ciit,Xit,£it) — Te (x it) is a zero mean random variable, note 

tha t 1 [xn = j] x (7*0 (x n ) — re (j )) =  0 for all i , j  and t. Define T n j  (9) as the sample 

average of i.i.d. random variables iXit =  •?]}. » given the assumptions

on the DGP, in particular on the second moments, T N,j (9) = Op (TV-1/2) for any 9 by 

standard CLT. We want to  obtain the uniform rate of convergence of T N,j (9) over ©. 

This can be achieved by using the arguments along the line of Masry (1996). We first 

obtain the uniform bound for the variance of T jv j (9), some exponential inequality is 

then applied to  get the rate of decay on the tail probability for any 9. The pointwise rate 

can then be made uniform by Lipschitz continuity of vo^t (in 9) and compactness of 0 . 

More precisely, we first show tha t sup0G@var(Tn j  (9)) = O (N -1 ) . Since var(T n j  (9)) 

is just a variance of 1 ^tv e^t l  [xit — j] by divided by N ,  the numerator takes the 

following form

( l  T \  1 T
var ( t  v ^ 1 = f t )  =  var  (Ve’u 1 X̂ i t = ^  ̂V t=1 /  f = i

2 T_1 s
+ f  ^  ( 1 ~~ I 7)  Co V  V̂e,i01 X̂i0 =  ^  ’ V0’i s l  X̂is =  ^  ’

S = 1

=  Ye,i,j+Ye,2,j-
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The covariance structure in Yq2,j follows from the strict stationarity assumption, which 

also implies we can write =  E  j^'i^ 1 [xit — j]j • Since uq (a, x , e) is continu

ous in 0 for all a, x  and e, it follows th a t sup0e@ Yq \ j <  oo. For the covariance term, by 

Cauchy-Schwarz inequality, Cov (vq^qI  [xi0 =  j ] , ve,iA  [x is = j]) < E  v 2e%{)l  [a;i0 =  j]J <

oo, since sup0e@ v 2v 9,i o j <  oo, it follows tha t sup0 Yq2 <  oo for any finite X. Since 

T N,j (0) is an average of N —i.i.d. sequence of random variables tha t, for each 0, it 

satisfies the Cramer’ conditions (since u is uniformly bounded over all its arguments), 

then Bernstein’s inequality, e.g. see Bosq (1998), can be used to obtain the following 

bound

f N 2S2 1
P r 0A n r„ , (8)1 >  N SN] <  2 e x p ( - 5 p ^ Y- ^ y T r a - }  . (102)

Let 6n = iV(-1 + ^ /2 , simple calculation of the display above yields P r [|Tn j  (0)| > Sn] =  

O (exp (—iV ^)). By compactness of 0 ,  let {Ljv}5v=i he an increasing sequence of 

natural number, we can define a sequence {0iLN}i=\ to be the centres of open balls, 

{®iLN}i=v  of radius {eLN}f=[ such th a t 0  C (jfc i and Ln  x eLn =  0 (1 ) , then 

it follows tha t

P r sup ITjvj (0)| >  SN 
. 0

< P r 

4-P r

max | T Nj  (0iLN) | >  SN
1 <z<Ln

max sup (0) -  Y Nj  (0iLN)\ > $N
<*<N deG iLN

< CqLn  exp ( —̂ )  +  P r [eLN > Sn ]

= o ( l ) .

The second inequality from the display above follows from, Bonferroni inequality and 

(102) for the first term, and by Lipschitz continuity of Tyvj for the latter. Then the
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equality holds if we take e iN = o (5n ) such th a t L x  grows at some power rate. It then 

follows tha t tha t sup# |T/v,j (#)| =  op (iV~A). Then w.p.a. 1

The procedure to obtain the uniform rate of convergence is shown above in detail to 

avoid repetition later since we will require to show many zero mean processes converge 

uniformly (either over the compact param eter space or the state space) to zero faster 

than, some rates. The argument above can also be applied to  nonparametric estimates, 

as well as some other appropriately (weakly) dependent zero mean process, see Lin

ton and Mammen (2005), and especially Srisuma and Linton (2009) for such usages 

in closely related context. We comment here that, our paper along with the papers 

mentioned in the previous sentence, unlike Masry (1996), are not interested in sharp 

rate of uniform convergence so our proofs are comparatively more straightforward.

For the generated residuals, by definition

sup |re { j ) - r e (j)\ <
eee

m axi<j<j supgge |Tjy,j (g)| 
m ini<j<JPx (j )

Op ( n - X)  ■

^  ̂  W itN  { j) {^ 9  {P'iti -Eiti £ i t) ^ 9  (P'iti X { t■> £ i t))

where £it = \  ( f ^ *  (a-it\xit) j  with x  =  Qe 1- Using mean value expansion, ug (ait, x it,£it)— 

Ug {ait,Xit,£it) = -j^ug (ait, x it,£it) x '  (F a \ x  {ait\xit)) ( F a \ x  ( ~  FA\x  (a*t|a:*t)), where 

£it and F ( ait\xit) are some intermediate points b e tw e e n ^  and eu, and, F^\X {an\xu) 

and Fj±\x {ait\xn), respectively. Then it follows that

i=i,t=i

{a i t , X u , ^ i t )  (^Fa \X  {a i t \ x i t )  F 4|x { ^ i t “1“ O p  ( N
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where xg (an , x iu eit) = j^ug (aiu x it, eit) (FA\X (a-it\xit))- In addition, the Op (AT-1 ) - te rm

holds uniformly over 0 and j ,  this follows from Markov inequality since and 

X" are uniformly bounded over all of their arguments, m ax i< j< j \px ( j )  — Px (j ) | =

Op (AT1/2), and, m a x ^ x j  supaeA \FA\X (a \j) - i ^ | X (a |j) | =  Op (AT1/2) by Lemma 

2.9. By a similar argument, using the leave one out estimator for FA\Xi  the leading 

term  for rg ( j )  — rg ( j )  can be simplified further to

Y .  Y .  (a i t ,X i t ,e i t )  1 X̂ , t , 1 X̂}1, ■ 'Z i^  (1  [%'s <  a,t\  -  F ^ x  (<Ht\xu)),
N T  (N T  -  1) J *  U) P (xu)

^  r p

where Y l j ’s (_it) sums over the indices j  =  1 , . . . ,  N  and s = 1 , . . . ,  T  but omits the 

itih—summand. Subsequently, the term in the display above can be written as the 

following second order U-statistic

^ Kg (aiU Xi t ,£i t )  1[px<])] 1[; g t] i 1 la3* ^  a *<l “  FA\X ^

^  + > ^ 0  ( a j s 5 X j s , £ j s ) ^p{xjs) \-a it  —  a3s ]  —  - ^ 4 | X  ( a j s | x j s ) )  y

where X^c((it),(js)) sums over distinct combinations of C ( ( i t ) , (js)). Note that 

1 [ait <  a] =  FA\X (a\xit)+u (xit;a) where E  [cj (xit\a) \xit] = 0, so u  (xit\ •) is a random 

element in L 2 (A). Then it is straightforward to obtain the leading term  of the Ho- 

effding decomposition of our U-statistic, see Lee (1990), and, Powell, Stock and Stoker 

(1989), in particular we have for all j

/ \ -1
N T

1  E
{ 2 > c m , U s ) )

N,T
r e ( j ) - r g ( j )  = —  ] T  ( e (u  (x it\ •) , 2̂ ;  j )  +  op (iV~1/2)  ,

i = i , t = i

w here( e (u (xit; •), x it; j )  = fu )  (xit-,ajs ) J/  >cg (ajs , x it,£js ) 1 [xit = j] fA'X'£̂ t) it,6j3)d£js  ̂ da 

and f A,x,e denotes the joint continuous-discrete density of (ait ,Xit ,£it). Note th a t (g is 

random with respect to wa and xa, and E  [lj (x h ; •) |rr#] =  0, so has zero mean. Given

142



1  ̂J\J fjl
the boundedness and smoothness conditions on x p , then $ ^ t= i t= 1 C0 i 00 i x iu  •) > x i t 5 j ) 

can be shown to converge uniformly in probability to zero faster than the rate N ~ x as 

shown above. In sum, we have shown for j  = 1 , . . . ,  J  th a t rg (j) = rg (j ) +  rff (j) with

N T1 1 * A
rg ( j )  = . , „ „  V  1 [xit =  j } ( u g  (ait, x it, e it) -  rg (j))

Px ( ] ) N T J ^ =1

^ * * y*

+ N T  S  <9 ( u ( x i f , - ) , x i t ; j )  + op [ N - x>)  
i=l , t=l

= op(iV-A),

w here th e  sm aller order term  holds uniform ly over j  and 6 .1 

P r o o f  o f  L em m a 2 .3 . S ince 0 <  <  1 and 0 <

in L inton and M am m en (2005) can b e  used to  show

< 1, the argument used

We

1 - ( / - £ ) - *  =  Op ( iV -1' 2)  .

n o te  th a t, using th e  con traction  property, (I  — £ ) _1 and ( I  — C \  are bounded

linear operators since 

-1
(/-£) <(7 — £ ) -1 <  (1 — ||£ ||) -1 < 00 and similarly

^1 — | C ^ < 00, this can be shown from the respective Neumann series represen

tation of the inverses and by the basic properties of operator norms. We comment 

tha t these relations involving the empirical operator hold in finite sample since X  is 

finite, otherwise it will be true w.p.a. 1 by the same reasoning as used in Srisuma and 

Linton (2009). Then for each x  G X  and 0 6 0 ,  rhg ( j )  is defined in (87), we write 

frig ( j )  = ^7 — C j (rg ( j )  +  Tq1 ( j ) ) ,  given the results from Lemma 2.2, it follows 

tha t m a x i ^ s u p ^ J - r )  r f ( j ) |  =  op ( N ~ x), since |  =  Op ( 1).

For first term, we can write ^7 — rg ( j )  =  mg ( j )  +  f h (j ) where (j ) =  

^7 — (£  — C j mg  (j ). Since we know ^7 — c'j = Op (1) from earlier, from

Lemma 2.1 £  — £  =  Op ( iV - 1 / 2) ,  and, m ax i< j< jsup0G@ \mg (j')| =  O (1) as mg  (j )
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is  a  co n tin u o u s fu n c tio n  o n  a  c o m p a c t  se t  ©  an y  j , th is  c o m p le te s  th e  p r o o f w ith

P r o o f  o f  L e m m a  2.4. T h e  em p ir ica l a n a lo g u e  o f  (84) is

go =  U r h e ,

where h, is a linear operator th a t uses local constant approximation to  estimate the con

ditional expectation operator H. Then we proceed, similarly to  the proof of Lemma 2.3, 

by writing gj (a, 0) =  gj (a, 0)+gf (a, 0)+Hm f  (j , a) where gf (a, 0) = ( f t  -  r t j  m e (j, a) 

for any j .  The approach taken here is similar to th a t found in Srisuma and Linton 

(2009), we decompose gf (a, 0) into variance+bias terms, note that the presence of dis

crete regressor only leads to a straightforward sample splitting in the local regression 

for each x. Since A  is a compact set, the bias term near the boundary for Nadaraya- 

Watson estimator has a slower rate of convergent there than in the interior, for this 

reason we will need to trim out values near the boundary of A. For the ease of notation 

we proceed by assuming tha t the support of an is A n ,  where {j4n}^=1 is a sequence of 

increasing sets such that (J^Lj A n = in t  (A), here the boundary of the set A  has zero 

measure w.r.t. any relevant measure to our problem so we can ignore the difference 

between A  and in t  (A). In our case A = [a, a] then A n  =  [« +  7 jv,a — 7 ^] such tha t 

7n  =  °(1) anci h = °(1n)-  So we only need the trimming factor to converge to  zero 

(at any rate) slower than the bandwidth, the reason behind this is fact tha t, for large 

N ,  the boundary only effect exists within a neighborhood of a single bandwidth. Then
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for any m  =  ( m i . . .  m j) '  G M*7, a and j

I ' O  n -/\ ( •  \  f  PX',X,A ( k , j , a )  P xf,x ,A{k ,3 ,a) \  , i n Q NIH - H ) m ( j , a )  = > m k — .- - r------------------/• \ (103)
v '  “  V Px,A \3,a) P,x,A \3ia ) J

EJ ( P x f,x,A (k, j , a) -  px*,x,A (k , j ,  a) \
Px,A ( j ,a)  )

Ej  (  Px',x,A ik , j ,  a) _  . . .  .A
_ ( ? x * V , a ) p X A V,a)  ^  M  ~ PX’A M ) J ’

where

1 n ,t
PX',X,A (k, j ,a )  = —  5 3  1 lXit+i = k >x« = 3] K h {an -  a) ,

»=i,t=i

1 ' ^
Px,A { j ,a) = ™  5 1  1  [xit = j ] K h {ai t - a ) .

t=i,t=i

For any j, A:, then

Px',x,A (k, j , a) -  Px>,x,A (k, j , a)

=  (px',*,;! (&, j , a) -  E  [pxf,x,A {k, j ,  a)]) +  ( #  [px',x,A (&, j ,  a)] — px',x,A (k , j ,  a)) 

= I n  ( k j , a )  +  J12 (A;, j , a ) ,

where / n  (A:, j ,  a) has zero mean and /12 (A:, j , a) is nonstochastic for any a 6 A n ,  Under 

stationarity, by the standard change of variable and differentiability of p x r,x,A (k , j , a) 

(w.r.t. a)

1 d 2
h 2 (k ,j ,  a) = - h Ap2 (K ) Q-pPx >,x ,a (k , j ,  a) +  o (h?) .

It then follows tha t maxi<J)fc< j suipa€AN \I12 (k 7j , a)| =  O (h4) since -§^px\x,A (k , j ,  a) 

is a continuous function on a for any j  and k. It is also straightforward to show by 

using the same arguments as in Lemma 2.2 tha t m axi<jtfc<j supaGi4jv | In  (k ,j ,a )\  =
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Op ( \/x'h )  • particular, this follows since

var ( y /N T h l n  (k ,j ,  aj') = pX',x,A (k , j ,  a) k2 (K)  +  o (1),

where the display above for any j  and k uniformly over A n - Combining terms we have

max sup 
i<j,k<j u£An

J

k=i

Px>,x,A (k, j ,  a )  -  PX',X,A (fc, j ,  a)
PX,A 0 »

m axi<j<j \rrij\
<  J  — --------- . f 3~  ■ 3— T ~ T 7  x , max sup \pX',x,A (kt j, a) -  pX',x,A (&, j ,«) |mmi<j<j m foe^ \px,A U, a)\ 1 <j,k<J a£AN'

iV* \
=  0 ^ h + 7 m ) ’

where the inequality holds w.p.a. 1 since we know (to be shown next) px,A converges 

to  px,A uniformly over X  x A n - By the same type of argument as above, write for each

Px,A 0 , a) ~  Px,A (j , a)

=  (.P X ,A 0 , a ) - E  \px ,A (j , a)]) +  (E  \px ,A O', a)] -  Px,A (j , a))

=  /21 (j, <0 + /22 (j\ a ) ,

then it is straightforward to  show the followings hold uniformly over its arguments

I 22 (jy a) = (K ) ^ P x , A  (j, a) + o (h2) ,

var ( V N T h h i  (fc, j,  a)) =  O', a) «2 (A') +  o (1),
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then we have

max sup 
1 <j,k<J aGAN

< j -

k=l
m a x i< j < j  |tti j

PX',x,A (k, j ,  a) 
Px,A (j , a)px,A (j , a) {Px,Ati>a) ~  Px,A (j , a))

mini<j< j  \px ,A (j, a )| 1 <j<J aeAN
x max sup |px,A 0 ,  a) -  O', a)|

So we can write for each j

[li. -  m 0 , a) =
J

k=l
J

- E m k

PX',X,A (&, J> «) ~  PX',X,A (fe, j,  Q) 
0 , a )

PX',X,A {k, j ,  a)

*=, V
=  B NJ  (a; m) +  VJvj (a; m) +  (a; m ) ,

0 , a ) ~  PX,A 0 , a)) +  WNj  (a; m)

where

td ( \  ! l 4  ( f r ? P X ' , X , A ( k ’J ’ a ) L P X ' , X , A ( k ’ J ’ a ) l k * P X , A ( 3 , a ) \B N J (a;m) = - h  p4 (K)  ^  m k H 22— ----- j j - z ------+ ------- -3— ------------------  ,(104)
2 \  Px,AV>a) Px,A 0 , a) )

VNjj (a; m) =  ^  m k

WNj  (a; m)  =

fc=i

1 l ^ N,T 
Px,Ati,*) XT 2si=l,t=l

1 — j] {flit o)

> —2? [1 [xit+i =  k , a:jf =  y] Xfc (oit -  a)] /
' /  i

( (1C 5)

Px>,X,A(kj ’a) 1
Px,A^^a) NT 2-'i=1»t=1

1 — j\ Kfi (pit ®)

 ̂ - E  [1 [xit = j] K h (an -  a)] j

J

E m *
fc=i

^ 1 / Px',X,A(kj ’a) Px',X,A(kM \  ^
, y l ( j » o )  V P x , A ( j , a )  P X, A( j , a )  yPx,

 ̂ X (px,yt 0 , o) -  PX,A 0 , a)) J

(106)

Note that -Btvj is a deterministic term, Vjyj is the zero mean process tha t will deliver 

CLT whilst, using the same arguments as above, it is straightforward to show tha t 

maxi<j< j  supae/ljv. W n j  (a; m)  =  op (Bx ,j (a; m) +  (a; m)) for any m  e  MJ . Then

we can conclude n - n = Op • Using the decomposition o iH  — H  above
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we have

g f  (a, G) =  g f  (a, G) +  g f  (a, G) +  W Nj  (a ; m g ) ,

where, from (104) - (105), g f  (a,G) = B n j  (a-,mg) and g f  (a,G) = V/vj (a; me). It 

also follows tha t these term s have the desired rate of convergence tha t holds uni

formly over 0  as well since 7i  is independent of G and mg is a vector of J —real value 

functions th a t are continuous on ©. Finally, we define g f  (a, G) to be Wjqj (a; mg) -f 

i i m f ( j ,  a). By the previous reasoning Wjv,j (a’, mg) already has the desired stochas

tic order so the proof of Lemma 2.4 will be complete if we can show, generally, tha t 

m axi< j< jsup0 ae0 Xj4iV 'H m f{ j ,  a) = op (h 4 +  This is indeed true, since we

have already shown tha t 7i — 7i — op (fi4 -t- and given tha t 7i is a conditional

expectation operator, this implies tha t \\H|| <  1, it follows from triangle inequality and 

the definition of operator norm tha t m axi< j< j sup0 a£QXAN 'H m f  (j , a) =  op (N ~x) .■ 

P r o o f  o f  L e m m a  2.5. When 1 = 0, this follows from Lemma 2.4 with h = 

0(AT-1/ 7). Other values of I can also be shown very similarly, only more tedious. 

Since dim (A) =  1 then when 1 = 1, taking a derivative w.r.t. a on (103) we

obtain

fc=l

d  ( PX',X,A (k, j ,  a) ~  PX',X,A (k, j ,  a)
Px,A (j, a)

~ y ^ r n k-
fc=l

0_ (  PX' ,X,A(k ’J’a) 
da \ p x , A  (j , a) Px,A 0 , a)

(Px,A 0 , a ) - p x ,A(j, a))

= Y . mk
k = 1

^ PxIMa) Ta (PX',X,A (fc, j ,  a) -  pX ',x,A {k, j ,  a )) ^

^ ~ % lXAAM  (p x ' ’X ’A “  Px ',x,A (k , j , a)) J

J (  d  1C ;  I  A ^ I A  „ \ \  ^
,aM px,aM  ^  (p x ’A V ’ a> ~  P x 'A a"

k=1

Px,

\  ® x ’a  “) -  PX’A W- “)) J

As seen in the proof of Lemma 2.4, it will be sufficient to show tha t m ax i^ fc^ j supaGi4 \f^px>,x,A (•

148



—&LP X ' , X , A ( k >j ’ a ) \  =  M 1) ’ a n d > m a x l<J,fc< J  SUpoG/ljv \ j%PX,A t ? »  -  £ z > X , a O »  I 

=  op (1) since we assume tha t §^px>,x ,A (k ,j ,  a) and ^ Px ,A {j-, a) are continuous func

tions on a compact set A  for any j ,  k. Proceeding as in the proof of Lemma 2.4, first 

note that for any j ,  k

E 9 -  f t  ^-7^PX',X,A {k,J,a) =  J P x ' ,x ,A  {k, j , a +  wh) dK  (w)

-^Px>,x,A (k, j , a +  wh) K  (w) dw

d
= -^Px',x ,A  (k , j , a) +  O (/i ) .

The first line in th e  display follows from a standard change of variable argument, 

then using integration by parts and Taylor’s expansion, the last equality above holds 

uniformly over A. It is easy to verify th a t uniformly over A

var ( k , j ,  a ) \  = 0 ( 1 ) .

As seen in Lemma 2.2, it then follows th a t m axi<jtfc< j supa€AN | -§^px',x,A (k , j , a) -  ^Px>,x,A (k, j , 

=  Op(/i4+ - ^ = ) .  Similarly one can show m ax i^ fe^ j supaeyljv \^ P x ,A  (j,a) ~  ^ Px,A (j,a)  | =  

Op(h4 +-^===). It is easy to see tha t choosing h = O (AT-1/ 7) will imply m axi< j< j supgtaeQXAN \ ^ i  

- £ 9 e ( j , a ) \  = Op(l)M

P r o o f  o f  L em m a 2 .6 . Since TZq and M.o are J —dimensional subspace of twice 

continuously differentiable functions, DCT is applicable throughout. When p =  0 

the result follows from Lemma 2.5. Consider the case when p =  1 and 1 = 0, for 

s\\ 1 < j  < J,1 < k < L  and X < 1 /2 , the exact same arguments used in proof

ing Lemma 2.2 can then be used to  show gf-r# (j) = ~re(j)  +  with

maxi<j<j su p g^ Q ^ ^ W j 'r f i j )  ~  °p (N  a), and since C is independent of 6, the

same arguments found in Lemma 2.3 can be used to show -Sr-rhe (j ) — m~m d (j)  +

149



(j) with m a x ^ ^ j s u p ^ Q x ^  | j ^ ™ f ( j ) |  =  op (N  A). Apart from replac

ing (r0,rriQ) everywhere by 7m0) ’ we no^e tha t it is here th a t we need

dedOk Uq (a’^ ’£) continuous on ah a,3 and 0. Since H  is independent of 9, the

arguments used in Lemma 2.4 can be directly applied to  show

b {a•0 ) = b  {a' 6 ) + b (a’e ) + (a’ e ) + b (a> e)

such that

max sup
1 < j < J  0 , a € G x A N

max sup
1 < i < J  0,Or€®xAN

max sup
1 < j < J  9 ,aeGxAN

b (a' 6)

— 9rdek9]

— s?dOk >

9j (a, 9) 

Si (a, 0)

=  o p (h2) ,

J - S . ' l
F \ V M J '

N t  \
7 m ) '

Op ^ h 2 +

where W l9j  («, 0) =  B n j  (a; , ^ g f  (a, 9) = VNJ (a; and ^ g f  (a, 9) =

W n j  O'j a ) an<̂  these terms are defined in (104) - (106). For 1 = 2

and 1 < k, d < L, we simply replace by q^ qq- and the exact same reasoning used 

when p = 1 can be applied directly. All other cases of 0 < l ,p  < 2 can be shown 

sim ilarly.!

PROOF o f  L em m a 2 .7 . W e first show  th a t 1 [• <  pj (a, 9, dagj)\ is locally  uniform ly  

L 2 (Q) —continuous for all j  w ith  respect to  a, 9, dagj • M ore precisely, we need to  show  

for a p ositiv e  sequence 8n = o(  1) and any (a, 9, dagj) E A  x 0  x Qj1  ̂ th a t

lim I E
N —>oo

sup | l  [si < pj (a 9', dag) )] -  1 [si < Pj (a, 9, dagj)\ \‘
|| (a*—a,0r—0,da9 j~ d agj)  || <<5jv

(107)

1/2

= 0.
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To do this, take any ^a' — a, 6' — 0, da9j — dag j j  |  <  5n , then we have for all j

| pj (a', 0', dag'j) -  Pj (a, 0, dagj)\ < Co { ||(a ' -  a, 0' -  0) |[ +  || dag] -  dagj\\g j

+o ( ||( a ' -  a, 0' -  0) |[2 +  ||dag'j -  

<  CoSn  +  o (8n ) ,

this follows from Taylor’s theorem in Banach Space since pj is twice Frechet differen

tiable, see Chapter 4 of Zeidler (1986). Ignoring the smaller order term, this implies

pj (a, 0, dagj) -  C0SN < pj (a! , 0', dag’j)  < pj (a, 0, dagj) +  CQSN ,

Pj (a, 0, dagj) -  C0SN < pj (a, 0, da^j) <  Pj (a, 0 ,d ^ )  +  Cotfjv.

Combining the inequalities above, it follows tha t supy ( a, _ a et _ e dag'-dagj) ||<<5jv ^  £i  — Pj 1 

- 1  [ei <  pj (a, 0, dagj)] | is bounded above by 1 [pj (a, 0, dagj) -  CoSjv < £i < pj (a, 0, dagj) +  CoSn 

This m ajorant takes value 1 with probability Qe (pj (a, 0, dagj) +  CoSn)—Qe {Pj (a, 0, da9j) — CqSn 

and zero otherwise, then by Lipschitz continuity of Q£, (107) holds as required. Since 

A  x 0  is a compact Euclidean set it has a known covering number. For G ^ \  since Gj C 

C2 (A) we have C C 1 (^4); given th a t dim (A) =  1 we can apply Corollary 2.7.3 of 

VW to show tha t y j log TV ( t iG j 1̂ , < °°» together with L 2 (Q ) —continuity

of 1 [• <  pj (a ,6 ,dag j) \ , as shown in the proof of Theorem 3 (part (ii)) in Chen et al.

(2003), T j  is Q—Donsker for each j M

PROOF OF Lemma 2.8. For all j , T j  is Q —Donsker and is locally uniformly 

L 2 (Q) -continuous with respect to a ,9 ,dag j , as described in (107), Lemma 2.1 of 

Chen et al. (2003) implies tha t the stochastic equicontinuity also holds with respect to 

the parameters tha t index the functions in T jM
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PROOF OF L e m m a  2 .9 . For any a and j  write

V^V  (^4|x W j )  ~  F A \ x  W j ) )  =  3 i ,n  ( a j )  +  %2,n  ( a , j ) ,

where

N  T
1 1

$ i , N  {a,j) =  ^ -- -7TT x V  (1 [ait <  a , x it =  j] -  ( a j ) )  ,
(j) i=f ^ =1

3$2,n  (a ,j)  = ~  ^  x v/iV (px (j) -  px  0 ')).
Px U)

Define Ca =  {2/a £ M : ya <  a}, then C =  (Ja€A^a a classical VC-class of sets, for the 

definition VC-class of sets see Pollard (1990). Since X  is finite, it is also necessarily 

a VC-class of sets. Then for each x, ^ = =  J2^=i,t=i (* [®*« ^  ' ix *t = j] ~  f a ,x  ( ',x )) 

converges weakly to  some tight Gaussian process in l°° (A) since C x X  is VC in A x  X ,  

by Lemma 2.6.17 in VW, and VC-classes of functions is a Donsker class, see also Type I 

classes of Andrews (1994b). W ith an abuse of notation, for each x  let also

denote a random element tha t takes value in l°° (A) such tha t the sample path of 

i px(j)) 1S constant over A. By standard LLN px(j) anc  ̂^  follows by Slutsky’s

theorem tha t (•, x) converges weakly to a random element in l°° (A). In particular, 

the limit of (•> j )  is also a tight Gaussian process. From the finite dimensional (fidi) 

weak convergence, Gaussianity is clearly preserved if we replace by p^ j )  ? but since 

p x  (j) — Px U) — °p (1) the remainder term  from the expansion ~  p x U) c a n  

used to  construct a random element tha t converges to zero in probability on A , so 

by an application of Slutsky’s theorem Gaussianity is preserved. Tightness trivially 

follow since the multiplication of ^x{j) ^oes n° t affect the asymptotic tightness of 

i'JWr ^ = 1^=1 -  *»Xit = 3\ ~  FaX  (‘^ ) ) ) -  Since the only random component of

$2  ,N (•, j )  is from V N T  (px  (j ) — px  {j)), which is a finite dimensional random variable,
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then a similar argument to  the one used previously can trivially show th a t $ 2,N (', j )  

must also converge to a Gaussian process which is tight I00 (A ), where tightness follows 

from the (equi-)continuity of FA\X (a \j) on Therefore y /N  (^FA\x=j ~  FA\X =j Ĵ must 

converge to a tight Gaussian process in l°° (A)  for all j  since asymptotic tightness is 

closed under finite addition and, in this case, it is easy to see th a t Gaussianity is also 

closed under the s u m .l

P r o o f  o f  L e m m a  2.10. B y  MVT, for a ll a a n d  j

Fa \x  (a \r, 00, d a d  (•, 0o)) -  Fa {x  (a \ j ; 0O, dago,j (', #o))

=  Q (pj K  #0, dag0tj (•, 0O))) (pj (a, 0O, da9j (*, 0o)) ~  Pj (a, 0O, dag0j  (•, 0O))) ,

where pj  (a, 6 0 , dago,j (', #o)) is some intermediate value between pj (a, &o, dagj (-, #0)) 

and pj (a , 6 o,dago,j (•, #o))- Since pj (a, 6 0 , dagj)  is twice Frechet continuously differen

tiable on A  at dago,j (•, #o)> using the linearization assumption, the argument analogous 

to Lemma 2.9 with Slutsky theorem can be used to complete the proof.®
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2.10 Tables and Figures

N T S bias
0i

mbias
L

std iqr bias

■~-trim

mbias std iqr
100 1/5 0.0084 0.0309 0.1558 0.1350 -0.0310 Q.0004 0.1934 0.1683

1/6 0.0278 0.0442 0.1359 0.1205 -0.0150 0.0098 0.1741 0.1518
1/7 0.0419 0.0541 0.1161 0.1035 -0.0002 0.0214 0.1568 0.1357
1/8 0.0536 0.0638 0.1092 0.0947 0.0109 0.0315 0.1375 0.1211
1/9 0.0647 0.0743 0.0996 0.0874 0.0153 0.0373 0.1328 0.1143

static 0.2620 0.2614 0.0187 0.0247 0.2620 0.2614 0.0187 0.0247
500 1/5 0.0193 0.0163 0.0618 0.0546 -0.0038 -0.0070 0.0739 0.0709

1/6 0.0320 0.0291 0.0546 0.0476 0.0014 0.0031 0.0689 0.0609
1/7 0.0422 0.0419 0.0497 0.0445 0.0063 0.0059 0.0635 0.0582
1/8 0.0508 0.0512 0.0456 0.0396 0.0128 0.0145 0.0600 0.0564
1/9 0.0597 0.0604 0.0414 0.0376 0.0195 0.0213 0.0573 0.0542

static 0.2607 0.2606 0.0076 0.0108 0.2607 0.2606 0.0076 0.0108
1000 1/5 0.0150 0.0141 0.0428 0.0388 -0.0045 -0.0067 0.0506 0.0463

1/6 0.0277 0.0264 0.0372 0.0343 0.0009 0.0006 0.0464 0.0429
1/7 0.0375 0.0374 0.0344 0.0316 0.0041 0.0038 0.0437 0.0425
1/8 0.0457 0.0468 0.0315 0.0294 0.0090 0.0085 0.0413 0.0413
1/9 0.0536 0.0543 0.0291 0.0294 0.0143 0.0143 0.0398 0.0402

static 0.2610 0.2608 0.0054 0.0073 0.2610 0.2608 0.0054 0.0073
2500 1/5 0.0119 0.0118 0.0258 0.0246 -0.0023 -0.0036 0.0305 0.0291

1/6 0.0229 0.0235 0.0225 0.0221 0.0012 0.0017 0.0279 0.0269
1/7 0.0320 0.0332 0.0206 0.0198 0.0032 0.0033 0.0270 0.0280
1/8 0.0405 0.0411 0.0200 0.0198 0.0055 0.0062 0.0267 0.0266
1/9 0.0482 0.0486 0.0193 0.0190 0.0089 0.0087 0.0263 0.0259

static 0.2610 0.2609 0.0034 0.0045 0.2610 0.2609 0.0034 0.0045

Table 5: hq = l.OQs(NT) ** is the bandwidth, for various choices of q, used in the non-
N T 1 1param etric estimation, s = denotes the standard.deviation of {a-it}i=i t=i> the statistics 

from estimating the static model are reported under static.
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N T c bias
02

mbias
[

std iqr bias
h

mbias std iqr
100 1/5 0.0657 0.0299 0.2026 0.1532 0.1121 0.0477 0.2856 0.1810

1/6 0.0632 0.0290 0.1843 0.1520 0.1014 0.0446 0.2529 0.1836
1/7 0.0567 0.0299 0.1670 0.1388 0.0948 0.0371 0.2458 0.1805
1/8 0.0513 0.0259 0.1535 0.1324 0.0871 0.0404 0.2201 0.1801
1/9 0.0464 0.0225 0.1442 0.1275 0.0858 0.0347 0.2168 0.1664

static 0.1303 0.1316 0.0326 0.0432 0.1303 0.1316 0.0326 0.0432
500 1/5 0.0383 0.0364 0.0820 0.0769 0.0513 0.0454 0.0996 0.0926

1/6 0.0329 0.0304 0.0772 0.0728 0.0473 0.0398 0.0990 0.0920
1/7 0.0330 0.0315 0.0742 0.0715 0.0472 0.0385 0.0964 0.0891
1/8 0.0335 0.0321 0.0711 0.0705 0.0442 0.0330 0.0922 0.0849
1/9 0.0346 0.0331 0.0660 0.0655 0.0430 0.0313 0.0891 0.0830

static 0.1310 0.1314 0.0141 0.0195 0.1310 0.1314 0.0141 0.0195
1000 1/5 0.0267 0.0262 0.0590 0.0565 0.0346 0.0337 0.0669 0.0662

1/6 0.0212 0.0212 0.0550 0.0529 0.0281 0.0261 0.0646 0.0619
1/7 0.0214 0.0213 0.0519 0.0499 0.0277 0.0247 0.0616 0.0559
1/8 0.0247 0.0247 0.0491 0.0461 0.0288 0.0250 0.0588 0.0562
1/9 0.0263 0.0266 0.0458 0.0431 0.0296 0.0245 0.0560 0.0531

static '0.1300 0.1302 0.0095 0.0137 0.1300 0.1302 0.0095 0.0137
2500 1/5 0.0202 0.0219 0.0369 0.0368 0.0259 0.0273 0.0401 0.0397

1/6 0.0156 0.0160 0.0346 0.0345 0.0206 0.0210 0.0384 0.0386
1/7 0.0154 0.0161 0.0335 0.0340 0.0186 0.0190 0.0381 0.0366
1/8 0.0191 0.0206 0.0331 0.0337 0.0203 0.0213 0.0372 0.0366
1/9 0.0237 0.0249 0.0322 0.0324 0.0231 0.0232 0.0365 0.0356

static 0.1306 0.1305 00060 0.0079 0.1306 0.1305 0.0060 0.0079

Table 6: h<- =  1.06s (N T ) q is the bandwidth, for various choices of g, used in the non-
TV T  1 1parametric estimation, s = denotes the standard deviation of {clu} ^  ~[=1; the statistics 

from estimating the static model are reported under static.
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Figure 1: QQ Plot of sample (standardized) 6\ versus standard normal, N T  = 100.

_4 -i ■- -L--   - ........... -1
- 4 - 3 - 2  1 0 1 2 3 4

Figure 2: QQ Plot of sample (standardized) 9\ versus standard normal, N T  =  500.
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Figure 3: QQ Plot of sample (standardized) 0\ versus standard normal, N T  =  1000.

Figure 4: QQ Plot of sample (standardized) 6 \ versus standard normal, N T  =  2500
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Figure 5: QQ Plot of sample (standardized) 62 versus standard normal, N T  =  100.

Figure 6: QQ Plot of sample (standardized) 6 2  versus standard normal, N T  =  500.
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Figure 7: QQ Plot of sample (standardized) 62 versus standard normal, N T  = 1000.

Figure 8: QQ Plot of sample (standardized) 6 2  versus standard normal, N T  =  2500.
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3 Modelling and Estimating Other Dynamic Models

3 .1  In tr o d u ctio n

As seen in the previous two chapters, the common insight in the two-step estimation 

procedures that we employ is the linear representation of the model implied value 

function which allow us to readily estimate the conditional value function and the con

tinuation value function. In particular, when the observable sta te  space is finite, the 

linear equation tha t defines the conditional value function is a m atrix equation whilst 

Chapter 1 illustrates this can be generalized to the uncountably infinite dimensional 

framework by working with an integral equation. The first chapter (Section 1.5) also 

demonstrates how the estimation methodology for a single agent problem can be ex

tended to estimate a class of Markovian games by taking averages across other players 

actions; this logic can straightforwardly be applied to the case of a continuous control 

as well.

Therefore in this chapter, we illustrate how to estimate the conditional value func

tions for other classes of dynamic programming models for a single agent problem, 

where we distinguish different models by the nature of the control variable(s). We only 

focus on the estimation of the conditional value function to avoid repetition since var

ious objective functions can be constructed from the conditional moment restrictions 

implied by the policy function based on the conditional value function, see (25) and 

(91) for the discrete and continuous control cases respectively.

3 .2  D isc r e te -C o n tin u o u s  C o n tro l

In many investment and pricing problems the distribution of the control variable has 

mass points as well as continuous component, for example firms may choose to  not 

invest or prices are regulated to  lie within certain bounds tha t is binding.
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The framework of the decision problem here is similar to  tha t found in Chapter 2. In 

particular, we assume the framework described in Section 2.2.1 as well as assumptions 

M2.1 - M2.3. For simplicity sake, let A  = [0,a] for some 0 <  a < oo, we suppose that 

the control variable at has a mixed distribution; it has a mass point at 0, with some 

probability pa  {%t) € (0,1) for all possible values on the support of xt , and has a density 

on A \  {0}. It is straightforward to  allow for more than one mass points. We need to 

modify the monotone condition in M2.4 slightly to accommodate the mass point at 

zero.

A ssum ption  M 2.4': (Monotone Choice) The per period payoff function uq : A  x 

X  x S  —> M has increasing differences in (a ,e ) for  all x,$ and for a 6 A \{ 0 ); uq is 

specified upto some unknown parameters 0 6 0  C

From assumptions M2.1 - M2.3, we can again obtain (82) and its conditional ex

pectation, which we reproduce here for convenience:

Ve (st ) = uq (at, x t , et ) +  f3E [Ve (st+i) |st] ,

E  [Vo (st) \xt] -  E  [ue (at, x t ,e t) \xt] +  f)E [E \Ve (st+i) |x«+i] \xt] ,

where, as before

a t  =  Oi0Q ( x t , e t )

= max {ue (a, x t , et ) +  PE \V0 (st+i) \xt , at = a] } .aeA

We only need to show we can consistently estimate E  \Vq (st) |xt], the solution to the 

matrix equation above. In order to do this, as seen in the last two chapters, we need to  

estimate two elements of the linear equation; the conditional expected payoff and the 

transition matrix, which we denote by xq and C respectively. The stochastic m atrix L
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can be estim ated in the exact same way as before. For rg, first we write

E  [uq (at, x t ,e t ) \xt] = P r [at = 0|x*] E  [ue (0, x t , et) \xt , at = 0}

+  P r [at >  0|xf] E  [ug (at , x t , et ) \xt , at > 0].

Clearly we do not have any problems providing estimates for P r [at = 0[xt] and P r [at > Ojxt], 

while we require M2.4' to  deal with the unobserved state variable et which enters ug 

non-additively. We can again rely on Topkis’ Theorem, which ensures tha t the pol

icy function is invertible on A \  {0}, to  nonparametrically recover £t by the relation 

%. =  Q ~l [Fa \x  (u i|^ )^  for a% >  0. The sequence (at , x t ,£t)J=i can then be used to 

estimate the regression function E  [ug (at,xt,£t) \%t, at > 0]. For the case when at = 0, 

although it is not possible to recover £t, by (weak) monotonicity of the policy function 

we know th a t

at =  0 ^  £t < e°.

Using the equivalence condition above, the quantile invariance property between (at,£t) 

implies th a t £c = (Pr [at = 0[ajf}). We can then estimate the cutoff threshold by 

Q” 1 ^Pr [at =  and estimate E  [ug (fi, £t) \xt, &t — 0] by the empirical analogue

of

p , m f f  u g ( 0 , x t , e ) Q c (de)
x t , e t )  \xt , a t  =  0) =  -  p r[fl( =  0 N  •

Therefore the conditional value function is identified so we can proceed to  estimate 

the continuation value and use it to construct some criterion function to estimate the 

param eter of interest 6q.
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3 .3  D isc r e te  a n d  C o n tin u o u s  C o n tro ls

The flexibility to  estimate models with both discrete and continuous choices is very 

im portant, for example, the economic agents in the empirical study of oligopoly or dy

namic auction models often endogenously choose whether to participate in the market 

before deciding on the price or investment decisions. The framework of the decision 

problem here is similar to  Section 4 of Arcidiacono and Miller (2008). For each economic 

agent, the model now consists of the control variables (at,d t) G A x  D, where A  C R 

and D = {1,~.. . ,  K }\  and the state variables St = (xt,£t, v f )  G X  x £  x VK , where X  =

{ 1 ,. . . ,  J )  , £ C l  and VK C so v ^  = (vt ( 1 ) , . . . ,  vt (K )). The sequential decision 

problem can be stated as follows: at time t, the economic agent observes (#*, i ^ )  and 

choose an action k G { 1 ,. . . ,  K }  to  maximize E  [u (at, dt, Xt, £t, vj?) \xt, , dt =  fc] +

{3E [V (si+i) \x t ,v ^ ,d t  == fc], sequentially, she then observes st and chooses a th a t max

imizes u (a, dt, x t ,£ t , vj^) +  PE [V (st+i) |st, dt, at =  a]. The decisions made within and 

across period generally will affect the consequential state variables, we impose the con

ditions on the transition of the state variables within and across periods in the set of 

assumptions below. More formally, the decision problem (subject to the transition law) 

within each period t leads to-the following policy pair

8 (xu vF) = arg^max^ { E  [u («at ,dt , x t ,£t ,v f )  | xu dt = k] + f iE [ V  (st+1) | xu dt = k}} ,

a  (xt ,£Uv ^ , d t) = sup {n (at ,d t ,x U£t , v ^ )  + p E [ V  (st+2) \xt ,a t = a,dt}} . 
aeA

We impose the following assumptions to ensure we can employ the estimation techniques 

tha t has been developed from purely discrete choice and continuous choice literature 

without much alteration.

n n

A ssum ption  DC1: The observed data {a t,d t ,x t} t=1 are the controlled stochastic 

processes described above with known (3.
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ASSUMPTION D C2: (Conditional Independence) The transitional distribution has 

the following factorization: p ( x t+ i^ t+ iy V ^ \x t , et , v ^  ,at ,d t) =  z (et+i, v^+ l\xt+\)  x 

Px'\x,A,D (xt+i\xt, a>t,dt).

A s s u m p t i o n  DC3: The support of St = (xt ,£t,vj*} is X  x  8  x  VK , where

X  =  { 1 , . . . ,  J}  for  some J  < oo that denotes the observable state space, 8  is a (poten

tially strict) subset o f  M. and VK C U.K . The distribution o f is i.i.d. distributed 

across K — alternatives, denoted by W , is known, it is also independent of Xt and is 

absolutely continuous with respect to some Lebesgue measure with a positive Radon- 

Nikodym densities w. The distribution of et, denoted by Q, is known, it is also in

dependent of Xt and dt, and it is absolutely continuous with respect to some Lebesgue 

measure with a positive Radon-Nikodym density q on 8.

A s s u m p t i o n  DC4: (Additive Separability) The per period payoff function u : A x  

D x X  x 8 x  V K —► R can be written as u [a t ,d t , x t , = uC («t, dt , x t , et ) +  vt (dt) .

ASSUMPTION DC5: (Monotone Choice) The per period payoff function, specific to 

discrete choice dt, u ^  : A  x D  x X  x 8  —> R has increasing differences in (a, e) for all 

d, x  and 9, where Uq is specified upto some unknown parameters 9 6 0  C •

C o m m e n t s  o n  D C1-D C5:

DC1 is standard. Similar to M2, DC2 implies th a t all the unobservable state vari

ables are transitory shocks across time period. DC3 makes a simplifying assumption 

on the distribution of the unobservable state variables, for example, v ^  does not need 

to have random sampling across K — alternatives, it is also straightforward to  model 

the conditional distribution of et given (x t ,d t ), and we do not need full independence 

of (e t , v and Xt as commented in Section 2. DC4 imposes the additive separability 

of the choice specific unobserved shock, which is familiar from the discrete choice lit-
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erature. DC5 ensures tha t the per period utility function for each discrete alternative 

satisfies the monotone choice assumption analogous to M2.4.

To illustrate how assumptions DC1 - DC5 pu t us on a familiar ground, consider 

the value function on the optimal path, which is a stationary solution to the following 

equation, cf. (4)

Ve {st) = ue (at, d t ,x t , et , v f ) +  j3E [V0 (st+1) \st] ,

where, given th e  sequential framework, by DC1 - DC4 dt = S0 (%t, v ^ )  and at = 

ote(xt,£t,dt)  such that

&o (xt, V t )  =  arS { E  iu0 6t) dt = k \ +  vt {k) +  P E  [Vg (s*+ i) \xt ,d t = A:]} ,

a e(xtr€t,dt) = &\ip{u$ (a,dt , x t ,£t) PE\Ve (s«+i) \xt ,a t = a,dt\)  .
a£A

Marginalizing out the unobserved states of the value function, under DC2, we obtain 

the following familiar characterization of the value functions

E  [Ve (st) |x t] =  E  [u0 (at , dt , x t , £ t ,v? )  \xt] +  PE [E [Vg («t+i) |®t+i] \xt\ . (108)

As seen previously, by DC2, th a t the continuation value function (onto the next time 

period) can be written as

E  [Ve (st+1) \xt , at ,dt] = E [ E  [Vg (st+1) \xt+i] \xt , at ,dt]. (109)

To estim ate Qq, in the first step, we provide an estimate for the continuation value 

function. The main difference here lies in the estimation of the analogous equation to 

(83), where we need to nonparametrically estimate E  [uq (a t,d t ,x t ,£ t ,v j f)  \xt\. Using
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DC2 - DC4, we have

E  [ue (at, dt, x t ,£ t ,v ? )  \xt] = E  [v% (at , dt, x t , et ) \xt] +  E  [vt (dt ) \xt] ,
K

=  ^ 2  P r ldt = k \x t\ E  [u9 (at ,d t , x t ,£t) |art, dt = k]
k =1 

K

+  P r [dt = k\xt\ E  [vt (dt) \xt , dt = k]. 
k = 1

The first term can be estimated nonparametrically using the method described in Sec

tion 2. In particular, under DC5, we can generate £t by the relation £t = QJ 1 {Fa\x,d (at\xt, dt)^j, 

where F a \x ,d  (a |j , k )  is nonparametric estimator for Pr[<2f <  a\xt = j ,d t  = k]. Since 

the conditional choice probabilities are nonparametrically identified we can estimate 

the first term in the display above nonparametrically for any 0. The second term is 

the selectivity term that arises from the discrete choice problem, which can be esti

mated nonparametrically by using Hotz and Miller’s inversion theorem as in a purely 

discrete choice problem. Since E  \Vq (st) \xt] is defined as the solution to (108), note 

tha t the transition probability in the linear equation is nonparametrically identified, we 

can estimate E  [Vg (st) \xt] by solving a linear equation analogous to (83) once we have 

the estimate for E  \u$ (at, dt, xt, £t, v ^ )  \xt]. The continuation value in (109) can then 

be obtained by transforming E  [Ve (st ) \xt] by the a conditional expectation operator 

E ['\x t ,a t ,dt\, which differs from 7i, see (84) for definition, precisely by increasing the 

conditioning variable to include dt in addition to  (Xt,at). The second step of the esti

mation procedure involves minimizing (maximizing) some criterion function to identify 

9q. Obviously, one method is to  construct a minimum distance criterion based on the 

conditional distribution function of at given (Xt,dt), analogous to (92), as described in 

Section 2.2.
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3.4  Ordered D iscrete R esponse

The methodology to estimate a dynamic decision problem with ordered choice is the 

discrete counterpart of our main procedure described in Chapter 2. Practical applica

tion includes investment models where firms purchase or rent goods in discrete units, 

e.g. see Gowrisankaran et al. (2010).21 Consider the following set of assumptions where 

the support of a* is an ordered set {a1, . . . ,  aK }.

ASSUMPTION OC1: The observed data fo r each individual are the con

trolled stochastic processes satisfying (81) with exogenously known f3.

ASSUMPTION OC2: (Conditional Independence) The transitional distribution has 

the following factorization: p (x t+i,£ t+i\Tt ,e t ,a t ) =  q(£t+i\xt+i)Px'\x,A (xt+ i\xt ,a t) 

fo r  all t.

A s s u m p t i o n  O C 3 : The support o f St =  (x t ,£ t ) is X  x  £,  where X  =  { 1 , . . . ,  J }  

fo r  some J  < oo that denotes the observable state space and £  is a (potentially strict) 

subset o f R .  The distribution of £t, denoted by Q, is known, it is also independent of 

Xt and is absolutely continuous with respect to some Lebesgue measure with a positive 

Radon-Nikodym density q on £.

ASSUMPTION OC4: (Monotone Choice) The per period payoff function uq \ A x  

X  x  £  —v R  has increasing differences (weakly w.r.t. a) in  (a, e) for all x  and 9; uq is 

specified upto some unknown parameters 0 E 0  C  R L .

C o m m e n t s  o n  O C 1 -O C 4 :

These conditions are essentially the analogue of M l - M4 when at is a discrete 

random variable.

211 thank Philipp Schmidt-Dengler for introducing to me a more general class of dynamic problems 
with the ordered discrete response component , which he and his co-authors in Gowrisankaran et al. 
(2010) are considering.



To see the intuition how one can identify the conditional value function, similar to 

(8), for any 0 it is defined as the solution to

E  [Vg (st) \xt] = E  [ug (at , st) \xt] +  PE [E [Vg (st+1) \xt+1] \xt] ,

where

at ~  a0o {xt>£t,dt)

=  { u 9o («*>xt ,£*) +  PE [Vg0 ( s t + 1) |x t , a t =  a fcJ }  .

Since the support of at is finite we can write

K
E  [ug {at , st) |a?t] =  ^  P r [a* =  a fe[z*] E  [ug {at , s t )  \xt , at =  ak] , 

fc=l

where the potential issue again lies in the fact tha t we do not observe et . But analo

gously to the case with continuous control, since the policy function is weakly monotone 

in et, given the assumed distribution of et we can identify the conditional mean of the 

per-period payoff function by using the quantile invariance property between (at,et). 

In particular, for k > 1 let I k = [Q^1 ( l  -  FA\X {o>k\xt) ) , Q j1 ( l  -  FA\X (afe_i|xt ))], 

we have

E u g (a t,s t) \x t,a t = ak = E [u e {at,st ) \x t ,et e l k]

_  Slk u0 x ty e) Qe (de)
F a \x  ( a k \xt ) ~  Fa |X {a k- l \xt ) ’ 

and for k = 1, let l i  = [Q~l ( l  -  FA\X ( a iM )  > Q 71 (°)]

/ m li f X lu e (a 1,x t ,e )Q e {de)
E  [ug {at , st) Ix t , at = a J =  --------- -----7^ 7— 7-------

FA\x { a \x t )
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Various nonparametric estimators discussed in the previous sections, for example the 

frequency estimator, can be used to  estimate P r [a t =  a fc|xt] and F a \x  (afck t)  for 

k  =  1 , . . . ,  K . Since we know Qe, we can estimate {Zfc} and use them to estimate 

f I k U0 (ak,x t,e )  Qe (de) for each k. All the remaining nonparametric estimators re

quired to estimate the continuation value function are just the transitional probabil

ities of the observable state variable in the next period conditioning on this period’s 

state (with or without the control). We can then approximate the model implied policy 

function as before.

3 .5  C o n c lu sio n

In this chapter we show th a t the methodology proposed in the first two chapters has a 

much wider applicability than the given frameworks. We illustrate this by showing tha t 

various types of dynamic models in economics can be estimated through a familiar two- 

step approach, where differences between various models requires different modelling 

assumptions necessary to ensure we can identify the conditional value functions.

As seen from Chapter 1, although we only considered a single agent problem with 

observable state variable with finite support, it is straightforward to generalize the 

framework to  allow for strategic interactions between players as well as observable 

state variables with continuous distributions.
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4 Consistent Estimation of an Identified Optimization Model

4 .1  In tr o d u c tio n

Bajari, Benkard and Levin (2007), henceforth BBL, propose a methodology to  estimate 

a large class of structural dynamic models which has an extensive applicability. The 

motivation behind the construction of their estimator is conceptually appealing as it 

relies directly on the necessary conditions of an economic equilibrium. They suggest 

a forward simulation method which is not only easy to  program, it also has a compu

tationally attractive feature by making use of the linear structure of the problem. In 

addition, in the case tha t the model is not identified, they also propose a set estimator 

to estimate the partially identified model.

However, it is infeasible to  approximate or provide an analytical expression for either 

the population or its empirical analogue of their criterion function even in a simple 

static optimization problem as they rely on an uncountably infinite set of inequality 

constraints, essentially indexed by functions. In practice only a strict subclass of such 

inequalities are considered. This may lead to  the loss of identification since we are not 

using all of the relevant constraints imposed by the definition of an equilibrium. To the 

best of my knowledge, as suggested by BBL, all applications of their methodology only 

consider the class of alternative policies which are translation shifts from the true, for 

example see Sweeting (2007), Ryan (2009) and Santos (2009) amongst many others.

We provide an example where the criterion functions constructed through this class of 

inequality constraints are not capable of consistently estimating an identified model. 

Although we do not provide specific examples for a partially identified model, we expect 

analogous findings to exist. In addition, most applications of BBL methodology only 

consider point estimation of the parameter of interest, which is attainable even if the 

objective function does not have a unique optimizer in the limit.
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For a different reasoning, the swapping nested fixed point estimator of Aguirre- 

gabiria and Mira (2007) which has been used to  estimate a class of Markovian games 

may also fail to  consistently estimate an identified model. Pesendorfer and Schmidt- 

Dengler (2009) show tha t even when the observed data are generated from a single equi

librium of a game with multiple equilibria, the functional operator of Aguirregabiria 

and Mira may have multiple fixed points and if the equilibrium point is unstable their 

iterative method will generally lead to an inconsistent estimator.

Since the notations used in the study of many closely related Markov decision models 

vary in the literature, throughout this note we follow the notations used in BBL when 

possible.22 For notational simplicity, we also focus on the decision problem of a single 

agent, an extension allowing for strategic interactions to a popular class of Markovian 

games considered is straightforward.

Next, we describe the class of Markov decision processes of interest in Section 2, 

then proceed to define the identification concept and summarizes the BBL methodology 

in Section 3 and 4. An analytical example tha t shows one can lose identification by 

using a BBL type of criterion is presented in Section 5. Section 6 concludes.

4 .2  T h e  M o d e l

We now describe the dynamic models which are popular in Industrial Organization, 

amongst others fields, tha t rely on Rust (1987) conditional independence assumption. 

Although we do not restrict our attention to  the discrete choice framework, much of 

this growing literature builds on the work of Rust (1987) and Hotz and Miller (1993) 

which fall under such setting. In particular, following Hotz and Miller, there has many 

subsequent two-step estimators proposed for dynamic discrete choice problems, for

22 Of particular importance are the differences are the notations regarding the state variables and 
the policy function. Some authors use (x t , £ t ) to denote observed and unobserved state variables 
respectively. And more recently, motivated by applications to games, the policy (i.e. best response) 
function is often seen denoted by a.
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example see Hotz et al. (1994), Aguirregabiria and Mira (2002,2007), BBL, Pesendorfer 

and Schmidt-Dengler (2008), Bajari et al. (2009) and Srisuma and Linton (2009) 

amongst others. More recently, there are also general methods which are able estimate 

closely related dynamic models with continuous control, but otherwise rely on quite 

similar sets of modelling assumptions, see BBL, Hong and Shum (2010) and Srisuma 

(2010).

For each time period t =  1 , . . .  ,oo, the economic agent makes a decision at £ A  

given the state variables (s*, vt), where st £ S  is observed by the econometrician whilst 

vt 6 V is known only to  the agent. The agent problem is to  choose a decision rule 

{<jT}^_t , where each at belongs to  a set of functions E which maps S  x V to A, to  solve

max E t ' K ( o T, S T , V T)
T = t

S t , V t (110)

where 7r denotes the per period payoff function and j3 £  (0,1) is the discounting rate. 

Under some regularity conditions the optimal time invariant policy function a exist, 

see Rust (1994) and the references therein for details. Assume further the conditional 

independence of Rust (1987), and th a t the agent has perfect expectations on the con

ditional laws of st+i conditioning on (at, St), denoted by P  (sf+i|a*, s*), and of vt given 

st , denoted by G (vt\st). Then the observed actions at is equal to  a (s t,v t)  such tha t

a (st , vt) =  argmax (a, st: v t ) +  (3 J  V  (s'; a) dP  (s'|o- (st , vt ) , s*) j for all t > 1, 

where the ex-ante (or conditional) value function V  satisfies

V  (st ;a ) =  E *7T (a ( s r , VT) , ST, VT)
T—t

St (111)

The integral f  V  (s'; a) dP  (s '|a t, s*), which is equal to E [V (s*+i; a) \at, s*], is sometimes
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called continuation value function .

We note tha t we are dealing with a stationary problem. The time index t is arbitrary 

and just denotes that various functions of interest are functions of random variables. 

Below, we also use r  to index future values when defining alternative policies to stress 

this point.

4 .3  Id en tifica tio n

Thus far there has been relatively little identification results in Markov decision models 

of this kind. Rust (1994) showed tha t without any restrictions, these decision models 

are nonparametrically not identified. Magnac and Thesmar (2002) also show some 

negative results on the nonparametric identification of a class of single agent discrete 

choice problems. In the study of their discrete Markovian games, Pesendorfer and 

Schmidt-Dengler (2008) provide conditions to  identify their parametric model. Bajari 

et al. (2009) extends the results of Pesendorfer and Schmidt-Dengler to  the case when 

the support of the observable state variable can include intervals. Generally, it is fair 

to  say tha t the identification problem for many of these parametric models are not well 

understood and identification is often assumed. Here we provide the formal definition 

of an identified model for the special case where the only unknown parameter in the 

model is the finite dimensional parameter indexing the payoff function.

For a single agent problem, the econometric model of such decision processes de

scribed in the previous section can be formally represented by the set of primitives 

(7r, P, G, P ). Under some regularity assumptions, the data  generating process P  is non

parametrically identified so we assume it to  be known. In this literature, the value 

of P is often assumed and (-7T, G) are parametrically specified. The parametric form 

of G is essential for the methodologies cited above. For policy purposes, the main 

objective is then to estimate the structural parameter indexing 7r, we denote this by
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0 6 © C  R . For simplicity, in what follows, we assume the knowledge of (7r, (3, G, P ) 

upto some finite dimensional parameterization only on 7r. The identification problem 

of this param etric Markov decision processes can be stated in a familiar way using the 

following definitions.

D e f i n i t i o n  4.1: The reduced-form of an MDP model is the agent’s optimal decision 

rule a  6 E.

D e f i n i t i o n  4.2: The structure of an MDP model is the map A : 0  —► £  such tha t 

A (0) = a (st , v t ; 0).,. where

a (st , i/t; 0) =  j 71" (a > s<, vt\ 0) +  P J  V  (s '-a  (•, •; 0); 0) dP  (s'|cr (st , v t \ 0) , st) | .

We comment here tha t the notation for the conditional value function V  (s; cr; 0) 

allows us to define the expected discounted value generated from a particular policy a, 

th a t may but need not depend on 0 (cf .(111)), so that

V  (st’a-,9) = E (cr(sr ,^ r ) , s T,i/T;0)
T =t

St

D e f i n i t i o n  4.3: The parameter points 0\ and 02 are observationally equivalent if 

o  (st , v t \ 0i) =  cr (st , vt \ 62) a.s.

D e f i n i t i o n  4.4: The model is well specified if the data  is generated according to 

a decision rule o (st, i/t; 0) for some 0 6 0 .

D e f i n i t i o n  4.5: Let 0o (A) be a set of observationally equivalence classes so tha t 

00 (A) is a collection of sets 0,0 6 0  such tha t 0 6 0 if and only if 6\ and 0 are 

observationally equivalent. A well specified model is identified if and only if 0 =  {0o}-
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4 .4  B B L  M ethodology

The estim ator proposed by BBL is defined to satisfy the necessary conditions implied 

by the optimality conditions of an economic equilibrium. Suppose tha t the data  is 

generated according to the true parameter 9q £ 0 .  In what follows, it will be useful, to 

avoid potential confusion, to  denote the underlying policy function a  (•, •; 9o) by ao (-, •).

By definition of the optimal policy, for any 9 € 0  and any alternative Markov 

decision rule cr' =  {a'T}^=1, the solution to the sequential problem must satisfy (see

(no))

oo

T :  /3T _f7r ( a  (sT, v t ',9) , sT, v T\ 9)
1

■M■WCO >  E
oo

P T~t K K -  (Sr ,  I 'r )  , Sr, 0) SuVt
.  T—t . _ T—t .

Integrating out the unobserved state variable from the expression above leads to  the 

following inequality for the model implied conditional value function (cf. ( I l l ) ) ,  for all 

{a' ,6)

V v  (st ;<T';e). (112)

The criterion function proposed by BBL is constructed based on the set of inequalities 

above, which are implied by the optimality conditions of an equilibrium. Let x index 

the set of all equilibrium conditions (or also called inequalities) X ,  we elaborate on 

this terminology used in BBL after introducing the function g below. So x  denotes a 

particular pair (s, cr'). For an identified model, for any 0 6 0 ,  define g (x; 9) as follows

g{x-,B) =  V { s i m f y - V  {s-,i

Therefore g (x; 9) represents an equilibrium constraint in the sense tha t we must have 

g (x; (?o) >  0 for any x in X .  In what follows, since we are analyzing the BBL procedure 

we continue to make use of their terminologies. Formally, the criterion function which
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BBL proposed is represented by a pair (X,H)> based on (112), defined as follows

Q{0) = J  (min{g(x-J0),O})2d H ( x ) ,

where H  is a distribution over X.  Clearly the criterion function in the display must 

satisfy the condition Q (Qo) = 0.

However, X  is an uncountably large set even if S  is finite. Although finiteness of S  

is not an unusual assumption, allowing it to be uncountable is conceptually simple. It 

is more difficult to deal with the space of functions of alternative policies. To proceed, 

BBL suggest the practioner to  consider a particular strict subset of X.  For some 

X £ C  X ,  we define the criterion function based on X£ as

Qe (0) = J  (min {g (are; 6 ) , 0})2 dH£ (xe) ,

where we make the dependence on e and 8  explicit. So a particular inequality x e de

notes a certain optimality condition tha t belongs to X£, a set indexed by e. To complete 

the construction of Q£, H£ denotes the underlying disribution of x e. We next formally 

define the class of inequalities derived through translating shift of the true policies that 

we denote by X£l, this class of inequalities is informally introduced in BBL which conse

quently has been employed by most of their known applications. We note th a t the nota

tions used to  define (X£lJH £l) reduce significantly for the example in the next section, 

where we analyze a much simpler setup, so the reader less familiar with BBL methodol

ogy may first wish to skip to th a t part for the intuition behind the setup. A typical ele

ment x e in X£l =  {(s, a') : s € S  and o '  =  ctq © e for e 6 (Support (A))°° C Z°°}, where 

l°° is the real sequence space and (Support (A ))00 is the countably infinite Cartesian 

products of Support (A). Although s requires no explanation, for each e we define cro©e 

to be a particular alternative policy defined through a particular infinite sequence of
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linear shifts {eT^ =l so that

((To © e) ( s r , vT) = (To ( « T ,  ^r) +  e-r for any r  =  1 , . . .  , 0 0 .

So ((7o © e) is a sequence of functions representing a particular decision rule tha t differs 

from the true policy by a sequence of translations represented by more specif

ically, for each period t  it differs from the true policy by a translation er . The measure 

Hgx =  Mgx (S) x Ngx (A) is the product measure where Mgx (S) denotes a uniformly 

distributed measure on S  (suppose S  is bounded) and Ngx (A) denotes the product 

measure for countably infinite product measurable space th a t generates the sequence 

of random samples {eT}̂ °=1 from A. Therefore the limiting criterion considered in BBL 

can be formally represented by the pair (Xgx, Hgx).

The sample analogue of Qg1 (9) can be constructed in practice using the forward 

simulation procedure outlined by BBL. Then one can construct a point or a set estima

tor based minimizing Qgx (6) depending on whether one thinks the model is identified 

or not.

4.5 A n Exam ple

The difficulty we face in trying to understand the type of criterion functions based on 

the optimality conditions implied by an equilibrium is that, it is generally unclear how 

one can mathematically show what happens to the value of Q (6) for 9 G © \ {$o}- Even 

if it may be true th a t Q (9) = 0 if and only if 9 = 9o, it is plausible tha t by considering 

a subset of all possible policies one may be able to find 9 ^  9q such that Qg (9) =  0 for 

some £; clearly such criterion function cannot be used to  consistently estimate 9q. The 

last statement is particularly relevant in practice since one cannot easily compare the 

inequality restrictions of such a large class of alternative policies, or even know what
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kind of alternative policies are sufficient to  ensure we can consistently estimate a point 

identified model.

To illustrate this point we consider a much simpler optimization problem tha t also 

belongs to the class of models considered in BBL. In particular, we take a static opti

mization problem, which corresponds to the case tha t /? =  0. Ignoring the presence of 

observable state variables, specify the payoff function to be

7r (a , v\ 9) = —a2 -I- 29ais,

so a and is are values from the support of the control and state variables respectively. 

Let G be some distribution for ist with zero mean.

It is easy to see th a t the (optimal) policy function, now reduces to  <7 (1;; 9), is 9is 

for all 9, is. Imposing 0  =  R+ ensures tha t the policy function will be increasing in the 

state variable, hence satisfying the Monotone Choice assumption tha t is essential to 

BBL’s simulation method. Notice tha t if 9 ^  9' then a (ist \ 9) ^  a (ist;9r) a.s., therefore 

this model is identified so long tha t it is well specified. Then given a random sample of 

{at}f=i generated from ao (is), for some 9o E ©, along with some standard regularity 

conditions one can construct a consistent estimator for 90 by maximum likelihood or 

other minimum distance approach based on the moment condition below (the latter 

might be a preferred option for a more complicated dynamic model); as shown in 

Srisuma (2010), the uniqueness of the policy function with respect to 9 implies

E [1 [at < a] — Fa (a; 0)] =  0 for all a E A  if and only if 9 = 9q, (H 3)

where Fa (•; 9) is the distribution function of cr ( ist\9).

However, we now show tha t the moment inequality approach of BBL may lead to  

set estimators tha t, in the limit, will only converge to a non-singleton set containing
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00-

(I) T r a n s l a t i o n  S h i f t :

We consider the criterion function constructed from ( X ^ j H ^ )  described in the 

previous section. In this simpler setting , the class of inequalities X^x is simply 

{cr7 : cr7 =  cro +  e for e E Support (A)} and the distribution Hsx is A .23 Note that an 

inequality x e in X^x has a unique correspondence with each e in the support of A. For 

any e and 0, it is easy to see tha t

7T (<70 (vt) , Vt, 6) -  7T ((70 (vt\.+  e, i^t,9) = e2 + 2evt (00 -  0).

To derive g, since vt has zero mean, integrating out vt in the display above leads to

g{xe;9) = e2 > 0.

Note tha t we can also write Q£x (0) =  f  (min {e2,0 } ) 2 dF& (e), where F& denotes the 

distribution function which.corresponds to  A. Clearly Q sx (0) =  0 for all 0 E © and any 

distribution A as long as e is not degenerate at zero (which would then not represent 

an alternative policy); i.e., in this example, this class of alternative policies has no 

identifying power for 0o-

(II) M u l t i p l i c a t i v e  S c a l e :

As another illustration, le t’s consider another class of policies, based on a multiplica

tive scale of the true policy. In particular let Xs2 =  {cr7 : o' =  ecro for e E Support (A)} 

where A is the uniform distribution on (0,1), the non-negative support is chosen to

23 As seen previously, it is conceptually straightforward to provide a precise formulation of (Xs1,H e 1) 
to include the observable states and/or number of players for a game by using the direct product with 
respect to respective sets and measures.
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ensure tha t the alternative policies are also monotone on V. For any x e th a t belongs 

to Xs2 and 0 6 0  we have

Therefore, when 0 > Oo we have g (xe;6) >  0, suppose further that E < oo, then any 

0 6  [0o>°°) wiU imply tha t Qs2 (0) =  0. On the other hand it is easy to  show tha t any 

0 6 (0 ,0o) will imply tha t Qg2 (i9) >  0. The criterion function based on this class of 

alternative policies can only identify a set, although we can show tha t increasing the 

support of e can reduce the identify set to a point, see below.

We can also try  to  find the  class of alternative policies which will ensure that the 

criterion constructed from (A ^,Hz)  has a unique minimum. Recall th a t in this case, 

X  corresponds to  is the set of functions j  6 S  such th a t a  : V —*> A  C M. For any x  in 

A', which is a function a (•), it can be shown from simple algebra tha t for any 0 6  0

In this case, the class of alternative policies which is a multiplicative scale from the true 

can ensure tha t we can construct criterion functions with a unique minimizer at 9o so 

long tha t the support of e is sufficiently large. To see this, note tha t the inequality we 

require is

For any 9 = 0q+5, we see tha t by letting a (v t) = (0 — tj) i/t, for any I77I <  |J |, will ensure

g (x; 0) =  - ( < ? -  0o)2 E [i/t2] +  E  [(0«/t -  (i/t ))2] .

g (x; 0) <  0 E [(0j/, -  a  (i/t ))2] < E [v?] (0 -  0O)2 .

the inequality above. This means tha t when © is a compact subset of R+ containing 0q,

choosing Xs = {cr' : cr' =  eao for e 6 R} and Hs to be any continuous distribution with

full support on the real line (e.g. a standard normal) will be sufficient to ensure tha t
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Qs has a well separated minimum at #o> which is implied by the high level assumptions 

of BBL (see their Assumption S2). In this case we would expect to  be able to obtain 

consistent estimator for 6q from minimizing Qs (9).

4 .6  C o n c lu s io n

We somewhat formalize the construct of the criterion functions introduced by BBL 

through the pair {X, H)  of inequalities and its distribution. It is infeasible to  work 

with ( X , H)  and we consider (Xg, Lfe), which represents the criterion functions tha t 

rely on a smaller set of inequalities. The example above reveals tha t applications 

erf the moment inequality approach introduced by BBL may incorrectly lead one to  

believe tha t the model is only partially identified when it is actually point identified. 

In particular we show in a simple setup th a t when Xg is the class of alternative policies 

which is a translation from the true policy has no identifying power of an identified 

model. We also show that the class of alternative policies which is a multiplicative scale 

of the true policy, which although is never used in practice, can succeed in constructing 

an appropriate criterion function to estimate the identified model when the range of 

the scaling factor is sufficiently large. We stress here tha t we are not implicating any 

relative potency between the two classes of inequalities in general. Also we would 

expect analogous results for a partially identified model where a particular criterion 

function (X£,Hs)  may at best can consistently estimate a strictly larger bounds than 

the identified set.

The practical consequence is potentially serious since most applications of BBL use 

the point estimation method. In finite samples, when the Monte Carlo integration has 

yet to converge, various optimization techniques will produce point estimates tha t may 

not be informative at all. Fortunately, all known applications of BBL’s methodology are 

used to estimate structural dynamic optimization problems tha t are more complicated
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than  the simple example provided above, therefore alternative policies tha t introduce 

“noise” into a highly nonlinearly problem may give a better hope of preserving point 

identification in a point identified model. However, for general dynamic models of 

interest, the policy functions typically do not have closed form expression thereby 

preventing us from doing any kind of analytical analysis and the intuition tha t one 

may risk losing point identification by applying BBL type estimators cannot be ruled 

out.

The intuition behind this finding is somewhat similar to the identification issue 

studied in Dominguez and Lobato (2004), where they show one can lose identifica

tion in an identified conditional moment restriction model when one arbitrarily turns 

i t  into some unconditional moment restrictions with a finite number of instruments. 

Dominguez and Lobato also propose a minimum distance estimator tha t uses all of the 

available information to overcome this problem.

We end this note with two remarks on the. risk of losing identification by using the 

criterion functions described above. First, this problem can potentially be alleviated 

by integrating over larger classes of policies. Second, such risk may be eliminated 

entirely by using alternative estimation methods based on different objective functions. 

For example, for the same class of structural dynamic models considered by BBL, if 

the model is identified the minimum distance estimator analogous to tha t found in 

Srisuma (2010), which relies on the generalization of (113), will be consistent under 

some regularity conditions.
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