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Abstract

Dynamic models of forward looking agents, whose goal is to maximize expected in-
tertemporal payoffs, are useful modelling frameworks in economics. With an exception
of a small class of dynamic decision processes, the estimation of the primitives in these
models is computationally burdensome due to the presence of the value functions that
has no closed form. We follow a popular two-step approach which estimates the func-
tions of interest rather than use direct numerical approximation.

The first chapter, joint with Oliver Linton, considers a class of dynamic discrete
choice models that contain observable continuously distributed state variables. Most
papers on the estimation of dynamic discrete choice models assume that the observable
state variables can only take finitely many values. We show that the extension to
the infinite dimensional case leads to a well-posed inverse problem. We derive the
distribution theory for the finite and the infinite dimensional parameters.

Dynamic models with continuous choice can sometimes avoid the numerical issues
related to the value function through the use of Euler’s equation. The second chapter
considers models with continuous choice that do not necessarily belong to the Euler class
but frequently arise in applied problems. In this chapter, a class of minimum distance
estimators is proposed, their distribution theory along with the infinite dimensional
parameters of the decision models are derived.

The third chapter demonstrates how the methodology developed for the discrete
and continuous choice problems can be adapted to estimate a variety of other dynamic
models.

The final chapter discusses an important problem, and provides an example, where
some well-known estimation procedures in the literature may fail to consistently esti-
mate an identified model. The estimation methodologies I propose in the preceding

chapters may not suffer from the problems of this kind.
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1 Dynamic Discrete Choice Problems with Continuous

State

1.1 Introduction

The inadequacy of static frameworks to model economic phenomena led to the de-
velopment of recursive methods in economics. The mathematical theory underlying
discrete time modelling is dynamic programming (DP) developed by Bellman (1957);
for a review of its prevalence in modern economic theory, see Stokey and Lucas (1989).
In this chapter we study the estimation of structural parameters and their functionals
that underlie Markov decision processes (MDP) with discrete controls and time in the
infinite horizon setting. The econometrics involved can be seen as an extension of the
classical discrete choice analysis to a dynamic framework. Such models are popular in
applied work, in particular in labor and industrial organization.

Discrete choice modelling has a long established history in the structural analysis
of behavioral economics. McFadden (1974) pioneered the theory and methods of ana-
lyzing discrete choice in a static framework. The difficulty of estimating these discrete
choice models parametrically arises in the form of computing multiple integrals. When
estimating the finite dimensional parameters in a dynamic environment, these problems
persist and are exacerbated by the need for researchers to estimate the (conditional)
value functions defined recursively through the Bellman Equation. The treatment of
these value functions determines the computational feasibility specific to the dynamic
model. Our chapter contributes to the literature that deals with the computational
complexity of this latter category.

The seminal paper of Rust (1988) proposed additive separability (AS) and condi-
tional independence (CI) assumptions for the estimation of this type of dynamic models.

These assumptions preserve the familiar structure of discrete choice problems of the



static framework and have since served as the usual starting point for many applied and
theoretical research that follow in the literature. In particular, Rust proposed a Nested
Fixed Point (NFP) algorithm to estimate his parametric model by the maximum like-
lihood method. However, in practice, this method can post a considerable obstacle
due to its requirement to repeatedly solve for the fixed point of some nonlinear map to
obtain the value functions. Hotz and Miller (1993) avoided solving out for the value
functions directly by showing the existence of an inversion map between the normalized
value functions and the (conditional) choice probabilities. The value functions could
be approximated, using nonparametric estimates of the choice probabilities, and used
to estimate the structural parameters based on the method of moments. The nature of
the inversion map is determined by the distribution of the unobserved state variables
and will generally be nonlinear except for some special cases.

The semiparametric approach of Hotz and Miller significantly reduces the com-
putational burden relative to the NFP algorithm. Their idea is central to several
methodologies that followed, especially in the recent development of the estimation of
dynamic games. A class of stationary infinite horizon Markovian games can be defined
to include the MDP of interest as a special case. Various estimation procedures have
been proposed to estimate the structural parameters of such empirical games. Pakes,
Ostrovsky and Berry (2004), and Aguirregabiria and Mira (2007), considered two-step
method of moments and pseudo maximum likelihood estimators respectively, which are
included in the general class of minimum distance estimators defined by Pesendorfer and
Schmidt-Dengler (2008). Bajari, Benkard and Levin (2007) generalizes the simulation-
based estimators of Hotz et al. (1994) to the multiple agent setting. However, when
the required transition density of the observed state variables is not specified paramet-
rically, in both single and multiple agent settings, the aforementioned work assumed

the observed state space is finite whenever the time horizon is infinite. As noted by



Aguirregabiria and Mira (2002,2007), we should be able to relax this requirement and
allow for uncountable observable state space. The distinct attractive feature of the
infinite horizon framework is that the value function is implicitly defined as a solution
to a type II integral equation. This linear equation defines the value function through
the smoothed (or integrated) Bellman equation (SBE) under the optimal decision rule,
it is also known as the policy value equation (PVE). When the observable state space
is finite, this linear equation is just a matrix equation whose statistical properties are
well understood. The extension to allow for an uncountable state space is non-trivial.
We also need to address the issue of the curse of dimensionality theoretically as well as
in practice.

In this chapter, we propose a simple two-step semiparametric approach that falls
in the general class of profiled semiparametric estimation discussed in Pakes and Ol-
ley (1995), and Chen, Linton and van Keilegom (2003). The criterion function will
be based on some conditional moment restrictions that requires consistent estimators
of the value functions. The additional difficulty here is due to the fact that the infi-
nite dimensional parameter is defined through an integral equation. The study of the
statistical properties of solutions to integral equations falls under the recent topic of
research on inverse problem in econometrics, see Carrasco, Florens and Renault (2007)
for a survey.! Type II integral equations are found, amongst others, in the study of
additive models, see Mammen, Linton and Nielson (1995). We show that our problem
is generally well-posed and utilize the approach similar to Linton and Mammen (2005)
to estimate and provide the distribution theory for the infinite dimensional parameters
of interest.

Our estimation strategy can be seen as a direct generalization of the unifying method

of Pesendorfer and Schmidt-Dengler (2008), to estimate their Markovian games, that

!See also Carrasco’s webpage on Inverse Problems in Econometrics at
https://www.webdepot.umontreal.ca/Usagers/carrascm/MonDepotPublic/carrascm/inverse/index.html
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allows for continuous components in the observable state space. The main idea is to
use the linearity of the policy value operator, where solving for the conditional value
functions only requires the solving of some matrix equations when the state space is
finite, to provide feasible estimator for the choice probabilities. To generalize this, we
simply note that such matrix equations are linear integral equations in a finite dimen-
sional space. We show that solving the analogous problem in an infinite dimensional
space is also a well-posed problem for both population and empirical versions (at least
for large sample size). In the first step, we flexibly estimate the integral equation using
the method of kernel smoothing. The estimated PVE can be solved empirically, so we
can provide estimates of the choice probabilities for any value of the structural parame-
ter. The second stage involves minimizing some analogues of the moment restrictions
over the parameter space based on feasible choice probabilities. The solving of the
empirical integral equation in the first step requires us to approximate an inverse of a
potentially large but invertible matrix but we only require to approximate this inverse
once. We note that an independent work of Bajari, Chernozhukov, Hong and Nekipelov
(2008) also proposes another estimation methodology that can estimate semiparametric
Markovian games, based on the method of sieves, that allows for continuous observable
state space. They focus on the case where the per period payoff utility function is
linear in parameters and generate moment conditions based on the conditional value
functions, some simple identification results are also provided in their paper. Therefore
our methods are complementary in filling this gap in the literature. However, we feel
that our estimation strategy, like its predecessor, is simpler and intuitive and by using
the local approach of kernel smoothing, we can obtain the pointwise distribution theory
of the infinite dimensional parameters that would otherwise be elusive with the series
or splines expansion. Since the infinite dimensional parameters in MDP are the value

functions, they may be of considerable interest themselves. Another advantage for the
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local estimator includes the optimality in the minimax sense for local linear estimators,
see Fan (1993). In addition, we explicitly work under time series framework and provide
the type of primitive conditions required for the validity of the methodology.

Since the main idea can be fully illustrated in the single agent setup, for most parts
of the chapter, we initially consider the single agent setup and leave the discussion
of the Markovian game estimation to the latter section. The chapter is organized as
follows. Section 1.2 defines the MDP of interest and discusses SBE, PVE and the related
linear inverse problem. Section 1.3 describes in detail the practical implementation
of the procedure to obtain the feasible conditional choice probabilities. In Section
1.4, Primitive conditions and the consequent asymptotic distribution are provided, the
semiparametric profiled likelihood estimator is illustrated as a special case. Section 1.5

discusses the extension to the dynamic games setting. Section 1.6 concludes.

1.2 Markov Decision Processes

We first define our time homogeneous MDP and introduce the main modelling assump-
tions and notation used throughout the chapter. We next outline the main issue of
computational complexity for estimating MDP. The sources of the computational com-
plexity are briefly reviewed and we introduce our estimator through the SBE and PVE
that we view as an integral equation in 1.2.2 and discuss the inverse problem associated

with solving such integral equations in 1.2.3.

1.2.1 Definitions and Assumptions

We index time by t, the agent is forward looking in solving the following infinite horizon
intertemporal problem. The random variables in the model are the control and state
variables, denoted by a; and s; respectively. The control variable, a;, belongs to a

finite set of alternatives A = {1,...,K}. The state variables, s;, is an element in
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RIHK . At each period ¢, the agent observes s; and chooses an action a; in order to
maximize her discounted expected utility. The present period utility is time separable
and is represented by ug (at,st), for 6 € © C RP, and her action today directly affects
the uncertain future states according to the (first order) Markovian transition density
p(dsty1]st,a:). The next period utility is subjected to discounting at the rate g €
(0,1). Formally, the agent is assumed to behave according to an optimal decision rule,

A; = {oa; (st)}4=,, in solving the following sequential problem (SP) for any time 7

V2 (s;) =supE [Z Bt (az, s¢)
Ar

t=1

s.,.j| . (1)

Under some regularity conditions, see Bertsekas and Shreve (1978) and Rust (1988),
Blackwell’s Theorem and its generalization ensure the following important properties.
Firstly, there exists a deterministic and stationary Markovian optimal decision rule

o (-) so that o (s:) = o (s¢4-) for any s; = sgy, and any ¢, 7, ie.
ad(s:) = arg max {ug (a,st) + BE [Vgo (st4+1)]s,ae =a]} forallt > 1. (2)
Secondly, the value function, V;,O, is the unique solution to the Bellman’s equation (BE)
Vg (1) = max {ug (a,51) + BE [Vy (5t41) Ist, e = a] } - 3)

In order to make this a more tractable econometric problem, the following set of

conditions for the class of MDP of interest are imposed:

AssuMPTION M1.1: The observed data for each individual {at,xt}g:ll are the

controlled stochastic processes satisfying (2) with ezogenously known (3.

AssuMPTION M1.2: (Conditional Independence) The transitional distribution has

13



the following factorization: p(Tty1,€t+1|Tt, €, at) = q(Er41]|Te41) fxrix,4 (Te41]Tt, ar)

for all t.

ASSUMPTION M1.3: s; = (z4,6;) € X x RE, where X = X% x XP is a compact
subset of R?. XC includes intervals and XP is finite, they denote the observable state
space with continuous and discrete components respectively. &; is a vector of unobserved
state variables, whose dimension is K, the cardinality of A. The distribution of e is
also known and is absolutely continuous with respect to some Lebesque measure with

Radon Nikodym density q (e;|z:) with support RE

ASSUMPTION M1.4: (Additive Separability) The per period payoff function ul :
A x 8 — R is specified upto some unknown parameters § € © C RF.and is additive

separable w.r.t. unobservable state variables, ul (at, Ty, et) = ug (ar, Tt) + Eay t-

Conditions M1.1 is a standard simplification to keep the model tractable. The knowl-
edge of A is important as it is generally not identified in MDP models. The popular
infinite time framework yields us an elegant and simple linear equation to work with.
We discuss the solving of such equations below; The fundamental assumption in the
current literature is M1.2, the (CI) assumption of Rust (1988). The combination of
M1.2 and M1.4 allows us to set our model in the familiar framework of static discrete
choice modelling; The observable state space of M1.3 is usually assumed to be finite
but we allow for it to include intervals. Compactness X€ is not necessary, imposed
here for the ease of exposition; The additive structure on the payoff function in M1.4
is also imposed by Rust (1994).

It is our goal to estimate the structural parameters as well as some functionals
depending on them. Conditions M1.1 - M1.4 are crucial to the estimation methodol-
ogy we propose. These conditions are standard in the literature. In particular, M1.3

is weaker than the usual finite X assumption when no parametric assumption is as-
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sumed on fx/ x4 (Tt+1|2t,a;) in the infinite horizon framework. For departures of
this framework see the discussion in the survey of Aguirregabiria and Mira (2008) and
the references therein. Henceforth Conditions M1.1 - M1.4 will be assumed and later

strengthened as appropriate.

1.2.2 Policy Value Equation

Similarly to the static discrete choice models, the estimation of our controlled process
requires us to compute the choice probabilities. There are two numerical aspects that we
need to consider in the evaluation of the choice probabilities. The first are the multiple
integrals, that also arise in the static framework, where in practice many researchers
avoid this issue via the use of conditional logit assumption of McFadden? (1974). The
second is that we must compute the value function, directly or indirectly, as defined in
(1) and (3) - this is unique to the dynamic setup. First we introduce what we also call,
with an abuse of a terminology, the value function defined on the observed variables,

Vs, which is a stationary solution to the policy value equation when for any 6, cf. (3)

Vo (st) = ug (ar, 5t) + BE [Vg (se41) |se] (4)
so that
Vo(st)=E [Z B"" ug (ar, s7) St] .

In particular, we have must have Vg, (s;) = Vb% (st) and a; = ago (st). We stress that
the equation above is also well defined for any @ that is not equal to 8y; then Vj is
interpreted as the value function for an economic agent whose underlying preference is
# but is using the policy function that is optimal with respect to 6y. To see precisely

the difficulty we face, we first update our BE under the assumptions M1.1 - M1.4, M1.2

2Unlike in static models, we do not suffer from the undesirable I.I.A. when use i.i.d. extreme values
errors of type I in the dynamic framework.
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implies:

E Vo (st41) [st, ac) = E [E [V (st41) |ze4a] |2, ae] -

Denote ug (as, x:) + BE [E [V (St+1) |zt+1] |zt, at] by vg (at, z¢), we can define the model

implied policy function ag by
ag (xg,6t) = ar © vg (az, Tt) + €a,t > Vg (a,24) + €44 fOr a # az. (5)

Again, we must have ag, (s:) = ago (s¢)- The above is familiar from the static multino-
mial ehoice framework. In order to compute the choice probabilities we need to integrate
across the domain of the unobservable states satisfying (5) as well as provide the values

for vy, for each- 6, denoting the conditional choice probabilities by {P (at|z:, 0)}

P(ai|zt,0) = Prlvg(as, ;) +eaye > vo(a, ) + €0 for a# agjz (6)

_ / 1o (1, e:) = ai) g (desaz) -

Generally, suppose that we know vy, (6) will have no closed form and the task of
performing multiple integrals numerically is often non-trivial.®> Under M1.3, we can
make distributional assumptions on the error terms, for example using the popular
ii.d. extreme value of type I - then we can avoid the multiple integrals as (6) has the

well known multinomial logit form

P e ) = 552 (00 00,20) - .
(k21 0) = S e (v (ar20) "

acA

Our estimation strategy accommodates for general form of distribution per M7. How-

ever, the problem we want to focus on is the fact that we generally do not know vy. For

3See the discussion of Hajivassiliou and Ruud (1994) where they provided some form of escape via
simulation methods.
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vg (a¢, z¢) contains E [E [Vp (st41) |Te+1] |T¢, at], which we denote by gg (a¢, ;), defined
through some nonlinear functional equation that we need to solve for.
Under the rationality assumption of M1.1, we define the conditional value function

by taking conditional expectation on (4) w.r.t. zi,

E[Vy(st)lz] = E [ug(as,st)|ze] + BE[E Vg (s141) |5, aur] |i] (8)

= E[ug(as, ) |z:] + BE[E [V (st41) |zs41] [:]

The latter equality follows from M1.2. Therefore we can express (8) generally as a
linear integral equation of type II. Imposing the structural parameterization of M1.4
we can represent (8) by

mg = 19 + Lmy, (9)

where for any given ¢ and z € X: my (z) is the ex-ante (conditional) expected value
function E [V (s¢)} lz: = z]. 9 (z) is the-ex-ante expected immediate payoff given state
; = z, namely F [ug (ai, st) |ze = :v] The integral operator £ generates-discounted
expected next period values of its operands, e.g. Lmg (z) = BE [mg (z441) |z¢ = z}. If
we could solve for mg then we need another level of smoothing on mg to obtain the
continuation value vy as defined in the previous subsection. In particular, we can define

gp through the following linear transform

9o = Hmy, (10)

where for any given 6 and (z,a) € X X A, gg (a, z) is the ex-ante expected value function
E Vo (st41) |zt = z,a: = a] (= E [mg (zt41) |2t = z,a; = a]) and the integral operator

H generates the expected next period values of its operands (cf. £). The continuation

17



value, net of unobserved shock, can be written in a linear functional notation

vg = ug + BHmy. (11)

Before we can discuss the estimation of vg, we need to address some issues regarding
the solution of integral equations since my is defined as a solution to the integral
equation (9). It is natural to ask the fundamental question whether our problem is
well-posed in the sense of Hadamard, namely, whether the solution of (9) exist and if
so, whether it is unique and stable. The study of the solution to such integral equations
falls in the general framework of linear inverse problems, and in what follows we show

that our inverse problem is well-posed.

1.2.3 Linear Inverse Problems

The study of inverse problems is an old problem in applied mathematics. The type
of inverse problems one commonly encounters in econometrics are integral equations.
Carrasco et al. (2007) focused their discussion on ill-posed problems of integral equa-
tions of type I where recent works often needed regularizations in Hilbert Spaces to
stabilize their solutions. Here we face an integral equation of type II, which is easier to
handle, and in addition, the convenient structure of SBE allows us to easily show that
the problem is well-posed in a familiar Banach Space. We now define the normed linear
space and the operator of interest, and proof this claim. We shall simply state relevant
results from the theory of integral equations. For definitions, proofs and further details
on integral equations, readers are referred to Kress (1999) and the references therein.
From the Riesz Theory of operator equations of the second kind with compact
operators on a normed space, say A : X — X, we know that I — A is injective if and
only if it is surjective, and if it is bijective, then the inverse operator (I — A)™! : X — X
is bounded. We will be working on the Banach space (B, ||-||), where B = C(X) is a

18



space of continuous functions defined on the compact subset of R/, equipped with the
sup-norm, i.e. ||@|| = sup,cx |¢ (z)]- £ is a linear map, £ : C (X) — C(X) , such that,

for any ¢ € C(X) and z € X,

Lo(z) = ﬂ/x ¢ (2') fxrx (d'|z),

where fx|x (dzt+1]2:) denotes the conditional density of ;11 given z:.
In fact, the compactness of the operator is not required in this case since we know
the existence, uniqueness and stability of the solution to (9) are assured as we can show

L is a contraction. To see this, take any ¢ € C (X) and z € X,
1£6 (@)1 <8 [ 16()] frxx (d2'ls) < fsup 16 @),
X zeX
since the discounting factor 8 € (0,1);"
Lol < Blioll = £l < B < 1.

This implies that our inverse problem is well-posed. Further, the contraction property

means we can represent the solution to (9) using the Neumann series,

mg = (I—-L)'rg (12)
T
= T@mzlﬁfrg. (13)

Therefore (13) provides one obvious way of approximating the solution to the integral
equation which will converge geometrically fast to the true function. If X is countable,
then £7 would be represented by a 7-step ahead transition matrix (scaled by 37). Note

that the operator for the (uncountable) infinite dimensional case share the analogous
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interpretation of T-step ahead transition operator with discounting.

Since our problem is well-posed, then it is reasonable to expect that with sufficiently
good estimates of (mg, £, H) our estimated integral equation is also well-posed and will
lead to (uniform) consistent estimators for (gg, vg). Our strategy is to use nonparametric
methods to generate the empirical versions of (9) and (10), then use them to provide

an approximate for vg necessary for computing the choice probabilities.

1.3 Estimation of Conditional Choice Probabilities

In this section we discuss the estimation of the nonparametric components necessary for
the computation of the model implied choice probabilities. Our objective is to construct
an estimator of vg as defined by (9), (10) and (11) from a time series {a;, mt}g;l. A pure
time series approach is assumed for notational simplicity, this can be trivially extended
with N independent realizations of the same controlled process. We proceed in two
steps. First, we nonparametrically compute estimates of the kernels of £,H and for
each 6, estimate rg. Then obtain the estimate of my by solving the empirical version
of the integral equation (9) and estimate gg analogously from an empirical version of
(10).

There are numerous choices available for empirically solving the integral equation
in (9). We need to first decide on the nonparametric method. We will focus on the
method of kernel smoothing due to its simplicity of use as well as its well established
theoretical grounding. Our nonparametric estimation of the conditional expectations
will be based on the Nadaraya-Watson estimator. The local constant estimator is
chosen for its familiarity and simplicity of notation. However, since we will be working
on bounded sets, it is necessary to address the boundary effects. The treatment of
the boundary issues is straightforward, the precise trimming condition is described in

Section 4. So we will assume to work on a smaller space X7 C X where Xp = (X:,q ,XP )
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denotes a set where the support of the uncountable component is some strict compact
subset of X but increases to X¢ in T. When allowing for discrete components, we
simply use the frequency approach, smoothing over the discrete components is also
possible, see Aitchison and Aitken (1976). We will also need to make a decision on how
to define and interpolate the solution to the empirical version of (9) in practice. We
discuss two asymptotically equivalent options for this latter choice, whether the size of
the empirical integral equation does or does not depend on the sample size, as one may

have a preference given the relative size of the number of observations.
ESTIMATION OF r4,£ AND H:

We now define the nonparametric estimators, (7, £, H), of (rs, £, H). Any generic
density of a mixed continuous-discrete random vector w; = (wf, wf), fw: R xR!® —

R* for some positive integers IC and IP, is estimated as follows,
~ 1L
fuw ('wc,’wd) = T;Kh (wf —w)1 [wf = wd] ,

where K is some user chosen symmetric probability density function, h is a positive
bandwidth and for simplicity independent of w®. K, (-) = K (-/h) /h and if I€ > 1
then Kj (wf —w®) = lﬁl Kp, (wt",l - wlc), 1[] denotes the indicator function, namely
1[A] = 1 if event A occurs and takes value zero otherwise. Similar to the product
kernel, the contribution from a multivariate discrete variable is represented by products
of indicator functions. The conditional densities/probabilities are estimated using the
ratio of the joint and marginal densities. The local constant estimator of any generic

regression function, E [z|w; = w] is defined by,

% Zthl 2 Kp (w§ — w) 1 [w;i = wd]

fw (w)

E [z|w; = w] =

(14)
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(I) ESTIMATION OF 7y:

For any z € X7,

rg(x) = Elugg(as,st)|r: = 7]

= FEug(at,z¢) |zt = z] + E [€q, |2t = 7]

= p1(2) +pye(x).

The first term can be estimated by

Pre(@) =) P(alx)us (a,a), (15)

acA

or, alternatively, the Nadaraya-Watson estimator,
51,0 () = E [ug (a1, ) |z: = 7]

In (15), {13 (a|:c)}a€A is a sequence kernel estimator of the conditional choice proba-
bilities, and equivalently the Nadaraya-Watson estimator. Generally, by the inversion
theorem of Hotz and Miller, it will be more convenient to use (15) since we have to
compute {13 (a[z)}aeA in any case, as we shall see below.

The conditional mean of the unobserved states, p, g, is generally non-zero due to
selectivity. By the inversion theorem of Hotz and Miller, we know p, 4 can be expressed
as a known smooth function of the choice probabilities. For example, the i.i.d. type I

extreme value errors assumption will imply that

P2 (2) =7+ P(alz)log (P (ala)), (16)

acA

where v is the Euler’s constant. An estimator of py 5 can therefore be obtained by
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plugging in the local constant (linear) estimator of the choice probabilities.

Alternatively, we could use another consistent estimator, where the estimator of
the conditional choice probability, {13 (alm)}aeA, can be estimated by the Nadaraya-
Watson estimator of the regression of 1 [a; = a] on z; = z. This approach may be more
convenient when sample size is relatively small, and we want to solve the empirical
version of (9) by using purely nonparametric methods for interpolation, where we could
use the local linear estimator to address the boundary effects.

(IT) ESTIMATION OF £ AND H:

Suppose X is empty. For the integral operators £ and H, if we would like
to use the numerical integration to approximate the integral, we only need to pro-
vide the nonparametric estimators of their kernels, respectively, fxll x (dzy1|ze) and

Fxnix,a (dzesa)ze, o).

For any ¢ € C (Xr), the empirical operators are defined as,

Lo(z) = /X b (&) Fnx (d2']z), (17)

ﬁqﬁ (0., (II) = L ¢ (l‘,) fX’|X,A (dz'lx, a) . (18)

So L and ‘H are linear operators on the Banach space of continuous functions on X
with range C (Xr) and C (A x Xr) respectively under sup-norm. Alternatively, we

could use the Nadaraya-Watson estimator, defined in (14), to estimate the operators,

Lo(z) = E[¢p(z41)]ze =1,

Ho(a,z) = E[p(zi41)|z=2,a:=a].

Note that, if X is finite then the integrals in (17) and (18) will be defined with

respect to discrete measures, then (£, H) and (£, H) can be equivalently represented
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by the same stochastic matrices.
ESTIMATION OF my,gg AND vg:

We first describe the procedure used in Linton and Mammen (2005), by using
(E, ﬁ), to solve the empirical integral equation. We define 7y as any sequence of
random functions defined on X7 that approximately solves g = 79 + Ling. Formally,
we shall assume that 7y is any random sequence of functions that satisfy

aegling (1 - £) o (2) — 7o ()] = 0 (T7/2).. (19)

In practice, we solve the integral equation on a finite grid points, which reduces it to
a large linear system. Next we use My to define gy, specifically we define gy as any
random sequence of functions that satisfy

sup o (a, ) — Hing (a, .’L‘)| =0p (T—1/2) . (20)
0€0,acA;zc X

Once we obtain gy, the estimator of vg is defined by

sup [Vg (a, ) — ug (a,z) — BGa (a,z)| = op (T—1/2) ]
0cO,acAzeXT

For illustrational purposes, ignoring the trimming factors, we will assume that X =
[z,z] CR.
For any integrable function ¢ on X, define J(¢) = [@(t)dt. Given an ordered

sequence of n nodes {t;,} C [a,b], and a corresponding sequence of weights {w;,}
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such that Z?=1 wjn = b— a, a valid integration rule would satisfy

im J. (¢) = J(¢)

n—oo

JIn (¢) = ij,n¢ (t ',n) )

i=1

for example Simpson’s rule and Gaussian quadrature both satisfy this property for
smooth ¢. Therefore the empirical version of (9) can be approximated for any z € [a, b
by

g (z) =7 (2) + B Y winFxrix (tjnlz) Mg (tin) (21)
j=1

so the desired solution that approximately solves the empirical integral equation will

satisfy the equation below at each node {¢;},

n
g (tin) = 7o (tim) + B Y winfxix (tjnltin) Mo (tin) - (22)
=1

This is equivalent to solving a system of n equations with n variables, the system of

(22) can be written in a matrix notation as

mg = Ty + Limg, (23)
where g = (Mg (t1n) - - -, Ttg (tnn)) T sTo = (Fo (t1.n) - - »70 (tam)) |, In is an identity

matrix of order n and L is a square n matrix such that (L);; = ﬂwj,nfxll x Einltin)-
Since fxq x (-|z) is a proper density for any z, with a sufficiently large n, (I, — ﬁ) is
invertible by dominant diagonal theorem. So there is a unique solution to the system
(23) for a given Ty. In practice we have a variety of ways to solve for my with one
obvious candidate being the successive approximation as mentioned in (13). Once we

obtain iy, we can approximate My (z) for any z € X by substituting my into the
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RHS of (21). This is known as the Nystrom interpolation. We need to approximate
another integral to estimate gg. This could be done using the conventional method of
kernel regression as discussed in Section 3.1, or by appropriately selecting sequences of

r nodes {g;-} and weights {(;,} so that

§0 (.77 IL') = Z Cj,anX’|X,A (qj,'rlxij) ’fﬁﬂ (QJ,T) ) (24)
j=1

where the computation for the system of (24) is trivial. See Judd (1998) for a more
extensive review of the methods and issues of approximating integrals and also the
discussion of iterative approaches in Linton and Mammen (2003) for large grid sizes.

Alternatively, (again, ignoring the trimmed observations) we can form a matrix
equation of size T'— 1,

ffla = ?0 + Eﬁ97
to estimate (9) at the.observed points with the ¢-th element defined below,

T’l“l 23;_11 mg (24+1) K (2t — )

ot ST Kn (2 — x2)

my (T¢) = T (x) + B

By the dominant diagonal theorem, the matrix equation above always has a unique

solution for any T' > 2. Once solved, the estimators of 7my can be interpolated by

g () =g (€) + BE [m (z041) |2 = 2],

for any z € Xp. Similarly, gs and vy can be estimated nonparametrically without
introducing any additional numerical error. Clearly, the more observation we have, the
latter method will be more difficult as dimension of the matrix representing L is large

whilst the grid points for the former empirical equation is user-chosen.
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PRACTICAL DISCUSSION:

We reflect on the computational effort required of the proposed method. It will be
helpful to have in mind the methodology of Pesendorfer and Schmidt-Dengler (2008)
as our methods coincide when the X is finite and there is only 1 player in the game
(vice versa, extending from a single agent decision process to a dynamic game). For
each 6, the nonparametric estimates of (rg, £, H) have closed form and are very easy
to compute even with large dimensions, further, the empirical integral operators (or
their approximations) only need to be computed once at the required nodes since they
do not depend on 8. Solving the empirical integral equation to obtain 74, in (23), is
the only potential complication that does not exist in a static problem. However, in
this setup, this reduces to the need to invert a large matrix that approximates (I — £)
that only need to be done once at the beginning and stored for future computation
with any other . Estimators of (mg, gg,vg) are obtained trivially for any 6, by simple
matrix multiplication, once the empirical operator of (I — £)_1 is obtained. We note
further computational gain is possible if ugy is linear in . The reason for this is clear,
from (15) and (16), linearity in 6 implies r¢ = S, 6;7, utilizing the fact that the
inverse of (I — L) is a linear operator so we have mg = S 1, 6; (I — £)™' 1, where,
once again, (I - E)_l 71 only need to be computed once for each . See Hotz, Miller,
Sanders and Smith (1994) and Bajari, Benkard and Levin (2007) for related utilization
of the repeated substitution concept.

However, it is important to note that, as we have decided on the kernel smoothing
approach there is an issue of bandwidth selection which is important for small sample
properties. Further, it is easy to see that the invertibility of the matrix (I — ﬁ) and
(I — L) are not dependent on the number of continuous and/or discrete components.
Clearly, there are a lot of choices available regarding integral approximation and matrix

inversion methods. It is beyond the scope of this chapter to analyze the finite sample
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performance of these various methodologies.

1.4 Distribution Theory

In this section we provide the type of primitives sufficient to obtain the distribution
theory for both finite and infinite dimensional parameters of interest. A class of criterion

functions can be generated from the following conditional moment restrictions,

E[1[a; = a] — Py, (a|zs) |zt) = 0. (25)

We focus on a specific example of a profiled likelihood estimator.? In terms of the
dimensionality of X, we restrict X© C R, the reason being this is the scenario that
applied researchers may prefer to work with. This does not limit the usefulness of the
primitives provided. For other estimation criterions, since two-step estimation problems
of this type can be compartmentalized into nonparametric first stage and optimization
in the second stage, the primitives below will be directly applicable. There might be
other intrinsically continuous observable state variables that require discretizing but
with increasing dimension in X, the practitioners will need to employ higher order
kernels and/or undersmooth in order to obtain the parametric rate of convergence for’
the finite structural parameters, adaptation of the primitives are straightforward and
will be discussed accordingly.

There are general large sample theory of profiled semiparametric estimators avail-
able that treat the estimators defined in our models. In particular, the work of Pakes
and Olley (1995) and Chen, Linton and van Keilegom (2003) provide high level con-
ditions for obtaining root—7 consistent estimators are directly applicable. The rele-

vant large sample properties for the nonparametric first stage, under the time series

4This estimator can be derived from some conditional moment restrictions if the zero of the first
order condition identifies the true parameter.
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framework, for the pointwise results see the results of Roussas (1967,1969), Rosenblatt
(1970,1971) and Robinson (1983). Roussas first provided central limit results for kernel
estimates of Markov sequences, Rosenblatt established the asymptotic independence
and Robinson generalized such results to the a-mixing case. The uniform rates have
been obtained for the class of polynomial estimators by Masry (1996), in particular,
our method is closely related to the recent framework of Linton and Mammen (2005)
who obtained the uniform rates and pointwise distribution theory for the solution of a
linear integral equation of type II. We assume to possess a time series data {a, mt};‘rzl

generated from the MDP described in Section 1.2.
INFINITE DIMENSIONAL PARAMETERS:

We begin with some primitives. In addition to M1.1 - M1.4, the following sufficient
conditions are weak enough to accommodate most of the existing empirical works in
applied labor and industrial organization involving estimation of MDP.

We denote the strong mixing coeflicient as

a(k)=sup sup |Pr(ANB)—Pr(A)Pr(B)| forkeZ,
teN AeFgR, Lo,

where F¢ denotes the sigma-algebra generated by {a;, mt}fza.

Bl.1 X x © is a compact subset of R’ x RF with X© = [z, 7).

B1.2 The process {at,:c,}g;l is strictly stationary and strongly mizing, with a mizing
coefficient o (k),sueh that for some C > 0 and some, possibly large x > 0, (k) <

Ck™X,

B1.3 The density of z; is absolutely continuous fxc xp (dwt,xf) for each zf € XP.

The joint density of (at,x:) is bounded away from zero on XC and is twice
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continuously differentiable over XC for each (zf, a) € X D x A. The joint den-
sity of (Tit1,t,ar) is twice continuously differentiable over X C x XC for each

(:vfﬂ,:z:‘ti,at) € XP x XP x A.

B1.4 The mean of the per period payoff function ug (at,x:) is twice continuously dif-

ferentiable on X€ x © for each (:L'f, at) e XP x A.

B1.5 The kernel function is a symmetric probability density function with bounded sup-
port such that for some constant C,|K (u) — K (v)| < C|u—v|. Define p; (K) =

[ WK (u)du and k; (K) = [ K7 (u)du.

B1.6 The bandwidth sequence hr satisfies hy = v (T) T~/5 and ~, (T) bounded away

from zero and infinity.

B1.7 The triangular array of trimming factors {c;} is defined such that ¢,7 =1 [xf € qu]
where Xt = [z + cr, T — cr] and {cr} is any positive sequence converging monoton-

tcally to zero such that hp < cp.

B1.8 The distribution of &; is known to be distributed as i.i.d. extreme value of type I

across K alternatives, and is mean independent of =, and is i.i.d. across t.

The compactness of the parameter space in Bl.1 is standard. Compactness of
the continuous component of the observable state space can be relaxed by using an
increasing sequence of compact sets that cover the whole real line, see Linton and
Mammen (2005) for the modelling in the tails of the distribution. The dimension of
XC is assumed to be 1 for expositional simplicity, discussion on this is follows the
theorems below. On the other hand, it is a trivial matter to add arbitrary (finite)
number of discrete components to XP.

Condition B1.2 is quite weak despite the value of x can be large.

30



The assumptions of B1.3, B1.4 and B1.5 are standard in the kernel smoothing
literature using second order kernel.

Here in B1.6 we use the bandwidth with the optimal MSE rate for a regular 1-
dimensional nonparametric estimates.

The trimming factor in B1.7 provides the necessary treatment of the boundary
effects. This would ensure all the uniform convergence results on the expanding compact
subset { X7} whose limit is X. In practice we will want to minimize the trimming out
of the data, we can choose ¢y close enough to hr to do this.

Condition B1.8 is not necessary for consistency and asymptotic normality for any
of the parameters below, only M1.3 is required. In particular, B1.8 yields us the simple
multinomial logit form, (7), that is often used in practice. For other distribution will
result in the use of a more complicated inversion map, for example see Pesendorfer and
Schmidt-Dengler (2003) for the Gaussian case.

Next we provide pointwise distribution theory for the nonparametric estimators
obtained from the first stage, as described in Section 3, for any given set of values
of the structural parameters. The bias and the variance terms are complicated, the

explicit formulae can be found along with all proofs in the Appendix.

THEOREM 1.1. Suppose B1.1 — B1.8 hold. Then for each 0 € © and z € int (X),

there ezists deterministic functions 7, 9 and wy, ¢ such that

72/ (g (5) = 0 0) = Gpsb 1m0 (3)) = N (Omo (&),

where My (z) is defined as in (19) and

nm,G (.’E) = (I - L:)—l (777',9 + 77[:,0) (.’l,') ’

wmp () = 2 (B2var (mg (ze41) [T = T) + wro () -

fx (z)
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Some components of the bias and variance are complicated, in particular the ezplicit
form of 1,9, nc g and wyg can be found in (45),(54) and (46) respectively. g () and

mg (') are also asymptotically independent for any x # «’. Furthermore,

sup |y (@) — mo (2)| = 0 (T1/4).
(z,0)eXT %O

The rate of convergence, T~2/5, is the usual optimal rate (in the MSE sense) of
a 1—dimensional nonparametric function. The above is obtained by using analogous
arguments of Linton and Mammen (2005) after showing that the conditional density
estimator that define the empirical integral operator converges uniformly (see Masry
(1996)) over its domain. Similar to Theorem 1, we also obtain the following results for

the estimator of gg.

THEOREM 1.2. Suppose Bl.1 — B1.8 hold. Then for each 6 € ©,z € int(X) and

a € A,

R 1
T (go (a,2) — go (a,2) = S pzhTng0 (a x)) = N (0,wg,0 (2, 7)),

where gg (a, ) is defined as in (20) and

Ngp(a,z) = H(I - c)! (1r0 +7c0) (@,2) + 190 (a,7),

K2
wgg(a,z) = fXA—(xa)var (mg (zt41) |zt = z,a: = a) .
A ?

The ezplicit form of n,.9, 1. ¢ and 1y g can be found in (45),(54) and (55) respectively.
90 (a,z) and gg (a’,2’) are also asymptotically independent for any x # z’' and any a.
Furthermore,

sup |90 (a,2) — gp (a,2)] = 0p (T—1/4) _
(z,0,0)eXTXxAXO
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We end with a brief discussion of the change in primitives required to accommodate
the case when the dimension of X€ is higher than 1. Clearly, using the optimal (MSE)
rates for hy, dim (X C) cannot exceed 3 with second order kernel if we were to have
the uniform rate of convergence for our nonparametric estimates to be faster than
T-1/4 that is necessary for v/T—consistency of the finite dimensional parameters. It
is possible to overcome this by exploiting additional smoothness (if available) of our
densities. This can be done by using higher order kernels to control the order of the
bias, for details of their constructions and usages see Robinson (1988) and also Powell,

Stock and Stoker (1989).
FINITE DIMENSIONAL PARAMETERS:

We first provide the notation for the objective functions:

T

T
~ 1 R
Qr(6) = T ;‘I(at,xtie, g0); Qr(0)= T ;Ct,TQ(atazt;g;ge):

where ¢ denotes the log-likelihood function, @T is the feasible criterion function, Qr
is identical to @T when the infinite dimensional component gg = gg. Here, {¢; 7} is
a triangular array of trimming factors, cf. B1.7. Define also the limiting objective
function @ (6) = limr_,o, EQ (8), which is assumed to exist. We define our estimator
for the finite dimensional structural parameters, 5, to be any sequence that satisfy the
following inequality,

Q\T(b\) > sup Qr (8) — o (T—1/2) .
)

In order to obtain consistency result and the parametric rate of convergence for 5,
we need to adjust some assumptions described in the previous subsection and add an

identification assumption. Consider:

B1.6' The bandwidth sequence hr satisfies hr = v, (T) T~Y/4/log T and ~, (T) bounded
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away from zero and infinity.

B1.9 The value 8y € int (©) is defined by, for any € >0

sup @ (60) —Q(8) > 0.
j|6—80]|>¢

The rate of undersmoothing (relative to B1.6) in Condition B1.6" ensures that the
bias from the nonparametric estimation disappears sufficiently quickly to obtain para-
metric rate of convergence for 9. To accommodate for higher dimension of X€, we
generally cannot just proceed by undersmoothing but combining this with the use
higher order kernels, again, see Robinson (1988) and also Powell, Stock and Stoker
{1989).

Condition B1.9 assumes the identification of the parametric part. This is a high
level assumption-that might not be easy to verify due to the complication with the
value function. In.practice we will have to check for local maxima for robustness. We
note that this is the only assumption concerning the criterion function, for other type
of objective functions, obvious analogous identification conditions will be required.

The properties of  can be obtained by application of the asymptotic theory for
semiparametric profile estimators. This requires uniform expansion gp (and hence 77g)

and their derivatives with respect to 4.

THEOREM 1.3. Suppose Bl.1 — B1.5, B1.6' and B1.7 — B1.9 hold. Then
VT (5 . 00) — N (0,77'277Y),

where T is a complicated term representing the asymptotic variance of the leading terms

mn
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T
ﬁz 3‘1(0’:71'1.:007900! and
t=1

__[8%a(a, zt; 60, g6,)
J=E 5060 }

The root-T rate of convergence is common for such semiparametric estimators when
the dimension of the continuous component of X is not too large under some smoothness
assumptions. We note that, unlike 7y and gy, the asymptotic variance of 9 is rather
complicated.

And finally we have,
THEOREM 1.4. Suppose Bl.1 — B1.5, B1.6’ and B1.7 — B1.9 hold. Then for any

arbitrary estimator  such that ||6 — 6o|| = O, (1) and z € int (X),

- 1
VT (52) = 0 () = 31y (2)) = N Oriman (2).
where Mg, Ny, 9 and wy, g are defined as those in Theorem 1.1 and, i (z) and My (z')
are asymptotically independent for any z # '.
Similarly, for gg we have,

THEOREM 1.5. Suppose Bl.1 — B1.5, B1.6' and B1.7 — B1.9 hold. Then for any

arbitrary estimator 0 such that ||0 — 6o)| = O, (1), z € int (X) and a € A,

V Thr (g' (arx) 960 (a' :r) MZthg 6o (a’ .’l))) = N(O Wg,60 (a‘ 1‘)) )
where g, 1,9 and wgg are defined as those in Theorem 2 and, g;(a,z) and g5 (d',2')
are asymptotically independent for any = # =’ and any a.

Given the explicit forms of the bias and variance terms provided in the above
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Theorems 1.1 - 1.2 and Theorems 1.4 - 1.5, inference can be conducted using large
sample approximation based on obvious plug-in estimators. These expressions are
useful as they provide insights into to the variation in the bias and variance of our
estimators. However, for the estimator of 9 in Theorem 1.3, due to their complicated
form, bootstrap procedures would most likely be preferred in practice. Later in Chapter
2.4, we propose a bootstrap algorithm to estimate a class of dynamic models where the
control variable is continuously distributed, the procedure can be readily adapted to

estimate a discrete choice problem.

1.5 Simulation Study

In this section we illustrate some finite sample properties of our proposed estimator
in a small scale Monte Carlo experiment. We replicate the setup of the bus engine

replacement problem studied in Rust (1987).
THE RENEWAL PROBLEM:

Consider the decision problem of a manager who owns a bus that operates in each
period. The observable state variable z; is the mileage reading from the machine’s
odometer. The manager’s decision is to decide whether to replace the machine (a; = 1)
or maintain it (a; = 0). In addition, the manager also takes into the account the net
cost of goodwill gained/lost from her decision whether to take it out of service, which
we denote by (e1z,€2t). The manager per period profit

—01+ et ifa=1,
UO,() (a7 Tt, Et) =

—09x; + €9  otherwise.

Therefore 8, is the replacement cost of the machine engine while 6 reflects the scal-

ing factor for the cost of maintaining the machine, which depends on the machine’s
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odometer reading. The evolution of the mileage z; is assumed to follow a regenerative
random walk, in particular we assume
'Tlt if a;r = 1,

Ti41 =
¢+ 1, otherwise,

where 17, i exp (1). This regenerative property is essential for maintaining the
stationary structure we need to carry out our estimation procedure.

Given the framework above, we set (01,62) = (5,0.5) and use the fixed point it-
eration method of Rust (1987) to approximate the true continuation value function
necessary to generate the data. Although the support of z; is the positive half-line we
only restrict outselves to [0,20], and we base our approximation of functions on this
interval by using 1000 equally-spaced grid points. We generate 1000 replications of

such controlled Markov processes for various sizes of T' € {100, 500, 1000, 2500, 5000}.
IMPLEMENTATION:

We are interested in obtain estimates for the demand parameters (61, 62) when only
{as, x¢ }thl are observed. In estimating the nonparametric estimator of gy, we use a trun-
cated Gaussian kernel with 3 different bandwidths {h; = 1.06s (NT)™*: ¢ = 3, ,%},
where s is the standard deviation of observed {z;}__,. Note that the rate of decay
for h% is as specified in B1.6’ to ensure root—T consistent estimation of 6 based on
using a second order kernel. For the conditional density of z;; given z;, we recall that
Ti41 — Tt = 7); SO we base our estimation of the conditional density on the density of the
random sample {nt}z;l. For estimating the nonparametric conditional choice probabil-
ities we use the Nadaraya-Watson estimator for the regression function of 1 [a; = 1] on

z;. And to deal with the boundary issue (from below), we employ the following simple
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boundary corrected kernel

Trl——K” 2=2)__ for z € [0,h)
Kb (ag—g) = fomem KOOV

Ky (z: — ) otherwise,

where K denotes the truncated Gaussian kernel. In addition, due to small number
observations for large values of z, we set the values for the kernel estimators in the
top 5—th percentile (of the observed data) to be equal to obtained from the 95—th
percentile.

We also estimate the model by manually diseretizing {xt}g:__l. We do this by parti-
tioning the support of X by various grid points based on various number of grids (d).

In particular, for different values of d:

d=2,X =[0,3] U[3,00)

d=3,X =[0,2.5]U[2.5,5] U[5,00)

d=4,X =[0,2]U[2,4] U[4,6]U[6,00)

d=>5,X =[0,1.5]U[1.5,3} U[3,4.5] U [4.5,6] U [6,00)

The corresponding values for the discrete support is simply the mid-point values
when the upper bound of the discretized is finite, otherwise it takes the following values

{6,7,8,8} for d = {2, 3,4, 5} respectively.

COMMENTS AND RESULTS:

The Tables can be found at the end of the chapter. We report the bias, median of
the bias, standard deviation and interquartile range (scaled by 1.349) for the estimators
of #; and 63. For Tables 1 and 2, the rows are arranged according to the total sample
size and bandwidths. We have the following general observations for both estimators:

(i) the median of the bias is similar to the mean; (ii) the estimators converge to the true

38



values as N increases and their respective standard deviations are converging to zero;
(iii) the standard deviation figures are similar to the corresponding scaled interquartile
range.®> However, using the bandwidth that decays at the rate specified in B1.6 (Section
1.4) as the benchmark, undersmoothing seems to provide marginally better results in
the MSE sense whilst the results for oversmoothing actually perform rather poorly as
the bias term dominates the MSE, this is somewhat expected since the estimators are
biased for the bandwidth with that rate.

We also report analogous summary statistics from using the manually discretized
data. As expected, generally, larger support of the discretized state yields relative lower
bias while increasing the variance. The estimates for 8; and 67 indicate that these
estimators are typically inconsistent. Although an exception exists for the particular
design with 4 discrete state appears to provide estimates that concentrates close to the

true 6 (only) for 65.

1.6 Markovian Games

The development of empirical dynamic games is of recent interest especially in the
empirical industrial organization literature. See Ackerberg et al. (2005) for an excellent
survey. A class of Markovian games with discrete action and time can be defined
by considering a finite set of endogenously linked MDP, whose interactions are to be
made precise below. For some examples of the estimation techniques for such games
see Aguirregabiria and Mira (2007), Bajari et al. (2008), Pakes et al. (2002), and
Pesendorfer and Schmidt-Dengler (2008). Similarly to the single agent MDP, these
papers, with the exception of Bajari et al., assume finite observable state space. In this
section we discuss how we can use the methodology discussed in previous sections to

estimate Markovian games.

%(iii) is a characteristic of a normal random variable.
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(Cf. Section 1.2.1) For each period t there are N players, indexed by the ordered
set {i}. Each player ¢ is forward looking in solving her intertemporal problem. At
each period t,each player obtains some information s;; and chooses an action a;; in
order to maximize her discounted expected utility. The present period utility is time
separable and is represented by “9,0 (at,st) for 8 € © C RP, where a; = (ay, a_i4), and
a_;: denotes the actions of all other players except player 4, s; is defined analogously.
The actions of all players today directly affect their uncertain future information ac-
cording to the Markovian transition density p(dsi+1|st,a:). The next period utility
is. subjected to discounting at the rate §; € (0,1). Briefly, the stationary Markovian
games of interest can be defined by assuming that the decision process of each player

i is characterized by the following amendments of Conditions M1.1 - M1.4:

M1.1" Player i is represented by a triple (ul,p;,B;) and B; € (0,1) and T = oo, both
are exogenously given and assumed to be known. The observed data {:ct,a,-t}';_r:1

is the controlled stochastic processes satisfying

Vi (sir; 03) = max {F [u2g (@i a_it; it} sit, as; 0i} +BiE [Vidy (sita1504) |sie, ai; 03] } -
1

(26)

M1.2" (Conditional Independence) conditional independence of the state variables

p(dzi1, deya|ze, €1, a) = g (detva|Ten) fxrx,a (dTe41]2e, @)

ML.3 s; = (z,&;) € X xRE where X = X x XP is a subset of RY. X€ includes inter-
vals and XP is finite, they denote the space of public information with continuous
and discrete components respectively. € is a vector of private information, whose
dimension is K , the cardinality of A, the number of actions player i can choose

in each period.® The distribution of €; is known and is absolutely continuous

®Note that the choice of the notation for the state variables (z,s) is consistent with that of Rust
(1988) but the role of = and s is some times reveresed in some game papers.
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with respect to some Lebesque measure with Radon Nikodym density g; (dei|z:)

M1.4' (Additive Separability) per period payoff function “?0 : AN x 8§ — R is specified
upto some unknown parameters 6§ € © and is additive separable w.r.t. unobserv-

. 0 _
able state variables, U g (@it, a—it, Sit) = U; g (Qit, G_it, Tit) + Eigyt-

M1.5" (Private Values) €; is also jointly independent across all players, i.e. q(&) =
J

TTi, g (ee).

The immediate observation on the Conditions M1.1’ - M1.4’ reveals that, for each
player i, the controlled process {a;, xt}thl only differs from the single agent case in that
the per period payoff function and transition densities are affected by other players’
actions, and each player forms an expectation, in (26), using the beliefs she has over the
distribution of other players’ actions. Although the private value assumption limits the
applicability of our estimator; most of the existing literature on dynamic estimation of
the same class of models make use of this assumption. We denote the distribution of
beliefs of player ¢ over a_; by ¢;. We define the equilibrium concept through the notion

of best response. The best response function is a map a?‘a : S — A defined by

a?,o (sit; 03) = ais & v?,g (@it, Sit; 03) + €iagt = v?,o (ai, 8it; i) + €iqy for all a; € A, (27)

where v?, computes the expected utility given any action and states for agent i given
i 0 P p y g1 y g g

her belief o;, namely the choice-specific continuation value, for any (s, ait, ;)

v0g (ait, it; 03) = E [uig (ait, acit, Tit) |Sit, ait; 03] + BiE [V (Sit+1; 3) |8it, ait; 03] -

(28)

Definition 1 (Markov Perfect Equibrium} A collection (a,o) = (a1, -..,an,01,...,0N)

is a Markov Perfect Equibrium if
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(i) for alli,a; is a best response to a_; given the beliefs 0; at any state x;
(ii) all players use Markovian strategies

(iii) for all i, the beliefs o; are consistent with the strategies a_;

See Maskin and Tirole (2001) for more details. As shown in Pesendorfer and
Schmidt-Dengler (2008), we can also characterize our equilibrium concept through the
choice probabilities conditioning on the public information.” These choice probabilities
can be obtained from the definition of best response (27) by marginalizing out the

private information of all the other players,
P (ait|ze;0,04) = / 1[0g (sit; 0i) = air] @i (dea|:) - (29)

Collecting the choice probabilities in (29), for each player and across the action space,
we have a map ¥ : C — C, where C is a space of an IV - K— vector of functions with
each function mapping X to [0,1]. This nonlinear operator maps the beliefs of the
players into the choice probabilities of their actions determined as a consequence of

their beliefs:

p=Yy (o).

Assuming we observe equilibrium play p must be a fixed point of ¥y. This equilibrium
condition, which is a set of conditional moment restrictions, leads to a class of minimum
distance type criterion functions that we can use to estimate the structural parame-
ters as discussed in Section 1.4. See Pesendorfer and Schmidt-Dengler for a thorough
treatment of this idea when X is finite. Dropping the dependence on ¢;, as seen from

(27), (28) and (29), the computation of the choice probabilities will again depend on

"There are some fixed point theorems available for the case of infinite dimensional spaces, for
example, Schauder fixed point theorem.

42



the model implied value functions E [V, g (sit+1) |Sit, @iz] , similar to (4), where

Vig (sit) = E [udg (ay, sit) |sit] + BiE [Vig (Sit41) |5t -

Therefore, fundamentally, the practical aspect of the estimation problem is essentially
the same as in the single agent case. Our strategy will be the same as before. For each
player i, by marginalizing out the private information of all the other players of (26) in

the model implied equilibrium (cf. (8)), we have the generalized PVE

EVo(sit)|ze] = E|[E[uo;pe(at,sit)|sit) |ze) + B E [E [Vig (sit+1) |sie) |ze] (30)

= Euo;g(a, sit) |ze] + BiE [E [Vig (Sit+1) |Te41] |ze] -

As seen previously, for each i, (8) can be expressed as,?

m; 9 = T+ Lim; g,

where (m; g,7; ¢, L;) have, by now, obvious meaning. By the same arguments used in
Section 1.2.4, {L,-}f,:l will be a sequence of contraction maps. Therefore these integral
equations can be estimated and solved independently. Hence we only need to approx-
imate the operator (I — [Zi)_l once for each player, where the only difference between
the kernels of the integral operator of different players is their discounting factors. Note
that there are some additional smoothings required for the per period payoff since, un-
like the single agent case, players make decisions based on expected payofls, see (28)

and (30). For a direct comparison with the single agent case, under M1.2' - M1.3/, we

8This is a direct generalization of the matrix equation ((6)) of Pesendorfer and Schmidt-Dengler

(2008).
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can write the expected choice-specific continuation value (28) as

;.0 (Qit, Tt) = E [u; 9 (ait, ait, Tt) |Te, aie] + B;E [mi g (Te41) |Te, ait] -

This can be written in a linear functional notation (cf. (11))

vig = Kiu; g + B;Him; g,

where K; and £; denote linear operators where the former is a conditional expectation
operator of a_;; given (z:,a;:) and the latter is a conditional expectation on z;4+1 given
(z¢,ait)-

Therefore we can use the model implied continuation value functions to construct

the model implied best response and choice probabilities respectively

;0 (sit) = @i © vig(Qi, Sit) + Eiaye > Vig (i, Sit) + €iay for all a; € A,

P; (auler; 0, 03) / 1o (sit; 05) = air) @i (desler)

which can be used to define an analogous two-step semiparametric method as discussed

in Section 1.3 and 1.4.

1.7 Conclusion

In this chapter, we provide a method to estimate a class of Markov decision processes
that allows for continuous observable state space. The type of primitive conditions are
provided the inference of the finite and infinite dimensional parameters in the model.
Our estimation technique relies on the convenient well-posed linear inverse problem
presented by the policy value equation. It inherits the computational simplicity of

Pesendorfer and Schmidt-Dengler that is independent of the parameterization of the per
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period utility function. We also illustrate how this method can be extended naturally
to the estimation of Markovian games in a similar setting to that of Bajari et al. Their
identification results directly apply here.

There are some practical aspects of our estimators worth exploring. Although we
performed some limited Monte Carlo experiment, it would be interesting to try to study
the role of numerical error brought upon by approximating the integral in the case that
we have large sample size compared to the purely nonparametric approximation. Second
is to see how our estimator performs in practice relative to more extensive discretization
schemes.. Thirdly, some efficiency bounds should be obtainable in the special case of

conditional logit assumption.
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1.8 Proofs of Theorems

In this section, we provide a set of high level assumptions (Al.1 - A1.6) and their
consequences (C1.1 - C1.4) of the nonparametric estimators described in Section 3. We
outline the stochastic expansions required to obtain the asymptotic properties of 7y
and gp. The high level assumptions are then proved under the primitives of M1.1 -
M1.4 and B1.1 - B1.8. Consequences are simple and their proofs are omitted. In what
follows, we refer frequently to Bosq (1998), Linton and Mammen (2005), Masry (1996)
and Robinson (1983), so for brevity, we denote their references by [B], [LM], [M] and

[R] respectively.

1.8.1 Outline of Asymptotic Approach

For notational simplicity we work on a Banach space, (C (X), ||-||), where X = X¢x X P
,the continuous part of X' is -a compact set [z +¢,Z — €] for some arbitrarily small
€. > 0. We denote B1.1/, the analogous condition to B1.1 when we replace X by X.
The approach taken here is similar to [LM], who worked on the L? Hilbert Space. The
main difference between our problem and theirs is, after getting consistent estimates
of (9), we require another level of smoothing (10) before plugging it into the criterion
function. The first part here follows [LM].

AssuMPTION A1l.1. Suppose that for some sequence d1 = o(1):

sup (E— [I) m(.’l?)| =0, (61),

zeX

i.e., we have,

()] =er

for any m € C (X).
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CONSEQUENCE C1. Under Al1.1:

”((1 - E)'l _u- 1:)—1> mH — 0, (57).

The rate of uniform approximation of the linear operator gets transferred to the
inverse of (I — £). This is summarized by C1.1 and is proven in [LM].

We supposed that 7 () — rg (z) can be decomposed into the following terms with
some properties.

AsSUMPTION A1l.2. For each z €X:

7o () — 1o (z) = 75 (z) +75 (2) + 75 (2), (31)

where ?g, Fg’ and '?GE satisfy:

sup ]?£ (m)‘ ,

fi

0, (T~%/%) with 78 deterministic, (32
P 4

(z,0)exX =6
wy O] = o) ey @
(z,0)eXx©
sup  |£(I- )17 ("”)| — o (T—2/5) - (34)
(z,0)eXxO
sup I?OD (w)' = Op (T—Z/s) . (35)

(z,0)exXx6

This is the standard bias+variance+remainder of local constant kernel estimates of the
regression function under some smoothness assumptions. The intuition behind (34),
as provided in [LM], is that the operator applies averaging to a local smoother and
transforms it into a global average thereby reducing its variance. These terms are used
to obtain the components of my (z), for j = B, C, D, the terms 'r’ﬁg (z) are solutions to
the integral equations,

il =7 + L) (36)
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and My, from writing the solution mg + M to the integral equation
~A) __ r ~A
(mo + mMy) =ro+ L (mg+ M) . (37)

The existence and uniqueness of the solutions to (36) and (37) are assured, at least
w.p.a. 1, under thet contraction property of the integral operator, so it follows from

~N\

1
the linearity of (I - z:) that
g = mg + Mg + M +m§ +mg.

These components can be approximated by simpler terms. Define also mf , as the
solution to

me =78 + Lm¥. ' (38)

CONSEQUENCE C1.2. Under Al.1 - A1.2:

sup _|f (z)~mf (a)| = op (T7%°), (39)
(z,0)eXx©
sup |if (2) 1§ (2)] = o, (T7°), (40)
(z,0)eXx©
sup I'r’h{?(x)l = op (T‘2/5). (41)
(z,0)eXxO

(39) and (41) follow immediately from (32), (35) and C1.1. (40) follows from (34), A1.1

and Cl.1, as we can-easily show that, -

“E (I - E)"l — £(F— L)Y =0, (67).

We next, also, approximate M by simpler terms, subtracting (9) from (37) yields

-~

Ml = (c — L) mg + Ling. (42)
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AssuMPTION Al.3. For any = € X:

(£~ £)mo (2) =7 () + 75 (@) +7§ (),

where 72,7} and 7§ satisfy:

sup |fF (z)] = Op (T“Q/ 5) with 7& deterministic,
(x,0)eXxO
sup |75 (z)] = op ( 2/5+5) for any ¢ > 0,
(z,.0)eXxO
sup |L(I-L)7'Ff (:1:)' = op (T )
(z,60)€Xx0
sup [?g (@) = op (T—Z/ 5)

(z,6)exXx©

These terms are obtained by decomposing the conditional density estimates (cf. Al.2),
then proceed as done previously, we define 7?»2 (z) for j = E, F, G as the unique solutions

to the estimated integral equation of (36), solving (42) we have,

Such terms are asymptotically equivalent to more convenient terms (cf. C1.2), define
also m§ as the solution to the analogous integral equation of (38).

CONSEQUENCE C1.3. Under Al.1 - Al1.3:

sup |mf (z)—mf (a)| = op (T°%°),
(z,0)eXx©
sup | (z) = 7§ (2)] = o, (T7%),
(z,0)eX %O
sup lﬁzgc(:c)| = op (T_2/5).
(z,0)€EXxO

C1.3 can be shown using the same reasonings used to obtain C1.2.
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Combining these assumptions leads to Proposition 1 of [LM}.
PROPOSITION 1.1. Suppose that [A1.1 - Al.3] holds for some estimators 7y and L.
Define 7ty as any solution of mg = 7y + Lg. Then the following expansion holds for

~

mg

sup |y (2) — mo (&) = mf (&) = mf (2) = 7 (2) = 7§ (2)] = 0, (T¥°),
(z.0)exXx©

where all of the terms above have been defined previously.
The uniform expansion for the nonparametric estimators required in [LM] ends here.
However, to obtain the uniform expansion of gy defined in (20), we need another level

of smoothing. Note that the integral operator, H, has a different range,
H:C(X)—-C(Ax X),

where C (A x X) denotes a space of functions, say g (e, z), which are continuous on
X for each a € A. So the relevant Banach Space is equipped with the sup-norm over
A x X, which we also denote by ||-|| though this should not lead to any confusion. For

notational simplicity, we first define,

mg (z) = mg (z) +my (z),
mg (z) = 75 (z)+75 (2),
mg (z) = g (z) — mg(z) — Ty (z) — Mg (x).

We next define various components of the transformations (20), analogously to (36)
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and (38), for j = B, C, D the terms % are elements of the integral transform,

5@ = Hm),

g% = Mmy,

and ng“ is defined by

ﬁmg = gy +§§4

It follows from linearity of H that

Go =90+ 35 + 35 + 095 + 05 -

ASSUMPTION A1l.4. Suppose that for some sequence o7 as in Al.1:

sup
(a,z,0)EAXX XO

(7~ 1) mo (a,2)| = 0y (67,

ie., H (ﬁ - H) m“ = 0p (07) for any m € C (X).
A1.4 assumes the desirable properties of the conditional density estimators (cf. Al.1
and A1.3).

CONSEQUENCE C1.4. Under Al.1 - Al1.4:

swp [3F (a,2) — g (a,2)] = op (T2°),
(a,2,0)€eAxXxO
sup Ifg\g (a7 m) - ggc (a, :I:)l = OP (T—2/5) ,
(a,z,0)€eAXX %O
sup 195 (a,z)] = op (T—2/5) _

(a,z,0)EAXX xO

This follows immediately from A1l.5 and the properties of the elements defined in

Mg (2)-
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AssuMPTION A1.5. Suppose that:

sup ‘gg (a, x)f =0p (T‘Z/E’) .
(a,z,0)EAXX XD

A1.5 follows since the operator H is a global smooth, hence it reduces the variance of

95 -
As with ﬁmg‘ we can approximate ’g\g‘ by simpler terms.

AsSSUMPTION A1l.6. For any m € C (X) and for each (a,z) € A x X:

'g‘{,‘1 (a,z) = (ﬁ — H) mg (a, z)

92 (a,2) + 3¢ (a,2) + 3§ (a,2),

where Gy, gF and g§ satisfy:

sup |§£ (a,2)} = O, (T -2/ 5) with g deterministic,
(a,z,0)EAX X XO

sup |38 (a,2)] = op (T“2/5+‘f) for any £ > 0,
(a,z,0)EAXX XO

sup |§9G (a, :1:)| = op (T‘2/5) .
(a,z,0)eAXXxO

A1.6 follows from standard decomposition of the kernel conditional density estima-
tor (cf. Al1.3).

PROPOSITION 1.2. Suppose that A1.1 - A1.6 holds for some estimators 7y, L and
H. Define Mg as any solution of Mgy = 7y + E’Fﬁg and gy = ﬁv’hg. Then the following
expansion holds for gy

sup  [Gs(a,%) — g9 (a,2) — 95 (a,2) = G (a,7) — §F (a,2)] = 0, (T2*),
(a,2,0)EAXX xO

where all of the terms above have been defined previously, in particular goB and ?)‘55' are
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non-stochastic and the leading variance terms is ’g‘g‘ . This can be rewritten in a similar

notation to previously:

75 (a,2) = g¢ (a,7)+3f (a,2),
35 (a,2) = G5 (a,2),
30 (a,z) = Go(a,z)— gg(a,z) —Jp (a,2) — 75 (a,2).

1.8.2 Proofs of Theorems 1.1 - 1.2

We assume BL.Y and B1.2 - B1.6 throughout this subsection. Set §p = T¢=3/10
this rate is arbitrarily close to the rate of convergence of 1-dimensional nonparametric
density estimates when hr decays at the rate specified by B1.6. For the ease of notation,
we assume that XD is empty. The presence of discrete states do not affect any of the
results below, we can simply replace any formula invelving the density (and analogously
for the conditional density) f (dz:) by f (dz:, z{). We shall.denote generic constants by
Cop that may take different values in different places. The uniform rate of convergence
proof of various components utilize some exponential inequalities found in [B] as done
in [LM], the details are deferred to Section 1.7.8.

ProoOF OF THEOREM 1.1. We proceed by providing the pointwise distribution
theory for P (a|z), for any a € A and z € int (X), and the functionals thereof. These
are used to proof Theorem 1 and 2 and verify the high level conditions. P (alz) is the
usual local constant regression estimator (or equivalently, the conditional probability

estimator).

T
P(als) - P(ale) = 3" (1]ac = a] - P (al2)) Ki (m — ) /Fx (3)
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focusing on the numerator

1 T
13" (o = o) - P(ale)) Kn (@~ o)
t=1

1 T
7 2 (P (aler) - P (al2)) K (2~ 2)

T
1
+ ; eatKn (z1 — T)

AteT (T) + A2 (),

where e, = 1 [a; = a] — P (a]z;). The term A, , 7 () is dominated by the bias, by the

uwsual change of variables and Taylor’s expansion,

E[A1a7 (2)]

E[(P(alz:) — P (alz)) Kn (2 — )]

oz

Recall that E [e,¢|z:] = 0 for all a and t¢.

%p2h’%‘ (28P (alz) Ofx (x) + 0?P (a|z)

dz?

o2 fx (.1:)) +o (h%") .

We next compute the variance of Az, (),

this is dominated by the variances as covariance terms are of smaller order, e.g. see

var (A1 (2)) =
; -;;E [a
= Tn—’;ag
note that
oa(z) =

T .
1
var (T Z;@a,tKh (z¢ — :c))
L var (eacKn (@ — @) + 0 |
Tvar Ca,tiAh (Tt ThT

2 (20) K (22 — 7)] +0 (T;T)

@ fx @+ o (7).

E [eg’t|a:t = z]
var (1 [a; = a] |z; = z)

P(a|z) (1 - P (alz)).
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For the CLT, Lemma 7.1 of [R] can be used repeated throughout this section, using

Bernstein blocking technique we obtain,

VThz (P ale) - P ale) ~ gatnm, (2)) = N O, (@),

where

OP(a|z) 8fx(z) op? (a|z)

77P., (:l‘) = 2 B;X (IL‘?I axg )
A C)
wr (o) = "x ()

For any 6 € ©, recall from (15) and (16)

7 (@) =Y Coo (P aln),

acA

where,

(200 (t) =t (ug (a,2) +1ogt) +7,

by mean value theorem (MVT),

Corns (P(@19)) = Cano (P lale) + gt (=)

~ Coas (Pal) (Pale) = Plale) - gpatinr, () +0, (),

and

Coap (t) =ug(a,z) +logt+ 1.

(43)

(44)

By using MVT again, we can approximate (, , 4 (P (a|z) + 3p2h3np, (x)) more conve-
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niently as follows,

Cao (Pale) + 511, () ) = oo (P (ola))+ 510, () Con (P ale) 0y ()

To obtain the asymptotic distribution for 7 (), we now provide the joint distribution

of {ﬁ (al:z:)} It follows immediately, following [R], from Cramér-Wold device that

P (1]2) - P(1]2) - }ushdng, ()

Thr |
- P(Kl|a) - P(Kl|z) — 2uhdnp, (z)
( [ @ @ - B @ ) )
—_ N 0 K9 0%,2 (1:) .
“fx (@) [ : 5 \ ]
. : OK.K—1 (z)
\ \ k@ o kax@ k@ )

where a;‘f (z) = P(jlz) 1 - P(j|z)) and 0?,1; (z) = ai,j (z) = —P(j|z) P (k|x) for
J,k € A. There are a couple of things to notice here, first there exist negative correlation
between {ﬁ(] |a:)} across A, and the covariance matrix in the above display is rank
deficient due to the constraint that >, , P (j|z) =1 for any z € int (X). Using thet

information from the display above, we have

VThry (?e (z) — 1o () — %uzh?rnr,o> = N (0w, 0 (2)),
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where

Mo (@) = Y np, (2)C 0 (P(2)), 5)
jEA
) ' o 202 i
wrg(z) = K2 EJGA (CZ,J,H (P (4 ))) 3 (z) )
Ix (z)

=23 ik Ca o (P (412)) (2 1.0 (P (Kl2)) P (j]2) P (K|z)

where {'q P,—}. B and {(7, ; O}je ,, are defined in (45) and (44) respectively. Note we can
je e

relate components of the expansion of 7y (), in (31), to the terms above as follows,

(@) = (PG, (47)
JEA

B@) = gmne@, (48)

oy G PUl) (1 &

o) = ST (Tg 34K (2 >>. (49)

We next provide the statistical properties for 7’71;,‘l (z). First, (E - E) mg (z):

(E-£)mo@) = B / mo () (Frepx (d2'12) — fronx (d2']2) )
- 75 / ) (Pex (d2',2) ~ Fxx (d:z’,x))
()(fx (@)~ fx (2)) [ mo (@) frnx (da'le) +op (T79)
= Bigr(z)+ Baor(z) +op (T—2/5) .

To analyze By g T (), proceed with the usual decomposition of :f\xl’ x (@, z)—fx x (2, z)
then integrate it over, note that the integral reduces the variance to that of a 1 dimen-

sional nonparametric estimator, we have

Bior () = By 1 () + BEyr (z) +0p (T_Z/s)
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where

BP,p(z) = %th%ﬂ/(mo (') (62fxf,x (¢, x) +82fx',x (xl’x)))dw', (50)

fx (z) Oz ba?
T-1 Kp (241 — 2') Kp (2 — x)
T S |
t=1 —F [Kh (-Tt+1 - -'L") Ky (z¢ — .’L’)]

and it can be shown that

2
vV Th'TBIC:G,T () =N (0, fX’B—(Z‘)’Q/ (mg (:t'))2 fX'|X (dm’lx)) .

For By g1 (x), this is just the kernel density estimator of fx (z) multiplied by a non-

stochastic term,

Baor (z) = By (z) + BSyp (z) +0p (T—2/5) ,

where

2 T
Byyr(z) = —%#2’1%6 'gxg(' ) ( fxﬂ(z) / mg (') fx1x (dx'lfﬂ)), ‘ (52)

Bor(@) = (70 [ me @) froix (@510)) Z(Kh<xt~z) E (K (2, — 1)

and it can be shown that

2
v ThTBzc:g’T (z) =N (0, kafx (z) (—fxﬁm /mo (.’l?,) fX’IX (dx’lq;)) ) .
Combining these we have,

Mg (z) = mg (z) + Ty () +my (z) + Op (T"2/5) ,
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where

mg (z) = (I-L)7" (Bfa,:r +BPyr+75) (),

Mg (z) = Bigr(z)+ By (z)+75 ().

Note also that

K 2
VI (BSar (@) + Bar @) = N (0,720 5vax (mo ausr) o= o)

Tx@

and

Cov (V/Thr (Bfsr (2) + Bz (2)) , VTR (2)) = 0 as n— co.

This provides us with the pointwise theory for My for any z € int (X) and 8 € ©.

VT (0 (2) = 0 (5) = 42 1m () ) = N (O0ma (),

where

nmﬂ (.’L‘) = (I - ‘C)_l (771‘,0 + 77[:,0) (SL') )

wme (z) = @) (B%var (mg (z141) |2 = ) + wrp (2))

where 7, 4 and w, ¢ are defined in (45) and (46), and

1 ’ 32fx',x(1’"1') 32fx',x(3"7$) dz’'
7 J mo (@) (Fr =+ 0 ) d
77[,,0 (.T) = ﬂ x 82fX (=) * ’ ’ (54)

——ZE [ mo (2) fxx (da'|x)

Nrg, Wrg are defined in (45) - (46). The proof of pairwise asymptotic independence

across distinct z is obvious. ]

PROOF OF THEOREM 1.2. From the decomposition from Theorem 1 we obtain the
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pointwise results for gy (a,x). Similarly to the decomposition of (E - E) mg (), we

have

('ﬁ - ’H) mg (a,z) = /mg fx'|XA (de'|z,a) — fxix,a (dz'|x, a))

The properties for Cy g+ and C2 ¢ 1 are closely related to that of By g7 and Bagr.
ClyeyT (a, x) = Cf@,T (a, .'II) + Clc:ﬁ,T (a’ m) + Op (T_2/5) 7

where

1 myg (2 a2f , (¢, z,a a2f , (2',z,a
huawe) =yt [ e (Pt SRR

Kp (2441 — 2') Kp (2t — ) 1 [a: = q] \

Sy (0r2) — [ | = S (@)
1074 %) = o l _ 0 )
fx.a(z,a) r-i t=1 —E [Kp (zt+1 — ') Kn (2t — 2) 1 [as = a] )

: C
and as in the case of Bl,9,T

\/ThTC”,T a,zx) ﬁN( fXA = a)/ my ( fX’[XA (dz'|z, a))

Similarly for Ca g T,

2
C3pr(a,z) = ; 2 0 fxaAz(x L (fXA /mo ) fxiix,4 (d2'|z, ‘1))

Kp(z¢ — z) 1 [a; = a]

C na) — , |z, a Ly
C3or (a,z) (fXA(wa)/ ') fxrx,a (de'| ))T; _E[Kn (2 — )1 [a = a]]
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and

Vv ThTC2C,9,T (a, iL') == N( fo (l’ a) / (mg fX’IXA (dﬁL‘ I.’L’ a))

Combining these we have,

Go (a,2) = go (a,z) + 75 (a,z) + 75 (a,z) + 0, (T—2/5) ’

where

?g (d, 1") = CfB;T (a’ :L‘) + CEB,T (a’ Il?) + H”FE (a7 :L') ’
g5 ta,z) = Cl(':o,T {a,z) + C2c:9,T (a,z).

This provides us with the pointwise distribution theory for g for any = € int (X),a € A

and 6 € ©.

VT (3(09) = 9(0,2) ~ Gk (0,2)) = N (000 (4,),

where,

Ngpo(a,z) = H(I~- L) (9 +1r4) (,7) +mp06 (2, ),

Wg 0 (a, .'II) var (mg ($t+1) |z = z,a¢ = a),

K2
fX,A (aa :L‘)

7.9 and 7 o are as defined in the proof of Theorem 1, and

— ?fxr xa(2,z,a) fx xa(7,z,a)
Me(a,2) = e a)/ ( 520 + i )(55)

8?fx, alz,a)
9z Im ' dz'|z,a
featem | ™) fxia (@),
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Pairwise asymptotic independence, across distinct x, completes the proof. [ ]

1.8.3 Proofs of High Level Conditions Al.1 - A1.6

PRrOOF OF A1l.1. It suffices to show that

sup ’fX',X (iL',,fL') - fX’,X (xl7x)| = Op (6T)1
(z!,x)eX %X

:lelglfx (z) - fx (w)I = op(d7).

These uniform rates are bounded by the rates for the bias squared and the rates of the
centred process. The former is standard, and holds uniformly over X x X (and X).
See the Additional Proofs section below, where proof of Al.1 falls under Case 1. ]

PrROOF OF A1.2. The components for the decomposition have been provided by
(47) - (49). By uniform boundedness of np, and {,,4 over A x X x © and triangle
inequalities, the order of the leading bias and remainder terms are as stated in (32) and
(35) respectively. For the stochastic term, we can utilize the exponential inequality,
see Case 2 of the Additional Proofs section. We next check (34). [LM] use eigen-
expansion to construct the kernel of the new integral operator and showed that it had
nice properties in their problem. We use the Neumann’s series to construct our kernel,

for any ¢ € C (X)

LI-L)ty= iz:qu, (56)
j=1

where £7 represents a linear operator of a j-step ahead predictor with discounting,
this follows from Chapman-Kolmogorov equation for homogeneous Markov chains, for

T>1

Lo@ = 5 [ o) f (@1o) (57)

7—1
f(T) ($t+r|$t) = /fqu ($t+r|$t+7—1) H fX'|X (dxt+‘r—k|xt+r—k—l) ,
k
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where f(;) (dz;4-|T:) denotes the conditional density of 7-steps ahead. First, we note
that £(I — £)"'¢ € C(X), this is always true since for any ¢ € C(X) and z € X

since:

oo

> B / ¢ (z') firy (da'|z)

T7=1
o0

S8 [ fio (@) 1ol

7=1

< B
< 13

< ©00.

La-o'¢@)| =

IN

el

We denote the kernel of the integral transform (56) by the limit, ¢, of the partial sum,

PJs

T
or (7,5) =3B fin) (@), (58)
=1

where ¢ is continuous on X x X. This is easy to see since f(,y is continuous and is uni-
formly bounded for all j by sup(, ;) xxx |f (2'|7)], by completeness, ¢; converges to a
continuous function (with Lipschitz constant no larger than TiLﬁ SUp(z myexxx |f (Z'|2)])-
To proof (34), for details see Case 3 of the Additional Proofs section, we apply expo-

nential inequality to bound

1
Pr| =
r(T

for some positive sequence, d7 = o (T‘2/ %), where v (3, z) is defined as

T
> eouv (a1, 3)| > 5T) : (59)
t=1

Ky (2, — &) ,
Ty T) = — 0 (da,x 60
V( t ) fX (.'L”) <P( ) ( )
4 (xt’ SL') 2
+ O (h7),
Ix (z¢) (h)
and the latter equality holds uniformly on X. ]
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PROOF OF A1.3. Following the decomposition of f (z’|z) we obtain the leading
bias and variance terms are sum of (50) and (52), and, (51) and (53) respectively. The
results rates of convergence follow similarly to the proof of A1.2. |

PROOF OF A1l.4. This is essentially the same as proof of Al.1. [}

PROOF OF A1.5. Notice that mg' consists of ?g and ?5 . We need to show,

sup ]H’fg"(a,:c)| = 0p (T_2/5)
(a,x)eAxX

sup |[M7y (a,2)] = op (T‘2/5).
(a,x)eAxX

The proof follows from exponential inequalities, see the Additional Proofs section. =

PROOF OF A6. This is essentially the same as proof of Al1.3. n

1.8.4 Proofs of Theorems 1.3 - 1.5

We begin with two lemmas for the uniform expansion of some partial derivatives of Mg
and Qp.
LEMMA 1.1: Under conditions B1.1’, B1.2 - B1.6 hold. Then the following expan-

sion holds for k =0,1,2and j=1,...,L,

k.~ k k—B k—C
max  sup 0 mgk(:c) 0 mgk(:c) _ 0 mgk(:v) _ 0 mok(:c) o, (T_Q/E') ,
<j<L (z,0)eXxO6 893 893 89] 80]
where %"g—ﬂ is defined as the solution to
ak’mo _ 6’“7‘9 6km9 (61)

E ~ gk k
00; 00; 00;
and a—;?gﬂ defined as the solution to the analogous empirical integral equation. Standard
j

kb '
definition for partial derivative applies for a—z;"k(i) with b = B, C. Notice, when k = 0,
3
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this coincides with the terms previously defined in Proposition 1.1. Further,

k7B k—B
max  sup 6m—9k($) Op (T‘Z/ 5) with 9 mgk(:c) deterministic,
1<G<L zp)exxe | 005 o6

6kmgc (z) 9
max  su — 0 = o, (T¢?/5) for any £ > 0.
19/5L ( grewx0 a0% i ( ) ye

ProOF OF LEMMA 1.1. Comparing integral equations in (9) and (61), we notice
that, these are just the integral equations with the same kernel but different intercepts.
Since (; j 0, (5,0 and my are twice continuously differentiable in 6 on © over A x X,
Dominated Convergence Theorem (DCT) can be utilized throughout, all arguments
used to verify the definition of a_"_am??(_z)_ and their uniformity results analogous to Al.2
-A1.3 follow immediately. _ [ ]

LEMMA 1.2: Under conditions B1.1’, B1.2 - B1.6 hold. Then the following expan-
sion holds for k =0,1,2and j=1,...,L,

Bkgo (a'9 :II) _ akg9 (a’ 'T) _ akyoB (0‘1 SL‘) _ akgg (ar IL‘)
6% 6% 0% 06%

max sup
1<GSL (2,0,0)eAx X x©

= o, (T—2/5) ’

where all of the terms above are defined analogously to those found in Lemma 1.1 and,

fork=1,2
k—~B kGB
max sup 699'—(:’33) = Op (T"2/ 5) with 399—(:,18) deterministic,
1<SGSL (£,60,0)c Ax X xO 00 00;
k~C
max sup M = op (Tg-z/s) for any £ > 0.
1<GLL (£,0,0)cAx X x© 09;
PROOF OF LEMMA 1.2: Same as the proof of Lemma 1.1. |

PrROOF OF THEOREM 1.3: We first proceed to show the consistency result of the
estimator.

CONSISTENCY.
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Consider any estimator 07 of 6y that asymptotically maximizes Qr (8):

Qr (01) > supQr (0) —0p (1) .
9co

Under B1.1 and B1.9, by standard arguments for example see McFadden and Newey

(1994), consistency of such extremum estimators can be obtained if we have

sup |Qr (8) — Q (6)] = 0p (1) (62)
f#cO .

By triangle inequality, (62) is implied by

sup|Qr (@) - Q@) = o, (1) (63)
sup |Qr (8) —Qr ()] = o0, (1). (64)
6€O

For (63), since ¢ : A x X x © — R is continuous on the compact set X x 6, for any

a € A, hence by Weierstrass Theorem

max sup |g(a,z;6,ge)| < oco. (65)
a€A e X 0cO

This ensures that F |q(a¢, z:;6,vg)| < 0o, and by the LLN for ergodic and stationary
processes we have

Qr(6) > Q(#) foreach 6€O.

The convergence above can be made uniform since Q7 is stochastic equicontinuous and
Q is uniformly continuous by DCT, with a majorant in (65). To proof (64) we partition

Qr (8) — Qr (6) into two components

T T
~ 1 - 1 ~
Qr (9)“QT (9) = T ; &, (q (at, z4; 6, 99) —q (at, Tt; 9’99))+T ; (1 - ct,T) q (at, zt; 0, 90) y
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where the second term is o, (1). This follows since, we denote 1 — ¢ by ;. 1, ,

IA

T
1
max sup |q(e,;60,99) o D0
t=1

T
1
= > vrq(at, ;0,0
T Z (s ) a€A zc X 0c0

t=1
= 0p(1).

The first inequality holds w.p.a. 1 and the equality is the result of ;7 = o, (J71) for

any rate ¥ — oo. To proof (64), now it suffices to show,

max sup |q(e,z;0,9s) — q(a,z;0,90)| = 0p (1).
acA z€X,0€0

Recall that
~ - > aea exp (vo (a, ﬂf)))
a, z;8,99) — q(a,; z; 8, = vyfa,z)— vg(a,x)+lo ag S ,
a0 0,00) ~a(0,0,00) = 9 (e,)~ 10 (a,0) +log (LEAT LT
vg(a,z) = wug(a,z)+ go(a,z),
vg(a,z) = wug(a,z)+7gg(a,x).

All the listed functions are in C (X’). We have shown earlier that for some d7 = 0(1)

max sup |ge(a,x)— go(a,z)| =o0p(dT),
a€A zcX 0cO

so we have uniform convergence for ¥ to v at the same rate. We know for any continu-

ously differentiable function ¢ (in this case, exp (-) and log (-)), by MVT,

max sup |¢ (g (a,z)) — ¢ (ve (a,2))| = 0p (o7) -
a€A zeXx 0O
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So we have

) exp (35 (a,x)) — Y exp (vp (&, 7))

acA acA

sup
z€X,0€0

= Op(l)a

and since we have, at least w.p.a. 1, exp (U (@, z)) and exp (vp (@, z)) are positive a.s.

1
acA exp (60 (57 :L’))

scA €XP ('UG (aa IB)) _ I .
acA exp (60 (67 :17))

Z exp (vg (@, z)) — 2 exp (Vg (a,))|,
acA

acA

and by Wierstrass Theorem, w.p.a. 1,

R o P (0 (0,2)) >0,

hence we have

~_sexp(vg (a,z
oy | Sca® (0 @)

— —1l=o0,(1).
e S 2 n % (0 (@ )) p (1)

The proof of (64) is completed once we apply another mean value expansion, as done

previously, to obtain

sup o GcA €XP (Zo (f,x)))' o (1)
S g( e @a) )| %W

ASYMPTOTIC NORMALITY
Consider the first order condition
9Qr ()

—"8—9‘—=0p(1),

from MVT we have

op (VT) = VT2 )  PA0) 115 _¢y).
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We show that for any sequence er — 0 there exists some positive C such that

A
no—;l)?]f«;r min (—6_&%78#) >C+op(1) (66)
v _ o, (1) (67

This implies

VT (8- 60) = 0,(1).

To proof (66), we first show

sup

[[0—0oll<eT

0°Qr(6) £ 82q (as, 16, gp)
8606’ 0000

= 0, (1). (68)

Since the second derivative of ¢ : A x X x 6 — R is continuous on the compact set

X x © and for each a € A, standard arguments for uniform convergence implies that

sup
|0—0o||<er

02 0 o2 , 23 0,
o [Pasgta] -0

By triangle inequality, (68) will hold if we can show,

0*Qr(6) _ 8°Qr (6)
8906’ 0606’

sup
”0—-—90”(6'1"

=0p(1).

This is similar to showing (64), as the above condition is implied by,

62q (at; Tt 97?9) _ an (atv Tt 07 g9)
0006’ 0000’

max sup
a€A ze X,||0-00|<er

=0p(1). (69)

The expressions for the score of ¢ is,

Ovg(a,z ~
6q (at’ :L-t; 9, go) _ a’Ua (ata :I:t) _ ZaGA ( 9%9 t)> eXP ('U9 (a') mt))
o6 T 06 aca &P (v (@, 7¢))
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and for the Hessian

82 a, dvg(a vy (a,x —_
0%q(a, 4;0,90)  0%vp(as, ) 3 > aca ( ;‘:,(a‘?ft) + ""( z‘) "";0, ‘)) exp (vg (@, z¢))
0606/ o666’ aca exp (vg (@, 1))
4 Tinea 2157 2557 oxp (v @,2)°

(Xzeaexp (vo (@, :ct)))

Proceed along the same line of arguments for proving (64), we show (69) holds by
tedious but straightforward calculations. Essentially we need uniform convergence of
the following partial derivatives,

0%y (a, z) *vg (a,z)|

max : = 1) for £=0,1,2, 71
acAl<i<Lzexgco| O0% 6% o (1) (71)

(69) follows from repeated mean value expansions as done in the proof of (64). The

uniform convergence in (71) follows from Lemmas 1.1 and 1.2, this implies (66).

For (67),
9Qr (%) - wwm%%)
T - = » £, V0, 8o
VT =54 fg
— __l_i q(atth;eo,geo)
Tt=1 69
+L d c aq (ata$t;90:§00) _ aq (at)xt;e()agao)
\/T 2T 90 90

Z 0q (at,zt,eo,goo)

= D7+ Dsr+ D3,

The term D; T is asymptotically normal with mean zero and finite variance by the CLT

for stationary and geometric mixing process,

‘/TDI,T = N(O, A1) ,

70



where

A = g |29(a 500, 960) 09 (a1, 243 60, 90o)"
! 09 6

E 8q(at,7+:00.965 ) 89(0,a0300.90, ) !
o0 o0

+ lim —Z(T—t)

T—oo T

!’
8q(at,21;00,96 ) 89(20,20;00,96 ),
+E [ . 0

Note that F [M%‘—:Eﬂ] = 0 by definition of §p. Next we show that D, r also
converges to a normal vector at the rate 1/ VT. Consider the j-th element of Ds T,

using the expression from the score function defined in (70),

(Dar); = _Z (8A oo(a 1) a’vooa (;,-’xt))

I zT: ) (ZaeA %"%ﬁf”‘" exp (¥, (a, It))) / (Xzc 4 exp (T, (@, 71)))
== t,T B s
VIS | = (Saen 2922 exp ugy (3,20)) /(Senr xp (00 @ 20)

linearizing,
T
(Dyr); = g (BA'% a;’ z)  Ovg, a(g;’ wt))
d _ . (0%, @, dvg, (G,
E L @ (T =)
T
T Z ¢, 72 ; (@, z¢) (Voo (@, 72) — vg, (@, 22))
T
T Z Ct T"//'2,j (5, :L‘t) (Z P (gll‘t) (’Iv\go (:(i, :Et) — Vg, (:(J,:, :L‘t))) + Op (1)
1 I 1 I ! 1 I ) I
= 77 ; (Ertr); + Wi ; (E2t,r); + 77 ; (Eatr); + Wi ; (Eat,r); +0p (1),
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where

1/)1 (aaxt) = P(alxt)’ (72)

Ovg, (@, z¢)

1/’2,3' (a7xt) = P(alzt) 89]' ’

(73)

and the remainder terms are of smaller order since our nonparametric estimates con-
verge uniformly to the true at the rate faster than T—1/4 on the trimming set, as proven
in Theorem 1 and 2.

The asymptotic properties of these terms are tedious but simple to obtain. We
utilize the projection results and law of large numbers for U-statistics, see Lee (1990).
We also note that all of the relevant kernels for our statistics are uniformly bounded,
along with the assumption [B1.1], this ensures the residuals from the projections can be
ignored. Now we give some details for deriving the distribution of ﬁ ST (Bigr) i

. .. Gy, O%gg, _
First we linearize —55,51 — S5 for k=0,1,
i 3 ,

6k§90 _ 6’:900 _ ﬁakmao _ Hakmoo
K kT % k
6% a0 a6" a0"
~ akmoo -1 (% 5kmgo
~ (H—'H) To?wi(l—c) (ﬁ—E) %

+H(I - L) (ak?"" - ak%) ,

k k
a6k ag"

this expansion is valid, uniformly on the trimming set, inspite of the scaling of order
. . 5 3km9 . . - .
VT. Consider the normalized sum of ('H — ’H) W_O" with further linearization, see
3

the decomposition L — £ and H — H in the proof of [A1], we can obtain the following
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U-statistics, scaled by v/T, representation,

1 T-1 am
T Z ct7T 00 (mt, at)
i=1
Omgy (Ts+1) Kp(xs—x1)1[as=as) _E [amgo(xt+1) . }
. t, 0t
= Z Z T 00; Ix,a(ze,ac) 005 to, (1)
— K (33'—-’5 )l[aa—a] f (z ,a) amg (zt-}—l)
t 1 s#t h thA(m:’at)XA 1,0t E[ g] mt,at:l
-1 . Omg,(Ts41) K (zs—z¢)1as=a;] dmyg, (Te41)
B e B B e ol b e B
— 2 Omg, (Tt+1) Kp(ze—xs)1[as=as mey, (ze41)
2 t=1 s>t +c,, gejt R mf(zs,ag)t 1 _ Cs,TE [ 303 s,as]
-1
Kp(zs—x:)1{as=a¢]— fx a(zt,a1) dmyg (zt+1)
V] B Z 1 ey p Koz leerad e p | 2megneed) | oy, a,| o
2 >t +cs, Kh(mt—zs);-([::—ajsl f(l‘_g,as)E [3m90($g+1) xs’as]

Hoeffding (H-)decomposition provides the following as leading term, disposing the trim-

s ). (74)

To obtain the projection of the second term is more labor intensive. We first split it

ming factor,

Omg, (»’Bt+1) Omg, (Tt41)
Jr 3 (i) o)

up into two parts,

T-1 1/~ akmeo
i 21 (s [7‘1! (I~=£) (5 - C) 56" (xt,at)]

1 8 m 1= 1 /a ok
— ﬁzw[n(c z:) i3 (a:t,at)] \/T;"’T [H[:(I—c) 1([:—1:) 62’?90 (22, ¢

The summands of the first term takes the following form

90(2‘ L xl:u (fX’X (da:",x’) - fX’X (dx,,ix,)) ’
(2% Js} / , ( ) fxnx,a (de'|ze, ar)
4 4 Mg, (T
fX(zf))((zf,’)‘(z )E [ o AL F A x']

with standard change of variable and usual symmetrization, this leads to the following
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kernel for the U-statistic,

s or 8m906§n;.;+1) ff{]x},;((gl;rt,at) . 7E [E [%0:”2) $t+1] | ¢, at]

2 +cs,Tam9§gt+l) qux,;X(z:Ssﬂs) —¢1E [E [%% $s+1] xs,as]

B arF [%%ﬂ ics] f_&%%;ﬂ - arE [E [%ﬁt“) wt+1”$’t,at]
2 teurE [Bmeggwl) xt] fsqx,;x(zla)zs.as) - [ E [3'”_9065;5_12 2 +1] xa]

The leading term from H-decomposition leads to the following centered process

xt]) , (75)

notice the conditional expectation term is a two-step ahead predictor, zero mean follows

TZ (5moo (Tt41) E{amoo (Zt41)
pet a0;

from stationarity assumption and the law of iterated expectation. As for the second
part of the second term, using the Neumann series representation, see (56) and (57),

the kernel of the relevant U-statistics is,

Bl @T pPrimen) eele) p oy (dellaa) — o Y52, BTE [ B[ 220058 gy |20
: Fear amo(](zm) ) ‘i'(;tclza:)) Fxix.a (@2 |Ts,a5) — o7 3272, BTE [E [%’?Tm zs+1] 5,
B | Ct’TE[MI—) ]f%fmxfx (de'|zg,a0) — o7 > oo BTE [ [—L—amo ((;;;J"”) z

? +es, 7 E [M ] J %,fwa (dz'|zs,a5) — o7 3.2, BTE [E [6""905;';;+f+2) :

where ¢ is defined as the limit of discounted sum of the conditional densities, see (58).

The projection of the U-statistic with the above kernel yields,

1 ( B ) (377100 (zt+1) B [37”00 (zt+1)
- 26 a0,

u). (76)
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The last term of —\/15,_- ST (Bisr) ; can be treated similarly, recall we have

o (2 2)

005 065
8"?9 3 To - 8"?9 6krg
= H -2 +HLI-L)T =2 =2 -
( o605  006% ) I-£) ( o0% 065

Ignoring the bias term, that is negligible under assumptions B1.6 and B1.7,

6"?9 6kTo
H( otk ~ ok ) )

7

BkCza 0 P(alx’))easK (zs — )\ , i
) ZZ/ ( 039'“ f’; (') ) Fxix.a (d2'|ze, ae) + 0p (T 1/2),

aeA s#t
*amoe (P (@2) e, 12
- Ts|Zt, @ — 2 to, (T .
1§4§fX|XA( s| Tt t) o0F T (a0 p( )

Normalizing the projection of the corresponding U-statistics obtains

T —~ k
1 6k7‘9 6 To 0 Cz a@,0 P(alxt))
E:H ko _ o) ai, T t) ZZ t,2,00 . €at + 0, (1)
VT ( 00; 69] VT i1 00;
(77)
The same can be done to the remaining term, in particular we obtain
T-1
1 -1 8"?9 ak’l‘e
— HL(I-L e 2 ,
VT 2 =6 ( oot~ oot ) (7
T k -1 ~
1 B 0°Ce a0, (P(alzt))
= — L ez +0p(1). 78
VTaeA;:l_ﬂ 699; erorlt (7

Collecting (74) - (78), for k = 1,we obtain the leading terms of % ZtT=1 (Ere,r);-
For ﬁ ZtT=1 (E2s,1) ; and ﬁ 231:1 (EseT) ;» We again use the projection technique of
the U-statistics to obtain their leading terms. We gave a lot of details for the former
case as remaining terms in (D7) can be treated in a similar fashion. In particular,
it is simple to show that the projections of various relevant U-statistics, defined below

with some elements wy € C(X), s, € C(A x X) and @ € A, have the following linear
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representation:
1. Z= ik (@) [(ﬁ - H) @t (@, ‘”i)]

= Jr XI5 (e elle=l) () (c041) — E [k (@041)] 21, a0 = @)

+op(1).

2. 2= il sk (@,30) [H (2 - 5) @k (@, “’t)]

— J se(v,@)fy (zt]v,a) fx (dv)
= i (LR SO (3 (s110) ~ B [ ()] )
+op(1).

3. 25 @) [HE( - )7 (E - £) o (3,20)

_ J [ sk (v@)p(xe|w) £} (dw|dv,a) fx (dv)
— G i p (LR R AR (o (a14a) = B[ (avrn)| )
+o,(1).

In correspondence of (Ex414,1) j for £k = 1,2, we have in mind

S1 () = ¢1 (6; ) )
and

s2() = 1o;(a,-),

w2 () = me, (),

where 1, and 1, ; are defined in (72) - (73). Similarly, we also have

8k '?go 8k )

" 71—5 Z;F:l (@) (W;‘c_ - 39,’~0) (@, z¢)

_ ~ ~ ok 'z a, (P(a*|x¢)) eg*
= S Tarea S5 ([ 50 (0,8) Flyx (o2l0,0) fx (d0)) TEoeata T e
+o0,(1).
~ - I*7, 8*r ~
5. \/LT Zthl sk (@, z¢) [’H.C (I-r)™* (ﬁg& - ?0;2) (a, wt)]
_ ~ O CL, 00 (P@[20) e,e
= J5 Caea X [[ 5k (0,8) ¢ (@1]0) Fiy x4 (v, ) fix (dv)| 20200522 st

+o, (1) .
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Notice that leading terms from all the projections above are mean zero processes.
Collecting these terms, lots of covariance. Clearly # Zthl (Ere1) ;= 0p (1) for k =
1,2,3 and j = 1,...,q, this ensures the root-T' consistency 9. The term D3 is op (1)

8q(az,x4:80,90, )
o6

since is uniformly bounded and 9; 7 = o, (\/T) for all ¢t. In sum,

VTDyr = N (0,Az),

T—oo

T
1
Ay = lim Var | —= E + E + F: ,
2 ( i tE=1( 147 + E2:1 3,t,T))

vT (5— 90) = N{0,77'777Y),

Z = lim Var(Dir+ Dar),
T—o0

32'(] (as, z+; 6o, 900)
06006’ '

7 - B

]
PROOF OF THEOREM 1.4 AND 1.5: Under the assumed smoothness assumptions,

the results simply follow from MVT. n

1.8.5 Additional Proofs

We now show various centered processes in the previous section converge uniformly
at desired rates on a compact set X. We outline the main steps below and proof the
results for relevant cases. The methodology here is similar to [LM] who employed the
exponential inequality from [B] for various quantities similar to ours.

Consider some process It (z) = % > U (z, ), where l (z;, ) has mean zero. For some
positive sequence, dr, converging monotonically to zero, we first show that |y ()] =
op (0T) pointwise on X, then we use the continuity property of ! (z:,z) to show that

this rate of convergence is preserved uniformly over X.
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To obtain the pointwise rates, specializing Theorem 1.3 of [B], we have the following

inequality.

2 B 1/2 1-8
4 exp (———ng(j;,ﬁ)) + 22 <1+ %) TBa (lT2 J)

Pr(jir (z)] > 67) <
< exp(-Gir) +Gor,
for some

B € (0,1), (79)

br = O( sup l(:v',:r;)),
(z',z)exXxXx

) [125+1J -
v?(B) = var | —— 1 (zt, ) + =L

_[TTﬁ+1J ; 2

To have the first term converging to zero, at an exponential rate, we need G, — co.
The main calculation here is the variance term in v2. Following [M], we can generally
show that the uniforl;l order of such term comes from the variances and the covariances
terms are of smaller order. We note that the bounds on these variances are independent
on the trimming set: For our purposes, the natural choice of 5%‘ often reduces us to
choosing 3 to satisfy bdr = o (J%Tﬁ). The rate of Ga,r is easy to control since all
of the quanitities involved increase (decrease) at a power rate, the mixing coeflicient
can be made to decay sufficiently fast so Go = O(T~") for some > 0, hence
Pr(|ir (x)| > ér) = O(F™M).

To obtain the uniform rates over X', compactness implies there exist an increasing
number, Qr, of shrinking hyper-cubes {Ig,} whose length of each side is {er} with

centres {z9T}. These cubes cover X, namely for some Cp and d,

e4Qr < Cp < 0.
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In particular, we will have Q7 grow at a power rate in our applications. Then we have

SQSQT ze]q

Pr (sup [IT ()] > JT) < Pr ( max |l (z9)] > 5T) +Pr ( max sup |l (z) — Ir (9)| > o7
T 1<q<Qr 1

= G3r+Gyr,

where Gz = O (Q7T~") by Bonferroni Inequality. Provided the rate of decay of the
mixing coefficient, i.e. 7, is sufficiently large relative to the rate Q7 grows we shall
have Qr = o(T"). For the second term, since the opposing behavior of (er, Qr) is
independent of the mixing coefficient, maxi<¢<Qr SUPzey, |IT (z) — I (z%)| = 0 (d7) can
be shown using Liptschitz continuity when the hyper cubes shrink sufficiently fast.

Before we proceed with the specific cases we validate our treatment of the trimming
factor. The pointwise rates are clearly unaffected by bias at the boundary so long
z € int(X). The technique used to obtain uniformity also accommodates expanding
space X, so long we use the sequence {cr} to satisfy condition stated in [B1.9]. The
uniform rate of convergence is also unaffected, when replace X with X7, since the
covering of an expanding of a compact subsets of a compact set can still grow (and
shrink) at the same rate in each of the cases below. Therefore we could replace X’
everywhere by Xr.

Combining the results of uniform convergence of the zero mean processes and their
biases, the uniform rates to various quantities in the previous section can now be
established. We note that the treatment to allow for additional discrete observable
states only requires trivial extension. We provide illustrate this for the first case of
kernel density estimation, and for brevity, thenceforth assume that we only have purely
continuous observable state variables.

Casg 1

Here we deal with density estimators such as fx (z), fXI’ x (/,z) and fx;, x,a(z',z,5):
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We first establish the pointwise rate of convergence of a de-meaned kernel density

estimator.

Ir(z) = fx(z)— Efx(z),

-1 d-1
I(zg,x) = H Kp (x4 — Ti41) — EH Ky (41 — 7141) -
=0 =0

The main elements for studying the rate of Gy r are

1
w = —,
VTh
v = T¢w for some ¢ >0,
br = o(n),

v? (Tﬂ) - O(w2T1“5VT€wh’d).

We obtain from simple algebra

TXETB
Gir=0 (Tl_ﬁ I T§T1/2h—d/2) ’

As mentioned in the previous section, we have d = 2 and h = O (T~/%). This means
6 = T¢=3/10 and if B € (7/10,1) then we have Gy — oo . Clearly, the same choice
of 8 will suffice for d =1 as well.

To make this uniform on X7, with product kernels and the Lipschitz continuity of

K, we have for-any (z,zq) € I,

C
| (z: — ) — Kp, (2 — 3,)| < h—;eT.
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So it follows that

-1 _ — €T
op lsrggng:ggl'T(w) I7 (24)] 0(—5Th3)

T-¢/2
= 0 (Tg-g/lo) .

Define Qr = T¢, for some ¢ > 0, this requires 9/5 < ¢ < 7.
We can allow for additional discrete control variable and/or observable state vari-
ables. As an illustration, consider the density estimator of one continuous random

variable and some discrete random variable, we have

[T (.’IJ) = fXC,XD (.’Ec,.'L‘d) - EfXCxD ((Ec, (Ed) y

I(zt,2) = Kp(xet—2c)1(Tas=2q) — EKp(zct — 2c) 1(zar = x4) .

Same rates as the purely continuous case apply. For the pointwise part, the variance is

clearly of the same order. For the bounds on the uniform rates observe that,
|Kh (2t — 2e) 1 (2ap = 2a) — Kb (Tep — 28) 1(Tap = a)| < |Kn (Tep — Tc) — Kn (2ep — 22)] -

Same reasoning also applies for the kernel estimator of the density of the control and
observable state variables.

CASE 2

Here we deal with 7€ (z) :

K -
(2, ) = ep 1 Kn (z — z)
fx (z)

Since {egr} is uniformly bounded (a.s.) it follows, as shown in Case 1, the choice

B € (3/5,1) will do to have Gy — oo.
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To make this uniform on X7, by boundedness of {es '}, Lipschitz continuity of K, f
and their appropriate bounds, we have for any (z,z,) € I,

Ca

|Kp (¢ — ) — Kp (2 — :Eq)l < 2 €T.

So it follows that

T
-1 _ = S
o1  max 21:12 lir (x) — I (z4)| o <T5_7/10>

= o(1),

for some ¢ > 0, this requires 7/10 < { < 7.
CAse 3

Here we deal with £ (I — £)™* AQE

I(z¢, ) = eq v (4, 7),

where the definition of v is provided in (60). Using Billingsley’s Inequality, it is
straightforward to show that with the additional smoothing, the variance of Ir is of
parametric rate uniformly on X7. Selecting 8 € (1/2,1) will yield Gy, v — oo for
Pr (|iz (z)| > T~%5) = 0(1), for any z € X7.

To make this uniform on X7, by boundedness of {epr} and Lipschitz continuity

of ¢, we have for any (z,z,) € I,

lea,:v (21, z) — e sV (x4, T4)| < Caer.
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So it follows that

5—1 | | =0 "_T_C
T .Ihax sup [Ir () — I (zq)l = T-2/5 )’

1<9<@Qr zel,

for some ¢ > 0, this requires 2/5 < { < 7.
CASE 4

Here we deal with mfa (z):

It (z) = fo(m)/ (fxz,x («',z) — Efx:,x («, x)) mg (z) dz’.

As mentioned in the previous section, under our smoothness assumptions, we have

uniformly on Xr,

1 T-1

j[fx',x («/,x)mp (2') da’ = 1 ; Kp{X; — z)mg (Xe41) + O (h?) .

The exact same choices found in Case 2 apply.
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1.9 Tables

61
T S bias mbias std iqr mse
100 1/8 -0.1835 0.1103 1.4220 1.1469 2.0558
1/4 -0.2401 0.0520 1.4792 1.2459 2.2458
3/8 -0.1745 0.1242 1.3846 1.1022 1.9476
500 1/8 0.0857 0.1171 0.5254 0.4897 0.2834
1/4 0.0176 0.0560 0.5418 0.5120 0.2939
3/8 0.0245 0.0517 Q.5676 0.5197 0.3228
1000 1/8 0.1725 0.1936 0.3602 0.3437 0.1595
1/4 0.1011 0.1275 0.3664 0.3491 0.1445
3/8 0.0970 0.1244 0.3753 0.3663 0.1503
25000 1/8 ©:.1580 0.1605 0.2232 0.2309 0.0748
1/4 0.0884 0.0910 0.2277 0.2404 0.0597
3/8 0.0793 0.0866 0.2316 0.2369 0.0599
5000 1/8 0.1438 0.1436 0.1647 0.1645 0.0478
1/4 0.0764 0.0804 0.1684 0.1640 0.0342
3/8 0.0668 0.0683 0.1714 0.1638 0.0338

Table 1:. h¢ = 1.06s(NT)¢ is the bandwidth,. for various.choices. of ¢, used in the..
nonparametric estimation, s = denotes the standard deviation of {z;}1 ;.



02
T S bias mbias std iqr mse
100 1/8 -0.1495 -0.1163 0.2357 0.2137 0.0779
1/4 -0.0958 -0.0676 0.2211 0.1931 0.0580
3/8 -0.0425 -0.0083 0.1953 0.1577 0.0399
500 1/8 -0.0878 -0.0840 0.0885 0.0867 0.0155
1/4 -0.0433 -0.0396 0.0802 0.0763 0.0083
3/8 -0.0157 -0.0124 0.0830 0.0728 0.0071
1000 1/8 -0.0736 -0.0728 0.0596 0.0592 0.0090
1/4 -0.0328 -0.0316 0.0536 0.0548 0.0040
3/8 -0.0133 -0.0138 0.0541 0.0538 0.0031
2500 1/8 -0.0615 -0.0605 0.0351 0.0358 0.0050
1/4 -0.0243 -0.0240 0.0314 0.0321 0.0016
3/8 -0.0110 -0.0111 -0.0314 0.0315 0.0012
5000 1/8 -0.0573 -0.0570 0.0256 0.0252 0.0039
1/4 -06.6228 -0.0227 00232 0.0236 0.0011
3/8 -0.0129 -0.0129 0.0231 0.0234 0.0007

Table 2: h¢ = 1.06s(NT)~¢ is the bandwidth, for various choices of ¢, used in the
nonparametric estimation, s = denotes the standard deviation of {z;}L ;.
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bias

6
mbias

std

igr

mse

100 1.7648
1.6858
2.0527

1.8074

1.8530
1.7495
2.4576
2.2551

0.6279
1.0170
1.0616
1.2407

0.5871
0.7800
1.0683
1.3758

3.5087
3.8763
5.3403
4.8061

500 1.8606
1.5970
1.2602

0.9338

1.8722
1.6170
1.2383
0.8911

0.2469
0.3036
0.5112
0.5825

0.2388
0.2977
0.3621
0.4268

3.5227
2.6424
1.8494
1.2113

1000 1.8878
1.6311
1.2393

0.8906

1.8948
1.6463
1.2495
0.9043

0.1811
0.2069
0.2690
0.3093

0.1859
0.2131
0.2577
0.3009

3.5966
2.7035
1.6083
0.8889

2500 1.9075
1.6532
1.2528

0.9177

1.9082
1.6577
1.2603
0.9251

0.1103
0.1280
0.1589
0.1773

0.1077
0.1278
0.1634
0.1793

3.6509
2.7494
1.5948
0.8736

5000 1.9045
1.6495
1.2513

0.9124

U R W N U B W N O & W NOT R W N U W N &

1.9055
1.6521
1.2566
0.9139

0.0807
0.0924
0.1161
0.1323

0.0763
0.0906
0.1145
0.1275

3.6335
2.7295
1.5793
0.8500

Table 3: d is the number of discretized support of X.
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bias

s
mbias

std

iqr

mse

100 0.0262
0.0840
0.1755

0.1646

0.0364
0.0883
0.1915
0.1843

0.1164
0.1815
0.1850
0.1976

0.1050
0.1405
0.2097
0.2394

0.0142
0.0400
0.0650
0.0661

500 0.0451
0.0486
-0.0031

-0.0327

0.0465
0.0521
-0.0108
-0.0364

0.0472
0.0571
0.0959
0.1059

0.0474
0.0587
0.0708
0.0757

0.0043
0.0056
0.0092
0.0123

0.0490
0.0525
-0.0105
-0.0443

1000

0.0492
0.0545
-0.0081
-0.0433

0.0333
0.0380
0.0491
0.0541

0.0337
0.0387
0.0465
0.0536

0.0035
0.0042
0.0025
0.0049

2500 0.0533
0.0573
-0.0077

-0.0395

0.0532
0.0586
-0.0072
-0.0379

0.0210
0.0237
0.0285
0.0309

0.0207
0.0237
0.0273
0.0314

0.0033
0.0038
0.0009
0.0025

5000 0.0522
0.0562
-0.0087

-0.0408

QU W RO W W N O B W N i W NOT ™ W NN

0.0522
0.0564
-0.0085
-0.0399

0.0152
0.0167
0.0210
0.0229

0.0151
0.0165
0.0206
0.0240

0.0030
0.0034
0.0005
0.0022

Table 4: d is the number of discretized support of X.
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2 Dynamic Models with Continuous Control

2.1 Introduction

In this chapter, we develop a new estimator that is capable of estimating a class of
Markovian decision processes with purely continuous control when one cannot utilize
the Euler equation. Our estimation procedure is intuitive and it is also simple to
implement since it does not solve the model equilibrium and, unlike the other existing
estimator in the literature, we do not impose any parametric distributional assumption
on the observables.

A well known obstacle in the estimation of many structural dynamic models in the
empirical labor and industrial organization literature, regardless whether the controls
are continuous, discrete or mixed, is the presence of the value functions. As seen in
the previous chapter, the value functions and their corresponding continuation values
generally have no closed form but are defined as solutions to some nonlinear functional
equations. We show here how, analogous to the discrete choice framework, a two-step
approach can be employed to estimate the value functions and continuation values in
the first stage in order to reduce the burden of having to solve the model equilibrium.
In particular, instead of solving out for the conditional value functions, one can use
the linear characterization of the conditional value functions on the optimal path (i.e.
the policy value equation) that is simple to estimate and solve. In a discrete choice
setting, the policy value equation can be estimated nonparametrically by using Hotz
and Miller’s “inversion theorem”. Of particular relevance to our methodology is the
estimation of infinite horizon dynamic games with discrete actions, of Pesendorfer and
Schmidt-Dengler (2008) who use Hotz and Miller’s inversion theorem to estimate the
conditional value function as a solution to some matrix equation in the first stage; the

continuation value can then be estimated trivially and used to construct some least
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square criterion in the second stage.

We comment that there is comparatively less work on the development of estimation
methodology with purely continuous control that have to deal with the presence of value
functions.® This is in contrast to the well known subclass of a general Markov decision
processes known as the Euler class, where one can bypass the issue of solving the
Bellman’s equation and use the Euler equation to generate some moment restrictions,
for example see Hansen and Singleton (1982). However the general Markov decision
models of significant economic interest do not fall into this class, for more details see
Rust (1996). Our framework is more closely related to the study of dynamic auction
and oligopoly models, which often allow for discrete choice as well (e.g. entry/exit
decisions);' we refer to the surveys of Pakes (1994), and more recently, Ackerberg,
Benkard, Berry and Pakes (2005).

Extending the idea of Hotz, Miller, Sanders and Smith (1994), Bajari, Benkard
and Levin (2007), hereafter BBL, propose a closely related simulation estimator that
is capable of estimating a large class of dynamic models that allows for continuous or
discrete or mixed continuous-discrete controls. The “forward simulation” method of
BBL uses the preliminary estimates of the policy function (optimal decision rule) and
transition densities to simulate series of value functions for a given set of structural pa-
rameters; these simulated value functions are then used in constructing some minimum
distance criterion based on the equilibrium conditions. The main assumption BBL
use in estimating models that contain continuous control is that of monotone choice.
We show that the monotone choice assumption can also be used to nonparametrically

estimate the policy value equation, hence our methodology adopts HM’s approach in

®The other two papers that we are aware of that estimates purely continuous control problem in
the 1.O. literature is Berry and Pakes (2002) and Hong and Shum (2009) but they are based on quite
a different sets of assumptions.

1075 our knowledge, Jofre-Bonet and Pesendorfer (2003) are the first to show that two-step estimation
procedures can be used to estimate a dynamic game in their study of a repeated auction game.
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the first stage estimation to estimate a continuous control problem. In addition, our
estimator does not require any parametric specification of the transition law of the
observables. This extra flexibility is of fundamental importance since the transition
law is one of the model primitives that is required in the first stage estimation. In con-
trast, BBL explicitly require their preliminary estimator to converge at the parametric
rate, this condition rules out the nonparametric estimation of the transition law on the
observables whenever the control or the (observable) state variables are continuously
distributed.

Although in this chapter we focus on models with observable state variables that
take finitely many values, our estimator can also accommodate continuous state vari-
able. As seen from the first chapter, we can easily allow the observable state variables
to be continuously distributed. The main technical extension is that the policy value
equation becomes an integral equation of. type II,. given the.discounting factor, the
solving of such equation is a well-posed inverse problem.

Our estimator originates from the large literature on minimum distance estimation,
see the monograph by Koul (2002) for a review, where our criterion function measures
the divergence between two estimators of the conditional distribution function. More
specifically, we minimize some L2— distance between the nonparametric estimate of
the conditional distribution function (implied by the data) to a simulated semipara-
metric counterpart (implied by the structural model). In finite samples, Monte Carlo
integration causes our objective function to be discontinuous in the parameter, we use
empirical process theory to ensure that our estimator converges to a normal random
variable at the rate of v/N after an appropriate normalization. However, the asymptotic
variance will generally be a complicated function(al) of various parameters; we discuss
and propose the use of a semiparametric bootstrap method to estimate the standard

errors. The analysis of the statistical properties of our estimator is similar to the work
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of Brown and Wegkamp (2002) on minimum distance from independence estimator,
first introduced by Manski (1983). Brown and Wegkamp also show that nonparamet-
ric bootstrap can be used for inference in their problem. However, the estimator of
Brown and Wegkamp does not depend on any preliminary estimator that converges
slower than the rate of /N, so the treatment is essentially parametric. More recently,
Komunjer and Santos (2009) consider the semiparametric problem of minimum dis-
tance estimators of nonseparable models under independence assumption. In this sense
their work is more closely related to our estimator than that of Brown and Wegkamp.
However, Komunjer and Santos use the method of sieves to simultaneously estimate
their finite dimensional parameters and the infinite dimensional parameters in some
sieve space and do not discuss estimation of the asymptotic variance. In our case, it
is natural to take a two-step approach. The infinite dimensional parameter here is the
continuation value function, which is defined as the regression of some unobervables to
be estimated, and its structural relationship with the finite dimensional parameter is an
essential feature in the methodology in this literature. We estimate the continuation
value function using a simple Nadaraya-Watson estimator and provide its pointwise
distribution theory.

The chapter proceeds as follows. The next section begins by describing the Markov
decision model of interest for a single agent problem and provides a simple example
that motivates our methodology, it then outlines the estimation strategy and discusses
the computational aspect. Section 2.3 provides the conditions sufficient to obtain the
desired distribution theory. We discuss inference based on semiparametric bootstrap
in Section 2.4. Section 2.5 reports a Monte Carlo study of our estimator and illustrates
the affects of ignoring the model dynamics. Section 2.6 concludes. The proofs of all
theorems can be found in the Section 2.7. We collect the Figures and Tables at the end

of the paper.
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In this chapter: for any matrix B = (b;;), define ||B|| to be the Euclidean norm,
namely \/m ; when G is a class of real valued functions g : A x © — R, con-
tinuously defined on some compact Euclidean domain A x ©, then denote ||g|lg; =
supgeo 119 (,0)|loo,» Where |igll ., = supgcy |g(a)| is the usual supremum norm, and
ligll = llgllc when g does not depend on 6; when G’ is a class of continuous R’

valued functions (g; (-,6)), then denote ||g]|; = maxi<j<ssupgeg l|9; (-, 0)ll,, Where

oo’?

l9llee = maxi<j<ySuPeen |95 (a)l, and, |lgllg = llgll,, when g does not depend on 6.

2.2 Markov Decision Processes
2.2.1 Basic Framework

The random variables in the model are the control and state variables, denoted by
e; and s; respectively. -The support of eontrol variable is a convex set A C R. and
the state space S is a subset of RLt!. Time is indexed by ¢, the economic agent is
forward looking in solving an infinite horizon intertemporal problem. In each period,
the economic agent observes s; and chooses an action a; in order to maximize her
discounted expected utility. The per period utility is time separable and is represented
by a parametric function ug (az, s¢) for § € © C RP. The agent’s action today affects the
uncertain future states according to a Markovian transition law p (ds;y1]st, a:). Next
period’s utility is subjected to discounting at a rate 8 € (0, 1), which is assumed to
be known. Formally the agent is represented by a triple of primitives (u,p, 5), who is
assumed to behave according to an optimal decision rule, A; = {a; (s;)}7,, in solving

the following sequential problem for any time 7

Vo"(St)={ mex, E > B ug (a(sr) s 5r)
a\S7)fr—1 =t

st:| ,8.t. a(s;) € Afor all t.
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Under some regularity conditions, there exists a stationary Markovian optimal decision

rule ag (-) so that

ag (st) = argrileajc {ua (a,s:) + BE [V},O (st+1) |st,ar = a]} . (80)

Furthermore, the value function, Vgo, is the unique solution to the Bellman’s equation
V2 (s) = max {ug (a,s:) +BE [Vg0 (st41) |st,ae = a]} . (81)

More details of related Markov decision models that are commonly used in economics
can be found in Pakes (1994) and Rust (1994,1996). In order to avoid a degenerate
model, we assume that the state variables s; = (z:,€;) can be separated into two parts,
which are observable and unobservable respectively to the econometrician, see Rust
(1994) for various interpretations of the unobserved heterogeneity. We next provide an

economic example that naturally fits in our dynamic decision making framework.
DyYNAMIC PRICE SETTING EXAMPLE:

Consider a dynamic price setting problem for a firm. At the beginning of each period
t, the firm faces a demand described by D (ay, 2, €t) where: a; denotes the price that is
assumed to belong to some subset of R; z; is some measure of the consumer’s satisfaction
that affects the level of the demand for the immediate period that is publically observed;
g is the firm’s private demand shock. Within each period, the firm sets a price and

earns the following immediate profit
u (a7 xtvet) =D (ata xtaet) (a't - C) )
where ¢ denotes a constant marginal cost. The price setting decision in period t affects
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the future sentiment of the demand of the consumers for the next period, z;+1, that
can be modelled by some Markov process. So the firm chooses price a; to maximize its

discounted expected profit

ay = argfgleaf {u(a,zt, &) + BE [V (Tt41,€t41) |71, €6, 0 = a}

In Section 2.5, we focus on a specific example of this dynamic price setting decision
problem and use a Monte Carlo experiment to illustrate the finite sample behavior of

our estimator as well as the effects of ignoring the underlying dynamics in the DGP.

Unless stated otherwise, we assume the following set of assumptions, which are

common in this literature, throughout the paper.

ASSUMPTION M2.1: The observed data for each individual {at,xt}g‘:ll are the

controlled stochastic processes satisfying (80) for some 6y € © with exogenously known

B:

ASSUMPTION M2.2: (Conditional Independence) The transitional distribution has

the following factorization: p(Tt41,€e41|2e, ¢, at) = g (€241) Px7 x4 (Tea1 |2, ar).

ASSUMPTION M2.3: The support of sz = (x¢,€¢) is X x &, where X ={1,...,J}
for some J < oo that denotes the observable state space and £ is a (potentially strict)
subset of R. The distribution of e, denoted by Q, is known, it is also independent of
z; and is absolutely continuous with respect to some Lebesgue measure with a positive

Radon-Nikodym density q on .

ASSUMPTION M2.4: (Monotone Choice) The per period payoff function ug : A X

X x & — R has increasing differences in (a,€) for all = and 6.

The first two assumptions are familiar from the discrete control problems; M2.2

is introduced by Rust (1987). Finiteness of X is imposed for the sake of simplicity,
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the generalization to more general compact set is discussed in Section 2.6. Notice that,
unlike under the discrete choice setting, the estimation problem still requires an estima-
tion of some infinite dimensional elements despite assuming that X has finite elements
since A now includes an interval. The distribution of ¢; is required to be known, this
is a standard assumption in the estimation of structural dynamic programming models
whether the control is continuous or discrete. The independence between z; and &
can be weakened to the knowledge of the conditional distribution of €; given z; upto
some finite dimensional unknown parameters. However, unlike dynamic discrete choice
models, the support of €; need.not. be unbounded, since the unboundedness of £ is
required to utilize HM inversion theorem. In fact, as we shall see below, in many cases
it is more natural to assume that £ is a compact and convex subset of R when A is also
compact and convex. . More important is the monotone choice assumption in M2.4, sim-
ilar ta Bajari et al. (2007) and Hong and Shum (2009), the monotonocity assumption.
is crucial in our methodology since ¢ typically enters ug non-additively. However, this
condition can be empirically motivated, in particular, the implication of M2.2 together

with M2.4 is that policy function is increasing on £. To see this, from (80) we have

ag(s;) = arg max {uo (a,se) + BE [Vg (st41) |st,a = a] }

= arg Iileaﬁ( {ug (a,st) + BE [Vgo (st41) |ze, 00 = a]} ,

since the function to be maximized on the RHS is supermodular in (a,¢) for all z and

6, the claim follows from Topkis’ theorem (see Topkis (1998)).

2.3 Estimation Methodology

Given a balanced panel data {a;,zy} of N i.i.d. agents, our estimation strategy pro-

ceeds in two stages. First, we construct the model implied conditional distribution

95



functions (CDFs). We then minimize the distance between CDF's obtained in the first
stage with that from the data. The innovation that distinguishes most two-step es-
timators in this literature arises in the non-optimization first stage. Our first stage
consists of three steps: (1) we estimate the model implied continuation value functions;
(2) these functions are used to approximate the policy functions; (3) we simulate the

CDF's from the policy functions. In more details:

STEP 1: VALUE FUNCTION
Based on the observed {a;;}, which corresponds to {ozg0 (s,-t)}, for any 6 € © we
define a model implied value function, denoted by Wpy, as a stationary solution to the

following linear equation (cf. (81))

Vo (sit) = ug (ait, sit) + BE [Vo (sit41) |5t , (82)

where Vj can be written as.

7=t

Vo (sit) =F [Z B tug (air, Sir)

Si{l .

Therefore we must have Vg, (sit) = V(,% (sit). We can interpret Vj as the value function
for an economic agent whose underlying preference is 8 but is using the policy function
that is optimal with respect to §y. Marginalizing out the unobserved states in (82),
under M2.2, we have the following characterization of the model implied conditional

value functions
E [Vp (sit) |zit] = E [ug (ait, it) |zit] + BE [E [Vp (sit+1) |[Tit+1] |Zat] -

Since | X| = J, the equation above can be conveniently summarized by a matrix equa-
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tion as

mg = rg + Lmy. (83)

where for each j,k = 1,...,J: rg(j) denotes E [ug (@i, i) |zie = j]; L is a J x J sto-
chastic matrix whose (k, j) —th entry represents B8 Pr [z;;+1 = j|zit = k]; mg (§) denotes
E [Vp (sit) |zst = j]- Note that (I — £) is invertible by the dominant diagonal theorem,
so the solution to (83) exists that uniquely defines the conditional value function.!! To
obtain the model implied continuation value function, again by M2.2, this function can

be written as
E [V (Sit+1) |Zit, aie] = E [E [Vp (Sit41) |Tit1] |Tit, aie] -

In a linear functional netation, the continuation value function can be defined by the
following linear transformation

96 = Hmy.. (84)

Here H is a conditional expectation operator that maps R” to a space of vector valued
functions defined on A, so gg = (go,; (-, 9));!:1. In particular, for any m € R’, we have
Hm (j,a) = Zi=1 my Pr [Tiy1 = k|zit = j,ax =a]for 1 < j< Jand a € A.

Given {a;, zit}, to estimate g, we first estimate and solve (83) and transform the
solution using the empirical counterpart of (84). First note that, we do not observe
{eit}, which is not separable from ug, using the monotonicity assumption we generate

their nonparametric estimates from the following relation

Zie= Q7" (ﬁA|X (aitl-’liit)) ) (85)

"' A square matrix P = (pi;) of size n is said to be (strictly) diagonally dominant if |pii| > 35, ; [Pi]
for all 4. It is a standard result in linear algebra that a diagonally dominant matrix is non-singular, for
example see Taussky (1977).
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where @, is the known distribution function of €;;; and ﬁAl x (alj) = WIT Zf’:{t:l witn (5) 1 e < a]
is an estimator for the true CDF of a; given z;, where wyy (j) = Hf—‘%:—ﬂ with

px ()

. . ~ T o
px (j) = NT Z,_” 1 1z = 7112 Given {ai, zat, ait}ﬁi’l’:;ll, we can estimate 79 by
N,T

g (j) = Z witn (7) ug (ait, Tit, €it) - (86)

Assuming further that px () > 0 for j = 1,...,J, we simply use the frequency estima-
tors to estimate each elements in £. The dominant diagonal theorem implies (I - Z’,) -

exists, we can then uniquely estimate the conditional value function by the relation
A~ - _1 o~
g = (1 - c) 7. (87)

As seen above, there are also many nonparametric estimators available for the regression
function, for simplicity we use the Nadaraya Watson estimator to approximate the
operator H, therefore

g0 = Ming, (88)

such that, for any 1 < j,k < J and a € int (A)

~ px,x,a (k. J, a)
i(a,0) = mg (k , 89
gj (a,0) Z (k) === Pxal,q) (89)
NT
px',x,a(k j,a) = ']7‘ Z 1[zit+1 =k, zie = j] Kp (@i — @),

N
-~ . 1 : .
Px,A (.710‘) = N_ Z [m‘it =J] Kh (ait_a):

where px’ x 4 denotes our choice of estimate for pxs x 4, the mixed-continuous joint

density of (it41, Tit, it); Px,a and px, 4 are defined similarly; Kj, (-) = 2K () denotes

12BBL also uses the one to one correspondence between a; and ;; in their forward simulation method,
where they draw {e»} and generate the corresponding optimal choice from {F;|1x (Q« (gb) |zs) } , for

any state xp.
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a user-chosen kernel and h is the bandwidth that depends on the sample size but for the
ease of notation we suppress this dependence. Regardless of the nature of the support
of A, we may want to trim off the estimates near the boundaries or the tails of the

distribution, this discussion is deferred until Section 3.

STEP 2: PoLicY FUNCTION
Forany 6 € ©,j=1,...,J and g; € G, where G is a space of functions mapping A

to R, we can define a generic objective function =; (-, -, 6, g;) where

Ty (07519793') = Ug (aaj7 6) +ﬂgj (a’) ’

so that 8 indexes the current period payoff function and g; (that may also depend on
8) summarizes the future expected payoff. Let 8, denote the partial derivative %, for
each j, we can approximate the model implied policy function, denoted by a; (-, 8, 8.9;),
to be the function that maximizes 7; (a,-, 6, g;) over A by substituting gj (-,6), from
Step 1, in place of g;.!* Since dim (A) = 1, the approximation can be done by direct

grid-search or from finding the zero to the first derivative of ;,
0aj(a,,0,0.9;) = Oaug (a,7,€) + fOagj (a).

The model implied policy function is deliberately written to depend on the derivative
of g;. It will be convenient, at least for theoretical analysis, to assume that the optimal
rule is characterized by the first order condition from differentiating 7; w.r.t. a. This

also has an important practical implication, in particular with regards to the bandwidth

13First note that, when z;; = j, aix must be equal to a; (€it, 6o, go,; (-,00)), where go ; (-,8) denotes
the true continuation value function as defined in (84). Also note that, under M2.1, M2.2 and M24,
we can write (81) as

Vao (4 €it) = maxm; (a,€it, 00,00, (- 60))  forz=j=1,...,J.
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choice, as it follows from the implicit function theorem in Banach space that the effective
rate of convergence of the policy function will be determined by the rate of convergence

of 8,7; (-,0).1* Note that the last statement is true irrespective of how we approximate

{aj ('a 0, aagj (" 9))}

STEP 3: DISTRIBUTION FUNCTION
Given a policy function, for any 8 € ©, j = 1,...,J and g; € G, we can define the

corresponding model implied conditional distribution function as follows

Fp\x (alj;0,0.9;) = Prla;(eit,0,0.9;) < a]

= E[1[oj(&it,0,0ag;) < a]] -

In this notation, the true CDF that we write as F4jx (alj) must be equaled to Fajx (alj; 60, 8ago,; (-,
The integral above can be approximated to any arbitrary degree of accuracy by Monte
Carlo-integration, since we assume the knowledge of €.. In this paper, for simply we

use

R
~ . ~ 1 ~
Fax (al3;6,8.35) = 5 > 1[aj(er, 6,0.3;) < a, (90)

r=1
where {‘e,n}f=1 is a random sample from Q. Note that the indicator function introduces

some discontinuities in f’A| x (particularly with respect to 6).

SECOND STAGE OPTIMIZATION
Similar to Hotz and Miller (1993), our estimator is derived from the following con-

ditional moment restrictions

E[1]ay < a] — Fayx (alj;0, 8ago; (-,8))| it = j] =0, fora€ Aand j =1,...,J when 6 = 6y.

(91)

14The implicit function theorem in Banach space is a well established result. The sufficient conditions
for its validity generalizes the standard conditions used in Euclidean space, e.g. see Zeidler (1986).
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The condition above represents a continuum of moment restrictions, cf. Carrasco and
Florens (2000), however, no general theory for semiparametric moment estimation with
a continuum of moments is available at present. Since we can equivalently write (91)

as
Fpx (alj) = Fax (alj;60,0.90,5 (-,600)) fora€ A and j=1,...,J when 6 = 6y,

we focus on a class of minimum distance estimators.}® Wolfowitz (1953) introduce the
minimum distance method that since has developed into a general estimation technique
that has well known robustness and efficiency properties, see Koul (2002) for a review.
In this paper, we define a class of estimators that minimize the following Cramér von-
Mises type objective function that defines some L% —distance between the CDF implied

the model and that of the data

Jo. ) ~
My (0,9(-,0)) = Z/A [FA|X (al4;0,043; (-, 0)) — Fax (a|j)]2ﬂj (da) . (92)
=1

Here {yt;} is a-sequence- of user ehosen sigma-finite (for now, assume non-random)
measures on A. Clearly the property of 8 will depend on the choice of { ,uj}. In Section
3, we provide a discussion on how to select the measures to ensure consistent estimation
under some regularity conditions, we leave the issue of choosing { ;zj} efficiently for

future work.

15 Another alternative to the moment based estimator is to maximize the conditional maximum
likelihood function, however the maximum likelihood estimator (MLE) is much more computationally
demanding. Although one can proceed with our minimum distance approach and perform Newton
Ralphson type iterations to ensure we get the same first order asymptotic distribution as the conditional
MLE.
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2.4 Practical Aspects

First note that all elements we require to solve and transform the linear equations in
(83) and (84) have explicit functional forms, so they are easy to program. In addition,
similar to Hotz et al. (1994) and BBL, we can also take advantage of the linear structure
the policy value equation. In particular, if the parameterization of 8 in u is linear, 7 (5)
can be writen as ﬁ ngﬂt:l witn (5) u (ait, Tit,€ir)' O for each j, and we can write the
vector 79 = Wiy = W50 for some matrix W5;. To estimate the conditional value

~\ —

function my = (I - E) ! W50, since we estimate £ nonparametrically, we only have
to compute the matrix (I . E)_l W5 once as it does not depend on 6.

It is also straightforward to carry out our methodology in a parametric framework.
One can choose to parameterize the transition law pxx 4 (¢r), for some ;. that may
have common elements with 4. The continuation value function still satisfies (84) where
the conditional expectation operator becomes Hg, . For fix 6;,, we can estimate g
using the relation (88) by simply replacing %"%ﬂ in (89) by px/|x,4 (f1r). Although the
conditional expectation operator Hy,, depends on 6,,, it does not affect how we estimate
mg. Nete-also that all the subsequent stages of the methodology only assume we have gy

and not how they are obtained; therefore the remaining steps in our procedure remains

unchanged.

2.5 Asymptotic Theory

Our minimum distance estimator falls in the class of a profiled semiparametric M-
estimator with non-smooth objective function since (90) is discontinuous in 8. There
are a few recent econometrics papers that treat general theories of semiparametric esti-
mation that allows for non-smooth criterions; Chen, Linton and Van Keilegom (2003)
provide some general theorems for a class of Z-estimators; Ichimura and Lee (2006)

obtain the characterization of the asymptotic distribution of M-estimators; Chen and
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Pouzo (2008) extend the results of Ai and Chen (2003), on conditional moments mod-
els, to the case with non-smooth residuals. The aforementioned papers put special
emphasis on the criterion that is based on sample averages. However, minimum dis-
tance criterions generally do not fall into this category, for instance consider (92) when
{ B }_1J‘=1 is a sequence of non-random measures. Although the focus of our chapter is
not on the general theory of estimation, we find it convenient to proceed by providing a
general asymptotic normality theorem for semiparametric M-estimators that naturally
include minimum distance estimators as well as many others commonly used objective
functions. .We then provide a set of sufficient, more primitive, conditions specific to our
problem. We note, as an alternative, the discontinuity in many criterion functions can
be overcome by smoothing, e.g. see Horowitz (1998), and in some cases there may be
statistical gains for doing so, e.g. a reduction in finite sample MSE. More specifically,
we can avercome. the discontinuity problem by smoothing over the indicators in (90),
however, the use of unsmoothed empirical function is the most common approach we
see in practice.

To analyze our estimator, it is necessary to introduce the notion of functional deriv-
ative in order to capture the effects from the nonparametric estimate. We denote
the (partial-) Fréchet differential operators by Dg, Dy, Dgg, Dy, and D4, where the
indices denote the argument(s) used in differentiating and double indexing denotes
second derivative. For any map T : X — Y and some Banach spaces X and Y,
we say that T is Fréchet differentiable at z, that belongs to some open neighborhood
of X, if and only if there exists a linear bounded map Dr : X — Y such that
T(z+ f) =T (z) = Dr(z) f +o(]lf]]) with ||f]] — O for all f in some neighborhood
of z; we denote the Fréchet differential at z in a particular direction f by Dr () [f].
Since @ is a finite dimensional Euclidean element, the first and second Fréchet deriva-

tives coincide with the usual (partial-) derivatives. For Theorem G below, let 8y and
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go denote the true finite and infinite dimensional parameters that lie in © and G re-
spectively. Since we only need to focus on the local behavior a.round (60, g0), for any
§ > 0 we define ©5 = {# € ©: |0 — || <8} and Gs = {g€ G : |lg— gollg < 8}, here
d can also be replaced by some positive sequence dy = 0(1l). The pseudo-norm on
Gs can be suitably modified to reflect the smaller parameter space ©4, and the choice
of § for ©5 and G5 can be distinct, but for notational simplicity we ignore this. Let
M (6, g (-,0)) denote the population objective function that is minimized at § = 6o, and
Mn (0,9 (-,8)) denote the sample counterpart. Further, we denote Dy M (0, g (-,6)) by

S (eyg(’ve)) and DggM (979 ('7 9)) by H (oag (" 9))

THEOREM G: Suppose that 9 L 09, and for some positive sequence §y = o(1),
Gl My (5, ] (‘,5)) < infgeo Mn (6,5 (-, 6)) +0p (N77)
G2 Forall 9,G(-,0) € G5 w.p.a. 1 and supgee |7 (-,8) — 90 (-, 0)lloo = 0p (N72/4)
G8 For some § >0, M (6, g) is twice continuously differentiable in 6 at 6y for all
g € Gs. H(6,g) is continuous in g at go for 6 € ©5. Further, S (0,90 (-,60)) = 0 and
Hy = H (09, g0 (-,00)) is positive definite.
G4 For some § >0, S(0,9(:,0)) is (partial-) Fréchet differentiable with respect to g,
for any 8 € ©5 and for all g € Gs. Further ||S (60,9 (-,60)) — DgS (60, 90 (-, 00)) [g (-, 60) — go (-, 60)]
By x supgeg [19(+,68) — g0 (-, 0) |12, for some By = O, (1).

G5 (Stochastic Differentiability)

Dn (6,5 (-,6))

sup =o0,(1),
lo—oll<sn 11 + VN [|6 — bol| » (1)
where there exist some sequence Cy, so that
_ [My (6,9 (-,6)) — Mn (60, (-, 60)) = (M (6,5 (- 6)) — M (60,3 (-, 60))) — (6 — 6o) Cn]
N 16 — Boll '
—bo
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G6 For some finite positive definite matrices Qo and Q, we have the following weak
convergence vV NCx = N (0,) and vVNDy = VN (Cy + DyS (60,90 (-, 60)) [§ — 90]) =
N (0,9).

Then

VN (9-60) = N (0, Hy'0H ")

COMMENTS ON THEOREM G:

Under the identification assumption and sufficient conditions for asymptotic nor-
mality, one can often show the consistency of the finite dimensional parameter in such
models directly so we do not provide a separate theorem for it. Theorem G extends
Theorem 7.1 in Newey and McFadden (1994) to a two-step semiparametric framework.
G1 is the definition of the estimator. The way G1 - G4 accorlnmodate for the prelim-
inary nonparametric estimator is standard, cf. Chen et al. (2003), in fact, a weaker
notion of functional derivative such as the Gateaux derivative will also suffice here.
G5 extends the stochastic differentiability condition of Pollard (1985) and Newey and
McFadden (1994) to this more general case. We note that this is not the only way to
impose the stochastic differentiability condition; we pose our equicontinuity condition
in anticipation of a sequential stochastic expansion whilst Ichimura and Lee (2006) em-
ploy an expansion on both Euclidean and functional parameters simultaneously. Also,
the first order properties of Cy, the stochastic derivative in (93), will be the same as

the case that go (-, 8) is known.!6

AssumpTiOoN E1:
(i) {ait,mit}z{vz’szll is i.1.d. across i, within each i {ait,xit}{:ll is a strictly sta-

tionary realizations of the controlled Markov process for a fixed periods of T + 1 with

16 An important special case of this theorem is when the preliminary function is independent of 6.
The formulation of the conditions for Theorem G remains valid since the profiling effects are implicit
in the notation of Dy and Day.
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exogenous initial values;
(i) A and &€ are compact and convex subsets of R;

(iii) © is a compact subset of RL then the following holds for all j=1,...,J

a; (+,0,0.90,5 (-,0)) = @ (-,60,0290,5 (-,60)) Q— a.e.

if and only if 6 = 6y where 6y € int (O);

(i) For all j =1,...,J, u; is a finite measure on A that dominates Q and has zero
measure on the boundary of A;

(v) Forall j =1,...,J, the density px a (j,-) is 5—times continuously differentiable
on A and inf,ca px,a (j,a) > 0;

(vi) For all j,k = 1,...,J, the density px: x a(k,j,-) is b—times continuously
differentiable on A;

(vii) The distribution function of €, Qe, is Lipschitz continuous and twice contin-
uously differentiable;

(viii) For all j = 1,...,J, ug(a,j,&) is twice continuously differentiable in 6 and
a, once continuously differentiable in €, these continuous derivatives exist for all a,e
and 0. In addition we assume %uo (a,j,€) > 0 and %Qg—e,ug (a,7,€) exists and is
continuous for all a,e and 6;

(iz) K is a 4-th order even and continuously differentiable kernel function with
support [—1,1], we denote K (u)du and [ K’ (u)du by p; (K) and k; (K) respec-
tively;

(z) The bandwidth sequence hy satisfies hy = dNN—° for 1/8 < ¢ < 1/6, with dy
is a sequence of real numbers that is bounded away from zero and infinity;

(zi) Trimming factor vy = 0(1) and hy = o(yy);

(zii) The simulation size R satisfies N/R = o(1);

106



COMMENTS ON E1:

(i) assumes we have a large N and small T' framework, common in microeconometric
applications, and for simplicity we assume T is the same for all i;

(ii) The dimension of A determines the rate of convergence of the nonparametric
estimate, if dim (A) > 1 we can adjust our conditions in a straightforward way to ensure
the root—N consistency of finite dimensional parameters, e.g. see Robinson (1988) and
Andrews (1995). Compactness of A and £ is also assumed for the sake of simplicity. We
can use a well known trimming argument in nonparametric kernel literature if A and &
are both unbounded , see Robinson (1988); all of our theoretical results and techniques
in this chapter hold on any compact subset of A and £, the compact support can then
be made to increase without bounds at some appropriate rate;

(iil) is the main identification condition for.8g. We assume there dees not exist any
other § € ©\ {6y} that can generate the same policy profile which 8p generates when
(0ag0,i (-, 0)) is known. It can be shown directly that the conditions we impose on the
policy functions is equivalent to imposing that (91) holds if and only if 8 = 6p, which is
the standard identification assumption in a parametric conditional moment model; in
the case that z;; and ;; are not independent we simply change @ —a.e. to Q) X; —@.€.,
where Q| x; denotes the conditional distribution of ;; given z;; = j. Lastly, given 6,
under some primitive conditions on the DGP (contained in E1) (8ag0,; (-,6)) will be
nonparametrically identified hence we only have to consider the identification of 6y;

(iv) ensures that the identification condition of (iii) is not lost through the user
chosen measures, cf. Dominguez and Lobato (2004). One simple choice of { B }‘j]=1
that satisfies this condition is a sequence of measures which are dominated by the
Lebesgue measure on the interior of A and has zero measure on the boundary. We
can also allow the support of a;; to depend on the conditioning state variable z;; but

common support is assumed for notational simplicity;
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(v)-(vi) impose standard smoothness and boundedness restrictions on the underly-
ing distribution of the observed random variables in the kernel estimation literature.
They ensure we can carry out the usual expansion on our nonparametric estimators of
Px,A and pxr x 4 and their derivatives in anticipation of using a 4-th order kernel;

(vii) imposes standard smoothness on Q. that is necessary for our statistical analy-
sis;

(viii) imposes standard smoothness assumptions on the per period utility function,
to be used in conjunction with earlier conditions, to obtain uniform rates of convergence
for our nonparametric estimates. The cross partial derivative is the analytical equiva-
Ience of M2.4. We note that these conditions appear particularly straightforward, this
is due to the fact that u is a continuous function on a compact domain, so boundedness
makes it simple to obtain uniform convergence results. On the other hand, had we
allowed for unbounded A and &, then we will need some conditions to ensure the tail
probability of ug (ait, Zit, €it) is sufficiently small. For example, one sufficient condition
would be that all the functions mentioned belong in L? (P), and there exists a function
|ug (a,z,€)| < U (a,z,¢) for all a,z,e and 0 such that E [exp {CU (ai, Tit,€it)}] < o0
for some C' > 0. The latter is equivalent to the Cramér’s condition, see Arak and Zaiz-
sev (1988), that allows us to use Bernstein type inequalities for obtaining the uniform
rate of convergence of the nonparametric estimates;

(ix) The use of a 4-th order kernel is necessary to ensure the asymptotic bias will
disappear for certain range of bandwidths. The compact support assumption on the
kernel is made to keep our proofs simple, other 4-th order kernel with unbounded
support can also be used, e.g. if it satisfies the tail conditions of Robinson (1988);

(x) imposes the necessary condition on the rate of decay of the bandwidth corre-
sponding to using a 4-th order kernel. The specified rate ensures the uniform con-

vergence of the first two derivatives of a regular 1-dimension nonparametric density
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estimate, as well as, the uniform convergence of |0, — Gagllg at a rate faster than
N~1/4 and for the asymptotic bias (of order v Nh?) to converge to zero;

(xi) This is the rate that the trimming factor diminishes, it suffices to only trim
out the region in a neighborhood the boundary where the order of the bias differs from
other interior points;

(xii) The simulation size must increase at a faster rate than N to ensure the simu-

lation error from using (90) does not affect our first order asymptotic theory.

In relation to Theorem G, beyond the identification conditions (iii) - (iv), most of
the conditions in Assumption E1 will ensure that G2 holds. We now must impose some
additional smoothness conditions on (c;) to satisfy the other conditions of Theorem
G. In particular, in order to apply the results from empirical processes literature, we
need to restrict the size of the class of functions that the continuation value functions
belong to. For a general subset of some metric space (Q, |H|g), two measures of the
size, or level of complexity, of G that are commonly used in the empirical processes lit-
erature are the covering number N (e, g |- ||g) and the covering number with bracketing
Nj (&,G, |I-llg) respectively, see van der Vaart and Wellner (1996) for their definitions.
We need the covering numbers of (G, ""g) to not increase too rapidly as € — 0 (to be
made precise below) and this possible, for example, if the functions in G satisfy some
smoothness conditions. We now define a class of real valued functions that is popular
in nonparametric estimation, suppose A C R4, let n be the largest integer smaller

than 7, and

(94)

Il alg (a) o a) ~ oy (o)
g :ma,xsupl gla ‘—i—ma.xsup — ’
M lni<n a | ° Inl=n azta’ la —a/||"2

where 9!l = gl /8a’l* ...Bazl:"‘ and |n| = Y /4 n;, then C}; (A) denotes the set of

all continuous functions g : A — R with ||g|l,,,, £ M < oo; let I° (A) denotes the
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class of bounded functions on A. If G = C}, (A), then by Corollary 2.7.3 of van der
Vaart and Wellner log (N (¢,G, ||llg)) < const. x e=Z4/2. For our purposes, the precise

condition for controlling the complexity of the class of functions is summarized by the

following uniform entropy condition fj° \/ log N (e, G, [|-||g)de < 00. So G satisfies the
uniform entropy condition if > L4/2. Given the assumptions in E1 we can now
be completely explicit regarding our space of functions and its norm. It is now clear
that Go; C C2,(A) C 1°°(A) for some M > 0 for each j = 1,...,J w.r.t. to the
norm ||-||; described in the introduction. Next, since we are required to define the
notion of functional derivatives, it will be necessary to let our class of functions be
an arbitrary open and convex set of functions that contains Gp. So we define for all
3= Lo d, G5 = {9() € C3(A) : supeeallg () = 905 (,0)l,, < 4 for any 0 € 6}
for some § > 0, then.it is also natural to also have G; endowed with the norm II-llg-t*
Finally, since we will_be using results from empirical processes for a class of functions

that are indexed by parameters in A X © X G, we define the norm for each element

(a,6,9) by ||(a,0,9)ll,, = ll(a, )]} + ligllg-

AssuMPTION E2:
(ziii) For all j =1,...,J, the inverse of the policy function p; : Ax©xG; —» R is
twice Fréchet differentiable on AX©xG; and supg , o.cox Axg; ”Dgpj (a,0,0a9;) || < 005

(ziv) For some j=1,...,J, the following L x L matriz

L[Q(p](aa fo, aagj ('7 90)))]2D0(pja’: fo, 6090,j ('1 90))D9p_7 (a’7 6o, 6890,j ('7 90))’“] (da)

is positive definite;

(zv) For all j = 1,...,J, the Fréchet differential of p; w.r.t. O,g in the direction

"Note that for any g € G; for any j, ||gllg < 6 + maxi<j<s Supy o axo 195 (a,6)| < 0o holds by the
triangle inequality.
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[0a3j (-, 680) — Oagoj (-, 00)] is asymptotically linear: in particular for any a € int (A)

N,T
. 1 ¥ )
Dy, (0,00, 095 - 00)) 10T (- 00) — a3 (. 00)] = o D o (aie zusa)bop (N2)
i=1,t=1

(95)
with E [zpo’j (ait,xit;a)] =0and E [¢(2),j (a,;t,x,-t;a)] < oo for all i,t; in addition, the
display above holds uniformly on any compact subset AN of A and g ; (ait, Tat; ) €

V; n where V; y is some class of functions on Ay that is a Donsker class for all N.

COMMENTS ON E2:

We first note that although it would appear more primitive to impose conditions on
the policy function but the notation will be very cumbersome. Given the existence and
smoothness of the inverse map we instead work with the inverse of the policy function,
this is done without any loss of generality by using implicit, inverse and Taylor’s theo-
rems in Banach space.!® Although these assumptions are hard to verify in practice, they
are mostly mild conditions on the smoothness of p that one would be quite comfortable
in imposing if G belongs to a Euclidean space (at least for (xii) - (xiii)); in a similar spirit
the same ean be said-regarding (xiv). For each j and a, Dyp; (a,00,0ag; (-,00)) is a
bounded linear functional and [8,; (-, 00) — 8a90,; (-, 80)] is a continuous and square in-
tegrable function in L? (A, IT),!° by Riesz representation theorem there exists some 0; €
L? (A, TI) such that Dyp; (a,60,ag; (-,60)) [023; (-, 00) — Bago,; (-, 60)] = [ ; (d'; a) Ba7; (', 60)
—08ag0,5 (@', 80) dI1 (a’). Given our assumptions, for a smooth g;, it is not difficult to
show the validity of (95) since 0,3j (-,00) — 0ago,; (-, f0) has an asymptotic linear form.
This is not an uncommon approach when dealing with a general semiparametric es-
timator, see Newey (1994), Chen and Shen (1998), Ai and Chen (2003) and Chen

et al. (2003), and in particular, Ichimura and Lee (2006) for the characterization of

!8See Chapter 4 of Ziedler (1986) for these results.
9Here L? (A, IT) denotes a Banach space of measurable functions defined on A that is square inte-
grable w.r.t. some measure II.
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a valid linearization. However, since our (p;} does not have a closed form it is not
clear how one can obtain (p;). Once we obtain (95), standard CLT yields point-
wise convergence in distribution (for each a,z) but this is still not enough for our

minimum distance estimator since we will need a full weak convergence result, i.e. let

N,T .
YN = 7% >i21.4=1 Yo,; (@it, Tit; -) be a random element in 1% (A) we need ¢y ; ~ 9;

as N — oo, where ~» denotes weak convergence and 1; is some tight Gaussian process
that belongs to [*° (A). The Donsker property can be satisfied for a large class of
functions, see Van der Vaart and Wellner (1996). We note also that joint normality
condition of G6 in Theorem G will also be easy to verify since we will end up working
with'sums of two Gaussian processes, each underlying asymptotic is driven by averages

of zero mean functions of {(a, xn)}f\g;:l

THEOREM 2.1: Under E1: For any a € int(A),0 €O and j=1,...,J,if g (-,0)

satisfies (88) then

k2 (K)

VN (§; (a,6) — g0 (a,0) — By (a;ma)) = N (o, T

var (mg (Tit+1) |Tit = J, aie = a)) ,

where
J o . Lo .
1 sabx x4k, j,a)  px: xa(k, j,a) 52px,4 (4, a)
By j(a;mg) = —htu, (K)Y mg (k) | 28— + == oo ,
J q1" ; px,4(j,a) Px.a(J:a)

furthermore, G; (a,8) and gy (a’,0) are asymptotically independent when k # j or a’ #

a.

We note that, for each j, the pointwise asymptotic property of g; (a,#) in Theorem
1 is identical to that of a Nadaraya-Watson estimator of E [mg (zit41) |2it = J, air = a]
when myg is known. In other words, the nonparametric estimation of my, as well as the

generation of the nonparametric residuals (85), does not affect the first order asymptotic
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of (g;j(-,0)). The reason behind this is due to the fact that (?g,fﬁg,f) converges
uniformly (over © x X) in probability to (Fg, Mg, E) at the rate close to N~%2, which
is much faster than 1/Nh.

In order to apply Theorem G, we now define the population and sample objec-
tive functions for our estimator. For any § € © and g(-,0) € G, we have defined

My (6,9 (-,0)) earlier (see (92)), its population analogue is

7
M(0,9(,0)) = Zl [Faix (alj;0,8a95 (-,0)) — Fax (aU)]Z#j (da).
=174

THEOREM 2.2: Under E1-E2: For (g(-,60)) that satisfies (88), if 9 satisfies

61 with My (0,9 (-, 6)) as defined in (92) then 8 2 fg.

THEOREM 2.3: Under E1-E2: For (§(-,60)) that satisfies (88), if 0 satisfies

G1 with My (0,9 (-,8)) as defined in (92) then
VN (8- 60) = N (0, B3 0H;Y),

where

[DoFax (alj; 00,890, (-, 60))]

J X
2 = lim var —22 / R | |
g (Fax (alj) - Fax (1))
\ I — (DgFa1x (alf; 00,0a90,5 (-, 60)) [8a3j (-, 60) — Bago,; (-, 60)]
J
. . !
Hy = QZ/A (DoF1x (alj; b0, Bago,j (-, 60))) (DoFax (alj; 00, ag0,5 (-, 60))) p; (da).
j=1

Next theorem provides the pointwise distribution theory of (fq} (,5)) that can be

used to estimate (go ; (-,60))-
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THEOREM 2.4: Under E1-E2: For any a € int(A) and j =1,...,J, if G;(-,0)

satisfies (88) and 9 satisfies G1 then

K2 (K) )var (me, (Titt1) |t

VNR (gj (a,é) — go,j (a,60) — B j (a; mao)) =N (0, Toxa(,a)

where By j (a;mg,) has the same ezpression as in Theorem 1 when 6 = 6y. Further-

more, g; (a,@) and Gk (a’ ,5) are asymptotically independent when k # j or a' # a.

Theorem 4 implies that (g,- (,5)) and (g (+,6o)) have the same first order asymp-
totic. This follows since g (and ¢) is smooth in 4, and 9 converges to g at a faster
rate than 1/v/Nh. Note that, if we want to construct consistent confidence intervals
for ge; (a,0p), we may use a different bandwidth in estimating g to the one used in

computing 9. .

2.6 Bootstrap Standard Errors

The asymptotic variance of the finite dimensional estimator in semiparametric models
can have a complicated form that generally is a functional of the infinite dimensional
parameters and their derivatives. Not only it is difficult to estimate such object, the
estimate often works poorly in finite sample. In this section we propose to use semi-
parametric bootstrap to estimate the sampling distribution of the estimator described
in this chapter.

The original bootstrap method was proposed by Efron (1979). The bootstrap is
a general method that is very useful in statistics, for samples of its scope see the
monographs by Hall (1992), Efron and Tibshirani (1993), as well as Horowitz (2001) for
a survey that is specialized for an econometrics audience. In this chapter we concentrate
on the use of bootstrap as a tool to estimate the standard error of 0 defined in Theorem

3. Generally, bootstrap methods under i.i.d. framework are simpler to implement but
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are not appropriate for dependent data as it fails to capture the dependence structure of
the underlying DGP. One well known exception to this rule is the case of the parametric
bootstrap. Bose (1988, 1990) show that bootstrap approximation is valid and obtain
higher order refinements for AR and MA processes. The main feature of an ARMA
model is that the DGP is driven by the noise terms, since consistent estimators for
the ARMA coefficients can be obtained under weak conditions, it is easy to construct
bootstrap samples that mimic the dependence structure of the true DGP when the
distribution of the noise terms is assumed.

The structural models we are interested in seem to possess enough structures suit-
able for a resampling scheme akin to that of the parametric bootstrap. Indeed, Kasa-
hara and Shimotsu (2008a) has recently developed a bootstrap procedure for parametric
discrete Markov decision models, where they use parametric bootstrap framework of
Andrews (2002,2005) to.obtain higher order refinements of their nested pseudo like-
lihood estimators. However, our problem is a semiparametric one. Recall that the
primitives of the controlled Markov decision processes is the triple (8, ug, p), since we
assume the complete knowledge of the discounting factor and the law of the unobserved
error, the remaining primitives are  and px/|x 4, both of which can be consistentl&
estimated as shown in the previous sections. Therefore the semiparametric bootstrap
seems to be a natural resampling method to use since we know the DGP for the con-
trolled processes up to an estimation error. We now give the details to obtain the

bootstrap samples.

STEP 1:
. . N,T—‘—l . . = o~ -~
Given the observations {aityxit}i=1,t=1 we obtain the estimators (9, g (-,9)) as

described in Section 2.

STEP 2:
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We use {zio}i]\;l to construct the empirical distribution of the initial states, Fﬁ"
and draw (with replacement) N bootstrap samples {z;‘l}fi ;- These are to be used as

the bootstrap initial states for each ¢ to construct N series of length 7"+ 1.

STEP 3:

For each i, €}, is independently drawn from @. Using the estimated policy profile
(aj (-;5, Jg; (,5))), we compute for each z3, = j, a}, = a; (s;—‘t;@, 09; (,5)) . Also for
each =}, = j and a};, zj;,, is drawn from the nonparametric estimate of the transitional

distribution Px’ x,4 (2}1,7,0%) /Px,4 (j,al;). Beginning with t = 0, this process is

2

N,T+1

. . PN
continued successively to obtain {a};, z},};27 ;=)

STEP 4:
Using {a}, z;‘t}ﬁ{;ll to obtain the bootstrap estimates (@*,57* (-, 9)) as done with
the original data.

STEP 5:
Steps 2-4 is repeated B—times to obtain B—bootstrap estimates of {’é:b)a ’g’(*b) (, 0)}sz1 .
o B
Then {9(,,),5(,,) (—,0)}6:1 can be used as a basis to estimate the statistic of in-
terest. One should be able to show that the method described above can be used to
show the sampling distribution of v NT (5—— 00) can be consistently estimated by
VvNT (5* — 5), possibly with an additional bias correction term. The proof strategy
analogous to the arguments of Arcones and Giné (1992), see also Brown and Wegkamp

(2002), can be shown to accommodate a two-step semiparametric M-estimators consid-

ered in this chapter.

2.7 Simulation Study

In this section we illustrate some finite sample properties of our proposed estimator

in a small scale Monte Carlo experiment. Since the generation of controlled Markov
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processes can be quite complicated, for simplicity, we consider a dynamic price setting

problem for a representative firm described in Section 2 with the following specification.

DESIGN:

Each firm faces the following demand

D (at,xs,€¢) = D — 61a; + 62 (¢ +et).

such that a; belongs to some compact and convex set A C R; x; takes value either 1 or
—1, where 1 signifies an increase in demand towards the firm’s product and vice versa;
the firm’s private shock in demand ¢; has a known distribution. D can be interpreted as
the upper bound of the supply and (8, 62) are the parameters representing the market
elasticities. Unlike z;, the evolution of the private shocks ¢;, are completely random
and transitory. The distribution of the consumer satisfaction measure depends on the
previous period’s price set by the firm, which is summarized by Pr[z¢+1 = —1|zs,a¢]) =
as—a

=—= where a and @ denote the minimum and maximum possible prices respectively.

It is a simple exercise to show that the policy function can be characterized in terms
of the conditional value function E [Vp (2141, €t+1) |2¢], in particular, the firm’s optimal

pricing strategy has the following explicit form

_ A1—A
a(zy,60) = (D+02 (z¢ + &) + cbs -ﬁ%ﬂﬁ) /264, (96)
where A\g1 = E [Vp (Tt41,6e41) [Te41 = 1] and Ag2 = E [Vp (Tt 41, €t41) [Tt41 = —1]. It

can be shown that D (at,z:,€¢) (a; — ¢) will be is supermodular in (a¢, &) if (61,62)
is positive, as expected from Topkis’ theorem, the policy function above will then be

strictly increasing in €;. If we ignore that the firm is forward looking, the optimal static
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profit can be characterized by the following pricing policy
O (:tt,Et) = (ﬁ + 09 (.’L‘t + Et) + 001) /291. (97)

Intuitively, we expect firms which do not take into the account of the consumer’s adverse
response to high prices will overprice relative to their forward looking counterparts.
This is confirmed by the expressions in the displays above since we expect Ag1 — Ag 2
(and 67) to be positive, i.e. the latter implies a;(z,e) > a(z,¢e) for any pair of
(z,€). From (96) - (97), identification issue aside, we also note that performing linear
regression of a; on z;; will yield estimable objects that are functions of the model
primitives (5, 61,62, c) that may have little economic interpretation.

In our design, we assign the following values to the parameters
D=3,01=1,60,=1/2,c=1,

and let &; ~ Uni[—1,1]. It can be shown that @ — a =1 and

Priz;p1 =1z =1 Prizg = -1z = 1]
\ Pr(zi41 = 1|ze = —1] Prlzipq = -1z = -1]

( 0.25 0.75

\ 0.75 0.25

A numerical method that mirrors our estimation of the policy value equation in Section
2 can be used to show that Ag1—Ag 2 = 1/1.45. Combining these information, it is then
straightforward to simulate the controlled Markov processes that are consistent with
optimal pricing behavior in (96) that underlies the dynamic problem of interest. We

generate 1000 replications of such controlled Markov processes with for various sizes
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of N € {20,100,200,500} random samples of decision series over 5 time periods; this
leads to five sets of experiments with the total sample size, NT', of 100,500, 1000 and

2500.
IMPLEMENTATION:

We are interested in obtain estimates for the demand parameters (6;,62) and as-
sume the knowledge of (ﬁ, c) . In estimating the nonparametric estimator of go (-, ),
we construct a truncated 4-th order kernel based on the density of a standard normal
random variable, see Rao (1983). For each replication, we experiment with 5 different
bandwidths {he = 1.06s (NT)™° : ¢ = %, %, 1.4 %} We provide two estimators for each
of (61,62), one without trimming and another one that trims out calculations involv-
ing G (-,0) for a that lies within a bandwidth neighborhood of the boundary. For the
simulation of Fyx (alj;#,0g;), we take R = N log (V) random draws from Q. We ap-
proximate the model implied policy function by using grid-search instead of computing
the derivative of the continuation value. The measures (u,, 5) we use in constructing
the minimum distance estimator in (92) simply put equal weights on all @ and z. It
is much simpler to estimate the parameters when we assume the underlying model is
static. Note that the policy function in such framework has a closed form as shown

in (97), therefore we can simulate the model implied conditional distribution function

directly from a.
COMMENTS AND RESULTS:

The first observation is that our simulation design does not satisfy all of the con-
ditions of E1. In particular, the support of price differs depending on the observable
level of the popularity measure. This knowledge can be used in the estimation proce-
dure without affecting any of our asymptotic results, as we commented in the previous

sections, we assume common full support for each state for simplicity.
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All of the Figures and Tables can be found at the end of the chapter. We report the
bias, median of the bias, standard deviation and interquartile range (scaled by 1.349)
for the estimators of #; and f2. The rows are arranged according to the total sample
size and bandwidths. We have the following general observations for both estimators
regardless of bandwidth choice and trimming: (i) the median of the bias is similar to the
mean; (ii) the estimators converge to the true values as N increases and their respective
standard deviations are converging to zero; (iii) the standard deviation figures are sim-
ilar to the corresponding scaled interquartile range.?0 However, the effect of trimming
is unclear. In the case of the estimator of #;, the magnitude of the bias is significantly
reduced by trimming that appear to far outweights the increase in variation in the
MSE sense. On the contrary, trimming generally slightly increase the bias of the esti-
mator for 2. We check the distribution of our estimatars by using QQ-plots. We only
pravide QQ-plots.of the numerical results for.the case of the trimmed estimator using
¢ = 1/7 for the bandwidth k.. Figures 1-4 plot the quantiles of (@1 — E@l) /SE (51)
with that of a standard normal for different sample sizes, where the dashed line de-
notes the 45 line and plots are marked by ‘+’; Figures 5-8 do the same for 05. The
distributional approximation supports our theory that 8 behaves more like a normal
random variable as N increases. We find that the untrimmed estimators produce sim-
ilar plots to their untrimmed counterparts across all bandwidths considered especially
for the larger sample sizes, however, the quality of the QQ-plots varies across different
bandwidth choices.

We also report analogous summary statistics for the structural estimation assuming
the model is static, they can also be found in Table 5 and 6 in the rows labelled static.
Note that the estimation of the static model does not involve the continuation value

function so it does not depend on the bandwidth choice. It is clear that the estimators

20(iii) is a characteristic of a normal random variable.
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under static environment do not converge to (61,62) = (1,0.5), instead they converge
to some values around (1.26, 0.68) with very small standard errors. Since our minimum
distance estimators reflect the model that best fit the observed data, the upwards bias
of the elasticity parameters estimates is highly plausible. To see this, first recall from
(97) that firms who do not take into the account of the future dynamics will overprice
relative to the forward looking firms. The firms that only maximize their static profits
will therefore, on average, need to expect the market elasticities to be more sensitive in
order to generate more conservative pricing schemes consistent with the behaviors of
their forward looking counterparts.. Thus, in this example, ignoring the model dynamics

leads to overestimating the elasticity parameters.

2.8 Conclusion

In this chapter we develop a new two-step estimator for a class of Markov decision
processes with continuous control that forms a basis to estimate a larger class of struc-
tural dynamic models. Our criterion function has a simple interpretation and is also
simple to construct; we minimize a minimum distance criterion that measures the diver-
gence between two estimators of the conditional distribution function of the observables.
In particular, we compare the conditional distribution functions, one implied purely by
the data with another constructed from the structural model. We provide some prim-
itive conditions to ensure our estimator is consistent for the structure parameter of
interest when the model is identified. As an alternative estimator to BBL, which is
designed to estimate the same class of models without having to solve for the equilib-
rium, in a parametric model we can simply use the empirical measure to construct our
objective functions hence there is no additional decisions to be made by the practition-
ers (e.g. choosing classes of inequalities). We also explicitly work with the framework

where we do not need to impose any distributional assumptions on the transition law
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of the observables. This additional flexibility is important since the transition law is a
model primitive. We provide the distribution theory of both the finite dimensional pa-
rameters as well as the conditional value functions and propose to use semiparametric
bootstrap to estimate the standard error for inference. We illustrate the performance
of our estimator in a Monte Carlo experiment on a dynamic pricing problem, where we
provide an intuition, based on our criterion function, for the direction of the biased of
the estimator which ignore the model dynamics. We also demonstrate how the general
approach we take to estimate dynamic models with continuous control, analogous to
the discrete choice counterparts proposed by Hotz and Miller (1993) and Pesendorfer
and Schmidt-Dengler (2008), can easily be adapted to estimate other class of interesting
and practically relevant dynamic models.

There. are also .other important aspects of dynamic models we do not discuss in
this paper. We end with a brief note of two issues that. are particularly relevant to our
framework. The first is regarding unobserved heterogeneity. The absence of unobserved
heterogeneity has long been the main criticism against two-step approaches developed
along the line of HM. Recently, finite mixtures have been used to add unobserved com-
ponents in related two-step estimation methodologies, for example see Aguirregabiria
and Mira (2007) and Arcidiacono and Miller (2008), Kasahara and Shimotsu (2008a,b).
Finite mixture models can also be used with the estimator developed in this paper. Sec-
ondly, our paper focuses on estimation and assumes the model is identified. There are
ongoing research on the nonparametric and semiparametric identification of dynamic
decision models of single and multiple agents, for some samples, we refer interested
readers to Aguirregabiria (2008), Bajari et al. (2009), Heckman and Navarro (2007)

and Hu and Shum (2009) for examples.
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2.9 Proofs of Theorems
2.9.1 Proof of Theorem G

The argument proceeds in a similar fashion to the case with no preliminary estimates
of Newey and McFadden (1994, Theorem 7.1), see also Pollard (1985), by first show-

ing that @ converge to g at rate N=1/2, By definition of the estimator, we have

My (575(',5)) — My (60,3 (:,00)) < 0p (N71), and

My (5 ?i( 5)) Mpy (60,3 (-, 60))
= W (E(.0) w5 (500 5[] 55 (.5)
(CN +s(ao,§(.,§))) (5—90)+00 “5—90” (1+ 0, (1)) + N~1/2 ||§—90||1>N (@,g(-,z

on (4= (3= o] s (-4 p -]« =)

v

The first equality follows from the definition of Dy in (93). For the inequality, we
expand M (5,@ (,5)) around 6y, since H (6, g) is continuous around (6, go) and Hy is
positive definite by G3, there exists some Cy > 0 such that, w.p.a. 1, (6 — )’ H (60,3 (-,600)) (6 — ¢
0p (||a - 90||2)'2 Co|l6 — 8o])%. Notice that Cn+S (60,3 (-, 60)) = Op (N~1/2), the first

term follows from assumption G6 and the latter by G3 and G6 since

”S (90a§('7 60))” < ”S (aﬂvg('a 60)) - DQS (901 90 (" 90)) [§(7 00) — 9o ('7 60)]”
+1DgS (60, 90 (-, 60)) [ (-, 60) — go (-, 6o)]|

() 20, ()

= 0, (N7V?).

IA

By completing the square

(1= 0+ 00 (3-))" 0y (-2 - ] [ u]") <o (-,
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thus “5— 00“ = Op (N~12). To obtain the asymptotic distribution we define the
following related criterion, Jy () = Dy (6 — 60) + 3 (6 — 60)’ Ho (6 — 6g), note that
Jn (8) is defined for each g (-, ) that satisfies the conditions of Theorem G2, implicit in
Dy. Jn (0) is a quadratic approximation of My (8,6 (-,6)) — Mn (60,9 (-, 60)), whose
unique minimizer is 0 =6y — HO“IDN, and VN (5— 90) =N (O,HO_IQHO_I). Next,
we show the approximation error of Jy (6) from My (8,4 (-,6)) — My (60,G(-,0)) is

small. For any Oy = 69 + O, (N”l/z) in O,

My (On,9(-,0N)) — Mn (60,9 (-, 60))

= MO, 3(08)) — M (66,5 (00) +Cly (6n — b0) + 125 0> 0 3 6m))

VN
= (Cn+ S (60,9(~ 60))) (6n — 60) +*% (65 —60) H (6,3 (-,0)) (O~ — 60) + %DN (On
= Do (o = 00)+ 5 On = 06 Ho 0w — 90)+ op (L2200 oy gop2)

— Jn(On) + 0 (z“if) .

The equalities in the display follow straightforwardly from the definition of the Dy,
G3, G4 and G5. In particular, this implies that My (85,9 (-, 0n)) — My (00,9 (-,00)) =

JIn (On) + 0p (%) for O = 9 and 5, hence we have

v (8) = (n(8) - (Mw (0,3, 0)) — M (60,3, 60)))

+ (Mn (0n,3 (-,6N)) — M (60,9 (-, 60)))

< Jn (5) + 0, (“11\7) ,
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where the inequality follows from the relation derived from the previous display and

G1. Since Jy (’é) < Jn (@),

o,,(%) = Jn (8) - v (9)
7 (6-00) Ho (5 0o)
-5 34~ 1= ) 5 m -5

_ %(E—E)IH(,@—E),

this implies that ”5——5“2 = 0p (%) Since VN (5 - 00) has the desired asymptotic
distribution, this completes the proof.l

For the proof of Theorems 2 and 3 we find it convenient to introduce the follow-
ing notations: M (8,g(-,0)) = Zj:l Ja Ef (8,04g; (+,0)) du; where E; (0, 0.9; (-,0)) =
Faix=;(0,0a9; (,0)) — Fajx=5, and, Fax—;(0,049; (-,6)) and F x—; are functions de-
fined on A that are the shorthand notations for Fy x (-|5;, 0agj (+,6)) and Fyx (-|7) re-
spectively; My (6,9 (8)) = X1y [ B3, (6, 009; (-0)) dytj where Ey; (6, 8ag (+,6)) =
ﬁA]X:j (8, 0ag;j (-, 9))_ﬁAlX=J'7 and, FA]X:j (0, 0ag; (-,6)) and ﬁA|X=j are functions de-
fined on A that are the shorthand notations for ﬁA;x (:17; 0, 8agj (-,0)) and ﬁA[X an)
respectively; Fp ; is a function defined on A that is the shorthand notation for Fy (-|5). In
addition, for j = 1,..., J, we define the class of functions F; = {1 [- < pj (a,b, 0agj)] a€ A 0O
and let v ; denote the empirical process indexed by (6, 8.9;) € © x gj(.l) to be a random
element that takes value over A, i.e. vg; (0, 0.9;) = ﬁ Zil 1[er < p; (-,0,0a95)] —
Qe (p; (.6, 04g;)). We will continue to use the multi-index notation to define higher
order derivatives Bcl,"l and 6‘!;”, of a and @ respectively for some natural number 7, as

seen in (94).
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2.9.2 Proofs of Theorems 2.1 - 2.4

We next present the following lemmas that will be useful in proofing Theorems 2.1-2.3.

LemMA 2.1. Under B1 ||£ - £| = 0, (N-1/2).

LEMMA 2.2. Under E1: For any rg € Rg and j = 1,...,J, 7 (§) = ro () + 72 (§)
such that maxi<j<jsupgee |Tat ()| = 0p (N7) for any A < 1/2.

LEMMA 2.3. Under E1: For any mg € Mo and j = 1,...,J, Mg (j) = ma (§) +
Mg (j) such that maxi<j<y suppeg |ME ()| = 0p (N) for any A < 1/2.

LEMMA 2.4. Undei EI: For any 6 € ©, j = 1,...,J, and a € A, G (a,0) =

gj (a,8) + @? (a,0) + f}f (a,0) + §f (a, ) such that

~B 4
max  sup °(a,0)] = O,(h
1S.7'S-70,a€91x)AN 195" €a,0) p (),
: N¢
-5
max  su > (a,0)] = o ,
12729 .0cO0 Aw 97 (a.0) P (\/Nh)
N¢ )
~R 4
max  su *a,0)) = op |+ —].
15j$J9,aeeEAN 195" (a,0)] p( VNh
LEMMA 2.5. Under E1: Forall j = 1,...,J, maxoci<2,1<j<J SUPg acoxy |On 9 (a,6) — 04 g0,

op(1).

EEMMA 2.6. Under B1: maXocis<2,1<j<J SUPo acoxAy |06 04 9 (a,0) — 0510} \g0,5 (a,0)| =
op(1).

LEMMA 2.7. Under Et and E2: for all j =1,...,J, F; is a Donsker class.

LEMMA 2.8 Under El1 and E2: For any j = 1,...,J and some positive sequence

by =ofl) as N - o0 -

lim sup OIS (1 [61' < p; (a', v, 3a93)] - Qe (p,- (a’, g, 8ag§-)))

N—o0 (1)
(a,o,aagj)eAxexg. » _1 ]\L lle;: < p.(a.6.0,q9;) — . (a e,a .
(e oy omlcan | 2t (L6 225(0:8 0] = Qe (75 (4,,809))
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LEMMA 2.9 Under E1: Forany j=1,...,J
vN (ﬁA|X=j — FA|X=j) ~ Fj,

where F; is a tight Gaussian process that belongs to 1% (A).

LEMMA 2.10: Under EI and E2: Forany j=1,...,J
VN (Fax=; (60,043; (,60)) — Fajx=j (60, 8a90,; (*,60))) ~ Gj,

where G; is a tight Gaussian process that belongs to [*° (A4).

PROOF OF THEOREM 2.1. This follows from Lemma 2.4. For the asymptotic distri-
bution, we only have to calculate the variance of (105), the rest follows by standard CLT.
Asymptotic independence will follow if we can show v/ Nhcov(g; (a, ) , 9k (', 8)) = o(1)
for any k # j and a’ # a, this is trivial to show. I

PROOF OF THEOREM 2.2. We first show that M (6, go (-,6)) has a well sepa-
rated minimum at §p. By assumption (ii) - (iii) and (vii) we have M (8,90 (-,0)) >
M (69, g0 (-, 0)) for all 8 in the compaet set O with equality only holds for 8 = 6. For
each a and j, we have Fyx (alj; 0, 8295 (-,0)) = Qc (p; (a,0,8ago (-,6))) which is con-
tinuous in 6 given assumptions (vii) and (xiii), this ensures a well-separated minimum.

By standard arguments, consistency will now follow if we can show

sup |My (6,3 (-,0)) — M (6,90 (-,0))| = 0p(1). (98)
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By the triangle inequality, we have

J
|MN (aag(v 0)) -M (97 go ('79))| < 42/ |FA]X=J (9, aa./gj ('7 0)) - FA|X=j (91 3a§j (10))| dy’]
=1

J
+4Z/ |Fajx=; (0,43 (-,6)) — Faix=; (6,ag0,; (-, 6))| ds
=1

J
+4Z/‘FA|X=j — Fajx=j| dp;
=1

= A;+ Ay + A;.
For Aj;, for each j and any n > 0 we have

Pr sup |ﬁA|X (alz;0,0.9(+,0)) — Fax (alz; 0,049 (-, 9))| > 71]

r R
1
< Pr su — 1 (e, < p;(a,B,0.9;)| — (a,0,0.9;))| >
[R5 00005 -2 0003
i R
| 1
< Pr sup R E 1 [Er < pj (a,6,6agj)] - Qe (Pj (a,0,8a9;))| >n
6,0,009,€0xANXG) |7 r=1

+Pr [aagj (-,9) ¢ gj.l)] .

From Lemma 2.7, F; is Q—Glivenko-Cantelli by Slutsky’s theorem, therefore the first
termr of the last inequality above converges to zero as R — oo by assumption (xii).
By Lemma 2.6, Pr [8,,’9}- (-,0) ¢ _C/’J(-l)] = 0(1) hence by finiteness of y; it follows that

|A1| = o0p (1) uniformly over ©. For Ay, for each j we have

IFA|X=j. (91 aa/g\j ('1 9)) - FA|X=j (0’ aagj ('7 9))] = |QE (pj (a, 6, aa/g\j ('1 6))) — Qe (pj (a, 6, 6090,.7 (

< Colpj(a,0,843; (-, 0)) — (p; (a,8,8ag0,; (-, 6)))

where the inequality follows from the mean value theorem (MVT) and the fact that
the derivative of Q. is uniformly bounded. Given the smoothness assumption on

(pj) in assumption (xiii), by MVT in Banach space sup,ca, |0;(a,8,0.3; (-,6)) —
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(Pj (a’ 6, 6‘190,.‘7 (" 9))) I < SupO,a,BagjeexAng(.l) ”Daagpj (av 6, aagj)” X 8UPg acoOx Ay |3a§j (a‘7 6)_

0a90,5 (a,0) |. Since p; has zero measure on the boundary of A, by Lemma 2.5, [ |F x—; (6, 8agj (-, 6

Fy1x=j (80,0490, (-,0)) |di; < Cosupg seoxay 1075 (a,0)—8ag0, (a,0) |[+2u; (A\AN) =
0p(1). So we also have |A3| = o0, (1) uniformly over ©. Lastly for As, for each j we

write

Fapx (ali) = Fax (eli) = = [Fax (@.0) = Fax (a.3)]

FA|X (alf)

ox ) [Px (4) — px (4)],

where FA x (a,3)= NT Zz_l ¢=1 1[ait < a,zy = j), then wp.a. 1

Fax (ali) = Fapx (al3)|
o3, 500 [Fape (o) — Fapx el

1
su FAX a - F a
minigj<y px (5) 1552y 500 (a,5) = Fax (a,5)
+|ma‘X1<J<J[pX () - Px @]
mini<j<J px (J

IA

By Lemma 2.9, the class of functions {1[- < a,zi = j] — Fax (-,j) :a € A} is also a
Glivenko-Cantelli class, so: the first term on the RHS of the inequality above converges
in probability to zero; the second term also converges in probability to zero since
Px (j) — px (§) = 0p(1) for each z € X. Since A3 is independent of #, the uniform
convergence in (98) holds and consistency follows.l

Proor oF THEOREM 2.3. To proof Theorem 2.3 we set out to show that our
assumptions imply we satisfy all the conditions of Theorem G. We showed consis-
tency in Theorem 2.2. Gl is the definition of the estimator. For G2, it suffices to
show 8,3; (-,6) € Gayj w.p-a. 1 and suppeo 18a3; (- 0) — Bago (- 0)ll, = op (N-1/4)

for all j = 1,...,J. The former is implied by Lemma 2.6, from the proof of Lemma

2.5, the latter holds if h* 4 \/1]% =0 (N -1/ 4), this is certainly the case when A is in
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the suggested range. G3 and G4 simply requires translating the smoothness we impose
in E1 and E2 to satisfy these conditions. Now we show G5, in particular we need to

show that

My (6,3 (-,6)) — Mn (60,3 (-, 60)) — (M (8, (-,6)) — M (60,5 (-, 60))) — (6 — 60) (6N

g—6 1
= 0p ("9—-90”2+l\/—TOII+N>,

holds uniformly for [|0 — 6of| < én. Then for any pair (0, 9,3; (-,#)) we can write

E2(6,043; (,0)) — E (00,0495 (-,00)) = (Fajx=; (0,09 (-,0)) — Fajx=j (60,8.3; (-, 60))) x

(Fajx=j (8,845 (,6)) + Fajx=; (60,0.3; (-,60)) — 2F
and analogously

E% ; (6,8.3; (-,0)) — Ex ; (60, 043; (-, 60)) = (FA|x=j (6,045 (-,0)) — Fajx=; (60, 0.3; (',90))) >

(FA|X=]‘ (6,8a3; (,8)) + Fajx=; (60,a3; (-, 60)) —
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Combing these we have

My (075(76)) — My (00>§('190))

R7V2(vg; (6,043 (-,0)) — vr,; (B0, 8aFj (-, 60)))

_ ZJ:/ + (Fax=;j (8,045 (-,8)) — Fajx=; (60, 3.3; (-, 60))) du;
=1 R™Y2(vp ; (8,04G; (-, 0)) + vR,; (00,845 (-, 60)))

+ (FA|X=j (8,049; (-,0)) + Fayx=; (60, 0a3; (-, 60)) — 2ﬁA|X=j)

J
-y / E2 (9, 8,9; (- 60)) — EZ2 (60, 8a8; (+ 60)) dps;
j=1

J
—22/ (Fajx=; (0,043; (-,6)) — Fajx=j (60,04; (-, 60))) (FA|X=J' - FA|X=j) dp;
j=1

[VRJ (07 8¢1§.‘i_ ('1 6)) —VR;j (907 6¢1’g\]’ ('7 60))]

J
~1/2 .
+R~Y Z/ | Fax=j(0,0.3; (,9)) dp;

s +Fp1x=; (00, 9.3; (-, 60)) — 2FA|X=J' |

R_1/2 Z/ . [VRJ (9, 60@}-(" 9)) + VR,j (90) 6a§j ('1 90))] d'u]

=t X [Fajx=j (6,043; (-,0)) — Fayx=; (60, 3agj (-, 60))]

J - [VR3(0:043; (-, 0)) = vR,j (60, 0aj (-, 60))]
+R1 Z / 7 j i j du;
=1

x [vR,; (60,0435 (,0)) + vr,j (60, 0aF; (-, 60))]
= M (‘9,5(, 0)) -M (907§('7 90)) + Bl + BQ + B3 + Bs.

We now show that, out of {Bi}?=1, B; is the leading term that contains Cy in (99), the
rest are of smaller stochastic order. Since we are only interested in what happens as
|6 — 6o]] — 0, in what follows, the little ‘0’ and big ‘O’ terms will be implicitly assumed
to hold with ||§ — || — 0 and N — oo.

For B; :
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By mean value expansion

J
B, = —2(0-60) ) / DoFayx=; (03,043 (+95)) (Fax=s — Fax=;) di;
7j=1
J —~
= —2(0—-60)) / DgF 41 x=;j (80,0a90,5 (-, 60)) (FA[X=J' - FA!X=J') dp;
j=1

J DoF g1 x—; 0',611?' '15' — DgF g x=; (6 760-9 ,'('79 )
_2(9_00),2/ [DoFax=; (93, 9a9; (-185)) — DoFax=; (80, 8agoy; (-, 60))] b,
=1 X [FA|X=j - FA|X=j]
= Bn+ B,

where for each j,@,- is some intermediate value between 8 and 6y that corresponds to
the MVT w.r.t. the j —th summand. We first show that Bj; is the leading term that is
equal to (8 — 6p)’ Cx in (99) and that v/NCN converges to a normal random variable.
By Lemma 2.9 VN (f’,” x=j — Fy X=j) ~» F; where F; is a tight Gaussian process’
that belongs to [*° (A) for all j, by Slutsky theorem and a similar argument used in
the proof of Lemma 2.9, it is ‘¢éasy to show that Dy Fy x—; (60, 0ago,; (-, 60)) vVN(F AX=j
— F4)x—;) also converges weakly to a tight Gaussian process. To see the latter, note

that for any 8,9; (-, 8) € g](})

Dy Fpx (alj;6,0a9; (-, 0))

= 4q (pj (a‘! 97 aagj (?0))) (6910_7' ((1., 0, 6agj ('7 9)) + Daang (a,9, 6a.gj (79)) [60609('79)]) ’

where, 8y denotes the ordinary L—dimensional partial derivative, /86, w.r.t. in the ar-
gument 6. This is continuous on A for any j. Now, if we define a linear continuous map
T; : 1° (A) — R (w.r.t. sup-norm) so that T;f = [ DgFa x=; (60,0.90,j (-,00)) fdu for
any f € I°°(A) then the map is linear and continuous, the boundedness follows from

the observation that sup,e 4 || DoFajx=; (00, 8ag0,; (-, 60))|| < co. Then, by continuous
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mapping theorem (CMT)

/ DyFpx=; (60,0a90,5 (-, 80)) VN (ﬁA|X=j - FA|x=j) dpj ~ / Dy F g x—; (60,0a90,5 (-, 60)) Fidp;

Furthermore, the limit is also Gaussian since we know Gaussianity is preserved for any
tight Gaussian process that is transformed by a linear continuous map, see Lemma

3.9.8 of VW. So we let

J
VNCy = Z /DOFA|X=_7‘ (60,0a90,5 (-,60)) VN (FA|X=_7‘ - FAIX:j) dpj,  (100)
1=1

then v/ NCy also converges a Gaussian variable.

For Bjs, for each j, by Cauchy Schwarz inequality we have

}(9-— Bo) f (DoFax=; (3, 0483 (95)) — DoFajx=; (80, 0ago (- 60))) (Fax=s — Fax=s)

' DyF = a';aaa‘ ',-6_' — DyF, =; (0 )8119 ,.('70
< (0—90)'/ Doy 00,000 . 0)) = Doy G una - 0) dp; (6 — 6o)

x (DoFayx=; (05,0495 (+95)) — DoFarx=; (0, 8ag0,j (-, 60)))’
1/2

X [ f [17“A|x=j—FAIX=j]2dﬂj] ’

where for each j, EJ- is some intermediate value between ; and 6o ; that corresponds to

the MVT w.r.t. the j — th summand. Let 0y, denotes the [—th element of Jy then

| Do, Fajx=j (85,435 (-,0;)) — Do, Fajx—j (00,8ag0,; (-, 60))|
¢ (pj (2,05, 043; (,9;))) 9a,p; (2,05, 09; (- 9;))
—q (p;j (a,60,a90,; (-,60))) Oa,p; (a,80,0ago,5 (-, 60))
9 (p; (2,05,043; (+95))) Doagp; (3,05,0a9; (0)) [05,043; (-, ;)]

—q (p] ((J,, 90) aago,j ('> 90))) Daagpj (a7 901 aago,j ('7 90)) [69164190,_7 (') 00)]
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First note that the terms on the RHS are uniformly bounded, it is easy to see that the
terms on the RHS of the inequality are o (1) as ||f; — 6o|| — 0 since (6;,8.3; (-,6;)) 2
(60,0290, (-, 00)) by Lemma 2.5 and continuity in 6 of 8,90, ; (-,0). Then it will follow
by DCT that

1/2

[DsFayx (B, 0a8 — DyFax (60, Bago s (-
o 90)/ 0Fa1x (65,0495 (+65)) — DoFax (60, 8ag0,5 (-, 60))] 4 (6 00) o

X [DgFayx (05,0435 (-,0;)) — DoFajx (60, Bago,; (',90))]’

R 2 1/2
From Lemma 2.9 and CMT, [f [FA|X:_,- — FA|X=J-] dp] = Op (N—1/2). Since we
have finite j then |Bis| = o, (N2 — 6g]|).
For By :

For each j

Fajx=; (8,043; (-, 0)) + Fajx=; (00, 0agj (-, 60)) — 2Fx~;
= (Faix=j (0,049; (-,0)) — Fajx=; (60,043 (-, 60)))
+2 (FAIX:j (007 aagj (" 90)) - FA|X (90’ aagO,j ('1 90)))

—2 (FA|X=j - FA]X:j) ;
then we can write By as

J [VR,' (97 aa.a. (:6)) —VR,j (00780.’9\' (,90))
By = R-1/2 Z/ J j g § ] du;
=17 | x [Fajx=; (6,835 (-,0)) — Fajx=; (60, 0a3; (-, 60))]
J [VR,‘ (81 aa.,q\' (79)) — VR, (ao:aa’g' '190)
+oR-1/2 Z 3 i J j ( )| dy;
=1 X [Fa1x=5 (80, 843; (-,00)) — Fax (60,a90,5 (-, 60))]

J
R [ (v (6,04 (1) = v (00,0435 (- 00))) (Fapems = Fa=s) it

= Byj1 + Bas + Bag.
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We first show [ [vrj (8,.3; (-,6)) — vR,j (B0, 0a8; (-, 00))]” du; = o, (1) for any j. By
Lemma 2.6 0,3; € g]‘.” w.p.a. 1, and by Lemma 2.8 it suffices to show that ||0,3; (-, 8) — 0.3; (-, 6o)||
0 as ||@ — 6p]]. This follows from the triangle inequality since ||8,G; (-, 8) — 8a3; (-, 60)]| is
bounded above by (18, (-, 8) — Bado 3 (> O)I+18:3s (- 00) — agos (- 60} + 19ao (6) — Bago (-
and the fact that the first two terms of the majorant converge to zero by Lemma 2.5

and the last term converges to zero by the continuity of dago; (:,6) in 6. For By

J vR,j (0,045 (-,0)) — vr,; (60, 0aFj (-, 60))
By = 2Ry / vrj i i i ] i
=1 | X [FA|X=j (Ga aagj ('7 9)) - FA[X:j (901 aagj ('1 00))]
J " [ny (e’aa‘/g"(‘i 9))_ VR,j (30,6a§' ('790) ]
= 2R—1/2Z/ I 7 I ! ) du (6 — 6o),
= x DoFp\x=j (07:069; (,67))’

by Cauchy Schwarz inequality

IBQ}I < Op(Rilﬁ)X

max, [(9 — 6o)’ / [DGFA|X=J' (6 9a3; (- 65)) DoFajx=; (05, 84; ('@'))’] dp (6 — Go)]

= o, (R7/2) 0, (I8 - bolt)-

= o, (N2 Jlo-b0ll),

the first inequality follows from the stochastic equicontinuity condition of Lemma 2.8,
then it is easy to show the outer product term inside the integral is also bounded in
probability and the last equality follows from N = o(R). This same argument using
Cauchy Schwarz inequality again.be applied for Bgs and Bss, in particular, it follows

from Lemma 2.10 and Lemma 2.9 respectively that |Bp| = o(N~!) and |Bys| =
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For each j

VR, (0,003; (-,0)) +vRj (00,0.3; (-,00)) = 2vgr (60,090, (-,00))
+ (vR,j (86,0435 (-,0)) — vr (B0, 0ago,; (-, 60)))

+ (VR,j (00, 0aj (-, 60)) — v (60, 0a90,5 (+,60))) ,

then we can write B3 as

J
By = 28_1/2 Z/URJ (0076090,]' (:60)) (FA|X=j (0, 6a.§j ('a 0)) - FA]X:j (607 aa:q\_’i ('1 90))) d#’j
j=1 '

J [vR,; (8,043; (-, 0)) — v& (60, 0ag0,5 (*, 00))]
+R12Y / J i J dn,
= X [Fa1x=j (8,8.8; (-,8)) — Fajx=; (60, 43; (-, 60))]

J [vR,; (60,0.95(,00)) — vr (60, 0ag0,5 (-, 60))]
+R72Y / g j j du;
j=t

X [Faix=j (6,83 (-,6)) — Fajx=; (60,8.3; (-, 60))]

= Bsj + Bss + Bss.

. . ~ ~ 2 1/2
For each j: we have [j [Fajx=;j (6,843; (-,0)) — Fajx=; (60, 0.3; (-, 60))] dp,j] =

Oy, (|6 — 6o]|) by Cauchy Schwarz inequality; from Donsker theorem and CMT, [ J [vr (60,0a90,5 (-, ¢
Op (1). Then it follows that |Bs;| < o, (N"1/2||6 — 6o||). By a similar argument, using

Cauchy Schwarz inequality, continuity of d,g (-,6) in 8, Lemmas 2.5, 2.6 and 2.8, | B32|

and | B3| are also o, (N~1/2 |0 — 8||), in particular as we can use the triangle inequality

to show ||(6, 8285 (- 6)) — (60, 8ag0,5 (-, 60))l,, and ||(Bo, 3ag; (-, 60)) — (60, Bago,; (-, 60))ll,,

converge in probability to 0 as ||@ — ]| — O for all j.

For B, :
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By the same argument above, we can re-express By

J
B4 = 25_1 Z / VR, (907 6(190,]' (" 90)) (VR,j (0, 3a§j ('1 6)) — VR, (001 6a§j (" 00))) d}l,]
j=1
J
+R1Y / v (6,83 (- 0)) — v (90, 3a; (- 60))] dis;
j=1

J [VR,' (9076 /g\ ('7 90)) — VR (9076090,- ('1 90))]
+R—l Z J aJj J d#]
=1 X [VR,_’i (0, 3a§j ('7 0)) —VR,j (00) aa?j ('7 90))]
= By + B4 + Bys.

By repeatedly using Cauchy Schwarz inequality, continuity of 9,9 (-, ) in 6, and Lem-
mas 2.5, 2.6 and 2.8, as seen in the analysis of By and Bj, it follows easily that
|Bail = op (N7}) for i =1,2,3.

G6 then follows from Lemma 2.10.0"

PRrROOF OF THEOREM 2.4. From (88) we have

~ —1

G- = R(I-L) (75— )

= E)_l ( (6- 90)' DgFg)

Il
=)

where the expansion above follows from MVT and 8 denotes some intermediate value

between 8 and 0g. It is easy to see that, for j=1,...,J

i

| () -3 60|

O (P -]

= 0, (N—1/2) ,

since

—~ ~ —1 PR
H (I _ z:) H = 0, (1), |7sll = O, (1) and vNR = o (N'/2), then VNT: ]aj (a, 9) ~ i (a, 60

= 0p (1). It remains to show the asymptotic independence between any pair (’g}- (a, @) , Ok (a’ , 5))
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for any k # 7 and a’ # a. Since

cov (fq}- (a,a) , Ok (a,' ,5))
= cov (gj (a,00),0k (a’,60)) + cov (_’q}- (a,60) , Gk (a',b\) -Gk (d, 90))

+cov (ﬁk (a’,60) ,9; (a, 5) - 9j (a, 90)) + cov (fq} (a,@) —Gj (a,00), 0 (a’,@) — Gk (d', 90))

by Cauchy-Schwarz inequality, it suffices to show var (\/ Nh (@‘k (a' , 5) — gk (d, 90))) =

o(1); this follows since ||_?j,- (-,5) ~ 3 (- 90)”oo — 0, (N-/2).m

2.9.3 Proofs of Lemmas 2.1 - 2.10

These lemmas are used in the proofs of Theorem 2.1 - 2.3. In what follows we let: £ > 0

be a number that is arbitrarily close to 0; Cp denotes a positive constant that may take

different values in various places; VW abbreviates van der Vaart and Wellner (1996).
PROOF OF LEMMA 2.1. We can write, forany 1 < k,j < J

Pxx (k) —pxx (k3)  Pxx (Bl3) ‘
Px () o )5 ) Px () —px ().

Pxr1x (k7)) —pxnix (klj) =

Given the simple nature of our DGP, by-standard CLT and LLN, we have px+ x (k,j) —
pxix (k,5) = Op (N"V2) ,x () = px (3) = Op (N/2) and x (5)™" = Oy (1), so it
follows that px x (|7} — pxx (klj) = Op (N~1/2) for any k and j. Since £ is a linear
map on R’ to RY, for any vector m € R’ we have ((E— C) m)j = ﬂz,{=1(ﬁ(k|j) -
p(kli))m: = O, (N =1/ 2) for all j then it follows from the definition of an operator
norm that ||E~— EH =6, (N'I/Z) N |

PRrROOF OF LEMMA 2.2, For any j =1,...,J and § € ©, Ty (j) is defined in (86)

with win (7) = 1[zi = j] /Px (§) and define 7 (§) = SM7 ) wirn (5) u(ait, Tit, £:2).-
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Then we write

7o () — 1o (4) = (76 () — 7o (4)) + (To (4) — 76 (4)) , (101)

the first term is the usual term had we observed {e;}, the latter term arises due to the

use of generated residuals. Treating them separately, for the first term

NT
~ . . 1 1 : . :
To(j) —re (j) = %) NT > [z = 5] (uo (air, Tit, it) — 7o (7))
i=1,t=1
NT
1 1 ’ )
= NT Z ve,itl [zt = J],

px (7) i=1,¢=1

where for each 6, vg ;1 = ug (ait, Tit, €i) — 7o (Tit) is a zero mean random variable, note
that 1 [z = j] X (rg (zit) — 19 (§)) = O for all 4,5 and . Define Yy ; (6) as the sample
average of i.i.d. random variables {E;";l %vgyitl [z = j]}::l, given the assumptions
on the DGP, in particular on the second moments, Y,; (8) = Op (N~1/2) for any 6 by
standard CLT. We want to obtain the uniform rate of convergence of Ty ; () over ©.
This can be achieved by using the arguments along the line of Masry (1996). We first
obtain the uniform bound for the variance of Ty ; (@), some exponential inequality is
then applied to get the rate of decay on the tail probability for any 8. The pointwise rate
can then be made uniform by Lipschitz continuity of vg ;; (in §) and compactness of 6.
More precisely, we first show that supgcgvar(Yy,; (6)) = O (N~1). Since var(Yy,; (6))
is just a variance of Zg;l 1Vg,it1 [zie = j] by divided by N, the numerator takes the

following form

T T
1 ) 1 )
var (T ; vg il [ = J]) = 7 Z var (vg i1 [zi = j])

t—1
g T=1 s
+7 2 (1= 7) Covlvmant o =1l vgsat [ = 7).

= Yp1,;+ Yp,2,;-
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The covariance structure in Yp 5 ; follows from the strict stationarity assumption, which
also implies we can write Y, ; = E va’itlxit] 1z = J]] . Since uy (@, z, €) is continu-
ous in @ for all a, z and ¢, it follows that supgcg Yp 1,; < co. For the covariance term, by
Cauchy-Schwarz inequality, Cov (vg ;01 [Zi0 = j],ve,is1 [Tis = j]) < E [vgﬂ-ol [zio = ]]] ?
00, since supgcg lvg'w’jl < 00, it follows that supy Yp2 < oo for any finite 7. Since
YT, (0) is an average of N—i.i.d. sequence of random variables that, for each 8, it
satisfies the Cramér’ conditions (since u is uniformly bounded over all its arguments),
then Bernstein’s inequality, e.g. see Bosq (1998), can be used to obtain the following

bound

N?4%
Pr[|NYn; (8)] > Nén] < 2exp {-Ww (V¥ (91;) TSI } X (102)

Let 5 = N(-1+¢)/2 simple calculation of the display above yields Pr || Ty, (6)] > 6n] =
O (exp (—N¢%)). By compactness of ©, let {Ly}%_; be an increasing sequence of
natural number, we can define a sequence {6, }ZLZN1 to be the centres of open balls,
{BiLy }EN, of radius {er, } 2% such that © ¢ UXY ©;1y and Ly x €1, = O (1), then

it follows that

Pr [sup|TN,j 6)| > JN] < Pr [ max |Tn; (Oipy)| > 61\/]
]

1<i<Ly

+Pr Llsnz?l{v eese‘;,-lzN ITn; (8) = TN (Biry)] > 5N]

IA

CoLn exp (-Nf) + Prlery > 0n]

= o(1).

The second inequality from the display above follows from, Bonferroni inequality and

(102) for the first term, and by Lipschitz continuity of Y ; for the latter. Then the
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equality holds if we take €1, = 0(dn) such that Ly grows at some power rate. It then
follows that that supy |Yn,; ()] = 0p (N~*). Then w.p.a. 1

maxi<;<J SUPgeo | T n,; ()]
miny<<y px (j)

= o, (N7).

IA

sup |7 (5) — 7o (5)
0e6

The procedure to obtain the uniform rate of convergence is shown above in detail to
avoid repetition later since we will require to show many zero mean processes converge
uniformly (either over the compact parameter space or the state space) to zero faster
than some rates. The argument above can also be applied to nonparametric estimates,
as well as some other appropriately (weakly) dependent zero mean process, see Lin-
ton and Mammen (2005), and especially Srisuma and Linton (2009) for such usages
in closely related context. We comment here that, our paper along with the papers
mentioned in the previous sentence, unlike Masry (1996), are not interested in sharp
rate of uniform convergence so our proofs are comparatively more straightforward.

For the generated residuals, by definition

N,T
~ N s 1 - . ~
7o (4) =76 (4) = &7 > win () (ug (@i, Tit, Eit) — v (@it, Tat, €it))
i=1,t=1

wherez;; = x (ﬁAl X (a,-t|:c,-t)) with x = Q. Using mean value expansion, ug (a;, Tit, i) —
ug (i, Tit, €it) = g (ait, Tae, Bie) X' (Fayx (ai|zir)) (FA|X (ait|zit) — Faix (az'tlirit)), where
Z;: and ?AI x (@it|zit) are some intermediate points between €;; and €5, and, ﬁ,“ x (@it]zit)

and Fyx (ait|xit), respectively. Then it follows that

N, T
g 1
To (J) — T (.7) = N_ Z WitN .7) Ug (azty Tit, Ezt) — Ug (azt, Tit, ezt))

T
1z = R )
B Tz 1,t=1 ‘LXt(J)J 0 (@i, Tit, i) (FAlx (ai|ir) — Fax (ait|$it)) +0p (N
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where s (a4, Tit, €i) = -c%ug (@i, Tit, €it) X' (FA, x (ait|zit)). In addition, the O, (N *1) —term
holds uniformly over # and j, this follows from Markov inequality since ggu and
X" are uniformly bounded over all of their arguments, max;<;<s [Px (j) — px (j)| =
Op (N~Y/2), and, maxi<j<; suPac |Fajx (alf) —Fax (ali)| = Op (N~*/%) by Lemma

2.9. By a similar argument, using the leave one out estimator for ﬁAI x, the leading

term for 7 (j) — 79 (§) can be simplified further to

Ay 1 [x = j] 1[zjs = Tit] :
z Z g (Qit, Tit, €it) " - - " (1 [ajs < ait] — Fax (ait|1‘it)) )

NT(NT—l) S, x (7))  plzi)
i=1,1=1 j s,(—1t)

where Z s (—it) SUmS over the indices j = 1,...,N and s = 1,...,T but omits the
itt" —summand. Subsequently, the term in the display above can be written as the

following second order U-statistic

-1

NT | 1 g (@it, Tit, Eit) 1}[}:‘;%3' ] I[a;,’[’;:;"r (1[ajs < air) — Fajx (ait|zit))
2 | TG\ 1o (e, 2jer ) lf;sg)ﬂ 1[;{;?:)“] ({aie < ajs) — Fayx (ajs|zjs))

where )5y, (js)) Sums over all distinct combinations of C((it),(js)). Note that
1{ay < a] = Fpx (a|zi)+w (zi; @) where E [w (zit; a) |zi¢] = 0, so w (xi¢; -) is a random
element in L2 (A). Then it is straightforward to obtain the leading term of the Ho-
effding decomposition of our U-statistic, see Lee (1990), and, Powell, Stock and Stoker

(1989), in particular we have for all j

N,T
g 1 ’ X -
() =Po() =57 2. Colw (@), muss) +0p (N2,
i=1,t=1

where (y (w (2it; ), @it;§) = 530y J @ (@its 03s) [ [ 300 (aze, ity £56) 1 e = 5] L2 Gimsie) g | da

and f4 x ¢ denotes the joint continuous-discrete density of (ai, z;t, €it). Note that (g is

random with respect to w;; and zj, and E [w (zi; ) |zit] = 0, so {4 has zero mean. Given
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the boundedness and smoothness conditions on s, then =+ NT 21_1 =1 Co (W (zit5 ) , it 5)

can be shown to converge uniformly in probability to zero faster than the rate N~ as

shown above. In sum, we have shown for j = 1,..., J that g () = 7 (§) + 7 (j) with
. 1 NI
T (§) = —=wm D, Ll = 5] (ue (ait, Tis, 6t) — 6 (7))

px () NT i=1t=1

, NT

N— Z Co (w (zit; ) mit;j)'i'OP(N—A)
=1t

% (N7).

where the smaller arder term holds uniformly over j and 6.1
PRrROOF OF LEMMA 2.3. Since 0 < ||£]] <1 and 0 < ”E“ < 1, the argument used

in Linton and Mammen (2005) can be used to show

”(1 c) — (F— £y (N-U?)

-1
We note that, using the contraction property, (I — £)~! and (I - L',) are bounded

(1- E)_l

A -1
(1 - HEID < 00, this can be shown from the respective Neumann series represen-

<

linear operators since ”(I - £)_1” <A-Lpt <o and similarly ’

tation of the inverses and by the basic properties of operator norms. We comment
that these relations involving the empirical operator hold in finite sample since X is
finite, otherwise it will be true w.p.a. 1 by the same reasoning as used in Srisuma and
Linton (2009). Then for each z € X and 6 € ©, Mg (j) is defined in (87), we write
mg (j) = (I —E)—l (ro () + 75 (4)), given the results from Lemma 2.2, it follows
(1- Z)—l 7R (j)l = op (N™), since ||(I- E)_l
A

-1
For first term, we can write (I——[,) o (j) = me (j) + M{ (j) where Wy (§) =

that maxj<j<Jsupgeg

= 0,(1).

(I — E)_l (E— LI) mg (j). Since we know

-1
'(I—- E) ” = Op (1) from earlier, from

Lemma 2.1 |£ - £|| = 0, (N1/2), and, maxic;< supoce Imo (3)] = O (1) as mq (5)
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is a continuous function on a compact set © any j, this completes the proof with

~\ -1

g =g+ (1-£) 75m

PROOF OF LEMMA 2.4. The empirical analogue of (84) is
9o = Hilig,

where H is a linear operator that uses local constant approximation to estimate the con-
ditional expectation operator H. Then we proceed, similarly to the proof of Lemma 2.3,
by writing g; (a, 0) = g; (a, 6’)-I—§3‘l (a, 0)+HME (§,a) where ’g\f (a,0) = ('ﬁ - ’H) mg (4, a)
for any j. The approach taken here is similar to that found in Srisuma and Linton
(2009), we decompose ij (@, 0) into variance+bias terms, note that the presence of dis-
crete regressor only leads to a straightforward sample splitting in the local regression
for each z. Since A is a compact set, the bias term near the boundary for Nadaraya-
Watson estimator has a slower rate of convergent there than in the interior, for this
reason we will need to trim out values near the boundary of A. For the ease of notation
we proceed by assuming that the support of a;; is Ay, where {An}ﬁ;l is a sequence of
increasing sets such that | ;- ; An = int (A), here the boundary of the set A has zero
measure w.r.t. any relevant measure to our problem so we can ignore the difference
between A and int (A). In our case A = [a,a] then Ay = [a + vy, @ — yn] such that
vn = 0(1) and A = o(yy). So we only need the trimming factor to converge to zero
(at any rate) slower than the bandwidth, the reason behind this is fact that, for large

N, the boundary only effect exists within a neighborhood of a single bandwidth. Then
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for any m = (my...my) € R’,a and j

(’):Z B H) m(ja) = z":mk (ﬁx',x,A (k,j,a)  px x4 (k. J, a)) (103)

=1 ﬁX,A (.7; (1,) D.x,A (.71 a‘)

_ im (PX x4 (k,j,a) — PX'XA(kJ,a))

=3 px,a (4, a)

_Z ( px'x.4 (K j ) (Px,4 (4, a) — px,A (j,a))),

Px,a (j,a)px,a(j,a)

k=1
where
L NT
px' x,a(k, j,a) = NT i=;=1 1[zit41 = k, zit = §] Kp (ais — a),
, NT
px,a(j,a) = NT i=lzt=1 1{zy = j] Kp(ai —a).

For any j,k, then

ﬁX’,X,A (k)j’ a’) — PXx' . X,A (kv ja a')
= (ﬁX’,X,A (kij a’) —-F [ﬁX’,X,A (k)j) a‘)]) + (E [ﬁX’,X,A (k:ja a’)] —PXx' X,A (kaja a))

= In (kaj7 a) + T2 (kaja a) ’

where I1; (k, 7, a) has zero mean and I3 (k, j, @) is nonstochastic for any @ € Ay. Under
stationarity, by the standard change of variable and differentiability of px x 4 (k, j, a)

(w.r.t. a)

2
I (k ],a) #2 (K) Oa 2pX'XA(k J?a) +O(h’2)

It then follows that maxi<;k<J SUPge, 12 (K, J, a)| = O (h?) since ,%;PX',X,A (k,j,a)
is a continuous function on a for any j and k. It is also straightforward to show by

using the same arguments as in Lemma 2.2 that max)<;x<JjSuUpgea, |11 (k,J,a)| =
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0p (\/—I\leiz) In particular, this follows since
var (V NThIll (kvja a)) =PX",X,A (k7j7 a’) K2 (K) +o (1) »

where the display above for any j and k uniformly over Ay. Combining terms we have

J N ) )

Z (Px',x,A (k,j,a) — pxr x4 (k,J a))
mg

k=1

PXx,A (Ja a)

max sup

IN

maxij<J |m;| ~ , :
T : . X max su x' x4 (k,7,a) —px: X,A k,j,a
mini<j<J infacay |Px,4 (4, a)| ISj,kSJaeAI,)v [Pxr,x.4 (6, @) = px x4 (6, 1, 0)|

N¢
= O,(h*+ —) ,
”( VNh

where the inequality holds w.p.a. 1 since we know (to be shown next) px, 4 converges

to px, 4 uniformly over X x Ay. By the same type of argument as above, write for each

J

Px,a(4,a) —px,a (4, a)
= (px,a(J,a) — E[px,a (4, a)]) + (E [Px,a (4, a)] — px,4 (4, a))

= Iy (j,a) + Iz (j,a),

then it is straightforward to show the followings hold uniformly over its arguments

) 1 ot .
I (j,a) = §h4ﬂ4(K)@PX,A(J’a)+O(h2)’

var (VNThIn (,j,0)) = px.a(j,0) k2 (K) +o0(1),
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then we have

J ~ .
pX’,X,A(k7]7a) ~ . . )
max sup mg | =< : : Px,A\J,a) —pPx,A\l,Q
1<Gk<T ae Ay |E2 (PX,A (7,a) px,4 (J,a)( Ga) )
maxj<;j<J |m;
< J <j<s Imy| sup |px,a (4,a) — px,a (4, a)|

ming << infacay [px,4 (4, @)

max
1<5<J ac Ay

N¢
= O h4+———).
”( VNh

So we can write for each j

(ﬁ—H),m(j,a)

where

Byj(a;m) =

VN,J' (a; m) =

Wn,j(a;m) =

J N . .
_ Z (PX',X,A (k,3,a) — px+ x,4 (k, J, a))

Px,A (.7, a‘)

—Z (”“—A’”—) (x.4 (4,0) — Px,A (m))) + W (a;m)

Px A (.7; a)
= Bn,;j(a;m)+ Vn,j(a;m) + Wy ; (a;m),

. 4 .
px'.x,4 (k,§,8) 22px,4 (4, a)

—h*py mi - -
‘ Px,a(j,a) p% 4 a)
( 1[zit41 = k, 2o = j] Ky (aix — a)

XA(Ja iNT Zz—'lt =1

J —-F [1 [ZL‘zH.] = k xzt = ]] Kh a,,,t — a)]

_pX’,X,A(k’j!a) 1 N,T 1 [zit = .7] Kh (a'it - a’)

P2 G) i=1¢=1 |
\ —E[l [xit=j]Kh(a,'t—a]

( 1 (ﬁx',x,,q (k.j,a)

_ le,x,A(k,jva) )
px,a(5a) px,a(s.0)

PX,A (jva)

J
D> _m
k=1

\ x (Px,a (4, a) — px.4 (4, a))

Note that By ; is a deterministic term, Vi ; is the zero mean process that will deliver

CLT whilst, using the same arguments as above, it is straightforward to show that

maxi<j<J SUPgeay Wn,j (a;m) = 0p (Bn,j (a;m) + Vivj (a;m)) for any m € R’. Then

we can conclude “’H ’H“ = (h4 + \/Lﬁf_}_l) . Using the decomposition of H —H above
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we have

97 (a,0) =37 (a,0) + 35 (a,0) + W (a;mg),

where, from (104) - (105), g (a #) = Bn,j(a;mg) and g gJ (a,0) = Vnj(a;mg). It
also follows that these terms have the desired rate of convergence that holds uni-
formly over © as well since H is independent of § and my is a vector of J—real value
functions that are continuous on ©. Finally, we define §f (a,0) to be Wy ; (a;mg) +
ﬁ'r’ﬁf (4,a). By the previous reasoning Wy j (a;mg) already has the desired stochas-
tic order so the proof of Lemma 2.4 will be complete if we can show, generally, that
MAax)<j<J SUPg acox Ay Iﬁr’ﬁg (4, a)l = op (h4 + \/——l—vﬁ—ih) This is indeed true, since we
have already shown that ”’):Z - ’H“ =o0p (h4 + :/_AIIV_%) and given that H is a conditional
expectation operator, this implies that ||H|| < 1, it follows from triangle inequality and
the definition of operator norm that max;<;j<J Supg zeox Ay I’I:\{T'r‘zé2 (4, a)l =0, (N"*).0

ProoOF oF LEMMA 2.5. When | = 0, this follows from Lemma 2.4 with h =
0] (N -1/ 7). Other values of I can also be shown very similarly, only more tedious.
Since dim (A) = 1 then ol = gfh when ! = 1, taking a derivative w.r.t. a on (103) we

. obtain

0 (-~ . J 0 (Px'.x.a(k, j,a) —px x,al(k, ja)
B0 (’H - H) m(j,a) = 2 mk% ( %Al )

_ Z (px AX(IJJ,(a[; 1(::( i’ Zy), ) (Px,a (4,a) — px,4 (J, a)))

m% (Px,x,a (k, 3, @) — px x4 (k, j, a))

_ Zpx,409)

T G (Bx',x,4 (k, j, @) — px,x,4 (K, j, @)

P ! (kﬂ,a) . .
i FaGoIPxala 55— (Px,a (4,a) — px,4 (J,a))
I

— Px! (krjya') ~ - -
k=1 + (%ﬁmﬁj) (Px,a (4, @) — px,a (4, a))

As seen in the proof of Lemma 2.4, it will be sufficient to show that max;<j k<7 Supsca, |a%ﬁ xr x4 (0
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—Zpxi x4 (k,5,a) | = 0p(1), and, maxicjr<sSUPLcay |2Px,4 (J,0) — 2px,4(j,0) |
= 0p (1) since we assume that g%pX,, x4 (k,j,a) and %px, A (4, a) are continuous func-
tions on a compact set A for any j,k. Proceeding as in the proof of Lemma 2.4, first

note that for any j, k

1

0 . .
E [8_apX"X’A (k, 7, a)] = -3 / px’ x4 (k, j,a + wh) dK (w)

0
= [ geprxa(kd,a+ wh) K (w)du

0 )
= GaPx' XA (k,4,a) + O (h%).

The first -line in the display follows from a standard change of variable argument,
then using integration by parts and Taylor’s expansion, the last equality above holds

uniformly over A. It is easy to verify that uniformly over A
var (V NTh356;ﬁX’,X,A (k,j, a)) =0 (1) .

As seen in Lemma 2.2, it then follows that max; < k< SUP,ca |;9%5X',X,A (k,j,a) — %px/,x,,q (k, 7,
= O,,(h‘%—%). Similarly one can show maxi < x<J SUP,ea, | 2Px,4 (4,8) — 2px,4 (j,a)| =
O,(h? +—\/11%Lh—3) It is easy to see that choosing h = O (N -1/ ") will imply max; <j<s SUDg 4cOx An I%Q
—2.90(j,a)| = 0p (1).8

PROOF OF LEMMA 2.6. Since Ry and My are J—dimensional subspace of twice
continuously differentiable functions, DCT is applicable throughout. . When p = 0
the result follows from Lemma 2.5. Consider the case when p = 1 and [ = 0, for
all1 < j < J;1 <k <L and XA < 1/2, the exact same arguments used in proof-

ing Lemma 2.2 can then be used to show 6—gk-’7’g (4) = a%k'rg () + a%"’f (4) with

MAaXi<j<J SUPg acOx Ay a—aj"g (j)l = o0p (N™*), and since £ is independent of 6, the

same arguments found in Lemma 2.3 can be used to show %—ﬁo ) = %mg (7)) +
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E_'mo () with max;<;j<sSUPp ocox Ay '-a—a— _7)| = o0, (N™*). Apart from replac-
ing (rg,mg) everywhere by (-3—‘3;7'0,%77&9), we note that it is here that we need
%ﬂoku‘g (a,7,€) to be continuous on all a,j and 8. Since H is independent of 8, the

arguments used in Lemma 2.4 can be directly applied to show

0 .

0 0 . 0 g o .
69k gj (a,0) = 99Ja0)+69 g] (a0)+60 gJ(a9)+60 72 (a,0),

such that

o
9)| = O, (h?

e, S |og, % @8] = Oe(r),

0 g ( N¢ )
max  su —75(a,0)] = o ,
1<3<J g acOX AN 90,7 (a,6) P\VNR

0 .n ( g, N¢ )
max  su =—0; (a,0)] = op (P +—),
ISjSJo,aeefAN 60;;9’( ) P VNR

where 3%"2}]5 (a,0) = Bn,; (a; %mg), a%:-af (a,0) = Vn,; (a; a%kmg) and éz—qu‘f (a,0) =
Wi, (a; B%k—mg) +H5-ME (j,a) and these terms are defined in (104) - (106). For [ =2
and 1 < k,d < L, we simply replace 6—‘3; by @227% and the exact same reasoning used
when p = 1 can be applied directly. All other cases of 0 < I,p < 2 can be shown
similarly.l

PROOF OF LEMMA 2.7. We first show that 1 [- < p; (a, 8, 0ag;)] is locally uniformly
L2 (Q) —continuous for all j with respect to a, 8, 8,9;. More precisely, we need to show
for a positive sequence = 0(1) and any (a, 8, 0.g;) € A X © X gﬁl) that

1/2

Jim | B sup 1165 < 5 (a8, 8ag})] — 1 [&i < p; (a,6,8agy)] |
—00 "(a’—a,g’—o,aag;_adgj)||<5N

(107)
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To do this, take any “(a’ —a,0 -9, 0ag} — Bagj) ” < 6N, then we have for all j

103 (,#',8a5}) — £; (2,0,8087)] < Co{ (&' — @,/ = 6) | + ]| 0ug} — Bugsll; }
vo ()@ = 0,8 — )| + [|0u} — ugs12)

< Cubn +O((5N),

this follows from Taylor’s theorem in Banach Space since p; is twice Fréchet differen-

tiable, see Chapter 4 of Zeidler (1986). Ignoring the smaller order term, this implies

2;(a,0,0a95) — Cobn < p; (d',6',0.95) < p;(a,0,0.9;) + Cobn,

pj(a,0,0a9;) —Codn < p;(a,0,0.9;) < p;j(a,0,0.9;) + Codn.

Combining the inequalities above, it follows that SUP)||(o/—a,0/—6,809,~Bags) || <6 1 [e,- < pj (a’ ,0,0.9
—1 [&; < p; (a,0,.9;)] | is bounded above by 1 [p; (a, 0, 8ag;) — Codn < €i < p; (a,0,Bag;) + Codn
This majorant takes value 1 with probability Q. (p; (a, 6, 8ag;) + Codn)—Qe (0} (2,0, 8ag;) — Codn
and zero otherwise, then by Lipschitz continuity of Q., (107) holds as required. Since
Ax O is a compact Euclidean set it has a known covering number. For gJ(.”, since G; C

C? (A) we have QJ(-U C C* (A); given that dim (A) = 1 we can apply Corollary 2.7.3 of

VW to show that f;° \/logN (s, gj(.l), ||-”g)ds < 00, together with L? (Q) —continuity
of 1[- < p; (a,6,8.9;)], as shown in the proof of Theorem 3 (part (ii)) in Chen et al.
(2003), F; is Q—Donsker for each j.B

ProOOF OoF LEMMA 2.8. For all j, F; is Q—Donsker and is locally uniformly
L? (Q) —continuous with respect to a,#,8,g;, as described in (107), Lemma 2.1 of
Chen et al. (2003) implies that the stochastic equicontinuity also holds with respect to

the parameters that index the functions in 7;.1
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Proor oF LEMMA 2.9. For any a and j write

VN (Fax (alf) = Fax (ali)) = F1.n (a,9) + Fan (a,9),

where
1 1 ¥
S1,~ (a, ) Tox () \/— z_%: 1 (L{ait < a,zi = j) — Fax (a,7)),
Sa,n (a,7) —% x VN (Bx (3) — px (5)) -

Define C, = {ya € R:y, < a}, then C = | J .4 Ca 2 classical VC-class of sets, for the
definition VC-class of sets see Pollard (1990). Since X is finite, it is also necessarily
a VC-class of sets. Then for each z, \/— Zl_l i1 (L@ < - zie = 5] — Fax (-, 2))
converges weakly to some tight Gaussian process in {*° (A) since Cx X is VCin Ax X,
by Lemma 2.6.17 in VW, and VC-classes of functions is a Donsker class, see also Type I
classes of Andrews (1994b). With an abuse of notation, for each z let 171(3'7 (1%(1)) also
denote a random element that takes value in [*° (A) such that the sample path of 5‘)7175
(Fxl_(ﬂ) is constant over A. By standard LLN m LN ;ﬁﬂ and it follows by Slutsky’s
theorem that §; v (-, z) converges weakly to a random element in [*° (A). In particular,
the limit of 1, (-, 7) is also a tight Gaussian process. From the finite dimensional (fidi)

weak convergence, Gaussianity is clearly preserved if we replace ?Xl(_j) by but since

1
px(5)’

Px (7) — px (j) = o0p (1) the remainder term from the expansion can be

PX(J) PX(J)
used to construct a random element that converges to zero in probability on A, so
by an application of Slutsky’s theorem Gaussianity is preserved. Tightness trivially
follow since the multiplication of ﬁﬁ does not affect the asymptotic tightness of

{\/_ Zz_l =1 (1[ait < -,zit = j] — Fa x (-,7))}. Since the only random component of

So.n (-, ) is from vV NT (px (§) — px (7)), which is a finite dimensional random variable,
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then a similar argument to the one used previously can trivially show that F2 n (-, 7)
must also converge to a Gaussian process which is tight [*° (A), where tightness follows
from the (equi-)continuity of F4;x (alj) on A. Therefore vN (ﬁAl x=j — Fa X=j) must
converge to a tight Gaussian process in [ (A) for all j since asymptotic tightness is
closed under finite addition and, in this case, it is easy to see that Gaussianity is also
closed under the sum.H

ProOOF oF LEMMA 2.10. By MVT, for all a and j

Fpx (alj;600,0.9 (-, 00)) — Fax (alj; 00, 8ago,; (-, 60))

= q (ﬁ] (a7 to, aag(),j ('1 90))) (p] (av fo, 3a§j (" 90)) — Pj (a1 9078090,j ('7 00))) »

where 5; (a,600,0.90,5 (,60)) is some intermediate value between p; (a, 60, 343; (-, 60))
and p; (a, 00, 0ago,j (-, 00))- Since p; (a,6,0ag;) is twice Fréchet continuously differen-
tiable on A at 0,90, (-, 00), using the linearization assumption, the argument analogous

to Lemma 2.9 with Slutsky theorem can be used to complete the proof.l
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2.10 Tables and Figures

-~ ~rim

6 1 91
NT S bias  mbias std iqr bias mbias std iqr

100 1/5 0.0084 0.0309 0.1558 0.1350 -0.0310 0.0004 0.1934 0.1683
1/6 0.0278 0.0442 0.1359 0.1205 -0.0150 0.0098 0.1741 0.1518

1/7 0.0419 0.0541 0.1161 0.1035 -0.0002 0.0214 0.1568 0.1357

1/8 0.0536 0.0638 0.1092 0.0947 0.0103 0.0315 0.1375 0.1211

1/9 0.0647 0.0743 0.0996 0.0874 0.0153 0.0373 0.1328 0.1143

static  0.2620 0.2614 0.0187 0.0247 0.2620 0.2614 0.0187 0.0247

500 1/5 0.0193 0.0163 0.0618 0.0546 -0.0038 -0.0070 0.0739 0.0709
1/6 0.0320 0.0291 0.0546 0.0476 0.0014 0.0031 0.0689 0.0609

1/7 0.0422 0.0419 0.0497 0.0445 0.0063 0.0059 0.0635 0.0582

1/8 0.0508 0.0512 0.0456 0.0396 0.0128 0.0145 0.0600 0.0564

1/9 0.0597 0.0604 0.0414 0.0376 0.0195 0.0213 0.0573 0.0542

static  0.2607 0.2606 0.0076 0.0108 0.2607 0.2606 0.0076 0.0108

1000 - 1/5 0.0150 0.0141 0.0428 0.0388 -0.0045 -0.0067 0.0506 0.0463
1/6 0.0277 0.0264 0.0372 0.0343 0.0009 0.0006 0.0464 0.0429

1/7 0.0375 0.0374 0.0344 0.0316 0.0041 0.0038 0.0437 0.0425

1/8 0.0457 0.0468 0.0315 0.0294 0.0090 0.0085 0.0413 0.0413

1/9 0.0536 0.0543 0.0291 0.0294 0.0143 0.0143 0.0398 0.0402

static 0.2610 0.2608 0.0054 0.0073 0.2610 0.2608 0.0054 0.0073

2500 1/5 0.0119 0.0118 0.0258 0.0246 -0.0023 -0.0036 0.0305 0.0291
1/6 0.0229 0.0235 0.0225 0.0221 0.0012 0.0017 0.0279 0.0269

1/7 0.0320 0.0332 0.0206 0.0198 0.0032 0.0033 0.0270 0.0280

1/8 0.0405 0.0411 0.0200 0.0198 0.0055 0.0062 0.0267 0.0266

1/9 0.0482 0.0486 0.0193 0.0190 0.0089 0.0087 0.0263 0.0259

static  0.2610 0.2609 0.0034 0.0045 0.2610 0.2609 0.0034 0.0045

Table 5: he = 1.06s(NT)~¢ is the bandwidth, for various choices of ¢, used in the non-
parametric estimation, s = denotes the standard.deviation of {a,-t}évz{:;ll; the statistics

from estimating the static model are reported under static.
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-~ ~trim
02 2

NT S bias  mbias std iqr bias  mbias std iqr
100 1/56  0.0657 0.0299 0.2026 0.1532 0.1121 0.0477 0.2856 0.1810
1/6  0.0632 0.0290 0.1843 0.1520 0.1014 0.0446 0.2529 0.1836
1/7 0.0567 0.0299 0.1670 0.1388 0.0948 (.0371 0.2458 0.1805
1/8 0.0513 0.0259 0.1535 0.1324 0.0871 0.0404 0.2201 0.1801
1/9 0.0464 0.0225 0.1442 0.1275 0.0858 0.0347 0.2168 0.1664
static  0.1303 0.1316 0.0326 0.0432 0.1303 0.1316 0.0326 0.0432
500 1/5 0.0383 0.0364 0.0820 0.0769 0.0513 0.0454 0.0996 0.0926
1/6  0.0329 0.0304 0.0772 0.0728 0.0473 0.0398 0.0990 0.0920
1/7 0.0330 0.0315 0.0742 0.0715 0.0472 0.0385 0.0964 0.0891
1/8 0.0335 0.0321 0.0711 0.0705 0.0442 0.0330 0.0922 0.0849
1/9 0.0346 0.0331 0.0660 0.0655 0.0430 0.0313 0.0891 0.0830
static 0.1310 0.1314 0.0141 0.0195 0.1310 0.1314 0.0141 0.0195
1000 1/5 0.0267 0.0262 0.0590 0.0565 0.0346 0.0337 0.0669 0.0662
1/6 0.0212 0.0212 0.0550 0.0529 ©0.0281 0.0261 0.0646 0.0619
1/7 0.0214 0.0213 0.0519 0.0499 0.0277 0.0247 0.0616 0.0559
1/8 0.0247 0.0247 0.0491 0.0461 0.0288 0.0250 0.0588 0.0562
1/9 0.0263 0.0266 0.0458 0.0431 0.0296 0.0245 0.0560 0.0531
static "0.1300 0.13¢2 0.0095 0.0137 ©.1300 0.1302 0.0095 0.0137
2500 1/5 0.0202 0.0219 0.0369 0.0368 0.0259 0.0273 0.0401 0.0397
1/6 0.0156- 0.0160 ©0.0346 0.0345 0.0206 0.0210 0.0384 0.0386
1/7 0.0154 0.0161 0.0335 0.0340 0.0186 0.0190 0.0381 0.0366
1/8 0.019t 0.0206 ©.0331 0.0337 00203 0.0213 0.0372 0.0366
1/9 0.0237 0.0249 0.0322 0.0324 0.0231 0.0232 0.0365 0.0356
statze  0.1306 0.1305 ©.0060 0.0079 ©0.1306- 0.1305 0.06060 0.0079

Table 6: he = 1.06s(NT)~* is the bandwidth, for various choices of g, used in the non-
parametric estimation, s = denotes the standard deviation of {ait}ﬁi’{;ll; the statistics

from estimating the static model are reported under static.
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Figure 1: QQ Plot of sample (standardized) 6| versus standard normal, N7 = 100.

Figure 2: QQ Plot of sample (standardized) 9\ versus standard normal, N7 = 500.
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Figure 3: QQ Plot of sample (standardized) 0\ versus standard normal, N7 = 1000.

Figure 4: QQ Plot of sample (standardized) s| versus standard normal, N7 = 2500
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Figure 5: QQ Plot of sample (standardized) 62 versus standard normal, N7 = 100.

Figure 6: QQ Plot of sample (standardized) s> versus standard normal, N7 = 500.
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Figure 7: QQ Plot of sample (standardized) 62 versus standard normal, N7 = 1000.

Figure 8: QQ Plot of sample (standardized) s> versus standard normal, NT = 2500.

159



3 Modelling and Estimating Other Dynamic Models

3.1 Introduction

As seen in the previous two chapters, the common insight in the two-step estimation
procedures that we employ is the linear representation of the model implied value
function which allow us to readily estimate the conditional value function and the con-
tinuation value function. In particular, when the observable state space is finite, the
linear equation that defines the conditional value function is a matrix equation whilst
Chapter 1 illustrates this can be generalized to the uncountably infinite dimensional
framework by working with an integral equation. The first chapter (Section 1.5) also
demonstrates how the estimation methodology for a single agent problem can be ex-
tended to estimate a class of Markovian games by taking averages across other players
actions; this logic can straightforwardly be applied to the case of a continuous control
as well.

Therefore in this chapter, we illustrate how to estimate the conditional value func-
tions for other classes of dynamic programming models for a single agent problem,
where we distinguish different models by the nature of the control variable(s). We only
focus on the estimation of the conditional value function to avoid repetition since var-
ious objective functions can be constructed from the conditional moment restrictions
implied by the policy function based on the conditional value function, see (25) and

(91) for the discrete and continuous control cases respectively.

3.2 Discrete-Continuous Control

In many investment and pricing problems the distribution of the control variable has
mass points as well as continuous component, for example firms may choose to not

invest or prices are regulated to lie within certain bounds that is binding.
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The framework of the decision problem here is similar to that found in Chapter 2. In
particular, we assume the framework described in Section 2.2.1 as well as assumptions
M2.1 - M2.3. For simplicity sake, let A = [0,a] for some 0 < @ < oo, we suppose that
the control variable a; has a mixed distribution; it has a mass point at 0, with some
probability pa (z:) € (0,1) for all possible values on the support of z;, and has a density
on A\ {0}. It is straightforward to allow for more than one mass points. We need to
modify the monotone condition in M2.4 slightly to accommodate the mass point at

zZero.

AssUMPTION M2.4": (Monotone Choice) The per period payoff function ug : A X
X x €& — R has increasing differences in (a,€) for all z,0 and for a € A\ {0}; ug is

specified upto some unknown parameters 6 € © C RL.

From assumptions M2.1 - M2.3, we can again obtain (82) and its conditional ex-

pectation, which we reproduce here for convenience:

‘/0 (St) = Uy (at,.’L't,Et) +‘3E [‘/9 (st+1) ISt] ’

E Vg (si)lzi] = E[ug(as, e, €) 2] + BE [E [Vg (8¢41) [Te41] |7e] ,

where, as before

ag = ag() (xt ] €t)

= max {ug (a,2¢,e) + BE [V (se41) |zt, 0 = a] } .

We only need to show we can consistently estimate E [Vp (s;) |z¢], the solution to the
matrix equation above. In order to do this, as seen in the last two chapters, we need to
estimate two elements of the linear equation; the conditional expected payoff and the

transition matrix, which we denote by ry and L respectively. The stochastic matrix £
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can be estimated in the exact same way as before. For ry, first we write

E [ug (at,xs,61) |2e) = Prlas = O|ze] E [ug (0, z¢, €t) |22, ar = O}

+Pra; > 0|z¢] E [ug (at, 21, &¢) |22, a¢ > 0] .

Clearly we do not have any problems providing estimates for Pr [a; = 0|z;] and Pr [a; > O],
while we require M2.4’ to deal with the unobserved state variable e; which enters ug
non-additively. We can again rely on Topkis’ Theorem, which ensures that the pol-

icy function is invertible on A\ {0}, to nonparametrically recover &; by the relation

g = Q! (ﬁAl x (a lxt).)..for a; > 0. The sequence (at,xt,'z-:‘t)il can then be used to
estimate the regression function E [ug (as, z¢,€t) |2t, a¢ > 0]. For the case when a; = 0,
although it is not possible to recover &, by (weak) monotonicity of the policy function

we know that

a; =0 g < £°.

Using the equivalence condition above, the quantile invariance property between (ay, €¢)
implies that e = @;! (Pr [a; = O}z]). We can then estimate the cutoff threshold by
Q1! (Pr [aT—;\O}mt}) and estimate E [ug (0, 4, ;) j¢, 6 = 0] by the empirical analogue
of

= ug (0, 71, €) Qe (d
E [ug(0, 3¢, ¢) |71, 80 = 0} = k ulilf [atx ;6(3@] ( a)'

Therefore the conditional value function is identified so we can proceed to estimate
the continuation value and use it to construct some criterion function to estimate the

parameter of interest 6.
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3.3 Discrete and Continuous Controls

The flexibility to estimate models with both discrete and continuous choices is very
important, for example, the economic agents in the empirical study of oligopoly or dy-
namic auction models often endogenously choose whether to participate in the market
before deciding on the price or investment decisions. The framework of the decision
problem here is similar to Section 4 of Arcidiacono and Miller (2008). For each economic
agent, the model now consists of the control variables (a;,d;) € A x D, where A C R
and D = {1,"..., K}, and the state variables s; = (mt,et,v{{) € X xEx VK, where X =
{1,...,J},€ c R and V¥ c RX so v& = (v:(1),...,v (K)). The sequential decision
problem can be stated as follows: at time ¢, the economic agent observes (z;,v{) and
choose an action k € {1,..., K} to maximize E [u (a, dy, z¢, &1, v |z¢, vf<, dy = k] +
BE [V (st41) [zt v dy = k], sequentially, she then observes £; and chooses a that max-
imizes u (h, dy, 1, €0, VI ) + BE [V (st+1) |st, dt, as = a]. The decisions made within and
across period generally will affect the consequential state variables, we impose the con-
ditions on the transition of the state variables within and across periods in the set of
assumptions below. More formally; the decision problem (subject to the transition law)
within-each period ¢ leads to- the fellowing policy pair

§ (ze,0f) = arg max {E [u(as, di, 7, 60,08 |¢, de = k] + BE [V (se41) |22, de = K]},

o (mt,st,vtK, d;) = sug {u (at,dt,sct,et,vtK) +BE[V (st41) |z, 00 = a,ds)} .
ac

We impose the following assumptions to ensure we can employ the estimation techniques
that has been developed from purely discrete choice and continuous choice literature

without much alteration.

AssuMPTION DC1: The observed data {at,dt,mt}z;l are the controlled stochastic

processes described above with known J.
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AssuMPTION DC2: (Conditional Independence) The transitional distribution has
the following factorization: p (Te41,€t41, V551 |Te, 66,0, ae,dt) = 2 (041, v |T2e41) X

Px1x,4,D (Te+1]Tt, at, dt).

AssuMPTION DC3: The support of sy = (my,64,vf) is X x € x VK, where
X ={1,...,J} for some J < oo that denotes the observable state space, £ is a (poten-
tially strict) subset of R and VK C RX. The distribution of v is i.i.d. distributed
across K—alternatives, denoted by W, is known, it is also independent of z; and is
absolutely continuous with respect to some Lebesque measure with a positive Radon-
Nikodym densities w. The distribution of e, denoted by Q, is known, it is also in-
dependent of x; and d;, and it is absolutely continuous with respect to some Lebesgue

measure with a positive Radon-Nikodym density q on £.

AssuMPTION DC4: (Additive Separability) The per period payoff function uw: A x

Dx X x & x VX 5 R can be written as u (at,dt,:ct,st,vf() = u% (as,dys, T1,61) + e (de) -

AssUMPTION DC5: (Monotone Choice) The per period payoff function, specific to
discrete choice d, ug :Ax D x X x & — R has increasing differences in (a,€) for all

d,c and @, where ug is specified upto some unknown parameters 6 € © c RL.

CoMMENTS oN DC1-DC5:

DC1 is standard. Similar to M2, DC2 implies that all the unobservable state vari-
ables are transitory shocks across time period. DC3 makes a simplifying assumption
on the distribution of the unobservable state variables, for example, v does not need
to have random sampling across K— alternatives, it is also straightforward to model
the conditional distribution of &; given (z¢,d;), and we do not need full independence
of (et,vtK ) and z; as commented in Section 2. DC4 imposes the additive separability

of the choice specific unobserved shock, which is familiar from the discrete choice lit-
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erature. DC) ensures that the per period utility function for each discrete alternative

satisfies the monotone choice assumption analogous to M2.4.

To illustrate how assumptions DC1 - DC5 put us on a familiar ground, consider
the value function on the optimal path, which is a stationary solution to the following

equation, cf. (4)

Vo (s¢) = ug (ar, di, T2, 60,01 ) + BE [Vo (st41) |5e]

where, given the sequential framework, by DC1 - DC4 d; = &g (x¢,vf) and a; =

o (xt, €t,d;) such that

dg (th,UtK) = arglg}fg]{ {E [U((;} (ac, ds, T, €1) | T2, dy = k] + ve (k) + BE [Vg (s¢41) |2, de = K]},

ap (Tt,€1,dt) = Sug{ug(a,dt,wt,ﬁt)+5E[Va(5t+1)|mt,at=a,dt]}-
ac

Marginalizing out the unobserved states of the value function, under DC2, we obtain

the following familiar characterization of the value functions

E Vg (st) |zt] = E [ug (as, dr, z1, €1, 0 ) |2¢] + BE [E [Vo (st41) |7e41] |2e] - (108)

As seen previously, by DC2, that the continuation value function (onto the next time

period) can be written as

E [V (8t41) |zt as,di) = E [E [Vp (Se41) |Te41] |2e, as, d) - (109)

To estimate 6y, in the first step, we provide an estimate for the continuation value
function. The main difference here lies in the estimation of the analogous equation to

(83), where we need to nonparametrically estimate E [ug (at, dt, %4, €1, vk ) |z¢]. Using
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DC2 - DC4, we have

E [ug (at,dt,zt,et,vtK) lz:] = E [ug (as,ds, Tty €0) || + E [vg (dg) |2:]
K
= ZPI‘ [dt = kl:l:t] E [’U,g:' (at,dt,xt,et) l:L't,dt = k]
k=1

K
+> Pr(d; = klz] E [v; (d2) |21, = K] .
k=1

The first term can be estimated nonparametrically using the method described in Sec-
tion 2. In particular, under DC5, we can generate ¢; by the relation &; = Q_} (ﬁ’ A|X,D (at|zt, dt)) R
where F‘A| x,p (alj, k) is nonparametric estimator for Prla; < a|x; = j,d; = k]. Since
the conditional choice probabilities are nonparametrically identified we can estimate
the first' term in the display above nonparametrically for any 6. The second term is
the selectivity term that arises from the discrete choice problem, which can be esti-
mated nonparametrically by using Hotz and Miller’s inversion theorem as in a purely
discrete choice problem. Since E [Vj (s)|z:] is defined as the solution to (108), note
that the transition probability in the linear equation is nonparametrically identified, we
can estimate E [Vp (s¢) |z¢] by solving a linear equation analogous to (83) once we have
the estimate for E [ug (at, dt, ¢, &1, v ) |2¢]. The continuation value in (109) can then
be obtained by transforming FE [Vp (s:)|z:] by the a conditional expectation operator
E [-|xt, at, d¢], which differs from H, see (84) for definition, precisely by increasing the
conditioning variable to include d; in addition to (x,a:). The second step of the esti-
mation procedure involves minimizing (maximizing) some criterion function to identify
6. Obviously, one method is to construct a minimum distance criterion based on the
conditional distribution function of a; given (z;,d;), analogous to (92), as described in

Section 2.2.
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3.4 Ordered Discrete Response

The methodology to estimate a dynamic decision problem with ordered choice is the
discrete counterpart of our main procedure described in Chapter 2. Practical applica-
tion includes investment models where firms purchase or rent goods in discrete units,
e.g. see Gowrisankaran et al. (2010).2! Consider the following set of assumptions where

the support of a; is an ordered set {al, o.,ak }

AssuMPTION OC1: The observed data for each individual {a:, :ct}z:ll are the con-

trolled stochastic processes satisfying (81) with exogenously known .

AssumPTION OC2: (Conditional Independence) The transitional distribution has

the following factorization: p(Tii1,€t41lTt,€t,at) = q(et+112e+1) Pxrix, 4 (Te41|7t, at)

Jorall t.

AssUMPTION OC3: The support of sz = (z¢,€t) is X x &, where X ={1,...,J}
for some J < oo that denotes the observable state space and £ is a (potentially strict)
subset of R. The distribution of &, denoted by Q, is known, it is also independent of
x; and is absolutely continuous with respect to some Lebesgue measure with a positive

Radon-Nikodym density q on £.

AssuMPTION OC4: (Monotone Choice) The per period payoff function ug : A X
X x € — R has increasing differences (weakly w.r.t. a) in (a,€) for all x and 0; uy is

specified upto some unknown parameters 6 € © C RL,

CoMMENTS ON OC1-0C4:
These conditions are essentially the analogue of M1 - M4 when a; is a discrete

random variable.

217 thank Philipp Schmidt-Dengler for introducing to me a more general class of dynamic problems
with the ordered discrete response component , which he and his co-authors in Gowrisankaran et al.
{(2010) are considering.
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To see the intuition how one can identify the conditional value function, similar to

(8), for any 6 it is defined as the solution to

where

E [Vg (s¢) |zt) = E [ug (at, 8¢) |zt) + BE [E [Vo (5¢41) |Te41] |24,

a = O!go(.’L't,Et,dt)

k
= lrsr}caéxK {uoo (a ,:L‘t,Et) + BE [%o (8t+1) |zt 00 = ak] } .

Since the support of a; is finite we can write

K

E [ug (at, s¢) lze} = Z Pr [a,t = ak‘lzt] E [ug (as, s¢) |ze, ar = ag],
k=1

where the potential issue again lies in the fact that we do not observe ;. But analo-

gously to the case with continuous control, since the policy function is weakly monotone

in €;, given the assumed distribution of ¢; we can identify the conditional mean of the

per-period payoff function by using the quantile invariance property between (at,&t).

In particular, for k > 1 let Z = [Q7' (1 — Fayx (aklz:)) , Q- (1 — Fax (ax-1lz1))],

we have

E [’I.LQ (at,st) lxt,at = ak] = F [u(g (at, st) I:L‘t,Et € Ik]

fIk ug (ak, 1, €) Qe (de)
Fyx (a¥|zt) — Fppx (aF=1ze)’

and for k =1, let 7y = [Q7" (1 — Fax (a1]2:)) , Q71 (0)]

1
1 S ue(al e, €) Qe (de)
s [UG (0 80 [, 00 = o ] - Fpx (al)x) ’
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Various nonparametric estimators discussed in the previous sections, for example the
frequency estimator, can be used to estimate Pr[a; = a*|z;] and Fjux (a*|z:) for
k=1,...,K. Since we know Q., we can estimate {Z;} and use them to estimate
fIk Uug (ak,xt,s) Qe (de) for each k. All the remaining nonparametric estimators re-
quired to estimate the continuation value function are just the transitional probabil-
ities of the observable state variable in the next period conditioning on this period’s
state (with or without the control). We can then approximate the model implied policy

function as before.

3.5 Conclusion

In this chapter we show that the methodology proposed in the first two chapters has a
much wider applicability than the given frameworks. We illustrate this by showing that
various types of dynamic models in economics can be estimated through a familiar two-
step approach, where differences between various models requires different modelling
assumptions necessary to ensure we can identify the conditional value functions.

As seen from Chapter 1, although we only considered a single agent problem with
observable state variable with finite support, it is straightforward to generalize the
framework to allow for strategic interactions between players as well as observable

state variables with continuous distributions.
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4 Consistent Estimation of an Identified Optimization Model

4.1 Introduction

Bajari, Benkard and Levin (2007), henceforth BBL, propose a methodology to estimate
a large class of structural dynamic models which has an extensive applicability. The
motivation behind the construction of their estimator is conceptually appealing as it
relies directly on the necessary conditions of an economic equilibrium. They suggest
a forward simulation method which is not only easy to program, it also has a compu-
tationally attractive feature by making use of the linear structure of the problem. In
addition, in the case that the model is not identified, they also propose a set estimator
to estimate the partially identified model.

However, it is infeasible to approximate or provide an analytical expression for either
the population or its empirical analogue of their criterion function even in a simple
static optimization problem as they rely on an uncountably infinite set of inequality
constraints, essentially indexed by functions. In practice only a strict subclass of such
inequalities are considered. This may lead to the loss of identification since we are not
using all of the relevant constraints imposed by the definition of an equilibrium. To the
best of my knowledge, as suggested by BBL, all applications of their methodology only
consider the class of alternative policies which are translation shifts from the true, for
example see Sweeting (2007), Ryan (2009) and Santos (2009) amongst many others.
We provide an example where the criterion functions constructed through this class of
inequality constraints are not capable of consistently estimating an identified model.
Although we do not provide specific examples for a partially identified model, we expect
analogous findings to exist. In addition, most applications of BBL methodology only
consider point estimation of the parameter of interest, which is attainable even if the

objective function does not have a unique optimizer in the limit.
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For a different reasoning, the swapping nested fixed point estimator of Aguirre-
gabiria and Mira (2007) which has been used to estimate a class of Markovian games
may also fail to consistently estimate an identified model. Pesendorfer and Schmidt-
Dengler (2009) show that even when the observed data are generated from a single equi-
librium of a game with multiple equilibria, the functional operator of Aguirregabiria
and Mira may have multiple fixed points and if the equilibrium point is unstable their
iterative method will generally lead to an inconsistent estimator.

Since the notations used in the study of many closely related Markov decision models
vary in the literature, throughout this note we follow the notations used in BBL when
possible.?2 For notational simplicity, we also focus on the decision problem of a single
agent, an extension allowing for.strategic interactions to a popular class of Markovian
games considered is straightforward.

Next, we describe the class of Markov decision processes of interest in Section 2,
then proceed to define the identification concept and summarizes the BBL methodology
in Section 3 and 4. An analytical example that shows one can lose identification by

using a BBL type of criterion is presented in Section 5. Section 6 concludes.

4.2 The Model

We now describe the dynamic models which are popular in Industrial Organization,
amongst others fields, that rely on Rust (1987) conditional independence assumption.
Although we do not restrict our attention to the discrete choice framework, much of
this growing literature builds on the work of Rust (1987) and Hotz and Miller (1993)
which fall under such setting. In particular, following Hotz and Miller, there has many

subsequent two-step estimators proposed for dynamic discrete choice problems, for

220f particular importance are the differences are the notations regarding the state variables and
the policy function. Some authors use (z:,&:) to denote observed and unobserved state variables
respectively. And more recently, motivated by applications to games, the policy (i.e. best response)
function is often seen denoted by o.
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example see Hotz et al. (1994), Aguirregabiria and Mira (2002,2007), BBL, Pesendorfer
and Schmidt-Dengler (2008), Bajari et al. (2009) and Srisuma and Linton (2009)
amongst others. More recently, there are also general methods which are able estimate
closely related dynamic models with continuous control, but otherwise rely on quite
similar sets of modelling assumptions, see BBL, Hong and Shum (2010) and Srisuma
(2010).

For each time period t = 1,...,00, the economic agent makes a decision a; € A
given the state variables (s¢,v:), where s; € S is observed by the econometrician whilst
vy € V is known only to the agent. The agent problem is to choose a decision rule

{o+}72,, where each o; belongs to a set of functions ¥ which maps S x V to A, to solve

max E Eﬂ""tw (07,87, V7)| Sty 0t ] (110)
{a‘r}?‘o:t =t

where 7w denotes the per period payoff function and 8 € (0,1) is the discounting rate.
Under some regularity conditions the optimal time invariant policy function o exist,
see Rust (1994) and the references therein for details. Assume further the conditional
independence of Rust (1987), and that the agent has perfect expectations on the con-
ditional laws of s;4+1 éonditioning on (at, st), denoted by P (s¢+1lat, st), and of v given

st, denoted by G (v¢]s:). Then the observed actions a; is equal to o (s, v¢) such that

o (s, vy) = arg max {7r (a, st,ve) + B / V (s';0) dP (8'|o (st, v4), st)} for all t > 1,
a

where the ez-ante (or conditional) value function V satisfies

Z ﬂ‘r_t"r (‘7 (31'; V-r) » 87, VT)

=1

V(St;O') =E

st] . (111)
The integral [ V (s';0) dP (s'|as, s¢), which is equal to E [V (s¢41; 0) |az, 4], is sometimes
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called continuation value function.

We note that we are dealing with a stationary problem. The time index ¢ is arbitrary
and just denotes that various functions of interest are functions of random variables.
Below, we also use 7 to index future values when defining alternative policies to stress

this point.

4.3 Identification

Thus far there has been relatively little identification results in Markov decision models
of this kind. Rust (1994) showed that without any restrictions, these decision models
are' nonparametrically not identified. Magnac and Thesmar (2002) also show some
negative results on the nonparametric identification of a class of single agent discrete
choice problems. In the study of their discrete Markovian games, Pesendorfer and
Schmidt-Dengler (2008) provide conditions to identify their parametric model. Bajari
et al. (2009) extends the results of Pesendorfer and Schmidt-Dengler to the case when
the support of the observable state variable can include intervals. Generally, it is fair
to say that the identification problem for many of these parametric models are not well
understood and identification is often assumed. Here we provide the formal definition
of an identified model for the special case where the only unknown parameter in the
model is the finite dimensional parameter indexing the payoff function.

For a single agent problem, the econometric model of such decision processes de-
scribed in the previous section can be formally represented by the set of primitives
(m, B, G, P). Under some regularity assumptions, the data generating process P is non-
parametrically identified so we assume it to be known. In this literature, the value
of B is often assumed and (7, G) are parametrically specified. The parametric form
of G is essential for the methodologies cited above. For policy purposes, the main

objective is then to estimate the structural parameter indexing 7, we denote this by
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# € © c RM. For simplicity, in what follows, we assume the knowledge of (w, 3, G, P)
upto some finite dimensional parameterization only on 7. The identification problem
of this parametric Markov decision processes can be stated in a familiar way using the

following definitions.

DEFINITION 4.1: The reduced-form of an MDP model is the agent’s optimal decision

rule o € X.

DEFINITION 4.2: The structure of an MDP model is the map A : © — ¥ such that

A (8) = o (st,v1;0), where

o (st,v4;0) = arg max {7T (a, st,ve;0) + ﬁ/V (850 (-,;0);6) dP (s'|o (¢, v 6) ,st)} .
acA -

We comment here that the notation for the conditional value function V (s;o;8)

allows us to define the expected discounted value generated from a particular policy o,

DEFINITION 4.3: The parameter points §; and 0y are observationally equivalent if

that may but need not depend on 8 (cf .(111)), so that

[e.¢]
V(st;0;0)=E Z Bt (0 (87, V) , 87, Vr; 6)

T=t

o (st,ve;01) = 0 (8¢, vt 02) a.s.

DEFINITION 4.4: The model is well specified if the data is generated according to

a decision rule o (s, v¢;6) for some 6 € ©.

DEFINITION 4.5: Let ©g (A) be a set of observationally equivalence classes so that
69 (A) is a collection of sets é,a € O such that 6 € 9 if and only if #; and @ are

observationally equivalent. A well specified model is identified if and only if 6= {66}.
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4.4 BBL Methodology

The estimator proposed by BBL is defined to satisfy the necessary conditions implied
by the optimality conditions of an economic equilibrium. Suppose that the data is
generated according to the true parameter g € ©. In what follows, it will be useful, to
avoid potential confusion, to denote the underlying policy function o (-, -;8g) by ao (-, -)-

By definition of the optimal policy, for any # € © and any alternative Markov

decision rule ¢’ = {0 }72 ;, the solution to the sequential problem must satisfy (see

(110))
0o =)

E ZﬁT——fﬂ_ (U (81-,1/7-;0),31-, Vs 9) St, Vit ZE ZﬁT—tW (O'{r (ST’VT)’ST7VT;9) st:”t:l .
T=t T=t

Integrating out the unobserved state variable from the expression above leads to the
following inequality for the model implied conditional value function (cf. (111)), for all
(c’,6)

V (st;0(-,+0);0) > V (st;0';6) . (112)

The criterion function proposed by BBL is constructed based on the set of inequalities
above, which are implied by the optimality conditions of an equilibrium. Let z index
the set of all equilibrium conditions (or also called inequalities) X, we elaborate on
this terminology used in BBL after introducing the function g below. So z denotes a

particular pair (s, 0’). For an identified model, for any 8 € ©, define g (z;6) as follows

g(z;8) =V (s;00;8) — V (s;0';6) .

Therefore g (z;0) represents an equilibrium constraint in the sense that we must have
g(z;60) > 0 for any z in X'. In what follows, since we are analyzing the BBL procedure

we continue to make use of their terminologies. Formally, the criterion function which
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BBL proposed is represented by a pair (X, H), based on (112), defined as follows

Q(6) = / (min {g (z;6) ,0})2 dH (),

where H is a distribution over X'. Clearly the criterion function in the display must
satisfy the condition Q (6g) = 0.

However, X is an uncountably large set even if S is finite. Although finiteness of S
is not an unusual assumption, allowing it to be uncountable is conceptually simple. It
is more difficult to deal with the space of functions of alternative policies. To proceed,
BBL suggest the practioner to consider a particular strict subset of X’. For some

Xg C X, we define the criterion function based on Xg as

Qe (6) = f (min {g (z:;6) , 0})? dH (=),

where we make the dependence on € and £ explicit. So a particular inequality z, de-
notes a certain optimality condition that belongs to X¢, a set indexed by €. To complete
the construction of ¢, Hg denotes the underlying disribution of .. We next formally
define the class of inequalities derived through translating shift of the true policies that
we denote by X, , this class of inequalities is informally introduced in BBL which conse-
quently has been employed by most of their known applications. We note that the nota-
tions used to define (X, , Hg,) reduce significantly for the example in the next section,
where we analyze a much simpler setup, so the reader less familiar with BBL methodol-
ogy may first wish to skip to that part for the intuition behind the setup. A typical ele-
ment z, in Xg, = {(s,0') : s € S and ¢/ = g9 ® € for € € (Support (A))> C 1*°}, where
I is the real sequence space and (Support (A))™ is the countably infinite Cartesian
products of Support (A). Although s requires no explanation, for each € we define oo®e

to be a particular alternative policy defined through a particular infinite sequence of
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linear shifts {e,}72; so that

(co®€) (sr,vr) =00(8r,v7) + € forany 7 =1,...,00.

So (oo @ €) is a sequence of functions representing a particular decision rule that differs
from the true policy by a sequence of translations represented by {e,};2 ,; more specif-
ically, for each period 7 it differs from the true policy by a translation €,. The measure
Hg, = Mg, (S) x Ng, (A) is the product measure where Mg, (S) denotes a uniformly
distributed measure on S (suppose S is bounded) and Ng, (A) denotes the product
measure for countably infinite product measurable space that generates the sequence
of random samples {e,}72; from A. Therefore the limiting criterion considered in BBL
can be formally represented by the pair (Xg,, Hg,).

The sample analogue of Qg, (f) can be constructed in practice using the forward
simulation procedure outlined by BBL. Then one can construct a point or a set estima-
tor based minimizing Qg, (6) depending on whether one thinks the model is identified

or not.

4.5 An Example

The difficulty we face in trying to understand the type of criterion functions based on
the optimality conditions implied by an equilibrium is that, it is generally unclear how
one can mathematically show what happens to the value of @ (8) for 6 € ©\ {6p}. Even
if it may be true that @ () = 0 if and only if § = 8y, it is plausible that by considering
a subset of all possible policies one may be able to find 8 # 6 such that Q¢ (6) = 0 for
some &; clearly such criterion function cannot be used to consistently estimate 8y. The
last statement is particularly relevant in practice since one cannot easily compare the

inequality restrictions of such a large class of alternative policies, or even know what
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kind of alternative policies are sufficient to ensure we can consistently estimate a point
identified model.

To illustrate this point we consider a much simpler optimization problem that also
belongs to the class of models considered in BBL. In particular, we take a static opti-
mization problem, which corresponds to the case that 8 = 0. Ignoring the presence of

observable state variables, specify the payoff function to be

7 (a,v;0) = —a? + 20av,

so a and v are values from the support of the control and state variables respectively.
Let G be some distribution for v; with zero mean.

It is easy to see that the (optimal) policy function, now reduces to o (v;6), is v
for all 6, v. Imposing © = R* ensures that the policy function will be increasing in the
state variable, hence satisfying the Monotone Choice assumption that is essential to
BBL’s simulation method. Notice that if 8 # 6 then o (v4;60) # o (v4;6') a.s., therefore
this model is identified so long that it is well specified. Then given a random sample of
{at}g;l generated from oq (v), for some 6y € O, along with some standard regularity
conditions one can construct a consistent estimator for 6y by maximum likelihood or
other minimum distance approach based on the moment condition below (the latter
might be a preferred option for a more complicated dynamic model); as shown in

Srisuma (2010), the uniqueness of the policy function with respect to 6 implies

E[l[a; < a] — Fa(a;0)] =0 for all a € A if and only if § = 6o, (113)

where F4 (-;6) is the distribution function of o (v;8).
However, we now show that the moment inequality approach of BBL may lead to

set estimators that, in the limit, will only converge to a non-singleton set containing
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(I) TRANSLATION SHIFT:

We consider the criterion function constructed from (Xg,, Hg,) described in the
previous section. In this simpler setting , the class of inequalities X, is simply
{0’ : 0’ = g9 + € for € € Support (A)} and the distribution Hg, is A.2> Note that an
inequality z. in Xg, has a unique correspondence with each ¢ in the support of A. For

any € and 6, it is easy to see that

7 (o0 (ve) ,vt,0) — (00 (ve) + €, v¢,0) = €2 + 2ev; (g — 6) .

To derive g, since v; has zero mean, integrating out v, in the display above leads to

g(z;0)=€2>0.

Note that we can also write Qg, (§) = [ (min {€?, 0})2 dFa (€), where Fa denotes the
distribution function which.corresponds to A. Clearly Q¢, (6) = 0 for all € © and any
distribution A as long as € is not degenerate at zero (which would then not represent
an alternative policy); i.e., in this example, this class of alternative policies has no

identifying power for 6.
(IT) MULTIPLICATIVE SCALE:

As another illustration, let’s consider another class of policies, based on a multiplica-
tive scale of the true policy. In particular let Xg, = {0’ : 0’ = €0y for € € Support (A)}

where A is the uniform distribution on (0, 1), the non-negative support is chosen to

23 As seen previously, it is conceptually straightforward to provide a precise formulation of (X, , He, )
to include the observable states and/or number of players for a game by using the direct product with
respect to respective sets and measures.
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ensure that the alternative policies are also monotone on V. For any z. that belongs

to Xg, and 6 € © we have
9 (28) = —60 (1 — €) (1 + €) B — 26) / V244G (v).

Therefore, when 6 > 6y we have g (x;8) > 0, suppose further that Ev? < oo, then any
6 € [fo, 00) will imply that Qg, (6) = 0. On the other hand it is easy to show that any
6 € (0,60¢) will imply that Qg, (f) > 0. The criterion function based on this class of
alternative policies can only identify a set, although we can show that increasing the

support of € can reduce the identify set to a point, see below.

We ean also try to find the elass of alternative policies which will ensure that the
eriterion constructed from (Xg, Hg) has a unigue minimum. Reeall that in this case,
X eorresponds to is the set of functions o € ¥ such that o : V— A C R. For any z in .

X, which is a function & (-), it can be shown from simple algebra that for any § € ©
9(236) = — (6 60)”E [v}] +E [(0v: — 7 (w))"] -

In this case, the class of alternative policies which is a multiplicative scale from the true
can ensure that we can construct criterion functions with a unique minimizer at g so
long that the support of € is sufficiently large. To see this, note that the inequality we
require is

9(2;0) <0 & E [(Gut —0 (ut))z] < E[v2] (6 - 60)°.

For any § = 6p+4, we see that by letting o (v:) = (6 — n) v¢, for any |n| < |4], will ensure
the inequality above. This means that when © is a compact subset of Rt containing 8y,
choosing Xg = {¢’ : ¢/ = €op for € € R} and Hg to be any continuous distribution with

full support on the real line (e.g. a standard normal) will be sufficient to ensure that
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Q¢ has a well separated minimum at 8y, which is implied by the high level assumptions
of BBL (see their Assumption S2). In this case we would expect to be able to obtain

consistent estimator for g from minimizing Qg (6).

4.6 Conclusion

We somewhat formalize the construct of the criterion functions introduced by BBL
through the pair (X, H) of inequalities and its distribution. It is infeasible to work
with (X, H) and we consider (Xg, Hg), which represents the criterion functions that
rely on a smaller set of inequalities. The example above reveals that applications
of the moment inequality approach introduced by BBL may incorrectly lead one to
believe that the model is only partially identified when it is actually point identified.
In particular we show in a simple setup that when X is the class of alternative policies
which is a translation from the true policy has no identifying power of an identified
model. We also show that the class of alternative policies which is a multiplicative scale
of the true policy, which although is never used in practice, can succeed in constructing
an appropriate criterion function to estimate the identified model when the range of
the scaling factor is sufficiently large. We stress here that we are not implicating any
relative potency between the two classes of inequalities in general. Also we would
expect analogous results for a partially identified model where a particular criterion
function (Xg, Hg) may at best can consistently estimate a strictly larger bounds than
the identified set.

The practical consequence is potentially serious since most applications of BBL use
the point estimation method. In finite samples, when the Monte Carlo integration has
yet to converge, various optimization techniques will produce point estimates that may
not be informative at all. Fortunately, all known applications of BBL’s methodology are

used to estimate structural dynamic optimization problems that are more complicated
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than the simple example provided above, therefore alternative policies that introduce
“noise” into a highly nonlinearly problem may give a better hope of preserving point
identification in a point identified model. However, for general dynamic models of
interest, the policy functions typically do not have closed form expression thereby
preventing us from doing any kind of analytical analysis and the intuition that one
may risk losing point identification by applying BBL type estimators cannot be ruled
out.

The intuition behind this finding is somewhat similar to the identification issue
studied in Dominguez and Lobato (2004), where they show one can lose identifica-
tion in an identified conditional moment restriction model when one arbitrarily turns
it into some unconditional moment restrictions .with a finite number of instruments.
Dominguez and Lobato also propose a minimum distance estimator that uses all of the
available information to overcome this problem.

We end this note with two remarks on the risk of losing identification by using the
criterion functions described above. First, this problem can potentially be alleviated
by integrating over larger classes of policies. Second, such risk may be eliminated
entirely by using alternative estimation methods based on different objective functions.
For example, for the same class of structural dynamic models considered by BBL, if
the model is identified the minimum distance estimator analogous to that found in
Srisuma. (2010), which relies on the generalization of (113), will be consistent under

some regularity conditions.
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