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A bstract

This dissertation consists of three essays in empirical industrial organization. Chapter 1 in
troduces the three essays and describes their main results. In chapter 2, I examine consumer 
demand for variety. The consumption of a good typically creates satiation that dimin
ishes the marginal utility of consuming more. This temporal satiation induces consumers 
to increase their stimulation level by seeking variety and therefore substitute towards other 
goods (substitutability across time) or other differentiated versions (products) of the good 
(substitutability across products). The literature on variety-seeking has developed along 
two strands, each focusing on only one type of substitutability. I specify a demand model 
that attempts to link these two strands of the literature. This issue is economically rele
vant because both types of substitutability are important for retailers and manufacturers in 
designing intertemporal price discrimination strategies.

In chapter 3, which draws upon joint work with Peter Davis, we specify a new method 
of uncovering demand information from market level data on differentiated products. In 
particular, we propose a globally consistent continuous-choice demand model with distinct 
advantages over the models currently in use and describe the econometric techniques for 
its estimation. The proposed model combines key properties of both the discrete- and 
continuous-choice traditions: i) it is flexible in the sense of Diewert (1974), ii) it is glob
ally consistent in the sense it can deal with entry and exit of products over time, and Hi) 
incorporates a structural error term.

In chapter 4 ,1 examine market dominance and barriers to competition in financial trading 
venues. As of 1 November 2007, the Market in Financial Instruments Directive introduced 
venue competition in the European cash trading market. I argue that, although positive, the 
impact on the degree of actual competition may be limited due to two barriers to competi
tion: i) direct network effects together with increasing returns to scale and ii) post-trading 
constraints.
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C hapter 1

Introduction

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.1

This dissertation consists of three essays in empirical industrial organization. Chapter 
1 introduces the three essays and describes their main results. In chapter 2, I examine 
consumer demand for variety. The consumption of a good typically creates satiation that 
diminishes the marginal utility of consuming more. Temporal satiation induces consumers 
to increase their stimulation level by seeking variety and therefore substitute towards other 
goods (substitutability across time) or other differentiated versions (products) of the good 
(substitutability across products).

The literature on variety-seeking has developed along two strands, each focusing on only 
one type of substitutability. I specify a demand model that attempts to link these two strands 
of the literature. This issue is economically relevant because both types of substitutability 
are important for retailers and manufacturers in designing intertemporal price discrimination 
strategies. The consumer demand model specified allows consumption to have an enduring 
effect and the marginal utility of the different products to vary over consumption occasions. 
Consumers are assumed to make rational purchase decisions by taking into account, not 
only current and future satiation levels, but also prices and product choices. I can then 
use the model to simulate the demand implications of a major pricing policy change from 
hi-low pricing to an everyday low pricing strategy. To my knowledge, there is only one study 
that structurally addresses consumer response to such major policy changes, Erdem et al. 
(2003). However, they studied storable goods and do not allow for switching costs. I find 
similar patterns deriving from an entirely different source of dynamics, the stock of past 
consumption.

1 Ithaka, C.P. Cavafy (translated by E. Keeley and P. Sherrard).
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I apply the model to an indulgence good: ice cream (and related frozen desserts). The 
reason is twofold. First, ice cream constitutes the textbook illustration of the diminishing 
marginal utility concept and the industry is characterized by a high degree of product differ
entiation. Second, the temptation nature of the good makes stockpiling less relevant. This 
is important because in a context where temporary price promotions are a key marketing 
tool, if consumers respond to temporary price cuts by accelerating (anticipating) purchases 
and hold inventories for future consumption (i.e. stockpile), the separate identification of 
satiation and stockpiling would be somewhat problematic. I show below that, even though 
consumers do anticipate purchases in response to temporary price promotions, they do not 
stockpile, maybe because of the temptation feature of the good.

I find evidence that consumption has a lasting effect on utility that induces substitutabil
ity across time and that the median consumer has a taste for variety in her product decisions. 
Consumers are found to be forward-looking with respect to the duration since the last pur
chase, to price expectations and product choices. Pricing policy simulations suggest that 
retailers may increase revenue by reducing the variance of prices, but that lowering the 
everyday level of prices may be unprofitable.

In chapter 3, which draws upon joint work with Peter Davis, we specify a new method 
of uncovering demand information from market level data on differentiated products. We 
propose a globally consistent continuous-choice demand model with distinct advantages over 
the models currently in use and describe the econometric techniques for its estimation. 
The proposed model combines key properties of both the discrete- and continuous-choice 
traditions: i) it is flexible in the sense of Diewert (1973, 1974), ii) it is globally consistent 
in the sense it can deal with entry and exit of products over time, and Hi) incorporates 
a structural error term. In order to encompass different possible real-world applications, 
we consider two alternative specifications of the baseline model depending on the degree of 
flexibility the researcher is willing to accept for the substitution patterns between inside and 
outside goods. The estimation procedure follows an analog to the algorithm derived in Berry 
(1994), Berry, Levinsohn and Pakes (1995). Depending on the specification considered, the 
contraction mapping for matching observed and predicted budget shares may be analytical or 
not. The case for which the contraction is analytic is relatively simple and fast to estimate 
which can prove a key advantage in some applications such those in competition policy, 
where time and transparency are important. For the case it is not analitic, we propose an 
alternative to Berry, Levinsohn and Pakes (1995) ’s contraction mapping with super-linear 
rate of convergence. Finally, we provide a series of Monte Carlo experiments to illustrate 
the estimation properties of the model and discuss how it can be extended to cope with
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consumer dynamic behaviour.

In chapter 4 ,1 examine market dominance and barriers to competition in financial trading 
venues. The interaction between competition and economic growth is a well established fact 
in the literature, with competition impacting economic growth via a more efficient allocation 
of market resources that contributes to "better economic performance, better prices and 
better services for consumers and businesses" (Kroes (2007)). Recent years have witnessed 
a strong and ferocious promotion of competition in a large spectrum of markets and the 
financial trading industry is no exception. As of 1 November 2007, the Market in Financial 
Instruments Directive (MiFID) aims to increase competition and to foster client protection in 
the European financial market. Among other provisions, it abolishes the concentration rule 
and challenges the market power of existing trading venues. The directive introduces venue 
competition in order to achieve better execution and ultimately lower trading costs. I argue 
that, although positive, the impact on the degree of actual competition may be limited due 
to two barriers to competition: i) direct network effects together with increasing returns to 
scale and ii) post-trading constraints since venues typically bundle trading and post-trading 
services.

The trading decision can be decomposed in two stages. First, investors decide the char
acteristics of the order and send it to a financial intermediary to be executed. Second, after 
receiving the order, the intermediary decides the trading venue where to execute it, con
ditional on the order characteristics received. I take the first stage as given and propose 
to model the choice of financial intermediaries in the second stage. I specify a structural 
discrete-choice multinomial random-coefficients logit demand model for the choice of venue 
that takes into account the trade-off between the different costs incurred during a trade. 
These costs can be divided into two broad categories: explicit and implicit costs. Explicit 
trading costs denote the transaction costs of a venue and include the costs of executing the 
order (trading fees) and the costs of post-trading (clearing and settlement fees). Implicit 
trading costs relate to the liquidity of a venue and typically include the bid-ask spread, the 
potential impact of a trade and the opportunity cost of missed trades. Implicit trading costs 
are important since cash trading exhibits direct network effects. The valuation of financial 
intermediaries for a venue is increasing in the number of other agents that choose the same 
venue as it reduces the costs of finding a counterpart. A more liquid venue translates into 
lower implicit trading costs as it i) stabilizes the market price of a financial instrument, and 
ii) reduces the extent to which placing an order has an adverse effect on the corresponding 
price.

I apply the model to the set of 16 most traded securities in the FTSE 100 following the
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list of liquid securities published (and updated regularly) by CESR after the implementation 
of MiFID. The results imply that financial intermediaries tend to value liquidity more than 
total fees when deciding to which venue to route a given order for execution. For this 
reason the incumbent venue has a clear advantage relative to its competitors and can, as 
a result, exert market power when setting its fees level. After estimating the degree of 
substitutability between the different trading venues, I examine the impact of the mentioned 
barriers to competition. First, I study the role of direct network effects by computing the 
counterfactual market shares that would arise if there were no liquidity differences across 
venues. Then, I evaluate the impact of the post-trading constraints induced by the typical 
bundle of trading and post-trading services. I simulate the equilibrium market shares that 
would arise if the different trading services were fungible. In both cases, the results suggest 
that eliminating the corresponding barrier to competition is associated with a significant 
decrease (of similar magnitude) in the asymmetry of the industry.
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C hapter 2

Consum er D em and for Variety: 
Intertem poral Effects o f  
C onsum ption, Product Sw itching and  
Pricing Policies

"Rachel: Hi!
Chandler: Another cheesecake came! They delivered it to the wrong address again!
Rachel: So just bring it back downstairs, what’s the problem?
Chandler: I can’t seem to say goodbye.
Rachel: Are you serious?! Chandler, we ate an entire cheesecake two days ago and 

you want more?"

Friends, Episode 7-11, The one with All The Cheesecakes

The concept of diminishing marginal utility is a cornerstone of economic theory. The 
consumption of a good typically creates satiation that diminishes the marginal utility of 
consuming more. The length of time that the marginal utility is diminished is likely to vary 
across goods and, as Rachel and Chandler’s cheesecake episode illustrates, across consumers. 
While it only took Chandler two days for his cheesecake marginal utility to return to pre
consumption levels, Rachel seemed still satiated (suggesting that the utility provided by her 
prior cheesecake consumption had not yet faded).

Temporal satiation induces consumers to increase their stimulation level by seeking va
riety and therefore substitute towards other consumption alternatives. In this chapter, I 
define a forward-looking dynamic discrete choice model of demand that, similarly to Hart
mann (2006), allows consumption to have an intertemporal effect: consuming produces a 
consumption capital stock that provides utility over time until it gradually depreciates. 
However, unlike Hartmann (2006), I consider a differentiated products setting that allows 
consumers to switch not only towards other goods, but also towards other differentiated 
versions (products) of the good.
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In each shopping trip, consumers decide whether or not to purchase the good, and in 
case they decide to purchase, which quantity and product to buy. Consumers are assumed 
to make rational purchase decisions by taking into account, not only current and future 
satiation levels, but also prices and product choices. Price expectations are an important 
determinant of intertemporal substitution. If prices are expected to be higher in the future, 
consumers may anticipate their purchase decisions and vice-versa. Another important feature 
is consumer product choice. The marginal utility of different products is allowed to change 
over consumption occasions, depending on the switching costs of the individual. Consumers 
with low switching costs may exhibit shorter interpurchase durations than those that incur 
in high switching costs whenever they alter their product choice.

This chapter relates to the literature on variety-seeking developed from Jeuland (1978) 
and McAlister (1982). Jeuland (1978) explains variety-seeking behaviour by proposing that 
prior experience with a good decreases the consumer’s utility for that good, which con
stitutes a direct application of the diminishing marginal utility concept. This explanation 
is predictive of the consumer’s tendency to switch away from the most recently consumed 
good. McAlister (1982) then refined the explanation by proposing that prior experience with 
the attributes of a good decreases the consumer’s utility for goods with similar attributes, 
which refocuses the diminishing marginal utility concept over attributes rather than goods. 
These two explanations have governed the subsequent development of an extensive litera
ture centered on the implications of switching costs for consumer choice (see, for example, 
Keane (1997)). Recently, Hartmann (2006) extended the variety-seeking literature by allow
ing intertemporal effects of consumption, that is, by allowing consumption to have a lasting 
effect that diminishes the marginal utility of future consumption. However, the homogeneous 
nature of the good studied, golf, did not allow him to focus on product switching.

This chapter attempts to link the two strands of the literature on variety-seeking by 
allowing consumers to substitute towards other goods (substitutability across time), as well 
as to other differentiated products of the same good (substitutability across products). This 
issue is economically relevant because both types of substitutability are important for retail
ers and manufacturers in designing intertemporal price discrimination strategies. I specify 
a consumer demand model which allows consumption to have an enduring effect and allows 
the marginal utility of the different products to vary over consumption occasions. The main 
contribution of the chapter is to study how different pricing policies affect consumer demand 
for goods with such enduring effects of consumption and that are characterized by a high 
degree of differentiation. The model can then be used to simulate the demand implications 
of major pricing policy changes like a shift from hi-low pricing to everyday low pricing. To
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my knowledge, there is only one study that structurally addresses consumer response to such 
major policy changes, Erdem et al. (2003). However, they studied storable goods and do not 
allow for switching costs. I find similar patterns deriving from an entirely different source of 
dynamics, the stock of past consumption.

The state space implied by a dynamic problem where forward-looking consumers make 
optimal decisions in light of current and future satiation levels, prices and product choices 
is, in a differentiated products setting, extremely large for practical estimation. In order 
to reduce the dimensionality of the state space, I adopt a multi-stage budgeting approach 
that decomposes the consumers decision into a quantity choice and a product choice (see 
Aguirregabiria (2002) and Hendel and Nevo (2006a) for similar dynamic applications of 
Gorman (1971)’s approach). Under the set of assumptions discussed below, I show that the 
consumer product choice conditional on the quantity purchased does not depend on dynamic 
considerations. This simplifies the estimation of many of the parameters of the demand 
model, while the remaining ones are estimated solving a simplified dynamic problem that 
involves only quantity and timing decisions.

I estimate the different stages of the model by maximum-likelihood and solve the dynamic 
programming problem by using value function parametric approximation with policy function 
iteration in the lines of Benitez-Silva et al (2000). In order to control for unobserved 
heterogeneity, I incorporate a rich specification. This is important since in both stages 
unobserved consumer heterogeneity may confound the inference of true state-dependence 
effects. As Heckman (1981) points out, if households have different preferences "and if these 
differences are not properly controlled, previous experience may appear to be a determinant 
(...) of future experience solely because it is a proxy for temporally persistent unobservables 
that determine choices." The state dependence in the product decision arises because the 
marginal utility of different products is allowed to change over consumption occasions, while 
the state dependence in the quantity decision is induced by the consumption capital stock. 
For reasons I discuss below, I incorporate observable heterogeneity in the product choice and 
a continuous distribution of consumer heterogeneity in the quantity decision.

I apply the model to an indulgence good: ice cream (and related frozen desserts). The 
reason is twofold. First, ice cream constitutes the textbook illustration of the diminishing 
marginal utility concept and the industry is characterized by a high degree of product differ
entiation. Second, the temptation nature of the good can (and in fact does, for the empirical 
application considered) make stockpiling limited in relevance (and in particular duration). 
This is important because in a context where temporary price promotions are a key marketing 
tool, if consumers respond to temporary price cuts by accelerating (anticipating) purchases
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and hold inventories for future consumption (i.e. stockpile), the separate identification of 
satiation and stockpiling would be somewhat problematic. I show below that, even though 
consumers do anticipate purchases in response to temporary price promotions, they do not 
stockpile, maybe because of the temptation feature of the good.

I find evidence that consumption has a lasting effect on utility that induces substitutabil
ity across time and that the median consumer has a taste for variety in her product decisions. 
Consumers are found to be forward-looking with respect to the duration since the last pur
chase, to price expectations and product choices. Pricing policy simulations suggest that 
retailers may increase revenue by reducing the variance of prices, but that lowering the 
everyday level of prices may be unprofitable.

2.1 D a ta  D escrip tion  and P relim inary A nalysis

I use Information Resources Inc. (IRI) scanner data collected from June 1991 to May 1993 
in two separate submarkets of a large Midwest city. The dataset covers 24 different product 
categories at both the store and household levels. The former includes weekly sales, prices, 
and promotional activities for each universal product code (UPC) in nine supermarkets, 
belonging to different chains, while the latter tracks the store visits of 548 households and 
includes when and how much each household spent in her shopping trips.

I estimate the model for an indulgence good category: ice cream and related frozen 
desserts. Frozen desserts are offered in four segments: regular ice cream, diet ice cream, 
frozen yoghurt and ice milk. Regular ice creams account for 67% of the volume purchased, 
with diet ice creams and frozen yoghurt roughly splitting the remaining of the market. The 
market share of ice milk is less than one percent. Ice creams come in a limited number of 
package sizes, with the top four sizes accounting for more than 99% of the market: 64 oz. 
(72.3%), 16 oz. (11.5%), 160 oz. (10.8%) and 32 oz. (4.8%). The choice set available to 
the households is substantial. The average supermarket in the sample carries 170 different 
frozen dessert products (from 20 brands) on a weekly basis. I defined a product as a segment- 
brand-flavour combination so that, for example, Haagen-Dazs Vanilla Ice Cream, Haagen- 
Dazs Chocolate Ice Cream, and Haagen-Dazs Vanilla Frozen Yoghurt are classified as distinct 
products.

Kemps is the dominant brand with 23% volume market share, followed by Breyers and 
Wessanen’s Value Pack (both with 12%), Dreyer’s (10%) and Haagen-Dazs (6%). Store pri
vate labels account for 3.5% of the market. The most popular flavours are vanilla (21%),
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chocolate (9%), neapolitan (7%), strawberry (5%) and chocolate chip (5%), although a typi
cal supermarket would carry an average of 84 different flavours, each week. In contrast with 
the moderated brand and flavour concentration, there is substantial market fragmentation 
at the product level. Breyers Vanilla Ice Cream is the market leader with a 2.6% volume 
market share.

The median household has two members and an income between 25,000 and 35,000 dol
lars. I conduct the subsequent analysis using a subset of the sampled households selected 
on the basis of three criteria. First, I eliminated consumers recorded purchasing in super
markets for which no price data is available. An alternative approach could have been to 
include those households and either (i) eliminate the purchases in unsampled stores as if they 
never happened, or (ii) assume some cross-store price pattern and generate price data to be 
imputed for those purchases. All solutions potentially could introduce bias in the analysis. 
I opted for the elimination after ensuring the subset sample was representative, an issue I 
discuss below. Second, computational barriers compelled me to eliminate consumers that 
purchased more than two items of ice cream in a shopping visit or bought non-representative 
package sizes. Their inclusion would increase the dimensionality of the state space to a de
gree that made the structural estimation computationally infeasible. Finally, I eliminated 
households that made less than 10 purchases of ice creams over the total sample period since 
they are likely to be either (i) not regularly in the market, or (ii) purchasing in alternative 
stores. This reduced the sample size from 548 to 115 consumers, who made a total of 17,899 
supermarket trips and 2,822 ice-cream purchases.

An important question is obviously whether the subset sample is representative of the 
whole population buying at these supermarkets. Table 2.1 addresses this question by re
porting, for the different samples, the top-8 products, brands and flavours in terms of their 
volume market share. The simple comparison of the columns show that, with minor excep
tions, the product, brand and flavour market shares in the different samples are very similar, 
which is suggestive that the subset sample is reasonably representative.

2.1.1 Substitutability Across Tim e

In this section, I examine the shopping behaviour of consumers and the frequency of their 
purchasing patterns for the ice cream category as a whole. Table 2.2, Panel A presents 
summary statistics for the consumers supermarket trips. Although there is evidence of sub
stantial heterogeneity across consumers with regard to their shopping behaviour, the median 
consumer in the sample visits a supermarket every three days to a total of 98 times over the
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T a b l e  2 .1  
Volume Market Shares*

Household
Panel A: Product level All Subset Store

S CS S CS S CS
1 W essanen’s Value Pack NY Vanilla IC 3.85 3.85 4.14 4.14 2.03 2.03
2 W essanen’s Value Pack Vanilla IC 2.71 6.56 1.96 6.10 2.58 4.61
3 W essanen’s Value Pack Neapolitan IC 2.06 8.62 2.59 8.69 1.78 6.39
4 Fieldcrest Vanilla IC 2.05 10.67 2.81 11.50 1.22 7.61
5 Kemps Vanilla FY 1.97 12.64 5.26 16.76 1.13 8.74
6 Kemps Vanilla IC 1.69 14.33 1.37 18.13 2.15 10.89
7 Breyers Vanilla IC 1.51 15.84 1.62 19.75 2.60 13.49
8 W essanen’s Value Pack Chocolate IC 1.41 17.25 1.26 21.01 1.14 14.63

Household
Panel B: Brand level All Subset Store

S CS S CS S CS
1 Kemps 21.22 21.22 19.59 19.59 23.37 23.37
2 W essanen’s Value Pack 13.69 34.91 12.71 32.30 11.73 35.10
3 Breyers 9.22 44.13 10.04 42.34 11.86 46.96
4 Dreyer’s 8.89 53.02 5.34 47.68 9.88 56.84
5 Sealtest 6.90 59.92 10.70 58.38 4.27 61.11
6 Fieldcrest 4.10 64.02 5.66 64.04 3.43 64.54
7 Dean Foods 3.75 67.77 3.85 67.89 2.71 67.25
8 Haagen-Dazs 3.62 71.39 1.53 69.42 5.81 73.06

Household
Panel C: Flavour level All Subset Store

S CS S CS S CS
1 Vanilla 22.20 22.20 26.38 26.42 21.10 21.10
2 Chocolate 8.00 30.02 9.04 35.46 8.59 29.69
3 Neapolitan 7.21 37.41 11.47 46.93 6.50 36.19
4 New York (NY) Vanilla 5.49 42.90 5.52 52.45 3.63 39.82
5 Strawberry 5.36 48.26 4.48 56.93 4.99 44.81
6 Butter Pecan 4.01 52.27 3.21 60.14 3.79 48.60
7 Chocolate Chip 2.69 54.96 2.59 62.73 4.63 53.23
8 Pistachio 2.39 57.35 2.94 65.67 1.31 54.54
* Colum ns labeled  S denote m arket shares and  colum ns labeled CS denote cum ulative m arket shares. IQ stands for an ice 
cream  p ro d u c t and FY  for a  frozen yoghurt p roduct.
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Table 2.2
Consumer Category Purchasing Patterns*

Panel A: Supermarket trips
Mean Median Std Min Max

Number of Trips 114 98.0 59.9 36.0 317
Days from Previous Trip 4.75 3.00 5.05 0.00 75.0
Number of Stores Visited 1.95 2.00 0.79 1.00 4.00
Store HHI 0.86 1.00 0.20 0.36 1.00
Panel B: Ice cream purchases

Mean Median Std Min Max
Number of Purchases 17.7 13.0 15.0 3.00 126
Volume 63.3 64.0 31.5 16.0 160
M ultiple-item Purchases 0.12 0.00 0.32 0.00 1.00
Days from Previous Purchases 30.0 16.0 37.8 0.00 311
* For N um ber of Trips, N um ber of Stores V isited and StoreH H I, an observation is a household. For 
D ays from Previous Trip, an observation is a tr ip  instance. For all o ther sta tis tics , an observation 
is a purchase instance. Store HHI denote the  household’s H erfindahl-H irschm an index for ice-cream 
volum e purchases.

observed sample. This consumer shops in two different supermarkets, but concentrates her 
purchases on a single one. In order to compute the consumers intertrip duration, I use the 
first six months in the sample to generate an initial trip for each household. I will discuss 
below that these first six months will also be instrumental in generating an initial product 
choice for each consumer to avoid spurious switching.

Table 2.2, Panel B displays some summary statistics of households ice-cream purchasing 
patterns. The results suggest substantial heterogeneity also at this level, with the median 
consumer making a single-item purchase of 64 oz. of ice-cream every 16 days to a total of 13 
purchases over the sample period.

I now move on to examine the hypothesis that consumption has a lasting effect that 
diminishes the marginal utility of future consumption. If the magnitude of this effect is such 
that induces consumers to vary their choice of dessert, the probability of purchase will be re
lated to how long it has been since their last purchase. If, on the other hand, the magnitude 
of the effect is small, then the probability of purchase will not depend on interpurchase dura
tion. Figure 2.1 displays the purchase hazard rate by no-purchase spell duration in days. The 
hazard rate denotes here the probability that you purchase if you have not purchased up to 
now. The pattern illustrated provides some support for the duration dependence argument: 
there is evidence of a non-linear relationship between the probability of purchase and the 
duration since the last purchase. The hazard rate is quite low immediately after a purchase, 
then gradually increases until day 7, after what it exhibits a gradual, although rather jagged,
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downward trend (an interesting aspect of this hazard rate relates to its recurring spikes, an 
issue I address below). However, the downward trend of the hazard rate suggests that, in 
contrast to the initial argument of this chapter, the probability of purchase seems to decrease 
(and not increase) with the duration since last purchase. There are two possible explanations 
for this behaviour (and that illustrate the well known problem that unobserved heterogene
ity can be confounded with state-dependence). Either the utility from consuming ice cream 
does in fact decrease with duration (positive state-dependence), or alternatively, the utility 
increases with duration from last purchase (negative state-dependence), but there exists an 
over-representative group of low-demand consumers who are more likely to exhibit longer 
interpurchase durations (heterogeneity). In order to evaluate the degree of consumer unob
served heterogeneity, I re-compute the hazard rate at the consumer-level The consumer-level 
hazard rate denotes here the probability that a consumer purchases if she has not purchased 
up to now. Figure 2.2 displays, for each duration spell, the mean of the probability of pur
chase across consumers, as well as the interval limited by that mean value plus and minus 
one standard deviation (subject to a non-negativity constrain). The high standard deviation 
around the mean indicates substantial heterogeneity across consumers, which is suggestive 
of the importance of controlling for unobserved heterogeneity in the structural estimation.

While the duration dependence of ice cream purchases implied by Figures 2.1 and 2.2 can 
be consistent with variety-seeking behaviour induced by a diminishing marginal utility, it can 
also be consistent with the main alternative theory: if consumers respond to temporary price 
cuts by accelerating (anticipating) purchases and hold inventories for future consumption (i.e. 
stockpile), the probability of purchase will also be duration-dependent. Temporary price 
promotions axe an important marketing tool in the pricing strategy of many nondurable 
goods and ice creams are no exception. The ice cream prices in the sample display a classic 
high-low pattern: products have a "regular (modal) level" that remains constant for long 
periods of time with occasional temporary reductions. Figure 2.3 displays, as an illustration, 
the price of Dreyer’s Vanilla Ice Cream 64 oz. over the sample weeks in a typical supermarket. 
The price is at the "regular level" ($4.59) for 57% of the weeks. Defining a sale to be a price 
reduction of at least 5% (below the modal level), it is on sale for 31% of the time, with 
the average price discount being $1.61. If we consider the sample as a whole, untabulated 
statistics show that prices are, on average, 66% at the "regular level" and 26% on sale (with 
an average discount of $0.70). In such an environment, consumers may respond to temporary 
price cuts by accelerating (anticipating) purchases and stockpile.

Table 2.3 addresses the purchase acceleration effect by comparing household level sale and 
nonsale purchasing patterns. The first column displays averages during nonsale purchases.
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F i g u r e  2 .3  
Price Example: Dreyer’s Vanilla Ice Cream
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The following columns examine the difference towards a sale purchase, decomposing the total 
difference into a within and a between households effects. As before, a sale is defined as any 
price at least 5% below the modal price of a store-UPC combination over the observed period. 
I focus the analysis on the within column,2 that compares the household purchasing patterns 
over time. The evidence seems to indicate that consumers do respond to temporary price 
cuts. Unsurprisingly, the results suggest that households tend to shorten their duration from 
previous purchase (between 3-4 days) and to increase their volume purchases (by roughly 
17%), when buying on sale.

The interesting question is whether this response by consumers translates into a consump
tion effect or merely represents a demand-anticipation effect with households stockpiling for 
future consumption. In order to examine this question, I follow Hendel and Nevo (2006a) 
and examine households interpurchase duration to the next purchase. The idea here is that 
if consumers do stockpile, then the duration to next purchase is expected to be longer for 
large volume purchases (like purchases on sale). The results from Table 2.3 show that there 
is no significant difference in the duration forward to next purchase between sale and non-

2 The results from the between column in Table 2.3 suggest substantial heterogeneity in how consumers 
respond to temporary price cuts, with households that purchase more frequently on sale, buying larger 
volumes and less frequently. This reinforces the need for the structural model to control for consumer 
heterogeneity.
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Table  2.3
Category Purchasing Patterns: Comparison between Sale and Nonsale*

Average Difference during Sale
during Consumers Week

Nonsale Total W ithin Between F.E.
Volume (oz.) 57.7 (3.08) 11.8 (2.26) 9.91 (1.42) 23.3 (7.70) No

12.1 (2.30) 10.1 (1.51) 22.5 (12.7) Yes
Units 1.05 (o.oi) 0.16 (0.02) 0.17 (0.02) 0.13 (0.04) No

0.16 (0.02) 0.17 (0.02) 0.07 (0.08) Yes
Average Package Size 56.1 (2.95) 2.27 (1.94) -0.31 (o.9i) 14.3 (6.91) No

- 2.22 (1.97) -0.18 (0.90) 13.0 (12.2) Yes
Days from Previous Purchase 27.0 (2.40) 0.22 (1.83) -3.69 (1.54) 17.6 (7.04) No

- -0.13 (1.77) -4.00 ( i .5 i) 19.8 (9.84) Yes
Days to Next Purchase 25.9 (2.31) 2.55 (1.65) -0.14 (1.39) 9.23 (7.03) No

2.59 (1.64) -0.14 (1.44) 28.3 ( i i .5 ) Yes
*  A n observation denotes a  purchase instance. S tan d a rd  errors c lustered  by household in parentheses (except 
for th e  betw een analysis).

sale purchases. The comparison of the quantity and duration effects seem to indicate that 
stockpiling may not be a relevant feature of ice-cream demand and that the quantity effect 
induced by temporary price reduction substantiates a consumption effect. In order to ex
amine the robustness of this conclusion, I also compared the duration forward to the next 
purchase when consumers buy an above average volume. The results of those regressions 
(which are untabulated) are consistent with the above conclusion. The difference in inter- 
purchase duration is again not significantly different from zero. The alternative theory that 
state-dependence in the probability of purchase is due to stockpiling can not explain these 
results. Furthermore, the analysis of how the additional quantity is bought is consistent with 
the variety-seeking theory. When purchasing on sale, consumers do not significantly change 
their average package size. Instead, they purchase more units of ice cream. This supports 
the variety-seeking story since if the increased volume translates into increased consumption, 
then purchasing multiple-items is a sensible strategy to deal with the diminishing marginal 
utility from consumption.

Having addressed the issue of eventual stockpiling behaviour, I now move on to address 
another somewhat problematic issue. In this chapter, I model consumption to have a lasting 
effect that diminishes the marginal utility of future consumption. However, I do not observe 
the actual time and magnitude of consumption. So, I am forced to infer it from purchase 
choices. The results from Table 2.3 provide some evidence that, not only consumers do not 
anticipate purchases to hold inventories for future consumption, as already discussed, but 
also that utility does not depend on the stock of past consumption. If consumption did
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create a stock, then duration to next purchase would increase with the size purchased, which 
it does not. That said, following Table 2.3, the only relevant variable that may affect the 
marginal utility of future consumption is the timing of current consumption. As I discuss 
below, due to the temptation nature of the good, assuming that the time of consumption 
coincides with the time of purchase is not unreasonable. At least for most people, in line with 
what Erdem et al. (2003) argue, ice creams are technologically, but not practically storable 
over more than a few days. It may seem inconsistent to assume that consumption has a 
lasting affect that induces intertemporal substitution in purchases while assuming that the 
good held in inventory has a temptation feature. These assumptions are however consistent 
with observed behaviour, since consumers seem to depreciate the costs of goods they have 
in inventory (see Gourville and Soman (1998) and Prelec and Loewenstein (1997)).

I now move on to describe two other timing aspects of consumers ice cream category 
purchasing patterns. I begin by addressing seasonality. If the decisions of consumers are 
seasonal, then the structural model must reflect this feature. Table 2.4 addresses this ques
tion by comparing household level summer and nonsummer purchasing patterns. The first 
column displays averages during nonsummer purchases while the following columns examine 
the difference towards a summer purchase, again decomposing the total difference into a 
within and a between consumers effects. The results suggest that summer does not induce 
a significant difference in the purchasing patterns of households, at any dimension: volume, 
units, average package size, days from previous purchase or days to next purchase. This 
holds both within and across consumers. In order to examine the robustness of this conclu
sion, I replicated this analysis to compare the consumers purchasing patterns in winter and 
nonwinter seasons. The results of those regressions (which are untabulated) are consistent 
with the above conclusion. They show no significant difference in the associated purchasing 
patterns. Surprisingly, seasonality does not seem therefore to be an important feature in the 
purchasing decision of ice cream and related frozen desserts.

Another timing aspect of consumers ice cream category choice patterns relates to the 
purchase day. If consumers are more likely to purchase on a particular day of the week or 
weekend, then the structural model must somehow incorporate it. Untabulated statistics 
show no evidence of a clear preference towards a given day of the week, when comparing 
across consumers. However, Figure 2.1 illustrated an interesting pattern. The probability 
of purchase spikes at every seven days (and exactly every seven days), which suggests that 
even though no preference exists across consumers, each consumer seems to have a preferred 
day of the week to purchase ice creams - maybe at their main weekly shopping trip. This 
constitutes a feature of consumer behaviour that must be incorporated into the structural
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T a b l e  2.4
Category Purchasing Patterns: Seasonality*

Average Difference during Summer
during Consumers

Nonsummer Total W ithin Between
Volume (oz.) 63.1 (0.78) 0.76 (1.74) 1.86 (1.25) 2.54 (18.7)

Units 1.12 (0.01) 0.00 (0.02) 0.00 (0.02) -0.17 (0.10)

Average Package Size 57.0 (0.63) 0.94 (1.39) 1.58 (0.86) 12.1 (16.4)

Days from Previous Purchase 27.0 (0.86) 0.74 (1.86) -0.72 (1.68) 28.8 (13.8)

Days to Next Purchase 27.1 (0.86) 0.09 (1.86) -1.01 (1.68) 15.2 (16.4)

* A n observation denotes a purchase instance. S tandard  errors c lustered  by household in parentheses (except 
for th e  betw een analysis).

model.

2.1.2 Substitutability  Across Products

Having described the shopping behaviour and purchasing patterns of consumers for the 
ice cream category as a whole, I now move on to examine their product choice patterns. 
Table 2.5 displays household-level concentration and variety-seeking measures for ice cream 
product and brand choices. Table 2.5, Panel A displays the descriptive statistics for the 
product level measures. The median consumer buys 8 different products over the sample 
period and fragments her volume purchases considerably as the relatively low household-level 
concentration ratios (CRm) and Herfindahl-Hirschman index (HHI) suggest. Nevertheless, 
there is evidence of substantial heterogeneity across consumers as indicated by the large 
range intervals and standard deviation of the several concentration measures. So, although 
some households show evidence of considerable product fragmentation, others concentrate 
their purchases on a relatively small number of products.

Having examined product choice concentration, I now move on to examine a measure of 
product switching, following Menon and Kahn (1995). The probability of successive product 
switching denotes the proportion of consumer purchases that involved switching, where a 
switch is defined as occurring each time the product(s) chosen on a purchase occasion is dif
ferent from those chosen on the immediately preceding purchase instance. This is consistent 
with Faison (1977) and Venkatesan (1973). Counting switching from the beginning of the 
sample period would generate spurious switching. Therefore, as discussed previously, I use 
the first six months in the sample to generate an initial product choice for each consumer. 
This approach is similar to Shum (2004) and Pozzi (2009). The descriptive statistics for 
the probability of successive product switching suggest substantial heterogeneity across con-
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T a b l e  2 .5  
Consumer Product Choice Behaviour*

Panel A: Product level
Mean Median Std Min Max

CR1 0.38 0.33 0.19 0.11 0.95
CR5 0.83 0.84 0.16 0.46 1.00
HHI 0.26 0.20 0.17 0.07 0.91
Number of different products 8.27 8.00 4.18 2.00 26.00
Probability of successive product switching 0.77 0.82 0.22 0.15 1.00
Probability of product exploration switching 0.45 0.42 0.26 0.00 1.00
Panel B: Brand level

Mean Median Std Min Max
CR1 0.57 0.53 0.23 0.19 1.00
CR5 0.97 1.00 0.06 0.73 1.00
HHI 0.46 0.38 0.25 0.13 1.00
Number of different brands 4.43 4.00 2.10 1.00 11.00
Probability of successive brand switching 0.57 0.62 0.27 0.03 1.00
Probability of brand exploration switching 0.33 0.30 0.20 0.03 1.00
*  An observation is a household. C R m  and  HHI denote th e  household’s m -product (b rand) volum e concentration

ratio , and H erfindahl-H irschm an index, respectively.

sumers, with the median household switching from the immediately preceding products in 
82% of her purchases.

An alternative approach would be to define a switch as occurring each time the product 
chosen on a purchase occasion is different from any of the preceding choices, following Faison 
(1977) and Pessemier (1985). The two definitions differ in the idea of variety-seeking that 
may capture. While the latter definition implicitly assumes that the level of stimulation of a 
household can only be increased by exploring new products, i.e. products that the consumer 
never tried before, the successive switching definition assumes that the level of stimulation of 
a household can be increased by alternating from one product to another, even if the products 
in the switching set are all familiar. A simple comparison of the probability of switching 
according to the two definitions suggests that the proportion of switching involving familiar 
products should not be neglected.

Table 2.5, Panel B presents descriptive statistics for the same concentration and variety- 
seeking measures, but aggregated at the brand level. The purchases of the median consumer 
show a higher degree of concentration and a lower probability of switching when compared 
with her product choice patterns, which may be suggestive of the relative importance of 
different flavours and product types in increasing the level of stimulation of a household.
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One problem with inferring variety-seeking from product switching is that unobserved 
heterogeneity can be confounded with product state-dependence. The identification problem 
arises because a consumer may exhibit high product switching by repeatedly alternating 
products in her purchases either because of a weak unobserved, idiosyncratic preference 
for the different products or because she has a taste for variety. In order to evaluate the 
importance of product preferences, I examine the association between product switching 
behaviour and product choice. The dependent variable is a product preference measure 
in the fines of Simonson and Winer (1992). Each consumer purchase is associated with 
a score equal to the volume market share of the corresponding product (or products in 
case it is a multiple-item purchase) in the consumer’s shopping history.3 Products with 
high consumer-level market shares are assumed to correspond to products for which the 
consumer has a strong preference, given their weight in the household shopping basket. 
This assumption is of course problematic, but it allows me to illustrate the high degree 
of unobserved product heterogeneity. Table 2.6 presents the OLS results of regressing the 
product preference score of each purchase on a product state-dependence variable that keeps 
track of the number of product switches from the immediately preceding purchase instance. 
I include marketing-mix variables as covariates: price and two types of promotional activities 
- feature (defined as any type of retailer product advertising) and display (defined as any 
type of special store display).4 The different specifications vary on the degree of controls 
included. The results suggest a significant negative association between product switching 
and the product preference score, implying that consumers tend to switch more towards less 
preferred products. This association weakens as additional heterogeneity is incorporated, 
which is indicative of the importance of controlling for unobserved product heterogeneity in 
the structural estimation.

A final problem with inferring variety-seeking from product switching is that product 
unavailability may generate spurious switching. In order to address this concern, I need to 
separate true product switching from switching induced by product unavailability. However, 
as the IRI dataset does not include information on product availability, I have to infer it from 
store product sales. I consider that a product was available in a given week and supermarket 
combination if the store sold at least one unit of the product in that week.5 I then compute, 
for each consumer, the proportion of true product switching, i.e. switching that occurs

3 As an illustration consider the hypothetical example of a consumer that, over her shopping history, 
purchases 100 oz. of product A, 50 oz. of product W and 50 oz. of product B. Each item purchase of product 
A will receive a product preference score of 0.50 (100/200).

4 The data includes several categories of feature and display. I aggregate across the different categories to 
feature/no feature and display/no display.

5 The product availability proxy will obviously overestimate the induced product switching.
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Table  2.6
Product State-Dependence vs Product Preference*

(1) (2) (3) (4)
Product State-Dependence -0.28 -0.31 -0.17 -0.10

(0.06) (0.06) (0.03) (0.01)

Marketing-Mix
Price 0.04 0.07 0.01

(0.01) (0.01) (0.01)

Feature 0.05 0.07 0.01
(0.02) (0.02) (0.01)

Display -0.00 0.01 -0.02
(0.03) (0.02) (0.02)

Household F.E. No No Yes Yes
Product F.E. No No No Yes
R2 0.26 0.28 0.64 0.85
*  A n observation is a purchase instance by a household. S tan d ard  errors 
clustered  by households in parentheses.

despite the products chosen on the immediately preceding purchase instance being available 
(as measured by the proxy). This analysis (which is untabulated) seems to suggest that most 
product switching is not induced by unavailability: the median proportion of true product 
switching is 83%, the average is 80%, the 25th percentile is 6 6 %, and the 75th percentile is 
98%.

Having described the important features of the purchasing behaviour of consumers, I now 
move on to specify the demand model and the proposed estimation procedure.

2.2 D em and M odel

This section introduces the utility function and the assumptions of the model. I study the 
demand for a temptation good in a setting similar to Hartmann (2006) where consumption 
creates a stock that diminishes over time. This creates in the consumer an incentive to 
variety-seek and thus intertemporal substitute consumption for the good. Unlike Hartmann 
(2006), I extend the analysis to address the differentiated nature of the good and examine 
not only substitution across time, but also substitution across products. In order to do so, I 
adapt Aguirregabiria (2 0 0 2 ) and Hendel and Nevo (2006a) multi-stage budgeting approach.
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2.2.1 T he Setup

There are I  consumers who are indexed by i. In each shopping trip t, consumer i chooses 
whether or not to purchase the good, and in case she decides to purchase, which product and 
size to buy. Let j  = 1 , . . . ,  J  index the inside product alternatives to the consumer, with each 
product alternative being (possibly) offered in a variety of different sizes x. Multiple-item 
purchases are included by expanding the choice set to allow for bundles. If in a particular 
trip a consumer buys, for example, both 64 oz. of Haagen-Dazs Vanilla Ice Cream and 16 oz. 
of Haagen-Dazs Chocolate Ice Cream, the purchase size is given by x = 80 oz. and product 
j  denotes the bundle of the two products. The no purchase choice (outside alternative) is 
indexed by j  =  0 .

2.2.2 Consum er Flow U tility

The consumer flow utility is expressed in terms of the indirect utility from each of the 
available alternatives. I begin by specifying the indirect utility from not purchasing (the 
outside option). I follow Hartmann (2006) and relax the common assumption of additively- 
separable utility in consumption by considering a frequency of purchase model where past 
choices affect current utility. In particular, I assume the utility of the outside option to be 
a function of the depreciated stock of past consumption:

^iOt  ( V i t i  &iOt) =  %it "b ( 1 )

where zit denotes the stock of past consumption of individual i at time t and e^t is a random 
shock to consumer choice. The depreciated stock of past consumption will, in full generality, 
depend on both the time elapsed since the previous consumption and the magnitude (or 
size) of past consumption. However, because the stock of past consumption is intangible and 
unobservable, I am required to infer it from (observed) past purchase choices. In order do 
so, I make the following assumptions.

A ssum ption  2 . 1  Consumption takes place at the time of purchase.

Assumption 2 . 1  is motivated by the temptation nature of the good. Since the data de
scription analysis has shown that consumers do not anticipate purchases to hold inventories 
for future consumption, inferring that individuals do consume their purchased ice cream 
before their next purchase occasion is not unreasonable. However, the actual time of con
sumption is unobserved. Due to the temptation nature of the good, I assume that the time
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of consumption coincides with the time of purchase. At least for most people, in line with 
what Erdem et al. (2003) argue, ice creams are technologically, but not practically storable 
over more than a few days. As discussed above, it may seem inconsistent to assume that 
consumption has a lasting affect that induces intertemporal substitution in purchases while 
assuming that the good held in inventory has a temptation feature. These assumptions are, 
however, consistent with observed behaviour, since consumers seem to depreciate the costs of 
goods they have in inventory (see Gourville and Soman (1998) and Prelec and Loewenstein 
(1998)).

A ssum ption  2 . 2  The stock of past consumption fully depreciates after a new consumption 
occasion.

Assumption 2 . 2  implies that the stock of past consumption does not accumulate across 
multiple consumption occasions and that only the last consumption occasion is relevant. 
The motivation behind this assumption is twofold. First, it significantly reduces the state 
space since, instead of keeping track of all past choices, only the last consumption (which is 
observable under Assumption 2 .1 ) is relevant to the decision of consumers. An alternative 
approach would consist of constructing an accumulated stock index, a strategy that would 
also have the advantage of a simplified state space. However, it carries a disadvantage related 
to the second justification for Assumption 2 .2 . Under this assumption, the initial stock of 
past consumption is observable and does not need to be inferred, which would not be true if 
I allowed the stock to accumulate across multiple consumption occasions.

One concern with the simplification implied by Assumption 2 . 2  is that it comes at a cost: 
the stock of past consumption is measured with error. Although measurement error is a 
potentially troublesome problem, it may not be too problematic here. The error introduced 
will, at best, underestimate the incidence of intertemporal substitution, rather than falsely 
induce finding intertemporal substitution. In order to understand why this is the case, note 
that because the estimated stock of past consumption will not exceed the true stock of past 
consumption, the utility of the outside option will be underestimated (in a setting where this 
alternative is the most common choice made by consumers). As a consequence, intertemporal 
substitution is underestimated.

A ssum ption  2.3 The stock of past consumption is independent of the quantity purchased.

Assumption 2.3 relates to a previous discussion since the descriptive analysis of the data 
has shown that the consumer interpurchase duration is not affected by the quantity pur
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chased. Even though consumers respond to price promotions by increasing their purchased 
volume, the effect on the duration to the next purchase is not significantly different from 
zero.

A consequence of Assumptions 2 . 1  to 2.3 is that only the time elapsed from the last 
purchase is relevant to infer the depreciated stock of past consumption. The utility of the 
outside option can then be specified as:

Uiot {Hu, £*of) =  {Ha) +  SiQti (2)

where Hit is the number of days since the last purchase occasion and <p {Hit) denotes the 
function that allows me to infer the (unobserved) stock of past consumption from (observed) 
past purchase choices.

I now move on to specify the indirect utility from choosing an inside alternative. I assume 
the utility to individual i in time period t from choosing a product j  of size x  > 0  that belongs 
to ha-i is.

H i j x t  { P j x t i  d j x t i  h i t —1) ^ i j x t )  =  ^ i j x t  { P j x t i  d j x t  •> h i t —l )  “b  ^ i j x t  ( ^ )

=  T ix  "b ® i P j x t  “b  £ i j t  "b f i i & j x t  ~b ^i^XLjxt  “b  TJiUijt—1 "b £ i j x t i

where hu~i indicates the set of products purchased by consumer i in her previous purchase 
event, 7 ix denotes the (dis)utility from making a purchase of size x , which could be inter
preted as a carrying cost associated with that particular purchase, pjxt is the price of product 
j  in size x, is consumer i taste for for product j  that could be a function of product 
characteristics (like, for example, size), ajxt denotes a vector of indicator variables that con
trol for other promotional activities, m jxt is an indicator variable that takes the value 1  if 
product j  denotes a multiple-item purchase, and Eijxt is a random shock to consumer choice. 
The variable yijt-i keeps track of the number of products that do not belong to the set h i t - 1 

if consumer i purchases product j  in purchase event t.

The term rji accounts for state-dependence effects. A positive rji implies that consumer 
i has a taste for variety-seeking, since switching to products different from those included 
in the hu-i set increases the consumer’s utility (see McAlister and Pessemier (1982)). The 
marketing literature provides several explanations for such variety seeking behaviour. Con
sumers may have an internal desire for change due to satiation or need for stimulation, 
or they may be balancing the different tastes within the household (see Kahn, 1995, for a 
comprehensive review of the variety seeking literature). A negative on the other hand,
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implies consumer i incurs in a switching cost, since switching to products that do not belong 
to the set hit- i  decreases the consumer’s utility (see Pollack (1970) and Spinnewyn (1981)). 
Klemperer (1995) provides a number of possible reasons for switching costs. Consumers may 
have shopping search costs and, therefore, do not reoptimize the set of products purchased 
at every purchase occasion, or they may keep repurchasing the same product as part of a 
learning process. I do not attempt to distinguish here between these alternative explana
tions. Rather, I focus on whether state dependence in fact exists and can be identified from 
observed purchasing behaviour. This approach is similar to Osborne (2007).

2.2.3 Consum er Dynam ic O ptim ization Problem

Consumers in each period decide if or not to purchase, and in case they opt to purchase, 
which product or products to choose. I make the following assumptions about how consumer 
expectations of the future affect current period decisions.

A ssum ption  2.4 Consumers are forward-looking with regard to their purchase decisions, 
but myopic with respect to their product choices.

The myopic assumption implies that consumers maximize their per-period expected util
ity when making their product choices and is motivated by solely pragmatism. A forward- 
looking consumer, who experiences state-dependence in her choices of product, considers the 
future consequences of those choices. The state space of the dynamic problem without this 
assumption would be extremely large, making the structural estimation computationally in
feasible. The development of a framework that incorporates such forward-looking behaviour 
into a feasible computational estimation procedure is a very interesting potential area for 
future research. That said, the myopic assumption seems a reasonable assumption about 
consumer formation of expectations with regard to product choice. While some consumers 
may plan the whole sequence of product decisions accounting for the consequence of state- 
dependence in future periods, I tend to believe such forward-looking behaviour to be rare. I 
should note, however, that Assumption 2.4 does not imply that dynamics are absent from 
product choice. As I discuss below, current product choices impact the expected future flow 
utility of the different inside alternatives and, as a consequence, influence the purchase size 
decision. In other words, even though consumers are myopic with regard to product choice, 
their decisions have dynamic implications for current and future purchase size choices.

Assumption 2.4 implies a multi-stage budgeting approach to model the purchase and 
product decisions of consumers (see Aguirregabiria (2002) and Hendel and Nevo (2006a)
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for similar dynamic applications of Gorman (1971)’s approach). The consumer’s expected 
discounted utility in purchase occasion t can therefore be represented as:

CO

V  (^it) =  m ax  8 E  ^   ̂  ̂m a x  ^   ̂ djXTdjj /xr^ i jxr  (PjxTi &jxTi h j r—li Ejjxr) (4)
l l i  X ^ U  Jr=t L

"f" diOTUiOT (Hir, SjOr) I'Sii) IT̂ ,

where su denotes the state at time t and 8 > 0 the discount factor. The state sit in each 
period consists of the vector of current prices and promotional activities for all products and 
sizes, the set of of products purchased by consumer i in her previous purchase event, the 
stock of past consumption as measured by the time since the last purchase, and the vector 
of random shocks to consumer choices, = (pt, at, hit- 1 , Hit, £u). For convenience, I define 
also the state space s£ that consists only of the vector of current prices and promotional 
activities for all products and sizes, and the set of products purchased by consumer i in her 
previous purchase event, s*t = (pt,at,hit- 1 ).

lb  and denote a set of decision rules mapping states, sit, to choices, dixt and d^jxU 
respectively, where dixt is an indicator variable equal to 1  if the choice of consumer i is a 
purchase of size x (with x = 0  standing for no purchase) and dij/xt is an indicator variable 
equal to 1 if consumer i chooses to buy product j  when purchasing size x. The product of 
the two indicator variables, dijxt = dixtdij/xt, denotes the purchase of product j  and size x. 
I assume that dijxt = 1.

At every state, s^ , the consumer faces the same infinite-horizon maximization problem. 
The value function V  (su) defined in equation (4) above is, therefore, the solution to the 
following Bellman’s equation:

V  (sit) = max F L .  max T . ,  dixtd{j/xtUijxt {jPjxti ^jxtihit—li £ijxt) (h)
d i x t

] max ^   ̂ d i x t d i j / x t Ui jx t  (P j x t i  d j x t i  h i t —i, £ i j x t )
x > 0  d i j / x t  j

diQtUiot (Hit, îot) “I- 8E [V (s^-i-i) |sj£, diXt, dij/xt] J •
In order to complete the specification of the demand model, I make the following assump

tions about the beliefs of consumers regarding the uncertain future prices (and promotional 
activities) and future utility random shocks.

A ssum ption  2.5 Consumers have rational expectations.
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The assumption of rational expectations implies that consumers take all available infor
mation into account in forming expectations. Though expectations may turn out incorrect, 
they will not be systematically wrong. In particular, Assumption 2.5 implies that consumers 
know both the true transition probability of prices and promotional activities, and the true 
distribution of the utility random shocks.

A ssum ption  2.6 The transition probability of prices and promotional activities are exoge
nous from the point of view of consumers. Furthermore, they follow a first-order Markov 
process.

Assumption 2.6 is consistent with the view that retailers inter-temporal price discriminate 
by playing mixed strategies that are exogenous from the point of view of consumers (Conslik 
et al. (1984), Sobel (1984), Varian (1980), Pesendorfer (2002)). This assumption implies 
that, conditional on the control variables, price and promotional activities are independent 
of the unobserved random shocks, which might be unreasonable if consumers stockpile and 
inventories are not accounted for. If prices are persistent over time and consumers anticipate 
purchases in order to hold inventories for future consumption, then unobserved inventories 
will be correlated with current prices causing an endogeneity problem. Another concern with 
this assumption might be seasonality. If the likelihood of a temporary promotion is affected 
by seasonality and it is not accounted for into the transition probability, then unobserved 
random shocks will be correlated with current prices causing (again) an endogeneity problem. 
However, as discussed in the previous section, both issues are probably not a concern here.

The first-order Markov process assumption reduces the state space and, although prob
ably inconsistent with equilibrium prices, it is not unreasonable with regard with observed 
consumers’ memory and formation of expectations. The assumption can be relaxed to allow 
higher order processes, with an increase in the associated computational burden.

A ssum ption  2.7 £iXjt is independently and identically distributed extreme value type 1.

Assumption 2.7 is motivated by pragmatism as it significantly reduces the computational 
burden. The main concern with this type of assumption might be to preclude correlation 
between products. This is not probably a concern here since the model accounts for product 
heterogeneity and product state-dependence. Incorporating correlation between the unob
served random shocks of different products can, in principle, be allowed, but at a significant 
increase in the computational costs of the estimation procedure.
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2.3 M axim um  Likelihood E stim ation

This section presents the estimation details. I estimate the parameters of the model via 
maximum likelihood. The standard approach would begin by specifying the probability of 
observing consumer z’s choices at time t, which is given by the following likelihood function:

kt (dit\sit) = TT . [Pr (dijxt = 1 ) |sit]dijxt, (6 )
XJ

where dit = {dijxt} denotes the vector of her choices. The likelihood of consumer i choices 
across all time periods would then be:

Li (fiilj • • • 5 ^il) • • • j djj’ISjO} djo) =  ^  lit (dif |Sjt) dF  (Sjf|s^_i, dn—\) , (7)

where si0 and dlQ denote the initial conditions, which are observed, and F  (sit|s^_i, dit- \)  is 
the transition probability.

The problem with the standard approach relates to the computation of Pr(d;Jlt =  1), 
the probability of observing consumer i purchasing product j  and size x  in period t, due to 
the dimensionality of the state space. In order to understand why this is the case, note that 
given the extreme value assumption on the unobserved utility random shocks (Assumption
2.7) this probability can be defined as:

P {d- l|s- ) ®xp {Uijxt {Pjxu ajxu hit—l) F &Ej \Y  (^it+i) dixt,
5 ^ 3/,k \ f ^ ik y t  i P k y t i  Q kyt i  h i t —1 )  “I” |S jf ,

where the summation is over all products from all sizes. The state space includes the vector 
of current prices and promotional activities for all products and sizes, the set of products 
purchased by consumer i in her previous purchase event, the stock of past consumption as 
measured by the time since the last purchase, and the vector of random shocks to consumer 
choices. Given the multitude of products and sizes available to consumers, the state space 
is extremely large for practical estimation of Pr (dijxt = l|s*t).

In order to simplify the estimation procedure, I propose a three-stage budgeting approach 
in the linies of Aguirregabiria (2002) and Hendel and Nevo (2006a).

S tep  1 Estimation of Product Preferences

I begin by noting that Pr (dijXt — l|sit) can, in full generality, be decomposed into the 
product of two components: the probability of choosing product j  conditional on the size x
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purchased and the probability of choosing a purchase of size x :

Pr (dijxt — — P r {dij/xt — d{xt) P r (dixt • (*̂ )

The myopia of consumers with regard to product choice (Assumption 2.4), implies that con
sumers maximize their per-period expected utility when making their product decisions. As a 
consequence, Pr (dij/xt = l|s ;t , dixt) can be computed without solving the full dynamic prob
lem. Furthermore, given the extreme value assumption on the utility shocks (Assumption
2.7), that probability can be defined as:

( J  1 I„ J \ eXP feijxt (Pjxt, ajxt, hit-l)}Pr [ d i j / x t  =  lp it, d i x t )  =  ^  tz -f------------- r yf l iLU
Lfc eXP [Uikxt \Pkxt, CLkxt, hit-i)\

_  exp (7 ^  +  aiPjxt +  €ijt + PlaJxt +  K m jxt +  TO jt-i)
^XP ('l i x  “I” ®i Pkxt  “1“ £ikt  4“ Pi&kxt  "I" ^i lTlkxt 4“ ViVikt—l)

Pr (dij/xt 11Pxt > ®xt 5 hn— 1 ) ?

where the summation is now only over the products of size x.

The parameters in UijXt (Pjxt> a-jxt, ha-i) - with the exception of 7 ix that cancels out - can 
therefore be recovered by maximizing the likelihood of consumer product choice conditional 
on the size purchased. Let L f epl (hn : . . . ,  dij/x 1 , . . . ,  dy/xrl^io) denote the likelihood
of consumer z’s conditional choices across all time periods:

L f epl ( h a , h a - .  u  di j / z l , d i j / xT\hm) =  T i n ,  [Pr =  1 IP**> a- ‘> >J/X
(1 1 )

where hi0 denotes the initial set of products purchased by consumer i, which is observed. 
Taking the product of this likelihood function across consumers yields the likelihood function 
to be maximized in step 1 :

i  =  n ,  L? epl - her-u<h/*i> • • • > < W M  • (12)

In making the utility of choosing a given product state-dependent from the set of products 
bought in the previous purchase occasion, hit- 1 , I introduce an identification problem since 
unobserved consumer heterogeneity may confound the inference of true state-dependence 
effects. As Heckman (1981) points out, if households have different preferences "and if these 
differences are not properly controlled, previous experience may appear to be a determinant 
(...) of future experience solely because it is a proxy for temporally persistent unobservables
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that determine choices."

State-dependence is usually identified by testing the null hypothesis that the current 
choice, after accounting for consumer-level heterogeneity, is independent of the previous 
choice. One approach to introduce heterogeneity is to include observed consumer hetero
geneity. This approach assumes the existence of a finite number of types or segments, with 
each type consisting of a set of consumers with identical overall choice preferences (Ka
makura and Russell (1989)). As the number of types assumed increases, so will the degree 
of heterogeneity accounted for under this approach. Goldfarb (2006) presents the extreme 
case where the number of types exactly coincides with the number of consumers. He makes 
use of a rich dataset containing nearly 1,000 observations per household to estimate a fully 
flexible model of consumer preferences, by allowing for consumer-specific regressions.

Another approach is to introduce heterogeneity by considering consumer preferences to 
be realizations of random variables. These random variables are assumed in the literature to 
follow a multitude of distributional assumptions. For example, Chintagunta et al. (1991), 
Gonul and Srinivasan (1993) and Keane (1997) consider preferences to follow a continuous 
probability distribution, while Jain et al. (1994) consider a discrete probability distribu
tion approximation. An intermediate assumption is presented by Dube et al. (2006) that 
considers a flexible semi-parametric, but continuous model of consumer heterogeneity.

The estimation procedure in step 1 can not allow for random effects in the lines of 
the latter approach. If consumer preferences are assumed to be realizations of random 
variables that follow a probability distribution (either parametric or semi-parametric), then 
computing Pr (dy/xt =  l\pxt, ^xt, hit-i) requires integration over the assumed distribution. 
Although conditional on the type of consumer, this probability will still be independent 
of the dynamic purchase decision, computing this probability unconditional on the type of 
consumer requires integration over the distribution of types conditional on the size bought. 
And working out this distribution requires solving the dynamic problem.

Consumer-level heterogeneity can, however, be allowed in the lines of the former ap
proach: either by using observable household demographics to segment consumers into types 
or, in the lines of Goldfarb (2006) and Hendel and Nevo (2006a), by considering household- 
level product and state-dependence fixed effects. One concern with the latter solution might 
be the dimensionality of the parameters to estimate. However, since the likelihood function 
in equation (12) is well behaved, the estimation of a considerable number of consumer-level 
fixed effects is feasible and involves very slight increases in computational costs. Furthermore, 
the consumer-product fixed effects need only to include those products that belong to each
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consumer shopping history. Consumer-level product preferences can not be estimated for 
products never purchased by the household. This reduces the number of consumer-product 
fixed effects substantially since each household typically purchases a relatively small number 
of products when compared with the full supermarket assortment. Another concern might be 
the standard incidental parameters problem. However, given the large number of consumer 
shopping trips in the typical scanner panel datasets, this issue is probably not a concern and 
therefore assuming T  grows asymptotically is not unreasonable.

S tep  2 Estimation of the Inclusive Values Transition Process

Having outlined the procedure to estimate the probability of choosing product j  condi
tional on the size x  purchased, I now move on to specify the two remaining steps required 
to estimate the probability of choosing a purchase of size x.

The consumer decision with regard to purchase size (whether and what quantity to 
purchase) is the solution to the dynamic problem characterized by Bellman’s equation (5). 
However, instead of solving this problem, I follow Hendel and Nevo (2006a) and consider 
a simplification of the state space that makes use of the extreme value assumption on the 
utility shocks (Assumption 2.7). This simplification involves summarizing a subset of the 
consumer state space, s*t = (pt,at ,h it- 1 ), into a single index per size, an index representing 
the utility expected by the consumer, before seeing the realization of the utility shocks, from 
all products of each size. Under Assumption 2.7, this expected utility is given by the inclusive 
value wixt (McFadden (1981a)):

wixt =  log exp (oiipkxt +  £ikt +  akxt +  A»mfcxt +  ViVikt-i) , (13)

which can be computed with the parameter estimates from step 1.

In order to show that the original dynamic problem can be written in terms of the 
simplified state space, I make the following additional assumption, where denotes the 
vector of inclusive values at time t:

A ssum ption  2.8 F  (witlsjjlj) can be summarized by F {wit\u)it- \ ) .

Solving the consumer dynamic programming decision requires solving the associated Bell
man’s equation, which in turn involves working out the expectation of the value function. In 
order to compute such expectation, I need to specify the transition probabilities for the dif
ferent state variables. Assumption 2.8 simplifies these processes. The motivation is twofold.
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First, the transition probabilities of prices and promotional activities from a multitude of 
different products of the same size are summarized into the transition probability of a single 
index. Second, it also simplifies the transition probabilities of product state-dependence. Al
though consumer product choice is, by Assumption 2.4, myopic (which means that current 
product choices do not impact future product choices), it does not mean that dynamics are 
absent. Current product choices impact the expected future flow utility of the different inside 
alternatives and, as a consequence, impact the expected future inclusive values that influence 
the purchase size decision. In other words, even though consumers are myopic with regard to 
product choice, their decisions have dynamic implications for current and future purchase size 
choices. Assumption 2.8 summarizes the transition probabilities regarding product choice 
into the inclusive values processes. Because product-choices are consumer-specific, the in
clusive values and their transition processes will necessarily be consumer-specific, requiring 
that the Bellman’s equation is solved separately for each consumer

One concern with Assumption 2.8 might be that shopping trips involving different prices, 
promotional activities and/or previous period product choices can be reflected in a same 
inclusive value, which in turn yields the same future transition probabilities. This restriction 
can, to some extent, be relaxed, although at a substantial computational cost.

S tep  3 Estimation of the Intertemporal Effects of Consumption

Step 3 addresses the computation of the probability of choosing a purchase of a given 
size x. Not by solving the dynamic problem characterized by Bellman’s equation (5), but by 
solving a simplified problem, where the subset of the consumer state space, s*t, is summarized 
into the vector of each single size indexes, wa. In this simplified problem, the consumer 
observes only Hit and wit and decides whether and how much to purchase.

I now move on to specify the details of this simpler problem. The utility of consumer i 
in time period t is given by:

U m * £ m )  =  <P ( H u )  +  £ io t ,  i f  x  =  0  ( 1 4 )

^ i xt  ( ^ i x t i  £ i x t )  =  T ix  "b  W i x t  “I-  ^ ix t i  X  >  0 ,

where, as before, x = 0 stands for no purchase. The consumer is assumed to be forward-
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looking and, therefore, to maximize the expected discounted utility:

OO
V s t e p 3  j £ i t )  =  IH&X  ̂5  E  ^   ̂ d i X T l l ^  T  (W {XT, ( ^ )jjstep3 a— |_Z—̂X>Q

T = t

+  diOrU^T {HiT, £iOr) \HiU Wit, Eit, I lf'Bp3] ,

where n f ep3 denotes a set of decision rules mapping states to choices, dixt. The Bellman’s 
equation associated with the consumer’s simpler dynamic problem is given by:

Vstep3 (Hiti'Witi £it) =  max |  dixtUixt (Wixti ^ixt) "h  diotUiQt (Hit)E-iOt) ( 1^ )dixt L1 *x>0

SE [V̂ fep3 VJit+i, |Hit) ‘Witi ^iti djxt] ̂  •

It remains to be shown that the probability of purchasing size x  computed from the 
simplified problem is equivalent to the one computed from the original problem. Establishing 
this equivalence involves two steps. In the first step, I show that the Bellman’s equations 
associated with the original and simplified problems have the same solution. The second 
step involves actually showing the equivalence of the probability of purchasing size x from 
the two problems.

The two-step proof adapts the one presented in Hendel and Nevo (2006a) to this variety- 
seeking framework.

Proposition 2.1 The Bellman’s equations associated with the original and simplified prob
lems have the same solution.

Proof. I begin by addressing the original dynamic problem. The Bellman’s equation asso
ciated with this problem is given in equation (5), reproduced here for convenience:

V  (sjt) max \ ^   ̂ max diXtdijjxtUijxt {jpjXti cijxti hit—h £{jXt)
d i x t  f  d i j / x t  ' j

+ diotUm (Hit, Eiot) +  SE  [V (sif+i) |sif, dixt, d^/xt] ^ •

Given Assumption 2.7, the expected value of V  (s^+i|s^, dixt, dij/xt) will be a function of 
Hit,s*t , diXt and dij/xt. Recall that s*t denotes the state space that consists only of the 
vector of current prices and promotional activities for all products and sizes, and the set of 
products purchased by consumer i in her previous purchase event. Let V e {Hit, s*t) denote 
such function to simplify notation: V e (Hit, s*it) = E  [V (sit+x) \sit, dixt, dij/xt\ .
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Computing the expected value of V  (sit) conditional on the information available at time 
t — 1  yields:

V [Hu—1 5 I i max \ max \   ̂ diXtdij/xtUijXt (Pjxt, &jxti hit—h Sijxt) r
y  ^ d i x t  ^ x > 0  d i j / x i  j  J

"I- diotUiot (Hu, ^iot) “I- dV (Hu, dF  (s^ |s^ _ i, dn—i ) .

The myopic assumption with regard to consumer product choice together with the extreme- 
value assumption allows this expected value to be re-written in terms of the inclusive values 
defined in equation (13):

V e (H u-u s - t - i) =  J lo§ { E I>0 exp (lix +  Wixt + 6ye (Hiu
+  e x p  [ p  (Hu) +  SVe (Hu, 4 ) ] }  d F  ( 4 1 4 - n  ^ - 0  •

where the expression inside the integral represents integration over the vector of random
utility shocks. From the analysis of the above equation, it is possible to conclude that

can, under Assumption 2.8, be iterated using the following Bellman’s equa
tion rewritten in terms of wt instead of 4 - i :

V e (Hu-!, Wit-!) = J log { E x>0 exp fri* +  wixt +  5Ve (Ha, ^it)]

+  e x p  [p (Hu) +  $Ve (Hu, W i t ) ] }  dF (wit\wit-!, dit_ i ) .

I now address the simplified problem. The Bellman’s equation associated with this prob
lem is given in equation (16). After substituting for u ^ 3 (Hit, £iot) and u ^ 3 (wixt: SiXt) 
yields:

Vs t e p 3 (Hu, wit, s it) =  max { V " dixt ( j ix +  wixt +  £ixt) +  di0t [p (Hit) +  £0t\
d i x t  I * — 'x > 0

+  d E  [V ^ ep3 ( H i t - (-1 5 W n + ! ,  £ i t + l )  \ H a ,  W n , S i t ,  d i x t ] }  •

Taking expectations given the information available at time t  — 1 and integrating out the 
utility random shocks making use of the extreme-value assumption (Assumption 2.7) allows 
me to write the expected value, Vsetep3 (Hit- 1 , wit- 1 ), as:

V step3 ( H H- 1 > W it- 1) =  J log  { E x>0 eXP h i x  +  W ixt +  SVe ( H i t ,  W i t )]

+  exp [(p (Hu) +  dVe (Hu, wu )]}d F  (wu | Wit—i , dn—i ).
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Thus, as the proposition claims, the solution to the Bellman’s equations associated with 
the original and simplified problems is the same. ■

I now address the second step of the proof, showing the equivalence between the prob
ability of purchasing size x  computed from the original problem to the one computed from 
the simplified problem.

Proposition 2.2 Pr (dixt =  1|H it , s*t) =  Pr (dixt =  1|H it, w it) .

Proof. The probability of purchasing size x  computed from the simplified problem is given 
by:

Pr (dixt =  l \Hit,wit) =  exp[7iI +  ^ ,  +  ^ ( g , , ^ ) ] -------
M i0t  +  E y > o  e x P  b i y  +  w iy t  +  s y e  ( # « >  w i t ) ]

where for notational simplicity M i0t = exp [ip {Hu)  +  5 V e { H u , w u ) \ .  If, on the other hand, 
this probability is computed from the original problem, it is given by:

0  , , 1l t7 M E ; exP { % r t(< * )  +  8 V e {H u ,s* t )}
Pr {dixt = 1| Hit,s it) =

M iOt +  E y,k  e X P  i U ik y t  { S *i t ) +  SVe { H i t ,  s * t ) }  ’

where M*ot = exp [</? (Hit) -I- 5Ve (Hit, s*t)]. The summation in the numerator is over all 
products of size x , and the summation in the denominator is over all products of all sizes. 
As discussed in Proposition 2.1, V e {Hit,s*t) can, under Assumption 2.8, be re-written in 
terms of wit instead of s*t. This implies that the expected value function depends on the 
purchase size chosen, but not on the particular product choice. Furthermore, M iot =  M *ot. 

As a consequence, the above probability can be decomposed and simplified as follows:

Pr {dixt = 1| Hiu s*t)In iU i>it) ~
M ix t  exp { a t i P j x t  + Ujt +  P i a j x t  +  \ m jxt +  TO jt-i)

A/fOf +  E y > 0  M i y t  E f c  e x P  {pt-iPkyt  "I-  £ ik t  P i a k y t  “I" \ ' r n kyt  V i V i f a - l )

Mixt exp | log exp ( a i p j x t  + £ijt +  ^ a jxt +  Ai m j x t  + 77i2/ijt-i)] }

Miot +  E y>o M iyt exp {log [ £ fc exp {aipkyt +  £ikt +  (3takyt +  \ m kyt +  rjiytkt-i)] }

  exp {wixt +  Mixt)______

M i0t  +  E y > 0  e x P  ( w i y t  +  M i y t )

= exp [jix +  wixt +  8Ve {Hu, wit)]

M i o t  +  E y > 0  e X P  b i y  +  W iy t  +  S y e  * " « )]

-  Pr (d- , -  in,APr {dixt — 1|Hu, Wu) i 

where Mx = exp \^lx +  8Ve {Hit, wit)}.
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Thus, as the proposition claims, the probabilities computed from the original and sim
plified problems are equivalent. ■

Having established the equivalence of the probability of a purchase of size x  between 
the two problems, I move on to specify the estimation procedure. I estimate the remaining 
parameters by maximizing the likelihood of consumer purchase choices. Let the likelihood 
of consumer z’s purchase choices across all time periods be denoted by:

L fep3 (H, u H{T, e k i , . . d,xT\IIt0) =  [Pr (d,xt =  1| Hit, wit)]d‘“ dF {wit\wit- i , dU- i ) ,
(17)

where Hi0 denotes the initial stock of past consumption as measured by the time since the 
initial purchase.

In making the utility of purchasing a given size state-dependent from the duration since 
the last purchase, I introduce an identification problem similar to the one discussed previ
ously for product switching: unobserved consumer heterogeneity may confound the infer
ence of true state-dependence effects. The identification problem arises from the fact the 
interpurchase duration may be long either due to a low taste for the good or a strong state- 
dependence effect. In order to control for unobserved heterogeneity, I assume preferences 
vary across consumers using a random effects specification:

\ i = \  + Tvi, (18)

where A* denotes the vector of the remaining parameters to be estimated (and includes the 
duration dependence and the size-specific (dis)utilities parameters) and Vi is a independently 
and identically distributed standard normal. The vector A denotes the mean values of the 
different coefficients, while T denotes the Cholesky decomposition of the variance-covariance 
matrix, E, which for computational simplicity is assumed diagonal.

I should note that although one may argue that consumer-specific inclusive-values already 
control for unobserved consumer heterogeneity in their taste for the good, a random effects 
specification for the size-specific (dis)utihties is required in practice. The justification relates 
to an unfortunate property of the conditional logit model used in step 1. The model is 
unable to estimate an intercept since it plays no role in determining the product-choice 
probability conditional on the size purchased. As a consequence, in order to estimate the 
consumer-level product preferences in step 1, a normalization is required for each consumer 
and size (since including dummy variables for all products in the conditional choice would 
amount to estimate a size-specific intercept). The random effects specification for the size-
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specific (dis)utilities in step 3 is instrumental in making the inclusive values across sizes and 
consumers, each estimated using a different normalization coimparable.

W ith the introduction of the random effects, the livelihood of consumer z’s purchase 
choices across all time periods is now given by:

L f ep3 ( Hi , d i t \ Hi0) =  / n t n ,  [p r  (d“ ‘ =  w a F  M  d F  K K - i .  ‘f e - O  •

(19)
I follow Pakes (1986), Pakes and Pollard (1989), and Mc£adde3n (1989) and draw ns pseudo
random consumers to approximate the integral using a (smooth) simulator estimator:

L ? ep3 ( Hi , d ix\ Hi0) =  / n  n  [ —  Y .  =  d F ( v i ) d F ( w i t \wit. u dit^ ) .

(20)
Taking the product of this likelihood function across consumers yields the likelihood function 
to be maximized in step 3:

i  =  n . L f ep3(tfi,<4r|#iil)- (21)

2.3.1 Bellm an’s Equation Solution

The structural estimation is based on Rust (1987)’ s algorithm that nests the solution of the 
consumer’s dynamic programming within the estimation parameter search. In this section, 
I address the computational details of the strategy used to solve the functional equation 
(16) associated with the consumer’s simpler dynamic problem. One strategy to solve dy
namic programming problems is by discrete approximation. In this type of approach, the 
value function is solved for numerically by discretizing continuous state spaces into a finite 
number of n grid points. However, in high-dimensional problems, discretization results in 
a curse of dimensionality, since n increases exponentially fast in the dimension of the state 
space. Another approach is to solve dynamic programming problems by parametric approx
imation, where the value function is approximated by a smooth parametric function with k 
unknown parameters. The latter approach is superior to  the former whenever the number 
of parameters k required to obtain a good global approximation (according to some metric) 
under parametric approximation is smaller than the value n of grid points required to obtain 
a comparable fit by discrete approximation.

I follow Hendel and Nevo (2006a) and solve the functional equation (16) by using value 
function parametric approximation with policy function iteration in the lines of Benitez-
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Silva et al (2000). Policy function iteration consists of an alternating sequence of policy 
improvement and policy valuation steps:

Policy Valuation

The policy valuation step computes the value function, Vs t e p 3  {Hit, wit, £it), for a given 
initial guess of the consumer decision, dit. Under a parametric approximation approach, the 
value function is approximated by a linear combination of k basis functions (pl5. . . ,  pk):

Vstep3 (.Hit, Wit, £it) — ^  ^  @kPk {Hit, Wit, &it) • (22)

Substituting Vs t e p 3  {Hu, Wu, En) in functional equation (16) by the polynomial approximation 
yields a linear equation in k unknown parameters 9:

^  @kPk {Hjt, Wit, £jt) ^   ̂ djxtUjxt {Wixt, &ixt) diotUfflt {Hn,EiQt) (23)

~t” S J" ^  ^  ®kPk {Hjt+i, Wjt+i, Ejt+i) dF  ( t̂t-i-i) dF {wjt-\-i\wjt, djt) .

This can be solved by ordinary least squares when evaluated at a finite set of m > k sample 
points in the state space (Hit,Wit,Eit). In order to understand why this is the case, define 
the (m x k ) matrices r and Er, as well as the (m x 1) vector u with the following elements:

'Emk Pk {Hm,Wm, EffiJ (24)

Hrmk J '  Pk {Hm-\.\, wm+i, £m+i) dF  (fjn+i) dF {wm+\|u7m, dm)

^  '  dxm'U'xm {Wxm, ^im) “1“ ^Om̂ Om {Hm, £0m) •* ■* 1

Equation (23) can then be re-written as a system of linear equations: u = X9, where 
X  = {r — 5Er). The solution to this system of equations, which is given by 9 = {X'X)~l X 'u, 
can then be used to evaluate the approximated value function.

Policy Improvement

The policy improvement step updates the guess of the consumer decision, dit, using the 
value function approximation from the policy valuation step. The updated consumer decision 
(purchase size) can be performed analytically by maximizing the sum, evaluated at the same
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m  sample points, of current utility and the expected discounted future utility:

dxm arg max s \  (^im 5 ^im) dom̂ Om i^rni ^Om) (25)
' i > 0

"t" ^  ^  @kPk {Hm+1, Wm+U £-m+l) dF  (^m+l) dF  |uJm, dm) ̂  .

The two steps are then iterated until convergence of the parameters of the value function 
approximation. The consumer decision that it converges to, and the corresponding value 
functions are approximated solutions to the Bellman’s equation. See Puterman and Shin 
(1978) for sufficient conditions for policy iteration to converge in continuous state spaces.

2.3.2 Identification

In this section, I provide an informal discussion of identification. I begin by addressing the 
identification of step 1 parameters. The identification of the non-dynamic product preference 
parameters is standard, with the coefficients being identified through the effect of current 
period’s variation in those exogenous variables on current period’s probability of choosing 
a given product. Temporary price and non-price promotions provide variation to identify 
sensitiveness to price and other promotional activities. The (dis)utihty from multiple-item 
purchasing is identified by the share of multiple-item purchases across trips. Consumer-level 
product effects are identified from variations in consumer shares across products.

Product choice state-dependence is identified, as argued by Chamberlain (1985), through 
the effect of previous period’s variation in exogenous variables on current period’s probability 
of choosing a given product. If a temporary promotion for product j  at time t — 1 decreases 
the probability of a given consumer choosing product j  at time t, then the consumer may 
be a variety-seeker. If, on the other hand, such promotion increases that probability, the 
consumer may be incurring in switching costs. Given a long enough consumer-level price (and 
other promotional activities) time series, variation in previous period’s promotions identifies 
product-choice state-dependence.

Step 2 parameters are identified through the effect of previous period’s variation in each 
consumer inclusive values on her current period’s inclusive values.

I now move on to address the identification of step 3 parameters. The purchase size coef
ficients help fit the infrequent incidence of purchase across observed trips and are naturally 
identified from each consumer’s propensity to purchase the different sizes. The intertemporal
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effect of purchasing on the utility of the outside alternative is identified by each consumer’s 
interpurchase duration in days. Because in a discrete choice demand model only the relative 
utilities are identifiable, an identifying normalization is required. I normalize the utility of 
the outside option to zero when Hu < 1. Finally, I note that in this frequency of purchase 
model, the discount factor is not identifiable. I assume it to equal 0.995.

2.4 E m pirical A nalysis

2.4.1 Step 1: Estim ation of Product Preferences

Step 1 estimates product preferences by maximizing the likelihood of observing the sequence 
of household product choices, conditional on the size purchased. The choice set includes, 
therefore, only products of the same size as the actual purchase. Table 2.7 presents the 
results of this analysis, with the different columns reporting distinct specifications that vary 
on the covariates included. Specification (1) includes as explanatory variables price and a 
multiple-item purchase dummy variable. The price coefficient is of the expected sign and 
statistically significant suggesting that the average household is price sensitive. The multiple- 
item coefficient is not statistically different from zero which seems to indicate that consumers 
product choice pattern when purchasing a single-item does not significantly differ from when 
they purchase multiple-items. Specification (2) controls for promotional activities by includ
ing feature and display dummy variables as additional covariates. The coefficients on these 
controls are positive and statistically significant suggesting that consumers do respond to 
promotional activities. However, the comparison of the price coefficient in the two specifica
tions is suggestive of an endogeneity issue. Prices are negatively correlated with promotional 
activities since promoted products sell at lower prices and, as a consequence, not including 
these controls will overestimate consumer price sensitiveness. In specification (3), I include 
product dummy variables in order to control for market-level unobserved product character
istics. The product dummy variables are interacted with size so that the preference for each 
specific product is proportional to the package size purchased. The effect of including these 
controls on the price coefficient is again suggestive of an endogeneity issue. Products with 
higher unobserved characteristics sell at higher prices inducing a positive correlation that 
will underestimate consumer price sensitiveness if not accounted for.

Specification (4) addresses the question of whether households incur in switching costs or 
in variety-seeking by including as covariate the number of products that, in each alternative 
choice, do not belong to the set of products bought in her previous purchase event. The
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T a b l e  2.7
Step 1: Estimation of Product Preferences*

(1) (2 ) (3) (4) (5) (6) (7)
Price -0.67 -0.56 -0.67 -0.66 -0.54 -0.54 -0.54

(0.06) (0.07) (0.08) (0.08) (0.12) (0.12) (0.12)
Price X  Single -0.06 -0.06 -0.07

(0.16) (0.16) (0.16)

Price X Children 0.01 0.01 0.01
(0.16) (0.16) (0.17)

Feature 0.54 0.52 0.54 0.78 0.78 0.79
(0.13) (0.13) (0.12) (0.15) (0.15) (0.16)

Display 0.61 0.63 0.63 0.72 0.73 0.76
(0.15) (0.15) (0.15) (0.16) (0.16) (0.17)

Multiple-item -0.47 -0.73 -1.17 -1.06 -3.51 -3.50 -3.94
(0.40) (0.45) (0.57) (0.56) (1.00) (0.99) (1.18)

Multiple-item x Single 2.71 2.74 2 .8 8

(1.30) (1.30) (1.55)

Multiple-item X Children 2.65 2.62 3.01
(1.20) (1.21) (1.39)

Product State-Dependence -0.39 0.22 0.21
(0.08) (0.09) (0.11)

Product State-Dependence X Single -0.07
(0.21)

Product State-Dependence x Children 0.16
(0.18)

HH Product State-Dependence Dummy Variables yes
Product Dummy Variables yes yes
HH Product Dummy Variables yes yes yes
Pseudo R2 0.04 0.05 0.15 0.15 0.24 0.24 0.26
*  An observation is a purchase instance by a household. Standard errors clustered by households in parentheses.



coefficient is negative and statistically significant suggesting that the average consumer in
curs in a cost when switching products in successive purchase occasions. The problem with 
this specification is that unobserved household heterogeneity will confound the inference of 
true state-dependence effects. The identification problem arises because a consumer may re
peatedly purchase a particular product either because of a strong unobserved, idiosyncratic 
preference for it or because she dislikes switching. In order to identify true state dependence, 
I control for household heterogeneity in specification (5). I introduce heterogeneity in two 
ways. First, I interact price and multiple-item covaxiates with two observable household de
mographics: a dummy variable that takes the value 1 if the household is of a single person, 
and another if children under the age of 18 are present in the household.6 Second, I introduce 
household-level product dummy variables. I assume, as before, preference for each specific 
product to be proportional to the package size purchased. No dimensionality problem arises 
with this introduction because (i) I only consider the products that belong to each household 
shopping history (I can not expect to estimate household product preferences for products 
never purchased by the household), (ii) each household buys a relatively small number of 
products, and (Hi) has a relatively long time sequence of purchases. Most demographic in
teractions on price are statistically insignificant suggesting observable characteristics are not 
important in explaining price sensitiveness. Demographic interactions on multiple-item pur
chases are estimated to be statistically significant and positive. While this result is expected 
for households with children, it is unexpected and hard to interpret for one person house
holds. Finally, most household-level product dummy variables are statistically significant, 
with the introduction of such heterogeneity generating substantial changes in the state- 
dependence coefficient. Households are now estimated to have an average positive taste for 
variety-seeking. These results seem to indicate that controlling for household heterogeneity 
matters. Specification (6) and (7) introduce heterogeneity in the variety-seeking/switching 
cost coefficient. In specification (6), I interact it with observable household demographics, 
with the interactions being statistically insignificant, while in specification (7) I allow for 
full household heterogeneity in the coefficient by interacting it with household-level dummy 
variables. Except for three households, all coefficients are statistically significant. Figure 2.4 
plots the coefficient frequency distribution. Most of the households have a taste for variety, 
but the magnitude is relatively small. Approximately 18% of the consumers actually incurs 
in a cost when switching products in successive purchase occasions, while approximately 21% 
are heavily variety-seeking.

61 also estimated several specifications that included interactions with household income. Since the results 
were never significant, I do not consider them here.
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F ig u r e  2 .4
Frequency Distribution for Product State-Dependence Coefficient

Q2Q

o .ia

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

OjOO 1 i i i i i i i i n  i t- t i  n  i i i i n  i i i iT r fUU
-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8

Product State-Dependence Coefficient

10 12 14 16 18

2.4.2 Step 2: E stim ation of the Inclusive Values Transition Process

Step 2 estimates the transition process for the inclusive values, which were computed for 
the purchase sizes observed in the data (16 oz., 32 oz., 64 oz., 80 oz., 128 oz. and 160 oz.) 
using step l ’s estimates from specification (7) above. I follow Hendel and Nevo (2006a) and 
assume the following first-order Markov process for the transition probability of the inclusive 
values:

W ixt — @ix0 4" /  _ Qixs'W ist— 1 4" S ix ti  ( 26)

where the summation is over the set of package sizes =(16 oz., 32 oz., 64 oz., 160 oz.) 
and qixt is distributed normal with mean zero and standard deviation oix. Multicollinearity 
precludes the transition process of being defined over the set of all possible purchase sizes 
(since consumers that are observed purchasing 80 oz. and 128 oz., do so by buying multiple 
items: 80 oz. =  16 oz. +  64 oz. while 128 oz. = 64 oz. +  64 oz.). Finally, the transition 
process parameters are index by i because the inclusive values are consumer-specific.

The assumption that the inclusive values are normally distributed may seem somewhat 
problematic given the evolution of the state variables they summarize. In order to test this 
assumption, I performed the Shapiro-Wilk W  test for normality on the different consumer- 
level inclusive values. In the untabulated tests, the null hypothesis that the inclusive values
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Table  2.8
Step 2: Estimation of the Inclusive Values Transition Process*

Panel A Panel B
Same Process for All Consumers Consumer-Level Process

^ 3 2 t - l L ^ 6 4 f - l ^ 1 6 0 f - l ^ 1 6 f - l ^ 3 2 t - l ^ 6 4 f - l < ^ 1 6 0 f-l

^ 1 6 t 0.97 0.14 -0.05 0.54 0.21 -0.19 -0.20 0.36
(0.09) (0.06) (0.03) (0.08) (0.34) (2.61) (6.51) (3.20)

^ 3 2 f 0.02 1.08 -0.09 0.15 0.31 0.08 0.08 0.11
(0.11) (0.07) (0.04) (0.10) (1.06) (0.21) (5.30) (4.25)

^ 6 4 0.60 -0.27 0.96 0.00 -0.02 -0.01 0.25 0.01
(0.08) (0.05) (0.03) (0.07) (0.43) (0.11) (0.26) (0.06)

^ 8 0 f 2.21 -0.46 0.48 0.27 0.17 -0.19 -0.05 0.39
(0.12) (0.07) (0.04) (0.10) (0.56) (2.61) (6.56) (3.41)

^ 1 2 8 f 0.63 -0.28 1.76 0.16 -0.03 -0.02 0.45 0.02
(0.08) (0.05) (0.03) (0.07) (0.43) (0.20) (0.47) (0.13)

^ 1 6 0 f 0.33 -0.10 -0.03 1.24 -0.00 0.00 0.12 0.11
(0.07) (0.04) (0.02) (0.06) (0.00) (0.01) (5.98) (0.25)

*  A n observation is a shoppping tr ip  instance by a  household. Also included are a  constan t and  size 
ind icato r variables to  control for unavailability  of a  package size a t a given shopping trip . Panel A 
displays point estim ates and s ta n d a rd  errors in parentheses. P anel B displays th e  m ean and  stan d ard  
deviation  across th e  different consum er estim ates.

axe distributed normal is accepted only for a small fraction of consumers: 16 oz. (3%), 32 
oz. (3%), 64 oz. (17%), 80 oz. (3%), 128 oz. (13%) and 160 oz. (1%). This assumption can 
be relaxed, although with a substantial increase in the computational burden.

Table 2.8 reports the estimated transition probabilities. Table 2.8, Panel A presents the 
point estimates (and associated standard errors) under the constraint that all consumers 
face the same transition probabilities. The results suggest that the lagged inclusive value of 
own size (or of the two own sizes for those cases that involve multiple-item purchases) is the 
most important in predicting its future variation. In Table 2.8, Panel B the estimated tran
sition probabilities are consumer-specific, with the results displaying the mean and standard 
deviation across the different consumer-level estimates. There is evidence of substantial het
erogeneity across consumers, as suggested by the large standard deviations, which supports 
the option for the individual-level transition processes.

2.4.3 Step 3: Estim ation of the Intertem poral Effects of Consump
tion

Step 3 maximizes the likelihood of observing the sequence of consumer purchase choices 
after solving the consumer-specific Bellman’s equations associated with the simplified dy
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namic programming problem. Even though I solved the Bellman’s equation separately for 
each consumer, the random effects specification for the parameters allowed me to pool the 
likelihoods across consumers. As discussed previously, I approximated the value function 
by a linear combination of k basis functions (p1?. . . ,  pk), with the approximation basis used 
being a polynomial in the natural logarithm of the duration in days since the consumer’s 
last purchase and in the levels of the remaining state variables.

In order to estimate the model, I have to specify a functional form for ip (Hu). I assume 
the following:

V? (Hu) = «o In (Hu) +  KiH7it,

where H7it denotes an indicator variable that takes the value 1 if the shopping trip at time 
t corresponds to the consumer seven days cycle as suggested by the purchase hazard rate.

Table 2.9 reports the results for different specifications of step 3. In specification (1) I do 
not allow for heterogeneity or forward-looking behaviour. The state-dependence results sug
gest that the utility of the outside option decreases with the duration since the last purchase, 
which supports the intertemporal substitution argument. This result should not come as a 
surprise, despite the opposite suggestion from the raw data (recall the slight downward trend 
of the hazard rate), because the consumer-specific inclusive values do control in some ex
tent for unobserved heterogeneity. The coefficient on the indicator variable H7a is negative, 
which suggests that once every 7 days, the value of the outside option decreases. I interpret 
this result as illustrating potentially reduced transaction costs of consumers purchasing in 
their main shopping trip. The estimates for the size-specific effects are statistically signif
icant at standard significance levels. Econometrically, they help fit each size frequency of 
purchase. However, as discussed previously, the magnitude and ordering of these estimates 
can not be directly interpreted as they capture the different normalizations required for step 
1 estimation.

Specification (2) introduces dynamic considerations into the consumers decisions, with 
this introduction substantively reducing state-dependence. The reason is that the static 
specification omits price expectations from the consumers purchase decisions. When facing 
a price promotion, the typical consumer expectation is that the price will go up in the 
future. This induces her, as I discussed in the descriptive analysis section, to typically take 
advantage of the price promotion by anticipating purchases. The static specification, by 
omitting price expectations, bias the results since it interprets this shorter interpurchase 
durations as stronger state-dependence. The addition of the forward-looking behaviour also 
impacts the coefficient on the indicator variable, which becomes (significantly) positive. This
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T a b l e  2 .9
Step 3: Estimation of the Intertemporal Effects of Consumption*

Static Dynamic
Standard Standard Random Coefficients

Logit Logit Mean Standard
Estimate Estimate Estimate Deviation

(1) (2) (3)
No Purchase (Outside Alternative) 

«o -2.42 -1.63 -1.83 4.57
(0.00) (0.00) (0.02) (0.03)

«i -2.37 0.43 -0.22 0.26
(0.02) (0.02) (0.19) (0.15)

Purchase Size 
16 oz. -36.87 -36.84 -38.14 8.76

(0.02) (0.02) (0.34) (0.18)

32 oz. -40.52 -40.27 -40.56 6.08
(0.02) (0.02) (0.22) (0.12)

64 oz. -25.56 -25.25 -35.88 13.95
(0.01) (0.01) (0.29) (0.21)

80 oz. -43.39 -41.57 -41.61 4.29
(0.20) (0.04) (0.27) (0.43)

128 oz. -49.43 -49.60 -42.89 6.09
(0.02) (0.02) (0.13) (0.08)

160 oz. -39.42 -39.48 -39.52 5.42
(0.05) (0.05) (0.26) (0.40)

Log-likelihood -45,501 -36,294 -14,244
* A n observation is a shopping tr ip  instance by a household. S tandard  errors in parentheses.

result is unexpected and hard to interpret. The estimates for the size-specific effects maintain 
the same ordering and magnitude.

Finally, specification (3) estimates the version of the model described in the previous 
sections that allows for both heterogeneity (via random coefficients) and forward-looking 
behaviour. The results for the mean estimates do not change substantively. However, the 
fit of the model, as measured by the log-likelihood, increases significantly. This illustrates 
the importance of accounting for heterogeneity, not only to control for different degrees of 
state-dependence (the results suggest substantial heterogeneity at this level), but also to 
control for the different consumer-size normalizations required for step 1 estimation.
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2.4.4 Sim ulation A lgorithm  and Goodness of F it

In this section, I present an algorithm to simulate the several dimensions of the model and 
examine its fit. The need to specify a simulation algorithm arises because the estimation 
algorithm decomposes the likelihood of the consumer choices into two components: the 
choice of whether to purchase (and what size) and the decision of which product to buy 
if purchasing a positive amount. However, the choice of product influences the purchase 
decision and vice-versa. In order to address this issue, I propose the following consumer- 
level algorithm:

1. Solve the simplified dynamic programming problem and simulate the sequence of pur
chase decisions (whether to purchase and not, and what size if they decide to purchase) 
conditional on the observed inclusive values.

2. For each shopping trip that the consumer decides to purchase a positive amount, 
simulate her product choice(s).

3. Using the sequence of simulated product choices, I then simulate the corresponding 
inclusive values and update the associated transition probabilities.

4. Iterate the previous steps until convergence of the coefficients of the inclusive values 
transition processes.

I do not provide here a covergence proof for this algorithm. I note, however, that conver
gence was, in practice, achieved for all consumers after a small number of iterations. The 
remaining section examines several dimensions of the fit between the simulated and observed 
sequence of consumer choices.

The simulated probability that a consumer makes a purchase in any given week is 13.65%, 
which fits the observed probability (15.55%) reasonably well. Figure 2.5 analyzes how the 
model fits the purchase decision dynamics, by comparing the simulated and observed distri
bution of inter-purchase duration in days. Overall, the fit is very good, although it slightly 
underestimates the frequency of purchases for duration spells between 3 and 4 days, at the 
expense of slightly overestimating the frequency of purchases for durations of 7 days. Other 
than that, the model is quite accurate in simulating this interpurchase duration. Figure 2.6 
examines the hazard rate of purchasing by duration in days from the last purchase, i.e. the 
probability that the consumer purchases a positive amount given that she has not purchased 
up to now. Again, the model predicts the pattern of the hazard rate quite accurately only
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F i g u r e  2.5
Observed and Simulated Interpurchase Duration Distribution
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F i g u r e  2 . 7
Observed and Simulated Product Switching Distribution
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very slightly underestimating the purchase probabilities for longer durations of no purchase 
spells, due to the low frequency of purchases with such duration.

Having addressed the purchase decision dynamics, I now move one to examine how the 
model fits the product switching decision dynamics. The simulated probability that a con
sumer exhibits a product switch from a purchase instance to the next is 63.79%, which 
only slightly underestimates the observed probability (72.81%). Figure 2.7 presents the 
distribution of purchases with regard to product switching. Although there is a slight un
derestimation of product switching, the fit is reasonably good.

2.5 P o licy  Im plications

The pricing decision is one of the most critical for retailers. In this section, I discuss the 
implications of a major pricing policy change from hi-low pricing strategy to everyday low 
pricing (EDLP). In a pure EDLP policy, retailers charge a constant everyday price with 
no temporary price discounts. In contrast, in a hi-low pricing policy, prices have a higher 
regular level that remains constant for long periods of time, but then retailers run frequent 
promotions that lower the price below the EDLP level. In practice, however, pure EDLP
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T a b l e  2 .10  
Simulated Effects of Pricing Policy Changes *

Panel A: 0% Price Reduction Variance Reduction
25% 50% 75%

Average Interpurchase Duration (Days) -0.02 -0.13 -0.25
Proportion of Product Switching -0.24 -1.35 -1.25
Total Volume Purchased -0.07 -0.33 -0.43
Total Revenue 1.84 2.95 4.07
Panel B: 5% Price Reduction Variance Reduction

25% 50% 75%
Average Interpurchase Duration (Days) -0.28 -0.73 -0.77
Proportion of Product Switching -0.30 -1.22 -1.48
Total Volume Purchased 0.14 0.45 0.62
Total Revenue 0.83 1.12 1.82
Panel C: 10% Price Reduction Variance Reduction

25% 50% 75%
Average Interpurchase Duration (Days) -0.47 -1.14 -1.31
Proportion of Product Switching -0.36 -1.30 -1.30
Total Volume Purchased 0.35 1.01 1.22
Total Revenue -0.17 -0.57 -1.31
* T he tab le  repo rts the  percentage changes im plied by th e  different policy changes 
w hen com pared to  th e  ac tual pricing strategy.

strategies rarely exist (see Information Resources, Inc. (1993)). EDLP retailers typically 
charge lower prices on an everyday basis, but do engage in some temporary price discounts.

The pricing policy choice is an empirical question. Hi-low pricing policies have been 
prevalent in the industry since it allows retailers to price discriminate between consumers that 
are heterogenous in their price sensitiveness (Pigou (1920)), the degree of price information 
(Varian (1980)), the level of inventory costs (Blattberg et al. (1981), Jeuland and Narasimhan 
(1985)), or the extent of store loyalty (Narasimhan (1988)), just to mention a few dimensions. 
However, the success of retailers like Wal-Mart, Home Depot and Toys R Us has increased 
the popularity of EDLP policies. There are various rationales for adopting EDLP. On the 
supply side, EDLP is assume to lower operating costs through (i) better inventory control, 
warehouse handling and lower in-store personnel costs due to less variability in demand, 
and (ii) lower advertising expenses due to a focus on image rather than price. On the 
demand side, EDLP is assumed is to restore price credibility with consumers disenchanted 
with constant changing prices.

Table 2.10 examines this empirical question. I evaluate the demand implications of vari
ous degrees of a policy change from high-low pricing towards EDLP in four dimensions: the
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average interpurchase duration, the proportion of product switching, total volume purchased 
and total revenue. I should note that I do not compute market equilibrium prices, which is 
beyond the scope of this chapter (although providing such a framework constitutes a very 
interesting potential area for future research). I consider only ad-hoc changes in the ob
served pricing strategy. The table reports the percentage changes implied by different policy 
changes when compared to the actual pricing strategy.

Table 2.10, Panel A addresses the implications of changing only the extent of the hi-low 
pricing policy by simulating a reduction in price variance, while keeping the mean price 
for each supermarket-product-size combination constant. The results suggest that a pricing 
policy that exhibits lower price variance slightly decreases the average interpurchase duration. 
This is the outcome of two opposite effects. On one hand, the magnitude of the promotion 
price cuts is now smaller, which reduces the response and purchase acceleration of consumers. 
On the other hand, reducing price variance around the same mean price also decreases 
its regular level and consumers respond by increasing the frequency of purchases. In this 
particular case, the latter effect dominates the former, which induces a slight decrease in the 
average interpurchase duration.

The results also suggest that the proportion of product switching decreases. This is 
an expected outcome since lower price variance implies worst price deals, that reduce the 
promotional induced switching. Finally, the results also suggest that total volume sold drops 
while revenues increase. This is the outcome of a pricing policy that reduces price deals. 
Before, a proportional large share of the total volume sold was purchased in promotion. 
Under the new pricing policy, the attractiveness of temporary price promotions is reduced, 
which decreases the share of volume sold in promotion. The net effect is a decrease in the 
quantity sold, but an increase in revenues.

Table 2.10, Panels B and C address the implications of changing not only the extent 
of the hi-low pricing policy, but also the mean price offered. Here I simulate prices that 
have both a lower mean level and variance. The results with regard to average interpurchase 
duration and proportion of product switching are qualitatively similar to the ones in Panel 
A. Total volume sold increases, as expected, in response to the reduction in the mean prices. 
However this positive impact on quantity is not enough to compensate the drop in price, 
inducing a decrease in revenues when compared with Panel A pricing experiment.

In sum, the results suggest that the demand profitability of a major pricing policy change 
from hi-low towards EDLP is questionable, which supports the view that retailers are already 
maximizing profits. There is evidence that changing the extent of the hi-low pricing policy
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(by only reducing price variance, while keeping the mean price constant) may be revenue- 
increasing. However, not knowing the cost function, I can’t determine the general impact on 
profits.

2.6 C onclusions

In this chapter, I attempt to link two strands of the literature on variety-seeking: one focusing 
on substitutability across time and another on substitutability across products. This issue 
is economically relevant because both types of substitutability are important for retailers 
and manufacturers in designing intertemporal price discrimination strategies. I specify a 
consumer demand model which allows consumption to have an enduring effect and allows 
the marginal utility of the different products to vary over consumption occasions. I then use 
the model to evaluate the demand implications of a major pricing policy change from hi-low 
pricing to an everyday low pricing strategy

I find evidence that consumption has a lasting effect on utility that induces substitutabil
ity across time and that the median consumer has a taste for variety in her product decisions. 
Consumers are found to be forward-looking with respect to the duration since the last pur
chase, to price expectations and product choices. Pricing policy simulations suggest that 
retailers may increase revenue by reducing the variance of prices, but that lowering the 
everyday level of prices may be unprofitable.

This chapter leaves many estimation issues yet to be explored. The development of a 
framework that allows consumers to be forward-looking in their product choice or incor
porates the supply side of the market to derive equilibrium pricing strategies seem very 
interesting potential areas for future research.
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Chapter 3

A Sim ple G lobally C onsistent 
C ontinuous D em and M odel for 
M arket Level D ata

This chapter considers a new method of uncovering demand information from market level 
data on differentiated products. In particular, we propose a continuous-choice demand model 
with distinct advantages over the models currently in use and describe the econometric 
techniques for its estimation.

When products are differentiated, the number of parameters required to describe a de
mand system (without a priori restrictions on the substitution patterns) tends to be ex
cessively large to estimate, given the number of observations in a typical dataset. As an 
illustration of the problem, note that even in the simplest and extremely restrictive of the 
demand specifications - the linear expenditure model - J  products would yield at least J 2 
parameters to be estimated, just to capture the substitution patterns. Although implied 
economic theory’s restrictions (like the symmetry of the Slutsky matrix) could be imposed 
to increase the degrees of freedom available, they do not solve the dimensionality issue. The 
option for a more flexible functional form would only naturally worsen the problem. Some 
structure must therefore be placed on the estimation procedure.

The recent industrial economics literature has evolved using primarily discrete-choice 
models of consumer behaviour. That is, the demand models assume that consumers, while 
heterogeneous, can purchase at most one unit of one of the available products. Moreover, 
consumer preferences over products are typically mapped onto a space of characteristics 
(Lancaster, 1971), reducing the number of parameters to be estimated (since the parameter 
space is defined by the number of characteristics rather than by the number of products). 
Within this set of assumptions, we can find the multinomial logit (McFadden, 1974), the 
nested multinomial logit (McFadden, 1978a), the multinomial probit (Hausman and Wise, 
1978), the mixed- or random-coefficients multinomial logit (McFadden, 1981b) and the dis
crete choice analytically flexible (DCAF) models (Davis, 2006a). The most serious drawback 
of this branch of the literature relates to the typical trade-off between flexibility and com
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putation requirements. On one hand, we have the standard and the nested multinomial 
logit models which are fully analytic (and thereby relatively simple to estimate), but imply 
substitution patterns that tend to be model- instead of data-driven. On the other hand, we 
have the probit and the mixed-coefficients logit multinomial models which provide increased 
flexibility by introducing unobserved consumer heterogeneity, but require the use of simula
tion techniques (which in turn increases substantially the computation requirements). The 
recent discrete choice analytically flexible model seems to present itself as an exception since 
it appears to combine the good properties from the two groups.

The assumption that consumers purchase at most one unit of one of the available products 
may be unrealistic in some settings. Cereals, yogurts, soft drinks and wine are all examples 
where many consumers typically buy more than one product each time they go shopping. 
While the discreteness assumption can sometimes be rationalised, it is not always natural 
to do so given the data available. For example, multiple choices are sometimes modelled as 
discrete by narrowly defining the choice period and, as a consequence, rationalize multiple 
observed choices by assuming the consumer has made two separate purchasing decisions. Al
ternatively, a discrete-choice approach can be extended to model multiple choices by defining 
the choice set to include product bundles. However, often the discrete choice assumption 
can not easily be motivated given the products being selected and so it may be more natural 
to model consumers as making continuous quantity choices.

The continuous-choice literature typically assumes a representative agent that might 
consume all products and uses functional forms that allow flexible substitution patterns. 
Examples include the translog model of Christensen et al. (1975), the almost ideal demand 
system (AIDS) due to Deaton and Muellbauer (1980) and the distance metric model from 
Pinkse and Slade (2004). Consumer preferences can be defined directly over products (as in 
the translog or in the AIDS cases) or mapped onto a space of characteristics in a manner 
akin to the discrete-choice literature (as in the distance metric model). However, this set of 
models presents a serious limitation. In contrast to the discrete-choice framework, they can 
not be used to uncover demand information from markets with significant entry and exit of 
products. This limitation has been addressed in the literature before, but never in a way 
that, to the best of our knowledge, we could categorize as adequate. The typical solutions are 
largely limited to either consider substitution patterns between broad aggregates of products 
as, for example, in Christensen et al. (1975), Deaton and Muelbauer (1980), and Hausman 
et al. (1994), or to estimate the demand system using data only from time periods when all 
products are present in the market as, for example, in Hausman (1994), Ellison et al. (1997), 
and Pinkse and Slade (2004).
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More recently, the continuous-choice literature has evolved to model consumer hetero
geneity explicitly. Chan (2006) constitutes an example of such approach. He develops a 
continuous hedonic-choice model to investigate the demand for soft drinks that, in contrast 
to the more traditional line of the literature, is able to cope with entry and exit of prod
ucts. However, his approach, in addition to requiring simulation techniques, does not model 
unobserved product characteristics.

In this chapter, we follow the traditional continuous-choice literature and develop a rep
resentative consumer flexible demand model. We begin by specifying an indirect utility 
function from which, via Roy’s identity, a continuous-choice demand system is derived. The 
demand function implied by the model is fully analytic and therefore avoids the burden of 
simulation. The model is flexible in the sense of Diewert (1973, 1974) as the implied own- 
and cross-price elasticities are capable of capturing the true substitution patterns in the 
data. In addition, the model can accommodate the use of data on the entry and exit of 
products. The importance of this last property is twofold as i) not being able to cope with 
entry and exit patterns limits the application of the above models and ii) the ability to deal 
with variation in the set of choices available to consumers provides pseudo-price variation 
which can be very helpful in the identification of substitution patterns between products.

In order to encompass different possible real-world applications, we consider two alterna
tive specifications of our baseline model depending on the degree of flexibility the researcher 
is willing to accept for the substitution patterns between inside and outside goods. For es
timation, we propose an analog to the algorithm derived in Berry (1994), Berry, Levinsohn 
and Pakes (1995) (henceforth BLP). Following this line of the literature, the error term is 
structurally embedded in the model and thereby circumvents the critique provided by Brown 
and Walker (1989) related to the addition of add-hoc errors and their induced correlations. 
Depending on the specification considered, the contraction mapping for matching observed 
and predicted expenditure shares may be analytic or not. For the case it is not, we present an 
alternative procedure to BLP’s contraction mapping with a super-linear rate of convergence.

To sum up, the main contribution of the chapter is to propose a new continuous-choice 
model that combines the centrally desirable properties of both the discrete- and continuous- 
choice traditions: i) it is flexible in the sense of Diewert (1973, 1974), ii) can deal with 
the entry and exit of products over time, and in) incorporates a structural error term. 
Furthermore, it is relatively simple and fast to estimate which can prove a key advantage in 
competition policy issues where time and transparency axe always crucial factors.
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3.1 T he D em and M odel

3.1.1 The General Setup

Let denote the set of J  +  1 choices available to consumers, with options j  = 1 , . . . ,  J  
referring to the inside choices and j  = 0 referring to an outside option that aggregates all 
remaining ones, including that of no purchase. We follow the continuous choice literature 
and define the demand system by specifying an indirect utility function V  (p,y, 9,5s) for the 
representative consumer, p denotes the (J  +  1) vector of pi G prices, y G 5R+ denotes 
the income of the representative consumer and, finally, 9 refers to a set parameters which 
we assume to have support 0  C R e. For reasons that will become clear later, we also index 
the utility function by the set of available goods

V  (P» V\ 3 ) is assumed to satisfy the properties of an indirect utility function, namely 
to be a continuous function in p and y, strictly increasing in y and nonincreasing in Pj for 
any p j, quasiconvex, and homogeneous of degree zero. If V  (p, y; 9, has the properties of 
an indirect utility function, then standard duality results imply that the demand system is 
easily obtained via Roy’s identity. In this chapter, we restrict further the class of functions 
considered by requiring the indirect utility function to satisfy an additional global regularity 
property, namely the sub-class of indirect utility functions that we define to be globally 
consistent.

Definition 3.1 An indirect utility function V  (p, y\ 9, O') is globally consistent if and only if 
for any set of products 5s' C

V  (p, y \9 ,3 ') =  lim V  (p, y; 9 ,5s) ,
P k - >  oo

for all k € 5s and (simultaneously) k £5$'.

This corresponds directly to Mcfadden (1981b)’s social surplus condition. We name this 
property global consistency since it requires that an indirect utility function, defined on 
the set of all possible products S, can be specialized down in an entirely consistent fashion 
to generate demand systems over arbitrary subsets of the goods 5sr. It encapsulates the 
very natural restriction that removing a good from the choice set is entirely equivalent to 
increasing its price to infinity.

Proposition 3.1 Any indirect utility function V  (p, y\ 9, £r) which satisfies global consistency
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and non-satiation (that is, non-zero marginal utility of income) generates a demand system 
via Roy’s identity which enjoys the property that:

Qi ( P ,  V\ 6 , 3 ' )  =  l i m  Qi (P , y \  Q, $ 0 ,Pk-*oo

for all i ,k  € 5s, i € 5s' and k £ 5s', where qi (p, y ; 9, S) denotes the Marshallian demand 
function of good i. Furthermore:

qk (p, y; 9, 5s) = 0,

for all k £ 5s'.

Proof. If V  (p ,ym,9,5s) has the properties of an indirect utility function then standard 
duality results imply that, under non-satiation, the demand system is easily obtained via 
Roy’s identity:

Qi ( p ,  y \ 0 , 3 )  =
Vi (p, y; 9, 5$)
Vy (p, y; 9, 5s) ’

where Vi (p, y \9, 5s) denotes the marginal utility with respect to pi and Vy (p, y \9, denotes 
the marginal utility of income. It is easy to verify that if V (p, y\ 9 ,5s) satisfies in addition 
the global consistency property, then:

Vi(p,y;9,5?') = lim V- (p, y; 9 ,5s)Pfc->oo
Vy (p, y \0, 3 ') =  lim Vv (p, y; 9, O f ) ,Pk-»x>

for all i ,k  E 5s, i £ 5s' and k £ 5s'. This yields the first part of the proposition:

, a oj\ Vi(p,y,9,5s') limPfĉ oo Vi(p,y;9, Of)q{ {p, y,9,5s) = — ------— — =  — *■------7 7 7 ------7 7 7  =  hm q{ (p, y, 9, 3 ) .Vy (p, y; 9 ,5s') l i n ^ ^  Vy (p, y ,9 ,5s)

For all k £ 5s', we have, under global consistency, that Vk (p, y; 9, S) =  0, which together 
with non-satiation yields that qk (p, y, 9 ,5s) = 0. In other words, removing a good from the 
choice set explicitly forces the level of demand for that good to zero. ■

Proposition 3.1 establishes that a demand system derived from an indirect utility function 
that satisfies global consistency and non-satiation can be estimated using datasets where 
significant product entry and exit occurs. The possibility of using datasets where significant 
product entry and exit occurs provides a potentially useful source of pseudo-price variation 
to help identify substitution patterns.

Surprisingly, the extremely mild and intuitive global consistency condition is not satisfied 
by the vast majority of existing continuous-choice models like the translog model of Chris
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tensen et al (1975), the almost ideal demand system (AIDS) due to Deaton and Muellbauer 
(1980) and the distance metric model from Pinkse and Slade (2004) ? In all of these exam
ples, demand depends linearly on prices (or on its logarithms) and if a product is not present 
in a given market such a demand system can not be estimated.

The typical solutions include either consider substitution patterns between broad aggre
gates of products (a level of aggregation which eliminates product entry and exit) as, for 
example, in Christensen et al (1975), Deaton and Muelbauer (1980), and Hausman et al 
(1994), or to estimate the demand system using data only from markets (e.g. time periods) 
when all goods are present as, for example, in Hausman (1994), Ellison et al (1997), and 
Pinkse and Slade (2004). The former type of solution involves resorting to an analysis of 
aggregate data which clearly limits our ability to describe the substitution patterns between 
the goods actually being purchased by consumers. The latter type of solution, on the other 
hand, involves resorting to data only from markets when all goods are present, which while 
effective (if potentially inefficient) in some markets, such as the pharmaceutical markets 
studied by Ellison et al (1997) where generic entry is driven by loss of patent protection so 
all entry occurs within a very constrained period in the data, would be largely impractical 
in other arena where product entry and exit occur simultaneously.

In contrast with existing literature, proposition 3.1 establishes that a demand system 
derived from an indirect utility function that satisfies global consistency and non-satiation 
can be estimated using datasets where significant product entry and exit occurs. Removing 
a good from the choice set is entirely equivalent to increasing its price to infinity.

We now move on to specify a computationally convenient change of variable. Let, with
out loss of generality, V (p, y\0,5s) = H  (r, y; 6 , 5s) where r denotes the element-by-element 
inverse (J  +  1) vector of pf. r; =  l/p i E 5?. As it is easy to verify, under the new indirect 
utility function, removing a good k from the choice set is entirely equivalent to decreasing 
the corresponding to zero. Definition 3.1’ below provides a restatement of definition 3.1 
in terms of the set of (relatively easy to verify) conditions on the function H  (r, y; 9 ,5s) that 
are sufficient to ensure that the resulting indirect utility function is a member of the class 
of consistent indirect utility functions and may therefore be estimated using pseudo price

7 While the vast majority of indirect utility function specifications used to generate continuous choice 
demand models are not members of the set of consistent indirect utility functions, a very few existing 
demand systems are. These are generally models which have not been empirically popular. For example, 
the Indirect Addilog model considered by Houthakker, the Translog Reciprocal Indirect Utility Function 
and Diewert’s Reciprocal Indirect Utility Function. See for example Varian (1984) for a discussion of these 
models and further references. More recently, Chan (2006) develops a continuous hedonic-choice model that 
is able to cope with entry and exit of products. However, his approach, has the undesirable feature of not 
modelling unobserved product characteristics.
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variation.

Definition 3.1’ A globally consistent indirect utility function V  (p ,y ,9 ,3 ) = H (r ,y ,9 ,3 )  
possesses the following properties:

1. Continuous in p and y.

2. Homogeneous of degree zero in p and y.

3. Strictly increasing in y and nonincreasing in pi for any i 6 S.

4. Quasiconvex, that is, the set {(p,y) : V (p ,y ,9 ,3 ) < v} is convex for any v.

5. limPfc_ 0o V  (p, y; 0 ,3?) =  lim ^-o H  (r, y ,0 ,3 ) = V  (p, y; 0 ,3 ') =  H  (r, y; 0 ,3 ') for any 
set of products 3 ' C 3  and for all k £ 3 ' .

Following the vast majority of the continuous-choice literature, we will describe the de
mand system derived from the globally consistent indirect utility function H  (r, y, 9 ,3 )  in 
terms of the Marshallian budget share functions:

( a <x\ * (r >!/; $ )  r i f o v \Wi (r , y ; 9,3 ) = ——------- - - , (27)
Hy {r, y \9 ,3 )y

for i G 3  and where Hi (r, y; 9 ,3) denotes the marginal utility with respect to ri: Hy (r, y; 9 ,3 )  
denotes the marginal utility of income, and finally Wi (r, y \ 9, 3) =  ptqi (r, y; 0 ,3 ) /y  denotes 
the budget share of good i.

3.1.2 Two Specifications

The actual algebraic functional form for the indirect utility function H  (r , y \9 ,3 )  is unknown 
to the econometrician. Following the continuous-choice literature, we approximate it with a 
flexible functional form so not to restrict the derived price substitution patterns. In particu
lar, we present two different functional specifications for H  (r , y\ 9 ,3), each with its own set 
of advantages and disadvantages, that can cope with the different needs of various real-world 
applications.
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Specification A

In specification A, we approximate the indirect utility function with a normalized quadratic 
function, following Berndt et al (1977), McFadden (1978b), and Pinkse and Slade (2004), 
in which both the representative consumer income y and the inside goods r* have been 
normalized by the outside option r0. The normalized approximation is given by:

H a (r, y \ 6 , S) =  a0 +  Y fm=\ a™rm +  1/2 £m =i E t i  bmnrmrn +  coy +  Y L = \ Cmrmy , (28)

where, with a slight abuse of notation, H A (r, y \9, S) denotes the normalized indirect utility 
function, and both r and y denote the vectors of the corresponding normalized variables. a0 

is a scalar parameter, a = [aj is a J  vector of parameters that, as we will discuss below, 
will be used to capture the vector of observed budget shares, B = [6 ]̂ is a J  x J  matrix of 
parameters that will be used to capture the price substitution patterns, and finally c =  [q] 
is a J  vector of parameters that will be used to capture the income effects.

It is easy to verify that the function H A (r, y\ £y) satisfies properties 1, 2 and 5 for a 
globally consistent indirect utility function. It is an homogeneous of degree zero functional 
form and continuous in both p and y. Moreover, it can be specialized down in an entirely 
consistent fashion to generate demand systems over arbitrary subsets of the goods (by setting 
r*; =  0 for those goods not in the current choice set). However, if we allow the parameters 
to be unrestricted in sign and magnitude, it does not necessarily satisfy properties 3 and 4. 
We can either impose a set of restrictions on the parameters that, given the vector of prices 
and income, ensure H A (r, y \9, O') satisfies those properties (Appendix I  lists the set of those 
implied restrictions) or, alternatively, we may choose, even in the absence of an underlying 
model of utility, not to impose such restrictions a priori, but rather test whether the data is 
consistent with them.

If H a (r, y\ 9, £y) has the properties of an indirect utility function then standard duality 
results imply that the demand system is easily obtained via Roy’s identity for each inside 
good i = 1, . . . ,  J:

w f  (r>y. 9) =  ^  +  l / 2 £ l „ ( ^  +  U r irm +  c ^ | (2g)

c0 y “I- E^ro=l ^mXmV

where wA (r, y \9, £y) denotes the budget share of good i for specification A. The derived 
budget share function has three characteristics that are important to discuss. First, it 
satisfies Proposition 3.1 and hence removing a good from the choice set (equivalent to set
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n  =  0) explicitly forces the level of demand to zero. As a consequence, the model is able to 
match the shares of those goods with zero observed demand and hence can be estimated using 
datasets where significant product entry and exit occurs. Second, although it is only defined 
explicitly for the J  inside choices (given the normalization with respect to the outside option), 
the budget constraint implies that a complete model of demand for the J  +  1 budget shares 
is derived implicitly. Finally, because it is homogeneous of degree zero in the parameters, 
identification requires a normalization. Without loss of generality, we normalize Cq.

In many policy applications, including merger simulations, the key object of interest is 
the matrix of own- and cross-price demand elasticities. The analytical expressions for the 
budget share, price- and income-elasticities implied by the model with respect to any given 
inside goods i and j ,  are the following:

, , .  .. 1/2 (hi  +  b j i )  T j T i  (wf y ) _1 -  C j T j

1 U =  *)-----------------—^ 3 ---------------------
Co 2_vrri . 1 cmr m

(30)

1 +  2 2 _________
A  i v ~ A  5

Cq K  +  L m = l  Cm l'm 'W i

where e®- and rj* denote the price- and income-elasticities, respectively, [bn] > 0 constitutes a 
sufficient condition (although not necessary) for a downward sloping own demand curve. We 
may expect [6y] < 0 if goods i and j  are substitutes, but this constitutes neither a necessary 
nor a sufficient condition, since the total price effect depends on the size of the income effect. 
From the budget share elasticities, we can straightforwardly obtain the implied demand 
elasticities for the corresponding inside goods.8 While the elasticities involving the outside 
good can not be estimated directly (as, under specification A, the model is defined only over 
the J  inside goods), the budget constraint implies that those elasticities can, nevertheless, 
still be recovered from equilibrium behavior, given the elasticities for the inside goods.

Specification A has both an advantage and a disadvantage relative to specification B 
below. The disadvantage is that the use of equilibrium behavior to implicitly derive the 
elasticities involving the outside good may restrict the estimated substitution patterns. The 
advantage is that the derived income-elasticities are, as we will show below, Diewert flexi
ble. Specification A is, therefore, particularly suitable for real-world applications where the 
importance of the outside good is relatively small and where demand exhibits important 
income effects. An additional advantage of this specification is that, as we show below, it is

8 For completeness — 1, efj = efj and rjf =  t)\ +  1, where efj and rjf denote the demand price-
and income-elasticities, respectively.

4 - ( r , j / ; 0 , 9 0 =  -  

rj J ( r , 2/ ; 0 , S )  =  -
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relatively simple and fast to estimate which can prove a key advantage in competition policy 
issues, where time and transparency are typically crucial factors.

Specification B

In specification B, we approximate the indirect utility function with a generalized Leontief 
indirect utility function, following Diewert (1971):

H b (r, y\ 0 ,3 ) =  Y L = o amrmV +  1/2 E L o  E n=o ^mnrmrny2, (31)

where a = [a*] is a J  +  1 vector of parameters that, as we discuss below, will be used to 
capture the vector of observed budget shares, and B  = [fry] is a (J  +  1) x (J  +  1) matrix of 
parameters that will be used to capture the price substitution patterns.

It is easy to verify that the function H B (r, y\ 0 ,9f) satisfies properties 1, 2 and 5 for a 
globally consistent indirect utility function. It is an homogeneous of degree zero functional 
form and continuous in both p and y. Moreover, it can be specialized down in an entirely 
consistent fashion to generate demand systems over arbitrary subsets of the goods. However, 
like in specification A, if we allow the parameters to be unrestricted in sign and magnitude, 
it does not necessarily satisfy properties 3 and 4. We can either impose a set of restrictions 
on the parameters that, given the vector of prices and income, ensure those properties are 
satisfied (Appendix I  lists the set of those implied restrictions) or, alternatively, we may 
choose, even in the absence of an underlying model of utility, to test whether the data is 
consistent with them.

If H b (r, y\ 0, O') has the properties of an indirect utility function then standard duality 
results imply that the demand system is easily obtained via Roy’s identity for i = 0, . . . ,  J:

w f  ( r ,  y ;  $, 3 )  =  — , --- - - - - ^  +  1 / 2  ^ T °  +  ^   , (32)
Em=o amrmy + 1/2 £n=o t  +  Km) rmrny2

where w f  (r , y \0, £y) denotes the budget share of good i under specification B. Similarly to 
the specification A case, the derived budget share function satisfies Proposition 3.1 and is 
homogeneous of degree zero in the parameters. The model can hence be estimated using 
datasets where significant product entry and exit occurs. Identification requires, however, a 
normalization. Without loss of generality, we normalize 6 0 0  •

The analytical expressions for the budget share elasticities implied by the model with

69



respect to any given goods i and j  (both inside and outside), axe the following:

y  _  •) _  1 / 2  i p i j  +  ^ i j )  r i r j y 2 / w f  ~  1 / 2  0 ( fy m  +  ^ m j)  r j r m U 2

Em=0 amXmy +  1/2 ]Em=0 Sn=0 mn n̂m) ^wTnV
(33)

I / 2 Em=o +  L )  rirmy2/w f  -  1/2 X ^ =0 ^ =0 (6mn +  bnm) rmrny2 

X >m =0 a“m r m V  +  1 / 2  X /m = 0  X )n = 0  (^mn ^nm ) ^ m Xn]j‘2

We may expect [&#] > 0 and [6 -̂] < 0 if goods are substitutes and face a downward sloping de
mand curve, but this constitutes neither a necessary nor a sufficient condition. Again, we can 
straightforwardly obtain the implied demand elasticities from the budget share elasticities. 
Note that, in contrast to specification A, specification B explicitly models all (J  +  1) options. 
The price substitution patterns involving the outside good can, therefore, be estimated di
rectly (although under some identification restrictions as we discuss below). Unfortunately, 
this greater degree in flexibility towards the outside good is traded-off against a lower degree 
in flexibility towards the income effects as this second specification does impose restrictions 
on the derived income-elasticities. To sum up, specification B is therefore particularly suit
able for real-world applications where the outside good is of relative importance and where 
income effects are small.

3.1.3 The M ore General Budget Share Function

Sometimes, it may be interesting to estimate a model which is more general than the model 
described thus fax. The reason is twofold. First, as discussed above, we may choose, even 
in the absence of an underlying model of utility, to estimate a model without imposing a 
priori restrictions to the parameters (in sign and/or magnitude) and test whether the data 
is consistent with the properties of a globally consistent indirect utility function.

Second, we may choose to estimate a specification that is asymmetric with reference to 
the matrix B  of parameters. As it is easy to note, the two specifications described above 
axe observationally equivalent to a symmetric model with b^ = bji = 1/2(6^ +  bji). Both 
the budget share and elasticities functions do not depend specifically on the individual [bij] 
parameters, but only on their sum. Although this property of the model provides a great 
advantage in terms of the estimation procedure (as the number of parameters to be estimated 
decreases substantially), it implicitly restricts the flexibility properties of the model. The 
price substitution patterns of a demand system with J  +  1 goods can assume up to (J  +  l ) 2 

arbitrary values (or J 2 if we focus only on the inside goods as in specification A). Under a

4  (r, j/; 0 , 9 )  =  

i t  (r, y; (9,3) =
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symmetric specification, the model requires estimates of (J  +  1) (J  +  2) /2 parameters [bij] 
(or J ( J +  1) /2 parameters in specification A), which are clearly insufficient to assume the 
required arbitrary values. Following the continuous-choice tradition, we may often wish to
estimate a model which does not impose such symmetry restrictions.

Specifically, consider the following more general budget share functions for the case in 
which properties 3 and 4, as well as the symmetry assumptions, are not imposed a priori:

„ A  g  c \ \  —  a i T i  ^ m = l  b im T m T i  +  C ir iV
s i  —  j

+  L m = l  Cm r m y

(34)

o ^ i v n X v n T i VSi (r ,y ;0 ,3 ) =
0 amrmy +  X)m=0 l£2 n=0 ^mnrmrny2

where s f  (r, y; 0, O') and s f  (r, y; 6 , S') denote the functions for specifications A and B, respec
tively. In these circumstances, the model is obviously not consistent with consumer utility 
maximization, but rather it nests a model which is and hence we can test the validity of 
such assumptions. If these restrictions are consistent with the patterns in the data, we can 
subsequently impose them on the model.

The analytic expressions for the price- and income-elasticities implied by the more general 
budget share for specification A are:

' =  - K

r}si( r ,y ,0 ,3 )  = - 1  +

CO “b X^m=l CmTm

W i
(35)

Co s f  ~b 5 Z m = l  Cm r  m s f  

whereas for specification B, we have:

-  - i o - o -  w  w / f
Z^/m -O  a m r m y  +  2 ^ m - Q  2 - m = 0

a CV\ _  ^2m-0 bmirmriy2/ sf  — X ^ m = 0  X l n = 0  ^mnr mrnV2V i\r,y ,v ,^s) -  —-j ——j  —j  - - .
X ^ m - 0  a rnXm V  +  2 - /m - 0 A m = 0 ® m vTm TnV

(36)
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3.1.4 Product Characteristics

Lancaster (1971) suggests that consumers are interested in goods because of the character
istics they provide. Classical choice models can be generalized to incorporate such proposal 
and introduce preferences directly over product characteristics. The model described in this 
chapter is no exception. This introduction places no additional restrictions or structure on 
the form of the indirect utility function H  (r, y \9, $s) as, in principle, such characteristics 
may enter through any of the parameters of the model in an arbitrary fashion. Moreover, it 
carries three important advantages.

First, it allows the introduction of a structural error term addressing the important 
critique offered by Brown and Walker (1989) which warns about the potential risks of simply 
’tagging’ on linear error terms to the end of budget share equations.

Let the set of parameters 9 be decomposed, for notational purposes, into 9 = ($i, 9 2 ) ', 
where 9\ refers to the [a*] parameters for i =  1 , . . . ,  J  and 92 refers to the remaining ones 
{[bij] and [c*] in specification A, and [bij] and ao - for reasons that will become clear below - 
in specification B). We introduce the random utility hypothesis by assuming that all product 
characteristics are observed by the consumer, but not necessarily by the econometrician. In 
particular, we follow Pinkse et al (2002) and map the 9\ parameters onto the characteristics 
space:

91 = ai (xh £i]/3), (37)

where Xi denotes the K-dimensional vector of characteristics associated with good i, ob
served by both the consumer and the econometrician, ^  denotes a one-dimensional vector 
of characteristics that are observed by the consumer, but not by the econometrician, and 
finally (3 refers to the A-dimensional vector of taste parameters associated with the observed 
characteristics. The precise functional form for a* (xi: (3) is an issue that can be examined
using conventional testing procedures. We follow the industrial economics literature and 
assume a linear specification:

a* £*; P) =  ElfeLi Pkxki +  f», (38)

which has the desirable property of being monotonic in the value of a given product’s char
acteristics. The presence of unobserved product characteristics allows for a product-level 
source of sampling error, giving an explicit structural interpretation to the error term.

The second advantage of introducing product characteristics is related to the fact that 
it can substantially reduce the number of parameters to be estimated. If the number of
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goods J  +  1 is large, a dimensionality problem may arise as the model may yield too many 
parameters to be estimated with the available data. In that case, the number of parameters 
can be reduced by also mapping the 0 2 parameters onto the characteristics space (whenever 
the number of characteristics is smaller than the number of goods):

bii 9l (^1 it ^l)

bij = g2 {dij(x2u x 2j ;oi2 )) (39)

Ci Q3 (^3i) ^ 3 ) ?

where g\ (x^; cti) is a function of a set LI of good Vs characteristics, g2 (dy (x2i, x2j\ a 2)) 
is a function of a distance metric between goods i and j  in the set of characteristics space 
L2, and finally (for specification A only) <73 ( r3i; a 3) is a function of a set L3 of good z’s 
characteristics. In theory, all observed characteristics could be mapped onto both 9i and 
02 sets of parameters. In this case, the sets LI, L2 and L3 will all coincide with the set 
of A-observed characteristics. In real-world applications, however, we hypothesize that if 
we do so, some high correlation may introduce biases in the estimation procedure. For this 
reason, we suggest that if all characteristics are allocated to all sets, some transformation 
should be used (see Pinkse and Slade, 2004).

The precise mapping is, again, a functional form issue that can be examined using conven
tional testing procedures. The following specifications are among the possible alternatives:

bn X̂ OL\

bij = dij (x2i, x2j, a 2)

°i = x'3ia 3,

or:

bn =  exp (x'^ai)

bij = exp (dy (x2i , x 2j , 0 2̂ ))

= exp (£3^ 3 ),

where the distance metric could be defined as d^ (x2i, x2j\ a 2) =  y jY lil 1 a 2 1 {^2U — x2ij)2 or 
d^ (x2i, x 2j] a2) — Ylt=i a 2i \x2ii — x2ij |.9 Another obvious alternative is to estimate the func
tions nonparametrically as in Pinkse et al. (2002). Independently of the specification chosen

9As a technical note, if a  priori we want to impose bij < 0, the following alternatives are possible:
b{j =  exp (dij (x2i, x 2j', 0 1 2)) or bij — dij (x2i, x 2j] oc2).
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though, the important fact is that the 6 2  parameters are mapped onto the characteristics 
space and hence the number of parameters to be estimated is reduced while allowing the 
estimates to still be data-driven.

The third and final advantage of introducing product characteristics is related to the new 
goods problem (Ackerberg et ai, 2005). If a demand system is defined over the product space, 
we can not investigate demand behavior for goods not yet introduced. The introduction 
of product characteristics solves this problem and makes the analysis of issues related to 
incentives for entry, possible.

3.1.5 Flexibility

An algebraic functional form for a complete system of consumer budget share functions 
si Q, S) is said to be Diewert flexible (see Diewert, 1973, 1974 and Lau, 1986) if, at 
any given set of non-negative prices and income, the parameters can be chosen so that the 
complete system of consumer budget share functions, their own- and cross-price demand and 
income elasticities are capable of assuming arbitrary values at the given set of prices and 
income (subject only to the requirements of theoretical consistency). Barnett (1983) proved 
that flexibility in the sense defined by Diewert is necessary and sufficient for a function to 
satisfy the mathematical definition of a local second order approximation. In this section, we 
follow Diewert (1973,1974) and show that both our specifications are flexible in that sense. 10

M atching  P red ic ted  to  O bserved Shares

The first step in establishing flexibility is to show that, for every set of 6 2  parameters, there 
is a unique value of 9\ that equates the shares predicted by the model s* (r, y \ 6 , O') with the 
observed shares sjrue, where Si{r,y \6 , S') denotes the more general budget share function. 
Recall that 01 refers to the [aj parameters for i =  1 , . . . ,  J  and 6 2  refers to the remaining 
ones ([bij] and [q] in specification A, and [6 ^] and <20 - for reasons that will become clear 
below - in specification B). This step ensures the model can always match the vector of 
observed shares, one requirement for a model to be a Diewert flexible functional form. We 
then proceed by showing that the set of 0 2 parameters is such that the predicted elasticities 
are capable of assuming arbitrary values.

10 Our problem differs from Diewert (1971, 1973, 1974) in the sense that we consider flexible functional 
forms as approximations to indirect utility and demand functions rather than to cost and production functions 
(Diewert, 1971) or profit and transformation functions (Diewert, 1973) or revenue and factor requirements 
functions (Diewert, 1974).
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Let Sq denote the subset of that includes the goods that are effectively present 
in the market and exhibit, as a consequence, strictly positive observed shares: Q'q =  
{«|s°6s > 0 , i E 3 } .  Furthermore, let Jq denote the number of goods in set . In specifi
cation A, it will be useful to also define 9f+, the subset of that includes only the inside 
goods (in other words, the subset of that excludes the outside good).

P ro p o sitio n  3.2 The m ore general budget share fu n c tio n  Si (r, y \0, S) can match, 
under specification A, any vector of observed budget shares. Furthermore, there exists a 
unique set of 0 \ parameters that matches the subset Sq of goods with strictly positive observed 
demand.

Proof. Proposition 3.1 establishes that the model explicitly matches predicted and ob
served demand for all goods that exhibit zero observed shares and hence we can proceed by 
restricting our analysis to the subset of remaining goods in S.

We begin by showing that, under specification A, the system of inside goods Jq — 1 
equations s-rue =  s f  (r,y,0,$s) for i G £y+ has exactly one solution a(r,y , strue;0 2 ,^s) that 
equates the shares predicted by the model to the observed shares. In order to see why this 
is the case, note that the system of equations:

true    a i r i +  E m = l  him r m Ti +  C jV iy

COy “I" 2^/m— 1 CmTmy

for i G is linear in the vector a = (a i , . . . ,  aj+)' and can be rewritten as Da =  G , where D 
denotes a ( — l) x ( — l) diagonal matrix with diagonal elements da = r* and G denotes 

a Jo" — 1 vector with elements g% = slf ue (coy +  £m =i -  Y?m=\ bimrmrn -  c^ny.
It is well known that a sufficient and necessary condition for uniqueness of a system of 

Jq — 1 linear equations with Jq — 1 unknowns is that the matrix D is nonsingular. And a 
square matrix is nonsingular if and only if its determinant is nonzero.

The determinant of the diagonal matrix D is the product of its diagonal elements. In the 
case above, det (D) = Ili<E3 + ri- Because the subset only includes those goods that exhibit 
strictly positive observed shares, we know that ri ^  0 for all i G £y+. As a consequence, 
matrix D is nonsingular. The nonsingularity of D establishes that there is a unique vector 
of a ’s associated with each good that solves the system of equations s\rue = s f  (r, y, 0 , S) 
for i G £y+. Once the shares of the Jq — 1 inside goods are matched, the share of the 
outside good will automatically be matched as a consequence. The model is therefore able 
to equate predicted and actual budget shares for all goods (both inside and outside) with 
strictly positive observed shares.
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We have already noted that Proposition 3.1 establishes that the model is able to match 
the shares of those goods with zero observed demand. Thus, as the proposition claims, the 
model can match, under specification A, any vector of observed budget shares. ■

P ro p o sitio n  3.3 The m ore general budget share fu n c tio n  s* (r, y \9, £y) can match, 
under specification B, any vector of observed budget shares. Furthermore, there exists a 
unique set of 9\ parameters that matches the subset Sq of goods with strictly positive observed 
demand.

Proof. The proof for specification B follows similar lines to the one for specification A. 
Proposition 3.1 establishes that the model explicitly matches predicted and observed demand 
for all goods that exhibit zero observed shares and hence we can proceed by restricting our 
analysis to the subset of remaining goods in S.

We begin by showing that the system of Jq equations s f ue =  s f  (r, y; 6, £y) for i G Sq 
has, under specification B, exactly one solution a (r, y, strue\ 02, S) that equates the shares 
predicted by the model to the observed shares. Note that in contrast to the number of 
equations in specification A, under specification B the number of equations is Jq as the 
outside option is modelled explicitly. In order to show the above proposition, we define the 
element-by element function Si = fi (r, y \9, S). Conditional on the vectors r, y and on the 
set of 02 parameters, it is entirely equivalent to equate the shares predicted by the model 
and the observed shares using directly the vector a = (a0, a \ , . . . ,  aj+)f or indirectly the 
vector 6 = (6o, £ i , . . . ,  Sj+)' as long as the inverse function a* =  f~ l (r, y ; 5, 92, S) exists and 
is unique.

Let = a^iy  +  ^2^=0 ^im^m^ny2- It is clear that given this functional form for Si, it is 
always possible to recover uniquely. Furthermore, we can now rewrite the share function 
for specification B as follows:

( r  ?/• 0  CYl =   Qi r i2/ +  E m = 0  ^ itrJ 'm 'f'iy2  _  S j _  „
i  \  3 2/) ) ) U 2 X i  V /  •

Z^m amrmy +  Z^m=o Z^n=0 bmnrmrny jL/m=0

The share function is homogenous of degree zero in the £’s. However, for specification B, 
02 includes, in addition to the [6 ]̂ parameters, ao for identification purposes. Note that being 
conditional on a0 (together with r, y and the remaining 02 parameters) corresponds to being 
conditional on Jo- Our problem reduces itself to a system of Jq — 1 inside goods equations 
s f ue =  s f  (S) for i G S +. We begin by noting that this system is linear in the vector 
<5 =  (£i, . . . ,  (^j+y and can be rewritten as DS = G, where D denotes a ( Jq — l) x (j £  — l) 
matrix with diagonal elements da = 1 — s f ue and cross-diagonal elements dij = —s\rue, and 
finally G denotes a J0+ -  1 vector with elements gt =  s\rueSQ.
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It is well know that a sufficient and necessary condition for uniqueness of a system of 
Jq — 1 linear equations with Jq — 1 unknowns is that the matrix D is nonsingular. A 
square matrix is nonsingular if and only if its determinant is nonzero. A property of the 
determinant is that adding a multiple of one row to another row, or a multiple of one 
column to another column, does not affect its value. In particular, consider the following 
sequence of linear operations: (1) subtract the first column to all remaining columns, and 
(2) add to the first row all other rows. This sequence yields a triangular matrix with the 
first diagonal element given by dn = 1 — ^2i(eQ+ s\rue and the remaining diagonal elements 
given by da = 1. The determinant of a triangular matrix equals the product of its diagonal 
elements: det (D ) =  I~Ii6 3 + dm which is nonzero because sTue < 1 f°r an outside
good with a strictly positive share. If this was not the case, the argument still follows if we 
renormalize the parameters in terms of an inside good with a strictly positive market share.

The nonsingularity of D establishes that there is a unique vector valued function 5 that 
solves the system of equations s f ue =  s f  (S) for i G S +. We can then, conditional on r, 
y and #2, invert each Si and recover the unique vector a. Once the shares of the Jq — 1 
inside goods are matched, the share of the outside good will automatically be matched as a 
consequence. The model is therefore able to equate predicted and actual budget shares for 
all goods (both inside and outside) with strictly positive observed shares.

We have already noted that Proposition 3.1 establishes that the model is able to match 
the shares of those goods with zero observed demand. Thus, as the proposition claims the 
model can match, under specification B, any vector of observed budget shares. ■

Arbitrary Elasticities

Given that the model is capable of matching observed with predicted budget shares, we 
proceed by investigating if the set of 02 parameters are such that the model is able to also 
assume arbitrary values for the predicted elasticities - which concludes the flexibility result.

The flexibility properties will depend on the specification under consideration as there 
is a trade-off involving the choice of specification. We will see that specification A has the 
advantage of the derived income-elasticities being Diewert flexible. In contrast, specification 
B has the advantage of all the derived price-elasticities being Diewert flexible - not only 
those that refer to the inside goods, but also the ones that refer to the outside option. As a 
consequence, the choice of specification will typically be application-driven. Specification A 
is particularly suitable for real-world applications where the importance of the outside good is 
relatively small and where demand exhibits important income effects, whereas specification 
B is particularly suitable for applications where a premium is placed on the flexibility of
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the estimated price substitution patterns for all options. Naturally, the development of a 
specification that is able to aggregate the good properties of the two specifications presented 
here is a very interesting potential area for future research.

P ro p o sitio n  3.4 There exists a set of 6 parameters such that the m ore general budget 
share fu n c tio n  Si (r, y\ 9, ££) can match, under specification A, any vector of budget shares, 
any vector of income elasticities for the inside goods, and finally any matrix of own- and 
cross-price elasticities for the inside goods.

Proof. In order to establish Proposition 3.4, we want to show that we can choose the set of 
parameters 6 so that the model satisfies simultaneously the following equations:

«S"“ = S. (r ,y;0,S) 

r f r  =  vi(r ,y,6,Q)

4 “e = £ ii(r ,rA $ s ) ,

where s*rue, rf*ue and denote any true vector of budget shares, any true vector of income 
elasticities for the inside goods, and finally any true matrix of own- and cross-price elasticities 
for the inside goods.

Proposition 3.2 establishes that the more general budget share function s* (r, y; 6, O') can 
match, under specification A, any vector of observed budget shares. It establishes also that, 
for any set of [bij] and [q] parameters (02), there exists a unique set of [a*] parameters (0i) 
that matches the subset Sq of goods with strictly positive observed demand. Given such 
solution for we want to show that the 02 parameters can be chosen simultaneously to 
equate the inside goods’ i) own- and cross-price elasticities as well as ii) income elasticities 
predicted by the model to the observed ones.

We begin by investigating the ability of the model to match predicted with true income- 
elasticities for inside goods. Since the model can match any vector of budget shares, the 
income-elasticities predicted by the model are given by:

r ,Hr ,y;e ,Q)  =  - l +  * *
m' mJi

for i E S +. It is easy to show that the system of Jq — 1 inside goods equations rf[ue = 
Vi (r ) Vi Q-> is linear in the [q] parameters and can be rewritten as follows: Dc = G , where 
D denotes a (Jq — l) x (Jq — l) matrix with diagonal elements da = qs*rtie (rffue -f 1) — q  
and cross-diagonal elements dij = rjs\rue {rffue +  1), and finally G denotes a J0+ -  1 vector 
with elements gi = c0s-rue (rffue +  1).
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It is well know that a sufficient and necessary condition for uniqueness of a system of 
linear Jq — 1 equations with Jq — 1 unknowns is that the matrix D is nonsingular. A 
square matrix is nonsingular if and only if its determinant is nonzero. We begin by notting 
that the matrix D can rewritten as the product of two square matrices: D = D \D 2, where 
Di denotes a (Jq — l)  x (Jq — l) matrix with diagonal elements d}{ =  s-™e (rf[ue 4-1) — 1 
and cross-diagonal elements dij = s*rue (r]lrue 4- 1), while D2 denotes a (Jq — l) x ( j^  — l) 
diagonal matrix with diagonal entries d \ = r .̂ The determinant of the product of two square 
matrices is the product of the individual determinants.

In order to compute the determinant of Di, we note that a property of the determinant 
is that adding a multiple of one row to another row, or a multiple of one column to another 
column, does not affect its value. In particular, consider the following sequence of linear 
operations: (1) subtract the first column to all remaining columns, and (2) add to the 
first row all other rows. This sequence yields a triangular matrix with the first diagonal 
element given by dn = —1 4- s\rue (rf{ue 4-1) and the remaining diagonal elements
given by da = —1. The determinant of a triangular matrix equals the product of its diagonal 
elements: det (D i) = Ilie 3 + =  (~1)J° 1 Sgrue 4- 1), which is nonzero for an outside 
good with a strictly positive share and a demand income elasticity different from zero.11 
If this was not the case, the argument still follows if we renormalize the parameters in 
terms of an inside good with a strictly positive market share and a demand income elasticity 
different from zero. The determinant of the diagonal matrix D2 is the product of its diagonal 
elements: det (D2) = Ilie3+ ^  =  IL e 3 + ri- Because the subset only includes those 
goods that exhibit strictly positive observed shares, we know that r; ^  0 for all i G £r+. 
As a consequence, matrix D2 is nonsingular. The determinant of matrix D is therefore 
the product of the individual determinants: det (D ) =  (—1)J° -1 Sq™6 (t/q™6 4-1) FLes* r »’ 
which is nonzero for an outside good with a strictly positive share and a demand income 
elasticity different from zero. Again, if this was not the case, the argument still follows if we 
renormalize the parameters in terms of an inside good with a strictly positive market share 
and a demand income elasticity different from zero.

The nonsingularity of D establishes that there is a unique vector of the [cj parame
ters, independent of the set of [bij] parameters, that solves the system of equations rffue = 
r]i(r,y,0, S) and matches the Jq —I vector of predicted to true income-elasticities associated 
with the inside goods.

We proceed by considering the price-elasticities. Under the asymmetry assumption of 
the more general budget share function, we show that the model predicts elasticities that

11 Recall the relationship between the budget share and the demand income-elasticities. T]f = Tjf + 1. A 
budget share income-elasticity rjf,true =  — 1 is equivalent to a demand income-elasticity r)ftrue = 0.
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are able to assume arbitrary (Jq — l ) 2 values for the inside goods. We start by noting that 
since the model can match any vector of budget shares, the own- and cross-price elasticities 
predicted by the model are given by:

Co X^m=l CmTm

It remains to show that there is a vector of [bij] parameters that solve all the inside goods 
£tjUe =  etj (ri V\ Q-, equations simultaneously for any i , j  E 3d". The problem is that the 
system of price-elasticities equations depends on the [q] parameters. However, we have 
shown that the vector of [cj parameters that matches the Jq — 1 vector of predicted to 
true income-elasticities associated with the inside goods is independent of the set of [bij] 
parameters and depends only on the vectors r, slrue and rf[ue . As a consequence, we can 
solve the joint system of equations by recursion. In particular, we have that setting:

ptfUCny

bii = + sf™  - 1  ~ $ F )  S>TU°’
T iT  i

„true„.
bij =  + s f “e -  £*;“ ) (r, stTU‘, rf™ ) ,

TjTi

for any i , j  E 3 + matches the (J^  — l ) 2 vector of predicted to true price-elasticities for 
the inside goods, where /  (r, strue, rfrue) denotes the expression Ĉo +  Sm =i cmrm) after 
substitution the [c*] parameters for the corresponding implicit solution that matches the 
vector of true income-elasticities for the inside goods. ■

P ro position  3.5 There exists a set of 9 parameters such that the m ore general budget 
share fu n c tio n  Si (r, y; 0 ,3 ) can match, under specification B, any vector of budget shares 
and any matrix of own- and cross-price elasticities.

P roof. In order to establish Proposition 3.5, we want to show that we can choose the set of 
parameters 9 so that the model satisfies simultaneously the following equations:

^  (r, y; 9,3 )

4  (r> Vi9’ S ) ,

where s-rue and £^ue denote any true vector of budget shares and any true matrix of own- and 
cross-price elasticities, respectively. In other words, we want to show that at an arbitrary 
point (ri, yi), for any true s*rue and £^ue where i,j E 3q and j  ^  i, we can always choose 
the [<ij] and [bij] parameters that matches the predicted budget shares and price elasticities

tru e  __
b i ~

_ tru e  __
i j  ~
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to the observed ones. The point of approximation is taken, without loss of generality, to be 
U =  Ui — 1 for i £ Sq • At this point of approximation, we want to show that the model 
satisfies the following equations:

strue

am ^2nest hr

true i / • -\ ( h / ^ )  bm j true

In the spirit of Proposition 3.3, we begin the proof of Proposition 3.5 by defining Si = 
ai+YLme^ bim' We know the budget share equations can be solved by setting Si = s -rue/Sgrue. 
In order to see why this is the case, note that smUe/ so™e =  l / sorue and,
as a consequence, we have that:

„true    1 __ x  „ true*-• — *—. - — °i*o J

which rearranging implies that Si =  sf'ue/ s tJ ue as required.
Having matched the observed budget shares by choosing the [Si] parameters appropriately, 

we know focus on matching the true price elasticities, which can be rewritten as follows:

true i ( ■ ■\ ( b i j / 3? ™ ) t
4  = - 1 0 = * ) ---------------------------------------- T^ '/ l t r u e  ̂   +  S T  >

W 4 ue)

since Emestf am +  £ mes>+ bmn = ^ m 69 0+ 6m =  1/4™"- This constitutes a system of
equations in the unknown [bij] parameters. In order to see that we can always choose the 
[b̂ ] parameters that matches the predicted price elasticities to the true ones, impose the 
Jq restrictions bm j =  0 which imply &mn =  0. After imposing these
restrictions, we can write:

true _  _  ( b j j / s l TUe) true
£ij ~  ( i / s*™«) + s

which rearranging implies that setting:

<?tTh.. = _!__ (- I  -  Etrue + +strue)
U n c tr u e  \  1 b tt T  I " * ,  )

gtrue

So
ctrue

h-. — 11__  (—rtrue -I- Qtrue\
UV — Qtrue V bi j  ^  bj  ) ’S0
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for any z, j  G solves the (J ^ ) 2 equations associated with all price elasticities and matches 
the model predictions to the observed ones. Note the solution does not depend on the [aj 
parameters. The result is that the model is able to assume arbitrary values for the predicted 
elasticities even imposing these normalizations.

In the last step of the proof, we note that the [a*] parameters can always be choosen to 
match the observed budget shares as follows:

„true gtrue . v
ai ~  ~  km =  U  +  ^ im )  »*0 *0 v u /

where the last equality is derived after substituting the expressions for bim in terms of the 
true budget shares and price elasticities. ■

3.2 Identification  and E stim ation

The identification of the different parameters requires a set of normalizations we now de
scribe. We have already noted that the budget share functions are homogeneous of degree 
zero in the parameters and hence are identified up to a scalar. Without loss of generality, 
we normalize Co for specification A and boo for specification B.

The full identification of specification B requires, however, some additional normalizations 
motivated by data issues. Because the outside option is modelled explicitly under this 
specification, we need to discuss the identification of the price-substitution patterns from 
and to the outside good. We typically observe no variation in the price of the latter option. 
As a consequence, we can not expect to be able to identify 6 0 0  • This constitutes the reason 
why we choose to normalize 6 0o in order to fix the scale of the parameters in specification B. 
Moreover, and for exactly the same reason, we can not also expect to be able to identify the 
[bio] parameters, i.e. the parameters that define the degree of substitution towards product 
z when the price of the outside option varies. We choose to impose the [6 ;o — &oz] symmetry 
assumption for all z 7  ̂ 0. The [&oi] parameters define the degree of substitution towards the 
outside option when the price of inside product z varies. Given the typical price variation of 
an inside good, we can expect to identify the later parameters and, therefore, the imposition 
of symmetry seems a natural restriction.

Given these restrictions, the identification of the remaining parameters is standard given 
a large enough sample. The [ai] parameters in 6 1  are identified from variation in the budget 
shares across the different goods. Having identified the [aj parameters, the taste parameters
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in vector /? are identified from variations in the observed product characteristics. The [bn] 
and [bij] parameters in 02 are identified from variation in prices, with the identification of 
the former relying in variation from own-prices, and the latter in variation from competitors 
prices. Finally, the [cj parameters, in specification A, are identified from variations in 
income. Of course, in many instances it will be appropriate to use instruments rather than 
(say) the variation in the actual prices to empirically identify the model’s parameters, an 
approach we discus further below.

The estimation algorithm that we propose is based in Berry (1994) and BLP, and includes 
four steps that we now describe.12 Although the sample dimension will not impact the 
general setup of the algorithm, it will have an affect on the set of 02 parameters. If the 
number of goods is relatively small so that the dimensionality problem does not constitute 
an issue, 02 will include the set of [bij] and [q] parameters in specification A, and ao and 
[b̂ ] in specification B, whereas if, on the other hand, the number of goods yields a too great 
number of parameters to be estimated, a mapping needs to be defined and 02 will include 
instead the vector a  in specification A (plus ao in specification B). Although we already 
hinted the reason why a0 is included in the set of 62 parameters under specification B, we 
will discuss the issue further below.

S tep  1 Set initial values for the parameters in 02.

The choice of the initial values for 02 is always arbitrary and ideally would not have an 
impact on the final parameter estimates. Unfortunately, this may fail to happen on the class 
of highly nonlinear demand models for differentiated products that involve simulation - of 
which BLP constitutes the most extensively used example in empirical exercises. Despite the 
work on identification by Berry et al. (2004), Berry and Haile (2008), and Fox and Gandhi 
(2008), numerical problems difficulties can arise. Knittel and Metaxoglou (2008) explore the 
issue of potential multiple local minima using BLP’s estimator and find that convergence 
may occur at a number of local extrema, at saddles and in regions of the objective function 
where the first-order conditions are not satisfied.

Our estimation procedure, although motivated by and closely related to Berry (1994) 
and BLP, will prove to be globally convex and hence avoid some of the numerical issues 
related to local extrema - as our monte carlo simulations below demonstrate. Furthermore,

12The marginal utility of income under specification A is given by the price index co +  Ylm=i cmrm- If, 
following Pinkse and Slade (2004), the researcher is willing to assume this price index to be constant, then 
the specification can be estimated by a simple linear instrumental regression approach.
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we propose an alternative algorithm in the spirit of Davis(2006a) and Dube et al. (2009) 
that improves the rate of convergence substantially.

S tep  2  Computation of the budget shares conditional on the 6 2  parameters

Propositions 3.2 and 3.3 establish that, conditional on the 6 2  parameters, the more general 
budget share function can match any vector of observed budget shares. In Step 2 , we solve 
for the unique 9\ parameters that, given each guess for the set of parameters in 02, match the 
observed s f ue with the predicted Si (r, y \ 0 , S) budget shares in each market or time period. 
For specification A, the solution to this problem is analytical:

d i  = ( s ^ / n )  ( 7 0 y +  £m =l 7 mrmy j -  Em=l himTm ~ CiV- (40)

For specification B, we can not solve for the unique 9\ parameters analytically and hence 
have to solve it numerically. Proposition 3.3 establishes that, even in the most general of 
the cases in which no restrictions are imposed on the parameters, there is a unique vector 
valued function a that solves the system of equations s\rue = s f  (r, y\ 9, S) for i £ • From
the budget share function it is clear that this solution must be such that N f  (r, t/; 9,5s) = 
^iTiU +  X)m=o bimTmTiy2 is either positive or negative for all i £ Sq . If N B (r, y, 9, £r) was to 
be positive for some i and negative for others, the model would not be able to equate the 
predicted shares to strictly positive observed shares. As a consequence, we can without any 
loss of generality work with the element-by element function:

Ni (r, y \9, 3f) =  a ^ y  +  Y?m=o himTmriy2 = exp (5{) = NtB (6, 9 ) .  (41)

We have already noted that, conditional on the vectors r, y and 0 2 , it is entirely equivalent 
to equate the predicted shares by the model and the observed shares using the vector a = 
(a0 , a i , . . . , aj+)' directly or the vector S = (8 0 , 6 i , . . .  ,5j+)', as long as the inverse function 
ai = f~ x (r,y, 8 , 0 2 , S) exists and is unique. We can then rewrite the share function for 
specification B as follows:

L m = 0  m  ( r > 2/; 3 ) 0 e X P  ( * m )

This budget share function has two characteristics that are important to discuss. First, it is 
independent of the sign of N f  (r, y; 9, S). Suppose the marginal utility function N B (r, y; 9, $s) 
is negative: in that case, we can work instead with — exp(£j), for all i £ which does
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not impact the ratio in the budget share function. Second, conditional on the 02 parame
ters, it is homogeneous of degree zero in the vector 8  and hence identification requires a 
normalization. Without loss of generality, we choose to normalize a0 (which, conditional 
on the 6 2  parameters translates into a normalization of Jo) by including it on the set of 0 2 

parameters. Note that this normalization is only for Step 2 purposes. Of course, we could 
have, alternatively, normalized aQ to start with (and not bQ0 as we did). However, given the 
typical data variation we observe for the outside option in real-world applications, we can 
expect to be able to identify a0 although not 600.

We now address the numerical alternatives we propose to solve for the unique vector 
valued function 8 that solves the system of equations s-rue =  s f  (8, £y) for i E Sq . The first 
alternative involves using BLP’s contraction algorithm.

P ro p o sitio n  3.6 The solution to the problem of equating observed and predicted budget 
shares for the subset Sg of goods with strictly positive shares may be found recursively (for 
each time period or market) using the operator g (8i) defined pointwise by:

9  (8 i) = 8 i +  In (s-™e) -  In [s* (8, O f ) ] ,

for every i E S + . In other words, the operator g (J*) is a contraction mapping with modulus 
less than one.

Proof. In order to establish the above proposition, we apply the contraction mapping theo
rem in BLP to specification B. They prove that the operator g (J*) is a contraction mapping 
with modulus less than one if it exhibits the following properties: g(8i) is continuously 
differentiable, with Vi and j ,  dg (8 {) / d 8 j > 0 and Ylje%+ ®9 (^) /d$j  < b

We need to show that operator above satisfies the properties of their theorem. We begin 
by noting that the differentiability of the budget share function ensures the function g (J*) is 
differentiable. In what the monotonicity properties is concerned, we have that g (Jj) /d8j = 
Sj(8,$s) > 0 Vi and j .  Finally, it is clear that Ylje%+ @9 (^) / ^ j  — sj ^ ) =
1 — s0 (8 , Q) < 1 if the outside good exhibits a share strictly greater than zero.

This implies that we can solve for the vector 8 recursively. The initial guess for 8i is 
used to evaluate g (8i) and obtain a new estimate J*. The process is then repeated until 
convergence is achieved for Jj, yielding a match between predicted and observed budget 
shares. We can then, conditional on the vectors r, y and 02, invert each Jj and recover the 
unique vector a. ■

The numerical properties of BLP’s contraction mapping approach is explored by Dube et
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al. (2009). They use the contraction mapping theorem to show that its rate of convergence 
is in general slow. In order to address such problem, we propose an alternative, based on 
Quasi-Newton methods, that provides a faster rate of convergence in a manner which ensures 
global convergence.

Proposition 3.7 The solution to the problem of equating observed and predicted budget 
shares for the subset Sq of goods with strictly positive shares may be found as the unique 
solution to the following strictly convex optimization problem (for each time period or mar
ket): x* ( E me3+ ^  (*. 3 )) -  E m£3+ •
Moreover, the solution to this minimization problem can be found numerically using a Quasi- 
Newton method such as Davidson-Fletcher-Powell (DFP) with exact line search. Such an 
iterative algorithm provides a super-linear rate of convergence.

Proof. The proof of the above proposition follows directly the first-order conditions to the 
optimization problem, which yield s* (5, S) =  s-rue. It remains to show that the problem is 
convex. It is well known that the problem is convex if the second partial derivatives matrix 
of the problem’s objective function is positive semidefinite. For the problem above, the 
second partial derivatives matrix has diagonal entries given by Si (5, $s) (1 — s* (S, Q)) and 
non-diagonal entries given by — s* (5, S) Sj (S, Sj) for all i , j  £ 9r*\

A sufficient condition for positive definiteness (and automatically positive semidefinite
ness) of a symmetric matrix is that all the diagonal entries are positive and there is a 
dominant diagonal (each diagonal entry is greater than the sum of the absolute values of all 
other entries in the same row). The properties of the budget share function ensure that both 
conditions are satisfied for the second partial derivatives matrix of the problem’s objective 
function. The former condition, that the diagonal entries are positive, is satisfied if each 
good exhibits a share strictly between zero and one. In order to see why the latter condition, 
that each diagonal entry is greater than the sum of the absolute values of all other entries in 
the same row, is also satisfied, note that s* (6 , S) (1 — s* (<5, S)) >  si sj ^0 f°r 
all i , j  € £y+ simplifies to Si (6, S) (1 — s* (6, $)) > s* (£, £y) (1 — s* (5, £*) — So (6, S)), which 
is true since s* (5, S) s0 (S, S) > 0. Thus, the objective function is strictly convex.

Given the strictly convexity of the problem, any local minimum will also be a global 
minimum of the problem and hence the solution will be unique. In addition, it is well known 
that suitably chosen Quasi-Newton methods will be globally convergent for convex problems. 
For example, Powell (1971, 1972) establishes that if an objective function is convex, then the 
DFP method with exact line search converges globally, with super-linear convergence. ■
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Let, in both specifications, a (r, y, sobs\ 02, S) denote the solution vector of the a ’s that 
ensure that the observed s°bs and the predicted s* (r, y; 9, £y) budget shares are equated.

S tep  3 Computation of the structural error

Having solved for the unique 6 1 parameters that match, in each market or time period, the 
observed budget shares s\rue with the predicted ones s* (r, y; 0, S), we proceed by running a 
Berry (1994) style regression on the following relationship:

ait (r, y, wobs\ 02,3f) =  J2?=i Pkx kit +  (43)

and obtain estimates for the vector /3 of parameters and for the [£it\ unobserved character
istics. The latter estimates will be a function of both fl and 02 vectors of parameters and 
will be used to compute the objective function of a Generalized Method of Moments (GMM) 
procedure.

S tep  4 Estimation of the 6 2  parameters

Estimate the O2 parameters by GMM. The approach relies on an identifying restriction on 
the distribution of the true unobserved characteristics and is based on the sample analogue 
to the population condition.

The standard identifying restriction states that, at the true values of the parameters, 
Qtrue _  ^Qtrue gtruey  ̂ ^  true unobserved characteristics are mean independent of a set of 

M  instruments Zit = [zlit, . . . ,  zMu] •

E  [U (0*"“ ) | Zit] = 0. (44)

Please note that other identifying restrictions would also enable the estimation of the 
model. In particular, given the typical panel structure of the data, an alternative assumption 
could incorporate the likelihood of the econometric error and the set of instruments to be 
more similar for a given product across time, than for those of different products. Please see 
BLP and Davis (2006a) for a more detailed analysis on this subject.

The above population moment condition can be used, akin to Hansen (1982), to render a 
method of moments estimator of 6 * by interacting the estimated unobserved characteristics 
with the set of instruments, and then search for the value of the 9 parameters that set the
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sample analogues of the moment conditions as closed as possible to zero. Let Gn (0) denote 
the sample analogues of the moment conditions:

Gn(e) =  l j 2 i 1T , l 1li t mz'u ,  ( 4 5 )

where for notational purposes (0) =  (0) x l t , Zit =  [ z u t X u ,  » z M i t X i t \ > a n d  X u  =  1 i f

good i is sold in market t and zero otherwise. Xu provides, thereby, a missing value indicator 
used to compute n =  £ / =1 Y ^ =1 X u •

Formally, the method of moments estimator for 0 is the argument that minimizes the 
weighted norm criterion of Gn (0), for some weighting matrix An with rank at least equal to 
the dimension of 0:

0 =  argmin ||Gn (0) \\A = Gn (0)' AnGn (0). (46)
9

The strong non-linearity of the objective function requires a minimization routine. The 
non-linear search over 0 can be simplified by making use of the fact that the first order 
conditions for a minimum of ||Gn (0)11^ are linear for the subset (3 of the 0i parameters 
of estimation in 0 =  (0i,02) • In particular, it is possible, given the standard instrumental 
variables results, to express the vector (3 as a function of 02, and limit the non-linear search 
over 02:

p = ( X 'Z A - 'Z 'X y 1 X 'Z A - 'Z 'a  (r, y, s'**; 02, 9 ) ,  (47)

where X  denotes the n x K  matrix of [xkjtXul observed characteristics, and Z  denotes the 
n x M  matrix of [zmitXu\ instruments.

3.2.1 Standard Errors

In contrast to a model based on simulation, the GMM estimator for this model does not
need to be corrected for simulation error and hence the standard formulae for a GMM esti
mator apply. Hansen (1982) establishes the formal conditions under which 0, the method of 
moments estimator, is consistent and asymptotically normal with bounded variance, consis
tently estimated as follows:

• f t  (e -  r )  ~  n  fo, ( P Anf ) _1 P A ,* A ,r  ( P Anf )  " 1| , (48)
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where F denotes a consistent estimator of the gradient of the objective function:

d l t  (fl) ZL
do'

and $  denotes a consistent estimator of the variance-covariance matrix of the moment con
ditions $  =  Var G„. e . The optimal weighting matrix is proportional to $  1, giving less
weigh to those moments with a higher variance.

We may follow the traditional literature on the continuous demand for differentiated prod
ucts, wherein asymptotic arguments axe assumed to work in the number of markets (or time 
periods) or, alternatively, we may follow the BLP assumption that asymptotic arguments

Gn (0work in the number of products. Furthermore, the structure of the matrix Var 
will depend on our assumptions about the covariance structure of the unobserved product 
characteristics. We may, for example, assume that they are independent across markets, but 
allow for correlation across products within a given market or, alternatively, we may assume 
that they are correlated across markets and independent across products. Naturally, it is 
also possible - and probably desirable - to assume richer error variance structures. See, for 
example, Davis (2002).

3.3 C onsum er H eterogen eity  and W elfare A nalysis

An important advantage of a structural model is that it can be used for welfare analysis. 
In this section, we extend the model to account for consumer heterogeneity in order for 
the indirect utility function to constitute a social indirect utility function. The model can 
easily account for such heterogeneity by allowing the set of parameters 02 to be consumer- 
specific. In theory, consumer heterogeneity may extend any specification of the model. In 
practice, however, since this extension increases the vector of parameters of interest, it may 
make sense to introduce consumer heterogeneity into a model where the 02 parameters are 
initially mapped onto the characteristics space.

Consider a population of I  households, where each household h is described by income yh 
and a set of observed and unobserved consumer characteristics, dh and Uh. Let the preferences 
of household h be given by Hh (r, y^, 0^, S), where 6h denotes the set of individual-specific 
parameters. Following the random-coefficients discrete-choice literature, we may assume 
that Oh can be decomposed into a set 0\ that will capture the mean aggregate budget shares
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and is common to all households, and a set 02h that will capture the price and income 
substitution patterns and is individual-specific. In particular, let the 02h parameters be 
defined as functions of the observed and unobserved consumer characteristics, dh and Uh'-

6 2  h — Q2 +  Q2dh +  9^Uh, (49)

where 9\  and 9% represent coefficients on the interactions with observed and unobserved 
individual attributes, respectively.

The social indirect utility function H  (r, j/i,. . . ,  yi\ 9, S) =  (1 //) ]Ci=i Hh (r > Vh\ 0, will 
be, in general, a function of the vector of prices and the complete distribution of household 
income. If Hh (r, yh',9h, S) has the properties of an indirect utility function then standard 
duality results imply that, under non-satiation, the demand system is easily obtained via 
Roy’s identity. Let Wih (r, Vh’,9h, S) denote the budget share of good i for household h.

The introduction of consumer heterogeneity is not obtained costlessly, since there is no 
closed form expression for the market-level budget share, Wi(r,yh’,9h,$s), that aggregates 
the I  individual budget shares:

Wi (r, Iih;0h,Q) = J  wiH (r , yh\ 6 ,3) dP’ (y , d, u) = J  wih (r, yh; 0 ,3) dPyd (y, d) dP’ (u) ,

(50)
where P * (y, d, u) denotes the population distribution of the consumer types (yh, dh, Uh) and 
the last equality is a direct consequence of the independence assumptions that can be made 
on (y , d) and u. Following Pakes (1986), Pakes and Pollard (1989), and McFadden (1989), we 
can approximate the above integral by simulation using, for example, a smooth estimator. 
Such computation requires drawing ns pseudo-random vectors of consumer characteristics 
from P*d (y, d) and P* (u) and simulate the aggregate budget shares by:

Wi (r, yh', 9fi, 3 , P ns) = (1 /ns) Y ^ L i wih (r > Vh\ Oh, 3 ) ,  (51)

where P ns denotes the empirical distribution of the simulation draws. A drawback of this 
type of solution is that it introduces simulation error, which, as Berry et al. (2004) point 
out, influences the asymptotic distribution of the GMM estimator and, therefore, needs to 
be explicitly taken it account. However, apart from these modifications, the introduction of 
consumer heterogeneity would not impact significantly the general setup of the estimation 
algorithm.

If the aggregate demand functions axe generated, via Roy’s identity, from a social indirect
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utility function, they have welfare significance and can be used to make welfare judgments via 
the standard welfare measurement techniques. By estimating the parameters of the demand 
functions, we have the required parameters of the social indirect utility function, which we 
can then easily invert - either algebraically or numerically - to derive the expenditure function 
- and compute compensating and equivalent variations. Of course this approach only makes 
sense if the estimated parameters satisfy the various restrictions that ensure an underlying 
model of utility.

Although the social indirect utility function will be, in general, a function of the vector of 
prices and the complete distribution of household income, Gorman (1953)’s seminal article on 
exact aggregation establishes, however, that when consumers have indirect utility of the Gor
man form, aggregate demand can always be thought of as being generated by a normative rep
resentative consumer with indirect utility function H  (r, y; 9,3 )  =  (1 / I )  $3/»=i Hh (r > Vh]Q, S) 
defined in terms of y, the average income, regardless of the form of the social welfare function.

An indirect utility function for consumer h is said to be of the Gorman form if it can be 
written in terms of functions dh (r), which may depend on the specific consumer, and k (r), 
which is common to all consumers:

Hh (r, yh] 9, 3 ) =  dh (r) +  k (r) yh.

We now show that the specification A for H  (r, y-,9,$s) satisfies the Gorman polar form 
and, as a consequence, the preferences of our fictional representative consumer constitutes 
a measure of aggregate social welfare. As a consequence, for this particular specification, 
welfare judgments can be made without incorporating consumer heterogeneity.

Proposition 3.8 The indirect utility function under specification A, H A (r, y \9, ^ ) , consti
tutes an admissible social indirect utility function for the normative representative consumer.

Proof. Let the indirect utility function of each household h , H A (r, yh] 9, S), be given by a 
generalization (to the household-level) of specification A’s indirect utility function:

H ^ (r, yh] 9, 3 ) =  a0 +  Y^L=i amrm +  1/2 £m =i £ n = i &mnrmrn +  Coyh +  cmrmyh- 

It is easy to verify that H A (r, yh] 9, £y) satisfies the Gorman form with dh (r) = ao +

1 “I” 1 /2  5^m=l X^n=l ^m nTm Tn  &nd k (r) =  Cq +  ^2 /m = l ®
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3.4 M onte Carlo E xperim ent

In this section, we describe the data-generating process for a Monte Carlo experiment de
signed to analyze the convergence properties of the demand model for the different specifica
tions proposed. We consider a setting with J  goods in T  markets and allow the econometri
cian to observe, in addition to price, K  = 5 characteristics for each good-market combination. 
The observed characteristic k for good i in market t, x kit, is drawn from a (0,1) uniform 
distribution. Because not all characteristics of a good are observed by the econometrician, 
we allow also for unobserved characteristics, which we draw from a (—l^,l{) uniform dis
tribution. The set of [ait] parameters are defined as an = Aj +  E /U i Pkx kit+£ui with {30 = 50 
and Pk = 1 for all k > 1. With the variance of the observed characteristics fixed, controls 
the ’noise-to-signal’ ratio in the model. If is small, we expect to require relatively smaller 
samples to consistently estimate the parameters than when compared with the large I% case. 
The baseline case focus on 1% =  0.50, but we investigate the sensitivity of the estimates to 
other assumptions.

In order to simulate the endogeneity that arises from profit-maximizing price setting, we 
define prices to follow pit = 12.5 +  Ylk=l Pkxkit +  £it +  e»t |, where eit denotes a (0,1) uniform 
innovation. In order to deal with this endogeneity problem, we construct a number M  instru
ments correlated with price, but not with the unobserved characteristics. The instruments 
are derived following zmit — Yll=i Pkxkit +  e»t +  0.5gmit, with gmit being drawn from a (0,1) 
uniform distribution. As we discuss below, we consider several sample designs in our Monte 
Carlo experiment in order to investigate the estimation properties of the model. However, for 
comparison purposes, we maintain the number of instruments constant across the sample de
signs. In particular, we consider a conservative number of intruments following a combination 
of Hausman and Bresnahan approaches, where observed product characteristics of a good 
in other markets become instruments for its price in a given market: M  = K  [min (T) — 1], 
where min (T) denotes the minimum of markets across the different sample designs.

The market-level income yt is assumed to follow a (200,209) uniform distribution, which 
despite the narrow range exhibits a variance comparable to the price variable. The reason 
for such narrow range is simulation related. The model can be used to estimate substitution 
patterns from any real data. However, when we simulate data for a given set of parameters 
and repeatedly draw random prices and income (as in our Monte Carlo experiment), we can 
encounter numerical problems (e.g., simulated market shares being negative). A problem 
that would never face when working with data. The bounds on income were therefore 
chosen to ensure positive and adding-up consistent budget shares (the latter of particular
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importance for specification A). Again, this is not a problem working with real data - in that 
case we are estimating the parameters and real budget shares are never negative.

The variation in the set of choices available to consumers can provide important infor
mation about substitution patterns. We allowed goods to be missing at random from a 
given market in order to mimic the entry and exit behavior characteristic of typical real- 
world datasets. In particular, a good was assumed missing in market t if the realization of 
a standard continuous-uniform random variable was less than 0.2 subject to the constraint 
of having at least one inside good.

Finally, the numerical optimization over the structural parameters was performed using 
GAUSS’s sqpsolvemt solver with user-supplied objective function exact derivatives.

3.4.1 Specification A

We consider two broad sample designs: one where the number of different goods in a market 
is small, but a reasonably large number of markets exist, and another with a large number 
of goods marketed on a small number of markets. We begin by addressing the small number 
of goods case and hence assume that the asymptotic arguments work in the number of 
independent markets. The true values of the parameters of the indirect utility function axe 
assumed to be bn = 40, = —10 and c* =  2 for all i ,j .  For expositional convenience, the
symmetry assumption was imposed on the estimation of the [bij] parameters.

Table 3.1 presents the means and standard errors (in parenthesis) of the GMM estimates 
for the 02 parameters across 50 sample experiments. All the results are conditional on 
J  = 3 goods. Panel A explores the sensitivity of the estimates to the number of markets, 
with columns (i)-(iii) considering the following three cases: T  = 100, T  = 200 and T  = 
400. It seems that the algorithm performs reasonably well, with both price and income 
parameters converging to the true values even at small sample sizes, although in what the 
price parameters are concerned, it seems to be easier to identify own-price than cross-prices 
parameters (as the former have lower proportional standard errors).

Panel B explores the sensitivity of the algorithm to the variance of the unobserved char
acteristics £it that controls the noise-to-signal ratio. We consider the following three cases: 
If =  1.50, 1% =  0.50 and = 0.00, with column (iii) just reproducing the baseline case 
from panel A for comparison easiness. As expected, the results suggest that an increase 
in the variance of £it (and consequent increase in the noise-to-signal ratio) deteriorates the 
performance of the algorithm - which implies that we require additional data in order to
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T a b l e  3.1
Monte-Carlo Results: Specification A - Small J  Case

Panel A: Sensitivity to Number of Markets T*
Parameter True (i): 1 0 0 (ii): 2 0 0 (iii): 400

b n 40.00 40.13 (2.94) 39.60 (2.80) 39.89 (2.20)
621 - 1 0 .0 0 -10.11 (0.96) -10.04 (0.72) -10.11 (0.85)

622 40.00 39.92 (3 .28) 39.66 (3.05) 40.06 (2 .09)

^31 -10.00 -10.00 (1.06) -9.95 (0.89) -9.95 (0 .97)

bs2 -10.00 -9.69 (1.10) -9.74 (0 .99) -9.83 (1.10)

&33 40.00 40.72 (2.48) 40.52 (2.85) 40.39 (2 .05)
Cl 2.00 2.00 (0 .04) 1.99 (0.03) 1.99 (0 .03)
c 2 2.00 2.00 (0 .04) 1.99 (0.03) 2.00 (0 .04)
c 3 2.00 2.00 (0 .03) 1.99 (0.03) 2.00 (0 .03)

1 /\tru€  
* 50 Monte Carlo simulations for J= 3 , i£ = 0.50 and starting values at

Panel B: Sensitivity to Noise-to-Signal Ratio l^*
Parameter True (iv): 1.50 (iii): 0.50 (v): 0.00

611 40.00 39.69 (7.54) 39.89 (2.20) 40.00 (o.oo)
&21 -10.00 -10.33 (2.59) -10.11 (0.85) -10.00 (o.oo)
^22 40.00 39.93 (7 .21) 40.06 (2.09) 40.00 (0 .00)

&31 -10.00 -9.84 (2.94) -9.95 (0 .97) -10.00 (o.oo)
^32 -10.00 -9.52 (3.29) -9.83 (1.10) -10.00 (o.oo)

&33 40.00 41.35 (6.63) 40.39 (2.05) 40.00 (o.oo)
Cl 2.00 1.98 (0 .09) 1.99 (0 .03) 2.00 (o.oo)

c 2 2.00 2.00 (0 .12) 2.00 (0 .04) 2.00 (0 .00)

c 3 '2.00 1.99 (0 .08) 2.00 (0 .03) 2.00 (o.oo)
/itruc* 50 Monte Carlo simulations for J= 3 , T=400 and starting values at Uy

Panel C: Sensitivity to Starting Values*
Parameter True (vi): ( l / 2 ) 0 f * (iii): 6% ue (vii): 2 0 l ™

611 40.00 39.83 (2.36) 39.89 (2 .20) 40.02 (2.29)

&21 -10.00 -10.11 (0.85) -10.11 (0.85) -10.11 (0.87)

622 40.00 39.82 (2.19) 40.06 (2.09) 40.20 (2.15)

b%i -10.00 -9.95 (0.98) -9.95 (0 .97) -9.94 (0 .99)

bs2 -10.00 -9.83 (1.13) -9.83 (1.10) -9.83 (1.13)

&33 40.00 40.37 (2 .10) 40.39 (2.05) 40.39 (2 .O6)
Cl 2.00 1.99 (0.03) 1.99 (0 .03) 2.00 (0 .03)
c 2 2.00 2.00 (0.04) 2.00 (0 .04) 2.00 (0.04)

c 3 2.00 2.00 (0 .03) 2.00 (0.03) 2.00 (0 .03)
* 50 Monte Carlo simulations for J= 3 , ^£=0.50 and T = 400.
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obtain a given level of statistical precision. We should note also that, for the case where no 
unobserved characteristics exist (1% =  0), the model identifies the exact true values of the 
parameters at every single replication of the Monte Carlo experiment. The reason is that on 
specification A, the [an] parameters are retrieved analytically and, as a result, no numerical 
error is introduced in the contraction inner loop (please see Dube et al. 2009 for more details 
on numerical contraction induced errors).

The results presented on panels A and B of Table 3.1 are computed using the true 
parameters as starting points of the algorithm. Panel C explores the potential multiple 
local minima property of the GMM objective function in the lines of Dube et al. (2009) 
and Knittel and Metaxoglou (2008) by considering multiple starting points. In particular, 
we consider two alternative starting points: (1/2)6%™ and 26%ue, with column (iii) again 
just reproducing the baseline case from panel A. The results point to the robustness of the 
algorithm to the different starting points since it converges to very similar parameter values 
each time.

To sum up, the results suggest three key features of the estimation procedure: i) the 
estimators seem to be consistent, ii) the biases are typically non-increasing with the sample 
size and non-decreasing with the magnitude of the noise-to-signal ratio Zf, and finally iii) 
the GMM objective function seems to be have an apparent global minimum.

We now move to sample experiments with a number of goods that yield a too great 
number of parameters to be estimated. As a consequence, the [&„] and [cj parameters need 
to be mapped onto the characteristics space. In theory, all observed characteristics can be 
mapped onto both 9\ and 6 2  sets of parameters. We choose to consider the case where the
set of characteristics that affect the parameters in 6\ is disjoint from the set of characteris
tics that affect the parameters in 6 2. In particular, we consider that the initial K  observed 
characteristics affect the former and draw an additional set of K L  = 3 observed characteris
tics that are assumed to affect the latter. A possible alternative to this specification would 
be to consider that the observed characteristics that affect the parameters in 0 2 are some 
transformation of the ones that affect the parameters in 6 1  in order to avoid the introduction 
of eventual biases (see Pinkse et al., 2002). The setup is identical to the one for the small 
number of goods case above with the exception that:

( b i i ) t  =  a 10 +  a l l x l i t

( b i j ) t  =  +  & 2 l \ x 2i t  ~  x 2j t \  ( 5 2 )

(Ci)t =  0 :3 0  +  OlsiXsa,
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T a b l e  3 .2
Monte-Carlo Results: Specification A - Large J  Case

Panel A: Sensitivity to Number of Goods J*
Parameter True (i): 30 (ii): 60 (iii): 120

<*10 50.00 49.32 (2.12) 49.97 (1.74) 49.98 (1.26)
a n 50.00 49.88 (0 .95) 49.93 (0.83) 50.20 (0 .86)

&20 -2.00 -2.05 (0.38) -2.03 (0.27) -1.97 (0.16)

a  21 -2.00 -2.01 (0.13) -2.00 (0.07) -2.00 (0 .04)

0^30 30.00 30.00 (0.03) 30.00 (0.04) 30.01 (0.05)

a  3 i 30.00 30.00 (0 .01) 30.00 (0 .02) 30.01 (0.03)
f /itrwc 

* 50 Monte Carlo simulations for T = 10 , l £ = 0.50 and starting values at U2

Panel B: Sensitivity to Noise-to-Signal Ratio l̂ *
Parameter True (iv): 1.50 (iii): 0.50 (v): 0.00

®io 50.00 49.88 (3.79) 49.98 (1.26) 50.00 (o.oo)
a n 50.00 50.60 (2.58) 50.20 (0 .86) 50.00 (o.oo)
C*20 -2.00 -1.93 (0.46) -1.97 (0 .16) -2.00 (o.oo)
<*21 -2.00 -1.99 (0 .11) -2.00 (0 .04) -2.00 (o.oo)

« 3 0 30.00 30.02 (0 .14) 30.01 (0 .05) 30.00 (o.oo)
^ 31 30.00 30.01 (0 .09) 30.01 (0.03) 30.00 (o.oo)

/itruc
* 50 Monte Carlo simulations for J=120, T = 10  and starting values at “ 2

Panel C: Sensitivity to Starting Values*
Parameter True (vi): (l/2)0t2Ue (iii): (vii): 20*™e

<*10 50.00 49.97 (1.27) 49.98 (1.26) 49.98 (1.27)
a n 50.00 50.20 (0 .86) 50.20 (0 .86) 50.20 (0 .86)

& 2 0 -2.00 -1.97 (0 .I6) -1.97 (0 .16) -1.97 (0.16)

a  21 -2.00 -2.00 (0.04) -2.00 (0.04) -2.00 (0 .04)

0:30 30.00 30.01 (0 .05) 30.01 (0 .05) 30.01 (0 .05)

«  31 30.00 30.01 (0 .03) 30.01 (0.03) 30.01 (0 .03)
* 50 Monte Carlo simulations for J=120, T = 10  and ^£=0.50.
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with Q;io =  a n  =  50, CH20 =  « 2 i — —2 and <230 =  0 3 1  = 30.

Table 3.2 presents the results for the large number of goods case and hence assumes that 
the asymptotic arguments work in the number of goods. All the results are conditional on 
T  = 10 markets. The first panel explores the sensitivity of the estimates to the number of 
goods. We consider three cases: J  = 30, J  = 60 and J  = 120. Similarly to the previous 
case, the results point to the convergence of the algorithm, with both price and income 
parameters converging to the true values even at small sample sizes. The second panel again 
explores the sensitivity of the algorithm to noise-to-signal ratio. We consider three cases: 

= 1.50, 1% = 0.50 (the level under which the results in panel A are derived) and =  0 .0 0 . 
The results suggest that, as before, an increase in the noise-to-signal ratio deteriorates the 
performance of the algorithm (even though in a slightly smaller scale when compared with the 
previous case). Again, when there are no unobserved characteristics (Î  — 0), the algorithm 
identifies the exact true values of the parameters at every single replication of the Monte 
Carlo experiment, since the [an] parameters are retrieved analytically and no numerical error 
is introduced in the contraction inner loop. The third panel explores the potential multiple 
local minima property of the GMM objective function by considering two multiple starting 
points: (1/2)9*™* and 29*™*, and the algorithm, again, seems robust to those alternative 
starting points.

The results for the large number of goods case under specification A point to same three 
key features of the estimation procedure outlined for the previous case: z) the estimators 
seem to be consistent, zz) the biases are typically non-increasing with the sample size and 
non-decreasing with the magnitude of the noise-to-signal ratio I£, and finally iii) the GMM 
objective function seems to be have an apparent global minimum.

3.4.2 Specification B

We consider now the algorithm’s properties under specification B. As before, we investigate 
both the small and large number of goods cases. Table 3.3 presents the results for the small 
number of goods case: J  = 3. The true values of the parameters of the indirect utility 
function to be estimated are bn = 20 and =  —2 for all z, j. The symmetry assumption on 
the estimation of the [bij] parameters was again imposed for expositional convenience. The 
first panel explores the sensitivity of the estimates to the number of markets. We consider 
the same cases as in specification A: T  = 100, T  = 200 and T  = 400. The parameters seem to 
converge to the true values with those parameters that drive own-price effects being (again) 
easier to identify than those that impact cross-prices effects. The second panel presents the
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Table  3.3
Monte-Carlo Results: Specification B  - Small J  Case

Panel A: Sensitivity to Number of Markets T*
Parameter True (i): 100 (ii): 200 (iii): 400

boi -2.00 -2.00 (0 .01) -2.00 (0 .01) -2.00 (0 .01)
bo2 -2.00 -2.00 (0.01) -2.00 (0 .01) -2.00 (0 .01)

b n 20.00 19.99 (0 .10) 19.99 (0.07) 19.99 (0 .09)
621 -2.00 -2.00 (0 .02) -2.00 (0 .02) -2.00 (0 .02)
622 2 0 .0 0 19.99 (0.10) 19.99 (0 .08) 19.99 (0 .09)
ao 50.00 49.79 (2.28) 49.79 (1.90) 49.63 (1.84)

j /itr iic
* 50 M onte Carlo sim ulations for J= 3 , t£ = 0.50 and  s ta rtin g  values a t 1 / 2

Panel B: Sensitivity to Noise-to-Signal Ratio l$*
Parameter True (iv): 1.50 (iii): 0.50 (v): 0.00

boi -2.00 ■ -1.99 (0.03) -2.00 (0 .01) -2.00 (o.oo)
bo2 -2.00 -1.99 (0 .03) -2.00 (0 .01) -2.00 (o.oo)
b n 20.00 19.89 (0 .27) 19.99 (0 .09) 20.00 (o.oo)

c
r

to -2.00 -1.98 (0 .05) -2.00 (0 .02) -2.00 (o.oo)
&22 20.00 19.89 (0.26) 19.99 (0 .09) 20.00 (o.oo)
ao 50.00 47.16 (5.42) 49.63 (1.84) 50.00 (0 .00)

/ i t ru c
* 50 M onte Carlo sim ulations for J= 3 , T = 400  and  s ta rtin g  values a t “ 2

Panel C: Sensitivity to Starting Values*
Parameter True (vi): (1 /2 )0 '™ (iii): (vii): 20*™e

boi -2.00 -2.00 (0.01) -2.00 (0 .01) -2.00 (0 .01)
bo2 -2.00 -2.00 (0 .01) -2.00 (0 .01) -2.00 (0 .01)
b n 20.00 19.99 (0 .09) 19.99 (0 .09) 19.99 (0 .09)
&21 -2.00 -2.00 (0 .02) -2.00 (0 .02) -2.00 (0 .02)
622 20.00 19.99 (0 .09) 19.99 (0.09) 19.99 (0 .09)
ao 50.00 49.58 (1.91) 49.63 (1.84) 49.65 (1.88)

* 50 M onte Carlo sim ulations for J= 3 , Z^=0.50 and  T = 400.
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results of experiments in which we varied the noise-to-signal ratio: =  1.50, 1% = 0.50 and
=  0.00. The conclusions are in line to those for specification A, with an increase in the ratio 

being correlated to a deterioration in the algorithm’s performance - implying that we require 
additional data in order to obtain a given level of statistical precision. For specification B, 
a numerical error may be introduced in the contraction inner loop that retrieves the [ait] 
parameters. However, the results seem to suggest that, at least for the stopping criteria 
assumed, this numerical error is not significant. Finally, we address the robustness of the 
algorithm to different starting points. The last panel considers the same two alternative 
starting points as before: (1/2)0%™ and 26%™. The results seem to suggest the algorithm is 
robust to those different starting points.

To sum up, the results point to the same three key features of the estimation procedure 
outline for specification A: i) the estimators seem to be consistent given enough data, ii) 
the biases are typically non-increasing with the sample size and non-decreasing with the 
magnitude of the noise-to-signal ratio I£, and finally in) the GMM objective function seems 
to have an apparent global minimum.

We now turn to the large number of goods case. The setup is identical to the one for 
specification A above with the exception that:

(bu)t ~  a io + &11X1 a (53)

( b i j ) t  — “ V  (<*20 +  a 21 \x 2it  — x 2 j t \ )  >

with (*io =  a n  =  40 and o 2o =  & 2 1  =  30. Tables 4 presents the results conditional 
on the constant number of independent markets T  = 10. The first panel explores the 
sensitivity of the estimates to the number of goods. We consider the same cases as in 
specification A: J  =  30, J  =  60 and J  = 120. The results suggest that, given enough 
data, the algorithm converges to the true parameter values. The second panel evaluates 
the sensitivity of the algorithm to the variance of the unobserved characteristics We 
consider = 1.50, I% =  0.50 and I% = 0.00. The results are similar to the previous case 
with an increase in the noise-to-signal ratio deteriorating the performance of the algorithm. 
Furthermore, the results seem to suggest that, at least for the stopping criteria assumed, the 
numerical error introduced in the contraction inner loop that retrieves the [a ]̂ parameters 
is not significant. The last panel addresses the robustness of the algorithm to alternative 
starting points, and again the algorithm seems robust.

The results of the large number of goods case for specification B seem to point to the same 
three key features of the estimation procedure: i) the consistence of estimators given enough
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Table  3.4
Monte-Carlo Results: Specification B - Large J  Case

Panel A: Sensitivity to Number of Goods J*
Parameter True (i): 30 (ii): 60 (iii): 120

<*io 40.00 40.01 (0 .08) 39.99 (0 .08) 40.00 (0.06)

<* 11 40.00 40.00 (0.08) 39.99 (0 .08) 40.00 (0 .06)
<*20 30.00 30.07 (0.36) 30.04 (0.26) 30.00 (o .i9 )

<*21 30.00 30.26 (1.O8) 30.09 (0 .70) 29.94 (0 .55)
a o 50.00 50.01 (1.70) 49.73 (1.74) 50.12 (1.50)

i  f i t v u e  
* 50 M onte Carlo sim ulations for T = 1 0 , t £ = 0.50 and s ta rtin g  values a t U 2

Panel B: Sensitivity to Noise-to-Signal Ratio l^*
Parameter True (iv): 1.50 (iii): 0.50 (v): 0.00

<*10 40.00 39.98 (0 .19) 40.00 (0.06) 40.00 (0 .00)

<*11 40.00 39.98 (0 .19) 40.00 (0 .06) 40.00 (o.oo)

<*20 30.00 30.00 (0.56) 30.00 (0 .19) 30.00 (o.oo)
<*21 30.00 29.84 (1.67) 29.94 (0 .55) 30.00 (0 .00)
do 50.00 49.78 (4.45) 50.12 (1.50) 50.00 (o.oo)

/ i t ru c
* 50 M onte Carlo sim ulations for J= 120  T = 1 0  and  s ta rtin g  values a t

Panel C: Sensitivity to Starting Values*
Parameter True (vi): (1 /2 )0 ? “ (iii): 0 T e (vii): 2

<*10 40.00 40.00 (0.06) 40.00 (0.06) 40.00 (0.06)

<*11 40.00 40.00 (0.06) 40.00 (0.06) 40.00 (0 .06)

<*20 30.00 30.00 (0 .19) 30.00 (0 .19) 30.00 (0 .19)

<*21 30.00 29.94 (0 .55) 29.94 (0 .55) 29.94 (0 .55)

a o 50.00 50.12 (1.50) 50.12 (1.50) 50.12 (1.50)
* 50 M onte Carlo sim ulations for J= 120 , T = 1 0  and  ^e=0.50.
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data, ii) the biases are typically non-increasing with the sample size and non-decreasing with 
the magnitude of the noise-to-signal ratio Ẑ , and finally iii) the GMM objective function 
seems to have an apparent global minimum.

3.4.3 Substitution Patterns

Real-world applications are typically concerned with the estimation of own- and cross-price 
elasticities. Table 3.5 presents the results and denotes the mean biases and standard errors 
(in parenthesis) of the predicted substitution patterns across a selection of the above exper
iments. The labels on the columns correspond to the Monte Carlo specification from the 
previous tables: (iii) denotes the results for the baseline case with I$ = 0.50 and starting 
values at 6%ue, (iv) denotes the results for the case with = 1.50 and starting values at 
0^ue, and finally (vii) denotes the results for the baseline case with starting values at 20%^. 
All the specifications seem to capture well both the general pattern and level of substitution 
across goods.

3.5 D ynam ic D em and

This chapter leaves many estimation issues yet to be explored. In this section we briefly 
discuss how could we extend the model to account for dynamic behaviour as some real-world 
applications may involve forward-looking behavior by consumers. A more extensive study of 
the properties of this extension seems more appropriately considered as a separate one and 
hence is left for future research.

Let us consider a demand setting in the lines of Gorman (1971)’s multi-stage budgeting 
approach as an example. Consider that our representative consumer is faced with J  different 
brands of a storable good and has to decide, in each period, how much of each brand to 
purchase. Following Gorman (1971)’s approach (see Aguirregabiria (2002) and Hendel and 
Nevo (2006a) for similar dynamic applications), we can separate the quantity decision from 
the brand decision. Assume that the purchased amount, denoted by x t, is simply a choice 
of size, with xt = 0 standing for no purchase. Let dxt = 1 denote a purchase of size x in 
period t, and assume dxt = 1. Because the good is storable, the consumer does not need 
to consume all the purchased quantity in a given period. As a consequence, the consumer 
has also to decide how much to consume in each period. Quantity not consumed is stored 
as inventory.
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Table 3.5
Monte-Carlo Results: Predicted Elasticity Bias

Panel A: Specification A
Small J  Case* Large J  Case**

Elasticity (iii) (iv) (vii) (iii) (iv) (vii)

£11 0.00 (0 .00) 0.00 (0 .00) 0.00 (0 .00) 0.00 (0 .00) 0.00 (0 .00) 0.00 (0 .00)

£21 0.00 (o.oo) 0.00 (0 .00) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo)
£22 0.00 (o.oo) 0.00 (0 .00) 0.00 (0 .00) 0.00 (o.oo) 0.00 (0 .00) 0.00 (0 .00)

£31 0.00 (o.oo) 0.00 (0 .00) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo)

£32 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo)

£33 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (0 .00) 0.00 (o.oo) 0.00 (o.oo)
* 50 M onte Carlo sim ulations for J = 3  and T =400 . ** 50 M onte Carlo sim ulations for J= 120  and T = 10 .

Panel B: Specification B
Small J  Case* Large J  Case**

Elasticity (iii) (iv) (vii) (iii) (iv) (vii)

£01 0.00 (o.oo) -0.01 (0 .01) -0.10 (0 .01) 0.00 (0 .00) 0.00 (o.oo) 0.00 (o.oo)

£02 0.00 (o.oo) -0.01 (0 .01) -0.10 (0 .01) 0.00 (0 .00) 0.00 (o.oo) 0.00 (o.oo)

£11 0.00 (0 .00) 0.01 (0 .01) 0.09 (o.oo) 0.00 (0 .00) 0.00 (0 .01) 0.06 (o.oo)

£21 0.00 (o.oo) -0.01 (0 .01) -0.07 (o.oo) 0.00 (o.oo) 0.00 (o.oo) 0.00 (o.oo)

£22 0.00 (o.oo) 0.01 (0 .01) 0.09 (0 .01) 0.00 (o.oo) 0.00 (0 .01) 0.06 (o.oo)
* 50 M onte Carlo sim ulations for J = 3  and T =400 . ** 50 M onte Carlo sim ulations for J= 1 2 0  and T = 10 .



In each period, the consumer’s problem can be represented by:

V'(si) =  max 1E [u(ctlvt\0) -  C (It+1;9) + '52x dxtHx t{r ,y;9 ,3x) |s i ] ,
{ c (st) ,x (st)}

S.t.

0 < Iu 0 < Q> 0 < xt , '%2x dxt =  l, h+i — h  + xt ~ Ct

where st denotes the state at time t , S >  0 denotes the discount factor, u (c* +  vt\ 9) denotes 
the utility from consumption, vt denotes a shock to utility that impacts the marginal utility 
from consumption, C (It+i]9) denotes the cost of storage, and Hxt(r,y]9,5sx) denotes the 
utility from a size x  purchase (Sx denotes the set of brands available with size or).

The state vector st consists, at time t, of the current (or beginning-of-period) inventory 
It , current prices, and the shock vt. We can, following Hendel and Nevo (2006a), make the 
simplifying assumptions that vt is independently distributed over time, and prices follow an 
exogenous Markov process.

The estimation algorithm could be based in the procedure outlined in Hendel and Nevo 
(2006a). The first step would consist of estimating the parameters in Hxt (r, y \9, S x). This 
could be achieved by estimating a static continuous choice model conditional on the choice 
set 5sx. This procedure yields consistent, although potentially inefficient, parameters for the 
indirect utility function. The second step would consist of computing the indirect utility 
associated with each size and their transition probabilities from period to period. Finally, 
the third step would consist of solving a simplified version of the full dynamic problem - 
restricted to the remaining parameters only - by maximizing the likelihood of the observed 
sequence of sizes purchased.

3.6 C onclusions

In this chapter, we consider a new method of uncovering demand information from market 
level data on differentiated products. We follow the continuous-choice literature and develop 
a globally consistent continuous-choice demand model that combines desirable properties of 
both the discrete- and continuous-choice literatures: i) it is flexible in the sense of Diewert 
(1974), ii) it is globally consistent in the sense it can deal with entry and exit of products 
over time, and iii) incorporates a structural error term. In order to encompass different pos
sible real-world applications, we propose two alternative specifications of our baseline model 
depending on the degree of flexibility the researcher is willing to accept for the substitution
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patterns between inside and outside goods.

The estimation procedure follows an analog to the algorithm derived in Berry (1994) 
and BLP. Depending on the specification considered, the contraction mapping for matching 
observed and predicted budget shares may be analytical or not. The case for which the 
contraction is analytical is relatively simple and fast to estimate which can prove a key 
advantage in competition policy issues, where time and transparency are typically crucial 
factors. For the case it is not, we propose an alternative to BLP’s contraction mapping with 
super-linear rate of convergence.

We provide a series of Monte Carlo experiments to illustrate the estimation properties of 
the model and discuss how it can be extended to cope with consumer dynamic behaviour. A 
more extensive study of the properties of this extension seems more appropriately considered 
as a separate one and hence is left for future research.
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C hapter 4

M arket D om inance and Barriers to  
C om petition  in Financial Trading 
Venues

The interaction between competition and economic growth is a well established fact in the 
literature (Porter (1990), Aghion and Howitt (1992), Blundell et al. (1995), Aghion et 
al (1999)). Competition impacts economic growth via a more efficient allocation of market 
resources that contributes to "better economic performance, better prices and better services 
for consumers and businesses" (Kroes (2007)).

Recent years have witnessed a strong and ferocious promotion of competition in a large 
spectrum of markets and industries and a clear example of this trend is the new Market 
in Financial Instruments Directive (MiFID) that fosters a fair, competitive, transparent, 
efficient and integrated European financial market. MiFID aims - among other objectives - 
to harmonize the trading structures across the Member States by abolishing the requirement 
to concentrate the execution of trading orders by financial intermediaries in a single venue. 
This challenges the market power of existing venues and fosters entry by new players. I 
argue that, although positive, the impact of this increased potential competition on the 
degree of actual competition may be limited due to two barriers to competition: i) direct 
network effects together with economies of scale and ii) post-trading constraints (since venues 
typically bundle trading and post-trading services).

Direct network effects and economies of scale impose a barrier to competition because 
they provide a first-mover advantage to the incumbent venue. In order to understand why 
this is the case, I examine the details of the trading decision. This decision can be decom
posed in two stages. First, investors decide the order characteristics and send it to a financial 
intermediary to be executed. Second, after receiving the order, the chosen intermediary de
cides the trading venue where to execute it, conditional on the order characteristics received, 
with financial intermediaries choosing the venue that achieves the best price at a lower cost.13

13 Currently, this constitutes a legal obligation for financial intermediaries. MiFID determines that the 
choice of trading venue by financial intermediaries must achieve best execution to their clients, where best
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This suggests that the decision of financial intermediaries must therefore take into account 
different dimensions, which the literature typically divide in two broad categories: explicit 
and implicit costs. Explicit trading costs denote the transaction costs of a venue and include 
the costs of executing the order (trading fees) and the cost of post-trading (clearing and set
tlement fees). Implicit trading costs relate to the liquidity of a venue and typically include 
the bid-ask spread, the potential price impact of a trade, and the opportunity cost of missed 
trades.

Implicit trading costs relate to the direct network effects feature of the industry. The 
valuation of a venue by financial intermediaries is increasing in the number of other agents 
that choose the same venue since it reduces the costs of finding a counterpart. In other words, 
a more liquid venue translates into lower implicit trading costs as it i) stabilizes the market 
price of a financial instrument, and ii) reduces the extent to which placing an order has an 
adverse effect on the corresponding price. Incumbent stock exchanges typically have higher 
liquidity than smaller trading venues and therefore lower implicit trading costs. In order 
for competitors to succeed, they need to trade-off the disadvantage of having higher implicit 
trading costs with lower explicit trading costs. However, economies of scale in trading (and 
post-trading) prevent those smaller trading venues to compete on explicit trading costs, 
giving incumbent stock exchanges a competitive advantage. Direct network effects and 
economies of scale constitute then a barrier to competition.

The second barrier to competition is induced by post-trading constraints that increase 
venue differentiation. Different trading venues can not be considered as effective substitutes 
if they imply different post-trading arrangements - with different clearing and settlement 
costs. The competition for trading venues is, therefore, limited by the fact that financial 
intermediaries can not freely choose post-trading arrangements.

This chapter proposes to empirically address the following questions: i) evaluate the 
actual degree of competition between alternative trading venues, ii) measure the impact of 
network effects on competition, and finally iii) assess the barriers to competition induced 
by post-trading constraints. To this end, I specify a structural discrete-choice multinomial 
random-coefficients logit demand model for trading in the lines of Berry, Levinsohn, and 
Pakes (1995) (henceforth BLP) that takes into account the trade-off between explicit and 
implicit trading costs following Pagano (1989). The model is flexible in the sense that the 
implied substitution patterns do not suffer from the problem of the Independence of Irrelevant 
Alternatives (IIA) property characteristic of more standard demand models. Furthermore, 
following the literature, the error term is structurally embedded in the model and, thereby,

execution denotes choosing the venue that achieves the best price at a lower cost.
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circumvents the critique provided by Brown and Walker (1989) related to the addition of 
add-hoc errors and their induced correlations.

I apply the model to the set of 16 most traded securities in the FTSE 100 following the 
list of liquid securities published (and updated regularly) by CESR after the implementation 
of MiFID. The results imply that financial intermediaries tend to value liquidity more than 
total fees when deciding to which venue to route a given order for execution. For this 
reason, the incumbent venue has a clear advantage relatively to its competitors and can, 
as a result, exert market power when setting its fees level. After estimating the degree of 
substitutability between the different trading venues, I examine the impact of the mentioned 
barriers to competition. First, I study the role of direct network effects by computing the 
counterfactual market shares that would arise if there were no liquidity differences across 
venues. Then, I evaluate the effect of the post-trading constraints induced by the typical 
bundle of trading and post-trading services. I simulate the equilibrium market shares that 
would arise if the different trading services were fungible. In both cases, the results suggest 
that eliminating the corresponding barrier to competition is associated with a significant 
decrease (of a similar magnitude) in the asymmetry of the industry. Finally, I draw some 
economic policy implications.

4.1 T he E conom ics o f  Trading and M iFID

The process of trade begins with investors sending their buying or selling orders to a broker 
or a broker-dealer. If investors choose the former, the broker receives the order and can either 
i) place it directly on a trading venue order book or ii) decide to go indirectly via a dealer. 
If the broker chooses option ii) or the investors send their orders directly to a broker-dealer, 
then the dealer (or broker-dealer depending on the case) can match the order from its own 
inventory, place the order on a trading venue or go to another dealer. Figure 4.1 illustrates 
the process of trading in an electronic platform. I do not attempt to model the clients choice 
for one of these financial intermediaries and, therefore, do not distinguish between brokers, 
dealers and broker-dealers (henceforth denoted financial intermediaries). Rather, I focus on 
studying the subsequent choice of venue where to execute the clients order.

The trading market in Europe does not seem, at least at a first glance, extremely con
centrated for an industry with strong network effects and economies of scale. If we consider 
the set of all European securities, the volume market share of the leading trading venue is 
roughly 30% with the top-3 venues capturing approximately 60% of the market. However,
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T a b l e  4.1 
Market Concentration*

Concentration Ratios Ci c 3 c 5
European Equities 31% 58% 75%

UK Equities 63% 87% 89%
FTSE 100 Equities 70% 98% 99%

*  Source: R euters M arket Share R eports, N ovem ber 2007.

these statistics are somehow misleading. When we examine concentration for narrower mar
ket definitions, we conclude that trading for a particular security is concentrated on a smaller 
set of trading venues. If you consider, for example, the set of the FTSE 100 securities, the 
market share for the leading trading venue is now roughly 70% with the top 3 venues captur
ing approximately 98% of the market! Table 4.1 displays concentration ratios for different 
sets of European equities (and therefore market definitions).

MiFID tries to promote a significant change in the shape of the industry. It aims to 
increase competition by creating a common harmonized European market for financial prod
ucts and to foster client protection through improved transparency, suitability requirements 
and best execution principles. In particular, it abolishes the so-called "concentration rule" 
that allowed, in the past, Member States to impose that securities admitted to trading on 
a regulated market would have to be traded only on regulated markets. In contrast, MiFID 
allows trading services to be provided by a variety of venues, namely Regulated Markets 
(RM), Multilateral Trading Facilities (MTF) and Systematic Internalizers (SI). RM or MTF 
are entities that offer multilateral trading for financial instruments (such as an order book), 
with slightly different standards applying to each, whereas SI refer to financial firms which, 
on an organized, frequent and systematic basis, deal on own account by executing client 
orders outside a RM or an MTF.

A financial intermediary desiring to trade a given security is therefore faced with a venue 
choice. It can choose a RM like the London Stock Exchange, Euronext or Frankfurt Stock 
Exchange, a MTF like Chi-X, or a SI like ABN AMRO, Goldman Sachs or UBS. The only 
requirement is that the chosen venue achieves best execution, taking into account a number 
of factors that include transaction costs, price and liquidity, speed of execution, likelihood 
of execution, clearing and settlement arrangements, etc.

Transaction costs refer, as mentioned above, to the explicit trading costs of each venue. 
These costs can be decomposed into costs of executing an order (trading fees) and costs of 
post-trading (clearing and settlement fees). Clearance refers to the validation of a trade and 
the subsequent establishment of the obligations of the parties to the trade (what each owes
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F i g u r e  4.2
Clearing and Settlement Flows*

BrokerBroker

Clearing 
House (CCP)

Investor A  
(buys)

Stock
Exchange

Central Securities 
Depository

Central Bank — 
National Cash 
Clearing System

Custodian B

delivers
securities

Account credit

Custodian A

receives record 
o f securities

Account debit

Source: Carvalho (2004).

and is entitled to receive), while settlement is the process during which buyer and seller 
details are matched and the security changes ownership against the appropriate payment. 
Clearing and settlement services are typically performed by specializing institutions: the 
transfer of ownership is carried out by a central securities depository or an international 
central securities depository, whereas the banking/payment system handles the payment of 
funds. Figure 4.2 displays the flows involved in the clearing and settlement of a trade.

Transaction costs vary substantially across trading venues. Not only in absolute terms 
but also in their decomposition. Figure 4.3 compares transaction costs for a series of trading 
venues. This comparison raises an important question. What prevents trades to concentrate 
on the venue which offers the lowest fees? As suggested above, explicit trading costs are 
not the only drivers of best execution. Price and liquidity are other important factors in 
achieving best execution. And these relate to the implicit trading costs of each venue, 
which typically include the bid-ask spread, the potential price impact of a trade, and the 
opportunity cost of missed trades. Implicit trading costs are important since cash trading 
exhibits direct network effects. Financial intermediaries valuation of a venue is increasing in 
the number of other agents that choose the same venue since it reduces the costs of finding 
a counterpart. In other words, a more liquid venue translates into lower implicit trading 
costs as it i) stabilizes the market price of a financial instrument, and ii) reduces the extent 
to which placing an order has an adverse effect on the corresponding price. Pagano (1989) 
shows that if the explicit trading costs are identical across venues, the direct network effects
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F i g u r e  4.3
Europe: Decomposition of Explicit Costs per Trade*
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Source: E u ropean  Com m ission (2006). D a ta  refers to  2004.

promote the concentration of trade on only one venue. However, if low explicit trading costs 
of a venue are traded-off against high implicit trading costs (or vice-versa), multiple trading 
venues can coexist in equilibrium.

Underestimating the importance of network effects can lead to a dismal failure. As an 
illustration consider the case of Jiway, a pan-European trading platform for retail investors 
launched in the last quarter of 2000 by Morgan Stanley and the Swedish company OM. The 
two companies invested $100 million on the project that promised access to 6,000 European 
securities, but that was incapable to attract liquidity: in January 2001 it executed 1,996 
trades, in February 474 trades, and in March 577 trades. By the end of 2002, Jiway was 
shut down.

Incumbent stock exchanges typically have higher liquidity than smaller trading venues 
and therefore lower implicit trading costs. In order for competitors to succeed, they need 
to trade-off the disadvantage of having higher implicit trading costs with lower explicit 
trading costs. This has been exactly the strategy of Chi-X, a multilateral trading facility 
set up in the first quarter of 2007, which offers a fee schedule that reverses the standard 
in the industry and includes, in certain cases, a negative execution fee - corresponding to a 
payment from the venue to the intermediary. A solution with very optimistic results up to 
this moment. However, long-term low explicit trading costs are difficult to sustain in these 
type of industries because the strong economies of scale give incumbent stock exchanges the 
competitive advantage of being able to set lower fees levels.
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T a b l e  4 .2
Average Volume per Order*

London Stock Exchange 3,509
Chi-X 1,302

Systematic Internalizers 42,386
* Source: A u th o r’s calculations, Novem ber 2007 - 
M arch 2008.

Another alternative strategy to trade-off the disadvantage of having higher implicit trad
ing costs is to avoid direct competition with the incumbent and specialize in attracting 
intermediaries with niche trading profiles. Table 4.2 presents the average volume per or
der involving the 20 most traded FTSE 100 securities for the top 3 trading venues. The 
data suggests that segmentation may be in fact an issue in this market and, as a result, 
the concentration ratios presented above may be even be higher if certain characteristics of 
the orders - like size - are taken into consideration. In order to evaluate the actual degree 
of competition between trading venues, the empirical framework must be able to deal with 
eventual segmentation of the market.

Direct network effects and economies of scale do not constitute however the only barrier 
to competition. The bundling of trading and of post-trading services constitutes another. 
The reason is that even though financial intermediaries can a priori choose between a set 
of competing trading venues to execute an order, the services offered by the different venues 
can not actually be considered real substitutes or fungible because different trading venues 
may imply different clearing and settlement arrangements. In order to understand why this 
is the case, consider, as an illustration, a financial intermediary with an order to trade Royal 
Dutch securities. The intermediary can execute the order on a set of alternative venues from 
Euronext Amsterdam to Deutsche Borse. However because post-trading services are typically 
bundled with trading services, when the intermediary chooses a venue, she is implicit choosing 
also the corresponding post-trading provider. Table 4.3 presents the trading venues and 
associated central securities depositories for Royal Dutch securities. In this illustration, only 
the securities trading in Euronext Amsterdam, London Stock Exchange and Chi-X are fully 
fungible as they settle in the same CSD - Euroclear Amsterdam. Trading Royal Dutch in 
Virt-X or Deutsche Borse may imply settlements across different CSD with associated higher 
costs. Carvalho (2004) shows that the costs of clearing and settlement across different CSD 
within Europe are 42% higher than if using the same CSD. As a consequence, venues that 
settle in the same CSD have a competitive advantage when compared with those that settle 
in different CSD. This advantage may induce intermediaries to choose a venue that does not 
a priori offer the best execution fee. In sum, there can not be real competition between
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T a b l e  4.3
Royal Dutch Trading and post-Trading (Venue/CSD)*

Venue Central Securities Depository
Euronext Amsterdam Euroclear Amsterdam

London Stock Exchange Euroclear Amsterdam
Chi-X Euroclear Amsterdam
Virt-X Euroclear Bank

Deutsche Borse Clearstream Banking Frankfurt
* Source: M isra (2007).

trading venues if financial intermediaries can not freely choose post-trading arrangements.

I argue that the impact of the increased potential competition on the degree of actual 
competition is positive. In general, multi-venue trading promotes lower explicit trading 
costs via higher competition. However it also has a fragmentation effect. When different 
trading venues coexist, markets become fragmented and the liquidity available in any one 
setting is reduced, thereby potentially limiting any market’s ability to provide stable prices. 
The bid-ask spreads may increase and daily securities returns may have a larger variance. 
Moreover, as liquidity facilitates the crucial price discovery role of markets, as order flow 
fragments, the ability of prices to aggregate information can be reduced, and with it the 
efficiency of the market. MiFID addresses this point by requiring every venue not only to 
publish the price, volume and time of a transaction as close to real-time as possible, but also 
to do it in a way that is easily accessible to other market participants. Furthermore, it also 
consolidates the hitherto fragmented market of European over-the-counter (OTC) securities. 
For these reasons, the fragmentation issues of increased trading venue competition may be 
less significant for MiFID.

The main contribution of the chapter is that, although positive, the impact of this in
creased potential competition on the degree of actual competition may be limited due to 
the two barriers to competition discussed above: i) direct network effects together with 
economies of scale and ii) post-trading constraints since venues typically bundle trading and 
post-trading services.

4.2 L iterature R eview

The demand model specified in this chapter is indirectly related to the literature on market 
dominance. This literature typically focuses on the source of such dominance. Gilbert and 
Newbery (1982) and Reinganum (1983) show that a monopolist can maintain her dominance
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due to stronger incentives for preemptive innovation. Budd, Harris and Vickers (1993) exam
ine the dynamics of market structure in a duopoly and, in particular, in what circumstances 
we may see a process of increasing dominance sourced on higher levels of technology. Cabral 
and Riordan (1984) investigate another source of eventual market dominance, the hypothesis 
that due to a learning curve, unit costs may decline with cumulative production. Athey and 
Schmutzler (2001) model an oligopolistic setting to examine conditions under which domi
nance sourced in ongoing investment may emerge. Cabral (2002) considers a similar setting, 
but where firms choose the amount of resources to invest and how to allocate those resources.

This chapter examines market dominance sourced on z) network effects and ii) trad
ing and post-trading bundling. The literature on network effects begins with Katz and 
Shapiro (1985) and from then on it has developed along two different strands. While one 
of the strands tries to empirically measure the effect of network effects, the other studies 
its implications. Katz and Shapiro (1994), Economides (1996), Shy (2001), and Farrell and 
Klemperer (2006) provide an excellent overview of this literature. The literature on trad
ing and post-trading bundling is less numerous. Tapking and Yang (2004) and Koppl and 
Monnet (2003) provide some excellent examples. They model competition between trading 
and post-trading services, with the former studying different forms of industry structures 
between venues and post-trading firms and the latter examining the impact of integrating 
the two services.

The demand model specified in this chapter is also indirectly related to the literature 
on venue competition. The seminal work is from Hamilton (1979), who establishes the two 
opposite effects of multi-venue trading and reports empirical estimates of the effect of off- 
boarding trading on liquidity and volatility of NYSE stocks. Multi-venue trading promotes 
lower explicit trading costs via higher competition but also has a fragmentation effect. When 
different trading venues coexist, markets become fragmented and the liquidity available in 
any one setting is reduced, thereby potentially limiting any market’s ability to provide stable 
prices. The bid-ask spreads may increase and daily securities returns may have a larger 
variance. Moreover, since liquidity facilitates the crucial price discovery role of markets, 
as order flow fragments, the ability of prices to aggregate information can be reduced and, 
with it, the efficiency of the market. Hamilton finds that the competitive effect exceeds the 
fragmentation effect, and that both effects are small.

The literature on venue competition has evolved along two different strands. The first 
follows the lines of Hamilton (1979) and typically uses a reduced-form strategy that regress 
spreads and liquidity on stock and market characteristics that include a competition variable. 
More recent examples include Weston (2002) and Gresse (2006). Weston (2002) investigates
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whether the shift towards electronic communication networks leads to tighter bid-ask spreads 
and greater depths. He finds that this particular competition has a significant negative im
pact on bid-ask spreads, but no significant impact on quoted depth. Gresse (2006) studies 
the impact of crossing networks on the liquidity of the dealer market segment of the London 
Stock Exchange (SEAQ). She finds that spreads decrease due to competition but no frag
mentation effect is detected. In parallel to the above approach, the second strand evolved 
towards more structural and micro-founded strategies of modelling financial markets. Hor- 
tagsu and Syverson (2004) and Cantillon and Ying (2007) constitute some recent examples. 
Hortagsu and Syverson (2004) investigate the role that nonportfolio fund differentiation and 
information/search frictions play in creating two salient features of the mutual fund industry: 
the large number of funds and the sizable dispersion in fund fees. Cantillon and Ying (2007) 
study the determinants of the dynamics of the market for the future on the Bund.

I propose to estimate a structural discrete-choice demand model for trading following 
BLP that tries to reconcile the advantages of Hamilton (1979)’s approach with the desirable 
features of a micro-founded model, taking into account two eventual barriers to competition, 
network effects as well as the bundle of trading and post-trading services.

4.3 D em and for Trading

The trading decision can be decomposed in two stages. First, investors decide the order 
characteristics and send it to a financial intermediary to be executed. Second, after receiving 
the order, the intermediary decides the trading venue where to execute it, conditional on the 
order characteristics received. In this chapter, I take the first stage as given and propose to 
model the second stage choice by financial intermediaries. A very interesting and natural 
extension will be to incorporate the first-stage into the model’s framework.

Consider that in period t = 1 , . . . ,  T  an investor sends an order with characteristics k to 
financial intermediary i — 1 , . . . ,  I  for her to execute. The characteristics of the order include 
the code of the security, which I denote by j ,  the direction of the trade and the volume to 
be traded. After receiving the order, the financial intermediary has to choose, subject to her 
internal best execution policy, the trading venue where to execute the order.

The best execution policy, which needs under MiFID to be previously accepted by the 
investor, defines the intermediaries commitment with regard to the different dimensions that 
govern the venue decision: price, costs, speed, likelihood of execution and settlement, size, 
nature and any other consideration relevant to the execution of the order. An alternative
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view for the intermediaries best execution policy is to think of it as an auction where the 
intermediary allocates the order across the alternative trading venues according to an al
location rule known to the investor (although unknown to the econometrician). In order 
to estimate this allocation rule, I specify a structural multinomial random-coefficients logit 
discrete-choice demand model for trading in the lines of BLP. Conditional on order charac
teristics k, heterogeneous financial intermediaries decide on the venue v = 0 ,1 , . . . ,  V, with 
v = 0  denoting the outside option of executing the order over-the-counter or in an alternative 
venue. Financial intermediaries are assumed to be myopic and therefore decide for the venue 
that maximizes the per-period expected utility. This constitutes a reasonable assumption 
since best execution policies have to be applied on a trade by trade case.

The conditional indirect utility that financial intermediary i obtains from executing an 
order of characteristics k at venue v in period t can be specified as:

Hikvt i,Pikvt> VJjvt) @i) — U {jpikvti Wjvti @i) £ikvti

where W j Vt represents a vector of attributes with regard to the order, venue and time period, 
and Pikvt denotes the all-in explicit trading costs incurred by the financial intermediary (which 
include execution, clearing and settlement fees). Because the fees schedules are typically 
a function of both intermediary Vs trading profile14 and order characteristics, the explicit 
trading costs pikvt are indexed by i and k. In order to explicitly illustrate the non-linearity 
of the fees schedules, I denote pikvt — Pvt izi> k), where 2 * represents intermediary z’s trading 
profile. Allocation rule heterogeneity across financial intermediaries is modelled into the 
conditional indirect utility by allowing intermediary-specific valuations 6i for the different 
elements included in the best execution policy. Finally, Eikvt denotes an additive preference 
shock.

The attributes of a trading venue, wjvt, that impact the choice of intermediaries include 
naturally the implicit trading costs, which I denote by bjvt. As discussed above, cash trading 
exhibits network effects and participants value liquidity. Although there is no uncontroversial 
definition of liquidity, the negative correlation between liquidity and implicit trading costs 
is generally accepted. A large installed base of intermediaries trading at venue v promotes 
lower implicit trading costs as it i) stabilizes the market price of a security and ii) reduces 
the extent to which placing an order has an adverse effect on the corresponding price. Note 
that these network effects can be artificially reinforced by fees schedules that are decreasing 
in trade volume.

14Volume discounts can reflect venue economies of scale that are passed to agents.
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I assume u* (•) can be specified as follows:

^ i j P i k v t i  W j v t i  @ i )  =  & i P v t  j &) "h ^ C j v t f i i  "b £ > j v t i  (^5)

where:

i ) the vector of characteristics Wjvt is split between the implicit trading costs of trading 
financial instrument j , bjvt, a A-dimensional vector of observables, Xjvt, and a vector 
of unobserved characteristics (to the econometrician), whose mean valuation for orders 
referring to financial instrument j  executed in venue v in period t across financial 
intermediaries is given by

ii) the increasing function 7 jbjVt captures the network effects, where 7  ̂ is the parameter 
that controls the strength of those network effects;

iii) and 6i denotes the parameters of estimation: 0i = (a i5 7 i ,/?i)/ .

For completeness, I note that financial intermediaries can also choose to execute the order 
on an outside venue. The conditional indirect utility from the outside option is assumed to 
be Uikot = £jot +  £ikot ■ Following the literature, I normalize £j0t =  0 without loss of generality 
since due to the ordinality of utility, only £jvt — matters for the venue decision.

The parameters of estimation c^, 7 * and (3̂  are indexed by intermediary in order to 
capture, as discussed above, possible heterogeneous allocation rules across intermediaries. In 
particular, I allow those parameters to be a function of the intermediaries trading profiles, 

Zi-
/  Cki \ ( ° \

M= 7 + (56)

V f t  / \ p )
where 0° denotes the vector of coefficients that govern the heterogeneity of intermediaries 
with regard to their trading profile. As a consequence, the parameters to be estimated reduce 
to 6 = (7 ,/d,6°)'. After substituting equation (56) into the indirect utility in equation (54), 
it is possible to summarize the financial intermediaries conditional indirect utility as a sum 
of two terms: a first term that is common across intermediaries, 5jvt = —y b j Vt +  x 'jVtt3 +  £ j Vt, 

and a second term, pikvt +  £ikvt, that introduces intermediary heterogeneity:

'U’i k v t  f i j v t  “b P i k v t  "h ^ i k v t t  (^^)
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where:

P ' i k v t P v t  ( % i i  k ' )  > b j v t ,  % j v t e°Zi

As pikvt will typically vary with the financial intermediaries trading profile, so will 
Following European Commission (2006), I consider the following types of intermediaries with 
regard to their trading profiles: 1 ) typical volume and value trades, 2 ) large volume of low 
value trades, 3) large volume of high value trades, and 4) small volume of low value trades.

Given the heterogeneity of the financial intermediaries specified in the model, the solution 
to the maximization problem of the indirect conditional utility over all the different venues 
will vary from one intermediary to another, depending on their specific attributes (z*, 
where £ikt = (£ikot, • • •, £ikvt)- The set of financial intermediaries that execute an order of 
characteristics k at venue v in period t is given by:

A k v t  { p ' t i P t ,  =  {('Z'ij ^ i k O t ? • • • ? ^ i k V t )  ^  ^ i k g t ^  9  S-t. V  ^  <7} , (b8)

where x t, pt and St are the vectors of observed characteristics, explicit trading costs and 
deltas. If the preference shock, Eikvu follows an independent and identical extreme value 
distribution, the probability that intermediary i opts for venue v to execute order with 
characteristics k in period t is then given by the following multinomial logit type expression:

Probifc„t (xuPu 6t ; 6, k) =  l  + ^ .  Sjqt+Iliktl- (59)

The predicted market-level share of venue v for instrument j  in each period t is obtained 
by integrating over the distribution of intermediaries trading profiles and order characteristics 
(zu k):

r  p&jvt+Hikvt

sjM (xuPt, 5t; 6) = esitt+^ v dP '  (*’fc) - (6°)
J Avt ' /

where P* (z, k) denotes the population joint distribution function of the intermediary types 
and order characteristics (zi,/c), not necessarily independent.

4.3.1 Identification and Estim ation Procedure

I move on to specify the estimation procedure. In what follows, I assume that the joint 
distribution of the intermediary types and order characteristics is known. However, the 
procedure can easily be modified for the case where that distribution is unknown by assuming
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a distribution and estimating its unknown parameters jointly with the remaining parameters 
of the model. The estimation algorithm encompasses four steps that I now describe.

S tep  1  Set initial values for the mean utilities, St, and for the parameters of estimation, 0

Step  2  Approximate the predicted market-level shares

The predicted market-level shares have no closed form expression. I follow Pakes (1986), 
Pakes and Pollard (1989), and McFadden (1989) and approximate that intractable inte
gral using a (smooth) simulation estimator. I therefore draw ns pseudo-random vectors of 
unobserved intermediary attributes (z\ , . . . ,  z^s) and order characteristics (k\ , . . . ,  A£s) from 
dP* (z, k), which I use to compute Sjvt +  pTikvV given the initial values for 5t and 6:

V ik v t  — - P v t  ( £ , kr) + bjvt,x jvt Q °z\ . (61)

The smooth estimator that simulates the aggregate market-level shares is, then, given by:

gfijvt+fj'ikvt1 ^  e djv t+ » 'ikv t

Sjvt (xuPt, 0, P ns) =  — V  -—  s + r  ,

i=l 1
(62)

where P ns denotes the empirical distribution of the simulation draws. This estimator has 
two advantages relatively to other simulation estimators . 15 First, it integrates over the e’s 
analytically and therefore limits the simulation error in the sampling process. Second, it is 
instrumental in obtaining simulated market-level shares that are smooth functions, positive 
and sum to one. Nevertheless, as Berry, Linton, and Pakes (2004) point out, the introduction 
of simulation error influences the asymptotic distribution of the estimator and, therefore, 
needs to be explicitly taken it account. On this subject please see Step 4 below.

S tep  3 Estimate the econometric error, £jvt, as a function of the parameters of estimation

The mean utility SjVt can not be solved for analytically. However, BLP showed that, for 
a given 6, it is possible to solve recursively for the unique Sjvt that matches the simulated 
market-level shares, Sjv t(x,pt,6 t\9 ,Pns) with the observed ones, sfvt, for all j  and t. In

15 Please see Berry, Levinsohn, and Pakes (1995) for a detailed survey on the optimal importance sampling 
simulator, and the appendix to Nevo (2000) for an analysis on the naive frequency estimator.
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particular they show that the operator 8k-vt (0 ) is a contraction mapping with modulus less 
than one:

S j v t  m  =  S j v t 1  (0) +  In  -  In  [Sj„t ( x u P t , i ? ' 1; 9, P “ )]  , (63)

and therefore its iteration converges geometrically to an unique fixed point. Denote this fixed 
point by SjVt (s™, 9, P ns) where s" represents the vector of observed aggregate market-level 
shares. Given the unique fixed point, it is relatively straigthforward to obtain an estimate 
of the econometric error as a function of the data, {x,pt, st), the parameters of estimation, 
9 , and the simulation process, P ns:

i jvt W ,  e,  P “ ) =  SM  (« r . P™ ) +  iSjv t  -  x ' j j l .  (64)

Step 4 Estimate the parameters 9

Estimate the 6 parameters by a Generalized Method of Moments (GMM). The approach 
relies on an identifying restriction on the distribution of the true unobserved characteristics 
and is based on the sample analogue to the population condition. The standard identifying 
restriction states that, at the true values of the parameters, the true econometric error, 
€jvt (st°i P°°) f°r n = ns = oo is mean independent of a set of M  instruments Zit =

j  • • • j  ^Mit] •

E[t-jvt { s ? , 6 , P ° ° ) \ Z j t ] = 0 ,  (65)

where denotes the unobserved (to the econometrician) valuation of instrument j  at 
venue v in period t. Instrumental variables techniques are required because of the possible 
correlation between trading costs and the econometric error term. This correlation is to be 
expected since venues set trading costs based on information that the econometrician does 
not possess and, therefore, is compelled to include in the econometric error term. Note that 
other identifying restrictions would also enable the estimation of the model. In particular, 
given the typical panel structure of the data, an alternative assumption could incorporate 
the likelihood of the econometric error and the set of instruments to be more similar for 
a given venue across time, than for those of different venues. Please see BLP and Davis 
(2006a) for a more detailed analysis on this subject.

The above population moment conditions can be used, akin to Hansen (1982), to render 
a method of moments estimator of 9*, by interacting the estimated econometric error with 
the set of instruments, and search for the value of the parameters, 9 , that set the sample 
analogues of the moment conditions as closed as possible to zero. Let Gn>ns (9) denote the
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sample analogues of the moment conditions:

T  V  J vt T  V  J vtGn,ns w  =  ^ E  E  E  *** <s">e■pns) z» =  l E  E  E  * (*) • f66)
t=l v = l j = l £=1 V=1 j  — 1

Formally, the method of moments estimator, 9, is the argument that minimizes the 
weighted norm criterion of Gn n̂s (9), for some weighting matrix A n with rank at least equal 
to the dimension of 9:

9 = arg mm ||G„ina (6>) ||An =  Gn,ns (9)' AnGn,ns (9). (67)

The strong non-linearity of the objective function requires a minimization routine. The 
standard practice in the literature has been to use either the Nelder-Mead (1965) nonderiva
tive "simplex" search method or a quasi-Newton method with an analytic gradient (see Press 
et al., 1994). The latter has the important (computational) advantage of being two orders of 
magnitude faster than the former. However, because the first method is more robust and less 
sensitive to starting values, I perform the search using the Nelder-Mead (1965) nonderivative 
"simplex" search.

The non-linear search over 9 can be simplified by making use of the fact that the first 
order conditions for a minimum of ||Gfn,na WIUn are linear for the subset 91 =  (7 , /3) of 
the parameters of estimation, 9 = (9i,9u). Consequently, it is possible, given the standard 
instrumental variables results, to express # 1  as function of 9U, and limit the non-linear search 
over 9U:

e1 =  (Q 'Z A ^ Z 'Q ) _ 1  Q 'Z A ^Z '5  (0“) . (6 8 )

where Q denotes the matrix of trading costs and observed characteristics, Z  denotes the 
matrix of instruments, and, finally, 8 denotes the matrix of mean utilities, expressed only in 
terms of 9U after concentrating out 9\.
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4.4  Em pirical A nalysis

4.4.1 D ata D escription

I apply the model to the set of 16 most traded securities in the FTSE 100 following the list 
of liquid securities published (and updated regularly) by CESR after the implementation of 
MiFID. REUTERS Market Shares Reports provided information on the top trading venues. 
I follow Pinkse and Slade (2004) with regard to the criterion of which venues to include 
in the sample and include those that accounted for at least one percent of the market in 
volume: the London Stock Exchange, Chi-X and the systematic internalizers aggregated in 
Markit Boat.

For each security and trading venue, I collected daily information from DATASTREAM 
on the official price, ask and bid prices, the number of trades, and the number of shares 
traded. For both Chi-X and the systematic internalizers aggregated in Markit Boat infor
mation on the number of trades and the number of shares traded was obtained directly.

Market size was assumed to be the total number of shares traded per security across all 
possible trading venues and was collected via DATASTREAM. Trading venue market shares 
were then computed as the ratio of the corresponding number of shares traded over market 
size.

Information on execution, settlement and clearing fees was obtained directly via the 
published fee schedules. In what concerns the systematic internalizers in Markit Boat, these 
information was obtained from JP  Morgan MiFID Report II that discriminates the average 
execution, settlement and clearing costs of a systematic internalizer. Given that typically 
(although not always) those fee schedules are a function of each financial intermediary trading 
profile, I considered the fees that would arise for the four types of intermediaries specified 
in European Commission (2006): 1) typical volume and value trades, 2) large volume of low 
value trades, 3) large volume of high value trades, and 4) small volume of low value trades.

I measured the implicit trading costs by effective spreads. The effective spread is defined 
as the difference between the transaction price and the current mid-quote for time period t :

esjt =  | Pjt -  Mjt | , (69)

where M jt is the quote mid-point, i.e. (Ajd +  Bjd) / 2 , A j t denotes the ask price, B j t the 
bid price, and Pa the effective transaction price of instrument j  in period t. This measure 
takes into account the fact that trades can occur either inside or outside the quoted spread.
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Table 4.4
Summary Statistics

Variable Venue Mean Std Min Max

CHX 0.03 0.03 0 . 0 0 0.14
Market Share LSE 0.70 0.06 0.47 0.92

SI 0.04 0.03 0 . 0 0 0.19
CHX 13.14 10.05 1.50 40.87

Price (£) LSE 13.14 10.05 1.49 40.90
SI 13.06 9.97 1.50 40.90

CHX 0.09 0.56 0 . 0 0 6.87
Effective Spread (£) LSE 0.05 0 . 0 2 0 . 0 0 0.30

SI 0.06 0 . 1 1 0 . 0 0 0.77
CHX 1.36 1 . 2 2 0 . 2 0 5.30

Volume per trade (’000 shares) LSE 3.75 4.24 0.39 26.70
SI 42.67 78.75 0.25 852.04

Therefore, it incorporates both the impacts of market spreads and market impact on trading 
costs, even if it does not allow the separation of the two effects. Microstructure literature 
has shown that the effective spread reflects expected losses to informed traders (Glosten 
and Milgrom(1985), Copeland and Galai (1983)), inventory costs (Stoll (1978), Amihud and 
Mendelson (1980), Ho and Stoll (1981)) and order processing costs (Stoll (1985)).

Finally, I follow Stoll (2000) and Jain (2001) and median the different variables at a 
weekly frequency to reduce measurement errors due to random daily fluctuations.

Table 4.4 presents some general statistics for the resulting dataset ranging from the first 
week of November 2007 to the last week of March 2008. Several interesting trends are 
noteworthy. The incumbent venue - LSE - clearly dominates the industry with an average 
market share of 70% - against 3%-4% for each of the competing venues. There is no significant 
difference in the price at which securities are traded, but the bid-ask spread is lower at LSE 
with an average effective spread of £0.05 against £0.06-£0.09 on the competing venues. 
The statistics on the volume per trade suggest a clear segmentation of the industry, with the 
different venues attracting distinct type of orders. Chi-X attracts the lowest average volume 
per trade, the SI attract the highest average volume per trade, and LSE positions itself 
between those two. As there is no significant difference in the price securities are traded, the 
heterogeneity in volume per trade carries to the turnover per trade.

Total fees are a function of each financial intermediary trading profile in terms of volume 
and value. For this reason they are not presented in the summary statistics table. For
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F i g u r e  4 .4  
Data: Decomposition of Total Fees per Trade
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illustration purposes, Figure 4.4 plots the total fees (and corresponding decomposition) that 
would arise for the typical financial intermediary following the European Commission (2006) 
classification. It is clear that Chi-X offers the lowest execution fee, but its competitiveness 
is penalized due to high clearing and settlement fees.

4.4.2 D em and Identification

Total fees are typically set taking into account information that the researcher does not 
possess and, therefore, has to include in the econometric error term. Moreover, effective 
spreads are the outcome of unobserved information to the researcher. As a consequence, 
total fees and effective spreads are expected to be correlated with the error term. As dis
cussed above, instrumental variables techniques are therefore required. The use of securities- 
and venue-specific fixed effects decreases the requirements on the instruments needed for a 
consistent estimation. However, it does not eliminate completely their need since both fees 
and spreads are likely to still be correlated with unobserved time-specific deviations from 
the overall mean valuations.

In the lines of Arellano and Bond (1991), and Arellano and Bover (1995), I use lag 
liquidity values as instruments for both total fees and effective spreads under the assumption 
that those lags are uncorrelated with the error term and, at the same time, correlated with 
the endogenous variables that needs instrumenting. Please see the demand estimation section
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T a b l e  4 .5  
Results from Full Model*

Variable

Means

( 7 , / 5 ’s )

Standard
Deviations

E

Interactions with 
log (Order Size)

n
Constant 0 . 6 6 6 0 . 0 0 0 - 0 . 0 9 6

(0.165) (0.006) (0.001)

log (total fees) — 0 . 0 0 0 - 0 . 0 1 7

(0.000) (0.021)

Effective Spread 1 . 5 5 2 0 . 3 5 7 - 1 . 1 0 9

(0.128) (0.001) (0.000)

Chi-X dummy - 1 . 4 2 9 — —

(0.098) — —

SI dummy - 1 . 3 2 0 — —

(0.099) — —

*  Regression based on 1008 observations. Security, venue and  week dum m y variables are 
included as controls. A sym ptotically  s ta n d a rd  errors in parentheses.

for more details.

4.4.3 Dem and Estim ation

I now move on to discuss the random-coefficients multinomial logit demand model estimation. 
The estimated specification includes total fees and effective spreads covariates as observed 
attributes, while controlling (at least in part) for unobserved attributes by allowing security, 
venue and week fixed effects. The log transformation of the total fees variable was used to 
reduce skewness.

The coefficients on fees and liquidity are allowed to be intermediary specific in order 
to capture the fact that the valuations of the different elements in the allocation rule can 
depend on the characteristics of intermediaries. In particular, I model the intermediaries 
trading profiles Zi as follows:

( o N
7

\ P J

+ e°zf  =
( o

7 +  U0i +  Eu*, (70)

where o; is a denotes the log transformation of order size from intermediary i - drawn from 
the Chi-X, LSE and SI order books, 16 Vi is a 3 x 1  vector of random-variables drawn from

16 I sampled 500 intermediaries per week and security.
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T a b l e  4.6 
Median Estimated Demand Elasticities*

CHX LSE SI
Market share with respect to Total Fees

CHX -0.069 0.067 0.003
LSE 0 . 0 0 1 -0 . 0 2 1 0 . 0 0 2

SI 0 . 0 0 1 0.037 -0.067
Market share with respect to Effective Spread

CHX -2.877 0.031 0 . 0 0 1

LSE 0 . 0 0 0 -0.891 0 . 0 0 0

SI 0 . 0 0 2 0.042 -2.812
* T he elastic ity  in a cell gives th e  percent change in m arket share of th e  row ’s venue w ith  
a one percen t change in th e  variable of the  colum n’s venue.

a normalized multivariate normal distribution, II is a 3 x 1 matrix of order size coefficients, 
and E is a 3 x 3 diagonal matrix that scales the effect of V{.

Table 4.5 reports the estimated GMM results. The first column reports the estimates 
of the different coefficients means, whereas the other columns present estimates with regard 
to the associated heterogeneity. The coefficients are of the expected sign, suggesting that 
market shares react negatively to both total fees and liquidity. Figures 4.5 and 4.6 display the 
predicted distribution for each of those coefficients. Most of the heterogeneity is due to order 
size, with the magnitude of the coefficients on the unobserved intermediaries characteristics 
(vi) being small. As expected, intermediaries with higher order sizes tend to be more sensitive 
to both fees and liquidity.

In order to evaluate the impact of both fees and spreads on market shares, I examine the 
own- and cross-price elasticities for both variables. Table 4.6 reports the estimated elasticities 
computed using the estimates in Table 4.5. The top panel of the table displays elasticities 
with respect to total fees. The results suggest that all venues enjoy a certain degree of market 
power. Conditional on the venues bid-ask spreads, intermediaries are estimated to have a low 
price sensitivity. A one percent decrease in the total fees charged by each venue is estimated 
to impact only marginally the corresponding market shares. A possible justification may lie 
on the network effects that characterize the industry. As intermediaries value both low cost 
and high liquidity, a decrease in the total fees charged by a given venue may not be sufficient 
to induce a substantial demand change. The bottom panel of the table displays elasticities 
with respect to effective spread. The results support the important role of liquidity on the 
choice of venue. Conditional on the venues total fees, a one percent increase in the effective 
spread is estimated to decrease the market-share of LSE in almost 1% and of CHX or SI in 
almost 3%. Contrasting the elasticities in the two panels suggests that liquidity may play a
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T a b l e  4.7
Liquidity Equation*

EffectiveExplanatory Variable Spread
Market Share

CHX -3.645 (1.092)

LSE -1.271 (0.378)

SI -4.512 (1.142)

log (volume) 0.019 (0.005)

Price 0.006 (0.001)

Volatility 1 . 8 8 6 (0.165)

Unobserved Characteristics
CHX 0.274 (0.069)

LSE 0 . 6 8 8 (0.340)

SI 0.187 (0.063)

R 2 0.350
* Regression based on 1008 observations. S tan d ard  errors in paren
theses.

more important role than total fees in the choice of the venue where to route a given order.

However, liquidity and fees are clearly not exogenous relatively to each other - one would 
expect venues to take into consideration liquidity when setting fees, as well as liquidity to be 
a function of the fees schedules. Given the highly endogenous nature of liquidity, the above 
elasticities have to be cautiously interpreted. The elasticities with regard to total fees are 
conditional on the liquidity levels and the elasticities with regard to liquidity are conditional 
on the fees levels. I now move on to examine the endogeneity between liquidity and fees.

Micro-finance theory implies that liquidity may be potentially a non-linear function of a 
series of factors that affect both the demand and supply for trading. I follow Goolsbee and 
Petrin (2004) and introduce a reduce-form approach that estimates a liquidity equation as 
a function of those factors. I include, in line with Stoll (2000), Wahal (1997) and Weston 
(2002), venue market share, share volume, price, and share volatility17. However, in contrast

17Share volatility is defined, following Ding and Charoenwong (2003), as the standard deviation over the 
average of the quoted mid-point within each time period,

ot/ _ sd[Mjd]
'-) vj t  ~  --------- i »m e a n  [M j d \

where sd, [•] represents the standard deviation taken over the days included in period t.
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T a b l e  4.8
Median Estimated Liquidity Elasticities*

CHX LSE SI
Effective Spread with respect to Total Fees

CHX 0.351 -0.342 -0.018
LSE -0 . 2 2 1 3.766 -0.391

SI -0.009 -0.304 0.558
*  T he elastic ity  in a cell gives the  percent change in th e  liquidity of th e  row ’s 
venue w ith a one percen t change in the  to ta l fees of th e  colum n’s venue.

with those studies, I control for unobserved venue- and security-specific characteristics:

£ j v t  =  b j v t  “t" — X j v t P 5 (^1)

where 6 j V t , 7  and ( 3  are demand side estimates.

Table 4.7 presents the instrumental variables results of the liquidity equation regression. 18 

Most of the coefficients are of the expected sign, with an increase in the market share lowering 
the effective spread and an increase in price and volatility being associated with increases in 
spreads. The liquidity equation is instrumental in understanding the impact of total fees on 
effective spreads. Total fees influence relative market shares which in turn determine venue 
liquidity. In order to evaluate the total impact of fees on spreads, I computed unconditional 
own- and cross-price median elasticities as follows:

dbjvt Pgt   dbjvt Sjvt ,_ 2 n

dpqt bjvt dsjvt vq bjvt ’

where £%q denotes the cross-total fees elasticity between venues v and q. Table 4.8 reports 
the estimated elasticities.

4.5 Barriers to  C om petition

After estimating the degree of substitutability between the different trading venues, I move 
on to evaluate the barriers to competition induced by network effects and post-trading con
straints. In order to examine the impact of network effects as a barrier to competition, I
propose to compute the counterfactual market shares that would arise if there were no liq
uidity differences across venues (although still allowing for heterogeneity across the securities 
traded). In particular, I consider the case where the effective spread for each security-week

18 Log transformation of the volume variable was used to reduce skewness.
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T a b l e  4.9
Barriers to Competition: Counter}‘actual (Median) Results

Panel A: Liquidity as a Barrier
Current Counterfactual

Market Shares Market Shares
CHX 0 . 0 2 1 0.094
LSE 0.703 0.426
SI 0.037 0.118

Panel B: Post-Trading as a Barrier
Current Counterfactual

Market Shares Eff. Spreads Direct Impact 
Market Shares

Direct Impact 
Eff. Spreads

Total Impact 
Market Shares

CHX 0.021 0.015 0 . 0 2 2 0.009 0.094
LSE 0.703 0.005 0.702 0.006 0.445
SI 0.037 0.020 0.037 0 . 0 2 0 0.107

pair is the same across venues and equal to the median of the actual observed spreads. The 
results - presented in Table 4.9, Panel A - suggest that eliminating the liquidity advantage 
of the incumbent venue contributes to a less asymmetric industry. Chi-X would benefit less 
than the SI because of the disadvantage from a post-trading perspective - a point I address 
below.

The competitiveness of a given venue can also be penalized by higher post-trading costs. 
I propose to evaluate the barriers to competition induced by post-trading constraints by sim
ulating the equilibrium market shares that would arise if the securities traded in the different 
trading venues were fungible and intermediaries could choose the post-trading arrangements 
with the lowest clearing and settlement fees. Allowing intermediaries to freely choose post- 
trading arrangements is equivalent to an effective decrease in the total fees paid by some 
of them (those that switch from current arrangements). A decrease in the total fees has 
a direct impact on relative markets shares and consequently on effective spreads which in 
turn also influence market shares. Table 4.9, Panel B presents the counterfactual results, 
discriminating the different effects that would arise.

I should note that I do not compute market equilibrium fees, which is beyond the scope 
of this chapter (although providing such a framework constitutes a very interesting poten
tial area for future research). I eliminate post-trading constraints, but maintain the same 
level of clearing and settlement fees. The results suggest that eliminating the post-trading 
constraints and allowing intermediaries to choose the most competitive post-trading arrange
ments would also induce a less asymmetric industry - of the same order of magnitude as of
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eliminating the network effect.

4.6 C onclusions

As of 1 November 2007, the Market in Financial Instruments Directive (MiFID) aims to 
increase competition and to foster client protection in the European financial market. Among 
other provisions, it abolishes the concentration rule and challenges the market power of 
existing trading venues. The directive introduces venue competition in order to achieve better 
execution and ultimately lower trading costs. I argue that, although positive, the impact on 
the degree of actual competition may be limited due to two barriers to competition: i) direct 
network effects together with increasing returns to scale and ii) post-trading constraints 
(since venues typically bundle trading and post-trading services).

I empirically examine market dominance and barriers to competition in financial trading 
venues by addressing the following questions: i) evaluate the actual degree of competition 
between trading venues, ii) measure the impact of network effects on competition, and finally 
Hi) assess the barriers to competition induced by the bundle of trading and post-trading 
services.

The results imply that financial intermediaries tend to value liquidity more than total 
fees when deciding where to route a given order for execution. For this reason, the incum
bent venue has a clear advantage relatively to its competitors and can, as a result, exert 
market power when setting total fees. Furthermore, eliminating the mentioned barriers to 
competition seems to be associated with a significant decrease (of a similar magnitude) in 
the asymmetry of the industry. As a consequence, policies that promote competition on the 
post-trading after market are instrumental in boosting the effectiveness of MiFID.
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A ppendix A  

A ppendix to  Chapter 3

A .l  Param eter R estrictions  

Specification A

This appendix presents the set of parameter restrictions that ensure specification A function 
H a (r, y\ 9, S'), satisfies properties 3 and 4 for a globally consistent indirect utility function. 
The set of restrictions resemble conditions 3.15 and 3.16 in Diewert (1971) that ensure the 
generalized Leontief function can be interpreted as the cost function corresponding to some 
underlying production possibilities set.

Assume that the vectors r and y are strictly positive. We begin by addressing property 
3. In order for H A (r, y ,9, 5s) to be strictly increasing in y and nonincreasing in pi (or in 
other words, nondecreasing in r*) for any i € 5s, the following J  +  1 inequalities need to be 
satisfied:

Hy (r, y, 9 ,5s) = c0 +  £ / = 1  Cjrj > 0

(r, y; 9 ,5s) = a< +  1 / 2  (fy  +  6 ^) rj +  a y  > 0 ,

for any i £ S.

We now turn to property 4 and present the set of restrictions that ensure H A (r, y \9, S) 
is quasiconvex. It is well known that every convex function is quasiconvex. Furthermore, a 
twice differentiable function is convex over a convex set if and only if its matrix of second 
partial derivatives is positive semidefinite for every point in the set.

If symmetry is imposed on matrix B  (please see the symmetry subsection for more de
tails), the second partial derivatives matrix of H A (r ,y’,9,5s) will be symmetric. A symmetric 
matrix is positive definite (and automatically positive semidefinite) if and only if all its lead
ing principal minors are strictly positive. If, on the other hand, no symmetry on matrix B  is 
assumed a priori, the second partial derivatives matrix of H A (r, y, 9 ,5s) will not necessarily 
be symmetric. An arbitrary matrix is positive definite (and automatically positive semidefi-
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nite) if and only if its Hermitian part is positive definite. In other words, an arbitrary matrix 
is positive definite if and only if all the leading principal minors of its Hermitian part are 
strictly positive.

Let Dk denote the determinant of the kth. order principal submatrix of the second partial 
derivatives matrix of H A (r, ?/;0, S). For specification A algebraic functional form to be 
quasiconvex, the following J  +  1 inequalities (the formulation nests both the case where
symmetry is imposed on matrix B  and the case where it is not) need to be satisfied:

D \  =  > 0

D2 = 6 1 1 6 2 2  ~  (1/4) ( 6 1 2  +  &2 1 ) 2 > 0

Dj+i > 0.

Specification B

This appendix presents the set of restrictions on the parameters that ensure that specification 
B function, H B (r,y]6,^s), satisfies properties 3 and 4 for a globally consistent indirect 
utility function. Again, the set of restrictions resemble conditions 3.15 and 3.16 in Diewert 
(1971) that ensure the generalized Leontief function can be interpreted as the cost function 
corresponding to some underlying production possibilities set.

Assume that the vectors r and y are strictly positive. We begin by addressing property 3. 
In order for H B (r, y; 6, S) to be strictly increasing in y and nonincreasing in pi (or in other 
words, nondecreasing in r*) for any j 6  3 , the following J  inequalities need to be satisfied:

(r, y; 0, Of) =  a* +  1 / 2  £ / = 0 (6 -̂ +  &,*) r5y > 0 ,

for any i E

We now turn to property 4 and present the set of restrictions that ensure H B (r, y\ 6, Of) 
is a quasiconvex. It is well known that every convex function is quasiconvex. Furthermore, 
a twice differentiable function is convex over a convex set if and only if its matrix of second 
partial derivatives is positive semidefinite for every point in the set.

If symmetry is imposed on matrix B  (please see the symmetry subsection for more de
tails), the second partial derivatives matrix of H 3 (r, y\ 6, S) will be symmetric. A symmetric 
matrix is positive definite (and automatically positive semidefinite) if and only if all its lead
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ing principal minors are strictly positive. If, on the other hand, no symmetry on matrix B  is 
assumed a priori, the second partial derivatives matrix of H B (r, y\ 6, ŝ) will not necessarily 
be symmetric. An arbitrary matrix is positive definite (and automatically positive semidefi
nite) if and only if its Hermitian part is positive definite. In other words, an arbitrary matrix 
is positive definite if and only if all the leading principal minors of its Hermitian part are 
strictly positive.

Let Dk denote the determinant of the ktb. order principal submatrix of the second partial 
derivatives matrix of H B (r,y,6,$s). For specification B algebraic functional form to be 
quasiconvex, the following J  +  1 inequalities (the formulation nests both the case where 
symmetry is imposed on matrix B  and the case where it is not) need to be satisfied:

Di = bn > 0

D2 = &11&22 — (1/4) (612 +  & 2l)2 >  0 

Dj+i > 0 .
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A ppendix B  

A ppendix to  C hapter 4

B . l  D ata

T a b l e  B . l

List of Securities used in the Demand Estimation 

Anglo American 
Barclays 
BG
BHP Billiton 
BP
Glaxosmithkline 
HBOS 
HSBC 
Lloyds TSB 
Prudential 
Reckitt Benckiser 
Royal Dutch Shell B 
Standard Chartered 
Tesco 
Vodafone 
Xstrata
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