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Abstract

This thesis consists of three self-contained papers on the analysis
of electricity auctions written over a period of twelve years. The
first paper models price competition in a decentralized whole-
sale market for electricity as a first-price, sealed-bid, multi-unit
auction. In both the pure and mixed-strategy equilibria of the
model, above marginal cost pricing and inefficient despatch of
gencrating units cccur. An alternative regulatory pricing rule is
considered and it is shown that offering to supply at marginal
cost can be induced as a dominant strategy for all firms. The
second paper analyses strategic interaction between long-term
contracts and price competition in the British electricity whole-
sale market, and confirms that forward contracts will tend to
put downward pressurc on spot market prices. A ‘strategic com-
mitment’ motive for selling forward contracts is also identified:
a generator may commit itself to bidding lower prices into the
spot market in order to ensure that it will be despatched with
its full capacity. The third paper characterizes bidding behavior
and market outcomes in uniform and discriminatory electricity
auctions. Uniform auctions result in higher average prices than
discriminatory auctions, but the ranking in terms of productive
efficiency is ambiguous. The comparative effects of other mar-
ket design features, such as the number of steps in suppliers’ bid
functions, the duration of bids and the elasticity of demand are
analyzed. The paper also clarifies some methodological issues in
the analysis of electricity auctions. In particular we show that
analogies with continuous share auctions are misplaced so long
as firms are restricted to a finitc number of bids.
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1 Introduction

This thesis consists of three self-contained papers on the analysis of elec-
tricity auctions written over a period of twelve years from 1992 to 2004,
The paper in Section 2, "Spot Market Competition in the UK Electricity
Industry", was written joiutly with Nils-Henrik vou der Fehr.! It models
price competition in a decentralized wholesale market for electricity as a
first-price, sealed-bid, multi-unit auction. In this model, firms simultane-
ously submit offer prices at which they are willing to supply their capacities
for each generating unit, units are ranked according to their offer prices,
demand is realized and the system marginal price determined by the by the
offer price of the marginal operating unit. A key result is that pure-strategy
equilibria do not always exist in the model. The reason is basically the same
as that in standard oligopoly modecls of capacity-constraincd pricc competi-
tion. Since, when demand is sufficiently large, a firm is unable to serve the
whole market at the competitive price, there is an incentive to bid zbove
marginal cost and the competitive outcome cannot be an equilibrium. It
can then be shown that for a range of demand distributions no other pure
strategy combinations constitute an equilibrium either. In both the pure
and mixed-strategy equilibria of the model, above marginal cost pricing and
inefficient despatch of generating units occur. We also consider an alterna-
tive regulatory pricing rule, and show that offering to supply at marginal
cost can be induced as a dominant strategy for all firms, thereby securing
efficient despatch.

The paper in Section 3 was previously entitled “Long-Term Contracts
and Imperfectly Competitive Spot Markets: A Study of the UK Electricity
Industry” and written jointly with Nils-Henrik von der Fehr.? It analyses

'The paper was originafly published as University of Osfo: Department of Ecomonics
Memorandum No. 9, 1992. An abridged version was published in the Economic Journal
in 1993, and reprinted in Paul L. Joskow and Michael Waterson (eds) Empirical Industrial

Oryanization, Edward Elgar publishing Ltd, 2004; and in Ray Rees (ed) The Economics
of Public Utilities, Edward Elgar publiching Ltd, (forthcoming 2005).

3t was published as University of Oslo Department of Economics Memorandum No.
14, 1994.




strategic interaction between long-term contracts and price competition in
the British electricity wholesale market. As in Section 2, the price mech-
anisimn is modelled as a first-price, sealed-bid auction, and we demonstrate
that forward contracts, or "contracts for diffcrences," will put a downward
pressure on spot market. prices. In addition, a ‘strategic commitment’ mo-
tive for selling a large number of contracts is identified: a generator may
thereby commit itself to bidding lower prices into the spot market in order
to ensure that it will be despatched with its full capacity. In the resulting
asymmetric equilibrium, the generator which has not contracted forward
bids high in order to ensure high prices, but sells less output.

The paper in Section 4 was written jointly with Natalia Fabra and Nils-
Henrik von der Fehr.3 Motivated by the introduction of a new auction format
in the England and Wales electricity market, and the auction design debates
in California, it characterizes bidding behavior and market outcomes in uni-
form and discriminatory electricity auctions under a variety of assumptions -
concerning firms’ costs and capa,citics, demand clésticities, the auction bid
format and the number of suppliers in the market. The aim was to gain an
improved understanding of how different auction formats affect the degree
of competition and overall welfare in decentralized electricity markets. The
uniform auction is outperformed in consumer surplus terms by the discrim-
inatory auction, but uniform auctions can be more efficient. The overall
welfare ranking of the auctions is thus ambiguous. The paper also addresses
some methadological issues in the analysis of electricity auctions. First, it
demonstrates that the set of equilibrium outcomes in uniform and discrimi-
natory auctions is essentially independent of the number of admissible steps
in suppliers’ offer-price functions, so as long as this number is finite. This
reduces the complexity involved in the analysis of multi-unit auctions. Sec-
ond, we demonstrate that the ‘implicitly collusive’ equilibria found in the

3The paper will appear in the Rand Journal of Economics in 2006 under the title
"Designing Electricity Auctions." An earlier version of the paper, entitled "Designing
Electricity Auctions: Uniform, Discriminatory and Vickrey," was presented to the 1DEl’s

Conference on "Wholesale Markets for Electricity," University of Toulouse, 22-23 Novem-
ber 2002.




uniform auction when offer prices are infinitely divisible are unique to this
formulation of the auction (i.e. to share auctions), and do not arise when
offer-price functions are discrete. Hence the concerns expressed in the lit-
erature that uniform auctions may lead to ‘collusive-like’ outcomes even in
potentially competitive periods when there is considerable excess. capacity,
are likely misplaced.

When we first began to study the new electricity market introduced in
England and Wales in 1990 it was not widely understood that this market
was a first-price, sealed-bid, multi-unit auction and thus could be analyzed
using tools from auction theory. The carly Literature tended to use tradi-
tional models from IO theory to describe this market,? and a major part
of the purpose of our 1992/3 paper was simply to model the market rules
as they were given to us, albeit in admittedly long and near-impenetrable
documents produced by the then National Grid Company. Although some
researchers have continued to make use of Cournot or other standard 10
models for this purpoée, by the late 1990°s it was no longer pdssiblé- to
dispute the intimate connection between decentralized electricity wholesale

‘markets and auction theory. As Paul Klemperer noted in 2001, "von der
Febr and Harbord were seen as rather novel in pointing out that the new
electricity markets could be viewed as anctions. Now, however, it is uneon-
troversial that these markets are best understood through auction theory,
and electricity market design has become the province of leading auetion
thearists.”?

That decentralized electricity wholesale markets are auctions, and hence
best understood through auction theory, became so well accepted that much
of the debate in Britain in the late 199(0°s concerning the reform of the elec-
tricity trading arrangements focused on the merits and demerits of different
auction formats.5 The analysis in Fabra, von der Fehr and Harbord (2004)

tAs described in Armstrong, Cowan and Vickers (1994), Chapter 9, for example.

® Klemperer (2001).

¢ Harbord and McCoy (2000), Klomperer (2002) and Wolfram (1999) contain discussions
of this debate. See also Kahn et. al. (2001) for an account of & similar debate that took
place in California.



(in Section 4 of this thesis) was at least partly motivated by a perceived
need to have rigorous and tractable economic models which would permit a
comparison of market performance under different auction rules in light of
this debate.

If controversy remains, it is now confined to the type of auction theory
to be applied to these markets. Since 1992 there have been two leading con-
tenders. The discrete, multi-unit auction approach taken in our own papers,
and the continuous auction approach of Wilson (1979) and Klemperer and
Meyer (1989), originally adopted in Green and Newbery (1992). The contin-
uous auction, or "supply function," approach was initially popular and has
recently been taken up again by Holmberg (2005) and Wilson (2005). We
have commented extensively on the distinction to be drawn between these
two approaches in von der Fehr and Harbord (1993) and Fabra, von der
Fehr and Harbord (2004), and in the methodological essay Fabra, von der
Fchr and Harbord (2002). Our basic result, that discrete or finite bid func-

tions largely eliminate the collusive ethbnum prbblcm which characterizes
continuous. auction models was first reported in von der Fehr and Harbord
(1993), and extended and elaborated on in Fabra, von der Fehr and Harbord
(2004). This result was subsequently discovered independently by Kremer
and Nyborg (2004).

In 1993 when our first paper in this arca was published, there were
almost no other papers avsilable on this topic.” Now a bibliegraphy of
articles on electricity auctions from around the world would pumber in the
bundreds, if not thousands.? I have therefore made no attempt to revise our
earlier papers to take account of this ever-expanding literature. The paper
in Section 4 to a large degree updates and extends the analysis presented in
Section 2 in any event, and relatively little further progress has been made

"The notable exception was Green and Newbery (1992).

8 According to "Google Scholar," cur 1993 Economic Journal paper has been cited in
well over 100 subsequent articles, but there are many notable omissions from the list, and
these are just the analyses which cite our 1993 paper. Our early survey paper (von der
Febr and Harbord, 1998) cited over 90 academic articles, excluding reports and documents
published by regulatory authorities.



in the analysis of electricity contract markets which is the subject of the
paper in Section 3.
Acknowledgements: 1 wish to thank my coauthors for many years of

fruitful collaboration on the topic of this thesis. This thesis is dedicated to
my son, Justin Gabriel Dylan Dupre-Harbord.
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2 Spot Market Competition in the UK Electricity
Industry

2.1 Introduction

At the core of the recently deregulated and privatized UK electricity industry
is the wholesale spot market.® Before each period that the market is open,
the generating companies (the generators) submit minimum prices at which
they are willing to supply power. On the basis of these “offer prices”, the
National Grid Company, which plays a central role as coordinator and is
responsible for running the transmission grid, draws up a least-cost plan
of generating units for despatch in the next period. This “rank order”,
togcther with demand, determines which units will actually be despatched.
Payments to supplying units, or ’sets’, are based on a “system marginal
price” determined as the offer price of the marginal operating unit i every
period.

The particular organization of the clectricity spot market makes standard
oligopoly models inadequate as analytical tools. We propose instead to
model this market as a scaled-bid multiple-unit auction. In the first stage of
the model, firms simultaneously submit offer prices at which they are willing
to supply their {given) capacities. As in the UK industry, firms (generators)
can submit different offer prices for each individual plant or generating set,
i.e. firmas offer step-supply functions. Sets are then ranked according to their
offer prices {i.e. a supply function is constructed). In the final stage, demand
is realized and the system marginal price is determined by the interscction
of demand and supply, that is by the offer price of the marginal operating
unit.

It turns out that pure-strategy equilibria do not always exist in such a
model. The reason is basically the same as that in standard oligopoly models
of capacity constrained price competition {Kreps and Scheinkman, 1986).

Since, when demand is sufficiently large, a firm is unable to serve the whole

9For details on the UK electricity industry, new and old, see Vickers and Yarrow (1991),
Green (1991) and James Capel & Co.(1990).
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market at the competitive price, there is an incentive to raise bids above
marginal cost, and thus the competitive outcome cannot he an equilibrivm.
It can then be shown that for a range of demand distributions no other pure
stratogy combinations constitute an equilibrium either. We believe that this
result does not necessarily reflect an inadeguacy of our modelling approach,
but rather suggests that there is an inherent price instability in the present
regulatory set up. Indeed, empirical evidence would seem to confirm that
experimentation and abrupt changes in pricing strategies is a feature of the
new industry. |

This particular result (the nonexistence of equilibrium in pure strategies)
also casts some dould on the relevance of the sodel analyzed by Richard
Green and David Newbery (1992) (see also Bolle, 1990 and Newbery, 1991).
These authors argue that the "step-length", i.e. the size of individual gen-
erating sets, is small enough to justify approximating the step-supply sched-
ules by smooth (i.e. continuously differentiable) functions, thus applying
the supply function framework developed by Klemperer and Meyer (1989).
As we demonstrate however, the particular types of equiibria they derive
do not generalize to a model where sets are of positive size.

Although theirs is a seemingly very useful contribution, it remains "an
open question whether the bidding strategies of the firms will differ gignif-
icantly if they are forced to provide a step function, or whether they are
allowed to provide a smooth schedule” (Green and Newbery, 1992, footnote
2)'10

Nevertheless the most important result, inefficient pricing, turns out
to be robust to alternative forms of modelling. Indeed, we find an even
stronger tendency than Green and Newbery towards above marginal-cost
pricing. Thus the conjecture that the Bertrand outcome is unlikely in the
present institutional set-up of the UK electricity industry, even if there is no
collusive behavior, seems to be strongly supported. In addition, our model

Green and Newbery also assume downward sloping demand curves, whereas com-
pletely inelastic demand wonld seem to be more appropriate for the UK industry. Bolle
(1990) proves that in the latter case, no equilibrium exists in the supply function model.

13



suggests that high-cost scts may be bid in at lower offer prices than lower-
cost sets and thus be despatched before these more efficient units. Hence
despatching may be inefficient in the sense that overall economic generation
costs are not minimized.

An important advantage of our framework is that it makes it possible
to model explicitly the role of the grid company (the auctioneer), and then
use insights from the auction literature to study the effects of different pric-
ing rules, i.e. the rules determining the prices paid ta different supplying
units. With a pricing rule like the one used in the present UK electricity
industry, the game corresponds to a first-price sealed-bid auction. However,
by letting the system marginal price be determined by the offer price of
onc of thc marginal non-opcrating scts, the game corresponds to a (gencral-
ized) second-price sealed-bid auction, and in this case offcring to supply at
marginal cost can be shown to be a dominant strategy for each firm. This
result is in accord with what is typically found in the literature on optimal
auctions where it is well known that second-price (or Vickrey) auctions lead
to bigher revenues for the auctioueer thau do first-price auctions (Myersou,
1981, or Maskin and Riley, 1989).

The remoainder of the paper is organized as follows. Cur auction model
of the UX. electricity spot market i presented in Section 2.2 and then
analyzed in Section 2.3. In Section 2.4 we consider an alternative regulatory

pricing rule. Section 2.5 contains a short summary and conclusions.

2.2 The Model

Before the actual opening of the market, N independent firms simultane-
ously submit offer prices at which they are willing to supply electricity from
each of their generating units, or sets. On the basis of these bids, the mar-
ket organizer ( or ‘auctioneer’) draws up a ranking of units, i.e. a market
supply curve is constructed. When the market opens, demand is deterinined
as a random variable independent of price, and the auctioneer, by calling

suppliers into operation, equates demand and supply. Operating units, i.e.

14



units actually supplying output, are paid the system marginal price which
is equal to the offer price of the marginal operating unit.

It is assumed that generators have constant marginal costs, ¢, > 0,n =
1,2, ..., N, at production levels below capacity, while production above ca-
pacity is impossible. We let the index n rank firms according to their
marginal costs, i.e. ¢, < ¢p41. The total capacity of generator n is given by
k,,n=1,2,...,N. The capacity of generator n consists of m,, sets, where
ky; is the capacity of the ¢’th set, ¢ = 1,2, m,, and 3 kni = kn. M
denotes the total number of sets, i.e., M = ) m,. Generators can submit
different bids for each of their sets. If two or more sets (of any firm) are
offered at the samse price, they are equally likely to be called into operation.

We consider a game G with N +1 players: N suppliers and Nature. The
move order is as follows:

Stage 1: The suppliers simultaneonsly submit offer prices, py¢ <
pit=12,..,m,,n=12..,N at which they are willing to supply elec-

4ricity from each of their generating units.

Stage 2: Sets are ranked according to their bids such that if the bid
of the sct with rank r is p™ and that of the sct with rank 7is p” and p” < "
then 7 < 7. I m sets are offered at the same price , then these sets are
designated numbers r, r+1, ..., v+ m— 1, with (marginal} probabilities 1/m,
for some r € {1,2,...,. M —m+1}.

Stage 3: Nature chooses demand d € [d,d] C [0,K], K = Y., kn
according to some probability distribution G(d). The auctionees, by calling
suppliers into operation, equates demand and supply. Despatched units
are paid the market-clearing price, which is egual to the offer price of the
marginal operating unit.l!

Note that to assume d € [0, K] is without loss of generality since
supply is imited to K and thus demand will have to be rationed if it increases

*More precisely, lot Ko =0 and K, =3 7_ k7,7 =1,2,..., M where k" is the capacity
of the set with rank r. Let p = max{r | K,.1 < d}.Then all sots with rank r = 1,2, ..., p~1
get paid p°k" while set p gets p°{d — K,—1]. Let s, be the actual supply of firm n, i..
80 = 30071 8u(P)K" + 8.(p)ld — K,—1], where 8a{r) is 1 if the set with rank r belongs to
firm n, and zero otherwise. The payoff to firm n is then s.[p” — ¢n].
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beyond K. In particular, G(d) will typically have an atom at d — K,
reflecting the fact that rationing may occur with positive probability. In
addition, the present U.K. clectricity supply industry is charactcrized by
significant excess capacity, and this is likely to remain true for the foresccable
future. Hence d < K would appear to be the relevant case.

All players are assumed to be risk neutral and hence aim to maximize
their expected payoff in the game. All aspects of the game, as well as the
players’ marginal costs and capacities and the probability distribution G{d),
are assumed to be common knowledge.

Firms’ offer prices arc constrained to be below some threshold level 7 <
oo, since otherwise, in cases when there is a positive probability that all
scts will be called into operation, cxpected payoffs could be made infinitely
large. A natural interpretation of 7 is that it is a regulated maximum price,
either officially, or as perceived by the generators (i.e. firms believe that the

‘regulatory authorities will effectuate price regulation if the price rises above

$).12 An alternative interpretation is that P is a reservation price, below
which demand is completely inelastic.

The model may be interpreted as a first-price, sealed-bid, multiple-unit
auction with a random number of units in which all units are sold simul-
taneously (McAfee and McMillan, 1987; , Hausch, 1986). It is ‘sealed-bid’
because of the simultaneous move structure and ‘first-price’ in the sense that
the market price is determined by the marginal successful supplier. This in-
terpretation is particularly convenient for analyzing alternative pricing rules.

2.3 Analysis

It this sectionr we characterize the Nash equilibria of the model presented in
Section 2.2. Most of the discussion will centre on the duopoly case, for which
we are able to derive explicit results. Apart from being the relevant case
for the UK electricity industry, explicit formulae for optimal strategies are

difficult to derive in the morc gencral oligopoly casc. Henee our discussion

*2{n the England and Wakes paol, system marginal price cannot exceed the value of lost
load (approx. £2 per kWh).
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of oligopoly in this section is in most cases limited to pointing out where
and how the duopoly results generalize.

Before discussing particular equilibrinm outcomes, we present a basic
result characterizing the types of purcstrategy equilibria that can occur in
the model.

Proposition 2.1 In a pure-strategy equilibrium (generically) at
most one generator will determine system marginal price with positive prob-

ability.

Remark: By gencricity is here meant that firms have different marginal
costs. If firms have identical marginal costs there may exist Bertrand-type
equilibria where firms submit offer prices equal to the marginal costs of
each set, and in which more than one firm owns sets which with positive
probability may become the marginal operating unit.

~ The infuition underlying Proposition 2.1 is straightforward. A player
which owns a sct that has a positive probability of becoming the marginal
operating unit, will always want to increase the bid of that set by some
small amount towards thc next higher bid, since that docs not affect the
ranking, but increases the generator’s payoff in the event that this is the
marginal set. On the other hand, it cannot be optimal to submit a bid
equal to or just above that of a set of another player, since as long as the
bid is abovec marginal cost {which it will be) profits can be increased by
undercutting the rival slightly, thereby increasing the probability of being
called into operation, without significantly reducing the price received in
any state. These two opposing forces destroy any candidate for a pure-
strategy equilibrium in which two ar more generators both have sets which
with positive probability will become the marginal operating unit.

Propositicn 2.1 implies that the types of pure-strategy equilibria that
may exist are very restricted and, furthermore, it rules out the existence of
purc-stratcgy cquilibria for a wide range of demand distributions. From this
it follows that the types of equilibria found by Green and Newbery (1992)

17



in their model, do not generalize to the casc where individual gencrating
sets are of positive size. The reason that such equilibria exist in the supply
function framework is that when individual sets are of size zero (the cost
and supply functions are continuously differentiable everywhere), the effect
on the system marginal price from & bid of any individual set is negligible,
and thus the first part of the above argument does not apply.

Below we consider circumstances under which pure-strategy equilibria
will exist, as well as presenting examples of mixed-strategy equilibria when
pure-strategy equilibria are non-existent. The existence, multiplicity and
the typc of equilibria will be seen to depend crucially on the support of the
demand distribution. We therefore distinguish between three cases: ‘low-
dcmand periods’ in which a single gencrator can supply the whole of demand;
‘high-demand periods’ in which neither generator has sufficient capacity to
supply the entire market; and ‘variable-demand periods’ in which there is
positive probability for both the event that a single generator can supply
the whole of demand, and the event that both generators will have to be
called into operation, irrespective of their bids.

2.3.1 Low-demand periods
This case corresponds to the standard Bertrand model of oligopoly in
the sense that there is a unique equilibrium in which both generators offer to

supply at a price equal to the marginal cost of the least efficient generator:

Proposition 2.2 I Pr(d < min{k;,ko}) = 1, there exist pure-
strategy equilibria, in all of which the market clearing price equals the marginal

cost of the least efficient generator, ¢z, and only generator 1 produces.'

Remark: When k; > kg, such equilibria continue to exist when Pr(d <
k1) = &, but other equilibria may exist also (see the next section).

13To avoid non-existence, we impose the tie-breaking rule that firm 1 is called into
operation with probability 1 whenever the firms’ offer prices tie at . This captures
the idea that the most efficient firm marginally underbids its rival, while simplifying the
description of the equilibrium.
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The argument in the proof is identical to that of the standard Bertrand
model. Since, with probability 1, demand can be met by a single genera-
tor, there will be competition to become the single operating generator. In
particular, a generator will always wndercut its rival so long as its rival’s
bids are above its own marginal costs. Thus any equilibrium must have the
most efficient generator (generator 1) submitting offer prices for a capacity
sufficient to meet demand, at or below the marginal cost of the least effi-
cient generator. Since in this range, generator 1’s profit is increasing in its
own offer price, these bids must equal ¢;. We conclude that in low-demand
periods, the system marginal price is bounded above by the marginal costs
of the less efficient generator.!4

232 High-demand periods

We now consider the case when, with probability 1, both generators will
be called into operation. Since the high-pricing generator will be operating
for sure, and in equilibrium generators never submit equal bids (see Propo-
sition 2.1), its profit will be increasing m its own offer price. Thus, the
extreme opposite to the result of the previous section holds; whereas in low-
demand periods the system marginal price equals the marginal cost of the
least efficient. generator, in high-demand periods it always equals the highest.
admissible price.

Proposition 2.3 If Pr(d > maz{kiks}) =1, all pure-strategy equi-
libria are given by offer-price pairs (py,pz) satisfying either py = T and
p2 < by or po =P and p;y < by, for some b; <P,i=1,2.

Remark: If k; > ko (k2 > ki), then all (p1,p2) such thet p1 = P and
p2 < by (p2 =P and py < by) continue to be equilibria for alt G(-) such that
Pr(d > k2) = 1 (Pr(d > k1) = 1). That is, a sufficient condition for the

14 A similar result can be shown to hold in the oligopoly model. If, with probability 1,
demand is less than the total capacity of the n most efficient generators (n < N), then in
an equilibrium system marginal price cannot exceed the marginal cost of the n+1st most
efficient generator.
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existence of this type of equilibrium is that, with probability one, demand
is greater than the capacity of the smaller firm.

The intuition for the result is straightforward. The high-bidding gen-
erator will always determine the system marginal price by Proposition 2.1.
Therefore its payoff is increasing in its own offer prices and profit maximiza-
tion requires bidding at the highest admissible price. The low-bidding gen-
erator is indifferent between offer prices lower than that of the high-bidding
generator. However, to ensure that the high-bidding generator does not
deviate, the low-bidding generator has to bid low enough so that the high-
bidding generator’s payoff from undercutting is less than the payoff earned
in equilibrium. Thus the upper bound on the low-bidding generator’s offer
pricc.

In all of the equilibria characterized by Proposition 2.3, the system
marginal price equals the highest admissible price. The low-bidding genera-
tor is despatched with full capacity while the high-bidding generator supplies
the residual demand. It follows that both gexiera.tdrs prefer cquilibria where
they act as the low-bidding generator, since the recetved price is the same
whilc a generator’s output is greater in the cquilibrium in which it is ranked
first.

Note that some of these equilibria involve inefficient despatch: the high-
cost generator may be the generator with the lowest bid and thus will be
despatched with its total capacity, while the low cost gemerator is only
despatched with part of its capacity. In such equilibria, generation costs

arc not minimized.15

233 Variable-demand periods

We turn now te the third case in which either generator may set system
marginal price with positive probability independently of its bid (i.e. rank).
In the England and Wales pool generators bid daily, and (depending on the

151t is easy to see that in the oligopoly case we get a corresponding result. Whenever
demand is such that the highest-bidding generator determines the system marginal price
with probability 1, any vector of offer prices such that the highest-pricing generator sub-
mits the maximum admissible price, while the rest bid sufficiently belew this, will be an
equilibrium
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season) their bids may consequently be constant for time periods in which
demand is expected to be high (morning and afternoon) and periods in which
it will be low (night time).!% This can be modelled as if the generators face
a single period in which demand could be low or high with some probability.

It turns out that pure strategy equilibria do not exist in this case and
hence equilibria are in ‘mixed strategies.” Under their mixed strategies, in
equilibrium both generators randomize over their price bids from an interval
bounded below hy the least efficient generator’s marginal costs, and above
by the highest admissible price. Expected prices still exceed the marginal
costs of generation, however what the market price will be is the result of a
random process and cannot be predicted exactly. v

The non-cxistence of purc-strategy cquilibria follows from obscrving that
bid pairs like those in Proposition 2.3 cannot constitute equilibria in this case
since the low-bidding generator will now always wish to increase its bid; in
doing so it thereby increases the system marginal price in the event that it
becomes the mé.rgina.l operating gencrator. We therefore have the following
result:

Propesition 2.4  If d—d > max{ky,kz}, where [d,d] is the support
of the demand distribution G(d), then there does not exist an equilibrium in

pure strategies.

This result follows directly from Proposition 2.1. Since the range of
possible demand distributions exceeds. thé capacity of the largest generator,
it follows that for any stratcgy combination thcro is a positive probability
that sets of either generator will be the marginal operating unit. We can
then apply the result of Proposition 2.1; there cannot exist pure-strategy
equilibria for which more than one generator has a positive probability of
determining the system marginal price.

Characterization of mixed-strategy eguilibria in the general model is

16 This is different in the Scandinavian pool, in which different price hids may be sub-
mitted for each of the 24 bourly periods that the market is open. The variable-demand
case is consequently of less relevance for this market.

21



cumbersome, and in the remainder of this section we consider a simple exam-
ple. In the example, it is assumed that for all n,m,, = 1, i.e. each generator
owns only one set, or can submit only one offer price for the whole of its
capacity, and we characterize the mixed-strategy equilibria for the duopoly
case.!” We are able to show that there exists a unique mixed-strategy equi-
librium, and we derive the explicit form of the two players’ strategies. In
particular, we find that the lowest price in the support of the players’ strate-
gies is strictly greater than the marginal cost of the least efficient generatar,
and that this lowest price is an increasing function both of the highest possi-
ble price B, the probability that both firms will be operating (i.e. demand),
and the marginal cost of the least efficient generator.

The analysis is considerably simplified by restricting attention to the fol-
lowing special case: All firms are assumed to have equal capacities normal-
ized to 1, and demand is discrete and distributed on {1, 2} with probabilities

an = Pr(d =n),n=1,2, with Pr(d =n) > 0 and ), m, = 1. Since the
main results carry over to the more 'gcneral model, we concentrate on this
special case.

Assumc N = 2 and dcfine 713 = w . Without loss of gencrality, normalize
c1, to zero and let ¢ = ¢. The assumption on the support of the demand
distribution in Proposition 2.4 now corresponds to the case where 0 < 7 < 1,
i.e. the events that one and two generators are called into operation both
occur with positive probability. Define:

\ B¢ ‘hen 7 = 1
Fulp) = nle b veRT T @2.1)
1[’,_3] + 52; when 7w # 3
In(e - p_-"%lé when p< Fand 7 = }
Fyp) = 2]’;:1 _13'(%-—_1]3] + 521, whenp<pand1r;£z (2.2}

when p=7p

where a(m) = [1 T |31

17 Analyses of mixed strategies in models with a similar structure to the model presented
here can be found in Shilony (1977), Varian (1980), and Padilla (1992). See Brandenburger
(1992) for a discussion of the interpretation of mixed-strategy equilibria as equilibria in
beliefs.
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where In(e) = 1. We ean then prove the following result.

B 1
pm—{ P—?%—c, when 7 = 5

Proposifion 2.5 There exists a unigue mized-strategy Nash egui-
librium in which player i’s strategy is to play pe[p™,p] according to the
probability distribution F;(p),i = 1,2, where Fi(p) are given by (2.1) and
(2.2) and p™ > 0 is given by (2.8). Further, Fi(p) > Fa(p).

In cquilibrium, players strike a balance between two opposing cffects.
On the one hand a high bid results. in a high system marginal price - and
honce payoff - in the cvent that the gencrator is marginal. On the other
hand, bidding high reduces the probability of being despatched. The latter
effect. is less important the smaller is #, since then it is very likely that both
generators will be despatched. Conversely, when the probability that both
generators will be operating is low (i.e. 7 is large), less pfobébility mass is
placed on higher prices. To say this another way, the incentive to raise one’s
bid is checked by the likelihood of ending up as the higher pricing generator
and not being called into operation: when = is small, there is a substantial
probability that a generator will be operating even if it offers to supply only
at a very high price. Thus, for small 7 both generators will tend to submit
high bids and visa versa. Indeed, the following is easily demonstrated:

im pm=c, (2.4)
71
m p"=F. (2.5)
w—0

Note that the limit in (2.4) corresponds to the case discussed in the
‘low-demand periads’ subsection, while the imit in (2.5) correspands to the
‘high-demand’ case.

The high-cost generator’s strategy profile first-order stochastically dom-
inates the strategy profile of the low-cost generator (i.e. Fa(p) < Fi(p)).
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Thus in expected terms, the high-cost generator will submit higher bids
than the low-cost generator. A lower bound for the probahility that the
high-cost generator submits a bid below that of the low-cost generator can
be established by considering the probability that py < p —c. When 7 = 1,

this reduces to

Pr(py < p1 — c3) = ép ~In(1 + =S (2.6)

where a = B/c. If a = 5(10), i.e. P is 5 (10) times the marginal cost of
the high-cost generator, this probability equals 12% (27%). Thus, although
the typical outcome is that the high-cost generator prices above the low-
cost geﬁerator, there is a potentially significant positive probability that
the high-cost generator subrmits the lowest price offer and thus becomes the
only opcrating gencrator. Thercforc we may conclude that, as in the high-
demand periods case discussed above, the regulatory rule, as it is modelled
here, is not ex-post efficient (we discuss below how the rule may be adjusted
to ensure efficient despatch).

We may use this model to consider the question of how an increase
in the npumber of independent generators will effect {average) pool prices,
by briefly extending the analysis here to the oligopoly model (ie. N >
2). In order to do so we assume that firms have equal marginal costs and
without further loss of generality, these are normalized to zero. We consider
a symmetric model since this is the only case in which it is possible to
characterize equilibria in any detail. We continue to assume that there
is a positive probability that all units will be called into operation, i.e.
7y > 0, since otherwise, given the symmetry assumption, only the perfectly
competitive outcome would be possible. We then obtain the following result:

Propaosition 2.6 Assume ¢, = 0,n = 1,..N. Then there ezists
a unique symmetric mized-strategy equilibrium for the game in which each
player plays prices p € [p™,P] according to the probability distribution F(p)
where F(p) is the solution to:



_ ofF(p) _

and

a(q)EZ:il“lb(z— I;N—' }79) (2.8)
Ble) =T NG  mBe(i; N — 1,9)

In (2.8), b(i; N,q) is the density function of the binomial probability
distribution with parameters N and ¢, B(i; N, g) is one minus the corre-
spouding cummulative binowmial probability distribution, and B, = 8B/dq.
Furthermore, F(p™) = 0, F(p) = 1, and p™ > 0.

From the unigueness of tho solution to (2.7) and (2.8), it follows that p™

is decreasing in B . Note that By(i; N — 1, ¢) is always decreasing in i for
sufficiently small gq. For larger g, Bg(i; N — 1,¢q) is increasing (decreasing)
in 3 for small (large) i, b(i —1; N —1,¢), as a function of i, is shaped as
_an inverse V. Thus, reducing #; for small i and increasing #; for larger 3,
typically increases Q(p, F'(p)) for given p. Therefore one would expect that
p™ is larger the more probability weight there are on p; for large i’'s. We
have the following limiting results:

im p™ =0 (2.9)
m1—1

im p™ =% (2.10)
n—1

The gnestion of particular interest here is how the number of suppliers in
the market will affect the price structure. There are in general two different
ways of analyzing this. We could either think of a situation where, for a
given level of demand, additional firms are introduced into the market, i.e.
total capacity is increased, or a. situation in which existing firms are split.
up into smaller units, i.e. a given total capacity is divided between a larger
number of firms. If the question of primary interest ié the organization of

the deregulated structure of an existing industry, the latter approach seems
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the most natural and this is what will bc considered here. We analyze a
particular example, where ; = 1/N, by comparing the outcome for different
N’s. By substituting for p; and solving (2.7), we obtain the following:

Result: When Vn, ¢, =0, and Vi, p; = 1/N,

1 -
Fp) = z—g " 1_Ey (2.11)
p™ = p—e N and
Enp = — I —e .
p wog e

Thus, both p™ and Ep are decreasing in N. That is, prices will tend
to be lower on average in a more fragmented industry. The intuition for
this may be explained as follows: By increasing its offer price a generator
reduces the probability that it will reccive a positive payoff. On the other
hand, submitting a high offer price increases, in expected terms, the system
m.a.rg.im.a,l pricc. The system marginal pricc cffect, however, benefits the
generator only when it happens to be the marginal generator, an event
which is less likely the more firms there are in the industry.

This intuition also suggests that in the more general model with multi-
unit firms, prices will tend to be higher than in the modd in which these
same units act independently. As indicated above, raising the offer price of
onc unit will have an cxtcrnal cffect on other units in that it incrcases the
expected system marginal price. A generator which controls many units will
internalize part of this externality and will thus bave an additional incentive
to increase its offer prices. In particular, this "coordination incentive" is
stronger the more units an owner controls. It therefore seems reasonable
to conclude that for a given number of generating sets in the industry, the
systcm marginal price will be a decreasing function of the number of owners,

or generators controlling the sets, i.c. the industry concentration ratio.
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2.4 An Alternative Payoff Rule

As we have shown in Section 2.3, firms will in general choose bids greater
than their marginal costs, and thus the system marginal p;ice. will tend to
exceed the marginal costs of each of the operating units. Furthermore, since
less cfficient sets may submit lower offer prices than more efficient sets, ineffi-
cient despatching may result. It is therefare an interesting question whether
the regulatory rule can be modified so as to induce truthful revelation of
costs and, as a result, efficient despatching. In this section we show that
by extending an insight on optimal auctions due to Vickrey (1961), such a
modification is indecd possible.

The electricity market game G may be interpreted as a first-price, sealed-
bid, multiple-unit auction with a random number of units. In particular,
the system marginal price is determined by the offer price of the marginal
operating set, and thus a firm’s bids will determine the price received in the
_event that one of its sets is. the marginal operating unit. The fundamental
insight of Vickrcy (1961) was that by making the price reccived by a firm
independent of its own offer price, marginal cost pricing can be induced as a
dominant. strategy for all firrns. The reason for this is that in such a set-up
a firm can only influence its own payoff to the extent that it affects the
probability of being called into operation. A firm will prefer to be operating
for all realizations of demand such that its payoff is positive, and will prefer
not to opcratc whenever its payoff is negative. Therefore, offering to supply
at a price equal to marginal cost becomes a dominant strategy because it
maximizes the probability of being called into operation whenever the firm’s
payoff is expected to be non-negative.

In a standard Vickrey auction, price is determined by the marginal un-
successful, i.e. nom-operating, player. To generalize this result, we must
construct a mechanism which is both incentive compatible and individually
rational. This can be done by letting the price paid to firm n be determined
by the intersection of demand with the residual (i.e. net of the capacity

of firm n) supply curve. Consider therefore a slight variation of the game
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analyzed in Section 2.3 above wherc the only change involves the payoff rule:
the intersection of the demand and the supply curves determines which units
will be called into opcration. All operating units arc paid firm-specific prices
determined by the intersection of the demand and the respective residual
supply curves if such an intersection exists, and set. equal to @ > max{c,}
otherwise. Call this game G. Then the following result holds:

Proposition 2.7 The game G has a unique dominant strategy equi-
librium in whick pp; =cp, v =12 N

Remark: Other Nash equilibria typically exist. However, since offering
to supply at marginal cost (weakly) dominates all other strategies, we con-
sider this the natural ‘focal’ point, and thus base our discussion solely on
this equilibrium.

In @, as oppased to @, despatch is efficient since firms are always despatched
in order of increasing marginal cost. Thus, our alternative regulatory rule
leads to wminimization of real generation costs.!®

In addition to technicel efficiency, one might ask how total (expected)
paywents to the generators compare in the two auctions. Denote by EC
total expected payments in G, and by EC total expected paywents in é,
respectively. It is easy to verify that revenue equivalence holds when valu-
ations are drawn from the same distribution (if we let § = p) as we would
expect from the Revenue-Equivalence Theorem (Vickrey 1961; McAfee and
McMillau 1987). For example, iu the symmetric oligopoly model cousidered
in Section 2.3, EC = N7 NP (since players receive the same payoff whichever
of the prices in the support of their strategies they play, and, in particular,
the profit from playing % is 75F). On the other hand, EC = Nz y# (since
payments are zero when some firms do not operate and p to each of the N
firms otherwise). It turns out to be difficult to establish the sign of BEC— EC

¥ Efficiency considerations in electricity supply industries are camphicated considerably
by the network characteristics of such industries, and being able to rank generating units
according to production costs is only a nucessary condition for short-run efficiency. For a
treatment of efficiency and optimal pricing in electrical networks, see Bohn, Caramanis,
and Schweppe (1984).
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in the gencral model. However, in the duopoly case one can show that EC
is never smaller than EC.This is obvious in the cases discussed in sections
2.3.1 and 2.3.2. In the casc analyzed in scction 2.3.3, EC can be found by
considering ¢,(P) and ¢,(p) as p — P, where ¢;(p) is the profit of firm i from
playing p, i = 1,2, from which it follows that EC=zKec+ [1 — 7|25, where

ahl(l + E"{%‘:ﬂ)’, when 7 = %’
K= w=1 {1 a 1=2x h 1
ah—l _{a-{.-lax—lll " } when W# 2
and
7 - e 15T
a=Z ax= [ }
c l1—=m

and EC = wc+[1 —n)2p. Now, K > 1, and K =1 when o = 1 and is
increasing in . For givenr @, K is maximized at m = 1/2 and K <e— L.
We summarize the duepoly result in the following proposition:

Proposition 2.8 When N = 2, EC is a lower bound for EC.

Such an improved pricing performance echoes the result in the optimal-
auction literature that second-price sealed-bid anctions yield higher payofis
to the auctioncer than do first-price scaled-bid auctions (McAfcc and McMil-
lan, 1987; Myerson, 1981; and Maskin and Riley, 1989). Thus, some of the
first-price/second-price comparison results found in the auction literature
extend to this setting as well.

We conclude that (disregarding collusion and long-term contracts) an in-
stitutioual set-up which hduces firms to make offer prices equal to marginal
costs is perfectly possible even when firms are capacity-constrained, some-
thing which seems not to have been appreciated in the literature. As such,
it also shows that applying results from standard oligopoly models (such as
those found in for example Kreps and Scheinkman, 1983 and Tirole, 1988,
ch. 5) can be mislcading as a description of the outcome of competition in
the UK. electricity market.



2.5 Conclusion

In this paper price competition in the deregulated wholesale market for elec-
tricity for England and Wales has been analyzed as a first-price, sealed-bid,
multiple unit auction. In doing so, we have demonstrated that under the
existing institutional sct-up there is likely to be both inefficient despatch-
ing and above marginal cost pricing, even in the absence of collusion and
long term contracts. While these points have been argued elsewhere (see
for instance, Vickers and Yarrow,1991 or Green,1991), the arguments have
been largely informal and usually based upon standard models of oligopoly
pricing, and hence somewhat inconclusive. A major purpose of the present
paper has been to address these issues in a formal modal specifically de-
signed to capture the essential elements of new electricity pricing systerm in
the United Kingdom.

Green and Newbery (1992) is the only other model specifically designed
to study the bidding bebavior of the generators under the new UK system.m
While the conclusions from the two models coneur in many respects, our re-
sults cast some doubt upon the type of equilibrium analysis employed by
Green and Newbery, i.e. Klemperer and Meyer’s {1883) “supply function
equilibrium” model. This is because the equilibria found under the assump-
tion that firmns submit smooth, ie. continuously differentiable, supply fiunc-
tions do not appear to generalize to the case where supply functions must.
be discrete ’step functions’, even when the ’step-length’ can be made very
small. Indeed, they found that for a wide range of demand distributions,
pure strategy (i.e. supply function) eguilibria will not exist in this case. It
is therefore reassuring to find that Green and Newbery’s most significant
conclusion for policy purposes, viz. above marginal cost pricing, is also a
property of the model analyzed here, and hence does not depend upon the
particular assumptions they impose.

While the analysis presented here would appear to be useful in providing

" Whils the model of Bolle (1990) is very close that of Green and Newbery (1992) in
many respects, its purpose is somewhat more general.
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a framework for studying pricing behavior in the deregulated UK clectricity
industry, the importance of its conclusions is limited by the extent to which
it does not take into account opportunities for collusive behavior between
the generators, nor the effects of long-term countracts between suppliers and
purchasers (or third parties). These problems call for further research.
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2.6 Appendix: Proofs

Proof of Proposition 2.1: Assume by way of contradiction that more than
one firm has sets which with positive probability will become the marginal
operating unit, and, thus determine the system marginal price. Then, since
the support of the demand distribution is an interval, there must exist two
sets with rank r and r 4 1, for some r € {1,2,..., M — 1), belonging to two
different firms, both of which will become the marginal operating unit with
positive probability. Call the firm that owuns the set ranked r firm n and
the other firm 7. Note that since firms can secure non-negative profits by
bidding at marginal cost, one must have p” > ¢, and p™! > e5,p" < p™H!
cannot be part of an equilibrium since by increasing the bid of set r towards
2, firm n will increase its profit. Increasing the bid in this a way does not
affect the ranking but does increase the system marginal price in the event
that the r’th sct becomes the marginal operating unit. p™ = p™*! cannot
be an equilibﬁum either, since if e, # €5, at least one firm can increase
its profit by undercutting. For example, if ¢, < ¢, p" = p™ > ¢, by
the argument above, and thus firm 7 can increase its profit by undercutting
firm 7 by an arbitrarily small amount thereby strictly increasing its chance of
being called into operation without affecting the (expected) system marginal
price. QED.

Proof of Propesition 2.2: In any equilibrium firmm 1 will determine
the system marginal price with probability one. Assume otherwise, i.e. that
firm 1 has bid in so many of it sets at high prices that some of the sets of
firm 2 have a. positive probability of becoming the marginal operating unit.
Since firm 2 can secure non-negative profits by bidding at marginal cost,
firm 2 will not bid in these sets below ¢;. But then firm 1 can increase its
profit by undercutting such firm 2 sets by some arbitrary amount, since this
increases the {expected) amount supplied by firm 1 without affecting the
system marginal price in any event.

Next we show that the system marginal price will not exceed cz. Assume

otherwise. Then since firm 1 always determines the system marginal price,
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it must have bid in sets at a pricc greater than ¢z. But then firm 2 can
increase its profit by undercutting firm 1.

Lastly, since firm 1’s profit is increasing in bids on the sets that may
become the marginal operating unit, the only candidate for equilibrium in-
volves these being bid in at cg. (This will be an eguilibrium if one imposes
the tie-breaking rule that if firms tie at cg, firm 1 is despatched with prob-
ability 1.) QED.

Proof of Proposition 2.3: From Proposition 2.1 it follows that ouly
sets of one firm will determine the system marginal price. Without loss
of generality, assume that these belong to firm 2. Then since the profits
of firm 2 are increasing in its own bids, all these sets will be bid in at B
Furthermore, firm 1 must bid in all its sets at offer prices strictly less than 7.
Now, for this to be an equilibrium, firm 1 must bid low enough so that firm
2 cannot increase its profit by undercutting. Firm 1 bidding at or below firm
2’s marginal cost is sufficient to guarantee this. (Since firm 1 never becomes
‘the marginal firm, it will be willing to do so even if ¢y < ¢;.) QED.

Before cousidering the prools of Propositions 2.5 aud 2.6, we derive some
properties of the general oligopoly model’s mixed-strategy equilibria when
firms have equal capacities and demand is distributed discretely as assumed
in the main text and under the assumption that any number of units will
be called into operation with positive probability. We start by proving that
no firm submits offer prices below its marginal cost. 'We then show that
7 is always part of some player’s strategy. Lastly, we prove the following
two results: There can be no mass point at any price in a player’s mixed
strategy, with the possible exception of 7, 1.e. no price less than p is played
with positive probability. And if ™ is the smallest price in the support of
any player’s strategy, then all prices p € [p™, ] are in the suppert of at least
two players’ strategics’.

Note that for any equilibrium (mixed) strategy profile there exist in-
finitely many (generically) equivalent strategy profiles which differ only on

sets of measure zero. We do not make any distinction between such strate-



gies.

Lemma A.2.1 (Lower baunds for the affer prices) In any equilib-
rium and for all n=1,...,N, p, > max{cs, ¢z} , (remember that cz is the
marginal cost of the second-most efficient firm).

The result is rather obvious and follows from the observation that a
player, by offering a price below his marginal cost, has a positive probability
of obtaining a non-positive payoff which could be avoided by choosing a
higher offer price. From this, and the fact that no player will choose an offer
price below and bounded away from the lowest price ever chosen by anyone
else, one concludes that the system marginal price will not fall below the
marginal cost of the second-most efficient firm.

Lemma A.2.2 {(Upper support) If mx > 0, at least one player will
have P as part of his equilibrium strategy.

Proof. Let 7 be the highest price in the support of any players strategy
and assume that p < . Let n be oné of the players which has p as part of
his strategy (in particular, if one player plays § with positive probability, let
n be bim). Playlug 8 yields hitn an expected payoff of prry while playiug B
yields pry > pry. QED. =

Lemma A.2.3 (No interior mass points) In equilibrium no offer
price p < B will be played with positive probability by any player. Further-
more, if D is played with positive probaebility by some player, no other player
will play p with pesitive probability.

Proof. We start by showing that if 7 > ¢z is (believed to be) played with
positive probability by some player, pis not played with positive probability
by any other player. Let » > max{cg,c;} be an offer price which is played
with positive probability by a player 7 and assume that only 7 plays B with
probability greater than zero (the argument below extends in a straightfor-
ward manner to the case where more than one player plays p with positive
probability). Then if a player n, for which ¢, < 7 (by lemma 2.1 such a
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player exists), plays p an elemont in his expected payoff is

N-1 '
Pr(pa =5) ), Pr([Prcss < PINPrass > lipa = PF-cal{ G +mer1} (AD)

=1
where
Pr(pny < Plps = D) =Pr(pry,, > Plpa=0) =1

This is the expected payoff in the event that there is a tie at 7. Given a
tie, player n is ranked below 7 with probability 1/2 and gets a payoff of p
whenever he or 7 is the marginal firm. With probability 1/2 n is ranked
above 7 and receives p only when he is the marginal firm. If n plays p—¢
for some € > 0, then in the Hmit, as £ — 0, the corresponding element in
his expected payoff is

N-1

Pr(ps = p) Z Pt([pmﬂ < ﬂn{pnew > Pllpa = PP~ cal{mi+miga } (A.2)

i=1

The difference between (A.1) and (A.2) is that the latter corresponds to the
case where 7 is always ranked below 7i whenever 71 plays p since Ve > 0,p —
€ < p. All other elements in the sum which constitute player n’s expected
payoff from playing @ and B — £, respectively, can be made arbitrarily close
by choosing ¢ small enough. Thus, there exists € > 0, such that playing p—e¢
yields a strictly higher payoff than playing p and, therefore, playing p with
positive probability caunot be part of aun equilibriwin strategy for player n.

We next show that if p < P is played with positive probability by some
player n, any offer price exceeding p by any other player will be bounded
away from . Consider the payoff to player n who plays p+¢ for some e > G
Then in the limit, as € > 0, the element in his expected payoff corresponding
to (A1) is

N-1

Pr(pﬁ = ﬁ) Z Pr([pﬂi-i-l < ﬂ n [p'n..-+2 > ﬂ[pﬁ = @E’“‘ cn]"ri+1 (A3)
=1

The difference between this and (A.1) is that n is always ranked above 7
whenever % plays P since Ve > 0,p,, = p+¢ > P, i.e. there is never a
tie. All other corresponding elements in the sum which comnstitute player
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n’s expected payoffs from playing p and 7 | €, respectively, can be made
arbitrarily close by choosing ¢ small enough. Thus there exists £ > 0 such
that for all € € (0,Z) playing P yields a strictly higher payoff than playing
P+ &, and therefore any offer price which forms part of n’s strategy and is
not less than P, must exceed &+ e.

Since the above result must hold for all n # 7, it follows that player @
would gain by playing p+¢ instead of p, for some 0 < £ < €. This contradicts
the assumption that p is part of his equilibrium strategy and completes the
proof. QED. m

Lemma A.2.4 (No holes) If P is part of any equilibrium strategy,
then for any interval S C (9,9],Vp € 8, S are part of at least two players
equilibrium strategies.

Proof: We first show that there cannot exist any interval S C (p,7),
such that no player has elements in S as part of his strategy. Assume, for a
contradiction, that such an interval S exists, and let pips = inf{p|p € S} and
Psup = sup{plp € S}. Then, for the player & with pys — &, for some € > 0,
as part of Lis strategy, playiug 7 = por + 7 €  iustead of ppyr — € yields in

the limit as ¢ — 0, an increase in expected payoff of

N
Z T Pr([pnyy; < BN [pniyy > Bllpa =P) = (A.4)
=1
N
E’ri Pr([}’m“ < pio [pn.'-u > pllps € [ping :Pmm]')g >0
=1

where

Pr([pn, < Pllpa € [Pint, Peupl) = Pr{[pn,yy > BlIPa € [Pint, Poup]) =1

A contradiction. By applying a similar argument we can show that it is
not possible that only one player has elements in S as part of his equilibrium
strategy. If 7 is the only player with § = psup —€ € S as part of his strategy,
then by playing peyp+€,€ > 0, instead of p this yields in the limit ase — 0,
an increase in his expected payoff equal to that in (A.4). QED.
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Proof of Proposition 2.5: From Lemmas A.2.1-A.2.4 we know that
there is at most one player who plays B with positive probability (this will
be player 2, a result which follows from the observation that the argument
below leads to a contradiction if one makes the assumption that firm 1
plays B with positive probability), that no player plays any price p < B
with positive probability, and that if p™ is the smallest price played by any
player, both players’ mixed strategies have full support on [p™,p]. Then, 2’s
expected payoff from playing 7 is

&(p) = [t —7][F— o (A.5)
Prices below ¢ cannot be in the support of his equilibrium strategy since
Vp<c:Pup) < P2e)=7*0+[1—7w][Ept — ] <[1—7][P—¢c (A.6)

Thus, the smallest offer price which is in the support of 2’8 strategy must
be strictly greater than his marginal cost. Furthermore, it is clear that if
p'h ié the suialiest price in the support of 2’s strategy, then 1 never offers
anything less than p™, and vice versa

Let Fi(p) = Pr(pm < p) and fi(p) = F'(p). Then the expected payoff to
player 2 of playing p € [p™,7] is

93(p) = m1-Fi(p)l[p—c+{1-7]Fi (p)[p—c]+[1 7] /j lp—dfi(p)dp (A7)

The first two elements in the snm are the expected payoff when firm 2 is
the marginal firm, i.e. determines the market price, and one and two firms
are active respectively. The third element is the expected payoff given that
both firms are called into operation and firm 2 has the lower price. From
(A.7)

Dz(p) = {1l — Alp)lp — dl} + [1 - 27]Fi(p) (A8)

Using the fact that in equilibrium Vp € [p™,5), ®,(p) = 0, one gets

1-2rFy(p) _ 1
T p—¢ p—e

filp) — (A.9)



This and the fact that F,(p) = 1, imply the following unigue solution to
(A 9):

In(eE= when 7 = 3
Fi{p) = , v ’ : A10
1{p) { 22:13{%:_2-‘,’ gy ,whenr;é% (4-10)
ey, when 7 = 1
mo_ e . ? 2 11)
? {w— =R 4o whenn # § (At
where In(e) = 1. A similar reasoning gives
ln(e_—rln—_‘ ;when p<pand 7= 1
Fz(p) = a—1 P ﬁ n = ] i (AIZ)
m[ﬂa”_lc] * + o ,whenp<Pandw#jz
FE(E‘) = 19
where
Qn = [1 j W]Z‘Nt-l
QED.

Praof of Praoposition 2.6: Note that it follows from lemma A 22
that no symmectric mixed stratcgy cquilibriun can contain mass points at
any offer price. Furthermore, from lemmas 2.3 and 2.4, it follows that in
any symmetric. mixed strategy equilibrium, if p™ is the smallest offer price,
all p € [p™,p| are in the support of the players’ strategies. Let ®,(p) be
the expeeted payoff to firm n of choosing offer price p. Then onc has the
following

N 7
®0(p) = Y 1elPr([Pncss < Fpnsys > Pllon =P+ [ paFra(p)} (A13)

i=1 p
where

N-1 !
Foi(p) =Pr(pn, <plpn <p) = ) (N; I)qj[l —gV i (A1)
1

F=i—

Pr([pn,_, <p]0 [Pn¢+1 > plpn=pl) = (]:7——11) qi~1[1 - Q]N_l (A.15)
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q=F(p)=Pr(pp <p), k#n (A.16)

The first part of each element of the sum in (A.13) represents the payoff
in the event that firm n is the marginal supplier, while the secand part is
the payoff given that firm n supplics but is not the marginal operating unit.
The sum is over all possible demand realizations.

In a mixed strategy eguilibrium, it (generically) must be the case that
for any two points § and 7 in the support of the players’ strategies, 3,,(p) =
®,.(p). Thus,

0= @,(p) = alg) - p¢ Blg) (A.17)
where ¢ = f(p) = F'(p) and
N
alg) =Y mbli— ;N —1,9) (A.18)
=1
... N1 . .
Bla) = miBy(i; N —1,9) (A.19)
=]
-1 -1,9) = (e - (4.20)
and Mot
N1 =S (V=1 iy aN-1- (A.21)
BN - 1,0 = ;( FHea-av e

b(7; N, g} is the density function of the binomial probability distribution
with parameters N and ¢, while B(i; N, q) is one minus the corresponding
cumulative binomial probability distribution. Note that for N > 2 and
g €[0,1),b(1 =1;N —1,q) > 0 for all i, with strict inequality for at least
one i, and By(i; N —1,¢) > 0 .Thus Vg € [0,1)

afg) > 0, and (A.22)

Blg) >0 (A.23)
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Counsider the differential equation

_olg _
Define
K' = max{a(g)lg € [0,1]} > 0, (A-25)
K= min{a(‘])iq € [0’ 1)} >0, (Azﬁ)
K? = max{B(g)l¢ € [0,1}} >0, (A.27)
and
Ky =min{8(¢g)| €[0,1]} >0 (A.28)

Since €)(p, g) and Q4(p, g) arc continuous for p > 0 and ¢ > 0, and
Vg € [0,1] : Qp,q) > K/p, (A.29)

where K = K /Ky, for every p™ > 0 (A.24) has a unique solution F(p)
where F(p™ = 0 (see Sydsaeter (1984), p. 25). Since the solution F(p)
is continuous in p™ and f(p) = ¢/ > 0, there exists a p™ < 7 such that
F@), = 1. Next, one has that

vg € [0,1] : p,q) > K™ log(p/p™) (A.30)
where K% = K; /K2 < co. Therefore,
1=F(®) > K%%dp = K% log(p/p™ (A.31)
pm

from which it follows that p™ > 0. QED.

Proof of Proposition 2.7: Observe that the payoff to a particular
operating firm is independent of its awn offer price. Fix the strategies of
firms m # n, and consider the best response of firm n. Let one of firm n’s
offer prices be py; = p. First, for realizations of demand for which set 7 of

firm n is operating and gets positive payoff, i.e. 5 < P and P > ¢, , the firm
would have been equally well off offering pn; = ¢,. Second, for realizations
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of demand for which set ¢ is not operating and the systcm marginal price
exceeds its marginal cost, i.e. 7> I > ¢, firm n would have been strictly
better of offering py; = ¢,, For realizations of demand such that the system
marginal price is below its marginal costs, firm n is at least as well off by
offering p,; = c,, than any other price. Thus, pn; = ¢, is a (weakly) dominant
strategy for firm n. QED.



3 Spot Market Competition and Long-Term Con-
tracts in the British Electricity Market

3.1 Intraduction

veon der Fehr and Harbord (1993) analyzed the nonceoperative equilibria of
electricity spot markets in the absence of contracts, and demonstrated that

| generators will have a strong incentive to bid above short-run generation
costs. Green and Newbery (1992) adopted a different analytical approach,
but reached broadly similar conclusions. In this paper we extend this analy-
sis to include the effects of long-term financial contracts, such as those traded
in the electricity supply industry in England and Wales between generators
and electricity distribution companies. Qur purpose is to explore the incen-
tives that financial eontracts give for altering bidding behavior in the pool
and to analyse the potential functioning of the contract market.

The existing literature on the interaction between long-term contracts
and imperfectly competitive spot markets has concentrated on futures con-
tracts. (see the survey by Andersom, 1990). A general finding of this litera-
ture is that there may be a strategic motives for trading futures eontracts
which are distinect from the traditional hedging and speculative motives. The
strategic motives vary depending upon the market structure and the nature
of the underlying commodity or good. However, a fairly robust conclusion
seems to be that the presence of futures has a pro-competitive effect: i.e.
trade in futures contracts tends. to increase production above the level that
would prevail in its absence, thus reducing prices and ameliorating the effi-
ciency losses due to imperfect competition. This is the conclusion reached
in Cournot oligopaly models where firms compete in quantities for example
(Eldor and Zilcha, 1990 and Allaz, 1990). In these Cournot-type models
futures can act as a commitment to supply large volumes of output through
their effect on firms’ marginal revenues. An increase in the number of fu-
tures contracts shifts out a firm’s reaction function and allows it to achieve
the advantage of Stackelberg leadership.

Unfortunately, the assumptions in this literature on types of long-term
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contracts, market structure, and the organization of transactions make these
analyses not directly applicable to the deregulated electricity supply indus-
tries in the UK and elsewhere.?’ The electricity spot market in England
and Wales is organized as a daily reverse auction in which the generators
submit. offer prices on their available capacity, generating units are ranked
according to their offer prices (i.e. a supply schedule is constructed), and
half-hourly market prices are determined by the offer prices of the marginal
generating units. That is, the electricity poel operates as a uniform, first-
price, multi-unit auction and does not correspond to a standard Cournot
or Bertrand spot market game, as typically discussed in the literature on
futures contracts. In addition, long-term contracts typically take the form
of options - i.e. they are purely financial contracts unrelated to the purchase
or sale of electricity in the spot market, rather than futures coniracts per
se.

In this paper we characterize spot and contract market equilibria in
a model which is explicitly designed to take account of these characteris-
tics of electricity spot and contract markets. We find that the existence of
long-term contracts tends to put downward pressure on spot market prices
through their effects on the generators’ bidding strategies. For this reason
the incentive of generators would seem to be to reduce the sale of contracts.
below what would otherwise be the case without this strategic effect. How-
ever, we also identify a strategic motive which may work in the opposite
direction: by selling a large number of contracts, a firm can effectively com-
mit itself to bidding low prices and thus ensuring that it will be despatched
with its full capacity. A significant result of our analysis, therefore, is that
options contracts may have strategic commitment value for gemerators in

the electricity spot market.?!

®Powell (1993) provides a discussion of the role of contracts in the British electricity
spot market based on the futures approach, using a Cournot mode! of generator interac-
tion. See also Helm and Powell (1992).

2 There is now a considerable theoretical literature on the cormmitment value of con-
tracts. See in particular Aghion and Bolton (1987) and Dewatripont (1988} for early
analyses; and Bensaid and Gary-Bobo (1991) and Green (1990) and the references cited
therein.
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By way of background, in the next scction we provide a brief overview
of the contractual structure of the England and Wales industry at the time
of privatization. In Section 3.3 we then present the formal model of price-
setting by the duopoly generators, which is subsequently analyzed in Sec-
tions 3.4, 3.5 and 3.6. Section 3.7 concludes. All proofs are relegated to an
appendix.

3.2 Contracts in the British Electricity Market

Option contracts, or 'contracts for differences’, are a fundamental feature
of the new electricity market in Britain. At privatization in 1991 both of
the major generators in England and Wales, National Power and PowerGen,
were endowed with a portfolio of contracts for differences with the regional
electricity companies within a pricing and contractual framework set down
by the government. National Power’s total generation capacity at privati-
zation was approximately 29,500 MW, and 84% (24,800 MW) was ‘covered’
by contracts for differences with regional electricity companies. ARl of these
contracts had expired by 31st March 1993, and most, if not all, have been
replaced with new contracts. The situation of PowerGen is similar. Of a
total capacity in January 1991 of 18,800 MW, PowerGen had contracts for
differences with regional distribution companies amounting to 86.5% (16,200
MW), 80% of which had expired by 31st March 1993. Again the majority
of these coutracts have been replaced.?? From these numbers it should be
clear that contracts for differences have played a very significant role in the
England and Walces electricity market.

Contracts for differences are written in a variety of forms. Countracts
may be ‘one-way’ or ‘two-way,’ specify single or multiple prices to apply to
different periods of the day, contain minimum or maximum take provisions,
and they may or may not be related to the actual availability of generat-

ing plant (i.e. ‘firm’ or ‘non firm’ contracts). In their most basic form all

¥ 8ee James Capel & Co. (1990) and Holmes and Plaskett (1991) for a more complete
description than is given here. Since the expiry of the initial ‘vesting’ contracts information
concerning the contractual Kabilities of the privatized electricity companies has not been
in the public domain.
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contracts specify a strike price and a (megawatt) quantity to which they
apply. Under a one-way contract, when the electricity spot (or pool) price
exceeds the specified strike price, then the holder of the contract receives a
‘difference payment’ equal to the difference between the strike price and the
pool price multiplied by the specified quantity. Under a two-way contract. a
negative difference payment is made whenever the pool price is less than the
contract strike price. In the England and Wales electricity market at priva-
tization, the vast majority of contracts for differences sold by the generators
to the regional electricity (distribution) companies were one-way contracts.
The important point however is that these contracts are not related to any
physical trade in electricity, and the market for contracts is not necessarily
limited to participants in the industry.

Trade in long-term comtracts of one to five years in duration has generally
occurred via auction or direct negotiation between the major gemerators,
electricity distribution companies and large consumers. There have also
been attcmpts to organize more liquid short tcrm markets, with only limited
success. to date. A market in short-term contracts with a duration of one
month - Electricity Forward Agreements (EFA’s) - was created in Britain in
1993, under which trade is carried out through a broker. However trade in
this market has never been brisk.

We analyse spot market competition between duopoly generators for
an cxtremely simple contractual form, and focus our attcntion on onc-way
contracts. In section 3.6 and Appendix A we discuss how our results are

modified when other types of contracts are considered.

3.3 The Model

We consider a model which abstracts from some of the more detailed fea-
tures of electricity contracts while still being able to shed some light on the
interaction between the market for contracts and the electricity spot market.
We focus on standardized ‘one-way option contracts’ of the following form:

a comtract is for one unit (e.g. a megawatt hour) and commits. the contract
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scller to pay any positive diffcrence between the pool price and the strike
price to the holder of the contract. We assume that the duopely generators
are net sellers of such contracts. We later extend the analysis to other forms
of contracts as well: in particular contracts which givé the generators the
right to claim any positive difference between the contract strike price and
the electricity pool price, and two-way, or fixed-price, contracts, which in
this set-up are identical to futures. The formal analysis is very similar for all
three forms of contracts, and since the first form was initially the mest coro-
mon in the England and Wales electricity market, we concentrate attention
on this, relegating the analysis of the other contract types to an appendix.

Qur analysis is limited to one ‘type’ of contract; that is, we asswme that
the contract strike price is given exogenously, and then consider how many
contracts the generators would Like to sell. Since our main interest is in the
interaction between the contract market and the electricity spot market,
such a limited scope seems natural. A complete analysis of the market for
‘contracts would require both a full specification of demand (by consumers
aud electricity distributiou companies), as well as allowiug for the preseuce
of multiple contract types. However, our model does allow us to evaluate
how different types of contracts affect the outcome of competition in the
spot market, and, thus, how this feeds back on the generators’ incentives to
. sell particular types of contracts.

Our model of competition in the clectricity spot market is based on the
approach developed in von der Fehr and Harbord (1993), but we make a
number of further simplifying assumptions here. Most importantly, whereas
in the more general model firms are allowed to submit step supply curves
(1. different bids for individual generating units), here they are constrained
to a single bid for the whole of their capacity, i.e. it is as if each firm owns
only a single unit. All of our major results gencralize straightforwardly to
the case where generators submit step supply functions so this assumption
is not restrictive.

The details of the model are as follows. We consider a two-stage duopoly
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game. In the first stage firms (generators) compete in the market for long-
term contracts, and in the second stage price competition in the spot mé.rket
takes place. We thus have:

Stage 1: The generators simultaneously decide how many contracts
to sell, where x; is the number of contracts sold by generator i,¢ =1,2.

Stage 2.1: Offer prices at which the generators are willing to supply
output, are submitted, where p; € (—~00,p| is the offer price of generator
1,4 = 1,2. The capacity of generator i is denoted k;,2 = 1,2. Wlog we
assume ky = k < lL,and kg =2 — k.

Stage 2.2: The generators are ranked according to their offer prices,
such that generator i is ranked before generator j if p; < pj. If p1 = pg, the
generators are ranked first with equal probability (= 1/2).

Stage 2.3: Demand, d, is realized. d is a random variable with
distribution function G(d), where supp G(-) = [2,4],0< a < &< 2.

Stage 2.4: The firms are despatched to match supply. Let i be the

" gencrator ranked first. If d < k;, only 1 supplics. If d > k;, 1 is despatched
with its total capacity while the generator ranked second produces d — k;.

Marginal costs are constant and equal for both firms, and are normalized
to zero.

A system marginal price, p°, is determined as the offer price of the
marginal operating generator. A generator ¢ which is despatched with quan-
tity u; € [0,k;), earns p® - y;. From this, payouts on its stock of long-term
contracts is subtracted: z; - maz{p® — q,0}, where ¢ is the contract strike
price. Throughout we assume g € {0,9), which seems reasonable given that
the system marginal price will never fall below 0 and, by assumption, is
bounded from above by B.

3.4 Spot Market Competition

In this section we analyse second-stage spot-market competition, after the
generators have already sold contracts in the amounts x; and z3, respec-
tively, at a given strike price g. We assume that the firms have equal capac-
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itics, i.c. k= 1. Our rcsults will depend importantly on the distribution of
demand. In particular, we distinguish hetween three cases:

Low-demand period: suppG(-) C [0,1], i.e. only the generator ranked
first will be producing;

High-demand period: suppG(-) C (1,2], i.e. both generators will be
producing; and

Variable-demand period: 5,52 € suppG(-), such that §; € [0,1]
and Sz € (1,2], i.e. there is positive probability for both the event that only
one generator produces and the event that both firms will be called into
operation.

In the following subsections we consider these cases separately. In the
first, which we call ‘low-demand periods’, competition to become the lowest
pricing firm is so fierce that the competitive outcome results irrespective of
whether or not. firms have entered into long-term contracts. In the second
case - ‘high-demand periods’ - contracts do matter, but only when firms
have sold sufficiently large numbers of them. Contracts reduce the incentive
of the generators. to submit. offer prices above the contract strike price, and
when the number of contracts is large enough, the pool price is equal to
the contract strike price rather than the highest admissible price . In the
third case, ‘variable-demand periods’, we again find that the eguilibrium
pool price is lower the larger the number of contracts the firms have sold
and the lower the contract strike price.

34.1 Low-demand periods

As can readily be estahlished, for the first two cases {low-demand and
high-demand periods), there is no loss of generality in confining attention to
degenerate distribution functions, i.e. we let d be non-stochastic (see von der
Febir and Harbord, 1992). Iu tlis sub-section, therefore, it is assumed that
demand is determinate and so low that only one firm will be despatched,
that is, Pr(d = d € (0,1)) = 1. Under this assumption, it turns out that the
competitive outcome prevails {(as in the standard Bertrand model} whether
or not the generators have entered into any contracts for differences. In
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particular, we may casily prove the following result:

Proposition 3.1 If d €[0,1], there is a unigue Nash equilibrium in
the second-stage game in which py = ps =0

Since total demand can be supplied by a single generator, the higher-
pricing firm receives no payments from the pool. Its profits will therefore be
negative if it has sold long-term contracts and the pool price is above the
contract strike price, and zero otherwise. In order to avoid this outcome,
there is strong competition to become the lower-pricing firm, and the end
result is that offer prices are brought down to marginal cost.

The competitive outcome result generalizes to any distribution function
G such that G(1) = 1, as well as to cases in which firms are asymmetric
(k < 1 and G(k) = 1). Furthermore, the argument does not depend on
the type of the contract, i.e. the value of ¢ (as long as ¢ € (0,7)), nor on
the quantity of coutracts bield by each firm. Indeed, the proposition could
easily be extended to a model which allowed for multiple contract types. We
conclude that in low-demand periods, when there is zero probability that
both firms will be operating, long-term comtracts have no effect upon the

outcome of spot-market competition.

342 High-demand periods

We turn now from low-demand periods ta the polar case in which both
generators are called into operation with probability one, in particular Pr(d =
d € (1,2]) = 1. By an argument similar to that of the previous section, it
can be straightforwardly demonstrated that there is no equilibrium in which
1 =p2 > 0. p1 = ps <0 cannot be an equilibrium either since then either
firm could secure positive profits by deviating and offering to supply at a
nonnegative price p; € (0,¢). Thus, any equilibrivin of the second-stage
game must involve firms charging different prices. Order firms such that
x3 < z3, i.e. generator 1 has a stock of contracts not exceeding that of
generator 2. Consider first the case where the number of contracts held by
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cach firm is small, in particular, 3 < d ~ 1. 'We then have the following
Nash equilibrium.

Proposition 3.2 Assume 1 < 2 < d— 1. Then a pure-strategy
Nash equilibrium of the second-stage spot-market-competition game has the

Jollowing form: p; =P and p; < b; for some b; <P 4,7 =1,2,71# j.

Remark: Asshould be clear from the argument in the preof, equilibria
where p; = P and p; < by continue to exist as long as z; <d — 1.

Since, by assumption, the residual demand facing the higher-pricing firm
exceeds its stock of long-term contracts, the higher-pricing firm’s profit is
increasing in its own offer price. Hence given that a firm is going to bid higher
than its competitor, it will choose the highest admissible offer price. Now,
since the higher-pricing firm supplies less to the pool than the lower-pricing
firm, undercutting the lower-pricing firms’ offer price will be profitable if the
gain from selling a larger volume exceeds the loss from a reduced price. In

| equilibrium, ﬁherefore, the lower-pricing firm must submit an offer pi'ice low
enough so that such deviations. are rendered unprofitable.

Note that although there exists a continuum of equilibria, in each of
them the system marginal price equals 7 since the higher-pricing firm is the
marginal operating firm with probability 1.22 We may conclude that when
long-term contracts cover a sufficiently small part of the generators’ respec-
tive (residual) output capacities, then there exist a multiplicity of equilibria,
but in each of them the systemn marginal price is equal to the macdmun ad-
missible price, and, therefore, the market price is unaffected by the presence
of long-term contracts.? Note that this conclusion is independent of the
type of contract and could be generalized so as to allow for multiple con-
tract types; only the quantity of contracts sold by the individual generators

matters.

3In the non-generic case where 23 = d — 1, there are additional equilibria, involving
P = p? < pand p; satisfying the constraints of Proposition 2 where p/ replaces 7 .

3 A more detailed exposition of the spot market equilibria without contracts is given in
von der Fehr and Harbord (1992).
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We consider next the case where both generators hold a large number of

contracts:

Proposition 3.3  Assume that 1 > ([d — 1[p— q) /[P — q] and =2 >
d — 1. Then any set of strategies {p1,pa}, with p1 < pa, constitute a Nash
equilibrium of the second-stage spot-markel-competition game if and only if
they have the following form: py < [d — 1l]q and p2 = ¢.

If a generator has contracted for a greater volume of cutput than the
residual demand it faces in the pool, its profit will be decreasing as the
system marginal price, or pool price, increases above the contract strike
price. In particular, because the higher-pricing firm determines the system
marginal price whenever its stock of contracts is sufficiently large, its profits
will be decreasing in its own offer price whenever that exceeds the contract
strike price. Since, by assumption, firm 2 has sold more contracts than its
residual demand, it follows that as the higher-pricing frm, it will never bid
a,bové the éontréct. strike pricé. (.)n. thé other hand, below tfm éontra.ct strike
price the higher-pricing firm’s profit is increasing in its own offer price. Thus,
any equilibrium where firm 2 bids above firm 1 must have firm 2 bidding
at the strike price. To ensure the existence of such an eguilibrium, two
conditions must be fulfilled. First, firm 1’s bid nmust be low cnough so that
undercutting by frm 2 is unprofitable. Second, firro 1 must not waat to
deviate by bidding above the offer price of firm 2. The latter is ensured by
the condition that firm 1’s stock of long-term contracts is sufficiently large.

Hence in this case we again find a multiplcity of eguilibria, each of which
now has firm 2 offering to supply at a price equal to the option strike price
and firm 1 offering a price less than or equal to [d — 1]¢. H 23 > d -1,
there are correspouding eyuilibria where firmu 1 is the higher priciug Gr
and bids ¢. In all of these equilibria the system marginal price is equal
to the contract strike price, so the existence of long-term contracts places
downward pressure on prices in this case. Moreover, the type of contracts

matters; the lower the contract strike price, the lower is the pool price.
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In general, when ([d ~ 1)~ ¢) /[P~ ¢) < z1 < d —~1 < x4, there are two
typeb of eguilibria corresponding to those of propositions 2 and 3, respec-
tively. If firm 1 is the higher pricing firm, system marginal price is equal to
the maximum admissible price § ; when firm two is the higher pricing firm
it is equal to the contract strike price.

Summing up the results of this and the preceding section, we may con-
clude the following. If either of the events {demand can be covered by one
firm} or {demand cannot be covered by one firm} occur with probability one,
then there exist pure-strategy equilibria with the following characteristics:
In low-demand periods (d < 1), price equals marginal costs. In "moder-
ately" high-demand periods (1 < d < 1+ x;,% = 1,2.), the systews warginal
price equals the long-term contract strike price, while in "very" high-demand
periods (d > 1+ z;,4 = 1,2.), the system marginal price equals the highest
admissible price. Thus only when both firms will be operating with prob-
ability 1 and the highest pricing firin operates at -very low capacity (less
than the quantity covered by its long-term contracts) will the existence of
coutracts put dewnward pressure on the spot warket price.

343 Variable-demand periods

Finally, to complete the analysis of spot-market equilibria, we turn to the
case where both the event that one firm will be operating and the event that
both firms will produce have positive probability. We start by showing that
when the distribution of contracts is sufficiently asymmetric, pure-strategy
equilibria exist. Define a(g) = [E(d|d > 1)—1] - {Pr(d < 1)E(d | d <
1) +Pr(d > 1)[2 - E(d | d > 1)]}¢g/{Pr{d > 1)[p ~g]}. Then we may prove:

Proposition 3.4  Assume 0 < Pr(d < 1) < 1. Thenif maz{z;,z2} <
E(d|d < 1) or min{z:,zs} > alg), no-pure strutegy Nash eguilibria of the
second-stage spot market competition game ezists. If z; > E(d|d < 1) and
z; < a(q), pi = q and p; =D constitute the only pure-strategy equilibrium
wheve p; < pj, 4,7 = 1,2,i # 7.

Proposition 3.4 may be explained intuitively as follows. If the lower-
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pricing firm bids below the contract strike price, options will not be cxer-
cised when only one firm is producing. It follows that the lower-pricing firm’s
profit is increasing in its own bid for all offer prices below the contract strike
price, and thus, in equilibrium, it never bids in this range. Furthermore, a
firm’s profit. is always increasing in its own offer price if it holds sufficiently
few contracts. Thus, a pure strategy equilibrium cannot exist in which the
lower-pricing firm holds few contracts since in that case it would always
want to increase its bid towards the offer price of the higher-pricing firm.
By a similar argument, it follows that the higher-pricing firm must hold few
contracts since otherwise it would always want to reduce its bid towards
that of the lower-pricing firm. If the lower-pricing firm holds sufficiently
many contracts and the higher-pricing firm sufficiently few, an equilibrium
exists in which the two firms bid at the contract strike price and the high-
est admissible price, respectively. Otherwise, no pure-strategy equilibrium
exists.

" For the range of paramecter valucs for which pure-strategy equilibria do
not exist, we cousider equilibria in mixed strategies. We do sa by analyzing
the specific example in which Pr(d = 1) = 7 and Pr(d =2) =1 -, ie.
there are only two events; either only the first-ranked firm is despatched
with its whole capacity, or both firms preduce at full capacity. (Note that.
in this example, pure-strategy equilibria cannot exist.) This assumption
greatly simplifics notation without reducing the generality of the analysis to
any significant degree.

W.l.o.g. let firm 2 be the firm with more long-term contracts, i.e. z3 >
z). Let Fi(p) represent the (cumulative) frequency with which firm i plays
offer prices p € (0,P],i = 1,2, i.e. Fi(p) = P.(p; < p}. Profits of firm i may

then be written:



#;(p) = w{[1~ F;(p)]lp -~ ;- max{p ~ ¢,0}] (3.1)
P
_ ] z; max{r — q, 0}dFj(r)}

(1]
+1 - PH{ F3(p}[p — =i - max{p — ¢,0}]

+ / "I — 2 - max{r — ¢, 0}|dF;(r)}

where 3,7 = 1,2,4 # j. Profits equal the sum of the expected payoff in

the events that only one firm and both firms will be called into operation,

respectively. When only one firm is despatched, firm i is paid from the pool

only when it has the lowest offer price, and then at its own bid. Similarly,

when both firms are called into operation, a firm is paid at its own bid

whenever it has the highest offer price, and at the competitor’s (expected)

bid otherwise. Iu éither event, and whether it praduces or pot, a firu will

have to honour its contracts whenever the system marginal price exceeds .
the contract strike price.

In the appendix we prove the following proposition:

Proposition 3.5  Assume Pr(d = 1) = m,Pr(d = 2) = 1 — m,
and x3 < w3 < 1. Then there erists o unique Nash equilibrium of the
second-stage spot-market-competition game in which firm i1 = 1,2, plays
prices p € [p™,P] according to the probability distribution F;{p). p™ > 0 and

Fi(p) = Fa(p) when p < ¢, while Fi(p) < Fa(p) for p>g.

In equilibrium, players strike a balance between two opposing effects. On
the one hand, high bid results in a high system marginal price, and payoff, in
the event that the firm becomes the marginal operating firm. On the other
hand, bidding high reduces the chance of becoming the lowest-pricing firm,
and thus being despatched with a large capacity, or indeed any capacity at
all. In equilibrium these two effects are balanced for all prices in the support
of the players’ strategies; an interval from a price strictly above marginal
cost up to the highest admissible price.
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On average, i.e. in cxpected terms, the firm with more long-term con-
tracts prices lower in the spot market. In particular, firms play prices below
the contract strike price with equal probability, while firm 1’s strategy first-
order stochastically dominates that of firm 2 for higher prices. The under-
lying intuition for this result is that the gain from a high system marginal
price is less the more contracts a firm has sold. At the margin, the effect on
profits from an increase in the pool price equals one times the net supply
to the podl, i.e. total output less the contracted quantity. Therefore, the
greater is the number of contracts the smaller is the incentive to bid high.

From the formulae for Fj(x), F3(x), and p™ (given in the appendix),
a wunber of eomparative static results can be derived. The lower bound
on the support of the mixed strategies, p™, is decreasing in the number of
long-term contracts held by the firm with fewer contracts and increasing in
the contract strike price. A higher contract strike price, ¢, also leads ta mare
frequent play of prices above the strike price and less frequent play of lower
prices. Furthermore, the larger the number of contracts held by the firm
with fewer contracts (firm 1), the more likely it is that firms play high offer
prices, while the opposite is the case for the firm with more contracts (firm
2). |

In general, it is difficult to derive explicit comparative static results for
the expected pool price. For the specific example 7 = 1/2, however, one
gets

Ty + 22

Ep=p{1-e 3} - 22

p—ql (3.2)

In this cxample therefore, the expected pool price is decreasing in the
number of contracts held by the firm with most contracts. The pool price
may increase or decrease in the number of contracts held by the firm with
fewer contracts depending on the parameters of the model. The pool price

18 increasing (decreasing) in the contract strike price if firms hold sufficiently

many (few) contracts.
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3.5 Competition for Contracts

As noted in section 3.3, a full analysis of the first-stage game in which the
generators compete in the market for long-term contracts, would require
modelling the demand for contracts by electricity consumers and distribution
companics as well as spelling out second-stage equilibria in the presence
of multiple types of contracts. Qur scope here is more limited; we want
to explore how spot-market competition affects firms’ incentives to sell a
particular type of contract. We do that by fixing the contract strike price and
considering how the generators’ second-stage profits vary with the number
of contracts sold. In order to abstract from other incentives to sell contracts
(e.g. extracting hedging premiums etc.) we make a fairly natural "arbitrage”
assumption: revenues from sales of contracts equal expected payouts. Such
an assumption is consistent with atomistic price-taking and risk neutral
buyers (we restrict attention to the case where neither of the generatorsis a
et buyer of options, i.e. x; > 0,i=1,2). While this simplification has the
merit of allowing us to focus exclusively on the incentive to sell contracts |
arising from how long-term contracts affect spot-market competition, it is
probably unrealistic as far as the England and Wales industry is concerned.
In particular, the 12 RECs in England and Wales are few and large enough to
make concentration on the buyer side an important issue. In the conclusion,
we comunent briefly on how the presence of strategic buyers may affect the.
viability of the market for long-term contracts.

As demonstrated in the previous section, the existence of long-<term con-
tracts does not affect spot market competition in low-demand periods when
supp G(d) C [0,1], i.e. when only one firm will be producing for sure, and
thus there arc no strategic incentives arising from the existence of contracts
in this case. In the rest of this section we concentrate ou the analytically
simpler (and empirically more interesting) case when demand is greater than
the capacity of any individual firm, i.e. supp G(d) C (1,2].

As shown in section 3.4, when supp G(d) C (1,2], there is a multiplicity '
of equilibria in most cases. In particular, there exist sets of equilibria in
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which either onc of the generators is the higher-pricing firm, determining
the system marginal price. We deal with this multiplicity problem in the
following way: We assume that one or the other pure-strategy equilibria
will be played in the second stage game. Since the generators are symmetric
ex ante, i.e. prior to the contracting stage, it seems reasonable to assume
that they have equal probability of playing the roles of high-pricing and
low-pricing firm, respectively, and thus calculate (expected) payoffs as the
mean of profite in the two casen. It turns out that our results are robust
to any alternative formulation in which (expected) payoffs are calculated
as some weighted average of profits in the two types of equilibria. Thus, if
one is willing to believe that ane or the other of these eguilibrium outcomes
is a reasonable prediction for second-stage spot-market competition, this
approach would seem to have some merit.

Throughout the rest of this gection, wl.og. we assume that d i3 determi-
nate (generalizing to the stochastic case would basically involve substituting
Ed for d in the formulae below). Then, when p; < p; = B, profits, disre-
gardiug auy reveuues from selling coutracts, are giveu by

¢ =[1 ~ 2P + zig, (3.3)
¢; =d—1-zj]p+a5q, (3.4)
while when p; < pj = ¢,
% =4q, (3.5)
$;=[d~1]g. (3.6)

Thus, from propositions 3.2 and 3.3 one gets;

7,72 <d—1:E¢;, = [%d— z;]p + ziq,i = 1,2, and (3.7



Ty, 22 >d~1:E¢; = %dq,z’z 1,2.

The case when z; < d — 1 < z; presents specific problems. As noted in
the discussion in section 3.4, when z; < {[{d — 1]5 — ¢} /[P — ¢| there are ouly
equilibria where i is the higher pricing firm and the system marginal price
equals p. Thus, in this case we get:

¢; =[d~1-z[p+zig, (3.8)

$; =1 —~z;[p+z;9 (3.9)

When d—1 > z; > {[d—-1]p—q}/[F—g], there are two types of equilibria,
one in which firm i prices higher at 7 , and one in which j is the higher
pricing firm and offers to supply at a price equal to g. In this case also, wo
assumc that payoffs are given by the mean of the profits in the two different
equilibria:

E¢, = %[d —1-zp+ %[1 + zilq, and (3.10)
1 _ 1
E¢; =31 —zp+ 5ld -1 +z5lq. (3.11)

Define d(g) = {|d — 1]p — ¢}/[P — ¢]. Then the following payoff matrix,
showing profits including proceeds from sales of contracts, summarizes the
discussion above (given that d{g) > 0. If d(g) < 0, the first row and the first
column do not apply.) In cells with two entries, the upper is the expected
payoff to firm 1 and the lower the expected payoff to firm 2. In cells with
one entry, this gives the payoff to firm 2,7 = 1,2:



T € [07 d(Q)) T € [d(4)7d — 1] T € (d —_ 171]
x2 € [0,d(q)) P 4P ?; d —1-[1]1—9
zg € [d(g),d — 1] 3dp 34D id -1p+ iq
— id—1p+ 3¢q
€(d-1,1 d-1)p,p 2 1d
z3 € ( ] [ 17, » %P-l— %[d—l}q 2%4

It is clear that we cannot have equilibria in which both generators have
sold contracts in excess of the residual demand facing the higher-pricing firm,
ie. z1,zz > d— 1. If both generators sell that many contracts, the spot
market price will be held at the contract strike price. But then a gencrator
can benefit frormn unilaterally reducing its sales of contracts since this would
lead to a higher spot market price (equal to the highest admissible price) in
the event that this generator is the higher-pricing firm.

Assume d(g) <0, or g > [d — 1]5. In this case the first column and first.
-row do not apply. From the discussion above, it then follows that there can
only cxist equilibria in which both generators hold few contracts. In fact,
there is a continuum of such equilibria in which z3,22 € {0,d — 1]. In all of
these, contracts are sufficiently few not to influence the spot market price,
which equals 7 whichever generator is the higher-pricing firm.

When d{q) > 0, and ¢ < [d — 1], matters are different. In this case also,
there exists a continuum of equilibria in which contracts are few enough not
to affect spot market prices, in particular,z;,z2 € [d(q),d — 1]. However,
there also exist equilibria in which generators hold asymumetric coutract
positions, i.e. z; € [0,d(q)) and z; € (d — 1,1},i # 4,4, = 1,2. In these
equilibria, the generator with fewer contracts, i, always acts as the higher-
pricing firm, pricing at 7, and earns s smaller payoff than generator j since
% is despatched with lower output. Generator i cannot increase its profits
by selling more contracts; although this would lead to generator i acting as
the. lower-pricing firm more often, the spot-market price would fall to the
contract strike price. Since g < [d — 1]p, the loss from lower spot prices will
not be outweighed by bigher output. Note that, because of this strategic
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effect, when ¢ < [d — 1]p there are no equilibria in which both generators
bold very few comtracts, or z; < d{g),1 = 1,2; then a generator would waxnt
to deviate to a large contract position to obtain the gains from committing
to become the lower-pricing firm.

We may summarize the abave discussion as follows: Since long-term con-
tracts, if held in large enough quantities, place downward pressure on spot
market prices, there is a strong disincentive to sell such contracts. How-
ever, selling a sufficiently large number of long-term contracts can serve as
a commitment to becoming the lower-pricing firm in the second-stage price-
competition game, and thus earning higher profits. Such a commitment is
only credible for contracts with strike prices that are low enough, because
given that one generator has sold many contracts of this type, its competitor
will wish to sell few, and hence accept becoming the higher-pricing firm, in
arder not to depress the spot-market price by a large amount.

There is now a large literature on the commitment value of contracts
with third parties (cf. Dewatripont 1988, Green 1390 and Bensaid and
Gary-Bobo 1991 aud the refereuces cited therein). Most of tlis Lterature
has been concerned with the issue of renegotiation, and whether or not
contracts can serve as commitment devices when they may be (costlessly)
renegotiated at various stages during the play of the game. In our model
of the electricity spot market however, in which contracts with third parties
can serve as commitment devices, this issuc docs not arise. This is because,
in the first place, the second-stage price competition game is one of simulta-
neous moves, and hence no opportunity for renegotiating contracts occurs.
And secondly, it is not clear that even if such an opportunity did exist, it
would have any effect. Because the contract purchasers (the electricity dis-
tribution companies) are also purchasers of electricity from the pool, and
hold difference contracts to hedge against the risk of high pool prices, under
most circumstances they would be unwilling to renegotiate their contracts.
if this simply had the effect of permitting pool prices to be bid up by one of
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the generators (the relevant case) 2°. A distribution company which has full
contract coverage will be indifferent between all pool prices higher than the
contract strike price, and hence will never have any incentive to renegotiate;
and a distribution company which is undercovered will strictly prefer not to
renegotiate.

Hence only in the case of a contract purchaser who has purchased more
contracts than needed for purely hedging purposes, and who would therefore
obtain a net profit from higher pool prices, is there any scope for renegoti-
ation to occur. This case however, is an empirically unimportant one, and
as such not of particular interest. We conclude that in the empirically im-
portant cases, the ‘strategic commitment’ equilibria of the two-stage game
are probably immune to renegotiation. This means that the electricity spot
market is ono example of a market in which contracts with (interested) third
parties would appear to have strategic commitment value, despite the gener-
ally negative tenor of the conclusions arrived at in the thearetical literature.
As such, it is of particular interest.

One of the simplifying assumptions we have made in the above analysis,
is to restrict the firms to a single opportunity to trade in long-term contracts
before the spot market opens. However it has been argued elsewhere that
oligopalists may want to revise their contract positions if trade is permitted
to occur more than once. Allaz and Vila (1986) show in a model in which
Cournot oligopolists trade in futures that the accumulated futures positions
will increase over time and the perfectly competitive outcome sometimes

attained. In our model there is no such tendency. Indeed, the only strategic

25Renegotiation would have to occur after the generator which has sold no contracts
has (publicly) submitted a {(low) price offer, but before the other generator has made a
bid. A contract holder not simultaneously in the market for electricity, would expect to
receive no difference payments in this case (since the generator with a large number of
contracts would also bid low), and hence would be willing to renegotiate his comtract(s)
in order to permit that generator to make a higher bid. This would be Pareto improving
for both the contract-selling generator and the contract holder, and hence contracts would
serve as ineffectual commitment devices. As the text argues however, this is not the ease
when the contract holder is also a purchaser of electricity in the spot market. Bensaid
and Gary-Bobo (1991) contains a lucid discussion of the renegotiation issue in a context
not too dissimilar to the one considered here. See also Green (1990).



cffect we find tends to induce firms to sell a large volume of contracts early.
However as soon as one firm has acquired the dominant positiom, its com-
petitor, for strategic reasons, will wish to reduce its own volume of contracts

by as much as possible.

3.6 Other Forms of Contracts

In the preceding sections we have considered comtracts which hedge pur-
chasers against unexpectedly high pool prices, and we have assumed through-
out that the generators were net sellers of such contracts. It is straightfor-
ward to generalize our analysis to other forms of contracts, and in Appendix
A we show how spot market outcomes will be affected by the presence of
such contracts. In this section we give a brief overview of the results derived
in Appendix A.

In principle generators. can buy contracts to hedge against unexpectedly
low pool prices. Such contracts for differences would, in this setting, be
equivalent to European put options, and give the holder a right to claim the
difference between the strike price and the pool price whenever the former
exceeds the latter. As we demonstrate, this increases firms’ incentives to bid
low, since part of the negative effect on payoffs from low bids will be offset
by contracts. It twrns out that, as with European call option comtracts,
in most cases the offer prices, and thus, the system marginal price, are
unaffected by the mumber of contracts held. However, if the generators hold
sufficiently many contracts, equilibrium outcomes may be altered. In low-
demand periods, the increased incentive to bid low may make undercutting
profitable even when prices are below marginal cost (if net supply to the
pool, i.e. output net of the contracted quantity, is negative), and thus
render pure-strategy equilibria non-existent. In high-demand periods (and,
indeed, variable-demand periods), fiercer price competition may make the
competitive (Bertrand-type) outcome au equilibrimun. We thus couclude
that this form of contract, if anything, tends to put a downward pressure

on bids, and hence on pool prices.



Even though the general conclusion is the same for the two types of
one-way contracts, equilibria do differ depending on what sort of contracts
generators have sold or bought. This is because there is a basic difference
in incentives in the two cases. When generators sell contracts which involve
the payout of differences in periods when the pool price exceeds the contract
strike price, their incentive to increase bids in the range above the strike
price is reduced. As we have seen, this effect tends to make equilibrium
outcomes. where the pool price is very high, more unlikely. Om the other
hand, if generators have hedged against low pool prices by buying eall-
option contracts, it is the incentive to bid in the range below the strike price
which is affected; in particular, firms tend to become more competitive when
bidding low. As a result, the competitive outcome where the pool price
equals marginal cost, is more likely.

When we consider two-way contracts, which in this context. are equiva-
lent to futures, both effects are present at the same time, and hence firms

“incentive to reducc their bids is incrcased over the whole range of admis-
sible offer prices. In other words, since with two-way contracts. generators
will be hedged against the downward risk of low prices (as with put-option
contracts) and will have to pay out differences whenever the pool price rises
above the contract strike price (as with call-option contracts), the incentive
to bid low is even stronger in this case than in any of the corresponding
one-way contract cascs. The result is that the compctitive ocutcome is more
likely, even in high-demand periods, and generally offer prices are below
what they would otherwise have been had firms signed no contracts at all.

3.7 Concluding Remarks

Our analysis has identified a number of important effects that the exis-
tence of long-term options contracts may have on the British electricity
spot market. In particular we have shown that there are critical quantities
of contracts that must be held by the generators for contracts to have any

effect on electricity spot prices. In most cases, when contracts are held in



large enough quantitics, the effect is to reduce spot prices to the comtract
strike prices. However in the variable-demand case, with contracts held in
sufficiently asymmetric quantities, the effect was the opposite. Our broad
conclusion is that when contracts exert any influence at all upon bidding
strategies, it is to keep spot prices lower than they would otherwise be. In-
terestingly, this finding is consistent with the evidence presented in Helm
and Powell {1992) suggesting a marked increase in pool prices during the
spring of 1991 when a proportion of the initial portiolio of contracts expired
(see section 3.2).

In addition, in considering the two-stage game (section 3.5) in which the
generators first choose the gquantity of contracts to sell, and then compete in
the spot market, we have found that for at least certain parameter values,
there is a strategic incentive to sell a large quantity of contracts to commit
to a low-pricing strategy in the second-stage game. Thus contracts may have
commitment value, and hence be profitable, even if sold for a low price. This
conclusion relates our analysis to a growing literaturc on the ‘commitment
value of contracts. with third parties’. The asymmetric equilibria which we
have identified for the two-stage game, in which only one firm sells (a large
quantity of) contracts in the first stage in order to become the low pricing
firm in the second stage, are clearly examples of such a commitment effect
in operation. While it is not possible to say anything in the abstract about
the Iikelihood of observing such strategic commitment effects in practice in
the electricity spot market, {in particular because the generators’ contract
portfolios are not public information), this would nevertheless appear to
be the first positive example of a market in which strategic commitments
{via contracts with third parties) may have an influence on the outcome of
competition. As such it is of particular interest.

We find that the strategic incentive for sclling contracts, viz. a commit-
ment to offer prices below the contract strike price, exists only for contracts
with low strike prices. This result may be related to the discussion of whether
a viable market for contracts may survive the expiry of the transitional con-
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tracts arrangements in March 1993 (see e.z. Helm and Powell (1992) and
Powell (1993)). While our model is obvicusly too simplified and abstract
to provide a satisfactory answer to this guestion, it does at least identify
some effects which may be of importance. In particular there appear to be
strong disincentives for generators to sell long-term contracts, and hence we.
would not expect to see both generators holding large contract portfolios.
Contracts place downward pressure on spot-market prices, a pressure which
is stronger the lower are strike prices and the larger the number of contracts
held. On the other hand, there may exist a strategic incentive for selling
contracts with low strike prices, which would lead to generators to hold very
asymmetric. quantities of low-strike-price contracts.

In addition to the effects identified by our formal analysis, there are a
number of other features which will be of importance in determining how
the market for long-term contracts will evolve in the future. If electricity
buyers are willing to pay risk premia in order to hedge against the volatility
of spot prices, this will of course make generators more willing to sell con-
tracts. One the other hand, problems of developing adequate standardized
contracts, may lead to levels of transactions cost which prevent the opening
of markets for many types of contracts (relating to coverage, time of day,
season etc.) because they become too "thin". Furthermore, the fact that
long-term contracts, if the generators have sold sufficiently many, may lead
to lower spot-market prices, suggests that clectricity buyers may be willing
to pay a premium on contracts in order to reduce the cost of purchases in
the spot market. Although this effect could lead to a more viable market
for long-term contracts, it should be noted that there is a strong externality
at. play; purchasers of electricity would like others to buy, and thus pay the
premium on, contracts?®. All in all it seems doubtful that whether the fact
that there is concentration on the buyers’ side will overcome any disincentive

for generators to sell contracts.

*$This point has been made by Powell (1993).

67



References

[1} Aghion, P. and Bolton, P. (1987) "Contracts as a barrier to entry," Amer-
ican Econemic Review, Vol. 77, pp. 488-501.

[2] Allaz, B. (1990) "Duopoly, inventories and futures markets," in L. Phlips
ed., Commodity, Futures, and Financial Markets, Kluwcr, Dordrecht.

[3] Allaz, B. and Vila, J.L. (1986) "Futures markets improve competition,"
Working Paper, Princeton University.

[4] Anderson, R.-W. (1990) "Futures trading for imperfeet eash markets: a
survey," in L. Phlips ed., Commodity, Futures, and Financial Markets,
Kluwer, Dordrecht.

[5] Bensaid, B. and Gary-Bobo, R. (1991) "On the commitment value of
contracts under renegotiation constraints,” mimeo, CORE.

[6] Dewatripont, M. (1988) "Commitment through renegogiation-proof con-
tracts with third parties," Review of Economic Studies, Vol. 53, pp. 377-
390.

[7] Eldor, R. and Zilcha, 1. (1990) "Oligopoly, uncertain demand, and for-
ward markets," Journal of Economic Business, Vol. 42, pp. 17-26.

[8] Fehr, N-H vor der and Harbord, D. (1992) "Spot market competition in
the UK electricity industry," University of Oslo Department of Economics

Memorandum No. 9.

[9] Fehr, N-H von der and Harbord, D. (1993) “Spot market competition in
the UK electricity industry,” Economic Journal, Vol. 103, pp. 531-546.

[10] Green, J. (1990) "Strategic use of contracts with third parties," Harvard
Institute of Economic Rescarch, Discussion Paper no. 1502.

{11] Green, R. and Newbery, D. (1992) "Competition in the British electric-
ity spot market," Journal of Political Economy, Vol. 100, pp. 928-53.

68



(12] Helm, D. and Powell, A. (1992) “Pool prices, contracts and regulation
in the British electricity supply industry,” Fiscal Studies, Vol. 13, pp.
89-105.

[13] Holmes, A. and Plaskett, L. (1991) "The new British electricity sys-
tem," Power in Europe (special issue), Financial Times Business Infor-

mation Service.

[14] James Capel & Co. (1990) The Electricity Industry in England and
Wales, London.

[15] Powell, A. (1993) "Trading forward in an imperfect market: the case of
electricity in Britain," Economic Journal, Vol. 103, pp. 444-453.

69



3.8 Appendix A: Other Forms of Contracts

In this appendix we extend the analysis of this paper to other forms of
contracts. We begin by considering the case in which the generators hedge by
purchasing one-way contracts which give payouts to the generators whenever
the pool price falls below a specified strike price. 'We then consider two-
way contracts, where, in effect, generators have sold part of their capacity
forward.

A.1. One Way Put Option Contracts

In this section we consider spot-market equilibria for the case where the
generators have bought contracts which give them the right to sell electricity
at a specified strike price. This type of contract is formally equivalent to a
European put option. The profit of a generator who has bought z; contracts.
at a strike price v and supplies y; units of electricity to the pool at the pool

price p®, is (net of any lump-sum payments to the sellers of contracts):

& = yi+ 2 - maz{v — p°,0},i=1,2. (A.1)

We assume throughout that generators arc net buyers of contracts but do
not buy more contracts than their output capacity, i.e. z; € [0, k], =1,2.
We also limit attention to cases where v € (0,P). As in the previous sections
we assume k; = ky = 1, and we distinguish between low-demand, high-
demand, and variable-demand periods.

Put-option contracts make firms less reluctant to bid low since the down-
ward risk is partly covered, i.e. a minimum price is secured on part of the
output capacity. As we show below, the result is that if equilibrivm bids
differ from those that would prevail in the case when firms purchase no con-
tracts at all, thcy will be lower when firms hold these types of contracts.
In some cases, when firms have purchased a large number of contracts, the
reduced incentive to bid high which tends to make undercutting the rival
attractive, may lead to non-existence of pure-strategy equilibria.

A. Law-Demand Periads

In low-demand periods only one firm will be producing. W.lo.g. we
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assume demand to be non-stochastic. Wec can then prove the following
proposition:

Proposition A.3.1 Assume d € [0,1]. If maz{z1,22} < d, then

there exists a unique pure-strategy equilibrium of the second-stage spot-rnarket
game where py = py = 0. If max{z,z} > d, no pure strategy-equilibrium
eTists.
Proof. Payoffs are given by ®; = p;d + 2 - maz{v — p;,0} and ®; =
z; - mazf{v — p;, 0} if p; < pj, and @; = Ipid+ z; X maz{v—p;,0},i = 1,2, if
p1 = pa. Consider first the case where p; < p;. Note that when p; < v and
firm ; is a net supplier to (buyer from) the pool, i.e. d—z; > 0, (d — 2z; < 0),
its payoff is increasing (decreasing) in its own offer price. When p; > v, firm
i’s payoff is always increasing in p;. It follows that p; < p; can never be an
equilibrium. If p; = po, deviating to a slightly lower (higher) price is always
profitable as long as prices are above (below) marginal cost. Thus there
cannot exist equilibria where p; = ps # 0. The proposition then follows
by observing that when p; = pg = 0, neither firm will benefit by deviating
to a higher price, while the gain to firm 7 from deviating to a price p < 0,
pld — 2], is positive if and only if d — 2, < 0. =

Remark: In the non-generic case where z; = d(z2 = d), all strategy
combinations such that 0 = p; < pa(0 = py < p1) are equilibria.

As discussed above, put-option contracts strengthen firms’ incentive to
reducc their spot-market bids. Therefore it is no surprise that in low-demand
periods, the perfectly competitive cutcome can still be an equilibrium even
when firms hold such contracts. When the volume of such contracts becomes
sufficiently large however, the incentive to reduce offer prices leads to the
non-existence of pure-strategy equilibria. Qbserve that firms’ equilibrium
profits (when such exist) are increasing in both the strike price and the
number of contracts held (®; = zw,i = 1,2). As we have seen however,
there is no strategic incentive to buy put-option contracts in low-demand
periods.

B. High-Demand Periods

71



We continue to assume d to be non-stochastic, but now let df(1,2], i.e.
both firms will be producing for sure. Order firms such that py < py. Then
we have:

Proposition A.3.2 Assume 1 < d < 2. Then, generically, all

second-stage spot-market equilibrium strategy combinations {py,ps} such that
p1 < pg, must satisfy po =P and py < by, where by =p[d—1] if pld—1] > v
and by = {Pld — 1] — zpv}/[1 — 22] otherwise.
Proof. If p; < py, payoffs are given by ®; = py + 23 - max{v — p,0} and
Dy = pa[d -1} + 22 -max{v — p2,0}. The payoff to firm 2 is always increasing
in its own offer price when py exceeds v. Furthermore, when py < v, firm 2’s
payofl is non-decreasing (decreasing) in ps when d—1—29 > 0(< 0). It follows
that an equilibrium candidate must have p2 = $ . The proposition then
follows by observing that if, and only if, the conditions on p; are satisfied,
firm 2 does not want to deviate by undercutting frm 1. =

In these equilibria, firms’ profits are unaffected by the existence of long-
term contracts; indced, options are ncver exercised. However when firms
have purchased large quantities of such contracts there may exist other equi-
libria in which firms offer to supply at the same price. In particulaz:

Proposition A.3.3 Assume 1 < d < 2. Then, there never exists
equilibria of the second-stage spot-market game where p; = pp £ 0.pr = pz =
0 is an equilibrium if and only if min{z1, 2z} > [p/v][d —1].
Proof. Assume p; = pz. The gain to firm ¢ from undercutting firm j by an
arbitrarily small amount is given by p;[1 — %d] which is positive if p; > 0.
On the other hand, if firm ¢ deviates by raising its price slightly above p;,
its gain, p;[3d — 1], is positive if p; < 0. It follows that there cannot exist
equilibria where p; = pz # 0. When p1 = pz = 0, firm ¢ gains p;{d — 1 — zj]
if it deviates to a price p; < v,and p;[d — 1] — z;v if it deviates to a price
p; > v. Then deviation is unprofitable if and only if the condition in the
proposition is fulfilled. m

Competitive equilibria do not exist in high-demand periods unless firms

have sold many contracts. In the competitive equilibrium, profits are given
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by ®; = z;v,i = 1,2. In the asymmetric cquilibria, profits are ®; = P and
@, = p|d — 1], respectively. When the competitive equilibrium exists, this
gives higher payoffs to firm 2 than it would get as the higher-pricing firm
in an asymmetric equilibrium. By invoking a forward-induction argument,
we may then rule out asymmetric equilibria where p; < b; and p; = B
when z; > d — 1 (by selling a large amount of contracts, a firm signals
that it does not expect the asymmetric equilibrium with itself as the higher
pricing firm to be played). This leaves us with a unique eguilibrium when
min{z1,22} > [p/v}{d — 1], When this condition is not satisfied, we have
two types of equilibria, in which firms 1 and 2 are the higher-pricing firm,
alternately. We counclude that in high-demand periods put-option coutracts
will lead to lower bids if firms have signed large numbers of such contracts.

C. Variable-Demand Periods

We turn now ta the case when hoth the event that only a single firm
will be despatched and the event that both firms will be producing oceur
with positive probabilities, i.e. 0 < Pr{d < 1} < 1. In this case we have the
following result:

Proposition A.3.4  Assume [p/v][E(d|ld > 1) — 1] < 2; < E(d|ld <
1), =1,2. Then there exist a unique pure-sirategy equilibrium of the second-
stage spot-market game in which py = pp = 0.

Proof. W.lo.g. assume p; < pa. Then, if p; < pa, payoffs are given by:

& = Prd<D{pE(dd<1)+z -maz{v—p1,0}} (A2)
+Pr{d > 1I)}{p2+ 21 - maz{v — pa,0}}

®; = Pr(d<1)xz- maz{v~—p,0} (A3)
+Pr{d > D{m[E(d|d > 1) — 1] + 23 - maz{v — pa,0}}

while if p; = ps, payoffs are:
& = Prid<1)-pi pE(dd<) (A.4)

+Pr(d > 1)-p;- %E’(d[d‘> 1)+ 2z - maz{v —p;,0},i=1,2
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Note that if p; > v, firm 4’s profits are always increasing in its own offer
price. Furthermore, if E(d|d < 1) — 2; > 0(< ), profits of the lower-pricing
firm are increasing (decreasing) in its own offer price. Thus, there cannot
exist equilibria in which p1 < p2. The proposition then follows by observing
that deviation from m = pg # 0 is always profitable, while deviation from
p1 = pz =0is unproﬁtablé if and only if the conditions on the z;’s are
satisfied. ®

We conclude that in variable-demand periods, the competitive eguilib-
rium may prevail only if irms have purchased put-option contracts. How-
ever, if the quantities of contracts held are sufficiently large, no pure-strategy
equilibrium will exist. We do not characterize mixed-strategy equilibria for
this model, but, as in the call-option contracts model, it can be shown that
in such equilibria bids will on average be lower the larger are the quantities
of contracts held by firms.

A.2. Two Way Contracts

In this section we turn to the case when firms have cntered into two-
way contracts, giving both a right and an obligation to sell electricity at a
specified strike price. Two-way contracts are formally equivalent to futures
in this setting. The profit to a firm who has sold i; contracts at a strike
price w and is despatched with y; units of cutput. is

Thus two-way contracts effectively reduce output-capacity of a firm as
far as competition in the spot-market is concerned. The incentive to bid
high is now reduced for two reasons; the downward risk from low prices
is partly covered because some of the capacity is sold at a pre-determined
price. Furthermore, if the éystem marginal price exceeds the contract strike
price, generators have to pay out differences on their contracts. Thus we
expect offer prices ta be even lower in this than in either of the models
where firms enter into one-way contracts. As in the other models, we assume
we [0,p],% € [0,k],i=1,2,and ky = kg = 1.

A. Low-Demand Periods
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In low-dcmand periods we get the samce result as in the casc of one-
way put-option contracts; the competitive outcome. is the only equilibrium
candidate, however, because of the stronger incentive to reduce bids, this
will only be an equilibrium if firms have entered into limited numbers of
contracts. By an analogous proof to that of Proposition 3.5, one can prove
the following result:

Proposition A.3.5 Assume d € [0,1]. If max{t;,t2} < d, then
there exists a unique pure-strategy equilibrium of the second-stage spat-market
game where p1 = p2 = 0. If maz{t1,t2} > d, no pure-strategy equilibrium
eTists.

B. High-Demand Perioda

In high-demand periods, when both firms will be producing, the results
resemble those for one-way call-option contracts in that the asymmetric
equilibria in which one firm bids at the highest admissible price can only
exist when firms hold few contracts. In contrast to that model however, here
having system marginal price cqual to the contract strike price can never be
an equilibrium outcome. Instead, the stronger incentive to undercut caused
by the put-option part of the two-way contracts, makes the competifive
equilibrium prevail if firms hold large enough gquantities of such contracts.

Order firms such that p; < py. We may summarize (without proof) the
above discussion in two propositions:

Proposition A.3.6 Assume 1 < d < 2. Thenif min{t;, t2} <d-1,
all pure-strategy second-stage spot-market equilibrium combinations {p;, p;j}
must satisfy p; < b; and p; =P , where b; =pld — 1 —t;]/[1 — ¢;].

Remark: If t; < d — 1 < t;, there continues to exist equilibria where
2 =P ,and p; < b;.

Proposition A.3.7  Assume 1 < d < 2. Then if min{t;,t2} >
¢ — 1, there exists a unique pure-sitrategy equilibrium of the second-stage
spat-market game where p; = pg = Q.

C. Variable-Demand Periods

As in the model of put-option contracts, in variable-demand periods, i.e.
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0 < Pr{d < 1) <,1 a pure-strategy equilibrium may only exist if firms have
signed contracts. In particular, if the amounts of contracts are not excessive,
the competitive equilibrium exists and is unique:

Proposition A.3.8 IFEA|d21)-1<4u <Ed|d<1)i=
1,2, there exists a unique pure-strategy equilibrium of the second-stage spot-
market game where py = po = 0. Otherwise, no pure-strategy equilibrium

exists.
3.9 Appendix B: Proofs

Proof of Proposition 3.1: W.lo.g. let p3 < p2. Then if py < pg, profits
are given by ®; = pyd — z3 - maz{p — ¢,0} and ®3 = —z3 - maz{p — ¢,0},
while if py = ps2, profits are ®; = %p,-d —z; - maz{p; — ¢,0}. Existence of
7 = p2 = 0 as an equilibrium is straightforward. To prove unigucness,
we first observe that p; < 0 cannot be part of an equilibrium since non-
negative profits can be secured by offering to supply at a price equal to
marginal cost, i.e. zero. Furthermore, there is no equilibrium in which both
generators submit positive offer prices, since if p; > 0, firm 2 can obtain an
increase in profits by undercutting firm 1 by some arbitrarily small amount.
Lastly, therc cannot exist an equilibrium with p3 = 0 and p2 > 0 cither,
since generator 1’s profit is strictly increasing in p; on [0,¢). QED.

Proof of Proposition 3.2: Without loss of generality let p; < pa.
Then if p; < py profits are given by ®; = p» — z; - maz{py — ¢,0} and
&y = pyld — 1] — z2 - maz{ps — ¢, 0}, while if p; = py profits are ®; = %p,:d -
z;-maz{p; —q,0},7 = 1,2. Note first that p; = py cannot be an equilibrium
since deviating to a slightly lower (higher) price is always profitable as long
as pr =p2 > (< 0). If p2 > p1, firm 2’s profit is increasing in p2 on (p1, 7],
thus p; = p. For ps = 7 to be part of an equilibrium, firm 2’s payoff from
undcrcutting firm 1’s offer price must not be greater than its cquilibrium
profits, i.e. if p; = by, then pld — 1 — z4] + gzo > by — x3 - maz{b; — ¢,0}. It
follows that either b; = p{[d—1—z3]+z2q < ¢, or ¢ < by = p[d—1—a3]/[1—z2)].
QED.
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Proof of Proposition 3.3: Let py < pg. Sincc z3 > d-- 1 > 0, firm 2’s
profit is strictly decreasing in its own offer price on (maz{ps,q},p]. By an
argument similar to that given in the proof of proposition 3.2, pz = p; cannot
be an equilibrium, thus p; < g, and since firm 2’s profit is increasing on
[0,¢],p2 = ¢- Again by a similar argument to that in the proof of proposition
3.2, p1 < [d — 1]g in order to make it unprofitable for firm 2 to undercut
firm 1. Lastly, when the condition on z; is fulfilled, firm 1 will not deviate
to a price greater than g since ¢ > [d — 1 — z3]p + x14, where the former is
1’s equilibrium profits and the latter the maximum obtainable payoff from
deviation. QED.

Proof of Proposition 8.4: Wlog. let p3 < pp. Then if p3 < po,
profits are given by:

E®; = Pr(d<1){E(dld < 1)pr — 21 -maz{p1 —¢,0}} (B.1)
+Pr(d > Y){p2 — z1-maz{p: —q,01},

E®; = —Pr(d< 1)z -maz{p;m —q,0} (B.2)
+Pr(d > DY(E(dd> 1) - Tps — o2 - maztpz - .03},

v

while if p; = po,

E®; = Pr(d < 1){%5‘(4{4 < Vp; — z; - maz{p; — q,0}} (B.3)

+Pr(d > 1){1/2[E(d|d > 1)]pi — z; - maz{p; — ¢,0}},i =1,2.

It is straightforward to show that p; = pp cannot coustitute an equi-
librium since if p; = pg > 0(< 0), a deviation to a lower (higher) price is
always profitable. Then if p; < pg, firm 1’s expected profit is increasing
on (—oo,min{g,pz2}). It follows that we cannot have pi,p2 < ¢ in equi-
librium. Furthermore, if z; < E(d | d < 1), firm 1’s expected profit is
iﬁcreasing on [g,p2) also, and no pure-strategy equilibrium can exist. As-

sume then that z; > E{(d|d < 1), in which case we must have p; = g. Now,
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if zg > E(d|d > 1) - 1, firm 2’s profit is decreasing on (g, p|, and thus equi-
Librium cannot exist. If, on the other hand, 22 < E(d|d > 1) — 1, we must
have po = P . To prove the existence of {¢,p} as an equilibrium, we must
check that firm 2 would not want to deviate by undercutting firm 1. The
condition that x5 < a{g){< E(d|d > 1) — 1) ensures this. QED.

Proof of Proposition 3.5: We treat the two cases p < ¢ and p > ¢ sep-
arately. Noting that for all p € supF;(x), ¢;(p) = constant, differentiating
¢;{p) and solving yields:

FE-5250 -1 uhen p<g -
Fi(p) - [1—2;]522 88 = 222 yhen p>gq ’
The (unique) solution to this is:
lnAi(p), T = %
F’ - —2x h < B.5
’l(p) { B‘i 1: +2;r—1’ 1‘_#% when p q ( )
[1-zln(Cjp), 7=3
il = - —2x . W >
F; (p) { Dip[k__zl]l "21 n 2_‘:.;T, r 7L% Whenp Z2q

where A;, B;, C;, and D; are constants to be determined.

Assume that Fy(-) does not have a mass point at 7 . (It can be proved
that at most one firm plays $ with positive probability. By going through
similar calculations as those below, onc can then show that the opposite
assumption, t.e. Fy(-) does not have a. mass point at 7 leads to a contradic-
tion.) Using the facts F3(p) = 1, Fa(p) must be continnous at p = g, and
Fy(p™) = 0, where is p™ is the lower bound on the support of Fp(-), one gets
F3(-) and p™ as functions of the exogenous parameters. Furthermore, from
the facts that Fj(-) must have the same support as Fj(-) and be continuous
at p = ¢, straightforward calculations cstablish that:

In(eﬁfg]‘l"‘ﬂ’t)’ = %
F(p) = - 1-2x o H o 1-2x when p < ¢(B.6)
g8l BT gy, T#
InelZ=agPm),  w=}
Fi(p) = 1 i 1m2 ” when p > ¢
Ty [EP == 5" 4 g2y, 7 # 3

R =1
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2 ] when p < {B.7)
\ 27\"—11

|
In(e(2}'~= R I
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QED.
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4 Designing Electricity Auctions
4.1 Introduction

Electricity wholesale markets differ in numerous dimensions, but until re-
cently all have been organized as uniform, first-price auctions. Recent ex-
perience - and the perceived poor performance - of some decentralized elec-
tricity markets however, has led certain regulatory authorities to consider
adopting new auction designs. In England and Wales a. major overhaul of
the electricity trading arrangements introduced in 1990 has recently taken
place, and among the reforms implemented in March 2001, a discriminatory
or ‘pay-as-bid’ auction format was adopted. The British regulatory author-
ity (Ofgem) believed that uniform auctions are more subject to strategic ma-
nipulation by large traders than are discriminatory auctions, and expected
the new market design to yield substantial reductions in wholesale electricity
prices. Similarly, before its colla.pse., the California Power Exchange commis-
sioncd a report by lcading auction theorists on the advisability of a switch to
a discriminatory auction format for the Exchange’s day ahead market, due
to the increasing incidence of price spikes in both on- and off-peak periods
(see Kahn et al., 2001).

It is well-known that discriminatory auctions are not generally superior
to uniform auctions. Both types of auction are commonly used in financial
and other markets, and therc is now a voluminous cconomic literature de-
voted to their study.?” In multi-unit settings the comparison between these
two auction forms is particularly complex. Neither theory nor empirical
evidence tell us that discriminatory auctions perform better than uniform
auctions in markets such as those for electricity, although this has become
controversial.

Wolfram (1999), for instance, argues in favor of uniform auctions for elec-

tricity, and Rassenti, Smith and Wilson (2003} cite experimental evidence

*7See Ausubel and Cramton (2002) and Binmore and Swierzbinski (2000) for the theory
and empirical evidence. Archibald and Malvey (1998) and Belzer and Reinhart (1996)
discuss the US Treasury’s experiments with these auction formats in more detail. See also
Kremer and Nyborg (2004).
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which suggests that discriminatory auctions may reduce volatility (i.e. price
spikes), but at the expense of higher average prices. Other authors have
come to opposite conclusions. Federico and Rahman (2003) find theoretical
evidence in favor of discriminatory auctions, at least for the polar cases of
perfect competition and monopoly, while Klemperer (2001, 2002) suggests
that discriminatory auctions might be less subject to ‘implicit collusion’.?®
Kahn et al. (2001), on the other hand, reject outright the idea that switch-
ing to a discriminatory auction will result in greater competition or lower
prices.

In Britain, Ofgem has credited the recent fall in wholesale electricity
prices in England and Wales to the new market design, however this toc
is controversial.?® Evans and Green (2002) present some supporting evi-
dence,3® but Bower (2002) and Newbery (2003) argue that the decline in
prices is fully explained by the reduction in market concentration brought
about by asset divestitures, an increase in imports and market excess ca-
pacity. Fabra and Toro (2003) suggest that all of these factors, including
the change in market design, are significant in explaining the reduction in
wholesale electricity prices.®!

The purpose of this paper is to address this electricity market design
issue in a tractable model designed to capture some of the key features of

decentralized electricity markets.3? We characterize equilibrium market out-

2%1n a model similar to that used in this paper, Fabra (2003) shows that tacit collusion
may be easier to sustain in uniform auctions than in discriminatory auctions.

290Ofgem reparted a 19% fall in wholesale baseload prices from the implementation of
the reforms in March 2001 to February 2002, and a 40% reduction since 1998 when the
reform process began. Wholesale prices have since risen again so that they are now near
their pre-reform levels.

30Fvans and Green argue that the new trading srrangements may have undermined
opportunities for tacit collusion. Sweeting (2004) claims to bave found evidence of collusion
in the England and Wales market during the late 1990s, although this finding has been
challenged by Newbery (2003).

31 Another contributing explanation for the initial fall in prices may be that Ofgem staked
its reputation on the market reforms delivering lower-cost electricity, and for more than
a year after their introduction sought to expand its regulatory powers to police ‘market
abuses’ by smaller generators. See Bishop and McSorely (2001) for a discussion.

¥ For a discussion of some methodological issues in modelling electricity markets, which
has informed our choice of models, see von der Fehr and Harbord (1998) and Fabra, von
der Fehr and Harbord (2002).
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comes in a discrete, multi-unit auction model for uniform and discriminatory
electricity auctions under a variety of assumptions concerning costs and ca-
pacity configurations, bid formats, demand elasticities and the number of
suppliers in the market. Our purpose is to gain an iinproved understanding
of how these different. auction formats affect suppliers’ bidding incentives,
the degree of competition and overall welfare in decentralized electricity
markets.

Qur analysis proceeds by first considering a ‘basie duapoly model’, sim-
ilar to the discrete, multi-unit auction described in von der Fehr and Har-
bord (1993), which is then varied in several directions. In the basic duopoly
model, two ‘single-unit’ suppliers with asymmetric capacities and (marginal)
costs face a market demand curve which is assumed to be both perfectly in-
elastic and known with certainty when suppliers submit their offer prices.
By ‘single-unit’ we mean that each supplier must subunit a single price offer
for its entire capacity (i.e. its bid function is horizontal). This assumption
simplifics the analysis considerably, but in Scction 4.4.1 we show that it is
largely inessential. The assumption of price-inelastic demand can be jus-
tified by the fact that the vast majority of consumers purchase electricity
under regulated tariffs which are independent of the prices negotiated in the
whalesale market, at least in the short run.3® However, in order to evaluate
some of the possible effects of real-time pricing or demand-side bidding, we
then extend the basic model and consider downward-sloping demand func-
tions. We also consider the oligopoly case in order to shed some light on the
relationship between market concentration and market performance.

Finally, the assumption that suppliers have perfect information concern-
ing market demand is descriptively reasomable when applied to markets in
which offers are ‘short-lived’, such as in Spain where there are 24 hourly
markets each day (see Garcfa-Diaz and Marin, 2003). In such markets sup-
pliers can be assumed to know the demand they face in any period with a

%3 See Wolak and Patrick (1997) and Wilson (2002) on this. In most electricity markets
large industrial consumers can purchase electricity directly from suppliers or the wholesale
market, but their demand comprises only a small fraction of the total volume traded.
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high degree of certainty. In markets in which offer prices remain fixed for
longer periods, e.g. a whole day, such as in Australia and in the original
market design in England and Wales, on the other hand, it is more accu-
rate to assume that suppliers face some degree of demand uncertainty or
volatility at the time they submit their offers. Hence we allow for this type
of uncertainty in Section 4.4.4.

Under each set of assumptions we characterize suppliers’ equilibrium
bidding bhehavior in uniform and diseriminatory auctions, and compare the
equilibrium outcomes in terms of prices and productive efficiency. Our main
insights may be summarized as follows. Equilibrivun outcomes in either auc-
tion format fall essentially into one of two categories, depending upon the
level of demand. In low-demand realizations, prices are competitive in the
sense that they cannot exceed the cost of the most efficient non-despatched
supplier; in high-demand realizations, on the other hand, prices exceed the
cost of even the most inefficient supplier. In high-demand states3* there are
multiple, price-cquivalent purc strategy cquilibria in the uniform auction,
while in the discriminatory auction the equilibrium is in mixed strategies.
With certain demand (i.e. short-lived bids), payments to suppliers (or aver-
age prices) are lower in the discriminatory auction and numerical examples
suggest that the difference can be substantial.3® The comparison in terms
of productive efficiency is ambiguous, however, and depends on parameter
values as well as on which pure-strategy cquilibrium is played in the uniform
auction. The relative incidence of low-demand and high-demand states de-
pends upon structural features of the market, such as the degree of market
concentration, and on the market design, in particular the market reserve
price and opportunities. for demand-side bidding. Structural factors that
reduce the incidence of high-demand states affect bidding strategies in the
discriminatory, but not in the uniform, auction, Market design changes, on

the other hand, affect bidding strategies in both types of auction.

% The terms ‘state’ and ‘realization’ are used interchangeably thronghout this paper.
$With uncertain demand (or Iong-lived bids) payments to suppliers are equal in hoth
auction formats, at least for the case of symmetric firms.
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4.2 The Model

In the basic duopoly model two independent suppliers compete to supply
the market with productive capacities given by k; > Q, ¢ = 1,2. Capacity is
assumed to be perfectly divisible. Supplier 7’s marginal cost of production
is ¢; > 0 for production levels less than capacity, while production above
capacity is impossible (i.e. infinitely costly). The suppliers are indexed
such that ¢; < c3. Without further loss of generality we may normalize
suppliers’ marginal costs so that 0 = ¢; < ¢ = ¢. The level of demand
in any period, 8, is a random variable which is independent of the market.
price, i.e. perfectly price inelastic. In particular, 8 € [ﬂ,ﬂ C (0,k1 + k2) is
distributed according to some known distribution function G ().

The two suppliers compete on the basis of bids, or offer prices, submitted
to the auctioneer. The timing of the game is as follows. Having observed
the realization of demand, each supplier simultaneously and independently
submits a bi& specifying the minimum price at which it is willing to supply
the whole of its capacity, b; < P, i = 1,2, where P denotes the ‘market re-
serve price,’ possibly determined by regulation.?® We let b = (b, b2) denote
a bid profile. On the basis of this profile the auctioneer ealls suppliers into
operation. If suppliers submit different bids, the lower-bidding supplier’s
capacity is dcspatched first. If this capacity is not sufficicnt to satisfy the
total demand 6, the higher-bidding supplier’s capacity is then despatched
to serve the residual demand, i.e. total demand minus the capacity of the
lower-bidding supplier. If the two suppliers submit equal bids, then supplier
i is ranked first with probability p;, where p, +po =1, p; =1if ¢; < ¢; and
pi=%ifei=c;,i=1,2,i# ;3

For a given bid profile b, the quantities allocated to cach supplier are
thus independent of the auction format. The output allocated to supplier i,

3P can be interpreted as the price at which all consumers are indifferent between
consuming and not consuming, or a price cap imposed by the regulatory authorities. See
von der Fehr and Harbord (1993, 1998).

37 This rationing rule is used solely to ensure the existence of a. pure-strategy equilibrium
in the standard Bertrand game with asymmetric costs.
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i = 1,2, denoted by ¢; (6;b), is given by

min {f, k;} if b < b;
¢ (6;b) =< p;min{0,k;} + [1 — p;]max{0,6 — k;} if b =b; (4.1)
max {0,0 — k;} if b>by,

and is solely a function of demand and the bid profile.

The payments made by the auctioneer to the suppliers do depend upon
the auction format, however. In the uniform auction, the price received by
a supplier for any positive quantity despatched by the auctioneer is equal to
the highest accepted bid in the auction. Hence, for a given value of 6§ and a
bid profile b = (b;, 4;), supplier ¢’s profits, < = 1,2, i # j, can be expressed

as
u¢g. _ [bj — c,] qi (9; b) if b; < bj and 6 > k;
m; (6;b) = { [Bi — ci) g; (6;b) otherwise, (4.2)

where g; (6;b) is determined by (4.1).

In the discriminatory auction, the price received by supplier i for its
output is equal to its own offer price whenever a bid is wholly or partly
accepted. Hence for a given value of 8, and a bid profile b, supplier s,

i =1, 2, profits can be expressed as
¢ (6;b) = [b; — i} ¢: (6;b) , (4.3)
where again ¢; (0; b) is determined by (4.1).%

Both suppliers are assumed to be risk neutral and to maximize their

expected profits in the aunction.

4.3 Equilibrium Analysis: A Tale of Two States

We first characterize the Nash equilibria in weakly wndominated strategies
of the model described in the previous section and then compare equilibrium

outeomes.3?

38Note that the discriminatory auction is essentially a Bertrand-Edgeworth game. See
Deneckere and Kovenock (1996).
39 A1l derivations of results are relegated to the Appendix.
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Lemma 4.1. In any pure-strategy equilibrium, the highest aceepted
price offer is in the set {¢, P}. Moreover, in the discriminatory anction, in a

pure-strategy equilibrium all accepted units are offered at the same price.

Based on this ancillary result, we can prove the main result of this sec-
tion, namely that eguilibrium outcomes essentially fall into one of two cat-
egories, depending upon the level of demand:

Proposition 4.1. There exists 8 = 6 (c, k1, k2, P) such that:

(i) (low demand) if ¢ < 6, in the unique pure-strategy equilibrium the
highest accepted price offer is ¢.40

(i) (high demand) if ¢ > 6, all suppliers are paid prices that exceed c.
A pure-strategy equilibrium exists in the uniform auction, with the highest

accepted offer price equal to P, but not in the discriminatory auction.

As is easily seen, in low-demand realizations the equilibrium outcome
is both unigue and identical across the two auction formats. In the pure-
strategy equilibrium, both suppliers submit offer prices equal to ¢ (i.e. the
cost of the inefficient supplier) but only the most efficiont supplier produces.
Hence the equilibrium outcomes in both auctions are competitive in the
sonse that prices are constrained by the cost of the least efficient supplier.
They are also cost efficient, i.e. overall generation costs are minimized.

In high-demand realizations the equilibrium cutcomes are very different.
In the uniform auction, any pure-strategy equilibrium invelves one supplier
bidding at the market reserve price P, while the other supplier submits an
offer price sufficiently low so as to make undercutting unprofitable (cf. von
der Febr and Harbord, 1993). The precise nature of the equilibrium depends
upou parameter values. There are three possible cases: (a) if 52 <8< @1,

“*This result describes the standard Bertrand-like equilibrium with asymmetric firms.
In low-demand states the two types of auction are strategically equivalent, since only one
supplier ever produces and supplies the entire market. It is well-known that the Bertrand
equilibrium relies on at least one firm using a weakly-dominated strategy, i.e. bidding at
cost {Mas-Colell, Whinston ard Green, 1995), a consequence of the strategy space being
continuous. We ignore this issue here, but show in the Appendix that with asymmetric
firms there also always exist outcome-equivalent equilibria in which the higher-cost firm
plays a mixed strategy and never plays his own cost with positive probability.
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or k1 < 0 < k2 + k1, only equilibria in which by < by = P exist; (b) if
6; <8< 8y, or 2-ky < 8 < ky only equilibria in which by < by = P exist;
and (c) if > max {51,52}, or § > max {k;,kz -+ f;kl} both types of pure-
strategy equilibria exist. Note that in Case (a) the equilibrium outcome is
always cost efficient, while in Case (b) it is always inefficient. In Case (c)
cost efficiency depends on which equilibrium is played.!

In the discriminatory auction only mixed-strategy equilibria exist in
high-demand states. In particular, there exists a unique equilibrivin in which
the two suppliers mix over a common support which lies above the cost. of
the inefficient supplier and includes the market reserve price, i.e. b; € (¢, P],
i =1,2. This mixed strategy equilibrium is not efficient in general, as there
is a positive probability that the inefficient supplier will submit the lowest
offer price.

The relative likclihood of low-decmand versus high-demand states de-
pends upon structural characteristics. of the industry and on the strictness
of the regulatory regime. Straightforward calculations show that

{ k; if ki < pcky
P ; P
p=k2 if k1> p=k

6= (4.4)

From this expression it follows that, for a given ratio of supplier capaci-
ties, the incidence of low-demand states is increasing in aggregate capacity.
The incidence of low-demand states is also greater when suppliers are more
symmetrically sized; more precisely, given ¢,P and K, with k; + k2 = K,
@ is maximized at k; = %Im, which involves perfect symmetry if ¢ = Q.
Further, cost asymmetry tends to make low-demand states more likely, since
the loss in profit from undercutting the inefficient rival relative to serving
residual demand is smaller the higher is his cost. Finally, since pricing mo-
nopolistically and serving residual demand is more profitable the higher is

“!There is also a continuum of mixed-strategy equilibria in the uniform auction in high-
demand realizations. However, since each of these equilibria, (i) involve the higher-cost
firm playing a weakly-dominated strategy with positive probability, and (i) is pay-off
dominated by either of the pure-strategy equilibria, we do not consider them further here.
See the Appendix for the details.
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the market reserve price, the incidence of high-demand states is greater the
higher is P. If we think of the market reserve price as a regulatory price cap,
it follows that stricter regulation can improve market performance, not only
because market power is reduced in high-demand states, but also because
the likelihood of high-demand states occurring is lowered.

In comparing market performance across the two auction formats we
consider both total generation costs and the average price paid to suppliers.
For auction format f = d,u, let Cf and Rf denote equilibrium levels of total
generation costs and payments to suppliers, respectively, and let b{ and q;lf
denote supplier ¢’s equilibrium offer price and output, respectively. We have
cf =3, c,rq{ , = u,d, R? = ¥, blq? in the discriminatory auction, and
R = p" 3, ¢¢ = p"6, where p* = max; {b¥ | ¢ > 0} is the market price, in

the uniform auction. From Proposition 1 the following result is immediate:

Proposition 4.2, Market performance:

(G RI=R*ifA<fand RE<R*if 0> 4.

() Cl=Crif0<8,CI>Ctiff, <0<B,Cl<C*if b < 6<by,
and C? 2 C* otherwise, depending upon whether, in the uniform auction,
an equilibrium is played in which Supplier 1 or Supplier 2 submits the higher

offer price.

In other words, the discriminatory auction weakly outperforms the uni-
form auction in terms of payments (or the average price paid) to suppliers.
In low-demand realizations the equilibrium outcomes are identical in both
auctions. In high-demand realizations, the market price is at its maximum
{P) in the uniform auction, while prices in the discriminatory auction are
below P with positive probability. Comparison of the auctions in terms of
productive efficiency is more complex, however. In low-demand realizations
costs are minimized in both auction formats. In high-demand realizations,
the comparison is unambiguous in Cases (a) and (b) only. In the uniform
auction production costs are minimized in Case (a) and maximized in Case
(b), while in the mixed-strategy equilibrium of the discriminatory auction
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the more cflicient supplicr is undercut by the inefficient supplier with positive
probability. Hence the cost performance in the uniform auction is superior
to that of the discriminatory auction in Case (a), but worse in Case (b). In
Case (c) the comparison depends upon which pure- strategy equilibrium is
played in the uniform auction.

‘We conclude this section by considering how the performance of the two
auction formats depends upon the parameters of the model. A change in
parameter values affects outcomes in two distinct ways: first, by altering
the relative incidence of high- versus low-demand states, and secondly by
affecting the intensity of price competition in high-demand states. The im-
portance of these two effects differ between the two auction formats. In the
uniform auction, in high-demand realizations, price always equals the mar-
ket reserve price, whereas in the discriminatory auction bidding strategies
depend on the cost and capacity configuration, as well as on the level of
demand and the market reserve price. An increase in the threshold 9 has
a profound cffcct on prices in the uniform auction, as prices jump down
from the market reserve price to marginal cost over the relevant range of
demand realizations. In the discriminatory auction, however, the effect of
an increase in 8 is much less pronounced. Siuce the equilibrium outcomes
in high-demand realizations approach those of low-demand realizations as
6] 3, a marginal increase in 9 has no effect on the outcome per se.

The diffcrent ways in which outcomes are affected by changes in parame-
ter values is illustrated in Figure 1 below. The figure is based on an example
in which [9,6] =[0,1], c=0, P =1 and k; = k» = £. The two solid lines
show (expected) equilibrium prices for different realizations of demand for
the two auction formats when K = 1. In both formats, price equals e = 6
when # < 6 = 0.5. When 8 > 5, price equals P = 1 in the uniform auction,
whereas it increases gradually with demand in the discriminatory format.
The thin lines show the corresponding prices for the case K = 1.2, in which
the critical threshold is now 8 = 0.6. Whereas the increase in the relative in-

cidence of low-demand realizations is the same in both auction formats, the
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K=¢

Figure 1: Expected Equilibrium Prices for Different Demand Realizations

effects on prices differ: in the uniform auction, prices jump from P = 1 to
¢ = 0 for some demand realizations; in the discriminatory auction, the effect
on prices is smoother but applies to a wider range of demand realizations.
Because of this fundamental differences in the way in which the equi-
librium outcomes are affected, it is not possible in general to specify how a
change in a particular parameter affects the relative performance of the two
auction formats. In particular, changes in relative performance depend crit-
ically upon the distribution of demand . In order to illustrate the possible
effects, as well as the potential order of magnitudes involved, we proceed by
considering a series of numerical examples. We maintain the parametriza-
tion introduced above, with the added assumption that ¢ (6) = 6, and define
+ & = Kk > 1, with k| > k2- Then expected payments to suppliers taken
over all possible demand realizations (which are equal to expected profits in
this case), become ERd = y and ERU= " [1 —AY [l A%, respec-
tively. Table 1presents numerical results for different values of total installed
capacity k for the case in which individual capacities are symmetric, i.e.

h =k2=f:

At Kk = 1, total expected payments are 33% lower in the discriminatory
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K 1 12 14 16 18 2
ER? 250 .160 .090 .040 .010 O
ER* 375 320 .255 .180 .095 O

EE. 667 500 .353 .222 .105 na

Table 1: Increasing Installed Capacity

auction. In the uniform auction, a similar reduction in average prices would
require an excess capacity of 40% (i.e. K = 1.4).42 In both auctions, increas-
ing the size of the players reduces both average prices and revenues. The
pro-competitive effect on bidding strategics in the discriminatory auction is
strong enough in this example so that its relative performance improves the
higher is the capacity margin.

In Table 2 we present results for different distributions of a given total
capacity K = 1.

ky 5 6 7 8 9
ko 5 4 3 2 1
ER* 250 .300 .350 .40D0 .450
ER* 375 420 .455 .480 .49

ER4
FRs 667 714 769 833 .909

-t O e

Table 2: Incrcasing Capacity Asymmetry

A more asymmetric distribution of capacities implies poorer performance
in both types of auction, although the effect is stronger in the discriminatory
auction. Reducing the size of the smaller supplier increases the incidence of
high-demand states. In the discriminatory auction, the larger supplier faces
a larger residual demand and hence has more to gain from submitting higher
offer prices. Given this, the smaller supplier responds by increasing its offer
prices also. Qverall the result is that reallocating capacity from the larger
to the smaller supplier {(e.g. via capacity divestitures)} improves the relative

performance of the discriminatory auction over the uniform auction.

“28ince in bath auctions the level of demand served in equilibrium is fixed at 8, expected
revenues can be taken as a proxy for the expected (average) price paid by consumers.
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Finally, we consider how changes to the market reserve price P affect
performance in the two auctions. Using the same example we fix total
capacity so K = 1 and consider symmetric firms, i.e. k = kz = 0.5.4
Table 3 below presents the numerical results. Reducing the market reserve
price reduces equilibrium price (and hence revenues) in both types of auc-
tion without affecting the comparison of their relative performance. This is
because equilibrinm revenues are proportional to the reserve price P in both

auctions when ¢ = Q.

P 1 9 075 5 .25
ERT 250 .225 .188 .125 .063
ER* 375 .334 281 .188 .094

EEC 667 .667 .667 .667 .667 na

[ e I n)

Table 3: Reducing the Market Reserve Price

4.4 Extensions and Variations

In the preceding sections we have analyzed electricity auctions for an asym-
metric duopoly assuming that each supplier could submit only a single offer
price for its entire capacity, and that demand was both known with cer-
tainty at the time offer prices were submitted and perfectly inelastic. In the

following subsections we relax each of these assurptions in turn.

44.1 Multiple bids

We first extend the analysis by allowing suppliers to submit upward-
sloping step offer-price functions instead of constraining them to submit
a single bid for their entire capacity. An offer-price function for supplier
i, i = 1,2, is then a set of price-quantity pairs (bjn, kin), n = 1,.., N;,
N; < oc. For each pair, the offer price b;, specifies the minimum price for the
corresponding capacity increment k;,,, where b;,, € [0, P] and Z,’:’; 1kin = ki,
t = 1, 2. The following lemma states that the equilibriurm outcornes - but not

4*This implies that the incidence of high versus low demand states is unaffected by
changes in the market reserve price P in this example.
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the equilibrium pricing strategies - are essentially independent of the number
of admissible steps in each supplier’s bid function (and whether the ‘step
sizes’ are choice variables for suppliers). This implies that our comparisons

between auction types remain valid in this setting.

Lemma 4.2. (Multiple-unit suppliers) (i) Uniform auction: the set
of (pure-strategy) equilibrium outcomes is independent of the number of
steps in each supplier’s bid function (in particular, whether N; = 1 or
N; > 1). (i) Discriminatory auction: for low-demand realizations, there
is a unique equilibrium outcome independent of the number of umits per
supplier. For high-demand realizations, there exists a set of mixed strate-
gies that constitute an equilibrium independently of the number of units
per supplier; when N3 = Ny = 1, these strategies coustitute the unigue

equilibrium. ¥

The existence of a unique, competitive equilibrium outcome in the uni-
form auction is in stark contrast to a.nalyseé which assume continueusly
differentiable bid functions, i.e. N; = co. As first shown by Wilson (1979),
and further developed by Back and Zender (1993) and Wang and Zender
(2002), in the uniform auction with continuous supply functions there exists
a continuum of pure-strategy equilibria, some of which result in very low
revenucs for the auctioneer (or high payments to suppliers in procurement
auctions). The latter are characterized by participants offering very steep
supply functions which inhibit cbmpet.ition at the margin: faced with a ri-
val’s stecp supply function, a supplier’s incentive to price more aggressively
is offset by the large decrease in price (the ‘price effect’) that is required
to capture an increment in output (the ‘quantity effect’). Since the ‘price
effect’ always outweighs the ‘quantity effect’ for units of infinitesimal size,
extremely collusive-like equilibria can be supported in the continuous uni-

form auction, even in a one-shot game.*’

**The equilibrium offer-price functions, however, do depend upon the number of units
or admissible bids. For instance, there can be payoff-irrelevant units which are offered at
higher prices so long as sufficiently many units are priced at marginal cost.

43 This type of equilibrium cannot be supported in a discriminatory auction. Klemperer
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Discreteness of the bid functions rules out such equilibria however. When
suppliers are limited to a finite number of price-quantity bids, a positive
increment in output can always be obtained by just slightly undercutting
the price of a rival’s unit. Since the ‘price effect’ no longer outweighs the
‘quantity effect’, the collusive-like equilibria found in the continuous auction
cannot be implemented. This observation casts some doubt on the rele-
vance of applying the continuous share auction model to electricity markets
in which participants are limited to a small number of offer prices per gen-
erating unit. The collusive-like equilibria obtained under the assumption
that bid functions are continuous do not generalize to models in which of-
fer increments are of positive size, no matter how small these are (see also
Kremer and Nyborg, 2004). We conclude that the cquilibrium outcomes
for the two types of auction are independent of the number of admissible
steps in the offer-price functions, so as long as. this number is finite. Hence.
the characterization of the equilibrium outcomes provided in Proposition 1
would remain uncha.ngcd if we had instcad assumed that sixpplicrs submit
offer-price functions rather than a single offer price for their whole capacity.

It is tempting to draw the conclusion that limiting the number of al-
lowable bids in a uniform-price electricity auction would therefore improve
market performance. Strictly speaking, our analysis does not support. such
a conclusion. What we have shown is that (i) moving from a continuous
to a discrete-bid auction potentially improves market performance by elim-
inating the ‘collusive-like’ equilibria in the uniform auction, but (it} market
performance in a discrete-bid auction is indcpendent of the number of al-
lowable bids, so long as this number is finite. It could be argued, however,
that since limiting the number of bids does not eflectively restrict agents’
opportunities, it might be desirable in the interests of market simplicity and
transparency. Indeed, in equilibrium players may optimally choose not to
differentiate their bids even when they are able te do sa.

(2002) provides & particularly clear discussion.
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4.4.2  Price-clastic demand

Our next variation on the basic duopoly model considers. the case of
price-elastic demand. For this purpose we let the market demand function
be represented by D(p, 8), which is assumed to satisfy the following standard
assumptions: as a function of p, D is continuous and bounded; there exists a
price B () > 0 such that D(p,0) = 0 if and only if p > 7 (); D is decreasing
in p, Vp € [0,5(0)]; and pD is concave in p, Vp € [0,P(8)].

Given a downward-sloping demand function, in either auction format
the output allocated to supplier ¢, g; (b,0), as a function of the offer price
profile b = (b;, b;), becomes:

min { D (b;,6) , k:} i bi<by

. — p,—min {D (bi: 0) ;ki} . 1.
a8 ={ L min{max{0,D(5,0) -k} k} T BT
min {ma.x{(),D(b,:,e) kj} ,k.’} if b > bj,

for i = 1,2. Note that independently of the payments made to suppliers in
either auction format, it is implicitly assumed that consumers are charged
the market-clearing price, i.e. the highest accepted offer price. Obviously,
this leads to the market (auctionecr) running surpluses in the discriminatory
auction. Assuming that such surpluses are dealt with via lump-sum trans-
fers, total surplus (i.c. the sum of supplier profits and consumer surplus)
will be determined solely by the market-clearing price and the allocation of
output between suppliers.

From the above assumptions it follows that market demand is a contin-
vous and decroasing function of price and that, whenover D{c;) > k4, 7 # 4,
there exists a unigue price p} that maximizes a supplier’s profits from serv-
ing the residual demand, i.e. p{(f) = argmax, {pmin[D (p,8) — k;, kil}.
The price p] will be referred to as the ‘residual monopoly price’ of supplier
i

We further assume that the parameter # defines a family of demand
functions such that if 8; < 03, D(p,8;) < D(p,02). Intuitively, 8 is a
shift parameter that affects the position, but not the slope, of the demand
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function (at least not to the extent that demand functions corresponding to
different &’s cross). It follows that pf (8) is increasing in 6.

Let PT = min {p, P} be the effective residual monopoly price of sup-
plier i. Then it should be clear that the argument of Lemma 1 goes through
as before, with P] and Pj substituted for P. Furthermore, we can extend
the result of Proposition 1 that there exists a unique threshold 8 such that
equilibrium outcomes are of the low-demand and high-demand type, respec-
tively, depending upon whether the shift parameter 8 is helow or abave the
threshold. The performance comparison across auction formats is also es-
sentially the same, with the following caveat: since the consumer price is
generally lower in the discriminatory auction there is an allocative efficiency
gain due to the corresponding increase in consumption.

Our main purpose of this section, however, is to relate the critical thresh-
ald 8 to the price elasticity of demand. To this end we use the following
definition: for two demand functions D! and D? with D! (p,8) = D?(p,6)
at p = ¢, the demand function D! is said to be more elastic than the demand
function D? if D! (p,0) < D?(p,8) for all p > e. If we let p[* denote the
residual monopoly price of supplier 7 corresponding to the demand function
D?, it follows that pf! < pI? if D! is more elastic than D?. The following
result is then immediate:

Proposition 4.3. The critical threshold @ is non-decreasing in the
elasticity of the demand function D.

In other words, the price elasticity of demand affects market performance
in two distinct ways. First, given a high-demand realization, the distortion
due to the exercise of market power is smaller when demand is more price-
elastic (i.e. the residual monopoly price is lower). Second, the incidence of
high-demand realizations is reducéd the more elastic is the demand curve.
With a downward-sloping demand function, the gain from exercising market
power relative to residual demand is less and hence there is more incentive

to compete for market share by undercutting the rival, leading to a higher
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incidence of competitive outcomes.

We conclude this section by considering a numerical example. We main-
tain the assumptions introduced in the example considered in Section 4.3
above - with k; = k3 = k - and in addition assume that D (p,8) = 8 — Bp.
It follows that 8 = k and that (for 8 sufficiently small) P} = P} = Q‘Z'_Tﬂ‘ﬁ
for 8 < k+ 28 and P{ = P = P = 1 otherwise. Expected payments
to suppliers become ER? = [i%° L[ — k*d0+2 [, 5[0 — B — K] d6 aud
ER*= [ L 10— k] [0+ k] dO+ [, 5 (6 — Bl d6, respectively. In Table 4

we present results for different values of the slope of the demand function:*®

B 0 .02 .05 075 .100 .125 .15
ER* 250 .226 .203 .183 .163 .146 .130
ER* 375 350 .327 .304 .282 260 .240

d
EE 667 646 .621 .602 .578 .562 .542

Table 4: Increasing the Elasticity of Demand

'As expected, a more elastic demand reduces payments to suppliers. In
this example, the relative incidence of low-demand and high-demand states
(9) is not affected, although more elastic demand does reduce the effective
residual monopoly price. In the discriminatory auction we have the addi-
tional effect that bidding becomes more aggressive in high-demand states.
Consequently, the relative performance of the discriminatory auction in-

creases with the elasticity of demand here 4748

4.4.3 Oligopoly
Our pext variation on the basic duopoly model considers the case of
oligopoly. This allows us to generalize some of the insights from the duopoly

model as well as analyze the impact of changes in the number of suppliers -

“8Note that, for B suficiently small, 8 approximates the price elasticity of demand at
the peak (i.e. § = 1) evaluated at the maximum admissible price I’ = 1.

47 As pointed out above, the revenue comparison tends to understate the performance
of the discriminatory auction relative to that of the uniform auction as far as consumer
prices (and, indeed, consumer surplus) is concerned.

‘8 The difference in total payments between the tweo auction formats in the case of
perfectly inelastic demand (B = 0) corresponds to the difference between the cases § =0
and 8 =0.15 in the uniform auction.
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on profits and pricing behavior.

Accordingly we now consider S suppliers, where k, is the capacity and
¢s the marginal cost of supplier s, 3 = 1,2,...,5. Suppliers are ordered
by efficiency, so that 0 = ¢; < g € ... € ¢g = ¢. As before, the types
of equilibria which arise in the different auction formats depend upon the
value of the market demand @ relative to suppliers’ individual and aggregate
capacities. In particular, we have the following result:

Proposition 4.4 There exists 53_ and 5:, b: < 5:, such that, for
s=12..,85,

(i) if § <9, , in any equilibrium the highest accepted price offer is at or
below cg;

(1) if 8 > bj, in any equilibrium supplicrs arc paid prices that arc at
least equal to ¢, and strictly above e, if s = Sore, < e541,8=1,2,...,8-1;

(i) 5 =8, =B, if ky > maxics k.

In other words, we have a series of demand threshold pairs, each pair
corresponding to the cost of a particular supplier. When demand is below
the lower of these two thresholds, equilibrium prices are limited by the cost
of the corresponding supplier; when demand is above the upper threshold,
equilibrium prices always exceed the cost of that same supplier. A suffi-
cient condition for the two thresholds to be equal is that the capacity of
the corresponding supplier is at least as large as that of any more efficient
supplier.

To demonstrate that the two thresholds may in fact differ, and hence that
there may be a range of demand outcomes for which competitive and non-
competitive equilibria coexist, consider the following example. Let § = 3,
cp =0, 0 =05,e3 =1,k =1, kg = 1, and k3 = 0.25. Further-
more, let P = 1.75 and 8 = 1.5. Then it is easily verified that the fol-
lowing equilibria exist in the uniform auction: {by =1,b2 = 0.5,b3 =1} and
{b1 = 0,b2 = 1.75,b3 = 1}. Note that the first of these equilibria is compet-
itive in the sense that price is limited by the cost of the inefficient supplier,
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whereas the second equilibriuum is not. Note further that the both equilibria
are ineflicient in the sense that overall generation costs are not minimized:
in particular, when the market outcome is competitive, inefficient dispateh
nevertheless results.

In the discriminatory auction, no pure-strategy eguilibria exists so long
as 0 > 'é; To see this, note that in any equilibrium in which more than
one supplier is despatched, profits of lower-pricing suppliers are strictly in-
creasing in their offer prices below the offer price of the marginal supplier.
Furthermore, for the marginal supplier, undercutting is always profitable so
long as competing offer prices are sufficiently close. These opposing forces
destroy any candidate pure-strategy equilibrium. We consequently have a
similar dichotomy to that observed in the duopoly case, in which the com-
parison of outcomes between the two auction formats generally depends on
which equilibrium is played in the uniform auction.

We end this section by considering the relationship between market
structurc and market performance. We take as our starting point a gen-
eralization of the ‘two-state’ result of the duopoly section, which follows as

a corollary of the above equilibrium characterization:

Coroliary 4.1. There exists § and §+, 7 < §+, such that

(i) (fow demand) if 6 < @ , in any equilibrium the highest accepted price
offer is at or below c;

(ii) (high demand) if 6 > b\*—, in any equilibrium suppliers are paid prices
that exceed ¢;

() & =8 =0if ke > max;cgk,.

In Jow-demand realizations prices are limited by costs, whereas in high-
demand realizations they are not. Low-demand equilibria are competitive in
the sense that prices are limited by the cost of less efficient, non-despatched
suppliers. However, unlike in the duopoly case, low-demand equilibria are
not necessarily cost efficient. In the uniform auction there may exist pure-

strategy equilibria in which less efficient suppliers are ranked before more
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efficient suppliers, while in the mixed-strategy equilibria of the discrimina-
tory auction such outcomes occur with positive probability.

To highlight the relationship between market concentration and perfor-
mance, we focus on the symmetric case, in which we readily obtain the
following result that corresponds directly with the results obtained in the

duopoly case:

Proposition 4.5. In the oligopoly moddl with symmetric supplicrs,
in particular, k, = £ s=1,2,_ 8

(i) (low demand) if 6 <8 = S1K, Ri= R* = 0.

(ii) (high demand) if > § = 532K, R = PS [ — S52K] < P6 = R™.

Market structure affects equilibrium outcomes differently in the two auc-
tion formats. In both formats, the threshold that determines whether de-
mand is ‘low’ or ‘high’ is increasing in the number of suppliers. In other
words, pricing at marginal cost is more likely in a more fragmented indus-
try. However, in the discriminatory auction (as bpposed to the uniform
auction), market structure also affects bidding strategies in high-demand
realizatidns. In the discriminatory auction supplicrs play symmetric mixed
strategies, and in equilibrium these strategies strike a. balance between a
‘price’ and a ‘gquantity’ effect: lowering the price offer reduces the price re-
ceived, but increases the likelihood of undercutting rivals and hence gaining
a larger market share. For a given level of demand, the ‘quantity effect’
is more important the larger is the number of competitors. Hence in the
discriminatory auction price compctition will be more intense the less con-
centrated is the market structure.

To illustrate the above points, we again consider the numerical example
introduced above, with the specification that k;, = % with K = 1 and
€ =0,5=1,2,..,85 Expected payments to suppliers become ER? = z—lg
and ER* = %l, respectively. Numnerical values for different numbers of
suppliers are given in the following table:

A more fragmented industry structure improves the performance of both
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Table 5: Increasing the Number of Suppliers

s y4 3 4 5 10 100
ER? 250 .167 .125 .100 .050 .005
ERYV 375 278 .219 .180 .095 .010
ERT 667 .600 571 .556 526 .503

oo o8

auctions, as well as the rclative performance of the discriminatory auction
in this example. For a given number of suppliers, the difference in payments
between the two auctions roughly corresponds to the effect of doubling the

number of suppliers in the uniform auction.

444 Long-lived bids

Our final variation on the basic duopoly model considers the case in
which suppliers face time-varying, or stochastic, demand. This is of partic-
ular relevance to electricity markets in which suppliers submit offer-prices
that remain fixed for twenty-four or forty-eight market periods, such as in
Australia and the original market in England and Wales. We therefore as-
sume here that price offers must be made before the realization of demand
(i-e. 8) is known. It is easy to verify that our previous analysis is robust to
this change in the timing of decisions so long as the largest possible demand
realization is low enough, or the lowest possible demand realization is large
enough. For instance, when demand never exceeds the critical threshold
9 defined in Proposition 1 equilibria correspond to those analyzed for low-
demand realizations. The introduction of demand variability adds a new
dimension to the problem only when bath low and high demand realizations
occur with positive probability. We therefore assume that demand € takes
values in the support [Q,ﬂ C (0,k1 + kg), with 8 < 6 <9, according to
some {commonty known) distribution function G(6).

The equilibria of both the uniform and discriminatory auctions now differ
significantly from the case in which demand is known with certainty before
bids are submitted. Demand uncertainty, or variability, upsets all candi-
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date pure-strategy equilibria in both types of auction (see von der Febr and
Harbord, 1993 and Garefa-Dfaz, 2000). We therefore consider equilibria in
mixed strategies. For both the uniform and discriminatory auctions there
exist unique mixed-strategy equilibria, and it is possible to derive explicit

formulae for the suppliers’ strategies:*°

Lemma 4.3.  Assume [8,6] C (0,k + ko), with 8 < 6 < 6. Then
there does not exist an equilibrium in pure strategies in either auction. In
the unique mixed-strategy equilibrium suppliers submit bids that strictly

exceed c.

In a mixed-strategy equilibrium in either type of auction, suppliers must
strike a balance between two opposing effects: on the ome hand, a higher
offer price tends to result in higher equilibrium prices; on the other hand,
pricing high reduces each suppliers’ expected output, ceteris paribus. The
first effect is less pronounced in the uniform auction than in the discrimina-
tory auction. In the uniform auction, a highér 6ﬂ'er price translates into a
higher market price only in the event that the offer price is marginal, while
in the discriminatory auction pricing higher always results in the supplier
increasing the expected price it receives, conditional on being despatched.
Consequently, there is a tendency for suppliers to price less aggressively in
the discriminatory auction compared to a uniform auction. This intuition is
confirmed in the symmetric case (i.e. when k3 = k3 = k and ¢; = ¢z = 0),
in which the equilibrium mixed-strategy distribution function in the dis-
criminatory auction first-order stochastically dominates the corresponding
distribution function in the uniform auction, i.e. F¥ (b) > F2(b).50

'We have not been able to characterize in detail the rclationship between
the model parameters and suppliers’ equilibrium strategies. in the general

49We are anly able to characterize the mixed-strategy equilibria with long-lived bids
by restricting attention to single-unit suppliers. See Anwar (1999) who shows that the
equilibria derived under this assumption may not survive when we allow more complicated
bidding strategies to be used.

30 The result follows from the observation that F* (b) < F7 (b) implies 7¥ > 7J, whereas
in the symmetric case, T¢ = 2.
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case. In the case of symmetric capacities, however, we can show that in the
Limit, as. 8 — k {or k — E), s0 that demand is always less than the capacity
of a single supplier, the mixed-strategy equilibrium outcome in either aue-
tion approaches the equilibrium outcome for a low-demand realization, with
price egqual to the marginal cost. of the higher-cost. supplier. Similarly, as
8 — k (or k — §), so that demand always exceeds the capacity of a single
supplier, the equilibrium outcomes approach those for a high-demand real-
izatian. Further, in the uniform auction the limiting equilibrium ocutcome
is efficient, i.e. the more efficient supplier produces at capacity and the less
efficient supplier supplies the residual demand. This is in contrast to the
model with non-stochastic demand, in which there exist both efficient and
inefficient pure-strategy equilibria in high-demand realizations in the uni-
form auction.®! This suggests that the uniform auction performs better in
efficiency terms than the diseriminatory auction, although we have not been
able to demonstrate that this result holds generally. Revenue comparisons
‘also prove difficult, except in the symmetric case, where it is easily demon-
strated that (in expected terms) total payments to suppliers are the same
in both auction formats. '

We end this section by comparing market performance under short-lived
and long-lived bids, respectively. This comparison is difficult in the general
case and hence we limit our attention to the symmetric case. Let ER{ and
ER{ denote expected total supplier payments in auction format f = d,u
irr the case of short-lived and long-lived bids, respectively. We obtain the

following result:

Proposition 4.6. In the symmetric duopoly model, ER} < ER},
ER? = ER? and ER! = ERZ.

In other words, while there is no difference in the discriminatory auction,

in the uniform auction long-lived bids outperform short-lived bids. With

51The fact that with uncertain demand the efficient outcome is unique might be viewed
28 & justification for treating this as a natural ‘focel point’ in the certain-demand ease
also.
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short-lived bids, the poor performance of the uniform auction is caused by
the extreme equilibrium outcome for high-demand realizations, in which
suppliers are paid the market reserve price. This equilibrium is supported
by the inframarginal supplier bidding sufficiently low so as to discourage
undercutting by the high-bidding, price-setting supplier. With long-lived
bids, however, the low-bidding supplier determines the market price in low-
demand realizations, and hence has an incentive to increase its offer price.
As a result, incentives for undercutting and competing for market share are
increased, leading to more aggressive bidding and lower prices overall in the

uniform auction.

4.5 Conclusions

In this paper we have characterized equilibrium pricing behavior in uniform
and discriminatory auctions in a multi-unit auction model reflecting some
key features of decentralized electricity markets. Equilibria in the two aue-
tion formats have been compared in terms of both average prices paid to
suppliers and productive efficiency. In the case of certain demand (i.e. short-
lived bids), we found that uniform auctions yield higher average prices than
discriminatory auctions. Comparison of the auctions in terms of productive
efficiency is more complex, however, as it depends on which equilibrium is
played in the uniform auction as well as on parameter values. When demand
is uncertain (or bids are long-lived), at least in the perfectly symmetric case,
expected payments to suppliers are the same in both auction formats.

Our theoretical model is obviously highly stylized, and while it does lead
to a number of qualitative results, it does not allow us to draw conclusions
about their gnantitative importance. Nevertheless, numerical examples sug-
gest that some of the effects identified may be significant. For example,
moving from a uniform to a discriminatory auction format in the ccrtain
demand case may have a similar effect on average prices to either a dou-
bling of the number of suppliers or increasing the capacity of two symmetric
duopolists by almost 40%. However, under the restrictive assumption that
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firms are symmetric,’® moving from a uniform auction with long-lived bids
(as in the original England and Wales market) to a diseriminatory auction
with short-lived bids (as uuder NETA) has no impact on expected prices.
This suggests that reduced warket concentration and increased total capac-
ity may have been as responsible for the initial reduction in England and
Wales wholesale electricity prices in 2001/2 as any change in the market
design, although our model is obviously tco specialized to decide this issue.

A key determinant of market performance in our analysis is the relative
incidence of low-demand and high-demand states, and this does not depend
upon the auction format. Rather, it depends on other market design issues
and on structural features of the market. In particular, the incidence of high-
demand states is lower when there is more excess capacity in the industry, the
market structure is more fragmented, suppliers have symmetric capacities,
demand is price elastic and the market reserve price is low. These factors
affect not only the relative incidence of low and high-demand states, but may
also influence bidding strategics. Changes in total capacity, the capacity
distribution and market structure (i.e. ‘structural factors’) have no effect
on prices in the uniform auction in high-demand states, but can lead to
more vigorous price competition in the discriminatory auction. Regulatory
interventions to change the market rules, on the ather hand, affect bidding
strategies in both types of auction. A reduction in the market reserve price
reduces average market prices in both auctions. Measures that increase the
elasticity of demand (e.g. the introduction of demand-side bidding) have
similar effects. A change from short-lived to long-lived bids, however, which
makes the demand state uncertain when suppliers’ submit their bids, may
have a greater effect on prices in the uniform auction.

Our analysis allows us to make the following comments on regulatory
policy with respect to the design of electricity auctions:

e Auction format The uniform auction is always weakly outperformed

52 And assuming that the support of the demand distribution includes both high and
low demand realizations.
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by the discriminatory auction with respect to total revenucs in our set-
up. Thus our analysis suggests that a regulator who is only concerned
with the minimization prices should prefer the discriminatory format.
However, if the regulator assigus positive weights to both productive
efficiency and consumer surplus, the auction ranking will depend on

the specific weights assigned to each, and on industry data.

¢ Bid format Long-lived bids outperform short-lived bids in the uni-
form auction. In particular, bids that cover a whole day or longer
periods lead to lower average prices than bids which vary hourly or
half-hourly. There is no corresponding effect in the discriminatory ac-
tion. However, in both types of auction, a single-bid format. performs
as well as formats in which suppliers are allowed to make multiple bids
(e.g. different bids for equal-cost capacity units). Our analysis there-
fore provides some support for the view that simplifying bid foxmatgs»
- both with regard to duration and structure - is likely to improve

market performauce.

® Market reserve price Rescrve prices, or price caps, in most electricity
markets. are intended to reduce the incidence of high price spikes. A
lower market reserve price obviously affects prices in events in which
the price cap binds. Howevei, it also affects prices indirectly via its
effect on competition, ie. by reducing the number of high-demand
periods and intensifying competition in high-demand periods in the

discriminatory auction.5?

e Demand-side measures Measures to stimulate the price responsiveness
of demsnd directly improve allocative efficiency and ineresse supply
security. They also result in more competition via similar effects to

those achieved by reducing the market rescrve price.

53 An important eavest is that we are only considering short-run comparative static ef-
fects, and ignoring longer run investment or entry incentives. In particular, price caps may
deter investment in peaking capacity, which in some power systems is a major problem.

106



From a methodological point of view, the paper has also contributed
to the analysis of multi-unit electricity auctions in a number of ways.54
First, we have shown that the set of equilibrium outcomes in uniform and
discriminatory auctions with short-lived bids is essentjally independent of
the number of admissible steps in suppliers’ offer-price functions, so as long
as this number is finite. This reduces the complexity involved in the analysis
of multi-unit auctions as it allows us to focus on the single-unit case with
no significant loss in generality. Secondly, we have demonstrated that the
‘mplicitly collusive’ equilibria found in the uniform auction when offer prices
are infinitely divisible are unique to this formulation of the auction (i.e. to
share auctions), and do not arise when offer-price functions are discrete.
Hence the concerns expressed in the literature that uniform auctions may
lead to ‘collusive-like’ outcomes even in potentially competitive periods when

there is considerable excess capacity, are likely misplaced.?®
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4.6 Appendix: Proofs

Proof of Lemma 4.1

Let p denote the highest accepted price offer and let b; = p. Clearly,
we must have p > ¢;. Let ¢, = max;<pc;j and & = {ming>,¢; f p< ¢
and P otherwise}. Suppose p > ¢p. Then, for j # i with ¢; < p, we must
have b; < p (with strict inequality if ¢; = ¢;) since otherwise supplier j could
gain by matching (undercutting) b; But then #’s profit is strictly increasing in
b; on [p, P}, proving the first part of the result. Lastly, in the discriminatory
auction, in a pure-strategy equilibrium we cannot have b; < p, given that
supplier j’s profit is strictly increasing in b; up to p. Q.E.D.

Proof of Proposition 4.1

Consider first. the possibility of a pure-strategy equilibrium in which the
highest accepted offer price equals ¢. Profits to Supplier ¢ are given by
[c— ] min {8 — K;_y, k}, where K; = Y kj, i = 1,2 and Ko = 0, while
the profits from deviating to a higher price is at most [P — ;] max {¢ — K_;, 0},
where K_; = )., k;j. A necessary (and, indeed, sufficient) condition for
such an equilibrium to exist consequently is [c — ¢;] min {8 — Ki_1,%:} —
[P — ¢]max {6 — K_;,0} > 0. Given that, for § > K_;, the left-hand side of
this expression is non-increasing in 8, there exists a. unique 5, such that the
condition is satisfied iff § < ‘6?,‘. Existence of the equilibrium then requires
¢ < min 5; =0.

Consider next the possibility of an equilibrivmm in which supplier ¢ sub-
mits the highest accepted price offer b; = P. Clearly, for such an equilib-
rium to exist we must have 8 — K_; > 0. By the argument in the proof of
Lemma 1, it follows that #’s equilibrium profits are [P — ¢} [# — K_;]. Ob-
viously, any profitable deviation by ¢ would involve undercutting the com-
petitor so as to increase output (with a consequent fall in price). If the
competitor prices at cost, the maximum gain from undercutting is given
by [¢; — ¢;Jmin {0 — K;_1,k;} when 0 € (K;_1, Kj] . Consequently, a neces-
sary condition for such an equilibrium to exist is that [P — ¢} [ — K_i] —
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[ej — cilmin{6 — K;_3,k;} > 0. By the monotenicity of the left-hand side
of the condition, it follows that the condition is satisfied iff @ > ?0;, implying
that a monopolistic pure-strategy equilibrium can exist only if § > 8.

The existence of a monopolistic pure-strategy equilibrium in the uniform
auction when @ > 8; for some i is straightforward and involves Supplier
i pricing at P while the competitor prices sufficiently low so as to make
undercutting by 7 unprofitable. In the discriminatory auction, by the result
in Lemma 1 that in a pure-strategy equilibrium all aceepted units are offered
at the same price, it follows that there cannot exist an equilibrium in which
accepted price offers exceed ¢, since then at least one supplier could increase
output by (marginally) uvndercutting its competitor. When 8 > 8, Supplier
#’s rival knows that a price offer of ¢ being undercut is a probability-zero
event, and hence will surely price above ¢ also.

For further reference, we register the following results. Noting that we.
must, have 51 > ko, 51 is implicitly defined by the egquation cmin {51, kl} =
P (81~ ko). 1t follows that B = pEgky if 01 < Ky and Oy = by + B if
0, > ki1. This may alternatively be stated as 6y = ﬁkz if P’: -ky < ky and

51 = kz + Fky otherwise. Similar reasoning leads to the result that gg = k1.

Consequently, 9= P kg if E-ky < k; and 9 = k; otherwise. Q.ED.
P—c P—c

Mixed-strategy equilibria in the basic model

We now characterize mixed-strategy equilibria in hoth auction formats.
We first consider the existence of mixed-strategy equilibria in low-demand
realizations (i.c. for @ < § = min {@1,62}) in both auction formats. We
then consider the uniform auction for high-demand realizations in which
there are multiple pure-strategy equilibria (i.e. § > max {51,52}). Lastly
we characterize mixed-strategy equilibria in the discriminatory auction for
all high-demand realizations (i.e. 6 > # = min {31,5‘2}).

Low demand: Beth auction formats
Assume @ < 8 = min {61.,’@2}, Let b; and b; denote the infimum and
supremum, respectively, of the support of supplier i’s strategy. We first
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note that b; = by > ¢. This follows from the facts that b; > ¢; and that
profits. are strictly increasing in the bid whenever it is the lowest. We next
observe that supplier i obtains zero profits if &; > 5,-. The same is true if
by = by < by = by = b and either no-one plays b with positive probability or,
if some player does (there is at most one), this is supplier 2. It follows that
at least one player earns zero profits in any mixed-strategy equilibrium. If
¢ > 0, this is not supplier 1, who can always guarantee positive profits by
bidding below ¢; so &y < by. Furthermore, if ¢ > 0, by = ¢, since otherwise
supplier 2 could obtain positive profits by undercutting.

Consequently, if ¢ > 0, there exist mixed-strategy equilibria in which
supplier 1 bids b; = ¢ with probability 1 and supplier 2 (who obtains. zero.
profits and is consequently indifferent between any bid at or above ¢) mixes
over the range [c, V) for any ¥ € (¢, P), according to some strategy F (b) =
Pr (b2 < b) that satisfies Fy (b) > 1 - §, so as to deter supplier 1 from raising
his bid. Given supplier 2’s strategy, supplier 1’s profit from bidding b > ¢ is
F() - 0+1-F(b))-8<ch. '

Note that the set of mixed-strategy equilibria are the same in both auc-
tions and that outcomes (outputs, profits and costs) are identical to those
of the pure-strategy equilibrium. Note further that while the pure-strategy
equilibrivm involves Supplier 2 playing a weakly-dominated strategy (ie.
bidding at c), in any mixed-strategy equilibrium supplier 2 plays an undom-
inated strategy almost surely.

K ¢ =0, min {51,52} = 0, since otherwise either supplier could obtain
positive profits by undercutting. It follows that there does not exist a mixed-

strategy equilibrium in this case.

High Demand: Uniform auction

Assume 8 > max {51.,52} = max { k1, k2 + -;_'-,kl.}, Let F'(b) = Pr {b; < b}
denote the equilibrium mixed-strategy of supplier ¢, i = 1,2, with den-
sity f2(b) = F[*(b), and let S¥ be the support of F?. Furthermore, let
S* = (max {inf S},inf S3} , min {sup 5},sup S3}). Note first that F}* cannot.

have a mass point on S*. To see this, suppose, for contradiction, that F}*
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has a mass point at some ¥ € §%. Then, for some interval [¥/,¥ +¢), e >0,
i’s competitor would be better off by offering to supply at a price just below
b than to offer prices in this interval. But then #’s profit would be strictly
increasing on [¥, ¥ +¢), contradicting the assumption that ¥ is in the sup-
port of i’s strategy. A similar argument establishes that S? is an interval
(i.e. without ’holes’). Furthermore, since P must be in the support of at
least one supplier’s strategy, we have S* = S}N S¥ = (b, P). We want to
demonstrate that any mixed-strategy equilibrium has the form

9—k10
) = {AI [£2]577 jor B<b<P
1 for b=P

&~k
) = {fz e L

b = ¢

where either (i) A1 =1and 0 < A2 <lor(ii))0< A; <land A2=1.
" On (b, P), strategies must satisfy the following differential equations:
Fy®) (0 — ko] - f7 (0o [k + 2 — 6] = O,
PR (6 — ksl — ;2 G- ks + ka— 8] = .

On the imterior of the support of the mixed strategies the net gam from
raising the bid marginally must be zero. The first elements on the left-
hand side of thc above expressions rcpresents the gain to a supplier from
the resulting increase in the price received in the event that the rival bids
below. The second element represents the loss from reducing the chance
of being despatched at full capacity instead of serving the residual demand
only (the difference being, for supplier i, k; — [# — k;] = k3 + kg — 6). The

above expressions may alternatively be written:

1 00—k
f;(b)_z—k1+k2-9

10—k ...
f;‘(b)_b'—CkI-{-k&—g l(b) - 0’

K@) = 0,
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and have solutions

- o—k
SO = Afo- JEPE
~_b=kp
13?(5) = Apbkitke—t,

with 4; > 0,i=1,2.
Since at most one supplier can play P with positive probability (i.e., ei-
ther Pr (& = P) = 0 or Pr (by = P) = 0), we have either (i) imy_,p F3'(h) <

8-k

- L. . ~

limyp F2(8) = 1, implying A1 = || "™ "and 4 < [L]F75 or
: - 6kl

(ii) Yimpp F(b) < limp,p F(b) = 1, implying A; < [P%_ c] e

Ay = [B]5PE.

Note that, becanse there are no mass peints on (b, P) and limy,_,, FP(b) =
0, we must have b = c. Since limy_,. F'(b) = gzcﬁz-_’ > 0), while F} can-
not have a mass point at c, it follows that for a mixed-strategy equilibrium to
exist it must involve, with positive probability, Supplier 2 offering to supply
at prices below his own cost (note that this implies that there does not exist
a mixed-strategy equilibrium in weakly undominated strategies). The only
coustraint that F (b) must satisfy for b < ¢ follows from the condition that
undercutting by Supplier 1 must be unprofitable; one solution satisfying this
constraint is given by the above first-order condition, but a continmuum of
other solutions exist as well.

In a mixed-strategy equilibrium profits become:

7 = P{Pr(by=P)k +[1~Pr (b= P)][6 - al},
5 = [P—d{Pr(by = PYky+ [ — Pr(by = P)][¢— kil}.

Note that, for the class of equilibria in which lim,,p FP*(b) = 1 (implying
that Ay = 1 and Pr (b = P) = 0} total industry profits are maximized in
the limiting case Pr (b = P) = 1 (which corresponds to Az = 0), where
7} = Pky and 7% = [P — €] [# — k1]. This is the same as in the correspond-

ing pure-strategy equilibrium in which Supplier 2 is bidding high, implying
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that profits in this pure-strategy equilibrium dominate those in any mixed-
strategy equilibrinm. Moreover, industry profits are minimized in the case
Pr(by = P) = 0 (which corresponds to A; = 1), where 7} = P[0 — ky)
and 7§ = [P — ¢][@ — k;]. Corresponding results hold for the other class of
mixed-strategy equilibria.

Highk Demand: Discriminatory auction
Assume 6 > min {51,52} = 6. From the proof of Proposition 1, there

< ki, in which case 9 = %kg, and

are two cases to consider; %:kz
p—=k2 > k1, in which case, 6= k.

Let F2(b) = Pr{b; < b} denote the equilibrium mixed strategy of sup-
plier i and let S be the support of FY. Standard arguments (see above)
imply that § = (b, P) C 8¢, S¢ C [b, P] and that F¢ and F'Jfl do not have

mass points on [b, P). We want to show that there exists a unique equilib-

rium with,
‘ in{6,k b—b
F :fl (b) = ﬂﬁﬂ@,lz}t%ﬁnz{}o,kz}_g - for b< P
1 for b= P 4
in{f.k b—b
Fil(p) = mfﬁ,iﬁxﬁminl{}p,kg_}_g—b‘ for b< P
1 fOI' b = P ’

where b = c+ [P—c]m—?'{'eﬁtj if Pkg > [P—-cdkand b = Pﬁﬁ—fe%cﬁ if
Pkg < [P — ¢ k1 (note that, in both cases, b > ¢).
Suppliers’ profits may be written
{(b)
23b) = [b—d {Ff(b‘) max {6 — ky,0} + [1 - Ff(b)]‘ min {6, kz}} .

Il

b{Ef(b) max {¢ — kz,0} + [1 — Fz"(b)] min {6, k1}} ’

A necessary condition for supplier ¢ to be indifferent between any price

in S¢ is that, for all b € S¢, 7¢(b) = 7%, implying

- i — 7@
F{i(b) — [b _ clmm {07 k2} Ty ,
. [b—‘C] [mm{07k1}+mln{9ak2}-0]
bmin {0, ki } — 7%
b[min {6, k1 } + min {6, k2} — 6]’
where we have used the fact that max {# — k;,0} = 8 — min {6, k;}.

Fi(b) =
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Observe that the boundary condition FE(b) = Fg() = 0 implics

T = bmin{¢ k},

T = [b—min{6 k).

Furthermore, we have

P-b ‘min {0, ke} min{6, ki}

z}l?;’:[Fl(b) Fl(b)] min {0, k;} + min{0,k} —6| P—c P

Hik < ppfékz, in which case > k;, we cannot have limg..p Ff(b) =

1 since this would imply Limsp FE(b) > 1. Consequently, we have the

boundary condition limy_, p FF(P) = 1, which implies
7§ =[P —d[6 - ki,

and, together with the condition F{(b) = 0,

¢—k
Q=C+[P*C]m—%c2—}20

If, on the other hand, k > p_ﬁ;k‘b in which case 6 > %kg, we have

the boundary condition lims_,p F§(P) = 1, which implies
Tr‘li =P [6_ kZ} ’

and, together with the condition Fg(b) = 0,

f— ks >c

BT

Note that, in both cases, b — cas § — 5, and so, in the hmit, 7, =
c [@ — kz]‘ arnd m = 0.

In the case k3 < pE-ky (similar results are obtained in the alternative

case), equilibrium profits, expected costs and expected revenues may be

written:
k1 .
7% = cky +[P-c][a_k1]mand 74 =[P =€ 6= ki)

EC? = Pri{b; <by}elf— k] +Pr{b > by} cmin {8, ky}
ER* = n{+n§+EC?
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wherc

ky P—b
ki +min{f k) —0 P

.,
Prin <t} = [ FO)AF0)+1-
b

With some algebra,

ZFf(b)ng(b)_ by min {6, kp} Q[P—gqg.—gln(P—cb)]

T [k +min{0 ky) — 8¢ | P ¢ b—cP
In the limit,
. 1 ky 1
< = —————————— >
ImPrib<b} = -5y 23
Hm Pr{b <b} = 1,
c—P
and hence
S<Pr{b<b}<1,
clo—k] < ECY < qmm{ ,k2}2+c(9 - k;]’
cmin {6, ka} + c [0 — ki)

418 +eclf~k] < ERM<nd+nf+ 5 :

Furthermore, we know that we cannot have ER? = P8, since this would

Proof of Lemma 4.2

Verifying that the arguments of Lemma 1 and Proposition 2 go through
with multiple bids is straightforward. Below we want to demonstrate that,
in the discriminatory auction, the best response to a rival offering all of his
capacity at the sarme price according to an equilibrium distribution function
is to bid a flat bid function also. Under the assumption that bj, = b;, n =
1,...,Nj, with b; chosen according to the distribution function F}, supplier
i’s expected profits may be written

n=1 m=1

+[1— Fj (bin)] in}

Nix n—1
mi(b) = Y [bin—ci {F,- (bin) min {k@n,max {e —ki— Y k,-m,(]}}
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where we have defined Z?n___  kim = 0. Suppose b; is set optimally, that
N; > 1 and that b;, < b,y1 for some n = 1,2,...,N; — 1 (i.e. there are
at least two steps in i’s bid function). We want to show that this leads to
a contradiction. Consider first the case that # > k; and let 7 be chosen
such that 0 < 8 — kj — 37 L kim < k. Clearly such an 7 exists and
is unique. Note that we have 0 — k; — E:’n:__ll kim > kin for n < W and
0—kj— :‘,:___11 ki < 0 for n > 7. Supplier #’s profit can then be rewritten

as,
n-1
w;(b;) = Z [bin — €] kin
n=1
n-1
+ [bﬁi ] {F (bm) [9 k - E kmj] 1 - F (bm)] }
n=1
+ Z [bm - [1 - m)] ktn '
n=ri+1
= [bin =] {Fj(bz) [0 = &j] + [1— Fj (bia)] ki}
fi—1
+ Y [bin — biz] kin
'u=1\1]l
£ {bin— el [t = 5 (ban)] — o — il 1~ 55 ()]} .
n=n+1

The first term in the last expression equals the profit Supplicr ¢ would obtain
if all of his units were bid in at the same price b;z. The second term is. clearly
negative: it is always profitable to increase offer prices on units that will be
despatched with probability 1. The last term is negative also. To see this,
note that if F; is the mixed-strategy corresponding to an equilibrium in

which supplier 4 offers all units at the same price, it must satisfy

mi(k) = [b — ] {F;(b;) min {k;, max {0 — k;,0}}
+[t = Fj (b}l min {k;, 0}} = 7,
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where 7; is some constant. Consider two offer prices 3> bon the support

of F;. Then

= {[p-o] 5 b) [b Q] v(’é)}mm{k,-,max{‘ewj,ou
(e -5 ] - -o] -5 @)} min i)
{B-e] (-5 0)] - e -5 ()] prin s

v

where the inequality follows from the observation that [b — ¢;] F; (b} is in-
creasing in b (the inequality is strict if & > k;). In the case that 6 < kj,

supplier s profits simplify to

N;
mi (bi) = E [bin — €] [1 — Fj (bin)] Kins
n=1

and so we can a apply a similar argument to the one immediately above to
demonstrate that profits are maximized for b = bjp = ... = by, = b;. We
conclude that for supplier 7 to offer all capacity at a single price is a best
response to F;. Q.E.D.

Proof of Proposition 4.4

Let K, = Y ;_, ki be the accumulated capacity of the s most efficient
suppliers and K% = K, — k;, i < s, the accumulated capacity of the s most
efficient suppliers not including supplier i. Note first that accepted price
offers cannot exceed ¢, if 8 < min;<, { K; "}, To see this, suppose that the
highest accepted price offer were indeed b > ¢;. Since at most one supplier

will offer b with positive probability, all other supplicrs ¢ # s, ¢; < b, will
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price below b. But then, since § < min;<, { K ;“'} a price offer of b will never
be accepted. It follows that min,<, { K5} is a lower bound for 6, .

Consider next events in which 8 > K, 3. Then, since supplier s never
price below c,, any supplier ¢ < s who offers b; < ¢, will be accepted with
probability 1 and despatched at full capacity. It follows that there cannot
exist an equilibrium in which some supplier accepts to be paid a price below
¢y. Furthermore, if ¢, < cyy1, 0r s = 8 (so 8 > Kg_), supplier s will price
above ¢, with probability 1 and hence suppliers i < s will not accept to be
paid prices equal to ¢, either. Consequently, K,_; is an upper bound for
a,.

Lastly, we observe that min;<, {K," i} = K1 if ks = maxics k; (or

ks > max;<s k;), in which case we must have 5: = 5:- Q.E.D.

Proof of Lemma 4.3

We start by showing that a pure-strategy equilibrium does not exist in
cither auction format. To see this, note first that in a pure-strategy equi-
librium all effective offer prices. (i.e., offers that with positive probability
affect the prices suppliers are paid) must be equal; if not, some supplier
could profitably increase his offer price towards the next higher bid, thereby
increasing profits in the event that this offer is effective without reducing
output in any event. Next, observe that this common price cannot exceed
c; if it did, some supplier could profitably deviate to a slightly lower price,
thereby increasing the expected quantity despatched with only a negligible
effect on the expected price. Lastly, bidding at ¢ cannot constitute an equi-
librinm either, since the supplier with costs equal to ¢ could obtain positive
profits in the event that demand exceeds the capacity of his rival by raising
his offer price.

We next characterize the unique equilibrium for each auction format.

Uniform auction
Let F*(b) = Pr{b; < b} denote the equilibrium mixed-strategy of sup-
plier i, ¢ = 1,2, in the uniform auction, with f*(b) = F}(b), and let S¥
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be the support of F*. Standard arguments imply that S}n S§ = [b*, D),
b > ¢, and that F{* and F}' do not have mass. points on (b*, P).

We focus on the case in which 8 < min {k1,k2} < max{ki, k2} < 6.
Supplier i’s profit, when bidding b, may then be written

8
n®) = FO) [ b-allo-kdGE)

Pl rki 7
+ j{ [ ]g b~ ci] 64G (8) + /{q [-v——c,-]kidG(B-):l dF*(w).

The first term on the right-hand side represents supplier i’s profits in the
event that the rival bids below b, in which case supplier 1 produces a positive
guantity only when demand is above the capacity of the rival. The second
term represcnts supplicr i’s profits in the event that the rival bids above
b. As given by the first element of this term, supplier ¢ will then serve
all demand at his own price when his capacity is sufficient to satisfy all of
demand. On the other hand, and as given by the second element, supplier
. will produce at full capacity and receive a price determined by the rival’s
bid in the event that demand exceeds his capacity.

On (*, P), strategies must satisfy the following differential equations:

] ks
FX(b) L 16— k514G (6) + [1 - F(b)] A " 0dc (6)

ks 0 8
-l £) { J eacor+ [ raco) - [ 10—k (e-)} =0

On the interior of the support of the mixed strategies the net gain from
raising the bid marginally must be zero. The first. element. on the left-hand
side represents the gain to a supplier from the resulting increase in the price
received in the event that demand exceeds the capacity of the rival and

the rival bids below. The. second element represents. the gain to a supplier
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from the resulting increase in the price in the event that demand is lower
than his capacity and the rival bids. above. Lastly, the third term represents
the loss from being despatched with a smaller output: in case demand falls
below the supplier’s capacity the loss of output equals total demand; in
case. demand exceeds. the supplier’s. capacity the. loss equals. the difference
between being despatched at full capacity and serving residual demand only
(i.e., ki — [# — k;]). The above expressions may alternatively be written

Aj

70 — = Fr0) =

B
b—g

where

JE 16— k314G (6) - f 4G (6)
13 6dG (6) — 2 10— k] dG (6) — [ 16 — k51 dG (6)
fy 6dG ()
J26dG (6) - fL 16— k] dG(6) - f [6 - k514G (6)

B;

which have solutions

wiy - | Bim@—c)+0] for X =0
F}(b)—{%[b__q_]f\:‘_% for M #AO

where Q;{,Q%, Jj = 1,2, are constants of integration. Note that, if k; < k;,
Bi = B;. Furthermore, 81 = f, and X3 = Xz when k; = k2. Also, if k; < k3,
B; —0as 1k while B; +Aj = 0as 8| k;.

Given the boundary condition F}'(b") = 0, these equations yield the
mixed-strategy distribution functions for b € [b*, P):

B (=) for A;=0,
o= %{ [_%‘;%‘-]Al} for X #0.



Suppose limyp F3'(b) < limgyp F1*(b) = 1 (in the opposite case, i.e. when
limyr p F2(b) < limpyp F2(b). = 1, a corresponding argument can be applied).
Then it is straightforward to verify that b* is given uniquely as

- 2+ [P—cle By for A =0,
= 1
- ez + [P — e [11%3_1]' Hofor A #£0.

Substituting for 5%, we find

1+ﬁ11n(%-_—;12) for A =0,
By [ xa+8y [bocy 1™ g
X}{’l'ﬁfl[P_-ccz;‘} -1} for M #0,

while F} (P) — 1 and, for b € [b%, P),

F¥ (b) =

By ln ( b-g ) for A =X =0,

A
[P-c)e Pltm—a

Fy (b) =
B}y b—e1
Lp—cﬂl

A2 )
Bl 13y
*1+81] +ez—a1

Az
:l‘ -1 for A1, A2 #0.

Equilibrium profits become

) Y]
7r’1‘=[P—c1]{Pr(bz<P)/

]
[6 — ko] G (6) + Pr (b2 = P) / min (8, k1) dG (6)} )
k2 ok

g
= [P—cz]/)c 16 — k1] 4G (6),

where

Pr(by < P) = lim F5 (b).
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Symmetric Capacities: When ky = kz =k and 0 =¢; < ¢z = ¢, one can

show that we must have limy;p F3(b) < limyrp FF(b) = 1 and so we find

1
ct+[P-d [52]" for A#0
1+ﬂln(1’;fc) for A=0
F(b) = g fxeg [5-c]?
A{ 5 [2=<] —1} for X#£0
Bln ——"_1—-) for A=0
[P—cle® +c/ R
_ , be ", P),
Fy (b) = § ——b | —13 for X#D
(Pl [xf5] "+
L L, o=P
where
g k
B Ji 6 K1dG (8) — [5 6dG (8)
J5 64G (8) — 2 [ [ - K] 4G (8)
j;BdG(G-)
fy 4G (6) - 2 J{ 16 - K] 4G (6)
Furthermore,

a a
w‘f:P{Pr(bg<P)/k {e-k]da(e)wr(bz:m/a min(@,k)dG(Q)},

)
wg=(1>-c]/k (6 — k] dG (9) .

Consequently, at equilibrium the low-cost supplier bids more aggres-

sively than the high-cost. supplier; in particular, the strategy of the low-cost
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supplier stochastically first-order dominates the strategy of the high-cost
supplier.
Again, B — 0 (while X # 0) as 8 7 k. In particular,

Imb" =¢,
o1k
b—clt
. rwsey
%E:Fl () = [P——c]

. 0,b< P
B&‘Eg(b)*{ 1,b=P

lim 7} = Pk,
o1k

limnf = [P J [E6 - k],

where we have used the fact that limgyy ij 6dG(6) =E6#. Consequently,

as the probability that demand falls below the capacity of an individual

supplier goes to zero, equilibrium approaches something with the favour

of the equilibrium found for high-demand realizations, with the high-cost

supplier bidding at P and the low-cost supplier mixing over a range between

c and P so as to make undercutting by the high-cost supplier unprofitable.
Also, B->1and X > 1 as 8 | k. In particular,

limd* =c,
ik

lim F(5) = 1

blk
EmFp(b) —1-7,b<P
ALk b

lim 7} = cE8

oLk

im7y =0,
alk

where we have used the fact that Limg, f;k 6dG (8) = Ef. Consequently,
as the probability that demand exceeds the capacity of am individual sup-
plier goes to zero, equilibrium approaches something with the flavour of the
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Bertrand-like equilibrium found for low-demand realizations, with the low-
cost supplier bidding at the cost of the high-cost supplier and the high-cost

supplier mixing between ¢ and P (with a mass point at P).

Symmetric costs: When ¢; = ez = 0 and k; < kg, we again must have
limyy p F3'(B) < limyyp F1'(B) = 1 and so

" Pe'ﬁl'f for =0
- 1
L4 B N1
P[iﬁlﬁf]l for M #0
1+ B In(}) for X =0
Fr () = At A
1 { %{ Mathy (2] 1_1]} for A #£0
faln (p_bﬁ_-r for X =X=0
e Pl
h 1be[_b.u1P)
¥ (b) = [ M4By]%7 (a1
7 (b) %{[_%1&] (2] ul} for AM,D2#0
1,b=P

nf:P{Pr(b,<P)L [B—kg}dG(B)+Pr(b2=P)/9 min(ﬁ,k;)dG(&)},

')
=P [ [6-k]dG().
K1

Consequently, at equilibrium the smaller supplier bids more aggressively
than the larger supplier; in particular, the strategy of the smaller supplier
stochastically first-order dominates the strategy of the larger supplier.

In the Limit,

lim F2(b) =0, b< P
otk 2 ()

lim n¥% = Pk
otm ! !

im 7y = P{E6— k
ngIE"rZ [ 1])
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where we have used the fact that limgrz, f,f; 0dG () =E8. Cousequently, as
the probability that demand falls below the capacity of the smaller supplier
goes to zere, equilibrium approaches something with the flavour of the high-
low bidding equilibrium found for high-demand realizations, with the larger
supplier bidding at P and the smaller supplier mixing over a range below P

so as to make undercutting by the larger supplier unprofitable.

Symmetric costs and capacities: When ki =ka =k and ¢ = co =0, we
have F!(b) = F#(b) and so we find

b Pe—-% fOl' /\=0
oo 1
. 148 (} for A=0
F () = z(b)“{ g{%ﬁ[%]’\—l} for A#0
)
nt=wi=P | [0-kdG().

Discriminatory auction

Let. F2(b) = Pr {b; < b} denote the equilibrium mixed-strategy of sup-
plier 7, ¢ = 1,2, in the discriminatory auction, and let Sg be the support
of F? and f3(b) its density function. Standard arguments imply that S¢n
5¢ = [éd, P}, b > ¢, and that Ff¥ and F¢ do not have mass points on
(64, P).

Again we focus on the case in which 8 < min {k;, k2} < max {k1,k2} < 6.

Supplier i’s profit, when bidding b, may then be written

a
ni(e) = [b—q]{Fﬂb) [ -k1a66)

| /0 ® 0dG (6) + | /k _ak;de (9)]}.

+ - Fie)
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A necessary condition for supplier i to be indifferent between any price
in S is.that, for all b € 8¢, n¢(b) = 7¢, implying

J3 64G (6) = [7 10— k] dG (6) -
J3 64 (6) ~ {16~ ki G (6) ~ f{ I8 ki) dG (6)

FAb) =

3

Observe that the boundary condition FJ‘TI(?_)d) = 0 implies

=] | [ oo [[o-snaca)]

and so
F}d(b) ‘‘‘‘ fa GdG(H) fk 6 — k, dG(G) b—p?
J3 684G (6) - [ 16— K1 dG (6) — fo 16— k;1dG (6)°
We have

- fo 6dG (6) - [2 (6 — k1] dG (6)
b= o < jg 84G (6) — jk ke] 4G (8)

F(b) 2 F{(b) <

Suppose Fd(b) > Fg(b) (in the opposite case a corresponding argument to
the following may be applied). Then we cannot have limyrp F§(b) = 1 since
this would imply lims;p FZ(b) > 1. Consequently, we have the boundary
condition limy; p FZ(P) = 1, which implies

w= 1Pl [ 0~ k16,

K1

and, together with the condition F¥(b%) =0,

129



2 10— ki]de (6)

B=c+[P—c)] = = —.
£26dG (8) — [, 16— kol G (8)

Equilibrium profits become
) g
71"{ = [P - cl] {Pr (bz < P)/ [9 — kz] dG (9) + Pr (bz = P)/ min (9, k])dG (9) s
. ka ,QA -

']
g = [P—cz]/kl (@ — k1] dG (6),
where
P — ¢, [ 6dG(6) — [l (6~ k1] dG (6)
P~a B oag(6) - 7 16~ ko) dc (8)

— Lm F9 (b) =
Pr(b; < P) = lgTr}r;Fz (b) =

Symmetric capacities: When k) =kz =kand 0 =¢; < g =¢, F{b) >
Fg(b) and so we find

[E10 - k4G (9)
JEoda(0) - [P 10— K dG(8)

| /g * 04 (60) + /k ’ hac (o)]j ,

7
78 =[P —d /k [6— k]d6 (6).

W=c+[P-

)
77‘11=[P—c]/k [0 —Kk]dG (0)+ ¢

Consequently, at equilibrium the low-cost supplier bids more aggressively
than the high-cost supplier; in particular, the strategy of the low-cost sup-
plier first-order stochastically dominates that of the high-cost supplier.

In the Limit, we find
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81k kE
ko b—1b?

. d —

bm FY (0) = 5 —gp 5= o

I , G=F

E__b-b?
lime_(b)={ %95 > °<P
81k

= [P - | [E@ — k] + ck,

Conscguently, when the probability that demand falls below the capacity
of any individual supplier goes. to. zero, equilibrium approaches the mixed-
strategy equilibrium for high-demand realizations.

Furthermore,

lmd? =,
Lk
lim F (b) =1,
8k
. pdgy_ J 1—Fb<P
lim7¢ = k9,
61k
}jmﬁg =0.
Lk

Hence, as the probability that demand exceeds the capacity of an indi-
vidual supplier goes.to. zero, equilibrium approaches the Bertrand-like equi-
librium for low-demand realizations, with the low-cost supplier bidding at
the cost of the high-cost supplier and the high-cost supplier mixing between
cand P (with a mass point at P)..

Symmetric costs: When ¢; = ¢; = 0 and k; < kg, FE(b) > Fg(b) and so
we find
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J2 16— ki) dG (6)
JZ6dG (6) — [2 16 - k2] 4G (6)

7 S
i = p [ 10— ki dg (g) 222200 = I O~ BIAG @)

=P

s J2 6dG (8) — f2 (6 — K2} dG(6)
g
7= P/ [6 — k1] dG (8)
k1
In the limit,
lim b? = P EEG'_ al
b1k Ef — [, [0 — k2] dG ()
. 0 — f2 16— k;]dG (6) b — pe
lim 72 6) = Jiy L
8 k1 — fo 6 — k2] dG (8)

Bm FE(b) ={ k-Jilo~kalace) ° ’

otk 3 =P
k1

Ef — [¢ (6~ ka|dG (8)

- d_ a g
é}ix]g. 7§ = P[E8 — k1]

lim 7= P[Ef—k
Qmﬁl [ 1)

Again, when the probability that demand falls below the capacity of any
individual supplier goes. to. zero, equilibrium approaches the mixed-strategy
equilibrium for high-demand realizations.

Furthermore,
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i [0~ k1) dG (0)

lim b% =
Bl Ef
. . Ef h— o
hn;.Ff (b) = = 5
8k E6— [2[6 - k1] dG (8)
fim FA(B) — 4 L i P
i w2 (hY = b ’
lm 5 (6) 1, b=P
k2 E6— (7 [0 ki]dG (6
limad=P / [6 — k1] dG (6) Jiy 0~ k] 4G (6)
Blhs k1 Ef
k2
Imns=P [ [0-FE]dG(#)
Blkz ks

Consequently, as the probability that demand exceeds the capacity of
the larger supplier goes to. zero, equilibrinm. approaches the mixed-strategy
equilibrium for high-demand realizations, with the smaller supplier bidding
- more aggressively.

" Symmetric capacities and costs: When k; = kp = kand ¢; = ¢z = 0,
Fg(b) = Fg(b) and so we find

f2 16— k1dG (0)

bd = = = ’
T Jp6dG(8) - [ 10— K| dG(6)

J26dG (6) - [T 16 - K dG () [1 r 1816 - K d6 (8) }

Fi(b) = F(b) = = = -7 3
1) =50 G 6) -2 [Fl9—KldG(e) | b [ edc(8) - [ 6 K dG (6)

wf:w%:P/:[e—k]dG(e).

Q.E.D.

Proof of Propesition 4.6

Uniform auction format: With short-lived bids total payments to.suppli-
ers equal zero for Jow-demand realizations and P@ for high-demand realiza-
tions, and so overall expected payments equal ERY = PE {8 | 8 > k} C (k).
With long-lived bids, for given demand realization 6, total payments. equal
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2P max {# — k,0}, and so in expected terms we have ER}! — 2P [E {8 | 6 > k} — k] G (k).

From these expressions we find

ER*- ER'*=P[E{8|8>k} - 2] G (k) < 0.

Discriminatory auction format: With short-lived hids total payments
to suppliers equal zero. for low-demand realizations and 2P [f — k]for high-
demand realizations, and so overall expected payments equal

ER? =2P[E{#|8 >k} — k] G (k). With long-lived bids, for given de-
mand realization 8, total payments equal 2P max {6 —k,0}, and so- in ex-
pected terms we have ER = 2P[E {6 |6 >k} — k|G (k) = ERZ. Q.E.D.
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