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A bstract

In 1974, Merton wrote a seminal paper (Merton 1974) that explained how the then 

recently presented Black-Scholes model could be applied to the pricing of corporate 

debt. Many extensions of this model followed. The family of models is sometimes 

referred to as the family of structural models of corporate bond prices. It has found 

applications in bond pricing and risk management, but appears to have a more mixed 

empirical record than the so-called reduced-form models (e.g. Duffie and Singleton 

1999), and is often considered imprecise. As a consequence, it is often avoided in 

pricing and hedging applications.

This thesis examines three possible avenues for improving the performance of 

structural models:

1. Strategic interaction between debtors: Possible “Coordination failures” - races 

to recover value that can dismember firms - are a very important form of strate­

gic interaction between debtors that can have a large influence on the value of 

debt.

2. The econometrics of structural models: The classic “calibration” methodology 

widely employed in the literature is an ad-hoc procedure that has severe prob­

lems from an econometric perspective. This thesis proposes a filtering-based 

approach instead that is demonstrably superior.

3. The non-default component of spreads: Corporate bond prices most probably 

do not only represent credit risk, but also other types of risk (e.g. liquidity risk). 

This thesis attempts to quantify and assess this non-default component.
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Chapter 1

Introduction

In 1974, Merton wrote a seminal paper (Merton 1974) that explained how the then 

recently presented Black-Scholes model (Black and Scholes 1973) could be applied to 

the pricing of corporate debt. Viewing equity and debt as options on the underlying 

assets of the firm allows the use of the Black-Scholes option pricing calculus for valua­

tion. Many extensions to this model followed. These models, which price bonds with 

reference to the structure of a firm’s liabilities are sometimes referred to as structural 

models of corporate bond prices.

1.1 A  short survey o f structural m odels

In the Merton (1974) model, the assumptions are parallel to those in the (Black and 

Scholes 1973) paper: The underlying (in this case the value of assets) is assumed to 

follow a geometric Brownian motion:

dV = fiVdt +  a V d W  (1.1)
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This asset value is assumed to be traded. There exist two contingent claims on this 

asset value: The firms’ debt is assumed to be a zero coupon bond with maturity T  

and a face value D. At the maturity of the bond, the firm is wound down, if Vt < D, 

all assets are given to bondholders, if Vt > D , the bondholders receive 2), and the 

equity holders (as the residual claimants) receive the rest. If the other assumptions 

of Black and Scholes hold, equity is essentially a call option on the assets with payoff 

max(0, Vt — D), and the bond is essentially the value of assets minus that call (or, 

equivalently, risk-free debt minus a put) with payoff min(Vr,D).  Hence the equity 

pricing function is simply

Fe (t, V, D , a ,T  ~  t) = VN(ch) -  De~^T- t)N(d2) (1.2)

where

log(V/D)  +  (r +  p 2) (T -  t)
dl ~ ^vr=i (L3)

d2 =  di =  (jyjT — t (1.4)

and N ( ’) is the cumulative normal distribution function.

The price of debt is given by

Fe(f, V ,D ,< r ,T - t )  = V -  FE{t, V, D , a , T - 1 ) (1.5)

Of course, in order to apply the Black Scholes calculus, many simplifying assump­

tions are made. Many extensions have been proposed that deal with relaxing some of 

the assumptions.
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1.1.1 Default before m aturity

The model has been extended to take into account e.g. sub-ordination arrangements, 

indenture provisions and default before maturity (Black and Cox 1976). In the original 

Merton model, since the aggregate debt of the firm is seen as a zero-coupon bond, 

default can only occur when a payment is supposed to be made: at the maturity of 

the zero-coupon bond. One important step towards making the model more realistic 

is allowing for default before the maturity of aggregate debt. Black and Cox show 

how to price a bond when there is a net worth covenant which is violated when the 

asset value falls below a specified level. Since working out default probabilities in 

this case is dual to calculating first passage times, models incorporating this feature 

are sometimes called “First Passage Models” . In this context, bonds are viewed as 

a type of barrier option, and the same pricing principles apply. Barriers can be 

fixed, exponentially growing or stochastic and the corresponding prices can easily be 

calculated - as long as a transformation of the asset value and the barrier process is 

a Brownian motion.

1.1.2 Endogenous barriers

In the context of a First Passage Model, the barrier can also be made endogenous. 

For example, Leland (1994) assumes the firm chooses the barrier to maximise firm 

value, and calculates the prices of debt and equity in a time-homogenous setting. This 

was extended by Leland and Toft (1996) to the case where the firm also chooses the 

maturity of its debt.

An endogenous barrier does not have to be an optimal choice, it can also be the 

outcome of a game. Anderson and Sundaresan (1996) and Mella-Barral and Perraudin
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(1997) for example look at a situation in which equity holders strategically choose 

when to service a firm’s debt. Given bankruptcy costs, it is not necessarily optimal 

for holders of debt to foreclose as soon coupon payments are (partially) missed. This 

can be exploited by holders of equity. Anderson and Sundaresan present a binomial 

model, and Mella-Barral and Perraudin provide closed-form solutions based on a 

time-homogeneous continuous time model.

1.1.3 Coupons

An extension of the basic model to bonds that pay a continuous coupon is relatively 

straightforward. However, most bonds pay coupons at discrete times. Black and 

Scholes noted in passing that valuing coupon bonds is similar to valuing compound 

options. At a coupon date, equity holders have the option to obtain the future value 

of dividend streams by paying the coupon. Geske (1977) (cf. also Geske 1979) exam­

ined this problem, and showed how the resulting price can be calculated recursively, 

and suggested a procedure for reducing the dimensionality of the resulting multidi­

mensional integral. It is clear, though, that this method of valuing coupon bonds can 

become intractable very quickly as the number of coupons rises.

1.1.4 Stochastic risk-free rates

It has also been argued that the assumption of constant flat interest rates as initially 

made in the Black-Scholes model is especially inappropriate when valuing bonds, 

and the model has been extended to take into account stochastic interest rates. Kim, 

Ramaswamy, and Sundaresan (1993) extend a structural model by introducing a mean 

reverting square root short rate process, whereas Longstaff and Schwartz (1995) and
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Briys and de Varenne (1997) use a mean reverting Gaussian or Vasicek process for 

the short rate. Of the two, Briys and de Varenne (1997) specify a more general 

version where parameters are time dependent. Kim, Ramaswamy, and Sundaresan 

(1993) report that the short rate has very little influence on credit spreads, whereas 

Longstaff and Schwartz (1995) conclude that the 30 year treasury yield and the credit 

spread are negatively correlated, and that this correlation can be economically and 

statistically significant. Of course, the level of interest rates could also have an effect 

on the level of the default barrier, providing a further refinement to the model (Collin- 

Dufresne and Goldstein 2001b).

1.1.5 Reduced information sets

Lastly, for all structural models in which the underlying asset value as well as the 

default point is perfectly observed, defaults will be predictable in the sense that the 

instantaneous default probability over a time interval that shrinks to zero also tends 

to zero. In the absence of components in bond returns that are not related to default 

(such as a liquidity risk premia, which are typically outside the scope of structural 

models), this implies that the credit spreads predicted by these structural models 

also tend to zero. This does not seem to be the case empirically, so several ways of 

increasing predicted spreads at the short end of the credit spread term structure have 

been devised. Duffie and Lando (2001) propose assuming that the asset value process 

is not perfectly observed by bondholders - this increases the default probabilities 

(conditioned on the information set of the bondholders) at the short end, and hence 

raises spreads. Alternatively, the level of the default barrier can be unknown (Finger 

et al. 2002, Giesecke 2004, Giesecke and Goldberg 2004). To produce a similar effect,
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one can also incorporate jumps in the asset value process (Zhou 2001, Hilberink and 

Rogers 2002).

1.2 Suitab le structural m odels for bond pricing

Many of the aforementioned models give important qualitative insights. However, the 

models are typically not easily and consistently implemented empirically. Ericsson 

and Reneby (2002b) suggest combining several elements to arrive at a very tractable 

structural model. Given that equity typically does not expire, it makes sense to treat 

it as a perpetuity. An alternative to modelling the typically very complicated debt 

structure of a firm, including differences of seniority of different layers of debt, as well 

as differences in maturities, and covenants, embedded optionality and complicated 

repayment schedules is to choose a simple model for aggregate debt that treats it as 

a perpetuity, and treat any one claim that is to be priced as a negligible proportion 

of aggregate debt. This avoids the compound-optionality problems in pricing (Geske 

1977).

These capital structure assumptions greatly simplify pricing, and are also more 

realistic than assuming that the bond being priced represents the entire debt of a firm 

as in the original Merton (1974) model. For example, this assumption is particularly 

troublesome when attempting to price several bonds issued by the same firm.

This kind of model was first proposed by Ericsson and Reneby (2002b), who derive 

an endogenous default barrier in a manner similar to Leland (1994). Since the exact 

choice of barrier is often not important for prices, as argued by e.g. Longstaff and 

Schwartz (1995), their assumptions make for an empirically very tractable version 

of the first passage model that is likely to produce very similar prices to other first
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passage models.

1.3 T he em pirical track record o f structural m od­

els

Versions of structural models have found important applications in risk management, 

(e.g. the KMV EDF™  methodology Crosbie and Bohn 2002). KMV use distances- 

to-default calculated from structural models (differences between an estimated asset 

value and a default point, standardised by asset value volatility), and compares these 

to actual default frequencies. This allows predicting probabilities of default for a given 

distance-to-default.

There have been attempts to use structural models in pricing and hedging appli­

cations, such as the CreditGrades™ model (Finger et al. 2002), but these attempts 

usually fare quite badly and produce very large prediction errors and biases (in the 

author’s evaluation this is certainly the case for CreditGrades™ ). As a consequence, 

for the pricing of credit derivatives or bonds, structural models do not seem to be the 

preferred choice.

Although Anderson and Sundaresan (2000) show that the variation in corporate 

bond yields seems to be well partly explained by the variables suggested by structural 

models, and that there is some support for the strategic debt service models over the 

alternatives, it is not clear whether structural models are appropriate for pricing.

There is evidence, for instance, that the simplest structural model (the original 

(Merton 1974) model) seems to require implausibly high volatilities to generate rea­

sonable bond prices. Alternatively, for realistic volatilities, the model appears to over­
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predict bond prices and to underpredict spreads (Jones, Mason, and Rosenfeld 1984).

In their comparison of the Merton (1974), Geske (1977), Longstaff and Schwartz 

(1995), Leland and Toft (1996) and Collin-Dufresne and Goldstein (2001b) models, 

Eom, Helwege, and Huang (2004) conclude that only the basic Merton (1974) model 

underpredicts spreads, whereas most other models overpredict spreads for risky bonds, 

and underpredict spreads for safe bonds. Crucially, they state that the spread pre­

diction errors are substantial in all cases, presumably precluding their use in pricing 

applications.

The term “structural models” is often used in contrast to so-called reduced form 

models, pioneered by Jarrow and Turnbull (1995) that simply posit a process de­

scribing the evolution of the (instantaneous) probability of default. These models are 

more tractable empirically speaking, and seem to match observed bond spreads quite 

well when implemented (Duffee 1999), possibly because they impose less structure, 

and because possibly factors like liquidity risk or tax rates can be subsumed into 

the hazard rate estimates. Consequently, they are often the model of choice when 

practitioners hedge one credit derivative in terms of other credit derivatives.

However, in many applications where the focus is on both credit and the prices of 

equity, structural models seem a natural and intuitive choice, as they clearly relate 

both of these via the balance sheet. An example of such an application would be a 

hedge fund selling a credit default swap, and trying to hedge itself by selling equity. 

In order to do that, the bank would need to know the “Greeks” or the derivatives of 

the price of the credit default swap with respect to equity, which a structural model 

produces quite naturally. Since with very few exceptions (Mamaysky 2002), reduced- 

form models do not produce an explicit link between the price of equity and the price 

of the bond, they are not suitable for the above application. Schaefer and Strebulaev
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(2003) indicate that for this purpose, even the simple Merton model might do rather 

well, although they do not discuss how to actually implement a working hedge.

In addition, due to the link that structural models provide between equity and 

credit, they allow estimation of models from equity prices as well as from bond prices. 

This is especially important if hedging parameters or predicted prices are desired, but 

there are insufficient bonds or credit derivatives to estimate reduced-form models.

1.4 Im proving structural m odels

The underprediction of spreads by structural models has produced three distinct re­

actions attempting to explain the failure of structural models to produce reasonable 

spreads and prices for reasonable volatilities.

1. Mella-Barral and Perraudin (1997) for example argue that strategic debt service 

will (ceteris paribus) reduce the value of debt (including high-quality debt), and 

therefore has the potential for explaining some of the apparent problems of the 

original model. In essence, any feature that will lower the value of payoffs to 

bondholders vis-a-vis equity holders or increase the probability of default will 

mean that a bond being priced in terms of the corresponding equity price will 

have a higher spread. Other models that have this effect are e.g. the ones 

proposed by Duffie and Lando (2001) or Zhou (2001). This approach would 

suggest that the underprediction of the spread is a result of the assumed payoffs 

being too high, or the calculated default probabilities being to low.

2. Another approach is to argue that the implementation of structural models (e.g. 

the canonical implementation of Jones, Mason, and Rosenfeld 1984), has so far

19



been flawed, and that better estimation methods will improve the predicted bond 

prices and spreads (Duan, Gauthier, Simonato, and Zaanoun 2003, Ericsson and 

Reneby 2005).

3. Another idea is that maybe structural models produce reasonable predictions 

for the default-related components of corporate bond spreads, but that there 

are components of the spread that are not related to default (Delianedis and 

Geske 2001). These might be related to taxes or liquidity risk, for example.

1.5 A  research agenda

In this vein, this thesis attempts to contribute to our understanding of structural 

models, re-iterate that they are useful in understanding important issues, and improve 

their specification and estimation to the point where they can be used for applications 

like the one described above. In particular, it addresses the following issues (in this 

order):

1. Strategic interaction between debtors and default

Modelling the incidence of default, bankruptcy and liquidation is of course very 

important to the resulting bond prices. To summarise the above discussion, 

the following ways of describing the incidence of default and/or bankruptcy and 

liquidation have been proposed:

(a) Default can occur only at the time when aggregate debt matures, provided 

assets are insufficient to pay off bondholders (Merton 1974). This model 

blurs the boundaries between default, bankruptcy and liquidation by as­

suming that at the maturity of debt and equity, the firm is liquidated in
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any case.

(b) A violation of the debt contract occurs when assets fall below a level spec­

ified by a net worth covenant (Black and Cox 1976). At this point, pre­

sumably debt-holders can attem pt to enforce their claims, and the firm 

will enter bankruptcy. At this point, being controlled by debt-holders, the 

firm will be liquidated. An alternative to motivating a default barrier in 

this context is to assume that cash flow is proportional to assets, and as­

sume that the amount needed to service aggregate debt is constant (e.g. 

proportional to the notional value of aggregate debt). Also, assume that 

the firm will not be able to issue equity to stave off default. Then default 

on payments will occur when the asset value falls below the level at which 

the generated cash flow is insufficient to cover payments. This will again 

allow debt-holders to attempt to enforce their claims with the same result 

as above.

(c) The firm can optimally choose a level of assets, such that when that level 

is reached, it voluntarily goes into bankruptcy. Optimality here could be 

defined e.g. in terms of maximising firm value (Leland 1994). This is an 

alternative way of motivating a default barrier.

(d) Equity holders strategically choose whether or not to service debt (Anderson 

and Sundaresan 1996, Mella-Barral and Perraudin 1997). Given the level 

of coupons the holders of equity choose to pay, debt-holders can decide 

whether to enforce claims and to push the firm into bankruptcy or not. 

Equity holders can pay less than the promised coupon in equilibrium if 

they have a sufficient amount of bargaining power.
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Of these alternatives, the last one can lead to (ceteris paribus) lower bond prices 

(and hence higher spreads) by lowering the payoffs of bondholders, possibly 

improving the empirical fit of structural models.

If creditors are dispersed and are unsure about the actions of other creditors, 

they might not always agree on when to enforce claims once they are given the 

option to to so, however.

This possibility is explored in chapter 2. Suppose that either a net-worth 

covenant exists as in Black and Cox (1976) or equivalently, a cash flow covenant 

exists (and cash flows are proportional to the value of assets as above). Further­

more assume that due to cross-default clauses, if a covenant on a small part of 

aggregate debt is violated, technically the firm is considered to be in violation 

of all debt contracts. Often in a situation like this, the firm is not immediately 

liquidated. Typically, firms keep operating for a period until a sufficiently large 

number of creditor actually decides to enforce claims, at which point the firm 

is forced to declare bankruptcy. In these kind of situations, races to grab assets 

and failures to coordinate between different creditors can exist and are indeed 

likely. These will have an effect on the point at which bankruptcy (as opposed 

to default or a covenant violation) actually occurs, and hence will affect the 

price of debt (Morris and Shin 2004a).

It is possible to derive a bond price for a firm in this kind of situation in the 

context of a structural model, as shown in chapter 2. Comparisons to other 

structural models, in particular the Merton and Black Cox models can be made. 

Since coordination failures mean that bankruptcy is not triggered at the socially 

optimal point, bond prices will be lower than in the absence of coordination
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failures. If bankruptcy costs are increased by legal wrangling over claims by 

dispersed creditors, then clearly this will reinforce the conclusion of a lower 

price.

2. The econom etrics o f structural m odels

In practical applications, it is of course not only important to have good the­

oretical models, but that the implementation is done in an efficient manner. 

Some shortcomings in existing methods for estimating structural models are 

apparent. Although the proposed methods often serve well to obtain a reason­

able first approximation, they often lack an econometric basis, i.e. there is no 

reason to believe that they are particularly efficient. Actually, most are demon­

strably inefficient to a degree that it is not surprising that structural models 

are not chosen in the types of hedging applications described above. A filtering- 

based approach that can provide more precise estimates, more reliable predicted 

densities and can include more types of information (such as prices of several 

assets, accounting information, etc), as well as giving a natural framework for 

easily dealing with non-default related components in asset prices is proposed 

in chapter 3.

3. The non-default com ponent of spreads

Lastly, as argued above, the underprediction of corporate bond spreads (es­

pecially for short maturity bonds), which seems to occur for many models 

even with efficient estimation methods could be a result of non-default re­

lated risk factors that have an impact on corporate bond prices (Delianedis 

and Geske 2001, Longstaff, Mithal, and Neis 2004).

This is an alternative explanation of the underprediction - it could either be a
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result of existing models underpredicting the default component of the spread, 

or it could be a result of models correctly predicting the default component, but 

ignoring the fact that there are other (e.g. liquidity) components in spreads.

A very simple empirical approach for integrating a non-default related compo­

nent is proposed in chapter 4. It is shown that including a simple linear non­

default component improves out-of-sample predictions substantially, that the 

non-default component is related to various variables associated with market- 

wide liquidity, and that the relationship of these variables to the non-default 

component appears to vary cross-sectionally.

All these points can be seen as an attempt to improve the empirical performance 

of structural models, and are therefore a step in the direction of making structural 

models more appropriate in hedging and pricing applications.

A summary of conclusions and an outlook for future research is given in chapter

5.
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Chapter 2

Corporate bond prices and 

coordination failure

2.1 In troduction

Morris and Shin (2004a) (cf. also Morris and Shin 2000) argue that coordination 

failure among creditors can have an effect on the price of debt. The problem of 

coordination failure is akin to the problem faced by depositors of a bank which is 

vulnerable to a run. Even if it is not efficient to foreclose on a loan or grab assets, 

e.g. when the debtor is fundamentally viable, fear that other creditors may foreclose 

or grab assets can lead to preemptive action and inefficient foreclosure or to a viable 

firm being pushed into bankruptcy.

In general, coordination failures can arise among creditors in a context where it is 

possible for individual creditors to improve their position vis-a-vis the firm at the cost 

of other creditors (i.e. in a situation with strategic complementarities between the 

different lenders). This is the case for example if creditors can foreclose individually,
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leaving other creditors exposed to a firm with lower liquidity, or for instance if some 

creditors will be able to grab assets in the case of financial difficulties at the expense 

of other creditors.

Of course, bankruptcy codes will generally try  to prevent coordination failures 

(cf. e.g. Baird and Jackson 1990, Jackson 1986). There are many countries in which 

bankruptcy codes are not developed or not legally enforced, such that coordination 

failures arise naturally. But even in countries with developed and enforced bankruptcy 

codes and systems, coordination failures can occur. Since the US bankruptcy system 

is an important example of a country with a developed and enforced bankruptcy 

system, the possible incidence of coordination failures in the US will be discussed 

below.

Morris and Shin (2004a) model coordination failure as a function of a fundamental 

variable in a simple static model. The fundamental variable could easily be interpreted 

as the asset value of a firm. This naturally suggests using a structural model (as 

pioneered by Merton 1974) to price the debt as derivatives on the underlying asset 

value, in order to allow comparisons to other structural models.

As mentioned in chapter 1, game theoretic considerations have been integrated into 

corporate bond pricing in the context of a situation in which equity holders strate­

gically choose when to service a firm’s debt (Anderson and Sundaresan 1996, Mella- 

Barral and Perraudin 1997). In these models, holders of debt act in a coordinated 

manner to decide whether or not to push the firm into bankruptcy, given the offer of 

equity holders.

The model presented here examines a different situation. It focuses on creditors, 

and assumes that they are dispersed, and are uncertain about the actions of other 

debtholders. It examines the resulting strategic situation and its implications for bond
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pricing in a continuous time structural model.

A simple discrete time model will be set up that exhibits coordination failures. 

The model will be solved, and the continuous time limit will be taken. Pricing will be 

explored under two different assumptions about the capital structure: Firstly that the 

bond represents the entire debt of the firm (this is the original Merton assumption), 

and under the assumption that the bond represents a negligible proportion of overall 

debt (this yields an empirically more tractable model as discussed in chapter 1).

It will be shown that under the first assumption, the model has the Merton (1974) 

model and the Black and Cox (1976) model as limiting cases, and that the model can 

produce lower bond prices1.

2.2 C oordination  failure in th e  con text o f  strong  

legal frameworks: th e  U S

On a casual examination, it would appear that in the US, for holders of unsecured 

debt, it is not in general possible to seize assets individually once formal bankruptcy 

proceedings (like chapter 7 or chapter 11) have commenced, since these proceedings 

are associated with an automatic stay. However, outside of formal bankruptcy, state 

laws govern what creditors can or cannot do. As opposed to formal bankruptcy, these 

often allow asset grabs, which can push firms into formal bankruptcy. Co-ordination 

failures can therefore occur before bankruptcy. There is a so-called preference system 

in place that is meant to prevent these situations, but it is not clear at all that it is

effective at preventing coordination failures. On top of this, coordination failures can

*As mentioned in chapter 1, this is important in the context of empirical research (e.g. Jones, 
Mason, and Rosenfeld 1984) that seems to indicate that simple structural models tend to overprice 
bonds.
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occur within formal bankruptcy due to secured creditors. They can also occur between 

banks that lend as a syndicate. It is clear that in many situations, coordination failure 

will affect the price of debt. These issues are discussed below in more detail.

2.2.1 Preference

The intersection of state laws and formal bankruptcy is governed by section 547 of 

the Bankruptcy Code: If a creditor manages to grab assets 90 days before the com­

mencement of formal bankruptcy proceedings, the actions of the creditor fall under 

state law, and it will be almost impossible for other creditors to make claims against 

the recovered money. Assets that are grabbed within 90 days of the commencement of 

formal bankruptcy proceedings are governed by section 547 of the Bankruptcy Code. 

This is e.g. described by Neustadter (2002):

In the state system, with some exceptions, the creditor first to obtain 

an interest in the debtor’s property (by obtaining payment or by obtaining 

a judicial, statutory or consensual lien) is entitled to satisfy as much of its 

claim as the value of the property permits before any other creditor may 

satisfy a different claim from the same property. To the winner of the race 

(to the holder of a lien) go the spoils.

In contrast, the bankruptcy system treats unsecured creditors collec­

tively and, with some exceptions, equally, without regard to the position 

that the unsecured creditor held in the race in the state system. The two 

systems are, therefore, fundamentally inconsistent with one another.

Bankr. Code 547 stands at the intersection of the two systems. It 

provides, among other things, that an unsecured creditor who had won
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a race to an interest in the debtor’s property using the state remedies 

system within 90 days of the filing of the bankruptcy petition may have to 

forfeit its winnings (without compensation for any expenses it may have 

incurred in winning the race) for the benefit of all unsecured creditors.

The section therefore prevents certain creditors from being preferred over 

others (hence, section 547 of the Bankruptcy Code is titled “Preferences”).

Preferential transfers are transfers of e.g. cash or right to collateral (a lien) to a 

subgroup of creditors in the 90 days prior to the commencement of formal bankruptcy. 

The trustee can demand that these are returned to the bankruptcy pool, to be shared 

between all creditors. These demands are frequently made, but just as frequently 

challenged, especially in business cases. There are doubts as to whether the preference 

law that stipulates that such demands may be made prevents asset grabs and hence 

coordination failures.

In 1997, the American Bankruptcy Institute conducted a number of surveys of 

preference law practitioners as well as credit providers to evaluate the effectiveness of 

preference law in achieving its two purposes:

1. to “facilitate the prime bankruptcy policy of equality of distribution among 

creditors of the debtor” .

2 . to discourage creditors “from racing to the courthouse to dismember the debtor 

during his slide into bankruptcy” .

See H.R. Rep. No. 595, 95th Cong., 1st Sess. 177-78 (1977). Of course, both of these 

questions are directly related to the possible incidence of coordination failure.

Out of the credit providers, more than half (52.1%) answered that equitable re­

distribution occurred not at all or only a little, and 84.3% said that the preference
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laws penalise providers who attempt to work with a debtor (presumably as opposed 

to  attempting to recover the maximum amount in the shortest possible time). Almost 

three-fourths (73.7 %) said that the objective of “helping a debtor deal with its cred­

itors prior to a bankruptcy filing” was either not met at all or only a little. Answers 

from law practitioners were only slightly less pessimistic.

In the light of this survey, it is not clear that preference law ensures that some 

creditors are not preferred over others, and that creditors will not race to grab assets 

to dismember a financially distressed debtor before formal bankruptcy.

On top of this, in situations were assets are oversecured, holders of the lien may 

assume more debt that can be netted against the collateral. Since this does not 

constitute a transfer in the legal sense (if the loan was oversecured to begin with), 

this cannot legally constitute a preferential transfer and can therefore not even be 

challenged under section 547. It is in fact a perfectly legal way to grab assets.

2.2.2 Secured debt

Note that even once the firm is in formal bankruptcy, secured creditors can of course 

apply for a relief from the stay, and can attempt to seize collateral or to force the 

debtor to make payments as a condition to continuing the stay. Otherwise, their 

collateral would essentially be meaningless. This can affect other creditors in that 

crucial assets can be taken from the firm, or it can affect the debtors ability to service 

other debt.
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2.2.3 Bank loans and covenants

Lastly, most loans that banks make to firms are governed by very restrictive covenants 

that give banks the ability to stop lending or foreclose in typically a very wide range 

of circumstances. For reasons relating to informational asymmetries, banks typically 

choose covenants over interest rates as a way of controlling their risky loans. From 

a practical perspective, covenants allow banks to foreclose at the slightest sign of 

financial trouble. Almost all companies will depend on bank credit of some form in a 

crucial way, even if they depend on markets to raise the bulk of their funds. Firms that 

raise short term cash in the commercial paper market, for instance, will almost always 

have commercial paper backup lines of credit, to have an emergency supply of liquidity 

in situations where they cannot raise money on the commercial paper markets (i.e. 

the kind of situation we are interested in), and indeed banks are uniquely positioned 

to lend in exactly these kind of situations (Gatev and Strahan 2003). This refusing 

to roll over a loan does not constitute an asset grab, it cannot be challenged in formal 

bankruptcy, but can produce coordination failures, in the sense that the refusal of one 

bank to roll over can spell the end of the firm, and can adversely affect the value of 

loans held by other banks/ creditors.

2.2.4 Discussion of the incidence of coordination failure

To conclude this section, it appears that coordination failures are possible even in the 

US, which is often given as an example of a country with a strong legal framework with 

respect to bankruptcy and creditor protection. Given the realities of the preference 

system, they can occur if assets are grabbed before formal bankruptcy, and can indeed 

trigger bankruptcy. They can also occur in the context of secured debt (even during
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formal bankruptcy), and between several banks that are syndicated lenders to a firm.

2.3 T he m odel

2.3.1 The setup

As in the Merton (1974) model, the bond will be priced as a function of the asset 

value process. First, a discrete time game will be set up, where in every period in 

which the firm is vulnerable, creditors have to decide whether or not to attempt to 

grab assets. It will then be possible to derive a critical point for the asset value for

which the firm will just be forced into bankruptcy (the ‘trigger point’). The asset

value changes between periods, such that when the continuous time limit is taken, 

the process will turn out to be a geometric Brownian motion. This will then allow 

us to price the bond as a combination of barrier options on the asset value using 

standard techniques, where the barrier is given by the trigger point.

Capital structure

As discussed in chapter 1, contrary to the original Merton assumption, a bond typ­

ically represents only a very small part of the total liabilities of a firm, and capital 

structures are very complex. In a model, there is a limit to the complexity that 

can be represented successfully. Merton originally assumed that the (zero coupon) 

bond was the only debt of the firm. This makes pricing easy, but makes introducing 

coupons rather hard, raises issues such as what the maturity of equity is, etc. Since 

many models make this assumption, it could be considered a starting point to facil­

itate comparison. However, another assumption that allows for simple pricing but is
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maybe more realistic is to assume that the bond represents a negligible amount of 

total debt. In the following, prices will be derived for both assumptions:

A ssum ption 2. A. The bond represents the entire debt o f the firm . A t m a tu rity  o f the 

bond, the firm  w ill be liquidated ( if  it has not been liquidated early due to bankruptcy).

This is keeping with the original Merton assumption. The bond can be priced 

assuming that it represents all of the firms debt, and that in fact the bondholders as 

the only creditors are prone to coordination failure. This is an unrealistic assumption, 

but the resulting model facilitates comparisons with various earlier models. The 

amount recovered will be endogenously derived.

A ssum ption 2.B. The bond represents a negligible proportion  o f aggregate debt. The 

firm  w ill never be liquidated, unless it goes in to bankruptcy.

Assume that default is determined by the interaction of all creditors who together 

have a claim to the aggregate debt of the firm, and assume that the bond for which 

the price will be derived here constitutes a negligible amount of this aggregate debt. 

This means that when default is discussed, particular features of the bond such as 

maturity and coupon dates can be ignored. Since the exact structure of aggregate 

debt is not interesting (as long as it can produce coordination failure) in this instance, 

assume that it is uniform, pays a continuous coupon and does not mature. Assume 

that bondholders recover a fraction R  of the principal of the bond in case of default.

The actions of agents

Suppose holders of the debt of the firm can grab assets or foreclose individually as 

described above, such that coordination failures can occur. To be precise, assume that
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in every period in which the assets of a firm are below a certain level (which might 

mean that the firm cannot make certain payments, or that covenants are breached), 

the firm is vulnerable and creditors can send out their lawyers to attem pt to grab 

assets. This action has a certain cost associated with it. If enough creditors manage 

to grab assets, the firm is pushed into reorganisation (suppose there is a minimal level 

of assets for the firm to be able to continue operations). If the fraction of creditors 

attempting to grab assets is too low, the firm will not be pushed into reorganisation. 

Suppose that in these cases, grabbing the assets is pointless, as they are worth less 

than the creditor’s original share of the debt of the firm, and creditors will give the 

assets back to the firm. Lawyers will still have to be paid.

Payoffs

Formally, let D denote the face value of aggregate debt, and let L be the critical 

level of assets that defines whether or not a firm is vulnerable (It would be natural to 

assume that L < D). Later, P  will denote the principal/ face value of a bond (in case 

this is not equal to the face value of aggregate debt). If the asset value V  falls below 

L, the firm is vulnerable. L might represent a critical covenant, or the face value of 

liabilities. It might, for example, be a net worth covenant, i.e. a covenant specifying 

that the asset value must stay above a certain value in order for the aggregate debt 

contract not to be violated. If the cash flow produced by the firm is proportional to 

the value of assets, then it could also be a cash flow covenant, specifying that the firm 

must have a minimum cash flow for the aggregate debt contract not to be violated. If 

aggregate debt pays a coupon, the firm might simply not be able to pay this coupon 

if the cash-flow is too low, meaning that it defaults on some payments. In all these 

cases, creditors would legally be in a position to attem pt to secure liens on assets, or
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grab assets.

Note that even if aggregate debt consisted of many different individual claims, if 

all components of aggregate debt had cross-default clauses (as is commonly the case), 

then it does not m atter which particular contract is violated - via the cross-provisions, 

default on one contract would mean a violation of all contracts. To keep the model 

simple here, though, aggregate debt is modelled as being homogenous.

Reorganisation will take place immediately before a time t only when the fraction 

of creditors who decide to grab assets I is larger than or equal to such that it 

will be impossible for the firm to be forced into bankruptcy when Vt > L (the firm 

is not vulnerable). As Vt falls, it becomes easier for creditors to push the firm into 

bankruptcy. Attempting to grab assets produces an immediate cost KVt (proportional 

to the value of the assets). If the firm is pushed into reorganisation, an agent that has 

grabbed assets receives her share of the asset value Vt, whereas agents that have not 

participated receive 0. If the firm is not reorganised, agents that attempted to grab 

assets still incur the costs but both types of agents still hold their share of the debt.

Table 2.1 illustrates the ‘per unit of principal’ payoffs that creditors need to take 

into account when making the decision whether to continue or stop lending.

firm reorganised firm not reorganised
grab assets (1 - K ) V t - K V t
do not grab assets 0 0

Table 2.1: Payoffs to creditors in the discrete time game 

Inform ation content of prices

A necessary ingredient for coordination failure to arise is uncertainty about the actions 

of other agents. W ithout common knowledge of the fundamentals (the asset value
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in our case) of an issuer, agents will not be completely sure of how other agents 

will act. Suppose there is private as well as public information, then provided that 

private information is sufficiently precise in relation to public information, i.e. there is 

sufficient uncertainty about the actions of others, this will create coordination failure.

In a comment on Morris and Shin’s (2000) paper, Atkeson (2000) doubts that the 

coordination failure idea is applicable to pricing debt. He argues that if agents can see 

prices, there will be no coordination failure, because all information will be revealed 

in the prices - there is no role for private information, and hence uncertainty about 

the information of other agents. In the model presented here, there is no trade at the 

time private signals are received and agents act, hence the private information is not 

revealed through trading. Much hinges on the exact timing assumptions.

Suppose tha t agents have to make a decision as to whether or not to grab assets 

after they have received a signal, but before the signals are revealed to all. Subse­

quently, signals are revealed to all, then trading occurs and information is integrated 

into prices. Then there might still be coordination failure, because the private infor­

mation has not been made public at the time when the agents need to act.

Tim ing

Time increments are of size A. At time t , identical agents (the creditors) know the 

asset value of this period, Vt. Later, the number of agents will tend to infinity, and 

they will subsequently be indexed by the unit interval. Relative changes in the asset 

value are normally distributed. The bonds trade at a price B t which incorporates the 

information Vt . Let q denote a time increment that is smaller than A (0 < q < A). 

At t +  <7, agents receive a signal Xi  about the increase in the asset value - subscript i 

indexes the different agents, where the time subscript is omitted to simplify notation.
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They form a posterior given their information. Given their posterior, they make a 

decision as to whether or not to grab assets.

After it has been determined that the firm will not fail in this period, we proceed 

to the next period: Signals are revealed, the asset value is revealed and the price 

B t+a  incorporating all the information Vt+& is formed. As a consequence of these 

timing assumptions, only public information will be incorporated into prices. This is 

important as it allows pricing by standard martingale techniques.

Dynam ics of asset value and signals

The relative increase in the asset value is normally distributed around a drift.

At t + q, agents receive a signal Xi  (subscript i indexes the different agents) about 

the impending change in V,  with the distribution of the signal, conditional on the 

asset value Vt given by

where Cov{rjt^ i )  — 0 , i.e. the noise is orthogonal to the innovations in the asset

signals revealed 
Vt revealed 
trading 
Bt formed

t + Q
no trading
agents receive new signals 
agents form posterior 
agents act
firm fails or does not fail

t + A
signals revealed 
Vt+A revealed 
trading 
Bt+A formed

Figure 2 .1: Timing assumptions

V/.+A — Vt. — U vV tX  +  Vtm, Vt. ~  N I D  ( 0,

N I D  0,
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value.

From the signal X{ and the public information 14, agents form a posterior about 

the value of the firm in period t 4- A, Vt+a  (which is also normally distributed).

2.3.2 The solution

Basic procedure

The model is solved using the procedure as in Morris and Shin (2004a). Suppose 

that agents follow a switching strategy around a certain posterior belief. Given the 

posterior belief around which agents switch, we can work out how many of them will 

grab assets, given the asset value in the next period (posterior beliefs will be centred 

around this asset value in the next period). The critical next-period asset value for 

which the firm will fail (given the belief in this period around which agents switch) 

can therefore be determined. This is the trigger point.

The discrete tim e trigger point

In appendix A .l, the following solution is derived (equation A.21):

-  “  {  7 f  ( t t  - 1 “  w 4 )  +  ^  11 - K ) } (21)

The trigger point Vt* is unique if:

1 a 1 
x/2nVpVt

(cf. appendix A. 1.8 , proposition 1, condition A.l).
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Continuous tim e lim it

Now take the continuous time limit. If we want the asset value process to tend to a 

geometric Brownian motion, we need

lim — =  crlrdt,
A ^ d t  a

i.e. the variance of public information about the innovation in the asset value to be 

proportional to time. So the variance of the innovation is 0(A ), or the precision is

o (£ ) .

Now a sufficient condition for the uniqueness of the equilibrium described in equa­

tion (A.21) in continuous time, regardless of the asset value, the parameter L and the 

face value of debt, is that

j h » ( A2) ’
i.e. that private information becomes more precise at a rate faster than A 2, because 

this ensures that condition (A.l) (s.a.) is always satisfied. This is just to say that 

we need the quality of private information to be sufficiently high in relation to the 

quality of public information in order for agents to be sufficiently uncertain about the 

actions of others to obtain coordination failure. As A —> dt , A 2 —► 0, and hence (3 

grows at a faster rate than a. Consequently, ^  tends to zero, so condition (A.l) will 

be satisfied for any permissible Vt+a- Also, —> 1. The resulting trigger point

equation then reduces to

V* = L ( 1 - K ) .  (2.2)

Note that the solution is constant. If we let the intermediate time period (t +  q)
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tend to the period immediately following it, the firm fails at t whenever V(t)  hits 

L  (1 — K),  i.e. when the asset value is a fraction (1 — K )  of the vulnerability boundary 

(e.g. a covenant). The boundary or trigger point is a decreasing function of the cost 

of attempting to grab assets. Agents are reluctant to grab assets if it is costly for 

them to do so.

Due to the special assumptions about payoffs, this function turns out to be quite 

simple here - it is constant. Of course, one could allow for more general types of costs, 

but these would not in general produce a closed form solution.

The actions o f agents in the continuous tim e lim it

Conditional on the asset value in the next period, the probability that a creditor 

receives a signal which prompts it to stop lending is <f> j  — V*+a) As (3

tends to infinity, this probability tends either to 1 or to 0 for all non-marginal agents. 

What this means is that because all creditors essentially receive the same information 

(as the signal becomes infinitely precise), the agents will either all grab assets, or 

will all refrain from doing so. For any non-marginal creditor, the ex-ante probability 

of grabbing assets when the other creditors do not do so tends to zero. Also, the 

probability of not grabbing assets if all other creditors are grabbing assets tends to 

zero. This is essentially because in the limit, agents receive the same signals, and there 

is no uncertainty about the asset value. However, strategic uncertainty remains.

Strategic uncertainty in the continuous tim e lim it

Strategic uncertainty remains in the sense that for the marginal agent, the fraction 

of creditors that forces reorganisation is still a random variable in the limit, which 

actually turns out to be uniformly distributed. This implies that the solution of

40



the game is preserved in the limit. This type of result has been discussed at length 

elsewhere (Morris and Shin 2002). A formal proof is in appendix A.2.

Suppose that we instead start with the assumption that there is no private informa­

tion, and hence no coordination failure. All creditors now have the same information, 

and (in the absence of asymmetries) will therefore either all grab assets lending, or 

all not grab assets. Suppose there is a strategy that specifies a path for the switching 

point. At every node of the game, it does not pay to deviate from the strategy when 

it specifies grabbing assets (because in this case deviating always loses money as the 

firm will be reorganised and other creditors will grab assets), and it does not pay 

to deviate from a strategy when it specifies not grabbing assets (deviating implies 

having to pay the lawyers, but never produces pecuniary benefits). It follows that all 

paths of a trigger point below L can be supported. The important difference to the 

coordination failure case is that there is no strategic uncertainty. Taking the limit of 

our discrete time coordination failure game has allowed us to eliminate all equilibria 

but one, even though in the continuous-time coordination failure case, agents also all 

have the same information.

2.3.3 Pricing

Prices are only determined in periods in which the asset value for the period is known, 

implying that expectations can be taken under the natural filtration of the asset value 

process.

Letting t + q tend to the time period following it, default at time t will occur when 

V (t ) hits the trigger point V*. Suppose r  is the stopping time at which the asset value 

process hits the boundary and T  denotes maturity, and r  is the constant riskless rate
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on the money market account. Assume that the asset value V  is traded2.

Pricing under assum ption 2.A (bond represents entire debt)

Pricing under this assumption will facilitate comparison to models that specify a 

maturity for equity and aggregate debt, such as the Merton (1974) and Black and 

Cox (1976) models. To derive the price, it is necessary to discuss the payoffs to 

bondholders.

Payoffs to  bondholders Let D  denote the face value of aggregate debt (and here 

also of the face value of the bond) as before, and assume that the level of assets for 

which the firm becomes vulnerable L (which could be interpreted as an important 

covenant) is smaller than D (which will imply that V* < D ), then we can write the 

payoffs to bondholders as

1. IIi(T) =  D — max(T> — VT, 0), if t  >  T  (no default before maturity)

2 . I12( t)  =  (1 — K )V* t if t  <  T  (default before maturity)

W ith these payoffs, the model looks very similar to the standard Black and Cox 

(1976) case. The difference here is that the absorbing boundary is given by our trigger 

point rather than just the level of a covenant (or the level of asset for which the firm 

becomes vulnerable), and that the payoff upon hitting this boundary is not equal to 

the asset value, but to a fraction (1 — K)  of the asset value.

Bond price The bond price will be equal to the discounted expected value of these 

payoffs under the equivalent martingale measure (Q) defined by the money market

2In the author’s opinion the latter assumption is unpalatable but unfortunately standard in the 
literature.
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account as a numeraire.

FB(Vt, t ,T) =  E? [e-r(T- 1)n i /  (r > T) + e~r,-T- T)U2I  (r < T)}

(Here, r denotes the constant risk free interest rate, t denotes the present and I  

is the indicator function)

At this stage pricing is straightforward. It was first explored by Black and Cox 

(1976). The exposition here follows Ericsson and Reneby (1998).

The bond can be viewed as a portfolio of barrier options. Hi can be interpreted 

as a combination of a long position in a down-and-out call with strike price 0 , (which 

is of course just equivalent to a down-and-out position in the underlying asset value), 

and a short position in a down-and-out call in with a strike price of the face value of 

aggregate debt (equal to the face value of the bond in this case) D. This captures 

the fact that a bond can be viewed as a bull spread on the asset value. YI2 can 

be interpreted as a long position in (1 — K)V* units of a finite maturity dollar-in- 

boundary claim (a claim that pays one dollar in the case the boundary is hit before 

maturity). The price is the sum of prices of these positions:

B(Vu t) =CDO(Vu t-T,0) -  CDO(Vu t ;T ,D )  (2.3)

+ ( l - K ) V * G { V u t, |t < T )

where CDo(Vt, t ' ,T,Z)  denotes the price of a down-and-out call with strike price Z  on 

the underlying V  at t with maturity T. Similarly, G(Vt,t\T < T)  denotes the price 

of a dollar-in-boundary claim with maturity T.  The interested reader is referred to
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appendix A.3 for details of how the components are priced.

Equity price Equity can be viewed as a down-and-out call option on the asset 

value. Hence the price of equity is given by

E(Vt, t , T , V *) =  CDO(Vt,t;T,D).  (2.4)

The sum of the value of equity and the value of debt equals the market value M  

of the firm:

M(V„t)  =  CDO(Vt,t;T,  0) +  (1 -  K ) V G { V t, t\r  < T)  (2.5)

This is in essence the sum of the price of the down-and-out asset value of the firm, 

plus the price of the down-and-in claim representing the recovery value in the case of 

default. Note that unlike in Merton model, the market value is not equal to the asset 

value of the firm unless K  =  0, i.e. there is no cost associated with bankruptcy.

Pricing under assum ption 2.B (bond is a negligible part o f aggregate debt)

Pricing under this assumption will make empirical implementation of the model easier, 

as it easily allows for coupon bonds. Under the assumption that the bond price is 

a negligible proportion of aggregate debt, the firm fails if the asset value falls below 

below the trigger point, defined by the interaction of creditors that have each own 

part of the aggregate debt of the firm. The trigger point is still calculated the same 

way.
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Payoffs to  bondholders The payoffs to bondholders will be the promised payoffs 

a t any time that default has not occurred already, or will be a fixed proportion of the 

face value of the bond (now different from the aggregate face value of debt) in case of 

default. Principal (or indeed coupon) repayments are binary options that pay of in 

case default occurs after their maturity.

Bond price Denote a binary option with maturity ti as then we can

write the zero coupon bond price (per dollar of face value) as

B z c {Vut)=H(Vu t-T)  (2.6)

+ R G (Vu t \ T < T )

where R  is the recovery fraction. This can of course be extended easily to include 

coupons:

M

B(Vt ,t) (2.7)
1 = 1

+ H {V u t;T )

+ RG (Vt,t\r  < T )

Again, the interested reader is referred to appendix A.3 for details of how the 

components are priced.

Note that the pricing here can be seen as a special case of a very generic bond

pricing approach (Ericsson and Reneby 1998) that views a bond as a portfolio of

simple and barrier claims. This also goes for other bond pricing models integrating 

strategic interaction (Mella-Barral and Perraudin 1997). In essence, incorporating
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elements of strategic interaction into bond pricing often seems to produce arguments 

ais to what the simple and barrier claims should be that make up the bond, and what 

determines stopping times. Strategic interaction produces different payoffs in different 

states of the world which determine the price.

2.4  D iscu ssion  o f  resu lts

Comparisons in general are easier under assumption 2 .A (the bond being priced rep­

resents the entire debt), as it facilitates the comparison to the older models that make 

this assumption.

2.4.1 Comparisons to  M erton 1974 and Black-Cox 1976

In the Black and Cox (1976) case, the amount recovered if bondholders liquidate the 

firm is simply Vt. It is trivial to show that this is always more than Bt (intuitively, this 

is the case since B t represents a claim to Vt  in some states of the world, and a claim 

to a value less than Vt  in others, whereas Vt represents a claim to Vt  in all states of 

the world). Liquidation or bankruptcy will therefore always occur when the covenant 

is breached, as it is optimal for (coordinated or indeed uncoordinated) bondholders 

to liquidate.

Note that in the coordination failure model, if the cost of grabbing assets (K)  is 

zero, the trigger point is L, which is simply the value of assets for which the firm is 

vulnerable (possibly the level of a critical covenant), and the amount recovered is the 

same as in the Black and Cox (1976) model. The prices will coincide. Essentially, if 

the cost of stopping lending is zero, then it becomes a dominant strategy to do so as 

soon as possible, if there are no bankruptcy costs.
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If we let K  —> 1, it is always preferable to continue lending, and the barrier drops 

to  zero. In this case, bankruptcy before maturity does not occur, and the price will 

coincide with the Merton (1974) price.

The effect producing the price that differs from Merton price is twofold: Firstly, 

the possibility of early default - i.e. receiving money before the maturity of the bond 

- increases the value of the bond, as in the Black-Cox case. But secondly, since there 

is a cost of bankruptcy (1 — K) < 1, this decreases the value of the bond, ceteris 

paribus. Because these two effects conflict, the coordination failure model does not 

produce a discount vis-a-vis the Merton case in all situations.

2.4.2 Comparison to the no coordination failure case

Supposing there was only one creditor, and supposing that creditors acted in a coordi­

nated manner, we could derive an optimal boundary at which the creditor or creditors 

would push the firm into bankruptcy. Even if the bankruptcy cost K  was the same 

for the single creditor case, we can deduce that the value of aggregate debt would be 

lower (or at most equal) to the value of debt in the coordination failure case, since 

the boundary derived from the coordination failure game is not optimal (it does not 

maximise the value of debt). If the cost K  represents the cost of sending out lawyers 

to secure liens on assets, it is likely that the corresponding cost in the case of a single 

creditor would be lower (if not zero) as well, creating a further coordination failure 

discount.
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2.4.3 Comparison to Morris-Shin 2004

Morris and Shin (2004a) refer to a version of equation (A.21), and argue that if one 

assumes the trigger point to be fixed, one would underprice debt, as the trigger point 

is actually a decreasing function of the asset value. So as the asset value decreases, 

the trigger point moves up. Ignoring this effect would cause overpricing. The effect 

mentioned by Morris and Shin (2004a) does not cause the difference in the price to 

the Merton (1974) model here, because the continuous time limit of the trigger point 

(equation 2.2) is not a function of the asset value - it is constant.

2.4.4 Thoughts on an empirical test

As argued above, a practical implementation of the model is only really feasible with 

the price derived above under the assumption that the bond represents a negligible 

proportion of overall debt (assumption 2.B). With the price under the alternative 

assumption, it is not clear as to how to deal with coupon bonds, and the fact that 

equity does not typically have a maturity.

However, any model that produces a similar default barrier will produce very 

similar prices (cf. e.g. Longstaff and Schwartz 1995). If the amount recovered on any 

particular bond is not related to the value of assets at the time of default as above, 

and there are no deviations of absolute priority, then the only asset that can identify 

the barrier will be aggregate debt. Since typically, there is no data on aggregate debt, 

the barrier will not be identified. The model can only identify the distance-to-default.

In conclusion, it will be difficult to distinguish between alternative models which 

differ according to the level of the barrier on the basis of bond and equity prices alone.

Since the default barrier is given by V* = (1 — K)L,  and the fraction actually
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recovered in the case of default is (1 — K ) V *, the model does make an empirically 

testable prediction, however. Supposing one had some data on defaulted companies, 

and one had a proxy variable for how costly it is to seize assets (K),  and an estimate 

of the level of assets for which covenants are first violated (L) - possibly via the 

equity price at the time that the first covenants are reported to be violated, one could 

calculate the predicted recovered amount as (1 — K ) 2L, and compare this to actually 

recovered amounts.

Unfortunately, the author has not found data for an appropriate proxy of K , so 

testing this prediction of the model is an issue for future research.

2.5 C oncluding R em arks

This chapter presents a model that examines the pricing of corporate bonds if co­

ordination failures between creditors can occur. A discrete time model exhibiting 

coordination failures is set up, and the continuous limit is taken. A bond is priced in 

the context of this game under two different assumptions about the capital structure 

of the firm. If the assumption is made that the bond being priced represents the 

entire debt of the firm, the resulting price can be directly compared to the Merton 

(1974) and Black and Cox (1976) models, which are both limiting cases of the model 

presented here.

The model here will produce a discount vis-a-vis the no-coordination failure case, 

and could therefore present a reason as to why structural models ignoring this feature 

underpredict spreads.

In terms of empirical implementation, however, which will necessarily be under 

the second assumption about capital structure (assumption 2.B) as discussed above,
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it will be difficult to distinguish between other tractable models on the basis of bond 

and equity prices alone. As suggested above, a direct test of the model could be 

conducted with data on recovered amounts in bankruptcy cases.
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Chapter 3

E stim ating structural m odels of 

corporate bond prices

3.1 In troduction

Having examined some theoretical aspects of structural models, it is now time to turn 

to the econometric aspects of their implementation.

As argued in chapter 1, structural models are a natural choice in situations where 

both equity and credit related instruments are examined simultaneously. For example 

a hedge fund might be interested in hedging exposure in a credit default swap by 

buying and selling equity.

Alternatively, one might want to estimate hedging parameters, but not enough 

bond prices are available to calibrate reduced-form models. In such a case, being able 

to utilise equity prices would be beneficial.

Since structural models seem to be imprecise in pricing instruments, however, they 

are often avoided.
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The typical conclusion about the problems of structural models would be that 

they overpredict bond prices, and underpredict spreads, as first reported by Jones, 

Mason, and Rosenfeld (1984). More recently, it has been argued (as discussed in more 

detail in chapter 1) that some models actually overpredict, but more crucially, that 

all models make very imprecise predictions (Eom, Helwege, and Huang 2004, Lyden 

and Saraniti 2001).

As argued in previous chapters, the fact that many structural models do not 

appear to fit the data well might be to do with the fact that some of the assumptions 

used to derive the prices are inappropriate. It is clear that a necessary condition for 

obtaining reasonable hedge parameters and predictions, however, is that estimation 

methods must be reasonably efficient and unbiased. Unfortunately, the standard 

estimation methods are neither efficient nor unbiased, as will be shown below.

The main problem that estimation methods have to confront is that although 

models typically assume that the asset value is traded (in order to simplify pricing), 

the tru th  is that the asset value is not even observed, except maybe at a quarterly 

frequency (through published balance sheets). The defining feature of different esti­

mation methods is how they approach this problem.

Most approaches involve inverting the equity pricing function to produce equity- 

implied asset values. The approach presented here shows how estimating can proceed 

by using prices of multiple assets or any other signal of asset values (e.g. equity, bond 

prices, and credit default swap spreads) to obtain an implied asset value, via non­

linear filtering. The approach has the advantage that all available information can 

be used to estimate, increasing efficiency, and that it allows assuming that assets are 

not perfectly priced by the model. It is shown that assuming that some assets (e.g. 

equity) are perfectly priced can produce biases. This is due to the fact that asset prices
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contain components that are not related to the modelled risk factor (asset value risk). 

The method presented here naturally accounts for unmodeled factors by interpreting 

observed asset prices as noisy signals of fundamental values.

The efficiency increase by including bond prices as well as equity prices in esti­

mating a structural model is shown to be quite dramatic. In essence, it seems to be 

easier to predict bond prices if bond prices are used in estimating the model.

The rest of this chapter is organised as follows: First, the fundamental problems of 

estimating structural models are discussed, and some proposed estimation approaches 

examined. A very general description of the estimation problem is presented, followed 

by an exposition of how a likelihood estimation can proceed in this context. Results 

of a Monte Carlo experiment are discussed. Finally, an application to real data is 

conducted.

3.1.1 The inherent problem of estim ation

Only in very few special cases is the estimation of structural models straightforward. 

Gemmill (2002), for instance, picks data on British closed-end funds that issue zero 

coupon bonds. For this data set, asset values of the funds are readily available (indeed, 

they are published daily), and the entire debt of the entity consists of one zero coupon 

bond. This situation exactly matches the assumptions of the Merton model, and 

direct computation of theoretically predicted bond prices is very simple and raises 

few problems.

For normal companies, however, asset values are observed very infrequently. Since 

the asset value of a firm is not typically traded, market prices cannot be observed. 

Balance sheet information on asset values exists, but it is available at most at a
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quarterly frequency, and often only at an annual frequency. This would be a problem 

in the hedging situation described above, as a quarterly or annually rebalanced hedge 

presumably would be quite useless. For practical purposes, the asset value of a firm 

is latent or unobserved.

The key distinguishing feature of different estimation approaches is how this prob­

lem is dealt with.

3.1.2 Other issues for estim ation

There are a number of other issues which need to be taken into account in estimation. 

D ata availability

Corporate bonds are typically not listed on exchanges. The parties that collect infor­

mation on bonds are either market-makers (by market convention, these are often the 

investment banks that issue bonds on behalf of clients), or organisations that buy a lot 

of bonds. In either of these cases, since corporate bonds are typically not very liquid, 

transaction level data obtained from any one party is likely to be at a less than daily 

frequency on average. For the more liquid bonds, there might be several transactions 

a day, but for most bonds, there might be several transactions a week, or a couple of 

transactions per month. This means that any time series of bond prices at a higher 

than monthly frequency is very likely to be irregularly spaced. As a relatively recent 

development (July 2002), the National Association of Security Dealers has started 

distributing high quality bond pricing data, so hopefully this will be less of an issue 

in the future.

In addition to the problem of data frequency, the type of bonds that are traded of­
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ten have embedded call options, sinking fund clauses and/or double up options. They 

are much more complicated than the type of bond that Merton originally examined.

D ata quality

Prices of claims on asset values of the firm contain information not just about asset 

values. It is often argued that bond prices contain premia for non-default risk factors, 

but equity prices as well are probably influenced by market microstructure, the liq­

uidity (Morris and Shin 2004b) of market participants and/or the markets, stop-loss 

limits, tax treatment, agency problems etc. Strictly speaking, prices of claims on the 

firm (including equity) should be treated as noisy signals about the asset value at 

best.

Capital structure

In real life, a firm’s capital structure is typically much more complicated than that 

assumed in e.g. the original Merton model. Typically, there will be many layers of 

debt, of different seniority, with publicly traded bonds as just one of these layers. 

How to interpret a model that abstracts from complicated capital structures in this 

context can make a big difference to estimation results.

3.1.3 Estim ation approaches 

The direct approach

The first attem pt at implementing structural models on corporate bonds was con­

ducted by Jones, Mason, and Rosenfeld (1984). Aside from some interesting ways of 

dealing with the embedded optionality in bonds that was common at the time, they
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suggested the following method: First, estimate the asset value (V)  as the sum of 

the value of equity (E ), the observed value of traded debt and the estimated value of 

non-traded debt (assuming that the book to market ratio of traded and non-traded 

debt is the same). The volatility of the asset value is then calculated directly from 

the returns of the estimated asset value. They also proposed refining this by using the 

following relationship (derived from the equity pricing equation Fe  using Itos lemma):

V 9 F e
° B ~  a y E ~ d v  (3  '

Note that here, Fe depends on the particular structural model to be estimated, of 

course. An equity volatility is estimated from historical equity returns, and a second 

estimate of the asset volatility is obtained by plugging this and the first-pass estimate 

of the asset value into this equation.

The essential feature is that the asset value is estimated by a back-of-the-envelope 

calculation based on book values and some observed market values of components of 

the total liabilities. Note that this has no statistical basis, and that it does not involve 

the assumptions of the model. Although possibly a reasonable educated guess, there 

is no reason to expect that this method will yield particularly reliable estimates of 

asset values, asset value volatilities, or to predict bond prices well.

More recently, variants of this technique have been employed by e.g. Lyden and 

Saraniti (2001) who remain relatively close to the original version, or for example 

Anderson and Sundaresan (2000) who combine stock and flow accounting data to 

arrive at a leverage proxy, or most recently Eom, Helwege, and Huang (2004), who 

simply add the book value of debt to the observed market value of equity to arrive at 

an estimate of the asset value.
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T h e yield  curve approach

Wei and Guo (1997) choose an approach similar to that often used when ‘calibrating’ 

models of the risk-free yield curve. For data on the spread between the term struc­

tures of Eurodollar and US Treasury debt, for each time period for which they have 

observations, they choose parameters (where they view the asset value as a parameter 

as well) to minimise the squared fitting errors. This allows them to back out implied 

asset values (as well as finding estimates of model parameters). Unfortunately, they 

only have 5 data points on the spread curve for each date, so they necessarily need 

models with at most that number of parameters.

While this approach might appeal to fixed-income practitioners, it also ignores the 

information in the time series of data (how spreads change across time), and focuses 

solely on the (small) cross-sectional element. It is furthermore impractical for the 

type of application considered above, as it is practically impossible to obtain a term 

structure of yields for individual firms, since the number of actively traded corporate 

bonds per firm is typically very small.

The calibration approach

The most common approach to implementing structural models to date, sometimes 

termed ‘calibration’ has been to solve a set of two equations relating the observed price 

of equity and estimated (i.e. usually historical) equity volatility to asset value and 

asset value volatility (this method was first used in the context of deposit insurance by 

Ronn and Verma 1986). The equations used for this are the option-pricing equation 

describing the value of equity as an option on the underlying asset value (Fe ), and the 

equation describing the relationship between equity volatility and asset value volatility
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derived from the equity pricing equation via Ito’s lemma.

E  =  FE(V,av ) (3.2)

V d F E , x
“  ° V E  W  { ]

Once the equity-implied asset value and asset value volatility have been obtained, 

calculating a theoretical price for a bond is comparatively straightforward, since most 

other parameters, such as the bond cash flows and the risk-free term structure are 

observed directly. The theoretical prices, yields or spreads can then be compared to 

the actual values, to give information on the accuracy of various different models.

Note that when the volatility of equity returns is calculated from historical data, 

this is typically done assuming that the volatility is constant. Of course, this con­

tradicts equation 3.3. Since the equity volatility changes as the ratio of the value 

of equity to the value of assets changes, and as the derivative of the equity pricing 

function changes, this problem will be especially apparent when the asset value (or 

the leverage) of the firm changes a lot over the estimation period.

This approach is common in the commercial world (see e.g. the KMV method­

ology described by Crosbie and Bohn 2002) and is used in academia (e.g. Delianedis 

and Geske 1999, Delianedis and Geske 2001). It is often the only approach described 

in major textbooks (Hull 2003). There are variants, such as the approach used by 

Huang and Huang (2003), who use four target variables (observed default probabil­

ities, leverage ratios, recoveries given default and equity premiums) to match four 

parameters (asset value, a market price of risk parameter, the asset value volatility 

and a recovery rate).
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T he Ericsson and R eneby approach

Ericsson and Reneby (2005) (cf. also Ericsson and Reneby 2002a) demonstrate the 

biases that result from the calibration technique (which they call the “volatility re­

striction” method) if leverage is not constant. As an alternative, they propose a Max­

imum Likelihood method based on a method first proposed by Duan (1994) (This 

method is also utilised by Duan, Gauthier, Simonato, and Zaanoun (2003)): Typi­

cally, structural models start with postulating that the asset value follows a geometric 

Brownian motion. This of course implies that the changes in the log of the asset value 

are Gaussian. The density of the log asset value hence takes a simple form. They 

suggest that to relate this density to something observable, one can simply change 

variable to the equity price. If the Jacobian of the function relating equity price to 

the asset value is known, the log-likelihood function of equity prices can be derived, 

and subsequently maximised using standard techniques. With a Monte Carlo study, 

Ericsson and Reneby show that using this technique on equity prices is superior to the 

calibration method described above. Essentially, the calibration approach is unable 

to disentangle the effects of volatility and leverage, and tends to confuse the two.

There are two related drawbacks to the Ericsson and Reneby Maximum Likelihood 

Estimation (ERMLE).

1. Ericsson and Reneby implement it using only the price of equity. Ideally, if 

we have information on one or more bond prices, credit and equity derivatives, 

accounting information or any other information on the underlying (the funda­

mental value or asset value of the firm), we would like to include this in the 

estimation.

2. It is not clear why if structural models price bonds with an error, we should be
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willing to assume that they would price equity without error. Given that asset 

prices including equity prices are influenced by market microstructure, agency 

problems, taxes etc. which are outside the model, it is not reasonable to make 

this assumption. This paper will demonstrate that making the assumption 

of zero equity pricing error (or observation error) can induce serious bias in 

estimates.

Including more information such as e.g. a bond price in the estimation will make it 

necessary to find a compromise between bond-implied asset value and equity-implied 

asset value, or in general between the different asset values implied by the different 

observed variables. The problem of estimation is intimately related to the problem 

of recovering the value of the latent or unobserved asset value from the observed 

variables, it is one of calculating posterior densities, or filtering. Since the option- 

pricing equations are highly non-linear, the problem is one of non-linear filtering.

3.2 A  general setup  for estim ation

Suppose we have data on e.g. the prices of debt and equity, which our model suggests 

are functions of a latent unobserved state (e.g. the asset value of the firm in the struc­

tural model context). An econometric model then consists of a transition equation 

for the latent state (an equation describing how e. g. the asset value changes), and 

some observation equations that describe the functions that map asset values into the 

observed prices of debt and equity respectively.

60



3.2.1 The state equation

Structural models of corporate bond and equity prices typically specify that the pro­

cess describing the evolution of the value of assets Vt of the firm (which determines 

the value of equity and debt) follows a geometric Brownian motion:

dVt = fjLVtdt +  aVtdWt. (3.4)

It is obvious that log V  is Gaussian:

£  d\ogVs =  (n -  J T ds +  a J  dWs ~  N  {/j, (T — t) , a 2 (T — t)} . (3.5)

Hence we can define a t = f* d  log V, and write the discrete time form as

a t = d + a t- i  +7/t , rjt ~  TV /D jO ,^} , (3.6)

where d — (/i — \ a 2) f* ds and rjt = a dW.

Substantially more complicated setups than the one described here (i.e. in par­

ticular non-Gaussian setups and multivariate setups where a  is a vector) are also

feasible.

3.2.2 The observation equation

A given structural model (or reduced-form model) produces some pricing functions 

Fi taking parameters ^  that map a factor a  into a vector of market prices If there 

are factors outside the structural model, this needs to be modelled econometrically 

as an observation error. Since prices could be higher or lower than predicted by the
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model, but they cannot be negative (due to limited liability), and since one would 

expect the size of the errors to be proportional to the price, a multiplicative log-normal 

observation error is a simple and natural modelling choice.

f*t =  Fit (at; A )  ~  N I D  {0, • (3-7)

Prices conditional on the unobserved quantities would then be log-normal. Of 

course, it would be possible to put different and more elaborate structure on the ob­

servation errors or components that are outside the structural model (for an example, 

see chapter 4).

3.2.3 The system

Now define y as the vector with typical element logfj* and Zt (a t;/ip) as the vector of 

the log of the pricing functions Fit We can write the system as

a t =  d +  ott- i  +  r)t , ry ~  N I D  {0, av] , (3.8)

Vt— Zt +  £t, £t ~  N I D  {0, S e} (3-9)

where e.g. r}t is independent of et. Specification issues can arise (depending on the 

pricing functions Z  and the particular error structure) and have to be checked on a 

case-by-case basis. Possibly, some restrictions will have to be imposed.

If we were interested in modelling several factors or asset values, it is easy to 

interpret a t as a vector, with av as the variance-covariance matrix determining the 

correlations between the asset values. Also, the vector yt could be extended to in­

clude information other than prices, such as accounting information, or maybe more
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pertinently, the prices of other assets such as credit default swaps.

3.2.4 R estrictions determ ine feasible estim ation procedures

Denote the variance of the observation error for asset or observed variable i as cq 

(assume there are n of these), and use ge to denote the variance of the observation 

error of equity. Let E  denote the market value of equity and let 4 t- denote the 

observed value of asset i (with rq observations). In the following we assume that 

equity information is in some form special1 - we could easily designate another ‘special’ 

observed variable. We can then distinguish four cases in which a likelihood function 

can be evaluated.

Different assumptions made about the variances of the observation errors in this 

system will make different estimation procedures feasible. The Ericsson-Reneby/Duan 

Maximum Likelihood Estimation (ERMLE) method, for example, can be viewed as 

a method to estimate this system given that ge =  0, and cq =  oo, Vi ^  E:

C ase 1: R e s tric t ge = 0, re s tr ic t  cq =  oo, Vi ^  E

In this case, no weight would be attached to observed variables other than the equity

price. Since the equity observation error is assumed to be zero, there is a direct

correspondence between the price of equity and the asset value, and we can perform a

change of variables to arrive at the density of the (observed) equity prices and hence

a likelihood function. This is utilised by the ERMLE method. The more general

method described below can also be used to evaluate this likelihood function.

xIt is certainly the most easy to obtain.
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Case 2 : R estrict o e  — 0

Now, although equity is still a special observed variable, as it is observed without 

noise, other variables are still relevant and can be included in the estimation. We can 

still do a change of variable to arrive at the distribution of equity, p(E), but ideally 

one would need the joint likelihood, and hence density of p (E , Ai, A 2, • • • An). This 

joint density can be written as

p{E , Ai, A 2 , ■ • • A n) =  p(Ai, A 2 , • • • A njE)p(E) (3.10)

It is obvious that it does not m atter whether the joint density of other observed 

variables is conditioned on the equity price, or the asset value implied by the equity 

price as long as there is a one-to-one correspondence between asset value and the 

equity price. In terms of a log-likelihood function, this means that it can simply be 

written as the sum of the change-of-variable likelihood function described in Case 1, 

plus a term relating to the joint density of the other observed variables, conditional on 

an equity-implied asset value. The shape of the extra term will be determined by the 

choice of distribution for the observation errors. Note that this extension to ERMLE 

is not considered by Ericsson and Reneby (2005), or by Duan, Gauthier, Simonato, 

and Zaanoun (2003), but has been utilised in chapter 4.

Case 3: N o restrictions (or cq 7  ̂ 0, Vz)

In this case, the the likelihood can not be evaluated by a change of variables, and a 

more general procedure will be necessary. The problem of evaluating the likelihood 

function is closely related to that of non-linear filtering. Evaluating the likelihood 

function in this general case is discussed in the following section. The procedure
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described below can of course also be used to estimate the systems described under 

Case 1 and 2, and is more general than ERMLE.

3.3 A  general procedure for evaluating  th e  likeli­

h ood  function

In the more general case (Case 3), direct construction of the likelihood function is 

difficult if a latent variable a  enters the observation equation in a non-linear and po­

tentially very complicated fashion. Even in these cases, however, the exact likelihood 

can be evaluated numerically without an analytical expression, using a method de­

scribed by Durbin and Koopman (1997). Essentially, it works as follows (using the

original notation as much as possible): Define the likelihood as

L(ip) = p(y\4>) = J p ( a ,  y\ip)dai. (3.11)

Suppose we use importance sampling (c.f. e.g. Ripley 1987) from a density g ( a \ y ,  ifr) 

to evaluate this density. An obvious choice for the importance density is the density of 

a linear Gaussian model, since it is straightforward to handle (a method for obtaining 

a suitable approximating linear Gaussian model is described in section 3.3.1)2. We 

can now write the likelihood as

L W  = g { y )  J  P̂ a Vy ^ 9 ( a \ y , ^ ) d a  (3 .12)

=Lg('ip)Eg [w{a,y)\, (3.13)

2In certain kind of situations it can be advantageous to use a distribution with fatter tails.
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where Lg is the likelihood of the approximating linear Gaussian model and

p(a,y\ip) ,
w{ a , y )  = -  r— . (3.14)

g{a,y m

We can interpret this likelihood function as consisting of the likelihood of the 

approximating model, multiplied by a factor to correct for the approximation.

The likelihood function of the approximating model can be calculated using the 

Kalman filter, and the correction factor Eg [w(a1 y)\ can easily be evaluated using 

Monte-Carlo techniques. Note that the correction factor becomes more important 

the more heavily non-linear the model is. We can see that for firms which are very 

far away from default, where the delta of equity with respect to the asset value is 

essentially one, and the delta of the bond is essentially equal to zero, the correction 

factor is likely to be unimportant, for example, as the model is essentially linear. 

Note that omitting the correction factor would imply QMLE. Sampling from the 

distribution g(a\y) can be accomplished in various ways, below it is implemented via 

the procedure described by Durbin and Koopman (2002).

A procedure for estimating the likelihood would be

1. Calculate the linear Gaussian approximation.

2. Calculate the likelihood of the linear Gaussian approximation.

3. To obtain a correction factor, simulate a  from the importance density, and 

numerically calculate the expectation term.

We can write

L(ip) = Lg(tl>)w (3.15)
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where

(3.16)

and ol% is drawn from the importance density (for details, see appendix B). The 

accuracy of this numerically evaluated likelihood only depends on M, the size of 

the Monte Carlo simulation. In practice, the log transformation of the likelihood

function and hence its numerical maximisation. Note that many of the assump­

tions made above serve to simplify the resulting model, but are not necessary for 

the methodology to be applicable. In particular, errors in the state and observation 

equation need not be Gaussian or independent.

This approach is more computationally intensive than ERMLE, but more general. 

The ERMLE likelihood function is nested in the likelihood function estimated here. 

Estimating the ERMLE likelihood function with the method proposed here is simply 

an issue of imposing some restrictions.

is used. This introduces a bias for which a modification has been suggested that 

corrects for terms up to order O (M -3//2) (cf. Shephard and P itt 1997, Durbin and 

Koopman 1997):

log L{ij)) =  log Lgty) +  log w +
2 Mu)2’

(3.17)

with si, = (M -  1) 1 YliL\{wi ~  w)2-

The technique described here allows the numerical evaluation of the likelihood
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3.3.1 Approxim ating the model

Durbin and Koopman (2001) describe several methods for deriving an appropriate 

approximate model. The basic idea of the appropriate method for this case is to iter­

atively linearise the observation and state equations, which delivers an approximating 

linear Gaussian model with the same mode as the true model. Starting with an initial 

guess of a  which we call d, linearise the observation equation around this guess:

Zt{at) — Zt(at) +  Zt{at){oLt — d t), (3.18)

where

Zt{at) = dZt(at)
d a / a t—ott

Defining

Vt — Vt~ Zt(dt) +  Zt(dt)dt,

(3.19)

(3.20)

we can approximate the observation equation by

Vt — Zii ( & t )  a t + £ t- (3.21)

In most structural models, the state equation is already linear and Gaussian 

(through the assumption of geometric Brownian motion for the asset value). So the 

approximating model is:

at — d -f- at-1 +  r)t (3.22)

Vt = Zt(dt)at +  £t (3.23)
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where

i)t ~  N I D  {0, av} 

et ~ N l D {  0 ,E £}

(3.24)

(3.25)

and

V t  -h e t . (3.26)

If we start with a guess of a , obtain our guess of y , and then smooth to obtain 

our next guess of a , and iterate this until convergence, the linear model in the last 

step is the one that has the same conditional mode as the actual model. For a proof, 

consult the references cited by e.g. Durbin and Koopman (2001).

3.3.2 Conditioning on no default

Unfortunately, the approximation method described above does not work well for 

models with a default barrier if applied naively. Firstly, in this case the Z  function 

is not necessarily monotonic, and hence the true posterior distribution being approx­

imated is possibly bimodal, although the two maxima will be located close to each 

other for reasonable parameter values. Secondly, the density will not in general be 

continuous or continuously differentiable at the default barrier. It is not clear what 

the “best” approximating density is in this case, and the algorithm described above 

can break down when an iteration reaches the region below the barrier.

In order to reliably find a reasonable approximating model/ density, the follow­

ing algorithm was implemented: Starting with a large guess for a  (ensuring that the 

starting value is above the mode(s), and above the discontinuity), we iterate until
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convergence. If convergence is achieved, we will have found a (possibly local) max­

imum of the posterior density of a\y. This is chosen as the mean and mode of the 

approximating linear Gaussian density. For situations where the mode of the true 

density is equal to the truncation point, the truncation point is chosen as the mode 

of the approximating density.

This is a somewhat arbitrary choice of importance density, which implies that 

convergence might be slow. In order to ensure that convergence is reasonable, the 

number of simulations is set to 1,000, which is a number for which good convergence 

occurs in Monte Carlo experiments for various different parameter combinations. Dif­

ferent choices of importance densities might provide efficiency gains, and are an issue 

for future research.

3.3.3 Inference and tests

Simulated Maximum Likelihood Estimation (SMLE) allows for classical as well as 

Bayesian inference techniques. The posterior density of the state given the data can 

be calculated via simulation (Durbin and Koopman 2001). This allows for calculating 

expected values of functions of the state (such as bond prices and spreads), as well 

as for their posterior densities. Both classical as well as Bayesian versions of the 

calculation can be implemented. For the classical versions, parameters are assumed 

fixed at their estimates, and since the bias is O (^ ) as MLE estimators are root-T 

consistent, it is ignored. For the Bayesian version, they are treated as having posterior 

distributions. The classical inference version can produce confidence intervals that are 

too tight in finite samples, so the Bayesian calculations are performed here.

Standard Maximum Likelihood tests could be applied. Consider the case of testing
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various nested models, or imposing a parameter restriction. It is possible to simply 

estimate the model under the null and the alternative, compute the likelihoods asso­

ciated with the two hypotheses, and conduct a Likelihood Ratio test. Wald and Score 

tests are equally feasible. Diagnostics can be based on the one-step-ahead prediction 

errors for the observed variables.

3.3.4 Advantages of the approach

The main advantages of the approach are the following:

• The approach can utilise all data that contains information about the asset 

value of a firm, including prices of equity, different bonds and credit derivatives. 

This improves the efficiency of the estimation as shown below.

• It is not necessary to assume that the model prices equity (or any other asset) 

with 100% accuracy - assets are assumed to be priced with an observation error 

as described above. Given that we would expect market microstructure effects, 

agency problems, liquidity issues, time horizon issues, etc. to show up in equity 

returns (and other asset returns), it is unreasonable to assume that any asset 

is priced perfectly by a structural model. In fact, this approach allows separat­

ing out non-asset value related components in asset prices via the (estimated) 

observation errors.

The approach also has the following advantages:

• Since we are in a filtering framework, an extension to asynchronously and irreg­

ularly spaced data or sporadic missing observations is trivial, which is important 

especially since corporate bond markets are typically not very liquid meaning
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that some bonds are not traded on a very frequent basis, as well as allowing the 

use of e.g. annual balance sheet information together with daily price data.

• It can easily be extended to the case of a multivariate asset value process - 

allowing for example for the estimation of default correlations based on not 

only prices of equity (as is common practice) but on prices of debt and equity.

• Estimating a model connecting different observed variables allows for a rigorous 

and theory-based analysis of relationships between these variables, e.g. the 

lead-lag behaviour between equity and debt markets.

3.4 A pplications

In order to get an impression of the usefulness of the SMLE technique, it was compared 

to ERMLE and the calibration technique in an application to simulated data (a Monte 

Carlo experiment), as well as in an application to real bond pricing data3.

3.4.1 The theoretical model

The Merton model is not a model that can be appropriately applied to real bond 

pricing data, because it makes the assumptions that bonds do not pay coupons, and 

that the bond represents the entire debt of the firm. As mentioned above, there are 

very few situations in which these assumptions are actually a reasonable description 

of the situation being modelled. In practise, bonds typically pay coupons, and equity 

and aggregate debt are probably more appropriately treated as perpetuities. Also the

3The estimation technique was implemented using Ox Version 3.32 (Doornik 2002) and SsfPack 
Version 3.0 beta 2 (Koopman, Shephard, and Doornik 1999)
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structure of aggregate debt is typically complicated, which makes fully modelling the 

cross-dependency of all claims very complicated.

Leland (1994) assumes that aggregate debt and equity are perpetuities. As it 

turns out, pricing coupon bonds in the context of this model is relatively easy if it is 

assumed that they represent a negligible proportion of aggregate debt, as discussed in 

chapter 1 and 2. This has the advantage that it makes it possible to avoid compound 

optionality issues when pricing coupon bonds (described in Geske 1977), as well as 

providing a reasonable approximation to a possibly very complicated debt structure 

that it would otherwise be impossible to model. This was first proposed by Ericsson 

and Reneby (2002b).

Since Ericsson and Reneby have shown that this model can produce very good out- 

of-sample performance, and in order to facilitate comparisons with their estimation 

method (ERMLE), which they test on it, the model is chosen here4.

In the model, default occurs when the asset value hits the level at which sharehold­

ers are no longer willing to contribute funds to stave off financial distress. Ericsson 

and Reneby note that the barrier could be determined as the outcome of a strategic 

game. They also allow the aggregate level of debt to grow over time. To simplify the 

model and to make it essentially the same as the model proposed by Leland (1994), 

the growth rate of aggregate debt is restricted to zero in the application here. Fur­

thermore, several other parameters were fixed: The recovery to equity was set to 5% 

(this is a deviation from absolute priority). The recovery to aggregate debt was set 

to 80%, the corporate tax rate was assumed to be 20% and the per-bond recovery 

(recovery fraction of principal) was taken to be 50%. These numbers could be made

4Note that the Monte Carlo experiment was also conducted with the Merton model, producing 
very similar results. These are not reported here, however.
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more realistic, for example by choosing a bond recovery fraction according to a table 

such as the one given in the paper by Altman and Kishore (1996).

3.4.2 M onte Carlo experim ents

The aim of the Monte Carlo experiment is to demonstrate that using Simulated Max­

imum Likelihood Estimation (SMLE) and including bond price information (as well 

as information on the price of equity) produces efficient and unbiased estimates of 

the parameters. It will also aim to demonstrate that Ericsson and Reneby Maximum 

Likelihood Estimation (ERMLE) as well as the traditional calibration approach on 

the same dataset produces biased and inefficient estimates.

Setup of the M onte Carlo experim ents

Since the calibration technique only allows for the estimation of the asset value volatil­

ity parameter and the asset value, these were the only quantities estimated by all the 

estimation approaches to facilitate a comparison.

To generate the Monte Carlo data, the following parameter assumptions were 

made: The standard deviation of the observation errors was assumed to be 1%, the 

asset value volatility was set to 30% p.a. and the market price of risk was set to 0.5 

(to produce a reasonable positive drift on average in the simulated asset values).

For each Monte Carlo experiment, 1000 asset value paths of 250 periods each (to 

represent trading days) were simulated using the same set of parameters, all ending 

up at the same asset value (figure 3.1 illustrates this concept), and corresponding 

prices of equity and one bond were calculated for each path (with observation error). 

The estimations were run on each artifical data set corresponding to one asset value
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path, on all equity prices and all bond prices excluding the last bond price. This last 

bond price, the corresponding asset value and spread was then predicted.

Figure 3.1: Alternative asset value paths that could have led to an asset value of 100 
in 1991

The final debt/equity ratio and the bond parameters were loosely based on the 

situation of K-Mart in Dec 2001: The final asset value is 12.5b $, and the face value 

of aggregate debt in the final period is 12b $ (the firm is highly leveraged). At the 

beginning of the sample, the bond has 6 years left to maturity, and pays a semiannual 

coupon of 5%.

As a firm comes closer to default, its bond prices become more responsive to the 

underlying financial situation of the firm (asset value), whereas the price of equity 

becomes less responsive. One would expect that including data on bond prices into 

the estimation would make a difference in particular for firms which are close enough 

to default for the default risk to be reflected in the price of the bonds. For firms which 

are not risky, the price of equity is likely to contain most of the relevant information,
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as the bonds are essentially priced as risk-free.

In order to investigate the effect of this on estimation, two Monte Carlo experi­

ments were run, with different risk-free rates (4 and 6%). Since the drift of the asset 

value is equal to the risk-free rate plus a risk premium (which is the same in both 

cases), the drift is higher in the case where the risk-free rate is set to 6%. Given that in 

both cases, the paths end up at the same point, on average, the starting point will be 

lower for the case with the greater drift. The default probability over the 250 trading 

days (one year) is 0.52% for the greater drift, and 0.03% for the smaller drift. Average 

one year default probabilities for 1920 - 2004 as reported by Moodys are 0.06% for 

Aa rated issuers, 0.07% for A rated issuers, 0.30% for Baa rated issuers, and 1.31% 

for Ba rated issuers. It can be seen that the case of r = 6% corresponds roughly to 

an issuer which is at the border between investment grade and non-investment grade 

in terms of its rating (low quality issuer), and the case of r = 4% represents the case 

of an issuer with a quality higher than an Aa rated issuer (high quality issuer).

Also, choosing these two cases with different drifts will highlight the difficulties 

that the calibration technique faces when leverage changes. Since the drift in the 

low quality issuer case is higher (leverage changes more on average), it is possible to 

anticipate that the performance of the calibration technique should be worse in this 

case.

R esults of the M onte Carlo experim ents

ERMLE uses the equity price in all periods to estimate the asset value volatility. Its 

estimate of the bond price in the last period is based on the equity-implied asset 

value (implied by the last equity price). For the calibration, the historical equity 

volatility is calculated utilising the entire sample of equity prices (250 periods), and
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the predicted bond price in the last period is based on the asset value implied by the 

equity price and the historical volatility. SMLE uses all equity prices as well as bond 

prices (except the last bond price, which we are trying to predict) to estimate the 

asset value volatility and the asset value in the last period, on which the estimate of 

the bond price in the last period is based.

We can then compare the estimated asset value volatility, the predicted asset value, 

bond price and spread for the three estimation methods. In order to see whether the 

posterior densities for the yields produced by SMLE and ERMLE are reasonable, a 

Q-Q plot is produced (the calibration approach cannot produce posterior densities, 

of course). In the case of ERMLE, the posterior density is approximated by the 

asymptotic distribution of yields via the Delta Method (Ericsson and Reneby 2005), 

in the case of SMLE, the (Bayesian) posterior densities are calculated via simulation.

The results for the high quality and low quality issuer cases are presented in Table 

3.1 and Table 3.2 respectively. It can be seen that SMLE clearly outperforms the 

other methods.

Since ERMLE ignores the observation error in the equity price, it will in general 

overestimate the asset value volatility. Contrary to the assumption of the method, 

not all the volatility in equity prices comes from volatility in the asset value. This in 

turn means that asset values will be underestimated. Hence default probabilities are 

overstated, bond prices underpredicted, and the resulting spread predictions are too 

high.

For the parameter values chosen here, it is actually clear that the calibration 

technique outperforms ERMLE in terms of RMSE in the case of the high quality 

issuer. Since we know that equity volatility is an increasing function of asset value, 

and since the asset value is increasing (on average) in the sample, we know that the
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Mean error Median error RMSE
O’ rj

SMLE 0.0002 0.0003 0.0021
ERMLE 0.0394 0.0391 0.0447
Calibration -0.0174 -0.0166 0.0285

Asset Value ($m)
SMLE 3 0 68
ERMLE -514 -514 583
Calibration 231 239 395

Spread (bp)
SMLE 0 1 22
ERMLE 36 35 46
Calibration -14 -14 32

Bond Price ($ per 100$ face value)
SMLE 0.00 -0.02 0.94
ERMLE -1.50 -1.49 1.95
Calibration 0.59 0.60 1.38

Table 3.1: Monte Carlo results (high quality issuer)

equity volatility that the approach uses in the final period to forecast the bond price 

is understated. The direction of the bias is not clear in general, although given that 

the problem is caused by ignoring that equity volatility varies as a function of the 

asset value, we would expect the calibration technique to perform worse in the case 

of a larger change of leverage over the sample (i.e. the low quality issuer case for this 

Monte Carlo), as mentioned above. For the low quality issuer, it is indeed clear that 

the calibration technique performs much worse than ERMLE (Table 3.2).

Both SMLE and ERMLE allow the calculation of posterior densities for spread or 

yield predictions. Figures 3.2 and 3.3 produce a Q-Q plot of actual versus theoretical 

quantiles of tests as follows: For each run, the Bayesian predicted density around the 

point forecast of the yield is obtained. The quantile according to the posterior density
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Mean error Median error RMSE
CTjj

SMLE 0.0000 0.0000 0.0012
ERMLE 0.0262 0.0257 0.0363
Calibration 0.0948 0.0699 0.1465

Asset Value ($m)
SMLE 0 2 57
ERMLE -313 -312 433
Calibration -1017 -851 1519

Spread (bp)
SMLE 0 -1 23
ERMLE 29 27 46
Calibration 101 77 157

Bond Price (bp) ($ per 100$ face value)
SMLE 0.01 0.03 0.87
ERMLE -1.08 -1.01 1.70
Calibration -3.58 -2.84 5.49

fable 3.2: Result of Monte Carlo (low quality issue]
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for the actual yield is calculated. The quantiles according to the posterior density can 

then be plotted against the quantiles of the actual empirical distribution of the yields. 

If the predicted densities are broadly reasonable, one would expect the plots to lie on 

the 45 degree line. This allows a quick visual inspection of the quality of the posterior 

densities produced by the methods.

It is clear that if equity is observed with error, this will mean that the ERMLE 

confidence intervals for yield predictions (based on asymptotic theory) will be too 

small, which is indeed confirmed by the plots.
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Figure 3.2: SMLE and ERMLE actual versus predicted quantiles (high quality issuer)
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Figure 3.3: SMLE and ERMLE actual versus predicted quantiles (high quality issuer)

3.4.3 Application to  real data

In order to get an impression of the usefulness of the SMLE technique, it was also 

applied to real data. Again, a comparison was made to ERMLE and the calibration 

technique.

The data

The data used to test the different estimation procedures and theoretical models 

came from several sources. The corporate bond price data is the dataset compiled 

by Arthur Warga at the University of Houston from the National Association of 

Insurance Commissioners (NAIC). US regulations stipulate that insurance companies 

need to report all changes in their fixed income portfolios, including prices at which
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fixed income instruments where bought and sold. Insurance companies are some of 

the major investors in fixed income instruments and the data is therefore reasonably 

comprehensive. Also, the reported prices are actual transaction prices, and not matrix 

prices or quotes. The descriptive information on the bonds is obtained from the 

Fixed Income Securities Database (FISD) marketed by Mergent, Inc., which is a 

comprehensive database containing all fixed income securities issued after 1990 or 

appearing in NAlC-recorded bond transactions.

Over the period of 1994-2001, NAIC reports a total of 1,117,739 transactions. 

First, all trades with unreasonable counterparties (such as trades with the counter­

party “ADJUSTMENT” etc.) are eliminated, leaving 866,434 transactions, represent­

ing about 43,330 bonds. Since often, one insurance company will buy a bond from 

another insurance companies, the same price can enter twice into the database, once 

for each side of the transactions. In order to prevent double counting, all prices for 

transactions for the same issue on the same date are averaged, to yield a maximum 

of one bond price observation per issue per date. This leaves 562,923 observations. 

Since the selected structural model has nothing to say about bonds with embedded op­

tionally, sinking fund provisions and non-standard redemption agreements, all these 

bonds were eliminated, leaving 156,837 observations of 8,234 bonds for 1,332 issuers. 

Finally, government and agency bonds are eliminated, as well as bonds of financial 

issuers (since the balance sheet of financial issuers are very different from the balance 

sheet of industrial issuers). This leaves 88,243 observations of 3,907 bonds, for 817 

issuers.

Since the point of the methodology presented here is that including additional 

information improves estimation, and most observations occur later in the sample, 

only issuers for which there were at least 50 bond price observations in 2001 were
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selected, leaving 39 issuers.

Note that despite the cleaning of the data, there are issues with its quality. It is not 

clear, for example, whether the reported dates for the transactions are transaction or 

settlement dates. Close to coupon dates, the exact date can make a large difference to 

cash prices. This is especially important as the prices in the database are flat prices, 

and the provided numbers from which accrued interest can be calculated look very 

unreliable (a large proportion is negative, for example). Also, some of the observations 

appear to be affected by data entry errors - for example, there are bonds which trade 

frequently in one particular month with prices between 101 and 105, followed by a 

price in the same month of 135, followed by prices in the previous price range (still in 

the same month). This is of course a problem when trying to determine the accuracy 

of pricing methods, especially in trying to compare the results to those reached in 

other papers with alternative datasets.

E q u ity  and  accoun ting  d a ta  For the selected issuers, the market value of equity 

was obtained from CRSP, and the value of total liabilities exclusive of shareholder 

equity (the notional value of aggregate debt) was obtained from Compustat. Issuers 

for which the data could not be unambiguously matched up were ignored. This left 33 

issuers, detailed in table B.2 (see appendix B for details). Bond price data for which 

no equity price data was obtainable was ignored.

R isk-free ra te  d a ta

Implementing corporate bond price models necessitates using risk-free interest rate 

data. Although most structural models assume constant interest rates (including the 

one utilised here), this is patently a simplifying assumption which will create problems
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if used to implement the model. In the implementation, a distinction was made 

between two types of interest rates: Those to discount individual bond payments, 

and those used to calculate default probabilities.

Discounting corporate bonds A risk-free curve (zero coupon constant maturity 

fitted yields) was obtained from Lehman Brothers (calculated from treasury market 

data). For each corporate bond, the price of a risk-free bond with the same payments 

was constructed artifically using the risk-free curve. The yield of this artificial risk­

free bond was computed. This yield was used to discount the corporate bond in 

the pricing calculations. This procedure ensures that if any of the corporate bonds 

were (almost) risk-free, their price would equal the price of a risk-free bond with all 

payments discounted by rates given by the risk-free curve.

The interest rate in the default probability formulas There were many bonds 

for any one particular firm, and each of these would have a separate risk-free yield 

associated with it. The default probabilities formula takes a risk-free rate. If the 

same default probability is desired for all bonds, a single risk-free rate for use in the 

formula has to be obtained. A simple arithmetic average of all rates for one firm was

chosen. Other possibilities were explored, but the results were not sensitive to the

choice of this interest rate parameter.

Results o f the application to  real data

Since the likelihood function turned out to be not very sensitive to the drift of the 

asset value, the market price of (asset value) risk was fixed at 05.

5Changing the market price of risk to 0.5 had no effect on the estimates.
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The estimation was run on data from the beginning of 1999 until the date of the 

last bond price observation (2001-12-31 in most cases, but earlier in some cases). 

This last bond price observation was excluded from the estimation sample. After 

estimation, the bond price and spread was predicted and compared to the actual 

bond price and spread.

The standard deviation of observation errors could be estimated separately for 

each asset, but given that for this dataset, the number of bond observations ranges 

from 20% to 50% of the equity price observations, and given that the standard de­

viation of the observation errors determines the influence of the various series in the 

likelihood function, this would imply that the estimation would automatically attach 

more weight to the asset prices which are more frequently observed.

As a simple workaround, it would be possible to e.g. fix the standard deviation 

of the observation errors at 1% and not estimate them. SMLE was run here once 

without restrictions on estimation errors, and once with this restriction imposed.

The results are reported in Table 3.3. As can be seen, the SMLE estimates are 

substantially less biased (a mean error of —12 bp for SMLE (restricted) and —77 and 

—79 bp for ERMLE and Calibration in terms of spreads respectively), and and have 

a lower RMSE for the same model (88 bp for SMLE (restricted) and 125 and 128 bp 

for ERMLE and Calibration respectively).

The performance of SMLE is good, considering the fact that apart from the asset 

value, only a single parameter was estimated, and that the bond pricing data is of 

low quality. SMLE can be seen to be substantially less biased and more precise than 

either of the ERMLE and calibration techniques.

Several things can be noted:

• Including bond prices in the estimation reduces the out-of-sample bond price
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Mean error Mean abs. error RMSE
Spread or Yield error (bp)

SMLE1 -27 36 49
SMLE2 -1 2 52 88
ERMLE -7 7 95 125
Calibration —78 95 128

Yield percentage error
SMLE1 -3.84% 5.45% 6.71%
SMLE2 -0.50% 10.20% 17.55%
ERMLE -7.25% 18.44% 25.84%
Calibration —7.50% 18.41% 25.92%

Bond price error ($ per 100$ face value)
SMLE1 0.79 3.88 7.47
SMLE2 -0.22 3.31 6.71
ERMLE 4.08 6.39 9.71
Calibration 4.26 6.50 10.13

Bond price percentage error
SMLE1 1.04% 3.53% 6.20%
SMLE2 0.04% 3.03% 5.57%
ERMLE 4.43% 6.26% 9.39%
Calibration 4.68% 6.44% 10.12%

1 : unrestricted
2: s.d. of obs. errors restricted to 1%

Table 3.3: Prediction errors on real data

prediction bias.

• The largest difference between techniques appears to depend on whether or not 

bond prices were used in the estimation. ERMLE does not seem to significantly 

outperform the calibration technique for this dataset, possibly due to relatively 

constant leverage over the sample period. This is in spite of the fact that only a 

relatively small number of bond price observations were used in estimation (the 

bond price data is not daily data).
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•  All methods appear to underpredict spreads on average. It is likely that this 

is due to the theoretical model producing spreads that are too low to match 

empirically observed spreads.

•  It is clear that for this theoretical model, the underprediction of spreads it 

produces outweighs the overprediction effect from ERMLE.

• Imposing the restriction that the standard deviation of observation errors is 

1% for both equity and bonds appears to produce a less biased out-of-sample 

prediction. It does appear to raise the variability of the prediction on some 

measures. A likelihood ratio test conducted firm-by-firm to test the null that 

the restriction is valid leads to no rejections at 5% for any of the 33 firms.

Eom, Helwege, and Huang (2004) conclude that there are problems with the ac­

curacy of structural models, testing several models. For any metric that they present, 

it is always the case that at least one of the two SMLE results present here is better 

than their best model. The results here also compare favourably to those presented 

by Lyden and Saraniti (2001), who report mean absolute yield or spread prediction 

errors in terms of 80 to 90 basis points (the mean absolute yield error for ERMLE, 

Calibration and unrestricted SMLE are 95 bp, 95 bp and 36 bp respectively).

This is in spite of the fact that the data utilised here is unreliable. In chapter 4, 

another dataset is presented: the Lehman Brothers Fixed Income Securities Database 

(the same data used by Eom, Helwege, and Huang (2004)). Estimating the same 

theoretical model with the ERMLE technique, produces RMSEs in the range of 91 

bp, as opposed to 125 bp. This indicates that the NAIC pricing data is of poor quality, 

as discussed above. Unfortunately, it was not possible to use the Lehman FISD data 

here for licensing reasons.
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It is possible that the conclusion of Eom, Helwege, and Huang (2004) that ‘'ac­

curacy is a problem” , which is broadly supported by other studies (e.g. Lyden and 

Saraniti 2001) is partly to do with their estimation methods, and it would be interest­

ing to repeat the analysis presented here with more reliable bond data, in particular, 

data at a higher frequency and for different classes of assets and derivatives (e.g. CDS 

spread data).

3.5 C oncluding R em arks

This chapter suggests applying Simulated Maximum Likelihood Estimation as pro­

posed by Durbin and Koopman (1997) to the estimation of bond prices. This esti­

mation technique allows estimating a system relating several observed variables (e.g. 

price of equity, price of debt) to an unobserved factor (the asset value).

The approach has two main advantages: It can utilise all data that contains infor­

mation about the asset value of a firm, including prices of equity, different bonds and 

credit derivatives, improving the efficiency of the estimation as shown above. Also, 

given that more than one asset price is utilised, it is not necessary to assume that the 

model prices equity (or any other asset) with 100% accuracy - assets are assumed to 

be priced with an observation error. Given that market microstructure effects, agency 

problems, liquidity issues, time horizon issues, etc. are likely to influence equity re­

turns (and other asset returns), and given that these effects are not usually included in 

structural models, it is unreasonable to assume that any asset is priced perfectly by a 

structural model. In fact, the approach allows for non-asset value related components 

in asset prices implicitly via the observation errors.

The approach also easily deals with asynchronously and irregularly spaced data



and missing observation, which is important especially since corporate bond markets 

are typically not very liquid meaning that some bonds are not traded on a very 

frequent basis.

Furthermore, the approach would facilitate a rigorous and theory-based examina­

tion of the relationships between various asset prices used in estimation, for example 

to examine lead-lag relationships between equity and bond prices. It could easily be 

extended to a multivariate scenario, where asset value processes are correlated across 

firms, leading to estimates of portfolio credit risk. All these are topics for future 

research.

Monte Carlo experiments as well as an application to real data seems to indicate 

that large gains in efficiency can be achieved over existing techniques that utilise only 

the price of equity to estimate bond pricing models.
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Chapter 4 

The non-default com ponents of 

corporate yield spreads

4.1 In troduction

Many structural models appear to underpredict bond spreads. So far, there have been 

two distinct responses to this problem. As detailed in the introduction, many have 

argued that in order to improve the fit of structural models, the calculated default 

probabilities have to be increased and/or payoffs to bondholders have to be decreased 

such that predicted credit spreads rise.

This is of course only one possible answer to the problem; the other answer is that 

the default component of the spread is accurately predicted by structural models, 

but that there are components in spread which are not related to default. Possible 

proposed causes for this components include taxes and liquidity. There seems to be 

a growing awareness in academia that default risk explains only part of observed 

lrThis chapter is based on joint work with Joel Reneby.
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corporate bond spreads.

Clearly, it would be interesting to see whether it is possible to

• estimate a structural model explicitly assuming that there is a non-default com­

ponent to corporate bond spreads, and

• to see whether the estimated model is better at out-of-sample prediction of bond 

spreads.

Ideally, one would like to have a theoretical model that jointly explains the default 

and non-default components of spreads, but as of yet no empirically tractable models 

have been suggested. A tentative explanation is that including illiquidity or transac­

tion costs would destroy the frictionless setting in which the models are derived.

In this chapter, a more pragmatic approach is taken instead. A structural credit 

risk model is used to determine the default risk premium, and it is hypothesised 

that the non-default premium of a bond is a linear function of market-wide liquidity 

proxies. The main finding is that even with a very simple model of the non-default 

component, out-of-sample prediction ability of the combined model is substantially 

improved.

Several recent papers have investigated the components of corporate spreads. E.g. 

Elton, Gruber, Agrawal, and Mann (2001) back out default spreads from historical 

default rates from transition matrices, and find that compensation for expected losses 

only account for a small part of the spread. Huang and Huang (2003) do a similar 

exercise but match historical equity premium as well. They, too, find that the default 

spread can only constitute a fraction of total spreads. Longstaff, Mithal, and Neis 

(2004) extract a non-default component from corporate bond spreads using the pre­

mium on corresponding credit default swaps as a proxy for the default premium. They
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find that although the majority of the corporate bond spread is default-related there 

is a large non-default component. Averaging across time allows them to regress the 

non-default component of different firms on proxy variables for non-default factors. 

They find that coupons, the average bid-ask spread of a bond, amount outstand­

ing, maturity, rating and a financial sector dummy are important. Averaging across 

firms allows them to regress their non-default component on time series. They find 

that money market mutual fund flows as well as the spreads between off-the run and 

on-the-run treasury bonds are significant.

In contrast to the studies cited above, Collin-Dufresne and Goldstein (2001a) 

investigate causes of changes in corporate spreads. They show that when performing 

simple linear regressions of credit spread changes on several explanatory variables that 

one would find as inputs to typical structural models, only about a quarter of the 

variation in credit spread changes can be explained. When examining the residuals, 

they find that they are correlated across firms, indicating an unidentified market-wide 

factor. They also attempt a regression where they include liquidity proxies, such as 

for example the difference in yields of 30 year on-the-run versus off-the-run treasury 

bonds. This increases the percentage of explained variation, but still does not seem to 

eliminate the market-wide factor, which they believe is related to liquidity but cannot 

be captured with their liquidity proxies.

Delianedis and Geske (2001) attem pt to identify the default component with a 

structural model, and then run regressions to explain the non-default component, and 

find that equity volume as a proxy for liquidity appears to be a relevant explanatory 

variable.

In sum, the results above indicate that non-default components make up a substan­

tial portion of yield spreads. Existing bond pricing models, in contrast, are typically
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designed to price default risk only. To better understand and predict bond prices 

therefore, it seems necessary to include non-default components in bond pricing mod­

els.

As argued above, one would ideally like to have a theoretical model that jointly ex­

plains the default and non-default components of spreads, but as of yet no empirically 

tractable models have been suggested.

Here, this problem is avoided by using an ad-hoc model: the total bond spread 

is modelled as the sum of the default spread predicted by the structural model and 

a non-default spread component. The non-default spread is, in turn, modelled as a 

linear function of a set of market-wide variables. Inspired by the findings of Longstaff, 

Mithal, and Neis (2004), the following variables are chosen: the liquidity on the 

treasury market as proxied by the spread between on- and off-the-run treasuries, as 

well as the flow in and out of money market mutual funds as reported by the Federal 

Reserve. The structural model that is used is the modified version of the Leland 

(1994) model as presented in previous chapters.

Using stock prices and bond spreads, balance sheet data and the chosen market 

factors, the combined model of default and non-default risk is first estimated with 

maximum likelihood. Next, a prediction of the corporate bond spread one month 

out-of-sample is obtained from the stock price and the value of the market factors at 

this point. If the market factors indeed can explain the non-default component of bond 

spreads, this estimate should be superior to the corresponding estimate from a model 

without the non-default component. Comparing the two models, the findings are 

that while the default-risk-only model underpredicts spreads by about 60 basis points, 

the prediction combining the default component with the non-default component is 

virtually unbiased, and reduces the variability of out-of-sample forecasts.
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The rest of this chapter is organised as follows: first the model for the default 

and non-default components is discussed, followed by the estimation methodology. 

Then the data set used to implement the procedure is presented. Finally, results are 

produced and conclusions drawn.

4.2 T he m odel

4.2.1 The default com ponent

The structural model utilised here is the same as in chapter 3. This is a modified 

version of the Leland (1994) model, extended to allow for violations of the absolute 

priority rule and future debt issues. Aggregate debt and aggregate equity are viewed 

as perpetuities, with default occuring when the asset value hits the level at which

shareholders are no longer willing to contribute funds to stave off financial distress (i.e.

the default boundary is endogenous). As argued above, different assumptions about 

the barrier are feasible, but probably will not lead to large differences in predicted 

credit spreads.

As above, an individual bond is presumed to be a negligible proportion of total 

debt, and priced as a portfolio of binary options (one for each coupon, and one for the 

principal), and an option that pays of a recovery fraction of the principal at the time 

of default (if default occurs before maturity). Again, this allows combining a realistic 

model of a bond (i.e. the bond is coupon-paying and has a finite maturity) with 

analytical tractability. The model has been shown by Ericsson and Reneby (2002b) 

to work well in an empirical setting.

The yield predicted by this structural model is denoted y CRED.
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4.2.2 The non-default component

The non-default component of the yield Y ND is assumed to be a linear function of 

some selected proxy variables X t:

(4.1)

such that the total yield becomes

(4.2)

Later, an observation error will be added to this total yield.

The proxy variables utilised here will be differences between yields of the on-the- 

run and off-the-run government bonds at various maturities, and money market fund 

flows. Other proxy variables could be found, but the number of proxy variables that 

can be used in estimation will be constrained by the amount of data available.

The estimation method will be based on maximum likelihood estimation. In order 

to proceed, we first need to write down how observed bond and equity prices and 

predicted prices or yields relate, and make distributional assumptions about errors.

(log) equity pricing function, where 9{ is a vector of parameters of the credit model 

which are to be estimated. Suppose we have data on bond prices and equity prices,

4.3 E stim ation

4.3.1 Setup

Let a it denote the log asset value of a firm i at time t. Let Zf(atit ;9) denote the
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and would like to use both to estimate the model. 

We can write the system in state space as

a i, t+1 — a it +  Vi,t+1 (4*3)

log (Eit) =  ZF(ait;0i) (4.4)

Yt = Y r d(ait; di) +  X'tli + sit (4.5)

assuming that

W , t + i  ~  N I D { 0 , a ^ i )  (4 .6)

e i t ~ N I D (  0 , 4 ,). (4 .7)

Alternatively, this could be specified similarly to the system in chapter 3:

a i , t+1 =  a it +  TliJ+l (4-8)

\og(Eit) =  Z f ( a it-,9i) (4-9)

\og( Bn) =  Z f ( a  &i) +  X'rfi +  (4-10)

(4 .11)

Note that if the bond was a zero coupon bond, its spread would be —(1 /r) log 5 , 

where r  is the time to maturity. We can see that the above setup, in choosing the log 

bond price, is almost equivalent to choosing the spread as the observed variable (at 

least for zero coupon bonds). As it turns out, the resulting non-default component 

parameters will depend on time to maturity (over and above bond age) if estimated 

in terms of prices, so the alternative specification in terms of yields was adopted here.
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For this specification, the resulting parameters appear to be invariant with respect to 

maturity.

This setup allows for the simultaneous (maximum likelihood) estimation of the 

credit parameters 0, as well as the liquidity parameters 7 .

4.3.2 Evaluating the likelihood function

Although it would be possible to estimate the model using the SMLE procedure 

presented in chapter 3, this method was not adopted here, as the method can become 

slow for larger datasets. As argued in that chapter, the assumption tha t equity is 

priced perfectly introduces a bias, but the size of the bias appears to be reasonably 

small for the given structural model. We can also see that if the number of bond 

observations is relatively small compared to the number of equity pricing observations, 

the SMLE procedure will estimate a very low equity observation error in any case, 

unless restrictions are imposed.

It was concluded in that chapter, though, that including information on bond 

prices or yields appears to be important. This is of course necessary in any case if the 

objective is to estimate a non-default component of yields. Consequently, a modified 

version of the ERMLE/Duan, to also take into account yields, was utilised here.

As described in chapter 3, the method first proposed by Duan (1994) utilises a 

change of variables from asset values to equity prices to arrive at a density (and hence 

likelihood) for the observed equity prices: Let E obs denote the observed equity price. 

Given that certain conditions on Z f  hold, p(Eobs) can be calculated easily from the
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density of the log asset value a as

■ d z f f a o y - 1
p ( E ° ’) = p(a) da

a = a (E obs-,0)

where a ( E obs\Q) is the asset value implied by the observed equity price, given a 

parameter vector 0.

As argued in chapter 3 section 3.2.4, we note that the joint density of equity and 

yields Y  (or bond prices, or other contingent claims) can be written as

p ( E ,Y ) = p ( Y \ E ) p ( E )  (4.12)

logp(E, Y)  = logp{Y\E)  +  logp(E).  (4.13)

Now given a parameter and an observed equity price, we can work out the equity-

implied asset value. Since the event that E  = E  is equivalent to a(E\Q) = a{E\6)

for a given theta, we can write the conditional p (Y \E obs) as p (Y \a (E obs; 0)), where 

a (E obs;0) is the same equity-implied log asset value.

The algorithm for evaluating the likelihood function is as follows:

1. For the given parameter vector, compute the equity-implied asset value.

2. Calculate the Jacobian of the equity pricing function at this asset value.

3. Calculate the density of this asset value.

4. Calculate the yield implied by this asset value, and calculate its density.

5. Combine all components to calculate the likelihood at this parameter vector. 

This allows numerical maximisation of the likelihood function.
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4.4  D ata

4.4.1 Bond price data

The corporate bond data we use was the Lehman Brothers Fixed Income Securities 

Database (FISD). This database contains data for bonds that were part of the Lehman 

Brothers indices. It contains monthly prices for a large array of fixed income securities. 

Here, the focus is exclusively on industrial bonds for firms based in the US during the 

coverage of the database, i.e. between January 1994 and February 1998.

The FISD database distinguishes between trader quotes and matrix quotes. As 

matrix quotes represent interpolation mechanisms rather than actual market prices, 

they are eliminated. Also, bonds with embedded optionality, sinking fund clauses 

etc are removed, such that the remaining bonds were plain vanilla unsecured bullet 

bonds only. Since a time series of reasonable length is a prerequisite for estimating 

the relationship between the non-default component and time-varying market-wide 

liquidity proxies, all bonds with less than 24 consecutive months of observations were 

eliminated. All bonds for which prices were clearly stale were also eliminated, where 

data entry errors were apparent or for which corresponding equity or balance sheet 

data was simply not available. Seven firms were dropped because of convergence 

problems in the estimation procedure.

The resulting dataset comprises 108 bond issues by as many firms; the number of 

monthly price observations ranges from 24 to 50.

The FISD database also provides all the characteristics of the individual bonds 

such as coupon, maturity, issue size and ratings.
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4.4.2 Equity prices and accounting data

The empirical measure of the total debt of the firm is the total liabilities as reported 

in firms’ EDGAR filings compiled and provided by Mergent. In addition to this, daily 

market values for the outstanding equity as well as information about the risk free 

interest term structures over time were obtained from DATASTREAM.

4.4.3 Non-default proxies

Differences between yields of on-the-run and off-the-run treasuries at different matu­

rities (2, 5, 10 and 30 years) are used as proxy variables for market-wide liquidity 

(these were calculated from treasury market data). They were augmented by mutual 

money market fund flows (as suggested by Longstaff, Mithal, and Neis (2004)). The 

fund flows are provided by Federal Reserve.

4.4.4 Assumed and estim ated parameter values

Due to the limited amount of data, the total number of estimated parameters needs to 

be kept to a minimum. Only the asset value volatility the yield error oy and the 

coefficients of the liquidity proxies (these include a constant) 7* are estimated. This 

means that assumptions about the other credit model parameters need to be made. It 

is assumed that the cash payout rate (/?) is 2%, the recovery rate to equity/deviation 

from absolute priority (e) is 5%, the bankruptcy cost (k) is 75%, and the corporate 

tax rate (£) is 20%. The recovery fraction of individual bonds (tp) is assumed to 

match those reported by Altman and Kishore (1996) (matched by industry).
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4.5 R esu lts

For each bond, the model is estimated on all available data (at least 24 months) prior 

to January 31, 1998. Using the equity price observation for January 31, 1998, and 

the estimated model parameters, the spread is predicted for that date. This is not an 

out-of-sample forecast in the sense that the contemporaneous equity price observation 

is used in the forecast, but reflects possible uses of structural models such as hedging 

exposure in (illiquid) corporate bonds with equity - the assumption being that equity 

prices are always readily available. In the following, this will be referred to as an out- 

of-sample prediction, as it is out-of-sample with respect to the bond price/ spread 

being predicted (which is not part of the estimation sample). This is similar to the 

notion used in chapter 3.

4.5.1 Out-of-sample prediction performance

In order to compare, we first run the model without specifying a non-default compo­

nent. The mean out-of-sample yield or spread prediction error for the model without 

non-default component is -61 bp (i.e. the model underpredicts by 61 bp on average). 

This is the now familiar result that most structural models on their own underpre- 

dict spreads or overpredict bond prices, and parallels the conclusions first drawn by 

Jones, Mason, and Rosenfeld (1985). The model without a non-default component 

also produces a fairly high root mean square error of 91 bp.

We then introduce the non-default component. As a first specification, X  will 

only consist of a constant. In a second specification, proxies X t include a (firm- 

specific) constant, and the spread between off-the-run and on-the-run treasury bonds
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at maturities of 2 and 30 years, and institutional money market mutual fund flows2. 

As discussed before, the coefficients on the market-wide variables are estimated as 

firm specific coefficients.

Introducing a constant firm-specific non-default component already produces a 

dramatic performance increase. The mean error drops to -11 bp, and the RMSE 

drops to 25 bp. The mean non-default component is 51 bp. It appears that the 

model underprediction is constant, and improved predictions can simply be achieved 

by incorporating a constant in the estimated model. There is of course a question 

as to whether the constant simply corrects for the misspecification of the structural 

model. It is interesting in this context that the constant varies across firms - and as 

a form of testing whether it picks up credit model misspecification how the constant 

varies in the cross-section will be examined below.

Introducing the on-the-run off-the-run spreads (ONOFF2 and ONOFF30) and 

the money market fund flows (MMMF), the mean yield error drops to -9 bp. More 

importantly, the RMSE drops another 5 bp to 20 bp. The average in-sample predicted 

non-default component is now 52 bp. This appears to indicate that the variables can 

explain some of the variability of the non-default component.

This can be cast interpreted in terms of an R 2 in the following way: The RMSE 

of the constant-only model can be interpreted as the square root of the Total Sum of 

Squares (TSS) divided by the number of observations, the RMSE of the full model can 

be interpreted as the square root of the Residual Sum of Squares (RSS) divided by the 

number of observations. A quick calculation shows that the R2, i.e. the percentage of 

variation in the difference between the true yield and the yield of the default model

2Off-the-run on-the-run spreads at maturity of 5 and 10 years, as well as the retail money market 
mutual fund flows turned out to be insignificant for our dataset, so we omit presenting the results 
pertaining to them here. The difference in results when including them is very small.
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explained by the proxy variables is 0.35, or 35%. This appears to be rather higher 

than the R 2s reported e.g. in Delianedis and Geske (2001), which are all in the single 

digits.

4.5.2 Estim ated parameters

The estimated parameters (the av and the 7  vector) are presented in table 4.1.

As can be seen, it is clear that the constant is positive and significant - on average, 

there is a positive non-default component.

The coefficient for ONOFF2 also seems to be positive and significant for most 

firms, indicating that the liquidity premium in the treasury market tends to move in 

the same direction as the non-default component (possibly a corporate bond liquidity 

premium) in corporate bonds.

The evidence for ONOFF30 seems to be more mixed. The median maturity of the 

corporate bonds examined here is around 7 years, so possibly the liquidity premium 

in the long end of the treasury market matters less for (shorter maturity) corporate 

bonds.

Selecting only those bonds which have a maturity larger than 20 years, the mean 

of the the t-statistics is 3.72, suggesting that the longer-maturity treasury liquidity 

premium is indeed positively related (on average) to the non-default component in 

the longer-maturity corporate bonds.

The negative coefficient on the MMMF variable indicates that as money flows 

into money market funds, the non-default component decreases. Since these mutual 

funds can and do invest in corporate funds, these inflows represent inflows of cash 

into the entire bond market. One could interpret the negative coefficient as evidence
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parameter value t-statistic

1st Quart. 
2nd Quart. 
3rd Quart. 
4th Quart.

0.1185713
0.1359962
0.1544704
0.1860867

Constant
1st Quart. 
2nd Quart. 
3rd Quart. 
4th Quart.

0.003541493
0.234743061
0.370158930
0.582756919

7.137775
8.852635

10.479838
11.597603

ONOFF2
1st Quart. 
2nd Quart. 
3rd Quart. 
4th Quart.

-1.3366848
-0.2060235

0.5477506
1.7370544

-1.4486486
0.5376329
2.1353796
2.9645993

ONOFF30
1st Quart. 
2nd Quart. 
3rd Quart. 
4th Quart.

-1.30905615
-0.50104812

0.09100273
0.96930335

-1.9023132
-0.4057316

0.9478363
1.9913497

MMMF
1st Quart. 
2nd Quart. 
3rd Quart. 
4th Quart.

-0.028574870
-0.017750038
-0.012228793
-0.006617398

-5.915437
-4.989686
-3.663055
-1.806942

Table 4.1: Mean parameter estimates (and t-stats) for the different quartiles
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that as cash flows into the market, liquidity increases, and the non-default component 

decreases.

The sign of the coefficient on MMMF is opposite to the sign of the coefficient 

on a similar variable as reported by Longstaff, Mithal, and Neis (2004). They argue 

that their variable captures inflows into money market mutual funds and therefore 

defensive money market positions, and that inflows should therefore be associated 

with increases in the non-default component. It would be interesting to compare the 

exact make up of the variables used.

Overall, the results seems to suggest that liquidity premia in corporate bond and 

treasury markets move together, rather than in opposite directions.

4.5.3 Cross-section properties of estim ated parameters

In order to examine how the estimated non-default parameters vary across different 

types of firms and bonds, the coefficients of the constant, ONOFF2 and MMMF 

where regressed on firm/bond-specific variables including rating (with 1 being the 

best rating, and 18 being the worst rating), a dummy that indicates whether a bond 

is considered non-investment grade, time to maturity, amount outstanding for the 

bond issue, coupon (as a possible proxy for taxes), leverage, as well as stock market 

capitalisation (as a measure of the size of the firm).

The results of the regressions are as reported in tables C.l - C.4 (see appendix 

C). As can be seen from table C .l, the constant seems to be affected by whether 

or not the bond is an investment grade bond or not: A positive coefficient with a 

p-value of 0.0573 indicates that non-investment grade bonds have a large non-default 

component on average (in absolute terms, this is not relative to the total spread). This
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could be explained with reference to the institutional restrictions placed on holding 

non-investment grade bonds, which are likely to reduce the liquidity of such bonds, 

and hence increase spreads. It is interesting to note that once controlling for whether 

or not a bond is an investment grade bond, rating has no significant effect. This 

seems to indicate that the relationship between rating and non-default component is 

non-linear. Note that this result is similar to the one reported by Longstaff, Mithal, 

and Neis (2004) - they find that an A A A/A A dummy is significant and negative.

The fact that rating per se and leverage are not significant is reassuring, as it 

indicates that the model is not misspecified.

One would, however, expect that the amount outstanding and the size of the firm 

is relevant for the liquidity of the bond being traded and hence the size of the non­

default component - there does not appear to be any conclusive evidence that this is 

the case here.

Longstaff, Mithal, and Neis (2004) also report that there is a positive relationship 

between maturity and the non-default component, arguing that longer maturity bonds 

are less liquid. This effect does not appear in the data here.

For the sensitivity of the non-default component to the off-the-run on-the-run 

spread (ONOFF2), the investment grade status also seems to play a role, the coeffi­

cient is positive and significant at the 5% level. It appears that for non-investment 

grade bonds, the non-default component is more likely to be positively related to the 

liquidity premium in the treasury market - a rising liquidity premium in the trea­

sury market is more likely to be associated with a rising non-default component for 

non-investment grade bonds.

None of the other variables appear to be significant.

As can be seen in table C.3, the only variable which appears to have a significant
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influence on the effect of the 30-year off-the-run on-the-run spread (ONOFF30) is 

the coupon. The effect of coupons is positive and highly significant. This seems 

to suggest that the non-default spread component of corporate bonds with higher 

coupons is more likely to be positively affected by longer maturity treasury market 

liquidity premium for corporate bonds with high coupons. It is difficult to find an 

explanation for this result. None of the other cross-sectional variables appear to be 

relevant for explaining the effect of ONOFF30 on the non-default component.

Table C.4 shows that the effect of money market fund flows again changes depend­

ing on whether one is looking at investment grade or non-investment grade bonds, with 

the coefficient here being negative and significant at the 5% level. For non-investment 

grade bonds, it appears that money market fund flows are more important, and an in­

flow of the same size is associated with a drop in the non-default component of a larger 

size. This is surprising, as one would expect money market funds to be restricted to 

investing in investment grade securities, one would therefore expect non-investment 

grade securities to be less affected by fund flows.

It also appears that bonds with higher coupons have a non-default component that 

is affected to a greater extent by money market fund flows (again, the coefficient is 

negative and significant at the 5% level). One could conjecture that this might be due 

to the fact that money market funds are affected less by the tax treatment of coupons 

than other investors. As can be seen in comparison with table C .l, the coupon does 

not appear to have an effect on the overall level of the non-default component. This 

is in contrast to the result presented in Longstaff, Mithal, and Neis (2004).

The regression also indicates that maturity and leverage are relevant - these effects 

are rather more difficult to explain.
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4.6 C oncluding rem arks

Many structural models appear to underpredict bond spreads. Possible explanations 

include either that the model predicted default spreads are too low (because default 

probabilities are underestimated, and payoffs are overestimated), or that there are 

components in spreads which are not related to default.

This chapter looks at the the second possible explanation, and examines whether 

the predictive performance can be improved if a non-default component is explicitly 

accounted for. W ith a very simple setup, it is shown that

• The predictive performance of the combined model is substantially better than 

the model that does not account for a non-default component.

• Although a large part of the level of the non-default component seems to be 

captured here by a firm-specific constant, some of the time variation in the non­

default component can be explained by market-wide variables that are proxies 

for e.g. liquidity in treasury markets, and furthermore, the coefficients do vary 

across the cross-section in a meaningful way (e.g. whether or not the bonds are 

non-investment grade does seem to matter).

• Many of the results here are either in line with results of previous research, or 

in line with expectations.

A point of particular interest is that a part of the non-default component (possibly 

a liquidity premium) in corporate bond spreads appears to be positively related to 

the treasury market liquidity premium. This lends support to “flight to quality” 

explanations of liquidity premia in bond markets, and suggests that to some degree off- 

the-run treasury bonds and corporate bonds behave as complements, not substitutes,
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and “flights to quality” are really flights towards on-the-run treasury bonds.

Overall, it appears that the non-default component of credit spreads is an inter­

esting area of research, as much of the time variation in the non-default component 

is still not explained. In future, it may be possible to improve the estimate of the 

credit component by including more information on assets (such as bond prices at a 

daily frequency, CDS spreads) in estimation, for example via the procedure described 

in chapter 3. Also, it would be interesting to find more variables that appear to be 

related to this non-default component - both time-varying firm specific variables as 

well as market-wide variables. Possibly, this can inform the theoretical discussion of 

why and how spreads can contain non-default components.
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Chapter 5

Conclusion

Structural models would be a natural choice for pricing/ hedging in situations where 

an explicit link to equity prices is desirable, e.g. when a hedge is to be executed by 

buying and selling equity, or when models need to be estimated and bond pricing 

data is relatively scarce.

Unfortunately, structural models have often been avoided in these kind of ap­

plications because of a perceived inability to price assets with a reasonable degree 

of precision. In particular, it appears that a lot of structural models underpredict 

spreads. Models that impose less structure (so-called reduced-form models) are often 

used instead.

There are several facets to understanding the problems of structural models in 

explaining the data.

As was argued in chapter 3, part of the problem up until now seems to have been 

insufficiently precise estimation methods. A method, based on non-linear filtering, 

allowing for the inclusion of prices of more than one asset class was presented. The 

method has the advantage that prices of more than one asset can be used in estimation,

110



and that it is not necessary to assume that any one asset is priced perfectly by the 

model. It was shown that when estimating structural models, including even relatively 

small amounts of bad quality bond price data in addition to equity data can produce 

large increases in performance in the sense that out-of-sample spreads are predicted 

more accurately. Possibly, part of the perceived problem with structural models is to 

do with inaccurate estimation methods.

Since the traditional Merton (1974) model appears to underpredict spreads, an 

important response to attempting to improve the performance of structural models is 

to provide models that produce a higher credit spread. In chapter 2, an argument was 

put forward that a model incorporating coordination failures between creditors can 

increase spreads. It was argued that in a lot of cases, creditors are unlikely to act in a 

coordinated manner, and that since they often have incentives to attem pt to enforce 

claims on the firm at the expense of other creditors, races to do so are possible - even 

in legal regimes that have relatively strict bankruptcy arrangements such as the US. 

It is obvious that this has an effect on the price of debt. It was argued that the effect 

is such that the resulting continuous-time bond pricing model can be seen to have the 

original Merton (1974) and Black and Cox (1976) models as limiting cases, depending 

on the parameter that governs the incentives to attem pt to grab assets: The legal 

costs of such actions. It was also argued that this effect can produce a discount in 

bond prices (and hence higher spreads). Although this is a convincing story as to 

how bankruptcy happens, and how strategic interaction has an effect on the price of 

debt, simply estimating the model on bond prices is unlikely to differentiate it from 

other models that produce similar barriers and payoffs. It was instead argued that 

an explicit empirical test can be based on the level of the barrier and the fraction of 

assets recovered in case of bankruptcy, rather than on the bond price.
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When implemented on bond prices, models need to be tractable. As was argued 

throughout this thesis, models must be able to price coupon bonds, and must treat 

equity as a perpetuity. An alternative to modelling the typically very complicated debt 

structure of a firm, including differences in seniority of different layers of debt, as well 

as differences in maturities, and covenants, embedded optionality and complicated 

repayment conditions, is to choose a simple model for aggregate debt that treats it 

as a perpetuity, and to price the debt claim in question as a negligible proportion 

of aggregate debt. For most corporate bond issues, this is a reasonable assumption. 

Naturally, this needs to be combined with the properties of a first passage model, 

allowing for default before maturity of the infinite maturity aggregate debt. Although 

different arguments can be made as to what the chosen barrier should be, the prices 

of any such model are likely to be very similar in practice.

Lastly, chapter 4 argued that possibly, the underprediction of spreads by structural 

models is not necessarily a sign of producing default probabilities that are too low, 

or payoffs that are too high, but that there are components in the spread which are 

not related to default, as suggested by recent empirical research (Longstaff, Mithal, 

and Neis 2004, Delianedis and Geske 2001). Instead of attempting to produce models 

that exhibit a higher default component of spreads, by e.g. including jumps, reduc­

ing information sets, lowering barriers and raising bankruptcy costs, or introducing 

coordination failures, it might be necessary to expand models by explicitly including 

a non-default component of spreads. Chapter 4 presented a very simple model of a 

non-default component, and estimated the combined model on data. From the results, 

it appears to be the case that this improves out-of-sample forecasting performance, 

and produces parameter estimates with reasonable, and indeed interesting signs and 

magnitudes.
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Structural models have been avoided in pricing and hedging applications, but it 

is clear that after some reconsideration, they might still prove valuable and indeed 

necessary in these kind of applications.
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A ppendix A

Pricing coordination failure

A .l  Solution  o f th e d iscrete tim e m odel 

A .1.1 Basic procedure

We follow the same procedure as Morris and Shin (2004a) to solve the model. Suppose 

that agents follow a switching strategy around a certain posterior belief. Given the 

posterior belief around which agents switch, it is possible to derive the fraction of 

them that will foreclose, given the asset value in the next period (posterior beliefs 

will be centred around this asset value in the next period). We can therefore work 

out what the critical next-period asset value is for which the firm will fail, given the 

belief in this period around which agents switch.

Also, we can use the fact that agents will switch if they believe that they will 

obtain a higher utility from doing so. Once we have defined utilities, this allows us to 

derive the critical posterior belief, given a critical next period asset value for which 

the firm fails.
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So we have two equations in two unknowns, which can then be solved for the

critical asset value for which the firm fails - the trigger point.

A. 1.2 Information

For convenience, the assumptions about information are restated here. The relative 

increase in the asset value is normally distributed around a drift.

with Cov(r]t , e*) =  0, i.e. the noise is orthogonal to the innovations in the fundamental. 

A. 1.3 Posteriors

From the signal X{ and the public information Vt, agents form a posterior about the 

value of the firm in period t +  A, Vt+A which is normal with mean and variance given

by

V̂ +A - V t = HvVtA +  VtT)t, r)t ~  N ID  0 ,

Agents receive a signal (subscript % indexes the different agents) about this 

increase with a distribution conditional on the asset value Vt given by

N ID  0 , (A.2)

Pi = E[Vt+A\Xi]
a(l +  //yA)Vf + pXi

ol (3
(A.3)

and

Var(Vt+A\Xi) (A.4)
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A. 1.4 Critical value of Vt+a for which the firm fails

Given the posterior belief around which agents switch, we work out how many of them

period asset value is for which the firm fails, given the belief in this period around 

which agents switch.

Suppose agents follow a switching strategy around p*, i.e. agents foreclose when 

their posterior is below p*. Then an agent will not foreclose if and only if the private 

signal is bigger than

Conditional on state Vj+a, the distribution of X{ is normal with mean Vt+A and

where <f> is the cumulative standard normal density function.

As the number of agents tends to infinity, the fraction of agents that foreclose 

will be equal to this ex ante probability for any individual agent by the law of large 

numbers.

Since the firm fails if the fraction that forecloses is

will foreclose, given the asset value in the next period (posterior beliefs will be centred 

around this asset value in the next period). We then work out what the critical next-

(A.5)

precision A . So the ex-ante probability for any agent of foreclosing is equal to

(A.6)

(A.7)
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the critical value of Vt+a  (denoted by V ^A) for which the firm fails at t is given by

* £ a  = £ *  { y t y /p  ( X ' -  Vt\ A) \  (A.8)

or

V&A =  I *  (p* -  (1 +  V v W )  + V P { p ’ ~  V A a)) } • (A.9)

A .1.5 U tility

Consumption in any intermediate period t+q  per unit of aggregate debt is as described 

in the payoff matrix in the main text, reproduced here for convenience:

firm reorganised firm not reorganised

(.R ) (->/?)

grab assets (G) (1 -  K )Vt - K V t

do not grab assets (->(2 ) 0 0

Let £ denote the fraction of aggregate debt that a creditor holds, then consumption 

in the case the agent decides to grab assets and the firm is reorganised is

ct+q(G ,R) = ( l - K ) V tZ, (A.10)

consumption in the case the agent decides to grab assets, but the firm is not reorgan­

ised is

ct+q{ G ^ R )  = - K V tt ,  (A .ll)

and consumption in the case the agent decides not to grab assets, whether or not the
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firm is reorganised is

Ct+q{-^G, R) =  ct+q(^G, -iR) =  ct+q(-iG) =  0. (A.12)

The utility function is additively separable across time. Letting u (c t+q(Vt+a)) 

denote Bernoulli utility at time t +  q (this only stresses the dependences on Vt+a , but 

of course the utility will depend on the actions of the agents as well as on whether or 

not the firm fails), which will depend on the actions taken at that time, and letting 

Ut+a denote future utility and letting 6 denote a discount factor, we can write the 

agents utility function as

The expectation is taken under the agent’s belief.

A. 1.6 Critical value of p

We now use the fact that agents will switch if they believe that they will obtain a 

higher utility from doing so. We then derive the critical posterior belief, given a 

critical next period asset value for which the firm is reorganised.

Now the marginal agent (one that is indifferent between forcing reorganisation or 

not) has a posterior over the asset value which has its mean just at the switching point 

(i.e. p for this agent is equal to p*). For her the expected utility of not grabbing assets 

should just equal the expected utility of grabbing assets. This defines the switching 

point. Use F  to denote the posterior cumulative distribution (given the belief) over

FUt+q — E  [u (ct+q(Vt+a)) +  $t+qUt+q (V*+a)] (A.13)
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the asset value K+a - We can write:

rvt+a r°°
/  u (c t+q(Gi R ))dF +  /  u{ct+q{ G ^ R ))d F  

J - o o  J v t\ A

/ oo
Ut+&dF

-oo

/oo
Ut+&dF (A.14)

■oo

In effect, the stage games are similar to the prisoners’ dilemma. Since the game 

ends whenever cooperation is not achieved, any equilibria based on punishing strate­

gies are infeasible. This implies that the sequential game is actually turned into a 

sequence of one-shot prisoners’ dilemma games. Future utility will not depend on to­

day’s actions, and agents cannot use strategies that specify future actions other than 

the solutions to the one-stage prisoners’ dilemma games. Future utility will not be 

related to today’s actions, and will therefore be the same, whether or not the agent

decides to grab assets. Also note that the payoff is in terms of Vu which does not

depend on Vt+&. We can therefore write:

u {ct+q{G, R)) Pr (V)+A < Vt+A) + u ( c t+g(G ,^R ))  Pr (Ft+A > v;+a ) — o (A.15)

We can write this probability as:

Pr (Vt+A > VJ*+A) =  $  { ^ p  (p* -  Vt\ A) }  (A. 16)

(=  1 -  Pr (V«+A < Vt*+A)) .
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where $  denotes the cumulative normal density function. 

We insert this and rearrange to obtain

n* — V *  =  ^  fr"1 / __________ U   (, (fr  17̂
P t+A \ u ( c t+q( G , R ) ) - u ( c t^ ( G , ^ R ) ) t ( '  1

Insert consumption as specified above, and take limits as the number of agents 

goes to infinity. This will imply that the fraction of the loan held by any individual 

agent goes to zero, —> 0. Note that we have a fraction of functions of £f, and can 

apply l’Hopital’s rule. In the limit, all ct+q are equal, so

l;™.  U (Ct+q{G-> R ) )   _  / a
€t-o u (ct+q{G, R)) -  u (ct+q(G, -iR)) K }

« '(» .,)(!  - K ) V ,  _  t _ l c
u'(ci+a)fl -  K)V, -  u'(c,+,) f -K )V t

So the limit of our equation is

P" ~  0  " * >  • (A-2°)V a  +  P

This equation together with (A.9) pins down the critical value of beliefs and the 

asset value.

A. 1.7 Equilibrium forced reorganisation

Combining equations (A.20) and (A.9) we can solve for the failure point at which the 

asset value in the next period causes failure in this period:
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"  { t h  (t? "1"WA) + 11 - (A-21)
Reorganisation at time t +  q will occur when V  hits V* at t +  A.

A .1.8 Uniqueness

To simplify notation, define

(A.22)

and

C ondition A.I. < 1

Proposition 1 . The trigger point Vt*+A is unique if  condition (A.I) is satisfied.

Proof. This is a version of the proof in Morris and Shin (2004a). A sufficient condition 

for a unique solution is that the slope of

L<f>{Z} (A.23)

is less than one everywhere. This slope is equal to

(A.24)

It reaches a maximum where the argument of the normal density is 0, the maximum
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there will be ^==. Hence a sufficient condition for a unique solution is that

1 a  i 
L — < 1

y/27Ty/PVt
(A.25)

A .2 U n certa in ty  in th e  lim it

It can be shown that the marginal or pivotal agent views the fraction of banks that at­

tempt to foreclose as a random variable that is uniformly distributed in the continuous­

time limit, and hence that strategic uncertainty remains. Note that these kind of 

results have been discussed at length elsewhere (Morris and Shin 2002).

P ro p o sitio n  2 . The distribution of I given the belief p* of the marginal agent is 

uniform in the limit.

P roof. The proportion of people who receive a lower signal A* is

The question to ask is: W hat is the probability that a fraction less than z  of the 

other bondholders receive a signal higher than that of the marginal agent, conditional 

on the marginal agent’s belief, or what is

(A.26)

(A.27)

Now the event

1 — I < z (A.28)
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is equivalent to

l - $ b ^ ( X * - V t+A < z  (A.29)

or (rearranging)

Pt+A < X* +  1 {1 -  z)  . (A.30)

So the probability we are looking for is

3- -1 {1 -  z)  I A  . (A.31)

y2
The posterior of the marginal agent over Vt+A has mean p* and variance 

hence this probability is

Pr ( ( I - / )  I p") =  *  { ^ P  ( * *  + ^ | * _1 (A-32)

Now as we take limits, p* —* X *, since private information becomes infinitely more 

precise than public information (the agent attaches all weight to the signal and none

to the mean of the prior), and —> 1. It follows that

Pr ((1 — I) < z  | p*) = 1 — 2 , (A.33)

or

Pr (I < 1 — z  | p*) = 1 — z. (A.34)

So the cumulative distribution of I is the identity function, which implies that the

density will be uniform. ■
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A .3 P ricing th e  bond

To be more comparable to the existing literature, assume that the drift of the asset 

value is defined as fiy =  t  +  Act — 7, i.e. it is equal to the risk free rate, plus a market 

price of risk component, minus a cash payout rate.

A .3.1 The default process

Define the default process

The dynamics under the measure Q, defined by the money market account as the 

numeraire are

The dynamics under the measure V, defined by the asset value as the numeraire are

(A.35)

Default occurs at time t ,  when YT = 0. For an asset value process of

dVt = (r + \ a -  i)V d t  +  aV dW , (A.36)

the dynamics under the objective measure P of Yt are (by Ito’s lemma):

(A.37)

(A.38)

(A.39)

Denote the drifts of Yt under these measure as /Xy, /Xy, /Xy.
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A .3.2 The first passage density

The first passage density for Yt under a measure M is

f M ( Y t ’ s)  =  ( Y t + S ^ t } )  (A '40)

By completing the square it can be shown that

e-p{s-t)fM ŷ t; s) ds =  exp |  - Y t (/xM)2 +  2p +  |  (A.41)

as long as (/^M) 2 +  2p > 0 .

A .3.3 Perpetual dollar-in-default claim

The price of a perpetual dollar-in-default claim (a claim that pays 1 in the case of 

default) G(Vt,t)  is given by

G(VU t) = E Q [e_r(r_t)] (A.42)

Using (A.41) and (A.38) it is easy to show that

C(Vt,t) = ( J Y j  " (A.43)

where
2 12  

+ 2r + I l2zi£_
e = '-----------------------  (A.44)

(7
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Define the measure G by the numeraire G. It can be shown that the drift of Yt under 

G is

Hy = fiy — Oa (A.45)

A .3.4 Survival probabilities

The survival probabilities Qj*(r > T) (probabilities of the event r  > T  at t under the 

measure M, M =  {Q, G} are given by

Q»*(t > T) =  $  (fcM ® ^  ( £ ) )  (A.46)

where
„m  hi(x) + a n P ( T - t )k =  (a.47)

a V T ^ t  V '

and 4> denotes the cumulative standard normal distribution function.

A .3.5 The finite-m aturity dollar-in-default claim

The price of this claim can be written as

G{Vu t\r < T )  = G(Vt,t) -  e~r^ E f i  [G(Vt ,T ) I {T>T}\ (A.48)

We can rewrite this expression as

G(Vt, t \ r < T ) =  G(Vt, t ) - e - r(T-» E f*[G(Vt,T )}E G [l{r>T)] (A.49)

G(Vt, t ) ( l - Q G( T > T ) )  (A.50)
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A .3.6 The down-and-out binary option

The price of this claim is simply given by

H(Vt, t; T) =  e -r<T- ‘>Q«(r >  T) (A.51)

A .3.7 Probability of survival and being in-the-m oney

The probabilities of the event

A = {t > T, VT > Z}  (A.52)

under measures M =  {Q, V, G} are given by

A .3.8 The price of a down-and-out call

Let t ,; T, Z ) denotes the price of a (European) down-and-out call with strike

price Z , maturity T, with a barrier of V*. A formula for this was first derived by

Merton (1973). Using (A.53), this can be written as

CDO(Vt, t; T, Z ) =  Vte - ' (T-^Q v (A) -  e- r(r- t>QQ(A) (A.54)
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A .3.9 Pricing under assumption 2.A: (Bond represents en­

tire debt)

As mentioned in the main text, under assumption 2 .A, the bond can be seen as a 

portfolio of two down-and-out calls and the dollar-in-boundary claim:

B(Vt,t)= C DO(Vt, t ; 0 ) - C DO(Vt,t-,D) ■ (A.55)

+ ( l - K ) V G ( V t , t , \ T < T )

A .3.10 Pricing under assum ption 2.B: (Bond represents neg­

ligible proportion of debt)

Under assumption 2.B a plain vanilla bullet bond with coupon c paid at times 

{U : i = 1, • • • M}, for which a fraction R  of the principal is recovered in default can 

be priced (in terms of dollars per dollar face value) as follows:

M

(A.56)
1 = 1

+ H{Vu t-,T)

+ RG (Vt, t , \ r  < T )
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A ppendix B

Sim ulated maximum likelihood  

estim ation of structural m odels

B .l  Sam pling from  th e im portance d ensity

There are several different ways of sampling from the importance density, the approach 

described by Durbin and Koopman (2002) was chosen here, as it is simple and efficient. 

For a model specified as

Oit — d  +  ott- 1  - f  ?71

Vt — Z t ( & t ) ® t  +  Et (B - l )

the approach works as follows (define w = (e'j, 77J , . . . ,  e'n, rfn)):

1. Draw a ramdom vector w+ from a joint Gaussian density, and generate a + and 

y+ by means of recursion B .l with w replaced by w+.

2 . Compute a — E(a\y)  and a + = E (a +\y+) by means of standard Kalman filter­
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ing and disturbance smoothing

3. The draw ct\ = a — a + + a + is a draws from the desired density. An antithetic 

draw balanced for location is Qi =  a  +  a + — a +

B .2 D escrip tion  o f se lected  issuers and bonds

Notional ($m) Coupon Time to maturity (years)
Min. 11.0 5.250 0.620
1st Qu. 250.0 6.450 3.475
Median 475.0 7.362 5.525
Mean 601.5 7.349 8.593
3rd Qu. 750.0 8.188 8.418
Max. 3250.0 9.375 27.250

Table B.l: Summary of chosen bonds
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Name Rating* Market Cap*
Adelphia Communications Corp 3,473
Archer Daniels Midland Co A+ 7,300
Boeing Co A 37,907
Charter Communications Hldgs Lie CCC+ 5,010
Coca Cola Enterprises Inc A 8,483
Consolidated Edison Co NY Inc A 7,332
CSX Corp B B B 6,755
Dayton Hudson Corp (target corp) A+ 31,576
Deere & Co A - 10,019
Disney Walt Co BBB+ 61,612
Dow Chem Co A - 29,084
Emerson Elec Co A 24,878
Enron Corp 31,084
Ford Mtr Co Del B B B — 45,863
General Mtrs Corp B B B 47,776
GTE Corp A+ 66,386
Hertz Corp B B B — 2,015
Honeywell Inti Inc A 44,740
International Business Machs Corp A+ 208,426
Lockheed Corp B B B 8,018
Lowes Cos Inc A 21,314
Lucent Technologies Inc B 242,171
Norfolk Southn Corp B B B 7,660
Penney J C Inc BB+ 5,127
Philip Morris Cos Inc 55,456
Procter & Gamble Co A A - 140,863
Ralston Purina Co 8,296
Raytheon Co B B B — 6,188
Union Pac Corp B B B 10,704
Viacom Inc A - 31,325
Wal Mart Stores Inc AA 297,844
Weyerhaeuser Co BB B 16,476
Worldcom Inc 147,417
* S&P long term domestic issuer rating according to Compustat
t Market capitalisation on 2000-01-03 in $m

Table B.2: Issuers chosen for empirical analysis
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issueJd* Issuer name Notional ($m) Coupon Maturity*
2565 Boeing Co 300 6.350 1.48
3027 CSX Corp 300 9.000 4.64
6019 Dow Chem Co 300 9.000 19.27
6023 Dow Chem Co 150 7.375 21.19

10507 GTE Corp 500 9.375 0.67
18941 Ralston Purina Co 200 9.250 8.05
23782 Weyerhaeuser Co 150 8.375 5.13
25750 Enron Corp 150 7.125 5.66
25799 Viacom Inc 1000 7.750 3.45
34274 Union Pac Corp 250 6.400 4.10
46294 Coca Cola Enterprises Inc 250 6.950 24.89
51170 Archer Daniels Midland Co 350 7.500 25.22
52337 Penney J C Inc 425 7.600 5.28
54434 Norfolk Southn Corp 750 7.350 5.39
57203 Philip Morris Cos Inc 1000 7.000 3.55
58864 Raytheon Co 1000 6.450 0.62
71458 Adelphia Communications Corp 325 9.250 1.04
72800 General Mtrs Corp 600 6.750 26.35
72845 GTE Corp 450 6.360 6.05
81220 Procter & Gamble Co 750 5.250 1.71
81287 International Business Machs Corp 185 5.370 1.73
83731 Dayton Hudson Corp 200 5.875 6.87
87654 Ford Mtr Co Del 1500 6.375 27.11
89620 Lucent Technologies Inc 1360 6.450 27.25
98345 Wal Mart Stores Inc 3250 6.875 7.62

100417 Charter Communications Hldgs Lie 600 8.250 5.26
101679 Adelphia Communications Corp 500 9.375 8.16
101895 Lockheed Martin Corp 1000 8.200 7.98
102919 Lowes Cos Inc 11 8.150 2.45
104014 Disney Walt Co 750 7.300 3.11
104722 Honeywell Inti Inc 1000 7.500 8.17
106726 Deere & Co 500 7.850 8.38
107814 Lowes Cos Inc 500 8.250 8.43
114386 Consolidated Edison Co NY Inc 350 6.625 3.97
114499 Worldcom Inc 1000 7.375 4.08
117184 Hertz Corp 500 7.400 9.98
123033 Union Pac Corp 200 5.840 2.41
131630 Emerson Elec Co 250 5.750 9.84

*: Time to maturity (years) on date of last bond price observation 
L issue Jd is the unique identifier in Mergent’s FISD

Table B.3: Bonds chosen for empirical analysis

132



A ppendix C 

The non-default com ponent of  

corporate yield spreads

C .l C ross-sectional regressions

Estimate Std. Error t value Pr(> \t\) signif.
(Intercept) —2.741e -  02 4.645e -  01 -0.059 0.9531
Rating 4.331e -  01 2.252e -  01 1.923 0.0573
D_NI 8.291e -  03 4.164e -  02 0.199 0.8426
Maturity 1.172e — 02 9.777e -  03 1.199 0.2333
Outstanding —7.059e -  08 6.162e -  07 -0.115 0.9090
Coupon 4.755e -  02 5.411e — 02 0.879 0.3816
Leverage — 1.160e — 01 5.090e -  01 -0.228 0.8202
Size 4.018e -  07 2.152e -  06 0.187 0.8522

Residual standard error: 0.6637 on 100 degrees of freedom 
Multiple R-Squared: 0.0921, Adjusted R-squared: 0.02854 
F-statistic: 1.449 on 7 and 100 DF, p-value: 0.1943 
Significance codes: 0 c***’ 0.001 0.01 0.05 V 0.1

Table C.l: Regression of Constant on cross-sectional variables
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Estimate Std. Error t value Pr(> \t\) signif.
(Intercept) — 1.229e + 00 2.036e + 00 -0.604 0.5474
Rating 2.019e + 00 9.873e -  01 2.045 0.0434 *
D_NI 3.175e -  01 1.825e — 01 1.639 0.1012
Maturity- 4.516e -  02 4.286e -  02 1.054 0.2946
Outstanding 1.639e — 07 2.702e -  06 0.061 0.9517
Coupon 6.466e -  02 2.372e -  01 0.273 0.7857
Leverage —3.041e + 00 2.232e + 00 -1.363 0.1760
Size 7.037e -  06 9.434e -  06 0.746 0.4574

Residual standard error: 2.91 on 100 degrees of freedom 
Multiple R-Squared: 0.1635, Adjusted R-squared: 0.105 
F-statistic: 2.792 on 7 and 100 DF, p-value: 0.01073 
Significance codes: 0 ‘***’ 0.001 0.01 0.05 V 0.1

Table C.2: Regression of ONOFF2 on cross-sectional variables

Estimate Std. Error t value Pr(> \t\) signif.
(Intercept) -3.702e + 00 1.405e + 00 -2.634 0.009774
Rating -3.622e -  02 6.813e -  01 -0.053 0.957707
D_NI 3.993e -  02 1.260e — 01 0.317 0.751936
Maturity -1.251e — 02 2.958e -  02 -0.423 0.673254
Outstanding -1.122e — 06 1.864e — 06 -0.602 0.548746
Coupon 6.108e -  01 1.637e — 01 3.731 0.000317
Leverage -2.683e -  01 1.540e + 00 -0.174 0.862071
Size -3.729e -  06 6.510e -  06 -0.573 0.568071

Residual standard error: 2.008 on 100 degrees of freedom 
Multiple R-Squared: 0.1561, Adjusted R-squared: 0.09706 
F-statistic: 2.643 on 7 and 100 DF, p-value: 0.01504 
Significance codes: 0 ‘***’ 0.001 0.01 0.05 V 0.1

Table C.3: Regression of ONOFF30 on cross-sectional variables

134



Estimate Std. Error t value Pr(> \t\) signif.
(Intercept) 1.014e — 02 1.572e — 02 0.645 0.5204
Rating 1.538e — 03 1.406e — 03 1.094 0.2765
D_NI — 1.527e — 02 7.166e -  03 -2.130 0.0356 *
Maturity 5.390e -  04 3.111e — 04 1.732 0.0863 .
Outstanding 2.317e — 08 1.961e — 08 1.182 0.2402
Coupon —3.813e -  03 1.722e — 03 -2.214 0.0291 *
Leverage —2.866e -  02 1.670e — 02 -1.716 0.0893 .
Size —2.335e -  08 6.977e -  08 -0.335 0.7386

Residual standard error: 0.02112 on 99 degrees of freedom 
Multiple R-Squared: 0.1955, Adjusted R-squared: 0.1304 
F-statistic: 3.006 on 8 and 99 DF, p-value: 0.004619 
Significance codes: 0 ‘***’ 0.001 0.01 0.05 V 0.1

Table C.4: Regression of MMMF on cross-sectional variables
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