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ABSTRACT

This thesis studies monetary policy in a dynamic general equilibrium framework 

with nominal price rigidities. It analyses monetary policy in a non-linear environ­

ment and explores issues concerning optimal monetary policy.

The introductory chapter sets out the motivation of the thesis and puts it 

into the framework of the existing literature.

Chapter 2 provides a New Keynesian framework to study the interaction 

among oil price volatility, firms’ pricing behaviour and monetary policy. We show 

that when oil is difficult to substitute in production, firms find optimal to charge 

higher relative prices as a premium in compensation for the risk that oil price 

volatility generates on their marginal costs.

Chapter 3 uses the model laid out chapter 2 to investigate how monetary 

policy should react to oil shocks. The main result is oil price shocks generate a 

trade-off between inflation and output stabilisation when oil has low substitutability 

in production. Therefore it becomes optimal to the monetary authority to react 

partially to oil shocks and some inflation is desirable.

In chapter 4 we extend a New Keynesian model considering preferences 

that exhibit intertemporal non-homotheticity. We show that under this framework 

the intertemporal elasticity of substitution becomes state dependent, which induces 

asymmetric shifts in aggregate demand in response to monetary policy shocks

In chapter 5 we extend the New Keynesian Monetary Policy literature re­

laxing the assumption that decisions are taken by a single policymaker, consider­

ing instead a Monetary Policy Committee (MPC) whose members have different 

preferences between output and inflation stabilisation. We show that under this
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framework, the interest rate behaves non-linearly upon the lagged interest rate and 

expected inflation.
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CHAPTER 1

INTRODUCTION

As Clarida, Gali and Gertler (1999) point out, during the last years has increased the 

interest on the study of how to conduct monetary policy. During the last 25 years 

it’s been great advances on the study of the effects of monetary policy on short­

term aggregate activity stressing the role of nominal price rigidities. Moreover, 

the literature has also incorporated the techniques of dynamic stochastic general 

equilibrium (DSGE) models initiated by real business cycle analysis. This thesis 

studies monetary policy in a dynamic general equilibrium framework with nominal 

price rigidities, considering a non-linear environment.

Since the seminal papers of Kydland and Prescott (1982) and King et al. 

(1988), the use of DSGE models has relied mostly on linear approximations of 

the solution of the model. Those approximations are useful to characterise cer­

tain aspects of the dynamic properties of the models, such as the local existence 

and determinacy of equilibrium and the characterisation of the second moments 

of endogenous variables. However, as Kim and Kim (2003) point out, first-order 

approximation techniques are not well suited to handle questions such as welfare 

comparisons for different policy rules. Also, since linear approximations satisfy the 

certainty equivalence property, they are also inappropriate to measure the effects 

of risk on the equilibrium of endogenous variables. They are also inappropriate 

to analyse non-linear behaviour, such as asymmetric responses to monetary policy 

shocks.

The thesis contains two parts. The first part introduces dynamic models
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aimed at understanding three key issues that have been in the monetary policy 

debate in recent times. The first is the role of the volatility of oil shocks on the 

dynamics of inflation. The second is on how should be the optimal monetary policy 

reaction to oil shocks. The third is on the asymmetric effects of monetary policy 

in a general equilibrium framework. The thesis approaches these three topics in 

chapters 2, 3 and 4 respectively. The second part analyses how the appointment 

of a committee collectively in charge of monetary policy decisions can generate a 

non-linear behaviour on interest rate reaction function of the central bank.

The relationship between risk and the level of variables has been widely 

studied in finance. For instance, in the basic capital asset pricing model (CAPM), 

the volatility of assets returns generates a premium over the return of the risk free as­

set. However, the study of this relationship has been almost absent among macroe­

conomists, since they rely mostly on certainty-equivalent linear-approximations for 

the solution of the models. The exception is Obstfeld and Rogoff (1998), who study 

in a DSGE model the effects of exchange rate volatility on the level of the exchange 

rate under different exchange rate regimes. The purpose of chapter 2 is to con­

tribute in this area of macroeconomics, studying the relationship between oil prices 

volatility and the level of inflation.

Chapter 2 analyses the interaction among oil prices volatility, pricing be­

haviour of firms and monetary policy in a microfounded New Keynesian framework. 

We show that when oil is difficult to substitute in production, firms find optimal to 

charge higher relative prices as a premium in compensation for the risk that oil price 

volatility generates on their marginal costs. Overall, in general equilibrium, the in­

teraction of the aforementioned mechanisms produces a positive and meaningful 

relationship between oil price volatility and average inflation, which we denominate 

inflation premium.
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Obstfeld and Rogoff (1998), rely on simplifying assumptions about the dy­

namics of the model in order to have closed form solutions for the risk premium 

in their model. In contrast to them, we characterise analytically this relationship 

in a fully dynamic model by using the perturbation method to solve the rational 

expectations equilibrium of the model up to second order of accuracy. The solution 

we obtain implies that the inflation premium is higher in economies where: a) oil 

has low substitutability and b) the Phillips Curve is convex. We also show that the 

larger the reaction of the central bank to the output fluctuations generated by oil 

shocks, the greater the inflation premium. Finally, we also provide some quantita­

tive evidence that the calibrated model for the US with an estimated active Taylor 

rule produces a sizable inflation premium, similar to level observed in the US during 

the 70’s.

In chapter 2 we show how oil price volatility generates an inflation premium 

and also how monetary policy can affect this link. In chapter 3 we take a step 

forward to answer the question about how the central bank should respond to oil 

shocks.

In chapter 3 we extend Benigno and Woodford (2005) to obtain a second 

order approximation to the expected utility of the representative household of the 

model laid out chapter 2. The main result is that oil price shocks generate a trade­

off between inflation and output stabilisation when oil has low substitutability in 

production. Therefore, it becomes optimal to the monetary authority to stabilise 

partially the effects of oil shocks on inflation and some inflation is desirable. We 

also find, in contrast to Benigno and Woodford (2005), that this trade-off remains 

even we eliminate the effects of monopolistic distortions from the steady state.

Chapter 2 and 3 have analysed two kind of non-linear effects that shocks 

can have in a dynamic stochastic general equilibrium model, which are the effects 

of shocks volatility on both the mean of endogenous variables and the welfare of
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the representative agent. However, there is another type of non-linear effect that is 

important to study, which is the asymmetric effects of monetary policy shocks on 

the endogenous variables.

In chapter 4 we extend a New Keynesian model considering preferences that 

exhibit intertemporal non-homotheticity. We show that introducing this feature 

generates a state-dependent intertemporal elasticity of substitution, which induces 

asymmetric shifts in aggregate demand in response to monetary policy shocks. This 

effect, in combination with a convex Phillips curve, generates in equilibrium asym­

metric responses in output and inflation to monetary policy shocks similar to those 

observed in the data. In particular, a higher response of both output and infla­

tion to policy shocks when the economy growth is temporarily high than when it is 

temporarily low.

The previous chapters studied the relationship between non-linearities in 

a New-Keynesian model and monetary policy under the implicit assumption that 

there exists a single policymaker. However, this is not the case for most central 

banks, since policy decisions are taken mostly collectively. In chapter 5 we analyse 

the effects of relaxing this assumption on the interest rate reaction of the central 

bank.

In chapter 5 we extend the New Keynesian Monetary Policy literature con­

sidering that monetary policy decisions are taken collectively in a committee. We 

introduce a Monetary Policy Committee (MPC), whose members have different 

preferences between output and inflation stabilisation and have to vote on the level 

of the interest rate.

The model presented in chapter 5 helps to explain interest rate smoothing 

from a political economy point of view, where MPC members face a bargaining 

problem on the level of the interest rate. Under this framework, the interest rate 

behaves non-linearly upon the lagged interest rate and expected inflation. Our
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approach can reproduce both features documented by the empirical evidence on 

interest rate smoothing: a) the modest response of the interest rate to inflation 

and output gap; and b) the dependence on lagged interest rate. Features that 

are difficult to reproduce altogether in standard New Keynesian models. It also 

provides a theoretical framework on how disagreement among policymakers can slow 

down the adjustment on interest rates and on menu costs in interest rate decisions. 

Furthermore, a numerical exercise shows that this inertial behaviour of the interest 

rate is internalised by the economic agents through an increase in expected inflation.

To sum up, the thesis provides a rigourous treatment of the key issues 

concerning non-linearities in general equilibrium New Keynesian models. We have 

analysed the effects in general equilibrium of volatility of shocks in the dynamics of 

the model. We have studied the optimal monetary policy reaction to a specific, but 

considerably important, type of shock. Also, we have analysed how monetary policy 

can generate asymmetric effects in general equilibrium and what are the effects of 

non-linear interest rate reaction functions in the dynamics of the model. These are 

important questions that traditional log-linear solutions are not able to analyse and 

some new techniques are needed.

In this thesis we apply new modern numerical techniques to solve for DSGE 

models exhibiting non-linear behaviour. In chapter 2 and 4 we apply the perturba­

tion method 1 to solve, both analytically and numerically, for the effects of volatility 

of shocks on the level of variables and for the asymmetric responses to shocks. When 

solving analytically for the second order solution of the models, we follow a method­

ology similar to the one proposed by Sutherland (2002), which consist on using the 

first order solution of the model to obtain the terms of the second order solution. 

In section 5 we use the collocation method 2, to solve for the non-linear reaction

xThe perturbation method was developed by Judd(1998), Collard and Julliard (2001) and 
Schmitt-Grohe and Uribe (2004). It consists on approximating the solution of the model with a 
taylor approximation around the steady-state of order higher than one.

2The collocation method consists on finding a function that approximates the solution at a
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function of the central bank.

Finally, I must mention that in this thesis I have benefited from working 

with Paul Castillo and Vicente Tuesta on a series of joint papers, two of which form 

a basis of the second and fourth chapters of this thesis. The paper that form the 

basis for the second chapter is a joined work with both of them, whereas the fourth 

chapter is based on a joint work with Paul Castillo only. In both papers I worked 

together with my co-authors on the discussion of the models and the interpretation 

of the results, whilst I obtained analytically the second order solution of the models 

and I made the simulation exercises.

finite number of specified points. See Judd(1998) and Miranda and Fackler (2002) for discussion 
on collocation methods
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CHAPTER 2

THE EFFECTS OF INFLATION VOLATILITY ON INFLATION

2.1 Introduction

In an influential paper, Clarida, Gali and Gertler (2000, from now on CGG), ad­

vanced the idea that the high average levels of inflation observed in the USA during 

the 1970s could be explained mainly by the failure of monetary policy to properly 

react to higher expected inflation. In addition, they pointed out that oil price shocks 

played a minor role in generating those levels of inflation. CGG based their con­

clusions on the estimations of monetary policy reaction functions for two periods: 

pre- and post-Volcker1. Their estimations show that during the 1970s, on average, 

the FED allowed the real short term interest rate to decline as expected inflation 

rose. Whereas, during the post-Volcker period became more active, by raising the 

real interest rate in response to higher inflation expectations. Cogley and Sargent 

(2002) and Lubik and Schorfheide (2004) find similar evidence.

This evidence, however, is not conclusive. In a series of papers, Sims and 

Zha (2005), Canova, Gambetti and Pappa (2005), Primiceri (2004), Gordon (2005) 

and Leeper and Zha (2003) find weak evidence of a substantial change in the reaction 

function of monetary policy after the Volcker period2. In particular, they find 

evidence that the fall on both the aggregate volatility and the average inflation is

*It refers to the appointment of Paul Volcker as Chairman of the Federal Reserve System of 
the USA.

2Orphanides (2001) shows that when real time data are used to estimate policy reaction func­
tions, the evidence of a change in policy after 1980 is weak.
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related to a sizeable reduction of the volatility of the main business cycle driving 

forces3. Moreover, they highlight that in order to estimate the reaction function of 

the central bank, it is necessary to consider changes in the variance of structural 

shocks. Otherwise, these estimations may be biased towards finding significant 

shifts in coefficients in the monetary policy rule.

Motivated by this recent evidence, in this chapter we provide an analyt­

ical and tractable framework that can be used to study the relationship between 

structural shocks volatility, in particular oil price shocks, and the average level of 

inflation. In doing so, we use a standard microfounded New Keynesian model with 

staggered Calvo pricing where the central bank implements its policy following a 

Taylor rule. We modify this simple framework considering oil as a production input 

for intermediate goods. A key assumption in our set up is that oil is difficult to 

substitute in production, thus we use a constant elasticity of substitution (CES) pro­

duction function with an elasticity lower than one as a prime of our model. Under 

this assumption, oil price shocks generate an endogenous trade-off between stabil­

ising inflation and output gap, thus a policy of zero inflation cannot be achieved at 

zero cost. This trade-off emerges when we allow for a distorted steady-state along 

the CES production function4.

Then, we solve the rational expectations equilibrium of this model up to sec­

ond order of accuracy using the perturbation method developed by Schmitt-Grohe 

and Uribe (2004). The second-order solution has the advantage of incorporating

3The literature has also associated oil prices to periods of recession. Bernanke, Gertler and 
Watson (1997) argue that monetary policy played a larger role during the 1970s in explaining 
the negative output dynamics. On the other hand, Hamilton (2001) and Hamilton and Herrada
(2004) find out that the results of previous authors rely on a particular identification scheme and, 
on the contrary, they find that a contractionary monetary policy played only a minor role on the 
contractions in real output, oil prices being the main source of shock.

4Blanchard and Galf (2006) find that with a Cobb-Douglas production function, oil price shocks 
do not generate a trade-off between the stabilisation of inflation and output gap. In order to 
generate the trade-off, they rely on a reduced form of real rigidities in the labour market. In 
chapter 3 we characterise this trade-off from the quadratic approximation of the welfare of the 
representative agent
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the effects of shocks volatility on the equilibrium, which are absent in the linear so­

lution. We implement this method both analytically and numerically5. The former 

allows us to disentangle the key determinants of the relationship between volatility 

of oil price shocks and the average level of inflation, and the latter allows us to 

quantify the importance of each mechanism.

Using a similar model, CGG concluded that oil prices are notable to gen­

erate high average levels of inflation, unless monetary policy is passive. Instead our 

results give an important role to oil price volatility along an active monetary policy. 

In our set up, oil prices play a central role on inflation determination and on the 

trade-off faced by the central bank The key difference between CGG and our set 

up is that we use a second-order solution for the rational expectations equilibrium, 

instead of a log-linear one.

The second-order solution, by relaxing certainty equivalence, allows us to 

establish a link between the volatility of oil price shocks and the average level of 

inflation, absent in a log-linear model. We define this extra level of average inflation 

as the time varying level of inflation premium,6. Moreover, the analytical solution 

allowed us to identify and to disentangle the sources of inflation premium in general 

equilibrium7.

There are many novel results to highlight. First, the solution up to second 

order shows that oil price volatility produces an extra level of inflation by altering 

the way in which forward- looking firms set their prices. In particular, when oil has 

low substitutability, marginal costs are convex in oil prices, hence its price volatility

5As part of our contribution, we use a novel strategy for the analytical solution. In contrast 
with other papers in which the perturbation method is applied directly to the non-linear system 
of equations, instead we first approximate the model up to second order and then we apply the 
perturbation method to this approximated model.

6The extra level of inflation generated by volatility is similar to the effect of consumption 
volatility on the level of average savings as in the literature of precautionary savings.

7We are not aware of any other paper in the literature that has obtained and developed the 
concept of inflation premium in general equilibrium.
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increases the expected value of marginal costs.

Second, oil price volatility, by generating inflation volatility, induces price- 

setters to be more cautious to future expected marginal costs. In particular, their 

relative price becomes more sensitive to marginal costs, amplifying the previous 

channel.

Third, relative price dispersion, by increasing the amount of labour required 

to produce a given level of output, increases average wages. So, relative price 

dispersion amplifies the effect of expected marginal costs over average inflation.

Fourth, we find that, in general equilibrium, the weight that the central 

bank puts on output fluctuations is a key determinant for positive level of inflation 

premium. As a result, we show that the larger the endogenous responses of a central 

bank to output fluctuations, the greater the level of inflation premium. This finding 

is consistent with the fact that, in the model, oil price shocks generate an endogenous 

trade-off between stabilising inflation and output gap. Hence a benevolent central 

bank would choose to put a positive weight on output gap stabilisation and would 

generate inflation premium.

Finally, we also evaluate the implications of the model with numerical exer­

cises calibrated for the US economy. For the calibration, we consider that oil price 

shocks have exhibited a change in their volatility across the pre- and post-Volcker 

periods. Our results are broadly consistent with predictions of the analytical so­

lution. Remarkably, we axe able to generate a level of inflation premium similar 

to the one observed during the 1970s in the USA even when an active monetary 

policy, as in CGG, is in place. Also, we show in our simulated exercise that the 

convexity of the Phillips curve accounts for 59 percent of the inflation premium in 

the pre-Volcker period, whereas the effects of oil price volatility on marginal costs 

accounts for another 45 percent. Overall, we find that the model can track quanti­

tatively the average values of inflation fairly well. We check the robustness of our
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results with alternative estimated Taylor rules, yet the qualitative results do not 

change. Hence, this chapter provides support to the empirical findings of Sims and 

Zha (2005) that second moments of shocks might be important to understand the 

change in macroeconomic behaviour observed in the US economy without relying 

on an accommodative monetary policy.

Closer to our work is the recent paper by Evans and Hnatkovska (2005), 

who evaluate the role of uncertainty in explaining differences in asset holdings in a 

two-country model. Also, in chapter 4 we build up a model with non-homothetic 

preferences and show how asymmetric responses of output and inflation emerge 

from the interaction of a convex Phillips curve and a state-dependent elasticity of 

substitution in a standard New Keynesian model. Finally, Obstfeld and Rogoff 

(1998) develop an explicit stochastic New Open Economy model relaxing the as­

sumption of certainty equivalence. Based on simplified assumptions, they obtain 

analytical solutions for the level exchange rate premium. Differently from Obstfeld 

and Rogoff (1998) and the aforementioned authors, in this chapter we perform both 

a quantitative and analytical evaluation of the second-order approximation of the 

New Keynesian benchmark economy in order to account for the level of inflation 

premium generated by oil shocks volatility.

The plan of this chapter is as follows. Section 2.2 presents some stylised 

facts for the US economy on the relationship between oil price volatility and the level 

of inflation. Also, this section presents an informal explanation of the link between 

oil price volatility and the inflation mean. In section 2.3 we outline a benchmark 

New Keynesian model augmented with oil as a non-produced input and we discuss 

its implications for monetary policy. Section 2.4 explains the mechanism at work 

in generating the level of inflation premium and we also find the analytical solution 

of inflation premium. In section 2.5 we report the numerical results. In the last 

section we draw conclusions.
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2.2 M otivation

2.2.1 Average Inflation and Oil Price Volatility

Inspection of US inflation data seems to suggest that the average inflation rate and 

the volatility of oil prices followed a similar pattern during the last 30 years. Figure

2.1 plot in the left hand axis, with a solid line the annual inflation rate of the US, 

measured by the non-farm business sector deflator (LXNFI), and in the right hand 

axis, with a dotted line, the real oil price in log 8. As the figure shows, both the 

volatility of the real oil prices and the average quarterly annualised inflation rate 

has increased during the first half of the sample, 1970.1-1987.2, and has fallen in the 

second half, 1987.3-2005.2. In the first sub-sample, the standard deviation of real 

oil prices reached 0.57 and the average level of inflation 5.5 percent, whereas during 

the second sub-sample, the same statistics fall to 0.20 and 2.1 percent, respectively.

Interestingly, also the dynamics of inflation seems to closely mimics that 

of oil prices. Thus, in the first sub-sample we observe a persistent initial increase 

in inflation vis-a-vis and increase in oil prices following the oil price shock in 1974. 

Instead, from 1980 on we observe a steadily decline in inflation accompanied by a 

persistent drop in oil prices. For the second sub-sample, we observe also a close 

co-movement between inflation and oil prices; from early nineties until 1999 it is 

observed a downward trend in both oil prices and inflation, whereas from 2000 on 

we observe a markedly upward trend in oil and a moderate increase in inflation.

In a nutshell, the data seems to suggest that the change in oil prices volatil­

ity has some information on the behaviour of the inflation mean from the 1970s on. 

This causal evidence motivates the development of the model and the mechanism 

that we highlight in the coming sections in order to generate a link between average 

inflation and oil price volatility.

8We obtain the data from the Haver USECON database (mnemonics are in parentheses).
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Figure 2.1: US inflation and oil prices

2.2.2 The link between average inflation and oil price volatility

As mentioned in the introduction the goal of this paper is to study the link between 

the volatility of oil price shocks and the average level of inflation in general equilib­

rium. Though, before moving to a fully general equilibrium analysis, in this section 

we provide the intuition of how the mechanism operates in a simple way. For that 

purpose, we use a simple two period price setting partial equilibrium model.

Consider that some firms producing a differentiated good set prices one 

period in advance. They face a downward sloping demand function of the type, 

Yt(z) = Y, where e represents the elasticity of substitution across goods
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and Y  aggregate output, which we assume is fixed9. Under these assumptions, the 

optimal pricing decision of a particular firm z for time t is given by mark-up over 

the expected next period marginal cost,

[%MCt] (2-1)
M-l

where /i, MCt and ffh = Et^lUe denote the mark-up, firm's marginal costs and a 

measure of the responsiveness of the optimal price to future marginal costs, respec­

tively. A second order Taylor expansion of the expected responsiveness to marginal 

cost is:

(2-2)

is convex function on expected inflation, that means that inflation volatility 

increases the weight that a firm put on expected marginal costs. Furthermore, let’s 

assume the following marginal cost function:

MCt = <hqt +  y 4t2 (2-3)

where qt represents the real price of oil, (pi > 0 measures the linear effect of oil 

over the marginal cost and cp2 > 0 accounts for the impact of oil price volatility on 

marginal costs. When (p2 > 0, marginal costs are convex in oil prices, thus expected 

marginal costs become an increasing function of the volatility of oil prices.10.

Different forms of aggregation of sticky prices in the literature show that 

the inflation rate is proportional to the optimal relative price of firms, given by 

equation (2-1). Hence, when marginal cost are convex, both the optimal relative 

price and inflation are increasing in oil price volatility. Interestingly, other channels

9This assumption helps to highlight the channels by which supply shocks as oil prices affect 
inflation. In section 2.4 we consider a fully general equilibrium model that deals with both sources 
of inflation fluctuations.

10In section 2.4 we show that when the production function is a CES with an elasticity of 
substitution between labour and oil lower than one, then the marginal cost are convex on oil 
prices, that is <p2 >  0.
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amplify this effect. For instance, to the extent that oil price volatility increases 

inflation volatility, price setters react by increasing the weight they put on marginal 

costs, \Eq, when setting prices. As equation (2-2) shows, up to second order, this 

weight depends not only on the level of expected inflation but also on its volatil­

ity. Yet, are those second order effects important? Two special features of oil 

prices, its high volatility and its low substitutability with other production factors, 

make those second order effects quantitative sizable. Hence, a linear approximation 

that omits the role of oil price and inflation volatility would be very inaccurate in 

capturing the dynamics of inflation. We will overcome this restriction by using 

the perturbation method, which allows to obtain the second order solution of the 

rational expectations equilibrium of the model.

In the next section we formalise the previous informal link by obtaining a 

second order rational expectations solution of a New Keynesian general equilibrium 

model with oil prices. We use this model to show under which conditions both 

the marginal cost of firms become a convex function of oil price shocks. We also 

show how relative price distortions and monetary policy might amplify the effect of 

uncertainty, inducing a meaningful level of inflation premium.

2.3 A New Keynesian model with oil prices

The model economy corresponds to the standard New Keynesian Model in the line 

of CGG (2000). In order to capture oil shocks we follow Blanchard and Gali (2005) 

by introducing a non-produced input M, represented in this case by oil. Q denotes 

the real price of oil which is assumed to be exogenous.
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2.3.1 Households

We assume the following period utility on consumption and labour

r  1+1/

Ut =  ^ -------, (2-4)
1 — <7 1 + 1 / ’ V '

where a and represent the coefficient of risk aversion and the inverse of the 

elasticity of labour supply, respectively. The optimiser consumer takes decisions 

subject to a standard budget constraint which is given by

WfLi Bt—i 1 Tt Tf . .c-=-fr+Tr-s:s+H+f! (2-5)

where W* is the nominal wage, Pt is the price of the consumption good, Bt is the 

end of period nominal bond holdings, Rt is the nominal gross interest rate , Tf is the 

share of the representative household on total nominal profits, and Tt are transfers 

from the government11. The first order conditions for the optimising consumer's 

problem are:

l = PEt

Wt

Rt. Pt \  ( Ct+i
c Tt+1

(2-6)

= C m  =  M R St (2-7)
■n

Equation (2 — 6) is the standard Euler equation that determines the optimal path 

of consumption. At the optimum the representative consumer is indifferent be­

tween consuming today or tomorrow, whereas equation (2 — 7) describes the optimal 

labour supply decision. M R St denotes the marginal rate of substitution between 

labour and consumption. We assume that labour markets are competitive and also 

that individuals work in each sector z € [0,1]. Therefore, L corresponds to the 

aggregate labour supply:

L = [  Lt (z)dz (2-8)
Jo

n In the model we assume that the government owns the oil's endowment. Oil is produced in 
the economy at zero cost and sold to the firms at an exogenous price Q t. The government transfers 
all the revenues generated by oil to consumers represented by Tt
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2.3.2 Firms

Final Good Producers

There is a continuum of final good producers of mass one, indexed by /  G [0,1] that 

operate in an environment of perfect competition. They use intermediate goods as 

inputs, indexed by z G [0,1] to produce final consumption goods using the following 

technology:

where e is the elasticity of substitution between intermediate goods. Then the

Intermediate Goods Producers

There is a continuum of intermediate good producers. All of them have the following 

CES production function

(2-9)

demand function of each type of differentiated good is obtained by aggregating the 

input demand of final good producers

(2-10)

where the price level is equal to the marginal cost of the final good producers and 

is given by:

and Yt represents the aggregate level of output.

(2-12)
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Yt(z)=  (1 -  at) (L^z))** + a (M t (z)f'i> Y  1 (2-13)

where M  is oil which enters as a non-produced input, 'ip represents the intratemporal 

elasticity of substitution between labour-input and oil and a  denotes the share of 

oil in the production function. We use this generic production function in order to 

capture the fact that oil has few substitutes12, in general we assume that.^  is lower 

than one. The oil price shock, Q*, is assumed to follow an A R (l)  process in logs,

log Qt = \ogQ + p log Qt_i +  et (2-14)

where Q is the steady state level of oil price. From the cost minimisation problem

of the firm we obtain an expression for the real marginal cost given by:

MCt(z) =
1 —i/j

(2-15)

where MCt (z ) represents the real marginal cost, Wt nominal wages and Pt the 

consumer price index. Note that since technology has constant returns to scale and 

factor markets are competitive, marginal costs are the same for all intermediate 

firms, i.e. MCt (z) =  MCf. On the other hand, the individual firm 's labour 

demand is given by:

Intermediate producers set prices following a staggered pricing mechanism

12 Since oil has few substitutes an appealing functional form to capture this feature is the CES 
production function. This function offers flexibility in the calibration of the degree of substitution 
between oil and labour. Some authors that have included oil in the analysis of RBC models and 
monetary policy, have omitted this feature. For example, Kim and Loungani (1992) assume for the 
U.S. a Cobb-Douglas production function between labour and a composite of capital and energy. 
Given that they calibrate their model considering that oil has a small share on output, they found 
that the impact of oil in the U.S. business cycle is small . Notice that when ip =  1, the production 
function collapses to the standard Cobb-Douglas function as the one used by Blanchard and Gali
(2005): Yt (z) =  (Lt ( z ) f - a M ?.
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a la Calvo. Each firm faces an exogenous probability of changing prices given by 

(1 —0). The optimal price that solves the firm’s problem is given by

E M
pt

E ekQ,t+kMCt+kF?£kYt+k
k=0

Et
(2-17)

0 k C t,t+ k P t,t+ k ^ t+ k
Lfc=o

where fi = is the price markup, Ct,t+k = Ph 1S stochastic

discount factor, P.'* (z ) is the optimal price level chosen by the firm, Ftj+k = - 'pf- 

the cumulative level of inflation and Yt+k is the aggregate level of output.

Since only a fraction (1 — 0) of firms changes prices every period and the 

remaining one keeps its price fixed, the aggregate price level, the price of the final 

good that minimise the cost of the final goods producers, is given by the following 

equation:

p ,1-  =  op}:7  + ( i - 9 )  (p; (z))* / \\1—£ (2-18)

Following Benigno and Woodford (2005), equations (2 — 17) and (2-18) can 

be written recursively introducing the auxiliary variables Nt and Dt (see appendix 

A2 for details on the derivation):

e (u ty - 1 = i - ( i - 6 ) ( ^
1—e

(2-19)

A  =  Yt ( A P  +  opEt [ ( A ^ r 1 A+i] (2-20)

Nt = fj,Yt (Ct)~° MCt +  ePEt p t+1)£ A+i] (2-21)
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Equation (2 — 19) comes from the aggregation of individual firms prices. 

The ratio Nt/D t represents the optimal relative price Pt* (z) /P t. Equations (2-19), 

(2-20) and (2-21) summarise the recursive representation of the non- linear Phillips 

curve. Writing the optimal price setting in a recursive way is necessary in order to 

implement both numerically and algebraically the perturbation method.

2.3.3 M onetary Policy

The central bank conducts monetary policy by targeting the nominal interest rate 

in the following way

where, <j>v > 1 and (f>y > 0 measure the response of the nominal interest rate to 

expected future inflation and output, respectively. Also, the degree of interest rate 

smoothing is measured by 0 < (f)r < 1. The steady state values are expressed without 

time subscript and with and upper bar.

2.3.4 Market Clearing

In equilibrium labour, intermediate and final goods markets clear. Since there 

is neither capital accumulation nor government sector, the economywide resource 

constraint is given by

(2-22)

Yt = Ct (2-23)

The labour market clearing condition is given by:

(2-24)
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Where the demand for labour comes from the aggregation of individual intermediate 

producers in the same way as the labour supply:

differ across firms due to staggered price setting, input usage will differ as well. 

Implying that it is not possible to use the usual representative firm assumption. 

Therefore, the price dispersion factor, At appears in the aggregate labour demand 

equation. Also, from (2-25) we can see that higher price dispersion increases the 

labour amount necessary to produce a given level of output.

2.3.5 The Log Linear Economy

To illustrate the effects of oil in the dynamic equilibrium of the economy, we take 

a log linear approximation of equations (2-6), (2-7),(2-15), (2-19), (2-20), (2-21), 

(2-22 ) and (2-25) around the deterministic steady-state13. We denote variables in 

steady state with upper bar (i.e. X )  and their log deviations around the steady state 

with lower case letters (i.e. x = log(^)). After, imposing the goods and labour 

market clearing conditions to eliminate real wages and labour from the system, the 

dynamics of the economy is determined by the following equations:

where A, dz is a measure of price dispersion. Since relative prices

met =  x  {v +  <?) Vt +  (1 -  x) It (2-26)

(2-27)

(2-28)

7Tt =  f)Et 7T(+1 +  Kmc,

Vt =  Etyt+1 - ~ ( r t -  Ettt(+1) a
13 See appendix A1 for the derivation of the steady-state of the economy.
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r t =  <t>rr t- l  +  (1 -  <t>r) (4>*EtTTt+l +  4>yVt) (2-29)

qt =  pqt- 1 +  W qet (2-30)

where, x  = l+vipa (1 — Op) ; and Q, and M C ,

represent the steady-state value of oil prices and of marginal costs, respectively.

Interestingly, the effects of oil prices on marginal costs, equation (2-26), 

depends crucially on both the share of oil in the production function, a, and the 

elasticity of substitution between oil and labour,^;. Thus, when a  is large, \  is 

small making marginal costs more responsive to oil prices. Also, the smaller the -0, 

the greater the impact of oil on marginal costs. It is important to note that even 

though the share of oil in the production function, a , can be small, its impact on 

marginal cost, a F, can be magnified when oil has few substitutes (that is when t/j is 

low) 14. Note also that a permanent increase in oil prices, that is an increase in Q , 

makes marginal cost of firms more sensitive to oil price shocks given its effect over 

a F. Finally, when a = 0, the model collapses to a standard close economy New 

Keynesian model without oil.

The model also has a key implication for monetary policy. Notably, it 

delivers an endogenous trade-off for the central bank when stabilising inflation and 

output gap. We denote output gap by x t and it is defined as the difference between 

the sticky price level of output and its corresponding efficient level, x t = yt — yE , 

where y f  denotes the log deviations of the efficient level of output. In this economy, 

the efficient allocation is achieved when M C = 1, since this equilibrium corresponds 

to one where intermediate firms are perfectly competitive. Therefore, when the 

equilibrium is efficient we have that aF ^  a E, where, a E = eft (Q)1 ^ . Using the 

previous definition of output gap, the economy can be represented by two equations 

in terms of the efficient output gap, x t and inflation, 7vt ( see appendix A3 for

14For example, considering an oil share in the order of 1%. and an elasticity of substitution of 
0.6, and assuming Q =  W / P  =  M C, gives a F =  (O.Ol)0'56 =  6%. This share would be even higher 
if we consider a higher steady state value of the oil price,Q.
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details),

xt — EtXt+i {it ~ Etnt+1 — rt ) (2-31)c7
Tfr — @EtKt+1 +  Kyxt +  Afr (2-32)

where ^  (aF -  <*E) Qt , kq = {I -  x) and ny = x ^  +  cr)- In
our model the endogenous trade off emerges from the combination of a distorted 

steady state and a CES production function15. When the elasticity of substitution 

between oil and labour is equal to one, the Cobb-Douglas case as in Blanchard 

and Gali, the trade off disappears. Hence, in that case, the flexible and efficient 

level of output only differ by a constant term, which in turn implies that a E = 

aF. In addition, when monopolistic competition distortion is eliminated, using a 

proportional subsidy tax, as in Woodford (2003), the trade-off is inhibited, since 

again a E = a F. The existence of this endogenous trade off implies that is optimal 

for the central bank to allow higher levels of inflation in response to supply shocks.

The special features of oil, such as high price volatility and low substi­

tutability in production, induce the volatility of oil prices to have non trivial second 

order effects that the log-linear representation described by equations (2-26) to (2- 

30) does not takes into account16. These second order effects are crucial elements 

in establishing the link between oil price volatility and inflation premium. The next 

section provides a log-quadratic approximation of the economy around its steady- 

state to study the link between oil price volatility and inflation.

15Benigno and Woodford (2005), in a similar model but without oil price shocks, have found an 
endogenous trade-off by combining a distorted steady state with a government expenditure shock. 
In their framework, the combination of a distorted steady state along with a non-linear aggregate 
budget constraint due to government expenditure is crucial for the existence of this endogenous 
trade-off. Analogously to Benigno and Woodfords finding, in our model the combination of a 
distorted steady state and the non-linearity of the CES production function delivers a trade-off 
when considering an efficient level of output such that eliminate monopolistic distortions. However, 
in chapter 3 we demonstrate that we still have this trade-off even when monopolistic distortions 
are eliminated

16In a log-linear representation certainty equivalence holds, thus uncertainty does not play any 
role.
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2.4 Inflation Premium in General Equilibrium

2.4.1 The second order representation of the model

In this sub-section we present a log-quadratic (Taylor series) approximation of the 

fundamental equations of the model around the steady state. A detailed derivation 

is provided in Appendix A2. The second-order Taylor-series expansion serves to 

compute the equilibrium fluctuations of the endogenous variables of the model up 

to a residual of order 0  (\\qt, vq\\2) , where ||<ft,<7g|| is a bound on the deviation and 

volatility of the oil price generating process around its steady state17. Up to second 

order, equations (2-26) - (2-29) are replaced by the following set of log-quadratic 

equations:

A ggregate Supply_________________________________________________________________
Marginal Costs

mct =  Kyyt +  Kqqt +  \  (1 -  x) {[v +  <r)yt~ Qtf  +  X ^ t  +  O (||gt , o-g||3)  2 -  *
Price dispersion
A t =  0At_ i +  +  0  2 -  ii
Phillips Curve
vt =  Kmct +  \nmct  (2(1 - a ) y t +  me*) +  \e%} +  (3Etvt+i +  O (||gt»0g||3)  2 -  in
where we have defined the auxiliary variables:

vt = i r t +  l  (fE j +  e) +  £ ( 1 -  ^P) *tzt  2 -  iv

zt =  2 (1 -  a) yt +  met +  0(3Et (yz^TTt+i +  zt+1)  +  O (||gt,<79||2)  2 -  v
A ggregate D em and

yt =  Etyt+i ~ I  (n  ~ Et7rt+i) -  \ a E t [(yt -  yt+1) -  ^ (rt -  7Tt+i) ]2 +  (|l^,Q-qll3) 2 - v i  

Table 2.1: Second order Taylor expansion of the equations of the model

Equation (2-i) is obtained taking a second-order Taylor-series expansion of 

the real marginal cost equation, and using the labour market equilibrium condition

17Since we want to make explicit the effects of changes in the volatility of oil prices in the 
equilibrium of the endogenous variables, we solve the policy functions as in Schmitt-Grohe and 
Uribe (2004) in terms of qt and aq. This is different to the approach taken by other authors, for 
example Woodford (2003), who consider the policy function in terms of the shocks (et).
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to eliminate real wages. A* is the log-deviation of the price dispersion measure At, 

which is a second order function of inflation and its dynamics is represented by 

equation (2-ii). Importantly, the second order approximation adds two new ingredi­

ents in the determination of marginal costs. The first one is related to the convexity 

of marginal costs respect to oil prices. From this expression, when, 'ip < 1, marginal 

costs become a convex function of oil prices, hence, the volatility of oil prices in­

creases expected marginal costs. This is an important channel through which oil 

price volatility generates higher inflation rates. Notice, however that when the pro­

duction function is a Cobb-Douglas, ip = 1> this second order effect disappears, and 

the marginal cost equation does not depends directly on the volatility of oil prices, 

but only indirectly through its effects on At- In this particular case, marginal costs 

are given by,

mct = Kyyt +  Kgqt +  xv&t

the second new ingredient is associated to the indirect effect of oil price volatility 

through A*. From equation (2-25 ), it is clear that as price dispersion increases, 

the required number of hours to produce a given level of output also rises. Thus, 

this higher labour demand increases real wages, and consequently marginal costs. 

This effect is higher when the elasticity of labour supply, J is lower and when the 

participation of oil in production is higher.

Equations (2-iii), (2-iv) and (2-v) in turn represent the second order version 

of the Phillips curve, and equation (2-vi) is the quadratic representation of the 

aggregate demand which includes the negative effect of the real interest rate on 

consumption and the precautionary savings effect. The second order representation 

of the aggregate demand considers, additional to the linear approximation, the 

effect of the volatility of the growth rate of consumption on savings. Indeed, when 

the volatility of consumption increases, consumption falls, since households increase 

their savings for precautionary reasons. Next we further simplify the model economy 

by witting it as a second order two equation system of output and inflation. This
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canonical second order representation of the economy with oil allows us to discuss 

in a simple way the determinants of the inflation premium.

2.4.2 Determinants of Inflation Premium

Since the second order terms of the equations (2-i) - (2-vi) depend on the first order 

solution of the model, we can use the latter to express the second order terms as 

quadratic functions of the oil process as in Sutherland (2002). Then, we replace 

equations (2-i),(2-ii),(2-iv) and (2-v)in (2-iii), and the policy rule of the central 

bank in equation (2-vi), to write the model as second order system of two equations 

on inflation, output and the oil price18:

T̂ t =  KyVt T KqQt T P ^ t^ t+ 1  T 2 T ~ (f̂ mc 7̂r T f̂ v) Qt T O  (||(7t, &q\\ ) (2-33)

yt = Et (yt+1) -  -  ((<£*. -  1) EtTTt+i +  <pvyt) +  \ u y° 2q +  O (\\qu a9||3) (2-34)0 z
where Ky and were defined in the previous section.

We represent the second order terms as function of aJ, and the ”omega” 

coefficients {fimc, , which are defined in appendix A.2. Each of

these ’’omega” coefficients represent the second order term in the equations for 

the marginal costs (subscript me), the Phillips Curve (subscript t t )  , the auxiliary 

variable vt (subscript v) and the aggregate demand (subscript y). Given {qt} , 

the rational expectations equilibrium for {7q} and {yt} is obtained from, equations 

(2-33) and (2-34).

The ”omega” coefficients are the sources of inflation premium in general

equilibrium and capture the interaction between the nonlinearities of the model and

18T o make the analysis analytically tractable , we have eliminated state variables such us the 
lagged nominal interest rate by setting the smoothing parameter in the Taylor rule equal to zero. 
Similarly, we assume an small initial price dispersion, that is Ato_i «  0 up to second order. 
However, in the next section, the numerical exercises consider the more general specification of 
the model.
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the volatility of oil price shocks. Coefficients denoted by capital omega (£7) represent 

the time variant components of the inflation premium, whereas coefficients denoted 

by small omega (cj) are time invariant and depend on the unconditional variance 

of oil prices. Note that if the aforementioned coefficients were equal to zero the 

model would collapse to a standard version of a New Keynesian model in log linear 

form. In what follows we provide economic interpretation to the determinants of 

the inflation premium.

The coefficient Qmc captures the direct effect of oil price volatility on 

marginal costs and its indirect effect through the labour market. Let’s consider first 

its direct effect. When oil has few substitutes, ip < 1, marginal costs are convex in 

oil prices, hence expected marginal costs become an increasing function of oil price 

volatility. To compensate the increase in expected marginal costs generated by oil 

price volatility, forward looking firms react by optimally charging higher prices. 

This response of firms, in turn, leads to higher aggregate inflation when prices are 

sticky 19. Interestingly, the increase on marginal costs and inflation in response 

to oil price volatility is larger when the elasticity of substitution between oil and 

labour is small.

Additionally, oil price volatility affects marginal cost indirectly, through its 

effects on the labour market. Since oil price volatility generates inflation volatility, 

which is costly because it increases relative price distortions, efficiency in production 

falls as the volatility of oil prices increases. In particular, firms require, at the 

aggregate level, more hours of work to produce the same amount of output. Hence, 

the demand for labour rises, making labour more expensive and increasing marginal 

cost even further. Then, the increase in marginal costs through both effects, the 

direct and indirect, lead to an increases on aggregate inflation.

19This mechanism can be understood by observing equation (2-i), where dg 2̂ t =  

(1 -  x ) x 2t E ^ -  When $  <  l(t/< >  1), ^  < 0(>  0)
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We illustrate these mechanisms in figure 2.2. In panel (a) we plot the 

relation between Qmc and the parameter We see that Qmc increases exponentially 

as 'ijj decreases. Also, the steady state oil price affects the impact of oil prices in 

marginal costs: the higher the oil price in steady-state, ceteris paribus, also the 

higher the effect of oil price volatility on marginal costs. According to this, in 

economies where oil is more difficult to substitute in production, or when the oil 

price level is relatively high, oil price volatility would be more important in the 

determination of the dynamics of inflation. Similarly, in panel (b) we plot the 

relation between fimc and the elasticity of labour supply (1/u). We see that a more 

elastic labour supply increase the effects of oil price volatility. This latter effect 

works through the indirect impact of oil price volatility on the labour market.

On the other hand, the coefficient accounts for the effects of oil price 

volatility on the way price setters weight future marginal costs. When prices are 

sticky and firms face a positive probability of not being able to change prices, as in 

the Calvo price-setting model, the weight that firms assign to future marginal cost 

depends on both future expected inflation and future expected inflation’s volatility. 

Oil price volatility by raising inflation volatility induces prices setters to put a 

higher weight on future marginal costs. Hence, oil price volatility not only increases 

expected marginal costs but also make relative price of firms more responsive to 

those future marginal costs.

Panel (c) shows that when the elasticity of substitution of goods e increases, 

it increases the effect of inflation volatility on the price of individual firms and 

increases. Similarly, panel (d) shows that lower price stickiness 0 makes the Phillips 

curve stepper and also more convex, then the effects of inflation volatility on 

increases.

The coefficients £lv and  ujv accounts for the time variant and constant 

effects of inflation volatility on the composite of inflation vt. This mechanism is
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similar to that of however both coefficients are quantitatively small. Finally, 

the coefficient cuy is negative and accounts for the standard precautionary savings 

effect, by which the uncertainty that oil price volatility generates induces households 

to increase savings to buffer future states of the nature where income can be low.
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Figure 2.2: Inflation premium components (Uses benchmark calibration presented 
in section 2.5). (a) Effects of elasticity of substitution (0) on f2mc. (b) Effects of 
labour supply elasticity (l / v ) on £lmc. (c) Effects of elasticity of substitution of 
goods (e) on (d) Effects of elasticity of price stickiness (6) on
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2.4.3 The analytical solution for inflation premium

We use the perturbation method, implemented by Schmitt-Grohe and Uribe 

(2004)20, to obtain the second order rational expectations solution of the model. 

The second order solution makes explicitly the potential effects of oil price's volatil­

ity and the dynamics of endogenous variables. As we mentioned before, we define 

inflation premium as the extra level of inflation that arises in equilibrium once the 

second order solution is considered21. Also, different from other papers which apply 

perturbation methods directly to the non-linear system of equations, we first ap­

proximate the model up to second order and then apply the perturbation method22. 

Our proposed approach has the advantage that makes easier to obtain clear analyt­

ical results for the sources of the level of inflation premium.

The rational expectations second order solution of output and inflation, in 

log-deviations from the steady state, can be written as quadratic polynomials in 

both the level and the standard deviation of oil prices:

Vt = +  aiQt +  ^a2 ( f t f  +  O (||qu <^||3) (2-35)

— 2^0<79 ^  2 2̂ ^  aq^  (2-36)

where the as and b's are the unknown coefficients that we need to solve for and
20The perturbation method was originally developed by Judd (1998) and Collard and Julliard 

(2001). The fixed point algorithm proposed by Collard and Julliard introduces a dependence of 
the coefficients of the linear and quadratic terms of the solution with the volatility of the shocks. 
In contrast, the advantage of the algorithm proposed by Schmitt-Grohe and Uribe is that the 
coefficients of the policy are invariant to the volatility of the shocks and the corresponding ones 
to the linear part of the solution are the same as those obtained solving a log linear approximated 
model, which makes both techniques comparable.

21It is important to remark that this extra level of average inflation is part of the dynamic 
rational expectations equilibrium up to second order, and it can not be interpreted as a part of 
the steady state equilibrium. This second order effect on the level inflation is similar to the effect 
of the volatility of consumption on savings that is known in the literature as precautionary savings.

22 Since a second order Taylor expansion is an exact approximation up to second order of any 
non-linear equation, having the system expressed in that way would give the same solution as the 
system in its non-linear form.
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0 (  lift , (Tq\\3) denotes terms on q and aq of order equal or higher than 323. Notice 

that the linear terms (a\qt and b\qt) correspond to the policy functions that we would 

obtain using any standard method for linear models (i.e. undetermined coefficients), 

whereas the additional elements account for the effects of uncertainty (premium) 

on the equilibrium variables.

The quadratic terms in the policy function of inflation have two compo­

nents: \bQ(j2, which is constant and \b2 (qt)2 , which is time varying. The analytical 

solution obtained with the perturbation method implies the following expression for 

the overall expected level of inflation premium

= \ ( bo + b2) t f

which can be expressed as:

E  (7r) =  —-7— \4>y (f^mc +  +  ^ v )  ( l  +  4/) +  4>yWV +  CTKyUJy] ( j l  (2"37)
Z A q

for A0 =  (07T — 1) Ky +  (1 — P) 4>y > 0 and 4/ > 0 defined in the appendix A.2. 

According to this closed form, the inflation premium is proportional to the oil price 

volatility and depends on a linear combination of the ’’omega’s” coefficients. More­

over, these sources of inflation premium interact with monetary policy to determine 

the sign and size of the premium. Under a Taylor rule, inflation premium will be 

positive if monetary policy reacts also to fluctuations in output due to oil shocks. 

From equation (4.11), the inflation premium will be positive when :

(j)y >  — U y G K y f  [iOy +  ( f l mc +  0 ^  +  £ l v )  ( l  +  4*)] >  0  (2“38)

since u>y is negative, the right hand side is positive. When the coefficient of out­

put fluctuations in the Taylor rule, </>y, is positive and above this threshold, then 

the inflation premium is always positive. The higher (/>y, the higher the inflation 

premium. Therefore, when the central bank reacts also to output fluctuations it

23Schmitt-Grohe and Uribe (2004) show that the quadratic solution does not depend neither on 
<jq nor on qtaq . That is, they show that the coefficients in the solution for those terms are zero.
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also generates, in equilibrium, an inflation premium. Yet, if the central bank cares 

only about inflation and does not react to output fluctuations, that is (f)y =  0, then 

the inflation premium would be negative and small. Although oil price volatility 

is an important determinant of inflation, the previous result shows that in general 

equilibrium, the reaction of the central bank turns out to be crucial. A central bank 

that reacts only to inflation can fully eliminate the effects of oil price volatility on 

inflation raising output volatility. However, this type of reaction would come at a 

considerable cost, since output fluctuations are inefficient when they are generated 

by oil price shocks.

In figure 2.3, we depict the relation between the level of inflation premium 

an the parameter <f)y. There is a small positive threshold for 4>y such that the pre­

mium becomes positive. Also, the higher the reaction to output fluctuations, the 

higher the premium. Remarkably, the existence of the inflation premium depends 

crucially on the existence of a trade-off between inflation and output. When the 

central bank does not face this trade-off, it is always possible to find a policy rule 

where the inflation premium is zero. The previous implication steams from the fact 

that the second order solution depends upon the log-linear one24. Therefore, in 

order to observe a positive inflation premium a necessary condition is the existence 

of an endogenous trade-off for the central bank. Moreover, as shown in the previous 

section, such trade-off exists when the elasticity of substitution between oil and 

labour is lower than one.

2.5 Some Numerical Experiments

In this section we explore the ability of the model to explain high average levels of 

inflation in periods of high volatility of oil prices. To obtain the numerical results

24In a log-linear solution, when the central bank does not face a meaningful trade-off between 
stabilising inflation and output, the optimal policy implies both zero inflation and output gap.
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Figure 2.3: Inflation premium and the output parameter (0y) in the policy rule

we use the method developed by Schmitt-Grohe and Uribe (2004), which provides 

second order numerical solutions to non-linear rational expectations models .

2.5.1 C alibration

To calibrate the model we choose standard parameter values in the literature. We 

set a quarterly discount factor, /?, equal to 0.99 which implies an annualised rate of 

interest of 4%. For the coefficient of risk aversion parameter, cr, we choose a value of 

1 and the inverse of the elasticity of labour supply, u, is calibrated to be equal to 0.5, 

similar to those used in the RBC  literature and consistent with the micro evidence. 

We choose a degree of monopolistic competition, e, equal t o l l ,  which implies a firm 

mark-up of 10% over the marginal cost. The steady state level of oil price, Q is set 

equal to the inverse of the mark-up in order to isolate the effect of the share of oil
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in the production function. The elasticity of substitution between oil and labour, 

is set equal to 0.6 and we use modest value for a — 0.01, so that the share of oil 

prices in the marginal cost is around 6%25. The probability of the Calvo lottery is set 

equal to 0.66 which implies that firms adjust prices, on average, every three quarters. 

Finally, the log of real oil price follows an AR( 1) stochastic process with pq = 0.95 

and standard deviation, ae = 0.14 for the first sample and pq = 0.82 and standard 

deviation, oe — 0.13 for the second one. These processes imply standard deviations 

for real oil prices of 0.46 and 0.22 in each sample, respectively. Our benchmark 

monetary policy rule is the estimated by CGG for the post-Volcker period.. We 

also perform robustness exercises by comparing the results of this benchmark rule 

with those obtained with the estimated rules by Orphanides (2001) and Judd and 

Rudebush (1998)26. The coefficients of the alternative policy rules analysed are 

presented in the following table:

CGG Taylor Orphanides Judd-Rudebush
(f)r 0.79 0.00 0.79 0.72
4*ir 2.15 1.53 1.80 1.54

0.93 0.77 0.27 0.99

Table 2.2: Alternative Policy Rule Coefficients

25We consider a conservative calibration for the share of oil in production. Other authors have 
considered a larger share of oil in production or costs. For example, Atkenson and Kehoe (1999) 
use a share of energy in production of 0.043 and Rotemberg and Woodford (1996) a share of energy 
equal to 5.5% of the labour costs..

26Importantly, we have used the same Taylor type rule for the overall sample. Values >  1 
and 4>y >  0 are consistent with recent estimation using bayesian methods by Rabanal and Rubio- 
Ramirez (2005). Although the previous authors find that from 1982 on, both parameters are 
estimated to be higher with respect to the overall sample.
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2.5.2 Explaining the U.S. Level of Inflation Premium with Oil Price

Shocks

In this section we evaluate how the model does at capturing the conditional mean 

of the key macro variables, in particular of inflation. In Table 2.3 we report the 

means of inflation, output gap and nominal interest rates compared with the values 

observed in the data based on our benchmark parameterization27. Notice that by 

comparing the sub-samples we observe an important change in means and volatilities 

in inflation, GDP gap, and interest rates across sub-samples (columns 3 and 5 of 

table 2.3). Thus, quarterly inflation standard deviation has decreased from 0.8% 

to 0.3% and the mean has moved from 1.4% to 0.5%, between the pre-Volcker and 

post-Volcker periods, respectively. Similarly, the three-month T-bill has decreased 

in both means and volatilities. Finally, GDP gap has decreased in volatility (from a 

standard deviation of 2.8% to 1.3%) and has experimented and increase in its mean 

(from -0.20% to 0.26%).

To clarify, the simulations that follow are a first step at exploring whether 

the mechanisms we have just have emphasised have potential for explaining the 

inflation-premium. In the model, we interpret oil price shocks as the main driven 

force of the inflation premium, although we are aware that in order to closely match 

the moments of other macro variables, additional shocks might be necessary. Thus, 

by performing these numerical exercises we intend to confront the data to the mech­

anism previously described. We do so by generating the unconditional mean of 

inflation, output and interest rates implied by the calibrated model for the pre and

27We use the data from the Haver USECON database (mnemonics are in parentheses). Our 
measure of the price level is the non-farm business sector deflator (LXNFI), the measure of GDP 
corresponds to the non-farm business sector output (LXNFO), we use the quarterly average daily 
of the 3-month T-bill (FTB3) as the nominal interest rate, and our measure of oil prices is the 
Spot Oil Prices West Texas Intermediate (PZTEXP). We express output in per-capita terms by 
dividing LXNFO by a measure of civilian non-institutional population aged above 16 (LNN) and 
oil prices are deflated by the non-farm business sector deflator.
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post Volcker periods. The only difference in the calibration between these two pe­

riods is the assumption on the data generating process of oil prices. We fit an AR 

(1) process for oil prices in each period and find that both the persistence and the 

variance of oil price shocks have fallen from the first to the second period.

Pre-Volcker Post-Volcker
Simulated Observed Simulated Observed

Mean Inflation 1.09 1.38 0.19 0.53
Mean Output Gap1 (HP) -1.35 -0.20 -0.23 0.26
Mean Nominal Interest Rate 1.08 7.65 0.18 5.36
Standard Deviation Inflation 1.91 0.80 0.75 0.29
Standard Deviation Output Gap (HP) 2.02 2.79 0.56 1.33
Standar Deviation Nominal Interest Rate 1.64 2.84 0.45 1.44
Standard Deviation Real Oil Price 0.46 0.57 0.22 0.21
A1 variables are quarterly, except the nominal interest rate which is annualised.

Table 2.3: Unconditional Moments Generated by the Benchmark Model

The key result to highlight from table 2.3 is that we are able to generate 

a positive level of inflation premium that allows the model to mimic the average 

inflation level in the US in the pre-Volcker and post Volcker periods without relying 

on different monetary policy regimes across periods. Remarkably, the model can 

match very closely the mean of inflation for the two sub-periods. Thus, inflation 

mean during the first period is 1.38% while the model delivers a value of 1.09%. 

Similarly, for the second period we observe a mean inflation of 0.53% and the model 

predicts a value of 0.19%. The model is much less successful at matching the 

moments of the nominal interest rate and to a less extent those of output. Yet, the 

model does a fairly good job at matching qualitatively changes in average levels of 

inflation, output and interest rates across sub-samples.

2.5.3 Decomposition of the Determinants of Inflation Premium

As described in the previous section, in general equilibrium, the determinants of 

inflation premium can be de-composed in four components: those coming from
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the non-linearity (convexity) of the Phillips curve (f^), the non-linearity of the 

marginal costs , the auxiliary variable vt (ujv and Dv) and the precautionary 

savings effect (uy). We show in table 2.4 the decomposition of inflation premium 

across samples by these determinants. Worth noting is that the convexity of the 

Phillips curve with respect to oil prices, accounts for roughly 59 and 55 percent of 

the inflation premium in the pre and post Volcker periods, respectively. The second 

determinant in importance is the convexity of the marginal cost with respect to oil 

that accounts for 45 and 48 percent, respectively. For instance, out of this effect, 

the level of inflation premium attributed to price distortions represents about 50 

percent in each sample. Finally, the precautionary savings effect is negative and 

almost negligible.

CGG
Pre-Volcker Post-Volcker

Convexity Phillips curve (Q^) 58.9 55.4
Marginal costs (fimc) 45.2 48.2

Indirect effect: price dispersion 27.4 24.8
Direct effect: convexity respect to oil prices 17.9 23.4

Auxiliary variable vt (ujv and Q,v) -3.9 -2.9
Precautionary Savings (uy) -0.3 -0.6
Total 100.0 100.0

Table 2.4: Inflation Premium - Effects Decomposition

2.5.4 Comparing Different Monetary Policy Rules

We now evaluate how monetary policy can affect the level of inflation premium. 

We do so by comparing the benchmark specification (CGG) with the estimated 

taylor rules suggested by Orphanides (2001) and Judd and Rudebush (1998). Ta­

ble 2.5 shows that Orphanides's generate a smaller average inflation in both sub­

samples. This finding is explained by the smaller weight assigned on output in the
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Orphanides's rule with respect to the CGG's rule. This result is consistent with 

threshold for the parameter (f)y from our analytical results, equation (2-38)

Notice also, that the smaller average level of inflation is consistent with a 

smaller mean level of the nominal interest rate. Hence, the aggressiveness of the 

central bank towards inflation determines how the premium is distributed between 

inflation and output means. The more aggressive at fighting inflation the central 

bank is, the smaller the level of inflation premium and the larger the reduction 

of average output. Note also that Rudebush's rule delivers an excessive inflation 

premium during the pre-Volcker period (6.38%). This result is basically explained 

by the higher weight over output fluctuations that this rule implies.

Pre-
Volcker

CGG
Post-

Volcker

Orphanides 
Pre- Post- 

Volcker Volcker

J udd-Rudebush 
Pre- Post- 

Volcker Volcker
Mean Inflation 1.09 0.19 0.19 0.05 6.38 0.64
Mean Output Gap (HP) -1.35 -0.23 -0.57 -0.15 -3.49 -0.35
Mean Nominal Interest Rate 1.08 0.18 0.19 0.05 6.37 0.63
S.D Deviation Inflation 1.91 0.75 1.01 0.54 3.34 1.00
S.D Output Gap (HP) 2.02 0.56 2.22 0.68 1.73 0.43
S.D Nominal Interest Rate 1.64 0.45 0.82 0.28 2.91 0.62
S.D Real Oil Price 0.46 0.22 0.46 0.22 0.46 0.22

Table 2.5: Alternative Policy Rules

2.6 Conclusions

Traditionally New Keynesian log-linear models have been used to match second 

order moments. However, they have the limitation that their solution implies cer­

tainty equivalence, neglecting any role of uncertainty and volatility over the level of 

inflation. To the extent that uncertainty is important in real economies, a second 

order solution of the New Keynesian model is required to improve their fit to the 

data. In particular, this type of solution provides a link between volatility of shocks 

and the average values of endogenous variables offering a non-conventional way to
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analyse business cycles. In this chapter we have taken this approach and we show 

how the interaction between volatility and the convexity of both the marginal costs 

and the Phillips curve improves the ability of a standard New Keynesian model to 

explain the history of inflation in the USA.

The second order solution allows us to provide an additional element to the 

explanation suggested by CGG for the high inflation episode during the 70s. Our 

hypothesis puts at the centre of the discussion the volatility of supply shocks, in 

particular oil price shocks. Contrary to what a linear solution implies, a second order 

solution establishes the link between volatility of oil prices and expected inflation, 

what we called inflation premium. In this chapter we show that a calibrated version 

of our model can match very closely the inflation behaviour observed in the USA 

during both the pre-Volcker and post-Volcker periods. In particular we show that 

the high volatility of oil price shocks during the 70s implied an endogenous high level 

of inflation premium that can account for the high average inflation levels observed 

in US during that period. The analytical solution obtained by implementing the 

perturbation method shows that the existence of the inflation premium depends 

crucially on, first, the convexity of both the marginal costs and the Phillips curve 

and second, the response of the monetary authority. In particular, the reaction of 

the central bank determines in equilibrium how higher volatility generated by oil 

price shocks is distributed between a higher average inflation and lower growth rate. 

Moreover, in order to observe a positive inflation premium it is required that the 

central bank partially reacts to supply shocks.

In addition, a standard result of the New Keynesian models is that they can 

not generate an endogenous trade-off for monetary policy. Therefore, in those mod­

els zero inflation and zero output gap is the optimal response of the Central Bank, 

consequently zero inflation premium becomes optimal. In this chapter, we show 

that this result, denominated by Blanchard and Gali as the ’’Divine Coincidence” 

holds only under rather special assumptions: when the steady state coincides with
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the efficient one (i.e. when there is no distorted steady state) or when the produc­

tion function has an elasticity of substitution equal to 1. Instead, we show that for 

the general case, allowing for a distorted along with a CES production function, oil 

price shocks are able to generate an endogenous cost push shock making the central 

bank problem a meaningful one.

This endogenous cost-push shock generates a trade-off in means for the 

central bank. In this case the central bank can not reduce the average level of 

inflation without sacrificing output growth. We show that the optimal policy implies 

to partially accommodate oil price shocks and to let, on average, a higher level of 

inflation. Thus our results imply that the inflation behaviour in the U.S. during the 

70s not only might reflect a perfectly consistent monetary policy but an optimal 

one.

Our results can be extended in many directions. First, it will be worth to 

explore the effect of openness in inflation premium. Second, the analytical pertur­

bation method strategy proposed in the chapter can be used to capture the effects 

of change in a monetary policy regime over inflation. Third, it will be worth also 

to explore the implications of other source of shocks in the determination in the 

level of inflation premium. Finally, the estimation of a non-linear Phillips curve 

considering the effects of oil price volatility on inflation will be an issue to work in.
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A 1 A ppendix: E quations of th e  M odel 

A l . l  T he system  of equations

Using the the market clearing conditions that close the model, the dynamic equilib­

rium of the model described in section 3 is given by the following set of 10 equations:

A G G R EG A TE SU PPLY
M arginal C osts

MCt (1 -  o f  (W t/Pt)1-* + a* (Q ty -4. 
L abour m arket
Wt _  ycr^u 
Pt t t

Price  dispersion
A, =  (1 -  6) ( i z S S p ) ^ 1- 1' +  e A t. x (nt) 
Phillips Curve

Nt =  n Y f- ’ MCt + 8/3Et p (+1)e JV(+1]
A  = r f - ’  + 0PEt [(nt+o*-1 a+i]

A G G R EG A TE D EM A N D

i —1/1
Al-i

Al-ii

Al-iii

Al-iv

Al-v
Al-vi
Al-vii

1 = pEt Rtnt+i
M O N ETA RY  PO LIC Y

Al-vii

R t =  R  ’  ( £ ) * •

OIL PR IC E S
Al-ix

Qt = QQt-1 exp ( w qet) Al-x

Table A l.l: Equations of the model

The first block represents the aggregate supply, which consists on the 

marginal costs, the labour market equilibrium and the Phillips curve, which has 

been written recursively using the auxiliary variables Nt and Dt. The aggregate
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demand block is represented with the Euler equation and Monetary Policy block is 

given by the Taylor rule. The last equation describes the dynamics of oil prices. 

We use this set of ten non-linear equations to obtain numerically the second order 

solution of the model.

A l.2  The deterministic steady state

The non-stochastic steady state of the endogenous variables is given by: where

Inflation n  =  1
Auxiliary variables N  = D = Y / ( l - e p )
Interest rate R = (3-1
Marginal costs M C = 1 In
Real wages W /P  = Ty± ( l - a F) T̂

Output y  =  * » ( i ) 7  ( l - o - ■-*

Labour

Table A l.2: The steady state

aF is the share of oil in the marginal costs, ry and 77 are constants28. Notice that 

the steady state values of real wages, output and labour depend on the steady state 

ratio of oil prices with respect to the marginal cost. This implies that permanent 

changes in oil prices would generate changes in the steady state of this variables. 

Also, as the standard New-Keynesian models, the marginal cost in steady state is 

equal to the inverse of the mark-up (MC = l//z =  (e — l ) /e) .  Since monopolistic 

competition affects the steady state of the model, output in steady state is below 

the efficient level. We call to this feature a distorted steady state.

28More precisely: ry =  1 * and 77 =  (y r^ ) ’ * °+v.
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A1.3 The flexible price equilibrium

The flexible price equilibrium of the endogenous variables is consistent with zero 

inflation in every period (i.e. .n f  = 1). In this case marginal costs are constant, 

equal to its steady state value, and the other variables are affected by the oil shock.

Inflation n f = l

Interest rate 1 /flf  =  Et . )

Marginal costs M C F =  1/fi

Real wages W ( / P F = Ty± ( l  -  a F (Qt /Q)1 ^  1~*

Output YtF = Ty ( i )  a+v ( l  -  aF (Qt /Q)1 a+v 1

Labour_______ L f = n  ( l  ~  a F (Qt /Q)1

Table Al.3: The flexible price equilibrium

Notice that the flexible price equilibrium is not efficient, since there are 

distortions from monopolistic competition in the intermediate goods market (i.e. 

M C F > 1).

A2 Appendix: The second order solution of the model 

A2.1 The recursive AS equation

We divide the equation for the aggregate price level (2-18) by P/~e and make 

Pt/P t- i = I\ t

1 =  0 (nt)_(1“£) +  (1 -  0) (A2.1)
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Aggregate inflation is function of the optimal price level of firm z. Also, from 

equation (2-17) the optimal price of a typical firm can be written as:

J?(z) A
P, A

where, after using the definition for the stochastic discount factor: Ct,t+k —

(3Ct°k/C t*P t/Pt+ki we define Nt and Dt as follows:

N* = E*.

Dt =  Ef

v m hFt:t+kYt+kCr+°kM c t+k
k=o
00

'E m kp?,;tkYt+kc -+\
,k—0

(A2.2)

(A2.3)

Nt and Dt can be expanded as:

Nt =  M C ^ M C t  + Et E  r tW )kF?+i,t+1+kYt+i+kC ^ +kM Ct+lJ
k=0

2.4)

Dt = YtC7a + Et
k—0

(A2.5)

where we have used the definition for Ftt+k = Pt+k/Pt-

The Phillips curve with oil prices is given by the following three equations:

Pt

Nt = t f - ' M C t  + OPEt (n,+1)£ Nt+l 

Dt =  Y l- " + epEt (n,+1)£_1 a+i

(A2.6)

(A2.7)

(A2.8)

where we have reordered equation (A2.1) and we have used equations (A2.2) 

and (A2.3) evaluated one period forward to replace Nt+i and Dt+1 in equations 

(A2.4) and (A2.5).
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A2.2 The second order approximation of the system

The second order approximation of the Phillips Curve

The second order expansion for equations (A2.6), (A2.7) and (A2.8) are:

nt =  (nt ~ dt) ~ W _ 1q K )2 + 0(\\qt,<rqf )  (A2.9)

nt = (1 — Op) +  2 °^) (^ th + i +  2^ ^ + !^  — 2™* ^  C11 ̂  ’ °’«l|3) (A2.10)

dt = (1 — 9p) ^ct +  2°2̂  (^EtZt+i +  2^ e2+i^ — 2^  ^ ( H ^ ’^ l l 3) (A2. l l)

Where we have defined the auxiliary variables 04,64+1,04 and ef+i as:

at = (1 -  a) yt +  mct 6t+1 =  £nt+1 +  nt+1 

ct =  (1 -  a) yt et+i = (s -  1) 7rt+1 +  dt+1

Subtract equations (A2.10) and (A2. ll),  and using the fact that X 2 — Y 2 =

(X  — Y ) (X  +  Y), for any two variables X  and Y  :

nt — dt =  ( l - 0 p ) ( a t - c t) + ^ ( l - 0 p ) ( a t - c t ) { a t + ct) (A2.12)

+0PEt (64+1 — et+i) +  -OpEt (64+1 — e4+i) (̂ +1 +  et+1)

- \ ( nt ~  dt) (nt + dt) + 0  (Hft, (Jg||3)

Plugging in the values of at, 64+1, ct and e4+1 into equation (A2.12), we obtain 

(A2.13)

nt — dt = (1 -  Op)mct +  ^ (1 -  Op) mct (2(1 -  a) yt + m ct)

+0pEt (tth-i +  4̂+1 — dt+1) +  -OpEt (7rt+i + 77.4+1 — dt+i) ((2s — 1) 7̂ +1 +  77.4+1 

(nt -  dt) (nt + dt) + 0  (||ft, ag||3)

Taking forward one period equation (A2.9), we can solve for 77.4+1 — di+\.



replace equation (A2.14) in (>12.13) and make use of the auxiliary variable zt = 

(nt + dt) / ( l - 0 p )

nt - d t = (1 -  0(3) met +  i  (1 -  0(3) mct (2(1 -  a) yt + mct) (A2.15)

+ T Etftt+i +  ( z x +  £ ) Etftt+i +  (1 — @P) Etftt+iZt+i1 - 0  

^  -  *tZ*+ 0

Notice that we use only the linear part of equation (A2.14) when we replace nt+i — 

dt+1 in the quadratic terms because we are interested in capture terms only up to 

second order of accuracy. Similarly, we make use of the linear part of equation 

(A2.9) to replace (nt — dt) = in the right hand side of equation (A2.15).

Replace equation (A2.15) in (A2.9):

7Tt =  Kmct +  (2 (1 -  a) yt +  mct) (A2.16)

+/3 Et^t+i +   ̂j  -  q + ^  ^t^t+i +  (1 — 0 0 ) Etftt+iZt+i

1  ( i  -  ep)-Ktz t - 1  ^  ^  (tt,)2 +  o ( l k ( , ^ l l 3)

for

where zt has the following linear expansion:

zt = 2 (l -  a)y t + mct +  OpEt +  Zt+i ĵ +  0  (||qu vg\\2) (A2.17)

Define the following auxiliary variable:

vt = irt + l  (  +  e)  + 7} (* -  90) *tZt (A2.18)

Using the definition for vt, equation (A2.16) can be expressed as: 

vt =  Kmct +  i/cract (2 (1 - o ) y t + mct) +  i ^ 2 + PEtvt+1 +  O (\\qu aq\\2) (A2.19) 

which is equation (4.3) in the main text.
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Moreover, the linear part of equation (A2.19) is:

TTt =  wmct +  (3Et (vTi+i) +  O (||qu aq||2)

which is the standard New Keynesian Phillips curve, inflation depends linearly on 

the real marginal costs and expected inflation.

The MC equation and the labour market equilibrium

The real marginal cost (2-15) and the labour market equations (2-7 and 2-25) have 

the following second order expansion:

mct =  (1 -  a F) wt+aFqt+ ^ a F (l -  aF) (1 -  ip) (wt -  qt)2+ 0  (||&, c jJ3) (A2.20)

wt = vlt +  oyt (A2.21)

k = yt~i> (wt -  mct) +  A t (A2.22)

Where wt and A t are, respectively, the log of the deviation of the real wage and the

price dispersion measure from their respective steady state. Notice that equations 

(A2.21)and (A2.22) are not approximations, but exact expressions.

Solving equations (A2.21) and (A2.22) for the equilibrium real wage:

Wt =  i + a)Vt + l /'lPm c t + v A t (A2.23)

Plugging the real wage in equation (A2.20) and simplifying:

met = x { v  + v ) y t + ( l - x ) ( q t )  + X v A t (A2.24)

+ ^  V ~ ~ f X2 (X _  x )  [(o- +  v ) y t -  qtf  +  O (H*,<7,||3)

where x =  (l — ocF) /  (l +  u ^ a F) .This is the equation (4.1) in the main text. This 

expression is the second order expansion of the real marginal cost as a function of 

output and the oil prices.
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The price dispersion measure

The price dispersion measure is given by

/ ' (
Since a proportion 1 — 6 of intermediate firms set prices optimally, whereas the other 

6 set the price last period, this price dispersion measure can be written as:

p?(.z) Y s . a f ' f P t - A z )
—£

Dividing and multiplying by (Pt- i)-e the last term of the RHS:

P i ( z ) Y e , 0 f 1 ( P t - l  ( z ) Y S f P t-! — £

Since Pt* ( z ) /P t =  Nt/D t and Pt/P t- 1 =  n t , using equation (2 — 11) in the text and 

the definition for the dispersion measure lagged on period, this can be expressed as

/ 1 _  f) (t\ \e_1 \  £̂ £ ^
A* = (1- 0 ) (  i Z o  ' J +0At_1(nt)e (A2.25)

which is a recursive representation of At as a function of A t-i  and lit.

Benigno and Woodford (2005) show that a second order approximation of 

the price dispersion depends solely on second order terms on inflation. Then, the 

second order approximation of equation (A2.25) is:

At = 0At_! +  ^ ( l l^ ’^ l l3) (A2.26)

which is equation (2 — ii) in the main text. Moreover, we can use equation (A2.26) 

to write the infinite sum:
OO OO 1 Q  DO 2

t t>Q %-trQ
o° /j oo 2

=  0A ( „ _ 1 +  - e —  +
t==tp t~t0
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Dividing by (1 — (39) and using the definition of k  :

w  s\ -  w

= T— g A -1 +  +  °(ll9 ‘>a«ll3) (A2.27)
t=ta ^ t=*0

The discounted infinite sum of A t is equal to the sum of two terms, on the initial 

price dispersion and the discounted infinite sum of 7if .

The IS

Similarly, the second order expansion of the IS is:

1 1
yt = Etyt+1 (rt — Etirt+i) -  - o E t

O  Z
{yt -  y t+1) —  { n -  7rm )

O + (Ikt^gll3) 
(A2.28)

Replacing the linear solution of yt inside the quadratic part of equation (A2.28):

+  (lk^CTg||3)yt = Etyt+1- -  (rt -  Et7rt+i)-]-oEt  o l
1 /  1

yt+1 H— 7Tt+1 — Et I yt+\ -I— TTf+i o  \  o
(A2.29)

where Et [yt+i +  ^7ri+i -  Et {yt+i +  ^ t+ i ) ] 2 is the variance of (yt+1 +  ^ t+ i) -
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A2.3 The system  in two equations

Since the quadratic terms of the second order Taylor expansions of the equations 

depend on the linear solution, we can use the latter to solve for the formers. Let's 

assume the linear solution for output, inflation and the auxiliary variable zt29

Vt = aiqt + 0(\\qu aq\\2) 

nt =  b1qt + 0(\\q t,aQ\\2) 

zt =  ciqt + 0(\\qu ag\\2)

Additionally, we have the transition process for the oil price:

qt =  pqt- 1  + Wqet

where e~iid (0, 1) and 77 =  \J \  — p2.

The AS

Replacing the equation for the price dispersion in the equation for the marginal 

costs, the latter can be expressed as:

mct = x  (v +  0 ) yt +  (1 -  x) qt +  X^At +  ^Omcg(2 +  O (||&, a j 3) (A2.30)

where Qmc = (1 -  x) X2^ f  ((^ + <r)a1 -  i f  +  (&1)2 .

Similarly, the Phillips curve equation can be expressed as:

vt = nmct +  (3Etvt+1 +  +  O (||qu <j9||3) (A2.31)

where =  e (b i f  + K [x (v + <T)a1 + ( l -  x)} [2 (1 -  0 ) yt +  x (v +  0 ) ax +  (1 -  *)]. 
We have used the linear solution of output and inflation to express in terms of 

a\ and b\.

29From the linear expansion of the definition of zt we can solve for ci, where c\ =

TZWp {[2 (1 -  ^) +  X (^ +  )̂] «1 +  (1 -  x) +  e p ^ p h  }
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Replace the equation for the marginal costs in the second order expansion 

of the Phillips Curve and iterate forward, the Phillips curve can be expressed as the 

discounted infinite sum:
OO

f t

Vt

 ̂ f ^  1 ~ 1 I
X ] P ~ to \  Kyyt +  n<!qt +  +  2^mcQt +  2 > +  (lift, V q f )  (A2.32)
t=tQ  ̂ '

where Ky = k x {v  + v ) and Kg = k ( 1 — x )- Make use of equation (A2.27), the 

discounted infinite sum of At , v t becomes:

°°̂  f 1 1 ~ 1 1
=  ^ 2  j  Kyyt +  Kgqt +  - ^ x v 'kI +  - ^ m Cq2t +  Qt f (A2.33)

t=t0  ̂ '

Assuming that we depart from an initial state where the price dispersion is 

small, that is At_! ~  0 up to second order, then equation (A2.33) can be expressed 

recursively as30:

1 7T2 1 ~ 1
vt = KyVt +  KqQt +  ~2£®@~2 i^^m cQ t +  +  @EtVt+1 +  ( ||ft5 ^gll3) (A2.34)

L e t's  consider the total second order terms coming from the marginal costs:

^mcQt =  ^XVT^t ~b K'&'mcQt (A2.35)

then, ic — &xv (^1) T

The auxiliary variable vt is also affected by second order terms:

vt =  7ft +  vQt (A2.36)

where Qv =  [(fz j +  £) +  (1 — @P) ^ici] -EtVt + 1 becomes:

EtVt + 1 =  EtiTt +  -u ^ E tq 2̂  (A2.37)

=  E t7vt+1 +  i S v  {p2q2 +  ? f a ] )

30We make the assumption that the initial price dispersion is small to make the analysis analyt­
ically tractable. However, in the numerical exercise we work with the general case and the results 
are quantitatively similar.
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Replacing equations (A2.35), (A2.36) and (A2.37) in (A2.34), we obtain the equa­

tion (2-33) in the text:

Kt — Kyyt + KqQt + PEt'JTt+l + 2 ^ m c  +  ^  2UJv°’q̂ ~ (A-2.38)

where Qv =  — flv (1 — (3p2) and ujv — ujv(3ri2. Q,mc, Q r, Qv and u v are respectively 

the second order terms coming from the marginal costs, the Phillips Curve and the 

auxiliary variable vt.

The aggregate demand

Replace the policy rule (2-29) in the second order expansion of the IS (A2.29), 

assuming there is not interest rate smoothing (that is 4>r = 0) :

Vt E t V t + l  [(<Ar “  1) E t n t+1 +  (pyVt] +
<7

(A2.39)

— ~aEt 
2

1 /  1
Vt+i 4— 7Tt+i ~ Et I yt+1 -1— TTt+i

<7 \  <7
+ O (||qt, crq-||3)

This can be expressed as:

yt = Et {yt+i) -  ^  [(<£* -  1) ^ t7rt+1 +  <j>yyt] +  +  O (||qu a9||3) (A2.40)a

where:

aiQt+i H— biqt+i — Et (a>iqt+i 4 —
<7 V (7

(A2.41)

Similar to the previous sub-section, the IS risk premium can be written as a function 

of the linear solution of inflation and output:

2

UJy =  —o  ( d\ +  —b\ j  < 0 (A2.42)

Note that the risk premium component of the IS is negative, capturing precautionary 

savings due to output and inflation volatility.
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A2.4 The perturbation method

The policy functions of the second order solution for output and inflation can be 

written in the following form:

Vt =  ^ 0a2 +  aiQt +  ^2  (qt)2 +  0  (||&, crg||3) (A2.43)

7rt = h )0(j2q +  bxqt +  h)2 (qt f  +  0(\\qu aq\\3)

where the as and b's are the unknown coefficients that we need to solve for and

0 (11® , crg||3) denotes terms on q and aq of order equal or higher than 3. We express

the dynamics of the oil price as:

Qt = PQt-i +  pcrqet (A2.44)

where the oil shock has been normalised to have mean zero and standard deviation 

of one, i.e. e~iid (0 ,1) .Also, we set 77 = y jl  — p2 in order to express V (qt) = aq.

In order to solve for the 6 unknown coefficients, we use the following algo­

rithm that consist in solving recursively for three systems of two equations. This 

allow us to obtain algebraic solutions for the unknown coefficients. We follow the 

following steps:

1. We replace the closed forms of the policy functions (A2.43) and the transition 

equation for the shock (A2.44) in the equations for the AS (A2.38) and the 

AD (A2.40).

2. Solve for a\ and 61: we take the partial derivatives with respect to qt to the 

two equations of step 1 , then we proceed to evaluate them in the non-stochastic 

steady state (i.e. when qt = 0 and aq = 0). Then, the only unknowns left are 

a\ and 61 for two equations. We proceed to solve for a\ and 61 as function of 

the deep parameters of the model.

«i =  -  [(</>* -  l)p] «9t - <  0 

61 -  [a (1 — p) T (t>y) S T " >  0
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3. Solve for a2 and  62: similar to step 2, we take successive partial derivatives 

with respect to qt and qt to the two equations of step 1 and we evaluate them 

at the non-stochastic steady state. Then, we solve for the unknowns a2 and 

^2-

0,2 =  —  — 1 )  p 2] (f^TT +  ^ m c )  "7 0

b2 —  ( l  —  p2) +  <j>y\ ( ^ 7 r  +  f ^ m c )  ~7~ >  02̂

4. Solve for a0 and  60: similar to steps 2 and 3, we take successive partial 

derivatives with respect to aq and oq to the two equations of step 1 and we 

evaluate them at the non-stochastic steady state. Then, we solve for the 

unknowns a0 and 60. The solution for the coefficients is given by:

aQ =  -  -  1) [ (b2r]2 +  u*) - a  (1 -  P) (a2p2 +  u y)] -J-
Ao

b0 =  - b 2r f +  \(j>y (b2rj2 +  u^) + a K y (a2r f  + v y)] ~r~ 

where we have defined the following auxiliary variables:

A0= (07r ~  1) «1+  (1 -  P) (f>y
Ai= (07T -  1) pKy+ (1 -  Pp) [a (1 -  p) +  <!>v]

A2= (07T -  1) p2Ky+  (1 -  Pp2) [o' (1 -  p f  +  <£y]

where A0, A1} and A2 are all positive.

The Inflation premium

The inflation premium is given by:

2

replace the solution for bQ:

6o + h2 =  k2f?  +  W  (A2.45)
Ao
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Replace the solution of a2  and the definition of 7 7, and collect for &2

£{' p2Ao +  ( < f ) y -  O K y
(j) 7T 1

a  ( 1  -  p2) + •) (1 - p 2) 
/

~\~ (f)yUJ-j{ ~\~ (TKiyixJy

(A2.46)

After some algebra, it can be expressed as 

1 f b2(j)y
b0 +  2̂ —

A0 \ o {I -  p2) + (fry
[A2 +  2 ( l  -  Pp2) cr ( 1  -  p)2] +  +  a/syu;y j

(A2.47)

Replace the definition for b2 : 

1
b 0  “ 1“  6 2    .  \ & y  ( ^ 7 T  4 ~  f l j n c  " f ~  ^ v )  ( f  4 *  4 / )  “ I -  ( f i y t j J v  “ I”  U ’ A v y C t ^ y J '

Ao
(A2.48)

where 4/ =  2 ( 1  — Pp2) a  ( 1  — p)2 / A2. 4> is positive and very small for p  close to 1
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A3 Appendix: Endogenous Trade-off

Prom equation (A2.24), we can derive linearly the marginal cost as function of 

output and oil price shocks, as follows:

(l -  aF) (a + v) F (l-\-vip) ll2x x
mCt =  -  i t z & t - * + “  + }  (A 3-1}

This equation can be also written in terms of parameters ny and a c 9 , defined previ­

ously in the main text, as follows:

mct = — yt +  — qt +  O (|| qu crg \f) (A3.2)
Av K

Under flexible prices, mct = 0. Condition that defines the natural level of output in 

terms of the oil price shock :

y f  = ~ — Qt + 0(\\qt,aq\\2) (A3.3)
At y

Notice that in this economy the flexible price level of output does not coincide with 

the efficient one since the steady state is distorted by monopolistic competition The 

efficient level of output is defined as the level of output with flexible prices under 

perfect competition, we use equation (A3.2) to calculate this efficient level of output 

under the condition that fi = 1 as follows:

^  = ~ ( l - o * ) ( l y  ^  + 0 (lkt’ ^  (A3-4)

Where aE = a^ (Q)1 ^ . This parameter can be also expressed in terms of the 

participation of oil under flexible prices as follows:

aE =  otF

Notice that when there is no monopolistic distortion or when ijj = 1 we have that 

a E — aF and yE =  y[.

Using the definition of efficient level of output, we can write the marginal 

costs equation in terms an efficient output gap, x t. Where xt = (yt — y f )  in the
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following way

mct = ^ - { y t -  y f )  +  1 ^ + 0  (||g*, aq ||2) (A3.5)
K, K

Where

Ht =  K y [ l  -  . “  v\  "  ’ I y f
a F (1 -  a E)

(1 — aF) a E

Using equations (A3.5) and (2-27), the Phillips curve can be written as follows:

7Tt — pEt7tt+i +  Kyxt +  y t +  O (||qt, ^ | | 2) (A3.6)

This equation corresponds to equation (2 — 31) in the main text. We can further 

write fit in terms of the oil price shocks using the definition of the efficient level of 

output:
Kq f  aF — aE \

=  Vy \ ( 1  — a E) a F )  qt 
The dynamic IS equation can also be written in terms of the efficient output gap.

x t = Etxt+1 -  -  (it -  Etirt+1 -  r f )  +  0  (||gt, crg||2) (A3.7)(7

where r f  is the natural interest rate, the real interest rate consistent with yf:

rf  =  ^ t1 - p ) y f  +  o  (||gt, ct,||2) 

which in turn can be written as follows:

r f  = - a  (1 -  p) (1 !  aE) (1 J  ] +  0  (lift, oqf )

Notice that when there is no monopolistic distortion or when 'ip = 1 we have that 

ole =  a F, which implies that there is no an endogenous trade off.

y t = 0 W
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CHAPTER 3

OIL SHOCKS AND OPTIMAL MONETARY POLICY

3.1 Introduction

Oil is an important production factor in economic activity, because every industry 

uses it to some extent. Moreover, since oil cannot easily be substituted by other 

production factors, economic activity is heavily dependent on its use. Furthermore, 

the oil price is determined in a weakly competitive market; there are few large oil 

producers dominating the world market, setting its price above a perfect competition 

level. Also, its price fluctuates considerably due to the effects of supply and demand 

shocks in this market1.

The heavy dependence on oil and the high volatility of its price generates a 

concern among the policymakers on how to react to oil shocks. Oil shocks have se­

rious effects on the economy because they raise prices for an important production 

input and for important consumer goods (gasoline and heating oil). This causes 

an increase in inflation and subsequently a decrease in output, generating also a 

dilemma for policymaking. On one hand, if monetary policy makers focus exclu­

sively on the recessive effects of oil shocks and try to stabilise output, this would 

generate inflation. On the other hand, if monetary policy makers focus exclusively 

on neutralising the impact of the shock on inflation through a contractive monetary

1For example during the 1970s and through the 1990s most of the oil shocks seemed clearly to 
be on the international supply side, either because of attempts to gain more oil revenue or because 
of supply interruptions, such as the Iranian Revolution and the first Gulf war. In contrast, in the 
2000s the high price of oil is more related to demand growth in the USA, China, India and other 
countries.
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policy, some sluggishness in the response of prices to changes in output would imply 

large reductions in output. Therefore, policymakers are confronted with a trade-off 

between stabilising inflation and output. But, what exactly should be the optimal 

stabilisation of inflation and output? Which factors affect this trade-off? To our 

knowledge there is not been a formal study on this topic.

To answer these questions we extend the literature on optimal monetary 

policy including oil in the production process in a standard New Keynesian model. 

In doing so, we extend Benigno and Woodford (2005) to obtain a second-order 

approximation to the expected utility of the representative household when the 

steady state is distorted and the economy is hit by oil price shocks. We include oil 

as a non-produced input as in Blanchard and Gali (2005), but differently from those 

authors we use a constant-elasticity-of-substitution (CES) production function to 

capture the low substitutability of oil. Then, a low elasticity of substitution between 

labour and oil indicates a high dependence on oil2.

The analysis of optimal monetary policy in microfounded models with stag­

gered price setting using a quadratic welfare approximation was first introduced by 

Rotemberg and Woodford (1997) and expounded by Woodford (2003) and Benigno 

and Woodford (2005). This method allows us to obtain a linear policy rule de­

rived from maximising the quadratic approximation of the welfare objective subject 

to the linear constraints that are first-order approximations of the true structural 

equations. This methodology is called linear-quadratic (LQ). The advantage of 

this approach is that it allows us to characterise analytically how changes in the 

production function and in the oil shock process affect the monetary policy prob­

lem. Moreover, in contrast to the Ramsey policy methodology, which also allows 

a correct calculation of a linear approximation of the optimal policy rule, the LQ 

approach is useful to evaluate not only the optimal rules, but also to evaluate and 

rank sub-optimal monetary policy rules.

2In contrast, Blanchard and Gali (2005) use a Cobb-Douglas production function, in which the 
elasticity of substitution is equal to one.
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A property of standard New Keynesian models is that stabilising inflation 

is equivalent to stabilising output around some desired level, unless some exogenous 

cost-push shock disturbances are taken into account. Blanchard and Gali (2005) 

called this feature the ’’divine coincidence” . These authors argue that this special 

feature comes from the absence of non-trivial real imperfections, such as real wage 

rigidities. Similarly, Benigno and Woodford (2004, 2005) show that this trade-off 

also arises when the steady state of the model is distorted and there are government 

purchases in the model.

We found that, when oil is introduced as a low-substitutable input in a 

New Keynesian model, a trade-off arises between stabilising inflation and the gap 

between output and some desired level. We call this desired level the ‘“efficient 

level”. In this case, because output at the efficient level fluctuates less than it does 

at the natural level, it becomes optimal to the monetary authority to react partially 

to oil shocks and therefore, some inflation is desirable. Moreover, in contrast to 

Benigno and Woodford (2005), this trade-off remains even when the effects of the 

monopolistic distortions are eliminated from the steady state.

This trade-off is generated because oil shocks affect output and labour dif­

ferently, generating a wedge between the effects on the utility of consumption and 

the disutility of labour. The lower the elasticity of substitution in production, the 

higher this wedge and also the greater the trade-off. In contrast, in the case of a 

Cobb-Douglas production function, there is no such a trade-off because this wedge 

is zero. Then, in the Cobb-Douglas case stabilising output around the natural level 

also implies stabilising output around its efficient level.

Also, the substitutability among production factors affects both the weights 

on the two stabilisation objectives and the definition of the welfare-relevant output 

gap. The lower the elasticity of substitution, the higher the cost-push shock gen­

erated by oil shocks and the higher the weight on output stabilisation relative to 

inflation stabilisation. Moreover, when the share of oil in the production function
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is higher, or the steady-state oil price is higher, the size of the cost-push shock 

increases.

Section 3.2 presents our New Keynesian model with oil prices in the produc­

tion function. Section 3.3 includes a linear quadratic approximation to the policy 

problem. Section 3.4 uses the linear quadratic approximation to the problem to 

solve for the different rules of monetary policy and make some comparative statics 

to the parameters related to oil. The last section concludes.

3.2 A New Keynesian model with oil prices

The model economy corresponds to the standard New Keynesian Model in the line 

of CGG (2000). In order to capture oil shocks we follow Blanchard and Gali (2005) 

by introducing a non-produced input M, represented in this case by oil. Q will 

be the real price of oil which is assumed to be exogenous. This model is similar 

to the one used in chapter 2, except that we additionally include taxes on sales of 

intermediate goods and oil to analyse the distortions in steady state.

3.2.1 Households

We assume the following utility function on consumption and labour of the repre­

sentative consumer

t= tc

c)~° Ll+V
1 — a 1 +  v (3-1)

where a represents the coefficient of risk aversion and v captures the inverse of the 

elasticity of labour supply. The optimiser consumer takes decisions subject to a 

standard budget constraint which is given by

_  WtLt Bt-1  1 B t Tt Tt
‘ _ _ f T  + pt + ¥ t

(3-2)
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where Wt is the nominal wage, Pt is the price of the consumption good, Bt is the 

end of period nominal bond holdings, Rt is the nominal gross interest rate , Tt 

is the share of the representative household on total nominal profits, and Tt are 

net transfers from the government3. The first order conditions for the optimising 

consumer’s problem are:

l = pEt (3-3)

^  =  c m  =  M RS, (3-4)

Equation (3 — 3) is the standard Euler equation that determines the optimal path 

of consumption. At the optimum the representative consumer is indifferent be­

tween consuming today or tomorrow, whereas equation (3 — 4) describes the opti­

mal labour supply decision. M R St denotes for the marginal rate of substitution 

between labour and consumption. We assume that labour markets are competitive 

and also that individuals work in each sector z E [0,1]. Therefore, L corresponds 

to the aggregate labour supply:

fJo
L =  Lt(z)dz (3-5)

3.2.2 Firms

Final Good Producers

There is a continuum of final good producers of mass one, indexed by /  E [0,1] that 

operate in an environment of perfect competition. They use intermediate goods as 

inputs, indexed by z E [0,1] to produce final consumption goods using the following

3In the model we assume that the government owns the oil endowment. Oil is produced in the 
economy at zero cost and sold to the firms at an exogenous price Qt . The government transfers 
all the revenues generated by oil to consumers represented by T q. There are also a proportional 
tax on sale revenues (ry) and a proportional taxes on oil sales (rq). Then, total net transfers are 
Tt =  Ttq -  r yTt -  r qM t .
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technology:

Y /  = \ j Y t( z ) ^ d z  (3-6)

where e is the elasticity of substitution between intermediate goods. Then the 

demand function of each type of differentiated good is obtained by aggregating the 

input demand of final good producers

P MY ,(z)  =
Pt

Y, (3-7)

where the price level is equal to the marginal cost of the final good producers and 

is given by:
r r 1

(3-8)Pt = \ J  Pt ( z ? -Cdz 

and Yt represents the aggregate level of output.

Yt = f  Y / d f
JO

(3-9)

Intermediate Goods Producers

There is a continuum of intermediate good producers. All of them have the following 

CES production function

r ((z )=  (1 - a ) ( L t ( z ) ) ^ + a ( M t (z))±i L r(>-1 (3-10)

where M  is oil which enters as a non-produced input, i/j represents the intratemporal 

elasticity of substitution between labour-input and oil and a  denotes the share of 

oil in the production function. We use this generic production function in order to 

capture the fact that oil has few substitutes, in general we assume that.?/’ is lower 

than one. The oil price shock, Qt , is assumed to follow an AR(1) process in logs,

log Qt = log<2 +  plogQf_i + et (3-11)

where Q is the steady state level of oil price. From the cost minimisation problem 

of the firm we obtain an expression for the real marginal cost given by:

M Ct(z) =
W, 1 —-0

+ a 't ((l +  r«)Q ()1- 'f

1l- i
(3-12)
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where MCt (z) represents the real marginal cost, Wt nominal wages and Pt the 

consumer price index, and r q is a proportional tax on oil sales. Notice that marginal 

costs are the same for all intermediate firms, since technology has constant returns 

to scale and factor markets are competitive, i.e. M Ct (z) = M Ct. On the other 

hand, the individual firm’s labour demand is given by:

Intermediate producers set prices following a staggered pricing mechanism 

a la Calvo. Each firm faces an exogenous probability of changing prices given by 

(1 — 6). A firm that changes its price in period t chooses its new price Pt(z) to 

maximise: oo
Et Y ,  t f ' w r  (Pt(z), Pt+k, MCt+k, Yt+k)

k=0

where £t,t+k =  (3k stochastic discount factor. The function:

r  (P(z), P, MC, Y)  =  [(1 -  T » ) P(z) -  PMC] f ^ )  Y

is the after-tax nominal profits of the supplier of good 2 with price Pt(z), when the 

aggregate demand and aggregate marginal costs are equal to Y  and MC, respec­

tively. r y is the proportional tax on sale revenues, which we assume constant and 

equal to r^.The optimal price that solves the firm’s problem is given by

P t W
p t

IJ>Et
oo
E  0ktt,t+kM Cu+kF $ Y t+k

.k—0

Et
oo

OkCt,t+kEt+kYt+k
,k=0

(3-14)

where JL =  ^ /  (1 — r y) is the price markup, P£ (z ) is the optimal price level 

chosen by the firm and Ft+k = the cumulative level of inflation. The optimal 

price solves equation (3 — 14)and its determined by the average of expected future 

marginal costs as follows:
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= [lE t
k=0

where

<Pt,t+k ~
0%,t+k^t+k Yt+k

Et 2  Qk(t,t+kFt+kYt+k
,k=o

(3-15)

(3-16)

Since only a fraction (1 — 0) of firms changes prices every period and the 

remaining one keeps its price fixed, the aggregate price level, the price of the final 

good that minimise the cost of the final goods producers, is given by the following 

equation:

J f -  =  O P R  + ( l - e )  (P? (*))1_* (3-17)

Following Benigno and Woodford (2005), equations (3 — 14) and (3-17) can be writ­

ten recursively introducing the auxiliary variables Nt and Dt (see appendix B.2 for 

details on the derivation):

1—£
(3-18)e (II,)*-1 =  1 -  (1 -  0) ( ^

A  =  Yt (c t)~° + epEk [ o w r 1 a+i] 

Nt = ilYt (Ct)-° MCt + epEt [(nt+1)e A+i]

(3-19)

(3-20)

Equation (3 — 18) comes from the aggregation of individual firms prices. The ratio 

Nt/D t represents the optimal relative price P.'* (z) /P t. These three last equations 

summarise the recursive representation of the non linear Phillips curve.

3.2.3 Market Clearing

In equilibrium labour, intermediate and final goods markets clear. Since there is 

neither capital accumulation nor government sector, the economy-wide resource 

constraint is given by

Yt = Ct (3-21)
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The labour market clearing condition is given by:

(3-22)

Where the demand for labour comes from the aggregation of individual intermediate 

producers in the same way as for the labour supply:

differ across firms due to staggered price setting, input usage will differ as well, im­

plying that is not possible to use the usual representative firm assumption, therefore, 

the price dispersion factor, A* appears in the aggregate labour demand equation. 

We can also use (3-17) to derive the law of motion of A t

Note that inflation affects welfare of the representative agent through the 

labour market. From (3-24) we can see that higher inflation increases price dis­

persion and from (3-23) that higher price dispersion increases the labour amount 

necessary to produce certain level of output, implying more disutility on (3-1).

3.2.4 Monetary Policy

We abstract from any monetary frictions assuming that the central bank can control 

directly the risk-less short-term interest rate Rt.

3.2.5 The Log Linear Economy

To illustrate the effects of oil in the dynamic equilibrium of the economy, we take a 

log linear approximation of equations (3-1), (3-4),(3-11),(3-12),(3-18),(3-19),(3-20)

where A- dz is a measure of price dispersion. Since relative prices

+ 0At_1(n()£ (3-24)
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and (3-23) around the deterministic steady-state. We denote variables in steady 

state with over bars (i.e. X )  and their log deviations around the steady state 

with lower case letters (i.e. x t = log(^)). After, imposing the goods and labour 

market clearing conditions to eliminate real wages and labour from the system, the 

dynamics of the economy is determined by the following equations,

h = y t - 8 [(<T + v)y t -  qt\ (3-25)

mct = x {v + (r)yt + ( 1 -  x) Qt (3-26)

7Tt  = (5Et 7Tt+ 1  -h KTTlCt (3-27)

yt — Etyt+1---- {rt — Et7rt+1)a (3-28)

Qt =  +& (3-29)

where a = a* ^ , S = i p x ^ ,  X = and /c =  ^  (1 -  9(5) . Q, and
M C  represent the steady-state value of oil prices and of the marginal cost, respec­

tively. a  corresponds to the share of oil on marginal costs in steady state, 5 and 

(1 — x) accounts for the effects oil prices in labour and marginal costs, respectively; 

and n is the elasticity of inflation respect to marginal costs.

Interestingly, the effects of oil prices on marginal costs, equation (3-26), 

depends crucially on the share of oil in the production function, a, and on the 

elasticity of substitution between oil and labour,?/;. Thus, when a  is large, x is 

smaller making marginal costs more responsive to oil prices. Also, when ^  is lower, 

the impact of oil on marginal costs is larger. It is important to note that even 

though the share of oil in the production function, a, can be small, its impact on 

marginal cost, a , can be magnified when oil has few substitutes (that is when ijj is 

low). Moreover, a permanent increase in oil prices, that is. an increase in Q , would 

make marginal cost of firms more sensitive to oil price shocks since it increases a 

. In the case that a  =  0, the model collapses to a standard close economy New 

Keynesian model without oil.
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If we replace equation (3-26) in (3-27) we obtain the traditional New Key­

nesian Phillips curve.

=  KyVt +  Kqqt +  pEtirt+1 (3-30)

where ny = kx (v +  cr) and Kq = k (1 — x). We define the natural rate of output as 

the level of output such inflation is zero in all periods, this is given by yJ* =  — ̂ q t 

Then the Phillips curve can be written as deviations of output from its natural level:

=  Ky (Vt ~  V t )  +  P E tTTt+1

3.2.6 D istortions in steady  s ta te

The details of the steady state of the variables is in appendix B.l. In steady state 

we have two distortions: the first one is the monopolistic distortion and the second 

one comes from the Oil market. Related to the first distortion, because intermediate 

goods producers set prices monopolistically, the price they charge is higher than the 

marginal cost, and the monopolistic distortion is given by:

1 — r  1
M C = - r - -----   =  -  < 1 (3-31)£/ (£ ~  1) H

Let’s denote the steady state distortion caused by monopolistic competition by

$ = 1 -  1 _ T
e /  (s -  1)

where <I> measures the monopolistic distortion, when taxes on sales can eliminate 

this distortion we have that $  =  0. In a competitive equilibrium the marginal rate 

of substitution between consumption and leisure must equal the marginal product 

of labour. However, monopolistic distortions generates a wedge between this two, 

given by $ L

• l =  1 - ^  (3-32)Uc dY K '
=  1 — (1 — a) (1 — $) (1 — 5 (<7 +  v))
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Note that in this economy since labour is not the only input in the pro­

duction function, then $£ ^  the wedge in the labour market is not the same as 

the distortion in marginal costs. Also, eliminating the monopolistic distortion (<3>) 

doesn’t eliminate this wedge. The effect of the monopolistic distortion on can 

be eliminated with a subsidy (negative tax rate) such that <£l =  0.

Similarly, the oil market distortion affects the share of oil in the steady 

state marginal costs:

\  M C

Since in this economy firms are price takers for oil, its price can also be 

distorted from a competitive equilibrium. Again, this distortion can be eliminated 

with a tax (or subsidy) such that (l +  r Q) Q /M C  equals to the one from a compet­

itive equilibrium. In general, when the oil price is to high respect to marginal cost, 

the policy to eliminate this distortion is to subsidise the use of oil ( r9 < 0), since 

such high price increases the costs of firms and reduces output and consumption 

below the optimal.

3.3 A Linear-Quadratic Approximate Problem

In this section we present a second order approximation of the welfare function of the 

representative household as function of purely quadratic terms. This representation 

allow us tho characterise the policy problem using only a linear approximation of 

the structural equations of the model and also to rank sub-optimal monetary policy 

rules.

Since the model has a distorted steady state, a standard second order Taylor 

approximation of the welfare function will include linear terms, which would lead to 

an inaccurate approximation of the optimal policy in a linear-quadratic approach. 

We use then the methodology proposed by Benigno and Woodford (2005), which
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consists on eliminating the linear terms of the policy objective using a second order 

approximation of the aggregate supply.

3.3.1 Second order Taylor expansion o f the model

In this sub-section we present a log-quadratic (Taylor-series) approximation of the 

fundamental equations of the model around the steady state, a detailed derivation 

is provided in Appendix B. The second-order Taylor-series expansion serves to com­

pute the equilibrium fluctuations of the endogenous variables of the model up to a 

residual of order 0 (||£||2), where ||£t || is a bound on the size of the oil price shock. 

Up to second order, equations (3-25) to (3-28) are replaced by the following set of 

log-quadratic equations:

Labour M arket

h = y t - S  [ ( u  + a)yt -  gt\ +  yg=A t +  [ f o  +  a) yt -  Qtf  +  O ( l l £ l l 3 ) _______ 3-»
A ggregate Supply  
Marginal Costs
met = x {v +  cr) yt +  ( 1  -  x) Qt +  ( 1  -  x) X2 [ ( «  + <?)&- Qt]2 + X ^ t  + O ( | | £ | | 3 )  3 - i t
Price dispersion
A( = 0At + l£TV?+o(||£||3) 3 — in
Phillips Curve
vt =  Kmct +  \Kmct (2 (1  -  a) yt +  me*) -I- \e ir? +  (3Etvt + 1 +  0  ^ | | 3)  3 -  iv
where we have defined the auxiliary variables:

V t  =  7Tt +  ( f E j  +  7Tt2 +  |  ( 1  -  6 0 )  TTt Z t  3 ~ V

z t =  2 ( l - a ) y t +  met +  0(3Et (fz^TTi+i +  zt+i )  +  O ( ||6 I|2)  Z - v i
A ggregate D em and
yt =  E tyt+1  -  1 (rt -  Et irt+1) -  \o E t [{yt -  yt+ i) -  \  (rt -  7rt+i ) ] 2 +  O ( l | C I | 3 ) ________ 3 - v i i

Table 3.1: Second order Taylor expansion of the equations of the model

Equations (3-i) and (3-ii) are obtained taking a second-order Taylor-series 

expansion of the aggregate labour and the real marginal cost equation2, after using 

the labour market equilibrium to eliminate real wages. At is the log-deviation of 

the price dispersion measure A t, which is a second order function of inflation (see
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appendix B.2 for details) and its dynamic is represented with equation (3-iii).

We replace the equation for the marginal costs (3-ii) in the second order 

expansion of the Philips curve and iterate forward. Then, replace recursively the 

price dispersion terms from equation (3-iii) to obtain the infinite sum of the Phillips 

curve only as a function of output, inflation and the oil shock:

'W  + /Cflfc +  H 1 + Xv)7Tt2 1
t= to  d"2K lCyyyt d" ‘ZCyqVtQt d- CqqQt] j

d- (1 — 0) xuA to_i  +  (||&||3) (3-33)

where cyy, cyy and cyy are defined in the appendix.

3.3.2 A second-order approximation to utility

A second order Taylor-series approximation to the utility function, expanding 

around the non-stochastic steady-state allocation is:

Uto = Y u c ^ P ^ 0 (®LVt +  ^UyyVt + UyqVtqt + UA +t.i.p.  +  0(116 I I 3 )  (3-34)

where yt = log (Yt/Y) and A t = log At measure deviations of aggregate output and 

the price dispersion measure from their steady state levels, respectively. The term 

’’t.i.p.” collects terms that are independent of policy (constants and functions of 

exogenous disturbances) and hence irrelevant for ranking alternative policies. <&l 

is the wedge between the marginal rate of substitution between consumption and 

leisure and the marginal product of labour generated by the monopolistic distortion, 

defined in the previous section. The coefficients: uyy, uyq and u& are defined in the 

appendix B.2

We use equation (3-iii) to substitute in our welfare approximation the mea­

sure of price dispersion as a function of quadratic terms of inflation. Also, we use 

the second order approximation of the AS (equation 3-33) to solve for the infi­

nite discounted sum of the expected level of output as function of purely quadratic
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terms. Then, as in Beningno and Woodford (2005) we replace this last expression 

in (3-34). We can rewrite (3-34) as:

uf„ = - n K  £  /S'-'’ Q a  (yt -  yt)2 +  ^7i f )  -  Tt,
t—to

+ ti.p . +  0 ( | |6 | |3) (3-35)

where Q, = Y u c\ n and Tto =  ^ r vt0, ^  is defined in the appendix. A measures 

the relative weight between a welfare-relevant output gap and inflation, is the 

efficient output, the level of output that maximises our measure of welfare when 

inflation is zero. The values of A and y\ are given by:

A =  — (1 — a'lpa) 7 
e

Vt =
1 + ipv a

Qt

(3-36)

(3-37)
cr +  u ) VI — a*

where a* is the efficient share in steady state of oil in the marginal costs, given by:

a * =  (3-38)
1+7?

Both 7 and r] are function of the deep parameters of the model and are 

defined in the appendix. Note that the natural rate of output can be written in a 

similar way as the efficient output:

3.3.3 The linear-quadratic policy problem

The policy objective Uto can be written on terms of inflation and the welfare-relevant 

output gap defined by x t:

x t =  y t ~  Vt

Benigno and Woodford (2005) show that maximisation of Uto is equivalent 

to minimise the following lost function Lto subject to a predeterminated value of
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Vto ■

Also, because the objective function is purely quadratic, a linear approxi­

mation of vto suffices to describe the initial commitments, given by vto = 7Tto.

We are interested in evaluating monetary policy from a timeless perspective: 

optimising without regard of possible short run effects and avoiding possible time 

inconsistency problems. Then, from a timeless perspective the predetermined value 

of 7rto must equal irt*o, the optimal value of inflation at tQ consistent with the policy 

problem. Thus, the policy objective consists on minimise (3-39) subject to the 

initial inflation rate:

«•*. =  <  (3-40)

and the Phillips curve for any date from tQ onwards:

irt =  K y X t  +  (3Et 7Tt+1 +  U t  (3-41)

Note that we have expressed (3-41) in terms of the welfare relevant output gap, xt. 

ut is a ’’cost-push” shock, that is proportional to the deviations in the real oil price:

{yt -  v t )

=

where
a  a*

I — a  1  —  a*

In this model a ” cost-push” shock arises endogenously since oil generates a trade-off 

between stabilising inflation and deviations of output from an efficient level, different 

from the natural level. In the next section we characterise the conditions under 

which oil shocks preclude simultaneous stabilisation of inflation and the welfare­

relevant output gap.

V J  =  Kj,
1 +'lpv 
a +  v

(3-39)
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3.4 Optimal monetary response to  oil shocks from a timeless perspec­

tive.

In this section we use the linear-quadratic policy problem defined in the previous 

section to evaluate optimal and sub-optimal monetary policy rules under oil shocks. 

This policy problem can be summarised to maximise the following Lagrangian:

p   rp I E Z t c P  [ l Xxt +  ~  Vt fa -  W t  ~  0E,TTt+1 -  «,)]Lt. = - b t .  <
+ vu - i  fa„ -  K )

(3-42)

where is the Lagrange multiplier at period t.

The second order conditions for this problem are well defined for A > 0, 

which is the case for plausible parameters of the model4. Then, as Benigno and 

Woodford (2005) show, since the loss function is convex , then randomisation of 

monetary policy is welfare reducing and there are welfare gains when using monetary 

policy rules.

Under certain circumstances the optimal policy involves complete stabili­

sation of the inflation rate at zero for every period, that is complete price stability. 

These conditions are related to how oil enters in the production function. These 

conditions are summarised in the following proposition:

Proposition 3.1. When the production function is Cobb-Douglas the efficient level 

of output is equivalent to the natural level of output.

In the case of a Cobb-Douglas production function, the elasticity of sub­

stitution between labour and oil is unity (i.e. 'ip = I). In this case 77 =  0 and the 

share of oil on the marginal costs in the efficient level is equal to the share in the

4 More precisely, we are interested on study the model when 0 < ip <  1 and a  not too high. 
Since A is positive for ip <  1 and a  <  (c*^)-1 , which is a very high value for the threshold since a  
is lower than one and small.
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distorted steady state, equal to a (that is a* =  a = a) Then, the efficient level of 

output is equal to the natural level of output.

In this special case of the CES production function, fluctuations in output 

caused by oil shocks at the efficient level equals the fluctuations in the natural level. 

Then, stabilisation of output around the latter also implies stabilisation around the 

former. This is a special case in which the ” divine coincidence” appears . There­

fore, setting output equal to the efficient level also implies complete stabilisation of 

inflation at zero.

In this particular case there is not trade-off between stabilising output and 

inflation. However, in a more general specification of the CES production function 

this trade-off appears, as it is established in the next proposition:

P roposition  3.2. When oil is difficult to substitute in production the efficient out­

put respond less to oil shocks than the natural level, which generates a trade-off.

When oil is difficult to substitute the elasticity of substitution between 

inputs is lower than one (that is ip < 1). In this case 77 < 0 and the efficient share of 

oil on marginal costs is lower than in the steady state (that is a* < a), which causes 

that the efficient output fluctuates less than the natural level (that is | |  ^  l»?D- 

Then, in this case it is not possible to have both inflation zero and output at the 

efficient level at all periods.

It is important to mention that we have th is  trade-off even in th e  

case w hen th e  effects of m onopolistic d isto rtions on welfare are  elim­

inated  ( th a t is w hen — 0). This is because oil shocks affects differently 

consumption and leisure in the welfare function. When there is an oil price shock, 

output (and hence consumption) decreases because of the effects on marginal costs. 

Similarly, labour (and hence leisure) also decreases because of lower aggregate de­

mand. Since the elasticity of substitution is lower than one, labour decreases less 

than the decrease in output, generating a wedge between the utility of consumption
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and the disutility of labour. The lower the elasticity, the lower the effect on labour 

and the higher the relative effect on production, and the higher this wedge. The 

efficient level of output is the one that minimises the effects of oil fluctuations on 

welfare, which is different from the natural level of output.

Figure 3.1 shows the effect on a *  and a  and on y* and y n of the elasticity 

of substitution. As mentioned in proposition 1, when xf = 1 then a* = a  = a. 

Similarly, as in proposition 2, when x/j < 1 it increases both a* and a ,  but a *  is 

lower than a .  Also, for ip < 1 the efficient output fluctuates less than the natural 

level of output an oil price shock of unity.5

0.4

0.3 -o.i

0.2 -0.2

-0.3

0.4 0.5 0.6 0.7 0.9 1 0.4 0.5 0.6 0.7 0 8 0.9

Figure 3.1: (a) Steady state and efficient share of oil on marginal costs, (b) Natural 
and efficient level of output.

It is also important to analyse how the production function affects A, the 

weight between stabilising the welfare relevant output-gap and inflation. The next 

two propositions summarise behaviour of A.

P rop osition  3.3. When the production function  is Cobb-Douglas, the relative 

weight in the loss function between welfare-relevant output gap and inflation sta­

bilisation (X) becomes (1 — era)

5As benchmark calibration we use the same values as in chapter 2. Those values are: f3 =  
0.99,cr =  \ , v  =  0.5, e =  11 ,Q =  =  0.6,a  =  0.01, p =  0.94 and ae =  0.14
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In the case of a Cobb-Douglas production function the coefficient 7 = 1  and 

A = ^  (1 — era). This is similar to the coefficient found for many authors for the 

case of a closed economy6, which is the ratio of the effect of output on inflation in 

the Phillips curve and the elasticity of substitution across goods over, but multiplied 

by the additional term (1 — a a).

The term (1 — a a) captures the effects of oil shocks in inflation through 

costs, which is independent of the degree of substitution. When the weight of oil 

in the production function (a) is higher, the effects of oil shocks in marginal costs 

and inflation are more important. Then, the more important becomes to stabilise 

inflation over output.

P roposition  3.4. The lower the elasticity of substitution between oil and labour, 

the higher the weight in the loss function between welfare-relevant output gap and 

inflation stabilisation (X).

When the elasticity of substitution 0  is lower, both the coefficient 7 and 

the term (1 — a a i p )  in A becomes higher, then A becomes higher. As mention in 

proposition 3.2, when the elasticity of substitution is smaller, an oil shock affects 

more output than labour. Then, as inflation affects welfare through the labour 

market, lower 0 implies lower relative effect on inflation respect to output and 

therefore, higher A.

The next graphs shows the effects on A of the elasticity of substitution for 

three different values of a. A takes its lowest value when '0 =  1 and increases 

exponentially for lower 0. Also, higher a  reduces A , which means a higher weight 

on inflation relative to output fluctuations in the welfare function.

6See for example Woodford (2003) and Benigno and Woodford (2005).

87



0.55

0.5

0.45

0.4

a=0.01
a=0.02
a=0.03

0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.2: Relative weight between output and inflation stabilisation (A).

3.4.1 O ptim al unconstrained response to  oil shocks

When we solve for the Lagrangian (3-42), we obtain the following first order condi­

tions that characterise the solution of the optimal path of inflation and the welfare­

relevant output gap in terms of the Lagrange multipliers:

P roposition  3.5. The optimal unconstrained response to oil shocks is given by the 

following conditions:

=  T t -1 — T t

Kyy
X t =  T

where ipt is the Lagrange multiplier o f the optim isation problem, that has the fo l­

lowing law o f m otion :

T t  =  'Ttpipt—l ^Q t

88



for  (f> =  1_ _̂ pm, and satisfies the initial condition:

oo
V t0- 1 =  - < l > ^ 2 Tv Q t- i - k

k—O

where = Z  — y jZ 2 — I  < 1 and Z  = ^(1 + /?) +  /(2/?).

The proof is in the appendix. From a timeless perspective the initial con­

dition for ipt0~i depends on the past realisations of the oil prices and it is time- 

consistent with the policy problem.

Also, we define the impulse response of a shock in the oil price in period t

(ft) in a variable z in t +  j  as the unexpected change in its transition path. Then

the impulse is calculated by:

It ( z t + j )  =  E t [z t+ j\ ~  E t - 1  [z t+ j\

and the impulse response for inflation and output gap for the optimal policy is:

/  rp~̂ ~̂  —  rp —  q-3  \

'• " < ’ « >  -  i3-4s)

) « •  f3-41'

See appendix B.3 for details on the derivation.

Figure 3.3 shows the optimal unconstrained impulse response functions to 

an oil price shock of size one for different values of the elasticity of substitution (psi) 

for inflation, welfare-relevant output gap, the nominal interest rate and inflation. 

Inflation and the nominal interest rate are in yearly terms. The benchmark case 

is a value of if = 0.6, similar to the one used in chapter 2. In this graph we can 

see that after an oil shock the optimal response is an increase of inflation and a 

reduction of the welfare-relevant output gap, and consequently also of output. The 

nominal interest rate also increases to partially offset the effects of the oil shock on 

inflation. Inflation after 8 quarters become negative as the optimal unconstrained
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Figure 3.3: Impulse response to an oil shock under optimal monetary policy.

plan is associated to price stability 7. To summarise, the optimal response to an oil 

shock imply an effect on impact on inflation that dies dies out very rapidly and a 

more persistent effect on output.

A reduction in the elasticity of substitution from 0.6 to 0.4 magnifies the 

size of the cost push shock, and increases both A and a. Then, the impact on all the 

variables increases exponentially, being inflation initially the more affected variable. 

However, after 8 quarters the response is magnified on the welfare relevant output 

gap. In contrast, when the elasticity of substitution is unity, since there is no such

7Note: see Woodford (2003) for a discussion on optimal monetary policy rules
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a trade-off, both inflation and welfare-relevant output gap are zero in every period. 

There is also a reduction on output caused by the oil shock and the increase on the 

interest rate needed to maintain zero inflation.

3.4.2 Evaluation of suboptimal rules - the non-inertial plan

We can use our linear-quadratic policy problem for ranking alternative sub-optimal 

policies. One example of such policies is the optimal non-inertial plan. By a non- 

inertial policy we mean on in which the monetary policy rule depends only in the 

current state of the economy. In this case, if the policy results in a determinate 

equilibrium, then the endogenous variables depend also on the current state.

If the current state of the economy is given by the cost push shock, which 

has the following law of motion:

ut = put_i +

where is the oil price shock and w  is defined in the previous section. A first order 

general description of the possible equilibrium dynamics can be written in the form:

= W + f nut (3-45)

x t =  x + f xiit (3-46)

<Pt =  P  +  f v u t (3“47)

where we need to determine the coefficients: 7f, / w, f x and To solve for the

optimal non-inertial plan from a timeless perspective we need to replace (3-45), (3- 

46) and (3-47) in the Lagrangian (3-42) and solve for the coefficients that maximise 

the objective function. The results are summarised in the following proposition:

Proposition 3.6. The optimal non-inertial plan from a ’’timeless perspective” is 

given by irt = W +  f nut and xt = x-\- f xut, where

7r =  0 ^  =  kI+\(1-Pp)(1-p)

X =  0  f*  =  Kl+\{l-(3p){l-p)
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Note that in the optimal non-inertial plan the ratio of inflation/output gap 

is constant and equal to The higher the weight in the loss function for

output fluctuations relative to inflation fluctuations, the higher the inflation rate. 

Also, the more persistent the oil shocks, the lower the weight on inflation relative 

to the welfare-relevant output-gap.

Similar the the optimal case, the impulse response functions for inflation 

and output are defined by:

I?1 (Xt+j) =  f i

Figure 3.4 shows the optimal non-inertial plan to an unitary oil price shock. 

In this case, the ratio of inflation to the welfare-relevant output gap is constant. 

For the benchmark case ('ip = 0.6) the response of inflation is lower than in the 

unconstrained optimal plan, but the effect on output is higher. Also, the effects on 

both variables are more persistent than in the unconstrained plan.

Furthermore, under the optimal non-inertial plan, when ip decreases from 

0.6 to 0.4 the impact on all the variables increases. This is due to the magnifying 

effect of ip on the cost-push shock. Also, the reduction of ip raises A, which increases 

more the effect on inflation relatively more than that on on output. As in the 

unconstrained case, when ip = 1 the trade-off disappears. In that case, inflation is 

zero in every period and output reduces.

Both exercises, the optimal unconstrained plan and the optimal non-inertial 

plan, show that to the extent that economies are more dependent on oil, in the 

sense that oil is difficult to substitute, the impact of oil shocks on both inflation 

and output is greater. Also, in this case, monetary policy should react by raising 

more the nominal interest rate and allowing relatively more fluctuations on inflation 

than on output.
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Figure 3.4: Impulse response to an oil shock under the optimal non-inertial plan. 

3.5 Conclusions

This chapter characterises the utility-based loss function for a closed economy in 

which oil is used in the production process, there is staggered price setting and 

monopolistic competition. As in Benigno and Woodford (2005), our utility based- 

loss function is a quadratic on inflation and the deviations of output from an efficient 

level, which is the welfare-relevant output gap.

We found that this efficient level differs from the natural level of output 

when the elasticity of substitution between labour and oil is different from one. This
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generates a trade-off between stabilising inflation and output in the presence of oil 

shocks. Also, the cost-push shocks involved in this trade-off are proportional to oil 

shocks. The lower this elasticity of substitution, the higher the size of the cost-push 

shock. We also find, in contrast to Benigno and Woodford (2005), that this trade-off 

remains even when the effects of monopolistic distortions on the steady state are 

eliminated.

Furthermore, the relative weight between the welfare-relevant output gap 

and inflation on the utility-based loss function depends inversely to this elasticity of 

substitution. On the contrary, the higher the share of oil in the production function, 

the relative weight is smaller.

These results show that to the extent that economies are more dependent 

on oil, in the sense that oil is difficult to substitute in production, the impact of oil 

shocks on both inflation and output is higher. Also, in this case the central bank 

should allow more fluctuations on inflation relative to output due to oil shocks.

Moreover, these results shed light on how technological improvements which 

reduces the dependence on oil, also reduce the impact of oil shocks on the economy. 

This could also explain why oil shocks have lower impact on inflation in the 2000s in 

contrast to the 1970s. Since oil has become easier to substitute with other renewable 

resources, the impact of oil shocks has been dampened. An observation that accords 

with the theoretical model provided in this chapter.
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B1 Appendix: The deterministic steady state

The non-stochastic steady state of the endogenous variables for II =  1 is given by:

Interest rate R = (3-l
Marginal costs M C  =  1 / (jl

  1—a ( 1—a  ̂l-t/iReal wages W /P  =  (yz§)
l+lpv 1— Ct \ (7 + 1/ 1—lpOutput Y  =  °+" ( H )

Labor L =  (izg ) ^ 1
1 — gifi l

- v >

where

Table B l.l: The deterministic steady state

a  =  a * ( = | T  * =  c? t-nTPi1-*

a  is the share of oil in the marginal costs. Notice that the steady state values of 

real wages, output and labour depend on the steady state ratio of oil prices with 

respect to the marginal cost. This implies that permanent changes in oil prices 

would generate changes in the steady state of this variables. Also, as the standard 

New-Keynesian models, the marginal cost in steady state is equal to the inverse of 

the mark-up

(£ _ l ) ( l _ Ty ) - i
M C  = JT1 =

=  1 - $

Since monopolistic competition affects the steady state of the model, output in 

steady state is below the efficient level. We call to this feature a distorted steady 

state and $  accounts effects of the monopolistic distortions in steady state.
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Since the technology has constant returns to scale, we have that:

u I  .  I ' E I ' l n e
UCY  \ M C Y )

=  ( l - a ) ( l - * )

the ratio of the marginal rate of substitution multiplied by the ratio 

labour/output is a proportion (1 — a) of the marginal costs. This expression helps 

us to obtain the wedge between the marginal rate of substitution between consump­

tion and leisure and the marginal product of labour:

V l OL = ( V l L \  ( d L / L \
Uc d Y  \ U c Y j \ d Y / Y j

=  (1 — a)  (1 — <$) (1 — 8 (a +  u))

=  1 -  $L

where 1 — accounts for the effects of the monopolistic distortions on the wedge 

between the marginal rate of substitution between consumption and leisure and the 

marginal product of labour.

B2 Appendix: The second order solution of the model 

B2.1 The recursive AS equation

We divide the equation for the aggregate price level (3-17) by P }~ £ and make

= nt
i = e (n(r <1-e) + (i -  e) (B2-i)

Aggregate inflation is function of the optimal price level of firm z. Also, from 

equation (3-14) the optimal price of a typical firm can be written as:

Pj(z)  _  Nt 
Pt A
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where, after using the definition for the stochastic discount factor: Ct,t+k =

pk we define Nt and Dt as follows:

Nf. Et

Dt =  Et

E » m k n t +kYt+kc r:kM c t+k
k—0
oo

E  w *  w s x
.fc=0

(B2-2)

(B2-3)

Nt and Dt can be expanded as:

Nt =  iiY tC ^M C t + Et ^«+i E  n m k Fi+hl+1+kYt+1+kC^1+kMCt+1im-4)
k=0

Dt = YtCr + Et n <« E  w ) k Ft+i,t+i+kc r+i+kYt+i+k
k=0

(B2-5)

where we have used the definition for Ft t+k = Pt+t~/Pt.

The Phillips curve with oil prices is given by the following three equations:

Pt*(z)' 1- £
0 (n(r ‘ = i - ( i - 0)

Pt
Nt = n Y ^ M C t  + epEt (nt+1)£ Nt+1

(B2-6)

(B2-7)

(B2-8)

where we have reordered equation (B2-1) and we have used equations (B2- 

2) and (B2-3) evaluated one period forward to replace Nt+i and Dt+1 in equations 

(B2-4) and (B2-5).

B2.2 The second order approximation of the system

The MC equation and the labour market equilibrium

The real marginal cost (3-12) and the labour market equations (3-4 and 3-23) have 

the following second order expansion:

mct =  (1 -  a) wt +  aqt +  (1 -  a) (1 -  ip) (wt -  qtf  +  0  (||6 ||3) (B2-9)
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Wt =  v l t +  a y t (B2-10)

k = y t- 'ip  {wt -  mct) +  A t (B2-11)

Where wt and A t are, respectively, the log of the deviation of the real wage and the

price dispersion measure from their respective steady state. Notice that equations 

(B2 — 10) and (B2 — 11) are not approximations, but exact expressions. Solving

equations (B2 — 10) and (B2 — 11) for the equilibrium real wage:

1wt = {v +  a) yt +  i/'ipmct +  (B2-12)1 +  vip

Plugging the real wage in equation (B2 — 9) and simplifying:

mct = x ( v  + v)yt + ( i - x ) ( q t )  + xvA t (B2-13)

(1 -  x) [(o- +  v) yt -  qtf  +  O (||&||3)
2 1  — a

where x =  (1 — cE) /  (1 +  vipa) . This is the equation (3 — ii) in the main text. This

expression is the second order expansion of the real marginal cost as a function

of output and the oil prices. Similarly, we can express labour in equilibrium as a 

function of of output and oil prices:

h =  y t - &  [(v +  c r ) y t ~  Qt] +  A t +  — tz^X2 [(^ +  ° )  Vt ~  Qt}2 +  O ( ||&||3)1 — a 2 1 — a
(B2-14)

for:

I — a
where S measures the effects of oil shocks on labour.

The price dispersion measure

The price dispersion measure is given by
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Since a proportion 1 — 0 of intermediate firms set prices optimally, whereas the other 

9 set the price last period, this price dispersion measure can be written as:

w r , a r  fP t - . w ' _Edz

—£

Pt /

Dividing and multiplying by (P*_i)_e the last term of the RHS:

Since Pt* (z ) / Pt = Nt/D t and P*/P*_i =  II*, using equation (3 — 8) in the text and 

the definition for the dispersion measure lagged on period, this can be expressed as

A, = (1 -  e) + 0At-i (n,)' (B2-15)

which is a recursive representation of At as a function of A*_i and 11*.

Benigno and Woodford (2005) show that a second order approximation of 

the price dispersion depends solely on second order terms on inflation. Then, the 

second order approximation of equation (B2-15) is:

A, =  0A,_X + +  O (|K,II3) (B2-16)

which is equation (3—in) in the main text. Moreover, we can use equation (B2 — 16) 

to write the infinite sum:
LW /j CAJ ^

y > ' - !»A, =  t f ^ ^ * . A ,_1 +  _e_ _ ^ /3‘- ^ a  +  0 (||6 ||»)
t 1() t tfQ t — to
00 1 /) 00 2 

( 1 - / 3 0 )  £ / * ■ * •  A ,  =  6 K - 1 +  - e T —0 Y / Pt- U \  +  O m f )
t—t0 t=t0

Dividing by (1 — (36) and using the definition of n :
oo .. oo 2

+  ° ( i i^ n 3) (B2-17)
i=iD t=*o

The discounted infinite sum of A* is equal to the sum of two terms, on the initial 

price dispersion and the discounted infinite sum of r f.
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The second order approximation of the Phillips Curve

The second order expansion for equations (B2 — 6), (B2 — 7) and (B2 — 8) are:

(nt -  dt) -  K )2 +  0  (||6 I|3) (B2-18)

nt =  (1 -  90) fa t + l- 4 \  +  90 (E tbt+i + -  \ « t  +  0 (||&||3) (B2-19)

dt =  (1 -  90) f  c, + \ 4 )  + 60 (E tet+1 +  \ E tel+̂ j - \ d l  + 0  (||& ||3) (B2-20)

Where we have defined the auxiliary variables at,bt+i,ct and et+i as:

at = (1 -  a) yt +  mct bt+1 =  £irt+1 +  nt+1
ct = ( 1 -  a) yt et+1 =  (e -  1) nt+1 +  dt+1

Subtract equations (£2 — 19) and (B2 — 20), and using the fact that X 2 — Y 2 =

(X  — Y) (X  +  Y), for any two variables X  and Y  :

nt ~ d t =  (1 -  6/3) (at -  ct) +  i  (1 -  6(3) (at -  ct) (at +  ct) (B2-21)

+6/3Et (bt+1 — et+i) +  -6(3Et {h+i — et+1) (frt+i + ef+i)

“ 2 (n< ~ (n* dt) +  ^(ll^ll3)

Plugging in the values of at , 6t+i, ct and e*+1 into equation (B2 — 21), we obtain:

(£ 2  -  22)

nt — dt = (1 -  6/3) met +  i  (1 -  6(3) mct (2(1 -  a)y t + mct) (

+6(3Et (iTt+i +  nt+i — <^+i) + 2QfiEt {ftt+i +  nt+i — ^«+i) ((2^ — 1) TTt+i +  nt+i _

~ 2 ^ Ut~  ^t) {nt +  dt) +  O (||£t||3)

Taking forward one period equation (£2 — 18), we can solve for nt+1 — dt+1:

nt+1 -  d(+1 =  {n+l)2 +  0 (IN |3 ) (B2' 23)
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replace equation (B2 — 23) in (B2 — 22) and make use of the auxiliary variable 

zt = (nt +  dt) /  (1 -  00)

nt — dt =  (1 -  00) mct +  ^ (1 -  00) mct (2 (1 - a ) y t + mct) (B2-24)

1 0

Etftt+i +  ^  _  q +  Etitt+ 1 (1 — 00) Etirt+izt+i

(1 — 00) irtzt +  0  (||6 ||3)
2 1 - 0

Notice that we use only the linear part of equation (B2 — 23) when we replace 

7if+1 — dt+i in the quadratic terms because we are interested in capture terms only 

up to second order of accuracy. Similarly, we make use of the linear part of equation 

(B2 — 18) to replace (nt — dt) =  ~elxt in the right hand side of equation (B2 — 24). 

Replace equation (B2 — 24) in (B2 — 18):

trt =  nmct +  ^ Kmct (2 (1 -  a) yt +  mct) (B2-25)

+0 E tf t t+ l + ^  _ q + E t7T̂ + 1 + (1 — 0 0 )  E tK t+ \Z t+ i

for

(1 -  ep)ntzt -  (tt,)2 + 0(11611*)

K = $ E Q ( 1 - 0 I 3 )

where zt has the following linear expansion:

zt = 2 ( l - a ) y t + met + O0Et ^ t+i + zt+i'j +  0  (||£t||3) (B2-26)

Define the following auxiliary variable:

Vt =  *t  +  i  f  +  e )  A  +  \  (1 -  0 0 )  *tZt (B2-27)

Using the definition for vt, equation (B2 — 25) can be expressed as:

vt = nmct +  i Kmct (2 (1 - a ) y t + mct) +  ^ t t 2 +  0E tvt+i +  0  (||&||3) (B2-28)

which is equation (3 — iv) in the main text.
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Moreover, the linear part of equation (B2-28) is:

irt =  Kmct +  PEt (7ri + 1 ) +  0  ( | | & | | 3 )

which is the standard New Keynesian Phillips curve, inflation depends linearly on 

the real marginal costs and expected inflation.

Replace the equation for the marginal costs (B2-13) in the second order 

expansion of the Phillips curve (B2-28)

yt =  K y V t  +  Kqqt +  k x v \  +  +  (B2-29)

+ 2^ +  cqqQt\ +  PEtvt+i +  O (||£t||3)

where the coefficients coefficients of the linear part are given by

Ky = k x (v + v)

Kg =  k ( 1 - x )

and those of the quadratic part are:

x2 (f — x) (v +  ")2
c y y  =  X [2 (1  — cr) +  x (cr +  )̂] +  (1  —

c yq  =  ( l - x ) [ 2 ( l - c r ) + x ( a  +  i / ) ] - ( l - ^ )

Cqq =  (1 -  x)2 + (1 -  V>)

1 — a
x2 (1 -  x) (<7 + v)

1 — a 
X2 (i -  x)

1 — a
Equation B2-29 is a recursive second order representation of the Phillips curve. 

However, we need to express the price dispersion in terms of inflation in order to 

have a the Phillips curve only as a function of output, inflation and the oil shock. 

Equation B2-29 can also be expressed as the discounted infinite sum:

f ^ 1 1  I
yto = ^ 2 P ~ t o  \ Kyyt +  KqQt +  KXV&t +  2£7rt +  [CyyV* +  2cv*ytqt +  CqqQ̂  f + ( I I ^ H 3 )

t=tQ  ̂ '

after making use of equation B2-17, the discounted infinite sum of At, vto becomes

OO f 1 1  ̂ \̂J0
vt° = ^ 2  | KvVt + N *  + 2 e (l +Xv) +  2K [°yyyt +  2cyqytQt +  cmqj] |

(B2-30)
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which is equation (3-34) in the main text.

B2.3 A second-order approximation to utility

The expected discounted value of the utility of the representative household
oo

Uto =  E to £  /?*-*» [u (Ct) -  V  ( I t)] (B2-31)
t —t0

The first term can be approximated as:

u (Ct) = Cuc j c t +  i  (1 -  o) c2t |  +  t.i.p. +  0  ( H & l l 3 )  (B2-32)

Similarly, the second term:

V (I,) = Lvl  ( / ,  +  i  (1 +  v) i n  + t.i.p. + O ( l i e , I I 3 )  (B2-33)

Replace the equation for labour in equilibrium in B2-33:

(L t) =  Lvl ^v yyt +  -VyyVt +  vyqytqt +  ua A* j  + t.i.p. +  O (||&||3) (B2-34)v

where:

vy =  1 — S (v +  a)

V y y  =  (l+v)(l - 8 ( v  +  a))2+ ^^— ^X2ti(° +  v)2

vyq =  (l + u)<J(l-<5(i; +  c r ) ) - i i — ^ X 2^ 2 ( ^  +  ^ )  

X
va 1 — a

We make use on the following relation:

Lvl =  (1 -  $ )  (1  -  a) Yuc (B2-35)

where $  =  1 — ^ =  1 — is the steady state distortion from monopolistic

competition. Replace the previous relation, equation B2-32 and B2-34 in B2-31, 

and make use of the clearing market condition: Ct = Yt

Uto =  Y u c ŷ2,(3t~to ( Uyyt +  )-uyyyl + Uyqytqt + U A + t . i . p .  +  O (||£t||3) (B2-36)
t= to  N

103



where

U y  =  1 -  ( 1  -  $ )  (1  -  a )  V y  =  $ L

um =  1 - < 7 - ( 1 - $ ) ( 1 - 3 ) % / =  1 - c t - ( 1 - $ l ) % )/ ( 1 - < 5 ( d  +  ct))

Uyq =  ~  (1 -  $ )  (1 -  <*K? =  -  (1 -  ®L)vm /  ( l - S { v  +  a))

uA =  -  (1 -  $ )  (1 -  a ) v A =  - ( 1  -  3>)x

where we make use of the following change of variable:

$ L =  l _  (l -  $) (l -  a) (1 -  S(v +  a)) (B2-37)

where <I>l is the effective effect of the monopolistic distortion in welfare through the 

of output. Notice that when we eliminate the monopolistic distortion, i.e. <f> =  0,

<f>L is not necessarily equal to zero.

Replace the present discounted value of the price distortion (B2-17) in B2-

36:
  °°^ /  2 \  \

Uto —  Y u cE to ^  ^  / 3  ° luyijt  - f -  ~UyyUt  +  Uyqyi(h +  ■̂ ulvTvt ) +  t.i.p.  +  O  ( l l ^ t l l  )
t:==-t(y

(B2-38)

where

Wtt =  - U A  =  - ( 1 - $ ) x -K K
Use equation B2-30, the second order approximation of the Phillips curve, to solve 

for the expected level of output:

1 f 1 1 l
2 2 ft~ l° 1 Ki qt +  2s ^  +  x v  ̂** + 2K +  2CvqVtqt +  I
t=t0 V t=t0  ̂ '

+ — (vto — x v (1 “  0) + (||6 ||3) (B2-39)

Replace equation B2-39 in B2-38 to express it as function of only second 

order terms:



which is equation B2-35 in the text, where

K
Ay — <&L Cy y  U y y

K y

. , e ( l  +  xv)
A 7T — 7̂T

Vt

K y

®L i ^ cyq ~  u yq

^ L Ky cyy uyy
f t

additionally we have that!7 = Y uc and Tto = Y uc^ v tc 

Make use of the following auxiliary variables:

U! = (1 - 0-)$L +  x(<T + u)

2̂ =  X {° + v)

ujs = <f>Laa
1 — a 1 — cr0a_

then, A y, A^ and yI can be written as a function of ui, uj2 and cj3

Ay — LU\ +  (1 — 0) U)2

A„ = £

Vt =

K y  (1  — (J'ljja)

1 -  X

[uY +  (1 -  0 )u>3]

U>1 -  (1 -  0 )
Ui +  (1 -  0 ) u;2x(o- +  u)

using the definitions for x, 2/* can be expressed as:

1 + i/rv \ / o;

ft

Vt = a +  v 1 — a + r]

where
(1 - 0 ) (1 -  a) u 2rj =

(B2-41)

( 1 - X ) ^ i - ( 1 - 0 ) X ^ 2  
Denote a*, the efiicient share in steady state of oil in the marginal costs, where



Note from the definition for 77 that when - 0 = 1 ,  then 77 =  0, a* = a = a  and 

Ut = Vt- For a Cobb-Douglas production function the efficient level of output 

equals the natural level. Also, when ip < 1, then 77 > 0, a* < a and | |  < For 

elasticity of substitution between inputs lower than one the efficient level fluctuates 

less to oil shocks than the natural level. Also note that even when is equal to zero, 

which summarises the effect of monopolistic distortions on the wedge between the 

marginal rate of substitution and the marginal product of labour, 77 is still different 

than zero for ip ^  1. This indicates that the efficient level of output still diverges 

from the natural level even we eliminate the effects of monopolistic distortions.

In the same way, the natural rate of output can be expressed as:

Similarly, we can simplify A =  Ay/Av as:

=  Ay =  Ky (1 -  atpa)
Att £

where we use the auxiliary variable:

UJl +  (1 — 'ip) UJ2ry =   :-------- -----
\_UJl +  (1 — Ip) Ul3_

Note that when ip = 1, then 7 = 1 and when rp < 1, then 7 = 1  since uj2 > o;3.

B3 Appendix: Optimal Monetary Policy 

B3.1 Optimal response to oil shocks

The policy problem consists in choosing x t and 77 to maximise the following La- 

grangian:



where f t  to(ft is the Lagrange multiplier associated with the constraint at time t

The first order conditions with respect to 7vt and yt are respectively

=  <Pt-i ~  <Pt (B3-1)

\ x t = Kyipt (B3-2)

and for the initial condition:

*to = < 0

where 7t£o is the initial value of inflation which is consistent with the policy problem 

in a ” timeless perspective”.

Replace conditions B3-1 and B3-2 in the Phillips Curve:

PEt<pt+i — [(1 +  ft) A + fty] (ft +  Xcpt-i = ̂ ut (B3-3)

this difference equation has the following solution8 :

E OO .

. n P3r^Etut+j (B3-4)
3 = 0

where t,v is the characteristic root, lower than one, of B3-3, and it is equal to

for Z = (̂1 +  ft) +  /(2/3). Since the oil price follows an AR(1) process of the

form:

qt = pqt - 1  + ft
and the mark-up shock is: ut — zuqt, then ut follows the following process:

ut = put- 1 +  m£t (B3-5)

Solution to  th e  optim al problem  Taking into account B3-5, equation B3-4 can

be expressed as:

<Pt = Tvv t-1 -  4>qt (B3-6)

8See Woodford (2003), pp. 488-490 for details on the derivation.
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where:
i _ t<p

1 -  (5r^pW
Initial condition Iterate backward equation (B3-6) and evaluate it at tQ — 1, this 

is the timeless solution to the initial condition (pt0- i  ■

P u-1 =  -0£ j£o  (rvOfc Qto-1-k (B3-7)

which is a weighted sum of all the past realisations of oil prices.

Equations (B3-1), (B3-2), (B3-6) and (B3-7) are the conditions for the 

optimal unconstrained plan presented in proposition 3.5. Impulse responses An 

innovation of to the real oil price affects the current level and the expected future 

path of the lagrange multiplier by an amount:
(j+i _  o  y +1

Em + j -  Et. m + j =
P~T<p

for each j  > 0. Given this impulse response for the multiplier. (B3-1) and (B3-2) 

can be used to derive the corresponding impulse responses for inflation and output 

gap:

P*+ l ~  0 > ) J+1 Pj  -  (Tf ) 3Et^t+j ~  Et-i'Kt+j — P ~ P-T<p <Kt

TP TP _  K y  f>>+ l  -  ( t (P) 3 + 1  ^EtVt+j ~ Et-iyt+j —  — t------------------------------------------------------------4>̂ t
p

which are expressions that appear in the main text.

B3.2 The optimal Non-inertial plan

We want to find a solution for the paths of inflation and output gap such that the 

behaviour of endogenous variables is function only on the current state. That is:

7T< =  VT + ZtrUt (B3-8)

x t = x + f xut (B3-9)

Pt = P + f<pUt (B3-10)
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where the coefficients 7r, y ,  p, f v , f x  and are to be determined

Replace (B3-8), (B3-9) and (B3-10) in the Lagrangian and take uncondi­

tional expected value:

- B { L U) =  E {
t=tc

§A (x +  }xutf  +  i  (n +  f „ U t ) 2

-(<P + f vut)
(1  — /? ) 7T — K,y X

“I- (1 Pp) 'U't K'yfx'U't

+E ((p +  fyUt',-1) [7r +  f nUto\) (B3-11)

suppressing the terms that are independent of policy and using the law of motion 

for ut, this can be simplified as:

~ E ( L to) = (Ax2 +  7r2) — 777-—-^p  ((1 — ft) 7r — Kyx)2 (1 — /?) '  2(1 — /?)

+\ A  (a/*2+ ^  _  \ ( ( i  -  - 1 -  «*/*)p
+pvZUf*

the problem becomes to find t t ,  y ,  p ,} f x  and such that maximise the previous 

expression. Those coefficients are:

7f = x = p = 0
A(1 -  p)

u  =

fx =

u  =

A  ( !  -  Pp)  ( !  -  p)  +  Kl
Ky

x (! -  pp) ( 1  -  p) +
a

A (1 -  Pp) (1 -  p) +  K* 

which is the solution to the optimal non-inertial plan given in proposition 3.6.
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CHAPTER 4

THE ASYMMETRIC EFFECTS OF MONETARY POLICY IN  

GENERAL EQUILIBRIUM

4.1 Introduction

There exists a fair amount of empirical research reporting asymmetric effects of 

monetary policy for the USA and for most of the industrialised countries. Monetary 

policy seems to have asymmetric effects on output and inflation depending not 

only on the state of the economy, whether the output gap is positive or negative 

or whether inflation is high or low, but also depending on the sign and size of 

the monetary policy shock. On the theoretical side, the literature on asymmetric 

effects of monetary policy can be broadly categorised into two groups: those that 

emphasise that the asymmetric effects of monetary policy come from the convexity 

of the supply curve and those that consider that asymmetry is generated by non­

linear effects of monetary policy on aggregate demand, also denominated pushing- 

on-a-string type.

Although there is a lot of theoretical work explaining asymmetric responses 

of output and inflation, as we discuss in more detail in the next section, most of this 

work has been done within partial equilibrium frameworks1. Furthermore, these 

theories are capable of explaining only one source of asymmetry: namely either 

convex supply curves or pushing-on-a-string type of asymmetry. To the best of 

our knowledge there is no general equilibrium model that can generate asymmetries 

coming from both sources simultaneously.

1See for instance Jackman and Sutton (1982), Ball and Mankiw (1994).
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In that sense, this chapter contributes to the theoretical literature on asym­

metric effects of monetary policy by proposing a new set-up where asymmetric ef­

fects emerge naturally in a New Keynesian DSGE model. Our approach has the 

advantage of generating asymmetric effects in a very simple way, which come both 

from shifts in aggregate demand (pushing-on-a-string type of theory) and from a 

convex supply curve. In particular, our model can generate responses of output and 

inflation to monetary policy shocks that are stronger when the economy is above 

potential, in line with the empirical evidence reported by Thoma (1994) and Weiss 

(1999) for the USA. This contrasts with the asymmetric effects generated by models 

that only consider a convex Phillips curve, where monetary policy is more effective 

to affect output in recessions than in booms.

We introduce into, an otherwise standard, New Keynesian model prefer­

ences that exhibit non-homotheticity2 and solve for its dynamic equilibrium using 

a perturbation method that allows us to obtain a higher order solution that is more 

accurate than the traditional linear approximated solution. We are able to charac­

terise analytically the non-linear behaviour of the solution, the asymmetry, and to 

establish the implications that non-homotheticity has in the dynamic equilibrium 

of the model.

We introduce intertemporal non-homotheticity by considering that there 

exists a subsistence level of consumption. This assumption make the intertemporal 

elasticity of substitution (IES) state-dependent. The intuition of the mechanism 

that generates the asymmetry in the model is straightforward. On one hand, when 

the subsistence level of consumption is positive the IES changes with the level of 

income of the household, therefore in a boom (recession) when consumption levels 

move further away (closer to) from the subsistence level, the IES is higher (lower),

2 A general non-homothetic utility function is defined as a set of preferences that exhibits 
non-linear Engel’s curves, i.e. the expenditure on good i increases non-linearly with income. Non- 
homotheticity is intertemporal, when real income affects the profile of consumption across time, 
and intratemporal, when real income affects consumption allocation across different goods over 
time
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therefore making consumption more (less) responsive to changes in the real interest 

rate. With intertemporal non-homotheticity the path of consumption across time 

is affected by the path of income3. This mechanism generates asymmetric shifts in 

aggregate demand to monetary shocks.

Another study that have analysed the effects of subsistence in general equi­

librium is Ravn et. al. (2004). They include a specific subsistence point to each 

variety of good. Similarly to our work, they obtain a procyclical price elasticity of 

demand, which generates countercyclical^ markups in equilibrium.

Our specification of intertemporal non-homotheticity, as a constant subsis­

tence level, can also be interpreted as an extreme form of external habit formation, 

where the reference level of consumption remains constant. Models with external 

habit formation have proven to be useful in accounting for empirical regularities of 

asset prices. For instance, Campbell and Cochrane (1999) show that introducing 

a time-varying subsistence level to a basic isoelastic power utility function allows 

solving for a series of puzzles related to asset prices such as: the equity premium 

puzzle, countercyclical risk premium and forecastability of excess of stocks.

Moreover, non-homothetic preferences have the advantage of being able to 

reproduce consumer behaviour that is closer to what is observed empirically. In 

particular, it offers an explanation of why agents seem to have different degrees 

of elasticity of substitution depending on the state of their wealth and income, 

consistent with what is reported in micro-empirical studies for countries like the 

USA and India4.

This chapter extends the literature in many directions; first we show that 

introducing non-homothetic preferences over time in a standard general equilibrium 

New Keynesian model can generate patterns of asymmetry observed in the data that

3The effect of intertemporal non-homotheticity is in some sense similar to the effects of borrow­
ing constraints on consumption, since with borrowing constraints the optimal path of consumption 
is also affected by the level of income.

4 See Atkeson and Ogaki (1996)
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is consistent with both a convex supply curve and asymmetric shifts in aggregate 

demand. Second, the chapter provides another argument in favour of using higher 

order approximation to the solutions of general equilibrium dynamics models. This 

is, linear solutions are not only inaccurate to measure welfare as reported by Kim 

and Kim (2003), but also in measuring the dynamics of the model, in particular 

where non-linear behaviour is important around the steady state, as with non- 

homothetic preferences.

We find that the key parameters determining the asymmetry in the response 

of output and inflation are the subsistence level of consumption, which generates 

asymmetric shifts in aggregated demand; and the price elasticity of demand for 

individual goods, which determines the degree of convexity of aggregate supply. 

Also, we find that it is important to differentiate between states of output that are 

generated by demand shocks, from those that are generated by supply shocks. We 

find in our model that monetary policy is more effective to affect output in a boom 

than in a recession (positive asymmetry) when the degree of intertemporal non- 

homotheticity is high. Moreover,the asymmetric effects on on output are higher 

when the deviations from the steady state come from supply shocks instead of 

demand shocks. On the other hand, the sign of the asymmetric effects of monetary 

policy on inflation will depend on the type of the shock: when the state is driven by 

demand shocks, the asymmetric effects on inflation are positive, but they become 

negative when when the state is driven by supply shocks.

We also have found that the way the central bank responds to output has 

implications for the asymmetric response of output. In the benchmark case, when 

the central bank uses a log-linear Taylor rule, we find that the higher the coefficient 

of output in the interest rate rule, the lower the degree of asymmetric response of 

output and inflation.

The remaining part of this chapter is organised as follows. In the next 

section we review the theoretical and empirical literature on asymmetric effects of
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monetary policy. In section 4.3, we present the model used to analyse asymmetry. 

Section 4.4 discusses in detail the effects of non-homotheticity in generating asym­

metric effects of monetary policy. Finally the last section presents some concluding 

remarks.

4.2 Literature review

4.2.1 Theoretical Literature

Theoretical Literature

Within the group of theories that consider a convex supply curve as the 

main factor generating asymmetric responses are theories related to wage sticki­

ness, which emphasise that nominal wages are sticky to cuts but not to increases5; 

theories that highlight the role of capacity constraints that make the marginal cost 

of firms more responsive to aggregate demand changes when the economy is closer 

to its short-term fixed level of production capacity; and theories of menu costs that 

consider that adjustment costs are state-dependent.

For instance, Ball and Mankiw (1994) propose a theoretical model to ex­

plain asymmetric adjustment in prices. They assume that firms face menu cost of 

adjusting prices and that inflation is positive every period. They further assume 

that this menu cost is paid only when the firm chooses to change its price within 

periods. Since inflation is positive, when shocks are negative, inflation brings their 

relative price closer to its optimal level. Therefore, firms find optimal to adjust 

their prices less frequently or only when shocks are relatively big. In contrast, when

5For models of wage rigidity based on optimal contract and fairness considerations, see Steinar 
(1992 and 2002). For a model of wage stickiness based on loss aversion, see Elsby (2004).
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the shock is positive, inflation has the opposite effect on relative prices, it moves it 

further away from its optimum, consequently firms react by changing prices more 

frequently. When inflation is zero, their model implies a symmetric adjustment of 

prices.

Within the second group of theories, those denominated pushing- on-a- 

string, we have papers like that of Jackman and Sutton (1982) who propose a 

partial equilibrium model, where changes in the short-term interest rate generate 

asymmetric effects in aggregate demand when borrowing constraints are binding for 

a mass of consumers. They show that it is optimal for consumers at some point in 

their life to choose to borrow up to the limit of their borrowing constraints to smooth 

consumption. Consequently, they show that when some individuals are liquidity- 

constrained, the response of aggregate consumption to changes in interest rates 

involves an asymmetry between increases and decreases. The increase in the inter­

est rate may be strongly contractionary, these effects follow from the redistribution 

of income between (liquidity-constrained) monetary debtors and (unconstrained) 

creditors brought about by interest rate changes. Also, contractionary monetary 

policy shocks can lead to rationing in the credit market, increasing the strength of 

the monetary shock through the credit channel, since a positive monetary policy 

shock has a different effect on the credit market, theories of credit rationing imply 

that negative monetary shocks have stronger effects than positive shocks6.

4.2.2 Empirical Literature

We can organise the empirical literature historically into two categories; the early 

studies, which focus mainly on studying the asymmetric effects generated by mon­

etary policy shocks depending on the sign and size of the shock, and those more 

recent ones, which focus on state-dependent asymmetry. The early studies used 

a simple extension of the methodology used by Barro (1978) to test for effects of

6For models of credit rationing see Jafee and Stiglitz (1990).
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anticipated versus unanticipated monetary policy shocks. The more recent studies 

use the Markov switching time series process developed by Hamilton (1988) and the 

logistic smooth transition vector autoregression model described in Terasvirta and 

Anderson (1992).

Sign and size asymmetry

De Long and Summers (1988) and Cover (1992) are amongst the earliest 

papers reporting asymmetric effects of monetary policy, using a simple two-stage 

estimation process and innovations to money growth rate as a measure of the stance 

of monetary policy. They find that, for the USA, positive innovations to money 

growth rate have no effect on output, whereas negative innovations have a significant 

negative effect on output.

Using a similar approach, but using instead as a policy instrument the 

Federal Funds Rate, Morgan (1993) finds results in the same direction of Cover’s 

results. This is that an increase in the Federal Funds Rate has significant negative 

effects on economic activity, whilst a cut in interest rates has no effect. Karras 

and Stokes (1996) extend Cover’s methodology, allowing not only for asymmetric 

effects on output but also on inflation. They also test for asymmetric effects on the 

components of aggregate demand consumption and investment. Karras and Stokes 

(1996) confirm the findings of Cover (1992) and find that negative policy shocks 

have stronger effects than positive shocks.

On the other hand, Ravn and Sola (1996), using an extension of the method­

ology used by Cover that distinguished between small and big monetary policy 

shocks, find that the evidence reported by Cover is not robust for the sample pe­

riod. Instead they conclude that asymmetry is not related to the sign of the shock, 

as Cover reported, but to its size. They conclude that for the USA during the period 

1948-1987 unanticipated small changes in money supply are non-neutral whereas big 

unanticipated shocks and anticipated shocks are neutral. For a sample of industrial 

countries, Karras(1996) reports similar evidence to that reported by Cover for the
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USA, in general the effects of money supply and the interest rate shocks on output 

tend to be asymmetric; monetary contractions tend to reduce output more than 

monetary expansions tend to raise it.

State-Dependent Asymmetry

Thoma (1994) extends the previous work on asymmetric effects of monetary 

policy shocks considering the existence of nonlinearities in the relationship between 

money and income. First, using rolling causality tests he finds that the causality 

relationship between income and money becomes stronger when activity declines 

and weaker when it increases, suggesting the existence of a non-linear response of 

income to monetary policy shocks. Following Cover (1992) and Morgan (1993), he 

distinguishes money shocks into positive and negative ones, but in contrast with the 

previous authors he also allows for a state-dependent response of output to positive 

and negative shocks. Using data for the USA that covers the period from January 

1959 to December 1989 of Ml, three-months treasury bills, consumer price index and 

industrial production, he finds that negative monetary shocks have stronger effects 

on output during high-growth periods than during low-growth periods, whilst the 

effects of positive monetary shocks do not vary over the business cycle.

More recently, using data for the USA as well, Weiss (1999) applied non­

linear vector autoregression approach tests for asymmetric effects of monetary pol­

icy. This approach has the advantage of allowing a more flexible specification to test 

for which variable is important in generating the asymmetry. Using quarterly data 

from 1960 to 1995 of the industrial production index, the consumer price index and 

Ml, he finds that negative monetary policy shocks have stronger effects on output 

when the initial state of the economy is high growth than when the initial state 

of the economy is negative growth. In particular, he estimates that one standard 

deviation shock to money growth rate generates, after twelve quarters, a cumulative 

reduction of 0.15 percent in output when the initial state of the economy is negative 

growth and 3.06 percent when the initial state is positive growth. However, he does
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not find any difference between the effects of positive versus negative shocks. In 

this sense, his results contradict Cover’s findings. One possible explanation of this 

contradiction might be that the early papers on asymmetric effects of monetary 

policy do not control for the state of the economy when estimating asymmetric 

responses. Therefore, negative shocks are perceived as having stronger effects than 

positive shocks in those papers because negative shocks occur more frequently when 

the economy is in a high-growth state, the phase in which monetary policy seems 

to be more effective. On the contrary, positive shocks tend to occur during negative 

growth states, where monetary policy seems to be less effective, according to more 

recent papers.

Other studies, such as Caballero and Engel (1992), find that asymmetries 

in the response of output to demand shocks depend not only on the level of output 

but also on the level of inflation. For developing economies, Agenor (2001) using 

a VAR methodology also reports asymmetric responses of output and inflation to 

monetary policy shocks. Holmes and Wang (2002) find that negative monetary 

shocks have a more potent effect on output than positive shocks and that inflation 

renders monetary policy less effective, using data for the United Kingdom.

Overall the empirical evidence strongly suggests the existence of asymmet­

ric effects of monetary policy on output and inflation. The earlier studies high­

lighted that negative monetary shocks have stronger effects than positive shocks, 

whereas more recent studies find that monetary shocks tend to be more effective 

in booms than in recessions. Our reading of the empirical evidence is that this is 

consistent with the fact that there exists more than one source of asymmetry in 

real economies, as the theoretical works emphasise, and that these different sources 

of asymmetry are working simultaneously. As we have shown in this chapter, in­

troducing intertemporal non-hometheticity can generate asymmetric effects similar 

to those reported by recent studies, that is, that monetary policy is more effective 

in booms, through the interaction of a convex supply curve and a state-dependent 

IES.
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4.3 The Model

The economy is populated by a continuum of agents of mass one who consume 

a set of differentiated goods and supply labour to firms. Each firm produces a 

different type of consumption good with a constant returns to scale technology that 

uses labour as production factor. We assume that the production of each good 

uses the same type of labour; that is, labour markets are integrated and there 

is only one wage that clears the labour market 7. This assumption allows as to 

obtained a simplified version of the Phillips curve, whilst maintaining qualitatively 

the dynamics of the model.

We introduce intertemporal non-homotheticity by considering a subsistence 

level of consumption. In this case, the IES of consumption is not constant, but it 

changes prociclically. When the output deviation is negative, i.e. the economy is 

in a recession, consumption is relatively closer to the subsistence level and reacts 

less to changes in the interest rate than in a boom. Therefore, the IES is lower 

in a recession than in an expansion, and consequently consumption becomes less 

responsive to changes in the real interest rate than in an expansion.

Since goods are differentiated, firms have some degree of monopolistic power 

to set prices. Prices are set to maximise the present discounted value of prof­

its. Following Calvo (1983) we assume that prices are staggered. Staggered price 

adjustment generates price inflexibility in equilibrium and makes monetary policy 

effective to control aggregate demand, and consequently to affect prices and output 

in the short run. Also, we assume that monetary policy is set choosing the nominal 

interest rate according to a Taylor rule.

7This assumption is different from Woodford’s (2003), who assumes that each good uses a 
differentiated skill labour to generate strategic complementarity in pricing decisions.
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4.3.1 Households

A typical household in the economy receives utility from consuming a variety of 

consumption goods and disutility from working. Preferences over consumption and 

labour effort for each household are represented by the following utility function:
oo

w( =  £ / ? s [£/(c1+s) - ^ ( £ t+s)] (4-1)
s—0

where /? E [0,1] represents the discount factor. U (C) and V  (L ) corresponds to the 

utility and disutility flow in each period that come from consumption and labour, 

respectively. We assume the following functional forms:

u  (Ct) =  V (L t) = l i g ^  (4-2)

where a is a parameter associated to the coefficient of risk aversion and v is the 

inverse of the elasticity of labour supply. C represents a subsistence level of con­

sumption. Under this type of preferences, the coefficient of relative risk aversion is 

state-dependent, given by:

c 'U4 C,) \ c t - c .

Notice that when C = 0 the model collapses to the standard model with isoelastic 

preferences. This parameter, C, allows us to control for the degree of intertemporal 

non-homotheticity in the model, the higher C the higher the degree of intertemporal 

non-homotheticity. We normalize the subsistence level as a proportion $  of the 

steady state level of consumption (C ), that is:

C = ^C

The intertemporal elasticity of substitution (IES) is also state-dependent, which 

can be approximated by:

I E S  t v a - 1
1 -
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dz (4-3)

where a -1 =  is the steady state IES and yt is the log-deviation of income 

around its steady state8. When income is above (below) its steady state, the IES is 

higher (lower). Ct is the Dixit-Stiglitz aggregator over all varieties of consumption 

goods.

c t = y ^ c t ( 4

where e > 1 is the elasticity of substitution across varieties of consumption goods. 

Since preferences over type of consumption goods are homothetic, the household 

problem can be solved in two stages. In the first stage, we solve for the optimal 

allocation of consumption across type of goods, given a total level of consumption 

Ct. In the second stage we solve for the intertemporal allocation of consumption 

and labour. The solution of the intratemporal allocation of consumption is given 

by the following set of equations:

Pt(z)
Ct (z) =

Pt

where Pt is the consumer price index, defined as

p-\l Pt{z) 1—e

a

i1—e

(4-4)

(4-5)

In the second stage the optimiser household takes decisions subject to a standard 

budget constraint which is given by

_ _  WtLt Bt- i
C't — —~----r

r*
Rt Pt Pt

(4-6)
Pt Pt

where Wt is the nominal wage, Pt is the price consumer price index, Bt is the end 

of period nominal bond holdings, Rt is the nominal gross interest rate and Tt is 

the share of the representative household on total nominal profits. The first order 

conditions for the optimising consumer's problem are:

l = pE t Rt
C t+ i-C

Pt+iJ \ c t - c
(4-7)

8Here we have assumed a closed economy without capital nor government expenditures.
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V  =  (Ct -  c f  (LIT = M RSt (4-8)

Equation (4 — 7) is the Euler equation that determines the optimal path of con­

sumption. Equation (4 — 8) describes the optimal labour supply decision. M R St 

denotes for the marginal rate of substitution between labour and consumption. We

assume that labour markets are competitive and also that individuals work in each

sector z G [0,1]. Therefore, Ls corresponds to the aggregate labour supply:

Ll = [  Lst (z)dz (4-9)
Jo

4.3.2 Firm s

Each variety of consumption good is produced in an environment of monopolistic 

competition using a (linear) constant returns to scale technology that uses labour 

as production factor.

Yt(z) = A tL((z) (4-10)

where A t is a stochastic variable that represents the state of technology and Lf (z ) 

represents the demand for labour for producing consumption good of variety z. Fur­

thermore, we assume that technology evolves over time following an autoregressive

stochastic process of order 1.

In At = pa In fl*_i +  Q  (4-11)

where £“ ^  N  (0, a^).

Under this specification of technology, the real marginal cost of a typical 

firm can be expressed as:

M C t { z )  =  {4A2)

The marginal cost is increasing an real wages, Wt/P t, and decreasing on the level 

of technology. Notice that marginal costs are the same for the production of each 

variety of good, since technology has constant returns to scale and factor markets 

are competitive, i.e. MCt (z) — MCt.
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Firms set prices following a staggered pricing mechanism a la Calvo. Each 

firm faces an exogenous probability of changing prices given by (1 — 6). The optimal 

price that solves the firm’s problem is given by

E  e%,t+kMCt+kF?£kYt+k
o

Pt '  Et
(4-13)

Yh ^kCt,t+kE t̂+kYt+k
Lfc=o

where ^  is the price markup, Ct,t+k = Pk is the stochastic

discount factor, Pt* (z) is the optimal price level chosen by the firm, Ftjt+k = -̂pr-

the cumulative level of inflation and Yt+k is the aggregate level of output.

Since only a fraction (1 — 6) of firms changes prices every period and the 

remaining one keeps its price fixed, the aggregate price level, the price of the final 

good that minimise the cost of the final goods producers, is given by the following 

equation:

P } -  = 0P13  +  (1 -  e) ( p ;  (2) ) '-£ (4-14)

Following Benigno and Woodford (2005), equations (4 — 13) and (4-14) can be writ­

ten recursively introducing the auxiliary variables Nt and Dt (see appendix C for 

details on the derivation):

6 (II, ) - 1 =  1 -  (1 -  6) ( j £ )  (4-15)

Dt = Yt (Ct -  cya + epEt [(nt+1)£_1 Dt+1] (4-ie)
Nt = (iYt (Ct -  C )-a MCt + 60Et [(nt+1)£ Nt+t] (4-17)

Equation (4 — 15) comes from the aggregation of individual firms prices. The ratio 

Nt/D t represents the optimal relative price Pt* (z) /P t. These three last equations 

summarise the recursive representation of the non linear Phillips curve.9
9Writing the optimal price setting in a recursive way is necessary in order to implement nu­

merically or algebraically the perturbation method.
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4.3.3 Monetary Policy

Monetary policy is implemented by a central bank setting the nominal interest rate 

according to a Taylor rule specified in the following way:

(t-t /  y  \
= J  ( = J  e x p (-e ;) (4-18)

The steady state values are expressed without time subscript and with an upper

bar. (f)7T > 1 and <fiy > 0 are the coefficients of the rule, and et represents an

exogenous monetary policy shock. Under this policy rule the central bank increases 

the nominal interest rate when inflation is positive and when domestic output its 

above its steady state. The exogenous monetary policy shock evolve according to 

the following stochastic autoregressive process

£t =  Pe^t-l +  fit (4-19)

where Q ^  N  (0, a^).

4.3.4 Market Clearing

In equilibrium labour and each variety of good market clear. Since there is no 

capital accumulation nor government sector, the economywide resource constraint 

is given by:

Ct = Yt (4-20)

The labour market clearing market condition is given by:

Lst = Ldt (4-21)

where the labour demand comes from the aggregation of the producers of each type 

of good:

Ldt = f  Ld(z)dz = 1 -  f  Yt(z) (4-22)
JO  -n-t Jo

L i =  K‘A‘
At
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where At =  f* dz  is a measure of price dispersion. Since relative prices

differ across firms due to staggered price setting, input usage will differ as well, im­

plying that is not possible to use the usual representative firm assumption, therefore, 

the price dispersion factor, A* appears in the aggregate labour demand equation.

4.3.5 Steady-State

We define the steady-state equilibrium as a competitive equilibrium where the 

shocks, Q and f®, are zero. In this equilibrium all endogenous variables remain 

constant. Under these assumptions, the steady-state level of output is given by:

We assume a zero steady state of inflation is zero in the policy rule, then the real 

interest rate is given by:

4.4 Asymmetric Effects of Monetary Policy

As we discuss in the introduction of this chapter, monetary policy can have asym­

metric effects on output and inflation depending on either the state of the economy 

or the sign of the monetary policy shock. We define the former as state-asymmetry, 

when the response is different in a recession from an expansion, and the latter as 

sign-asymmetry, when the size and sign of the monetary policy shock affect the 

response. We argue that, in equilibrium, both types of asymmetry come from the 

interaction of two different sources: the non-linear, generally convex, form of the 

Phillips curve as well as the non-linear response of the aggregate demand to the 

interest rate.

We focus in this chapter on state-asymmetry in which the response of out­

put and inflation changes with the state of the economy, i.e. the deviation of output
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with respect to its steady state value. However, since the state of the economy de­

pends on the source of the shocks, it is not straightforward to analyse how the state 

of the economy influence the effectiveness of monetary policy. The methodology we 

use, based on the perturbation method helps us to disentangle both sources of asym­

metry, since we can solve for state-asymmetry after controlling for the type of this 

shock. Also, we define as positive (negative) asymmetry when monetary 

policy has more (less) effect in an expansion than in a recession.

In the next sub-section we solve the second order Taylor expansion of the 

model and we analyse the implications of intertemporal non-homotheticity in the 

aggregate demand and the aggregate supply. Then, we solve analytically for the 

asymmetric effects of monetary policy in equilibrium and we do some comparative 

statics of the solution on the parameters of the model.

4.4.1 Second order approximation of the structural equations

We present in table 4.1 a log-quadratic (Taylor-series) approximation of the funda­

mental equations of the model around the steady state, a detailed derivation is pro­

vided in Appendix C. The second-order Taylor-series expansion serves to compute 

the equilibrium fluctuations of the endogenous variables of the model up to a resid­

ual of order 0  (||&||2), where ||£*|| is a bound on the size of the shocks =  [£“,£*]. 

We denote variables in steady state with upper bars (that is X )  and their log devi­

ations around the steady state with lower case letters (that is xt =  In =*).

Notice that we make following change of variable a =  c r /  (1 — p̂), where 

a -1 denotes the IES in steady state 10. Equation (4 — i) is the second-order ap­

proximation of the Euler equation (4-7), which represents the aggregate demand. 

The term (Vt ~ EtVt+i) captures the non-linear effect of non-homothetic

10In all the following analysis we replace a -1 =  o ~ x (1 — ip), which is the intertemporal elasticity 
of substitution in steady state with subsistence, and then we change a -1  endogenously as ip changes 
to keep <7-1 constant. Doing this allows us to compare the effects of ip on asymmetry without 
considering the effects caused by the change on the steady state IES.
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A ggregate D em and
yt =  Etyt+i -  a - 1 ( r t -  Et irt+1) +  \ ^  (y? -  Ety%+1) +  uy +  0  (||& ||3) 4 — i

A ggregate Supply
Phillips Curve
vt =  K,mct +  \n m ct (2 (1 - a ) y t +  mct ) +  +  (3Etvt+\ +  0  ( ||ft ||3) 4 — ii

Auxiliary Variables

vt =nrt +  l  ( fE j +  e) Tif +  \  (1 -  0/3) ttt zt 4 -  in

Zt —2(1 cr)yt 1 met 1 0/3Et ^ _0p^t+i 1 z t+ i)  1 £l(||£t|| ) 4 — iv
Price dispersion

A t =  0A t- i  +  +  0  ([|£t||3) 4 — v
M arginal C osts

mct =  (v +  a) yt -  (v +  l)a t -  \ o ^ y l  +  v A t +  0  (||£t||3) 4 — vi
M on etary  P olicy

f't =  (pTrEtTTt+l “I" 4>yVt 4 — vii
E xogenous d isturbances

a>t — Pa^t- 1 +  £t 4 — viii
=  Pe t̂- 1 +  €t 4 — ix

Table 4.1: Second order Taylor expansion of the equations of the model

preferences on aggregate demand, which makes output to respond non-linearly to 

changes in the interest rate. More precisely, since the IES changes prociclically, the 

interest rate affects more aggregate demand in a boom than in a recession. The 

term u y =  —^aEt [(yt — yt+1) — ^ (rt — 7rf+i)]2 < 0 is independent of policy and 

captures the precautionary savings effects of shocks volatility on consumption.

Equation (4— ii) is the second-order approximation of the aggregate supply, 

which uses the auxiliary variables vt (defined by 4 — Hi) and zt (which has a first 

order approximation in 4 — iv). vt is a quadratic function on irt and zt and in linear 

terms in vt = 7rt. Equation (4 — v) represents the dynamics of the price dispersion 

measure, which is a second order function of inflation.

The first two terms in equation (4 — ii) capture the effects of marginal costs 

on inflation, k = ^  (1 — 6/3) is the slope of the Phillips curve with respect to the 

marginal costs. Note that under Calvo price setting inflation is a quadratic function 

of marginal costs. The third term in equation (4 — ii), |£ 7if, captures the effect
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of inflation volatility on the response of relative prices to marginal costs. More 

precisely, when inflation volatility is higher, firms put a higher weight on marginal 

costs when setting prices, increasing the level of inflation11. In the overall, these two 

effects make that inflation is a convex function on marginal costs under Calvo price 

setting. In contrast, other forms of modelling price rigidities such as the Rotemberg 

(1982) type with adjustment costs to changing prices, can give the same solution in 

linear terms, but imply a concave function of inflation on marginal costs12.

The equation for the marginal costs (4 — vi) is obtained taking the second 

order expansion of the real marginal costs and using the labour market equilibrium 

condition to eliminate real wages. Marginal costs are affected, in linear terms, 

positively by output fluctuations and negatively by productivity. Additionally, there 

are two second order terms: the first term captures the effect of intertemporal non- 

homothetic preferences on real wages, lower IES reduces the income effect on the 

labour supply and hence lower real wages. The second term captures the effect of 

price dispersion on real wages: since higher price dispersion increases the labour 

amount necessary to produce a given level of output, it also increases marginal 

costs.

After replacing the marginal costs (4 — vi) and the dynamics of the price 

dispersion (4 — vi) on (4 — ii), under certain assumptions13, we can express the

n Also, we have seen in chapter 2 that this term is important in generating a risk premium on 
inflation.

12This is because in the Rotemberg (1982) setup the adjustment costs are quadratic on price 
deviations. Then, higher price deviations from its steady state level are relatively more costly to 
the firms than small deviations, which induces firms to respond relatively less when deviations on 
marginal costs are higher.

13More precisely, when the initial price dispersion is small, that is A*o_i ~  0 up to second 
order. This assumption make the analysis analytically tractable, without changing qualitatively 
the results.
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Phillips curve as:

v t =  k [(u +  a ) y t -  (v +  I)at} (4-23)

+ \ K [ ( !  +  v f  {Vt -  at)2 -  (1  ~ c r f  yl] -  1 / e

+2e (1 + v) 7rt + PEtVt+i + 0  (||£i||3)

_  2
a T ^ p y‘

We can use equation (4 — i) and (4-23) together with the definition of 

the auxiliary variables vt and zt to solve analytically for the asymmetric effects of 

monetary policy in general equilibrium.The two sources of asymmetry previously 

analysed, the state-dependent IES and the convex PC, interact in equilibrium to 

determine the degree of asymmetry of output and prices. In the next section, 

we solve analytically for the dynamic equilibrium of the economy using a second 

order-approximated solution. This approach allows to disentangle the asymmetric 

responses of output and inflation controlling for the source of the shock, demand or 

supply shocks.

4.4.2 Solving asymmetric response analytically

We use the perturbation method, developed by Judd (1998), Collard and Julliard 

(2001) and Schmitt-Grohe and Uribe (2004), to find a second order approximation 

of the solution of the model. This method consists in obtaining the coefficients of a 

taylor expansion of the solution of the model near the steady state using a system 

of equations that come from the differentiation of the equilibrium conditions of the 

model. The implementation of this method is discussed in appendix C. We approx­

imate the policy functions for output and inflation as second order polynomials on 

the state variables s = [a, e], the productivity and monetary policy shocks, respec­

tively. Furthermore, the former represents supply shocks and the latter demand
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shocks:

y — b +  baa +  bee +  baeae +  —baaa2 4- —beee2 4- O (||s||3) , (4-24)2 2
1 j  2
2 2

where y  and 7r are output and inflation in log-deviations from the steady state. We

7r — d -(- daci dyV 4“ daeae -j- daaci 4- deee CD (Hsll )

assume initially a log-linear policy rule of the form

it 4“ ^

The coefficients of the first order terms {ba,be,da,de} are equal to those 

of the log-linearised solution of the model. The second order solution only adds 

additional terms to the log-linearised solution, {bae, 6ao, 6ee, dae, daa, dee}, preserving 

the existing terms. Additionally, b and d are constants that depend on the variance 

of the shocks, as it is shown in and Schmitt-Grohe and Uribe (2004).

The marginal responses of output and inflation due to unexpected changes 

to the interest rate are given by:

dy
de
d'K
de

~  — be 4~ beev 4- baea

n — de 4- deev -(- daed

The state-asymmetry effects of monetary policy can be seen by the coef­

ficients of the the quadratic terms (bee and dee) and the crossed terms (bae and 

dae), because they take into account both supply shocks and demand shocks in the 

marginal response. Therefore, the quadratic terms bee and dee take into account 

the asymmetry effects when the economy is away from the steady state because of 

demand shocks, and the crossed terms bee and dee because of supply shocks.

In order to analyse the effects on impact of the state of the economy in 

the impulse response, it is convenient to write the marginal response of output and
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inflation in the following form:

^  =  be (l + a y  + a syy s) (4-25)
fi'jr
—  =  de (l +  a i y d +  a s„ys)

where ad and ad are the elasticities of the impulse response with respect to output 

when its deviations are caused by demand shocks, and a* and crj are the elasticities 

of the impulse response with respect to output when its deviations are caused by 

supply shocks. For instance, the impulse response of output when the output are

deviations caused by demand shocks are equal to ±4% is given by bv (l ±  ad4%) .

These elasticities are defined by:

S j d  ___  b e e  1 jy S ____  b a e  1
Uy —  b e  b e  U y ~  b e  b a

f r - d  ___  d e e  1 n S____  d g e  1
“  d e  b e  U *  ~  d e  b a

This uses the fact that from the log-linearised solution of the model, output 

is equal to y «  bev +  bea. We define yd = bee and ys = baa as the deviations of 

output due to demand shocks and supply shocks, respectively.

We solve for the state-asymmetry elasticities applying the perturbation 

method to the second order Taylor approximation of the equations of the model. 

The solution for both types of state-asymmetry elasticities {cr^crjJ} and {(7y,<Tn} is 

given by the intersection of two linear equations, one that comes from the expansion 

of the IS and the other that comes from the expansion of the Phillips Curve. See 

appendix C for the derivation. It is useful to separate the effects in this form, 

because this allows us to disentangle the asymmetric effects that come either from 

the aggregate demand and the aggregate supply.

For the special case that the shocks are uncorrelated (that is pa = pe =  0), 

these expressions are summarised by:
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K_ ^ + 1W + —O + <j>y '  1 - ^ 1+  <t>y<r~<  = - ^ r I 4 > A + , . , ,  , ± — ! (IS jou*) (4-26)

4  -  ^ r ^ T T ^ - 1- 0 ' (a-27)

where the index i = {d, 5} indicates if the output deviations are given by 

demand shocks (z =  d) or supply shocks (z =  s). Qd and are defined in the 

appendix and capture the non-linearity of the Phillips Curve . These schedules are 

named as I  S.as1 and P C .as\ because they come from the second order expansion 

of the IS and the Phillips curve, respectively.The elasticities are found in equilibrium 

by the intersection of both equations.

The IS  .as1 schedule has a negative slope equal to ^ j ^ ^ a n d  the PC.as1 

schedule has a positive slope equal to one. Moreover, when 'ip = 0 the intercept is 

zero for the IS  .as1 schedule and equal to Vt1 for the PC .as1, which can be either 

positive or negative. The state-asymmetry elasticities solution is given by the in­

tersection of these two curves. In the next sub-section we analyse the equilibrium 

in two cases, for z/> =  0 and ip > 0 and we do some comparative statics with respect 

to some parameters.

4.4.3 Comparative statics

The model is parameterised using values that are standard in the literature. We 

set a quarterly discount factor, /?, equal to 0.99 which implies an annualised rate 

of interest of 4%. For the coefficient of risk aversion parameter, cr, we choose a 

value of 1 and the inverse of the elasticity of labour supply, v, is calibrated to 

be equal to 1. We choose a degree of monopolistic competition, e, equal to 7.88, 

which implies a firm mark-up of 15% over the marginal cost. The probability of 

not adjusting prices 6 is set to 0.66 which implies that a typically firms changes 

prices every three quarters. We set the parameters of the Taylor rule ^  and (py to
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1.5 and 0.5, respectively. We assume the same distribution for both productivity 

and monetary policy shocks, with standard deviation of 0.1 and pa — pe — 0.6 for 

the impulse response. Finally, the subsistence consumption level was set to 0.8 of 

the steady-state level of output, similar to the values used in the habit formation 

models.

We make some comparative statics for the state-asymmetry elasticities cal­

culated for the special case that the shocks are uncorrelated using expressions (4-26) 

and (4-27). Then, we use the second order solution of the model to solve numeri­

cally for the impulse response to a monetary policy shock conditional on the initial 

state of the economy.

The comparative statics for the state-asymmetry elasticities are summarised 

in following table 4.2.

Parameters Elasticities
£ <(>y < 7T

0 7.88 0.50 -1 .3 1.6 1.6 - 1.6
0 10 0.50 - 0.8 2.1 2.1 - 2.1

0.8 7.88 0.50 1.7 2.7 3.7 - 1.0
0.8 7.88 0 2.3 3.2 4.3 - 0.2
Elasticities calculated for the case of uncorrelated shocks.

Table 4.2: Comparative Statics Results

Intertemporal Homothetic preferences

When the subsistence level is zero, that is. ^  =  0, the solution of the model 

converges to the case of isoelastic preferences on consumption. In this case, the non- 

linearities of the model come uniquely from the Phillips curve, since the aggregate 

demand respond linearly to the interest rate. In the case of isoelastic preferences, 

when the state is given by demand shocks, inflation responds more (<jjJ > 0) and 

output responds less (cr̂  < 0) in an expansion than in an recession. However we 

have the opposite effect when the state is given by supply shocks: in that case the
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response of inflation is lower (crj < 0) and output is higher (Gy > 0) in an expansion 

than in an recession. This effects are solely driven by the convexity of the Phillips 

curve implied by the Calvo price-setting.

The difference in the asymmetry depending on source of output deviations 

can be seen in figure 4.1 . In the graph on the left, an expansion driven by demand 

shocks implies a demand on the right of the steady state, it intersects the PC in an 

area where it is steeper, therefore a movement in demand due to monetary policy 

will have more effect in prices and less effect in output that when the economy is in 

an expansion than in a recession. On the other hand, when the expansion is driven 

by supply shocks, the demand intersects a Phillips curve that is on the right from its 

steady state schedule, which implies that it intersects the PC in an area where it is 

flatter. Therefore, when the state is driven by supply shocks monetary policy have 

the opposite asymmetric effects than when the state is driven by demand shocks: 

that is, monetary policy affects more output (and less inflation) in an expansion 

than in a recession.

71 7C
P C P C

y y

Figure 4.1: State-dependent asymmetric effects of monetary policy in the IS-PC 
equilibrium, a) Output deviations driven by demand shocks, b) Output deviations 
driven by supply shocks.

The second row in table 4.1 shows that an increase in the price elasticity of
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demand of individual goods (e) increases the convexity of the Phillips curve. This is 

because e increases the responsiveness individual firm’s optimal prices to marginal 

costs 14. Then, for a more convex Phillips curve, the state-asymmetry elasticities 

increase for all the cases.

Intertemporal Non-homothetic preferences

When we introduce a subsistence level, that is when ^  > 0, the aggregate 

demand responds non-linearly to the interest rate, affecting the asymmetric effects 

of monetary policy. We can see in the third row of table 4.1, that the introduction 

of non-homothetic preferences generates that output responds more to monetary 

policy in an expansive part of the cycle generated by demand shocks (that is a* 

> 0), in contrast with the opposite result when preferences are homothetic. The 

subsistence level also reinforces the asymmetric effects generated by the Phillips 

curve, increasing both cr% and a®.

Alternative policy rule: strict inflation target.

An strict inflation target eliminates the output term in the Taylor rule, 

that is it = </>7r'7T(, and has more asymmetric effects on output and inflation than 

the traditional one. A Taylor rule that puts some weight in the output deviations 

partially offsets the asymmetric effects of monetary policy on demand. Therefore, 

in a Taylor rule that only considers inflation (i.e. </>y =  0) the asymmetric effects of 

monetary policy are higher in both output and inflation. As shown in the fourth 

row in table 4.1, eliminating the output term in the Taylor rule in our baseline 

model increases the asymmetry on both output and inflation, for both sources of 

deviations.

State-dependent impulse responses to a monetary policy shock.

14 See chapter 2 for a more detailed discussion on the effects of e on the convexity of the Phillips 
curve
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The next two figures show the state-dependent impulse response to a mon­

etary policy shock, when the shocks exhibit some persistence, conditioned on the 

source of output deviations15. In order to capture the difference between the peak 

and the (bottom) of the cycle, we have calculated the impulse responses when de­

viations of output from the steady state were ±4%.
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Figure 4.2: State-dependent impulse response to a monetary policy shock , the case 
of homothetic preferences = 0).

Figure 4.2 analyses the case of isoelastic preferences (V> = 0). In this case

15The state-dependent impulse responses are calculated numerically from the second order so­
lution of the model, conditional to an initial value of output deviations equal to yt_ 1 =  ±4%, 
and considering the definitions for the deviations of output due to demand shocks (yd =  bee) and 
supply shocks (ys =  baa).

136



asymmetric monetary policy effects are generated solely by the non-linearity of the 

Phillips curve. According to this graph, when the deviations in output are generated 

by demand shocks, inflation respond more and output respond less in an expansion 

than in a recession, which is consistent with a convex Phillips curve. On the other 

hand, we have exactly the opposite effect when output deviations are generated by 

supply shocks.

igihflation (State: Demand Shocks)8

6

4

2

00 2 64

x i(Y^Output (State: Demand Shocks)
6

5

4

3

2

1

00 2 4 6

x -^Inflation (State: Supply Shocks)
6

- y» = +4 %
• /  = -4 %

5

4

3

2

1

0

x -jo3 Output (State: Supply Shocks)
8

y* = +4% 
y* = -4%6

4

2

00 2 4 6

Figure 4.3: State-dependent impulse response to a monetary policy shock , the case 
of non-homothetic preferences = 0.8).

Figure 4.3 shows the case of non-homothetic preferences = 0.8). In 

contrast to the previous case, output reacts more to monetary policy in an expansion
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than in a recession when the state is driven by demand shocks. Also, the asymmetric 

effects on output are amplified when deviations come from supply shocks. This is 

generated by the interaction of both sources of non-linearities: the convexity of the 

Phillips curve and the asymmetric shifts of aggregate demand. Also, the asymmetric 

effects on inflation are not qualitatively changed, since they are mostly captured by 

the non-linearity of the Phillips curve.

4.5 Conclusions

Empirical studies for the USA and other developed countries have reported that 

monetary policy seems to have stronger effects on output and prices when the 

economy is growing fast than when it is in a recession. This pattern of asymmetric 

response in output and inflation however cannot be explained by only the existence 

of a convex supply curve, which predicts the opposite asymmetric response for 

output. In this chapter we show that it is possible to generate asymmetric responses 

of output and inflation similar to those observed in the data by incorporating in an 

otherwise standard New Keynesian model a subsistence level for consumption that 

generates a state-dependent IES.

We find that the interaction of these two mechanisms is key in generating in 

equilibrium asymmetric responses in output and inflation that match the empirical 

evidence. On one hand, when consumption is relatively closer to the subsistence 

level, as in a recession, the IES is lower, therefore consumption reacts less to changes 

in the interest rate than in an expansion. This generates an asymmetric response 

of aggregate demand to monetary policy shocks. On the other hand, the convexity 

of the Phillips curve implies that output reacts less to demand shocks when output 

is initially low.

We further differentiate between state generated by demand shocks versus 

supply shocks. We found that monetary policy is more effective to affect output in
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a boom than in a recession (positive asymmetry) when the degree of intertemporal 

non-homotheticity is high. Moreover, this asymmetry is higher when the deviations 

from the steady state come from supply shocks instead of demand shocks. On 

the other hand, the sign of the asymmetric effects of monetary policy on inflation 

will depend on the type of the shock: when the state is driven by demand shocks 

the asymmetry in inflation is positive, however when the state is driven by supply 

shocks, the asymmetry in inflation is negative.

This chapter provides a framework for analysis of the asymmetric effects 

of monetary policy, considering an elasticity of the impulse response respect to 

the state of the economy. This analysis can be expanded to other factors that 

can contribute to explain asymmetric effects of monetary policy, such as borrowing 

constraints and adjustment cost to investment, that have not been analysed in this 

chapter. The introduction of non-homotheticity in the preferences of consumption 

over time can be considered as a proxy of these other sources of asymmetric effects 

of monetary policy on demand. However, solving some of these problems can involve 

non-differentiabilities what would prevent the implementation of the perturbation 

method. Therefore, in the cases of non-differentiability it would be necessary to 

apply other kinds of methods, like collocation methods, in order to find a numerical 

solution to the policy functions.
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C Appendix: The second order approximation of the system

C .l The second order approximation of the model

The second order approximation of the marginal utility becomes:

miH = - a ( ^ t - ^ j ^ c ( )  + 0 (\\t\\3) (C.l)

where a = is the steady state risk aversion coefficient.

The second order approximation of the IS is:

0 =  Et (mut+i -  mut +  rt -  irt+1) +  ^E t [mut+1 -  mut +  rt -  7rt+i]2 (C.2)

Replacing (C.l) and the clearing market condition in (C.2) and eliminating the 

terms of higher order than 2:

Vt = Etyt+i — a 1 (rt — Etirt+i) +  -   ̂ ^  (Vt~ EtVt+i) (C-3)

i _  r i  n2-a E t (yt -  yt+i) -  -  (rt -  7rt+1) o2

which is equation (v-i) in the main text

+  0(ll£ll3)

The derivation of the second order approximation of the Phillips curve is 

the same as the one presented in chapter 2, after replacing a by a :

vt = nmct + ^Kmct (2 (1 - a ) y t + mct) -b ^ t t 2 +  (3Etvt+1 +  O (||£||3) (C.4)

Vt =  7q  +  i  i  +  e ĵ t t 2 +  i  ( 1  -  6(3) 7rtzt (C.5)

Zt =  2 (1  — a) yt +  mct +  0(3Et ^  _  ^ 7Ft+1 Zt+^j ® ( l l £ l | 3)  ( C - 6 )

Similarly, price dispersion has the same dynamics as in chapter 2:

At = 6At-i + 2£i _ Qnt + ^ (ll£l|3) (C-7)
As in chapter 2, the discounted infinite sum of At can be expressed as the sum of 

two terms, the initial price dispersion and the discounted infinite sum of 7if.
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W  a  -  LAJ

+  +  °(neii8) (°-8)
t —to t —to

The real marginal cost (4-12) and the labour market equations (4-8 and 

4-22) have the following second order expansion:

mct = wt -  at 

wt — vlt — rnut 

It — Vt — O't +  A t

(C.9)

(C.10)

(C .ll)

Replace (C .ll) and (C.l) in (C.10), we obtain the wage that clears the labour 

market:

2 1  - i p '
vt ) +  0(11*11*)wt = u (yt — at + A() +  a f y t -  

Replace wt in the marginal costs (C.9):

mct = (v + a)y t - ( v  + 1 )at -  + v&t + O (||&||3)

which is equation (4-vi) in the main text.

(C.12)

Replace the marginal costs (C.12) in the Phillips curve equation (C.4) and 

eliminate the terms of order higher than 2:

vt = K [(v +  <t) yt -  (v +  l)oi]

+ \ K [(! +  v?  (Vt ~  «t)2 -  (1 -  a)2 y f \  -  i /t

+  2 £7rt  +  K D & t  +  0 E t V t + l  +  O  ( | | £ t | |3 )

(C.13)
_ 2
a T = * Vt

Iterating forward (C.13), the Phillips curve can be expressed as the dis­

counted infinite sum:

K[(v + a)y t -  (v +  l)a j

vt = '^2P t to I [(1 +  v)2 (yt -  at)2 - ( l - o Y y t  \ -  zk
t = t 0

^ 2 ,  .21 12‘ % y l
+)c7r? +  k v  At

+ o ( I I C « l l 3 )

(C.14)
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Replace equation (C.8), the discounted infinite sum of A t , then vt becomes:

K[(v + a)y t -  (v +  l)a t] 

Vt =  ̂ +i/c [(1 +  v f  (yt -  atf  -  (1 -  o f y f \  -

+ |e (  \ + v ) n 2t
t=ta

i - p o S t_! +  0  (||£d|3) (C.15)

Assuming that we depart from an initial state where the price dispersion is 

small, that is ~  0 up to second order, then equation (C.15) can be expressed 

recursively as16:

vt = ac [(v +  a) yt -  (v +  1)0*]

+ \ K [(! +  v?  (Vt ~  at)2 -  (1 -  &)2 Vt] ~ \ K

+ 2£ (1 + v ) nt + PEtvt+i +  O (||Ct||3)

(C.16)
tp 2

which is equation (4-23) in the main text.

C.2 T he p e rtu rb a tio n  m ethod

The perturbation method, developed originally by Judd (1998) and implemented 

to monetary policy by Uribe and Schmitt-Grohe (2004), and Collard and Julliard 

(2001), consists in obtaining the coefficients of a taylor expansion of the solution 

of the model near the steady state using a system of equations that come from the 

differentiation of the equilibrium conditions of the model. For instance, given a 

set x of endogenous variables x E Rm, one state state variable 5, and a system of 

equations m  equations F, that can be expressed in the following form: F  (x, s) = 0. 

The perturbation method consist in solving the policy functions x (5) for a system 

of the form:

F (x ( s ) , 5) =  0

16The assumption that the initial price dispersion is small make the analysis analytically 
tractable, without changing qualitatively the results.
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with a taylor expansion around the steady state, i.e. x  (0) =  0. In the case of only 

one state variable, the taylor expansion has the following form:

1 («) -  J 2  (0) =  x  (0) +  (0) +  ^ x "  (0) +  (0)
71=0

For this, we need to solve for x  (0), x' (0),..., x ^  (0) for an N  — order approxima­

tion, around the steady state s = 0. The methodology consist in taking successive

derivatives to the system of m  equations F  and evaluate it around the steady state. 

Then we need to solve for the m  coefficients (0) for each order of approximation 

n = 0..N, that is:

0 =  F ix '(s) +  F2 >-> z' (0) =  — [F, (0,0)]-1 F2 (0,0)

0 =  Fnx'  ( 5 )  +  F\Xn (s) +  i * 2ix'  ( 5 )  +  F22

h- x" (0) =  -  [fi (0,0)]-1 [F22 (0,0) +  (F12 (0,0) +  Fn (0,0)) (0)]

In our model we have two endogenous variables x =  [t/, 7r], two state variables 

s = [a, e] and a system of two non-linear equations, the IS and the Phillips curve 

and two auxiliary variables vt and zt. Our second order approximation to the 

solution of the model is given by:

y(a,e)  =  b +  baa -1- bee +  baeae -1- ^baaa2 +  ^beee2 +  O (||s||3) (C.17)

7r (a, e) =  d +  daa +  dee +  daeae +  ^daaa2 +  ^deee2 +  O ( ||s ||3) (C.18)

C.3 The first and second order solution

We replace the policy functions (C.17) and (C.18) in the IS (C.3), PC (C.4) in the 

definitions for the auxiliary variables vt (C.5) and zt (C.6). We have a recursive 

system for the policy functions.

To solve for the linear coefficients, take the derivative to the equations of the 

system with respect to the shock j  = {a, e}. We obtain a system of two equations,
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one for the IS and the other for the PC: for j  =  a

[a (1 -  p a )  +  (f)y\ ba =  -  ( f a  -  Pa )  d a  (C.19)

(1 ~ / 3 p a ) d a = K , ( a + v)ba - k ( v  +  1)

for j  = e

[<J ( \  -  P e )  + fa]be = -  (fa -  p e )  de +  1 (C.20)

(1 -(3pe)de = K,(a + v)be

Similarly, we take derivatives with respect to i and j  E {a, e} and obtain a system 

of two equations for the 2 unknowns bij and dij

ip
[<t (1  p p )  (1 p j ) +  (py\ bij = — ((p a  P iP j )  d i j  + — —abfa (C.21)

  ip _____
=  k (o +  v) bij + -— —Kcrbibj + Aijbibj (C.22)

where

Aij — K [(1 +  v)2 — (1 — a)2] +  (v + 1) -  ^  — Q +  ^  _  ( d p a p e +  Xij

for

Xoe = -1 (1 -  60) (1 - pPaPe) ( 4\ +6e4g°)

Xee =  -  (1 -  00) (1 -  ( j j r )  - ' t( l+t;)2^

and

So 55 T ^ X (v +  2 +  ° )ba +  ?̂ 9l3pada~ v ~ l 

96 s  T̂ X{v + 2 + °)he + ̂ ef}ped)
where ga and ge are the coefficients of the policy function for zt
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We make the following change of variable to express the system (C.21 and 

C.22)in terms of elasticities:

i _  h e  1 
Uy =  W h

i   d ie  1
=  d l b <

The system of equations can be expressed as:

  • ”0 _
[ a  (1 -  p i )  (1 -  p e )  +  <j>y] CTy b i b e  =  -  (07T -  P ip e )  < M e  +  ( C *2 3 )

1 — ^
Divide by bibe

yy
a ^ b i d e  =  k  ( a  +  v )  a ly b ib e +    — Kdrbibe +  Aie b ib e

[cr (1 -  P i)  (1 -  P e)  +  </>y ] a'y =  -  ( f a  -  P iP e )  K y  +

\  i b* . ^  - be beaw =  * (a +  » )« ,„ - + — W - + X te-

and make use of the relationship from the Phillips curve: d e  =

[O' (1 -  P i )  (1 -  P e )  +  <Py] O y  =  ~  (4>* ~  P iP e )  4 ^  ^  +  J ~ p a  (C '2 4 )

i l i  a \ i , </’ - l - / ? P e  , ,  l - / ? P e
<7* =  (1 -P P e )< T y +  -  TV , . +  Afe , -

y 1 — r p  ( a  + v) K { c r  +  v)
For the especial case that the shocks are uncorrelated, that is pa = pe = 0. This 

system can be expressed as:

[a  +  f a ] c r ly =  - f a n  (cr +  v )  f a  +  Y Z ^ a  ( C . 2 b )

i i ^  & A 1
a iv ~  a y +  i  7 /— , x +  Aie* 1 — y j (cr +  v )  K [ a  +  v )

which is the system (4-26) and (4-27) in the main text
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CHAPTER 5

MONETARY POLICY COMMITTEES AND INTEREST RATE

SMOOTHING

5.1 Introduction

An existing puzzle in the optimal monetary policy literature is why, in practice, 

central banks change the interest rate less often than the theory predicts. This 

feature is called interest rate smoothing and it is well documented for many central 

banks1. For instance, Lowes and Ellis (1997), in a study for different countries, 

listed as the common patterns in official interest rates set by central banks: they 

change rarely, they are made in a sequence of steps in the same direction, and they 

are left unchanged for relatively long periods of time before moving in the opposite 

direction.

Regarding interest rates reaction functions, Taylor (1993) proposed a policy 

rule for the interest rate, modelled by a linear combination of output gap and 

inflation, as a rough description of the monetary policy for the USA during the 

chairmanship of Alan Greenspan. On the other hand, some authors, such as Judd 

and Rudebusch (1998), Clarida and others (1999) and Orphanides (2003), have 

pointed out that, empirically, the monetary policy rule that best captures the data 

has the following form:

it =  (1 -  p) (i +  font +  <$>xx t) +  pit-1 +  et

1See Sack and Wieland (2000) for a discussion on interest rate smoothing.
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where i is a constant, interpretable as the steady state nominal interest rate. ivt 

and xt are the inflation and output gap, respectively, p G [0,1] is a parameter that 

reflects the degree of lagged dependence in the interest rate. In these estimations, 

interest rate smoothing is present in two ways. Firstly, the estimated coefficients fa  

and fa  are typically smaller than the optimal rule would suggest; and secondly, the 

partial adjustment to movements in nt and x t is reflected by the presence of it~\. 

In other words, the empirical form of the official interest rate is a weighted average 

of some desired value that depends on the state of the economy and on the lagged 

interest rate. Also, the estimates of p are on the order of 0.7 or 0.9 for quarterly 

data, which indicates a very slow adjustment in practice.

The existing literature that explains interest rate smoothing has three 

branches. The first explanation relies on the effects of uncertainty on the policy 

decisions. Uncertainty about the structure and the state of the economy can lead 

to lower response of the interest rate to shocks. An early work by William Brainard 

(1967) showed that uncertainty on the parameters of the economy’s equations re­

duces policy activism, which means a more cautious response to shocks. In more 

recent papers the actions taken by policymakers are those with outcomes that they 

are confident about. For that reason, they delay action until they collect enough 

information about a shock. On the other hand, Clarida and others (1999) argue 

that model uncertainty may help to explain the fairly low variability of interest rate 

in the data. However, they consider that it does not capture the feature of strong 

lagged dependence in the interest rate.

A second explanation, given by Rotemberg and Woodford (1997) can help 

to explain the lagged dependence feature. Their argument is based on the effects 

of the short-term interest rates on the aggregate demand through the effect on 

long-term interest rates. Being long-term interest rates those that affect aggregate 

demand. Lagged dependence in short-term interest rates allows the central bank 

to manipulate long-term rates with more modest movements in the short-term rate
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than otherwise needed. Therefore, the central bank may care about avoiding exces­

sive volatility in the short-term interest rate in pursuing its stabilisation goal. In 

the same context, Goodhart (1999) and Woodford (1999) argue that inertial mon­

etary policy makes the future path of short-term interest rates more predictable 

and increases policy effectiveness. These authors provide a reasonable explanation 

for lagged dependence on interest rate. However, it is still to be seen if this story 

can account as well for the empirically modest response of the short-term rate to 

inflation and output gap.

A third explanation is based on financial markets stability. It considers that 

large movements in the interest rate are avoided because they destabilise financial 

markets (Goodfriend 1991). Therefore, by changing policy rates gradually central 

banks can reduce the likelihood that a change in policy triggers excessive reactions. 

In a forward-looking environment with rational expectations, concern about the 

variance of the interest rate induces interest rate smoothing.

Among other explanations, Clarida and others (1999) argue that disagree­

ment among policy makers is another explanation for slow adjustment rates. How­

ever, they consider that this story has not yet been well developed and this is where 

we want to provide an alternative framework. The current literature on interest rate 

smoothing, as well as most of the literature on optimal monetary policy, relies on the 

assumption that policy decisions are taken by a single policy maker that maximises 

some measure of social welfare. However, in real life this is not the case, because in 

practice monetary policy decisions are taken mostly collectively, in committees.

This chapter intends to explain interest rate smoothing giving more struc­

ture to the decision-making process, in which policy decisions are made through 

a Monetary Policy Committee (MPC), whose members have different preferences. 

This chapter helps to explain interest rate smoothing from a political economy point 

of view, in which members of an MPC have a bargaining problem on the interest 

rate. In this framework, the political equilibrium interest rate is a function of the
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lagged interest rate and expected inflation. We have found that when the difference 

between expected inflation and its long run value is relatively high, the interest rate 

reacts as the optimal monetary policy predicts. However, the smaller the difference, 

the interest rate reacts less than the optimal or does not react at all.

The literature on Monetary Policy Committees is fairly new and it has 

focused mainly on how the structure of an MPC can affect the policy decisions. 

It has two branches, the first branch considers the case of members with different 

preferences and how this affects expectations formation and policy outcomes2. The 

second branch of the literature of MPCs has focused on the differences in skills 

among members and how it interacts with different voting rules3.

Considering the existing literature on MPCs, this research is closer to Ri- 

boni’s (2003). In Riboni’s model, a committee with heterogeneous preferences can 

work as a substitute of a commitment technology when there is dynamic bargaining 

among members. In this model, the member in charge of setting the agenda to vote 

is less willing to deviate from the optimal time-consistent inflation level, because it 

will reduce her negotiation power next period. This model has a voting mechanism 

similar to ours, in which there exists an agenda-setter that every period submits 

a policy to vote, but it differs from us in the type of heterogeneity. Riboni works 

on heterogeneity in inflation goals, whilst we work on heterogeneity in the relative 

weights in the preferences between output gap and inflation among members. Also,

2Aksoy, De Grauwe and Dewachter (2002) and Von Hagen and Siippel (1994) have worked on 
the case of a monetary union in which, because of nationality, the members have different goals 
regarding the level of inflation and output gap. Riboni (2003) and Silbert (2004) show that in 
a committee with members with different inflation targets, the policymaker’s capacity to bring 
about surprise inflation is reduced. Waller (1989) showed that assigning the task of conducting 
monetary policy to a committee with staggered membership enhances continuity in expectations 
formation and reduces inflation.

3Gersbach and Hahn (2001) showed that less skilled policymakers in general want to abstain 
from voting. If a voting record is published, they try to mimic their more skilful colleagues; 
therefore voting records can be undesirable. Karotkin (1996) analysed the performance of different 
voting rules in committees in which individual skills differ. Berk and Bierut (2003) introduce the 
effects of learning on the performance of voting rules. In a new strand of the literature, Gerlach- 
Kristen (2003b, 2004, 2006a) studies the effects of uncertainty about the state of the economy 
when the members have the same skills.
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Riboni’s model is dynamic from a political economy point of view, but its economic 

structure is static since there are no shocks that affect the economy differently ev­

ery period. Therefore, it would be difficult to disentangle whether the results of 

a reduction in inflation come from an effective reduction of the time-inconsistency 

problem or just that the policy decision is sluggish in equilibrium, that is interest 

rate smoothing.

Our model relaxes the traditional assumption that monetary policy deci­

sions are made by a single policy maker and introduces strategic decisions in an 

MPC with heterogeneous preferences. This approach is new in the interest rate 

smoothing literature and helps to explain this problem through a different channel, 

from a political economy point of view. It also provides a theoretical framework on 

how disagreement among policymakers can slow the adjustment on interest rates 

and on adjustment costs or ’’menu costs” in interest rate decisions.

Moreover, this model can also reproduce altogether both features of interest 

rate smoothing, which are the modest response of the interest rate to inflation and 

output gap and the lagged dependence. These are features that other models fail 

to reproduce at the same time. In our model, when lagged interest rates are close 

to the current period optimum, they do not change because it is costly to have an 

agreement among members. Only when the size of the shocks is such that it is sub- 

optimal to keep the interest rate, it will be changed. However, in other cases the 

change will be below the optimal, in the exact size necessary to obtain a coalition for 

passing the new interest rate, or equal to the optimal, when the expected inflation 

is high enough that make the status quo sub-optimal.

The structure of this chapter is as follows. The second section presents the 

benchmark model in the spirit of the New Keynesian monetary economics. The 

third section introduces the policy decision problem in an MPC with members with 

heterogeneous preferences and solves the political economy problem. The fourth 

section presents some stylised facts on the voting process for some MPCs in relation
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with its effects on interest rate adjustments. The last section concludes.

5.2 Benchmark Model

During the past years, it has been a broad use of theoretical models of monetary 

policy based on the techniques of general equilibrium theory. On this literature, 

the New Keynesian approach departs from the real business cycle theory with the 

explicit incorporation of nominal price rigidities. These models are fairly simple 

and have some qualitative core features that are suitable to evaluate monetary 

policy. In order of being able to compare our results with the existing literature, 

we depart from a baseline framework for the analysis of monetary policy based on a 

New Keynesian perspective. In this section we develop our benchmark model with 

a single policymaker, which follows closely Clarida, Gali and Gertler (1999) and 

Woodford (2003). In the next section we will analyse the policy problem under a 

Monetary Policy Committee with members with heterogeneous preferences in which 

the interest rate is determined in a political equilibrium.

We assume a closed economy; all the variables are expressed as log devi­

ations from the steady state. The economic equilibrium in this economy is given 

by the intersection of the aggregate demand (AD) and the aggregate supply (AS). 

As in any standard macroeconomic model, the aggregate demand is determined by 

”IS” and ”LM” equilibrium. In our model the ”IS” relates the output gap inversely 

to the real interest rate and the ”LM” is represented by the nominal interest rate 

chosen by the central bank as policy instrument. The aggregate supply (AS) is 

represented by the Phillips curve, which relates the inflation positively to the out­

put gap. These two equations can be obtained from a standard general equilibrium 

model with price frictions. We can summarise the economy by two equations, the
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”IS” and the ”AS”, that have the following form4:

xt = -ip  [it ~  Etirt+1 -  r ”] +  Etxt+1 (IS)

7Tf — A X t +  (3EtTVt+l +  Ut (AS)

where 7vt and xt are the period t inflation and output gap it and r" are the nominal 

and the natural interest rate 5. All the variables are expressed as log-deviations

from their long-run level. According to the IS, lower real interest rate and higher 

future output increases current output. On the other hand, in the Phillips curve the 

output gap variable captures movements in marginal costs associated with changes 

in excess demand and the shock ut captures anything else that might affect expected

supply shocks that do not affect the potential output. Moreover, ut gives a trade­

off between inflation and output gap stabilisation. We assume the disturbance term 

ut follow:

ut — put- 1 +  £<

where 0 < p < 1 and et is an i.i.d. random variables with zero mean and variance 

<*■

We assume, following much of the literature on optimal monetary policy, 

that the policy objective is a quadratic function of the target variables xt and irt 

and takes the form of:

optimal consumption decisions. The Phillips curve can be obtained from aggregating the log-linear 
approximation of the individual firm pricing decisions. The price friction in this model comes from 
staggered nominal price setting in the essence Taylor (1979). The most common formulation of 
staggered price setting in the literature comes from Calvo (1983), in which he assumes that in any 
given period a firm has fixed probability of keeping its price fixed during the period.

5The natural interest rate is defined as the equilibrium real rate of return in the case of fully 
flexible prices.

marginal costs. ut is usually named as a ’’cost push” shock and it is related to

4The IS equation can obtained from log-linearising the Euler equation from the household’s
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where the parameter a is the relative weight on output deviations. This loss function 

takes potential output and zero inflation rate as the targets for the deviations of 

output and inflation from the deterministic long-run trend. As we discuss in Chapter 

3, during the past years have been some works on deriving the policy problem from 

first principles. Rotemberg and Woodford (1997) and Woodford (2003) show that an 

objective function of the form of (5-1) can be obtained as a quadratic approximation 

of the utility-based welfare6. Though, this works rely on some assumptions, like 

representative agent economy, which can be a restrictive representation of how the 

preferences over inflation and output gap really are. However, they are useful to 

establish the policy problem from the welfare criterion. Moreover, Woodford (2003) 

shows that the weight a  is a function of the primitive parameters of the model, such 

as the slope of the Phillips curve and the degree of monopolistic competition.

5.2.1 The Policy Problem for a Single Policymaker

In this part we assume that the policy decisions are taken by a single policymaker. 

We further assume the policymaker is unable to commit their future policies; there­

fore he cannot change the private sector expectations with policy announcements 

over future policy decisions. In each period the policy maker chooses the policy 

instrument to maximise the welfare function subject to the IS and the AS. The 

policymaker’s problem can be summarised by maximising the Bellman equation:

max Wt =  [ax2t +  tt2] +  f3EtW t+i
{Zt,7Tt} Z

subject to

x t = -tp  [it -  Et7rt+1 -  r tn] +  Etxt+1

TTf =  \ X f  +  / 3 E tTTt+l T u t

6In these works the output gap is included in the welfare function, because the volatility of 
income reduces welfare. On the other hand, inflation is included because, as firms face uncertainty 
on the time when they are going to be able to adjust their price, higher aggregate inflation increases 
the volatility of the individual price and income.
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where EtW t+i is taken as given by the Policymaker, since her cannot credibly 

manipulate beliefs in the absence of commitment. Moreover, in order to obtain 

tractability on the problem, we focus on the optimum within a simple family of 

policy rules, which is a linear function of expected inflation.

P roposition  5.1. The optimal feedback policy for the interest rate, within the family 

rules mentioned above without commitment, is :

it = r'f +  fa E t irt+1

where fa  =  1 -f- ——— > 1.^ n p<pa

See appendix D for a derivation. According to this policy rule, the nominal 

interest rate should rise in response to a rise in expected inflation, and that increase 

should be high enough to increase real rates. In other words, in the optimal rule for 

the nominal interest rate, the coefficient on expected inflation should exceed unity 

(that is fa  > l)7.

Moreover, in this policy rule, the interest rate is adjusted to perfectly offset 

shocks that affect the natural interest rate, but to partially offset cost-push shocks 

(that is divt/du t >0).. Therefore, when ’’cost-push” shocks are present, the optimal 

policy rule incorporates convergence of inflation to its target over time. Also, the 

relative weight between output and inflation stabilisation is given by the parameter 

alpha.

7In contrast, in the case of a single policymaker that can commit to a policy rule, and if the 
policy rule is linear on the shocks, the optimal feedback policy rule has the following form:

it =  rt +  l l E tKt+i

where 7  ̂ =  1 +  ^~^CA > 7  ̂ because a c =  c k ( 1  — ftp) <  a.  See Clarida and others (1999) 
for a derivation. Therefore, commitment increases the effectiveness of monetary policy, reducing 
expected inflation.
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5.3 The Policy Problem in a M onetary Policy Committee

The traditional approach on the optimal monetary policy literature relies on the 

assumption that decisions are taken by a single policymaker. However, in real- 

life this is not the case, because in practice monetary policy decisions are taken 

mostly collectively in a committee. In this section we introduce a Monetary Policy 

Committee (MPC) in charge of the monetary policy decisions. Also, we assume 

that the members in the MPC differ in their preferences. More precisely, they have 

different relative weight between output and inflation stabilisation in their policy 

objectives 8.

We assume the MPC has three members 9, j  = {1,2,3}, each one with 

different preference parameters: a 1 < a2 < a 3. The first (third) member is the 

most (least) conservative, while the second has moderate preferences over inflation 

and output gap. Therefore, the aggressiveness in the response of the interest rate 

to expected inflation decreases with the index of each member.

5.3.1 Bargaining problem

We assume the policy decision is a bargaining problem in the spirit of Baron and 

Ferejohn (1989), which is closer to how the interest rate is decided in practise by an 

MPC. In every period the interest rate is determined by the following game: one 

member, the agenda setter, proposes a new interest rate. Then, the members of 

the MPC vote. We assume that it is necessary a simple majority to have the new 

interest rate approved. Then, the new interest rate is implemented if at least two

8We work on the heterogeneity in the weights but not on heterogeneity on the targets. Hetero­
geneity on targets gives different inflation bias among members, whilst the degree of adjustment 
of the interest rate to shocks is the same for every member. In other words, with heterogeneity on 
targets the members only differ on the level of the interest rate, and this difference is independent 
of the type and size of shocks

9We assume a committee of three members because this is the minimum odd number of mem­
bers in order to have a conflict.
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out of three members of the MPC approve it, otherwise the last period interest rate 

is maintained.

In this voting system the status quo is given by last period interest rate, it 

means that this is the default interest rate if the members do not accept the new 

interest rate proposed by the agenda setter. Moreover, because the agenda setter 

makes a take-it-or-leave-it proposal, she has a first mover advantage, which in this 

setup gives her more bargaining power than to the other MPC’s members. There­

fore, the agenda setter can strategically set to vote an interest rate that maximises

her own utility constrained by the reaction of other members. Denote the identity

of the agenda setter by A, her optimisation problem becomes:

m axWtA =  \olax\ +  ?q2] +  PEtWfi_x (5-2)

subject to

xt = ~<P [it ~  Et7rt+i -  r ”] +  Etx t+i (5-3)

7q =  A Xt +  (3Et7Tt+l + u t

and to

WtA (k) > WtA (5-4)

W* (it) > W{ (it~i) for at least one j  ^  A

The problem for the agenda setter is similar to the benchmark model, but 

with an extra constraint. Within an MPC, the agenda setter has to choose an 

interest rate such that also obtains the majority needed for approval. This problem 

includes some participation constraints on the behaviour of the other members. 

According to these participation constraints, the new interest rate should give at 

least the same utility than the status quo for the agenda setter and at least one 

additional member.

Since MPC members have different preferences over output and inflation 

stabilisation, there is a conflict on the size of the adjustment of the interest rate
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to ’’cost-push” shocks. For this reason, the political economy solution will depend 

on the size and direction of the shocks. When shocks affecting the natural rate 

are big relatively to ’’cost-push” shocks (ut), there is no conflict among members 

since their preferred interest rates are similar. However, in the opposite case, when 

the ’’cost-push” shock are big relatively to shocks affecting the natural rate, the 

MPC’s members have different preferences on the policy instrument. In that case, 

the political economy solution will depend on the state variable it~\ and the shocks. 

For simplicity, in order to describe easily the mechanism, we will focus in the case 

where there are no shocks affecting the natural rate, that is we assume r” =  0.

5.3.2 M PC members’ reaction functions

Since MPC’s members cannot credibly manipulate beliefs in the absence of commit­

ment, they take private sector expectations as given when solving their optimisation 

problem10. Therefore, as in the case of section 5.2, the private sector forms beliefs 

rationally conditional on the MPC’s reaction function. Given absence of commit­

ment, member j 's  preferences are given by

^ / = 4  b * (2 + 7rt2] + /? w ; +i

where EtW Jt+1 are taken as given. Therefore, similar to the case of the previous 

section, her preferences are maximised by i\*, the member-j optimal rate:

i?  = (AEtnt+1

where =  1 +  11. This optimal rate is similar to the rate in the single poli­

cymaker case for a = a?. Moreover, given the ordering of the preference parameter

10This assumption also allow us to simplify greatly the problem, since expectations are taken as 
fixed by the MPC members, the political equilibrium doesn’t depend on the rational expectations 
economic equilibrium. If this were not the case, the fixed point problem would be more difficult 
to solve and the uniqueness of the equilibrium is not guarantied.

11The member-j optimal rate without commitment has the following form: i{* =  ^ E t7rt+i — 
{Et7ri+ i — p7rt ) . However, to get the simplest result as possible, we have assumed the second 

element is zero, as in the single-policymaker case when expected inflation is a linear combination 
of the shocks. The results don’t change if we include the more general policy rule, but notation 
gets more complicated.
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aj , the responsiveness of the interest rate to expected inflation diminishes with the 

index j  : that is <j% < <f% < <j>\. Then, the more conservative a MPC member is, 

the stronger she prefers the interest rate to react to expected inflation.

Conditional on the shocks, the welfare function for every MPC member is 

strictly concave in the interest rate, which is maximised at the member-j optimal 

rate it = i{*. The concavity comes from the quadratic preferences. Because of this 

concavity it is possible to define , the member-j participation rate, the interest rate 

that would make member j indifferent between this rate and the status quo interest 

rate

P roposition  5.2. Given last period interest rate, it~i, member j  will be indifferent 

between i\ and it~\ for

% =  2 i t*  ~  H - 1

See proof in appendix D. The member-j participation rate (ij) gives to her 

the same utility than last period rate, that is W/ =  0. Figure

5.1 shows the preferences over the interest rate for member j .  As we mentioned 

before, the welfare function is concave on the interest rate and it is maximised 

at the member-j optimal rate, i{*. The graph shows a case where the last period 

interest rate is lower than the optimal rate (that is it~\ < i3t*). According to this 

case, the participation rate is higher than the optimal rate. Then, any rate between 

last period’s and the participation rate will give her higher utility than the status 

quo. That means that member-j will be willing to accept a rate different than the 

optimal rate in order to be better off than the status quo. We can also generalise 

the opposite case: when last period’s rate is on the right of member-j optimal rate, 

the participation rate will be on the left of last period’s rate and any rate in between 

will give her higher utility than the status quo.
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1 {

Figure 5.1: Welfare function

5.3.3 T he policy problem

The agenda setter has a first mover advantage, because she can influence other 

member’s decisions through the interest rate she sends to vote. In figure 5.2 we 

show one example of how she can influence the vote of a member j. Let’s assume 

the status quo interest rate (it_1) is below the agenda setter’s optimal rate (if*)- 

The panel on the left (right) shows a case when the agenda setter’s optimal rate is 

lower (higher) than member-j participation rate. In this example the initial interest 

rate is low and there is an increase in expected inflation (most likely because of a 

“cost-push” shock). Both members j and A want an increase in the policy rate, but 

A  prefers a higher increase than j . If the agenda setter’s optimal rate is not too 

high, as in the case on the left, member-j will accept it. However, if it is too high, 

as in the case on the right, it violates member-j participation constraint and the 

best the agenda setter can do is to set i3t that makes the constraint binding.
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Figure 5.2: a) Policy problem when: iA* < i?. b) Policy problem when: iA* < .

In this subsection we analyse the optimisation problem for the agenda set­

ter and its implications for interest rate smoothing. We show that what matters 

for interest rate smoothing is the identity of the agenda setter, the degree of het­

erogeneity of preferences among members and the size of the shocks. In brief, we 

observe interest rate smoothing only when the agenda setter is either the first or the 

third member, and not when she is the second member. The following propositions 

summarise our results taking into account the identity of the agenda setter.

P roposition  5.3. When the agenda setter is the member with median preferences, 

member 2, there is no interest rate smoothing

The policy problem when the agenda setter is the second member satisfies 

the median voter theorem. In this case, she is always able to form a coalition with 

either the first or the third member, to support her most preferred rate. Therefore, 

there is not interest rate smoothing when the agenda setter is the member with 

median preferences.

Member 1 prefers a more active interest rate to reduce deviations of inflation 

around its long-run value, while member 3 prefers a less active policy to reduce 

deviations in output gap. The agenda setter tends to form a coalition with the
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first member when she needs to adjust the interest rate because of a new shock, 

for instance an increase in expected inflation. But as the shock vanishes, she tends 

to form a coalition with the third member to return the interest rate closer to its 

neutral level.

Therefore, coalitions in the MPC vary with the sign of expected inflation 

and the state variable it_v  When expected inflation is positive the agenda setter 

will look for a coalition with the more conservative member (member 1) if the initial 

interest rate is too low. However, if the initial interest rate is too high, she forms a 

coalition with the less conservative member (member 3). A similar analysis applies 

when expected inflation is negative. Also, when the size of the shocks is too high, 

both other members of the MPC agree with the agenda setter to change the interest 

rate as her wish.

Being the agenda setter the member with median preferences would prevent 

interest rate smoothing from a political economy point of view. However, this is 

not always the case, since often the most conservative member is appointed as 

the agenda setter. As Barro and Gordon (1993) have pointed out, assigning the 

monetary policy decision task to a conservative policy-maker can help to reduce the 

time inconsistency problem. However, if the decisions are taken in an MPC, it will 

also induce to interest rate smoothing. We show this in the next proposition:

P roposition  5.4. When the agenda setter is the more conservative member, mem­

ber 1,there is interest rate smoothing and the policy function is given by:

it — it—i when it—i G [it j it ] or it—i G [ẑ  , it ]
it = i2t when it-1 G [2i f  -  i}*, i2*] or it- i  G [z2*, 2i f  -  i]*)

it = i\* otherwise

According to this proposition, the policy function can take three different

functional forms. We present the thresholds defining the areas for those functions 

in terms of the optimal rates for MPC members. These optimal rates are function
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of expected inflation, which at the end also depend on the shocks and the policy 

decision. Therefore, the functional form of the policy function depends on last 

period interest rate and the shocks.12. In the first functional form the interest 

rate doesn’t change, in the second one the participation constraint for member 2 is 

binding and in the third one the interest rate responds the same than member-l’s 

optimal.

In the third area, there will be always a member that will prefer the agenda 

setter’s optimal rate (ij*) than the status quo rate (it- 1). The agenda setter can 

obtain from the voting process the same interest rate that maximises her uncon­

strained utility, because the participation constraint is not binding for at least one 

other member. This is possible because she has the first moving advantage in the 

voting process and the change in expected inflation is such that makes the last 

period rate sub-optimal for the other members in comparison with i]*.

In the second area, the agenda setter sets an interest rate such the partici­

pation constraint is binding for one of the members. She chooses to make binding 

the participation constraint for member 2 because she has the closest preferences 

to hers. In such area, the agenda setter cannot obtain from the voting process her 

preferred rate, but she can obtain a rate that maximises her utility subject to the 

participation constraint of member 2.

The first area defines an area of inaction, where the participation rate of 

any member does not satisfy the participation constraint of the agenda setter. That 

means, any rate that satisfy the participation constraint of any other member would 

make the agenda setter worst off than last period’s rate. Then, the agenda setter 

by any means would prevent to have the interest rate changed. This area is defined 

when last period’s rate is between the optimal rate for members 1 and 2. In this 

area, the gains from changing the rate are small in comparison to the cost of having

12In each row the thresholds on the left correspond to the case when expected inflation is positive 
(Etitt+i 0), because in that case z2* . Similarly, the thresholds on the right are for the case
when expected inflation is negative.
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an agreement, so MPC members would prefer to leave it unchanged13.

The interest rate reaction function has a piecewise form with 2 thresholds 

and 3 zones, and the form depends on the sign of future expected inflation. When 

expected inflation is positive (negative), the individual member’s optimal rates are 

also positive (negative) and i\* > if* > z3* (zj* > %$* > z3*). The reaction function 

is summarised in figure 5.3. The graph on the left shows, given positive expected 

inflation, in the bold line the interest rate reaction function and in the light line the 

unconstrained optimal interest rate at zj*. Similarly, the graphs on the right shows, 

also given positive expected inflation, in the bold the change in the interest rate in 

period t, and in the light one the optimal change in the unconstrained case, that is 

Ait = i\* -  zt- i.

Both graphs show that there is interest rate smoothing when z*_i G [2ẑ  * — 

*>*«*]» because the interest rate change less than the optimum. In this area we 

have two degrees of interest rate smoothing: when z*_i G [*?%*}*] the interest rate 

does not change at all and when [2z** — zj*,zj*] the interest rate changes less than 

the optimal. In the former case, negotiating in the MPC imposes a menu cost that 

makes not optimal to do small changes to the interest rate. In the latter, the agenda 

setter present to vote a change smaller than the optimal, to obtain a coalition with 

one of the other members, member 2.

In these graphs it is possible to see that the political economy solution

can explain both features of interest rate smoothing: the modest response of the

interest rate to inflation expectations and the lagged dependence. The reaction

function has a smoothing area where the interest rate either has partial adjustment

or it is completely fixed. Moreover, the type of smoothing depends on the difference

13In this axea, the optimal strategy for the agenda setter is to set to vote an interest rate that 
violates both participation constraints of the other two members, then from the voting process 
the it~ i is maintained. However, this strategic voting seems unrealistic, because the agenda setter 
could lose credibility requesting those policies rates. We could also think about a more complex 
game, where if none of the other members agree with the agenda setter to maintain the rate 
unchanged, they will have to start again a new meeting which involves a cost. Even a small cost 
to keep arguing, different from zero, can make MPC members to maintain the rate unchanged.
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Figure 5.3: Interest rate reaction function: a) it, b) Ait

between the optimal rate and the lagged interest rate. When the difference between 

i f  and it- \  is small, the interest rate is fixed. However, when this difference takes 

intermediate values the interest rate change but less than the optimal. When this 

difference is big enough, the change will be equal to the optimal. Moreover, in 

the absence of cost-push shocks that give a trade-off between inflation and output 

volatility, the interest rate reaction function converges to i f ,  the optimal reaction 

function for the agenda setter. This is equal to the benchmark case with a single 

policymaker.

We can obtain a similar result in the opposite case, when the less conser­

vative member is appointed as the agenda setter we have:

P roposition  5.5. When the agenda setter is the less conservative member, member 

3, there is interest rate smoothing and the policy function is given by:

it = it-! when it- \  G [if, i f] or it- 1 G [if, i f]

it = if when it~ i G [if,  2 i f  — i f ]  or it~i G [2 i f  — i f ,  i f]

it = i f  otherwise

The proof follows the same steps as proposition 5.4. This policy function
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has features similar to the previous case. There is an area where the interest rate is 

completely fixed and another where there is partial adjustment. Also, the coalitions 

are made with member 2, who has preferences closer to the agenda setter. However, 

the direction of the smoothing is different. For example, for positive expected 

inflation, in the smoothing area the interest rate change more than the optimal for 

member 3.

In this model we have interest rate smoothing when the agenda setter is 

either the first or the third member, and the reaction function is non-linear on the 

lagged interest rate and expected inflation. An important issue in this model is to 

determine if this non-linear policy rule can guarantee the existence of a rational 

expectations equilibrium. The following proposition shows that the determination 

properties of the rational expectations equilibrium are satisfied.

P roposition  5.6. A sufficient condition for the determinacy of a rational expec­

tations equilibrium with the reaction functions described in propositions (5.4) and 

(5.5) is that 01 < 1 + 2 ^ ^ .

The proof is in the appendix D. The intuition behind this is that, as the 

response in the reaction function to expected inflation is bounded between the opti­

mal response for members 1 and 3. And also, since each of those optimal responses 

satisfy the conditions for the existence of an equilibrium, this also guarantees the 

existence of the equilibrium in the context of voting on a MPC. From the political 

economy equilibrium it can be some sluggishness on the response of the interest 

rate, but this response always will be high enough in order to control inflation.

5.4 Econom ic Equilibrium

In this section we solve for the rational expectations equilibrium of inflation and 

output gap, given the interest rate reaction function of proposition (5.4). However, 

since the reaction function is non-linear and the solution doesn’t have a closed
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solution, we need to approximate it by a non-linear method.

5.4.1 M ethodology

We obtain a numerical solution to the rational expectations problem using a collo­

cation method, which allows us to obtain an approximate solution of the problem 

with a high degree of accuracy. The collocation method consists on finding a func­

tion that approximates the value of the policy functions of the problem at a finite 

number of specified points14. This sub-section describes the procedure we have used. 

The system of endogenous equations is the following:

xt = [it ~  EtTrt+i] +  Etx t+i 

7Tt =  A Xt +  fiEtitt+i +  Ut

it =  f  (Et7Tt+i,it-i)

for the IS, the AS and the non-linear reaction function. The system can be written 

as:

F ( X t iEt (Xt+1) , S t) =  0 (5-5)

where X t = [xt ,7rti it] are the endogenous variables and St = [ut, i t -1] are the state 

variables, that evolves according to:

St+i — 9 {Xt,  &t) — [put-1 +  i t -i ]  (5-6)

We approximate the expected value of the rational expectations solution of the 

model as a non-linear function on the states:

E X t+1 = Z ( S t) (5-7)

which is unknown. The rational expectations equilibrium satisfies:

F ( X u Z ( S t ) , S t) = 0 (5-8)

St+i —  '9{Xt,et)
14 See Judd (1998) and Miranda and Fackler (2 0 0 2 ) for discussion on collocation methods.
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The collocation method consists on finding a function of the states, <E> (St)lxn, eval­

uated in at Snxi nodes15 to approximate Z (St) by:

where C is a nx 1 matrix of coefficients. We need to solve for the matrix of coefficients 

C in (5-9) such that satisfy (5-8). We use linear splines evaluated at 200x200 

points as a basis for the projection method. To calculate the expected value we use 

numerical integration based on Gauss-Legendre quadrature evaluated at 5 points. 

We select splines as the basis function in order to have enough flexibility in the 

approximation function to capture the non-linearities of the solution. Similarly, we 

choose to approximate the expected value of the endogenous variable because it is 

smoother than the solution for the endogenous variable.

The algorithm has two steps:

Step 1: Since the interest rate reaction function is non-differentiable in the thresholds 

which makes difficult to apply the numerical methods to solve for (5-9), we 

use a first guess the following non-linear function for the interest rate:

that it minimises the approximation error. We select this non-linear form, because 

it captures many of the properties of the original reaction function: the values of 

the reaction function at the thresholds and at extreme values are the same. It also 

preserves the shape of the original reaction function, but it is smoother at the kinks. 

We compare the original with the smoothed reaction function in the following graph:

As we can see, this smoothed reaction function captures the two character­

istics of the original one: lagged dependence and modest response. Features that 

we want to evaluate in a general equilibrium framework.

15The system is evaluated at n =  n\ * nodes, n\ and 712 for the state space of Ut and it- 1 , 
respectively.

(5-9)

(it* ~ it-i) (2if* — if* — it-i)
<j'2* _ /jl* exp

) ■ )

where ij* and if* are member’s 1 and 2 optimal rates, and r  is chosen such
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Figure 5.4: Interest rate reaction function (original vs. smoothed function)

Step 2: We use the solution for Z  (S) from step 1 as a first guess for the real piece-

wise reaction function and estimate it again the policy function using the

collocation method.

The algorithm converges after a total of 140 iterations with a degree of

tolerance of 10E  — 8. We consider the following parameterisation: the discount

factor (3 = 0.98, the intertemporal elasticity of substitution = 1/5, the slope

of the Philips Curve A = 0.2, the preference parameters for member 1 and 2 are

ai =  0.5 and a\ =  1, the autocorrelation of the ’’cost-push’ shock is p = 0.75 and

its shock is normally iid with mean 0 and standard deviation of 0.01.
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5.4.2 Policy functions

In this subsection we describe the solution of the endogenous variables as a function 

of the state variables, ut and zt_i, We focus on the effects that the interactions 

within the MPC have on the interest rate and expected inflation. As we see in the 

next graphs, the political equilibrium problem generates lagged dependence, lower 

response to shocks and an increase in expected inflation.

Figure 5.5 shows the policy function for the interest rate. We show in the 

panel on the left the interest rate as a function of the lagged interest rate for different 

values of the cost-push shocks. It shows that the interest rate has areas where it is 

independent of its lagged values, but there are areas where the response depends on 

its lagged value, when such lagged value is close to the optimal. Also, these areas 

increase the higher the size of the shocks. Similarly, we show in the panel on the 

right the interest rate as a function of the cost-push shocks for different values of 

the lagged interest rate. We observe that there is no interest rate smoothing when 

the initial interest rate is close to its neutral value (that is it~\ = 0). However, there 

is a lower response when the interest rate is closer to its optimal value.

In the model the MPC takes as given expected inflation because there is a 

lack of commitment. However, the interactions within the MPC generate interest 

rate smoothing and the economic agents internalise this, which also has an effect 

in expected inflation. In the next graph we compare the expected inflation policy 

function of our the model with that of the single unconstrained policymaker. We 

show that the inertial behaviour of the interest rate increases expected inflation 

proportional to the size of the cost-push shock, but independently on the lagged 

interest rate. U nder our benchm ark param eterisa tion , a  cost push  shock 

has an  additional effect on expected inflation of 4.5 percen t. This effect is 

independent of the lagged interest rate, because the solution takes into account the 

distribution of the shocks, which smoothes the effects of the shocks. As economic 

agents internalise that the decisions of the MPC have an inertial component, they
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Figure 5.5: Interest rate policy function.

consider this effect in their expectations. Therefore, the more heterogeneous the 

preferences in an MPC are, the effect cost-push shocks on expected inflation.

5.4.3 Im pulse response to ’’cost-push” shocks.

Figure 5.7 shows the effect of a shock of 1 standard deviation in the cost-push shock, 

for different values of the initial interest rate and for the case of the unconstrained 

policymaker. The initial interest rate takes values that can be high (3%), medium 

(2%) or low (1%). We see that the expected response of the interest rate is different
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Figure 5.6: Change in expected inflation (benchmark model vs. MPC model)

depending on the starting point. If the interest rate is close to the optimal, it 

almost doesn’t change. However, for the case when the initial interest rate is low, 

the change is higher and closer to the unconstrained case. For the intermediate 

value, the new rate is in between. We can also see that this effect is transitory, as 

in period 2 the response is very similar for the four cases. However, since this is 

the expected path of the interest rate, it is taking into account that other shocks 

would arrive in the next period, which reduces the expected effect of interest rate 

smoothing.

Similarly, figure 5.8 shows the expected responses for inflation and output
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Figure 5.7: Impulse response to a cost-push shock: interest rate

gap. We can observe here the trade-off between output and inflation volatility. 

The higher the initial interest rate, the more interest rate smoothing and the less 

volatility of output in relation with inflation.

5.5 Empirical Im plications

The model that we develop in section 5.3 has some empirical implications. In this 

section we analyse if those implications are consistent with what is observed in 

the data. According to the model, more interest rate smoothing will be observed 

when the preferences among MPC members are more unequal, the agenda setter 

has preferences that are not in the median of the MPC members, and the size of the 

shocks is small. Moreover, this result comes from the assumption that the agenda 

setter can influence other members and there is an strategic game within the MPC.

Impulse Response Interest Rate
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Figure 5.8: Impulse response to a cost-push shock: inflation and output gap

We analysed in this section whether these stylised facts are consistent with the path 

of the official rates for the USA, UK, EMU, Canada, Sweden and Switzerland, and 

with the published voting record of the Bank of England.

Stylised fact 1: Agenda se tte r influence on the  o ther m em bers

When the MPC members vote, they express their own view about the econ­

omy. However, we argue that in the voting process, the agenda setter can influence 

the votes of some members to obtain a policy that is closer to its own optimum. Also, 

the other members influence the decision of the agenda setter, because she needs
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the votes of other members to have the policy approved. The final outcome in the 

voting process is a political equilibrium. There are some open questions about this: 

Does this strategic behaviour take place? Has the Chairman/Governor/President 

of the MPC more power and influence than her peers?

Regarding the first question, we can see from the voting record of the MPC 

at the Bank of England that in almost all cases, from when the MPC started in 

July 1997 until May 2006, the final policy outcome is the same as the voting record 

for the Governor16 . In other words, the agenda setter never loses. This indicates a 

strategic behaviour from the agenda setter, in order to obtain the coalition needed 

to have a policy passed.

Also, there is evidence that the person in charge of the MPC meeting has 

more power and can influence other members’ decisions; however the final product 

is a political equilibrium. Laurence Meyer, Board Governor of the FOCM from 

1996 to 2002, remarks on ’’the chairman’s disproportionate influence on FOMC 

decisions” and on ’’his efforts to build consensus around his policy recommenda­

tions”17. Similarly, Sherman Maisel, who was a member of the Board during Burns’ 

chairmanship also points out that ’’while the influence of the Chairman is indeed 

great, he does not make policy alone”18. Then, the interest rate decisions come 

from the interaction between the agenda setter ant the other members of the MPC.

Stylised fact 2: Heterogeneity in the preferences

The model relies on the assumption that MPC members have different pref­

erences. This heterogeneity, together with strategic behaviour of the agenda setter,

16The exception was the meeting of August 2005, in which the Governor -  Mervyn King invited 
members to vote on the proposition that the repo rate should be reduced by 25 basis point. 
Five members of the committee vote in favour, whilst the other four members, among them the 
Governor, preferred to maintain the rate.

17Meyer (2004), p.50.
18Maisel (1973), p. 124.
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causes interest rate smoothing. How heterogeneous are the preferences among mem­

bers? Do they really think differently? We take as an indicator of this heterogeneity 

the dissenting record of each member with respect to the agenda setter. We con­

struct this indicator using the information of the voting record for the Bank of 

England, which is available for the period since the MPC was established in July 

1997.

Gerlach-Kristen (2003) analyses the voting record of the BoE since the 

introduction of the MPC. She characterise the MPC member in four groups: the 

first group, the agenda setter, always vote with the majority; the second group, the 

” doves”, when dissenting always favoured a level of interest rates lower than that set 

by the majority; the third group, the ’’hawks”, always favoured a tighter monetary 

policy when dissenting; and the fourth group doesn’t show a systematic preference 

to higher or lower rates. We can classify the members of the third (second) group 

as those that are more (less) conservative than the agenda setter.

In table 5.1 and 5.2 we classify the MPC members in the four categories 

as Gerlach-Kristen (2003a) for both, the governorship of Sir Edward George and 

Mr. Mervyn King. For this classification we consider if the preferred rate when 

dissenting was higher or lower than the voted rate, and how frequent they dissent. 

We have considered only those members with at least ten votes in the record and 

those that show systematic preferences to either lower or higher rates. Also, we 

have also classified the members as internal or external depending on the way they 

are appointed19.

Table 5.1 shows the classification during the Governorship of Sir Edward 

George from July 1997 to June 2003, and table 5.2 for the Governorship of Mr 

Mervyn King from July 2003 to June 2006. The members are classified by its

19The MPC at the Bank of England was established in June 1997. It has nine members, five 
full-time Bank executives (the Governor and two Deputy Governors, the Chief Economist and the 
Markets Director) and four external members, who are appointed for a three-year term by the 
Chancellor of the Exchequer.
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conservativeness degree, being those at the top the more conservative20

According to this classification, we can see some differences on MPC mem­

bers preferences across sub-samples. First, Sir George has been on average closer 

to the median preferences than Mr. King does. Second, we can see more dispersion 

among MPC member’s preferences during Mr King’s governorship than during Sir 

Edward George’s Governorship. Third, the MPC members internally appointed 

show a tendency to be more conservative than those appointed externally. Accord­

ing to these features, our model predicts under Mr. King’s governorship, ceteris 

paribus, more interest smoothing than under Sir King’s governorship. Effectively, 

during Mr King’s governorship, the official rate has been maintained 80 percent of 

the time, in comparison to 68 percent in Sir Edward George’s governorship.

20For instance, according our classification Sir Budd has been the most conservative during Sir 
George Governorship, since he has preferred proportionally more times a higher rate than the 
Governor.



Frequency  
o f d issents

o f  w hich for 
higher rate A p poin tm ent

T he m ost conservative  
Sir Alan Budd 22.2% 100.0% External
John Vickers • 17.9% 100.0% Internal
Mervyn King 16.2% 100.0% Internal
Charles Goodhaxt 8.3% 100.0% External
Paul Tucker 7.7% 100.0% Internal
Sir E dw ard G eorge (G overnor) 0.0% 0.0% Internal
Charles Bean 2.9% 0.0% Internal
Kate Barker 11.5% 0.0% External
Sushil Wadhwani 35.1% 0.0% External
DeAnne Julius 28.9% 0.0% External
Christopher Allsopp 29.7% 0.0% External
Marian Bell 25.0% 0.0% External
T he least conservative

Table 5.1: Classification MPC members:: Sir George’s governorship

Frequency o f w hich for
o f  d issents higher rate A p poin tm ent

T he m ost conservative
Sir Andrew Large 25.8% 100.0% Internal
Paul Tucker 11.4% 100.0% Internal
Rachel Lomax 2.9% 100.0% Internal
M ervyn  K ing (G overnor) 0.0% 0.0% Internal
Kate Barker 2.9% 0.0% External
Richard Lambert 3.0% 0.0% External
Charles Bean 8.6% 0.0% Internal
David Walton 9.1% 0.0% External
Marian Bell 12.5% 0.0% External
Stephen Nickell 25.7% 11.1% External
T h e least conservative

Table 5.2: Classification MPC members: Mr. King’s governorship

177



Stylised fact 3: Dispersion of preferences and interest rate smoothing

The model predicts that the more heterogeneous the preferences are, if 

the agenda setter is not the median member, ceteris paribus will be more interest 

rate smoothing. To analyse this fact, we compare the paths of the official interest 

rate for the European Central Bank (ECB) and the Swiss National Bank (SNB). 

We expect those economies to have similar paths for interest rate decisions, since 

the main trading partners for Switzerland are the members of the EMU and those 

economies are hit by similar shocks. However, the pattern of the official interest 

rate for the SNB is more dynamic than for the ECB. On average, the changes of 

the interest rate had a duration of five months for the SNB in comparison to seven 

months in the ECB. Also, the SNB has changed the interest rate by higher amounts 

than the ECB, the mode in the change of the interest rate is 0.5 percent for the 

SNB in contrast to 0.25 percent for the ECB. This would be explained by how the 

MPCs are formed in both central banks. At the ECB, the Governing Council is 

formed by the six members of the Executive Board, plus the governors of all the 

national central banks (NCBs) from the 12 euro area countries, while at the SNB, 

the Governing Board in charge of monetary policy decisions is formed of only three 

members.

In table 5.3 we show some rough indicators about the dynamics of the 

official interest rate for six countries. The first indicator is the average duration of 

a change in the interest rate; we expect that the easier it is to have an agreement 

within the MPC, the lower the interest rate smoothing and the more frequent the 

adjustment in the rate. The second indicator is the mode of the change in the 

interest rate, the easier it is to have an agreement within the MPC, the higher the 

changes in the interest rates.

According to the first indicator, Canada and Sweden have the more active 

central banks, where a change in the interest rate lasts on average two months, 

followed by the United Kingdom and the USA with three months. While according

178



Country Data since: Change Rate 
Mode

Avg. duration 
(Months)

Number of 
members 

MPC

Number of 
meetings 
per year

Canada Abr-96 0.25 2.4 6 8
United Kingdom Jun-97 0.25 3.3 9 12
USA Ene-96 0.25 3.3 12 8
Switzerland Ene-00 0.50 5.4 3 12
EMU Ene-01 0.25 7.0 18 11
Sweden Jun-94 0.25 2.2 6 8-9

Table 5.3: Dynamics of Official Interest Rate

to the second indicator, Switzerland is more active with a mode in the changes of 

the interest rate of 0.5 percent, a difference from the other countries whose interest 

rates usually change by 0.25 percent. Both indicators also suggest that the central 

bank with more interest rate smoothing is the ECB, which changes the interest rate 

every seven months on average, at steps of 0.25 percent. As we mentioned before, 

these results are related to the composition of the MPC. The MPC in Switzerland 

has only 3 members, and Canada and Sweden 6; in contrast to the MPC in the 

USA and the EMU, which they have 12 and 18, respectively. The more members 

an MPC has, the more likely that their the preferences will differ and the more 

difficult it is to have an agreement.
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5.6 Conclusions

This chapter helps to explain the existing puzzle in the optimal monetary policy 

literature of interest rate smoothing: why in practice do central banks change the 

interest rate less frequently than the theory predicts? In doing this, we extend 

the New Keynesian Monetary Policy literature relaxing the assumption that the 

decisions are taken by a single policy maker, considering instead that monetary 

policy decisions are taken collectively in a committee. We introduce a Monetary 

Policy Committee whose members have different preferences between output and 

inflation stabilisation and have to vote on the level of the interest rate. Also, there 

is one member in charge of setting the agenda of the meeting, which can be the 

Chairman/Governor/President of the MPC.

We explain interest rate smoothing from a political economy point of view, 

in which MPC members face a bargaining problem on the level of the interest 

rate. In this framework, the interest rate is a non-linear reaction function on the 

lagged interest rate and the expected inflation. This result comes from a political 

equilibrium in which there is a strategic behaviour of the agenda setter with respect 

to the other MPC members in order to maximise his own policy objective.

According to the model, there is not such interest rate smoothing when the 

agenda setter is the member with median preferences. As in the median voter theo­

rem, she can always get a coalition to have her most preferred (lagged independent) 

interest rate. However, when the agenda setter is either one of the most or the least 

conservative members, it will be interest rate smoothing from a political economy 

point of view. Also, interest rate smoothing is higher when the preferences among 

the MPC members are more heterogeneous.

The size of the shocks is also important for interest rate smoothing. We find 

that the interest rate will adjust in the same magnitude as in the single policymaker 

case when the size of the shocks is high enough. However, when the size of the
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shocks is of intermediate size, we have found that the interest rate adjusts partially 

in order to form a coalition between the agenda setter and at least one of the other 

two members. Also, when the size of the shocks is small, it is preferred to maintain 

the interest rate unchanged.

We present this explanation of interest rate smoothing as an alternative 

approach in order to reproduce altogether both features documented by the empir­

ical evidence of interest rate smoothing: the modest response of the interest rate to 

inflation and the lagged dependence. These are features that other models fail to 

reproduce at the same time. Our model also provides a theoretical framework on 

how disagreement among policy makers can slow the adjustment on interest rates 

and on ‘menu costs’ in interest rate decisions.

We also present some evidence based on the official interest rate path for 

five central banks and the voting record at the Bank of England. We show that this 

information is consistent with the assumptions of the model and with the results. 

We observe in the data that central banks whose members have more heterogeneous 

preferences adjust the interest rate less frequently, as in the case of the European 

Central Bank and the FED. Central banks with fewer members adjust the interest 

rate more aggressively, as in the case of the Swiss National Bank, the Bank of 

Canada and the Bank of Sweden. Also, according to the voting records at the Bank 

of England, there is also evidence of heterogeneity in the voting preferences among 

the members of the MPC, which is positive related to the degree of interest rate 

smoothing.

We do some quantitative exercises to show how interest rate smoothing in 

our model affect the economic equilibrium. We show that interest rate smoothing 

increases the effects of cost-push shocks on expected inflation by 4.5 percent given 

our benchmark calibration. As economic agents internalise the inertial component 

of the MPC decisions, they also consider this effect when forming expectations.
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D Appendix: Proof of propositions

D .l Proof of proposition 5.1:

We divide the proof in two steps: first the policy-maker chooses xt and irt to max­

imise her welfare subject to the aggregate supply. Then, conditional on the optimal 

values of xt and 7rt, she determines the value of it implied by the IS.

The first step of the policymaker’s problem is given by maximising the 

bellman equation:

max Wt = - i  [ax2t +  itf\ +  j3EtWt+1
{xt ,  7Tt} Z

subject to

TTt = A Xt +  (3Et'Kt+i +  Ut

Since the policymaker cannot credibly manipulate beliefs in the absence of commit­

ment, she takes private sector expectations as given when solving her optimisation 

problem. Then, conditional on the policymaker’s optimal rule, the private sector 

forms beliefs rationally. Therefore, the policymaker takes EtWt+i and (3Etivt+ias 

given in her optimisation problem.

The solution to the first stage problem yields the following optimally con­

dition:

xt = - - 7 rt (D-l)a
According to this condition, whenever inflation is above target, the policymaker 

contracts demand below capacity by raising the interest rate; and vice versa when 

it is below target. The aggressiveness of the policymaker depends positively on the 

gain in reduced inflation per unit of output loss, A, and inversely on the relative 

weight placed on output losses a.

In order to obtain the reduced for expression for xt and irt, we combine the 

first order condition with the PC, and then impose that private sector expectations
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are rational to obtain:

x t =  - zu u t ( D - 2 )

a
71* =  ~ T U U t

where w  =  a2+q 1̂_/3̂  is a decreasing function of the preference parameter a. From 

the second step, the optimal feedback policy for the interest rate is found by inserting 

the desired value of x t in the IS:

where <j>v = 1 +  ^ P̂X > 1.ptpa

D.2 Proof of proposition 5.2:

Replace the IS and the AS in the welfare function of member j and operate:

W ! ( i t ) =  - l \  * > l - V (it - E tnt+1- r ? )  +  EtXt+1f  I +  0 W l +1 (D-3)
2 1 + [ X ( - i p ( t t - E tTTt+1 - r ? )  +  Etxt+1) +  /3Etirt+1 +  ut ] »

Subtract the welfare function evaluated at it-1 :

cPip (it -  i t- 1)

+A<p (it -  i t - i )

ip(it +  i t - 1)
—2 (p> ^EtTTt+i + r ” +  ^ E txt+

A<£ ( k  +  H - i ) -  

2 Â</? ^EtTTt+i +  r t +  ^E tX t+i j  +  0Etfft+i  +  Utj
(D-4)

factorise ip (it — it~i) and rearrange the terms that are similar:

Wtj  (U) -  Wtj (it-! )  =  - - i p ( U  -  i t - 1)

(a? +  A2) <p(it +  *t- i )

-2 (aj  +  A2) \ y  (Etnt+i  +  r? +  ± E txt+1^  

-2A  (0Et nt+i +  ut)

> (D-5)

Member j optimal rate satisfies:



also the optimal rate for member j is

=  rt +  Et^t+1 - ~ ( 4 ~  E&t+i) (D-7)ip

replace (D-7) in (D-5) and factorise the term (a-7 +  A2), we obtain:

(D-8)

make use of the AS and (D-6) to eliminate some terms. The condition can 

be written by:

W l (it) -  W} =  - h p 2 {eP +  A2) (it -  it_,) {(•* +  i t-1) -  2 if}  (D-9)

We have that W} (it) =  (it- \ ) when either i* = 2*_i or it = 2i{* — it~\ = i{

D.3 P ro o f of proposition 5.4

Let’s analyse the case when i?*7rf+i > 0, the proof for the opposite case is similar. 

When inflation expectations are positive, we have the following ordering for each 

member preferred interest rate:

i f  > i f  > i f

We will analyse three possible cases: when the agenda setter can set the 

interest rate equal to her most preferred rate (z}*), to the participation rate of 

either member 2 ( i f  or 3 ( i f ,  or the status-quo (it-i). Case 1: when member 2 

or member 3 accept agenda setter’s preferred rate («J*)? The utility of member j in 

comparison with the status quo is:

w t ( * ! * )  -  w t ( * f - i )  =  - \v > 2 {°P +  ^ 2 )  ( * < *  -  * t - i )  { ( * < *  + * t - i )  -  2 i f }
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This is positive for member 2 when it- \  < 2if* — if* < if* < if* or when it- \  > i\*. 

Similarly, this is positive for member 3 when i t- \  < 2if* — if* < if* < i\* or when 

it-1 > i\*. Then, since if* < if*, when either it- i  < 2if* — if* or it- i  > if* at least 

one member will accept if*. Case 2: when the agenda setter will prefer to attract 

the vote of member 2 with i = i2 instead of the vote of member 3 with i = i3?

Compare the utility of the agenda setter under both rates:

W A ( ? )  -  W A ( f )  =  - 2lp2 (aA + X2) ( i f  -  i f )  { ( i f  +  i f - i f )

= ( - ) (+) (?)

She will prefer to attract the votes of member 2 with i = i^ when it- \  > if* {-if*—if*, 

otherwise she will prefer to attract the votes of member 3 with i = i$.

The agenda setter will always prefer to set if*. However, when it is not 

possible to obtain the votes for if*, she can obtain the votes of either member 2 

or 3 setting the participation rate. But, we still need to compare if the agenda 

setter can be better-off with the status quo than with the participation rate. As 

the agenda setter has the first moving advantage, she can influence the votes of the 

other members if she prefer to maintain the rate unchanged. Case 3: when the 

agenda setter prefer the status quo to either i2 or is ? Compare the utility of the 

agenda setter under both cases:

WtA (ity  -  W f  (it-1) =  —2tp2 (aA +  A2) ( i f  -  **_,) { if  -  i f }

for j  = 2 : W A {i2̂  < W A (it-i) when it_i > i f .  Similarly, for j  = 3 : 

W A (i?) < W A (it- ,)  when it- ,  > i f .

Then, when if* < it- i  < if* : the agenda setter will prefer the status quo 

to rate necessary to obtain the votes.

In the remaining area (2if*—if* < it- i  < if*), since 2if*—if* > if*-{-if*—if*, 

the agenda setter can attract the votes of member 2 setting it = i f . This define four 

areas of the interest rate reaction function when Etirt+i > 0.
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D.4 Proof of proposition 5.6

Consider F  as the forward operator, the Phillips curve equation and the IS equation 

can be expressed as:

(1 -  pF) irt =  Xxt +  ut (D-10)

(1 - F ) x t = -ip  {it -  Firt) (0-11)

where it is function of expected inflation. Multiply (D-10) by (1 — F)  and subtract 

(D-ll):

(1 -  F)  (1 -  0F) irt -f Xtp (it — Frct) = (1 -  F) ut (D-12)

In order to have a stable rational expectations equilibrium, we need that 

the roots of F  in the left hand side of (D-12) being outside the unit circle.

Let’s analyse first, the determinacy for member-j preferred policy rule:

i* = f t  EtTYt+i = f t  F7vt

The condition for determinacy is that root to the problem

Xip ( f t  -  1) F = -  (1 -  F) (1 -  0F) (D-13)

being outside the unit circle. The value of f t  at the boundary F = 1 is f t  = 1. 

Similarly, the value at the boundary F = —I is f t  = \ + 2 ^ ^ . Then, any value 

of f t  G 1,1 +  2 ^ ^  satisfies the determinacy condition. As f t  > f t  > f t  > 1, a 

sufficient condition for determinacy is that f t  < 1 +  2 - ^ .

To analyse the roots of F  in (D-12) for the policy rule in proposition (5.4) 

or (5.5), note that it is bounded by preferred rate for member 1 and 3,that is: 

it e  [ftF'KUftF'Kt\. Then

[-q (F) + Xip ( f t  -  l) F] 7Tf < q (F) 7vt +  A<p (it -  Fwt) (D-14)

< [ q ( F ) ^ X i p ( f t - \ ) F } ' K t
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where we have defined the polynomial q (F) = — (1 — F) ( l  — (3F). In the fol­

lowing figure we graph the polynomial q (F) and the two lines \ip ((j>3 — 1) F  and 

A(p(4>1 — 1), which satisfy the determinacy condition. The intersection of each line 

with q (F) give the value for the root of F. On the other hand, the root for the 

policy function it is located on the segment of q (F) between both lines. Also, note 

that any point in that segment satisfies the determinacy condition, and the exact 

position will depend on the last period interest rate.

- 1)7

m

Figure D.l: Determinacy condition
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