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ABSTRACT

The main subject of this thesis concerns the optimum design of 

experiments for discriminating between two rival mathematical models. In addition, 

optimality of designs for parameter estimation is investigated although restricted to 

binary response models. Optimal design theory and generalized linear models form 

the background for this work. The former provides the tools for construction of the 

optimum designs whereas the latter provides the framework in which the methods 

are developed.

For model discrimination the procedures which are proposed may not 

only be applied to compare two regression models but also to compare two 

generalized linear models as long as they belong to the same subclass. The principle 

of the so called T—optimality criterion, originally introduced for discriminating 

between two regression models, is extended to other classes such as generalized 

linear models. Within each context a theorem based on the General Equivalence 

Theorem from the optimal design theory is shown to hold thus allowing both 

constructing and checking optimum designs.

Optimum experimental designs to estimate the parameters of a binary 

response model is the other subject of this thesis. Initially, well known link functions 

such as logit, probit and complementary log—log are considered. Later, this range is 

widenned by introducing a family of link functions which includes the logit and the 

complementary log—log links as particular members.

One common feature of these two problems is that classical optimal 

designs depend on the unknown values of the model parameters. Therefore, only 

locally optimal designs can be obtained unless observations may be taken 

sequentially, in which case several methods to search for the optimum are available 

in the literature. As an alternative to locally and sequentially optimal experiments, 

Bayesian designs are introduced for both model discrimination and parameter 

estimation.
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CHAPTER 1. INTRODUCTION

1.1. BASIC OBJECTIVES OF THE THESIS

The main subject of this thesis is the optimum design of experiments 

for discriminating between two rival mathematical models. The basic problem with 

which we are concerned occurs when two models are supposed to be potentially 

capable of providing good fits for the responses arising from a controlled experiment. 

Generally speaking, we consider pairs of models whose deterministic mechanisms 

generate patterns which agree closely with that of the underlying experiment. 

Consequently, they also agree closely with each other. However, such a restrictive 

assumption is not crucial for the formulation and solution of the problem. The only 

reason for this assumption is that otherwise the problem does not seem to be 

relevant. Having said that, it is important to point out that other interests 

originating in a similar framework could give rise to more specific assumptions.

Under these drscumstances, the experimenter faces the problem of 

choice as to which one of the two models should be adopted for general purposes 

such as inference about the model parameters, parameter interpretability, 

prediction, etc. Our approach for this problem is based upon the principle of 

providing a more adequate setting for making the right decision rather than that of 

developing the means for such decisions. In other words, we concentrate on matters 

pertaining to the planning of the experiment, with emphasis on maximizing the 

efficiency with which the choice of model is made. An essential requirement for this
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approach is that the experimental conditions must be under the full control of the 

experimenter, thus, allowing a choice of the "optimum11 levels for the explanatory 

variables at which the responses will be taken. This leads to the definition of a 

criterion of optimality which is the key point for the theory and illustrations 

presented in the first part of this thesis, which comprises Chapters 3, 4, and 5.

Optimum design theory and generalized linear models form the 

background for this work. The former provides the tools for construction of the 

optimum designs whereas the latter provides the framework in which the methods 

are developed. The procedures which are proposed may not only be applied to 

compare two regression models but also to compare two generalized linear models as 

long as they belong to the same subclass. The common factor leading to such a wide 

scope for the applications of optimum design for model discrimination is the 

principle of T—optimality (which was originally introduced for discriminating 

between two regression models) and its natural extensions to other classes such as 

generalized linear models.

In addition to the problem of model discrimination, optimality of 

designs for parameter estimation is investigated although restricted to binary 

response models. This subclass of generalized linear models has been the subject of 

intensive research recently. Certainly, the advent of the theory of generalized linear 

models, the increase in the scope for its applications, its fast accessibility in a 

number of statistical computer packages, and its easiness of implementation and 

interpretation are among the reasons for such an increasing interest. Following this 

trend, some advances have also been made in the planning of experiments giving rise 

to binary responses. Nevertheless, several branchs of this theory are still in need of 

further developments.

So, optimum experimental designs to estimate the parameters of a 

binary response model form the second subject of this thesis, comprising Chapters 6 

and 7. Initially, binary response models with well known link functions such as logit,

13



probit, and complementary log—log are considered. Later, the range of link functions 

is widened by introducing a family of link functions which includes the logit and the 

complementary log—log links as particular members. Generally speaking, our 

interest lies in searching for experimental designs that maximize the precision with 

which the model parameters are estimated. As in the first part of the thesis, 

optimum design theory and generalized linear models underlie the methodology 

developed in the second part of the thesis.

Another common feature of the two general problems tackled in this 

thesis is that classical optimum designs depend on the unknown values of the model 

parameters. Therefore, only locally optimum designs can be obtained unless 

observations may be taken sequentially. As an alternative to local and sequentially 

optimum experiments, Bayesian designs are introduced for both model 

discrimination and parameter estimation. Within each context a theorem based on 

the General Equivalence Theorem from optimum design theory is shown to hold 

thus allowing both construction and checking of optimum designs.

1.2. PLAN OF THE THESIS

Chapter 2 contains two summary sections; a review of the literature on 

discrimination between models as well as on parameter estimation for binary data 

models and a review of optimum design theory. The aim of this chapter is not only 

to list the relevant references for the thesis, some of which are quoted in the main 

text, but also to present an overview of the basic concepts concerning optimum 

design theory, which underlie the results of the thesis. In the literature review, the 

references have been grouped by either of the two main subjects of the thesis and by 

methods presented such as local optimum designs, sequential designs, Bayesian 

optimum designs, etc. In the latter section, some of the most important concepts of 

optimum design theory are formalized or quoted. These will be used throughout the
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thesis in the theoretical developments contained in Chapters 3 to 7. It is important 

to emphasize that the contents of this chapter are not intended to cover completely 

either the literature on or the main results of optimum design theory.

Chapters 3 to 7 describe the main results of the thesis. Our 

presentation in each of these chapters is similar. First, a brief introduction describes 

the specific problem to be tackled. This is followed by a section of background where 

not only works related to the problem are quoted but also other important concepts 

are introduced. Then, in the next two or three sections, the criteria of optimality are 

introduced as well as the related derivative functions. A longer section containing 

examples, plots, and results, together with brief analyses and interpretations, 

illustrates the methods described in the previous sections. Finally, a section of 

discussion where the main conclusions are summarized and further topics for future 

research are suggested.

The first part of the research is covered, as mentioned before, in 

Chapters 3, 4, and 5. Chapter 3 deals with the problem of optimum designs to 

discriminate between two regression models. Initially, the criterion of T-optimality, 

giving rise to local optimum designs, is introduced and then extended to cases when 

prior distributions are available for the sets of parameters. Accordingly, the 

extended criterion is called Bayesian T—optimality. Two widely used regression 

models are used as illustration, the quadratic and the double exponential models.

In Chapter 4, a similar methodology is applied in determining optimum 

designs for discriminating between two binary data models. Again, not only is the 

concept of T-optimality used as the criterion of optimality but also local and 

Bayesian optimum designs are defined for this class of generalized linear models. As 

illustration, two binary data models with different link functions are used. Link 

functions studied are the logit, probit, and the complementary log—log.

Concluding the subject of model discrimination, Chapter 5 extends the 

results of Chapters 3 and 4 to the class of generalized linear models. The deviance
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plays the key role for a further generalization of the T-optimality criterion. Again, 

because of the dependence of the optimum designs on the true value of the 

parameters, Bayesian optimum designs are proposed for more general situations. 

The criteria utilized in previous chapters are shown to be particular cases of the 

generalized T—optimality criterion. The subclass of Poisson models with reciprocal 

and logarithmic link functions is used as illustration.

The second part of the research work developed for this thesis is 

contained in Chapters 6 and 7. In the former, simple binary data models such as 

logit and probit are considered. We show how to obtain both local and Bayesian 

optimum designs with the purpose of parameter estimation in this framework. 

Several examples illustrate the methods. In the latter, a family of link functions is 

introduced. The aim, then, can vary between optimum designs to estimate the 

model parameters, the link function parameter, the complete set of parameters, or a 

combination of the first two aims.

We conclude in Chapter 8 with both a summary of the main results 

obtained in this thesis and suggestions for future research. As each chapter of 

research contains its own section of discussions and conclusions, some of these have 

been omitted in the final chapter. The reader can refer to the last section of each 

chapter for more specific conclusions.
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CHAPTER 2. REVIEW AND BACKGROUND

2.1. INTRODUCTION

This chapter contains both a review of the literature related to the 

subjects of the thesis and a concise summary of the results from optimum design 

theory that are relevant to the development of the methodology described in 

Chapters 3 to 7. The former, presented in Section 2.2, is intended to cover the main 

contributions to design of experiments for model discrimination as well as parameter 

estimation for binary data models. The latter, presented in Section 2.3, consists of 

basic results from optimum design theory and convexity theory that are crucial for 

the definitions and proofs presented in the subsequent chapters.

Section 2.2 is subdivided into two subsections consisting of reviews for 

model discrimination and parameter estimation for binary data models. Even 

though some papers contain more than one approach, the discussions presented in 

each subsection are motivated by which approach was adopted such as sequential 

designs, Bayesian optimum designs, etc. Most references considered are based on 

optimum design theory although there are also important contributions which are 

based on other approaches.

Section 2.3 is based on the books of Silvey (1980) and Atkinson and 

Donev (1992). The first book together with that of Fedorov (1972) are classical 

references for the study of optimum design, and until recently were the only ones 

available in the English language. Atkinson and Donev’s book, published last year,

17



covers not only the general theory but also the advances as well as some of the 

applications of optimum design in the last twenty years.

2.2. REVIEW OF THE LITERATURE

2.2.1. MODEL DISCRIMINATION

Because optimum designs for model discrimination depend on which 

one of the models is true and on its unknown parameters, only locally optimum 

experiments can be found if classical techniques are to be used. An important 

alternative is to adopt sequentially designed experiments which consist of 

optimizing a certain criterion (over the design region) based on the information 

provided by previous observations.

Procedures for obtaining sequentially designed experiments can vary 

according to the number of points that are chosen at each stage. Although most 

widely used methods are based on the choice of a single point, there are indications 

that methods in which more than one point is chosen might be more efficient in 

terms of convergence. In either case, the criterion to locate the next design point(s), 

at which the new response(s) will be measured, uses the information from the 

responses provided by previous experiments similarly designed.

A second variant regards the manner in which the point(s) chosen at a 

given stage will be incorporated into the current design. The first alternative is 

simply to add the selected point(s) to the current design. The second is to replace 

the least informative point(s) belonging to the current design by the point(s) 

selected according to the adopted criterion. Either way, the process is repeated until 

a certain criterion of convergence is satisfied.

Most methods proposed to obtain optimum designs for model 

discrimination are in fact sequential methods as can be seen in the following
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summary of these methods and their subsequent developments.

In this thesis, the major reference for the subject of optimum designs

for modd discrimination is the paper by Atkinson and Fedorov (1975a) in which

methods to obtain locally optimum, sequential, and Bayesian designs, based on the

criterion of T-optimality for discriminating between two regression models, linear

or nonlinear in the parameters, are developed and illustrated. For the case of linear

models, T-optimum and the equal interest D -optimum designs, proposed bys
Atkinson and Cox (1974), are compared by means of simulation techniques and 

measures of efficiency. Further, because T-optimality requires the prior knowledge 

of the true model and the true values of its parameters, other criteria such as 

Bayesian T—optimality, the maximin criterion, and a combination of the these two, 

are suggested for the general problem.

Possibly the first formalization of the problem of designing experiments 

for model discrimination is due to Chernoff (1959) who, initially, considered the 

problem of testing two simple hypotheses (H0: 9 =  90 vs Ht: 9 =  0J, under the 

assumptions that only one experiment is available and that, under either hypothesis, 

the probability distribution for the response y is known to be fi(y), i=0,l. Given an 

initial set of responses {y1,y2, ’ • ’jya}) the Wald sequential likelihood—ratio test 

provides a decision rule for choosing between further sampling, or accepting either 

hypothesis. To be more specific, the decision is based on the loglikelihood—ratio 

Sn=S log{f1(yi)/f0(yi)} and the following rule: If Sn > A, H0 is rejected in favour of 

Ht; if Sn < B, H0 is accepted; and if B < Sn < A, the sequential sampling continues. 

The problem, then, becomes one of finding suitable numbers A and B. For this, 

other components involved are prior probabilities for H0 and Ht (p0 and 1—p0), the 

two probabilities of error a  and /?, a fixed cost c per observation sampled, the loss r0 

due to rejecting H0 when it is true, the loss i l due to accepting Ht when it is false, 

and the expected numbers of experiments, under hypotheses H0 and Ht, prior to 

stopping the process, say E(N |H 0) and E(N |H 1). Thus, a sensible criterion to
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determine the numbers A and B is to minimize the expected risk [p0R0 +  (1—p0)R j,

where R0 =  r0a  +  cE(N|H0) and R t =  r ^  + cE(N |H t). An approximate solution

for this minimization problem, for the case of c approaching zero (hence, large

samples are allowed), involves the calculation of the Kullback—Leibler information

numbers. Further, the method is extended to situations in which there is a finite set

of experiments and both hypotheses are composite.

Also for the problem of designing experiments to discriminate between

two models, Hunter and Reiner (1965) suggested a sequential method for selecting,

at each stage, a single point in the design region. First, they suppose that a set of

responses { y ^ ,*  • *,yn} based on n points {x^Xj,- • in the design region, is

available. The criterion of optimality for selecting the optimum point in the
*

subsequent stage, say x ^ ,  is to maximize the residual sum of squares for the fit of

the false model to the pseudodataset { y ^ , ’ • •iyn>y’n+i}> w^ere yn*i denotes the

predicted value, based on the least squares estimates obtained from the n available

observations, for the correct model at any feasible point x ^ .  Then, a further
*

observation is taken at the optimum point x,,^, and the process is repeated. This 

sequential procedure gives rise to two possible optimizations, corresponding to 

which model is assumed correct. Also suggested was a simpler version of this 

method which consists of maximizing the squared difference between the predicted 

values (for the correct and false models) using the least squares estimates for each 

respective set of parameters, that are obtained from the n available observations. 

The latter method leads to designs which are asymptotically T-optimum, as 

mentioned in Atkinson and Fedorov (1975a).

Box and Hill (1967) criticized this approach with the argument that a 

criterion of optimality should take into consideration not only the absolute 

difference between the estimated expected responses for the competing models, 

obtained from a given sample, but also the variances associated with these 

estimates. As an alternative, they proposed a Bayesian approach in which, initially,
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each of the competing models is assigned a prior probability  for being correct (for 

instance, equal probabilities). Then, based on an initial set of experiments a sample 

of responses is obtained, and the posterior probability for each model to be correct is 

calculated. For every subsequent stage, a single experiment is selected from the 

design region, following the criterion of maximizing an upper bound for the expected 

change in entropy, a concept used in communication systems, which is a function of 

the prior and posterior probabilities for the competing models. This process is 

repeated until the posterior probabilities show the superiority of one model with 

respect to the others. The method presupposes normality (although this assumption 

is not crucial), second order assumptions, and known equal variances for the random 

component of the competing models.

Following Box and Hill’s approach, Hill and Hunter (1969) extended 

this method for the case of unknown equal variances. Basically, a noninformative 

prior distribution is assumed for the logarithm of the standard deviation <7, and 

after a number of observations, say {y1,y2>* • *>yn-i}> both posterior distribution 

of <j  and the distribution of yn are obtained. The latter is substituted into the 

criterion function proposed by Box and Hill (1967), for which an approximation is 

obtained, and the same steps of the original method apply thereafter.

Andrews (1971) approached the problem of optimum designs for model 

discrimination from another point of view. First, k competing models are considered 

and from these a general model is constructed by including all terms corresponding 

to distinct independent variables so that each original model can be generated by 

suitably constraining the full parameter set. Given that a sample {y1,y2)* • *>yn} *s 

available, the purpose of this sequential method is to detect inadequate models 

based on the evidence showed by the resulting p—values, {ar^njjissl,*• «,k}, for 

testing each individual model against the full model. Under second order 

assumptions, and normal errors the above are simple F—tests so that the 

computation of the p-values {^(n)} is straightforward. To initiate the sequential
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design strategy, a predicted value yn+1 is required so that the new set of p—values, 

say {^ (n + l)} , can be obtained from the pseudodataset { y ^ , * • *,ynjyn+i}- It is 

proposed that the initial n observations are taken at fewer design points, say 

{x^Xj,- • - jXjj,}, where n ' < n and each point is replicated at least twice so that the 

mean response at each of these points could then be used as the predicted responses 

{yn+1(xi); i= l ,- - - ,n '} . Then, the criterion is defined as minimizing a suitable 

function of the {a^n+ l)} , over the set of initial design points {xt,x2, - - •,x11/}. A 

simulated example shows that the method is quite efficient for discarding unsuitable 

models. However, both the strong dependence on normality and the restrictions on 

the design region are clear disadvantages of this method.

Atkinson and Cox (1974) proposed the equal efficiency designs for 

discriminating between several models. As in Andrews (1971), an extended model 

containing the linearly independent terms from all rival models is constructed, so 

that each individual model is a particular case of the extended one. Then, following 

the approach proposed by Atkinson (1972), exact and/or continuous optimum 

designs can be determined to detect departures from individual models to the 

general one, by applying the criterion of D —optimality for estimating the 

complement of the vector of parameters for the ith model with respect to that for 

the combined model. Therefore, when it is feasible to assign relative importances for 

each model, maximization of a linear combination (whose coefficients are equal to 

the relative importances) of all the Dg-optimality criteria could be used as a 

criterion of optimality. Otherwise, they propose maximizing a measure of efficiency 

associated with each "continuous" D-optimum design, restricted to the case of 

equal efficiencies for all m competing models.

Atkinson and Fedorov (1975b) extended the concept of T-optimality to 

the case of experimental designs for discriminating between more than two models. 

Similarly to the case for two models, the T-optimum design to discriminate 

between v models (v>2) depends upon which is the true model and the values of its
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parameters. Under the assumption that these are known, the problem reduces to 

finding a design maximizing a linear combination of the noncentrality parameters 

corresponding to the closest models. Such a design is called Tp—optimum, where p is 

used to stress the dependence of the optimum design on the set of unknown weights 

{pj} (coefficients of the linear combination). The case in which there is only one 

closest model can be solved by applying the criterion of T-optimality. In practice, 

however, neither the true model nor its parameters are known a priori so that other 

approaches need be adopted. Atkinson and Fedorov (1975b) suggest sequential 

procedures leading to T—optimality. Another possibility is a Bayesian approach 

generalizing that presented in Chapter 3 of this thesis.

Motivated by the maximin approach proposed by Atkinson and 

Fedorov (1975a), Jones and Mitchell (1978) introduced two further criteria of 

optimality for the problem of designing experiments to discriminate between two 

nested linear models in which the restricted model is specified by a vector of 

parameters whereas the full model is specified by the extended vector (/?/ 0 2t ) t - 

Both criteria are based on functions of the noncentrality parameter when the full 

model is assumed correct. Regarding the restricted model as a class of models, a 

measure of the distance between the full model and the members of this class is used 

to restrict the search corresponding to the minimization step of the maximin 

approach. This is equivalent to putting constraints in the /?2-space so that only 

inadequate models are regarded in the minimization. Wijesinha and Khuri (1987) 

extended these criteria to the case of discriminating between nested linear 

multiresponse models.

Ramsey and Chesher (1976) proposed alternative measures of the 

"difference11 between two regression models with the purpose of providing the means 

for the experimenter to make a decision whether or not the circumstances require 

methods of model discrimination.

Using the same framework as that of Atkinson and Fedorov (1975a)
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and further assumptions, Fedorov (1978) proved that there always exists a 

T-optimum design that contains no more than (m2+ l)  supporting points, where m2 

is the number of parameters for the assumed false model. Further, for the maximin 

approach also proposed in the former paper, he proved that there always exists a 

maximin design containing no more than (n^+m j+ l) supporting points. These 

results hold for the case where the true model and the true values of its parameters 

are known.

Ponce de Leon and Atkinson (1991) implemented the criterion of 

Bayesian T—optimality to discriminate between two regression models, either linear 

or nonlinear, as suggested by Atkinson and Fedorov (1975a). Basically, the 

assumptions of prior probabilities for each model to be correct and conditioned on 

these events, prior probabilities for each set of parameters are made, and then 

incorporated in the formulation of the problem to obtain optimum designs for model 

discrimination. It is shown that an extension of the General Equivalence Theorem, 

due to Kiefer and Wolfowitz (1960), holds under these circumstances, and thus, 

’’continuous” Bayesian T-optimum designs can be constructed and checked for 

optimality. Discrete prior distributions are used to illustrate the procedures.

Given that a handful of sensible sequential procedures for determining 

optimum designs for model discrimination has been available for about eight years, 

it is surprising that so little has been done so far with respect to comparisons 

between their performances, resulting optimum designs, convergence properties, etc. 

However, some attempts have been made in this respect. These are given below.

A modified version of Chernoff’s method and the method of Box and 

Hill (1967) are compared by Meeter, Pirie, and Blot (1970) in three examples. They 

conclude that the former method is asymptotically optimal for experiments with 

sufficiently small costs of sampling. The latter also performs well in the examples 

studied, but as its optimal properties are unknown further research on the subject is 

suggested.
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Atkinson (1981) investigated the alleged weakness of the sequential 

method proposed by Hunter and Reiner (1965), which does not take the variances of 

the predicted values into consideration, as opposed to the method of maximum 

expected change in entropy proposed by Box and Hill (1967). For the case of two 

linear models it is shown that, as the number of steps of the sequential procedure 

tends to infinity and provided that both methods converge to designs nonsingular 

for each model, the methods are asymptotically equivalent in the sense that Box 

and Hill’s criterion function reduces to Hunter and Reiner’s.

Huang (1991) presented several algorithms to implement some of the 

available sequential procedures for model discrimination such as those proposed by 

Box and Hill (1967), Atkinson and Fedorov (1975a,b), and Atkinson and Cox 

(1974). There is a considerable improvement in the performance of these algorithms 

as compared to classical procedures when applied to variations of Examples 5.2 and 

5.3 of Box and Hill (1967), both of which have a choice of four feasible models, and 

Example 2 of Atkinson and Fedorov (1975b), which has a choice of three similar 

linear models. As far as the results of these comparisons are concerned the number 

of iterations taken by each algorithm to converge to the optimum design is used to 

illustrate the algorithm performances, whereas for T—optimum and D -optimum
D

designs, optimality for the resulting designs is illustrated with plots of the derivative 

functions. Further illustrations are provided by comparisons between optimum 

designs arising from the utilization of different optimality criteria. Similar 

comparisons between the so called classical, the Vertex—exchange, and the Global 

substitution algorithms were also reported by Pronzato, Huang and Walter (1991).

Methods of designing experiments for model discrimination, sequential 

or nonsequential, do not take into consideration the accuracy associated with the 

estimates for the underlying parameters of the correct model. On the other hand, 

specific optimization procedures for parameter estimation assume that the correct 

model is known a priori. Therefore, it seems natural to think of the dual problem of
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model discrimination and parameter estimation. For instance, in a sequential 

experiment, at each stage, either purpose could be emphasized according to whether 

or not the current set of responses points to the correctness of a specific model.

This problem was first considered by Hill, Hunter, and Wichern (1968) 

who introduced a sequential procedure combining the criterion of Box and Hill 

(1967) for model discrimination with that of Box and Lucas (1959) for parameter 

estimation in nonlinear models (i.e. D—optimality applied to the linearized nonlinear 

model about an estimate for the parameters). The criterion function underlying the 

sequential procedure is defined as C =  wtD +  waE ; where D is a standardized value 

of the Box and Hill’s criterion function; E is the expected standardized value of the 

D—optimality criterion function (expectation is over the distribution of posterior 

probabilities provided by Box and Hill’s method); and the pair of complementary 

weights wt and w2 is given by a monotonic function of 7rb , the posterior probability 

associated with the best current model. This function is such that the weight wt 

decreases as 7rb increases, thus placing more emphasis on parameter estimation as 

the best model is more clearly identified. Further, this function allows the rate of 

decrease of wt with respect to ?rb to be controlled by the experimenter.

Borth (1975) proposed a generalization of Box and Hill’s criterion for 

model discrimination, in which is incorporated the expected change in entropy 

measuring the uncertainty about the parameters for each model. As does the 

original version, this criterion (called total entropy) aims to choose, sequentially, 

single points in the design region so that the expected change in entropy is 

maximized. Its advantage lies in the fact that both problems of parameter 

estimation and model discrimination are tackled simultaneously. This generalization 

is implemented by regarding prior distributions for the vectors of parameters of the 

m competing models, say {p(^); i=l,-«*,m}, and subsequently partitioning the 

parameter spaces {© J so as to define sub—models of the m original models. Then, 

the concept of entropy is applied to the probabilities ^ ( n —1) =  ^ (n —1) 7Tj i £(n—1);
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where ^ (n —1) is the probability of the ith model prior to performing the nth 

experiment, ^ ( n —1) is the probability that the jth sub-model of the ith model is 

correct, and 7Tj | ±(n—1) is the probability that the jth sub—model is correct given 

that the ith model is correct. This gives rise to two separate terms; one represents 

the entropy measuring the uncertainty about which model is correct (i.e. the 

original entropy as in Box and Hill (1967)) whilst the other represents the weighted 

average (with weights equal to the probabilities {^(n—1)}) of the entropies 

measuring the uncertainty about the vector of parameters corresponding to each 

model. The same steps of the original method follow thereafter.

Hill (1978b) pointed out that in the example used by Atkinson and 

Fedorov (1975b) to illustrate a procedure for obtaining sequential designs to 

discriminate between more than two models, the three-point design putting equal 

weights at the endpoints and the midpoint of the design region X  =  [—1,1] is 

D—optimum for all three models regarded. Thus, he observes that the multipurpose 

design criterion of Hill, Hunter, and Wichern (1968) would be simplified since 

whichever model were chosen by a discriminatory experiment, the D—optimum 

design to estimate its parameters would be the same. However, if a pure 

discrimination procedure were utilized, it was suggested that the resulting optimum 

design should also incorporate trials at the three points of the D—optimum design. 

In this case, the problem of how much weight should be assigned to these trials has 

to be addressed. Finally, for the case of linear models, he suggested that the 

D-optimum designs should be determined beforehand so that any similarity could 

be considered whichever sequential procedure is subsequently adopted.

For linear regression models, Fedorov and Khabarov (1986) showed the 

equivalence between optimum designs for parameter estimation and discrimination 

between two models, one of which is taken to be the null model. More specifically, 

they showed that the solution to the problem of finding an optimum design for 

estimating a linear combination of the parameters corresponding to the
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nondegenerate model, say c*9, and that for testing the significance of 0*9 are the 

same. Intuitively, this equivalence is not surprising since the accuracy of the 

estimator c ^ is  crucial for both problems.

Chambers and Cox (1967) suggested a criterion of optimality for 

determining nonsequential designs with the purpose of discriminating between the 

logit and probit models for binary data. Yanagisawa (1988) extended Chambers and 

Cox’s criterion. Ponce de Leon and Atkinson (1992a,b) proposed an extension of the 

T—optimality criterion to discriminate between two generalized linear models, with 

emphasis on the subclass of binary data models.

Finally, further references on the subject of experimental designs for 

model discrimination can be found in reviews by Pereira (1977), Hill (1978a), 

Atkinson (1982), Atkinson (1986), and Atkinson and Donev (1992).

2.2.2. PARAMETER ESTIMATION FOR BINARY DATA MODELS

Not long ago, Crump (1979) pointed out that the subject of 

experimental designs for dose—response problems in carcinogenesis needed further 

development. For instance, the following are extracted from his paper: "two 

dose—response models may fit experimental data about equally well and yet predict 

responses that differ by many orders of magnitude at low doses"; "Unfortunately, 

the mode of actions of carcinogenesis is not sufficiently well understood. There is 

considerable disagreement among scientists as to the shape of the dose response 

curve in the low dose region"; and "It is unlikely that an experiment would ever be 

designed solely for the purpose of model discrimination or solely for the purpose of 

risk extrapolation. Nevertheless, it is still important to study design problems of 

these kinds". Although the subject of binary data models, as a whole, has attracted 

more interest since 1979, the above extracts stress the importance of further 

research on specific methods of determining optimum experimental designs for
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binary data models in fields such as model discrimination and/or parameter 

estimation.

In the last subsection, references related to model discrimination were 

discussed whereas in this subsection, we concentrate on references related to 

problems of experimental designs for parameter estimation and to families of link 

functions, both for binary response models. However, as the most important 

contributions and recent advances in the former subject are well covered by Morgan 

(1992, Chapter 8) in a comprehensive survey of the literature, only references on the 

latter subject are discussed here.

Prentice (1976) suggested a four—parameter link function family as an 

alternative to logit and probit models for fitting dose—response data. Several well 

known models are members of this family such as logit, probit, extreme minimum 

value, extreme maximum value, double exponential, etc. The inclusion of at least 

one of the two extra parameters in the model showed significant improvements to 

the fit of Bliss* classical data (mortality of adult beetle after five hours exposure to 

gaseous carbon disulphide, Bliss (1935)) relative to the logit model as shown by the 

maximized loglikelihood function and the loglikelihood ratio test. On the other 

hand, it is inevitable that the variances for the estimates of percentage points, for 

instance, will be larger as a result of more parameters having to be estimated. A 

further restriction on the use of this family of link functions is related to the 

difficulties in the computation of the maximum likelihood estimates for the two 

extra parameters.

Pregibon (1980) proposed another four—parameter family of link 

functions which, like Prentice’s, generates symmetric and skewed dose—response 

curves. Moreover, in Section 4 of his paper a three—parameter family of link 

functions which contains both the logit and the complementary log—log links is 

presented. Experimemtal design problems involving this family of link functions is 

the subject of Chapter 7 of this thesis.
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Aranda—Ordaz (1981) proposed two three-parameter families of link 

functions giving rise, among others, to the logistic and complementary log—log links. 

The former is a family of symmetric transformations, in the sense that the 

probabilites provided by the members of this family are not affected by 

interchanging successes and failures. Two particular members of this family are the 

logistic and the identity links. The latter is a family of asymmetric transformations 

(in fact, this is the second family suggested in Pregibon (1980)), with the exception 

of the logistic case which corresponds to the additional parameter equal to one. Two 

datasets are analysed to illustrate the benefits obtained by including an extra 

parameter in the model. In the first case, where the symmetric family of links is 

fitted to the data, a slight improvement is observed as compared to the logit and 

probit fits. In the second example, where the asymmetric family of models is fitted 

to the data from Bliss (1935), the results are similar to those of Prentice (1976), 

showing a significant improvement with respect to the logit fit. The loglikelihood is 

maximized for the complementary log—log link.

Rocke (1993) suggests a three—parameter beta transformation family 

which includes link functions (or transformations) such as the arcsin square—root, 

the logit, and the identity. Further, a comprehensive survey of other families of link 

functions is presented together with an example in which the profile loglikelihood 

functions for the beta, folded—power, and Aranda—Ordaz transformations are 

compared, revealing that the respective maxima are similar although they are 

achieved at different values of the additional parameter estimates.

2.3. REVIEW OF OPTIMUM DESIGN THEORY

In this section, some important theoretical results from optimum design 

are mentioned briefly. Most of them are extracted from Silvey (1980) and Atkinson 

and Donev (1992).
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Suppose that the responses related to a well defined experiment may be 

described by the following model

Yt =  +  £l ( i= l,- - .,N )  (2.3.1)

where the errors obey the second order assumptions; 0 is a column vector of p 

unknown parameters, the values of { x j  are such that Xj e X  , a prespecified design 

region; and ?7(.,.) is a known function which may be linear or nonlinear in the 

parameters. For linear models, (2.3.1) simplifies as follows

7?(xi,(?) =  f(xi) ^  (i= l,--- ,N ) (2.3.2)

where f f c ^  =  (f^xj,*  • ■ ^ (x j)); and {fj(.); j = l ,- • • ,p} are known functions. Hence, 

we can summarize the N equations in (2.3.2) by writing J7(x,0) =  F0, where F 

denotes the design matrix.

Assume that the interest lies in estimating a function of the vector of 

parameters 0  and that the experimenter can select the values {x^ i = l , • • «,N} in the 

design region X  so as to optimize the estimation of this function of 0, based on a 

suitable criterion. Depending on the underlying interest of the experiment, different 

criteria can be adopted such as D—optimality, E—optimality, A—optimality, etc. 

Here, we are concerned with any criterion whose associated criterion function is 

defined as a concave function of the Fisher information matrix for the vector of 

unknown parameters 0. This is further explained below.

Denote the sample of N observations, {x*; i = l , • • - ,N}, by a design 

which is represented as

where pj =  rj/N, and i i is the number of replications of the design point x£ in the 

sample of N observations. Then, let us denote the Fisher information matrix for the 

vector of parameters 0, based on N observations, by M({^,0) for a nonlinear model, 

and by M(£^) for a linear model. To simplify the notation, only the linear case is 

regarded in what follows. The case of nonlinear models is analogous.

A design as described in (2.3.3) is called a discrete design measure since
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it can be viewed as a discrete probability distribution on X  . Thus, let V  be the 

class of all discrete probability distributions in X  , let be the set of matrices

e V }  so that M(.): D -♦ , and let </>(.): -* IR denote the function

associated with a specific criterion of optimization. Then, the optimization problem, 

regarded as a maximization one, can be described as

=  sup </>( M({n )) (2.3.4)

Here, it is worth noticing that the corresponding problem of 

maximization for the case of nonlinear models would only be possible to solve for 

fixed values of the unknown vector of parameters 0 . In this case the optimum design 

is called locally optimum.

Optimization problems such as (2.3.4) are called exact problems of 

optimum design. Because of the complex features of the set of matrices Kiefer 

(1974) suggested the approximate theory of optimum design which, technically, 

consists of extending the class V  of all discrete probability distributions on X  to 

the class 2 6  of all probability distributions on X  . Accordingly, any element of the 

class 2 6  is called a design measure and is denoted by {. Further, the new set of 

matrices {M(£): £ € 2 6  } is denoted by JC  , and the previously described 

optimization problem becomes

<t>(M(f*)) =  sup (2.3.5)
1 * 2 6

All problems of optimum design proposed in this thesis utilize the 

approximate theory and the corresponding criteria of optimization are described as 

in (2.3.5).

Under this more general framework, some important results,

establishing conditions which an optimum design must satisfy, can be proven. For
/

this we need to introduce the notion of the Frechet derivative.
/

Definition 2.3.1. The Frechet derivative of <j> at M (£J in the direction of M (f2) is 

F^(M (jM2) =  l im  +  a M J  -
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where Mt =  M (ft) and M2 =  M (f2).

Silvey (1980) summarized in a series of three Theorems and a Corollary 

the most essential results for the theory of optimum designs. These are reproduced 

below.
*

Theorem 2.1. Provided that 0 is concave on JC , f  is ^-optimum if and only if

F^{M(£*),M(f)} < 0 for all f  €

Theorem 2.2. Let M(fx) be a design measure putting all mass at the point x e X  . If
* *

0 is concave on JC  and differentiable at M(£ ) ,  then { is 0-optimum if and only if

F^{M(f ),f(x)f(x)t} < 0  for all x  e X  .

Note: For linear models M(fx) = { ( x j f f e Y  whilst for nonlinear models M(fx) 

depends upon the true value of 0.

Theorem 2.3. Provided that 0 is differentiable at all points of j f r  , the subset of JC
*

where 0(M) > —oo, and a 0—optimum measure exists, then (  is 0—optimum if and 

only if

su£  1, SUP
* *

Corollary 2.1. If (  is 0-optimum and 0 is differentiable at M(£ ) then we have

both

sup F {M (0,f(x)f(x)‘)} =  0
X £ X  Y

and

E[F ,{M (H,f(x)f(x)‘)}] =  0
• *where x is a random vector with distribution £ . Of course, this can happen only if
* %

F^{M (f ^(xj^x)*)} =  0 with probability one. Thus, if f  is discrete with finite

support points x(l),- • • ,x(I), then

F^{M(e*),f(x(i))f(x(i))t} =  0 ( i= l,- .- ,I )

The above Theorems form the celebrated General Equivalence Theorem

of the approximate theory for optimum designs.
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CHAPTER 3. OPTIMUM EXPERIMENTAL DESIGN FOR DISCRIMINATING 

BETWEEN TWO RIVAL REGRESSION MODELS

3.1. INTRODUCTION

This chapter is concerned with the design of experiments for 

discriminating between two regression models, one or both of which may be 

nonlinear in the parameters. Atkinson & Fedorov (1975a) describe T—optimum 

designs for this purpose which are optimum when it is known which one of the 

models is true. The designs, which satisfy an equivalence theorem of optimum 

design theory, are locally optimum, in the sense that they depend upon the values of 

the unknown parameters of the true model. Here the theory is extended to 

situations in which there is a specified prior probability that each model is true and, 

conditionally on this probability, prior distributions for the parameters in the two 

models. Our central result is that such designs again satisfy an equivalence theorem 

which can be used both for the construction of designs and for checking the 

optimality of a proposed design.

In the next section the background for the problem of discriminating 

between regression models is presented. In Section 3.3 we give a description of the 

problem and introduce the criterion of T-optimality. The equivalence theorem for 

T-optimum designs with prior distributions is presented in Section 3.4. Examples 

are in Section 3.5. Finally, some further topics about the problem are discussed in 

Section 3.6.
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3.2. BACKGROUND

Designing experiments to discriminate between two models, and more 

than two, is a fairly recent subject of concern to both applied and theoretical 

statisticians. A substantial amount of research has so far been developed within the 

framework of optimal design theory although other approaches such as fully 

sequential methods, which originated with the articles by Hunter and Reiner (1965) 

and Box and Hill (1967), have also been the sources of important contributions to 

the field.

In this problem the aim is to find a design for which the expected 

values under each model, are as far apart as possible according to an appropriate 

criterion. It is an intuitive argument to say that some points in the design region are 

surely more informative than others regarding the purpose of model discrimination.

For instance, let us take the differences between the expected responses 

from two models at any point from the design region. Points with large such 

differences clearly assist the purpose of model discrimination. In contrast, points 

with small expected differences in response will only tend to confound the models. 

Generally speaking, the larger the expected difference in responses under the two 

models at a given design point the more informative such point should be 

considered.

Therefore, experiments to discriminate between models should ideally 

take observations at points of the former type while avoiding the latter. The 

difficulties begin with the fact that the differences in expected responses are 

unknown. Indeed, they depend on the unknown values of the parameters of the true 

model which is also unknown.

There are many questions which arise naturally in this context. For 

example, how should one combine points with large differences in response so that 

the entire design is effective w.r.t. discriminating between the models ? How many
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points are to be included in the optimum design ? Should some points have more 

weight than others ? All these questions are related to the criterion which will be 

used. We adopt the criterion of T—optimality, proposed by Atkinson and Fedorov 

(1975a) to discriminate between two models. T—optimality can also be applied to 

the problem of discriminating between more than two models; see Atkinson and 

Fedorov (1975b) for details.

Whichever criterion is chosen we must bear in mind that, in practice, 

any data set yielded by a designed experiment will not always show conclusive 

evidence that either model is correct. This is due, of course, to the impossibility of 

taking the random effect into consideration, i.e. the procedures which will be 

introduced are only for discriminating between the systematic parts of the models 

while the random effect is disregarded.

3.3. THE CRITERION OF T-OPTIMALITY

Assume that both models and sets of parameters have prior 

probabilities associated with them. These probability distributions are incorporated 

into the framework in which the problem is considered. One can think of these prior 

probability distributions as reflecting the knowledege acquired in previous 

experiments, or alternatively as the experimenter’s prior belief.

To be more precise we introduce our notation which is based on that of 

Silvey (1980, Chapter 3). Let X  , a compact set, be the design region; let be the 

class of all probability distributions on X  ; let £ 6 <% be a design measure, or just a 

design, and suppose the model is written as

E(Y) = ifc(x), x € X  

where the true model ?7t(x) is one of two known functions ^(xjflj) and 772(x,02) with 

respective prior probabilities 7r01 and 7r02 =  1 — 7r01. The set of parameters 0j, of 

dimension mj, has prior probability distribution Poj(^j) an(  ̂ c ^
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parameter space of the set 0j {j = 1, 2}. In what follows, we define the necessary 

elements in order to introduce the criterion of T-optimality.

Definition 3.1. The quantities

Ai(£.0j) =  in f f  £(dx) (3.3.1.a)
0l£ Q l J  x  1 1

and

A2(£.0i) =  in f f  |'?i(I .^ i ) - ,/2(I »^)W (dx) (3.3.1.b)
02t@ 2 J x  1 J

are the non—centrality parameters for the first model when the second is true, and

vice versa.

The reason for this terminology is that for a given set of responses,

(3.3.1.a) is proportional to the non-centrality parameter of the distribution of

the residual sum of squares corresponding to the fit of the first model to the data. 

This holds, of course, under linear regression theory, normal assumptions and the 

assumption that the second model is true. Analogously, so is (3.3.1.b) w.r.t. the fit 

of the second model to the data.

They are thus the residual sums of squares for the false models in the 

absence of experimental error. The values of these non—centrality parameters 

depend both on the design and on the unknown values, respectively, of 02 anc* 0 f  

However, by assuming prior probabilities for 02 and 0V the dependence is transferred

to P 0 2 W  411(1 P o iW -

We now can define the criterion of T—optimality, firstly as it was 

originally proposed and later to include situations for which prior information is 

incorporated.

Definition 3.2. Assume that the jth model is true and its set of parameters 0j is
*

known. A lo c a l T - o p t i m u m  d e s ig n , or just T - o p t i m u m , f  is such that

Af(f*) =  sup  A<£) (3.3.2)

where Aj(£) =  Aj(£,0j), j =  1,2 and j =  not j.
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In our notation this corresponds to the case in which 7r0j =  1 and 

pOj(0j) has mass function at the point 0j, {j =  1, 2}. T-optimality was proposed by 

Atkinson & Fedorov (1975a). They used properties of T-optimum designs to 

propose a sequential procedure leading to designs which are asymptotically 

T-optimum. As a consequence of T-optimum designs depending on the model truth 

and the true value of its parameters they are called locally optimal. Chernoff (1953) 

first used the term "locally optimal" in the context of designing experiments to 

estimate parameters of a given probability distribution.

Obviously, locally T—optimum designs are implausible in practice, as if 

the true model and its parameters are known, there is no need for model 

discrimination. Nevertheless, the concept is essential to the development of both 

sequential and Bayesian designs.

Definition 3.3. Assume that the jth model is true and that the only information

about 0j is the prior distribution Poj( ̂ j)* Then, a •p a r tia lly  B a y e s ia n  T - o p t i m u m  
*

d e s ig n  £ is such that

7jtt*) =  »up 7}({) (3.3.3)

where 7jt£) =  E0 {Aj( f .0j)}> j =  1, 2 and j =  not j.

*
In words, £ maximizes the expected non—centrality parameter for 

model ] when model j is true. In practice, partially Bayesian T-optimum designs, as 

opposed to locally T—optimum ones, are more realistic in the sense that situations 

in which it is known which is the true model, although the only information about 

its parameters is represented by a prior distribution, are more likely to occur.

However, in this case the interpretation given to the purpose of the 

experiment ought to be slightly modified. Here, the aim becomes that of finding a 

design which purely discriminates against the false model, known a priori, rather 

than, as stated in the general problem, to find a design which discriminates between 

the models having no information about the model truth except that either model is

38



true. Potential applications occur, for instance, when expected responses provided 

by a model other than the true, hence taken to be the false, need to be avoided due 

to any specific reason.

Definition 3.4. Assume that there is a prior probability that each model is true and,

conditionally on this probability, prior distributions for the parameters in the two
*

models. Then, a fu l ly  B a y e s ia n  T - o p t i m u m  d e s ig n  (  is such that

r(£*) =  sup r ( 0  (3.3.4)

where r({) =  =  jt0i +  *02  E 02{A i(£A)} and J =  not j.

Hence, in the full problem, the aim of the experiment is to maximize 

the expected non—centrality parameter of the false model, the expectation being 

taken over models and over the prior distributions of the parameters. Therefore, one 

can interpret such a design as the result of a compromise process over the regions in 

which the prior distributions of 0\ and O2 are defined.

For all the above criteria to be appropriate we must assume that the 

models are not nested. For if one model is nested within the other, one or both of 

the non-centrality parameters will be zero. A discussion of designs for nested 

models is given by Atkinson (1972) and Atkinson & Fedorov (1975a). If one model 

is nested within the other, a possibility for recovering the present framework is to 

impose constraints on the values of the parameters, which ensure that the models 

are separate.

Alternatively, a natural approach to this problem is to adopt the 

criterion of Ds—Optimality, where the parameters of interest are those belonging to 

the full model but absent in the rescrited one. Designs obtained in such a way would 

provide estimates of the extra parameteres with minimum variance, and therefore, 

would assist the purpose of discriminating between the two nested models.
*

In the next section we investigate properties of optimum designs f 

which maximize Aj(f), 7j(£) or r(f) .
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3.4. AN EXTENSION OF THE GENERAL EQUIVALENCE THEOREM TO 

BAYESIAN T-OPTIMUM DESIGNS

The most important benefit which arises from the Bayesian approach is 

that optimal designs no longer depend on specific values of the parameters of the 

true model but only on their prior distributions. Once expectations are taken over 

these priors, standard optimization techniques may be used to determine the 

optimum design. Although the complexity involved in the search increases 

considerably, the problems are still tractable in terms of the computational burden.

An advantage of optimum design theory is that we are able to check 

whether or not the design produced by the standard optimization methods is 

T-optimum. This tool makes the task of searching for optimum solutions much 

simpler than it usually is. Often, in a typical optimization problem a local optimum 

emerges after the search as the actual optimum solution of the problem, although 

there is no guarantee that it indeed is. Fortunately, this is not the case in the 

present context where if such local optima are found they will be certainly 

discovered and then discarded. Ultimately, a new search for the global optimum 

starts and the checking procedure is repeated until the global optimum is 

determined.

In order to establish procedures for checking the optimality of a 

proposed Bayesian T-optimum design, it is necessary to extend some of Atkinson 

and Fedorov’s results on non—Bayesian designs, which are based on the same 

theoretical results that lead to the proof of the celebrated General Equivalence 

Theorem of Kiefer and Wolfowitz (1960).

First let us introduce the following notation for the minimization 

problems whose solutions are given by the noncentrality parameters (3.3.1.a) and 

(3.3.1.b). For j = 1,2 ; J =  not j ; (  6 and 0j e 0j denote
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f  {^(*>0)) -  V j ( x ,4 )}  £(dx)
X

=  ta f J  ji7j(x,0j) - i 7j(x,flf)J f(dx) (3.4.1)

*
Now, when £ =  £ assume that (3.4.1) has unique solutions, denoted by

*  *
over all 026 0 2, relevant to the prior pO2( 02), and 0 2 over all relevant to

the prior P0i( ̂ i)- Then, we may state the following theorem :

THEOREM 3.1
*

(i) a necessary and sufficient condition for a design f  to be Bayesian T—optimum is 

fulfilment of the inequality

V{x,£ ) < T(f ) , for all x  e X

where Jr0jE j.{ '/j(M j) “  ’/rfoflj)} ;
 ̂ *

(ii) at the points of the Bayesian T-optimum design ^(x,f ) achieves its upper

bound ;
%

(iii) for any non—optimum design f, that is a design for which T ( Q  <  T(f ),

sup ^(x , 0  > T(£*) ; 
x€3£

(iv) the set of Bayesian T-optimum designs is convex.

Conditions (i) and (ii) can be used to check whether or not a supposed 

Bayesian T-optimum design is indeed optimum. If, for one of the two models, the 

parameter estimates are not unique, but only belong to some set, the theorem can 

be suitably modified as in Theorem 1 of Atkinson & Fedorov (1975a). Otherwise the 

results remain the same. Such a situation might occur when a p parameter model is 

false and can be disproved by a T-optimum design on p+1 points. If the alternative 

model contains p+2  or more parameters, these parameters will not be uniquely 

estimable. In practice the problem does not arise as, in the numerical construction 

of the design, any singular information matrix will be regularized by the addition of 

a small multiple of the identity matrix. Theorem 3.1 in the form given here applies 

to the regularized problem. The main steps required to prove Theorem 3.1 are given
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in Appendix A.

In the next section numerical examples of locally, partially Bayesian 

and fully Bayesian T—optimum designs are presented to illustrate the theory. 

Concommitantly, a sensitivity analysis is carried out so as to assess the effect of 

prior distributions upon the structure of the resulting T—optimum designs.

3.5. EXAMPLES

The example we analyse is the same as Atkinson & Fedorov (1975a) 

present using a non—Bayesian approach. It consists of designing an experiment over 

the interval X  =  [—1,1] to discriminate between the two regression m odels:

1st m odel: ^ ( x , ^  =  01O 4- 0n e x  +  012e"x

2nd m odel: 772(x »̂ a) =  2̂0 +  ^2ix +  ^22**

Such a choice of models is justified by their similarity in the design

region considered, so that problems of model specification could arise.

The purpose of the following series of examples is to illustrate the

theory: parameter values and prior probabilities are chosen to this end. To learn

more about partially and fully Bayesian T-optimum designs a rather informal

sensitivity analysis is carried out in the examples. We start with a very simple case.

E X A M P L E  3 .1 . Suppose that the first model is true and its parameters are known.

Their values are 8i0 =  2.0, 9 n  =  —2.0 and 012 =  —1.0. Thus, we should search for a

design satisfying (3.3.l.b), i.e. a design which is optimum to this specific set of

parameters, therefore, locally T—optimum.

The resulting design is shown below. The notation is that the design

support points are in the first line whereas their weights are in the second. The
*maximized value of the criterion function A2(£) is A2(£ ) =  2.478 * 10 .
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*
$ =

-1 .0  -0.2961 0.6231 1.0

0.0987 0.2690 0.4013 0.2310
(3.5.1)

There axe some interesting features in design (3.5.1). Firstly, the first 

and third points, and therefore the second and fourth, share half of the weight. 

Secondly, even though the classical upper limit for the number of support points in 

the optimum design, given by Caratheodory’s Theorem to be p(p +  l)/2 , where p is 

the number of unknown parameters, has not been proven to hold in this context, in 

the present example such a limit is obeyed as there are three unknown parameters 

and four support points in the optimum design.

Figure 3.1.1 shows the plot of the derivative function over the design 

region. Because the peaks occur at the support points of the design, condition (ii) of 

Theorem 3.1 is satisfied. Condition (i) is also verified, i.e. the maximized value of 

the criterion function is the upper bound of the derivative function over the design 

region. Hence, design (3.5.1) is the actual locally T—optimum design.

Further analysis of Figure 3.1.1 reveals that the troughs occur at the 

points of the design region providing the least information about discriminating 

between the models. In the present example, all three of them have null derivative 

functions, which means that the fitted values of the expected responses of model 2 

coincide with the expected responses for model 1 at these points, where the fitted 

values are provided by fitting model 2 to the expected responses of model 1 at the 

points of the optimum design.

Continuing this example we now ilustrate the effect of replacing the 

hypothesis of knowing the true values of 01O, 0 n  and $ l2 by that of knowledge of a 

prior distribution for 0 t. Initially a rather concentrated discrete prior distribution is 

considered as shown in Table 3.1. Our objective is to find a design that attains 

condition (3.3.3).

Each set of parameters in the prior distribution, beginning with the 

second, represents a vertex of a cube centered at the point (2 .0,—2.0,—1.0), the set of
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true values of the parameters in the first part of the example. All vertices are placed 

so that the volume of the cube is small, reflecting concentrated prior information. 

Each vertex has the same probability whereas the centre point is twice as likely. 

Such a distribution of points in the parameter space causes only small variations on 

the expected responses for model 1 from one' set of parameters to another, so that 

one should expect the partially Bayesian T—optimum design for the prior of Table 

3.1 to be very similar to design (3.5.1).

TABLE 3.1 -  CONCENTRATED 9-POINT PRIOR 
PROBABILITY DISTRIBUTION FOR 0t

1̂0 1̂1 1̂2 P0lW

2.0 - 2.0 - 1.0 0.2
1.9 - 2.1 -0.9 0.1
1.9 - 2.1 - 1.1 0.1
1.9 -1.9 -0.9 0.1
1.9 -1.9 - 1.1 0.1
2.1 - 2.1 -0.9 0.1
2.1 - 2.1 - 1.1 0.1
2.1 -1.9 -0.9 0.1
2.1 -1.9 - 1.1 0.1

The resulting partially Bayesian T-optimum design is shown below.
$

The maximized value of the criterion function 72(£) is 72(£ ) =  2.504 * 10"3. Figure 

3.1.2 shows the plot of the derivative function.

*
£ =

r-1.0 -0.2984 0.6224 1 .0  '

0.0993 0.2695 0.4007 0.2305
(3.5.2)

Again not only is the number of support points in the optimum design 

equal to four but also the first and third support points share 50% of the weight. A
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direct comparison between designs (3.5.1) and (3.5.2) reveals great similarity, as 

expected. Furthermore, the maximized values of the criteria are almost the same.

Intuitively, Bayesian optimum designs would require more support 

points as the uncertainty in the values of the parameters increases. A reason for this 

occurring is that more support points might be necessary to discriminate between 

the models in order to compensate for the lack of precision in the prior information. 

Indeed, recent results in this area appear to point in this direction. Chaloner and 

Larntz (1989), using uniform priors for the parameters of the logistic model for 

binary data, found that the number of support points of the Bayesian optimum 

design for parameter estimation increases if uniform priors based on wider intervals 

are considered. More recently, Atkinson (1992) showed an example of non-linear 

model discrimination in which the number of support points in the Bayesian 

T-optimum design varies from two for a one point prior to five for a four point 

equiprobable prior.

Therefore, to verify whether this phenomenon also occurs in the present 

example of model discrimination the sensitivity analysis initiated in the second part 

of Example 3.1 is carried out as follows; two dispersed priors distributed around the 

same point (2 .0,—2.0 ,—1.0) in the parameter space 0 A are considered, the new 

partially T—optimum designs are determined and compared. This is the subject of 

Example 3.2.

E X A M P L E  3 .2  (continuation of Example 3.1). Let us still assume that model 1 is 

true and its parameters are not precisely known. Instead, a prior distribution for 

their values holds as shown in Table 3.2. The aim is to search for a partially 

Bayesian T-optimum design, i.e. one satisfying condition (3.3.3).

As in the second part of the previous example, the last eight parameter 

sets of the prior displayed in Table 3.2 form a cube in 0 t whose centre is 

(2.0,—2.0,—1.0). The difference being that now the vertices lie far apart from one 

another so that we should expect the partially Bayesian T-optimum design to be
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dissimilar to the previous optimum designs (3.5.1) and (3.5.2). A rise in the number 

of design support points is also expected to occur. For comparison purposes, the 

structure of the prior probabilities of Table 3.1 is maintained, i.e. the cube centre is 

twice as likely as the vertices.

TABLE 3.2 -  DISPERSED 9-POINT PRIOR 
PROBABILITY DISTRIBUTION FOR $ t

1̂0 1̂1 1̂2 PoiW

2.0 - 2.0 - 1.0 0.2
-3.0 -7.0 - 6.0 0.1
-3.0 -7.0 4.0 0.1
-3.0 3.0 - 6.0 0.1
-3.0 3.0 4.0 0.1

7.0 -7.0 - 6.0 0.1
7.0 -7.0 4.0 0.1
7.0 3.0 - 6.0 0.1
7.0 3.0 4.0 0.1

The resulting design is shown below for which the maximized value of
*

the criterion function 72({) is 72(£ ) = 8.063 * 10"2.

*
t  =

-1 .0  -0.5014 0.5109 1.0 '

0.1659 0.3298 0.3341 0.1702
(3.5.3)

Surprisingly, there is no rise in the number of support points of design 

(3.5.3) as expected. The pattern displayed by designs (3.5.1) and (3.5.2) that the 

first and third points share half of the weight is again exhibited here. Another 

feature of design (3.5.3) is its quasi—symmetry in the design region considered. This 

is complemented by the almost symmetric distribution of the design weights. Each 

extreme point has approximately one sixth of the weight whereas the middle points
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have almost one third each.

Figure 3.2.1, showing the derivative function of design (3.5.3), reveals 

not only the above mentioned symmetry but also that the most non—informative 

points no longer have null derivative functions. This is a consequence of different 

parameter sets in 0 t having different sets of non—informative points. Thus, for a 

point in the design region to have a null derivative function the expected responses 

of model 1 would have to coincide with the predicted values of model 2 at such 

point, for all parameter sets of the prior distribution. As this is unlikely to occur the 

appearance of such points in Bayesian designs is rare.

Finally, a comparison between the values of the criterion functions for 

the partially T—optimum designs (3.5.2) and (3.5.3) shows that for the more 

dispersed prior the value rose approximately by a factor of 32, indicating a much 

greater average lack of fit for model 2 than for the more concentrated prior. This is 

probably due to the polynomial regression model (model 2) being "not so close" to 

the double exponencial model in some of the regions of 0 t considered in Table 3.2.

The above remark gives rise to further investigation. We now consider 

a third prior distribution for the parameters of model 1, in which there are 

twenty-five equiprobable points, distributed in the form of three cubes in all 

centered on the point (2 .0 ,—2 .0,—1.0), so that the cube of largest volume contains 

that of second largest volume, which in turn contains that of smallest volume. Table 

3.3 shows the values of 0 t  for this prior. All three cubes are not only larger in 

volume than that of Table 3.1 and smaller than that of Table 3.2 but also they 

contain and are contained, respectively, by those.

The purpose in extending Example 3.2 in this way is to investigate 

both whether there will be a rise in the number of support points because of the 

increasing number of points in the prior and whether the value of the criterion 

function will inflate as a consequence of the polynomial model being "more distant" 

from the double exponential model in different regions of 0 r
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TABT.F. 3.3 -  EQUIPROBABLE DISPERSED 25-POINT
PRIOR PROBABILITY DISTRIBUTION FOR 0l

(1.0,—3.0,—2 .0) 
(1.0,-3.0, 0.0) 
(1.0, - 1.0, - 2 .0) 
(1.0, - 1.0, 0.0) 
(3.0,-3.0,-2.0) 
(3.0,-3.0, 0.0) 
(3.0,-1.0,-2.0) 
(3.0,-1.0, 0.0)

(2.0, - 2.0, - 1.0) 
(0.0,-4.0,-3.0) 
(0.0, -4.0,1.0) 
(0.0, 0.0,-3.0) 
(0.0, 0.0, 1.0) 

(4.0,-4.0,-3.0) 
(4.0,-4.0, 1.0) 
(4.0, 0.0,-3.0) 
(4.0, 0.0, 1.0)

(-1.0,-5.0,-4.0) 
(-1.0,-5.0, 2.0) 
(-1.0, 1.0,-4.0) 
( - 1.0, 1.0, 2.0) 
( 5.0,-5.0,-4.0) 
( 5.0,-5.0, 2.0) 
( 5.0, 1.0,-4.0) 
( 5.0, 1.0, 2.0)

The value of the criterion function 72(f) at the resulting partially
*Bayesian T—optimum design displayed below is 72(f  ) =  2.344 x 10 .

-1 .0  -0.4835 0.5269 1.0 '

0.1582 0.3223 0.3418 0.1777
(3.5.4)

Only four support points are required in the optimum design (3.5.4) 

despite the 25—point dispersed prior distribution. Additionally, design (3.5.4) shows 

some symmetry although not as much as exhibited by design (3.5.3). The plot of the 

derivative function is shown in Figure 3.2.2. The interpretation given to Figure 3.2.1 

is also suitable here.
*

The value of 72(£ ) is about a factor of three smaller than that for the 

more dispersed prior of Table 3.2 which confirms that, in the present example, the 

region of 0 t influences the value of the criterion function. If the individual 

noncentrality parameters for each feasible 0 t  and 02 were available we could locate
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the parameter sets whose contribution to inflate the criterion function were larger. 

Such analysis would not require any extra computation, for the noncentrality 

parameter values are required to determine the value of the criterion function 

anyway.

Looking at all the results of Examples 3.1 and 3.2 a summary of the 

features of the locally and partially Bayesian T-optimum designs is as follows :

(i) the number of support points in the optimum design is robust w.r.t. the 

dispersion of points in the prior; (ii) there is a pattern in the weights of all optimum 

designs that consists of the first and third support points, and therefore the second 

and the fourth, sharing 50% of the weight; (iii) there seems to be a tendency for 

optimum designs to be more symmetric when the underlying prior distribution is 

more dispersed; (iv) the value of the criterion function increases with the dispersion 

of the underlying prior.

Obviously, these features must not be generalized to other examples of 

model discrimination nor even to other regions of using the same models 

examined here. For instance, Ponce de Leon & Atkinson (1991) obtained a partially 

Bayesian T-optimum design with five support points using the same models, the 

same assumption that the first model is true, and a 10-point concentrated prior. 

The only difference was that a different region of 0 t underlined the prior 

distribution.

Now we present an example of a fully Bayesian T—optimum design, i.e. 

a design attaining condition (3.3.4).

E X A M P L E  S .3  — Suppose that the true model is unknown but there are prior 

probabilities for each one of the two models to be true. Conditional on these 

probabilities, there are prior probability distributions for the parameters of each 

model. Four cases, consisting of all combinations of one concentrated and one 

dispersed prior distribution for each set of parameters, are analysed. The prior 

distributions are displayed in Tables 3.4.1 and 3.4.2.
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TABLE 3.4.1 -  CONCENTRATED PRIOR DISTRIBUTIONS FOR 0t AND $2

*10 *u *12 Poi(*i) *20 *21 *22 P02(*2)

5.0 -2.5 —3.0 0.2 0.0 0.5 -3.0 0.2
4.9 - 2.6 —3.1 0.1 - 0.1 0.4 —3.1 0.1
4.9 - 2.6 -2.9 0.1 - 0.1 0.4 -2.9 0.1
4.9 -2.4 -3.1 0.1 - 0.1 0.6 -3.1 0.1
4.9 -2.4 -2.9 0.1 - 0.1 0.6 -2.9 0.1
5.1 - 2.6 -3.1 0.1 0.1 0.4 -3.1 0.1
5.1 - 2.6 -2.9 0.1 0.1 0.4 -2.9 0.1
5.1 -2.4 -3.1 0.1 0.1 0.6 —3.1 0.1
5.1 -2.4 -2.9 0.1 0.1 0.6 -2.9 0.1

TABLE 3.4.2 -  DISPERSED PRIOR DISTRIBUTIONS FOR AND 02

*10 *n *12 Poi(*i) *20 *21 *22 P02(*2)

5.0 -2.5 -3.0 0.2 0.0 0.5 -3.0 0.2
4.0 -3.5 -4.0 0.1

oiH1 -0.5 -4.0 0.1
4.0 -3.5 - 2.0 0.1 - 1.0 -0.5 - 2.0 0.1
4.0 -1.5 -4.0 0.1 - 1.0 1.5 -4.0 0.1
4.0 -1.5 - 2.0 0.1 1 o 1.5 - 2.0 0.1
6.0 -3.5 -4.0 0.1 1.0 -0.5 -4.0 0.1
6.0 -3.5 - 2.0 0.1 1.0 -0.5 - 2.0 0.1
6.0 -1.5 -4.0 0.1 1.0 1.5 -4.0 0.1
6.0 -1.5 - 2.0 0.1 1.0 1.5 - 2.0 0.1

Analogously to Examples 3.1 and 3.2, each one of the four above prior 

distributions consists of parameter sets 0t and 02 forming cubes around two central 

points, namely $t  =  (5.0,—2.5,—3.0) and 02 =  (0.0,0.5,—3.0). As before, the vertices 

are equiprobable whereas the centre is twice as likely. For comparative purposes, 

the models have equal prior probabilities t 01 =  7r02 =  0.5 of being the true model for
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all four combinations of priors. Each cube has either a small or a large volume 

reflecting a concentrated or a dispersed prior. A similar sensitivity analysis is 

carried out in Ponce de Leon & Atkinson (1991).

The aim of this example is to illustrate the effects on the structure of 

fully Bayesian T—optimum designs of considering mixtures of concentrated and 

dispersed prior distributions for 0 t  and 02. The results are shown in Table 3.5.

TABLE 3.5 -  FULLY BAYESIAN T-OPTIMUM DESIGNS FOR FOUR 
DIFFERENT SETS OF PRIOR DISTRIBUTIONS FOR 0t AND 02

DESIGNS (3.5.5), (3.5.6), (3.5.7), AND (3.5.8)

PRIORS VALUE OF r(£  ) BAYESIAN T-OPTIMUM DESIGN

/ \ both 
'  '  concentrated

/v \ 0 t concentrated 
'  '  02 dispersed

/ \ ^ d isp e rsed  
'  '  0* concentrated

(d ) *
both

dispersed

1.787 x 10'3

2.107 x 1CT3

2.702 x 10*3

3.169 x 10‘3

r -1.0 —0.6849 0.0886 0.8624' 

0.2468 0.4314 0.2532 0.0686

-1.0 -0.673 0.1298 0.873 1.0 '

0.2433 0.4293 0.2545 0.0456 0.0273.

f -1.0 -0.6476 0.2182 1.0 '

0.2411 0.421 0.2589 0.079

r -1.0 -0.6329 0.2664 1.0 '

0.2315 0.4119 0.2685 0.0881

All designs have similarities. For instance, all of them contain the 

support point —1.0 with approximately the same weight. In addition, the second and 

third support point weights are similar in all designs, the third support point varies 

significantly over designs whereas there is a reasonably small variation on the 

second. Most importantly, however, is that design (3.5.6), corresponding to a 

concentrated prior for 0 i and a dispersed prior for 02 , has one more support point 

than the other designs even though it should be noted that its last two support
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points weigh almost as much as the fourth support point (7.29% against 6.86%, 

7.9% and 8.81%) of the remaining designs. All four—point designs in Table 3.5 

present the feature that the first and third support points share 50% of the weight.

Nevertheless, the fact that design (3.5.8), corresponding to both 

dispersed priors, has four support points rather than five leads to the conclusion 

that the number of support points in fully Bayesian T—optimum designs is not 

influenced only by the dispersion of the underlying priors. Otherwise design (3.5.8) 

would not have fewer points than design (3.5.6). Perhaps, the factor that has greater 

influence in determining the number of support points in the optimum design is the 

region of the parameter spaces and ©2 in which the priors are defined.

A final remark about the designs of Table 3.5 concerns the maximized 

value of the criterion function. Here again, the tendency observed in partially 

Bayesian T—optimum designs appears to occur, that is the more dispersed the prior 

distributions the larger the maximized value of the criterion function. Again, an 

analysis based on the noncentrality parameters can be carried out to locate the most 

influential parameter sets.

Figures 3.3.1, 3.3.2, 3.3.3 and 3.3.4 show the derivative functions for

the designs from Table 3.5. The shape of Figure 3.3.1 resembles that of a locally

T-optimum design in the sense that the derivative functions for the noninformative

points are zero or approximately zero. This is due to both priors for 0 t  and 02 being

concentrated. Figure 3.3.2 shows the only five-point design, two points of which are

very close with a shallow valley in between. One might say that all points in this

subregion are informative as they almost achieve the value of the maximized

criterion function. Figure 3.3.3 is slightly misleading since it looks as though there

are five peaks achieving the upper limit, but a close examination of the fourth value
*

of x reveals that its derivative function does not reach the maximized value T(£ ) = 

2.702 x 10"3. Finally, the shapes of Figures 3.3.3 and 3.3.4 show more markedly the
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effect of dispersed priors, i.e. in the presence of prior variability no single point will 

yield uninformative experiments. As a result the derivative function will be 

appreciably flatter. Chaloner & Larntz (1989) & Atkinson (1992) also show 

similarly shaped plots for the related derivative functions.

3.6. DISCUSSION

/

Caratheodory’s Theorem provides an upper bound for the number of 

support points in the optimum continuous design for a single model (Silvey, 1980, 

Chapter 3 and Appendix 2). However there is no such limit for Bayesian optimum 

designs for model discrimination. Lack of this limit complicates the search for 

optimum designs although, in the example studied here, the number of support 

points is only one or two more than the number of parameters in the individual 

models. However in non-linear model discrimination between two one—parameter 

models with X  =  (0,oo), Atkinson (1992) shows an example in which the number of 

support points increases from two to five as the prior distribution becomes more 

dispersed. The relative stability of the design in our example is caused by the 

bounded experimental region.

An alternative to the designs of this chapter would be sequential 

designs in which observations from earlier experiments are used to update the prior 

probabilities of the parameters and models. After each updating, the optimum 

setting for the next experiment would be found by numerical search. Such an 

approach would have particular advantages when there was great uncertainty in the 

prior information.

We have assumed independence of the prior distributions between 

models. It might be more realistic, in some examples, to consider priors which give 

equal weights to parameter values yielding similarly shaped response curves under 

the two models.
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The examples in this chapter have assumed discrete joint prior 

distributions within models. The case of continuous prior distributions would 

involve no new ideas, but would have to be solved using numerical integration 

techniques, in themselves a form of discretization. Another question of interest 

about prior distributions is the assumption of independence among prior 

distributions of individual parameters within models, an assumption made, for 

example, by Chaloner & Larntz (1989) in their Bayesian designs for single models.

The results in this chapter are for discriminating between two models. 

An obvious extension is to designs for discriminating between three or more models. 

Atkinson & Fedorov (1975b) present one solution for locally optimum designs.
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APPENDIX A

The first requirement to prove Theorem 3.1 is to verify whether 

criterion function (3.3.4) is a concave function on that is

r ( 0 > ( l - o ) T ( ^  +  a V ( Q  (A .l)

where a  G IR, 0 < a  < 1 and f  =  (1 -  a )  f  t +  a  f 2 ; f  i,fj G ^

Due to the linearity of r(£) with respect to the noncentrality 

parameters and A2(f,01) given by (3.3.l.a) and (3.3.l.b) respectively, and

their concavity on it follows that (A.l) is true as demonstrated below.

Proof of (A.l)

By definition T(f) = E^ |Aj(£,0j)J , where

E denotes expectation over prior probabilities for the model truth given by the 
xo

vector T q =  (̂ Toi>̂ ro2)» 0̂2 =  1 ”  ^"oi»

denotes expectation over the prior distribution for 0j, given by PQ.(0 j); and

=  inf f  £(**); J®1*2 and j =  not j.
j1̂ j X J

To simplify the notation let us represent the sum of squares (integral) 

shown above by a function S, i.e. for j =  1,2 ; J =  not j ; £ G <%\ 0j£©j i and 0JG0J 

denote

S(£,0j,0j) =  f  {j?j(x,0j) -  *?j(x,0j)} £(dx) (A.2)
J  X

Therefore, given a design £ and the value of 0j we can combine 

equations (3.4.1) and (A.2) so as to rewrite the related noncentrality parameter 

Aj(£>0j) as

Ajtf.Oj) =  SU.Oj.flt) =  in f  S(e,A,fc).
J 0 -eQ - 1 i
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Now, using this notation let us first prove concavity of Aj(f,0j) on 

For any a  e IR, 0 < a  < 1 ; £l5£2 € £ 6  ; let f  =  (1 — a )  +  a  f 2. Then

^)=  in f  S(£,0j,0j)= in f  S (( l-Q )^ + a ^ ,0 j,0-)
0j-e0j 0jt0j

= in f  U l - d ) S ( Z v 0j ,0I ) +  a S U ^ O j ) }
OjeQj  1 J

> in f  {(1- a )  S ^ A f c ) }  +  in f  {as S(^2>f>j, ĵ)} 
0JE0J I J 0JE0J 1 J

= (l-a )A jU 1,0j) + a Aj(^0j) (A.3)

Thus, according to (A.3) Aj(£,0j) is concave on . Now, taking 

expectations over the prior probability distributions x0 and {pOj( 0j)> j= l ,2} in both 

sides of inequality (A.3), we find

V *  {Ai ( ^ ) )  * V 0 J  i (1_a) A ^ ' 0i) + a 

r(0>(i-«)r(O + ar(y.

Hence, (A.l) is true; r(f) is a concave function on <&.

/

The second essential requirement is to find the Frechet derivative of 

T(f), which is straightforwardly obtained due to the linearity of T(f) w.r.t. the 

noncentrality parameters A ^ , ^ )  and A2(f,^1). It is given by

0T U )

d a = X  *■« v
J J d a

(A.4)

where again £ =  (1 — a )  f , +  a  ; 0 < a  < 1 ; and for j =  1,2 ; j =  not j

— ;---- - =  inf 8( ^ , 0,)
d a  0j£©t(a) 1 ‘

(A.5)
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where for a given a  € [0,1] 0 j(a )  denotes the solution set of equation (3.4.1).

Proof of (A.4)

Again, the notation is simplified as in (A.2). Before determining the 

Frechet derivative of T(f) it is convenient to find that of Aj(f,0j), i.e. we shall 

prove (A.5) and then (A.4).

For any a  e [0,1] ; and f  =  (1 — a )  +  a  £2 let 0t(<*) be
j

the solution set of equation (3.4.1). Following the notation introduced above ©t(a) 

is the solution set of the equation

S({ ,^,^?) =  in f  S({,*j,^) 
J 0fe0 j

Denote the Frechet derivative of usually represented by

F a -(£„£,), b y — ! -■  Then
i da

da da
i n f . 

T>j€0 L(a)
d  S ( t  0 ^ 0 -)
da

=  i n f . 
^ 6 0 |( a )

where the first equality holds by applying Pshenichnyi (1971, Theorem 3.2, pp. 75).
*

Hence, (A.5) is true. Now, suppose that the optimum design f  is such that (3.4.1)
s|c %

has a unique solution, denoted by 0r, when { =  £ (f  -» when a  -* 0). Then (A.5) 

becomes

FA:U*,£2) =  s -  S(£*,<u!)
“ j  j  j  j
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where f 2 represents any design other than { . In particular when £2 =  fx> where fx

represents the design putting all mass at the design region point x  G X  , the

following result holds. For any x € X

F A.(£*>£x) =  {»7j(*.0j) -  ^ j(M j)}  -  Aj(£*>0j) (A.6)

Finally, applying Theorems 2.1 and 2.2, we find

f a . ( £ * > £ x )  =  ip (x A  ,<>i) -  ,ffj)  < o 

=> # * ,£ * , 0j) < Aj({*>0j) , any x  e £  (A.7)

where ,0j) =  { ^ (x .flj)  -  r?j(x,0.)J .

However, (A.7) is condition (i) of Theorem 3.1 for a local T—optimum 

design. Condition (ii) follows by applying Corollary 2.1. Finally conditions (iii) and 

(iv) are now straightfoward.

Finally, to prove Theorem 3.1 for fully Bayesian T-optimum designs,
*  *we have to assume that at the optimum design f  , (3.4.1) has unique solutions 0 .

for every € 0j, relevant to the prior pOj(0j), { j= l,2}. Now, taking expectations of

(A.6) over the priors x0 and Poj(^j)» j = l >2 and applying Theorems 2.1 and 2.2 again,

we find condition (i) for this more general situation, i.e.

H * - ,£ )  < r(£*) , any x e X  
2

where ) =  E^E^, { ^ (x .ty  -  7?j(x,0 .) j  .

Now, the other conditions follow easily.
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CHAPTER 4. OPTIMUM EXPERIMENTAL DESIGN FOR DISCRIMINATING 

BETWEEN TWO RIVAL BINARY DATA MODELS

4.1. INTRODUCTION

In this chapter we develop methodology for finding optimum 

experimental designs to discriminate between two rival binary data models (also 

known in the literature as binary response or quantal models). The class of binary 

response models forms a well known subclass of generalized linear models. 

Therefore, the framework of generalized linear models is used to introduce the 

relevant concepts needed for our methodology to model discrimination, such as the 

criterion of optimality, which is based on the same principle as the criterion of 

T—optimality for regression model discrimination, and the model structural 

specifications. Generally speaking, our purpose is to find a design for which the false 

model fits the true model expected responses as badly as possible. Optimum design 

theory is again applied so as to derive important properties of the optimum designs 

yielded by this criterion. Later, we explain how they can be used as powerful tools 

for the numerical procedures leading to optimality. The designs which maximize the 

expected deviance of the false model are similar in structure to the local, partially 

Bayesian and fully Bayesian T-optimum designs for regression models of chapter 3. 

Initially, we concentrate on optimal designs for the relatively simple problem when 

the true model and its parameter values are known. The extension to prior 

distributions of parameter values and of the truth of each model is straightforward.
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Although such an extension introduces numerical difficulties the design criterion 

remains concave and the results of optimum design theory apply. In practice, due to 

the complexity involved in the optimization of the criterion functions, numerical 

procedures must be adopted to find the optimum. The difficulties encountered at 

this stage are the main challenge of the whole problem.

4.2. BACKGROUND

Chambers and Cox (1967) use asymptotic arguments to find optimum 

designs for discriminating between binary models which require only three points of 

support. Their results are based on the problem of discriminating between the 

logistic and integrated normal (probit) binary response curves. They consider 

significance tests in which one of the two models is taken to be the null hypothesis 

and a design maximizing power when the alternative is the other model is found. 

Yanagisawa (1988) extended their method not only to designs requiring any number 

of support points but also to a range of different binary response curves. Optimal 

Bayesian designs for estimating functions of the parameters, as well as the 

parameters themselves, of logistic binary response models are described by Chaloner 

and Larntz (1989).

Optimum experimental designs for discriminating between two rival 

regression models were developed by Atkinson and Fedorov (1975a). When one 

model is true and there are prior probabilities for its parameters, their T-optimality 

criterion can be extended, as shown by Ponce de Leon and Atkinson (1991), with 

further details in chapter 3 of this thesis, to experimental designs that maximize the 

expected value of the residual sum of squares of the false model. Designs attaining 

this criterion are called partially Bayesian T-optimum. As well as T—optimality 

Bayesian T-optimality is also a concave design criterion and the standard results of 

optimum design theory apply. However, a partially Bayesian T-optimum design
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still depends upon which is the true model, therefore, is still only locally optimum. 

The dependence on specific prior values of parameters can be removed by taking the 

expectation of the criterion over the prior distribution of the parameter values. 

Similarly, one can take the expectation over the prior probabilities for the model 

truth, thus replacing dependence on the model truth by dependence on its prior 

probability distribution. In chapter 3 it is shown that the resulting fully Bayesian 

T—optimum designs are again such that optimum design theory applies.

Here we extend all these results to designs for discriminating between 

models for binary data by using the correspondence that exists between the two 

problems. Preliminary results on this subject are presented in Ponce de Leon and 

Atkinson (1992a) together with some examples of local T—optimum designs to 

discriminate the complementary log—log model against the logistic and the probit 

model against the logistic. These models are presented in Section 4.3. In generalized 

linear models the analogue of the residual sum of squares is the deviance: an 

optimality criterion for binary data model discrimination based upon this concept is 

introduced in Section 4.4. In Chapter 3 the notions of locally, partially Bayesian and 

fully Bayesian optimum designs were introduced. In Section 4.4 they are adapted to 

the present problem and used throughout Chapter 4. A Theorem derived from the 

General Equivalence Theorem is presented in Section 4.5 along with a discussion 

about its proof. Numerical examples of the optimum designs are given in Section 

4.6. A brief discussion is presented in Section 4.7.

4.3. BASIC FRAMEWORK

Generalized Linear Models for binary data are described by McCullagh 

and Nelder (1989, Chapter 4). In this section, we give a brief description of this 

important class of models. Suppose that for any combination of levels of p 

explanatory variables a response Yi is observed, where the index i denotes the
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particular combination of levels. The response Yi can take one of two values 0 or 1, 

corresponding to ’’failure" or "success", with the probability of success P(Yi =  1) =  

7Ti where 0 < 7Ti < 1. The levels of the p explanatory variables at which the response 

is observed are represented by the vector xi =  (xiij-.^xip)4. Interest is in the 

relationship between 7Ti and x^ In the generalized linear model this relationship 

depends upon the linear predictor 771, where 7j\ =  7?(xi) =  S Xij0j and {0j} are p 

unknown parameters. The probability x i  depends on 771, and so on x^ through the 

link function g(.) such that rji =  g(7Ti). In the specific case of binary response 

models, g(.) must be a function that maps the interval [0,1] onto the real line. Three 

widely used link functions for binary data are given in Table 4.1. Examples of 

designs discriminating between pairs of these three link functions are given in 

Section 4.6.

TABLE 4.1 -  EXAMPLES OF LINK FUNCTIONS 
FOR BINARY RESPONSE MODELS

TERMINOLOGY LINK FUNCTION

(a) logit or 
logistic g(7Ti) =  l0g{7Ti /  (1 -  7Ti)}

00
prob i t or 

in verse  
normal

g{n) =  $ _1(7Ti)

(c)
complementary 

lo g -1  og g(7Ti) =  l0g{-l0g(l -  7Ti)}

Note : $(.) denotes the standard normal cumulative distribution function.

An excellent feature of the problem of designing optimum experiments 

for discriminating between two binary response models concerns the manner in 

which the frameworks of optimal design theory and generalized linear models 

combine in these conditions.
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Recall that a typical experimental design consists of n weighted support 

points belonging to the design region X  . For binary response models, each of the n 

support points {xi,...,xn} is independently replicated mi times, giving rise to a set of 

n binomial responses {Yi,...,Yn}. Let N =  S mi be the sample size. Then the weight 

at the ith support point of the design is pi =  mi/N so that the design can be 

represented by a discrete measure over the experimental region X  . The set of 

responses {Yi,...,Yn} forms a random sample of n independent Binomials 

{i= l, - • -,n}. Removal of the restriction that mi be an integer, as usual, yields the 

continuous or approximate design measure £.

The purpose of the experiments derived in this chapter is to determine 

which of the link functions provides an adequate model. To be more precise, our 

interest lies in finding an optimal design to discriminate between two binary data 

models whatever their linear predictor specifications are. Here models may have 

different link functions and either the same or different linear predictor structure or 

the same link function with different linear predictor structure. For nested models 

the values of the linear predictor parameters must be restricted.

Chambers and Cox (1967) proposed a criterion of optimality to 

discriminate between link functions (i) and (ii). Yanagisawa (1988) extended 

Chambers and Cox’s discrimination criterion to all categories of binary response 

models. The method is illustrated with designs discriminating between pairs of a set 

of five different link functions, namely logit, probit, Aranda—Ordaz (1981), 

exponential, and gamma models. An alternative for optimum designs to 

discriminate between two or more binary response models is to consider families of 

link functions with an extra set of parameters to provide member identification and 

then search for a design that estimates the extra parameter(s) as accurately as 

possible. In chapter 7, one of these families of link functions is introduced and 

optimal designs are found for estimating the only extra parameter it contains.

In the next section a criterion of optimality to design experiments for
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discriminating between two binary response models in various situations, as far as 

prior information is concerned, is introduced.

4.4. OPTIMALITY CRITERIA

The deviance for a fitted binary model (McCullagh and Nelder, 1989, p. 

118) depends on the observations y* and on the estimated probabilities ttj. Its 

purpose is to provide a measure of goodness of fit for specific models to the data and 

its interpretation is similar to the residual sum of squares in regression theory. 

Indeed, for Gaussian models, a subclass of generalized linear models, the deviance 

reduces to the residual sum of squares. Therefore, we can use the analogy between 

deviance and residual sum of squares to define a criterion of optimality for designing 

experiments to discriminate between pairs of binary response models. The required 

steps for this are described next.

Without loss of generality, take the first model as true. Since the link 

function and linear predictor structure of both models are supposed to be known, 

the expected responses for the first model, t v  are functions of its linear predictor 

parameters 0 t and of the design f. Hence, for a given set of linear predictor 

parameters one can generate the expected responses under the first model and 

subsequently fit the second model to this artificial "data" set. The estimates of the 

second model linear predictor parameters 02, and consequently the probabilities r 2, 

are then functions of the design f .
  A

The estimates 02 can be determined by iterative weighted least squares, 

a method described by McCullagh and Nelder (1989). For a given $ t  the estimates
A A

02 and t 2 depend solely on the design f  which generated the first model expected 

responses 7rt . Clearly some designs will provide less adequate ‘'fits’1 than others. 

This leads to the idea of using the concept of deviance, a measure of goodness of fit 

in generalized linear models, to define a criterion of optimality for binary response
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model discrimination. First an important concept for this criterion is introduced. 

For binary data models the analogues of the non—centrality parameters are given by 

Definition 4.1.

Definition 4.1. Let 7r1 and 7r2 denote the expected responses, or probabilities, yielded 

by two rival binary response models. For the ith model suppose that the probability 

= h^x ,^ ) =  gf^f^Xjfli)), where f^.,.) and g^.) are known functions and the 

inverse of the latter exists so that h^.) is well defined. Then the quantities

(4.4.1.a) 

(4.4.1.b)

are the binary discrimination totals for the first model when the second is true, and 

vice versa.

The function g^.), as in generalized linear models, should not only map 

the interval (0,1) onto the whole real line but also be monotone and differentiable. 

The function f^.,.) is assumed to be linear in the parameters 0i  even though the 

models that can be discriminated using the proposed methodology, could in 

principle have nonlinear predictors. Linearity is assumed due to lack of efficient 

methods to fit models whose predictors are nonlinear functions of 0 ^  Thus, we 

assume that the models to be discriminated are restricted to the class of generalized 

linear models for binary data.

The analogy between a noncentrality parameter in the context of 

regression models and a binary discrimination total is obvious. Both depend on the 

design f  and on the unknown values of the respective set of parameters. The former 

can be described as the residual sum of squares for the false model in the absence of 

experimental error whereas the latter is the deviance for the false model in the

=  in f  j TTj 
^ r  L

log
'*2 T - 2T2 '

+  (1-7T2) log
J l

and

A2(£>0i) = f 1*1
02^02 J  'V-

log
'i "

X
+ log

.1- %

£(<!*)

«<*)
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absence of randomness. Both can be interpreted as a measure of the "distance" 

between two rival models.

In practice, however, they cannot be computed unless the true model 

and the values of its parameters are known, which seldom is the case. Nevertheless, 

if such strong assumptions are made we can solve the rather simple resulting 

problem and use the methodology as a starting point for the understanding of the 

complexities of the full problem. For instance, in the simplified problem the 

"distance" between two rival binary response models is only a function of the design 

£ so that it is straightforward to define a criterion of discrimination based on the 

binary discrimination totals. Later, of course, these assumptions are replaced by 

knowledge of prior probability distributions. This strategy for developing the main 

ideas of binary data model discrimination is used to define all the criteria in this 

section.

We start with the simplest situation, although with the largest number

of assumptions, to discriminate between two binary data models.

Definition 4.2. Consider two rival binary response models. Assume that the jth

model is true. Furthermore, assume that its set of linear predictor parameters 0j is
*known. Then, a lo c a l o p t im u m  d e s ig n  £ to discriminate between the rival models is 

such that

Aj(f*) =  sup  Aj(£) (4.4.2)

where

AjU) =  A j  =  1,2 and j =  not j.

Local optimum designs for binary response model discrimination are 

not as easy to obtain as are the locally T—optimum designs of Chapter 3. For the 

widely used binary response curves the cause for numerical difficulties can be 

explained by the curves being similarly shaped and also agreeing closely, especially 

for values of the probability of success far from the extremes 0 and 1. Therefore, the
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actual observed values of the criterion function are rather small, requiring highly 

accurate search procedures. For instance, as Chambers and Cox (1967) pointed out, 

the logistic and integrated normal binary response curves agree closely except in the 

tails making the models virtually indistinguishible. Cox (1966b) gives a numerical 

comparison between these curves. There are other numerical problems in finding 

locally optimum designs that will be commented later. For the moment, it is 

important to point out that locally optimum designs are limited because in practice 

the true model and its parameters are invariably unknown.

A more general criterion can be defined by modifying the set of 

hypotheses to knowledge of the true model and a prior distribution for its set of 

parameters.

Definition 4.3. Consider two rival binary data models. Assume that the jth model is

true and that the only information about is the prior distribution pOj(0j). Then, a
*

p a r t ia l ly  B a y e s ia n  o p t im u m  d e s ig n  f  to discriminate between the models is such 

that

' f U * )  =  sup  y £ ( )  (4.4.3)
1 *

where

7jU ) =  E0.{Aj(£.0j)} . j =  1,2 and J =  not j.

Partially Bayesian optimum designs represent a significant

improvement with respect to the previous class of locally optimum designs.

Generally speaking, a partially Bayesian optimum design is the result of a 

compromise among all plausible parameter values. Among other consequences of 

definition 4.3, one is that the more likely a region of the parameter space the more 

influential it will be in the resulting optimum design. Therefore, one should expect 

that an optimum design produced by (4.4.3) will discriminate between the models 

more adequately for parameter values in more likely regions of the parameter space. 

Similarly, for parameter values in less likely regions a partially Bayesian optimum
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design might be misleading as far as model discrimination is concerned. Based on 

these remarks, we can draw the additional conclusion that misspecification of the 

prior distribution might cause serious consequences to the actual optimality of the 

resulting design.

Likewise, the region itself plays a vital role in this process since 

optimum designs might be more sensitive to changes in the parameter values in 

certain regions of the parameter space than in others. Hence, it is reasonable to say 

that the more dispersed the prior distribution the more likely a partially Bayesian 

optimum design will be misleading for parameter values in more unlikely regions of 

the parameter space. Certainly the complexity of these relationships will vary from 

one particular problem to another and therefore can not be modelled entirely.

The motivation for the Bayesian extension is that in practice it will not 

be known which model is true, nor will the parameter values of the true model be 

known precisely. It is however likely that information is available which can be 

incorporated into prior probability distributions. Hence, suppose that there are prior 

probability distributions for each set of linear predictor parameters and for the truth 

of the model. These are denoted by

7Toj -»probability of truth of the jth model; j= l ,2.

pOj( 0j) -»joint probability distribution for the jth set of linear predictor

parameters.

Definition 4.4. Consider two rival binary data models. Let 7r0j be as above and

conditioned on the event that the jth  model is true, let Poj(^j) ^ e  P^or

distribution for the parameters of the jth model. Then, a fu l ly  B a y e s ia n  o p t im u m  
*

d e s ig n  £ is such that

r(f*) = sup r(0  (4.4.4)

where

r(0 = + ^ e J a ^ , ) } .
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It is now straightforward to prove a theorem analogous to that of 

Chapter 3, Section 3.4, using the same arguments. The search for fully Bayesian 

optimal designs to discriminate between binary data models is then possible, despite 

the increased amount of computing which may well raise numerical problems. These 

are discussed in the next sections.

4.5. CONDITIONS FOR OPTIMALITY

According to the results originated from optimal design theory not 

until have we proven that all the criterion functions introduced in the last section

are concave on the class of design measures <#, and derived expressions for their
✓

Frechet derivatives, we will be in a position to state a theorem characterizing 

optimal designs. It is easy to prove that analogous results to those found for the 

problem of regression model discrimination in Chapter 3 also hold in the present 

context.

Proof of the first result, concavity of the criterion functions, is 

simplified by the fact that criteria (4.4.2) and (4.4.3) are particular cases of criterion

(4.4.4) so that it is enough to prove concavity of the criterion function r(f) and 

consequently, concavity of the other criterion functions will follow. Further, T(f) is 

a linear function of the binary discrimination totals (4.4.1.a) and (4.4.1.b). Indeed, 

it is the result of applying the linear operator E, expected value, over the prior 

distributions for parameters and model truth. Therefore, to prove concavity of r({) 

on it is enough to prove concavity of the binary discrimination totals, for 

concavity is inherited by linear combinations of concave functions, as shown in 

Appendix A. Details of the proof for binary models are presented in Appendix B. 

The second requirement, expressions for the directional derivatives or Frechet 

derivatives of the criterion functions, is also derived in Appendix B.

Similarly to the notation used in Chapter 3 let us consider the following
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optimization problem whose solutions are given by the binary discrimination totals 

(4.4.1.a) and (4.4.1.b). For any j = 1,2 ; j  =  not j ; £ € and 0j € 0 j denote

J JTjlOg TJ

7

1—7r/
+  (l-* j)10g — X

1—7TL

=  in f  I 17Tj
J J

£(dx)

>l°g
J J

7T:

7r:
+ (1 7Tj )10g

1—7Ti
(4.5.1)

where 7Tj =  7 i j ( x , 0 j ) ,  x  6  £  .

The additional assumption that the optimum design is regular in the
* *

sense that when f  { equation (4.5.1) has unique solutions, denoted by 0r, over

all which are relevant to the prior pOj(0j); {j= l,2}, makes each result proved 

in Section 3.4 for discriminating between regression models have its analogue in the 

case of binary response models. Given the preceding conditions one can prove the 

following theorem.

THEOREM 4.1
*

(i) a necessary and sufficient condition for a design { to be optimum w.r.t. criterion

(4.4.4) is fulfilment of the inequality

^(x,f ) < r ( f  ), for all x € X

where ) =  2 / o j E 0.
i 1

fljlOg T
7T-

j'

+  (l-Ij)log
■l-rj
-----W
1—7r. 

j ‘
(ii) at the points of the optimum design ^(x,£ ) achieves its upper bound;

*
(iii) for any nonoptimum design, that is a design for which r(f) < T(f ),

sup Tp(x,Z) >  r(£*); 
x€3£

(iv) the set of optimum designs w.r.t (4.4.4) is convex.

In (i), the estimates 7rr denote the predicted values yielded by the jth

model to estimate the expected responses under the jth  model, based on the support
*

points of the optimum design f . These estimates are obtained by iterative weighted
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least squares. For more transparency in the notation recall that ttj denotes 7Tj(x,0j)
*  *  *  *

and 7T- denotes 7r.(x,0_), where 0- is the solution of (4.5.1), when £ =  £ . 
j j j i

Conditions (i) and (ii) lead to the customary check for the optimality of

a candidate design. If a design £° is optimum w.r.t. (4.4.4) the plot of V{x>£0) over

the design region X  will reveal that sup V*(x>£0) =  r(£°), equality ocurring at all
xGX

xe£ which are the support points of the design. If sup ^(x,£°) > r(£°), the design
xe3£

£° is not optimal w.r.t. (4.4.4).

In the next section several examples of local, partially, and fully 

Bayesian T—optimum designs are presented for the problem of discriminating 

between pairs of widely used and well known binary response models such as the 

probit, the logistic, and the complementary log—log models.

4.6. EXAMPLES

In this section optimum designs are found to illustrate the methods 

described in the previous sections of this chapter. Two features of the search method 

deserve mention. The first concerns the ability of checking optimality provided by 

the conditions of Theorem 4.1. On the other hand, lack of theoretical results 

concerning the number of support points in the optimum design complicates the 

search process because most available algorithms require that this number be 

specified to carry out the search. An alternative to the latter is to try different 

numbers of design support points and learn as much as possible from the analysis of 

the derivative functions corresponding to the suboptimal designs for each different 

number of support points. In this process, some empirical methods may be helpful 

such as increasing the number of support points by adding to the design those points 

corresponding to high peaks in the plot of the derivative function. This situation is 

typical of designs with less support points than required so that influential points 

which have been excluded might be noticed through the plot of the derivative
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function. At the other extreme, if a design has more support points than necessary, 

the resulting suboptimal design will quite often contain duplicated support points 

that can be combined to form the actual optimum design.

We consider three examples for discriminating between pairs of binary 

response models. For each pair of models locally, partially Bayesian and fully 

Bayesian optimum designs are found and plots of the derivative functions displayed 

to ensure their optimality. Selections of prior distributions are made with the 

purpose of illustrating the proposed methods. Only discrete prior distributions are 

considered in this series of examples.

E X A M P L E  1 .1 . Discriminating between the complementary log—log and the normal

integrated (probit) curves. Initially, suppose that the true model has the

complementary log—log link function. Furthermore, assume that both models have

linear predictors given by a straight line 0j o +  O ^x  ,{ j= l,2} and that the design

region is the real line. For the true model, the parameters 01O and 0U are known a

priori to be equal to 0.5 and 1.0, respectively. The aim is to find an optimum design

that discriminates against the rival model whose link function is probit.
*

The local optimum design { is given below. Criterion function (4.4.2) 
*

is maximized at the value A2(£ ,0j) =  1.72 x 10"2, where 0 t  =  (0.5,1.0).

*
£ =

-5.048 -1.076 1.171 '

0.3851 0.2396 0.3753
(4.6.1)

Only three points are required in the optimum design to discriminate 

between these two link functions. All associated weights are significantly large with 

the two extreme points being almost equally important. The middle point counts for 

less than 25% of the total weight. Figure (4.1.1) shows the derivative function 

corresponding to design (4.6.1). The pattern of the derivative function plots for 

locally optimum designs, first observed in the case of regression model 

discrimination, is repeated in Figure (4.1.1), i.e. for the most noninformative points
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of the design region the value of the derivative is zero. A simple examination of the 

expression for the derivative function shows that a zero will occur if and only if the 

predicted value for the false model, say ttj , equals the expected response for the true 

model, say 7Tj , making the resulting curves touch at such a point.

Proceeding with example 4.1 we now investigate the effects of taking 

prior distributions for the parameters of the true model. Table 4.2 shows a prior 

distribution for the set of parameters 0 t  . The bidimensional points of this prior 

form a square on the plane, centered on 0 t =  (0.5,1.0), the true value of 0 t in the 

first part of the example. The probabilities of these points are distributed such that 

the center of the square is twice as likely as the other points.

TABLE 4.2 -  CONCENTRATED O-POINT PRIOR 
PROBABILITY DISTRIBUTION FOR 0 t

*10 *n Poi(*i)

0.5 1.0 0.2
0.5 0.9 0.1
0.5 1.1 0.1
0.4 1.0 0.1
0.4 0.9 0.1
0.4 1.1 0.1
0.6 1.0 0.1
0.6 0.9 0.1
0.6 1.1 0.1

Now, the appropriate criterion function to be maximized is (4.4.3). The 

resulting partially Bayesian optimum design is shown below. The maximized value 

of (4.4.3), achieved for this design is equal to 1.646 * 10"2.
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*
e =

-4.979 -1.085 1.172 '

0.3828 0.2432 0.3741
(4.6.2)

Not surprisingly, designs (4.6.1) and (4.6.2) are very similar in 

structure. The support points and weights have not changed significantly from the 

locally optimum design to the partially Bayesian optimum one. This is due to the 

prior distribution for 0 t  being very concentrated around the value assumed as true 

in the previous example. Also expected is the shape of the derivative function for 

this design, shown in Figure 4.1.2. As was observed in the linear regression case, for 

partially Bayesian designs the most noninformative points of the design region are 

more informative than their counterparts of locally optimum designs such as that of 

Figure 4.1.1. The reason is as explained in Chapter 3, Section 3.5.

TABLE 4.3 -  SLIGHTLY DISPERSED 9-POINT PRIOR 
PROBABILITY DISTRIBUTION FOR 02

2̂0 2̂1 P02(^2)

1.0 1.0 0.2
1.0 0.8 0.1
1.0 1.2 0.1
0.8 1.0 0.1
0.8 0.8 0.1
0.8 1.2 0.1
1.2 1.0 0.1
1.2 0.8 0.1
1.2 1.2 0.1

Proceeding even further with this example, let us also assume that, 

based on previous experiments or any other relevant source of information, prior 

probabilities for the models are available and, conditional on these, prior
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distributions for each set of parameters 0j , { j= l,2} are also available. Tables 4.2 

and 4.3 display the priors for 0t  and 02 , respectively. In the prior distribution for 02 

the bidimensional points are again arranged so that they form a square centered at 

the point 02 =  (1.0,1.0). The choice of this centre point is due to the similarity 

between the complementary log—log and probit curves corresponding to sets of 

parameters 0 t  and 02 equal to the centre points specified by the first rows of Tables 

4.2 and 4.3, respectively. The models, or links, are assumed to be true with equal 

probabilities.

With the amount of prior information available here, now criterion

function (4.4.4) is to be maximized. The value at which the optimum design is 
*

found is r(£  ) =  1.292 * 10“2 and the fully Bayesian optimum design is given below.

*
£ =

-4.015 -0.896 1.248 ' 

0.3868 0.266 0.3472
(4.6.3)

Although the support points and weights of design (4.6.3) show some 

resemblance to both previous designs (4.6.1) and (4.6.2) the shape of the derivative 

function for this design, shown in Figure 4.1.3, is distinct from those in Figures 4.1.1 

and 4.1.2. This is mainly due to the way criterion function (4.4.4) is defined, that is 

based on a mixture of prior distributions for the parameters of the two rival models. 

It is also interesting to notice that the maximized value of the criterion function for 

this extension of the problem is smaller than the previous observed values. This is 

probably due to occurrence of small values for the "deviances” when the 

complementary log—log model is fitted to the expected responses of the probit 

model.

E X A M P L E  j1.2. Discriminating between the complementary log—log and the logistic 

(logit) curves. Suppose that the complementary log—log link is true and we wish to 

find an optimum design to discriminate against the logistic link based model. In 

addition, assume that both model linear predictors are simply described by a
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straight line. For j= l,2  , let 0jO +  denote the linear predictors. Let the design 

region be the real line. Finally assume that the values of 01O and 0 n  are known to be 

equal to 1.0 and 3.0 respectively.

The level and amount of prior information assumed in this example are 

very rare in practice, but it should not be ruled out that such a situation can occur 

in a real problem. The criterion of optimization adopted here is criterion (4.4.2). 

The optimum is achieved at the value of the criterion function equal to 1.496 * 10 "2. 

This corresponds to the following design.

*
£ =

-1.406 —0.3635 0.26871 

0.2588 0.2078 0.5334
(4.6,4)

Three support points prove to be enough in order to discriminate 

between these two rival models. A special feature of this optimum design is that the 

only positive support point is assigned more than 50% of the whole weight. Figure

4.2.1 shows the derivative function for design (4.6.4). It can be seen that the most 

noninformative points correspond to values of the derivative equal to zero.

Continuing the present example of discriminating between the 

complementary log—log and logit link functions, consider the same assumptions as 

at the beginning of the example except knowledge of the true values of the 

parameters. Instead, suppose that now there is a prior probability for the 

parameters of the complementary log—log link based model. This prior is displayed 

in Table 4.4.

The bidimensional points of the above prior for 0 i are arranged in the 

form of a square whose centre has coordinates 0 t  =  (1.0,3.0), the true value of the 

parameters for the first part of this example. Again, probabilities are distributed 

almost uniformly, that is the centre is twice as likely as the other points in the 

prior. The distances from the other eight points to the centre (1.0,3.0) show a 

relatively large dispersion in this prior distribution. If the shapes of the curves
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corresponding to these nine combinations of the parameters 6 i0 and 9n  were to be 

compared, the discrepancies would be enourmous. In practice, prior distributions 

like that of Table 4.4 are rare.

TABLE 4.4 -  DISPERSED 9-POINT PRIOR 
PROBABILITY DISTRIBUTION FOR 0 t

rio 'u PoiW

1.0 3.0 0.2
1.0 2.5 0.1
1.0 3.5 0.1
0.5 3.0 0.1
0.5 2.5 0.1
0.5 3.5 0.1
1.5 3.0 0.1
1.5 2.5 0.1
1.5 3.5 0.1

Due to the form of the available prior information, criterion function 

(4.4.3) applies to this problem. Its maximized value is equal to 1.077 * 10"2 for the 

following optimum design.

-1.373 -0.3859 0.2827 

0.2808 0.209 0.5103
(4.6.5)

The structure of design (4.6.5) resembles that of design (4.6.4) in the 

sense that the first two support points in ascending order of magnitude are negative 

and if taken together share less than 50% of the total weight whereas the third and 

last point is positive and alone is responsible for the remaining 51.02%. For the 

purpose of checking optimality, Figure 4.2.2 shows the derivative function
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corresponding to design (4.6.5).

Proceeding with Example 4.2, which illustrates the search for optimum 

designs to discriminate between the complementary log—log and the logit links, we 

now consider that the true model is unknown, but that there is a prior probability 

for each model to be true. Conditional on these prior probabilitites, there are prior 

probability distributions for each of the parameter sets and 02 . Under this more 

general situation criterion function (4.4.4) applies. The prior probabilities for 0t and 

02 are displayed in Table 4.5. Again, we take the models as equiprobable.

TABLE 4.5 -  9-POINT PRIOR PROBABILITY DISTRIBUTIONS 
FOR PARAMETER SETS 0 t AND 02

*10 Poi(*i) *20 *21 P02(*2)

1.0 3.0 0.2 2.0 4.0 0.2
1.0 2.75 0.1 2.0 3.75 0.1
1.0 3.25 0.1 2.0 4.25 0.1
0.75 3.0 0.1 1.75 4.0 0.1
0.75 2.75 0.1 1.75 3.75 0.1
0.75 3.25 0.1 1.75 4.25 0.1
1.25 3.0 0.1 2.25 4.0 0.1
1.25 2.75 0.1 2.25 3.75 0.1
1.25 3.25 0.1 2.25 4.25 0.1

Each prior distribution consists of nine bidimensional points forming a 

square centered in 0 t  =  (1.0 ,3.0) for the complementary log—log link and centered in 

02 =  (2.0,4.0) for the logit link. Like the previous priors, the centre is twice as likely 

as the other eight points. The shapes of the curves for the two parameter sets, taken 

as centres of the priors, are very similar.

The maximum value achieved by criterion function (4.4.4) in this 

example is equal to 1.29 x 10"2. The optimum design is as follows.
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*
e =

r—1.443 -0.319 0.2337 0.7766'

0.3262 0.2151 0.1645 0.2942
(4.6.6)

Four support points are now required in the optimum design to 

discriminate between these two models in the presence of reasonable uncertainty 

with respect to the model truth and the values of the parameters. There are two 

positive and two negative support points in design (4.6.6) with the first and third 

point weights added up counting for 49.07% of the total weight. Figure 4.2.3 shows 

the maximum value of criterion function (4.4.4) being achieved at all four support 

points of design (4.4.6). The region between the first and the second support points 

is noninformative regarding model discrimination whereas points in the design 

region between the second and fourth support points are all highly informative with 

respect to the same purpose.

E X A M P L E  A .8 . Discriminating between the normal integrated (probit) and the 

logistic (logit) curves. This is the subject of the pioneering work on binary response 

model discrimination described by Chambers and Cox (1967). Although the present 

approach and theirs are based on different ideas a comparison can be made between 

optimum designs yielded by these different criteria. We start by assuming that the 

logistic link based model is true. Moreover, we assume that both model linear 

predictors are described by a straight line 0jO+ ^ x  , { j= l,2} and that = (2 .0 ,2.0) 

are the true values of the linear predictor parameters for the true model. The 

purpose is to discriminate against the rival model whose link function is probit.

The maximizing value for criterion function (4.4.2) is given by
*A2(f  ,0^ =  1.853 x 10‘3 and the locally optimum design is given below.

-1.761 -0.2386 1.972 1 

0.1475 0.2491 0.6034
(4.6.7)

Under the true model the probabilities of success corresponding to the
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three support points of design (4.6.7), in ascending order of the latter, are 0.1791, 

0.8209 and 0.9974 respectively, whereas under the false model they are equal to 

0.2032, 0.7968 and 0.9994 as opposed to 0.215, 0.785 and 0.9964 given by the 

optimum design found by Chambers and Cox (1967) under the false model.

However, the most interesting result that comes from comparing design 

(4.6.7) with Chambers and Cox’s optimum design concerns the weights. In the 

former, the design weights increase as do the support points, with 60.34% of the 

total weight being assigned to the largest support point. Similarly, in the latter the 

design weights are 0.117, 0.214 and 0.669 in ascending order of their standardized 

support points. Their interpretation of the results was based on regions for which 

the curves are distinguishable or indistinguishable. Acccording to this, the first two 

points of the design, which lie in a region where the curves are almost 

indistinguishable, are probably required to estimate the linear predictor parameters 

whereas the third point, which lies in a region where the curves disagree, is needed 

to discriminate between the models. This also explains the excessive weight assigned 

to the only point that supposedly discriminates between the models.

Figure 4.3.1 displays the derivative function for design (4.6.7) where 

again the pattern of locally optimum designs is apparent. As in previous examples 

we proceed with the discrimination between the logit and probit links by 

investigating the effects of replacing the hypotheses of knowledge of the true values 

of parameters by prior probabilities. Suppose that the true model is now the inverse 

normal or probit and that there is a prior distribution for its linear predictor 

parameters 0 t  . Both linear predictor structures are again given by a first degree 

polinomial. Table 4.6.2 shows the prior for 0V

Criterion function (4.4.3) is appropriate in the current situation. The 

resulting partially Bayesian optimum design is shown below. Its maximized value is 

=  7.819 « 10-4.
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*
t  =

f—-4.102 -2.099 -1.072 -0.0384 1.815 ' 

0.0799 0.0932 0.1078 0.1866 0.5325
(4.6.8)

Five support points are necessary to discriminate against the logistic 

link based model. As for design (4.6.7), the weights in design (4.6.8) increase with 

the values of the support points. The range of the design weights varies from 7.99% 

for the most negative support point to 53.25% for the largest one, the only positive 

number. This excessive weight for the last point suggests a large disagreement 

between the curves at this point making it very important to discriminate between 

the models. This vital support point which peaks at the maximum of the criterion 

function appears very close to the most noninformative point corresponding to the 

deepest trough in Figure 4.3.2. The design region between the second and the fourth 

support points seems to be very informative with respect to criterion (4.4.3).

In the last part of our investigation of the problem of searching for 

optimum designs to discriminate between the logistic and the inverse normal 

(probit) link based models, we carry out an informal and simple sensitivity analysis 

of fully Bayesian optimum designs to discriminate between these rival models. 

Basically, our interest lies in assessing the sensitivity of the optimum design to lack 

of accuracy in the prior distributions to the linear predictor parameter sets 0 t  and 

02. For this purpose, four prior distributions are considered, two for each parameter 

set, one concentrated and the other relatively dispersed. We then combine the prior 

probabilities, one for 0t  and another for 02) exhaustively and find the related fully 

Bayesian optimum designs. For each of the four combinations of priors the models 

are assumed equiprobable, i.e. 7r0 =  (0.5,0.5). The priors are listed in Tables 4.6.1 

and 4.6.2. The former contains the concentrated priors for both parameter sets 

whereas the latter provides the dispersed priors.

As usual the bidimensional points in the priors are arranged so that 

they form squares which are centered at either 0 t  =  (2.0,2.0) or 02 =  (1.0,1.0). The 

areas of the squares in Table 4.6.1 are both equal to 0.04 whereas those of Table
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4.6.2 are equal to 4 and 1, respectively a factor of 100 and 25 larger than the 

previous ones. As probabilities are assigned to points in a similar manner for all four 

priors, the above figures illustrate the difference in accuracy between these priors.

TABLE 4.6.1 -  CONCENTRATED PRIOR DISTRIBUTIONS FOR AND 02

*10 *n Poi(*i) *20 *21 Po2(*a)

2.0 2.0 0.2 1.0 1.0 0.2
2.0 1.9 0.1 1.0 0.9 0.1
2.0 2.1 0.1 1.0 1.1 0.1
1.9 2.0 0.1 0.9 1.0 0.1
1.9 1.9 0.1 0.9 0.9 0.1
1.9 2.1 0.1 0.9 1.1 0.1
2.1 2.0 0.1 1.1 1.0 0.1
2.1 1.9 0.1 1.1 0.9 0.1
2.1 2.1 0.1 1.1 1.1 0.1

TABLE 4.6.2 -  DISPERSED PRIOR DISTRIBUITONS FOR 0 t  AND 02

*10 *u Poi( *l) *20 *21 Po2(*2)

2.0 2.0 0.2 1.0 1.0 0.2
2.0 1.0 0.1 1.0 0.5 0.1
2.0 3.0 0.1 1.0 1.5 0.1
1.0 2.0 0.1 0.5 1.0 0.1
1.0 1.0 0.1 0.5 0.5 0.1
1.0 3.0 0.1 0.5 1.5 0.1
3.0 2.0 0.1 1.5 1.0 0.1
3.0 1.0 0.1 1.5 0.5 0.1
3.0 3.0 0.1 1.5 1.5 0.1
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According to previous discussions and conclusions, one should expect 

that the number of support points in the optimum design increases as the 

combination of priors varies from both concentrated to both dispersed. The four 

resulting fully Bayesian optimum designs are listed in Table 4.7.

TABLE 4.7 -  FULLY BAYESIAN T-OPTIMUM DESIGNS 
FOR FOUR COMBINATIONS OF PRIOR 

DISTRIBUTIONS FOR AND 02

VALUE OF T(f ) BAYESIAN OPTIMUM DESIGN

(a) 1.608 x IQ'3

(b) 1.117 x 10

(c) 1.273 x IQ'3

(d) 9.02 x 10-4

r—1.779 —0.2138 1.945 '

0.1408 0.2433 0.6159

r—1.716 -0.1334 1.892 '

0.1334 0.2435 0.6231

-3.991 -1.716 -0.2076 1.959

0.0978 0.1588 0.2288 0.5146

-4.104 -2.148 -1.325 -0.8659 -0.0201 1.871 '

0.0897 0.0916 0.0662 0.0656 0.1846 0.5023

where
(a) both concentrated, design (4.6.9);
(b) 0t dispersed and 02 concentrated, design (4.6.10);

(c) 0 t  concentrated and 02 dispersed, design (4.6.11);

(d) both dispersed, design (4.6.12).

Apart from some similarity to designs (4.6.9) and (4.6.10) and the fact 

that in all designs the last support point is the only positive one and also the most 

influential of all, with more than 50% of the total weight, there are no other 

apparent features that are common to the designs of Table 4.7. The number of
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support points in these designs varies from three, for both concentrated priors to six, 

for both dispersed priors, confirming what was expected. The fact that only three 

support points were required to discriminate between the models in the presence Of 

a dispersed prior for 0 t and a concentrated one for 02 as opposed to four support 

points when there was a concentrated prior for 0t  and a dispersed one for 02 seems to 

suggest that there is more sensitivity towards dispersion in the prior for 02 than for 

0 t as far as the number of support points is concerned.

Analyses of the plots for the derivative functions reveal further relevant 

features pertaining to these designs. Figure 4.3.3, related to design (4.6.9), shows a 

pattern of very well marked peaks and troughs which is typical of locally optimum 

designs. This is due to both priors being concentrated. In Figure 4.3.4, 

corresponding to design (4.6.10), there are only three peaks although in the design 

region between the first and second support points the shape of the derivative 

function is almost flat with values just below the maximized value of the criterion 

function, indicating that these points are very informative.

In Figure 4.3.5, related to design (4.6.11), the shape of the derivative 

function looks symmetric. However, the range of the design weights is very wide 

leading to the conclusion that, in fact, design (4.6.11) is unbalanced as opposed to 

the suggestion of Figure 4.3.5. Finally, Figure 4.3.6 shows the plot of the derivative 

function related to design (4.6.12). As in Figure (4.6.10) there is a region in which 

the shape of the derivative funcion is almost flat. Such a region is limited by the 

second and the fifth support points.

4.7 DISCUSSION

The definitions of Section 4.4 and the theoretical results of Section 4.5 

highlight the similarities in construction and properties of designs for discriminating 

between binary data models and those for discriminating between linear and/or
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nonlinear regression models. A natural extension is to consider designs for 

discriminating between any two generalized linear models, again using as a criterion 

function the expected deviance under the false model. Such designs will only be of 

interest when the responses under the two models are of the same type with the 

same range. This is the subject of Chapter 5.

The designs described in this paper are non—sequential. If sequential 

designs are possible they are to be preferred as information obtained at one stage 

can be used to design a more efficient experiment at the next. The combination of 

sequential methods with the Bayesian approach of this chapter requires updating 

the prior for the parameters of each model and also, for some designs of Section 4.6, 

a method of updating the probability that each model is true.

There are some other more practical points. The use of discrete priors

for the parameters of the two models avoids some numerical problems. Does this

lead to markedly less efficient designs ? Likewise we have here calculated only
*approximate designs { . What about discrete or exact designs ? A final extension is 

to consider designs for discrimination between three or more generalized linear 

models. Here we might follow the approach of Atkinson & Fedorov (1975b) for 

regression models.
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APPENDIX B

To simplify the notation used in Section 4.4, let us express the sum of

the discrepancies (integral) between the expected values of two binary response

models w.r.t. an underlying design { as follows. For j =1,2 ; J =  not j ; £ 6 ;

0:60: ; and 0jG0-denote J J j j
7T:

7T

1-Xj

I-* !
(B.l)

where ttj =  7Tj(x,0j), x € X  .

According to this, for any design { € <&; and any 0j € 0 j the binary

discrimination totals (4.4.1.a) and (4.4.l.b) may be represented by

A j =  in f  b (? ,M j)  , j= l,2  (B.2)
J 0 - 6 0 -  

j j
What we want to prove is that (B.2) is a concave function on <#, i.e.

> (1 -  a) +  a  A jC f,^ ) (B.3)

where 0 < a  < 1 and £ =  (1 — a) f t + a  £2 > f  i> $2 e This Pr0°f> presented below, 

is analogous to the proof of concavity for the noncentrality parameters given in 

Appendix A, result (A.3).

Proof of (B.3)

Let aelR, 0 < a < 1 ; £1;£2 € <&] and £ =  (1 — a) £t +  a  £2.

Then

A p .^ j)  =  in f  bU.flj.tfj) =  m f 

i I  f  i
=  { ( ! - “ ) K fi.i'j.ffj) +  ab({„0j,tfj-)j

l e %  I*1""0* bM * $ }  +  {a b (^>(?j>fli)}
j j i J

=  ( l - a ) A p 1,0j ) +  a A p 2l(7j ).

Hence Aj(£,0j) is a concave function on . Further, concavity of
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criterion function (4.4.4) follows from linearity.

The steps to determine the directional derivatives of r(£) for the 

problem of binary response model discrimination are also analogous to those for the 

equivalent of (4.4.4) in the regression case. Here, the expression for the derivative 

function is also given by

d a X  x«i j

dArU.gj)'

d a
(B.4)

where f  =  (1 — a) f , +  a  ; 0 < a  < 1 ; and for j =  1,2

aAfU,gj)

d a  =  £ l l ( B'5) 
+ J Jwhere for a given a  6 [0,1], 01(a) is the solution set of equation (4.5.1).

Proof of fB.4l

Let us first prove (B.5). For any real number a  e [0,1] ; G cfif; and

(  =  (1 — a) +  a  k t  © t(a) be the solution set of equation (4.5.1). In our
j. J

notation 0 1(a) is the solution set of the following equation

b(£, v t )  = inf bU>Vj)J 0 - e Q .  1 1
i j

/

Then, the Frechet derivative of Aj(£,0j) is derived as follows.

S A j U , ^ )  B

d a d a ,b(£ ,V j)0-60l(a) 
j j

=  i n f .
^ € 0 l(a )

d _
d a

= i n f .
0.G 01(a)

=  i n f .
0-€ 01(a) 
j i K '

0-60 1(a)
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where again the first equality holds by applying Pshenichnyi (1971, Theorem 3.2,

pp. 75). Hence, (B.5) is true. Now, on the assumption that the optimum design £ is
*  *

such that (4.5.1) has a unique solution 0 T when f  =  f  (f  —► f  t, when a  —*■ 0), (B.5) 

becomes

Fa  =  b({a, ^ £ )  - b (£ * ,V * )
j J J

=  b(e2, ^ ^ ) - A j ( ^ ^ j ) .
J *

where f 2 represents any design other than £ . In particular when f 2 =  £x, the design

putting all mass at the point x € X ,  it follows that for any x  e X

h i
1-Xj-

+  ( l-^ ) lo g
J r . _1—71" r

f a .(£ >?*) =  *jlos 
j

J J

However, according to Theorems 2.1 and 2.2

FA « * , y  =  < 0

=* < Aj(£*,0j) , for any x  e X

,»j) (B.6)

(B.7)

where ^(x,^ ,0j) =  7Tjlog
7T j

7T.
+  (l-ffj)lOg  *

1—7T-
j'

Inequality (B.7) is condition (i) of Theorem 4.1 for a local optimum 

design. Again, Corollary 2.1 applies here so as to derive condition (ii). Conditions

(iii) and (iv) are then straigthforward.

For the more general case corresponding to criterion (4.4.4) we must
* *

assume that at the optimum design £ (4.5.1) has unique solutions 0 .  for every
j

0 j 6 0 j  which is relevant to the prior p Oj ( 0 j ) ,  {j=l,2}. Taking expectations of (B.6) 

over the priors irQ and P Oj ( 0 j ) ,  {j=l,2} yields condition (i) of Theorem 4.1 in its 

more general version given in Section 4.4, namely

) < r({ ), for any x e X

where ^(x,{ ) =  E E -  
To uj

*

v j'
ifr

' l - ’Tj'
*

*
7TjlOg + (1—7Tj)l0g

Jr. 1—7T-

Conditions (ii), (iii) and (iv) can now be obtained analogously.
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CHAPTER 5. THE DESIGN OF EXPERIMENTS TO DISCRIMINATE 

BETWEEN TWO RIVAL GENERALIZED LINEAR MODELS

5.1. INTRODUCTION

In this chapter the theoretical results presented previously in Chapters 

3 and 4 are extended to the class of generalized linear models. This extension is 

motivated by the similarities encountered in problems of model discrimination for 

other categories of statistical models beyond the scope of regression, such as 

Gamma, Poisson, etc. The analogy between residual sum of squares in regression 

models and deviance in generalized linear models is again explored for the 

introduction of the criterion of optimality (the same argument is used in Chapter 4, 

although for the particular case of binary response models).

To describe the contents of this chapter more precisely we could say 

that it concerns an extension of the criterion of T-optimality (Atkinson and 

Fedorov, 1975a) to the class of generalized linear models by means of the natural 

generalization of the residual sum of squares into the deviance. This leads to the 

term Generalized T-optimality for the criterion introduced in Section 5.3. Such 

generalization provides a much wider framework for applying the methods to 

determine an optimum experimental design to discriminate between two statistical 

models.

In unplanned experiments the fitting of data by generalized linear 

models requires the specification of both the link function and the linear predictor
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structure. The usual solution is to try several combinations of link function and 

linear predictor structure until a satisfactory fit is found. In most cases, however, 

the search for the model that best fits the data is reduced to a few structures 

between which a well designed experiment could help to discriminate. Further, there 

are situations in which the structures and models that are more likely to provide the 

best fits are known a priori. In these cases the planning of the experiment with the 

purpose of discrimination, if possible, is appealing.

For instance, in the previous chapter the logistic, probit and 

complementary log—log link functions were compared and optimum designs for link 

discrimination were found in different situations as far as prior information on the 

linear predictor parameters is concerned. Then, the reason for applying methods of 

model discrimination was that the expected responses yielded by models with these 

link functions are similar. Problems of link choice as well as linear predictor 

structure choice can arise in all categories of generalized linear models, thereby 

creating a wide scope for application of the ideas of model discrimination based on 

T—optimality. This motivates the methodology to be introduced in this chapter.

5.2. BACKGROUND

With a few exceptions, the methods of optimal design theory have not 

yet been applied to GLMs, as defined by McCullagh and Nelder (1989). Although 

rather briefly, Chaloner (1987) approaches the problem of designing optimum 

experiments to estimate the linear predictor parameters of a GLM, but later 

emphasizes the subclass of logistic regression for binary response models. Two 

criteria are suggested, namely expected D—optimality and A—optimality, to deal 

with the problems of estimating the linear predictor parameters and relevant 

functions of these. Following this work, Chaloner and Larntz (1989) give further 

details of the problems. However, no thorough investigation has been carried out
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hitherto on the problem of designing experiments under the framework of GLMs.

Ponce de Leon and Atkinson (1992b) approach the problem of optimum 

designs for model discrimination under this framework, although only locally 

optimum designs are taken into consideration. In this chapter these preliminary 

results are extended so as Bayesian optimum designs can also be determined. 

Moreover, we illustrate the theory by means of an extensive investigation of the 

problem of discriminating between the logarithimic and the reciprocal links for a 

Gamma model.

In Section 5.3 we describe the general problem and define the 

generalized T-optimality criterion function along with specific expressions of it for 

five subclasses of GLMs. In Section 5.4 we show how to find the derivative functions 

required for the construction and checking of optimum designs. Four numerical 

examples are provided in Section 5.5. The chapter concludes with a brief discussion 

in Section 5.6.

5.3. GENERALIZED T-OPTIMALITY

Suppose that two well defined structures (models) are to be 

discriminated between in the early stages of designing the experiment. For reasons 

of simplicity assume that both structures belong to the same subclass of GLMs (this 

is not a crucial assumption since in some practical situations models belonging to 

different subclasses of GLMs might well provide good fits for the data). Further, 

assume that for both models the link function and linear predictor structure are 

known a priori. The link functions and/or linear predictor structures may or may 

not be the same, so the models may or may not be nested. There is no restriction on 

the kind of linear structure nor on the number of linear predictor parameters. Thus, 

let //j denote the vector of means corresponding to the jth model and sjfj the linear 

predictor vector (j=l,2). Under the framework of GLMs we have
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(Sj(Mj l)>'**»Sj(Ajn))

where

gj(.) is the link function ; t/j =  Xj/?j is the vector of linear predictors ;

Xj is the design matrix, (n * kj) ; /?j is the vector of unknown parameters, (kj * 1) ; 

kj is the number of parameters; and n is the sample size.

Under these circumstances the problem we are concerned with can be 

summarized as the search for an experimental design that discriminates most 

efficiently between the two GLMs.

In our approach to model discrimination we assume that prior 

information on the linear predictor parameters for both models and on the model 

truth are available by means of probability distributions. Thus, let x0 = (7r01,7r02)> 

where 7r01 +  7r02 =  1, denote the prior probabilities for each model to be true. Let 

p0j(/?j), j= l,2 , denote the conditional (on the model truth) probability distributions 

for the parameter sets

Proceeding as in Chapters 3 and 4, we now define two variables, 

functions of the design measure (  and the true values of the linear predictor 

parameters P i  or j32- They represent generalizations of the noncentrality parameters 

under regression theory with normality assumptions described by Definition 3.1. 

Definition 5.1. The quantities

A i(£ A )=  M in f  d (* A A ){ (d i)  (5.3.l.a)
P 1 eB, J X

where

d (xA 0 i) =  2v![fj,2(x,P2){S2(x,P2) -  8l{x,P^} - b { e 2(x,P2)} + b{01(x,^1)}] 

and

A2(f ,0 i)=  M in f  d(x,/?„j92) f(dx) (5.3.1.b)
P  2 £B2 J  %

where

d(x,0i,&) =  2w[fi1(x,0l){01(xl0l) -  02(x,p3)} - b { f f i(x,Pi)} + b{02(x,p2)}].
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are the generalized discrimination totals for the first model when the second is true, 

and vice versa.

TABLE 5.1 -  EXPRESSIONS FOR d{x,Pit02)

Subclass

Normal

Binomial

Poisson

Gamma

I nverse 
Gaussian

Mi(x.&) loS 

log

+  {1 log 1 -  Ut(x,0l)

-log
. m ( x ,0 2 ) . M x >02)

In both expressions dfx,/^,/?^ and d(x,/?l5/?2) given above, w is a known 

prior weight; /j2(x,/?2) and /ji(x,/?j) provide the expected values under the rival 

models; 2̂(x ) â) 0i(x)/?i) are the canonical parameters; and b{02(x,/?2)} and

b{^i(x,j9|)} are known functions of the canonical parameters. For each subclass of 

GLMs there are specific expressions for 0j(x,/?j) and b{0j(x,/?j)}, j= l,2 . For further 

details about the notation and meaning of the components of a GLM, see McCullagh 

and Nelder (1989, Chapter 2). Particular expressions for d(x,^1,ft) are given in 

Table 5.1. Analogous expressions follow for d(x,)32,^1). In Table 5.1 the factor 2 

which appears in the Poisson, Binomial and Gamma models may be discarded as it 

will have no effect on the optimization procedures.

From Table 5.1 and expressions (5.3.1.a) and (5.3.1.b) we can find 

expressions (3.3.1.a) and (3.3.1.b) as well as (4.4.1.a) and (4.4.1.b) corresponding to
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the Normal and Binomial subclasses of GLMs, respectively. For other subclasses it 

is straightforward to obtain the quantities that will be used to define the criteria of 

optimality for model discrimination. We start with the case in which the true model 

and its linear predictor parameters are known.

Definition 5.2. Assume that the jth model is true and its linear predictor parameters
*

{/?jk} are known. A design £ is said to be lo c a l g e n e r a liz e d  T - o p t i m u m  if and only 

if

Aj(£*) =  sup Aj(£) (5.3.2)

where

Aj(?) =  Ajfo/J,), j= l,2  and j =  not j.

By taking the Normal subclass of GLMs, (5.3.2) becomes the original

criterion of T-optimality as defined by Atkinson and Fedorov (1975a). Another

possibility in practice arises when the true model is known and its linear predictor

parameters are known to be distributed according to a given prior probability

distribution. This corresponds to either 7r01 or 7roa equal to one.

Definition 5.3. Assume that the jth model is true and that p0j(/?j) denotes the prior
*

probability for its linear predictor parameters. Then, a design £ is said to be 

p a r t ia l ly  B a y e s ia n  g e n e r a liz e d  T - o p t i m u m  if and only if

7jU*) =  sup  7j(f) (5.3.3)
(,£<% J

where

7j(£) = % { Aj(£^j)}> j=l>2 and j =  not j.

In the general situation both prior probability distributions are spread 

around in the parameter space rather than concentrated on a single point as are 

(5.3.2) and (5.3.3).
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Definition 5.4. Assume that there is a prior probability that each model is true, and

conditionally on the event that the jth model is true, there is a prior probability
*

distribution p0j(/?j) for its linear predictor parameters. Then, a design f  is said to 

be fu l ly  B a y e s ia n  g e n e r a liz e d  T - o p t i m u m  if and only if

r({*) =  sup P(Q (5.3.4)

where

All criterion functions introduced so far in this thesis are particular 

cases of (5.3.4). Basically, there are two ways of making (5.3.4) collapses into these 

particular cases, namely by assuming that the models to be discriminated belong to 

a specific category of GLMs and/or by taking prior distributions with mass 

functions at a single point in the related parameter spaces. This covers several 

problems of designing experiments for model discrimination.

In the next section an extended theorem based on the General
/

Equivalence Theorem is stated and the Frechet derivative for the Generalized 

T-optimality criterion function is presented along with its specific expressions for 

the five subclasses of GLMs considered in this section.

5.4. A THEOREM FOR GENERALIZED T-OPTIMUM DESIGNS

Following the definition of Generalized T—optimality in the previous 

section, some relevant properties of the criterion functions are derived in this section 

with the purpose of establishing conditions of optimality. Basically, what ought to 

be verified is whether analogous results to those of Chapters 3 and 4, which provide 

important means for checking optimality and constructing optimal designs, also
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hold in the general situation considered in this chapter.

Based on the same rationale used in Section 4.5 it suffices to prove

concavity of expressions (5.3.1.a) and/or (5.3.l.b) in order to prove concavity of the

Generalized T—optimality criterion function (5.3.4). Directional differentiation of
/

this criterion function, in the Frechet’s sense, provides the other essential result for 

proving a Theorem which generalizes Theorems 3.1 and 4.1. Further details of these 

demonstrations are presented in Appendix C.

Let us denote the solution of the optimization problem presented by the 

generalized discrimination totals (5.3.1.a) and (5.3.l.b) as follows. For j =  1,2 ; j = 

not j ; { € and /?j€Bj let

f  £(dx) =  in f f  d(x,A,/fc) £(dx) (5.4.1)
J X ‘ J /JjeBjj X

where d(x,/?j,/?j) is as in definition 5.1 and Table 5.1.
* *

Suppose that, when { = £ , (5.4.1) has unique solutions denoted by

over all P fi.Bj which is relevant to the prior p0j(/?j), {j =  1,2}. Then, we may state

the following general Theorem for discriminating between two generalized linear 

models.

THEOREM 5.1
*(i) a necessary and sufficient condition for a design £ to be Bayesian generalized 

T-optimum is fulfilment of the inequality

# c ,f* )  < T(£*) , for all x e M  

where V(x,£*) =  ^  7rojE/?.{d(x>/?j>/£)} ;

j *
(ii) at the points of the Bayesian generalized T-optimum design ) achieves its

upper bound ;
*

(iii) for any non-optimum design £, that is a design for which r(f) < T(f ),

sup V{x,£) > r(£*) ; 
x e X

(iv) the set of Bayesian generalized T—optimum designs is convex.
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The derivatives d(x,/?j,/?r) particularize into the five subclasses of

GLMs in expressions which are very similar to those of Table 5.1. Indeed, the only
*

change is due to replacing by /?-. The computation of such derivative functions is 

crucial at the stage of checking optimality as seen in previous chapters. In practice, 

the derivative function ought to be computed over a grid in the design region X  and 

then plotted against the components of this grid so as to demonstrate the optimality 

or non—optimality of the design candidate.

In the next section we present four numerical examples to illustrate 

these procedures.

ft
5.5. EXAMPLES

To illustrate the results introduced in this chapter we concentrate on a

particular problem of link choice for the Gamma subclass of GLMs since the Normal

and Binomial subclasses have been studied in Chapters 3 and 4, respectively. Here,

two link functions are regarded, namely the reciprocal and the logarithmic. For a

given range of the response variable both link functions combined with suitable

linear predictor structures are known to provide reasonably good fits to data

supposedly originating from a Gamma distribution. Because the expected values

under these two models agree closely only a well designed experiment could provide

the means for the experimenter to decide upon which link best fits the data. In what

follows we show some examples of locally, partially Bayesian and fully Bayesian

T—optimum designs with this purpose.

Firstly, we ought to find an expression for the criterion function

specifically for the Gamma subclass of generalized linear models. From Table 5.1 we
*find that the criterion is defined as the search for a design £ such that (5.3.4) is 

satisfied, where

107



Ar(£,/3j) =  M in f  2|-4og 
J J f l r e B r J x

+ £(*0. j=l>2; J= not j.

Now, depending upon the nature of prior information that is available, 

the expression for the criterion function will vary accordingly. In all examples of this 

section the models to be discriminated are described by their expected values with 

respect to a single observation, i.e. /xt =  =  l/^7i and f i2 =  ga'1̂ )  =

where 7}t and rj2 are given linear structures. Due to the nature of the Gamma 

distribution the expected values, as well as any data generated by this distribution, 

must be positive. For the canonical link, the reciprocal, this constraint requires 

some restrictions on the values of the linear predictor parameters {/?&} so that the 

related values of 77t are positive. However, no restrictions need to be imposed on the 

linear predictor set of parameters 0 2. In all the following examples, we take the 

design region to be the interval [1.0,10.0] and the values of the linear predictor 

parameters for the reciprocal link, to be positive so that the constraint is

satisfied. The only exception to this assumption concerns Example 5.4 where the 

design region is the interval [0.1,10.0] although the linear predictor parameters { { 3 ^ }  

for the reciprocal link based model are again assumed to be positive.

E X A M P L E  5 .1 . Suppose that the first model is true with inverse link and that its 

linear predictor structure is /?10 + /?ux where /?10 =  0.0 and 0 n  =  1.0. The aim is to 

find a design that discriminates against rival models with logarithmic link function 

and identical linear predictor structure. Criterion (5.3.2) applies.

The resulting locally T-optimum design is shown below. The optimum
3|(

value of the criterion function is A2({ ,/Jj) =  9.53 * 10'2, where /?A =  (0.0,1.0).

*
£ =

1.0 3.9086 10.0 1

0.3037 0.5513 0.145
(5.5.1)

A remarkable feature of design (5.5.1) is that both extremes of the
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design region, the interval [1.0,10.0], belong to the optimum design although more 

than 55% of the weight is assigned to the middle support point 3.9086. The plot of 

the derivative function for design (5.5.1) is displayed in Figure 5.1.1.

TABLE 5.2 -  CONCENTRATED 5-POINT PRIOR 
DISTRIBUTION FOR P t

010 011 Poi(A)

0.0 1.0 0.2
-0.1 1.0 0.2
-0.1 0.9 0.2

0.1 1.0 0.2
0.1 0.9 0.2

To proceed with this numerical investigation suppose that both models

have the same linear predictor structure as before and consider a combination of

values for the linear predictor parameters for the second model, P 2 which provides

similar expected values to those for the first model over the interval [1.0,10.0]. As

for the first model, five equally likely combinations of values for P t  are considered.

They lie in a tiny region around the point P t =  (0.0,1.0) from the first part of this

example. This discrete uniform prior distribution is shown in Table 5.2. Both

models are taken to be equally probable to be true. Under these circumstances,

criterion (5.3.4) applies.

The resulting fully Bayesian T—optimum design is shown below. The
*  -2

maximized value of the criterion function is T(f ) =  7.017 * 10 .
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As expected, designs (5.5.1) and (5.5.2) show some similarities. Their 

support points are virtually the same, but the weights are slightly different. The 

derivative function for this design is displayed in Figure 5.1.2. The main difference 

between the plots of the derivative functions for designs (5.5.1) and (5.5.2) is the 

level of smoothness of their valleys. The former is spikier due to its local optimality.

TABLE 5.3 -  9-POINT CONCENTRATED PRIOR PROBABILITY 
DISTRIBUTIONS FOR PARAMETER SETS AND P 2

0io 011 PoiW 020 021 P 02(^2)

0.0 1.0 0.2 -0.3 -0.2 0.2
0.0 1.1 0.1 -0.3 -0.1 0.1
0.0 0.9 0.1 -0.3 -0.3 0.1

-0.1 1.0 0.1 -0.4 -0.2 0.1
-0.1 1.1 0.1 -0.4 -0.1 0.1
-0.1 0.9 0.1 -0.4 -0.3 0.1

0.1 1.0 0.1 -0.2 -0.2 0.1
0.1 1.1 0.1 -0.2 -0.1 0.1
0.1 0.9 0.1 -0.2 -0.3 0.1

Further investigation is carried out by taking two rather concentrated

prior distributions for P t  and p 2 f°r which the curves of the expected values in the 

design region considered are shaped similarly, therefore justifying the need for model 

discrimination. The prior probabilities for each model to be true are again supposed 

to be equal to 1/2 and conditioned on the event that the jth model is true the prior 

distribution for /?j is given in Table 5.3 (j=l,2). The bidimensional points of the 

parameter spaces Bt and B2 listed in Table 5.3 form squares around the points 

[0.0,1.0] in the former and around [—0.3,—0.2] in the latter, with both centres of 

squares being twice as likely as the other points. Again, criterion (5.3.4) applies.

The resulting fully Bayesian T-optimum design is shown below for
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*which the maximized value of the criterion function is ) =  7.172 * 10 .

1.0 3.95 10.0

0.231 0.4869 0.2821
(5.5.3)

As compared to designs (5.5.1) and (5.5.2) the structure of optimum 

design (5.5.3) is kept although the middle point is assigned less weight than before. 

The plot of the derivative function for this design, shown in Figure 5.1.3, is shaped 

like the plots of the previous designs, displayed in Figures 5.1.1 and 5.1.2.

To summarize the results in this example we could say that for all 

combinations of values for the linear predictor parameters 0 t  and 0 2 that were 

considered, there always are three points in the design region which seem to contain 

most of the information about discrimination, two of them being the extreme points 

of the design region whereas the remaining is located around 4.0 and is assigned 

most of the weight in all optimum designs from (5.5.1) to (5.5.3).

E X A M P L E  5 .2 . Now, suppose that the linear predictor structures are described by 

010 +  011X +  P it* ?  and 020 +  021x for the reciprocal link and the logarithmic link 

based models, respectively. Initially, let us assume that the first model is true and 

its linear predictor parameters are known to be equal to 0 t  =  (0.0,0.1,0.01). Thus, 

the aim is to find a design to maximize lack of fit for the second model, the 

logarithmic. Accordingly, the criterion of optimization applied is (5.3.2).

The resulting locally T—optimum design is shown below. The optimum 
*

value of the criterion is A2(£ ,/y  =  1.0846 * 10"l, where =  (0.0,0.1,0.01).

1.0 3.9876 10.0

0.2975 0.5547 0.1478
(5.5.4)

According to the above design most of the trials should be assigned to 

the middle support point 3.9876. Again, the extremes of the design region are
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contained in the optimum design. The plot of the directional derivative w.r.t. design 

(5.5.4) is shown in Figure 5.2.1.

Now, let us extend this analysis by taking the models as equally likely 

to be true. Further, suppose that the linear predictor parameters are known 

(conditionally on the event that the jth model is true). For this situation to be more 

realistic we proceeded as follows: a vector of expected values for the reciprocal link 

based model, where P t  =  (0.0,0.1,0.01) and x e [1.0,10.0], was generated over a grid 

of fifty equally spaced points, starting at x =* 1.0 and ending at x =  10.0. Then, the 

rival model (logarithmic) was fitted to these expected values. The resulting linear 

predictor parameter estimates were approximately equal to P 2 =  (1*95,-0.29). Thus, 

by taking the values of P 2 to be equal to 1.95 and —0.29, the expected responses 

under each of the rival models should agree closely in most points of the design 

region, therefore, justifying the utilization of experimental designing methods for 

model discrimination.

Criterion (5.3.4) applies, with the prior distributions for the linear 

predictor parameters P t  and P 2 having mass one at the points p t =  (0.0,0.1,0.01) and 

P2 =  (1.95,-0.29), respectively, making the expression for the criterion function 

reduce to ^A2(f,/?1) +  A^ f j / y j .  In words, the present problem concerns 

searching for a design that maximizes an equally weighted compromise between the 

fitting of the second model w.r.t. the expected values under the first and vice versa.

After rounding the values of the support points and related weights to 

four decimal places, the resulting fully Bayesian T-optimum design, shown below, 

becomes identical to design (5.5.4), whilst the maximized criterion function is 

approximately a half of the value for the criterion function at the previous design, 

that is T(f ) ^ 5.423 x 10"2 whereas A2(f , /y  ^ 1.0846 x 10"1 and A t(£ ,/?2) Cf 0.0.

1.0 3.9876 10.0

0.2975 0.5547 0.1478
(5.5.5)
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Figure 5.2.2. Derivative Function for design (5.5.5)

Figure 5.2.2 shows the plot of the directional derivative for this design.

It is im portant to  notice th a t although designs (5.5.4) and (5.5.5) are almost

identical, the related plots of the directional derivatives are not, the former showing

typical features of locally optim um  designs.

These results highlight an absolute influence of the first part of the

expression of criterion (5.3.4), i.e. — , in  determining the optimum

design. However, the oustanding numerical result arising from this example has to
*

do w ith the fact th a t A t(£ ,/32) ^ 0.0. This means tha t the expected values under the 

second model, w ith /?2 =  (1.95,-0.29), are fitted almost exactly by the estim ates of 

the expected values under the first model at the support points of design (5.5.5). By 

contrast, the converse process does not provide such a precise fit. Indeed, its 

contribution to  the criterion function at the optim um  counts for almost 100%.

To complement this sensitivity analysis two additional situations are 

considered. The first concerns the case in  which the second model is known to be
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true but there is uncertainty w.r.t. the true values of its parameters. This case is 

considered with the purpose of finding out what happens to the structure of the 

optimum design when the influence of the first model linear predictor parameters is 

removed. In the second not only is either model true with probability 1/2 but also 

there is uncertainty about the values of both linear predictor parameter sets, 

reflected by conditional prior distributions on the event that the jth model is true. 

Here, our aim is to verify whether the dominance of the first model features over the 

second, as far as the optimum design is concerned, is carried over to other points in 

the parameter space around the original point P t  =  (0.0,0.1,0.01).

TABLE 5.4 -  9—POINT PRIOR PROBABILITY 
DISTRIBUITONS FOR PARAMETER SETS p t  AND P 2

0io 011 012 Poi(0i) 020 021 Po2(02)

0.0 0.10 0.010 0.2 1.95 -0.29 0.2
0.0 0.10 0.005 0.1 1.95 —0.30 0.1
0.0 0.10 0.015 0.1 1.95 -0.28 0.1
0.0 0.05 0.010 0.1 1.90 -0.29 0.1
0.0 0.05 0.005 0.1 1.90 -0.30 0.1
0.0 0.05 0.015 0.1 1.90 -0.28 0.1
0.0 0.15 0.010 0.1 2.00 -0.29 0.1
0.0 0.15 0.005 0.1 2.00 -0.30 0.1
0.0 0.15 0.015 0.1 2.00 -0.28 0.1

For comparative purposes, the prior for P 2, is the same in both

situations and the values for the linear predictor parameters P t  and P 2 in the priors 

lie very closely to the previous values of P t  =  (0.0,0.1,0.01) and P 2 =  (1.95,-0.29). 

Table 5.4 displays these values and their prior probabilities.

The first coordinates of all nine tridimensional points for P t are equal to

zero making the corresponding expected values be of the fo rm   ---------- . In
P u X +  P i p 2
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addition, the sets described by the second and third coordinates of form a square

centered at p n  =  0.1 and /?12 =  0.01. Similarly, the nine bidimensional points for P 2

form a square centered at P 2 = (1*95,-0.29). In each of the priors the center of the

square is twice as likely as the other points.

In the search corresponding to the former case, where the second model

is true, criterion (5.3.3) applies, yielding the partially Bayesian T—optimum design
$

(5.5.6) for which the maximized value of the criterion is 7 t( f  ) =  7.373 * 10’3.

n.O 2.3872 6.4243 10.0 

0.0935 0.1982 0.3920 0.3163
(5.5.6)

For the latter, criterion (5.3.4) applies, achieving the maximum value
*T(f ) =  5.635 * 10'2 at the fully Bayesian T—optimum design (5.5.7).

1.0 3.9968 10.0

0.2962 0.5560 0.1478
(5.5.7)

The reduction of the number of support points from four in design

(5.5.6) to three in design (5.5.7) is inconsistent with the intuitive idea that the more 

uncertain the amount of prior information the greater the number of support points 

in the optimal design (recall that in the former case there was greater knowledge 

about the true values of the parameters involved in the problem than in the latter). 

However, a closer examination of the numerical results reveals that for design

(5.5.7), the values of the partial quantities expressed by (5.3.1.a) are much greater

than those expressed by (5.3.l.b). Indeed, the latter quantities approach zero

reflecting almost perfect fits for the expected values under the second model. In
*other words, similarly to previous analysis, the value of T(f ) =  5.635 * 10"2 arises 

from the first part of the criterion function (5.3.4), that is —j — | e ^  ^A2(f,^ 1)jJ

once = 0.0, where the expected values are taken over the priors of
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Table 5.4. This confirms the dominance of the first model features over the second 

that had been verified before.

Thus, we could say that the search for the optimum design is 

dominated by the values of that is the power for model discrimination is much 

greater under the assumption that the first model is true than vice-versa. 

Consequently, design (5.5.7) is very similar to previous designs (5.5.5) and (5.5.4) 

where in the former there is a similar domination and in the latter the first model is 

taken to be true. More important for these similar structures, however, is that the 

prior values of P t  in Table 5.4 lie closely in the parameter space to the value of 

taken to be true previously. Hence, only three support points are needed in design

(5.5.7) as were in designs (5.5.5) and (5.5.4) even though there is a much less degree 

of precision under the priors of Table 5.4 than there was in the first two cases.

On the other hand, when the second model is assumed true with a prior 

for its linear predictor parameters, design (5.5.6) is obtained. There are four support 

points in this design and apart from the feature that the two extremes of the 

interval [1.0,10.0] belong to the optimum design there are no other resemblances to 

design (5.5.7). This remark seems to support the idea that it is the region of the 

parameter space that most influences the number of support points in the optimum 

design rather than lack of precision in the prior information. However, it should be 

pointed out that the number of support points in design (5.5.6) is one more than the 

number of linear predictor parameters in the rival model, a result that also appeared 

when the reverse situation was considered, i.e. when the reciprocal model was 

assumed to be true with the rival model (logarithmic) having two linear predictor 

parameters. This resulted in three support points for design (5.5.4).

Another interesting result is that the criterion function is maximized at 

levels which are smaller than those corresponding to design (5.5.7), highlighting the 

difference between the levels of precision in which the first model expected values fit 

to the second model ones and vice-versa.
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Figures 5.2.3 and 5.2.4, corresponding to designs (5.5.6) and (5.5.7), 

respectively, show the shape of the derivative function curves over the design region. 

The latter being shaped like that related to design (5.5.5).

E X A M P L E  5 .S . With the purpose of investigating, in an informal manner,

differences in the features of the optimum designs as we move from region to region

in the parameter space, or in the combination of parameter spaces, we now take the

logarithmic link based model to be true with a first degree polynomial linear

predictor. The aim is to find an optimum design to discriminate the rival model, a

reciprocal link based one with a second degree linear predictor structure.

Additionally, we suppose that the values of the linear predictor parameters in the

true model are known to be /?10 =  2.5 and /?u =  -0.5.

Criterion (5.3.2) applies where the first model is the logarithmic and

the second, the reciprocal. The local T-optimum design is shown below. The
*

maximized value of the criterion is A2(f  =  1.41 * 10"1, for =  (2.5,—0.5).

*
£ =

1.0 2.0097 5.3627 10.0

0.0709 0.1040 0.3669 0.4582
(5.5.8)

Design (5.5.8) is rather skewed in the sense that only 17.49% of the 

total weight is assigned to the first two support points, leaving the bulk of the 

weight to the last two points. It is important to point out that the numbers of 

support points in designs (5.5.8) and (5.5.6) coincide. Since the logarithmic link was 

assumed to be true in both cases that suggests a cause for this happening other than 

merely coincidence. Furthermore, the structures of these designs are alike despite 

the linear predictor parameters in both cases being different. It remains to 

investigate whether the excessive weight assigned to the last two points is needed 

for the discrimination process or to the estimation of the linear predictor 

parameters. That is, of course, if these objectives can be divided in this way. The 

plot of the derivative function for design (5.5.8) is shown in Figure 5.3.1.
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TABLE 5.5 -  9-POINT CONCENTRATED PRIOR
PROBABILITY DISTRIBUTION FOR 0 t

Pio P a  V o W

2.50 -0.50 0.2
2.50 -0.45 0.1
2.50 -0.55 0.1
2.45 -0.50 0.1
2.45 -0.45 0.1
2.45 -0.55 0.1
2.55 -0.50 0.1
2.55 -0.45 0.1
2.55 -0.55 0.1

Let us now suppose that there is a prior distribution for the linear 

predictor parameters { 0 ^ }  but we keep the assumption that the first model is true,

i.e. the logarithmic. The linear predictor structures are the same as before. Table 5.5 

shows the prior distribution for 0 V Criterion (5.3.3) applies.

The distribution of probabilities and points in the above prior follows 

our usual arrangement so far, that is the value of 0 t  assumed to be true in the first 

part of the current example is the center of a square formed by the other eight 

points and the probabilities are equally distributed among the points except the 

center which is twice as likely. Because the area of this square is small the prior is a 

rather concentrated one reflecting a slight lack of precision in the prior information.

The resulting partially Bayesian T-optimum design is shown below, for
*

which the maximized value of the criterion is j 2( (  ) =  1.47178 * 10

1.0 2.0008 5.3056 10.0

0.0698 0.1010 0.3627 0.4665
(5.5.9)
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As it should be expected, designs (5.5.8) and (5.5.9) are very similar as 

were the values of the criterion functions. The plot of the derivative function 

corresponding to design (5.5.9) is displayed in Figure 5.3.2, where it can be noticed 

that the curve does not touch zero, a feature of Bayesian designs.

E X A M P L E  5 .1 . Here, a more thorough investigation of Bayesian designs to 

discriminate between the logarithmic and the reciprocal links is carried out. Suppose 

that the linear predictor structures for those models are given by a first and a 

second degree polynomials, respectively. Consider eight sets of linear predictor 

parameters (logarithmic link) which are listed in the first part of Table 5.6.

TABLE 5.6 -  SETS OF PARAMETERS FOR THE FIRST MODEL AND ITS

RELATED ESTIMATED PARAMETERS 0 2 FOR THE SECOND, BASED ON A 
GRID OF 50 EQUIDISTANT POINTS OVER THE INTERVAL [0.1,10.0]

Ao f i n 020 021 022

2.5 -0.40 0.1198 -0.0458 0.0332
2.5 -0.45 0.1339 -0.0762 0.0487
2.5 -0.50 0.1506 -0.1150 0.0691
2.5 -0.55 0.1699 -0.1625 0.0950
2.5 -0.60 0.1916 -0.2192 0.1274
2.5 -0.65 0.2155 -0.2851 0.1670
2.5 -0.70 0.2415 -0.3605 0.2145
2.5 -0.75 0.2693 -0.4453 0.2708

Using a grid of 50 equidistant points in the interval [0.1,10.0] a curve 

linking the expected values of the response variable, for the logarithmic model and 

parameter sets as listed in Table 5.6, is shown in Figure 5.4.1. Then, the reciprocal 

link based model with a second degree polynomial linear predictor was fitted for 

each of the eight sets of expected values generated over the 50—point grid. The 

resulting estimates are shown in the second part of Table 5.6 and the curves
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corresponding to  the estim ated expected values under the reciprocal link based

model are shown in Figure 5.4.2.

An overall look at Figures 5.4.1 and 5.4.2 reveals similar patterns 

generated by the logarithm ic and reciprocal links. Indeed, the la tte r set of curves 

was determ ined from fitting the former. However, in a real situation each pair of 

curves (generated by separate sets of param eters in  the same row of Table 5.6) could 

well describe the pattern  of a given data set. Furtherm ore, the curves in Figures

5.4.1 and 5.4.2 might represent the plausible patterns in situations where there is 

uncertain prior inform ation about the true model and its param eters.

Therefore, the following case is regarded. Both models are equally likely 

to  be true and conditionally on the event tha t each model is true there is a prior 

distribution for the linear predictor param eters which is uniform over the 

corresponding set of eight points listed in Table 5.6. The aim is to find a design 

optimizing criterion (5.3.4).
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Figure  5 .4 .3 .  Derivative F u n c t io n  fo r  d e s ig n  ( 5 . 5 . 1 0 )
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The resulting fully Bayesian T-optimum design is shown below for
*

which the maximized value of the criterion function is r ( f  ) = 3.3477 * 10 .

*
£ =

0.1 0.99 4.1271 10.0

0.053 0.1169 0.3406 0.4895
(5.5.10)

Following the tendency of all previous optimum designs in this chapter, 

both extremes of the design region belong to optimum design (5.5.10). Another 

remarkable feature of this design is the increase of weights from the smallest support 

point to the largest. However, it is rather difficult to interpret the fact that almost 

50% of the weight is assigned to the largest support point in design (5.5.10) since a 

comparison between the curves of Figures 5.4.1 and 5.4.2 suggests that points in the 

first quarter of the design region should be highly informative to discriminate 

between the models as the shapes of the patterns provided by the models in this 

region are very discrepant. By contrast, the patterns seem to coincide in the 

remaining parts of the design region, especially towards x =  10.0, the upper limit of 

the interval (design region).

So, why is it necessary to assign so much weight to the fourth support 

point x =  10.0 ? An explanation for this apparently counter-intuitive optimum 

design is that there would be no need to put excessive weight on points of the design 

region where the expected values under each model vary significantly as that would 

not contribute further to the maximization of the criterion function. The reason is 

the need for estimating the linear predictor parameters so that the patterns of the 

models are well determined and thus the process of discriminating between the 

models can be carried out reliably.

Figure 5.4.3 shows the plot of the derivative function related to design 

(5.5.10) where typical features of Bayesian designs can be seen. Furthermore, we can 

see that the two middle support points of design (5.5.10) are located in the regions 

where the curves of Figures 5.4.1 and 5.4.2 mostly disagree. In the intervals between

126



the second and third support points, as well as the third and the fourth, there seem 

to be agreement between the curves which is reflected by the two valleys apparent 

in Figure 5.4.3. To conclude this chapter, further questions are discussed in the next 

section.

5.6. DISCUSSION

The research described in this chapter provides designs for 

discrimination between any two GLMs as long as they belong to the same subclass. 

Calculations for further examples have led to designs which, like those described 

here, have the number of design points one greater than the number of parameters 

in the rival models. Similar results have also been obtained for nonlinear regression 

models using a version of the T—optimality criterion.

Based on theoretical results and specific expressions for the criterion 

functions presented in this chapter it is feasible to obtain numerical examples of 

optimum designs to discriminate between two GLMs belonging to subclasses other 

than Normal, Binomial and Gamma. There is no reason to believe that there will be 

more difficulties in determining optimum designs for subclasses like Poisson, Inverse 

Gaussian or even Negative Binomial. Any situation in which there are two 

competing generalized linear models these methods can be applied.

Also based on theoretical results of this chapter, sequential methods for 

determining optimum designs for model discrimination can be developed. To 

implement this one could follow the same steps as those in Atkinson and Fedorov 

(1975a) and generalize their sequential method to deal with any situation that 

concerns discriminating between two generalized linear models. In this case, the use 

of simulation methods is essential to verify the behaviour, convergence and 

efficiency of sequentially designed experiments.

Moreover, both sequential and Bayesian approaches may be combined
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to provide a more powerful tool for searching optimum designs w.r.t. T-optimality 

or similarly defined criteria. Under this combined approach, more sophisticated 

concepts and theoretical results from Bayesian statistics have to be used, increasing 

both the theoretical and numerical complexities involved in the problem. In 

addition, the need for a reasonably large amount of observations rules out situations 

in which there are constraints in the amount of experimentation.

The problem of discriminating between two generalized nonlinear 

models remains to be investigated.
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APPENDIX C

The results presented in this appendix generalize those of Appendices A 

and B. We adopt the notation corresponding to Definition 5.1 where the generalized

discrimination totals are introduced. Thus, for j= l,2  ; ]=not j ; £ € X  ; and /?j € Bj

denote

=  2w[/ij(x,/?j){0j(x,/Jj) -  0j(x,/?j)}

-b{^(x,/9j)} +  b{0;(x,/Jr)}] (C.l)

and d ( x ^ ) « d x )  (C.2)

According to (C.l) and (C.2), the generalized discrimination totals 

(5.3.1.a) and (5.3.l.b) may now be denoted, respectively, by

H W  =  K S A , p \ )  =  in f  l(£,/y*i) (C.3.1)
fteB ,

and A4({,ft) =  l ( f A .4 ) =  in f  K Z . P M  (C-3.2)

Let us now prove concavity of (C.3.1) and (C.3.2) on the set of 

measures i.e. for j= l,2

AjU,/?;) > (1—a) A ^ )  +  a  A j t f ^ j )  (C.4)

where 0 < a < 1 ; f  =  ( l -a ) ( t +  a f 2 ; and f  t, f 2 € <%.

Proof of (C.4)

For j= l,2 , let a  € 1R, 0 < a  < 1 ; £ =  (1—a ) ^  +  a f 2 ; and £t,f2 € <#.

Then

A jU .4) =  in f  l ( ( ,P j ,P j) =  in f  { l(( l-a ){ 1+ a { ,^ J1/»r)}
/J;eBj /3-eBj I J

=  in f jc i- tt)  l(^Jj,/3;) +  a  1«2,/Jj,j8j))

J J J J

=  (l~ a) Aj(€i./5j) +  a
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Thus, the generalized discrimination totals {Aj(£,/?j), j=l,2} are 

concave functions on . Furthermore, taking expectations over the prior 

probability distributions 7r0 and {p0j(/?j)> j=l,2} in both sides of inequality (C.4), we 

find

- V / % { (i_ a) A 'M ) +

r(fl > (l-a)r(^) + ar(^).

Hence, the criterion function related to the Bayesian generalized 

T—optimality criterion (Definition 5.4) is also concave on <%.

In order to prove Theorem 5.1, the Frechet derivative of T(f) is
/

required. Because of the linearity of Frechet derivatives, we can write
d A i ( U i ) }

da
(C.5)

where £ =  (1—a)£t +  a£2 ; 0 < a  < 1 ; and the Frechet derivatives of the generalized

discrimination totals are given by 
5Aj( t , 0 i )

da
,twhere B L denotes the solution set of equation (5.4.1).

Proof of (C.6)

In the notation adopted here, the solution set of equation (5.4.1) is 

represented by

1 ( ^ , 4 ) =  in f  K S A A )
J J A-eB.

J j
where f  =  (1—a)£t +  a £ 2 ; a  6 [0,1] ; and e <3f. Then, for j= l,2

d ^ U A )

da
d
d a  ' i n f ,  m a a )

J J

= inf.
P - e B [ ( a )  

J j

d

= i n f .
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/Sj6Bl(a) [a —+0 a  1 J 1 1 J J.

J J

where the first equality holds by applying Pshenichnyi (1971, Theorem 3.2, pp.75).

Hence, (C.6) is true. Now, if we suppose that equation (5.4.1) has a unique solution 
* *

0 .  when £ =  £ , the optimum design for the optimization problem (5.3.2), (C.6) 

becomes

=  W i / r )
J j  j

*
where £2 represents any design except £ . Moreover, if £2 =  £ , the design putting 

all mass at the point x € X  , then

-  AlU *  4 )

Now, following Theorems 2.1 and 2.2, we get 

FA j(f »fx) =  V fof ,/?j) -  A j(f ,/3j) <0 , for any x e X

01 >/?j) < A j(f ,/?j) , for any x e £  (C.7)

where ^(x,£*,ft) =  d(x,ft,/?!).
J J j

Inequality (C.7) is condition (i) of Theorem 5.1 for a local optimum 

design. Corollary 2.1 applies for condition (ii). Conditions (iii) and (iv) are 

straightforward. For the case corresponding to fully Bayesian optimum designs, the 

same assumptions made in Appendices A and B apply here.
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CHAPTER 6. OPTIMUM EXPERIMENTAL DESIGNS FOR PARAMETER 

ESTIMATION IN BINARY RESPONSE MODELS

6.1. INTRODUCTION

The first ideas giving rise to the theory of optimal design originated in 

the context of searching for experimental designs maximizing the precision for 

parameter estimation in linear regression. Its main pillar, the celebrated General 

Equivalence Theorem, was also originally proven in this context. In the present 

chapter we return to this problem in a slightly different framework. Here, the 

interest lies in optimal designs for parameter estimation in a generalized linear 

model for binary responses.

Searching for optimal designs in linear regression situations is relatively 

simple, for the criterion functions related to existing criteria of optimization depend 

upon the design matrix X only, so that global optimal designs can be determined. 

However, global optimality cannot be achieved for nonlinear regression models 

under the same conditions. This is because these criterion functions not only depend 

upon the design matrix X but also upon the true values of the model parameters. 

Therefore, similarly to the problems of model discrimination dealt with in Chapters 

3 to 5, only local, sequential and Bayesian optimum designs can be determined in 

such circumstances. An additional class of optimum designs which can be found in 

this context is the class of minimax designs as proposed by Atkinson and Fedorov 

(1975a).
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Such dependence (in nonlinear regression) of optimum designs upon the 

true values of the parameters provides the link between the first part of this thesis 

and both the current and the next chapters. From the optimization point of view, 

and to a certain extent also from the optimal design theory point of view, both 

problems are essentially the same although their purposes and, therefore, the 

optimization criteria which are utilized are not.

6.2. BACKGROUND

A number of sensible criteria have been suggested for the problem of 

optimizing parameter estimation in linear regression, the most important of which 

are defined as functions of the Fisher information matrix corresponding to the 

vector of unknown parameters of the model. Here, we adopt the criterion of 

D-optimality, perhaps the most intuitive and used of all, and one of its extensions, 

Bayesian D—optimality.

An excellent reference for the study of D—optimality is Atkinson and 

Donev (1992) which presents the most relevant properties and the sequential 

construction of D-optimum designs (Chapter 11); introduces algorithms for the 

construction of exact D-optimum designs (Chapter 15); and also gives examples of 

local and Bayesian D-optimum designs (Chapters 18 and 19). In addition to this 

text, the pioneering books of Fedorov (1970) and Silvey (1980) cover the subject 

with great emphasis.

Chaloner (1987) and Chaloner and Larntz (1989) deal with the specific 

problem of searching for Bayesian D—optimum and Bayesian A—optimum designs to 

estimate the parameters of a logistic regression model for binary data. Their 

definition of Bayesian D-optimality is given by the expected value of the 

D-optimality criterion function over a prior distribution for the linear predictor 

parameters. Bayesian A—optimality is analogously defined. As illustrations, they
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provide some examples in which independent uniform distributions are taken as 

priors for the parameters of a first degree polynomial linear predictor. In addition to 

these papers, Chaloner and Larntz (1988) developed a software package, called 

Logit—Design, to find Bayesian D—optimum and Bayesian A-optimum designs 

based on independent beta prior distributions for the linear predictor parameters.

In another context, namely optimum experimental designs for 

estimating the parameters of a regression model containing controlled and 

uncontrolled factors, Fedorov and Atkinson (1988) proposed five possibilities for 

extending the criterion of D—optimality in order to define Bayesian D—optimality. 

The second of their suggestions is utilized in the work of Chaloner and Larntz. Here, 

this option is also regarded as the optimization criterion.

Other approaches regarding optimum experimental designs in the 

context of binary responses have been proposed. Most of them, however, concern the 

class of exact designs as opposed to that of approximate designs considered in this 

chapter. Some of these are mentioned below.

Tsutakawa (1972), for instance, presents a Bayesian formulation in 

which the underlying dose—response curve belongs to a family of distributions {F^} 

whose parameter 0has a given prior distribution A(0). The criterion of optimality is 

defined as minimizing the expected value of the approximate posterior variance of 0 

over the prior A(0). As illustration, a one—parameter logistic distribution is regarded 

as the family {F^} whereas a Normal (0 ,t2) is taken as the prior A(0). Two further 

features of this approach are the addition of a constant in the posterior variance of 0 

to avoid discrepancies and the consideration of two-stage designs. Later, Tsutakawa 

(1980) extended his method for finding optimum designs to estimate a given 

percentile of a logistic distribution when the scale parameter is known.

Abdelbasit and Plackett (1983) studied the efficiency (robustness) of 

optimum designs arising both from the fiducial method proposed by Finney (1971) 

and from local D-optimality. In the context of logistic regression, Minkin (1987)
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considered two-stage designs based on confidence regions of minimum area.

For the problem of estimating the LDp, 0 < p < 1, for logit, probit, 

and extreme value models when the scale parameter is known, Khan (1988) showed 

that the related Fisher information function is unimodal as a function of the 

unknown location parameter, say 6, as well as a single design level. Then, the 

optimality criterion for finding a one point Bayesian optimum design to estimate 

the LDp is defined as the expectation of the Fisher information function over the 

posterior distribution of 0, given a sample of n independent Binomial {Y1}* •*,Yn} 

based on { N p - - - , ^ }  replications of a set of design levels {x^***^}.  For 

parameter estimation, Khan and Yazdi (1988) adopted the criterion of 

D—optimality.

The main results contained in this chapter concern two extensions of 

Chaloner and Larntz’s results. Firstly, the linear predictor is assumed to have any 

structure as long as it is, of course, linear in the parameters. Secondly, we extend 

the available methodology for logit models to probit, complementary log—log, and 

any other model whose link function complies with the restrictions imposed by the 

nature of binary data under the framework of generalized linear models (see 

McCullagh and Nelder(1989), Section 4.3 for further details).

Our notation, definitions, and other relevant results concerned with 

Bayesian D-optimality are presented in Section 6.3. Firstly, the criterion of 

D—optimality is recalled and then extended to the criterion of Bayesian 

D-optimality. Also, the corresponding version of the General Equivalence Theorem, 

is presented. In Section 6.4, several examples that illustrate not only how to obtain 

a Bayesian D—optimum design in this context but also how to check whether or not 

it is optimum are shown. The first three examples also illustrate how the number of 

support points in Bayesian D—optimum designs fluctuates as a function of the 

nature of the prior information. Finally, further extensions related to this problem 

are discussed in Section 6.5.
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6.3. BAYESIAN D-OPTIMALITY

Throughout this chapter and Chapter 7, the binary data models

considered are a subclass of generalized linear models. Thus, we adopt the 

terminology and notation of McCullagh & Nelder (1989) for modelling, but use 

optimal design theory notation elsewhere.

follows a Binomial (mi,7Ti) distribution. The interest lies in the relationship between 

7Ti and the covariates {xii,...,xip}. According to generalized linear model

a monotonic and differentiable function g(.) such that rji =  g(7Ti). The set of 

parameters {/?j} is supposed to be unknown. Then, the log likelihood function is

i ® 1
where iti =  The term that does not depend on xcan be neglected.

For defining D-optimality, and Bayesian D—optimality, the Fisher 

information matrix, say M, for the vector of parameters /? must be obtained. This is 

done, for instance, in McCullagh and Nelder (1989, Section 4.4) where the following 

matrix is determined.

where m i  is interpreted as the number of replications of the point x4 in the design,

Because W is diagonal, (6.3.2) can be simplified to Mrs =  E w ^ x ^ ,  

where w i  is the ith component of W, and x , =  {xri} and Xg= {xsi} are respectively 

the rth and sth columns of X. As (6.3.3), and consequently (6.3.2), depend upon the

Suppose that a random sample Yi,...,Yn is to be observed, where Yi

assumptions this relationship is described by the linear predictor 771 =  § xjj Pj, and

i(*im;y) =  ^  [yi iog[1 +  mi iog(i -  *0 ] (6.3 .1)

where X is the associated design matrix; and W is a diagonal matrix given by

(6.3.2)

(6.3.3)

or equivalently mi/(Emj) is the weight of Xj.
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design £ and the values of the unknown parameters P  we denote M as M(f,/7), and 

for a specific P  this matrix will be called a local Fisher information matrix.

Table 6.1 shows specific expressions of W for logit, complementary 

log—log, and probit models corresponding to a single design point x replicated just 

once (for n design points {xt,* • ^XjJ, each xA being replicated m i times, the general 

form of W is easily obtainable from Table 6.1). The notation used in Table 6.1 

shows explicitly the dependence of the Fisher information matrix M on f  and P  as 

both the expected response 7r(x) and the linear predictor not only depend upon 

the specific design point x  but also upon the vector of parameters /?.

TABLE 6.1 -  SOME EXPRESSIONS FOR (6.3.3)

LINK DIAGONAL MATRIX W

Logit x ( x ,0 )  [l -  *(*./3)]

Complementary log-log -  fin * { x ,0 )}2
1 -  L J

Probit exp(V (x ,/7)/2)
(2tt) i r ( x , 0 ) { l  -  i r ( z ,0 ) }

For any link function tj — g(7r) such that g(.) maps the interval [0,1] 

onto the whole real line, the corresponding expression of (6.3.3) can be easily 

obtained and subsequently the local Fisher information matrix M(£,/7) is 

straightforward to determine. For example, the inverse of any distribution function 

F(.) related to a continuous r.v. attains the necessary conditions set above.

When there is a single explanatory variable the calculations required to 

obtain (6.3.2) reduce significantly. For instance, Chaloner and Larntz (1989) take 

the linear predictor as rj =  -/?(x — / j )  and the canonical link function, logit, so that
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under the framework of a dose—response relationship problem, p can be interpreted 

as the dose x at which the expected response is a half (such a value of x is known in 

the literature as the LD50) and P  is the slope on the logit scale (in fact, p can be 

equally interpreted for models with the probit link function, but not for the 

complementary log—log). Because of this useful interpretation such parameterization 

in logistic regression is quite convenient. Further calculations lead to the 2*2 local 

Fisher information matrix whose determinant is given by a rather simple function of 

the design points and the expected response ?r which in turn is a function of the 

parameters p and P  as well as the design points. More generally, however, (6.3.3) 

and consequently (6.3.2) will be very complex matrices.

Prior to defining the criterion of Bayesian D—optimality, it is 

important to point out, as mentioned above, that there are five different possibilities 

for doing so; for further details and a numerical example comparing these five 

possibilities, see Atkinson and Donev (1992, Sections 19.2 and 19.3). To be 

consistent with other definitions in previous chapters, our definition of Bayesian 

D—optimality is based on the expected value over the prior probability distribution 

for P  of the non—Bayesian D—optimality criterion function.

Definition 6.1. For a specific vector of linear predictor parameters p , denote the

determinant of the local Fisher’s information matrix by |M(f,/7)|. Let p0(/7) be a

prior distribution for the vector of linear predictor parameters p . Then, the 

Bayesian D-optimality criterion function is defined as

E^log |M(f,/?) | ,  i f  M({,/7) is nonsingular 
p  for a l l  prelevant  to the

p r i o r  p 0(/S) (6.3.4)

—oo, oth e rwise

*
Definition 6.2. A Bayesian D-optimum design { w.r.t. p0( p )  is such that

A ( 0  =  sup  A({) (6.3.5)

A(£) =  •
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Concavity of (6.3.4) in the set of design measures is ensured by

linearity, and by concavity of the logarithmic function. Thus, with the purpose of
/

applying results from optimal design theory the Frechet directional derivative of 

criterion function (6.3.4) remains to be determined. This is derived in Appendix D. 

Given these conditions and provided that | M(£,/?) | ^ 0 for all /? relevant to the prior 

p0(/7) we can now state the following Theorem for Bayesian D-optimum designs.

THEOREM 6.1
*

(i) a necessary and sufficient condition for a design £ to be Bayesian D-optimum is 

fulfilment of the inequality
♦

^(x,£ ) < p , for all x e X

where

£*) = Ep jw(x,/9) f(x)* [M(£*,/3)] 1 f(x) j  ; 

w(x,/?) =

fW ‘ =  (fiW»‘ • - .fpW ) i and 

p is the number of linear predictor parameters.
♦

(ii) at the points of the Bayesian D—optimum design ^(x>£ ) achieves its upper 

bound;
*

(iii) for any nonoptimum design £, that is a design for which A(f) < A(f  )

sup if(x,{) > p ; 
x e X

(iv) the set of Bayesian D—optimum designs is convex.

An extra condition for the criterion of G-optimality can be added to 

this theorem. A powerful consequence of Theorem 6.1 is that the useful technique 

for checking optimality can be applied. In order to prove the conditions of Theorem

6.1 one should apply the general results of Chapter 2. In the next section some 

examples are presented to illustrate the theory of Bayesian D—optimality applied to 

binary response models.
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6.4. EXAMPLES

In this section five examples are presented. The main purpose in all of 

them is to investigate the effects of distinct prior distributions on the resulting 

Bayesian D-optimum designs. The common interest in these examples lies in 

estimating both parameters of the linear predictor 77 =  a  +  0 x  when prior 

information is available by means of probability distributions, either discrete or 

continuous. For all examples rectangular subregions of the whole parameter spaces 

are taken as the regions within which the underlying prior distributions are 

considered. The first part of the investigation concerns Examples 6.1, 6.2, and 6.3 

whereas the second consists of Examples 6.4 and 6.5.

In the first stage of the former, three discrete prior distributions are 

examined. They contain four, nine, and fifteen parameter values reflecting 

increasingly dense prior information, although limited by the same rectangular 

region of the parameter space. In the second stage two independent uniform prior 

distributions, again defined in the same rectangular region, are regarded as priors 

for the linear predictor parameters a  and 0 . This strategy is adopted not only with 

the purpose of assessing the fluctuation of the number of support points in the 

optimum designs but also to compare some structural aspects of the resulting 

Bayesian D-optimum designs.

For each of the first three examples one of the link functions mentioned 

in Table 6.1 is examined. No attention is paid to how the expected values under the 

distinct models agree, for in this chapter our interest is restricted to parameter 

estimation rather than model discrimination. Equiprobable or quasi-equiprobable 

discrete prior distributions are assumed in all examples. Whenever a discrete prior 

consists of an odd number of parameter values the centre point of the corresponding 

rectangular region is assigned slightly larger probabilities than the region vertices. 

Figure 6.0.1 displays the parameter values constituting all discrete priors regarded
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in the first three examples. Each sequence of three graphs in the same row shows the 

priors utilized under a specific link function.

The following conventions hold for the priors in Figure 6.0.1 : (i) 

four—point priors are equiprobable ; (ii) nine—point priors assign probabilities equal 

to 0.11 for all param eter values, with the exception of the centre of the region which 

is assigned probability 0.12 ; (iii) fifteen—point priors assign probabilities equal to 

0.066 for all param eter values with the exception of the centre of the region which is 

assigned probability 0.076.
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Figure 6.0.1. Prior distributions for Examples 6.1 to 6.3.
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Figure 6.0.2. (Logit) Patterns of expected responses
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1.00

0.80

0.60

0.40

0.20

0.00
- 10.00  - 8.00  - 6.00  - 4.00  - 2.00  - 0.00  2.00  4.00

Figure 6.0.2. (Cplog) Patterns of expected responses
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For the discrete priors in Figure 6.0.1, the variances of the marginal 

prior distributions for a  and /? decrease with the increasing number of relevant 

parameter values. This is particularly the case for the marginal distributions for a ,  

which although being defined in the same regions, have two, three, and five relevant 

values for a  in the four, nine, and fifteen—point priors, respectively. The aims of the 

investigation are to find out whether, and how, these variations on the precision of 

the available prior information will be reflected in the resulting Bayesian 

D—optimum designs. Here, it is important to notice that the more dispersed the 

priors of Figure 6.0.1 the smaller the variance; dispersion meaning a larger number 

of parameter values spread over the rectangular regions.

The three graphs of Figure 6.0.2 show the curves of expected responses 

generated by pairs (a,/3) belonging to the four—point priors of Figure 6.0.1. The 

legends on the graphs display the pairs ( a ,0 )  generating the specific curves whereas 

the link (logit, probit, or complementary log—log) is specified in the title. As the 

curves are generated by the pairs (a,/?) which are the vertices of the rectangular 

regions they establish limiting patterns for those being generated by other pairs in 

the same region. Therefore, for the discrete priors consisting of nine and fifteen pairs 

the curves of expected responses determine intermediate patterns w.r.t. those 

of Figure 6.0.2. Thus, if we plot the additional patterns for the remaining pairs ( a ,0 )  

belonging to the nine and fifteen—point priors they will lie between the boundaries 

established by those of Figure 6.0.2.

E X A M P L E  6 .1 . Suppose that a binary data model has the canonical link function 

(logit). The rectangular region in which the prior distributions, three discrete and 

one continuous, are considered is 0 O =  {(a,/?): a  € [—1,3] and /? e [1,3]}. The discrete 

priors are specified by four, nine, and fifteen points as indicated in Figure 6.0.1 and 

the three rules described above whereas the continuous prior is given by two 

independent uniform distributions each over one of the intervals defining 0 O. The 

resulting Bayesian D-optimum designs are displayed in Table 6.2.
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TABLE 6.2 -  BAYESIAN D-OPTIMUM DESIGNS FOR 
THE CANONICAL LINK FUNCTION (LOGIT)

VALUE OF A({ ) BAYESIAN D-OPTIMUM DESIGN

(a) -£.0837

(b) -£.0173

(c) —4.9287

(d) —4.7886

—4.1097 -1.4327 -0.3363 0.94381 

0.1255 0.2595 0.3387 0.2763

-3.6640 -1.6280 -0.6407 -0.1210 0.8347' 

0.0603 0.2778 0.1972 0.1814 0.2833.

-3.2979 -1.4872 -0.3961 0.6830' 

0.0661 0.3121 0.2955 0.3263

-1.6052-0.5134 0.55411 

0.3563 0.2679 0.3758

where
(a) design (6.4.1) related to the four—point underlying prior;
(b) design (6.4.2) related to the nine—point prior;
(c) design (6.4.3) related to the fifteen—point prior; and
(d) design (6.4.4) related to the bivariate uniform prior.

The first prominent feature of the four resulting Bayesian D-optimum 

designs is that the range in which the optimum design support points lie gradually

shrinks as the number of parameter values in the prior increases (smaller variances

for the marginal priors). This shrinkage is substantial when designs (6.4.1), (6.4.2), 

and (6.4.3) corresponding to the four, nine, and fifteen—point priors, respectively, 

are compared. This phenomenon is even more evident if designs (6.4.1) and (6.4.4), 

corresponding respectively to a four—point prior and a bivariate uniform prior are 

compared separately. Within the region 0 O, the former is as dispersed a four-point 

prior as possible whereas the latter could be regarded as a limiting equiprobable 

discrete distribution, so that they represent two extreme possibilities for prior
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distributions as far as equiprobability and dispersion are concerned.

This finding can be summarized as follows: in the subregion O0 of the 

parameter space the vaguer a prior distribution for (a,/?) the narrower the interval 

containing the support points for the corresponding Bayesian D-optimum design 

will be. In other words, the points in the design region containing the largest 

amounts of information for estimation of the parameters a  and 0  seem to be more 

concentrated as the prior information about a  and 0  is more spread out in 0 O.

Recall that the pairs { a }0 )  being added to the discrete priors in Figure

6.0.2 generate intermediate patterns w.r.t. those of the four—point priors. Thus, the 

actual information about a  and 0  becomes more concentrated over the design region 

X  as more points in the region 0 O are added to the priors. Therefore, this explains 

the shrinkage of the range of support points in the Bayesian D-optimum designs.

Another feature of the four Bayesian D—optimum designs regarded in 

the order presented in Table 6.2 is the increasing value of the maximum achieved by 

criterion function (6.3.3). This and the shrinkage phenomenon mentioned above 

occur concomitantly and can be explained similarly.

However, unlike the increasing value of the optimized criterion function 

or the gradual shrinkage of the region containing the optimum design support 

points, the number of support points in the Bayesian D-optimum designs does not 

have a consistent pattern as a function of the increasing vagueness of the prior 

information in 0 O. Firstly there are four points in the optimum design for the 

four—point equiprobable prior. This number increases to five, then decreases to four 

again and finally decreases to three for the independent uniform priors.

As in previous chapters, these results do not give any support to the 

intuitive idea that the number of support points in the optimum design would 

increase when the prior information was more dispersed. On the contrary, based on 

the evidence shown in this example, this number seems to be smaller for denser 

prior parameter values as is the case of uniform priors.
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Further conclusions can be drawn from Figures 6.1.1, 6.1.2, 6.1.3, and 

6.1.4. They show the derivative functions for the Bayesian D-optimal designs of 

Table 6.2. Here, it is important to recall that the upper limit for the derivative 

function corresponding to the optimum design equals the number of parameters to 

be estimated.

E X A M P L E  6 .2 . Now, suppose that the link function is the inverse normal or probit. 

We take the region 0 O =  {(a,/?): & € [—1,3] and /? € [1,2]}. The linear predictor 

structure is maintained. The sequence of three graphs in the second row of Figure

6.0.1 displays the priors to be investigated in this example. In addition, conventions 

(i) to (iii) apply to the priors. The resulting Bayesian D-optimum designs are 

displayed in Table 6.3.

TABLE 6.3 -  BAYESIAN D-OPTIMUM DESIGNS FOR 
THE INVERSE NORMAL LINK FUNCTION (PROBIT)

VALUE OF A (f ) BAYESIAN D-OPTIMUM DESIGN

(a) -3.7563

(b) -3.635

(c) -3.4956

(d) -3.266

-4.0415 -1.9538 -0.5392 1.17431 

0.1102 0.2186 0.4224 0.2488

f—3.6172 -2.2382 -1.0503 -0.0634 1.1724 

0.0399 0.1907 0.3055 0.2826 0.1813.

-3.1680 -1.9778 -0.9935 -0.2668 0.8574 

0.0501 0.2034 0.2468 0.2828 0.2169

-1.9261 -0.6484 0.5827 

0.2841 0.4337 0.2822

where
(a) design (6.4.5) related to the four—point underlying prior;
(b) design (6.4.6) related to the nine—point prior;
(c) design (6.4.7) related to the fifteen—point prior; and
(d) design (6.4.8) related to the bivariate uniform prior.

148



1 . 2 0  11111111 it  | n n r r n  1111111 m  111111111 n  111 n  i u  11 [ 11111 n  111111 m  1111111 n  n  111

- 6 .0 0 - 5 .0 0  -4 .0 0  - 3 .0 0 - 2 .0 0  -1 .0 0  -0 .0 0  1.00 2.00

Figure 6 .2 .1 .  Derivative Function for  des ign  (6 .4 .5 )

2.00 q

1.98 F

1.96 F

1.94 F

1.92 F

1.90 F

1J

1.86 i 11 i m  11 i i i  i i  111111 i i  i i i  11111111 f T T n  11 r r r n  m i  |1 11111111111111111

-5 .0 0  -4 .0 0  -3 .0 0  -2 .0 0  -1 .0 0  -0 .0 0  1.00 2.00

Figure  6 .2 .2 .  Derivative F u n c t io n  f o r  d e s ig n  ( 6 . 4 . 6 )



1.980  -

1.975 i ri i ir rn-[-mTTT"n rp i n i t i it | ititi i i i i | r i i i it r"rr [ttttt i rn |
-5 .0 0  -4 .0 0  -3 .0 0  -2 .0 0  -1 .0 0  -0 .0 0  1.00

Figure 6 .2 .3 .  Derivative Function for  des ign  ( 6 .4 .7 )

2.005

2.000

1.995

1.990

1.985

1.980

1.975

1.970
-3 .0 0  -2 .5 0  -2 .0 0  -1 .5 0  -1 .0 0  - 0 .5 0 - 0 .0 0  0.50 1.00

Figure  6 .2 .4 .  Derivative  F u n c t io n  fo r  d e s ig n  ( 6 . 4 . 8 )

150



Similar comments to those of Example 6.1 can also be made here: 

namely, the range specified by the largest and the smallest support points in the 

optimum design shrinks with the increasing vagueness of the prior distributions, and 

the optimized values of criterion function (6.3.3) increase as a function of this 

vagueness. Further the number of support points in the optimum design fluctuates 

from four for the basic four—point prior to three for the bivariate uniform one. To be 

more precise, it starts as four, increases to five, continues to be five, and at last 

decreases to three for the limiting uniform prior.

Figures 6.2.1 to 6.2.4 show the derivative functions corresponding to 

Bayesian D-optimum designs (6.4.5) to (6.4.8), respectively. It is important to 

notice that the scales for the derivative functions are different in all four plots. For 

instance, Figure 6.2.1, related to design (6.4.5) shows the deepest valley whereas the 

shallowest one occurs in Figure 6.2.3 corresponding to design (6.4.7). In fact, 

Figures 6.2.3 and 6.2.4 show that all points in the ranges displayed are highly 

informative w.r.t. estimating parameters a  and /? since the values of the derivative 

functions are not smaller than 1.98. On the other hand, Figures 6.2.1 and 6.2.2 do 

not show such high values, indicating that if points other than the optimum are 

assigned to the experimental design there will be an appreciable loss of precision in 

the estimation of ct and /?.

E X A M P L E  6 .S . In the last of this series of examples we suppose that the underlying 

link is now the complementary log—log. The linear predictor structure is assumed to 

be the same while the region ©0 is {(a,/?): a  € [—1,1] and /? € [1,2]}. As in the 

previous examples, a sequence of priors is investigated which is shown in the three 

graphs in the third row of Figure 6.0.1 with conventions (i) to (iii) holding once 

again. To complement this sequence, we take a prior consisting of two independent 

uniform distributions for a  and /? each defined over one of the intervals making the 

region 0 O. The resulting Bayesian D-optimum designs are shown in Table 6.4.
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TABLE 6.4 -  BAYESIAN D-OPTIMUM DESIGNS FOE 
THE COMPLEMENTARY LOG-LOG LINK FUNCTION

VALUE OF A(f*)

(a) -3.2712

(b) -3.2143

(c) -3.1381

(d) -3.0208

BAYESIAN D-OPTIMUM DESIGN

—1.3979 0.0066 1.0795'

. 0.3699 0.3990 0.2311

-1.2276 0.1207 0.8017 1.0073'

. 0.4109 0.3601 0.0629 0.1661.

-1.1562 0.1950 0.8857'

. 0.4335 0.3432 0.2233

-1.0588 0.3554 0.8178'

. 0.4712 0.3518 0.1770.

where
(a) design (6.4.9) related to the four—point underlying prior;
(b) design (6.4.10) related to the nine—point prior;
(c) design (6.4.11) related to the fifteen—point prior; and
(d) design (6.4.12) related to the bivariate uniform prior.

Again, very similar phenomena to those occurring in the previous 

examples are present here although less dramatically. Likewise, the number of 

support points does not show a great variation. For example, there are three support 

points in the Bayesian D—optimum design based on the equiprobable four—point 

prior, four for the nine—point prior, and three for both the fifteen—point and the 

bivariate uniform priors.

The same pattern is observed in Examples 6.1, 6.2, and 6.3. For 

instance, in all examples Bayesian D-optimum designs corresponding to the 

bivariate uniform priors have three support points. Also, the number of support 

points in the optimum design is increased by one when a nine—point prior is used
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rather than a four—point one. A plausible interpretation for this change is that by 

increasing the uncertainty about the true values of the parameters, although 

limiting it to the region 0 O, one more support point in the optimum design becomes 

necessary. However, this does not occur when a fifteen—point prior is used rather 

than a nine—point one, which contradicts the previous explanation.

Figures 6.3.1 to 6.3.4 confirm that designs (6.4.9) to (6.4.12) are indeed 

optimum w.r.t. criterion (6.3.4). They also show that some points in the 

corresponding ranges of the explanatory variables considered are relatively 

noninformative. However, as in the previous examples, the values of the derivative 

functions are large, frequently approaching the upper limit, two.

We now present two examples with the purpose of illustrating with 

more details the process of searching for the optimum design. Because of lack of 

results concerning the number of support points in Bayesian optimum designs on 

one hand and the need to specify this number for the numerical search procedures 

on the other, the actual search must involve an element of trial and error. This is 

described in the following examples.

E X A M P L E  6 .1 . The link function is logit and the linear predictor structure is 

simply a  +  f i x  again. The region 0 O is given by {(a,/?): a  E [—1,3] and p  E [1,3]}. 

Consider a ten—point prior distribution for (a,/?), which is similar to the nine—point 

prior shown in Figure 6.0.1. The only differences are that the point (a=2,/?=1.5) is 

added to the prior relevant parameter values and that the distribution is now 

equiprobable.

Our first attempt is a design with five support points. Using a starting 

design whose support points are spread out in the range [—2,1] of the design region X  

the Bayesian D-optimum five—point design resulting from a numerical search is 

given below.

f  =
-3.3447-1.6782-0.4252 0.7511 0.7511' 

0.0654 0.3029 0.3284 0.0570 0.2463
(6.4.13)
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In fact, design (6.4.13) has four support points as the last two points 

are the same. Prior to drawing any conclusion about the optimality of this design we 

must examine the plot of its derivative function over a range in the design region 

including the support points of (6.4.13). This is shown in Figure 6.4.1 where it 

becomes obvious that design (6.4.13) is not optimal w.r.t. criterion (6.3.4). Indeed, 

the upper limit of its derivative function is greater than two and there are three 

peaks above this value which may be interpreted as corresponding to potential 

support points of the actual Bayesian D—optimum design. Thus, in an attempt to 

include all the potential informative points to estimate (a,/?) it is sensible to 

increase the number of support points in the starting design. Therefore, in the 

second attempt we will proceed searching for the optimum design over the class of, 

for example, six—point designs.

*
f  =

-3.4691 -1.9192 -1.6289 -0.6660 -0.1293 0.80831 

0.0536 0.1325 0.1598 0.1995 0.1812 0.2734
(6.4.14)

After repeating the numerical search procedure with a six—point 

starting design, design (6.4.14) is obtained. To check optimality, its derivative 

function is shown in Figure 6.4.2 confirming that this is indeed a Bayesian 

D-optimum design, for the upper limit for the derivative function is now not only 

obeyed at all points in the design region but also equalled at the support points of 

design (6.4.14). Figure 6.4.2 also shows that the derivative function values 

corresponding to design region points lying between the second and third support 

points of the optimum design are virtually equal to two, indicating that all values of 

x in this interval are highly informative.

E X A M P L E  6 .5 . Let the link function be the integrated normal, or probit. Suppose 

that the region O0 is given by {(a,/?): a  € [—1,3] and /? e [0.5,3]} and that the prior 

distribution for a  and /?, p0(a,/?), consists of twenty equiprobable pairs ( a ,0 )  in the 

region 0 O as shown in Table 6.5. Finally, let the linear predictor be rj =  a  +  fix...
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TABLE 6.5 -  EQUIPROBABLE TWENTY-POINT PRIOR. 

PAIRS OF PARAMETERS ( a ,0 ) .  (PROBIT LINK)

Pair (a ,P )

(-1,0.5) H .1 ) (-1,2) (-1,3)

(0,0.5) (0,1) (0,2) (0,3)

(1,0.5) (1.1) (1,2) (1,3)

(2,0.5) (2,1) (2,2) (2,3)

(3,0.5) (3,1) (3,2) (3,3)

Again, our first guess is to search for an optimum design over the class 

of five—point designs. The arbitrarily chosen starting design consists of support 

points {—3,—2.5,—1.5,—1,0} equally weighed. After the first numerical search, the 

following Bayesian D—optimum design candidate is obtained.

-7.0163 -3.7452 -1.3273 -0.3971 0.54691 

0.0278 0.1055 0.2705 0.3446 0.2516
(6.4.15)

Figure 6.5.1 displays the plot of the derivative function corresponding 

to design (6.4.15). In the first half of the design region that is plotted, the derivative 

function attains the specifications under optimality, but in the second half it does 

not so that design (6.4.15) is not optimum and the search must be restarted. Again 

the three peaks above the value of two observed in Figure 6.5.1 can be interpreted 

as indicative of values x carrying valuable information about a  and /? that are not 

included in the optimum design. Therefore, in the next attempt the number of 

support points in the design should be increased.
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For instance, let the numerical search be carried out over the class of 

seven—point supported designs since the optimum design seems to require at least 

two more support points as suggested by Figure 6.5.1. Then, the following Bayesian 

D—optimal design candidate is determined.

-7.0186 -3.8917 -2.0738 -1.3106 -0.6035 -0.0612 0.7156' 

0.0274 0.0889 0.0645 0.1967 0.2303 0.1982 0.1940
(6.4.16)

Design (6.4.16) turns out to be Bayesian D-optimum as shown by the 

shape of its derivative function, displayed in Figure 6.5.2. Further, in the region 

where the derivative function of design (6.4.15) peaked above the upper limit, now 

the derivative function related to design (6.4.16) is almost flat, and most 

importantly, below or equal to the upper limit. A comparison of designs (6.4.15) and 

(6.4.16) shows that the extra two support points belonging to the latter were 

inserted in this region, confirming what was suggested before, i.e. high peaks in the 

derivative function of nonoptimum designs usually correspond to points in the 

design region that ought to belong to the optimum design.

Hence, this example illustrates very well the sort of situations that can 

occur in practice when searching for optimality of experimental designs without any 

help from theoretical results establishing boundaries for the number of support 

points in the optimum design. Due to this difficulty as well as an inadequate 

starting design sometimes it can be very hard to achieve optimality.

6.5. DISCUSSION

The numerical results obtained in this chapter provide good examples 

of how to obtain informative experimental designs for binary response models in 

practical situations. To avoid excess of computational effort, in all the examples we 

considered linear predictors consisting of only one explanatory variable. This has
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enabled us to do all the calculations on a PC 486. All the periods of time elapsed to 

determine optimum designs and derivative functions were quite short, always less 

than a minute, making the use of these techniques of searching for optimum 

experimental designs a simple task to carry out with modern PCs.

A general NAG routine was used as the optimization procedure in all 

examples. However, more specific methods of numerical search are required for 

models with several explanatory variables for which the necessary calculations to 

obtain the optimum designs will be much more complex and take much longer. 

Furthermore, as the dimension of the problem increases the occurrence of local 

optima might be more frequent so that search procedures which are able to avoid 

local optima should be preferred. For instance, when using NAG routine E04JAF 

the search for an optimum five-point design in a model with a single independent 

variable like those in this chapter is carried out in nine dimensions. A similar search 

in a model with multiple independent variables would have to be performed in a 

much larger number of dimensions. However, once these numerical problems are 

successfully dealt with the techniques described in this chapter can be very useful 

for researchers in apllied statistics.

In the Bayesian approach for determining experimental designs 

optimizing parameter estimation, a great amount of input is expected from the 

experimenter such as the specifications of the binary response model (link function 

and linear predictor structure), and a prior distribution for the linear predictor 

parameters. However, in practical situations subjective choices of "optimum" 

experimental designs can also be made by trying out different model specifications 

and/or prior distributions. This alternative gives another dimension for the 

Bayesian techniques described here, i.e. they can also be useful as exploratory tools 

in the planning of an experiment.

In this chapter the purpose of the experiment is restricted to estimation 

of the parameters of a binary response model as precisely as possible
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(D—optimality). For other important criteria such as Ds—optimality, Da—optimality, 

etc, similar methodology can be developed so as to extend the existing results to 

their Bayesian generalizations.
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APPENDIX D

/
In this appendix the aim is to determine the Frechet derivative of 

criterion function (6.3.4). Recall its definition; A(f) =  E ^log|M (f,/7)|, if M(£,/3) is 

nonsingular for all /? relevant to the prior distribution p0(/3). Suppose that this is the 

case, i.e. |M(f,/7)|  ̂ 0 , for all /? relevant to p0(/3).

Then, let us denote ; M2 =  M (f2,/?), and let p

be the dimension of the vector of parameters /3. Based on the linearity of the 

expectation operator E, it is straightforward to extend to Bayesian D—optimality

the result proven, for instance, in Silvey (1980, Chapter 3, pp. 21) for non—Bayesian
/

D—optimality. That is, the Frechet derivative function of A(£) at in the 

direction of M2 is given by

F a (M1(M2) =  E ^ { t r [ M ( ^  M-‘(^,/3)]} -  p (D.l)

Now, let us take £2 to be a design measure putting all mass at a specific 

point x in the design region X  and denote such a measure by { . Then, according to 

(6.3.3) the diagonal matrix W related to { is unidimensional whereas the design 

matrix X corresponding to { reduces to a row vector so that according to (6.3.2) 

the local Fisher information matrix for /? based on design (  is given by

M(£x,/3) =  w (x,$ f(x)‘ f(x) (D.2)

where

fM  =  ;

w(x>$ =

tt(x,/7) =  g '^ x ,^ ) )  ; g(.) is the link function ; 

and 7](x,0) =  S fj(x)A.
j J J

163



Hence, replacing f 2 by { , or alternatively, replacing M({2,/?) as in 

(D.l) by M(£x,/7) given by (D.2) we obtain

FA(Mi,Mx) =  E^jjtr|w(x,/7) f(x)‘ f(x) |  -  p

= E ^ |w(x,/3) tr(f(x) f(x)‘j J -  p

=  E^ [w(x.^) f(x) f(x)‘] -  P- (D.3)

/

That completes the derivation of the Frechet derivative of criterion

function (6.3.4). Now, considering that (6.3.4) is a concave function on the set of

design measures 2 6  , a necessary condition for applying optimal design theory

results, and applying Theorems 2.1, 2.2, and Corollary 2.1, the conditions of
*

Theorem 6.1 follow. That is, when is replaced by $ , an optimum design with 

respect to (6.3.5), in (D.3), then for all x € X

E^[w(x.$  f(x) f(x)‘j < p.
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CHAPTER 7. OPTIMUM EXPERIMENTAL DESIGNS FOR THE CHOICE 

OF LINK FUNCTION FOR A BINARY DATA MODEL

7.1. INTRODUCTION

In this chapter we investigate some consequences of including an extra 

parameter to extend the link function on the modelling of binary data. Specifically, 

we address the problem of designing optimum experiments in this framework. The 

extended link includes the logistic and complementary log—log as special cases. An 

important feature of this approach concerns the wide choice of criteria that can be 

considered, namely optimum designs to estimate the link function parameter, the 

linear predictor parameters, or the whole set of unknown parameters. In the latter 

case two possibilities are taken into consideration. Firstly, the parameters are 

estimated regardless of their importance, and secondly complementary weights are 

assigned to the estimation of the link function and the linear predictor parameters. 

Different criteria can be used to assign these weights. But, whichever criterion is 

used, the values of the weights should reflect any specific priority of the 

experimenter. In each case a different criterion function is defined. As in the 

previous chapters, prior information is incorporated in the design criteria as the 

related criterion functions depend upon the parameters being estimated.

In the next section a brief review of the literature concerning families of 

link functions for modelling binary data is presented. We also introduce our choice 

of link function family together with two numerical examples which illustrate the
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practical applications of this approach. In Section 7.3 the Fisher information matrix 

for the extended set of parameters is derived. Then, a selection of criteria reflecting 

different optimization aims is defined. As an illustration for the proposed 

methodology some examples of local optimum as well as Bayesian optimum designs 

are provided in Section 7.4. Finally, Section 7.5 contains a discussion about the 

methods and numerical results obtained in this chapter as well as alternative 

approaches.

7.2. BACKGROUND AND THE GENERALIZED LINK FUNCTION

In the modelling of binary data the choice of link function plays an 

important role, as illustrated later in this section by Examples 7.1 and 7.2. 

However, only three functions are widely used in most applications. They are the 

logistic (logit), the inverse normal (probit) and the complementary log—log link 

functions. In practice, by increasing the number of link function candidates one 

should expect to obtain better results as far as the fitting of binary data is 

concerned.

In the previous chapter, the purpose was to determine optimum designs 

to estimate the linear predictor parameters given that the model was specified by 

one of the above mentioned link functions. This problem, nevertheless, becomes 

much more general, as well as interesting, when the choice (or estimation) of the 

link function is also taken into consideration. Recent developments in the modelling 

of binary data have made this possible.

Several alternative link functions, and link function families have been 

proposed hitherto making the choice of models for binary data widen substantially. 

However, an inevitable consequence of extending the choice of link function in this 

manner is the inclusion of additional parameters in the underlying binary data 

model as the family membership must be specified, and therefore, the extra
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parameter(s) must be estimated. A simple solution for the problem of estimating the 

extra parameter(s) consists of taking nested likelihood estimators. This process of 

estimation is known as the likelihood or deviance profile.

Prentice (1976) suggested a four—parameter link function family which 

includes the inverse normal (probit) and the logit links among other important link 

functions. In addition to the location and scale parameters the model considers two 

other parameters related to the shape of the dose—response curve. Based on a 

similar approach, Pregibon (1980) proposed another four—parameter link function 

family in which the logit link is a particular case.

Aranda—Ordaz (1981) considers two families of power transformations 

(link functions) for the probability of success. The first adds one extra parameter to 

the model and satisfies a condition of symmetry for the probabilities of failure and 

success. The second consists of assymetric transformations in the above sense whilst 

adding also only one parameter to the model. The logistic and linear link functions 

are particular cases of the former. So is the complementary log—log link for the 

latter.

More recently, Rocke (1993) suggested a transformation family which is 

based on the incomplete beta function. It includes the logistic, arcsin square—root, 

and the identity link functions among others. Further, other transformation families 

are discussed and compared to the beta transformation family.

Czado (1992) pointed out that the estimated variances of the parameter 

estimates inflate as a consequence of estimating the additional link parameter(s). 

Then, she proposed a unified approach for choosing parametric link function 

families, for generalized linear models, that reduces the variance inflation.

The generalization to be proposed in this section consists of extending 

the class of link functions by adding only one extra parameter to the model. Since 

this extra parameter (the link function parameter) is estimable its inclusion offers 

the experimenter a wide choice of estimation purposes.
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However, if priorities are to be assigned it is more sensible to allocate a 

greater amount of effort to estimate the link function parameter, for the estimation 

of the linear predictor parameters clearly depends upon the link function 

specification. Having said that, there might be situations in which two or more link 

functions fit the data rather well, even though the linear predictor parameter 

estimates differ significantly for each link, thus, making the estimation of the latter 

more crucial.

The basic assumptions made for the models of Chapter 6 are again 

supposed for the models of this chapter. Now, we introduce the generalized link 

function for binary data models that is mentioned by both Pregibon (1980) and 

Aranda—Ordaz (1981), and reproduced in McCullagh and Nelder (1989, p. 378).

S K A ) =  log[{[■■!  ] - 1} /  A]; A e R* (7.2.1)

where g(7Ti,A) =  rji} the linear predictor given by 7}i =  § xy/Jj.

When A =  1 (7.2.1) reduces to the logistic link. Furthermore, it is

straightforward to prove that l im  g(?ri,A) =  log{-log(l—7ri)}, the complementary
A-»0

log-log link function. Therefore, the value of A restricted to the interval (0,1), may 

be interpreted as a measure of the distance between the logistic and the 

complementrary log—log models.

Nevertheless, there is no reason whatsoever for restricting attention to 

models in which A belongs to this interval, for any nonnegative value of A is a 

potential candidate to provide a reasonable fit for binary data. Negative values of A 

are not considered as numerical problems may arise in the computation of the link 

function inverse.

To illustrate how the maximum likelihood estimator for A, say A, can 

be obtained we present two numerical examples using real data sets. Note that in 

both examples, A lies outside the interval [0,1].
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E X A M P L E  7 .1 . Toxicity of Rotenone to M a c ro s ip h o n ie U a  s a n b o m i .  Finney (1947, 

Ex.l, p.26, Table 2) gives the details. To investigate how the value of A affects the 

goodness of fit for a binary data set, the criterion adopted was the deviance. The 

estimation of A and 0  was carried out in two steps. Firstly, we may suppose that the 

value of A is known and proceed to estimate 0 . Then, the log likelihood with respect 

to A is maximized, or equivalently the deviance is minimized. Such a procedure is 

analogous to the so-called nested least squares. Analytical solutions for this 

problem appear to be very complicated. However, a numerical search for the 

minimal deviance over a grid for A is effective and easy to implement. The model 

fitted to the rotenone data had the linear predictor rji =  0 q +  / t o ,  where {xi} are 

values of log concentration of rotenone. For each value of A, the parameters 0 q and 

0 i  were estimated by iterative weighted least squares as described in McCullagh & 

Nelder (1989, pp. 40—43).

Figure 7.1 shows the deviance profile, i.e. the deviances as a function of 

A over a grid in the interval [0.0,5.0]. Although the change in deviance is not large, 

values of A in the interval (1.25,1.5) yield smaller deviances, the optimum lying near 

A =  1.3. Obviously, further analysis ought to be carried out before regarding any 

particular model as suitable.

The linear predictor parameter estimates vary with the value of A. For 

example, when A = 0 (complementary log—log), 0 q =  —3.512 and 0 \  =  4.426 whereas 

for A =  1 (logistic), 0 q =  -4.839 and 0 \  =  7.068. These results are later referred to 

in order to justify the assumption of prior distributions for the linear predictor 

parameters being conditioned on the value of A. In fact, there seems to be a trend in 

the behaviour of 0 q and 0 \  that could be investigated more carefully.

E X A M P L E  7 .2 . Milicer & Szczotka (1966) give the number of schoolgirls having 

menstruated as a function of age. The data are reproduced by Aranda—Ordaz (1981, 

Table 2). As in the previous example the linear predictor was simply ^  =  /?0 + 0 pc.. 

The procedure described in Example 7.1, to estimate A, 0 q and 0 \  was again applied.
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The deviances are shown in Figure 7.2. The search was carried out over 

a grid in the interval [0.2,6.0]. As can be seen, the value of A that provides the 

smallest deviance lies in the interval (1.25,1.7), more precisely close to 1.475.

In the next section we obtain the Fisher information matrix relative to 

the full problem, i.e. when A is unknown. In addition, a number of design criteria 

are suggested and discussed.

7.3. A SELECTION OF OPTIMALITY CRITERION

We can now address the problem of designing optimal experiments to 

estimate A and/or p . The main conclusion that can be drawn from the above 

examples is that a substantial importance must be given to the estimation of A, 

whenever (7.2.1) is taken as the link function. Thus, from the optimal design theory 

point of view, it is sensible to focus the optimization on the estimation of A rather 

than on the estimation of the linear predictor parameters p . A third possibility is to 

find the right balance between the two purposes.

7.3.1. THE FISHER INFORMATION MATRIX

Prior to defining the criterion functions, the Fisher information matrix 

for the set of parameters (A>p) must be obtained. This requires a sequence of 

differentiations of the log likelihood function (6.3.1) with respect to A and p . The 

resulting Fisher information matrix for (A,p )  is the following.

i r  M (A ,/j,y
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where

N =  £ mi; wi =
Pi

7Ti(l-7Ti)

mi
"5 Pi =  i <bAT =  

N

J mm m Xq

Pi Pn

d7Ti
d T  =

A2
log(Aem +  1) +

Vi
X e V i  +  1 .

(Ae^1 +  1)X/ A

d7Ti   Ae^
W  '

( \ e V i  +  1)A/ A
■I r.s =  l . - .p -

The dimensions of the submatrices of matrix (7.3.1) are respectively by 

row, lx l, l*p, pxl, and pxp. Alternatively, (7.3.1) can be written in a compact 

manner, given by

( l ‘ WAA 1 )(1 * W^ X ) '

(x ‘ w A)7x) ( x ‘ w ^ x )
(7.3.2)

where 

WAA =  diagJm1[ ^ i ] S/>r1( l-T I) I WA?? =  diag

; 1 is a column vector containing only ones; and

X is the associated design matrix.

It is interesting to notice that the lower right submatrix of matrix 

(7.3.2) is identical to the Fisher information matrix for a binary data model in the 

absence of the link function parameter A (as derived in Section 6.3 of Chapter 6). 

Here, however, the expression for includes A.

Here, as in all the previous chapters, we are only concerned with the 

approximate theory of optimal design so that matrix (7.3.1) must be adapted to this 

framework. This means to write down the Fisher information matrix corresponding 

to a design measure f  which is given below.
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M ) =  / w [ a i ] ^ ( d l )  [ / w  a i a f ^ ^ (dx)  ( 7 3 3 )

j / w ax af [ / w[af] ^  .

All the integrals in (7.3.3) are taken over the design region X  and all 

the variables have the same definition as before, but with no index. The exception is 

the weight w which is given by w =  [tt(1—t)]"1. In order to shorten the notation, 

from now on M(A,/?,£) will be denoted simply by M, and its submatrices by

M11 : Jx w [ax] M12 = (/,w a x a f 3Cr̂ d l ).

M22 -  [ l w[af] xrxs £(dx) ; and M21 = [ / , w a x a f  Xr^ dx)

The reason for partitioning matrix (7.3.3) in this way is that M as well 

as Mllf M12, M21, and M22 are essential for defining the optimization criterion 

functions in the next subsection.

7.3.2. OPTIMIZATION CRITERIA

In this subsection, we consider some possibilities for the choice of 

criterion function according to the aim of the experiment. There are several 

purposes of interest in a binary data experiment, such as estimating a subset of 

parameters, estimating the LD50, or any other percentile, or estimating a certain 

function of the model parameters that might be meaningful. Obviously, the choice 

of criterion function needs to reflect the particular purpose. Here, we are concerned 

with the estimation of parameters and particular subsets of them. To be more 

specific, our main interest lies in four distinct but interrelated purposes, namely
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(i) estimate the link function parameter A ;

(ii) estimate the vector of linear predictor parameters 0 ;

(iii) estimate both A and 0 ;

(iv) estimate A and /Jwith complementary weights (relative importance).

Due to the features of the first two problems the criterion adopted in

(i) and (ii) is that of Dg-HDptimality. D-optimality is suitable for the full problem 

(iii) whereas for problem (iv) a linear combination of criterion functions related to 

problems (i) and (ii) is adopted. For convenience, we split the formulation of the 

criteria and related derivative functions into these four cases. The criterion and 

criterion function for each case of interest are given below. The criterion functions 

for cases (i) and (ii) are presented in two equivalent expressions. For further details 

the reader should refer to Appendix E. Here, | . | denotes the determinant operator.

(i) Estimating A

Maximize 'Fi(M), where

^  i(M) =  log
-1 ’ | M| '

— M jj Mj,  Mji =  log ■
L l Mj j l J

(ii) Estimating 0

¥ P(M) =  log

(iii) Estimating A and 0

' |M | '
=  log ■l | M l t | J

(iv) Mixture criterion

Maxi mize ’Fp(M), where

^ 2 2  ^ 2 2  ^ 1 1  ^ 1 2

Maximize 'F(M), where
f€«ar
$(M) =  log | M |

Maxi mize ^ m(M), where for 0 < a  < 1

tfm(M) =  a  i(M) +  (1-a) P(M) = log
M

(7.3.4)

(7.3.5)

(7.3.6)

L|Mu
1  Of | II /r I OLM221

(7.3.7)
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The inclusion of a pair of complementary weights, representing the 

relative importance of estimating A and /?, in the mixture criterion (iv) is an 

alternative formulation for (iii). The weights can either be specified by the 

experimenter, based on some subjective criterion, or can be determined through the 

optimization procedure, by finding the value of a  corresponding to the mixture 

criterion optimum design achieving maximum efficiency with respect to both 

optimum designs resulting from applying criteria (i) and (ii). Although only the 

former method is used in the illustrations of Section 7.4, further details concerning 

the latter are presented in Section 7.5. Criterion functions (i) and (ii) are particular 

cases of criterion function (iv) when either purpose is allocated weight one.

As (7.3.4), (7.3.5), and (7.3.6) are concave functions on the set of 

design measures <^, a property required to apply optimal design theory, a theorem 

similar to that of the previous chapter can be proven. Further, it is straightforward 

to prove that (7.3.7) is concave on so that a similar theorem also holds for this 

case.

Optimum designs for all the above criteria depend on the parameters A 

and p . If A were known, say A =  1, the problem would reduce to designing for 

estimation of p . The optimum design would still require knowledge of p . The reverse 

problem of known P  with A unknown does not make sense in practice, unless A and P  

are orthogonal as defined by Cox and Reid (1987). Examples 7.1 and 7.2 show that 

this is not necessarily the case. We are thus left with the dependence of the 

optimum designs on the parameter values.

7.3.3. DERIVATIVE FUNCTIONS

To check the optimality of any optimum design candidate we require
*

the derivative function of the design criterion. Suppose that for fixed A and /?, M(f )
♦

and M(fx) denote the normalized information matrices at the optimum design £
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and at the design { , respectively, where fx is the measure assigning mass one to 

the point x  € X  . By replacing £x in (7.3.3) we obtain M (fx) which is given by

M ( y  =
WAA wAVfW * '

wA»?f (x) w^ f W f W ‘
(7.3.8)

where

,*(x) tt(x )  ̂ 9T=7r(x)

w =  [3=] 2 /tf(x )(l-5r(x)) ; and f(x)‘ =  (f^x),- • -.f^x)).
L /J 7T»7r(x)

/ ^
Then, the Frechet derivative of the criterion function at M (f ) in the

direction of M(fx), or the derivative function, provides the following bounds which

are essential for checking the optimality of a design candidate (see Appendix E, for

details).

(i) Estimating A — For all x € X  ,

* (x )  =  t r [ M ( g { M ( ^ ) } ']  -  tr[M S2(?x){MJ2(f*)} '‘] < 1 (7.3.9)

(ii) Estimating j3 — For all x e X  ,

« X )  =  tr [M (y { M ((* )} ']  —t r ^ y j M ^ * ) } ' ]  < p (7.3.10)

(iii) Estimating A and P  — For all x 6 X  ,

^(x) =  tr[M (fx){M(f*)J *J < p + 1 (7.3.11)

(iv) Mixture criterion — For all x e X  ,

« X )  =  tr[M (y {M (e* )} ‘]  -atr[M22(g{M22(n} '‘]
-  (1-a) tr^M u( y | M u( ^ ) |  '] < a  +  ( l-a )p  (7.3.12)
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Because of the dependence of the information matrix on the unknowm 

parameter values, the results obtained so far yield local optimum designs for 

estimating the parameters A and/or /?. However, by incorporating prior distributions 

into the model, Bayesian optimum designs are also obtainable. This is developed in 

the next subsection.

7.3.4. THE BAYESIAN APPROACH

It is straightforward to prove that criterion functions defined as 

expectations of (7.3.4), (7.3.5), (7.3.6) and (7.3.7) are still concave functions on . 

Consequently all results from optimal design theory continue to hold.

As suggested by Examples 7.1 and 7.2 it is reasonable to take priors for 

the parameters { 0 \ }  conditional on the value of A. In fact, the assumption of a 

conditional probability distribution, say p0(/?|A=A), is general in the sense that if 

values of {&} are independent of A all results to be developed here will still hold.

Taking the priors p0(^| A=A) and p0(A) into consideration the criteria 

are defined as the expected values of criterion functions (7.3.4), (7.3.5), (7.3.6) and

(7.3.7), expectations being taken in two steps, first over p0(/?|A=A) and then over 

p0(A). Analogously, the derivative functions are defined as the expected values of 

expressions (7.3.9), (7.3.10), (7.3.11), and (7.3.12).

In the next section we show how to obtain local and Bayesian optimum 

designs through a series of examples illustrating the use of each criterion and the 

procedures for checking optimality.

7.4. EXAMPLES

The first two examples concern local optimum designs, that is designs 

which are calculated for a single assumed value of A and /?. In Example 7.3, the
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interest lies in the estim ation of the link function param eter A, whereas in Example

7.4 the aim is to  determine local optimum designs for all four different purposes,

using the same exact prior information on the param eters. In both examples we

assume th a t the linear predictor structure is of the kind r j =  f a  +  /?ix. Hence, the

dimension of the problem is three.

EXAMPLE 7.3. The values of the oaram eters are A =  1.4. 3n =  0.5. and Q\ =  1.0.

The aim is to  estim ate A. Therefore, criterion function (7.3.4) is applied, yielding

the following local optim um  design.

* f—2.384 0.9266 3.335 ' 

(  = '

b 0.6954 0.2691 0.0355
(7.1.1)

1.00 q 3 A A
I I

0.80 i \\ I 1

I TT 1

- 1
0.60 {

0.40 i

1  i  \ T
0.20 ^ 

r\ aa V v0.00
- 6

TTTTTTTTTJT T"l TTT TT’1_| II 1 1 1 1 ”  1 | II M 1 1 1 1 1 | r r r

.00 -4 .0 0  -2 .0 0  0.00 2.00
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Figure 7.3.  Derivative Function for  des ign (7 .4 .1 )
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*
The value of the criterion function at design (7.4.1) is \Pi({ ) =  —5.766. 

Most of the total weight is assigned to x = —2.384 reflecting the importance of such 

a point in estimating the link function parameter A. To make sure that the above 

design is indeed optimum, Figure 7.3 shows the derivative function (7.3.9) in which 

the upper limit, ^i(x) = 1 is achieved only at the support points for the optimum 

design. In addition, the two points in the design region X  , at which the derivative 

function is zero, can be considered as noninformative about A.

E X A M P L E  7 .1 . All criteria introduced in Section 7.3 are utilized. The parameter 

values are A =  0.001, 0 q =  0.5, and 0 \  =  1.0. Table 7.1 shows the resulting local 

optimum designs and respective optimum values for the related criteria.

In spite of using the same exact prior information about the parameters 

A, 0o  and 0 \ ,  we obtain significantly distinct local optimum designs. For instance, 

more than 50% of the weight is allocated to the only positive support point 1.376 in 

the optimum design to estimate A, whereas to estimate 0o and /?i, nearly 50% of the 

weight is allocated to the most negative support point of the design, —2.841. The 

unbalanced allocation of weights in both designs suggests that the greatest part of 

the information about A is concentrated in positive values of the covariate x, as 

opposed to negative values of x, which appear to contain most part of the 

information about 0o  and 0 \ . To reinforce this interpretation design (7.4.4), the 

optimum design to estimate A and /?, allocates equal weights to the support points 

as though it were a combination between estimating A and 0 , neither being 

emphasized.

Intermediate situations arise when the mixture criterion function

(7.3.7) is used. For instance, the less importance is assigned by the mixture criterion 

to estimate A the more weighty the most negative support point of the optimum 

design becomes. This result, together with a similar occurrence of larger weights for 

the only positive support point as the relative importance of estimating A increases, 

also agrees with the above interpretation that the information about A seems to be
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concentrated in the positive support point. It is also interesting to notice that the 

range corresponding to the optimum design support points for situations in which 

estimating A is given more importance is wider, although the narrowest range 

corresponds to criterion function (7.3.6).

TABLE 7.1 -  OPTIMUM DESIGNS FOR ALL CRITERIA (SECTION 7.3)

PURPOSE UPPER
L IM IT

OPTIM UM  
VALUE OF 
C R IT E R IO N

OPTIMUM DESIGN

/ \Estim ate (a) A ■0i(x) < 1 -2.526

\Estim ate
(b) p lfo(x) < 2 -31.62

/^ E stim a te  
W  b o th ^(x) < 3 -32.77

/jvM i x tu re  
W (  a=0.5) tfmM * x*5 -17.24

/ \M i x tu re  
w  ( a = 0 .25) t w  < 1.75 -24.46

m Mi x tu re
W ( a = 0 .8) W x) ^ x-2 -8.466

-3.633 -0.1416 1.376 '

0.2681 0.2276 0.5043

-2.841 -0.4758 1.296 '

0.4997 0.3477 0.1526

-2.645 -0.1452 1.117 ’

0.3333 0.3333 0.3333

o to 00 -0.3692 1.309'

. 0.3969 0.3231 0.28 .

-2.905 -0.4257 1.296 '

0.4505 0.3412 0.2082

-3.301 -0.2646 1.341 '

0.3245 0.2782 0.3974

where
a) design (7.4.2); (b) design (7.4.3); (c) design (7.4.4); 
d) design (7.4.5); (e) design (7.4.6); and (f) design (7.4.7).

Another feature of the designs in Table 7.1 is that they all are 

supported on three points, regardless the number of parameters they are meant to 

estimate. This can be explained by the fact that the number of support points in the
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optimum design depends strongly on the dimension of the problem, or the number of 

unknown parameters, rather than on the number of parameters to be estimated in 

the criterion adopted. Figures 7.4.1 to 7.4.6 show the derivative functions 

corresponding to the designs of Table 7.1. Note the upper limit varies from one to 

three, depending not only upon the number of parameters to be estimated but also 

upon the importance assigned to each purpose.

We now present two further examples to illustrate the use of Bayesian 

optimum designs. With the purpose of comparing the results the same prior is 

considered in Example 7.6. Example 7.5 focuses on the specific problem of 

estimating A whereas all four criteria are regarded in Example 7.6.

E X A M P L E  7.5. Suppose the interest of the experiment lies in estimating A and that 

prior information about its value is available. Two cases are considered. In the first, 

information about A is relatively accurate, whereas in the second it is rather 

dispersed. Moreover, we suppose, in the first case, that the distribution of P \ A=A is 

slightly inaccurate whilst independent of A but, in the second, it is precise although 

dependent on A. Prior distributions are shown below in Table 7.2. In both cases we 

assume that the linear predictor structure is simply /?o +  /?ix.

TABLE 7.2 -P R IO R DISTRIBUTIONS FOR A AND f}\ A (TWO CASES)

CASE A Prob(A) 01A Prob{0|A)

(0.5,1-0) 0.5
0.001 0.5

A ccurate (0.5,1.5) 0.5
Inform ation (0.5,1.0) 0.5

0.002 0.5
(0.5,1.5) 0.5

D ispersed 0.001 0.5 (0.5,1.0) 1.0
Inform ation 1.0 0.5 (0.0,2.0) 1.0
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The resulting Bayesian optimum design for the first case has only three 

support points as opposed to four in the second. This difference is not surprising as 

the number of support points in the Bayesian optimum design is likely to increase as 

the accuracy of the prior information about A decreases. Both the designs and the 

derivative functions are shown in Table 7.3 and Figures 7.5.1 and 7.5.2, respectively.

TABLE 7.3 -  OPTIMUM BAYESIAN DESIGNS (EXAMPLE 7.5)

CASE OPTIMUM VALUE 
OF C R IT E R IO N

BAYES IA N  
OPTIM UM  

D E S IG N

/ \ A ccurate 
'  -'Information —2.784

-2.985 -0.1544 1.01 ' 

0.2781 0.2595 0.4624

/ , n D ispersed 
* -'Information -4.153

-3.344 -0.5939 1.127 2.137 

0.2418 0.4247 0.2902 0.0433

where (a) design (7.4.8) ; and (b) design (7.4.9)

A noticeable distinction between designs (7.4.8) and (7.4.9) concerns 

the widenning of the range containing the support points when the information 

about A becomes more dispersed. The distributions of weights for these designs are 

also rather dissimilar. Another distinction is that the largest support point of design 

(7.4.9), x =  2.137, is far away from its equivalent in design (7.4.8), x = 1.01. 

Although with a relatively small importance (4.33% of weight), this point may be 

necessary in the optimum design for discriminating between the two values of A. 

E X A M P L E  7 .6 . Another interesting situation arises when all four criteria are used 

with the same prior information on A and j3\ A. Here, we consider prior distributions 

that are quite concentrated around specific values for both A and /?| A=A. Table 7.4 

shows the priors. Again, the linear predictor is assumed to be given by 7} =  /?o +  /?ix. 

The Bayesian optimum designs are displayed in Table 7.5.
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TABLE 7.4 -  PRIOR DISTRIBUTIONS FOR A AND (/?<>,/? 1) | A=A

Lambda Prob(A) 0 M i) |A Prob{(/W*i)|A}

(0.0,1.0) 0.25
0.001 0.25 (0.0,1.5) 

(0.5,1.0)
0.25
0.25

(0.5,1.5) 0.25

(0.25,1.5) 0.2
0.002 0.25 (0.25,1.0)

(0.50,1.0)
0.3
0.2

(0.50,1.5) 0.3

(0.8,1.5) 0.3
0.003 0.25 (0.4,2.0) 

(1.0,2.0)
0.2
0.2

(0.5,1.5) 0.3

(1.0,1.00) 0.4
0.004 0.25 (0.8,0.90)

(1.0,1.50)
0.2
0.2

(0.7,0.95) 0.2

All values of A in the prior of Table 7.4 yield models which are similar 

to that related to the complementary log—log link (A->0). However, the prior 

information about /?|A is variable so that the curves of expected responses under 

each of the above sixteen models do not agree closely. Such a dispersion on the prior 

distributions of the underlying parameters may require a large number of support 

points in the resulting Bayesian optimum designs.

Regardless of the specific purpose all Bayesian optimum designs in 

Table 7.5 have five support points. As expected designs (7.4.11) and (7.4.15), 

corresponding to estimating f t  with weights respectively 1.0 and 0.9, are very 

similar. The same applies for designs (7.4.10) and (7.4.14), corresponding to 

estimating A with weights respectively 1.0 and 0.8, although the similarities are less 

marked. Following a similar reasoning, one should expect that designs (7.4.12) and
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(7.4.13) were more alike than they actually are since they result from criteria which 

supposedly do not give priority to any single purpose of estimation. But, in fact, 

while criterion function (7.3.7), for a=0.5, explicitly assigns equal weights for 

estimating A as well as /?, criterion function (7.3.6) fails to specify any numerically 

explicit priority. In fact, it is difficult to interpret the manner which the latter 

operates to allocate such priorities.

TABLE 7.5 -  BAYESIAN OPTIMUM DESIGNS (EXAMPLE 7.6)

U PPER
L IM IT

OPTIM UM  
VALUE OF 
C R IT E R IO N

BAYESIAN OPTIMUM DESIGN

(a) ^i(x) < 1

(b) ^ (x )  < 2

(c) ip (x ) < 3

-3.136

-29.39

-30.65

(d) ^m(x) < 1.5 -16.4

-8.487

(f) ^m(x) < 1.9 -26.8

-2.842 -0.2885 0.372 1.24 0.8549'

0.2678 0.2045 0.0925 0.1788 0.2564

-2.323 -0.5246 0.3792 0.8493 1.156 '

0.4861 0.3392 0.0477 0.0771 0.0499

-2.149 -0.2971 0.3721 0.8277 1.058'

0.3224 0.2836 0.1438 0.2102 0.04

-2.463 -0.4535 0.3712 0.8419 1.187 '

0.3949 0.3055 0.0667 0.0888 0.1441

-2.641 -0.3762 0.3694 0.8466 1.214 '

. 0.326 0.2572 0.0809 0.2042 0.1317

-2.34 -0.5129 0.3776 0.8462 1.161 '

0.4695 0.3355 0.0512 0.088 0.0558

where
(a) Estimating A — design (7.4.10); (b) Estimating f )  — design (7.4.11)
(c) Estimating A and /?— design (7.4.12); (d) Mixture (a=0.5) — design (7.4.13) 
(e) Mixture (a=0.8) — design (7.4.14); and (f) Mixture (a=0.1) — design (7.4.15).
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Another marked feature of designs (7.4.11) and (7.4.15), both resulting 

from criteria stressing the estimation of /?, is that the first two support points in 

numerical order have, respectively, 82.53% and 80.5% of the total weight making 

this region crucial for the related purpose. On the other hand, designs (7.4.10) and

(7.4.14), resulting from stressing the estimation of A, hold weights which are 

reasonably less concentrated on single support points. Further, in both the lattter 

designs, the last support point in numerical order is given substantial importance, 

especially in design (7.4.10). This seems to suggest that points in this subregion of 

the design region X  contain more information about A since only a small weight is 

allocated to such points when the purpose is to estimate p .

In order to check optimality of the designs in Table 7.5 all the related 

derivative functions are plotted in Figures 7.6.1 to 7.6.6. The shapes of all plots are 

similar, especially in the regions containing the last three support points. 

Nevertheless, there is some variation on how informative is the region between the 

second and third support points compared to other similar regions in X  . The other 

common factor among the derivative functions corresponding to the Bayesian 

optimum designs in Table 7.5 is the marked valley between the first and second 

support points. This suggests that points in this region should be avoided as they 

provide little information about the related parameters.

7.5. DISCUSSION

Local and Bayesian optimum designs can be obtained for each of the 

four problems considered in this chapter. Optimum designs to estimate A, the link 

function parameter, are particularly useful, for other models than the logistic, probit 

and complementary log—log may also yield good fits. Comparison with designs to 

discriminate between models can be made for the case of designing to estimate A. 

Simulation methods might be used to evaluate how informative the local and
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Bayesian optimum designs are compared to other designs.

In practice, a good strategy to obtain sensible experimental designs is 

to utilize the mixture criterion function (7.3.7) with a number of different values of 

a . By doing so, we can extract some important features related to the particular 

situation such as which regions seem to contain more information about the link 

function parameter and/or the linear predictor parameters. Another possibility is to 

find out how the optimum designs, resulting from the mixture criterion, perform as 

opposed to optimum designs for specific purposes. As a measure of efficiency we 

suggest to calculate the ratio between the values for the specific criterion function at 

the mixture criterion optimum design and the specific optimum design.

This also suggests adding another criterion of optimality to those of 

Subsection 7.3.2. Instead of maximizing the mixture criterion function (7.3.7) for a 

fixed value of a, a further step of optimization could be introduced. For example, we 

could search over values of a  in the interval [0,1] to find the best compromise 

optimum design, that is a design which maximizes a certain function of the 

efficiencies of the mixture criterion optimum design relative to both specific 

optimum designs, for estimating A and p . This function could be defined, for 

example, as the product of these efficiencies.

Finally, all the ideas developed in this chapter can also be implemented 

for other families of link functions not only for binary data models but also for the 

other classes of generalized linear models. For instance, similar methods to those 

developed here can be used to estimate the parameter related to the Box—Cox power 

transformation in regression models.
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APPENDIX E

E .l. Da , d s- o p t im a l it y  a n d  t h e  m ix t u r e  c r it e r io n

We follow the definition of Ds—optimality given in Silvey (1980, pp.45). 

First, D ^—optimality must be introduced.

Definition E.1.1. To simplify the notation denote the local normalized Fisher 

information matrix M(A,/?,£) just by M. Suppose that the main interest of the 

experiment is to estimate s linear combinations of the k unknown parameters, s < k. 

Let A t  be an s*k matrix of rank s, whose rows contain the coefficients of the s linear 

combinations of interest. Then, with the same motivation as for D-optimality, the 

criterion of D ^—optimality is defined as the maximization over the set of design 

measures of the following function.

» A(M) =  •
— log |A t M"1A| , i f M i s  nonsingular

—ao , otherwise

For simplicity, only the case of M nonsingular is regarded here. Now, 

the criterion of Dg-optimality can be introduced as a particular case of 

DA~optimality. Suppose that the aim of the experiment is to estimate the first s 

parameters of the whole vector of unknown parameters. This situation can be 

considered by taking the matrix of coefficients A* =  (Is 0).

Then, a simplified expression for the Ds-optimality criterion function 

can be derived. Let the normalized Fisher information matrix and its inverse be 

partitioned as follows

’M11 M121 

M21 M22

where Mu and M11 have orer sxs, and M22 and M22 (k—s)x(k-s).

M
Mu M12 

.^21 ^22-
u - \ o  =
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Then, it is straightforward to show that (A1 M"1 A) =  M11. Further, it 

is a well known result that M11 can be expressed in terms of the partition of M as 

(Mu - M 12 M22 M21) _1. Hence, the Dg—optimality criterion function is as follows.

®.(M) =
' log | Mu — M12 M2J M21| , if M i s nonsingular

—CD , otherwise

To derive an equivalent and sometimes more useful way of expressing 

the Ds—optimality criterion function, the following Lemmas are required.

LEMMA E.1.2. — Let A and B be square matrices such that | A| # 0 and |B | t  0. 

Let C be a matrix whose dimensions are compatible with those of A and B 

according to the matrix operations shown below. Similarly, let 0 denote the null 

matrix. Then the following results hold.

(0
A 0 

0 ‘ B
=  IA | | B | ;

(ii)
A C 

0 ‘ B
=  | A | | B | ; and

(iii)
A 0 

C‘ B
=  IA | | B |

PROOF

(i)
A 0 

0 ‘ B

A 0 

0* I

I 0 

0* B

A 0 

0 ‘ I

I 0 

0‘ B
=  IA | | B |

(ii)
A C 

0 ‘ B

A 0 

0* B

I A-‘C 

0‘ I

A 0 

0 l B

I A-‘C 

0‘ I
=  IA | | B |
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(iii)
A 0 

C* B

A 0 

O t B

I O' 

B"1̂  I

A 0

0* B

I 0

B^C1 I
=  IA | | B |

LEMMA E.1.3. — Let A be a square matrix such that | A | #0. Let A be partitioned 

as follows

A =
All A-12 

A 2I A-22J

Then the following results hold

(i) | A| = | A221 I A-u — A12 A22 A2i |

(ii) | A| = |A U| | A22 — A21 Aj} A12|

PROOF

(i) First premultiply and postmultiply A as follows

I A12 A2Jn 

0* I

A n A 12 

A 2I -̂22J —A22 A21

Au A 12A22A21 0

L21 22- —A ’1 A T . 22 21 f

An A 12A22A21 0

22J

Now, taking determinants on both sides of the equality and using the 

results of Lemma E.1.2. we obtain result (i). For proving (ii), we similarly 

premultiply and postmultiply A as follows

-A A -1 T 21  A 11 A .

A n At2

A 2 I  A 22J

T —A "1 A ' 1 A n 12

0* I

Lu  

0* A22

"12

A A -1 A 
A  2 1 A 11 12J

T —A ' 1 A ‘ 1 12

0* I

Ln  u

A 22 — A 2i A n  A i 2J
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Again, taking determinants on both sides of the above equality and 

using the results of Lemma E.1.2. we obtain result (ii). Thus, results (i) and (ii) of 

Lemma E.1.3. prove the equivalence of the expressions used for criterion functions 

(7.3.4) and (7.3.5).

Let us now show how the expression presented for the mixture criterion 

function (7.3.7) is derived. Recall that criterion function (7.3.7) is defined as a linear 

combination of criterion functions (7.3.4) and (7.3.5), that is for 0 < a  < 1

Then

*.(M) = a *t(M) + (1 - a) *p(M) 

¥ m(M )= a lo g { |M | /  |M 22| J +  (1 — a) log j |M | /  |M j }

= log M |a  | M | 1 - a

M a
2 2 M u 1—a = log I M

M22| “  I M J 1^

E.2. THE DERIVATIVE FUNCTIONS

/

To find the Frechet derivatives related to criterion functions (7.3.4) to

(7.3.7) we refer to the derivation of the Frechet derivative for the D-optimality 

criterion function. Silvey (1980, Chapter 3, pp. 21), for example, derived such 

results. Let the D—optimality criterion function be defined as

tf(M) =
— log |M | f if M is  nonsingular 

-oo , otherwise

Then, the Frechet derivative of ^(.) at M(A,/?,f1), say Mt in the 

direction of M(A,/?,f2)> say M2, denoted by F^f(M1,M2), is

F5,(M1,M2) =  tr[M 2 Mj1] - k (E.2.1)
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where k is the dimension of the matrix M. In our context, this corresponds to the 

Frechet derivative of criterion function (7.3.6).
/

Result (E.2.1) is also used to derive the Frechet derivative of criterion 

functions (7.3.4) and (7.3.5). The main argument is based on the fact that the 

Ds—optimality criterion function can be written as

v m )  =  log M|

^ 1  ! I J

= log |M | - lo g  |M 3j |

Therefore, by first applying the property of additivity for Frechet

derivatives and then result (E.2.1) for both terms of the above expression, we find

that the Frechet derivative of ^ s(.) at Mt in the direction of M2, F ^  (M1}M3), is
s v

F ^ M y M j)  =  tr[M 2 Mj1] — tr[m 2iJ2 Mj*,,] - s  (E.2.2)

where M2,22 and Mj}22 are the lower right submatrices for the corresponding

partitions of matrices M2 and M1} respectively. Now, applying result (E.2.2) to both
/

criterion functions (7.3.4) and (7.3.5) we obtain their Frechet derivatives, 

respectively given by

= tr[M , MJ1] - t r [ M 2,22 Mj}22] -  1 (E.2.3)

F® (M i,Mj) =  tr[M 2 MJ1] -  tr[M 2,a  MjJu] -  p (E.2.4)

/

To determine the Frechet derivative of criterion function (7.3.7), it is
/

necessary to apply the property of additivity for Frechet derivatives, and thereafter 

substitute (E.2.3) and (E.2.4) into the resulting expression, as shown below.

194



F~ (M^Mj) =  a  F9  (M„M2) + (1 -  a) F$  (Mt,M2)
* m 1 p

= 01 {̂ r[^ 2 “tr 22 MJ22 "■ l j
+ ( 1 - a )  |u [ m 2 M;1 -  tr^M2>u M;‘uj - p j

= u TMj Mj'1 atrfM 2l22

-  (1 -  a) tr^M 2,u Mj‘uj -  a -  (1 -  a)p (E.2.5)

*
Finally, replacing by £ , an optimum design with respect to one of 

the criteria defined in Subection 7.3.2 ; f 2 by fx, the design measure putting mass 

one at the point x € X  ; and applying Theorem 2.2 respectively to results (E.2.1), 

(E.2.3), (E.2.4), and (E.2.5), we obtain the derivative functions (7.3.9) to (7.3.12).
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CHAPTER 8. CONCLUSIONS

In this chapter general and specific conclusions are drawn based upon 

the results obtained in the thesis. A number of comments apply to all chapters such 

as the consequences of the lack of theoretical results concerning the number of 

support points in the optimum design, the numerical complications caused by linear 

predictors with several explanatory variables, etc. Other comments are more specific 

such as the relevance of considering link function families for binary data models.

Undoubtedly, the major contribution of this thesis is to show that some 

of the main results of optimum design theory can also be applied to situations in 

which prior information is incorporated into existing optimality criteria such as 

D—optimality, Ds—optimality, and T-optimality. This extension could play an 

important role in practical situations where the classical optimum designs depend 

upon the true values of the parameters. The advantages are particularly relevant 

when the prior knowledge of the experimenter reflects the behaviour of the 

underlying parameters of interest. Moreover, the techniques described in this thesis 

can also be used as tools for explanatory analysis since they require no observations.

Another contribution of this thesis concerns the extensions of the 

T—optimality criterion for discriminating between two deterministic structures to 

other classes of statistical models, such as binary data models, Poisson models, etc.

A combination of sequential and Bayesian techniques seems to be the 

best approach for both problems considered. The advantages of this methodology 

are obvious. Firstly, a starting optimum design could be obtained as described in
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the previous chapters. The next stage would involve sampling from the population 

of interest. The posterior distribution for the parameters, based on the observations 

from the sampling stage, could then be used as an updated prior distribution for the 

next stage. This process could continue until a reasonable stability of the optimum 

design is reached.

Another possibility for obtaining efficient designs is to adopt a pure 

sequential approach. For example, in the context of model discrimination for linear 

regression, Atkinson and Fedorov (1975a) proposed a procedure in which at each 

step one further design point is included in the design to give the highest possible 

efficiency. The criterion for inclusion of the new design point is to choose the point 

in the design region maximizing the square of the difference between the predicted 

values under the two models. This method can be extended to the problem of model 

discrimination for generalized linear models. More sophisticated techniques based 

upon multiple inclusion, or exchange, of points may accelerate the process of 

obtaining more efficient designs.

In both cases of sequential designing mentioned above, standard 

simulation techniques could be used to evaluate convergence, speed, and other 

related features of the procedures. As an illustration of the kind of comparisons that 

can be made, suppose that the true values of the set(s) of the parameters are known 

(of course, this is only required for the simulation process). Thus, a locally optimum 

design can be determined as illustrated in this thesis. Now, given an initial prior 

distribution for the set(s) of parameters, a Bayesian optimum design can be 

obtained and its efficiency, compared to that of the locally optimum design. The 

next steps follow those described above. At each stage of the sequential procedure, 

the whole sequence of relative efficiencies can be analysed with the purpose of 

making the decision to stop. This can be implemented for either general problem 

considered in the thesis.

Several examples are used as illustrations throughout the thesis. One of
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the main interests in these examples concerns the number of support points in the 

optimum design. The lack of theoretical results about this, as opposed to the 

existence of an upper limit for the case of parameter estimation in regression 

models, leads to considerable difficulty in the determination of optimum designs 

(particularly, Bayesian optimum designs). Sensitivity analyses carried out in 

different chapters appear to suggest that both the precision of the prior distributions 

and the region of the parameter space in which these priors are defined may be 

influential. This is certainly an important point for future investigation, both 

analytical and numerical.

With the exception of the examples of Chapter 6, where uniform prior 

distributions are considered, all the other priors in the illustrations are discrete 

probability distributions. The case of continuous priors requires the use of numerical 

integration techniques. According to our experience in the examples of Chapter 6, 

this slowed down the computations significantly, although it does not seem to be 

extremely computer time-consuming. Further computations for the case of 

continuous priors may be carried out, especially for the problem of model 

discrimination, to evaluate the numerical complexity involved compared to the case 

of discrete distributions.

As mentioned above, all the computations were carried out on a PC 

486 by means of Fortran 77 programs combined with NAG routines, for the 

optimization steps. Not one optimum design, or candidate for optimality, took more 

than a minute to obtain. In fact, most of them were determined in less than 20 

seconds. As expected, Bayesian optimum designs often took longer than locally 

optimum designs. However, these rather fast results can be explained by the fact 

that the design regions regarded in all examples were either the real line or an 

interval of the real line. For problems of higher dimension, the convergence times 

will certainly be greater.

Further, more specific optimization techniques could be considered as
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the NAG routines might not be suitable for higher dimension problems. This is 

because NAG routine E04JAF, used in all optimization programs, had to be 

adapted for our purposes. In this adaptation, the design support points together 

with the respective weights are regarded as elements of a single vector. Because of 

the restriction that the weights sum to one, the dimension of this vector is equal to 

twice the number of support points minus one. Some examples in which the search 

was performed with seven support points, hence thirteen dimensions, are among 

those that took longest to converge. Therefore, further adaptations of this or other 

NAG routines, implementing the searches described in this thesis for problems with 

more than one explanatory variable, would cause the convergence times increase 

drastically. To be more specific, let p be the number of explanatory variables in the 

model and let n be the number of design points in a particular search. Then, using 

an adaptation of the NAG routine E04JAF, the single vector storing the design 

points and weights would have dimension equal to (nxp)+(n-l).
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