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Abstract

This thesis examines some statistical procedures in the frequency domain to analyze 
long-memory series.

We define a long-memory series and review part of the literature. Then we proceed 
by analyzing different estimation procedures for H, the parameter that characterizes the 
existence of long-memory.

Parametric estimates have as a main drawback that they can lead to inconsistent 
estimates of H if the parametric model is misspecified. Therefore we focus on 
semiparametric estimates in the frequency domain. In our case, semiparametric means that 
we only need to assume a parametric model for the spectral density in a neighbourhood of 
zero frequency.

We focus mainly on a multivariate framework. First we analyze estimates based on 
the average periodogram. We prove the consistency of the average cross-periodogram for 
the cumulative cross-spectrum. We also establish the asymptotic distribution in the scalar 
case. Then we focus on an implicit estimate based on a discrete approximation of the 
Gaussian likelihood in a neighbourhood of zero frequency. We prove the consistency and 
asymptotic normality of this estimate. Based on this estimate we establish a Lagrange 
multiplier test for weak dependence.

We finish with an application of these methods to financial data.
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Chapter 1 

General Introduction

1.1 Introduction

ARIMA1 modelling has been used extensively in applied econometric work with time 

series data during the last twenty years. Basically, ARIMA analysis removes the 

nonstationary component of a series by taking a suitable number of differences and explains 

the stationary component by an ARMA model. Apart from the arguable way of analyzing 

the nonstationary component, a drawback of this procedure is the limitation of ARMA 

models to characterize stationary processes.

The Wold decomposition theorem states that any covariance stationary stochastic 

process can be decomposed as the sum of two uncorrelated processes, one that can be 

predicted from its own past with zero prediction variance and one that can be expressed as:

where et is white noise, Eet=0, E e ^ ^ o 2 for t= s, 0 otherwise, with ^ 0=1 and ^  ^j<°° .

As a model, (1.1.1) possesses infinitely many parameters so it cannot be estimated 

from a finite sample. Box-Jenkins’ justification of ARMA models was to approximate (1.1.1) 

by an ARMA model:

1 ARIMA stands for autoregressive integrated moving average and ARMA for 
autoregressive moving average.

0
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where (1.1.2) is a parsimonious representation of (1.1.1).

But ARMA models are not general enough to include any covariance stationary 

process. In fact, an ARMA model can only reflect a process whose autocovariances, 

eventually, decay exponentially2. This is an important limitation of this kind of model, it 

cannot reflect an eventual hyperbolic decay of the autocovariances, for instance. In fact, this 

slow hyperbolic decay is a feature of some long-memory models. Long-memory models are 

a wide class of time series models, in this thesis we will focus on analyzing covariance 

stationary long-memory models.

In this chapter we will define and show examples of long-memory models and then, 

we will review some of the literature concerning these processes.

1.2 Definitions

Let xt be a covariance stationary stochastic process with mean y and autocovariances 

7 j, that is:
H=Ex, , ŷ CCKj - hXâ - h)

and assume it has a spectral density function f(X) defined by:
n

yj -  jj[k)cosjXdk.
- n

Introduce3 also condition l.A :

yCAO-CjA,1"2"  as X-0+ , Cj>0 , 0<H<1 , H* 1/2 (1.2.1)

2In an ARMA model the eventual behaviour of the autocovariances is determined by a 
stable finite order difference equation, Yule-Walker, whose solution is a linear combination 
of exponentials.

3Where the symbol — means that, as X-*0+, the ratio of the left hand side (LHS),f(X), 
and the right hand side (RHS), Q  X1_2H, tends to 1.
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and condition l.B :

yy-C2 j™ '1 , as y— , | C 2|< « ,  0 < H < l ,H * l /2 .  (1.2.2)

We say that xt has long-memory, broadly speaking, when condition l.A  or condition

l.B are satisfied. Other names used in the literature instead of long-memory are long-range

dependence and strong dependence.

These definitions include two different cases: a) when H E  (1/2,1) and b) when

H E  (0,1/2). The first is called, strictly speaking, long-memory4, the spectral density will

tend to infinity as it is evaluated at frequencies approaching 0. In case b) the spectral density

will be zero at zero frequency, this case has been called antipersistent (Mandelbrot, 1969),

in practice it occurs when a series is overdifferenced. In (1.2.1) the case H = l/2  reflects the

usual weakly dependent case in which the spectral density of ^  at zero frequency is bounded

and bounded away from zero. In this case we write xt~I(0). We need H <  1 in order to have

covariance stationarity5.

Conditions l.A  and l.B  are not always equivalent but if 1 /2 < H < 1  and if we

suppose that are quasi-monotonically convergent to zero, i.e., for some B >0:

4In this situation we have that, either condition l.A  or condition l.B , imply condition 
l .C :

Y  I t/I="  >
7=0

this condition has been used as a definition of long-memory also.

5We can see that the spectral density is only integrable, and therefore, the variance is 
defined, if H <  1:

n € w € £  e2-2H
(fiX)dX = (ftX)dX + ffiX)dX =C+fCjX1 '^dX = 0 — <» ,
» o e o 2-2H

if H < 1, as e approaches to zero.

10



Yn.is Y»(1+—) for all n±n0(B) (1.2.3)
n

then (1.2.1) and (1.2.2) are satisfied with:

2T(2tf-2)cos

TZ
(2H-2)n

2 )

This is a particular case of theorem IH-14 in Yong (1974) where a proof can be found.

1.3 Examples of Long-Memorv 

In this section we analyze the most studied examples of long-memory: the fractional 

Gaussian noise and the fractional ARIMA.

A) Fractional Gaussian noise. This has been analyzed in Mandelbrot and Van Ness (1968) 

and Sinai (1976). It is a Gaussian stochastic process with zero mean and autocovariances:

so that, as j-*oo, 7 j~ K j2H‘2 , where K=H(2H-l)Ex21 the spectral density is:

XX)=c|ea - l | 2y '  5--------  ,
jTfm |A.+2jy|2iM

with c some positive finite constant, so for low frequencies:

y w - c * 1' 2® as Jl-O* .

This process can be derived in the following way: denote by Z(t) a Gaussian

continuous self-similar process6, with parameter H and with stationary increments7, this

‘This means that, for any a > 0  and any t^ ...,^ , the joint distribution of Z ^ ) , . . . ^ ^
is the same as a‘H times the joint distribution of Z(at1),...Z (atn).

7That is, the finite-dimensional distributions of {Z(t+s)-Z(t)} do not depend on s.
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process is called a Fractional Brownian Motion, then the 1-step increments, xt=Z(t+ l)-Z (t) 

with t integer, follows a fractional Gaussian noise.

B) Fractional ARIMA. This has been studied in Granger and Joyeux (1980) and Hosking 

(1981). It is a generalization of*ARIMA models. Instead of considering d an integer we

allow it to be fractional in:

♦ a x i - i A - e w e ,  >

where L is the lag operator ( Lxt=x1.1), et is a white noise process and

<b(L)=l-$lL -$2L2...-$pLp and e(L)=l+61L+02L2+...+0^L« 

have all zeros outside the unit circle. We say that xt is integrated of order d and denote it by

xt~I(d). The expression (1-L)d is defined by the binomial expansion:

u - z y - E  , c - 3-1)
7=0

where

, y=0)u . . . ,  c - 3-2)
’ T(j+l)T{-d) t,i k 

where T ( ) is the gamma function:
00

J tx~le ~fdt *>0

rwH
x=0

x ^(I+jc) x<0 .
The fractional Gaussian noise characterizes all the autocorrelations by just one 

parameter, H. This is a drawback in empirical applications, where we would prefer to model 

the short run behaviour with more flexibility. Fractional ARIMA allows this, because the 

eventual behaviour of the autocovariances is determined by d, which corresponds to H -l/2,

12



but the short run behaviour can be modelled with an ARMA process.

We consider first the properties of a fractional ARIMA(0,d,0). Then:

x={l-L)~det , i.e. , x=  i j r ^  , where ty.= Il k 1+d
7=0 Jt=l k

will be properly defined ( have finite variance) when

£ > y2<co; (1.3.3)
j=0

using Sterling’s formula we can approximate by:

1
m

so (1.3.3) will be equivalent to d < 1/2.

Similarly we will have an infinite autoregressive representation:

to

E  n/> v =e< *y=0
with the coefficients defined in (1.3.2) when

J-0
and this corresponds with d >-1/2.

Therefore the process xt is covariance stationary and invertible when -1/2 < d <  1/2; 

we assume that this is the case. The autocovariances satisfy:

yj"Cdj 2d~l as y-oo , where Cd=—r(l-2d)sm n d  , 

and the spectral density is:



f iX ) -— X-u  , as X-0* .
2n

Similarly for a fractional ARTMA(p,d,q):

Yj~Cju ~l , as y-oo ,

for C.a positive finite constant when d > 0  and a negative finite constant when d<0,  and

1 11 I~U , as A.-0* , with
2« |<K«-“ ) |2 <(>(1)2

As ( l - L p - a - m i - L f  With n integer and €(-1/2,1/2) for any do real, it is 

interesting to analyze the properties of a fractional ARIMA with dE  (-l/2 ,l/2 ).

So far we have only analyzed the univariate case. The multivariate case is very 

relevant in order to analyze the interrelationships between different variables. For instance, 

we can have series with different short correlation structure, but with a similar correlation 

pattern for higher lags, i.e., with the same H; in this case we can estimate more efficiently 

this parameter if we take into account the cross-information. In several disciplines, e.g. 

economics, it is interesting to analyze the impact ( both, in the short and in the long run, and 

the way it happens) that some variables have on others. For example, this can be relevant 

in terms of economic policy. In general, if we try to build a model of several variables, it 

is crucial to study the co-movements of these variables.

The extension of the preceding definitions and models to the multivariate framework 

is not difficult. We assume that the conditions that characterize the long memory behaviour 

are fulfilled for every series, i.e., if we consider an r-dimensional vector process and a is 

the typical series (a = l,.. .r )  and we assume that its spectral density exists and denote it by

14



fM(X) and by y  * its autocovariance at lag j:

f c W - g * .  . os X-0* , g j > 0 for a=l,...r ,

Y]  ~ Ka j W' 1 > os , for a=l,...r , 

gM and K, denoting general constants and (0,1), H, ̂  1/2. In chapter 4 we will introduce

carefully our multivariate framework.

When analyzing a multivariate fractional ARIMA one consideration worth noticing

is that, while in the univariate case the models8:

and

UD {l-LY^L)x=e{L)e,

are equivalent, in the sense that the general linear process that both models implied are the

same:
•0

(i): * ,= £  V - /  ’
/=0

o*
(ID: * ,= £  >

j =0
with {blj} = {b2j}, in the multivariate framework this does not happen. The models:

<&(L) diag {(\-L)d-}X=Q{L)e,

and

8Where we assume the necessary conditions for identification, in particular, <£(L) and 
0(L) have all their roots outside the unit circle.



diagKl-Lf-)<t>(L)X=e(L)et 

are not equivalent. Consider, for instance, a simple example9:

(/):

(II):

f<t>„(£) 4>n ( i)V 
<J>21(I) <t>32(L)

(1 -v f1 0 
. 0 (1 -L .f

I \ 
X\t

.X,,.V "/

o (1 - L f 1) 
then we can express xlt in (I) as:

<f>21(L) <b22(L)j \ 21 J

/  \  
e lr

V**./
I \ 
elf

\e2i)

((|)11(L)(|)22(L)-(|)1/ I ) ^ 21( L ) ) ( l - I ) \ lf= y L ) 6 1<+())12(L)e^

and in (II) as:

(<t>u a)<t>22(L)-(t.12(L)4>21( L ) ) ( l - L ) \ t^ l2( L ) ( l - L ) \ t , 

so, only if d j= d2, models (I) and (II) are equivalent.

In case (I) we have that xlt~  I(dj) and x2t~  I(d2), while in case (II): xlt~  ̂ d ^  if < d2 

and 0i2(l)^ O  and xlt~ I(d 1) otherwise, while x ^ - I ^ )  when d2< d t and <f>2l( l ) ^ 0  and 

x2t~I(d2) otherwise.

These considerations are relevant when analyzing the subject of fractional 

cointegration10. In chapter 4 we will give further insight in these representations, but the 

subject of fractional cointegration is not in the scope of this thesis.

What is important to stress is that the multivariate framework provides a more 

detailed insight of the properties and behaviour of stochastic processes than a univariate 

framework and this is why much of this thesis will focus on it.

9Where we assume the necessary conditions for identification, see Hannan (1976), one 
of them is that all the roots of | 4>(L) | are outside the unit circle.

10 That is, when a linear combination of the series possesses an order of integration that 
is less than the maximum of the different orders of integration of the original series.
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1.4 Review of the Literature

The long-memory phenomenon has been noticed by applied statisticians in several 

fields for a long time. Two main areas, in which it has been detected, has been hydrology 

and economics, but there are references for biology, geophysics and meteorology in 

Mandelbrot and Wallis (1969), agriculture in Whittle (1962) just to cite a few. In hydrology, 

Hurst (1951) analyzed the flow of the river Nile and proposed the widely used R/S statistic 

to detect long-memory. In economics, Mandelbrot (1969) and Granger (1966) are earlier 

references. Granger called the "typical spectral shape" of an economic variable to a spectrum 

that exhibits a comparatively high mass close to the zero frequency. Robinson (1994c) and 

Beran (1994) provide an extensive bibliography.

Although detection of the phenomenon was quite earlier, the formal analysis didn’t 

start until much later, and it was linked in great part to the analysis of self-similar processes. 

In this field, Taqqu (1985) and Vervaat (1987) are the usual references for the bibliography 

up to 1987.

As the literature is very active in several directions this section does not pretend to 

be comprehensive but will review some aspects on a few topics as justification, simulation, 

generalizations, testing and convergence results with long-memory series to point out the 

variety of results that can be found.

Long-memory models have been justified in terms of aggregation. Robinson (1978) 

and Granger (1980) show that if individual series follow AR(1) processes:

W i r - 1 +Mir > ,

then, the aggregate series:

17



> t=1>- T  >
i= l

will exhibit long-memory if, for instance, a* are drawn from a beta, B(p,q), distribution for 

certain values of p and q.

A key feature of long-memory processes ( and what makes this literature 

distinguished from the standard) is that, because these processes are not strong mixing, at 

least with fast enough rates in the Gaussian case, the usual central limit theorem cannot 

apply. Rosenblatt (1961) showed that for a specific long-memory Gaussian process xt.

- 5 3 E 6 ? - »n 1

does not converge to a normal variate for H in between 3/4 and 1.

Taqqu (1975), in a fundamental paper, analyzed the convergence in distribution of 

properly normalized sums of functions of Gaussian long-memory processes as:

£ G ( * , ) .  (1.4.1)
(=1

We state a basic result: "let { xj5 j >  1} be a stationary Gaussian sequence satisfying E x ^O , 

Exj2= l  and11 E x p c ^  — L(k)k2H‘2 as k-*o°, G( ) satisfies EG(Xj), EG ^x^C oo and has 

Hermite rank12 m, then:

11 Where L ( ) is a slowly varying function at infinity, that is a positive function so that

-1 as k -  «> , for all PO.
m

12 The Hermite rank m is the minimum j for which Cj is different to zero in the Hermite 
expansion of G ( ):

x 2 X 2

G (x )= j2 ^ Hj(x) , t f /* M -iy e T ^ / T  - 
U  J] dx}

18



d 2(n)=E (£G (Xj))2-
y-i

and

n2(l-m+mH)L m(n)
, m! J (1 -2m +2/n//)(l -m+mH)

1 [«] __

where Y j t )  has a complicated expression but for m = 1 it is Fractional Brownian Motion and

for m =2 it is called the Rosenblatt process, see p.41;

* if 1/2 < H <  l-l/2m  then:

G(xt) ^

where Z~N(0,crz2) and

°z= M m .-E  E  E{G{x)G (x)}."
;=1 /-I

There is a crucial point to notice. Convergence depends on m and H. They determine not 

only if there is convergence to a Gaussian or non-Gaussian process but also the rate of 

convergence that does not need to be n1/2. In chapter 3 we will provide a result that even 

though does not follow directly from these results, it is also evidence of this distinctive 

behaviour.

Although most of the work done has assumed Gaussianity, this assumption has been 

relaxed and there have been studies analyzing convergence of linear processes and of their 

functionals, as (1.4.1) with xt linear, see Robinson (1994c). Rates of convergence can be 

arbitrarily slow and in the functional case they will depend on H and on m, the rank in the 

Appell expansion of G ( ), where:



G (*)= £  - iM x )  , 
j=o 7'

where Aj are called Appell polynomials and are defined by13:

,ZX

J -

We can have normal or nonnormal convergence depending on m and H. A review 

of this results up to 1990 is Robinson (1994c).

In particular, as basis of statistical inference, a great deal of attention has been 

focused in the convergence of quadratic forms; the main references are Giriatis and Surgialis 

(1990) and Terrin and Taqqu (1991).

In the next chapter we will analyze the question of estimating H. Its importance is 

twofold: H is the parameter that characterizes the long-memory behaviour and H may 

appear in the rate of convergence of some statistics.

Adenstedt (1974) and Samarov and Taqqu (1987) analyze the relative efficiency of 

ordinary least squares (OLS), compared with generalized least squares (GLS), in estimating 

the mean of a long-memory process. They obtain that OLS is not asymptotically efficient, 

but if H >  1/2 the loss of efficiency is quite small, while if H <  1/2 the loss can be bigger.

Yajima (1988) extends this result to the case of having a trend as a regressor and a 

long-memory disturbance with H >  1/2. In this situation the loss of efficiency is even greater.

Furthermore Yajima (1991) extends the result of Grenander (1954) and Grenander- 

Rosenblatt (1957) about the relative efficiency of OLS, compared with GLS, in a regression

13Appell polynomials are the extension to non-Gaussian cases of Hermite polynomials; 
if x is N(0,1) then the Appell are the Hermite Polynomials.
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model where the disturbances exhibit long-memory. For regressors satisfying "Grenander’s 

conditions"14 he shows that OLS will be asymptotically efficient if the spectral density of 

the disturbance is constant on each element of the regression spectrum15. The additional 

restriction, with respect to Grenander’s case16, is that the zero frequency is excluded in the 

regression spectrum.

Because of the slow decay of the autocovariances, simulation of long-memory series 

has turned out to be a difficult task.

McLeod and Hipel (1978) proposed to decompose the theoretical covariance matrix. 

T, of the process that we want to simulate by Cholesky: T=M M ’, and then, filter a white 

noise, e, to obtain a long-memory series y=M e.

Granger and Joyeux (1980) modified that method in the sense that, only the first 100

14Suppose zjt denotes the t-th observation of the j-th regressor, j =  l ,... ,p , t= l ,. . . ,n ;  
denote also

n

d/ = E 4  D=dutg(d1,...,dp), Z=lZj,h R=D~,Z'ZD~1 ,
t-l

then, "Grenander’s conditions"are:
a) for all j , as n-*<» ,

,.lim  max \zh\ A /• 7, •b) 1 . —— =0 , for all j  ,*n-+ oo \ z t z n  a
j

c)limn_  R=R>0 .

15 The regression spectrum is the set of points \  where 0 < X i< T ,i= l,. ..p , for which 
the spectral distribution function of the regressors jump.

16Grenander assumed that the spectral density of the disturbance was continuous and 
positive at the zero frequency, and this rules out condition l.A .
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values are obtained in that way and then, they use a truncated autoregression to obtain the 

further values of a fractional ARIMA (0,d,0) series:

100

E  * jx t - r et » *=101,102,...
j =o

where ir-} are given by (1.3.2).

Geweke and Porter-Hudak (1983) use the Levinson-Durbin-Whittle algorithm (that 

uses the Cholesky decomposition of a Toeplitz matrix) to simulate long-memory series.

All these methods imply a high cost in computational time; a much faster approach, 

that uses the fast Fourier transform (FFT), was proposed in the appendix of Davies-Harte 

(1987).

The models we have seen in the previous section are very simple. There have been 

generalizations worthy of mention. Taqqu (1987) examines a very general stochastic process 

model:

E  ~  E  //4>1,4>2,...(t>m)ABa(<i>1)...ABa((|)m) ,
*l=-M

with

where ABa are white noise, a E  (0,2) is the stability index of a stable distribution, ft is the 

kernel that generates dependence by mixing the noises, and, ft with m control the degree of 

nonlinearity. This model is very general and Taqqu ( 1987, p.9685) shows that fractional 

Gaussian noise can be derived as a particular case.

Gray et al. (1989) analyze a generalization of fractional ARIMA processes proposed 

by Hosking (1984):
4>(L)(1-2kL+L2)a x=6(L)et 
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using Gegenbauer’s polynomials17. This model allows the singularity of the spectral density 

to be at frequencies other than zero.

Long-memory has also been used to characterize second moments. Robinson (1991a) 

extended autoregressive conditional heteroskedasticity models by the cases:

OO 00

F(«[|F,)=U+E<tv(e)r1 {a+E<J>/e)«,_y}2 (14-2)
h i  h i

and

00

K(u,|F,)=o2+E  4>,<e)(«,-r°2) (L4-3)
y=i

where Ut is the disturbance in a linear regression model and the coefficients <£j(0) are 

uniquely defined functions of the vector 0, such that <£j(0) = 0  for all j >  1 if and only if 0=0, 

and 0j(0) can decay slowly enough to allow for long memory and Ft is the a-field of events 

generated by us, s <  t. He uses Lagrange multiplier (LM) tests for the null hypothesis of no 

dynamic conditional heteroskedasticity (0=0), i.e., V(ut |F t)= o2 and obtains limiting x2 

distributions. Baillie et al. (1993) and Harvey (1993) extend autoregressive conditionally 

heteroscedasticity and stochastic volatility models, respectively, to allow for long-memory.

In particular Baillie et al. attempt to study the fractionally integrated generalized

autoregressive conditionally heteroscedasticity process:

17That is, using: 

where

(1-2 kL+L2)-*= £C „(x)(k)L" ,
k=0

li ]
C ( k ) f i A = X '  r  i ^ r(A.+if-fc) (2m)""2* 

r(X) k\{n-2k)\
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<t>a)(i-L)V=>t'+e a . ) v , , ( i-4-4)

where yt is a zero mean serially uncorrelated process, 0 < d <  1, the roots of </>(L) and 0(L) 

are outside the unit circle, w is a constant and

v ,=y?-°?’ E(y?\Q,-,)=a? ■

Notice that when w =0 (1.4.4) is a special case of (1.4.2) or (1.4.3). Harvey’s model is:

yt=otet , et~IID(0,1) , r=l,2...,

af= a2exp(^f) , (1 -L )^ = rif , i\~NID(0,o*) .

These models may be particular relevant when analyzing financial data.

Robinson (1991b) compares a nonparametric kernel estimate of the probability 

density function under both weak and strong dependence, from a theoretical point of view, 

and also provides Monte Carlo evidence. He finds that in the long-memory case rates of 

convergence of the estimates are slower than in the weak dependent case and that in the 

strong dependent case, estimates evaluated at two different points are perfectly correlated. 

Monte Carlo evidence confirms this, showing that when the positive strong dependence is 

high the performance of the-estimates is very poor. He also analyzes the optimal bandwidth 

question. He finds that, depending on the values of H, the properties that hold under weak 

dependence may continue to hold. But, if the dependence is strong enough, then the usual 

results are invalidated. Cheng and Robinson (1990) and Hall and Hart (1989) extend these 

results.

Testing with long-memory series is an area of research that is receiving a growing

attention. Robinson (1994d) establishes a very general framework in which many long-

memory as well as nonstationary models can be considered as null or alternative hypothesis.

24



The general model he uses is:

p(L,Q)xt=U',

where xt can be the residuals of a regression model and

p(JL,0)=(l -I )T|*e,(l + i)Y2*02n ( l  -2cosG)i+I2)Y'’e' ,
J-3

for given y lf 72,..-7h; the null hypothesis is18:

J*’o:01- 0 1- . . . - e , - 0 .

Using Lagrange multiplier tests in the frequency domain, he proves that asymptotic 

distributions are x2 , in contrast with much of the literature on unit root testing that end up 

with non-standard distributions. These tests are carried out in the frequency domain19. 

More popular among applied econometricians are tests in the time domain. Robinson (1991a) 

proposes a simple LM test for a null hypothesis of absence of any autocorrelation. The 

alternatives are of the class:

ea

7-1

and the $ 0 )  have been defined in p.23 and can decay slowly enough to allow for strongly 

autocorrelated alternatives. Agiakloglou and Newbold (1994) examine LM tests of 

ARMA(p,q) against fractional ARIMA(p,d,q) alternatives. They show that the tests will have 

low power when the orders (p,q) are over-specified.

Beran (1992) analyzes for long-memory series a goodness-of-fit test, proposed by

18 Some of the null hypothesis that are include are: a unit root (p(L) =  1-L), quarterly unit 
root (p(L) = l-L4), "l/f" noise (p(L)=(l-L)1/2), etc.

19Although they could be performed in the time domain.
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Milhoj (1981) in the frequency domain. This test is an extension of the Box-Pierce (1970) 

statistic when one takes into account all the computable correlations. The asymptotic 

distribution under the null hypothesis is the same as in the weakly dependent case.

Hidalgo and Robinson (1993) analyze a Wald test for structural break at a known 

time r  in a linear regression model:

with being a Gaussian long-memory series. The usual structural break tests based on Ut 

being weakly dependent will not hold.

Analysis of prediction with long-memory series has focused on fractional ARIMA

truncated for a finite series. Ray (1993) approximates a fractional ARIMA(0,d,0) with an 

AR(p). Pieris and Perera (1988) provides useful formulae while Porter-Hudak (1990) shows 

with a monetary series that a seasonal fractional model forecasts better than, the widely 

applied, ARIMA "airline” model.

models. Compared with ARIMA forecasting, the additional problem is that (1-L)d has to be
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Chapter 2 

Estimation of H

2.1 Introduction

In this chapter we analyze the different procedures used to estimate H, the parameter 

that characterizes the presence of long-memory in a series. As we have seen previously, this 

is an important issue, not only because H reflects the degree of strong dependence in a 

series, but also because rates of convergence of some statistics that are relevant for statistical 

inference depend on H.

There have been basically two main approaches. The first one is a parametric 

approach, in which we specify and estimate a parametric model in which H is just one more 

parameter. The second one is a semiparametric approach, in which we focus on estimating 

H based on the definition of long-memory, i.e., based on either (1.2.1) or (1.2.2). This 

implies using estimates of the spectral density in a neighbourhood of the zero frequency, or, 

using estimates of the autocovariances of long lags only.

Before focusing in the semiparametric approach, we will review briefly the parametric 

approach.

2.2 Parametric estimates

H is estimated jointly with all the other parameters that specify the model. The 

analysis can be carried out in the frequency or in the time domain. In the former one it is 

assumed that the spectral density is known, up to a certain parameter vector 0 (H E 0): f(X,0), 

with XE(-x,7r], 0 E 0 , 0O is supposed to be the true value, and the estimation procedure
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consists in estimating 6 by some maximum likelihood method.

Fox and Taqqu (1986) assumed Gaussianity of the process, and minimized the Whittle 

function ( an approximation to the exact likelihood function):

n

where I(X) is the periodogram of the process x, evaluated at frequency X:

2tzh ŝ|

Sowell (1992) analyses the maximum likelihood estimates of the parameters of a 

univariate fractional ARIMA. There is a limitation in his procedure: the roots of the AR 

polynomial cannot be multiple.

Dahlhaus (1989) also assumes Gaussianity but considers the exact likelihood function 

and minimizes:

J t jo *  i Tt< m > \ + - ^ - v y T am r l(tm- v  >

where Tn(f( 0)) is a nxn matrix with (r,s) element:

a
{ W 0))}M =f / O - W e ^ d X  for r j= l,...n  ,

- f t

fia estimates consistently the mean /x0 and n denotes the sample size.

Dahlhaus (1989) proves the asymptotic efficiency of both MLE estimates, i.e., their 

asymptotic variance is the inverse of the information matrix (r(0o)):

vG(e-e0)-<itf(0,r(e0r1) .
Giriatis and Surgailis (1990) relax the Gaussianity assumption and analyze the Whittle 

estimate for linear processes. Asymptotic normality is achieved, but the estimate is no longer
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asymptotically efficient.

It is worth to pointing out that these parametric estimates have the same asymptotic 

properties as in the weakly dependent case: the rate of convergence is n1/2 and, in the 

Gaussian case, will achieve asymptotic efficiency.

2.3 Semiparametric estimates 

If our main interest is the estimation of H then a parametric approach ( that will 

produce consistent and efficient estimates if the parameterization is right, but inconsistent 

estimates if the parameterization is not correct) may not be desirable. We prefer to guarantee 

consistency of our estimates at the expense of losing efficiency. This is the justification of 

the "semiparametric"1 approach. In this approach, we restrict our attention to the long- 

memory features of the series, i.e., the behaviour of the spectral density function (sdf, 

hereafter) close to the zero frequency, or the behaviour of the autocovariances for long lags 

only. In particular, if we work in the frequency domain, we will assume that the sdf ( apart 

of being integrable due to covariance stationarity) behaves as (1.2.1), i.e., we only assume 

that we know the form of the sdf in a neighbourhood of zero. This is the definition of long- 

memory in the frequency domain and it is the only assumption on the spectral density 

function we want to make so far. It is important to stress the generality of this approach: we 

are allowing, practically, any behaviour of the process in the short run because we are not 

imposing any restriction ( apart from integrability) on the sdf away from the zero frequency. 

In order to implement the semiparametric approach in the frequency domain, we need

1Robinson(1994) introduced this terminology.
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to define a bandwidth parameter, m, so that Xm=2xm/n is going to be the highest frequency 

at which we are going to evaluate our estimates. We will need to assume that m tends to 

infinity, but slowly compared with n, so that, \a  tends to 0 as n tends to infinity.

In the time domain we can carry out the semiparametric approach in the following 

way: we define a bandwidth number p and we assume that the relation:7 j= C j2H'2 holds for 

j= n -p , n -p + l,.. .n - l , i.e., it will be valid only for the p higher autocovariances. Similarly, 

to achieve consistency we will need to impose that p tends to infinity but slowly compared 

with n, so that p/n tends to zero.

As our estimates will be based in m(p) pieces of information, and m/n-*0 (p/n-K)), 

these estimates will be inefficient compared with the parametric estimates of the previous 

section. In fact, the asymptotic efficiency will be zero, but this is the cost we have to pay 

in order to ensure that our estimates of H will be consistent under any unknown short-run 

behaviour of the process.

2.3.1 Semiparametric estimates in the time domain 

Before considering the semiparametric estimates we mention the first estimate 

proposed (Hurst, 1951) that is a nonparametric one and it is based on the R/S statistic:

R/S=

A  -  min 
1 s/sn  £ ' ( ' ls /s /t ‘

j E  (xr * f
1/2

The specific estimate of H, Mandelbrot-Wallis(1969), is given by:

logWS)
logn
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Its properties has been analyzed in Mandelbrot-Wallis (1969), Mandelbrot (1972, 1975) and 

Mandelbrot-Taqqu (1979). Beran (1994) provides a neat explanation of the way to implement 

the R/S procedure. Apart from its complication it is not clear the efficiency of this estimate. 

Lo (1991) modifies the R/S statistic to be robust to weak dependence.

Robinson (1994c) has proposed two semiparametric estimates:

- the first one can be motivated by assuming that the autocovariances will eventually be 

positive ( as it happens in the fractional ARIMA with d >  0) and taking logarithms in:

yj~Cj2H~2 -  logy;.~logC+(2//-2)log/ .

We can estimate it by OLS and this gives:

/t-i ___
£  logy/log/'-log/) ___

Ht = ------------------ , log/ -  £  log) .

2 Y ,  (log/-log/)2 P> " r
j - n -p

The main drawback of this estimate is that it will only be defined if:

y>0 for j= n-p ,n -p+ l,...n -l;

- the second one is a minimum distance estimate; it is defined implicitly by:

(Hv Q=arg mine £  ( y ,
j=n-p

where 0  =  {HG(O,1) ; CGR}.

The properties of these estimates are not known yet. Delgado and Robinson (1994) provide 

some evidence about the behaviour of these estimates with Spanish inflation data.

Most of the recent studies instead of analyzing estimates in the time domain have 

focused in the frequency domain.
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2.3.2 Semiparametric estimates in the frequency domain

These estimates are based on the long-memory definition in the frequency domain 

(1.2.1) and the basic idea is to use any estimation procedure in the frequency domain, 

limited to frequencies close to zero, and replacing the sdf by its estimate (e.g. periodogram).

We are going to review three:

I) The log-periodogram estimate (LPE) was proposed by Geweke-Porter-Hudak (1983), GPH 

hereafter, and modified by Kunsch (1986) and Robinson (1992). We can motivate it by 

looking at the sdf of a fractional ARIMA(0,d,0):

where ut is stationary with sdf

and fu(X) is bounded and bounded away from zero at X=0. Then the sdf of xt is:

(1 -L Y x = u ,,

introducing the periodogram into this:

and we focus on Fourier frequencies close to zero:
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, ;=l,...ro and —-0  ,
1 n n

so that we can consider log(fu(X)/fu(0)) negligible2. Robinson (1992) also simplifies, using 

Xj instead of 2sin(Xj/2) and we finish with a regression model like:

\ogI(\p  =C-2dlogXj+€j , (*)

where

The estimate of d is just the OLS estimate of d in (*). Unfortunately it has not been 

proved that this estimate is consistent for d. The reason is the distinctive behaviour of the 

normalized periodogram for frequencies very close to zero. Kiinsch (1986), Robinson (1992) 

and Hurvich-Beltrao (1993) show that for j fixed the expectation and variance of I(Xj)/f(Xj) 

depend on j while the covariance of I(Xj)/f(Xj) and I(Xk)/f(Xk) depends on j and k. Robinson 

(1992) modifies the former regression introducing 2 modifications:

- use a pooled periodogram instead of the raw periodogram,

- in order to avoid the inconsistency problem mentioned above: introduce a trimming number 

1, so that frequencies Xj= 2 ‘7rj/n, j =  l,. .l ,  are excluded from the regression, where 1 tends to 

infinity slower than m, so that 1/m tends to zero.

So, the final regression model is:

yjf>=c(j>-2 d o g X t +uj.1* ,

where

2 Agiakloglou et al. (1993) warn about the bias ( that can be quite severe in finite 
samples) of this procedure when the weak dependent component of the series has relatively 
high ( or low) mass around zero.
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I*J)=log[r/(X t.;.J)] , k=l+J,l+2J,...m .

J controls the pooling (J= l,2 ..)  and 1 controls the trimming ( J = l, 1=0 is the GPH case). 

Assuming Gaussianity Robinson proves the consistency and asymptotic normality of

this estimate in a multivariate framework. The asymptotic covariance matrix has a 

complicated expression for the off-diagonal elements while the diagonal elements satisfy:

r o  is the gamma function that we have seen in chapter 1. The asymptotic variance takes 

values: 1.645/4, 1.289/4, 1.185/4 for J = 1,2,3 respectively.

II) The averaged periodogram estimate (APE) was proposed by Robinson (1994a). The basic 

idea is to look at the cumulative spectral density evaluated at two points close to the origin, 

X and qX:

with q€E(0,l) and F(X ) is defined in section 3.3. Robinson proved the consistency of this ̂ m’

where is the derivative of the digamma function:

iK*)=-T-iogr(*).dx

x X

then

F(X) llogq

suggesting the estimate:

, , 2um m nwhere X =  , —-*0 ,
n n



estimate under very mild conditions. In chapter 3 we will analyze this estimate with more 

detail. In particular we will look under what conditions we can achieve asymptotic normality. 

LH) Quasi maximum likelihood estimate (QMLE). It is analyzed in the univariate case in 

Robinson (1993a). This estimate is basically a "Whittle estimate" in the frequency domain

considering a band of frequencies that degenerates to zero. Instead of minimizing:

where A =(0,1) and

Under fmiteness of the fourth moment and other conditions Robinson (1993a) proves the 

asymptotic normality of this estimate:

Note that the asymptotic variance is lower than that of the LPE. In chapter 5 we will analyze 

this estimate in a multivariate set up.

the objective function3 is:

\ ™ (  l-IH
Q(CJD=-Y, toglcxj ]+—

we can concentrate C out and get:

N(0 ,1 ) .

3Consider f(X,0) as CX1'211.
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To summarize, the comparison between the semiparametric and the parametric 

approach can be seen as a question of priorities. The parametric approach leads to n1/2- 

consistent estimates while the semiparametric only achieve m1/2-consistency. Asymptotically, 

the latter are inefficient compared with the former. The advantage of the semiparametric 

estimates is their robustness.

It is important to stress the generality of the semiparametric approach. The conditions 

on the spectral density we impose are mild and restricted to a neighbourhood of the zero 

frequency. We assume that the process has finite variance and so the spectral density belongs 

to Lx, i.e., it is integrable. In order to develop the theory we will need to assume some 

degree of smoothness or differentiability of the spectral density on a neighbourhood of the 

zero frequency. But away from zero frequency no assumptions whatsoever will be imposed. 

In most of our analysis we will not demand the spectral density to be in Lp for any p > 1 and 

we will not assume any degree of smoothness or parametric behaviour away from the zero 

frequency. This is what makes the semiparametric approach relevant.

In the parametric approach, if the short run behaviour of the process is misspecified, 

this will lead to inconsistency in the estimation of H; on the other hand the semiparametric 

approach will proportionate consistent estimation of H under any short-run behaviour of the 

process. As H is the parameter that characterizes the long-run behaviour of the process, its 

consistent estimation should be of main interest.

A semiparametric estimate, on the other hand, can be used, as a first step, in the 

estimation of a parametric (e.g. fractional ARIMA) model.

36



Chapter 3

Analysis of the Averaged Periodogram Estimate 

In this chapter we analyze the Averaged Periodogram Estimate (APE). In particular

in section 3.1 we state its consistency proved in Robinson (1994a) while in section 3.2 we 

examine its asymptotic distribution. In section 3.3 we analyze some issues concerning 

inference with this estimate. Finite sample behaviour is analyzed in section 3.4.

3.1 Consistency of the APE 

The APE is proposed in Robinson (1994a). There he proves the consistency of this 

estimate under very mild conditions; in particular under:

Condition A:

A \ ) ~ U .h \ l-w , as X~0' , for H  6(^,1);
X 2

Condition B: as n -*<»,

1 m 
—  + — -0;
m n

and Condition C:

*r^+E  • E  a/<0° >
0

where
(i) E(eteu)=0, t>u\

(ii) E ( e e e e ) 4  o \  if r=s>t=u;
|0, if r=s>t>u, or r>s=t>u, or r>s>t>u, or r>s>t=u ;

(iii) there exists a non-negative random variable e such that for all rj > 0  and some K <  1:
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£(e2)<», />(|«,|>t,)sA7>(e>ri);

(iv) - ^ E ( e * \e l ,  s< t)- a2, as n~°°. 
n t=i

Condition A is a very general condition , where L( ) is a slowly varying function at 

infinity. Note that H is restricted to be in between 1/2 and 1.

Condition B is the usual"semiparametric" condition: m are the number of ordinates 

of the periodogram that we are going to use in the estimate, n is the sample size.

Condition C is satisfied when et and e t 2 - <r are integrable martingale difference 

sequences, that is, E(el |F t.1)= 0 , E(et2|F t.1)= o 2, E(et2) <  oo, see Robinson (1994a).

This estimate poses several difficulties. As it depends on two user-chosen numbers, 

q and m, it is important to give some criteria about these elections. Other issue that is crucial 

in order to make statistical inference is to derive the asymptotic distribution of this estimate. 

In particular to analyze under what circumstances asymptotic normality can be achieved. It 

is relevant also to consider how this estimate performs in finite samples. These questions will 

be addressed in the next three sections.

3.2 Asymptotic distribution

This issue is analyzed in Lobato and Robinson (1994). We have to distinguish 

between 2 cases: when H E  (1/2,3/4) and when H E  (3/4,1). We can only obtain asymptotic 

normality when H E  (1/2,3/4). Heuristically we can invoke Hannan (1976) to motivate why. 

Hannan analyzed a central limit theorem for a finite set of serial covariances of a linear 

process with finite fourth moments. He proved that a necessary and sufficient condition to
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obtain asymptotic normality was that the spectral density of the process was square 

integrable. This may happen when H E (1/2,3/4) but not for H E  (3/4,l ) 1.

In order to analyze the asymptotic distribution we introduce the following conditions: 

C3.1: For some Ea^ 0  and aE (0 ,2 ],

= as A-0* ,
8 W

where

g(X)=CXl'2H.

C3.2: For any 66(0 ,1), A 6 (l,°o ) ,

sup M p t e l L o ( ! ) ,  as A-0*.

C3.3: As n -*• oo,

1 »»2a+l
 0.

m n2*

C3.4: xt is a Gaussian process.

C3.5: The autocovariances yi are quasi-monotonically convergent to zero, see expression 

(1.2.3).

^ n d e r
, as A.-0+ ,

and assuming
ji

j)(v )2Jv =Cj<oo ,
X

i t  X  i t  X

0
=0(1) if  t f < | .

J/(v)2dv = Jftv J*<fr + |/(v )2dv =0(0, +C2f  v2_4S((v) =0(1 +c 2| ^ ) =
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C3.1 introduces a rate in the bias of the spectral density.

C3.3 strengthens the condition on the bandwidth parameter m, implying that m tends to 

infinity slower than n4/5.

C3.5 is stronger than C3.2 ( see Robinson (1994b), lemma 8) and imposes a restriction on 

f(X) outside the neighbourhood of 0: f(X) satisfies a Lipschitz condition of order 2-2H. Long- 

memory at other frequencies apart from 0 is ruled out. Under C3.5: 7 j~ D j2H'2 as j-*00, 

where D=2Cr(2-2H)cos((l-H)x), see Yong (1974), p.71.

In theorem 3.1 we prove the asymptotic normality of the APE when H E  (1/2,3/4). 

In theorem 3.2 we analyze the asymptotic distribution when H E  (3/4,1).

Theorem 3.1 Under C3.1, C3.2, C3.3 and C3.4, for H E (1/2,3/4),

y/m(H-H)-d N (0,l *q
(.logqf (3 -AH)

Proof: see appendix 3.1.

Theorem 3.2 Under C3.1, C3.3, C3.4 and C3.5, for H € (3 /4 ,l) ,

m2-w (f j q - q 2H-1) (1 - / / > r ( 2 ( l - f f ) ) c o s ( ( l t  
q “ logq (2 ic )2-m

T is the random variable towards which Tn converges in distribution, where Tn is:

(S .-E S J-n g -flc ,)2 

Dnw 1
and Sn is:

s . = E ( « i - a i ) 2  •

The proof of theorem 3.2 is in appendix 3.2 at the end of the chapter. We denote by T the 

random variable whose distribution is the limiting distribution of Tn because we cannot
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provide a neat expression for it. We can employ the results in Taqqu (1975) to analyze the 

limiting distributions of both components of Tn. Lemma 3.1 and Proposition 6.1 in Taqqu 

(1975) establish: " Let {xj be a normalized stationary Gaussian sequence with zero mean 

with rj^ExjXi+j, j =  1,2 and rj — Kj'0' as j -* <», with a E  (0,1/2), then:

_ 2AT 2-a
U m m a 3.1: 2 . ^  rH ~(1. a)(2. a )n >

1 "
Proposition 6.1: — -—  Y '  ( x f - l ) - , R" ;

where R is an stochastic process called "Rosenblatt" by Taqqu:

    / { -  -}\u .u A lrl-BdW(u,)dW(uJ,
2T(2(l-//))cos((l -H)n) J i(a,+u2) ' 1 21 1 2

where W is a complex-valued Gaussian white noise measure on Rl, and the integral is over 

R2 except for the diagonals Uj= ± u 2.

In our case K =D , a=2-2H , so, we can deduce that:

1) the sample mean of x will have a normal distribution with mean Ext and the variance will 

be:

-  n n n

—E E  — —  -n2k U  l~] H (2H -l)
i.e.:

n 1'H(x-Ex,)~. N(0,------ ---- ) ;

2) while:
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n

so both terms of Tn converge in distribution:

S -ESn  n

and

n(x-Ex^2

Dn
but the variables are not asymptotically independent and so we cannot establish a neat 

limiting distribution.

Theorems 1 and 2 show a discontinuity in the asymptotic distribution of the APE 

around H =3/4. For H E  (1/2,3/4) the asymptotic distribution is normal and statistical 

inference can be performed ( even though the variance depends on q and H, and so, in order 

to estimate the variance consistently, we need to substitute H by a consistent estimate). When 

H E  (3/4,1) the asymptotic distribution is not normal, in fact it is a functional of a Rosenblatt 

variate. As far as we know, this process is not tabulated and consequently, statistical 

inference can not be performed in this situation. Of course, the possibility of tabulating this 

process, and also the variate T, by Monte Carlo simulations could be considered. But it is 

not clear how to proceed in this way and the exercise looks computationally very intensive.

3.3 Optimal m and q 

The problem of the optimal m is addressed in Robinson (1994b). The optimality 

criterion that he proposes is to minimize the scaled mean squared error:
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MSE=Em

where Xm=27rm/n and:

W  W  - / 8 ( ^ 6/I ;=1 -Jj 2 -2 //

Under conditions similar to those we have seen in the previous section he obtains, see 

Corollary 1 and Corollary 2 in Robinson (1994b), that the optimal bandwidths are:

* for HG (1/2, 3/4):

2a 
2a+1

* for HG (3/4,1):

m'=K1(a.JiJEll)n 2-2H" .

Some comments worth to make about these results are: a) first, notice that the rate 

depends on H when HG (3/4,1) but not in the other case; b) as

2a 
2 a +1

\  /  \  a

>o, >0 ,
da da

and as a. controls the smoothness of the spectral density ( the bigger a  the smoother the 

spectrum), then the smoother the spectral density the bigger is the rate, i.e., we can increase 

the number of periodogram ordinates we use; c) notice also that when HG (3/4,1)

dH

i.e., the bigger H ( long-memory is stronger) the bigger the optimal rate, i.e., we need to
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increase the number of the ordinates of the periodogram we use2.

The question about the optimal q is examined in Lobato and Robinson (1994). It can 

be addressed from two points of view. First we can use as a criterion function the mean

squared error of Hm<q, so that both components, bias and variance, are considered. There

is a substantial problem here, these formulae, apart of their complexity, involve unknown 

quantities as a  and Ea. The second approach is a simpler one. It consists in just looking at 

the variance of the limiting distribution when H E  (1/2,3/4); the factor in which q appears 

is:

l+ g -’- y - 2*

(logqf
This expression has an unique minimum for every value of H and in table 3.1 these are 

tabulated. When H E  (3/4,1) the factor that affects the limiting distribution is:

l - g 2*-2
logq

This function has a minimum as q approaches 1 and, therefore, nothing can be said about 

the optimal q.

3.4 Finite sample behaviour 

This is also analyzed in Lobato and Robinson (1994). We examine by a Monte Carlo 

study the behaviour of the APE for series of size n=256. We have chosen this number

2When H E  (1/2,3/4) we can appreciate a similar effect:
d

dH
and when H approaches 3/4, K ^c^H jEJ tends to infinity.

44



because it is representative of the minimum size of a series in which these semiparametric 

methods can be applied. We have selected two bandwidth numbers, 32 and 64, and four 

values of H, 0.55, 0.7, 0.8 and 0.95. The series are generated from a Gaussian fractional 

noise with variance 1 and autocovariances given by:

Y;=| { i / + i r - 2 | / r + [ / - i  \m )

using the algorithm provided in the appendix of Davies-Harte (1987). We base all our results 

in 10,000 replications.

In table 3.2 and figures 1 and 2 we examine the behaviour of this estimate for the 

different values of H given q=0.5. First, it is clear that m=64 is a better choice than 

m=32. The bias, the variance, the skewness and the kurtosis are smaller with m =64. 

Another point to notice is that all the estimates present a negative bias, negative skewness 

and some degree of kurtosis. All these features being more relevant as H increases. In fact, 

for H =0.95, the bias and the kurtosis are especially severe. In general the normal 

approximation for H =0.55 and H =0.7 does not look too bad, especially for H=0.55.

Table 3.3 and figures 3 to 10 examine the sensitivity to q. For H =0.55 and H =0.7  

we analyze four values of q: 0.2,0.5,0.8 and the optimal value derived from table 3.1: 0.23 

for H =0.55 and 0.4 for H =0.7 . For H =0.8 and H =0.95 we report only the results for 

three values of q: 0.2, 0.5 and 0.8. In every case we appreciate the same features we have 

commented previously, negative bias and skewness and moderate kurtosis. It is interesting 

to notice the results for q = 0.8. In this case the performance of the estimates is very poor, 

especially for m =32. The variance of the estimates is more than twice the variance of the 

estimates for the other values of q for H=0.55 and H =0.7. Even for the biggest values of
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H, q=0.8  is the worst election in terms of mean squared error, skewness and kurtosis. It is 

also interesting to point that the optimal values of q for the cases H =0.55 and H =0.7, even 

displaying slightly more bias than q=0.5, turn out to be effectively the best options in terms 

of mean squared error. In general it can be said that the selection of q should not be crucial 

and setting q=0.5  should be a reasonable selection.

In the cases when H=0.55 and H =0.70 we can compare the limiting variance with 

the one derived for the optimal q. When H=0.55 the optimal q is 0.23 and the limiting 

variance for m =32 is 0.0028 while with m=64 it is 0.0014, both are substantially lower than 

the Monte Carlo result. If H =0.70 the optimal q is 0.40 and the limiting variance with 

m=32 is 0.0026 while for m=64 is 0.0013. There is a significative reduction in the 

divergence compared with the other case.

The APE has as main drawback its discontinuity in the asymptotic distribution. For 

this reason we will use it as a testing tool instead of employing it as an estimating tool. This 

will be done in chapter 6 in which we will apply the consistency of the cross-periodogram 

as a tool for proving the consistency of a LM test for 1(0).
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TABLE 3.1 
Optimal a and limiting variance

H Optimal q______ Limiting Variance
0. 51 0.21 0. 0949
0.52 0.21 0.0934
0.53 0.22 0.0918
0.54 0.22 0.0903
0.55 0.23 0.0888
0.56 0.23 0.0873
0.57 0.24 0.0859
0.58 0.25 0.0845
0.59 0.26 0.0831
0. 60 0.26 0.0818
0.61 0.27 0.0806
0.62 0.28 0.0795
0.63 0.29 0.0786
0. 64 0.30 0.0778
0.65 0.31 0.0772
0. 66 0.33 0.0770
0. 67 0.34 0.0771
0.68 0.36 0.0778
0.69 0.38 0.0794
0.70 0.40 0.0824
0.71 0.43 0.0876
0.72 0.47 0.0973
0.73 0. 53 0.1178
0.74 0. 62 0.1795
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TABLE 3.2
Summary statistics of Hq for various m and H for ct=0.5

Mean
H---

Variance Skewness Kurtosis
H m: 32 64 32 64 32 64 32 64
0. 55 . 536 .546 .015 .007 -.548 -.398 .388 .209
0.70 . 666 . 689 .010 .004 -.652 -.504 .578 .373
0.80 .742 .770 .007 .003 -.735 -.580 .748 .527
0.95 .838 .867 .004 .002 -.888 -.724 1.111 .875

TABLE 3.3
ASummary statistics of H1 for various m. cr and H.

Mean Variance Skewness Kurtosis
H q m: 32 64 32 64 32 64 32 64

0.20 .502 .519 .014 .007 -.567 -.413 .485 .280
0.55 0.23 .508 .524 .013 .006 -.554 -.405 .397 .284

0.50 .536 .546 .015 .007 -.548 -.398 .388 .209
0.80 .490 .541 .038 .017 -.736 -.574 .736 .431
0.20 .630 .659 .011 .005 -.680 -.505 .718 .415

0.70 0.40 .636 .676 .010 .004 -.631 -.444 .567 .178
0.50 .666 .689 .010 .004 -.653 -.504 .578 .373
0.80 .638 .691 .021 .009 -.830 -.663 1.001 .654
0.20 .706 .740 .009 .004 -.777 -.574 .968 .539

0.80 0.50 .742 .770 .007 .003 -.735 -.580 .748 .528
0.80 .725 .775 .014 .005 -.918 -.747 1.273 .890
0.20 .802 .840 .006 .003 -.989 -.730 1.664 .886

0.95 0.50 .838 .867 .004 .002 -.888 -.724 1 .1 1 1 .876
0.80 .831 .875 .007 .002 -1.093 -.909 1.865 1.394
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Figure 1
Histograms of Hq for m=32, q=0.5 and various H.
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A Figure 2
Histograms of Hq for m=64, q=0.5 and various H.
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, Figure 3
Histograms o f Hq for tn=32, H=0.55 and various q.
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. Figure 4
Histograms of Hq for m=64, H =0J5 and various q.
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_ Figure 5
Hisiograms of Hq for m=32, H*=0.70 and various q.
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Figure 6
Histograms of Hq for m=64, H=0.7 and various q.
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Figure 7
Histograms of Hq for m=32, H=0.8 and various q.
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Figure 8
Histograms of Hq for m=64, H=0.8 and various q.
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Figure 9
Histograms of fiq for m = 32,H=0.9jyand various q.
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Figure 10
Histograms of Hq for m=64, H=0.95 and various q
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As

while

so

Appendix 3.1

2 - 2HC K  Cq Xm
G(XJ = — —  and G(qXJ=—  —

*  2 -2  H m 2 -2  H

H= 1 - 1
21og<2

log

H=1 -
21ogg

log
W J  ,

21og#
log

v
-log

Y\

< W „

where

[log(l +K(A.J)-log(l +«(?>.„))] (A3.1.1)

G(X)

Using | log(l+x)-x | <  x2/2 for x > 0 , (A3.1.1) is equal to:

t « a j  - R ( 9 W  +0 ( E { R 2(Xn)))+ 0 (E {R 2(qXm) )).
llogq

Theorem 1 in Robinson (1994b) analyzes E(R2(Xm)) under the same assumptions we 

have. He obtains:

E(R2(XJ)~4(1-Hy t ( 2nm\, 2a E

(3-4H ) m \  n ) [ l - l H + a ,
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now, as condition C3.3 implies (m/n)2oe =o(l/m ), we have that:

m m

In particular they are:

4(1 -H) 
(3-4 H)m

, E [R \q X J ) 4(1 - H f  
(3-4H)qm

and so, (A3.1.1) is:

Therefore:

21ogg sfm

- - ^ m x »>-R{qX^ 0>(X) • 

So, in order to prove the theorem we need to prove:

a)

vfm 
21og q

R ( K ) - ,N 1 (2-2  H)2'
, ’ Q-logqf 3 -4 H t

and

b)

^21ogg ” 21og<? 

Proof of a). Call g\=CAj_2ff , then

_ (1 - E f q
(3 -4H)(logqf

m 1i2R(X_) =\fm
n i

G(K)
-1 _ (2 -2 f l)A  , 1-2/ r ^ V

— T .J
m 3f2~2H‘ i Si

-  \[m=
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(2-2H) A  i

[  g .m ^ - 2H x [ m ^ - 2Hr  v

As

(A3.1.3)

M 2 - 2  m T ,
7 = 1

Km,

r 1

— ~ fm(2-2H) fx l~ZHdx=sJm , 
w 0

the second component of (A3.1.3) tends to 0, as n tends to infinity. 

So we need to show:

-M O ,— -— ) . 
* 3-4  H

i  Tp l
3 / 2 - 2 7 / V '  om 1 \  8j j

The method of proof is developed in Robinson (1993a). In order to prove this CLT 

we will employ the following formulae that are derived in Robinson (1993a) under the 

conditions we have assumed, as n -><»:

E  (— 2  -2n jp  =0 (r ,/3(logry 13 +£-— +~ ~ ) ;
-  e- r  p n« n 1j-i Sj
n - 1 n - t

]T  J2 cos2(sX)=^i P - i for X = ^ L j =l,...m, 
J 4 J nr=l s=i

n-1 n - t

^5^[cos{5(A.7.+Xjfe)}+cos{^(A.J.-Xit)}]=-/i , for Xj*Xk, y,fc=l,...m.
t=i j =1

(A3.1.4) 

(A3.1.5) 

(A3.1.6)

Then:

2 H - -  m

m 2 E 7 ‘- 2 H

1 V SJ )

2 H - —  m

- »  2 E 7
1

1-277f / a p
-2iiJ.

2 H - -
+m 2 X )y1-2ff(2icJr l)*(X7)+(X2) , 

1

where Jj is the periodogram of iid standard Gaussian variates e^ 

(XI) by summation by parts and using (A3.1.4) is:
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while (X2) is:

As

Op(m 6(logm)V3+
a+— i

2m  1 ... 4x_
ft

+n *)=op( 1) ,

2H-
m

2 H - —
+m 2 Z W - E E ete5cos(f-s)AJ

i vw<=2 *=1 J

= (X27)+ (X22).

l A  2 t
- E e«_1
» i

has zero mean and variance 2/n, so

l A  2 1- £ e , - l = 0 ( —)
v/n

so

2 H - 3 / 2  m  —
(X21) =Op(^—~—E ^  12ff> =Op((—) 2).

./M 1 = 1 71
We can rewrite (X22) as:

v/n M

t-i
(X22)=Ez,, z,=0, z(=e,E '*2 ,

r=l 5=1

with

C5 =
2/71

2 H - 1

^^co&yA. . .

Zt is a zero mean martingale difference so we use a standard CLT ( Brown. 1971) for

martingale differences stated in Appendix 5.2. In order to prove:
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we just need to prove:

$Z ‘ “ • 3-4H

and

(* * )£ £ (z ,2/( |z ,|> 6 ))-0 /o r  all 6>0 
1

where IQ is the indicator function. First we proof (A3.1.7):

LHS(*)=
( n f-1 \  n
t~v 2 2 1
E  /  J ct-5 3-4Hvr=2 5*1

/n-1  n -t \  /n -1  n -f

+E E E w ,-a -.=(i w 2) ,
f=2 r* j

(D =
^=1 5=i y
E ^ - d E ^ H E E c/ - ^

r=l 5=1 3 - 4 / 1

now consider

n-1 n -t  . 4 /7 -3  m n-1 n -t

E E E V
t=l 5=1 n  7=1 r=l 5=1

8m 4 / / - 3 E E [cos[s(X;+̂ )] +cos(XA;.-̂ )]]
/I 7> it

n-1 n-f

E E
f=l 5=1 

=(0)+(00) ;
using (A3.1.5) and (A3.1.6) we get:

(0)~
4 H - 3  i  \ 2  _  3 - 4 H4m ( n - i y  m 1

n‘ 4 3 -4H 3 -4H

so,

4 H - 3  m  m
(00) =0(^— —n^2 j 1 ~2Hk1 _2") =0(—) =o(l) ,

/I  /*  it «

(1*^0 .

While (1A) has zero mean and variance:

(A3.1.7)

(A3.1.8)



As:

n-1 n-t
- < * £  ( £  c 2sf )

t=1 5=1

1 H - 1 m

7Z i n

and using Zygmund (1977), p.70:

so:

Then

so

^ / j 1~2Hcoss\j = 0 ( \ f I~2) , as m-<», for 0<Xs£n , 
;=i

2fl-2 m 2ff~2
lc5l=0 (--------------- ) » / ° r  5<—1 5' v n 2̂ -1 2

[-]

variance[(lA)]=0(n— )=0(—) .
n2 »

So: (1) —» 0. Now (2) has zero mean and variance:

= ° c £  E  E  w 4 £  E E E  c M ' j u  J -
f=2 r* 5 f=3 u=2 r* s

o
/  n n [n/2] \

I - i l  )
,  tn/2]

" ( £ < ^ n ( E ^ £ * / = 0 1 T~\  . 2  , . 2
- +  E  7 9  +  £  JCj

1 1 1 /
m* 3 J
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o ( - + —
n n2

t \n 2 4ZT-3 Mm+  m -----------  y  j A H - 3 \  =
„ 4 H - 2  ^

\"» / » [— M
2/3

=0(i+— +   ) =0(1)
» OT1/3 /n<5'4flV3

so (A3.1.7) is proven.

Now instead of (A3.1.8) we proof a sufficient condition for (A3.1.8) that is1:

E £ ( z , V o .
r=l

using the previous results we get:

£ £ f e ,V o w E ,V ) = » ( l )  - 
1 1

Proof of b).

We are going to prove:

\ 2 „ \ - 2 H

define:

<lkm
F^F(qXJ,  F,= /  /(X)dX, F,= //(X)rfX, G,=G(?X) ,

0 0

m
f2=— E  /(xp, f2= /  /(xyx ,

n  ;'=[?m]+l

/ « = ^ I E c * , - £ * l ) « i T  >
j- j

1 See (A5.2.6) in appendix 5.2.

(A3.1.9)
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F2= f  fl.X)dX, G2=G(A.m)-G 1=(l - ? 2' 2H)G(A.m) .

Now, using G ^ q ^ G C X J:

R(Xm)=qi-™R(qXm)+ ( l - q 2-™)Sqm where Sqm = — - i
g 2v 2 /

So:

Z.^5((/t5.1.9))=9 2-2"£(mi?2(9XJ) +(1 -9 2-2*)£(m£(9A.B)S([„ ).

Now, from (A3.1.2), we have that the first term tends to:

4(l-fl)2. i-2g .
(3-4H)9 ’

so, it remains to prove that the second term asymptotically vanishes,i.e.:

E (m R (q lJS J= o(l)  .

Define:

^(tf*m)= ^ l+£ l+C l+£>l > Smq=A2+B2+C2+D2 »

where:

F.-EF. EF-EF. EF.-F. F.
At=— B.=— !-----i, C = — 5— 1, D .= - i - l  ,

G, G i G i G i
for i= l ,2 .  In order to examine the order of magnitude of these terms, we need to state 

lemmas 1,3,4 and 7 of Robinson (1994b) that are established under the same conditions as 

ours:

Lemma 1

* ™ - l ~ E a Aa, as X-0+ ;
G(X) 2(l-H )+a
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Lemma 3

£{F(X)-.FU)l=0(— ) , as A.-0* ;
n

Lemma 4

and Lemma 7

E[F(X )-F(X )}=0(m^n2H~2)f as n̂ <*> , for any r |>0 ;

E iF iX J -E F a j] 1 *
4 - 4  H  
m , as n-oo .

m 3-4H
Then, using these lemmas for D lt Clf Bj and A u respectively:

D ^ O d m /n y^ o im '112), using also condition C3,

Cx=0
m

B l-O =0(m2//_2+T1)=o(m"1/2) for 0<*n<—-2H, and

1
4 - 4 H  
m

m 4 - 4  H
771

=Op(m ~lf2)

And similarly using that G2 has the same order of magnitude as G(>0> i-e-> \n 2-2H

D _ - (G (^ )  -G.) _ * (* ,) - G ( ^ )  Fi -G . , -1Q'
2 G„ G- G„

c 2=

2 2 w 2 

JE F tX J-E F j-^ -F j) £F(XW) -F  EFX~FX
G, G„

V

A2

'2 2 2 

EF(Xm)-EFx-(EF(Xn)-EFx) EF(Xm)-EF{Xm) EFX-EFX
G. G,2 w2 w2 

F(Xm)-F x-(EF(Xm)-EFx) F(Xm)-EF(XJ PX-EFX

G. <?2 '

G.

=0„(w-,/2).

So all cross products between RCqXJ and Sqm will be inmediately oOn'1) or o (m*1) except
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the one between A! and A2.

So, in order to complete the proof we just need to prove:

now, for zero-mean Gaussian variates, x, y, z and u:

E(xyzu) =E(xy)E(zu) +E(xz)E(yu) +E(xu)E(yz) , 

so we have for Fourier frequencies Xj,Xk:

cov(I(Xpj(Xk))=

=£(w(X.)w(X.)w(Xi)w(Xit))-£(>v(X.)>v(A.y))£((H<Xpw( Xk))=

As

E(AtAj) =G1' 1g ; 1£[(F1 -£ £ ,)(£ 2-£ £ 2)] ,

first

A H - 4

and

cov{I(XM(\k)}

now using that

£(w(X;))=0 , forj= l,. ..m  ,

and

£(w(^)w(Xt) ) = ^ -  / D(M)D{\j + \ t -u W .r u)du ,
-n

where D(X) is the Dirichlet kernel:
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D (X )= '£eM ,
f=1

and following Robinson (1994b) notation:

*
Q(Xfi)=fD(u)D(X+Q-u)flX-u)du ,

-n
we get that (A3.1.10) =

1 [<?w] m
A E  E  (A3.1.11)
W 7*1 Jfc«[$»i]+1

Consequently define:

*
1?(A.,0)= fD(a)D(X+0-«)(/(A.-u)-y(A,))d« ,

-11

then using:

71
fD(u)D(X-u)du=2nD(X) ,

-It
and

D (\j-Xj)=Q , f o r j * k  , y,A=l...m ,

we obtain for j ?*k:

C ^ - X ^ / ^ - X * )  ,

Q(XpXk)=R(Xf Xk) ,

as we can check for instance:

n  i t

R(Xj, - \ l)=  (  D tu m X j-X i-u W X j-u W - / D(u)D(Xj-Xt -u)KXpdu=
-It ~1t

-2nD(Xj-\$[Xp=Q(\j,-X j)  .

In order to evaluate the summands in (A3.1.11) we need to use lemma 6 in Robinson
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(1994b) that establishes that:

Then:

“ • V * .  ( W  V * >  I+ W  V - P I > =0((logm)^M ,
*-k

|i?(Xt,-X;)|= 0((/0g m ) i ^ i )  ,
Xk Kj 

Kj 

*"k *]

maxj<k<ytm I =0((logm)---1- ^ -) .

045-1.11) — ■£ (R(Xj -Xt)R(Xt ,-Xj))* (XO) 
n j= 1 k=[qm]+1

1 fa«] *»
+-iE  E (% ^ -^ -i,)) . c*«)

(xOl) is straightforwardly using (L6.1) and R(-Xp -Xk)=R(Xj,Xk):

0 ( ( l o g m f 1̂  £  £ ^ / )= (? ((Iogm )2n 4 H £ j2 - 4 f f  £  k ' 1)

t l*  j= l Jfc=[$m]+1 X ^ W4 ;=1 fc=[gm]+l

2  _  3 -4 E T

while

= o ((l0gmY
n4MH m n*~*H

I^ " 1 „
(*°>=JiE  E <«*>

/I  7=1 £=[<?m]+l

 ̂ fa«] min(2/>»)

+J7 E E WV-Xt)/?(Xt,-X.))+ (02)
f l  . .1  . . t=faln]+l7=[-<7m]+l w

(L 6 .1 )

(L6.2)

(L6.3)

(L6.4)

(L6.5)
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[qrti] m|  W"‘J ,n
+ J i  E  E  . <«*>

n  . . 1  . . k=ij+\j= l-q n i\*  1 J

where (a3) is zero when j >  m/2.

Then (al), using (L6.2) and (L6.4), is:

[39m] I-L«j]
(logm)2 y> y^ Cg(Â ) _ (logm)2 y^ -2-4# y^

7*4 M  jh ^ W  (V V 2 " n4' 4"  +* *=̂ +1

=Q(( l o g m f y  ■2-4ffl)= 0 (yogm £m2-4H)
n 4_4w £ f  m n 4-4"

(a2), using (L6.3) and (L6.5), is:

0 { (logmf [g  g ( K - ^ 2y

n* ‘-1*"1*1 xj

( ln n w \2 l«mJ min(2y»
« o d * 2 s g -  E  r 2 E  (fc-^2' 4fl)=

n . . 1 £-[«m]+l

v2 *»  x2= Q ((fogm ) y  -2m 3-4H)= 0 ((% m )_m2-4ff)

j=

and, finally, (a3) using (L6.4) is:

n . . I , ,  ny=[-?m]+1

0 /  Q ° 8 m ) 2  y J  - 2 - 4 H  y ^  1  \  ( l o g ™ ) 2  y J  . - 2

n*-*H . rr i+1 *=V+1 (k-j) n*-<B . r i 1+17=[-$m ]+l '  v /=[-9»»]+l

- O f  U ° g m ) 2 y  . j - 0 /  ( l ° 8 m ) 2 m  2-4
,4-4// "  „4-4ff

n  - r 1 i  1 n]=[-qvi\+\

i.e.:

4̂ A)
7
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clogm)2
,4 -4  H

the same rate as (xOl), and, so:

(A3.1.10) =OC-(-/ogm)2ffi I-4*) ;
„ 4 -4 f f  '  *

SO,

£ 0V 2) =0 ( f - r -4 = o ( - ^ ) ! )  =0( i )  ,
V» /  n m m

as we wanted to prove.

Appendix 3.2 

From appendix 3.1 we have:

Hq - R^ m)] +Op(E{R2( \ J }) +Op(E(R2(qXm) ))

As theorem 2 in Robinson (1994b) establishes:

wl2/f-2+a /«*\2a
£ ( * 2(XJ1 -  Alm4H~4+A2—-------- +A,

n
m 

\ * /

and condition C3.3 implies:

n *=o(m “ 1/2) , so , — =o(m2H~512) (A)
2H~2+a

and [ -  
\ n

2a
n

=o(m _1) , (B)

both, (A) and (B), are o( m4H_4). 

So:

therefore:
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21ogq

Now, if we are able to prove that

m2-2HR(XJ= *** 7+0(1) , (A3.2.1)
V C(2u)2-“  "

w here D has been defined in p.40, then this implies that

,2H-2

and so,

m2-2HR(qXJ = D(1 11)9-----T„+o(l) ,
*  C(2it)2_2/f "

21og? 0og?)(2n)2-2"

and this converges in distribution to:

(1 V g-2) (1 -fl)r(2(l -H))COS((l -g)7!) M-2JJ. 
logq (2k)2' 2"

So, it just remains to prove (A3.2.1), i.e.:

m 2-2* ^ ^  0 (1  ^  +0 (1)
" C(2nf-2H Dn1H~' '

First we analyze R(XnJ:

F (X J F(XJ-EF(XJ EF(XJ-G(XJ
R(XJ = _ 1 J ^ - 1 = _ _ £ -------1_21+— —^  -^ 1=(^ A )+(5R) ;

"
we analyze (BB) first:

£ F ( X J - G ( lJ = £ { F a j-F ( X J >  +£ { F ( X J - F a j (  +( F ( ^ ) - G ( i J )

=(W)+(62)+(W) .

In order to deal with (bl) we apply lemma 9 in Robinson (1994b) that states that, under the 

assumptions we have, as n -* oo;
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i i f f X x j - F a j )  -  I k© + o ( / i ,

S O ,

(<b l) - -Ik©+o(71M-2) ;
2

now, using C3.3, we have:

(M )= O d -
2-2H+a

)=o(n™-2) ,
\  n  ,

and, to analyze (b2) we use lemma 3 in Robinson (1994b) that states that:

n

so

A.‘-“

therefore:

(f,2)=0(-2— )=0(77i1-2ff/i2ff-2)=o(7)2,f-:!) ;
n

(B B )= -1_B *L +0(77I2h-2) . 
2 G (X J

In order to analyze (AA) we need to evaluate F(A.m) and EF(Xm) . In order to do that, 

first we recall Parseval’s identity:

5n=£  (xt~x)2=2nYf % )  •
t= l y’=i

Now, for n odd, using that I(Xp=I(2n-\p and /(A.n) =/(0) =— (x-Exl)2:
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n-1 n-1
n 2 2

E  j(*P=2£ /(A.p+/(0)=2£ /(^ ^ -(I-E * ,)2 ,
y'=l »=1 /=1 2717=1 7 = 1

SO

S_=2n

n-1
2

2 £ i a . ) + 2 £
1-1 ;-»* 1 2"

then, using that: for j=l,...m<n

n-1
25 A 2tt A  - (jc-̂ Ex.)"

2  71 71 y*m+i  2

and, for n even, using the same results, we get:

(A3.2.2)

E f(xj)=2E -/(*) ,
7*1 7*1 27C

Now, consider:

5 =2ti71
\  7=1 7‘=m+l

n 
2

2ti

5 „ 2u A  - 7i - (3t-£x,)2
2 /1  71 _/=m+i 71 2

(A3.2.3)

— E uo-.)-eKk)} ,
n 7=m+i

using that X-EX=0 (y/V(X) ) , and also that in lemma 10 in Robinson (1994b) it is proven

that:
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n —  E  /(V)=0<n4"‘4) •
^  j~m +1

(A3.2.4)

and also that:

then, using (A3.2.4):

so, using this and (A3.2.5), we can rewrite (A3.2.3):

n

+op(n™-*)
2/1 71 y=m+i 71 2

Now, we can write, using (A3.2.2), for n odd:

n-1
2  E V  \ 2

Zti n 2

n-1
2

S O

S - ES  (x-Ex,)2-V(x)

and using (A3.2.3) and (A3.2.6), for n even:

(A3.2.5)

(A3.2.6)
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2 rt 71 ;=m+l 2  n

f f W V ’ -  E  £/(Xy) - M +^£/(7c) ,
2 w w y=m+i 2 W

so:

Then

so

i.e.:

S -E S  ( J - E x ^ - F ©

 +»,(« ) .G(AJ 2nG(*m)

S -E S -n (x -E x ,)2 
R(XmMAA)HBBy- 2; g(X + o ,(i»*») .

( l- f l ) [S -£ S -n (x -£ x ,) J] (1-H)DT
m R(X )=------ ^ -2 -----=—  iii+ o„(1)= ------ -— 2 +o ( l)  ,

n2H~1C(2nf-2H " C(2nf~2H p
i.e., we have proven (A3.2.1) and the proof is complete.
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Chapter 4

Consistency of the Cross-averaged Periodogram 

In this chapter we establish a multivariate framework to analyze long-memory series. 

We provide some notation and then examine general conditions under which we can achieve 

consistency of the averaged cross-periodogram. These conditions are more general than those 

under which we will prove consistency for a quasi-maximum likelihood estimate in chapter 

5. We restrict ourselves to prove consistency of our estimates and do not attempt to examine 

the limiting distribution because as we have seen in the previous chapter it has a 

discontinuity around H =3/4 in the univariate case. On the other hand, consistency of the 

averaged cross-periodogram will be relevant when analyzing in chapter 6 the asymptotic 

behaviour of a Lagrange multiplier test for 1(0).

4.1 Notation

We consider r covariance stationary series that are observed in n moments of time. 

We use the index t to denote time (t = 1,.. .n) and a to denote the series (a =  1,.. .r), xt is a rx l 

vector with a-th element xt\  We define the normalized discrete Fourier Transform(DFT) of 

series a to be:

wa(A.)=— j^ x ? e ux , a=l,...r, A.€(-tc,tc],
y/2nnt*i
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and for the vector xt:

w W =

and the cross-periodogram of series a and b:

w W

where the line over wb(X) denotes complex conjugate, and the periodogram matrix (rxr) for 

the vector xt is:

I(X)=w(X)w\X),

where * denotes complex conjugation combined with transposition.

When representing our series xt as a linear process we use the notation:

(4.1.1)

xt~
r Xt \ * /

> where A.=
0

( o ( A
aJ

• II* •r r<*/\  J) et\  * /
and a j= (a j1,...a*')

with et, a martingale difference sequence, E(et | Ft.1)= 0 , E | e,. | <  oo with E(elet’ | Ft.1)= R  

where Ft_j is the a-field of events generated by e8, s< t;  and the typical element, series a, as:

a r - \  a
xt aj eH >

j=o

Aj is rxr, a* is lxr and ^  is rx l.
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We define also the normalized DFT of ^  as:

v(X)

~ i v u i .
V27T71 t=l

and the periodogram matrix for et:

J(X)=V(XMX)'=

Vj(X)v,(A.) ... Vj(X)vr(A.)

vra)v,(A.) ... vra ) v r(X)

where v(X) is rxl and J(X) is rxr.

Let A(X) be the DFT of the weights Aj:

E
j - 0

E < v ^
\J‘0

where

Aa(X)=(Aai(X),...Aa (X))t

A,(X) is lx r and A(X) is rxr. Consequently:
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A\)=A{k)fe{X)A(\y. 

Specifically the spectrum of et is1:

1 r12

2 n 2tc

and the spectrum of xt:

f i » =

ffuW  •• / i .W

/riW  «

■f-iAtW .. a ; m y
2 71

2 71
Ar{k)RA*{X) .. i4r(A)/M;(X)

and so the typical element, the cross spectral density function of series a and b is:

f ^ m ^ m — A ^ x y
2 71

Let the cumulative cross spectral density function between series a and b be:

with

!Notice that for identification we set the variance of the innovations equal to 1 instead 
of the vector of coefficients A0.
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FJX)=ReFab(X)+iIm F J\) , fJX)=RefJ.X)nIm fllb{X) ,

so,

ReFJ}.)=^RefJ!S)dS , ^F J.X )=^Im fJfi)dQ .

The basic statistic we will consider is the averaged cross-periodogram:

This statistic is just the (a,b) component of:

where I(Xj) is the periodogram matrix. This is a fundamental statistic in multiple time series 

as an estimate of the spectral measure:

A.

F(X)= / m d Q  .
0

The statistic has the advantage of being invariant to the mean of the process.

4.2 Consistency of the averaged periodogram 

Before establishing the theorem, we are going to introduce general conditions under 

which consistency can be proved.

Condition C4.1: f(X)~A°GoA° where A°=diag{\lf2 H*} and G0 is a Hermitian positive



definite matrix, then for any two typical series,a,b =  l , . . .r ,  for Ha, Hb E (1/2,1),

, L- Ui , ]
g j '  8abX

 ,  1 - H - H b
8bbX

1 - 2Hh

f j t o  f j t o  

L W  / » ( «

with 0 < g M< oo ,0 < | gab | <  oo.

This is a general specification2 that includes the behaviour of any fractional model as a 

particular case as we are going to show next.

For instance, the simplest bivariate fractional case:

(1 . Lf . - ^ x‘ =ef and (1 -L)a>~m x*=e* , 

where et*, elb are white noise with:

£ ( ( 0 2) = 1. £((e,V) = l, ^iei et)~ rab -

then,

' ob
2 k

Now l-exp{-iX} is a complex number with modulus 2sin(X/2) and argument jS=arctg(sinX/l- 

cosX). As X-»0+, sinX/l-cosX-^oo , so j(3-»x/2. Also as X -*0, sin X —X. Then, we can 

represent l-exp{-iX} as X exp{i x/2}. So,

2 We could think that we could achieve more generality by allowing the cross-spectral 
density function to behave as:

™ "*h

but consider in this case the coherency as X-*0+:

, as A.-0*
&ac£>bb

and we can get this with our specification by letting gab=0.
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then
(i -e - y ( i  -c y -«* y ' y  ,

U X ) - r̂ Ĥ e > ^  f o r a y s .
* '  ' 2n

So this is a particular case of our specification with g ^ = - f teXp { i—(fft - f f j }  

Now, for more general fractional models as:

* Model I:

A{L)diag[(\ -D H--m )X=B(L)e, 

where A(L) has all its roots outside the unit circle; when X approaches 0:

H - 1 1 2  ‘T ^ " 1/2) H - \ nA (l)d iag{X ‘ e 1 }fx(X)diag{Xa‘ me 2 M (l)'=

B(iy«(A)B(l)/ ;

as |A(1)|*0, we have:

where {g,b} are constants:

{gah) ^ ( D - ^ I ^ C W D ^ C I J V 1 ,

* Model II:

so as X approaches 0:

d ia g {( \-L f‘-m )A(L)X=B(.L)e, ,

-1

-diag{\ ae }
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so, as \-*0+,

f a b W ) ~ m  a o s S  Csh^

r r

5=1 A=1
where

is the (a,b) elem ent o f  /4(1)-1 a,b= l,...,r; and  

csh is the (s,h ) elem ent o f  5 ( i y 6(X )B (l)/ s ,h = l,...r ,

so that, in general, expression (**) will be dominated by the term with largest | l-fH^+HJ | 

and nonzero coefficient. So we have shown that condition C4.1 includes any fractional model 

as a particular case.

Condition C4.2. The minimum condition on the bandwidth m: as n

Condition C4.3:

et and c ^ - R  are uniformly integrable martingale difference sequences. 

We note the implications of this condition:

(i) E(eteu’)= 0 , t^ u .

Proof:

for o u  Ele,e^E[E(et | / v , ) ^ = 0  .

(ii) E(ewes’®eleu’) =  R ® R for w = s ^ t= u ;

m n

= 0 for: w > s,t,u ; s>w ,t,u ; t> w ,s,u ; u> w ,s,t;

w = s> t,u ; w = t> s ,u ; w = u > s,t;

s= t> w ,u ; s= u > w ,t; t= u > w ,s .
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Proof:

for w=s>t-u, £Tewe'®e,e,'] =E[E(.ewei/Fw_l)<S>e \̂ =E[P&ete^ =R®R. 

for w>s, w>t, w>u, E[ene ^ e te'j =E[E(eJFMl_^es®ele'  ̂=0• 

for w=s>t,u, E (eX ® e,eu) =E[E(ewe{jFw_l)®etel)  = £ ( R ® ^ = J J ® £ ( ^ =  0 ; 

for w-u>s,t, E[ewes®ete„] js a matnx with typical element:

E(el‘ > X )  =0.

(ill) by the weak law of large numbers for uniformly integrable martingale difference 

sequences3:

- E  ef'rpR-n „  i p
Theorem 4.1

Under conditions C4.1, C4.2 and C4.3:

-  F J K )  ̂ p( F J X J ^ F tb(Xm) ^ )

Proof: see appendix 4.1.

Estimates for the parameters of the cross-spectral density function, H„ Ht, and gab 

based on the averaged periodogram could be straightforwardly proposed and their 

consistency proved but we will not pursue further with these estimates. In chapter 5 we will 

analyze a procedure that will provide us with more straightforward tools for statistical 

inference. Theorem 4.1 is relevant because we will employ it in chapter 6 to study the 

asymptotic behaviour of a Lagrange multiplier test for 1(0).

3 See Heyde and Seneta (1972),theorem 1.
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Appendix 4.1

Before proving the theorem we need to prove 4 propositions: 

Proposition la :

Under conditions C4.1 and C4.2; as n-»oo:

Proof: As n-*oo,

I)n j, i

m
LUS=Y, I"1 (Refaba j)-Refab(\))dX =

7=1 kJ~ 1

7=1 V  l

(A4.1.1)

;=1 */-l \ / /
X]dX +r=

R eig J Y :  I V
7=i Ay-i %X#Jv u

X\dX +r , (+)

where

r=0(~ zJ  h  +x» > ° ( K  •nj=i

Now, under condition C4.2, for n sufficiently large the leading term in (+ )  has order of 

magnitude:
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now, because:

IV t xf/v ; /
A.|< |X/ -X| , fo r  Xe(Xj_v kp  ,

then, (*) is

as

o a E * r ‘- T ( v w .
y-i Vi

f Xj(X-X)dX=-Z-  , 
J Vi 7 2«2

2ft j=\ 7*1

o o » w ^ ^ ( | p - c g i ) .

Proposition lb : Under C4.1, C4.2; as n-*oo:

271 "±^ 'E W J .ip - I m F ab(Xm)= o(\F JX J\) . 
n j.i

Proof: as the LHS is equal to

(A4.1.2)

E  CJ (WJXp-ImfJX))dX^ V  Im^J[X<'~H‘'Ht>-Xll-H--ĤdX +r
y-i Vi y=i Vi

and the proof follows the one above.



Proposition 2 :

Under conditions C4.1 and C4.2, as n-*oo;

E l— E U W - W J W M  « - w .n M

Proof: Our conditions C4.1 and C4.2 are more restrictive on xta, for every a = l . . . r ,  than 

those under which Robinson (1994a), proposition 2, establishes that:

E{—  E /(*,)} = < W J )  , as n ~ » .  
n y=1

Proposition 3:

Under conditions C4.1, C4.2 and C4.3:

m —E  (̂ a(̂ x/(j.yM;ay)-/^))]=n Jml

and

m — E
» y=i

Proof ( we drop the arguments Xj for simplicity):

/I y=i

84



(*)n j zn

as

* 2 
E*.1<=l

\ ~ v  1 r
•• Y , et e t

t

+

e  e  * ;  •
s* t

EE*.1*.'
s* t

\

e 1

V.
•• E<’

t
... • E E «

s* t

so

(*)-— E
n  J

/ 1 r-k l2 * 1 1 r 
~ 2^ et  ̂ ” ~ Z J  et et T\r

\

n t n t

— Aa K2 n a

i
ŝ 

if

W

\ r

(1)

2 71 yt-^
+— E

n J

t E E * / •• E E * :
\

1 ^

5* t S* t

e Kŝ ‘A'b
Inn

\
............... e e * ;

5 #  t /

, (2)

now, call

D=

1  t - v  l 2 1 1  r ~ \  1 r
~ z l et 1 -  ~ z 2 et €t ri r n t n t

E < - i

then
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as

nj=i nJ=i

( m
s |D |- E i w ^ * ^

K j - l

2 _=(*)

/„(«-E K*m P+E*=1 Jfc* /

CM (X )f  +<*U (A)||2),

w/iere U/4a(X)||2=max.|;4j(X)|2 ami C>0,

and similarly:

so,

K W II= o (L It t ) 1/2) ,

M ,A)ll=0(/UX),/2) ,

1 I , «• N l/, m \ i ll t - \  /• /, vbl i\\D\\ M  MV»y = l j  V^ 7 = 1

because by proposition 1:

(A4.3.1)
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a n d  .  
1 fty=l

and by condition C4.3:

Now,

where

101=0,(1).

O -i E W E  E
» 2 y=l s* t  /

; E E ‘.'r. v , .
71 f

l A w ,
r ^ = ; E 4 W ^j*i

Ks-t)Xj

0 |(2 )| -E(2)(2)*=£ ^E E ̂ -r ^ E  E” 5# ( ” u* vtt* V

=£ 4e  e  ê  e  («.®«v)vecr.-v̂
/ \  ^  U* V /J

=A e E E E v e c f r s - , s ,E ( e * ® e ) ( e ! .® e ! )v e c I '»-v,m. (*)
n s* t u* v

now, by condition C4.3 (ii),

E(el®€,)(eu/®ev/)=£(eIeI,/®e,ev/)=(i?®l?)/(s=u)t=v) ,

where I ( ) is the indicator function, i.e., 1(A) =  1 if A is true and 1(A) = 0  if A is false,
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n  s* t

call

then

=tE <*- b v e c  '(^-^(^vecCT +r )n t=i n

n - 1

- E o -~>ec '(-E  ̂ m 4(a7cos?9)(«®j?)'
n f=i n  n  j =l

• v e c t - f x ^ i ^ W c o s * * * )
**=1

n-1

=-E (1--K-E vecXAkxubac°stXMR®Ry
W/=1 n nh l

• ( -E v e c O i;(X tM t(A.t)cos<V) ,
«*=1

n-1

- E  d--)(-)2En f=i n n y=1
m

■ e  [(4t/(A.ip«a4;(x^costxp])=(*)
*=i
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-  n - i  _  /  m  \ f

(*)=-E E  BfaptoBfapcostX..
n *=i n n \j=i

/  m  '
Y,Bfak)®B;(\lpcostxk
ik=1

s - E  l - E a » ’(V ® 5 ^ c<Mt̂ l 2=(*) >
71 r=l 71 ;=1

call the i^xl vector

cr B'b(Xp®B'jl\p ,

from condition C4.1

271 271
then, for at least one 1: |5ai(X)|2-C<l/X1"2fl* , and for the rest, k = l , . . . r ,

k ^ l ;  \B<A(X)\1=o(\l~2Hc) , also, for at least one q: |fi&?(X)|2~C^X1~2/f<’ , and for the rest,

p = l , . . . r ,  p ^ q :  |Btp(X)|2=o(X1"2,,‘) , so, for at least one v: C/v=0(Xj~a'~t'p , and for the

rest, h = l , . . . r , h ^ v :  c « = o ( x J ) , s0>

,n - 1 „ m1 ai'* * ”■ / i
(*)= -E  »-E c/o«x i2= -E  E  - E  yosrx.

n f=i /i;=1 n t= ih=i\nj=i

,̂n~l
- E ± Z  x'j  H' HbcostXj

IV

\2

+at (A4.3.2)

where
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now

« ,= o (^ E  ,nh  i

l - E  ^ c o s t X ^ t  ^ " - ^ ^ ( ^ J 0X ( ^ ) 0J) *rc;=i H,=i
so (*) is

O l £ ,  , l2'
£ ^ ( ^ ) ^ 4( ^ ) +“ ^ b F E  V  *" W ,

» / - 1/I

- o c r - a j w )

then by lemma 7 (Robinson 1994a):

n ia x ^ ,  l - E ^ '  ' W y # ' ' ’' 1' 2) ,
ni-\

then choose

Ha+Hb-2
3 -H .-H b

then

r=nm

I 12 AV 2H + 2H .-4.max \~ z2  h  cost\j\ =0(r • ; =r<t<n njml

O

( 2(Ha*Hb-2 ) \
m f ~ 2H<r lH h m  (3-Ha-H $m - 6 \  _

S O

= 0(F JX JF bb( \ m)m->) 

o iF J X J F J X J )  ,

therefore

(A4.3.3)
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0.5 it \0.5>

so that

M D ^ F J X J ^ F ^ X J ^ )  , I m W - o J P J l j r F d X j * ) ,  

Re(2)=op(FJXJ™ Fhba m)<>l)

and

M 2 ) ‘ op( F j x mr F bia mr ) .

Proposition 4:

Under C4.1, C4.2 and C4.3, as n-»oo;

I t  i " M - w w r - o / F j w  ■ (*>nJ=i

Proof: As LHS(*) is nonnegative, we have to show its expectation has order of RHS(*), 

E(LHS)=E
« m /  n
1 1  T”~V itks

n \
ih k ? r ^  itks

Tljmi 1 A=0 f=l

/  » «o n V

E v
a - ih k / \ - \  -iskf

a he  E  e se  ‘HII<0 A=0 5=1 /

itk, -isk

f=l i= l

7 _

2 n n 2j=i

- z z z 4 * * * W Xj.
« oo n

f=l A=0 s =1 

it •» n

- E E E ^ ^ W ' ^
t=1 A=0 s=l

n «» •» n r . .
V ”'  r l  a  iAA., if A., a  -ih  A... -is A.,
■ I E E E V  “ *-« v  'f=l A*0 /̂/«o 5=1
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now,

= 7 l- t  E E e K"*l{cov(.XapXJ -E lx tA e j27T/1 7=1 f=l 5=1
+£t v / !X “]]

\/
£ f v V J =£

. V ”'  „<* T~v a  -xitA,,«̂+E  afet-f E  a*« '
CO 00

LV /=o

=E E «;̂ c*=f-y)«J«'**'=£ Ofa* «’“*'=«£***.
/=0 *=0 i=0

because faa(X),Aa*(X) and eijX have period 27r, and

i*=o

and

f ’ Aa( \ y t( X ) A ; ( x y ^ d x  , 

<VS" “ J^Aa(u)e‘ls',)udu ,

so, for any X,-:

c » v ( v J  = X  ( ’ AJu+XpRA^u+Xpe ‘̂ “̂ d u , 
2 tt »

27CJ -* ' '

J  = X  f ’ AJXpRA^u+Xpe * * * " > & ,

*14 A V O  f 'A J X p R A ^ X p e ^ ^ d u ;
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where we have used E[A1elesA,*]=A11(Xj)RA/(Xj)I(s=t). Then E[LHS] =

t m a n

(2izynzj=i j - i  r« 1

•  [ / > * *
1 m 1 n n

(.271) / 17 -1  n s=l f=l

= s j ( - * ,« ) ] ,

where

s M ) = - ^ t  j A >

and

^(«)=-IE«tel2 •n ,El
Now

pjLu+Xp-AJUpyqiJiM+Xp-AjttyYi 

£K1Aa(u+XpRAlI(in-Xjr +K2AJ.XJ)lUa{Xp‘ 

•2xKlfJiu*Xp*2nX3fJXp ,

because

for R i0 {a-b)R(a-bY£K]aRa *+K2bRb ’ .

So,

and the rest of the proof follows from proposition 4 in Robinson (1994a), who establishes
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under conditions weaker than ours that:

Sm([-*,rc])=oSF(Xm)) . (A4.4.1)

Theorem 4.1 a

Under C4.1, C4.2 and C4.3:

Proof:

■— £  (W  - A & p m p A f a p )  (1)
_ m2n

2 n
+ —

n ;=1
m

Y:(Aaa p j ( ^ u \ ) - w )  (2)n ;=1

•  (3)n y=i

First, proposition 3 implies: Re(2)=op(Faa(Xm)1/2 Fbb(Xm)1/2), while Proposition la 

implies: R e(3)=o(|Fab(Xm) |). Also let for convenience drop the argument Xj in w„ wb, A„ 

Ab, fM, fbb, v and J. Then

(1)=— £
» /-I

=— £  ^ ( K - ^ v) ( n +v ' 'O + O v ^ v x ^ - v  Mj*)} 
w z

=—£  f (tv,, -Aav)(\vb +v '/Q + O v, +Aav)(wb-v M /)} +
n

+i—£ Itn{(wa-Aav)(wb*v’A^)+{w ^ A ^ iw ^ v 'A l)}  ,
71
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|£e(l) I = | - / f e ( £  K - V ) K +v''4i')t E  (w<,+A„vXwfrv ’' 0 ) ln '

* - ( IE (w«-il.v)(wi+vMt*)I + IE K +^vX vi^-vM ;)I} =—(El +E2) ,
71 71

then,

£/ŝ /E K-VIT K ^ 'N E  K-'VI^E thb+AbJAb ) .

E2<-JY, K - V I ^ E  V ^ AJ K ) ;
now, as EJ=R/2t ,

4 e ^ : ] = e / ~  «** 4 e ^ ; ] = e / »  .
because they are positive random variables their stochastic order of magnitude are those of 

their expectations, then proposition 1 implies:

njm i
and proposition 2 implies:

- Z A aJ A ^ O (F J X „)) and ,
nh  i

and proposition 4 implies:

= 0 ( ^ ( X J )  Old £ ^ E  w  = ° t f W )  •V«;-l J

“ E  “ E  \Wb-AbV\2=0p(Fkb(XJ )  ’
71 71

then
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So,

(E1+E2)<lk -E  k.-VI1 2/i n n

+TC jE  K-Vl2 2 <£cw n n

=*Jop{F JX m)[0(Ftb(X)+Op{Fbb(Xm))] *

* Jo/FJLi-JVXFJto+ojFjLi. J ) ]  = 

- ^ ( .F J X J F ^ X J ^ q F J X J F ^ X J )  .

R e F J K ) - te F J X J  ̂ o J F J X J ^ F J X J 05)ah'- mf  /A aa\ m' bbv m'

Theorem 4.1 b

Under C4.1, C4.2 and C4.3:

^ F ^ J - l mFJ K > o p(.FJ.Xm)^ F b{Xm)^ )  

Proof: the proof is analogous to that of theorem 4.1 a.
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Chapter 5

Analysis of a pseudo maximum likelihood estimate 

In this chapter we analyze in a multivariate set-up pseudo-maximum likelihood 

estimates. By this we mean that they are based on a discrete version in the neighbourhood 

of zero frequency of an approximation to the Gaussian likelihood function in the frequency 

domain. These estimates have not an explicit form, which makes them harder to obtain. On 

the other hand their consistency and asymptotic normality can be proved under fairly general 

conditions (especially, it is not necessary to impose Gaussianity). Robinson (1993a) analyzes 

the univariate case. In section 1 we motivate the objective function. Section 2 presents the 

asymptotic properties of these estimates and some results on inference for the bivariate case. 

Section 3 provides some finite sample analysis and in section 4 we offer an empirical 

application. In chapter 6 we will analyze a Lagrange multiplier test for weak dependence, 

1(0), that is based on results obtained in this chapter.

5.1 Introduction

To motivate our objective function we start with the Whittle approximation of the 

Gaussian likelihood function in the frequency domain:

Jt
a(e)=/ (iog|/(A,e)|+frWA,er1/(A)]]<tt, •

-x
Where I(X) is the rxr periodogram matrix defined in (4.1.1) and f(A,0) is the rxr spectral 

density matrix. If instead of considering all the frequencies (-x,x] we focus on a 

neighbourhood of the zero frequency and in particular for Fourier frequencies Xj=2xj/n with

97



j =  l,...m , we get:

m

2(0) = £  (lo g /^ 0 )  +tr[/(Xjl0)-7(A.;)]}. (5.1.1)
y=i

Another main aspect concerns the form of the spectral density we are going to

assume. In the previous chapter we considered condition C4.1:

as X - 0 \
(5.1.2)

A°=diag{Xlf2~H‘}J
where G0 is a positive definite Hermitian matrix and we proved that this was a very general

specification. In this chapter we denote by H° and G0 the true values and by H and G any

admissible values. Under (5.1.2) we could rewrite (5.1.1) as our objective function:

m

2(GJQ  = £  dog |A.GA | +tr[A;lG ' lA jlI(X) ]},
j - 1 (5.1.3)

K^diagix)11 H‘}
but notice that we can concentrate G out using standard matrix differential calculus ( see, for

instance chapter 10 in Graybill (1983)):

(21og | A; | +log | G | +rr[G -‘̂ ‘/ ( ^ A ^ ) ,
i m i  

OG  y = 1

— =0 -  G(ff)=— Y  {A;'/(i.f)A:1}, (5-1-4)
dG m p t  ’  1 1

then define:

m
Rm(H) =2(G,/f) = £  {21og |A. I -log I G{H) I Hr(G =
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1-2/7r _____£

= E 2 1 o g ( n ^  )+mlog|G(//)|
7=1 a= l

+*r{ irAf“W l) E W i\ y=i y y=i

“ _L (1 -2 /fJ  
=5^ 2 5 2 --------  logX; +mlog|G(fir) | +7717*.

7=1 a=l 2

We can define our objective function to be:

(1- 2 / / J —E  log^.+log|G(//)|, (5.1.5)
771 a=l 771 y_ 1

so we can carry out the estimation procedure in two steps:

1.- Estimate H minimizing R(H):

H=arg m ii^ R(H) 

where R(H) is defined in (5.1.5) and

Q=[HeR'; Hte[L), A?], (5.1.6)

and A ^ A 2 are user-chosen and, in principle, 0 < A i1< A i2<  1.

2.- Estimate G by plugging the estimate of H obtained in the previous step in (5.1.4):

1 mA A A  I m b  A A

G=G(fl)=i E A / ( m
mj=l

2 -1 f xA-~lf2x
Ay = d m g { X j  }.

These estimates are asymptotically globally identified under the assumptions we introduce

in the next section as we are going to show next. We only need to check that H° is

identified: first write

R(H) -R(H°)=U(H)-1 \H)

where
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r
l/(f l)= 2 £  (Hi -H°) -  log {1 *2(Hi -tf,°)) (5.1.7)

i-1 i= 1

and

7(fl)= 2£  (Hr h' h - T  log/“logm+1] +log|r" lG(ff °) | -
f= l I= l

-loglZr^MGCfl)
with

T=diag[gu} , U=diag{ } , Z=d£a*{l+2(ffr ff°)} . (5.1.9)
n

Under those assumptions T(H)^pO as is proved in appendix 5.1, then: R(H)-R(H°)-+pU(H) .

Now if we prove that U(H) > 0  for all HE9-{H°} then H° is globally identified ( because 

the existence of a Hx observationally equivalent to H° would imply U(H1)=0). Now, calling

get that U(H) > 0  and therefore H° is identified.

The QMLE has not an explicit form what makes it more difficult to get than the APE 

and the LPE. On the other hand, with very simple iterative procedures, such as a golden 

search, we have found in simulations and in real data that, for moderate r, the estimates 

converge quickly so that, in our experience, estimation has not been a difficult problem.

We introduce first the conditions under which we can obtain consistency of the 

QMLE. These conditions are very general. We just restrict the behaviour of the spectral 

density matrix close to the zero frequency and assume that the process has a linear 

representation in terms of a square integrable martingale difference sequence. Robinson

r2
H j-H ^X i we have that U(H)=U{x)=^2 (2xJ~log(l+2xJ.)) and as 2x-log(l+2x)^— x 2>0 we

.--1 3i= l

5.2. Consistency and Asymptotic Normality of the QMLE
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(1993a) under similar conditions proved the consistency of the QMLE in the univariate case. 

We have to state one limitation of our procedure compared with the univariate case. 

Robinson’s admissible estimates lay in the interval (0,1), i.e., including both cases, the 

"long-memory" case (1 /2<H <1)  and the "antipersistent" case ( 0 < H < l / 2 ) .  Here, due to 

a technical problem, we will not be able to prove consistency of our estimate for Ha when 

the admissible interval is (0,1) but we will suppose that in the case of "long-memory" we 

will restrict our possible set of estimates to (1/2,1). This is not so restrictive as it may 

appear. In any practical situation it should be clear by a simple inspection of the periodogram 

if the series belong to the "long-memory" or to the "antipersistent" case.

Conditions:

C5.1: as X->0+, f(X) — A°G0A° where G0 is Hermitian positive definite with typical element 

(a,b), g,b, and A°=diag{X05~Hi} where H^E [A!i,A2J is the interval of admissible estimates. 

In principle we can choose A^ and A2 so that 0 < A \ < A 2 <  1, but we will assume that if

Hj°>0.5 then we will pick A 1 >0.5.

C5.2: In a neighbourhood (0,e) of the origin, fM(X) is differentiable with

’4r^ogfaa(X)=0(X~l), as X^0\ for  0 =1 ,...r. 
dX

C5.3: Condition C4.3 in chapter 4.

C5.4: Condition C4.2 in chapter 4.

Theorem 5.1

Under C5.1, C5.2, C5.3 and C5.4:
H -pH.

Proof: see appendix 5.1.

To prove asymptotic normality we need to restrict our assumptions. We introduce:
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C5.2’: in a neighbourhood of 0

— ^*(X)=0(— ---- -) as X-0 ' fo r  all a,k=l,...r,
d\  A.

where A,k(X) has been defined in the previous chapter.

C5.3’: similar to C5.3 with:

E{eJ,t)eb(t)ec( t ) \ F , ^ {l  , In2ll<~

, I k ^ ^ o o  atbtcyd=l,...r

C5.4’:

1 t m u2p(/ogm)2 Q 
m n2p

Theorem 5.2 :

Under C5.1’, C5.2’, C5.3’ and C5.4’:

N ,(0 £ -1), (5.2.i)

where E is rxr matrix: E=2Ir+2Re(G0 * (Gq*1)^ and * denotes the Hadamard product, so the

typical (a,b) element is:

1*1Za£“  if  a=b 
2ReScbS *“ if  a *b-

Proof: see appendix 5.2.

This result on asymptotic normality of the QMLE provides us with a tool on which

we can base our inference about H. It is interesting to notice that the elements of the 

covariance matrix E 1 depend on elements of G0 and only. As we can estimate G0
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consistently using G(/f) f we can estimate and so E consistently by:

/ /
*/ a*b.

It is very interesting to notice also that in the univariate case the asymptotic variance

does not depend on any unknown parameter, EM= 2+ 2gMg“ =4, so that the asymptotic 

distribution, first analyzed in Robinson (1993a), is just:

m h ,4

so, statistical inference is particularly immediate in this case.

If we analyze the asymptotic distribution for the bivariate case we obtain that:

22 + -

E=
1 -c2 

-2c2

-2c
1 -c2

2

2 \

I
2+

l - c 2J

i.e.,

E l = -
8

2 -c :

2 -c 2

where

2= - ^ f  and G.=c =
Si82

/  \  
8i 8

8 82 .

A A

i.e., c2 is the squared coherency as X-K)+. The asymptotic variance of ^ 1  or ^ 2  will be

1 c 2
— . As 0 < c 2< 1 ( due to G0 being positive definite) then, the greater the coherency the 
4 8

more efficiently we will estimate the coefficient H. Note also that c2 can be estimated

consistently using that G0 can be estimated by:
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1 m 

6 „ = - Emjml

' i f ' " *  o N( W  W
i)r M

0

[ I n ( x p  In (X)) o x r \

m i=

J e w ?my-i my=i

then,

£ E W ^ “ l!

\m j-i A m/-i

and this estimate is consistent for c2 ( by Slutsky): because

I#!-, Is I . i i ' p  S i  a n d  § 2~*p s 2 ■

*12

8ll&22
and

We can use (5.2.1) for statistical inference. Consider as null hypothesis a linear set 

of q (< r)  independent restrictions on H°:

H0: RH°=v

where R is qxr and v is qxl; then, asymptotically, under

m(RH-v)/(RE'1R f)-1(RH-v) ~xq.

Two interesting cases are:

a) Equality of H° across the series. In this case v is a vector of r-1 zeros and R is

J H W O M O : /^ )

with dimension (r-l)xr, where 0 is a rxl vector of zeros and IM is the identity matrix of 

order r-1.In section 4 we will apply this test to some data.
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b) The vector process is 1(0), that is, H °=l/2 for every series. In this case R is the identity 

matrix of order r and v is a vector with all its components equal to 1/2.

5.3. Optimal m

In this section we analyze the finite sample performance of the QMLE and, in 

particular, we focus on the selection of m, the bandwidth parameter. As we have seen in 

chapter 2 the APE and the LPE both depend on two user-chosen numbers: in the APE, q and 

m, in the LPE, 1 and m. The QMLE depends only on one user-chosen number, m, and this 

is a clear advantage of this estimate.

Optimality of m for the case H E  (1/2,1) has been analyzed in Robinson (1994b) and 

in chapter 3 we have already commented his results. For H E (0,1) Hurvich and Beltrao 

(1994) have heuristically analyzed two cross-validated criteria for selecting m. In this section 

we just consider some Monte Carlo results for the univariate case. We consider two sample 

sizes: n=128 and n=256, and eight possible values for m: 4, 8, 12, 16, 24, 32, 40 and 48 

for the first sample size and 8, 16, 24, 32, 48, 64, 80 and 96 for the second. These sets of 

values for m should be enough for our purposes. We generate fractional Gaussian noise using 

the procedure of Davies and Harte (1987). The QMLE is obtained by a golden search 

procedure. We analyze nine possible values for H: 0.1(0.1)0.9. We perform 10000 

replications in each case. Table 5.1 provides the results for n = 128 and table 5.2 for n = 256.

First, for sample size of 128, we appreciate that for H small the bias tends to be 

small for relatively small values of m (8-12) while for large H then the bias is small for 

bigger values for m (32). For instance, with H=0.1 the bias is less with m =12 and for
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H = 0.2  and H =0.3 the bias is less for m =8, but for values of H bigger than 0.5, the long- 

memory case, then m=32 is the selection that proportionates less bias. When n=256 we get 

similar results: for H small we get that small m (like 16) will render less bias, while for big 

H we will need bigger m ( like 48).

The asymptotic variance is 1/4 and as m increases we get that the finite sample 

variance approximates more to this benchmark as expected.

If we base our optimality criterion for m in the minimum mean squared error we will 

get that only for H=0.1 or H =0.2 we can get a reasonable m, in the other cases this 

criterion would imply a fairly big value for m. In particular, for n = 128, the optimal m will 

be around 24 and 32 for H =0.1 and H =0.2 and for n=256 it would be 32-48 and 48-64 for 

H =0.1 and H =0.2, respectively.

An interesting aspect is the lack of skewness and kurtosis in these distributions except 

for the case H =0.1 ( especially for big values of m). This confirms the normal 

approximation.

We can compare these Monte Carlo results with those reported in chapter 3 for the 

APE. Columns for m=32 and m =64 in table 5.2 are the counterpart of table 3.3 in chapter 

3. Also notice that only values for H >  0.5 can be compared. The first striking feature is the 

difference in the bias, especially for m=32. The APE shows a fairly big negative bias while 

the QMLE has approximately zero bias. Also the degree of skewness and kurtosis of the 

APE is very severe compared with the QMLE in which they are almost nonexistent ( we 

have to remind here that only for H <0.75 we got a normal distribution for the APE).

The only positive feature of the APE with respect to the QMLE is the slight less
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variance of that estimate, especially for H =0.8 in which case for q= 0 .5  the variance of the 

APE is substantially inferior to that of the QMLE.

5.4. Empirical application

In this section we apply the QMLE to some exchange rate data. We use daily and 

weekly exchange rate data from January 1989 to July 1994. There are four series: BP/$, 

BP/DM, BP/JYn and BP/SwFr. The sample sizes are 292 and 1459 for the weekly and daily 

data respectively. The series we analyze are the squares of the first differences of the 

logarithm of the spot exchange rates. These series can be interpreted as a measure of the 

volatility. We estimate the different H ’s using QMLE, employing the downhill simplex 

method that is a very robust way of finding the minimum of a multivariate function. The 

subroutine we use is due to Press et al. (1990). Convergence is achieved very quickly. In 

tables 5.3 and 5.4 we present the results for weekly and daily data respectively. We have 

chosen as representatives two values for m. For weekly series, n=292, the chosen m are 20 

and 40. We present the estimates of H and also the 95 % asymptotic confidence interval. The 

estimates are greater than 0.5 and show evidence of long-memory, especially the DM/BP 

series ( but notice that for m =40 the asymptotic confidence intervals include H = 1/2 in three 

cases). We also present the estimate of the matrix of square coherencies at zero frequency. 

The most clear feature is the high coherency between the DM/BP and the SwFr/BP.

Furthermore, we perform a test of equality of H  for the four series. This test is 

immediate based on (5.2.1). Under the null hypothesis of equality of all H ’s:
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1 - 1 0  O'!
0 1 - 1 0  
fi 0 1 -1J

When we don’t reject the null hypothesis based on the asymptotic value we also provide the 

common estimate of H.

For daily data, n =  1459, we have chosen m =40 and 80. The evidence of long- 

memory here is more clear.

In chapter 6 we will apply a Lagrange multiplier test for 1(0) to this data set.
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TABLE 5 .1

H\m
mean

4 8 12
0 . 1 0.238 0.142 0 . 1 0 1 0
0 . 2 0.283 0.213 0.185 0
0.3 0.335 0.289 0.276 0
0.4 0.394 0.373 0.371 0
0.5 0.457 0.462 0.470 0
0 . 6 0. 523 0.554 0.570 0
0.7 0.589 0.645 0.670 0
0 . 8 0.654 0.731 0.763 0
0.9 0.714 0.807 0.845 0

H\m
variance

4 8 12
0 . 1 0.092 0.034 0.018 0
0 . 2 0.105 0.047 0.029 0
0.3 0.116 0.058 0.037 0
0.4 0.126 0.066 0.042 0
0.5 0.132 0.072 0.044 0
0 . 6 0.134 0.073 0.045 0
0.7 0.131 0.070 0.043 0
0 . 8 0.124 0.062 0.037 0
0.9 0.114 0.050 0.029 0

mse
H\m 4 8 12
0 . 1 0 .1 1 1 0.036 0.018 0
0 . 2 0 .1 1 1 0.047 0.029 0
0.3 0.117 0.058 0.037 0
0.4 0.126 0.067 0.042 0
0.5 0.134 0.073 0.045 0
0 . 6 0.140 0.075 0.045 0
0.7 0.144 0.073 0.044 0
0 . 8 0.146 0.067 0.039 0
0.9 0.149 0.059 0.032 0

24 32 40 48
0.044 0.028 0.019 0.014
0.144 0.128 0.118 0 . 1 1 2
0.258 0.252 0.247 0.244
0.371 0.370 0.370 0.369
0.480 0.483 0.486 0.487
0.587 0.593 0.598 0.601
0.692 0.701 0.707 0.712
0.795 0.806 0.815 0.822
0.887 0.901 0.913 0.922

24 32 40 48
0.005 0. 003 0 . 0 0 2 0 . 0 0 1
0.013 0.009 0.007 0.006
0.016 0 . 0 1 2 0.009 0.007
0.017 0 . 0 1 2 0.009 0.007
0.018 0 . 0 1 2 0.009 0.007
0.018 0 . 0 1 2 0.009 0.007
0.017 0 . 0 1 2 0.009 0.007
0.016 0 . 0 1 2 0.009 0.007
0 . 0 1 2 0.009 0.006 0.005

24 32 40 48
0.008 0.008 0.008 0.008
0.016 0.014 0.014 0.014
0.018 0.014 0 . 0 1 2 0 . 0 1 0
0.018 0.013 0 . 0 1 0 0.008
0.018 0 . 0 1 2 0.009 0.007
0.018 0 . 0 1 2 0.009 0.007
0.017 0 . 0 1 2 0.009 0.007
0.016 0 . 0 1 2 0.009 0.007
0 . 0 1 2 0.009 0.007 0.006

16
074
167
268
370
473
577
679
777
864

16
Oil
0 2 0
026
029
031
031
030
026
020

16
012
021
027
030
031
031
030
027
0 2 1
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sk e w n ess

H\m 4 8 12
0 . 1 1.130 1.398 1.474 1
0 . 2 0.889 0.929 0.759 0
0.3 0.642 0.582 0.360 0
0.4 0.395 0.291 0.089 - 0
0.5 0.147 0.027 -0.094 - 0
0 . 6 -0.105 -0.238 -0.251 - 0
0.7 -0.363 -0.519 -0.453 - 0
0 . 8 -0.635 -0.847 -0.753 - 0
0.9 -0.924 -1.247 -1.206 - 1

kurtosis
H\m 4 8 12
0 . 1 0.108 1.554 2.074 2
0 . 2 -0.475 0.271 0.096 - 0
0.3 -0.917 -0.351 -0.366 - 0
0.4 -1.217 -0.650 -0.396 - 0
0.5 -1.381 -0.749 -0.290 0
0 . 6 -1.406 -0.693 -0.195 0
0.7 -1.284 -0.455 -0.076 0
0 . 8 -0.989 0.062 0.248 0
0.9 -0.495 1.066 1.244 0

24 32 40 48
1. 865 2.196 2 .579 2.927
0.496 0.436 0.395 0.319
0.005 -0.078 -0.126 -0.164

-0.170 -0 . 2 0 0 -0.198 -0.197
-0.217 -0.213 -0.191 -0.187
-0.228 -0.213 -0.182 -0.180
-0.270 -0.226 -0.179 -0.179
-0.466 -0.368 -0.304 -0.269
-0.988 -0.923 -0 . 8 8 6 -0.864

24 32 40 48
3.460 5.046 7.004 9.780

-0.376 -0.444 -0.427 -0.471
-0.314 -0.194 -0 . 0 1 2 0.028
0.039 0.151 0.263 0.198
0.228 0.244 0.290 0.203
0.282 0.272 0.287 0.204
0.219 0.214 0.256 0.184
0.104 0.040 0.035 -0 . 0 0 2
0.757 0.524 0.411 0.282

16
597
669
216
037
174
269
386
640
107

16
442
023
331
153
051
128
079
153
948

1 1 0



TABLE 5 .2

mean
H\m 8 16 24
0 . 1 0.164 0 . 1 0 2 0.073 0
0 . 2 0.224 0.186 0.171 0
0.3 0.296 0.277 0.275 0
0.4 0.376 0.374 0.378 0
0.5 0.464 0.473 0.481- 0
0 . 6 0. 555 0.574 0. 583 0
0.7 0.645 0.674 0.685 0
0 . 8 0.730 0.772 0.787 0
0.9 0.806 0.859 0.879 0

variance
H\m 8 16 24
0 . 1 0.038 0.014 0.008 0
0 . 2 0.049 0 . 0 2 2 0.014 0
0.3 0.059 0.027 0.017 0
0.4 0.067 0.029 0.018 0
0.5 0.073 0.030 0.018 0
0 . 6 0.074 0.031 0.018 0
0.7 0.070 0.030 0.018 0
0 . 8 0.063 0.027 0.017 0
0.9 0.051 0 . 0 2 1 0.013 0

mse
H\m 8 16 24
0 . 1 0.042 0.014 0.009 0
0 . 2 0.050 0 . 0 2 2 0.015 0
0.3 0.059 0.027 0.018 0
0.4 0.068 0.030 0.018 0
0.5 0.074 0.031 0.018 0
0 . 6 0.076 0.031 0.018 0
0.7 0.073 0.030 0.018 0
0 . 8 0.067 0.027 0.017 0
0.9 0.060 0 . 0 2 2 0.013 0

48 64 80 96
0.030 0.017 0 . 0 1 0 0.007
0.143 0.129 0 . 1 2 1 0.115
0.266 0.259 0.255 0.251
0.380 0.378 0.377 0.375
0.489 0.490 0.492 0.492
0. 595 0. 599 0. 603 0. 605
0.699 0.705 0.712 0.716
0.804 0.811 0.819 0.825
0.903 0.913 0.922 0.929

48 64 80 96
0 . 0 0 2 0 . 0 0 1 0 . 0 0 1 0 . 0 0 0
0.007 0.005 0.004 0.003
0.007 0.005 0.004 0.003
0.007 0.005 0.004 0.003
0.007 0.005 0.004 0.003
0.007 0.005 0.004 0. 003
0.007 0.005 0.004 0.003
0.007 0.005 0.004 0. 003
0.006 0.004 0.003 0.003

48 64 80 96
0.007 0.008 0.009 0.009
0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0
0.009 0.007 0.006 0.006
0.008 0.006 0.005 0. 004
0.008 0.005 0.004 0.003
0.007 0.005 0.004 0. 003
0.007 0.005 0.004 0.004
0.007 0.005 0.004 0.004
0.006 0.005 0.004 0.004

32
054
161
273
380
485
588
691
794
889

32
005
010
012
012
012
012
012
012
009

32
007
012
013
013
012
012
012
012
009

1 1 1



sk e w n e ss

H\m 8 16 24
0 . 1 1.226 1.171 1.261 1
0 . 2 0 . 8 6 6 0.547 0.365 0
0.3 0.561 0.196 0.004 - 0
0.4 0 . 288 -0.006 -0.132 - 0
0.5 0. 034 -0.115 -0.182 - 0
0 . 6 -0 . 2 2 2 -0 . 2 0 2 -0.206 - 0
0.7 -0.507 -0.343 -0.258 - 0
0 . 8 -0.849 -0.615 -0.442 - 0
0.9 -1.264 -1.103 -0.938 - 0

kurtosis
H\m 8 16 24
0 . 1 1.015 0.895 1.090 1
0 . 2 0.088 -0.272 -0.438 - 0
0.3 -0.415 -0.376 -0.265 - 0
0.4 -0.678 -0.199 0.017 0
0.5 -0.769 -0.018 0.178 0
0 . 6 -0.715 0.082 0.224 0
0.7 -0.478 0.090 0.183 0
0 . 8 0.076 0.251 0.105 0
0.9 1.139 1.236 0.707 0

48 64 80 96
1.803 2.405 2.908 3.368
0.134 0.096 0.045 0.035

-0.165 -0.186 -0.187 -0.155
-0.184 -0.192' -0.181 -0.146
-0.182 -0.191 -0.174 -0.137
-0.182 -0.191 -0.169 -0.131
-0.182 -0.191 -0.165 -0.126
-0 . 2 2 1 -0.208 -0.164 -0.128
-0.677 -0.635 -0.581 -0.551

48 64 80 96
2.962 6.117 9.237 12.799

-0.493 -0.434 -0.422 -0.374
-0 . 0 1 1 0.113 0. 077 0.070
0.075 0.156 0.078 0.074
0.078 0.171 0.073 0.071
0.085 0.185 0.069 0.067
0.094 0.195 0.065 0.060
0 . 0 2 0 0.153 0.044 0 . 026
0.084 0.138 -0.066 -0.150

32
390
235
099
185
2 0 1
203
218
327
809

32
500
504
163
094
179
195
160
035
378

1 1 2



T A B L E  5 .3  
(w e e k ly  data)

U S D /B P , DM/BP,A 'n 'B P , SFr/B P

m = 2 0 m = 4 0

H I 0 .7 8 ( 0 .6 6 - 0 .9 1 ) 0 .6 0 (0 .5 0 -0 .7 0 )
H 2 0 .7 2 (0 .6 0 - 0 .8 4 ) 0 .6 6 (0 .5 7 -0 .7 5 )
H 3 0 .7 6 (0 .6 1 - 0 .9 1 ) 0 .6 2 (0 .4 9 -0 .7 5 )
H 4 0 .6 8 (0 .5 6 - 0 .8 1 ) 0 .5 7 (0 .4 8 -0 .6 8 )

N o r m a liz ed 1 Gl

1 0 .7 9  0 .7 4  0 .7 8 1 0 .7 3 0 .7 0  0 .7 2
1 0 .7 3  0 .9 3 1 0 .6 2  0 .8 8

1 0 .6 7 1 0 .5 2
1 1

C h i-te st 2 .2 8 5 .0 9
C o m m o n  H 0 .6 6 0 .6 7

T A B L E  5 .4
(d a ily  data)

m = 4 0 m = 8 0

H I 0 .8 5  ( 0 .7 2 -0 .9 7 ) 0 .7 5 (0 .6 6 -0 .8 5 )
H 2 0 .7 8  (0 .6 7 - 0 .9 0 ) 0 .7 2 (0 .6 3 -0 .8 1 )
H 3 0 .7 4  ( 0 .5 9 - 0 .8 9 ) 0 .71 (0 .6 0 -0 .8 3 )
H 4 0 .8 6  ( 0 .7 4 - 0 .9 9 ) 0 .7 5 (0 .6 5 -0 .8 5 )

N o r m a liz e d  1 Gl

1 0 .4 5  0 .4 7  0 .4 0  1 0 .4 0  0 .3 8  0 .3 3
1 0 .4 7  0 .9 3  1 0 .4 2  0 .8 5

1 0 .4 0  1 0 .3 3
1 1

C h i-te st  

C o m m o n  H
8 .3 0 1.47

0 .7 4



Appendix 5.1

This theorem is an application of theorem 29 of P. Robinson’s "Quantitative 

Techniques" lecture notes that states that:

" Let Qn(0) be a scalar function of a rxl vector 8 and of random variables, with sample size 

n; let 0 C  Rr, let:

e=dn=arg m in^e <?„(6),

if:

(i): 0oe0  and

(ii): Qn(Q)-Qn(Q ^ S (e)-T n(Ql

such that S(0) is nonstochastic and constant over n and for all e> 0  there exists rj> 0 such 

that: S(6)atl

and T„(0) satisfies: supu e  ] T^fe) | 0

then: fl-, eo."

In our case: (i) is by assumption and in order to prove (ii) we need to show:

1). R(H)-R(H°)=U(H)-T(H),

2a). inf at ne ,

2b). supe \l\H )\-pQ,

where 0  is given in (5.1.6) and for 0 < 5 < 0 .5 :
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Nr {H:[H-H°l<d) and N ^ R r-N , . 

where || || denotes the supremum norm in Rr : || A || =maxi( |A i|).

Proof of 1). Define S(H)=R(H)-R(Ho), then

lo§V2£ 16(H) I
m j. i i-i |G(ff°)|

also recalling the definitions of r ,  M and Z o f chapter 5, equation (5.1.9), then:

S(H)= 2 £  W + i t  ( ^ ° -^ ) lo g f— ) + lo g |Z r  *MG(fl)|
<-i mj -1 i-i V n )

-log IZI -log |M I -log Ir-'GCZf0) [ .

And:

S{H)=-T(H)+U{H) , 

where U(H) has been defined in (5.1.7) and T(H) in (5.1.8).

Proof of 2a). As

i-1
and so

w s & w n = £  w  (*)
i - l

where:

e=xe®  and e®»[A,I,A?]
i - l

so, as Jt-log(l+;t)*—x2 and -x -lo g (l-x )z—x 2,

infp ^(o UfH )  ̂ min (26 -log(l+26),-26 -log(l -26))^-^- 
6 2
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so,

= T |> 0 .

Proof of 2b): as H° 6  0 ,

1 m '
supQ | T(H) | <2r | —^  log/- log/Ti+11 +2supe |log | Z r_1MG(//) 11 ,

mJm i
then, using log | A | < tr(A-I)

log | ZT-'MGiH) | < ^(Z r_1MG(//) -Ir) =

= r r ( z r ‘M - £  a ; 1/ ( a m 2 m ^ 2's j l ' s r ii(x.p-i^=
m j-\ rrij.i

= t r ( - E  z $ ;.Y/r - '/a p - /p =
m  y - i  771/ - i

= t r ( z i £  ®j[T (r 1K A p-^])+» < - E  (Z®y-^)) =
771 y , i  771 y . |

where

\2(/rr /tf)2/1—1 / « ' 
Yy.=cfa2g{Ay. ' } , $j=diag[ |^ - } ,

and we have used that

Then

M A ^Y /1 .

i=l 77*7=1 \m )

1) ,

then

1 M
supe 17{/f) | ^2r | — J2  log/-logm+11 + (*)

77*y=l
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(*)=0(logm/m) using lemma 2 of Robinson (1993a);

(**)= C^m"1"2̂ A,'^ ) = 0 ( » i ’€) for e>0 because (A j- J ^ e C -0.5,0) using lemma 1 in 

Robinson (1993a) and C5.1; and:

( * * * ) = 2 ^ e | X ; ^ ) |  , where
i - l

mj-i

(.** * )= £ £  sup0,\AfH ) | ~p0
i - l

os supe(o\A.(Ht)\^ pO for all i, 

as is proven in Robinson (1993a), to finish the proof of 2b).

Appendix 5.2

This theorem is an application of theorem 32 of P.Robinson’s "Quantitative 

Techniques" lecture notes on asymptotic normality of extremum estimates. This theorem, 

with the same framework than the consistency theorem we have seen in Appendix 5.1 states 

that: " if:

(i) 60 is an interior point of the compact set 0 ,

(ii) QniO) is twice differentiable and

_-8Qn(0o)
Sn— —— u

U \J



(iii) e0,

then Jn(Q-Q^)~d Wr(0 ,£ 'lC £ -1)"-

In our case we need to examine 5 points:

(1) Hq is an interior point of 0 ;

(2) R(H) is twice continuously differentiable and for every X:

( where we have used x~jVr(p,E)~X /x~N1(A/pA/2X) for any X)\

(3) for any £„,;
p dHAHh p

(4) E > 0 ;
(5) H -pH°.

Now we analyze them:

(1) by assumption;

(5) by the theorem of consistency, proved in appendix 5.1.

(3) by lemma 1, proved in appendix 5.4.

(4) This is immediate considering that:

£=2/r+2£cQ where Q=G0*(G0'V

and as the Hadamard product of two positive definite matrices is also positive definite ( see

Styan (1973) p.221), then fi is positive definite too.

Let analyze (2). We have to prove:

(A5.2.1)
an

where the variance can be written as:

118



«=1 6-1

LH S(A52A)=Jit£ K ^ t Iha-1 (A5.2.2)

As

« = - 2 * I+*  
d f f .  1

£(fl)
dH.

=-2Kx*tr < m -l
\1

I ^ d o g
wy=l

where we define the matrix ia as the rxr matrix with every element equal to zero except the 

a-th diagonal that is one and

z A t b s i  •mJm i mM
(A5.2.2a)

where

Then we can write (A5.2.2) as:

- J i n K X a+ J m ^  Xj r
a =1 c = l

Now, as

( this is due to:

k  (&>

JĈ H0) -G0| “O Îinax |—52 11=
ajb Tfl

= 0 ( (- ) P +m-W(logm)W+! £ m  +OT-W„-i/4+J L )  =0 (!) 
\ n ) m Jin
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using (A5.3.1), (A5.3.2) and (A5.3.3) proved in appendix 5.3), so (&) will be 

asymptotically equivalent to

-2 * lV/m £  V v /™ £
0-1 a-1

where G w =G(ff% +i G(ff°)

Then we have:

and so

where

and

tr[G ^G {a)]=2Re

Ih0=4 : E  * . E  vy[t|ra(X ^-l](l+op(l))
0 ^ - 1  /-l

2,* W = t e ( s ax ; w p h  )
jt-i

(A5.2.4)

vM ogj— Jog/ (A5.2.5)
m/=i

where g1 is the a-th row of the inverse of G0 and I,(Xj) is the a-th column of I(Xj); then 

(A5.2.4) is asymptotically equivalent to:

E  V ^ E  v/Jfcb " 2] -**[g â ° ’ 2]j
«-l 0W./-1

2- 2 -

2 "+E  V ^ E  ^  MipjAiixpx, 2] -i]
«-i yfmhi

(1)

( 2 )

now (1) is negligible because:

1 2 0



2 " z/0- 1
2,(D = £  V t = E  v /te fe â ~ \ l nap-A(\pJA'a{ \p ) \ j  2]] =

c-i ^my-i

2 " ff°-2 jy°-l
^ E V ^ E ^ E * ^ /  2 l]= 0(1)

a vm/«i w

using (A5.3.2) proved in appendix 5.3 and summation by parts; and we have (2) =

r -  m
E V p E v J
a-i ymy-i y t ± * & ~ h2nn,.i tZ K Q -P h

h®-2 * 2 -1

T 0  m

= E V p E vJ
o=i ymy=i

0 1 
2 -1

♦ E V p E V H
0=1 ^ m '=1 \ 2xn „ s

* 2

(wi) + (w2)

(wl) is negligible by lemma 2 in appendix 5.5, and (w2) is

E V p E V f c  
o-i yjnth i

g‘<U(V| ̂ E  E

where

i > / E C e , .
r-1 5-1

SO,

h?-4

a-1

1 2 1



t- 1 f-1

v W i e , ' e

r=i 5=1  r=i 5=1

(for simplicity let’s omit the superindex m of T from now on).

Then is a martingale difference and we are going to apply a central limit theorem for a

martingale difference (chapter 11, Solo (1986) based on Brown (1971)), that states that:

" If Z( is a zero-mean martingale difference array and:

(i) 0,
f=l

ft

(ii) ]n£(z ,2/(|z ,|> 5 ))- 0 for all 5> 0 ,
f = l

then:
f=i

n r r
First we prove (i): i.e., £  £(z2|F,.,)-E E  0

r=l «=1 6=1

E  F(z,J|FM)-E  £(E r,.^J,|£,.1)=
t-1 t-1 s-1 ,'.1

E E M U ' =
f=1 5=1 5 / , i

E  E  ̂ ^ . a +e  E  E  ♦<«
r=l 5=1  r=l 5 * y

(12) is negligible by lemma 5 in appendix 5.5 and we have:

E  E  E  -//,')=
f=l 5=1 f=l 5=1

and by lemma 4 in appendix 5.5 this is equivalent to:

E  E  "-(r,V?r,-s£)=
f=l 5=1

ft t -1

E E H
r=l 5=1 ^7Zy/mttj

y ]  VjQ*cos(t -s) V ? E  v .,0,. /cos (t-s)\j/R  
;=1 y'-l

1 2 2



n t - 1  /  2  N2 m

EE
r-1 5-1 

n r-1

EEH
r - l  5 -1

v/mn,
( j \1 m m

\  7i y/mn ) j* j f
EE VjQ}cos(t-s)XjRVjfQj/COs(t-s)Xj/R

and by lemma 3 in appendix 5.5, (v2) is negligible.
As

tr Re

[ 2it J2n.

T //®-—-

a-1

|"  1 ——
*zj&p*A!t.xpxi ‘ 27 a4 ' ^ P .

a -1

r  t f ° - I ___  ,______

£  * A ' ( W  28 “Ay ^ ( fp

_R̂
2ti

*  n>J— /te 
2tt

0‘1 -  2-

E M 'W  s aA/ W 2«

tr Re E  V frp * / 2s â 'A {x p
a-1

*r Re E x / ' c x X W  X ( x p
a -1

R p ,— Re
2*

----Re
2*

H0- 1
2 ------  n -L

£  xX (X ;X y 2g ° $  A (k)
a -1 2rc

i *1--0"* * 2-E V ' ( W  g “ xy M „(x;
a -1

R

(vl)

(v2)

&■Re
1 Hl~-0-1 nU * 2-

£ X / ( W « ^ ;  W
a -1

^  DyJ— Re 
2n

h°-4.
2g * $ A { X )

a -1

2*

2ir

=(5i)+(52)+(53)+(54)

now, using C5.1* and the definition of f( X), we get that (si) and (s4) are asymptotically
r r r

equivalent to R e (£  £  X ^ g ^  **) and (s2) and (s3) to £  X2, then using, see Robinson 

(1993a):
a -1  t - 1 a -1
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£ £ > s 2( ^ P ~ ^  and l f v y2= l+0 ( ( ^ )  , 
r - i  s ~ \  4  m j.i m

r  r

we get that (vl) is asymptotically equivalent to:
«-1 6-1

So we have proven (i), now we prove (ii):
n

£ £ ( z f2/(|z ,|> 6 )-0  for any 6>0, 
r - l

as

£ £ ( z ,2/ ( |z , |> a ) s £ '
r - l  r - l

Ezf K £zt4
—f / ( |z t|>5) 
6 SE '

r - l

*
i *

= ^ E ^ 4
0  r - l

as 5 is fixed then we just need to check the sufficient condition:

5 > ( z ,V o .

As

now using

Now

r - l

r - l  r - l  j -1

E e ( £  r , _ / £  r , .A )=
r - l  r - l  r - l  /> -l q - 1

E «E «X>E r.-r«,E «#> £
r - l  5-1 r - l  p -1  ^ -1

tr(ABCD) =vec '(C)(D®B >ec(/4

(*)=E * E  fr(E rJ-^E r,.rijr;.rRrI.J)=
r= l 5-1  r - l  5-1 r - l

(l)+(2).

(i )=o(E(E irMi4))=o(n(E ir,D2)2)= o (^ ^ )
r - l  5-1 r - l  71

(2)=E °<E E  °tE  r U r ^ E
r - l  5=1 r= l r - l  5=1 r= l
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= o ( E ( E  i r , - / ) 2) = o ( f e £ )
r-l t - l  n

using the bounds derived in lemma 4 in appendix 5.5.

Appendix 5.3
In this appendix we analyze the stochastic order of magnitude of:

h i

h  i

h 1

First, by assumption C5.1, immediately:

< ® -E

while,

Then:

j-i \  n  /

w=E (VWh  i

hi

(xO) =Op(s ̂ (logs)2̂  +logs +s lflti"1/4) , 

(xl)=Op(sl/2).

Proof. First, we analyze (xO):

(xO)= E  ( W  - W p J A f a t i h
hi

rO . ftOh;+h;-i

(A)

(B)

(A5.3.1)

(xO)

(xl)

(A5.3.2)

(A5.3.3)
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£  IfJL xp -A J U p jA fa p 'tif* * '1 * {xOO)
h  i

+ £  ( W -Ac(X \IA ^X p)xf''H‘~l (xOl)
J - l * l

In order to see the order of magnitude of (xO) we are going to employ repeatedly

theorem 2 of Robinson (1992) that state that: ’’under conditions: 

a> f„ W = K ak l<a'*CK\l-2a' t‘), as X - 0 \  Kae(0,~), Hae{0,1) <te(0,2] f o r a = l (...r,

b) \ J L \o t f J } .) I as X -0*. aj>=l,...r, and
dX

c) for some pe[0,2] |^ ( ^ ) - ^ ( 0 ) |= O ( X p) as X -0 \  a<b=2,...r, where R,b is the
coherency between x, and xb; then: for any sequence of positive integers j =j(n) such that j/n

5 ^ 0  as n-» o o ,  for a ,b = l , . . .r ,

=-R ,̂(0) +0[^SL +(i)"^(«.P)] as (A5.T5)

£{va(A.pvi(X p } = 0 [-^ ]  as n -~ , (A5.T6)

and for any sequences j =j(n), k=k(n) such that j >  k and j/n  -*0 as n-* o o ,

E { v J .X p ^ X p }= 0 [^ ]  as n -~ , (A5.T7)

E(va( ^ v i(Xi) } = 0 [ M ]  as (A5.T8)

for a ,b = l , . . . r . ’’

To analyze the order of magnitude of (xOO) we employ repeatedly (A5.T5), so: 

(xOO) =Op( £  E \lJ .X p x f< 'X | + £  E lA jiX p iA ^ X p x f^ 1' 11),
7-1 > 1

first,

also, as
4 W ^ ' 11 -O C B I^ V ^ W ^ D -O d )
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/< „ ( * ) = £  K W v E i x ^ M i W r t r C I ^ W I 2 + o(M aW I 2).
*«1 k* I

where Ma(X) tt2=maxi- \A (̂X) \2 and C>0,

^  l= 0 (fJ \) '* )= 0 (X V2- \  (A5.3.4),
then

£ |A a(x ;w  •A fa p x f '* * '11 =0(1).
so (xOO)=0(l).

Now we analyze (xOl):

cxod=j r  (i j x )  -Aa(\p jA ;(.\p )\f-'a:~l =
/-/♦l

=E  ( - \ ( ^ p ^ p A ^ x p )
j- l+ l

where wa(\p= w J.\p \j"  m A<tQ.p=Aa( \ p \ a‘ m

ntt,)=H>4( A X ‘°"w  ««* i ia ;= A i a p ^ ' U2

then, using that x ~Op(^Ex2)

(x01)=O,
//

V\
E  (#j( v»**( v

E  fc* -\(\M>.pKm;a))
H*1

for simplicity lets drop the argument Xj

1/2

(*0i)=O,

1/2

=Oj,((XX)W),

where

XX= £  £ ( ( tv X - idw 'Ap){waw i-A aw
/W+l

(XXA)
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+ £ £ ^ ( w & - A av v ’AZ){wawZ-Aavv'AZy) ; P 0 ® )
j* t

first we analyze (XXA):

x x a = Y ,  4 * X # X ) _ E
.  h * i /-*+i

yW+l y«M

now we use that for zero mean variates:
E(wxyz) =E(wx)E(yz) +E(wy)E(xz) +E(wz)E(xy) +cum(wfxfy1z)t

then we can decompose:
XXA =( *PAR1) +( * CUM1)

where

w  l

-£(w„v 'A^ECw^v 'A 'j -(Evv,*; -A J U ^ E A bw  'Aa' -AbRA^)

-(Ew.vM';- A ' A A ^ E A ^ - A bRA^)~(EAaw ' A ’b - A j U ^ E w ^ ~ A bRA^)

+(EAaw  *a ;  - A j a ^ m bw  m; -a j ia ^*(EAaw m; -^ ro ce^ w  *i; - i^ ; )

-[EC^vtf^E^v -ij)] -[Eh>4v ’i ;  -A jtA & p A .v» l -A jlA ‘)] 

+[E(AavAbv ) E ( y ' A y r j  ) ;

*

(*CVM1)= £  [cHmOv^Wj<wt,w ’)-cum(yva,w ’b^ tv ,v ‘A ’)
/-/* 1

- c w m ^ v .v  • iifc*,w4,w<1')  + cu m (iav,v 'Ab A bv,v *Aa*)]

(*CUM1) will be analyzed later, using (A5.T5) and (A5.T6) for I,J=a,b :

E w * = A , E i w f i j Y A ^ A ^ O i ^ ) ,  E (w ,W j)= 0(.^ )  
2n 2 it j  j

and

and
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E(W,V ’A j) -A J-A 'j =o(M ),
2n j

E(AjVWj) =0(M ), £(iw  M,) =0(M ),
J 2 it y

£ ( i ;v i /v )= 0 (^ S );
J

so:

Analogously:
y-i*i j  I

XXB =( *£AR2) +( *CUM2)

where

>  *

-E(wyAZ'Ew?v'Ay(Ewlwt-AlA>XEAZvlv'lA?-AZRAf) 

- { E w y A f x E A ^ ^ ) - ( E A y V^ -A 'R A ^ (E w ^ w f-A * R A f)  

K E A lvh JA Jb *v'‘i Z - i +(E4iv>v’X 'X E i ‘v* v •'a /) 

-[£(^v̂ )£ (h-;‘v V )] -[£tf/v *'li'/)(£4fv>w;‘)] 

+[£(I'v'4‘v*)£(v•U'/v*‘i ; ‘] +[£(i'v'/i*v*)£(v''i/v‘‘i/] )  ;
and

j
(*CUM2) = £  £ (cum{wi,Wt .Wt.w"')-cum(w',Wt A £ v *,v"‘A ? ) -  

J• *

-cum(Ay,v JAi,\v*,Wc) +cum(Ay,v JA?4*v l,v **i4a‘*)).

We analyze first (*PAR2) using (A5.T5), (A5.T6), (A5.T7) and (A5.T8):

E(w,'wf) -aI^-A}=CK^) and 
271 I

E(Ajw 'df-Aj— Af) =0(—̂ -) for IJ=a,b and l=jjc ;
2 71 /
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also E (.iv}w f)=0(.M ) , E lw lw ^ C H p S i), 
m m

E(Alvw?)=0(.— ) . £ (w ,W ;V o (M ) , E(Al,m 'Af)=0( ^ ) ,
m m m

E(a !vATv) =0(—̂ -) for IJ=a,b, and ljn=j&  l>m. 
m

so (*PAR2) is:

now choosing 1 ~  s^flogs)273 we get:

(*PAR2)=0(s2/3(logs)4/3) and 

(*PAR1)= 0((logs)473s 173).

Now we analyze the part with the cumulants, we examine first (*CUM2)=

cum(wl,wt,w£,w?) -cum(wJa,wk j ^ v  * v *kA ?) -

-cum(AJav J,v JAk,w£,w*k) +cum(AJav jtv  JAk a £v k,v *lA ? )  =

.rtf-J/J-i/ • j  k ** . j  J Ak k j a *KXj \cum(wJa,wb ,wb,wa )-cum(wJa>wb ,Abv Ky  Aa ) -

- c u m i A i v ^ v + c u m ( A jav JyV*U/ A  *v V (*)

using well known properties of cumulants ( see for instance Brillinger , pl9.,p.26,p.39) we 

get:

* * „o „ o  , „ 0 . „«

(*)=EE V  h
h*+h;-i y h"+h;-i i r r r r K,

E )E E E
v> *
/+ i

(27C)3V X X X  (2ic/i)2

/  /  j f ^ c y  x +(1

( ^ (X t-X M .V t-O M ^ X tM ^ X ^ X .i i .O d X d iid C  , (**)

where
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A*l( \ )  is the fcj element of Aa(X),

and

E j^ O ^ D a .-X - iL -Q D iX s X m v -X p D U -X ,)  , / ) ( * ) = £  «*•
«-i

As r is finite and

**1y A < “  f ° r  a l1  * l ’*2’*3’fc4 = 1 > - /'>

and using:

4 4 4

( w y ^ ^ - y ^ ' I I  (*r>.)+£  II
i “ l i-1  y«l

j*i
2 2

Ŷ 'Z&ryfcj.i-yĵ yi-Ps-j;
i=i y-i

so, basically we have 3 types of summands in (**); the first is typified by:

-* (* )

using Cauchy-Schwartz inequality and periodicity:

(*)<>(/>/(«*,) P ,\b * J  PffaJcJ

where

*
p f( /^ = /M ,* " (x f+A)-A,**(Xj) |2is:(x-^i) ^ ,

-*

for I=a,b , n=l,2,3,4 , i=jjk where K(X)= ;
Inn

now as:
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this implies, for at least one

and for the others:

-  H°
AjLX)=<K\2 ') ,

l.flO
A ,'( \ ) = 0 ( \2 ') ,

A fo )= o & r \

then using lemma 3 of Robinson (1993a):

% AA b b  1 1 —Oil
J \Aj '{X) -At \X )  \2K (X -\)d k  = O 0 y ' ) so

Pi(IJ:t)= 0 (—Xi ) for at least one kH

i j _2jy®
and for the others: Pi(IJc])= o (—Xi ');

the second type of component is typified by:

as

4-fl?
A ka\X t)= 0(X l *)

~~Hl
for at least one k4 and for the others =o(\*  ) > so (***) is:

I  1 I  1-H*m 
= 0 (P / ( a ^ )  PfibJcJ Pk\ b J ^  Xt2 ),

the third component is typified by:
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that is :

so

and similarly

A>‘(Xl)A*XXk)EJta , VL,Od\dV.d!;=

^ tMaV t)£,ta,e-x - U)dUQd(, =

A>(X,)A'(Xl)D(Xj-Q)IKXk+ X)D(9 -X -  Xj-Xk)dXdd

i -  -  -~H° --Hi
= 0 (- i-PjHaJcJ Pj^bJcJ X2 X l ), 

y{n

( * c u m = o £  t  x f *
J< k 
1+1

+

-hI-hI 1 -hI-hI 
n v  2k 2Xj Xk ))=

I  -1 
0((logs)2+ s2logs+sn 2)
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, _3 1

(*CUM1)=CK'E q -2v  2+n 2y _1))=o( 1), 
y-/+1

so we get that:

Then:

I  2 1 - 1
(xOl) = 0 (s3 (logs)3+s 2n 4 +(logs))

(xO) =0(s ̂ ( i lo g s + s  ll2n ~l,A+(logs)) 

and we have proven (A5.3.2). Now we analyze (XI):

as

and

7«1

J=-
27171

Z e , (,f .. E f f
r-l t

VL
we can rewrite it as:

5>;( r f

E E « ! - E E e?>eW A r )

u* t u* t

('MO
u

u* t

J = ^ - [ S l *S1eK‘-u)\
27171

SO
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c»>-e ( w ^ si -R)+i s*e =

(AI)+(A2),

(A l) and (A2) have both zero mean while:

as we have seen before:

and

i m u £  t f M i i  -s,-tfiH ;(W l,
J - l  »

N
m ax£(-ij^  e * e ? - r j ‘

x y  71 r-l

as

‘ W - r J - E C - L t  £  «,’« ,V * /+r i - 2 r v l  £  e^ef)
w r- 1 »  r - l  J-l 77 r -l

1=-^n(3+KIW) + ^ ( n 2-n)rj;+ r ‘ - 2 r '  =2 . _ 2  « „ 2  3 +Kxxyy Txy

W n‘ Tl
S O

l - V * l = o
n * N

max*y
S***vTrx,

n
= o p( ± )

\]n

where we have used that x = 0  i^Ex1) » so

W )= O p(-?~);
\/n

while

(A5.3.5)
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(A2) Ac(U ± S 2e CXp-
2it j m\ n

271 y«i /!„, ,
=E E  «/rr-«e, -

where

U* X

(A2) has zero mean and variance:

=£(E E E E
\u +  t u '+ t / y

=E  E  E  E  vec /T,.̂ ((e„®e,)(e,/2,e„ '))vecr(* v  =
«* f t '

=E E  E  E  vec'r,-*E((e.e,®etu;))vecrl'-l.' =
lit* t u/+ tf

=E E  E  Evec/r(_i,(fi®i?)vecr‘,_ii, /(«=fV=«')=
ii# r f/

=E E  vec -„(̂ 2®̂ )v«cr,'.,/ (*)
H# t

and calling

we get:

( * ) = n E f l - - W /̂ / r ^ ) ) Q ( v e ^ ; +r:,))sB£ ( v e c /(Z,))Q(vec(z;))=(»*)
r-l V n )  r-l

where

136



zr r ,+r- , ,

now:

* j-1
S O

and, as we can write:

W x p - K f l M D )  i4 ,(xp=jr,(l+o(l)) , 

Z,=(1+0(1))-/:^^  costXj ,
n y„!

using, see Zygmund(1977), p.2,

b

we have

f :  cos/A =Q(—) /or 0<|X|<7t ,
jma ^

z , = o ( j ) ,

then, as 0 = 0 (1 )

[ ]̂

(**)=0(n£ |Z,|2)= 0(n £  lZ(|2+ n £  IZfll>-O(B“ **E*'a>=0<»
“1 <■' ,.[£] s » tij

J  5

so that (XI) is Op(s1/2) and we have proven (A5.3.3).
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Appendix 5.4

Lemma 1:

E°» fo r  M  .a b
Proof:

First define Glb°= G°ib+ ibG° and G2ab°= i,ibG°+ iaG°ib4-ibG°i,+ G°iaib. Then,

R{H)=K,(r-2i'H)^og\G{H)\ ,

can be rewritten as:

R(H) =Kj(r-2i 'H)+log |£(//) | , 

where Kj and £(//) have been defined in Appendix 5.2, so,

dHdHh dH. dH„ dHdH.a o b a a b

Now define:

AT

and:

A / v - l  A A - l

F(H)=N° E(H)N° ,

p  ,m = N r>dikm  o-> 
14 dHb

dHdH.a b

Then:

^ - F ^ F ^ F ^ F J H )  +F(H)~lFlai(H)].

As

dHdH.a b

(A5.4.1)
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and

where

and

and as

and

|F lf>(fl) -F lb(H°))l -Oj^F^H) -F^H 0) ||), 

iP^H ) -P ^ H 0)) | =Oj\\F2(H) -F2(H°) ]),

m \

||Flt(ff°)-G 10t I=O I logjl
V mJ-1

i ^ ( t f V GL j = o j  |F2(ff°)-G oI f ;  (togjfi 
V mJ-1

^ ( f l ) = - £ > « / '
mjm i

P 2( H ) = - ' £ ( i o g i ) 2 N ^ j r ' u r 1̂ ' 1 ,
mj=i

—E  (fo£/)2"(—]C tos 0 2_,1»m ;=1 m ;=1

fr[G0"IGltG0' 1G1J  ̂ [ G o 'G j J ,

we just need to show for k = 0 ,l,2 : 

PI) F ^ F ^ H ^ l )  , and

i m
P2) Fjt( ^ 0)=G0( - i - ^ a o g / * ^  (1). 

mj=i
Proof of PI):
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P(lFtW - F t(H J\>U logm ftH -H °U e))+  

P({Ft(H) -F^HJ |>ri ,(logmf \H-H°\>e)) ;

first we analyze (1):

IFfjfo-FfjtlJX-

1 2 i W < ‘
U & P O  ■ b -J ' 1 )| =0  (max | —£  (logfn —

* ajb my=1 \ n

'  <U. ;

0 , ( m a x - £  (logif I W I K / ' '* ’"* '" '""4’-!)I  =(*1),
a,& W j m j

To „o

as
,0 ,T0 g  o_H 0 \ g h g j  >

1 "  ,
(*l)=Op(max\Ha+Ht -H°-H% | e (lognif*1—^  kj * » l / ^ t y l )

aj> m  j —\

and using appendix 5.3:
1 " h\ hI-i
- E  h KA)l *my=i

f  1 m 2H°-l Y 12 (  1 m 2ff°-l V 72

^  '  W  ^ E  C  W  - /? « ? » >
l my-i y l m/=i ;

1/2

S O ,

also as

we have

(* 1) = 0  (max 1 ^ ^ - / / “- / / °  |e(% m )w (gaagM),/2);
ajb

(logmf\H-H°$ze,

(*2)=0(2ee(logm f-2(g<j ’J i'2),

(1)

(2)

(*2)

so
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(1)£P(2ee(/ogm)*'2( g ^ ^ > T i ) - 0  .

Now we analyze 2):

(2)sP(lH-H°l>— -— )=P(i/eM T0) (*3) 
(logm)3

where

(logm)3

and recalling the definition of S(H) in appendix 5.1: S(H)=R(H)-R(Ho),
(*3)=P(inf S(H)zO)=P( inf S(H)zO)+P( inf S(H)±0)=(a)+(b)

A/De MW6ne MW6ne

(b)<,P(inf S(H)zOyO 
W 0

using 2a) and 2b) in appendix 5.1.Now we analyze (a); we recall S(H)=-T(H)+U(H) 

defined in appendix 5.1, then:

P( inf S(H)<iO)zP(_inf U(H)<>sup |7U 0|), 
AiTW4ne A/rW6D8 Nt 09

analogously as in the proof of consistency (see appendix 5.1) we get here:

r 2 r

and

inf U(H)*inf U m = Y , inf  
MTw.ne June *=i jwne® 2 (logm)

1 m
sup | T(H) | <.supQ | T(H) | <2r | —Y) log/-logm+11 + (*)
erwfl mj=i

mj=i*=1

*-1 »*/«!
as in the proof of consistency in appendix 5.1:

(* )=0 ( ^ i )  ami (« .)= o (— ) , i(r>0 ,
m m*
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(• . - . - - g i g  0

then

* E  " 9  KW I=0,>(<— ^
*=1 v4ne<*> m

(b)&P( <— (l+o(l))-0 /or all € , fX ) ,
(/ogm)6 m*

so we have proven PI). Proof of P2):

i 4 ( f f ° ) - G ° l f ;  o o g /y i= i - E  a o g o ^ z / T - o 0)! ’
m j= i m j= i

= I - E  ((togf)k-aog(j*l))t) £  ( A f /A f - G ° )  +
m j= 1 *-1

( t o ^ - E  (< V f-G °)IU  
m p t r

= - E  ( ( ^ ‘ -O o g & ^ D ^ lE  ( A f / X f - G ° ) h
m 7=l *«1

(fogm)*—[ E  (A? YaJ -G °)|=(*4) . 
m y=1

then as

||i-E  (A,0"//!!” -G°) I=0 (m« | i E  -*J )=
171 /-I W y«!

O (—— +m '^(logm)2*3 + +  —  +m_1/2)
fl" «  / S b "4

using (A5.3.1), (A5.3.2) and (A5.3.3) in appendix 5.3, we get:

( *4) = 0 ( | —V' —° ^ — (5 ̂ (logs)2̂  +sp+In _p+s ̂ /i ~1/4 +s ̂ + 
m ,=1 ^

—(Logmfym 1/3(logm)2/3 +m p+1/T P +m lf2n V4))=
m
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= 0 ( ( % ^ + G
m yfil ( n j  p

using condition C5.4’, and we get the desired result.

Appendix 5.5

In this appendix we state and prove some lemmas that we use along chapter 5 and its 

appendices.

Lemma 2:

Proof. Rewrite the LHS as:

where

using C5.1’:

--H0a
( i +o(*?))

implies
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u !
(**)=CK-^:Y, lv,l*jVo(7ogro-^— )=o (1) 

yjmh i n p

by assumption C5.4’, now

(* > = 7 = E  vy

now, using:

Re - T v ! - *
Vn ‘-i

h? 4
A'a{X)Xj (o)

Re g - A y ^ P  J j  l £  e ^ -R U ^ x p X j  
zn y n t=i ^

A”-!  
‘  2

=E*H
6=1

H®--
S ' erf-R fc iX p X j

z n \n t=i

h*A  * 2
=Op( ^ )

}Jn

where we have used (A5.3.4) and (A5.3.5) in appendix 5.3, then:

(o)=o , ( - E - ^ £  K D ^ f l o g
y fm \tij=i

Lemma 3:

(  j  \2  m m n t - 1

kic y/mrij
for a,b =  l , . . . r .

Proof:

E E  w E E » t e  * (a)R Qj /(b)Rcos(t -s) Xcos(t-s) Xj /j = ̂ (1)
j * j 1 f=l 5=1

The proof is immediate considering:

n r - l

1) Y l Y l  cos(t-s)XjCos(t-s)Xj,=-n , see Robinson (1993a),
r=l 5=1

f   ̂  ̂  1
2) 2 =0 (1)
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H .-i
this is due to ^(A.pA#r ‘=0( 1) and Aa( \ p \ j '  2 =0(1) , see (A5.3.4) in appendix 5.3, and

3) E  vjvr ° ( E  ( - ) ) = 0 ( - )  =«(!)•
mn j,  j' j . i » n

Lemma4:

n r - l

r=l s= l

Proof:

The LHS has zero mean and variance that tends to 0 as we are going to prove. Using

triABCD) =vec \C)(P®B ̂ veciA ) ,

we get

(  n r - l

Var(LHS)=E E E  vec
Vr=l 5=1

n u - l  \

E E  vec [T * _v(b) 0 T u _v(a) vec(R)
U = 1 V =1

and calling:

then:

K=E(vec[ese '-R ]v e c \e /s -R}) ,5  5

n r - l  r - l

(*-X)=E E  [r;v(i>)®r,»Vec[R]=
r=l 5=1 v=l

(*x>

5XK4=or£id,]2) ,
r=l r=l
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where

n -t

i.e.,

where

then

1)

2)

Consider:

dc Y ,  y2s >
5=1

Y'=[r;.s( * )® r ,» > e c [R ]  ,

I r M(D/« 1i= o ( - ^ r - E  |v; | ) = o ( ^ i E )  
Jmni-1 n

( m-1
H- IE < W  i>Ecos(r-s)Xt | +v„ 
mnv y-i *-i

using | ] ^ c o s ( ^ ) |= 0 ( - ) ,  see Zygmund (1977), p.2. Then
;=i 7

, 7=a,& ,

\Y^cos(t-s)Xj\ = 
7-1 /J
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n -t

4 = E r , = o
s - 1

( /— \2 
sjm logm

n
'fogmf y  J_

^  J f ; . *
=0( Oogm)i)

n
m

and

t  V f-tx/SS#).
f = i  n

So that the variance of the LHS tends to 0.

Lemma 5:

n f-1

E E E  <C(«)*r«^)e^(i)-
f-1 s* s'

Proof:

LHS has zero mean and variance:

n n m in(f-l ,« - l )

E E  E  E  tr(rUa)Krt_stb)KrlsmKrllja)K)=
t=1 «=1 s* J

n n min(r-l ju-1)

° (E E  E  E  ir,'-*(*) 11*1 ir,_,/(*>) II m  ir’̂ x*) I l«ll irM(«) i ik d  !
f= l «=1 s* J

n f-1

° ( 2E E E « r , » i 2»r <-J'(6) i :
(-1  s* J

+4E  E  E  E  ir<-I(a) i r,.^*) i ir'_sxfc) I wv/a) d=
r=3 u= 2 s#

0(/i
r=l f=3 u~2 5=f-u+l
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^  (logm)4 t (logm)* ̂
n 1

»* 3 m

This is due to:

E  ir;.s(/)s2=o(-^)!) i=a,b,
r=i »

so the first part is:

a rm(logm?
n

and the second part is:

*=i
o(£  ir ,»  i2E  E  E  I2)= o (^ 2 ! -nE/irfc) ft.

r=3 i i= 2  s=r-«+-l ^  j =1

ifi >2 2

0 ( (logm)*
m'l3
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Chapter 6

A Lagrange multiplier test for 1(0)

In this chapter we will consider a Lagrange multiplier test for testing that a vector 

process1 is 1(0) and analyze its asymptotic properties and finite sample behavior. Then we 

will apply this test to a multivariate financial data set. This test is proposed and analyzed 

with more generality in Lobato and Robinson (1994) where both types of alternatives ( the 

so called "long-memory" case and the "antipersistent" case) are analyzed jointly. Here we 

just consider the case when the alternative is "long-memory”. In section 1 we present the test 

and state its asymptotic properties. Section 2 examines finite sample performance for the 

univariate case. In section 3 we apply this test to exchange rate data in a multivariate setup. 

Technical details are in the appendices of the chapter.

6.1 A Lagrange multiplier test for 1101 

Much econometric literature (applied as well as theoretical) in recent years has made 

great emphasis in the concept of 1(0). For instance, most of the cointegration literature seems 

to have identified the concept of stationarity with 1(0). Also the literature on the Generalized 

Method of Moments ( GMM) has assumed 1(0) and estimated the asymptotic variance of the 

estimates by some function of a smoothed estimate of the spectral density at zero frequency, 

see for instance in Newey-West (1987). In both cases 1(0) is usually taken as granted and it

1 A vector process is 1(0) when every one of its components is 1(0).

149



would be useful to test that assumption. On the other hand, the presence of long memory is 

generally considered as a nuisance because the analysis usually simplifies a great deal under 

weak dependence. Therefore, there is a clear interest in testing the 1(0) assumption against 

long memory.

Consider the specification of the spectral density matrix that we have seen in the 

preceding chapter:

yW -A G A  as A.-0’ , A=<fcjg{X1/2'**) ,

with G Hermitian positive definite, we formulate the null hypothesis as:

H0:Ha=1/2 for a=l,...r,

and the alternative:

for at least one a, a=\,...r.

Under Hq the vector series we have is 1(0) while under the alternative we have that at least 

one component of the vector has long-memory.

In order to motivate the test consider the objective function in (5.5) and recall from 

appendix 5.2 the distribution of the score evaluated at the true value H°:

;dR(H)y u i

We can thus suggest the test

lM=m
d R (H ^ ))'J d R (H ^

dH
E

dH J
A

where we evaluate the score at the null hypothesis and E is defined in (6.1.1). In (A5.2.3) 

we have derived an expression for (dR(H)/dHJ that we can evaluate at the null hypothesis

to get, in the notation of chapter 5:
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(dRiH'))
dH„ , “ l

= - - E l ° S x; +*rmj=i

{ .. «  \  “1/ .  m \

£ E ' y  ^ E ( i ° g W , +/yU
7*1 /  Vm 7*l

So that we can rewrite this as:

dRiHJ .

 — =v(C,C +C 1C1)=^.
dH 1 1

with

Ct= - £  v,*/(X.) /or *=0,1, wif/i C=C0 ,
mj=l

Vj has been defined in (A5.2.5) and v(A) denotes the vector whose components are the 

diagonal elements of the matrix A.

A

With respect to E consider

E=2(I+C*C~l) (6 -i.l)

we will show later that under the null hypothesis it is a consistent estimate for E, justifying

that selection.

So that we can express the test concisely as:

LM=me,E~1i.

Our test procedure is:

"reject H0 if L M > x2r.«" 

where x2r,a verifies:

P(X2r>%!j=«

and x2r follows a chi-square distribution with r  degrees of freedom.
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The asymptotic properties of this test are considered in the next two theorems.

Theorem 6.1: Under conditions C5.1’, C5.2’, C5.3’ and C5.4’ that we have stated in chapter 

5 the LM test converges under H0 to a random variable that follows a x r2 distribution, that

is:

P(LM>x2rj H ^ a ,

Proof: This is immediate considering that in appendix 5.2 we have proven that:

r - dR(Hc)

where H0 could take the value H = l\2  and under the null:

mj=1
so, immediately:

E=2(Ir+C*C )-"p 2(lr+G*G~l)=E.

In order to prove the consistency of the test we can relax the conditions we

have seen above, in fact we can prove the consistency of the test under very general

assumptions, we just need to streghten slightly the conditions in theorem 4.1. We introduce

the conditions:

A /  \  A /■ > / 1\ l / 2 “ / f_ + T x  * / \  +
C6.1: +0(a ) as A-*0 , for some r > 0  where Aa is a lxr vector

o f com plex constants. N otice that this assum ption im plies that

C6.2: 1/m +m /n -*0 as n^oo.

C6.3: et and elel’-R are uniform integrable martingale difference sequences and:
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maxvle/|2*V<“
for some u > 0 , j =  l , . . . r  and t>  1.

Notice that C6.2 is the same as condition C4.2 in chapter 4 and C6.1 and C6.3 are just 

stronger versions of C4.1 and C4.3.

Theorem 6 .2 : Under C6.1, C6.2 and C6.3: the test is consistent under H |, that is,

for all c>0.

The proof is in appendix 6.1.

6.2 Finite Sample Performance 

In this section we examine with a Monte Carlo experiment the finite sample behaviour 

of the test. We have chosen two sample sizes, 128 and 256, that, as we discussed in chapter 

3, are extremely modest sample sizes for these semiparametric procedures. We analyze the 

performance of the test for several values of m. For n=128 we have chosen m =4, 12, 20, 

28 and 36; while for n=256 the grid is 20, 28, 36, 44 and 52.

In order to analyze the size we consider data generated from an AR(1):

*,=<K_i+e,

with et being normal iid(0,l) and <f> taking values: -0.9,-0.6,-0.3,0.0,0.3,0.6 and 0.9. In 

order to analyze the power of the test we consider series generated by fractional Gaussian 

noise using the same procedure as in chapter 3. We just analyze the univariate case because 

that is enough in order to grasp the main features of the finite sample behaviour. The number 

of replications is 1000 in all the experiments we have performed.

153



In tables 6.1 and 6.2 we examine size and power respectively. It is clear from these 

tables that in order to get moderate size we have to choose a fairly small value for m. It is 

also clear that as the sample size is bigger the distortion of the sizes is smaller ( compare the 

sizes for m =20 or m=36 with n=128 and n=256). In any case we still notice as a main 

feature of these tables the unusual high size when 0=0.90. With respect to power the results 

are what we could expect. First notice that although our theoretical analysis has been 

established only for H >  0.5, we report also power figures when H <  0.5. As we could expect 

the power is higher with higher m and when H differs more from 0.5.

We have performed another experiment in order to examine if we can improve the 

sizes. We have replaced the periodogram in the LM tests by a smoothed periodogram, that 

is:

LM=m

(  m \2

y=i

V )
where

In tables 6.3 and 6.4 we examine this test for different degrees of smoothing. We just 

report results for n=256, the results for n=128 are qualitatively similar, with m = 12, 20, 

28, 36 and 44, and k=2, 4 and 12. As k is lower the degree of smoothing is lower and the 

results are more similar to the ones obtained with the raw periodogram. As the degree of 

smoothing increases we obtain lower sizes as we could expect but we have to state also the 

effect that smoothing has on power. The loss of power when we use the smoothed
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periodogram is especially severe when the degree of smoothing is very high (k=12).

6.3 Analysis of exchange rate data 

In this section we apply the LM test in its original form to two financial data sets. 

The first one is the one used in Whistler (1990) and in Robinson (1991). They are data for 

four exchange rates: BP/$, $/DM, $/JYn and $/SwFr. There are three different records: 

daily, weekly and monthly. The daily set goes from October, 1st 1981 to June, 28th 1985, 

i.e., the sample size is 946. The weekly and monthly data cover the period from January 

1974 to June 1985. For weekly data the sample sizes are 600 while for monthly is just 138. 

It is important to emphasize, as it has been done in the unit root literature, that as important 

as the sample size is the sample span. This is what makes the monthly and especially the 

weekly data interesting because they cover more than eleven years. The second data set is 

the one used in chapter 5, section 4.

We apply the LM test for the first differences of the data. This is an interesting test 

to do because the efficiency market hypothesis establishes that:

or what is equivalent that:

^ ( e j G ^ O ,  (6.4.1)

where pt is the exchange rate and
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et=Pt~Pt-v

Equation (6.4.1) establishes that et is a martingale difference. Some tests for (6.4.1) 

have focused on looking for some short-term correlation structure in et, i.e. they have tested 

(6.4.1) as null hypothesis with the alternative being that et has some sort of weak correlation

or weak dependence. But we can fail to reject (6.4.1) using those tests procedures if et 

possesses strong dependence. This is why it is important to test for (6.4.1) considering long- 

memory alternatives.

The result of the LM test for the first data set is in table 6.5. There are five columns: 

the first four are for the univariate LM test and the fifth is for the multivariate version of the 

test. Test values greater than the 5% asymptotic critical value are marked with From 

table 6.5 we can deduce that there’s no evidence of long-memory for daily and monthly data. 

For weekly data there’s some evidence, especially for the BP/$.

The results of the LM test for the second data set for several values of m are in tables 

6.6a and 6.6b for weekly and daily data respectively. The main conclusion is the lack of 

long-memory for these series. Only for the BP/JYn we appreciate a slight indication of long- 

memory with daily data.

Therefore, with the data we have used we do not reject the efficiency hypothesis. 

Another idea that has been analyzed in some empirical papers is to look for evidence of long 

memory in et2 as a measure of volatility, see for instance Ding et al. (1993) where they look 

at stock market data. In tables 6.7 and 6.8 we look for evidence of long memory in et2. The 

results are striking. Except for monthly data in the first data set and for BP/$ weekly in the 

second set in all the others series the evidence of long-memory is overwhelming using the
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univariate or multivariate LM test. Especially for daily data we reject the null hypothesis that 

e2 is 1(0) for all the series using the univariate or the multivariate version of the LM test for 

any value of m.2

2 The only exception is for small m in the first data set for $/SwFr.
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Table 6.1

n = 1 2 8  c .v .= 5 % a n d l%

4>\m 4 12 20 28 36
- 0 .9 0 . 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 0 4 0 .0 0 1 0 .0 2 5 0 .0 0 0 0 .1 2 0 0 .0 1 2
- 0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 0 4 0 .0 0 1 0 .0 2 4 0 .0 0 0 0 .0 8 9 0 .0 0 7

- 0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 0 5 0 .0 0 1 0 .0 1 8 0 .0 0 0 0 .0 3 7 0 .0 0 2

0 .0 0 0 .0 0 0 0 .0 0 0 0 .0 0 6 0 .0 0 0 0 .0 0 8 0 .0 0 2 0 .0 1 4 0 .0 0 3 0 .0 1 4 0 .0 0 4
0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 8 0 .0 0 0 0 .0 2 5 0 .0 0 3 0 .0 9 3 0 .0 1 9 0 .2 1 2 0 .0 8 3
0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 2 8 0 .0 0 7 0 .2 6 0 0 .0 9 6 0 .6 6 6 0 .4 1 7 0 .9 0 7 0 .7 9 0
0 .9 0 0 .0 0 0 0 .0 0 0 0 .661 0 .3 9 0 0 .9 7 5 0 .9 3 5 1 .0 0 0 0 .9 9 8 1 .0 0 0 1 .0 0 0

n = 2 5 6  c .v .= 5 %  an d  1%

<j>\m 2 0 28 3 6 4 4 5 2
-0 .9 0 0 .0 1 3 0 .0 0 0 0 .0 0 9 0 .0 0 2 0 .0 1 2 0 .0 0 3 0 .0 2 2 0 .0 0 4 0 .0 3 9 0 .0 0 1
-0 .6 0 0 .0 1 0 0 .0 0 1 0 .0 0 9 0 .0 0 2 0 .0 1 4 0 .0 0 2 0 .0 2 0 0 .0 0 4 0 .0 3 4 0 .0 0 1
-0 .3 0 0 .0 0 9 0 .0 0 1 0 .0 1 0 0 .0 0 2 0 .0 1 7 0 .0 0 2 0 .0 1 9 0 .0 0 4 0 .0 2 3 0 .0 0 4
0 .0 0 0 .0 1 1 0 .0 0 1 0 .0 1 2 0 .0 0 2 0 .0 1 6 0 .0 0 4 0 .0 2 4 0 .0 0 7 0 .0 2 4 0 .0 0 6
0 .3 0 0 .0 1 5 0 .0 0 3 0 .0 2 5 0 .0 0 4 0 .0 4 7 0 .0 1 4 0 .0 8 2 0 .0 3 0 0 .1 5 1 0 .0 4 5
0 .6 0 0 .0 5 2 0 .0 1 3 0 .1 8 0 0 .0 5 8 0 .4 3 0 0 .2 0 6 0 .6 9 6 0 .4 8 0 0 .9 0 3 0 .7 4 6
0 .9 0 0 .8 7 3 0 .6 8 0 0 .9 9 2 0 .9 7 3 1 .0 0 0 0 .9 9 9 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

T ab le  6. 2

n = 1 2 8  c. v .= 5 % an d  1%

H \m 4 12 2 0 2 8 3 6
0 .1 0 0 .0 0 0 0 .0 0 0 0 .0 1 8 0 .0 0 0 0 .4 2 8 0 .0 2 8 0 .8 5 1 0 .3 5 5 0 .9 8 5 0 .7 5 1
0 .2 0 0 .0 0 0 0 .0 0 0 0 .0 0 6 0 .0 0 0 0 .1 4 2 0 .0 0 3 0 .4 4 0 0 .0 6 4 0 .7 4 4 0 .2 8 6
0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 2 0 .0 0 0 0 .0 2 6 0 .0 0 0 0 .1 1 7 0 .0 0 7 0 .2 9 9 0 .0 3 0

0 .4 0 0 .0 0 0 0 .0 0 0 0 .0 0 2 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 2 0 0 .0 0 1 0 .0 4 6 0 .0 0 2
0 .5 0 0 .0 0 0 0 .0 0 0 0 .0 1 2 0 .0 0 2 0 .0 1 5 0 .0 0 5 0 .0 1 8 0 .0 0 4 0 .0 1 6 0 .0 0 3

0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 3 5 0 .0 1 0 0 .0 8 0 0 .0 2 3 0 .1 2 8 0 .0 4 3 0 .1 8 7 0 .0 7 1
0 .7 0 0 .0 0 0 0 .0 0 0 0 .0 9 3 0 .0 3 0 0 .2 5 9 0 .1 1 8 0 .4 3 1 0 .2 4 3 0 .5 6 7 0 .3 8 3

0 .8 0 0 .0 0 0 0 .0 0 0 0 .2 1 7 0 .0 8 3 0 .5 2 5 0 .3 1 4 0 .7 4 1 0 .5 6 7 0 .8 7 3 0 .7 6 1

0 .9 0 0 .0 0 0 0 .0 0 0 0 .3 7 4 0 .1 9 1 0 .7 3 9 0 .5 7 2 0 .9 0 7 0 .8 1 8 0 .9 6 8 0 .9 2 4

n = 2 5 6 c .v .= 5 % a n d  1%

H\ra 2 0 28 3 6 4 4 5 2
0 .1 0 0 .2 8 4 0 .0 2 4 0 .7 1 3 0 .2 3 3 0 .9 4 7 0 .6 2 2 0 .9 9 3 0 .8 9 6 0 .9 9 9 0 .9 7 6
0 .2 0 0 .0 9 5 0 .0 0 3 0 .3 5 0 0 .0 4 2 0 .6 1 6 0 .1 8 4 0 .8 2 6 0 .4 0 3 0 .9 3 9 0 .6 6 1
0 .3 0 0 .0 3 0 0 .0 0 0 0 .1 0 8 0 .0 0 6 0 .2 3 8 0 .0 2 6 0 .3 8 0 0 .0 7 0 0 .5 3 5 0 .1 5 8
0 .4 0 0 .0 0 5 0 .0 0 0 0 .021 0 .0 0 1 0 .0 4 1 0 .0 0 1 0 .0 6 2 0 .0 0 4 0 .1 0 5 0 .0 1 3
0 .5 0 0 .0 1 3 0 .0 0 1 0 .0 1 4 0 .0 0 1 0 .0 1 8 0 .0 0 1 0 .0 1 8 0 .0 0 1 0 .0 1 8 0 .0 0 3
0 .6 0 0 .0 6 1 0 .0 1 9 0 .1 0 3 0 .0 3 8 0 .1 5 9 0 .0 5 4 0 .2 2 0 0 .0 9 5 0 .2 6 3 0 .1 3 4

0 .7 0 0 .2 4 0 0 .1 0 2 0 .3 7 7 0 .2 2 2 0 .5 0 9 0 .3 2 6 0 .6 1 2 0 .4 5 4 0 .7 0 1 0 .5 3 6

0 .8 0 0 .4 7 4 0 .3 0 7 0 .691 0 .5 0 8 0 .7 9 8 0 .6 7 6 0 .8 8 5 0 .7 9 1 0 .9 4 8 0 .8 7 9

0 .9 0 0 .7 0 5 0 .5 3 2 0 .8 6 6 0 .7 8 0 0 .9 4 8 0 .8 8 5 0 .9 8 2 0 .9 4 9 0 .9 9 6 0 .9 8 3
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Table 6.3 a

n = 2 5 6 k = 2  c .v . = 5%  and 1%

4>\m 1 n 0 28 36 44
-0 .9 0 0 .0 0 0 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 0 4 0 .001 0 .0 0 8 0 .0 0 2 0 .0 1 7 0 .0 0 3
-0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 1 2 0 .0 0 2 0 .0 1 5 0 .0 0 4
- 0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 1 5 0 .0 0 2 0 .0 1 4 0 .0 0 3

0 .0 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 1 5 0 .0 0 2 0 .0 1 8 0 .0 0 4
0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 8 0 .0 0 0 0 .0 1 6 0 .0 0 3 0 .0 4 0 0 .0 1 2 0 .0 8 0 0 .0 2 6
0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 3 4 0 .0 0 4 0 .1 7 1 0 .0 4 9 0 .4 3 0 0 .2 0 2 0 .7 0 6 0 .4 9 4
0 .9 0 0 .1 8 1 0 .0 1 8 0 .8 7 3 0 .6 8 2 0 .9 9 4 0 .9 7 5 1 .0 0 0 0 .9 9 9 1 .0 0 0 1 .0 0 0

T a b le  6 .3  b

n = 2 5 6 k = 4  c .v . = 5 %  a n d  1%

4>\m 12 20 28 3 6 4 4
-0 .9 0 0 .0 0 0 0 .0 0 0 0 .0 0 1 0 .0 0 0 0 .0 0 2 0 .0 0 0 0 .0 0 5 0 .0 0 1 0 .0 1 4 0 .0 0 0
-0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0 0 .0 0 7 0 .0 0 1 0 .0 1 3 0 .0 0 0
- 0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0 0 .0 0 8 0 .0 0 1 0 .0 1 0 0 .0 0 1

0 .0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0 0 .0 1 1 0 .0 0 2 0 .0 1 2 0 .0 0 4
0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 1 0 .0 0 0 0 .0 0 9 0 .0 0 0 0 .0 2 6 0 .0 0 7 0 .0 6 5 0 .0 2 1
0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 1 5 0 .0 0 0 0 .1 4 2 0 .0 3 1 0 .4 2 1 0 .1 8 0 0 .7 1 6 0 .4 7 7
0 .9 0 0 .0 1 0 0 .0 0 0 0 .8 5 7 0 .5 9 1 0 .9 9 5 0 .9 7 2 1 .0 0 0 0 .9 9 9 1 .0 0 0 1 .0 0 0

T a b le  6 .3  c

n = 2 5 6  k = 1 2  c .v  = 5%  an d  1%

<j>\m 12 2 0 2 8 3 6 4 4
-0 .9 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 2 0 .0 0 0
-0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 1 0 .0 0 0
-0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 2 0 .0 0 0

0 .0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0
0 .3 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 3 0 .0 0 0 0 .0 2 2 0 .0 0 2
0 .6 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 6 0 .0 0 0 0 .2 3 5 0 .0 2 3 0 .6 5 4 0 .3 1 7
0 .9 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .9 6 2 0 .6 5 0 1 .0 0 0 0 .9 9 5 1 .0 0 0 1 .0 0 0
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Table 6.4 a

n=256 k=2 c.v. =5%  and 1% -

H \m .12 2 0 28 3 6 44

0.1 0 .0 0 3 0 .0 0 0 0 .2 4 5 0 .0 1 0 0 .6 9 7 0 .1 9 0 0 .9 4 4 0 .6 0 0 0 .9 9 5 0 .8 9 0

0.2 0 .0 0 0 0 .0 0 0 0 .0 7 0 0 .0 0 0 0 .3 2 6 0 .0 3 5 0 .6 0 8 0 .1 6 2 0 .8 0 9 0 .4 0 2
0.3 0 .0 0 0 0 .0 0 0 0 .0 1 9 0 .0 0 0 0 .0 9 1 0 .0 0 5 0 .2 1 3 0 .0 2 1 0 .3 7 2 0 .0 6 6
0 .4 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 1 6 0 .0 0 0 0 .0 3 5 0 .0 0 1 0 .0 5 9 0 .0 0 2
0.5 0 .001 0 .0 0 0 0 .0 0 6 0 .0 0 0 0 .0 0 9 0 .0 0 0 0 .0 1 4 0 .0 0 0 0 .0 1 6 0 .0 0 1
0 .6 0 .0 0 4 0 .0 0 0 0 .0 3 8 0 .0 1 0 0 .0 7 8 0 .0 3 0 0 .1 4 4 0 .0 4 8 0 .2 0 6 0 .0 8 0
0.7 0.026 0 .0 0 1 0 .1 8 3 0 .0 5 8 0 .3 3 3 0 .1 8 6 0 .4 9 3 0 .2 9 8 0 .6 0 2 0 .4 3 2
0.8 0 .0 9 8 0 .0 1 2 0 .4 2 6 0 .2 2 8 0 .6 7 6 0 .4 7 4 0 .7 9 6 0 .6 6 3 0 .8 8 7 0 .7 9 1
0 .9 0 .211 0 .0 5 3 0 .6 8 3 0 .4 7 6 0 .8 6 7 0 .7 6 1 0 .9 4 5 0 .8 8 5 0 .9 8 3 0 .9 4 9

H \m 12

T a b le  6 .4  b  

n = 2 5 6  k = 4  c.v.=  

2 0

=5% an d  1% 

2 8 3 6 4 4
0.1 0 .0 0 0 0 .0 0 0 0 .1 7 1 0.001 0 .6 7 6 0 .1 3 8 0 .9 4 0 0 .5 7 6 0 .9 9 6 0 .8 8 7
0.2 0 .0 0 0 0 .0 0 0 0 .0 4 5 0 .0 0 0 0 .2 7 4 0 .0 1 8 0 .5 7 8 0 .1 2 4 0 .7 9 5 0 .3 6 9
0.3 0 .0 0 0 0 .0 0 0 0 .0 0 9 0 .0 0 0 0 .0 6 9 0 .0 0 3 0 .1 9 9 0 .0 1 4 0 .3 4 3 0 .0 4 9
0 .4 0 .0 0 0 0 :0 0 0 0 .0 0 1 0 .0 0 0 0 .0 1 0 0 .0 0 0 0 .0 2 7 0 .0 0 0 0 .0 5 1 0 .0 0 3
0.5 0 .0 0 0 0 .0 0 0 o.ooi 0 .0 0 0 0 .0 0 5 0 .0 0 0 0 .0 0 9 0 .0 0 0 0 .0 1 4 0 .0 0 1
0.6 0 .0 0 0 0 .0 0 0 0 .0 2 2 0 .0 0 1 0 .0 5 2 0 .0 1 6 0 .1 1 4 0 .0 3 3 0 .1 8 5 0 .0 5 8
0 .7 0 .0 0 0 0 .0 0 0 0 .0 9 1 0 .0 1 7 0 .2 8 6 0 .1 0 1 0 .4 5 6 0 .2 5 0 0 .5 7 7 0 .3 8 1
0.8 0 .0 0 3 0 .0 0 0 0 .3 0 8 0 .1 0 1 0 .6 2 3 0 .4 0 1 0 .7 8 4 0 .6 2 6 0 .8 8 3 0 .7 5 9
0 .9 0.020 0 .0 0 0 0 .5 9 5  0 .321  0 .8 4 8  0 .7 1 3  

T a b le  6 .4  c

0 = 2 5 6  k = 1 2  c .v .= 5 %  a n d  1%

0 .9 4 4 0 .8 7 2 0 .9 8 5 0 .9 4 5

H \m 12 2 0 2 8 3 6 4 4
0.1 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .2 9 0 0 .0 0 5 0 .8 1 3 0 .2 5 1 0 .9 8 3 0 .7 2 9
0 .2 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 3 5 0 .0 0 0 o:3io 0 .0 1 3 0 .6 5 2 0 .1 5 1
0.3 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 4 2 0 .0 0 1 0 .1 6 9 0 .0 1 2
0 .4 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 4 0 .0 0 0 0 .0 1 7 0 .0 0 0
0 .5 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0
0 .6 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 1 0 0 .0 0 0 0 .0 5 8 0 .0 0 4
0 .7 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 1 7 0 .0 0 0 0 .1 8 7 0 .0 3 2 0 .3 8 3 0 .1 6 1
0.8 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .1 3 2 0 .0 0 3 0 .5 7 8 0 .2 4 4 0 .7 9 4 0 .5 6 0
0 .9 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .4 6 8 0 .0 6 3 0 .8 6 4 0 .6 3 7 0 .9 6 4 0 .8 8 8
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TABLE 6.5a

m B P/S S /D M $/Jyn $/SF r Joint

5 0 .0 6 4 0 .2 3 4 0 .1 7 4 0 .2 4 6 1 .3 2 8
10 0 .5 4 7 0 .0 0 6 0 .0 5 4 0 .0 2 0 1.095
15 0 .6 1 4 0 .1 2 3 0 .0 0 9 0 .1 3 5 0 .9 6 3
2 0 1 .8 2 5 0 .2 4 5 0 .2 2 0 0 .5 5 6 2 .1 6 1
25 1 .0 4 8 0 .8 0 5 0 .5 5 3 1 .248 1 .5 5 4
30 0 .7 6 9 0 .4 5 4 0 .9 2 7 0 .4 9 8 1 .7 7 6
35 1 .7 0 0 1 .024 0 .2 3 7 1 .471 2 .2 8 0
4 0 3 .1 6 9 1 .0 6 7 0 .0 2 5 1 .9 4 4 2 .8 8 3
4 5 3 .0 2 7 1 .345 0 .0 0 8 3 .2 4 9 3 .6 3 4
5 0 5 .1 4 6 2 .2 9 4 0 .0 0 6 4 .6 9 4 5 .5 7 3

T A B L E  6 .5 b

m B P /S S /D M $/JY n $ /S F r Joint

10 0 .5 8 9 0 .0 0 9 0 .0 0 2 0 .0 2 4 1 .225
2 0 2 .0 3 9 0 .1 6 4 0 .3 3 0 0 .6 3 4 3 .2 7 1
4 0 3 .2 8 3 0 .6 2 2 0 .0 4 2 2 .0 7 4 5 .3 1 6
6 0 4 .3 7 2 * 0 .0 3 6 0 .0 2 9 0 .7 2 1 1 0 .8 6 3 *
8 0 9 .9 8 7 * 0 .2 0 1 2 .8 3 3 2 .3 9 1 2 1 .2 2 6 *

100 8 .1 8 5 * 1 .7 1 9 2 .4 2 9 4 .5 9 2 * 1 3 .4 1 1 *
130 8 .7 7 8 * 3 .5 1 1 7 .9 7 5 5 .7 7 6 * 1 6 .7 2 3 *
1 6 0 4 .2 8 1 * 2 .9 6 9 1 2 .4 4 7 5 .2 7 4 * 1 8 .4 4 0 *
2 0 0 2 .5 4 6 1 .2 3 7 1 8 .2 6 0 1 .8 1 8 2 1 .9 7 8 *
2 5 0 4 .2 5 8 * 3 .4 3 7 2 5 .2 5 2 3 .5 5 2 3 1 .1 8 6 *

T A B L E  6 .5 c

m B P /S S /D M $/JY n S/SF r Joint

2 0 0 .0 2 8 1 .127 0 .0 8 0 0 .3 1 0 2 .4 9 9
4 0 0 .0 2 3 0 .1 0 7 0 .0 3 7 0 .0 3 3 1 .5 6 4
6 0 0 .5 7 3 0 .0 3 0 1.383 0 .0 4 4 2 .7 0 5
80 0 .0 0 1 0 .1 0 3 5 .2 8 6 0 .0 3 4 8 .4 8 9

100 0 .0 4 4 0 .3 0 6 6 .1 3 4 0 .4 6 6 6 .6 6 4
130 0 .0 2 8 0 .6 6 6 6 .2 1 8 1 .145 6 .8 3 7
160 0 .3 0 2 0 .1 2 0 2 .9 5 7 0 .0 2 4 4 .4 4 5
2 0 0 0 .0 1 0 0 .0 6 5 3 .5 1 9 0 .0 5 5 3 .7 0 4
2 5 0 0 .7 4 0 1 .299 4 .4 8 7 1 .953 3 .9 0 4
3 0 0 0 .7 5 3 1 .032 2 .3 6 4 2 .6 0 4 2 .8 0 0
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TABLE 6.6a

m  - B P /S  B P /D M  B P /JY n B P /S F r  Joint

10 0 .0 3 3 0 .0 9 9 0 .7 3 4 0 .0 1 1 4 .9 0 9
20 0 .1 4 7 0 .0 6 7 0 .0 0 4 0 .5 4 4 0 .5 2 8
3 0 0 .6 3 8 1 .1 2 6 0 .8 6 0 0 .0 0 5 3 .7 7 7
4 0 1 .101 1 .0 9 6 0 .6 3 3 0 .0 0 0 4 .3 6 7
50 0 .6 7 2 0 .4 6 4 0 .4 8 7 0 .0 0 0 2 .7 8 6
6 0 1 .0 2 8 1 .1 1 4 0 .7 7 5 0 .2 6 6 2 .7 3 0
70 1.185 0 .7 1 3 1 .689 0 .0 1 3 3 .3 2 4
80 1 .846 1.205 2 .4 9 2 0 .1 9 3 4 .0 2 0
90 2 .3 7 8 2 .1 9 5 3 .7 7 8 1 .0 2 4 4 .9 6 7

100 2 .9 2 9 2 .2 8 1 5 .1 4 7 1 .035 5.421

T A B L E 6 .6 b

m B P /S B P /D M B P /JY n B P /S F r Joint

2 0 0 .0 6 2 0 .1 0 5 0 .0 0 2 0 .5 8 1 0 .4 4 9
4 0 0 .8 6 0 1 .4 6 5 0 .6 4 7 0 .0 0 1 5 .2 3 5
7 0 0 .6 6 2 0 .6 7 9 0 .7 3 8 0 .0 3 2 3 .4 6 5

100 1.411 1 .3 8 3 5 .4 6 0 * 0 .4 8 5 6 .0 5 2
140 0 .8 3 4 2 .4 1 9 2 .4 6 2 0 .4 2 8 2 .173
180 2 .8 4 2 0 .1 1 6 1 .724 0 .4 0 1 2 .4 3 8
2 3 0 3 .9 7 3 * 0 .8 0 6 2 .0 7 2 0 .1 3 1 4 .0 9 4
2 8 0 5 .6 8 2 * 2 .6 2 5 6 .2 7 4 * 0 .2 1 1 4.861
3 5 0 2 .5 7 6 1 .2 6 7 3 .8 6 4 * 0 .3 0 7 2 .3 8 7
4 5 0 6 .0 1 4 * . 2 .7 2 1 5 .2 0 3 * 0 .6 5 6 3.291
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m

5
10
15
20
25
3 0
35
4 0
45
50

m

10
20
4 0
6 0
8 0

100
130
160
200
2 5 0

m

20
4 0
6 0
80

100
130
160
200
2 5 0
300

TABLE o. / a

B P /S S /D M S/JY n S/S F r Joint

0 .1 1 5 0 .2 2 9 0 .1 3 8 0 .0 0 6 0 .8 3 4
0 .6 7 4 1 .1 9 2 0 .8 0 8 1 .015 2 .3 8 3
0 .9 4 6 1 .9 3 9 2 .1 0 1 1.021 3 .2 5 6
1 .158 1 .017 2 .0 6 3 0 .6 1 0 4 .9 7 8
1 .113 0 .0 1 2 0 .6 3 2 0 .3 0 0 4 .2 4 7
0 .3 2 0 0 .0 0 0 1 .3 1 8 0 .0 0 0 2 .9 9 7
0 .2 7 7 0 .1 9 5 0 .4 7 2 0 .1 2 1 2 .5 0 2
0 .5 2 5 0 .9 0 8 0 .7 5 8 0 .8 6 9 3 .7 2 4
0 .4 9 4 1 .1 2 9 0 .8 4 6 1 .2 4 6 2 .8 8 6
1.195 1.031 0 .9 1 7 1 .417 4 .3 8 3

T A B L E  6 .7 b

B P /$  S /D M  $ /J Y n  $ /S F r  Joint

1 .1 4 2 1 .453 0 .3 0 0 0 .5 1 6 3 .0 2 3
9 .4 5 7 * 3 .3 2 2 3 .1 3 5 1 .4 4 4 1 6 .8 2 9 *

1 2 .8 3 0 * 1 0 .0 0 5 * 1 0 .7 1 0 * 2 .9 7 0 4 0 .3 9 5 *
1 9 .0 2 9 * 3 2 .3 3 3 * 2 6 .7 7 1 * 1 3 .2 7 8 * 6 6 .6 4 7 *
2 4 .0 4 5 * 6 2 .1 9 6 * 2 4 .1 5 3 * 3 0 .1 4 6 * 8 9 .0 3 8 *
3 2 .1 9 9 * 1 0 0 .3 5 6 * 1 3 .8 5 2 * 5 3 .5 2 4 * 1 0 1 .4 9 2 *
3 4 .1 1 3 * 1 1 5 .2 6 3 * 1 3 .7 1 6 * 6 3 .0 5 9 * 1 1 5 .9 9 7 *
3 8 .0 3 7 * 1 2 8 .0 7 0 * 2 2 .5 0 2 * 8 9 .2 6 5 * 1 3 0 .7 1 8 *
3 0 .1 5 2 * 1 6 0 .2 1 7 * 2 0 .5 9 0 * 9 2 .4 4 3 * 1 4 5 .6 9 6 *
3 6 .0 8 4 * 2 1 2 .3 3 9 * 2 9 .6 1 4 * 1 2 0 .3 7 9 * 1 8 8 .6 5 4 *

T A B L E  6 .7 c

B P /S  S /D M  S/JY n S /S F r Joint

1 3 .4 2 7 * 1 3 .0 3 1 * 3 0 .0 2 5 * 0 .9 9 4
4 9 .0 2 1 * 4 3 .9 9 0 * 4 8 .5 0 4 * 2 .7 5 9
5 7 .6 4 8 * 6 0 .5 6 1 * 1 0 1 .8 4 1 * 2 .4 8 7
6 9 .3 6 4 * 8 0 .1 2 6 * 1 0 6 .6 8 3 * 3 .8 7 4 *
7 7 .8 8 6 * 9 6 .9 7 6 * 1 3 0 .4 0 7 * 7 .0 0 7 *

1 0 0 .6 6 4 * 1 0 7 .0 2 3 * 1 2 2 .6 2 6 * 1 1 .0 7 1 *
1 2 0 .3 8 9 * 1 3 2 .9 0 0 * 1 6 0 .4 3 5 * 2 0 .6 8 7 *
1 1 1 .8 8 2 * 1 4 4 .2 0 7 * 1 5 3 .7 7 8 * 4 2 .2 5 4 *
1 0 7 .8 8 4 * 1 4 9 .2 8 1 * 1 5 2 .2 4 9 * 8 8 .4 0 9 *

9 2 .7 1 7 * 1 4 1 .0 0 4  * 9 7 .1 9 0 * 1 3 5 .4 2 8 *

2 8 .4 7 8 *
6 4 .5 9 5 *

1 2 6 .0 0 3 *
1 4 8 .8 1 8 *
1 8 4 .7 3 1 *
2 1 1 .0 5 0 *
2 7 4 .8 4 0 *
2 9 8 .0 5 6 *
3 3 6 .3 3 5 *
3 1 3 .8 5 1 *
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m

10
20
3 0
4 0
5 0
60
70
80
9 0

100

m

20
40
70

100
140
180
2 3 0
28 0
35 0
4 5 0

TABLE 6.?a

BP/S B P /D M B P/JY n B P /S F r

0 .0 7 5 0 .5 5 7 0 .2 9 8 0 .8 2 9
0 .451 0 .6 8 3 0 .3 3 5 0 .8 7 8
0 .9 0 5 2 .5 2 7 0 .5 0 0 1 .3 4 2
1 .252 4 .7 5 0 * 1 .808 1 .9 3 7
1 .0 4 9 1 0 .4 2 4 * 1 .7 9 0 4 .2 3 9 *
1 .0 9 0 1 5 .6 9 8 * 1 .2 4 9 4 .9 2 6 *
1 .354 2 7 .5 0 5 * 1 .9 6 4 7 .2 8 5 *
1 .057 3 3 .2 5 7 * 1 .9 9 0 5 .8 5 1 *
1 .5 1 0 3 9 .5 6 0 * 2 .2 6 5 6 .1 4 0 *
2 .0 4 5 4 2 .8 7 5 * 4 .0 5 2 * 5 .0 3 6 *

T A B L E  6 .8 b

B P /S B P /D M B P /JY n B P /S F r

3 .3 5 7 0 .4 7 9 3 .4 3 5 2 .0 4 8
18 6 1 9 * 7 .1 0 2 * 1 4 .3 0 8 * 1 3 .6 1 0 *
5 2 .7 0 1 * 2 9 .2 8 4 * 4 4 .2 1 6 * 4 8 .1 0 4 *
7 2 .3 4 1 * 4 3 .8 9 3 * 6 6 .1 1 8 * 5 9 .7 1 4 *
7 9 .0 3 0 * 2 5 .0 8 4 * 9 7 .5 3 5 * 1 6 .4 5 6 *

1 0 5 .3 6 3 * 4 0 .3 1 9 * 1 2 0 .4 1 3 * 3 6 .4 0 2 *
1 3 4 .5 7 2 * 6 5 .8 9 3 * 1 5 4 .0 5 6 * 5 0 .5 1 3 *
1 5 1 .5 6 4 * 8 6 .4 8 3 * 1 7 9 .5 7 1 * 5 8 .5 3 7 *
1 6 7 .9 5 7 * 1 2 5 .5 8 0 * 2 3 1 .7 3 6 * 8 9 .9 0 9 *
1 9 0 .4 1 6 * 1 7 3 .2 1 4 * 2 7 1 .1 8 6 * 1 2 7 .5 7 3 *
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Appendix 6.1

In order to prove consistency first we are going to recall that in appendix 4.1 we have 

proven that1:

a ^ c a ^ — a*1
m

f m \ 

V =1 )

a : 1-  rr f l p
(A6.1.0)

where

and T has as (a,b) element:
K =dia

Sab
2

We are going to use (A6.1.0) and the following two results that will be proved later:

a ,

where A has as (a,b) element:

Sab

and

(A6.1.1)

r>o.

Now using that A,,, is a diagonal matrix, we can write:

MV?% a;1c ^ a ; 1c ,a X c '\,) .
then, using (A6.1.0), (A6.1.1) and (A6.1.2) we get

(A6.1.2)

!We have proven this for 1/2 <  Ha,Hb <  1. This is the main limitation of this proof, if we 
were able to prove (6.1.3) for 0 < H a,Hb< 1 then we could get a two sided test, i.e., the 
alternative would be " Ha^  1/2 for at least one a".
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e -^ r - 'A + A  r ‘)= S = (3 1,...,Sf) /.

Now we have to show that under the alternative hypothesis at least one Ep is different to 0;

as " at least one H ,>  1/2 => at least one Ep^O" is equivalent to "Ep=0, for all p =>Ha=1/2,

for all a", we need to prove the second statement. Unfortunately we haven’t been able to

prove this statement for a general r yet. To check it for r = l  and r= 2  is immediate and we

conjecture that the statement is valid for a general r.

Then we could write:

e=Z+op{ 1)

with at least one Ep^ 0 ,  now using (A6.1.0) and (A6.1.2):

£=2(/r+C*C 2(/r+(T*Cr‘n  =M>0 .

As M is positive definite then:

LM=4m(a +o,(l))'(M +op(l))(S  +0,(1)) =4mS/AT1S +op(m),

then

P(LM>c | //,)  =P(4m 3 'AT *3 +o,(m)>c)-l 

as for any c>0.

So it only remains to prove (A6.1.1) and (A6.1.2). First we prove that T is positive 

definite. We can rewrite T as:

r = — a ; 1 f A(X)GA(X)dX a ; 1 where A(,X)=diag{Xm 'H'},
K  Jo

now for all complex vectors x^O :
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x Tjc£—  x *Am1 jA (X)2dX Am1jc=
m o

= e x ’ diag( \  * ) * >0
2 -2ffj 2 -2 //r

where e is a lower bound for the eigenvalues of G0.

Now we prove (A6.1.1). The typical element (a,b) is:

we can rewrite the LHS as:
;=i

HIm

m ;=1

So, we are going to prove that:

E v / W - f c A  * *> w

(5)

( < 0 - 0  , (B)- *„■

m ;=1 /-I \ W/

y  1

m
where

V =lo§ ^ ) ‘ ^ E log(^ )=vy »7W /7Zy=i W

then:

(*)

where
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v(x)=logx-Jlogxdx=logx+l

As

fv(x)x l-H*~H>dx=.
1 - n a-Hb

0 (2-Ha- H ?

the result for (B) follows immediately.

In order to analyze (A) we need to use the following result that will be proved later:

— E  (J a b & p -8 a b * j ) = ° P( K  { n  +r  6+ [ - J  })
(A6.1.3)

Then, by summation by parts:

(w e
m i *=i

1 ~ H ~ H k+V„E (LV-P-Sch * *)}=0«MA2)
and using (A6.1.3):

(A2)=0,

r - i

(/ogro)—Am Xm •{»2+v+ « #+ — }
{ m \ n )  )

=0,(1)

while using the same result and the mean value theorem:

«  A - H a - H b

m ~  n*~a*-nb n
So it remains to prove (A6.1.3). This result is just an extension of Theorem 4.1. We just

04i)=O,(̂ C'"‘'‘E 2*v +rs+(f)’})=op(l)

indicate how we need to modify that proof in order to get the result. We need to streghten 

propositions 1, 3 and 4 so that for some <5>0:
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— E  "5 +f—V}) , (4)
n h  i \ n )

Re^ E  (AjiXpJiXpA^X) = 0 , ( 0 ’V  ̂  +OT -« J }) (5)

and

^ E  K < ip -A JO .}* .\p \2=op(X2m1H‘[rn -» +(^ )'}>  (6)

and the same results hold for the imaginary parts in (4) and (5). In order to prove (4) recall 

(A4.1.1), now:

'■=0(-E Xi +X* )=«((—) )

while (A4.1.2) is

for some 6>0 .

In order to prove (5) recall (A4.3.1) and using C6.3:

for some i>>0, so that

-2

tf> |-O ,0 i2" )

-2

/A  a a ' m' t o '  m 

while in (A4.3.2) using C6.1 we get that

ft

and in (A4.3.3) we have:

a r - 0( ( - y £ H‘ ~HP
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1 m 1 -H -H
“ “ rcN nl-E^y ‘ l'costXj\1=0 iFJ.Xm)mFbb(,Xm)lrlm -t’) n x

for some 5 >  0 so that

(2)=o(C *‘' * V ' 4+ ( - ) T}).
n

Now (6) follows immediately considering that (A4.4.1) is

op( £ 2H‘{m -*+ (^ y})
F n

as proved in Robinson (1994).

Once we have strengthened propositions 1, 3 and 4, (A6.1.3) follows straightforwardly 

following the same steps as in the proof of Theorem 4.1.
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Chapter 7

Conclusions

In this thesis we have examined semiparametric estimation procedures in the 

frequency domain for long-memory series. We have justified the semiparametric approach 

based on its robustness. A parametric approach, if the model has been correctly specified, 

can produce efficient estimates for H, but if not, it will lead to inconsistent estimates for H. 

The semiparametric approach is more general. We assume covariance stationarity and so, 

the spectral density belongs to Lu but the rest of the assumptions on the spectral density 

concern only a neighbourhood of zero; away from zero we don’t impose any smoothness or 

parametric behaviour. So, our estimates of H that are going to be a function of the ordinates 

of the periodogram that are close to the zero frequency, will be consistent estimates for H 

irrespectively of the short run behaviour of the process.

We have analyzed mainly two estimates, the averaged periodogram estimate (APE) 

and a quasi maximum likelihood estimate (QMLE). The most used in the applied literature 

has been the log-periodogram estimate (LPE). The comparison between the different 

semiparametric estimates has to be done according to several criteria. These include not only 

theoretical considerations ( under what degree of strictness in our assumptions we get 

asymptotic normality, which estimate has less variance...) but also implementation problems 

( how immediate it is to get the estimates). With respect to the first criterion, the QMLE 

looks clearly as the best estimate. While we need to assume Gaussianity in the LPE or in the 

APE in order to achieve asymptotic normality, we do not need to impose it in the QMLE.
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In fact, finiteness of fourth moments is enough. Another drawback of the APE was the 

discontinuity of the asymptotic theory around H =3/4. We only got asymptotic normality 

when H E  (1/2,3/4). A shortcoming of LPE is the necessity of choosing a trimming number 

1 because about its optimality nothing is known so far. If we compare the variance of the 

asymptotic distribution in the univariate case we get that if we choose the optimal q for 

every H, with H E (1/2,3/4), then APE will provide the estimate with less variance (e.g., 

H =0.7 , q*=0.4, variance=0.08); while LPE will provide the largest (e.g. with J = l ,  

variance=0.411). In general, QMLE provides the most straightforward way of making 

inference, the asymptotic variance of this estimate being 0.25. With respect to the second 

consideration all the estimates are not difficult to implement, although LPE is particularly 

straightforward as it just reduces to OLS.

In a multivariate framework we appreciate a clear superiority of the QMLE and LPE 

to the APE . The multivariate version of the QMLE has been analyzed in chapter 5 while 

Robinson (1992) analyzed the LPE in a multivariate setup. But we haven’t obtained the 

asymptotic distribution of multivariate APE because the difficulty of the univariate case 

suggests that the multivariate analysis has to be almost intractable.

So far we have discussed the different semiparametric procedures to estimate H. In 

chapter 6 we have seen an extension of these procedures to derive a Lagrange multiplier test 

for 1(0), i.e., weak dependence. This is an important issue for economic policy. Much 

applied econometric assumes that economic time series have basically two components: a 

secular or trend component that accounts for the main institutional or technological factors 

underlying the economy, this trend can be stochastic or deterministic, and, a random
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component that superimposes this trend. This random component is assumed to have 

negligible influence in the long run. By this we mean that, if the series, because of some 

external factors, is moved away from its trend, there exist some mechanisms in the economy 

that will push the series to the trend until it is reached again. The standard econometric 

literature assumes that this stationary random component is weak dependent. In economic 

terms, this means that this adjustment process we have discussed above is fast.

It is very important from an economic policy point of view to determine if this 

adjustment is fast or slow. Economic policy has been classified in two main groups: 

structural policy that attempts to modify the trends, and stabilization policy that has a short 

run impact and mainly tries to accelerate the adjustment processes commented above. 

Stabilization policy is more seriously justified if the random component is not weak 

dependent than in the other case. If a series is weak dependent it means that any 

disequilibrium situation will be transitory and in a short time the series will reach its trending 

value, so the role of economic policy is minor. On the other hand, if the random component 

is not weak dependent then, even though eventually the series will get back to its trending 

value, this adjustment will be very slow and policy intervention to try to speed up this 

adjustment process can be justified.

With the test we have developed we can attempt to answer that question. The problem 

with real series is that usually the number of observations available is very limited and it is 

not clear that semiparametric procedures will be really informative. On the other hand 

financial series available are longer and semiparametric procedures are more adequate. This 

is why we have applied the LM test and the QMLE to some exchange rate data.
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We have tested the efficiency hypothesis and we didn’t reject it. Then we looked for 

evidence of long memory in the square of the first differences of the exchange rate series and 

we found an overwhelming evidence. This can be interpreted as some sort of long memory 

in the volatility of exchange rates. This result has important implications for financial 

analysts. Being able to forecast the volatility better than the market can lead to substantial 

monetary profits by means of "straddles". These deals consist on selling simultaneously put 

options (conferring a right to sell) and call options ( a right to buy) if you think that the 

volatility is going to be less than what the market predicts and buying simultaneously put and 

call options if you anticipate greater volatility than the market.
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