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Abstract

This thesis examines some statistical procedures in the frequency domain 10 analyze
long-memory series.

We define a long-memory series and review part of the literature. Then we proceed
by analyzing different estimation procedures for H, the parameter that characicrizes the
existence of long-memory.

Parametric estimates have as a main drawback that they can lead to inconsistent
estimates of H if the parametric model is misspecified. Therefore we focus on
semiparametric estimates in the frequency domain. In our case, semiparametric means that
we only need to assume a parametric model for the spectral density in a neighbourhood of
zero frequency.

We focus mainly on a multivariate framework. First we analyze estimates based on
the average periodogram. We prove the consistency of the average cross-periodogram for
the cumulative cross-spectrum. We also establish the asymptotic distribution in the scalar
case. Then we focus on an implicit estimate based on a discrete approximation of the
Gaussian likelihood in a neighbourhood of zero frequency. We prove the consistency and
asymptotic normality of this estimate. Based on this estimate we establish z Lagrange
multiplier test for weak dependence.

We finish with an application of these methods to financial data.
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Chapter 1

General Introduction

1.1 Introduction

ARIMA' modelling has been used extensiﬂzely in applied econometric work with time
series data during the last twenty years. Basically, ARIMA analysis removes the
nonstationary component of a series by taking a suitable number of differences and explains
the stationary component by an ARMA model. Apart from the arguable way of analyzing
the nonstationary component, a drawback of this procedure is the limitation of ARMA
models to characterize stationary processes.

The Wold decomposition theorem states that any covariance stationary stochastic
process can be decomposed as &e sum of two uncorrelated processes, one that can be

predicted from its own past with zero prediction variance and one that can be expressed as:

x:=§ wjet-j , (1.1.1)
]=

where ¢, is white noise, E¢,=0, Eee, =0 for t=s, 0 otherwise, with ,=1 and E ‘pj?<oo )
j=0

As a model, (1.1.1) possesses infinitely many parameters so it cannot be estimated

from a finite sample. Box-Jenkins’ justification of ARMA models was to approximate (1.1.1)

by an ARMA model:
p q
Z ¢fx"i=z wjet-j ’ (1.1.2)
Jj=0 j=0

'ARIMA stands for autoregressive integrated moving average and ARMA for
autoregressive moving average.



where (1.1.2) is a parsimonious representation of (1.1.1).

But ARMA models are not general enough to include any covariance stationary
process. In fact, an ARMA model can only reflect a process whose autocovariances,
eventually, decay exponentially®. This is an important limitation of this kind of model, it
cannot reflect an eventual hyperbolic decay of the autocovariances, for instance. In fact, this
slow hyperbolic decay is a feature of some long-memory models. Long-memory models are
a wide class of time series models, in this thesis we will focus on analyzing covariance
stationary long-memory models.

In this chapter we will define and show examples of long-memory models and then,
we will review some of the literature concerning these processes.

1.2 Definitions

Let x, be a covariance stationary stochastic process with mean g and autocovariances

7;, that is:
p=Ex, , v=E(x -p)x,, 1)

and assume it has a spectral density function f(\) defined by:

v;= f AA)cosiAdA.

Introduce® also condition 1.A:

fN~C AV g5 A-0", C>0, O<H<l, H#1/2 1.2.1)

’In an ARMA model the eventual behaviour of the autocovariances is determined by a
stable finite order difference equation, Yule-Walker, whose solution is a linear combination
of exponentials. :

*Where the symbol ~ means that, as A>0*, the ratio of the left hand side (LHS),f(\),
and the right hand side (RHS), C; A%, tends to 1.

9



and condition 1.B:
v,~C, JH2, as joe, |C,l<=, O<H<1 , H#1/2. (1.2.2)

We say that x, has long-memory, broadly speaking, when condition 1.A or condition
1.B are satisfied. Other names used in the literature instead of long-r;_‘nemory are long-range
dependence and strong dependence.

These definitions include two different cases: a) when H& (1/2,1) and b) when
HE (0,1/2). The first is called, strictly speaking, long-memory*, the spectral density will
tend to infinity as it is evaluated at frequencies approaching 0. In case b) the spectral density
will be zero at zero frequency, this case has been called antipersistent (Mandelbrot, 1969),
in practice it occurs when a series is overdifferenced. In (1.2.1) the case H=1/2 reflects the
usual weakly dependent case in which the spectral density of x, at zero frequency is bounded
and bounded away from zero. In this case we write x,~1(0). We need H<1 in order to have
covariance stationarity®.

Conditions 1.A and 1.B are not always equivalent but if 1/2<H<1 and if we

suppose that «; are quasi-monotonically convergent to zero, i.e., for some B=0:

“In’ this situation we have that, either condition 1.A or condition 1.B, imply condition
LG

Z IYj|=°° s
j=0

this condition has been used as a definition of long-memory also.

SWe can see that the spectral density is only integrable, and therefore, the variance is
defined, if H<1:
2-2H

® € T € Ce
ff(l)dl=fj(l)dl+ j(l)dA=C+fC1)."2”dA=C+ I <o,
o 0 0 2-2H

€

if H<1, as e approaches to zero.

10



ymsyn(u-g) for all n>nyB) (1.2.3)

then (1.2.1) and (1.2.2) are satisfied with:

C,= L

c,
2F(2H~2)COS(M)

This is a particular case of theorem III-14 in Yong (1974) where a proof can be found.

1.3 Examples of Long-Memory

In this section we analyze the most studied examples of long-memory: the fractional
Gaussian noise and the fractional ARIMA.

A) Fractional Gaussian noise. This has been analyzed in Mandelbrot and Van Ness (1968)

and Sinai (1976). It is a Gaussian stochastic process with zero mean and autocovariances:

Ex?
v (12 e -1 )
so that, as j=o0, v;~Kj*™? , where K=H(2H-1)Ex?, the spectral density is:

. bt 1
]‘(A.)=c|e“—l|2 _—
P |4 +2mj 21

with ¢ some positive finite constant, so for low frequencies:
f)~cAT™H a5 2-0" .
This process can be derived in the following way: denote by Z(t) a Gaussian

continuous self-similar process®, with parameter H and with stationary increments’, this

This means that, for any a>0 and any t,,...,t,, the joint distribution of Z(t,),...,Z(t,)
is the same as a™ times the joint distribution of Z(at,),...Z(at,).

"That is, the finite-dimensional distributions of {Z(t+s)-Z(t)} do not depend on s.

11



process is called a Fractional Brownian Motion, then the 1-step increments, x,=Z(t+1)-Z(t)
with t integer, follows a fractional Gaussian noise.

B) Fractional ARIMA. This has been studied in Granger and Joyeux (1980) and Hosking
(1981). It is a generalization of-ARIMA models. Instead of considering d an integer we
allow it to be fractional in:

d@)(1-Ly’x,=6(L)e, ,

where L is the lag operator ( Lx,=x,,), ¢ is a white noise process and
o(L)=1-¢,L-d,L*..-d L? and O(L)=1+6,L+6,L%+...+6 L?
have all zeros outside the unit circle. We say that x, is integrated of order d and denote it by

x,~I(d). The expression (1-L)? is defined by the binomial expansion:

(1-Ly=y" =L/, (1.3.1)
j=0
where
s ] 1o
;= L) gk d, j=0,1,2..., 1.3.2)
FG+DI(-d) 1 k

where I'( ) is the gamma function:

I'(x) =1

xT'(1+x) x<0 .
The fractional Gaussian noise characterizes all the autocorrelations by just one

parameter, H. This is a drawback in empirical applications, where we would prefer to model
the short run behaviour with more flexibility. Fractional ARIMA allows this, because the

eventual behaviour of the autocovariances is determined by d, which corresponds to H-1/2,

12



but the short run behaviour can be modelled with an ARMA process.

We consider first the properties of a fractional ARIMA(0,d,0). Then:

o l' -
x=(1-L)7%, , ie., x=Y, Ve, ;» where =1 k ’1{+d
j=0 k=1

will be properly defined ( have finite variance) when

Y <o ; (1.3.3)
Jj=0

using Sterling’s formula we can approximate y; by:

1 .4
——J
I'd)
so (1.3.3) will be equivalent to d<1/2.

Similarly we will have an infinite autoregressive representation:

E X ;=€ »

Jj=0
with the coefficients defined in (1.3.2) when

> wice,
j=0

and this corresponds with d>-1/2.

Therefore the process x, is covariance stationary and invertible when -1/2<d<1/2;

we assume that this is the case. The autocovariances satisfy:
Y;~C;j% as joeo, where C,=T(1-2d)sinnd ,
T
and the spectral density is:

2 . 2 by
N=——|1-e*¥=2_(2sinZ)* |
™=l [#=2@sin2)

SO

13



o2
fA)~—A4 | g5 A-0".
2n
Similarly for a fractional ARIMA(p,d,q):

ijc“jm_l , as j-e,

for C.a positive finite constant when d >0 and a negative finite constant when d <0, and

2 -idy |2 _ 2 2
=2 1O€CTI 1 vz a2 | g5 200, with k=280
: 2% |g(e M2 27 §(1)?

As 1-D*=(1-1"1-D)*  with n integer and d, €(-1/2,1/2) for any d, real, it is
interesting to analyze the properties of a fractional ARIMA with d€ (-1/2,1/2).

So far we have only analyzed the univariate case. The multivariate case is very
relevant in order to analyze the interrelationships between different variables. For instance,
we can have series with different short correlation structure, but with a similar correlation
pattern for higher lags, i.e., with the same H; in this case we can estimate more efficiently
this parameter if we take into account the cross-information. In several disciplines, e.g.
€conomics, it is interesting to analyze the impact ( both, in the short and in the long run, and
the way it happens) that some variables have on others. For example, this can be relevant
in terms of economic policy. In general, if we try to build a model of several variables, it
is crucial to study the co-movements of these variables.

The extension of the preceding definitions and models to the multivariate framework
is not difficult. We assume that the conditions that characterize the long memory behaviour
are fulfilled foi' every series, i.e., if we consider an r-dimensional vector process and a is

the typical series (a=1,...r) and we assume that its spectral density exists and denote it by

14



f.(M\) and by +;* its autocovariance at lag j:

L 0)-g, A7 as 20", g,>0 for a-=l,.r,
Yj ~ KajZH"z, as j-w, for a=l,.r,

g.. and K, denoting general constants and H,E(0,1), H, # 1/2. In chapter 4 we will introduce
carefully our multivariate framework. _

When analyzing a mu{ﬁvaﬁate fractional ARIMA one consideration worth noticing
is that, while in the univariate case the models®:

D dD(A-L)%x,=6(L)e,

and

aD (1-LYLx,~6(L)e,

‘are equivalent, in the sense that the general linear process that both models implied are the

same:
@: xfz bljez-j ’
j=0
(D: x,=)" bye, ,
7=
with {b;;} ={b,}, in the multivariate framework this does not happen. The models:

O(L) diag{(1-L)*}X,=8(L)e,

and

$Where we assume the necessary conditions for identification, in particular, ¢(L) and
6(L) have all their roots outside the unit circle.

15



diag{(1-1)*} @(L)X =6(L)e,

are not equivalent. Consider, for instance, a simple example®:
o: (0@ euOa-n% o Vx| fe
| ¢21(L) ¢12(L) 0 (I_L)dz x| €, ?
{an: a-ny* o J¢ud D) x, |
"o a-0p2)¢uaD  opD)xy) &)’
then we can express xy, in (I) as:

(4’1 1(L)¢72(L) —¢12(L) ¢21(L))(1 -L)dlxu:(bzz(l')en +¢12(L)€2;
and in (II) as:

(61D -0, Dby D)1 -1 %, =6, (L)1 -L) %€, +¢,,(L)(A-L)e,, ,
so, only if d,=d,, models (I) and (II) are equivalent.

In case (I) we have that x,,~I(d,) and x,,~ I(d,), while in case (II): x,,~I(d,) if d, <d,
and ¢,,(1)#0 and x,,~I(d,) otherwise, while x,~1I(d,) when d,<d; and ¢,(1)#0 and
X5~ I(d,) otherwise.

These considerations are relevant when analyzing the subject of fractional
cointegration'®. In chapter 4 we will give further insight in these representations, but the
subject of fractional cointegration is not in the scope of this thesis.

What is important to stress is that the multivariate framework provides a more
detailed insight of the properties and behaviour of stochastic processes than a univariate

framework and this is why much of this thesis will focus on it.

*Where we assume the necessary conditions for identification, see Hannan (1976), one
of them is that all the roots of | $(L) | are outside the unit circle.

10 That is, when a linear combination of the series possesses an order of integration that
is less than the maximum of the different orders of integration of the original series.

16



1.4 Review of the Literature

The long-memory phenomenon has been noticed by applied statisticians in several
fields for a long time. Two main areas, in which it has been detected, has been hydrology
and economics, but there are references for biology, geophysics and meteorology in
Mandelbrot and Wallis (1969), agriculture in Whittle (1962) just to cite a few. In hydrology,
Hurst (1951) analyzed the flow of the river Nile and proposed the widely used R/S statistic
to detect long-memory. In economics, Mandelbrot (1969) and Granger (1966) are earlier
references. Granger called the "typical spectral shape" of an economic variable to a spectrum
that exhibits a comparatively high mass close to the zero frequency. Robinson (1994¢) and
Beran (1994) provide an extensive bibliography.

Although detection of the phenomenon was quite earlier, the formal analysis didn’t
start until much later, and it was linked in great part to the analysis of self-similar processes.
In this field, Taqqu (1985) and Vervaat (1987) are the usual references for the bibliography
up to 1987.

As the literature is very active in several directions this section does not pretend to
be comprehensive but will review some aspects on a few topics as justification, simulation,
generalizations, testing and convergence results with long-memory series to point out the
variety of results that can be found.

Long-memory models have been justified in terms of aggregation. Robinson (1978)
and Granger (1980) show that if individual series follow AR(1) processes:

x,=ox,  +u, , i=1,.N, t=1,..T,

then, the aggregate series:

17



x,=§ x,, t=1,.T,
i=1
will exhibit long-memory if, for instance, o; are drawn from a beta, B(p,q), distribution for
certain values of p and q.
A key feature of long-memory processes ( and whaf makes this literature
distinguished from the standard) is that, because these processes are not strong mixing, at

least with fast enough rates in the Gaussian case, the usual central limit theorem cannot

apply. Rosenblatt (1961) showed that for a specific long-memory Gaussian process x,,

L3 @1
n2H-157
does not converge to a normal variate for H in between 3/4 and 1.

Taqqu (1975), in a fundamental paper, analyzed the convergence in distribution of

properly normalized sums of functions of Gaussian long-memory processes as:

E G(x) . (1.4.1)
t=1
We state a basic result: "let { x;, j =1} be a stationary Gaussian sequence satisfying Ex, =0,
Ex;*=1 and" Exx;,,~LK&k*? as ko0, G( ) satisfies EG(x,), EG*(x;)< o and has

Hermite rank'? m, then:

' Where L( ) is a slowly varying function at infinity, that is a positive function so that

LER) 1 a5 k = w , for all 0.
70 |

12 The Hermite rank m is the minimum j for which ¢; is different to zero in the Hermite
expansion of G( ):

2 2
= S dl 5
S Hey, HE=(-1Ye 22 e 7
G(x) ,-Z;j! H() , Hx)=(-1Ye v

X

18



*if 1-12m<H<1:

d¥(n)=E(}. G(x))*-

j=1

(J(m) )2 n2(l -mnnH)L M(n)

m! ) (1-2m+2mH)(1-m+mH)
and

[n]

1 —
%;; G(x)=Z,. 0

where Z_m(z) has a complicated expression but for m=1 it is Fractional Brownian Motion and

for m=2 it is called the Rosenblatt process, see p.41;
*if 1/2< H< 1-1/2m then:

1 n
ﬁz G(x)~Z

j=1
where Z ~N(0,0,%) and

of=limn__,$ lzlj E[G(x)G(x)].”
=1 1=
There is a crucial point to notice. Convergence depends on m and H. They determine not
only if there is convergence to a Gaussian or non-Gaussian process but also the rate of
convergence that does not need to be n'2. In chapter 3 we will provide a result that even
though does not follow directly from these results, it is also evidence of this distinctive
behaviour.

Although most of the work done has assumed Gaussianity, this assumption has been
relaxed and there have been studies analyzing convergence of linear processes and of their
functionals, as (1.4.1) with x, linear, see Robinson (1994c). Rates of convergence can be

arbitrarily slow and in the functional case they will depend on H and on m, the rank in the

Appell expansion of G( ), where:

19



00 e
GW=Y 24 ,
j= J!
where A; are called Appell polynomials and are defined by':

oo j =
Y iam-——.

j0 J! E(e®)
We can have normal or nonnormal convergence depending on m and H. A review

of this results up to 1990 is Robinson (1994c).

In particular, as basis of statistical inference, a great deal of attention has been
focused in the convergence of quadratic forms; the main references are Giriatis and Surgialis
(1990) and Terrin and Taqqu (1991).

In the next chapter we will analyze the question of estimating H. Its importance is
twofold: H is the parameter that characterizes the long-memory behaviour and H may
appear in the rate of convergence of some statistics.

Adenstedt (1974) and Samarov and Taqqu (1987) analyze the relative efficiency of
ordinary least squares (OLS), compared with generalized least squares (GLS), in estimating
the mean of a long-memory process. They obtain that OLS is not asymptotically efficient,
but if H> 1/2 the loss of efficiency is quite small, while if H< 1/2 the loss can be bigger.

Yajima (1988) extends this result to the case of having a trend as a regressor and a
long-memory disturbance with H>> 1/2. In this situation the loss of efficiency is even greater.

Furthermore Yajima (1991) extends the result of Grenander (1954) and Grenander-

Rosenblatt (1957) about the relative efficiency of OLS, compared with GLS, in a regression

BAppell polynomials are the extension to non-Gaussian cases of Hermite polynomials;
if x is N(0,1) then the Appell are the Hermite Polynomials.

20



model where the disturbances exhibit long-memory. For regressors satisfying "Grenander’s
conditions"™ he shows that OLS will be asymptotically efficient if the spectral density of
the disturbance is constant on each element of the regression spectrum'®. The additional
restriction, with respect to Grenander’s case'S, is that the zero frequency is excluded in the
regression spectrum.

Because of the slow decay of the autocovariances, simulation of long-memory series
has turned out to be a difficult task.

McLeod and Hipel (1978) proposed to decompose the theoretical covariance matrix,
I, of the prccess that we want to simulate by Cholesky: I'=MM’, and then, filter a white
noise, e, to obtain a long-memory series y=Me.

Granger and Joyeux (1980) modified that method in the sense that, only the first 100

“Suppose z;, denotes the t-th observation of the j-th regressor, j=1,...,p, t=1,...,n;
denote also

d,?=213z,3, D=diag(d,,...d), Z={z,}, R=D7'Z'zD™,
t=
then, "Grenander’s conditions"are:

a) ag-'oo, for all j, as n-=,

lim max Izjtl_ .
b)n_m l<t<n -d—j—O , forallj,

olim __ R=R>0 .

15 The regression spectrum is the set of points \; where 0<\;<w,i=1,...p, for which
the spectral distribution function of the regressors jump.

%Grenander assumed that the spectral density of the disturbance was continuous and
positive at the zero frequency, and this rules out condition 1.A.
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values are obtained in that way and then, they use a truncated autoregression to obtain the

further values of a fractional ARIMA (0,d,0) series:

JotJ

100
Y w.x,_=e, , t=101,102,...
=0
where ; are given by (1.3.2).
Geweke and Porter-Hudak (1983) use the Levinson-Durbin-Whittle algorithm (that
uses the Cholesky decomposition of a Toeplitz matrix) to simulate long-memory series.
All these methods imply a high cost in computational time; a much faster approach,
that uses the fast Fourier transform (FFT), was proposed in the appendix of Davies-Harte
(1987).
The models we have seen in the previous section are very simple. There have been
generalizations worthy of mention. Taqqu (1987) examines a very general stochastic process

model:

M M
=Y, . Y f(dpdy-$,)AB(d)..AB(D,)
&=-M  $,=-M
with
b,20y%.. %0, ,

where AB, are white noise, a € (0,2) is the stability index of a stable distribution, f, is the
kernel that generates dependence by mixing the noises, and, f, with m control the degree of
nonlinearity. This model is very general and Taqqu ( 1987, p.9685) shows that fractional
Gaussian noise can be derived as a particular case.

Gray et al. (1989) analyze a generalization of fractional ARIMA processes proposed

by Hosking (1984):
dL)(1-2uL+LH* x,=6(L)e,
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using Gegenbauer’s polynomials'’. This model allows the singularity of the spectral density
to be at frequencies other than zero.
Long-memory has also been used to characterize second moments. Robinson (1991a)

extended autoregressive conditional heteroskedasticity models by the cases:

Vi |F)=(1+Y 6@} {o+Y &0} (1.4.2)
j=1 j=1
and
V(utlF,)=°2+5:f 0 0)(;-0?) (1.4.3)
=

where u, is the disturbance in a linear regression model and the coefficients ¢,(6) are
uniquely defined functions of the vector 6, such that ¢,(§) =0 for all j =1 if and only if §=0,
and ¢,(f) can decay slowly enough to allow for long memory and F, is the o-field of events
generated by u,, s<t. He uses Lagrange multiplier (LM) tests for the null hypothesis of no
dynamic conditional heteroskedasticity (§=0), i.e., V(u,|F)=¢® and obtains limiting
distributions. Baillie et al. (1993) and Harvey (1993) extend autoregressive conditionally
heteroscedasticity and stochastic volatility models, respectively, to allow for long-memory.
In particular Baillie et al. attempt to study the fractionally integrated generalized

autoregressive conditionally heteroscedasticity process:

UThat is, using:
(1-2uL+LH =Y cP@wL" ,
k=0
where
2]

2 \ n-2k
cPw=%" (-1 ¢ L(A+n-k) (2u)
()] Z;( )

T'(\)  ki(n-2k)!
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SLY(1-LYYy; =w+6(L)v, , (1.4.4)

where y, is a zero mean serially uncorrelated process, 0<d <1, the roots of ¢(L) and (L)
are outside the unit circle, w is a constant and
v,=yl-ol, E0|Q, )= .
Notice that when w=0 (1.4.4) is a special case of (1.4.2) or (1.4.3). Harvey’s model is:
Y,=0g,, €,~1ID(0,1) , t=1,2...,
o;=o%xp(h) , (1-L)*h,=n,, n,~NID(0,5>) .

These models may be particular relevant when analyzing financial data.

Robinson (1991b) compares a nonparametric kernel estimate of the probability
density function under both weak and strong dependence, from a theoretical point of view,
and also provides Monte Carlo evidence. He finds that in the long-memory case rates of
convergence of the estimates are slower than in the weak dependent case and that in the
strong dependent case, estimates evaluated at two different points are perfectly correlated.
Monte Carlo evidence confirms this, showing that when the positive strong dependence is
high the performance of the €stimates is very poor. He also analyzes the optimal bandwidth
question. He finds that, depending on the values of H, the properties that hold under weak
dependence may continue to hold. But, if the dependence is strong enough, then the usual
results are invalidated. Cheng and Robinson (1990) and Hall and Hart (1989) extend these
results.

Testing with long-memory series is an area of research that is receiving a growing
attention. Robinson (1994d) establishes a very general framework in which many long-

memory as well as nonstationary models can be considered as null or alternative hypothesis.
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The general model he uses is:

p(L,O)x,=u, ,

where x, can be the residuals of a regression model and

p(L,0)=(1-L)""%(1 +L)*2*"2_I"I3 (1-2cosw L+LH"™
j=
for given 7,, ¥,,...7s; the null hypothesis is'®:
H,:6,=6,=...=6,=0 .
Using Lagrange multiplier tests in the frequency domain, he proves that asymptotic
distributions are x? , in contrast with much of the literature on unit root testing that end up
with non-standard distributions. These tests are carried out in the frequency domain®.
More popular among applied econometricians are tests in the time domain. Robinson (1991a)
proposes a simple LM test for a null hypothesis of absence of any autocorrelation. The

alternatives are of the class:

x‘=il: $;(0)x,_;+u,
and the ¢;(6) have been defined in p.23 Jand can decay slowly enough to allow for strongly
autocorrelated alternatives. Agiakloglou and Newbold (1994) examine LM tests of
ARMA(p,q) against fractional ARIMA(p,d,q) alternatives. They show that the tests will have
low power when the orders (p,q) are over-specified.

Beran (1992) analyzes for long-memory series a goodness-of-fit test, proposed by

18 Some of the null hypothesis that are include are: a unit root (o(L)=1-L), quarterly unit
root (p(L)=1-L%, "1/f" noise (p(L)=(1-L)!?), etc.

'Although they could be performed in the time domain.
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Milhoj (1981) in the frequency domain. This test is an extension of the Box-Pierce (1970)

statistic when one takes into account all the computable correlations. The asymptotic

distribution under the null hypothesis is the same as in the weakly dependent case.
Hidalgo and Robinson (1993) analyze a Wald test for structural break at a known

time 7 in a linear regression model:

, B, t=12...t
y,=[5,x,+u, B'={ﬁ2 =t +1,...T N

with u, being a Gaussian long-memory series. The usual structural break tests based on u,
being weakly dependent will not hold.

Analysis of prediction with long-memory series has focused on fractional ARIMA
models. Compared with ARIMA forecasting, the additional problem is that (1-L)? has to be
truncated for a finite series. Ray (1993) approximates a fractional ARIMA(0,d,0) with an
AR(p). Pieris and Perera (1988) provides useful formulae while Porter-Hudak (1990) shows
with a monetary series that a seasonal fractional model forecasts better than, the widely

applied, ARIMA *“airline” model.
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Chapter 2

Estimation of H

2.1 Introduction

In this chapter we analyze the different procedures used to estir'nate H, the parameter
that characterizes the presence of long-memory in a series. As we have seen previously, this
is an important issue, not only because H reflects the degree of strong dependence in a
series, but also because rates of convergence of some statistics that are relevant for statistical
inference depend on H.

There have been basically two main approaches. The first one is a parametric
approach, in which we specify and estimate a parametric model in which H is just one more
parameter. The second one is a semiparametric approach, in which we focus on estimating
H based on the definition of long-memory, i.e., based on either (1.2.1) or (1.2.2). This
implies using estimates of the spectral density in a neighbourhood of the zero frequency, or,
using estimates of the autocovariances of long lags only.

Before focusing in the semiparametric approach, we will review briefly the parametric
approach.

2.2 Parametric estimates

H is estimated jointly with all the other parameters that specify the model. The
analysis can be carried out in the frequency or in the time domain. In the former one it is
assumed that the spectral density is known, up to a certain parameter vector § (HE 6): f(A,6),

with ANE (-, 7], 0€0, 6, is supposed to be the true value, and the estimation procedure

27



consists in estimating 6 by some maximum likelihood method.
Fox and Taqqu (1986) assumed Gaussianity of the process, and minimized the Whittle

function ( an approximation to the exact likelihood function):

()
— f (1 0gfA,0)+ o)

where I(M) is the periodogram of the process x, evaluated at frequency A:

b

I().)=—|Exe""|2 ” 2.2.1)
2nn a
Sowell (1992) analyses the maximum likelihood estimates of the parameters of a

univariate fractional ARIMA. There is a limitation in his procedure: the roots of the AR

polynomial cannot be multiple.

Dahlhaus (1989) also assumes Gaussianity but considers the exact likelihood function
and minimizes:
—log| T, (RO | +——(x, - Y T, RO (2, ~1,)
2n n 2n n n n n n

where T, (f( 0)) is a nxn matrix with (r,s) element:

T, 000} = f Ar,0)e ) for rs=1,.n,
(rs) %
U, estimates consistently the mean u, and n denotes the sample size.
Dahlhaus (1989) proves the asymptotic efficiency of both MLE estimates, i.e., their
asymptotic variance is the inverse of the information matrix (I'(6,)):
Vn(®-69)~ NOT(B)™) -
Giriatis and Surgailis (1990) relax the Gaussianity assumption and analyze the Whittle

estimate for linear processes. Asymptotic normality is achieved, but the estimate is no longer
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asymptotically efficient.
It is worth to pointing out that these parametric estimates have the same asymptotic
properties as in the weakly dependent case: the rate of convergence is n'? and, in the

Gaussian case, will achieve asymptotic efficiency.

2.3 Semiparametric estimates

If our main interest is the estimation of H then a parametric approach ( that will
produce consistent and efficient estimates if the parameterization is right, but inconsistent
estimates if the parameterization is not correct) may not be desirable. We prefer to guarantee
consistency of our estimates at the expense of losing efficiency. This is the justification of
the "semiparametric"' approach. In this approach, we restrict our attention to the long-
memory features of the series, i.e., the behaviour of the spectral density function (sdf,
hereafter) close to the zero frequency, or the behaviour of the autocovariances for long lags
only. In particular, if we work in the frequency domain, we will assume that the sdf ( apart
of being integrable due to covariance stationarity) behaves as (1.2.1), i.e., we only assume
that we know the form of the sdf in a neighbourhood of zero. This is the definition of long-
memory in the frequency domain and it is the only assumption on the spectral density
function we want to make so far. It is important to stress the generality of this approach: we
are allowing, practically, any behaviour of the process in the short run because we are not
imposing any restriction ( apart from integrability) on the sdf away from the zero frequency.

In order to implement the semiparametric approach in the frequency domajn, we need

'Robinson(1994) introduced this terminology.
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to define a bandwidth parameter, m, so that A, =2xm/n is going to be the highest frequency
at which we are going to evaluate our estimates. We will need to assume that m tends to
infinity, but siowly compared with n, so that, A, tends to O as n tends to infinity.

In the time domain we can carry out the semiparametric approach in the following
way: we define a bandwidth number p and we assume that the relation:y;=Cj**? holds for
j=n-p, n-p+1,...n-1, i.e., it will be valid only for the p higher autocovariances. Similarly,
to achieve consistency we will need to impose that p tends to infinity but slowly compared
with n, so that p/n tends to zero.

As our estimates will be based in m(p) pieces of information, and m/n-0 (p/n—0),
these estimates will be inefficient compared with the parametric estimates of the previous
section. In fact, the asymptotic efficiency will be zero, but this is the cost we have to pay
in order to ensure that our estimates of H will be consistent under any unknown short-run

behaviour of the process.

2.3.1 Semiparametric estimates in the time domain

Before considering the semiparametric estimates we mention the first estimate

proposed (Hurst, 1951) that is a nonparametric one and it is based on the R/S statistic:
max 4 -, min / -
1<j<n 1z=1: (xf_xn)-lsjsn ; &%)

1 n 12
(-E (x‘_i‘")Z)
Ny

The specific estimate of H, Mandelbrot-Wallis(1969), is given by:

log(R/S)
logn
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Its properties has been analyzed in Mandelbrot-Wallis (1969), Mandelbrot (1972, 1975) and
Mandelbrot-Taqqu (1979). Beran (1994) provides a neat explanation of the way to implement
the R/S procedure. Apart from its complication it is not clear the efficiency of this estimate.
Lo (1991) mQ'fliﬁc?s the R/S statistic to be robust to weak dependence.

Robinson (1994c¢) has proposed two semiparametric estimates:
- the first one can be motivated by assuming that the autocovariances will eventually be
positive ( as it happens in the fractional ARIMA with d>0) and taking logarithms in:

Y,~Cj*? = logy;~logC+(2H-2)logj .

We can estimate it by OLS and this gives:

n-1
Y logi(logj-log) e
ﬁl=1+j=""’"_l , logj==~ E logj .
2 Y (logi-logj)? g
j=n-p

The main drawback of this estimate is that it will only be defined if:
?J>0 for j=n-p,n-p+l,.n-1;
- the second one is a minimum distance estimate; it is defined implicitly by:

n-1

@, C)=arg ming ¥, §,-G/H 2,

j=n-p

where O={H€E (0,1) ; CER]}.
The properties of these estimates are not known yet. Delgado and Robinson (1994) provide
some evidence about the behaviour of these estimates with Spanish inflation data.

Most of the recent studies instead of analyzing estimates in the time domain have

focused in the frequency domain.
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2.3.2 Semiparametric estimates in the frequency domain

These estimates are based on the long-memory definition in the frequency domain
(1.2.1) and the basic idea is to use any estimation procedure in the frequency domain,
limited to frequencies close to zero, and replacing the sdf by its estimate (e.g. periodogram).
We are going to review three:

I) The log-periodogram estimate (LPE) was proposed by Geweke-Porter-Hudak (1983), GPH
hereafter, and modified by Kiinsch (1986) and Robinson (1992). We can motivate it by
looking at the sdf of a fractional ARIMA(0,d,0):

(1-Ly,=u, ,

where vy, is stationary with sdf
2
ag
Zf,
21:":‘( )
and f,(\) is bounded and bounded away from zero at A=0. Then the sdf of x, is:

ﬂl)——(2sm2) £,

i.e.,

logfiA)= log[—f (0))—2dlo 231n—)+1 ) )
2 £0)

introducing the periodogram into this:

2 1) fd)

and we focus on Fourier frequencies close to zero:

logI(A)=lo —f(O)) 2dlo 2sm—)l A )] 1og(’<l))
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=2 icl,m and -0,
n n

so that we can consider log(f,(\)/f,(0)) negligible’. Robinson (1992) also simplifies, using
A instead of 2sin(\/2) and we finish with a regression model like:
logI(lj)=C—2dlog).j+ej , (%)
where
I(A)

)
The estimate of d is just the OLS estimate of d in (*). Unfortunately it has not been

C-log[ziij;(O)] , ej=log[ ].
proved that this estimate is consistent for d. The reason is the distinctive behaviour of the
normalized periodogram for frequencies very close to zero. Kiinsch (1986), Robinson (1992)
and Hurvich-Beltrao (1993) show that for j fixed the expectation and variance of I(\;)/f(\))
depend on j while the covariance of I(\)/f();) and I(A)/f(\,) depends on j and k. Robinson
(1992) modifies the former regression introducing 2 modifications:
- use a pooled periodogram instead of the raw periodogram,
- in order to avoid the inconsistency problem mentioned above: introduce a trimming number
1, so that frequencies \;=27j/n, j=1,..1, are excluded from the regression, where 1 tends to
infinity slower than m, so that I/m tends to zero.

So, the final regression model is:

Y =c¥-2dloga, +U

where

2 Agiakloglou et al. (1993) warn about the bias ( that can be quite severe in finite
samples) of this procedure when the weak dependent component of the series has relatively
high ( or low) mass around zero.
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J
ij)=log[z; I, )1, k=l+J0+2],.m .
=
J controls the pooling (J=1,2..) and 1 controls the trimming (J=1, 1=0 is the GPH case).
Assuming Gaussianity Robinson proves the consistency and asymptotic normality of

this estimate in a multivariate framework. The asymptotic covariance matrix has a

complicated expression for the off-diagonal elements while the diagonal elements satisfy:

Jm@d®-a-, N(O%qu’w) :

where ¥’ is the derivative of the digamma function:

d
x)=—logl'(x) ,
V() = gl'(x)
I'() is the gamma function that we have seen in chapter 1. The asymptotic variance takes
values:1.645/4, 1.289/4, 1.185/4 for J=1,2,3 respectively.

IT) The averaged periodogram estimate (APE) was proposed by Robinson (1994a). The basic

idea is to look at the cumulative spectral density evaluated at two points close to the origin,

A and qA:
A d A 120 CAZ—ZH CqZ-ZIlAZ—ZH
F(L)=|R0)do~[C 6 do= , F(g\)~——"——,
) {f( ) { o Fan-——
then
lo F(q})
Fg?) ~q* % | e , H~1- ( F(}) )
F(A) 2logg

suggesting the estimate:

. log(F(qr )F(A
foLoelfar kG y 2mm o my
n

2logq n
with € (0,1) and F(),m) is defined in section 3.3. Robinson proved the consistency of this
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estimate under very mild conditions. In chapter 3 we will analyze this estimate with more
detail. In particular we will look under what conditions we can achieve asymptotic normality.
IIT) Quasi maximum likelihood estimate (QMLE). It is analyzed in the univariate case in
Robinson (1993a). This estimate is basically a "Whittle estimate" in the frequency domain |

considering a band of frequencies that degenerates to zero. Instead of minimizing:

i=1

" I0.)
2 (lom”e) +f(l,.,e))’

the objective function? is:

1 1-2m,  IA)
C,H)=—) |log[CA; ]+ ;
Q(C.H) m;[og ;] cx}"”]

we can concentrate C out and get:

H-arg min,R(H), R(H)=logC(H)-QH-1)~Y logh, ,
mj=1

where A =(0,1) and

C)=L3 1022 .
m j=1
Under finiteness of the fourth moment and other conditions Robinson (1993a) proves the

asymptotic normality of this estimate:

N 1
VmH-H)=4 NO,7) -
Note that the asymptotic variance is lower than that of the LPE. In chapter 5 we will analyze

this estimate in a multivariate set up.

*Consider f(\,6) as CA"2H,
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To summarize, the comparison between the semiparametric and the parametric
approach can be seen as a question of priorities. The parametric approach leads to n'?-
consistent estimates while the semiparametric only achieve m'2-consistency. Asymptotically,
the latter are inefficient compared with the former. The advantage of the semiparametric
estimates is their robustness.

It is important to stress the generality of the semiparametric approach. The conditions
on the spectral density we impose are mild and restricted to a neighbourhood of the zero
frequency. We assume that the process has finite variance and so the spectral density belongs
to L,, i.e., it is integrable. In order to develop the theory we will need to assume some
degree of smoothness or differentiability of the spectral density on a neighbourhood of the
zero frequency. But away from zero frequency no assumptions whatsoever will be imposed.
In most of our analysis we will not demand the spectral density to be in L, for any p>1 and
we will not assume any degree of smoothness or parametric behaviour away from the zero
frequency. This is what makes the semiparametric approach relevant.

In the parametric approach, if the short run behaviour of the process is misspecified,
this will lead to inconsistency in the estimation of H; on the other hand the semiparametric
approach will proportionate consistent estimation of H under any short-run behaviour of the
process. As H is the parameter that characterizes the long-run behaviour of the process, its
consistent estimation should be of main interest.

A semiparametric estimate, on the other hand, can be used, as a first step, in the

estimation of a parametric (e.g. fractional ARIMA) model.
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Chapter 3

Analysis of the Averaged Periodogram Estimate

In this chapter we analyze the Averaged Periodogram Estimate (APE). In particular
in section 3.1 we state its consistency proved in Robinson (1994a) while in section 3.2 we
examine its asymptotic distribution. In section 3.3 we analyze some issues concerning

inference with this estimate. Finite sample behaviour is analyzed in section 3.4.

3.1 Consistency of the APE
The APE is proposed in Robinson (1994a). There he proves the consistency of this

estimate under very mild conditions; in particular under:
Condition A:

ftx)~u%)x””, as A-0", for H e(%,l);

Condition B: as n —oo,

_+_—OO'
m n

and Condition C:
2
xt—p+; e, 20: <o

where
() E(ee,)=0, t>u;

.. o e
(i) E(eeee):% if r a’, if r=s>t=u;

rostu =§>t>u, or r>s=t>u, or r>s>t>u, or r>s>t=u ;

(iii) there exists a non-negative random variable e such that for all >0 and some K<1:
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E(e)<x, P(le|>n)<KP(e>n);

I
(iv) =Y E(e}|e?, s<t)=, 6%, as n-e.
Ny=1

Condition A is a very general condition , where L( ) is a slowly varying function at
infinity. Note that H is restricted to be in between 1/2 and 1.

Condition B is the usual "semiparametric" condition: m are the number of ordinates
of the periodogram that we are going to use in the estimate, n is the sample size.

Condition C is satisfied when e, and e, 2 - ¢ are integrable martingale difference
sequences, that is, E(g,|F,.;) =0, E(e?|F.,)=0%, E(e}) < o, see Robinson (1994a).

This estimate poses several difficulties. As it depends on two user-chosen numbers,
q and m, it is important to give some criteria about these elections. Other issue that is crucial
in order to make statistical inference is to derive the asymptotic distribution of this estimate.
In particular to analyze under what circumstances asymptotic normality can be achieved. It
is relevant also to consider how this estimate performs in finite samples. These questions will

be addressed in the next three sections.

3.2 Asymptotic distribution
This issue is analyzed in Lobato and Robinson (1994). We have to distinguish

between 2 cases: when HE (1/2,3/4) and when HE (3/4,1). We can only obtain asymptotic
normality when HE (1/2,3/4). Heuristically we can invoke Hannan (1976) to motivate why.
Hannan analyzed a central limit theorem for a finite set of serial covariances of a linear

process with finite fourth moments. He proved that a necessary and sufficient condition to
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obtain asymptotic normality was that the spectral density of the process was square
integrable. This may happen when H€E (1/2,3/4) but not for HE (3/4,1).
In order to analyze the asymptotic distribution we introduce the following conditions:

C3.1: For some E_#0 and « €(0,2],

Y 1B 2%r0(0®), as A-07,
8(d)

where
g(l)=Cl"2”.
C3.2: For any 6€(0,1), A€ (1,),

sup N SFA-B)| _He L ~0*
-Adsusdr lufguh a0

@
)

:Asn—> oo,

C3.4: x, is a Gaussian process.
3.5: The autocovariances v; are quasi-monotonically convergent to zero, see expression

(1.2.3).

'Under

fA)~CATH | g5 A-0",
and assuming

L]

f Av)2dv=C;<e ,
A
A

© A 1
f (Av)2dv = f Av)2dv + f Rv)2dv=0(C,+C? f v 4E4y)=0(1 +C?
0 0 A 0

- if H<2
=0() if H<=.

13 -4H

340
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C3.1 introduces a rate in the bias of the spectral density.
C3.3 strengthens the condition on the bandwidth parameter m, implying that m tends to
infinity slower than n*?.
C3.5 is stronger than C3.2 ( see Robinson (1994b), lemma 8) and imposes a restriction on
f(A\) outside the neighbourhood of 0: f(A) —satisﬁes a Lipschitz condition of order 2-2H. Long-
memory at other frequencies apart from 0 is ruled out. Under C3.5: v;~Dj**? as j>o0,
where D=2CI'(2-2H)cos((1-H)«), see Yong (1974), p.71.

In theorem 3.1 we prove the asymptotic normality of the APE when HE (1/2,3/4).

In theorem 3.2 we analyze the asymptotic distribution when HE (3/4,1).

Theorem 3.1 Under C3.1, C3.2, C3.3 and C3.4, for HE (1/2,3/4),

q~'-2¢'* (1-Hy
(logg)* (3-4H) '

Vm(H-H)~ 3 NO,
Proof: see appendix 3.1.

Theorem 3.2 Under C3.1, C3.3, C3.4 and C3.5, for HE(3/4,1),

" _p2H-2 - - -
gy A7) A HNQA-H)cos((L-Hom)
089 @2n)

T is the random variable towards which T, converges in distribution, where T, is:

_($,-ES)-n(x-Ex,}

an-l

T

and S, is:

S”=E (x,—EJcl)2 .
t=1

The proof of theorem 3.2 is in appendix 3.2 at the end of the chapter. We denote by T the

random variable whose distribution is the limiting distribution of T, because we cannot
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provide a neat expression for it. We can employ the results in Taqqu (1975) to analyze the
limiting distributions of both components of T,. Lemma 3.1 and Proposition 6.1 in Taqqu
(1975) establish: " Let {x;} be a normalized stationary Gaussian sequence with zero mean
with ;=Exx;,;, j=1,2... and r;~Kj™ as j » oo, with «€(0,1/2), then:

2K 2-a .

".
?

a-1 K
where R is an stochastic process called "Rosenblatt” by Taqqu:

1 e
R= [ &
2I'(2(1 -H))cos((1-H)7) i(u,+u

where W is a complex-valued Gaussian white noise measure on R', and the integral is over

} |u,u, |2 RdW(u,)dW(u,),

R? except for the diagonals u;= Zu,.
In our case K=D, a=2-2H, so, we can deduce that:

1) the sample mean of x will have a normal distribution with mean Ex; and the variance will

be:
1 n n oH-2 D
— r, ~n Tt ——
nZiZ_,:jzﬂ: i HQ2H-1)
ie.:
- D
n1-B(x-Ex)-, NO,—————) ;
(x-Ex;)~, N( H(2H—1))
2) while:
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Y [(x-Ex)*-1]

(S,-ES,) i
Dn2H-1 Dn2H-1 ~a B
so both terms of T, converge in distribution:
S,-ES,
Dn2H-1 d
and
n(x-Ex,)? 1 5

pn#t ‘H@H-1)" °
but the variables are not asymptotically independent and so we cannot establish a neat

limiting distribution.

Theorems 1 and 2 show a discontinuity in the asymptotic distribution of the APE
around H=3/4. For HE(1/2,3/4) the asymptotic distribution is normal and statistical
inference can be performed ( even though the variance depends on q and H, and so, in order
to estimate the variance consistently, we need to substitute H by a consistent estimate). When
H€E (3/4,1) the asymptotic distribution is not normal, in fact it is a functional of a Rosenblatt
variate. As far as we know, this process is not tabulated and consequently, statistical
inference can not be performed in this situation. Of course, the possibility of tabulating this
process, and also the variate T, by Monte Carlo simulations could be considered. But it is

not clear how to proceed in this way and the exercise looks computationally very intensive.

.3 _Optimal m and
The problem of the optimal m is addressed in Robinson (1994b). The optimality

criterion that he proposes is to minimize the scaled mean squared error:
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where A,=27m/n and:

A,
ﬁ(xm)=2—:-j‘; 1), GO,)- { g@=—_227"
Under conditions similar to those we have seen in the previous section he obtains, see
Corollary 1 and Corollary 2 in Robinson (1994b), that the optimal bandwidths are:
* for HE (1/2, 3/4):

2a
m*=K (e, HE)n ™",

~ * for HE (3/4,1):

11
m*=K,(a,H,E Yn 22H=
Some comments worth to make about these results are: a) first, notice that the rate

depends on H when HE (3/4,1) but not in the other case; b) as

2a «
2¢+1) ( 2- H+a)
d [n >0, d\n >0,
do da

and as « controls the smoothness of the spectral density ( the bigger o the smoother the

spectrum), then the smoother the spectral density the bigger is the rate, i.e., we can increase

the number of periodogram ordinates we use; ¢) notice also that when HE (3/4,1)

«
d\n 2-2H+a

dH
i.e., the bigger H ( long-memory is stronger) the bigger the optimal rate, i.e., we need to

>0,
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increase the number of the ordinates of the periodogram we use?.
The question about the optimal q is examined in Lobato and Robinson (1994). It can

be addressed from two points of view. First we can use as a criterion function the mean

squared error of }?M , so that both components, bias and variance, are considered. There

is a substantial problem here, these formulae, apart of their complexity, involve unknown
quantities as « and E,. The second approach is a simpler one. It consists in just looking at
the variance of the limiting distribution when H€& (1/2,3/4); the factor in which q appears
is:

1+g-1-2¢12H

(logg)’
This expression has an unique minimum for every value of H and in table 3.1 these are

tabulated. When H€E (3/4,1) the factor that affects the limiting distribution is:

1- q 2H-2
logq

This function has a minimum as q approaches 1 and, therefore, nothing can be said about

the optimal q.

3.4 Finite sample behaviour
This is also analyzed in Lobato and Robinson (1994). We examine by a Monte Carlo

study the behaviour of the APE for series of size n=256. We have chosen this number

2When HE (1/2,3/4) we can appreciate a similar effect:
d K(@HE)

dH
and when H approaches 3/4, K,(o,H,E,) tends to infinity.

44



because it is representative of the minimum size of a series in which these semiparametric
methods can be applied. We have selected two bandwidth numbers, 32 and 64, and four
values of H, 0.55, 0.7, 0.8 and 0.95. The series are generated from a Gaussian fractional

noise with variance 1 and autocovariances given by:

v = e P21 4 i1 )
using the algorithm provided in the appendix of Davies-Harte (1987). We base all our results
in 10,000 replications.

In table 3.2 and figures 1 and 2 we examine the behaviour of this estimate for the
different values of H given q=0.5. First, it is clear that m=64 is a better choice than
m=32. The bias, the variance, the skewness and the kurtosis are smaller with m=64.
Another point to notice is that all the estimates present a negative bias, negative skewness
and some degree of kurtosis. All these features being more relevant as H increases. In fact,
for H=0.95, the bias and the kurtosis are especially severe. In general the normal
approximation for H=0.55 and H=0.7 does not look too bad, especially for H=0.55.

Table 3.3 and figures 3 to 10 examine the sensitivity to q. For H=0.55 and H=0.7
we analyze four values of q: 0.2,0.5,0.8 and the optimal value derived from table 3.1: 0.23
for H=0.55 and 0.4 for H=0.7. For H=0.8 and H=0.95 we report only the results for
three values of q: 0.2, 0.5 and 0.8. In every case we appreciate the same features we have
commented previously, negative bias and skewness and moderate kurtosis. It is intefesting
to notice the results for g=0.8. In this case the performance of the estimates is very poor,
especially for m=32. The variance of the estimates is more than twice the variance of the

estimates for the other values of q for H=0.55 and H=0.7. Even for the biggest values of
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H, q=0.8 is the worst election in terms of mean squared error, skewness and kurtosis. It is
also interesting to point that the optimal values of q for the cases H=0.55 and H=0.7, even
displaying slightly more bias than q=0.5, turn out to be effectively the best options in terms
of mean squared error. In general it can be said that the selection of q should not be crucial
and setting q=0.5 should be a reasonable selection.

In the cases when H=0.55 and H=0.70 we can compare the limiting variance with
the one derived for the optimal q. When H=0.55 the optimal q is 0.23 and the limiting
variance for m=32 is 0.0028 while with m=64 it is 0.0014, both are substantially lower than
the Monte Carlo result. If H=0.70 the optimal q is 0.40 and the limiting variance with
m=32 is 0.0026 while for m=64 is 0.0013. There is a significative reduction in the
divergence compared with the other case.

The APE has as main drawback its discontinuity in the asymptotic distribution. For
this reason we will use it as a testing tool instead of employing it as an estimating tool. This
will be done in chapter 6 in which we will apply the consistency of the cross-periodogram

as a tool for proving the consistency of a LM test for 1(0).
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TABLE 3.1

Optimal g and limiting variance

H Optimal g Limiting Variance
0.51 0.21 0.0949
0.52 0.21 0.0934
0.53 0.22 0.0918
0.54 0.22 0.0903
0.55 0.23 0.0888
0.56 0.23 0.0873
0.57 0.24 0.0859
0.58 0.25 0.0845
0.59 0.26 0.0831
0.60 0.26 0.0818
0.61 0.27 0.0806
0.62 0.28 0.0795
0.63 0.29 0.0786
0.64 0.30 0.0778
0.65 0.31 0.0772
0.66 0.33 0.0770
0.67 0.34 0.0771
0.68 0.36 0.0778
0.69 0.38 0.0794
0.70 0.40 0.0824
0.71 0.43 0.0876
0.72 0.47 0.0973
0.73 0.53 0.1178
0.74 0.62 0.1795
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TABLE 3.2

Summary statistics of ﬁlfor various m_and H for g=0.5

Mean Variance Skewness Kurtosis
H m: 32 64 32 64 32 64 32 64
0.55 .536 .546 .015 .007 ~.548 -.398 .388 .209 -
0.70 .666 .689 .010 .004 -.652 -.504 .578 .373
0.80 .742 .770 .007 .003 -.735 -.580 .748 .527
0.95 .838 .867 .004 .002 -.888 -.724 1.111 .875
TABLE 3.3
A
Summary statistics of H_for various m, g and H.
Mean Variance Skewness Kurtosis
H q m: 32 64 32 64 32 64 32 64
0.20 .502 .519 .014 .007 -.567 -.413 .485 .280
0.55 0.23 .508 .524 .013 .006 -.554 -.405 «397 .284
0.50 .536 .546 .015 .007 -.548 -.398 .388 .209
0.80 .490 .541 .038 .017 -.736 =-.574 .736 .431
0.20 .630 .659 .011 .005 -.680 -.505 .718 .415
0.70 0.40 .636 .676 .010 .004 -.631 -.444 .567 .178
0.50 .666 .689 .010 .004 -.653 -=.504 .578 .373
0.80 .638 .691 .021 .009 -.830 -.663 1.001 .654
0.20 .706 .740 .009 .004 -.777 -.574 .968 .539
0.80 0.50 .742 .770 .007 .003 -.735 -=-.580 .748 .528
0.80 .725 .775 .014 .005 -.918 -.747 1.273 .890
0.20 .802 .840 .006 .003 -.989 -=-,730 1.664 .886
0.95 0.50 .838 .867 .004 .002 -.888 -=-.724 1.111 .876
0.80 .831 .875 .007 .002 -1.093 =-.909 1.865 1.394
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Figure 1

Histograms of Hq for m=32, q=0.5 and various H.
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Histograms of Hq for tn=32, H=0.55 and various q.
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Histograms of Hq for m=64, H=0J5 and various q.
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Hisiograms of Hq for m=32, H*=(0.70 and various q.
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Histograms of Hq for m=64, H=0.7 and various q.
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Figure 7

Histograms of Hq for m=32, H=0.8 and various q.
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Histograms of Hq for m=64, H=0.8 and various q.
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Histograms of fiq for m=32,H=0.9jyand various q.
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Histograms of Hq for m=64, H=0.95 and various q
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Appendix 3.1

As
CAZ—ZH qu_zg 2-2H
A)=——— and A)ys————— |
My Car)=— oy

H=1-_1 log{G(qk"')J R
2logg G(2,)

A-1-—1 1o F'qum) ,
2logg | F(1)

gt of 109

“Zlogg| | G(,)) | Glan,)

while

SO

]=

L_flog(1+R(,))-log(1+R(gA,))] (A3.1.1)

2logq

where

rRy=F4)
G(A)

Using |log(1+x)-x | < x%2 for x>0, (A3.1.1) is equal to:

_1 _ . 2 . 2
os R "REA IO EURG,)) <O EIRGA,)))

Theorem 1 in Robinson (1994b) analyzes E(R*(\,)) under the same assumptions we

have. He obtains:

2
200 woact gl 1 (25mY_ E.
ERG.N-40 H)[(3—4H)m ( n ) (2—2H+a}
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now, as condition C3.3 implies (m/n)>*> =o(1/m), we have that:
1
E(R*(.,)}=0(2) , E(R¥gA,)}=0(1) .
m m
In particular they are:

(A3.1.2)

?

20 y) - AA=H?  ppacs )L AA-H)?
E{R“(%,)} G-aHm E{R*(qA,)) G-4H)qm
and so, (A3.1.1) is:
—L_(rL,)-R@A )10 ().
2logg ™ " m

Therefore:
A— =___rn_. -— + l =
Vm(H-H) 21~ogq [R(A,)-R(gA,)] Op( ‘/Z)

Ef‘/:—[R(l )-R(gA,)1+o,(1) .

So, in order to prove the theorem we need to prove:

a)
Vm_pa y-,N[o,—1 (2-23)2),
2logq (2[ogq)2 3-4H
and
b)

l{ \/_ (l) ‘/— R(gq) ))= (1'H)qu_2H .

2logg 2logg (3-4H)(logg)*
Proof of a). Call gj=CA} “2H  then

21

——E I(3)
2R3 Y=/m] 1 _1|.@-2H) 12}11(}") )
m“R(A,)=ym Go) 1 m3/2-2H§ 2 ym
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@ 211)2 [ﬂ_1)+[(2-211)§"‘: jia_ ‘/;,J. (A3.1.3)

m3?22H7 &; m3?-2H5

As

m ] 1-2H 1 1
a2y (L] 7L - a2 [x e
j=1 m m 0
the second component of (A3.1.3) tends to 0, as n tends to infinity.
So we need to show:
+1- l) 0
312-232 g ) K '3 4H ) -

J
The method of proof is developed in Robinson (1993a). In order to prove this CLT

we will employ the following formulae that are derived in Robinson (1993a) under the

conditions we have assumed, as n —>oo:

r I(l.,.) ” o 12
- = LA A3.1.4
j=El( 2 21J)=0 (r'P(logr)*’ + — + 1/4)’ ( )
n-1 n-t 132 .
Yy cosz(sk)=-(£—l)—, for A.=ﬂ,j=1,...m, (A3.1.5)
t=1 s=1 ! 4 ] n
n-1 n-t
cos{s(A+AQ}+cos{s(A;~A)}]=-n , for A}, jk=1,.m. (A3.1.6)
. 2 k k k
t=1 s=

Then:

2”_2 m A' 3 m
m 2211- (l) =m szl- I )—21‘!J
1 &; 1 8
w-3 m
+m E jl'z”(21ri—l)=(X1)+(X2) ,
1
where J; is the periodogram of iid standard Gaussian variates e,.

(X1) by summation by parts and using (A3.1.4) is:
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1
1 a+—

0,(m S(logmy+2—n H=0,(1) ,

n¢
while (X2) is:
2H—-—2- = .1_2‘{1 = 2 )
m Y il =Y e -1+
1 n
23_}_ m 2 n -1
m %Y 1""{— e,escos(t—s)lj)
1 =2 s=1
= (X2D)+ (X22).
As

has zero mean and variance 2/n, so

Iea 2 1
=Y e -1=0(—
h ‘ P(\/I_l)

o)
2H-32 ™ 1
(x2D)=0,(F—3"j* =0 ((T)?).
n = n
We can rewrite (X22) as:
n -1
(X22)=Y "z, , 2,=0, z,=¢ Y ec, . t2,

t=1 s=1

with

21-3

2m 2 3 1-2H,
c,=——Y j'™cossh, .
n j=1

z, is a zero mean martingale difference so we use a standard CLT ( Brown, 1971) for

martingale differences stated in Appendix 5.2. In order to prove:

57



2.~ N(O,——),
,ZI: N 3—4H)

we just need to prove:

n 2 1
* —— - (A3.1.7)
™ Z;E(z’ Foo) 3am P
and
()Y E2I(|2,|>8))~0 for all 850 . (A3.1.8)
1

where I() is the indicator function. First we proof (A3.1.7):

n t-1
LHS(*) =(E Y elcl,- tH] 539 E eec, c,_=1)+(2) ,
t=2 s=1 =2 r#

3
n-1 n-t ) 1 _
1) [E (e/- 1)20] 'E Cs 3—411]_(1‘4) (1sB) ,

s=1 s=1

now consider

n-1 n-t n-1 n-t
4m*H

cl= Z J7Y Y cos’s+

t=1 s=1 n t=1 s=1

4H 3 n-1 n-t

37 S 3 [cos[s(h,+A ] +cosls(h;-A]]
3

t=1 s=1

]¢

=(0)+(00) ;
using (A3.1.5) and (A3.1.6) we get:

. 4m4H-3 (n_1)2 m3-4H~ 1
n? 4 3-4H 3-4H’

©

mea-3 mom

n): 3 =00 ®y=o(D) ,

©00)=0(=
n?
SO,

(1B)-0.

While (1A) has zero mean and variance:
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n-1 n-t

=0 X cH .

t=1 s=1

As:

_3

e, 2 221“2”—0(‘/—) ,

1

and using Zygmund (1977), p.70:

Y j"z”coss).j=0(2.§”‘2) , as m-w, for 0<A_<w ,
j=1
so:
23
s””zmm 2 n
le,|=O(————) , for s<—.
p2H-1 )
Then
(=1
- 2 = 2 z 2 nm m 4H-3 4H-4 1
Yo=Y 6+ Y 6 mO(——+— 2§:s )=0(=) ,
s=1 s=1 n mn n n n
[—=]+1 =]
m m
SO

variance[(14)]=0(n-L)=0(L) .
n? n

So: (1) = 0. Now (2) has zero mean and variance:

-1 u-1 u-1

‘O(E Z E ct -ret-s +4 Ct -r t-scu-rcu-s) =

t=2 r+ s t=3 u=2 r+ s

8
u-A
n

U]
w
U
[ &)

n [n2] [n/2]
O(n(Ec’)’m(Ec’)EJc ,1,+E jg X el |-

1
LN
[mm]*
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O(— _Lz m -3 E 43 =
n n\m*] a2 e

ole 1 .
0+ ) oD

so (A3.1.7) is proven.

Now instead of (A3.1.8) we proof a sufficient cbndition for (A3.1.8) that is":

f: E@ZH~0 ,
t=1

using the previous results we get:

Yy E@Z) =0(n(})_ chH=0(1) .
1 1
Proof of b).

We are going to prove:

_4(1-Hy*q' ™™ (A3.1.9)
E(mROL)R@AD === 70—
define:
qi, g,

Fi=F(gr,), Fy= [I3)dh, Fy= [fddr, G=G@M) ,
1] 0

Ay

17“=—" E 10, F,= f fyar

n j=lgm+1

f().)—2— 12 (x,-Ex)e™ |,

t=1

! See (A5.2.6) in appendix 5.2.
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A
Fy= [ ANdA, G,=G(2,)-G=(1-¢>™)G(,) .
A,

Now, using G,=q***G(\,):
2-2H 2-2H ﬁ'z
R(%,)=q**R(gA,)+(1-¢>*H)S ~ where S, = _G__1 _
2
So:

LHS((43.1.9)=¢> E(mR*@gA,)} +*(1-¢> ") E(mR(gA,)S ,, )-

Now, from (A3.1.2), we have that the first term tends to:

40-H? 1on
G-4m)

s0, it remains to prove that the second term asymptotically vanishes,i.e.:

E(mR(qA,)S,,)=0(1) .

Define:
R(gA,)=A,+B,+C\+D, , S, =A,+B,+C,+D, ,

where:

F-EF,  EF-EF, _ EF-F, F,
A= , B;= , C;= , D=—-1,
G, G, G, G,

t t 1]

for i=1,2. In order to examine the order of magnitude of these terms, we need to state

lemmas 1,3,4 and 7 of Robinson (1994b) that are established under the same conditions as
ours:

Lemma 1

F(A) -1~E 2(1-H) 2% as A-0* :
G(L) “2(1-H)+o. ’
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Lemma 3

E{F(A)—F(A)}=0(%”) , as A~0" :

Lemma 4
E{F(. )-F(A )}=O(m"n*#?), as n~e , for any 1>0 ;
and Lemma 7
4-4H
FIEG.)-EEQ P - 127 | 4 poe
m m3-4H’ )

Then, using these lemmas for D,, C,, B, and A,, respectively:

D,=0((m[n)*)=o(m "), using also condition C3,
Cx=0( £G4, )=0(i)=0(m 7,
m

G )n

BI— mﬂnzH-2 -0 2H-2emy _ -1 3
= =0(m )=o0(m %) for 0<n<=-2H, and
G(x,) 2

4-4H

A
A1-0(/E(R(L,))-0, ;llj_m =0, (m~1?)-

And similarly using that G, has the same order of magnitude as G(\), i.e., A2

F(A)-F,~(G()-G,) F()-G(A) F,-G
D,- (A,) 1(§ (A)-Gy _ (,..)G (A,) 1G L_o(m 12,
2 2 2
EF(L )-EF -(F- EF(L )-F EF,-F
Cz_ ( m) Gl ( 1)_ (Gm) _ é l=o(m-l[2)’
2 2 2
5, EF(A,)-EF,-(EF(),)-EF,) EF(\,)-EF(\,) EF,-EF, o(m1?), and
Gz G?. G2
FO.)-F -(EF(A )-EF) F()-EF(A.) F,-EF
A (A,)-F,~(EF(,)-EF)) F(A,)-EFQ,) F| ‘=op(m"ﬂ).
G, G, G,

So all cross products between R(q\,) and S, will be inmediately o(m™) or o,(m™) except
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the one between A, and A,.

So, in order to complete the proof we just need to prove:

E(A4,A)=o(m™), as n-w .

As
E(4,4,)=G, G, E[(F,-EF)(F,-EF))] ,
first
4H-4
arar 2"
n
and

n A n ogm] m
E[(FI-EFI)(FZ-EFZ)]=(2—“) Y ¥ cov{In)Ip), (A3.1.10)

j=1 k=[gm]+1
now, for zero-mean Gaussian variates, X, y, z and u:

E(xyzu)=E(xy)E(zu) + E(xz) EQu) + E(xu) E(yz) ,
so we have for Fourier frequencies A, A

covI(A),I()=

=Ew(A )W )IWAIWR D) -EW( )W) E(WAIWQ. ) =
=E(wW(A)wADEW(-A)w(-A))+EW(AIW(-A)EW(AIW(-1) ,

now using that

EW(\)=0 , for j=1,.m ,

and

E(w(Aj)w(Ak))=len [ D@D+ A, -0~y

where D()) is the Dirichlet kernel:
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D(A) =zn: et ,

=1

and following Robinson (1994b) notation:

Q(1,0)= f D@D(A+0-w)f A -u)du ,

we get that (A3.1.10)=

1 [gm]

-y, E (Q(A -2 )RR, ~A) +Q(Ap, A)Q(=A 5 A ).

n* i kefgml+1
Consequently define:

R(2,0)= f D(u)D(A+0-u){fAr-u)-fA)}du ,

then using:

}D(u)D().—u)du=21tD().) ,
and )
D(A;-1)=0 , for j*k , jk=l..m ,
we obtain for j#k:
Q(A,-Ap=R(A,-2p ,
Q(A,AQ=R(A5Ap ,
Q-1,-2)=R(-1,-3) ,

as we can check for instance:

R(hy-2p)= f D()D(h;~ A —u)f(A;-u)du- f D(u)D(A;~ A —w)f(3)du=

Q(A,~2)-21D(A,~Af(A) = Q( -2) .

(A3.1.11)

In order to evaluate the summands in (A3.1.11) we need to use lemma 6 in Robinson



(1994b) that establishes that:

A;
max, . (|RO,A 84y

|

g(,)

k j

max, ., |R(h~A)|=O((logm)

A=A
max |R(A,,-2) | =0((10gM)§(—;—’)) ,

j<ks<2jsm )
Jj
A
max, . |[R(,-1)|=0((ogm) f(—}))
kE 7j
(Ag-A)
max, .o [R(,~Ap)|=O(Uogm) ==t 2.

j
Then:

1 [gm] m

A3LID==Y" Y (RO,-A)R(,-2))+  (x0)

n Jj=1 k=[gm]+1

[qm} m

*"—E Y ROLAIR(-A,-1) , (x01)

n J=1 k=[gm]+1
(x01) 1s straightforwardly using (L.6.1) and R(-2,-1) =R(AJ,),k):

(logm T ¢ 8 (logm) 43 2-4H -2
OC==3> ) )=0( E :J Z , k)=
S E Eo R ¥ kelgm)+1

((logm)2 ) —o( (logm)” > 24y

4-4H m 4-41{

while

1
[54"‘]

@=L ¥ RO,-ARO,-A)+ (@D
n- j=1 k=[gm]+1

1 [gm]  min(2j,m)

+= X Y RO-AIRG,-A)* (@)

" et Samer FlmI
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[gm] m

Z Y. ROL-APR(A,-1)) ,  (a3)

o Lomjo1 421

where (a3) is zero when j=m/2.

Then (al), using (L6.2) and (IL6.4), is:

[3am] [3gm]
(logm) - s ‘) (lo gm)2 -2-4H -
)=0( k-)H=
o= n* ,):; k= [q%u O, -}.)2 nt4 E ] k- [qzm:]ﬂ N

(logm) E :2-4H 1) ~o(Llesm)” (logm)* m248y

n4—4H 4-411

(a2), using (L6.3) and (L6.5), is:

o((logm)2 “’E"" "““‘fil"‘) g(x, l,)

n* k=fgms1 )2

j=l= qm}+l il
[gm] min(2/,m)
logm 2 .- —4H"
o8y S j2 3 (k=
n jol 1 qm}+1 k=[gm]+1
2

(logm)® 2,3 (logm)? 24
O 4-4H E J7m*=0C=2r pd-4H )

n j= [-qmlol

and, finally, (a3) using (L6.4) is:

ollosm? NN anys Ly ologm? NNl
4-4H 1 27 (k_j)2 n4—4H 1 1
j= [Eqm]‘*l -[-iqm]+1

LR - / -
=O( (lof_":z Y- 0(( 05':2 2-4H)
n )
1=[5qm}*l

i.e.:
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(x0)=0(o8™)  2-smy

n4-4H

the same rate as (x01), and, so:
2
(43.1.10)=0(L08™)" 245 .

n4—4Il

S0,

_ A mYH* (logm)® A (logm)®,_ 1
E(AIAZ)_O((;) W”’Hﬂ)'o(_mT)‘o(;) ’

as we wanted to prove.

Appendix 3.2

From appendix 3.1 we have:

A

1
H,-He IR0, -R@h, O E IR/ )D+O,ERY D)

As theorem 2 in Robinson (1994b) establishes:

2H-2+a 24
E(R’(A)} ~ Am*sa, ™ +A3(ﬂ) :
n* n
and condition C3.3 implies:
2H-2+a
n*=o(m=*") | so , =o(m?1-52) (A)
na
m 2a
and (—) =o(m™) , (B)
n
both, (A) and (B), are o( m*"¥),
So:
E{R*(.,)}=0(m**™*), E{R%gA,)}=Om**™*) ,
therefore:
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A 1 -
m22(H -Hy=——m>2[R()_)-R(gA,)]+o (1) .
(B~ H= - m (R,)-Rgh,)1+0,(1)
Now, if we are able to prove that

m22R, y="20H 1 5y (A3.2.1)
C@n)> ¥

where D has been defined in p.40, then this implies that
—N\g2H-2
m22R(g) y=2LHa_— 1 gy
C@2n)*#
and so,

m?24 (1-H)'(1-H)cos((1 -H)n)(1-¢*2)
——I[R(A,)-R(gA )]= T,+o(1),
2logq[ (4,)-R(qA,)] T nto(D)

and this converges in distribution to:

(1-¢*2) (1-HrE(l —H))_cos((l -H)z) (1-g5 T .
logq Qn)*

So, it just remains to prove (A3.2.1), i.e.:

D(1-H) (S,-ES)-n(x-Ex,) .
C(2Tt)2—2H Dn 2H-1

m*2HR(% )=

o, (1) .

First we analyze R(\,):

FQa,) e F(r,)-EF(\,) . EFQx,)-G(A,)

G(A,) G, G(,)
we analyze (BB) first:

RO\ )= =(AA4)+(BB) ;

EF(A )~-G(A)=E{F(A,)-F(A )} +E{F(3. )~F(* )} +(F(,)-G(} )}
=(bI)+(b2)+(b3) .
In order to deal with (b1l) we apply lemma 9 in Robinson (1994b) that states that, under the

assumptions we have, as n - oo:

68



E(FQ)-FO)} ~ SV o™ ,
S0,
®D) ~ Vo™ ;

now, using C3.3, we have:

m 2-2H+a
®3) =0<(—) )=o(n??) ,
n
and, to analyze (b2) we use lemma 3 in Robinson (1994b) that states that:
. gx,)
E{F(4,)-F(,)}=0( - ) »
SO
1-2H
(b2)=0(——)=0(m ' %) =o(n*?) ;
n
therefore:

B)=-L Y& _, oim212) |
2G(A)
In order to analyze (AA) we need to evaluate F(Am) and Eﬁ(),m). In order to do that,
first we recall Parseval’s identity:
=Y (x-x)=2ny I(2) .
t=1 j=1

Now, for n odd, using that J(A)=f2n-1) and f(x,,)=i(0)=21(f- N
T
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n-l

L

n 3
Ei(lj)-22 A})+](0)_2E I(Al)+_(x-Ex1)2

j=1 j=1

SO

l

S =2 22 i) +2 E I )+—(x—Ex1)2 :

Jj=1 j=m+1

then, using that: 1"(1,.)=I().j) for j=1,.m<n,

nl

S,
~2—-F(l )+ 2% }: I+

)=m+l

x- l)2 (A3.2.2)

and, for n even, using the same results, we get:

hn

E 1) -22 1) ~I(x) +—(x Ex)*,

Jj=1 j=1

S,=2n 22 I()+2 Z i) 1(1r)+—(x—Ex,)2 ;

j=1 j=m+1

In

(x-Ex,)? (A3.2.3)

S,
z—n—F(l )+ 22 E 1()»)-—1( )+

j=m+1

Now, consider:

p
I3 (H0)-ElG))
B jem+1

using that X-EX=0P(1/V(X) , and also that in lemma 10 in Robinson (1994b) it is proven

that:
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nZ E IG))=0(n*™) ,

J=m+l

and also that:
= (I(m)-El(m)} =0 (n??)
n

then, using (A3.2.4):

E {I0)-EI(L)}=0,(n*?) ,

B j=m+1
so, using this and (A3.2.5), we can rewrite (A3.2.3):

h

ooy 2
F()L Il E EI(A)——I( )+( Ex) +o0 (n2H?) .

Jj=m+1

Now, we can write, using (A3.2.2), for n odd:

1)2

Fo, )-—1-—- E EI().,)— o, (n*?) ,
]=m¢l
n-1 1
A =ES’l 27t V(J-c)
EF()) o j-,,,zzl EI(\)-

SO

S -ES, (x-Ex)*-V(%)
- +

F(A)-EF(3. )= >

0,(n**7%) ;

and using (A3.2.3) and (A3.2.6), for n even:
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(A3.2.6)



r

F(A )-E’i-— E EI().)-

Jj=m+1

(- 1)2

+ZI(m)+o (n?)
n

. ES
EFG.,)- -2 2 E EI())- V(-)+ “El(x) .

n j=m+1
SO:
- - 2_
F().M)~EI3'(AM)=S" ES, G En) V) +o (n*2) .
2n P
Then
F(\,)-EF(\,) S,-ES,-n(x- 1)2+nV(:'c)+ (m2?)
GGy 2nG(A,) S
SO
A _Sn—ESn—n(f—Exl)2+ 22
RO)=(Ad)+(BB)=—— oo m)
ie.:
- -ES -n(x- 2 -
m2-2”R(xm)-(1 IS, -ES,-nG-Ex)"] (1)=(1 WDT, "~
n2H1CQmy>H PTocenp f

i.e., we have proven (A3.2.1) and the proof is complete.
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Chapter 4

Consistency of the Cross-averaged Periodogram

In this chapter we establish a multivariate framework to analyze long-memory series.
We provide some notation and then examine general conditions under which we can achieve
consistency of the averaged cross-periodogram. These conditions are more general than those
under which we will prove consistency for a quasi-maximum likelihood estimate in chapter
5. We restrict ourselves to prove consistency of our estimates and do not attempt to examine
the limiting distribution because as we have seen in the previous chapter it has a
discontinuity around H=3/4 in the univariate case. On the other hand, consistency of the
averaged cross-periodogram will be relevant when analyzing in chapter 6 the asymptotic

behaviour of a Lagrange multiplier test for 1(0).

4.1 Notation
We consider r covariance stationary series that are observed in n moments of time.
We use the index t to denote time (t=1,...n) and a to denote the series (a=1,...1), x,isarxl
vector with a-th element x*. We define the normalized discrete Fourier Transform(DFT) of

series a to be:

1 Y xje™ , a=l,.r, Ae(-m,zn],

w,(A)=
2N =1
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and for the vector x,:

w,(3)

wiyo |
w,(h)

and the cross-periodogram of series a and b:

Ly(A)=w,(A)w,(A) ,
where the line over w,(A) denotes complex conjugate, and the periodogram matrix (rxr) for

the vector x, is:

IO =w(l)w*(1), (4.1.1)

where * denotes complex conjugation combined with transposition.

When representing our series x, as a linear process we use the notation:

1 1 1
x, a; e

-
_ _ _ _ a_ al a
x= . —Exo+Z;AJe,_j, where A= . |, e= .| and of=(a;',..q;)

x,' a{

r
J €

with e,, a martingale difference sequence, E(e, | F,,)=0, E|e,| < o with E(ee,’ | F.;)=R

where F, is the o-field of events generated by e,, s<t; and the typical element, series a, as:

a a
X —p'a+z aiet-f ’
i=0

A, is xr, o is 1xr and e, is rx1.
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We define also the normalized DFT of e, as:

v,(2)
1 n
w(A)= = ee™
. ¢2nntz=1:
v.(A)

and the periodogram matrix for e;:

v,(Av,A) ... vQA)v,R)

J)=vAWmN)* S . .
vAV,A) ... vAv,(R)

where v()) is rx1 and J(A) is rxr.

Let A(\) be the DFT of the weights A;:

(2”: a!e"f*\
= | (AW
A(l)=iAJe"f‘= B
=0 . .

where

A,0)=(4, (0,4, (),

A,(\) is 1xr and A(N) is rxr. Consequently:
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S =AY (MAR)".

Specifically the spectrum of e, is':

and the spectrum of x,:

uAd) - [, (A,R)
AN e 4 %(Al'(l) L A=
(A . f,(A)] 4,1)

AMRAT (M) .. A (MRA()
L
2=

AMRA(A) .. A(MRA; (D)

and so the typical element, the cross spectral density function of series a and b is:
R
F(R)=A,(A)—A, ().
2w
Let the cumulative cross spectral density function between series a and b be:
A
Fs(M=[ £,,0)d0 ,

with

Notice that for identification we set the variance of the innovations equal to 1 instead
of the vector of coefficients A,.
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F (A)=ReF () +ilmF () , f,,(A)=Ref,,(X)+ilmf(}) ,

SO,
ReF ()= "Ref,,(8)d0 , ImF ()= [ *Imf,,(6)db.

The basic statistic we will consider is the averaged cross-periodogram:

ol
a,,(l)—— Y L.
R j-1
This statistic is just the (a,b) component of:
nz]
F)= ;Ex 1(A)

where I()\) is the periodogram matrix. This is a fundamental statistic in multiple time series

as an estimate of the spectral measure:

A
F(A)= f R8)d0 .
0

The statistic has the advantage of being invariant to the mean of the process.

4.2 Consistency of the averaged periodogram

Before establishing the theorem, we are going to introduce general conditions under

which consistency can be proved.

Condition C4.1: f(\)~ A°GoA° where A°=diag{ A7Hey and G, is a Hermitian positive
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definite matrix, then for any two typical series,a,b=1,...r, for H,, H, €(1/2,1),

AI-ZH‘ AI-H‘_Hb

8aa
E;ll—”‘-yb gbbll_mb

ab .
, as A-0",

" () ()
1) £,

with 0<g,, < ,0<|g,| <.

This is a general specification® that includes the behaviour of any fractional model as a
particular case as we are going to show next.
For instance, the simplest bivariate fractional case:
(-0 x%=e® and (1-L) P xP=e! ,

where ¢, e? are white noise with:

E(e)Y)=1, E(e))=1, E(efe))=r,, ,
then,
g . H.- r
(l —-e 'll)”a m(l _el’.)Hb 1,2 ab(l)=—£-
2
Now 1-exp{-i\} is a complex number with modulus 2sin(A\/2) and argument 8 =arctg(sin\/1-
cosA). As A—=0*, sin\/1-cosh»>o , so B—>7/2. Also as A =0, sin A~A. Then, we can

represent 1-exp{-iA} as N\ exp{i =/2}. So,

2 We could think that we could achieve more generality by allowing the cross-spectral
density function to behave as:

- H +H
fy(W)-g A e as A-0°, with H < 5 5

but consider in this case the coherency as A>0*:

2
coh(x)~-|§ix”b‘”~'2”d~o, as A-0*
828 bi

and we can get this with our specification by letting g,,=0.
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. H - . . =@,-n
(l-—e —zl)”. m(l_ell)Hb A. tHy- l 2 ,

then

Inm,-n)

)~ “bl ErHD, 2 forab-=1,..r.

So this is a particular case of our specification with gab-_-;_‘;:exp {i%(Hb_ H)}-

Now, for more general fractional models as:

* Model I:

A(Ddiag{(1-L)* P} X =B(L)e,

where A(L) has all its roots outside the unit circle; when A approaches 0:

_1p i=H-12) _1p CinW-12)
ADdiag(A\TPe 2 ) (M diag (AT e 2 JAQLY'=
B(L)f.(AM)BQAY ;
as |A(1)|=0, we have:
oy IE@EH,
(M) -g A T e a0,

where {g,,} are constants:

{85} =A() ' BAY.(AMBAYAMH ,
* Model II:

diag{(1-Ly* "} A(L)X =B(L)e, ,

so as A\ approaches 0:

—EH‘_

£.(R)=AQ1) | diag{2r'* e )}B(l)fe(A)B(l)L

diag{»"* 2(11,—1/2)} @mhH1,
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s0, as A—>0%,

r

r .
1-@+hy) SHEH)
FuR)=Y @,y ey h et 2 Oy s (¥%)
s=1 h=1

where

«, is the (a,b) element of A1) ab=1,.,r;, and

¢, is the (s,h) element of B(l)fe(l)B(l)’ s,h=1,...r,

so that, in general, expression (**) will be dominated by the term with largest | 1-(H,+H,) l
and nonzero coefficient. So we have shown that condition C4.1 includes any fractional model
as a particular case.

Condition C4.2. The minimum condition on the bandwidth m: as n oo,

l.m.,.

m n

Condition C4.3:
e, and eg,’-R are uniformly integrable martingale difference sequences.
We note the implications of this condition:
(1) E(ee,’)=0, t==u.
Proof:
Jor t>u E[ete,f] =E[E(e, |F, _l)e,,’] =0 .
(ii) E(e.e,’®ee,’) = R @ R for w=s#t=u;
= 0 for: w>s,t,u; s>w,t,u; t>w,s,u; u>w,s,t;
w=s>t,u; w=t>s,u; w=u>s,t;

s=t>w,u; s=u>w,t; t=u>w,s.
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Proof:

for w=s>t=u, Ele,e.®ee/1=ElE(ee./F, )Rer/l=-ERDee] =R®R.
for w>s, wt, wou, Elee/Qeel] =E[E(e,JF,_)eQeel] =0,
for w=s>tu, E(e el®ee)=E[E(e, e JF, )Dee)= E(R®e,,)=R®E(ee,) =0.

Iy 1
for w=u>sgt, Ele,®ee,] isar’e matrix with typical element:

E(e:,e“'," eje,”) =E[E(e,ie: IF,_Deje)=a, E(ee,’)=0.

(iii) by the weak law of large numbers for uniformly integrable martingale difference
sequences’:

o /

=Y ee~,R

Ry
Theorem 4.1
Under conditions C4.1, C4.2 and C4.3:

F (A F (A, )=0,(F, (A )PF,,(0 )"

Proof: see appendix 4.1.

Estimates for the parameters of the cross-spectral density function, H,, H, and g,
based on the averaged periodogram could be straightforwardly proposed and their
consistency proved but we will not pursue further with these estimates. In chapter 5 we will
analyze a procedure that will provide us with more straightforward tools for statistical

inference. Theorem 4.1 is relevant because we will employ it in chapter 6 to study the

asymptotic behaviour of a Lagrange multiplier test for 1(0).

3 See Heyde and Seneta (1972),theorem 1.
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Appendix 4.1
Before proving the theorem we need to prove 4 propositions:

Proposition la:

Under conditions C4.1 and C4.2; as n—»>co:

ERef,,(x) ~ReF, (A )=0(|F,(A,)]) -

R j-1

Proof: As n—»oo,

LHS= E [ (Ref,y(3)-Ref,, (A=

Jj=1 l

Ef:, Re(gAb)[A;l-H,‘HQ_A(I-H.—Hb)]dl op= (A4.1.1)
j=1 "

(-H,-Hp
E [ Rete. )™ ”’*’1[1,-(%) AJdA +r=
J

j=1

(-H,-Hp
Re(gab)z[l(H Dy [A ( :) AJdh+r (+)
7

where

L-H,H, ,2-H,H

r=o(> Zx B=o(A2 " =o(|F (A )]) -

Now, under condition C4.2, for n sufficiently large the leading term in (+) has order of

magnitude:
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Jj=1

H,-H
Z A'( -H, H;)fl/ I(A ( )( b))-)ldl] , (*)

now, because:

A. (_Ha_Hb)
Mf—(f] ),|<]A}.—}\.| for Ae(A i 1,3-) s
J

then, (*) is

oqz A ”"f "(x -2)dA]) (**)

j=1

2
Y -)da="
by ! 2n?

m
(x%)= O(""Z 5 CEL H,) n(H,m,-z)Ej(—H,—H,,)):

n Jj=1 Jj=1

2-5,-11,,)

O™ 720, Yy <o(|F 42, )1 - (44.1.2)

Proposition 1b: Under C4.1, C4.2; as n—»>oo:

Zlmfab(l) -ImF_,(A )=0o(|F_,(3)) -

]l

Proof: as the LHS is equal to

Zf " (Imf () -Imf (WA -Ef N T A R

Jj=1

and the proof follows the one above.
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Proposition 2:

Under conditions C4.1 and C4.2, as n—>co:

E{—El (A)}=O(F (1,)) for a=1,.. T

oof: Our conditions C4.1 and C4.2 are more restrictive on x., for every a=1..

those under which Robinson (1994a), proposition 2, establishes that:

E{—EI(A)} =O(F(A,)) , as n — .

Proposition 3:
Under conditions C4.1, C4.2 and C4.3:

Ret2EY (4,0 O)A; (M) -y (M-

n j=1
0,(F ,(%,)°Fp(1,)>)

and

zm[—z (4,4, (M), (W)=

0,(F,, (A ) Fy,(2,)*) .

Proof ( we drop the arguments A; for simplicity):

ZnEE {4,004, 0 Fs(A)} =
j=1
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SO

now, call

then

211: . R * =
—"_2;: {AJA, AGEA,,} ©)

85

Ye
t

M n 1 - ]
Yy e,12 Y e e, Y ¥ ee . > eje;
t=1 t S t S# t
- + . eoe
21:" 2 r.r
| z‘: e | . § ; ee,
o ,
;Z e,l -1 E e e T,
4
(*)z.%nﬁz %Am A, |+
j
Yel-1
\ L ¢ /
( Yy 5‘_: ele! .. }; 2:: elel
S+ S
1 A o D At;
j 2nn
Y. Y ele;
L s+ /
1 2 1
) e -1 .. o) eje/-r,
D=

-1

i(s-OA
e My

(1)

)




1(1)|=|%2: Aau,-)DA;(A,-)ls%Z 4, G)IDIA, (A)1<
j=1 j=1

m 1
SHDI—’I;LE M )P, () u2)2=(*) (A4.3.1)
2.

as
L =Y JAEM P+ T A A )=
k=1 ks 1
CIA M +o(l4,(M)IP),

where |A (A)|?=max,|4J(A)|* and C>0,

U MI=0¢,, )" ,

and similarly:

“‘41,(7") I =O(fbb(l)lﬂ) ’

so,

m r.m 1
(*)=0,,(IIDH(%ZfM(A,-))2(%2]2,,(1,-)]2)=
j=1

j=1

0,(F () Fy(3,0%)

because by proposition 1:
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—zf (A)=O(F ,(A,) and —Ef,,,,a,) OF (A, »

R je

and by condition C4.3:

IDl=o,(1).
Now,
1 d 1\, = i(s-DA
@-=Y Aa().j)(z > e,es)A,, (e
n-j=1 s+t
1 I
;E E etPs-t,mes ’
F L 4
where

,.U,,"“"‘EA (A. )Ab(l}) i(s- t)).

R j=1

E|@)[*<EQ)(2)"= EZe s L5 3930 'y

u¢ v

E{15 5 elochuct, o[ L T ot

U v

_—E Y YN veeT,,, EleBe)e, ‘e yvecT, om s (%)

n St t ur v
now, by condition C4.3 (ii),
E(e ®e )(e.Be)=E(e £,0e £)=(ROR)I(s=ut=v) ,

where I( ) is the indicator function, i.e., I(A)=1 if A is true and I(A)=0 if A is false,
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(*)=%E Y vecT,,,(R®RyvecT, ,,,
n-s+ ¢

n-1
=%§;(1 —i)vec ’(I‘m+1‘_m)(R®R)vec(K +'I‘__;)

=ln_l __t_ / Z = / _— .
nf\;: (1-—yvec (nnga(lj)Ab(ljcostAj))(R@R)

: vec(%z A (ADA R costA)
k=1

n-1 m
=%f\jlj a -f)(-i-z vec (4 (A, (X cost).)))(ROR)-

j=1

: (%E vec(A (A A, (A)costA))
=

n-1 m
=%): (1-&)(%)22 [4; (A)costh R4 (A )] (ROR)-

t=1 j=1

¥ (A (A )®A4, (A dcostA )] =(%)
k=1

call

1 1
2

B,(A\)=A,(MR? and B,(\)=A,(MR? ,

then
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/
(*)——2 (1--)(—) EB,,().)@B‘,(Aj)costl] .

R
{5 i s

k=1

nl m

S-;ZII EB,,().)@B (A)costr I>=(%) ,

call the r’x1 vector

¢,~B,(\)®B,(1) ,

from condition C4.1
1 . - i * -
fuW)=5 =B M) g, A and f,,,,(l)=%8,,(1)8,, () -gg A"
then, for at least ome L |B (A)|2~C al),"’”- and for the rest, k=1,...r,
k#l: |Bak()_)l2=o()_1'2”¢) , also, for at least one q: |Bbq(),)|2-cbq),"2”b , and for the rest,
p=1,...r, p#q: |Bbp(l)|2=o(ll'w") so, for at least one v: .. —0().1 ~H, ”") and for the

1-H,-H,

rest, h=1,...r,h#v: c=0(A; ), SO,

LB = ]=1

(-E A )2+ atz] (A4.3.2)

nll

*)__E f:ccost). I*= ﬁi( Y cicosth| < )2

y

T

where
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-o(—E ;. oy —o(F A)F,(A ),

nj-1
now

1-H,-H, 1-H,-H,

CoStA; 'S—E A =O(FM(Am)ostb(Am)0.s) ’

IEJL

so (*) is

1-HH,

0( LF (A F, (A )+max |~ E). costh [*|=

=o(F, aa()' ,,,)F bb(A' ,,.))

then by lemma 7 (Robinson 1994a):

max, ., |23 4 eosth,[=0¢ ")
nj=l
then choose

H +H,-2

3-H_-H,
r=nm- ¢ %,

then

max, ., |~ E )- ost).j]2=0(r”’-*7-”r4)=

nj=1

2(H +H,-2)
m 4-2H,-2H, ——(3_” =)
n

o(F (A, )Fy,(2,) ,

(A4.3.3)

=O(F (A )F (A, )m %)=

N{¢]

E|()]*=0(F (A, )F};(4,))

E|@2)|=0(F ,(A,)Fy,(3,)>) ,

therefore
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[(1)|=0(F ,,(A,)°°F,,(3,)*%) and [(2)|=0(F,(A,)* F,,(1,)*% ,

so that

Re(1)=0,(F ,(A,)**Fy3(2,0%%) , Im(1)=0,(F (& )*F,,(1,)°%),
Re(2)=0,(F (A, )°*F (A, )*%)

and

Im(2) =oP(F“().m)°5F,,b(Am)°5) .
Proposition 4:
Under C4.1, C4.2 and C4.3, as n—»>oo:

—E W, (A)-A 0D P=0,F (3,0 . ()

]=1
Proof: As LHS(*) is nonnegative, we have to show its expectation has order of RHS(*),

=1 h=0 r=1

E(LHS) 51 (Ex e ; o 'Mzee ']
nl.l
(f‘_lxme Bt }:a e '“Eee_m’)]

s=1 s=1

33 Blryb ) )e e

t=1 s=1

1 « -ish, _
>

2nn*ja
n

n

_ i a -ikd; o -isd]
Yy x e iage e
- i3, -ish;
>y E[a‘,fe iee™ix_e ']+

239303 4a:e m’e‘e "l'a:,e -Wl’e e '“"’]]
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_E[Aae‘x 0-!'] +E[Aaete.:A¢: ]]

now,
Elx mA—aes] =E{(pa+z:; a;et fJ(E ole -zkzl) s]

3 et e Y o R
10 k=0
because f,,(\),A,’(\) and e have period 27, and

cov(x,x_ )= f _" £ (A)e 6 0d) =
f-n AG(A)f;( ).)A;( A.) PLGU da ,

and

so, for any A;:

1 * i(s—tX(u+
cov(xa»xm)=2—n f _';Aa(uu,.)RAa @+ )e E0E gy
Elx,Ae)=o; RA; =% [ A @A )RA (Y™ P,

1 pr . s
E[Aex,] ™ f _AO)RA (w+d)e EUA) gy,

FlA e Al1=o - [ "4, G)RA () ™ Ve
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where we have used E[A,ee,A,"1=A,(\)RA,"(\)I(s=t). Then E[LHS]=

1 iii it-9)A,

(21t) n2ja 51 11

U ([A (u+2)-A,(\)RA, @+ )-4, (1) -t)(uo;.,)]da
f EEel(t-s)u([A (u+}.,)—A (A )]R[A (u+A) -A (A )] )du

(21t)2nj 1° " Rsaq ¢t

2 [ KA u+2) -4, 0)RA @A) -4,0)] )du

(211)2
=Sm[(—1t,1t)] ’
where
S,(A)—( )2 E f (A e+2)-A,O)|RA (u+2)-A, (3] )du
1!
and
K@Ww=— IE e™|? .
t=1
‘ Now
[A4+2)-A,O)RA (4 2) -4, ()] <
KA (u+A)RA (u+ 1) +KA (ARA (L)
=2nK, f,(u+A)+2nK, f, (A) ,
because
for R>0 (a-b)R(a-b)*<K,aRa*+K,bRb" .
So,

(o . c d
s,(A)s;J};l: £ fAK(u)dw—';j;l [ K@, (u+2)du ,

and the rest of the proof follows from proposition 4 in Robinson (1994a), who establishes
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under conditions weaker than ours that:

S, ([-n,7])=0,(F(%,)) . (A4.4.1)

Theorem 4.1 a

Under C4.1, C4.2 and C4.3:

ReF (A, )-ReF 4(A,) =0,(F (A, )'PF,, (A, )"?).

Proof:
F, (A )-F,( )=

=ZEY (L) -AANGNAG))

L (Aa(lj)f(l,-)Az;(l,-)‘f;b(}'j)) @

n j=1

2Ry )yl ®
j=1

First, proposition 3 implies: Re(2)=0,(F,(\n)"? Fy(An)'?), while Proposition la
implies: Re(3)=0(|F,,(A) |). Also let for convenience drop the argument A, in w,, w,, A,,

A,, f.., fip, v and J. Then

2n i — .y *

=== {ww,-4 w*4,}
n j=1
_21t 1 A — A N4 +A —_ A *
--;- E{(w“_ W v A +(W,+A V) (W, -VvA,)}
=£E Re{(w,-A V)W, +v"4,)+(W,+A V)(w,~v*4,)} +
n

HEY In((w,-A V)W, +v " 4) +(w A V)(w, v A}
n
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S0,
|Re(1)|= |—;£Re(2 W, AWy 4V AN+ Y (W, +A V) w,~v*A,))|

S%( 13- W AW v A) [+ ]3] w,+4,)(w,~v"4,) |} =%(E1 +E2) ,

then,

E15[Y (w,AMPY, [y P<fS w,-A 023 Uyy+AJA)

and

E2<|[Y [w,-Ay[2Y (U, +A JA) ;
now, as EJ=R/2,

HY AJA|-Yf, and HY AJA-Y f,, ,

because they are positive random variables their stochastic order of magnitude are those of

their expectations, then proposition 1 implies:

1 . 1 .
AL AJAOF (M) and =S AJA=O,(Fy(A)
j=1 j=

and proposition 2 implies:

=O(F bb(x'm)) )

1 m _ _1_ m
;qu: I“(lj))—O(FM(Am)) and nf‘; L,(A)

and proposition 4 implies:

%E [w,-A,v[2=0,(F,(2)) and %Z [wy-A,v12=0 (Fyy0)) ,

then
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-"-(EuEz)sn\l I jw,-app 2 A 1,1y 4040
n n n n

+1:\l -nl-z wy-A]* 2 (%E IM+%2 AJAD)

=1,/0, @ (A TOF (XY +OFpy (A N +

/0, F g IO () +O,F oy )] =

=0, (F (A IF,(A,)=0,([F,(A,)F,(1,) .

So,

ReF (), )-ReF ,,(A,)=0 (F (A, )°°F (1))

Theorem 4.1 b

Under C4.1, C4.2 and C4.3:

ImF (A )-ImF .,(A )=0 (F_(A)F,(A )" .
ImF (3 )~ImF 4 () )=0 (F, (A} ) ’F, (1)) .
Proof: the proof is analogous 10 tnat or ineorem 4.1 a.
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Chapter §

Analysis of a pseudo maximum likelihood estimate

In this chapter we analyze in a multivariate set-up pseudo-maximum likelihood
estimates. By this we mean that they are based on a discrete version in the neighbourhood
of zero frequency of an approximation to the Gaussian likelihood function in the frequency
domain. These estimates have not an explicit form, which makes them harder to obtain. On
the other hand their consistency and asymptotic normality can be proved under fairly general
conditions (especially, it is not necessary to impose Gaussianity). Robinson (1993a) analyzes
the univariate case. In section 1 we motivate the objective function. Section 2 presents the
asymptotic properties of these estimates and some results on inference for the bivariate case.
Section 3 provides some finite sample analysis and in section 4 we offer an empirical
application. In chapter 6 we will analyze a Lagrange multiplier test for weak dependence,

I(0), that is based on results obtained in this chapter.

5.1 Introduction

To motivate our objective function we start with the Whittle approximation of the

Gaussian likelihood function in the frequency domain:

2(6)= [ {log|f2,0) | +4r[f(1,8) K(A)]}dA .
-x
Where I()) is the rxr periodogram matrix defined in (4.1.1) and f(\,0) is the rxr spectral
density matrix. If instead of considering all the frequencies (-w,7] we focus on a

neighbourhood of the zero frequency and in particular for Fourier frequencies A;=2j/n with
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j=1,...m, we get:

£(0) =i‘ {logf(1,0) +2r{A%,6) 1A )1} (5.1.1)

j=1
Another main aspect concerns the form of the spectral density we are going to

assume. In the previous chapter we considered condition C4.1:

AN-AGA° as A ~0°,
OA (5.1.2)
)

A=diag{a"*"
where G is a positive definite Hermitian matrix and we proved that this was a very general
specification. In this chapter we denote by H® and G, the true values and by H and G any
admissible values. Under (5.1.2) we could rewrite (5.1.1) as our objective function:

- -1 -1
LG, H) =Y, (log|A,GA|+r[A]'G AT I},
J=1 (5.1.3)

A=diag(3;" "}
but notice that we can concentrate G out using standard matrix differential calculus ( see, for

instance chapter 10 in Graybill (1983)):

L(G.H)=Y. {2log|A,| +log|G|+r[G A, 1A )A, 1},

J=1

Z_i =Y (G Y~(GAIO)A'GTYY ),

j=1
3 o - amn=L% (A 0Al! (5.1.4)
2==0 = G m; (A T0)A ™,

- then define:

R, (H)=2(G,H)=Y", {2log|A;| +Iog|G(H) | +1r(G "' A I(ADA; } =

j=1
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m a

=) 2log([[ A P )+mlog|G(H) |+

-lm

(L5407 S a5t0)8")

H) )
logh +mlog |G(H) | +mr.

We can define our objective function to be:

R(H)=

RHEH) 1 A
-r=Y_ (1-2H)—Y" logh +log|G(H)|,
m a=1 mi-y

SO we can carry out the estimation procedure in two steps:

1.- Estimate H minimizing R(H):

I?=arg ming R(H)
where R(H) is defined in (5.1.5) and

8={HeR"; HelA; A7, i=1,...r}

and A',A? are user-chosen and, in principle, 0<A!<A2< 1.

(5.1.5)

(5.1.6)

2.- Estimate G by plugging the estimate of H obtained in the previous step in (5.1.4):

G(H)——E ATIGOA

mj-1

A-1 - I-ln
Aj =diag{A; }.

These estimates are asymptotically globally identified under the assumptions we introduce

in the next section as we are going to show next. We only need to check that H° is

identified: first write

R(H)-R(H)=U(H)-T(H)

where
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UG =2Y (H,-H)) _z,: log{1+2(H,-H)} (6.1.7)

i=1 i=1
and
TH)=2Y (H,.-h’,?)[iz logj-logm +1] +log [T"'G(H%) | - 5.1.8)
i=1 . j=1
~log |ZI"'MG(H)|
with
0_ .
I'=diag(g,} , M= dmg{(z"m)z‘”‘ B, Z-diag(lv2@-HY} . (.19
n

Under those assumptions T(H)~,0 as is proved in appendix 5.1, then: R(H)-R(H °)-»pU(H).

Now if we prove that U(H) >0 for all HE ©-{H"} then H? is globally identified ( because

the existence of a H; observationally equivalent to H° would imply U(H,)=0). Now, calling
H;-H=x; we have that U(H)=U(x)= E (2x,~log(1+2x))) and as 2x-log(1 +2.x)z—x2>0 we

H-H=x; we have that U(H)=U(x)= E(zx ~log(1+2x,)) and as 2x-log(1 +2.x)z—x2>0 we

The QMLE has not an explicit form what makes it more difficult to get than the APE
and the LPE. On the other hand, with very simple iterative procedures, such as a golden
search, we have found in simulations and in real data that, for moderate r, the estimates

converge quickly so that, in our experience, estimation has not been a difficult problem.

3.2. Consistency and Asymptotic Normality of the OMLE

We introduce first the conditions under which we can obtain consistency of the
QMLE. These conditions are very general. We just restrict the behaviour of the spectral
density matrix close to the zero frequency and assume that the process has a linear

representation in terms of a square integrable martingale difference sequence. Robinson
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(1993a) under similar conditions proved the consistency of the QMLE in the univariate case.
We have to state one limitation of our procedure compared with the univariate case.
Robinson’s admissible estimates lay in the interval (0,1), i.e., including both cases, the
"long-memory" case (1/2<H< 1) and the "antipersistent" case (0 <H <1/2). Here, due to
a technical problem, we will not be able to prove consistency of our estimate for H, when
the admissible interval is (0,1) but we will suppose that in the case of "long-memory" we
will restrict our possible set of estimates to (1/2,1). This is not so restrictive as it may
appear. In any practical situation it should be clear by a simple inspection of the periodogram
if the series belong to the "long-memory" or to the "antipersistent" case.

Conditions:

C5.1: as A=0*, f(\) ~ A°GyA° where G, is Hermitian positive definite with typical element
(a,b), g, and A°=diag{l°'5'ﬂ:) } where H% € [Al;,A%] is the interval of admissible estimates.
In principle we can choose A;! and A? so that 0< A, <A%< 1, but we will assume that if
H;°>0.5 then we will pick A;!=0.5.

C5.2: In a neighbourhood (0,¢) of the origin, f,,(A) is differentiable with

K

dllogfm(k)=0(k"1), as »-0%, for a=1,..r.

®)
LA
o

: Condition C4.3 in chapter 4.

@
N
~

: Condition C4.2 in chapter 4.
Theorem 5.1

Under C5.1, C5.2, C5.3 and C5.4:

Proof: see appendix 5.1.

To prove asymptotic normality we need to restrict our assumptions. We introduce:
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C5.1': for BE(0,2): (W) ~g A "< "(1+0(AP) as A-~0".

C5.2°: in a neighbourhood of 0

d & |Aak(l)l
—A (M)=
di a(M)=0( A

where A (\) has been defined in the previous chapter.

) as A-0" for all ak=1,...r,

C5.3’: similar to C5.3 with:

Ee,De,e®|F, )=pl). , |pS|<e

E(e (De,(De (De D)|F, )=3+%,y 5 |kp4l<e  abcd=l,.r

1428 2
1 m (logm) ~0.
m n,zf3

Theorem 5.2 :

Under C5.1°, C5.2°, C5.3’ and C5.4":

—~

ym(H-H%-, NOE™), 5.2.1)

where E is rxr matrix: =2 I +2Re(G * (Go'l)’) and * denotes the Hadamard product, so the

typical (a,b) element is:

(E }_2+2gmg“ if a=b
%' DReg g% if a+b.
Proof: see appendix 5.2.

This result on asymptotic normality of the QMLE provides us with a tool on which

we can base our inference about H. It is interesting to notice that the elements of the

. . -1 -1 .
covariance matrix £ depend on elements of G, and Gy onlv. As we can estimate G,
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A = A $ . -l .
consistently using Go=G(H) , we can estimate Go  and so E consistently by:

“DReg L b if a=b.
It is very interesting to notice also that in the univariate case the asymptotic variance

does not depend on any unknown patameter, E,,=2+2g,g*=4, so that the asymptotic

distribution, first analyzed in Robinson (1993a), is just:

A 1
Vm(B-H)=4 NO,
so, statistical inference is particularly immediate in this case.

If we analyze the asymptotic distribution for the bivariate case we obtain that:

' _ha2
24 2 2c
1-¢2 1-¢?
- 2
-2c 24 2
1-¢c? 1-c?
i.e.,
gl 2-¢* ¢?
8 2 2-c%f
where

2 g1 g
cz=—lg| and Gy={ _
3132 b4 gz

i.e., ¢ is the squared coherency as A»0*. The asymptotic variance of #1 07 H, will be

C2

%—_8—' As 0=c?< 1 ( due to G, being positive definite) then, the greater the coherency the
more efficiently we will estimate the coefficient H. Note also that ¢* can be estimated

consistently using that G, can be estimated by:
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a,-112 .-
T AT o |3y Loy 4T o
(i . S =
mj-1 l}{‘fz-lﬂ I,(A) I,(3) 0 AH’ 12
ly A A. 1y +I?z'l\
;}Z 11( ) ;zﬂ: 12(1))'
_Ezlz(x)x”‘ Hat —2122(1)73”’ |
then,
L3 10a
x2_ mj
28,1 1 — 28,-1
( E 1(A)A; ' I Eln(lj)lj ? ]
m j=1 M j=1
: : , : . 82
and this estimate is consistent for c* ( by Slutsky): because  é*=—21 and
811822

|§|"’p Igl ’ gkl"p & and gz*p &,

We can use (5.2.1) for statistical inference. Consider as null hypothesis a linear set

of q (<r) independent restrictions on H®
Hy RH°=v
where R is gxr and v is qx1; then, asymptotically, under Hy:
m(RH-v)(RE 'R (RA-v)~x.
Two interesting cases are:
a) Equality of H° across the series. In this case v is a vector of r-1 zeros and R is
R=(I_,:0)-(0:I )

with dimension (r-1)xr, where 0 is a rx1 vector of zeros and I, is the identity matrix of

order r-1.In section 4 we will apply this test to some data.
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b) The vector process is 1(0), that is, H°=1/2 for every series. In this case R is the identity

matrix of order r and v is a vector with all its components equal to 1/2.

5.3. Optimal m

In this section we analyze the finite sample performance of the QMLE and, in
particular, we focus on the selection of m, the bandwidth parameter. As we have seen in
chapter 2 the APE and the LPE both depend on two user-chosen numbers: in the APE, q and
m, in the LPE, 1 and m. The QMLE depends only on one user-chosen number, m, and this
is a clear advantage of this estimate.

Optimality of m for the case HE (1/2,1) has been analyzed in Robinson (1994b) and
in chapter 3 we have already commented his results. For HE (0,1) Hurvich and Beltrao
(1994) have heuristically analyzed ‘two cross-validated criteria for selecting m. In this section
we just consider some Monte Carlo results for the univariate case. We consider two sample
sizes: n=128 and n=256, and eight possible values for m: 4, 8, 12, 16, 24, 32, 40 and 48
for the first sample size and 8, 16, 24, 32, 48, 64, 80 and 96 for the second. These sets of
values for m should be enough for our purposes. We generate fractional Gaussian noise using
the procedure of Davies and Harte (1987). The QMLE is obtained by a golden search
procedure. We analyze nine possible values for H: 0.1(0.1)0.9. We perform 10000
replications in each case. Table 5.1 provides the results for n=128 and table 5.2 for n=256.

First, for sample size of 128, we appreciate that for H small the bias tends to be
small for relatively small values of m (8-12) while for large H then the bias is small for

bigger values for m (32). For instance, with H=0.1 the bias is less with m=12 and for
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H=0.2 and H=0.3 the bias is less for m=8, but for values of H bigger than 0.5, the long-
memory case, then m=32 is the selection that proportionates less bias. When n=256 we get
similar results: for H small we get that small m (like 16) will render less bias, while for big
H we will need bigger m ( like 48).

The asymptotic variance is 1/4 and as m increases we get that the finite sample
variance approximates more to this benchmark as expected.

If we base our optimality criterion for m in the minimum mean squared error we will
get that only for H=0.1 or H=0.2 we can get a reasonable m, in the other cases this
criterion would imply a fairly big value for m. In particular, for n=128, the optimal m will
be around 24 and 32 for H=0.1 and H=0.2 and for n=256 it would be 32-48 and 48-64 for
H=0.1 and H=0.2, respectively.

An interesting aspect is the lack of skewness and kurtosis in these distributions except
for the case H=0.1 ( especially for big values of m). This confirms the normal
approximation.

We can compare these Monte Carlo results with those reported in chapter 3 for the
APE. Columns for m=32 and m=64 in table 5.2 are the counterpart of table 3.3 in chapter
3. Also notice that only values for H>0.5 can be compared. The first striking feature is the
difference in the bias, especially for m=32. The APE shows a fairly big negative bias while
the QMLE has approximately zero bias. Also the degree of skewness and kurtosis of the
APE is very severe compared with the QMLE in which they are almost nonexistent ( we
have to remind here that only for H<0.75 we got a normal distribution for the APE).

The only positive feature of the APE with respect to the QMLE is the slight less
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variance of that estimate, especially for H=0.8 in which case for ¢=0.5 the variance of the

APE is substantially inferior to that of the QMLE.

5.4. Empirical application

In this section we apply the QMLE to some exchange rate data. We use daily and
weekly exchange rate data from January 1989 to July 1994. There are four series: BP/$,
BP/DM, BP/JYn and BP/SwFr. The sample sizes are 292 and 1459 for the weekly and daily
data respectively. The series we analyze are the squares of the first differences of the
logarithm of the spot exchange rates. These series can be interpreted as a measure of the
volatility. We estimate the different H’s using QMLE, employing the downin'll simplex
method that is a very robust way of finding the minimum of a multivariate function. The
subroutine we use is due to Press et al. (1990). Convergence is achieved very quickly. In
tables 5.3 and 5.4 we present the results for weekly and daily data respectively. We have
chosen as representatives two values for m. For weekly series, n=292, the chosen m are 20
and 40. We present the estimates of H and also the 95% asymptotic confidence interval. The
estimates are greater than 0.5 and show evidence of long-memory, especially the DM/BP
series ( but notice that for m=40 the asymptotic confidence intervals include H=1/2 in three
cases). We also present the estimate of the matrix of square coherencies at zero frequency.
The most clear feature is the high coherency between the DM/BP and the SwFr/BP.

Furthermore, we perform a test of equality of H for the four series. This test is

immediate based on (5.2.1). Under the null hypothesis of equality of all H’s:
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When we don’t reject the null hypothesis based on the asymptotic value we also provide the
common estimate of H.

For daily data, n=1459, we have chosen m=40 and 80. The evidence of long-
memory here is more clear.

In chapter 6 we will apply a Lagrange multiplier test for I(0) to this data set.
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TABLE 5.1
mean

4 8 12 16 24 32 40 48
0.238 0.142 0.101 0.074 0.044 0.028 0.019 0.014
0.283 0.213 0.185 0.167 0.144 0.128 0.118 0.112
0.335 0.289 0.276 0.268 0.258 0.252 0.247 0.244
0.394 0.373 0.371 0.370 0.371 0.370 0.370 0.369
0.457 0.462 0.470 0.473 0.480 0.483 0.486 0.487
0.523 0.554 0.570 0.577 0.587 0.5983 0.598 0.601
0.589 0.645 0.670 0.679 0.692 0.701 0.707 0.712
0.654 0.731 0.763 0.777 0.795 0.806 0.815 0.822
0.714 0.807 0.845 0.864 0.887 0.901 0.913 0.922

variance

4 8 12 16 24 32 40 48
0.092 0.034 0.018 0.011 0.005 0.003 0.002 0.001
0.105 0.047 0.029 0.020 0.013 0.009 0.007 0.006
0.116 0.058 0.037 0.026 0.016 0.012 0.009 0.007
0.126 0.066 0.042 0.029 0.017 0.012 0.009 0.007
0.132 0.072 0.044 0.031 0.018 0.012 0.009 0.007
0.134 0.073 0.045 0.031 0.018 0.012 0.009 0.007
0.131 0.070 0.043 0.030 0.017 0.012 0.009 0.007
0.124 0.062 0.037 0.026 0.016 0.012 0.009 0.007
0.114 0.050 0.029 0.020 0.012 0.009 0.006 0.005

mse

4 8 12 16 24 32 40 48
0.111 0.036 0.018 0.012 0.008 0.008 0.008 0.008
0.111 0.047 0.029 0.021 0.016 0.014 0.014 0.014
0.117 0.058 0.037 0.027 0.018 0.014 0.012 0.010
0.126 0.067 0.042 0.030 0.018 0.013 0.010 0.008
0.134 0.073 0.045 0.031 0.018 0.012 0.009 0.007
0.140 0.075 0.045 0.031 0.018 0.012 0.009 0.007
0.144 0.073 0.044 0.030 0.017 0.012 0.009 0.007
0.146 0.067 0.039 0.027 0.016 0.012 0.009 0.007
0.149 0.059 0.032 0.021 0.012 0.009 0.007 0.006
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skewness

4 8 12 16 24 32 40 48
1.130 1.398 1.474 1.597 1.865 2.196 2.579 2.927
0.889 0.929 0.759 0.669 0.496 0.436 0.395 0.319
0.642 0.582 0.360 0.216 0.005 -0.078 -0.126 -0.164
0.395 0.291 0.089 -0.037 -0.170 -0.200 -0.198 -0.197
0.147 0.027 -0.094 -0.174 -0.217 -0.213 -0.191 -0.187

-0.105 -0.238 -0.251 -0.269 -0.228 -0.213 -0.182 -0.180
-0.363 -0.519 -0.453 -0.386 =-0.270 -0.226 -0.179 -=0.179
-0.635 -0.847 -0.753 -0.640 -0.466 -0.368 -0.304 -0.269
-0.924 -1.247 -1.206 -1.107 -0.988 -0.923 -0.886 -0.864

kurtosis

4 8 12 16 24 32 40 48
0.108 1.554 2.074 2.442 3.460 5.046 7.004 9.780
-0.475 0.271 0.096 -0.023 =-0.376 =0.444 -0.427 -0.471
-0.917 -0.351 -0.366 -0.331 -0.314 -0.194 -0.012 0.028
-1.217 -0.650 -0.396 -=0.153 0.039 0.151 0.263 0.198
-1.381 -0.749 -=0.290 0.051 0.228 0.244 0.290 0.203
-1.406 -0.693 -=0.195 0.128 0.282 0.272 0.287 0.204
-1.284 -0.455 -0.076 0.079 0.219 0.214 0.256 0.184
-0.989 0.062 0.248 0.153 0.104 0.040 0.035 -=0.002
~0.495 1.066 1.244 0.948 0.757 0.524 0.411 0.282
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TABLE 5.2

mean
H\m 8 16 24 32 48 64 80 96
0.1 0.164 0.102 0.073 0.054 0.030 0.017 0.010 0.007
0.2 0.224 0.186 0.171 0.161 0.143 0.129 0.121 0.115
0.3 0.296 0.277 0.275 0.273 0.266 0.259 0.255 0.251
0.4 0.376 0.374 0.37¢ 0.380 0.380 0.378 0.377 0.375
0.5 0.464 0.473 0.481. 0.485 0.489 0.490 0.492 0.492
0.6 0.555 0.574 0.583 0.588 0.595 0.599 0.603 0.605
0.7 0.645 0.674 0.685 0.691 0.699 0.705 0.712 0.716
0.8 0.730 0.772 0.787 0.794 0.804 0.811 0.819 0.825
0.9 0.806 0.859 0.879 0.889 0.903 0.913 0.922 0.929
variance
H\m 8 16 24 32 48 64 80 96

0.038 0.014 0.008 0.005 0.002 0.001 0.001 0.000
0.049 0.022 0.014 0.010 0.007 0.005 0.004 0.003
0.059 0.027 0.017 0.012 0.007 0.005 0.004 0.003
0.067 0.029 0.018 0.012 0.007 0.005 0.004 0.003
0.073 0.030 0.018 0.012 0.007 0.005 0.004 0.003
0.074 0.031 0.018 0.012 0.007 0.005 0.004 0.003
0.070 0.030 0.018 0.012 0.007 0.005 0.004 0.003
0.063 0.027 0.017 0.012 0.007 0.005 0.004 0.003
0.051 0.021 0.013 0.009 0.006 0.004 0.003 0.003

[eNeleoNeNoloNoNoNe
WO WN -

mse

H\ 16 24 32 48 64 80 96

=]
[+

0.042 0.014 0.009 0.007 0.007 0.008 0.009 0.009
0.050 0.022 0.015 0.012 0.010 0.010 0.010 0.010
0.059 0.027 0.018 0.013 0.009 0.007 0.006 0.006
0.068 0.030 0.018 0.013 0.008 0.006 0.005 0.004
0.074 0.031 0.018 0.012 0.008 0.005 0.004 0.003
0.076 0.031 0.018 0.012 0.007 0.005 0.004 0.003
0.073 0.030 0.018 0.012 0.007 0.005 0.004 0.004
0.067 0.027 0.017 0.012 0.007 0.005 0.004 0.004
0.060 0.022 0.013 0.009 0.006 0.005 0.004 0.004

OO0 O0O0OO0O0O0O0O0
.
WVWONONLEWN =
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H\m

[eNeoNoNeoNoNoNoNoNe)

WO WN

H\m

e o & o & o
WOJAOS W

[eNeNeNeNoloNoNeNel

skewness

8

1.226
0.866
0.561
0.288
0.034
-0.222
-0.507
-0.849
-1.264

kurtosi
8

1.015
0.088
-0.415
-0.678
-0.769
-0.715
-0.478
0.076
1.139

16

1.171
0.547
0.196
~0.006
-0.115
-0.202
-0.343
-0.615
-1.103

S

16

0.895
=0.272
-0.376
-0.199
-0.018

0.082

0.090

0.251

1.236

24

1.261
0.365
0.004
-0.132
-0.182
-0.206
~-0.258
-0.442
-0.938

24

1.090
-0.438
-0.265

0.017

0.178

0.224

0.183

0.105

0.707

32

1.390

0.235
-0.099
-0.185
~-0.201
-0.203
-0.218
-0.327
-0.809

32

1.500
-0.504
-0.163

0.094

0.179

0.195

0.160

0.035

0.378
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48

1.803

0.134
-0.165
-0.184
-0.182
-0.182
-0.182
-0.221
-0.677

48

2.962
-0.493
-0.011

0.075

0.078

0.085

0.094

0.020

0.084

64

2.405
0.096
-0.186

-0.192

-0.191
-0.191
-0.191
-0.208
-0.635

64

6.117
~-0.434
0.113
0.156
0.171
0.185
0.195
0.153
0.138

80

2.908

0.045
-0.187
-0.181
-0.174
-0.169
-0.165
-0.164
-0.581

80

9.237
-0.422
0.077
0.078
0.073
0.069
0.065
0.044
-0.066

96

3.368
0.035
-0.155
-0.146
-0.137

- =0.131

-0.126
-0.128
-0.551

96

12.799
-0.374
0.070
0.074
0.071
0.067
0.060
0.026
=-0.150



TABLE 5.3
(weekly data)

LUSD/BP, DM/BP JYnBP, SFi/BP

‘m=20 m=40
Hi 0.78 (0.66-0.91) 0.60 (0.50-0.70)
H2 .72 (0.60-0.34) 0.66 (0.57-0.75)
H3 0.76 (0.61-0.91) 0.62 (0.49-0.75)
H4 0.68 (0.56-0.31) 0.57 (0.48-0.68)
Normalized |G|
1 0.79 0.74 0.78 1 0.73 070 0.72
1 073 093 1 062 0338
1 0.67 1 052
1 1
Chi-test 2.28 5.09
Common H 0.66 0.67
TABLE 5.4
(daily data)
m=40 m=80
H1l 0.85 (0.72-0.97) 0.75 (0.66-0.85)
H2 0.78 (0.67-0.90) 0.72 (0.63-0.81)
H3 0.74 (0.59-0.89) 0.71 (0.60-0.83)
H4 0.86 (0.74-0.99) 0.75 (0.65-0.85)
Normalized | G
1 045 047 0.40 1 040 038 0.33
1 047 093 1 042 0385
1 040 1 033
1 1
Chi-test 8.30 1.47
Common H — 0.74
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Appendix 5.1

This theorem is an application of theorem 29 of P. Robinson’s "Quantitative
Techniques" lecture notes that states that:
" Let Q,(6) be a scalar function of a rx1 vector § and of random variables, with sample size

n; let ©C R’, let:

6=6,=arg min, 4 Q,(0),
if:

(i): 6,€8 and
(i): Q,(8)-Q,(8,)=S(6)-T(6),
such that S(6) is nonstochastic and constant over n and for all ¢>0 there exists >0 such

and T,(f) satisfies: sup, o IT,.(B)I",, 0
then: é-»p 8,-"

In our case: (i) is by assumption and in order to prove (ii) we need to show:
1). R(H)-REH)=UM)-T(H),

2a). infgng UH)27,

2b). supe|TH)|-,0,

where O is given in (5.1.6) and for 0<§<0.5:
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N,={H:|H-H"|<8) and N,=R’-N, .

where | || denotes the supremum norm in R* : || A [| =max,(|A;]).

Proof of 1). Define S(H)=R(H)-R(H,), then

S =LY togh 23 (HO-H) 1og1ZEDL (®)|
Z g |GHY)|

also recalling the definitions of 1‘, M and Z of chapter 5, equation (5.1.9), then:

S(H)—ZE (H -H)— ElogHZE (H‘ -H)lo )+log|ZI‘ MGH) |

i=1 i=1

-log|Z|-log|M|-log|T"'GH| .
And:

S(H)=-T(H)+U(H) ,
where U(H) has been defined in (5.1.7) and T(H) in (5.1.8).
Proof of 2a). As

UH)=Y_ U(H) where U(H)=2(H,-H)-log(1+2(H,-H,))

i=1
and so

inf ne UCH) = Z infig g0 UH) (%)

i=]
where:

0=X60 and 60=[A},AY
i=1

so, as x-log(1 wat)z%x2 and -x-log(1 —x)z%x’,

2
infiz peo U(H)2>min (28 -log(1+28),-28 -log(1 —25))2%
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S0,

(¥)2— =1>0.

Proof of 2b): as H® € O,

supg | T(H) | <2r| iE logj-logm+1|+2supg|log |ZTMGH)|| ,
j=1

then, using log|A| <tr(A-)

log |ZT'MG(H) | <tr(ZT"MG(H)-1 )=
@MY A TN 1) =tr(%i ZMAPE 8 T () 1) =
mj.y j=1
1w 2y - _ ) (e }
=tr(;2-; ZMA, 2‘1’; 9 ; s ET 11().})-1,)=n(;§ 20 ¥ I0)-1)=

-zr(z—}j @ [T T7U(L)-1) +t7(—z (Z®,-1))= (A5.1.1)

mj=y
where

‘Pfdiag{lfﬂlo L, e -dtag{( )Z(H‘ Ho)),

and we have used that

2egr-1 4 -1
MAE; e =,

Then
(45.1.1)= E (1+2(H,-HD)— E( )2‘"‘ ) _ ]+
2H,-H) -1 211,
+E(1+2(H—H°)) Z( ) ( L()- 1)
then
supg | T(H) | s2r|—E logi-logm+1|+ *)

mj-1
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Zgupelz (1 +2(H _ lo))_z( )Z(Hl Ho) ]|+ (**)

i=1

2S"Pe|2 (1+2(H, :)))_E[ )2(H¢ H°)(g -1 I (3\.)) 1)| (***)

i=1 mij-
(*)=0(logm/m) using lemma 2 of Robinson (19932);

(**)= O(m -1-2mina; _H‘o))=0(m "9 for €>0 because (A‘-I—H,-")e(—O.S,O) using lemma 1 in
Robinson (1993a) and C5.1; and:

(***)=2supg |y A(H)| , where
i1

A(H)=(1+2(H,~-H}))— E( )z(u. Ha)(g-llwf-llﬁ(kj)_l

m j=q

(%% %) 522 supga|A(H) [-'PO
i=1
as supgolA(H)| =0 for all i,

as is proven in Robinson (1993a), to finish the proof of 2b).

Appendix 5.2

This theorem is an application of theorem 32 of P.Robinson’s "Quantitative
Techniques" lecture notes on asymptotic normality of extremum estimates. This theorem,
with the same framework than the consistency theorem we have seen in Appendix 5.1 states
that: " if:
(i) 6, is an interior point of the compact set O,

(ii) Q,(0) is twice differentiable and

2L

~4 NO.D),

0.0 .

and for any 6~p 8, = P
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then /n(6-06,)~, N(O,E'DE™)".

In our case we need to examine 5 points:
(1) H, is an interior point of ©;
(2) R(H) is twice continuously differentiable and for every A:

Jm x’%”)— |jo~g NOOAE)

( where we have used x~N (u,2)=A'x~N,(A'p,A'EX) for any 1),

7. o d*RE) . .
(3) for any H~pH JH dH, ” E;

(4) E>0;
OF:3:Lk

Now we analyze them:
(1) by assumption;
(5) by the theorem of consistency, proved in appendix 5.1.
(3) by lemma 1, proved in appendix 5.4.
(4) This is immediate considering that:

E=2[ +2ReQ where Q=G *(G,")’

and as the Hadamard product of two positive definite matrices is also positive definite ( see
Styan (1973) p.221), then (2 is positive definite too.

Let analyze (2). We have to prove:

Jm A'dﬁg’) |go~NOMER). (AS.2.1)
where the variance can be written as:
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r r
MEA=Y Y A ME,.

a=1 b=1
LHSAS2.D~mY, 4,00 | o (A5.2.2)
a=1 a

As

dH dH,

iI?QQ:_zKl +.1[E'(H)-lﬂlf)_ =

=-2K, +-v{é<m-‘(%2 (ogDA; (i (1) +1(A,-)i,1A,"]]

i
where we define the matrix i, as the rxr matrix with every element equal to zero except the
a-th diagonal that is one and

1o B Iy~ -1, -1
K=o 3 logf » ED=_ 571, (A5.2.22)

j=1
where

Jj=diag{ju'-°'5}.

Then we can write (AS.2.2) as:

-VmK,Y " A, +/my, Aa'r{é(ﬂ)-l(%z (og)A; i (A )+I(A )i, }A; ’]] g, (&)
a=1 j=1

a=1

Now, as

GH®) =G, +op(1),
( this is due to:

IGH"-G,1=0,[max| L3~ (4 ™ 'L, (1)-g ) 1=
ab M jy

g
=0,( (ﬂ) +m 2P (logm)P+ L8 4y -\ sy 1 )=0,(1)
" m Jm
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using (AS.3.1), (A5.3.2) and (A5.3.3) proved in appendix 5.3), so (&) will be

asymptotically equivalent to

“2K,/mY_ A, +/mY_ A tr(G;'G)

a=1 a=1

where G©=G(H%i +i G(H®)

Then we have:

1[Gy =2 E g —E (logi) ‘_II (X))

k=1

and so
A ARED | 2 N~ NSt () -11(Le A5.2.4
VmA'= |, ng x}zl: v [y, (A)-11(1+op(1)) ( )
where
-1
w(A)-ReE “"). o M(A})—Re(gAj pAPT IS
and

v,=logj- -—E logj (A5.2.5)
1 1
where g* is the a-th row of the inverse of G, and I,(A) is the a-th column of I(A); then

(A5.2.4) is asymptotically equivalent to:

ol ol

TS E v[Relg °A;” I(x)xj 2J-Relg °A) A(\)JA, (x,)xj B (1)

a=1 mJ-l
o 1
X, E v [Relg °A) A(\)IA, (x)x g @
a=1 mJ'l

now (1) is negligible because:
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HY-=
(D-El ——-E v [Relg °A; (I (A)-A(AIA; (A DA, 1=
el Jmi
r  m r Hy- 1 H -_

A=Y vj[ERe[g”"A A M) -ALANAL DA, 1=0(D)

a=1 mji=t =~ b=1
using (A5.3.2) proved in appendix 5.3 and summation by parts; and we have (2)=

Xril‘.—z—m V/[ f{ A/ A(X)[—Ezee “"”A}A (Aj)lfo-i]-l}=

a=1 mj=1 Nigay s=1
=Sr_: A _Z__i v | gaAjo-lA(A,)(—"l—zn: e,el}A .(A)A”:“%]_l]+
a fmin j_ 2mni )

H-

Ty Vi gt/ AW[ E?ee,’e«'-su,]‘:(x,n,-‘ 2

wlh) + (w2)

(w1) is negligible by lemma 2 in appendix 5.5, and (w2) is

}:;x%}fljv A )[_;; cele m,}A o, %]z

where

v.Qcos(t-s)A, ,
nﬁniz-l: T

r -1 P R vIes H:—l
%) ARAACYN] g A YA Mg N AR

S0,
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e,’z I} e = Ez where z,—e,'E
t r=1

(for simplicity let’s omit the superindex m of I' from now on).

Then z, is a martingale difference and we are going to apply a central limit theorem for a

martingale difference (chapter 11, Solo (1986) based on Brown (1971)), that states that:

" If z, is a zero-mean martingale difference array and:

O Y E@!|F, )-1-, 0
t=1

(i1) Zn:E(sz(lzt|>5))-. 0 forall §>0,
t=1

then: y" z~, N(O,1)".

t=1

First we prove (i): i.e., EE(Z‘I ) EZA AE -~

albl

n t-1
EE(z, |F,_) ZE(Ee T, e ,): T, e|F,_)=

t=1 s=1 s'=1
n t-1 t-1
Z eS/P:“fRZ Pt-s'es'—
t=1 s=1 =1
n t-1 / n t-1
3 Y TR, T B el A ) 2)
t=1 s=1 t=1 s»
(12) is negligible by lemma 5 in appendix 5.5 and we have:
n t-1 n t-1
In~* * 1\
E E eSF = t-ss =E E tT(I‘,_ t-seses) =
t=1 s=1 t=1 s=1

and by lemma 4 in appendix 5.5 this is equivalent to:

n t-1

Y ¥ #@ RT, R)=

t=1 s=1

n t-1 2m m
Yy 1 Y v,Qfcos(t-s5)ARY v,Q;cos(t-s)A,R|=
t=1 s=1 1[‘/7772 Jj=1 j’:]
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n t-1 m . R R
y E[ ] Yy v} Q; cos(t—s)ljﬁnjcos(t-s)).ja-]+ (v1)

t=] s=1 Jj=1

n t-1 2m m

E E ( ] E E V,Q, COS(t'S)l,Rv rQ cos(t-s)). R (v2)

t=1 s=1 ﬂrn e
and by lemma 3 in appendix 5.5, (v2) is negligible.
As

« R R
Q' —0—|=
"{ T 2n "21:]

r 2 ! -1 / Hlo-l____.
tr{z ARAAKAY, 2g” “@ AT A (M)A g N, zAa().’.)}—E—
a=1
r o : 1
EMR‘[ AN g Z AT)4l0)y, e A(*)]

a=1

'{ E ralogy, g amR

o 1

T AN ey ALK

b 4
+

H°- 1 [ ’ Ho_ l— )
"{RZ{ZI rALDY, g AR %Re % AN, *g°N ACR) %

-1 H:'l__w ’ I -ty Hf—l———w -
vHZ AAOIN gy, AR RS A AN 8"y AT

a1 a=1 |2m

H°- 1 T

Sl g | &

a=1 2“_

r -1 H:‘l_.
n{ Y A AN g4, ’Aa().,)%

a=1

=(sI) +(s2) +(s3) +(s4)
now, using C5.1° and the definition of f( \), we get that (s1) and (s4) are asymptotically

r r r
equivalent to Re(Y" Y A A,g,25) and (s2) and (s3) to }° A2, then using, see Robinson

a=1 b=1

a=1
(1993a):
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n n-t

> ¥ cosisn) -1 D e Ly 1+0((’°g”’))

t=1 s=1 m .y

we get that (v1) is asymptotically equivalent to: E E AME,.

a=1 b=1

So we have proven (i), now we prove (ii):

EE(sz(Iz,|>6)-O for any &>0,

t=1

4 4
E E(z, I(IZ |>8) sz {—I(lz‘|>5)}sz {Ez } E Ez (A5.2.6)

t=1 t=1 t=1 t’l

as § is fixed then we just need to check the sufficient condition:

As

zn: E(z})~0.

=1

i E@Z) =fj E(e{‘z-j T, )=

=1 =1 s=1

n t-1 : -1 t-1

E E(E C;'Pf-seﬁf): t-r rE €l 1-p6€ t,z L )=

t=1 s=1 r=1
n t-1

S B e RS e 3 el pRE €=

=1 =1 r-l p=1

now using

Now

tr(ABCD)=vec (C)(DOBvec(4 ),

n -1

(% =E ”(E P:- t—xm‘tl- -5 +2‘: tr(‘t I‘:-VR‘X—: I‘t-'RP'I"RF -

t=1 =1 t=1 =1 r=1

D+2).

n t-1

D=03 & IT._19-00(3" DY) - 0(""3'”’ )

t=] g=1 t=1
@3 T R T, )= T, RS TR, R

t=1 s=1 r=1 s=1
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n 4
03 & I =0<(’L§’"Q)

t=1 g=1
using the bounds derived in lemma 4 in appendix S.5.

Appendix 5.3

In this appendix we analyze the stochastic order of magnitude of:

s

3 e

s

).?(ab(") Tas(AD)A;

HI+HO-1
HOH21
2 a5

First, by assumption C5.1, immediately:

®-3 (1= 0)-g)- O(S:;)

j=1
while,
W3 (L) -4 014 QY5
j=1
3 (A ONA; )L, 0
j=1
Then:

(x0)=0,(s P (logs)* +logs+sPn 1) ,
@D)=0,(s™™).

Proof. First, we analyze (x0):

(xO)—z (L0 -4, (A4, ()

)HH,
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(A5.3.1)

(x0)

(1)

(A5.3.2)

(A5.3.3)



HH,,

)'_j (LA )-A,A)A; M) + (x00)

HH,

(x01)

> (LA -4, (A )IA; W)

j=in
In order to see the order of magnitude of (x0) we are going to employ repeatedly

theorem 2 of Robinson (1992) that state that: "under conditions:
a) £ (=K o), as 1-0°, K,€(0,%), H,e(0,1) ae(0;2] fora=1,...r,

b) |-—logfab(l)| =0(n %™, as A -0°, a,b=1,...r, and

c) for some Be[02] |R,(A)-R,(0)|=O(AP) as A-0", a<b=2,..r, where R,, is the
coherency between x, and x,; then: for any sequence of positive integers j=j(n) such that j/n

#0 as n—» oo, for a,b=1,...r,

E(v,(\)%()) =R ,0) +0[1°j4"'+(§)m-v>1 as ne, (A5.T5)

E{va(z,)v,,(x,)}=0[%g—’°] as 1, (A5.T6)

and for any sequences j=j(n), k=k(n) such that j>k and j/n -0 as n—=» o,

E{va().,)vb(kk)}=0[—lgg] as n-e, (AS.T7)

E{v,(0)v,(AD)= o1& ]as n-c, (A5.T8)

for a,b=1,...r."

To analyze the order of magnitude of (x00) we employ repeatedly (AS.TS), so

I
(x00)=o,(EE[1a,,(xj)A, | EEIA (AMA; (M)A, ABeE )
j=1

Jj=1
first,

Ellab(A,)).B B OElw (x,)x e ,,(zj)xf:*”|)=0(1)
also, as
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(A)-E |4, (l)lzrfz EA (l)Aa(l)ru =CU M +o(l4, M),

k=1

where |A (A)[?=max,[4)(\) > and C>0,

then |4 ()1=O(f,,()®)=0("*"), (A5.3.4),
then

E|A,(0)w 4, (A j)xfg’”‘?" |=0(D),
so (x00)=0().

Now we analyze (x01):
(x0D)= E (L) -4, )4, (1)

j=I+1

)Hy,l

= 3 (70050400504, )
j=l+1
where W, (A)=w, (A,-)Af'f'm Ea(xj)=Aa(xj)xf3"’z

H-112

W)= wb(A) Aj and A'b(Ai) =Ab()~i))‘f: i

then, using that X =0,,(\/Exz)

(x01)=o,{( E (%A )5 (A)-A AV )HA A, (’v))l‘

j=l+1
‘\le]

172

Lzl:l (7.5 () -4, )54, (1))
for simplicity lets drop the argument A,

(0I) =o,[

*

-0,((Xx)'"),

j=i+1

S S
)3 (waw,,‘ ~Aw ‘Eb‘)] [121 (%, -A,w"4;)

where
E

e S BN S RN
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+2‘:X':E((wawg-ﬁaw‘ﬁ;)(waw;-ﬁaw ‘4)) s (XXB)
i* k
first we analyze (XXA):

4 F
m:j;l E{w oy 0,0, _,f‘r;, B, oy A A ;)—

3 s

e ate a .
-y EXAOW ZIANEDY E(Aavv A AW Aa)
j=l+1 J=i+1

now we use that for zero mean variates:
E(wxyz)=E(wx)E(yz) + E(wy) E(x2) + E(W2) E(xy) +cum(w,x,y,z),

then we can decompose:
XXA=(*PARI)+(*CUM]I)

where

(+PARD=Y" (BG7, ) EGH; %)+
J=l+1

-~ -~ -~

[Ew W, -A RANEW W, -A,RA 1) +[Ew W, -A RANEw W, -A,A,1-
~E(w v ADE(w,v*A ) ~(Ew oy -A RAWEA, W A -A,RA])
-(Ewv*A -A AAYEA W, -ARA,)-(EA v A, -A RA,)Ew,w, -A,RA.)
+(EA w*A, -A RAYEA, WA -A,RA)+H(EA wv*A -A RAVEA,w A, -A,RA,)
-[E@ W )EW, v A)l-[Ew,v A, -A RA;YEA v, -A RA])]
+[E(A~¢wi MEW ‘A ,: v*4A : ] ) ;
and
(*CUMI)= }: [cum( 9, 39,9, -cum( Wy A, v *4A])

j=l+1
-~ ~% . * ~ ~ g ~ ~ %,
—cum(A v,v°A, ,Ww,w, ) +cum(A v,v°'A, AvVv°A, )]

(*CUM1) will be analyzed later, using (A5.T5) and (A5.T6) for I,J=a,b:
«_ R -+ 7 R ze__ logj . logj
Ew"=——, EG#))-d—4; =0(Tg’), E(w,w,)=0(—]§‘l)
and
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EwyA)-4 —A O(l"g’ ),

E(d y))= 0( &), Edw*A)- -Ar, .4 ‘O "’3’ ),

E(ApA ) =O(m
J

SO:

(+PARD=0( 3" <";g’>2> oc""gs) )

Jj=l+1
Analogously:
XXB=(*PAR2)+(*CUM?2)

where
(+PAR2) =E E (EwimdEw; %)+
(Ew i, -A RA,,HE':',, -A*RA; 1>+([E"' JIEwa;'n-

-E(wfv*A,, Ew,,v'A")-(Eww -A4 )(EA L ALy Y )

~Ewv ADNEA ) -(BA I YA -AIRA Y Bt - A RADH

HEAV YA -AIRADYEA VY A A RA «(BA I AN EA NV YA
EAN B HEwW, v A -Ewv A EA R ]))

+[E(A jv’.i : vHEW i sV ‘*A'a 1+[EA jvfl : vhEW i sV "X: ]) :
and

(xCUM2)= E E(cum( ,w,, g, ) ~cum(w) w ,A v*'ﬁ,,'k)—
—cum(AaVJ,v"A,, ,w,f,w )+cum(A; hivA, ,Akv"v‘tA ))
We analyze ﬁrst (*PAR2) using (AS5.TS), (A5 T6), (A5.T7) and (AS5.T8):

E(w'w))-A] Z—A 0("’31) and

E(A-Ilw .AJ A lzij; )= O(IOgl) for IJ=ab and l=jk ;
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also EGv}%; =028y , EGv/iH=0(12Lh,
E(A vl O(—) E(w v A ")=0(2%" "’g’) E@A'wd))- 0("’31

EANA )= 0("’3') for LJ=ap, and Lm=jk, I>m.

(loghy® =a(s(logs)2)
o(; Zk) j? ) l

now choosing 1~ s'"3(logs)?® we get:

so (*PAR2) is:

(*PAR2)=0(s**(logs)*?) and
(*PAR1)=0((logs)**s'?).
Now we analyze the part with the cumulants, we examine first (*CUM2)=

wfom® ko .lt
cum(w),w, Wy, W, )—cum(w,,,w,, AR LVEVIAL)-

~cum(A vy "Z: RN )+cum(Aj vy "Ab Al “‘A )=
EO‘H‘

lj‘ (cum(w ,w:,w,, W, ) cum(w 25Wp ,A:v "A )-

—cum(A vy Jq7 Swiw, ) +eum(Avly JA: AfvEviAl k)), (*)

using well known properties of cumulants ( see for instance Brillinger , p19.,p.26,p.39) we

get:
(*)—EE H - H " (2")3%22::% '(c;rn)z.
ffﬂAk'(l +l+p+()Ab( -4 (A)m
{Ab e -D-APOME OB, O, DdAdudT L (+9)
where
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AJ\A) is the k, element of A (M),
and

Ey (A 1.0 =D(A-A-p-0D(A+MD(u-A)DE-1) ,  DRA)=Y e

=1
As r is finite and

K bkt < Jor all k. kK. k,=1,.r,

and using:

(xlxz y1)’2)(x3x4 )?3)’4) -H (x =Y, )"'; H (x; ‘)’J) i
= l=1
Jei

2 2
E E (e L€ L J9P) ) 2

i=1 j=1
so, basically we have 3 types of summands in (**); the first is typified by:

L f [l rou a0 [al0,w-aray)

(21'5)3 (27!”)2 (*)
ks L) ko o ik
A (=24, DA, (=0 -A4, O |E, (A1, DdAdpdl
using Cauchy-Schwartz inequality and periodicity:

1 1 1 1

(9)=0(P, (ak) P(bk) Pl (ak) P/ (bk))

where
P(Lk)= f A" (A +A) -4, (M) PR (A=A )dA
for I-ab, n=1234, i=jk where K(A)= M :
now as:
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l-H’°
Al(l) =0(A 2 ),

this implies, for at least one k,:

1_p°
2 5

APFoy=007 Y,

and for the others:

k l'H:"
A" M)=0(A2 ),

then using lemma 3 of Robinson (1993a):

1-28;

[ A7) -4,"(0) PR A-A)dA = lx, ) so

1,1-28]
P(Lk)=0(=X; ) for at least one k,
i

and for the others: P{Lk)=0(=1; iy,

the second type of component is typified by:

@2x)’ (:::;f f f[A (y+A+p+0)- -A,' (A )lAb (A-1)-4, (A)j

4500 -0 -4, ADE, A, OdAdp T =(5 % 4)

l -H°

AM0p=00.2 )

1 .0

for at least one k, and for the others =o(A2 ) , 50 (**¥) is:

1 l 1 --H:
=0(P (k) P (bk) Pi(bk) A} ),

the third component is typified by:
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(2")’ (21m)’f [ flaarens0-abop[aro,n-ara)

A,, (lk)Aa APE;(A,1,0)dAdpdl =

a;(;f,?;ffﬂA 4,0)-450)[AR 0,2 A2 )

A ODA (A )E,(1,8-2-{,0)dAdBd( =

l 1"2"3*4 K
A, (+6)-4,' (M) |4, (A) -4, (A
@n) (Znn)z_,"n (2,+0) (1)1 » (A)- b( )J

A,, (Ak)A (Ak)D(). -8)D(A,+1)D(6-A- ). -A)dArdo
that is :

1 1 B 1o

_O(TP, (@k) PR(bk) A; A,

SO

(*CUMZ)“O(EEM HLBLHL g R

I+1

1
HO-H) 1-HC-H} -= 1-H°-H° 1-H°-H®
J 2k-11 a .l & —]k 2).] - ‘lk Ll b+

O((logs)*+s Elogs wsn 2
and similarly,
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1

' s 31
(*CUMD=0(Y, (4 %+n %j7)=0Q1),
J=l+1
so we get that:
1 2 1 1

(x01)=0(s 3(logs) 3 +s *n*+(logs)).
Then:

(x0)=O(s P(logs)?*+s *n 1+ (logs))

and we have proven (A5.3.2). Now we analyze (X1):

)H+H.

[0.:6) ~Z(A (AMA; (M) ~f,,(A)

f,.,,()-,)=Aa(k,)(%)A,,'(k,~) ,

and

IR 113 SELLID 5 X

t=1 t
1 t(t-u)ll

E e(r)’ Z E e(') ,f')

\L
we can rewrite it as:

1 i(e-u)A
J=——[S,+S,e ,
21tn[ 1772

SO
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1%6) =j§ (‘i,,()g,.)%[(%s1 “R) +%S2e “"""i}i,,‘(xj))=

1 (A ¢ )[( S R)]Ab(k))q._EA (A})—S l(t-u)l,Ab(A)_

T je1

(AD)+(42),

(A1) and (A2) have both zero mean while:

IADISY., A,G)I1-S,-RIA 0L
j=1

as we have seen before:

and

SO

A, )1=0(1) 1, (3)1=0(1)

By

IS, -Ru=o,,[\J maxE(—E e -r,,y]

1 n n
E(—E ee] —rn)2=E(—ZEEe, ele]el+r’ Ee,e’)
| (gree N7 ¢=1 s=1
3+ +—(n*-n) 2r2 > W—T,Zy
——n K —n—nr e -2ra =20 ¥
£ ”

1 _ 3¢k, Ty
];SI—RH-O,,[\J max, —;";1’—

where we have used that x=0,, / Ex?), so

while

(AD=0 ()
" yn
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42) =2i5_j A5, i 0)-
T el n

_EA )= E E eese A (M)
J-l
-Ezet - € u?

us f

where

__EA (A)A,(1)e ™Y,

1-1
(A2) has zero mean and variance:

ALY Y el eely, )

e u‘ ‘

_E E E E vec T, E((e,Be)(e,Be,)vecT,, , =

u¢t

DTS e, esesBe ety =

ule ¢

=YY Y vecT, (R®RjvecT),_, Iu=t't=u’)=

ur ot oyle ol
=YY vec ’I‘,_R(R®R)vecI‘:,_“, (*)
w ot
and calling
Q=R3R ,
we get:
n-1

(¥)=nY (1 -—)(vec T T PQ(vedTy +T' ))sn): (vec Z)QvedZ, )=(++)

=1
where
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Z,T T,

now:

s
2,23 A4, peosth,
i

SO

1Z1<23 A ODIA(M)1=0¢)
nj-l n

and, as we can write:

A;()=K (1+0(1)) A,(1)=K,(1+o(D)) ,

z,=(1+o(1))%KaK,,E costl,

Jj=1
using, see Zygmund(1977), p.2,

b
Ecosjk=0(l) for O<|A|<xm ,
j=a A

we have
1
Z2,=0(=) ,
t
then, as 2=0(1)

&
S

(+9)=00nY" I1Z, ) =00 1Z2+n ¥ 1Z)=0(n2

Sn

=1 =
t t=1 '=[£]
s

so that (X1) is O,(s"?) and we have proven (A5.3.3).
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Appendix 5.4

Lemma 1:

d2R(f) _— X
dHdH,? E, for all H:IH-H,|<|H-H,| ,

Proof:

First define G,,°= G%,+i,G° and G,,°=1,i,G°+1,G%, +1,G%,+G"%,i,. Then,

R(H)=K(r-2i’H)+log |G(H) | ,

can be rewritten as:

R(H)=K,(r-2i'H)+log |EH)| ,
where K, and £y have been defined in Appendix 5.2, so,

dzR(H) =tr[_E"-(H)—l dE(H) E(H)_l dE(H) +E(H) dzEA(H) 1.
d dH

dH dH, H, i dH dH,

Now define:

0
No-x _ diag { (31_:_)". -0.5}
n
and:
F(H)=N""EH)N®",

5 1 dE(H) ot
F (H)=N" 2222 No™!,
15 H) de

0! dZE(H) N0'1

F, (H)=N
2 dH dH,

Then:

2 . . . a n o
GRED o1 FEy B (HEE) A (H) +FE) ™, ()],

dHadH b
As
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VE,, () - (HO) =0, (IF, () -F,(HO)),
1, () ~F, (H) |=O (I, () ~F,(H)),

IIF],,(H")—G{’,,n=0,,(nﬁl(H°)—G°%E zog,-.,],
Jj=1

and
£ (H%) -Gy =0,,( Iﬁ’z(H")-G"%E (zogz)zu),
j=1
where
F =LY logi NI LINY
1 _;j'l g7 j JJJ ’
and
> 1y 2 z0ty-ly p-lys07t
ED=" 3 (logi)* NI 1IN
and as
m m
iE (log*~(= ¥ logi*-1,
mj=1 mj=1
and

1[Gy ' GGy G, 1=tr[Gy Gy, ,
we just need to show for k=0,1,2:

Pl) FyH)=FyHy)+o,1) ,and

PD) FHY=Gy(--Y. Qog)+o, (D)
—
Proof of P1):
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P(IE(H)-F(HI>n)=
P(IF (H)-F(Hy) I>n (logm)* | H-H| <€)) + 1)

P(LF (H)-F (Hy 1>n,(logm)* | H-H°|>¢)) ; @

first we analyze (1):
|F () -F(Hy)l=

o<max|—z (log) ] O e By

m ;=1

ko H+Hy-1 A +H,-H,-H, _ “1)|=

0 (maxl—z (logj)" A L, (A)G

oy 7 +i. —H°-HO
o (m%E ogi 3™ 1L 0GPy =(a),
a, j=1

as
7 T o o -~ -~
I]'E"H’.H‘-Hb-llslﬂ +H —HO—H:I e logj ,

HJ+Hp-1

(+1)=0, (x|, +F,-H;-Hy |  logm)* IE LA

and using appendix 5.3:

m 0

1 HO+HY-
;E AT )] <

0 0

1 m 281 12 m 12
4=% 2 IM(A,-)) ( )jlj 2 1,,,,(1,.)] =8B

mj-1
50,
(*1)=o,,(n;3x|ﬂ,,+ﬁ,,-ﬂi’ ~Hj |e(logm)**(g,.8,)"™); (*2)
also as
(logm)*|H-H"| <e,
we have
(¥2)=0,(2ee(logm)* (g ,8,)'"),
)
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(1)sPQec(logm)* (g, g,,)*>n)~0 .
Now we analyze 2):

(2)<P(\H-H >

3)=1r>(1r?e1t2r)e) (*3)

ogm)
where

M={H:|H-H°|> }

(logm)3

and recalling the definition of S(H) in appendix 5.1: S(H)=RH)-R(H,),
(¥3)= P(mf S(H)<0)=P(_inf S(H)<0)+P(_inf S(H)<0)=(a)+(b)
MON,N8

MW,

(B)<P(inf S(H)<0)~0
N,ne

using 2a) and 2b) in appendix 5.1.Now we analyze (a); we recall S(H)=-T(H)+U(H)
defined in appendix 5.1, then:

P(_inf S(H)<0)<P(_inf U(H)SS“P |7 ),

mw,Ne MO0
analogously as in the proof of consistency (see appendix 5.1) we get here:

2

inf U(H)sz UH) = E inf Uk(Hk)z—

e k1 ine® 2 (logm)®
and
sup|T(H)|ssupe|T(H)|sZr|—E logj-logm+1|+ (*)
] =1
supelz[(uz(ﬂ -HY)— E( )2‘"* ) _ ]|+ (**)
j - 2H, *kk
sup9|Z(1+2(H— 2))—2( ) ( L)1 )| (***)

as in the proof of consistency in appendix 5.1:

()0("’8”5 ad  (+9=0(5), w0,
m
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(xx %)= suplE(1+2(H- ,?»—}:( )2‘”‘ g () -1))<

M8 =k mi;_q

<3 sup [AH)|=0,(¢ "’g'")”’)
k=1 N,Ne®

then

(b)<P(

2
re <_L(1+o(1))-»0 for all e, >0,
(logm)® mY

so we have proven P1). Proof of P2):

1F (Y- G°i): (logit1= u—z: (log)(AY AT -GY|=

m;-y

=|— E ((logi)*~ (log(/+1))")2 w I,Ao -GY+

m =y

(logm*L Z AIAS-GYs

mj=1

-—Z ((log)*-(logj+1))" HE @ I,Ao -GY1+

mj=1 k=1

(logm—_1Y (A7 145" -GO)I=(+4) ,
j=1

then as

H +H
ll—jzl: (A, I,Ao 'GO)II-O (max|—E Ly (A)A;° d ab|)=
o (ﬂ'i +m " P(logm)? + logm, 1 +m 12)
P nt m n'*

using (AS5.3.1), (AS.3.2) and (AS.3.3) in appendix 5.3, we get:

m k-1
(*4) =op(|.l. E ’(IOL)(SUS(IOgS)m*’S p*ln e +5 lﬂn 'll4+s lﬂ)+
S

s=1

i(logm)"(m Blogmy+m 8 *1n B +m 12p ~V4)) =
m
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0,( (logm)*™*  (logm)*™!

m3 Jm

using condition C5.4°, and we get the desired result.

g
( ) (logm))=0,(1)
n

Appendix 5.5

In this appendix we state and prove some lemmas that we use along chapter 3 and its
appendices.
Lemma 2:

m Hf-l
_2_24&[ p) A(A)[—ze,e,}A‘(xj)x,. 2]—1]=0p(1).

fn;j=1 B

Proof. Rewrite the LHS as:

H-2
2 A(A)—( Eee,—R}A;()_j)),j 2”+ *)

_Z_i /[Re

Jymi=1 N
Hf—l *K
—Ev Relg Al A(A]) A SO0, 2|-1) )
m;=1

then

o 1
(**)-——Z ,[e[“A f(A)A 2]—1]
1=1
where

f(l)“A(l) A L (A,

using C5.1°:

1_yo

FO)Ag A} (00l

implies
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9’5

(+%)= O(FE |v;1A)= O(logm —)=o(1)

mij=1

by assumption C5.4’, now

_ .
g Am—[ Zee,—R}A Wy 2H, ©

(S

2 m
*)=—— Y VIRe

now,using:

Ny

m-1
Rz{ A A(x)—-(—z ee-RIA; ()N, ’]

r H°--— n 11°-.!. 1
=Y Rejg, b(l) [ Ee‘e, }A (A)A -Op(—)
b=1 Ry \/’7

where we have used (A5.3.4) and (A5.3.5) in appendix 5.3, then:

my/nj=1

1
©)=0, (7___—2 v,)=0 aog.,{_':_)z)=op(1).

Lemma 3:

m n t-1
( ) YYvviyy a{Q (a)RQ;Ab)Rcos(t-5)A cos(t-s) 1., ]-o (1)
TVmn

i j! t=1 s=1
for a,b=1,...r.

Proof:
The proof is immediate considering:
n t-1 )
DYy cos(t-s)Acos(t-s)A,=-n , see Robinson (1993a),

t=1 s=1
o_1

r -1 . ~1 Ha
2) aj=§ A ﬂRe[A().j)’A? g A (A)+A; ()8 A A(A,.)]x, 2201 »

144



H—l

this is due to A(l;)/% =0(1) and A ()_})), _0(1) , see (A5.3.4) in appendix 5.3, and

n 2
) =Y X vy=0C% (D)=0()=o(1)
j1

mn= j=

Lemma4:

Y ¥ [V (@RT, (b)le,e;-Rl1=o0,(1).

-1
t=1 s=1

Proof:

The LHS has zero mean and variance that tends to 0 as we are going to prove. Using

tr(ABCD) =vec'(C)(DRB " vec(A Y,

we get
n t-1
Var(LHS)=E|}_ ¥ vec(R)[T,_(b)®T,_(@)]vecle e, '_R) -
t=1 s=1
r u-1
Y ) vec! [e,e,~RI[T._(B)®T,_(a)ivec(R) (*X)
u=1 v=1
and calling;:
K=E(veclee /~Rlvec'[e €5 '_R]) ,
then:

n t-1

(+X)=Y. ¥ vec (RIT,_(B)OT,_ (a)]KE [T (b)®T, (@) IveclR]-

t=1 s=1

Ede 0,3 14 ,

t=1
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where

n-t
d=Y [T, (B)ST,_(a)vec[R] ,
s=1
i.e.,
n-t "
d=y s ,
s=1
where
y2=[T,_(B)ET, (a)veclR] ,
then
1 1
¥} |<ITo (R 2IIT,_(aYR ]
Consider:
1)
1 m
1 1 1
i Ft-s(I)IR 2ﬂ=0(__2 l"jl):O(‘/_L:gm) , I=ab,
mnj=1
2)

_1_ m-1 J m
IT,_((D'R?|= L(|E (V7)Y cosE-)A, | +v, |3 cos(t—s)ljl]]=
= 1

mn\ j=1

=0(illogm) for 1ss< 2|
msS 2

k
using ¥ cos(sd,)|=0(Z), see Zygmund (1977), p.2. Then
j=1 S .
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G2 {5 (S e
and

- 2_ logm)“
;Ild,ll O(—n )-

. So that the variance of the LHS tends to 0.

Lemma 5:

-1

-

Y eIy (@RT, Abe,~0,(1).
s

=] s%

Proof:
LHS has zero mean and variance;

n n min(e-1 u-1)

YY ¥ Y o@ (@R, Ab)RT, (b)RT, (@)R)=

t=1 u=1 s» s

n a min(-1 u-1)

oYY Y Y IC(@IIRIIT, AB)IRIIT, ABIIRIIT, (@IIRD=

t=1 u=1 s+ rd

n t-1

oYy E IT,_ @I, Ab) >+
t=1 s+
n t-1 -1
+4 Y I @I, _ D)L, _BIIT,_(@))=

t=3 u=2 s+ g/

n z-1 t-1
Ot [M] SIEOPYY T I @b-
t=1 t=3 u=2 s=t-u+l
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ologm)* (logr:t)‘).
n

m3

This is due to:

Y ITLM p-odosmyy pqp
t=1 n

]

so the first part is:

and the second part is:

(21
n n t-1 1 2 2
o} I @YY, ¥y It (@ Ilz)=0((liilnl ny jIT; @17)=
t=1 t=3 u=2 s=t-u+l Jj=1
(logm)*
O(_mlﬂ ).
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Chapter 6

A Lagrange multiplier test for 1(0)

In this chapter we will consider a Lagrange mliltiplier test for testing that a vector
process' is I(0) and analyze its asymptotic properties and finite sample behavior. Then we
will apply this test to a multivariate financial data set. This test is proposed and analyzed
with more generality in Lobato and Robinson (1994) where both types of alternatives ( the
so called "long-memory" case and the "antipersistent” case) are analyzed jointly. Here we
just consider the case when the alternative is "long-memory". In section 1 we present the test
and state its asymptotic properties. Section 2 examines finite sample performance for the
univariate case. In section 3 we apply this test to exchange rate data in a multivariate setup.

Technical details are in the appendices of the chapter.

6.1 A Lagrange multiplier test for I(0)

Much econometric literature (applied as well as theoretical) in recent years has made
great emphasis in the concept of 1(0). For instance, most of the cointegration literature seems
to have identified the concept of stationarity with I(0). Also the literature on the Generalized
Method of Moments ( GMM) has assumed I(0) and estimated the asymptotic variance of the
estimates by some function of a smoothed estimate of the spectral density at zero frequency,

see for instance in Newey-West (1987). In both cases I(0) is usually taken as granted and it

A vector process is I(0) when every one of its components is 1(0).
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would be useful to test that assumption. On the other hand, the presence of long memory is
generally considered as a nuisance because the analysis usually simplifies a great deal under
weak dependence. Therefore, there is a clear interest in testing the I(0) assumption against
long memory.

| Consider the speciﬁcation. of the spectral density matrix that we have seen in the
preceding chapter:

AM~AGA as A-0", A=diag{x"*%y ,

with G Hermitian positive definite, we formulate the null hypothesis as:
H:H =1/2 for a=l,..r,
and the alternative:
H;:H>1/2 for at least one a, a=1,...r.
Under H, the vector series we have is I(0) while under the alternative we have that at least
one component of the vector has long-memory.
In order to motivate the test consider the objective function in (5.5) and recall from

appendix 5.2 the distribution of the score evaluated at the true value H

dR
| o N 0.,

We can thus suggest the test

dR(H,) ]/13: -1( dR(Ho)]

LM=m
( dH dH

where we evaluate the score at the null hypothesis and E is defined in (6.1.1). In (A5.2.3)
we have derived an expression for (dR(H)/dH,) that we can evaluate at the null hypothesis

to get, in the notation of chapter 5:
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mj-1 j=1 j=1

(dI;ZjO))= 2 i loglj+n{[%f: I,]- [%i (logi\.}.){ialj+1]ja}]]

So that we can rewrite this as:

with

P e .
Ck:;; viI(A) for k=01, with C=C, ,
=
y; has been defined in (AS.2.5) and v(A) denotes the vector whose components are the

diagonal elements of the matrix A.

With respect to E consider

E=2( +C+C7Y 6.1.1)

we will show later that under the null hypothesis it is a consistent estimate for E, justifying
that selection.
So that we can express the test concisely as:
LM=mé'E™"é.
Our test procedure is:
"reject Hy if LM>x% . "
where x? , verifies:

2
POC>1 D=0

~ and x? follows a chi-square distribution with r degrees of freedom.
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The asymptotic properties of this test are considered in the next two theorems.

Theorem 6.1: Under conditions C5.1°, C5.2°, C5.3” and C5.4’ that we have stated in chapter
5 the LM test converges under H, to a random variable that follows a x,? distribution, that
is:

P(LM>y;, |H)~e,

Proof: This is immediate considering that in appendix 5.2 we have proven that:

dR(H,
J”_: dHO) ~d N, r(o’E)

where H, could take the value H=1\2 and under the null:

m
¢-13100)-,650,
mj=1

so, immediately:
E=2(+C+C ™~ 2(1 +G*xG™)=E.
In order to prove the consistency of the test we can relax the conditions we
have seen above, in fact we can prove the consistency of the test under very general
assumptions, we just need to streghten slightly the conditions in theorem 4.1. We introduce

the conditions:

12-H, 12-H,+ . )
6.1: A R)~AA +O(2 ) as A-0°, for some 7 >0 where A, is a 1xr vector

of complex constants. Notice that this assumption implies that

() ~g AT E 00 BBy gs 20
ab ab

®)

6.2: 1/m +m/n -0 as n»>oo,

®)

6.3: ¢, and ee,’-R are uniform integrable martingale difference sequences and:
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maxrj[etj|2*"<oo

for some v>0, j=1,...rand t=1.

Notice that C6.2 is the same as condition C4.2 in chapter 4 and C6.1 and C6.3 are just

stronger versions of C4.1 and C4.3.

Theorem 6.2: Under C6.1, C6.2 and C6.3: the test is consistent under H,, that is,
P(LM>c|H)~1, for all c>0.

The proof is in appendix 6.1.

6.2 Finite Sample Performance

In this section we examine with a Monte Carlo experiment the finite sample behaviour
of the test. We have chosen two sample sizes, 128 and 256, that, as we discussed in chapter
3, are extremely modest sample sizes for these semiparametric procedures. We analyze the
performance of the test for several values of m. For n=128 we have chosen m=4, 12, 20,
28 and 36; while for n=256 the grid is 20, 28, 36, 44 and 52.

In order to analyze the size we consider data generated from an AR(1):

x=¢x,_ +€,
with ¢, being normal iid(0,1) and ¢ taking values: -0.9,-0.6,-0.3,0.0,0.3,0.6 and 0.9. In
order to analyze the power of the test we consider series generated by fractional Gaussian
noise using the same procedure as in chapter 3. We just analyze the univariate case because
that is enough in order to grasp the main features of the finite sample behaviour. The number

of replications is 1000 in all the experiments we have performed.
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In tables 6.1 and 6.2 we examine size and power respectively. It is clear from these
tables that in order to get moderate size we have to choose a fairly small value for m. It is
also clear that as the sample size is bigger the distortion of the sizes is smaller ( compare the
sizes for m=20 or m=36 with n=128 and n=256). In any case we still notice as a main
feature of these tables the unusual high size when ¢=0.90. With respect to power the results
are what we could expect. First notice that although our theoretical analysis has been
established only for H>0.5, we report also power figures when H<0.5. As we could expect
the power is higher with higher m and when H differs more from 0.5.

We have performed another experiment in order to examine if we can improve the
sizes. We have replaced the periodogram in the LM tests by a smoothed periodogram, that
is:

vf,
LM=m| £

Z;f,—

where

f,-mz I0;.)
In tables 6.3 and 6.4 we examine this test for different degrees of smoothing. We just
report results for n=256, the results for n=128 are qualitatively similar, with m= 12, 20,
28, 36 and 44, and k=2, 4 and 12. As k is lower the degree of smoothing is lower and the
results are more similar to the ones obtained with the raw periodogram. As the degree of

smoothing increases we obtain lower sizes as we could expect but we have to state also the

effect that smoothing has on power. The loss of power when we use the smoothed
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periodogram is especially severe when the degree of smoothing is very high (k=12).

6.3 Analysis of exchange rate data

In this section we apply the LM test in its original form to two financial data sets.
The first one is the one used in Whistler (1990) and in Robinson (1991). They are data for
four exchange rates: BP/$, $/DM, $/JYn and $/SwFr. There are three different records:
daily, weekly and monthly. The daily set goes from October, 1st 1981 to June, 28th 1985,
i.e., the sample size is 946. The weekly and monthly data cover the period from January
1974 to June 1985. For weekly data the sample sizes are 600 while for monthly is just 138.
It is important to emphasize, as it has been done in the unit root literature, that as important
as the sample size is the sample span. This is what makes the monthly and especially the
weekly data interesting because they cover more than eleven years. The second data set is
the one used in chapter 5, section 4.

We apply the LM test for the first differences of the data. This is an interesting test
to do because the efficiency market hypothesis establishes that:

E@,|Qr )=P,
or what is equivalent that:
E(e,|Q,_)=0, (6.4.1)

where p, is the exchange rate and
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€,=P,"D,_;-

Equation (6.4.1) establishes that ¢, is a martingale difference. Some tests for (6.4.1)
have focused on looking for some short-term correlation structure in e, i.e. they have tested
(6.4.1) as null hypothesis with the alternative being that ¢, has some sort of weak correlation
or weak dependence. But we can fail to reject (6.4.1) using those tests procedures if ¢,
possesses strong dependence. This is why it is important to test for (6.4.1) considering long-
memory alternatives.

The result of the LM test for the first data set is in table 6.5. There are five columns:
the first four are for the univariate LM test and the fifth is for the multivariate version of the
test. Test values greater than the 5% asymptotic critical value are marked with "*". From
table 6.5 we can deduce that there’s no evidence of long-memory for daily and monthly data.
For weekly data there’s some evidence, especially for the BP/S$.

The results of the LM test for the second data set for several values of m are in tables
6.6a and 6.6b for weekly and daily data respectively. The main conclusion is the lack of
long-memory for these series. Only for the BP/JYn we appreciate a slight indication of long-
memory with daily data.

Therefore, with the data we have used we do not reject the efficiency hypothesis.
Another idea that has been analyzed in some empirical papers is to look for evidence of long
memory in ¢ as a measure of volatility, see for instance Ding et al. (1993) where they look
at stock market data. In tables 6.7 and 6.8 we look for evidence of long memory in ¢?. The
results are striking. Except for monthly data in the first data set and for BP/$ weekly in the

second set in all the others series the evidence of long-memory is overwhelming using the
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univariate or multivariate LM test. Especially for daily data we reject the null hypothesis that
¢ is I(0) for all the series using the univariate or the multivariate version of the LM test for

any value of m.’

2 The only exception is for small m in the first data set for $/SwFr.
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$\m

-0.96

-0.60
-0.30
0.00
0.30
0.60
0.90

$\m
-0.90
-0.60
-0.30
0.00
0.30

. 0.60
0.90

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

n=128 c.v.=5% and 1%

K
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table 6.1

12

0.004
0.005
0.005
0.006
0.008
0.028
0.661

n=256 c.v.=5% and 1%

20
0.013
0.010
0.009
0.011
0.015
0.052
0.873

0.000
0.001
0.001
0.001
0.003
0.013
0.680

28

0.009
0.009
0.010
0.012
0.025
0.180
0.992

0.000
0.000
0.000
0.000
0.000
0.007
0.390

0.002
0.002
0.002
0.002
0.004
0.058
0.973

Table 6.2

n=128 c.v.=5% and 1%

4
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.018
0.006
0.002
0.002
0.012
0.035
0.093
0.217
0.374

n=256 c.v.=5% and 1%

20
0.284
0.095
0.030
0.005
0.013
0.061
0.240
0.474
0.705

0.024
0.003
0.000
0.000
0.001
0.019
0.102
0.307
0.532

28

0.713
0.350
0.108
0.021
0.014
0.103
0.377
0.691
0.866

0.000
0.000
0.000
0.000
0.002
0.010
0.030
0.083
0.191

0.233
0.042
0.006
0.001
0.001
0.038
0.222
0.508
0.780

20
0.004
0.004
0.005
0.008
0.025
0.260
0.975

36
0.012
0.014
0.017
0.016
0.047
0.430
1.000

20
0.428
0.142
0.026
0.004
0.015
0.080
0.259
0.525
0.739

36

0.947
0.616
0.238
0.041
0.018 .
0.159
©.509
0.798
0.948

158

0.001
0.001
0.001
0.002
0.003
0.096
0.935

0.003
0.002
0.002
0.004
0.014
0.206
0.999

0.028
0.003
0.000
0.000
0.005
0.023
0.118
0.314
0.572

0.622
0.184
0.026
0.001
0.001
0.054
0.326
0.676
0.885

28
0.025
0.024
0.018
0.014
0.093
0.666
1.000

0.022
0.020
0.019
0.024
0.082
0.696
1.000

28

0.851
0.440
0.117
0.020
0.018
0.128
0.431
0.741
0.907

0.993
0.826
0.380
0.062
0.018
0.220
0.612
0.885
0.982

0.000
0.000
0.000
0.003
0.019
0.417
0.998

0.004
0.004
0.004
0.007
0.030
0.480
1.000

0.355
0.064
0.007
0.001
0.004
0.043
0.243
0.567
0.818

0.896
0.403
0.070
0.004
0.001
0.095
0.454
0.791
0.949

36
0.120
0.089
0.037
0.014
0.212
0.907
1.000

52

0.039
0.034
0.023
0.024
0.151
0.903
1.000

36
0.985
0.744
0.299
0.046
0.016
0.187
0.567
0.873
0.968

52
0.999
0.939
0.535
0.105
0.018
0.263
0.701
0.948
0.996

0.012
0.007
0.002
0.004
0.083
0.790
1.000

0.001
0.001
0.004
0.006
0.045
0.746
1.000

0.751
0.286
0.030
0.002
0.003
0.071
0.383
0.761
0.924

0.976
0.661
0.158
0.013
0.003
0.134
0.536
0.879
0.983



o\m
-0.90
-0.60
-0.30
0.0
0.30
0.60
0.90

#\m
-0.90
-0.60
-0.30
0.0
0.30
0.60
0.90

$\m
-0.90
-0.60
-0.30
0.0
030
0.60
0.90

0.000
0.000
0.000
0.000
0.000
0.000
0.181

0.000
0.000
0.000
0.000
0.000

0.000

0.010

0.000
0.000
0.000
0.000
0.000
0.000
0.000

to

12

0.000
0.000
0.000
0.000
0.000
0.000
0.018

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table 6.3 a

n=256 k=2 c.v.=5% and 1%

20
0.005
0.003
0.004
0.004
0.008
0.034
0.873

0.000
0.000
0.000
0.000
0.000
0.004
0.682

Table 6.3 b

0.004
0.005
0.005
0.005
0.016
0.171
0.994

0.001
0.000
0.000
0.000
0.003
0.049
0.975

n=256 k=4 c.v.=5% and 1%

20
0.001
0.000
0.000
0.000
0.001
0.015
0.857

0.000
0.000
0.000
0.000
0.000
0.000
0.591

Table 6.3 ¢

0.002
0.003
0.003
0.003
0.009
0.142
0.995

0.000
0.000
0.000
0.000
0.000
0.031
0.972

n=256 k=12 c.v.=5% and 1%

20
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.006
0.962

159

0.000

0.000
0.000
0.000
0.000
0.000
0.650

0.008
0.012
0.015
0.015
0.040
0.430
1.000

0.005
0.007
0.008
0.011
0.026
0.421
1.000

0.000
0.000
0.000
0.000
0.003
0.235
1.000

36

36

36

0.002
0.002
0.002
0.002
0.012
0.202
0.999

0.001
0.001
0.001
0.002
0.007
0.180
0.999

0.000
0.000
0.000
0.000
0.000
0.023
0.995

0.017
0.015
0.014
0.018
0.080
0.706
1.000

0014
0.013
0.010
0.012
0.065
0.716
1.000

0.002
0.001
0.002
0.003
0.022
0.654
1.000

0.003
0.004
0.003
0.004
0.026
0.494
1.000

0.000
0.000
0.001
0.004
0.021
0.477
1.000

0.000
0.000
0.000
0.000
0.002
0.317
1.000



0.1
0.2
03
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
03
0.4
0.5
0.6
0.7
0.3
0.9

0.1
0.2
03
0.4
0.5
0.6
0.7
0.8
0.9

12
0.003  0.000
0.000 0.000
0.000 0.000
0.000  0.000
0.001 0.000
0.004 0.000
0.026 0.001
0.098 €.012
0.211 0.053

12
0.000 0.000
0.000  0.000
0.000 0.000
0.000  0:000
0.000  0.000
0.000  0.000
0.000  0.000
0.003  0.000
0.020 0.000

12
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Table 6.4 a
n=236 k=2 c.v.=5%and 1%

20 28
0.010 0.697
0.000 0.326
0.000 0.091
0.000 0.016
0.000 0.009
0.010 0.078
0.058 0.333
0.228 0.676
0476 0.867

0.245
0.070
0.019
0.004
0.006
0.038
0.183
0.426
0.683

0.190
0.035
0.005
0.000
0.000
0.030
0.186
0.474
0.761

Table 6.4b

n=256 k=4 ¢.v.=5% and 1%

20 28
0001 0676 0.133
0.000 0274 0.013
0.000 0.069 0.003
0.000 0.010 0.000
0.000 0.005 0.000
0.001 0.052 0.016
0.017 0286 0.101
0.101 0.623 0.401
0321 0.848 0.713

0.171
0.045
0.009
0.001
0.001
0.022
0.091
0.308
0.595

Table 6.4 ¢
n=256 k=12 c.v=5%and 1%

20 28
0.000 0.290
0.000 0.035
0.000 0.004
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.017
0.000 0.132
0.000 0.468

0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.005
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.063

160

-0.940

36
0.944 0.600
0.608 0.162
0.213  0.021
0.035 0.001
0.014 0.000
0.144 0.048
0.493 0.298
0.796 0.663
0945 0.885

36
0.576
0.124
0.014
0.000
0.000
0.033
0.250
0.626
0.872

0.578
0.199
0.027
0.009
0.114
0.456
0.784
0.944

36
0.813 0.251
0310 0.013
0.042 0.001
0.004 0.000
0.000 0.000
0.010 0.000
0.137 0.032
0.578 0244
0.864 0.637

0.995
0.809
0.372
0.059
0.016
0.206
0.602
0.887
0.983

0.996
0.795
0.343
0.051
0.014
0.185
0.577
0.883
0.985

0.983
0.652
0.169
0.017
0.000
0.058
0.383
0.794
0.964

0.890
0.402
0.066
0.002
0.001
0.080
0.432
0.791
0.949

0.887
0.369
0.049
0.003
0.001
0.058
0.381
0.759
0.945

0.729
0.151
0.012
0.000
0.000
0.004
0.161
0.560
0.888



10
15
20
25
30
35
40
45
50

10
20
40
60
80
100
130
160
200
250

20
40
60
80
100
130
160
200
250
300

BP/S

0.064
0.547
0.614
1.825
1.048
0.769
1.700
3.169
3.027
5.146

BP/$

0.589
2.039
3.283
4.372*
9.987*
8.185*
8.778*
4.281*
2.546
4.258*

BP/$

0.028
0.023
0.573
0.001
0.044
0.028
0.302
0.010
0.740
0.753

TABLE 6.5a

$/DM

0.234
0.006
0.123
0.245
0.805
0.454
1.024
1.067
1.345
2.294

$/Jyn

0.174
0.054
0.009
0.220
0.553
0.927
0.237
0.025
0.008
0.006

TABLE 6.5b

$/DM

0.009
0.164
0.622
0.036
0.201
1.719
3.511
2.969
1.237
3.437

$/J¥n

0.002
0.330
0.042
0.029
2.833
2.429
1.975
12.447
18.260
25.252

TABLE 6.5¢c

S/DM

1.127
0.107
0.030
0.103
0.306
0.666
0.120
0.065
1.299
1.032

$/J¥n

0.080
0.037
1.383
5.286
6.134
6.218
2.957
3.519
4.487
2.364

$/SFr  Joint

0.246 1.328
0.020 1.095
0.135 0.963
0.556 2.161
1.248 1.554
0.498 1.776
1.471 2.280
1.944 2.883
3.249 3.634
4.694 5.573

$/SFr  Joint

0.024 1.225
0.634 3271
2074 5.316
0.721 10.863*
2391 21.226*
4.592* 13.411*
5.776* 16.723*
5.274* 18.440*
1.818 21.978*
3.552 31.186*

$/SFr  Joint

0310 2.499
0.033 1.564
0.044 2.705
0.034 8.489
0.466 6.664
1.145 6.837
0.024 4.445
0.055 3.704
1.953  3.904
2.604 22800
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10
20
30

50
60
70
80
50
100

20

40

70
100
140
180
230
280
350
450

BP/$

0.033
0.147
0.638
1.101
0.672
1.028
1.185
1.846
2.378
2.929

BP/$

0.062
0.860
0.662
1.411
0.834
2.842
3.973*
5.682*
2.576

6.014*.

TABLE 6.6a

BP/DM BP/JYn BP/SFr Joint

0.099
0.067
1.126
1.096
0.464
1114
0.713
1.205
2.195
2.281

BP/DM BP/JYn BP/SFr

0.105
1.465
0.679
1.383
2419
0.116
0.806
2.625
1.267
2.721

0.734
0.004
0.860
0.633
0.487
0.775
1.689
2,492
3.778
5.147

0.011
0.544
0.005
0.000
0.000
0.266
0.013
0.193
1.024
1.035

TABLE 6.6b

0.002
0.647
0.738
5.460*
2.462
1.724
2.072
6.274*
3.864*
5.203*

0.581
0.001
0.032
0.485
0.428
0.401
0.131
0.211
0.307
0.656

162

4.909
0.528
3.777
4.367
2.786
2.730
3.324
4.020
4.967
5421

Joint

0.449
5.235
3.465
6.052
2.173
2.438
4.094
4.861
2.387
3.291



10
15
20
25
30
35
40
45
50

10
20
40
60
80
100
130
160
200
250

20
40
60
80
100
130
160
200
250
300

BP/S S/DM
0.115 0.229
0.674 1.192
0.946 1.939
1.158 1.017
1.113 0.012
0.320 0.000
0277 0.195
0.525 0.908
0.494 1.129
1.195 1.031
TABLE 6.7b
BP/$ $/DM
1.142 1.453
9.457* 3.322
12.830* 10.005*
19.029* 32.333+
24.045* 62.196*
32.199* 100.356*
34.113* 115.263*
38.037* 128.070*
30.152+ 160.217+*
36.084* 212.339*
TABLE 6.7¢c
BP/$ $/DM
13.427* 13.031*
49.021* 43.990*
57.648* 60.561*
69.364* 80.126*
77.836* 96.976*
100.664* 107.023*
120.389* 132.900*
111.882* 144.207*
107.884* 149.281*
92.717* 141.004 *

S/JYn

0.138
0.808
2.101
2.063
0.632
1.318
0.472
0.758
0.846
0.917

$/J7¥n

0.300
3.135
10.710*

26.771* .

24.153*
13.852*
13.716*
22.502*
20.590*
29.614*

$/JYn

30.025*

48.504*
101.841*
106.683*
130.407*
122.626*
160.435*
153.778*
152.249*

97.190*
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$/SFr

0.006
1.015
1.021
0.610
0.300
0.000
0.121
0.869
1.246
1.417

$/SFr

0.516

1.444

2.970
13.278*
30.146*
53.524*
63.059*
89.265*
92.443*
120.379*

$/SFr

0.994

2.759

2487
3.874*
7.007*
11.071*
20.687*
42.254*
88.409*
135.428*

Joint

0.834
2.383
3.256
4978
4.247
2.997
2.502
3.724
2.886
4.383

Joint

3.023
16.829*
40.395*
66.647*
89.033*

101.492*
115.997*
130.718*
145.696*
188.654*

Joint

28.478*

64.595*
126.003*
148.818*
184.731+*
211.050*
274.840*
298.056*
336.335*
313.851*



10
20
30
40
50
60
70
80

100

40

70
100
140
180
230
280
350
450

TABLE 6.8a

BP/S BP/DM
0.075 0.557
0.451 0.683
0.905 2.527
1.252 4.750*
1.049 10.424*
1.090 15.698*
1.354 27.505*
1.057 33.257*
1.510 39.560*
2.045 42.875*
TABLE 6.8b
BP/$ BP/DM
3.357 0.479
183.619* 7.102*
52.701* 29.284*
72.341* 43.893*
79.030* 25.084*
105.363* 40.319*
134.572* 65.893*
151.564* 86.483*
167.957+* 125.580*
190.416* 173.214*

BP/JYn

0.298
0.335
0.500
1.808
1.790
1.249
1.964
1.990
2.265
4.052*

BP/JYn

3.435
14.308+
44.216*
66.118*
97.535*

120.413*
154.056*
179.571*
231.736*
271.186*
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BP/SFr

0.829
0.878
1.342
1.937
4.239*
4.926*
7.285*
5.851*
6.140*
5.036*

BP/SFr

2.048
13.610*
48.104*
59.714*
16.456*
36.402*
50.513*
58.537*
89.909+*

127.573*

Joint

1317
1.778
6.437
8.546
12.265*
19.264*
34.225*
46.162*
56.483*
66.951*

Joint

16.780*
38.219*
85.963*
93.146*
120.820*
141.643*
157.791*
165.556*
191.436*
218.944*



Appendix 6.1

In order to prove consistency first we are going to recall that in appendix 4.1 we have

proven that':

i1

da-1 1, -1 -1
A, CA, =_m_Am (/Z I,)Am - T (A6.1.0)
where

A =diag(A, )

and T has as (a,b) element:

_Sa
2-H-H,

We are going to use (A6.1.0) and the following two results that will be proved later:

-1 A -1
ACA - A, (A6.1.1)
where A has as (a,b) element:
1-H -H,
8ap ———— 3
(2-H,-H)
and
T>0. (A6.1.2)

Now using that A, is a diagonal matrix, we can write:

é=v(Amé _lAmA: élA;l +A;|1 élA;tlAmé -lAm) 4
then, using (A6.1.0), (A6.1.1) and (A6.1.2) we get

'We have proven this for 1/2 <H,,H, < 1. This is the main limitation of this proof, if we
were able to prove (6.1.3) for 0<H,,H <1 then we could get a two sided test, i.e., the
alternative would be " H,: H, > 1/2 for at least one a".
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é-,U{['A+AT )= E=(E,,..E)"
Now we have to show that under the alternative hypothesis at least one %, is different to 0;
as " at least one H,>1/2 = at least one £, 0" is equivalent to "%,=0, for all p =H,=1/2,
for-all a", we need to prove the second statement. Unfortunately we haven’t been able to
pro;'e this statement for a general r yet. To check it for r=1 and r=2 is immediate and we
conjecture that the statement is valid for a general r.
Then we could write:
é=E+o,(1)
with at least one Z,#0, now using (A6.1.0) and (A6.1.2):

E=2(1+C+C 7N~ 2(1 +@+@))=M>0 .

As M is positive definite then:

LM=4m(E +0,(1)) (M " +0,(1))(E +0,(1))=4mE'M " E +o,(m),
then
P(LM>c|H)=P(4mE'M'E +0,(m)>c)-1
as m~ for any c>0.
So it only remains to prove (A6.1.1) and (A6.1.2). First we prove that I' is positive

definite. We can rewrite I" as:

A‘m
=11-A,;1 f AYGAGYAA AL where A(A)=diag(A"),
0

m

now for all complex vectors x #0:
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AM
x ‘I‘xzix A f A(A)dA A 'x=

= di >0
€ x" zag( -2H 2-2H) X

where e is a lower bound for the eigenvalues of G,.

Now we prove (A6.1.1). The typical element (a,b) is:

1-H, -H,
—-A" A —t
m E Va3 (2 -H,-H)

we can rewrite the LHS as:

1 H +H,- 1 -H,-H,
d E AA)-g% * ) “)
j=1
1. Hq+H-1 & JIHH
+=4," veuh (B)
m j=1
So, we are going to prove that:
1-H,-H,
@-,0 , B~ gy .
(2-H,-H)
1., H+Hy-1 3 VHeHy 2 ]1”"’51
(B)-—), Vg, =g v —)
,Ex Bap™ ab 2 i m
where
—log( )- Elog( ) V s
Jj=1
then:
1
()-8, [vex' M,
0
where
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v(x)=logx- f logxdx=logx+1 .
0

As
1 1-H -H
[ooox Tt
0 (2-H,-H,)

the result for (B) follows immediately.

In order to analyze (A) we need to use the following result that will be proved later:

E(I (A)-guh 1H H,,) O(AZH Hb{ 2+v+r—6+( )}) (A6.1.3)

Then, by summauon by parts:

1, H+Hy-1

@W=—1, e

{E(V VJ+1)E( b()'k) gabkk
+V,,,E U2y gy ) =(AD+(A2)

and using (A6.1.3):

(42)=0,| (logm)Zx, ™7 a7 I T gy -3 +(ﬂ) })=op(1)
m n

while using the same result and the mean value theorem:

Al)=0 "AH s Y e 2-Tv”+"°+(j)'})- ey
AD=0,( E{n“’”»( i +(Ly D=,
So it remains to prove (A6. 1.3). This result is just an extension of Theorem 4.1. We just
indicate how we need to modify that proof in order to get the result. We need to streghten

propositions 1, 3 and 4 so that for some 6>0:
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E Ref, ab(A'J) -ReF ,(2,) =0(A:H‘_H5{m -8 *’(%)t D, @)

1=1
Re(—E UCVOIAL )£ =00 0T o °+(l:-)‘n ©)
and
23 I () -A (v Po o (m 4 +(Zy1)) ©)
Jj=1
and the same results hold for the imaginary parts in (4) and (5). In order to prove (4) recall
(A4.1.1), now:
_0(_EX1 HeHy 2H -Hy+< )= ((_), 211 11,,)

1-1
while (A4.1.2) is

O™ Iy 2 o(m 2| F (2,0 )
for some 6>0.
In order to prove (5) recall (A4.3.1) and using C6.3:

-2
ID=0,(n>")

for some »>0, so that

=2
(1)=0,(F (%,)'*F,,(A,)"?n ")

while in (A4.3.2) using C6.1 we get that

ZIIH
b)

a,=0((— )'

and in (A4.3.3) we have:

169



m

1 1-H,-H -
max ,.I;; Ay costh, [P=O(F (A, ) PF (3, Pm %)

r<i<
for some 6>0 so that
2-H,-H,  _
@=0k,, Hm (YD),
Now (6) follows immediately considering that (A4.4.1) is

0,k Im >+

as proved in Robinson (1994).

Once we have strengthened propositions 1, 3 and 4, (A6.1.3) follows straightforwardly

following the same steps as in the proof of Theorem 4.1.
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Chapter 7

Conclusions

In this thesis we have examined semiparametric estimation procedures in the
frequency domain for long-memory series. We have just;ﬁed the semiparametric approach
based on its robustness. A parametric approach, if the model has been correctly specified,
can produce efficient estimates for H, but if not, it will lead to inconsistent estimates for H.
The semiparametric approach is more general. We assume covariance stationarity and so,
the spectral density belongs to L,, but the rest of the assumptions on the spectral density
concern only a neighbourhood of zero; away from zero we don’t impose any smoothness or
parametric behaviour. So, our estimates of H that are going to be a function of the ordinates
of the periodogram that are close to the zero frequency, will be consistent estimates for H
irrespectively of the short run behaviour of the process.

We have analyzed mainly two estimates, the averaged periodogram estimate (APE)
and a quasi maximum likelihood estimate (QMLE). The most used in the applied literature
has been the log-periodogram estimate (LPE). The comparison between the different
semiparametric estimates has to be done according to several criteria. These include not only
theoretical considerations ( under what degree of strictness in our assumptions we get
asymptotic normality, which estimate has less variance...) but also implementation problems
( how immediate it is to get thé estimates). With respect to the first criterion, the QMLE
looks clearly as the best estimate. While we need to assume Gaussianity in the LPE or in the

APE in order to achieve asymptotic normality, we do not need to impose it in the QMLE.
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In fact, finiteness of fourth moments is enough. Another drawback of the APE was the
discontinuity of the asymptotic theory around H=3/4. We only got asymptotic normality
when HE (1/2,3/4). A shortcoming of LPE is the necessity of choosing a trimming numﬁer
1 because about its optimality nothing is known so far. If we compare the variance of the
asymptotic distribution in the univariate case we get that if we choose the optimal q for
every H, with HE (1/2,3/4), then APE will provide the estimate with less variance (e.g.,
H=0.7, q"=0.4, variance=0.08); while LPE will provide the largest (e.g. with J=1,
variance=0.411). In general, QMLE provides the most straightforward way of making
inference, the asymptotic variance of this estimate being 0.25. With respect to the second
consideration all the estimates are not difficult to implement, although LPE is particularly
straightforward as it just reduces to OLS.

In a multivariate framework we appreciate a clear superiority of the QMLE and LPE
to the APE . The multivariate version of the QMLE has been analyzed in chapter 5 while
Robinson (1992) analyzed the LPE in a multivariate setup. But we haven’t obtained the
asymptotic distribution of multivariate APE because the difficulty of the univariate case
suggests that the multivariate analysis has to be almost intractable.

So far we have discussed the different semiparametric procedures to estimate H. In
chapter 6 we have seen an extension of these procedures to derive a Lagrange multiplier test
for I(0), i.e., weak dependence. This is an important issue for economic policy. Much
applied econometric assumes that economic time series have basically two components: a
secular or trend component that accounts for the main institutional or technological factors

underlying the economy, this trend can be stochastic or deterministic, and, a random
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component that superimposes this trend. This random component is assumed to have
negligible influence in the long run. By this we mean that, if the series, because of some
external factors, is moved away from its trend, there exist some mechanisms in the econo;ny
that will push the series to the trend until it is reached again. The standard econometric
literature assumes that this statione;ry random component is weak dependent. In economic
terms, this means that this adjustment process we have discussed above is fast.

It is very important from an economic policy point of view to determine if this
adjustment is fast or slow. Economic policy has been classified in two main groups:
structural policy that attempts to modify the trends, and stabilization policy that has a short
run impact and mainly tries to accelerate the adjustment processes commented above.
Stapilization policy is more seriously justified if the random component is not weak
dependent than in the other case. If a series is weak dependent it means that any
disequilibrium situation will be transitory and in a short time the series will reach its trending
value, so the role of economic policy is minor. On the other hand, if the random component
is not weak dependent then, even though eventually the series will get back to its trending
value, this adjustment will be very slow and policy intervention to try to speed up this
adjustment process can be justified.

With the test we have developed we can attempt to answer that question. The problem
with real series is that usually the number of observations available is very limited and it is
not clear that semiparametric procedures will be really informative. On the other hand
financial series available are longer and semiparametric procedures are more adequate. This

is why we have applied the LM test and the QMLE to some exchange rate data.
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We have tested the efficiency hypothesis and we didn’t reject it. Then we looked for
evidence of long memory in the square of the first differences of the exchange rate series and
we found an overwhelming evidence. This can be interpreted as some sort of long memory
in the volatility of exchange rates. This result has important implications for financial
andlysts. Being able to forecast the volatility better than the market can lead to substantial-
monetary profits by means of “straddles". These deals consist on selling simultaneously put
options (conferring a right to sell) and call options ( a right to buy) if you think that the
volatility is going to be less than what the market predicts and buying simultaneously put and

call options if you anticipate greater volatility than the market.
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