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A b stra ct

This thesis contains results in two areas, that is, graph theory and partial 

orders.

(1) We consider graphs G with a specified subset W  of vertices of large

degree. We look for paths in G containing many vertices of W. The main

results of the thesis are as follows. For G a graph on n vertices, and W  of

size w and minimum degree d, we show that there is always a path through

at least —r~ —t t t  vertices of W. For a connected graph G on n vertices, 
I |n /(d  + 1)J |

and W  of size w and minimum degree d, we show that if n > 2d +  1 there 

is always a path through at least min Id  + 1,2 - + 11 vertices of
I l \ n/ d\ - 1] J

W.

If tu > n — d + 1, then there is a path through at least w + 2d + 1 — n 

vertices of W. We also prove some results for graphs in which only the degree 

sums of sets of independent vertices in W  are known.

(2) Let P = (X ,<) be a poset on a set {1,2,...,W }. Suppose X \  and 

X i  are a pair of disjoint chains in P  whose union is X.  Then P  is a partial 

order of width two. A labelled poset is a partial order on a set { 1 ,2 ,..., N}. 

Suppose we have two labelled posets, P\ and P2 » that are isomorphic. That is, 

there is a bijection between P\ and P2  which preserves all the order relations. 

Each isomorphism class of labelled posets corresponds to an unlabelled poset.

We prove that the number of (labelled) width two posets with vertex set 

{ 1 ,2 ,... ,N}  is fl2 (W) = ^  ’ w^ereas number

of unlabelled posets on N  vertices is asymptotically  ̂ ‘ ^ (W ).
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1 In tro d u ctio n

This thesis contains results in two areas, that is, graph theory and partial orders. 

In the graph theory area we deal with paths and cycles. In partially ordered sets 

we count the number of posets of width two.

The problem of finding paths and cycles through many of the vertices in a graph 

has been studied by a large number of people. Results have been obtained which in

volve various different conditions on the graph. These conditions include minimum 

degree, connnectivity, toughness, number of edges, sum of degrees of non-adjacent 

vertices and the size of neighbourhood unions of non-adjacent vertices. All these 

conditions relate to the whole graph. For example, all the vertices have degree at 

least d. Suppose we do not have such a condition that relates to all the vertices. We 

could, for example, know only the degree of the vertices of maximum degree. This 

gives an upper bound on the degree of the other vertices, but no more information 

about their individual degrees. Results have been obtained about cycles through 

many of the vertices of maximum degree. Now suppose we have even less informa

tion about the degree of the vertices. Let the minimum degree of some specified 

subset of the vertices be known, but nothing about the other vertices. This is the 

area we investigate. (Chapters 2-9.)

The results we prove in the second part (Chapters 10-12) concern posets. Let 

P  =  (X , <) be a poset on a set { 1 , 2 , . . . ,  N}.  Suppose X \  and X 2, are A pair of 

disjoint chains in P  whose union is X .  Then P  is a partial order of width two. 

A natural, but apparently unstudied, question is: how many width two posets are 

there? We answer this question asymptotically for both labelled and unlabelled 

posets. A labelled poset is a partial order on a set { 1 ,2 ,. . . ,  N }.  Suppose we have 

two labelled posets, Pi and P2 that are isomorphic. That is, there is a bijection
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between Pi and P2 which preserves all the order relations. We partition the set of 

labelled posets into isomorphism classes. Each isomorphism class corresponds to 

an unlabelled poset. If, as for random graphs, it were the case that almost every 

width two poset has trivial automorphism group, the two asymptotic counts would 

differ by a factor of N\.  However, this does not turn out to be the case.

10



2 A n  In tro d u ctio n  to P a th s  in  G raphs

Before we begin our discussion on graphs we need to establish the basic notation.

2.1 Graph N otation

We use standard notation as in Bondy and Murty [6]. Let us introduce, in partic

ular, some standard and slightly less standard notation.

• G =  (V(G ), E(G)) is a graph on the set V{G) of n vertices with the edge set 

E(G) containing no multiple edges or loops.

• |A| =  |V(A)|, where A is typically a path P , cycle C  or component Q of 

G \ C .

• I \ 4 (u), for A  C G, is the set of neighbours in A of a vertex v.

• T(v) is the set of neighbours in G of v.

• T(B)  =  Ufees r(6), the union of the neighbours of the vertices of the set B.

• ^a(^) = |rA(u)|, the degree in A of v.

• d(v) =  |r(v)|, the degree in G of v.

• S = minueGf d(v), the minimum degree of G.

We will consider graphs G with a specified subset W  of vertices. In these circum

stances, we shall normally use the following notation.

• W  is a specified subset of the vertices of G.



• w =  |W |, the order of W.

• d =  minv€iy d(u), the minimum degree of W  in G.

Further notation will be defined as it is needed. We also say that a set of vertices 

A  is adjacent to a set of vertices B  if there is an edge (a, b) such that a £ A  and 

b £ B .

2.2 M otivation and M ain Graph R esu lts

In this thesis we will be dealing with long paths and cycles through specified ver

tices. To put these results into context we will first talk about graphs where the 

specified set W  contains all the vertices of G. In particular, a path (cycle) through 

all the vertices of a graph is called a Hamiltonian path (cycle). The first main result 

in the area of Hamiltonian cycles is the following well known theorem of Dirac [8].

Theorem  2.1 (D irac) Let G be a graph on n vertices. Let 6 be the minimum  

degree of G. Then if  8 >  n f 2, G is Hamiltonian.

This result says that we can find a cycle through all the vertices of a graph if we 

know something about the minimum degree of the graph. Let W  be a specified 

subset of the vertices of G. Suppose we know \W\ = w , |G| =  n and the minimum 

degree d of the vertices in W .  How well can we do then? W hat conditions do 

we need to guarantee a cycle through all of the vertices of this specified set? The 

answer to this is a straightforward generalisation of Theorem 2.1, which says that 

there is a cycle through all the vertices of degree at least ra/2. Now this result 

applies to the case where the minimum degree d of W  is large compared with n.
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So an obvious question is to ask what happens for smaller values of d. Through 

how many vertices of W  can we find a cycle? The result in the case where the 

specified set is the whole of the vertex set of the graph was obtained by Bollobas 

and Haggkvist [4] following earlier work by Alon [1] and Egawa and Miyamoto [9]. 

A simpler proof of the Bollobas and Haggkvist result [4] was obtained by Bollobas 

and Brightwell [3]. Further, the result proved in [3] is more general, dealing with a 

specified subset W  of vertices of minimum degree d.

T h e o rem  2.2 (B ollobas, B rightw ell) Let n, w and d be positive integers, with 

w < n .  Let G be a graph on n vertices and let W  be a subset of the vertices of G 

of size w such that the degree of each vertex in W  is at least d. Set

w
S =  \n/d\  -  1 ‘

Then for s >  3 there is a cycle in G through at least s vertices of W .

A special case of this result is that when d >  n /2 , there is a cycle through all the 

vertices of W .  If we also have W  =  V(G), then G is Hamiltonian. Therefore, we 

recover Dirac’s Theorem (Theorem 2.1) when d >  n /2  and W  = V(G).

The results we have discussed so far relate to cycles. Instead we could, and in

deed do, ask similar questions about paths. We start by looking at an immediate 

corollary to Dirac’s Theorem. We include a proof for completeness.

C o ro lla ry  2.3 (C o ro lla ry  to  D irac ’s T h eo rem ) Let G be a graph on n ver

tices with minimum degree 6 > (n — l)/2 . Then G contains a Hamiltonian path.

P ro o f. Let G be a graph on n vertices such that the minimum degree is (n —1)/2. 

Let H  be a graph on the vertices V(G) U {v} formed by adding a vertex v to G and



all the edges between v and V(G). Then the minimum degree of H  is (n-f-1)/2. So,<
by Theorem 2.1, there is a Hamiltonian cycle C in H. Now, removing v from C we 

are left with a path through all the vertices of V(G). Hence there is a Hamiltonian 

path in G. □

Following Theorem 2.2, we are led to ask whether we can generalise the above 

result, Corollary 2.3, to graphs for which only the minimum degree of a specified 

set of vertices is known. Indeed, we answer this question fully as follows.

T h e o rem  2.4 Let G be a graph on n vertices and let W  be a subset o fw  vertices 

of degree at least d. We set

x =
w

\\n/(d +  1)J
Then there is a path in G through at least x vertices o f  W .

•  vertices of W  
O vertices of G \  W

Figure 1: An extremal graph for Theorem 2.4

Theorem 2.4 is best possible, as we will see from the following family of graphs for 

which equality holds. This family consists of graphs which are made up of as many 

complete components as possible with the specified vertices evenly distributed be

tween them. A graph of this type is illustrated in Figure 1. Obviously there is no
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path containing vertices from more than one component. Hence a path contains 

at most the number of specified vertices in a component. So what is the maximum 

number of specified vertices in a component? This is exactly the quantity x  given 

in Theorem 2.4. The proof of this theorem and other related results appear in 

Chapter 3.

As the extremal graphs are disconnected, it is natural to ask what happens if we 

add the constraint that the graph be connected. Now we can ask what conditions 

are needed to guarantee a path through all the  specified vertices in a connected 

graph. In part the answer is given by Theorem 2.4, which tells us that if the 

minimum degree d of the specified vertices is at least (n — l) /2  then there is a path 

through all the specified vertices. For values of d less than this, the imposition of 

connectedness implies the existence of paths through more specified vertices than 

given by Theorem 2.4. When the minimum degree d of the specified set W  is at 

least n /3 , there is a path through all the vertices of W  if W  isn’t too big, namely 

I W| <  d +  1. This result is given by the following theorem.

T h e o rem  2.5 Let G be a connected graph on n vertices where n /3  <  d and W  is 

a subset of w < d +  \ vertices of minimum degree d. Then there is a path through 

all the vertices in W .

This result is best possible in two ways. Suppose we increase the number of vertices 

to 3d +  1 and look at the graph consisting of three complete graphs on d vertices 

plus one central vertex adjacent to all vertices. Let the specified vertices be evenly 

distributed between the three complete subgraphs. Then there is no path through 

all three complete subgraphs. (See Figure 2.) The necessity of the condition that 

w < d -f 1 is due to the following bipartite graph. Suppose G  =  (V i, V ^ i?) is a 

bipartite graph where all the vertices of W  are in one part Vi and the other part V2

15
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H  vertices of W
O  vertices of G \  W

Figure 2: Two extremal graphs for Theorem 2.5

has exactly d vertices. This has a path through at most 2d + 1  vertices of which at 

most d -f 1 can be in W. (See Figure 2.) We continue our discussion of this result, 

and other more general results, in Chapter 6.

If we remove the condition n <  3d, we obtain the main result of the thesis, Theo

rem 2.6, which gives the number of specified vertices in a connected graph through 

which we can guarantee a path.

T h eo rem  2.6 Let n, w and d be integers. Let G be a connected graph o n n  >  2d-f 1 

vertices and let W  be a subset o f the vertices o fG  of order w, such that the minimum  

degree of the vertices in W  is d. Then there is a path through

w - l
min +  1,

L [ ( n - l ) / d j J
+ 1}

vertices o fW .
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0 vertices of IV
o vertices of G \  W

Figure 3: A flower graph and a bipartite extremal graph

If n <  3d, we recover Theorem 2.5 when w is odd. When w is even we have a 

slightly weaker result, namely a path through w — 1 vertices of W. In general, for 

w < n — d, we suspect that this result is not quite best possible and can often be 

improved by one. However, for to > n — d +  1, we prove a best possible result, 

which is that there is a path through at least min{tu, w +  2d +  1 — n} specified 

vertices. (See Theorem 4.1.)

Next we describe the graphs which satisfy the two lower bounds given in Theo

rem 2.6. When d is small, the theorem says that there is a path through at least 

d + 1 specified vertices. The following family of graphs shows that we can do no 

better than this. As in Theorem 2.5, we consider a family of bipartite graphs.

17



• For 1 <  to < n and l < d < n — 1, we define B (n ,w ,d )  to be a complete 

bipartite graph on n vertices, with vertex set V\ U V2 and specified subset W  

of minimum degree d, where IV2 I =  d and (1) if to <  n — d, then W  C Vi, 

and (2) if to > n — d -f 1, then Vi C W.

So for to < n — d, B(n,w ,d)  clearly contains no path through more than d +  1 

specified vertices. (See Figure 3.)

When d is large, an extremal graph is given by the following family of graphs.

• Let G consist of k disjoint connected subgraphs id, of at least d vertices and 

one vertex v such that for each z, at least one vertex V{ 6 id; is adjacent to 

v. Suppose k is maximum, given n  =  |G| and d, that is, k =  [(n — l) /d j, 

and the specified vertices are evenly distributed among the id,. We call G a 

flower graph. A subgraph id; is a petal and v is the central vertex.

• We define F (n , to, d) to be a flower graph with n vertices and to specified 

vertices of degree at least d, such that the petals are complete graphs, and 

the central vertex, which is not a specified vertex, is adjacent to all the vertices 

of G. (See Figure 3.)

The graph F(n ,to , d), for to <  n — d, gives the bound of Theorem 2.6 in many 

cases. This will be discussed further in Chapter 4. The proof of Theorem 2.6 is 

based on Theorem 2.5 which is proved in Chapter 6, using results from Chapter 5. 

The remainder of the proof of Theorem 2.6 appears in Chapters 7-8.

18



3 G eneral G raphs and P a th s th rou gh  Specified  

V ertices

In this chapter we discuss and prove some generalisations of Theorem 2.4. As 

already mentioned, we are interested in the maximum number of specified vertices 

that we can guarantee to be contained in a path. For this chapter only, we will 

look at the problem in a different, more general way. Suppose we label the vertices 

V(G ) of a graph G by a weight function <p: V —> {0,1} where <p(v) =  1 if v £ W  

and <p(v) =  0 otherwise. We define the weight of a set A  by wa =  <̂ (v). Since a
v6 A

vertex has positive weight only when it is a specified vertex, the number of specified 

vertices in A  is w Now we can consider our problem of finding a path through as 

many vertices of W  as possible in terms of finding a path of high weight. We extend 

this concept to a general weight function relating to the degree of the vertices. To 

do this we label the vertices of G by a weight function ip : V  —*■ N 0 =  N  U {0} 

satisfying ip(v) < [d(v)/d\, where d is a fixed integer. We call a graph with such 

a weight function a graph labelled by ip. Let W  be the set of vertices of non

zero weight, that is, W  — {v : ip(v) > 0}. We write ip(W) = and set
veG

w =  ip(W), which we call the weight of W .

Before we state our first theorem generalising Theorem 2.4, we need some notation. 

We define r)(n,w,d) to be the minimum, over all graphs G on n vertices and of 

weight it;, of the maximum weight of a path in G. That is,

rj(n.w.d) =  min max wp,/v / q Pg G

where P  is a path in G.



T h eo rem  3.1 Let G be a graph on n vertices labelled by rj> : V  

that w < n. Then

rj(n, w,d) =

N 0. Suppose

w
[n/(d + 1)J

To obtain Theorem 2.4 from Theorem 3.1, we simply consider functions 0  with 

0  : V  —> {0,1} and W  = {v : 0(u) = 1}.

To prove Theorem 3.1, we first show that

i/(n, to, d) <
w

|n /(< f+ l)J

To do this, we consider a graph with k =  [n/(d-i-l)J components. Let the weighted 

vertices be evenly distributed between the n components, so that each component 

has either weight or [w / k\ . Then clearly there is no path in G of weight

greater than as desired. (See Figure 4.)

To complete the proof of Theorem 3.1, we need to prove that

w
7 j ( n , w, d) >

[n/(d  +  1)J

We define k and x as k =  [n/(d  +  1)J and x — \w / k \. Thus we want to prove 

rj(n,w,d) > x. Therefore n < (k +  1 )(d +  1) — 1 and n >  w > k(x — 1) +  1. So 

Theorem 3.2, below, implies our lower bound for rj(n,w,d).

T h e o rem  3.2 Let G be a graph of order n and weight w < n labelled by ij>: V  —* 

N 0. Suppose that ac, x £ No are such that n <  (/c+ l)(d + l) —1 w >  k(x — 1) +  1. 

Then there is a path in G of weight at least x .

Before we start the proof, we need to introduce some terminology. A maximum 

path in G is a path P  of maximum weight wp and of minimum length given such 

weight, wp.



k. — components

weight ftu/ k]

% vertices of IV 
O  vertices of G \  W

weight {w / k\

Figure 4: A construction for extremal graphs of Theorem 3.1

Proof. We may assume n =  («; +  l)(d  +  1) — 1, since isolated vertices may be 

added without affecting the maximum weight of a path. Similarly, we claim that 

it is enough to prove the result in the case w  =  k ( x  — 1) -f 1. To see this, note that 

we can always relabel G by a function with <  rp(v) for all v £ V(G) and 

=  k ( x  — 1) +  1. Therefore a path of weight x in G labelled by ifr* has at
V

least weight x  in G labelled by xj). We may also assume that all edges are incident 

with a weighted vertex, as any edge between non-weighted vertices will only serve 

to increase the path length. The proof is by induction on k.

First we consider the case k =  1 where n =  2d +  1 and w = x. The argument in 

this case is fairly standard but we proceed quite slowly, as the simple ideas here 

underlie most of the subsequent proofs. Let P  be a maximum path. If all the 

weighted vertices lie on P  the result holds, so suppose some vertex w0 € W  does 

not lie on P.
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C laim  1 All the vertices o fW  are in one component ofG .

If not, then G consists of at least two components each containing a vertex of 

degree at least d, and hence d -f 1 vertices. Counting the vertices gives 2d +  1 =  

n > 2(d -f 1) =  2d -f 2, which is a contradiction. This establishes the claim. □

In particular, we see that at least two weighted vertices lie on P  (for w > 2), by 

the connectedness of the component. Let W\W2 . . .  wt be the weighted vertices on 

P  in natural order.

Claim  2 P ends in the two weighted vertices, wi and wt .

Suppose not. Let P  end in some vertex v where v is not a weighted vertex. Then 

the path P \  {u} has the same weight as P , but fewer vertices, which contradicts 

the definition of a maximal path. Hence the claim is established. □

Claim  3 The vertices w\ and wt are not adjacent to any weighted vertex wq in 

G \ P  or to any neighbours of wQ outside P.

W ithout loss of generality, suppose w0 is adjacent to w\. Then the path w0w i . . .  wt 

has weight at least wp +  1 which contradicts the maximality of P . □

Claim  4 There is no cycle that contains all the vertices of P.

If there is a cycle containing all the vertices of P , then a weighted vertex wo E W \ P  

can be added to P , as it is in the same component as P . This contradicts the 

maximality of P . □

A consequence of Claim 4 is that w\ and wt have no common neighbours in G \ P .

Claim 5 There is no vertex v on P adjacent to Wi whose predecessor v~ on P is 

adjacent to wt.

Suppose not. Then there is a cycle, W i . . .  w2 . •. v~Wt. . .  wt~ i . . .  vwi which contains 

all the vertices of P , contradicting Claim 4. □

22



We introduce some notation. For a subset A  of V(G) and a vertex v of G, let 

dA(v) = \A \  Tyl(u)|. Let | r G\p(iyi)| =  a and | r G\p(wf)| =  6, and let T^(wt) be 

the set of successors of neighbours of wt and Tp(wi) the set of predecessors of 

neighbours of Wi on P.

Now, we count the number of vertices of G. On P , there are at least d — b vertices 

which are not adjacent to uq, as they are successors of neighbours of wt. There are 

d — a neighbours of wi on P , and also w\ itself. Therefore on P  we have

|P | >  dP(wi) +  dp(tui) >  (d -  a) +  (d -  b) +  1 

=  2d +  1 — a — b,

and in G \  P , we have

|G \ P |  > dG!\p(u;i) +  da\p(wt) +  |u\)|

>  a +  b +  1.

Therefore,

2d -f 1 =  n = |P |  +  |G \ P |

^  (2d -f-1 — cl — 6) -f- (<z +  6 4* 1)

> 2d +  2,

which is a contradiction. Hence P  contains all the weighted vertices as required. 

This completes the proof in the case k — 1.

Now we move to the induction step. We suppose that the result holds for values 

of k less than fc, and let G be a labelled graph for which n =  (A; l)(d  -h i)  — 1 

and w = k(x — 1) +  1. The aim is to reduce w by s < x  and n  by at least d +  1 

without changing the value of x , and then to use the induction hypothesis. Again 

let P  be a maximum path with initial vertex w\ and final vertex wt. As before, we
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may assume that i>(P) = s < x .

Let

D\ =  r GVP(u;i),

D 2 =  rp(tui), . 

D  =

^  =  W '-{ ti;1,f^ ,.. .,u ;t} =  Wr\ P .

So |Z)| >  d +  1 and ^j(Wf) > ij)(W) — s =  w — s. These definitions are illustrated 

in Figure 5.

wt

Figure 5: The path P  and the set of vertices D =  Di U D2 U {to*}

Claim 6 W ' n D  = ®.

Let v 6 W* and suppose v E Dx. This gives a path vwiw2 . . . w t of weight at least 

3 +  1, contradicting the maximality of P. So v £ D\. Also v £ (D2 U {u>t}) as 

W ’ fl P  =  0. Hence W* fl D =  0, as required. □
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C laim  7 cIg\d(v) =  do(v) for all v E W7.

Again, let v E W7 and let z E T(u). If z E Dx then the path vzwiw2 • .. wt, 

contradicts the maximality of P. Also if z E D2, there is a path

VZWjWj_i . . . W2WiWj+iWj+2 ---Wu

contradicting the maximality of P. Lastly, if z =  wt the path WiW2 . . .  wtv again 

contradicts the maximality of P. Therefore z £ D and hence cIg\d (v ) =  ^ ( v )  for

G' =  G \ D  and the subset W ' of V(G). The function ^V ^G ')-* No defined by

all t7 E W §. □

So, by Claims 6 and 7, if we remove the set D from G we neither remove any 

vertex from W ‘ nor affect the degree of any vertex in W'. We consider the graph

xl>(v) v € W ' ,

0 otherwise,

is a weight function on G'. Now, the number of vertices in the new graph Gf is

ig'i = i d - p i
< n — (d -f- 1)

=  {k -f l)(d  +  1) — 1 — {d +  1) 

=  k{d+  1 ) - 1 ,

and the weight of W ' is

w — s.

= k(x — 1) -f 1 — s 

> k(x  — 1) +  1 — (x — 1) 

=  (k -  l)(x  -  1) +  1.

By the induction hypothesis, there is a path of weight at least x  in G' labelled by 

This gives a path of weight x  in G labelled by tp since ^(v)  > v ) for all
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vertices in G. This completes the induction step and so there is a path of weight 

at least x in G, as required. □

We now generalise Theorem 2.4 for the case where just the degree sum, d{u) -f d(v), 

of two non-adjacent vertices u and v of W  is known, instead of the minimum degree 

of W. The proof is very similar to that of Theorem 3.1.

T h e o rem  3.3 Let G be a graph on n vertices, containing a set W  of w vertices of 

G such that each pair Wi and W2 of non-adjacent vertices of W  satisfies d(wi) + 

d(w2 ) > c. I f  c = 2d is even, set k =  [n/(d +  1)J : i f  c =  2d +  1  is odd, set 

k =  [(n -f 1  )/(d  +  2 )J. Then there is a path through at least \w/fc\ vertices ofW .

P ro o f. The proof follows from the proof of Theorem 2.4 as  all the counting argu

ments concern the endpoints of a path, which are not adjacent, and so the degree 

condition is sufficient for the proof. □

We conclude this section by considering possible extensions of Theorem 3.1 to the 

case where w > n. In this case we have not succeeded in finding the correct value 

of 77(72., w, d) but we do have the following upper bounds.

T h e o rem  3.4 rj(n,w,d) <
w

P roof. A graph constructed in the following way has components with maximum 

weight less than or equal to the bound given and hence cannot contain a path of 

greater weight than this.

We define the non-negative integers A and (  by w = (A — l)n  -f ( , and (  <  n — 1. 

So A =  [itf/n]. The graph is made up of components which are all complete graphs
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of order at least Xd +  1. The vertices and weight are divided evenly amongst these 

components. This gives /c =  \n/(Xd -f 1)J components of weight at most [tu//e]. 

Hence there is no path of weight greater than \w jk \  in G, as required. □

In fact, if we put a restriction on the value of iy, we can do a little better.

T h e o rem  3.5 Let A =  \w/n\ and k =  [n/(Xd +  1)J. Suppose that

n — K,(\d +  1) — 1
w < (n — K,(\d +  1))

then

r)(n,w,d) <
w — (n — /c(A d +  l))[(n  — k(X d +  1) — l) /d \  

[n/(Xd +  1)J

P roof. Again we construct a graph G with a path of weight no more than the 

above bound. The graph consists of /c components Qi which are complete graphs 

on Xd +  1 vertices, and one other component Q. The component Q consists of 

a complete graph on the remaining n — «(Ad + 1 )  vertices. Now Q is given its 

maximum possible weight, namely (n — tt(Xd +  l))[_(rc — /c(Ad +  1) — l ) / d j . The 

remaining weight is then distributed amongst the k components, giving the required 

upper bound for rj(n, tu, d). □

We think it likely that in fact, Theorem 3.4 and Theorem 3.5 give the best possible 

bounds.



4 C on n ected  G raphs: P relim inaries

From now on, we assume that G is a connected graph on n vertices. Again, W  is a

a path of maximum weight and minimum length subject to that weight. We define

G on n vertices with w specified vertices of minimum degree d, that is,

a(n, w, d) =  min max wp 
v 7 G PCG

where P  is a path in a connected graph G.

In this chapter we continue the discussion, begun in Chapter 2, of paths through 

specified vertices in connected graphs. We consider extremal graphs and obtain an 

exact value of /x(n, iu, d) for large w. Then we give an indication of how Theorem 2.6 

will be proved.

T h e o rem  2.6 Let n, w and d be integers. Let G be a connected graph on n > 

2d-f 1 vertices and let W  be a subset of the vertices of G of order w, such that the 

minimum degree of the vertices in W  is d. Then there is a path through

specified subset of w vertices of G of minimum degree d. We define the weight wa 

of a subset A  of the vertices of G to be |Afl W\. We recall that a maximum path is

/z(n, iu, d) to be the minimum weight of a maximum path over all connected graphs

min < d +  1,2

vertices o fW .

We begin our discussion of the extremal graphs of Theorem 2.6, by introducing 

some important notation.



So Theorem 2.6 asserts that /i(n,u;, d) > min{d +  1,2/ +  1}- We shall retain this 

notation throughout the next four chapters.

Now we give families of examples showing that Theorem 2.6 is best possible for 

many values of the parameters. When d -f 1 < 21 -f 1, we want to find a graph in 

which there is no path of weight greater than d +  1. For w < n — d, we consider 

a bipartite graph f?(n,iu, d) on vertex set V\ U V2, as defined in Chapter 2. The 

maximum number of vertices a path can contain is 2d +  1 of which at most d +  1 

belong to V\ since the path alternates between V\ and V2. Therefore there is no 

path through more than d +  1 specified vertices, that is, /z(n, tn, d) <  d +  1.

For w > n — d -f- 1, the vertices of W  can no longer all be contained in V\. We 

consider B (n , iu, d) as defined for w > n —d - f 1. As \V2\ =  d and V\ C W, there are 

n — d specified vertices in and thus w — n +  d specified vertices in V2. Again, the 

maximum length of a path P  is 2d + 1 , of which at most d + 1 vertices belong to Vi, 

and d to V2. As \ \  C W ,  the path contains d-f 1 weighted vertices from V\. Of the 

vertices of V2 on the path, at most w — n -f d are weighted, giving a path of weight 

at most w — n +  2d +  1, so /z(n, w,d) < w — n +  2d -f 1. (See Figure 6.) We will 

next show that this bound is tight, that is, there is a path of weight w +  2d + 1  — n 

in any graph with w > n — d 4 -1, and n >  2d +  1.

Theorem  4.1 I f  w > n — d + 1  then f i ( n , w, d) =  min{iy, w -f 2d +  1 — n } .

Proof. Let P  be a maximum path. If wp > w 2d + \ — n w e  are done so we 

assume that wp < w +  2d — n and wp < w. Let x\ and x t be the endpoints of P, which are 

weighted, by the definition of a maximum path. Suppose there is a cycle containing 

all the weighted vertices of P. Then, by connectedness, there is a path of greater 

weight which contradicts the definition of P. Therefore x x and x t do not share any
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•  vertices of W O  vertices of G \  W

Figure 6: A graph illustrating Theorem 4.1

neighbours in G \ P  and there is no vortex v on P  adjacent to x\  whose predecessor 

v~ is adjacent to xt. Let D = Tp(a:i)UrGr\p(a;1)u rp (x t)urG\p(a:t)U{xt}. Then D 

contains at least 2 d - \ - 1  vertices. There are no vertices of W  in T g \ p ( x i)  U rc\p (x t), 

or there would be a path of greater weight than P. So there are at least w  — wp > 

w  — (w  +  2d — n)  =  n — 2d  vertices of W  in G \  D. Counting the vertices in D  and 

the weighted vertices in the rest of the graph we have

n >  \D\ +  \ W \ D \

> (2d  +  1 )  + (n — 2d)

= n + 1,

which is a contradiction. Therefore wp > w  +  2 d + l — n,  as required. □

Note that, if w  = n and d  >  \ (n — l)/2 ], we recover Theorem 2.3.

Now, returning to our discussion of extremal graphs, we consider the special inter

mediate case where d = 21 +  1 and n > 2w  -f d  — 1. Again we consider a bipartite
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graph G. Let G =  (V* U Vt, E) be a bipartite graph on n vertices with W  C Vt, 

and Vs = VaU V*,, where \ Va\ = d — 1 and |Vi| =  w. We construct G such that there 

is a complete bipartite graph on Va U Vt and a matching between W  and V*,. (See 

Figure 7.) A path in G contains at most 2d — 1 vertices, of which no more than

O  vertices of G \ W  #  vertices pf W

Figure 7: A bipartite extremal graph for n =  20, w = 8 and d = 214-1 =  5

d =  21 + 1 are specified vertices. Therefore Theorem 2.6 is tight when d = 21 + 1 

and n > 2w -f d — 1, that is, /x(n, to, 21 + 1) =  21 -f 1.

Now we come to the more general case, which includes the previous case, where 

21 < d + 1. In this case, we have only been partially successful. We show that 

/x(n, in, d) < 21 +  2. We consider a flower graph F(n, w, d) which consists of k 

petals Si each containing either / or / + 1 vertices of W . There can be no path 

through more than two of the petals of F(n,w,d). Suppose w = kl + 1. Then 

there is exactly one petal of weight / +  1. So the maximum weight of a path is 

21 +  1, that is, fi(n,kl + l,d ) < 21 +  1. (See Figure 8.) This gives equality in 

Theorem 2.6. However, if w >  kl +  2, there are two or more petals of weight
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0  vertices of W  O  vertices of G \  W

Figure 8: Two flower graphs, F(17,9,4) and F (17 ,10,4)

/ +  1 in F(n,w,d). So the maximum weight of a path in F(n, w,d) is 21 +  2. This 

implies that /z(n, to, d) < 21 +  2, whereas Theorem 2.6 just tells us that p > 21 + 1. 

We suspect that, for these values of the parameters, the upper bound of 21 -f 2 is 

correct. (See Figure 8.)

So considering the flower graphs and extremal bipartite graphs, we have an upper 

bound for /i(n,u;, d). This gives us the following theorem.

T heorem  4.2 Suppose w < n — d. If d =  21 -f 1 and n > 2w + d — 1, then 

fi(n , u;, d) <  d. Otherwise,

, d  +  1 > .
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We make the following conjecture.

C o n jec tu re  4.3 The bounds in Theorem Ĵ .2 are best possible.

The upper bound in Theorem 4.2 differs from the lower bound in Theorem 2.6 by 

at most one, and then only when w > kl -f 2 and d > 21 -f 2, or n < 2in +  d — 1.

So to summarise, if w =  kl +  1 or d < 21 +  1, or both d =  21 +  1 and n >  2in +  d — 1, 

then we have equality in Theorem 2.6. If not then we suspect that the theorem 

can be improved by one, giving a path through 21 +  2 vertices of W.

As is the case for Theorems 2.2 and 2.4, the striking feature of this result is the

significant difference in the values of ^(ra, in, d) and 1, in, d) when n =  (Jc + l)d

and tn < n — d. This difference increases as k decreases, so when in is large

compared with k , we have our most significant difference. This can easily be seen

by considering the two flower graphs F((k  +  l)d, in, d) and F((k  +  1 )d -f l,in, d).

The additional vertex enables us to form one more petal in F((k  +  1 )d -f l,m , d)
in — 1

than in F((k  +  l)d, in, d), which reduces the length of the path from 2 + 1

to 2
in — 1 
k +  1

+  1. (See Figure 9.)

We now consider how we will prove Theorem 2.6. First we restate it as Theorem 4.4, 

in order to facilitate the proof.

T h e o rem  4.4 I f  n, k, I, w, d are natural numbers such that n <  (k +  1 )d, in > 

kl +  1 and k > 2 , then //(n, in, d) > min{2/ +  1, d -f 1}.

The proof is by induction on k. It is a slightly unusual induction as we require two 

base cases. This is because, in the induction step, we remove a set of vertices from
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•  vertices of W  O vertices of G \  W

Figure 9: The flower graphs F(12, 7,4) and F (13 ,7 ,4)

G of size at least 2d and weight at most 2/, which decreases k by 2. The two base 

cases we consider are the cases where k =  2 and k = 3. The case k = 2 follows 

from Theorem 4.5, below, and 4.1.

T heorem  4.5 I f  n <  3d and w <  n — d, then /i(n,iu, d) =  min{w, d + 1}.

For the next four chapters on graphs, we will consider connected graphs G on 

n (A; + l)<f vertices containing a subset W  of vertices of degree at least d such 

that the size of W  is w > kl +  1, where k > 2. In order to prove the theorems we 

may and shall assume that all edges are incident with weighted vertices. Indeed, 

suppose there is an edge e between two non-weighted vertices Vi and v2. Then 

if e is a bridge we may identify v\ and v2 which preserves the conditions on the 

graph. If e is not a bridge then we may remove it without disconnecting the graph
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or changing any of the conditions. We may also assume that w = kl +  1 and that 

n =  (k +  1 )d.

In the next chapter will introduce the main tool, a variant of the Hopping Lemma, 

used in the proof of Theorems 4.5 and 4.4.
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5 T h e H op p in g  L em m a and V ariations

The original Hopping Lemma, obtained by Woodall [20] is a very useful tool 

for problems dealing with long paths and cycles. Jackson [16] and Bondy and 

Kouider [5] use the Hopping Lemma and variations to prove results about long 

cycles in regular graphs. Jackson [17] again uses a variation to find cycles through 

many vertices of maximum degree.

To motivate what follows, we begin by giving the original Hopping Lemma. The 

Hopping Lemma involves a recursive process that determines which vertices can 

be swapped on and off a cycle. The starting point is a cycle with some maximal 

property. The original Hopping Lemma is based on a cycle Co of maximum length c 

where G\Co contains as few components as possible. Let V \V 2 . . .  v cV \  be the vertices 

around a cycle Co in a graph G where the suffices of the v,- are reduced modulo c. 

Let v f  be the vertex on Co after v,-, and for a set A, let A + =  { v f  : E A}. Let Vo

be an isolated vertex in G \  Co- In the Hopping Lemma, we consider a set of the 

vertices v± that can be swapped off the cycle to form a new cycle Cq with vertex 

set V(Co) \  {t\} U { v 0 } .  This set K, the union of the sets Y{ given in Lemma 5.1, 

forms an independent set of vertices.
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X

♦  Y

• +

Figure 10: The sets X  and Y  in Woodall’s Hopping Lemma

L em m a 5.1 (W oodall) Suppose that G contains no cycle of length c -f 1, and 

no cycle C'Q of length c such that G \ C q contains fewer components than G \C o .  

Suppose that v is an isolated vertex of G \ C q. Let Fo =  0 and, for j  > I, define

x ,■ = r(rH u W )

and

Yj =  {»,- 6  C0 : V i-nUi+i €  A,-}.

So r(n ) = X i  C I 2 C . . .  and 0 =  Y0 C Y\ C   Then, for all j  > I,

I - X j  C C0,

2. Xi n xf  = 0, 

s. X j  n Yj = 0. □

Let X  =  (J ■ X i , Y  =  |J i Y{, and so X + =  (Jt X f . Then we can deduce X  C Co,
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X  n  X + = 0 =  X  n Y. The Hopping Lemma tells us that there are no edges 

between the vertices of X + and hence between the vertices of Y.  The sets X , Y  

and X + are illustrated in Figure 10.

As we are interested only in specified vertices, we use a variation of the Hopping 

Lemma which concentrates on them. We again define sets X  and Y  which have 

similar properties to the sets X  and Y  defined in Woodall’s Hopping Lemma. We 

start with a cycle C of maximum weight, w c , and use any weighted vertex v not in 

C  to generate X  and Y.  Our set Y  is again a set of vertices that can be swapped 

off the cycle. By the maximality of C, a vertex u of Y  must be weighted, that 

is Y  C W ,  as we can swap the weighted vertex v onto the cycle to replace it. In 

Woodall’s Hopping Lemma, the neighbours of vertices of Y  lie on the cycle C0, as Co 

is chosen such that it has maximum length and, given such length, there is minimum 

number of components in G \  Co, [20]. However in our case, we cannot guarantee 

that the neighbours of Y  lie on the cycle. Therefore we have to define our set X 3 

to be the neighbours on C of vertices of Yj-i  U {v}. Another difference between 

Woodall’s and our Hopping Lemmas is our consideration of vertices following X  

on the cycle. Woodall’s Hopping Lemma considers the vertex which follows 

V{ E X , whereas we are more interested in the next weighted vertex after ut- on C.

Now we will consider this variation of the Hopping Lemma more formally. Let C 

be a cycle of maximum weight wc and of minimum length given w c . We call such a 

cycle a maximum cycle. Let C  be the cycle ViV2 . . .  vcV\ where the suffices of the v, 

are reduced modulo c. For a set D of vertices, we define v f D to be the next vertex 

of D on C after ut- and to be the last vertex of D on C before vt. Typically D 

will be either V, W  or X .  For simplicity we write v+ and v~ in place of v+v and

In Woodall’s Hopping Lemma, X \  is defined as the set of neighbours of an isolated
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vertex in G \C .  Instead of using such an isolated vertex, we use one of the following 

sets, (1) a weighted vertex v0 in G \  C, (2) all the weighted vertices in a component 

of G \  C, (3) the weighted vertices in all the components of G \ C .  Suppose X \  is 

given by the set of neighbours on C of a set A. Then we say that X  and Y  are 

generated by A, and write X  =  X {A )  and Y  = Y(A).  We will prove our version 

of the Hopping Lemma using a weighted vertex vq to generate X  =  X(uo) and 

Y  =  F(u0) and show how the other two versions can be obtained from this. We 

define Yj and X j  as follows. (See Figure 11.)

o G \ W
■ x + w

# W
♦ Y

Figure 11: The sets X  and Y  in the weighted version of the Hopping Lemma

Let Yq =  0 and, for j  >  1, define

Xi = r c (^ _ i  u  {v0})

and

Yj =  {u,* e  C  : ut_!, vi+1 e  X j } .
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We let X = U  | Xj and Y  — Yj. Therefore

Xx C  i 2c i 3. . . a

and

Y0 C Y1 C Y 2 . . . C Y .

We define some more notation. Let

X + =  {x*+i : i i  6  I } ,

=  {x+w : z i e X } ,

X ~ w =  { x r w : X ie X } ,  

z + = X +W\ Y ,,

Z “ =  X ~ W \ Y .

Let x = \X\ and y =  |y^|. Note that the definitions of X  and Y  depend on the 

choice of v0.

The version of the Hopping Lemma that we use is given next.

L em m a 5.2 Let C be a maximum cycle and let Y  and X  be defined as above. 

Then,

1. =

2. x  n =  0,

3. x  n y  = 0,

I  Y C W .
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We prove this in a different form for which we need the following definitions. 

Let P  =  PiP2 -~-Pt  be a path. Then we let (p i ,Pj )  be the section of the path 

Pi+iPi+ 2  • • •P j - i  and \pi,Pj]  the section piPi+i  • • -Pj ,  and so on. Sections of cycles 

are defined similarly. Let U  =  T g \ c ( v o)-

For h G N , we call a path Ph =  P1P2 ■ • -pz  in G  \  {no} an h-extendable  path if it 

satisfies the following three conditions.

i. C n w  c p h,

2- P \ ,P z  G X h  U U ,

3. if pi  G Yi where I <  h — 1, then p,_! £  X \  and p1+1 G X i .

Let z 1? z2, . . .  , z x, Zi be the vertices of Xh  on C read cyclically. Suppose there 

is no /i-extendable path in G  and there are two vertices z ; , z t-+1 G X h  such that 

zt+i £ (z{, z*w ]. Then the path between zt+i and zt- is an ^-extendable path in 

G, which is a contradiction. Therefore the non-existence of an /i-extendable path 

implies that Xh  fl X £  =  0, and Xh fl X £ w =  0. Suppose v £ Y  \  W . As v is not 

weighted and there are no edges between non-weighted vertices (by assumption), 

both v~ ,v+ £ X  fl W , and so v+ £ X + w . Therefore v+ £ X  fl X +w which is a 

contradiction. So to prove Lemma 5.2, we prove the next lemma. The proof of 

this is almost the same as the proof of a variation of Woodall’s Hopping Lemma 

by Jackson [16].

L em m a 5.3 Let C be a maximum cycle. Then, for each h, there is no h-extendable 

path.

P ro o f. The proof is by induction on h. Suppose there is a 1-extendable path 

Pi =  P1P2 ■ --pz. Since p\,p z G X \  U U,  we can join the path p\VQpz to Pi  to create
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a cycle containing more weighted vertices than C, which contradicts the choice of 

C .  Therefore there is no 1-extendable path, completing the h =  1 case. We now 

let h =  j  >  2. We suppose we have a j-extendable path Pj =  p i p 2 " - p z and 

show that this gives us a ( j  — l)-extendable path, which contradicts the induction 

hypothesis. We need to consider three cases.

1- Pi iP z  £  X j - i  U U.  If Pj  is a j-extendable path then it is also a ( j  — 1)- 

extendable path.

2 . pi  E X j -1  U U, and pz E X j  \  X j - i  (or vice versa). B y the definition of X ’j ,  

Pz £  T(pm) for some pm E Y j- i  \  Y j - 2 , and pm ^  pi  since Y j - i  H X j - i  =  0 and 

Y  fl U  =  0, by definition. By assumptionj Pj  is a j -extendable path which 

implies that there is a vertex X{ E X j - i  such that x t- =  p m+i-  Therefore the 

path

Pj =  PlP2 ■ ■ • PmPzPz-1 • • • ^

is a (j  — l)-extendable path since the only vertices which could fail to satisfy 

condition 3 are p m and p z , neither of. which | is contained in Y j - 2.

3. p i , p z E X j  \  X j - 1 . Then p Y E T(pi)  and p z E T(pm) for some p h p m E 

Y j - 1 \  Y j - 2 and again pi ^  p z and p m ^  p \ .  Hence both the predecessors and 

successors onj Pj of pi and p m are in X j - 1

If / <  m, then

Pj  =  Pi- 1 . • • P2P1P1PI+I • • • PmPzPz- 1 • . • Pm+l  

is a (j — l)-extendable path, while if / >  m, then

Pj  =  p m- 1 . . . P2P1PIPI+I • • . PzPmPm+l . . . p i - 1 

is a (j — l)-extendable path. This completes the proof.
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The proof, in fact, shows slightly more, namely that, if we have an /i-extendable 

path we have a 1-extendable path, and so the vertex v0 can be included in a cycle 

of greater weight in G: Also for any vertex v E X +w(vo), there is a path P  through 

all the weighted vertices of C with endpoints u0 and v.

We now prove a corollary that provides us with information about independent 

sets of vertices and their neighbours.

C oro llary  5.4 Let C = ViV2 . --vcvi be a maximum cycle. Then the following 

properties hold.

1. X +w and X ~ w are independent sets of vertices. I f  1 E X  but u, ^ X +w 

then V{ is not adjacent to any Vj E X +w. I f  ut+1 E X  but V{ £  X ~ w then

is not adjacent to any Vj E X ~ w .

2. Given Vj E Z + or ut-, Vj E Z~ there does not exist vm E {vx+2 vt+ 3  • • • uj-i}  

such that is adjacent to vm and Vj to um_x.

3. No component of G \ { C U {^o}) contains vertices adjacent to two vertices of 

X +w or two vertices of X ~ w .

4- In the case where C is of weight one less than the path P  of greatest weight, 

that is wc  =  wp — 1, no vertex of X +w or X ~ w is adjacent to a weighted 

component or a weighted vertex in G \ C .
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P r o o f .

1. First we consider two vertices y i , y j  G Y .  Suppose there is an edge between 

yi and y j .  Then y j  G X , which contradicts Lemma 5.2(3) as Y  fl X  =  0. If 

y j  G Y  and p, E Z + or pt- E Z ~ , and there is an edge between p, and ?/j, then  

Pi & X ,  contradicting Lemma 5.2(2).

Now we consider two vertices Vi,Vj E Z + . Suppose v,- is adjacent to Vj. Then 

Vi,Vj E X £ w  \  Yh for some h >  1, and the path

P h =  V~X . . . Vj+1VjViVi+1 . . .  v ~ x

is ^-extendable and so contradicts Lemma 5.3, since the only vertices that 

could fail to satisfy condition 3 are and Vj, neither of which is in Y . A 

similar proof holds if u,-, Vj E Z ~ .

For the second part we suppose that there is a vertex E X h  such that 

Vi W  and for some v j  E X £ w  there is an edge (u;, Uj). Then the path

— X  _L wV j *  . . .  V? ViVjVj+1 . . . V,-_1

is an ^-extendable path contradicting Lemma 5.3. Similarly if ut+i E X  but 

Vi W .

2. Suppose Vi,v j  E Z + . Then Vi,Vj E X £ w  \  Yh for some h >  1. Suppose 

v J Xh =  Uj_2. Then vj  is not adjacent to Uj_2 and so v m ^  Uj_i. If there is a 

vertex v m with the given properties then the path

P h =  V~X  . . . VjVm_ 1 . . . Vi+iViVmVm+1 . . .  v ~ x

contradicts Lemma 5.3. A similar proof goes through if Vi,Vj E Z ~ .
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3. As there axe no edges between unweighted vertices, components in G \  C 

which have weight zero consist of an isolated vertex. Therefore one of the 

two cases we consider is the case where two vertices of X +w(vq) are adjacent 

to a single vertex in G \  C. This vertex may be weighted or not. The second 

case is when two vertices Vi and v 2 in a weighted component Q are adjacent 

to two vertices of X +w.

(i) u G G \  (C  U {i>o}). First we suppose that u is adjacent to two vertices 

yi and yj in Y . We form a new graph G' by removing u from G and adding 

the edge (y,-,yj). Now in G' , C  is still a maximum cycle. Also G y(t>o), 

so as in part 1, we have a contradiction to Lemma 5.2(3). Similarly if u is 

adjacent to a vertex of or Z~, and a vertex of y ,  we have a contradiction 

to Lemma 5.2(2), and if u is adjacent to two vertices of Z + or to two vertices 

of Z~ then we have a contradiction to Corollary 5.4(1). A similar proof holds 

if Vi,Vj € Z ~ .

(ii) Let Vi,U2  G.Q where Q is a weighted component in G \ C .  Suppose there 

are edges (vx,yt) and ( v2, y j ) .  Then we contract Q to a single vertex, and 

continue as in (i). This completes the proof of part 3.

4. Let u be any vertex in the same component as v0. Then there ia a path 

from Vo to u. Suppose that u is adjacent to ut- G X +w. Now we identify u 

and u0, so there is a pair of vertices, namely V { , v f x  G X  which contradicts 

Lemma 5.2(2) or (3). A similar proof works if G X ~w .

Now suppose u ia a vertex in the same component as ut where ut is a weighted 

vertex in G \  C  and u is adjacent to V{ G X +w (u and ut may be the same 

vertex — if not, identify them). Suppose we identify i>o and ut . Then we are 

in the case above and have a cycle of greater weight. So, if we add an edge e 

between v0 and u t in our original graph we have a cycle through C, v0 and
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ut which gives us a cycle of weight wc +  2. Therefore, by removing e we have 

a path  of weight wc +  2 which is a contradiction. A similar proof works if 

G X ~ w . □

We also prove that Lemma 5.2 and Corollary 5.4 can be used in the case where 

A* =  X (Q  fl W )  and Y(Q  fl W )  are generated by all the weighted vertices in a 

component.

Corollary 5.5 Suppose that X  =  X ( Q n W )  and Y  = Y (Q f)W )  are generated by 

all the weighted vertices in a component Q. Then

1. X(Q n w) n x +{Q n w) = 0,

2. x(Q n w) n z +(Q n w) = 0,

3. X (Q  nw)  n Y(Q  n w) = 0,

4- X +w(Q H W ) and X ~ W(Q fl W ) are independent sets of vertices, and if

Vi_i £ X(QC\W) but V{ £  W  then vt- is not adjacent to anyvj £ X+ w (QC\W).

Similarly for  ut _ 2  and vertices of X ~ W(Q fl W).

5. Given vj £ Z +(Q fl W ) or Vi,Vj £ Z~(Q  fl W ) there does not exist vm £ 

{u,-+2 i Vi+3 , . . . ,  u/_i} such that V{ is adjacent to vm and Vj to vm_i.

6. There is at most one neighbour of vertices of G \ ( C  U {Q D W}) in the set 

X +w(Q D W ).  Similarly, \T (G \  (C U {Q fl W }))  U X ~ W(Q n  W)\ < 1.

7. In the case where C  is of weight one less than the path P of greatest weight, 

that is wc  =  wp — 1, no vertex of X +W(Q D W ) or X ~ W(Q fl W ) is adjacent 

to a weighted vertex in G \ C  or a neighbour in G \ C  of a weighted vertex in 

G \ C .
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P roof. Let C be a maximum cycle in G. Suppose we identify all the weighted 

vertices in a component to a single weighted vertex v0, forming a graph G'. Suppose 

there is a cycle of weight at least wq +  1 in G'. Then this cycle must include v0. 

By the connectedness of Q the vertex v0 in G' can be replaced by either a weighted 

vertex or a path of weight at least two, so there is a cycle in G of weight at least 

wc +  1 which contradicts the maximality of C. Therefore C  is a maximum cycle in 

G'. Then we generate X(vo) and in G '. These are exactly the sets X  ((JflVF)

and Y ( Q n  W )  in G. Now Lemma 5.2 and Corollary 5.4 apply to the graph G' 

and the sets X(u0) and K(v0). Since all the vertices contracted to v0 are weighted, 

i>o can be replaced by either a weighted vertex of Q, or by a path with weighted 

endpoints, giving the required results. □

The other set we use to generate the sets X  and Y  is the set of all the weighted 

vertices in G \ C .  We only do this in the case where wc =  wp — 1, that is, a cycle 

of greatest weight has weight one less than a path of greatest weight.

Corollary 5.6 Let C be a maximum cycle and P a maximum path, where wq = 

wp — 1. Then, the previous corollary applies for X ( W  \  C) and Y ( W  \  C ).

Proof. Suppose we identify all the weighted vertices in G \  C to form a single 

weighted vertex Vo, and a graph G‘'. Then if there is a cycle in G' of weight wc + 1, 

there is either a cycle of weight wc +  1 in G , or a path of weight wp +  1, which are 

both contradictions. Therefore the conditions applying to X (v 0) and ^(no) in G' 

also apply to X ( W  f l  G \ C )  and Y {W  D G \ C ) .  □

For the remaining chapters on graphs, we generate X  and Y  using a fixed set of 

vertices of one of the three types given above. Given a maximum cycle C, a valid 

set is either
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1. u, a weighted vertex in G \  C , or

2. Q fl W ,  all the weighted vertices in a component Q of G \  C, or

3. if wc = wp — 1, W  f] G \  C, that is. all the weighted vertices not on the cycle.

Now we will introduce some lemmas which are based on the variations of the 

Hopping Lemma that we have just proved. Most of the proofs in the following 

chapters on graphs rely on counting the vertices in various disjoint sets. The most 

common form of the inequalities used is given by the following lemma.

L em m a 5.7 Let C be a maximum cycle and A  any valid set in G \ C . Then

n > size of union of some subset S  of components o f G \ C  

+i (number of neighbours of X +w (A) in G \ C )

+c,

where i E {0,1} and c = \C\. I f  i = 0, all the components are included in S. I f  

i = I, the subset S  of components is made up of those components which contain 

no neighbours of X +w(A). □

In the above lemma if i = 1, the last two terms often combine conveniently, as will 

be seen in Corollary 5.10. But first we will look at the neighbours of X +ty(A).

L em m a 5.8 Let C be a maximum cycle with \C\ =  c and let A  be a valid set. 

Suppose x > 2 , where x = |X (A )|. Let x a and Xf, be two vertices of X +w(A) such 

that d(xi) > max{d(xa),d(xb)} for all x, E X +W(A) \  {xa, xj,}. Then

\ T ( X +W(A ))U C \

> ^ 2  (d(Xi) ~  Lc / 2 J  )  +  d ( X a)  +  d(xb) +  ^ 2  (  LC / 2 J  ”  X )  •
Xie x+W(A)\ { x atx b}  y} e Y ( A )
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Proof. First we consider the neighbours of vertices of Y. By definition, vertices 

of Y  are only adjacent to vertices of X  on C. So the degree of a vertex y,- in G \ C is 

at least d(y,) —x.  No two vertices of Y  contain neighbours in the same component, 

by Corollary 5.4(3), Corollary 5.5(6) or Corollary 5.6, depending upon A. So the 

total number of neighbours in G \  C of vertices of Y  is at least YlyjeY (d{Vi) ~  x )-

Now consider neighbours of vertices of Z +(A). For any Z{,Zj £ Z+(A), let [z,-, Zj] 

be the section of the cycle Z{Z{+i . . .  Zj and let [zj, z j be the section ZjZj+1. . .

Then by Corollary 5.4(2),

^Ui,zj](zj) FI r ^ f e )  =  0 =  T[ZjiZi\(zi) f l  T ^  z.^(zj).

So these four sets are pairwise disjoint and their union, which is the same size as 

the set of edges that zt- and zj send to C, has size at most c =  \C\. This gives

dc(zi) +  dc (zj) < c.

Let m  be the maximum degree of a vertex of Z +(A) on C. Then for z £ Z +(A), 

say, dc(z) = m. This means that the other vertices of Z +(A) have degree at most 

min{m,c — m } <  [c/2j on C. Therefore each vertex zs of Z +(A) has at least 

degree d(zs) — (c — m) in G \  C. So the number of neighbours of vertices of Z +(A) 

in G \  C is at least Y2Zi£Z+\{z}(d(zi) — c +  m) -f d(z) — m. There are two cases.

1. m  > [c/2]. The minimum number of neighbours in G \C  of a vertex of Z +(A) 

occurs when m  is at its minimum, [c/2]. So the number of neighbours is at 

least

(d(zi)  -  c +  fc/21) +  d(z) -  fc/2]
z,€Z+(A)\{z}

=  E  ( * ( * ) - Lc/2J) +  [ c / 2 J -  Tc/21-
zi€Z+ (A)
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2. m  < [c/2]. Then each vertex Z{ of Z +(A) has degree in G \  C  of at least 

d(zi) — [c/2] + 1  so there are at least

£  (d(zi) -  [c/21 + 1) > Y ,  (<*W-Lc/2J) + Lc/2J-rc/2l
z ^ e Z + i A )  z i £ Z + ( A )

neighbours of vertices of Z +(A) in G \  C.

Hence the number of vertices on C and neighbours of X +w (A) in G \  C is

|rGVC(x+w’(A))uc|
> y  (<*(*.•) - Lc/2J) + Y -x)+c

zi€Z+ y} € Y

> y  (d(xi) - ic/2J) + Y  (Lc/2J - x)+c
x t e X + w  y j€.Y

> Y (d(z') ~  Lc/2 J) +  Yi ([c/2j -  x) +  d(xa) +  d(xb),
zi e X + vv(A)\{xa,xb} y j € Y

as required. □

We also use this result when the set W  has minimum degree d. The following two 

corollaries give it in a form that is easy to use.

C oro llary  5.9 Let C be a maximum cycle, A  a valid set, x =  |^f(A)| and y = 

|K(A)|. Suppose the minimum degree of the vertices o f W  is d, and x > 2. Then 

the number of vertices on C and neighbours of vertices of X +w is at least

y ( d -  x) + (x -  y -  2 )(d -  |c /2 j) +  2d.
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P roof. By putting d(xt) >  d, y = |K| and x =  \X\ into Lemma 5.8 we obtain

|r(AT+H,(x))uc |

> ^  ( d - [ c / 2 \ )  + d + d +  ^  (Lcl 2i ~ x )
X i€ X + lv (A )\{xa,a ;6} y j €Y( A)

> ( x - 2  ) ( d - |c /2 j) + 2d + y(  [C/2J — x)

> ( x - y - 2 ) ( d -  [c/2 j) +  2c? +  y (d -  x ) ,

as required. □

Corollary 5.10 Let C be a maximum, cycle, A  be a valid set and x = |X(A)|. 

Suppose the minimum degree of the vertices of W  is d. Suppose also that x >  2 

and Wc <  min{2/ — j , d  — j }  for some j  > 0. Then the size u of the union of the 

set of neighbours of X +w (A) in G \ C  and the set of vertices in C satisfies the 

inequality u >  2d +  j  (x — 2).

Proof. By Corollary 5.9, the size of the union of the neighbours of X +W(A) in 

G \ C  and the vertices on C  is at least y([c/2J — x) +  (x — 2)(d — |_c/2_|) +  2d > 

(x — 2)(d — [c/2j) +  2d, since |_c/2j — x  >  0. As there are no edges between 

unweighted vertices, we have d — j >  wc >  [c /2 j. So d — [c/2j > j ,  and we obtain 

the result. □

51



6 D eg ree  Sum  C on d ition s on  In d ep en d en t Sets  

o f  T h ree  V ertices

In this chapter we will discuss and prove a result (Theorem 6.1) to which Theo

rem 4.5 is a corollary. We define the degree sum of a set of vertices S{ to be the 

sum of the degrees of the vertices of 5,-, that is, d(v). Instead of dealing with
veSi

a set W  that has minimum degree d, we consider the degree sums of triples 

of independent vertices from W. That is, we consider an Ore-type problem, (see 

Chapter 9 for more Ore-like results). The condition we use for the vertices of W  is 

that the degree sum of three independent vertices from W  is at least n. Note that 

this condition is exactly what is needed to prevent there being three petals of a 

flower graph. W hat we prove, essentially, is that, under this degree sum condition, 

there is a path through at least as many specified vertices as in a bipartite graph 

B (n ,w ,d ) .

Let £ (n, w) =  minmaxtop where G is a connected graph for which the degree sum 
G P C G

of each triple Si of vertices of W  is at least n, and P  is a path in G. That is, £(n, w) 

is the maximum weight of a path that can be guaranteed given these conditions. 

Then we have the following theorem.

T h e o rem  6.1 I f  n < 4, then £ (n, w) =  w.

1. I f  w <

2' If \ T̂ \ + 2 - w -  [ y j  t h e n ( ( n , w ) =  | j j  + 1 .

3. I f  w >  |^ y j  +  I* and n ^  then £ (ra,tu) =  w — n  +  2 |"y"] +  1-

j + 1 , then £ (n,w)  =  w.
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Before we prove this theorem, we describe the structure of graphs satisfying the de

gree sum conditions, with no path through all the weighted vertices (Theorem 6.2). 

and discuss other related results. Theorem 6.2 is illustrated in Figure 12.

T h e o rem  6.2 Let G be a graph on n vertices. Suppose that d(s)+d(u) +d(v) > n 

for all independent sets {s,u, v} o fW .  Let C be a maximum cycle. Then either 

there is a path through all the vertices of W , or

1. the weight o f a maximum path P  is wc  +  1, and

2. every component in G \ C  has weight at most one.

Figure 12: A graph illustrating Theorem 6.2

% vertices of W  
O  vertices of G \  W
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This theorem is a generalisation of two earlier results. Part (1) is a generalisation 

of a result of Enomoto, van den Heuvel, Kaneko, and Saito [19], which is recovered 

when W  =  V(G ). Part (2) is a generalisation of a result of Enomoto, Kaneko and 

Tuza [10] which was also independently proved by Bauer, (see [10]). This is again 

recovered from Theorem 6.1 when W  = V(G). The result of Enomoto, van den 

Heuvel, Kaneko and Saito [19] follows fairly readily from the result by Enomoto, 

Kaneko and Tuza [10] and Bauer (see [10]).

Theorem  6.3 (Enom oto, Kaneko and Tuza) Let G be a connected graph on 

n vertices. Suppose that d(s) +  d(u) -f d(v) >  n for all sets of three independent 

vertices s, u, v. Let C be a longest cycle. Then G has a Hamiltonian path or G \ C  

consists of isolated vertices.

Theorem  6.4 (Enom oto, van den H euvel, Kaneko and Saito) Let G be a

connected graph on n vertices. Suppose that d(s) +  d(u) +  d(v) >  n for all sets 

of three independent vertices s, u, v. Let C be a longest cycle, and P a longest 

path. Then G has a Hamiltonian path or\P \ — \C\ — \.

It is easy to see that Theorem 6.3 follows from Theorem 6.4. Indeed, if G \  C 

has a component consisting of more than one vertex, there is clearly a path in 

G containing at least \C\ -f 2 vertices. However, in the weighted version, the 

generalisation of Theorem 6.3 does not follow as simply from the generalisation 

of Theorem 6.4. Let C  =  V1 V2 . . .  vcVi be a maximum cycle in G. We consider a 

component Q of G \C .  The difficulty arises if there is a cut vertex v £ Q, such that 

each component Qi of Q \  {u} contains at most one weighted vertex <#. Suppose 

also that the Qi are components of G \  {v}. Let be a vertex of C  which is 

adjacent to v. Such a vertex V{ exists as G is connected and v is a cut vertex. Then
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we have a path of maximum weight wc + 1, for example u;+1ut + 2 • • • viV ■. • <7, for 

any <?;. (See Figure 13.) However this case does not actually arise, as we will show 

in the proof of Theorem 6.2.

f  vertices of W  

O  vertices of G \  W

Figure 13: Theorem 6.2

P ro o f  of T h eo rem  6.2. We will first prove part (1), which we use in the proof 

of part (2).

Let P  =  pip2 . . .  pt be a maximum path in G. Suppose that P  does not contain 

all the vertices of W. Since P  is a maximum path and there is a vertex v, say, of 

W  in G \  P, there is no cycle containing all the vertices of P , as by connectedness

v could be added to the cycle to produce a path of weight wp + 1. Let v be a 

weighted vertex in G \  P. Then v, p\ and pt form an independent set of vertices of 

W, since, if not, then either we have a cycle containing P , and so a path of greater 

weight by connectedness, or there is a path vP  again contradicting the maximality 

of P.
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Let A = r P{pi), B  -  r j ( p t), D = Vg\p {p i) and F = Vc\p(Pt)- Then D f l F  =  0 

and r (v )n (A \J B \J D \J F )  =  0 or there would be a path of greater weight. Suppose

Figure 14: The sets A, B , D and F

A fl B =  0. Then the sets A, £ ,  D and F are disjoint and |A | +  \D\ =  d(pi) and 

\B\ +  |F | =  d(pt). So, counting the vertices, we have

n  >  |A | +  \D\ +  \B\ +  \F\ +  \T{v) U {v}\ 

=  d(pi) + d(pt) + d(v) + I 

>  n  +  1 ,

since p1? pt and v form an independent set of W. Therefore A fl B ^  0, so there is 

a cycle C  through all the weighted vertices of P  except one. That is wq = wp — 1, 

proving part (1)."

Now we prove part (2). Let C  be a cycle of maximum weight in G, so C  has 

weight wc — wp — 1, by part (1). Suppose there is a component Q in G \  C  of 

weight at least two. There is no path of weight in Q at least two with an endpoint
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adjacent to (7, as this contradicts part (1). Therefore there is no weighted vertex of 

Q adjacent to C. Also there is no cycle of weight at least two in Q, as again there 

would be a path of weight wc +  2, contradicting part (1). But by connectedness, 

a maximum path P' in Q has weight at least two. Let the weighted endpoints of 

P' be p[ and p\. Suppose p[ and p\ are adjacent. Then by connectedness there 

is a path from p[ to C and therefore a path Pi through all the vertices of C 

and both p'x and p't. Thus wp* > wc +  2, contradicting part (1). Now, since p[ 

and p't are not adjacent to (7, all their neighbours are in Q. As there is no cycle 

containing the weighted vertices of P ', the following sets are pairwise disjoint:

!V '(t1 )>  r p'(Pt)> J W ' f a i )  a n d  r Q \F'(Pt)- T lie n  l<2l >  d (.P\) +  d(.Pt) +  1- L et v i

and v f w  be two weighted vertices on C. Then either or v*w  has at most one 

neighbour in Q. Indeed, if both ut- and v f w  have at least two neighbours in (J, there 

is a path Pq in Q of weight at least one, and endpoints adjacent to ut- and v f w . 

Thus we obtain a cycle V i . . .  Vi-\ViPvfw . . .  vcv\ of weight greater than that of C , 

contradicting the maximality of C. Take v* E {nt-, v f w }, such that dq(v*) < 1. 

Thus <Ig\q (v*) >  d(v*) — 1. As Pi and pft are not adjacent to each other or to any 

vertices on C, we have an independent set of vertices {Pi,Pt,t>*}. Now counting 

the vertices in Q and the neighbours of u*, we obtain

n > |Q| +  | r G\g (u " )U { ^ } |

> ^(piJ + rfCpD + iJ + K ^ J - n - 1)

>  n +  1

which is a contradiction. Therefore there are no components of G \  C  of weight 

at least two. So, either there is a path through all the vertices of W , or each 

component in G \  C  is at most weight one, as required. □

Now we come to the proof of Theorem 6.1. We prove this in two parts. First 

we show that there are graphs with the given parameters in which there are no
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paths of greater weight. Then we show that a path of the required weight is always 

possible.

T h eo rem  6.5 1. I f

2 n

+  2 < w <
2 n
T J

then f  (n, w) < +  1 .

2. I f  w > —  + 2  then £(n ,w ) < w +  1 — n -f 2 
- 3 -

Proof. We consider graphs on n  vertices where the degree of each of the vertices of 

W  is at least d  =  [n/3]. For part (1), we consider the bipartite graphs B(n,  iu, d).  

For w < [2n/3j, we have W  C Vi. So there is no path through more than 

d  +  1 =  \n/3] +  1 vertices of 14. Hence there is no path of weight greater than 

[n/3] + 1  as required.

Now, for part (2), we again consider B(n, w , d).  This time, 14 C W a s w > n  — d, 

and the remainder of the vertices of W  are in 14- Hence there is no path through 

more than d-f  1 =  [n/3] + 1  weighted vertices of 1 4  and w — (n — d) = w — [2n/3j 

weighted vertices of 14- Hence there is no path of weight more than w — n +  

2 [n/3] +  1 in G, which completes the proof. □

Now we come to the rest of the proof of Theorem 6.1.

P roof of Theorem  6.1. First we consider the case where n <  4. The only 

connected graph on four vertices which does not have a path through all its vertices 

is K if3. In K\ 3 not all the vertices of degree one can be in W, as they can not 

satisfy the degree condition, so we are done.

Let C  be a maximum cycle and P  a maximum path.

(1) Suppose P  does not contain all the weighted vertices (that is, wp <  w — 1), and 

w <  [n/3] +1- By Theorem 6.2(1), there is a cycle C of weight wp — 1 < w — 2. By
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Theorem 6.2(2), all the components of G \  C  have weight at most one. Therefore 

there are at least two weighted components in G \  C.

As C  is a cycle of weight wp — 1, W  \  C  is a valid set. Let x =  |AT(W \  C ) |. 

Suppose x  >  2. Now X +w(W  \  C) is an independent set, by Corollary 5.6, so any 

three vertices in X +w(W  \  C) have degree sum at least n. We count the vertices 

in the components of G \  (7, the vertices on C, and the neighbours of vertices of 

X +w(W  \  C). The number of vertices in each weighted component Qi is at least 

d(wi) — x + 1, where is the weighted vertex in Q{. The number of vertices in C 

and the set of neighbours of X ^ i W  \  C) is given by Lemma 5.8 with d(xa) and 

d{x\}) taken to be minimum over all the vertices of X JtW{ W \  C). Putting y > 0 in 

Lemma 5.8 and applying Lemma 5.7 with i =  1, we obtain

n  > 2̂ ( d ( w j ) - x  + 1) +  2̂ (d(xj) — | c / 2 j )  +  d(xa) +  d(xb).
w f e W \ C  X j £ X + w \ { x a,xb}

As d(xa) and d(xi,) axe minimum, d(xj) > [n/3] for all other vertices Xj of 

X +w{W \  C) as X +w{W \  C ) is an independent set. So we have

n > ^ 2  (d(wf)  ~  x  +  !) +  d(x a) +  d(x b) +  (x ~  2)([n/3] -  |c /2 j).
w f £ W \ C

Let wg and Wh be two vertices in W  \  C of highest degree. Then we have 

n >  (d(wg) -  x +  1) +  (d(wh) -  x  +  1) +  d(xa) +  d(xb) +  (x -  2)([n/3] -  |c/2J).

Let d(xm) =  max{d(wg),d(wh),d(xa)jd(xt,)} > [n /3 ], as the vertices in W \ C  and 

in X +w(W  \  C) form an independent set by Theorem 6.2 and Corollary 5.6. The 

sum of the degrees of the remaining three independent vertices is at least n so we 

obtain
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n > {d(xm) — x) -f n +  (x — 2)([n/3] - |_c/2j — 1) 

0 >  ([n/3] -  x) +  (x -  2)([n/3] -  [c/2j -  1).

Now since C has weight at most [n/3] — 1, it has length c at most twice this 

because there are no edges between unweighted vertices. Also x < |_c/2j . Therefore 

[n/3] — [c/2j — 1 > 0 and [n/3] — x > 1. Also x > 2 so we have a contradiction.

So now we have x < 1. If x  =  1, let x0 be the vertex in X { W  \  (7), and if x =  0 

let Xq be a vertex of C  with a neighbour it, say, in a weighted component. Now 

no vertex of W  \  C is adjacent to Xqw , except possibly the unweighted vertex u. 

Therefore (W  \  C) U W} is an independent set of vertices. Let Wi and W2 be 

two vertices in W \ C .  Any two of the vertices w1? w2 and XqW share at most one 

neighbour, namely Xq when x — 1 and u when x =  0, as W\ and w2 are in different 

components of G \  C  by Theorem 6.2(2). Therefore

n > |T(it;i) U T(iy2) U U {wu w2ix i w }\

> d(wi) +  d(w2) +  d(xQW) — 2 +  3

> n +  1,

which is a contradiction. Therefore there is a path through all the vertices of W  if 

w < [n/3] +  1, completing the first part.

(2) For this part we simply remove w — [n/3] —1 vertices from W  and apply part

(1). By Theorem 6.5, this is the best we can do, completing part (2).

(3) Suppose w > [2n/3j +  1, n > 5, and there is no path through w — n +  2 [n/3] +  1 

vertices of W .  So wc +  1 =  wp <  it; — n +  2 [n/3], by Theorem 6.2(1). Therefore 

w — wc  >  n — 2 [n/3] +  1 >  2, since n >  5.

There are at least dc\c(wi) +  1 vertices in the component of G \  C  containing the
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weighted vertex it;,, for each it;,-, and each component contains at most one weighted 

vertex.

Set x  =  |X (W  \  C)\. We first consider the rather easy case where x =  0, that 

is, no vertex of W  \  C  has a neighbour on C. Let x0 be a vertex on C  with a 

neighbour it in some weighted component of G \ C .  Then we have an independent 

set S  = (W \ C) U {^o wifi1 at most one shared neighbour it, as no other vertex 

of a weighted component can be adjacent to XqW without forming a path of weight 

wq T 2, which contradicts Theorem 6.2(1). We note that l^l >  3. So each of vertex 

v of S  has at least d(v) — 1  neighbours unshared with other vertices of S. Therefore, 

counting the neighbours of vertices of 5, and the vertices in S  itself, we obtain

n > 5 > W - l )  +  |S| +  |{t«}|
v  €5

> d(wx) +  d(w2) +  d(w3) +  E + 1
1>eS\{lt/l ,W2 ,^3})

for {1 0 1 , 1 0 2 , 1 0 3 } Q •S', which is an independent set. So d(wi) +  d(w2) +  d(w3) > n , 

and we obtain

n > 71 +  (in — wc ) +  ^2, d(u)
u e s \ { w i , i v 2 , m } )

which is a contradiction as w — wc  >  2 and the sum is non-negative, so the right 

hand side becomes n +  2. This completes the x  =  0 case.

Now we may assume that x > 1. Let m  be the maximum degree on C  of a vertex 

u in W  \  C. Since C  is a maximum cycle there is at least one weighted vertex 

between every pair of neighbours on C  of u. Therefore ICI >  2m. Let t and q <  t 

be the degrees in G \  C  of two vertices in W \  C  such that dc\c(v) < q for all other

v e w \ c .
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Now we consider the case where there are two vertices in W  \  C with degree sum 

at least 2 [n/3]. Therefore 2m -f q + t > 2[n/3]. We count the vertices on C and 

in each of the components of G \  C, applying Lemma 5.7 with i =  0, to obtain

= \C\ + \G \C \

> 2m + y ,  (do\c(u) + 1)
uew\c

> 2m + y  dG\c{u) +  n — 2 [n/3] +  1
uew\c

> 2m + q + t + n — 2[n/3] +  1.

Now, as stated above 2m -t-< 7  +  £ > 2 [ n / 3 ]  so we obtain 

n >  n +  1,

which is a contradiction so no two vertices of W \ C  have degree sum at least [n /3 ].

Now we will consider under which conditions this can occur. Note that w — wc  < 3, 

for if not there are two vertices in W  \  C  of degree at least [n /3 ], giving a degree 

sum of at least 2 [n/3]. This can be seen by considering two subsets A  and B  of 

W  \  C, where B  does not contain a vertex vmax of maximum degree in A. Further 

if n =  0 or 2 (mod 3), then w — wc =  2, as [2n/3] =  2 [n/3].

Again let S  =  (W \ C) Uzj}^w where x 0 € X ( W \ C ) .  Then S  is an independent set 

as a vertex of W \ C  adjacent to a vertex of X +w(W  \  C) gives a path of weight 

wc +  2, which contradicts Theorem 6.2(1). Therefore the sum of degrees of any 

subset S{ £ S  of order three is at least n and so there are two vertices wa and wj, 

of S  which have degree sum at least 2 [n/3], when |5 | =  4 and n =  3c?-f 1, or when 

|5 | =  3 and n =  3d or n =  3d -f 2. Now we know that not both wa and wi, are in 

W \ C , so therefore, without loss of generality wa =  XqW. Further d(xQW) >  [n/3].



We now deal with the cases where either (i) \S\ =  4 and n =  3d +  1, or (ii) |S| =  3 

and n = 3d or n =  3d -f 2. In both of these cases, the vertex XqW has degree at 

least [n /3]. Also c > dc(xQW) +  ra, where m is again the maximum degree on C 

of a vertex of W  \  C, as no neighbour of XqW on C  can be adjacent to a vertex of 

X +w(W \C ) .  Let t =  ma,xues d G\C(u). Then Now dc(x£w )+ t > d(x£w ) >  [n/3].

So counting the vertices we have

n =  \C\ + \G \C \

> (m + dc(x%w)) + | + J
\ u e s  )

> d(x%w ) + j m + d g \ c ( u ) J + (n -  2 [n/3] + 1)
\  uew\c J

> (d(x%w ) -  [n/3]) +  j m +  ^ 2  dG\c{u) -  [n/3] J +  n +  1,
\  txewxc /

but each bracket is positive, so we have n >  n +  1, which is a contradiction. 

Therefore the only remaining case is when n =  3d +  1 and w — wc =  2. Since we 

have n — 2 [n/3] < w — wc — 1 =  1, this implies that n =  7.

So we are in the case where n =  7 and we have two weighted vertices not on the 

cycle. So c <  5. If x > 3 then we have a contradiction as c >  2x > 6. Therefore 

i  =  1 or i  =  2 as we have already dealt with the case x  =  0.

We deal with x =  1 first. Let Wi and w2 be the vertices of W \ C , and x Q E X (W \C ) .  

Then {in1} u;2, is an independent set. As before, c >  x  -f dc(xQW). We count 

the vertices on C  and the neighbours of tui, w2 and XqW which are not on C.
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Therefore we have

n =  \C\ + \G \C \

> x  +  dc{xQW) -f dG\c{w 1 ) +  1 +  do\c(w 2 ) +  1 +  do\c(^o W)

>  x + d(wi) — x + d(w2 ) — x + 2 + d(xQW)

> n + 2 — x

which is a contradiction as x  =  1.

Now if x  =  2, there are two vertices xo and X\ in X { W  \  C). Similarly to above, 

we have

n = |C| + |G\C|

> x +  dc(xQW) +  d o \c (^ \W) +  dG\c(w\) +  1 +  dG\c(w2 ) +  1 +  dG\c{%iW)

> x +  dc (x£w ) +  d(wx) -  x +  d(w2) -  x  +  2 +  d(x%w ) +  dG\ c ( ^ t W)

> n +  2 -  x +  dG\ c ( x t W)-

Since x =  2, this implies that d o \c (^ iW) =  0, and we have equality. It also implies 

that Wi and w2 have two neighbours on C. Therefore c >  4. So d c (x j^ )  =  2. 

By symmetry, dc^xj"*^) =  2, and dc-y^x**^) =  0. Therefore d(xQ **") =  d(x^w ). 

But 7 =  71  < d{wx) +  d(x+^) +  d(x£w ) < 2 +  dG\c(w 1 ) + 2  +  2 =  6 +  dc^C^i)- 

Therefore W\ has a neighbour not on C, and by symmetry, so does w2. Therefore, 

counting again, we have

7 = n =  |C| +  | G \ q

>  4 +  +  ^ g\ c {w  1) +  1 +  +  1 +  dG\c(%QW )

> 4 + l + l + 2  

= 8,

which is a contradiction, completing the case where n  =  7, and thus the proof of 

the theorem. □
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Theorem 4.5 follows as a corollary to this result. It will be used in the proof of 

Theorem 2.6.

C oro lla ry  6.6 (T h eo rem  4.5) Let G be a connected graph on n < 3d vertices 

where d is the minimum degree of a subset W  of vertices. Suppose \W\ =  w < 2d. 

Then fi(n , tu, d) =  min{io, d +  1).

P roo f. Applying Theorem 6.1 with n =  3d gives p(n ,w ,d) > min{ry, d +  1}. 

The bipartite graph B (n ,w ,d )  contains no path of weight more than d +  1, so 

w , d) < min{u;, d +  1}, giving the result. □
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7 M ore Lem m as

We have now proved one of the base cases for the proof of Theorem 4.4, that is 

Theorem 4.5. Since we have already proved the case where k — 2 in Theorem 4.5, 

we may assume that k > 3 in the following lemmas. The next lemma we prove 

shows that there is a path of weight three, as required in the case where / =  1. So 

we will then also take I >2.

L em m a 7.1 I f  n < wd and w > 3, then there is a path of weight three in G.

P roof. Suppose not. Then no two weighted vertices are adjacent, since if the}' 

were there would be a path of weight three, by connectedness. This means that 

each edge has a weighted and a non-weighted endpoint so there are at least wd 

edges in G.

Now, if there is a cycle in G  then we are done by connectedness. So G is a tree 

and has n — 1 <  wd — 1 edges, which is a contradiction. Therefore there is a path 

of weight three in G. □

Let C  be a maximum cycle. The next easy lemma gives results for the weight of a 

path obtained by combining C  with a path P  or cycle C  in G \  C. The technique 

of finding a maximum cycle and then combining it with a path or cycle in G \ C  

forms a main part of the proof of Theorem 4.4. Lemma 7.2 says that a path P  in 

G \ C  can be combined with C  to form a path P' which contains all the weighted 

vertices in C  and at least half those in P. It also says that C can be combined 

with a cycle C' in G \  C  to form a path through all the weighted vertices in both 

cycles. (See Figure 15.)
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Figure 15: Combining paths and cycles

L em m a 7.2 Let C be a cycle in G of weight w c .

1. Let P ' be a path in G \ C  of weight wp>. Then there is a path P  in G of 

weight

wp >  wc  +  ftnp//2].

Furthermore, i f  an endpoint of P f is adjacent to C then there is a path P  in 

G of weight

W p  >  W c  +  W p i .

2. Suppose we have a cycle C' of weight w& in G \ C .  Then there is a path P 

in G o f weight

W p  >  W c  +  w c > -

P ro o f. Let P f be the path pip2 •••Pu ai*d C  be the cycle V\V2 . . .  vcV\. Since G is 

connected, there is a path from some vertex pt- in P' to some vertex Vj in C. With

out loss of generality, suppose the section p i p 2 . . . p i  of P' has at least the weight



of the section PiPi+i • • • Pt- Then the path Vj+iVj+2 . . .  Vi . . .  Vj_iVj. . .  PiPi-i. . .  p\ 

has weight at least wc +  \wpt/2], as required. If an endpoint of P \  say pu  is 

adjacent to a vertex of C, say Uj, the path P"  =  Vj+iVj+2 • • • ^ 1  • • • ^j-iVjPiP2 • • - Pt 

has weight wc +  wpt. Let C' be a cycle U\U2 . . .  uc>u\. As G is connected there is 

a path in G \  (C' U C) between some vertex ut- and some Vj. So there is a path 

Vj+iVj+2 . . .  Vj-iVj . . .  UiUi+i. . .  Ui-2Ui- 1  of weight wc +  w c  as required. □

We next prove a corollary to Lemma 7.2 which we use to prove the base case where 

k = 3 of Theorem 4.4.

C oro lla ry  7.3 Let C be a maximum cycle.

1. I f  there is a path in G \ C  which has weight at least [(in — wq — l)/2 ] with 

an endpoint adjacent to C , then there is a path of weight at least 21 +  1 in G.

2. Suppose there are two disjoint cycles C\ and C2 in G \C  such that wcx +wc2 ^  

[(in — wc — 1)/2"|. Also suppose that there is a vertex of C2 adjacent to a 

vertex of X +w(Ci). Then there is a path in G of weight at least 21 +  1.

P roo f.

(1) By substituting n < (k +  1 )d and w > kl +  1 into Theorem 2.2 we see that we 

are guaranteed a cycle of weight at least Z +  1. Then applying Lemma 7.2(1) with 

wpt =  [(in — wc — l)/2 ] and wc  >  I +  1 gives a path P  of weight

wp > [(in - w c — l)/2 ] +  wc 

=  [(in +  inc -  l)/2 ]

>  [(3/ -f 1 +  / +  1 — l)/2 ]

=  r («  +  i) /2 i 

=  21 + 1.
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(2) First we form a graph G* by contracting C\ to a single vertex u. By the remark 

following Lemma 5.3 for all v £ X (C i), there is a path P* =  uuiu2....u^v+w in Gm 

through all the weighted vertices of C with endpoints u and v+w. Therefore, in G, 
there is a path P' = P* \  {u} containing all the weighted vertices of C, which has 

one endpoint Ui adjacent to a vertex of Gi, and the other, v+w adjacent to a vertex 

of C2 . Furthermore, P' includes no vertices of C\ or C2 . Let C\ =  0 ,1 0 ,2  . . .  a7ai, 

C2 = bib2 . . .  bgbi. Suppose that u is adjacent to a,- £ C\ and v +w to bj £ C2. Then 

there is a path

P = ai+iai+2 . . .  O iU-iP 'v^bjbj-i. . .  bj+1

of weight

wP =  wc  +  wCl +  wC2

>  \ ( w - W c + w c

=  2/ +  1

just as in (1). □

The next lemma gives a lower bound for the size of a component when it does not 

contain a path with certain properties.

L em m a 7.4 Let Q be a component of G \ C  of weight at least two, and let

XQ = max(fc(u) .  
v £ W n Q

1. Let P  be a maximum path in Q. Suppose there is no path of weight wp in Q 

with an endpoint adjacent to C. Then |Q| >  2 d +  1.

2. Suppose there is no path of weight two in Q with an endpoint adjacent to C . 

Then \Q\ > WQd + 1 .
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3. I f  there is no path through all the weighted vertices in Q and w q  < d — xq + l, 

then \Q\ > 3(d — xq) +  1.

4 . I f  there is no cycle through all the weighted vertices in a component Q, then

|<3| > 2(d — xq ) +  1.

P roo f.

(1) Let P  =  piP2 ---Pt be a maximum path in Q. Suppose there is no path of 

weight wp in Q with an endpoint adjacent to C. Suppose there is a cycle Co 

through all the weighted vertices of P. Then, by connectedness, there is a path 

in Q \  Co from a vertex of Co to C. This gives a path of weight at least wp with 

an endpoint adjacent to C which is a contradiction. Therefore there is no cycle of 

weight wP in Q. So the sets Di — Tp(pi) U {pi}, D2 =  Tp(pt), Dz =  Tg\p(pi) and 

Z?4 =  r<s!\p(pt) are pairwise disjoint subsets of Q. Thus

|Q| >  ( lAI  +  lflsD +  d A I  +  l ^ l )

>  [d +  1) -f d 

— 2d +  1,

as required.

(2) Suppose there is no path of weight two in Q with an endpoint adjacent to C. 

Then no weighted vertex of Q is adjacent to C, as by connectivity that would give 

a path of weight two with an endpoint adjacent to C, which is a contradiction.

If w q  =  2 then, as there is no path of weight two with an endpoint on C, on 

applying part (1), we have |<3| >  2d +  1, as required.

Now suppose that w q  > 3 and there is a path P  = p\p2 .. .pt of weight at least 

three in Q. By connectivity there is a path P' from P  to C. Let pt- be the vertex
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of P  nearest to C  on P 1. Then the section [pi,Pi] or [p,-,Pt] has weight at least 

two. Without loss of generality, suppose [pi,p,] has weight at least two. Then the 

path P' — P1 P2  . . .  p*- has weight at least two and an endpoint on C, which is a 

contradiction. Therefore there is no path of weight three in Q. So, by Lemma 7.1 

applied to Q, \Q\ >  w q < 1  +  1 as required.

(3) Applying Theorem 4.5, with d —  x q  replacing d, we have a path through w q  

weighted vertices of the component if |(J| < 3(d — \ x q  ).

(4) From Theorem 2.2 with d — x q  replacing d, there is a cycle through all the

weighted vertices of Q if |Q| <  2(d — x q ) .  □

Let P — pip2 .. .pt be a maximum path. Suppose u £ rp(px) such that there is a 

neighbour v of pt in [{u~w)~w , u). Then there is a cycle C — pip^.. - - vptpt-i • •. upi

of weight wc  >  wp — 1 in G. (See Figure 16.) If wc — wp, then either all the

O  vertices of G \  W
Q  vertices of W

Figure 16: Cycle weight is one less than path weight

weighted vertices lie  on P , in which case we are done, or there is a path of weight 

wp -f 1, contradicting the maximality of P. Therefore we need to deal with the 

case wq =  wp — 1. The following lemma will be used in the proof of the induction 

step of Theorem 4.4.
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For the remainder of this chapter and the next, let a  be the number of weighted 

components in G \  C and (3 the number of components of weight at least two.

L em m a 7.5 Let P be a maximum path and C a maximum cycle. Suppose that C 

has weight wq = wp — 1. Then wp > min{2/ +  l ,d  +  1}.

P ro o f. Let P  be a maximum path of weight wp <  min{2Z, d}. Let C  be a 

maximum cycle of weight wc = wp — 1 in G. We consider a weighted component 

Q in G \  C. Suppose Q has weight w q  > 2. Then there is a path P' in Q of weight 

at least two. Suppose P' has an endpoint adjacent to C. Then by Lemma 7.2(1) 

there is a path in G of weight wp + 1  contradicting the maximality of P. Therefore 

there is no path of weight two with an endpoint adjacent to C. So by Lemma 7.4(2), 

Q has order at least WQd +  1.

Let B be the set of components of weight at least two. We define w& to be the 

sum of the weights of the components in B, and (3 =  \B\. Therefore there are 

w — wc — wb components of weight one. The number of vertices in B is at least

y ;  iwQid+ 1)= wb3 + /3.
QiZB

Let x  =  |X (W  \  C ) |. We consider the cases x  =  0, x  =  1 and x >  2.

(1) Suppose that x = 0. We consider a vertex u E C  which has a neighbour v 

in some component Q. Now u+w is adjacent to at most one vertex in a weighted 

component of G \  C, namely u, since if it were adjacent to another vertex v* there 

would be a cycle uu~ . . .  u+wv*P*vu of greater weight than C f where P* is a path 

in Q between v and v*.

So there are at least d(u+w) — 1 +  1 > d vertices not in weighted components. 

Let a  be the number of components in G \  C.Since no weighted vertex in G \  C
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is adjacent to C, all components of weigKt one contain at least d +  1 vertices. So

there are at least (a  — fl)(d +  1) vertices in components of weight one.

Now a  — fl -{■ wq — w — rue, so the number of vertices in the weighted components 

is at least

(a  — fl)(d +  1) +  wBd +  (3 = ( a -  fl + wB)d +  a

=  (w — wc)d  +  ol.

So counting the vertices in the weighted components and the neighbours of u+w, 

we obtain

(k 4- \)d  >  (w — wc)d  +  a  -f d.

But a  > 1, w — wc  >  kl +  1 — (2/ — 1) >  (k — 2)1 +  2 > fc, as / > 1. Therefore the 

above inequality becomes (k +  1 )d >  (k +  1 )d +  1, which is a contradiction.

(2) Suppose x =  1. Let u E X ( W \  C). Then u+w is not adjacent to any vertex in 

a weighted component of G \  C, by Corollary 5.4(4). Therefore there are at least 

d + 1 vertices in the union of C  and the set of neighbours of X +w( W \C ) ,  so not in 

weighted components. Now, using Lemma 5.7, with i =  1, we obtain the following 

inequality.

(Jc + l)d  > n > (w — wc — we)(d — 1 +  1) +  +  fl) -f (d+  1)

>  (w — wc)d  -f d +  1 4- fl.

But fl > 0 , w — wc  >  kl 4-1 — (2/ — 1) >  (k — 2)14- 2 >  Jc, since k > 2 and / >  1.

Therefore the above inequality becomes 0 >  2, which is a contradiction.
(3) Let x > 2. We count the vertices in the disjoint union of the sets of neighbours

of X +w{W  \  C) in G \  C  and vertices in weighted components of G \  C. As 

wc <  min{2/ — l , d  — 1}, we use Corollary 5.10 with j  = 1 and Lemma 5.7 with 

i =  1 to obtain

(k 4-1 )d > n >  (w — wc  — wis)(d — x  4-1) 4- (wed + fl) + x — 2 + 2d.
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Rearranging and putting w& > 0, we have

(—k +  1 +  w — wc)d < (w — wc)(x — 1) — x  -f 2 

(—k +  1 w — wc)(d — x +  1) <  (x — 1 )(k — 2) +  1.

Now, w — wc >  kl — 21 +  2 and x < min{2/ — 1, d — 1}, so

2(—k + 3 + kl — 21) < (21 -  2){k -  2) +  1 

0 > 1,

which is a contradiction. This completes the proof. □

In the proof of Theorem 4.4 in chapter 8, the following corollary allows us to assume 

that if a maximum path P  is not of the required weight, the weight of a maximum 

cycle C is wc <  min{2/ — 2, d — 2}.

C oro lla ry  7.6 I f  wq >  min{2/ — l ,d  — 1}, then there is a path of weight 

min{2/ +  1, d +  1} in G.

P roof. Let P  be a maximum path. Since we have a cycle of weight at least 

min{2/ — l , d  — 1}, then wp > min{2/, d} by connectedness. If P  has weight 

min{2/, d} we have a contradiction to Lemma 7.5. Therefore P  has weight at least 

min{2Z +  1, d +  1}. □

The next lemma provides an upper bound on the number of neighbours on C of 

a vertex in IF of a component Q where wq > 2. Let s = maxQ min^gQnw dc(vj) 

where the maximum is taken over all components Q of weight at least two. Let x 

be the maximum number of neighbours on C  of a weighted vertex in G \  C.

L em m a 7.7

s < min{x, \ wc !2\ , |c/3j }•
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P roof. Let Q be a component of weight at least two, such that s =  min dc(vj),
vjCQnW

and let u and v be weighted vertices of Q such that v has the maximum degree x0 

on C  and trhas the minimum. We need to prove that

s = dc {u) < min{x, [wc / 2J, [c/3J}.

Certainly s <  x.

Consider the sets V\ =  Tc'(n), V2 =j and V3 — . These are disjoint

subsets of C , else there is a cycle of greater weight in G , and each set has size at 

least s. So 3s <  c.

Suppose the vertices of W  fl C, read consecutively around C, are vly u2, . . . ,  vu, 

where w =  w c . Consider the sections of the cycle [ut-, Uj+i], where the subscripts 

are to be interpreted cyclically. Let M  and N  be the set of sections which contain 

a neighbour of u, and v respectively. We consider AT, and the set of sections 

M + = {[nt-+i , ut+2], [ui, G M}. These are disjoint sets as otherwise there 

would be a cycle of greater weight than C. Now wc  >  |7V| +  |M + | >  s +  xq > 2s, 

which completes the proof. □

The following results are for the case where n <  4d and w > 3/ +  1, and / >  2 (as 

the case 1 = 1 was proved in Lemma 7.1.)

The next lemma gives sufficient conditions for there to be a path through all the 

weighted vertices in a component of G \  C.

L em m a 7.8 Let Q be a component of G \ C .  Let A  be either a weighted vertex 

in Q, or the set of all weighted vertices in Q. Suppose x = |X(j4)| >  2. Then the 

following hold.
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1. I fw c  <  min{2/—3, d — 3} then there .is a path through all the weighted vertices 

in Q.

2 . There is a maximum weight path in Q with an end point adjacent to C .

P ro o f. We prove part (2) first and use it in the proof of part (1).

(2) Suppose that no path of weight wp in Q has an endpoint adjacent

to C. Then by Lemma 7.4(1), \Q\ > 2d -f 1. Let X  = X ( W  fl Q) be generated by 

all the weighted vertices in Q. As x >  2 we can apply Lemma 5.7 with i — 1, and 

Corollary 5.10 with j  = 0, to obtain,

4d >  n > 2d +  1 +  2d =  4d +  1,

which is a contradiction. This completes the proof.

(1) If there is no path through all weighted vertices in a component Q, then, by 

Lemma 7.4(3), |(J| >  3(d — x q )  +  1, or there is a path of weight at least d — x q  + 1 

in Q , where x q  is the maximum degree on C  of a weighted vertex in Q. First we 

consider the case where we have |a path P  of maximum weight at least d — x q  +  1

with an endpoint adjacent to C. So there is a path in G of 

weight at least d — x q  +  1 4- wc  >  d +  1 as xq <  wc-

Now, we come to the other case, where there is no path of weight d — x q  +  1 in Q. 

Putting 3(d — x q )  + 1 into Lemma 5.7 with i  =  1 and Corollary 5.10 with j  =  3, 

we obtain

4d > n > 3(d — x q )  +  1 T 3(x — 2) +  2d 

>  4d +  d - 5 .

So d < 5, and the cycle C  has weight at most d—3 < 2. By substituting n < (fc-f \)d  

and w > kl +1 into Theorem 2.2 we obtain a cycle of weight at least / +1 for I > 2.
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Therefore we have a contradiction, so there is a path through all the weighted 

vertices in Q. □

The following corollary shows that there is a path of the required weight if there 

are at least two edges from a weighted vertex in Q to C and Q contains at least 

half the weighted vertices in G \ C .

C o ro lla ry  7.9 Let n <  4d, w > 3/ +  1 and wc <  min{2/ — 3,d — 3}. Suppose 

there is a component Q in G \ C  such that w q  > [(u; — wc — l)/2 ] • Suppose 

x =  \X{Q  fl W)\ > 2. Then there is a path in G of weight at least 21 -f 1.

P ro o f. By Lemma 7.8(1), there is a path through all the weighted vertices of 

Q. Therefore there is a path in Q of weight w q  with an endpoint adjacent to (7, 

by Lemma 7.8(2). By Corollary 7.3, there is a path of weight at least 21 +  1 as 

required. □
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8 P r o o f  o f  T heorem  4.4

We now have all the results we require to complete the proof of Theorem 4.4. We 

restate the theorem here for convenience.

T h eo rem  4.4 I f  n, k, I, w, d are natural numbers such that n < (k +  1 )d. 

w >  kl +  1 and k > 2, then //(n, w , d) >  min{2/ +  1, d -f 1}.

The proof of Theorem 4.4 is by induction on k. The induction has two base cases 

which are when k = 2, given by Theorem 4.5, and when k =  3. This is because 

the induction step involves removing at least 2d vertices and at most 21 weighted 

vertices. Thus k decreases by two.

8.1 Induction

P ro o f  of T h eo rem  4.4. We have already proved, in Theorem 4.5, the result 

for the base case k =  2. So we have two tasks remaining, namely the induction 

step and the base case where k — 3. We do the induction step first as it is fairly 

simple.

Assume the result is true for n  =  kd and w =  (k — 1)1 +  1. Suppose n =  (k +  1 )d 

and w = k l + 1. Let P  =  pip2 . . .  p< be a maximum path. If wp > min{2Z + 1 , d + 1} 

then we are done, so we suppose that wp < min{2/, d}. Now Tp(pt) fl Tp(pi) =  0. 

Therefore |P U T g\p {p i) U TG\p(pt)| >  2d +  1. We consider two cases.

1. r J ( p t)nTp(pi) =  0. Consider the sets Tj(p*), Tp(pi), TG\P(pt) and T c y ^ ) .  

Let D  be the union of these sets. The sets in D are pairwise disjoint, or there 

would be a path of greater weight, and so |Z)| >  2d. If \D\ > 2d, we form a
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new graph G' by replacing all the vertices of D  by a single vertex u, making 

u adjacent to a vertex v if and only if v is adjacent to some vertex z E D in 

G. So G ' is connected, and has at most n — 2d vertices. If \D\ =  2d, there 

is a vertex pt-, say, on P  which is not in D. We contract D  U {pt} to a single 

vertex. Again this decreases n by at least 2d. Now, no weighted vertex not 

on P  is adjacent to any of the vertices of D, as again that would give a path 

of greater weight. So, contracting these vertices does not decrease the degree 

of any of the weighted vertices in G \  (P  U D). We write W ' = W \ P .  All 

the vertices of W ‘ have degree at least d and so we define W '  to be the set 

of weighted vertices in G' =  G \  (P U D). Now W ' has size at least w — 21. 

Thus nf < (k — l)d  and w ' >  (k — 2)/ +  1 which gives a path of weight 

min{2/ +  l ,d  +  1} in Gf, by the induction hypothesis, and therefore in G.

2. Tp(pt) fl Tp(pi) 0. This gives us a cycle of weight wp — 1 and so by 

Lemma 7.5 we have a path of weight min{2/ +  1, d -f 1} as required.

This completes the induction step.

8.2 Prelim inaries

In this and the following sections we deal with the proof of the k = 3 case which is 

where n = 4d and w =  3/ -f 1.

We split the proof into a number of cases, depending on the weight of a maximum 

cycle C, the total number a  of weighted components in G \  C  and the number j3 of 

components of weight at least two. We show that either (1) there are not enough 

vertices to form the required number of components, or (2) there are paths or cycles 

that can be added on to the cycle to form a path of weight at least min{2/-f 1, d-f-1).
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Throughout we assume that there is no path of weight min{2/-f 1, d-\-1} and derive 

contradictions.

Where we introduce some notation or give a condition that is general to several 

cases, we highlight it by using a bullet •. We finish each case with □.

We start by giving some results which we will use through the remaining proof. 

The majority of the proofs of these results are by contradiction

R esu lt 8.1 Suppose there is no path P of weight wp >  min{d -f 1,2/ +  1}. Let C 

be a maximum cycle. Then I +  1 <  wq <  min{2/ — 2, d — 2}. Furthermore I > 3 

and d > 6 .

Proof. By substituting n < (k +  l)d  and w >  kl +  1 into Theorem 2.2 we have 

wc > I +  1, and by Corollary 7.6, wc <  min{2/ — 2, d — 2}. Since / +  1 < 

min{2/ — 2,d — 2}, / > 3 and d > 6. □

N o ta tio n

We introduce some notation, which we will use throughout the rest of the proof.

• We use the notation Qi, for 1 <  i < a , to represent weighted components of 

G \ C ,  where wq{ >  WQj whenever i >  j .

• Let Q' be the component of G \  C such that |X(Q '  D W)\  is maximised over 

aU Qi. We write x' =  \X(Q' HW)\.

• We define Q" to be a component of G \  C  where \X{Q"  fl W)\  is maximised 

over all components Qi of weight at least two. We write x" — \X(Q"  fl W)|.

• For a component Qi , we write xq{ =  |X(Qi  fl W)  |.
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• We write y = |F |, where Y  = Y(A)  is the set corresponding to X ( A ), where 

A is a valid set, the particular set being obvious from the context.

• Let y0 be the number of vertices of Y  which do not have any neighbours in

weighted components.

• Let x0 be the number of vertices of X +w (A) with no neighbours in weighted 

components.

• Let Si be the minimum degree on C  of a weighted vertex in Qi, where Qi has 

weight at least two. Then we define s to be the maximum 5,- over components 

Qi of weight at least two. That is, as in Chapter 7, s =  max min dc(v),
' Qi vcQ.nW

where the Qi have weight wq{ > 2.

Using this notation, we have the following bounds on component sizes.

R esu lt 8.2 Let Qi be a component o f G \ C .

L  \Qi\ >  d — x' +  1.

2. I f  WQi > 2, then |Qt | > d — s 4-1.

Proof. In (1), Qi contains at least one weighted vertex, which has degree at least 

d — x' in Qi and in (2), a weighted vertex of degree at least d — st- >  d — s in Qi. □

Next we have a result which shows that x' >  1.

R esu lt 8.3 There is at least one weighted vertex in G \ C  adjacent to C, that is, 

x ' >  1.
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Proof. We assume there are no edges from weighted vertices in G \  C to C. 

Therefore all weighted components contain at least d -f 1 vertices. Let m be the 

number of vertices not in weighted components of G \ C .

Counting the vertices in and not in the weighted components, we have 4d > n > 

a(d +  1) +  m, so a  < 3.

First we consider the case when there are three components. From the previous 

inequality we see that m  <  d — 3. Suppose there is no cycle through all the 

weighted vertices in some component Q. Then by Theorem 2.2, |Q| > 2d +  1. 

The other two components have size at least d +  1 each, giving a total of at least 

2 ( d + l )  +  2 d - f l  =  4d -f 3 vertices in the components, which is a contradiction. 

Therefore each component contains a cycle through all its weighted vertices. As 

there is a cycle through all the vertices in each component, no component has weight 

more than (w — w c ) /2 — 1. Indeed, such a component Q of weight (w — wc) /2  

would be joined to C  by a path, and so there would be a path of weight at least 

wc  +  wq > (w +  w c ) /2 >  ((3/ +  1) +  (/ +  l)) /2  =  21 +  1, as wc > I +  1 by 

Theorem 2.2. Next we consider a weighted vertex u on C. Now u is adjacent to 

at least one vertex v in some component Q. Suppose u+w is adjacent to another 

component Qi. The weight of the two components together is w q  +  w q x > w — 

wc — ((u> — wc)/2 — 1) =  (w — wc)  +  1. So, by Corollary 7.2(2), there is a path 

of weight at least wc  +  (w — wc) /2  +  1 =  (w +  w c ) / 2 +  1 >  2/ +  2, as in previous 

proofs. Therefore u+w is not adjacent to any vertex other than v in the weighted 

components. This is a contradiction as u+w has at least degree d and there are at 

most d — 3 vertices not in weighted components.

Now we move to the case where there are only two weighted components. If one 

of the components does not have a path through all the weighted vertices, then 

Theorems 4.1 and 4.5 tell us that either there is a path in the component of weight 

at least d 4* 1, contradicting our assumptions, or the component has size at least 

3d +  1, which with the
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component of size at least d+  1 leads to a contradiction. Let P * be a path through 

all the weighted vertices in Q' where w q > > . Suppose P* has an endpoint

adjacent to C. Then there is a path in G of weight at least 21 + 1 , by Corollary 7.3, 

and we are done. Therefore \Q'\ > 2d +  1 by Lemma 7.4(1).

Let u be a weighted vertex in C, and suppose u is adjacent to some vertex v in a 

weighted component Q. Suppose u+w is adjacent to a vertex in Q other than u, 

then we are done, as there are no edges between nonweighted vertices so there is 

a cycle of greater weight. If u+w is adjacent to a vertex in a different component 

then there is a path through half the weight in each component and C, which 

gives a path of weight at least 21 +  1, a contradiction. Therefore u+w has at least 

d — 1 neighbours not in weighted components. So counting the vertices, we obtain 

4 d > {2d +  l) +  ( d + l )  +  d — 1 which is a contradiction.

Finally we come to the case with one weighted component Q. Now if there is a 

path through all the weighted vertices in Q, we can find a path through half the 

weighted vertices in Q and all the weighted vertices on C  which gives a path of 

weight 21 +  1, again a contradiction. Therefore there is no path of weight w q  in Q, 

and so |Q| > 3d -f 1. Again we suppose there is a weighted vertex u on C  that is 

adjacent to a vertex of Q. Then, as before, u+w is adjacent to at most one vertex 

of Q, so m  >  d +  1. Counting the vertices, 4 d > n > 3 d  +  l - f - d - f l  >  4d +  2, a 

contradiction, which completes the proof. □

The next two results deal with the relationship between x, y, c and a.

R esu lt 8.4 Let x  =  X ( A )  and y =  Y{A).

1. I f  x = [c/2j, then y =  x if  c is even and y = x — 1 i f  c is odd.
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2. I f  x = wq then y — x.

P roof. By Lemma 5.2, x <  [c/2J, as all vertices of X  must be separated on C 

by at least one (weighted) vertex. Therefore at most alternate vertices on C can 

be in X .

(1) Hence if x =  [c/2j, C  is divided into [c/2j sections each containing at least 

one vertex. If c is odd, there is one section containing two vertices, while the rest 

contain one. Therefore x = y + I. I f c i s  even then each section contains exactly 

one vertex, which gives x = y.

(2) As there are no edges between unweighted vertices, c < 2wc- Therefore if 

x — wc,  then c is even and x =  y, by (1). □

R esu lt 8.5 Let Q be a weighted component. Suppose y =  \Y(Q fl W)  |.

1- V <  Vo +  <* - 1.

2. X q  < X q  -f a  — 1.

P roof. By Corollary 5.5(6), no two vertices of X +W(Q fl W )  and therefore Y  (as 

Y  C X +W(Q fl HQ), have neighbours in the same component of G \ C .  Now yo 

vertices of Y  do not have any neighbours in weighted components. Therefore there 

are y — yo weighted components adjacent to vertices of Y .  At least one weighted 

component, namely Q, is not adjacent to any vertex of Y,  by Corollary 5.5(3). So 

y — yo ot — 1. Exactly similar, there are x q  — x0 vertices of X +W(Q fl W)  which 

are adjacent to 'a t least one weighted component each. None of them are adjacent 

to Q, so x q  —  X q >  a  — 1, which completes the proof. □

In the case where x 1 =  [c/2j, the following result gives a lower bound on the 

number of neighbours of the vertices of X +W(Q' C\ W).
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R esu lt 8.6 Suppose x' = [c/2J. Then the number of neighbours of X +w(Qf DW)  

in G \ C  is at least (x ' — x 0)(d — x f -f 2) in the x f — x 0 weighted components and 

xq(d — x ') not in weighted components.

P ro o f. Now, each vertex z o i Y  = Y (Q ‘C\W) has at most x ‘ neighbours on C. by 

the definition of Y.  So there are at least d — x' neighbours of z in G \  C. Suppose a 

vertex v E Q fl W  is adjacent to a vertex u E Y (Q ' fl W).  Then v is not adjacent to 

any other vertex of F , by Corollary 5.5(6), nor to the vertices of X(Q'f]W)  on either 

side of u, by Corollary 5.5(3). As v can not be adjacent to consecutive vertices on 

C, and it is adjacent to a vertex of F , it can not be adjacent to the vertices of X  

on either side of this vertex of Y . It is also not adjacent to any other vertex of F , 

leaving at most 1 +  (xf — 2) vertices of C than v can be adjacent to. Therefore v has 

at most degree x' — 1 on C, so |Q| >  d — (x '~  1) +  1 > d - x ' - \ - 2. We recall that y0 is 

the number of vertices of Y  that have no neighbours in weighted components. As 

no two vertices of Y  have neighbours in the same component, by Corollary 5.5(6), 

there are at least y — yo weighted components adjacent to vertices of Y.  So the 

number of neighbours of vertices of Y  is at least (y — yo)(d — x’ +  2) +  y0(d — x').

If c is even, then Y  = X +W(Q' fl W)  because alternate vertices belong to X  so 

each weighted vertex separating consecutive pairs of vertices of X  is a vertex of Y.  

Therefore y =  x' and Xq = y0, and we are done.

If c is odd, there is a vertex z  in Z +(Q1 fl W ), that is x'  =  y +  1. Suppose z is 

adjacent to a weighted component Q0. Therefore x 0 =  t/0, that is all the vertices 

of X +W(Q' fl W )  that have no neighbours in weighted components are vertices of 

F , since the only vertex of X +W(Q' fl W )  not in Y  is z. Then, again, Q0 has at 

most degree x ’ — 1 on the cycle, so |(Jo| >  d — x' + 2. Therefore the number of 

vertices in weighted components adjacent to vertices of X +w(Qf fl W)  is at least
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( y— y0)(d — x'+2)-\-(d—x '+2) = (x — x0)(d — x ,-\-2), and in unweighted components 

is at least x 0(d — x').

If z  is not adjacent to any weighted component, then xo =  y0 +  1. So z has d — x' 

neighbours not in weighted components or on the cycle. These neighbours are 

not shared with any vertices of Y ,  by Corollary 5.5(6). Therefore the number of 

vertices in weighted components adjacent to vertices of X +W(Q' fl W )  is at least 

(V ~  yo)(d ~  x ’ +  2) =  (x — x 0)(d — x‘ +  2), and in unweighted components is at

least y0(d — x') -f (d — x f) =  x 0(d — x#), as required. □

Now we will show that there is at least one component of weight two.

L em m a 8.7 Let C be a maximum cycle and suppose that wc  <  min{2/ — 2,d — 2}. 

Then > 1, that is, there is at least one component in G \ C  of weight at least 

two.

P ro o f. In all cases, we suppose there are no components of weight two and obtain 

a contradiction. As all the weighted components have weight one, a  =  w — wc > 

(3M-1)—(2/—2) =  /+3. First we deal with the cases for which x' <  min{2/—3, <Z—3}.

(1) Now wc  <  {2/ — 2, d — 2} and x f < min{2Z — 3, d — 3}. We count the vertices 

in each of the w — wc components and on C  to obtain

4d > n >  (w — wc){d — x' +  1) +  c 

0 >  (w — wc — 4)(d — x f +  1) -f 4 — 4:Xf -f c.

But w — wc >  / +  3, c > 2x;, x' < 21 — 3 and d — x' > 3 so we have

0 > 4(/ — 1) +  4 — 2(2/ — 3) +  (c — 2x7)

>  6 +  (c — 2x'),
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which is a contradiction. This completes the first case.

(2) Suppose x' — min{2/ — 2, d — 2}. Then by Result 8.4(2), x' =  y =  w c . 

Therefore a:' =  [c/2j and we can apply Result 8.6, which guarantees that there are 

(x' — x 0)(d — x' +  2) +  Xo (d — xr) neighbours of vertices of X +W(Q' f l  W )  in G \ C .  

In the remaining a  — (x1 — Xo) weighted components of G \  (7, there are at least 

(a — (x' — x0))(d — x' + 1) vertices, as some vertex in each component has degree at 

least d — x7. So counting the vertices on C, in the components and the neighbours 

of X +w (Q' f l  W)  we obtain

4d >  n > (a — x' +  xo){d — x' +  1) +  (x' — x0)(d — x +  2) +  x 0(d — x )  +  c

> {a -f x0)(d — x )  +  a  +  (xf -  x0) +  c.

Now a  > I +  3, so we have

0 >  (/ +  3 +  xq — 4)(d — x') +  I +  3 4* x — x0 +  c — 4x'.

As d — x 1 >  2, and I > 3 we deduce

0 ^  2(1 — 1 T Xo) T I T 3 — Xq 4“ (c — 2x^) — x1.

But x 1 < 21 — 2, so we obtain

0 >  3Z +  l  +  x0 - ( 2 / - 2 )  +  ( c - 2 x ' )

>  / +  3 -f Xq,

which is a contradiction. This completes the proof of the lemma. □

L em m a 8.8 Suppose x q  = 0 for some weighted component Q in G \  C. Then

there is a weighted vertex u on C with at most one neighbour in Q.
\

P ro o f. Since G is connected, there is an edge between some v E Q and u, E C. 

Suppose v0 £ Q \  {u} is adjacent to v f w . Now there is a path P  between v and
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v0 in Q, by connectivity. As there are no edges between unweighted vertices, P 

contains at least one weighted vertex. Combining this with C, we have a cycle of 

weight at least wc  +  1, contradicting the maximality of C . So v f w is adjacent to 

no vertex of (J, except possibly v. □

We split the remainder of the proof into two sections, the first dealing with wc = 

min{2/ — 2, d — 2}, and the second with wc <  min{2/ — 3, d — 3}.

8.3 w q  =  min{2Z — 2, d  — 2}

Suppose wc  =  min{21 — 2, d — 2}. Let Q and Q0 be weighted components in 

G \  C. The method of proof in this case is as follows. We assume that there 

is no path of weight wp >  min{2/ +  l ,d  +  1}. Since we have a cycle of weight 

min{2/ — 2,d  — 2}, this implies, by Lemma 7.2(1), that (i) there is no path of 

weight three in a component of G \  C, which has an endpoint adjacent to (7, see 

Figure 17(1), and (ii) if there is a path of weight two with an endpoint pt adjacent to 

a vertex u of (7, then there is no edge from any component to vertices of X +W(pt). 

This is because, by Lemma 7.2(1), combining the path of weight two with C  gives 

a path P'  of weight wc +  2, with endpoint u+w. If any vertex z of a weighted 

component is adjacent to u+w then, by connectedness, a weighted vertex v can be 

joined to an endpoint of P ', giving a path P'zv  of weight wc+3  =  min{2Z+l, d+ l} . 

(See Figure 17(2).)

Unfortunately, the proof splits into case after case after case.

C ase 1: x'  =  [c/2j. Let 0 be the number of components of weight at least three. 

We divide this case into two, depending on the value of 0.
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Figure IT: Combination of paths with C

( i ) *  >  1. Let Q be a component of weight three.

(1.1) First we consider the cast where x q  < 1. Then either (a) there is a path of 

weight three in Q, in which case neither endpoint is adjacent to C or (b) there is 

no path of weight three in Q. In case (a), |Q| >  2d 4- 1 by Lemma 7.4, and in case 

(b), |Q| >  wq(d — 1) +  1 >  3d — 2 >  2d +  1, Lemma 7.1.

Now |Q| >  2d +  1. Counting the vertices in each of the weighted components, the 

neighbours of X'^W(QI fl W),  by Result 8.6, and vertices on C, we obtain

4d >  n > 2d -f 1 *f (a  — l)(d  — x'  +  1) £  c +  xo(d — x')

^  2d -f" 1 “b (oj — 1 4" x0)(d — x^ 4* ot — 1 4~ c.

Now a  — 1 4- x 0 > x', by Result 8.5, so we have 

>  2d 4- x \ d  — x l) + a  + c 

0 >  a  4- (xf — 2)(d — x') 4- (c — 2x'),
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which is a contradiction, as x' = wq > /+1 > 4 . Therefore there are no components 

Q of weight at least three for which x q  < 1.

(1.2) Now x q  > 2. Suppose x q  > 2. Then some maximum path in Q has an 

endpoint adjacent to (7, by Lemma 7.8. Therefore Q does not contain a path 

of weight three, so by Lemma 7.1, |Q| >  WQ(d — x q )  4  1. Let 0  be the set of 

components of weight at least three. Then |@| =  0. Let wq =  Then

there are at least Y^Qee(wQ(d—x Q)+l)  — we(d—xf,)+6 vertices in the components 

of 0 . Suppose that x ' =  x". Then no vertex of any component is adjacent to 

X +W(Q" fl W), as there is a path of weight wc  4  2 with one endpoint in Q", and 

the other, any vertex of X +w(Q”n W ) .  So there are at least x"(d—x") neighbours of 

vertices of X +w(Q"r\W)  in G \ C  which are not in weighted components. Counting 

the vertices in weighted components, on C  and the neighbours of X +W(Q" fl W), 

we obtain

4 d > n

>  WQ(d — x') +  0 +  ( a  — f3)(d — x +  1 )  +  ( / ?  —  0)(d —  s  +  1 )  +  x \ d  —  x‘) +  c  

4d >  (wq  +  ol — 0 +  x') (d — x') +  0 -|- a  — +  (/? — 0)(x' — s  +  1) +  c

0 >  (wq +  a  — 0 -f x' — 4) (d — x') +  a  4  (/? — 0)(a:, — s) 4  c — 4a:'.

But wq =  w — wc — a  — (3 4  20, so this becomes 

0 >  (w — wc — P 4  0 4  x' — 4) (d — x') 4  a  4  (/3 — 0){x' — s) 4  c — 4a:'.

Now d — x' > 2, and x' — s > [c/2j — [c/3j >  1, so we have 

0 >  2{w — yjc — + 0 + x' — 4 ) 4 « 4 ^  — H e  -  4x'

>  (w — wc) — 8 4  (w — wc — (3 + 6 ) -\-a + c — 2a;'.
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We have w — wq  >  /  +  3  >  6  and fi <  [ ( i t ?  —  wc)/2, \  so

0 > 6 — 8 +  [(tu — it>c)/2] -f 0 +  a  -f- (c — 2x')

^  \  0  ol - ( c  — 2j? ) ,

which is a contradiction.

Therefore Q‘ has weight one and x" < x' — 1. There are at least wq(<1 — x'  +  1) +  0 

vertices in the components of weight at least three, and (/3 — 0)(d — x ’ +  2) in the

components of weight two. We count the vertices in each of the components, both

weighted and unweighted, and on C to obtain

Ad > n

> we(d — x ’ +  1) -f 6 +  (a  — /3)(d — x ‘ +  1) -f (P — 0)(d — x' +  2)

+x0(d -  x') +  c

>  ( w q  — 0 +  a  +  x 0)(d — x') + WQ — 0 +  a  +  /3 +  c

0 >  (it?Q — 0 -f a  +  Xq )(d — x') -j- w q  — 0 +  a - f / ?  +  c — A x .

Now, if;© — 0 >  2, a  +  s 0 >  +  1 > 2  and d — x* >  2, so we have

0 >  3(iy© — 0) + a  — 8 +  /? +  2(x0 +  a) +  c — 4x'

But io@ > w — wc — ol — fd +  29 and a  +  xo >  x‘ -f 1, so this becomes 

0 >  3(tu — wc — a  — J3 + 0) + a  — 6 +  /? +  (c — 2x')

> 2(w — wc — a  — (3) +  30 +  w — wc — 6 +  (c — 2x').

Now w — wc >  / -f 3 >  6 so we obtain

0 >  39 2.{w — wc — C£ — fi) +  (c — 2x'),

which is a contradiction as 6 > 1 and each term in brackets is non-negative.

(2) 0 = 0. Now all the components of G \  C  have weight at most two. Therefore
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w — wc  =  a  +  P- Again, we suppose x' = x ”. Then we count the vertices in the 

weighted components, the neighbours of X+W(Q' fl W)  and vertices on C. We 

obtain

4d > n > a(d — x' +  1) +  /3{x' — s) +  x'(d — x ’) +  c

>  (w — wc — (3 +  x')(d — x') -f a  +  fl(x1 — s) +  c

0 >  (w — wc — P +  x — 4 )(d — x )  +  a  +  fd(x — s) +  c — 4x'

> 2(w — wc — P) — 8 +  a  +  y5 +  (c — 2a/)

>  2(w — wc)  — 8 +  (w — wc  — 2/3) +  (c — 2x) .

Now w — wc >  / +  3 >  6 so we have

0 >  4 +  (iu — wc — 2(3) +  (c — 2a/),

which is a contradiction. Therefore Q1 has weight one. Again, x" <  x' — 1. Since 

all components have weight at most two and there are w — wc  >  / +  3 >  6 weighted 

vertices in G \  C, there are at least three components.

Suppose also that a  > 4. Counting the vertices on (7, the weighted components 

and the neighbours of vertices of X +W(Q' fl W),  we have

4d > n >  (a — (xf — x 0))(d — x f +  1) -f (x ' — x 0)(d — x'  +  2) +  x0(d — x') +  c

>  (a  +  x 0)(d — x ‘) +  x' — xo +  ol +  c

0 ^  (a  +  x0 — 4 )(d — x') +  x' — xq +  a  +  c — 4x'

> (a  -f x 0 — 4)(d — x') — x0 +  a  +  (c — 2x') — x '

>  2a +  (a  +  Xo) — 8 +  (c — 2x') — x'

> 2a — 7 +  (c — 2x')

which is a contradiction as a  >  4. Therefore a  =  3 =  / ?a s iu  — wc  >  I +  3 > 6. 

This contradicts the assumption that Q' has weight one, thus completing the proof 

in the case where x' =  \c/2\ =  min{2Z — 2, d — 2}. □
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Case 2: x' < [c/2J — 1. Again we split this case into two parts depending upon 

the value of 9.

(1) 9 > 1. Let Q be a component of weight at least three in G \  C.  We suppose 

there is no path of weight three in Q with an endpoint adjacent to (7, and obtain 

a contradiction.

Let q =  max d c { v ) .  Then, by Lemma 7.1, \Q\ > wq(cI — q) +  1. Now, a vertex Vi 
veQnW

of X +W(Q fl W)  is not adjacent to any vertex in Q,  by Corollary 5.5. We consider 

three cases: x q  > 2, x q  = 1 and x q  =  0, and obtain contradictions for each, which 

will complete the proof of (1).

(1.1) First we consider the case where xq >  2. Let P l be a maximal path in Q. As 

x q  2, by Lemma 7.8(2), we have an endpoint of P'  adjacent to C, so we only 

need to prove there is a path of weight three in Q and we are done. So we assume 

there is no path of weight three in Q. By Corollary 5.9, we count the neighbours of 

vertices of X +W(Q fl W)  and the vertices on (7, giving \T (X +W(Q fl W)) U C\ > 

( x q  — 2)(d — [c/2j) +  t/([c/2j — x) +  2d. Now, counting these vertices, and the 

vertices in Q by applying Lemma 5.7, with i = 1, we obtain

4 d > n >  WQ(d — q) +  1 +  ( x q  — 2)(d— [c/2j ) +  y( [c/2j — x) -f 2d

0 >  (wQ - 3 ) ( d - q )  + d - q - 3  + 2(xQ - t f )  +  y(Lc/2j -  x).

Since x q  < [c/2j — 1, we have

0 >  2( w q  — 3) +  ( d  — q -  3) +  y +  2(xQ -  q).

Now each of the three terms in brackets, and y, are non-negative, as q < x q  <

w c ~  1 <  d — 3. Suppose d — q — 3 =  0. Then q =  wc — 1, and so y > 1. So the right 

hand side of the inequality is positive, and we have a contradiction, completing the 

x q  > 2  case.
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(1.2) Now we consider xq =  1. We assume there is no path of weight three in Q
with an endpoint adjacent to C.  We consider the cases where a  = 1 and a  > 2.

(i) Suppose there is only one weighted component. Let v E X (Q  CI W).  Suppose 

we remove T(v+py) U C  \  {v} from G to obtain G', with specified set W f = W  \  C. 

We are removing at most weight wc and at least d vertices. So G' has n' < 3d 

vertices and w' = w — wc  specified vertices of minimum degree d. Therefore by 

Theorem 2.5, there is a path in G ', and therefore in Q U {v}, of weight at least 

min{u; — w c , d -f 1}. Now if there is a path of weight d + 1, we have a contradiction. 

As w q  = w — wc  >  / +  3 >  6, there is a path of weight at least three in Q with an 

endpoint adjacent to C which is a contradiction. This completes (i).

(ii) Now a  > 2. We assume there is no path of weight three in Q. We consider two 

subcases where w q  > 4 and w q  =  3.

(a) Suppose w q  > 4. Then \Q\ >  itfg(d — q) +  1 >  WQ(d — 1) +  1, by Lemma 7.1. 

Again, there are no neighbours of weighted components adjacent to a vertex of 

X+W(Q D W), as this would give a path of weight at least min{2/ -f 1, d +  1}. Let 

v E X +W(Q D W).  Since v E W ,  it hcis degree at least d. The neighbours of v are 

not in Q , so there are at least d -f 1 vertices in T ( X +w(Q D W)) U C. We count 

the vertices in Q and in T (.X +W(Q fl W )) U C, to obtain

4d ^  tl ^  iog(d — 1) H-1 +  d +  1

0 > ( w q  —  3)(d — 1) — 1.

Since wq > 4 and d — 1 >  0, we have a contradiction.

(b) Now w q  = 3. Let Qo ^  Q be a component in G \ C .  Then Q0 contains at least 

d — x' -f 1 vertices, and Q at least 3(d — 1) +  1 =  3d — 2 vertices. Counting the 

vertices in the components and on C, we have

4d >  n >  (3d — 2) +  (d — x  -f 1) +  c
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0 > c — x1 — 1.

Now c — x' > a:'. If a;' >  2, then we have a contradiction. If z ' =  1, then 

c — z ' — 1 > c - 2 > ( /  +  l ) - 2 > 2 ,  which, again, is a contradiction.

Let P'  be a path of weight three in Q. We assume that P'  does not have an 

endpoint adjacent to C. Therefore |Q| >  2d +  1 by Lemma 7.4(1). As before, there 

is a path in Q of weight at least two with an endpoint adjacent to C. Now there 

are at least two components Q and Qo in G \  C. No vertex of Q can be adjacent 

to a vertex of X JtW(QQ H W)  as this would give a path of the required length, by 

Lemma 7.2(1). Suppose x q 0 > 2. Then, counting the vertices in Q, Q0 and C  and 

the neighbours of X +w(Qq U C), we have

4d  >  n  >  ( 2 d  +  1) -f* ( d  — x q 0 —|-1) -f- 2( x q 0 — 2) +  2 d

0 > 2 +  ( d  —  x q 0 )  +  2 ( x q 0 — 2),

which is a contradiction, so x q 0 = 1.

Again \Q\ >  2 d  +  1, |Q0| ^  d and |T ( X +w(Qo fl W)) U C| >  d  +  1. So we have

4d  >  n  >  ( 2 d  +  1) -f d +  (d +  1), 

which is a contradiction. This completes (1.2).

(1.3) Now x q  =  0. By Result 8.3, x' > 1 so there are at least two weighted 

components in G \  C. Now wq >  3 so |Q| >  WQd +  1 >  3d +  1.

(i) Suppose x' > 2. Then counting the vertices in Q and Q' and on C  we obtain

4 d > 3 d + l + d —£/+ l + c > 4 d + 2 - f c —x'  which is a contradiction. Therefore there 

is a path of weight three in Q. Now Q is not adjacent to any vertex in X +W(Q'C\ W)  

as that would give a path of weight 1 +  wq +  2, which is a contradiction.
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Therefore counting the vertices in Q, Q' and |r (X +w/(Q/ fl W))|  U C, we obtain

4d ^  72 ^  2d + l + d  — 2 /  +  1 +  2{x' — 2) +  2d

> 4d +  2 +  d — a;7 +  2(cc/ — 2)

which is a contradiction.

(ii) So x f =  1. No vertex of Q' or Q is adjacent to the vertex v in X +w(Qf fl W).  

Now d(v) > d, so |T(u) U {u}| >  d + 1. So there are at least d + 1 vertices which are 

not in Q U Q'. There is no path of weight three in Q with an endpoint adjacent to 

C, so |Q| >  2d +  1. Counting the vertices in Q, Q' and X +w(Qf D W ), we obtain

4d >  n >  (2d +  l) +  d +  (d +  l),

which is a contradiction.

(2) 0 =  0. Now all the components are of weight at most two. There are at least 

w — wc > (3/ +  1) — (2? — 2) =  / +  3 > 6  weighted vertices in G \  C. As each 

component has weight at most two, there are at least three components in G \ C .  

We deal with the case where x" > 2 first.

(2.1) Suppose x"  >  2. Now there is a path of weight two with an endpoint adjacent 

to C  for both weighted vertices in Q" generating X(Q "  fl W).  Therefore there are

no vertices of any of the other components adjacent to X +W(Q" fl W).  We count

the vertices in Q", the neighbours of X+W{Q" fl W), the vertices in all the other 

weighted components, and on C. The number of vertices in each component of 

weight one is at least d — x f +  1. There are a  — (3 such components, so the total 

number of vertices in components of weight one is at least (a  — {3)(d — x' +  1). 

For components of weight two, excluding Q", there are at least (/?— l)(d  — s +  1) 

vertices. The number of vertices in T ( X +W{Q" fl W )) UC  is at least 2 d + j (x  — 2), 

where j  = d — [c/2j > 2, by Corollary 5.10. So, by Lemma 5.7, we have
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(t) 4d >  n >  (a; — fl){d — x +  1) +  (/? — 1 )(d — 5 +  1)

+(d — x77 +  1) +  j (x"  — 2) -f 2d

>  (a  — fl)(d — x1 +  1) +  (/? — 2) (o? — 5 +  1) +  {d — s +  1)

+(d -  x" +  1) +  2x" - 4  +  2d 

0 ^  (tt — f f y i d  — X1 +  1) +  (/? — 2)(<f — 5 +  1) — 5 +  X — 2.

Since 5 <  x77, by Lemma 7.7, this becomes

(★) 0 >  (a: — /2)(d — x7 +  1) +  (/3 — 2)(d — 5 +  1) — 2,

which gives a contradiction if (d > 3, as d — s > 3. Therefore /? <  2. Suppose first 

that /? =  2. Then there are at least four components in G \  C, that is a > 4. We 

recall that x7 <  w c . Substituting for a  and /?. in the last inequality (★), we have

0 >  2(d — x7 +  1) — 2.

But d — x7 >  2, so we obtain 0 >  4, which is a contradiction.

So p  =  1. We note that a  =  w —wc — 2 <  (3/+1) — (2/—2) — 2 =  /+ 1 . Substituting 

for a  and /? in inequality (f), with j  >  2, we obtain

4d > l(d — x7 +  1) +  (d — x77 +  1) +  2(x77 — 2) +  2d

>  (/ -  l ) (d -  x7 +  1) +  (d -  x7 +  1) +  3d -  3 +  x77

0 >  (I — l)(d  — x7 +  1) — x7 — 2 +  x77.

Now, d — x7 +  1 >  3, as x7 <  wq <  min{2/ — 2, d — 2}, so

0 >  3(/ — 1) — (2/ — 2) — 2 +  x77

>  3 / - 3 - 2 /  +  X77

> / — 3 +  x77,
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which is a contradiction as / > 3 and x" > 2 .  This completes the case x" > 2.

(2.2) Now we deal with x" <  1. Unfortunately, we have to split this case based on

the value f) and x'. First we consider

(i) P = 1 and x' < 3.

As /? =  1, a  =  w — wc  — 2 > / + 1 . Therefore the number of vertices in components 

of weight one is at least ( / - | - l ) (d — x' +  l),  and at least d in the component of 

weight two. We can now count the vertices in each of the components and on the 

cycle, to obtain

4d ^  n ^  (/ T 1 )(d — x' -f-1) T d -1- c

> (/ -  2){d -  x* +  1) +  Ad +  (c -  2x') +  (3 -  x').

Now c >  2x ' and x' <  3, so we have

0 >  (/ — 2)(d — x' +  1),

which is a contradiction as d > x ‘ -f 2 and / >  3.

(ii) Now, we deal with the cases (a) /? >  2 and x' >  2, and (b) x' >  4. As x" <  1 

then xq~ < 1 for all components Qi of weight two. Therefore Q' has weight one. 

The vertices of I f  in a component of weight two are not adjacent to vertices of

X +W(Q' fl W).  Indeed, if one of them was adjacent to a vertex of X +W(Q' fl W),

there would be a path of weight min{2/ + 1 , d-f 1} in G. So the set of vertices of Q' 

and components Qx . . .  Qp of weight two, and T ( X +W(Q' fl W))  U C  are disjoint. 

Each component of weight two contains at least d — x" +  1 >  d vertices, and 

|Q'| >  d — x 1 + 1 . Again, by Corollary 5.10, there are at least 2(x — 2) +  2d vertices 

in X +W(Q' fl W ) U C. Now, applying Lemma 5.7 with i =  1, we have

U  > ( d - x ' + l )  +  /?d +  2(x/ - 2 )  +  2d

0 >  { ( 3 - l ) d  + x ' - 3 ,

which is a contradiction as d > 4 and either (a) fl > 2 and x' > 2, or (b) x' > 4.

(iii) Now we deal with the remaining case, where x' =  1 and (3 > 2. Again, we count
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the vertices in each of the weighted components and on the cycle, and neighbours of 

X +w(Q* fl W).  Each component, regardless of weight, contains at least d vertices. 

Considering the vertex in X +w(QrC\W), we again see that it is not adjacent to any 

vertex in a weighted component, so |T ( X +W(Q' fl W)) U C| >  d +  1. So counting 

the vertices in the components and on C, we have

4d > n > (a  — /3)d +  /3d +  {d +  1).

If p  >  3 this is a contradiction, so /? =  2 and

4d ^  (o; — 2)d -j- 3d 1*

Now a  =  w — wc — P > 3/ -f 1 — (2/ — 2) — 2 > / +  1 >  4, so we obtain

0 >  <f+l ,

which is also a contradiction. This completes the case wc  =  min{2/ — 2, d — 2}. □

8.4 w c  < min{2/ — 3, d  — 3}

We begin this section with a result which gives lower bounds for d and I.

R esu lt 8.9 For wc  <  min{2/ — 3, d — 3}, / >  4 and d >  8.

P roo f. As wc  >  I +  1, 21 — 3 >  / +  1, giving / >  4. Now 5 < /  +  l < d — 3 so 

d > 8. □

Now we intoduce some notation.

• Let /  =  min{2/, d}. Then wq <  /  — 3.

We prove a lemma which gives an upper bound for each of x \  x" and s.
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Lemma 8.10 S u p p o s e  w c  < min{2/ — 3. d  — 3}. T h e n

1. s <  mindn ^7 — 2,

2. x' <  min +  2,

3. x" <  min < / +  1,

d - 3 
2

d +  5 
2

d
2 +

}•

}
P ro o f. Putting wc <  min{2/ — 3,d — 3} into Lemma 7.7 gives part (1), so we 

move on immediately to part (2). Since Z +  2 and [(d +  5)/2j are both at least 

three, we may consider a/ > 3. Then by Corollary 5.5, there are no vertices of Q1 

adjacent to vertices of X +w(Q 'nW ) .  By Corollary 5.9 |T ( X +w (Q' fl W)) U C\ > 

(x* — 2){d — [c/2j) +  2d. Also, |Q'| > d — x' +  1. So counting the vertices in 

the disjoint sets Q ' and T (X +W(Q' fl VP)) U C, that is, applying Lemma 5.7 with 

i =  1, we obtain

4d >  n > d — x' +  1 +  (xf — 2)(d — [c/2 j) +  2d 

4d >  4d - x '  -  [c/2j +  1 +  (s ' -  3)(d -  [c/2 j)

0 >  —x' — [c/2j +  1 +  (*' -  3)(d -  [c /2 j).

Now, [c/2j <  wc <  /  — 3 and we have

0 >  —x1 — /  +  4 +  3(x' — 3)

/  +  5 >  2®', 

which gives the required result.

For part (3), we have a similar argument to part (2), with Q" replacing Q'. 

Again, we assume x" > 3, and count as in part (2) with \Q"\ >  d — s +  1,

and as before, |T ( X +w (Qh fl W )) U C\ > (xn — 2)(d — [c/2j) -f 2d. So, applying
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Lemma 5.7, with i =  0, we have

4d > n > d — 5 +  1 + {x" — 2)(d — [c/2 j ) +  2d 

> A d - s -  [c/2J +  1 +  (x" -  3)(d -  [c /2 j) 

0 >  —5 — |_c/2j +  1 +  (xn — 3)(d — |_c/2j).

As /  =  min{2/,d}, [c/2j < wc < f  -  3, and, by part (1), 3 <  [ ( /  -  3)/2J, we 

obtain

0 > — [ ( /  — 3)/2j — /  -+■ 3 -f 1 +  S(x,f — 3)

>  —[(3 / — 3)/2j 4- 3x" — 5 

x" <

as required.

L(3/ -  3)/2j +  5

< min{/ +  1, +  1}>

□

Now we come to a lemma which gives a bound on x' in terms of c.

L em m a 8.11 Suppose wc  <  /  — 3. Then x' <  |c/3j +  1, or x' =  \c/2J .

P ro o f. We assume that a;' =  [c/3J +  m <  [c/2j — 1» for m >  2, and obtain a 

contradiction. As x* >  [c/3 j , y >  3x' — c > 3m — 2. Now x' >  3, as c >  / +  1 > 5.

By Corollary 5.9, |T (X +W(Q' fl W)) U C\ > x (d — [c/2j) +  y([c/2j — x) +  c. Now

IQ'I >  d — x f +  1. Counting the vertices in these two sets, we obtain

4d > d — x' +  1 +  y( LC/2J — x 1) +  (xf — 3)(d — [c /2 j) — [c/2j

0 >  - x '  +  1 +  (y — 2)([c/2j -  x') +  2 |c/2 j -  2x' 

+ ( x ' - 3 ) ( d - L c / 2 J ) - L c / 2 j .

Now, d — [c/2j >  3, y >  3m — 2 and [C/2J — x ’ >1.  So we have
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0 > —3x' -f 1 -f 3m — 4 + [c/2\ +  3(x' — 3)

0 > -1 2  +  3 m + | c / 2 j  

12 -  3m > [c/2\ .

So [c/2j <  6 as m > 2. Now, [c/2j — 1 > |_c/3j +  m. Therefore [c/2j — [c/3j > 

m  +  1 >  3 and so c > 14, which is a contradiction. This completes the proof. □

L em m a 8.12 Suppose a  > 4. Then x' <  |c/2 j — 1.

P ro o f. We assume x1 =  [c/2j and obtain a contradiction. By Result 8.6, there 

are (x' — xQ)(d — x' +  1) +  x 0(d — x') neighbours of vertices of X +W(Q' fl W)  in 

G \ C .  There are also (a — (x — xo))(d — x' -f 1) vertices in weighted components 

not adjacent to X+w (Q'C\W). Counting the vertices on C and in Gr\ C r, we obtain

4 d >  n >  ( a  —  (x' — xq) ) (d  —  x  +  1 )  +  [x — xq) ( d — x  +  1 )  +  Xq(d — x')  +  c

> (a  +  xo ) (d  — a;') +  l +  a  +  x — xo +  c

0 >  (o +  x 0 — 4 ) (d  — X1) +  1 +  ot — — x'  +  (c — 2x;)

> 3(a +  Xq — 4) +  1 +  OC — x0 — x' +  (c — 2x')

>  3a +  x 0 +  (a  +  x 0 — x' — 1) — 10 +  (c — 2x')

>  2 +  3(a — 4) -1- xq +  (a  -f x0 — x — 1) -f (c — 2x')

which is a contradiction. □

We move on to the case where we have a large number of components.

Case 1: a  >  5. The method we use in this case is to count the vertices in all the 

components and on C. When we do this, we find that, for the values of x' and x" 

given in Lemma 8.10, we do not have enough vertices in our graph.
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We count the vertices in the components of G \  C, and on C. There are a — (3 

components of weight one which have size at least d — x' + 1, and (3 of weight two 

or more which contain at least d — s +  1 vertices. We recall that s < [c/3J. and 

d  >  -s, by Lemma 7.7, and c +  3 > x', by Lemma 8.11. Now, applying Lemma 5.7 

with i =  0, we obtain

4d >  n >  (o: — /^)(d — ^  T 1) T (3{d — s - f 1) -f c

> a(d — x'  -f 1) +  (3(x' — s) +  c

> (a  — 5)(d — x' +  1) -f 5d — hx +  5 +  — s) +  x' — s +  c

0 >  (a  — 5)(d — x1 +  1) +  d — x T  5 — s +  ((3 — l ) ^  — s)

+(c — 3a/ +  3) — 3.

By Lemma 8.10, x ’ <  [(d-f 5 )/2 j, and s < [(d — 3)/2j. So we have

0 >  ( a - 5 ) ( d - x '  +  l) +  d -  L(d +  5)/2j -  |_(d — 3)/2j

+ 2  +  (fi -  l) (x ' -  s )

>  (a  — 5)(d — x f +  1) +  (d +  l) — ( [(d +  1)/2J +  2) — ( [(d +  1)/2J — 2)

-fl + (/3 -  l ) ^ '  -  s)

>  1 +  (a  — 5 ) (d -  x'  +  1) +  (/? — l)(x '  -  s),

which is a contradiction, as a  > 5 and (3 > 1. This completes the case. □

L em m a 8.13 Suppose a  >  4 and (3 >  2. Then, in all components Q such that 

w q  > 2, there is a cycle of weight W q .

P ro o f. Let Q be a component in G \C  of weight w q  >  2. Suppose there is no cycle 

through all the weighted vertices of Q. Then \Q\ > 2(d—xg)-f 1 >  2(d—x")-f 1, by 

Lemma 7.4(4). There are /3— 1 other components of weight at least two, containing 

at least d — s -f 1 vertices each. The a  — (3 components of weight one are of size at
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least d  — x' +  1, giving (a  -  P ) ( d  — x' +  1) vertices. Counting these vertices and 

the vertices on C, by Lemma 5.7 with i =  0, we have

4d > n > 2{d — x") +  1 +  (0 — l)(d — s +  1) +  (a  — fl)(d — x  -f 1) +  c 

0 >  —x" -f (/3 — l)(z ' — s) +  (a — 3)(d — x' +  1) +  (c — 2x' — x ” +  3).

Now x" < x ' <  [c/2j +  1, by Lemma 8.11, and a  >  4, (3 >  2 giving 

0 >  (d  — s — x") +  1.

Using Lemma 8.10, we substitute upper bounds for x" and s' to obtain

0 > l +  ( d - a ( r f - l ) / 2 j - l ) - ( L r f / 2 J  + l))

>  1,

which is a contradiction. This completes the proof of the lemma. □

L em m a 8.14 Suppose a  > 3. Let Q be a component of weight at least two in G \ C  

such that either x q  <  or for a pathp i .. .pt of weight w q  in Q, max{xPt, x pi} < 1. 

Then there is a cycle of weight wq  in Q.

P r o o f. Suppose there is no cycle in Q of weight w q . Then \Q\ >  2 (d  — 1) +  1 =  

2d  — 1, by Lemma 7.4. The other a  — 1 components contain at least d  — x f -f 1 

vertices. We count the vertices in each of the components and on C , to obtain

4 d  >  n > ( 2 d - l )  +  2 ( d - x ' + l ) + c  

0 >  l  +  ( c - 2 x /),

which is a contradiction as c >  2 x f. Therefore there is a cycle through all the 

weighted vertices in Q. □
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Case 2 : 3  <  <* <  4, /? =  1. Here, we. find a path (or cycle) through all the 

weighted vertices in the component of largest weight, with an endpoint on C and 

show that this is sufficient for a path of the required weight.

Now, Qi is the component of weight two. Suppose xq x > 2. Since the other 

components have weight one, their combined weight is a  — 1. Therefore, w q 1 = 

w — wc  — (a  — 1) >  w — wc — 4. There is a path with an endpoint on C through 

all the weighted vertices in Qi by Lemma 7.8. So, by Corollary 7.3(1), there is a 

path in G of weight at least w — wc  — 4 +  wc = w — 4 =  3/ — 3 > 2/ + 1  since / > 4. 

This is a contradiction, so x q 1 =  1. By Lemma 8.14, there is a cycle through all 

the weighted vertices in <Ji, and so by Corollary 7.3(2), there is a path of weight 

at least 21 -f 1, as above. This completes the proof for a  > 3 and /? =  1. □

The cases remaining are when a  <  4 and ft >  2, and when a  <  2. As before, 

wc  <  min{2/ — 3, d — 3}. We continue with the case where a  =  4 and f3 >2.

C ase 3: a  =  4, (3 > 2. By Lemma 8.13, there is a cycle in each of the components 

of weight at least two. We show that two of these cycles, including a component 

Q i  of greatest weight, can be combined with C  to give a path of weight at least 

m in{27+l, d + 1}, by Corollary 7.3. We first show that the combined weights of two 

of the components satisfies the conditions for Corollary 7.3. The components are 

Q 1 ? Q 21 Q z  and Q 4 where w q x > w q 2 >  w q 3 >  w q a. Therefore w q 1 >  [(u> — wc — 

wQ 3-wQ*)/2\- Now, for <7 =  2 or 3, wQl +wQg+wc > \(™+wc+(wQ3- w Qi))/2] > 

2/ +  1 . So, by Corollary 7.3, no vertex of Q 2 or Q3 is adjacent to a vertex of 

X + w ( Q i  fl W),  We will obtain a contradiction.

We count the vertices in the components Qu Q2 and Q3, on the cycle C  and in the 

set of neighbours of X +w(Qi D W).  Now, >  d -  x Ql +  1 , \Q2\ > d -  s +  1 , 

and Q 3  >  d — x' +  1 . We consider the two cases x q 1 > 2, and x q x < 1 .
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(1) We deal with xqx > 2 first. Now, |F(Ar+vy((5i fl W)) U C\ >  3(xqx — 2) +  2d,

by Corollary 5.10 with j  > 3. Using Lemma 5.7 with i = 1 we obtain

4d >  n  >  (d — xq j -j- 1) -+- (d — s 4-1) +  (d — x +  1) +  3 (x g 1 — 2) +  2d

0 > 1 +  (d — s — x') +  2{xQl — 2),

which is a contradiction, as d — s — x/ > 0 ,  and xqx >  2. This completes the case 

where x q 1 > 2.

(2) As xqj <  1, we have \Qi\ > d. Also |<52| > d — s +  1 and |Q5| >  d — x' -f 1 

for g = 3 or 4. We count the vertices in all the components, and on C, noting that 

s < \c j3J by Lemma 7.7, and x' < [c/3j +1 by Lemma 8.11. Applying Lemma 5.7, 

with i = 0, we have

4d ^  Ti ^  d T (d — s T 1) 2(d — x -}-1) -f- c

0 ^  1 -f (c — 3 — 2x T 2),

which is a contradiction. This completes the proof of the a  = 4 and jd > 2 case. □

C ase 4: a  =  3, ft > 2. In this case we show that either wqx > [(u; — wc — l) /2 ] ,

and there is a path of weight at least wqx +  wc  or we find a path through all the 

weight in one component, the cycle C  and half the weight in either of the other 

two components.

(1) For /? =  2, w q x > |*(tt7 — wc — l)/2"]. Now suppose, w q x > [(tn — wc — 1)/2~| 

for fd =  2. Suppose xqx >  2. Then, by Corollary 7.9, there is a path of weight at 

least 21 +  1, giving a contradiction. Therefore xq x < 1. By Lemma 8.14, there is 

a cycle in Qi through all the weighted vertices, which again gives a contradiction. 

This completes the case for (i) a  = ft = 3 and w q x > [(to — wc — 1)/2~|, and (ii) 

a  =  3, p  =  2.
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(2) Now, we consider the remaining cases for a  =  3 =  f3. We note that for g =  - 

or 3, we have w Ql +  \w QJ 2] >  [(u; +  w c ) / 2 ] .  This weight combined with w c  is a; 

least m in{2/ +  1 , d +  1}. Now |Q i| >   ̂— x Qi +  1 and \ Qg \ >  d  — s  +  1 for g  =  2 

or 3. Let P  =  p i p 2 • . -Pt be a maximum path in Qi such that xpi is the maximum  

over all endpoints of maximum paths in Qi.

(2.1) Suppose xPl >  2. Then there is a path through all the weighted vertices in 0 .  

with an endpoint adjacent to C, that is, w p  =  w q , by Lemma 7.8(1). No vertex of 

Q 2 U Q3 is adjacent to a vertex of X +W(pi fl W ). So we have |T (X +i;v(p1)) U C\ > 

3(xPi — 2 ) +  2 d by Corollary 5.10. Counting the vertices in each of the components, 

on C  and neighbours of X +W(pi), we obtain

4d ^  n ^  (d — xpi -f 1) +  2(d — s T 1) d* 3(xPl — 2) T 2d 

0  >  1  -I- (d -  s -  x Pl) +  2 (zPl -  2 ).

By Lemma 8.10, we have upper bounds for x" >  xPl and s. So we have 

0  >  l +  ( d - ( [ ( d - l ) / 2 j - l ) - ( L d / 2 j + l ) )  +  2 (xp l - 2 )

>  1  +  2{xPl -  2 ),

which is a contradiction as xpi >  2. This completes the case for xpi >  2.

(2.2) Now xPl <  1 . The weight of Q2 and Q$ combined is

w q 2 +  w q 3 >  w  -  w c  -  w q 3 >  [(iy -  wc )/2].

As xPl <  1 , there is a cycle through all the weighted vertices in Qi by Lemma 8.14.

Also we have |<Ji| >  d.

Now if xq9 <  1 , there is a cycle through all the weighted vertices in Qg, by 

Lemma 8.14. Now suppose xq9 > 2 . Suppose there is no cycle of weight wq3 

in Qg, for g =  1  or 2. Then \Qg\ > 2{d — xq{) +  1 . Now no vertex of Qi is adjacent
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to a neighbour of Q3. So counting the vertices in Qi, Qg and C and the neighbours 

of X +w(Qg fl W ), we have

4d > n > 2(d — *̂ Qg) T 1 T d 4- 3(xgg — 2) 4- 2d

0  >  d   2  +

which is a contradiction as d >  8 . Therefore there is a cycle through all the 

weighted vertices in each of the components.

So no vertex in any of the weighted components is adjacent to the vertex of 

X +w(Qi fl W ),  for i € {1,2,3} as w q 2 +  w q 1 > w q 3 -f w q 1 > w q 3 +  w q 2 > 

f(u; -  wc )/2].

Let xg = ma,x{xQ21 x q 3 }

(i) Suppose xg > 2 . Then counting the vertices in all the components, on C  and 

the neighbours of X+w (Qg D W ), we obtain

4d >  n > d +  2(d — s +  1) +  3(x5  — 2) -f 2d

0  >  d — 2 s +  2  +  3(x5  — 2 )

But by Lemma 8.10, s < [(d — l) /2 ] , so we have

0 >  3 +  (d — 1 — 2[(d — 1)/2J ) +  3(x5  — 2),

which is a contradiction.

(ii) Suppose xg < 1 . By Result 8.3, we have x' > 1 . So for some i £ {1,2,3}, 

XQi =  1 . Then all the components have size at least d and there are at least d +  1  

vertices in r ( X +ŵ (Q,- fl W ))  U X +w(Qi fl W). Therefore counting the vertices in 

each of the components and these neighbours, we have 4d > n > 4d +  1 which is a 

contradiction.

This completes the case. □



C ase 5 : a  =  2 =  /?. (1) Suppose xQl > 2. Then there is a path through all the 

weighted vertices in Qi with an endpoint adjacent to C. This gives a contradiction 

as Qi contains at least half the weighted vertices in G \ C .

(2) Therefore x q 1 < 1. Now, suppose there is no path through all the weighted 

vertices in Q\. Then |Qi| > 3(d — 1 ) -f 1 =  3d — 2, by Theorem 2.5. Counting the 

vertices in each of the two components and on C , we have

4d ^  h ^  (3d — 2) T (d — s T 1) T  c 

0  >  c — s — 1

>  wc  — [ w c / 2J -  1

> r a + i ) / 2 i - i

> i,

since / >  4. So there is a path through all the weighted vertices in Q\. Suppose a 

path through all the weighted vertices in Qi has an endpoint adjacent to C. Then 

we are done. So suppose not. Then |Qi| >  2d +  1. Now we consider the other 

component Q2 . Let P  be a path of maximum weight in Q where an endpoint 

of P  is such that xPt is maximised over all paths of weight w q 2 in Q2 .

(i) Suppose xVt >  2. Then there is a path P  through all the weighted vertices in 

Q2  with an endpoint adjacent to C. Now, suppose a vertex of Q\ is adjacent to 

a vertex of X +W(pt). Then there is a path in G through all the weighted vertices 

in Q2 and C, and half the weighted vertices in Qi. This gives a path of weight at

least 21 +  1 . Therefore T (X +Ŵ (pt)) fl Qi =  0. So, counting the vertices in Qi, Q2

and T (X +W(pt)) U C, we obtain

4d ^  n ^  (2d -j-1) 4* (d — s -f* 1) -f- 3(%pt — 2) T- 2d

0  >  1  +  (d — s) +  (c — 2 x;),

which is a contradiction.

(ii) Suppose xPt =  1 , then the vertex u E X +W(pt) is not adjacent to any vertex in
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either component, as before, so we can count all the neighbours of u, plus u itself, 

as well as the vertices in both components. We have

4 d > n >  (2 d + l) +  d + (d +  l), 

which gives a contradiction.

(iii) Now xPl = 0. Then |(J2| > d -f 1 . By Lemma 8 .8 , there is a weighted 

vertex v+w on C which has at most one neighbour in Q2, where v 6  r (Q 2). 

Now v is not adjacent to a vertex of Q 1 , so counting the vertices in Q 1 , Q 2 and 

{i;+Ty} U T(u+W) \  Q 2, we have

4 d  ^  (2d  - f - 1 )  T  (d  - f - 1 )  T  d ,  

which is a contradiction. □

C ase 6 : a  <  2, (d =  1. We consider the component Q i  of weight two. Suppose 

>  2 . Then there is a path of weight w q 1 in Q \  with an endpoint adjacent to 

C.  Hence we are done. So x q 1 < 1 .  If there is a path through all the weighted 

vertices in Q 1 , then there is a path in G of weight at least w q  +  \w Qxl2] >  2 / +  1. 

So we assume not. We find a set D for the two cases x q x =  1 and x q 1 =  0 which 

we remove from G. If x q x =  1, let u be a vertex in X ( Q  1 fl W). Then u+w is 

not adjacent to any vertex in Q1? so there are at least d vertices not in Q i , nor 

adjacent to weighted vertices of Q,  namely D =  r (u +ty) \  {u}. If x q 1 =  0, there is 

a vertex v on C  which does not have more than one neighbour p, say, in a weighted 

component, by Lemma 8.8. Then the set D =  C  U T(u) \  {p} contains no vertices 

of Q 1: nor any neighbours of weighted vertices of Qi .  In both cases, we remove 

D from G. Then we are removing at least d vertices, so |Q i| <  3d. We also do 

not change the degree of any vertex in Q i .  So the minimum degree of the vertices 

of Q i  fl W  in G \  D is d. Therefore, by Theorem 2.5, there is a path through 

m in {d -f 1, w q x}  weighted vertices in Q 1 , and we are done. □
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This completes the proof of the second base case which completes the proof of 

Theorem 4.4. □
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9 D eg ree  Sum s and N eigh b ou rh ood  U n ion s

In this chapter, which concludes the work on graphs, we generalise some results 

which have degree sum conditions. These are known as Ore-like results. We also 

discuss some results concerning the number of vertices in the set containing all the 

neighbours of vertices in an independent set.

9.1 Ore-like R esults

We start our discussion with the following well known result of Ore.

Theorem  9.1 (Ore) Let G be a graph of order n >  3. I f  for every pair of non- 

adjacent vertices x and y, d(x) +  d(y) >  n, then G is Hamiltonian.

Bollobas and Brightwell [3] extend Theorem 9.1 to a subset of specified vertices for 

which the degree sum of non-adjacent vertices is known. This result is given in the 

following theorem.

Theorem  9.2 (Bollobas and Brightwell) Let G be a graph on n vertices, con

taining a set W  of w vertices of G such that each pair W\ and W2  of non-adjacent 

vertices of W  satisfies d(wf) -f d[v)2 ) >  c. I f  c = 2d is even, set k = \n /d \:  if 

c =  2d +  1  is odd, set k =  [(n +  1  )/(d  +  1 )]. Now set s = \w /(k  — 1 )]. I f  s > 2, 

then there is a cycle through at least s vertices of W .

As we saw earlier (Theorem 3.3), the analogue of Theorem 9.1 for paths is easily 

generalised.
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We now turn to some generalisations of other results which are useful tools in 

problems concerning paths and cycles. The proofs in this section are very similar 

to standard proofs of the corresponding results for W  =  V(G ): unless otherwise 

stated.

L em m a 9.3 Let G be a graph on n vertices, and W  a subset of vertices. Suppose 

that d(u) +  d(v) >  n for a pair of non-adjacent vertices u, v in W . Then there is 

a cycle through all the vertices of W  in G +  (it, v ) if  and only if  there is in G.

Proof. Suppose there is a cycle C  through all the vertices of W  in G, that is, a 

cycle of weight wc  =  w. Then obviously there is a cycle of weight w in G +

Now suppose there is a cycle of weight w in G U (it, u), but no cycle of weight w 

in G. Therefore there is a path P  of weight w in G , with endpoints u and v. Let 

D\ =  T(u)U{u} and D 2 =  rp(i>)urG\p(v). So |Zh| =  d{u) + 1  and \D2\ = d(v) and, 

as usual, DiC\D2 =  0. Therefore n > \DiUD2\ =  iLhl+IZ^I =  d(u)+d(v)+ 1  >  n + 1  

which is a contradiction. So there is a cycle in G of weight w as required. □

For a graph G  and subset W ,  we define the closure C{W) of W  in G to be the 

graph obtained from G by repeatedly adding edges (u, v) whenever d(u)-\-d(v) > n, 

for two non-adjacent vertices it and v of W .

Corollary 9.4 Let G be a graph containing a subset of vertices W . Then there is 

a cycle through all the vertices of W  in C(W ) if  and only i f  there is in G.

Proof. This follows immediately from repeated application of Lemma 9.3. □

We now come to another property of graphs. A graph is Hamiltonian connected 

if there is a Hamiltonian path between every pair of vertices in G. The following

113



result gives a sufficient condition for a graph to be Hamiltonian connected. (See. 

for example, [14].)

T h e o rem  9.5 Let G be a graph on n vertices. Suppose that d{u) -f d(y) > n +  1 

for all non-adjacent vertices u and v. Then G is Hamiltonian connected. □

The next theorem is an analogue of Theorem 9.5 for specified vertices where we are 

interested in paths through all the specified vertices between all pairs of specified 

vertices. We define an (x,y)~full weight path to be a path of weight w between the 

vertices x and y of W.

T h e o rem  9.6 Let G be a graph and W  a subset of the vertices of G such that 

d(u) -f d(v) >  n + 1  for every pair of independent vertices u and v o fW .  Then, for 

any pair of vertices a and b o fW ,  there is an (a,b)-full weight path.

Proof. We may assume there are no edges between vertices not in W .  Let a and 

b be vertices of W  and suppose that there is no (a, 6 )-full weight path. Since d(u) + 

d(v) > n for all non-adjacent vertices it, v in W ,  there is a cycle through all the 

vertices of W ,  by Theorem 9.2. Therefore there is a path with an endpoint a. Let 

P  =  a . . .  z b . . .  t  be the shortest path through all the vertices of W  with endpoint 

a. We consider the neighbours of z = b~w , that is the weighted predecessor 

of b on the path, and t. Suppose z  and t are adjacent. Then there is a path 

a . . . ztt~  . . .  6  which is a contradiction. Therefore d(z) +  d(t) >  n  +  1. We consider 

the neighbours of z  and t on the sections of the path [a,z\ and (z,t]. We consider 

the sets, r [a>z-](z), r [z+>t](z), T ^ t ) ,  T++>t](*), TG\P(2 :) and TG\P(t). We claim 

that these sets are pairwise disjoint. (See Figure 18.) The three sets of neighbours 

of z , namely T[a>z—](^), r ^ + ^ z )  and TG\p(z), are certainly pairwise disjoint, as are
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a 2* b t

Figure 18: Disjoint sets of vertices

^[az](0j tj(t) and TG\p(t). We consider r[a>z-](z) n  I^a ẑ (t). Suppose there is a 

vertex s, say, in this intersection. Then the path

a . . .  szz~ . . .  s+tt~ . . .  6

is a (a , 6 )-full weight path, which is a contradiction. Therefore F[a)Z-](z )n r^  ẑ (t) = 

0. Similarly r[z+|t] (z )n r£ + tj(t ) =  0. Also the sets Tg\p(^) and Tc\p(t) are disjoint 

, as a shared neighbour q off the path would result in the path a . . .  zqtt~ . . .  b+b which 

is again a contradiction. Now we consider the size of the union of all these sets. 

We have
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n > |r[aiZ-](2)ur(l+,(](z)urG\p(2)urM(i)ur^+it](ourG\p(«)|
= |r(a,,-](2) u r[>+i(](2) u rCVP(2)| + 1 u r^,(i) u r++1)( 0  u ^ (2 )1  

= |r(z)| + |r(t)|

=  d(z) +  d(t)

> n + 1 ,

which is a contradiction. Therefore, there is an (a, 6 )-full weight path, and therefore 

between any pair of vertices in W. □

An obvious corollary to this for a subset W  of vertices of minimum degree (nH-1)/2 

is given below.

C o ro lla ry  9.7 Let G be a graph on n vertices containing a subset of vertices W  

of minimum degree (n +  l) /2 . Then for any pair a, b of vertices of W , there is a 

(a, b)-full weight path. □

9.2 N eighbourhood Unions

Now, instead of looking at the sum of the degrees of independent vertices, we will 

look at the union of their neighbour sets. We start with a theorem of Faudree, 

Gould, Jacobson and Schelp [1 1 ] which considers the neighbourhood sets of a pair 

of non-adjacent vertices.
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T h e o rem  9.8 (Faudree, G ould , Jacobson  and  Schelp) Suppose that G is a 

2-connected graph on n > 3 vertices. I f  for every pair of non-adjacent vertices x 

and y, we have

|r(*) u r(y)| >

then G is Hamiltonian. □

A generalisation of this theorem was conjectured by Faudree, Gould, Jacobson and 

Schelp [1 1 ] and proved by Fraisse [13].

T h e o rem  9.9 (Fraisse) Let a graph G of order n > 3 be k-connected. Suppose

there exists some t < k such that for every set S  o ft  mutually non-adjacent vertices,

ir(S)| > —------—. Then G is Hamiltonian. □
1 v n t +  1

This is easily generalised for specified vertices. The proof is included for complete

ness, although it is very similar to that given in [14].

T h e o rem  9.10 Let G be a k-connected graph of order n >  3 and W  a subset of

the vertices of G. Suppose there exists some t < k such that for every set S  of 

t mutually non-adjacent verti 

through all the vertices o fW .

t mutually non-adjacent vertices o fW ,  |r(5 )| > - Then there is a cyde

P ro o f. Let C  =  V\V2 . . .  vc be a maximum cycle in G. Suppose C  does not 

contain all the vertices of W . Then there is a weighted vertex v in G \  C. As G 

is ^-connected, and t <  k, there is a family of t vertex disjoint paths from v to 

C  (Menger [18]). Let Xi,X 2 , . . . , x t E C be the endpoints of the paths, labelled 

cyclically around C. Let X  =  {z i , . . .  ,x t}, and let U =  X +w U {u}. Then we
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define the following sets:

A = G \T (U )

B  =  {v £ V  : (u, v) £ E(G ), for exactly one u £ U}

D = T ( U ) \ B

A c  = A n C

a r  = A n ( G \ C )

We note that A  is the set of vertices which are not neighbours of vertices of X +w, 

the weighted successors of vertices of X , or of v. Also A c  are the vertices which 

are not neighbours of vertices of U on C, and A r , the rest of the non-neighbours 

of vertices of U. Now, no vertices of U are adjacent, by Lemma 5.2, and so U C A. 

Also no two vertices of U share a neighbour in G \  C.

C laim  There are at most t vertices of D between any two consecutive vertices of 

A on C.

Let ai and 0 2  be two consecutive vertices of A  on C. Since X +w C A , we may 

assume that ai and a^ belong to some segment of C  between consecutive vertices 

of X +w, [x fw Suppose cs £ and c3+1 £ T[aua2]( x f w ). Then

the vertices Xj, x\ and X{ cannot occur in that order on C  for that would produce 

a cycle through more vertices of W .  (See Figure 19.)

Now, by definition of xt- and xt+i as consecutive neighbours of v on C, there is 

at most one neighbour of v in [ a ^ a ^  namelyJx/+1. Every vertex of (a i ,a 2) is 

in r(x + iy)for some t, since a\ and <Z2  are consecutive non-neighbours of U on C. 

Therefore the neighbours in [a1? a2] of consecutive vertices of X +w and of v, that 

is> r[allo2](®/+Hr) ir [aifa2](xzt 5 r), • • • , r loifB2](xz+Y ),r(t;) form consecutive segments of 

[ai, a2] since a\ and a2 axe consecutive vertices in A. These segments have at most
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their endpoints in common. There are t +  1 segments and so a t most t elements of 

D  between and a 2, which justifies our claim.

Figure 19: Prohibited pairs of neighbours

To complete the proof, let p = |Tfi(xj)|, where Xj € U gives the maximum value
| Dl

of p. Then p >  ̂  ̂. As vertices of U have no common neighbours in G \  C, the

total number of such unshared neighbours of U is | £? \ C |  =  n — c — |A r|. From 

the claim, the number of vertices of B  on C is at least c — (t -f l)|A c|. Therefore

\B\ = \BH C \ + \B \ C \

> n - c  -  \Ar \ + c -  (t +  l)|A c|

=  n — \Ar \ -  (t + l)\Ac\

and

Now, U \  {xj} is an independent set of t vertices, and \A r \ > 1 since v € A ri so 

|r(X+lv \ {ij})| >
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=  n -  \Ar \ -  \ A C\ - p  
t(n -  \Ar \)

t -f 1  

t(n — 1 )
t + 1  7

which is a contradiction, thus proving the result. □
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10 P o se ts

Now we come to the other topic of the thesis, partial orders. We begin with some 

definitions and notation. A partially ordered set or poset is a pair (Z, <) where 

Z is a set, called the ground set, and < is an order relation on Z. Let x and y 

be distinct elements of Z. If x < y or y < x  in P  then x  and y are comparable. 

Otherwise x  and y are incomparable, and we write x\\y. (See Figure 20.) A chain 

is a poset where each pair of distinct points is comparable, and an antichain is a 

poset where each pair of distinct points is incomparable. The width of a poset is 

the maximum size of an antichain. (See Figure 20.)

The following theorem of Dilworth [7] gives an equivalent definition of the width 

of a partial order.

T h e o rem  1 0 . 1  (D ilw orth) Let P  =  (Z, <) be a poset of width k. Then there is 

a partition of P  into k chains. □

So a poset P  of width two can be partitioned into two chains X \  and X 2. We call 

( X i ,X 2, <) a two-chain covering of P . (See Figure 20.)

Let P  =  (Z, <) be a poset on the set Z — { 1 ,2 ,... ,N}.  Then we call P  a labelled 

poset Let C(P)  be the class of all posets isomorphic to P , that is, P' G C(P) 

if and only if there is a bijection between P  and P ' that preserves all the order 

relations. The classes C(P)  form a partition of the labelled posets. We define an 

unlabelled poset to be an isomorphism class of labelled posets. Where no confusion 

arises, we will refer to the class as a poset.

Our aim is to count, asymptotically, the number of posets of width two. We ask
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n x

Figure 20: Chains, antichains and posets of width two

how many labelled and how many unlabelled posets there are. We also consider 

the relationship between the asymptotic numbers of these two sets of posets.

We introduce some notation for the number of width two posets.

• Let {N) be the number of labelled width two posets on {1,2 , . . . ,  N }.

• Let ^ ( N )  be the number of unlabelled width two posets on N  vertices.

We will prove the following two results.

T h e o re m  1 0 . 2  The number of width two posets with vertex set {1 ,2 , . . . ,  iV} is
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Now we consider the relationship between.the number of unlabelled and the num

ber of labelled posets. The maximum size of an equivalence class of labelled posets 

corresponding to an unlabelled poset is N\. This occurs when a poset has a trivial
H2(A0automorphism group. So we observe that Q%(N) > ———. This would be asymp

totically sharp if almost every width two partial order has a trivial automorphism 

group, as, for example, is the case with graphs [2]. However, it is easy to see that 

this is not the case here. For example, consider the partial orders which have two 

incomparable elements x and y which are comparable to all the other elements. 

Simply exchanging x and y gives a non-trivial automorphism.

We compare Theorem 10.2 with the following theorem.

T h eo rem  10.3 The number of unlabelled posets on N  vertices is

"S ™  -  ( r l '

~  1 (2,v+1f  f s 11164I+0iA:" ) )N\ {N + 2 )!

where

c = g ^ C L " l 2)  - 0  0669873.

So

n ;  W  *  (tf).

We initially consider the problem of counting labelled width two posets by consid

ering their relationship with unlabelled posets of width two.
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10.1 Two Chain Coverings

The first step is to consider the natural mapping 7  from the set V  of labelled 

posets on the set {1 , 2 , . . . ,  N }  to the set C of unlabelled posets, where ' j(P) is the 

isomorphism class containing the labelled poset P.  We define a two chain covering 

of an unlabelled poset C to be an isomorphism class of two chain coverings of the 

labelled posets in the isomorphism class C. The incomparability graph G(P)  of 

a poset P  is a graph G(P)  on the ground set Z  of P  such that (x,y) is an edge 

of G( P)  if and only if x\\y in P.  Let A2 , . . . ,  Ak be the components of the 

incomparability graph, G(P) .  We define A,- <  Aj  to mean that a,- <  aj in P  for 

all at 6  Ai and aj E Aj.  Then there is a total ordering of the components where 

Ai  < A 2 < • • • < Ak. (See Figure 2 1 .) Let P(A{)  be the poset P  restricted to the 

vertices of Ai. We call P(Ai)  a factor of C.  The automorphism groups of P(Ai)  

are either trivial or

contain just the identity and the mapping which swaps the chains X{ and Y{. A 

factor P(A{) with a non-trivial automorphism group is called symmetric. Let C  be 

an unlabelled poset and suppose there are s symmetric factors in G(C). Then the 

automorphism group Aut(C) has order |Aut(C)| =  2 5.

Now we consider the mapping 7  : V  —» C, as defined above. Let C  (E C. Suppose
AH N\

there are s symmetric factors in P. Then 7  maps ^  t(C7) =  â )̂e^ e<̂  posets to

C(P).

L em m a 10.4 ■

W  = £ I 'T 1(C)I = £ f ’
cec cec

where s = s(C) is the number of symmetric factors of C and the sum is taken over 

all the isomorphism classes of labelled posets.
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Figure 21: A poset of width two and its incomparability graph

Each factor P(A t) of P  has a two chain covering (X i,Y i). To obtain a two chain 

covering (X , F, < ), we order the factors P(A*) in the order they occur in P , and 

select either X{ or Y{ to be in X  and the other to be in Y . Now, how many such 

two chain coverings of an isomorphism class of posets C  are there? For each non- 

symmetric factor, we can choose one of two chains X{ or Y{. For a symmetric factor 

choosing X{ is equivalent to choosing Y{. So, letting k be the number of factors 

and s the number of symmetric factors, there are 2k~s two chain coverings of C. 

(See Figure 2 2 .)
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#

X 1 *i xz y3

y2 x 2 y a x 4

Figure 2 2 : An incomparability graph G{P) and the four two chain coverings of P

Let T  be the set of isomorphism classes of two chain coverings. We consider 

the mapping to : T  —► C, where u  maps a two chain covering (A, Y, < ) to an 

isomorphism class C  of labelled posets. Let T(C) = u;- 1 ((7), the set of two chain 

coverings of C. Suppose there are s symmetric factors and k factors in G(C). Then 

|T| =  2k~s. Therefore, we can count the number of posets in terms of their two 

chain coverings. (See Figure 23.)
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Figure 23: The correspondence between labelled posets, unlabelled posets and two 

chain coverings

L em m a 10.5 The number of labelled posets on {1,2, . . . ,  N }  is

<W0 -
T€T

where k — k(T) is the number of factors in the incomparability graph of(o(T). The 

sum is taken over all isomorphism classes T  o f two chain coverings (X , T, <)  of 

unlabelled posets.

P roof. By Lemma 10.4,

!> .(« ) =  £ f .
cec

where 5  =  s(C)  is the number of symmetric factors in the incomparability graph
\T(C)\

of C. There are 2k~* two chain coverings of each C  G C. So — 7  =  1 for each
2

set T{C) of two chain coverings.
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Therefore

n  2(n ) =
N\ \T(C)\

cec 2 s 2 k~ s

T €T

as required. □

L em m a 1 0 . 6  The number of unlabelled posets on N  vertices is

n s w  =
T e r

where k =  k(T) is the number of factors and s =  s(T) is the number of symmetric 

factors in the incomparability graph of the unlabelled poset w(T). The sum is taken 

over all isomorphism classes T  of two chain coverings (X , Y, <) of unlabelled posets.

P ro o f. For the unlabelled case, we have

f l s w  =  E 1
cec

= v  m i  
2 k ~ scec

as again, = 1 . So Q2(N ) = E  D
T e T

10.2 Linear E xtensions

Before we continue our discussion, we need a definition. A linear extension of a 

poset P  is a total ordering of the elements of P  which is consistent with their 

ordering in P . To count the numbers of posets, we consider a mapping which
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transforms our two counting problems into one more standard counting problem. 

We give an outline of this process before going into detail. We start with a poset 

P — (Z, <) where \Z\ =  N ,  and a two chain covering (X ,Y ,< )  of P. We form 

two linear extensions A and fi of P  from the two chains X  and Y  (this section). 

Then we interleave the linear extensions A and p  to form a walk of length 2N, 

(section 10.3). (See Figure 24.) Finally (Chapters 1 1  and 12) we count the walks 

generated in this way.

/ —

xxy  and xyx  
yxy  and yyx

Figure 24: From posets to walks

Suppose the ordered pair (X , Y , < ) is a  two-chain covering of some poset P  where
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X  is the chain (£{), with x x < x 2 < v  * < xni and Y  is the chain (yt) with 

2/i < 2 /2 < • • * < Dm- We say a linear extension A of P  is left-greedy if Axt- < Ayj 

whenever x,-||yj. (See Figure 25.) Similarly we say a linear extension A of P is 

right-greedy if A yj < Xx{ whenever Xi\\yj.

Figure 25: The construction of a left-greedy linear extensions

Given a partition of the ground set Z  into two chains, X  and Y ,  a width two partial 

order P  on Z  is determined by its left-greedy and right-greedy linear extensions. 

Indeed, they form a realiser of P , which is a set of linear extensions of P , the 

intersection of which is P . We will call an ordered pair (A,/i), where A is the left- 

greedy linear extension of P  and fi is the corresponding right-greedy linear extension 

, of P , a greedy pair. When do two linear orders on {xl 7  x 2l. . . ,  £n, t/i, y2, • • • j 2/m} 

make up a greedy pair? A necessary and sufficient condition is that if x t* <  yj in 

the right-greedy linear extension, then < yj in the left-greedy linear extension.
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We call such a pair of linear extensions allowable. Let the set of allowable pairs of 

linear extensions obtained from chains <  x 2 <  • • • <  xn and yi <  y2 < * • • <  ym 

be A.  Define <f> : T  —► A,  where (j> maps a two chain covering (X , K,<)  to the 

greedy pair generated from it as above. Then (j> is a bijection.

10.3 Walks

Let (A, n) be a greedy pair obtained from a two chain covering (X, Y , <) of a poset 

P. Let A be the linear extension li < I2  < * • • <  In and y. be r i <  <  . . .  <  r

We construct a walk based on the order the elements of the chains X  = (xt) and 

Y  =  (yj) occur in (A, /z). We shall use geometric terminology and refer to the

left greedy linear extension xxxyyxyy

right greedy linear extension yxyxxyyx

Figure 26: The construction of a walk from a greedy pair 

rectangular coordinates p, q. We define W  =  0(A, y)  as follows:

(Po>9o) =  (0,0),
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and for n > 1

( 2 n -  1, q2 n - 2  + 1 ) if L  = x s for some s;
\Jp2n—\ •> 2̂n—l) =  \

(2 n -  1, q2 n - 2  -  1 ) if L  =  Vt for some t ,

I (2n,q2n- i  ~  1 ) if rn =  x s for some s;
\P 2n i) & n) \

I ( 2 n , ^ 2n - i  + 1 )  if rn =  yt for some t.

Therefore our walk W  starts at the point (0,0) and ends at the point (2Ar, 0). 

Next we will consider which walks can arise from allowable greedy pairs. Let a 

good walk be a walk that starts at (0,0) and ends at (2iV, 0), and never falls below 

p =  — 1 . (See Figure 27). Let W be the set of good walks. We consider the

Figure 27: A good walk

mapping $ : A  —► W between the pairs of allowable linear extensions and good 

walks. We claim that 0 is a bijection. Every walk arising from ah allowable pair 

starts at the point (0,0) and ends at (2iV,0). This is because, in the left-greedy 

linear extension, every X{ adds one to the y-coordinate and in the right-greedy 

linear extension, subtracts one. Suppose the walk 0(A, /z) falls below — 1  at the 

point (2a, —2). Consider the first a  elements of A and p. Then there is some xt-,
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i < a  in the first a  elements of p  that is not in the first a  elements of A. This 

contradicts the definition of an allowable pair. Therefore 6 is an injection from the 

allowable linear extensions to the good walks. Let W  be a good walk. Since W  

does not go below —1, no vertex xt- occurs before yj in /x but not in A. Hence we 

have an allowable pair. Therefore 9 is a surjection and thus a bijection. As there is 

a bijection between A  and W, and between T  and A , there is a bijection between 

T  and W.

Figure 28: A good walk and the corresponding incomparability graph

We define a hit to be any point (p, 0) where p 0 or 2N . Let h be the number 

of hits. Now, we will consider the relationship between hits in a good walk and 

multiple two-chain coverings of a poset. Suppose a walk hits at (2a, 0 ). Then at 

this hit the same xf- and yj in both the left and right linear extensions have been 

represented in the walk from (0,0) to (2a, 0). The remaining x, and yj are the
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X{ and yj which are in higher component of the incomparability graph. So. the 

number k of components in the incomparability graph is the number of times the 

walk returns to the x-axis, that is h -f 1 , as we do not count the final return to 

i  =  0 as a hit, so k =  h +  1 . (See Figure 28.)

Therefore from Lemma 10.5 in the labelled case we have the following lemma. 

L em m a 10.7 The number of labelled posets on { 1 ,2 ,. . . ,  N }  is

».<*> - E s*.
wew

where h is the number of hits of a good walk W .

For the unlabelled case we need another definition. We define a symmetric hit to

be a hit which occurs after a section of the walk which corresponds to a symmetric

factor.

Let s be the number of symmetric hits. (See Figure 29.) So we have the following 

lemma for unlabelled posets.

L em m a 1 0 . 8  The number of unlabelled posets on N  vertices is

„  ah
w w  =

wew

where h is the number of hits, and s the number of symmetric hits of a good walk 

W , and the sum is over all good walks.

We now introduce some definitions and notation.

• G(A, B) is the number of good walks from (I, I) d (A, B).
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Figure 29: A component corresponding to a sym m etric factor and corresponding 

sym m etric hit

• Gt{A,B)  is the number of good walks from (A ,B)  to (27V, 0).

• G ^(A , B) is the number of good walks from ( 0 , 0) to (27V, 0) which go through

• 0rt (7V, 6 ) is the number of good walks to (TV, b) which hit exactly i times.

• b) is the number of good walks to (TV, b) which hit exactly i times and

have t symmetric hits.

• Gy (TV, 6 ) is the number of good walks from (TV, b) to (27V, 0) which hit exactly 

j  times.

• Grj u(N , 6 ) is the number of good walks from (TV, b) to (27V, 0) which hit exactly 

j  times and have u symmetric hits.

• We define a very good walk to be a good walk that does not have any hits. 

Let V(A, B) be the number of very good walks from (0,0) to (A,B).
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Rewriting Lemma 10.7 using this notation, we obtain the following lemma.

L em m a 1 0 . 9  The number of labelled posets of width two on { 1 ,2 ,. . . ,  N }  is

N \ ^ G , ( N ,b ) G % N , b )

b,j, i

For the unlabelled case, Lemma 10.8 becomes Lemma 10.10.

L em m a 1 0 . 1 0  The number of unlabelled posets of width two on N  vertices is

O V / V I  -  I  V  b) W
) ~  2  2 *~* 2 i~u ’

b,j , i , t ,u= 0

where t is the number of symmetric hits of good walks to (N,b) with i hits and s is 

the number of symmetric hits of good walks from (N y b) to (2 N , 0) with j  hits. □

Now we consider what a section of a walk before a symmetric hit looks like . (See 

Figure 29.) We know that it corresponds to a symmetric factor, by definition. So 

let S  be a symmetric factor of a poset P. Let (X, Y, <) be a two chain covering 

of the elements of S', where X  = XiX2 . . .  x/ and Y  =  yiy 2 •. • Let (A, /z) be the 

greedy pair corresponding to (X ,  Y, <). Then there is a bijection k : X —> p, such 

that k ( x j ) = yj and K(yk) =  Xk- Suppose we construct a walk W  from these two 

linear extensions. We consider the walk from (2n, 6 ) to (2n +  2, B),  for integers n 

such that 0 <  n < 21 — 2, where b is the position of the walk at 2n  and B  is to be 

determined. Now, suppose next element of A is X*. Then the walk will be at the 

point (2n +  1 ,6+ 1). Due to the symmetry, the next element of p. is yjt, so the walk 

is at (2 n +  2 , 6  +  2 ). So the two steps are in the same direction. Similarly if ym is



the (n -f l ) st element in A and x m in fi. the walk will be at (2 n +  2 , b — 2 ). So again, 

both the steps are in the same direction. This characterises a section of the walk 

corresponding to a symmetric factor, namely a section ending with a symmetric 

hit.

In the next chapter we will count the number of labelled posets, and in the following 

chapter the number of unlabelled posets.
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11 L abelled  P o se ts

We treat the set W of good walks as a probability space with each good walk being 

equally likefy. Then quantities such as the number of hits are random variables 

within this probability space. Given a good walk W , we consider the number of 

hits and where they occur. We show that there are almost surely no hits except 

near the ends of the walk. Let b be the position of the walk after TV steps. We call 

the part of the walk from (0,0) to (TV, b) the left and from (TV, 6 ) to (2TV, 0) the 

right We will also prove that the number h of hits on the left is asymptotically
3h

a geometric random variable with Fr(h hits on left) «  ^h+i' symmetry, the 

number of hits on the right has the same distribution, and the number of hits on 

the left is asymptotically independent of the number of hits on the right. We define 

a left very good walk to be a walk that is very good to (TV, b) and good from (TV, 6 ) 

to (2TV,0). We define L V  to be the number of left very good walks. To show the 

probability of h hits on the left is approximately , we first show the probability 

that a good walk is very good on the left is about This gives the probability of 

at least one hit on the left to be about

The number of left very good walks can be found by considering the number of 

left very good walks that go through (TV, b) and summing over b. The number of 

left very good walks through (TV, b) is the product of the number of walks that are 

very good to (TV, 6 ), that is V (N ,  6 ), times the number of walks that are good from 

(TV,6 ) to (2TV,0), that is GF(N,b). Now by symmetry, G(TV,6 ) =  Gr(N,b). So the 

number of left very good walks is

N
L V  = ^T/ V (N ,b)G '(N ,b )

6=0
Nv V(iV,6 )

t 0 W J ) G  { N ' b) -
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We will prove that G~^(N,b) is relatively small except for b close to TV2, and, for 
V(N,b)

such values of 6 , 1S cl°se t°  4 - This implies that L V  is about \G{ 2 N, 0).

So, to calculate L V  we find G(2N, 0) and G(7V, 6 ), and bounds for them. From 

these we obtain G~*(N, b) and V (TV, b)Gr(N , 6 ). To obtain the bounds for G(2 N , 0) 

and G (N , 6 ), we note the following inequalities from Stirling’s formula.

L em m a 1 1 . 1

«i 1  f n \ n , 3 1 f n \ n
2 2 n 2 ( —J < n! <  2 2 n 2 f —J ,

22n_1 f 2 n \  22n+1
T-  < <  — a -n 2 \ n /  n 2

□

First we consider the number of good walks between (0,0) and (27V, 0). We use the 

solution to the parenthesis problem , which is called the Catalan number. Let B 

be the set of strings of 2 ti parentheses, n of which are ‘(’ and n are such that in 

any string, there are at least as many ‘(’ as *)’. Then the number of these strings 

is given by the following theorem. (See, for example [15].)

T h e o rem  1 1 . 2  (P a ren th es is  P ro b lem )

|B| =  — ( 2n\
1 1  72 1 \  72 J

□

L em m a 11.3 The number of good walks from  (0,0) to (27V, 0) is

0 <2" '° >  =  f f T 2 ( “ ++ ,2>

and lies in the range
o2iV o27V+3
— 3-  < (7(27V,0) <  ~~r5~  
TVa 7V2
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P roof. Let W be the set of good walks between (0,0) and (2TV, 0). A good walk 

does not go below —1. Let us consider the set of walks W ' formed from W by 

the addition of the steps from ( - 1 , - 1 )  to (0, 0) and (2TV, 0) to (2TV +  1 ,-1 ) .  We 

translate W ' to form W" by the addition of 1  to both coordinates. So W" is the 

set of walks between (0,0) and (2TV +  2,0) which do not go below 0. There is a 

bijection between W and W". We now show that counting the number of walks 

in W n is equivalent to the parenthesis problem on TV + 1  pairs of brackets. Let an 

edge from (a, 6 ) to (a +  1 , 6  +  1 ) represents a left bracket and to ( a + 1 , 6  — 1 ) a 

right bracket. Since the walk never drops below the a:-axis, there are never more 

right brackets than left brackets. Also, the added first and last edge ensure that we 

start with a left bracket and end with a right bracket. This gives us the parenthesis 

problem on TV +  1  pairs of brackets, so by Theorem 11.2 the number of good walks 

is
1 /2TV +  2 \

TV + 2 \  TV +  1  y

By applying Lemma 11.1 to the above formula for (7(2TV, 0) we obtain the required 

inequalities. □

To obtain the number of good walks to the point (TV, 6 ), we use the reflection 

principle [12], which is a more general version of Theorem 1 1 .2 .

L em m a 11.4 Suppose 0 <  6  < TV. Then the number of good walks from  (0,0) to 

(TV, 6 ) is

G (N  b) -  (N  + + 2)^jv+6+4^j ^N-by

P ro o f. The number of good walks to (TV, 6 ) is the total number of walks from
(  TV \

(0,0) to (TV, 6 ) minus the number that go below —1. There are I N+b I walks from

140



\

Figure 30: The reflection principle

/  N  \
(0,0) to (N,b) of which I N _ b _ 4  I fall below —1 , by the reflection principle. (See 

Figure 30.)

Therefore we have 

G(N,b)

=  m  

=

n \  i  N
N±b I I W-t-4

2 /  \

l ( ¥ ) ! ( ¥ ) !  ( ^ ) ! ( ^ ) ! y
(AT +  6  +  4 ) ( A I + b + 2) -  (TV - 2 )

4 ( ^ ) ! ( ^ ) !
4(TV +  l) ( t  + 2)

•4 ( i l t t t l l j j  ( J S t t j ,

(TV +  1)!(6 +  2)

This completes the proof. □

So far, we have expressions for the number of good walks G(2 N , 0) and the number

141



of good walks to (TV, 6 ). Now we calculate what proportion of walks which are good 

to (TV, b) are very good to (TV, b).

Lem m a 11.5
V(N , b) b(N +  b +  4)(TV +  6  +  2) 
G(N,b) ~  4(6 +  2 )(TV +  1 )TV

P ro o f. First we need to find V (N , 6 ). Again, we use the reflection principle. We 

count the number of walks from (1,1) to (TV, 6 ) and subtract the number of walks 

which fall below height 1 .

v (N ,b )  = ( 1 ; J )  -  ( V )

=  (JV I ) 1 ( ----------- --------------------------- -----------I (i£±S=2)|(i£=fct2)j ( N - b - i y

-  (JV i y (N  + b ) - ( N - b )
~  I "  V- 2  ( * * ) ! ( * * ) !

( J V - 1 ) ! 6

Using the expression for G(N, b) in Lemma 11.4, we now have 

V{N,b)
G(N,b) ~  (l!U 4)i(l!t4)!(jV +  1 ) I ( 4  +  2)

b(N + b +  4)(1V +  6  +  2)
4(6 +  2)(JV +  1 )JV '

□

We use the expression for the number of good walks to (TV, 6 ) to obtain upper 

bounds for the number of good walks to (2TV, 0) which pass through (TV, 6 ), and the 

number of walks which are very good to (TV, 6 ) and then good from (TV, 6 ) to (2TV, 0). 

We note that (TV, 6 ) is certainly smaller than (7(TV, 6 ) and so V (N i b)G(N,b) < 

G~*(N, 6 ). Therefore we only need to find an upper bound for G~*(N, 6 ) =  G(N, 6 )2.
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L e m m a  1 1 .6  For all b with 0 <  b <  N ,

G~ ( N ' b) < 2 1 0 N - h ‘2 e - &  
G(2N,0) ~

P roof. First we note that we can write

G~(N,b) G (N,b ) 2

G{2 N,  0 ) ~  G{2 N, 0)'

We find an upper bound for the numerator,

, (N  +  1)!2(6 +  2 ) 2
G(N,b) -  ^ + 6 + 4 ^ , 2 (N-b)i2 f

by applying Lemma 11.1.

G (N,b ) 2 <
4 (* ± i ) 2 W + 3 ( 6  +  2)2e

2 e ^N+b+4^N+b+5 2 e ^N-b^N-b+ 1

( N + l ) 2N+3(b + 2)2 e2

^N+b+4^ N + b + 5  ^N-b^N~b+l

22 N+6 e2(N  +  l)~3( i +  2 ) 2

( 1  +  f f i ) N+i+S ( 1  -
2 2 AT+ 1 0  jy-3^2

"  ( i  +  £ ) w  ( i  -  %)N~b

< 2 2 ^ + 1 0  7V-352e(Ar+6) ( - ^ + i^ ) + ( ;V- 6) ( ^ + ^ )

< 2 2 N+1°N~ 3 b2 e ~ ^ ~ ^

< 22 N+wN~ 3 b2 e~™.

We use the above bound and Lemma 11.3 to obtain an upper bound for

G ~(N,b) G (N ,b ) 2

G{2N,0) ~  G(2N, 0)

2 2 N+1 0 N - 3 b2 e -&
22NN~§

< 2 l0 N ~ h 2 e-™ .

<

<

<

CT(N,b)  
G(2 N , 0 ) '
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This completes the proof. □

Now we have all the information we need to calculate how many good walks there 

are which are very good to N  and good from N  to 2 N , that is, to calculate LV. 

We divide our sum into three parts which we deal with separately for clarity.

N

L V  =  5 > ( t f , 6 ) G W )
6=0

jvi N% N

=  J > ( J V , 4 ) G W ) +  J 2  V(N ,b)(?(N ,b) + J 2  V(N ,b)(?(N ,b).
b=0 b = N »  b = N s

Denote the three sums by S\, S 2 , S3  respectively. We shall prove that Si and S3  

are small and S 2 is approximate!}'' ^G(2 N,  0).

Lem m a 11.7

S  \ S  '  C(nN  01 1 V
5 1  +  5 3  "  G{2N' 0) [ h  G(2N ,0) +  L  G'(2 W,0 ) I

\  u b = N 8  /

= O ( n ~1) G(2N,0).

P ro o f. We rewrite the expressions for Si and S3 as follows:

N $  N

Si + S 3  = J 2 V (N ’ b)G'( N ’ b) +  E  V(JV,6 )Gf(JV,6 )
6 = 0  6=7V8
TVs _ . TV

^ G ( 2 N , 0 )  ' G(2 J\T,0 ) ^
6 -0  b = N a

Now we apply Lemma 11.6 to an uPPer bound f°r Si +  S 3 .
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n I n

Si + S3  <  ^ 2 loAr-56 2 e-5NG(2iV,0)+ 2IOAf-562 e-377G(2Af,0)

t = 0  b=Ni
/  n I  n  2 \

<  21 0 N -iG (2 N ,0 )  h*e ) •
V=° i,=n I  J

Since the terms in the second sum are decreasing as b increases to N , we can 

approximate it using the following integral:

N , tN
N  2 ^  b2e 2n <  N  2 f b 2e 2*db

5 JN 8

/
J N

=  (2JV* + Afi) e-T4- -  (2 N 4 +  iV*) e‘

6 = ^ 1

rjV l2
< N  2 I b3e 2N db 

M
i

<  2 N h - ^ r .

Similarly, the first summation approximates to the following integral.

N& .jvl
Y ' N - h 2 < N ~ 2 f
U  -  Jo

db

a t - 3- N 1 =  N  2 —
3 

N - i

Therefore we have an upper bound for Si -f S 3 .
1

S1 + S 3  <  2loG (2 N ,0 )N ~ i+ G(2N,0)2 1 1 N i e - ‘T- 

< 2n G(2N,0)N~>,

for sufficiently large N , as required. □
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Now we come to the central sum S2-

L em m a 11.8

N * / I  \
V(N ,h)(?(N ,b) = + 0  ( iV - t ) J  G(2N,0).

b = N l

P roof. We have 

N s

& = E nN,b)(?(N,b)

V(N,b)

,b = N z

N a

6=AT 8

Applying Lemma 11.5 this becomes

*  b { N  +  b  +  i ) { N  +  b  +  2 )

5 2  -  E  4(6 +  2 )(iV +  1 )N  °  {N' b)
b = N  8 

6=AT 8 

6=7V 8

AT
Now, J 2 G~ ( N ’b) =  G(2JV,0), so

\  6 - 0  6 = A /1

We have upper bounds for the second and third terms which are Si and S3  respec

tively, so
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S2 =  ^G(2N,0)(\ + o (n - ^ + o (n ~‘^  

= iG(2JV,0)(l +  o ( j V - t ) ) .

□

Now, combining the expressions for S2 and Si +  S 3  given by Lemma 11.8 and 

Lemma 11.7, we obtain the following lemma.

L em m a 11.9 There exists a constant Cq such that, for all n,

<  CqN ~ *

□

So, we see that the probability of a very good walk to (TV, b) and then a good walk 

to (27V, 0), given that it is a good walk from (0,0) to (27V, 0), is about J. Next 

we show that the probability of a hit in the centre of the walk is small, namely 

O ^ in the range between 2 uj and 2 ( N —u)  where 0 <  lj <  TV—lj. This means 

that we can deal with the two extremes separately. We calculate this probability 

by looking at the number of good walks that hit at (2fc, 0). That is, we count the 

good walks to (2 k, 0) and from (2 k, 0) to (27V, 0).

L em m a 1 1 . 1 0  The probability H  of a hit in the centre of the walk is

N —UI TKT —

h < T  3 2 N 2  3 
~ h k i ( N - k ) i  ~

P roof. The proportion of good walks that hit at (2k, 0), where u> < k < N  — lo is 

^   ̂ So summing over k and replacing G~*(2 k,Q) by G(2k,0)Gr(2k,0), we
G(2 N ,  0)
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obtain

A' ' “ G(2k,0)GT(2k,0)* = E
G(2iV-°)

Applying Lemma 11.3 and Lemma 11.4, this becomes

N-u 2 (2 k+2 \ (2 (N-k+l)\ 2
2 k+A \ k+ 1  J V N-k+ 1  J 2 (N-k+2 )

2  / 2 iV+2 \
V N+ 1 Jk—u) 2 N+A \ N+1

Now applying Lemma 11.1,we obtain
^  (JV + 2)22 f c + 3 + 2 i V - 2 < : + 3 _ 2 J V - 1  (Ar +  1 ) 2  

“  ;“  (* +  2)(fc +  l)i(JV -  fc +  2 ) (N  - k  + l ) i

< y ?  (JV +  2 )2 S(N  +  1 ) 2

- -  (Jfc +  2 )(Jfc +  1)*(JV -  k +  2 )(JV -  * +  1)1 

25 JV§
fc: 
N—u

- E dt ^ k i ( N - k ) V

Now, the sum is symmetric about ^  so

H < 2el£  N I
kZ!,k H N - k )*

Since the function k 2 (N  — k) 2 is symmetric about b =  y  and decreasing as 6  

increases to ~  we can approximate the sum by the following integral.

&
2

"  ~ 2

<  2 .  / ?  ,  , J t
L - i k 2 ( N - k ) i
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H  < 2eN ~ i  f 2 i " l ( l  - x ) U x

< 26 JV-5

< 2 6 N~i

<  27 -

4x — 2 
1 2 ( 1  — 1 ) 2

l7—
N

a;—!
JV*

- 4 ^ + 2

(* = !)* (! _* = !)*

1 - 2 ^
(w _  1)5 (1 _  

2 ®<
(u> -  1)5
9. - h< 2  ycj" 2 .

□

To summarise so far, we have found the probability of a very good walk on the left 

followed by a good walk on the right. Therefore we know the probability of a hit 

in the extreme regions and also the central region. We now need to estimate the 

probability of exactly h hits on the left and a good walk on the right. This will 

enable us to find how many of the good walks have exactly h hits on the left (and 

hence, by symmetry, on the right).

Considering the probability of a walk having h hits on the left, we prove the next 

lemma.

L em m a 1 1 . 1 1

Pr(/i hits on left) =  +  O .

P roo f. For an event A , let P>h(A) be the probability of A  given at least h hits 

on the left and let Pk(A) be the probability of A  given a hit at k. Let K s(k) be
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the event ‘5 th hit at k \  Using this notation we write the probability of at least h 

hits. We split it into two sums Pi and P2 over k , the position at which the Ath hit 

occurs.

P r(>  h hits) =  P>h-i(a t least h hits)Pr(at least h — 1  hits)

=  P>h-i(Kh-i(k))Pk(>  1 more h it)P r(>  h — 1  hits)
k < N

=  P>h-i(Kh-i(k))Pk(>  1 more h it)P r(>  h — 1  hits)
*<nrfe
+  ^ 2  P>h-i(Kh-i{k))Pk(> 1 more h it)P r(>  h — 1  hits).

— In N

We shall next prove that the second term, P2, is small and the first term, Plm is
/ 3 \ *  

close to I — I .

P2 =  P>/i-i(^/i-i(^))-Pjfc(^ 1 more h it)P r(>  h — 1  hits)

<  Pr(hit at k).
k>P^— In /v

Applying Lemma 11.10, we have 
„  /lnJV ' ’

Pi < T
V JV y -

We now deal with P\. We will prove, by induction, that the probability of at least h
jy  r  /oX h h

hits in the region from 0  to -—— lies in the range
In TV W -

C o h A T - |,( |)  +cohN-

where Cq is as in Lemma 11.9. From Lemma 11.9, we have that the probability of

at least one hit on the left, is in the range 

contant Cq, independent of N .  First we wil 

lower bound.

3 , 3 3 3
-  -  CohN » , -  +  CohN »
4 4

, for a fixed 

obtain the upper bound and then the
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= E p i{Kh~i(k))Pk(> 1 more h it)P r(>  h — 1 hits) —

k < X n N
N

h - 1

k < \a N

N  \  / 3  \  /  /ON h —

S  { - , *  { ! t _ N l l n N ) S ,  y y ,
k ~ l n  N

'3 s h

<- ( ; + < ^ r )  ( © “ '̂ B ) “
< chN~*.

Similarly for the lower bound,

3 n  h

P l ~ [ i

=  ^2, P>h-i(Kh-i{k))Pk(> 1 more hit)P r(>  h — 1  hits) — ( j
k<-^~In N



Therefore
3  \ h

< chN  8

So, combining our estimates for P i and P 2 we have

Pr(>  h hits) =  ( | )  + 0  (h iV -t)  .

Now we will show that the probability for a good walk to have exactly h hits on

the left is about ■ ■ .4 / 1 + 1

Pr(exactly h hits on left) =  Pr(at least h hits on left) — Pr(at least h +  1  hits on left)

> ^ ! ) ‘ + cAJV- ! - g ) A+1- c ^ - f )

>  J ( | ) ‘ +  2cWV-*

This completes the proof. □

Now we bring everything together by using Lemma 10.9. We count the number 

of walks going through (TV, 6 ), weighting each one by 2-/ where I is the number of 

hits.

P ro o f  of T h e o re m  1 0 .2 . We use Lemma 10.9 to obtain the number of labelled 

posets of width two on { 1 ,2 ,. . . ,  TV}.

2  2 * 2  ̂

- f
6=0 \  *=0 /

Applying Lemma 1 1 .1 1 , we obtain
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6=0 \  t= 0  v 7

-  f  O(N.I,)’ * 0 ( N - ! ) f a (2NM

'  ( I  + °  ("■'))■

Replacing G(2N, 0), by Lemma 11.3,
^  M  (  2N  +  2 \ /  4

”  2 (AT +  2) V ^  +  l j  \2 5  +  (  * )}

=  (2 y + i j | M + Q ^ y
(AT +  2 )! \25  V / ;

□

Now we come to a result which can be easily obtained from the previous calcu

lations. One such result is the expected number of components of an incompara

bility graph of a poset. This is obtained as follows. We find the number of small 

components on the left, which by symmetry is the same as the number of small 

components on the right. We then sum these, plus one for the central component. 

The expected number of small components on the left is

N  N
6 0  - \  . O  6 0  . O  6 0  O / O

Y  4 - , l 23 i + 2  =  T ^ * 8 < =  IT (5 /8 ) 2  =  '
* = 0  i= 0  v ' '

Therefore the expected number of components is seven.
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12 U n lab elled  P o se ts

Now we conclude the section on posets with this chapter in which we will prove 

Theorem 10.3. Recalling Lemma 10.10, we see that we need to calculate the number 

of walks which have s symmetric hits and i hits on the left. First we consider the 

number of good walks that have a symmetric first hit. Let L(4fc, 0) be the number 

of very good walks from (0,0) to (4fc,0) which are symmetric.

First we note that
( 2 » \  _  „

where 1/(12.; - f l )  < otj < 1/(12.;), by Stirling’s formula. Now we consider L(4&, 0). 

We can count the set S  of symmetric very good walks from (0,0) to (4fc, 0) by 

comparing it with the set V of very good walks from (0,0) to (2 k, 0 ). There is 

a bijection between S  and V as each consecutive pair of edges of the symmetric 

walk corresponds to one edge of the very good walk. (See Figure 31.) We multiply

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1  2 3 4  5 6  7 8

Figure 31: L(4fc,0) and VG(2k,0).
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L(4fc,0) by the number of good walks from (4&,0) to (2iV, 0), to give the total 

number of good walks that start with a symmetric hit at 4k. To find the probability 

of this we then divide by G(2N,0). Let L be the probability of the first hit of a 

good walk being symmetric hit. We obtain the following lemma.

Lem m a 12.1

«  0.0669873 +  O In w ) .

P roo f. As we have already discussed,

^  L(2k,0)G(2N -  4k,0)
G(2N, 0)

1 ( 2 k - 2 \  1 (2 N -4 k + 2 \

E k V fc-1 )  N -2 k + 2  \  N - 2 k + l  )
1 /2JV+2\

Jfc>l N + 2  \ N + l )

N + l  (2k  -  2 \  22 N ~ i k + 2  y /x {N  + 1 )  g

l-' i k { N - 2 k  + 2 ) \ k - l )  y / * ( N - 2 k  + l )  22 N + 2  6

where /? =  Oi2N - 4k+ 2  — 2 & N - 2 k + i  +  <*2N +2 — 2ajy+i. Continuing,

1  -  E  i(Jv - a 1 . 2 ) ( ? - " i + ■ ) - '■ (»  +

k> 1 x 7

«  0.0669873 +  0  ( n - 'Hu N )  .

Now we consider the probability that the first hit is symmetric given that there is 

a hit.
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L e m m a  1 2 .2

~r 3
Pr(first hit on left is a symmetric hit | hit) =  —L +  0 ( N ~»).

O

P ro o f. Now,

Pr (first hit on left is symmetric | hit)
Pr (first hit on the left is symmetric)

Pr (hit)

So the probability that the first hit on the left is a symmetric hit given that there 

is a hit on the left is

j j i  +  0 ( N - i )  =  ± L  +  0 ( N ~ l ) .

□

We require the probability of s symmetric hits given i hits on the left. There are 

^  ^ ways of choosing the s symmetric hits. The probability of a symmetric hit is 

|  L and of a non symmetric hit is 1 — f L. Therefore the probability is given by the 

next lemma.

L em m a 12.3 The probability of s symmetric hits given i hits on the left is

□

Now we come to the proof of Theorem 10.3.

P ro o f  of T h e o rem  10.3. We recall the notation Gaj,{A ,B)  which is the number 

of good walks to (A, B)  with a hits and b symmetric hits. Also G*ab(A ,B )  is the
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number of good walks from (A, B)  to (2iV,.0) with a hits and b symmetric hits. By 

Lemma 10.10, the number of unlabelled posets of width on N  vertices is

= I E2  . f—' 2 t_* 2 i~u
b, j , i , t ,u=0

By symmetry, GTjfU{N,b) =\GjtU(N,b), so

m  = ^ e ( e E ^ # ^ )
b \  i  s  J

Now, applying Lemma 12.3, we have 

fl“(A0

-  ^ ( e e Q ^ H E G 1)’^ ^  
= i E (e  ̂ E  Q (■ - f i f  (i*y)‘-owHkww*

=  l E ( E ^ ( i + H T +o(JV"f)G(2JV,0)-

By Lemma 11.11 this becomes

n ; w  =  £ E GW6)2 (E  iS r 2"  (1 + ̂ L) )  + O ( N - i ) G ( 2 N , 0 )

=  +  +  O ( N - i ) G ( 2 N , 0 )

=  ^ G (2W,°) (E f^ '^  +  ^ V )  +  O ( N ~ « ) G ( 2 N , 0 )
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n ; w  = ^ g (2JV’° ) ( e ( i  +  | ) ' )  + o (iv -l)G (2 7 v ,o )
\ i=0

J _ ________(  1

32
G{2N,0) [ -g— r  ) + O(N->)G(2N,0).

8 2

Using Lemma 11.3, we replace G(2N,0) to obtain

« 5 W  =  + 0 ( J V - 5 j  lG(2iV,0)

( s  ( i t s )  +0 ("■■') 

f i W w ( s 111645+0(""!))N\

which completes the proof. □

Again, we consider the expected number of components in an incomparability 

graph, this time of an unlabelled poset. We use a similar calculation to that 

in the previous chapter. The expected number of small components on the left is

2 N  :  /O  r \ *  / k  T \  2 3 , L
8 2

K H ) g K M ) '  =  K H
4  (I  ~  f  ) 2

=  3 +  4L

E l  ( 2 k -  2 \
■ (  ] «  0.669873. So the expected number of components

k>\ k \ k ~ 1 /
is 7 +  SL w 7.5359, compared with 7 for the labelled case.
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