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ABSTRACT. This thesis deals with the set of issues commonly known as the ‘measurement 

problem’ in quantum mechanics. The main thesis is that the problems are best understood as 

typically theoretical problems, in the sense that they are not problems directly concerned with 

the ability of the quantum theory to account for, or represent, actual measurements. This is 

contrary to the standard view that the quantum measurement problem is in fact about how to 

fit theory to experiment.

I explain how I characterise a theoretical problem and argue against claims that quantum 

measurement theory is unrealistic or ineffective because it bears so little relation to actual 

measurement practice: I argue that the quantum theory’s analysis of measurement need not 

be committed to doing for the experimenter what Henry Margenau and other critics think it 

should do. Its principal aim is to answer two questions. First, it tells us what properties are to 

be associated to quantum states; secondly, it tells us what, in the theory, a measurement must 

be if these properties are to emerge.

I then discuss some of the specific aspects of the problem of measurement, in particular the 

results known as insolubility proofs of the quantum measurement problem and the characteri

sation of the quantum measurement interactions satisfying standard probabilistic constraints. 

I prove several results here, amongst them characterisations of all interactions jointly satisfying 

the conditions of unitarity and, first, objectification, then secondly, probability reproducibility 

conditions. These are the standard conditions which capture our intuitions about quantum mea

surement. I show how the results lead to negative consequences with respect to the interpretive 

questions in quantum mechanics.

The discussion of these specific aspects of quantum measurements does, on the other hand, 

suggest a particular strategy for solving the problems. This is found in Arthur Fine’s solution to 

the measurement problem, which is based on the idea of a selective interaction. The discussion 

of Fine’s solution emphasises in general how simply implementing technical strategies is not 

sufficient to solve the measurement problem in quantum mechanics: further arguments must 

be given for why the strategy is appropriate, rather than just mathematically satisfactory. I 

claim that the arguments given by Fine are far from sufficient.

The thesis concludes that, although the quantum theory of measurement is immune from 

Margenau’s critique, and retains a theoretical autonomy, it is still plagued by numerous prob

lems: the thesis identifies clearly what some of these problems are and considers some solutions, 

most of which, however, raise serious philosophical questions about the interpretation of quan

tum mechanics.
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Introduction

This thesis discusses the work on quantum measurement from a foundational and philo

sophical perspective. Its title reflects the status I associate with this work: I want to 

argue that it is a typically theoretical enterprise, concerned with establishing theoret

ical facts, as opposed to fitting experimental facts to theoretical ones. In order to do 

this, I will both put forward the philosophical argument for this claim, and explain 

and critically analyse quite what the theoretical work I refer to consists of. I will also 

analyse a case where the questions that quantum measurement raises are analysed from 

a point of view that is somewhat opposite to the one I endorse here, in that it seeks 

to rely on experimental facts. As well as raising a number of problems associated with 

the answers this case provides, I hope to show not only how quantum measurement 

is typically theoretical, but also that bringing it closer to experiment is fraught with 

difficulties.

I will begin by outlining the contents of the chapters which follow in the thesis, and 

then make some general comments on its contents.

Chapter 1 argues that the theoretical account of measurement that quantum me

chanics provides is not about giving realistic accounts of experimental measurements, 

but rather about an attempt to answer questions which emerge in quantum theory. 

The argument is directed against criticisms of the formalism of quantum measurement 

which go back, in some form or other, at least to Maxgenau [64, 66], and which have 

been repeated in some form or other by, amongst others, Park [69] and Chang [22, 23].

The strategy of the arguments against the formalism of quantum measurement 

begins from the fact that projections (or ‘wave function collapses’) either happen, or 

appear to happen. By projection I indicate the well-known phenomenon in quantum 

theory that takes place upon measurement of a physical quantity on a system. In Dirac’s 

original statement [29, p. 5-6], the state of the system undergoes a discontinuous

l i
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transition when such a measurement takes place: it evolves from a superposition of 

states where the measured physical quantities have exact values, to one of these states.

In the standard Hilbert space representation of quantum mechanics, states are 

taken to be one-dimensional projectors on the Hilbert space which models the system 

(or indeed the unit vectors of the one-dimensional subspaces which are the image of 

the projectors). This is usually generalised to include convex combinations of the 

projectors, this whole set representing all the possible states. Elements of this set are 

normally called density operators, and the projections are also called pure states.

Observables, the physical magnitudes of the systems, are usually represented as self- 

adjoint operators on the Hilbert space; eigenstates of these operators are states where 

the physical quantity associated with the operator has a definite value, this value being 

the eigenvalue associated with the eigenstate. Projections over eigenstates of operators 

representing physical observables, together with their algebraic sum, capture properties'. 

in the standard approach to quantum theory a state then has the property represented 

by such a projector (which can be a projector over a subspace of whatever dimension) 

if and only if it itself projects on an eigenstate of the ‘property’. Pure states which are 

not eigenstates of a given observables are said to be in a superposition with respect to 

that observable.

Von Neumann [82, Ch. V] generalises Dirac’s projection postulate in the following 

way. The transition should not necessarily be understood as one from a superposi

tion to an eigenstate of a measured observable. It is best understood as a transition 

from a projector on a superposition to a non-pure density operator which is a convex 

combination of appropriate eigenstates; this is Von Neumann’s type I  evolution.

The quantum theoretical accounts of measurement assume either that projections 

happen, or that it is as if they happened, so an account of measurement that denies 

that projections take place should nevertheless be able to account for measurement 

results consistent with projections happening.

Margenau first criticised the very idea that projections happened, or seemed to 

happen, drawing on examples from empirical practice. In doing this he would under

mine the whole approach of the quantum formalism: what use would a theory trying to 

account for projections be, if projections didn’t happen, or happened very rarely, and 

if states changed in a manner that did not mirror what projection postulates claim?
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His most famous example is that of destructive photon measurements: when we 

measure photon polarisation, photons are destroyed, they never end up in eigenstates. 

W hat does the projection postulate have to say about this?

Chang in particular [23] has recently re-emphasised and reinforced this critique, ex

plicitly directing it to the formalism of quantum measurement in general, and providing 

a number of good examples to prove his point.

My argument claims that this criticism is wrong. Its mistake lies in assuming that 

the aim of the formal account of quantum measurement is to provide a description or 

a calculational tool for all real-life experiments. I claim that the quantum theoretical 

accounts of measurement are designed to account for two questions:

1. What properties can we assign to quantum states?

2. What kinds of evolutions axe appropriate for quantum systems?

I think that in answering these two questions it is not crucial that we maintain a 

close connection to modelling experimental results, for these questions are focused on 

problems of a specifically theoretical nature. In making this claim, it is still necessary 

to explain why theoretical work need not depend on what happens in experiments. I 

will try to make sense of this by arguing for what Lakatos called the relative autonomy 

of theoretical science.

These questions have two traditional answers. The quantum theorist’s answer to 

the first question has been captured by the so-called eigenvalue-eigenstate link, which 

was mentioned above: a state has the property represented by a projector if and only 

if this state projects on an eigenstate of the ‘property’. The answer to the second ques

tion claims that unitary evolutions, identified by the quantum mechanical Schrodinger 

equation, are the appropriate evolutions for quantum systems. Von Neumann’s type I 

evolutions are problematic, and it would be nice to be able to do without them. For 

one thing they violate historical determinism. As Earman has put it,

Letting W stand for the collection of all physically possible worlds. . .  [the] 

world W  £ W  is Laplacian deterministic just in case for any W ' £ W, if W  

and W ’ agree at any time, then they agree at all tim es.. . .  This concept of 

determinism can be broken down into two subconcepts. A world W  £ W  

is futuristically (respectively, historically) Laplacian deterministic just in
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case for any W ' € W, if W  and W ' agree at any time then they agree at 

all later (respectively, earlier) times. [30, p. 13]

If quantum mechanics admits of Von Neumann’s type I  evolutions, then it clearly 

is not historically deterministic. There will almost always be infinitely many states 

mapped by a type I  evolution to the same final state. If they are to be typical of the 

measurement process, this would make quantum mechanics indeterministic in a  way 

that is not only conceptually problematic, but also problematic for the relationship it 

implies with other theories which do not share this same feature. Can we do without 

these evolutions?

This question is at the root of the work in subsequent chapters of the thesis. The 

second chapter examines in detail why the two traditional answers are not co-existent, 

clarifying and extending the literature on the insolubility proofs of quantum measure

ment. The starting point here is that we want our measured object to look like it is 

undergoing a type I  evolution, while arguing that this is not really what is going on. 

The answer to this is to enlarge the system under consideration to include the measur

ing apparatus. Can the evolution be deterministic? Can we assign the right properties 

at the end of the evolution in a way that the eigenvalue-eigenstate link is in some sense 

preserved, while giving rise to the correct properties?

This latter requirement, in the context of the description on the enlarged sys

tem, is demanded not necessarily of the object system, but at least of the apparatus, 

which records the measured values. In order to ensure that the eigenvalue-eigenstate 

link is applicable to the final state after a measurement has taken place, the unitary 

measurement operator U effecting the measurement has to satisfy the objectification 

requirement. This requirement demands that the final state of the combined system be 

a convex combination of eigenstates of the pointer observable for the combined system.

Is objectification sufficient to guarantee that the right properties are possessed by 

the apparatus subsystem? No; we need some sort of probabilistic condition, too. The 

standard condition that is assumed is the probability reproducibility condition: if the 

object state is such that, upon measurement and projection, it is transformed into 

a certain eigenstate of the measured observable with probability a , then the pointer 

should point to the value associated with that eigenstate also with probability a. The 

problem is that no unitary operator which satisfies objectification can satisfy either the
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probability reproducibility or any reasonable generalisation of it. That is the core of 

traditional insolubility results.

Chapter 2 will discuss these results. It provides several generalisations of the results 

known so fax. In particular, it proves a characterisation theorem for all unitary opera

tors satisfying objectification, which allows for a ‘constructive’ proof of insolubility of 

the quantum measurement problem.

In the process of doing this the chapter will try to resolve a long standing conceptual 

controversy between Shimony and Stein on the one hand, and Fine and Brown on the 

other, as to the validity of the latter two’s proof of insolubility, which assumes an 

additional principle, Real Unitary Evolution (RUE). I will show how the technical 

content of RUE is in fact deducible from unitarity and objectification.

I will the provide a preliminary insolubility proof for the case when the pointer 

observable is unsharp. This is a rather delicate question: as I will show, the formal 

statement of an unsharp objectification is not trivial, and it is far from clear that 

insolubility results will continue to hold under all possible conditions of unsharp objec

tification. I will propose such a statement and go on to prove an insolubility result for 

a restricted set of cases.

It is important to discuss why it is necessary to consider the case of unsharp pointer 

observables. The framework in which unsharp observables axe introduced is slightly 

different from the one outlined earlier for standard observables. Another way of looking 

at observables is as mappings from possible values of physical quantities to projection 

operators, that is as projection-valued measures (PV measures for short). It is possible 

to recover the self-adjoint operators by adding up the projection operators in the range 

of the measure, multiplied by the values associated with them, so that there is a one- 

to-one correspondence between PV measures and self-adjoint operators on a Hilbert 

space. PV measures can be generalised in much the same way that pure states are 

generalised to density operators. Namely, values can be mapped to convex combinations 

of projections, called effects. In this case the projections can be over subspaces of 

dimension greater than one, rather than one-dimensional projections only as is the case 

with states, and the resulting, extended set of observables is known as the set of positive 

operator-valued measures (p o v  measures for short). The set of PV measures is a subset 

of this, known as the set of sharp observables. POV measures which aren’t sharp axe 

known as unsharp. This construction is consistent with states and observables yielding
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probabilities, through the calculation of the trace of the product of the state (as density 

operator) by the appropriate property (as effects).

The generalisation is not only mathematical, but has important physical conse

quences and applications, too. It was introduced by, amongst others, Davies and Lewis 

[26] in the context of setting up an operational approach to quantum mechanics. Many 

of the physical applications have been extensively discussed by Busch, Grabowski and 

Lahti [13], who show for example how the analysis of the original Stern-Gerlach exper

iment necessarily involves POV measures. Another important physical aspect of the set 

of POV measures is that it contains unsharp joint position and momentum observables.

It will help to give an example of an experimental setup which is necessarily analysed 

in terms of unsharp observables. This I do in Figure 1, which is taken from a paper by 

Pessoa, which discusses some of the aspects of measurement and unsharp observables 

[70].
6 =  30

6 =  0

F i g u r e  1. A  measurement setup where the detection operators are unsharp

Here a beam of light is separated at the birefrangent prism oriented at 6 =  0 

degrees. The top and bottom components then fall on two further analysers, oriented 

at 6 =  30 and 9 =  45 degrees respectively. The observable representing the fact that 

the particle is detected at D\ or D 2 is resolved as a positive operator valued measure 

which is unsharp: each one of the two detectors receives a fraction of the top and 

bottom components coming out of the first prism, rather than receiving definitely up 

or definitely down photons as would be the case if the observable was a PV measure.

In the case of the measurement problem, consideration of unsharp pointer observ

ables is particularly important, for it is an open question whether unsharp objectifi

cation and unitarity will contradict probabilistic conditions, as happens for the sharp 

case. In fact it is pretty much an open question what unsharp objectification precisely
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consists of. The importance of this analysis is that, were it possible to provide a model 

of measurement satisfying these conditions for unsharp observables, this would count 

as a solution of the measurement problem, at least from the formal point of view. 

While my conclusions are sceptical on this topic, it should be stressed that this does 

depend in a fundamental way on the definition that I propose, and defend, of unsharp 

objectification.

Chapter 3 addresses questions connected to probability and measurement in quan

tum  mechanics. Its aim is to explore to the full the implications of the other assump

tion made in the previous chapter, namely the probability reproducibility condition. 

I discuss how this condition works with the demand of unitarity of the measurement 

process and more generally, for the case when states are taken to be density operators, 

bijectivity.

The probability reproducibility condition is not the only condition that has been 

proposed in order to capture the probabilistic aspect of a good measurement. While it 

dates back to at least Von Neumann, Fine [35] suggested other, more general condi

tions: these amount essentially to asking the pointer apparatus to discriminate between 

probabilistically different object states, without asking it to get the probabilities asso

ciated with the object absolutely right. These are an important conditions to bear in 

mind when discussing insolubility proofs, for they are considerably more general than 

the probability reproducibility condition. However they are problematic in several dif

ferent ways, as again Fine, and also others, have pointed out, when used to characterise 

actual unitary operators effecting premeasurements. Premeasurements are unitary op

erators which map an initial state to a semi-final state, so to speak, namely to a state 

which just predates collapse of the wave function. In so-called no collapse interpreta

tions, these premeasurements are actually all that there is to measurement.

In this chapter I discuss how to define premeasurement interactions that satisfy the 

unitarity and probability reproducibility conditions. I will present a detailed generalisa

tion of a result by Beltrametti, Cassinelli and Lahti, which fixes the type of interactions 

for the Hilbert space case. I will then explore the question of how to define such map

pings for the density operator formalism. The question is less straightforward in this 

case, though I will show that when measurements satisfying probability reproducibility 

and a suitable generalisation of unitarity exist, they must be actions on density opera

tors of the form UTU*, where T is a density operator and U is a unitary operator on the
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composite object +  apparatus system fixed by the result which generalises Beltrametti 

et al.’s theorem.

This result enables us to establish a number of consequences for the density operator 

case concerning the types of unitary premeasurements that will be possible. I will 

show that, if the initial apparatus state is a non-pure density operator, then no Von 

Neumann, repeatable or first kind measurements are ever possible. I will also show how 

there are cases where no unitary premeasurement satisfying probability reproducibility 

is possible at all. I discuss some of the consequences of these cases at the end of the 

chapter.

Chapters 2 and 3 both give characterisations of operators which satisfy objectifica

tion and the probability reproducibility condition, respectively, as well as being both 

unitary. If we wish to maintain all three of these conditions, then from a formal point 

of view an obvious thing to do is to look for subsets of the set of states where the 

two characterisations agree. This is effectively what superselection approaches to the 

measurement problem do. It is also what Fine does, in a series of recent papers propos

ing a solution to the measurement problem. I will be examining Fine’s solution and 

comparing it to solutions which adopt superselection rules. The aim of Fine’s solution 

is to consider what measurements actually do. This is of interest, for it is not the usual 

strategy that we find in work on the quantum measurement problem. On the other 

hand, as I argued in chapter 1, it is not entirely clear that this is the aim of the work in 

the measurement problem. This makes Fine’s work doubly unusual, for he is changing 

the question somewhat, as well as offering a different answer.

His solution claims that measurement interactions interact not with the full physical 

details contained in the standard quantum states, but only with ‘aspects’ of these 

details, namely the probabilistic aspects related to the measured object observable. 

This leads him to rewrite the initial states in such a way that they encode only the 

information of these aspects. These states happen to be states for which the standard 

unitary operators satisfying probability reproducibility also satisfy objectification, so 

that the measurement problem can be solved for them.

I think there are basically two kinds of difficulties with Fine’s solution to the mea

surement problem. The first kind enters into the picture when the formal similarity 

with superselection approaches is taken on board. The similarity becomes more than
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formal, I argue, if we properly explore Fine’s suggestion that we give an algebraic argu

ment in support of his solution. I explore how the various kinds of difficulties implicit 

in the superselection approach re-emerge in Fine’s approach, and argue that for the 

most part the difficulties are still there.

The second kind is concerned with how the technical device which gives a solution 

of the measurement problem is connected with what Fine claims real measurements 

do. I argue, amongst other things, that the notion of interaction with an aspect faces 

problems in certain kinds of measurement interactions, namely non-ideal ones, and that 

in general Fine is unsuccessful at persuading us that the measurement operators model 

interactions with an aspect, for there are far too many aspects that are captured by 

the standard measurement operators analysed in Chapter 3, which Fine assumes to be 

the appropriate ones to model measurement.

Summing up, Chapter 1 provides an overview of what I take the quantum theory’s 

analysis of measurement to be about, and a defence of this project against criticisms 

that accuse it of falling short of the standards of accurately describing what happens 

in real measurements. Chapters 2 and 3 examine some of the standard conditions that 

are required of the quantum theoretical account of measurement, proving a number of 

new results, analysing some of the debates in the field and raising some new problems. 

Chapter 4 examines a  particular solution that has been proposed by Fine and that 

naturally suggests itself in the light of the preceding analysis. I claim that the solution 

fails both if it is supported by algebraic techniques of quantum mechanics, as Fine, 

suggested, and in general, too.



CHAPTER 1

The Relative Autonom y of Theory: Quantum  

M easurements and Real M easurem ents

Is the quantum theoretical description of measurement empty? If it is, some serious 

consequences follow: a great deal of foundational work is barking up the wrong tree.

There is a long tradition arguing precisely this; the quantum theoretical description 

of measurement is not a theory of measurement when we think about the nature of 

actual physical measurement. In this chapter I want to show how the quantum theory of 

measurement is not empty and can be defended in its current aims from such criticisms, 

by relying on the idea of the relative autonomy of theoretical science. The phrase is 

due to Lakatos (see [60]), but such ideas are present in a  variety of forms in a variety 

of writers.

I will begin by describing an important line of criticism of quantum theories of 

measurement, due essentially to Margenau [66, 65], further discussed by Park [69] 

and, in a  more general form, by Chang [23]. I will then raise some problems for these 

criticisms and show how I think we should understand them. Finally I will claim 

that the critiques do not affect the work done in the quantum theoretical accounts 

of measurement and that it is no bad thing. I will explain this by placing work on 

quantum measurement squarely in the “theoretical”camp, and arguing for the relative 

autonomy of theory.

1. Quantum measurement and the real world

The criticism I want to address is that quantum mechanical accounts of measure

ment processes do not accurately describe (let alone explain) what happens in real 

world measurements, and that they should therefore be rejected, or that at least their 

role in foundational debates in quantum mechanics should be much reduced.

I will look at two versions of the argument. Margenau is concerned to establish 

the unreasonableness of the projection postulate in its original form (as stated in Dirac 

[29] and further expressed as Von Neumann’s type 1 evolution) as an account of what
20
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happens in real measurements. More recent work, such as the paper by Chang, extends 

Margenau’s type of argument to include the two-system interaction picture of measure

ment, again originally due to Von Neumann; the latter account is what is generally 

termed ‘quantum theory of measurement’ today.

Recall the projection postulate in its original form: we want to measure an observ

able which has a set of allowed values, represented by eigenvalues {e*} of the corre

sponding operator 0 , associated with eigenstates {<#}. The projection postulate tells 

us that at the end of the measurement each individual observed system will be in one 

of the states The postulate guarantees, in its usual understanding, that at least 

by the time the measurement is over, if not before, the system has the value that we 

observe it to have upon measurement: it will yield just that value again if the measure

ment is immediately repeated. Von Neumann generalises the idea to that of a type 1 

evolution of a system [82, p. 351]. Instead of discussing states as one-dimensional sub

spaces of a Hilbert space, think of the description of states as density operators, where 

a density operator is either a projection onto a one-dimensional subspace (convention

ally a pure state), or a convex combination of such projections, that is a weighted sum 

with positive coefficients summing to one (conventionally termed a mixed state). Then 

a type 1 evolution is a mapping of a pure state to a mixed state, where projections 

decomposing the final state are projections onto eigenstates of a measured observable.

Extending this story to the interaction picture of measurements requires including 

in the description of the measurement evolution an apparatus system, and studying the 

possible interactions which will yield a final state, after measurement, compatible with 

our observation that the pointer points to a definite value. We assume that the object 

states are rays in a Hilbert space %§, while the apparatus is represented in a Hilbert 

space The measured observable O must be linked up to a pointer observable M, 

so that a pointer being in an eigenstate ifa indicates that the value associated with the 

eigenstate of the measured system observable (pi has been detected. The measurement 

will consist in the first instance of an interaction on the joint system W§ ®'Hm which 

transmits information from the object to the measuring apparatus. Then crucially, we 

will want the final state of the combined object -I- apparatus system to be an eigenstate 

(or perhaps a mixture of eigenstates) of the pointer observable I ® M  on the joint 

system.
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In The Nature of Physical Reality and subsequent work Margenau gives an argument 

against the projection postulate. The claim for which he is most known concerns the 

absurdity of applying the projection postulate to concrete measurement situations. His 

example is that of the measurement of photon polarisation, the very example that 

Dirac [29, p. 8] uses. To measure photon polarisation we place a photocounter next to 

a polarisation prism to record the passage of a photon through the prism. The photon 

is absorbed by the photocounter and leads to the excitation of atoms in an energy chain 

reaction which causes the counter to click. The key fact, for Margenau, is that the 

photon is absorbed. In a sense, then, it ceases to exist. In his famous phrase, “we may 

be pardoned for refusing to discuss the eigenstates of non-entities” [66, p. 377].

The argument is a little more subtle than this. The first part of the argument 

contends that a measurement must yield numerical values. Margenau takes this to be a 

necessary condition: unless an interaction yields a number it is not a  measurement, but 

merely an ‘operation’. Margenau wants to distinguish the latter, ‘qualitative’ activity 

from quantitative ones which produce numbers. The term ‘operation’ for Margenau 

then designates, amongst other things, observations (the kinds of procedures where 

we observe an effect, like the superconductivity effect, without having made a precise 

numerical determination of anything), construction of equipment (like setting up the 

laboratory material for performing an experiment) and, crucially for Margenau, state 

preparation. A state preparation is any procedure which sets up a state in such a way 

that it can be subjected to a measurement, but does not actually produce a number. 

The preparation procedure can generate a statistical ensemble from which the data are 

collected, but it need not, and in general will not, be an act of measurement: we can, 

by filtering photons through a crystal, produce an ensemble of systems prepared in a 

certain polarisation state, but we cannot call this a measurement until the photons 

have been suitably recorded, and a numerical value has been produced.

According to the usual story, when a photon is filtered through a prism, if it emerges 

on the other side a measurement has been performed and the photon must be in a 

polarisation eigenstate, because if another prism with the same orientation is placed 

on its path the photon will still go through the prism: we can tell this, for instance, 

by putting a photocounter on the exit path of the second prism. But according to 

Margenau this story won’t work: the first part of the experiment is a  state preparation, 

and we do not record a numerical value in it. How can we know what state the system
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actually is in at that stage? Well, we could place a photocounter between the first and 

second prism, but then the photon would be destroyed and certainly would not be in a 

polarisation eigenstate. So the projection postulate is an unrealistic assumption.

Chang has extended Margenau’s criticism to the interaction picture of measure

ments introduced by Von Neumann [82, Ch. IV]. This picture, as mentioned before, 

generalises the analysis by describing a situation where the system upon which a mea

surement is to be performed (the object system) is placed in interaction with an ap

paratus, and the two evolve in such a way that the apparatus reproduces, according 

to some specific conditions, the properties of the system. Chang claims tha t measure

ments, as thus represented, correspond with almost no known real measurement. He 

calls the picture of measurement emerging from Von Neumann’s theory the ‘single

interaction’ picture: one group of time-indexed unitary operators, all generated by the 

same Hamiltonian, describes a measurement.

Recall that, in quantum mechanics, the dynamical evolution of a system is char

acterised by the Schrodinger equation which is specified via an energy Hamiltonian, 

the sum of the kinetic and potential energies of the system. Given this Hamiltonian, 

which identifies the kind of interaction one is dealing with, one can calculate for each 

instant of time t  an operator which maps the initial state of the system to the state 

that the system has at t. Such an operator is unitary, and all the operators for different 

times, when taken together, form a continuous group, so that the system changes in a 

continuous way. From this follows that we can think of measurements being realised in 

one single run, the different time-indexed unitary operators telling us what the stage 

of the measurement is at a given time.

According to Chang, the normal situation in the laboratory is that we have many 

more interactions going on in a measurement, and so the picture painted by the quan

tum theory of measurement is misleading if not downright mistaken. The argument 

is a generalisation of Margenau’s in that it tries to maintain the charge tha t quantum 

theoretical descriptions of measurement are unrealistic, while bypassing some possible 

objections to the Margenau story. I will return to this briefly further on.

Chang argues the point through a variety of examples; the most persuasive one 

concerns Millikan’s experiments which determine the kinetic energy of the electron 

through electrostatic retardation. The context of such experiments is Millikan’s attempt 

to measure Planck’s constant.
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The structure of this experiment involves the production of electrons, and the at

tempt to make them pass through potential barriers of increasing intensity. When 

the electrons begin to pass the potential barrier in large number, it is possible to say 

that the kinetic energy has value equal to the corresponding threshold potential en

ergy. Chang contends that it is not possible to make much sense of this experiment 

unless many runs are performed. This involves carrying through many interactions, 

with different potential barriers which the electron has to try to ‘overcome’, and these 

different potential barriers lead to different hamiltonians (expressed as a sum of kinetic 

and potential energy), lots of them, not just the single one that the Von Neumann 

interaction picture talks about. Note that we are discussing genuinely different kinds 

of interactions, since the potential energy is actually different for each one, not many 

repeated instances of the same interaction.

Chang further contends that there are grounds, given these examples, for appro

priating a distinction between notions of measurements, due originally to Park [69]. 

According to Park we have a notion of measurement, Mi, which is theory driven, per

haps typically quantum mechanical and is “used in stating the values of observables 

possessed by quantum states and objects. This concept would be employed even if 

there were never any laboratory measurements to be described or referred to” [23, p. 

156]. This is what we do, for example, when we theoretically ascribe probabilities for 

certain values to be found upon measurement This is to be distinguished from M2 , 

the second sense of measurement, which is actual physical measurement, the act of ob

taining certain pieces of information about certain phenomena. This distinction seems 

plausible at least in order to separate what the quantum theory analyses as measure

ment from the apparently very different practices that constitute the experimentalist’s 

measurement.

It is less clear why we should take M\ seriously, if it fails so conspicuously to make 

contact with real measurements, which he designates by M2 .

The key in answering that question [about the relationship between M \ 

and M2] lies in recognising that it is the final information gained from 

M2 , rather than anything about the process of gaining that information, 

that should stand in some significant relationship to the requirements of 

Mi. [23, p. 158].
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Having argued that the distinction is there, Chang claims that the distinction is best 

interpreted as one between a mediating formalism M\ that can be compared with the 

numerical reports of activities in M 2 . The purpose of the mediating formalism M \ is 

to help bring out some kinds of predictions, or at least numbers, from the quantum 

theory. M 2  tells us what happens in real measurements, which in Margenau’s sense 

produce numbers:

Mi often serves as the conduit of predictions made by the formal the

ory, and in such cases there is a rather straightforward correspondence 

between the Mi-results and some M 2 -results. For instance, the formal 

theory might make predictions about the energy distributions in certain 

groups of electrons, and M2 -measurements of energy can verify those pre

dictions. However, often the predictions of the formal theory are couched 

in other terms than Mi results, and in such cases Mi serves at best in 

some intermediate steps in making the predictions. [23, p. 158].

Some predictions of quantum mechanics (energies, for example) will be arrived at thanks 

to M i. The details of how M \ should play this role are left unspecified. In short, 

according to Chang, Mi, the kind of measurement studied in the quantum theory of 

measurement, is at best an occasional, and very peculiar, bridge principle, linking the 

theory with some kind of observation reports or, in the absence of a theory-observation 

distinction, a vocabulary that is ‘antecedently understood’.

2. How far do the criticisms go?

I now want to point out some problems for these critiques, and explain how I 

understand them.

Must quantum mechanical descriptions of measurement be abandoned, as Margenau 

has claimed, or confined to providing occasional predictions, as Chang says?

I want to argue that quantum mechanical accounts of measurement cannot function 

as literal descriptions of all real measurement processes of physical quantities, nor 

should they be understood as bridge principles helping the quantum theory to yield its 

predictions. Insofar as I maintain the first claim I am conceding something to Margenau 

and Chang’s argument. Unlike Margenau and Chang, however, I see this as a first step 

for a proper appreciation of the role of quantum theoretical accounts of measurement, 

rather than as a reason for rejecting these accounts.
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The notion of ‘relative autonomy of theoretical science’ will then form an important 

part of my argument for what quantum theoretical accounts of measurement are and 

why they can legitimately be what they are.

Kronz [54] has pointed out that there are several problems with Margenau’s story. 

Margenau’s concept of non-entity fails to take into account properly what the absence 

of a particle means in the quantum domain. What is there, in particular, to stop us 

considering a state for the absence of a photon, a vacuum state?

Even only as a purely empiricist move, to save the phenomena, this would allow us 

to rescue the theory of quantum measurements from Margenau’s criticism, particularly 

when allied with an obvious generalisation of the projection postulate as a reduction 

not on one system, but on two.

Kronz’s argument goes as follows. Suppose we have an object plus apparatus system 

described by a state p  <3 ifto in the space Hs <S> 'Hm where ip 6 “H§ is the initial state of 

the object and £ “Hm is the initial state of the apparatus. Let the system evolve in 

the first instance by an appropriate unitary evolution U, let’s call it a premeasurement, 

and then suppose that a discontinuous reduction, akin to the projection postulate, 

occurs such that the evolved state U(p <S> ipo) is transformed into a  state which is a 

mixed state for which we can claim that the pointer observable has definite values.

This ‘recipe’ will leave completely unspecified what the final object states might 

be. Roughly speaking, if the final states of the object are eigenstates of the measured 

object observable we can call the measurement ideal. This is the case originally studied 

by Von Neumann. But the possible final object states could all be vacuum states, 

reflecting the fact that the photons have been absorbed in the process of determining 

their polarisation; this does not affect the desideratum that the final state be a mixed 

state where the pointer observable H <8> M  has definite values, a desideratum which 

is guaranteed by the generalisation of the projection postulate in the shape of the 

discontinuous reduction.

Admittedly this opens up another problem: what does it mean to say that we have 

measured an object to have the value e* for observable E  in this case? In the standard 

case, we say that an object system has value e, if, upon measurements being repeated, 

the system always displays e* as a value. This implies that (a) the system is in the 

eigenstate <pi associated with e* (at least in the standard reading of quantum theory). 

Such measurements are called non-disturbing. Non-ideal measurements, on the other
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hand, are measurements for which the final object state is not such an eigenstate. So 

when did the system ever have the value e*? Several answers can be given (see for 

example D’Espagnat’s reading of non-ideal measurements [27, Sec. 18.2]). They seem 

to presume an ensemble interpretation of quantum mechanics in D’Espagnat’s sense. 

We can also point out that, insofar as we think that what is important about quantum 

measurement is the recording of probabilistic frequencies of observables’ values in the 

object system, non-ideal measurements are perfectly compatible with this requirement 

(see Chapter 3 for a discussion of this). Furthermore, as we think that it is crucial 

that at least the pointers point to the right values, this is also compatible with non

ideal measurements. The crucial point here, nevertheless, is that Margenau claims 

that (a) does not hold in real measurements, and that this invalidates the projection 

story. The counterclaim, as expressed by Kronz, is that the fact that (a) does not hold 

does not invalidate the projection story in general: it’s just a matter of recognising 

at what level (whether at the level of an individual system or at that of a composite 

system) the projection postulate applies. What we should replace (a) with is quite 

another question, and one that is addressed by a number of different interpretations of 

quantum mechanics, with which I won’t be concerned here.

When we consider that in fact the vacuum state is much more than a fictional ar

tifact, but is in fact a  concept much used in Quantum Field Theory, Kronz’s argument 

provides a more than reasonable response to Margenau’s point that the projections are 

empirically undermined by most measurements: if we treat quantum measurements in 

the two-system formalism and adopt a suitable generalisation of the projection pos

tulate, which guarantees that pointers behave in the right way, while allowing objects 

the freedom to disappear, then the examples that Margenau cites do not empirically 

undermine this picture.

Chang’s examples, however, function as a critique of the two-system formalism 

of quantum measurement as much as of the projection postulate. Kronz’s argument 

can work as a reply to Margenau, but Chang’s point still remains: if there are some 

measurements which do require multiple runs, and thus rely in a crucial way on different 

Hamiltonians to be described by quantum mechanics, then even the two-interaction 

picture, which relies on a single Hamiltonian to describe a measurement, will not work. 

There will be examples of real measurements which cannot be described by it, for 

it requires, as we have just seen in the discussion of Kronz’s argument, that there
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be a unitary premeasurement evolution which initially evolves the state for object +  

apparatus, and this unitary evolution will be generated by a unique Hamiltonian.

There is something important in Chang’s point. That some distinction must be 

drawn between quantum measurement theory and real measurements was apparent all 

the way back to Wigner, and good examples of measurements which are problematic 

in the quantum theoretical account of measurement, formally, methodologically or on- 

tologically, might be actual measurements of mass, or Wigner’s own example, that of 

the experimentalist’s measurement of the cross-section. These are, I think, more in

structive examples than Chang’s own one if all he wants is to establish that there are 

real measurements for which the quantum theory of measurement has no story to tell.

In fact, the quantum theory of measurement is a theory of how we collect partic

ular information about certain observables, where ‘observable’ is a technical term for 

a quantity that is represented by linear, Hermitean operators. But what is being mea

sured when we measure cross-section or mass is a quantity which is not an observable 

in standard quantum mechanics in this sense, i.e. it has no operator representation. 

Yet we measure mass and cross-section all the time, and certainly they are real, routine 

measurements. Quantum measurement theory does not offer descriptions of all the 

possible measurements that one might perform, that much is clear.

Chang criticises M \ , the theoretical notion of quantum measurement, on the grounds 

that it is defective in describing what happens in real measurements. His farther claim, 

as is evident in the quote from his paper reproduced on page 24, is that the role M \ 

plays is one of providing predictions.

But if the quantum account of measurement, denoted by Chang’s M \, is so defective 

in its descriptions of real measurements, on what grounds should we want to use it at 

all as a source of empirical predictions?

We will not be able to use it to predict what states the measured system will end 

in. This is precisely one of the points that is being denied in Chang’s and Margenau’s 

critique of the projection postulate. The projection postulate claims that measured 

objects end up in eigenstates of the measured observable. Real experiments directly 

deny this, as is the case with photon polarisation experiments, or with the repeated 

measurements performed to calculate the electron’s energy in Millikan’s experiment: 

the latter seems to provide no definitive numerical output as to what the final state
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of the electron will be after we have determined its energy, so there is no standard 

prediction for M\ to make here.

The other possibility is that M \ predicts probabilities and eigenstates that are 

measured on object systems. I think that for these cases quantum measurement in

teractions, as described by M i, do not lead to specific predictions for real systems, 

predictions that could not be arrived at otherwise. Therefore I claim that Mi has no 

role to play over and above the standard quantum theory in making these predictions, 

so if we want to know why this kind of work is important we need to look for something 

different from this.

In order to see this, think of standard Hamiltonians in quantum theory generating 

interactions from which we derive predictions, like the Hamiltonian for the hydrogen 

atom. These are grounded in physical considerations which have a long and established 

tradition. We can use the Hamiltonians to calculate eigenvalues and eigenstates for a 

system like a hydrogen atom, and then calculate the probability of a state of the atom 

having a certain energy, thus generating predictions. We can, for example, calculate 

with this the probability of the direction of an electron scattering off (rebounding off) 

the atom, assumed to be in a definite energy eigenstate to begin with, and of the atom 

returning to a particular energy eigenstate after the collision.

This shows that we do not need to invoke projection postulates or their generali

sations to predict energy eigenvalues or transition probabilities, it is just not part of 

standard practice in quantum mechanics. What we need to know is the Hamiltonian 

for the former kind of prediction, and the unitary evolution of the system under study 

for the latter. Bom’s paper on collisions in quantum mechanics [8] is a good example, 

amongst many others, for this.

Also, note that measurement interactions are never discussed in terms of the Hamil

tonians that generate them, unlike the standard cases of interactions just described. 

We look directly for unitary operators which have little physical intuition behind them 

(again this will be evident in the discussion in Chapter 3, and will pose a  problem for 

any discussions of the quantum measurement problem which claim to tell us about how 

measurements really work, as I will illustrate in chapter 4). Therefore, if we are to 

find a notion of prediction in the quantum measurement theory M \ , it is not one that 

follows the standard patterns of quantum theory which are well exemplified by Bom’s 

discussion of hydrogen atom collisions.
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It follows that, if prediction were to be the rationale for taking M i seriously, we 

would need to find out quite what prediction means with M i, as it doesn’t seem to be 

anything that is standardly understood as prediction in quantum theory. However, I 

think that, whatever role quantum theoretical accounts of measurement might have, 

they do not include that of being a source of predictions in quantum mechanics. I will 

try to give some sense of what I see the quantum theory of measurement as doing in 

the next section.

3. The ‘relative autonomy’ of the quantum theory of measurement

Commitment to a precise descriptive account of quantum measurements is at the 

root of Margenau and Chang’s criticism of the quantum measurement formalism. The 

criticism argues that the formalism does not yield such an account. Denying that 

the formalism need to subscribe to this commitment removes most of the force of the 

criticism. Outward commitment to a prediction role for the quantum measurement 

formalism is Chang’s positive argument for the formalism. As I have just argued at the 

end of the previous section, I don’t think that the quantum measurement formalism 

is about yielding predictions. We need to see what it does, then, before we can assess 

whether its role can be fulfilled without commitment to a precise description of real 

measurements.

So what is the role of the quantum theoretical accounts of measurement? I think 

there are two. The first follows from a question posed by Wigner:

[the quantum theorist] has appropriated the word ‘measurement’ and used 

it to characterise a special type of interaction by means of which informa

tion can be obtained on the state of a definite object. Thus, the measure

ment of a physical constant, such as cross section, does not fall into the 

category called ‘measurement’ by the theorist. His measurements answer 

only questions relating to the ephemeral state of a physical system, such 

as, ‘What is the x  component of momentum of this atomV  [87, p. 329]

The quantum theoretical account of measurement seeks in the first instance to establish 

the necessary conditions for answering Wigner’s question: “What is the x  component 

of momentum of this atom?” Measurement, for Wigner, is about determining the 

theoretical conditions for properties to be assigned to physical systems and investigating 

the cases in which these conditions are fulfilled. A typical answer to this might require
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that the system be in an appropriate eigenstate, and would then investigate how this 

can come about. Alternatively it might just postulate that properties are assigned 

upon completion of a unitary coupling with an apparatus and impose a  number of 

conditions for this strategy. Note that Wigner distinguishes the theorist’s notion of 

measurement from the experimentalist’s simply because the former is more restricted 

and does not include a number of cases like cross-section. I want to say more: I 

want to claim that the distinction is such that the theorist does not have to worry 

about the conditions that the experimentalist has to deal with, and the practice of 

the laboratory. What makes the conditions theoretical in nature is clear: they are not 

concerned in the slightest with laboratory practices and conditions. So even though 

Wigner’s question looks like one that an experimentalist might ask, there is no concern 

whatsoever with the kinds of things that Millikan, for example, mentions as essential 

conditions for the determination of the photon’s energy: these conditions concern the 

repetition of the experiment several times with successively more refined equipment, 

in order to guarantee an appropriate vacuum in the machine, the least possible direct 

human intervention when shaving off copper from the detector and so on. What I am 

interested in, effectively, is whether Millikan’s concerns should be explicitly reflected in 

Wigner’s.

The second aim of the quantum theoretical accounts of measurement is to address 

the problems of a theory which, if Von Neumann’s projection postulate, or some such 

variation, is accepted, is not, to use Earman’s terminology, historically deterministic at 

the very least.

Again Wigner [87, p. 326] talks of the strange dualism implied by the assumption 

of two types of change of the state vector: evolution with respect to Schrodinger’s 

equation and projection. The latter evolution introduces indeterminism in the theory. 

I understand historical indeterminism more or less in the sense that Earman gives. One 

of the physically possible worlds W  is historically deterministic if, given another world 

W \  if W  and W ' agree at one point, they agree at all past points.

If quantum mechanics admits of projection evolutions, then it is not historically 

deterministic. There will always be infinitely many states mapped by the projection 

evolution to the same final state: for example any two distinct states of the form 

V? =  ot\(p\ -H oi2 ^ 2  will be mapped onto (pi by a projection onto (p\. A similar point also 

holds for Von Neumann’s type 1 evolutions.
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The problems here axe felt because determinism is thought to be a powerful heuris

tic, or a metaphysically preferable characteristic, of physical theories, and because of 

the problems that arise when quantum theory is to be used or fused with theories that 

are essentially deterministic, such as for instance general relativity. The problem is 

further compounded by the fact that quantum theory offers no internal recipe for de

ciding when the indeterministic evolutions should apply: renouncing these evolutions 

in favour of determinism would enable us to sidestep this problem, too.

I should stress here that the claim which I will make, that these problems can 

be investigated independently of direct experimental comparisons, does not mean that 

experiments never play a role in theoretical physics. Rather my claim will suggest 

that the role experimental practice plays for theory is not one of the constant guardian 

against the excesses of theory. It would be wrong, however, to deny that much of the 

original source of the debates in quantum mechanics on the nature of measurement 

draws on the results of experiments. Clearly, observation of quantization of energy led 

to the formulation of the idea of a quantum jump. Also our intuitive idea of what 

properties should be assigned to a system is motivated by experimental findings. The 

point is rather that the discussion to which we have been led is by now quite distinct 

from questions about what happens in real measurements of physical quantities.

There are two kinds of approaches for dealing with the second question, related to 

the problem of determinism, for example:

• We can deny that one of the two evolutions, usually the non-unitary, indetermin

istic projection, is an evolution that quantum states actually undergo. We can 

then attempt to formulate some interpretive algorithm that will provide what 

the rejected evolution provided: this is the strategy associated, for example, with 

relative state and modal approaches to the problem.

• We can try to show that in a more general picture, one evolution reduces to 

the other, or both reduce to an encompassing one: this is the kind of strategy 

associated with decoherence approaches, which also reject indeterministic evo

lutions, or with generalising the Schrodinger approach, where we treat unitary, 

deterministic evolutions as special cases of non-unitary, indeterministic ones.

There is nothing new in singling out the two questions of property assignment and 

the nature of quantum evolutions, and they do have a place in quantum theory: it is 

by tackling these two issues that we attempt to solve the measurement problem. I do
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not think, however, that discussions of both of these questions requires commitment to 

a precise descriptive account of quantum measurements, nor to the theory of quantum 

measurement as a  tool for deriving predictions.

In fact it is hard to see how concerns about the structure of real measurements 

relate to the questions that quantum theoretical treatments of measurement consider. 

For instance, any final decision about the question of unitary versus non-unitary evo

lutions would seem to offer little clarification as to whether such evolutions describe 

actual measurement situations. Suppose for example that we were to argue for a res

olution of the question of determinism in favour of unitary evolutions, and therefore 

purely deterministic evolutions. The implications for the case that Chang discusses, 

for instance, would be minimal; we would still be left with a single interaction picture 

of quantum measurements, and we would still have little grounds for modelling mea

surements of mass entirely within this framework. We would be, in sum, no closer to 

modelling real measurements by opting for unitary evolutions.

Similarly, it is unclear whether careful modelling of actual measurement situations 

would enable us to make any headway with regards to the two questions suggested 

above. Grant that, in general, accounts of measurement must be modelled with ref

erence to repeated interactions; with reference to the second question I have outlined, 

would the interactions between photons and detectors be unitary or not? It is hard 

to see anything in Millikan’s measurements providing an answer to this question. Af

ter all it is an aim of different interpretations of the theoretical accounts of quantum 

measurement that they yield empirically equivalent accounts of data, so nothing in 

the outcome of the Millikan experiment would be able to adjudicate between different 

proposals on the determinism issue. The structure of the experiment itself will suggest 

what Hamiltonian(s) we should adopt to describe it, but this is not where the problem 

is taken to be: the problem with assigning properties, and whether these properties 

come to be in a deterministic fashion or not, arises at the point of observation of the 

final outcome. It is the final outcome, if anything, that suggests why we might need 

a projection postulate: photons click on detectors, and what might this mean for our 

theory? The complications of the experimental setup, aptly described by Millikan as 

“a machine shop in vacuo” [67, p. 361], don’t seem to bear on the question of what 

happens when the detector clicks.
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Fax from establishing the worthiness of such questions, however, their independence 

from the structure of real measurements could be construed as good reason for aban

doning them. Their legitimacy and relevance, in spite of their remoteness from actual 

measurement practice, can be established by accepting that the relationship between 

theory and experiment is neither dust-bowl empiricist nor so profoundly theory-ridden 

that the distinction between theory and experiment makes no sense, and accepting the 

relative autonomy of theoretical science (and of course of experimental, too).

It was Lakatos who spoke of the relative autonomy of scientific theories, in his paper 

on The Methodology of Scientific Research Programmes. He took it to be a  historical 

fact that theoretical science had often developed independently of, or with relatively 

tenuous links to, experimental science, and wanted to provide an explanation for this 

within his methodological framework, something that the naive falsificationist view of 

science had failed to do. The idea can also be found in many authors in different guises. 

Recently for instance Galison [44, Ch. 9] has provided an account of how the two 

traditions come together in twentieth century physics, with his attempt to articulate 

the idea of a trading zone; many of his ideas are close to Hacking’s description of 

representational and interventionist scientists [47], though we owe the first articulation 

of a historical project of this kind to early modern historians, along the lines sketched by 

Kuhn [58] in some of his later writings. It is also worth pointing out that it is not only 

historians or ‘historical’ philosophers who have recognised the usefulness of drawing 

such a distinction: Nagel [68, p. 87], for example, gave different characterisations of 

theoretical and experimental laws and argued that the latter have, so to speak, a life 

of their own.

For present purposes two features of the notion of relative autonomy of theoretical 

work are relevant:

1. the use in theoretical research of methods distinct from empirical methods,

2. the attempt to answer different questions.

When viewed from this perspective, criticisms of the kind that Margenau and others 

have made, of the way in which theoretical accounts of measurement miss the mark with 

respect to real measurements, lose their force; on the other hand Wigner’s appropriation 

of the term ‘measurement’ is properly understood and appreciated, as is the substantial 

work devoted to questions to do with the nature of quantum evolutions.
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A case of relative autonomy of theory in action in discussions of quantum mea

surement is provided by debates on the modal interpretation of quantum mechanics. 

In the modal interpretation of quantum mechanics we assume that the only evolutions 

that are acceptable are deterministic, unitary evolutions. The quantum theory of mea

surement characterises deterministic premeasurement evolutions (in a manner that I 

will discuss in detail in Chapter 3) satisfying the probability reproducibility condition, 

which guarantees that the probabilistic information contained in the object system is 

transferred to the apparatus system in an appropriate way; they can be taken to char

acterise, for instance, the evolutions in Kronz’s account which precede the application 

of the projection postulate on the combined system. Modal interpretations can then 

rely on this characterisation as yielding the measurement evolutions themselves. What 

properties should we then assign to the system?

The answer to this question is given by the Kochen biorthogonal decomposition 

rule (originally proposed by Kochen [52],the present formulation is taken from Baccia- 

galuppi [3]):

Basic Rule: Let the reduced state of a system with Hilbert space V, be p, and 

let the spectral resolution of p be p = Then the system possesses a

property P* with probability A?dim(Pj).

K ochen Rule: if % = H 1 <S> %2 is in a pure state \I/, then the properties P / and 

P f  of “H1 and H 2 given by the basic rule are perfectly correlated.

Assuming deterministic, unitary evolutions and the Kochen biorthogonal decompo

sition rule for assigning properties, we have an answer to both questions which consti

tute the measurement problem. Is the Kochen rule ad hoc or can we motivate it? The 

rule has a motivation, but not by reference to experimental results. Clifton [24] moti

vates this rule by showing that it follows from four ‘natural’ axioms. On top of them 

he adds two others, one which ensures compliance with the Kochen-Specker no-go the

orem (condition 5) and one which guarantees that the question of property assignment 

is answered adequately in the case of measurement (condition 6):

1. For any W  and any U satisfying U W U~l = W  : U\Dei{W)]U~l =  Def(W).

2. For any W  : {P \P W  = 0 or W }  C Def(W).

3. For any W , and any P , P ' G Def(W) : P  © P ' G D e f(W ),P n P ' G Def(W), and 

P x G Def(W).
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4. For any W , there should exist at least some (not necessarily orthogonal) set 

{Pk} of pure states satisfying W  -  Ysk ^ P k  with ^  =  such that for 

every Pk G {P*} : Def{W) C Def(P*)-

5. For any W , there exist sufficiently many noncontextual value states []w on 

Def(TF), and a measure nw  on the set of all such []w’s, such that for any 

pairwise commuting subset {P i,P 2 , • • •} of Def(W)

Tz(PiP2 • ■ • W ) = ^w{\\w\[P\]w  =  [P2W  =  • • • =  1}.

6. For any W , SR(PF) C Def(IF).

Def(W) is the set of projection operators which have a definite value in state W  

and SR(FF) is the set of projections in the spectral resolution of W . Clifton’s justifi

cation of the axioms is not based on experimental considerations, but rather relies on 

formal arguments that block other options for answering the question. Condition 1, for 

example, is motivated by the need to avoid “that [something] else in addition to W  and 

the Hilbert space H is ‘smuggled in’ to define the definite-valued observables” [24, p. 

49]. On the other hand it is very difficult to imagine which kind of experimental setup 

could be suggestive of this approach to answering the two questions about quantum 

measurement.

The upshot of this example, one of many possible ones, is that quantum theoretical 

accounts of measurements really do address themselves to answering the two questions 

above, and really do so in a manner that is relatively independent of experimental con

siderations. One way of further characterising the difference I have outlined here has 

been given by Kuhn in two of his papers. In “The Function of Measurement in Modern 

Physical Science” [57], Kuhn argues, like Margenau, that measurement is concerned 

with producing numbers, and with indicating to us what constitutes reasonable agree

ment between numbers that the theory gives and numbers emerging from experiments 

(as well as having occasional roles of confirming and refuting instances). Millikan’s pa

per is a good example of this: from the long discussion of what could and could not be 

done with the experimental apparatus we learn what constituted reasonable agreement 

between predicted and measured numbers.

Kuhn assigns quite a different role to an altogether different type of experiment in 

the paper “A Function for Thought Experiments” [56]. Here Kuhn talks of thought
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experiments as exercises which explore the structure of a theory, to eliminate confusions 

in the scientist’s theoretical apparatus:

[ . . .  ] the function of the thought experiment is to assist in the elimina

tion of prior confusion by forcing the scientist to recognise contradictions 

that had been inherent in his way of thinking from the start. Unlike the 

discovery of new knowledge, the elimination of existing confusion does not 

seem to demand additional empirical data. Nor need the imagined situa

tion be one that actually exists in nature. On the contrary, the thought 

experiment whose sole aim is to eliminate confusion is subject to only one 

condition of verisimilitude. The imagined situation must be one to which 

the scientist can apply his concepts in the way he has normally employed 

before. [56, p.242]

This is then mitigated, later in the paper, when Kuhn concludes that a thought experi

ment cannot be directed always and solely to displaying and resolving logical conflicts: 

Though the imagined situation need not even be potentially realizable 

in nature, the conflict deduced from it must be one that nature itself 

could present. The conflict that confronts the scientist in the experimental 

situation must be one that, however unclearly seen, has confronted him 

before. Unless he has already had that much experience, he is not yet 

prepared to learn from thought experiments alone. [56, p. 265]

I read this as saying that the worth of a thought experiment is that we can take some 

problem that has presented a scientist in a laboratory and analyse it as a conceptual 

conflict of perhaps quite a different kind, the answer to which will hopefully shed some 

light both on the theory and on the problematic experimental situation. While Kuhn 

himself admits that this is not a universal characterisation, it seems a fair one to apply 

to most of the work in the quantum theory of measurement.

4. Conclusions

What I have tried to do in this chapter is provide a rationale for quantum theoretic 

accounts of measurements which allows us to sidestep ‘real measurement’ critiques of 

it. Arguments such as Margenau’s and Chang’s purport to show that, on the basis 

of actual experimental practice, foundational debates on the projection postulate and 

on the structure of quantum measurements play a minor, if not nonexistent role, in
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providing a quantum theoretical understanding of measurement. I have argued that 

these criticisms do not apply and that the conclusions they lead to for quantum mea

surements do not hold: this is because they overemphasise the need for the quantum 

theory of measurement to account for real measurements. Acceptance of a less than 

tight link between theory and experiment allows us to weaken the need for such an 

account and is particularly helpful in the task of providing such a rationale for quan

tum theoretic accounts of measurements. Nevertheless, the quantum theoretic account 

of measurement is not totally exempt from problems if we accept this weakened link 

between theory and experiment: Chapter 3 will present an example of such a problem 

and contrast it briefly, on page 130, with the examples of this chapter.

The work of people like Lakatos, Kuhn, Nagel and Galison not only draws the 

distinction between theoretical and experimental science, but also shows how this dis

tinction can function as a positive factor in the development of science, particularly 

when the two come together. This is the position Hacking argues for, and it is well 

exemplified by Galison’s study of Schwinger’s contributions at the MIT Radiation Lab 

during the war. It is to be hoped perhaps that the quantum theory of measurement 

might come to play a more active role in conjunction with experimental physics (as 

has been suggested, for instance, by the discussions on quantum nondemolition mea

surements [9]), but its role should not be constrained a priori to providing accurate 

descriptions of measurements or to helping to yield predictions, which for instance in 

the case of transition probabilities the quantum theory seems quite capable of providing 

itself.

I have tried to show why we should look at the quantum theory of measurement 

on its own merit, so to speak; it does not mean that the question of what theoretical 

treatment we should give of an experiment like Millikan’s is uninteresting or uninfor

mative tout court. It will be informative, but such an analysis will not offer much to the 

questions that debates on the measurement problem address. It might, on the other 

hand, tell us a lot about how theory and experiment come together, but tha t’s another 

story.



CHAPTER 2

M easurements and Insolubility Proofs

It has been known for many years that the traditional accounts of measurement would 

not deliver what was required of them: the first well known result on the subject can 

be found in a paper by Wigner [87]. Earman and Shimony [31], Fine [36], Shimony 

[77], Brown [11] and Stein [79] have proved successively more general results. A proof 

by Busch and Shimony [17] has recently shown that the measurement problem cannot 

be solved even when the measured observable is unsharp.

This chapter aims to do three things. It describes, first of all, a simple and intuitive 

insolubility result using facts about the unitary dynamics of non-relativistic quantum 

systems. Secondly, it looks at Fine’s proof [36], subsequently revised by Brown [11] 

and considers whether the philosophical objections to it, concerned with the status 

of quantum mixtures, can be overcome. This discussion will lead to a more general 

result, relying on a weaker form of one of the standard conditions imposed on quantum 

measurement in the discussion of insolubility proofs, and eventually to a characterisa

tion proof for unitary operators satisfying the objectification conditions for quantum 

mechanical measurements. Finally the chapter tackles the question of insolubility for 

the case of unsharp pointer observables. Some results are obtained for this case: in 

particular the preceding proofs straightforwardly generalise to cases where a particular 

commutativity condition holds. The chapter concludes by assessing the importance 

of these results for the debates on quantum measurement and the interpretation of 

quantum mechanics.

1. A statement of the problem

The quantum theory of measurement works with unitary operators such as, for 

example,

(1.1) W{-)

39
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operators satisfying requirements of probability transmission and unitarity in measure

ments. For the sake of convenience I ignore in what follows the time index that would 

normally be associated with these operators, so that W  represents the operator which 

maps the initial state of an object +  apparatus system directly to the final state. Spe

cific discussion of the details about these measurement mappings and of how they are 

to be characterised is taken up in the next chapter, together with some problems that 

emerge from these characterisations; the problems dealt with here do not need a specific 

discussion of them, but just require a few remarks at this stage.

Operators like W, which act on the tensor space H§ <8> 'him, by definition map pure 

states to pure states. The way to infer the states of systems § and M in this formalism 

is to apply the partial trace technique (the tracing away of one subsystem given the 

density matrix corresponding to the pure state at the end of the interaction).

The operator W  is in fact part of a tradition that goes back to the origins of 

discussions of quantum measurement: it is a generalisation of an operator that can be 

found in the last chapter of Von Neumann’s book on Quantum Mechanics [82]. Some 

refer to it as a premeasurement (for instance by Busch, Lahti and Mittelstaedt [14]) 

and all interpretations of quantum mechanics agree that (some part of a) measurement 

is captured by operators like it. Some interpretations of quantum mechanics, essentially 

based on Everett’s idea, work with operators such as W  and require nothing more, for 

a measurement to have taken place, than that this operator describes the interaction.

Traditionally, however, it was thought that such evolutions would be problematic. 

The original problem of measurement saw a difficulty with the final state of a mea

surement interaction being a superposition of correlated object-pointer states. The 

idea with describing a measurement as an evolution over a composite system H§ <8> "Hm 

was to try to describe Von Neumann’s type I evolution (the irreversible ‘projective’ 

evolution from pure states to mixed ones) on a smaller system as a unitary evolution 

over a larger system. It was felt, as we have seen in the previous chapter, that to 

have two different kinds of evolution of a quantum mechanical system was a difficulty, 

compounded by the fact that the projection evolution seemed to occur in accordance 

with criteria of a non-physical character: references to the unavoidably subjective char

acter of observation, to the necessity of revising our notions of objective reality, to the 

role of the conscious observer, abound in the early literature on quantum measurement
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theory (the locus classicus is of course Von Neumann [82], but see also Wigner [86] 

and London and Bauer [62]).

It is always possible to give a description of a linear contraction on a space 71' as 

the projection on 7C of a unitary evolution on an extension space 7i, with TV C 71 

(see Riesz and Nagy, [72, p. 466]). The operation of mapping an initial pure state 

to a mixture by means of a Von Neumann type I  evolution is indeed a contraction1. 

Von Neumann himself gives a means of constructing unitary mappings on extensions 

of a Hilbert space for the object system, where the extension is interpreted as adding 

a space for the apparatus.

Consider, however, an initial state (p ® £ 7ls® 7l m> <P a superposition of or

thonormal states (pi, the latter eigenstates of a self-adjoint operator H  representing the 

observable to be measured. The adoption of operators such as W  would yield, when 

applied to states <p <8> V’o* a superposition of final object-pointer states like dpi <g> 'tpi, 

for example. This is unsatisfactory in the sense that it exhibits interference between 

pointer states in the composite system. This precludes an ignorance interpretation for 

the reduced matrix of the apparatus system so, even if such reduced state is a density 

operator defined over pointer states, as a Von Neumann type I evolution requires, it is 

not a proper mixture and cannot be interpreted as a classical probability distribution 

over possible observed final pointer states.

1.1. O bjectification, Ignorance In te rp re ta tio n s  and  th e  Eigenvalue-Ei- 

g en sta te  L ink. It is worth examining in some more detail why a pine object-apparatus 

final state is unsatisfactory. The problem lies with the acceptance amongst a number 

of quantum theorists of the assumption Arthur Fine [37] has termed the eigenvalue- 

eigenstate link. Von Neumann [82, pp. 200-201, p. 215fi] is once more an obvious 

reference for the early use of this assumption. Again Fine [38] remarks how this as

sumption is easily derivable from Von Neumann’s more fundamental principle P.

The eigenvalue-eigenstate link is the assumption that a system can be assigned a 

definite value for a certain quantity if and only if that system is described by a state in 

a Hilbert space which is an eigenstate of the self-adjoint operator which represents the 

quantity. That is, if a state is an eigenstate of a certain quantity, then it has a value 

for that quantity given by the eigenvalue associated to the eigenstate, and conversely

1For a proof, see the next chapter.
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if it has a value, it must correspond to an eigenvalue of the operator, and the system 

must be in the respective eigenstate.

A measurement leads to a pointer pointing to a precise and definite value, so the 

pointer system must be in an eigenstate of the appropriate pointer observable. In order 

for this to be the case, the final state for the pointer must at least be decomposable 

into a mixture of pointer observable eigenstates, with the appropriate weights. This, 

however, is not sufficient if we wish to claim that, for the individual pointer eigenstates 

in the final, mixed apparatus state, the eigenvalue-eigenstate link can be upheld. We 

need to be able to say that, for this mixture, only one of the states is actual; in other 

words we want to impose an ignorance interpretation on the mixture. This is formally 

interpreted as the requirement that the probability weights of the mixture be classical.

This is carefully explained for example by Busch, Lahti and Mittelstaedt2 [14]: 

they show how, for a single isolated system to possess one of a number of properties, 

it is necessary that the state of such system be a density operator defined over the 

projections representing these properties.

There are two ways in which a system may come to possess a mixed state. The first 

is that the system is prepared to be a mixture, for example by constructing an ensemble 

of individuals with different pure states. The second is by considering separately a 

system which is part of a composite system that has an entangled state. For a system 

which is a subsystem of a composite system, the condition that the state of this system 

be a density operator resolved by orthogonal projectors characterising an observable A  

is not a sufficient condition for the system having a property defined by one of these 

projectors: one also needs the composite system to be a density operator having a 

spectral resolution in terms of eigenstates of the property, represented by the operator 

A  <g> I.

More formally, for any state T  € T *  ('Hg <g> 'Hm), where 7[+ (Hg denotes the

set of trace class one operators on Hg ® H  m> representing the set of physical states of 

the system, the reduced state in 7]+(Hm) admits of an ignorance interpretation for a 

mixture over pointer states P ^]  G m) decomposing the reduced state if and only

2 Interesting and more detailed investigations on this issue can be found in Busch and Mittelstaedt 

[16]. The discussion is not unrelated to the distinction between proper and improper mixtures, as 

introduced by D’Espagnat [27]; a recent good discussion of this can be found in Ghirardi [46].
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if

(1.2) T  =  ^ 2 1 0  T 1 0  Jfy.].
t

Achieving all the conditions for an ignorance interpretation for the mixture over pointer 

states Ptyj] € 7̂ + ( Hm) will ensure that the assumption of the eigenvalue-eigenstate link 

will yield the correct pointer values at the end of the interaction.

The question becomes the following: is it possible to find a unitary operator which 

evolves an initial object-apparatus state to a final state such that the final state will 

be a density operator decomposable into eigenstates of a pointer observable and which 

satisfies the appropriate probabilistic constraints?

1.2. Som e N o ta tio n  an d  D efinitions. The first step is to spell out some nota

tion and list the conditions assumed in the following analysis.

T{H)  is the set of trace class operators on a Hilbert space. This is a Banach space,

i.e. a complete vector space with a norm defined on it, the trace operation. The set of 

states of a quantum system is represented by 7[+ (‘H), the set of trace class operators 

with trace equal to one. Observables are usually represented by Hermitean operators 

on the Hilbert space H 3 When such observables have a discrete spectrum, they admit 

of a spectral resolution in terms of a complete orthonormal system of eigenvectors. The 

dynamics of the system is normally given by a unitary operator on the Hilbert space 

'H\ we will consider also operations on the space 7[+ ('H) and represent them with bold 

characters.

The conditions for answering the above question are then as follows. Consider an 

initial state T =  T§ 0  Tm in the object-apparatus system 0  H m ); an object

observable H , a self-adjoint operator on H§, and a discrete apparatus observable A, 

a self-adjoint operator on the space % m with spectral resolution {&}.  If H  is itself 

discrete, and therefore with spectral resolution given by the orthonormal basis 

then for any given i we take observation of the pointer position symbolised by the state 

to mean that the state (pi was measured. In the case when H  is a self-adjoint, but not 

discrete, observable, the apparatus observable, which is always taken to be a discrete 

observable, will induce a partition on the spectrum of the observable H  via a pointer 

function f  : V(Qm ) -»• where P(Hm) and V(Q§) are cr-algebras of subsets

3Later on we will consider a generalisation of this, in the context of the discussion of unsharp 

pointer observables
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of the pointer and object observable spectra Qm and fig, under the assumption that 

/ ({ /} )U/({,7'}) =  0 and Yli / ( W )  =  ^S- This defines a coarse-grained, discrete version 

of the initial object observable, which has a spectral resolution in terms of eigenstates, 

through a procedure originally described by Von Neumann [82, Ch. III.3, pp. 220- 

221]. Discreteness of the operator describing the pointer observable is required to make 

sense of the objectification condition. Discreteness of the operator describing the object 

observable is not important, except insofar as we can note that, given a pointer function, 

the pointer observable can be taken to measure a discrete, coarse-grained observable 

defined via the pointer function. Suppose then that H  is the discretised observable 

with a spectral set {<#}, we again take recording of the pointer value tpi to mean that 

(Pi has been observed.

Is there an operator U : Kg Kg ® K m for which the following conditions

are satisfied?

1. Unitarity: The operator U is unitary

2. Quantum condition: The two spaces “Hg and K m  are proper quantum systems, 

in the sense that no superselection rules are present

3. Objectification: The final state U T U ~ l after the measurement interaction has 

taken place is a density operator over eigenstates of the operator I <8> Am repre

senting the pointer observable and acting on H§ <8> K  m

4. The probability reproducibility condition:

(!-3) PrsP 0  1(-^))-

It is important to make three points about the probability reproducibility condition. 

The first is that the condition just stated applies in general. For a  sharp, discrete 

measured observable on the object system, on the other hand, it can be put in the 

following way:

(1.4) Tr[P[vi] TS] =  Tr[I ® ffo j U T U ~ l]

In (1.3) Pt (X)  is the probability measure over the set of possible values of the observable 

E,  relative to the state T  G Ti~{Kg), and /  is the pointer function described above. 

The state 71a(U{T§<8>Tm)U~1) is the reduced state of the apparatus system (obtained 

via the partial tracing operation 71 a )  after the measurement evolution has taken place. 

That is, for each set of possible values in the set X , pj. (X) is the probability that the
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system %§, when in state T, has value for the observable E  in such a set X .  One way 

to see the difference between the two formalisations of the probability reproducibility 

condition can be seen by the following example. Consider a continuous observable E  

on an infinite dimensional Hilbert space H.  For each interval [a, 6], b > a > 0, in the set 

of continuous possible values for E , there is a distinct probability measure associated 

with this interval, call it P[a,b]i which maps states to probabilities. Consider now a 

discretised version of E ,  denoted by E d - Suppose that it is discretised over, amongst 

countably many others, two intervals [<a—x , (a+b)/2] and [(a+6)/2,6+rc], to which the 

discretised observable associates projection operators P[a-x,(a+b)/2] ajid P[(a+b)/2 ,b+x]' 

Then the probability that E  has value in the interval [a, 6] when in state T  is given by 

P[a,b](T )> while such probability for E d  is given by Tr[T ( P [a_ Xt{a+ b)/2] +  % +& )/2,6+*])L  

which will be different from P[a,b]{T)-

In the present context, given that the objectification requirement forces a mea

surement of a discretised observable, the simpler and more intuitive condition (1.4) is 

almost sufficient for the results we will discuss: the important proviso is that the fol

lowing proofs apply also to the case when the measured object observable is an unsharp 

discrete observable (a POV measure as outlined in the introduction). More will be said 

about unsharp observables later on in the chapter, in section 5. For the time being it 

suffices to note that for this, more general case the probability reproducibility condition 

would assume the form

(1.5) T t[Fx  7s] =  7V[I ® U T U ~ l]

where F  is an effect associated by the POV measure to the set of possible values X .

The second point to note about the probability reproducibility condition is that, in 

cases such as that of unsharp or continuous object observables, it is best thought of as 

a two-part condition. The first condition captures the intuitive idea that if the initial 

state of the system to be measured yields non-zero probability for some eigenstate of 

the observable to be measured, the final state should yield non-zero probability for the 

corresponding pointer eigenstate in the object -I- apparatus space and viceversa. The 

second condition will determine the probabilistic relations between initial object state 

and final object +  apparatus state. Formally the two conditions can be spelt out as 

follows:
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5. Let T§ be an initial state of the object system, Tm an initial state of the apparatus 

system. Then

(1.6a) p g ( X )  0

if and only if

(1.6b) pt u (u(ts®Tm) u- 1) ^  l ( X ) ) ¥ 1Q-

6- ^ ^  then.

(1-7) PTS( X )  ~  PK A (U{Ts®TM)U-')(f XW )

It then becomes possible to hold condition 5, but change 6. Namely we can ask that 

‘pointers point’ to the appropriate measurement results (so that all the appropriate 

measurement results appear), but relax the probabilistic condition so that the proba

bilities for the results in the final state might not be equal to those given in the initial 

state by the Born rule. It is worth noting that it is the probability reproducibility 

condition that does this work. In fact the objectification condition requires the final 

density operator to be decomposable in terms of pointer eigenstates, but gives no speci

fication about which pointer eigenstates should be part of the decomposition: an initial 

object state which is an eigenstate of the measured observable might be evolved into 

a final density operator over several pointer eigenstates, and still it will satisfy the 

objectification condition, as it is by definition a density operator decomposable into 

pointer eigenstates, and that is all that objectification requires. In the case of a sharp 

and discrete observable, condition 5 implies condition 6 and they are equivalent to the 

probability reproducibility condition.

The third point is that the probability reproducibility condition is equivalent, in 

the case of a sharp and discrete observable, to the calibration condition (see Busch et 

al. [14, p. 34]):

• Calibration: for each initial state of the form ipi <S> Tm, W  maps this state to a 

final state T§® ipi, where ipi is the pointer state for the ith value of H  and the 

<Pi are arbitrary, and thus neither necessarily distinct nor orthogonal.

An initial state ipi of the object system has probability 1 with respect to P ^ j  and prob

ability 0 with respect to P[Vj\ with j  ^  i, so that the final state must yield probability 

1 for the pointer observable eigenstate I <8> P^,.] and zero for other pointer observable
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eigenstates not measuring the value i. Therefore the final state must be of the form 

T§ ® ipi. Linearity then easily implies the probability reproducibility condition. Note 

that the calibration condition plays no direct role in the following proofs, save for a 

brief remark made in the context of the discussion of unsharp pointer observables; in 

fact most of the traditional results analyse the compatibility of 3 and 4.

In what follows we will sometimes make the distinction between these conditions 

explicit, and work with condition 5, which is a more general condition for the general 

case of POV measures. It will hardly be required to discuss POV measures explicitly 

for the object system. Nevertheless, proving insolubility results for 5 gives a genuinely 

more general proof.

Given the splitting of the probability reproducibility condition, there are at least two 

options open for generalising it in the context of trying to deal with the objectification 

condition. We can maintain 5, which guarantees that object observable eigenstates are 

correlated to pointer observable eigenstates, but relax the requirement that probabilities 

be exactly matched up in cases when the initial object state is a  superposition of 

eigenstates of the measured observable. Alternatively we can follow Fine [35] and 

substitute a more general probabilistic condition than 4 which allows for violation of 

both 5 and 6. He asked whether, given an observable H  to be measured on the object 

system, there existed a unitary measurement W  which, rather than ‘reproducing’ the 

probabilities, might simply discriminate between two initial states T§ and T§ so that if, 

for some i ,

pfs ( X ) ? P % ( X )

then

P' ^ ( U( Ts ®Tm) U~1) l (X )) ^ P & A(U(TZ®Tu )U -l ) ( f  1(-X’))*

In such a case we say that the respective initial states of the combined system, T  and T', 

are H-distinguishable. This does not help in trying to answer the highlighted question 

on page 44; the answer is simply ‘no’.

In the present framework a measurement has taken place when the apparatus system 

is in an eigenstate of a pointer observable defined over the apparatus system. In the 

next section, for the sake of simplicity, the pointer observable is taken to have no 

multiple eigenstates, and only one eigenstate indicates measurement of an eigenstate
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of a (discretised) object observable. A remark at the end of the section will emphasise 

how this restriction is not essential to the argument.

The analysis of the next section will also make use of the following definitions:

D e f in i t io n  2 .1 . An induced notion of linearity for 7 +̂ ('H) is defined by considering 

a linear mapping U  : T(H)  —>• T(W)  on the Banach space of trace class operators T(H)\  

its restriction U  : T f  {%) —> T *  (%) (when well-defined as a mapping from 7^+ (H) to 

Ti'i'H)) satisfies the corresponding convex-preserving property, i.e. for all ai, . . .  , 

on 6 K + , a i  +  . . . + a n =  l  and Pi, . . .  , Pn one-dimensional projections on W

U (a\Pi +  . . .  + anPn) =  aiU(Pi ) . . .  + anU(Pn).

Such U  is by definition called convex4.

D e f in i t io n  2 .2 . The rank of a density operator T  defined for a Hilbert space 

7i (written Rk(T)) is the minimal number of one-dimensional projections of which it 

is a convex combination. This is an invariant for the density operator under convex 

transformations of the form U*TU, with U unitary. The more formal definition of rank 

considers, for a given density operator T, the projection operator E T on the range of 

T, such range being a subspace V! C %. Then the rank of T  is equal to Tr[PT], the 

trace of the projection operator on the range of T5.

2. A ‘proof’

Geometric arguments can take us a long way towards answering the question de

fined in the previous section. By this I mean that most of the negative results in the 

measurement problem follow from simple considerations about the structure of the state

4For the case of dim(H) =  oo we have that, for {01, . . .an, . . . }  a (possibly infinite) sequence of 

positive real numbers such that limn_K» $3?=ia* =  1» {P i, * • • , Pn, ■ • •} a (possibly infinite) family 

of one-dimensional projections on H
n n

lim U ( y t aip i )=  lim J 2 aiU (Pi)’
71—^ O O  ■ ^  71—f O O  ■ ^<=i ,=i

5This is an immediate consequence of the discrete spectral representation of density operators as 

proved already in Von Neumann[82, Ch. 2, Sec. 11]. The rank is basis independent, as it is defined 

through a trace operation, and can be infinite in the case when E T is a projection on an infinite 

dimensional subspace of H. For a detailed analysis of the geometry of stratified convex sets of states, 

see [7]; Rockafellar [73] gives a detailed account of convex analysis .



2. A ‘PROOF’ 49

space and the possible transformations on this structure given by unitary dynamics. 

This section does not give a general proof, but rather considers a number of (succes

sively more general) options for answering the question positively and shows why these 

options cannot work. In the end this will lead to a result as general as any of the ones 

present in the literature, but it is hoped, in the first instance, that the problems en

countered when trying to solve the quantum measurement problem by trying to find a 

mapping that will yield an appropriate final density operator will become clearer. It will 

successively become clear also that strategies employed in this section can be applied 

to other questions about insolubility proofs of the quantum measurement problem.

The approach taken involves assuming the objectification condition 3 and the first 

part of the probability reproducibility condition 5, then seeing whether the second part 

of the probability reproducibility condition 6 is satisfied.

The strategy of the argument used in this section is essentially a generalisation of an 

argument that Von Neumann has given in his book [82, pp. 437-439]; the mathematical 

structure is the same. It is also discussed by Scheibe [75, pp. 151-155]. Its generality 

is comparable to that of Busch and Shimony [17], in the sense that it can be shown to 

include the case of an unsharp object observable.

2.1. A  T heorem  by Davies and  Some In itia l R esu lts . The following theorem 

by Davies [25, Theorem 3.1, p.21] is a good starting point:

THEOREM 2 .1 . Consider a Hilbert space 71. Every pure positive linear map T  : 

T(7i)  -* T(7l) is of one of the following three forms:

(1) T  (T) =  BTB*, 

where B  \7 t —>7i is bounded and linear;

(2) T(T) =  BT*B*, 

where B  : 7t —> 71 is bounded and conjugate linear;

(3) T(T)  = T r [ TB ] ( \ ^ ) ( ^ \ ) ,  

where B  : 7L —» 7i is bounded, linear and positive and i}> G 7LG.

6Note that xj) is constant.
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Pure positive linear maps on T{H)  are such that every element in the set of positive 

trace class operators is mapped into the same set, and furthermore every pure state 

is mapped to a pure state. Type 3 maps as characterised by the theorem are called 

degenerate: they map all states to a unique pure state, multiplied by a weight Tr[TB]. 

Therefore all such maps are pure. As for maps of Type 1 and 2, it is easy to see that 

all such maps are pure. In fact pure density operators are characterised by being one

dimensional projection operators, and therefore have rank 1. But it is a well-known 

result of linear algebra that Rk(AB), with A  and B  two operators on is equal to 

min[Rk(A), Rk(£)]. It follows that whenever Rk(A) =  1, then Rk(AB) =  1. This 

shows that maps of Type 1 and 2 are always pure, so that with the Davies theorem it 

is possible to establish necessary and sufficient conditions for a map to be pure.

The standard dynamics for a state, given by a unitary operator W  on T(H),  can be 

represented as the conjugation action W P ^W * . It is well known and worth repeating 

that this is equivalent to the evolution given by P[w(<p)]7> therefore establishing in a 

different way that this mapping is pure. The remark of the previous paragraph clearly 

establishes that the conjugation action of a unitary operator on the set of positive trace 

class one operators must be pure, that is it maps pure states to pure states. This imme

diately eliminates the possibility that any such conjugation might map an initial state 

of the form <g> P[^0] =  P[<p®i>0\ t0 a final state satisfying the objectification condition 

and condition 5: P ^^o ]  is a pine state, and therefore of rank one, while generally 

speaking the rank of the final state will have to be greater than one if objectification 

and 5 are to be satisfied.

Furthermore, Davies’s Theorem states that all pure positive mappings have this 

form, so if any invertible mapping is to provide a solution to the measurement problem, 

given a pure initial object -f apparatus state, it will not itself be a pure mapping. 

However the following result rules out this possibility.

T h e o r e m  2 .2 . A convex mapping U  : -*  T i’i'H) is bijective if and only if

it is rank preserving for all T  € 7̂ + (%).

Any convex-preserving mapping can be a bijection (and therefore an invertible 

mapping) on the space of density operators if and only if the rank of the density matrices 

is a ‘constant of the motion’. In particular any conjugation action of a unitary operator

7Von Neumann again shows this [82, Sec. V.l].
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on 7̂ + ('Hs ® ^  m) will be rank preserving and it can be shown that such mappings are 

the only ones that are rank preserving, and thus bijective on T*(H§  ® H m )- The proof 

of this result and the discussion of its other implications in the context of the quantum 

theory of measurement is left to the next chapter; for the time being it will be applied 

in a fairly basic way in the context of providing an insolubility proof.

This leads to the heart of the classical technical results on the measurement problem. 

We assume that, ‘physically’ speaking, there might be a degree of uncertainty as to what 

the initial state of the apparatus might be; as Wigner put it “the state vector of the 

apparatus, which is under the conditions now considered usually a macroscopic object, 

is hardly ever known”8 [87, p. 333]. This might be modelled by assuming that the 

initial state of the apparatus is a non-pure density operator; then the initial state of 

the combined system will not be a pure state, and perhaps it is possible to satisfy 

the objectification condition this way. The first consideration must be to decide what 

density operator is appropriate, and for which types of measurement.

Theorem (2.2) immediately rules out that a perfect correlation measurement might 

satisfy the objectification condition. A perfect correlation measurement is a measure

ment where the objectification requirement and condition 5 are satisfied and, moreover, 

the final state of the system is such that each final pointer state is correlated with a 

unique object state. In other words in a perfect correlation measurement, for a pointer 

state P[^.], the component T  ® Py,.j is such that T  =  where again note that (pi is 

an arbitrary vector in H§. Given that the final object +  apparatus state admits of an 

ignorance interpretation, observing a specific pointer state allows inference of a pure 

final state for the system. The final state for the object +  apparatus system would 

then be
n

w  (PM®T)W- 1 =
i=1

with T  a mixed state for the apparatus system and ^2 W{ =  1. Perfect correlation mea

surements such as the one just described are just a generalisation of so-called strong

8Wigner in fact makes this remark in one of his papers on measurement immediately after making 

the point of the previous paragraph. Ignore for the sake of argument the apparent contradiction in 

Wigner’s argument in that we are supposed to hardly ever know what the state of a macroscopic 

apparatus is, yet are supposed to learn about the value of an observable for a system precisely by 

discerning such a state.
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state-correlation measurements. The latter measurements have been studied, for in

stance, by Busch and Lahti [15]. The former are defined by the property of the final 

object states associated with a given pointer state being pure states, with in addition 

the property of these final object states being pairwise orthogonal. While it is the case 

that strong state-correlation measurements have much more interesting informational 

properties than perfect correlation measurements, for the purpose of the present work 

the specifics of correlation properties are not important. The case of perfect correlation 

measurements is mainly illustrative of the kind of argument that will be presented in 

the rest of this section, as well as providing an insolubility result for a wide class of 

measurements which includes Busch and Lahti’s strong state-correlation measurements.

The following condition is also normally assumed when characterising quantum 

measurements; as for instance Araki and Yanase have put it,

According to von Neumann, the measurement of the operator M  in a state 

ip is accomplished by choosing an apparatus in a state £ (fixed normalised 

state independent oiip) in 71 m • • • (my italics) [2, p. 622]

meaning that such an initial state (which might of course be a density operator), must 

be chosen so as to not depend on what state we are trying to measure, as presumably 

we do not know what we are trying to measure before we have measured it.

In a perfect correlation measurement (again assuming objectification and 5) if the 

initial state of the object system is a (p superposition of two eigenstates of the observable 

A which is being measured, the final state will be a density operator over two eigenstates 

of the pointer observable M, each representing the pointer recording one of the two 

eigenvalues corresponding to the two eigenstates of A  which resolve (p. This is because 

such a measurement should avoid interference between different pointer states in the 

final object +  apparatus state after the evolution, while at the same time each pointer 

state should appear just once in the resolution of the final state. The final density 

operator will then have rank 2.

REMARK 2 .1 . Note that the observable Is <8> Am has eigenvalues with de

generacies of the order of the dimension of the space 'Hs- For example, if 

dim(%s) = dim(%M) = 2, suppose Am has eigenstates {rpi, fa}- Then Is<8> Am 

has eigenvalues <p (8) ifti for i = 1,2, where ip is any state in 7is- Therefore it is
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quite possible, for instance, that an eigenstate of the apparatus observable Am 

might appear several times in the final state’s resolution, coupled to different (p’s.

Similar reasoning though tells us that, if (p is a superposition of three such eigen

states, we should expect a final state with rank 3 for a perfect correlation measurement. 

But in both cases the rank of the final state is determined by the rank of the initial 

state, which is equivalent to the rank of the apparatus state chosen initially and inde

pendently of (p. If the initial state is chosen independently of any cp its rank is therefore 

constant. It follows that any measurement satisfying the objectification condition will 

not be a perfect correlation measurement, which requires the rank of the final state 

to vary with the number of eigenstates of the measured observable which resolve the 

initial state (p.

The argument excluding perfect correlation measurements is a simple, but instruc

tive case. It can be generalised to the conclusion that the initial apparatus state should 

be a density operator of rank at least as high as the dimension of the Hilbert space Mg 

characterising the object to be measured, at least if we want a proof that will cover all 

possible initial object states.

It may of course be the case, as Stein has claimed in his recent paper [79], that we 

don’t want to prove insolubility just for the whole of a possible Hilbert space associated 

with a system on which a measurement is made, but also for certain given subspaces 

of it. The idea is that what doesn’t work for the whole space might after all work if 

certain conditions are imposed on only a smaller part of it. That is, according to Stein, 

an insolubility proof for evolutions given by a certain unitary operator U , mapping all 

possible initial states of the object system H§, coupled to an apparatus initial state 

Tm, will show how certain conditions will fail given all these possible evolutions for all 

these different states. But we also need to show explicitly that the evolutions given by 

U for initial object states (p € "Hg coupled to Tm, with Hg a  proper subspace of Hg, 

fail. Stein’s idea seems to be that there might be some unitary C/’s which run foul of 

insolubility proofs when applied to a whole Hilbert space, but might work if we only 

consider their action on a restricted part of the Hilbert space.

Here is a good physical example: suppose you want to measure the position of a 

particle which you know is somewhere along a line. In practice it is confined to a seg

ment in front of you in the laboratory, and not outside. We can break up this segment,
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within which we know the particle to be confined, into finitely many ‘subsegments’, 

and measure which one of them the particle is in. We would t hink it necessary to prove 

or disprove theorems about measurement for all of the (discrete) position observables 

on which represent the particle position along a fine. According to Stein, we should 

make sure that, in proving such theorems, we don’t rule out unitary evolutions which 

fall foul of an insolubility proof when we argue at the level of the observable on the 

whole space, but which might model perfectly good measurements when the measured 

observables are restricted to the ones corresponding to positions in my lab. Consider 

a finite set of eigenstates, which span a proper subspace %§' C %§, corresponding to 

the particle being somewhere in the laboratory. If we have a unitary operator that 

can model a measurement (in the sense of satisfying objectification and the probability 

reproducibility condition) for this finite set of eigenstates of a position observable, but 

fails when we consider all the eigenstates of the observable, then we should not rule this 

unitary operator out as a good model for measurements. It would account for one way 

of usually looking at measurements, namely that measurements are made in the strict 

confines of a laboratory. So insolubility proofs should hold not only for measurements 

on the whole space, but also for measurements on proper subspaces of these spaces.

The argument given in this chapter fulfils Stein’s desideratum all the way: if one 

wants to provide a proof for a finite dimensional subspace of the Hilbert space associated 

with a particle whose position we want to measure, we can just think of the Hilbert sub

space representing the particle’s position as, nevertheless, a finite dimensional Hilbert 

space of possible position states, and make the same arguments, beginning from the 

claim that the initial density operator for the apparatus will need to have rank equal 

to the number of position eigenstates which we think it is realistic to measure.

In the case in which the measured observable has degeneracies, the rank of the 

initial density matrix for the apparatus space must be bounded from below by the 

cardinality of the set of eigenvalues; without loss of generality in the argument it is 

possible to make the assumption that there are no such multiplicities. In this case an 

equivalent claim is that the mixed state should have range of dimension at least equal 

to dim('Hs)9*

9More appropriately in the case of an infinite-dimensional Hilbert space the mixed state should have 

infinite-dimensional range. Note also that again results in the next chapter establish that if the rank of 

the density operator representing the initial apparatus state is greater than the dimension of the Hilbert
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If the mixture has rank m  strictly less than dim('Hg) =  n, then a measurement of 

an initial state (p, a superposition of all the eigenstates of the measured operator, will 

yield a final state mixture of rank less than the number of eigenstates in the initial state 

(p. This cannot possibly be a final state of a measurement satisfying the objectification 

requirement and condition 5. Objectification and 5 would require that the final state 

be a density operator defined over at least n projectors, so that the pointer states in 

the final state do not display any interference between them: the pointer states must 

point to n  different values, and if the final state is a density operator of rank m  some 

of these different pointer states will necessarily have to be superposed.

The elimination of these possibilities leaves the case of an imperfect correlation 

measurement of an observable defined on an object system %§, with the initial state 

of the measuring apparatus system being a mixed state (over projectors on states 

forming a complete orthonormal system for the apparatus system H  m of rank equal to 

dim(^s))-
Before moving on to the general argument it is worth summarising what has been 

established in this section. We assume that the initial density operator for the apparatus 

state is given independently of the initial object state when measuring an observable 

H , also independent of the initial states. This initial apparatus density operator must, 

when coupled with initial object states, in all cases lead to a final state which satisfies 

the objectification requirement and condition 5 (at least). But this assumption is 

enough to rule out that there exist any perfect correlation measurements that do the 

trick: for example when the initial object state is a pure state the final rank is constant, 

while objectification, 5 and perfect correlation would demand a ‘variable’ rank for the 

final state.

This achieves two things. First, it rules out perfect correlation measurements as 

possible candidates for measurements satisfying objectification and 5 (because they 

would require the rank of the final density operator to ‘vary’ when it is in fact constant). 

Second, it requires the initial density matrix to have rank greater than or equal to the

space U s for the object system some very peculiar problems can arise, given the procedures we adopt 

for defining actual unitary premeasurements: it is possible to show that under certain circumstances 

no unitary premeasurement at all (that is, independently of whether objectification is satisfied) cam be 

defined for an initial object-apparatus state where the apparatus density operator is of rank greater 

than the dimension of the Hilbert space for the measured system.
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cardinality of the spectrum of the (discretised) measured object observable, so that 

measurements on all initial object states (including for example initial object pure 

states which axe superpositions of all eigenstates associated with distinct eigenvalues 

of the measured observable) might have a chance of satisfying objectification and 5 .

2.2. A first version of the general argument. We begin by considering first 

the case of dim('Hg) =  dim(^M) =  n < oo. Again without loss of generality assume 

that , <pn} pick out an observable with a non-degenerate spectrum. We have

that, for an initial pure state =  P[ai<pi+...+an<pn] an initial apparatus state 

Tm = S iL i where the P[^']’s form a set of arbitrary orthogonal projections, the

dynamics of a measurement process represented by a unitary operator U would yield

n n

t f (E ,0*iW g )irI = Y ,w‘UIU w u~l
t= l i= l

n

(2 *1) = Y l WiPM ^ ) ]
i=1

As the states axe pairwise orthonormal, {p  ® is an orthonormal set in 

'Hs <8 > Hm- Therefore {U(<p ® V’i))* *s 311 orthonormal set, too, under the assumption 

of unitaxity of U.

Suppose that, for i j ,  Wi  ^  Wj .  If S?= i satisfies the objectification

requirement of being a sum over eigenstates of the pointer operator I  ® Am, then the 

states must be such eigenstates, that is U(<£>®^) = Pi® with (pi arbitrary

states. Recall from remark 2.1 that all states in W§ ® [tpi], for all eigenstates of a 

pointer observable Am, axe eigenstates of I®  Am- Furthermore the eigenstates must be 

eigenstates of different pointer values (as we are measuring an initial superposition (p of 

n states) and therefore pairwise orthogonal. Under the assumption that the weights of 

the mixed state axe different, such mixtures will admit of only one resolution in terms 

of orthogonal projections.

It then follows that, calculating the probabilities for I ® P[^f], we obtain always 

and only w^s as a result. Therefore the probabilistic information is determined solely 

through the weights of the initial apparatus mixture and completely independent of 

initial states such as </>, which axe superpositions of n distinct eigenvalues of the ob

servable to be measured. The probabilistic part 6  of the probability reproducibility 

condition will then be violated and we already have a proof of insolubility.
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It is not difficult to see that a similar calculation will work for superpositions of less 

than n  eigenstates. Discussion of an example will be helpful here.

Exam ple 2.1. Consider an initial state for the measured system ip =  oc\ip\-srct2ip2 , 

|o i |2 +  |o!2 12  =  1, P̂\ 5 <P2 eigenstates of the measured observable. Also again consider 

an initial state for the apparatus system given by Tm =  ]C?=i wip W^i where we assume 

the ip^s form an orthonormal set.

The initial state of the system is then
n n

T = pw)0 53 WiPm = 53 wip[v®ViY
i= l  i= l

A unitary evolution U will then yield the final state
n

53 WiP[U((P®tp,i)] 1 
i = 1

where the P[u(<p®̂ i)],s 3 X 6  orthogonal 1-dimensional projections. For objectification and 

condition 5 to be satisfied, this state must be equal to a state of the form
k n

^Final =  5 3  Wi P [<fii®ipi\ 5 3  Wi P [Vi®'l>i]'> 
t= l i = k + 1

with 1 < k < n.

Without loss of generality we can assume that the states (pi <S> tpj, for fixed j ,  form

an orthonormal set. This is because
k (  k

53 wiP[<f>i®̂j] ~ I 53
*=i \t= i

=Tfc <g> P[^]

and Tjt must have a decomposition in terms of orthogonal projections. Furthermore, 

states <Pi<S>ipi are orthogonal to states (pj^rj) 2  for all i, j .  Therefore Tpinai can be written 

in terms of an orthonormal decomposition of factorised states of the form Cpi <S> ipj- 

Under the assumption that Wi 7  ̂Wj in the initial apparatus state, wip [U{v<2nl)li)\ 

is the unique decomposition of the final state in terms of orthogonal projections. It 

follows that UfaQipl) =  (pk <8> fpj for one of k, j  and that, more importantly, w[ is equal 

to some Wi of the initial mixture.
L #

Then calculating, for example, the probability for I <8 P ^]  will yield X)t=i w*i again 

dependent only on the probabihty weights of the initial mixture and not equal to |a i |2. 

Again therefore the probabilistic condition 6  is violated.

wip m
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The argument clearly generalises to all cases where the number of eigenvalues mak

ing up the superposition of the measured state is less than the rank of the initial density 

matrix for the apparatus system. It then follows that, given an initial pure state of 

the measured system, the probabilities of the final apparatus state depend only on the 

weights of the initial apparatus state.

A similar result holds for the case when the initial measured system state is a 

density operator. Again an example will clarify what happens.

E x a m p le  2.2. Consider the case of a measurement on a 2-dimensional Hilbert 

space of an observable whose eigenstates are ip\ and v?2 - Let the initial state of the 

measured system be

Ts =  ViP^ij +  t>2-P[p2]

where (pl = anpi +  ct2<P2 and <p2 =  <*2 ^ 1  — &\y>2 , a* G C (where, for a  € C, a  is the 

complex conjugate of a). In other words we write the initial state of the measured 

system in its resolution in terms of orthogonal projections. We then have that the 

probability for tpi, given that the initial state is Ts, will be v i |a i | 2  +  ^2 1<̂2 12- 

Now we consider an initial state

Tm =  wi P[^01] +  w2P[,j,02]

for the apparatus, and an observable A  on the apparatus space with eigenstates ipi and

ij) 2 representing pointer positions for (p\ and (p2 respectively.

The initial object +  apparatus state will then be
2

i j = 1

where the are pairwise orthogonal projections on the composite system.

The final state
2

^Final =  5 3  ViWj^[U(<pi<S>rl>oj)\ 
i j - l

is then resolved in terms of a set of pairwise orthogonal projections Exactly

the same argument employed from the previous example will show that these must be 

factorised states of the form Then the probability for H ® ‘tpj will be equal to a

combination of weights V{Wj. At this point more could be said about how the weights 

combine. For the purpose of this example, however, it suffices to note that, in any case, 

such probabilities are independent of |a i |2  and [or212, the coefficients which appear in
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the probabilistic calculations for the initial state T§. This again contradicts condition 

6  and yields an insolubility proof.

2.3. T h e  a rgum en t for in itia l a p p a ra tu s  s ta te s  w ith  m ultip licities in  th e ir  

w eights. The situation is not much different if multiplicities in the weights of the 

initial apparatus density operator are allowed for. It is important, nevertheless, to 

show explicitly why this is the case.

Consider again the case of an initial pure object state <p E %§, where dim(H§) =  n 

and ip is a superposition of all eigenstates of the measured observable. Suppose that 

the initial apparatus state Tm has a set of equal weights it;*, with multiplicity m. When 

some WiS are equal, the set {U(p  <8 > ^ ) }  may well contain elements which are not 

eigenvalues of the operator E <g> A. The reason is that neither the initial state, nor 

the final state, have a unique resolution in terms of pairwise orthogonal projections. 

Therefore, even if the initial state is resolved in terms of such projections, there is no 

guarantee that the final state will be resolved in terms of the orthogonal projections 

corresponding to the apparatus eigenstates. This then raises the possibility that the 

probabilities will not depend on the weights of the initial density matrix, whereas they 

do in the case when no multiplicities are present.

The final state is itself a positive, self-adjoint operator on Hg ® "Hm- As is well 

known, it must contain the appropriate apparatus observable eigenvectors in its range 

in order to be expressible as a convex combination of them 10 and thus satisfy objecti

fication. Furthermore the apparatus observable eigenvectors will form an orthonormal 

basis for the range of the final state. Then the objectification requirement and condition 

5 can be satisfied. Two possibilities have to be considered here.

Any pure states in a resolution of the final state in terms of orthogonal projections 

whose weights do not occur more than once in the final state are fixed by the objectifi

cation condition, which demands that the final density operator admit of an orthogonal 

representation in terms of eigenstates of a pointer observable I <8 > Am- The orthogonal 

representation of the density operator is given by a set of eigenstates of the operator, 

the weights being its eigenvalues. For eigenvalues (weights) with multiplicity 1 there is 

no possibility of eliminating their corresponding eigenvectors from the orthogonal rep

resentation. These eigenvectors appearing in the final state of the object -1- apparatus

10It is a general feature of density operators that any projection onto a state in the range of these 

operators can appear in a decomposition of the density operators.
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system must then be eigenvectors of the pointer observable, as we assume that the final 

state satisfies objectification and 5.

The problem case therefore remains when eigenvalues (weights) of the final (and 

initial) density operator have multiplicity greater than 1. Denote by ip" the states of 

the initial apparatus density operator for which the weights of the representation are 

repeated m  times. The final states {U((p<8>ip")} for 1 <  i < m  must span m  eigenstates 

of I ® A  in order for the final state to have a representation in terms of eigenstates of the 

pointer observable, satisfying in this way the objectification requirement and condition 

5. Rewriting the final state in this way will not, however, affect the weights associated 

with the projections. In this case again calculation of the probabilities will yield always 

and only the weights W{. The convex-preserving property implies that the weights, as 

determined by the initial density operator for the apparatus system, will themselves be 

‘constants of the motion’ under any possible action of the conjugation operation as can 

be seen in (2.1). This is true regardless of whether the weights exhibit multiplicities or 

not, and the result previously established still holds.

REMARK 2 .2 . Assuming that the pointer observable has multiple eigen
states associated with a given eigenvalue will not affect the argument given in 

this section. Suppose that the apparatus eigenspace H m is such that dim(?{M) > 
dim('Hs), and suppose that for some eigenvalue a of the pointer observable Am, in
dicating measurement of an eigenvalue of the object observable being measured, 
the pointer eigenvalue is degenerate. Assume that the eigenvalues associated 
with a are spanned by an orthonormal set {ipia, • • • , ipna}- Then the appropriate 
projector to test for the probability associated with the pointer value a of the 
observable I® A will be I® P[{^lai... ,^no}]> where P[{^1oi. . . i s  the projection 

on the subspace of 'Hm spanned by the orthonormal system {ipia, • ■ • ,ipna}- 

It is easy to check that the probability condition will fail in exactly the same 

way if this is the case. Objectification requires that, if the initial state yields 

probability |a 0 |2 for the eigenstate ipa of the measured observable which is asso

ciated with the pointers ipa, then the final density operator U(T) of the object 

-h apparatus space must admit of a decomposition into one or more of the pro

jections P  ® Ptya]. The pure final states I ® P ^o] will be orthonormal to the 

projections associated to all other pointer eigenvalues. They will, therefore, have
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been unitarily evolved from pure states spanned by a subset of the initial appara

tus states ortbonormal to the other pure states decomposing the initial apparatus 

mixture. Suppose the weights associated with such initial orthonormal states are 

Wia; their sum W{a will then clearly be equal to Tr[?7(T)I ® 

irrespective of the initial object state.

2.4. Som e conclusions. This section establishes that one cannot construct an 

operator satisfying conditions 3 and 4, by deriving a contradiction for assumptions 3 

and 4, given the further assumption of unitarity of the measurement operator.

While the proof is carried out for the finite dimensional case only, it is clear that 

much the same reasoning can be applied to the infinite dimensional case and the same 

result (independence of probabilities) applies. This is because of the form of the con

vexity assumption for infinite dimensional Hilbert spaces, namely

n \  n

u ~ l =  T j v i V  ( ^ W '] )  u ~ l
i= l /  *=1

n

i= l

Again the states P[u{ip®^] must be pointer states (or a group of them must span 

pointer states in the case of multiplicities in the weights, even infinite multiplicities) for 

objectification to be satisfied. Thus the probabilities will again be equal to (possibly 

infinite) sums of weights itfj. 11

The argument of this section seeks to give an intuitive idea of what can happen 

when we assume that objectification of the pointer observable holds. It can also easily 

be made rigourous for cases where multiplicities and degeneracies are present, following

11 Note in particular that unitary transformations on infinite dimensional Hilbert spaces must map 

the whole space onto itself as well as being isometric. This means that transformations which for 

instance map an orthonormal basis of the Hilbert space to a countably infinite subset of that basis, 

even though they preserve the inner product and are thus isometric, are not unitary. The argument 

however works both for unitary and isometric transformations. In fact the condition that the projection 

operators P[^], the set of all relevant pointer observables, span the whole of the infinite dimensional 

Hilbert space “H u  is not a necessary condition for the argument just given. Therefore the eigenspaces 

Tis ® [tpi] of the pointer observable need not add up, for all non-zero pointer values indexed by i, to the 

whole space Tis <S> ‘Hm, but will add up to Tis ® a proper subspace of Us ® Hm- In such case the 

measurement operator might well be an isometry from 'Hs '&'Hm to Hs ®

U \  lim
\ n—»oo
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the points made, for example, in subsection 2.3 and in Remark 2.2. I avoid this, though, 

for the discussion of this section will be generalised by the result given in section 4.

The present discussion also makes use of condition 5, which is independent of ob

jectification and enables a more intuitive discussion of what is happening in terms of 

the dynamics: it requires not just that pointers point, but that they point to the right 

values. This is not, however, necessary for the results of this section to work. Assuming 

just objectification means that the final state (2 .1 ), that is

n

i= l

must be decomposed into eigenstates of I ® Am- Such eigenstates, however, need not 

point to the right result. Nevertheless, calculating probabilities for E®P^.] for a pointer 

state P[^], the same line of reasoning used in this section will yield a value of 0  or a 

sum of weights Wi yet again, once more independent of the probability distribution 

associated with the initial object state Pyy  Therefore the present strategy also yields 

a contradiction with Fine’s distinguishability condition.

The difference will be that, without assuming condition 5, the rank of the initial 

density operator for the apparatus space will not be constrained. This difference, 

however, straightforwardly leads to insolubility results if the rank is too small, with 

arguments similar to the one given for the case of perfect correlation measurements.

This section presents a result which is close to those of a recent paper by Stein [79]. 

Both reach the same conclusion, namely that the probabilistic information yielded by a 

measurement satisfying objectification will in the end depend on the initial apparatus 

state only: no transfer of probabilistic information can happen between systems %§ and 

%M- The probability reproducibility condition asks that the probabilistic information 

of an initial state <p s with respect to a measured observable on H§ be transferred to 

information of the final state of the apparatus with respect to a pointer observable: this 

cannot be done. Stein assumes that the measurement operator U be unitary and satisfy 

objectification. This latter condition is expressed by the requirement that, given an 

initial state T§®Tm, the final state of the measurement evolution, U(Ts<S>Tm )U~1 should 

commute with the pointer observable operator on ® Hmi namely I <8 > A. Rather 

than explicitly calculating the probabilities as is done in this chapter, he proves, using 

the commutativity condition, a general result which entails the conclusion about the 

probabilities. Both the present proof and Stein’s effectively show that the probabilistic
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requirement 6  is violated. Busch and Shimony [17, p. 401] explicitly construct an 

operator which is unitary and satisfies objectification, but for which the probability 

reproducibility condition fails in exactly the way shown by Stein and in this paper. 

This example will be discussed at some length in section 4.

Stein also motivates his proof by reference to a debate with Fine and Brown, which 

will be further discussed in the next section. Fine and Brown’s proof considers the 

possible evolutions of particular, preferred decompositions of the initial object +  ap

paratus state; this actually leads to an obvious impossibility proof for the quantum 

measurement problem according to Stein. I think Stein has in mind something like the 

proof presented in subsection 2 .2 ; the ‘obvious’ is due to the fact that such a proof 

would simply consider unitary evolutions of the initial object +  apparatus pure states 

in the preferred decomposition.

On the other hand, this does not rule out the possibility that for some decomposition 

other than the preferred one the problem might be solved. In particular, if we have 

a density operator which is not a proper mixture, or if we reject the possibility of 

drawing the distinction between proper and improper mixtures (as, for example, Krips 

[53] does) we are not in any position to select a preferred decomposition. One way 

to read the results of this section is that they establish that such possibilities are not 

really present: objectification and unitarity constrain them, as is shown by considering 

the evolution of the initial orthogonal decomposition of the object +  apparatus state, 

and showing that multiplicities in this state do not make a difference.

3. Insolubility proofs and Real Unitary Evolution

This section discusses the insolubility proof given by Fine [36] and Brown [11]. 

The previous section has shown how, assuming objectification and condition 5 (indeed 

assuming objectification alone) makes it impossible for the probabilistic condition 6  

to be satisfied. Fine’s proof relied implicitly on a further assumption, Real Unitary 

Evolution (RUE), in order to derive the impossibility result. Brown’s paper makes this 

assumption explicit and defends it as a reasonable assumption for quantum measure

ments.

Stein (in the paper [79] mentioned at the end of the previous section) and Shimony 

[77] have criticised this assumption as untenable on two different grounds. By relying 

on the analysis given in the previous section it is possible to show that the technical
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claim that RUE makes is in fact not independent of the assumption of objectification, 

but follows from it under the interpretation of mixtures that Stein in particular thinks 

is appropriate.

This result relies on an apparently stronger version of the condition of objectifica

tion. In showing that the condition is not really stronger, I will prove another result 

which establishes that, for unitary evolutions of the object +  apparatus system, the 

requirement of objectification and condition 5 are incompatible. The result is of partic

ular interest as it involves no consideration whatsoever of conditions such as 6 , Fine’s 

distinguishability condition, or indeed any other probabilistic condition that connects 

probabilities for objects to probabilities for apparata. It is therefore more general than 

any of the proofs given before, which assume such detailed probabilistic conditions for 

quantum measurement. This will be discussed in the next section.

3.1. R eal U n ita ry  Evolution and  its  critics. The principle of Real Unitary 

Evolution (RUE) assumes that the initial state of the object 4 - apparatus system, call 

it T  =  Yh wiP[<t>i]‘> &i — <P ® “0Oz € 'H.s ®'Hm is a (proper) mixture of the pure states 

and asserts that the final state is actually a mixture over the states -P[u($i)]’ 

where U is a  candidate measurement operator. This implies that, if the final object +  

apparatus state Y i  wiP[u($i)] is to satisfy objectification, the states P[u(<i>i)] must be 

the eigenstates of the pointer observable I <8 > Am, for they are the only states which can 

appear in the decomposition of the final mixture, given that it is a proper mixture.

Recall that a mixture is defined as a density operator which is a genuine mixed 

state, i.e. a density operator which either represents an ensemble of distinct systems 

truly in pure states, or represents a system which admits of an ignorance interpretation, 

so that the weights of the density operator are in fact classical probabilities, and the 

system is really in a pure state, we just don’t know which one.

Unpacking the definition, we can see that it entails a number of things. The first is 

that the initial apparatus state is equally a proper mixture: this is because if the initial 

object state is pure, the combined state will be a proper mixture only if the apparatus 

state is a proper mixture, too. As the apparatus state is selected independently of the 

initial object state, it must always be a proper mixture. So, secondly, both for the 

combined state and for the apparatus state RUE selects a preferred decomposition,
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whatever decomposition is forced upon the states by the fact that they are proper mix

tures. The final apparatus eigenstates, if they emerge, must be the result of evolutions 

of the pure states appearing in the preferred decomposition of the initial combined 

state. These evolutions are called Real Unitary Evolutions because they are evolutions 

of clearly defined pure states making up a mixture.

The assumption that the initial state is a proper mixture is needed, according to 

Brown, because if the final density operator of the combined object-apparatus system 

is to allow for an ignorance interpretation we must be able to rule out all other possible 

resolutions of it (orthogonal or not, presumably), and this is straightforward if the 

initial state is a mixture, for then the final state will be one, too. Fine’s result relies 

on considerations of states precisely of the form P[u(<pn)]i original weakness of the 

result was in the lack of justification for why we should think of states like P[u(<pn)] ^  

the only plausible candidates for being eigenstates of the pointer observable. Brown’s 

own justification of the reliance on states such as P[u(<pn)]i by assuming RUE, rescues 

the proof.

There are several problems with the RUE principle. First of all, why should we 

assume that the initial state must be a mixture in order to have a genuine measurement? 

There is no particularly good reason for this. A problematic aspect of this assumption 

concerns for example how we are to read the evolution: if the system is a proper mixture, 

it might be argued that it is as if it evolves as an ensemble of pure states, ‘sectioned 

off’ from one another according to whether they have the same pure state or not. Then 

there is a problem, because perhaps in this case we should characterise the measurement 

evolution as many different measurement evolutions for different individual pure states 

and treat the measurement problem on this basis. But it is by now well understood, 

for instance as a result of the discussion on page 50, that no satisfactory solution to 

the measurement problem in the present framework can be found if the evolution is 

defined over initial pure states.

There are two other reasons for dropping RUE, one to do with the generality of 

proofs that one wants to achieve and one concerning the interpretation of density op

erators in general. It seems unreasonable to disallow density operators which are not 

proper mixtures from being initial apparatus states, particularly if this might solve 

the measurement problem. This requires only objectification for the final apparatus 

system, which in turn requires only that the final object +  apparatus system be an
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appropriate density operator, and not that such density operator be a proper mix

ture. Initial apparatus density operators which are not proper mixtures might arise, 

for instance, by a decoupling of an apparatus from an environment if the apparatus 

+  environment system happens to be in an entangled state. Several reasons suggest 

that this will in general be the case: the Coulomb interaction is sufficient to guarantee 

that everything will become entangled, even when it is effectively shielded. Shimony’s 

own statement is that “ . . .  the energy levels of macroscopic systems are so densely 

spaced that no shielding can prevent the entanglement of [the apparatus system] with 

the environment” [77].

Stein’s argument against assuming a principle such as RUE is based upon rejecting 

the possibility of interpreting the density operator as an assignment of probabilities to 

possible pure states. As he puts it, “ the full content of the statistical operator lies 

in its assignment of probabilities to the possible values of observables, and [ . . .  ] it has 

nothing whatever to do with probabilities that the system is in a given pure state” [79]. 

This is, in several different senses, a point well made; many recent approaches to quan

tum mechanics stress the fact that states are derived from the demand that they define 

a probability measure for the sets of observables (this is how Gleason, for example, 

characterises states). From this point of view pure and mixed states have the same 

status: they both define probability measures, albeit different ones. But also we assign 

states of incoherent polarisation (non pure density operators) to photons without nec

essarily intending to interpret this assignment as stating that the photons are in one as 

opposed to another state of coherent polarisation. The algebraic approach to quantum 

mechanics also defines states in this way.

Stein’s position seems to me to be the correct one on the issue of interpreting den

sity operators, at least for the present discussion. If we assume that a decomposition 

of a density operator is to be privileged at all, this is in a sense equivalent to saying 

that quantum mechanics is incomplete. This is because nowhere does quantum me

chanics tell us how to distinguish such a decomposition from any other (Van Fraassen 

makes a similar point when discussing the ignorance interpretation [80, p. 206]). In 

particular there are no observables which can draw this distinction, in the sense that 

no observables lead to different expectation values for different decompositions of a 

density operator. Therefore no physical setup according to the quantum theory on its 

own, no experiment, can draw the distinction: this is the essence, from a theoretical
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point of view, of what differentiates quantum mechanics from ‘classical’ theories. Van 

Fraassen in fact explicitly speaks of quantum mechanics being incomplete insofar as we 

think we can tell which decomposition of a density operator is the correct one.

Henry Krips similarly rejects the idea that we can interpret density operators epis- 

temically, as he puts it. He flatly rejects that it makes sense to talk about proper 

mixtures from a different point of view, both for technical and mainly philosophical 

reasons: if it makes sense to talk about proper mixtures in quantum mechanics, then in 

tru th  this so-called mixture is really a pure state, and Krips gives a number of technical 

and philosophical reasons for treating it as such [53, Ch. 4].

Nevertheless I think that Fine and Brown’s proof works without assuming RUE, and 

I will try to show this in what follows. What is it that Fine and Brown actually do? The 

proof works by considering three initial states (pi and <P2 , eigenstates of an observable 

H , and <p =  a\(p\ + ot2<P2 for the object system, as well as an initial density operator for 

the apparatus system, 2 * wi^\n] ( ^ e 7 *’s n°t necessarily eigenstates of the apparatus 

observable). The proof then examines the three end states after the evolution, namely 

wiP[U(<pi®'Yi)\ and the similar states for <p2 and (p. These must all be weighted sums 

of eigenstates of I 0  A  if they are to satisfy the objectification condition. Now let 

=  (pi 0  7 n for some fixed n, $ 2  =  ¥>2 ® 7 n and $  =  (a\cpi 4- a 2<P2 ) ® 7 n- Then we 

have that U($) =  a iU ($ i) -ha^UX^)- But U($), U ($i) and U(<&2) are all supposed 

to be eigenstates of 2 0  A and for this to be true it must be that these eigenstates have 

the same eigenvalue. If this is so then Fine’s distinguishability criterion (as well as 

the probability reproducibility condition) will fail: (pi, (p2 and (p are if-distinguishable, 

while the final states are not 1 0  ^-distinguishable.

A natural question arises here: can this proof work without explicitly assuming, as 

RUE does, that, for an initial density operator ^  wiP[tp<s>Tp0i] for the object +  apparatus 

system, the final state, which by objectification must be a decomposition in terms of 

projections on eigenstates of pointer observables, will actually be so decomposed by 

projections of the form P[u(<p®ii>0i)]'! Can the proof work without assuming that the 

ignorance interpretation of mixtures selects a preferred decomposition of the initial 

state of the combined system, as RUE suggests? The aim is to attempt a different 

‘rescue’ operation of the proof just outlined in the previous paragraph from the one 

that Brown suggests. The motivations are also different from Brown’s. He sees a virtue 

in the RUE condition itself, as well as in saving the proof in view of its simplicity: the
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addition of the RUE condition, while philosophically debatable, certainly does not add 

to the difficulty of the mathematical argument we have just seen. My rescue of this 

argument has a somewhat different motive. I want to show that it is on a par as a 

result with other insolubility proofs, so that it is not necessary to invoke any additional 

conditions in order to show that Fine and Brown’s proof is valid. This will hardly keep 

matters simple; on the other hand it shows that the insolubility result that Fine and 

Brown propose is in no way less general than other results, irrespective of the attitudes 

one has towards interpreting quantum density operators.

3.2. Saving F ine and  B row n’s p roof?  In order to answer the question on 

which the previous section has closed, I have to show that we can dispense with RUE, 

assuming only the standard conditions invoked when proving insolubility results, while 

keeping the proof just outlined as a valid one. The crucial step in doing this is to 

show that the technical part of the RUE assumption is in fact derivable from the other 

conditions usually assumed when trying to solve the measurement problem.

This technical content amounts to the claim that there exists a preferred resolution 

of the initial apparatus state, independent of the object state. This resolution must in 

addition have the following property: the pure states decomposing the initial appara

tus state, when coupled to the initial object state, are necessarily mapped to pointer 

eigenstates. This will establish that there is a way of writing down the initial object -f 

apparatus state, independent of the initial object state, for example as wiP[<p®ip0i]i 

such that the final state 2 *  a^ er th® evolution U has taken place, is

decomposed in terms of pointer eigenstates of precisely the form P[u(<p®ip0i)]' The in

dependence of the ipoi's from the initial object state <p is again needed for the proof on 

page 67 to go through, as can be seen by inspecting the role of the 7 n’s in that proof.

If I can show that this technical content follows from the usual conditions in the 

quantum measurement problem, RUE will then become redundant. If this is established 

it will it be possible to appeal to that resolution and give as a proof the argument of Fine 

and Brown presented on page 67, independently of the philosophical reasonableness of 

RUE and regardless of the approach we want to take in the interpretation of quantum 

density operators.
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It is worth stressing that what I am considering here is the objection to the validity 

of the proof given on page 67 per se, and not the objections to RUE. If it were pos

sible to show that the result of Brown and Fine follows without assuming RUE, then 

debates over the status of RUE and debates over the status of the proof will become 

separate issues: it might be thought that RUE is a tenable interpretation for quantum 

measurement evolutions, or it might not, but this would not affect the status of Fine 

and Brown’s proof.

The final state of the object +  apparatus system should be a density operator 

which admits of a decomposition over eigenstates of a pointer observable I <g> A for 

the composite system in order for objectification to be satisfied. A subset of these 

eigenstates (bearing in mind remark 2 .1 ) forms an orthonormal basis for the composite 

system. The initial density operator can also be decomposed over a set of orthonormal 

states, P[$.] say. As any unitary operator maps orthonormal systems to orthonormal 

systems, and a density operator has a unique resolution in terms of orthonormal states, 

assuming there are no multiplicities in its weights, then the final state must have its 

orthonormal resolution given by P[t/($i)]j given the are orthonormal states. If the 

decomposition of the final state in terms of pointer eigenstates is orthonormal, then 

the pointer eigenstates must be of the form C7($*).

Suppose the unitary operator measures an observable with eigenstates <£>i, v?2 , • • • 

and that the initial object state is a pure state which is a superposition of m  such 

eigenstates. Then the final state must be a density operator decomposable into pointer 

observable eigenstates having m different pointer eigenstates of the observable Am 

defined on the apparatus space H m - If two pointer eigenstates have different eigenstates 

of Am for their H  m component, they are orthogonal. Some, on the other hand, will 

have the same % m component. Consider now two different ones, Pi == P^®^*] and 

P2 =  P[^/®^], i fixed. Suppose they are not orthogonal, therefore not of the form 

U($i)] they do span a subspace of dimension 2 , however, and any density operator 

which is decomposable into Pi and P2 is decomposable into any two projections on the 

image space of Pi +  P2 . In particular, given the assumption of no multiplicities in the 

initial density operator, there must be exactly one orthogonal decomposition of the 

subspace; this will, as is easily seen by looking at Pi and P2 , necessarily contain as 

its % m component.
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It follows that the projections which decompose the final object +  apparatus state 

after a unitary measurement, in accordance with the objectification condition, are such 

that

e ither: only one contains a particular ij>j as its Tig component, in which case it 

will be a projection orthogonal to all other projections and therefore necessarily 

of the form

or: more than one contains tpj, in which case there exists a decomposition of the 

particular ‘subpart’ of the density operator in terms of orthogonal projections, 

both containing ipi, and both orthogonal to all other projections in the final 

state, in which case they will also be of the form P[u($i)]12-

12 It is easy to show that this is the case. First of all, note that the decomposition of a (multiplicity 

free) density operator T  in terms of pointer eigenstates might not be made up of pairwise orthogonal 

pure states of a density operator, but will consist at the very least of a set of states, grouped into subsets 

which span orthogonal subspaces of the Hilbert space “Hs ® M m, where the subsets are characterised by 

the fact that the eigenstates belonging to them share an eigenvalue. Clearly the elements of the subsets 

need not be pairwise orthogonal, but they are orthogonal to all other eigenstates in the decomposition.

Given one such subset S  and its complement S ' in the set of eigenstates of the given decomposition 

of the density operator T , the latter can be written as Ts + Ts>, where Ts  is the operator obtained 

by summing together the elements of the subset S, with the appropriate weights, and T$> is simply 

T  — Ts. Ts maps all vectors in a Hilbert space such as "Hs ® "H m to vectors spanned by S , and is null on

vectors spanned by S '. T$> clearly does just the opposite. The claim just made is that the orthogonal

decomposition of the density operator will then of necessity be given by vectors spanned by S  and S' 

separately, and cannot belong to the span of the union of these two sets.

The orthogonal decomposition of T  is given by its eigenvectors multiplied by its eigenvalues. 

Namely, for any <p such that Pv appears in the orthogonal decomposition of T, we have that T(ip) =  ap . 

Now suppose that <p is in the span of T, and that ip =  aiy?i +  02^2, where p \  is in the span of Ts  and 

<P2 is in the span of Ts> ■ Then, if ip is an eigenstate of T, we must have that

T(p) =  Ts +  Ts> (ai<pi + oc2<Pi) =  ociTs{<pi) + ol2Ts> (<pi)

For this to be equal to atp both <pi and <p2 must be eigenstates of Ts and Ts> respectively, and therefore 

also of T, and both must have eigenvalue a. But this would imply that T  has a multiple eigenvalue, 

which gives a contradiction. Therefore the eigenstates must belong to S  and S '. The argument 

can clearly be repeated for each of the subsets which partition the decomposing pointer eigenstates, 

therefore making sure that all elements in the orthogonal decomposition of a multiplicity-free final 

density operator T must be pointer eigenstates. Note that this applies regardless of whether the pointer 

observable has multiplicities or not: if the pointer observable has multiple eigenstates associated with 

a pointer eigenvalue, it might be the case that in the final density operator after measurement there
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So, regardless of whether we assume a condition such as RUE, it is a result that, in 

the absence of multiplicities in the initial apparatus state, the technical requirement of 

RUE (that the final state has the form P[u(&)] with U(3>) an eigenstate of the pointer 

observable signifying that a measurement has unearthed a certain value) holds. The 

technical content of Shimony and Stein’s objection to the proof is not so easily defeated, 

though: the U ($n) need not be eigenstates of the apparatus observable if there are 

multiplicities in the initial apparatus state, until otherwise proved.

As the possibility of writing the final states as £/(4>n), where these states are pointer 

eigenstates, is crucial for Brown’s proof to work, the disagreement voiced by Stein and 

Shimony still looks strong. Is it tenable? No, because, as I will show next, it is always 

possible to find a unique way of writing the initial density matrix, independently of 

what the initial object state is and independently of whether the initial state contains 

multiple weights, so that the final object +  apparatus state is a sum of eigenstates of 

the apparatus pointer observable.

It looks as though, in the argument leading to proposition 2.3, it is not possible 

to get the eigenstates right: the procedure for finding the preferred way for writing 

the initial density operator will make use of a  violation of condition 5. It is useful 

to explain this in some detail, as it will also lead to a very simple insolubility proof 

involving a contradiction between the objectification requirement 3 and condition 5, 

given unitarity of the measurement, rather than between 3 and 4, and eventually to a 

characterisation of unitary operators satisfying objectification. This makes it doubly 

worthwhile to study the question.

The following argument is close in structure to the one given in the previous section, 

specifically in subsection 2.3, when dealing with the question of how the result in section 

2  is affected by the case when the initial apparatus state contains multiplicities. Suppose 

1 <  i < m  <  n, where n  is the rank of the density operator for the initial object +  

apparatus system and m  is an index which tracks the multiplicity of one of the weights of 

the initial density operator. The states E Us ® 1 < i <  tti, which appear

in the decomposition of the initial density operator, all have equal weight w ^  0 , so 

that the density operator (which is just a standard self-adjoint operator on the Hilbert

axe many eigenstate associated with such eigenvalue. In this case they could well have different tpi's 

in them, but again this is not a problem; the same argument just given applies, as if two eigenstates 

share the same eigenvalue, then so do all its linear combinations.
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space Hs ® %m) has an eigenspace of dimension m, with eigenvalue w. -P[u($i)] neec* 

not be an eigenstate of H <S> A, but if the final state is to have a spectral resolution in 

terms of such eigenstates, the states U($*) for 1  <  i < m  must span m  of them.

More specifically, given an initial state of the object p, and an initial apparatus 

state that is a density operator resolved by arbitrary states of the apparatus system 

ipoi, suppose the density operator has, for 1 < i < m, weight w. Suppose also that for 

(p <g> V>o», U(p<2> V’oi) are not eigenstates of I <8 > A. Still these eigenstates must be in the 

range of the operator 2 * P[U(<p®ip0i)]- U is unitary, and therefore invertible, so there 

must be an orthonormal system of states $ j  in the subspace spanned by the p  <g> Vtoi’s, 

each of which will be mapped onto an eigenstate of the apparatus observable. But this 

subspace spanned by the states p  ® V’oi consists of states of the form p  <8 > aiipoi, so 

that =  p  <g> Xli Let V’oj  =  then it follows that U(p ® if)J.) is an

eigenstate of I ® A.

This establishes that, given an initial object state p  there is a way to write the 

initial object-apparatus state as a sum of the projectors such that these will be

mapped onto eigenstates of the apparatus observable. This is not enough for Brown’s 

proof to work: the density operator must be the same for all initial object states, it 

cannot be dependent on the initial state of the object system. The reason for this is that 

RUE asserts that the evolution U maps an initial state with a specific decomposition in 

terms of states p  ® V^-, which results from the state being a proper mixture, to a final 

state where the pointer eigenstates are assumed to be the evolutes of the initial states 

in the decomposition, namely U(p <8 > ipQj)- The proof works with such final states, and 

the tpQj are selected independently of the initial object state by arguing that there is a 

preferred decomposition of the initial apparatus state. In order to show that Fine and 

Brown’s proof can do without assuming RUE it is necessary then to show that there 

is a unique initial decomposition of the initial apparatus state so that the final state 

is a density operator resolved by pointer eigenstates. In other words, there must be a 

set of states ip'Qj  which we can point to, independently of the initial object states, as 

the ones which, when coupled to initial object states, are mapped by the measurement 

evolution to a final pointer eigenstate. Then it is not necessary to assume that the 

initial state is a mixture in order to claim that the final state consists of eigenstates of 

the form U( p ®
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To show that there can be a unique decomposition of the initial apparatus state 

when there are multiplicities in the density operator representing this state, we need 

to focus on the parts of the density operators which contain these multiplicities. These 

are, so to speak, the problem areas. Consider any two parts of final states which 

have multiple weights of order m, and denote them by T  =  w [̂U((p®ip0i)\ and

T ' =  wP[U(<p'®‘ifi,0j)] f°r different initial states (p and <p' of the object system. T

and T ' are sums of projections over eigenstates of the observable I 0  A.

Assume that they are such that, for i ^  j ,  (U(<p<2> tpoi)\ U(ip' 0  V’oj) ^ — 013- 

Then (p 0  ifioi and <p' 0  must be sets of vectors in 9{§ 0  H m satisfying

(3.1) (<£®^0 i| = 0  for i ^ j .

I want to show that from this there follows that V’oi and ipr0j  axe the same set of 

orthonormal states. Two cases can arise:

• <p jLip': In this case (3.1) reduces to

(V’oil^oi) =  0 f o r i ^ j . ,

which implies that ^oi and V'oj are the same set of orthonormal states, considering 

that they must span the same (sub)space of W m-

• <p _L <p': Choose a vector <p" such that it is perpendicular neither to (p nor to cp'. 

Then apply the argument of the above case for the pairs <p, <pu and (pu, ip’ to 

obtain that the density operators must have the same spectral resolution in this 

case, too.

The following result has been established:

P r o p o sit io n  2 .3 . Consider any initial state P^j £  T *  C%§) of the measured sys

tem, an initial apparatus state ]T”= 1  a unitary operator U acting on 0  'Hm

and a pointer observable for the apparatus system Am (and corresponding pointer 

observable I 0  Am for the object + apparatus system). Assume further that objec

tification is satisfied in such a way that, for a final state T  = WiP[u(ip®ipoi)]? 

U((p 0  ipoi) =  <pi 0  fa with ipi ^  for i ±  j .

13This is the problematic assumption, apparently a stronger assumption than objectification. It 

will be analysed in the next section, where I will show how it in fact follows from the objectification 

assumption together with the assumption of unitarity of the measurement operator. Only then will it 

be possible to claim that Fine and Brown’s proof is entirely equivalent to all other insolubility results.
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Then there must be a resolution of the initial density operator in the object + appa

ratus system, independent of <p € H§, in terms of orthogonal projections on 

of the form

*

such that, for the final density operator

wiP[U(tpi®rp'oi)]i
i

the U fa  ® ip'0i) must be eigenstates of the pointer observable I ® .Am*

Clearly such a resolution will apply also in the case of an initial mixed state, as it 

applies for all the individual states of the decomposition of such a state.

The result says that, for any initial apparatus state of rank n there is a  unique 

resolution of this state in terms of orthogonal projections such that the state of the 

apparatus after the measurement interaction will be a sum of n  distinct and orthogonal 

projections on pointer eigenstates. Note that no assumption is made here about the 

specific value of n, nor indeed about degeneracies in the pointer observable.

We can then, without loss of generality, rewrite any initial state of an object- 

apparatus system in such a way that the final state will be a density operator over 

eigenstates of the apparatus observable, given the additional assumption about objecti

fication made on page 73. In this case it is possible to say that, even if it is not possible 

to interpret the initial object +  apparatus state as a proper mixture, as Brown wishes 

to, the argument of the proof that Fine and Brown give can be applied to yield an 

insolubility proof.

There remains the question of whether this apparent restriction of the objectifi

cation condition is actually a restriction, or whether it itself follows from the other 

assumptions used in the proof. We examine this in the next section, for it will be 

of interest in its own right to do so, as it will yield two further results, one a very 

simple insolubility proof, the other informative as to what the structure of the unitary 

evolution must be if objectification is assumed.
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4. Insolubility without probability

This section, by farther analysing the arguments of the previous section, will make 

clear in what sense insolubility proofs are independent of specific conditions tying prob

abilities of objects to probabilities of apparata in quantum measurement. In Section 2 

of this chapter the argument has been that it is impossible to satisfy objectification and 

unitarity (with or without condition 5) on the one hand, and the probabilistic condition 

6  on the other. Section 3 has analysed Fine’s and Brown’s proof, which establishes that 

objectification implies a violation of Fine’s distinguishability condition, hence a fortiori 

of the probability reproducibility condition.

Stein, however, makes a stronger claim in his recent paper. He claims that, given the 

assumptions of unitarity and objectification, “the observation [the measurement pro

cess] conveys no information whatever about the antecedent condition of the object” 

[79], and he is right, of course. The implication of this is that there is no meaningful 

sense of measurement that can be attached to these processes, if we assume both uni

tarity and objectification. The first result of this section shows how, independently of 

which probabilistic condition is imposed, there is, given the unitarity of the measure

ment operator, a contradiction between objectification and condition 5. The second 

result is more general, and the closest to Stein’s: it provides an explicit character

isation of any unitary operator U on a composite system Hs ® H  m which satisfies 

objectification. Through yet another different route this establishes Stein’s claim.

The crucial assumption in the discussion of Fine and Brown in the previous section 

is made on page 73, as I’ve already remarked several times. The requirement is that, 

for i 7  ̂ j ,  ( U(tp <S> ipoi)\ U(<p' ® ipQj) ^ =  0. This can hold only if the final state is a 

sum of eigenstates of the pointer observable I ® Am with distinct eigenvalues, and this 

is immediately in contradiction with 5, the first part of the probability reproducibil

ity condition. Consider an initial state P[Qm+Q2V?2] € 7i+ ('Hs), the <p*’s eigenstates 

of observables to be measured on the object system, and an initial apparatus state 

]Ci= 1  w*P(̂ o»]* Why should the final state be a sum of projections over three pointer 

eigenstates with distinct eigenvalues? If this were true, by condition 5 the initial state 

would be a superposition of three different observable eigenstates, which is clearly not 

the case. This remark suggests the following result, which demonstrates the contradic

tion between 3  and 5, independently of which probabilistic condition we adopt.
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P r o po sit io n  2 .4 . Suppose an operation U  acting on 7 ^ (%§ 0  “Hm) satisfies the 

objectification requirement 3 and also condition 5. Then U  cannot be a unitary mea

surement action U*TU.

PROOF. Consider two initial states of the object, P ^  and P\^y  Suppose they 

are such that P^] has non-zero probability with respect to two eigenstates of the dis

crete measured object observable (effects, if the observable is unsharp) and P^/j has

non-zero probability with respect to three eigenstates (or effects) of the same object 

observable, two of which are the same as for Pyy  Consider also an initial apparatus 

state S?=i wiP[*Poib n Possibly infinite. Assuming objectification the final state 

for <p will be of the form

n n

* = 1  i=l

and for iff
n

i=i

5 implies that, in the case of (p, we will have that ipi =  ip\ or ip2 , these being pointer 

observable eigenstates associated with different eigenvalues (not necessarily unique if 

the eigenvalues are multiple), indicating that ipi or ip2 respectively have been measured. 

For y/, on the other hand, ipi = ipi, ip2 or ip$, again eigenstates associated with distinct 

eigenvalues. Consider in the second case a final pointer eigenstate (jpfa <g> ip$. This is 

necessarily orthogonal to all the final eigenstates of the pointer observable appearing 

in the decomposition of the first final state, corresponding to the initial state <p, be

cause it is a pointer eigenstate recording a value that is different from the eigenvalues 

corresponding to both eigenvalues associated with pointer eigenstates containing ip\ or

1p2'
If the operation U  is generated by the conjugation action of a unitary operator 17, 

then for some i = a, ipf 0  ipoa is orthogonal to all the states in the decomposition of the 

initial state for <p. This gives a contradiction: in order for (<// 0  ipoa\ ip <g> ipoi) =  0 it is 

necessary that either (<p\ <p') = §, clearly not the case, or else that ( ipoa\ ipoi) =  0  for 

all i. This is impossible, for there is no decomposition for the initial state wî bPoi] 

such that ipQa will be orthogonal to all the states in the decomposition. Such states 

must span the range of the self-adjoint operator X3£=i therefore they must
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span ipoa, so that the inner product of ipoa with them must yield at least one non-zero 

number. □

The previous result is in itself an insolubility proof; it says that unitarity of the oper

ator and objectification yield a contradiction with 5. It is worth exploring a bit further 

what restrictions on the form of the unitary operators axe imposed by objectification 

alone.

The following corollaries follow straightforwardly from the arguments in the proof 

of Proposition 2.4.

COROLLARY 2 .5 . Suppose the unitary operator U satisfies objectification. For any 

two states P^ j, P^/j G 'Hg, and given an initial state for the apparatus system  Tm, the 

final states after the evolution of the object + apparatus system will be decomposable 

into a sum of projections over eigenstates of the pointer observable I <S> Am- I f  one 

such pointer eigenstate in the resolution of the final state, evolved from the initial state 

f\<p] ® has eigenvalue qm, then there must be a pointer eigenstate in the final state 

evolved from P ^ j  <g> Tm with the same eigenvalue om-

P r o o f . See Appendix A. □

C orollary  2 .6 . For any initial state P^] of the object system T i ’i'Hs), and an 

initial state for the apparatus T  =  YliLi where the projections P[tp0i] are mu

tually orthogonal, if  the final state after the unitary evolution satisfies objectification, 

then it must be decomposable into projections of the form P ^ ® ^ ], with the ipi’s distinct 

eigenstates of the pointer observable Am- Furthermore there must exist an orthonormal 

set of such ipi’s.

P r o o f . See Appendix A. □

The previous corollaries need some comment. Suppose we have a final state of 

the form Y jiwiP[$i) ® P[A]i measuring an initial pure state <p G where the ipi axe 

eigenstates of the pointer observable Am- The first corollary tells us that the span of 

the reduced apparatus state Yli wiP[ipi] must be the same for all initial object states (p.

If not there must exist two object states <p and <pr for which the final apparatus states

will have different span. In this case we can find, as in the proof of Proposition 2.4, a 

projection operator appearing in the decomposition of the final state associated to one 

of the two initial states which is orthogonal to all possible projections decomposing the
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final state associated with the other state. This violates the assumed unitarity of the 

evolution.

The second corollary establishes that the rank of an initial apparatus state Tm 

must be equal to that of the final reduced apparatus state. Then the span of any final 

apparatus state is not only fixed, but also maximal relative to the rank of the initial 

apparatus state. Furthermore, there always exists an orthogonal decomposition of 

the final object +  apparatus state in terms of eigenvectors of the apparatus observable 

1 0  Am. Note that this does not mean that all vectors appearing in such a decomposition 

will be of the form Cp <g> ipi, with ipi an eigenstate of Am- It is quite possible that 

projections over vectors such as Y%=i ® V’t might appear in the decomposition if 

ipi and ip2 axe eigenstates of Am corresponding to the same eigenvalue, for then such 

an entangled vector will nevertheless be an eigenstate of I <8 > Am-

REMARK 2 .3 . Note that in the previous proofs (see Appendix A) no as
sumption is made that the resolution of the final state in terms of pointer eigen
states must correspond to the evolutions of initial projections of the form >
with the ipoi’s an orthogonal decomposition of the initial apparatus state. How
ever at this point it is possible to invoke Proposition 2.3. Suppose we have a 
unitary evolution satisfying the objectification criterion, which we now know to 
entail, by Corollary 2.6, the extra assumption in proposition 2.3. This propo
sition then shows that there must exist an orthogonal resolution of the initial 
apparatus density operator, independent of the initial object state, such that 
projections in the resolution of the initial composite density operator, induced 
by the resolution of the initial apparatus density operator, will be mapped to 
projections which are eigenstates of the composite pointer observable.

This finally and somewhat laboriously establishes, amongst other things, that 

Fine and Brown’s proof outlined on page 67 can be used to provide an insolubility 

proof of the quantum measurement problem independently of the interpretation 

we impose on quantum mixtures.

This result also leads to the further theorem which characterises unitary measure

ment mappings with sharp pointer observables satisfying objectification of the pointer 

observable.

Consider a complete orthonormal set in Hs 0  suc^ as {<£i, . . .  , <pn}, used in the 

proof of the previous Corollary, and the resolution in terms of orthonormal projections
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onto ipoi of the initial apparatus state selected by Proposition 2.3. The states U (ipj<Siipoi) 

must be equal to Yhk=1 ® w^ere Vfy'fc is 311 eigenstate of Am, with possible

multiplicities in the eigenvalues of Am- When k > 1 , the eigenstate of the pointer 

observable I®  Am for the composite system is entangled. A vector (state) in a  composite 

system such as Tig ® H m is called entangled if it is not of the form ip® ipi under any 

basis for Tig ® 'hLm\ if it has this latter form it is called factorisable. An entangled state 

is always the sum of factorised vectors in Hg ® ^ m -  In the present case an eigenstate 

can be entangled if and only if the set {ipijk}k all share the same eigenvalue of Am- 

If there are ipifis which are not orthogonal for different values of j  (either because 

they are equal, or simply non-orthogonal eigenstates corresponding to the same eigen

value), then in order to preserve the orthogonality of the initial states ipj ® ipoi and 

(fji ® ipoi it will be necessary that

(<Pij\<Pij') = 0-

Note also the following definitions:

D e f in it io n  2 .3 . A linear partial isometry (from now on simply partial isometry) 

on a Hilbert space W. is an operator W  which is isometric on a subspace V f of H  and 

null on the conjugate subspace 'H1- of vectors orthogonal to vectors in V !.

DEFINITION 2.4. [ipi\ denotes the subspace spanned by the vector ipi. Similarly 

[<pi\i denotes the subspace spanned by the vectors ipi in the range of the index i.

We then have the following

T h eo r em  2 .7 . 1. Consider a complete orthonormal set {<£i , . . .  ,<Pj,... ,^ m } in Hg 

and an initial pointer state Every operator U : Hg® [ipoi\i -> H g® [ipij]ij

is unitary and satisfies objectification of the pointer observable I ® Am if  and only if
li

(4.1) U := Y .
»=1.....» fc=lj —1,... ,TO

where WSyfc( •) : Hg ->■ Tig is a partial isometry of the form

<<Pj\ (*))(<Pijk)

on the subspace [<pj] and W Mijk{ •) : [V’oi]* [tpijklijk is a, partial isometry of the form

(tpoi\ (*))WyJfc)
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that maps the (sub)space spanned by the initial states ipoi (which are fixed for any U 

through Proposition 2.3) to the (sub)space spanned by final pointer eigenstates ipijk, in 

such a way that ipijk, ipijk' ipij'k are eigenstates of the pointer observable with the same 

pointer eigenvalue.

2. The following equation also holds:

h k
(4 .2) y  w sijk ® w Mijk =  y  < &  ® t /^  i (•)> (& ;*

jfc=i fc=i

3. For any two different such partial isometries, W  and W ', and any vector $  G 

n § ® H M, {W ($)\ W '( $ ) ) = 0 .

In particular, if the partial isometries W Mijk are equal for all j  }s and k }s then
n

(4.3) U = Y ,U f ® W Mi,
*=1

and if all U f are equal

(4.4) U = US ® U M

P r o o f . See Appendix A □

The result establishes the following facts. The main representation of unitary oper

ators, given by equation (4.1), looks quite complicated, and indeed allows for entangle

ment between the object and apparatus system: the measurement can map an initial 

factorised object +  apparatus state to a final entangled state. The entanglement in 

question, however, is possible only on the assumption that the pointer observable Am 

has multiple eigenvalues. In this case the observable I 0  Am has entangled eigenstates: 

to see this note first that if ipi is an eigenstate of Am then, for any ip G Hs, (p®ipi is 

an eigenstate of I 0  Am; then, if ip\ and ip2 are both eigenstates of Am with the same 

eigenvalue, it clearly follows that, for any two ip and </?', a\ip® ip\ +  ct2<p' 0 1P2 is also an 

eigenstate of 10  Am- It is precisely these kinds of eigenstates which might emerge as a 

result of a unitary interaction satisfying objectification. The indexed U which appear 

in the characterisation of U ‘track’ the extent to which such an eigenstate is entangled, 

by determining how many factorised states make up the entangled eigenstate that can 

appear as a result of the unitary evolution.

It is only to this extent that objectification allows entanglement. When, however, 

the observable Am has no multiple eigenstates (which is the case described by equation
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(4.3)) then objectification allows for no interaction whatsoever between the object sys

tem on the one hand, and the apparatus system when this is in the states decomposing 

the initial apparatus density operator. That is, for such an observable Am, initial fac

torised states of the composite system, where the apparatus state is one of the states 

*0 0 1 , do not get entangled by the unitary operator satisfying objectification.

The ‘no-information’ result for quantum measurements, stated on page 75 as be

ing Stein’s claim, then follows easily: an operator which satisfies objectification yields 

probabilities for pointer observable eigenstates which depend solely on the initial appa

ratus density operator: in particular the weights in the appropriate decomposition of 

the initial object -I- apparatus state, fixed by proposition 2.3 and by Corollaries 2.5 and 

2 .6 , determine the final probabilities for eigenstates of the pointer observable H <g> Am.

In the context of this result it is worth reviewing Busch and Shimony’s example, 

mentioned at the end of Section 2.

E x a m p l e  2 .3 . This exam ple is supposed to be an exam ple o f how objectification  

can be satisfied through the conjugation action o f a  unitary operator, while illustrating  

the failure o f the probability reproducibility condition in  such a case.

Here is how Busch and Shimony present the example:

Let U be of the form V  ® Va, where F , Va are unitary operators and 

Va commutes with all Fn [Fn is a finite or countable family of mutually 

orthogonal projections of the apparatus system, characterising pointer 

observables]. Furthermore let Ta be a mixture of Fn-eigenstates. Then 

U (P<p <g> Ta)U~l =  VP,pV- 1  <2> VaTaV ~l is a mixture of I  ® Fn-eigenstates, 

in fulfilment of [the objectification condition]. But the probabilities Tr[I <g> 

FnU(Py<8Ta)U~l] =  TrlFnVaTaVa1] =  Tr[FnTa] are independent of ip so 

that [the probability reproducibility condition] is violated. [17, p. 401]

Theorem 2.7 characterises all operators U that satisfy objectification. Busch and 

Shimony’s is a special case of such an operator (explained in the third claim of Theorem 

2 .7 ) where furthermore the initial state of the apparatus also happens to be a mixture 

over pointer states. If Ta is a mixture of Fn-eigenstates, let F{ be the projection on 

any one such eigenstate. If F{ commutes with an operator Va, then it is a fixed point 

under the action VaFiV~l , i.e. it is left unchanged by this action. Then, independently 

of <£>, the unitary operator in question is of the form F  <8 > Im and the final state under
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the action given in Busch and Shimony’s example will be V P ^V -1 <g> Ta. This shows 

in an evident way what it means to say that unitary operators satisfying objectifica

tion cannot transmit any information from the object to the apparatus system: this 

unitary operator has no effect whatsoever on the apparatus system! In particular, the 

probabilities of the pointer observable with respect to the final state clearly depend 

solely on the weights of the initial apparatus density operator. Theorem 2.7 shows how 

all unitary operators satisfying objectification in a sense do this same thing, and what 

their general form is.

5. Inso lub ility  proofs in  th e  case of u n sh arp  p o in te r observables

This section investigates the extent to which the insolubility results discussed in 

previous sections have counterparts in cases in which the pointer observable is unsharp, 

and under which conditions. To even begin to address this question, however, we have 

to reformulate some of the conditions imposed in the previous sections of the chapter. 

Despite doing this it will be apparent that none of the content of these conditions is 

substantially changed. Rather the conditions are suitably modified to deal with the 

conceptual differences which arise once we work with unsharp observables.

Before we address the problem, a brief introduction to unsharp observables in quan

tum mechanics is required (for more comprehensive treatments, see the classic texts by 

Ludwig [63] and Davies [25], or more recently Busch, Grabowski and Lahti [13]).

5.1. U n sh a rp  O bservables and  U nsharp  O bjectification . Traditionally ob

servables are identified with self-adjoint operators on a Hilbert space 7-L. A more recent 

approach identifies observables with mappings from a subset of the power set of the 

set of possible values of an observable (usually the Borel sets) to projection operators 

on a Hilbert space (including O  and I ,  the null and identity operators on 7i). Thus, if 

the set of values is the real line, one associates a projection operator with every (Borel) 

subset of the real line. For example, consider the observable ‘spin in the z  direction’. 

This has values 1 and -1 . To the set (0,2) (having a value between 0 and 2) such a 

mapping will associate the projection operator Pi onto the eigenstate corresponding 

to the eigenvalue 1; to the set [—1,1] the identity I; to [2, oo] the null map O. Such 

mappings axe known as projection valued measures, PV measures for short, and they
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characterise so-called sharp observables. These are the standard quantum mechani

cal observables, and there is a one-to-one correspondence between p v  measures and 

bounded self-adjoint operators on the Hilbert space.

p v  measures can be used to define the probability measures which provide quantum 

mechanical information. However the condition that sets be mapped to projection 

operators is stricter than is needed to obtain a probability measure. It suffices that the 

operator that sets are mapped to be a normalised positive operator. We then encounter 

the generalisation to positive operator valued measures, or POV measures.

Those observables characterised by POV measures which aren’t PV measures are 

called unsharp. Consider the generalisation of the above spin example by means of the 

observable E. E  maps {1} C E to the normalised positive self-adjoint operator

Fu = (1 — e)Pi + eP_i,

e 5 , { —1} C E  to  the operator

F-u = ePi + (1 -  e)P-i,

and all subsets of E \  {—1,1} to the null operator Q. It is easy to see how this additively 

generalises to a mapping for all subsets X  of E. F  is not a sharp observable; never

theless, for any state T  6  7̂ + (H) the quantity Tr[TP(X)] is a well-defined probability, 

for F ( X )  a normalised positive self-adjoint operator associated with the subset X  of E. 

For instance if T  =  P^] with ip =  anp\ -1- and <pi, y>-i eigenstates of the sharp

spin observable, then it is easy to see that Tr[TPie] =  (1 — e ) |a i |2  +  e |a_ i | 2 which is 

positive and less than one. This number represents the probability that a certain spin 

direction is unsharply realisable (in a sense that will be defined shortly) if the object 

is subjected to a measurement of the unsharp spin observable E. To the generalisation 

from PV to POV measures there corresponds a generalisation from projections such as 

Pi to normalised positive self-adjoint operator such as F ie, which are known as effects.

The precise definition is as follows14. Let Q be a non empty set and T  a  <r-algebra 

of subsets of Q so that (fl, T )  is a measurable space. A POV measure E  : T  -» C(7t) 

{C(H) the set of bounded linear operators on H) on (ft,P ) is defined through the

14This particular one is taken from Busch, Lahti and Grabowski [13].
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properties:

(5.1a) E { X )  > 0  for all X  G T

(5.1b) E ( Q )  =  I

(5.1c) E ( U X i )  =  'y^  E ( X j )  for all disjoint sequences (X{) c  T

where the series in (5.1c) must converge in the weak operator topology of C(H). For 

a PV measure the positivity condition (5.1a) becomes the more familiar idempotency 

condition. Note that the set of effects E ( X )  associated with a system is in fact nothing 

but the convex combination of the projection operators of any dimension associated 

with the system (for a proof, see Davies [25, p. 19]). Note also that it is still possible 

to associate a positive, self-adjoint operator to any POV measure. Intuitively, we can do 

this simply by adding all the effects which are mapped from the spectral set of the POV 

measure, multiplied by the spectral values associated with them, together. As effects 

axe bounded and self-adjoint, their sum will also be a bounded, self-adjoint operator. 

However, the uniqueness of the observables associated with the self-adjoint operator is 

lost: many different POV measures will be associated with the same operator.

The standard definition of when a property is realised in a quantum state is just 

a generalisation of the eigenvalue-eigenstate link: if, for a state T  and a projection 

.P, Tr[TP] =  1, then the property P  is realised in state T. This can be generalised 

to a notion of unsharp realisability for so called regular effects, namely effects whose 

spectrum extends both above and below For two such effects F  and its complement 

F 1- (note that the map F  -» F 1- is an orthocomplementation) there exist states T  and 

T' for which Tr[TP] >  J and TrfT'P-1-] > We can say that F  is unsharply realised 

in T  and F 1- is unsharply realised in T'.

Now suppose we allow for an unsharp pointer observable. It is essential to refor

mulate the objectification condition. Pointer objectification reflects sharp realisation 

by requiring the final state of a measurement interaction to be a mixture of pointer 

eigenstates of a self-adjoint operator representing the observable: these are states for 

which the property “having the pointer point to the value x” is sharply realised. If 

the pointer observable is unsharp this condition must be modified. Busch suggests the 

following condition: we require the components of the final state to be quasi-eigenstates 

of the effects making up the pointer observable, in the sense of giving probabilities close 

to 1 for the properties that these effects denote. In other words, given regular effects
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F  we look for (pure) states T  for which Tr[TF] > 1 — e for some arbitrary selected e 

close to zero. Such effects will form a smaller set than the one of regular effects defined 

above.

These states should form a density operator for which it is possible to apply the 

ignorance interpretation to the reduced state of the apparatus: the quasi-eigenstates 

of the pointer observable on the composite system should decompose the final density 

matrix, much as the pointer eigenstates should do for the sharp pointer observable 

case. The reduced apparatus state should also be a mixture over quasi-eigenstates of 

the pointer observable.

In order to make clear this condition, some points must be clarified and some 

assumptions must be made explicit. The first assumption is that, again, the pointer 

observable Em is discrete. This now is taken to mean that, for a set of possible values 

Q, there exists a countable subset S  such that Em {Q \  E) is equal to the null projector. 

The elements of E will correspond to measured values. This will induce, much as for 

the sharp case, a discretised version of the measured observable.

Secondly, what should really count as a quasi-eigenstate? Suppose the pointer 

observable has the formal properties of the ‘smeared’ spin observable E. If the only 

condition for a quasi-eigenstate were that its probability with respect to one of the two 

effects be greater than 1/2, this would make every state of C2 a quasi-eigenstate. For 

the time being it is assumed that the quasi-eigenstate corresponding to each effect is 

the state for which the effect yields maximal probability. This will be discussed after 

the next point.

There are two ways to interpret such an unsharp objectification condition, depend

ing on the distinction between commutative and non-commutative unsharp observables.

Recall that here we consider observables as mappings from a value set to effects. If 

such effects turn out to form a complete 15 set of pairwise orthogonal projections, then 

the observable is sharp. Consider the case of a mapping from a set of values to a set 

of effects which are not projections. These effects are themselves representable as self- 

adjoint operators on a Hilbert space and therefore admit of a spectral representation.

In particular, we can associate orthogonal projections with these effects, correspond

ing to projections on the effects’ eigenstates, their spectral se t  If effects characterising

15In the sense that their sum is the identity operator on the Hilbert space under consideration.
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an unsharp observable have spectral sets whose union form a complete pairwise orthog

onal set of projections, the unsharp observable is said to be commutative16. Consider 

the example above of the unsharp generalisation of a spin observable on C2. The spec

tral set of the effect E \e is {Pi, P_i}, equal to the spectral set of E -u ,  and obviously 

to their union. This set is a complete set of orthogonal projections for C2 and so 

the observable is commutative. This is no coincidence: the observable in question is 

constructed from a sharp one, essentially through a smearing procedure17.

On the other hand not all unsharp observables are commutative, as the following 

example shows.

E x a m p l e  2.4. Consider the mapping F  : {1,2,3} =*► F(€?) (where PfC 2) is the 

set of effects on the space C2) defined by

0
\ °  °>

F  is an unsharp observable, but

[ w e ) ] - ! ! 0 o K * * * 0 ’

F{2 ) := - F(2) := ^

so the observable is not commutative18.

Returning to the question about quasi-eigenstates, the choice of quasi-eigenstates 

above makes trivial the consideration of commutative unsharp observables as possible 

pointer quasi-eigenstates. This is because it is easy to see that the state which will yield 

the maximal probability for a given effect (that is, a bounded self-adjoint operator which 

is a convex combination of projections) will be a projection over an eigenstate of the

16The usual definition of commutativity here is that, for all values x, y  in the set of possible values

of an observables, the effects associated with these values commute, i.e. [Ex, E v) — ©. We use this

other definition because it will be useful to think in terms of the complete pairwise orthogonal set of

projections defined above when selecting quasi-eigenstates.
17It is well known, at least for the finite-dimensional case, both that an unsharp commutative

observable can be constructed, by a standard procedure, from a realisation of a sharp observable and

from a suitable finite family of functions (see [20]), and that a commutative unsharp observable can

be understood as an unsharp realisation of an essentially unique sharp observable (see [21]).

18This example is taken from Cattaneo, Nistico and Bacciagaluppi [21].
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effect, namely the eigenstate corresponding to the greatest eigenvalue19. If the quasi

eigenstate is a projection over an eigenstate of effects, clearly the case of commutative 

observables would lead to a set of pairwise orthogonal pointer quasi-eigenstates, which 

clearly would pick out a sharp observable as pointer observable, and be subject to 

insolubility results such as the ones discussed in the previous sections. In order not 

to make the question trivial it is necessary, therefore, to assume that quasi-eigenstates 

will not be pairwise orthogonal.

At this point the assumption made is that there is a unique quasi-eigenstate asso

ciated with each effect that makes up the object observable to be measured, and such 

quasi eigenstates are not pairwise orthogonal.

For interpretative reasons it might be appropriate to also assume that such quasi

eigenstates are not linearly dependent, even though this is not a necessary assumption 

for the proof to be given in the next subsection. Two reasons can be given for this, 

a technical one and a less strong conceptual one. Such an assumption follows if it is 

assumed that quasi-eigenstates must yield probability close to one, 1 — e with e very 

small, for their associated effects. More specifically, suppose, without loss of generality, 

that there are three quasi-eigenstates,

13i<p\ +  faibi
<pu 0 1  =  a m  + <*2 0 . and Xlp - _ ^ - ^  =  ^

with |o:i| 2 +  \oc2 \2 =  lApxl2 +  \M 2 — 1 a^d <pi X associated to the effects

Ti =  ai P[(pi] + a2P[{pi)

T2 =  biPM  +  6 2 ^ 2]

T  =  ci p[xi] +  c2p[x2]>

where, without loss of generality, ip2, fa  and X2 are taken to be orthogonal to the span 

of the set {(pi, fa }  and a\ > bi > c\ > 1 / 2 .

It follows that

/  a i+ f c i l a ip + c i l / ^ l 2  &i(aTa2) +  c i ( /W ^ )
S  =  ai PM  +  6 1 PM  +  ciP[xi] =  2

\ h(aia2) + c i t i f y )  h\a2\2 4- ci|/fy|2

which has trace a\ +  6 1  +  c\. Now the sum of effects making up an observable must be 

the identity matrix, so the sum of (parts of) effects over a two-dimensional subspace of

19It is a well-known theorem of functional analysis that the spectrum of a self-adjoint operator has 

a maximum which is finite, as proved for instance in Riesz and Nagy [72, pp. 231-235].
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the space over which the observable is defined must be a  projection operator over that 

subspace, and in particular it must have trace 2. So if the effects Ti, T2 and T  are to 

be possible effects of the one observable, it must be that, as a minimum requirement, 

ai + b i+ c i < 2. But if ipi, ipi and x i  are to be quasi-eigenstates than they must yield 

probability close to one with respect to their associated effects, so that, for example,

T rP i- fW  ® 1 -  «•

Yet even the choice of a\ =  b\ =  ci =  3/4 results in ai+bi+ci =  9/4 >  2. The argument 

clearly generalises to effects which have associated quasi-eigenstates linearly dependent 

on a finite number of quasi-eigenstates. However the argument will not work in the 

case of a quasi-eigenstate which is a sum of infinitely many other quasi-eigenstates.

The assumption does seem to be reasonable, though, simply because it would be 

strange to think that a measurement would result in pointer states which are superposi

tions of one another. The quantum theory of measurement emerges to account precisely 

for the fact that superpositions of properties that are measured aren’t observed, so coun

tenancing final pointer states which are linearly dependent on one another might seem 

an odd way to go about resolving the issues with measurement, for it’s unclear how it 

is that such pointer states could be said to be observed.

5.2. A  re su lt for unsharp  p o in te r observables. The previous subsection has 

clarified the following assumptions:

1. The pointer observable is a discrete unsharp observable: that is the observable 

is of the form Am : R £  := X  -> Am(-Y) and there is a countable subset C  of 

R such that Am(R \  C) =  O, the null operator. Elements of C  are the readings 

associated with the pointer observable.

2. Unsharp objectification stands for the condition that the final object -I- appara

tus system be represented by a density operator which has a decomposition in 

terms of a set of quasi-eigenstates of an observable. Quasi-eigenstates are one

dimensional projection operators whose probabilities with respect to the effect 

they are associated with (the effect corresponding to the number in C that the 

quasi-eigenstate indicates is measured) are approximately 1.

3. Objectification implies that the measurement process measures discrete observ

ables, which might be coarse-grained versions of observables with a continuous 

spectrum in the case of an infinite dimensional system.
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4. It is assumed, for the purpose of the present discussion, that, for each effect 

associated with a single value in the countable set C, there is exactly one quasi

eigenstate corresponding to this effect, the quasi-eigenstate which has maximum 

probability with respect to this effect. This is equivalent to saying that each 

such effect is represented as a convex sum a\P\ +  . . .  of projectors where a\ is 

the greatest weight in the convex sum, and its associated projection P i is one

dimensional. Then the state Pi will be the unique quasi-eigenstate associated 

with the effect according to the above definition. For the moment, all quasi

eigenstates are assumed to be pairwise non-orthogonal.

5. Finally, the condition 5 is assumed; this condition is here interpreted as saying 

that the final density operator for the apparatus should be decomposable into 

the quasi-eigenstates which correspond to the effects of the measured object 

observable having non-zero probability with respect to the initial state.

Consider now an orthonormal basis <pj of the object system H§ which has the 

property that all the f i j’s yield non-zero probability with respect to all the effects of 

the object observable to be measured.

Consider also the set xpi of quasi-eigenstates; by (5) the final state of the object +  

apparatus system must be, for all initial object states <pj% a density operator with a 

decomposition xv{<pij 0  ipi.

Now suppose the initial state of the apparatus to be Tm- All initial object +  

apparatus states of the form <Pj<8>xpij, where ipij is in the range of Tm, must be orthogonal 

for different j ’s. Then, assuming the measurement evolution to be given by a unitary 

operator 17, all <pij 0  xp^s must be orthogonal for different j ’s, which implies that 

(pij — <fj and that all such (pf s axe pairwise orthogonal.

So the unitary measurement evolution U maps initial states <pj 0  xpij to final states 

<Pj 0  xpi. As, by unitarity, ( <pj 0  xpij\ fij 0  xpvj ) =  ( Cpj 0  xp{\ ipj 0  xp#) for different i 

and z', it follows that ( xpij\ xpi'j ) =  (xpi\ ip#). Should all xpij’s be equal for different 

f s  the result would be immediate: it would be easy to show that the only unitary 

operator that could have such properties would be of the form Us 0  17m- It would then 

follow, just as it does in section 4, that there could be no transmission of information 

between the object and apparatus system. But the xpij’s are not orthogonal, and it is 

quite possible that there are different sets of them, with inner products fixed, which 

might all be mapped to the appropriate final states.
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We now need to work with the sets of initial pointer states decomposing

Tm, one for each j  denoting a different initial object state tpj. How can they differ 

for different j ’s, while preserving the inner product relations captured by ( ipij\ tpi/j ) =

( H  # ) ?
The first thing to notice is that, given a state Tm and the inner product property, the 

way that the ifrij can change in the decomposition is via a unitary transformation of the 

range of Tm which leaves Tm invariant. That is, the states ipij must be transformed by a 

unitary evolution which has as its eigenstates the states projected on by the orthogonal 

projections decomposing Tm- Consider such a transformation V. It is unitary, and 

will then act on the state Tm =  WiP^..^ in the ifaj decomposition, by means of the

action V(TM)V ~l =  V{'Ei wiP[ll,ij]) V - 1 =  'Ei™ip [V(ti>ij)\-

Crucially, any such transformation leaves invariant the weights W{20. Then a unitary 

measurement operator U will lead, for an initial state <pj in the set considered above, 

to the evolution

i i t
for which it is easy to check that the final reduced state for the apparatus is

i
independently of the specific form of (p. U will fail to convey, therefore, the probabilistic 

information contained in <p, and this establishes an insolubility result.

6. Conclusions

In the first instance this chapter has added to the already considerable literature 

on quantum measurements and insolubility proofs three new results, and has rehabili

tated somewhat Fine and Brown’s proof strategy by analysing the idea of real unitary 

evolution: by giving up an unnecessary part of RUE related to the interpretation of 

density operators in quantum mechanics and showing that the technical part of RUE 

is not independent of other assumptions, but rather follows from them, a proof can be 

given.

20Note how the argument here is just a generalisation of what happens in the case of a density 

operator with multiplicities in the initial weights given earlier in subsection 2.3, when one asks for dif

ferent decompositions of the operator which preserve orthogonality relations between the decomposing 

states, again such different decompositions having no effect on the weights of the density operator.
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There axe then several different ways of proving the insolubility of the quantum 

measurement problem. The proofs of Fine, Shimony, Brown and Stein cover the tradi

tional cases as do the proofs in Section 2 and Proposition 2.4. More restricted results 

can be obtained by explicit characterisation of operators of a different kind. By the 

latter I mean that, by providing a full characterisation of the unitary operators gov

erning measurement evolutions and satisfying the probability reproducibility condition 

4, as is done, for example, in Beltrametti, Cassinelli and Lahti [6], it is easy to see 

almost by inspection that objectification cannot be satisfied for the cases covered by 

the characterisation result. We can do this just by checking the form of the projectors 

on ® "H m that make up the final state of a measurement evolution. It helps if the

characterisation is general, and in particular if it specifies the form of the unitary op

erator exactly, rather than as an (unspecified) completion of non-unitary operators, as 

is generally done in the literature; this and related questions are discussed in the next 

chapter.

More importantly this chapter provides a characterisation of all unitary operators 

which satisfy objectification, given an initial apparatus state. This enables a clearer 

understanding of how Stein’s result about no possible information transfer in measure

ments satisfying objectification comes about. By relying on arguments which use the 

orthogonality of decompositions less explicitly, it also suggests techniques that might 

be applied to giving a similar result in the case of unsharp pointer observables. A first 

result along these lines is developed in Section 5 for unsharp noncommutative pointer 

observables. Generalisation of this result is left for a later stage.

The discussion of this chapter also allows some comments on the relevance of insol

ubility proofs. Shimony remarks that if RUE were true, the philosophical consequences 

of the insolubility results would become almost trivial, as such result would follow sim

ply from the dynamics. By this he means that, if given an initial object +  apparatus 

state Yli wiP[v®ii>oi\-> the pointer eigenstates of the final state must necessarily be of the 

form U(ip <8> ipoi), then by linearity of the dynamics the final state for the composite 

system must necessarily be wiP[U(<p®ip0i)] trivially the probabilities with respect 

to the pointer observable for the combined system will be given by w^s or sums of 

them. In a sense all proofs presented in this chapter aim to establish that insolubility
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of the quantum measurement problem is simply a consequence of the dynamics. How

ever I don’t share Shimony pessimism about the philosophical, or physical, weight of 

the conclusion.

There is one sense in which Shimony’s remark is important. The more conditions 

we impose in the search for a certain result, the more likely it is that such result will not 

be achieved. Adding RUE as a condition for a (yet unknown) measurement evolution 

makes it less likely that such evolution will exist. If furthermore it can be envisaged 

that such a condition might not be met in a reasonable measurement (and this seems 

possible) then Brown’s proof, by accepting this condition, does fall short of the required 

result.

But that such a proof might be essentially a consequence of quantum mechani

cal unitary dynamics seems neither trivial nor philosophically unimportant, for several 

reasons. It is technically no less trivial a proof to give; it requires more than just point

ing to a mock evolution and showing that it goes wrong, in the manner just outlined. 

Careful consideration must be given, for example, to the cases when multiplicities arise.

The conceptual importance of such proofs is also unaffected by the methods by 

which they are achieved. It is helpful to look at what importance these proofs had for 

their first proponents. Why did Wigner set his mind to proving these results?

Wigner’s concern was to definitively establish, in Von Neumann’s words, that “the 

non-causal nature of the process 1. is not produced by any incomplete knowledge of 

the state of the observer”. [82, page 439]

Both Von Neumann and Wigner believed in the fundamental difference between 

the unitary and non-unitary evolutions seemingly required by quantum mechanics. 

Von Neumann premises the above quotation with an argument formally very similar to 

the result of Section 2, as was mentioned before. Both want to put forward a cogent 

defence of non-unitary evolutions and the proofs, complicated or otherwise, are aimed 

at establishing this. It is arguable that such an explicit aim would have led to little 

concern with the techniques used and would have made an easier and more intuitive 

proof of such fundamental difference quite welcome.

Yet the outcome of establishing an incompatibility between unitarity, objectifica

tion and probabilistic conditions is no longer taken to mean that we must give up 

unitarity of certain quantum evolutions. Superficially at least these proofs assume four 

conditions for measurements and really work with three: objectification, probability
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reproducibility and unitarity of the measurement operator. This clarifies the stakes 

somewhat: the incompatibility of these conditions must mean that one of them has to 

be rejected, but is not necessarily an argument against the unitarity of the measurement 

evolution in the manner that Von Neumann and Wigner had envisaged it.

The probability reproducibility condition is often treated as being pretty much 

safe. It is not only that it embodies, more than any of the other conditions, what is 

thought to be important about quantum mechanics, namely its status as an essentially 

probabilistic theory. It is clear from the above proofs that unitarity and objectification 

imply a probability distribution over pointer states that is independent of the initial 

state of the apparatus; in fact a proof can be given which abstracts from the probabilistic 

content 6 of the probability reproducibility condition, which links probabilities for the 

object system to probabilities of the apparatus system. So no relaxation of probabilistic 

conditions alone can achieve much, unless we are prepared to consider the possibility 

that measurement of an eigenstate of an object observable will not necessarily yield a 

given value with certainty.

One obvious way to get around the insolubility results is to give up the idea that 

measurement is a unitary, closed-system interaction, and hence best captured by a bijec- 

tive, invertible mapping. The next chapter will show a way to construct measurement 

mappings which satisfy objectification and the probability reproducibility condition, 

relying on Davies’ work on open quantum systems. The idea is simply to constructs a 

mapping on the set of density operators of a composite which is a sum of Davies’ pure 

mappings of type 3. These kinds of mappings are effectively generalisations of Von 

Neumann type 1. evolutions on composite systems. The problems with this approach 

are philosophical, more than physical: taking this proposal seriously seems to involve 

the belief that at some point the evolution is fundamentally non-unitary, rather than 

a projection on a subspace of a unitary evolution on a larger space. Otherwise the 

problem just resurfaces.

Another option is to look more closely at objectification. As remarked above, this 

condition allows the applicability of what Fine calls the eigenvalue-eigenstate link. A 

number of problems have emerged with this condition specifically, though. One is 

that it effectively underwrites the possibility of giving an ignorance interpretation of 

the final apparatus mixture. But if such an interpretation is mistaken, as has been 

discussed in the chapter, if it indeed amounts to assuming that quantum mechanics
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is incomplete, then it is less obvious why we should assume objectification. The final 

apparatus state certainly can tell us what the probability of a system having a certain 

property is regardless of how it is generated from a composite state. If the apparatus 

density operator does not, on the other hand, allow us to claim that the system is in 

one particular pure state, then the motivation for having the right composite state to 

make this claim seems considerably weakened.

There has indeed been over the past 40 years a long tradition of formulating inter

pretations of quantum mechanics that renounce this criterion for states in a composite 

system, starting with Everett’s work, and including, for instance, modal interpreta

tions, although these approaches also have many problems, which won’t be discussed 

here.

W hat insolubility results teach us, from a foundational and philosophical point of 

view, is the importance of these lines of research, given that the most intuitive approach 

fails: this for me has been and still is their most important role.



CHAPTER 3

Describing M easurement Interactions in Quantum  

M easurement Theory

This chapter investigates one of the standard assumptions of the quantum mechanical 

account of measurement, that premeasurement interactions between a system and a 

measuring apparatus are mathematically described by a unitary operator.

A premeasurement is a transition which takes an initial object +  apparatus state 

to a final state in such a way that the transition satisfies the probability reproducibility 

condition. It is called a premeasurement since it is not automatically implied that such 

a transition will satisfy the objectification condition. Indeed, assuming the eigenvalue- 

eigenstate link and that the object and apparatus systems are both proper quantum 

systems, the premeasurement cannot be a full measurement in the sense of satisfying 

objectification, as was shown in the previous chapter. The study of the properties of 

premeasurement operators goes back at least to Von Neumann [82, pp. 440-445], who 

gave the first characterisation result for a class of such operators.

It is important to study premeasurements carefully for at least two reasons. Firstly, 

in those interpretations which drop the eigenvalue-eigenstate link these premeasure

ments (or perhaps a subset of them, as argued by Van Fraassen [80, pp. 211-2]) yield 

the complete description of measurement processes; such interpretations include Ev

erett’s relative state interpretation of quantum mechanics [33, 34] and its derivative 

interpretations, such as many worlds and many minds interpretations (on the latter see 

for example Albert [1]), as well as modal interpretations of all varieties, (see Kochen 

[52], Healey [48], Vermaas and Dieks [81] and Bacciagaluppi [3]).

Secondly, it has been argued (for instance by Kronz [54], as seen in Chapter 1) 

that Von Neumann’s process of state reduction is best applied to a composite object 

+  apparatus system which has undergone the appropriate unitary premeasurement 

evolution: this can help in giving a description, at the level of theory, of apparently 

problematic measurement situations, such as destructive photon measurements. For

95
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the rest of this chapter the transitions will be referred to simply as measurements, 

except in cases where this might create confusion.

The chapter begins by showing that in the Hilbert space representation such mea

surement interactions are fully described by a unique and ‘minimal’ partially isometric 

and contractive operator; usual unitary operators are non-unique completions of this 

operator. It then studies what possible transformations on the space of density oper

ators of a system mirror the properties of the partial isometry characterised for the 

Hilbert space representation. Several different options are explored and compared, and 

I prove a new result, showing how the only operations which can satisfy both proba

bility reproducibility and a generalised version of unitarity, which retains its essential 

content, are those generated by conjugation of the unitary completions just mentioned.

This analysis then enables the detailed investigation of such measurements where 

the initial apparatus state is a non-pure density operator. The basic informational 

properties of Von Neumann-Liiders, repeatable and first-kind measurements (to be 

defined later on) are affected under these circumstances: it will be shown that, when the 

initial apparatus state is a density operator which is not pure, the measurements under 

consideration cannot satisfy these informational properties. Furthermore, for a certain 

class of initial density operators, it is impossible to define any ‘unitary’ measurement at 

all which satisfies the probability reproducibility condition. It is easy to characterise the 

basic properties of this class of density operators. This in turn suggests the theoretical 

possibility of direct tests for the quantum theory of measurement: these cases could well 

appear in measurements in practice, while the theory rules them out. I will conclude 

by discussing some of the consequences of this analysis for the quantum measurement 

problem. In particular the problems raised for the case of an initial apparatus state 

which is not a pure density operator are linked to the problem of interpreting quantum 

mixtures, and raise some issues which connect to the discussion in Chapter 1. Both of 

these merit some comment.

1. Some introductory remarks and definitions

In the standard approach to measurement theory, a measurement interaction be

tween a system S and a measurement apparatus M is thought to be described, in 

the first instance, by a unitary operator acting on the Hilbert space Hs <8> % m> tensor
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product of the Hilbert spaces 7i§ and TLm describing the system and the apparatus 

respectively (see for instance Beltrametti et al. [6] and Busch et al. [14]).

The setup described is such that information about an observable, fixed for a phys

ical system under observation, must be obtained on the basis of the results given by an 

observable for a measuring apparatus, prepared in an initial state, after a coupling of 

system +  apparatus and a dynamical evolution of this pair.

The standard quantum mechanical (QM) description of this situation on Hilbert 

spaces is based on the following assumptions:

1. both system and apparatus observables are described by projection valued (PV) 

measures (or equivalently, in accordance with von Neumann’s spectral theory, 

by self-adjoint operators);

2. the dynamical evolution of the coupled pair ‘system 4- apparatus’ is unitary.

Some attempts to generalise quantum measurements have concentrated on the first 

assumption, as I have briefly touched upon in the previous chapter:

1\ in the mathematical description of observables, generalise from PV-measures 

(sharp QM) to POV-measures (unsharp QM).

POV-measures, or positive operator measures, are based on the class o f so-called effect 

operators (operators which are linear, positive, and bounded by the identity); they con

tain  as sub-class the fam ily o f all projectors, and in this sense the unsharp formulation  

of QM is an enlargement o f the standard sharp one.

It is also possible to discuss a weakening of (2),

2'. in the mathematical description of evolution, generalise from unitary dynamics 

to a non-unitary one.

These generalisations, as was briefly mentioned in the previous chapter, are limited 

by the following well-known result of Naimark (see [72, Appendix]):

•  for any POV-measure on the Hilbert space 71, there exists a  larger Hilbert space 

i i  (7i turns out to be a subspace of 7L) in which the POV-measure is represented 

by a  PV-measure;

•  for any contraction operator (one parameter semi-group of contractions) on the 

Hilbert space 7i, there exists a larger Hilbert space 7i (71 turns out to be a 

subspace of ti)  in which the contraction(s) is (are) unitary operator(s).
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This theorem raises the question as to whether the generalisation of the unitary evolu

tions to non-unitary evolutions should be understood in the context of larger systems 

whose evolutions are unitary; in other words, we might ask whether the apparent non- 

unitary evolutions are a result of % becoming entangled with 'HQ'H,  where H Q ' H  

models an environment, or whether the interaction is just irreducibly non-unitary. Sim

ilar questions can be asked about POV-measures. The present chapter, however, is not 

concerned with whether the physics of measurement interactions is best described by 

unitary operators or by other operators. Assuming that interactions are described by 

unitary operators, given a specific quantum measurement I show that there are many 

unitary operators satisfying the standard conditions for an interaction operator for 

such measurement: they are the ones that share the common mathematical “core” W , 

a partial isometric contraction which I will shortly define. I also show that, in some 

more general circumstances, no such unitary operators can be defined. I do not discuss 

here whether this implies that it is appropriate to abandon the idea of unitary evolu

tion. The physical arguments on this are unclear (for more on this in the context of 

quantum mechanics see, for instance, Davies [25]; for a discussion of this in the context 

of the quantum measurement problem, see for example Cartwright [18, Essay 9]); on 

the other hand the question is surely underdetermined: there are many more options 

than just rejecting unitarity.

Note that, when the question of objectification is discussed, the previous chapter has 

shown that POV-measures cannot, in most cases, help to overcome insolubility results. 

Whether assuming 2' can help with the problem of satisfying objectification will be 

briefly considered later on. The chapter, in any case, does consider weaker versions of 

(2) in a context sufficiently general so as to not impede unsharp generalisations of (1).

A measurement interaction for an initial vector apparatus state will be shown to be 

minimally described by a unique linear contraction W  : Hs ® H m H§ ® with 

\\W\\ <  1, which is also a partial isometry on a subspace M  of Hs ® H m - As a conse

quence we have that for any partial “conjugate” isometry W 1- : Hs ® H m Hs 

on the subspace i.e., such that W ( M )  X and W ( M )  ® =

Hs  ® H m , the operator W  +  W 1- : Hs  ® 'Hm -> Hs  0  H m is unitary and realises the 

same measurement interaction. W’*L, in a sense, ‘completes’ the partial isometry to 

a unitary operator. In what follows, the question of how minimal operators realising
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the measurement process might be so completed will be analysed in several different 

contexts: this is because, while the minimal requirement of satisfying the probability 

reproducibility condition is achieved by ‘smaller’ operators, unitarity of the measure

ment remains an important condition in the debates on the quantum measurement 

problem.

For the case when dim(%M) > 2 there is an infinite class of conjugate, contractive, 

partial isometries W^-, W^ , . . .  such that each of them behaves as the null operator on 

the vectors describing the prepared initial object +  apparatus combination, namely on

0  [*,] (note that [tp] denotes the closed linear subspace spanned by the vector ip, 

while [{ipii ip2 , • • • , VVi}] denotes the closed linear subspace spanned by the set of vectors 

{ipi, ip2 , • • • , ipn})' It is then possible to construct the operators U\ =  W  © W ^, U\ =  

W  ® W<2~,. . .  which are all unitary. Theorem 3.2 will show how to do this.

There are some important physical ideas here, which are not fully investigated 

in the present chapter, nor in the standard literature. We are used to thinking of the 

physical content of a quantum mechanical process as being described by the interaction 

Hamiltonian. This Hamiltonian is not normally calculated explicitly for measurement 

interactions. The present account of quantum measurement shows that there are going 

to be many physical processes, all described by different Hamiltonians, which will yield 

a measurement and suggests that the physically interesting information about mea

surement may be found in the common core to all these processes, that is our partial 

isometry W.

Furthermore, it will emerge from the discussion that the partial isometry W  depends 

critically on the initial state of the apparatus. This is a well-known fact, it is for 

example certainly clear in the analysis that Beltrametti et al. give [6]. It implies that 

the interaction Hamiltonian itself depends on such a state: for different initial apparatus 

states, the interactions are different. This is a peculiarity of the measurement process 

as it is standardly characterised, and one whose significance for interpretive questions 

of quantum measurement has been little explored. It is nevertheless a consequence of 

assuming the probability reproducibility condition, as will be clear in the next section. 

I will not attempt to criticise this feature of measurements here, for it would involve an 

analysis of the exact structure of Hamiltonians generating the unitary measurements 

discussed here, and a discussion of the physical relevance of such Hamiltonians. However 

it is at least important to note that this is unusual with respect to how quantum
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mechanics usually works. The Hamiltonian for the particle in a box does not depend 

on the initial state of the system it describes in any way; this feature of the system is 

not relevant in determining its energy. In the case of a quantum measurement, on the 

other hand, a different initial apparatus state, though not a  different initial object state, 

implies that the energy of the combined measurement interaction is different: change 

the initial apparatus states, and the combined system energy eigenstates change. This 

means that, if we were to observe the process of measuring a given object observable 

in cases of different initial apparatus states, we would be observing something totally 

different.

What we can say is that the project of characterising unitary measurement opera

tors satisfying certain further assumptions is not in and of itself a project which aims 

to characterise how measurements really work, as has been argued in chapter 1. The 

latter is a different, and further question, one which explicitly addresses the way in 

which theory connects with what happens in real experiments. I would claim that the 

physical and philosophical justification for this property of measurement interactions 

has not been explored, as far as I know, but does not invalidate the first project. On 

the other hand, any solution of the measurement problem which claims to mirror and 

rely on what happens in all real measurements would require some account of it.

The next step is to consider possible extensions of the linear contraction W  to op

erations on the space 7̂ + ('Hs ® m) of positive trace class one operators on Hs <8> "H m, 

the density operators.

The possibility of bijective mappings having certain properties will be investigated. 

The requirement of bijectivity of operations defined on density operators is an obvious 

one if we wish to generalise the idea of a unitary operator on a Hilbert space. A map 

/  : A  —> B, with A  and B  any two sets, is bijective if and only if it is one-to-one and onto. 

/  is one-to-one if and only if, given any two x, y € A, x  ^  y, it follows that f ( x )  ^  f (y).  

It is onto if for any y  G B  there exists an x  in A  such that y = f (x) .  All unitary maps 

on a Hilbert space are bijections, and bijectivity of a mapping f  : A  -¥ B  captures 

the possibility of constructing an inverse mapping f ~ l : B - * A  which is well defined 

on all of B.  This property is important, in the context of quantum mechanics, for 

distinguishing the dynamical properties of unitary operators U as opposed to projection 

operators P : the former describe reversible interactions in the sense that, given £/, it 

is possible to construct an operator U~l which will enable us to tell, in a sense, from
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where any state has originated, while this is not possible in the case of a  projection 

operator like P. Bijectivity is a minimal condition for mirroring unitarity, on the other 

hand, because it doesn’t make any allowances for the other important property of 

unitary operators, preservation of inner product of states. An additional condition for 

operations might be that they preserve the trace. Nevertheless, any result which we 

prove for a bijective operation will be valid for a bijective, trace-preserving one, too.

As well as more usual extensions, it is interesting to investigate a mapping W 1 

which preserves the trace of the density operators it acts on in a particular subset of 

the set namely T * (?{§) ® P[ip0y In general the trace of the operator

produced by the action of W 1 will be less than or equal to 1. It is possible to extend 

W 1 to a trace preserving, but not bijective, mapping on 7^f ('H§ <g> 'Hm ), unlike for the 

operator W.  On the other hand, it is easy to see that W 1 satisfies objectification of the 

pointer observable. Comparison of W 1 with standard extensions of premeasurements 

to the density operator framework will offer yet another view of insolubility of the 

quantum measurement problem.

Before moving on to address these questions, it is important to review the reasons 

for assuming the probability reproducibility condition as a condition for measurements. 

There are two, at least. First of all, intuitively this condition ensures that the prob

abilities associated with the individual object states axe recovered in the apparatus. 

In particular, measurement of an eigenstate of an object observable will lead to the 

pointer observable being in an eigenstate. While this is certainly sufficient to ensure 

the relevance of this condition, should it be necessary to give it such a central place in 

the analysis of unitary measurements?

At the very least, we might expect a measurement transferring information from 

the object to the pointer system to misfire occasionally. Perhaps we shouldn’t ask for 

the probabilities associated with an object system to be reproduced exactly, but only 

approximately. On the other hand, if the measurement is to count as measurement of 

an object observable O, it should distinguish initial object states which yield different 

probabilities with respect to O. This is a possible rationale behind Fine’s probabilistic 

condition, briefly discussed in the previous Chapter. Fine’s condition is an interesting 

one in the context of insolubility proofs, because of its generality: it is implied by 

all other probabilistic conditions on measurements, so a no-go theorem holding for this 

condition covers all reasonable cases of measurement. For the discussion in this chapter,
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however, it is easily seen to be defective as a condition for the measurement of an object 

observable. Consider an object observable 0§, a pointer observable Am, an operation 

U  : Ti'i'H s <S» ^ m ) ->• 7̂ +(%§ a pair of initial object states T, T ' E T *  (Hs)

and an initial apparatus state Tm € Fine [35] proposes two conditions to

impose on U:

(L la ) pTS ^ P t > => PnL{U{T^Tu)) ^  pn^(U(T>®TM))

or, in addition to 1.1a,

(L l b ) Pt s ~ P t  PnL{U{T®Tu )) = -P^m(C/(T'®Tm))’

where P °  is the probability of observable O in state T  and TZm : T \r{7~Ls ®Hm ) —► 

Ti~ ( H m ) is the operation of partial trace, ‘taking out’ the object space. A measurement 

is called an O-discrimination if it satisfies 1.1a, it is called an O-filter if it satisfies 1.1a 

and 1.1b.

The problem with these conditions, as Busch et al. show [14, p. 30], is that they 

allow a U  which satisfies these conditions and is a measurement of many observables, 

including non-commuting ones. In the extreme case, a discrimination of any informa

tionally complete observable1 will be a discrimination of all observables. As for filters, 

clearly an O-filter is a Q-filter for any observable Q which is informationally equivalent 

to O, i.e. any observable for which, if p% = p®>, then pj, = pj,, for any pair of states T  

and T '. Fine himself [35, pp. 116-117] makes a number of criticisms: while he is trying 

to establish what could be the most general probabilistic conditions for a measurement 

he is aware of several potential difficulties for discriminations and filters. As a conse

quence of this, it seems reasonable to concentrate the analysis in this chapter on the 

probability reproducibility condition. Given, however, that I will be highlighting some 

of the problems that can arise with it, perhaps at some point it would be reasonable 

to reassess the role of Fine’s more general conditions.

xAn informationally complete observable O is an observable which separates all states, i.e. for 

any T  and T ' y px  ^  p°<- No sharp observable is informationally complete, but there exist unsharp 

informationally complete observables.
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2. T h e  c o n tra c tiv e  p a r tia lly  iso m e tric  ev o lu tio n  a n d  i ts  co m p le tio n  in  

sy s te m -a p p a ra tu s  m e a su re m e n t in te ra c tio n s

Consider a measurement interaction of standard measurement theory involving a 

system § and a measurement device M. The quantum mechanical description is math

ematically realised by two complex Hilbert spaces with dimensions equal to n and m, 

Tig and Tim respectively with dim(%s) = n <  dim (Hm) =  rn. Let {(pi, . . .  , <pn} be an 

orthonormal basis of vectors in Tig (which picks out an object observable to be mea

sured) such that (pi describes a state of the system. The measurement apparatus M is 

initialised in a fixed starting state described by the vector ipo € %m5 normalised so that 

M  =  1- Having chosen the basis {(pi, . . .  , tpn} and the starting state ipo, select an or

thonormal basis {ipi, . . .  , ipm} of vectors in TLm (which picks out an apparatus pointer 

observable) and a set of vectors (p\ , . . .  ,<pn G Tig, with ||<£i ||^s =  . . .  =  ||y>n lifts =

The question is now whether there exists a (not necessarily unitary) linear operator

W,s-M

which mathematically realises the measurement interaction described by the “proba

bility reproducibility condition” [6, Eq. 1]: for any vector (p € Tig, and any eigenstate 

of the measured observable (pi, measured by the pointer eigenstate ipi,

(2.1) {<p\ P y iYfi)  =  ( ^ • M(V ®V'o)| ( /s ® P W )(WrS'M(¥>®V’o)))-

As a consequence, such an operator will satisfy the “interaction conditions” (cali

bration conditions in the terminology of Busch et al. [14])

(2 .2 ) i =  1 , . . .  , n  W'S,M ( ® ^ 0) =  (pi 0  ,

(pi any vector in Tig. In fact, suppose (p =  (pj, so th a t ( <p\ P[<p{](p ) =  0, or 1 when i  =  j ;  

then it m ust be tha t ( W's,M(y>® ^>o)| (/§ ® P[^i])(W's,M(<£> <g> ipo) ) ) =  0, or 1 when 

ij>i =  i\)j. This implies the interaction conditions fo r j  =  1, . . .  , n. By linearity and (2.2) 

it follows immediately tha t G Tig, PTs,M(y?(8)^o) =  E£=i ( W  ® ^ol <P <8> tpo )((pi <8> ipi), 

and more generally

n
(2.3) = ŷ ((pi<8)‘ipo\ ')(<Pi® j>i).

»=i
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The mapping is clearly dependent, in a crucial way, on the initial apparatus

state -0 0 , and in a way that is entirely a consequence of the probability reproducibility 

condition.

2.1. B e ltra m e tti, Cassinelli and  L ah ti’s C harac te risa tio n  T heorem . Bel- 

trametti, Cassinelli and Lahti [6] have proved a well-known characterisation theorem 

for unitary measurements of discrete quantities. There are several similarities between 

their paper and this section, so it is worth reviewing their work and explaining in what 

way the present material differs and is more general.

Beltrametti et al. essentially show that a mapping like (2.3) exists and can be 

extended to a unitary mapping (possibly in a non-unique way), and then discuss infor

mational properties of these mappings (conditions under which these mappings are of 

the first kind, repeatable, Von Neumann-Luders) and problems with the objectification 

condition and the Wigner-Araki-Yanase result.

The following work begins by restating the result about unitary mappings, with 

some differences. The first is that it is shown that the mapping (2.3) is a partial 

isometry, a result not previously established; also much more detail is given of the ways 

in which completions are constructed, and there is no restriction on representations 

of the measurement apparatus to spaces of dimension equal to the cardinality of the 

discrete spectrum of the measured observable.

The latter difference merits some comments. Beltrametti et al. make the assump

tion that if the discrete spectrum of a self-adjoint operator has cardinality n, then, 

for V. m the apparatus space, dim(7{M) =  n. This seems harmless enough, yet the 

construction of the unitary extension leads to many different problems for the case in 

which dim('HM) >  dim('H§). Given that the latter relation is what we would usually 

expect to be the case when we speak of apparatuses as macroscopic objects (indeed it 

would often be the case that dimf^M) ^  dim('Hs)), this case merits further attention. 

It also plays a  crucial role in the further generalisation that is considered here, where 

the initial state of the apparatus is taken to be a nonpure density operator. Several 

problems emerge here for the quantum theory of measurement, and the impossibility of 

constructing an operation satisfying the probability reproducibility condition is related 

to some instances of the case when dim('HM) > dim('Hs).



2. THE CONTRACTIVE PARTIALLY ISOMETRIC EVOLUTION 105

The definitions and the notation introduced at the beginning of the section differ 

from those put forward by Beltrametti et al.: they work with orthogonal projectors 

, P[(pn] which are spectral resolutions of the identity, so that Y liP^.j =  /§. 

Further, they index the values for the observables with two indices, the second tracking 

the multiplicity of the first index.

Given our framework, it is certainly possible to construct, from the basis {y?i,. . .  , 

ipn} of the Hilbert space describing the object system and a corresponding value set 

{ a i,. . .  ,a n} of a- measured system observable A§, the self-adjoint object operator As 

as

As =  a iP ^ ]  +  . . .  +  O nP^] ,

so that in the notation of spectral representations one has PAs(a*) =  P ^ ] ,  the event 

testing if “a measurement of the observable As yields the result a*”. Furthermore, 

to the basis { ^ l , . . .  , ipm} of the Hilbert space describing the apparatus system one 

can associate an observable Am, with a set of values { m i,... , mm} for the pointer 

observable, such that ipi mathematically describes the state in which a test of the 

observable M  yields the value m* with certainty.

The “pointer function” /  which correlates the value sets of the system observable 

and the pointer observable is

(2.4) /  : { a i , . . .  ,a n} — > { m i,... ,m n},ai — ► /(a*) =  m*.

The pointer function does not usually play a major role in the discussion of quantum 

measurements: it doesn’t play a role in the dynamics of measurements, and is in a 

sense defined externally of quantum mechanics. In particular, no measurement scheme 

such as those discussed in this chapter enables recovery of this function. On the other 

hand it is clear that only through such a pointer function can we actually say which 

specific observable is being measured

2.2. A Characterisation Result for the Case of an Initial Vector State.
The general mathematical requirements needed in order to establish the main result of 

this section can be spelt out as follows:

1. The dimension of the Hilbert space 'Hs describing the system and of the Hilbert 

space H u  describing the apparatus are in the relation:

dim(H§) < dim(%M)
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In w hat follows I will assume I  =  { 1 , 2 , ,  dim('Hs) =  n} and J  =  { 1 ,2 ,... ,  

dim('HM) =  m}, so that clearly I  C J;

2. {<Pi}izi is an orthonormal basis of Us',

3. is an orthonormal basis of U u \

4. (a) {fpi}iei is an orthonormal family in U m

(b) V7 £ I  and V / £ J  — I  there exists a such that ^ | Vy ^ =  0 and

is an orthonormal basis in U m -

5. (a) Vy 6  / ,  are normalised (not necessarily orthogonal) families from

U s

(b) ' i i £ l , V h , k £ l , h j ^ k ,

Under the notation just specified the interaction conditions assume the form, for 

all j e  / ,

(2.5)

Also assume for the moment that, Vi G I  and j  £ J  — I. Given any orthonormal family 

{v*} in U§,  let

W j ((pi <g> iJPq) =  Vi 0

Informally, these requirements fix a number of points concerned mainly with the 

case where dim(Hs) < dim('HM)* (2) and (3) fix two observables, one on Us  which 

is the observable to be subjected to measurement, and one (of the generally infinitely 

possible ones) on Um,  which has as one of its eigenstates the ‘ready-to-measure’ state. 

In characterising a unitary operator I make use of the fact that it maps an orthonormal 

basis for the space U s ® U m  to another orthonormal basis. (2) and (3) fix an ‘initial’ 

orthonormal basis for the composite space Us <8> Um\ hence the indexation of the initial 

‘ready-to-measure’ apparatus state: we still need a basis for "Hm in order to characterise 

a basis for Us  ® %m5 in order to characterise a unitary operator U : Us <8>Um —► 

Us <8>Um- The fact that, for dim(?{ m) >  2 , the possible basis in (3) is fixed only 

by such an initial apparatus state implies that many unitary operators will realise a 

measurement of the observable selected through (2), one for each different basis for 

Um  that can be chosen in (3). The further fact that as implied by the probability 

reproducibility condition, requires only specification of an initial apparatus state should
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already be a clue to the fact that this condition is not sufficient to characterise a  unitary 

operator.

Conditions (4a) and (4b) select a set of orthonormal pointer states in the apparatus 

space H m , which in the first instance, barring pointer degeneracies, will have cardinality 

bounded by the dimension of the space Hs- In the case in which dim(%§) <  dim(‘HM) 5 

this orthogonal set must be completed to an orthonormal basis, as is done in (4 b).

(5a) makes it clear that, in principle, we can’t rule out, given an initial ‘ready-to- 

measure’ apparatus state ip\, the possibility of the final object states resulting from 

the measurement interaction not being mutually orthogonal (as in the by now familiar 

case of destructive measurements discussed in Chapter 1 ). However, (5b) states that, 

given two mutually orthogonal states in the set described in (3), the final object states 

resulting from the measurement interactions must be orthogonal. This is because, if 

we couple such states ip] and ipfi with an element of the set in (2 ) (an eigenstate of the 

measured observable), the probability reproducibility condition forces the final pointer 

state to be the same for both initial states obtained in this way. Then, in order to 

preserve the orthogonality of the two initial states that is demanded by the unitarity 

of the interaction, the final object states must themselves be orthogonal.

In the next theorem (which is work carried out jointly with G. Cattaneo [19]) I will 

refer to the following

L e m m a  3 .1 .  Under the above conditions, both

(2.6a) {ipi <g> ipo,. . .  , <pn ® ipo}
(2.6b) {<p\ ® ‘tpi , . . .  , <p\ ® Tpn}

and

(2.7a) {(pi <2> > • • • y<Pn ®
(2.7b) {<p\ 0  ^1,. • • ,<Pn ® tpn} fc€J
(2.7c) {ui <g> i>j,. . .  , vn <g> ipj}jej-i

are orthonormal (not complete) families of vectors in /H§<8'H m- The union of sets 

(2.6a) and (2.7a), and of (2.6b), (2.7b) and (2.7c) form an orthonormal basis.
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The proof is trivial, following from the points under condition 4 above. Complete

ness for the first union follows from conditions 2 and 3, while for the second they follow 

from 5, which establishes a one-to-one correspondence between the two union sets.

T h e o r e m  3 .2 . For an apparatus in the starting state

(i) the operator

(2.8) W l =  ]>^(<Pi<8 >V,o| (•)>($
i € l

satisfies the probability reproducibility condition (2 .1 ) (and therefore the interaction 

conditions (2.5)); it is contractive and partially isometric on the subspace Hg ® [V’o] 

and null on the subspace W.g ® fa/,o]'L-

(ii) The conjugate premeasurement operator for W 1, fixed by the base selection in 

condition (3 ), is

(2.9) =  o ( * ) ) ( £ ? $ $ « ) )
*€/ *€/ \ t e /  /
*5*1 *5*1

and is itself a partial isometry on the space Tig ® [{V,o}fc€/I-
*5*1

(Hi) Given an orthonormal set {vi},gj and the operator

W 1' :=  (-))(v i  ®  & ) ,
i£ l,k£J—I

itse lf a partia l isom etry  on Tig ® [{^J } k e J - i \ t  the operator

(2.10) W' =  W 1 +  R '1-L +  W'1' = £ ( W ®t(’o (•)>(£* ® & )
*€/
* € /

+  (•)>(«»$& )
*€/ kej-i

is unitary.

P r o o f . See Appendix A. □

REMARK 3 .1 . As noted on page 103, the probability reproducibility condi

tion implies that operators satisfying it have the form (2.3) when restricted to the 

subspace of Us selected by the initial ready-to-measure state. The previ

ous Theorem shows the converse, that all operators of the form (2.3) satisfy the 

probability reproducibility condition and are in fact contractive partial isometries
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on the subspace. Their unitary extensions characterise measurement operators 

precisely because they also satisfy the probability reproducibility condition.

(2 .11)

REMARK 3.2 . It is important to appreciate that, for any (arbitrary) com
pletion

{ t i n  =  (fii <g> . . .  t i n i  =  ipn ®  V # > • • • • • • u n m }  < € / - { i>

{Wll =  <£l ®  i ’l l  • • • W21 =<f>2®  • • • U nm }  <€/-{!}i€J—{1}
the linear operator 

defined by tbe Jaw

E  <“« ! •> %  = " ”'(•) + 2  <“«!■>“ «
i€J

is unitary and satisfies the interaction rules (2.5) and the probability repro
ducibility condition (2.1). There are, obviously, as many of these unitary oper
ators realising a unitary measurement for a given initial state rpQ as there are 
completions. The particular construction of the unitary operator W  discussed in 
Theorem 3.2 is motivated in section 5, when the possibihty of measurements with 
initial states given by density operators is considered: it is a construction where 
the components in W 1,J- are themselves partial isometries which are premeasure
ments of the object observable. Then the probability reproducibility condition 
implies generalised interaction conditions: more initial ready-to-measure vector 
states are fixed through the initial density operator, and this fixes more than one 
of the partial isometries which make up the unitary measurements.

It is worth noting that this construction does not exhaust all the possible 

extensions. For example, suppose W1,J- := Yhiei,kei,k^i ('))(v* ®

ipk). This is clearly not a premeasurement, as it does not satisfy the probability 

reproducibility condition. This can be easily seen by its failure to satisfy the 

interaction conditions 2.5.

REMARK 3 .3 . The completion discussed in part (iii) of the Theorem details 

a W i, part o fW 1’, which is not a premeasurement when j  € J. Again this need 

not be the case in general. The specific situations where there exists a which 

will necessarily fail to be a premeasurement will be outlined in section 5, together 

with the problems which arise as a consequence of this.



2. THE CONTRACTIVE PARTIALLY ISOMETRIC EVOLUTION 110

2.3. Some Examples.

E x a m p l e  3.1. —  The (2,3)-dimensional case. I give a simple example of the 

above operator in order to illustrate its construction for the case in which dim('Hs) =  2  

and dim(^M) =  3. We have the explicit formula:

(2.12) W 1 =  \ (•))(<£ i ® ^ i )  +  (¥?2 ®i/,o| ( O X ^ ® ^ )

describing the perfect measurement interaction:

(2.13a) W l ((pi 0  V>o) =  <Pi ® i ’l

(2.13b) W 1 (cp2 ® ^o) =  ^ 2  ® ^ 2

The unitary operator W  : TLg 0  % m Ms 0  m is th e  sum

E  w '
h=2,3

=  (v > i® ^ o |  (*)X0 1 ® & )  

+  (v>i®V>o| (-)X<£i®<W 

+  ( V?1 ® V’O | (•)>(«! ®^3)

+(v?2®^o| ( 0 X ^ 2 ® ^ )  

+(<^2 ®^0 | (0)(^2 ®^2) 

+ ( ^ 2 ®^o| (-)>(U2®^3)

The unitarity follows immediately from the fact that the two families

{ <pi 0  <P2 ® i ’o, <Pl ® Ipo, V>2 ® 0O» ^1 ® $)> ^2 ® $)}

{<p\ 0  0  ^2, ®  $ 1 , <̂ 2 0  ^2 , «1 0  V>3, U2 0  ^ 3 }

are orthonormal bases of 7i§ 0  H  m, the latter following in a crucial way from condition 

(5b) on page 106.

E x a m p l e  3.2. The special case of von Neumann-Luders measurements is charac

terised by the fact that Wi((pi 0 >̂J) =  Vi ® ^  we assume that dim('Hg) =  n < m =



2. THE CONTRACTIVE PARTIALLY ISOMETRIC EVOLUTION 

dim(‘HM)» W l can be obtained by considering for example

WL(<pi ®i>l) =  <pi 0 ^ 1  . . .  WL((Pn ®^o) =  T>n

111

W L (<Pl ® i> o )  =  <Pn®'<l> 1

W Lfo ® V,0+1) =  V7! ® ^n+1

W ' i t a  ®  V’o ) =  ¥>1 ®  V'n 

Wl(<Pti ® ^o+1) =  ® VVi+1

W L (ipn <g> C )  =  <Pn ® A

corresponding to a unitary operator like the one in Theorem 3.2 under the assumptions 

<Pi = <PirJ-i(i) Vi, j  G I , $  = (pi Vj E J — I where 7rJ - 1 (i) is the product of applying 

to the index i the (j — l ) th power of the permutation 7r =  (1,2 , . . .  ,n). Again it is 

worth stressing that the completion here is arbitrary and the only relevant part for the 

measurement interaction is tpQ in the present case, but again the completions will play 

crucial roles when discussing the case of an initial apparatus state which is a nonpure 

density operator.

The following Lemma will be needed later.

L e m m a  3 .3 . The adjoint of the operator W  is the operator

(2.14) W* = (<p\ <2> (•)>(y?i®V,o) +  *-' +  ( ^ ® ^ n  ( 0 ) t e n ® ^ o )

+ . . .

+  (#L*®$1 (')>(v?l ® ^ 0 l) +  --- +  ( ^ n  (OXVn®^?)-

»€/ fcgj—/

P r o o f .  Consider the first component of W, i.e. ( (pi ® (") X v’i ®  V>i)*

We have that

($| {(pi ^)(^i ®^i)) = (<Pi ®̂ o| ^)($l £i ®^i)

=  ^  ( $1 01 ® $1 )(<^1 ® V>o)

=  ( ( < £ l  ® $ l |  $ ) ( ¥ > !  ® ^ o )
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repeating the process for each component of W , by linearity we have the result. □

In particular we have that, for the partial isometry W 1 which captures the measurement 

interaction for a given initial state ip\, the adjoint is

n

(2.15) =  (•)}(<# ®V>o)
i= l

3. Partially isometric contractive mappings in the density operator
formalism

In the next two sections the earlier discussion will be generalised to the density 

operator formalism, something not previously done in the literature. In particular I 

examine what sort of operations on the set of states, now taken to be density operators, 

are compatible with the probability reproducibility condition. First some notation is 

introduced. Let W§®'Hm he the space of the coupled object-apparatus system as 

defined in the previous section. Then define {7i§ ® Ti m) as the set of all positive 

trace one operators on TL§®71m - T{¥('Hs <S> TIm) is the standard choice for the space 

of physical states; however it is easy to verify that most of the results that follow hold 

for the general case of action on the set T{7i§ ® %m) of trace class operators.

Clearly all the one-dimensional projection operators

P [<p®1>\ = ( • ) ) (<£ ® VO = -P[y>] ® ify ]

(where ||y?|| =  ||V>|| =  1 ) axe positive operators of trace one. In general, for any 

arbitrary Hilbert space 71, one dimensional projectors are the extremal elements of the 

set T i ’i'H). This set is cr-convex with respect to its linear structure, so that an element 

T  G T *  {Ti) is extremal if the condition T  =  wT\ + . .  .+ w nTn, with Ti, . . .  Tn G {71) 

and 0 < Wi <  1, wi — 1 always implies that T  =  T\ =  . . .  =  T2 . The set of extremal 

elements exhausts the whole set 7̂ + (7L) in the sense that any T  G T[+ C%) can be 

expressed as a convex combinations of some elements of this set. These elements are 

the set of states of the system in consideration, the projections being called pure states, 

and their (non-trivial) convex combinations mixed states.

An induced notion of linearity for 7̂ + {Ti) is defined by considering a linear mapping 

U  : T{7L) —» T{TL) on the Banach space of trace class operators T{7t). Its restriction 

U  : Ti {Ti) -¥ Ti~{Ti), when well-defined, satisfies the corresponding convex-preserving



3. PARTIALLY ISOMETRIC MAPPINGS ON DENSITY OPERATORS 113

property, i.e. for all a i, . . .  an E K+, a\ +  . . .  +  an =  1, P i, . . .  Pn one-dimensional 

projectors

U{a\Pi +  . . .  +  anPn) =  aiZ7(Pi) + . . .  +  anU(Pn).

Coming back to the space 7̂ + (H§ ® H m)> note the following result for the trace 

operation:

(3-1) TtwsSWmPs ® Tm] =  T r ^ p s ]  • T r^ M[TM],

where T§ E 7 [+ (Hs), Tm £ T f  (Hm) and T§ ® Tm € T *  (H§ ® ^m )-

The natural way to extend the partially isometric operator W l over H§ <8 > Hm 

defined by (2 .8 ) is through the standard conjugation action, formally characterised 

amongst others by Davies [25] for operations on T ^iH g  ®Hm)- Consider first, how

ever, the mapping W 1 : 7 j*(H§ ® Hm) T *(Hs ® Hm)i for all T  E 7^ (Hs ® Hm)> 

and P[^Q] the initial apparatus state:
n

(3.2) W \ T )  = £  Tr«saWM [(f[*,.Wo])(r)]
* = 1

The mapping W 1 is clearly convex-preserving. It satisfies the interaction condi

tions, i.e., for 2 =  1 , . . .  , n, W l (P[<Pî 1p0̂ ) =  P[^®^], corresponding to (2.5). Moreover, 

for T  =  P[$], $  E H§ ® H m , ||$ || =  1>
n

(3-3) W l (Pw ) =  £  |< w  ® * , | $ )|2 P [#jWj],
i=l

which is analogous to (2 .8 ).

Suppose now that the observable selected by the orthonormal basis {(p\,. . .  , <pn} is 

being measured by an apparatus which is in the state P[^0] and that {ipi, . . .  ,ipn} is an 

orthonormal set in Hm selecting a pointer observable for the measurement. Suppose 

the object being measured is in the state P^], where tp = ct\<p\ + . . .+ a n</?n, |a i |2+ . . .+  

|« n |2 = I- Hence the combined object system +  measuring apparatus in 7̂ + (H§ <8 > Hm) 

is T  =  P[(p^Q\ • The result of applying W 1 to T  is, by (3.3)
n

(3.4) W  {P\(p®t[f0]) — lQ!il2 (T>f<p1®^])
Z= 1

This is again in accordance with the probability reproducibility condition. This example 

usefully illustrates part (1) of the next theorem. The following lemma will be used in 

the proof.
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Lemma 3.4. Suppose {<p\ , . . .  , } is a complete orthonormal system in C 1. Then

,̂ r[^>[V’i]'̂ [Q:iV?l+'”+anV’n]] =  la *l >

a i ,  . . .  a n E C, | a i | 2 +  . . .  +  |a n |2 =  1.

The proof is straightforward and will not be given here.

T heorem  3.5. The mapping W 1 has the following properties:

1. it satisfies the probability reproducibility condition in the sense that, for a state 

T  E T f  (Hs) and for j  =  1 , . . .  , n,

(3.5) TrWs[T P[^.]] =  T r^s^M  [ w ^ T  <8 > P ^ 0]) (I§ <8 > P[^])] >

where Is is the identity map on T(Hs) and P ^ 0] is, as usual, the initial state of the 

measuring apparatus.

2. it is a partial isometry, in the sense that it preserves the trace of the density 

operators in the subset of (Hs 0  H m) defined as (Hs) ® P[^Q], i-e. for all T§ 0  

P[M € (Us) ® P[xp0]

<S> P[iPo))] =  Trws®ftMP s  <S> P[^0]] =  1

and it is null on the subset of Ti~(Hs ® ^ m ) denoted by 7̂ + ('H§) 0  (•f>['0 o])‘L» *-e- f or 

all states T§ 0  P^j_j E {'Hs) <S> P[$±]> where ipQ is any vector in H m perpendicular 

to rfo

® P[1>±])] =  °-

3. it is contractive, i.e. for all T  E Ti ’(Hs ® H m),

T tks® * m ( ^ ( T ) )  <  T tW m(T ).

P roof. See Appendix A □

R em ark  3.4. For all T e  7[+(Hs 0  H m), setting 

Ai(T) = TrfP^g^] oT];

then clearly
Ai {T) =  (<Pi® tp0\ T((fii 0  V’o)) € [0,1]

so we have that
W l (T) = ' £ x i( T ) F \ ^ l]

i=1
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It follows that W 1 (T) is a quasi-convex combination with weights \ ( T )  (in the 

sense that 0  < Yli < 1 , while for a convex the sum must be equal to one).

Consider again Davies’s theorem [25, Theorem 3.1, p.21]:

THEOREM 3 .6 . Consider a Hilbert space %. Every pure positive linear map T  : 

TifH) —> T(fH) is of one of the following three forms:

(1) T(T) =  B T B \

where B  is bounded and linear;

(2) T(T)  =  BT*B*, 

where B  : H  —> % is bounded and conjugate linear;

(3) T(T)=Tr[TB](\i/>)(4>\),  

where B  :W —t H  is bounded, linear and positive and ip E H .

Pure positive linear maps on TifbL) are by definition such that every element in the

set of positive trace class operators is mapped into the same set, and furthermore every

pure state is mapped to a pure state. Type 3 maps as characterised by the theorem

axe called degenerate: they map all states to a pure state. Note that the map W 1 is a

sum of such degenerate mappings:
n

W*(T) =  53 (v* 0  ^°l ® XI f t  ® f t  X  f t  ® f t  I)
i= l
n

=53 ̂ C^WiKI ft ® ft) (ft ® ft I)
1=1

At this point a comparison is useful between W 1 and the Davies map of type 1 induced 

by the partial isometry W 1, i.e.

W 1d {T) = W 1T W u .

Both are candidates for constructing a bijective, trace-preserving mapping yielding a 

measurement on T *  {Ws <g> 'Hm)- Like the partial isometry W 1 on W§ <8 > 'Hm they satisfy 

the probability reproducibility condition, and if they can be completed to a map which 

is one-to-one and onto and preserves the trace of the density operators it is applied 

to, we will have an equivalent for the space 7J+ ('H§ ®Hm) of a unitary mapping on
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H§ In what follows I show why this can be done for W lD, but not for W 1, and

connect this with the discussion of the previous chapter. On the other hand, I will also 

show how W 1, but not W p , retains, in the density operator description, important 

informational properties, normally associated with unitary measurements.

The explicit form of W lD is

P r o p o sit io n  3 .7 .

w d ( T )  =  5 ^  ( <p* 0  0o| T((pj 0 0O)XI& ®*Pi){<Pj 0  ipj |). 
i j

P r o o f .  Since W i =  ^  {y?* 0  ^o| (•) )(<Pi 00*) and W j * =  < <Pj ® 0;i (•) )(cPj ®
-0 0 ), we have, for any $  € Hs

=  1>j\ i ) ( Vj  ® ipo)
j

T ( w i ' m  =  s m v ’j ® * o)
j

W i T W i ' i ® )  =  £  < ¥>j ® V>o| £  ( ® tfil $  >r(»»i ® V>o) \  (W ® * )
t j  /

=  5 3  ( $3 ® 0jl  $  X W 0  001 ® 0o) )(0* 0  0i),
i,3

proving the result. □

In order to appreciate the difference between W 1 and W lD, consider their action on a 

pure state

T =  P[*], $ e % 0 % ,  ||* || =  l.

We have already seen in equation (3.3) that

w l (p m )  =  E  Kw ® *>l$  >l2
i

a quasi-convex combination of the pure states Pf^®^] with weights given by Aj($) =

|( <p* 0  0o| $  )|2, such that |( <# 0  0o| $  )|2 <  1- Now we have the following

P r o po sit io n  3 .8 .

W d {P[$]) =  P e ^ s ^ o I * ) ^ ® ^ ) ]

=  5 3 1^ *  ® ^°l ^  +  Int(• • •)»
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a pure state where Int( . . . )  represents interference terms between the projectors equal 

to

(3.6) ^  ( $ | ipj <g> rpo) { $ | &  <g> )| <Pi ® f a ) ( <pj ® ^  |.
v£j

P r o o f .

wd(p[*]) =  X ) < ® V'ol ( <̂ | <Pj ® )$  )| <Pi 0  fa) {0j ® tpj I

$ > (0j ® ^ i )

But

( V7* ® W  $  )(<& ® ^i) =  ^  ( <Pj <S> ^o| $  ) f e  ® ^j)
* i

so

W d C ^ # ])  =  -^E< < ¥>*®^o| $  )(ft® ifc)l 

The proof of the second claim is similar. □

E x a m p le  3.3. For the case when $  =  (Ya =i <W z) ®  Vto €  H§ 0  'Hm  with dim(K§) 

=  dimf^M) — 2  and |a i |2  +  |qt2 | 2  =  1  we have that

i —̂ E i= i
2

1 = 1

+  aitt2| <̂ 2 ® V>2 ) ( <£l ® ^1 I +  «ia2| <£l ® V’l ) ( <P2 ® */>2 I

The difference between W 1 and W lD is a crucial one: W 1 maps away interference 

terms like (3.6), while W lD does not. As such it should be intuitively clear that W l 

cannot be extended to a bijective mapping on 7̂ + (%s ® 'Km) generated by a unitary 

operator on Tig <8 > “Hm? in the manner of a Davies type 1 conjugation. Nevertheless 

we can’t exclude the possibility that W 1 or some such mapping can be extended to a 

bijective mapping in general. This question will be treated in detail in the next section.
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4. The problem of completion for mappings on 7̂ +(%§

In this section I examine the problem of constructing bijective completions of the 

mappings W l and W XD on the whole of 7J*(H§ ® 'Hm). As explained at the beginning 

of the chapter, such completions are important because quantum mechanical evolu

tions are assumed and, with respect to quantum measurement, hoped to be invertible. 

Again, therefore, after introducing mappings which satisfy the probability reproducibil

ity condition, the next step is to see whether these mappings can be ‘embedded’ into 

invertible mappings. I will begin with some results which hold for any space T(H),  H 

some Hilbert space.

D e f in it io n  3.1. 1. The rank of a density operator is the minimal number of

one-dimensional projectors of which it is a convex combination. This is an in

variant for the operator and it stratifies the convex set of density operators (for 

a geometric description of some low-dimensional examples see [7]).

2. A map is rank-preserving in 7J+ (%) if it preserves the rank of the density oper

ators on which it acts.

Note that it follows trivially from the above definition that rank-preserving maps 

must be pure, as all pure states are 1 -dimensional projections, and so have rank 1 .

Positive, linear rank-preserving mappings on T{H)  are a subset of the pure map

pings of Davies type 1 and 2: mappings of type 3 cannot be rank-preserving, as they 

map all T states, regardless of their rank, to final states of the form Tr[2T?] (| xp) ( xp |), 

which have rank one. The restrictions of such mappings to Ti'ifH.) is clearly well- 

defined and convex. I will prove a theorem linking bijections to rank-preserving maps 

in Ti'i'H). For this I will need the following

LEMMA 3.9. I f  U is a pure convex bijection on 7'I’i'H), then so is its inverse U~l .

P r o o f .  In order to prove this I must show that U maps no mixed states to a pure 

state, so that its inverse U~1 necessarily maps pure states into pure states. Consider 

a mixed state T — Y n = i such that U(T) =  P , P  a pure state. Without 

loss of generality suppose n =  2. Now let U(Pi) =  T*, a pure state. Then we have that, 

by convexity

U(T) =  a\U(P\) +  a2U(P2) =  aiTi +  a2T2.
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By the definition of a pure state this implies that T\ — T2 — P , so U(P{) =  U(T)  

which contradicts bijectivity. □

T h eo rem  3.10. A convex mapping U  : —y T i ’i'H) is bijective i f  and only

if it is rank-preserving for all T  6 7̂ + (%).

PROOF. The first part of the proof is the claim that bijectivity implies rank- 

preservation. Note first that every bijection is pure. Suppose the linear mapping 

U  is not pure. Then there exists a pure state P^j for which

u (P[<p\ )  =  a i P \<Pi]' a* €  R + ,  a* =  1, p [<Pi] ^  P [<pj] w h e n  * ^  i -  
i i

Without loss of generality assume that i =  1, 2. Then there must exist two distinct 

states Ti, T2  such that 17(Ti) =  P ^ ] . Consider the state aiTi +  <2 2 ^ 2, clearly distinct 

from P yy  We have that

U (aiTi +  0 2 T2 ) =  aiU(Ti)  +  G2 *7 (T2 ) by linearity 

=  aiP[Vi j + a 2 f jOT]

=  U(PM ),

so U  cannot be a bijection. Hence every bijection must be pure.

The next step is to show that every pure bijection is rank-preserving. Consider 

T  =  X ^ C iP i  € Ti'i'H), with Pj one-dimensional projectors and hence Rk(T) =  n. 

Then U(T) = £ ?= i CiU(Pi). It follows that Rk[C7(T)] < n.

Suppose now that there exists a decomposition U(T) = YlijLi djPj, with m  < n. 

It follows that T  — jy jL i djU~1(Pj). By Lemma 3.9 U ~ l is also a pure bijection, 

hence we can write U ~ l {Pj) — P j and T  =  Y^jLi djPj> which implies Rk(T) <  m  < n, 

yielding a contradiction. We therefore have that Rk[U(T)] =  n =  Rk(T).

For the converse, assume that U  is a rank-preserving map. If it is not a bijection, 

then there must be at least two distinct states T\ — ]P”=i a-iPi and T2  =  S S u  ^ip l 

which map to the same final state T. Rank preservation implies that n  =  m. Convexity 

implies that

U(Ti) =  = Y i biU{Pi) =  U(T2)
i i

so the two sets {a*} and {&*} must be equal and each U(Pi) must be equal to some 

U(Pj).  From this it follows that there must be at least two distinct pure states, call 

them Pi and P 2 , which are mapped to the same final pure state P .
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Now consider the mixed state T' =  a\P\ 4 - 0 2 ^ 2  € 7 ^  (‘H). Again by convexity

U(T') =  a\U (P\) 4 - a2U{P2) =  axP  4 - a2P  =  P, 

which violates rank-preservation and hence yields a contradiction. □

W '1, analysed in Theorem 3.5, is clearly not a bijection. It yields a final state for 

the system 4 - apparatus which is a mixture over final states of the system perfectly 

correlated with the corresponding pointer states, while achieving the appropriate prob

abilistic behaviour in order for it to satisfy the probability reproducibility condition. 

In order to do so it maps all initial states with the same probability distribution with 

respect to the system observable in question to the same final state, irrespective of the 

rank of the initial state. For instance, given an observable determined by . . .  , <pn}, 

the two states i^oivi+oaval E»=i,i once tensored with a ready-to-measure

pointer state Pty0], will both be mapped to the same final state

^  \a i\2 
*=1,2

Equally clearly it is not rank-preserving on T*[Hs ® H u ) \  for example P^® ^], which 

has rank 1  since it is a projection onto a one-dimensional subspace, is mapped to a 

state of rank 2. Any trace preserving extension W  on 7̂ + C%s ® H m) of an operator 

like W 1 would retain such failure of rank preservation. It is possible to construct many 

such operators, for example

(4.1) W (T) = ^ T r „ s8WM £  W o l  I
t= l

But, by Theorem 3.10, no such extension can be a bijection, because of the continued 

failure of rank preservation.

The positive, linear, trace preserving, pure transformation W lD is equally clearly 

not a bijection; for instance, it maps all the operators P[$] with $  = ip<8> ipQ, V’o’ fixed 

and orthogonal to V>0 ) to the null operator. However, consider the map

W D : Ti'i'Hs T f { H s  ® H m),

(4.2) W d {T) = W * T W ;

it is not hard to see that this will be a linear bijection on 7̂ + (‘Hs ® H m )' it is just 

the unitary operator W  “extended” to the set of density operators. Davies’s theorem,
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together with Theorem 3.10, makes it clear that mappings like (4.2), where W  are the 

unitary operators characterised in Theorem 3.2, are the only pure bijective premeasure

ments of discrete observables. The Davies result characterises pure mappings; Theorem 

3.10 tells us that all bijections must be rank-preserving, therefore pure.

Bijections, therefore, must be of one of the Davies types. They cannot be of type 3, 

which axe essentially projection mappings and therefore not bijective. Given a unitary 

operator U , type 1  and type 2  characterise a mapping and its inverse as a conjugation 

action just like the one in (4.2); the pure bijections then will all be of the form W & 

for some unitary premeasurement W . Note that no other invertible map other than 

the ones characterised through Theorem 3.2 can yield a premeasurement through (4.2); 

straightforwardly, for a pure initial state i ^ j ,  the probability reproducibility condition 

would fail.

As an aside, we know that such mappings do not solve the general measurement 

problem as defined in the previous chapter. They clearly do not satisfy the objecti

fication condition for the pointer observable, because they fail in all cases to excise 

the relevant interference terms. This is particularly clear from proposition (3.8) and is 

obviously independent of whether the initial combined state is a nonpure density op

erator. Convexity will imply in this case that all individual states will be transformed 

in accordance with (3.8), thus retaining interference terms between pointer eigenstates 

in the final state after the premeasurement evolution. So in a sense Theorem 3.2 and 

Theorem 3.10 also make up an insolubility proof.

Concluding this section, we have seen how the probability reproducibility condition 

is satisfied by a varied class of operations on density operator spaces, not all of which 

admit of completions to invertible mappings, which is not the case for operators on a 

Hilbert space. We have explicitly examined this problem for two operations satisfying 

the probability reproducibility condition, W 1 and defined in the previous section: 

W', an extension of W 1, can never be an invertible completion, while W d is indeed 

an invertible completion of W lD.

5. Som e in form ational resu lts  for m ixed in itia l a p p a ra tu s  s ta te s

The analysis of this chapter has been considerably more detailed about the im

plications of assuming the probability reproducibility condition than is the case, for 

instance, with the work of Beltrametti et al. [6 ]. I now draw some conclusions from
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this further analysis. A consequence of it is that in the density operator formalism, the 

possibility that the initial state of the apparatus might be of rank greater than 1  will 

make a difference to the kinds of bijective measurement mappings that are possible.

To begin with, note that the only possible rank-preserving maps on T *  (Hs ® H m) 

will be mappings such as W p, where the generating unitary evolution on Hs  ® 

must necessarily be given by an equation such as (2.10). Suppose in fact that dim('Hg) =  

n  <  dim('HM) and that we have an apparatus in an initial state given by the den

sity operator To =  Y%=i wip [%]’ V’o -L measuring an observable determined by 

the orthonormal basis - with the final pointer observable determined by

{■0 1 , . . .  , ipn}- It is easy to see that, if the natural probability reproducibility condition

(3.5) is satisfied for an initial pointer state To, then it must be satisfied even if the 

initial pointer state were to be either one of the component states P ^ .j. This follows 

naturally when we consider that the probability reproducibility condition (3.5) in this 

case takes the form

(5.1) Trwstrfi*,,]] =  TVWs8« m [w ^ C T S T o M /s® /^ ])]  ,

for all T  E (Hs ® H m ) and for all cpj's eigenstates of the measured observable. But 

by linearity of W 1 and of the trace operation this becomes
2

p [<Pj]i = Y l Wi \ w l (T  <g> P^ij) (Is <8> P[^])] •
i=l

Letting H s 3  T  =  P[Vj\ it is easy to see that condition (5.1) can be satisfied only when 

it is satisfied for each of the pointer states PbPhY Therefore the only mappings that can 

satisfy (5.1) must satisfy probability reproducibility conditions for initial states which 

are pure states, so must be captured by mappings W d  generated by unitary operators 

as characterised by Theorem 3.2.

In particular, 0 j will fix one partial isometry W 1, but its completion will not be 

totally arbitrary now. The idea is for W d to satisfy the natural interaction conditions

P[<pi] <£> P[^i] -3 P[^i] ® P[y>i]

p tv ii®Fy s i ~ * Fi9 8 ® FbM

which follow from (5.1). These can be put more generally as

(5.2)
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Now, however, the partial isometry W 2, corresponding to the initial apparatus state 

p \h \' will be fixed, just as W 1 is, in the way shown by Theorem 3.2. The more 

pure states appear in the initial apparatus state, the less freedom we have in 

specifying unitary completions of partial isometries if we want to satisfy the interaction 

conditions, until we reach the point where the initial state is To =  XIILi P[-0 *] for 

n =  dim('Hs), when the above reasoning shows that the unitary operator characterising 

the measurement will be fully specified and unique given the system observable to be 

measured, the apparatus pointer observable and the initial state.

This prompts, in the first instance, some observations on the conditions that mea

surements can satisfy.

• The first is that if the apparatus observable is a density matrix of rank strictly 

greater than 1, then Von Neumann-Luders measurements are impossible. Consider the 

interaction condition (5.2). A Von Neumann-Luders measurement would require that 

T  = ipi. This is clearly impossible. The rank of P ^ j  ® To is equal to 2 and any one- 

to-one measurement cannot change this rank, hence the rank of T  <g> P ^ j  must also be 

equal to 2. As the rank of P ^ ]  is equal to 1, it follows that T  must necessarily be of rank 

2  (as can be easily calculated using the explicit formulation of a Von Neumann-Luders 

measurement in the earlier example).

• The second remark concerns two other important properties that measurements 

can satisfy, repeatability and the property of being a measurement of the first kind. It 

is possible to show that, as for Von Neumann-Luders measurements, no measurement 

can be of the first kind if the initial apparatus state is a density matrix of rank greater 

than 1 , and hence cannot be repeatable, as all repeatable measurements are of the first 

kind. The intuition is simple. A measurement of the first kind is a probabilistic non

disturbance measurement: take the final object state after a measurement, obtained 

through a partial tracing operation, and subject this state to another measurement of 

the same observable. The end object state after this measurement should exhibit the 

same probability distribution as the initial object state, for all possible initial states of 

the measured object. The fixed weights of the non-trivial density operator taken as the 

apparatus starting state make this impossible.

More precisely, a measurement of an observable A  is of the first kind if the prob

ability for a result being in a subset X  of the set of all possible results is the same

before and after a measurement. Therefore, for a  state T§ E 7 [+ (H§), for an initial
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state Tm E T *  (Hm) and for all such subsets X

(5 *3) Pts (x ) = Pns{U(Ts®TM))(X) ,

where 1l§ is the operation of partial tracing the apparatus system away.

As an example, consider a system in an initial state <p = ^2i otnpi, where the ipis are 

eigenstates of a discrete self-adjoint hermitean operator A  representing the observable 

to be measured (and form an orthonormal basis for 'Hm). The spectral resolution of the 

operator is given by A  =  aif\pi]- Such a system undergoes a measurement, for which 

there is a pointer observable Z  whose spectral resolution is given by Z  = Yli 

starting state of the measured system is given by a density operator T  =  J2j=1 ,2

A generic unitary measurement U  will map the state P^j 0 T to the state U ~ l  (P^j <8 > 

T )U .  This state will be

Tf  =  U ~ l (P[(p]<Z>T)U =  ] T  WjP['£i ai'p’®iJ>i\
j = 1,2

with (p[ orthogonal for different j 1 s. (5.3) tells us that, for example, if X  =  {ui} then 

the probability given by T r ^ jP ^ P ^ ] ]  is equal to |a i | 2  and this must be equal to 

Tr-ws[7 £ § ( £ / - 1  ( ^ ] ® T ) [ / ) ^ ] ]  if the measurement is to be a measurement of the first 

kind.

To calculate this probability first write $  =  PijWh with. Piji =  (fii)- 

The final state T f  is then equal to

i= i>2

As the ipi form an orthonormal set it is easy to see that

(Tf ) =  Y  wj ' 5 2 \ a i\2 p [E?=iPiji<Pi\ 
j = 1,2 *

Now multiplying this state by P ^ ]  yields the operator

Y  W3 Y ,  \a i\2\Pijl\2P[<Pi]
j = 1,2 i

whose trace is

(5 .4 ) Y
j=1,2 i

We want to investigate under what conditions this is equal to |ori|2.
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Suppose (p = <pi; then |a i |2 =  1 and (5.4) becomes ]Cj=i,2  wj\fiiji\2’ From the fact 

that (3{ji =  ^ <^ | (pi), this is clearly equal to 1 if and only if, for one of the two possible 

values of j ,  Wj =  |/?iji|2 =  1, while for the other value of j  we set the constants to 0. 

This shows that, for a discrete, non-degenerate observable A, the initial state of the 

apparatus has to be a pure state if we are to be able to define a measurement possessing 

the first kind property (and hence the repeatability property).

• Finally it is clear that, if the unitary mapping W  generating the measurement is 

uniquely fixed by the initial state of the apparatus being of rank n  in the case when 

dim(?{§) =  n, then it follows that if dim('HM) =  m, m > n, and the rank of the initial 

apparatus state is greater than n  then no measurement of any kind is possible if the 

pointer observable is non-degenerate.

Even assuming degeneracy of the pointer observable, a common physical situation, 

there are cases where a unitary mapping W  cannot be found. An example will be useful 

to illustrate the point. Suppose dim('Hs) =  2 and dim('HM) =  3: the observable to be 

measured is a spin direction, represented by an operator whose eigenstates belong to 

the set {v?i,<P2 }> the pointer observable’s eigenstates belong to {V>i,ifo, fo } , with ipi 

indicating a result compatible with V>2 indicating <P2 - Further, let the initial state of 

the measured system be tp — 22*=i,2 ^ d  the initial state of the apparatus is a den

sity operator £)?=i w^[iPQy written in its spectral resolution. A unitary measurement 

will have the form

(5.5) U =  ^ * 0 ^ 1  (*))(# 0 ^ * ) +  ^ 2  ( < # 0 ^ o |  (*)>(v*0^3 ),
i=1,2 1=1,2
3 = 1 ,2

the Vf’s being an arbitrary orthonormal pair in 'Hg.

Now U((p 0  iPq) =  S i  Vj 0  ips so that the apparatus points to ‘nothing’. Clearly 

there is no way to satisfy any sort of interaction condition for the third component of 

the initial pointer state: for the initial apparatus state fina-l pointer state will

have to be ipz regardless of what the initial object state is, and so can’t be taken to be 

properly pointing to anything.

In particular, since interaction conditions are implied by the probability repro

ducibility condition, failure of the former implies failure of the latter. Suppose for 

example that the initial apparatus state for a measurement of <p is the density opera- 

tor Tm =  then the probability reproducibility condition requires the final
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probabilities to be captured by the formula T r [ I < S ) P ^ U ® T m )U*] for i =  1, 2. But 

a ‘portion’ of these probabilities will be lost in the interaction with the initial state 

Pty§] to the final state ips. From this it follows that definition of a unitary measurement 

is impossible in such situations. The reasoning can easily be seen to generalise to cases 

where dim('HM) i 1 ndim(H§), where n £ N.

This may seem a somewhat surprising result. It is in fact implicit in the construction 

adopted for the operator W  in (2.10), where the completion terms in the case when the 

index for the partial isometries W i exceeds n  have a form which is very different from 

the initial partial isometry and its ‘natural’ conjugates; the argument just presented 

shows that this is necessarily the case when dim(^M) #  ndim('Hs), if we want to 

preserve unitarity. This really highlights the need to examine the question of how the 

minimal partial isometry is completed. In other results, unitary operators such as W  

are just assumed to be arbitrary completions of a partial isometry, but the structure 

of completions is not examined in any detail. In the present analysis it is now evident 

that this structure is very important.

Note also that this result is independent of both

1. the method for constructing the unitary operator

2. and the way in which the initial nonpure density operator for the apparatus 

system is resolved.

The first claim highlights the fact that, when writing down a unitary evolution, for 

example, for the system in the case just discussed, (5.5) is not the only option. There 

will be different measurements satisfying, for example, the property that one of the 

partial isometries W J yields a Von Neumann-Luders measurement on the appropriate 

subset of the set of states; one could start with a partial isometry W l , or with W 2, 

and complete these into a unitary operator. Yet the problem will remain if the rank of 

the initial density operator is greater that the dimension of the object space.

The second stresses the independence of the result from cases like the following: if 

the initial state of the apparatus were to be in a density operator some of whose weights 

appeared with multiplicity greater than 1, one could rewrite the initial state perhaps 

in some way that might avoid the problem. However suppose that Tm =  S |= i  w3 -^ [^  

with W2 =  wz =  w. Then write the initial state of the apparatus as a density operator 

with weights w\ and (twice) w, where the projectors making up the density operators 

do not include These projectors will, nevertheless, be projections on a linear
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combination of 2j and P^3], so the evolution will still generate problems because of 

the effect of the term P[TP%] when calculating probabilities. It is well known, in any case, 

that the evolution of density operators is independent of how they are decomposed.

• The non-unique decomposability of density operators, on the other hand, raises 

another conceptual problem for the definition of bijective, trace preserving measure

ments: on which decomposition of the initial apparatus density operator should the 

measurement operator be based?

It might be suggested that, given that unitary measurement operators are naturally 

defined through an orthonormal set of apparatus vector states, the correct procedure 

to follow is to rely on an orthonormal decomposition of the initial apparatus density 

operator. It is true that in the case when multiplicities are present in the initial ap

paratus state this does not select a unique basis. In a sense this does not make much 

difference. Suppose that we have a case of Tm having weights with multiplicities as 

described above, now in a measurement of an object system having three genuinely dif

ferent eigenstates of the measured observable. Then the initial object plus apparatus 

state will be
3 3

T =  5 D ^ p [v®^] = H wi p iv®<iy
j = l  J=1

with jP^ij =  P^ij and and P ^  projections on orthogonal linear combinations of 

'tpQ and tpQ. This would give the following two choices (out of an infinity of possible 

ones) for a measurement evolution:

(5.6a) U  =  ^  ( * ) ) ( # '
t = l , . . .  ,3 
3 = 1....... 3

and

(5.6b) U  =  (  V>* ® Col (*))(#' ® fa )
* = 1 ........3
3 =1 3

It is easy to see that the result of applying (5.6a) or (5.6b) to T  will be the same.

• On the other hand the non-unique decomposability of mixtures would present 

genuine problems for arguments which might seek to avoid the problem generated by 

evolutions such as (5.5). These arguments could claim that, when the initial apparatus 

state is a density operator, it is correct to treat the measurement process as different 

measurements for the different initial pure states making up the initial apparatus state,
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each having their own unitary measurement associated with them and each evolving 

independently of one another. After all the problem is generated by the fact that 

unitary evolutions satisfying the probability reproducibility condition must depend on 

the initial apparatus state, as well as on the object and pointer observables. In the case 

when the initial state is a pure state there are, as we have seen earlier, plenty of these 

unitary operators: we need a basis of initial observables for the apparatus space H m 

in order to define a unitary operator, but only one vector in the basis is relevant to the 

measurement, the rest can be chosen at random. When the initial state is not pure, 

more and more vectors become relevant to the measurement operator as the rank of 

the density matrix increases, until we have the case described above, when no unitary 

premeasurement can be defined. We can, on the other hand, claim that, for every pure 

state decomposing the density matrix, there is a different unitary operator describing 

the evolution.

Note that it would then be irrelevant whether the decompositions were orthogonal or 

not: the idea would be not to define a single unitary operator, thus presenting us with a 

choice like the one between (5.6a) and (5.6b). Rather a different unitary operator would 

be responsible for the measurement evolution of each component Furthermore

these could be chosen so that they all give rise to same final state: assuming ip = 

Y%=i a i ® the final states for the object +  apparatus initial state, could be

P[£n again through operators such as (5.6a) and (5.6b).

This strategy has the problem of committing itself to saying what the initial appa

ratus pure states are, if the claim of individual evolutions with pure apparatus states 

is to make sense. Arguably, in the case where the apparatus system is initially in a 

proper mixture (i.e. in a case where we know what the different pure states making 

up the mixture are), the problem will not arise: the one measurement will in fact be 

three measurements, each determined by operators fixed solely by the pure state rep

resenting, case by case, the initial apparatus state. The other option is of course that 

the initial density operator might admit of an ignorance interpretation, so that in fact 

the density operator is the state of a system which is really in a pure state, it’s just 

that we don’t know which.

But there are cases for which a density operator does not admit of an ignorance 

interpretation, and indeed, as we saw in the last chapter, there is a view about how 

to interpret density operators associated with a quantum system which treats them
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purely as statistical states, and downplays the information about which states the 

system might be in. In such cases we cannot define different measurements for different 

possible initial apparatus states. If, for example, we accept the interpretation of states 

that Stein advocates, there is no such thing as really pure initial states underlying 

a nonpure density operator. If mother nature really works like quantum mechanics 

tells us, and we accept this interpretation, then the problem just discussed cannot be 

avoided.

The topics of the preceding discussion challenge the quantum theory of measure

ment, as characterised in subsection 2.2 of this chapter by unitary measurements satis

fying the probability reproducibility condition, by suggesting a class of cases in which 

it would fail to model measurement results.

At first glance this may seem little more than a curiosity. But it is not difficult 

to think of at least a thought experiment exemplifying it. Suppose we have a  photon 

for which we are trying to measure polarisation (a two-level system) by coupling it to 

a pointer system, in this case an atom’s magnetic moment described by a three level 

system. Possible unitary premeasurement couplings for this system will be characterised 

by Theorem 3.2, therefore for an atom suitably prepared in an initial state, perhaps 

entangled with an environment, the situation just described can theoretically arise if 

the initial apparatus state is a density operator of rank three. This would entail that 

either unitarity/bijectivity, or the probability reproducibility condition, would have to 

be given up if a case of this kind is to admit of a quantum mechanical analysis.

On the other hand, a measurement defined as

(5-7>

with W * a partial isometry on a set W§ ® C M§ (characterised as in part

(i) of Theorem 3.2), one of the allowable projections in the possible decompo

sitions of the initial apparatus state, determining a standard conjugation action on 

Ti'i'Hs ® %m)? and 1/||W J ($)|| a (non-constant) normalisation factor, would avoid 

all of the above problems. Suppose we have an initial object +  apparatus state 

Y?j=\P[<p\ ® a measurement W 1 defined as in (5.7) will map PW\ ® P WJ] t0 a 

final state in such a way that the probability reproducibility condition will be satis

fied, and will map 2  ^ \h>\ ® ^[ip] *° ° ^ er w01̂  it treats the initial state 

£™=i P[<p] ® P^j] as if it were simply 0  PK ]’ therefore avoiding all of the above
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problems, associated with the fact that the initial apparatus state was a  density oper

ator.

However it is unclear why in such a case we should regard any one W? as the 

appropriate operator from which to construct a measurement on 7̂ + (M§ <8> 'Hm)- These 

partially isometric operators are normally defined through initial apparatus states; if the 

initial state is a  nonpure density operator, why should the corresponding measurement 

be defined by one specific pure state as we have just done? And if so, which pure state 

is physically relevant? Again, if the initial apparatus state consists of a proper mixture 

we can at least claim that the underlying apparatus state is a specific pure state, though 

of course the problem here emerges precisely because in so many situations we cannot 

assume that a density operator does denote a proper mixture. There are, in such cases, 

many more than one partial isometry to choose from, and no good reason to choose a 

specific one. The claim that the partial isometry captures what is basic, the ‘core’, of 

the measurement process, would lose its force.

On the other hand, W 1 and any one of its ‘completions’ such as W  defined in 

equation (4.1) also avoid the problems discussed in this section. In particular W  is a 

completion in the sense that it is trace-preserving on all elements of 7 ^  <8> "Hm)-

It cannot be, as we have seen, an invertible map, but then neither are the mapping 

defined in equation (5.7), nor W 1. Its advantage over these is that it can be defined 

for any initial apparatus state whatsoever.

Note how different a role the problems raised in this section play, with respect to 

the account of measurements that quantum mechanics gives, when confronted with 

the criticisms of this account discussed in chapter 1. There the criticisms argue from 

the richness of the experimental situation to the deficiency of the theoretical account, 

but they fail to show that what is going on in the real measurements is (negatively) 

relevant to the theoretical questions that underlie the quantum mechanical accounts 

of measurements. The problem discussed in this chapter, however, while it may not 

correspond to any measurement actually performed, puts forward a possible case where 

it is impossible to answer the questions of the theoretical accounts, given the parameters 

imposed by the probability reproducibility condition and unitarity.

The latter conditions, as I have pointed out in this chapter, are an important part of 

providing interpretations of quantum mechanics. Their role in the attempts to provide 

an interpretation of quantum mechanics have been justified in a number of ways. For
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the probability reproducibility condition I have pointed out, in particular, that weak

ening it leads to possible measurements which count as measurements of incompatible 

observables. This does not mean that, if we relax the probability reproducibility con

dition, it is possible to construct unitary measurements which are joint measurements 

of incompatible observables, but rather that there are unitary measurements which 

transmit information from the object to the apparatus from which we would not be 

able to distinguish which of a number of incompatible observables are being measured. 

As many interpretations of quantum theory seek to describe measurements which en

able us to read object properties from apparatus properties, they cannot accept such 

a weakening of the condition without ending up in a position where they can’t assign 

precise properties.

As for unitarity, as I have already remarked, its role in the interpretation of quantum 

mechanics is related to a demand for deterministic theories. Without getting into the 

issues of determinism (extensively treated by Earman [30]) it is clear that, if we want 

quantum mechanics to be something like a deterministic theory, we need some condition 

like unitarity (Earman in fact discusses how the unitarity of the Schrodinger evolution 

is sufficient for the evolution being deterministic, unlike what happens in classical 

mechanics and special relativity).

The counterexample highlights a conflict between assuming both unitarity and 

probability reproducibility for an evolution on the space Hs to account for

the example within something like the present framework, we must give up one of the 

two conditions. As such it offers little in the way of suggestions about what actual 

measurements in quantum mechanics are like, but is very informative about the limita

tions of the assumptions we impose when trying to address the interpretive questions 

raised by quantum measurement.

6. Conclusions

This Chapter has reviewed four types of measurement mappings: the partial isom

etry W 1, its unitary completion W , and the two non-invertible operations W 1 and W  

defined on T *  (Ms <S> /H m)-

W 1 is a contractive partial isometry on %§ <8 > “H m* defined with respect to a mea

sured system observable, a pointer observable and an initial vector state ipQ £ % m? 

and the mapping it generates on the set of states 7]+ ("H§ <8 > %m) is denoted by W XD.
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This operator satisfies the standard interaction conditions for measurements under all 

circumstances, it cannot objectify the pointer observable, and is obviously not unitary. 

Interaction conditions are satisfied under all circumstances, including when the initial 

apparatus state is a nonpure density operator for which the ignorance interpretation 

of mixtures is inapplicable. However, it is difficult to see, as I have argued, on what 

physical grounds this operator, defined with respect to only one pure state, should be 

the appropriate measurement when the initial apparatus state is composed of a convex 

combination of pure states. What makes this possible description of a measurement 

interesting, in the case when the initial state is a  pure state, is the fact that it captures 

all that is relevant in the interaction. Measurements depend crucially on the infor

mation represented by the initial apparatus state, and when the latter is a pure state 

such information is fully used in constructing W 1: this is the unique common part to 

all unitary operators which are completions of it. When the initial state is nonpure, 

this feature of W 1 (in its normalised version W 1) is lost: it is no longer unique at all, 

and the feature which makes it physically interesting in the former case, its property 

of being the common core of all possible unitary measurements, no longer obtains.

W  is a unitary completion of W 1 characterised by Theorem 3.2, and the map

ping it generates on the set of states is denoted by It satisfies the probability

reproducibility condition, but fails to objectify the pointer observable and fails to sat

isfy the interaction conditions (and therefore the probability reproducibility condition) 

when dim(%M) ^  n dim(?{§) and the initial apparatus state Tm has rank such that 

Rk(T§) 7  ̂ ndim(?{§). As I have discussed in the previous section, no unitary mea

surement can satisfy the probability reproducibility condition in such cases, no matter 

which W 1 we start from, no matter how we complete it.

W 1 is a positive, contractive partial isometry on the set of states <8 > Hm)*

It is a mapping composed of a sum of pure positive convex operations of Davies type 

3, which map all states to a pure projector (as a projection operator would), it satis

fies the probability reproducibility condition, it achieves objectification of the pointer 

observable, but it clearly is not a one-to-one mapping. It is effectively a generalisation 

of Von Neumann’s type I  evolutions. No such map can be generalised to a one-to-one 

mapping on the set of states.
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However a trace preserving completion W  on 7[+ (%s can be defined which

will not violate the probability reproducibility condition in the manner that W  does, un

der any possible initial apparatus state, including ones which emerge when d im ^ M )  #  

ndim('Hs). While this map cannot be a bijection, it avoids the problem of the last sec

tion, always satisfying the probability reproducibility condition, and it does so relying 

on all the information encoded in the initial apparatus state, rather than having to 

argue for one state of the decomposition of the initial apparatus state as being in some 

sense the relevant one, which we have to do both for W lD and for W 1. Interestingly, it 

also satisfies the objectification condition; by giving up unitarity/bijectivity, it avoids 

both the problems discussed in the previous chapter and in this one.

The difference between mappings like W  and those like W d is a part of the in

solubility results and of the work of Busch et al. on objectification of measurements, 

which was extensively discussed in the previous chapter. The standard requirements 

made on maps that describe quantum measurements is that, as well as satisfying the 

probability reproducibility condition, they yield final states satisfying objectification 

(this is achieved by a mapping like W )  and that they be one-to-one (this is realised 

with a mapping like W d )- It is by now totally clear how these two requirements are 

contradictory, so long as one is confined to working with a Hilbert space like 7is

On the other hand, results like [14, Thm. 6.3.1], the approach based on superse

lection rules (on this see, for example, Hepp [49] and Beltrametti and Cassinelli [5]) 

and Fine’s work on “interactions with an aspect” [40] show that all the above require

ments for measurements can be satisfied by setting one of the two spaces in the tensor 

product to be the representation of an algebra of commutative observables (either for 

the system or the apparatus). This approach has its own problems (see amongst others 

[1 0 , 50, 80]); it can nevertheless be seen, from a mathematical point of view, as an 

attempt to identify the subsets of T i’i'Hs <8 > 'Hm) on which two mappings like W  and 

W d are equivalent, in the sense of yielding the same result when applied to the same 

state. I will discuss some of the issues raised by these analyses in the next chapter, 

specifically in the context of Fine’s work.



CHAPTER 4

Algebraic Approaches in 

F ine’s Solution to the M easurem ent Problem

This chapter looks at Fine’s solution to the measurement problem, developed in a recent 

series of papers [40, 42, 43]. It shows how it can be reinterpreted in the framework 

of Algebraic Quantum Theory, something that Fine has advocated him se lf as a means 

of motivating his solution [40]. Such a reinterpretation leads to problems as it shows 

the solution to be equivalent, from the mathematical point of view, to assuming a 

superselection rule for one of the subsystems. Fine’s account might then be open to 

the standard criticisms levied against superselection rules. These criticisms are reviewed 

and their impact and tenability vis-a-vis Fine’s work is assessed. The chapter concludes 

with a further discussion of whether this solution, while being in itself straightforward, 

is lacking in physical justification regardless of whether it is motivated by assuming a 

superselection rule; this will be done by considering two further criticisms that can be 

made of it.

It is natural, on the back of the discussion in the previous chapter, to study Fine’s 

proposed solution to the measurement problem. Recall how the previous chapter iden

tified two kinds of mapping: the first, essentially the one characterised by Beltrametti, 

Cassinelli and Lahti [6 ], is unitary and satisfies the probability reproducibility conditions 

the second satisfies objectification of the pointer observable. It is possible to identify 

subspaces of the tensored object +  apparatus Hilbert space 'Hs where the two

kinds of mappings coincide, and where as a consequence all three properties (unitarity, 

probability reproducibility and objectification) can be satisfied, if the composite system 

is thought to be restricted to one of said subspaces. Fine’s solution, as will become 

apparent in the rest of this chapter, selects just one such subspace as the appropriate 

subspace to analyse quantum measurements.

134
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1. Fine’s Solution to the Measurement Problem

The question, once again, is: How does quantum mechanics account for the fact 

that quantum measuring processes actually produce results? Up to now this thesis 

has been mainly concerned with providing an exhaustive explanation of what the con

ceptual problem is, and how it manifests itself in the physical theory. Several results 

have been proved, and the upshot of the previous discussion is that most of the condi

tions which are assumed in framing the measurement problem lead to some difficulties. 

Having discussed how objectification and the probability reproducibility condition lead 

to problems, this chapter now considers some proposed solutions to the measurement 

problem. It considers in particular one of the solutions which relax the condition of the 

coupled systems being composed of two proper quantum systems, where a proper quan

tum system is a system whose observables are represented by the full set of bounded, 

self-adjoint operators on a Hilbert space and whose states are represented by the posi

tive, trace class one and self-adjoint density operators on said Hilbert space.

Usually such relaxations are achieved by arguing for the presence of a superselection 

rule. The focus of the present discussion, on the other hand, is Fine’s proposal for a 

solution of the quantum measurement problem. Prima facie Fine’s solution does not 

seem to rely on relaxing the condition that coupled systems be made of proper quantum 

systems; this is certainly not an explicit part of the argument. However it is soon 

apparent that formally that is what the solution amounts to, particularly through the 

investigation of some suggestions that Fine himself makes. This leads to the discussion 

of problems associated with superselection solutions in the slightly different context of 

Fine’s work, and leads to a number of arguments that can be made against it. The idea 

is to try to understand what kind of argument is needed to support Fine’s proposal, 

and whether such an argument can be given.

As is customary, and by now familiar, Fine considers the measurement process as 

an interaction between an object system S upon which a measurement is performed, 

and a measuring apparatus, ML The measurement interaction is treated in the space 

Tis ® Hmi ('Hs and two Hilbert spaces) and is described by a unitary transforma

tion U such that

( i.i) 7I+ (fts ® Km) 3 V  ® W  A U (V  ® W )U ~l =  F,



1. FINE’S SOLUTION TO THE MEASUREMENT PROBLEM 136

where V  G 7[+ (%$) is the initial state of the object (as usual a density operator on /H§) 

and W  G 7J+(^m ) is the state of the measurement apparatus before the measurement 

takes place. U transforms the initial state V  ® W  into F  = U(V  <8 > W )U ~l , the final 

state after measurement. Suppose the observable E  is being measured and that it is 

represented by an operator E  with projections En onto its eigenstates. Also suppose 

that there is a pointer observable, represented by the operator Q, and projections Qn 

for this pointer indicating that En has been measured. Then the first requirement for 

this measurement is taken to be

(1.2) Prob(£n, V) =  Prob(J <g> Qn, F),

which is the usual probability reproducibility condition in its simplified form: the 

probability of finding En given the initial state V  should equal the probability of finding 

the pointer position Qn given the final state F. The second requirement is taken to 

be that measurements have definite results, i.e. the objectification requirement: F  is 

a density operator admitting a resolution over projectors Pn 0  Qn, which display no 

interference between pointer eigenstates and where Pn is any projection operator on 

Us. Assume, without loss of generality for the present discussion, that Qn has no 

multiple eigenstates. This means formally that

(1*3) F — wmnP\Pm®Qn]i wmn = 1-
n mn

Insolubility theorems, as discussed at length in Chapter 2 , show that (1.1), (1.2) and

(1.3) in general lead to a contradiction. Hence this approach does not account for 

quantum measurements.

Fine gives the following informal characterisation of the requirements for his at

tempted solution:

1 . The Rule of Silence [formally (1.3)]: there is in quantum mechanics what Fine 

calls the eigenvalue-eigenstate link, which says that it is possible to assign as a 

value the eigenvalue of an operator E  to a system that is in the eigenstate of 

that same operator. The Rule of Silence forbids us to speak of a value for that 

operator when the system is not in an eigenstate of it, or in a density operator 

decomposable over such eigenstates.

2. Unitary Dynamics [formally (1.1)]: measurement should be modelled by a uni

tary evolution given by a Schrodinger-type operator.
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3. The requirement that the apparatus after measurement can distinguish proba

bilistically distinct initial object states (w.r.t. E) [formally (1.2)].

4. Fine’s own addition to this list: if the object is initially in the state V  and the 

apparatus is in the state W , the measurement interaction should start with the 

state V  <S> W .

Past solutions to the measurement problem have involved modifications of the first 

two requirements. For instance modifying the first leads to hidden variable theories or 

Everett-type interpretations, modifying the second is related to non-unitary evolutions 

and the theory of open systems. Fine’s proposal is that we should modify the fourth 

requirement: if the object is initially in the state V  and the apparatus is initially in 

state W, the initial state of the interaction should look like

VE ®W,

where Ve  is the so-called “.E-aspect” of the V-state. What then is V#? Fine introduces

an equivalence relation on the set of states in a system in the following way. For any

two states V  and V ' and any observable E, V  and V ' are said to be E-equivalent,

written V  =  V7, in the following case:
E

(1.4) V  = V ' <*==» Prob(V, E) =  Prob(F', E).
E

For every operator E  this does indeed partition states into equivalence classes, which

Fine denotes by \V ]e  for the class of all states satisfying V  = V '. “This relation”,
E

he says, “lumps together pure states with mixed states, provided they yield the same 

probability distribution for E ” [40, page 493].

To see what this equivalence relation actually does to a set of states, pure and 

mixed, consider the set of all such states for a spin- \  system. The states of this system 

(normally represented by the complex Hilbert space C2) can be visualised by a “ball” 

in R3, for which the surface sphere S 2 is identified with the pure states and the points 

inside the sphere are identified with the mixed states (for details see, for instance, [7]). 

The equivalence classes given by Fine’s relation are then picked out by intersections of 

parallel planes with the “ball”, such planes being perpendicular to one of the diameters 

of the sphere. The two points at which the diameter intersects the surface of the sphere 

represent the two eigenstates of the operator corresponding to the observable E  to be 

measured, say P+i and P - 1 , which for simplicity we assume to be non-trivial (that is,
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not equal to a multiple of the identity operator on the object Hilbert space C2). For 

Fine these equivalence classes group together all those states which respond in the same 

manner to a measurement of the observable E  (see figure 1).
p

not p

FIGURE 1. The unit ball and a section picked out by Fine’s equivalence relation

In interacting with an object to be measured, the measuring apparatus responds 

only to certain physical aspects of the object, namely those that are relevant to the ob

servable E  to be measured. This is crucial in providing the motivation for determining 

Fine’s initial object state Ve . As the Rule of Silence forbids talk of possessed values 

by the object, the only thing left for it to respond to is the probability distribution 

associated with the state of the object and the observable E. But then all the states 

grouped in the above described equivalence classes have the same probability distribu

tion; hence the measurement apparatus interacts with all of them in the same way on 

Fine’s account. Hence we can select from this equivalence class a specific representative 

Ve  for all the states in it. In order to solve the measurement problem, this represen

tative will be the density operator defined over the pure states which are eigenstates of 

the observable to be measured (one such state is always contained in the equivalence 

class).

It is clear that, if the initial state of an object is either an eigenstate of the measured 

observable or a mixture of such eigenstates, then it is possible to describe the transition 

to the appropriate final state by means of a unitary evolution. For instance, in the case 

of an ideal measurement, unitary operators which satisfy the probability reproducibility 

condition, discussed in chapter 3, are defined as operators which map an initial state 

P[(Pi] ® P[rp0], 'Pi an eigenstate of the measured observable and -00 the initial apparatus 

state, to a final state ® Pj^], where ipi is the pointer eigenstate indicating that
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the value associated with the object observable eigenstate (pi has been measured. So 

any initial state of the form ^  W iP ^  ® P[if>Q\ is mapped, by convexity, to a final state 

J2i wiP[<pi] ® -P[^]. The problem is solved.

Two ideas are involved in Fine’s solution to the measurement problem. The first is 

that we ought to be fairly pragmatic about how we choose to model physical processes 

in general. The standard way of treating the interaction of two systems is to start with 

the system in a state which is the product of the states of the components. But why 

should we do this if it has failed to give the right (i.e. observed) answer in certain 

classes of situations? We ought to be prepared to modify this if it doesn’t work.

The second is the idea of interacting with an aspect, which underpins the whole 

strategy. W hat is it that we know in general about an observable for a given state? If 

we stick to the interpretative rules that Fine outlines, then we cannot say that we know 

specific values all the time. What we can know are probability distributions. These are 

in some way physically recognised by the measuring instruments, which filter out, in a 

measurement, all the physical features that are not relevant to the particular kind of 

observation being made.

Fine’s idea is original in asking what quantum measurement interactions might 

actually be doing, something not very common in discussions of the quantum measure

ment problem. He tries to solve the problem of measurement by providing an answer to 

this, through the idea of a selective interaction. Measurements at the quantum level are 

interactions where an apparatus records only certain, ‘selective’, aspects of the object 

it is measuring. This seems intuitively plausible from our patterns of observation. We 

observe contextually and if we concentrate on some aspect of what we observe we miss 

out many other features. It is also true that measuring instruments, like a  weighing 

scale, ignore shape and size. Fine uses this idea to derive his conclusions about the 

states to assign to the system to be measured.

2. Algebraic Quantum Theory and Fine’s Solution

In his first paper on this topic [40] Fine mentions the algebraic approach to quantum 

mechanics as possibly providing a rationale for the particular procedure which models 

the measurement process. I want to explore this further.

What Fine means by a rationale is that there ought to be a subalgebra of an algebra 

of operators as defined in Algebraic Quantum Theory, which does the job of “picking
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out” the appropriate restriction on the states of a measured system. This section 

shows how it is possible to define an algebra such that a set of states can be associated 

with it according to the definition of a quantum system in Algebraic Quantum Theory. 

It will be clear how this set of states corresponds to Fine’s restricted set. The system 

composed by the algebra and the states can be used to provide a model for measurement 

interactions equivalent to Fine’s. The present discussion will also highlight in which 

way Fine’s modification of the ‘initial state’ condition can be thought of as equivalent 

to the modification of the ‘quantum systems’ condition.

Fine’s pragmatism about modelling certain interactions is well served by the def

inition of a system in Algebraic Quantum Theory. In this definition no particular 

constraints are placed on what the observables ought to be, and no particular represen

tation of states and observables is privileged above others. The only requirement that 

is given basically ensures that you have enough to calculate expectation values, while 

not having so much that you might create confusion or redundancy. A system is defined 

as an algebra satisfying certain postulates, together with a set of states which is “full” 

with respect to the algebra. States here are intended as maps from the operators in 

the algebra to the real numbers, which give you expectation values for these operators.

The crucial idea is that the set of states should be full. There will be lots of different 

functions mapping the operators to the real numbers. Full sets select a subset of these 

functions satisfying certain criteria. There are different equivalent definitions of the 

term full: in Rieckers [71] we find that a convex subset So of the set of states S  is full 

(with respect to the algebra A  on which it is defined) if a G A  and (</?; a) > 0, for all 

ip G So, implies a > 0, that is fullness is defined in terms of positivity. Kadison [51] 

defines a set of states to be full if and only if it is a(S, A)-dense in S(A). However, in 

order to discuss this it is best to stick to Segal’s definition [76]. Segal defines a convex 

subset to be full if and only if, for every pair of distinct observables, there exists at least 

one state for which these observables have different expectation values. Segal shows 

how, for all systems, it is possible to find a full set of pure states.

E x a m p le  4.1. Suppose we define our set of observables to be the set O of 2 x 2 

real matrices

o b \  

c d J
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with ad—be ^  0, and our states to be the set T  of functions <pXjy := O -* R+ =  ax+dy, 

x ,y  > 0, x  + y = 1. Clearly none of these states can distinguish between any of the 

observables where a and d are fixed, and b and c are variable, as the states calculate 

the expectation values using only a and d. So this set of states for our observables is 

not full.

If a set of states is not full with respect to some algebra, this means that we have 

observables whose expectation values cannot be distinguished (maybe infinitely many, 

as in the previous example). The set of observables in a quantum system is normally 

the set of all self-adjoint operators on a Hilbert Space and the set of states is the set of 

density operators (positive, trace class 1 operators on the same Hilbert Space). Given 

any pair of observables, there is always a state that will yield a  different expectation 

value for these observables, so the set of density operators is full. But, for a given 

measurement interaction, Fine restricts the possible states that can be assigned to a 

system to be measured, to a set essentially like that in example (4.1), and these states 

will no longer form a full set. Relative to that interaction there will be observables which 

cannot be distinguished and, given the states we have, they will be for all purposes the 

same observable. If, as in Fine’s case, we want to restrict the set of states that we want 

to assign to a system, then the set of observables that can be distinguished in such a 

system will also be restricted and it is not difficult to see what they will be.

E x a m p le  4.2. Suppose we restrict the set of observables from the previous exam

ple to the set
o () \

O b )

Now any two different observables A \ and can only differ in a or in b. If they 

differ in a, then the state <p\?o =  a x  1  +  6 x 0  will lead to different expectation values 

for A\ and Ai\ if they differ in 6 , then <po,i =  o x 0  +  6 x l  again will give different 

expectation values. The set of states T  is then full with respect to the restriction on 

the observables that we have outlined.

Practically the same happens to the algebra of observables for the quantum sys

tem in Fine’s solution to the measurement problem. The restriction in example (4.2) 

leaves us with a commutative algebra of observables. The observables all share the
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same eigenstates. In Fine’s solution for quantum measurement we start from a set of 

observables which we can represent as matrices written in the basis of the observable 

that we want to measure:

a b + ic 

b — ic d

Fine’s allowed states can be expressed as in example (4.1) and hence, if we fix a 

and <2, none of the observables so defined can be distinguished by these states. The 

restriction leads to the subalgebra of observables which commute with the observable 

which we want to measure, i.e. all operators with b =  c =  0.

2.1. A n exam ple for s p in - | system s. The following properties define a C*- 

algebra.

D efinition  4.1. 1 . A  is a  distributive and associative algebra over C if A  is

a linear vector space over C and has an associative product which satisfies for 

A* € C and a*, b € A

(A ioi -t- \ 2a2ib — A1O16 +  \ 2a2b 

6 (A ifli +  A2U2) — Ai&ai 4- A2&02*

2 . A is a Banach *-algebra if it is an algebra with a norm, i.e. there is a mapping

|| || : A  -)• M+

with (o, b 6  A, A € C)

(2.1) ||a|| =  0 <=> a — 0

(2.2) l|a +  &ll < M l +  ||6||

(2.3) ||Aa|| =  |A| ||a||

(2.4) M  < \\a\\\\b\\.

Furthermore, A  has to be complete with respect to the norm topology. Finally, 

there exists a mapping

* :A ->  A,
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called an involution, with

(2.5)

(2.6)

(2.7)

(2.8)

(a +  b)* =  cl* +  b*

(A a)* =  A*a*

(ab)*  =  b*a*.

(a*)* =  a

3. A  is a C*-algebra if

(a) A  is a Banach *-algebra

(b) ||a*fl|| =  ||a||2, Vo E A.

D e f in i t io n  4.2. Let A  be a C*-algebra. A state is defined as a functional

<p : cl E A  G C

which satisfies the following properties:

1. ( y>; Aioi +  A2o2 > =  Ai(<p; a \ ) +  A2(y>; o2 )

o>i e  A, A* e  C

2. (<p;a*a)>0, VaEA

S  denotes the set of all states. This set is a convex set. The elements of this set 

that are not expressible as a convex combination of any states are called pure states.

D e f in i t io n  4.3. A convex subset So of S  is full (with respect to A ), if for all 

a, b £ A , a  •£ 6 , there exists a state E So such ( V5; ° ) ^  ( ^ 5  &)•

D e f in i t io n  4.4. The pair (̂ 4sa» <So), *̂ sa the self-adjoint part of a (C'*)-algebra, 

So a full set of states, is called a description (model) of a (class of) quantum system(s).

Note in particular that under the restriction of A  to .Asa, the states map elements of 

the restricted set (which is n o t  a subalgebra) to R; ( y>; a ) corresponds to the expectation 

value of a  for the state <p. As* does, however, uniquely determine every state in S: if 

S  is full with respect to .Asa, it is also full with respect to A. It should be stressed 

that Definition 4.2 is not the only way in which states for a quantum system might be 

defined, and that different ways might lead to different sets of states when the Hilbert 

space we are considering is infinite dimensional. For the purpose of discussing Fine’s

3. <¥>;!) =  1.
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solution to the quantum measurement problem, however, we will only deal with an 

example involving finite dimensional systems.

2.2. A lgebraic approaches to  F ine’s solution. The set of states that axe rel-

description, is not full with respect to the set of bounded hermitean operators on the 

spin space. These states correspond to the functions

V?: A  -» R =  Tr(pa),

Consider two observables A  and B, one with Hr =  fT/ =  0, the other with Hr ^  0, 

say. It is easy to see that no such state will be able to distinguish between the two.

Fine’s question can now be phrased in the following way: is there some algebra 

(hopefully a  subalgebra of the C'-algebra from which the quantum system is defined) 

with a full set of states isomorphic to the one Fine picks out? The answer is yes.

Consider the set of ordered pairs (a, 6 ) of complex numbers. Define scalar multi

plication of the elements of this set by a complex number as A (a, 6 ) =  (Aa, A6 ). Define 

addition by (a i , 6 i) + (0 2 5 6 2 ) =  (0 1 + 0 2 , 6 1 + 6 2 )5  and multiplication by (o i,6 i)(o 2 , 6 2 ) =  

(0 1 0 2 , 6 1 6 2 ). This is indeed an algebra according to the above definition1. It will be 

denoted by C.

Now consider the mapping

where the operation | • | yields the absolute value of a complex number. This is a norm 

for the above algebra.

P r o o f . Check conditions (2.1, 2.2, 2.3, 2.4).

• (2.1) requires that ||(o ,6 )|| =  0 +=+ (a ,6 ) =  0, i.e a =  6  =  0. This is clearly 

the case.

1As a consequence of this it also satisfies Segal’s postulates I, as stated in [76].

evant in the case of a measurement of spin in a spin-^ system, according to Fine’s

where

x +  y =  1, and
P H r — iH i 

Hr +  iH j q

|| || : (a, 6 ) R f =  max[|a|, |6 |],
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•  (2 .2 ) requires that ||(ai + 0.2 , bi +&2 )|| < 11 (<2 1 , 6 1 ) 11 -4-11 (0 2 , 6 2 ) 11 - Suppose without 

loss of generality that the number on the left hand side is |ai +  0 2 1- Two cases 

arise:

1 .

m a x [ |a i |, |6 i |]  =  |a*|, < =  1 ,2 .

Then ||(ai +  <1 2 ,6 1  +  6 2 )!! <  ||(a i ,6 i) || +  ||(a2 >&2 )|| holds if and only if 

|ai + 0 2 ! <  |ai| + 1<2219 which holds as a property for the operation of taking 

absolute values of complex numbers.

2. In the second case, one of |6 i| or I&2 I is greater than the respective |a j|; 

suppose it is |&i|. It clearly follows that |6 i| +  |o2 | >  |o i| +  |a2 | the latter 

being of course greater than or equal to |ai + 0 2 !, as we have just seen. 

This completes the proof.

• (2.3) requires that ||(Aa,A6 )|| =  |A| ||(a ,6 )||. Clearly the case as, for any two 

complex numbers z  and s', \z • z'\ = \z\\z'\.

• The proof of (2.4) is similar to that of (2.2). □

We define the involution for the algebra C to be the operation (a, 6 )* =  (a, 6 ), where 

a is the complex conjugate of a. This obviously satisfies all the postulates described 

above for such maps, as the operation of complex conjugation is an automorphism 

of C  The *-algebra condition then becomes, when this involution map is adopted, 

||(aa, 6 6 )|| =  ||(a ,6 )||2. Now suppose |a| >  |6 |, then ||(a ,6 )|| =  |a| and ||(a ,6 ) | | 2  =  |a|2. 

If H  > |6 | then |aa| >  |6 6 | and ||(aa ,6 6 )|| =  |ao|. But |aa| =  |a| • |a| =  |a| • |a| =  |a|2, 

and the condition is satisfied, so the algebra is a C*-algebra.

The states for this algebra are the linear functions from the algebra to the complex 

numbers. Consider the functions defined by

So 3 : (a, 6 ) -> C =  ax  +  6 y,

with R 3 x ,y  > 0 and x  +  y — 1. These are indeed states according to the conditions 

laid out in Def. 2.2: ( <p; A *A ) =  |a|2 a; +  \b\2y > 0 clearly, which fulfils the positivity 

condition; (<£>; 1 ) = x  + y = 1 , satisfying the normalisation condition; and

( {Px,y\ (AlOl +  A2 fl2 » A1 6 1  +  A2 6 2 ) ) =  (AiOi +  \ 2d2 )x +  (A1 6 1  +  A2 &2 )y

Al(v?x,yj (oi5^l) ) +  ^2(ipx,y i (g2j&2) ) =  AiOiX +  \2CL2X +  Ai&iy +  \ 2 b 2 y
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which axe clearly equal, so linearity is satisfied. Note that there are only two pure 

states, tpifi and y?o,i-

This set of states is full with respect to C. Suppose we have two different elements 

of TZ, A \ and A 2 , say. If they differ in the first complex number, then <pifo will lead to 

different expectation values for A\ and A 2; if they differ in the second number, then 

<po,i again will give different expectation values. So it is always possible to find a  state 

for differing elements of C that will give different expectation values, and hence the set 

of states is full. It is worth noting also that these functions exhaust all the possible 

states for the system.

The self-adjoint part of the algebra C, namely the subset Csa of the algebra which 

is invariant under the involution operation, together with this set of states So, forms by 

definition a  quantum system. What do the representations of the algebra C look like? 

I will briefly show that, through a GNS construction, we can reach the two possible 

representations of this algebra (one is irreducible, the other is not). Through these 

representations we obtain a Hilbert space realisation of the quantum system (Csa,<So). 

The GNS method of constructing representations for algebras with sets of states relies 

on the calculation of left ideals for the algebra. A state is fixed and the representation 

is constructed with respect to that state. It is a  theorem of the theory of quantum 

algebras that such a representation is irreducible if and only if the corresponding state 

is pure. In our case there will be two representations that arise from the algebra: one 

for the pure states and one for the mixed ones. This highlights the structural features 

of this algebra.

Once a state ip G So is chosen, the first part of the GNS construction consists of 

calculating the set

I (p = {A zC :{ tp -,A * A )= 0 } ,

which is provably a left ideal of the algebra. For present purposes, take the state to be

ip 1 1 . Then IWl , consists of all the elements (a, b) of C for which 
2  * 2 h'h

(n i;(|a|M6|2)) = ! ^  + ^  = 0.

The only way in which this equality can be satisfied is if a =  b =  0, hence  ̂ =  

{(0,0)}. Now write

$ a =  A + Iv^ .
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The set C /I^^  ̂ =  { $ , 4  : A  E C} with scalar product given by

=  (<Pk V,A*B)
2 ’ 2

is a Hilbert Space. The mapping

 ̂*”*
given by A  -> 71̂   ̂(A),

links every A  with a bounded operator on C /I^^  and is easily seen to be a *- 

morphism.

Furthermore let $ i =  $ , I being the element (1,1) of the algebra, then

(2.9) (V kV ,A )  =  (¥>i,i;1 *A) =  {Qu * a ) =

and $  can easily be shown to be cyclic2.

The Hilbert space is easily seen to be isomorphic to C2, and the representation of 

the algebra on this space is given by the following set of 2 x 2 complex matrices on C2:

* ) = ( 0  |  , o, 6  6  C

The involution operation is easily seen to be equivalent to the adjoint operation on 

these matrices.

This representation is not irreducible, because it is based on a mixed state. To 

obtain an irreducible representation we can repeat the above procedure for one of the 

two pure states of the system. It is easily seen3  that this representation will yield the 

set of linear maps on C. This is an irreducible representation. W hat this shows is that 

the first representation is made of two copies of the irreducible representation which 

act independently of one another on two subspaces of C2. This means, in quantum 

mechanical terms, that nothing like an interference term can arise in this system. The 

first representation has the property that for every unit vector $  e  W the state tp 

defined by

(¥>; (a, b) ) =  ($, icv ^  (a, &)$)

2The condition of being cyclic, as well as condition (2.9), axe standardly satisfied by representations 

constructed through the GNS scheme, though they need not concern us explicitly here.

3From the fact that I v in this case will have a continuum of elements of the algebra in it.
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is a state in Sq. Consider the representation of (a, b)

and $  =  (x, y) with

Then

x 2 + y2 _  1

=  (x,y)(ax,by) =

2 2
Put x ' =  j ,  ?/ =  then x ' +  =  1 and x', j/' >  0, and clearly defines a

state. This means that the representation is a representation for (C,So) and a fortiori 

for the quantum system (Asa >£())•

2.3. A n answ er to  F in e ’s question. It is worth emphasising that the quantum 

system defined by the self-adjoint part of C together with the states Sq is a system 

that can model Fine’s selective interaction measurements, as its states have the same 

structure as Fine’s equivalence classes.

We have just seen, from an abstract point of view, what the algebra induced by 

Fine’s restriction on states will be. But remember that Fine’s original question concern

ing algebraic approaches was the following: is it possible to find an algebra containing 

a subalgebra that in some sense induces the restriction on the states? I have just 

shown that there is an algebra that has a full set of states which is isomorphic to Fine’s 

equivalence classes. What is the algebra that can have this as a subalgebra?

The answer in the case just discussed is simple, and in general relies on the so-called 

Gelfand-Naimark theorem (see [45] and [32, p. 375]). This result states that all C*~ 

algebras are ‘concrete’, i.e. they can be realised as a C*-subalgebra of the C'*-algebra 

of bounded operators on a Hilbert space %. The obvious algebra for the example is the 

algebra of bounded operators on C2. This algebra (over the field of complex numbers) 

is linearly generated by the following operators:

(2.10)

(2 .11) Oy = and cr, —
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the identity operator on C2 and the Pauli spin matrices. The subalgebra of operators

is linearly generated by the two operators

and
0 - 1

1 0

and is the subalgebra of operators commuting with the spin x  observable

0 -1

1 0

Note that this subalgebra contains no smaller subalgebras within it: a subalgebra must

linearly generates the subalgebra commuting with ox. In particular, Fine’s remark that 

the algebra of observables which axe functions of a given observable, F (E ), is different 

from the algebra of observables commuting with a given observable is not always correct 

[40, p. 502-503]: it fails in particular when the observable is maximal, in which case 

the two are equal. Fine wants to argue that there is a subset of all the bounded, self- 

adjoint operators of a quantum system (the usual observables), which justifies selecting 

the states he does for the object system. At the same time he does not want this subset 

to be the set of all observables commuting with the observable to be measured. This 

will become important later on, when I argue that the fact that this does not hold in 

important cases constitutes a problem for the solution presented.

In sum, the answer to Fine’s question is the following: given a Hilbert space, and an 

observable to be measured on the object modelled in such a space, the restriction from 

the algebra of bounded operators on the Hilbert space to the subalgebra of observables 

commuting with the observable to be measured induces Fine’s restriction to the states 

he argues are to be assigned to the object in his proposed solution to the measurement

This line of reasoning does more: it also provides a rationale for why the assigned

measured observable, something which Fine thinks is decided pragmatically: “If E-

then how can we justify using any one of them, say W (E ) [the density operator over

be closed under matrix multiplication as well as addition, but o j =  I so that aax +  /?<r2

problem.

states should be expressed as density operators decomposed over eigenvalues of the

equivalent states are actually identical relative to the subsystem represented by T (E ),
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object observable eigenstates], as opposed to any other, say W? I think the only answer 

can be that ^-equivalence warrants using one or another state, indifferently, provided 

that the particular use yields satisfactory results” [40, p. 502]. Under such a restriction 

of the algebra of relevant observables, eigenstates of the measured observable are the 

only pure states remaining4: there is no state W  left in the algebra, there are only such 

pure states and the convex combinations of them5.

3. Arguing for the algebraic rationale

At this stage I will address two issues. The first thing to deal with is whether 

there is any scope for an algebraic account to back up Fine’s proposed solution to 

the measurement problem, and what problems it might lead to. This, from a formal 

point of view, involves looking at Fine’s solution from the standpoint exposed in the 

previous section. This means, for instance, that we have to think of the quantum 

mechanical object system not as an ordinary quantum system, but as a  system for 

which considerably fewer observables and states are defined. Otherwise the suggestion 

that we are looking at this from the algebraic point of view is vacuous. The algebraic 

definition of a quantum system is very weak when compared, for instance, to the 

idea that quantum mechanics should be modelled by a quantum system of bounded 

operators on a Hilbert Space: this latter system satisfies the algebraic definition, but so 

do infinitely many others. What Fine calls “precedents and rules of thumb” come into 

play in deciding what quantum model is applicable to which physical system. First 

of all I will explain, in this section, why an algebraic justification of Fine’s strategy 

amounts to a justification by means of a superselection rule. I will then examine in the 

next section whether questions that arise with respect to superselection rules can pose 

problems for Fine’s solution to the measurement problem. Finally in section 5 I will 

consider whether precedents and rules of thumb can sufficiently back up Fine’s strategy, 

independently of whether its justification comes from algebraic quantum mechanics.

4This can be seen in many different ways. For example they are the only states which are eigenstates 

of some observable of the system; they are the only states which have probability one with respect to

some (non-trivial) observables, and so on.
5 Another way of looking at this is to think that a pure state can be used to represent an ensemble

which cannot be split, in accordance with D’Espagnat’s definition of splitting. Then it is easy to see 

that, in the presence of a superselection rule as in Fine’s examples, the only pure states are eigenstates 

of the measured object observable [27, p. 63, Remark 1],
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As anticipated on page 140, the discussion of the previous section implies that, 

if we try to give an algebraic rationale to the solution, then what Fine has done is 

formally, though not necessarily in the details of the argument, equivalent to imposing 

a superselection rule, therefore modifying the condition that the object and apparatus 

systems both be proper quantum systems. Simply put, superselection rules forbid 

superpositions between certain pure states by first restricting the set of observables. 

This is usually done by claiming that all operators which are to count as observables 

must commute with a certain operator for the system (the superselection operator), 

thereby revoking the status of observables for operators which normally would represent 

observables, namely those that do not commute with the superselection operator. The 

set of states for the larger algebra of operators containing all original observables now 

contains states which are equivalent with each other with respect to the observables to 

which the superselection rule restricts us. This leads to an equivalence class just like 

Fine’s. While the starting point is the opposite of Fine’s, in that the restriction begins 

at the level of observables rather than at the level of states, the end result is formally 

the same.

I mean this in at least two senses. First of all, if we attempt to justify Fine’s 

strategy by appeal to an algebraic argument, we clearly are in the same position as if 

we assumed a superselection rule to apply on the object space when, and only when, a 

measurement is being carried out. We might, on the other hand, want to argue that the 

states we assign when measurements are being carried out represent physical states of 

the object’s aspects, rather that of the object itself. Nevertheless the object’s aspects 

have a state structure equivalent to that imposed by a superselection rule.

It is worth stressing again that it is the same from a formal point of view. The math

ematical model of the object system that is relevant in the solution of the measurement 

problem that Fine proposes is the same, when accounted for by algebraic reasoning, 

as a model induced by a superselection rule on the object system with the measured 

observable counting as the superselection operator. Because this does not necessarily 

imply that we have exactly the same physical case as we would with a superselection 

rule, it is worth considering in some detail whether objections to superselection rules 

straightforwardly carry over to objections to Fine’s account. There are, however, at 

least some differences between Fine’s strategy and superselection rules which clearly 

cannot rescue Fine.
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First of all, it might be argued that Fine thinks measurement evolutions look at 

aspects, not states, and that states axe therefore still distinguishable, while aspects 

are not. This strategy might seek to block the inference that we are dealing with 

something formally equivalent to a superselection rule in quantum measurements by 

claiming that there still is a fact of the matter about which state the system is in while 

a measurement is performed. This seems to me to fail in at least two ways. Firstly, if we 

treat aspects in measurement, it is completely irrelevant to measurements themselves 

whether there are still states attached to object systems or not, for we ignore them 

completely when accounting for measurements: all the relevant information is encoded 

in the representatives of aspects and all the final information about the state of the 

object system after the measurement is recovered from the final evolved aspect If we 

don’t deduce the final object state in this way, then we don’t solve the measurement 

problem according to the rules Fine sets out.

Secondly, therefore, if someone were to object that there are two ‘facts of the 

matter’, so to speak, about a system in measurement, namely what state it is in, and 

what aspect it is in, then the present account should be read as an analysis of the 

object aspect +  apparatus interaction. As this is all that is used in Fine’s account of 

measurement, a critique of this analysis will be a critique of Fine’s solution regardless. 

Also we might add that there is simply no way of assigning a state to the object 

during measurement from any of the physical information available in this process, in 

fact the whole idea of modelling measurements through aspects is that all information 

about the original state is lost in the measurement process, apart from the probabilistic 

information relative to the measured object observable. This seems to make it rather 

hard to tell what the state of the object system, as distinct from its aspect, might be 

in the measurement process.

A second objection to the formal identification of the algebraic justification of Fine’s 

state restriction with a superselection rule might be that superselection rules represent 

prohibitions for certain superpositions to exist (Nature just doesn’t allow these states 

to arise), while Fine’s interaction with an aspect is the result of knowledge of a specific 

causal process, and it is this causal process that backs up the restriction of the alge

bra. While this might be true, it is hard to see what bearing this would have on any 

problematic aspects of the formal scheme that we are dealing with here. If the formal 

model is inconsistent or contradictory or unable to deal with the problem at hand in
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any sense, it matters little what kind of story we give for its adoption. In the next parts 

I will be raising problems for the formal aspect that becomes relevant if we try to use 

algebraic quantum mechanics to justify Fine’s solution. Of course any problems that 

emerge here will not by themselves rule out Fine’s solution, but only a reconceptuali

sation of it in terms of algebras. The distinct arguments that lead to Fine’s solution, 

the causal arguments about interactions with aspects, will be dealt with in section 5 .

We have just seen at the end of the previous section, on page 149 that Fine in his 

original paper tentatively proposes a distinction between two subsets of the algebra of 

observables of a system: the function algebra associated with an observable E  and the 

algebra of operators commuting with E, the latter being the set analysed in the previous 

section; the two are supposed to be different, and it is the first such subset that should 

be of help in defining states for measurement the way that Fine does. But in our 

case, if the function algebra is the subalgebra generated from E  by the usual operations 

of addition and multiplication, it is the same as the commutative subalgebra discussed 

earlier. The reason for wanting to identify different such subsets is that the set of 

all operators commuting with a given one contains observables which are qualitatively 

different to the original one, rather than just, for example, being multiples of it.

This makes things complicated: instead of finding a rationale for assigning states 

in the way that Fine does, we find that in so doing we have effectively imposed a 

superselection rule, and invoking superselection rules in order to solve the measurement 

problem has many difficulties. Note that the problems thrown up by this formal analogy 

are not solely technical, but also philosophical. There is nothing wrong with Fine’s 

strategy if the aim is to find a way of redefining conditions (1)—(4) in such a way that 

they are consistent. The objections against Fine’s solution have a flavour of “good, 

but not good enough”, the solution is felt to be cheap, or ad hoc. Implicitly, in raising 

such points, the argument is that the measurement problem is not summarised by the 

requirement of modifying (1)—(4) to make them consistent; the implication is that there 

is more to the measurement problem than doing just this.

Recall how the first chapter argues, amongst other things, that measurement is 

about answering two kinds of questions, about property assignment and unitary evo

lutions. Chapters 2  and 3 have picked on two important conditions which emerge in 

discussions of these questions: they are, in this chapter, condition (1 .2 ), the probability 

reproducibility condition; and condition (1.3), or objectification, which Fine calls the
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Rule of Silence. However, the general unease about Fine’s solution suggests that it is 

not sufficient to find ways of dealing with these conditions. The ways must also be 

acceptable in some other sense, for instance by being physically motivated, rather than 

just mathematically consistent. Much of the unease with superselection rules as a solu

tion to the measurement problem arises precisely because measurement superselection 

rules often seem to be not so well motivated, and a lot of work has gone into providing 

such motivations in terms of well understood physical processes which might generate 

them. Fine’s solution should be appraised in the same way.

The first step is to ask what kinds of answers Fine’s solution gives to the two

‘technical’ questions characterised in Chapter 1: the answers are that properties are 

assigned according to the eigenvalue-eigenstate rule and the interaction evolutions axe 

deterministic. On top of this there is an important ‘metaquestion’ to tackle: what is 

so special about quantum measurement? This question will in some sense affect the 

answers to the first ones: a discussion of it requires arguing whether measurement is a 

special process in quantum mechanics, a process that requires separate treatments in 

some sense from other kinds of interactions, and showing quite how different the process 

is. However the connection is not total: for example different modal interpretations 

give the same kind of technical answers to the two questions in Chapter 1 , though they 

have different view as to how special quantum measurement is.

There is a  sense in which measurement is trivially going to be a special interaction: 

it relies on different Hamiltonians than other interactions do. This would obviously be 

the case with interpretations of the measurement process such as Everett’s. In many 

interpretations, however, there is more ‘specialisation’ to measurement than just being 

described by a different kind of Hamiltonian- In collapse solutions, for example, a 

standard linear Hamiltonian evolution of the object +  apparatus system is followed 

by a non-linear evolution. When invoking a superselection rule (in the indirect way in 

which Fine does it as much as, I think, in other superselection approaches) it is also

necessary to admit that there is something peculiar about measurement.

For example, in the Coleman-Hepp scheme (see, for instance, [49]), further dis

cussed by Bub [1 2 ], suppose that the measurement system, contrary to any other sys

tem in non-relativistic quantum mechanics, is properly modelled by an infinite number 

of Hilbert spaces all direct summed together. In the most recent and perhaps most 

interesting defence of a superselection solution to these issues, Landsmann [61] argues
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that we have in measurement a particular physical process of decoherence which gives 

rise to superselection rules. Fine effectively says that what is special about measure

ment is that the measurement interaction only involves aspects of the quantum system. 

Therefore it is the nature of a measurement interaction that the appropriate way of 

representing such interactions different from what it would usually be.

It is important to think of these solutions to the measurement problem as singling 

out measurement processes and to give a justification as to why this is an acceptable 

procedure. This is suggested by the general unwillingness of many to accept descrip

tions of systems with superselection rules at face value, as quantum systems on a par 

with the standard model of a Hilbert space and its associated set of self-adjoint oper

ators. The point here has been made by Beltrametti and Cassinelli [5] and reiterated 

by Van Fraassen. Somehow, potential empirical evidence of quantum behaviour with 

interferences warrants description by a Hilbert space and its associated operators, as is 

the case with claims of macroscopic superposition; but empirical evidence of absence of 

interference is not warrant enough for asserting a superselection rule. This is because 

such liberal use of superselection rules would allow us to call all classical phenomena 

de facto quantum phenomena: “classical behaviour could never disconfirm quantum 

predictions [80, p. 266]”.

Superselection rules and their like ought, in this picture, to be deducible from some 

less objectionable condition6. It shouldn’t be possible to invoke them just because 

phenomena suggest their presence, as most classical behaviour would then suggest, in 

a sense, the presence of a superselection rule. If this is reason enough to assume these 

rules then it is thought that there is no problem with showing that classical mechanics 

is just a special case of quantum mechanics.

This should make it clear that providing a solution to the measurement problem 

requires a little more work than just establishing an axiom scheme which is a consis

tent modification of (l)-(4). The solution also involves, for instance, defending the 

modification of the axioms from possible criticisms.

With regards to Fine’s solution and its formal rationale in terms of algebraic quan

tum mechanics, a number of objections against superselection solutions to the measure

ment problem have a bearing on this, and some other objections can arise. The next

6 A good example of this is Wan and Fountain’s derivation of a superselection rule for supercurrents 

governed by the Josephson equation [84].
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section will consider these objections and see whether Fine might be able to answer 

them. Assuming that a reply to this might be that we can drop the attem pt to provide 

such a rationale, I will then look specifically at Fine’s arguments to the effect that mea

surement is a special physical process in order to raise other problems, independent of 

the rationale.

4. Problems for Fine and Superselection

One standard problem that people have with adopting superselection rules arises 

just as much in Fine’s proposal.

When we have a superselection rule, our state space is split into supersectors; states 

in different supersectors cannot exist in superpositions with one another. The unitary 

evolution generated by a self-adjoint operator O on a Hilbert space has an interesting 

property: it will not map any superposition of eigenstates of the self-adjoint operator 

O into an eigenstate of O and it will not map an eigenstate of O into a superposition 

of said eigenstates. Consider the consequence of applying a superselection rule to 

the apparatus space of an object +  apparatus system Hg <g> Hm, by selecting a self- 

adjoint superselection operator II ® P , where P  is the apparatus pointer observable. By 

definition this rule will have as a consequence that the only observables for the pointer 

system commute with I ® P , and hence share the property just described with I <8 > P. 

Thus a state which is in a superselection sector, which is defined by the eigenstates 

of I ® P  cannot be mapped out of this sector by any unitary operators generated by 

observables.

Now suppose that we have an initial state with Hg 3 <p =  The initial

state of the apparatus ifto might be an eigenstate of the pointer observable recording 

that no observation has been made. If it is an eigenstate of the pointer observable, 

and if the pointer observable is a superselection operator, then, by the well known fact 

outlined in the previous paragraph, no Hamiltonian representing an observable can 

generate an evolution mapping this state into a state which has anything other than 

ipo as a pointer “substate” in the subsystem H i .  The unitary operator which will 

map the initial state to the appropriate final state which can count as a measurement 

must then be generated by a self-adjoint operator which is not an observable. Normally 

one regards the self-adjoint operator generating the unitary evolution of a system as 

the energy of the system, in this state the composite system Tig The problem
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then is that either the energy of the total system is not an observable, or the evolution 

of the system ® "H m in measurement is not dictated by an operator representing 

the energy of the system. This has been thought by many to be an objection to the 

superselection account; Hughes [50, 9.7], for instance, has argued this.

Suppose we try to finesse this by regarding xpo to be a superposition of pointer 

reading states, H m B ip = Piipi, and pointing out that, as only the pure states lie 

in supersectors Hs <8 > ipi, all states must be expressed as convex combinations of these 

states. Then the initial state before the measurement interaction will be 

Now the initial state is already split along the correct supersectors, and we could claim 

that some sort of solution is at hand. But the probability reproducibility condition will 

fail. We have to change the probabilities |/?j| 2 in the measurement evolution to reflect 

the probabilities given through </?, and it is well known that we still can’t do it if the 

Hamiltonian of the system is an operator which is an observable.

On the other hand some people claim that it is not necessarily clear what observable 

the self-adjoint operator generating the evolution of the system Tis ® is supposed 

to represent. I t ’s not the case that the quantity that we are trying to measure within 

the system (its energy, say) is not an observable for the joint system. Suppose the 

observable measured on Hs is E. Then E  ® Im is an observable for the joint system, 

whatever superselection rule we impose on the system It is the Hamiltonian

describing the interaction between the two systems which is not an observable of the 

system. But the interpretation of such a Hamiltonian is not so straightforward, and 

there are examples from classical mechanics, for example, where the Hamiltonian of 

the classical system does not represent its energy. Wan has long made this latter point 

in several papers, recently in a joint paper with Harrison [83]; Landsmann [61] also 

thinks this is not such a fatal problem, though his point is less convincing.

The issue, however, is still unresolved; quantum mechanics is very much based on 

the idea that energy observables dictate evolutions of systems. If they are not so dic

tated in other theories this does not seem sufficient reason for why they shouldn’t be 

in quantum mechanics. And even in the case that the Hamiltonian oddity is accepted, 

Hughes argues that it still offers no account of why a superselection rule operates with 

respect to certain macroscopic systems, but not others. Many arguments for superse

lection rules explain these in terms of the fact that they are macroscopic. But certain
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macroscopic systems (Hughes’s example is a pot of liquid helium) do not exhibit be

haviour consistent with a superselection rule. Yet measurement invariably does. There 

still is no answer to the question: “What is so special about Quantum Measurement”?

Van Fraassen [80] further points out that superselection rules might entail different 

empirical predictions in many ways in quantum mechanics; this need not be a problem, 

but will require careful assessment of what we do when applying them. Perhaps, in the 

case of standard pointer superselection rules, the only option really is to give up trying 

to absolutely define what counts as macroscopic and microscopic and turn this into 

an empirical fact: measurements exhibit macroscopic behaviour, Josephson junctions 

(perhaps) and liquid helium pots do not, and that is all there is to it. There still is need 

for an argument, however, as to why classical mechanics isn’t trivially a special case of 

quantum mechanics, given that, as pointed out in the previous section, most classical 

behaviour would then suggest, in a sense, the presence of a superselection rule.

This problem affects Fine’s restriction of states, as justified through algebraic quan

tum mechanics, and the corresponding superselection rule it entails, just as much. The 

solution needs to explain, just as much as a  solution based on superselection rules, what 

basis there is for a state evolution determined by a Hamiltonian for the system which 

is not an observable, or why this should not be relevant in such solution. Suppose that 

Fine decides that the problem with Hamiltonians is not so desperate after all, it is still 

the case that an algebraic reformulation of the solution achieves little in the way of 

providing a rationale of Fine’s state selection, for we cannot show that there is a justi

fication for the state selection unless we give a justification for the algebraic restriction. 

This we cannot do without addressing more closely the question of interactions with an 

aspect, what the interactions are, how they really do apply, in the same sense, as I have 

claimed in the previous paragraph, that we have to carefully assess how superselection 

rules apply.

A more delicate question is whether, quite apart from an explicit appeal to an 

algebraic reformulation of Fine’s solution, the latter implies a  superselection rule on 

the object system anyway. In a  sense, the restriction on states that Fine advocates 

necessarily restricts observables in the way that is done in a superselection rule, effec

tively acting as Ockham’s razor: it is not possible to tell that there are observables 

of the system other than the ones that would remain after a superselection rule is im

posed, so on what basis can we assume them to be there? Note that the point here
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is not that we have a problem in deciding when we have a measurement, or whether 

the object state before a measurement is properly represented by probabilistic aspects; 

it’s about whether, given that we know a measurement is about to take place and we 

have assigned an aspect state, we can tell whether there are any other observables for 

this system other than the restricted set of observables commuting with the measured 

object observable.

One fact is clear: given that we have certain representations of object aspects at the 

beginning of a measurement, then there is no way that in those states we can distinguish 

an observable which does not commute with the measured object observable from one 

that does7. A further consequence of this is that the claim that what the measurement 

evolution on the combined system is about is interacting with an aspect

cannot easily be substantiated by appeal to some straightforward relationship between 

the observable measured on the subsystem %§ and the measurement Hamiltonian on 

Tis ® Hm; we can’t even see the latter!

In any case, we will now leave aside the question of the extent to which Fine’s 

state selection amounts to the same thing as imposing a superselection rule in order 

to consider more closely in the next section the question of interaction with an aspect 

independently of this problem.

5. Two further problems for Fine’s account

Fine [43, p. 281], citing Bell, claims to be looking for an approach to solving the 

measurement problem that satisfies the desideratum that “fundamental theory permit 

exact mathematical formulation” [4, p. 171]. His solution is certainly mathematically 

precise: from the perspective explored in the previous sections it amounts to assuming 

a superselection rule. Von Neumann’s projections, though, are just as mathematically 

precise: there is no problem in understanding their formal properties. The problems 

emerge when trying to gain a physical understanding of what process projections are 

supposed to model, and when trying to interpret this process.

rNote also that another way of putting this is that, just like we pick an equivalence class of states 

with respect to the measured object observable, the reduced set of states we work with also establishes 

an equivalence class on the whole set of self-adjoint operators on a Hilbert space, those that cannot be 

distinguished by any one of the states in the restricted set, as shown in example 4.1
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In the same way it is a mistake to judge Fine’s proposals, good or bad as we may

think them to be, on the basis of how precise their mathematical formulation is. What 

is the physics behind these proposals? What interpretive gloss do they put on quantum 

mechanics?

The gloss is explicitly pragmatic; insofar as the pragmatism holds, it is best to steer 

away from the polemics it raises: one person’s pragmatism is another one’s ad hocness. 

I want to take, for the sake of argument, the pragmatism for granted and examine in 

some detail the first question.

The argument in Fine’s solution for why measurement is a physical process de

serving of special treatment has two components. A measurement of an observable is 

looking for probabilistic information about an observable O in an initial object state 

P[<p\ G Ti'i'Hs), information that is to be transferred to a  final pointer state F u M G

( H m ); this state should emerge by partial tracing of a  final state F  G ®'Hm

with suitable properties. But there is a whole class of object states which yields, via the 

Born rule, the same probabilistic information about O. Were the measurement prob

lem to be solved, we would expect, for all such object states, initial object +  apparatus 

states formed from them to be mapped onto a final state F  G Hs for which F% M

is always the same.

This is one way of looking at the measurement problem: we want a bijective map

ping on <8 > 'Hm )-, a generalisation of a unitary operator, but we end up asking

for all these states which yield the same probabilistic information to be mapped to the 

same final state for the apparatus, with appropriate probabilities. The requirements 

force us quite explicitly in the case of ideal measurements to have the same global final 

state for all such measurements when initial states are ^-equivalent. Fine proposes, 

first of all, that all the states that share the same probabilistic information with respect 

to an observable to be measured be assigned the same initial state. Measurement is 

about interacting with an aspect of the system to be measured, namely the aspect con

cerning the probabilistic information that the measured system yields, and we should 

encode this aspect in a representative state.

Secondly, which state should be the representative state? The answer is “prag

matic” : we initially assign to the system a state which will guarantee the correct 

outcome at the end. There is more than a similarity with appeal to superselection 

rules here. It is the easy way out, some might say. Put more seriously, we might ask
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what physical basis there is to such an appeal: simply saying that the apparatus system 

interacts with an ‘aspect’ of the object system does not seem, by itself, to provide much 

grounds for changing the states we assign to the object system; if we have a peculiarly 

specific interaction we would normally describe it with a peculiarly specific Hamilton

ian. Why should a peculiar interaction in the case of measurement be accounted for 

by revising the initial object states, prepared at the beginning in quite a different way? 

On the other hand, as we have seen in previous sections, the idea that algebraic con

siderations might provide a rationale for Fine doesn’t solve much, as one is left with a 

superselection rule and the need to provide a rationale for that.

A response might be that the specific structure of an interaction is not just modelled 

by a Hamiltonian, but we face the further choice of whether the Hamiltonian is a 

Hamiltonian for the evolution of standard states or of states representing aspects. In 

any case, we need to look a bit more closely at how selective interactions work with 

revising initial object states. I want to raise two problems for Fine’s solution which do 

not strictly depend on assuming that a superselection rule is in operation on the object 

system when a measurement is in progress.

The first problem is related with the selection of representative states, and con

cerns, for a change, the way that the solution deals with non-ideal measurements. The 

issue has been raised before, by Stairs, and Fine has responded to this. The way the 

issue is discussed in the previous debate concerns approximate measurements, but as 

chapter 1 makes clear, non-ideal measurements need not be interpreted as approximate 

measurements. In this case there is still a problem to discuss.

The second problem raises the possibility that the intuition that lies behind the 

solution, that of interaction with an aspect, is not adequately captured by the formal 

scheme that effects the solution, and so focuses on the first component of Fine’s argu

ment. This intuition is what really distinguishes Fine’s approach from a superselection 

based scheme, and it wants to be a physical intuition. It forms the basis of the argument 

for modifying the initial state. The claim is essentially that it is hard to see how the 

mathematics invoked by Fine is connected to this intuition, and it is hard because we 

don’t really understand what the Hamiltonian of the joint system is doing, and because 

Fine’s state restriction is restriction to the probabilistic aspect of not one observable, 

but of an infinite number of them, enough in some cases to describe a whole classical 

system.
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5.1. F in e ’s solution and  non-ideal m easurem ents. If the measurement pro

cess is to be distinguished in Fine’s reading of it by the fact that it formally introduces 

a superselection rule on the observed system at the beginning of measurement, it is to 

be expected that such a rule will stand throughout the measurement process; indeed 

we would not normally expect to be able to switch superselection rules on and off. Still 

in general, even if we don’t tie Fine’s solution to the measurement problem with the 

idea of superselection, it seems reasonable to assume that at least during the whole 

measurement interaction the only features that bear on the evolution of the object sub

system are those represented by the representative states, from beginning to end of the 

interaction, as one is indeed interacting with an aspect throughout the measurement. 

It is difficult to see why, if such process of interacting with an aspect justifies assigning 

Fine’s representative states at the beginning of the interaction, it should not do so 

throughout the interaction.

This will work well for ideal measurements, but will leave us unable to predict 

the final outcome of some non-ideal measurements. The argument is again somewhat 

similar to the well known and often discussed argument of Albert and Loewer. Stairs 

has raised some questions about possible Albert and Loewer measurements, questions 

that Fine has answered on the basis of a disagreement about the correct way to model 

imperfect measurements. The example I have in mind has more to do with genuinely 

non-ideal measurements, and nothing to do with inaccurate or imperfect measurements: 

rather than considering inaccuracies with measurement operations resulting from de

tectors ‘misfiring’, I will discuss examples which, if they are to be captured by standard 

quantum measurement techniques at all, must be captured by non-ideal measurements, 

along the lines of the examples in Chapter 1.

Fine claims that we have “interaction with an aspect” or, put in another way, 

“E  selective interaction”. What entitles us to talk of [V]e , as defined above, as the 

appropriate state at the start is at least the fact that this state is going to be transformed 

in a selective way.

I think that we can’t make the E  aspect state selection go away with any kind of 

argument until after the final state has been reached; little seems to change throughout 

the measurement that would make the selective interaction argument go away. This 

would, however, entail that the final object state when a measurement ends will still 

be a mixture of eigenstates of the object observable, as it was at the beginning. A
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non-ideal measurement then will result in a failure to predict the correct final object 

states for certain particular kinds of measurements, like for example destructive photon 

measurements.

To recapitulate what we mean by a non-ideal measurement, consider for example 

the mixed state

* = 1,2

representing the initial state of a  measurement interaction with the initial object state 

1Cz=i,2 \a i\2P[<Pi] being the representative state of <p =  aicpi +  0 :2 ^ 2  E C2 for an observ

able picked by the set {^ 1 , ^ 2 }- The system is subjected to a  non-ideal measurement 

with the pointer in the initial state yielding

i j= l,2

where

If this is a  non-ideal measurement, the states pi may well not be orthogonal; in 

the case of destructive measurements, as considered initially by Margenau and further 

discussed by Kronz, all such states will be equal to a ‘vacuum’ state </?o, as we have 

seen in chapter 1. Other examples of situations where measurements are necessarily 

non-ideal are discussed by Ruetsche [74] who, in the context of modal interpretations, 

analyses measurements of object system observables represented by operators commut

ing with operators representing conserved quantities of the system, as a consequence 

of the Wigner-Araki-Yanase result [2, 87]. This result in fact establishes that ideal 

measurements of such object observables are impossible.

Supposing we have an initial photon polarisation state ip =  Q i^i +  <2 2 ^ 2  £ C? and 

we measure an object observable selected by the object system basis {<£>1 , <̂ 2 } C C2, 

by means of a pointer observable picked out by the orthonormal basis of the apparatus 

space {^ 1 , ^ 2 } C d 2. At least two things can happen in Fine’s account under a unitary, 

non-ideal measurement evolution U applied to the initial state X)*=i,2

1. The final state has the form

(5.1) M & l  w  >I2* W ^ ] ;
ij= 1,2
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2. the final state has the form

(5-2) £
z=l,2

Note that, for the two states, the final object states are respectively

£  ( £  \<*k(vk\<Pi)\2 ) P[Vi] 
i= 1,2 \fc=l,2 /

and

£  Kl2%]
* = 1,2

which are clearly different states, as can be easily checked by calculating, for instance, 

the transition probability of the two states with respect to P[$xy

In the first case clearly the final state fails to predict in any way what the final object 

state will be: state (5.1) suggests that the final state of the object will be a  density 

operator decomposed by eigenstates of the object observable that is being measured, 

not necessarily what we expect from an irreducibly non-ideal measurement.

On the other hand, the final state might be thought to be (5.2), the correct one for 

predicting the final object state. Then a curious situation arises. Right at the beginning 

of the selective measurement interaction Fine tells us that, as measurements interact 

selectively, we should write object states as mixtures over the measured observables. 

During the selective interaction itself, however, this would have to no longer apply in 

order to have a final state such as the one in (5.2). This in itself would be a strange 

feature of selective interactions, but we could claim that, for pragmatic reasons, state 

assignment is done before the actual interaction arises. It is possible, however, to 

‘freeze-frame’ the interaction, which happens over a period of time from 0 to t, at a 

time t' such that 0 <  t* < t  and ask what is the state at time t \  before the remaining 

part of the selective interaction takes place. At this point there seems little argument 

for not applying the same state assignment rule that we apply at the beginning of the 

interaction. This sort of argument rules out, however, the possibility that the final 

object state be a state other than an eigenstate of the measured object observable, or 

a density operator over such eigenstates.

The problem can be stated as ‘how long should the E  aspect be relevant?’ and 

calls for some reflection. The interesting idea in Fine’s solution, as remarked earlier, is 

that he wants to consider what the measurement interaction is actually doing. Given
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that the postulated nature of the interaction (a ‘selective’ one) is what accounts for the 

solution, the answer to ‘how long should the E  aspect be relevant?’ should be ‘at least 

as long as the measurement is going on and continues to be the kind of interaction that 

involves aspects’, regardless of what happens before or after (and regardless of whether 

we explicitly claim that there is a superselection rule in operation).

This is difficult to assess as the question turns on whether the fact that the interac

tion relies on aspects at the start truly implies that it relies on aspects all the way. In 

a sense it seems that there need not be any implication of this sort, and it might be a 

purely physical fact that interactions are interactions with an aspect for the first x  ‘in

stants’, and thereafter cease to be so. Perhaps the interaction only needs x  instants to 

pick out the aspect and then goes its own way, so to speak. While this being physically 

the case would undoubtedly avoid all the problems just described which are associated 

with non-ideal measurements, I think it will need a much more clear analysis of quite 

how measurement operations are interactions with aspects than we have seen so far: 

how would the distinction between what is going on in the first x  instants and what is 

going on afterwards be captured in the formal model? And to what different physically 

well understood, perhaps causal process do these two types of interactions correspond 

to? I actually think that the distinction will be hard to maintain, and will give some 

reasons for this in the next subsection.

As we have just seen, if Fine is forced to concede that interactions are interactions 

with aspects throughout the measurement, this will lead to problems: if measurement 

specifically interacts with E  aspects, what is the argument for saying that it might 

yield something which is informationally useful insofar as it isn’t encoded in the E  

aspect story (like knowledge of the difference between states which share the same 

probability distribution with respect to E ), as happens with the final states after a 

non-ideal interaction? Yet if we selected state (5.2) we would be expecting the final 

state to encode information which is not obtainable in the E  aspect approach: it will 

make a claim for the object state to be in a specific state which is not an E  aspect 

state normally selected by Fine’s argument.

It might be argued that because in the case of non-ideal measurements there is a 

clear case for needing to produce information, at the end of a  measurement, incompat

ible with the E  aspect of the object subsystem, then we simply shouldn’t in general 

expect the measurement itself to concentrate on and produce an outcome expressed
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only in terms of the E  aspect. But this will leave the E  aspect as relevant only at the 

point of initial state assignment, independent of what happens in the measurement. I 

find this difficult to accept in any case; empirically, and in Fine’s own argument, this is 

not an initial state assigned for any sort of measurement or indeed any interaction, but 

only for a concrete measurement of a very specific observable, and it is the measure

ment interaction itself which selects the aspect. If we then assume that in measurement 

the object state is not confined to the E  aspect, but is free to produce, for example, 

whatever final state of the object we want compatible with a probabilistic condition 

being satisfied for the final apparatus state, this seems to take away a good deal of the 

force of the argument.

5.2. W h a t a re  m easurem ent evolutions selectively in te rac tin g  w ith ?  The 

second problem for Fine comes from the nature of the measurement operator. If I 

am placed in front of a  final mixture resulting from a measurement and shown the 

measurement interaction operator, I have no idea what observable was being measured 

here. This is because in constructing the measurement interaction operator all I rely 

on is the orthonormal system resulting from an observable, not its eigenvalues. But 

this implies that all observables which share the same set of eigenstates are “measured” 

by the same operator. Normally this is not a very important consideration, perhaps 

wrongly; not much is said about the measurement operator other than the fact that it 

“kicks” pointers into place. Also, as stated by equation (2.4) in Chapter 3, the standard 

account of what makes up a measurement requires that we have, as well as an operator 

characterising the measurement evolution, a function linking the pointer observable’s 

eigenstates, accessible to us by “direct” observation, with the object observable ones, 

thus specifying in full the measured observable, rather than just its eigenstates. I will 

return to this soon.

In Fine’s story we axe told what measurements are supposed to do: a measurement 

effects the recording of a particular aspect of an observable, its probabilistic one. But 

this aspect is common to all observables found in the algebra picked out by a super

selection rule in the following way. Recall from Chapter 3, page 106 that one of the 

conditions necessary to define a premeasurement operator (which for Fine will be the 

measurement operator) is that there is a fixed orthonormal basis of the object system
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'Hs, made up of eigenstates of the measured observable (where the basis is not necessar

ily unique if the measured observable is not maximal). This premeasurement operator 

measures all observables which share the orthonormal basis as a set of eigenstates. This 

set of observables forms an algebra picked out by choosing any maximal operator in 

this set to be a superselection operator. This is clearly a commutative algebra, for the 

observables are diagonalised by the same orthonormal basis. The system is therefore 

‘classical’, as can be seen in a number of different ways. For instance the following 

theorem, due to Segal, applies:

T heorem  4.1 (Segal [76]). A commutative system is isomorphic (algebraically and 

metrically) with a system of all real-valued continuous functions on a compact Hausdorff 

space.

More intuitively what is happening is that every algebra of commutative observables 

has a number of properties that indicate its classicality. The sense in which the system 

is classical is given by the fact that all pure states for such a system are dispersion- 

free, or that the set of observables separates the set of probability measures, so that 

the phenomenon of non-unique decomposability of mixtures does not arise for such a 

system, while it is typical of quantum systems.

So the measurement operator can’t be interacting with an aspect of a  particular 

observable, as there is nothing whatsoever in it which distinguishes between an infinite 

set of observables which is, moreover, non-trivial in that it is equivalent to a  classical 

system.

There is a sense in which this is a problem for Fine’s account of measurement, and 

not for other accounts. The unitary operators effecting measurements axe standardly 

derived in the manner discussed in the previous chapter: assume some conditions which 

you think a measurement operator should satisfy, and look for which operators do sat

isfy this condition. The ‘essentialist’ question, about what the measurements actually 

are, is not even raised. No discussion whatsoever is given of the nature of the interac

tion. Think of Everett’s solution, or of the Kochen-Dieks modal interpretation: what 

is proposed is a rule for property assignment, given that the measurement is charac

terised by unitary evolutions equivalent to the ones discussed in the previous chapter. 

These measurements happen to be such that the interaction measures a whole big set
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of observables. Whether this is the case or not becomes a matter of empirical investi

gation, perhaps. And perhaps the function which, in the standard definition of what 

constitutes a measurement, finks eigenstates of the pointer observable to those of the 

object observable, as defined in equation (2.4), has a physical interpretation such that 

a single observable can be said to be measured. But to point out that the unitary 

operator does not select a specific observable is not to make a criticism of the approach 

to solving the measurement problem embodied in Everett’s or Kochen’s work, for no 

assumption is made there about the nature of the interactions.

The very fact that no assumption is made about the physical nature of the mea

surement interaction might in itself be the basis of a criticism that covers very many 

approaches to quantum measurement; this came up briefly in chapter 1. But that is not 

the argument here. The point here is that Fine builds his solution to the measurement 

problem on a specific intuition. This intuition is that we measure contextually, so that 

if two objects have the same weight (in the everyday sense of the term), this tells us 

very little about the objects as a whole: when we perform a measurement, then, we 

interact only with a specific aspect of the object, the one relevant to its weight. But the 

measurement interactions that are implicitly used in Fine’s solution (those that don’t 

violate (1.2), (1.3) and (1.1)) cannot be assumed to be doing anything of the sort, 

because of the problem just presented: they do not measure energy alone, for instance, 

but a whole set of observables commuting with energy.

Note that this is not meant to be a slide into realist speak. When we assume that 

the Hamiltonian for the harmonic oscillator is a good Hamiltonian to use in certain 

situations, we do so because of its properties, and this can be read in any which way 

we want, as Fine himself has argued in other contexts [39, 41]: such a fact, that 

the Hamiltonian is good for modelling certain systems, is independent of whether we 

argue for this on the basis of its reliability or its closeness to the truth. On similar 

grounds we can argue against measurement operators being good operators to model 

selective interactions. So the point is not that selective interactions don’t  exist, or are 

an unreasonable way of thinking of measurement interactions, but that measurement 

operators picked out by (1.1), (1.2) and (1.3) have the wrong sort of properties to do 

justice to the intuitions that Fine invites us to think about.

It is, I think, quite hard to see what interacting with an aspect might mean here. 

Fine himself, in his original paper [40, p. 503], wants to distinguish between interaction
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with an aspect of a single observable from interaction with an aspect characterised as 

the joint measurement of all observables commuting with a  given one; these would be 

two different processes, leading to a theory based on individual measurements on the 

one hand, and to a generalised theory of joint measurements. There is no distinction 

between these two kinds of processes, though, on the analysis given here, for the im

portant cases in which the observable is maximal, and this includes observables such 

as spin, angular momentum and many others.

Again this creates problems for the selective interaction idea. We can make this 

idea plausible by pointing to common experiences of sense perception. When we try 

to ascertain the colour of an object, we axe not much concerned with its size; similarly 

when we try to measure the hardness of some material we are not worried by its 

colour. But quantum measurement evolutions don’t focus on a specific observable, 

they measure effectively a whole class of them, those that share the same eigenstates. 

This is possibly more confusing as an intuitive physical idea of measurement than 

interaction with an aspect is, and the latter isn’t served well by the former; this is not, 

of course, an argument against the viability of selective interactions as an approach 

to quantum measurements, but an argument about the difficulty of reconciling the 

intuitive motivation and the general argument of the approach with the mathematical 

properties of the operators actually describing the interaction.

6. Conclusions

Fine’s idea is original in asking what quantum measurement might actually be 

doing, something not very common in discussions of quantum measurement. He tries 

to solve the problem of measurement by providing an answer to this, through the idea of 

selective interaction. This seems intuitively plausible from our patterns of observation: 

we observe contextually, if we concentrate on some aspect of what we observe we miss 

out many other features. It is also true that measurements, like weighing, ignore shape 

and size. Fine uses this idea to derive some conclusions about the states to assign to the 

system to be measured, which can be interpreted as a justification for a superselection 

rule.

On the whole, though, I think this does not work. It doesn’t work not because the 

intuitive idea is wrong, but because the formal scheme of quantum measurement as set 

up by Von Neumann bears little relation to the intuitive ideas that Fine suggests. A
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measurement operator is not measuring a specific observable; it is not at all clear what 

physical observable the Hamiltonian generating it stands for; it can assume all sorts of 

different forms, all essentially characterising the same measurement process, as shown 

in chapter 3, Theorem 3.2. All these militate in some way or another against Fine’s 

philosophical argument for selective interaction, but I think the questions remain, and 

remain interesting: what do measurement operators physically stand for? what exactly 

are they supposed to measure? are they a reasonable abstraction of real measurements?



CHAPTER 5

Conclusions

It is useful at this stage to briefly review what this thesis has accomplished.

In the first instance, Chapters 2, 3 and 4 have proved a series of results, which I 

briefly review.

Chapter 2 expands both the kinds of results known as insolubility proofs of the 

quantum measurement problem, and their scope. I have discussed two new proofs of 

the original result. Neither add mathematically to the scope of the well known results of 

the past forty years. Both, however, highlight important facts about the way in which 

the objectification condition for quantum measurement constrains the possibility of 

transferring probabilistic information about the measured observable from the object 

to the apparatus system through a unitary operator.

The first, detailed in sections 2 and 2.3, shows in a fairly intuitive way how ob

jectification implies that the probabilities collected from the apparatus system for a 

pointer observable after a measurement has been performed is just the information 

that we could have collected from the apparatus before any measurement had been 

performed on the combined object +  apparatus system. Objectification therefore kills 

off the possibility of any meaningful sense of unitary measurement being possible. The 

second result, detailed in section 4, is a trivial consequence of Theorem 2.7, which 

characterises all unitary operators satisfying objectification. This result shows how the 

previous claim, that a unitary operator satisfying objectification makes no difference 

to probabilities for the pointer observable, is actually possible: in the simplest case, for 

example, the theorem shows the unitary operator to be of the form Us ® Um, with no 

interaction term present.

Another consequence of this result is that, in the course of proving it, I establish 

that the insolubility result due to Fine and Brown is in fact just as valid as other ones 

presented, even without the use of the condition that Brown has called Real Unitary 

Evolution. The discussion of the issues revolving around this particular version of the 

proof is reviewed in section 3.
171
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Finally the chapter provides, in section 5, a discussion of how the objectification 

condition might be interpreted in the context of unsharp pointer observables, and gives 

a first insolubility proof for this case. This genuinely extends the scope of the original 

proofs.

Chapter 3, on the other hand, addresses the status of the probabilistic condition 

usually assumed to hold for quantum measurement independently of objectification 

holding. It begins with a more specific result, Theorem 3.2 (developed with Gianpiero 

Cattaneo) along the lines of Beltrametti, Cassinelli and Lahti. This characterises, in 

subsection 2.2, unitary operators satisfying the probability reproducibility condition for 

the Hilbert space formalisation of quantum mechanics. Sections 3 and 4 look at how 

this kind of result might be extended to the density operator formalism. A number 

of results are proved, and the general conclusion is that the only one-to-one mappings 

that satisfy the probability reproducibility condition in this context are still the ones 

characterised through Theorem 3.2.

Making use of the analysis of sections 3 and 4, section 5 raises some problems for 

the possible unitary operators satisfying the probability reproducibility condition. In 

particular I show that there are cases for which no such operators can exist, and discuss 

the consequences of this.

Chapter 4 is an analysis and critique of Fine’s solution to the measurement problem. 

The starting point of the chapter is a discussion of a proposal by Fine, to ground his 

solution in an algebraic framework. The formal implications of this are analysed in 

section 2. If we presuppose an algebraic viewpoint, Fine’s solution is equivalent to  the 

imposition of a superselection rule on the object space. The problems that this raises 

are discussed in section 4. Section 5 looks at some other difficulties with Fine’s solution 

which are independent of the appeal to an algebraic grounding.

I want to conclude this work with some remarks on how the material just outlined 

fits in with the view of quantum measurement I have defended in Chapter 1, and 

with some open problems that are raised from this view. Recall that in chapter 1 I 

have defended the view that the discussion of the quantum measurement problem is 

a fundamentally theoretical enterprise. Chapter 2 discusses a classic aspect of such 

work, the consistency proof. The conditions that I analyse there are put forward with 

an attempt to answer the questions I have marked in Chapter 1, about properties and
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dynamics. Prom a theoretical point of view it is crucial to establish whether such 

conditions are consistent. That they are not is, as I have said in conclusion to chapter 

2, crucial in motivating further research on how we might answer the two questions.

Chapter 3 on the other hand provides us with a particular instance of a problem, 

rather than a global no-go theorem. It flags for attention a special class of examples for 

which unitarity and probability reproducibility cannot both hold. The problem here 

is not global inconsistency, as is the case in chapter 2. What we have is a specific 

counterexample, but one which has, in my opinion, greater force against the project of 

the quantum theory of measurement in virtue of originating from a theoretical analysis. 

This does not require us, then, to enter into arguments about the extent to which 

theoretical accounts of measurement mirror real measurements, for the counterexample 

is not drawn from a real measurement situation, but generated internally.

Chapter 4 highlights the difficulty in reconciling the claims of the theoretical anal

ysis of measurement with what happens in real measurements. Fine’s support for his 

solution depends crucially at a conceptual level on the claim that his solution accounts 

for what happens in real measurements, namely interactions with aspects. The problem 

is that he uses the technical apparatus provided by the standard theoretical account of 

measurement, and it is quite difficult to see in what way this carries out Fine’s interac

tions. This is because, in general, the quantum theory of measurement pays relatively 

little attention to the nature of the interactions that generate measurements. I think 

this is of no major consequence if the game is to answer questions about properties and 

dynamics. However, if a solution to the measurement problem is built on the claim 

that measurement interactions are of a specific kind, and moreover that this is the kind 

of interaction that one always sees happening in measurement, then it ought to show 

that this is the case.

This is an open problem in general. There is little interest normally in the status 

of quantum measurements as real interactions. I think this is of crucial importance to 

the possible applicability of the formalism of quantum measurement, but also to the 

typically philosophical questions about the relationship between theory and experiment.

Another problem that emerges from the view I put forward in chapter one is of a 

more historical nature. There is no properly developed account of how we have moved 

from discussing interpretations of experiments at the beginning of the century to the 

more abstract topic that is quantum measurement today. If the analogy with Kuhn’s
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description of a thought experiment, briefly alluded to in chapter 1, is to hold, we will 

need to understand this much better.

While this thesis has not addressed these two issues, I think much of the work in it 

leads to them. I hope it will be of use in this way, as well as of value for all the things 

contained in it.



APPENDIX A

Proofs o f Theorems

P roo f  o f  C orollary 2.5. Two mutually exclusive and exhaustive cases must be 

distinguished:

1. <p, <pr are nonorthogonal initial states in %§;

2. (p and tp' are orthogonal.

The first case is the one discussed in Proposition 2.4. This Proposition says that assum

ing that pointer states with different eigenvalues are present in a possible decomposition 

of the final object +  apparatus state will lead to a violation of unitarity, on the assump

tion that ( (p\ tp') 0. So the pointer eigenstates decomposing the final state must be

associated with the same set of eigenvalues if unitarity and objectification are to be 

satisfied.

The second case can be treated by considering a third state, for instance

<P±£_
x  i b + ^ i r

which is not orthogonal to the two orthogonal states. Then applying the previous 

argument to <p and x> and then to ip' and x> yields that the pointer eigenstates associated 

with initial states (p and x  are the same, and pointer eigenstates associated with tp1 and 

X are the same. The result then follows for <p and tp1. □

P roof o f  C orollary 2.6. Two cases must be distinguished, according to whe

ther the pointer observable has multiple eigenvalues or not.

For the first case, consider an orthonormal basis of possible initial states in Hs, for 

instance { ^ i , . . .  , ipn}, such that ( <pi\ <fij) =  0 for i ^  j .  The set of initial pointer states 

{^oi} is also an orthonormal set. Therefore the set of states in m consisting

of vectors of the form <pj 0  'tpoi is also an orthonormal set. Furthermore the subspaces 

spanned by sets <pk 0  t/>o» and <p\ 0  ipoi with k, I fixed and distinct, and i variable, are 

orthogonal subspaces. If the evolution applied to initial states <pk 0  ipoi and <pi 0  V’oi is 

unitary, the final density operators for initial object states <pj with different y’s must 

also span orthogonal spaces.
175
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Assume that the final states admit of a representation over eigenstates of the pointer 

observable 1 0  Am where the different V'i’s, eigenstates of the pointer observable Am, 

number only m  — 1, and suppose in the first instance that the eigenvalues of Am have 

multiplicity 1. Given Corollary 2.5, it follows that, for initial states <pj, the final object 

+  apparatus states after the measurement evolution will have two different projections 

of the form P[$jk] ® fyn], with i fixed for each j  and k =  1 or 2. Consider one such 

final state corresponding to the case in which j  =  1, i =  1. Then the states (p\k, for 

different k%  must be distinct in order to have distinct projections P[<plk\ ® Ptyi], failure 

to have distinct projections would lead to a violation of conservation of rank.

All other final states must have at least one pointer eigenstate of the form P[$jk] ® 

P^j], k  varying for the different initial states, again because of Corollary 2.5. Consider 

the projections P ^ j  0  P ^ ] ,  j  varying. These projections must be mutually orthog

onal as they belong to subspaces which are unitarily evolved from initial orthogonal 

subspaces. This implies that the <pj\S must form an orthonormal basis for H§. But 

then the projection P[g>U2] <8> P[^{\ associated with the initial object state j  — I cannot 

be orthogonal to projections of the form P[(pj{] ® Pty>i], j  #  1, as it is distinct from 

P[£i x] 0  P[^x]. This gives a contradiction. Therefore the P ^ j ’s must form a set of m 

distinct, orthogonal projections in the final evolved states.

If the pointer observable Am has multiple eigenvalues, the claims still hold. Note, 

first of all, that the argument of the previous paragraph is not substantially changed if 

we have tp\ appearing twice as an eigenstate of Am in the final state for an initial object 

state <£i, and tp2 appearing in the final state for some <p2 , where xpi and tp2 share the 

same eigenvalue and are not orthogonal. What happens if on the other hand tp\ and tp2 

appear as pointer eigenstates indicating the same eigenvalue, and are orthogonal? A 

straightforward application of the argument in Proposition 2.4 and Corollary 2.5 shows 

that, if tpi and tp2 appear in any one final apparatus state decomposition, then they 

must appear in all of them. Separate arguments can then be made for them, similar to 

the ones just given in the previous paragraph.

As for the second part of the claim, suppose that we do have two pointer eigenstates 

tpi and tp2 G 'Hm appearing in the decomposition of the final state, which are eigenstates 

of Am associated with the same eigenvalue and are not orthogonal. Then we clearly have 

two projections in the decomposition over distinct vectors in 'Hm, which however are 

not orthogonal. An orthogonal resolution of the final state, spanned by the projections
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containing ip\ and must exist, however, by the same reasoning given on page 70. 

This finally establishes the result. □

PROOF OF T h eo r em  2.7. [=►]: The previous results, culminating in Corollary 2.6, 

establish that if a unitary operator U  : Tis 0  [ipo,]* -» “Hg ® [i>ijk\ijk  satisfies objecti

fication, then it must map an orthonormal basis <pj ® ^oi to the orthonormal basis 

Y?k=i Wj ® V’y'j where i, j  and I axe variable and ( ipijk\ ipi'jk ) =  0 for all i ir and 

any j ,  k.

For a fixed, the Vfyfc’s must be eigenstates of the same eigenvalue of the apparatus 

pointer observable Am, for if they were not the initial object state a\<p\ 4* ot2<f2 would,
. Jl

when coupled to ipoa, be mapped to the final state (]£fc=i ai<Piik®'lPnk)+{'I2k=i a 2Vi2k® 

which can only be an eigenstate of I ® Am if ipn and ipi2 are eigenstates of Am 

associated to the same eigenvalue.

Then, for a, b fixed,

U
U ((pb ® ipoa) =  ^ 2  (fiabk ® Tpabk 

k= 1

=  5 Z  «  Vb\ <Pb)(<Pabk) ® ( ^0a| fpOa ) Wa«b))
k

= J2  (W^  ® WM«&) (f t  ® fta). 
k

Repeating this for each a, b and using linearity shows that (4.1) holds.

The operators composing U  in (4.1) are clearly partial isometries; the proof is given 

for one of them. Consider W 3^  =  ( f t l  (*) Xftftc)- Its action on any operator a f t  is 

given by ( f t |  a<pb )(<Pabc) = « ( f t l  VbH Vabc) = a $abc, so the operator is unitary as a 

mapping from [ft] to [ft&c]-

Also for any vector 2*€/ where I  =  {1 ,... , 6 — 1, b 4 -1 ,...  , m},

< f t l  ^2 ) (Vabc) =  ^2 a^  Vb\ & )('Pabc) =  0;
I /  I
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the operator is clearly linear. It follows that WSo6e is indeed a partial isometry. Next, 

note that 

k
53 ( #7 ® ^0i | ( 0 j  0  IpOi) ) ((pijk 0  V'ufc) =  53 ®
fc=l &

= E ®w*W“)
k

= E ® ̂ o»),
k

establishing (4.2). It is easy to show that any two such operators W, W ' are partial 

isometries, and that ( W ($)| W'ijSi) ) =  0.

[■$=]: Consider U given by (4.1). U is then obviously linear. In order to show that 

it is unitary, consider an arbitrary vector $  E Hs ® [V’oi]»- Then

ihwii2- /  E E W'V®H'IV(*)
/=1 n h= 1
5 = 1 , . . .  ,m

li
E E wV®wrlV(®)

*=1....» fc=l

/.<=1.....» /l= l fc=l

= 53 ($)><^i®^0z| ($))( 5 Zvfgh®^fgh
f,i=1 ,... ,n  \  /l
5 , j = l , . . .  ,m

=  5 3  <^  0 ^ 0il ® ^0i| ($ ))
,n

= ini2.

'y ] tyijk 0

Therefore U is an isometry.

Furthermore U is one-to-one and onto: given any E Tis <S> [VfyfelyJfe ° f  tbe form

V  =  5 3  S  “ijW ijk 0  Ajk
*=i....» fc=l

J= l , . . .  ,171

there is a unique $  E % s0  such that U($) =  \&, namely

$  =  5 3  aijV j 0  i-
,n

That £7 satisfies objectification is straightforward by its definition.
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Now suppose the partial isometries W Mijk axe the same for all j ’s and fc’s. Then 

(  U \  n ( m u \

u =  E E^V ® ^ = E  EE^%* ®^M«-
*= 1 ,... ,n  \k=l /  t=l \j= lk= lj=1,... ,m

It is necessary to show that Jlk=i ^ Sijk is a unitary operator on ‘H§. The 

condition that

Jc=l <k=l

for $  G “Hs ® [V7o*]i and for each j  ^  /  clearly implies that

/ e ^ V m
jfc=i

(/s ® p^.]) ( 5 3  (v ti  ^)(<?ifc® V’/c))

) = o
k= 1 /

for each <p G H§, from which it is easy to show that VFSijfc =  C/f is a unitary

operator on %§.

A similar argument applies for the case in which all U f are equal to a  unitary 

operator Us and establishes the final claim. □

PROOF OF T h e o r e m  3 .2 .  T h e  probability  reproducib ility  con d ition  (2 .3 ) is  easily  

estab lish ed  for W 1 by n otin g  th a t

( Wl (<p® ® P ^ W 1 (<p ® t i ) )

= (  E < ^ * l
\  h

= ( v l  P [ViX P )-
Also trivially "Hs ® [ip J] :=  {<P ® : V7 € Hs, a  G C} is a  subspace of H s

indeed, V</?i ® (ai^o)> • • • > <Pn ® (an^o) e  ® ftAoL one Sets <Pi ® (<*1^ 0 ) + . . .  +  v?n ® 

(<*n^o) =  «l(^l® ^o)+* • -+<Xn(<Pn®1po) =  (<*m)®^(}+. • -+teW n)® ^0 =  • •+

«n<Pn) Wol; furthermore V/? G C, /% i ® (ai^o)l =  <Pi ® [(/to luo l £ ®

[t/>J]. In similar fashion it can be proved that Us® [ipl]'L := {y?®c*V,o’"L : V9 ^  ^S» a  G C, 

with any unit vector orthogonal to ip\ ((^o| )  =  0)L is ulso a subspace of

%s ® WrM'
Moreover, V<£,<£ G U s ,  V(a^J) G [ipl], V (/^J,_L) G [^J]-1-

(<£® (a^o)| <P ® (Pipl ’±0) )  = a p ( < p  | ^ ) (^ o |  ^o’J' )  =  0 

concluding that (W§ ® [^J]) -L (^S ® [V’o]"*')'
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Note that dim (Hs <8> Wm) =  dim (H§) • d im (Hm ) ? dim (W§ ® [^J]) =  dim CH§), 

and that it is also true that dim (H§ ® [^J]*L) =  dim(Hg) • [dim('HM) — 1], so that 

dim (Hs ® 'Hm ) =  dim (H§ ® [V’J]) +  dim (Hs ® finally concluding that

Hs ® U m = ('Hs ® [$ ] )  e  (« S  ® [$ ] x )  •

Let <p =  anpi +  . . .  4- an(pn € Hs, and atp\ e  [^J]l then

W 1 {ip ® (a^J)) =  W 1 {0L0Li(ipi ® ^o) +  • • • +  ® V>o))

(0.1) =  ® ^ i)  + . . .  +  a a n(^ i ® ipn)

where the last equality follows from conditions (2.5) and the probability reproducibility 

condition (2.1). From (0.1) and the above Lemma it follows that

I I W H v ’ ®  ( o ^ o ) ) l l 2 = | a < * l | 2 • Wv>\ ® V > i | |2 +  - - -  +  | a o : n |2 • \\<pl ®

( 0 .2 )  = N 2 - ( l “ i l 2 +  - - -  +  K I 2 )

But, mating use of the fact that H^jll =  1 it is also the case that

(0.3) \]<p® (o^o)ll2 =  M 2 • IMI • W ill2 =  M 2 • ( M 2 + . . .  +  K l 2)

A comparison of (0.2) and (0.3) yields the conclusion that W 1 is an isometry on the 

subspace Hs  ®

On the other hand, W l {<pi®V,o’"L) k  easdy seen to be the null vector 0 E W§ ® 'Hm-, 

so that Vy? =  otnp\ +  . . .  +  ocn(pn G H§ and V/?‘0o,'L G [^o]*1

W l  (y> ® (/3i/>o"L)) =  P a iW 'fa  ® ^ ’x ) +  • • • +  PanW l (<pn ® ̂ - x ) =  0 

establishing the partial isometric and null properties.

Let us denote by {ui =  <pi ® • • • > wn =  <Pn ® ̂ o) by {ui =  (p\ ® V>i,. . .  , un =  - 

<p\ <g> ipn} the two (non complete) orthonormal systems of Hs ® W-M of the previous 

Lemma. Then, for all VP G it is clear that W 1^ )  =  (u*| \P)ui from

which it follows that

p ^ * ) i i 2 =  ( X > * m s *
\ f c = i
n

£ > * i  v )u i
i= l

(0.4) =  £  (i**|*>(ui | * ) ( t t t | u 4)
i,k=l

(0.5) <  ||* ||2
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where the last (Bessel) inequality is a consequence of the fact that {u,}/ is not complete

as an orthonormal system of vectors in This shows the contractive property

and completes the proof of part (i).

It remains to show that the operator W  =  W 1 -f W l,± +  W 1' is unitary. This

a complete orthonormal system. By working as in (0.4) above from this completeness 

condition it follows that V4> € %§ < 8 > | | W ( $ ) | |  =  ||$ ||, i.e. W  is an isometry. 

Secondly, for any & =  2 ? = ? a »̂ * there exists $  =  &iui 6

such that W ($) =  let the u*’s belong to one of the sets (2.6b), (2.7b), (2.7c) and 

let the U{ belong to one of the sets (2.6a), (2.7a), the claim then follows. Therefore W  

is onto. Prom these two results it follows that W  is unitary. □

P roof of T heorem 3.5. To establish the first claim, consider a state

The proof that W 1,J~ is a conjugate contractive partial isometry (that is, an isometry 

on Hs ® [V,o]J_ and the null operator on H§ <8> [V’oD satisfying (2.5) and (2.1) is similar, 

having noticed that W ly± is defined on the basis of the orthonormal, not complete sets 

(2.7a) and (2.7b). A similar proof can establish that W l> is a  partial isometry.

is easily done in two stages. First of all the previous lemma shows that the union of 

the orthonormal, non-complete systems defining the operators W 1, W 1*1- and W 1' is

n

i=1

on T('Hs), where =  au<pi +  . . .  +  annpn and Ylj=i \aji\2 — 1- Then

n

Now consider the state W X(T  <g> P[ipQ])- This is equal to

so the right hand side of (3.5) is equal to
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By convexity, repeated application of (3.1) to the products P[<pk] I  leaves the calculation

i= 1
) p b!>i

<k=1 i= 1 I

hence (3.5) holds. Next let

n

Ts =  ^ 2  w 'PW'iY Wi + . . .  + wn = l
i= i

be a trace one operator on 9is, and consider the density matrix 7§ 0  P ^ 0] € 7 ^  (91). 

Then W 1(T§ 0  P[rp0]) yields the density matrix

j =l \ i = l
( p f e ]  ®  P fc I )

Calculating the inner products the result is

(*)

(PIV,) ® (  E  ® %>])
\ l = l  >

=  W iP tvQ ^  ^ m C ^ o I ^ o ] )  b y  (3 -1)

n
=  u;i|aji|2 by Lemma 3.4

i= l

Hence the total result of applying the mapping W 1 is

n /  n \

E I IẐ K'il2 I (*fo] ®-fyj])
j  = 1 \*=1 /

This is a density matrix in 7 ^ (9i§ ®Hm) with the tensored projectors corresponding 

to orthogonal projectors on 9L§ 0  H m - Hence the total trace can be calculated by 

simply adding together the coefficients, giving

t  = i>  ( e  m 2) = i > =1
j = i  \* = i  /  i= i  \ j = i  /  *=i

hence W 1 is trace preserving on the subset T(9L§)

The second part of the claim is established in a similar manner, by noticing that in 

(*), for all T  e  T(9is) 0  ( P ^ ) 1- one has to calculate terms such as Tr-^M[P^0]P^±j], 

clearly equal to 0.
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As for the last claim, consider a trace one operator T  given by
n  n

T  -  S  Wii PWi) 0  PWj\' 2  Wii  =  1?
*J=i *d=i

where is defined as before and ipj =  (3jipo +  Pj-ipQ, tpQ denoting without loss of

generality the vectors obtained by projecting ipj onto the subspace of Hm orthogonal

to and \(3j\2 +  \/3j-\2 =  1.

In order to obtain W 1(T), calculate the coefficients

(P[VJc] ® %>]) [ 5 3
*J=1

Rewriting this as 

it is easy to show that the coefficients will be equal to

53
*J=1

We then have that

= 53 53 WtfMW ] (Jfoj ® PlMh
k= 1 \ i j = l

the trace of which clearly is

53 13 tu«iQ«i2ifti2) •
*=1 \*d=1

Prom this it follows that

= E w i0 i \2 E i“«i2
i j = 1 \fc=l J
n

— ^   ̂ |/5j| ^  1
i j = 1

where clearly the equality holds if and only if |/?i|2 =  . . .  =  \(3n \2 — 1, which completes 

the proof. □
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