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Abstract

This dissertation focusses on the analysis of industrial market structure and related 
topics in industrial economics. It comprises three self-contained essays on dynamic aspects 
of industry structure, collusion, and the limits of monopolisation.

The first essay, which is contained in chapter 2 , analyses a dynamic game of investment 
in R&D or advertising, where current investments change future market conditions. It 
investigates whether underinvestment can be supported in equilibrium by the threat of 
escalation in investment outlays. When there are no spillovers, or there is full patent 
protection, underinvestment equilibria are shown to exist even though, by deviating, a 
firm can get a persistent strategic advantage. When there are strong spillovers and weak 
patent protection, underinvestment equilibria fail to exist. This implies that weaker patent 
protection can actually lead to more investment in equilibrium. Furthermore, potential 
entry is introduced into the model so as to address issues of market structure. It is shown 
that underinvestment equilibria can be stable with respect to further entry, independently 
of market size and entry costs. Finally, the ’’nonfragmentation” result of static stage games 
(Shaked and Sutton 1987) is proved to hold in this dynamic game. That is, fragmented 
outcomes can not be supported in any equilibrium, no matter how large the market, and 
despite the existence of underinvestment equilibria.

The starting point of the essay in chapter 3 is the traditional view in the 10 literature, 
according to which there is a negative relationship between cartel stability and the level 
of excess capacity in an industry. Recent supergame-theoretic contributions appear to 
show that this view is ill-founded. Focussing on the issue of enforcement of cartel rules 
(’’incentive constraints”), however, this literature completely ignores firms’ ’’participation 
constraints” . Reverting the focus of attention, the paper restores the traditional view: 
large cartels will not be sustainable in periods of high excess capacity (low demand). In 
contrast to the supergame-theoretic literature, it predicts a negative relationship between 
excess capacity and the collusive price.

The aim of the final essay, contained in chapter 4, is to provide empirically testable 
predictions regarding the relationship between market size and concentration. In a model 
of endogenous horizontal mergers, it is shown that concentrated outcomes can not be 
supported in a free entry equilibrium in large exogenous sunk cost industries. In contrast, 
very concentrated outcomes may be sustained in endogenous sunk cost industries, no 
matter how large the market, and even in the absence of mergers. It is shown that these 
predictions do not depend on any details of the extensive form of the game, even allowing 
for side payments between firms and endogenous product choice. The results complement 
those of Sutton (1991) on the stability of fragmented outcomes.
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Chapter 1

Introduction

Industries differ greatly in the level of concentration: some are dominated by at most 

a handful of firms, while others come close to the classic notion of competitive markets 

consisting of many firms without much market power. To explain these cross-industry 

differences in concentration levels has traditionally been the major focus of the literature 

on industrial market structure. The main aim of this dissertation is to shed new light on 

various issues of industry structure and related topics in industrial economics.

For decades, the dominant approach in the study of industry structure has been Bain’s 

(1956) structure-conduct-performance paradigm, according to which structure (concentra­

tion) can be explained by the level of certain “barriers to entry” , e.g. increasing returns 

to scale, and high R&D or advertising intensity. However, researchers remarked quite 

early that firms’ conduct has an impact on industry concentration as well. In particular, 

market structure is affected by the degree of collusive behaviour of industry participants. 

All other things being equal, a market in which firms collude may sustain more firms 

than a noncollusive one since collusion will raise profits for a given number of firms in 

the market. In this dissertation, different aspects of collusion, and their implications on 

industry structure, are studied. We consider collusion in investment levels in chapter 2, 

and collusion in output levels in chapter 3.

Since the game-theoretic revolution in industrial economics researchers have become 

quite uneasy with cross-industry studies. This is for at least two reasons. The first is that 

equilibrium outcomes delicately depend on variables that are unobservable for empirical
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CHAPTER 1. INTRODUCTION 2

researchers, and likely to vary across industries. The second is that many models exhibit 

a multiplicity of equilibria. Now, many aspects of competition are dynamic by nature 

and cannot be captured in static models. The drawback of dynamic models, however, is 

that, in these models, the problem of multiplicity of equilibria is particularly severe: Folk 

theorem-like results imply that a vast menu of outcomes may be sustained in equilibrium. 

This clearly represents an embarrassment of riches. The question of interest, therefore, is 

whether it is nevertheless possible to make empirically testable predictions using dynamic 

models of competition. We investigate this topic in chapter 2 of this dissertation.

In most models on industrial market structure, the boundaries and characteristics of 

firms, such as the number of firms’ products, are taken as given. Is it impossible to exclude 

(arbitrarily) concentrated outcomes once firms are free to merge? After all, industry profits 

would be maximised if firms decided to merge to monopoly. This important question is 

addressed in chapter 4, where we study the constraints on equilibrium outcomes that can 

be obtained when firms are allowed to merge or to choose the number of their products.

In this dissertation, there are two unifying themes. The first is the search for empiri­

cally testable predictions. The second is the impact of market size (or the level of demand) 

on equilibrium outcomes. These two are related since market size and demand are not 

too difficult to measure empirically, and can often be seen as exogenous to the problem 

studied.

Traditionally, industrial economists have believed that the level of industry concentra­

tion is decreasing with the size of the market. After all, an increase in market size raises 

firms’ profits and should thus trigger additional entry, which in turn should reduce con­

centration. However, Sutton (1991), in his book Sunk Costs and Market Structure, shows 

that the alleged negative size-concentration relationship breaks down in certain groups of 

industries. In particular, Sutton introduces the distinction between exogenous and endoge­

nous sunk cost industries. Exogenous sunk cost industries are industries in which the level 

of sunk costs is exogenously given by firms’ setup costs; R&D or advertising outlays are 

insignificant. In endogenous sunk cost industries, on the other hand, the level of sunk costs 

is endogenously determined by firms’ investment decisions; roughly, these are industries, 

in which R&D or advertising axe effective in that an increase in some fixed outlays raises 

the consumers’ willingness-to-pay, or reduces the marginal costs of production. Sutton’s
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predictions are that, in exogenous sunk costs industries, the lower bound to concentration 

goes to zero as market size tends to infinity. In contrast, in endogenous sunk cost indus­

tries, the lower bound to concentration is bounded away from zero, no matter how large 

the market. That is, fragmented outcomes may be supported as equilibrium outcomes in 

large exogenous sunk cost industries, but not in endogenous sunk cost industries. The 

“nonconvergence” or “nonfragmentation” result for endogenous sunk cost industries has 

formally been shown in the context of static stage games by Shaked and Sutton (1987), 

and empirically tested by Sutton (1991).

In the following, we give a short overview of the three essays in this dissertation.

In oligopolistic markets, firms often invest mainly in order to get a competitive advan­

tage over their rivals. In doing so, they do not take into account the negative externalities 

they thereby impose on their competitors. Hence, firms in an oligopolistic industry would 

be jointly better off if they could somehow coordinate to invest less. In a dynamic infinite- 

horizon investment game, firms may sustain “underinvestment equilibria”, which exhibit 

lower investment levels than noncollusive equilibria, by threatening to engage in an esca­

lation of investment outlays in case of deviation. In contrast to infinitely repeated games, 

however, the existence of such tacitly collusive equilibria is not obviously ensured since, 

by deviating from such an underinvestment situation, a firm may leapfrog its rivals, and 

thereby get a persistent strategic advantage.

In chapter 2 of this dissertation, we consider a dynamic game of investment in R&D 

or advertising. In the first part of the essay, we analyse the effects of spillovers and patent 

protection on the sustainability of underinvestment equilibria. We start by constructing 

a “noncollusive” benchmark equilibrium. (In infinitely repeated games, the noncollusive 

equilibrium is simply the infinite repetition of the (unique) equilibrium of the static stage 

game. In dynamic games, the definition of a noncollusive equilibrium is no longer clear 

since the stage game may endogenously change over time. However, the benchmark equi­

librium we construct has properties which allow us to interpret the equilibrium as the 

natural generalisation of the familiar noncollusive equilibrium.) We then consider a class 

of strategies according to which firms do not invest, unless their rivals invest. If a firm 

deviated in the last period, then all firms revert forever to the noncollusive benchmark 

equilibrium. That is, firms try to sustain underinvestment (no investment) by the threat
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of escalation in case of deviation. We show that these trigger strategies do indeed form 

a Markov perfect equilibrium, provided there are no spillovers (or, alternatively, there is 

full patent protection) and the discount factor is sufficiently close to unity. In contrast, 

underinvestment can not be sustained in this way if there are strong spillovers (or weak 

patent protection), independently of the level of the discount factor. Hence, weaker patent 

protection may actually lead to more investment in equilibrium precisely because it re­

duces the incentives to invest in the benchmark equilibrium so that the threat of escalation 

becomes blunt. This should be of concern for antitrust authorities since welfare is shown to 

be unambiguously lower in underinvestment equilibria than in the noncollusive benchmark 

equilibrium.

The second part of the essay is concerned with issues of market structure. We first show 

that underinvestment equilibria may be stable with respect to further entry, independently 

of the level of entry costs and the size of the market. This implies that very concentrated 

outcomes may be sustained in arbitrarily large markets. The main question we address, 

however, is the following. The static version of the dynamic investment game possesses 

the nonconvergence property (Shaked and Sutton 1987): the number of firms remains 

finite even as the size of the market grows without bound. This nonfragmentation result 

for endogenous sunk cost industries has almost solely been shown in the context of static 

stage games. The open question is whether it still holds in dynamic investment games. 

The answer is not obvious since the nonfragmentation result excludes certain outcomes, 

namely fragmented ones, as being not sustainable in equilibrium. However, as is well 

known, in dynamic games, many more outcomes may be sustained in equilibrium than 

in the corresponding static games. Our main result on industry structure is reassuring 

in that it shows the robustness of the nonconvergence property: in any Markov perfect 

equilibrium of the dynamic game, the number of firms remains finite, no matter how large 

the market.

‘Cartels tend to break down under the pressure of excess capacity in periods of low 

demand.’ This has, for a long time, been the classical conjecture in the industrial eco­

nomics literature. The recent supergame-theoretic literature, however, appears to show 

that the traditional view is theoretically ill-founded, but without providing alternative 

testable predictions; see, for instance, Brock and Scheinkman (1985). In chapter 3 of
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this dissertation, we reconsider the traditional view in a (static) model of cartel stability, 

which focusses on firms’ trade off between participation in a cartel (so as to achieve a more 

collusive outcome) and nonparticipation (so as to take a free ride on the cartel’s effort to 

restrict output). The model follows Selten (1973) and others in assuming that firms do 

not cheat on cartel agreements once they have joined a cartel; this allows us to focus 

on firms’ participation decisions. In contrast, the supergame-theoretic literature usually 

assumes that all firms in the industry try to sustain collusion; this approach focusses on 

firms’ incentives to cheat.

The main part of the essay analyses the following two-stage game. At the first stage, 

firms simultaneously decide whether to join the cartel or rather the “fringe”. At the second 

stage, firms compete in quantities. The difference between cartel and fringe members is 

that the former set output so as to maximise joint cartel profit, while the latter maximise 

individual profit. Firms are symmetric and face an exogenous capacity constraint. We 

show that an increase in capacity, or a decrease in demand, has two effects that reinforce 

each other. First, for a given cartel size, it has a direct negative impact on equilibrium 

price. Second, it decreases the equilibrium cartel size, which in turn leads to lower prices. 

Hence, the model provides a theoretical foundation for the traditional view on the rela­

tionship between cartel stability and the level of demand (or capacity). Moreover, it makes 

a sharp empirical prediction: equilibrium price (or mark up) and demand are positively 

correlated, price and capacity negatively. In addition, we analyse the case of heterogene­

ity in firms’ capacities. Under some assumption on the cartel’s output sharing rule, we 

show that large firms have more incentives to join the cartel than their smaller rivals. 

As a result, one should observe a negative cross-sectional relationship between capacity 

utilisation rates and capacity levels. Finally, we consider a simple dynamic extension of 

the game, where demand follows an arbitrary stochastic process. In a Markov perfect 

equilibrium, prices will tend to vary procyclically.

Sutton’s (1991) theory on the relationship between concentration and market size is 

concerned with the stability of fragmented outcomes. His predictions relate to the (asymp­

totic) properties of the lower bound to concentration. In the final chapter of this disser­

tation, we investigate whether it is possible to tighten Sutton’s predictions. In particular, 

we analyse the stability of concentrated outcomes and seek to characterise properties of an
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upper bound to concentration.

Economic history provides many examples of cases where firms attempted to monop­

olise markets through horizontal mergers. Accordingly, in the first part of the chapter, we 

analyse an endogenous horizontal merger model. Following Sutton (1991), we distinguish 

between exogenous and endogenous sunk cost industries. In the exogenous sunk cost case, 

our model consists of three stages. At the first stage, firms decide whether or not to enter 

the market. At the second stage, firms are allowed to merge; coalition formation is mod­

elled as an open membership game. Finally, the newly formed coalitions (merged entities) 

compete in prices. In the endogenous sunk cost case, there is an additional investment 

stage just prior to the output stage. At this stage, the newly formed coalitions decide 

how much to invest in the quality of their product portfolio. Products are horizontally 

differentiated in a non-localised fashion; all goods are treated symmetrically. Mergers are 

conceptually well defined in this setup: the product portfolio of a coalition is the collection 

of its members’ products. In this model, we show that merger to monopoly cannot be sus­

tained in large exogenous sunk cost industries. In fact, in exogenous sunk cost industries, 

the upper bound to the one-firm concentration ratio goes to zero as market size tends to 

infinity. This is in contrast to endogenous sunk cost industries, where monopoly may be 

sustained even in arbitrarily large markets. That is, in endogenous sunk cost industries, 

the upper bound to concentration does not decrease with market size.

In the second part of chapter 4, we investigate the robustness of our predictions. Using 

Sutton’s (1997) equilibrium concept, we allow for arbitrary coalition formation games, side 

payments between firms, and monopolisation not only through horizontal mergers but also 

through product proliferation. In fact, we do not explicitly specify the extensive form of the 

game. We are, nevertheless, able to achieve powerful results by introducing the possibility 

of “ex-post entry” (e.g. post-merger entry). We show that our previous predictions carry 

over to this model. That is, allowing for ex-post entry, our predictions do not depend on 

any details regarding coalition formation or product selection.



Chapter 2

Underinvestm ent and Market 

Structure

2.1 Introduction

A central theme in the literature on investment is whether firms have sufficient incentives 

to invest. For instance, the rationale for patent protection is to give innovating firms the 

“right” incentives to engage in R&D. In oligopolistic markets, firms usually invest in order 

to gain a competitive advantage over their rivals. Because of this “business stealing effect” , 

noncooperative investment levels tend to be higher than the level that maximises firms’ 

joint profits. In a dynamic model of investment, the following question arises therefore 

naturally: ‘Is it possible that firms “underinvest” in equilibrium only because investing 

more would lead to an escalation of investment outlays by rival firms?’ In other words, 

‘Do tacitly collusive “underinvestment equilibria” exist?’

When analysing this question, there is a subtle but important distinction to be made 

between infinitely repeated games (supergames) and truly dynamic investment games. The 

theory of supergames, which has been applied mostly to price or quantity setting games, is 

well developed. Since oligopolistic interaction has the underlying structure of a prisoner’s 

dilemma game, we know from the Folk Theorem that in supergames tacitly collusive 

equilibria always exist for a discount factor sufficiently large. By contrast, truly dynamic 

investment games, in which current actions change future payoffs, are not yet very well

7
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understood. In particular, the existence of tacitly collusive (underinvestment) equilibria 

is not obviously ensured. The reason is that, by deviating, a firm might change future 

market conditions and, thereby, gain a persistent strategic advantage over its rivals. In 

their paper on investment in capacity, Fudenberg and Tirole (1983) have given an example 

of the existence of underinvestment equilibria in dynamic investment games. However, in 

their continuous-time framework, they have muted, by construction, the above distinction 

in that a firm can not leapfrog its rivals by deviating.

In R&D- and advertising-intensive industries, endogenous industry dynamics play a 

particularly important role in that current investments in product or process innovation, 

or in “goodwill” , change not only current but also future market conditions. Since in­

vestments in R&D or advertising axe sunk, these investments have a commitment value. 

This obviously suggests to model dynamic competition in R&D or advertising as a truly 

dynamic investment game rather than as an infinitely repeated game since, in the latter, 

tangible market conditions are assumed to be stationary.

In this paper, we explore the incentives of firms to invest, and to collude, in a dynamic 

(infinite horizon) game of investment in R&D or advertising. The focus is not on the 

dynamics of investments as such but rather on the commitment value of investments. 

We investigate, in particular, the issue of existence of tacitly collusive underinvestment 

equilibria when firms, by deviating, can get ahead of their rivals and, thereby, gain a 

considerable strategic advantage.

In our model, the existence of underinvestment equilibria depends crucially on the 

presence of spillover effects in the appropriation of the benefits from investment. When 

there are no spillovers or, alternatively, there is full patent protection, underinvestment 

equilibria exist as long as the investment cost function is sufficiently elastic, and the dis­

count factor sufficiently large. However, when there are strong spillovers and no patent 

protection, underinvestment equilibria fail to exist, even for discount factors arbitrarily 

close to unity. This implies that a weakening in the degree of patent protection can actu­

ally lead to more investment in equilibrium. The reason is that firms have less incentives 

to invest when they can not fully appropriate the benefits, and this reduction in the incen­

tives to invest destroys the mechanism through which underinvestment can be supported 

in equilibrium. Our model thus casts doubt on the effectiveness of complete patent pro­
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tection in fostering investment. This should be of particular concern since, as we show, 

underinvestment unambiguously reduces welfare.

The issue of existence of underinvestment equilibria in our model raises an important 

question for the analysis of market structure. The static version of our dynamic investment 

model satisfies the “nonconvergence property” (see Shaked and Sutton (1987) and Sutton 

(1991)): as market size becomes large, free entry does not lead to a fragmentation of the 

market. 1 In the limit when market size tends to infinity, the market share of the largest 

firm is bounded away from zero. This result is based on the “escalation mechanism” . The 

larger the size of the market, the greater are the returns accruing to a firm from raising its 

investment outlays. This implies, under some conditions, that increases in market size are 

associated with a rising level of firms’ investment outlays. In the limit, at least one and at 

most a finite number of firms will find it worthwhile to engage in an escalation of R&D or 

advertising spendings to capture a positive market share. Hence, concentration remains 

bounded away from zero, no matter how large the market. The escalation mechanism 

has been successfully tested by Sutton (1991) in his seminal work on advertising-intensive 

industries . 2

However, the nonconvergence property has been obtained almost solely in static stage- 

game models. The open question is whether this result still holds in dynamic models. In a 

static model, the way to prove the nonconvergence property is to show that there always 

exists a profitable deviation for some firm in a large and fragmented market. This deviation 

consists in a sufficient rise in investment outlays so as to capture a positive market share. 

In a dynamic model, however, such a single deviation might be followed by a severe (and 

possibly complex) “punishment” strategy by rival firms. What is at issue here is that the 

existence of underinvestment equilibria (when there are no spillovers) implies that firms do 

not necessarily engage in an escalation of R&D or advertising spendings precisely because 

firms will otherwise be punished. But without an escalation mechanism at work, the 

nonconvergence property breaks down. This is the central question on market structure we 

address in the present paper. Our result is very reassuring: the nonconvergence property 

is robust to the existence of underinvestment equilibria in our dynamic investment game.

1In Sutton’s (1991) terminology, the static version of our model is an “endogenous sunk cost model”.

2For a recent study on R&D-intensive industries, see Sutton (1998).



CHAPTER 2. UNDERINVESTMENT AND M ARK ET STRUCTURE 10

The plan of the paper is as follows. In section 3.2, we present the basic two-firm 

version of our model when there are no spillovers. The equilibrium analysis is given in 

section 2.3. This is, in section 2.4, followed by a comparison of welfare in the collusive 

underinvestment equilibria and the noncollusive investment equilibrium. In section 2.5, we 

introduce spillovers into the model. Then, in section 2.6, we turn to the analysis of market 

structure, and investigate whether the two-firm underinvestment equilibria are stable with 

respect to further entry, independently of market size and entry costs. In the following 

section, we turn to the central question on market structure: ‘Does the nonconvergence 

property hold in our dynamic game, despite the existence of underinvestment equilibria?’ 

Finally, in section 2.8, we conclude briefly.

2.2 T he Basic M odel

In this section, we present our basic dynamic model without spillovers. There are two 

firms, each offering a product variety. In each period, firms first decide how much to 

invest in R&D or advertising. Then, they compete in quantities. Investment is sunk, and 

persistently raises the consumers’ willingness-to-pay for the product variety. By investing 

more than its rival, a firm can, therefore, get a competitive advantage. Here, we do not 

allow for entry of a third firm. The topic of potential entry, which is essential for the 

analysis of market structure, will be taken up in the second part of the paper.

We consider an infinite-horizon game of investment in R&D or advertising. The frame­

work is essentially a dynamic version of the model in Sutton (1991). Time is discrete and 

indexed by t. There are two firms, i — 1,2, and N  consumers, indexed by I. Consumer 

preferences are defined over a ‘quality good’, produced in the industry under considera­

tion, and an ‘outside good’ (or Hicksian composite commodity) whose price and attributes 

are assumed to be constant. There are two varieties of the quality good on offer, one by 

each firm. Consumers are assumed to value quality. More specifically, consumer Vs utility 

in period t  is given by

Ul(x['1,x l̂ ,y [ )  = a l \ n ( ^ 2i=iuttx 1̂  + y lt (2.1)

if > and Ul(xlt' \ x lt’2,y lt) = —oo otherwise. We denote by x ltji >  0  and

y\ > 0 the quantities consumed of firm Vs variety of the quality good and the outside



CHAPTER 2. UNDERINVESTMENT AND M A RK E T STRUCTURE 11

good, respectively; u\ is the quality of firm Vs offering in period t, and a 1 is a parameter, 

assumed to be strictly positive, that measures the intensity of consumer Z’s preferences for 

the quality good. Consumer income in each period is denoted by m l. We assume m l > a1, 

for all consumers Z; otherwise we allow for arbitrary heterogeneity of consumers in the a ’s 

and in income. The quality index is normalised so that the ‘basic version’ of the quality 

good is of quality 1 , i.e. u\ > 1 . Note that, for x ltyt > 0, utility is strictly increasing in 

quality u\.

In the quality good industry, firm Vs period-Z-cost of investment in R&D or advertising 

is given by

«4-i) =  *b (“i f  -  Fo ( K - i f  (2.2)

if u\ > and F(u\;u\_i) =  0 otherwise, where Fo > 0 and (3 > 1 are parameters 

that measure the effectiveness of R&D or advertising outlays in raising the consumers’ 

willingness-to-pay. That is, we assume that the effectiveness of R&D or advertising outlays 

are subject to diminishing returns; for simplicity, we do not consider “adjustment costs”. 

In the case of investment in advertising, the quality of firm Vs period-Z offering can be 

interpreted as the stock of firm Vs “goodwill” accumulated up to period Z. 3  Note that 

F (u ; u ) =  0; that is, investment costs axe zero if a firm does not want to raise the quality 

of its product. We assume that quality does not depreciate. Notice that we do not require 

ut ^  ut- 1 5  however, investment costs are sunk. Both firms have constant and strictly 

positive marginal costs of production, c, that are independent of quality.

The time structure of the game is as follows. In each period, there are two stages. 

In the first stage, firms 1 and 2 simultaneously decide whether and how much to invest 

in quality improvement, and incur the fixed investment outlays. In the second stage, the 

two firms simultaneously decide how much to produce (quantity competition); consumers, 

taking price as given, decide how much to consume of each product, and prices are such 

that markets clear. Firm Vs second-stage profit in period t  is therefore given by {p\ — c)x\, 

where p\ and x\ are price and. quantity, respectively; firm Vs total profit in period Z is then 

(pt -^xi-Fiuiui^) .
Consumers are assumed to maximise the discounted value of per-period-utility, taking 

the sequence of prices and qualities as given. Since, for simplicity, saving and storing are

3The goodwill approach to advertising goes back to Nerlove and Arrow (1962).
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not allowed, this amounts to consumers maximising per-period-utility myopically. Firms 

maximise the discounted value of profits. The common discount factor is <5, 0 < 6 < 1. 

All parameters of the model, and all moves in past periods and stages, are assumed to be 

common knowledge.

2.3 Equilibrium Analysis: Escalation and Underinvestm ent

In this section, we turn to the equilibrium analysis of the basic model without spillovers. 

We first show the existence of a noncollusive “investment equilibrium” in which firms 

engage in an escalation of investment outlays. The central result of this section is de­

veloped in subsection 2.3.3, where we show the existence of a collusive “underinvestment 

equilibrium”. Underinvestment can be supported in equilibrium by the credible threat 

of escalation in case of deviation, even though, by deviating, a firm can get a persistent 

strategic advantage over its rival.

In the equilibrium analysis, we confine attention to Markov strategies that depend on 

the tangible state only; hence, the relevant solution concept is that of Markov perfect 

equilibrium (MPE). Recall that every MPE is a subgame perfect equilibrium (SPE), even 

when strategies are not restricted to be Markov. The idea of this approach is that history 

should influence current actions only if it has a direct effect on the current environment, but 

not because players believe that history matters. Furthermore, the state-space approach 

greatly simplifies the equilibrium analysis; as Shapiro (1989) notes, it allows us to focus 

on strategic aspects of commitment. (For further justification of the approach, see Maskin 

and Tirole (1988).)

At each decision node, the state of the industry can be summarised by the current pair 

of qualities {ul ,u 2) 6  [l,oo)2. Firm Vs (pure) Markov action rule at stage 1 in period t is 

a mapping s* : i— ► u\\ at the second stage of the same period its action rule

is a mapping V : (u},u2) i— ► x\. The state-space approach has real bite here in that it 

eliminates all bootstrap-type action rules in the output stage. Since quantity choice at a 

given stage 2  does not affect future payoff-relevant variables (qualities), the second stage 

in any given period can be analysed as a one-shot game.
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2.3 .1  C ournot C o m p etitio n  w ith  P erceived  Q uality

The important result of this subsection is that, for all pairs of qualities, there exists a 

unique stage-2 Nash equilibrium in quantities. The associated equilibrium profit is given 

by equation (2 .6 ), which will serve, in the remainder of the paper, as a reduced-form 

stage-2 profit function for the dynamic investment game. Below we present some routine 

calculations; they can easily be skipped by the reader.

Given qualities and prices, a consumer’s optimisation problem in period t (stage 2) 

can be written as
max a1 ln(Y\- ulx1'1) -1- yl

s.t. YliPtxl,t +  y l —

where we have normalised the price of the outside good to one, and dropped time indices 

for convenience. This programme is equivalent to

max a 1 In ( max < —r > ) +  a1 In(ml — y l) -I- yl. 
vl \  * [ P ' j J

Hence, in equilibrium the quality-price ratio u%/p % must be the same for all firms i with

positive market share. Solving the first-order condition yields yl =  m l — a z, which is

nonnegative by assumption. Total sales in the quality good industry, S, are therefore

equal to
2 2 N N N

S  =  =  ]T (m z -  yl) =  '£ < 1 . (2.3)
t=l i=l Z=1 1= 1  1 = 1

Given its rival’s price, firm j ’s price in equilibrium is given by

Pj = I t P1 (2-4)Vr

for j  7  ̂ i. Using equation (2.4) and the definition of S  yields firm i ’s price as a function 

of firms’ quantities:
S

x i +  (v j/u l) x i '

Thus, given its rival’s quantity, firm i sets x % so as to maximise

x* ( — , S , • - c)  • (2.5)\X* +  (v?/u%)x3 J

Remark that this expression is strictly concave in x*; it is zero at x l — 0, and tends to —oo 

as x* —> oo. Its first derivative at x* =  0 is strictly positive if S'/e >  {v?/u%)x i . Hence, the
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first-order condition, which can be written as

S  ' l -  ) - c  =  0 ,x1 -I- {v j/u%)xi \  x % +  {v j/u l)xi

gives a unique interior maximum if S /c  >  (uJ /u %)x?. Subtracting the two first-order 

conditions yields x l =  x-7 =  x. Simple calculations then give quantities, prices and profits 

in the unique stage-2 Nash equilibrium:

v? jv? Sx  =

u
p* =  c | ^  +  i

and

’r> 1’"2) = 5 ( ^ ^ t t )
for i , j  = 1,2, i 7  ̂ j .  Observe that profits in stage 2 depend on the quality ratio, and 

market size, only. Furthermore, equation (2.6) has the nice and intuitive property that a 

firm’s stage- 2  profit is increasing in its own quality, and decreasing in its rival’s quality; 

this differs from models of pure vertical product differentiation.

Above we have assumed that both firms will have positive market shares in equilibrium. 

To show uniqueness, we still have to prove that there does not exist an equilibrium with 

only one firm making (strictly) positive sales. From expression (2.5) it can be seen that 

firm Vs unique best reply to any quantity x-7 such that x-7 > (ul/u^)S /c  is to set its own 

quantity equal to zero. If only one firm has a positive market share in equilibrium (firm 

j ,  say), then its price is given by p 7 =  5/x-7, and its profit by S  — ex7, which is strictly 

decreasing in x-7 . Given that firm i sets its quantity x* equal to zero, firm j  therefore wants 

to set x 7 strictly below (ul/u^)S/c. Hence, there is no (pure strategy) Nash equilibrium in 

quantities such that only one firm has a positive market share.

Finally, remark that, in equilibrium, each consumer is indifferent between the offerings 

by the two firms. Consumer Vs period-t utility, in equilibrium, is therefore equal to
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2 .3 .2  D ynam ic Investm ent: E scalation

Having solved each period’s quantity competition stage, the dynamic game can now be 

viewed as a simple infinite-horizon investment game in which, in each period, the two firms 

simultaneously invest in quality, and firm Vs payoff in period t is given by

ir(i4,u?) = T r '(u } ,v% )  -  « {_ !). (2.8)

Infinite-horizon dynamic games, like the present one, are notoriously difficult to analyse 

since neither do they have a stationary structure (like infinitely repeated games), nor can 

they be solved by backward induction (like finite-horizon games). However, a class of 

subgame perfect equilibria can be found in our game by first viewing each firm’s sequence of 

investment decisions as a single-player dynamic optimisation problem, holding the quality 

of the other player fixed. In this way, we can determine a region in the space of qualities 

(state variables) such that neither firm wants to invest further, given that its rival will 

never invest again. Since this region is associated with “high” quality levels, we can then, 

in a backward induction fashion, proceed to determine equilibria for subgames starting at 

“lower” quality levels.

Suppose that the current quality of firm t ’s offering is given by with u%_x > 1 . 

Holding firm j ’s quality, u-7, fixed forever, firm t ’s optimisation problem is then given by
oo

(2.9)

with Ut =  uJ for all r  > 0. Due to the additive separability of the investment cost function, 

the dynamics are conveniently simple: given that its rival will never invest again, it is 

optimal for firm i to do all its investment at once, and then cease investing forever. 4  That 

is, firm i ’s optimisation problem can be rewritten as

and the optimal sequence of qualities is given by u \  =  u*{v?) for all r  >  0 , where u*{vP) 

denotes the solution to the above problem . 5  Note that u*(v?) > ul_ 1 since a firm’s stage-2

4We could get more “interesting” dynamics by allowing for “adjustment costs”, for instance. However, 

this would complicate the analysis unnecessarily and not change the qualitative insights.
xvemarK mat urm z 5 stationary oest-repiy, u uepenus on nrm z s ourrent quauty, u_j. For nota- 

tional convenience, we drop this argument.
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profit is strictly increasing in its own quality, so that it never pays to reduce quality; that 

is, sunk investments have commitment value. If u*{u*) > ul_ ^  then u*{u>) is the solution

A  - F« (“ ’)'■  (2 -10)

The concept of a best-reply (or reaction) function is a familiar one in the context 

of static games. Now, in a dynamic game, a best reply is defined relative to the whole 

sequence of action rules only; the best reply to any given quality level is not well defined 

since it depends on future actions. What is well defined, however, is a firm’s best reply to 

its rival’s quality, given that the rival firm will never invest again. This is exactly how we 

have constructed u*(*); we will, therefore, refer to u*(•) as to the “stationary” best-reply 

function. In the following, we will characterise both firms’ stationary reaction functions; 

due to symmetry, we can restrict ourselves to firm i ’s best-reply function.

L em m a 2 . 1  I f  (3 > 2, firm i ’s stationary best reply, u*(u^), is given by

u*(uJ) =  max {u(u-7 ),u!_1} ,

where ttl_i is firm i ’s current quality, and u(u^) is the unique strictly positive solution to 

the first-order condition of (2.10), i.e.

(If (3 =  2 and u3 > y /2S /{l — 6)/3Fq, there is no strictly positive solution to (2.11). In 

this case, u(ui) = 0.)7

Remark that firm i ’s “interior” stationary best-reply function, u(-), does not depend on 

the initial quality uLj; this is in contrast to u*(-). The following lemma is straightforward 

to show. For all proofs that are not given in the text, the interested reader is referred to 

the appendix.

6To see that in this case it is indeed optimal to invest all at once, observe that the dynamic optimization 

problem (2.9) can be rewritten in the following way:

”!> {s "(1"6)F° t4)*} +Fo (“'-1)’5’
and that u*(uP) maximizes the expression in curly brackets.

7Strictly speaking, the stage-2 reduced-form profit function is not defined for qualities below the mini­

mum quality of 1. For expositional clarity, we extend function (2.6) to all nonnegative qualities u*.
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Lemma 2.2 There is a unique intersection of the two interior (stationary) best-reply 

curves in (0, oo)2. This intersection corresponds to a symmetric state, (u,u), where u is 

given by

U= (4(1 — 6)/3Fo) ' (2-12)
Lemma 2.2 implies that if (xtLi, ̂ ?_i) < (u,u), then (u, u) is the unique intersection of 

the two stationary reaction curves. The stationary reaction curves are shown in Figure

3.1.

We can now define four regions in the space of qualities. In Region 1, U^l\  the qualities 

of both firms are above their respective interior best-replies:

C/(J) =  {(u1,^ 2) G [1, oo) 2  | u% > u(uj ), i , j  =  1,2, i ±  j }  .

Graphically speaking, this is the region above the outer envelope of the two interior best- 

reply curves. Region 2 consists of the pairs of qualities such that firm l ’s quality is above 

u and firm 2 ’s quality is below its interior best-reply; that is,

=  {(u1,^ 2) G [l,oo ) 2  | u 1 > u, u2 < u (u 1)} .

Region 4 is defined as Region 2, but firm indices are reversed. Finally, Region 3 encom­

passes all states that are below the symmetric intersection:

jj(3) =  {(v} ,u 2) G [l,oo ) 2  | u% < u, i — 1,2} .

We are now in the position to determine a MPE of the dynamic investment game, 

starting from any state of the industry.

Proposition 2.1 The following set of mappings from the current state, to

the space of feasible actions, [l,oo), induces a pure strategy for each firm. The induced 

strategy profile, £ esc, forms a MPE starting from any state.

(i) I f  (wj_i,u2_i) G U ^ \  then s*(wj_i,«t_i) =  ut-\> * =  1»2. ( “No investment.”)

(ii) I f  K L i ,^ 2. ! )  G t / (2), then =  u t - 1> a n d  s 2 (u t - i M - i )  =  “ (W -i)-

( “Only firm 2 invests.”)
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Figure 2.1: Stationary Reaction Curves
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(Hi) I f  € U $ \ then s*(u*_i,ttt_i) =  u, i = 1,2. ( “Both firms invest up to

u .”)

(iv) //(«<_!,«?_!) € C/(4), i/ien s1^ ! , ^ )  =  and

( “Only firm 1 invests.”)

P ro o f. Note that per-period net profits, TF(u],u2), are bounded above (by 5), and each 

firm maximises the discounted sum of its per-period net profits. This implies that the 

one-stage deviation principle for infinite-horizon games applies (see Fudenberg and Tirole 

(1991)): it is impossible to gain by an infinite sequence of deviations when one cannot 

gain by a single deviation in any subgame.

Observe now that, in each state of the industry, there exists a unique intersection of 

the two stationary reaction curves. Remark further that, according to Eesc, the state of 

the industry will move at once to this unique intersection. Now, recall that the stationary 

best-reply function, u*(•), gives the unique best reply, holding the rival firm’s quality fixed 

forever. Furthermore, notice that the unique intersection lies in U ^ \  so that no firm will 

invest again along the equilibrium path. Thus, by definition of u*(-), any single devia­

tion that does not induce the nondeviant rival to (dis)invest again can not be profitable. 

However, according to Eesc, a deviation can never induce the nondeviant firm to disinvest 

since investment costs are sunk. Finally, consider a single deviation that induces the non­

deviant rival to invest in the following period. Since stage-2 profits are decreasing in the 

rival’s quality, the deviant’s payoff along this path would be smaller than the payoff if the 

nondeviant did not invest again. But if the nondeviant firm did not invest again, then the 

deviant’s payoff would be even higher by not deviating at all. Hence, such a deviation can 

not be profitable. ■

Comparative statics results are easily obtained. Investment along the equilibrium path 

is weakly increasing in the discount factor, 6 , and the size of the market, S, and weakly 

decreasing in the cost parameters (3 and Fo-

R em arks. (1) Given the current pair of qualities, the stationary reaction curves 

of the dynamic game converge to the usual reaction curves of the corresponding static 

stage game as the discount factor 6 goes to zero. Hence, as 6 —► 0, strategy profile £ esc 

converges (in the space of action rules) to the unique Nash equilibrium of the associated
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static game. That is, the “investment equilibrium” is simply the dynamic version of the 

static (noncollusive) equilibrium.

(2) The investment equilibrium has another nice property. Let us denote our dynamic 

investment game with payoff function (2.6) by T. Define the dynamic game T ' as being 

equivalent to T, but with the following assumption on each firm’s information set: starting 

from an initial state (u1,^ 2), which is common knowledge, each firm observes, in any pe­

riod, calendar time and its own past moves only; the rival’s quality level is unobservable. 

(This is equivalent to the assumption that, in the initial period, each firm has to “precom­

mit” to the sequence of its future investments. Hence, T' is essentially a static game.) It is 

possible to show that, for any initial state, T' possesses a unique Nash equilibrium. Given 

(u1,^ 2), the unique equilibrium path of T' coincides with the equilibrium path induced 

by Ee5C in the original game I \  The unique Nash equilibrium of the modified game T' is 

often referred to as the open-loop (or precommitment) equilibrium of the original game T ; 

see Fudenberg and Tirole (1991). Notice, however, that the result is due to the absence 

of adjustment costs in our investment cost function.

(3) Consider the following T-period truncation of the dynamic investment game T 

with payoff function (2.6): after T  periods, T  > 1 , firms are restricted to choose the null 

action “no investment” , i.e. u\+1 = u\ for all t > T .  The truncated game Tt  possesses a 

unique SPE, which coincides with ^ esc (except for the fact that the SPE of the truncated 

game depends in a degenerate way on the entire history of the game). For more general 

investment cost functions with adjustment costs, the unique SPE of Tt  would converge 

to J^esc as T  —>■ oo.

Remarks (1) and (3) show that ^ esc can be interpreted as the noncollusive equilib­

rium in the dynamic investment game T. In the remainder of the paper, the investment 

equilibrium will, therefore, serve as the benchmark noncollusive equilibrium. We will call 

“underinvestment equilibrium” any equilibrium that exhibits less investment along the 

equilibrium path than this benchmark equilibrium.
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2.3 .3  D ynam ic Investm en t: U n d erin vestm en t

Along the equilibrium path, induced by strategy profile £ esc from proposition 2.1, both 

firms engage in an “escalation” of R&D or advertising spendings up to the symmetric 

quality level u if the current state is “below” (u, u). In particular, if the current state 

is (u,u), where u < u, then the state of the industry will move to (u,u), and stay there 

forever, even though both firms would prefer to stay at (u,u). (Since the stage-2 profit 

function, (2 .6 ), depends on the ratio of qualities only, the stage- 2  profit is the same in both 

states but, of course, moving to the higher state involves spending on R&D or advertising.) 

That is, both firms have an incentive to coordinate not to invest at all in order to avoid 

an escalation of R&D or advertising outlays, which is wasteful from their point of view.

Since we have established the existence of an MPE exhibiting escalation of investment, 

it might be possible to support “tacitly collusive” MPE, exhibiting little or no investment, 

by the threat of escalation in case of deviation. Formally, we consider a strategy profile, 

denoted by Eco11, that is induced by the following action rules. If ( 'u j_ i,^ _ 1) =  (u,u), 

then s*(wj_i,^t_i) =  u; if, however, (u t- iJ^ t-i) ^  (w>u)i then firms revert to strategy 

profile Eesc.

However, it is by no means obvious whether such an underinvestment equilibrium 

exists. Firstly, suppose the discount factor is (approximately) zero. Then, clearly, a 

deviation to u(u), where u(u) > u by definition of underinvestment, is profitable since the 

deviant firm does not care about future costs and stage-2 profits. Hence, by continuity of 

discounted payoffs in 6, there exists a profitable deviation for discount factors sufficiently 

small.

Secondly, suppose firm i deviates in period t by investing up to quality level u', ur > u. 

According to strategy profile E00̂ , the nondeviant will then, in period t +  1 , react and 

invest up to u(uf), where u(u') <  u; no further investment will occur. (By deviating to v! > 

u - 1 (u), firm i can even preempt any reaction by its rival.) Along this path, the deviant 

will make, in each period, higher stage- 2  profits than in the symmetric underinvestment 

situation. That is, by deviating, firm i can get ahead of its rival, and ensure that it will 

always have the higher quality. These additional stage-2 profits have to be compared with 

the associated investment costs, which occur in period t only. Intuitively then, such a 

deviation should be profitable for a sufficiently large discount factor. However, the higher
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is the discount factor, the larger are the returns accruing from investment in R&D or 

advertising, and hence the higher is the level of investment associated with Eesc. That is, 

the larger is 8, the more expensive it is for the deviant firm to ensure itself a persistent 

strategic advantage over its rival.

The following proposition gives one of the main results of this paper.

P ro p o sitio n  2.2 I f  (3 > 2, and the discount factor is sufficiently large, underinvestment 

equilibria exist In particular, suppose the current state is given by (tt1̂ , ^ ^ )  =  (u,u), 

where the quality level u is arbitrary. Then there is a threshold discount factor 8 G (0,1), 

such that for all 8 G (8,1), the path =  (u,u), for all r  > t, can be supported as a

MPE, namely by strategy profile Yf011.

It is straightforward to see that, under the conditions of of the proposition, asymmetric

underinvestment equilibria exist as well; this is a consequence of stage- 2  profits being

continuous in qualities.

As we have already argued above, the higher is the discount factor 8, the larger is the

increase in the discounted sum of stage- 2  profits from deviating to a given quality level

u ', u' > u. But with increasing 8, the stationary reaction curves move outwards so that

deviating to v! for a given quality ratio u'/u{v!) > 1  becomes more and more expensive.

Now, when the investment cost function is sufficiently elastic, i.e. (3 is sufficiently large,

then the cost effect dominates the stage- 2  profit effect.8.

Our results are reminiscent of the existence of “early stopping equilibria” in the

dynamic model of investment in capacity by Fudenberg and Tirole (1983).9 In their

continuous-time model, firms face linear investment costs and an exogenous upper bound

on the feasible flow of investment at each point in time . 1 0  These extreme assumptions

8Actually, the effect of an increase in /? on the profits from deviation is rather subtle; there are two

opposing effects. On the one hand, an increase in (3 makes the deviation to a given u’ more expensive; on

the other hand, it makes the response of the nondeviant rival less aggressive in that it decreases u(u') for

a given u'. For any given quality ratio u'/u(u') >  1, one can show that profits from deviation are first

increasing, and then decreasing, in (3.
9Reynolds (1987,1991) analyses Fudenberg and Tirole’s model in a linear-quadratic differential game

framework, where capacity depreciates over time.
10That is, Fudenberg and Tirole assume the information lag to be extremely short (zero) relative to

the speed of investment, in contrast to our model. Their assumption seems to be more reasonable in the
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directly imply that a firm can not leapfrog its rival by deviating. Moreover, notice that, in 

a model of capacity investment, gross profits for both firms can be higher at low capacity 

levels than at high levels; this is due to the fact that competition in quantities is tougher 

when both firms have higher capacities. (This is an important difference to models of 

investment in R&D or advertising, where gross profits will, in general, not be higher in 

lower states; see the remark below.) Hence, in this model, underinvestment equilibria 

trivially exist for all discount factors. To see this, consider two points in the state space, 

“A” and “B”, where “A” exhibits lower capacity levels than “B” , but higher gross profits 

(stage-2 profits). Suppose, moreover, that the noncollusive benchmark equilibrium re­

quires firms to invest from “A” to “B”. Clearly, “no investment” at “A” can be sustained 

in equilibrium, independently of the discount factor. 1 1

R em ark . Consider a model of capacity investment such as Fudenberg and Tirole 

(1983), but allow for more general cost functions and positive detection lags. We then 

claim the following. In a model of investment in capacity, i f  a firm can leapfrog its rival by 

deviating, and thereby get forever higher gross profits (stage-2 profits), then, for discount 

factors sufficiently close to unity, such a deviation must be profitable.12 Hence, underin­

vestment can not be supported. The idea behind this claim is simple. As the discount 

factor 6 goes to one, the stationary reaction curves converge to some “limit curves” . (The 

reason is that firms have no incentives to build huge excess capacities which are worthless.) 

Thus, investment levels are bounded from above, and get “dwarfed” by the discounted sum 

of gross profits as 6 —> 1. In fact, Fudenberg and Tirole mostly confine attention to the 

case 6 =  1 , where investment costs do not enter firms’ objective functions.

This is in sharp contrast to our model of investment in R&D or advertising, where 

the toughness of competition in investment levels is essentially independent of the level of 

investment. This implies that the stationary reaction curves do not converge to some limit 

curves as 6 —► 1, and investment costs do not get dwarfed. Hence, underinvestment can be

context of capacity investment than in the case of investment in R&D (or advertising).
11 Notice also that Fudenberg and Tirole’s motivation is quite different from ours: they focus on “mobility

barriers”. In particular, they investigate the validity of the proposed Stackelberg solution in Spence (1979),

where an early entrant in a new market can exploit its head start by strategic investment in capacity.
12Implicitly, we assume here that the increase in stage-2 profits is bounded away from zero, no matter

how large the discount factor.
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supported in our model, even though, by deviating, a firm can ensure itself forever higher 

gross profits. We believe that this difference between investment in capacity and invest­

ment in R&D or advertising is an important one. In fact, this difference is closely related 

to Sutton’s (1991) distinction between exogenous and endogenous sunk cost industries, 

which is crucial for the analysis of industrial market structure; see section 2.7. 1 3

In the analysis conducted so far, we have left out the important issue of potential entry. 

We will generalise the model so as to allow for potential entry and an arbitrary number 

of active firms in the second part of the paper, namely in sections 2.6 and 2.7. But before 

turning to the analysis of market structure, we will first analyse welfare in the basic model 

and, then, introduce spillovers.

2.4 Welfare Analysis

The aim of this section is to compare “welfare” in the symmetric investment equilibrium 

and in an arbitrary (symmetric) underinvestment equilibrium. This is of great interest 

since any action by antitrust authorities is justified only if “tacit collusion” indeed reduces 

welfare.

As a welfare measure, we choose the sum of discounted profits and discounted utility; 

we will call this measure “net surplus”. In our setting, this choice is natural and theoreti­

cally well justified since we use quasilinear preferences for this same reason. In particular, 

consumer utility is linear in “money” (outside numeraire good), and there are no income 

effects so that all profits can be redistributed to consumers without changing our analysis.

A priori it is not quite obvious whether or not net surplus is lower in an underinvestment 

equilibrium. Clearly, consumers’ utility, prior to any redistribution of profits, is lower in 

an underinvestment equilibrium, simply because per-period utility is increasing in quality, 

and prices depend on the ratio of qualities only. However, firms’ profits are unambiguously 

larger under “tacit collusion” since firms engage in less R&D or advertising. Indeed, from

13The point is the following. If a firm can already serve the whole market with its capacity, any further 

increase in its capacity has no impact on the firm’s market share; this is the exogenous sunk cost case. In 

contrast, by outspending its rivals in fixed R&D or advertising outlays, a firm can steal business from its 

rivals and thus increase its market share, although the investment may not increase industry sales. This 

is the endogenous sunk cost case.
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the viewpoint of a social planner, any R&D (or advertising) outlays by a second firm are 

wasted, holding prices fixed. (A social planner would set price equal to marginal cost, and 

one (subsidised) firm only would engage in investment and production.)

Nevertheless, the following proposition shows that the welfare comparison is unam­

biguous. But before stating and proving the proposition, we want to set the problem

formally. Given an initial state and any sequence of states, {(wJ,Uj)}^0, net

surplus along this path is equal to

oo ( 2  N  'J

i L ,6* 1 '5 2 IV (ut ’ut)  +  5 1  (“?>“ ?) \ > (2.1.3)
*=0 U=1 1=1 )

with Ul{-) and IP(-) defined in (2.7) and (2.8), respectively. This assumes implicitly 

that at any stage 2 the industry is in equilibrium, depending on the current state. The 

equilibrium path associated with the symmetric investment equilibrium is (u \ , u^) =  (u,u) 

for all t > 0 ; in case of a symmetric underinvestment equilibrium it is (u } ,u j) =  (u,u) for 

all t > 0 , where, by definition of underinvestment, maxluLj, u ^ }  < u  < u .

P roposition  2.3 In the symmetric investment equilibrium welfare, as measured by (2.13), 

is higher than in any symmetric underinvestment equilibrium.

The intuition behind the result is the following. Even in a second best world where 

two firms compete a la Cournot and the quality level is constrained to be identical for 

both firms, the noncollusive symmetric “investment” equilibrium exhibits too low a level 

of investment; this is true despite the presence of a business stealing effect. The reason 

is that the duopolists capture only a relatively small part of the surplus from R&D or 

advertising, and thus invest too little. Consequently, the problem of underinvestment is 

even more severe in any collusive “underinvestment” equilibrium.

2.5 Spillovers and Patents

So far we have assumed that a firm’s investment cost function, F{u\',u\_x), depends on 

its own quality level only. However, spillover effects are a pervasive phenomenon in many 

markets. For instance, a firm might be able to copy cheaply its rival’s technology. The 

rationale for patents is, of course, to prevent such free-riding; but, in practice, firms can
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often “invent around” existing patents. (For a survey on spillovers and R&D, see De Bondt 

(1996).) Similarly, it might be profitable for a firm to imitate the design and packaging of 

a rival brand so as to ffee-ride on the rival’s advertising outlays.

To highlight the effects of spillovers on the incentives for firms to invest and to collude, 

we make the following clearcut assumption: There are no immediate spillovers, but full 

spillovers after one period. More precisely, a firm can costlessly “copy” its rival’s quality 

of last period. Consequently, firm t ’s investment cost function, (2.2), is now replaced by

Fo (u \Y  -  F 0  [max if ut > max W - i ^ t - i }

0  otherwise.

This can be thought of, for instance, as firms having one-period patent protection when 

imitation is virtually costless. Alternatively, there might be no patent protection but a 

time-lag of imitation . 1 4

Intuition might suggest that the presence of spillover effects makes tacit collusion 

“easier” (supportable for lower discount factors) since, in the long run, firms will always 

end up in a symmetric state. Hence, by deviating to a quality level above the symmetric 

investment quality, u, a firm can no longer ensure itself higher stage- 2  profits ad infinitum 

than in any (symmetric) underinvestment equilibrium. The proposition below shows, 

however, that the opposite result holds.

In the presence of spillovers, a firm’s stationary reaction function has to be defined 

differently since it will generally be optimal for a firm to install at least last period’s 

maximum quality. Firm i ’s stationary best reply to Uq, u *(uq), is now the solution to the 

following dynamic optimisation problem:

where v!t =  m ax lu 1̂ , ^ . ! }  for r  >  1, and II1 (u1, ^ )  =  7r* (u1, ^ )  — F(u$.;ii1_1,i4 _ 1).

The interior stationary best reply, u(uJ0), is defined as the unique positive solution1 5  to

14This is consistent with there being many paths that lead to a given quality level: by investing in R&D, 

a firm discovers its own path; but a firm has also the option to copy its rival’s path which is protected for 

only one period.

15We assume here, as before, that (3 > 2 .  If /? =  2 and uJ0 > y/2S/(3Fo, then u(u30) =  0.
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the following programme:

max S  ( “°^U° ) -Fo(«o)'J +  -Fb[max{uL1, « i 1}p  +  — (2.14)
« J  V u o / « o  +  V  1 ~ 6 4

where the last term is the discounted sum of stage-2 profits from r  — 1 onwards that 

arise when both firms offer the same qualities. Clearly, the stationary best reply is given 

by u *(uJq) =  As in the case without spillovers, one can show

that there is a unique intersection of the interior (stationary) best-reply curves, namely 

at (u,u). The corresponding symmetric quality level, n, is now

u = •V
40FoJ '

Note that this symmetric quality level equals the one without spillovers, as given by (2.12), 

when the discount factor is zero. The four regions in the space of qualities, U^  to U^A\  

are defined exactly as before.

Since it is always optimal for firm i to set u\ > m a x l ^ . i , ^ } ,  we have to adapt 

strategy profiles Eesc and E°°11. Strategy profile Eesc/ is induced by the following set of 

action rules:

(i) If (wj_i,u?_i) G U^l\  then s ^ u j ^ u ^ )  =  max * =  1 , 2 .

(ii) If W -i»  w?-i) € U&\ then si (TxJ_1 ,t^_1) =  u j-n  * =  1,2.

(iii) If (wj_i,^?_i) € then ^ K L W - i )  =  u, i =  1 , 2 .

(iv) If K 1. ! , ^ )  € *7(4>, then s ^ u f - W - i )  =  u?_1} i =  1,2.

Analogously to E0011, strategy profile E00̂  is defined as follows: If (uj-i> “ t- i)  =  (u> u)» 

then ^ ( ^ t - i ^ t - i )  =  it, * =  1 , 2 ; otherwise firms revert to Eesc/.

We can now state and prove another main result of our paper.

Proposition 2.4 In the presence of spillovers, strategy profile Eesĉ  forms a MPE. How­

ever, (symmetric) underinvestment can not be supported as a MPE (by strategy profile 

E0011'), independently of the discount factor 6.

16Notice that firm i ’s stationary best reply, u*(uq), now depends not only on ul_ i, but also on u3̂ .  As 

before, we drop these arguments for notational convenience.
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The nonexistence result for underinvestment equilibria can easily be extended to asym­

metric underinvestment. The intuition for proposition 2.4 is as follows. The existence of 

spillover effects reduces each firm’s (noncooperative) incentive to invest, given its rival’s 

quality. This implies that any “noncollusive” investment equilibrium, as supported by 

strategy profile Eesc/, exhibits low quality levels in the long run, relative to the case with­

out spillovers. But any underinvestment equilibrium can only be enforced by the credible 

threat of escalation. In the presence of spillover effects, however, this threat is rather 

blunt.

Abstracting from strategic issues, in a world where costless imitation is possible, the 

individual incentives to get ahead of one’s rival are exactly the same as in a “myopic” world 

with or without spillovers, where the discount factor is equal to zero. Now, clearly, if the 

discount factor were zero, underinvestment could not be an equilibrium outcome since, 

by definition of underinvestment, there are always short-run gains from some suitable 

deviation. However, introducing spillovers in our model is not equivalent to reducing the 

discount factor (to zero). To see this, notice that the optimal “myopic” deviation from 

state (it, it) < (Tt,Tt) is to invest up to quality u{u). Suppose that, indeed, one firm deviates 

to u{u) in, say, period t. If u(u) < TZ, then, in period £ -I-1, both firms will invest further, 

namely up to quality level u. That is, the optimal myopic deviation requires to invest 

in both periods t and t + 1 , whereas the gain in stage- 2  profits is confined to period t. 

Hence, when S >  0, the optimal deviation in the presence of spillovers is, by continuity, 

not identical to the optimal myopic deviation. Furthermore, it is a priori not obvious 

whether, for large 8, a profitable deviation exists at all. (Notice, however, that the case 

u(u) < u for u < u  would not arise if qualities were global strategic substitutes.)

Let us compare the equilibrium investment level when there are spillovers to the in­

vestment level when there are no spillovers. Clearly, if firms do not collude in the latter 

case, then the investment level is higher than in the case with spillovers, holding fixed all 

parameters. But if firms do underinvest in the absence of spillovers, then the equilibrium 

investment level can be higher in the absence of spillovers. To see this, suppose the current 

state is given by (u, u) and choose parameters such that Tt > it in the presence of spillovers. 

Then, if the discount factor is sufficiently close to unity, there exists an equilibrium in the 

absence of spillovers such that no firms raises its quality level above it. Another interesting
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comparison is the following. Suppose the discount factor 6 is such that, in the absence of 

spillovers, underinvestment can be supported in equilibrium. Now, if the size of the market 

in the presence of spillovers is 1/(1 — 6) times the market size in the absence of spillovers, 

then the quality level u is the same in both cases. However, proposition 2.4 implies that 

underinvestment can not be supported in the presence of spillovers. In particular, a de­

viation from a quality level u, u < u, to u is profitable if spillovers are present and firms 

use strategy profile Y 0011' , but unprofitable if there are no spillovers and firms use Y 0011 -  

although the path induced by the deviation is the same in both cases. The reason is that 

market size was assumed to be larger in the presence of spillovers so that the deviant’s 

gain in the period of deviation is larger.

Our result has important implications for the literature on patents. A recurrent theme 

throughout the whole literature is that patents give firms higher incentives to invest in 

R&D, and will hence result in higher equilibrium levels of investment. Now, in a world 

where technological spillovers are present, one can interpret our model without spillovers 

as representing the case of infinite patent length and breadth, while the extension with 

spillovers corresponds to the case of short patent length. As we have shown, a shorter 

patent length can lead to higher R&D in equilibrium simply because it reduces the in­

centives to invest, and hence destroys the mechanism through which underinvestment can 

be supported. In light of the welfare analysis conducted in the last section, this suggests 

that, for any given discount factor, there exists an “optimal” patent length that gives 

maximal incentives to invest but is just short enough so as to prevent firms from colluding 

in investment.

R em ark . In this section, we have focussed on spillovers in the appropriation of the 

benefits from investment in R&D or advertising. In particular, we have assumed that 

spillovers are asymmetric in that technological laggards (or weak brands) profit from the 

investments of technological (or brand) leaders but not vice versa. This is a natural way 

of modelling spillovers in the present setup, and captures exactly what patent protection 

is about.

This differs from the way how spillovers are modelled in the literature on R&D cartels 

and joint ventures in the tradition of d’Aspremont and Jacquemin (1988) and Kamien, 

Muller, and Zang (1992). In this literature, process innovation is modelled as a static
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two-stage game. Spillovers directly affect the innovation process and are assumed to be 

immediate and symmetric: the innovation process of a technological leader benefits as 

much from the current investments of a technological laggard as the laggard can free-ride 

on the leader’s current effort. When products are substitutes and there are strong posi­

tive spillovers, the “cooperative equilibrium” exhibits higher investment in R&D than the 

noncooperative Nash equilibrium, while the opposite result holds when spillovers are neg­

ative, or positive but weak. Notice that in these static models, the joint profit maximising 

“cooperative equilibrium” is not a Nash equilibrium.

In a recent paper, Kesteloot and Veugelers (1995) have analysed the standard two- 

stage model of this literature when it is infinitely repeated. In this setting, tacitly collusive 

SPE always exist for large discount factors. However, as we have already argued in the 

Introduction, the supergame framework is not very appropriate for modelling strategic 

interaction in investment since it fails to capture the commitment value of investment. 

Kesteloot and Veugelers focus on the question of how the threshold discount factor, S, 

above which tacit collusion can be sustained, varies with the magnitude of spillovers. They 

show that when the strength of the spillover effect is sufficiently high, then an increase in 

the magnitude of the spillover leads to a rise in S, i.e. collusion becomes “more difficult” to 

sustain. This is somewhat in line with our results. However, in the case of strong positive 

spillovers, welfare in the collusive equilibrium is higher than in the noncollusive one since 

it exhibits higher levels of investment; this is in contrast to our model. The intuition for 

their result is the following: the larger are the spillovers, the stronger are the incentives 

for a firm to invest less and to free-ride on the nondeviant’s R&D expenditures. In our 

model, in contrast, it is always the nondeviant laggard that can free-ride in the following 

period on the deviant leader.

2.6 Potential Entry

We now turn to the analysis of market structure. In particular, we take up the issue of 

potential entry that has so far been kept aside in the analysis. The question is whether 

the high profits the incumbents make while underinvesting will trigger new entry. For this 

purpose, we extend the basic model by introducing an additional stage in each period at
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which further entry can occur.

By postulating a sufficiently high entry cost, the modeller could always ensure that 

it is not profitable for a new firm to enter the market. But for a given entry cost, entry 

would then still occur in sufficiently large markets. There is, however, an endogenous 

mechanism which might deter entry: the incumbents’ threat of escalation. The aim of 

this section, therefore, is to investigate whether or not this threat of escalation is credible, 

and whether it succesfully deters entry, no matter how large the market.This question is of 

interest for two reasons. First, it relates to the robustness of our two-firm underinvestment 

equilibrium. Second, it addresses a fundamental issue in the theory of market structure, 

namely whether or not concentration can be high in large markets.

The basic model is modified as follows. There are three players: the incumbents, firms 

1 and 2, and a potential entrant, firm 3. In each period, there are now three stages. At 

stage 1 , the potential entrant decides whether to enter or not if it has not yet decided 

to do so. If firm 3 decides to enter, it has to pay an entry fee ( “setup cost”) e > 0. At 

stage 2, the firms that are present in the market (the two incumbents, and firm 3 if it has 

decided to enter in this period or before) decide simultaneously whether and how much 

to invest in R&D or advertising. The potential entrant starts up with “zero” quality; 

its investment cost function in the period of entry is given by F e(u) =  Fqu13, and in all 

subsequent periods by (2.2). There are no spillovers. Finally, at stage 3, firms compete 

simultaneously in quantities. Consumers’ utility is given by the natural extension of (2.1) 

to three varieties of the quality good. As before, all past actions are assumed to be common 

knowledge.

The equilibrium analysis proceeds along the lines of section 2.3. In period t , the state of 

the industry is given by the quality triple (i£j,u? ,m?) € 3ft3, where we adopt the convention 

that v$ =  — 1  if firm 3 has not yet entered the market, and u% =  0 if firm 3 has entered the 

market but not yet invested in quality. A pure investment action rule is a mapping sl : 

(tij_1 ,u^_1 ,uf_1) i-* u\] a pure output action rule is a mapping t1 : i—► x\. As

before, the minimum quality (in order to make positive sales) is equal to one; therefore, 

the initial investment outlays necessary to produce the basic version of the quality good 

are equal to Fq.

As to the equilibrium analysis of the output stage, it is straightforward to show
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that there exists a unique pure strategy Nash equilibrium in quantities, given any state 

(ul,Ut,Ut). If firm 3 has not yet entered the market, or not invested, then its stage-3 

profit is zero, and the incumbents’ equilibrium profits are given by (2.6). Otherwise, firm 

t ’s stage-3 equilibrium profits are given by

S ( Z i i r 3 j £ i > 2
V J ^ * =1 “f -

5  C ; > f + i )  if ^  <  2 and “»> >  “*min (*  ^  J")
 o 4,min .

0 if E *= i <  2  and u\  = u f m,
(2.15)

where u™in =  min {u j,u ^ ,u ^ } . 1 7  Hence, in the three-firm equilibrium there exists a “qual­

ity window” such that a firm makes zero sales if its quality is too low relative to its rivals’ 

qualities. But there will always be at least two firms making positive sales in equilibrium; 

this explains why we did not find any quality window in the two-firm case. Observe that 

ttl(u},Ut,Ut) is continuous in all its arguments, despite the quality window.

The resulting subgame after entry of firm 3 can, in principle, be analysed analogously 

to the two-firm investment game, given the stage-3 profit function (2.15). However, entry 

is endogenous and might be deterred by the incumbents. We do not attempt here to 

investigate the three-firm case comprehensively. Rather, we focus on the question whether 

or not the two incumbents can be in a two-firm underinvestment equilibrium, and success­

fully deter entry by credibly threatening to engage in an escalation of R&D or advertising 

outlays in case of entry. The following proposition summarises our results.

P ro p o sitio n  2.5 There exists a (3 > 2 such that if  (3 € [2,(3], any two-firm underin­

vestment equilibrium is stable with respect to entry by a third firm. In particular, for 6 

sufficiently large, there exists a MPE such that =  (u,u, —1) for all r, with

u < u. This is true independently of market size and entry costs.

We have thus shown that the same mechanism that supports underinvestment in equi­

librium can be sufficient to deter further entry. The proposition illustrates that concentra­

tion can be high even in very large markets. Remark that, if (3 6  [2,(3], the (symmetric) 

investment equilibrium is also stable with respect to entry by a third firm but, of course, 

even without the threat of further escalation.
17 For a general proof of the n-firm case, see the proof of Lemma 2.3 in the Appendix.
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2.7 Market Structure and Nonconvergence

In the early literature on industrial market structure, the alleged negative relationship 

between market size and concentration, even though noted by some authors, has not 

received much attention. From a theoretical viewpoint, such a negative relationship was 

considered to be quite obvious: for a given level of “barriers to entry”, an increase in 

market size should raise the profitability of incumbent firms, and thus trigger new entry, 

which would lead to a fall in concentration. However, the empirical evidence from cross- 

sectional studies was found to be rather weak.

It is only quite recently that the size-structure relationship has become a major focus 

of research. In his landmark book, “Sunk Costs and Market Structure”, Sutton (1991) 

shows that the alleged size-structure relationship breaks down in certain groups of indus­

tries. In particular, Sutton makes the important distinction between “exogenous” and 

“endogenous” sunk cost industries. In exogenous sunk cost industries, the only sunk costs 

involved are the exogenously given setup costs; R&D and advertising outlays are insignif­

icant. In endogenous sunk cost industries, on the other hand, the equilibrium level of 

sunk costs is endogenously determined by firms’ investment decisions. Roughly, these are 

industries in which advertising or R&D “works” in that investments in some fixed outlays 

raise the consumers’ willingness-to-pay (or reduces marginal costs of production). Sutton’s 

predictions are that in exogenous sunk cost industries, the lower bound to concentration 

tends to zero as the market becomes large, whereas in industries for which the endogenous 

sunk cost model applies, the lower bound to concentration is bounded away from zero . 1 8

The “fragmentation” result for exogenous sunk cost industries can be illustrated by 

reference to a simple two-stage game. At stage 1  ( “entry stage”), firms decide simultane­

ously or sequentially whether or not to enter the industry. If they decide to do so, they 

have to pay an entry fee e >  0. At stage 2 ( “output stage”), the firms that have entered 

the market compete in prices or quantities, according to some static oligopoly model. 

Firm Vs stage-2 equilibrium payoff can be summarised by some reduced-form profit func­

tion S'7r*(n(5 ,€)), where 5  denotes market size, and n(5, e) the number of entrants. It 

is assumed that the number of potential entrants, no(S, e), is sufficiently large; that is,

18This result follows from an exercise in comparative statics with respect to market size. Notice that it 

is not assumed that market size increases over time.
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no (S', e) >  n(S, e) (“free entry”). For a wide class of standard oligopoly models describing 

competition in the output stage, the equilibrium number of firms in the market tends to 

infinity as the market becomes large, i.e. n(S, e) —► oo as S  —► oo, and the market share 

of each firm converges to zero. 1 9

In the endogenous sunk cost model, there is a further stage in which active firms make 

sunk investments in, say, R&D or advertising. The resulting game consists of three stages: 

the entry stage, the investment stage, and the output stage. The “nonfragmentation” or 

“nonconvergence” result states that, under some general conditions, the market share of 

the largest firm is bounded away from zero in any equilibrium. In some models a stronger 

result obtains: the number of active firms remains finite in the limit when 5  —> oo. The 

reason is that, as the market becomes large, firms engage in an escalation of investment 

outlays which makes it increasingly expensive for rivals to capture a positive market share. 

Sutton calls this the “escalation mechanism” . 2 0

However, the nonconvergence result has been obtained almost solely in static stage 

games. 2 1  According to Sutton (1998), the open question is whether it still holds in dy­

namic investment games like ours. What is at issue is that the existence of underinvest­

ment equilibria in our dynamic game implies that firms do not necessarily engage in an 

escalation of R&D or advertising outlays; but without an escalation mechanism at work, 

the nonconvergence property can not hold. To make this point clear, let us consider the 

following example. Suppose that, for a given market size S , there exists a symmetric un­

derinvestment equilibrium in which all n(S', e) active firms offer quality u in each period, 

where n(S , e) is such that any additional entrant would make an overall loss. Now, if this 

underinvestment equilibrium still holds under free entry when the market becomes large, 

then we are back in an “exogenous sunk cost world” , in which each firm has to pay an

19For another class of models (which allow, for instance, for multiproduct firms), multiple equilibria are 

endemic. The same model may permit fragmented equilibria, in which, for example, each firm offers one 

product, and concentrated equilibria, in which a single firm is crowding out the product space. The more 

general fragmentation result refers, therefore, to the lower bound to concentration. This has been dubbed

the “bounds approach” to concentration. For a discussion, see Sutton (1991).
20For a precise statement of the conditions under which the nonconvergence property holds, see Shaked

and Sutton (1987) and Sutton (1991). In the case of pure vertical product differentiation and price 

competition, the finiteness result has been first obtained by Shaked and Sutton (1983).

21T w o  exceptions are in Sutton (1998) and Hole (1997).
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exogenous setup cost of e +  F(u). Consequently, the nonconvergence result breaks down 

in this case. (Actually, one could allow quality u to increase with S, and still get that 

n(S, e) —*• oo as S  —► oo, unless u increases too fast with S.)

Another way of seeing this point is the following. In a static stage game, the non- 

convergence property is proved by showing that in a sufficiently large and fragmented 

market, there always exists a profitable deviation for some firm. This deviation consists 

in an escalation of fixed R&D or advertising outlays so as to capture a larger share of the 

market. Now, in a dynamic game such a deviation might not be profitable since it can 

trigger an escalation of investment spendings by rival firms, which is detrimental for the 

deviant firm’s profit.

As to the result of section 2.6, this can be seen as an example of nonfragmentation in 

that two firms are able to deter further entry, no matter how large the market, as long as 

(3 € [2,(3\. However, this equilibrium is not unique; there is another equilibrium in which 

the two firms acquiesce, and further entry takes place.

To address the issue of nonconvergence, we have to modify the basic version of our 

dynamic investment game. The time structure is as in section 2.6; that is, there are three 

stages in each period: entry, investment, and quantity competition. There is an initial 

period (say, 0 ) before which there are no active firms, i.e. all firms are potential entrants 

in period 0. Entry costs as well as the investment cost functions for a new entrant and 

for an incumbent are as in section 2.6. The consumers’ utility function can be generalised 

in an obvious way to an arbitrary number of firms offering each a variant of the quality 

good.

As before, the output stage in each period can be analysed as a one-shot game.

L em m a 2.3 In any given stage 3, there exists a unique (Markov-)Nash equilibrium in 

quantities. Suppose there are n(S) active firms. Re-label the firms such that firm  1  offers 

the highest quality, u1, and firm n(S) the lowest quality, un(s \  Then, in equilibrium, there 

is a “quality window” such that firms 1  to n(S) only make positive sales, where n(S) is 

the maximum integer z, z < n(S), such that ^ i= i  {uZf u%) > z — 1. Firm i ’s stage-3
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equilibrium profit is given by2 2

V Z?isM / » ) J  ~ - K ’ (2.16)
0  otherwise.

Notice that the above labelling is not unique when two or more firms offer the same 

quality; in this case, however, each of these firms produces the same amount in equilibrium.

Using equation (2.16) as the reduced-form stage-3 profit function, we can now focus on 

the analysis of investment strategies. For technical convenience, we restrict attention to 

equilibria such that all investment, along the equilibrium path, occurs in the initial period, 

when the market opens . 2 3  This implies, in particular, that the number of active firms re­

mains constant over time. However, we allow for all the “investment” , “underinvestment” 

and “entry deterring” strategies we have considered earlier as well as for much more com­

plex strategies. Of course, we allow strategies and any equilibrium path to depend on 

market size.

In a dynamic game, the lower bound to concentration for a given market size might be 

quite different from that in a static game. The open theoretical question is whether or not 

the asymptotic properties are the same, namely that the lower bound does not converge 

to zero as market size becomes large. In the section on potential entry, we have already 

seen that nonconvergence is a possible outcome in our model; what is at issue is whether or 

not it is a necessary outcome in that it occurs in all equilibria. The following proposition 

gives the central result on market structure.

P ro p o sitio n  2.6 The nonconvergence property holds in our dynamic game. In particular, 

in any MPE, the number of active firms, n(S), remains finite as market size tends to 

infinity.

The proof of this proposition is rather lengthy, and can be found in the appendix. 

Here, we just give a sketch of it. We first assume that there exists an equilibrium such

22For notational convenience, we describe the current state by the quality tuple of active firms only.
23This assumption is not essential; its only purpose is to pin down an (arbitrary) equilibrium path.

Notice also that there is no “technological” reason why firms should not do all investment in the first 

period.
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that n(S) —► oo as 5  —► oo, and then show that this leads to a contradiction. We 

pick the firm with the lowest quality in equilibrium and calculate an upper bound on its 

equilibrium profit. Then, we consider a carefully selected deviation for this firm, which is 

a function of market size and its rivals’ qualities. One can easily calculate the deviant’s 

associated profits in the period of deviation. Since we do not make any restrictions on 

the “punishment strategies” , we can not say much, at this level of generality, about the 

deviant’s profit in the periods after deviation. What we do know, however, is that these 

profits are nonnegative. This is sufficient to show that the deviation is profitable for large 

markets. Hence, the threat of future escalation does not have enough bite to prevent the 

deviating firm from escalating its investment outlays so as to capture a larger share of the 

market. This contradicts the initial assumption.

Our result is reassuring in that it shows the robustness of the nonfragmentation result 

to the existence of underinvestment equilibria in dynamic games. Remark that we have 

actually shown a “strong version” of the nonconvergence property to hold: the market 

share of all firms is bounded away from zero, no matter how large the market. Note 

also that proposition 2 . 6  does not imply that underinvestment equilibria necessarily break 

down when market size becomes large, as we have already seen in section 2 .6 .

2.8 Conclusion

In this paper, we have explored a dynamic game of investment in R&D or advertising. It 

is quite distinct from the applied literature on supergames since, in our model, current 

investments change future market conditions. From a game-theoretic viewpoint, the model 

is related to the dynamic game of capacity investment by Fudenberg and Tirole (1983). 

It differs from their continuous-time framework in that firms can leapfrog their rivals. 

Therefore, the existence of tacitly collusive equilibria is no longer ensured. In the first 

part of the paper, we have focussed on the issue of existence of underinvestment equilibria 

when firms have strong incentives to deviate and, thereby, to persistently improve their 

strategic position. In the second part, we have introduced potential entry into the model 

so as to address issues of market structure.

Using a state-space approach, we have shown that when strong spillovers in the ap­
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propriation of the benefits from investment are present, underinvestment equilibria fail to 

exist, while the opposite result holds without spillovers. This implies that a weakening in 

the degree of patent protection can actually lead to more R&D in equilibrium even though 

(or, rather, because) it reduces the individual incentives to invest. Furthermore, we have 

shown that underinvestment should be an issue of concern for antitrust authorities in that 

it unambiguously reduces welfare. This is especially true since detecting tacit collusion 

in R&D or advertising is likely to be much more difficult than detecting tacit collusion in 

price setting.

The existence of underinvestment equilibria has raised the question whether one of the 

central results on market structure in the I.O. literature, the “nonconvergence property” 

namely, breaks down in dynamic investment games. What has been at issue is that, in 

an underinvestment equilibrium, firms do not engage in an escalation of fixed investment 

outlays; but without an escalation mechanism at work, the nonconvergence property can 

not hold. Our main result on market structure is very reassuring: the nonconvergence 

property is robust to the existence of underinvestment equilibria.

2.9 Appendix

Proof of lemma 2.1. The first-order condition of (2.10) is given by

* ' “0 a S  ( T O F  -  ™  ^  = °- <2-17>
Now, observe that <p (u1 | uJ) —► —oo as u% —> oo, <p (0 | uJ) =  0. Furthermore, for u% >  0:

<fi (u* I uj ) > 0 (1 Z f i 0 oui >  (“O'5-2 (u* + “0 s •

The l.h.s. of the last inequality is independent of ux, and strictly positive for >  0. If 

(3 > 2, then the r.h.s. tends to zero as ul —> 0. If (3 =  2, then in the limit as u1 —> 0, 

the l.h.s. is larger than the r.h.s. if and only if v? <  yj2S /{l — 6)(3Fq. Note also that 

for (3 > 2, the r.h.s. is strictly increasing in u1. Therefore, if (3 > 2 (or if (3 = 2 and 

v? < ^ 2 5 /(1  — 8)(3Fq), there exists a strictly positive u{v?) such that <p (ux | ttJ) > 0  

if and only if u% < u{v?), and ip (u1 \ w-7) <  0 if and only if u1 > u{v?). Thus, u{u*) 

is the unique strictly positive solution of (2.17), and hence of (2.10). (If (3 = 2 and 

> y /2S /{ \ — 6)(3Fq, however, then u(ui) =  0.)



CHAPTER  2. UNDERINVESTMENT AND M ARK ET STRUCTURE 39

This obviously implies

u*(v?) =  max {u(v?)t ux_ y }

as long as (3 >  2 . ■

P roof o f lem m a 2.2. Suppose there exists an intersection of the two interior sta­

tionary best-reply curves at (ul ,u 2) G (0,oo)2. By definition, u(ux) =  u 2  and u(u*) =  u2. 

From lemma 2.1, the associated first-order conditions are given by (2.11), i.e.

25 ulu2 , v\/3-i
l - ^ + u 2)3 - 0F° ( U )

Since the left-hand side is the same for both firms, it follows immediately that u 1 — u2. 

Simple calculations show that ul =  u2 =  u, as given by (2 .1 2 ). ■

Proof o f proposition 2.2. Since the strategy profile Eesc forms an MPE, it is 

sufficient to show that there is no single profitable deviation when the current state is 

given by (u}_i,u?_i) =  (u,u). The proof is organised as follows. We first seek the optimal 

deviation for any player (due to symmetry, we can confine attention to an arbitrary firm), 

and then show that the associated net present value of future profits, n deu, is not larger 

than the corresponding value in case of nondeviation, IIco/i. We distinguish three cases.

Case (i): Firm 1 , say, deviates in period t  by raising its quality to u', where u < u ' < u\ 

that is, the state moves to (u ',u ) in period t. According to strategy profile E00**, both 

firms will then invest further in period t +  1 , and the state of the industry will be given 

by (i4, u2) =  (u,u) for all r  > t + 1. The associated discounted sum of profits for the 

deviant is equal to

n d e v = s  ( y ^ r r ) 2 - (1 -  m { u r + F o u 0 + r r s ^ ~ 6 m 0 ’ (2-18)

while in case of nondeviation it is given by 11°°̂  =  5 /[( l — <5)4]. Maximising Hdev with 

respect to u' gives a first-order condition identical to (2 .1 1 ); hence the condition is sufficient 

for a maximum. Note, however, that the unique positive solution to (2.11) might be larger 

than u. (It is straightforward to show that this is indeed the case when u < ( 2  +  y/E)u; 

we are dealing with this case in part (ii) of the proof. Hence, in the following we analyse 

the case when the reverse inequality holds. By choosing 6 sufficiently close to 1 this 

can always be ensured.) Denote the optimal value of u' by u'(u). Then, from (2.11),
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(1 — 6)Fo[u'(u)]P = (2/{3)S[u'(u)]2u/[u'(u) +  it]3. Substituting (1 — 6)Fo[v!(u)]P and u in 

(2.18) gives

m * °  =  s ( - f f i L ' ) 2 - +  F o n t  +  *  s ^ ~ 1
u'(u) + u J (3[u'(u) +  it] 3  1 — 6 4 \  (3

which is continuous in 6. Now, multiplying both sides by (1 — 6), and taking the limit as 

6 goes to one, one gets

lim (l -  * ) n -  =  f  ( ^ i )  < f  =  lim (l -  5)n - .

Hence, there exists a 6 ^  < 1 such that for all 6 > 6 ^  deviation is not profitable.

Case (ii): Suppose now that, in period £, firm 1  deviates to a quality u' such that 

it- 1  (it) > uf > u . In period £ +  1, firm 2 will then react and raise its quality to u*(u') = 

u(v!), where u < u(u') < u. Hence, the sequence of states induced by the deviation will be 

given by (u\,u$) =  (u',u) for r  =  £, and (u\,u*) = (u ',u (u ')) for r  > t + 1. The deviant’s 

discounted sum of profits is thus equal to

nd*“ =  5  ( - T F T t ) 2 -  +  FouP + T~~a S  (  2 • (2-19)\v ! /u  + l j  1 —6 \ u ,/u(v!) +  1J

Maximising this expression with respect to u' yields the first-order condition for optimal 

deviation:

6 u' \u(u>) —u' ^
2 5 . , , , 3 -  PF oW ?-1 +  2 5  I ■■■- ..■■ -J . =  °> (2 '2 ° )[w 4- u\6 l  — o [u +  u(u’)]6

where u(uf) is implicitly defined by (2 .1 1 ), and du(uf)/dut can be obtained by implicit 

differentiation of (2 .1 1 ):

25 S(u/)[g(tx/) - 2 u/]
du(u )   1 —5 [uZ+^u' ) ) 4

~ * r  ~  ~  -  w  -  l)^o[S(«')]^-2 '

In order to reduce the dimensionality of the problem, let us define u'x such that u(u'x) =

\ u 'x, where A E (0,1]. For a fixed A, the first-order condition for the nondeviant’s best

reply to u'x , (2 .1 1 ), can then be rewritten as

2S u'x(\u'x) r w i ^ - i  — 0

Solving for u'x gives
/  29  1 \  "p

U'x =  ( ( 1  -  6)0FO A»-2(l +  A) 3  J ‘ (2'21)
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This enables us to calculate du(u')/du' locally at v! — vfx, as a function of A:

du(u')
dv! A<2 ~ A> (2.22)

=u'x 2A -  1 +  ((3 -  1)(1 +  A)’

which is strictly negative for A E (0,1] and (3> 2: the higher is the deviant’s quality, the 

less will be invested by its rival.

We can interpret firm l ’s “optimal deviation problem” as a choice of A. The deviant’s 

first-order condition, (2.20), for the optimal A, denoted by A$, can now be written as

u'=u\xs
13 = 0,

where u'x and du,(u')/du' |u/=u/ are given by (2.21) and (2.22), respectively. Multiplying 
6 xs

both sides by ( 1  — <$), taking the limit as S goes to one, and simplifying, one gets

«A 1) =  A? +  A f- 1 - i ^ A 1 - ^  =  0, (2.23)

where Ai =  lim$_*i A$. This is the first-order condition for the optimal A as a function 

of (3 in the limit when 8 —► 1 . Since the sign of the coefficients in (2.23) changes once if 

(3 > 2, Descartes’ sign rule tells us that (2.23) has exactly one (strictly) positive root . 2 4  

Now, £(1) =  1//?, £(0) =  (2 — (3)/(3 < 0 if (3 > 2, and £'(0) <  0. Hence, if (3 > 2, there 

exists exactly one Ai E (0,1] such that £(Ai) =  0. Since an increase in u' corresponds to a 

decrease in A, and £(0) < 0  and £(1) > 0, (2.23) defines indeed a maximum! The optimal 

choice of A, in the limit when 8 —> 1, is therefore the unique Ai G (0,1] satisfying (2.23).25 

It is straightforward to show that Ai is strictly increasing in / ? , 2 6  and that Ai —+ 1  as

24It is straightforward to generalize Descartes’ sign rule, which has been developed for polynomials, to

the case when the powers are not necessarily integers, but (more generally) rational numbers. To see this,

define f(x) =  ao +  a ix bl +  ... +  anxbn, where bi =  Pi/qi and pi,qi € N. Suppose q is the smallest common

denominator of the bi's. Then, f(x) can be rewritten as a polynomial: £(x) =  ao +  a \ybl +  ... +  any bn,

where y =  x 1̂  and bi =  qpi/qi £  N. As to irrational (3's, one can show that, in our case, f(x) has exactly

one sign change at some positive £ for any real (rational or irrational) /3>  2.

25Here, we abstract from the lower bound on Ax, which is given by u /u~ l (u).
26Implicit differentiation of (2.23) gives

dXi _  (In A i)(A f +  A?"1) +  (Ai -  2) //3 2
d(3 (3 \e~ l +  0? -  1)A ?"2 -  03 +  l ) / /3  ’

Clearly, the numerator of the r.h.s. expression is negative for Ai < 1. As to the denominator, (2.23) implies
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0  -* oo.27.

Substituting u' in (2.19) by v/Xi, as given by (2.21), and substituting u(u') by Aitt^, 

multiplying both sides of (2.19) by (1 — 6), and taking the limit as 8 —► 1, yields

lim (l -  6)IT1"  =  . S t (1  -  2
(1 +  * i ) 2 V +  A i)

S  l X -  2
(1 +  A i)2 \  +  1 +  (/3 — 2 ) /A i

S / ( / J - i ) A , + / ? - 2\| ) . n ‘
(1 +  Ai) 2  \ ( 0  +  l)Ai +  (3 — 2 

where the second equality follows from the definition of Ai in equation (2.23). Observe 

that dHdev (X\, 0) /  dX\ < 0. To find a suitable lower bound on Ai, let us define

/w  _  \ 2  ^ 0  ~ %

If 0  > 2, there is a unique strictly positive Ai such that ?7 (Ai) =  0; it is given by Ai =  

(0 — 1)/0 . Furthermore, we have 77(A) > £(A) for all A E (0,1], where 4(A) is defined as in 

(2.23). Hence, Ai < Ai and n dew(Ai,/?) > n dev(Ai,/3) =  l im ^ i( l  -  6)Ildev.

Remark that if 0  =  2, then Ai =  1/2, and n dev(l/2,2) =  AS/27 < S /4 =  l i m ^ ^ l  — 

<5)ncoW. One can show that the total derivative of Hdev (X\(0), 0) with respect to 0  is 

positive: the higher is the elasticity of the investment cost function, the higher is the upper 

bound on the profits from deviation. Finally note that X\(0) —*• 1 as 0  —► 0 0 , and thus 

n dev(Ai(0),0) —+P- + 0 0  S/A =  lim$_>i(l —<5)11®°“ . Hence, for all 0  > 2, lim *_ i(l-8 )U dev < 

lim*_»i(l -  <5)nco“ .

Because of continuity in 8, there exists therefore, for any 0  > 2, a threshold value 

8 < 1  such that for all 8 > 8̂ n\  deviation is not profitable.

Case (Hi): Finally, suppose the deviant firm (firm 1 , say) preempts any reaction by 

its rival. That is, in period £, firm 1 chooses a quality level u' such that u{v!) < u; in the 

induced subgame, the state of the industry will then be given by (wj.,u2) =  (u',u) for all 

t > t.

that A? +  A?-1 -  (1 +  0 )X \/0  =  (/3 -  2)/0  >  0 if (3 >  2, and hence 0X{~x + ( ( 3 -  1)A?"2 -  (1 +  0 ) /0  > 

Xf~l +  A -̂2 — (1 +  0 ) / > 0 if 0  >  2. That is, the denominator is positive, and hence dX \/d0  >  0, for 

0 >  2.
27T o see this, suppose otherwise that Ai —* • / : <  l a s / 3 —> 00. Then, from (2 .2 3 ), it follows that 

£(Ai) —► —k — 1 < 0 as 0  —> 00. But this contradicts the definition of Ai.
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Since u-1 (u) >  u*(u) (where the inverse of u(-) is defined over the decreasing part 

of u (•) only), the deviant firm chooses u' such that u(u') = u so that its rival is just 

preempted. That is, the optimal preemptive deviation, u ', is implicitly defined by

2 S uu
-  PFquP -1 =  0. (2.24)

1 — 6 (u +  u')3

Now, <t>{u) >  0 if and only if u < u (which is, of course, the relevant case of underin­

vestment, and can always be ensured by choosing 6 sufficiently large), lim ^ o o  4>(u') = 

—(3Fqu^~1 < 0, and <//( u') <  0 for all u' > u/2. Thus, if u < u, there exists a unique u', 

v! >  u, such that <f)(u') =  0. Define = u '/(u  -(- it7), and note that ip{v!) E (1/2,1), 

and =  1. Equation (2.24) can now be rewritten, and solved for u

vf = 2 S W )  y/2_
u.

(1 -  6)(3Fq vP~2 J 

The discounted sum of profits from deviation is then equal to

n * »  =
(1--5)

and, hence,

(  25
^ ( \—6)(3Fq llF 1 ~ u

(  25
\{ l-6 )/3 F 0 lP = *  J

1/2 - F 0
f  2 S

6)0FO J + Foul3,

lim(l -  S)n * ” =  ^$-►1

—oo if (3 > 2

0 if 0  =  2

S  otherwise.

If (3 > 2, there exists therefore a 6 ^  < 1 such that for all 6 > TV*60 < H0011. ■

P roof o f proposition 2.3. Instead of directly comparing welfare in the two “classes” 

of equilibria under consideration, we opt for a more instructive proof. Let us define the 

symmetric “second best quality” as the common quality level, u*, that maximises our 

welfare measure, (2.13), under the assumption that both firms compete a la Cournot 

at the output stage. Given any quality level u, with max{'itl1 ,'ii?_1} < u, consider the

sequence of quality pairs (u},u2) = (u,u) for all t > 0. From (2.7), (2.8) and (2.12) it

follows directly that the sum of discounted consumer utility along this path is given by

oo N  1 N ,  /  I \  \
u ‘(u t<ut) = r— c ^  j o' In ( y u )  -  o' Inc +  m' -  o' I ,

i=0 1=1 1=1 ^ '
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and the sum of discounted net profits by

f  y  =  2 -  Fgu^l + F0 (UL1)/S +  Fq ( u l / .
t= 0  I 1=1 J

Maximising net surplus (i.e. the sum of the two expressions above) with respect to u yields 

the following first-order condition:

l ( v )  =  7-^“  -  2(3Fqv,P 1 =  0, 
1 — 0 u

where we have used the fact that ^  a1 =  S. It is easy to see that 7 '(u) < 0 for all u, 

i.e. net surplus is strictly concave in u. Furthermore, 7(1) > 0 if u > 1 as assumed, and 

7 (u) —> — 0 0  as u —► 0 0 . Therefore, the second best symmetric quality level is uniquely 

defined by 7 (u*) =  0 , and is equal to

S  \ iu =
2 ( 1 -6 ) ( 3 F 0i

Since u* > u >  u, it follows immediately that welfare is higher in the symmetric investment 

equilibrium than in any symmetric underinvestment equilibrium. ■

Proof o f proposition 2.4. The proof of the first assertion is similar to that of 

proposition 2.1. As to the second assertion, we have to show that there exists a single 

profitable deviation in state (u , u). We assume, of course, that u < u . If u(u) > u > u ,  then 

a deviation by, say firm 1, to u(u) is profitable by definition of «(•) since then, according to 

Ttcoll\  the nondeviant’s only reaction will be to costlessly copy the deviant’s quality in the 

period after deviation. That is, the state will move from (u(u),u) to (u(u)fu(u)) € U ^ \  

and stay there forever. Now, it is easy to see that

u(u) > u  «=>• 2 S -—UU_ , i  — (3FqvP~1 >  0 
(u -(- u F

<*= u G [u, (2 +  \/5)u].

Hence, if u < (2 +  VE)u, then in state (u, u ) a deviation to u(u) is profitable. Let us 

now turn to the case where u > (2 +  y/E)u and consider a period-t deviation by firm 1 to 

quality level u. The deviation induces the following sequence of states: (uj,u^) =  (u ,u ) , 

and =  (u, u) G U ^  for all r  > t +  1. Using simple algebra, one can show that
n dev >  n cdl  i f  a n d  o n l y  i f



CHAPTER 2. UNDERINVESTMENT AND M A RK ET STRUCTURE 45

For a given /?, the l.h.s. of the last inequality is independent of u and u , while the r.h.s.

profitable. ■

P ro o f  of p roposition  2.5. Suppose that, at date £, the state of the industry is given 

by (u,u, — 1), where 1 < u < u =  [S/(4(1—8)/3Fq]1̂ .  We want to show that there exists an 

MPE such that (u ^u ^u ^ .)  =  (u,u, —1) for all r  > t.  Consider the following threat by the

and that it deters entry by firm 3.

The proof strategy is as follows. We do not fully specify a strategy profile and show

that firms do not randomise along the proposed equilibrium path.

Suppose that, in period £, firm 3 enters the market, i.e. the state of the industry, at 

the start of stage 2 in period t, is given by (w,u, 0). We want to show that there exists 

an MPE, starting from this subgame, that supports the path (i4 ,it2,u 8) = (u ,u, 0) for all

T > t.

Suppose firm 3 deviates from this path in an arbitrary period, say t, and invests up 

to quality level v! > 0. In the following subgame, starting from (u,TT, u'), we know that 

there exists a (possibly mixed strategy) MPE, which might involve further investment, but

28See, for instance, Fudenberg and Tirole (1991).

is strictly decreasing in the ratio u /u , for u > u. Since u > (2 +  y/E)u, we are done if we 

can show that

(3 > --------------------------   n 61803.

But this inequality holds by assumption. Thus, if u > (2 +  y/E)u a deviation to u is

two incumbents: if entry is observed in any period, then firms 1 and 2 immediately engage 

in R&D or advertising, and “jump” to the two-firm symmetric investment equilibrium 

quality level u, as given by (2.12). We have to show that this threat is indeed credible,

that it forms indeed an MPE. Rather, we refer to the existence result of (possibly mixed 

strategy) MPE in infinite-horizon games28, and prove that in all mixed strategy equilibria 

there cannot possibly be a profitable deviation from the proposed equilibrium path. Notice
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certainly no “disinvestment”. We want to calculate an upper bound on firm 3’s discounted 

stage-3 profits from this deviation. Since a firm’s stage-3 profit is decreasing in its rivals’ 

qualities, firm 3’s payoff is clearly maximal if its rivals will never invest again. Given that 

firms 1 and 2 will never invest above quality level u, we want to determine firm 3’s optimal 

deviation u' > 0. Note first that in this case it is optimal to invest up to u' in period £, 

and then cease investing forever. Neglecting the quality window for a moment, firm 3’s 

optimisation programme in period t  can thus be written as

r h  ( m )  ~  Fo {u’)0 • (2-25)
The first-order condition is given by

o.l — o (2u' +  u y  v '

Defining A =  uf/u , and using (2.12), the first-order condition can be simplified to

o \ _  i
(A) = 32(2A +  1)-3 -  A*3-1 =  0. (2.26)

Observe that ip (0) =  —32, ip (1) =  5/27, and ip (A) —► —oo as A —► oo. Therefore, (2.26) 

has at least two strictly positive roots: Ai G (0,1) and A2  G ( l ,o o ) . Equation (2.26) can 

be rewritten as follows

_ 8A^+2 -  12A^+1 -  6A  ̂-  A^-1 +  64A -  32 =  0.

In this expression, the signs of the coefficients change twice; from Descartes’ sign rule we 

thus know that there are either 0 or 2 positive roots. Hence, equation (2.26) has exactly

two positive roots: Ai € (0,1) corresponds to a local minimum of (2.25), A2  G (1,0 0 ) to a

local maximum. This implies that the solution to (2.25) is either u' =  0 (“no-investment”) 

or u' =  A2 u ( ‘Investment”). Neglecting the sunk entry fee, the entrant’s net present value 

of future profits from no-investment is zero, while from investment it is equal to

s ( 2A2- i y  _ e S 
1 - 6  \ 2 \ 2 + l )  ° 24(1-6)(3F q

*  0 < ^ T ’ ( 2 ' 2 7 )

where we used the fact that, from (2.26), Aj =  A2  • 32(2A2 — 1)/(2A2 + 1)3. Now, if (3 =  2, 

then A2  =  1.1557, and the corresponding sum of discounted profits is negative; if (3 —► 0 0 ,
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then A2  —► 1, and (2.27) is violated, i.e. the net present value of profits is positive. Thus, 

there exists a (3 > 2, such that if (3 £ [2,/?], firm 3 can not gain by deviating from the 

proposed equilibrium path.

Remark that the quality window does not change the above argument. Since n1 {u\ , , u f) 

is continuous in all arguments and (weakly) decreasing in v?t , j  ^  i, the upper bound on 

firm 3’s payoff from deviation can still be calculated by assuming that the two incum­

bents will not invest above u. But given that the incumbents’ quality is u, they will make 

positive sales in equilibrium, independently of firm 3’s quality.29

Now, we have to show that neither of the two incumbents has an incentive to deviate 

from the proposed path (u^,u2,u^) =  (u ,u ,0) for all r  > £, once firm 3 has entered 

the industry. But this follows immediately from proposition 2.1 and the fact that an 

incumbent’s profit is (weakly) decreasing in firm 3’s quality.

Hence, we have shown that, if (5 £ [2,/3], there exists an MPE that supports the 

sequence of states (u]:,u2,u j) =  (u>% 0) for all t  > t  starting from state (u, u, 0). Along 

this path firm 3’s discounted profit is equal to zero. Firm 3 will, therefore, optimally not 

enter in the first place, and save the entry fee e. That is, if (3 £ [2,/?], the equilibrium path 

is given by (u^,u2,u^) =  (u,u, — 1) for all r .  Conditional on firm 3 not entering, this path 

can be supported as an MPE by strategy profile EcoZZ from section 2.3. ■

P roof o f lemma 2.3. The analysis of the n(S)-firm case proceeds analogously to 

that of the 2-firm case (see subsection 2.3.1). Denote by I  the set of firms with positive 

equilibrium market share, i.e. I  =  {i =  1, ...,n(£>) \ xx >  0}. Since each consumer chooses 

the variant of the quality good with the highest quality-price ratio, all firms with positive 

sales must exhibit the same quality-price ratio in equilibrium. That is, firm j ’s equilibrium 

price is given by
vP

P 3 =  — P 1Ui*
for i , j  £ / ,  i 7  ̂j .  Using the definition of total sales, S  =  one obtains

u^S
Vs =

£ ,€ /  uix'
29One might think that firm 3 would gain if it invested heavily so that one of the incumbents falls out 

of the quality window. However, firm 1, say, would only make zero sales with quality u if firm 2 invested 

up to u" >  u such that u/u' +  u /u ,r <  1, assuming of course that v! >  u. But it is easy to see that then 

7r3(u, u",u') <  7r3(u,u,u').
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Firm j ’s stage-3 profit can then be written as

** “ c

This expression is strictly concave in a?7’, equal to zero at x-7 =  0, and tends to —oo as x7 —* 

oo. Its first derivative is strictly positive at x7 =  0 if and only if u^S > u*x\ Thus,

the following first-order condition yields a unique interior maximum if u^S > cJ3 i6 /u*xl :

S  xiy?S

€ i u i x i  (E  iei* * ) 2  u i '

This gives x-7 as a function of “weighted” aggregate output:

(2.28)

-i ^ l i e T u%x% (  c ^ l i a T u%x% « /

x3 = ^ X ~  »■ ( 2 -2 9 )

Summing (2.28) over all firms with positive market share, one gets

y uixi =  s i * 1 - ' )
Z_^ c V  Xi€l ul

where # 1  denotes the number of elements in I. Inserting the r.h.s. expression into (2.29), 

we obtain firm j ’s equilibrium output, price and profit:

xj =  S ( # £ - l )  /  # I - l \
c s y  y i  \ ui I ’

y '  ui
p j  =  c X acl_uL  
V  # 1 - 1 ’

and

\  2 s i€ l  ux J

provided that ^2ieI >  # /  — 1, and x-7 =  7T-7 =  0 otherwise.30

It remains to show that, in any equilibrium, I  =  {1, ...,n(S)} and, hence, # 1  = n(S).

First, notice if 5^ie/u{j} > # ( /  U {j}) — 1, then x 7 > 0, i.e. j  £ I , in equilibrium;

otherwise firm j  could profitably deviate by producing x7 =  (S/c) ( # 1  /  Yli&iu{j}(u  ̂/ u1))

x ^1 — ^ # / /  X]i€/u{j}(liJ/^ t) ) )  • We now Prove ^ a t  there can not be an equilibrium in

which a product of some quality has zero market share while another offering of lower

30Remark that, in equilibrium, the condition for positive output is equivalent to the condition for an 

interior solution, it7 S  >  c £ i6/ ulx%.
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quality makes positive sales. That is, there are no firms k and I, k < I such that k £ I  and 

I E I. To see this, suppose otherwise. From k £ / ,  it follows that Y^i£i\j{k}(uk/ u%) — 

and from I G I  that Yli£i(ul/ u%) > — 1- ^  easy show that these two inequalities

lead to a contradiction. This completes the proof. ■

P ro o f of p roposition  2.6. Suppose that there exists an equilibrium such that n(S) —► 

oo as S  —► oo. Below, we will prove that, for S  sufficiently large, there will then exist a 

profitable deviation for some firm, contradicting the existence of such an equilibrium.

Consider firm n(S). Remark first that n(S) =  n(S); otherwise, if n(S) > n (S ), firm 

n (S y s stage-3 profit would be nil in each period, and firm n(5)’s profitable deviation 

would be not to enter the market. Now, oberserve that firm n (5 )’s discounted sum of 

profits, prior to entry, is bounded above by

B (s ) -  n _M[n(s)i2 Fo(us(s))( l-6 ) [n (S )]2

where we allow quality UgS  ̂ to depend directly on S. For notational convenience, we will 

henceforth drop the subscript S. In equilibrium, clearly, B (S ) > 0, and hence

s  v  ’ u  s  -  K S )]2'

Since, by assumption, n(S) —* oo as S  —*■ oo, it follows that

S  (u n<5>) ~0 — s-co  oo. (2.30)

Now, consider the investment stage in an arbitrary period. Suppose that firm n(S) 

deviates and invests up to quality level u' > un(s \  where u' is allowed to depend on S . 

Then, a sufficient condition for this deviation to be profitable is given by

_ /  n(S) — 1 \
(1 -  4)[n(S)P

The expression on the l.h.s. is an upper bound on the discounted sum of stage-3 profits 

from nondeviation. The first term on the r.h.s. is a lower bound on stage-3 payoffs from 

deviation, and the remaining terms correspond to investment costs. (Actual payoffs from 

deviation might be higher for two reasons: firstly, the deviant firm might get positive 

stage-3 profits in future periods as well, and not only in the period of deviation, and
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secondly, the deviation might induce low-quality firms (such as firm n(S) — 1) to fall out 

of the quality window.)

Let us now consider the following deviation:

=  ('S u W V >)*** ,

where uh^ s^  is the harmonic mean of firm n(S )’s rival qualities, i.e.

uh(n(S)) = n(S) — 1
y-Ol(S) —l ’

Notice that uh(n(s ^  > un^  > 1, and that (Suh(n(s t y 13+1 >  un^  for S  sufficiently large. 

Furthermore, un^ —► 1 as S  —*■ oo since firm n (5 )’s stage-3 profit is positive in 

equilibrium. This, in conjunction with (2.30), implies that lim5 _>00 S  ^ =  oo.

The sufficient condition for the deviation to be profitable can be written as

\  2
1 I . 1

(1 -<5)[n(S)]2 < 1 -

n(S)—l

- S ~ lF0 (Su ',(n(s)>) m  + S -'F o  (un^ Y .

Remark that the l.h.s. of this inequality converges to zero as market size tends to infinity. 

Furthermore, it is straightforward to see that

r /  \ 2
1 -------------------------- i--------------- I -  S ~ lFo (Su'*<"<s» )lim <

5 —>oo
/3+1

\ n ( S ) - l

since lim1s_>00 S  ^ =  oo. Hence, for S  sufficiently large, the r.h.s. of the above

inequality is larger than the l.h.s.; that is, there exists a profitable deviation in large 

markets. ■



Chapter 3

C artel Stability under Capacity  

Constraints: The Traditional V iew  

R estored

3.1 Introduction

For a long time, economists have believed that cartels will tend to break down under the 

pressure of low demand and high excess capacity. In the second edition of his famous 

work, “Industrial Market Structure and Economic Performance”, Scherer (1980) states:

There is evidence that industries characterized by high overhead costs are 

particularly susceptible to pricing discipline breakdowns when a cyclical or 

secular decline in demand forces member firms to operate well below designed 

plant capacity.1

Examples of industries mentioned by Scherer include chemicals, steel, aluminium, ce­

ment and mining. According to this view, we should thus expect to find a negative 

correlation between the level of excess capacity and the degree of collusion.2 This, in turn, 

should reinforce the tendency of prices to be high during booms and low during recessions.

1See Scherer (1980), page 206.

2See Phlips (1995), page 152, for another statement of this traditional view.
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However, recent supergame-theoretic contributions appear to show that the traditional 

view is theoretically ill-founded. For instance, Brock and Scheinkman (1985) analyse 

an infinitely repeated price-setting game, in which each firm faces the same capacity 

constraint. They investigate the situation where all firms in the industry try to sustain 

“full collusion”, i.e. the monopoly price, by the threat of an infinite Nash reversion in case 

of deviation. In particular, Brock and Scheinkman analyse how the threshold discount 

factor, above which the monopoly price can be sustained in equilibrium, varies with the 

level of capacity in the industry. They show that an increase in the industry level of 

capacity has two opposing effects. On the one hand, it will make cheating more profitable 

in terms of current profits; on the other, it implies that a more severe punishment can 

be inflicted on a deviating firm. As a result, the threshold discount factor is generally 

a nonmonotonic function of industry capacity. Therefore, the model does not give any 

sharp predictions as to the relationship between the level of capacity (or demand) and the 

equilibrium price under collusion.

For all its merits, the following two questions arise regarding such a supergame- 

theoretic approach. First, in supergames, there exists a continuum of more or less col­

lusive equilibria, among which the literature usually selects a particular one. However, 

there may be other, equally plausible, equilibria with quite different properties.3 Second, 

the supergame-theoretic approach to collusion focusses on the problem of enforcement of 

collusive behaviour, that is, on firms’ “incentive constraints” . What this approach leaves 

out, are firms’ “participation constraints” : it can not explain why many real world cartels 

do not comprise all firms in the industry, the OPEC being a famous example.4

There is another strand in the literature on cartel stability, which takes a quite different 

route. The seminal papers in this literature are Selten (1973) and d’Aspremont et al.

3In particular, the literature mostly confines attention to the “best” symmetric subgame perfect equilib­

rium, which requires firms to inflict the worst possible punishment on any deviator. The well-documented 

cases of price wars do not appear to support the existence of such severe punishments. See, for instance,

Genesove and Mullin (1998) on the Sugar Institute, and Levenstein (1997) on the Bromine Cartel.
4The continuum of equilibria in supergames allows us to select equilibria such that only a subset of

firms collude. But mere selection of equilibria does not explain why the number of colluding firms is larger 

in some situations than in other. In fact, the literature usually selects the best symmetric subgame perfect 

equilibrium. By selecting a symmetric equilibrium, it is simply assumed that, in equilibrium, either all 

firms participate in the cartel or none. Clearly, the best symmetric equilibrium is such that all participate.
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(1983). These papers investigate cartel stability in static models. By their very nature, 

these models leave unexplained why cartel members do not cheat on a cartel agreement; 

they may, therefore, be viewed as models of explicit rather than implicit collusion. In 

contrast to the supergame-theoretic literature, these papers focus on firms’ “participation 

constraints”. At the heart of this literature lies the trade off between participation and 

nonparticipation in a cartel: on the one hand, a firm has an incentive to join the cartel 

so as to achieve a more collusive outcome; on the other, it has an incentive to stay out of 

the cartel so as to take a free ride on the cartel’s effort to restrict output.5

The main aim of the present paper is to develop a theoretical foundation of the tra­

ditional view on the relationship between cartel stability and capacity levels. The paper 

follows the tradition of Selten (1973) and d’Aspremont et al. (1983) in focussing on the 

issue of participation in a cartel. As in all static models of cartel stability, it is simply 

assumed that cartel rules on pricing or output setting can be enforced.6 Alternatively, 

when joining the cartel, firms are assumed to delegate output decisions to some “cartel 

manager”. This leaves the study of the interaction between incentive and participation 

constraints for future research.

We consider a two-stage game in which firms, each being subject to the same capacity 

constraint, first decide whether or not to join the cartel, and then compete in quantities.7 

Since cartel members internalise the externalities they impose on each other, they will tend 

to produce less than fringe firms, which take a free ride on the cartel’s effort to restrict 

output. Now, the size of the cartel and, hence, the degree of collusion, is determined by 

the relative incentives to join the cartel rather than the fringe. Intuitively, if the level of 

demand is rather high, or the industry level of capacity rather low, then free-riding on

5Here, “participation constraints” refer to firms’ incentive to join the cartel rather than the “fringe”, 

whereas “incentive constraints” refer to the incentives of cartel members only to cheat on the cartel 

agreement.
6This applies also to models of adverse selection in cartel formation, such as Roberts (1985) and 

Kihlstrom and Vives (1992). In these models, colluding firms may not truthfully announce their costs;

cheating at the output stage is not considered.
7The main reason why we consider quantity rather than price competition is the nonexistence of pure

strategy equilibria in games of price competition under capacity constraints. The notion of a market price 

is not well-defined in these games. Hence, it is not quite clear what is meant by the relationship between 

demand or capacity and the collusive equilibrium price.
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the cartel is not very profitable since fringe firms will face a binding capacity constraint 

in equilibrium. Therefore, the lower (higher) is the level of demand (capacity), the more 

attractive it is to join the fringe, and the more unstable the cartel becomes. The model 

thus predicts a positive (negative) relationship between the equilibrium cartel size and the 

level of demand (capacity). This reinforces the positive (negative) relationship between 

the collusive equilibrium price and demand (capacity) for a given degree of collusion. 

Introducing heterogeneity in capacities, we show that firms with large capacities have 

stronger incentives to join the cartel then small firms. The model thus predicts that firm 

sizes and capacity utilisation rates are negatively correlated across firms.

In their paper, Brock and Scheinkman have studied the comparative statics of cartel 

stability with respect to the level of capacity; all exogenous variables are constant over 

time. Following the paper by Rotemberg and Saloner (1986), there also exists a large lit­

erature on collusion over the business cycle where the level of demand is assumed to follow 

some dynamic process. Most of these papers do not consider capacity constraints. This 

literature investigates, in particular, whether collusive prices tend to vary procyclically or 

rather countercyclically. However, the results appear to depend quite delicately on the 

time-series properties of the assumed process. To address the issue of cartel stability over 

the business cycle, we analyse a very simple dynamic extension of the basic two-stage 

game. We show that collusive prices will tend to vary procyclically, independently of the 

assumed stochastic process. This, again, restores the traditional view.

3.2 A  Simple M odel o f Cartel Formation and Cournot Com­

petition

Consider the following two-stage game of cartel formation and quantity competition. There 

are n  (identical) firms, each seeking to maximise its own profit; let N  denote the set of 

firms. Each firm in the industry produces the same homogenous good. Firm Vs cost of 

producing quantity Qi is given by
f

cQi if Qi € [0, K] 

oo if Qi > K;

that is, all firms face a common unit cost of c up to the capacity level K .

c m  =
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Market demand can be represented by the (twice continuously differentiable) inverse 

demand function P ( Q / S )  with P'(-) < 0, where Q  =  Qi *s total industry output, 

and S  is a measure of market size (or the level of demand). An increase in the size of 

the market is understood to mean a replication of the population of consumers, leaving 

the distribution of incomes and tastes unchanged. We put the following, rather mild, 

restriction on the shape of the demand curve:

P'iq) +  qP"(q) < 0 for all q E (0, n K / S ] , (3.1)

which implies that, under quantity competition, each firm’s best-reply function is downward- 

sloping; that is, quantities are strategic substitutes. Inequality (3.1) holds, for instance, 

if demand is concave, i.e. P n{") < 0. To exclude the trivial case in which production is 

not viable, we posit P (0) > c. For notational convenience, we define output and capacity 

levels per unit of market size: qi = Q i / S , i — 1, ...,n, and k =  K / S .

The timing of the game is as follows. At the first stage ( “participation stage”), firms 

simultaneously decide whether to join the cartel (or coalition) M  or the “fringe” N \M . 

Formally, each firm i , i  E N , selects a zero-one variable z\\

Zi =
1 iff firm i joins the cartel M  

0 iff firm i joins the fringe N \M .

In modelling cartel formation as a noncooperative simultaneous-move game, we follow 

Selten (1973).

At the second stage ( “output stage”), firms simultaneously set quantities; that is, each 

firm i chooses qi, qi E [0,oo), as a function of the vector of participation decisions z, 

z =  (z\, ...,zn). The difference between fringe firms and cartel members is the following. 

Each fringe firm i, i E N \M , sets qi so as to maximise its own profit. In contrast, each 

cartel member i, i E M , is constrained (by cartel rules) to set qi so as to maximise the 

cartel’s joint profit. This is the key assumption of the paper. One way to make cartel 

firms’ behaviour consistent with individual profit maximisation is the following. By joining 

the cartel, each firm has to delegate its output decision to some “cartel manager” whose 

objective it is to maximise the cartel’s joint profit. Alternatively, one might assume that 

cartel members can write a binding contract which prevents them from deviating.8 All

8Another way of interpreting the assumption of joint profit maximisation of cartel members is the



CHAPTER 3. CARTEL STA BILITY UNDER CAPACITY CONSTRAINTS 56

this is to say that we simply assume that cartel rules (which stipulate that firms set output 

so as to maximise the cartel’s joint profit) can be enforced; this allows us to focus on firms’ 

participation decisions, and follows Selten (1973), d’Aspremont et al. (1983), and others.9

How a given joint cartel output q^j, qm =  ls divided among cartel members

does not affect joint cartel profit; this is due to the assumption of constant returns to scale. 

Since firms axe symmetric, we assume throughout an equal output sharing rule: qi — qj, 

V i,j  G M . Side payments between firms are not allowed. (Alternatively, we could directly 

assume that each cartel member receives the same profit in equilibrium, independently of 

how cartel output is divided among firms.)

3.3 Equilibrium Analysis

In this central section of the paper, we seek the (pure strategy) subgame perfect equilibrium

(SPE) of the simple two-stage game. We proceed by backward induction. First, we take

the size of the coalition as given, and show existence and uniqueness of a Nash equilibrium

in quantities. We then investigate how changes in capacity and the size of the cartel affect

the stage-2 Nash equilibrium. In the third subsection, we first determine necessary and

sufficient conditions for a cartel size to be “stable”, i.e. to be supportable in an SPE.

We then show the existence of an SPE, and investigate the set of cartel sizes than can be

following. The output stage of the two-stage game is simply the “reduced form” of a quantity-setting 

supergame in which cartel members sustain joint profit maximisation using trigger strategies. According 

to these trigger strategies, cartel members will revert forever to the static (noncollusive) Nash equilibrium 

in case of deviation by a cartel member. The difference to the usual supergame models is that firms that 

choose not to participate in the cartel do not get punished. If firms do not discount future payoffs, then 

joint profit maximisation by cartel members can be sustained in an SPE of this supergame as long as joint 

profit maximisation gives each firm a higher per-period payoff than it could get in the static (noncollusive) 

Nash equilibrium. The latter condition does not necessarily hold. Hence, under this interpretation of the 

output stage, we would have to modify firms’ payoffs slightly. (This would not change the results: one 

can show that, in equilibrium, cartel size is always such that each cartel member makes at least the same 

profit as under noncollusion.) Given the appropriate modification of payoffs, the participation stage simply 

“selects” (induces) an SPE of the ensuing quantity-setting supergame, which has quite different properties

than the SPE usually considered in the literature.
9Notice that any renegotiation-proof contract between cartel members must involve joint profit max­

imisation if renegotiation is allowed between cartel members only.



CHAPTER 3. CARTEL STA BILITY UNDER CAPACITY CONSTRAINTS 57

supported in equilibrium. Finally, we turn to the main question of this paper, namely the 

effects of capacity and market size on equilibrium cartel size and, in particular, equilibrium 

price.

3 .3 .1  Equilibrium  A nalysis  for a  G iven  C artel S ize

In this subsection, we take firms’ participation decisions, described by the vector z =  

(z i,...,zn), as given. Suppose there are m =  E {0,1,...,n} cartel members and 

n — m  = # N \M  fringe members. We now seek the associated Nash equilibrium in 

quantities.

Let g(x,q) = P{q) — c + xP'(q). Since P'{q) < 0, there exists a unique x{q), x(q) E 

(—0 0 , 0 0 ), such that g(x(q),q) =  0. From inequality (3.1), it follows that x!(q) = — [P'{q) 

+x(q)P"(q)] /P '(q) < 0 for all x(q) E [0,g]. Define x(q) = max{0,x(g)}. Then, a vector 

of (normalised) quantities, ((gi)iew), forms a stage-2 Nash equilibrium if and only if

qi =  min{x(g),fc}, i E N \M ,  (3.2)

and

qM =  5 2  Qi = min{x(g),mA;}, (3.3)
t€M

where q =  qi is industry output (per unit of market size). To see this, notice that

each fringe firm’s profit function is strictly concave in its own output; similarly, the cartel’s 

joint profit function is strictly concave in joint cartel output. Equations (3.2) and (3.3), 

combined with the cartel’s output sharing rule, uniquely determine each firm’s output for 

a given value of q. It follows immediately that all n — m fringe firms produce the same 

quantity in equilibrium.

Define the function h{q) =  (n — m)min{x(g),A;} -I- min{T(g),mA;} — q. An output 

vector ((qi)i£N) is then an equilibrium if and only if h{q) =  0. Observe that h(0) > 0 

since P(0) > c, and lim^oo h(q) =  —0 0 . Moreover, h'(q) |h(g)=0 < 0> where this deriv­

ative exists (otherwise, both the right- and left-hand derivatives are negative), since 

min{:r(g),rafc}|/l(g)_0 < q. Hence, h(q) has a unique nonnegative root. This shows that 

there exists a unique Nash equilibrium in quantities. In equilibrium, each firm produces 

a positive output, i.e. x(q) =  x(q) > 0.
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Denote by 9 / ( 771; A;) and qc{m\k) a fringe firm’s and a cartel member’s equilibrium 

output, respectively; the cartel’s joint equilibrium output is 9A/(m ;&) =  rnqc{m\k). We 

have g /(l; k) =  9/(0; k) since 9a/(l;k )  =  9 / ( 1 ; As). In the following characterisation of 

equilibrium quantities, we therefore restrict attention to m  G {1,..., n}. Depending on the 

values of k and m, three different cases can arise.

Case (i): If

P ((n  — m  +  1 )k) — c + kP '((n  — m +  1 )k) < 0, (3.4)

then capacity constraints are nonbinding for all firms in equilibrium. In this case, equilib­

rium quantities are given by

9m(^5 k) =  9 / ( 771; k) =  x((n  — m  +  l) 9 /(m ; k)) G (0, k\. (3.5)

Equilibrium profits are

7rc(m; k) =  [P((n — ra +  1 )9 / ( 77 1; A;)) — c] ^  (3-6)

and

71/ ( 771; A:) =  [P((ti — m  +  1 )9 / ( 77 1; A;)) — c] 9 / ( 7 7 1; A;). (3.7)

Case (ii): If

P((n — m  + 1)A;) — c +  kP '((n — m  + 1)A:) >  0 (3.8)

and

P(nk) — c 4- m kP t{nk) < 0, (3.9)

then fringe firms only face a binding capacity constraint. Hence, 9 / ( 771; k) = &, and

9m(tn; A;) =  x(9m(t7i; A;) +  (7 1  — m)k) G (A:, 7nA;]. (3.10)

Equilibrium profits are then given by

7rc(m; k) =  [P(77i9c(77i; k) + (n — m)k) — c] qc(m', k) (3.11)

and

71/ ( 771; A:) =  [P(7779c(77i; A;) 4- (7 1  — 771)/:) — c] A;. (3.12)

Notice that this case can only arise if cartel size m > 2 .
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Case (Hi): Capacity constraints are binding for all firms in equilibrium if and only if

P(nk) — c +  m kP '(nk) >  0. (3.13)

Then, each firm sets its output equal to its capacity level. Equilibrium profit is

7rc(m; k ) =  7r/(m; k) =  [.P(nk) — c] k. (3-14)

Let us summarise the results in the following proposition.

Proposition 3.1 There exists a unique Nash equilibrium in quantities. In equilibrium, 

7rc(m; k) <  7r/(m; k ) i f  P (nk) — c 4- m kP'(nk) < 0, and 7Tc(m; k) =  7r/(m; &) otherwise.

In equilibrium, fringe firms are at least as well off as cartel members. This follows from 

the fact that fringe firms maximise their own profit whereas cartel members maximise joint 

cartel profit, whereby they internalise the externality they impose on fellow cartel firms.

In this paper, the (m, fc)-space plays a crucial role. The following lemma gives a useful 

result on the division of this space into different regions.

Lemma 3.1 There exist real-valued functions m c(k) and m,f(k), with dmc(k)/dk < 0 and 

dm f(k)/dk  >  0, such that

•  cartel members face a binding capacity constraint if  and only i f  cartel size m, m  E 

[l,n], is such that m  < m c(k);

• fringe firms face a binding capacity constraint if  and only i f  m  > m,f(k) for m  G 

[l,n).

Moreover, if  k such that m c(k) > 0, then m f(k) < 1.

The proof can be found in the appendix. See figure 3.1 for an illustration. Lemma 3.1 

implies, in particular, that if a cartel member faces a binding capacity constraint when 

the cartel size is m, then the capacity constraint is binding for all smaller cartel sizes m', 

m! G {1, ...,m  — 1}.
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m

case (ii): 
constraints 
binding for 
fringe firms

case (in): 
constraints 
binding for 
all firms

case (i): 
constraints 
nonbinding 
for all firms

Figure 3.1: The Division of the (m, fc)-space: The Functions m c(k) and ra/(fc).
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3 .3 .2  C om parative S ta tics

The main aim of this paper is to investigate how the equilibrium price of the two-stage 

game varies with capacity K  and demand S. There are two potential channels of influence. 

For any given coalition structure, capacity per unit of market size, k , has a direct impact 

on the stage-2 equilibrium price. But k can also influence the equilibrium cartel size, which 

in turn affects the stage-2 equilibrium price. Therefore, having established existence and 

uniqueness of a Nash equilibrium in quantities, we now want to investigate the comparative 

statics of this stage-2 equilibrium price with respect to k  and m. In subsection 3.3.4, we 

will analyse how the equilibrium value of m  varies with k.

Observe that equilibrium output, qc(m; k ) and <?/(m; k ), and equilibrium profit, 7rc(m; k) 

and 7r/(m; k), are continuous functions of k , and of cartel size m  if one treats m  as a contin­

uous variable. The following result shows how equilibrium output, and hence equilibrium 

price, varies with cartel size.

L em m a 3.2 Total industry output, <?M(m ;&) 4- (n — m)g/(m; k), is weakly decreasing in 

cartel size m. Joint cartel output, qM{m \k), and each fringe firm ’s output, qj{m \k), are 

weakly increasing in cartel size m.

The proof can be found in the appendix; the intuition for the result is as follows. 

Decompose the effect of an increase in cartel size m  into a (converging) sequence of output 

changes -  neglecting, for ease of exposition, the existence of capacity constraints. As 

the first step, let the ( “old” and “new”) cartel members “myopically” adjust their output 

■decisions, holding fixed the output level of the remaining fringe firms. Since cartel members 

optimally internalise the externalities they impose on each other, this will lead to a lower 

industry output, and hence a higher price. As the second step, let the remaining fringe 

firms myopically change their output, keeping constant the cartel’s output. As a response 

to the higher price, fringe firms will increase their output. This, in turn, will induce the 

cartel firms to reduce their output (step 3) since quantities are strategic substitutes, and so 

on. In equilibrium, the remaining fringe firms will have increased their output. However, 

this joint output increase will be less than the decrease in output by the (old and new) 

cartel members since each firm’s best-reply function has a slope larger than —1. In the 

absence of capacity constraints, joint cartel output is equal to each fringe firm’s output.
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Hence, joint cartel output will increase as well.

Since industry output is a (weakly) decreasing function of the size of the coalition, the 

equilibrium price is (weakly) increasing in m. The following corollary is then immediate.

Corollary 3.1 A fringe firm ’s equilibrium profit, 7T/(m; k), and joint cartel profit, m7rc(m; k), 

are weakly increasing functions of cartel size m.

The relationship between an individual cartel member’s output (and profit) and cartel 

size is, however, generally nonmonotonic. This is a well-known result from the literature 

on horizontal mergers under Cournot competition without capacity constraints; see Salant, 

Switzer, and Reynolds (1983). The reason is that an increase in cartel size will induce 

the remaining fringe firms to increase their output, provided that they are not capacity 

constrained. Since quantities are strategic substitutes, each cartel member’s output and 

profit may decrease. If, however, fringe firms face a binding constraint in equilibrium, 

then an increase in cartel size will not have this adverse effect on a cartel member’s profit.

Lemma 3.3 I fm c{k) > 1, then 7rc(m;k) is constant on [0,mc(fc)], and strictly increasing 

in m  on (m c(k ),n ).

P roof. First, notice that 7rc(m; k) = k[P(nk) — c] for all m  € [0, max{rac(A;), 1}]. Second, 

if m € (m c(k ) ,n ), m c{k) > 1, then irc(m; k) is given by (3.11). Using the envelope theorem, 

we get
Q

7Tc(m; k) =  - ( k  -  qc(m ; k))qc(m ; k)P ,(mqc(m ’, k) + (n -  m )k ),
om

which is strictly positive since k > qc(m\ k) i lm >  m c(k) >  1. ■

We now turn to comparative statics -  for a given cartel size -  with respect to k.

Lemma 3.4 For a given cartel size m, equilibrium price P(gAf(^; k) +  (n — m )qf(m ; k)) 

is a (weakly) decreasing function of the capacity level per unit of market size, k.

P roof. As in the proofs of proposition 3.1 and lemma 3.2, we have to distinguish between 

three cases; again, we confine attention to m  € [l,n].

Case (i): Since capacity constraints are nonbinding for all firms, equilibrium output is 

unaffected by a marginal change in k.
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Case (ii): Note first that d q M {^\k)/dk  > —(n — m). Taking the derivative of the 

equilibrium price with respect to k yields

<£P(gAf (ra, k) + (n— m)k) _  _)_ (n _  m)fc) [dqM^', k )/d k  + n — m] < 0 .
ak

Case (Hi): When all firms face a binding constraint, equilibrium output is equal to 

P{nk). We thus have dP (nk)/dk  =  nP'(nk) < 0. ■

We have thus established that an increase in the level of capacity or a decrease in 

demand (market size), will lower price for a given size of the coalition. From lemma 3.2 

we already know that an increase in the size of the cartel will increase price. In order to 

determine the overall effect on equilibrium price, we, therefore, need to analyse the effect 

of changes in K  and S  on the equilibrium cartel size. But before doing so, we have to 

determine the conditions that need to hold for a cartel size to be supportable in an SPE 

of the two-stage game; this is the purpose of the next subsection.

3 .3 .3  S tab le  C arte l S ize

So far, we have analysed firms’ stage-2 output decisions for a given size of the coalition 

M . We now turn to the analysis of the participation decision stage (stage 1) at which 

firms simultaneously decide whether to join the cartel M  or rather the fringe N \M .  The 

equilibrium cartel size is determined by the tension between a firm’s incentive to free ride 

on the cartel’s effort to restrain output (by staying out of the cartel) and to achieve a 

more collusive outcome (by joining the cartel).

The following lemma gives the necessary and sufficient conditions for a cartel size 

to be sustainable in an SPE of the two-stage game. It turns out that these conditions 

are identical to the notions of internal and external stability, which are used in the (not 

explicitly game-theoretic) literature on static cartel stability. The seminal contribution 

in this literature is d ’Aspremont et al. (1983); other papers include Donsimoni (1985), 

Donsimoni, Economides, and Polemarchakis (1986), and Shaffer (1995).

Lem m a 3.5 A cartel of size m  can be supported in an SPE of the two-stage game if  and 

only if the following two conditions hold:

(in terna l stab ility ) m  =  0 or

7Tc(m; k) >7Tf(m — 1; k) for m  € {1,..., n] (3.15)
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and

(ex te rn a l s tab ility ) m  =  n  or

7rc(m + 1 ; A) <  7r/(m; /:) for m £ {0, ...,n  — 1}. (3.16)

Proof. The condition of internal stability implies that no firm has an incentive to leave 

the cartel. Similarly, the condition of external stability ensures that no firm can profitably 

deviate at stage 1 by joining the cartel. Hence, these conditions are sufficient. Conversely, 

if one of these conditions is not satisfied, then there exists a profitable deviation for some 

firm. Hence, the conditions are necessary for an SPE. ■

In the following, we will say that a cartel size is stable whenever it can be supported in 

an SPE. Having defined the necessary and sufficient conditions for an equilibrium cartel 

size, we want to be sure that the set of equilibria is nonempty for all possible parameter 

values. For this purpose, we introduce some notation. Let [x\ denote the integer part of 

x, and define the step function

n  if m c(k) € (n,oo)

m c(k) =  < [mc(k)] if m c(k) € [l,n]

1 otherwise.

Notice that m c(k) is weakly decreasing in k.

Proposition 3.2 The set of cartel sizes that can be supported in an SPE, M*(k), has

at least two elements. In particular, {0, ...,m c(k) — 1} C M*{k); hence, noncollusion

(m  =  Oj can always be supported in equilibrium. Moreover, there exists at least one other 

stable cartel size m*(k), m*(k) £ {m c(k), ...,n}.

Proof. To see that {0, ...,m c(k) — 1} C M *(k), notice first that 7Tf(0;k) =  7rc(l;fc). 

Hence, m  =  0 is a stable cartel size. Furthermore, irc(m;k) = 7T/(m — l;fc) for all m E 

{1, ...,m c(fc)}. This proves the assertion. To show that there exists a stable cartel size 

m*(k), m*(k) £ {mc(k),...,n}, we can simply apply the algorithm by d’Aspremont et 

al. (1983). Let us start with a cartel of size m  = rhc(k). It is internally stable since 

7rc(mc(k); k) = 7tf(mc(k) — 1 ;k); if it is externally stable, then the algorithm stops since 

we have found a stable cartel. Otherwise, we continue with a cartel of size m  = m c(k) +1,
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which is internally stable since the cartel of size m  =  m c(k) was found to be externally 

unstable. If m  = m c(k) +  1 is externally stable, then the algorithm stops; otherwise, it 

continues with m  = m c(k) +  2, and so on. By induction, the algorithm reaches size m — n 

if and only if m =  n — 1 was found to be externally unstable. But, then, m  = n must 

be internally stable, and it is externally stable by definition; hence, it is stable. This 

concludes the proof. ■

In order to conduct comparative statics, ideally, we want to have uniqueness of a 

stable cartel size. Unfortunately, there is no hope of finding a unique equilibrium cartel 

size, as proposition 3.2 indicates. Notice, however, that the equilibrium price is the same 

for all m G {0, ...,m c(k)}. Arguably, this kind of multiplicity should not be a cause of 

concern. Below, we will further characterise the set of stable cartel sizes; however, a full 

characterisation for a general demand function is beyond the scope of this paper.

Due to the multiplicity of equilibria, we will focus on the maximum and minimum 

sustainable cartel sizes. Prom proposition 3.2, we already know that the empty cartel 

is the smallest stable cartel. The following result gives an instructive and useful result 

regarding the largest stable cartel.

L em m a 3.6 All cartel sizes above the maximum stable cartel size, rn*(k), are internally 

unstable; that is,

7rc(m; k) < 7r/(m  — 1; k) for all m  € {m*(k) +  1, ...,n}.

Proof. Suppose m*(k) =  n — 1 — I, I € {0,1, ...,n  — 2}. Since n is externally stable by 

definition, it must be internally unstable. Assume now that I > 1. Since n is internally 

unstable, n — 1 is externally stable; hence, n — 1 must be internally unstable. The proof 

proceeds in the same fashion. ■

Proposition 3.2 leaves the possibility open that all stable cartel sizes are “degenerate” 

cartels. Indeed, for all m G {1, ...,m c(fc)}, the equilibrium price is the noncollusive one 

(when m =  0). Using lemma 3.6, we axe now in the position to further characterise the 

set of stable cartel sizes. The following result shows that “nondegenerate” cartels exist for 

all k  such that m c(k) G [1,77).
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P ro p o sitio n  3.3 I f  m c{k) £ [1,n), then the maximum sustainable cartel size, rn*(k), is 

strictly larger than m c(k), i.e. m*(k) > m c(k) + 1; moreover, i fm c(k) £ (1 ,n), thenrfic(k) 

is externally unstable.

P roo f. Notice first that 7rc(mc(fc); k) =  ir/(m c(A;); &). Furthermore, if m c(k) £ (l,n ) , then 

^c(jnc(k) -f- 1; k) >  7rc(fnc(k); k) by lemma 3.3. It follows immediately that 7Tc(mc(k) +  

1; k) > 7Tf(mc(ky, k). Hence, m c{k) is externally unstable, and m c(k) + 1  internally stable, 

if m c(k) £ ( l,n ) . By continuity, m c(k) +  1 must also be internally stable if m c(k) =  1. 

Suppose now the assertion is false; that is, suppose there exists a capacity level k such 

that m c{k) £ [l,n ) and m*(k) < m c{k) +  1. Then, m c(k) +  1 is internally unstable by 

lemma 3.6. But this can not be true as we have just shown. ■

Proposition 3.3 implies that if m c(k) £ (n —l,n ) , then there exists an equilibrium such 

that all firms participate in the cartel, i.e. rh*{k) =  n, although no firm faces a binding 

capacity constraint. Nevertheless, even in this case, the existence and level of capacity 

constraints have a major impact on the equilibrium outcome in that a further rise in 

capacity or a fall in demand can cause the collapse of collusion. This will become clear 

from the analysis below. Before we turn to the analysis of changes in capacity or demand 

on the equilibrium cartel size, let us make two further remarks on stability. First, suppose 

the smallest stable cartel in {rnc(k), ...,m*(fc)} is strictly larger than m c(k). Then, m c(k) 

and all cartel sizes below the smallest stable one are externally unstable. The argument 

is similar to that in the proof of proposition 3.3. Second, recall that, from proposition

3.2, if k  is sufficiently small such that m c(k) > n, then all cartel sizes can be supported in 

equilibrium, i.e. rn*(k) =  n.

3 .3 .4  T h e  E ffects o f  C apacity  and D em an d  on  C artel S ize  and P r ice

We now want to investigate how the equilibrium cartel size varies with k, that is, with 

capacity level K  and market size S. Consider a stable cartel size, say m*(k). Since 

7Tc(m;k) and 7Tf(m;k) are continuous in k , a marginal change in k will have no effect 

on m*(k) unless the condition for internal stability, (3.15), or the condition for external 

stability, (3.16), hold with equality, that is, unless /nc(m*(k);k) =  7Tf(m*(k) — 1 \k) or 

7rc (m*(fc) +  1; k) =  7T/(m*(fc); k) hold.
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Therefore, we will, in turn, analyse the effect of a small change in k on equilibrium 

profits for cartel and fringe members when these conditions hold with equality. The proof 

of the following lemma is quite involved and can be found in the appendix.

Lemma 3.7 Suppose cartel size m, m  G {mc(k) +  1, and capacity k are such that

the condition for internal stability is binding, i.e. 7Tc(m; k) =  7r/(m  — 1; k). Then,

Q
—  {7rc(m;A;) -  7T/(m -  l;fc)} < 0, (3.17)

where this derivative exists; otherwise, the inequality holds for both the derivatives from 

the right and the left. That is, a marginal increase in k  either implies that the condition 

for internal stability continues to be binding or that it will be violated.

A direct consequence of lemma 3.7 is the following result.

Corollary 3.2 Suppose cartel size m, m  € {mc(k), ...,n  — 1}, is such that the condition 

for external stability is binding, i.e. 7rc(m +  1; k) = 7T/(ra; k). Then,

Q
—  {7rc(m +  1; k) -  7r/(m; fc)} < 0,

where this derivative exists; otherwise, the inequality holds for both the derivatives from 

the right and the left. That is, a marginal increase in k either implies that the condition 

for external stability continues to be binding or that it will become slack.

Proof. This follows directly from lemma 3.7, substituting m for m  -  1, and m  +  1 for 

m. ■

The idea behing lemma 3.7 is the following. If a firm decides to join the fringe rather 

than the cartel, its equilibrium output will tend to be higher since it will take a free ride 

on the cartel’s attempt to restrict output. For very high levels of capacity, a firm will 

be unconstrained, independently of whether or not it joins the cartel. If it is initially 

indifferent, then a small increase in capacity has no effect on the relative incentives to 

join the cartel. Now, for moderate levels of capacity k , a firm will face a binding capacity 

constraint if it decides to join the fringe, but not if it becomes a member of the cartel. In 

this case, then, an increase in capacity will make it relatively more attractive to join the 

fringe since the rise in k  relaxes the fringe’s constraint. Notice, however, that inequality
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(3.17) does not hold if m  =  m c{k) G {2, ...,n} at some capacity level k. For all k < k, we 

have 7rc(m; k) =  7 1 7 (7 7 1  — 1; &), whereas for capacity levels k, k > k, such that m  > m c(k) > 

m  — 1, we have 7rc(m;fc) > 7 1 7 (7 7 1  — l;fc); see proposition 3.3. That is, the right-hand 

derivative of 7rc(m; /c) —7r/(m — 1; &) with respect to k is strictly positive. The reason is 

that at capacity k and cartel size m — 1, fringe firms and cartel members are constrained 

so that a rise in capacity will induce all firms to increase output. In contrast, at capacity 

k and cartel size m, cartel members are just unconstrained so that fringe firms only will 

raise output as k increases.

Lemma 3.7 and corollary 3.2 show that an increase in capacity (or a decrease in de­

mand) can cause a hitherto stable cartel size m to become internally unstable but not 

externally unstable, given that m  > m c(k). This suggests that stable cartels tend to 

become smaller the higher is the level of capacity per unit of market size. Due to the 

multiplicity of equilibria, we focus on the maximum stable cartel size, rn*(k). (From 

proposition 3.2, we already know that the smallest stable cartel is the empty one.)

We are now in the position to state and prove one of the main results of this paper.

Proposition 3.4 The maximum stable cartel size fn*(k), m*(k) G {l,...,n} , is weakly 

decreasing in capacity K , and weakly increasing in market size S.

Proof. Suppose that the assertion of the proposition is false. Then, there exist some 

capacity levels k\ and £2 , > &i, such that m*(ki) =  m \ < m 2  =  ra * ^ ) -  By proposition

3.2, m i > m c(ki); moreover, rfic(ki) > m c(k), for all k G [fci,&2 ], since m c(k) is weakly 

decreasing in k. Hence, 7772 >  m c{k) for all k G [fci,^]. From lemma 3.6, we know that 

m 2  is internally instable at k\, but it is, by assumption, internally stable at &2 - Hence, 

there exists a capacity level k*, k* G [fci, fo], such that nc(m 2 ; k*) =  7T/(77i2 — 1; k*), and

Q
^  {^(7712; k*) -  717(7712 -  1; k*)} > 0,

where this derivative exists (otherwise, the inequality must hold for the corresponding 

derivative from the left). But this contradicts lemma 3.7. Hence, the assertion of the 

proposition can not be false. ■

Proposition 3.4 restores the traditional view in that it shows that large cartels tend to 

break down in periods of high (excess) capacity and low demand. Although proposition
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3.4 states an important result, eventually, we are more interested in price rather than in 

the size of the cartel. This is not only for the obvious reason that price directly affects 

consumer surplus, whereas cartel size has an impact on consumer surplus only via price 

(and output). More importantly, in empirical applications, we can hope to observe or 

measure price, but usually not the size of a coalition.

The following proposition states the central prediction of this paper, which only in­

volves variables that are, in principle, measurable.

P ro p o sitio n  3.5 The maximum and minimum sustainable equilibrium prices, p*(k) and 

p*(k), are weakly decreasing in capacity K , and weakly increasing in market size S.

P roo f. Observe that, given a size m  of the cartel, there exists a unique equilibrium price 

(proposition 3.1). Moreover, this equilibrium price is weakly increasing in m, given k 

(lemma 3.2). Hence, for any k, the maximum stable equilibrium price p*(k) is the unique 

equilibrium price given the maximum stable cartel size. Now, the maximum sustainable 

cartel size is (weakly) decreasing in k (proposition 3.4). Furthermore, the equilibrium 

price is weakly increasing in m, given k (lemma 3.2), and weakly decreasing in k, given m  

(lemma 3.4). Hence, p*(k) is weakly decreasing in k . Similarly, for any k , the minimum 

sustainable cartel size p*{k) is the unique equilibrium price given the minimum stable cartel 

size. From proposition 3.2, we know that the empty cartel (m =  0) can be supported in 

an SPE for all values of k. Hence, p*(k) is the unique equilibrium price given m  =  0. The 

assertion of the proposition then follows directly from lemma 3.4. ■

3 .3 .5  R ob u stn ess o f  R esu lts

Q u an tity  C om petition . An important question is whether our results hinge on the 

assumption of quantity competition at the output stage. It would, in particular, be inter­

esting to study the case of price competition. However, as is well known, pure strategy 

equilibria fail to exist in games of price competition under capacity constraints so that 

. the notion of a market price is not well defined. Now, following the seminal contribution 

by d ’Aspremont et al. (1983), much of the literature on cartel stability in static models 

assumes that the cartel acts as price leader, whereas all firms in the fringe are price takers 

(when deciding upon output); see, for instance, Donsimoni (1985) and Donsimoni, Econo-
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mides, and Polemarchakis (1986).10 It is quite straightforward to show that the main 

conclusions of our Cournot model carry over to the price leadership model. To see this, 

notice that, for any price above marginal cost, each fringe firm sets its output equal to 

its capacity. Given the aggregate supply of the fringe, the cartel faces a residual demand 

curve, and sets price so as to maximise its joint profit. But in this case, price and quantity 

setting are equivalent. Hence, we are back in the Cournot world, namely in the subcase 

where fringe firms face a binding capacity constraint. In contrast to the previous Cournot 

model, however, an empty cartel (m =  0) may not be supported in equilibrium. This is 

due to the fact that fringe firms are assumed to take price as given; that is, they neglect 

the effect of their output decisions on price. Most other previous results go through. In 

particular, the maximum stable cartel size, m*(k), is weakly decreasing, and the maximum 

sustainable equilibrium price, p*(k), is even strictly decreasing in fc:11

C arte l F orm ation . Following Selten (1973), we have modelled cartel formation as a 

noncooperative simultaneous-move game. Let us denote this game by T. To investigate the 

robustness of our predictions, we now want to study what happens if we assume that firms 

decide sequentially, rather than simultaneously, whether or not to join the cartel. That is, 

suppose that, at the participation stage, first firm 1 selects z i, then firm 2 selects Z2 , and so 

on; the labelling of firms is arbitrary. Denote the new game by T'. It is straightforward to 

show that there exists a pure strategy subgame perfect equilibrium (SPE) in the sequential 

cartel formation game Tf. Moreover, any cartel size m  that can be supported in an SPE 

of r '  can also be supported in an SPE of T. To see this, notice that the conditions for 

internal and external stability of cartel size m, equations (3.15) and (3.16), are necessary 

conditions for m  to be sustainable in an SPE of r ' ,  since, otherwise, firm n could profitably 

deviate. Indeed, the sequential-move game selects the “most efficient” equilibrium of the 

simultaneous-move game in that it solves the “coordination problem” in the formation of 

the cartel. Hence, the maximum sustainable equilibrium size in T, m*(k), can always be 

supported in T'. Moreover, we prove the following result in the appendix.

10These models invite an obvious criticism: Why are firms in the fringe so “naive” not to take into 

account the effect of their output decision on price but, at the same time, so “sophisticated” to compute 

the exact price effect of their participation decision? Putting this theoretical issue aside, these models 

might nevertheless give a good empirical description of the nature of competition in some markets.

u See the proof of lemma 3.4.
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P ro p o sitio n  3.6 I f  the maximum sustainable equilibrium size in the simultaneous cartel 

formation game T, rrP(k), is such that irc(m*(k); k ) > 7Tf(rn*(k) — 1; k), thenrfi*{k) is the 

unique equilibrium cartel size in the sequential cartel formation game Tr. In the unique 

equilibrium o f V , Z{ = 0 i f  i £ {1, ...,n  — m*(k)}, and Zi — 1 i f  i £ {n — rri*(k) +  1, ...,n}.

It is possible to show that the condition of the proposition is satisfied for “almost all” 

k such that m c{k) £ (l,n ) . This result is reassuring in that it shows the robustness of our 

predictions, which are even sharper under the assumption of sequential cartel formation.

We have modelled cartel formation as an open membership game; that is, cartel mem­

bers can not prevent other firms from joining the cartel. However, under quantity com­

petition, profit per cartel member is not monotonic in the number of cartel members. 

Does this imply that, in equilibrium, a cartel member may be better off by restricting 

membership? The following proposition gives a reassuring answer.

P ro p o sitio n  3.7 In equilibrium, a cartel member is never better off by restricting cartel 

membership. Formally, i f  m* is a stable cartel size, then

7rc(m*; k) > 7rc(ra* — /; k) for any I £ {1,..., m* — 1} .

P roof. Fix I £ — 1}. For a given cartel size, a fringe firm is always at least

as well off as a cartel member, i.e. 7rc(m* — l\k) < iTf(m* — l;k). From corollary 3.1, 

the profit of a fringe member is (weakly) increasing in the size of the cartel; accordingly, 

7Tf(m* — l;k) < 7r/(m* — 1; fc). Finally, we have 7r/(m* — 1; k) < 7rc(m*; k) by stability of 

m*. This proves the assertion. ■

3.4 H eterogeneity in Capacity

Following Brock and Scheinkman (1985), we have assumed so far that all firms face the 

same capacity constraint. The aim of this section is to sharpen the predictions of the 

basic two-stage game. In particular, we address the following question. Allowing for 

heterogeneity in capacity levels among firms, do “larger” firms have stronger incentives 

to join the cartel than their “smaller” rivals? If the answer were yes, then this would be 

reinsuring for two reasons. First, it would reinforce the tendency for fringe firms to face



CHAPTER 3. CARTEL STA BILITY UNDER CAPACITY CONSTRAINTS 72

a binding capacity constraint in equilibrium, and for cartel firms not to be constrained. 

As we have shown, it is in this case that a change in demand will have a major impact 

on the equilibrium cartel size. Second, due to their free-riding behaviour, fringe firms 

tend to be much larger than cartel members in terms of production. However, economists 

usually think of “fringe firms” as being rather small. The pure existence of capacity 

constraints alleviates this “problem” somewhat. But if firms with large capacities had 

stronger incentives to join the cartel than firms with small capacities, then cartel firms 

would tend to be large, and fringe firms would tend to be small. Such an equilibrium 

outcome would thus be consistent with the common notion of small fringe firms. Below, 

we show that the answer to the question is indeed yes. Moreover, we show that the model 

predicts that firm size and the degree of capacity utilisation are negatively correlated 

across firms.

We generalise the model of section 3.2 in that we allow for arbitrary heterogeneity 

in capacity levels among firms. Each firm i, i € N , is equipped with a capacity per 

unit of market size of ki, k{ € (0,oo). Inequality (3.1) is now supposed to hold for all 

i]. Since firms are no longer symmetric, we have to chose an output sharing 

rule for the cartel that reflects the different firm sizes. The most natural assumption 

appears to be that each cartel member’s share a* of joint cartel output, and hence of joint 

profit, is equal to its share of joint cartel capacity, a* =  ki/kM, where 

All other features of the basic model remain unchanged.

Turning to the equilibrium analysis of the generalised two-stage game, we proceed again 

by backward induction. We first seek the stage-2 Nash equilibrium, given any vector z

of participation decisions. Using the same notation as in subsection 3.3.1, a vector of

quantities, > forms a Nash equilibrium if and only if

qi =  min{x(<7), Â }, i € N \M ,

and

QM = Y l qi = min ’
ieM

where q =  YlieN & is industry output, and x(q) the backward reaction mapping. Let

12There is evidence that cartels use such a rule in setting output quotas; see Davidson and Deneckere 

(1990) and Scherer (1980).
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% )  =  £  i£N\M min{^(9),^i} +  niin {x(q),kM } — Q- As before, there exists a unique 

nonnegative q such that h(q) =  0. Hence, there is a unique Nash equilibrium in quantities. 

In equilibrium,

x(q) if ki > x(q) 
qi = l  i e  N \M ,

ki otherwise,

and

Ix(q) if kM > x{q) 

k \f otherwise.

Denote by <ft((2 :i,z_j);k) firm i ’s equilibrium output, where z =  (z\, ...,z*_i,Zi+i,...,zn) 

are the participation decisions of z’s rivals, and k  =  (/ci,..., kn) gives the distribution of 

capacities. Similarly, 7Ti((zi,z_j);k) denotes firm i ’s equilibrium profit; the cartel’s joint 

equilibrium profit is 7Tm-(z; k).

Before analysing firms’ participation decisions, we consider some useful properties of 

the stage-2 equilibrium. The proof of the following results can be found in the appendix.

Lemma 3.8 A fringe firm ’s equilibrium profit 7ii(z;k), i G N \M , is weakly decreasing in 

kj, j  7  ̂i, and weakly increasing in k{. Similarly, joint cartel profit is weakly decreasing in 

rival capacity, and weakly increasing in its own joint capacity.

Inducing backwards, let us now turn to firms’ participation decisions. From the defi­

nition of subgame perfection, it follows that the vector z can be supported in an SPE if 

and only if

7Ti((l,z_i); k) > 7Ti((0,z_i);k) if Zi =  1 (“internal stability”),

and

7Ti((l,z_i);k) < 7Ti((0,z_i); k) if z* =  0 (“external stability”).

This implies that noncollusion, i.e. Zi =  0 for all i G N , can again be sustained in 

equilibrium since 7Tf((l,0, ...,0);k) =  7Ti((0,0, ...,0); k). The following lemma considers 

firms’ incentives to join the cartel. For the proof, the reader is referred to the appendix.

Lemma 3.9 Fix an arbitrary vector z of participation decisions, and consider the two 

largest fringe firms i and j ,  Zi — Zj =  0, with ki > kj. Then,

7 T i( ( l ,z _ i ) ;k )  < 7 T i( (0 ,z_ < ) ;k )  = » 7 r j - ( ( l , z _ j - ) ; k )  <  7 r , - ( (0 ,z_ j) ;k ) .
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That is, the larger firm has the stronger incentive to join the cartel.

Note that this result is not trivial. To see this, suppose firm i ’s capacity is twice that 

of firm j ’s. Then, firm i ’s share of cartel output in case of firm i ’s deviation will be less 

than twice the share of firm j  in case firm j  deviates. The following lemma considers the 

incentives for firms to leave the cartel.

L em m a 3.10 Fix an arbitrary vector z of participation decisions such that kh > h  for 

all h G M  and I G N \M . Consider any two cartel members i and j ,  Zi = Zj =  1, with 

ki > kj. Then,

TTj((l,Z-j); k) > 7Tj-((0, z_j); k) = >  7Ti((l, z_<); k) >  7Ti((0,z_i);k).

That is, the smaller firm has the stronger incentive to leave the cartel.

P roof. The proof is similar to that of the previous lemma. ■

We are now in the position to state and prove the main result of this section.

P ro p o sitio n  3.8 There always exists a nonempty stable cartel M* such that ki > kj for 

a lii G M* and j  G N \M * .

P roof. We proceed by applying the algorithm in the proof of proposition 3.2 in decreasing 

order of capacity. Let us start with the participation decision of the largest firm. Since 

7Tj((l, 0,..., 0); k) =  7Ti((0,0,..., 0); k), a cartel consisting of the largest firm only is internally 

stable. If the next largest firm has no incentive to join the cartel, then, from lemma 3.9 

no smaller firm has an incentive to do so. Hence, the cartel consisting of the largest firm 

is externally stable. In this case, the algorithm stops since we have found a nonempty 

stable cartel. Suppose now that the second largest firm has an incentive to join the cartel. 

But this means that it has no incentive to leave the cartel, nor has, from lemma 3.10, the 

largest firm. The cartel consisting of the two largest firms is thus internally stable. If the 

next largest firm does not want to join the cartel, then it is externally stable as well. In 

this case, the algorithm stops; otherwise, it continues in the same fashion. The algorithm 

is finite since either it stops before all firms have decided to join the cartel or it does not, 

in which case the cartel consisting of all firms in the industry is found to be stable. ■
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Proposition 3.8 thus shows that there always exists an equilibrium in which the cartel 

consists of the largest firms in the industry, and the fringe of the smallest.13 The mecha­

nism behind lemmas 3.9 and 3.10, and proposition 3.8, may be more general. A large firm 

has more incentives to restrict output than a small firm. The reason is that the output 

restriction leads to a higher price which is more beneficial to larger firms. It is this mech­

anism that drives, for instance, the prediction of Ghemawat and Nalebuff (1990), namely 

that, in declining industries, large firms will start decreasing their output first.

Proposition 3.8 shows that, in equilibrium, cartel members tend to be larger than fringe 

firms, given the assumed output sharing rule. We already know that a fringe firm’s uncon­

strained equilibrium output is larger than that of a cartel member. Hence, it appears to be 

quite “likely” that, in equilibrium, fringe firms face a binding capacity constraint, while 

cartel members are unconstrained. Moreover, the model makes the following empirical 

prediction.

P ro p o sitio n  3.9 Consider an equilibrium such that ki > kj for a lii E M  and j  E N \M .  

There exists a nonpositive cross-sectional correlation between firm size (as measured by 

capacity) and the degree of capacity utilisation.

P roof. Given the assumed output sharing rule of the cartel, all cartel members produce 

at the same degree of capacity utilisation. All fringe firms have at least the same degree of 

capacity utilisation, namely for two reasons. First, their unconstrained equilibrium output 

is larger than that of a cartel member. Second, fringe firms tend to be smaller. Hence, 

any fringe firm that is smaller than a cartel member produces at a weakly larger degree of 

capacity utilisation. Since the unconstrained equilibrium output is the same for all fringe 

firms, the assertion holds also when comparing fringe firms of different sizes. ■

Hence, firms with larger capacities will tend to have lower capacity utilisation rates.

13A similar result has been shown by Donsimoni (1985) in the context of a (non-game-theoretic) model 

of price leadership with a competitive fringe. In her model, demand is assumed to be linear, and firms 

differ in the slope of their linearly increasing marginal cost curve; there are no capacity constraints.
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3.5 Cartel Stability over th e Business Cycle

Oligopolistic price and quantity setting over the business cycle has been a major topic of 

research in theoretical and empirical 10. At the heart of this literature lies the question 

whether prices in oligopolistic markets tend to vary procyclically or rather countercycli- 

cally. Standard oligopoly and monopoly models usually predict either a positive or no 

correlation between prices and demand. The seminal contribution by Rotemberg and 

Saloner (1986) was to show that this relationship can be reversed in collusive equilibria 

because firms tend to have a higher incentive to deviate in states of high demand. Their 

paper triggered a large and still growing literature which has been mainly concerned with 

the robustness of Rotemberg and Saloner’s predictions; see, for instance, Haltiwanger and 

Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997).14 The literature 

commonly uses an infinitely repeated game where demand follows some (deterministic 

or stochastic) process; using trigger strategies, all firms in the industry together try to 

sustain the joint profit maximising price subject to the constraint that no firm has an 

incentive to deviate. That is, these papers focus on firms’ “incentive constraints” for 

maximum sustainable collusion, and neglect the “participation constraints” . Most papers 

do not consider capacity constraints.15 Results appear to depend quite delicately on the 

time-series properties of the assumed process, and the level of the discount factor.

In our static two-stage game, we have investigated the comparative statics of cartel 

stability and the collusive equilibrium price with respect to capacity K  and market size 

(or demand) S. One might think that this model does not lend itself easily to the analysis 

of collusion over the business cycle. There is, however, an extremely simple dynamic 

extension of the model in which the issue can be investigated in a meaningful way; it goes 

as follows.

Time is discrete, and indexed by t (t =  1,2,...); the time horizon is infinite. There are 

n firms whose objective it is to maximise the sum of discounted profits. In each period, 

the dynamic game consists of the two stages described in section 3.2: the participation

14The influential paper by Green and Porter (1984) is often cited in this context. This is somewhat

misleading since their model deals with demand fluctuations that are even ex post unobservable.
15An exception is the paper by Staiger and Wolak (1992), where firms have to build capacity from scratch

in each period.
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stage and the output stage. If a firm decides to join the cartel in a given period, then it 

delegates its output decision for that period to some cartel manager who seeks to maximise 

the cartel’s joint profit in that period. As before, the cartel is assumed to share profit 

equally. In contrast to the static model, demand (market size) S  now follows an arbitrary 

(discrete-time) stochastic process; capacity level K  is assumed to be constant over time. 

At the start of each period, before firms decide upon joining the cartel, the realisation of 

S  becomes common knowledge. Notice that the only tangible state variable just prior to 

the participation decisions is thus given by the current realisation of 5; at the start of the 

output stage, the tangible state can be described by the tuple (S',z), where z =  (z\ , ..., zn) 

is again the vector of participation decisions. It is then immediate to see that, in a given 

period, a vector of participation and output decisions that can be sustained in an SPE 

of the static two-stage game can also be sustained in a Markov perfect equilibrium of 

the dynamic game (for the same realisation of S). (Recall that Markov perfection is a 

refinement of subgame perfection.) Hence, the comparative statics results with respect 

to S  carry over from the static to the dynamic model. From propositions 3.4 and 3.5, it 

follows in particular that the minimum and maximum sustainable cartel sizes and prices 

are (weakly) procyclical, in the sense of a nonnegative correlation between S  and these 

variables.16

It is interesting to compare our results with those of Rotemberg and Saloner (1986). 

They consider an infinitely repeated price setting game where demand follows an i.i.d. 

process, and firms face constant marginal cost; there are no capacity constraints. Rotem­

berg and Saloner investigate the dynamic properties of a particular equilibrium, namely 

the symmetric SPE which attains the highest profit (by the threat of an infinite Nash 

reversion). To the extent that the static monopoly price tends to be procyclical, there 

are two opposing forces at work.17 On the one hand, collusive prices will tend to be pro­

cyclical since monopoly price is positively correlated with demand. On the other, the gain 

from cheating is positively related to the state of demand. (Due to the i.i.d. assumption,

16It should be noted, however, that this does not necessarily imply that equilibrium price varies pro- 

cyclically. For instance, if there is some exogenous “regime” shift from a collusive equilibrium (m >  2) to

a noncollusive equilibrium (m =  0), then the equilibrium price might fall despite an increase in demand.
irNote, however, that in Rotemberg and Saloner’s leading example the monopoly price is independent

of the state of demand.
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the expected future loss from punishment is the same in each state.) In the case of in­

termediate discount factors, collusive prices will be procyclical in periods of low demand, 

and countercyclical in high demand states. The reason is that the monopoly price can be 

sustained only when demand is low. In high demand states, collusive profits are optimally 

constant so as to keep firms just indifferent between deviating and sticking to the collusive 

price; to achieve this, prices must be set the lower, the higher is demand.18

In the dynamic extension of our model, an increase in demand has two effects as well; 

however, in contrast to Rotemberg and Saloner’s paper, they reinforce each other. For 

a given degree of collusion (i.e. cartel size), equilibrium price is procyclical; see lemma 

3.4. Now, the maximum degree of collusion is itself procyclical (proposition 3.4), which 

reinforces the positve correlation between price and demand (lemma 3.2).

The (theoretical and empirical) study of different kinds and causes of price wars is a 

very active area of research, even though there does not appear to be a generally accepted 

definition of a “price wax” in the literature.19 Let us (somewhat loosely) call a “price war” 

a situation in which some or all firms in the industry cease “colluding” . In this sense, price 

wars never take place in the model by Rotemberg and Saloner. In our model, however, two 

quite different kinds of price wars can occur along the equilibrium path. First, a sufficient 

fall in demand will lead to (more) excess capacity in the industry, which in turn causes a 

cartel to become unstable. In equilibrium, some or all firms will leave the cartel, and price 

will collapse. Second, due to the possible multiplicity of equilibria, an exogenous “regime” 

shift from a more to a less collusive equilibrium can occur. Such a price war might be 

caused by some change in beliefs of industry participants.

3.6 Conclusion

The main aim of this paper has been to develop a theoretical foundation of the traditional 

view in industrial organisation, according to which there exists a negative relationship 

between the level of excess capacity and cartel stability. In contrast to the supergame- 

theoretic approach to collusion, we have focussed on firms’ incentives to participate in a

18For large discount factors, the monopoly price can be sustained in each state so that prices will tend 

to vary procyclically; for small discount factors, collusion can not be sustained in any state.

19An outstanding example is Levenstein’s work on the Bromine Cartel; see Levenstein (1996,1997).



CHAPTER 3. CARTEL STA B IL ITY  UNDER CAPACITY CONSTRAINTS 79

cartel, rather than on the issue of enforcement of cartel rules. The basic two-stage game 

predicts a positive (negative) correlation between the equilibrium cartel size and the level 

of demand (resp. capacity). This reinforces the tendency of prices to be low in periods 

of high excess capacity. In a simple dynamic extension of the model, we have shown 

that collusive equilibrium prices will vary procyclically, independently of the assumed 

stochastic process for demand. Allowing for arbitrary heterogeneity in capacity among 

firms, the analysis has revealed that smaller firms have stronger incentives to take a free 

ride on the cartel’s effort to restrict output. Hence, the model predicts that firm size and 

the degree of capacity utilisation tend to be negatively correlated across firms.

Although the model has been cast as a model of cartel formation, it can also be seen as 

a contribution to the still underdeveloped literature on endogenous horizontal mergers.20 

If mergers are driven by market power rather than efficiency considerations, then the 

model predicts merger waves to occur during booms.

Several issues have been left open for future research. First, following Selten (1973), 

we have modelled cartel formation as a noncooperative simultaneous-move game; we have 

shown that our results are even sharper in the case of sequential cartel formation. It may 

be fruitful to consider different ways of modelling cartel formation, or to allow for more 

general coalition structures. Second, as in Brock and Scheinkman (1985), each firm’s 

capacity level was assumed to be exogenously given. Endogenising capacity decisions 

may provide new insights, as Davidson and Deneckere (1990) and Staiger and Wolak 

(1992) have shown in the context of supergames. Third, it would be interesting to study 

the interaction of firms’ incentive and participation constraints, thereby combining the 

supergame-theoretic literature with the present approach.

3.7 Appendix

Proof o f lem m a 3.1. Let r(m , k) = P(nk) — c +  m kP'(nk) and s(m, k) = P((n  — m  + 

l)fc) — c + kP '((n  — m  +  1 )k). At cartel size m, m  G [1, n], a cartel member (fringe firm) 

faces a binding capacity constraint if and only if r(m ,k)  >  0 (s(m ,k) > 0). Note that 

dr(m ,k)/dm  <  0, dr(m ,k)/dk  < 0, ds(m,A;)/dm > 0, and ds(m ,k)/dk  < 0, for all real

20The seminal paper in this literature is Kamien and Zang (1990).
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numbers m  £ [l,n] and k £ (0,oo). Hence, if k is such that r(n ,k)  < 0 < r(l,fc), then 

m c(k), m c(k) £ [l,n], is uniquely defined by r(m c(k),k) =  0. We thus have r(m ,k)  >  0 if 

and only if m  > m c(k). From the implicit function theorem, it follows that dmc(k)/dk  <  0 

in this domain. Outside this domain, the function m c(k) can be extended in an arbitrary 

way as long as it satisfies dmc(k)/dk  < 0 for all k £ (0, oo). Similarly, if k is such that 

s ( l ,k )  <  0 < s(n,k)j then m/(fc), m f(k) £ [l,n], is uniquely defined by s(m f(k),k )  =  0; 

we have drrif(k)/dk > 0. Outside this domain, m f(k)  can be extended in an obvious way. 

Finally, observe that r(l,fc) =  s(l,fc), which implies the last assertion of the lemma. ■  

P ro o f  o f lem m a 3.2. As in subsection 3.3.1, we have to distinguish between three 

cases, depending on whether the fringe firms and cartel members face a binding capacity 

constraint. Since <7/(0; A;) =  <7/(1; fc) =  <7m(1;&), we restrict attention to real numbers 

m  £ [l,n).

Case (i): Suppose capacity constraints are nonbinding for all firms, i.e. condition (3.4) 

holds. Then, equilibrium output is such that qc{m \k) =  q f(m ;k)/m , where g/(m; k) is 

defined by (3.5). Implicit differentiation yields

9qf(m; k) =  qf________ P ' +  qf P" /  qf  \
dm n — m  +  2 P ' +  ^ m + l^fP '' \  ’ 71 ~ 771 +  1 /

Hence, a fringe firm’s output and joint cartel output are increasing in m. Differentiating 

total industry output with respect to m gives

7 ^ ( n  -  m +  1 )tf/(m; k) =  - q f  +  (n -  m  +  1 ) ^  < 0;

that is, total industry output is negatively related to cartel size.

Case (ii): Suppose now that capacity constraints are binding for fringe firms but 

nonbinding for cartel members. Then, qf(m ;k) =  k , which is independent of m, and 

qc(m;k) is defined by (3.10). Implicit differentiation of joint cartel output gives

d , 7, , P ' +  qMP" _^M(m;fc) = fc2p/ + ̂ p„ 6(0,fc);

joint cartel output is thus an increasing function of m. To see that total industry output 

is negatively related to m, note that
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Case (Hi): If capacity constraints are binding for all firms, then a marginal change in 

m has no effect on output. ■

P ro o f of lem m a 3.7. In the following, we distinguish between different cases, depend­

ing on whether fringe firms face binding capacity constraints when cartel size is m o rm - 1 , 

and whether cartel members are constrained when cartel size is m  — 1. Notice that the as­

sumption m  > m c(k) implies that m  >  77ic(fc), i.e. cartel members are unconstrained when 

cartel size is m. For expositional clarity, we suppose below that 7 7 1 ,7 7 2  — 1 ^  m c{k),rrif{k) 

so that the derivative of profit with respect to k exists. Let us first discuss the cases 

where the derivative does not exist. Suppose m  — 1 =  m c{k). Since we have assumed that 

m  G [mc(fe) +  l,n ], this is possible only if m c(k) G [l,n  —1]. Now, from the proof of lemma

3.3, we know that irc(m; k) > 7 1 / ( 7 7 1  — 1 ;k) if 772 — 1 =  m c(k) G (1,72 — 1]; but this contra­

dicts the assumption 7rc(m;fc) > 7Tf(m — l;k ). By continuity, irc(m;k) > 7 7 / ( 7 7 1  — 1; As) if 

m — 1 =  m c{k) =  1 =  rrif(k). Hence, if indeed 7rc(2; k) =  77/(1; k) at this value of k , then 

the left-hand derivative of 7rc(2; /?) — 77/(1; A;) with respect to k  must be strictly negative. 

The sign of the derivative from the right at this point will be dealt with below in case 

(b), where m  — 1 > m c(k) and m  > m f(k) > 777,- 1. Suppose now that m  =  m f{k) 

(m — l  = m f(k )). Since rrif(k) is strictly increasing in k , the derivate from the left will be 

dealt with in the case where m  > m,f(k) (resp. m — 1 >  m f{k)), and the derivative from 

the right in the case where m <rrif(k) (resp. 771 — 1 < m f(k ) ) .

Case (a): Suppose m — 1 > mc(k) and m < rrif(k). This implies that capacity 

constraints are nonbinding for both fringe and cartel members when there axe 771 — 1 or 771 

cartel members. Then, obviously, a marginal increase in the capacity level k has no effect 

on profits.

Case (b): Suppose that 771 — 1 > m c(k) and m >  m f{k) > m  — 1. In this case, capacity 

constraints do not matter when cartel size is m — 1 so that d'Kfim — 1; k)/d k  =  0. When 

there are m  cartel members, equilibrium profit is given by (3.11). Using the envelope 

theorem, we get d'Kc{m\ k)/dk  =  (n — m)qc(m; k)P'(mqc(m; k) + (n — m)k) < 0, and hence 

d  {7Tc(m; k) — /Kf{m — 1; k)} /d k  < 0.

Case (c): Suppose now that m — 1 > mc(k) and m — 1 > mf(k).  Then, equilibrium 

profits are, from (3.11) and (3.12),

77c(771; k) =  [P(mqc(m] k) +  (n — m)k) — c] qc(rn; k)
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and

7T/(m — 1; k) = [P({m — 1 )qc(m — 1; k) +  (n — m  +  l)fc) — c] k ,

where qc(m\ k) is implicitly defined by (3.10), and qc{m — 1; k) is defined analogously. Let

us now make two observations, namely

dqc(m  — 1 ;k) _  n - m - 1- 1 P' +  (m — l)qc(m — 1; k)P"
dk 771 — 1 2P' +  (7 7 1  — l)gc(”i — 1; /c)P"

< _____________ ( n - m  +  l ) 2fc______________________
(7 7 1 — 1)[(t71 — l)gc(7n — 1; fc) +  2 ( 7 1  — 771 -f 1)/:]

and

mqc{m\ k) < (m  — l)qc(m  — 1; k) +  (3.19)

To see inequality (3.18), observe first that inequality (3.1) implies

(m -  1 )qc(m  -  1; k) ^
l)9c(m ,k )P ' < (m _ 1)9c(m_ 1. fc) +  (n _ m +  1)fc-P ’

where both P ' and P" have to be evalued at (m — l)gc(77i — 1; k) +  (7 1  — 771 +  1)&. We then

get
P' +  (7 7 1  — l)gc(77i — 1; k)P" (7 1  — 771 +  1 )/:

2 P ' +  (771 — l)gc(77i — 1; k)P" (771 — l ) 9c(77i  — 1; k) +  2(71 — 771 +  1 )k ’
using the fact that the ratio on the l.h.s. is decreasing in (tti— l)<7c(m — 1; k)P n. Inequality 

(3.18) follows immediately.

To see inequality (3.19), note that, by assumption, we have qc{pi\ k) < k and 7Tc(77i; k ) =  

7T/(77i — 1; k) so that P{mqc{m\ k) +  (7 1  — m)k) > P((m  — \)qc(m — 1; k) +  (n — m  +  1)/:), 

and hence the result follows.

Let us now take the derivative of An(k) =  {7rc(77i; k ) — 7r/(m — 1; /:)} with respect to

k :

A tt'(k) =  (7 1  — m)qc(m ; k)!*(mqc(m; k) +  ( 7 1  — 771)/:)

— [P((m — l)gc(77i — 1; k) +  (7 1  — 771 +  1)/:) — c]

—P'((m  — l)qc(rn — 1; k) +  (n — m  +  1 )k)k  

x
^ d q c( m - l ; k )  , _  ;

(m  -  1 ) ---------— ---------  + 7 1 - 7 7 1  +  1

w h ere  w e  h a v e  m a d e u se  o f  th e  en v e lo p e  th eo rem . N o w , u s in g  (3 .1 8 )  a n d  th e  fa c t  th a t , b y  

a ssu m p tio n , m  a n d  k  are su ch  th a t  Trc(m;  k ) =  7T/(77i — 1; k) ,  w e  g e t

A n ' ( k )  <  [P((77i — l)<7c(77i — 1; k)  +  (71 — 771 +  1)/:) — c]



CHAPTER 3. CARTEL STA BILITY  UNDER CAPACITY CONSTRAINTS 83

(n — m )k  
mqc(m', k )

(n — m  + l ) 2 (n —m + l) k

(m — l ) 2q2(m — 1; k) +  2 (m — l)(n  — m +  l)A;gc(m — 1; A:)

Using (3.19), and (to — 1 )qc(m — 1; A:) >  A:, one can show that the expression on the r.h.s. 

is negative. Thus, we obtain d { /Kc(m]k) — 7Tf(m — 1; k)} Jdk < 0 (where this derivative 

exists).

Case (d): Suppose m — 1 <  m c(k) < m  and to — 1 >  to/(A;). Equilibrium profits 

are then given by nc(m; A;) =  [.P(mqc(m ; A;) +  (n — m)k) — c] qc(m; k) and 7r/(m  — 1; A;) =  

[P(nA;) — c] k, where qc(m ; A;) is implicitly defined by (3.10). Since m > m c(k) by assump­

tion, we must have qc(m\ k ) <  k. Then, joint cartel profit must be strictly higher at a joint 

cartel output of mqc(m ; k ) than at mk. That is, [P(mqc(m ; A;) +  (n — m)k) — c] mqc(m\ k) > 

[P{nk) — c] mk, but this contradicts the assumption 7rc(m; A;) =  7 1 7 (m — 1; A;). Hence, this 

case can not occur. ■

Proof o f proposition 3.6. Suppose we are at the start of “substage” I, I G {1, 

i.e. just prior to firm Vs participation decision. Define z(l) =  i z* f°r  ̂ ^ {!>•••»n }» 

and z(0) =  0. Assume z(l — 1) > m*(k) — (n — I +  1), i.e. if firms I to n all choose to 

join the cartel, then the resulting cartel size is at least m*(k). Then, there exists a unique 

SPE of the ensuing subgame such that z(l — 1) 4- ZX ~  Tnin{m*(k),z(l — 1)}, where 

z* is firm Vs participation decision along the equilibrium path. In equilibrium,

z f  =
1 i f  z(l — 1) =  m*(k) — (n — l -f -1)

0 i f  z(l — 1) >  rri*(k) — (n  — I +  1).

T h e  p ro p o s it io n  fo llo w s by s e t t in g  1 =  1. W e p rove th e  a sse r tio n  by in d u ctio n .

Assume I = n. If z (tl — 1) > m*(k), then z* =  0 since all cartel sizes above rn*(k) are 

internally unstable (lemma 3.6), i.e. 7r/(m; k) > 7rc(m + l; k) for all m £ {m*(A;)-|-l, ...,n}. 

If, however, z(n  — 1) =  m*(k) — 1, then z* =  1 since nc(m*(k);k) > TVf(m*(k) — l;k)  

by assumption. Hence, the assertion holds for I = n. Assume now that the assertion is 

satisfied for all I £ {/ 4- l,...,n } , where I £ { l,...,n  — 1}. We now want to prove that 

it is then still satisfied for 1 = 1. Now, if z(l — 1) > m*(k), then clearly zX =  0 since

7r/(ra ; k) > 7rc(m +  1; k) for all m  £ (m*(A;) +  1,..., n}. If z(l — 1) =  m*(k) — (n — I + 1),

then firm Vs payoff from joining the cartel is nc(m*(k); k), whereas from joining the fringe
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it is at most 7 r — l;fc) recalling that 7T/(m;fc) is strictly increasing in m. By 

assumption, 7rc(m*(k)-,k) > 7rf(m*(k) — T,k). Hence, z~ =  1 in this case. If, however, 

z(l — 1) £ {m*(k) — (n — l),m*(k) — 1}, then firm Vs profit from joining the cartel is 

7rc(m*(A;); k)] the payoff from joining the fringe is 7r/(ra*(fc); k), which is strictly more. In 

equilibrium, z~ = 0 in this case. This proves the assertion. ■

P ro o f  of lem m a 3.8. Suppose first that ki > x(z; k). Then, an increase in ki has no

effect on q{z;k), and hence none on firm Vs profit. A rise in kj, j  ^  i, weakly increases

q(z;k), as can be seen by examining the implicit function h(q(z; k)) =  0. Assuming the 

derivatives exist,

=  {&(q(z;k)) [P(q(z; k)) -  c] + x(q(z;k))P '(q(z;k))}  < 0,

since xf(q(z] k)) <  0. Suppose now that k{ <  x(z; k). Again assuming the derivatives 

exist, we have

d7Ti(z;k) d , ,
- 4 r  =  ^ [p (9 (z ;k ))- c]

=  [P(q(z; k)) -  c] +  kiP 'fa iz;

> [P(q(z] k)) -  c] +  kiP ,{q{z; k)) > 0,

where the first inequality follows from dq(z;k) /dki £ (0,1], and the second from the fact 

that k{ < x{z\ k). Similarly,

Unlj Un/j

The same analysis applies to the cartel’s joint profit by simply changing the indices. ■  

P ro o f of lem m a 3.9. Suppose first that neither firm i nor firm j  face a binding 

capacity constraint if Zi =  Zj =  0; hence, ^ ( ( 0 ,  z _ * ) ;k )  =  g7( ( 0 ,z _ j ) ;  k )  =  x(q(z ; k ) ) ,  

where q(z ; k )  =  ^2ieN qi((zi,z-i)]k) is aggregate industry output. This implies that 

both firms make the same profit in the fringe, i.e. 7 i i (z ;k )  =  7ij(z; k ) .  But then, firm 

i has a (weakly) higher incentive to deviate since 7 T , ( ( l , z _ i ) ;k )  > 7 i j ( ( l , z _ j ) ; k ) .  To 

see this notice that 7T j((l ,z_ j) ;  k )  =  k i/ (kM^  +  fc*) 7T A f(( l ,z_ i) ;k ) ,  where kM^  is the 

cartel’s joint capacity given z , i.e. excluding firms i and j .  Moreover, 7Tm ( ( 1, Z - i ) ;  k )  >
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7 T A f ( ( l , z _ j ) ; k )  since the cartel’s joint profit is weakly increasing in its own capacity, and 

weakly decreasing in the capacity of a fringe firm; see lemma 3.8.

Suppose now that both firms i and j  face a binding capacity constraint if z* =  Zj =  0; 

hence, <fc((0,z_i); k )  =  fcj, and <?j((0, z _ j ) ;  k )  =  kj. Since i and j  are the largest fringe 

firms, all other fringe firms are then constrained as well. We need to show that if

ki
^M(z) +  h

then

7TM((1, z~i); k )  — ki [P(q(z ;  k ) )  -  c] <  0,

kj -ttm(( 1, z-j); k )  -  kj [P(q(z; k ) )  -  c] < 0. (3 .20)
^M(z) +  kj

Comparing the two inequalities, one sees that it is sufficient to show the following inequal­

ity:
7TM ((1 ,Z-Q ;k) >  7 T M ( ( l ,Z - j ) ;k )  ^

^Af(z) +  ki ~  &m(z) 4- kj
Notice that firms i and j  continue to face a binding constraint in the fringe if the other 

firm deviates and joins the cartel. To see this notice that, from the implicit function 

h ( g ( z ; k ) )  =  0, such a deviation will weakly decrease industry output q{z ; k ) ,  and hence 

weakly increase x (g (z ;  k ) ) .  In order to show inequality (3.21), we adopt a differential 

approach. If gAf((l,z_j); k )  =  x ( g ( ( l , z _ i ) ; k ) ) ,  then one can prove that

ki+kj=const.

d /  7TAf((l,Z-j); k )  

d k i  \  & M ( i , z _ i )

>  feMCM-Q ( - ^ ( g ( ( l , z _ i ) ; k ) ) P /( g ( ( l , Z - i ) ; k ) ) )  - 7 r M ( ( l , Z - j ) ; k )

(^ M (l,z _ < ))

(fcM(M-i) -  g (g ((l,z -j);k ))) [P (g ((l,z -j);k )) — c] ^  q

( ^ M ( l , z _ i ) )

which implies inequality (3 .21). If, instead, g A / ( ( l , z _ t ) ; k )  =  kM l̂ z _.) <  x(q ((l,z-i);  k ) ) ,  

then this derivative is zero, since aggregate output is independent of how capacity is 

distributed between a fringe firm and the cartel if both face a binding capacity constraint.

Finally, suppose that firm j ,  but not firm i, faces a binding capacity constraint if 

Z{ =  Zj =  0; hence, <7i((0,z_^); k )  =  x(q(z] k ) ) ,  and < 7 j((0 ,z_ j); k )  =  kj. First, observe that 

firm f  s incentive to deviate, as represented by the l.h.s. of (3 .2 0 ), is weakly decreasing in 

ki for ki > x(q(z ; k ) ) ;  the first term in (3 .20) is weakly decreasing in and the second
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term is independent of ki for ki > x(q(z;k)). Second, notice that firm i ’s incentive to 

deviate,

- — r-7rM((l, z_<); k) -  x(q(z; k)) [P(g(z; k)) -  c],
« M ( z )  +

is strictly increasing in ki for ki > x(q(z;k)). To see this, observe that the ratio of 

capacities is strictly increasing in ki, whereas all other terms are independent of ki for 

ki > x(q(z;k)). Hence, it is sufficient to prove that firm i has a stronger incentive to join 

the cartel than firm j  if ki = x(q(z; k)). But this has already been shown. ■



Chapter 4

M onopolisation and Industry  

Structure

4.1 Introduction

For a long time, a major topic in the literature on industrial market structure has been 

to explain differences in concentration across industries by reference to a small number of 

explanatory variables. The agenda of this traditional strand of the literature was strength­

ened by the finding that the ranking of industries by concentration tends to be very similar 

from one country to another.1 This regularity appeared to show that the underlying pat­

tern of technology and tastes strongly constrains equilibrium structure. Much of the old 

empirical work on cross-sectional differences in concentration was rooted in Bain’s (1956) 

structure-conduct-performance paradigm according to which structure (concentration) is 

determined by certain “barriers to entry” . A typical study in this literature seeked to 

explain structure by regressing observed concentration measures on proxies for barriers 

to entry such as scale economies, advertising and R&D intensity etc. This approach, 

however, was strongly criticised even prior to the game-theoretic revolution in industrial 

organisation (10). In particular, researchers remarked that many of the right-hand side 

variables were endogenous; advertising and R&D intensity, for instance, should depend 

on market concentration. The econometric response to the endogeneity problem consisted

1See, for instance, Bain (1966).

87



CHAPTER 4. MONOPOLISATION AND INDUSTRY STRUCTURE 88

in estimating a system of simultaneous equations. However, this line of research did not 

prove to be entirely successful; see Schmalensee (1989).

The introduction of formal game-theoretic modelling into 10 increased the unease of 

many researchers with cross-industry studies. The dilemma of the game-theoretic approach 

appears to be two-fold. First, equilibrium outcomes often depend delicately on features of 

the model that are unobservable to an empirical researcher, and likely to vary from one 

industry to another. Second, even if we can pin down the specification of the game, there 

remains the problem that many models have multiple equilibria. The response of many 

researchers to this dilemma has been to focus on single-industry studies so as to rely on 

specific features of that industry to motivate assumptions. A quite different response of 

other researchers has been not to give up on cross-industry studies, but rather to seek for 

more robust mechanisms that hold good across a broad range of industries. An outstanding 

example of the latter fine of research is the “bounds approach to concentration”, developed 

by Sutton (1991) in his book Sunk Costs and Market Structure. The idea of the bounds 

approach to concentration is to divide the space of outcomes into those outcomes that can 

be sustained as equilibrium outcomes in a broad class of admissible models and those that 

can not.

Sutton (1991) applies the bounds approach to the study of the relationship between 

concentration and market size. Quite surprisingly, this relationship did not receive much 

attention in the early literature, even though the relative size of an industry appears to 

be exogenous (at least as a first approximation). From a theoretical viewpoint, a negative 

size-structure relationship was considered to be obvious: for a given level of barriers to 

entry, an increase in market size should raise the profitability of incumbent firms and thus 

trigger new entry, which would lead to a fall in concentration. However, the empirical 

evidence for a negative relationship was found to be rather weak.

Sutton shows that the alleged negative relationship between market size and con­

centration breaks down in certain groups of industries. In particular, he introduces the 

important distinction between “exogenous” and “endogenous” sunk cost industries. In ex­

ogenous sunk cost industries, the only sunk costs involved are the exogenously given setup 

costs; R&D and advertising outlays are insignificant. In endogenous sunk cost industries, 

on the other hand, the equilibrium level of sunk costs is endogenously determined by firms’
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investments decisions. Roughly, these are industries in which advertising or R&D are ef­

fective in that investments in some fixed outlays raise consumers’ willingness-to-pay, or 

reduce marginal costs of production. Sutton’s predictions are that, in exogenous sunk cost 

industries, the lower bound to concentration (i.e. the lower bound to the set of “rationalis- 

able” outcomes) tends to zero as the market becomes large, whereas in industries for which 

the endogenous sunk cost model applies the lower bound to concentration is bounded away 

from zero, no matter how large the market. That is, in endogenous sunk cost industries, 

very fragmented outcomes (in the sense of low one-firm concentration ratios) can not be 

supported as equilibrium outcomes in large markets; such outcomes can not be excluded 

in exogenous sunk cost industries.2 An empirical test of Sutton’s predictions can be found 

in Sutton (1991), and Robinson and Chiang (1996).

Sutton’s predictions, although robust, may not appear entirely satisfactory in that 

they are quite “weak”: they refer to the stability of fragmented outcomes in large markets 

only. But such a criticism would miss the point of the bounds approach to concentra­

tion. Nevertheless, the important open question, raised by Bresnahan (1992) and others, 

is whether or not it is possible to make tighter predictions regarding the size-structure 

relationship.

The aim of this paper is to investigate in what kind of industries it is possible to 

sustain concentrated outcomes, and in what kind of industries it is not. The question 

addressed in this article is thus: ‘Is there an upper bound to concentration?’ In fact, 

an inspection of Sutton’s dataset reveals that most datapoints are relatively close to the 

estimated lower bound.3 Moreover, the datapoints do not “fill” the space above the lower 

bound. That is, there appear to be limits to monopolisation of industries. Notice that 

identifying an upper bound does not mean providing a certain maximum concentration 

measure but rather finding testable comparative statics results. This obviously requires 

first identifying a trade off firms may face in their attempts to monopolise markets.

The economic history of the U.S. at the turn of the century provides many examples 

of “attempts of monopolisation” . At a time when mergers were not yet scrutinised by

2The “nonfragmentation” or “nonconvergence” result for endogenous sunk cost models has been for­

mally shown by Shaked and Sutton (1987).

3See Figure 5.4 on page 118 in Sutton (1991).
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antitrust authorities, firms attempted to monopolise industries by horizontal mergers. The 

most famous case is probably that of the formation, in 1901, of the United States Steel 

Corporation by the consolidation of twelve steel producers. In their study of the U.S. Steel 

case, Parsons and Ray (1975) convincingly argue that it was primarily motivated by the 

successful attempt to gain market power. An important feature of the U.S. Steel case (as 

well as of many other merger cases) was the steady decline of U.S. Steel’s market share. 

For instance, U.S. Steel’s market share of steel ingot and casting production decreased 

from 65.4% in 1902 to 54% in 1911, and 38.9% in 1929.4 According to Stigler (1950), the 

observed (albeit relatively slow) decline in market share was due to new entry and the 

expansion of fringe firms.5 The lesson one can learn from the U.S. Steel merger case is thus 

the following. Firms have an incentive to monopolise the market in order to gain market 

power. In the absence of antitrust authorities, this can be accomplished by horizontal 

mergers. However, due to new entry and the free-riding behaviour of outsiders, it appears 

to be difficult to persistently monopolise an industry.

To study the limits of monopolisation, we investigate, in the first part of the paper, 

the market structure that would emerge if firms were free to merge in the absence of 

any antitrust laws. As Stigler (1950) pointed out, the resulting market structure is not 

necessarily a monopoly since firms face a trade off between participation in a merger (so 

as to achieve a less competitive outcome) and nonparticipation (so as to take a free ride 

on the merging firms’ effort to restrict output). We consider the linear-demand model due 

to Shubik and Levitan (1980), in which goods are horizontally differentiated; all products 

are treated symmetrically, and competition is non-localised. The degree of substitutability 

between goods is summarised by a one-dimensional parameter, cr. Prior to mergers, each 

firm is equipped with the knowledge to produce one distinct product; the product portfolio 

of post-merger coalitions is the collection of products offered by its members.

4This reduction in market share was slowed down by U.S. Steel’s aggressive purchase of ore deposits. 

The corresponding rise in market price for ore sharply reduced the profitability of entry. This case is a nice

example of how backward integration reduces the profitability of new entry into the downstream market.
sParsons and Ray (1975) describe a revealing example of free-riding behaviour of fringe firms. In 1930,

National Steel possessed just 2.5% of the industry’s ingot capacity; but in the 1930’s, its ingot capacity 

expansion was one quarter of the industry total expansion during the 1930’s. In many years, its steel 

production subsidiary’s capacity utilisation rate was about double the industry average rate.
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Following Sutton (1991), we distinguish between exogenous and endogenous sunk cost 

industries. In the exogenous sunk cost case, the endogenous horizontal merger game 

consists of three stages. At the first stage, firms decide whether or not to enter the 

industry; if a firm decides to enter it has to pay some entry fee. At the second stage, 

the firms that have decided to enter form “coalitions” . Finally, at the third stage, the 

newly formed coalitions compete in prices. We show that, for a given number of firms 

in the industry, merger to monopoly obtains as long as products are sufficiently good 

substitutes. As the number of firms increases, the interval of values of cr, for which merger 

to monopoly obtains, shrinks and eventually vanishes in the limit. That is, for a given 

value of cr, monopoly does not emerge endogenously if the number of firms is sufficiently 

large. Moreover, in any equilibrium, the market share of the largest coalition converges 

to zero as the initial number of firms tends to infinity. We assume that the industry is in 

a long-run free-entry equilibrium; that is, the number of potential entrants is sufficiently 

large so that, in equilibrium, further entry is unprofitable. An increase in the size of the 

market relative to the level of entry costs raises the profitability of entry, and will thus 

lead to a larger number of entering firms. In the limit as market size (relative to setup 

costs) goes to infinity, the number of firms increases without bound. But this implies that 

it is impossible to sustain concentrated outcomes in large markets. In exogenous sunk cost 

industries, the upper bound to concentration goes to zero as market size tends to infinity.

To analyse the endogenous sunk cost case, we use the “quality-augmented” linear- 

demand model by Sutton (1997,1998). In this case, the model consists of four stages. First, 

firms decide whether or not to enter the market. Second, firms form coalitions. Third, the 

coalitions decide how much to invest in the quality of the goods in their portfolio. Finally, 

the coalitions compete in prices. Even in the absence of mergers, the number of entering 

firms in the long-run free-entry equilibrium remains finite, no matter how large the market. 

This is nothing but an application of the nonconvergence result for endogenous sunk cost 

industries. In fact, if products are sufficiently good substitutes (or investment in quality is 

sufficiently effective), then only one firm can be supported in equilibrium. Thus, not even 

in large markets is it in general possible to exclude concentrated outcomes. That is, in 

endogenous sunk cost industries, the upper bound to concentration does not decrease with 

the size of the market.
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In the second part of the paper, we investigate the robustness of our main predictions. 

For this purpose, we use a recent equilibrium concept by Sutton (1997), which is defined 

not in the space of strategies but in the space of (observable) outcomes. This equilibrum 

concept involves two rather weak assumptions, which are both implied by subgame perfec­

tion. Moreover, the extensive form of the game is not specified explicitly. In particular, we 

allow firms to make side payments and to monopolise markets not only through mergers 

but also through product proliferation. The key feature of the extensive form is the follow­

ing: there is some penultimate stage (before firms compete in prices) at which new firms 

can enter the market. This formalises the notion of “ex-post entry” (e.g. post-merger 

entry), which is, according to Stigler (1950), an empirically powerful force preventing the 

monopolisation of industries, as exemplified by the U.S. Steel case. We show that, in 

exogenous sunk cost industries, the upper bound to concentration does indeed go to zero 

as market size (relative to setup costs) tends to infinity. In contrast, monopoly outcomes 

may be sustained in endogenous sunk cost industries, no matter how large the market. 

Hence, allowing for ex-post entry, the predictions of this paper hold independently of any 

details regarding coalition formation or product selection.

4.2 R elated Literature

This paper is closely related to several strands in the 10 literature. First, it belongs to 

the game-theoretic literature on industrial market structure, and to the literature on the 

relationship between market size and concentration in particular. The seminal works in 

this literature are Sutton’s books Sunk Costs and Market Structure (Sutton 1991) and 

Technology and Market Structure (Sutton 1998), dealing with advertising-intensive and 

R&D-intensive industries, respectively, and combining theory, econometric tests and case 

studies.6 Much of Sutton’s work is concerned with the stability of fragmented outcomes 

in large markets. The instability of such outcomes in industries in which firms can ef­

fectively raise consumers’ willingness-to-pay, by investing in some fixed outlays, was first 

shown in the context of pure vertical product differentiation by Shaked and Sutton (1983), 

extending earlier work by Gabszewicz and Thisse (1980). More general conditions for non­

6Important empirical articles are Bresnahan and Reiss (1990), and Berry (1992).



CHAPTER 4. MONOPOLISATION AND INDUSTRY STRUCTURE 93

convergence were proposed by Shaked and Sutton (1987). In these works, nonconvergence 

is analysed in the context of static stage games. The robustness of these results to the 

existence of collusive underinvestment equilibria in dynamic investment games has been 

shown by Nocke (1998). The present article develops this literature further in that it inves­

tigates the stability of concentrated outcomes in large markets. It follows Sutton (1991) in 

distinguishing between exogenous and endogenous sunk cost industries, and builds upon 

the insights of this earlier work: whether or not merger to monopoly obtains depends upon 

the number of firms the market could support in the absence of mergers; it is this number 

that lies at the heart of the analysis in Sutton’s book.

Second, in this paper, firms attempt to monopolise markets by horizontal mergers. The 

10 literature on horizontal mergers can roughly be divided into two strands: exogenous 

and endogenous mergers. The first strand is mainly concerned with the profitability and 

welfare consequences of an exogenous horizontal merger by two or more firms; important 

papers include Salant, Switzer and Reynolds (1983), Perry and Porter (1985), Deneckere 

and Davidson (1985), Levin (1990), and Farrell and Shapiro (1990).7 Most of these pa­

pers analyse mergers in a homogenous goods industry under Cournot competition. The 

important contribution by Salant, Switzer and Reynolds (1983) was to show that mergers 

tend to be unprofitable in such a setting, provided there axe no efficiency gains and the 

merger does not lead to an almost complete monopolisation. Deneckere and Davidson 

(1985) showed that this result does no longer hold under Bertrand competition (with dif­

ferentiated products). In fact, the first part of the present paper uses essentially the same 

multiproduct demand system as Deneckere and Davidson. The advantage of such a setting 

is that mergers are conceptually well defined; in contrast, in a homogenous goods model 

with constant returns-to-scale technology, as in Salant, Switzer and Reynolds (1983) and 

Kamien and Zang (1990), a merger by m  firms is equivalent to a reduction in the number 

of players by m  — 1.

The present paper is even more closely connected to the still underdeveloped literature 

on endogenous horizontal mergers, which starts from Stigler’s (1950) insight that firms may 

not want to participate in a merger since they may prefer to take a free ride on the merging

7There are also some papers on the effects of exogenous horizontal mergers on collusion; see Davidson 

and Deneckere (1984), and Compte, Jenny and Rey (1996).
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firms’ effort to restrict output. Hence, the private profitability of a given merger (relative 

to no merger at all) is in general not sufficient for a merger to occur in equilibrium. Using a 

homogenous goods Cournot model with constant returns-to-scale technology, Kamien and 

Zang (1990) were the first to formally analyse endogenous horizontal mergers.8 In such 

a setting, clearly, merger to monopoly, although privately profitable (if the alternative is 

no merger at all), does not emerge in equilibrium if the number of firms, n, is sufficiently 

large. To see this, notice that, by not participating in the merger of its n — 1 rivals, a firm 

can ensure itself the duopoly profit. If the monopoly profit is k times the duopoly profit, 

then merger to monopoly obtains only if n <  [k], where [k] is the integer part of k. From 

Salant, Switzer and Reynolds’ (1983) analysis, it is well-known that a merger that falls 

(significantly) short of monopoly is not privately profitable. Not surprisingly, then, for 

n sufficiently large, mergers do not occur in equilibrium.9 The main differences between 

Kamien and Zang (1990) and the present article axe the following. First, we analyse a 

multiproduct demand system in which mergers are not merely a reduction in the number 

of players. Second, we consider the case of price competition in which mergers tend to be 

privately profitable; see Deneckere and Davidson (1985). Indeed, we show that mergers 

will occur in equilibrium, even in the limit as n tends to infinity. The open question, 

addressed in this paper, is whether concentrated outcomes can endogenously occur in 

equilibrium. Third, and most importantly, we introduce several ingredients which allow 

us to make empirically testable predictions: the degree of horizontal product differentiation 

(a), the distinction between exogenous and endogenous sunk cost industries, and market 

size relative to setup costs (by assuming free but costly entry). Finally, in the second part 

of the paper, we show that our predictions do not depend on the details of the coalition 

formation game if we introduce the notion of ex-post entry.

Some of the insights of the endogenous horizontal merger literature have been antici­

pated by the literature on cartel stability and explicit collusion; see, for instance, Selten 

(1973), d’Aspremont et al. (1983), and Nocke (1999). In fact, these models are formally

sLater work includes Kamien and Zang (1991,1993) and Gowrisankaran (1999).
9Kamien and Zang (1990) show that if merged entities are allowed to partly “demerge” after the 

merger (by forming independent subunits), then mergers tend to be more profitable. But again, merger to 

monopoly will not obtain if n is sufficiently large.
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equivalent to endogenous horizontal merger models. Conversely, the results of the present 

article may also be of significance for the literature on cartel stability. Finally, this paper 

is related to the literatures on endogenous (noncooperative) coalition formation (e.g. Hart 

and Kurz 1983, Bloch 1996, Yi 1997) and multiproduct oligopoly (e.g. Champsaur and 

Rochet 1989, Shaked and Sutton 1990).

4.3 Endogenous Horizontal M ergers and the Upper Bound  

to  Concentration

In this section, we investigate whether concentrated outcomes can be sustained as equilib­

rium outcomes in large markets, using a model of endogenous horizontal mergers. Coalition 

formation is modelled as a noncooperative open membership game; post-merger entry is 

not considered. The robustness of the predictions is analysed in the next section, where 

we allow for ex-post entry, endogenous product selection, and more general models of 

coalition formation. In the following, we distinguish between exogenous and endogenous 

sunk cost industries.

4 .3 .1  M onopolisation  in  E xogen ou s Sunk C ost Industries

We first analyse the limits of monopolisation in exogenous sunk cost industries, where 

R&D and advertising outlays are insignificant; the only kind of sunk costs involved are 

exogenously given by firms’ setup costs.

4.3.1.1 The M odel

We consider an industry offering a potentially infinite number of substitute goods to 5  

identical consumers. A consumer’s utility is given by
oo oo

U(x ; Af) =  (xk -  xk) -  2a X )  5 1 XkXl +  t 4 ' 1)
fc=l k = l l<k

where Xk is consumption of substitute good &, and M  is consumption of the outside good 

whose price is normalised to one. Let Y  denote income and pk the price of good k. Then, 

M  — Y  — 'ZkPkXk- The utility function is taken from Sutton (1997,1998), and can also 

be found, albeit in slightly different form, in Shubik and Levitan (1980), Deneckere and
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Davidson (1985), and Shaked and Sutton (1990).10 It defines utility over the domain of x 

for which all the marginal utilities <9C/(x; M )/dxk  are nonnegative. The form of the utility 

function ensures that a consumer’s inverse demand for any good is linear. Income Y  is 

assumed to be sufficiently large, Y  > 1/8<t, so that Y  > YlkVk^k in equilibrium. The 

parameter <r, a  E (0,1), measures the degree of substitutability between products. In the 

limit as a  —► 1 , goods become perfect substitutes; in the limit as a  —► 0 , products become 

independent. All goods (other than the outside good) are treated symmetrically.

We consider the following three-stage game. There are no potential entrants, each of 

which has the knowledge to produce one distinct substitute good. At the first stage, these 

no firms decide (either simultaneously or sequentially) whether or not to enter the industry. 

Entry costs in the industry are given by e, e > 0. Since we want to confine attention to 

free-entry equilibria, we assume that no is sufficiently large, no > [5 — 8 e(l — a)\ / ( 8 ecr), 

so that in any equilibrium of the game there is at least one nonentering firm. At the second 

stage, the firms that have decided to enter at the previous stage simultaneously decide 

which “coalition” to join. All firms that have decided to join the same coalition then 

merge. Formally, firm k selects Zk =  i, i € Z, if it decides to join coalition M*. A coalition 

structure {{Mi)i£Z} is thus an endogenous partition of the set of entrants, induced by the 

vector of participation decisions, z. Since there is an infinite number of coalitions firms 

can join (almost all of which will be empty in equilibrium), arbitrary coalition structures 

are allowed to emerge in equilibrium. This coalition formation game is sometimes called 

an open membership game; see Yi (1997). At the third and final stage, the newly formed 

coalitions, each offering the products of its “members”, compete simultaneously in prices. 

Each coalition faces a constant marginal cost of production, c; to simplify notation, we 

assume c =  0 .

Each of the no firms is assumed to act so as to maximise its profit; the same applies to 

the merged entities at the price-setting stage of the game. The members of each coalition 

share the coalition’s profit. Since firms are symmetric, we assume, for simplicity, that 

profit is shared equally.

10Shubik and Levitan (1980), Deneckere and Davidson (1985), and Shaked and Sutton (1990) all consider 

price competition, whereas Sutton (1997,1998) analyses quantity competition using these preferences.



CHAPTER 4. MONOPOLISATION AND INDUSTRY STRUCTURE 97

4.3.1.2 E qu ilib rium  A nalysis

We now seek the pure strategy subgame perfect equilibrium (SPE) of the three-stage 

merger game.

P rice -S e ttin g  S tage . We solve for the SPE of the merger game by inducing back­

wards. Let us, therefore, start with the third stage at which the merged entities simul­

taneously compete in prices. Suppose that n firms have entered the industry at the first 

stage, relabel these firms as firms 1  to n, and let N  =  { l,...,n}. We take firms’ merger 

decisions, described by the vector z =  (z\, ...,zn), as given. Let ra* denote the number 

of members of coalition Mi, i.e. m* =  | Zk — i). The following lemma summarises

equilibrium behaviour at the price-setting stage; the proof can be found in the appendix.

Lem m a 4.1 For any vector of merger decisions z, there exists a unique Nash equilibrium 

in prices. In equilibrium, each coalition sets the same price for all of its products. Coalition 

M i’s equilibrium price is given by

PM = --------------------------------7~— ------------------------------T> (4.2)
[2 ( 1  -<r) + (2 n -  rruM  [l -  <r 2 < ^ a ) + ( L - ^ ]

while its equilibrium profit is

( 1  — a) [ 1  — cr +  (n — mi)a\
S^Mi(z) =  S

2  [ 1  — <r +  na] [2 ( 1  -  a) + (2 n -  m ) * ?  [l -  <r E ,e /  2(i-a)H-7L-m>]
(4.3)

Regarding price, several interesting comparative statics results can be obtained. First, 

for a given coalition structure, the equilibrium price is strictly increasing in the size of 

the coalition. The reason is that an increase in the price of a product exerts a positive 

externality on the demand of all other products. Each coalition internalises the externality 

of a price change on its own products; the more products a merged entity possesses, the 

higher is, therefore, the price of its products. Second, for a given number of own products, 

the coalition’s price is strictly increasing in industry concentration in the following sense. 

Consider any two coalitions, M j  and Mi, say, where m j  > mi. Then, any increase in 

771 j — mi that leaves m j -f mi unchanged, raises the equilibrium price of coalition M*, 

i 7  ̂j , I. To see this, observe that the function £(m) =  m /[2(l — cr) 4- (2n — m)cr] is strictly 

convex. The intuition is that an increase in the average price of rival goods, due to an
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increase in concentration, induces a coalition to raise its own price as well since prices 

are strategic complements. Third, if cr —► 1 , then each coalition’s price converges to the 

competitive price, which is equal to zero; this limit case is the famous “Bertrand paradox” . 

If a  —> 0, then goods become independent, and the price converges to the monopoly price 

of 1 / 2 .

As to equilibrium profit, there are two important observations to make. The first is 

that a coalition’s profit per product is decreasing in the number of its products, holding 

the coalition structure fixed. This is a consequence of the fact that merged entities with 

several products internalise the effect of a price change of one of its products on its other 

products. The second is that a coalition’s profit per product is increasing in industry 

concentration for a given size of the coalition.

M erger S tage. Let us now induce backwards and analyse the second stage of the 

game. A vector of merger decisions, z*, can be sustained in an SPE of the subgame in 

which n  firms enter if and only if

^MzA 4 X - k )  > KMZk(zk,z*-k) for all zk e  Z, k € {l,...,n}- (4.4)

We do not attempt here to give a general characterisation of firms’ merger decisions. 

Instead, we focus on the conditions under which concentrated outcomes can emerge in 

equilibrium. For the proof of the following result, the interested reader is referred to the 

appendix.

P ro p o sitio n  4.1 I f  n  € {2,3}, then merger to monopoly can be supported in an SPE  

for all cr 6  (0,1). I f  n  >  4, then there exists a ff(n), <x(n) G (0,1), such that merger to 

monopoly is sustainable i f  and only if cr E [^(n), 1 ), where S(n) is given by

2 (n2  — 6 n +  7) +  2\/n 4  — 8 n 3  +  27n2 — 44n +  28 .
^   --------------------  (ri — i  j (4n~—~7)---------------------- ’ (45)

To understand proposition 4.1, notice first that merger to monopoly from duopoly is 

always an equilibrium outcome: a monopolist can make at least the same profit per product 

as a duopolist (by mimicking the duopolists’ pricing decisions), and strictly more whenever 

products are not independent (by raising the price slightly in order to internalise the 

externalities). This argument breaks down when there are more than two firms (products). 

Clearly, profit per product is higher under merger to monopoly than under the completely
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fragmented market structure where each firm offers one product only. However, if a firm 

deviates unilaterally, it can take a free ride on the n — 1 merging rivals. The profit of such 

a free rider is strictly higher than the profit (per product) prior to the merger game, and 

may be higher or lower than profit under monopoly. Merger to monopoly will occur if and 

only if products are sufficiently good substitutes since, in this case, price competition is 

sufficiently tough so as to drive profits down whenever firms do not merge to monopoly. 1 1

The higher is the number of entrants, n, the more “difficult” is merger to monopoly. 

The reason is that each firm’s merger decision becomes less “decisive” as n increases; 

since, for a given market structure, a free-riding firm is always better off than a merging 

firm, firms have less incentives to merge for higher n . 1 2  Indeed, it is possible to show that 

<7 '(n) >  0 for n > 4. Moreover, we get the following result.

Corollary 4.1 For any a £ (0,1), there exists a finite threshold value n(a) such that 

merger to monopoly is sustainable in an SPE if  and only i f  n < n(cr).

Proof. All we need to show is that limn_*oo <r(n) = 1- Since > 0 and &{ri) £ (0 ,1 ) 

for all n > 4, it follows that limn_*oo a(n) < 1 . Suppose the assertion is false. Then there 

exists a k £ (0,1) such that limn-+oo < k. Using (4.5), this can be shown to lead to 

a contradiction. ■

The corollary shows that it is impossible to sustain merger to monopoly in markets 

with a sufficiently large number of firms; this holds for any degree of substitutability 

between products. In the following proposition, we further tighten our predictions; the 

proof is relegated to the appendix.

Proposition 4.2 For any (cr, 7 ) £ (0, l ) 2, there exists a finite n(a\ 7 ) such that, for all 

n > n(i757), the market share of each coalition is bounded above by 7  in any equilibrium 

of the merger game.

Proposition 4.2 may suggest that mergers will not occur in the limit as the number of 

firms tends to infinity. This is not true, however, as the following proposition shows.

11 Monopoly profit is also decreasing in the degree of substitutability, <7, since consumers value variety. 

In the limit as a  —> 1, industry profit under monopoly converges to to the (standard) monopoly profit of

a homogenous goods industry; under all other market structures, industry profit goes to zero as a  —► 1.
12With a continuum of firms, no firm would want to merge since its own decision does not affect market

price, and a firm is clearly worse off by reducing output.
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Proposition 4.3 For any n > 2, the completely fragmented market structure, in which 

each nonempty coalition has one member only, can not be sustained in equilibrium. That 

is, mergers will occur in any equilibrium, provided at least two firms enter in equilibrium.

Proof. This is essentially a corollary of Theorem 1 in Deneckere and Davidson (1985). All 

we need to show is that if z* =  k for all k £ N  (after relabelling post-merger coalitions), 

then firm 1, say, can profitably deviate by joining coalition M 2 , for instance. This deviation 

clearly increases the prices of all products in the industry. Decompose the price effect of 

the proposed deviation into two steps. First, let the outsiders (coalitions Ms through Mn) 

raise their prices to their new equilibrium values. This will benefit the members of M 2  

since it raises the demand for M 2  s products. Second, let the coalition M 2  raise the prices 

of its two products to their new equilibrium values. By definition, this price increase must 

be profitable for the members of M2 . We have thus shown that the proposed deviation by 

firm 1  is profitable. ■

It is worth pointing out that proposition 4.3 obtains under the maintained hypothesis 

of no post-merger entry.

Entry Stage. We now turn to the determination of n, the number of pre-merger 

entrants, as a function of market size, S , and entry costs, e. Since we are unable to char­

acterise equilibrium in all ensuing subgames, it is impossible to determine the equilibrium 

number of entering firms, n*(S/e). It is, however, possible and useful to compute a lower 

bound on this number, and to study the limit behaviour of this bound as market size 

relative to setup costs tends to infinity. For this purpose, it is important to notice that 

the equilibrium profit (per product) of an entrant, S 7rJ(n), is bounded above by the profit 

under merger to monopoly, SW(n), and bounded below by the profit in the absence of 

mergers, Sir(n). From (4.3), these bounds on profits are given by

^ (" )  =  s - 8 [ 1 - * +n<Tr

and
S%(n) =  5  ( l - g ) H - g  +  ( n - l M

2 [1 — cr +  no] [2(1 — o) +  (n — l)cr]

The upper bound on the number of entrants, n(S/e), is given by the maximum integer n 

such that S7r(n) > e; that is, n{S/e) is the integer part of [5 — 8e(l — o)] / ( 8 eo), which
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is, by assumption, less than the number of potential entrants, no- To calculate the lower 

bound, observe that S]i(n) is strictly decreasing in n, and strictly increasing in S. Hence, 

the number of entering firms in the absence of mergers, n(S/e), is the maximum integer n 

such that 5 7 r(n) > e. Moreover, n(S/e) is strictly increasing in S/e, and lim s/^oo n(S /e ) =  

oo. Since n*(S/e) > n(S/e), it follows that \ims/ê OQn*(S/e) =  oo This, in conjunction 

with propositions 4.2 and 4.3, establishes the following proposition.

Proposition 4.4 (1.) For any (a, 7 ) € (0, l )2, there exists a finite (S/e)(<t;j ) such that, 

for all S /e > (S/e) the market share of each coalition is bounded above by 7  in

any equilibrium of the game. (2.) For any S/e sufficiently large, mergers occur in any 

equilibrium.

Proposition 4.4 states the central prediction for exogenous sunk cost industries. It is 

impossible to sustain very concentrated outcomes (in the sense of high concentration ratios) 

in large exogenous sunk cost industries. More precisely, the upper bound to concentration 

converges to zero as market size goes to infinity.

4 .3 .2  M o n op o lisa tion  in  E ndogenous Sunk C ost Ind u stries

We now turn to the analysis of the limits of monopolisation in endogenous sunk cost 

industries, where the level of sunk costs is endogenously determined by firms’ investment 

decisions.

4.3.2.1 The M odel

The endogenous sunk cost model differs from the exogenous sunk cost model analysed in 

the previous subsection in that firms can invest in R&D or advertising so as to increase 

the consumers’ willingness-to-pay for their products. As before, there are no potential 

entrants, each equipped with the know how to produce one distinct substitute good, and 

S  identical consumers. Using our previous notation, the utility function is now given by

0 0  /  2  \  0 0

U &  M; u) =  £  (x» -  3 j )  -  2 .  £  £  g S  .+ .M , (4.6)
k==l \  “* /  k=ll<k k 1

where Uk, Uk € [l,oo), is the perceived quality of substitute good k. If Uk =  1 for all k,

then (4.6) reduces to the utility function of the exogenous sunk cost model, (4.1). It is
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easy to verify that an increase in Uk strictly increases utility whenever Xk >  0 ; that is, 

consumers value quality.

The timing of the game is as follows. At the first stage, the no potential entrants 

decide whether to enter the market; the entry cost is denoted by e. Again, we assume 

no to be sufficiently large. At the second stage, the firms that have decided to enter at 

the previous stage play the same simultaneous-move coalition formation game as in the 

exogenous sunk cost case. At the third stage, the newly formed coalitions simultaneously 

choose the qualities of their products by investing in fixed R&D or advertising outlays. 

The cost of achieving quality Uk, Uk € [1, oo), for good k is given by

F{uk) =  F „ 4 , (4 .7 )

where the parameter (3 is the elasticity of the investment cost function; we assume (3 > 2 . 

However, a coalition may decide not to invest at all in the quality of good k ; in this case, it 

cannot offer the good at the output stage. At the final stage, the coalitions simultaneously 

compete in prices; production costs are assumed to be zero.

4 .3.2 . 2  E quilib rium  A nalysis

We now seek to characterise the pure strategy subgame perfect equilibrium (SPE) of the 

four-stage game. Let us first consider the final price-setting stage. We take as given firms’ 

previous entry, merger and quality decisions.

Let yk(p ;u ) =  dfc(p; u)/uk  be normalised demand for good k ; similarly, qk =  Pk^k 

denotes the normalised price of k. Equilibrium behaviour at the price-setting stage can 

now be characterised as follows.

Lem m a 4.2 Deleting all products with zero sales in equilibrium, coalition M i’s average 

normalised equilibrium price is given by13

        . CTTlj(u\f.—U\J.)
_ *  (1 “  a)uMi +  O' z2j.m j ( uMi — V>Mj) — (1 — O 4- na) 2(l-a)+(2n-mj)a fA o N

q  = ----------------- — --------- ------- --------------- — ------ — ------------ —  =j------------------ , ( 4 .8 )
[2(1 -  <r) +  (2n -  nn)<7] [l -  E j  2 (i-<r)+(g»-m>]

13Strictly speaking, equation (4.8) only holds if there are no products, which make just zero sales but 

constrain equilibrium.



CHAPTER 4. MONOPOLISATION AND IND U STRY STRUCTURE 103

where the rh j’s and n are the numbers of products with positive sales in equilibrium, and 

UMi is the average over the uk ’s with positive sales, k E M i. Equilibrium price of good k 

is
_* . uk -  uMi
Qk — QMi “•------- 2  ’ '

provided sales are positive.

The proof of lemma 4.2 is rather lengthy and can be found in the appendix. Indeed, in 

the endogenous sunk cost model, characterisation of equilibrium is more difficult than in 

the exogenous sunk cost model. The reason is that products of sufficiently low quality make 

zero sales in equilibrium; the equilibrium price of these products is not uniquely defined 

(except possibly for those goods that make just zero sales). Moreover, it is possible that 

a good of a certain quality is not produced in equilibrium while a good of a lower quality, 

owned by a different coalition, makes positive sales; this is due to “portfolio effects”.

Our aim is to investigate whether it is possible to sustain concentrated outcomes in 

large endogenous sunk cost industries. Unfortunately, it is very hard to solve for equilibria 

at the investment stage; the following problems arise.

• A multiproduct coalition may find it optimal to invest in a subset of its products 

only. The equilibrium number of products it offers depends on the substitutability 

of products (tr), the effectiveness of R&D and advertising (j3), and on the details of 

the coalition structure. For instance, a monopolist may offer less products than a 

coalition that has less members but faces rivals.

•  Even for a fixed number of products, it is not possible to solve the first-order con­

ditions for quality explicitly, unless the coalition structure is symmetric. Moreover, 

the first-order conditions are not sufficient conditions for a global profit maximum; 

boundary solutions are endemic.

•  Multiple equilibria at the investment stage may arise even under symmetric coalition 

structures.

In contrast to the exogenous sunk cost case, the size of a coalition and the sizes of 

rival coalitions are no longer sufficient to summarise a coalition’s equilibrium profit in the
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ensuing subgame: the profits of coalitions of equal size may differ since equilibria at the 

investment stage are often asymmetric.

Instead of solving the game, we therefore seek to find a lower bound on the one-firm 

concentration ratio that can arise in equilibrium. Clearly, any equilibrium market structure 

can not be more fragmented (in terms of the market share of the largest coalition) than 

the market structure that would arise in the absence of mergers.

M ost-F ragm en ted  M arket S tru c tu re . To find a lower bound on concentration, we 

assume that firms are not allowed to merge; that is, each entrant k is constrained to set 

Zk =  k at the second stage. Let us now start by considering the pricing stage, where each 

firm offers one product. We take the vector of qualities, u, as given. Suppose q* forms a 

Nash equilibrium in (normalised) prices. Then, if product k makes strictly positive sales, 

then any product I with ui > Uk makes positive sales as well. To see this, notice that firm 

Z, offering quality ui > u\t, can ensure itself positive sales and, hence, positive profits by 

setting price qi such that ui — qi = Uk — qk- Relabel firms in decreasing order of quality, 

i.e. Uk > Uk+i for all k G {1, ...,n — 1 }. Suppose there are n products with positive sales. 

From (4.8), the equilibrium price of good k, k <  n, is given by1 4

_  ( 1  — a) [2 ( 1  -  a) +  (2 n -  1  )a] +  ntr [ 1  — cr +  (n — 1  )cr] (uk — u n )

^k 71 [2 ( 1  — a) +  (n — l)cr] [2 ( 1  — cr) +  (2 n — l)cr] ’

where un =  (1/n) Yl?=i ui the average quality of products with positive sales. Equilib­

rium output can be computed as

...ftrt [ 1  -  g  +  (n -  1 )<t]
Vk̂  2(1 — cr) [1 — <r +  H  '

The equilibrium number of products with positive sales, n*, is uniquely defined as the 

maximum integer n, n < n, such that q£{n) > 0. Except for the prices of products with 

zero sales, the equilibrium is unique.

At the third stage, firms (coalitions) simultaneously decide how much to invest in 

quality. Due to symmetry, any equilibrium is such that uk 6  {0,11} for all k. That is, each 

firm spends the same amount on quality, given that it invests at all. Suppose n, n < n, 

firms invest in quality. The equilibrium quality level, u(n ), is then implicitly defined by

14Again, this equation implicitly assumes that there is no product with zero sales that constrains 

equilibrium.
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the first-order condition

, [1 -  „  +  (g -  1H  [2 +  3(n -  2)a  +  (ffl -  5n +  5)^ ]  _  =  ^
[ 1  — <7 4 - ncr] [2 ( 1  — a) +  (2 n — l)cr] [2 ( 1  -  a) +  (n — l)cr]

which yields

i
0 —2=  /  g  [1 -  g  +  (n -  1)<t] [2 +  3(n -  2)<r +  (n 2  -  5n +  5)<t2]

[1 -  a  +  n<r] [2(1 -  a )  +  (2n -  l)cr] [2(1 -  cr) +  (n -  l)cr]2y

It is possible to show that, for the same number of products with positive quality, firms in­

vest more in quality in the completely fragmented market structure than under monopoly; 

this is due to the “business stealing effect” of investment, which is internalised by a monop­

olist. The total profit of a firm with quality u(n) is of the form II£(n) =  0(n; /?, cr, S, Fq) • 

7 (n; /?, o’), where (3, cr, S, Fo) >  0, and

7(n; /?, cr) =  /3( 1 — cr) [2(1 — cr) +  (2n — l)fr] — 2 [2 +  3(n — 2)cr -I- (n2 — 5n +  5)cr2] .

It is easy to verify that 7 ( 1 ;(3,a) > 0 and lim ^ o o 7 (n ;/?,cr) =  —oo. Since 7 (7 2; /?,cr) is a

quadratic function of n, it has a unique root n* such that d'y(n*; (3,a)/dn < 0, which is 

given by

"* =  ^  [ ( 0 - 3) - (< 0 - 5)°'+ V ( P ~  i )2 - 2 - 3 0  +  3)<t +  (02 - 4 0  +  5) 0 -2' .

We claim that the (maximum) equilibrium number of firms that invest in quality is given 

by min{[n*] ,n}. To see this, notice first that qualities of rival products (with positive 

sales) are strategic substitutes and that u(n) is decreasing in n. Hence, if a firm finds it 

unprofitable to invest in quality if [n*] firms have quality level u ([n*] +  1 ), then no firm will 

find it profitable if the same number of firms offer quality IZ([n*]). That is, firms offering 

zero quality in equilibrium have no incentive to deviate. Firms offering positive quality 

levels in the candidate equilibrium can not profitably deviate either since their quality 

levels are given by the first-order conditions, which satisfy the second-order conditions. 

Notice, however, that more concentrated equilibria may exist. 1 5

We now turn to the analysis of the first stage at which firms simultaneously decide 

whether or not to enter the market. Since 0 (n; /?,cr, 5,Fo) —► 0 0  as S  —► 0 0 , it follows from

15A pathological multiplicity arises if n* is an integer. In this case, min {[n*] — 1, n} can also be sustained 

in equilibrium.
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the analysis of the investment stage that the maximum equilibrium number of entering 

firms, n*, is given by [n*] in the limit as market size S  tends to infinity, provided that n* 

is not an integer. If n* is an integer, then the limit number of entrants is n* — 1 .

In endogenous sunk cost industries, the equilibrium number of entering firms is bounded, 

no matter how large the market. Even in the absence of mergers, concentration in en­

dogenous sunk cost industries can not get arbitrarily small by increasing the size of the 

market. This implies that proposition 4.4 can not hold in endogenous sunk cost industries. 

Our result is nothing else but an instance of a fundamental result in the analysis of indus­

trial market structure: the “nonconvergence property”, due to Shaked and Sutton (1987), 

according to which fragmented outcomes can not supported as equilibrium outcomes in 

endogenous sunk cost industries. The question of interest, not addressed by Shaked and 

Sutton, is whether it is possible to sustain arbitrarily concentrated outcomes.

The limit number of entering firms is decreasing in <j for two reasons. First, the higher 

is a, the less variety is offered by the market, and hence the less consumers spend on 

the goods on offer in this industry, holding prices fixed. Second, the larger the degree 

of substitutability between goods, the tougher is price competition, and thus the lower 

are profit margins. The number of entrants is increasing in (3 since the more convex the 

investment cost function is, the less firms will outspend each other in equilibrium. An 

instructive way of expressing the comparative statics results is the following. The limit 

number of entrants, as market size tends to infinity, is one if and only if cr € (<Ti (/?) , 1 ); it 

is equal to n, n >  2 , if and only if o' € (crn ((3), <rn- i  (/?)], where

/ m _  (2n -  3) (3 -  6 (n -  1 ) +  y/{2n +  l ) 2 / ? 2  -  4 (2n2  +  5n +  1) (3 +  4 (n 2  +  6 n +  1)
2 [ (2 n - l) /?  +  2 (n 2 - 3 n  +  l)]

We can now analyse two limit cases. First, if (3 —► oo, then crn (/?) —► 1, and for no value 

of <r is the limit number of entrants finite. Indeed, this limit can be interpreted as the 

“exogenous sunk cost case” , where every active firm chooses quality level 1  in equilibrium, 

and the number of firms grows without bound as market size increases. 1 6  Second, if (3 —> 2 , 

then crn {(3) —► 0, and for all values of cr the limit number of entering firms is one. This 

limit may be dubbed the “natural monopoly case” .

16 More precisely, we consider the number of entrants as both S  and (3 tend to infinity in such a way that 

S /0  -+ oo and (S//3)2/(/J-2) — 1.



CHAPTER 4. MONOPOLISATION AND INDUSTRY STRUCTURE 107

Let us summarise our results in the following proposition.

P ro p o sitio n  4.5 I f  firms are not allowed to merge, the equilibrium number of firms re­

mains finite, no matter how large the market. In particular, if  goods are sufficiently good 

substitutes (a close to 1) or investment is sufficiently effective ((3 close to 2), only one 

firm will enter the market, even as market size (relative to setup costs) tends to infinity.

If firms are allowed to merge, then more concentrated outcomes will emerge in equi­

librium, and more firms will enter the market, than in the absence of mergers. We have 

shown that the most fragmented market structure in endogenous sunk cost industries may 

involve arbitrarily concentrated outcomes in large markets. The empirical prediction for 

endogenous sunk cost industries can thus be summarised as follows.

C oro llary  4.2 In endogenous sunk cost industries, arbitrarily high one-firm sales con­

centration ratios may be supported in equilibrium, even in the limit as market size tends 

to infinity. That is, the upper bound to concentration does not decrease with market size.

It is important to point out that this prediction is not a mere consequence of the 

nonconvergence result, according to which it is impossible to sustain arbitrarily fragmented 

market structures in large endogenous sunk cost industries. Our corollary states that it 

is possible to support arbitrarily concentrated outcomes; this holds independently of the 

size of the market and the level of setup cost.

4.4 Ex-Post Entry and the Limits to  Concentration

The main predictions of the last section, regarding the relationship between market size 

and the upper bound to concentration, have been derived under quite special assumptions. 

First, we have modelled coalition formation, i.e. mergers, as an open membership game. 

Second, we have assumed that multiproduct firms can only emerge through mergers; firms 

are not allowed to choose the number of products they would like to offer. Third, we have 

derived our results under the assumption of no post-merger entry.

Due to the first assumption, our previous analysis leaves open the question whether 

the “instability” of concentrated outcomes is a consequence of coordination failures, which
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may or may not occur under different assumptions on coalition formation. After all, for 

a given number of firms in the industry, joint profits are maximised under monopoly. 

The second assumption implies that the only way to sustain a concentrated outcome is 

through mergers. This is clearly both unrealistic and restrictive, especially in the presence 

of antitrust laws. The third assumption in our previous analysis leaves out the possibility 

that a merger induces new entry once the merger has occurred. However, as Stigler (1950) 

pointed out, post-merger entry is an empirically important force that prevents firms from 

monopolising markets through mergers.

The aim of this section is to investigate the robustness of our previous predictions. 

For this purpose, we relax the three assumptions mentioned above. In fact, we show 

that the possibility of “ex-post entry” prevents the emergence of concentrated outcomes 

in large exogenous sunk cost industries, independently of any details regarding coalition 

formation or product selection. To show that our predictions do not depend on the details 

of the model, we do neither specify explicitly the extensive form of the game nor the 

strategy space of players. Instead, we apply a recent equilibrium concept, due to Sutton 

(1997), which is defined not in the space of strategies, but in the space of outcomes. This 

equilibrium concept involves two rather weak assumptions, “viability” (no firm makes 

losses) and “stability” (there is one smart agent who would fill a profitable opportunity in 

the market), both of which are implied by subgame perfection.

4 .4 .1  T h e  M od el

There are no firms that can take actions at certain specified stages. Each firm’s action 

space is denoted by A. Actions may include entry decisions, the choice of the number 

of products, merger decisions, the choice of product quality (in the case of endogenous 

sunk cost industries), takeover bids, and so on. Firm i ’s actions in the entire game are 

summarised by the vector a*, a* C A. Each firm may decide not to enter the market, 

i.e. to choose the “null action”, denoted by a* =  0. The outcome of the game can then 

be described by the no-tuple (a i,a 2 , ...jano). Suppose n, n G {l,...,no}, firms decide to 

enter the market, i.e. to choose a non-null action Then, deleting all inactive firms und 

relabelling the remaining active firms, yields the n-tuple

a =  (ai, a 2 , ..., a ^ ) ,



CHAPTER 4. MONOPOLISATION AND INDUSTRY STRUCTURE 109

which is referred to as a configuration.

The total payoff (profit) of firm i from the set of actions a*, when rivals’ actions are 

given by a_* =  ( a i ,  . . . , a i _ i , a < + i ,  . . . j a ^ ) ,  is written as

n(aj;a_ i).

If firm i decides not to enter the market (a* =  0), then its payoff is zero:

11(0; a _ j )  =  0.

The function n (a j;a_ i) summarises not only the final-stage profits but also possible costs 

from taking the set of actions a* (e.g. costs from entering a new product) as well as 

payments between firms (resulting from merger or takeover decisions).

To exclude nonviable markets, we assume that there is some action ao, ao ^  0, such 

that

I I ( a o ; 0 )  >  0.

Furthermore, it is assumed that the number of potential entrants, no, is sufficiently large 

such that if all firms choose to enter the market, then there is at least one that makes a 

negative profit. The idea is that entering the market requires a minimum setup cost of e, 

and the sum of final-stage payoffs is bounded above by (no — l)e.

All we have to specify about the extensive form of the game is the following. There 

are T  stages at which firms can enter the market and take actions; associated with these 

actions are certain costs and payments between firms. Additionally, at stage T  4-1, firms 

engage in some kind of price (or quanitity) competition. All payoffs are summarised by 

the reduced-form payoff function II (•; •). Firm i is free to take actions at any date £, 

t e  {U,ti -I- 1,...,T}, where U 6 {1,...,T} is firm i ’s “date of arrival”. The important 

feature of the extensive form is that there is some penultimate stage, T, at which firms 

take actions simultaneously, and new firms can enter the market, before firms engage in 

price competition. We do not allow for actions that are effectively conditioning on the 

outcome of this penultimate stage.

A configuration a* is called an equilibrium configuration if the following two conditions 

are satisfied:
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(i) (viability) For all firms i ,

(ii) (stability) There is no set of actions an+i such that entry is profitable. That is,

II(an+i;a*) < 0.

Condition (i) requires that no firm makes a loss in equilibrium, while condition (ii) 

says that if there is a profitable opportunity in the market, then there is some smart 

agent who will fill it. It may be worth pointing out that both conditions are consistent 

with boundedly rational agents who do not fully maximise their payoffs. Moreover, both 

conditions are implied by subgame perfection. To see this, notice that if the viability 

condition was not satisfied in a candidate SPE, then a firm could profitably deviate by 

choosing the null action (“do not enter”), and make zero profit. Similarly, if the stability 

condition was not satisfied, then an inactive firm could profitably deviate by entering the 

market at stage T. We thus have the following “inclusion” property.

P ro p o sitio n  4.6 (S u tto n  1997) Any outcome that can be supported in an SPE in pure 

strategies is an equilibrium configuration.

The concept of an equilibrium configuration has bite for empirical applications if the 

conditions of viability and stability can be expressed in the space of observable outcomes. 

This is indeed the case if firms’ actions merely consist in the choice of the number of 

products (exogenous sunk cost industries) or product quality (endogenous sunk cost in­

dustries). If we want to allow for side payments between firms, however, then we have to 

re-formulate these conditions in the space of observables. Let us now apply the equilib­

rium concept to study the limits of concentration in exogenous and endogenous sunk cost 

industries.

Exogenous Sunk C ost In d u strie s . In the case of exogenous sunk cost industries, 

a profile of firms’ actions, i.e. a configuration, a, induces a profile of products (a coalition 

structure)

m  =  (m i,m 2 ,...,m [),

/ € {1,..., n}, where ra* gives the number of products in firm (or coalition) Vs portfolio. The 

demand structure is as in section 4.3.1, and firms (coalitions) are assumed to compete in
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prices at the ultimate stage. Suppose the total number of products offered in the industry 

is given by m =  m*- Then, provided it has chosen to enter the market, firm Vs profit

from the final price competition stage is given by 511 (ra*; m_i), which can be derived from 

equation (4.3) in section 4.3.1. The setup cost per product is denoted by e.

Suppose now that a* forms an equilibrium configuration, which induces the profile of 

products, m*. We may express the viability and stability conditions for exogenous sunk 

cost industries in the space of observables (i.e. in the space of profiles of product numbers) 

as follows:

(i’) For all i G {1,...,/},

SIl (m*; m* ^  — m*e > 0 .

(ii*) There does not exist an m n+1, m n+1 € {1 ,2 , .. .} , such that

SU  ( m n+ i ;  m * )  — rrin+ie > 0.

Condition (ii’) is slightly weaker than (ii) in that we restrict the actions of an additional 

entrant to the choice of the number of its products. To understand condition (i’), notice 

that SU  (m*; m ^ )  — m*e is an upper bound on firm i ’s total payoff under the assumption 

that the implicit price (in case of coalition formation: the profit share), or the explicit 

price (in case of takeovers: the takeover bid), of acquiring a product from another firm is at 

least the setup cost per product, e. (The rationale for this assumption is that, otherwise, 

there would be some firm which sells a product to a rival below its cost. This assumption, 

however, is somewhat stronger than the viability condition, which only requires that a 

firm makes no loss on its combined activities.) Conditions (i’) and (ii’) coincide with (i) 

and (ii) if firms’ actions merely consist in selecting the number of their products. In the 

equilibrium analysis below we show that these two rather weak requirements are powerful 

enough to obtain strong empirical predictions.

Endogenous Sunk C ost In d u strie s . The application of the equilibrium concept to 

the case of endogenous sunk cost industries proceeds similarly to the case of exogenous 

sunk cost industries. A configuration a induces a profile of qualities

u  =  (u i ,u 2 ,. ..,u i) ,
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I G { 1 , n},  where u* is the vector of qualities offered by firm (coalition) i. Firm Vs final 

stage profit is denoted by SU (u^; u_*). We use the demand system of section 4.3.2 and 

assume that firms compete in prices, so that SU  (u^; u_j) is the Nash equilibrium profit 

as described in section 4.3.2. The cost of investment is given by equation (4.7); the entry 

cost per product is again e.

Suppose now that a* forms an equilibrium configuration, which induces the profile of 

qualities u*. Denote by Mi the set of products in firm Vs portfolio at the end of the game. 

The viability and stability conditions can then be expressed in the space of observables as 

follows:

(i” ) For all i , i G  {1,...,/},

S n (u * ;u V ) -  f e u f  +  e) > 0 .
keMi

(ii” ) There does not exist a vector of qualities, u n+i, un+i ^  0, such that

s n ( u n+1;u * ) -  Y ,  ( F»“f  +  «) >  0.
k€Mn+i

Again, if firms’ actions merely consist in the choice of product qualities (and the 

number of products), then these two conditions coincide with (i) and (ii).

4 .4 .2  E q u ilib r iu m  C o n fig u ra tio n s

In the following, we study equilibrium configurations in exogenous and endogenous sunk 

cost industries, respectively. We investigate, in particular, whether concentrated outcomes 

can be sustained as equilibrium configurations in large markets.

4 .4 .2 . 1  Exogenous Sunk C ost Industries

Before turning to the equilibrium analysis of the exogenous sunk cost case, let us introduce 

some further notation. We denote by S'K{rrii\m_^) firm Vs final-stage profit per product, 

i.e. 7r(77ii;m _i) =  From equation (4.3),

( 1  — (t) [ 1  — a  +  (m — rrii)a]
7T (m*; m_j) =

2 [1 — a + mo] [2(1 -  <r) +  (2m -  m ;)^ 2 1 -  a  £ ' =i
2 *
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For a given numer of products, industry profits are clearly maximised under monopoly. 

Does this imply that monopoly will endogenously emerge in equilibrium? Not necessarily, 

as we have seen in the section on endogenous horizontal mergers. The reason is that a 

firm, by staying out of a coalition, may be better off than by joining. In fact, we have 

shown (abusing notation slightly) that

7r(l; m  — 1) > 7r(m; 0) for m sufficiently large. (4-11)

In an open membership game, firms will, therefore, not endogenously merge to monopoly 

if the number of firms in the industry is sufficiently large.

This “inefficient” outcome may be viewed as being due to some coordination failure. 

One may, therefore, think that if firms were allowed to renegotiate on coalition formation, 

and make side payments, monopoly could be achieved. However, any renegotiation should 

be modelled explicitly, and it is a priori not clear whether such renegotiation would lead to 

an efficient outcome. Firms, anticipating renegotiation, would have even less incentives to 

merge prior to renegotiation. More importantly, renegotiation has bite only if it takes place 

after all entry has occured. The present model formalises this idea: there is a penultimate 

stage at which firms may renegotiate earlier agreements and, simultaneously, new entry 

may occur.

In the first part of the paper, we have shown that (4.11) holds. Below, we prove a 

stronger result:

7r(l; m) > 7r(m; 0) for m sufficiently large. (4-12)

Ex-post entry in conjunction with this claim are sufficient to imply that monopoly will not 

occur in large markets. To see this, suppose that (m, 0) is sustainable as an equilibrium 

configuration. Viability and stability require

7r(m; 0) > e /S

and

7r(l;m ) < e/S, (4.13)

which imply

7r(m ;0 ) > 7r(l;m ). (4.14)
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Let m (S/e) denote the maximum integer such that 7r(l;m ( 5 /€)) > e/S. Since 7r(l;m ) is 

strictly decreasing in m, and limm-xx 7r(l;m ) =  0, we have m(S/e) —► oo as S/e  —> oo. 

Configuration (m,0) satisfies the stability condition (4.13) if m > m (S/e). From equation 

(4.12), it then follows that 7r(l;m ) >  7r(m ;0 ) in sufficiently large markets. But this is in 

contradiction to (4.14).

Let us now show that equation (4.12) does indeed hold. It is straightforward to compute 

that

^ ° )  = 8 [l J  +  m ,]

and
 . ( 1  — cr) [ 1  +  (m — 1 )(t] [ 2  +  ma}27r(l; m) =

2[1 +  ma] [4 +  4(m — l)a  — m a2]2 .
Taking the limit as m  tends to infinity, we obtain

J im  {7r(m; 0) — 7r(l; m)} < 0 ,
m—* oo

which proves the claim.

We have thus shown that it is possible to exclude monopoly outcomes in large exoge­

nous sunk cost industries. In fact, we are able to obtain a much stronger result: the upper 

bound to concentration goes to zero as market size tends to infinity.

P ro p o sitio n  4.7 For any (a ,7 ) 6  (0, l ) 2, there exists a threshold level { ^ /^ j  {a \ l )  such 

that for all S /e  > (S /e )  (<7 ; 7 ), the market share of the largest firm is bounded above by 7  

in any equilibrium configuration.

The proof of proposition 4.7 is similar to that of proposition 4.2, and can be found 

in the appendix. The proposition shows that our previously derived predictions regard­

ing exogenous sunk cost industries are robust; they do not depend on the details of the 

extensive form of the game, provided we allow for ex-post entry.

4.4.2.2 Endogenous Sunk C ost In d u strie s

In the rather specific endogenous horizontal merger model of section 4.3.2, we have shown 

that, in endogenous sunk cost industries, it is possible to sustain very concentrated out­

comes, even monopoly, no matter how large the market. We are now in the position to 

show that this prediction carries over to the current setting.
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P ro p o sitio n  4.8 I f  products are sufficiently good substitutes (a close to 1), or investment 

in quality enhancement sufficiently effective ((3 close to 2), monopoly can be sustained in 

an equilibrium configuration. This holds independently of the level of market size relative 

to setup costs, provided the market is not too small so as to support at least one firm.

P roof. Using the notation of section 4.3.2, suppose the candidate monopolist offers one 

product, which is of quality u( 1 ). In section 4.3.2, we have shown that if a  € (<T\((3), 1)), 

then, for any level of market size and setup costs, entry by a firm, which is restricted to 

offer only one product, is unprofitable. Moreover, the monopolist makes positive profits, 

provided market size (relative to setup costs) is not too small. The proof of the extension 

of the result to the case of a multiproduct entrant proceeds as follows. The first step 

consists in showing that a multiproduct entrant optimally chooses the same quality for all 

of its products. The second and final step consists in observing that the final stage profit 

per product is decreasing in the number of own products, holding quality fixed. ■

Although the possibility of ex-post entry works against the emergence of concentrated 

outcomes, there are several reasons why, in the present model, monopoly may be sustained 

in equilibrium for a larger set of parameter values than in the model of section 4.3.2. 

First, in the present model, entry deterrence through quality investment (and product 

proliferation) is consistent with the concept of an equilibrium configuration. In contrast, in 

the model of section 4.3.2, entry deterrence is not consistent with subgame perfection since 

all firms invest simultaneously in quality. Second, the present equilibrium concept does not 

require the candidate monopolist to maximise profits. In particular, the monopolist may 

overinvest in quality relative to the profit-maximising level. Third, in the earlier model, a 

multiproduct firm can only emerge through mergers, and mergers are, potentially, subject 

to coordination failures. In the present setup, such coordination failures are muted; for 

instance, the candidate monopolist may simply select the number of products so as to 

deter entry.

4.5 Conclusion

The aim of this paper has been to sharpen the predictions of the game-theoretic literature 

on industrial market structure. In his book on the relationship between market size and
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concentration, Sutton (1991) showed that fragmented outcomes can in general be sustained 

in large exogenous sunk cost industries, but not in large endogenous sunk cost industries. 

The question addressed in this paper has been whether it is possible to make predictions 

as to in what kind of industries it is possible to sustain concentrated outcomes, and in 

what kind of industries it is not. Using an endogenous horizontal merger model with free 

but costly entry, we have shown, in the first part of the paper, that it is impossible to 

sustain concentrated outcomes in large exogenous sunk cost industries. More precisely, the 

upper bound to the one-firm concentration ratio goes to zero as market size (relative to 

setup costs) tends to infinity. In contrast, in endogenous sunk cost industries, where firms 

can invest in some fixed R&D or advertising outlays to increase the (perceived) quality of 

their products, concentrated outcomes can be sustained even in the absence of mergers, 

no matter how large the market. In the second part of the paper, we have shown that the 

same results obtain independently of the details of the extensive form of the game, and 

allowing for side payments between firms and endogenous product choice, provided one 

allows for ex-post entry.

We believe that the predictions of this paper are robust. For instance, it is possible to 

show that the conclusions of the paper do not hinge on the assumption of price competition. 

In fact, under quantity competition, the incentive to take a free ride on rivals’ effort to 

restrict output is larger than under price competition, so that it is more difficult to obtain 

concentrated outcomes in exogenous sunk cost industries. The possible emergence of very 

concentrated outcomes in large endogenous sunk cost industries is not affected. More 

research on the robustness of our results is needed. Most importantly, the predictions of 

the paper should be tested empirically. We plan to conduct an empirical analysis, starting 

with Sutton’s (1991) data set of the food and drink sector.

4.6 A ppendix

P ro o f  o f lem m a 4.1. Since U(x.-,Y — YlkPkx k) is strictly concave in x, there exists a 

unique utility-maximising consumption bundle, given any price vector p. That is, each 

consumer has a well-defined demand function for good k , djt(p); market demand is Dk{p) = 

Sdk(p). Recall that, by assumption, Y  > YlkPkdk{p) in equilibrium. Hence, if dfc(p) > 0,
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demand for good k is implicitly defined by the first-order condition
n

1 -  2(1 -  a)dk(p) - 2 M p ) ~Pk = 0.
i=i

Relabel products in increasing order of price, i.e. pk < pk+1 for all k G { l,.. . ,n  — 1}. 

Define the integer n(p) as follows. If p\ > 1, then n(p) =  0; otherwise, let n(p) be the 

largest integer v, v < n, such that (1 — cr)( 1  — pv) —va (pv — (l/v ) YH=iPi) ^  0* Demand 

(per consumer) for good k can now be written as

j  ^  (1 -  a ) (1 - pk) -  n(p)<r (pk -  Pi) , j i n
M P ) -  2 ( 1  -  <r) [ 1  -  <7 +  n(p)<7 ] ( >

if k < n(p), and dk(p) =  0 otherwise. Notice that, although n(p) takes only integer 

values, dk{p) is continuous in p.

Let pMi denote the vector of coalition Mi s prices, and P-m* the price vector of its 

rivals. Coalition Mi sets the prices of its products so as to maximise its profit:

max 5 3  PkDk{pMi,P-Mi)- 
iPk)k€Mi k€M.

Since the demand function possesses (a finite number of) kinks, a firm’s best-reply function 

is not continuous everywhere. Denote by p_jt =  (pi, ...,Pn) the vector of

prices of all goods other than k. Let us now make three observations. First, there exists 

a p(p-fc) such that dk(pk,p - k) > 0 if and only if pk < p{p~k). It is easy to see that 

p(p_fc) >  0  for all nonnegative p - k , which implies that each firm make positive profit 

in equilibrium. Second, each product makes positive sales in equilibrium. To see this, 

suppose that good k, k G M*, makes zero sales. But then, Af< could raise its profit by 

setting pk slightly below p(p_fc), holding all other prices fixed. Third, coalition M i’s profit 

is continuous in p; it is strictly concave in pa^ for any P-A/i, provided that prices are 

such that pk < p (p -k) for all k G Mj. These observations together imply that the set 

of first-order conditions is necessary and sufficient for p* to form a Nash equilibrium . 1 7  

Hence, equilibrium price pj, k  G Mi, is implicitly defined by

2(7 v—r (7 v—> ( 1 — <7 -f- 71(7 \  ± .

(416)l&Mi j£Mi v /

17 In the following, we suppress the dependence of strategies on z for notational simplicity.
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Since the left-hand side of (4.16) is independent of k , it follows that p j =  p*M. <  p{p*_k) 

for all k E That is, a merged entity sets the same price for each of its products.

We can now rewrite the first-order condition as follows

l - g  + O-S * Z m jPMs .
Mi 2 ( 1  — cr) +  ( 2 n  — rrii)<T

Multiplying both sides with m i, and summing over all coalitions, gives

(1 **") S j e Z  2(1—<r)+(2n—m,)<r
mjPMj =  j (4.18)

jg2T Z ^ j 'e Z  2(1—cr)+(2n—mj)<7

Inserting (4.18) into (4.17) yields the (unique) equilibrium price of coalition Mi’s products, 

as given by equation (4.2).

Using (4.15) and (4.2), we can now calculate the market demand per product of coali­

tion Mi as
n  IW-I -  c  1 ~  q-+  (w -  TOj)cr 

M‘ (p ) 2 ( 1  -  cr) [ 1  -  <r +  ntrj ' Pm‘ ' ( ^

It is straightforward to verify that <  1/8cr, so that the assumption on income

indeed ensures that income is higher than the consumer’s equilibrium expenditure on the

n substitute goods. 1 8  ■

P ro o f of p roposition  4.1. Let Sn  (m; n — m) denote the profit per product of a

coalition with m  members, facing a single nonempty rival coalition with n — m  members.

Merger to monopoly can be sustained in equilibrium if and only if

7r(n;0) >  7 r ( l ; n  — 1).

Using (4.3), this condition can be rewritten as

[4(1 — a)2 +  4n<r(l — cr) 4- 3(n — 1 )<7 2 ] 2  

—■4(1 — a) [ 1  — a  +  (n — l)cr] [2 ( 1  — <r) +  (n +  l)cr]2 > 0 ,

which simplifies to

cf)(n, a) =  (n — l ) 2  [4n — 7] a2 4 - 4(n — 1) [—n2 +  6 n — 7] cr +  4 [—n2 +  4n — 3] > 0 .

18Note that expenditure is maximised under merger to monopoly, in which case ^2kpldk(p*) 

nf  [8(1 — a +  na)\.
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It is easily checked that 0(2, a) — cr2+4a+4 and 0(3, cr) — 20cr2+16<r. Hence, if n E {2,3}, 

then merger to monopoly is sustainable for all cr E (0,1). If n > 4, then 0(n,O) < 0, and 

0 (n, cr) has a unique positive root, <r(n), given by

2 (n2  — 6 n +  7) +  2 \/n 4  — 8 n 3  +  27n2 — 44n 4 - 28 
^  = ----------------------(n — l)(4re — 7 )- - - - - - - - - - - - - - - - - - - - - - ’

Note that &(n) E (0,1) for all n > 4. That is, if n > 4, then merger to monopoly can be 

supported for all cr E [^(n), 1). ■

P ro o f  o f p roposition  4.2. Suppose the assertion is false. Then, there exist an 

increasing sequence {n f c } ^ _ 1 of numbers of active firms and a sequence of coalition Mi s 

number of products, such that Mi s market share, 7 *, as measured by the

relative number of its products, m k/n k, is bounded below by 7 , i.e. 7 * > 7  for all k, 

and such that limfc_ t.0 0  7 * =  7 ?0. (Notice that it is always possible to find a convergent 

subsequence since j k E [7 ,1].) For this to be an equilibrium, a member of Mi should have 

no incentive to deviate and form a coalition on its own. Formally,

[ 1  -  a +  nk( 1  -  7 f)cr\ [l -  a  +  n k( 1  -  1  /n k)a]
[2 ( 1  — (t) +  n k { 2  — 7 * ) ^ ] 2  [ ^ fc] 2  [2 ( 1  — cr) +  7 ^ ( 2  — l / n fc)(j] 2  +  $ * ] 2

where

and

k„,k
-------\~~~k2(1 — +  72fcjez 2 ( 1  -  cr) +  n f c ( 2  -  7 ^)cr ’

________________ o-n* prf -  l / n k\
1 2(1 — cr) +  n fc (2 — 7*)cr 2(1 — <r) +  72 (̂2 — 7 * +  l / n fc)cr

a
2(1 — Cr) +  72fc(2 — l/72fc)<7*

This condition can be rewritten as

Z +  Z2 ( l - < r ) + n * ( 2 - l / n > \ 2 Z \ 2 , .
\ 1  — cr +  72fc( l — l/Tr^cr^ y 2(1 — cr) +  7i fc(2 — 7 *)cr /  — \ !̂k ^k J

Observe that limfc_>oo $ k =  0 since nk —► oo, and 7 * —► 7 f°, as k —* 0 0 . Hence, if 4** is 

bounded away from zero, the right-hand side of equation (4.20) converges to 1 as k —> 0 0 , 

whereas the left-hand side converges to 4(1 — 7 f ° ) / ( 2  — 7 f ° ) 2  <  1. That is, if is 

bounded away from zero, then for nk sufficiently large, the above inequality can not hold 

-  a contradiction.
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If limjfe_*oo = 0, however, the right-hand side of (4.20) may not converge to 1 . 

Notice that this case occurs if and only if there exists a firm j  such that 7 J0  =  1 , and 

hence 7 ^° =  0 for all k ^  j .  Now, if i ^  j ,  we are done. The interesting case is when 

i =  j , i.e. 7 ? 0  =  1, so that the left-hand side of (4.20) converges to zero. In fact, 

the right-hand side of the equation converges to zero as well, provided that firm 1  is 

a monopolist, 7 * =  1, for k sufficiently large; but we already know from corollary 4.1 

that monopoly can not be sustained in equilibrium for n sufficiently large. It, therefore, 

remains to show that the right-hand side of equation (4.20) is bounded away from zero if 

7 * < (nk — l ) /n fc, and hence if tyk > 0, for sufficiently large k. To show this, remark first 

that 4>{l) =  nl l  [2 ( 1  — o’) +  n ( 2  — 7 )<r] is increasing and convex in 7 , which implies, first, 

that is decreasing in the industry level of concentration (where a rise in the level of 

concentration is defined as a transfer of a certain number of products from some firm to 

a weakly larger one) and, second, that $ k is increasing in y k. Let us define

k _  (nk — l) a a
~ ' ~  * 2(1 — cr) +  (nfc +  1)<t 2(1 — a) +  (2nk — l)cr’

and

—k _  (nk - l ) a  (nk — 2) cr a
% ~  2(1 — cr) -f- (nk +  l)cr 2(1 — <7 ) +  (nk +  2)cr 2(1 — cr) +  (2nk — 1 )cr'

If firm i is the largest firm, and 7 * < (nk — l ) /n k, we thus have k > }$Lk > 0, 0 <  &k < ,

and hence

^fk +

It is straightforward to check that the right-hand side of this inequality is bounded away 

from zero. Hence, for k sufficiently large, equation (4.20) does not hold. This completes 

the proof. ■

P ro o f  o f lem m a 4.2. Suppose that income is sufficiently large so that Y  > YlkPkxk 

in equilibrium. Then, if dk(p ;u ) > 0, demand per consumer for good k  is given by the 

first-order condition
n

uk -  2(1 -  cr)dk{p; u )/u k -  2a ̂  dt(p; u)/m  -  pkuk =  0 .
1 = 1

Relabel firms such that uk{ 1 — pk) > uk+i ( l  —pk+1 ) for all k € { l,.. . ,n  — 1}. Define the 

integer n(p; u) in the following way. If p\ > 0, then n(p; u) =  0; otherwise, let n(p; u) be
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the largest integer v, v < n, such that

( 1  -  (t)uv( 1  -  pv) +  va
1 v

u v ( l  ~ P v )  y ^ u i ( l - p i )v z ' l—\
> 0.

Demand (per consumer) for k can then be written as

d k ( p; u) =
(1 -  a ) u k ( 1 -  pit) +  n(p; u)<r «fc( 1 P k ) H(piu) E i i i ’ >ui ( l  Pi)]

2(1 -  cr) 1 -  <J 4- n(p; u)cr] ' u k

if k  < n (p ;u ), and dk(p ;u ) =  0 otherwise. To simplify the algebraic expressions, let 

us define yk(p ;u ) =  dfc(p ;u ) /u fc, qk = pkuk, uN{q ;u) =  (l/n (q ; u)) ut, and

qN(q;u) =  ( l /n (q ;u )) We thus get the following (normalised) demand func­

tion for good k, k < n(q; u),

( 1  -  a)uk -I- n(q; u)cr [uk -  uN(q; u)] -  ( 1  -  a)qk -  n(q; u)cr [qk -  qN(q; u)] 
W q ’U' ~  2 ( l - < T ) [ l - < 7  +  n(q;u)«T]

which is continuous in q  and u.

Coalition Mi s best reply to q_Mi is given by the solution of the following optimisation

programme:

max ^ 2  3/jb(q;u)flfe.
MkzMi keM.

In the following, we attempt to characterise equilibrium. Suppose q* forms a Nash 

equilibrium . 1 9  If 2/fc(0 , q_fc) >  0, define the threshold price qk{q_jfc) such that yk(Q,c{_k) > 

0 if and only if qk < qk(q~k); otherwise, let qk(q_fc) =0.2° Observe that Mi s profit 

is strictly concave in qk on (0,gfc(q_fc)), holding all other prices fixed. Hence, if qk G 

(0 , 9 fc(qlfc)), fhen Qk is impficitly defined by the first-order condition

(1 - a ) u k H-n<r(ufc - u N) -  (1 -<r)q*k -n a (q l-q * N) + miaq*M. -  ( l - a  + na)qk =  0, (4.21)

where ra* is the number of Mi’s products with positive sales, and q*M. the average nor­

malised price of these products. Clearly, n — Y h je z ^ r  Taking averages over M i’s prod­

ucts with positive sales, yields

( l -<r)uMi+a-'£j mj (uMi- u Mj)+<T'£j rnjTMJ , .
i-----------2(1 — <r) +  (2n — rrii)(T------------------' (4’22)

19In the remainder, we suppress dependence of strategies on (z, u) for notational simplicity. Moreover,

we abstract from the problem that products with zero sales may nevertheless constrain equilibrium.
20The function qk(-) varies across k for two reasons. First, different products are produced by different

coeditions. Second, goods produced by the same coalition may differ in quality.
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Multiplying both sides with crm*, and summing over all coalitions, gives

^  arfij [(1 -a + n < j)u M . ~ '£ i an iitZM.j

U  (4.23)

We obtain Mi s average equilibrium price, (4.8), by inserting (4.23) into (4.22). Using 

(4.21), we finally get the (normalised) equilibrium price of good k, k £ M i, provided it 

makes positive sales:
_* , uk -  uMi
% — <lMi H 2  ’

■
P ro o f  of p roposition  4.7. For stability condition (ii’) to hold, we must have m —► oo 

as S/e  —» oo. Hence, it suffices to show that, for large m, the market share of any firm is 

bounded above by 7 . The proof proceeds along the lines of that of proposition 4.2.

Suppose the assertion is false. Then, there exist an increasing sequence of

number of products and a sequence of the number of firm z’s products, , such

that firm i ’s market share 7 *, as measured by the relative number of its products, m k frnk, 

is bounded below by 7 , i.e. 7 * > 7 , and such that limfc_+0 o 7 i =  7 f°- For (rrik~fk) to be 

sustainable in an equilibrium configuration, we must have

7T > 7T ( l ;m fc7 fc)  ,

where 7 ^  is the vector of market shares of firm i ’s rivals. Let us reformulate this inequality

as

7r (l; 771*7 *)
where

T (m^ )  =  ( ¥ £ £ ) 2 e f  > 1 , (4.24)
7T ( l; 771 7 ) \  ’SP* /

v£* =  1  _  0 -  12----
“  2 ( 1  — cr) +  m k(2  — 7 !̂  )cr2 ( 1  -  cr) +  m * ( 2  -  7 ^)0 -’

n :
* _ *

2 ( 1  — cr) +  (2 m* -f l)cr 

/  rnklfj
j '  ( 2 (1 -<r) +  mfc(2 - 7 ^)0 - 2 ( 1  -  a) + m k ( i  ( l  +  - 1 ? ) ° )  '

^  ^  I m k'yk T7ik /y k

and

k _  [l -  cr +  m*(l -  7 *)^] [l -  cr +  (m k +  1  )cr\ [2 ( 1  -  <t) +  (2 ra* +  l)cr] 2  

[l — a  +  ra*cr] 2  [2 ( 1  — a) +  m * ( 2  — 7 ^)cr] 2

e f  =
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It is straightforward to check that

l i m  6 f  =  4 ^ ~ 7 ^  <  1.
fc-oo ( 2  — 7 f°)

Notice that 0^, > 0, with the inequalities being strict under all market structures

other than monopoly. Let A (m; rrij) =  — n i j /  [2(1 — <7 ) 4  (2m — rrij)o].  Since T}(rrij) =  

d \  ( m ; m j )  /d m  is convex in rrij, the candidate equilibrium market structure that max­

imises Qk for a given mfc, is monopoly; that is,

f r  <____  :___ 4
<jmk am k

2 ( 1  — cr) 4  (2 m k 4  l)a  V 2 ( 1  — cr) 4  m k(T 2 ( 1  — a) 4  (mk + 2) a I

It is easy to see that the right-hand side of this inequality converges to zero as m k —> 0 0 ; 

hence, lim^-n*, Qk = 0. If ^ k does not converge to zero, i.e. if there is no firm j  with 

7 ? 0  =  1 , one obtains

)  ' ( 2  — 7 ? 0 ) 2

which is in contradiction to equation (4.24).

If limfc.+oo 4fk =  0, however, (\£fc 4 - flk) / $ k may not converge to 1. This case occurs 

if and only if there is a firm j  such that 7 ? 0  =  1 , and 7 f° =  0 for all I j .  Accordingly, 

suppose 7 f° =  1 . Since we have already shown in the text that monopoly can not be 

sustained as an equilibrium configuration in large markets, let us assume, moreover, that 

l i  <  — l )  / m k . Under this assumption,

2 ( 1  — a) 4  (m k 4  l)cr 2 ( 1  — <r) 4  (2mk — l)a  ’

and

Dk < D k =
2 ( 1  -  <r) +  (2mk 4 - l)<r 

1
+(T

-her

2(1 — cr) +  (2m k — l)cr 2(1 — a) 4  (2 m k 4  1 ) < 4

rnk — 1  m k — 1  ^
2(1 — cr) 4  (mk 4  l)  <7 2(1 — cr) 4  (mfc 4- 3) cr / 7

since A(m ;m j) is concave in mj, and <9A(m; rrij)/dm, convex in m j, respectively. Accord­

ingly,
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It is easily verified that the right-hand is bounded from above. Hence, if 7 ?° =  1 , we 

obtain

Again, this is in contradiction to equation (4.24). ■
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