
The London School of Economics and Political Science

Integer and Constraint Programming methods
for Mutually Orthogonal Latin Squares

PhD Thesis

by

Ioannis Mourtos

London, 2003

UMI Number: U615464

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U615464
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

OF
POLITICAL

AND u ,

' ‘'T. ' '

I H t S E S

F
SI Of

A bstract

This thesis examines the Orthogonal Latin Squares (OLS) problem from the viewpoint of Integer and
Constraint programming. An Integer Programming (IP) model is proposed and the associated poly
tope is analysed. We identify several families of strong valid inequalities, namely inequalities arising
from cliques, odd holes, antiwebs and wheels of the associated intersection graph. The dimension of
the OLS polytope is established and it is proved that certain valid inequalities are facet-inducing.
This analysis reveals also a new family of facet-defining inequalities for the polytope associated with
the Latin square problem. Separation algorithms of the lowest complexity are presented for particular
families of valid inequalities.

We illustrate a method for reducing problem’s symmetry, which extends previously known results.
This allows us to devise an alternative proof for the non-existence of an OLS structure for n = 6, based
solely on Linear Programming. Moreover, we present a more general Branch & Cut algorithm for the
OLS problem. The algorithm exploits problem structure via integer preprocessing and a specialised
branching mechanism. It also incorporates families of strong valid inequalities. Computational
analysis is conducted in order to illustrate the significant improvements over simple Branch & Bound.

Next, the Constraint Programming (CP) paradigm is examined. Im portant aspects of designing
an efficient CP solver, such as branching strategies and constraint propagation procedures, are eval
uated by comprehensive, problem-specific, experiments. The CP algorithms lead to computationally
favourable results. In particular, the infeasible case of n = 6, which requires enumerating the entire
solution space, is solved in a few seconds.

A broader aim of our research is to successfully integrate IP and CP. Hence, we present ideas
concerning the unification of IP and CP methods in the form of hybrid algorithms. Two such
algorithms are presented and their behaviour is analysed via experimentation. The main finding is
that hybrid algorithms are clearly more efficient, as problem size grows, and exhibit a more robust
performance than traditional IP and CP algorithms. A hybrid algorithm is also designed for the
problem of finding triples of Mutually Orthogonal Latin Squares (MOLS).

Given th a t the OLS problem is a special form of an assignment problem, the last part of the thesis
considers multidimensional assignment problems. It introduces a model encompassing all assignment
structures, including the case of MOLS. A necessary condition for the existence of an assignment
structure is revealed. Relations among assignment problems are also examined, leading to a proposed
hierarchy. Further, the polyhedral analysis presented unifies and generalises previous results.

Acknowledgm ents

I would like to thank Dr. Gautam M. Appa for being a creative and patient supervisor for the last
three years. Apart from being a source of interesting ideas, Dr. Appa has provided vital personal
support. Most im portant, his example of an intellectual has had strong influence on my perception
of academic attitude.

The Operational Research Department of the London School of Economics has been an excellent
academic environment for conducting research and a place full of affable people. My special thanks
to Brenda Mowlam, whose support and sense of humour always made things look much simpler. I
should also mention Dr. Susan Powell’s motivation in starting my PhD and her continuing support
thereafter. I feel also fortunate for having had as fellow PhD students my friends Balazs Kotnyek
and Monica Oliveira.

Dr. Dimitris Magos has been a valuable colleague, who soon became a close friend. Working with
him has been equally stimulating and enjoyable. I would also like to thank Dr. Hugues Marchand,
Dr. Jeanette Janssen, Professor A.D. Keedwell and Professor H.P. Williams for their advisory role
in various stages of my study.

This research has been accomplished under scholarhips awarded by the Bodossaki Foundation
and the Institu te of State Scholarships in Greece. I should also acknowledge the financial support of
the London School of Economics and the Discrete Optimization Network of the European Union.

Preface

This thesis considers the problem of Mutually Orthogonal Latin Squares (MOLS) from the perspec
tives of Integer Programming (IP) and Constraint Programming (CP). In Chapter 1, we present
basic definitions and facts from the theory of Latin squares, emphasising the results related to our
research. A number of related fields and applications are discussed in order to illustrate the problem’s
importance and to motivate the following analysis. We also devise and compare two IP formulations
for the problem of Orthogonal Latin Squares (OLS). Finally, we provide a description of the convex-
hull of a relaxed problem for n = 2, in the form of families of valid inequalities. This final section
anticipates the forthcoming analysis.

The convex hull of integer vectors, which are feasible with respect to the IP model, defines the
OLS polytope. Integer points in this polytope have a one-to-one correspondence to OLS structures
of order n. Moreover, it is shown that the OLS problem is equivalent to the planar 4-index assign
ment problem. To sufficiently characterise this combinatorial object, we need to obtain families of,
polyhedrally strong, valid inequalities. This is the aim of Chapter 2. The main method for obtaining
valid inequalities is the analysis of the intersection graph associated w ith the IP model. We identify
certain subgraphs of the intersection graph, study the form of induced inequalities and strengthen
these inequalities via sequential lifting. Specifically, we describe and count all clique inequalities,
all inequalities arising from wheels of a particular type, a family of antiweb inequalities, a family
of composite cliques and two families of odd-hole inequalities. We also prove th a t no odd anti-hole
subgraphs exist.

Chapter 3 applies the tools of polyhedral combinatorics to the OLS polytope. This polytope
exhibits certain irregularities, which can be handled only by exploiting the problem’s structure. For
example, it is difficult to illustrate a trivial integer vector, i.e. an OLS structure, for every value
of n. After identifying the rank of the constraint matrix, we are able to establish the dimension
of the OLS polytope. The next step is to identify facets of this polytope. We show which of the
linear constraints defining the problem’s LP-relaxation give rise to trivial facets. Most im portant,
we examine the polyhedral properties of the inequalities presented in Chapter 2, in terms of their
dimension and their Chvatal rank. It is shown th a t two families of clique inequalities and the family
of composite clique inequalities induce facets of the OLS polytope. In this context, we also identify a
new family of facets for the polytope associated with the Latin square problem. Further, we provide
separation algorithms for clique, lifted antiweb and lifted odd-hole inequalities. These algorithms
determine whether a given fractional LP-solution violates any of these inequalities. Their complexity
is linear in the number of variables.

Separation procedures are a prerequisite for the design of a Branch &; Cut algorithm. This is
precisely the topic addressed in Chapter 4. At this point, our focus is transferred to algorithmic
aspects and remains as such until Chapter 7. We should note th a t the OLS problem is basically
treated as a feasibility problem. Hence, Chapter 4 begins with an alternative proof, solely based on

vii

PREFACE viii

Linear Programming, for the non-existence of OLS for n = 6. This instance was the first studied by
L. Euler in the 18th century. To achieve this result, we propose a method for eliminating symmetries.
Afterwards, we present the components of our IP algorithm, namely a problem-specific preprocessor,
a specialised branching rule based on Special Ordered Sets and a cut generator, which utilises the
results of Chapter 3. Computational results reveal the extent to which each of these components
improves over a Branch & Bound algorithm. Overall, the Branch & Cut algorithm accelerates the
solution time approximately by a factor of 2.

The Constraint Programming approach is illustrated in Chapter 5. After providing a logic proof
for the infeasibility of OLS for n = 2, we review the related literature. Next, we design a CP algorithm
for the OLS problem. This algorithm incorporates various procedures for constraint propagation
within a Forward Checking algorithmic framework. Essentially, it provides an enumerative approach
analogous to our IP algorithm, without solving the LP-relaxation. Problem-specific features allow
this approach to produce favourable computational results and, in particular, to prove infeasibility
for n = 6 much more rapidly.

Chapter 6 is the culmination of the previous two chapters in terms of comparing and integrating
IP and CP methods. First, we discuss theoretical links between logic and optimisation, along with
algorithmic ideas concerning the integration of IP and CP. Afterwards, we implement these ideas
in the form of two hybrid algorithm for the OLS problem. The computational analysis shows that
hybrid methods exhibit a more balanced performance. Especially one hybrid algorithm performs
better for higher orders, a fact th a t allows more general conclusions to be drawn. The final sections
of this chapter present algorithms for identifying a triple of MOLS. The algorithm solves the problem
efficiently for up to n = 9 but returns no solution for n = 10. The existence of an MOLS triple for
n = 10 is probably the most famous unsolved instance of MOLS. We show th a t our hybrid algorithm
is more efficient, compared to traditional IP and CP methods. We also provide an estimate of the
time required to enumerate the entire solution space, in case the problem is infeasible.

It has been said th a t the inclination of lawyers towards prosecuting is exceeded only by the
propensity of mathematicians to generalise. Hence, Chapter 7 is mainly devoted to generalising our
polyhedral analysis to multidimensional assignment problems. We introduce an IP model, provide
a necessary condition for the existence of an integer feasible vector and propose a hierarchy among
assignment problems. Establishing the dimension of classes of assignment polytopes unifies and
generalises previously known results. Apart from identifying trivial facets, we also prove th a t a
certain family of clique inequalities induces facets of the axial assignment polytope. The last section
introduces CP models and discusses methods for extending the hybrid algorithms of Chapter 6 to
multidimensional assignment problems.

Contents

A b stract iii

A cknow ledgm ents v

P reface vii

1 T he P rob lem o f M utually O rthogonal L atin Squares 1
1.1 Definitions.. 1
1.2 Theory of Latin Squares .. 3

1.2.1 Single Latin S q u a re s ... 3
1.2.2 M utually Orthogonal Latin S q u a r e s .. 5

1.3 Related a r e a s .. 6
1.4 Applications of Orthogonal Latin S q u a re s ... 7
1.5 IP models for the OLS p ro b lem ... 8
1.6 The convex hull of the OLS polytope for n = 2 .. 10

2 T he in tersection graph o f th e OLS problem 13
2.1 The OLS p o ly to p e .. 14
2.2 The intersection g r a p h ... 15
2.3 The cliques of G a .. 16
2.4 A family of Antiwebs of Ga ... 18
2.5 The Wheels of Ga .. 20

2.5.1 Properties of w h e e ls ... 21
2.5.2 Lifted wheel inequalities ... 26

2.6 A family of composite cliques of Ga.... .. 29
2.7 The Odd holes of G a ... 30

2.7.1 Odd holes of type I .. 32
2.7.2 Odd holes of type I I ... 33

2.8 Odd an tih o le s .. 36
2.9 Concluding r e m a r k s .. 42

3 P olyhedral characterisation o f th e OLS p o ly to p e 43
3.1 Introduction and preliminaries ... 43
3.2 The dimension of P j ... 45
3.3 Dimension of the inequalities defining Pl .. 55
3.4 Clique in e q u a li t ie s .. 56

3.4.1 Dimension and Chvatal rank of clique in e q u a li t ie s ... 57
3.4.2 Separation algorithms for clique inequalities . 61

3.5 Antiweb in e q u a litie s .. 64
3.6 Composite clique in e q u a li t ie s .. 66
3.7 Odd cycle in e q u a lit ie s ... 73

3.7.1 Separation algorithms for odd cycles of type I ... 74
3.7.2 The dimension of odd cycles of type I I .. 76

3.8 Concluding r e m a r k s .. 87

ix

CONTENTS x

4 In te g e r P ro g ra m m in g a lg o rith m s 89
4.1 Two Integer Programming models for OLS .. 90
4.2 Reducing the solution s p a c e ... 92
4.3 Proving in fe a s ib il i ty ... 94
4.4 A Branch & Cut algorithm for OLS ... 97

4.4.1 P reprocessing ... 100
4.4.2 The branching m echanism .. 101
4.4.3 Cutting p l a n e s .. 106
4.4.4 Solving the L P -re la x a tio n .. 108

4.5 Implementation of the Branch & Cut a lg o rith m ... 109
4.5.1 M atrix operations ... 109
4.5.2 Control p a ram eters... 109
4.5.3 “Callback” s u b ro u tin e s .. 110
4.5.4 Cut m anagem en t... 110

4.6 Computational a n a ly s i s .. 110
4.6.1 Methods for solving L P s ... I l l
4.6.2 Branching rules & objective fu n c tio n s ... I l l
4.6.3 P reprocessing ... 112
4.6.4 Quality of cutting planes .. 113
4.6.5 Cut s tra teg ie s ... 116

4.7 Concluding r e m a r k s ... 118

5 C o n s tra in t P ro g ra m m in g a lg o rith m s 119
5.1 The Constraint Programming p a r a d ig m ... 119

5.1.1 Logic Programming applied to OLS for n = 2 .. 119
5.1.2 Definitions .. 124
5.1.3 The constraint g ra p h .. 125
5.1.4 Arc-consistency and its generalisations... 126

5.2 Methods for solving a CSP .. 129
5.2.1 Generate &; T e s t ... 129
5.2.2 Chronological B ack track in g ... 129
5.2.3 Forward C h e c k in g ... 131
5.2.4 Forward sch e m e s ... 132
5.2.5 Backward sc h e m e s ... 133
5.2.6 Hybrid methods .. 134
5.2.7 Variable and value o rd e r in g ... 134

5.3 CP algorithms for the OLS p r o b le m ... 135
5.3.1 Problem fo rm u la tio n .. 135
5.3.2 Branching s t ra te g ie s .. 137
5.3.3 Algorithms &; Constraint P ro p a g a tio n ... 138
5.3.4 Implementation d e ta ils ... 141

5.4 Computational ex p e rien ce ... 142
5.4.1 Branching s tra te g ie s .. 142
5.4.2 Procedures for Constraint P ropaga tion ... 144

5.5 Concluding r e m a r k s ... 145

6 In te g ra t in g C o n s tra in t a n d In te g e r P ro g ra m m in g 147
6.1 Theoretical connections between CP & I P ... 147
6.2 Algorithmic approaches combining CP & I P .. 149
6.3 Design of hybrid a lg o rith m s.. 151

6.3.1 Algorithm I P C .. 152
6.3.2 Algorithm C P I .. 154

6.4 Computational ex p e rien ce ... 155
6.4.1 Algorithm I P C .. 155
6.4.2 Algorithm C P I .. 156
6.4.3 The benefits of integrating IP and C P ... 156

CONTENTS xi

6.5 An algorithm for triples of M O L S.. 159
6.5.1 IP and CP models for the 3-MOLS p ro b lem ... 160
6.5.2 Algorithms for the 3-MOLS p ro b le m .. 161
6.5.3 Computational R esu lts ... 163

6.6 Concluding r e m a r k s ... 164

7 M ultid im ensional A ssignm ent Problem s 165
7.1 M athematical fo rm u la tio n ... 166
7.2 Assignment polytopes and related structures ... 168

7.2.1 General c o n c e p ts .. 168
7.2.2 Two special c a se s .. 169

7.3 The (k ,s) linear assignment po ly tope... 169
7.4 The (k , s) assignment p o ly to p e ... 176
7.5 The axial assignment p o ly to p es ... 179
7.6 A family of facets for the axial assignment p o ly to p e s .. 183
7.7 The planar assignment p o ly to p e s .. 185
7.8 Constraint Programming fo rm u la tio n s .. 192
7.9 Concluding r e m a r k s ... 195

CONTENTS xii

Chapter 1

The Problem of M utually
Orthogonal Latin Squares

It is natural for a thesis focused on M utually Orthogonal Latin Squares to initiate the discussion
by presenting the problem itself. Latin Squares and their extensions define an entire field of finite
algebra, having cross-links to multiple areas of mathematics. Therefore, the related literature is
enormous. An extensive discussion of the subject, involving old and more recent developments can
be found in [34, 35, 60]. We restrict ourselves to review only the aspects, which are relevant to this
work and act as a motivation for the following chapters.

Section 1.1 provides a number of introductory definitions, which will be used throughout the the
sis. Im portant facts concerning the theory of Latin squares are presented in Section 1.2. Section 1.3
reveals the strong connection of Latin squares to certain areas of discrete mathematics, while Section
1.4 presents a series of applications. In Section 1.5, we provide and compare two IP formulations for
the OLS problem. Finally, Section 1.6 demonstrates the convex hull of all feasible solutions to the
OLS problem for n = 2, thus anticipating the developments of forthcoming chapters.

1.1 Definitions

The following definitions are obtained from [34], unless otherwise stated.

D e fin itio n 1.1 A Latin square of order n is a square matrix of order n, where each value 0,.., (n — 1)
appears exactly once in each row and column.

Consider, as an example, the squares of Table 1.1.

_________Table 1.1: A pair of OLS of order_4_________
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

L i L 2

Latin squares can also be defined as multiplication tables (often called the Cayley tables) of
quasigroups. Before defining quasigroups, let us recall the definitions of a group.

1

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 2

D efin ition 1.2 A finite group, denoted as a tuple (S',*), is defined as a non-empty finite set S
together with a binary operation (*), having the following properties:

(i) a * (6 * c) = (a * b) * c, for all a, b, c G S, i.e. operation * is associative-,

(ii) there is an identity element e G S', such that a * e = e * a = a, for all a G 5;

(ii i) for each a G S , there is an inverse element a -1 G S, such th a t a * a -1 = a -1 * a = e.

An implicit property is that, for all a,b G S, it holds th a t a * b G S. As an example, consider
the group (Zn ,+) , where Z n = {0, ...,n — 1} and operator ‘+ ’ stands for addition modulo n. The
multiplication table of a group (S', *) is a table, whose rows and columns are labelled with the
elements of S and cell (a,b) contains value a * b. Table 1.2 illustrates the multiplication table of the
group {Z4,+).

Table 1.2: The multiplication table of (Z4, +)
0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Hence, the multiplication table of a group is a Latin square. However, not all Latin squares are
multiplication tables of groups (see [60, Section 6.2]). It is therefore reasonable to ask whether there
exists an algebraic structure such that its multiplication table is a Latin square and, conversely, every
Latin square represents the multiplication table of such a structure. The answer exists in the class
of quasigroups, which encompasses th a t of groups.

D e fin itio n 1.3 [34, P-16] A set S, on which a binary operation (■) is defined, forms a quasigroup
with respect to that operation if, for any a,b G S, it holds that a • b G S and each o f the equations
a • x = b and y ■ a = b has exactly one solution in S.

A special category of Latin Squares is the following.

D e fin itio n 1.4 A Latin square is said to be in reduced or standard form i f the elements 0 ,..., (n — 1)
occur in the first row and column in their natural order.

One can permute the n columns of a reduced Latin squares in n! ways. It is easy to see th a t the
resulting squares remains Latin and are all distinct. Clearly, none of them is reduced. At each of
these squares, one can also permute the last (n — 1) rows in (n — 1)! possible ways, again forming an
equal number of distinct Latin squares. Let L n , ln denote the number of Latin squares and reduced
Latin squares of order n, respectively. We have essentially proved the following.

T h e o re m 1.1 For each n > 2 , the number L n of Latin squares o f order n is

L n — n\(jn 1)!£ji

A more formal proof can be found in [60, Section 1.2]. Let us now define the concept of Orthogonal
Latin Squares in terms of pairs of elements appearing in the n 2 cells of Latin squares L \ and L 2.

1.2. Theory of Latin Squares 3

D e fin itio n 1.5 Two Latin squares of order n are called orthogonal (OLS) i f and only i f each of the
n2 ordered pairs (0, 0),..., (n — l ,n — 1) appears exactly once in the two squares.

A pair of OLS of order 4 appears in Table 1.1. This definition is naturally extended to sets of
k > 2 Latin squares, which are called Mutually Orthogonal (MOLS) if they axe pairwise orthogonal.
Extending the idea of a reduced Latin square, we call a set of k MOLS reduced or standardised if
elements 0 ,.., (n — 1) appear at the first row of all squares and a t the first column of exactly one
square in natural order. A concept related to OLS is th a t of a transversal.

D efin itio n 1.6 A transversal of a Latin square is a set o fn cells, each in a different row and column,
which contain n pairwise different values.

Denote the squares of Table 1.1 as L\ and L 2 . For each set of 4 cells in square L 2 th a t contain
the same value, observe th a t the corresponding cells of square L \ form a transversal. An easy to
prove but quite significant property of OLS is the following.

T h e o re m 1.2 [34, Theorem 5.1.1] A Latin square of order n has an orthogonal mate i f and only if
it can be decomposed into n disjoint transversals.

OLS were introduced by Euler via his famous problem of the 36 army officers [36]. These officers
should belong to 6 distinct ranks, 6 to each one, and are collected from 6 different regiments (6 officers
from each regiment). The 36 officers can be arranged into a 6 x 6 grid such th a t exactly one officer
of each rank appears in each row and column. By definition, this is a Latin square L \ . Similarly, the
officers can be arranged into another square L 2 according to their regiment, i.e. exactly one officer
from each regiment appears in each row and column. The number of reduced Latin squares of order
6 is known to be 9408. Hence, these arrangements can be devised in 6!5! x 9408 ~ 109 ways, which
is the number of Latin squares of order 6. The question is whether there exist squares L \ and L 2

such th a t all 36 rank-regiment combinations appear exactly once, i.e. whether there is a pair of OLS
of order 6. Euler’s belief about the non-existence of such a pair was formally proved by Tarry ([81]),
essentially by exhaustive enumeration. Shorter proofs have also been proposed, for example in [80].

It is trivial to show th a t there can exist no pair of OLS for n = 2. Motivated by the non-existence
of OLS for n = 2,6, Euler stated a conjecture th a t no pair of OLS exists if n is an odd multiple of
2. The falsity of this conjecture was shown in 1959 ([19]) by constructing a pair of OLS for n = 22.
This celebrated result revived the interest in Orthogonal Latin squares and their properties.

1.2 Theory of Latin Squares

In this section, we state certain theorems regarding Latin squares and OLS, without their proofs.
The related theory is much broader and is still being augmented. Hence, only results relevant to our
research are illustrated.

1.2.1 Single Latin Squares

Recall the simple observation that a square remains Latin after perm uting its columns. In fact, a
Latin square embodies three entities, conventionally corresponding to the n-sets of rows, columns
and values. Apparently, any of these sets can be permuted w ithout violating the fact th a t each
value must exist exactly once in each row and column. The following statem ent provides a formal
definition in term s of quasigroups.

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 4

D e fin itio n 1.7 Let (G , •) and (H , *) be two quasigroups. An ordered triple (9 ,(f,if) of 1 — 1 mappings
9, (f>, if o f the set G onto the set H is called an isotopism of (G , •) upon (H , *) if (x9) * (y</>) = (x •
/o r all x ,y £ G. The quasigroups are then said to be isotopic. I f 9 = (f — if such a transformation
is called an isomorphism.

The definitions of isotopism and isomorphism are obtained from [34]. To avoid confusion, we
have to remark th a t numerous textbooks in graph theory and combinatorics (e.g. [17]) assign to
isomorphism the properties of what is defined here as isotopism. Clearly, two Latin squares are
called isotopic if they define the multiplication tables of isotopic quasigroups. As an example,
consider square L \ of Table 1.1. In order to derive an isotopic square L \, we need to define three
different permutations for the sets of rows, columns and elements of L \. If we apply the permutations

^ = (2 3 1 o)> ^ = (o 3 1 2) and V’ = (0 1 2 3) rows> columns and elements of L \, we obtain
the isotopic square L \ of Table 1.3. For example, notice th a t cell (2,3) of L \, containing value 1, is
mapped to (1,2) in L \, also containing value 1. Similarly, to derive the square L \ of Table 1.3, which
is isomorphic to L \ , we apply the same permutation 9 = (f = if = (° 3 \ q) to rows, columns and
elements of L \.

Table 1.3: Isotopic and isomorphic squares of L \
3 1 0 2

2 0 1 3

0 2 3 1

1 3 2 0

2 3 0 1

3 2 1 0

0 1 2 3

1 0 3 2

L 1 Lj

Hence, isotopy is a property encompassing the inherent symmetry of Latin squares. A less
obvious form of symmetry is obtained if we observe th a t the roles of rows, columns and values are
interchangeable. For example, by interchanging the roles of rows and columns of a Latin square L,
we derive its transpose L T , which is also a Latin square. Since there exist 3! permutations of the
three entities, each Latin square may be used to obtain up to 5 other Latin squares L '. Any such
square L' is said to be conjugate to L. Notice th a t the conjugate squares of a Latin square L are not
necessarily distinct.

T h e o re m 1.3 [34, Section I . 4 J The number of distinct conjugates o f a Latin square L is always
1,2,3 or 6.

Isotopy and isomorphy are associative and commutative properties. In this sense, they define
equivalence relations among Latin squares of the same order. Let Qn denote the set of Latin squares
of order n. Define as isotopy (isomorphism) class the subset of Vtn formed by a particular Latin
square and all its isotopic (isomorphic) ones. The following theorems concern the classification of
members of Qn .

T h e o re m 1.4 Each isotopy class o fQ n splits into disjoint isomorphism classes.

D e fin itio n 1.8 A set of Latin squares, which comprises all the members of an isotopy class together
with their conjugates is called a main class of Latin squares.

T h e o re m 1.5 Qn splits into disjoint main classes and each main class is a union of isotopy classes.

An equivalent statem ent is the following.

1.2. Theory of Latin Squares 5

C orollary 1.6 Each main class of Qn , and therefore Qn itself\ splits into disjoint isomorphism
classes.

1.2.2 M utually Orthogonal Latin Squares

Considering MOLS, a natural question is which is the largest cardinality of a set of MOLS of order
n, usually denoted as N (n).

T heorem 1.7 ([60, T heorem 2.1]) There can be at most n — 1 M OLS o f order n.

A set of n — 1 MOLS of order n is also called a complete set of MOLS. This bound is attainable
for prime powers, i.e. numbers n — pm , where p is prime and m € Z+. A conjecture states that this
bound it attainable if and only if n is a prime power [60, p.38]. For nonprime powers, the problem is
relaxed to th a t of finding recursive constructions of sets of MOLS of order n from sets of MOLS of
lower orders. The most representative method applies the concept of Kronecker product [60, Section
2.3] of two Latin squares of different orders. The result is the following theorem.

T heorem 1.8 I f there is a pair of OLS of order m and a pair of OLS o f order n, there exists a pair
of OLS o f order m n.

Using this theorem, it is easy to show the existence of OLS for all n, except for the ones th a t are
an odd multiple of 2, i.e. for all cases not included in Euler’s conjecture. The results of [20] prove
th a t Euler’s conjecture is actually false for all n that are odd multiples of 2, except for n = 2,6.
Hence, we may state the following.

T heorem 1.9 ([60, T heorem 2.9]) There exists a pair of OLS for all orders n € Z + \{1,2 ,6}.

It follows th a t N (n) > 2 for all n € Z + \{ 1 ,2 ,6}. Extending the method of Kronecker product,
two more general statem ents become possible.

T heorem 1.10 Let q\ x ... x qr be the factorisation of n into distinct prime powers, with q\ < ,..., <
qr . Then N (n) > <?i — 1.

T heorem 1.11 F o r m ,n > 1, N (m n) > m in {N (m), N (n)} .

Numerous recursive constructions of sets of MOLS can be found in [35, Chapter 5].
Research has also been conducted about criteria determining whether a set of k MOLS is ex

tendible to a set of k + 1 MOLS. A generalisation of Theorem 1.2 is the following.

T heorem 1.12 k M O LS o f order n are extendible to k + 1 M OLS o f order n, i f they have n disjoint
transversals in common.

In [35, Sections 2.4-2.6], the reader may find more elegant considerations of the subject. We only
state a simple, yet im portant, result.

T heorem 1.13 A set of n — 3 M OLS of order n is always extendible to a complete set o f MOLS.

Given th a t the existence of OLS has been resolved for all n, the next topic to be addressed is
the existence of triples of MOLS. Quoting from [60, Section 16.5], it is known th a t there are a t least
3 MOLS for all n, such th a t 4 < n < 104, with the exception of n = 6 and, possibly, n = 10. The
existence of 3 MOLS of order 10 is the most persistent unsolved instance, exactly because 10 is the
smallest order for which there exists no complete set of MOLS ([58]). I t is also the smallest order
violating Euler’s conjecture.

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 6

1.3 R elated areas

Research on Latin squares is intensive not only because these structures give rise to interesting
puzzles, but mainly because of their relevance to core areas of discrete mathematics and finite algebra.
This section presents equivalences between complete sets of MOLS and certain combinatorial objects.

To begin our discussion, let us present the definition of an affine plane.

D e fin itio n 1.9 An affine plane is a geometric system of points and lines, satisfying the following
axioms

A 1 There is a unique line joining any two points.

A 2 For a certain point P and a line I not containing P, there is a unique line containing P and not
intersecting I.

A 3 There are four points, no three of which are on the same line.

Two im portant corollaries are the following.

C o ro lla ry 1.14 In any finite affine plane, there exists a positive integer n, such that every line
contains exactly n points and every point is on exactly n + 1 lines. Number n is said to be the order
of the affine plane

C o ro lla ry 1.15 A finite affine plane o f order n contains n 2 points.

The fundamental link between finite affine planes and sets of MOLS is revealed by the next
theorem.

T h e o re m 1.16 A complete set o f M OLS of order n exists i f and only i f a finite affine plane of order
n exists.

Hence, it follows directly th a t an affine plane of order 6 does not exist. A related concept is that
of a projective plane.

D e fin itio n 1.10 A projective plane is a geometric system o f points and lines, satisfying the following
axioms

P I There is a unique line joining any two points.

P 2 Any two lines intersect at a unique point.

P 3 There are four points, no three of which are on the same line.

We omit the counterparts of Corollaries 1.14 and 1.15 for projective planes and state directly the
main result.

T h e o re m 1.17 A finite affine plane o f order n exists i f and only i f a finite projective plane o f order
n exists.

C o ro lla ry 1.18 A complete set of M OLS o f order n exists i f and only i f a finite projective plane of
order n exists.

1.4. Applications of Orthogonal Latin Squares 7

Hence, a problem regarding a complete set of MOLS can be tackled by any of its equivalents (see
[58]) and vice versa.

Another related area of combinatorics is (£, m, s)-nets. The study of these structures is motivated
by the necessity to approximate the value of a definite integral in cases where the anti-derivative
of the integrand cannot be determined or does not exist. Again, we deliberately omit intermediate
definitions, which are not related to our purposes. An excellent introduction appears in [60, Chapter
15]. Consider only th a t parameters t ,m ,s are sufficient to define the properties of a net.

T heorem 1.19 Let s > 2, b > 2 be integers. There exists a (0,2, s)-net in base b i f and only i f there
exist s M OLS of order b.

A more generic object in combinatorics is that of a design.

D efin ition 1.11 Assume a set P o fu points and a collection B of subsets, called blocks. The system
of points and blocks is called a design.

If we focus only on blocks of cardinality k , we restrict ourselves to (£) blocks. If only b < (£)
blocks are included, the design is called incomplete. To obtain balance, we require that (a) each
pair of points occurs together in a fixed number X of blocks and (b) each point occurs in exactly r
blocks, where r < b. Baaed on these involved preliminaries, we may define the structure of a balanced
incomplete block design or a (u,b, r, k, A)-design. Blocks and points are naturally mapped to lines
and points of a geometric structure.

Lem m a 1.20 A finite affine plane of order n gives a (u , b, r, k, X)-design, where u = n 2, b = (n + l)n ,
k = n, r = n + 1 and X = 1.

1.4 Applications of Orthogonal Latin Squares

Apart from their theoretical properties, MOLS possess diverse applications. Single Latin squares
are applicable to even more areas. However, we will mention only the applications they share with
MOLS.

The most well-known application of MOLS is multivariate statistical design. These designs are
devised in order to determine whether significant differences exist between samples representing
various levels of certain random variables. We present the example given in [60, Section 12.3], where
n varieties of wheat need to be tested with n fertilisers and n insecticides. The inherent assumption
is that all three variables are independent and have exactly the same number of levels, i.e. n. In
order to determine the extent to which the wheat crops are affected by each fertiliser and insecticide,
all n 3 triples of the form {wheat, fertiliser, insecticide} should be examined. To reduce the cost of
the experiment, we may instead test each ordered pair of any two variables exactly once. This would
imply n 2 repetitions of the experiment, instead of n 3. For n = 4, consider the first Latin square of
Table 1.1 and let its rows correspond to different fertilisers and its columns to different insecticides.
If the elements of each cell correspond to a different wheat variety, it can be seen that each wheat
variety is tested exactly once with each fertiliser and each insecticide. Designing such an experiment
for t statistical variables requires the use of a set of t — 2 MOLS of order n. Because of Theorem 1.7,
it must be th a t t — 2 < n — 1 or t < n + 1. For example, there can exist no experiment of 4 variables
having less than 3 levels each.

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 8

A relevant application is the design of tournaments. A pair of OLS of order n can be used to
schedule any tournam ent between two teams, of n players each, with the following requirements:

• every player from team A plays against each player of team B;

• there are no games played between any two players of the same team;

• every player plays in each of the n rounds;

• every player plays at each of the n locations exactly once during the tournament.

To illustrate this via the OLS of Table 1.1, suppose th a t rows and columns correspond to players
of teams A and B, respectively. Values of the first square indicate the round, where each pair meets,
while values of the second square indicate the location. It is easy to see th a t numerous scheduling
problems could be encompassed in the structure of MOLS.

MOLS have im portant applications in coding theory. A code is defined as a set of n-tuples, or
vectors with n coordinates, where each coordinate belongs to a set S of q elements. This defines a
q-ary code o f length n. A code can be used to send messages, be it via a communication channel or
within a computer system. The n-tuples recognised as valid messages by the code are its codewords.
The objective when designing a code is to allow for a large number of codewords, which differ from
each other sufficiently for errors to be efficiently detected and corrected. The larger the Hamming
distance d between any codewords (for definitions see [35, Chapter 9]) the easier to detect errors
and the smallest the maximum number of codewords for certain values of n and q. The notion of
an (n, M , d) q-axy code C implies a code of length n with M codewords and minimum distance
between any codewords equal to d. Fixing the values of n, q, d, the problem is to find a code with the
maximum number of codewords M . Parameter n could be the bit-length of a network, q the number
of states allowed for each bit and d the desired security level. The following theorem establishes the
significance of MOLS for the existence of optimal codes.

T heorem 1.21 There exists a q-ary (s, q2,s — 1) code i f and only i f there exist s — 2 M OLS of order

q-

Additional optimisation problems in codes and cryptography, which are related to MOLS, are
described in detail in [35, Chapter 9] and [60, Chapter 13]. In fact, the list of application of MOLS
presented here is only a representative sample. Extensive references for miscellaneous applications
can be found in [60, Chapter 16]. The critical aspect is th a t all applications ask for a single pair of
OLS or a single set of k > 2 MOLS.

1.5 IP models for the OLS problem

This section introduces two Integer Programming models for the OLS problem. Let the two squares
be L u L 2 and consider four n-sets / , J, K , L. Suppose th a t I is the row set and J the column set,
while sets K and L are the sets of values for the squares L \ and L 2, respectively. W ithout loss of
generality, it is convenient to assume that I = J = K = L = {0, ...,n — 1}. Let variable Xijk be 1 if
value k appears in cell (i , j) of square L \. Variable is defined similarly. Since L \ must be Latin,
each value k must appear exactly once in all n cells of column j , i.e. in all cells defined by different
values of i. Hence, we obtain the equality constraint i G /} = 1 for all j G J and k G K .
Repeating the same argument for the fact th a t each value k must appear exactly once in each row

1.5. IP models for the OLS problem 9

i and each cell (i , j) must contain exactly one value k gives rise to two more constraint types. The
result is constraints (1.1)-(1.3) of the model depicted below. Notice th a t the roles of sets I , J ,K ,L
are purely conventional. Constraints (1.4)-(1.6) ensure th a t L 2 is also a Latin square. To enforce the
orthogonality condition, we introduce variables z^ki- Constraints (1.7)-(1.9) guarantee th a t z^ki will
be 1 if and only if both variables x ^k and yiji are 1, i.e. if pair (k , l) appears in cell (i, j) . Finally,
constraints (1.10) model the fact th a t each ordered pair (k , l) must occur exactly once.

m min : i e / , j £ J, k £ K , L £ L}

s.t.

J 2 { ^ i j k - - i e l } = i y j e J , k e K (1.1)

£ { * « * : i 6 = 1-V« 6 I , k € K (1.2)

: k € K } = 1 ,Vi e I , j S J (1.3)

£]{ y y I : i e 1} = 1, V) e J, I e L (1.4)

'■ j s J} = 1>V» e 1,1 € L (1.5)

^ { y y , : l e ! } = i , V i e / , j e J (1.6)

Xijk > Zijku'ii £ l , j e J ,k £ K ,l e L (1.7)

Viji > Zijki, Vi € I , j £ J ,k e K , l £ L (1.8)

Xijk + Viji ̂ Zijki “b 1,Vi £ I) j £ J t k G K ,l G L (1.9)

^ \ zjjki '• i £ I , j £ J } = 1, VA; G K , I G L (1.10)

Xijk} Viji ^ {0, lj-, Vi £ I , j £ J ,k £ K , I £ L

0 < z^ki < 1 ,Vi £ I , j £ J ,k £ K J £ L

This is a model on 2n 3 binary variables and n 4 real variables, which includes 7n 2 + 3n4 constraints.

An alternative model can be derived by directly defining 0 — 1 variables Xijki. A variable Xijki is
1 if pair (k , I) appears in cell (i , j) and 0 otherwise. Since each pair must occur exactly once among
all cells (i, j) , the constraint J 2 ix ijki : i £ I , j £ J } = 1 is valid for all k £ K and I £ L. By taking
into account th a t the roles of sets is conventional, therefore interchangeable, we can define 5 more
analogous constraints. The model illustrated below is attributed to D.Gale (in [29]).

^^{X ijk l i £ I , j £ J } = l ,\ fk e K ,l £ L (1.11)

^^{X ijk l i £ I , k £ K } = 1, V? G J ,l £ L (1.12)

T A x ijk i i £ 1,1 £ L] = 1, V? G J ,k £ K (1.13)

j £ J ,k £ K } = 1, Vz G 1,1 £ L (1.14)

J^ iX ijk l j £ J, I £ L} = 1, Vz G I , k G K (1.15)

E ^ k i k £ K ,l £ L} = l,Vz G I , j £ J (1.16)

Xijki ^ {0, l}Vi G I , j G J, k G K , I £ L

The objective function is equal to the sum of all the variables. This implies th a t every feasible

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 10

solution is also optimal. Minimising or maximising this objective function is not really important,
since our research treats OLS as a feasibility problem. This second model involves n 4 binary variables
and 6n 2 constraints.

Comparing the two models, it is clear th a t the first model is larger in terms of both variables and
constraints. It follows th a t the associated linear programming relaxation would take longer to solve.
Moreover, constraints of a form similar to th a t of (1.7) are known to produce very weak relaxations,
as argued in [68, 1.1]. However, the first model has far fewer integer variables, i.e. n 3 against n 4 of
the second model. Thinking in terms of a Branch & Bound algorithm, it is reasonable to suggest that
the second model is more impractical. However, this is not the case. Roughly speaking, the reason
is simply that every integer feasible solution to the first model would require 2n 2 integer variables
to be set to 1, in contrast to the n2 variables required to be 1 by the second model.

Another advantage of the second model i / its simplicity and symmetry. This symmetry reflects
more accurately the inherent symmetry of the OLS problem, in term s of the fact th a t all four entities
are indistinguishable. Hence, the second model is the one used throughout the remainder of this
thesis.

1.6 The convex hull of the OLS polytope for n — 2

The convex hull of a set of vectors x i , . . . ,x m is defined as the set of all real points x, for which
there exists non-negative scalars Ai, ...Am, such that x = A*£* and A* = 1. Consider the
second IP model of the previous paragraph and recall that the integer vectors satisfying constraints
(1.11)-(1.16) have a 1 — 1 correspondence to all pairs of OLS of order n. If we replace '= ’ by '< ’ in
all constraints, we obtain a model, whose solutions are all incomplete OLS of order n. Notice that
the zero vector, i.e. an “empty” pair of OLS, is also a solution to this model. This section illustrates
all inequalities defining the convex hull of the vectors corresponding to incomplete OLS structures
of n = 2. A pair of incomplete OLS of order 2 is illustrated at Table 1.4.

Table 1.4: A pair of incomplete OLS of order 2
0 1

To derive this convex hull we use the PORTA software ([24]), which accepts as input a set of
integer vectors. The output is a minimal representation of the convex hull of the input vectors in
terms of inequalities, which are facet-defining. The inequalities illustrated for this simple example
anticipate the results of Chapter 2 and could also serve the purposes of an introduction to that
chapter. Any terminology used to characterise each set of inequalities, e.g. cliques of type II, will be
formally defined in Chapter 2.

Let A denote the constraint matrix of equalities (1.11)-(1.16). The convex hull of incomplete
pairs of OLS is the polytope P j = conv{x G {0 ,1}”4 : A x < e}. Let R = (K x L) U • • • U (I x K) and
C = I x J x K x L be the row and column sets of A, respectively. The facet-defining inequalities of
Pi for n = 2 are categorised as follows.

1.6. The convex hull of the OLS polytope for n = 2 11

I) N on -n egativ ities

These are defined for all c £ C. For c = &o, lo), the form of such an inequality is:

~~x iojokolo ^ 0

There exist n4 such inequalities, or 16 for n — 2.

II) C liques o f ty p e I

These are defined for any r £ R. For r = (io,jo), the form of such an inequality for n = 2 is:

x iojokolo "F x iojokoh "F x iojokilo “I” x iojokil\ — 1

There are 6n 2 such inequalities, or 24 for n = 2.

III) C liques o f ty p e II

These are defined for all c £ C. For c = {io,jo,ko,lo), the form of such an inequality for n = 2
is:

x iojokolo “I” x iijokolo ~F x ioj\kolo "F x iojokilo “I” x iojokal\ — 1

Hence, the left-hand side includes variable x c and all variables having exactly three indices in
common with x c. There are n 4 such inequalities, or 16 for n — 2.

IV) C liques o f ty p e III

These are defined for all c,d £ C such that |c fl d\ = 1. Assuming c = (io,jo,ko,lo), d =
(io , j i ,k i ,h) , such an inequality has the form:

x iojokoh "F x iojok\h "F x iojikoli "F x ioj\k\lo — 1

Notice th a t the left-hand side includes variable x c along with all variables sharing two indices
with x c and three indices with x j. There are n 4(n — l)3 such inequalities, or 16 for n = 2.

V) C om p osite cliques

These are defined for all c,d £ C such th a t |c fld | = 0. For c = (i0, jo, koJo), d = («o, j i , k i, Zi),
the form of such an inequality is:

^ ‘ x iojokolo 4” x iijokolo ~F x ioji kolo F- x iojok\lo x iojokoh

x iojok\li "F x iojikoli *F x iojik\lo 4“ x iijokoh "F x i\jok\lo "F x i\j\kolo ^ 2

The left-hand side includes x c and all variables having two or three indices in common with
x c. There are n 4(n — l)4 such inequalities, or 16 for n = 2.

CHAPTER 1. The Problem of Mutually Orthogonal Latin Squares 12

VI) L ifted antiw ebs

These are defined for all c,d € C such that |c fld | = 0. For c = (io, joi &o, fo)> d = (io ,ji, &i, l\),
the form of such an inequality is:

x iojokolo "P 3' io jokol i "P x i o j o k i l o P' x i o j o k \ h "P

x i o j i k o l o ”P 3 ' i o j i k o h "P^ioJikdo ~P x i o j i k i h "P

• t ' i i jokolo “I” x i \ j o k o h "P x i i j o k i lo "P x i \ j a k \ l i P

x i i j i k 0 l0 + x i i j i k 0 l\ "P x i i j i k i l0 P^MJifciii 5: 2

Observe th a t the left-hand side includes variables x c and xa-along with all variables having all
their indices belonging to c or d. There are ^ n 4(n — l)4 such inequalities, or a single one for
n = 2.

The last inequality states that there can exist no pair of OLS for n = 2. The total number
of inequalities defining Pj is 89. As mentioned earlier, all these inequalities, along with further
inequalities th a t appear only for larger values of n, are analysed in the next chapter.

Chapter 2

The intersection graph o f the OLS
problem

This chapter presents a framework for characterising the OLS problem from an Integer Programming
(IP) perspective. A first step towards this direction is the formulation of an IP model for the problem,
i.e. a linear model on integer variables. Such a model was presented in Section 1.5. A relaxation
of this model is derived by requiring the variables to be simply non-negative. This is the problem’s
linear programming (LP) relaxation. The convex hull of the feasible solutions of the original model
defines a polytope P j, within the polytope Pl defined by the problem’s LP relaxation. Although the
feasible points are located within P j , we initially know only the set of linear inequalities defining Pl .

In order to efficiently characterise and solve the OLS problem using IP, at least a partial knowledge
of polytope Pi is required. This knowledge is usually provided in the form of inequalities, which
are valid for polytope P j but not for the polytope Pl - In other words, these inequalities are derived
by enforcing the requirement th a t certain variables must be integer. Among these inequalities, it is
reasonable to identify the ones, which are not dominated by any other valid inequality. These valid
inequalities are called maximal. Any maximal valid inequality defines a non-empty face of Pj and
the set of maximal valid inequalities contains all of the facet-defining inequalities for P j ([68, p.207]).

Amongst a number of methods for identifying families of valid inequalities, one with a considerable
record, especially in problems involving a 0 — 1 constraint m atrix, is th a t of studying a graph
associated with the IP model. This is the intersection graph, introduced in Section 2.2 (see also
[26, 69]). Subgraphs of this graph exhibiting a particular structure give rise to strong valid inequalities
for the set-packing and set-partitioning polytopes (see [8, 18] for a review). In this chapter, a number
of such subgraphs, along with the induced inequalities, are identified and analysed for the intersection
graph of our IP model. In particular, cliques, antiwebs, wheels, composite cliques and odd holes are
presented in sections 2.3-2.7, respectively. Finally, Section 2.8 examines the existence of odd anti
holes and proves th a t such structures do not exist for this particular problem.

13

CH APTER 2. The intersection graph of the OLS problem 14

2.1 The OLS polytope

Recall the model introduced in Section 1.5:

^2 {x ijk i : i e I , j £ J } = 1 ,Vfc £ K ,l £ L (2.1)

'Y ^{x ijki : i € I , k £ K] = l,V j £ J ,l £ L (2.2)

^ i j k i - i e 1,1 e L} = l ,V j £ J ,k £ K (2.3)

^ { x i j k i : j e J, k £ K } = 1, Vz € I , I £ L (2.4)

^ ^{xjjki • j € J)l € L} = 1 ,Vi £ I , k £ K (2.5)

$ > « « : k £ K ,l £ L} = 1, Vi £ I , j £ J (2.6)

Xijki e {0 ,l}Vi £ I , j £ J ,k £ K ,l £ L (2.7)

where I , J, A", L are disjoint sets with | I |= | J |= | K |= | L |= n.

Given real weights Cijki for every (i, j , k , l) £ I x J x K x L , the problem of minimizing the function
J 2 icijkiXijki - i £ I , j € J ,k £ K , I £ L} over the polytope described by constraints (2.1),..., (2.7) is
the planar 4-index assignment problem or 4P A P n ([2]), which is essentially the optimisation version
of the OLS problem. To formally define the 4P A P n consider the n 3 triples formed by selecting a
single element from each of the sets I , J, K . Assume th a t sets / , J, AT, L index the rows, columns
and values of squares L \ and L 2 , respectively. Under this convention, notice th a t a transversal of
square L \ corresponds to n disjoint triples (Definition 1.6). For example, a transversal of square L\
in Table 1.1 is defined by the triples {(0,0,0), (1,2,3), (2 ,3 ,1), (3,1,2)}. Hence, the 4P A P n asks for
a minimum weight collection of n 2 triples, which form n disjoint sets of n disjoint triples. Set L can
be regarded as indexing the n disjoint sets of triples. It is easy to see that, according to Theorem
1.2, the 4P A P n asks for a minimum weight pair of OLS.

Let A denote the coefficient matrix of constraints (2.1),..., (2.6). We define the polytope P l =
{x £ Rn : A x = e, x > 0} where e = {1,1,..., 1}T £ R6”2. The convex hull of integer vectors of P l
is defined as P i = conv{x £ {0, l} n : A x = e}. This is the OLS polytope since every integer point
x £ Pi is a pair of OLS. P l is also called the linear relaxation of P j. Clearly, P j C P l and the
extreme points of P / are among the extreme points of P l. We will sometimes refer to P j as P f in
order to include the concept of order in the notation. Thus, P f — 0 is another way of stating Euler’s
conjecture for n = 6 .

Substituting (=) by (<) in constraints (2.1),..., (2.6) yields the polytope Pi = conv{x £ {0, I }™4 :
A x < e}. The convex hull of P j, for n = 2, was presented in Section 1.6. Polytopes Pi, Pi are
related since Pi C P /. Hence, facets of Pi are also valid inequalities, but not necessarily facets,
for Pi. If D denotes a 0 — 1 matrix, it can be seen that Pi is a special case of the set-partitioning
polytope P spp = {x £ {0, l }9 : D x = e}, while Pi is a special case of the set-packing polytope
P sp = {x £ {0, l }9 : D x < e} (see [8, 69] for details).

There are two problems, each involving three disjoint n-sets, th a t are highly related to the OLS
problem: the planar three-index assignment problem (3P A P n) and the axial three-index assignment
problem (3A A P n). Both are defined with respect to three disjoint n — sets, namely I , J , K , and a
weight coefficient for each triplet (i , j ,k) £ I x J x K. The 3A A P n is the problem of finding
n disjoint triplets (i.e. a transversal) of minimum weight and constitutes an extension of the (two-
index) assignment problem or weighted bipartite matching problem ([68]). The IP formulation of

2.2. The intersection graph 15

3A AP n is:

m in Y ^ { c ijk • Xijk : i £ I , j £ J ,k £ K }

'^ 2 { x ijk : i £ I , j £ J } = 1,VA: £ K (2.8)

^ ~2{xijk : i £ I , k £ K } = 1,Vj £ J (2.9)

SjTJ{x ijk : j € J, k £ K } = 1, Vz £ I (2.10)

x ijk e {0, l}Vi £ I , j £ J ,k £ K (2.11)

The 3P A P n is the problem of finding a minimum weight collection of n 2 disjoint pairs, forming
n sets of n disjoint pairs each. It is equivalent to the problem of finding a minimum weight Latin
squares of order n (see [37]). Its IP formulation is the following.

m in Y ^ { c ijk ■ x ijk : i £ I , j £ J ,k £ K }

s.t. Y ,{ x i jk : £ -0 = 1 ,V j € J ,k £ K (2.12)

Y ,{ x i jh : j € J } = 1, Vi £ I , k £ K (2.13)

: k £ K } = l,Vz £ I , j £ J (2.14)

x ijk e {0 ,l}Vi £ I , j £ J ,k £ K (2.15)

Polyhedral analysis of 3A A P n and 3P A P n can be found in [9, 10, 76, 38] and [37], respectively.
We extend this analysis in the general setting of multi-index assignment problems in Chapter 7.

2.2 The intersection graph

Let R and C denote the index sets of rows and columns, respectively, of the 0 — 1 A matrix. We
refer to a column of the A m atrix as ac for c £ C. The (column) intersection graph G a (V , E) of a
0-1 A m atrix has a node c for every column ac of A and an edge (cs ,c t) if and only if aCs • aCt > 1,
i.e. both columns cs and ct of A have a +1 entry in at least one common row ([69]).

Let G a (C ,E c) denote the intersection graph of OLS, where C = I x J x K x L. It is convenient
to label the n 4 columns of the OLS A matrix not from 1 to n4, but with four indices i , j , k and I
ranging from 1 to n. In this sense, node cs of Ga represents the index set of column s.

D e fin itio n 2.1 The intersection graph o f OLS G a = (C ,E c) has a node c, for every c £ C, and
an edge (cs ,c t) fo r every pair o f nodes cs ,ct £ C such that \ cs D c% |= 2 or 3.

Note th a t an edge (cs ,ct) £ E c corresponds to columns aCs ,a Ct with ac° ■ aCt = 1 or 3. The row
set of the OLS A m atrix is defined as R = (K x L) U (I x L) U (J x L) U (/ x J) U (J x K) U (I x K).
Since | I |= | J |= | K |= | L |= n, | C |= n 4 and | R |= 6n 2. Notice also th a t two nodes are connected
if and only if they have two or three indices in common. The edge connecting any two nodes can be
characterised by the indices these two nodes have in common. Hence, an edge (ca,c t) can be based
on either a double or a triple ground set, therefore regarded as a double or a triple link, respectively.
We write (cs ,c t) £ M i x M 2 or (cs ,c t) £ M \ x M2 x M3, where M i, M 2 , M 3 can be any of the sets
I , J, K , L, to denote th a t | cs Dct | 2 or 3, respectively. W hen illustrating an edge (cs , c*), the indices,
which are said to “appear” at the edge, are exactly the members of the subset cs fl ct .

CHAPTER 2. The intersection graph of the OLS problem 16

P ro p o s itio n 2.1 The graph G a (C, E c) is regular of degree 2(3n — l) (n — 1).

P ro o f. Consider any c G C. There are (n — l) 4 elements of C, which have no index in common
with c. For each of the four indices of c there are (n —l) 3 elements of C, which share the same value for
this index but have different values for the other three. Therefore, there are 4(n — l) 3 elements of C
which have exactly one index in common with c. By Definition 2.1, c is connected only to nodes that
have two or three indices in common with it, so it is connected to all but (n — l) 4 + 4(n — l) 3 nodes.
Therefore the degree of each c G C is n 4 — 1 — ((n — l) 4 + 4(n — l) 3) = 6n2 — 8n + 2 = 2(3n —l)(n —1).
■

C o ro lla ry 2.2 | E c |= n 4(3n — l)(n — 1).

P ro o f. Since the number of edges of a graph equals the sum of the degrees of its nodes divided
by 2, it follows that | E c |= 0.5 x n 4 x 2(3n — l)(n — 1) = n 4(3n — l) (n — 1). ■

2.3 The cliques of G a

A maximal complete subgraph of a graph G (V ,E) is called a clique ([9, 69]). Let Q C V denote the
node set of a clique. The cardinality of a clique is the cardinality of its node set Q , denoted | Q |.

Let a£ denote the entry of the A matrix a t row r and column c. Then we define the set R (r) =
{c G C : = 1}. So R (r) denotes the set of columns with a non-zero entry in row r.

P ro p o s itio n 2.3 For each r G R, the node set R (r) induces a clique o f cardinality n 2 in G a (C, E c)-

There are 6n2 cliques of this type.

P ro o f. The subgraph induced by the node set R (r) is complete since all its elements have two
indices in common. To prove that it is also maximal assume w.l.o.g. th a t r = (i i , i i) G / x J
and consider Co = (io, jo, &o> lo) £ G \ R (r) where io ^ i\ and jo ^ j \ . Since R (r) contains all n2
elements of C, whose first two indices are i\ and j i, it contains an element c\ = (i i , i i , &i, h) with
| co n c i j= 0 . Next consider Co = (i\,jo ,ko , lo) G C \R (r) . But then there exists c\ G C (for example

ci = (*i> ii> k i ,h)) so th a t | cq Pi c\ |= 1. The same happens if c0 = (io ,ii , &o> fo)- Therefore there
is no co such th a t the subgraph induced by R (r) U {co} is complete. Consequently, the subgraph
having R(r) as its node set is maximal. There are as many cliques of this type as the number of
rows of the A matrix, i.e. 6n2. ■

P ro p o s itio n 2.4 For each c G C the set Q(c) = {c} U {s G C :| c fl s |= 3} induces a clique of
cardinality 4n — 3 in G a { C , E c). There are n 4 cliques o f this type.

P ro o f. W.l.o.g. consider c = cq = { i o , j o , k o , l o) G C. Let ci,C2 G Q(co) with ci ^ C2 ^ cq ^ c \ .
Since Ci,C2 have three indices in common with Co, at least two of their indices coincide. Therefore,
(ci,C2) G E c for any ci,C2 G Q(co), i.e. Q(co) is complete. To show th a t Q (cq) is also maximal
consider C3 = (13, J3, ^3, Z3) G C \ Q { cq). Then C3 has exactly two indices in common with Co, by
definition. If | co fl C3 |= 2, w.l.o.g. consider io = 23, j o = j z and ko ^ k%, Iq ^ 1%. By definition,
Q(co) contains two elements, namely cs = { is , j o , k o , l o) and ct = {io ,jt,ko ,lo) such th a t io 7̂ i s and
j o 7̂ j t . But then | C3 fl cs |= | C3 fl ct |= 1, i.e. the subgraph Q (cq) U {03} is not complete. Hence,
Q (cq) is also maximal.

The set Q(cq) includes node co = (io,io, ko, Iq) and all nodes w ith exactly one index different
from cq, hence | Q(co) \= 4 (n — 1) + 1 = 4n — 3. There are n 4 elements belonging to the set C and
each one can play the role of Cq . Therefore, there are n 4 distinct cliques of this type. ■

2.3. The cliques of G a 17

P ro p o s i tio n 2.5 Let c ,s G C such that \ c fl s |= 1. Then the set Q(c, s) = {c} U {t G C :| c D t |=
2, | s fl t |= 3} induces a 4-clique in Ga (C ,E c)-

P ro o f. W.l.o.g. let c = cq = (io,jo,ko,lo) and s = (io, j i , ki, h). We can uniquely define
three elements ti = (io, jo, 12 = (io, j i , ko, h) , t 3 = (i0, j i , ki, l0), satisfying | c H t i |= 2 and
| s n t i |= 3 for i = 1,2,3. It is obvious that the node set {c, t \ , V ,£3} induces a complete subgraph of
G a { C , E c). To show th a t this subgraph is also maximal, consider C2 = {i2, J2, ^2, 2̂} G C \ Q{c,s).
If i 2 io then for an edge (c, C2) to exist in G a (C, E c) we must have | cflC2 |> 2, which implies that
| C2 fl ti |= 1 for i = 1,2,3. Therefore, Q (c ,s) cannot be extended to include C2, since the resulting
graph is not complete. If i<i = io either C2 has another element common with c and the remaining
two with s, in which case it coincides with one of the V s, or it has one more element in common
with c and with s. In the latter case, w.l.o.g. let j'2 = jo and k 2 = k \. Then we have | C2 fl £2 |= 1-
Hence, Q (c,s) cannot again be extended. The results follows. ■

Concerning the cardinality of the set of cliques of this type, every ordered pair (c, s) such that
| c fl s |= 1 can be used to create a clique of this type. Considering th a t | C |= n 4 and that for
each c G C there are 4(n — l) 3 possible s such th a t | c fl s \= 1, the number of such ordered pairs is
4n4(n — l) 3. Note, however, th a t the 4-clique Q (c,s) = (c, is als° generated as Q (ci,Si) for
i = 1 ,2 ,3 where

ci = ti = (io,jo ,k i , l i) and si = (io ,ji,ko ,lo),

C2 = t 2 = (io, ji,& o ,h) and S2 = (io,Jo,& i,Iq),
C3 = £3 = (io , j i ,k i , l0) and S3 = (io, jo, ko, li).

P ro p o s itio n 2.6 Q (c,s) = Q(ci,Si), i = 1,2,3

It is also obvious th a t the 4-clique Q(c, s) = (c, t i , ^2, ^3) cannot arise from any other choice of c
and s.

C o ro lla ry 2.7 The number o f distinct 4-cliques is n 4(n — l) 3.

P ro o f. Each 4-clique arises from four different ordered pairs of C and there exist 4n4(n — l) 3
such pairs. ■

Cliques described in Propositions 2.3, 2.4 and 2.5 will be called cliques of type I, II and III
respectively. Each clique Q of the intersection graph Ga (V ,E) defines an inequality of the form

J2 {xq - q ^ Q } < 1. In particular, cliques of type II, for c = (io, Jo, ko, 0̂), define an inequality of the
form:

x i o j o k o l o ~b ^ ̂x i j o k o l o ”b ^] x i o j k o l o "b ^ ̂ x i o j o k l o “b ^ ̂X i 0j 0 k o l — 1
i^io j^jo k^ko i/io

while cliques of type III, for c = (io ,jo ,kQ,lo) and s = (io, j i , k \ , l i) define the inequality:

x iojokolo “b^iojifciZo x ioj\kol\ “b x iojokih — ^

Inequalities arising from cliques of type I, taken as equalities, define the original formulation. Ex
amples of these inequalities, for n = 2, were given in Section 1.6

T h e o re m 2.8 The cliques of type I, I I and II I are the only cliques in Ga (C, E c).

P ro o f. Let Q be the node set of a clique in Ga (C, E c). Let c = (io, Jo, ^0, 0̂) £ Q- Every other
q G Q must have at least two indices in common with c. If | c fl q |= 3 for all q G Q, Q is a node

CHAPTER 2. The intersection graph of the OLS problem 18

set o f a clique o f typ e II. O therw ise, there m ust ex is t q s £ Q , such th a t | c f l ^ |= 2. W .l.o .g . let

Qs — (io , jo , If every other elem ent o f Q has th e sam e values io , jo f ° r the first tw o indices, Q

is a n ode set o f a clique o f ty p e I. If not, there m ust ex ist q t = (i t , j t , k t , h) £ Q , w hich satisfies all

of th e follow ing conditions:

(i) E ither i t = io or j t = jo- If b o th i t 7 ̂ io and j t 7 ̂ jo th en it m ust b e k t = k o and l t = Iq in

order for q t to be connected to c. B u t then | q s C \ q t |= 0, i.e. Q does not induce a clique.

(ii) E ither (k t , l t) = { k o , l \) or (k t , l t) = { k i , l o) - If b o th k t 7 ̂ k o and I t 7 ̂ lo then , together w ith

condition (i), we have \ c f) q t |= 1; if k t = k o and l t = Iq th en | q s D q t |= 1. In b oth cases, Q

does not induce a clique.

W .l.o .g . assum e th a t q t = (io , j i , &o, ii) - If (io , j i , fci, h) € Q then Q = Q (c , (io , j i , h , h)) , i.e.

Q is th e node set o f a clique o f typ e III. If (io, j i , k \ , Iq) £ Q , there m ust ex ist q r £ Q , such that

I Qr H (io , j i , k i , l o) |< 1, | q r Cl c |> 2, | q r fl q s |> 2 and | q r D q t |> 2. E very such q r m ust have at

least three indices in com m on w ith (io, jo , &o, h) , in w hich case Q = Q (i o , j o , k o , l \) , i.e. Q induces a

clique o f typ e II. ■

C oro llary 2.9 T h e t o t a l n u m b e r o f c l i q u e s i n G a { C , E c) i s n 4 ((n — l)3 + 1) + 6 n 2 .

P roof. A s show n above, there are 6 n 2, n 4 , and n 4(n — l)3 cliques o f ty p e I, II and III respectively.

■
It is easy to see th at an inequality arising from a clique o f G a cann ot be augm ented by adding

more variables w ith non-zero coefficients to its l.h .s . w ith ou t raising its r.h .s. ([69]). It follows

th at every other inequality w ith a l.h .s. o f 1 and p ositive coefficients at th e l.h .s. is bound to be

dom inated by a clique inequality. Under th is v iew , clique inequalities are th e stron gest inequalities

w ith r.h.s. o f 1 .

2.4 A fam ily o f A ntiw ebs o f G a

An antiweb A W (x ,y) is a graph containing x nodes, each connected to all but y other nodes. A web
is the complement of an antiweb. Web and antiweb structures were introduced in [82]. Figure 2.1
shows the generic structure of an A W (8,3) antiweb graph, where each node is connected to all but 3
nodes. Each antiweb A W (x ,y) , y < x, gives rise to an inequality of the form J2 i x i '■ * ^ M (x , j /) }
< s.

Figure 2.1: The antiweb AW(8,3)

Assume c = (i0, jo,&o4o), d = (*1, ji ,& i,ii) and consider the node set A (c , d) = {(io, jo ,k0 , lo),

(i i ,jo ,^0, io), (i i , j i , k o , l o) , (ii,ji,fc i,/o), (*1, ji,& i,ii)> (io ,ji,& i,h) , (io,jo,&i>h) , (io,jo,&o,h) } -

2.4. A family of Antiwebs of Ga 19

T h is n od e se t c o n st itu te s an A W (8 ,3), as d ep icted at F igu re 2 .2 . N o tice th a t every trip le o f consec

u tive n od es form s a co m p lete subgraph. T h e in eq u ality induced by A (c , d) is:

x iiiJ o k o lo + x io j()k o l] T x i 0j o k i l \ + x i 0j \M i A M j i M i + x i o j i k l l 1 + x i o j o k \ l \ + M ijoM i ^ 2 (2 .16)

F igure 2.2: T h e an tiw eb A (c ,d)

In eq u a lity (2 .16) can be further stren gth en ed by ap p ly in g th e p rocess o f seq u en tia l lifting, as

in trod uced at [69]. T h e aim is to inclu de th e m axim um num ber o f variab les in th e l.h .s . o f (2 .16),

each o n e w ith th e m axim u m p ossib le coefficient, w ith o u t raising th e va lu e o f th e r.h .s. T h e coefficient

o f an a d d itio n a l variab le included in th e liftin g is tr iv ia lly b ou n d ed by th e value o f th e r.h .s.

T h is coeffic ien t is a lso ca lled th e l i f t i n g c o e f f i c i e n t for a variable. T h e order, accord ing to w hich

variab les are considered du ring th e liftin g process, is called th e l i f t i n g s e q u e n c e . T h e liftin g coeffi

c ie n t s) are gen era lly d ep en d en t on th e liftin g sequ en ce (see [18, 69] for a d iscu ssion).

A ssu m e variab le x s , s € C \ A (c , d) and let a s b e its coeffic ien t in th e lifted inequality:

a3x s + Y 2 -r ' - ~
t £A(c ,d)

For x s = 0 , w e get (2 .1 6), w hereas for x s = 1 w e get Y l t e A (c d) x t — 2 — a s - It fo llow s th a t a s = 2 ,

if s is co n n ected to all 8 n od es o f A (c , d) , sin ce se tt in g .r>s = 1 w ou ld se t to 0 all o ther variables.

N o n od e h as th is property. O n th e other hand , a s = 1 , if s is con n ected to at lea st 5 con secu tive

n odes o f A (c , d) . In th a t case, se ttin g x s = 1 w ould se t to 0 th e variab les corresp ond in g to th ese

5 con secu tive n od es and on ly on e o f th e rem ain ing variab les cou ld tak e va lu e 1. T h e nod es having

th is p roperty are A (c , d) = { { i 0) j i f f i o J o) , (i 0 , j g f f i i J o) , { i o J i , k o , h) , (i o J u h G o) , (i u j o f f i i G i) ,

(i \ , j i , k o , l \), (i i , j o , k i , l o) , (i i G o ^ k o G i) } . N o te th a t th is nod e se t a lso form s an antiw eb . H ence, at

m ost 2 variab les x s , s € A (c , d) can be set to 1 . If ex a c tly tw o variab les .r*. .s £ A (c , d) are set to 1 ,

all o th er variab les x s € A (c , d) U A (c , d) are se t to 0 and v ice versa. T herefore, th e lifted antiw eb

CHAPTER 2. The intersection graph of the OLS problem 20

inequality is:

x iojokolo "b x iojokol\ ”1" x iojok\lo "I- x iojok\l\ “b x iojikolo "b x ioj\kol\ "b x iojikilo "b x ioj\k\l\ (2.17)

x i\jokolo "b x iijok0li "b x iijokil0 "b x iijokih "b x iij\kolo “b x i\j\k0li "b x i\j\k il0 ^ x i\3\kih — 2

More formally, for c, d € C , \c fl d\ = 0, let A(c, d) = { / G C : f C cUd}. Then the lifted antiweb
inequality

X (A (c,d)) = : / e A(c,d)} < 2 (2.18)

is valid. Note th a t the form of the lifted inequality is independent of the lifting sequence.
This inequality states th a t no pair of OLS can exist for n = 2. Equivalently, it states that any

pair of 2 x 2 subsquares in a pair of OLS of order n is bound to contain at least 3 distinct values.

P ro p o s itio n 2.10 The number of inequalities (2.18) is jgri4 • (n — l) 4.

P ro o f. Deriving an inequality (2.18) requires exactly two distinct indices from each of the sets
/ , J, K , L. The number of options for selecting two indices from each of the four sets are (£)4 =
(n l ^ l l) 4 = i n 4 . („ _ !) « . .

2.5 The W heels of G a

D efin itio n 2.2 For c € C and an integer p > 2, consider the node set:

H (c) = {ci G C ,i = 0, ...,2p : (cs ,c t) £ E c, for s = t ± l(m od2p + 1}, (2.19)

(c, cs) G E c, for all s e {1,..., 2p + 1}}

The node set W{c) = {c} U H(c) is called a wheel.

Node c is the hub of the wheel, H (c) is the rim and edges (c, cs) are the spokes. Any other edge
(c i,c j) ,i ^ j , i 7̂ j ± l(m od2p + 1} is called a chord. The rim is always assumed to be chordless.
Figure 2.3 exhibits a wheel subgraph of Ga -

nnnn

Ixj

Kx JxL

Figure 2.3: A wheel of size 7

2.5. The Wheels of Ga 21

For i , j G {1,...,2p + 1}, the spokes (c, C{), (c, C j), i ^ j , will be called rim adjacent, if they
are incident to adjacent nodes of the rim, i.e. if (Ci,Cj) G E c- For example, spokes ((n ,n ,n ,n) ,
(n ,n ,k o ,l i)) and ((n ,n ,n ,n) , (io ,n ,n ,li)) in Figure 2.3 are rim adjacent. Two nodes of the rim,
whose spokes are based on the same double ground set, will be called conjugate. An example of such
a pair is nodes (n ,n ,k o ,lo) and (n ,n ,k o , l \) in Figure 2.3. The rim edges can be either double or
triple links, i.e. |cs , ct \ > 2 for cs ,ct G H (c) and s ^ t.We assume, however, th a t the spokes can only
be double links, i.e. |c f lcs | = 2 for all cs G H{c).Throughout the rest of this section, we also assume,
w.l.o.g., th a t c = (n, n, n, n) and p > 2.

Each wheel induces an inequality of the form:

p ■ x c + ^ 2 x d < P (2.20)
d£H(c)

The validity of this inequality is justified as follows: setting x c= l implies 2̂ = 0 for all d G H(c)\
if x c = 0, a t most p of the variables xd, d G H (c) can be set to 1. In both cases, (2.20) is satisfied as
equality. As an example, the inequality induced by the 7— wheel of Figure 2.3 is:

3 ' X n n n n - |- X n n]iQiQ K n n k o l i “t- i o n n l i &i o n k i n ^ i i n k ^ n ”1“ - ^ n j o k i n ”1“ %n j o n l o ^ 3

The wheels of Ga can be categorised with respect to three characteristics: the size p, the number
of pairs of conjugate nodes Dp and the number of triple links on the rim Tp. These aspects affect
both the configuration of the wheel subgraph and the form of the resulting (lifted) inequality. The
following section examines the structural properties of the wheels of Ga -

2.5.1 Properties of wheels

P ro p o s itio n 2.11 Let cs ,c t G H(c), such that (c, cs), (c, ct) G M i x M 2, M i, M2 = / , J , K , L.
Then c f) c s = c fl ct .

P ro o f. This proposition states th a t at most one member of each double ground set can appear
on the spokes. Let Mi = I , M 2 = J and cs = {n ,n ,ko ,lo), ko,lo ^ n, i.e. c fl cs = (n ,n) G I x J.
Assume ct G H(c), such th a t c fl ct G / x J. It is obvious th a t c D ct = (n, n), i.e. c D cs = c fl ct . ■

P ro p o s itio n 2.12 There can be at most two spokes based on the same double ground set. I f exactly
two spokes are based on the same double ground set, these spokes have to be rim adjacent.

P ro o f. Assume w.l.o.g. th a t cs = (n ,n ,ko ,lo),c t = (n ,n ,k \ , l i) , k o ,lo ,k i,li ^ n. Then the
spokes (c, cs), (c, ct) are based on the double ground set I x J and (cs ,c t) G E c- Unless nodes
Ci,C2 are rim adjacent, the edge (01, 02) is a chord. If there exists another cu G H{c), such that
(c,Cu) € I x J, then one of the edges (c i,cu), (c2,cu), (01, 02) will again be a chord. ■

T h e o re m 2.13 p < 5.

P ro o f. There exist six distinct double ground sets and, according to Prop. 2.12, at most two
spokes can be based on each one. Therefore, the largest odd number of nodes in the rim is 11. ■

P ro p o s itio n 2.14 Let cs ,c t G H(c), s ^ t and assume (c,cs) G M i x M2, (c ,ct) G M3 x M4,
M i, M2, M3, M4 = I , J ,K ,L . I f (cs ,ct) G E c, then, at least one o f M i, M 2 must coincide to either
M3 or M 4.

CH APTER 2. The intersection graph of the OLS problem 22

P ro o f . This proposition states th a t two rim adjacent spokes must have a t least one ground set in
common. Assume th a t none of M i, M2 coincides with any of M 3, M4. Let w.l.o.g. Mi x M2 = I x J,
M3 x M4 = K x L, and ci = (n, n, ko, Iq) , = (io ,jo ,n ,n), io ,jo ,ko ,lo ^ n. It is obvious th a t (01, 02)
^ E C 1 which is a contradiction. ■

P ro p o s i t io n 2.15 Let (c, cs) E M i x M 2 ,(c ,c t) E M 2 x M3 6e a pair of rim adjacent spokes. I f
M i = M3, £/ien (c, c*) C (cs ,c t) , i = s ,t; otherwise,(cs ,c t) E M 2 x M4, w/iere M4 ^ M i, M2, M3.

P ro o f. This proposition reveals a mechanism for determining the double set of a rim edge, given
the double sets of the adjacent spokes.

Assume w.l.o.g. th a t M i = I , M2 = J. If M3 = M i, then let cs = (n , n , k Q , l o) , c t = (n , n , k \ , l i) ,

k 0 , l 0 , k 1 , l 1 7̂ n - ^ either ko = k i or Iq = Zi, then (01, 02) = (n,n,&o) or (ci>c2) = (n , n , l o) ,

respectively. In both cases, (c, c*) C (cs ,ct) , i = s ,t.
If M 3 7̂ M i assume w.l.o.g. th a t M 3 = K , which implies M 4 = L. Let ci = {n,n,ko,lo),C 2 =

(i i ,n ,n , l i) , k 0 , l o , i i , l i ^ n. Then |ci fl C2I > 1, if and only if Iq = l i . But then (01, 02) = (n ,l 0) E

J x L. m

E x a m p le 2.1 With respect to Figure 2.3, observe that the spokes fo r nodes ci = (n,n,kQ ,lo), C2 =
(n ,n ,k o ,l i) are the only ones based on the double set I x J . Notice that (c\ , C2) = (n ,n , Ao) E I x J x K
and (c, ci) c (ci, C2). Note also that any pair of rim adjacent spokes have at least one set in common.

C o ro lla ry 2.16 For two rim adjacent nodes cs ,c t E H (c) , s 7 ̂ £, (cs ,ct) is a triple link only if
c fl c3 = c fl ct .

P ro o f. Assume c fl cs ^ c fl ct and let w.l.o.g. cs = (n ,n , k 0 ,lQ),ct = (n ,jQ ,n,lo). Since spokes
are assumed to be based only on double ground sets, jo,kQ ^ n, which implies th a t (cs ,c t) can never
be a triple link. ■

P ro p o s itio n 2.17 Let (c,cs), (c, ct), (c,cu) be rim adjacent spokes, no two o f which are based on
the same double ground set. Then all four sets must appear on the double sets o f the spokes.

P ro o f. Given th a t (c, cs), (c, ct), (c , c u) are rim adjacent, assume th a t only three sets appear
in the three rim adjacent spokes. W.l.o.g. and according to Prop. 2.14, assume (c, cs) E I x J,
(c, ct) E J x K , (c, c u) E I x K . By Prop. 2.15, it must be th a t (cs , c t) E J x L and (c t , c u) E K x L.
This implies th a t nodes c s , cu have index I in common. But both of these nodes have also index i

equal to n. It follows th a t (c s , c u) E I x L, i.e. there is a chord. ■

E x am p le 2.1 (co n t.) Examine, in Figure 2.3, the spokes corresponding to the three rim adjacent
nodes (n ,n , Aq, Zi), (io ,n ,n ,li) and (iQ ,n ,k i,n) and observe that all four sets appear on these three
spokes.

T h e o re m 2.18 I f Dp denotes the number o f pairs of conjugate nodes:
p — 1 < Dp < p, for 2 < p < 4
Dp = p , fo r p = 5

P ro o f. It is easy to see th a t the upper bound is valid, since we cannot have more than p pairs
of conjugate nodes in a rim of size 2p + 1. Concerning the lower bound, the cases for each possible
value of p are examined separately.

2.5. The Wheels of Ga 23

p = 2 : If D 2 = 0, then we must have 5 spokes based on 5 distinct double ground sets. Assume
w.l.o.g. th a t one spoke is based on I x J and th a t one of its rim adjacent spokes is based on
J x K, i.e. assume the sequence [I x J] — [J x K]. According to Prop. 2.17, the next spoke in
the sequence must contain set L. The two possible options are double sets J x L and K x L.

[I x J] — [J x K] — [J x L\ : The fourth spoke must contain set / , again because of Prop.
2.17. The two options are sets I x J and I x L. Using I x J is forbidden by Prop. 2.12.
Using set I x L results in the sequence [I x J] — [J x K) — [J x L] — [I x L]. In order
for this sequence to be completed to a cyclic one, the only possible set is J x L. However,
using this set would create a chord.

[I x J] — [J x K] — [K x L] : Because of Prop. 2.17, the fourth spoke must contain set I.
Again set I x L is the only option. As shown above, the sequence [I x J] — [J x K] —
[J x L\ — [I x L] cannot be extended.

It follows that D 2 > 1.

p — 3 : D 3 = 0 implies th a t the wheel has 7 spokes based on distinct double ground sets. Since the
number of distinct double ground sets is 6, this is impossible. If D% = 1, assume w.l.o.g. th a t
the pair of spokes corresponding to the single pair of conjugate nodes is based on the double
ground set I x J. This implies a sequence of spokes [I x J] — [I x J]. The sets appearing on
the rim adjacent spokes of this sequence must be selected according to one of the following
exhaustive options:

(i) only one of the sets I, J and both sets K,L;

(ii) both sets I,J and only one of the sets K,L;

(iii) both sets I,J and both sets K,L.

Each case is treated separately.

(i) Let w.l.o.g. the sequence be extended as [I x K] — [I x J] — [I x J] — [I x L}. Consider
the last three spokes and observe that the next spoke to the right must contain set K ,
according to Prop. 2.17. Such a spoke cannot contain set I because a chord would be then
created. Therefore, the only option is a spoke based on set K x L. The same reasoning
proves th a t the next spoke to the left of the above sequence must also be based on set
K x L. The resulting sequence [K x L] — [I x K] — [I x J] — [I x J] — [I x L] — [K x L]
includes a chord.

(ii) Let w.l.o.g. the extended sequence be [I x K] — [I x J] — [I x J] — [J x K]. The next
spokes to both the right and the left of this sequence must contain set L, according to
Prop. 2.17. The choice is between the double sets I x L, K x L for the next spoke to
the left and between the double sets J x L, K x L for the next spoke to the right, i.e.
three possible extensions, since set K x L cannot be used for both. Assume the case of
using set K x L for extending the sequence to the left and set J x L for extending the
sequence to the right. The only set left for the seventh spoke is set I x L. The resulting
cyclic sequence is [K x L] — [I x K] — [I x J] — [I x J] — [J x K] — [J x L] — [I x L\.
The rim adjacent spokes [I x L] — [K x L\ — [I x K] violate the condition of Prop. 2.17,
i.e. a chord is formed.

CHAPTER 2. The intersection graph of the OLS problem 24

It is always the case that two of the sets I x L, J x L, K x L appear a t the spokes left and
right of the above sequence and the last one will be used for the seventh spoke. It can
be checked th a t there are always three consecutive spokes, which violate the condition of
Prop. 2 .17 .

(iii) Let w.l.o.g. the augmented sequence be [I x K] — [I x J] — [I x J] — [J x L\. Based on
Prop. 2.14 and Prop. 2 .17 , it is easy to see th a t the possible sets for the next spoke to the
left of this sequence are sets I x L and K x L, whereas the possible sets for the next spoke
to the right are sets J x L and K x L. This again gives rise to three cases, since using set
K x L for both spokes would create a chord. Assume the case of the next spoke to the
left being based on set I x L and the next spoke to the right being based on set K x L.
This results in the sequence [I x L\ — [I x K] — [I x J] — [I x J] — [J x L \— [K x L\.
According to Prop. 2 .17, the next (and last) spoke to the right of this sequence must
contain set I. If the second set is K , a chord is formed. If the second set is L , a second
pair of conjugate nodes based on set I x L appears, in contradiction to the hypothesis of
I>3 = 1. A similar contradiction, or a chord creation, is also the outcome of the other two
possible extensions.

It follows th a t there exists no 7-wheel with a single pair of conjugate nodes. Therefore, it must
be £ 3 > 2, as required.

p = 4 : If £)4 = 0 ,1 , 2 , more th a t 6 spokes must be based on distinct double ground sets. Since this
is impossible, it follows th a t £ 4 > 3 .

p = 5 : As above, having less than 5 pairs of conjugate nodes would require the existence of at least
7 double ground sets for an equal number of spokes. This proves th a t £5 = 5 .The proof is
complete.

■
Let us now focus on the number of triple links on the rim.

P rop osition 2.19 Consider four consecutive rim adjacent spokes (c, Ci), (c, C2), (c, C3), (c, C 4) , where
nodes c2 and C3 are conjugate. Then (02,03) can be a triple link only i f all four sets appear on the
double sets o f the four spokes.

Proof. Assume th a t all four sets / , J, A, L appear on the spokes. Since the four spokes are rim
adjacent and (0,02), (0,03) are based on the same double ground set, let w.l.o.g. (c ,c\) E I x J,
(0,02) E J x K , (0,03) e J x K , (0,04) E K x L, based on Prop. 2 .14 . According to Prop. 2 .15 , if all
rim edges are double links, (01,02) E J x L, (02,03) E J x K and (03,04) E I x K. Notice th a t both
Ci, c3 have index j equal to n and both C2, C4 have index k equal to n.

If (02,03) was a triple link, then it would be either (02,03) E I x J x K or (02,03) E J x K x L.
If (c2> 03) E I x J x K then nodes 02 and 04 would also have index i in common, i.e. (02,04) would
be a chord. Similarly, if (02,03) E J x K x L, then (01,03) would be a chord. It follows th a t (02,03)
cannot be a triple link, if all four sets appear on the spokes.

If only three sets appear on the spokes, assume w.l.o.g. th a t (c, ci) E I x J , (c, 02) E J x K, (c, 03) E

J x K , (c, c4) E I x K and, based on Prop. 2 .15, (ci, 02) E J x L, (02,03) E J x K and (03,04) E K x L.
Notice th a t it can be (02,03) E I x J x K w ithout a chord being formed between nodes 02 and c4. ■

E xam ple 2.1 (cont.) Consider the two quadruples of rim adjacent nodes:

2.5. The Wheels of Ga 25

(a) (n, j 0, n, l0), (n, to, k0,l0), (n, n, kQ, h), (i0, n, n, Zi);

(b) { io ,n ,n ,h) ,(io ,n ,k i ,n) , { i \ ,n ,k 2,n) ,{ n ,jo ,k 2,n)\

Observe the existence o f a triple link within the first quadruple and the impossibility of a triple
link within the second one.

P ro p o s i t io n 2.20 I f two pairs of conjugate nodes are consecutive, at most one triple link can appear
at the corresponding edges.

P ro o f . Assume w.l.o.g. the consecutive nodes Ci,02, 03,04 and let the spokes of c\ and 02 be
based on I x J and the spokes of 0 3 , 0 4 be based on J x K . Assume also th a t both (c i, c2) and (0 3 , C 4)

are triple links. The sequence of the four spokes is [Jx J] — [Jx J] — [J x K] — [J x K] . According to
Prop. 2.19, the next spoke to the left of this sequence must be based on set I x K in order to allow
for the existence of a triple link between c\ and 02. For the same reason, the next spoke to the left
must also be based on set I x K. But then, these two spokes must be adjacent, according to Prop.
2.12. Hence, the augmented sequence is cyclic and results in a wheel of even length. Therefore, a
triple link can be established either between c\ and C2 or between C3 and C 4. ■

C o ro lla ry 2.21 I f T p denotes the number o f triple links on the rim:
0 < Tp < p - 1, p = 2,3
0 < T p < p - 2 , p = 4,5

P ro o f. According to Prop. 2.15, a triple link can exist only between two (adjacent) conjugate
nodes. The number of pairs of conjugate nodes must therefore follow the conditions of Prop. 2.18.
The lower bound of 0 on Tp is trivial, since, for sufficiently large n, one can always transform a triple
link into a double one. The upper bound for Tp will be proved based on the conditions imposed by
Prop. 2.18 and 2.20.

For p = 2, there can be either 1 or 2 pairs of conjugate nodes. If 2 pairs exist, these must be
adjacent, hence a t most one can include a triple link, according to Prop. 2.20. It follows th a t T2 < 1.

For p = 3, 2 or 3 pairs of conjugate nodes can exist. If the rim includes two pairs of conjugate
nodes, a t most two triple links can appear on the rim. If three pairs exist, they will all be adjacent,
hence a triple link can appear at most a t 2 of them. In both cases, < 2, as required.

For p = 4, = 3,4. For D 4 = 4, the four pairs of conjugate nodes are bound to be consecutive
on the rim. It follows from Prop. 2.20 th a t at most two of the them can form triple links. Hence,
T4 < 2.

Given D$ = 5, it is easy to see th a t the five pairs of conjugate nodes are consecutive, allowing
for no more than 3 of them to form triple links on the rim. It follows th a t T5 < 3. ■

P ro p o s i tio n 2.22 There are 0 (n 2°) wheels.

P ro o f. Consider a wheel of size 2p -f 1. Any node of Ga can be the hub, hence there axe n 4
options for the hub c. Given the hub, exactly two indices for each node in the rim are determined,
since all spokes are assumed to be double links. The options for the other two indices depend on
whether the node belongs to a pair of conjugate nodes or not. Assume w.l.o.g. th a t c = (n ,n ,n ,n)
and let the rim be examined in a clockwise direction.

Observe th a t the number of indices from each set required for a wheel structure cannot be more
th a t 7. For example, an 11—wheel must have all 6 double sets on the spokes. Consider w.l.o.g. set

CHAPTER 2. The intersection graph of the OLS problem 26

I. All three double sets I x J, I x K , I x L appear on the spokes and at least two of them appear
twice. Therefore, at least 5 nodes of the rim have value n for index i. This leaves 6 nodes with
index i different from n. As a result, at most 7 values of index i are required for an 11—wheel. The
argument can be repeated for each of the indices j , k, I and also for wheels of smaller size. There are
n options for selecting the value of index i for the hub; n — 1 options for selecting the value of index
i for first node examined in the rim, which has index i different from n; n — 2 for the second node
examined and finally n — 6 options for selecting the value of index i for the last node. It follows that
there are 0 (n) options for selecting each value of index i, the same being true for all other indices.

Two adjacent nodes, which do not form a pair of conjugates, are bound to have one index in
common, which is different from n. This holds because the two nodes must be connected and is
a direct consequence of Prop. 2.14. The nodes of the wheel in Figure 2.3 can be checked for an
illustration. Hence, each node not followed by a conjugate node has 0 (n) options for only one of its
indices. This is the case for each node not belonging to a pair of conjugate nodes.

Two conjugate nodes are bound to be adjacent (Prop. 2.14). The first of these nodes has 0 (n)
options for each of its two indices, which are not equal to n, if there is not a triple link with its
successor; otherwise, it has 0 (n) options for only one of its indices. By restricting the analysis to
wheels with no triple links, such a node has 0 (n) ■ 0 (n) options for its indices. Its successor, on the
other hand, has again 0 (n) options for only one index different from n, since its successor cannot be
a conjugate node. It follows th a t the are [O(n)]3 options for each pair of conjugate nodes.

There are Dp such pairs and 2 p + l — 2Dp nodes having no conjugate. Therefore, the number of
rims of size 2p F 1, which include Dp pairs of conjugate nodes is:

[0{n)}3 Dp • [0{n)]2P+1~2 Dp = [0{n)]2P+1+Dp = 0 (n 2P+1+D”)

Since there are also n 4 options for the hub, the number of wheels of size 2p + 1 is:
0 (n2p+l+DP) . n 4 = 0 (n 2P+ D p+ 5)

Given th a t Dp < P, the function 2p + D p + 5 is strictly increasing with respect to p. For 1 1 -
wheels, p = 5 and Dp = 5. Hence, their number dominates the number of wheels of smaller size.
Substituting the values for p ,D p in the above expression states th a t the number of 11— wheels is
0 (n2°). ■

This concludes the structural description of the wheels of Ga - The topic addressed in the next
section is the form of the inequalities derived from this family of subgraphs.

2.5.2 Lifted w heel inequalities

As mentioned above, each wheel induces an inequality of the form:

P ' x c + X / Xd - P (2.21)
d e H (c)

or

3 • Xnnnn F %nnkolo F Xnnko?i F ^ionnii F -̂ionfcin F Xi-i nk2 'n F Xnj Qk2n F xnjoni0 < 3 (2 .22)

for the 7— wheel of Figure 2 .3 .

Lifting inequality (2 .21) requires including all variables x s G C \kF(c) in the l.h.s., with the
maximum possible coefficient, without raising the r.h.s. If as is the coefficient for xs G C\W(c) , the

2.5. The Wheels of Ga 27

augmented inequality has the form:

as ■ x s + p ■ x c + ^2, x d < P
d e H (c)

(2.23)

If x s = 0, (2.23) is reduced to (2.21). If x s = 1, the inequality

^ 2 x d < P ~ a s
d £ H (c)

(2.24)

must hold. If node s is not connected to the hub c, x c can still be set to 1, in which case (2.23)
becomes p < p — as or as < 0 . Hence, only nodes connected to the hub can have a non-zero coefficient
in the lifted inequality. Assuming c = (n, n, n, n) for clarity, it is equivalent to state that only nodes
having two or three of their indices equal to n should be considered.

P ro p o s itio n 2.23 I f as is the coefficient o f a variable x a in a lifted wheel inequality, then:
as = p, i f s = d]

as < 2, i f |c fl s\ = 3;
as < 1, i f \c fl s| = 2.

P ro o f. The maximum value for a s , i.e. p, is achieved only if s is connected to all nodes s G W (c),
since, for x s = 1, the l.h.s. of (2.24) would become 0. Obviously, this is possible only if s = c. Given
also th a t p < 5, it follows th a t the maximum coefficient on the l.h.s. of a lifted wheel inequality is 5.

Consider a variable x s , such th a t s G C \W (c) and |c fl s| = 3. Let w.l.o.g. s = (i ,n ,n ,n),
i G / \ { n }- Node s will be connected to the hub and also to all nodes of the rim, whose spokes are
based on one of the double sets J x K, J x L, K x L. There can be a t most 6 such nodes, according
to Prop. 2 .12 . Setting x 8 = 1, implies that the hub together up to 6 nodes will be set to 0. This
leaves 2p + \ — 6 = 2 • (p — 2) — 1 nodes of the rim intact. Independently of whether these nodes are
consecutive or not, at least p — 2 of them can be still be set to 1 . Hence, (2 .21) becomes as + p — 2 < p
or as < 2 . The possible values for coefficient as are:

(i) as = 0, if node s is connected to 0 or 1 or 2 nodes of the rim;

(ii) as = 1, if node s is connected to 3 or 4 nodes of the rim;

(iii) as = 2, if node s is connected to 5 or 6 nodes of the rim;

It is easy to see th a t the coefficient as is identical for all variables {Xinnn : i G 7\{n}}.
Now, consider a variable x s , such th a t s G C \W (c), |c f l s | = 2 and let w.l.o.g. s = (i , j , n , n),

i G I \ { n] , j £ J \{ n } . Node s will be connected to the hub and also to all nodes of the rim, whose
spokes are based on the double set K x L. There can be a t most 2 such nodes, according to Prop.
2.12. Setting x s = 1, forces the hub and at most 2 adjacent nodes of the rim to take value 0. At
least 2p — 1 nodes are left intact and p of them can be set to 1. Using (2.23), it follows th a t as < 0.
The coefficient of x s will be non-zero only if s is connected to 3 adjacent nodes of the rim or 2
non-adjacent pairs of adjacent nodes. This is the case only if both of the following conditions hold.

C o n d itio n I The wheel includes a pair of conjugate nodes, whose spokes are based on the double
set K x L.

CHAPTER 2. The intersection graph of the OLS problem 28

C o n d itio n I I Either i or j has a value io or jo, respectively, which is common to two adjacent
non-conjugate nodes. These two nodes also have index k or I equal to n.

Note th a t if the nodes were conjugate in Cond.II, the rim edge connecting them would be a triple
link. As a result, node s could be connected to this pair of conjugate nodes only, which would imply
as < 0. Assuming w.l.o.g. th a t index io does satisfy Cond.II, all variables {Xi0j nn : j e A { n }}
would be included in the inequality with a coefficient equal to 1. ■

E x am p le 2.1 (con t.) The nodes/variables included in the lifting o f the wheel in Figure 2.3 are
depicted at Figure 2.f.

IxJ
nnkn
k * n

nnnn

IxJ'

Figure 2.4: The nodes of a lifted wheel inequality

Nodes {nnkn : k ^ n} are connected to four nodes o f the rim. Setting any of these variables to 1,
does not affect 3 variables o f rim, 2 of which can be set to 1. Nodes { in n n : i ^ n} and {nnnl \ I ^ n }
are connected to 3 nodes o f the rim. Setting any of these to 1 leaves intact 4 nodes of rim, 2 of which
can be set to 1. Therefore, ainnn = anknn — o,nnni = 1. Since nodes {n jn n : j ^ n] are connected to
only 2 nodes o f the rim, a nj nn = 0.

Concerning nodes having 2 indices in common with the hub, observe that the two pairs o f conjugate
nodes are based on the double sets I x J and J x L. Hence, only nodes o f the form nnkl and inkn
are examined. Values k2 ,lo satisfy cond.II, hence annk2i = annkiQ = 1. Value ko does appear in two
nodes o f the rim, but is within a triple link, therefore annk0i = 0. Similarly, since value io satisfies
cond.II, aionkn — a,ink2n = 1.

2.6. A family of composite cliques of Ga 29

The lifted wheel inequality is:

3 • X n n n n T X n n k o l o T X n n k o l i "I” ^ io n n Z i “I- X i Qnk i n + X i lTi k “I” -^n jo k iT i "I” X n j Qni0 +

^ ̂ Xinnn "b ^ ̂ S 'n n fc n "I- ^ ̂ Xnnnl "b
i G / \ { n } f c G / f \ (n } l&L\{n}

E **■*«+ E *""«o+ E **.«*«+ E ^ < 2
i € / \ { n , i i } k £ K \ { n , k o } A :€ K \{ n ,A :1 ,A:2} l £ L \ { n }

The number of coefficients in the inequality above is independent of the lifting sequence. It is
easy to verify th a t the procedure of devising the lifted inequality includes a constant number of
steps. There are 4 sets of variables having 3 indices in common with the hub. Similarly, there are 6
possibilities for a variable to have 2 of its indices equal to n. For each one of the remaining 2 indices,
the options of having a value, which is also common to a pair of adjacent, non-conjugate nodes, are
trivially bounded by the value of p. Recall that p < 5.

The number of lifted wheel inequalities is at least of the same order as the number of wheels of
Ga - These inequalities have a r.h.s. of at most 5, and coefficients for the l.h.s. with values up to 5 for
the hub and up to 2 for all other variables. The number of variables in the l.h.s. is 0 (n). The lifting
procedure results in maximal inequalities, i.e. inequalities th a t cannot be further strengthened.

2.6 A family of com posite cliques of G a

This section exhibits a class of inequalities, derived from Ga , which can be regarded either as lifted
wheel inequalities or arising from a subgraph of Ga formed by a composition of cliques.

Let c,d G C such th a t |c fl d\ = 0. Define:

Q l {c) = {p G C : |c n p | = 3}

Q2(c,d) = {p G C : \c H p | = \d flp | = 2}

and W (c } d) = Q 1(c) U Q2(c, d).

Consider the inequality
2xc + : q G W(c,d) } < 2 (2.25)

To show the validity of (2.25), observe that, for c = (n ,n ,n ,n) ,d = (io, j o , k o , l o) , inequality
(2.25) becomes:

2%nnnn ‘X’innn E %njnn E Knnkn T E Xnnnl (2.26)
i^n k^n l^n

~̂ ~-Eiojonn T - îonkon "b "b XionniQ -f- XnjQniQ -(- Xnnk0l0 ^ 2

This inequality can be derived by lifting the wheel inequality induced by the 5-wheel of Figure
2.5. Notice th a t this wheel belongs to the class of wheels w ith triple sets on the spokes, which was
not examined in the previous section.

Alternatively, notice th a t the node set c U Qi{c) forms a clique of type II (Section 2.3). Notice
also th a t nodes { (n ,n ,n ,n) , (i o , j o , n , n) , (zo,n, &o,n), { i o , n , n , l o) } form a clique of type III and that
three more cliques of these type are formed among c and the six variables of Qz{c). In this sense, the
subgraph W(c, d) can be considered as a composition of cliques. Finally, notice th a t each d G Q2(c)

CHAPTER 2. The intersection graph of the OLS problem 30

IxJ

nnnn

Figure 2.5: A 5-wheel with triple sets on the spokes

is connected to all but one nodes in Q 2 (c). The variables of the subgraph W(c,d) can be set to one
in three different patterns:

(i) x c = 1, implying all other variables are set to 0

(ii) Xd = Xf = 1 where d G Qi (c) , f G Q 2 {c) and \d fl / | G {0 ,1} . In this case, all variables in
c U Qi{c) are set to 0 and the node in Q2(c) not connected to / is always connected to d.

(iii) Xd = Xf — 1 where d, / G Q 2 (c) and \d fl / | G {0 ,1}. By inspection, it can be seen that all
variables in cU Q i(c), together with the remaining 4 variables in Q 2 (c), are set to 0.

This proves the validity of inequality (2.26) and consequently (2.25).

P ro p o s itio n 2.24 Inequality (2.25) is maximal.

P ro o f. Suppose th a t there exists a variable xp (p = (ip, j p, kp,lp) G C) which can be added to
the left-hand side of (2.25) without increasing the r.h.s. Clearly, x p must have two indices in common
with c, since otherwise it can be set to 1 together with x nnnn (all variables with three indices in
common with c have already been included). Assume then c, d as above and let ip = n, j p = n.
Observe th a t variables x nnkpip and x njon[Q, Xionnn can be set simultaneously to 1. This is valid even
if kp = Hq , lp ^ Iq or lp = Iq , kp ^ A:q .

It is also easy to see th a t no coefficient can be increased without raising the r.h.s. of (2.25). ■
By applying an argument similar to th a t of Prop. 2.10, it can be seen th a t the number of distinct

inequalities (2.25) is ^ n 4 • (n — l) 4.

2.7 The Odd holes of G a

An odd hole is defined as a chordless hole of odd length. Since two nodes of Ga are connected if
and only if they have 2 or 3 indices in common, the formal definition of an odd hole in G a is the
following.

D efin itio n 2.3 Let p > 2 and integer. A node set H Q C induces an odd hole i f and only if it can
be ordered into a sequence {co, ...,C2P}, such that:

2 or 3, i f t = s ± 1 mod(2p + 1)
0 or 1, otherwise

for all cs ,ct G H, s ^ t.

2.7. The Odd holes of Ga 31

Each odd hole H induces an inequality of the form:

5 > j < P (2.27)
d e H

Note th a t wheels are essentially special cases of odd holes, w ith an extra node (hub) connected
to all 2p + 1 nodes.

This section exhibits a number of properties regarding the odd holes of Ga • Two classes of odd
holes are also presented. The first of them, called odd holes of type I, is derived from the odd holes
of the 3A A P n problem, introduced in [9]. The second, called odd holes of type II, is derived from a
new class of odd holes for the 3P A P n problem. Each class is further analysed and the form of lifted
odd hole inequalities is also presented.

Recall first th a t the edge between two adjacent nodes in the odd hole can be either double or
triple, as defined in Section 2 .2 .

P rop osition 2.25 Two adjacent edges of an odd hole cannot be based on the same double ground
set.

Proof. Assume w.l.o.g. edges (c i,c2), (02, 03). Let (c i,c2) G I x J and c\ = (i i , j i , k i , l i) ,
02 = (ii) j i , £2,^2), &i 7̂ &2, h 7̂ h- If (02, 03) is also based also on I x J or on a triple ground set,
which contains single sets I and J, node 03 will have the form 03 = k$, Z3), k\ ^ /c2 or h 7= h-
This implies th a t (01, 03) will be a chord, a fact th a t contradicts to the definition of an odd hole. ■

P rop osition 2.26 Two adjacent edges cannot both be triple links.

Proof. Assume w.l.o.g. an edge (c i,c2) G I x J x K. An adjacent edge, which is also based on
a triple ground set, is bound to contain two of the three sets I , J , K. This would imply the creation
of a chord, which is a contradiction. ■

The following proposition is based on [9, Prop.5.3].

P rop osition 2.27 The number t o f triple links in an odd hole o f length 2p + 1 must satisfy

'5
max < 0, ^ (2 p + l) - 3 n 2 < t < p (2 .28)

Proof. The number of positive components of the vector a r = aCl + ... + aC2p+1 is 5 • {2p+ 1) — 21.
This number cannot exceed the number of rows of m atrix A, i.e. 6n 2. The inequality 5 ■ (2p +1) — 21 <
6n2 gives the lower bound of (2.28). To prove the validity of the upper bound, assume an odd hole
with p + 1 triple links. This hole should have two triple links incident to the same node. This
contradicts to Prop. 2.26. ■

P rop osition 2.28 The maximum coefficient in the l.h.s. of a lifted odd hole inequality is 5.

Proof. Consider a variable x s , s G C \H , and let as be its coefficient in a lifted odd hole inequality.
The form of the inequality will be the following:

asx s + x d < p (2.29)
d e H

There can be at most 2 nodes of the hole, which have exactly the same indices in common with
node s and, if there are exactly 2 , they must also be adjacent. The argument supporting this point

CHAPTER 2. The intersection graph of the OLS problem 32

is exactly the same as the one used in Prop. 2.12. Since there are 6 double ground sets, there can
be at most 6 pairs of adjacent nodes having exactly 2 indices in common with node s. Note that
allowing s to have triple links with at least one node of the hole reduces the maximum number of
connected nodes even further. Therefore, there can be at most 12 nodes of the hole connected to
node s.

Setting x s = 1, sets all these 12 nodes to 0. This leaves, for sufficiently large p, 2p + 1 — 12 =
2 • (p — 5) — 1 nodes of the odd hole unaffected. Independently of whether these nodes are consecutive
or not, p — 5 of them can be set to 1. Inequality (2.29) becomes as + p — 5 < p or as < 5. ■

The above proposition implies th a t wheels, although special cases of odd holes, give rise to lifted
inequalities w ith the maximum possible coefficients in the l.h.s. In this sense, the particular structure
exhibited by wheels allows for the derivation of inequalities equally complex to those arising from
any possible odd hole.

2.7.1 Odd holes of type I

These odd holes are derived from the odd holes of the 3A A P n , as described in [9, Section 5]. Their
construction is direct, arising from the observation that the edges of the intersection graph of 3A A P n
can be either single or double links.

Recall from Section 2.1 th a t the 3AAPn is defined on three disjoint n-sets, namely J, J, K. Let
H be the node set of an odd hole in the intersection graph of 3A A P n , i.e. c £ I x J x K ,V c £ H.
Adding I = l\ to all c £ H results in a node set H = {(c, Zi) : c £ H }, which forms an odd hole in
GAn- Note th a t c = £ I x J x K x L for all c £ H . The single and double links of H become
double and triple links in H , respectively. Based on this fact, it is trivial to extend all the results
of [9] to this class of odd holes of G a - Note that the distinct property of this class is th a t all nodes
of the hole have identical values for a certain index. Equivalently, all odd holes of Ga-, all nodes of
which have a certain index in common, correspond to an odd hole in the intersection graph of the
3A A P n problem. Odd holes having this property will be called as odd holes of type I. Such an odd
hole is illustrated at Figure 2.6. Note that the index value(s) appearing on an edge is the one(s)
being common to its incident nodes.

Figure 2.6: A 9-cycle of type I

To formally describe this class, select any 3 out of 4 single ground sets and a single value from

2.7. The Odd holes of Ga 33

the fourth set. Assume w.l.o.g. sets I , J , K and value lj G L. Select subsets Q j C I, Q j C J,
Q k C K, satisfying |Q /| + \Qj\ + \Q k\ — 2p + 1, 1 < \Qm\ < p for M = I , J , K . Define the set
Q = Qi U Q j U Q/c, |Q| = 2p + l.T he associated odd hole H is the one where all nodes have index
I equal to l\ and edges are labelled by the members of set Q. Note th a t set Q, together with value
Zi, defines also a row subset of matrix A, namely the rows indexed by R H = {(q, l i) : q G Q } . The
matrix formed by this row subset and the columns c G H is identical to the circulant m atrix Cfp+i >
up to row and column permutations ([9, P rop.5.5]).

As an extension of the properties exhibited in [9], odd holes of type I, with length 2 p + 1, exist for
p < n —1. The number of triple links t must satisfy the inequality max {0,2(2p + 1) — 3n} < t < p —1.
Note th a t these bounds are tighter than the ones of inequality (2.28).

Consider the inequality:

: | . n (Q u { J , }) | > 3 } < p (2.30)

For p < n — 1, this inequality can be regarded as a lifted odd hole inequality. Its Chvatal rank
is 1, since it can be derived by adding all rows {(g, l\) : q G Q}, dividing the resulting inequality by
2, replacing = by < and rounding down both sides. If |Q /| = r, |Q j | = s, \Qk \ — t, the number of
variables in the l.h.s. of (2.30) is n • (rs + rt + s t) — 2rs t ([9]).

The number of distinct lifted odd hole inequalities for the 3A A P n is 0 (2 3n). Since each such
inequality can be extended to an inequality of the 4P A P n by considering any of the n values for the
fourth index, it follows th a t the number of lifted odd holes inequalities of type I is 0 (n • 23n).

2.7.2 Odd holes of type II

This class of odd holes appears both in the 3P A P n and the 4P A P n problem. Therefore, it can be
better exhibited by examining first its appearance in 3P A P n .

Recall from Section 2.1 th a t the 3P A P n is defined on three disjoint n-sets, namely / , J, K. Con
sider subsets of the three ground sets Q': C / , Q'j C J, Q'K C K } such th a t |Q j| = |Q j| = |Q ^ | = m.
Assume any perm utation of the elements of the three subsets Q'j = {ii, Q'j = { j i,

Q'k ~ {&i» —»km}, 3 < m < n .

P ro p o s itio n 2.29 The node set
h j i k i , zij’2^2, Z2j 2fc2>--->
im jmkm , imj lkl , Z72 odd

Q = ...
h j l h , h j\k,2 , Zij'2^2> Z2J2&2) •••,

 ̂ i'mjm km, imjqkm, Zm jqkl, Zmjf'ifci, 771 even, q 1,771 1,772 J
induces an odd hole in the intersection graph o f3 P A P n .

P ro o f . Recall th a t in the intersection graph of both the 3P A P n and the 4P A P n two nodes are
connected if they have at least two indices in common([37]). Considering the order of members of Q
to be cyclic, each node is connected only to its predecessor and its successor according to this order.

The number of nodes is 3m for m odd and 3m + 1, if m is even. In both cases the length of the
hole is odd. ■

For the purpose of illustrating this odd hole in the form of a Latin square, assume w.l.o.g. that
Q i = Q'j = Q'k = {1,2, ...,77i}. The odd hole includes the nodes depicted at Table 2.1. Note that q
can be equal to 2,3,. ., m — 2.

The inequality induced by such an odd cycle has the form:

CHAPTER 2. The intersection graph of the OLS problem 34

Table 2.1: Odd cycle for m odd and m even
1 2 m -l m 1 2 q m-1 m

1 1,2 2 1 1,2 2
2 2,3 3 2 2,3 3

m -l m-l,m m m -l m-l,m m
m 1 m ,l m 1 m ,l m

if m is odd and

if m is even.

Note th a t p =

Xiljlk\ Xiljlk2 Ximjmkrn T Ximjmk 1 “I- Ximj\ki — P

x i\jik2 + x ii32k2 + •■• + x imjmkm + x iTnjqkm d" x imjqk\ 5: P

3r7̂ ~1, m odd ^
3 m

2 ’

(2.31)

(2.32)

m even J
The extension of this class to 4P A P n is quite straightforward. Consider m —subsets of the four

n —sets, namely Qi C I, Q j C J, QK C K, Q l C L. Assume any perm utation of these four subsets

and let Qj = im\ , Q j = { j i > •• • > j m \ , Q k = {^1 > •• • > }> Q l = O i, ••• >) 3 ^ ttl 5; 7i. The
node set of the associated odd hole has the form:

'̂ljl̂ '2̂ 2') *lj2^2^3) •••> imim^m^m-2] 771 odd 1

i l j l k l h > h j l f a h , *lj2^2 3̂) •••, i'm.Jmkl^i) ^ even J
An odd hole subgraph for m = 3, is depicted at Figure 2.7. Figure 2.8 illustrates an odd hole for

777 = 4 .

Q =

Figure 2.7: A 9-cycle of type II, (m=3)

Odd holes of this type exhibit a number of noticeable properties, namely:

(i) All edges belonging to the hole are double links.

(ii) Every three consecutive nodes have exactly one index in common.

(iii) There is a direct correspondence to an odd hole of the 3P A P n , since removing a particular
index, e.g. index I in the example of Figure 2.7, results in an odd hole for 3P A P n . There are
exactly 771! odd holes of 4P A P n , which can be derived from a particular odd hole of 3P A P n .

2.7. The Odd holes of Ga 35

Figure 2.8: An 11-cycle of type II (m=4)

Table 2.2: Odd cycle of Ga , ni odd
1 2 m -l m

1 11,22 23
2 24,35 36

m -l

nii-H1JS, m(m-2)
m 1 m (m -l) , lm

(iv) The single ground sets appearing at the links are only three, namely I , J ,K in the hole of
Figure 2.7. The double links follow the (cyclic) order I x J , I x K ,J x K. The only exception
is the “last” link for the case of m being even, where the double set is K x L.

To illustrate this type of odd hole in the form of a pair of OLS, assume Q j — Q j — Qk = Ql —
{1, ...,m }, m odd. The odd hole is depicted a t Table 2.2.

L em m a 2.30 For odd holes o f type II, p < .

P ro o f. The cardinality of each subset Q s = Q f l S, S — / , J , K , cannot be more than n, i.e.
m < n. If n is odd, the largest hole has length 3n, and p < 3n2~1. If n is even, the largest hole has
length 3n — 1 and p < 3n~- . In both cases, p < [3n~1 j ■

The inequality induced by an odd hole of size 2p + 1 has the form:

X (Q) = J 2 ^ < P (2-33)

3 m —1
where p = ' 2

m odd
3m 2 m evenk 2

This inequality can be further strengthened by applying the process of sequential lifting. Let

CHAPTER 2. The intersection graph of the OLS problem 36

x 3,s G C \Q and a3 the lifting coefficient. The augmented inequality would be:

asx s + x q < p (2-34)
geQ

If node s is connected to less than 3 nodes of the odd hole, setting x s = 1 leaves intact at least
2p — 1 nodes, p of which can be set to 1. In that case, ineq.(2.34) becomes as + p < p or as < 0 .
Therefore, only nodes connected to at least 3 nodes in the hole are examined. Let m be odd, and
consider the nodes { i \ j \ k \ l : I G L\{Zi}}, { i i j iM : I £ L \{ /2}}, •••, {im3mk\l : I G L \{ /m_i}},

: I G L \{ lm }}- Note th a t the first three indices are given by the nodes of the corresponding
odd hole of the 3P A P n . It it easy to see th a t each such node is connected to exactly 3 consecutive
nodes of the odd hole in hand. The lifting coefficient for each such node can be easily seen to be 1,
independently of the lifting sequence. The resulting inequality has the form:

X i \ j \ k i l \ 4" X i \ j l k 2l 2 4” 4“ X i m j m k l l m — l 4" X i m j l k i l m A ’

^ 1 4" ^ ̂x h j i k 2 l 4" + y ̂ 4“ ^] x i m j i k i l < P

which is identical to

T . 1 x i\i\k2l 4" ••• 4- ^ x imjrnkml 4- ^ < V (2.35)
l£L 1&L l£Lt

The lifted odd hole inequality for ra even has the form:

y>2x iijik2l + ^ 2 ,x n j2k2l 4- ... + ^ 2 x imjmkml < P (2.36)
l£L l£L l£L

The l.h.s. of (2.35) has 3m2 variables and the l.h.s. of (2.35) has 3m • (m — 1) + 2 variables. The
nodes corresponding to the variables of (2.35), for m = 3, are illustrated at Figure 2.9.

P ro p o s itio n 2.31 The total number of inequalities (2.35), (2.36) is Ylm=3 (m) 3 ' (m -)"

P ro o f. Each inequality uses m indices from three of the four ground sets and all n indices from
the fourth one. Each of the three m —subsets can be selected in (^) different ways, independently of
the choice of the other two subsets. Moreover, there are m! permutations of each subset, each one
resulting in a distinct odd hole. Finally, the roles of the four sets are interchangeable, thus allowing
4 possibilities for selecting the three sets, which will provide the three m —subsets. ■

It is easy to see, using an analogous argument, th a t the number of inequalities (2.31), (2.32) is

E"=3fD 3-(>n!)r

2.8 Odd antiholes

An odd antihole H is defined as the complement of an odd hole subgraph ([18]).

D efin itio n 2.4 Let p > 2 and integer. A node set H C C induces an odd antihole of size 2p + 1 if
and only if it can be ordered into a sequence { c q , . . . , C 2 P } , such that:

2.8. Odd antiholes 37

Figure 2.9: Nodes of a lifted 9-cycle inequality

\ca riCtl =
O o r l , i f t = s ± 1 mod(2p + 1)
2 or 3, otherwise

for all cs ,ct G H, s ^ t.

According to this ordering, each node of H is connected to all nodes of H , except for its predecessor
and successor. Therefore, the odd antiholes coincide with the circulants C{2p + 1 ,p) ([18]).

Each odd antihole H induces an inequality of the form:

^ Zd < 2
deH

(2.37)

This section exhibits a number of properties regarding the odd antiholes of G a - Based on these
properties, it is proved th a t odd antiholes of size larger than 5 do not exist in G a - Note that a
5-antihole is also a 5-hole. Therefore, we assume p > 3 throughout this section.

P ro p o s itio n 2.32 For all c, d € H , \cf]d\ ^ 0.

P ro o f. Assume w.l.o.g. c = (io,jo> &(bfo) and d — { i i , j i , k i , l i) } such th a t |cDd| = 0. According
to definition 2.4, these nodes must be consecutive. Since p > 3, there are a t least three consecutive
nodes which are consecutive neither to c nor to d. It follows th a t all three nodes must be
connected to both c and d and th a t |ti fl ^1 = 1̂ 2 O 3̂1 € {0,1}. Let w.l.o.g. t 2 = {io, jo,ki , l i) .
The only other node, which has at least two indices in common with both c and d and a t most one
index in common with t 2 is node («i, j i , ko, lo). This implies th a t either t \ = £3 or there is an edge
between £2 and one of the nodes £1, £3. In both cases, there is a contradiction. Therefore, all nodes
of an antihole must have at least one index in common. ■

CHAPTER 2. The intersection graph of the OLS problem 38

P ro p o s i t io n 2.33 All nodes of an antihole H have the same index in common.

P ro o f . Assume a node t = (i t , j t , k t ,h) and a pair of consecutive nodes c,d, none of which is
the predecessor or the successor of t. It follows th a t t is connected to both c and d. According to
Prop. 2.32, nodes c,d must have exactly one index in common. Let w.l.o.g. c = (io, jo, ko, lo) and
d = (io , j i , k i , l i) . If i t 7̂ io, node t is bound to have either two indices in common with c and one
index in common with d or the opposite. In both cases, t cannot be connected to both c and d, i.e.
there is a contradiction. Therefore, it must be it = io- Repeating this argument for all nodes of H
shows th a t all nodes must have index i equal to io- ■

The following proposition is the most involved, therefore it is im portant to emphasise th a t as
sumptions a t each step of the proof are made without loss of generality.

P ro p o s i t io n 2.34 For c,d G H, \c n d\ ^ 3.

P ro o f . Assume w.l.o.g. c = (1,1,1,1) and d = (1 ,1 ,1 ,2). According to Definition 2.4, these
nodes cannot be consecutive. Hence, the number of nodes between c and d can be 1 or more. We
examine these cases separately. Note that, according to Prop. 2.33, all nodes of H are bound to
have index i equal to 1.

C ase 2.34.1 There is exactly one node t\ between c and d. We will illustrate that the sequence of
nodes c, £i ,d is not extendible to an antihole. Figure 2.10 depicts the extended sequence.

Let t\ = This node must have only one index in common with both c and d. Assume
w.l.o.g. that j \ = 2, ki = 2 and li = 3. Let also £2 = (1,.72, &2, k) be the predecessor of c, i.e.
j 2 >k2 , h 7̂ 1- Note that £2 must be connected to node d and this is possible only i f I2 = 2. Node £2
must also have one more index (other than i) in common with node t\ . Let w.l.o.g. ^2 = 2, i.e. £2 =
(1,J2, 2, 2).

Consider now the successor of d, namely £3 = (l , j z , £3, £3), where j 3 ,kz ^ 1 , I3 ^ 2. Node £3 can
be connected to c (and not to d) only i f lz = 1. Since p > 3, node £3 m ust also be connected to nodes
£2 and £1. This requires at least one of the following:

(i) k3 = 2

(ii) h = h = 2

Consider Case (i), i.e. £3 = (1,.7*3 , 2,1), Case (ii) to be treated in an analogous manner. Note
that it might also be j 2 = jz- The predecessor o f t 2 , namely £4 = (1, j 4, £ 4 , l4) can be assumed not to
coincide with the successor of tz, since p > 3. This node m ust be connected to c , t i , d and £3. In order
for node £4 to be connected to c, at least one of its last three indices m ust be equal to 1. I f j 4 — 1,
then it must be l4 = 3 for node £4 to be connected to t \ . But then node £ 4 cannot be connected to node
£3, since kz ^ 2.

I f k 4 = 1, node £4 must have index j in common with node £3 and index I in common with node t\
or vice versa. This implies £4 = (1 ,2 ,1 ,1) or £4 = (1, jz , 1,3). Finally, i f l4 = 1, |£i D £4! = 2 implies
j 4 = 2 and \d fl £4! = 1 implies k4 = 1, i.e. it must be £4 = (1, 2, 1, 1).

Overall, there are two possibilities for the form o f node £ 4 , namely £4 = (1 ,2 ,1, 1) or t 4 =
(1,J3, 1,3), jz 7̂ 1- We examine each of these two cases separately.

Case 2.34-2 (t4 = (1,2,1,1)) Consider node £5 = (1, , A:s, Z5).

2.8. Odd antiholes 39

t,
1223

11121111

Figure 2 .10: The antihole of Case 2 .34.1

I f p = 3 , t h i s n o d e m u s t b e t h e p r e d e c e s s o r o f £4 a n d t h e s u c c e s s o r o f £3. T h i s i m p l i e s t h a t £5 i s

c o n n e c t e d t o a l l n o d e s , e x c e p t £3 and £4. O b s e r v e t h a t |^ 5 flc | = 2 a n d |£s D£41 = 1 o n l y i f = 1 . S i n c e

k 5 ^ 2 , n o d e £5 c a n h a v e o n l y i n d e x I i n c o m m o n w i t h t \ , i . e . £5 = 3 . T h e n o d e £5 = (1, 1, ^ 5 ,3) , w i t h

& 5 ^ 1 , 2 c a n n o t b e c o n n e c t e d t o n o d e s £ 2 a n d d .

I f P > 3 , w e c a n a s s u m e w . l . o . g . t h a t n o d e £5 i s n e i t h e r t h e p r e d e c e s s o r o f £4 n o r t h e s u c c e s s o r o f

£3, i . e . i t i s c o n n e c t e d t o a l l n o d e s . A g a i n , i n o r d e r f o r |£s Dc| > 2 , a t l e a s t o n e o f js, ^ ,£5 m u s t b e

e q u a l t o 1. I t t u r n s o u t t h a t t h e o n l y f e a s i b l e o p t i o n i s £5 = (1, 1 , 2 , 1). I n t h a t c a s e , t h e r e c a n e x i s t

n o n o d e c o n s e c u t i v e t o £5.

C a s e 2 . 3 4 - 3 (t $ = (1 , J3 , 1,3)^ C o n s i d e r n o d e £5 = (1, j& , £ 5 , £5).
I f p = 3 , t h i s n o d e m u s t a g a i n b e t h e p r e d e c e s s o r o f £4 a n d t h e s u c c e s s o r o f £3. O b s e r v e t h a t

(£5 H c| = 2 o n l y i f = 1. N o d e £5 = (1, l , k ^ , £5) c a n n o t b e c o n n e c t e d t o n o d e t \ , s i n c e 7̂ 2 a n d

* 5 ^ 3 .

I f p > 3, w e c a n a g a i n a s s u m e w . l . o . g . t h a t n o d e £5 i s c o n n e c t e d t o a l l n o d e s . I n o r d e r f o r

|£5 fl c| > 2 , a t l e a s t o n e o f ^5,^5, £5 m u s t b e e q u a l t o 1. I t i s e a s y t o s e e t h a t a l l c a s e s l e a d t o

i n f e a s i b i l i t y . F o r e x a m p l e , i f j’5 = 1, a n d g i v e n t h a t j 3 ^ 1, n o d e £5 w i l l b e c o n n e c t e d t o b o t h £3 a n d

£4 o n l y i f k $ = £5 = 1, w h i c h i m p l i e s £5 = c.

I t f o l l o w s t h a t n o d e s c a n d d c a n n o t h a v e t h r e e i n d i c e s i n c o m m o n , i f t h e r e i s e x a c t l y o n e n o d e

b e t w e e n t h e m .

C ase 2.34.4 T h e r e i s m o r e t h a n o n e n o d e b e t w e e n n o d e s c a n d d .

C o n s i d e r f i r s t t h e p r e d e c e s s o r a n d t h e s u c c e s s o r o f c , n a m e l y c \ = (1, j \ , k \ , l\) a n d c 2 = (1,J2> ^2 ^ 2)-

S i n c e b o t h n o d e s m u s t b e c o n n e c t e d t o d b u t n o t t o c , i t m u s t b e l \ = I2 = 2 . T h e t w o n o d e s m u s t

h a v e e x a c t l y t w o i n d i c e s i n c o m m o n b e c a u s e o f C a s e 2 . 3 4 - 1 • T h e r e f o r e j i ^ j ’2 a n d k \ ^ /C2 •

S e c o n d l y , l e t d \ a n d c?2 b e t h e s u c c e s s o r a n d t h e p r e d e c e s s o r , r e s p e c t i v e l y , o f d . F o l l o w i n g t h e s a m e

r e a s o n i n g a s a b o v e , b o t h n o d e s m u s t h a v e i n d e x I e q u a l t o 1 . S i n c e p > 3 (i . e . t h e r e a r e a t l e a s t s e v e n

n o d e s i n H), a t l e a s t o n e o f d \ , d 2 i s n o t a n e i g h b o r o f C \ ,C 2 - A s s u m e w . l . o . g . t h e e x i s t e n c e o f a t l e a s t

o n e n o d e b e t w e e n c \ a n d d \ . T h i s i m p l i e s t h a t d \ m u s t b e c o n n e c t e d t o b o t h c \ a n d C2 , t h e r e f o r e l e t

d \ = { l , j i , k 2 , l) .

L e t u s e x a m i n e t w o c a s e s w i t h r e s p e c t t o w h e t h e r n o d e s C2 a n d d 2 a r e c o n s e c u t i v e .

CHAPTER 2. The intersection graph of the OLS problem 40

C ase 2 .34-5 (c 2 and d2 ore consecutive) I n o r d e r f o r <i2 n o t b e c o n n e c t e d t o C2 a n d n o t t o h a v e

t h r e e i n d i c e s i n c o m m o n w i t h d \ , d2 m u s t h a v e i n d e x j d i f f e r e n t f r o m j \ a n d jf2 . l a a d d i t i o n , n o d e d2

m ust h a v e i n d e x k = k \ , i n o r d e r t o b e c o n n e c t e d t o n o d e c \ . L e t w . l . o . g . d \ = (1 , J3 , fci, 1). F i g u r e

2.11 d e p i c t s t h i s e x t e n d e d s e q u e n c e o f n o d e s .

I f p = 3 , t h e r e m u s t e x i s t e x a c t l y o n e n o d e b e t w e e n c \ a n d d \ . T h i s s e v e n t h n o d e o f t h e a n t i h o l e ,

n a m e l y t = (l , j -4 , k $, I4), m u s t b e c o n n e c t e d t o a l l n o d e s e x c e p t f o r n o d e s c \ a n d d \ . T h i s i m p l i e s

^ 4 7 ̂ k i , k 2 a n d I4 ^ 1 ,2 . I t i s e a s y t o s e e t h a t n o d e t c a n n o t b e c o n n e c t e d t o b o t h c2 a n d d2 , s i n c e

h ± h -
F o r p > 3, a s s u m e w . l . o . g . t h a t n o d e t i s n o t a n e i g h b o r o f C\ o r d \ . T h i s i m p l i e s t h a t n o d e t

m u s t b e c o n n e c t e d t o a l l s i x n o d e s , w h i c h c a n b e e a s i l y s e e n t o b e i m p o s s i b l e .

c

1111

1112

d

Figure 2.11: T he antihole o f C ase 2.34.5

C ase 2 .34-6 (c2 and d2 are n o t consecutive) N o t e t h a t t h i s c a s e i s p o s s i b l e o n l y f o r p > 3. T h i s

c a s e i s i l l u s t r a t e d a t F i g u r e 2 . 1 2 . A s s u m e a g a i n a n o d e t = (1, j'4 , £ 4 , £4). T h i s n o d e c a n b e a n e i g h b o r

o f b o t h C \ a n d d \ o r o n l y o n e o f t h e m o r n o n e o f t h e m e n .

L e t t b e a n e i g h b o r o f n e i t h e r c \ n o r d \ . F o r t t o b e c o n n e c t e d t o n o d e c, a t l e a s t o n e o f k4 J 4

m u s t b e e q u a l t o 1 . I f 34 = 1, t h e n i t m u s t b e /C4 = k\ o r I4 = 2 f o r \ t Pi c i | = 2. I f k 4 = k \ , n o d e

t = (1 , 1 , fc j ,£4) c a n n o t b e s i m u l t a n e o u s l y c o n n e c t e d t o n o d e s c2 a n d d \ . / / j '4 = 2 , n o d e t = (1 , 1 , £ 4 , 2)

c a n n o t b e c o n n e c t e d t o b o t h d \ a n d T h e o u t c o m e o f s e t t i n g ^ 4 = 1 o r I4 = 1 i s a n a l o g o u s , i . e . i t

c a n n o t b e t h a t t i s n o t a n e i g h b o r o f n o n e o f c \ , d \ .

Let t be the predecessor of c\ (the case of t being the successor of d\ is symmetric). Since I4 ^ 2,

\t n d\ = 2 only if j 4 = 1 or /C4 = 1. I f 3 4 = 1, \t fl c2| = 2 only i f /C4 = As a result, node
t = (1,1, k 2 , 1 4) can be connected to node d2 only if I4 = 1. But then \t fl c| = 3, which contradicts to
Case 2 . 3 4 . 1 • Similarly, if ^4 = 1, |£ fl c2| = 2 only i/jf'4 = 3 2 and |£nc?i| = 2 only if I4 = 1.
Node t = (l , j 2) 1) 1) has again three indices in common with node c, which again contradicts to Case
2 . 3 4 . 1 .

F i n a l l y , a s s u m e t h a t n o d e t i s a n e i g h b o r o f b o t h Ci a n d d \ . S i n c e p > 3, t h e r e a r e a t l e a s t

t w o n o d e s b e t w e e n c2 a n d d2 ■ C o n s i d e r t h e s u c c e s s o r o f c2 a n d o b s e r v e t h a t t h i s i s a c o n f i g u r a t i o n

s y m m e t r i c t o t h e c a s e o f t b e i n g a n e i g h b o r o f c \ o n l y . I t f o l l o w s t h a t t h i s c a s e i s a l s o i n f e a s i b l e .

2.8. Odd antiholes 41

Figure 2.12: T he antihole o f C ase 2 .34 .6

It follow s th at no pair o f nodes of H can have three indices in com m on. ■

P ro p o s itio n 2.35 T h e r e e x i s t n o o d d a n t i h o l e s i n G a -

P ro o f. Let c = (1 ,1 ,1 ,1) and d = (1 ,2 ,2 ,2) be tw o con secu tive nodes o f H and assum e c \ and d \

to b e th e predecessor o f c and the successor o f d , respectively . A ny n ode, excep t for c \ and d \ , m ust

have ex a c tly tw o ind ices in com m on w ith both c and d. O bserve th a t there ex ist on ly six possib le

form s o f such nodes, nam ely { (l , l , 2 ,Z i) , (1 , 2 , 1 , Z2), (l , l , f c i , 2) , (l ,2 , f c 2 , l) , (1 , j i , 1 , 2), (1 , j 2 , 2 , 1) } ,

& { 1)2 } for i = 1 ,2 . A ccording to Prop. 2.34, a t m ost on e n ode can follow each one o f these

six form ats. T h is p laces an upper bound of 10 on \H\. T aking in to accou nt th a t \H\ m ust also be

odd , it follow s th a t no antihole o f size greater than 9 can ex ist.

If \ H \ = 9 , th en ex a ctly one node is selected from each o f five form ats. A ssum e th a t th e five

nod es are { (1 ,1 ,2 , Zi), (1 ,2 ,1 ,Z2), (l , l , f c i , 2) , (1 ,2 , A:2,1) , (l , j i , l , 2) } . In a 9 —antihole, each node

is connected to 6 o ther nodes. N otice th at node (1 ,1 ,2 , l i) is conn ected to n ode (1 ,1 , A i,2) , to

node (1 ,2 ,1 , Z2) only if l \ = Z2, and to four other n odes (i.e. c, d , c \ , d i) a t m ost. Therefore, for a

9 —antihole to ex ist, it m ust be l i = l 2 . T he sam e argum ent im plies th a t k i = k 2 .

T h e nodes are now { (1 , 1 , 2 ^) , (1 ,2 ,1 , Zi), (1 ,1 , A*, 2), (l , 2 , f c i , l) , (1 , j u 1 ,2) } , j lt kit h £ { 1 ,2 } .

C onsider again n od e (1 , 1 , 2 , Zi). T h is node cannot b e th e predecessor o f c \ or th e successor o f d \ ,

since th is w ould im ply th a t its degree is only 5. H ence, th e on ly tw o op tion s for th e neighbors o f node

(1 , 1 , 2 ,Zi) are nodes (l , 2 ,& i , l) and (l , j i , 1 ,2). O bserve th a t th ese tw o nodes m ust be connected .

T h is is p ossib le on ly if k \ = 1 or j \ = 2, i.e. a contrad iction . T herefore, no 9 —antihole ex ists in G a -

It rem ains to prove th e non-existence o f 7 —antiholes. Such an antihole includes nodes c i ,c , d , d \

and three m ore nodes, nam ely t \ , t 2 and £3 . A ssum e w .l.o .g . th a t £ 2 = (1 , l ,2 ,Z i) . T h e op tion s for

t \ and £ 3 (i.e. th e neighbors of £2) are nodes (1 ,2 , l , / 2), (1 ,2 , A2 , 1) and (l , j i , 1 ,2) . S ince £ 1 and £ 3

m ust b e connected , one o f th e nodes m ust defin itely b e (1 , 2 , 1 , l 2) , b ecau se th e other tw o nodes are

not connected . T h is gives rise to two cases.

Let us exam ine first th e case o f £2 = (1 ,2 , A:2 ,1) and t 2 = (1, j \ , 1 ,2) , w hich is illu strated at F igure

2.13. L et c \ = (1 ,^3 , fc3 ,Z3). Since ± 2, |c i f ld | = 2 on ly if k 3 = 2 or Z3 = 2. If Z3 = 2, \ c \ f l£ 2 | = 2

on ly if j 3 = 1 or k ^ = 2. T h e first option creates an ed ge b etw een c \ and c, w hereas the second allow s

CHAPTER 2. The intersection graph of the OLS problem 42

for n od es c \ and d to have three indices in com m on, i.e. a contrad iction .

If & 3 = 2, |c i f l t 3 | = 2 on ly if jr'3 = j \ . T his im plies c\ = (1 , , 2 , Z3) , w here Z3 £ {1,2}. Consider

th e la st node, i.e. = (1 ,^ 4 , ^4 , 4̂)- Mi fl c| = 2 on ly if j '4 = 1 or I4 = 1. If jf'4 = 1 and given that

k 4 {1 ,2} , node d \ can not b e connected to b oth c \ and t \ . If Z4 = 1, |d i f l t i | = 2 on ly if = 1,

w hich im plies \ d i fl c\ = 3, i.e. a contradiction to Prop. 2.33.

c d

12221111

1121,

F igure 2.13: T h e antihole o f Prop. 2 .35

T h is result can be easily achieved for th e rem aining case. T h e proof is com plete. ■

2.9 C oncluding remarks

T h is chapter identified several classes o f strong valid inequalities, a ll arising from th e in tersection

graph o f th e OLS problem . T h is has been accom plished by exp lo itin g problem -specific features, which

arise from th e inherent assignm ent structure o f the problem . E ssentia lly , all properties follow from

th e basic ch aracteristic th a t tw o nodes are con nected if and on ly if th ey have tw o or three indices

in com m on. T h e subgraphs described include all cliques, a fam ily o f antiw ebs, all w heels having

double se ts on their spokes, a fam ily of com posite cliques and tw o fam ilies o f odd-holes, arising from

od d -holes o f th e 3 A A P n and 3 P A P n problem s, respectively. M ost im p ortant, our analysis refers also

to th e form o f lifted inequalities, w hich are m axim al valid in eq u a lities for th e OLS p olytop e. T he

reader can find analogous resu lts for related assignm ent problem s in [9, 37]. H ence, th e m ethodology

presented here is p ossib ly applicable to problem s ex h ib itin g or em bedd in g an assignm ent structure.

In C hapter 7, we apply sim ilar ideas in order to ob ta in a class o f cliques for th e m ulti-index assignm ent

problem .

Chapter 3

Polyhedral characterisation o f the
OLS polytope

3.1 Introduction and preliminaries

This chapter presents a polyhedral characterisation of the OLS problem. The dimension of the
associated polytope P j is established and families of valid inequalities presented in the previous
chapter are further analysed from a polyhedral perspective. This amounts to examining which of
these inequalities are facets of P j, identifying their Chvatal rank and providing separation algorithms
of low complexity.

We briefly summarize some basic concepts and definitions of polyhedral theory ([47, 74, 68]). A
polyhedron is the intersection of a finite number of half spaces. A polytope is a bounded polyhedron.
A polytope P is of dimension n, denoted as dim (P) = n, if it contains n + 1 affinely independent
points. By convention, if P — 0 then dim (P) = —1. If P = {x G Rn : P x = b ,B ~ x < b~ } then

dim(P) = n — ra n k(B) (3.1)

where B and B ~ denote the matrix of coefficients of equality and “less-than-or-equal-to” type
inequality constraints respectively, while b and b ~ denote the corresponding right-hand side vectors
for the linear system defining P . An inequality ax < Oq is called valid for P, if it is satisfied by all
x G P . It is called supporting, if it is valid and there exist x G P satisfying ax = ao- The set of
points, which satisfy ax < ao as equality (F = {x G P : ax = ao}), is called a face of P . A face F of
a polytope P is said to be improper, if ax = ao for all x G P . A proper, non-empty face F of P is
called a facet, if dim (P) = dim (P) — 1. Facets are im portant, since they provide a minimal inequality
representation of a polyhedron. Our main interest in this chapter is in the facets of the convex hull
P / of integer points in P l , defined in Section 2.1. Conditions (c) and (d) of the following theorem
usually provide the two basic tools for proving th a t a given inequality ax < oq defines a facet.

T h e o re m 3.1 (see [74, Theorem 3.16J)Let P C]Rn be a polyhedron and assume that B is a real
valued r a x n matrix and b G Rm such that P = {x G Rn : B x = b , B ~ x < b ~ } where
B = (B , B ~) t and b = {b , b~) T . Let F be a non-empty face o f P , then the following statements
are equivalent:

(a) F is a facet o f P .

43

CH APTER 3. Polyhedral characterisation of the OLS poly tope 44

(b) F is a maximal proper face of P.

(c) dim(F) — dim(P) — 1.

(d) There exists an inequality ax < ao valid with respect to P with the following three properties:

(i) F = {x £ P : ax = ao}.

(ii) There exists x E P with ax < ao, i.e. the inequality is proper

I f any other inequality dx < do, valid with respect to P satisfies F = {x £ P : dx = do}, then
(d,do) can be expressed as a linear (affine) combination o f (B = ,b=) and (a,ao).

Condition (d) has been used in [2] to prove th a t cliques of type II and III (Section 2.3) induce
facets of Pj. In this chapter, we apply the same approach to prove that composite clique inequalities
also define facets of Pi (Section 2.6). We also apply condition (d) to prove th a t odd cycles of
type II (Section 2.7.2) induce facets of the Latin square polytope or 3P A P n ([37]). The dimension
of Pj is also established in a similar manner. A similar approach has been used for establishing
the dimension and facet-defining inequalities of the 3A A P n , and 3P A P n polytopes in [9] and [37],
respectively (Section 2.1).

Recall the IP model for the OLS problem and the definitions of polytopes P i , Pi and Pj, from
Section 2.1. The following remark will be used for establishing the dimension of Pj, and P j.

R e m a rk 3.1 Constraints (2.1), (2.2), (2.3), for a given value o f the I index, are equivalent to the
constraints of a 3A A P n .

Let us first discuss some properties of Pj. Since the OLS packing polytope P j is a special case
of Ps p , Pi shares the following properties of Psp ([18]):

(i) Pi is full-dimensional, i.e. dim (P i) = n 4. The n 4 + 1 independent points of P j are the zero
vector and all the n 4 unit vectors.

(ii) Pj is down monotone, i.e. x E Pi => y E Pi for all y such th a t 0 < y < x.

(iii) The non-negativity constraints Xijki > 0 define facets of P j.

Although we know quite a few things about the facial structure of P j, the same cannot be said
with respect to P j. Since P j is a face of P, we know th a t dim(Pj) < dim (P i). However, the structure
of Pi presents irregularities th a t do not appear in P j. For example, we know th a t P j = 0 for n = 2
and n = 6. P f = 0 can be easily verified, since there are only two Latin squares for n = 2. As stated
previously, P f = 0 was proven in [81]. Fortunately, P f ^ 0 for n ^ 2,6 as shown in [20] (see also
[60, Theorem 2.9]).

Moreover, a complete characterisation of all the facets defining a polytope arising from a 0 — 1
IP is possible only if M V —CoMV, as analysed in [68, p. 139-141]. Hence, the complexity of the
problem restricts any attem pt to achieve a complete description of the convex hull of integer points.
A partial polyhedral description of the OLS polytope appears to be the only reasonable aim. Even
such a result, however, can be sufficient in order to solve the problem with a cutting plane algorithm
incorporated within a Branch & Cut algorithmic framework.

The remainder of this chapter proceeds as follows. Section 3.2 identifies the dimension of both Pj,
and P j. Section 3.3 examines which of the constraints defining Pj, define facets of Pj. The following

3.2. The dimension of Pj 45

sections describe the inequalities induced by sub-graphs of G a , examine their Chvatal rank ([25])
and provide separation algorithms. Section 3.7.2 introduces a new class of facet-defining inequalities
for the polytope of 3P A P n .

3.2 The dimension of Pj

A necessary step towards achieving a polyhedral description of polytope Pj is to establish its dimen
sion. Before establishing the dimension of P j, the dimension of Pl is first provided. According to eq.
(3.1), it suffices to count the rank of the minimum equality system of Pl . Throughout the remainder
of this chapter, we assume th a t each of the four sets / , J, K , L is equal to {1,..., n} or {0,..., n — 1}.
It is easy to see th a t this has been done only for convenience of the presentation.

T h eo rem 3.2 The rank of the system A x = e is 6 • (n — l)2 + 4 • (n — 1) + 1

P ro o f. Order the n4 columns of the A matrix, denoted by Xijki, so th a t index i is the slowest to
vary and index I is the quickest. For n = 2, the order of the column indices is:

(1, 1 , 1 , 1), (1 , 1 , 1 , 2), (1 , 1 , 2 , 1), (1 , 1 , 2 , 2), (1 , 2 , 1 , 1), (1 , 2 , 1 , 2), (1 , 2 , 2 , 1), (1 , 2 , 2 , 2),

(2 , 1 , 1 , 1), (2 , 1 , 1 , 2), (2 , 1 , 2 , 1), (2 , 1 , 2 , 2), (2 , 2 , 1 , 1), (2 , 2 , 1 , 2), (2 , 2 , 2 , 1), (2 , 2 , 2 , 2)

As to the 6n 2 rows, we divide them into six sets of n 2 rows each, as defined by equalities
(2.1)..(2.6).

Figure 3.1 illustrates the matrix for n — 2. Note that, for n — 2, each of the 6 constraint sets has
4 equality constraints, each involving 4 variables.

1 1 1 1 1 (k ,l)= (l , l)
2 1 1 1 1 (k,l)=(l,2)
3 1 1 1 1 (k,l)=(2,l)
4 1 1 1 1 (k,l)=(2,2)

5 1 1 1 1 (j , l)= (l , l)
6 1 1 1 1 G,i)=(i,2)
7 1 1 1 1 G,l)=(2,l)
8 1 1 1 1 (j>l)=(2,2)
9 1 1 1 1 (j ,k)= (l ,l)
10 1 1 1 1 (j)k)=(l,2)
11 1 1 1 1 (j>k)=(2,l)
12 1 1 1 1 G,k)=(2,2)

13 1 1 1 1 (i>l)=(l>l)
14 1 1 1 1 (i,l)=(l,2)
15 1 1 1 1 (i,l)=(2,l)
16 1 1 1 1 (i,l)=(2,2)
17 1 1 1 1 (i ,k)= (l , l)
18 1 1 1 1 (i,k)=(l,2)
19 1 1 1 1 (i,k)=(2,l)
20 1 1 1 1 (i,k)=(2,2)

21 1 1 1 1 (i j) = (l , l)
22 1 1 1 1 (i j)= (l ,2)
23 1 1 1 1 (i,j)=(2,l)
24 1 1 1 1 (iJ)=(2,2)

Figure 3.1: The m atrix A for n = 2

CHAPTER 3. Polyhedral characterisation of the OLS polytope 46

Row set Rows removed Rows removed for n=2
(2 . 1)
(2 .2) 712 + 1 5
(2 .S) 2ti2 + 1 9
(U) 3n2 + 1 13
(2.5) 4712 + 1 17
(2 . 6) 5712 + 1 21

Table 3.1: Linearly dependent rows removed a t Step I

Row set Rows removed Rows removed for n=2
(2 . 1)
(2 .2) 712 + 1 5
(2.3) 2 n 2 + l 9
(24) 3712 + 1 13
(2.5) {4712 + (t — 1) • 71 + 1, t = 2..7l}, 4ti2 + 1 17,19
(2 . 6) {5712 + (t — 1) • 71 + 1, t = 2..7l}, 5712 + 1 21 ,23

Table 3.2: Linearly dependent rows removed at Steps I - II

To find the rank of the A matrix, we follow five steps, the last four of which identify a 3A A P n
substructure, exactly as a t Remark 3.1.

S tep I: It is obvious th a t the sum of all the rows of each set is the same, i.e. ^2{xijki : i G I , j G

J , k G K, I G L} = n 2. Therefore, any one constraint can be removed from any of the six sets as
being linearly dependent. We choose to keep the row set (2.1) intact and remove the first row of all
the remaining sets. Table 3.1 illustrates the outcome.

S te p II : Consider row sets (2.4), (2.5) and (2.6). Observe that, as noted in Remark 3.1, they
form n independent 3A A P n problems, one for each value of the index i. For i = io, the corresponding
3 A A P n involves the n 3 variables x iojki, for j , k , l = 1, ...,n , and the 3n rows 3n2 + (io — 1) • n + t,
4n 2 + (io — 1) • n + t, 5n 2 + (io — 1) • n + t, for t = 1, ...,7i. It is shown in [9] th a t the rank of a
3n x n 3 3A A P n matrix is 3n — 2. Hence, we can remove up to 2 rows from each of the n 3A A P n
problems. Note that, having removed rows n 2 + 1, 2n2 + 1 at Step I, the 3A A P n corresponding to
io = 1 includes no linearly dependent rows. For the remaining n — 1 independent 3A A P n problems,
we can remove two linearly dependent rows. We choose to remove rows numbered 4n2 + (t — 1) • n + 1 ,
5n 2 + (t — 1) • n + 1, for t = 2 ,..., n, i.e. a total of 2(n — 1) rows. Table 3.2 gives a complete list of
rows removed up to this point.

S te p I I I : Consider row sets (2.2), (2.3) and (2.6). Observe th a t they form n independent 3A A P n
problems, one for each value of the index j . For j = jo, the corresponding 3A A P n involves variables
Xijoki, for i , k , l = l...n , and rows n 2 + (j 0 - 1) -n + t + jo, 2n2 + (j o ~ l) -n + t, 5n2 + (t - 1) -n + jo, for
t = 1, . . . , n. Again, for jo = 1, the corresponding 3A A P n includes no linearly dependent rows, since
rows 27i2 + 1, 5n2 + 1 have already been removed. All the rows of the remaining n — 1 independent
3A A P n problems are present. We choose to remove two linearly dependent rows from each problem,
namely rows 2n 2 + {t — 1) • n + 1, 57i2 + 1 , for t = 2,..., n, i.e. 2(71 — 1) rows in total. Table 3.3 gives
a complete list of rows removed.

Step IV : Consider row sets (2.1), (2.3) and (2.5). Observe th a t they form n independent 3A A P n
problems, one for each value of the index k. For k = ko, the corresponding 3A A P n involves variables
Xijk0 i , f°r h = 1) and rows (k0 — 1) • n + t , 2n2 + (t — 1) • n + &o, 47i2 + (t — 1) • n + ko, for
t = 1,..., 71. For ko = 1, the corresponding 3A A P n includes no linearly dependent rows, since rows

3.2. The dimension of Pi 47

Row set Rows removed Rows removed for n=2
(2 .1)
(2 .2) n 2 + 1 5
(2.3) {2n2 + (t — 1) ■ n + 1, t = 2..n}, 2n 2 + 1 9,11
(U) 3n2 + 1 13
(2.5) {4n2 + {t — 1) ■ n + 1, t = 2 ..n},4n2 + 1 17,19
(2 .6) {5n2 + (t — 1) • n + 1, t = 2..n}, {5n2 + 1, t = l..n} 21,22,23

Table 3.3: Linearly dependent rows removed at Steps I - III

Row set Rows removed Rows removed for n=2
(2 .1)
(2 .2) n 2 + 1 5
(2.3) {2n2 + (t — 1) • n + 1, t = 2..n}, {2n2 + t, t = l ..n} 9,10,11
(2-4) 3 n 2 + 1 13
(2.5) {4n2 + (£ — 1) ■ n 4 - 1, £ = 2..n}, (4n2 + £, £ = l..n} 17,18,19
(2.6) {5n2 + (£ — 1) • n + 1, £ = 2..n}, {5n^+ £, £ = l..n} 21,22,23

Table 3.4: Linearly dependent rows removed at Steps I - IV

2n 2 + 1, 4n2 + 1 have already been removed. The remaining n — 1 independent 3AAPn problems
have been left intact. We choose to remove two linearly dependent rows from each problem, namely
rows 2n2 +£, 4n 2 + (£ — 1) • n, for £ = 2...n, i.e. 2(n — 1) rows. Table 3.4 gives a complete list of rows
removed so far.

S te p V : Consider row sets (2.1), (2.2) and (2.4). Observe th a t they form n independent 3A A P n
problems one for each value of the index I. For I = Iq, the corresponding 3AAP n involves variables
Xijkio, f°r = 1) and rows (£ — 1) • n + Iq , n 2 + (£ — 1) • n + lo, 3n 2 + (£ — 1) • n + Iq , for
£ = 1, ...,n . Again for Iq = 1, the corresponding 3A A P n includes no linearly dependent rows, since
rows n2 + 1, 3n2 + 1 have already been removed. All the rows of the remaining n — 1 independent
3A A P n problems are present. We choose to remove two linearly dependent rows from each problem,
namely rows n 2 +£, 3n2 + £, for £ = 2,..., n i.e. 2(n — 1) rows. Table 3.5 gives a complete list of rows
removed so far.

In total, 4 • 2 • (n — 1) + 5 = 8n — 3 rows have been removed. Therefore, 6n 2 — 8n + 3 is an upper
bound on the rank of A. We will complete the proof by exhibiting 6n 2 — 8n + 3 affinely independent
columns.

Consider the columns:

Row set Rows removed Rows removed for n —2
(2 .1)
(2 .2) [n 2 + £, £ = l..n} 5,6
(2.3) {2n2 + (£ — 1) • n + 1, £ = 2..n}, {2n2 + £, £ = l..n} 9,10,11
(2-4) {3n2 + £, £ = l..n} 13,14
(2.5) {4n2 + (£ — 1) • n + 1, £ = 2..n}, {4n2 + £, £ = l..n} 17,18,19
(2 .6) {5n2 + (£ — 1) • n + 1, £ = 2..n}, {5n2 + £, £ = l..n} 21,22,23

Table 3.5: Linearly dependent rows removed at Steps I - V

CHAPTER 3. Polyhedral characterisation of the OLS polytope 48

. , (l , l , n , l) , . . . , (l , l , l , n) , , (l , l , n , n)

(2, 1 ,1 ,1),..., (71,1,1,1),..., (2,1,1,71),....,(71,1,1,71)
(1 .2 .1 .1) ,.. . , (l , n , l , l) , ...,(1 ,2 , l ,n) , , (l ,n , l , n)
(2 .2 .1. 1),..., (n, n, 1, 1),..., (2 ,2 ,1, n - 1) , (n, n, l ,n - 1)
(1. 2. 2. 1),..., (1, n ,n , 1),..., (1, 2, 2, n — 1) , (1, n ,n , n — 1)
(2 .1 .2 .1),..., (n, 1, n, 1),..., (2 ,1 ,2 ,n — 1) , (n, 1, n, n - 1)

The matrix formed by these columns and the 6n2 — 8n + 3 remaining rows of A is square upper
triangular, with each diagonal element equal to 1, therefore non-singular. This m atrix is illustrated,
for n — 2, in Figure 3.2.

(n2columns)
(n(n — 1) columns)
(n(n — 1) columns)
((n — l) 2 columns)
((n — l) 2 columns)
((n — l) 2 columns)

1 1 1 1 1 (k, l)=(l , l)
2 1 1 1 (k, l)=(l,2)
3 1 1 1 (kjl)=(2,l)
4 1 (k,l)=(2,2)
7 1 1 1 (j, l)=(2,l)
8 1 (j)l)=(2,2)
12 1 (j,k)=(2,2)
15 1 1 1 (M)=(2, l)
16 1 (i,l)=(2,2)
20 1 (i,k)=(2,2)
24 1 (ij)=(2,2)

Figure 3.2: The upper triangular m atrix for n = 2

It is easy to verify th a t 6n2 — 8n + 3 = 6 • (n — l) 2 + 4 • (n — 1) + 1. ■

C o ro lla ry 3.3 dim{Pi) = (n — l) 4 + 4 ■ (n — l) 3.

P ro o f. By Newton’s polynomial n 4 = [(n—1)+1]4 = (n—l) 4+ 4 -(n —l) 3 + 6-(n—l) 2+4-(n—1)+1.
The result follows from eq. 3.1. ■

We describe the tools needed to obtain the dimension of P j.

Unless otherwise stated, we illustrate a pair of OLS as points of Pi expressed in terms of four
sets of indices, viz. I for the row set, J for the column set, and K and L for the set of elements
of the first and the second Latin square respectively. The elements of all four sets are the integers
from 1 to n. We will further use k{ i , j) (respectively l{i , j)) to denote the value of the cell in row i ,
column j of the first (second) Latin square. Thus k { i , j) G K and l (i , j) G L. The following remark
reveals a very useful property of the points of Pi corresponding to a pair of OLS.

R e m a rk 3.2 Given an OLS structure and m i , m 2 G M , where M can be any one of the disjoint
n — sets I, J, K , L, (inter)changing all m i values to m 2 and all m 2 values to m i yields another OLS
structure. These two structures are called equivalent ([34, p. 168]).

R e m a rk 3.3 Given an OLS structure and two sets Mi , M 2 , where M i , M 2 can be any of the four
disjoint n — sets I , J , K , L , (inter)changing the roles of sets Mi , M 2 yields another OLS structure.
These two pairs of OLS are called conjugate.

Remark 3.3 follows from the definition of the conjugate(s) of a Latin square, as described also
in [34, p. 168]. As an example, if we interchange the roles of the row and column sets in a Latin
square, the resulting square will be the transpose of the first. In exactly the same way, interchanging

3.2. The dimension of Pi 49

the roles of the row and column in a pair of OLS, the result is two squares, which are the transposes
of the initial ones. It is easy to see th a t these squares remain orthogonal.

If the interchange is carried out for elements of set I (i.e. M = I) we call it a first index
interchange, for elements of set J a second index interchange, etc. To facilitate the application of
interchanges, we define the interchange operator (<->). By setting x * = x(i \ «-» i2) i , we imply that
a t point x e Pi we apply a first index interchange between rows 21,22 G / , deriving point x* G Pi.
Note th a t brackets must also have an index for denoting the set of the indices th a t are interchanged.
Notation without this subscript in cases like (1 n) becomes ambiguous. It is easy to see th a t
x (m i «-> 7722)4 = x (m 2 772i)t, i-e- the operator is associative, and x = x{m\ 7722)4(2721 <-» 7722)4.
A series of interchanges at a point x G P is expressed by using the operator (<->) as many times as
the number of interchanges with priority from left to right. For example, x* — x(i \ <-> 22)1(1 72)3
is taken to mean that a t point x we apply a first index interchange between 21,22 G I and then at
the derived point we apply a third index interchange between 1,77 G K, thus yielding point x*. It is
clear th a t the interchange operator is also commutative, i.e. the order in which the interchanges are
applied is not important. The properties of the interchange operator are listed below.

P rop erty I: x = x(m\ 7 7 2 2)4 (7 7 2 1 <-*■ 7 7 2 2) 4

P rop erty II: x(mi <-> 7722)4 = x (m 2 7721)4 (associativity)

P rop erty III: x(m i <-> 7 7 2 2) 4 (7 7 2 2 <-» 7 7 7 3) 4 = £ (7 7 2 2 <-> 7 7 2 3)4 (7 7 2 1 *-> 7 7 2 2) 4 (commutativity)

We additionally define a conditional interchange as an interchange to be performed only when a
certain condition is met. The condition refers to a logical expression consisting of values of an index
set, at a given point x. If this expression evaluates true then the interchange will be applied to point
x. Since we are going to use only conditional interchanges for which both the logical expression and
the interchange refer to elements of the same set we will use a common subscript for both. Thus
to denote this type of interchange at point x we will use the expression x(condition?interchange)t ,
where the subscript refers to the index set. For example, x 2 = X\ (21 = 77?1 <->21)1 implies th a t
if 2i = 7 7 a t point X\ then we derive point x 2 by applying a t point X\ the first index interchange
between 1, 23. If 21 ^ n then x 2 = x \ . As in the previous case we can have more than one conditional
interchange in the same expression. Again priority is considered from left to right. As we will see
shortly, the interchanges are extensively used for establishing the dimension of Pi and for proving
th a t certain inequalities are facet defining.

The interchange operator is also used to illustrate the derivation of a conjugate point. Given a
point x £ Pi, writing x* = x (I <— > K) implies th a t point x* is derived by interchanging the roles
of sets I and K at point x. The notion of a conditional interchange is also applicable in the case of
conjugate points.

An additional complication for proving the dimension of Pi comes from the fact th a t it is not
easy to exhibit a pair of OLS for every value of 7 7 , i.e. for every n it is difficult to demonstrate a 0 — 1
vector feasible with respect to constraints (2.1),...,(2.6) th a t will have specific variables set to one. In
contrast, both for 3A A P n and 3P A P n such “trivial” points exist. For the 3A A P n the trivial point
has Xijk = 1 for i = j = k and Xijk = 0 for 2 7̂ j 7 ̂ k 7̂ 2. For the 3P A P n the trivial solution is the
Latin square having x ^ k equal to 1 if k = i + j — 1 mod n and equal to 0 otherwise. To overcome
this difficulty, in the following lemma we establish, for n > 4 and 77 7̂ 6 , the existence of an OLS
structure with four specific variables set to one.

CHAPTER 3. Polyhedral characterisation of the OLS polytope 50

Table 3.6: Point xp
1 jo

1 1 h

*0 h h

1 3o
1 1 ki

io k 2 kz

Table 3.7: An arbitrary point x £ P / (Lemma 3.4)
1 3o

1 k k

*0 k le

1 jo
1 kb kc

0̂ kd ke

Lem m a 3.4 For n > 4 and n ^ 6 l e t i 0 £ 7 \ {1}, jo £ J \ {1}, k\, /c2, fc3 £ K \ {1}, and
h , h , h £ L \ {1}, k ^ h , h - Then there exists a point xq £ Pi with four particular variables taking
value one as illustrated in Table 3.6.

Proof. Consider an arbitrary point x £ Pi as illustrated in Table 3.7.

where kb,kc, k d, k e £ K , k , k J d , k £ L. For x to be a valid OLS structure we must have
kb 7̂ kc, k d, ke ± kc, kd, lb ^ lc,ld, k ± k , k - It is easy to see th a t x 0 = x(kb ± Y!kb «-» 1)3(lb ±
1 ?lb *-+ 1) 4 , if we additionally set kc = k\, kd = &2, ke = fc3 and lc = li, ld = I2 , le = h- ■

There might be more than one points of Pi with these four variables set to one. However, one
point suffices to carry out the following proofs.

Since Pi C Pl , dim (Pi) < dim(Pi,). Moreover, dim (Pj) < dim(Px,) if and only if there exists an
equation ax = ao satisfied by all x £ Pi such that it is not implied by (i.e. cannot be expressed as a
linear combination of) the equations A x = e. We will show th a t no such equation exists.

 4

T heorem 3.5 Let n > 4 and n / 6, and suppose every x £ P f satisfies ax = ao for some a £ Rn ,
ao £ R. Then there exist 6 n 2 scalars X2t, A^, A^, Xjk, A®fc, i £ l , j £ j , k £ K , l £ L , satisfying

a i j k i = X lkl + X 2U + A^ + A i j + X 5j k + X i k (3.2)

“0 = k e K . i e L) + ' £ { > & - . i e 1,1 e L]

+ £ (Ai ' ■ j e J , l e L } + £ { A * , - . i e l j e J] (3.3)

+ £ { A , V i 6 J , f c 6 J i r } + 5>i: i £ l , k £ K }

Proof. Define
A ki = a u k i

^ji = aijii ~ a m i
^ j k = a i j k i ~ a i j n — anfci 4- a. 1 1 1 1
\ 4 = am i — a m i
\ 4
\ j = a i j i i ~ O iin — a i j n + a i m
\ 4 A i k = a n k i — a m i — a n k i + a i m

3.2. The dimension of Pj 51

Table 3.8: Point x Proposition 3.6)
j i 32

h V q

*2 r s

3 i 32

k b c

*2 d e

Note th a t these 6n2 scalars are defined in such a way th a t exactly 8n — 3 of them, corresponding
to the linearly dependent rows of the A matrix, equal zero.

By substituting the As in equation (3.2) we get:

ô ijki = anki + ami + aiju + a ^ n + aij^i + a m i

—2 a u n — 2a i ju — 2 a m i — 2 a im + 3 a m i (3.4)

Substitution alone is enough to show that (3.4) is true for a im and for all cases where at least two
of the indices are equal to one. For all cases, where only one of the indices equals one, equation (3.4)
becomes

a i j k i = a i j i i + a m i + a \ j k i — a m i — a i j u — a n k i + a m i (3.5)

a i j i t = a ^ u + a n u + a ijiz ~ a m i — a i j i i — a n i i + a i m (3.6)

a n k i = a n k i + a n i l + a n k i — a m i — a m i — Q ini + a m i (3.7)

a i j k i = a i j k i + a ijiz + a iu ; — a \ j \ \ — a i m — “ m i + a i m (3.8)

Before proving that eq.(3.4) to (3.8) hold, we prove the following proposition.

P ro p o s itio n 3.6 For n > 3 and n ^ 6 , it can be shown that

a h j i k (i u j i) l (i 1 , j i) + a*ij2A;(*i,j2)i(*i,Ja) + a i 2 3 i k (t 2 , j i) l (i 2 , j i) + a i 232k(i 2 , j 2) l (i 2 ,32)

+ a i i 3 i k (i 2 , h) l (i 2 ,32) + a i i 3 2 k (i 2 , j i) l (i 2 , j i) + a i23i k (i i ,j2)Z(ii ,3 2) a i 2 3 2 k (i i , j i) l (i i , j i)

= a i i j i H i 2 , j i) l (i 2 , j i) + a i i j2k(i2,32)l(i2,32) + a i2 j i *:(«i,ii)l(n,ii) + a i 2 3 2 k(i i ,32)l(ii ,3 2)

+aiijik(i1,j2)l(ii,32) + aiihk(ii,ji)l(h,ji) + ai23ik(i2,32)l(i2,32) + ai232k(i2,3i)l(i2,ji) (3-9)

for i i , i 2 £ I , h ± i2 and j u j 2 e J, j i ± j 2.

P ro o f. Let b,c,d,e £ K and p ,q ,r , s G L and consider an arbitrary point i 6 P ; as illustrated
in Table 3.8.

Let x' = x(i\ <-> *2)1 (Table 3.9).
Let x = x(j i <-* j 2) 2 (Table 3.10).
Let x' = x{i\ <-> 12)1 (Table 3.11).
Essentially, we interchange: rows i\ and i 2 at point x to derive point x'\ columns j \ and j 2 at

point x to derive point x; finally, rows i\ and i 2 but this time at point x to derive point x ' . These
simple interchanges allow for completing this proof quite directly and greatly simplify the following
proofs.

CHAPTER 3. Polyhedral characterisation of the OLS poly tope 52

Table 3.9: Point x ' (Proposition 3.6)
h h

h r s

h P q

J i 32

h d e

12 b c

Table 3.10: Point x (Proposition 3.6)
3 \ 32

h q p

*2 s r

3 \ 32

c b

12 e d

Table 3.11: Point x ' Proposition 3.6)
h 32

h e d

h c b

h 32

h s r

12 q P

3.2. The dimension of P j 53

Let k x(is , j t) (lx {is , j t)) denote the value of the k(l) index for i = zs , : j = j t at point x. k x' (iS)jt),
k£(is , jt) , k x' (i s , j t) and lx'{is , j t), lx {is , j t), lx' { h , 3 t) are defined accordingly for points x ', x and x'.

Since x, x' G Pi we have ax = ax '. By observing th a t all a ^ terms for every i G / \ { i i , 2̂} are
canceled out (all rows except for i i , i 2 have been left intact), ax = ax' becomes

a i i j i b p 4“ a i i j 2cq 4“ ^ j k x (i i , j) l x (i i , j)

a i 2j \ d r + 0‘i 2j 2es + ^ a i 2j k x (i 2 , j) l x (i2 , j)

0‘i 1j 1d r + 0‘i 1j 2es + ^ ^ { a i i j k x' { i i , j) l x '

a i 2j i b p + a i 2j 2cq + ^ 2 i a i 2j k x> (i2 , j) l x ' (i 2 , j)

j G J \ { j i J 2}} +

j G J \ { j i , j 2}} =

j G J \ { j i , j 2 }} +

j G J \ { j i , j 2}} (3.10)

Observe th a t k x (i2 , j) = k x' (i i , j) , k x { i i j) = kx' (i 2 , j) and lx (i2 , j) = lx { h , j) =
lx { h , j) for j G J \ { j i , J 2 }- Writing (3.10) in terms of point x, we derive

a i i j i b p + a i i j 2cq 4” ^ ^ { a i i j k x (i i , j) l x (i i , j)

a i 2j i d r 4" a i 2j 2es 4" ^ '] { a i 2j k x (i 2 , j) l x (i 2 , j)

a h j i d r + a i i j 2es + ^]{a ii j k x (i 2 , j) l x (i 2 , j)

P <̂ i 2 3 \ b p 4" 0-i2j 2cq 4" ^ ^ { a i 2j k x (i i , j) l x (i i , j)

j e J \ { j l j 2 }} +

j G J \ { j l j 2}} =

j e J \ 0 ‘i , J 2}} +

j e J \ {j i , j 2}} (3.11)

Similarly, since x ,x ' G P j we have ax = ax'. Terms a ^ , for every i G I \ {^1, 2̂}> are again
canceled out, so ax = ax ' becomes

a i i j i cq + 0,i i j 2bp + , j) Z * (* i , j)

a i 2j i e s 4* a i 2j 2dr + ^ ^ { a i 2j k x (i 2 , j) l x (i 2 , j)

0>ixj i e s 4" & i i j 2dr + j k x> (i i , j) l x ' (i j , j)

a i 2j i c q + a i 2j 2bp + 5 3 { a i 2jA:i / (i 2 , j) Z 5 ' (i 2 j)

j G J \ { j l , i 2}} +

j G J \ { jl, J 2}} =

3 € « 7 \ 0 ‘l> J 2 > } +

j G J \ { j l , j 2}} (3.12)

Observe th a t k x (i2 , j) = k x' { i i , j), k x {iu j) = k x' (i 2 , j) and lx (i2 , j) = lx' { i i , j), Is (i i tj) =
(i2 ,j) for 3 € J \ { j 1,^2}- Writing (3.12) in terms of point x, we derive

a i i j i c q 4- 0>i i j2bp 4“ ^ : 3 ^ ^ \ O'lj 3 2 ^ } 4"

a i 2j i e s + &i 2j 2d r 4“ ̂ ^ { a i2 jfei (i2 ,j)Zs (i2 ij) : 3 ^ J \ {j?"l j ^2} } =

"b 0 > i i j 2 d r "b

ai2jicq 4“ ai2 j 2bp + ^ y{a 2̂jfea(ti,j)Za(z] ,j) • 3 ^ J \ { j l) 3 2 } } (3.13)

Subtracting (3.11) from (3.13) and observing th a t for i G { i i , i 2} and j G J \ { j i , j 2} we have
k x{hj) = k x{ h j) and lx (i , j) = lx { i , j) (all columns except for j i , j 2 are common to the OLS pairs
represented by points x and x), we obtain

®i i j i b p 4“ Q'i i j2cq 4" &i 2j i d r 4“ a i 2j 2es { ® i i j i c q 4“ Ui1j2bp 4“ Ui2j'ies 4“ &i 2j 2d r)

= Q“i \ j \ d r 4“ & i i j 2es 4“ O ' ^ j i b p 4“ 0>i2j 2cq (^ iijies 4" Q*iij2d r 4“ Q>i2j \ c q 4“ &i2j 2bp)

CHAPTER 3. Polyhedral characterisation of the OLS polytope 54

Table 3.12: Point ^ (T h eo rem 3.5)
1 Jo

1 1 h

i o h h

1 Jo
1 ko ki

0̂ k 2 k3

If we eliminate the negative sign by moving terms in brackets to the other side of the equation
and write the elements of sets K and L using the notation k (i , j) and respectively, we obtain
equation (3.9). ■

In Proposition 3.6, the role of the sets I, J for the row and column set, respectively, is purely
conventional. Any pair of sets from I , J , K , L can be used for the role of row/column set. Hence,
for the rest of the paper, the notation x ((m i , m 2)ti ; { n \ ,n 2)t2) implies equation (3.9), derived by
applying Proposition 3.6 at point x, for rows m i , m 2 and columns 711, 712. In this expression, the
first pair denotes the rows whereas the second denotes the columns. The subscripts t \ , t 2 declare
the sets that index the rows and the columns, respectively. Following the same convention as for
the interchanges, 1 is used to denote set I, 2 is used to denote set J and so on. For example,
rc ((l,ii)i; (1, 71)2) denotes equation (3.9) w ritten for rows l , i i and columns l , n a t point x , where
elements of the first pair belong to set I and of the second pair to set J .

(Back to the proof of Theorem 3.5). We will show (3.4),...,(3.8) for i = i0, j = jo, k = ko, I = Z0,

io,jo, k0 1.

Let X\ = x q (Table 3.6). Equation £ i((l ,io) i; (1,.70)2) is w ritten as:

“ 1111 + a llfc3Z3 + a i0lM i + a*olfc2«2 + aljokili + aljok2 l2 + aiojoll + aiojok3 l3

= O, ilfej/i + 0 >llk2 l2 + a iolll + a iolfc3/3 + a l7'oll + aljok3 l3 + aiojokili + ai0 j 0 k2 l2 (3-14)

Because of the fact th a t the two squares must be orthogonal, at most one of values A3, lo can be
equal to 1, since pair (1,1) appears already at position (1,1). If ko 7̂ 1, derive point X2 = x i { l <->
ko)o- If ko = 1, it must be th a t lo 7 ̂ 1. In the latter case, consider point x\ — x \ (K *-> L), thus
enforcing A3 7̂ 1 at point x\ , and derive X2 = x \ (l ko)o- Point X2 is illustrated in Table 3.12.

Equation X2 {(l,io)i', (l,.7o)2) is w ritten as:

a llA :ol + a llA:3 l3 + a i 0 l k i h “1“ a i o l k 2 l 2 + a l j o k i h + a l j o k 2 l 2 "b a i o j o k 0 \ + a i o j o k 3 l 3

= ailk^h + aUk2 l2 + Giolfcol + a iolA:3l3 + alj 0 k0l + aljok3 l3 + ai0jokih + aiojok2 l2 (3.15)

Subtracting (3.15) from (3.14) and cancelling identical terms results in

^1111 — a i i / c 0 l + a i o j o l l — a i o j o k 0 l = O - i o l l l ~ a i 0 l k 0 l + a - l j Q\ \ ~ ^ ljo fe o l

which is equivalent to (3.5). Equations (3.6)-(3.8) follow by symmetry.

To show eq. (3.4), consider point X2 , as illustrated in Table 3.12. Since we have already assumed
ko 1, value lo can be still equal to 1. If lo 7̂ 1, derive point xo = £2(1 0̂)4- If h = 1, for n > 3
there exists a column j 1 € J \ { l , j o } , such th a t l (io , j i) X 2 7̂ 1- Setting £3 — x 2 {jo j 1)2) results in
a point of the form depicted in Table 3.12, having l{io,jo)x* 7̂ 1. Therefore, point xo can be now

3.3. Dimension of the inequalities defining Pl 55

Table 3.13: Point £3(Theorem 3.5)
1 jo

1 k0 ki

io k2 k 3

1 jo
1 lo h

*0 h h

derived as £3 = ££(1 *-* Iq)^. Point £3 is depicted in Table 3.13.

Equation £3((M o)i; (1>^0)2) is written as:

a llfc0/0 “b 1 A:3Z3 + a i0lA:iJi “b O’i 0 l k 2 h "b a l j o k i h "b a l j o k 2 l2 “b a i o j o k o l o "b a i o j o k 3 l3

= allkili "b ^ 11̂ 2/2 “I” a iol^o^o aiolk3 l3 "b alj 0 k0lo "b a ljok3 l3 "b aiojokih "b a ioJo&2*2 (3.16)

Subtracting (3.16) from (3.15) and cancelling identical terms results in

a llf c 0 l allk 0 l0 "b O'iojokol ^iojokolo ^ io lA o l @ iolkolo ~b O, l j o k o l ® ljok o lo

or

® i o j o k o l o Q ' i o j o k o l ^ io l^ o io "b ^ l j o k o l o O i o l k o l o ^ lj 'o ^ o l ^ llfc o io ~b Q.llfc0 l (^■^■'^)

Substituting in (3.17) terms from equations (3.5)-(3.8) results in equation (3.4).
Finally, (3.3) is true since for n > 3 and different than 6, P f ^ 0 (see [60, Theorem 2.9]). This

implies th a t there exists a t least one 0-1 vector x, for which (2.1),...,(2.6) are satisfied. Hence, by
multiplying these equations with the corresponding scalars and summing over all rows we get:

a® = £ (A« : * e i r , l e L } + £ { A S : i e J , i e L }

+ '■ j £ J, I € L} + : i £ / , j € J}

+ y^{Ajfc : j € J, k e K } + y^{A ffc : i e I , k 6 K }

This completes the proof for general n. The theorem holds for n > 4 and n ^ 6 since the proof
requires at most four distinct values for each index. ■

C o ro lla ry 3 .7 For n > 4 and n ^ 6, dim(Pi) = (n — l) 4 + 4 • (n — l) 3.

P ro o f. Exactly as in Corollary 3.3. ■

3.3 D im ension of the inequalities defining Pl

In this section, we examine which of the constraints defining Pl are facet defining for P /.

P ro p o s i tio n 3.8 For n > 4 and n 6, every inequality of the type x c > 0 for c G C defines a facet
of Pi.

P ro o f. For any c G C consider the polytope P f = {x ^ Pj : x c — 0}. We need to show that
d im (P /) = dim (P/) —1. Evidently, dim (P j) < n4 —1—rank(Ac) where A c is the m atrix obtained from

CHAPTER 3. Polyhedral characterisation of the OLS polytope 56

A if we remove column ac. It is not hard to see th a t the rank of A c is equal to the rank of A. This is
immediate, if the column ac is not among the columns of the upper triangular m atrix described in
Theorem 3.2; otherwise it follows by symmetry. Therefore, dim (P7) < n 4 — 6n 2 + 8n — 4. To prove
that this bound is attained, we use the same approach as in the proof of Theorem 3.5, i.e. show th a t
any equation ax = ao (different than x c = 0) satisfied for every x G P f is a linear combination of
A cx = e. The proof goes through essentially unchanged. ■

P ro p o s itio n 3.9 For n > 4 and n ^ 6, every inequality x c < 1 for c G C does not define a facet of

Pi

P ro o f. For any c G C consider the polytope P f = {x e Pi : x c — 1}. We will show th a t
dim(P7c) < dim (P/) — 1. We know that dim (P7) < dim(P£) where P f is the linear relaxation of
Pf . Setting x c to one is equivalent to setting the variables belonging to the common constraints
with x c to zero. The number of these variables is 2(3n — l) (n — 1) (Prop. 2.1). Thus, dim(P£) =
n 4 — 2(3n — l)(n — 1) — rank(A^) where A £ is the m atrix obtained from A by removing the columns
corresponding to the variables set to zero. Obviously rank(An_ i) < rank(A^) where A n- \ is the
constraint matrix of the OLS of order n — 1. By Theorem 3.2 rank(An_ i) = 6(n — l)2 — 8(n — 1) + 3
so

dim(P7) < dim(P£) < n 4 — 2(3n — l)(n — 1) — (6(n — l) 2 — 8(n — 1) + 3)

= n4 — 12n2 4- 28n — 19

which is less than dim (P/) — 1 = n4 — 6n2 + 8n — 4 for n > 3. ■
It is easy to see th a t cliques of type I do not induce facets of P /. For each of these cliques, the

coefficient vector of the corresponding inequality is identical to a row of the A matrix. Thus, each
of this inequalities is satisfied as equality by all x e Pi, therefore defining an improper face of P /.

3.4 Clique inequalities

If Q C C, is the node set of a clique in the graph Ga = (C , E c), then the complete sub-graph K\q \
induces the inequality

: d G Q] < 1 (3.18)

Inequalities (3.18) define facets of the general set-packing polytope P s p p ■ Therefore, they also
induce facets of the OLS packing polytope P /. The proof is trivial and can be found, among others, in
([69]). However, no similar result has been proven for general set-partitioning polytope P s p , which
is itself a face of Ps p p - In particular, no trivial argument has been found, proving th a t inequalities
(3.18) are facet-defining for the OLS polytope P /, which is a face of P /.

Cliques of type II give rise to inequalities of the form:

: d e Q{c)} < 1 (3.19)

for every c G C.
Cliques of type III give rise to inequalities of the form:

: d G Q (c,s)} < 1 (3.20)

3.4. Clique inequalities 57

for every c , s G C such th a t | c fl s |= 1.

3.4.1 D im ension and Chvatal rank o f clique inequalities

In [2], it has been proved th a t the inequalities induced by cliques of both types II &; III define facets
of P j. We reproduce here the main results.

T h e o re m 3.10 ([2, Theorem 4-11]) Let Q(c) denote the node set of a clique of type II. Then, for
n > 5 and n ^ 6 the inequality

^ 2 { x q : q G Q(c)} < 1 (3.21)

defines a facet of Pj for every c G C.

T h e o re m 3.11 ([2, Theorem 4-13]) Let Q(c ,s) denote the node set of a clique of type III. Then,
for n > 5 and n ^ 6 the inequality

: Q(c, s)} < 1 (3.22)

defines a facet of Pj for every c,s G C such that \ c fl s |= 1.

Let us now examine the Chvatal rank of clique inequalities.

P ro p o s itio n 3.12 The inequalities (3.19) are of Chvatal rank 2.

P ro o f. We will first derive a lower bound for the rank of (3.19), by showing th a t the inequality
cannot be of rank 1. We will proceed by illustrating how the inequality can be derived within two
steps of the Chvatal-Gomory procedure. This will provide an upper bound of 2 on its rank.

Assume w.l.o.g. c = (io, j o , ko, l0). The node set of the clique is Q(c) = { (i o , j o , k o , l o) , { (i , j o , k o , l o)

i G A IM h {(i o J , k 0 , l o) : j € J \ { j o } } , { (i o , j o , k , l 0) : k € K \ { k 0 } } , { (i o , j o , k 0 , l) : I G P\IM}}-
The induced inequality is:

Xiojokolo d- ^ ̂ 3'ijokolo “I- ^ ̂ Xi0jkolo “h ^ ̂ Xi0 j 0 ki0 ~|- E x iojokol — 1 (3.23)
i€l\{i0} jeJ\{jo} keK\{k0} l£L\{l0}

If the inequality (3.23) is of Chvatal rank 1, there exists 0 < e < 1, such th a t every solution to
the LP-relaxation of OLS, i.e. A x = e , x > 0, satisfies:

Xiojokolo ̂̂ Xij0 kQl0 “I" ̂̂ Xi0 jk0 l0 "h ̂] Xi0 jQki0 + E Xiojokol ^ 2 £ (3.24)
i£l\{io} j£J\{jo} keK\{k0} l£L\{l0}

A solution having Xij0 kQio Xi0 jk0 i0 XiQj 0 ki0 = %i0 j0koi = 2(n—i) > ® ^ AI®o}> J € •Alio},
k G K \ { k o}, L G L \IM > and x ioj 0 k0 i0 = 0, violates (3.24), since the its l.h.s. has 4(n — 1) variables
equal to 2 (n - i) » therefore becomes equal to 2. Such a solution also has:

• Xijk0 i0 = Xij0 ki0 = Xij0 k0l = %i0jklo = x i0 jk0l = Xi0 j0kl — 0,

2n—3• XiQjkl — Xijokl = x ijk0l — Xijki0 = 2(n—l)3 >

(n-2)2• Xijkl — (n_i)4

for all i G AIM , 3 € A lio } , k G K \ { k 0 } , L G AIM-
To see th a t x G Pj,, assume row (m \ , m 2) G M\ x M2, M \ , M 2 — I , J , K , L , M\ ^ M 2 and

c = (i o , j o , k 0 , l o)• Then:

CHAPTER 3. Polyhedral characterisation of the OLS polytope 58

C ase 3.12.1 I f m i , m 2 C c, the row has 2(n — 1) variables equal to 2 (n-i) and 2 n — l variables equal
to 0 .

C ase 3 .12.2 I f m \ C c, m 2 £ c or m \ £ c, m 2 C c, the row has 1 variable equal to 2(n - i)» (n — I)2
variables equal to an^ ^(n ~ 1) variables equal to 0.

C ase 3 .12.3 I f m i , m 2 £ c, the row has 2 (n — 1) variables equal to 22T̂i_ 135 > (n — I)2 variables equal

t° (n-i)-* and 1 variable equal to 0.

Therefore, inequality (3.23) is of Chvatal rank at least 2.

On the other hand, adding rows (i o J o) , { j o J o) , (k o j o) , dividing the resulting inequality by 2
and rounding down both sides gives:

Adding rows (i o , k o), (j o , ho) , (k o , l Q), dividing the resulting inequality by 2 and rounding down
both sides gives:

Adding rows (i o , j o) , (i o , k o), (i o J o) , dividing the resulting inequality by 2 and rounding down
both sides gives:

Dividing inequality (3.29) by 3 and rounding down both sides gives inequality (3.23). Therefore,
inequality (3.23) is of rank a t most 2. The proof is complete. ■

P ro p o s itio n 3.13 The inequalities (3.20) are of Chvatal rank 2.

P ro o f. The proof will essentially proceed in the same way as the proof of Proposition 3.12.

Assume w.l.o.g. c = (i o , j o , k o , l o) and s = (i o , j i , k i , l i) . The node set of the clique is Q(c,s) =
{ J o , j o , k 0 J o) , (i o , j o , k i , h) , (i o , j i , k o J i) , J o , j i , k i J o) } , the induced inequality being:

iojokolo "b ^ ̂ x ijokoh "P ^] x iojkolo "P ^] x iojoklo — ̂
i€l\{io} j£J\{jo} k€K\{k0}

x iojokolo "P ^ j x ijokolo "P ^ ̂ iojkolo "P ^ ̂ x iojokol ^ 1
i € / \ { i o } jeJ\{jo} l£L\{l0}

Adding rows (io, j o) , (j o , ko) , (jo Jo), dividing the resulting inequality by 2 and rounding down
both sides gives:

x i o j okolo "P ^ y x i jokolo "P ^ ̂ x i o j ok l o "P E x io j oko l 5; 1 (3.27)
ieAPo} k€K\{k0} ieL\{i0}

x iojokolo “b ^ ̂ x iojkolo “b ^ ̂ x iojoklo "P ^ ̂ x iojokol — 1
jeAD'o} f c G K \{ f c 0 } ieL\{i0y

Finally, adding rank 1 inequalities (3.25)-(3.28) gives the following inequality:

^ x i o j o k o l o "P 3 ̂̂ x i j o k o l o "P 3 ^ ̂ x iojkolo "P 3 ̂' x iojoklo "P 3 E x i o j o k o l ̂1 (3.29)
f c G K \{ f c 0 }

x iojokolo ~b "Aojofciii “b-^ioJifcob “b-AojifciJo — 1- (3.30)

3.4. Clique inequalities 59

If the inequality (3.30) is of Chvatal rank 1, then there exists 0 < e < 1, such th a t every solution
to the LP-relaxation of OLS, i.e. A x = e , x > 0, satisfies:

•Eiojokolo “I" S'iojokih "P ^ioji koli %iojikilo ^ 2 E (3.31)

However, any solution having x laJukuiu = x KKklh = = x iojlkii0 = 5 violates (3.31). We
will show that such a solution always exists for n > 3, distinguishing between the cases where n is
even and n is odd, thus proving th a t the rank of the inequality (3.30) is at least 2.

If n is even, then for each {iv, jx) £ 7 x J define:

V l - (
’V

•2 +
X

2 . 2 .
2 ̂ m odn, z\ = (yi +

v
L2J

2 + x —
x

L2J

and

V2 -(
' V

•2 +
X

2 . 2 .
2 + l) mod n, z 2 = (y 2 +

V X
— • 2 — x + —

. 2 . .2 J

• 2) mod n

2) mod n

The solution must satisfy:
if y = y i , z = zi or y = y2, z = z 2)

0, otherwise J
for all (iv , j x) € / x <7. It is easy to see th a t v , x , y , z € {0, 1, ...,n — 1}.
To illustrate this solution with respect to an O L S structure, it is convenient to assume that

I = J = K = L = {0 ,1 ,...,n — 1}, n even. I is the row set, J is the column set and K, L are
the value sets for the first and the second Latin square, respectively. For each cell (i , j) G I x J,
define:

ki = (
i

•2 + 1

V 2 2
• 2 J m o d n , l\ = (k\ + 2 + j ~ ■ 2 I mod n

and

k 2 =
i

■ 2 + j
2 _2 _

2 + 1 I mod n , l 2 = (k 2 + 2 - 3 + ■ 2 I mod n

The solution must satisfy:
if k — ki, I = li or k = k2, 1 = l2 1

0, otherwise J
The non-zero variables, for n = 6, are depicted in Figure 3.3. Pair (k,l) placed at cell (i , j)

implies that Xijki = The row values in the left margin are the values of index i, whereas the
marginal column values are the ones of index j. It is easy to verify th a t exactly two variables a t the
l.h.s. of each constraint are set to ^ by checking th a t each value of index k (or I) appears exactly
twice in each row/column, each pair (k,l) appears at exactly two cells and each cell has exactly two
non-zero variables.

If n is odd, the solution does not follow a pattern as concrete as above, therefore it can be
better described in the format used in Figure 3.3. Assume again w.l.o.g. th a t I — J = K = L =
{0,1,..., n — 1}, n odd and construct a square matrix, w ith the marginal values in rows and columns
corresponding to elements of sets I and J, respectively. The m atrix is symmetric, with respect to
the main bottom-left to top-right diagonal (i.e. the diagonal (n — 1,0), (n — 2 ,1),...., (0 ,n — 1)),
therefore only the upper half will be described. Figure 3.4 exhibits the structure of the matrix.

The non-zero Xojki variables (i.e. the ones in the first row) are fixed exactly as in the case of n

being even, except for variable z 0(n_i)(n_i)(n_i), single variable set to 1. The non-zero x ^ n_i

CH APTER 3. Polyhedral characterisation of the OLS polytope 60

0 1 2 3 4 5

0 00,11 01,10 22,33 23,32 44,55 45,54
1 22,33 23,32 44,55 45,54 00,11 01,10
2 24,35 25,34 40,51, 41,50 02,13 03,12
3 40,51 41,50 02,13 03,12 24,35 25,34

4 42,53 43,52 04,15 05,14 20,31 21,30

5 04,15 05,14 20,31 21,30 42,53 43,52

Figure 3.3: A solution violating (3.31) for n = 6.

0 1 n-2 n-1 n-1

0 00,11 01,10 (n-3)(n-3),(n-2)(n-2) (n-3) (n-2), (n-2) (n-3) (n-l)(n-l)

1 (n-5)(n-3),(n-4)(n-2) (n-l)0 ,(n -l)l (n-3)(n-2), (n-2)(n-3))
2 (n-3) (n-3), (n-2) (n-2)

n-2 (n-l)2,(n -l)3 01,10
n-1 (n-5)(n-3),(n-4)(n-2) 00,11

Figure 3.4: A solution violating (3.31) for n odd

variables (i.e. the ones in the last column) are fixed in the manner posed by the above mentioned
symmetry. Excluding the first row and the last column, we axe left w ith an (n — 1) x (n — 1) square
subm atrix (of even size), which can be split into 2 x 2 submatrices.

Each such 2 x 2 submatrix, which is “above” the main diagonal, involves two pairs of consecutive
indices from each of the sets K, L according to the following pattern (remember th a t all 4 sets contain
elements {0,1,..., n — 1}) :

(3.32)

where y , z = 0,2, ...,n — 3.

It is therefore enough to define only the upper left element of each such submatrix, appearing at
rows 1 ,3 ,.., n — 4 and columns 0 ,2,..., n — 5. At row i and column j (i < n — 4 and odd, j < n — 5
and even, i + j < n — 4), there must be y = n — (i + j) — 4 and z — y + n — i. l i z > n — 3, 2 is
replaced by 2 mod(n — 3).

The remaining 2 x 2 submatrices are the last to be filled according to the pattern:

(3.33)

where y = 0 ,2 ,..., n — 3. Note that the top-right and bottom left cells are on the diagonal (n — 1,0),
(n — 2 ,1),...., (0 ,n — 1) (i.e. the main bottom-left to top-right diagonal). The value of y must be
the one appearing only once in that column, after all other cells have been filled. Figure 3.5 is also
an example for n = 7. It is easy to check th a t exactly two variables a t the l.h.s. of each constraint
are set to | or exactly one variable (i.e. xo666) is set to 1.

We have shown th a t the rank of (3.30) is at least two. Next we will show th a t the rank
is at most 2, by deriving (3.30) as a linear combination of ran k l inequalities. Adding the rows

(n - l) y , (n — l)(y + 1) y (n - l) , (y + l) (n - l)
y (n - l) , { y + l) { n - l) (n - l) y , (n - l)(y + l)

yz , (y + l) (z + l) z y , (z + l){y + 1)
z(y + l) , (z + l)y y(z + l) , (y + l) z

3.4. Clique inequalities 61

0 1 2 3 4 5 6

0 00,11 01,10 22,33 23,32 44,55 45,54 66

1 24,35 42,53 02,13 20,31 60,61 06,16 45,54

2 43,52 25,34 21,30 03,12 06,16 60,61 44,55

3 04,15 40,51 64,65 46,56 03,12 20,31 23,32

4 50,41 05,14 46,56 64,65 21,30 02,13 22,33

5 62,63 26,36 05,14 40,51 25,34 42,53 01,10

6 26,36 62,63 50,41 04,15 43,52 24,35 00,11

Figure 3.5: A solution violating (3.31) for n = 7

(io, jo), (io, k0), (i0, h) , each one weighted by \ , gives an inequality, where variables Xi0 jokoiQ, x iQjoklh
& XiQj lkoi1 appear with coefficient 1, variable appears w ith coefficient | and all other variables
appear with coefficient The r.h.s. is Rounding down both sides results in the inequality:

x iojokolo d~ ‘̂ ioJo^ih d" x io3 i^oh d“ ^iojokoh — ̂ (3.34)

Applying the same procedure to rows (io, jo), (io ,^i), (io, ^o) results in the the inequality:

x iojokolo d- x iojokih + Xi0 j lk-l iQ + X{0 jQkli0 < 1 (3.35)

Applying the same procedure to rows (io, j i) , (io, ^o), (io, io) results in the the inequality:

x io j oko l o d" x i o j i k o h d~ X { 0j 1 k l l0 + X i Qj l k o iQ < 1 (3.36)

Applying the same procedure to rows (io, j i) , (io, &i), (io, h) results in the the inequality:

x iojokih d" XiQj lkoi1 + x i0 j ikli0 + X{0 j lkli1 < 1 (3.37)

Adding rank 1 inequalities (3.34)-(3.37) gives the inequality:

d" x iojokih d- XiQj 1 kll0 d- XiQj lkoi1) + (XiQjokol} d- XiQjokliQ + XiQj lkoiQ + Xi0 j lkli1) ^ 4 (3.38)

Dividing inequality (3.38) by 3 and rounding down both sides gives inequality (3.30). This implies
th a t inequality (3.30) is of rank at most 2 and the proof is complete. ■

3.4.2 Separation algorithm s for clique inequalities

Facet-defining inequalities are of great importance since they describe the convex hull of integer
solutions for a problem. Therefore, if we knew all facet-defining inequalities of an integer polytope,
we would be able to solve the integer problem by incorporating them into the constraint matrix
and then solving the linear programming relaxation. In practice, however, this is not easy, since for
most problems a) not all the facets of the underlying convex hull of integer points are known, and
b) the number of facets is not polynomially bounded on the size of the problem, therefore resulting
in a constraint m atrix of exponential size. For these reasons, most algorithms consider the known
facet inequalities only when they axe violated by a certain point of the linear relaxation polytope.
Although determining whether an arbitrary non-integer solution violates a facet-defining inequality

CHAPTER 3. Polyhedral characterisation of the OLS poly tope 62

of the convex hull of integer solutions for an M V -hard problem is generally also HV ~hard, it is
sometimes possible to do th a t efficiently for certain classes of facets. In particular, with respect to
the OLS, we propose two polynomial procedures, one for each class of facet defining cliques, that
deal w ith the problem of detecting a violated clique inequality.

The separation algorithms of this paragraph have been motivated by the ones in [9]. First, we
provide an algorithm th a t detects a violated facet-defining inequality induced by cliques of type II.

A lg o rith m 3.14 (S e p a ra tio n o f C liques o f ty p e II) Let x G Pl \P i and v G N such that v > 5.

S te p I Set dc = 0, for all c G C.

S te p 2 : For all s G C check x s . I f x s > set dc = dc + x s for all c G Q{s). I f dc > 1 stop: the

inequality XX^g '• Q ^ Q (c)} — 1 violated; otherwise, continue.

S te p 3 : For all c G C if dc > check whether the inequality XX^g : # £ Q (c)} < 1 ^ violated.
I f yes stop; otherwise continue.

In order to prove the correctness and complexity of the algorithm we need a number of interme
diate results.

L em m a 3.15 For a point x G Pl and a positive integer v, the number o f components of x with
2

value > v is < — .— — V

P ro o f. The value of the linear program L = max{ex : x G Pl } can be easily shown to be n 2
since the vectors x G M”4 and u G R6n2 defined by x c = ^r,Vc G C and ur = ^,Vr G R are feasible

2
solutions to L and its dual, respectively. Therefore, they are optimal. If more than ^ components
of x have values greater than or equal to v, the value of ex would be greater than n 2 contradicting
the above. ■

L em m a 3.16 For any x G P l and any positive integer v , the number of c G C, such that XX^g :
q G Q{c)} > v is < - ■

P ro o f . Consider
G Q(c)} : c G C} (3.39)

Recall th a t | Q(c) |= 4n — 3 for all c G C which implies th a t each x c appears 4n — 3 times in (3.39).
Hence:

E < 5 > : q G Q(c)} : c G C] = (4n — 3) E { * . : c G C} < (4n - 3)n2

If there were more than n X^i^g : Q ^ Q(c)} with a value greater than or equal to v then it
would be : q G Q(c)} : c G C } > n 2(4n — 3) contradicting the above. ■

T h e o re m 3.17 Algorithm 3.14 determines in 0 (n 4) steps whether a given x G P l violates a facet-
defining inequality of type II.

P ro o f. Let us first prove th a t the algorithm is correct. Assume th a t the inequality XX^g : 9 £
Q{c)} 5; 1 is violated for some c G C. Then

dc = y ^ { x g : q G Q(c) ,xq > ^ - } > 1 - y ^ { x q : q G Q(c) , xq < ^ - }

^ 4n — 3 ^ u — 4
— vn ~~ v

3.4. Clique inequalities 63

Hence, violation is detected a t Step 3 of the algorithm. Therefore the algorithm is correct.

Let us now examine the complexity of the algorithm. At Step 1, we initialize n 4 counters. At
Step 2, there can be at most un3 components of a fractional point x, which are examined (Lemma
3.15). For each of those, 4n — 3 counters are updated since there axe 4n — 3 nodes in the node set of
a clique of type II. Hence, in the worst case the complexity of Step 2 is vn 3 (4n — 3). At Step 3, the

number of c £ C for which XX^g : 9 ^ Q(c)} > is most vn (Lemma 3.16). For each
such c we need 4n — 3 extra steps to check whether the corresponding inequality is indeed violated.
Hence, the complexity of Step 3 is . The overall complexity of the algorithm is

f (v , n) = n 4 + vn 3 (4n - 3) + vn2(4 n ~ 3) 2 (3>40)
v — 4

which is 0 (n4).
The value of v th a t minimizes f (v , n) is found by setting the first derivative with respect to v to

zero:

= n{v 4)4 4(4n - 3) = 0 = * u = 4 + J 1 6 - —
dv V n

which for large n produces v = 8. For this value of v eq. (3.40) becomes f (n) = n 4 + 8n3(4n — 3) +
2n2(4n — 3)2. ■

Note th a t the complexity of the above algorithm remains linear with respect to the number of
variables, therefore it is the lowest possible (see also [9]). A separation algorithm for cliques of
type III follows.

A lg o rith m 3.18 (S e p a ra tio n o f C liques o f ty p e I I I) Let x E Pl \ P i •

S te p 1: For all c £ C, i f \ < x c < 1;

S te p 2: Then for all t G C with \ c fl t |= 2, if x t > —ff*

S te p 3: Then for all s G C, such that \ c fl s |= 1 and \ s D t \= 3, i f XX^g : Q £ Q{ci s)} > 1 stop:
a violated inequality has been found; otherwise continue.

T h e o re m 3.19 Algorithm 3.18 determines in 0 (n 4) steps whether a given x G P l violates a facet
defining inequality of type III.

P ro o f. Let us examine the correctness of the algorithm. Q(c, s) is a node set of a 4-clique thus
if a non-integer point x violates XXxg : ? G Q(c,s)} < 1 at least one component of x must be >
W.l.o.g. assume th a t x c > ^ for c = (io, jo, ko, Iq). Since x G P l , variable x c appears in the following
constraints:

pip : * € I J e j } = 1 (3.41)

x iojkl0 : j G J , k G K } = 1 (3.42)

y ' { xijoMo : i G I, k G K) = 1 (3.43)

^ ^ { x iojokl : k G K, I G L} = 1 (3.44)

Xiiok0l : i e 1,1 e L} = 1 (3.45)

^ 'Xa'*oJ*(W : j G J, I G L } = 1 (3.46)

CH APTER 3. Polyhedral characterisation of the OLS polytope 64

If x c = 1 then for all £ G C such that | c fl £ |= 2 we have x t = 0. Hence, the inequality : 9 ^
Q(c, s)} < 1 is satisfied as equality for all s G C such th a t | c fl s |= 1. Therefore, if x violates such
an inequality, it must be th a t | < x c < 1. Since | Q(c,s) |= 4, the condition x t > must hold
for at least one £ G Q(c, s)\{c}. Consequently, Algorithm 3.18 is correct.

Concerning the complexity of the algorithm, we note th a t the comparison in Step 1 is executed
in the worst case n 4 times, once for each variable. The number of variables with value > ^ is at
most 4n2 (Lemma 3.15). For each such variable, there are 6(n — l)2 £ G C such th a t | c n £ |= 2,
as indicated by constraints (3.41),...,(3.46). Hence, we need 24n2(n — l)2 comparisons to identify all
such ordered pairs (c, £), yielding a complexity of 0 (n 4). For each such c, the number of £ cannot be
more than 3 in each of (3.41),...,(3.46), since otherwise one of these inequalities would be violated.
Thus the to tal number of £ given c, for which x t > is satisfied, is 18. For c, £ given, there are
at most n - 1 s E C such th a t | c fl s |= 1. Thus, Step 3 will be executed 4n2 x 18 x (n — 1) times,
i.e. its complexity is of the order 0 (n 3). The total complexity is 0 (n 4). ■

C o ro lla ry 3.20 Whether there exists a violated clique inequality can be detected in linear time with
respect to the number of variables, i.e. in 0 (n4) steps.

3.5 Antiweb inequalities

For c, d G C, \c Pl d\ = 0, let A(c , d) = { / G C : / C c U d}. It has been proved th a t the inequality

X(A(c , of)) = ■ f 6 A(c, d) } < 2 (3.47)

can be regarded as lifted from an (8,3) antiweb. Recall also its form for c = (io,jo,ko,lo), d =

(i i iJ i.fc i.f i) :

'f'iojokolo "P '̂iojohoh "P iojo^ih "P "^iojo^ih "P "P *P "P (3.48)

x iijokolo + x iijokoh "P x i\3ok\lo + x i\jokili + x i\j\kolo "P x i\jikoh + x i\j\k],lo "P Si 2

Both the Chvatal rank and the dimension of this inequality remain unknown. The fact th a t this
inequality cannot be further lifted, i.e. it cannot be made stronger, suggests th a t this inequality
cannot be dominated. This implies th a t the face defined by inequality (3.47) is maximal with
respect to set inclusion, i.e. is not included in any other face defining polytope P j. A beneficial
feature, however, is th a t inequalities (3.47) can also be separated in linear time with respect to the
number of variables, i.e. in 0 (n 4) steps, although their number is 0 (n 8). The following separation
algorithm achieves this result. We may assume th a t the previously exhibited separation algorithms
for clique inequalities have already been executed for a specific point x € Pl \ P i and that no violated
clique inequality of type II has been identified. This assumption is possible without loss of generality
and is also im portant for the correctness and complexity of the following algorithm.

A lg o rith m 3.21 Let x G P l \ P i , which violates no clique inequality.

Step I For all c G C, i f \ < x c < 1, then:

Step I I For all d G C, such that \c fl d\ = 2 i f Xd> -~[qg then:

Step III For all p G C , such that |cfl <?| = 0, |d n p | = 2, check whether the inequality X (A (c ,g)) < 2 is
violated. I f yes, stop; otherwise, continue.

3.5. Antiweb inequalities 65

Step I V For all d G C, such that |cfl d\ = 3, i f Xd > then:

Step V For all f G C, such that |cfl / | = 2, |cfl f \ = 3, i f Xj > 1 ~xc - x<i then:

Step VI For all g e C, such that \c fl g\ = 0, \ f D g\ = 2, check whether the inequality X (A (c ,g)) < 2 is
violated. I f yes, stop; otherwise, continue.

P ro p o s i t io n 3.22 Algorithm 3.21 determines in 0 (n 4) steps whether a given x € P l \ P i violates
an inequality (3.4,7).

P ro o f. We first prove the correctness of the algorithm, assuming th a t no clique inequality has
been found to be violated by the particular fractional point. Since the number of variables in the
inequality is 16 and the r.h.s. is 2, at least one variable must possess a value greater than If this
variable, namely x c, is equal to 1, then 10 other variables having at least 2 indices in common with
x c will be set to 0. The remaining 5 variables, which have 0 or 1 index in common with x c, belong to
a clique of type II, therefore cannot sum up to a value greater than 1. Therefore, variable x c being 1
implies th a t inequality (3.48) cannot be violated. This proves the validity of the bounds a t Step I.

As an example, let c = {io,jo, ko,lo) and consider inequality (3.48). The 5 variables not set to 0

if x c 1 are %iiji kilo i ji ki i\ } 9>nd all belong to the node set of the
clique of type II Q(d), for d = (i i , j i , k i , l i) .

Since 5 variables belong to a clique of type II and no such inequality is violated, the sum of these
5 variables will be no more than 1. Therefore, the antiweb inequality will be violated only if the sum
of remaining 11 variables is greater than 1. Since one of those variables is already greater than |
(variable x c of the algorithm), at least one of the remaining 10 must be greater than 1Yqc • This can
be a variable having either 2 or 3 indices in common with x c. The remaining steps attem pt to find
such a variable.

Concerning the complexity of the algorithm, Step I is performed up to n 4 times. Step I I will
be performed at most 8 n 2 times (see Lemma 3.15). For a particular x c, the variables xj , such
th a t |cD d | = 2, are 6(n — l) 2, as shown in the proof of Theorem 3.19. Therefore, it takes up to
8n2 • 6(n — l) 2, i.e. 0 (n 4), steps to identify all such ordered pairs (c, d). This is the complexity of
Step II.

Taking into account th a t a particular c appears at exactly six constraints, the number of d's
such th a t Xd > --^qc cannot be more than 10 in each constraint, or 60 in total. This implies that
Step I I I will be performed at most 60 x 8n2 times. For c,d given, the number of g's such that
|c fl g\ = 0, \d fl #| = 2 is exactly (n — l) 2. Checking whether the inequality X (A (c , g)) < 2 is violated
involves a constant number of steps. Overall, the complexity of Step I I I is 60 -8n2 • (n — l) 2, i.e.O(n4).

Similarly, Step I V is implemented up to 8n2 • 4(n — 1) times in order to identify all ordered pairs
(c, d), therefore the complexity of this step is 0 (n 3). Following the same reasoning as before, the
number of d's such th a t |c f ld | = 3, Xd > c , cannot be more th a t 60. For c,d fixed, finding all
f ' s of Step V involves 3(n — 1) steps. As a result, Step V will be performed 8n2 • 60 • 3(n — 1), i.e.
0 (n 3) times.

Finally, the number of f ' s can be up to 54. For a particular pair of (c, /) , the number of g's
examined a t Step VI are exactly (n — l) 2. Overall, Step VI is implemented 8n2 • 60 • 54 • (n — l) 2, i.e.
0 (n 4). The complexity of each step of the algorithm being at most 0 (n 4) implies th a t the algorithm
is also of linear complexity with respect to the number of variables. ■

CHAPTER 3. Polyhedral characterisation of the OLS polytope 66

3.6 Com posite clique inequalities

Composite clique inequalities were introduced in Section 2.6. This section proves that they induce
facets of Pj. The proof is based on condition (d) of Theorem 3.1, exactly as the proofs in [2]. Let us
present again the form of the inequality, for cn = (n , n , n , n), Co = {io,jo,ko,lo)'-

2Xnnnn E innn E %njnn E %nnkn ^ ̂Xnnnl (3.49)
i^n j ^ 71 ky^n l^n

iojonn ionkon "h Xnjokon "h ionnlo “I- Znjonlo "I- XnnkolQ — 2

T h e o re m 3.23 For n > 7, (3.49) defines a facet of Pi.

P ro o f . Since (3.49) is induced by a wheel, its validity for all x E Pi arises from the intersection
graph. Let P i(W (cn , Co)) = {x : x E Pi, : 9 e ^ (cn>Co)} = 2}. Denote as x a point of Pi
corresponding to a standardised pair of OLS, i.e. x titt = 1,V£ G { 1 ,... ,n}

Let x = x (l <r-> n)2. Point x G P/(W (cn , Co)), since x nnnn — 1; hence, P i(W (cn , Co)) / 0.
To show th a t P / \ Pi (W (cu, cq)) ^ 0, we consider again the point x We consider two cases, viz

Xnnkolo = Ij^nnfcoZo L

C ase (i): If x nnkoiQ = 1, there exists j i G J \ { l,n } such th a t (k(i0, j i) , l(i0, j i)) ± {k0 , n) }(n, l0).
Let x = x(j i <-+ 71)2- Clearly, x G P / \ P /(W (cn , co)).

C ase (ii): For xnnfcoi0 ^ 1, if x ionkon = 0 and x ionni0 = 0 it follows th a t x G Pj \ P /(W (cn , c0)).
Otherwise, assume w.l.o.g. that x ionkon = 1. Observe th a t there must exist a column j \ G

J \ {1,n}, such th a t {k(i 0 , j i) , l (i 0 , j i)) ± {nJo) and {k(n , j{) , l(n , j i)) 7̂ (fco>fo)- Let x =
x (ji n)2. Clearly, x G P / \ P /(W (cn , Co)).

4

Let a G Rn , a0 G M such th a t ax = ao, for every x G P i(W (cn , cq)). The proof established that
(a, ao) is bound to be a linear combination of the rows of A and inequality (2.26). This implies that
there exist scalars Afcz> A^, A^, ^ j k> ^fkj 'Tr ^ JR., Vi G I , j G J , k G K , l G L, such that:

& i j k l

AL + + Aji + Kj + Ajk + A®fc, G C \ W (cn ,co)
A*z + A?i + A^ + A?-+ A®fc + Affc + 7r, (i, j , k, l) G W (cn ,co) \ {cn} (3.50)

„ Ann + A^n + A^n + X^n + A^n + A®n + 2 n (i , j , k , l) = (n , n ,n , n)

ao — X ^ + X ! ^ + X ^ + X ^ X ^ + X / ^ + 27r (3.51)
keK,ieL iei,ieL jeJ,ieL iei , jeJ jeJ,keK iei ,keK

Define the scalars)}kl, ..., Affc as in Theorem 3.5.
To study the case of (i , j , k, l) G C \ W(cn , co), we need a number of intermediate results.

Lem m a 3.24 For n > 7, i q, i i G I \ { l ,n } , j q, j i G J \ {1 , n}, A:2 , ^ 3 £ K \ { l , k o , n } where

ko G K \ {1, n) , li G L \ { l , l o , n } , I2 G L \ {1, Z0}, I3 E L \ {1} where Iq G L \ {1, n} , there exists

x G P i as illustrated in Table 3.14

P ro o f. At point x, let i\ G I \ { l,n } , j \ G J \ {1} be such th a t k (i i , j i) = 1, l { h , j i) = n.
W.l.o.g. assume th a t there exists iq G I \ { l , i i ,n } , such that k(iq, 1) = k\. Let also «2 E I \ { i \ ,n } ,
h € I \ { j i , n } be such th a t x i2 j2kin = 1. By denoting 23, J3 the row and column at which the pair
(fc2,n) appears (xi3j3fc2n = 1,23 G / \ { i i , i 2 , ^ } , h ^ «•}) and by performing the interchanges

3.6. Composite clique inequalities 67

Table 3.14: Point x (Lemma 3.24)
1 •■• jq ■■■ 3\ • • • n

1

iq

h

n

11 k2l2

Till k$l 3

In

nn

(k2 *-* 2̂)10*3 3 2)2 > we derive point x with iq ^ i\ . In any case, if we denote l(iq, 1)
as li, we have x iqiklh = x ^ j ^ n = Xi2j2kin 1. Let x = x(i 2 *-> n) i (j 2 «-> n)2. In Table 3.15, it is
shown th a t for n > 7, at point x, there exists j q G J \ { l,n } such th a t k(iq, j q), k (l , j q) € i f \ { l,n} ,

3q) 3q) £ i f \ {!>

Table 3.15: Point x (Lemma 3.24)
1 • • • jq • • ■ j \ • • ■ 3 3 • • • j4 • • ■ h • • • n

1

iq

i\

n

11 k2h n-

nli k zh 1- •1

In

nn

Observe th a t we can safely assume k (i q , j q) , k (l , j q) ^ ko. To prove this, consider k (i q , j q) = ko.

Then there exists k t G i f \ {1, k o , n } such that the interchange (k t <-> ko) will set k (i q , j q) = k t ^
k 0 . By the same argument, l { i q , j q) , l { l , j q) , h 7̂ 0̂ I f we denote k (l , j q) , k (i q, j q) as k 2 , ko and
l (l , j q) , l { i q , j q) as l2 ,l%, we obtain point x of Table 3.14. ■

(Back to the proof of theorem 3.23) For (i , j , k , l) E C \ W (cn ,co), if we substitute As in (3.50),
we obtain

a i j k l ~ O ' i j 11 + f l i lfc l + O - i l l l + a l j k l + a l j l l +

—2 a m i — 2 a i j n — 2anfci — 2 a m ; + 3 a im (3.52)

Observe th a t (3.52) is true, if at least two of the indices are equal to one. All the other cases are
defined with respect to the number of indices equal to n. In other words, for (i , j , k , I) 6 C \ W (c n , cq),
we will prove the validity of eq. (3.50) where none, one, or two of the indices are equal to n. W ithin
each case, certain subcases are proved, depending on the number of indices allowed to take value 1.
For the first two cases, eq. (3.50) is shown via proving eq. (3.52), whereas for the last case eq. (3.50)
is shown explicitly.

Another critical note is th a t all cases will be carried out by applying Proposition 3.6. Each time
the equation of this proposition is used, the existence of 4 distinct vectors of P j is implied. Hence,
we are incorporating collections of points rather than single points. The correctness of this proof

CHAPTER 3. Polyhedral characterisation of the OLS poly tope 68

requires th a t all these points belong also to the face P /(W (cn , Co)).

C ase 1: Let (i , j , k , l) = (i q, j q, k q,lq), where iq ± n j q ± n , k q ^ n , l q ± n.
Let also x 1 denote point x of Lemma 3.24. For n > 5, there exists kq E K \ ,n}
such th a t x 2 = x*(l kq)3. For n > 6, there exists lq E L \ { l , h , l 2 , h , n } such that
x 3 = x 2(l <-> lq)4, x 4 = x 4(l lq)4. Let A i , X2, A 3, X4 denote the collections of points for
each variable. Notice th a t X \ , X 2 , A 3, X 4 E P i i W (cn , cq)), since at all points of these collec
tions have (k (n ,n) , l (n ,n)) = (7 2 , 7 2).
Subtracting equation x2((l,z g)i; (1, ^) 2) from x 1 ((l , i q)\) (1,)2) yields eq. (3.52) for the co
efficient aiqjqkqi. The correctness of eq. (3.52) for aljqkqiq,a iqlkqiq,aiqjqllq follows by symmetry.

Similarly, subtracting equation x4((l,zg)i; (1, ^) 2) from x 3((l,z g)i; (1, ^) 2) results in

a i q j q k q l q = { O ' i q j q l l q + ^ i q l k q l q + j q k q l q) ~ ^ l l Z , ~ ~ « 1 1 k q l q + ^ 1 1 1 * ,

Substituting terms in brackets from eq. (3.52) for a,\jqkqiq,aiqikqiq,aiqjqu q, we obtain, after
arithm etic operations, eq. (3.52) for caqjqkqiq-

C ase 2: Let (i , j , k , l) = (iq, j q, n , l q), where iq ± n , j q =£n,lq ^ n.
As in the previous case, at point x of Lemma 3.24, let kq E K \ {1, &2> ^3, 72} and lq G L \
{ l , h , l 2 , h , n } - Derive points x 1 = x{l\ <-> lq)4 and x2 = x : (l <-> 72)3(11 <-> 72)1 (ji <-> 72)2.
Again, X \ , X 2 E P/(VF(cn , co)), since at all points of these collections (k(n ,n) , l (n ,n)) = (72, 72).
Subtracting equation x2((l,z g)i; (1, ^) 2) from x 1((l,zg)i; (1, ^) 2) results in:

a l l l l + al jqnl + Cliqlnl + aiqjqll — (aiqjqnl + CLiqiu + CL\jq\\ + a iin i)

= aiqjqnlq + diqlllq + ^ljgllq + «lln(, ~ {.aiqjq\lq + O-iqlfllq + aljqnlq + 0111/,) (3.53)

Let x 1 = x l (l\ <-> ig)4 and x2 = x2(/i <-> lq)4. Notice X i,X 2 £ -P/(VF(cn ,co)), since
(k (n ,n) , l (n ,n)) = (72, 72) at all points of these collections. Adding the difference x 1((l, zg)i; (1, ^) 2) —
x2((l,z g)!; (1, ^) 2) to (3.53) yields:

2 (^ 1 1 1 1 + O - l j q U l + a i q l n l + a i q j q l l ~ (a i q j q T l 1 + <2 ^ 11 1 + ^ 1 ^ 1 1 + O l l n l))

= ^ ̂ {aiqjqnl "F aiqlll "F <2ljglZ + CL\\nl (aiqjqll ~F aiqlnl "F aljqnl “F Allll)} (3.54)
l£{l 1 ,lq}

Let x3 = x2(l <-» Zg)4(1 <-> Zi)4, x4 = x (l lq)4. Again X 3,X i G P/(VF(cn , Co)). The
difference x3((l,z g)i; (1, j q)2) — x4((l,zg)i; (1, j q)2) shows th a t the right-hand side of (3.54)
is 0, therefore proving (3.52) for the coefficient aiqjq U The correctness of eq. (3.52) for
coefficients aiqiniq,a ljqriiq follow by symmetry.
Because of (3.52), taken for aiqjq7li, the right-hand side of (3.53) is equal to 0, hence:

aiqjqnlq + Uiqlllq + CLljqllq + O-llnlq ~ (o>iqjqllq + &iq lnlq + aljqnlq) - ai ll lq

Substituting terms in brackets from (3.52)for aiqjqu q,aiqiniq,a i j qniq, we obtain (3.52) for
aiqjqniq ■ By reversing the roles of the sets, and following the same procedure, we can derive

eq. (3.52)for 0 'iqjgnlq y aiqjqkqn) aiqnkqlq ■

C ase 3: Let (i , j , k , l) = (n , n , k q,lq), where kq ^ n , l q ^ lo,n.

3.6. Composite clique inequalities 69

In this case, we prove (3.50) directly. First, we need to prove the following lemma.

L em m a 3.25 For n > 4 and k\ G K \ {l,A:o,n}, the point x illustrated in the Table 3.16,
exists in Pj.

Table 3.16: Point x (Lemma 3.25)
. . . j Q . . . n

io

h

n

nl 0

k \ n

nn 11

P ro o f. Let x = x(£(l,n) ^ £o?£(l,n) <-> £0)4(1 <-> 72)2(1 <-* 72)1(72 <-> £0)4- Therefore,
Xiink(il n)i(i n) = 1- If k (i \ , n) 7̂ ko then we denote it as ki and derive point x as illustrated in
Table 3.16. Otherwise, for n > 4, there exists k\ € K \ {1, ko, n} such th a t x = x(k \ «-» £0)3- ■

(Back to Case 3) Let x 1 denote point x of Lemma 3.25. There exists k q E K \ { l,fci,n} ,
therefore let x 2 = x : (l «-> kq)3. Observe that x l , x 2 G P /(W (cn ,Co)), since a t both points we
have (k (n , j o) , l (n , j o)) = (n , n) and (k (i o , n) , l (i o , n)) = (n,£o). The equation a x = ao must be
satisfied by both x 1 and x2, hence a x 1 = ax2 or

G n n l l +) * , * (» , * ,)

i£l\{n} i£l

= annkq 1 4” E aij(i,l)kql(i,l) + ^ ^ / aij(i,kg)ll(i,kq) (3.55)
iG/\{n} i€l

All terms in eq. (3.55), except a n n kq 1, a n n n , have at most one index with the value n, which
implies th a t for each of them eq. (3.50) has shown to be true in one of the previous cases. If
we solve eq. (3.55) with respect to term annkq i, substitute term s in the summands from eq.
(3.50), and perform certain arithmetic, we can derive the following expression:

ttnnkg 1 = Q“nnl 1

~b ^ ^kql(i,kq) ^kql(i, 1) ^1 l(i,kq)}
<€/

~b ^ j(i,kq)kq ~ ^j(i,l)kq +
i£l

~b̂ fcgZ(n,l) “I- ^j(n,l)kq "b ^nkq

~ ^j(n,l)l ~ -^nl (3.56)

CHAPTER 3. Polyhedral characterisation of the OLS polytope 70

The critical observation is that:

Also observe th a t we can substitute term a nn i i from (3 .5 0) , because it has two indices equal
to one (3 .5 2) . Eq. (3 .5 6) becomes:

P AfcqJ(n,l) P Aj (n , l) k q P An k q

— X 1 — X 5 — X6H (n,l) j (n , l) l ^ n l

Since Z(n, 1) = 1 , j (n , 1) = n (Table 3.16), the above equation becomes:

a n n k ql = P + A ^ + A*n + \ bnkq + \ Gnkq

which is identical to (3 .5 0) for term annkq\.

Let x 3 = x 2(l <-> lq) 4 where lq G L \ { l , l o , l i , n } , x 3 G P i i W ^ , c q)) . From ax2 = ax 3 we

transformations similar to those performed on eq. (3 .5 5) , we obtain eq. (3 .5 0) for annkqiq. By
reversing the roles of the sets, we can illustrate the correctness of eq. (3 .5 0) for all other cases
where two of the indices of (i ,j , k,l) G C \ W{cn , Co) are equal to n.

Our proof concerning all (i , j , k, l) G C \ W(cn , c q) is now complete.

For (i , j , k , l) G VF(cn ,c0) \ { (n ,n ,n ,n)} define:

To show (3 .5 0) , for (i , j , k , l) G W (cn ,co) \ { (n ,n ,n ,n)} , it is sufficient to prove th a t all 'Kijki are
equal. We proceed in a series of steps.

S te p l: For (za, j lt k it h) , (i2 , j 2 , k 2 , l2) e VF(cn ,c0) such th a t \(ii, j i , k lt h) n cn \ = 2,

\(i i , 3 i , k i , l i) n c0| = 2 and \(i2, j 2, k 2 , l2) n cn | = 2, |(z2, j 2, k2 , l2) D c0| = 2, we prove that

= ^ 1232^2 = 7r<

derive

(3 .5 7)

where the value of the k index, for given i , l is denoted as k(i, l). If we apply to eq. (3.57)

(3 .5 8)

3.6. Composite clique inequalities 71

W.l.o.g. let = {n, jo, n , l 0), (i2, 72, k 2 , h) = (n J o , k 0 ,n). Consider the point x
illustrated in Table 3.17

Table 3.17: Point x (Step 1)
. . . j Q . . . j 1 . . . n

20

n

nn

nlo kon

It is not difficult to establish the existence of this point: at point x let i\ G 7\{1, n} be such th a t
, 1) = fco, l(i i , l) = h- Derive point x 1 = x{l\ <-> 72)4 (l\ 7̂ Iq11\ <-> 0̂)4 (1 22)2(n 20)1 •

Observe that pair (72, 72) G K x L does not appear in rows io,i i and column n. Thus, we can
place it in column 7o row n, by performing the necessary row and/or column interchanges,
without affecting the positions of pairs nlo (row z0, column n) and pairs k0n (row i \ , column
n). Then, by interchanging the roles of the sets 7, J w ith respect to the rows and columns of
the OLS structure, we finally derive point x.

Let x = x(j i «-> 70)2• Observe that x G Pi (W (cn ,c0)) (x<0„nn = x njoniQ = 1), and x G

Pi(W(cn ,co)) (x ionnn = x njokon = 1). Hence, equation ax = ax implies

0 >njQnlo + y"! aijok(i,jo)l(i,jo) + anjik0n + ^ ' aijik(i,ji)l(i,j\)
i^n i^n

— Xnjokon “I" E
i^n i^n

If we substitute the first terms of both sides from (3.58), the rest of the terms from (3.50) and

cancel out identical terms, we obtain 7rnjQk0n — ^nj 0 ni0 = tt*

By reversing the roles of the sets and applying similar procedures, we obtain

Tfiojonn = ^ionkon ~ ^njokon = ^ionnlo ~ ^njonlo = '^nnkolo = ^

S te p 2: For (21,71, *1. *i), (12,72,^ 2^ 2) € W (cn ,c0) such th a t ((ii,7 i, k ly h) Dcn) = ((22,72,^ 2, 72)0
cn) and |(ii,7 i,fc i,/i) O cn | = |(i2,72, *2, h) 0 cn \ = 3, we will show 7rilJlfclZl = 7riaja*aza.

W.l.o.g. assume th a t (ii,7 i, ki, h) = (n ,7 i,n ,n) , (12,72,^ 2^ 2) = (n ,72 ,n ,n), with 7 i,72 €
J \ {n}. Consider the point x illustrated in Table 3.18.

Table 3.18: Point x (Step 2)
. j 2 . . . n

2(3

n nn k \ h OO

Again, it is easy to establish existence for this point: at point x, let i\ G 7 \ {1,72} be such
that fc(zi,l) = ko. Denote Z(zi, 1) as I2 . Then, x 1 = x f a 7̂ lo^h *-* 0̂)4(21 *-* 22)1- Let

CHAPTER 3. Polyhedral characterisation of the OLS poly tope 72

i2 E I \ { l,n } be such th a t k(i2, 1) = k\. We denote l(i2, 1) as li and perform the interchange
(1 7 1)2 . At the derived point we reverse the roles of the sets I, J, thus obtaining point x of

Table 3.18. Let x = x (j i j 2)2 • Observe th a t x G P i (W (c n ,co)) (x nj inn = x nnk0i0 = !) and
x G P i (W (cn ,c0)) (x nj2nn = x nnkoi0 = 1). Thus, ax = ax implies

O ' n j y T i n + + a n j 2 k i l i + ^ ^ a i j 2 k (i , j 2) l (i , j 2)

= an j 2n n "I- a i j 2 k (i , j i) l (i , j i) d” a n j i k i l l + a i j \ k (i , j 2) l{ i ,32)
i^n i^n

If we substitute the first terms of both sides from (3.58), the rest of the terms from (3.50) and
cancel out identical terms, we obtain itn j i n n = 7rnj2nn = tt2, Vfr, j 2 G J \ {n}.

Reversing the roles of the sets is enough to prove:

7Ti in n n = ^ i 2nnn ~ ^ > W j , i 2 G I \ {A }

n n k \n = ̂ n n k 2n ~ ^ i V fci, &2 G A \ { n }

' Rnnnl i = n n n l 2 = ^ > ^ 1 > 2̂ € L \ {vi}

S te p 3: We will show that n 1 = 7r2 = n 3 = 7r4.

Let 5 = x (ji n)2 where x is the point illustrated in Table 3.17 Let x = x(io *-* n)\ . Note

that X G P i (W (c n , Co)) ([^njonlo = ^ n nk o n — 1) Mid X G P l(h V (C n > Q))) (X n j^ nn X iQnkon !)•
Thus, ax = ax implies

G n n k o n d- &n j on l o d- ^ ̂ a n j k (n , j) l (n , j) d~ & i o j i n n d- ^ ̂ ^ i o j k (i o , j) l (i o t j)
j ^ j o , n j ^ j i

= Q' t i j inn d“ X i o n k o n d“ E a n j k (i 0 , j) l (i 0 , j) d" a i o j o n l 0 d" ^ ̂ a i o j k (n , j) l (n , j)

31^31 3 7^30,n

Substituting the first two terms of both sides from eq. (3.58), the rest of the terms from
eq. (3.50) and taking into account the results obtained in the previous two steps we obtain
K n n k 0 n = ^ n j j n n 7T3 = 7r2. As in the previous steps, by reversing the roles of the sets and
following the same procedure, we obtain

-̂1 — J* _ .̂3 _ v* _ „7T =7T =7T = 7T = K,

S tep 4: We will prove th a t k = it.

Consider the point x illustrated in Table 3.19.

It is easy to see th a t this point exists. At an arbitrary point x G Pi pairs (n l o) , (nn) cannot
lie a t the same row or column. Thus we can easily derive a point x such th a t x njoniQ =

% i in n n = 1- Also let x ipjpkon = 1. Clearly, j p ^ n , i p ^ i x. If ip ± n and j p ± j 0 then
x — x(ip ^ i o l i p <-> i o) \ (j p 7̂ j i ' t j p +-* j 1)2- Otherwise assume w.l.o.g. th a t i p = n. There
exist i 2 G I \ {zi,n}, j 2 G J \ {j o , j p , n }, k i G K \ {&o,™} such th a t x i2 j 2kin = 1. Derive point

x = x(i 2 ^ z0?Z2 <-» io) i(j2 7̂ J i?J2 <-* j i h (k i k 0) 3 .

Now, let x = x(j i *-> n) 2. Note th a t x G Pi(W(cn,co)) (xnj 0 ni0 = n innn = 1) and x G

3.7. Odd cycle inequalities 73

Table 3.19: Point x (Step 4)
. . . j Q . . . j l . . . n

k

h

n

kon

nn

nl 0

Pi {W (cn ,cQ)) (Xnjonio = x ionk0n = 1)- Equation ax = ax yields:

a i i n n n + + £ ' «H* *(« J. W W
i

= Xionkon “I- ^ ̂&ijik{i , i i) l(i ,r i) “b O-iij^nn £
i^i\ i^io

Substituting the first terms of both sides from (3.58), the rest of the terms from (3.50) and
cancelling equivalent terms, we obtain iViinnn = K^nkon or 7T1 = 7r or k = 7r.

Finally, we define

7Tnnnn = a nnnn — (^ nn “b ^ n n “b ^ n n "b \ m “b ^ n n "b \ i n)

Consider the point x illustrated in Table 3.20.

Table 3.20: Point x table

(3.59)

. . . j Q . . . n

k

n

nlQ

nn

Let x = x (j 0 «-> n)2. Note th a t x e P i(W (cn ,co)) (x nnnn = 1) and x e P i(W (cn , Co)) (xnjonn =
Xi0 nni0 = 1)- Equation ax = arc, after substituting terms from equations (3.50), (3.58), (3.59) and
taking into account the results of Steps 1-4, gives the equation n nnnn = 7rnj 0nn + ^ i 0n n i0 = 2n.

Proving eq. (3.51) proceeds exactly as in Theorem 3.5. The proof is complete. ■
No separation algorithm has been devised for inequalities arising from composite cliques.

3.7 Odd cycle inequalities

As discussed in Section 2.7, the two families of odd hole inequalities identified for the OLS problem
arise from the 3A A P n and 3P A P n problems and have been named odd holes of type I and II,
respectively. The inequalities of 3A A P n giving rise to odd holes of type I induce facets of the
polytope associated with 3A A P n ; however, a similar result has not been accomplished for the OLS
polytope, mainly because of the particularities discussed in Section 3.2. Fortunately, the separation

CHAPTER 3. Polyhedral characterisation of the OLS polytope 74

algorithm for the odd hole inequalities of 3A A P n ([10]) is easily extendable and is used to provide
an 0 (n 4) separation procedure for the 5-holes of type I.

Odd holes of type II exist in both 3P A P n and 4P A P n , and their Chvatal rank is proved to be
1 in both cases. It is also proved th a t they define facets of the polytope associated with 3P A P n ,
thus providing a new class of facets for the Latin square polytope ([37]). Unfortunately, the proof
is not directly extendable to the OLS polytope, mainly because a completability theorem analogous
to Ryser’s (in [34]) for Latin squares does not exist for OLS. No separation algorithm for these
inequalities is known.

3.7.1 Separation algorithm s for odd cycles of typ e I

This section extends the separation algorithm for lifted odd cycles presented in [10]. The notation and
the algorithm are essentially reproduced from this work. Recall th a t for constructing an inequality
of this type we select any 3 out of 4 single ground sets and a single value from the fourth set (see
Section 2.7.1). We can assume w.l.o.g. sets I , J , K and value l\ € L. Subsets Qj C I, Q j C J,
Q k C K , satisfying \Qi\ + \Qj\ + \Qk\ = 2p + 1, 1 < \Qm\ < p for M = / , J, A” are necessary to
define the set Q = Qi U Q j U Q k , \Q\ = 2p + 1 . The set of variables in the l.h.s. of the inequality is
X { S { Q, h)) = ■ Q e S (Q , h) } , where S{ Q, h) = |s n (Q u { h }) | > 3}. The lifted
odd cycle inequality has the form

X (S (Q , h)) < p (3.60)

Let us first present the separation algorithm for lifted 5- cycle inequalities. Note th a t \Q\ = 5,
which implies that one of the subsets Q i , Q j , Q k has cardinality 1, whereas the other two have
cardinality 2.

Define:

x (i J , K) — x i j k ' l i

k ’ e K

(3.61)

x (i } J, k) = X / X i 3 ’k ' h
j ' € J

(3.62)

x { I , j , k) = 'y X j ' j k ' i i

i ' e i

(3.63)

and, for p G C,

T(p) = {q e C : |p fl q\ = 2 and p n q G (I x J) U (/ x K) U (J x K)}

*(?>)) = 9 e r(p)}
Assume p, q e C, such th a t l\ C p, q and |p fl q\ = 2, i.e. nodes p and q have two indices in

common, one of which is l\. It is easy to see that Q u { ii} = pUq for some p, q with these properties.
Let w.l.o.g. p = (ip, jp, kp,li), q = (iq, j q, k q,li). The possible cases for the form of the inequality
(3.60), for p = 2, are:

Case 3.25.1 (ip — iq)
X(S(Q, l \)) = X (T (p)) + X(T(q)) + x (I , j p, kq) -I- a :(/ ,jg, kp) — 2 • {xipj pkq + x ipjqkp)

Case 3.25.2 (j p = j q)
X(S(Q, l\)) = X(T(p)) + X(T(q)) + x(ip , J, kq) + x(iq, J, kp) — 2 • (Xipjpkq + x iqjpkp)

3.7. Odd cycle inequalities 75

C ase 3 .25.3 (kp = kq)
X (S (Q , l \)) — X (T (p)) + X { T (q)) + x(i p , jq, K) + x { i q , j p , K) — 2 • {xipj qkp + x iqj Pkp)

Alternatively, assume p,q £ C, such th a t l\ C p, q and \p Pi q\ = 3, i.e. nodes p and q have three
indices in common, one of which is l\. In th a t case, one index is necessary in order for set p U q to
become an equivalent for the set Q U {7i}. Let again p = {ip, j p, kp ,li), q = (iq, j q , kq,li).

Define:
x(iq, J , kp) + x{iq, j p, K) — 2 ■ Xigjpkp > if ip 7̂ iq

x {.PiQ) — < 1 jq> kp) + x(ip, j q, K) 2 • Xipj qkp, if j P ^ jq > (3.64)
, X(I > Jpi kq) + x{ip, J, kq) — 2 • Xipj pkq, if kp ^ kq t

In the case of ip ^ i q, the additional index can be selected either from set J or from set K. If
the additional index is j i £ J, the subsets are Qj = {ip, i q}, Q j = {jp , j i}, Q k = {kp}- Selecting an
index k\ £ K implies Qi = {ip, i q}, Q j = { jP}, Q k = {kp,ki } . In both cases, the existence of an
appropriate set Q has been achieved. Notice that there are two options for selecting an index, for
each of the three cases of (3.64), i.e. a total of six cases. The form of the inequality (3.60) for p = 2

is:

C ase 3 .25.4 (ip ^ iq, j \ £ J)
X (S (Q , h)

Case 3.25.5
X (S (Q , h)

Case 3.25.6
X (S (Q , h)

Case 3.25.7
X (S (Q , h)

Case 3.25.8
X (S (Q , h)

Case 3.25.9
X (S (Q , h)

= X(T(p)) + x(p, q) + x { I , j 1, kp) + x(ip, j U K) + x{iq, j i , K) - 2 • (x ipjlkq + x igjlkq)

ip 7̂ iqi ^ X)
= X(T(p)) + x(p,q) + x (I , j p , fci) + x(ip, J , k i) + x{iq, J, h) - 2 - (x ipjpkl + x iqjpkl)

j p 7̂ j q t i \ £ -0
= X(T(p)) +x(p ,q) + x{ii , J,kp) + x (i i , j p , K) + x (i i , j q, K) - 2- (xiljpkp + x iljqkp)

jp 7̂ j q) ^1 ^ X)
= X(T(p)) + x(p, q) + +x(I , j p , k x) + x{I, j q, fci) + x(ip, J , k l) - 2 - (x ipjpkl + x ipjqkl)

kp 7̂ kq, i\ £ 7)
= X(T(p)) + x{p,q) + x (ii, J , kp) + x(i1, J , k q) + x (i i , j p , K) - 2 ■ (x iljpkp + x iljpkq)

kp 7̂ kq, j \ £ ,7)
= X{T{p)) + x(p,q) + x{ I , j i , kp) + x (I , j 1,kq) + x{ ip, j 1, K) - 2 - (xipjlkp + x ipjlkq)

Given the above notation, the algorithm for separation of lifted 5-cycle inequalities is given below
(see also [10]). Note th a t the algorithm selects first an index from one set and uses values from the
other three sets to construct set Q. The procedure is illustrated assuming th a t the index selected
belongs to set L. Define the set Cix = {c £ C \ l\ C. c}.

A lgorithm 3.26 (Separation o f lifted 5—cycle inequalities) Let x £ P l \ P i • For all li £ L:

Step I Set dp = 0 for all p £ Cix

Step II Check xp for all p £ .

U xp > then set dp = dp + x q for all q £ Ci, satisfying \p D q\ = 3

Step III For al lp £ C^ , i f dp > ^ then set dp = X(T(p)) .

Step IV For al i i £ I , j £ J , k £ K, calculate x (I , j , k) , x (i , J , k) , x (i , j , K) .

CHAPTER 3. Polyhedral characterisation of the OLS polytope 76

S tep V For all i G I , j G J , k G K form and store the sets:

L(i, J, K'j — |p G Ci ̂ . dp g, ip — i ^

L (I , j , K) = { p e Ch :dp > \ , jp = j }

L(I , J, k) = {p G Ch : dp > kp = k}

S tep V I For each p = (ip, j p, kp , l\) G Cj, , such that dp > check dq for all q G L(s), where

L(s) = (L (i p , J , K) u L (I J p, K) U L (I , J , k p)) \ { p }

Step V I I I f \p n q\ = 3 and dq > check whether X (S (Q, h)) > 2, where Q — p U q. I f yes,
stop; otherwise, continue.

Step V I I I I f \p fl g| = 2 and dq > check whether X{S{Q, l \)) > 2, /o r all Q D p Uq . I f yes,
stop; otherwise, continue.

For a specific Algorithm 3.26 determines whether an inequality of the form X(S (Q, l\)) < 2 is
violated in 0 (n 3) steps. The algorithm has to be repeated for all 4n values of all four sets, therefore
its to tal complexity is 0 (n 4), i.e. linear in the number of variables. Both the correctness and the
complexity of the algorithm follow from the results exhibited in [10].

R em ark 3.4 An important fact, arising from results of [10], is that the correctness o f Algorithm
3.26 requires that clique inequalities are separated first. In other words, Algorithm 3.26 is guaranteed
to provide a violated inequality only i f all clique inequalities are satisfied by the given x G P l \ P i -

Concerning inequalities arising from odd cycles of larger size, polynomial time separation algo
rithm s can also be devised for particular sub-families. Inequalities (3.60) for p > 3 need also subsets
Q i i Q j , Q k of larger size, therefore the time to detect whether such an inequality is violated is con
siderably longer. If exactly one of these subsets has cardinality of one, i.e. a single index is selected
from exactly one ground set, the resulting family of inequalities is separable in 0 (n p+1) steps for a
particular li. In total, 0 (n p+2) steps are necessary to detect whether a lifted 2p + 1—cycle inequality
of this structure is violated or not. As p increases, the number of steps becomes significantly larger,
becoming 0 (n n+1) for max{p) = n — 1. Because of the excessive com putational cost of a separation
algorithm, separating inequalities (3.60) for values of p greater than 2 is not considered.

3.7.2 The dim ension o f odd cycles of type II

This section introduces a new class of facet defining inequalities for the polytope of the 3P A P n
problem. Recall from Section 2.7.2 th a t odd cycles of type II appear in the intersection graph of
both the 3P A P n and the 4P A P n .

Concerning the 3P A P n , the inequality induced by lifting an odd cycle Q of type II has the form:

P ro p o s itio n 3.27 Inequalities (3.65) are of Chvatal rank 1.
P roof. F o r m being odd, consider the rows of matrix A indexed by { i \ j \ , i \ k 2 , 3 2 ^ 2 ,•••,

consider the rows o f matrix A indexed by {i \ j \ , i-mkm, imjq, i mk i , j i k i } . Therefore,

3m
(3.65)

2

imki, j i k \ } . By adding up these rows, replacing equality with inequality, dividing the result by 2 and
rounding down both sides we derive (3.65). The same can be accomplished fo r m being even, i f we

3.7. Odd cycle inequalities 77

inequality (3.65) belongs to the elementary closure of (2.12)-(2. I f) . It is also trivial to construct a
fractional solution violating (3.65). ■

I t is easy to see th a t the corresponding inequalities for the 4P A P n are also of rank a t most 1.
To prove th a t they are of rank exactly 1, one must illustrate they define a non-empty face of Pj and
also th a t the induced face does not coincide with Pj. However, no such result has been achieved.

Let us first state a definition and a theorem related to the completability of incomplete Latin
squares. Note that an analogous theorem has not been stated for OLS and this is a strong reason
why the results of this section are not extendable to the OLS polytope.

D e fin itio n 3.1 Let r ,s G { l,...,n } and L be an incomplete Latin square o f order n, whose non
empty cells form an r x s matrix. Then we call L a Latin rectangle o f type (r, s ,n).

T h e o re m 3.28 (H .J .R y se r) (in [34]) A Latin rectangle L of type (r, s ,n) can be completed to a
Latin square of order n i f and only i f each symbol i G {1,..., n) occurs at least r + s — n times in L.

Let us denote as P is the polytope of 3PAPn or Latin square polytope. The dimension of P l s

has been shown to be (n — l) 3 (in [37]). Let D denote the m atrix of constraints (2.12)-(2.14). Then
P l s = conv{x G {0,1}”3 : D x = e}, where e = [1,.., 1]T G P 3n2

T h e o re m 3.29 Inequalities (3.65) induce facets i f m is odd and m < j — 1 (i.e. p < ^ — 2).

P ro o f. Assume, w.l.o.g. that the odd cycle is Q = {222,223,233,333,...., (m + l)(m + l)(m -|-1),
(m + l)(m + 1)2 , (m +1)22}. Let c G R n3 be the 0 — 1 incidence vector of the associated inequality:

: q £ Q } < p (3.66)

where p = 3rT̂ ~1. Let P ^ s ^ = conv{x € {0, l} n3 : D x = e, cT x = p}. We will prove th a t
dim (P*5(g)) = dim (PLS) - 1.

The inequality (3.66) is valid since it is implied by the intersection graph associated with 3P A P n .
It is also easy to illustrate an x G P l s such th a t cTx < p , thus proving th a t P l s ^ 7^ P l s - Assume
finally another inequality aTx < a0, such that P * ^ ^ conv{x G {0, l} n3 : D x = e, aTx = a 0 } and
consider the scalars (in [37]):

= a l j k

^ ik = ®ilfc ®11 k (3 .6 7)

= a i j l — a i l l — a l j l + a l l l

(3 .6 8)

which is equivalent to proving that, for n > 0:

By systematically examining all possible cases, we will show that:

_ f ^jk + ^Hk + ^Hj + tt, { i , j , k) e Q

aT = AT D + 7rcT

ao = Ar l -f 7r

(3.69)

CHAPTER 3. Polyhedral characterisation of the OLS polytope 78

This implies that the equality ax = ao can be expressed as a linear combination of the equality
system { Dx = e, cTx = p}, which is therefore minimal for

It follows from eq. (3.68):

^222 = ^jk + ^ik + + 7r

Therefore, let

7T = a222 - (A*fc + A + A?)

or
7r = a2 22 — «122 — a212 — a22i + a2n + a i2i + a n 2 — a m (3.70)

It can be seen by direct substitution that:

c i i j k = A]fc + \ ? k + A ?■

if at least one of the indices is equal to 1.
We will first prove (3.68) for a(m+1)22. According to (3.68):

0-222 = 0 2 21 + 0 2 1 2 + « i 2 2 — ^211 — a m — a n 2 + a m + 7r

a (m +l)22 = a (m +l)21 + a (m +l)12 + a 122 “ « (m + l) l l — a 121 — a 112 + ^111 + ^

Therefore:

0222 — a (m + l)2 2 = a 221 — ^(m +l)21 + a 212 ~ <Rm+1)12 ~ a 211 + f l (m + l) ll

or

0222 + O2 1 1 + 0 (m + l)1 2 + 0(m+1)21 = a 221 + ^212 + + G(m+1)22 (3-71)

Consider the two Latin rectangles, namely R1 & R2, depicted in Tables 3.21 h 3.22. Note
th a t the emphasised cells correspond to variables whose coefficients appear in (3.71), whereas the
bordered cells correspond to variables appearing in the odd cycle inequality. This convention will be
kept throughout the rest of this proof. It is also worthwhile to notice the trivial fact th a t an r x s
rectangle has r + s — 1 top-right to bottom-left diagonals.

m + l

Each rectangle has m rows and m + l columns, therefore it possesses 2m top-right to bottom-
left diagonals. The cells of a t least m + 1 of those diagonals have already been assigned values.
The remaining m — 1 diagonals can be identically (but not uniquely) completed with elements
m + 2, ...,2m + 2 in both rectangles without violating the structure of a Latin squaxe. An example
of this construction for m = 5, n = 6 is illustrated in Table 3.23.

Table 3.21: Rectangle R1

m-l

5 6
6

2 1 m-l

m-l
m + l

m+l

3.7. Odd cycle inequalities 79

Table 3.22: Rectangle R2
1 m + l

2 2 1 3 4 6

3 4 2

3 2 4 5

5

4

6

5 6

m-l m
6 m m + l 2

m + l 1 2 3 m + l

Table 3.23: Rectangle R1 & R2 for m =5
1 6 1 6

1 2 3 4 2 2 1 3 4

3 4 2 5 3 4 2 5

3 2 4 5 3 2 4 5

4 5 6 2 4 5 6 2

2 1 5 3 6 6 1 2 5 3 6

Since each rectangle has m rows and m + l columns, the rectangles are completable to Latin
squares of order n, if and only if each element appears a t least 2m + 1 — n times (see Theorem 3.28).
Given that 2m + 2 < n, it follows that each element must appear at least 0 times, which is true.
Therefore, the two Latin rectangles R1 & R2 can be identically completed to Latin squares LI & L2
of order n.

Both LI Sz L2 define points x 1,# 2 £ therefore they must both satisfy equality aTx = ao,
which implies that aTx 1 = aTx 2 = ao. By canceling out terms, we derive (3.71).

The proof proceeds in the same fashion for all other cases. We will restrict ourselves to simply
illustrating the rectangle R1 for every case. Rectangle R2 is always derived by interchanging the
emphasised elements of R l.

One can prove (3.68) for <2223 by examining the difference £2222 — &223- Given th a t (3.68) is true for
£1223) the same can be shown for (2233 by taking the difference £2223 — a 233- Similarly, considering the
difference £1233 — <2333 proves (3.68) for £1333. The remaining coefficients (i , j , k) £ Q are examined

in the same way. Assuming the ordering { a 222 , <*223, ^ 233, ^ 3 3 3 , •••, a (m + i) (m + i) (m + i) , a (m + i) (m + i) i ,

a (m + i) n }) it is not difficult to see that all these comparisons between two consecutive coefficients
can be classified into three possible cases.

C a s e 3 . 29.1 We consider the differences £2222 ®223) •••> ® (m + i) (m + i) (m + i) ® (m + i) (m + i) 2 ' 9 &n-
eral, given that (3.68) is true for aijk, (i , j , k) £ Q, we prove that (3.68) is true for £2ij(*.+1), (i , j , k +
1) £ Q (note that m + 2 = 2). According to (3.68):

O ' i j k = O ' l j k “I" & i \ k "I” & i j 1 ® i l l ^ I j l ®11A; d" £ 2 ll l

aij(k+1) = alj(k+l) + a il(fc+l) + aij 1 — aill — a lj l — a ll(fc+l) + a ll l
Therefore:

a-ijk — o-ij{fc+i) = a-ijk — a ij(fc+i) + a nk — an(k+i) + a n(fc+i) ~ a iifc

or

ail k + £2ij(fc+i) + £2ii(fc+l) + Oijk = Ull(fc+1) + aljk + a-iik + a ij(A:+l) (3.72)

CHAPTER 3. Polyhedral characterisation of the OLS polytope 80

Tables 3.24 and 3.25 illustrate rectangle R1 for k being odd and even, respectively. A n example
o f this construction for m = 5 is illustrated in Table 3.26.

Table 3.24: Rectangle R1 for Case 3.29.1, k odd
1 j m + l

k+1m + l k-1l
m + l k-1

k-1

k-1
k-2 k-1
k-1

k+1
k-1

k-1 m-l
k-1 k+1m + l

k+1 m + lm + l

Table 3.25: Rectangle R1 for Case 3.29.1, k even
1 j m + l

k+1

k-1
k-1

k-2 k-1
k-1

k+1

k-1
k-1m + l

Table 3.26: Rectangle R1 for m =5 for Case 3.29.1, k odd & even resp.
1 5 6 1 4 6

5 3 6 4 1 4 6 5
3 6 4 2 6 2 3

6 3 4 2 3 4

3 4 5 4 5 4
6 4 2 5 5 6

4 2 6 6 6 2

Using m elements, we illustrate that m top-right to bottom-left diagonals out of 2m + 1 can be
completed. The rest can be completed using elements 1, m + 2 ,..., 2m + 2 .The completion can be
performed identically for both (m + 1, m + 1, n) rectangles. The special case o f k — m + l is treated
in exactly the same way, i.e. element 2 appears at cell (m + l ,m + 1) of rectangle R l.

C a s e 3 . 29.2 We consider the differences 0 2 2 3 — a 2 3 3 5 •••) a (m + i) (m + i) 2 — a (m + i) 2 2 - I n general, given
that (3.68) is true for a i j k , { i , j , k) € Q, we prove that (3.68) is true for (i, j + l , k) e Q
(m + 2 = 2). According to (3.68):

3.7. Odd cycle inequalities 81

or

d i j k — O' l j k “I” O' i lk d~ &i j 1 ^ i l l ^ l j l ^ 1 1 k d - & 111

a i (j + l) k = a l (j + l) k d " CLilk d " a i (j + l) l — a i \ \ ~~ a l (j + l) l — a m d " A l i i

Therefore:

a i j k a i (j + l) k ~ a l j k ~ a l (j '+ l) f c d " a i j 1 — a i (j + 1)1 d" a l (j + l) l — a l j l

d i j i d - a i (j + i) f c d - a , i (j + i) i d - a , i j k = a i j k + a i (j + i) i d - d i j i d - a q J + 1) fc (3.73)

Tobies 3.27 dnd 3.28 illustmte rectangle R1 for j being odd and even, respectively. An example
of this construction for m = 5 is depicted in Table 3.29.

Table 3.27: Rectangle R1 for Case 3.29.2, j odd
j j+i

m + l

k-1
k-1

2

k-1
2

k

k-1

k-2 k-1 2
k-1 k 1
2 k + 1

k-1

2

m - l

k-1

2

m + l

k-1

2

m + l

Table 3.28: Rectangle R1 for Case 3.29.2, j even
j j+i

m + l

m + l
k-1

k-1

k -1

1 k

k-1

k -2 k-1

1k-1 k

k

k-1

k-1

m + l

m + l

Table 3.29: Rectangle R1 for ra=5 for Case 3.29.2, j odd & even resp.
2 4 6 2 3 6

2 1 5 4 l 6 1 4
3 6 4 2 2 3

6 3 4 2 3 3 4 l 5

4 5 1 5 2

4 2 6 2 5 6

2 6 6 5 6 2

CHAPTER 3. Polyhedral characterisation of the OLS polytope 82

Using m + l elements, we illustrate that m (at least) top-right to bottom-left diagonals out of
2m + 1 can be completed. The rest can be completed using elements m + 2 , ..., 2m + 2.The completion
can be performed identically for both (m + l ,m + l ,n) rectangles. The special case o f j = m + 1 is
treated accordingly.

C ase 3 .29.3 We consider the differences 0 2 3 3 — < 2 3 3 3 , fl(m+1)22 — a(m+1)22- In general, given
that (3.68) is true for ai j k , { i , j , k) G Q, we prove that (3.68) is true for a^i+i^jk ,(i + l , j , k) G Q
(m + 2 = 2). According to (3.68):

& i j k = Q*ljk + <+lfc + < + ,jl <+11 * + j l < + lfc + < + 1 1

a (i + i) j k = a i j k + & (i + i) i k + a (i + 1)j-! — a (i + 1) n — a i j i — a n * + a m

Therefore:

& i j k ~ a (i + l) j k = a i l k ~ a (i + l) l f c + a i j 1 — a (i + l) j l + a (i + l) l l — a i l l

or

*+11 + a i j k + 0-(i+l)lA: + a (i + l) j l — °>i\k + <+jl + < l (i + l) l l + <+ i+ l) jf t (3.74)

Tables 3.30 & 3.31 illustrate rectangle R1 for j being odd and even, respectively. An example of
this construction for m = 5 is illustrated in Table 3.32.

Table 3.30: Rectangle R1 for Case 3.29.3, i odd

m + l

k+1

1
k

k+1

k+1

k-1 k 2
1

2
k+1

k+2

m -l

m + l

m + l

Table 3.31: Rectangle R1 for Case 3.29.3, i even

m + l

k-1 k
1 k+1

k+2

m + l

m + l

Using m + l elements, we illustrate that m (at least) top-right to bottom-left diagonals out of
2m + 1 can be completed. The rest can be completed using elements m + 2,..., 2m + 2. The completion

3.7. Odd cycle inequalities 83

Table 3.32: Rectangle R1 for m =5 for Case 3.29.3, i odd & even resp.
1 4 6 1 5 6

6 3 5 2 6 2 3 4

1 5 3 4 2 3 4 2

4 l 5 4 1 2 4 5
2 6 5 4 1 6

2 6 6 4 6 2

can be performed identically for both (m + l ,m + l ,n) rectangles. The special case of i = m + 1 is
treated accordingly.

It remains to show th a t (3.68) is true for all a^k, (i , j , k) ^ Q. It is obvious th a t (3.68) holds if at
least one index is equal to 1. For all other cases we have to prove that:

®ijk = O'ljk T &ilk T O'ijl ^ill ®ljl ^l lk T ®111

or

Gil* + a \ j i + d in -T a ^ k = + o-ijk + a n k + <Rji (3.75)

We examine a number of collectively exhaustive cases, each time illustrating rectangle R1 alone,
which will give the coefficients of the r.h.s. of (3.75). Table 3.33 provides an overview of these cases.

Table 3.33: Remaining cases to be examined
1 2 m + l m + 2 n

1
2

Cases 3 .29.7 & 3 .29.: Case 3 .29.6

m ,m + l m + l

m + l , 2m + l

m + 2

Case 3 .29.5 Case 3 .29.4

m

C ase 3.29.4 i , j e {m + 2 ,..., n}, k e {2,.., n).
Assume w.l.o.g. t ha t i , j — m +2. Consider rectangle R l, as illustrated in Table 3.34- No violation

of the Latin square structure occurs, i f k > m + l or k = 2. R l has m + 3 out o /2 m + 3 diagonals filled
using m + 2 elements (i.e. 1 ,.. .,m + 1 & A;}. I f k G {4, ...,m }, it is enough not to fill the diagonal
previously fixed with element k, to obtain a non-violated Latin square structure. In this case, R l has
m + 2 out o f 2m + 3 filled using m + l elements. Finally, i f k = 3(or k = m + 1), the two diagonals
filled using 3(m + 1) can be filled using element m + 2, which implies using m + 2 elements to cover
m + 3 diagonals.

In all cases, based on Theorem 3.28 and the fact that 2m + 2 < n, R l and the associated R2 are
identically completable to a Latin square of order n. Note also that the corresponding integer points
belong to • A n example o f the construction for m = 5, i, j = 7 & k = 4 is depicted in Table
3.35 .

CHAPTER 3. Polyhedral characterisation of the OLS polytope 84

Table 3.34: Rectangle R l for Case 3.29.4
1 m + l m + 2

m + l
m + l

m-l
m-l

m-l

m + lm -l
m-l m + l

m-l m + l
m +lm-li + 2

Table 3.35: Rectangle R l for m=5, Case 3.29.4
1 4 6 7

1 1 6 3 4
6 2 3 5

3 4 2 5

3 2 4 5 6

5 6 2

6 5 2 6 3

7 4 5 6 3 1

C ase 3.29.5 i E {m + 2, . . . ,n}, j E {2, ...,m + 1}, k E {2,.., n}.
Assume w.l.o.g. that i = m + 2 and j = 4. I f k E {m + 2,..., n}, the completion o f m + 2 out of

2m + 2 diagonals of rectangle R l using m + 2 elements is implemented as shown in Table 3.36. I f
k E {4, ...,ra}, but the Latin square structure is retained without any violation, it is sufficient to leave
empty the diagonal filled by k. This will leave m + l diagonals completed, the rest m + l being filled
with elements m + 2, ...,2m + 2. I f k = 3 (k = m + l) element k m ust be deleted from two diagonals,
which will be both filled using element m + 2, thus leaving m diagonals to be completed by elements
m + 3, ...,2m + 2.

In the case that inserting element k at cell (1 , j) violates the Latin square structure (e.g. k = 4
in Table 3.36), the choice of p variables belonging to Q must be slightly altered. For our example
(k = 4), the construction is depicted in Table 3.37. Further adjustments o f the chosen p variables
are necessary to handle the cases where k = 2 ,3 ,m + 1.

Table 3.36: Rectangle R l for Case 3.29.5, k=m +2,...,n

m + l

m + 2

C ase 3.29.6 i E {2, ...,m + 1}, j E {m + 2, ...,n}, k E {2, ..,n}.

3.7. Odd cycle inequalities 85

Table 3.37: Rectangle R l for Case 3.29.5, k=4

m + l

m + 2

This case is symmetric to Case 3.29.5, in terms of treating the special subcases. The main points
are again that element 3 (m + l) is used to complete two diagonals, which, i f necessary, can be
completed using element m + 2 instead. The choice o f p cells again has to be modified whenever the
Latin square structure is violated by inserting element k at cells (1 , j) and (i , 1).

C ase 3 .29 .7 i , j G {2 ,...,m + l}, k G {2,..,n} : (i , j , k) ^ Q fo r all k , i.e. cell (i , j) is not used by

Q ■
Assume w.l.o.g. that i = 2, j = 4. I f k G [m + 2 ,..,n } , R l is constructed in the usual way,

as illustrated in Table 3.38. m + 2 out o f 2m + 1 diagonals are filled using m + 2 elements. I f
k G {4, ...,m }, but the Latin square structure is retained without any violation, it is sufficient to leave
empty the diagonal filled by k , since m empty diagonals can be filled with elements m + 2, ...,2m + 2.
I f k = 3 (k = m + l) , two diagonals are left empty; however, element m + 2 can be used to fill both.

I f a violation occurs, rectangle R l is altered by considering different p variables belonging to Q.
As an example, the case of k = 3 is treated as shown in Table 3.39.

Table

1
2

C ase 3 . 29.8 i , j G {2, ...,m + 1}, k G {2, ..,n} : (i , j , k) G Q for some k.
Assume w.l.o.g. that i = 3, j = 3, i.e. a cell used by the odd cycle. I f k € {m + 2,.., n}, rectangle

R l is depicted in Table 3.40. I f k G {2, ..,m + 1} the diagonal(s) filled with k is omitted, the special
cases o f k = 3 ,m + 1 being handled as before. No violation of the Latin square structure can occur,
since (i , j , k) ^ Q. For example, it is easy to check that k cannot be 3 or A in Table 3-40, since
rectangle R l would then have £333 = 1 or £334 = 1 and (3 ,3,3), (3 ,3 ,4) G Q.

It remains to show th a t 7r > 0. Consider rectangles R l and R2 as shown in Tables 3.41 & 3.42.
Both are identically completable to Latin squares of order n. Rectangle R l represents a point £ 1,

3.38: Rectangle R l for Case 3.29.7, k=m +2,...,n
1 4 m + l

m + l

5 6
6 m-l

6 m-l

5 6
6

6 m-l
m -l

m-l
m + l

m + l

1 4 m + l

1 m + l 4 5
m + l 2 3 6

3 4 5 6
3 5 2

2 5 6

5

5

6

6 7

m m + l
6 2

4 1 3

CHAPTER 3. Polyhedral characterisation of the OLS polytope 86

Table 3.39: Rectangle R l for Case 3.29.7, k=3

1
2

m + 1

Table 3.40: Rectangle R l for Case 3.29.7, k=m +2,...,n

3

m -j-1

which does not belong to face ; since only p — 1 variables belonging to Q are set to 1. Therefore,
point x 1 satisfies the (strict) inequality aTx 1 < ao. Rectangle R2 represents a point x 2 belong to
pMQ) (sjnce x 2 2 2 = l)j therefore aT x2 = ao. It follows th a t aTx 1 < aTx 2, which by cancelling out
terms gives:

U n i + U ll2 + a 212 + a 221 < a 112 + a 121 + a 2 l \ + a 222

Recall also that, by Definition (3.70):

7T = a n 2 + ^121 + a 211 + a 222 — (a l l l + a n 2 + 0212 + <3.221)

It follows that 7r > 0.

Table 3.41: Rectangle R l not belonging to Q

1
2

m-l
m-l

5 6
6 m -l

6 m-l

m -l m
m + l

m + l

1
m + l
k
3

1+1 k 3 4
4

5

6 7
7

m + l
m + l

1 m + l
s r ~

3 4
1 4

5
2

m + l

m + l m + l
m + l

The proof is complete. ■

3.8. Concluding remarks 87

Table 3.42: Rectangle R2 belonging to Q
1 2 m + l

2 1
1

3 2

4

m-l
m-l

m-l

m-l

m-l

m + l
m + l

3.8 Concluding remarks

This chapter has provided a polyhedral characterisation of the OLS problem, in terms of establishing
the dimension of the associated polytope and of proving th a t certain inequalities are facet-defining.
The rank of the constraint matrix A has been identified by exploiting embedded 3AAPn substruc
tures. Certain irregularities of the OLS polytope have been surpassed, as for example the difficulty
of exhibiting a trivial point of Pi for all n. This have been achieved by partially illustrating points,
which are essentially isotopic to a feasible point of Pj. The inherent symmetry of the problem has
been exploited via the interchange operator and by focusing only on non-symmetric cases. Our
approach has also revealed a new class of facets for the Latin square, or 3PAPn , polytope, arising
from odd-holes of the associated intersection graph. Apart from this theoretical contribution, we
have also developed results th a t have algorithmic implications, in the form of separation algorithms
for clique, antiweb and odd-cycle inequalities. All our separation schemes require a linear number of
steps, with respect to the number of variables. These algorithms can be directly incorporated within
a Branch & Cut scheme and this is precisely the topic addressed in the next chapter.

CHAPTER 3. Polyhedral characterisation of the OLS poly tope

Chapter 4

Integer Program m ing algorithm s

This chapter presents algorithms for solving the OLS problem using Linear and Integer Program
ming. The most motivating instance of the OLS problem is the infeasible case of n = 6. Proving
infeasibility for this instance via Integer Programming, apart from being one of the aims of our
research, demonstrates the benefits of using IP to solve this particular problem. Infeasibility was
formally proved for the first time by Taxry ([81]), essentially by exhaustive enumeration. Shorter
proofs have also been proposed, for example in [80]. This chapter presents an alternative proof,
based solely on Linear Programming. The proof reduces the solution space of the original problem
by incorporating a method for eliminating symmetries.

Computer-based methods have been successfully applied to answer open questions in finite al
gebra, the most characteristic example being the proof of the non-existence of a finite projective
plane, or equivalently of a set of 9 MOLS, of order 10 ([58]). This work also explores the potential
of algorithmic methods to answer theoretical questions related to Latin Squares. The innovative
aspect of our approach is th a t this is implemented via m athematical programming. In particular,
the non-existence of an OLS structure of order 6 is shown by solving exactly 12 linear programs.
This IP model is presented in Section 4.1. A symmetry breaking mechanism, resulting in a reduction
of the solution space, is described in Section 4.2. The actual proof of infeasibility for n = 6 is given
in Section 4.3, where it is shown th a t 12 integer programming problems are infeasible because of
the infeasibility of the corresponding linear programming problems. The infeasibility of each LP is
demonstrated by exhibiting dual values, which in conjunction with Farkas’ lemma ([68, Theorem
2.7]), illustrate the result.

The OLS problem for general n can be viewed as a feasibility problem, i.e. as the problem of
identifying a pair of OLS of order n. Our work adopts exactly this perspective instead of treating
OLS as an optimization problem. This conforms also to the applications of OLS (Section 1.4), which
normally ask for a single, rather than an optimal, solution. In order to solve this problem, a “Branch
& Cut” algorithm has been devised and is presented in this chapter.

Integer programming is simply the extension of linear programming to problems, where a subset of
the variable set is required to be integer. Pure integer programs define the class of integer programs,
where all problem variables must be integer. A special case of integer programs are the binary or
0 — 1 integer programs (BIP), which involve only 0 — 1 variables. Clearly, the OLS problem falls
within this last category.

The study of integer programs was motivated by the success of the simplex method in solving
linear programs. Extending this method to 0 — 1 integer programs essentially partitions the original

89

CHAPTER 4. Integer Programming algorithms 90

problem into subproblems, formed recursively by setting variables to 0 or 1. This is apparently
an enumeration scheme, usually named “Divide & Conquer” or 11 Branch & Bound”. The first
term emanates from the computer science literature, whereas the second has been introduced by
the mathematical programming community. As noted in [68, Chapter II.4], the first Branch &
Bound algorithm for general integer programs was presented in [59], although the approach was
broadly adopted after the first such algorithm appeared for the Travelling Salesman Problem (TSP)
in [61]. Another version of the enumerative approach, specifically for 0 — 1 programs, is the implicit
enumeration algorithm ([7]).

A Branch & Bound algorithm can be improved by strengthening the LP formulation of the
problem. This amounts to adding extra inequalities, generated by enforcing the fact th a t certain
variables must be integer. A systematic procedure for generating all valid inequalities for an integer
program is presented in [45] (see also [68, Section II. 1-2]). This celebrated result initiated the theory
of valid inequalities and motivated the development of the “Branch & Cut” algorithmic approach for
solving integer programs. This generic scheme adds valid inequalities to the LP of each subproblem
in Branch &; Bound. These inequalities are also called “cuts” because they are normally added
only if violated by the current fractional solution of the LP-relaxation. Again, the TSP has been
the problem where one of the first Branch & Cut codes was applied ([66]). Because of the number
of valid inequalities being enormous, a criterion for selecting the most prominent ones is required.
Polyhedral theory has provided a natural characterisation of the strongest possible valid inequalities
or facets (see also Section 3.1). Hence, several Branch & Cut codes incorporating families of, general
purpose or problem specific, valid inequalities have been developed in the last decades. Numerous
successful applications of this approach to both industrial and theoretical problems can be found
in the mathematical programming literature (e.g. [68]). Especially set-packing and set-partitioning
problems have attracted considerable attention, exactly because of their generic structure. The
literature for set-partitioning includes algorithms for crew scheduling ([50]), and for the axial 3-
index assignment problem ([11]). These algorithms use valid inequalities induced by cliques and
odd-holes of the problem’s intersection graph.

Section 4.4 presents the components of the Branch & Cut algorithm for the OLS problem. These
components include a problem-specific preprocessor, a specialised branching mechanism, which uses
Special Ordered Sets of type /, and separation algorithms for families of valid inequalities. The imple
mentation details are analysed in Section 4.5. The computer code uses advanced features provided
by the XPRESS-MP software ([31]) for branching, LP-solving and cut management. Finally, compu
tational results are discussed in Section 4.6. These results measure different branching rules, certain
strategies for cut addition and the quality of various families of cutting planes. The test problems
used are the instances of the OLS problem for orders up to 12. Nevertheless, the case of n = 6
remains the most significant benchmark, since the entire solution space must be searched in order
for infeasibility to be proved.

4.1 Two Integer Programming models for OLS

We illustrate again the IP model for OLS used in the previous chapters. The only difference is th a t
the objective function is simply the sum of all the variables. This objective function results in every
feasible solution being also optimal and relates to the fact th a t the OLS problem is treated as a

4.1. Two Integer Programming models for OLS 91

Table 4.1: A pair of OLS of order 4
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

feasibility problem. For the purposes of this study, we will call this model (IP 1).

IP 1 :

subject to

m a x .^^{x ijk i : i e l , j e J , k e K , L e L }

x ijkl • i G I , j G J} = 1 y k G K , l G L (4.1)

x ijkl • i G I , k G K } = 1, Vj G J, l G L (4.2)

^ ^{Xijkl : i G 1,1 G L} = 1, Vj G J , k G K (4.3)

^ ^{x ijkl ’• j G J , k G K } = l,V i G 1,1 G L (4.4)

^ ' yj{x ijkl '■j G J ,l G L} = 1, Vz G I , k G K (4.5)

$ > « « ' k G K ,l G L} = l,Vz G / , j G J (4.6)

x ijkl ^ {0, l}Vz G I , j G J , k G K , l G L

The integer solutions to this model correspond to pairs of OLS of order n. In Chapter 2, we defined
the convex hull of integer points of (I P 1) as the polytope Pj. Throughout this chapter, polytope Pj

4
will be called P o l s > i - e - P o l s = conv{x G {0, l} n : A x = e}, where A is the constraint m atrix of
(4.1)-(4.6) and e = (1,..., 1)T G R 6n2. It is not difficult to see th a t each integer feasible vector must
have exactly n 2 components equal to 1.

Assume that, alternatively, we wish to formulate the problem of checking whether a certain Latin
square L\ has an orthogonal m ate Z^- Square L 2 should be decomposable into n disjoint transversals,
according to Theorem 1.2. Since L \ is given, each transversal should include n specific cells of L 2 ,
such that all the corresponding cells of L \ contain the same value. Moreover, all n cells of each
transversal of L 2 should contain each value I G L exactly once. Let Tk0 = {(^o, jo) e I x J : cell
(i0Jo) of Li contains value /cq}, for all k0 G K. For example, for the first Latin square of Table 4.1,
To = {(0,0), (1,1), (2,2), (3,3)}.

Let the binary variable yiji be 1 if value I appears in cell (i , j) of square L 2 and 0 otherwise.
Since each value must appear exactly once in each row of L 2 , it must hold th a t YUViji : j G ^} = h
for all (i,l). Two more analogous sets of constraints are revealed by interchanging the roles of the

sets / , J, L. Finally, for each Tk0 and for each I, the constraint YUViojoi ’• (io,jo) £ Tk0} = 1 must be

CH APTER 4. Integer Programming algorithms 92

satisfied, in order for square L 2 to be orthogonal to L \ . The IP model is the following:

I P2 :

subject to

m a x y ' {yi j i : i G I , j G J , L G L}

Viji : i € 1} = 1, Y? G J, I G L (4.7)

5 3 {Viji : j e J } = 1, Vi e l , l e L (4.8)

: ̂ G L} = 1, Vi G I, j G J (4.9)

E w * ' (^O)Jo) € Tk0} — 1, Vfco € K , l G L (4.10)

Viji G {0, l}Vi G / j ' G J , / g I

Constraints (4.7)-(4.9), together with the integrality constraints, define the Latin square polytope,
analysed in [37]. Again, each integer feasible solution of this model is bound to have n 2 variables
equal to 1 and, because of the form of the objective function, is also optimal.

4.2 Reducing the solution space

A naive proof of infeasibility for the OLS problem for n = 6 would be to prove the non-existence
of an orthogonal mate for each of the approximately 8 x 109 Latin squares of order 6. However, in
order for redundant search to be reduced, symmetrical subcases should be excluded. The following
discussion exhibits, first, why we can reduce the number of squares to be checked to 12 and, secondly,
how additional reduction of the solution space can be achieved. In other words, the following analysis
reduces the solution space of the original problem by proving th a t any subproblems (squares) not
examined are symmetric to a subproblem included in the reduced solution space.

The group-theoretical definition of isotopy is applicable to Latin squares, viewed as multiplication
tables of quasigroups. Hence, two Latin squares are isotopic (or equivalent) if one can be obtained
from the other by permuting its rows, columns and elements ([34, p. 168]). Extending this concept
to OLS, we call two distinct pairs of OLS isotopic if one can be derived from the other by applying
certain permutations to the rows, columns, elements of the first and elements of the second square.
In our notation, this is equivalent to permuting the sets I , J, K and L respectively. Obviously, there
can exist up to (n!)3 distinct Latin squares isotopic to a certain square L \ and up to (n!)4 distinct
pairs of OLS isotopic to a certain pair L \, L 2 . The set of Latin squares of order n is separated into
subsets of isotopic squares, called isotopy classes ([34, Chapter 4]).

A special category of Latin squares is the ones having their first row and column arranged in
natural order, like the first square of Table 4.1. These Latin squares are called reduced. Observe
that, by properly permuting the elements of sets K and L, we can have the cells of the first row of a
pair of OLS containing the integers 0, ...,n — 1 in natural order, w ithout violating the orthogonality
condition. Given this arrangement of the first row, we can perm ute the elements of set /\{0 } in such
a way th a t the first column of square L\ is also in natural order, i.e. having L \ to be a reduced
Latin square. A pair of OLS of this form is called standardised or reduced ([34, p. 159]). Fixing these
3n — 1 cells already reduces the problem size by a factor of (n!)2 • (n — 1)! ([60]). Nevertheless, this
fixing does not capture all possible isotopisms of the problem, i.e. there can be two reduced Latin
squares, which are isotopic to each other. According to the previous argument, if one Latin square

4.2. Reducing the solution space 93

of an isotopy class has an orthogonal mate, all Latin squares of this class do.

Another, less intuitive, form of symmetry is th a t of conjugacy, also known as parastrophy ([34,
Section 2.1]). Two Latin squares of the same order n are called conjugate, if one can be derived from
the other by permuting the roles of the sets I , J, K (or L). For example, if we interchange the roles
of sets 7, J for a certain square, we derive its transpose. Since there can be 6 permutations of the 3
sets, each Latin square can possess up to 5 distinct conjugates ([34, Theorem 4.2.1]). The concept
of conjugacy is extendable to pairs of OLS, where the number of conjugates for a certain pair can
be up to 23, i.e. the 4! permutations of 4 sets reduced by 1. Again, if a certain Latin square has
an orthogonal mate, all its conjugates do as well, since the role of the four sets in our formulation
is purely conventional. In (IP 1), the constraints (4.1)-(4.6) remain intact if we swap any two of
the sets / , J, K , L. The Latin squares belonging to an isotopy class, together w ith their conjugates,
constitute a broader class, called main. It has been proved th a t the set of all Latin squares of order n
can be partitioned into main classes, while each main class is a union of isotopy classes ([34, Theorem
4.2.4]). The set of Latin squares of order 6 is partitioned into 12 main classes. Hence, in order to
prove the non-existence of a pair of OLS of order 6, it is sufficient to prove the non-existence of an
orthogonal mate for a single reduced Latin square from each of the 12 classes. In other words, we
need to solve 12 cases of (IP 2). Before proceeding to the proof, we discuss how further fixing of the
two squares is possible.

Consider a random OLS structure of order n. The simplest isotopism is the interchange of the
roles of any two elements of a single set, e.g. the swapping of rows 0 and 1. The interchange
operator (<— >), introduced in Section 3.2, facilitates this process. Assume u G P o l s • Writing
u 1 = u(m i <— > m 2)M , where M = I , J , K , L , implies th a t point u 1 G P o l s represents a new OLS
structure derived from u by interchanging the roles of members m\ h m 2 of set M. Similarly, to
express that u 1 is the conjugate of u derived by interchanging the roles of sets I and J, we would
write u 1 = u(I <— ► J).

Let X i j , Y i j , i , j = 0, ...,n — 1, denote the cells of the squares L \ and L 2 , respectively, and
D x i:j, D Yij be the sets of allowed values for each cell. In the reduced form, we already have
Xqj = Yqj = j and Xio = i for i , j = 0, ..,n — 1. Now consider cell Yio and observe th a t its
possible contents are D y 10 = {2, ...,n — 1}, i.e. Yio 7̂ 0,1, since Foo = 0 and pair (1,1) already ap
pears in position (0,1). Assume a standardised pair of OLS having Yio = w, where w G {3,.., n — 1},
and let u G P o ls be the corresponding 0 — 1 vector. Construct the point

u 1 = u (2 <— > w)L(2 <— > lu)k (2 <— ► w) j (2 <— > w)i

and observe that U1012 = 1, he. Yio = 2, and u represents a standardised pair of OLS. It follows that
if a solution having Yio = w, w € {3, ..,n — 1}, exists, a solution having Yio = 2 must also exist.
Therefore, we can fix pair (1,2) in position (1,0), thus reducing the solution space by an additional
factor of (n — 2). Using the same approach, it can be proved th a t D y 2Q = {1,3}, i.e. if there exists a
solution with Y20 = w, 4 < w < n — 1, there exists also a standardised solution with Y20 = 3, having
also Yio = 2 .

In general, observe th a t D y i0 = {1,3,4, ...,i — 1, i + 1 , . . . , n — 1}, for i G {3, ...,n — 1}. This implies
that 0 ,2 , i £ D y i0 because Yoo = 0,Yio = 2 and pair (i , i) already appears in position (0,i). Assume
a pair of OLS having Y*o = uj, where w G {i + 2, . . ,n — 1}, and let u be the corresponding 0 — 1

CHAPTER 4. Integer Programming algorithms 94

vector. Construct the point

u 1 = u((i + 1) <— ► w)L((i + 1) *— > w)K ((i + 1) *— ► w)j ((i + 1) <— ► w)i

and observe that Uioi(i+i) = 1. Hence, if there exists a solution having Yio = w , w G {i + 2 , n — 1},
another solution with Yio = * + 1 is bound to exist. Notice also th a t the OLS structure remains
standardised. Given these reduced domains, observe th a t value n — 1 appears only in Z)y(ri 2)0.
Therefore, we can also set Y"(n_2)o = n —1. The final form of the OLS structure, after this preliminary
variable fixing, is depicted in Table 4.2.

Table 4.2: Variable fixing and domain reduction
n-2 n-1

n-2
n-1

0 1 • • • n-2 n-1

2

{1.3}

{ l ,3 ,4 , . . , i - l , i+ l }

n-1

{1,3,.. ,n-2}

4.3 Proving infeasibility

In order to devise the following proof of infeasibility, we exclusively use the model (/P 2), applying
also the variable fixing described in the previous section. This fixing is implemented by adding extra
inequalities.

First, we illustrate the proof for the trivial case of n = 2. It is not difficult to observe that there
are only two Latin squares of order 2, depicted in Table 4.3. These squares are clearly not orthogonal,
a fact that implies the non-existence of a pair of OLS for n — 2. Notice th a t each of these squares
can be transformed to the other by interchanging the two rows or columns, i.e. these squares are
iso topic. To prove the non-existence of OLS for n = 2, it is sufficient to prove th a t only one of these
isotopic squares does not possess an orthogonal mate.

We solve the model (I P 2) for n = 2, where equality constraints are replaced by ’< ’ constraints.
Let L\ be the first square of Table 4.3. Adding the inequalities

z / o j j > i , V j e J (4.11)

to (I P 2) ensures that ?/ooo = Von = 1- This variable fixing is imposed by the analysis of the previous

Table 4.3: The two Latin squares of order 2
0 1
1 0

1 0
0 1

4.3. Proving infeasibility 95

section. The actual model is the following:

max y ^{yiji : i G I , j G J , L G L}

subject to:

^ 2 { y i j i - i e l } < i y j e J t l e L

V i j i : j e J } < i , V i e l , l e L

£ { y « i : l e L } < 1, Vz G 1 ,3 G J (4.12)

yooi + y i u < l , V/ g L

y o u + y io i < l , V/ g L

yojj — j ̂ ̂
0 < yiji < 1,Vi G I , j G J , l e L

Note th a t the constraints yooz + y i u < 1 and you + yioz < 1, for all I G L, correspond to variables
sets To,Xi of square L\ . Solving this LP model provides an optimal value of 2. Since a Latin square
of order 2 requires exactly 4 variables set to 1, it follows th a t L\ cannot be part of an OLS structure.
Table 4.4 illustrates the vector of dual values for constraints (4.7)-(4.10) and (4.11), treated as
inequalities in (4.12).

Table 4.4: Dual values or a reduced Latin square of order 2
Ineq. (4.7) Ineq. (4.8) Ineq. (4.9) Ineq. (4.10) Ineq. (4.11)

U,1) Dual (i , 0 Dual (i J) Dual (* o , 0 Dual Dual

(0,0) 1 (0,0) 0 (0,0) 1 (0,0) 1

(0,1) 0 (0,1) 0 (0,1) 1 (0,1) 0 2

(1,0) 0 (1,0) 0 (1,0) 0 (1,0) 0 2

(1,1) 1 (1,1) 0 (i , i) 0 (1,1) 1

According to the duality theorem of Linear Programming ([68]), if we multiply each inequality
of (4.12) with its dual value and add all resulting inequalities, we should derive an inequality whose
left-hand side is the sum of all the variables and whose right-hand side is the value of the objective
function. Hence, the vector of dual values provides an algebraic illustration of infeasibility. For
n = 2, the result is the following.

(yooo + y ioo < 1) + (you + y i u < 1) +

(yooo + yooi < 1) + (yo io + y o n < 1) +

(yooo + y n o < l) + (y o n + y io i < l) +

2 ■ (—yooo < —1) + 2 • (—y o n < —1) =

yooo + yooi + yoio + y o u + y ioo + y io i + y n o + y m < 2

For n = 6, and as exhibited in Table 4.2, variables yooo>y o n > •••,yoss along with variables yio2>y405
must be set to 1. In addition, we must ensure th a t P y 20 = {1,3}, Dy30 = {1,4} and Hy50 = {1,3,4}.
It is easy to check th a t the only variable needed to be set explicitly to 0 is y 204 ! the rest are forced
to be 0 because of the orthogonality constraints (4.10) or because of the previous fixing of the cells

CHAPTER 4. Integer Programming algorithms 96

Table 4.5: A Latin square of order 6, belonging to the second main class
0 1 2 3 4 5

1 0 4 5 2 3

2 5 0 4 3 1
3 4 5 0 1 2
4 3 1 2 5 0
5 2 3 1 0 4

in the first column of Hence, the set of additional inequalities is the following:

Vojj ^ 1) j £ J

2/102 > l

2 /4 0 5 > 1 (4-13)

— y 2 0 4 > 0

Let D denote the constraint matrix of the constraints (4.7)-(4.10). The convex hull of all feasible
0 — 1 vectors, i.e. of all Latin squares of order n that are orthogonal to L i, is the polytope P o ls —
conv{y G {0 ,1}”3 : D y = e}, where e = (1 ,...,1)T G 4n2. Let also F b e the constraint matrix
of inequalities (4.13) and h = (1 ,..,1 ,0)T G R n+3. The convex hull of all integer vectors of P o l s >

3

which also satisfy (4.13), is the polytope P j = conv{y G {0, l} n : D y = e , F y > h}. The analysis
of Section 4.2 essentially proves that P o ls — 0 if and only if P / = 0. The linear relaxation of this

3

formulation defines the polytope Pl = {y £ [0, l]n : D y = e , F y > h}. Another relaxation of
P j is obtained if the ‘= ’ constraints (4.7)-(4.10) are converted to l< ’ ones. This is the set-packing

~ 3 -w 3

relaxation P / = conv{y G {0, l} n : D y < e, F y > h}, its linear relaxation being P l = {y G [0, l]n :
Dy < e, F y > h}. Define also Zj = {m axyTl : y G P/}. Z l , Z j , Z l are defined accordingly. It is
easy to see th a t P / C P / C P l and Pj C P l C Pl- It follows that:

Zi < Zj < Z l (4.14)

Zj < Z L < Z L. (4.15)

As noted in Section 4.1, Z j = n 2, since every feasible solution is also optimal. Hence, if Zi, =
2 < n2, it follows th a t Zj < [z \ or Zi < n 2 — 1. This implies th a t Pi = P o l s = 0- In order to
prove that there exists no pair of OLS for n = 6, and based on the arguments exhibited in Section
4.2, it is sufficient to show th a t Z l < n 2 , i.e. P / = 0, for a single representative of each of the 12
main classes. This is exactly the nature of the proof presented in this paper. The vector of dual
values for each Z l < n 2 provides multipliers for all inequalities of P l , which illustrate algebraically
th a t the objective function, i.e. the sum of all variables, is strictly less than n 2. Alternatively, by
incorporating Farkas’ lemma ([68]), this dual vector proves the infeasibility for P l and therefore also
for P 7.

As an example, consider the reduced Latin square of Table 4.5, which is the representative of the

4.4. A Branch &; Cut algorithm for OLS 97

second main class of Latin squares of order 6. The LP solved for this Latin square is the following:

m&xy^{y i j i : i e I , j e J , L e L}

subject to:

: i e 1 } < 1, Vj e J, l g L

- j e J } < l , Vi g / ,Z g L

^ { y i j i : l e L} < l , V i € I , j € J

Vooi + 2 /ii2 + 2/221 + 2/332 + 2/451 + 2/541 < 1 , VZ G L

2/012 + 2/102 + 2/252 + 2/342 + 2/422 + 2/532 < 1 , VZ G L

2/022 + 2/142 + 2/202 + 2/352 + 2/432 + 2/512 < 1 , VZ G L

2/032 + 2/152 + 2/242 + 2/302 + 2/412 + 2/522 < 1 , VZ G L

2/042 + 2/122 + 2/232 + 2/312 + 2/402 + 2/552 < 1 , VZ G L

2/052 + 2/132 + 2/212 + 2/322 + 2/442 + 2/502 < 1 , VZ G 1 /

yojj j J
2/102 > 1

2 /4 0 5 > 1

2 /2 0 4 < 0

0 < V i j i < 1, Vi G 1,3 G J,Z G L

This LP has been solved by XPRESS-MP ([31]). The value of the objective function Z l is 34.5
and the dual values are exhibited in Table 4.6. Since all variables y i j i must be integer, it follows that
Y,{yiji : i £ I , j € J ,L £ L} < 34. This implies th a t the Latin square of Table 4.5, along with all
squares of the second main class, has no orthogonal mate.

The representatives from each main class of n = 6 are displayed in [34, p. 130-137], where each
square is associated with a unique, three digit, number, whose first digit denotes the main class it
belongs to. For example, the square of Table 4.5 is the square 2.1.1. The squares used for this proof
are the squares 1.1.1, 2.1.1, 3.1.1, 4.1.2, 5.1.2, 6.1.3, 7.1.3, 8.3.1, 9.2.1, 10.2.1, 11.2.1, 12.3.1. An
im portant note is th a t the value of Z l is not the same for all 12 representatives and the dual values
are not always as symmetric as the ones exhibited in Table 4.6. Moreover, certain of the squares in
[34, pp.130-137] provided a fractional solution with a value of Z l = 36, as for example square 8.1.1.
Such squares are obviously not proper for showing infeasibility by only solving an LP (i.e. without
branching).

For all squares used in this proof, a value Z l < 36 is achievable only after fixing variables 2/102 > 2/405

and 1/204 to 1, i.e. simply fixing the first row of L 2 has not been sufficient. Hence, the reduction
of the solution space, as presented in Section 4.2, has been crucial for the LP-based proof for the
non-existence of OLS for n — 6.

4.4 A Branch & Cut algorithm for OLS

The Branch & Cut algorithm, or B&C for short, accepts as input the order n of OLS and either
produces as output a singe pair of OLS of order n or proves th a t no such pair exists. Note that
the OLS problem is feasible for every n G Z +\{1 ,2 ,6} ([60, Theorem 2.9]). As noted before, the

CHA PTER 4. Integer Programming algorithms 98

Table 4.6: Dual values for a reduced Latin square of main class 2
Ineq. (4.7) | Ineq. (4.8) | Ineq. (4.9) | Ineq. (4.10) | Ineq. (4.13)

(M) (h j) (k n , l)
(0,0) 0 (0,0) 0 (0,0) 1 (0,0) 0 0
(0,1) 0 (0,1) 0 (0,1) 0 (0,1) 0 0
(0,2) 0 (0,2) 0 (0,2) 0 (0,2) 0 0
(0,3) 0 (0,3) 0 (0,3) 0 (0,3) 0 0
(0,4) 0 (0,4) 0 (0,4) 1 (0,4) 0 0
(0,5) 1 (0,5) 1 (0,5) 1 (0,5) 1 -3
(1,0) 0.5 (1,0) 0.5 (1,0) 0 (1,0) 0.5
(1,1) 0.5 (1,1) 0.5 (1,1) 0 (1,1) 0.5 0
(1,2) 0.5 (1,2) 0.5 (1,2) 0 (1,2) 0.5 0
(1,3) 0.5 (1,3) 0.5 (1,3) 0 (1,3) 0.5 -3
(1,4) 0.5 (1,4) 0.5 (1,4) 0 (1,4) 0.5
(1,5) 0 (1,5) 0 (1,5) 0 (1,5) 0
(2,0) 0.5 (2,0) 0.5 (2,0) 0 (2,0) 0.5
(2,1) 0.5 (2,1) 0.5 (2,1) 0 (2,1) 0.5
(2,2) 0.5 (2,2) 0.5 (2,2) 0 (2,2) 0.5
(2,3) 0.5 (2,3) 0.5 (2,3) 0 (2,3) 0.5
(2,4) 0.5 (2,4) 0.5 (2,4) 0 (2,4) 0.5
(2,5) 0 (2,5) 0 (2,5) 0 (2,5) 0
(3,0) 0.5 (3,0) 0.5 (3,0) 0 (3,0) 0.5
(3,1) 0.5 (3,1) 0.5 (3,1) 0 (3,1) 0.5
(3,2) 0.5 (3,2) 0.5 (3,2) 0 (3,2) 0.5
(3,3) 0.5 (3,3) 0.5 (3,3) 0 (3,3) 0.5
(3,4) 0.5 (3,4) 0.5 (3,4) 0 (3,4) 0.5
(3,5) 0 (3,5) 0 (3,5) 0 (3,5) 0
(4,0) 0 (4,0) 0 (4,0) 1 (4,0) 0
(4,1) 0 (4,1) 0 (4,1) 0 (4,1) 0
(4,2) 0 (4,2) 0 (4,2) 0 (4,2) 0
(4,3) 0 (4,3) 0 (4,3) 0 (4,3) 0
(4,4) 0 (4,4) 0 (4,4) 1 (4,4) 0
(4,5) 1 (4,5) 1 (4,5) 1 (4,5) 1
(5,0) 0 (5,0) 0 (5,0) 1 (5,0) 0
(5,1) 0 (5,1) 0 (5,1) 0 (5,1) 0
(5,2) 0 (5,2) 0 (5,2) 0 (5,2) 0
(5,3) 0 (5,3) 0 (5,3) 0 (5,3) 0
(5,4) 0 (5,4) 0 (5,4) 1 (5,4) 0
(5,5) 1 (5,5) 1 (5,5) 1 (5,5) 1

IP model used is (IP 1). The algorithm is enumerative in the sense th a t the original problem is
recursively divided into subproblems. If Q denotes the original problem, a collection of subproblems
{Q1,..., Qw} is a division of Q if U™=i Qs = Q- Such a division is called a partition if Qs fl Qt = 0
for s , t = 1, ...,w , s ^ t. The division of Q is implemented essentially by setting one or more of the
binary variables to 0 or 1.

The actual B&C algorithm always forms partitions. A search tree is formed, where the top node
corresponds to the original problem and each other node uniquely corresponds to a subproblem.
Each problem is always partitioned into two subproblems, therefore the search tree is binary. Let us
introduce some terminology at this point (borrowed from [23, Section 3.1.2]). A binary tree consists
of a set of nodes, each having at most two other nodes as immediate successors, also called children.
The top node of the tree is its root. Every node, except for the root, is the immediate successor of
exactly one node, called its immediate predecessor or father. If node Q l belongs to the branch of the
tree having node Qi as its root, Q1 is a successor (or descendant) of and QJ is a predecessor (or
antecedent) of Ql . The division into subproblems is also called branching because it creates branches
in the search tree.

Before the search starts, the preliminary variable fixing indicated by Table 4.2 is performed.
Let I — J = K = L = {0, . .. ,n — 1}. Variables xojjj, for j € J , along with two extra variables
£ 1012, £(n—2)o(n—2)(n—1)> are set to 1. Variables xiqu, for i G I, I = (i + 1),..., (n — 1) are set to 0. In
order to enforce the requirement th a t the cells of the first column of square L\ must be in natural
order, only variables Xiou, for I G L must be allowed to take value 1. This is accomplished by setting

4.4. A Branch Sz Cut algorithm for OLS 99

variables Xioki to 0, for i G / , k G K \ { i } , L G L. Equivalently, the constraints : I E L} = 1,
for i G / , could have been appended to the original IP model. Hence, the variables fixed before
starting the search are:

x 0jjj = 1, for ;i € J

x 1012 = 1

(n - 2) 0 (n - 2) (n - l) = 1

XiOil = 0, for 'ii G 1,1 = (i + l) , . . . , (n

XiOkI = 0, for ii e I , k e K \ { i } , l e L

Let L P (Q S) denote the LP-relaxation of subproblem Q s . If the algorithm can establish th a t no
further division of Qs is required, the enumeration tree is said to be pruned a t the node corresponding
to Qs. It is also common to state th a t the node, or Qs, is pruned. Clearly, Q s is pruned if L P (Q S) is
infeasible or if an integer feasible solution is found. If all subproblems are pruned without an integer
solution having been found, Q is declared infeasible.

At each node of the search tree, subproblem Qs is first preprocessed in order to fix additional
variables to 0 or 1, if possible. This process reduces the size of the subproblem, thus accelerating
the solution of L P (Q S). Preprocessing may also establish th a t Q9 is infeasible without even having
to solve L P (Q S). If preprocessing does not certify infeasibility, L P (Q S) is solved to optimality. If
the optimal solution is integer, the node is pruned and the B&C algorithm terminates. If L P{ QS) is
infeasible, the node is also pruned. Otherwise, valid inequalities th a t are violated by the fractional
solution are identified and, if any, are added to L P (Q S). The process of solving L P (Q S) and adding
violated cuts is repeated until L P (Q S) is infeasible or an integer solution is found or no more violated
cuts can be found. It can be verified th a t this iterative process is bound to term inate (see also [45]),
although after an exponential number of iterations. In practice, an upper bound, polynomial in n,
is placed upon the number of iterations. Given th a t Qs cannot be pruned, it is divided into two
subproblems. Algorithm 4.1 summarises the entire procedure.

A lgorithm 4.1
Preprocess Q s;
i f (Qs remains feasible)

repeat

{
Solve L P (Q S) ;
I f the optimal solution is non-integer

{
Identify valid inequalities violated by the fractional solution ;
Add the violated inequalities to L P (Q S) ;

}
}
u n ti l (L P (Q S) is infeasible) o r (an integer solution is found) o r (no inequalities are added)

i f (LP(QS) is still feasible) and (no integer solution has been found)
Partition Qs into two subproblems;

else prune Qs;
return ;

CHAPTER 4. Integer Programming algorithms 100

The components of the B&C algorithm to be further analysed are the preprocessor, the branching
mechanism, the approach for identifying violated cuts and the m ethods for solving L P (Q S).

4.4.1 Preprocessing

The aim of preprocessing each subproblem is to reduce the problem size by excluding variables
because other variables have already been set to 0 or 1. During the search, variables are being
explicitly set to 0 or 1 because of branching. This is implemented either by adding an extra equality
constraint or, most commonly, by altering the variable bounds. Initially, all variables have a lower
bound of 0 and an upper bound of 1. Setting the upper bound of a variable to 0 is equivalent to
setting this variable to 0. Similarly, setting the lower bound of a variable to 1, fixes this variable to
value 1. Hence, at each node/subproblem, certain variables have been explicitly fixed. Preprocessing
uses this information to fix even more variables (see also [6, 78]).

Recall from Section 2.2 th a t the row set of the constraint m atrix A is R = (K x L) U (I x L) U

(J x L) U (I x J) U (J x K) U (I x K) , while its column set is C = I x J x K x L. Each column
appears, i.e. contains a non-zero entry, in exactly 6 rows. For example, column (io,jo, ko,lo) appears
in the rows (io,jo), {io,ko), (io,lo), {jo,ko), (jo,lo), {ko,lo). It is not difficult to see th a t column
c G C appears in row r G R if and only if r C c. Notice th a t we trea t members of sets R and C as
subsets of indices, therefore the expression r C c is valid.

Whenever a variable x c is set to 1, all variables having 2 or 3 indices in common with c are
automatically forced to 0 in any feasible solution, i.e. a total of 6(n — l) 2 + 4(n — 1) variables. The
matrix columns associated with these variables, along with the column c, can be removed from the
matrix without losing any information. For the same reason, all rows where column c appears, i.e.
{ r £ R : r C c}, can be also removed. Similarly, whenever a variable x c is set to 0, column c can be
removed from A. Another possibility is that there has remained a single variable x c not set to 0 in
a row r. Clearly, x c will be 1 in any feasible solution, therefore x c can be explicitly set to 1 and the
above mentioned rows and columns can be deleted. If all rows have a single variable not set to 0, it is
obvious th a t an integer feasible solution has been found. If a certain row has all its variables set to 0,
the subproblem is infeasible. Note th a t setting a variable to 0 or 1 might have further repercussions,
therefore this process is repeated until matrix A is no longer reducible. We emphasise th a t this
variable fixing would have been implicitly implemented whenever the LP is solved. The main reason
for explicitly deleting rows and columns of A is to reduce its size, therefore accelerating the solution
of L P (Q S) . It is also possible that infeasibility, or an integer solution, is detected without having
to solve L P (Q S).

Any deletions of rows and columns at a certain node are inherited in all descendant nodes.
Therefore, we denote as A s the matrix at the node associated w ith subproblem Qs. R s and Cs
are defined accordingly. For each Qs , the lists Ffi, F* of variables already fixed to 0 and 1 at its
predecessors, i.e. deleted, are also retained. Obviously, Fq U F f = C \C 3. Algorithm 4.2 describes
the preprocessing steps in pseudo-code. All rows and columns are repetitively checked until no more
changes are possible. Each iteration includes 0 (n 4) steps, since each remaining row and column
must be examined. Let t denote the iteration counter.

4.4. A Branch & Cut algorithm for OLS 101

A lgorith m 4.2 (P reprocessing)
* 4 - 0 ; F ° <— R s;
repeat

{
t ^ t + 1; C 4 <— C 4-1; R * * - # - 1;
f o r all Co G C 4

{
i f x Co is set to 1

{
Fq <— Fq U {d e C 1 : Ic0 D d| = 2 or 3};
F{ 4- F{ U { c o } ;

C 4 <— C 4\{d G C 4 : | c 0 D d| > 2};
F 4 4 - F 4\{ r G F 4 : r c c0};

}
eZse i / rrC0 is set to 0

{
F 0S ♦ - F 0* U { c o } ;

C 4 4- C 4\{c0};

}
}
/ o r all r G F 4

i / { c G C 4 : r C c } = { c q }

{
Fq 4- Fq U {d G C 4 : I Co n d\ = 2 or 3};
F f 4- F{ U { c 0 } ;

C4 * - C 4\{d G C 4 : | c o n d \ > 2};
F 4 4- R t \{ r G F 4 : r C c0};

}
}
u n til (C l = C 4" 1; a n d (R l = F 4" V
Cs 4- C l; R 3 4- F 4;
re tu rn ;

When Algorithm 4.2 is applied to Q°, i.e. the original problem, it will delete all columns indicated
by (4.16). It will also delete extra rows and columns for each of the variables initially set to 1. As an
example, consider variable £ 1012- The rows to be deleted are (1,2) G K x L (eq. (4.1)), (0,2) G J x L

(eq. (4.2)),... and (1,0) G I x J (eq. (4.6)). The deleted columns are {xioi2 : « G /} , {%ij \ 2 '• j £ J},
{x\ok2 : k G K } , {zioit : I G L } and {x ijl2 : i G I , j G J}, ..., { x 10m : k e K ,l e L}.

4.4.2 The branching m echanism

This section discusses the division of a subproblem Qs into two subproblems. Recall th a t Qs is
partitioned only if there is an optimal fractional solution of L P (Q S). The simplest method for
partitioning Qs is to select a fractional variable x c G (0,1) and form two subproblems, namely Qq
and Qf, where x c is set to 0 and 1 in Qq and Q\, respectively. This scheme is known in the IP
literature as variable dichotomy ([68, Chapter II.4, Section 2]). Unless x c = 0 in most feasible

CH APTER 4. Integer Programming algorithms 102

solutions, Q\ will contain significantly fewer feasible solutions than Q q. In other words, setting x c

to 0 achieves no real progress and the set of feasible solutions in Q q is almost identical to that of
Qs . Because of the extensive symmetries existing in the OLS problem, no variable can be signalled
as unlikely to be 1 in a feasible solution. Therefore, variable dichotomy appears to be a mediocre
choice for branching.

It seems better to perform branching in a way th a t approximately halves the solution space of Qs.
A method achieving this is commonly referred to as Generalised Upper Bound (GUB) dichotomy.

Each constraint of the form X)cec0 Xc = ôr ^ ^ *s ca^e<̂ a GUB constraint. Notice th a t (IP 1)
contains exclusively GUB constraints. The variable set of such a constraint is also said to form a
Special Ordered Set of type /, or SOS-I for short ([13]). Formulation (IP 1) contains 6n2 SOS-I, each
of cardinality n 2. Let S represent the set of variables appearing on the left-hand side of a particular
equality. Exactly one variable in 5 will be 1 at any feasible 0 — 1 vector. It follows that, for S\ C S,
the single variable of S set to 1 will be either in S \ or in S \S \ . I t is easy to see th a t the problem can
be partitioned into two subproblems, each defined by setting the variables of either S\ or S \S \ to 0.
Formally, Qs is partitioned into QSl and Qs\ s\ where variables {x c : c E S \} are set to 0 in QSl and
variables { x c : c G S \S \ } are set to 0 in Q s\ S l . Notice th a t variable dichotomy is a special case of
GUB dichotomy, where <Si = {xc}. In order to ensure th a t the sets of feasible solutions of QSl and
Q S \ Sl are almost equally large, sets S\ and S \S i should be of approximately the same cardinality.

By recursively partitioning sets S\ and S \ S \ , eventually a subproblem will be left with a single
variable of S not set to 0, which is bound to be 1. If |Si | = |S\<Si | = 2j-, a variable is set to 1 at most
after = \2 iog2 n] or 0 (log2 n) partitions (levels of the tree), since each equality constraint
involves n 2 variables. Whenever a variable is set to 1, the partition proceeds by selecting another
SOS-I, meaning another equality, whose left-hand side has at least one variable still not set to 0. It
is not difficult to prove that, GUB dichotomy, compared to variable dichotomy, drastically reduces
the depth of the search tree (see also [63, 68]). W hat remains to be clarified is how to select the
SOS-I among the 6n2 ones available.

To facilitate the following discussion, let us examine the OLS problem independently of the actual
formulation. As in Section 4.2, let X i j ,Y i j , i , j = 0,..., n —1, denote the cells of the squares L \ and L 2

(also referred to as squares X , Y). Let D x i:j, D y^ be the sets of allowed values (domains) for each cell
(i, j) . Suppose also th a t certain cells are initially fixed as indicated by Table 4.2. The search should
select a certain cell and then select a pair to be assigned to this cell. It seems reasonable to initiate the
search by fixing the remaining (n — 3) cells in the first column of Y , i.e. cells Y2 0 , ..., V(n_ 3)o, T(n_i)0.
Once this have been done, the cells of the remaining (n — 1) x (n — 1) subsquare must be fixed.

There are two systematic methods for selecting the next cell to be examined. One is to examine
all cells in a certain row (or column). Since the cells of the first row and column are already fixed,
cell (1,1) is selected first, followed by cell (1,2) and so on, until cell (l ,n — 1) is also assigned a
pair. Once the first row of OLS is complete, the algorithm switches to the next row, i.e. cell (2,1) is
selected and a pair (2 ,1), I G Dy2l, is assigned to it. The last cell to be assigned a pair is (n — 1, n — 1).
Equivalently, we could proceed by fixing all elements in the first column, then in the second one and
so on.

The alternative method is, having assigned a pair to cell (i, j) , to switch to a pair (i ' , j ') such that
i' ^ i and j ' ^ j . This implies that we always select a cell in a different row and column. Roughly
speaking, this method constructs the squares in a “diagonal” fashion. Notice that, since the first
method fixes rows of the squares, it has to select each time a different value for a cell in the current
row of both X and Y . This second method does not need to select a different value for X each time,

4.4. A Branch k, Cut algorithm for OLS 103

since, pairwise, all cells axe in different rows and columns. Therefore, it can set all cells of square
X to the same value and set, according to the definition of OLS, all cells of square Y to pairwise
different values. Hence, this method fixes transversals of square Y .

Each time a cell is assigned a pair, certain values are no longer valid in the domains of the
remaining cells, since each pair must occur exactly once. These values can be then deleted from the
domains of the remaining cells. A sensible criterion for branching is to select the next cell in a way
th a t maximises the number of values removed from the domains of the remaining cells. Such an
approach ensures the maximum reduction of the remaining solution space, therefore the minimum
tree depth. Using simple counting arguments, we show that, under this criterion, it is better to
fix transversals rather than rows. This branching heuristic actually arises from the literature of
Constraint Programming ([83]), an approach to be further analysed in the next chapter.

Suppose th a t the search proceeds by fixing the remaining (n — 1) cells of the second row in both
squares. Since Xio = 1, the values 0,2, ...,n — 1, i.e. n — 1 different values, will appear in the first
row of square X . Setting X \ j0 = ko, for jo — 1, ...,n — 1, implies the deletion of value ko from the
domains of all cells in the same column. These are cells X i0j0 for 2 < io < n — 1. For io — ko, no
domain member is removed, since having fixed X i0o = ko, ko ^ 0, implies th a t already ko ^ Di0j0.
Hence, (n — 3) domain members are removed for each of the (n — 2) values ko th a t are different
from 0. The case ko = 0 is an exception because 0 does not appear in the first column of any of
the remaining rows. Hence, setting X \jQ = 0 results in removing value 0 from all (n — 2) rows. In
total, (n — 2) • (n — 3) + (n — 2) = (n — 2)2 domain values are removed from square X . Observe
that the case of square Y is identical, given th a t the first column of Y has already been fixed. Thus,
(n — 2) • (n — 3) + (n — 2) = (n — 2)2 domain values are also removed from square Y. The to tal number
of values removed from the domains of the remaining cells is

a(n) = 2 • (n — 2)2

Table 4.7: Counting the number of values removed from square Y
0 1 • • 3 i • • • Jo • ••
2

h

io io

Suppose that, alternatively, we fix a transversal of square Y , along with fixing the corresponding
cells of square X to the same value 0. Value 0 will be removed from all the remaining cells of square
X . It is easy to see th a t the number of those cells is (n — l) 2 — (n — 1) = (n — l) (n — 2). For square
Y , since pair (0,0) already appears in cell (0,0), values 1, . . , n — 1 will appear in this first transversal.
Setting Yi0j0 = Iq will remove value Iq from all cells in row iq and column jo. Having fixed the first
row and column, however, implies th a t value lo has already been removed from exactly one cell of
row i\ and another cell of column j i (Table 4.7). Hence, for each lo ^ 0> value Iq is removed from
the domains of exactly 2 • (n — 3) cells. For lo = 0, 2 • (n — 2) domain members are removed, since
value 0 appears only at cell (0,0). The total number of domain values removed from square Y is
2 • (n — 2) + 2 • (n — 2) • (n — 3) = 2 • (n — 2)2. Hence the number of values removed from both squares

CHAPTER 4. Integer Programming algorithms 104

is
P(n) = 2 • (n — 2)2 + (n — 1) • (n — 2)

Since (3(n) = a(n) + (n — 1) • (n —2), it follows that a(n) < (3(n) for all n G Z+ \{0}. Therefore, fixing
transversals appears to be computationally more efficient, a fact also supported by the experimental
results of Section 4.6.

Let us now return to the main issue of how to select the SOS-I for partitioning a subproblem.
First, we need to fix the first column of square Y. This implies selecting which variables of the form
x io0 ki will be set to 1. It is not difficult to see th a t the SOS-I is the variable set of the constraints:

Y ^ { Xioioki : k G K ,l G L} = 1, for all z0 G 7 \{ 0 ,1, (n - 2)}, j 0 = 0 (4.17)

which is a subset of constraints (4.6). However, k = io since the first column of X has been fixed in
natural order. This means th a t only variables Xi0 oi0i must be considered; the rest have already been
set to 0 by preprocessing. Hence, (4.17) becomes:

^{zioO io/ : l e L} = 1, for all z0 G I \ { 0,1, (n - 2)}

After having branched on all of these (n — 3) SOS-I, the first column of Y will have been fixed.
Next, if we wish to fix transversals, we need to fix all values ko in all rows zo. Thus, for each

(iQ,k 0) G I x K , we need to select which of the variables Xi0 jk0i will be set to 1. The SOS-I is the
variable set of a constraint:

X ^o jA o Z : 3 € c/\{0}, Z GL} = 1, for all z0 G I \ { 0 } ,k o G K

which is clearly the constraint set (4.5). Fixing, for example, value 0 in row 1 is implemented by
recursively partitioning the variable set of equality (1,0) G I x K of (4.5). A feasible solution
will be found after branching on, at most, (n — l) 2 SOS-I em anating from constraints (4.5). Since
complete branching on a single constraint requires up to 0(Zop2n) levels, the maximum tree depth
can be 0 (n 2 log2 n). If we wish, instead, to fix rows of the squares, the SOS-I should be selected
from constraints (4.6). The maximum tree depth is again 0 (n 2 log2 n) and, according to the previous
analysis, it can be no larger than the maximum tree depth achieved by fixing transversals.

For the branching strategy that fixes transversals of square Y, the SOS-I always has the form
{x i0 jk0i '■ j £ */\{0}, Z G L}. The special ordered sets are considered in increasing order first with
respect to index ko and then with respect to index zo- In other words, value ko is fixed in n — 1 cells
of square X before value ko + 1. Similarly, a certain value ko is fixed in row zo before being fixed
in row Zo + 1. W ithin a SOS-I, variables are ordered increasingly w ith respect first to index jo and
then to index lo- This implies fixing value ko in the first available cell of the current row with the
smallest available value for square Y. For example, for fixing value 0 in row 1 of X , cell (1,1) will be
examined first. Since Y q\ = 1 and Yio = 2, value lo = 3 will be the first to be assigned to cell (1,1)
of square Y. Let us illustrate the above with an example.

E x am p le 4.1 For n = 5, the form of Table 4-8 is the same as Table 4-2- Assume that, after
partitioning the initial subproblem, we are at a node Qs of the search tree, where Y2o has been set
to value 1 and, consequently, Y4 0 has been forced by preprocessing to take its single allowed value 3.
The next step is to fix value 0 at row 1 of square X and also fix the corresponding cell of square Y
to a value different from 0 (pair (0,0) has appeared already). Table 4-9 illustrates the domains o f all

4.4. A Branch & Cut algorithm for OLS 105

cells in row 1 of square Y.

Table 4.8: A pair of OLS after preliminary variable fixing
0 1 2 3 4

2
{1,3}

4
{1.3}

0 1 2 3 4
1
2
3
4

Table 4.9: Allowed values at the first row
0 1 2 3 4
1
2
3
4

0 1 2 3 4
2 {3,4} {1,3,4} {1,4} {1,3}
1
4
3

The SO S-I at this subproblem is {xijoz : x ijOi £ C s}. It is not difficult to see that the actual
variables are { x n o 3 , Z i i 0 4 , £ 1201, ^ 1203 , ^ 1204 , ^ 1301 , ^ 1304 , x i a o i , ^ 1403}- When this subproblem is
partitioned, variables {£1204, £1301 ,£ 1304, #1401 >^1403} be set to 0 at its left child and variables
{^1103)^ 1104)^ 1201)^ 1203} will be set to 0 at its right child. This implies that the left child contains
all feasible solutions where pairs (0,3), (0,4) appear in cell (1,1) or pairs (0,1), (0,3) appear at cell
(1,2). Figure 4-1 depicts the branch of the search tree, whose top node is Qs . A t each node, the
variables set to 0 (or forced to 1) are also shown.

Level 0

1401
1103 X 1 1 0 4 ^ X 1201 X 1203-

Level

Level

Level
t

Figure 4.1: An example of the branching mechanism

The last issue to be clarified is which of the created subproblems is examined first. The B&C
code applies depth-first search: if the current node Qs is not pruned, one of its children is the next

CHAPTER 4. Integer Programming algorithms 106

node to be examined. The left child is examined first. The right child will be examined only if the
search in the branch defined by the left child is fruitless, i.e. when the B&C algorithm backtracks to
Q s. This option, apart from simplicity, has been selected mainly because the search is for a single
feasible solution. Experience shows that feasible solutions tend to appear deep in the tree rather
than a t nodes near to the root ([68, p.358]).

4.4.3 C utting planes

In Chapters 2 & 3, families of strong valid inequalities were identified for the OLS polytope P o l s -

Adding these inequalities to the LP-relaxation of the original problem Q or any subproblem Qs
results in a tighter problem formulation. The term “tighter” refers to the fact th a t L P (Q S) has
a smaller solution space after adding extra inequalities. For general integer programming, tighter
relaxations provide better bounds on the value of the objective function and therefore reduce the
integrality gap, i.e. the gap between the LP-optimum and the optimal integer solution. This is
not applicable in the OLS case, since we are only interested in a feasible solution or for a proof of
infeasibility. Moreover, the objective function ^ { x c : c E C} has optimal value n 2 for all L P (Q S),
i.e. the duality gap is zero for all fractional LP solutions. The use of cutting planes aims solely at
(a) identifying an infeasible subproblem Q3 at the highest possible tree level (especially for n = 6)
or (b) adding sufficient faces in order for the LP to provide an integral vertex of the polytope.

As discussed elsewhere, the number of valid inequalities is prohibitively large to add them all at
once. Cut addition must always ensure th a t the increase in the m atrix size does not counteract the
benefits achieved by reducing the solution space of L P (Q S). A first step towards this goal is the
separation algorithms described in Chapter 3 for clique, lifted antiweb and lifted 5-hole inequalities.
These algorithms provide a single valid inequality of a certain family, only when violated by the
current LP-solution. They also run in linear time with respect to the number of variables, a fact that
makes violated cuts comparatively cheap to generate. These families are problem-specific and define
global cuts, in the sense th a t they are valid for any node throughout the search tree, since they are
valid for the original problem Q ([50]). Another category of general purpose cutting planes is the
fractional Gomory cuts. These are local cuts because they are valid only for the node, where they
are generated. The B&;C algorithm uses these cuts by applying the standard separation scheme,
described next for the OLS formulation (/P l) ([68, p.367-370]).

Consider the IP:
, 4

m ax { e x : A x = e, x E (0, l} n }

where A is a 6n2 x n 4 matrix. Rewrite this IP as

. 4
m a x{xo : x Q = e x, A x = e, xo E Z +,x E {0, l} n } (4-18)

Supposing th a t an optimal basis for L P (Q S) has been obtained, (4.18) can be w ritten as:

m ax xo (4-19)

XBi + &ijXj = Gio, for i = 0 , ..., 6n2
jeH

x Bo E Z +,x Bi G {0,1} for i = l , . . . ,6 n 2, Xj E {0,1} for j E H

where xq = x Bo, x Bi for i = 1 ,...,6 n 2 are the basic variables and Xj for j E H are the non-basic

4.4. A Branch & Cut algorithm for OLS 107

ones. Since the basis is primal and dual feasible, it holds th a t a*o > 0 for z = 1,..., 6n2 and a,Qj > 0
for j G H . Suppose th a t there exists an z such th a t a;o ^ (0,1), i.e. variable Xbz is fractional. The
following proposition identifies the Gomory fractional cut associated with this variable.

P rop osition 4.3 (G om ory fractional cut) IfdiQ e (0,1) then

^ ̂ f i j x j 5; f i O (4.20)
j € H

where f y = f y — [f y \ , f y = a^o — |_UioJ> is a valid inequality for (4-18).

Observe th a t inequality (4.20) is violated by the current LP-solution. It is easy to see th a t (4.20)
can be w ritten with respect to the basic variables, using the simplex tableau. Notice also that a
Gomory fractional cut can be obtained for each fractional variable.

Further technical details of the cut addition process must be analysed. Notice first that the com
putational effort imposed by cut addition refers to generating the cut and, mainly, to re-optimising
L P (Q S) in order to derive a new feasible solution, or prove th a t the amended L P (Q S) is infeasible.

F irst, the separation algorithms, in the form given in Chapter 3, add only one cut at a time.
This approach might require numerous iterations of cut addition and re-optimisation before a viable
outcome is achieved. A greedier approach of adding more the one violated inequality from each
family sounds more appropriate. The natural question is what should be the maximum number of
inequalities added from each family. Clearly, this upper bound should be a polynomial of n of rather
small degree, e.g. a multiple of n or n 2, The number of cuts added at each iteration, in conjunction
with the maximum number of iterations at each node, determines the “aggressiveness” of the cut
strategy. Recall th a t the number of iterations should also be polynomial in n in order to ensure a
polynomial time procedure for solving each subproblem. It follows th a t a B&C algorithm faces an
obvious trade-off between adding more violated cuts at each node, hence reducing the number of
subproblems, and posing more computational effort at each node. There is no unequivocal answer to
this question. Normally, the answer is problem specific and requires computational experimentation.
We discuss this topic further in Section 4.6.

A second aspect is the order in which families of valid inequalities are examined. As discussed in
Sections 3.5 and 3.7.1, the separation algorithms for lifted antiweb and lifted 5-hole inequalities are
correct only if no violated clique inequalities have been found. Correctness refers to the algorithms’
ability to provide a violated cut, if such exists. This implies th a t inequalities induced by cliques
of type II and III should be separated first and lifted antiweb and lifted 5-hole inequalities should
be examined only if no violated clique inequalities arise. Notice, however, th a t separation of, say,
lifted antiweb inequalities can still provide a violated cut, even though clique inequalities have not
been examined. In practice, one should separate first the inequalities which are (a) more effective
in pruning a node and (b) on average cheaper to generate. For example, if lifted 5-hole inequalities
happen to be stronger in this sense, they should be the first to be added to the matrix, the rest of
the families to be examined afterwards. Hence, regardless of the algorithmic correctness, one must
still experiment with the order in which families of valid inequalities are separated. It is expected,
however, th a t Gomory fractional cuts will be the weakest ones, exactly because they are local and
encompass no knowledge about problem’s structure.

Another critical aspect is the frequency of cutting planes addition. On the one hand, cutting
planes can be added at every single node of the tree, as in [50]. This approach, apart from being

CHAPTER 4. Integer Programming algorithms 108

computationally more expensive, does not guarantee more successful pruning, since the problem is
not significantly different in each node. If, for example, a single variable is set to 0 for creating a
subproblem (e.g. the nodes of Level 3 in Figure 4.1), this subproblem will be almost identical to
its father. The other extreme is to add cutting planes only at the top node of the tree and simply
retain them in all other nodes. The reasonable option lies between these two extremes ([6, 68]).
Hence, cuts are added at the top node of the tree and then whenever a variable is forced to become
1 by preprocessing. A variable becoming 1 offers a practical criterion for detecting th a t the current
subproblem is sufficiently different from its ancestors. Recall that, by branching on SOS-I, a variable
is forced to value 1 at most every [2 • log2 n] levels of the tree. Another, more conservative, approach
is to add cuts once after the first column is fixed and then every time a transversal is fixed, i.e.
whenever (n — 1) variables are set to 1. Clearly, this takes place at most every \2 • (n — l)log 2 n~\ tree
levels.

Normally, all cutting planes added at a node are retained in all descendant nodes. This might
eventually cause a drastic increase in the matrix size. Moreover, cuts added early in the tree are not
necessarily useful in subsequent nodes. Therefore, a method for determining which cuts to retain
must be devised. Dropping all cuts of a node is not practical either, because the LP-relaxation of
its children must be tightened again from the beginning. An intermediate option, extensively used
in recent B&C codes (see for example [5]), is to retain at descendant nodes only the cutting planes
which are satisfied as equalities in the last (fractional) LP-solution. These are also called binding
cuts. This approach is also followed by our B&C algorithm.

4.4.4 Solving the LP-relaxation

Throughout this section we use the standard terminology of Linear Programming, without actually
defining every single term. The formal description of technical terms, e.g. primal feasible solution,
can be found in any LP textbook (see for example [68, Chapter 1.2])

At each node Qs , L P (Q S) can be solved by any method for solving linear programs. The standard
method is the primal or dual simplex algorithm. Recall th a t m atrix A has significantly more columns
than rows. It is usually preferable to have less columns (variables) for the simplex method. In this
sense, the dual simplex appears as the most favourable option, although this has to be supported
by computational results. Therefore, both the primal and the dual simplex algorithms are tested in
Section 4.6. Interior-point or Newton-Barrier methods have been recently shown to be much more
efficient, especially for large LPs ([91]). They are also embedded in commercial solvers ([31]), a fact
th a t allows us to test them as well.

Once L P (Q S) is solved to optimality, violated inequalities are identified. After adding violated
inequalities, the previously optimal solution becomes primal infeasible. The dual solution, however,
remains feasible and can be used as the initial solution for the dual simplex algorithm. Hence, it is
natural to re-optimise L P (Q S) via the dual simplex algorithm. In contrast, the primal simplex and
the Newton-Barrier method have to reconstruct a primal feasible solution from scratch. Actually,
re-optimising with the dual simplex is the default setting in all commercial codes. There exists
another, similar, advantage when using dual simplex for initially solving L P (Q S). Each node has the
same matrix rows as its father, unless a row corresponding to a basic variable of the dual solution is
deleted during preprocessing. If this is not the case, the optimal solution of the father remains dual
feasible in the child. Hence, it may be used again as the initial solution when solving L P (Q S) with
dual simplex.

4.5. Implementation of the Branch & Cut algorithm 109

O ur last note concerns the form of the objective function. Since we deal with a feasibility problem,
the actual objective function is of no real importance. Notice th a t the original objective function
of (IP 1) has a coefficient of 1 for every variable. This implies th a t the right-hand side of all dual
constraints will be identical, thus allowing the appearance of degeneracy. An objective function with
different coefficients for each variable could easily resolve this problem. Therefore, the coefficients of
the objective function used when solving LPs are randomly generated. Any integer in the interval
[l ,n 4] is randomly allocated to a single variable.

4.5 Im plem entation of the Branch &: Cut algorithm

The B&C algorithm has been implemented by using the commercial package XPRESS-MP ([31]).
A part from being a mixed integer programming solver, XPRESS-MP provides full flexibility in terms
of allowing the user to intervene in various aspects of the solver. This is possible mainly via the
Optimiser Subroutine Library XOSL. This library contains all the parameters controlling the solver,
along with numerous subroutines, which can be called from a main computer program. Complete
documentation of these subroutines is provided in [31]. The main program, including the procedures
for preprocessing, branching and cut separation, has been written in the Microsoft C + + programming
environment.

XPRESS-MP requires an IP model to be written in an algebraic language, which is essentially
(IP 1), except for differences in the syntax. The output of the XPRESS modeller is a model in the
standard MPS format. Once this MPS format is created, the model can be solved as either an LP
or an IP. In the latter case, the Branch and Bound solver is invoked. To clarify matters, we briefly
present certain technical details concerning the functionality of the solver.

4.5.1 M atrix operations

The constraint m atrix is fully controllable by the user. This aspect allows all characteristics to be
read and possibly edited. For example, the coefficients of the objective function can be replaced by
randomly generated ones.

The preprocessing mechanism can identify the bounds of the 0 — 1 variables and subsequently
alter them in order to fix variables to 0 or 1. It may also delete rows and columns of the matrix
a t a particular node Qs , without affecting the m atrix used in other nodes. Similarly, the branching
mechanism can set variables to 0 in order to define new subproblems.

Moreover, the user is allowed to intervene with the simplex algorithm by defining the basis or
the pivots. The simplex tableau is available at each point. Once L P (Q 3) is optimised, the simplex
tableau is used for detecting the fractional variables and constructing the Gomory fractional cuts.
Any cutting plane can be added to the m atrix in the form of additional rows.

4.5.2 Control param eters

Numerous control parameters can be handled in order to tune the behaviour of the solver. The first
param eter is the algorithm used for solving L P (Q S), the options being the primal or dual simplex
and the Newton-Barrier. The user can switch to any of those algorithms a t any point. For example,
the initial subproblem can be solved by primal simplex and every linear program thereafter can be
solved exclusively by the dual simplex.

CHAPTER 4. Integer Programming algorithms 110

XPRESS-MP provides its own preprocessing routine, which can be controlled to perform reduced
cost fixing, logical preprocessing, probing or any combination of those three methods (see [78] for
details). The solver also incorporates general purpose cutting planes which can be either used or
not. Also, node selection can follow various strategies, e.g. depth-first. Finally, technical aspects of
numerical precision, like zero tolerance, can be manipulated.

4.5.3 “Callback” subroutines

Perhaps the main strength of XPRESS-MP lies in the set of routines, which can be called a t various
points of the solution process in order for the user to specify the B&C algorithm. The relatively
complex branching mechanism for the OLS problem is implementable only via these routines. These
functions are named callbacks, exactly because they can be called at each node. A fist of all nodes
th a t have not been pruned is maintained by XPRESS-MP. Any of these nodes can be accessed at
any point.

At each node of the tree, we are allowed to preprocess and possibly prune the subproblem, before
solving L P (Q S). If the subproblem has to be partitioned, the user can define the bounds applied in
the two descendant nodes, the next subproblem to be solved and the information printed as output.
The node can be pruned, if infeasible, and the entire solver can term inate if an integer solution is
found.

4.5.4 Cut m anagem ent

A designated set of callback routines handles the cutting planes. As noted above, cutting planes
can be simply added as rows of the m atrix at each Q s. However, since certain cuts added at a node
are retained at descendant nodes, the same cuts will appear in multiple matrices. For large problem
instances, this process occupies unnecessary memory for storing duplicate information. XPRESS-MP
overcomes this drawback by maintaining a pool of cutting planes. Hence, additional constraints are
no longer added at m atrix rows, but explicitly as cuts. Cuts are retained at the “cut pool” only if
they have been used in nodes th a t have not been pruned. Each cutting plane is accompanied by a
list of the nodes it appears at. Before a node is solved, all the relevant cuts are added to its matrix.
Note th a t this process takes place automatically, w ithout the user having to intervene.

Specifically, there exists routines for adding cuts even before the original problem is solved. At
each node a cut-handling routine is called. W ithin this routine, the user-provided code can identify
violated cuts, add them to the cut pool or to the m atrix, and indicate when the iterative procedure of
Algorithm 4.1 will terminate. The user can also specify a param eter delta, controlling the minimum
violation necessary for a cut to be added. Hence, only cuts violated by more than delta are considered.
This aspect is related to issues of numerical precision. Typical values for delta lie in the interval
[10~4,10-2]. Another routine is used to identify the cuts to be deleted from both the m atrix and
the cut pool, i.e. the non-binding cuts.

4.6 Com putational analysis

The discussion of the previous section indicates th a t the B&C algorithm consists of a number of
components and each of those includes various parameters. The exact form of the algorithm is
difficult to be devised unless we experiment with these parameters. This is exactly the aim of this

4.6. Computational analysis 111

section. The possible versions of B&C will be applied to the OLS problem for n = 4 ,..., 12. This
range of values provides a representative sample of the problem. Observe th a t the (IP 1) has 256
variables for n = 4 and 20736 variables for n = 12. Similarly, the number of equality constraints
ranges from 96 (n = 4) to 864 (n = 12). Orders of 2 and 3 are trivial to handle, whereas orders larger
th an 12 require considerable computational time. Actually, the exponential explosion in computation
tim e appears at around n — 10.

T he components of the algorithm examined are the LP-algorithms, the branching rule, the pre
processing procedure, the quality of the cutting planes and cut strategies concerning the number of
iterations at each node and the frequency of cut additions. The main performance indicators are
the elapsed time and the number of nodes created in the tree. The elapsed time includes time for
preprocessing, cut addition and LP-solving (including re-optimisation) and is always measured in
seconds. All results were obtained on a Pentium III, 800 MHz, computer w ith 512Mb of RAM.

4.6 .1 M ethods for solving LPs

This experiment examines the three possible methods for solving the LP-relaxation of the original
subproblem. Hence, only a single LP is solved. The variable fixing indicated by Table 4.2 is im
plemented in advance. No preprocessing is applied and no cutting planes are incorporated. Table
4.10 illustrates the time (in seconds) required to solve each instance to optimality, having as an
objective function the sum of all the variables. It is clear th a t the Newton-Barrier method becomes
significantly faster as the order increases. Especially for n > 9, the Newton-Barrier method requires
a t most half the minimum time required by the dual simplex. There is also a slight improvement
when using the dual instead of the primal simplex. The only reasonable explanation could be that
the dual model has considerably less variables. However, such a small difference may also be caused
by a better implementation of dual simplex in this particular version of XPRESS-MP.

Table 4.10: Results for LP-solving algorithms
n 1 T i m e

Primal Simplex Dual Simplex Newton-Barrier
5 0.51 0.43 1.63
6 1.13 1.04 2.27
7 3.48 3.23 3.21
8 6.72 5.97 4.76
9 10.34 9.41 6.93

10 18.57 16.98 9.19
11 29.24 28.10 13.26
12 35.42 34.71 17.78

4.6.2 Branching rules &; objective functions

Three branching rules are examined in this section. The first is variable dichotomy, which is the
default option in XPRESS-MP. The rest are the two GUB dichotomy strategies described in Section
4.4.2. For simplicity, we call these branching rules V-BR (variable dichotomy), R -B R (fixing rows)
and T-BR (fixing transversals). The algorithm is a Branch & Bound scheme, without any prepro
cessing. The LP in the top node is solved by the Newton-Barrier method and the dual simplex is
applied thereafter. The results in terms of elapsed time and nodes created are depicted in Table
4.11. An upper bound of 5 x 104 seconds has been imposed on the solution time. An asterisk (*)
indicates th a t a certain variant of the algorithm did not manage to find a solution within this time

CHAPTER 4. Integer Programming algorithms 112

limit. In order to allow for large numbers, the notation aE + b is used, where a € [1,10) and b £ Z+
denotes the power of 10. For example, the number 123456 is w ritten as 1.23E + 5.

Table 4.11: Results for the branching strategies
n | T im e N o d e s

V-BR R_BR T_BR V-BR R_BR T.BR
4 7 5 4 i l l
5 18 13 10 5 3 3
6 1963 1623 1536 20532 16423 14769
7 7991 6843 6437 22037 18978 17524
8 356 292 273 1081 781 688
9 33262 28763 27936 3.71E+5 2.58E+5 2.04E+5
10 38347 33149 32143 5.67E+6 4.05E+6 3.80E+6
11 46934 39847 37852 1.53E+7 9.89E+6 9.33E+6
12 * * 48174 * ★ 7.92E+7

It can be seen th a t both GUB dichotomy rules create much fewer nodes than variable dichotomy.
The creation of fewer subproblems is the reason explaining the reduction in solution time. Method
T_BR is clearly better than RJBR, as anticipated by the analysis of Section 4.4.2. Therefore, this
is the branching rule applied hereafter. It is worthwhile to notice th a t even this simple problem
specific knowledge is sufficient to drastically improve on a general purpose Branch &; Bound scheme.
Observe also th a t the solution time is generally increasing with respect to n, except for n = 8. This
will be observed in all experiments. The only reason we may suggest is th a t the first feasible solution,
specifically for n = 8, appears rather early during the search. Since this is the easiest instance, it is
expected th a t any improvements over simple Branch h Bound will be minimal.

One further experiment is conducted in order to justify the use of a random objective function. We
compare algorithm T_BR using two objective functions: the sum of all the variables and a randomly
generated one. The results illustrated in Table 4.12 show th a t a random objective function has
absolutely no effect on the number of nodes, but indeed reduces the solution time of LP-relaxations
fcy the dual simplex algorithm, especially as n grows larger.

Table 4.12: The impact of a random objective function
4 5 6 7 8 9 10 11 12

T ime
Identical coeff. 4 10 1536 6437 273 27936 32143 37852 48174
Random coeff. 4 10 1392 6162 269 27351 31678 37219 47654

N o d e s
Identical coeff. 1 3 14769 17524 688 2.04E+5 3.80E+6 9.33E+6 7.92E+7
Random coeff. 1 3 14769 17524 688 2.04E+5 3.80E+6 9.33E+6 7.92E+7

4.6.3 Preprocessing

Let us now examine the impact of preprocessing on the performance of Branch & Bound (algorithm
T_BR). All schemes examined incorporate the branching rule T_BR and a random objective function.
We compare the simple B&B algorithm with two more schemes involving also preprocessing at each
node. The first uses the embedded preprocessor of XPRESS-MP (algorithm X P R). The second
applies Algorithm 4.2, where up to n iterations are allowed (algorithm PREP). Table 4.13 summarises
tie results. Results for algorithm T_BR are reproduced from Table 4.12. The fields “Prep.” and
‘L P” contain the percentage of elapsed time employed for preprocessing and LP-solving, respectively,
botice th a t these percentages do not add exactly to 1. The reason is the extra time spent for setting

4.6. Com putational analysis 113

up a node and “book-keeping” tasks. Field “Nodes” , for algorithms XPR and PREP, counts only
the nodes where the LP had to be solved, i.e. it does not include nodes pruned by preprocessing
alone.

Table 4.13: Results for preprocessing
n | T im e N o d e s

T_BR XPR PREP T_BR XPR PREP
LP Prep. Total LP Prep. Total

4 4 97.1 0.5 4 96.4 1.2 4 l l
5 10 97.3 0.5 10 97.1 1.4 10 3 3
6 1392 97.4 0.4 1357 97.4 1.6 1133 14769 14313 12281
7 6162 98.1 0.5 6102 97.3 1.8 5288 13769 13472 11735
8 269 97.3 0.6 267 96.7 1.8 255 688 673 571
9 27351 97.4 0.4 26894 95.9 2.2 24373 2.04E+5 2.03E+5 1.94E+5
10 31678 98.5 0.4 30672 96.7 2.1 28537 3.80E+6 3.78E+6 3.48E+6
11 37219 97.4 0.5 36149 96.6 2.7 34640 9.33E+6 9.32E+6 8.92E+6
12 47654 98.2 0.4 47019 97.1 2.2 44109 7.92E+7 7.89E+7 7.51E+7

Table 4.13 shows th a t the preprocessing routine of XPRESS-MP achieves insubstantially better
results in terms of both nodes and time, compared to simple Branch &; Bound. Algorithm 4.2,
in contrast, improves considerably the results with respect to elapsed time. Although the number
of nodes is not much smaller, each node is easier to solve, particularly at lower levels of the tree.
This occurs exactly because of the drastic decrease in the m atrix size. A limited proportion of
subproblems is identified as infeasible before even solving the LP, basically because the left-hand
side of a constraint becomes empty. It can be finally concluded th a t the preprocessing effort for
algorithm PREP is negligible, compared to the benefits produced.

4.6 .4 Q uality of cutting planes

As discussed in Section 4.4.3, the quality of cutting planes refers to their ability to prune an infeasible
subproblem without further branching and to the computational effort required to generate them.
Under this perspective, we must experiment with the order, according to which families of valid
inequalities are examined and added to the matrix. This is mandatory, despite the fact th a t algo
rithmic correctness indicates th a t cliques should be examined first. Nevertheless, the main finding
of our experimentation is that clique inequalities are indeed the most valuable, therefore they should
be the first to be examined.

The following experiment uses algorithm PREP of the previous section. Recall th a t this algorithm
performs preprocessing, branches in a way that fixes transversals and applies a random objective
function. The additional element is th a t a single family of cutting planes is separated at every node
where at least one variable is set to 1. Violated inequalities are added for up to n iterations and at
most 2 • n cuts are added a t each iteration. Overall, at most 2n 2 cuts can be added at a particular
node. The only exception to this rule is the top node of tree, i.e. the original problem, where at
most n2 cuts are added for up to 2 • n iterations.

These upper bounds have been selected only for simplicity of illustration. Experiments for dif
ferent values of these upper bounds have been conducted and have provided analogous comparative
results. As noted earlier, only binding cuts are retained in descendant nodes. Four different variants
are tested, each for one of clique, lifted 5-hole, lifted antiweb and (fractional) Gomory inequalities.
Results concerning the elapsed time are illustrated in Table 4.14. Column “NO CUTS” replicates
column “PR E P ” of Table 4.13. No results for the preprocessing time are illustrated, since they are

CH APTER 4. Integer Programming algorithms 114

matching the ones of Table 4.13. Fields “LP” and “Cuts” contain the percentage of elapsed time
employed for LP-solving and cut generation, respectively.

Table 4.14: Branch fc Cut with a single family of cutting planes
n | T im e

NO CUTS | CLIQUE | 5-HOLE | ANTIWEB | GOMORY
LP Cuts Total LP Cuts Total LP Cuts Total LP Cuts Total

4 4 98.3 0 4 98.4 0 4 98.1 0 4 98.2 0 4
5 10 95.2 3.2 12 91.6 6.3 14 92.8 4.7 12 95.4 1.6 16
6 1133 94.8 3.0 634 92.3 5.1 965 92.6 5.1 1012 96.7 1.4 1273
7 5288 94.4 3.1 3847 91.5 6.2 4784 93.1 5.7 4972 96.1 2.1 5304
8 255 95.6 2.8 252 92.4 6.1 264 92.7 5.6 257 94.4 2.1 331
9 24373 95.2 2.9 19169 92.9 5.4 22417 92.3 5.2 23102 96.2 1.8 25027
10 28537 95.2 2.8 23295 92.5 5.7 26851 92.4 5.6 27346 95.3 1.7 29351
11 34640 94.8 3.3 25907 93.1 5.8 30287 92.9 5.2 29187 96.5 1.8 36416
12 44109 94.6 3.3 33138 91.9 5.6 39574 93.0 4.9 37294 95.8 1.8 47381

According to Table 4.14, the best results are achieved by clique inequalities. Incorporating
these inequalities results in a striking reduction of elapsed time compared to B&B. Moreover, the
com putational time required for their identification appears to be negligible. Gomory inequalities
are proved to be the weakest ones but the cheapest to generate, as shown by the percentage of time
devoted to identify them. Actually, using Gomory inequalities gives worse results than simple B&B,
exactly because of the re-optimisation tasks at each node. Lifted 5-hole inequalities are the most
expensive to generate, although they achieve the best results after clique inequalities, for orders up to
10. For n = 11,12, antiweb inequalities behave more efficiently than 5-hole inequalities. In general,
generation of antiwebs requires more effort than separation of cliques but less than separation of
5-holes.

The results of Tables 4.15 and 4.16 complement these observations. This table depicts results
related to the number of nodes, and the average number of cuts added at nodes, where cut addition
took place. Gomory inequalities are added in large numbers, close to the maximum allowed at each
node. This happens because one can always trace enough fractional variables at each LP-solution
and generate a Gomory fractional cut for each one of them. However, adding these cuts to the
m atrix does not produce better results in terms of nodes; the same subproblems are examined and
repeatedly optimised with additional constraints, thus spending extra time, without pruning any
further nodes. It is therefore this reason th a t allows B&B (without cuts) to be better in terms of
time. The beneficial contribution of cliques becomes more apparent, since Table 4.15 demonstrates
th a t they also create the smallest number of nodes. Hence, clique inequalities are the best in terms
of identifying infeasible subproblems in the higher possible tree levels. This is no surprise since, as
reported in [6], clique inequalities are the most useful regarding general set-partitioning problems.
Lifted 5-hole inequalities are quite strong in terms of proving infeasibility because they consistently
create slightly more nodes than cliques. The fact th a t a large number of those is added at each node
explains the excess computational time needed for their generation. Finally, antiweb inequalities
prove less useful, since only a small fraction of those is violated, i.e. much fewer are added at each
node. The reduction they achieve in the number of nodes is also not remarkable.

In conclusion, clique inequalities should indeed by the first ones to be examined and added to the
matrix. Once no more violated clique inequalities can be found, separation of odd-hole and antiweb
inequalities can proceed. Gomory inequalities are to be checked only if no other family can provide
a cutting plane.

4.6. Com putational analysis 115

Table 4.15: Number of nodes when a single family of cutting planes is used
n | N o d e s

NO CUTS CLIQUE 5-HOLE ANTIWEB GOMORY
4 l l l l l
5 3 l l l 3
6 12281 6871 7462 9649 12273
7 11735 3593 5076 7861 11735
8 571 178 184 407 571
9 1.94E+5 58123 61773 92136 1.94E+5
10 3.48E+6 7.31E+5 7.44E+5 9.31E+5 3.48E+6
11 8.92E+6 1.27E+6 1.35E+6 3.47E+6 8.92E+6
12 7.51E+7 4.23E+6 4.58E+6 6.23E+6 7.51E+7

Table 4.16: Cuts added per node
n | C u t s p e r N o d e

CLIQUE 5-HOLE ANTIWEB GOMORY MAX (2na)
4 0 0 0 0 32
5 25 27 29 49 50
6 46 62 32 70 78
7 59 78 39 95 98
8 67 86 56 123 128
9 83 105 68 162 162
10 129 147 104 197 200
11 152 193 121 240 242
12 177 214 163 288 288

In order to verify this argument, we have also experimented with different orders for examining
the various families. These variants of B&C incorporate separation algorithms for all families, each
w ith a different priority. For example, we have tried to add antiweb inequalities first and examine all
others only if no antiweb is violated. The results have been worse than the ones provided by using
only clique inequalities. Since clique and lifted 5-hole inequalities are the strongest, the sensible
options are to separate first one of these two. Algorithm “Cliques first” separates clique inequalities
first and odd-hole and antiwebs afterwards, i.e. when no more cliques are violated. In contrast,
algorithm “Odd-holes first” focuses first on separating lifted 5-hole inequalities. Gomory cuts are
not considered at all. The results of these experiments are presented in Table 4.17.

Table 4.17: Branch &; Cut with different orders of separation
n | T i m e | N o d e s

| CLIQUES FIRST | ODD-HOLES FIRST CLIQUES FIRST ODD-HOLES FIRST
LP Cuts Total LP Cuts Total

4 98.3 0 4 98.3 0 4 l l
5 94.8 3.7 9 91.3 6.3 14 l l
6 94.3 4.1 553 92.5 5.1 975 3167 7127
7 94.5 3.7 2325 91.5 6.2 4735 280 5061
8 95.2 3.2 252 92.4 6.1 268 57 184
9 94.8 3.5 17854 92.9 5.4 22371 33102 54792
10 94.9 3.3 21561 92.5 5.7 26792 5.11E+5 6.834E+5
11 94.7 3.6 24813 93.1 5.8 29858 9.12E+5 1.02E+6
12 94.8 3.6 31642 91.9 5.6 39611 2.74E+6 4.22E+6

Algorithm “Odd-holes first” remains consistently worse in terms of both elapsed time and nodes
created. Its performance resembles the one of the B&C algorithm which uses 5-holes exclusively
(Tables 4.14 and 4.15). The small improvement achieved is justified by the parallel use of cliques.

CHAPTER 4. Integer Programming algorithms 116

The “Cliques first” scheme exhibits significant progress, even when compared with the algorithm
th a t exclusively uses clique inequalities. For example, the instance of n = 7 is solved in only 280
nodes, compared to the 11, 735 nodes of B&B and the 3,593 nodes of B&C with cliques only. This
occurs because the combined performance of cliques and 5-holes forces the LP to select an integral
extreme point, a t this very early point. The same reason explains the reduction in the number of
nodes for n = 8. For the infeasible case of n = 6, the entire solution space is searched in only
3,167 nodes, compared to 12,281 nodes for B&B and 6,871 nodes for B&C with cliques only. An
im portant observation, not presented in Table 4.17, is that, once no violated clique can be found,
violated antiwebs are rarely identified. In contrast, separation of lifted 5-hole inequalities is able to
provide cuts for several more iterations. Another critical aspect is th a t the maximum number of
iterations is seldom reached and only at higher tree levels; usually, no violated cut can be found after
4 or 5 iterations.

Given these final results, the “Cliques first” variant is retained as the standard one hereafter.

4.6.5 Cut strategies

This section examines mechanisms controlling the aggressiveness of cut addition. The features of the
code related to this aspect are the maximum number of cuts added a t each iteration, the maximum
number of iterations and, most important, the fraction of subproblems eligible for cut addition.
There can exist multiple choices and heuristic criteria for each of these parameters. Nevertheless,
the requirement of a reasonably long polynomial procedure at each node implies th a t both the
maximum number of cuts and the maximum number of iteration can only be a multiple of n or n 2.
Once more, we only report on three representative versions, named “conservative” , “moderate” and
“aggressive” cut strategies.

The conservative approach, adds only n cuts for up to n iterations at a certain node. For
clique inequalities, it is implied th a t up to | violated cuts are added from each class. Eligible
nodes are the ones where a variable is set to 1, and up to the first f (n) levels, where f (n) =
[[(n — 3) + 2(n — 1)] log2 n \ . This limit implies examining nodes only up to the point where the first
column and at least a single transversal have been fixed. Deeper in the tree, the algorithm performs
only preprocessing. The aggressive approach adds up to n 2 violated cuts for up to 2 • n iterations.
Cut axe added whenever a variable is set to 1, or at most every 2 levels of the tree. The moderate
approach selects intermediate options. The values of all parameters are illustrated in Table 4.18.
Notice th a t the maximum number of cuts and the maximum number of iterations is always larger in
the top node.

Table 4.19 summarises the results obtained. It is easy to see th a t the m oderate approach performs
better and almost identically to the “Cliques first” scheme of Table 4.17. It performs slightly better
for small orders and worse for n > 10. Notice that the moderate cut strategy is still more aggressive
than the cut strategy of the original “Cliques first” algorithm. Hence, our first conclusion is th a t it is
better to insist on cut addition for small orders and become more moderate for laxger oxders. In this
context, observe th a t the conservative approach spends less time for cut separation, creates constantly
more nodes and becomes better than the moderate approach for n > 11. To the contrary, the
aggressive strategy creates substantially fewer subproblems but is computationally more expensive,
since it requires considerable effort at each node. Actually, it exceeds the time limit for n = 12.
These results reflect a natural trade-off of Branch & Cut algorithms between the number of nodes
and the time consumed in each one. Notice that an aggressive approach increases also the time

4.6. Com putational analysis 117

for re-optimising LP-relaxations, since it adds a large number of cuts at each iteration. It must be
emphasised, however, th a t the ability of early inferring th a t a certain branch leads to infeasibility,
is strongly correlated to the aggressiveness of the cut strategy. The actual equilibrium is certainly
problem-specific, and probably instance-specific as well.

Table 4.18: Strategies for cut addition
CONSERVATIVE MODERATE AGGRESSIVE

maximum cuts
(top node/ other nodes)

2 n / n n 2 / ^ 2n 2 / n2

maximum iterations n 4n/2n 4n /2n

criterion for node variable set to 1, for the first
[[2(n — 1) + (n — 3)] • log2n] levels

variable set to 1 variable set to 1

or every 2 levels

Table 4.19: Results for three cut strategies
n | T ime | N o d e s

| Conservative | Moderate | Aggressive Cons. Mod. Aggr.
LP Cuts Total LP Cuts Total LP Cuts Total

4 98.6 0 4 98.4 0 4 98.4 0 4 l 1 1
5 96.5 2.6 11 94.7 3.3 11 94.8 3.6 12 1 1 1
6 97.4 1.8 892 94.4 4.2 527 93.4 4.7 1851 3243 2861 2159
7 96.5 1.9 3870 94.6 3.7 3278 93.6 4.9 4153 316 274 185
8 97.4 1.6 247 95.1 3.1 254 94.1 4.8 482 61 57 49
9 97.7 1.2 19639 95.2 3.0 17592 92.9 5.3 24176 35726 32542 28735
10 97.9 1.4 24816 94.9 3.3 21903 93.5 4.6 29749 5.42E+5 3.86E+5 2.73E+5
11 97.6 1.2 22531 94.7 3.1 25713 93.2 5.1 32978 8.24E+5 7.71E+5 4.17E+5
12 97.7 1.1 32187 94.9 3.4 33872 * * * 4.12E+5 2.37E+6 ♦

Our last note concerns the case of n = 6. Our B&C algorithm provides a computer-based proof of
infeasibility via enumeration. However, it would be desirable to obtain a polyhedral proof, analogous
to th a t of Section 4.3. This would require solving the problem at a single node, thus providing a linear
system which proves infeasibility. Unfortunately, this has not been possible, even with an aggressive
cut strategy that incorporates Gomory fractional cuts for an enormous number of iterations, e.g.
1000. This illustrates already the limitation of this approach or the lack of sufficient polyhedral
knowledge for the OLS problem. It is still worthwhile to mention th a t the B&C algorithm, with a
moderate cut strategy, proves infeasibility for n = 6 at most after fixing a single transversal.

Table 4.20: Improvements over simple Branch & Bound
n | T ime

BRANCH & BOUND GUB BRANCHING RANDOM O.F. PREPROCESSING CUTTING PLANES

4 7 4 4 4 4
5 18 10 10 10 11
6 1963 1536 1392 1133 527
7 7991 6437 6162 5288 3278
8 356 273 269 255 254
9 33262 27936 27351 24373 17592
10 38347 32143 30678 28537 21903
11 46934 37852 37219 34640 25713
12 * 48174 47654 44109 33872

CH APTER 4. Integer Programming algorithms 118

4.7 Concluding remarks

In this chapter, we have reported on computational work, related to the application of IP to solve the
OLS problem. For the infeasible case of n = 6, we have proposed an alternative, LP-based, proof.
The proof is accomplished only after preliminary variable fixing, which arises from a certain method
for reducing problem’s symmetry. We have also presented a Branch & Cut algorithm for the OLS
problem. This algorithm uses the polyhedral developments of the previous chapters and exploits the
structure of the problem to devise efficient preprocessing and branching mechanisms. The actual
form of the algorithm is determined via experimenting with several parameters. Computational
results show that the algorithm improves significantly over a commercial solver and th a t strong valid
inequalities constitute, apart from a theoretical description, a powerful solution tool. As a summary
of all previous results, Table 4.20 shows the performance of B&B with variable dichotomy and the
improved performance after incorporating, one by one, the branching mechanism, the randomised
objective function, the preprocessing procedure and the moderate cut strategy of the previous section.
This table shows th a t the most drastic reduction in solution time appears after applying the cutting
planes.

On the other hand, our results show that at least 95% of com putation time is devoted to solving
and re-optimising linear programming relaxations. Hence, limitations on the B&C approach are
imposed by a large m atrix size, at least in the higher tree levels, along with the absence of faster
re-optimisation methods. Next chapter introduces an enumeration paradigm, whose performance is
not restricted by the necessity to solve linear programs.

Chapter 5

Constraint Program m ing
algorithm s

This chapter presents the application of Constraint Programming (CP) to the OLS problem. Its
first part serves the purposes of a review of the CP approach. Hence, Section 5.1 defines Constraint
Satisfaction Problems (CSP) and presents the notions of constraint graph and arc-consistency. Ex
amples involving Latin squares are used to illustrate these concepts. Methods developed to solve
CSPs are presented in Section 5.2, where their performance is also analysed. There exists a broad
spectrum of such methods, from the naive Generate & Test scheme to more sophisticated ones, like
Conflict-Directed Backjumping. The critical aspects concerning the design of a CP algorithm are
extensively discussed. The actual application of CP methods to the OLS problem is exhibited in
Section 5.3. Several branching strategies and solution schemes, which exploit the problem structure
in different ways, are proposed. Computational results are presented in Section 5.4.

5.1 The Constraint Programming paradigm

Constraint logic programming or Constraint Programming (CP) is a method for solving a large
variety of problems. The origins of the method are located within the Artificial Intelligence (AI)
community. Its main area of application has been feasibility problems arising from the computer
science literature, although recent developments ([40]) suggest th a t CP could serve as a method for
general combinatorial optimisation problems. Examples include machine vision, belief maintenance
and scheduling ([57]), along with the generic satisfiability problem (SAT). The latter is defined on
a number of logical sentences on Utrue — fa lse ” (binary) variables, and asks for an assignment that
makes all sentences simultaneously true. The research field focusing on SAT problems is referred to
as Logic Programming. In a sense, Constraint Logic Programming can be regarded as the extension
of Logic Programming to problems involving variables w ith domains of cardinality greater than 2.
Before presenting a number of formal definitions of CP, we apply Logic Programming to the OLS
problem for n = 2.

5.1.1 Logic Program m ing applied to OLS for n = 2

This section illustrates a proof of the non-existence of a pair of OLS for n = 2. It acts as an example
for the use of logic methods for inference. We first formulate the OLS problem for n = 2 in the form

119

CHAPTER 5. Constraint Programming algorithms 120

of logical sentences. Assume Latin squares X and Y and let variables X{j, yij £ {0,1}, i , j = 0,1,
denote the value contained in cell (i , j) of square X and Y, respectively.

We briefly review the elementary concepts of Logic Programming. An atomic proposition is
simply a binary variable, e.g. xoo- A literal is an atomic proposition or its negation, e.g. xoo or
-ixoo- A formula or proposition is a sentence of atomic propositions, using the symbols {V, A}. Any
subformula which is a pure disjunction of literals, i.e. uses only operator V, is called a clause. It is
common to express a formula as a conjunction of clauses or, formally, in conjunctive normal form
(CNF). Finally, a model is an assignment of values to literals, such th a t all clauses are simultaneously
satisfied.

There exists an alternative representation of formulas in the form of rules. For example, if pair
(0,0) appears in cell (0,0), both variables xqo and yoo must be 0, i.e. variables -ixoo and —<j/oo must
be 1. As a consequence, pair (0,0) cannot appear in position (0,1), therefore variables xoi and yoi
should be 1. The rule for expressing this fact is

-ixoo A ->yoo —> ^oi V yoi (5.1)

where symbol stands for “implies” , xoo,yoo are antecedents and £oi,2/oi form the consequent
of the rule ([23, Section 2.1.3]). It is easy to see th a t rule (5.1) is equivalent to the clause:

(zoo V y0o V xoi V y0i)

All rules ensuring that, if the pair (0,0) appear at the cells (0,0), it should not appear in any
other cell, are:

- ’Zoo A ->yoo —> xoi V yoi

-'Zoo A ->yoo —* xio V yio (5.2)

-'Zoo A -'yoo —► z n V yn

Rules (5.2) are equivalent to the clauses:

(zoo V yoo V x o i V y o i)

(zoo V y00 V xio V y i0) (5.3)

(zoo Vy00 V x n V yn)

Three more sets of clauses can be constructed by assuming th a t pair (0,0) appears in

cell (0,1):

(zoi V y0i V x0o V y0o)

(z0i V y0i V x 10 V yio)

(zoi V y0i V x n V y n)

(5.4)

5.1. The Constraint Programming paradigm 121

cell (1,0):

(z io V y io V x 00 V y 00)

(z io V y io V z o i V y 0i) (5 .5)

(^ 1 0 V y i o V X u V y n)

cell (1,1):

(z n V y n V x 00 V y 0o)

(x n V y n V x q i V y 0i) (5 .6)

(z n V y n V x i o V y i 0)

After removing any duplications, the set of clauses enforcing th a t pair (0,0) must occur exactly
once are:

(zoo V yoo V x 0i V y o i)

(z o o V y 00 V x i o V y 1 0)

(a^oo V yoo V x n V y n)

(* o i V y 0i V x io V y io) (5 .7)

(a?oi V y 0 i V x n V y n)

(® io Vyio V x n V yn)

Three more sets of 6 clauses each represent the fact th a t each of the remaining three pairs must
also appear exactly once.

For pair (0,1) the constraints are:

For pair (1,0) the constraints are:

(xoo V -iyoo V x o i V - .y o i)

(z 0o V -^yoo V x io V ->yi0)

(x 00 V -iyoo V x n V - - y n)

(x 0i V --yo i V x io V - -y io) (5 .8)

(x 0i V - . y o i V x n V - . y n)

(x i o V - -y io V x n V - - y n)

(--xoo V yoo V —<x0i V yoi)

(--xoo V yoo V —-xio V yio)

(-.x00 Vy00 V -.x n V y n)

(—-Xoi v yoi V —-Xio V yio) (5 .9)

(i x 0i Vyoi V -.Xn Vy n)

(-.xio Vyio V - . i n V y n)

CHAPTER 5. Constraint Programming algorithms 122

For pair (1,1) the constraints are:

(- ' Z o o V J *£ o o V - z 0 i V “ '2/ o i)

(- ' Z o o V - ' y o o V ^ Z i o V - ^ i o)

(- ' Z o o V - 2 / 0 0 V - a n V - 2/ 11)

(- ’Z o i V “ 1/01 V ^ z 10 V - 2/ i o)

(- ’Z o i V -'Z/oi V - , z 1 i V - 2 / 1 1)

(- 'Z l O V “ 'S/io V - - Z i i V - 2/ i i)

Additional clauses are required to model the fact th a t each square is Latin. For example, if zoo
is 0, both xq\ and ziq must be 1. The associated rules are:

—zoo Zoi

—zoo xio

These are equivalent to the clauses:

zoo V x0i

zoo V Xio

Repeating the procedure for all cells and both values, and after deleting duplicate clauses, yields
the set:

(z00 Vxoi)

(zoo V Xio)

(zoi V i n)

(z io V x n)

(-iz00 V -iz0i) (5.11)

{ - ' X o o v -iXio)

(-ixoi V —>xn)

(—'Z10 V - a n)

The set of clauses for square Y are analogous. The number of clauses can be reduced by erasing
clauses th a t are dominated. It is said th a t a clause Cs absorbs a clause Ct if all literals of Cs appear
in Ct- A clause Ct is implied by a clause Cs if Ct is a tautology or if Cs absorbs Ct- Observe that
the first two and the last two of clauses (5.7)-(5.10) are implied by one of the clauses (5.11) and by
one of the corresponding clauses for square Y . For example the clause (zoo Vyoo V zoi V yoi) of (5.7)
is absorbed by both clauses (z0o V Zoi) and (yoo V yoi). Table 5.1 illustrates the set of non-implied
clauses for the OLS problem for n = 2.

Algorithms for solving models in logic (formulas) are based on the principle of resolution ([23,
Section 2.1.2]):

In any CNF formula, suppose there are two clauses Cs , Ct with exactly one atomic propo
sition p appearing negated in Cs and posited in Ct- It is then possible to resolve Cs and

5.1. The Constraint Programming paradigm 123

Cl (^ 0 0 v yoo v Xn V yn) c 9 (x00 V Xoi) C\7 (y o o V yoi)
C2 (zoi V y0i V xio V yio) C10 (x00 v Xio) Cis (y o o V yio)
C3 (x00 V ->y0o V x n V ->yn) C 11 (xoi V x n) C19 (yoi Vy n)
c 4 (x0i V ->y0i V xio V -.yio) C12 (xio V x n) C20 (yio Vyn)
c 5 (^x00 Vy00 v - i x n Vyn) C13 (—-xoo V —-Xoi) C21 (“’yoo V --yoi)
C6 (1 x01 V y0i V - 1x 10 V yio) C14 (- -X00 v - 1X1 0) C22 (“'yoo V --yio)
c v ('Xoo V -iyoo V i x n V ->yn) C15 (--xoi V -ix n) C 23 (“’yoi V -.yn)
C 8 (~'X0i V --yoi V —-Xio V iy io) C l 6 (--xio V -.x n) C 24 (- ’yio V -.yn)

C t on x. We call C s and C t the p a r e n t s of the r e s o l v e n t clause, which is formed by the
disjunctions of literals in C s and C t , excluding p and - > p . The resolvent is an i m p l i c a t i o n

of the parent clauses.

As an example, if we resolve clauses C \ and C13 on Xoo, we derive the clause:

(-'*01 V y0o V x \ \ V y n)

The notation R e s (C s , C t , p) denotes the resolution of clauses C s , C t on atomic proposition p .

Recall also th a t p V p = p, p v ->p = 1. The proof of infeasibility can be conducted in steps. Each
step applies resolution to the original clauses plus clauses generated in all previous steps.

Step 1
R e s (C i , C 1 3 , xoo) : (^ o i V yoo V i n V p n) C 2 5

R e s { C $, C 1 3 , xoo) : (“’̂ oi V - > y o o V x n V - .y n) C 26

R e s (C 5 , C \ \ , x n) : (_i^oo V yoo V x o i V y n) C 27

R e s (C 7 , C \ \ , x n) : (_|Xoo V -iyoo V xo i V ~ < y n) C 28

Step 2
R e s (C 2 i , C 2 5 , y o o) ■ (_l̂ oi V ->yoi V x n V y n) C29
R e s (C 17, C 2 6 , y 00) ' • (- * 2:01 V y0i V x n V -.yn) C 3 0

Res(C2i,C27,yoo) ' (~'^oo V -.yoi V xoi V y n) C31
R e s (C w , C 2 8 , yoo) : (^ o o V yoi V xoi V ~-yn) C 32

Step 3
R e s (C 2 3 , C 2 9 , yn) : (^ o i V ->yoi V x n) C 33

R e s (C i Q , C3o,yn) : (“^oi V yoi V x n) C 3 4

Res{C23 , C 3 i , y n) ■ (-l^oo V —>yoi V xoi) C 3 5

Res(C7i9 , C3 2 , yn) : (“'Zoo V yoi V xoi) C36

Step 4
R e s (C 3 3 , C 3 4 , y o i) : (-nioi V x n) C 37

R e s (C 3 5 , C 3 6 , y o i) : (“ ' Z o o V x o i) C 3 3

Step 5
R e s (C i 5 ,C ,3 7 , x n) : (“.x o i) C 3 9

Res{C9, C 38,xoo) : (^ 0 1) C 40

Step 6
Res(C39,C40, x 0i) : ()

CHAPTER 5. Constraint Programming algorithms 124

This last empty clause illustrates th a t there exits no model for the set of clauses of Table 5.1. As
a result, there exists no pair of OLS of order 2.

Although it has been trivial to prove the result for this small instance, a systematic algorithm
is necessary for generating implied clauses for larger instances. It is possible th a t the resolution
procedure reaches a point where no more resolvents can be produced ([23, Section 2.2.2]). The only
solution at this point is to select a variable and create two subproblems, each having this variable set
to 0 or 1. This enumerative mechanism is the basis of the Davis-Putnam-Loveland procedure, which
remains the standard exact method for solving satisfiability problems (in [32], reproduced in[23,
Section 3.1.4]). Note th a t this is essentially a Branch &; Bound method, in terms of IP terminology,
and is analogous to the implicit enumeration algorithm of [7].

A formulation for the OLS problem of order n as a set of clauses, can only be based on binary
variables Xijki, exactly as in model (I P 1). The reason is th a t the resolution algorithm requires binary
variables. The generalisation of the resolution procedure for variables with domains of cardinality
greater than 2, is the ^-consistency algorithm ([28]) also called multivalent resolution (in [53, Section
4.2]). This is one of the topics addressed in the Constraint Programming literature, the subject of
the forthcoming sections.

5.1.2 D efinitions

The problems addressed by CP can be formalised according to the following definition of a Constraint
Satisfaction Problem (CSP).

D e fin itio n 5.1 A CSP consists of:

• A finite set o f variables X = {x\ , X2 , . . . , x m }.

• Finite set D i,i = l , . . . ,m, of possible values, which can be assigned to a variable X{, i.e. the
domain of the variable. The contents o f Di are assumed to be integers, although they can
generally be of any arbitrary type.

• A finite set of constraints restricting the values that the variables can simultaneously receive.
Formally, a constraint C (x j 1 , X j 2 , . . . , X j m) involving the variables X j 1 , X j 2 , . . . , X j m can be any
subset of the possible combinations o f values for X j l , X j 2 , . . . , X j m , i.e. C (x j i , X j 2 , . . . , X j m) C
D j i x D j 2 x ... x D j m . This subset is the set of all tuples (x j x , X j 2 , . . . , X j m) allowed by the
constraint.

It follows th a t a CSP can be denoted as a triple CSP(X, D, C). There is no further assumption
about the form of each constraint, e.g. linearity. Therefore, the CSP scheme can incorporate a broad
class of constraints, including non-linear ones, and express them in a compact way. Definition 5.1
is borrowed from [83], where a more detailed introduction to CP can be found. The absence of an
objective function from this definition reveals the emphasis of CP literature on feasibility, rather
than optimality, problems.

As an example, consider the variables x \ and x2, with D i = {1,2,3} and D 2 = {2,3}. Any
subset of the tuples {(1,2), (1,3), (2,2), (2,3), (3,2), (3,3)} could be a valid constraint on x \ and
x 2. The constraint x i ^ x 2 is represented by the subset {(1,2), (1,3), (2,3), (3,2)}, whereas the
constraint x \ • x 2 < 4 is represented by the subset {(1,2), (1,3)}. Since the set of tuples defining a
constraint can be absolutely arbitrary, a constraint does not have to be expressible in a closed form,
e.g. x i ± x 2.

5.1. The Constraint Programming paradigm 125

The number of variables included in a constraint is called the arity of the constraint and can be
any number between 1 and n. A constraint with an arity of 1 is called a unary constraint, while one
w ith an arity of 2 is called a binary constraint.

E x a m p le 5.1 In the case of OLS, let X & Y denote the two squares. Define one variable for each
cell o f the two squares, i.e. X ij & Yij, i , j = 0 , . . . , n — 1, where indices i and j refers to the rows and
columns, respectively. The domain associated with every variable X ij is D — D x i:j = {0, . . . , n — 1},
the domain for each variable Yij being similarly defined.

We know that each domain member must appear exactly once in each row and column. Con
sequently, any two variables, which have at least one index in common, i.e. X \ 2 & A 13, must be
assigned different values. For each row/column, there are Q) = n(n~1) binary constraints of the
form X 1 2 7̂ A 13, one for each pair o f variables having one index in common. Since each such set of
constraints m ust be repeated for each row and column, there are n 2(n — 1) constraints in total. The
same constraints m ust be imposed on variables Y\ j . Additional constraints are necessary in order to
assure that the two squares are orthogonal. The value o f each X i 0j 0, in conjunction with the value of
Yi0j0, is constraining the values for all other X ilj 1 ’s and Yi1j 1 ’s {iq ^ i\ or jq ^ j i) , since each pair
of values must appear exactly once. Hence, each orthogonality constraint is of arity 4.

D e fin itio n 5.2 A label is a variable-value pair < Xi,Vi > representing the assignment of value v ̂
to variable X{. A label is meaningful i f and only i f Vi G Di. We normally say that variable Xi is
instantiated to value Vi. A compound label is a set {< x \ ,v \ > , < X2 ,V2 > , . . . , < Xk,Vk >} rep
resenting the simultaneous assignment of the tuple {v \,V 2 , ■ ■ ■, Vk) to the variables {xi, X2 , . . . , x*}.
Under this perspective, a constraint can alternatively be viewed as a set of compound labels. A com
pound label {< Xj1 ,Vj1 > , . . . , < Xjm,Vjm >} satisfies a constraint C(x j 1 ,Xj2, . . . ,Xjm) i f and only

i f iVh > v 3 2 > • • • > vjm) e C{xjl , x j2, . . . , x jm).

D e fin itio n 5.3 A solution to C S P (X , D , C) with variables x \ , X2, . . . , xn is a compound label {<
^ 1,^1 >, < x2, v2 > , . . . , < x n ,v n >}, where v ̂ G Di, for all i G {1, ...,n } , and {vjl ,Vj2, . .. ,Vjm) G
C{xjl , x j2, . . . , x jm) for all C(x j} , x j2, . . . , x jm) G C.

W hen solving a CSP, we have to conduct search for one of the following:

• A single solution illustrating th a t the problem is feasible

• A subset, or possibly all, of the solutions to identify the optimal one.

• The entire solution space, to prove th a t the problem is infeasible.

5.1.3 The constraint graph

D efin itio n 5.4 A graph is a tuple G = (V,E), where V is the set o f nodes and E C V x V is the
set o f edges.

D e fin itio n 5.5 A hypergraph is a tuple H = (V,E) , where V is the set o f nodes and E is the set of
hyperedges. A hyperedge is a subset of V o f arbitrary cardinality.

Each CSP can be associated with a hypergraph, having one node for each variable and one
hyperedge for each constraint. A hyperedge includes the nodes corresponding to variables involved
in the constraint. Hence, the hypergraph does not provide any information about the domains of the

CHAPTER 5. Constraint Programming algorithms 126

variables or the set of tuples allowed by each constraint. If the arity of each constraint is 2 (binary
CSP), the hypergraph reduces to a graph.

E x am p le 5.2 First, consider the constraint graph for the problem o f finding a single Latin square.
Actually, the problem can be naturally formulated as a graph-colouring problem, i f the domain mem
bers are viewed as colours ([60]). Let G i = (V\ ,Ei) be this graph. Each node v corresponds to a
variable X ^ , whereas each edge denotes that its incident nodes cannot have the same colour. There
fore, Vi = { X i j , i , j = 0 , . . . , n - 1},

E-i = {(XiQj0, X i d l) : i Q = ii or j Q = j i, z0,zi, j 0, j i G {0, . . . ,n - 1}}

where |Vi| = n 2 and |£ i | = n2(n — 1). The constraint graph G i = (V2 , E 2) , associated with the fact
that Y must also be Latin is a replicate of G 1.

Additional edges are necessary to formulate the orthogonality constraints. Let G3 = (V^jE^)
be the constraint hypergraph, with V3 = Vi U V2 , £3 = £1 U £2 U Eq, where Eq consists of the
hyperedges corresponding to orthogonality constraints. Each such hyperedge involves four nodes and
it is straightforward to see that:

£ 0 = {(Ariojo)^ioj0) ^ i h > yi in) l i o ^ h o r 3o¥z 3~Li ‘loAij 30i j i £ {0, ...,n — 1}}

where |£ 0| = Overall, |V3| = 2n 2, |£ 3| = 2n 2(n - 1)+ I .

5.1.4 A rc-consistency and its generalisations

Identifying a solution to a CSP involves a certain search procedure, meaning th a t different values
have to be assigned to different variables in a systematic way, until a solution is found. If at some
point the search is no longer possible, we have to backtrack to a previous step and examine the next
value available.

In order to accelerate the process, it would be useful to identify values in the variable domains,
which could never be part of a solution. Removing these inconsistent values eliminates redundant
search. This idea is the motivation for a general approach to solve a CSP, called constraint prop
agation. The notion of arc-consistency (AC), defined below, is the simplest form of constraint
propagation.

D e fin itio n 5.6 Assume a binary CSP and the associated constraint graph. A n arc (vj,Vk) is con
sistent, if, fo r every value a in Dj there is some value b in Dk, such that (a,b) 6 C(xj ,Xk) . The
value b can be viewed as a support for value a and vice versa.

Note th a t this definition implies th a t the notion of arc-consistency is directional, meaning that
arc (vj ,Vk) being consistent does not necessarily imply th a t arc (Vk,Vj) is consistent too. In most
problems, however, the relationship is bidirectional, i.e. (vj,Vk) is consistent if and only if (v^,Vj) is
consistent. In these cases, one can refer to edge-consistency. It is easy to see th a t OLS falls within
this category.

E x am p le 5.3 Consider the case from the constraint graph of the single Latin square problem, as
illustrated in Fig. 5.1.

It is easy to see that both edges (£13, £ 15) and (£14, 0:15) are not consistent, since value 2 in both
D 13 and D 14 does not have any supportive value in £ 15. Hence, value 2 m ust be deleted from both
D 13 and -D14.

5.1. The Constraint Programming paradigm 127

,X,3 {1,2,4}

Figure 5.1: An example of arc-consistency

In order to achieve edge-consistency in a constraint graph, all arcs have to be examined. For
each (Vj , Vk) E E, the values of X j , which have no support in Dk, are deleted from D j . Deleting
such a value can have further implications for the domains of all variables Vt, such th a t (Vt , V j) E E.

Therefore, the above procedure has to be repeated until no more domain reduction is possible.

E x am p le 5.3 (co n t.) In the above example, the status of the domains after deleting value 2 from
D 13 and D\± is exhibited in Fig.5.2. It is now obvious that edge (£13,£ 14) is no longer consistent

Figure 5.2: Second step in achieving arc-consistency

and 4 has to be removed from D 13. Once this takes place, D \z = {1}. Observe that the value 1 in
D 2 3 has no support in D 1 3 , hence it must also be removed. All the edges are then consistent, and
the condition is depicted in Fig. 5.3.

Figure 5.3: Arc consistent subgraph

Although in the above example the edges can become consistent by inspection, this is clearly not
possible in larger problems. Certain algorithms have been proposed for making a constraint graph
arc-consistent. Algorithm 5.1 presents an outline of the AC-3 procedure for arc-consistency ([83,
Section 4.2.3]) in pseudo-code.

CHAPTER 5. Constraint Programming algorithms 128

A lg o rith m 5.1 (A lg o rith m A C -3)

Q = { > vk) £ E , i ^ j }
repeat

{
CHANGE <- false;
f o r each (vj,Vk) 6 Q do

{
f o r each a G D j do / / D j is th e d o m a in o f va r ia b le j

{
D ELETE <— false;
if, for each b G D fa, (<2, 6) ^ C{Xj , X]f) / / N o s u p p o r t va lu e is le ft f o r a

{
Delete a from D j;
D ELETE <— true;

}
CHANGE «- CHANGE V DELETE;

}
}

u n til (CHANGE =false) / / U n tu n o m o re va lu e s c a n be de le ted

re tu rn ;

Note th a t Algorithm 5.1 assumes directionality. The authors of [14] present a variant of AC-3,
which takes bidirectionality into account, hence reducing the com putation needed for maintaining
arc-consistency. More efficient algorithms, namely AC-4 & AC-5, are presented in [67] and [49],
respectively. These schemes can maintain arc-consistency in 0(ed?) steps in the worst case, where d
is an upper bound on the size of each domain and e is the number of constraints.

The question, which naturally arises, is whether, after making the constraint graph arc-consistent,
no search is required to advance to a solution. If this is indeed the case, the constraint graph is said
to have become backtrack-free. This could occur only if:

• Every variable is left with a single value in its domain, hence indicating a unique solution.

• The domain of a variable is left empty, therefore the CSP is infeasible.

• All the values left in the domains can be part of a solution, therefore any combination of these
remaining values can be used to construct a solution. Such a case is illustrated in Fig.5.3.

Unfortunately, the above conditions rarely occur and only in special problem instances. A more
formal argument is provided by the notion of k- consistency, which generalises th a t of arc-consistency

D efin itio n 5.7 A graph is k-consistent, if, whenever a partial instantiation o f any k — 1 variables
violates none o f the constraints involving those variables, there exists a value for any other kth
variable, which violates none o f the constraints involving all k variables. A graph is strongly k-
consistent i f it is j-consistent for all j < k.

Hence, arc-consistency is equivalent to 2-consistency. Path-consistency is an extension of arc-
consistency, equivalent to 3-consistency. In path-consistency, any two binary constraints with one
variable in common are also examined. For example, assume the existence of constraints C{xj ,Xk)

5.2. Methods for solving a CSP 129

and C(xk,xi) . The domains of Xj Sz xi are indirectly interrelated, and this implicit information can
be used to exclude values from both Dj & Di. Although only binary constraints are included in the
original problem, path-consistency can induce implicit constraints of arity 3, in the form of triples
of (Xj ,Xk , x i) th a t can be part of a solution.

Clearly, no search is necessary if a graph can be made strongly |F [-consistent, since no constraint
can involve more than |V| variables. An optimal algorithm for achieving th a t is proposed in [28].
However, achieving strong |P (-consistency can be computationally more expensive than the most
naive search procedure. There are specific problem classes, for which the constraint graph can
become backtrack-free, if it is made ^-consistent for a certain k < \V\. As it is usually the case, the
methods achieving this are problem-specific and therefore difficult to generalise ([57]).

5.2 M ethods for solving a CSP

This section examines a number of representative algorithms for solving CSPs. The algorithms axe
presented in ascending order with respect to their level of sophistication. An excellent survey of CSP
algorithms can be found in [57]. The authors of [56] provide a theoretical framework for assessing
the performance of most of the schemes presented here.

5.2.1 G enerate &; Test

Generate & Test (GT) is the simplest method for solving a CSP. All possible assignments of values
to variables are generated in a systematic way. After a complete assignment (compound label) is
generated, it is tested against all problem constraints. If none of those is violated, the assignment
is a feasible solution and the algorithm terminates. If a violation occurs, the next assignment is
generated. The problem is declared infeasible, if all possible assignments fail to give a solution.

If the problem is defined on m variables, each with a domain of size p, m p assignments have to be
generated if (i) no solution exists or (ii) all solutions are required or (iii) the best solution is required.
Assume a binary constraint C (x j , X k) not allowing the compound label (< X j , a > , < >). All
n m~2 assignments containing this label will be generated, although this is obviously fruitless.

E x am p le 5.4 Suppose that we wish to solve the Latin square problem with GT. There can be no
Latin square o f order n having two CPs in the first column, therefore no assignment of the form
(< Xoo,0 > , < Xio,0 > , . . .) can be a solution. There exist, however, n "2-2 such assignments, which
will be generated and tested. The amount o f redundant search becomes more significant, if all such
cases are taken into account.

5.2.2 C hronological B ackt racking

A normal extension of the above technique is to proceed incrementally with variable instantiation.
This means that, at each step, only one variable is assigned a value and all the constraints are checked
with respect to the variables instantiated so far. If a violation occurs, the most recently instantiated
variable, which has still values not considered, is re-instantiated to its next available value. Thus,
partial instantiation is sufficient to prune larger subsets of the solution space. This constitutes the
Chronological Backtracking (BT) paradigm.

The search performed by BT can be represented by a search tree. Each level in this tree cor
responds to a variable and nodes a t the same level correspond to different values assigned to the

CHAPTER 5. Constraint Programming algorithms 130

particular variable. At the top node of the tree, no variable has been instantiated.

E x am p le 5.5 Part o f the search tree for the problem of finding a Latin square of order 3 is shown
in Fig.5-4- It is assumed that the variables are instantiated in the order Xoo,Xoi,Xo2 and so on,
i.e. we fix rows o f the Latin square.

X X

Figure 5.4: An example of a BT search tree

BT examines the nodes of the tree according to a depth-first strategy, as described by the steps
of the following algorithm.

A lg o rith m 5.2 (C h ro n o lo g ica l B ack track in g)

S te p I Select a variable, which has not yet been assigned a value, i.e. define a new level in the tree.
I f there are none stop; a solution has been found.

S te p I I Select a value for this variable (a node in that level), not yet examined. I f such a value
exists, go to Step 3. I f not, backtrack to the most recently instantiated variable, which still
has values not examined (backtrack to the deepest previous level, which still has nodes not
examined). I f no such variable exists, stop; the problem is infeasible.

S te p I I I Test whether the new partial solution satisfies all the constraints involving the variables
instantiated up to this point. I f so, go to Step 1; otherwise, go to Step 2.

It is not difficult to see that algorithm BT behaves more efficiently than GT. For the example of
Fig.5.4, all assignments having Xoo = 0 & Xoi = 0 are excluded from further consideration already
at level 2. However, this holds only because variable X qi is instantiated right after Xoo- Let us
consider a different case.

5.2. Methods for solving a CSP 131

Variables Xqo and X 30 must also possess different values, hence the label < Xoo , 0 > implies that
the label < X 30, 0 > will lead to a violation. Assume a point in the search procedure, where value
0 is the only one available for variable X 30. Notice th a t 6 variables have been already instantiated,

i.e. variables Xoo, ^ 01, -^02, -X'io, -^11, -^12- Given th a t the label < X 3o,0 > is not allowed, the
algorithm will have to backtrack to the most recently instantiated variable having still available
values. However, only backtracking all the way to Xoo could allow for a new value to become
available for X 30. Until this takes place, all available values for the 5 intermediate variables have
to be examined. Hence, a significant amount of redundant search is performed. This phenomenon,
arising from having a CSP that is not arc-consistent, is called thrashing.

5.2.3 Forward Checking

BT examines each label with respect to all previously created labels (i.e. variable instantiations) and
rejects the current label, if it is inconsistent with a previous one. In this sense, it performs consistency
checks only between instantiated variables. However, possible inconsistencies can be detected, and
thus avoided, much earlier. Let (a, 6) E C (xj,X k). Setting Xj = a should automatically exclude the
value b from D j . This simple idea is adopted by the Forward Checking (FC) scheme, which avoids
useless assignments by looking ahead at the effect of any current assignment on uninstantiated (fu
ture) variables. FC creates a search tree, exactly as BT. The difference is that, instead of examining
the constraints regarding only instantiated variables, it also uses the constraints to delete values
from the domains of the uninstantiated variables. The main steps of the FC scheme are illustrated
in Algorithm 5.3.

A lg o rith m 5.3 (F o rw ard C heck ing)

S te p I Select a variable, which has not yet been assigned a value. I f there are none stop; a solution
has been found.

S te p I I Select a value still in the domain of this variable, which has not yet been examined. I f such
a value exists, go to Step 3. I f not, backtrack to the previously instantiated variable, which still
has values not examined. I f no such variable exists, stop and declare the problem infeasible.

S te p I I I Delete any inconsistent values from the domains o f the uninstantiated variables. I f a
domain is annihilated during this process, go to Step 2. I f not, go to Step 1.

Essentially, Step III performs domain reduction by examining all constraints involving the cur
rently selected variable.

E x am p le 5.5 (co n t.) In this example, the FC algorithm would detect that, once Xoo = 0, value 0
should be excluded from the domains of all variables having one index in common with Xoo- Assuming
that the search proceeds by fixing rows, we present a part o f the search tree in Fig. 5.5. In each node,
the variable domains are also illustrated in brackets.

At each node, it is no longer im portant to check the current variable Xk against all previous
variables, since inconsistent values have already been removed from D k • E xtra work is necessary
only for filtering the domains of the remaining variables. By comparing Figures 5.4 &; 5.5, one can
already see th a t FC creates a smaller search tree than BT. It has been formally proved ([56]) that,
for any CSP and for identical variable orderings, FC creates at most as many nodes as BT.

CHAPTER 5. Constraint Programming algorithms 132

Figure 5.5: The search tree for FC

Let us provide a rather artificial example, illustrating why BT may perform significantly more
work th a t FC. For a Latin square of order n > 2, consider the variables Xoo, Xoi, Xo(n_i), where
D qq = Dqi = £>0(n_i) = {0,1}. Since all these variables must be pairwise different, the problem
is obviously infeasible. BT will assign different values to the first two variables, say < Xoo,0 >, <
X o i , 1 > , and will keep on assigning values to all intermediate variables, until it reaches Xo(n_i)
and discovers th a t no value can be assigned to it. It will then gradually backtrack and consider all
possible combinations of the intermediate variables, before tracing the source of the problem and
declare the problem infeasible. In contrast, FC will detect infeasibility right after instantiating Xoo
& Xoi because L>o(n_i) becomes empty. Hence, FC will never instantiate any intermediate variables.

5.2.4 Forward schemes

The previous sections indicate th a t a spectrum of different methods can be applied to solve CSPs.
The issues to be addressed by every method are the following.

• The order, according to which variables are instantiated. We have implicitly assumed that this
order is given at the beginning of the algorithm.

• The level of constraint propagation to be performed after fixing a variable.

• The variable to which to backtrack if no more values are available for the current variable or
if a domain is annihilated.

Schemes, which mainly focus on addressing the second issue, are called forward or look-ahead,
whereas algorithms based on resolving the third one are called backward.

5.2. M ethods for solving a CSP 133

The difference among forward schemes lies in the level of constraint propagation performed at
each node. The main trade-off is between the aggressiveness of constraint propagation and the size
of the search tree. An exhaustive algorithm for ^-consistency can significantly reduce the tree size,
posing more computational effort at each node. The relevant literature depicts studies, where such
an aggressive strategy performed less efficiently than even BT (see [56, 57] for more details). Another
variant might be th a t the level of constraint propagation increases or decreases with respect to the
depth of the node. Applying more extensive constraint propagation in the higher tree levels can
drastically reduce the size of variable domains, leaving little further work even for a simple BT
scheme. Notice th a t even BT incorporates an elementary form degree of constraint propagation,
since any assignment to a variable of a value inconsistent to the already instantiated variables causes
immediate failure.

FC is a forward scheme, which performs consistency checks only between instantiated and unin
stantiated variables. The Full Look-Ahead (FLA) algorithm performs further domain reduction than
FC, by looking for inconsistencies even between the domains of uninstantiated variables. Essentially,
FLA ensures arc-consistency at each node of the tree. For example, consider the condition after the
assignments < Aoo,0 > , < Aoi, 1 > , < Ao2,2 > , < Aio, 1 > in Figure 5.5. FLA would go one step
further than FC and deduce th a t D 2 0 = {1}, £>22 = {0},L^2i = {2}. At this point, assigning to each
variable the unique value in its domain attains a solution.

5.2.5 Backward schemes

Backward schemes are also named Intelligent Backtracking or Gather-Information-While-Searching
strategies [83]. They differ from all schemes discussed so far in the fact th a t they do not necessarily
backtrack to the most recently instantiated variable.

Suppose th a t variables x i, X2 , . . . , % k - \ are instantiated, in this order, and th a t the instantiation
of Xk fails. BT will backtrack to X k-i and examine a different value from D k -i. However, this
might not affect the failure of assigning a value to x*,. The simplest reason might be th a t there is
no constraint involving both X k - i and x*. Therefore, changing the value of X k - i will not affect the
failure in the next step.

Instead, the algorithm could trace the most recently instantiated variable, which caused the failure
of at least one of the possible assignments to x*,. This idea is implemented by the Back-Jumping
(BJ) algorithm, which “jum ps” directly to that variable. Let this variable be Xj, 1 < j < k — 2.
B J cancels all intermediate assignments to variables Xj+i , . . . , X k ~ \ . The natural question is what
should happen, if no further value is available for Xj either. The obvious resolution is to repeat the
process for Xj and move to variable, say, x;, 1 < i < j — 1. The problem is th a t our initial aim was
to identify the reason for the failure of x&. If another variable xm, i < m < j is also responsible for
the failure of x*,, altering its value could make the instantiation of x* possible. If this is the case,
the algorithm has just omitted a feasible solution. In order to overcome this effect, the BJ algorithm
performs a jum p initially and backtracks chronologically thereafter.

An improved version of BJ is the Conflict-Directed Back-Jumping (CBJ). In this scheme, each
variable has an associated constraint set, which includes all the preceding variables that caused
failure during this variable’s instantiation. In this sense, the algorithm records the reasons of failure
and learns from the past. When no more values remain for the current variable x*,, the algorithm
backtracks to the deepest variable of its constraint set. Let this variable be X j . If instantiation of
X j to another value is also impossible, the constraint sets of X k Sz X j are merged. The algorithm

CHAPTER 5. Constraint Programming algorithms 134

Figure 5.6: T h e B J schem e

backtracks to th e m ost recent variable in th is com bined set, i.e . th e m ost recent variable, w hich has

caused th e failure o f X j or X k - T herefore, no inform ation is lost if tw o su ccessive jum ps take place.

In [56], it is proved th a t C B J creates at m ost as m any nodes in th e search tree as B T and BJ. T he

relationsh ip betw een the num ber o f nodes created by C B J and FC rem ains unknown.

5.2.6 H ybrid m ethods

Backward and forward schem es can be in tegrated . T h e m ost prom ising hybrid is th e F C -C B J algo

rithm , w hich com bines th e advantages o f b oth FC and C B J. A th eoretica l eva lu ation o f algorithm s

for C SP proves th a t F C -C B J is at least as com p etitive as any other know n algorithm in term s o f the

size o f th e search tree.

F C -C B J can b e described a standard FC schem e, w here, in ad d ition , each variable has an as

socia ted constra in t set. E ach tim e th a t the in stan tia tion o f a variable X j reduces th e dom ain o f a

u n in stan tia ted variable X k , j < k , X j is added to th e constraint se t o f x k . I f the dom ain o f X k is anni

h ila ted , th e conflict se t o f x k is added to th at o f x j and th e a lgorithm backtracks to th e m ost recent

variable in th e new set, say X i , i < j . A ll in term ed iate assignm ents are also cancelled . T he extra

task is to restore th e dom ains o f th e un instan tiated variables in th e sta te before th e in stan tiation of

variables X i + 1 , . . . X j .

T h e basic concern ab ou t the perform ance o f hybrid schem es is w h eth er the com bined approaches

are com plem en tary or overlapping. C BJ offers a significant im provem ent over B T , but, once added

to a FC or F L A schem e, it p ossib ly increases th e so lu tion tim e, a lth ou gh th e tree size is reduced

(see [57, 83]). E ssentially , it is difficult for C B J im prove sign ifican tly over an FC algorithm . Pre

lim inary exp erim en tation has show n th e sam e resu lt concern ing th e OLS problem . To the best of

our know ledge (see also [83, 84]), th e relevant literature includes no stu d y w here backward schem es

outperform ed FC or F L A algorithm s.

5.2 .7 Variable and value ordering

T h e previous section s focused m ain ly on the procedure to be follow ed at each n ode o f th e search tree,

th e goal b ein g to overcom e th e w eaknesses o f backtracking and to reduce th e tree size by elim inating

redundant search. T h e ordering o f th e variables has b een assum ed to b e know n in advance, although

th is is ob viously n ot th e case. Successfu lly se lecting th e n ext variable to b e in stan tia ted (also called

b r a n c h i n g variable) and th e node to be processed first can affect d ram atica lly th e overall perform ance.

Ideally, if a so lu tion to th e original C SP ex ists, in stan tia tin g each variable to its correct value can

5.3. CP algorithms for the OLS problem 135

lead to the solution in linear time with respect to the number of variables, without involving any
backtracking.

Several schemes for variable selection have been studied, where the order of variables instantiation
is determined either statically, i.e. only once in the root node, or dynamically at every node. A simple
approach suggests to branch on the variable with the smaller domain cardinality. This dynamic
method creates the minimum number of new nodes at each step. Another method is to branch on
the variable participating in the largest number of constraints. In this case, the order of variables can
be determined initially. The intuition behind this method is that, since the largest possible number of
constraints will be used for propagation a t each step, the domain reduction will be rigorous. Hence,
branches leading to infeasibility will be pruned earlier in the search. An extension of this idea is to
branch on variables in the way th a t maximises the number of domain members removed from the
uninstantiated variables. This approach is expected to reduce the tree size and accelerate the search
([83, Chapter 6]).

A more sophisticated scheme makes use of the stable set of variables. A stable set in a graph is
defined as a set of nodes with no edges between any two of them. Similarly, a stable set in a (binary)
CSP is a set of variables having no constraints involving any two of them. If the maximum stable
set of a given CSP was known, the variables of the set could be the last to be instantiated, since we
know th a t constraint propagation will not produce any reduction for all the other variables in the
set. Unfortunately, determining the maximum stable set is an M V-hard problem. Heuristics can be
possibly applied to find a sub-optimal solution, as long as this involves a sufficiently large fraction
of the variable set.

The ordering of values for a certain variable remains an unexplored issue. Estimators have been
used to calculate the virtue of each domain member. Common criteria are to prefer the value, which
maximises the options available for future assignments, or to prefer the value, which is expected to
lead to the easiest to solve CSP. The setback is again th a t all the developed heuristics remain highly
problem specific.

5.3 CP algorithms for the OLS problem

5.3.1 Problem formulation

Let I , J be the n-sets indexing the rows and columns of squares X and Y . Define variables X i j ,

as in Example 5.1. Recall from Section 5.1.3 the constraint graph for the Latin square problem
G\ = (V i,E i) , where

Vi = { X i j , i = 0, . . . , n - l , j = 0, . . . , n — l}

E i = : = h or j 0 = j i , iQ,h , j Q, j x € {0, . . . ,n — 1}}

It is easy to verify that the node subsets { X o j , . . . , for j = 0 , . . . , n — 1 and { X i o , . . . ,
X;(n_i)} , for i = 0 , . . . , n — 1 are (maximal) cliques, since any two nodes in each subset are connected
and no other node connected to all existing ones can be identified. Each clique can be naturally
represented in CP by the all-different operator ([53, 77]). The constraint all-different(S), where S
is a set of variables, signifies th a t all variables in S must be assigned pairwise different values. It is
easy to see th a t the constraint all-different(S) is equivalent to a set of binary constraints
of the form Xi ^ X j , i , j G S, i ^ j . Given th a t we have to impose an all-different constraint for each

CHAPTER 5. Constraint Programming algorithms 136

row and column of Latin square X , the CP formulation of the Latin square problem is the following.

alLdifferent{Xij : i G I} , for all j G J

alLdifferent{Xij : j G J} , for al lz G I (5-12)

D Xij = D x = {0, . . . , n - 1}

Let us consider the OLS problem, where X and Y denote the two squares. Formulation (5.12)
must be repeated for square Y and the associated constraint graph G2 = {V2 ,E 2) is a replicate
of G \. The orthogonality constraints correspond to hyperarcs, each one involving four nodes. Let
G3 = (V3, E 3) be the constraint graph. As discussed in Section 5.1.3,

p3 = v1uv2
E% = E \ U E 2 U Eq

Eq = {(Ai0j0, Yi0 j 0 , X i 1j 1, Yijj 1) io ^ i\ ot jo ^ j \ , io ,ii , jo , j i G {0,..., 71 — 1}}

where |£̂ 01 = ■- • It follows th a t |V31 = 2n 2, |f?3| = 2n2(n — 1)+ n
In order to formally express the orthogonality constraints, define the auxilliary variables Zij —

X ij + n • Yij, for i , j = 0 , 1 , . . . , n — 1. There are n 2 possible values for Zij, i.e. D z = D z =
{0 , . . . , n 2 — 1}, which have a 1 — 1 correspondence with all n 2 ordered pairs (i , j) , for i , j = 0 , 1 , . . . , n —
1. Each ordered pair appears exactly once if and only if all ZijS are assigned pairwise different values.
Therefore, the OLS problem can be formulated as follows.

alLdifferent{Xij : i G I} , for all j £ J

alLdifferent{Xij : j G J} , for alH G I

alLdifferent{Yij : i G I} , for all j G J

alLdifferent{Yij : j G J} , for alH G I (5.13)

alLdifferent{Zij : i G I , j G J}

Zij = X ij + n • Yij, for all i G I , j G J

D x = D y = {0, . . . , n — 1 } ,D z = {0, . . . , n 2 — 1}

This formulation involves 2n 2 variables with domains of cardinality n and n 2 variables with
domains of size n 2. It also includes 4n + 1 alLdifferent constraints and n 2 equalities. Overall,
formulation (5.13) requires 3n2 variables and n 2 + 4n + 1 constraints.

Notice th a t the entities of rows, columns and values in the two squares can be viewed interchange
ably, exactly as in the IP model. Since any two of these entities are indexed by i & j in formulation
(5.13), (2) = 6 possible representations are possible. To illustrate the symmetry implied by such a
perspective, 6 equivalent problems, having the same constraint graph, can be stated:

I. (i indicates the row and j the column): pair (X ij ,Y i j) appears in cell (i, j);

II. (i indicates the row and j the value of the first square): pair (j ,Y i j) appears in cell (i,X ij) .
Alternatively stated, X ij is the column, where values j and Y\j occur in row i of the first and
the second square, respectively;

III. (i indicates the row and j the value of the second square): pair (X i j , j) appears in cell (z, Y^);

5.3. CP algorithms for the OLS problem 137

IV. (i indicates the column and j the value of the first square): pair (j , Yij) appears in cell (X ij, i)\

V. (i indicates the column and j the value of the second square): pair (X i j , j) appears in cell
(Yij, i);

VI. (i indicates the value of the first square and j the value of the second square): pair (i , j) occurs
in cell (X ^ , Yij).

The remainder of this section is organised as follows: Section 5.3.2 discusses possible branching
rules, while Section 5.3.3 presents the actual CP algorithms and proposes methods for Constraint
Propagation. The terminology follows th a t of Section 4.4.

5.3.2 Branching strategies

Before the search starts, the preliminary variable fixing implied by Table 4.2 is implemented. This
amounts to fixing the first rows of squares X , Y and the first column of X in natural order, along
with further filtering the domains in the first column of Y . Given this starting point, this section
discusses the order, according to which the remaining variables/cells will be instantiated. The first
cells to be fixed are the remaining cells of the first column of square Y . Concerning the remaining
(n —1) x (n —1) subsquares, there are two systematic ways for branching, namely fixing rows (columns)
in both squares or fixing transversals (see Section 4.4.2).

Moreover, a critical question is whether the two squares will be fixed concurrently or X will be
completely fixed before starting to fix Y . One approach is to first assign values to square X and then
to square Y . This branching rule implies that X will be instantiated to different Latin squares of
order n up to the first square, which does have an orthogonal mate. Square X (and Y , afterwards)
can be constructed by tentatively fixing either rows or sets of cells in pairwise different row and
column. In the latter case, the cells must be assigned identical values, hence this second method
fixes values rather than cells. In either case, the Latin squares will be produced according to a certain
lexicographic rule. For example, in the case of fixing rows, all squares X having value 0 in cell (1, 1)
will be produced before the squares having 0 in cell (1,2). Therefore, the success of a method fixing
square X completely before examining square Y depends highly on whether a Latin square having
an orthogonal m ate appears early in this order. If not, numerous Latin squares of order n will have
to be pointlessly generated. Apparently, the lexicographic order is not im portant for n = 6. On the
other hand, this approach sounds simpler and has the advantage of over-constraining the variables
Y . In more detail, variables X must satisfy only the constraints (5.12), whereas variables Y are
additionally constrained by the orthogonality constraints, i.e. they have to satisfy all constraints
(5.13). Hence, for given X , it is expected th a t checking the existence of an orthogonal Y should be
simpler. Notice th a t this approach relates to model (IP 2) of Section 4.1.

If we wish to assign values to both squares at the same time, we have to first select a cell (i ,j) ,
then instantiate variable X ij to the smallest available value in its domain and directly proceed with
the instantiation of variable Y ^. Exactly as in Section 4.4.2, we examine the strategies of fixing either
rows or transversals of Y . Although the analysis of Section 4.4.2 suggests th a t fixing transversals is
a superior option, we will still experiment with both branching schemes. The four branching rules,
applied in the CP algorithms of the next section, are the following.

X _R static variable ordering, where the variables of square X are instantiated first by fixing rows.
Variables of square Y instantiated afterwards, also by fixing rows.

CHAPTER 5. Constraint Programming algorithms 138

X_T: dynamic variable ordering, where the variables are instantiated by fixing sets of cells in pairwise
rows and columns. Hence, all Os are first fixed in proper cells of X , followed by all Is and so
on. Once square X is completed, the same rule is applied to square Y .

X Y _R static variable ordering, fixing rows in both squares. Hence, cell (1,1) is the first to be
assigned a pair, followed by cell (1, 2) and so on.

X Y_T: dynamic variable ordering, fixing transversals of Y along by fixing all corresponding cells of
X to identical values. Again, value 0 is the first to be fixed in n cells of X , each in a different
row and column, followed by value 1 and so on.

Note th a t the last two strategies start by fixing the first column of square Y . The last note is that
all CP algorithms follow a depth-first policy for node selection, again because the search is about a
single feasible solution.

5.3.3 A lgorithm s Constraint Propagation

GT algorithms are not considered because of their apparent inefficiency. The BT algorithm offers
simplicity and fast enumeration, since it does not apply any form of constraint propagation. For this
reason, it is included in our experimentation.

The BT algorithm, combined with branching rule X_R, will select the next cell in the current
row io, instantiate variable X i 0 j 0 to value ho- It will then check whether value ko has already been
assigned to any variable in row zo and columns j = 0 ,..., jo — 1 or any variable in column jo and
row z = 0 ,. . . ,Zo — 1. If this is true, the algorithm backtracks and selects the next available value for
variable X iQ̂ 0 _ i^ if jo > 2 or for variable if jo = 1. W hen variable Yi0 j 0 is instantiated
to value Zq, the algorithm again looks for the possible appearance of value Zo at cells of either the same
column and all previous rows or the same row and all previous columns. Additionally, it considers
the value of variable X i 0 j0. If this value is &o, the algorithm will have to check all cells of square X
containing this value and look at whether value Zq appears in any of the corresponding cells of square
Y . This will ensure th a t pair [kofio] will appear exactly once. In order to accelerate this process,
we introduce the auxilliary binary variables Pairki, which essentially model variables of (5.13).
W hen Yi0 j 0 is set to Zo, only variable Pairk 0 i0 needs to be checked. If Pairk 0 i0 = tru e , a violation
of orthogonality has occurred; otherwise, Pairk 0 i0 is set to value true to acknowledge the existence
of pair (Zco,Zo) to any future assignments, i.e. descendant nodes. I t is not difficult to see th a t all
consistency checks can be implemented in 0 (n) steps. These checks are performed regardless of the
branching rule.

The BT algorithm leaves the variable domains intact throughout the whole solution process.
For this reason, it performs redundant search, since some values are already inconsistent because of
previous assignments. If, for example, X i 0 j 0 = /c0, value ko is already forbidden for all other X {lj l ,
such th a t zo = zi or jo = j \ . This redundancy can be avoided, if we perform domain reduction at
each step. In this way, each time a variable is instantiated to a value still existing in its domain, no
constraints have to be checked. This direction leads, apparently, to a Forward Checking algorithm.

Hence, algorithm FC fixes a variable at the smallest value still existing in its domain. Its next
step is to look at the uninstantiated variables and delete any inconsistent values from their domains.
If, during this process, a domain is annihilated, the current node is declared infeasible. If the domain
is left with a single value, the corresponding variable is directly instantiated and the process of

5.3. CP algorithms for the OLS problem 139

domain reduction is invoked again. Hence, variables are generally instantiated either because they
are currently selected or as a consequence of domain filtering.

More formally, if variable X{0j0 is instantiated to value ko 6 D x iQjQ, ko is removed from the
domains {D x i2J1 : i\ = io or j \ = jo, X i1j 1 is uninstantiated}. If D x iljl = 0, the node is pruned and
the algorithm backtracks to its immediate predecessor. If D x ii:il — j^ i} , X{ij i is instantiated to
value k\ and the previous procedure is performed recursively. Notice th a t this procedure is analogous
to the preprocessing process for the B&C algorithm (Section 4.4). Identical steps are followed for
square Y . In order to reduce domains based on orthogonality constraints, setting X{0j0 — ko implies
th a t value ko has to be erased from all the domains {D xi j : Yhji is instantiated, Yi1j l = Yi0j0},
the same being applicable to square Y . In order to check which variables X ^ j , have values equal to
X iQj0, we retain points PTi0k0 for each row io and value ko, which indicate the cell of row io where
value ko (possibly) occurs. The domain reduction procedure is performed in 0 (n) steps. Observe,
however, th a t under the branching scheme X Y - T only cells belonging to the same transversal need
to be examined for square X , since only these cells can contain the same value as X i0j0. These
variables have been fixed ju st before X i0j0, thus any violation of orthogonality can be resolved by
backtracking for up to (n — 1) levels.

The above procedure achieves 2-consistency, since it examines any two variables involved in a
constraint. Although this constitutes an advance over simple BT, there are still inconsistencies not
detected. To illustrate this, suppose the following form of three domains:

Dx„ = {2,3}

D x „ = {2,3} (5.14)

= {2,3}

Since these three variables must possess pairwise different values, the problem at this node is clearly
infeasible. This however will not be detected without additional branching, since no domain has
been annihilated. The following remark generalises this observation by stating a necessary criterion
for the existence of a solution at any node.

R e m a rk 5.1 Let Si0 = {X ij : i = io and X ^ uninstantiated} and Di0 = U [Dij : X ^ G Si0},
io = 0 , . . . , n — 1. Similarly, let S j0 = {X ij : j = jo and X ij uninstantiated} and D j0 = {(JDij :
X ij € 5,0 }, jo = 0 , . . . , n — 1. A necessary condition for the existence o f a feasible solution, at any
step o f the algorithm, is that | 5 i 0 | = \Di0\, for each io G 7, \Sj0 \ = \Dj0\, for each jo G J .

The above remark also holds for square Y . Actually, it can be stated in a more general fashion,
regarding any alLdifferent constraint.

R e m a rk 5.2 Assume the predicate alLdifferent(5) . Let S ' = {x G S : X uninstantiated} and Ds> =
U P * : x G S '} . A necessary condition for the existence o f a feasible solution is that |5"| < |T)s'|.

Examining the number of uninstantiated variables in all rows and columns, along with recon
structing the union of their domains, requires a considerable effort at each node. We simplify the
process by introducing the notion of “degrees of freedom” (DOF) for each row (column) and value,
as the number of cells th a t a value can be assigned to in a row (column). For square X , let us name
as X R -D F ik the degrees of freedom for value k in row i and, similarly, X C -D F jk the degrees of
freedom for value k in column j . Variables Y R -D F u and Y C -D F ji are defined accordingly. Observe

CHAPTER 5. Constraint Programming algorithms 140

that X R J D F i 0 k 0 = 0 if and only if either \ S i 0 \ > \ D i 0 \ or value ko appears in row i$. Consider again
the case (5.14), and suppose that X u , X i 2 , X i o are the only uninstantiated variables of the row 1
of square X . Since the remaining (n — 3) cells of row 1 have been instantiated to (n — 3) different
values, there must exist a value ko, not appearing in any cell of row 2, such th a t X R -D F 2 k0 = 0.

Hence, incorporating degrees of freedom extends the inference generated by constraint propa
gation. Whenever a domain value ko is removed from D x i Q j Q , both X R - D F i 0 k 0 and X C - D F J 0 k 0

are reduced by 1. If a degree of freedom becomes 0, the node is pruned as infeasible. If a degree
of freedom for value ko becomes 1, the single variable having still ko in its domain is found and
instantiated to value ko, independently of which other values exist in its domain. The constraint
propagation procedure is, subsequently, invoked. It is easy to see th a t updating degrees of freedom
requires 0 (n) steps.

The notion of degrees of freedom can be naturally extended to pairs of values. There are n 2
ordered pairs to be assigned and there must exist at least one possible place for each square in
order for the problem to remain feasible. We denote as P-DFki the number of cells, which can still
accommodate pair (k ,l). To explain the method for updating counters P-DFki, suppose th a t value
ko is removed from D x iQjQ ■ The pairs th a t can no longer be assigned to cell (io,jo) because of this
last deletion are of the form (ko,lo), where Iq G DyiQjQ ■ Hence, if ko is removed from D x iQjQ, all
counters {P .D F k 0 i0 : Iq G DyioJo } must be reduced by 1. If P-D Fk 0 i0 becomes 0 and pair (ko,lo)
appears in none of the fixed cells, the node is declared infeasible. If P-D Fk 0 i0 becomes 1, the single
cell th a t can accommodate pair (ko, lo) is fixed, i.e. variables X i 1j 1 and Y i 1j 1 are instantiated
to values ko and Iq , respectively. Updating degrees of freedom for pairs is more expensive: if X i 0j Q

is set to A:o, ko is removed from at most 0 (n) domains and each removal requires the reduction by 1
of 0 (n) counters of P-D Fk 0 i. In total, the process requires 0 (n 2) steps.

A critical observation is th a t degrees of freedom for single values and pairs are essentially im
plicit constraints. These constraints are imposed by the different representations of the problem, as
discussed at the end of Section 5.3.1. For example, the degrees of freedom for rows and values of
square X , i.e. variables X R - D F i 0 k 0 , arise from representation (II).

Additional domain filtering can be performed because of the particular structure exhibited by
the all-different predicate. Assume the following status of domains:

D x 22 = {2.3}
D x k = {2,3}

D x , t = {2,3,4,5}

D x 3, = {2, 3 ,4 , 5}

and let variables X 2 2 , •••, X 25 be the only ones uninstantiated in row 2. This instance is not infeasible,
but it is clear th a t values 2,3 could never be assigned to variables X 24, X 25. Removing values 2,3
from D X 2 4 j D x 25 eliminates certain subproblems and might also have further repercussions, e.g. in
terms of degrees of freedom for values 2,3 in columns 4,5. Notice th a t no degree of freedom can
imply such a deletion. This case is exclusively captured by the filtering algorithm presented in
[77]. This algorithm achieves generalised arc-consistency for a single all-different constraint. Its
disadvantage is its running time: it requires 0 (p 2d2) steps for a constraint on p variables with
domains of cardinality at most d. Hence, this propagation procedure needs 0 (n 4) steps for each of
the all-different constraints regarding rows and columns of X and Y , i.e. 0 (n 5) steps in total. It

5.3. CP algorithms for the OLS problem 141

also requires 0 (n 8) steps for the alLdifferent constraint on the Zij variables in (5.13).
Note that, whenever the filtering is applied to an alLdifferent constraint, only uninstantiated

variables are considered. This implies that, in contrast to all previous propagation procedures, this
scheme performs consistency checks also among uninstantiated variables. Actually, this algorithm
accomplishes hyperarc consistency for the variable set of an alLdifferent constraint ([53, Section
11.3]). A constraint is hyperarc consistent when any value remaining in the domain of any variable
can be part of a feasible solution. Notice that this does not imply th a t simply selecting a value from
each domain can construct a feasible solution ([53, Section 11.1]).

Each time the algorithm is called for a row/column or for the Zij variables, certain domain
members are deleted. This obviously has further effects, even if a single value is removed, therefore
the process must be iteratively called. An upper bound on the number of iterations is mandatory, in
order to avoid calling this elaborate scheme only for an unsubstantial amount of domain reduction.
A practical option is to set this bound as a multiple of n. The steps of the CP algorithm at each
node Qs are summarised in the following procedure.

A lg o rith m 5.4
repeat

{
(I) Perform

i f (Qs
(W

i f (Qs
(III)

i f (Q9
(IV)

i f (Qs
(V)

Update degrees of freedom for rows/columns;
s feasible)

Update degrees of freedom for pairs;
s feasible)

Apply the filtering algorithm to alLdifferent constraints for variables X ij, Y ij;
s feasible)
Apply the filtering algorithm to alLdifferent constraint for variables Z{j ;

}
until (Qs is infeasible) or (a solution is found) or (no more domain values are removed)
i f (Qs is still feasible) and (no solution has been found)

Partition Qs into subproblems;
else

prune Qs;
return;

Notice the analogy between Algorithm 5.4 and Algorithm 4.1 of Section 4.4.
Being significantly more expensive than any other propagation procedure, this filtering scheme

should better be applied in a subset of nodes. The trade-off is obviously between more nodes in
the tree and more rigorous domain reduction in each node. Section 5.4 examines this question and
provides computational evidence assessing the performance of all propagation schemes. Table 5.2
summarises the various m ethods for constraint propagation, along w ith their complexity.

5.3.4 Im plem entation details

All computer codes have been implemented in the programming environment of Microsoft C + + .
Although the code is problem-specific, it incorporates all the routines of a typical CP application. In

CHAPTER 5. Constraint Programming algorithms 142

Table 5.2: Methods for constraint propagation
M e th o d C o m p l e x it y

Simple domain reduction O(n)

DOF for rows/columns and values O(n)

DOF for pairs of values 0 (n 2)

Filtering algorithm of [77] 0 (n 5), 0 (n 8)

particular, there are routines for node creation, constraint propagation and branching. Nodes are
retained in a node list, which follows the 11 Last-In-First-Out” discipline, meaning that the last node
inserted will be the first considered when backtracking. This implements the depth first strategy.
Obviously, book-keeping tasks must be performed for setting up node information. Each node
apparently contains information for all variables, domains and degrees of freedom. A node is created
each time a variable X ij or Yij is instantiated because of branching. Hence, the maximum tree level
is 2n 2. Since the search is “depth-first” , the node list can contain no more than 2n 2 nodes. This fact
implies th a t the space complexity of the algorithm is polynomially bounded.

5.4 Com putational experience

In this section we examine possible variants of a CP algorithm for the OLS problem. Algorithms BT
and FC are combined with four branching strategies and various levels of constraint propagations.
The variants are tested on the OLS problem for orders up to 12. We comment on their comparative
performance and analyse their behaviour. We focus first on evaluating the branching strategies and
afterwards on issues of constraint propagation. Results are illustrated in terms of elapsed time and
nodes created in the search tree. Recall th a t a node is created whenever a variable is instantiated
because of branching. More than one variables may be instantiated a t a single node only as a result
of domain reduction.

5.4.1 Branching strategies

The following experiment applies the simple BT algorithm, without any domain reduction. The
four different branching strategies X_R, X_T, XY_R, XY_T are examined. Before presenting their
comparative performance, we conduct an experiment for verifying the correctness of the algorithmic
approach.

Notice th a t both X_R and X_T rules create square X completely before considering square Y .
Suppose also th a t we fix in advance only the first row of both X , Y and the first column of X in
natural order, the first column of Y remains intact. If the BT algorithm with any of these branching
rules searches for all feasible solutions, it will gradually instantiate X to all reduced Latin squares of
order n. Hence, we provide a mechanism for counting the number of reduced Latin squares. Having
an upper bound of 5 x 104 seconds on the computation time, it has been possible to enumerate all
squares up to n = 7. The results are illustrated in Table 5.3. The fact th a t these results coincide
w ith those in the literature ([34, 60]) proves that no feasible solutions are omitted.

Table 5.4 depicts results for the performance of algorithm BT under the four branching rules.
All variables and domains are fixed according to Table 4.2 before the search is initiated. Nodes
are presented in logarithmic scale with base 2, exactly because their number becomes extremely

5.4. Computational experience 143

Table 5.3: Counting the number of reduced Latin squares
| Order of Latin squares I I I 4 | 5 | 6 1 7 1
| Number of reduced Latin squares I I 4 | 56 | 9408 | 16,942,080 |

large. An asterisk denotes th a t no result was achieved within the time limit of 5 x 104 seconds.
The most critical finding is th a t no variant of BT algorithm term inates within the time limit for
n > 10. This already illustrates the inefficiency of this approach. In terms of branching rules, X_T
and XY_T appear clearly better, with XY_T being slightly more efficient. These branching rules are
faster simply because they create fewer nodes, thus verifying once more the analysis of Section 4.4.2.
Observe also th a t rule XY_R is consistently better th a t X_R. It generally appears that, in the case
of fixing rows, it is more beneficial to fix both squares simultaneously. In contrast, when fixing Os,
Is, etc. it is not remarkably worse to fix square X first. Notice the special case of n = 8, where
branching rules X_R and XY_R are significantly slower. The reason is th a t the first feasible solution
is a pair of OLS, where square X has only Os in its main diagonal. It can be seen th a t this square
appears much earlier in the lexicographic order imposed when fixing transversals. Another issue is
that the increase in the number of nodes illustrates the exponential explosion with respect to n.

Table 5.4: Comparing branching rules for the BT algorithm
n | T i m e N o d e s (l o g)

X_R X_T XY.R XY_TJ X_R X_T XY_R XY_T
4 l l l l 3.6 2.4 3.1 2.4
5 2 2 l l 9.4 8.7 9.1 8.1
6 11647 8762 8984 8741 20.7 19.6 19.8 18.7
7 16326 14728 15073 14173 24.4 23.3 23.9 22.8
8 30279 1143 28152 1079 26.2 11.3 25.5 10.8
9 44638 42285 45731 40173 29.8 28.9 29.2 287
10 * * * * * * 3*c *

We conduct the same experiments but with algorithm FC. This algorithm implements only simple
domain reduction, without examining degrees of freedom. Table 5.5 summarises the results obtained.
Elapsed time is reduced by a factor of at least 4 for all branching methods, only because of this
elementary domain reduction. The reduction in terms of nodes is even larger, although the amount
of work at each node is now increased. The FC is clearly more successful, thus complementing
our initial knowledge from the related literature ([14, 56, 84]). Therefore, it will be the standard
algorithm hereafter. The comparative performance of branching rules remains identical, with XY_R
arising as the most efficient branching scheme. Observe th a t elapsed time is not particularly affected
by whether the two squares are fixed simultaneously or square X is fixed first. Although it appears
more reasonable to assign values to both squares, fixing X alone is much easier and, afterwards, fixing
Y becomes trivial because of the orthogonality constraints. The obvious setback is th a t numerous
Latin squares of order n, having no orthogonal mate, are generated. This is the reason why, as n
grows, the difference in elapsed time between X_T and XY_T becomes more apparent.

The question to be addressed in the next section is whether more rigorous constraint propagation
can improve our results further.

CHAPTER 5. Constraint Programming algorithms 144

Table 5.5: Comparing branching rules for the FC algorithm
n T ime | N o d e s (l o g)

X_R X .T XY_R XY_T] X_R X_T XY_R XY_T
4 l l l l 3.1 2.3 2.9 1.5
5 2 2 l l 7.6 6.4 7.3 6.2
6 1734 1264 1984 958 16.7 20.3 20.9 19.4
7 4581 3924 4376 3417 22.8 21.3 22.4 20.7
8 7682 37 7421 26 25.7 12.4 25.5 11.8
9 18378 9385 18026 9173 28.3 25.4 27.2 23.7
10 29985 26793 28732 24138 30.5 26.9 29.6 25.2
11 46015 37198 42783 33259 32.4 28.1 31.4 27.4
12 * 48367 * 47252 * 30.2 * 28.6

5.4.2 Procedures for Constraint Propagation

All algorithms in this section are variants of the FC scheme with the branching rule XY_T. The
difference lies in the amount of constraint propagation performed a t each node. Recall from Table
5.2 the complexity of each propagation procedure. Notice also th a t all propagation methods are
essentially special cases of the filtering algorithm for the alLdifferent constraint ([77]). However, since
this filtering scheme is quite uneconomical, the question is to which extent it achieves significantly
more domain reduction than the other procedures. This is the main topic addressed here. We retain
the FC algorithm with simple domain reduction and add one feature at a time in order to assess the
significance of improvement achieved. Table 5.6 presents the results for four variants. The algorithm
named “Simple” replicates the column XY_T of Table 5.5. Essentially this variant does not perform
Steps (II)-(V) of Algorithm 5.4. The variants “DOF rows” and “DOF pairs” perform additional
consistency checks and variable fixing by updating the degrees of freedom, i.e. they also perform
Steps (II) and (III) of Algorithm 5.4. We should clarify th a t algorithm “DOF pairs” uses degrees of
freedom for both values and pairs. Finally, the variant named “Filtering” applies the general filtering
algorithm for all constraints, including the one for the Zij variables, whenever a transversal, (n — 1
variables in each square) is fixed. The filtering algorithm is applied after all other procedures have
been performed and as long as the node is still feasible (as in Algorithm 5.4). In all variants, the
overall procedure is recursively performed until (a) no more domain reduction is possible or (b) a
feasible solution is found or (c) the node becomes infeasible or (d) an upper bound of n iterations is
reached.

Table 5.6: Comparing propagation procedures
n rriME | N o d e s (l o g)

Simple DOF rows DOF pairs Filtering | Simple DOF rows DOF pairs Filtering
4 1 l 1 1 1.5 l l 1
5 1 l 1 1 6.2 5.8 5.3 4.3
6 958 282 174 43 19.4 17.8 17.3 17.1
7 3417 1174 826 523 20.7 19.1 18.9 18.5
8 26 10 8 3 11.8 9.9 9.7 9.3
9 9173 7203 6938 6745 23.7 20.8 30.5 20.2
10 24138 22132 22052 20935 25.2 24.3 24.1 23.6
11 33259 30672 30341 29423 27.4 26.0 25.7 25.2
12 47252 39436 38819 37161 28.6 27.8 27.6 26.9

The general outcome is th a t constraint propagation exploits more accurately the structure of the
problem, thus identifying more implications and inconsistencies. The remarkable reduction in elapsed
time accomplished by incorporating degrees of freedom arises exactly from the implicit constraints

5.5. Concluding remarks 145

enforced by this method. The addition of degrees of freedom for pairs achieves less, but still clear,
improvement. Finally, the significant improvement achieved by the filtering algorithm proves that
plenty of inconsistencies remain even after introducing the degrees of freedom. The extra effort in
each node does not counteract this improvement. It is worth noticing th a t in all instances, after
having propagated via degrees of freedom, the filtering algorithm is usually applied for up to 2
iterations; any additional iterations do not reduce the domains any further.

Hence, it sounds rational to apply the filtering algorithm at even more nodes. We experiment
with three different strategies. The first simply incorporates the algorithm whenever a pair is fixed,
i.e. at most every two levels. The second uses this scheme every ^ levels, whereas the third whenever
an entire transversal has been fixed (as in Table 5.6). Table 5.7 summarises the results. Applying
the filtering algorithm whenever a pair is fixed reduces dramatically the number of nodes but is
much inferior in terms of elapsed time. For larger values of n this restricts significantly the ability to
find a solution. The option of using the algorithm every ^ levels is more moderate, but still worse
than the option of using it whenever a transversal is fixed. It appears to create only slightly fewer
nodes, despite the additional effort. Overall, it appears th a t transversals offer a convenient, although
problem-specific, criterion for controlling the aggressiveness of constraint propagation.

Table 5.7: Frequency of filtering
n T ime | N o d e s (l o g)

Pair Every ^ levels Transversal | All nodes Every two levels Transversal
4 1 l l l l 1
5 2 l l 2.1 3 4.3
6 614 153 43 13.2 16.7 17.1
7 2287 1279 523 15.6 18.1 18.5
8 68 42 3 6.9 8.8 9.3
9 13873 7930 6745 17.3 18.9 20.2
10 27831 22473 20935 21.7 22.4 23.6
11 36165 31138 29423 23.1 24.6 25.2
12 * 42823 37161 * 26.1 26.9

5.5 Concluding remarks

This chapter introduced the enumeration paradigm of CP and presented its application to the OLS
case. A compact CP model has been devised, mainly based on the alLdifferent predicate. A critical
observation is th a t this model implies six different representations of the problem, which give rise to
implicit constraints. These constraints have been formalised via the notion of “degrees of freedom” ,
which can be checked and updated at low cost. Various versions of the Forward Checking algorithm
have been tested. Their differences lie in applying various levels of constraint propagation, including
a known algorithm for the alLdifferent predicate, and in incorporating different branching rules.
The computational results illustrate that CP algorithms, which competently exploit the problem’s
structure, can efficiently handle the OLS problem, by rapidly enumerating the solution space.

The main difference of the CP algorithms from the B&C algorithm (Chapter 4) is the absence of
a relaxation analogous to the LP-relaxation. It is worthwhile to notice th a t an enormous number of
nodes need to be examined for large instances but processing each node is significantly faster. This
and additional parallelisms reveal the potential of integrating CP and IP methods. Motivated by
our aim to solve the OLS problem, we discuss this topic extensively in the next chapter.

CHAPTER 5. Constraint Programming algorithms T46

Chapter 6

Integrating Constraint and Integer
P r ogr amming

In this chapter we present algorithms integrating CP and IP. Although the algorithms are specifically
designed for the OLS problem, they encompass general ideas concerning C P /IP integration. The
computational results show th a t algorithms integrating CP and IP behave more competently than
traditional CP and IP schemes. It is believed that both the algorithmic ideas and the computational
analysis of this chapter might have implications for other combinatorial problems.

IP has, in the main, been developed within the discipline of Operational Research, while CP is
an “offspring” of the computer science community, mainly articulated within the field of Artificial
Intelligence. Having developed separately, CP and IP often use analogous techniques under a different
terminology. This fact might have already become clear from the algorithms exhibited in the previous
chapters. The necessity to solve large scale optimisation problems ([40]), together with the revelation
of strong links between logic and optimisation ([23]), have stimulated a strong interest in successfully
integrating IP and CP. On the other hand, propositional reasoning has been successfully applied to
solve open quasigroup problems ([93]), while recent work ([44]) has tested a C P /L P algorithm on the
problem of quasigroup completion, i.e. completion of Latin squares, commenting on the comparative
superiority of this hybrid scheme. Our work is also motivated by ideas, which apply enumerative
and computer based methods to address questions in pure m athematics ([58, 93]).

The rest of this chapter is organised as follows. Section 6.1 reviews developments establishing
theoretical links between CP and IP. Section 6.2 discusses ideas for integrating the two methods.
The proposed algorithms are described in Section 6.3, while com putational analysis is presented in
Section 6.4. Finally, Section 6.5 presents a hybrid algorithm for triples of MOLS, along with obtained
computational results.

6.1 Theoretical connections between CP &; IP

Early ideas establishing connections between logic and optimisation can be found in [54, 85, 86].
An im portant equivalence is th a t any logical clause corresponds to a linear inequality on binary

n n
variables. For example, the disjunction \J Xi is equivalent to the inequality > 1, r G {0, l} n

i=i i=i
([23, 90]). Hence, any formula in Conjunctive Normal Form (CNF) can be represented by a system
of linear inequalities on 0 — 1 variables and vice versa. This linear system defines a set-covering

147

CHAPTER 6. Integrating Constraint and Integer Programming 148

problem, i.e. an integer program of the form {A x > e ,x E {0, l} m}, where m is the number of
atomic propositions. A CNF formula can be solved by employing a form of resolution called unit
resolution. This procedure selects a clause with a single literal p (if such exists) and deletes all
clauses containing p and all appearances of ->p. In other words, unit resolution simply observes that
p must be true in any feasible solution. A famous theorem (in [15]) states that unit resolution can
prove unsatisfiability for a CNF formula if and only if the LP-relaxation of the corresponding set of
linear inequalities is infeasible. This result already indicates th a t LP-based methods can be applied
to problems arising from logic. The inverse is also possible: the resolution algorithm can be applied
to the CNF formula arising from a linear constraint set in order to generate resolvent inequalities,
also called logic cuts ([46, 51, 53]).

Furthermore, the set of feasible solutions to a logical formula has a minimal representation in
terms of the strongest possible clauses. These are the prime implications, derived from the original
set of clauses by repetitively applying the resolution procedure. A clause is a prime implication if it
is not absorbed by any other resolvent clause. Hence, prime implications are maximal with respect to
set inclusion, i.e. not dominated. The equivalent concept for IP is th a t of maximal valid inequalities
(see Chapter 2 and [68, p.207]). Exactly as prime implications are derived via resolution after a
finite number of steps, maximal valid inequalities are generated after a finite number of steps of the
Chvatal-Gomory procedure ([45]). This parallelism is exploited in [23, Section 3.7], where SAT is
formulated as a set-covering problem and facets of the associated polyhedron are examined. For
infeasible problems, resolution will produce the empty clause as a prime implication (as in Section
5.1.1), whereas the Chvatal-Gomory procedure will produce an inequality of the form Ox < —1. An
im portant statem ent is the following (in [27]):

There exists a polynomial p{N, M) such th a t for any unsatisfiable set S of clauses con
taining M literals, if the unsatisfiability of S has a cutting plane proof of length N , then
it has an extended resolution proof of length p{N, M).

For the notion of extended resolution see [23, Section 3.5.5].

Another pioneering result is the observation th a t the resolution procedure is closely related to
the Fourier-Motzkin algorithm for polyhedral projection (in [85]). Resolution eliminates an atomic
proposition and appends additional clauses to the initial representation in a way analogous to that
of eliminating variables in the Fourier-Motzkin method. A relevant development concerns the rep-
resentability of mixed integer linear programming problems (MILP) ([54]). As noted in [23, Section
4.4.3], this work essentially proves that any set representable as an MILP can be also represented
in a disjunctive form, i.e. w ith either/or constraints. It also provides a significant characterisation
result for integer programming. The actual theorem states that:

A set in n-space is MILP representable if and only if it is the union of finitely many
polyhedra having the same set of recession directions.

A rather recent direction of research examines constraints of special structure, like the alLdifferent
predicate, and proposes equivalent representations in the form of linear inequalities. The convex hull
of all feasible solutions to the alLdifferent predicate is described in [89], while analogous results for
cardinality rules are presented in [92].

6.2. Algorithmic approaches combining CP & IP 149

6.2 Algorithm ic approaches combining CP & IP

The combinatorial optimisation problems (COP) targeted by both CP and IP are of the following
generic form, hereafter called C O P (x , / , C, D):

m in { f(x) : x E C, x E I?} (6.1)

In this formulation, x is the vector of variables, / the objective function, D the external product of
variables’ domains and C a set of constraints, restricting the possible values th a t the variables can
take simultaneously. The variable domains can be integers, symbols or intervals of real numbers. A
relaxation of (6.1), called R E L (x , f ,C ',D ') , is defined as:

m in { f (x) : x E C ',x E D '} (6.2)

where C' C C and D ' D D, i.e. (6.2) is derived by dropping a t least one constraint or by enlarging
the domain of at least one variable. This implies th a t the set of feasible solutions of (6.2) includes
th a t of (6.1). Hence, a solution to (6.2) is not necessarily a solution to (6.1). If, however, (6.2) has
no solution, neither does (6.1).

Every algorithmic method for (6.1) adopts further assumptions about the form of / , C and D.
In particular, IP requires both the objective function and the set of constraints to be linear. This
fact highly restricts its declarative power, but allows it to produce efficient problem relaxations.
In theory, the form of the constraints in CP is of arbitrary type. However, there is a broadening
menu of specific, well-defined, constraint types, which are extensively used in the CP literature, e.g.
the alLdifferent predicate. CP has been mainly focused on feasibility problems, meaning problems
where the set of feasible solutions is relatively small. However, the notion of an objective function
can be naturally introduced; hence, CP is adequate also for COP. In general, IP can be efficiently
used to solve problems in propositional logic ([23]). Logic, on the other hand, is possible to embed
within a classic optimisation framework (see [53]). Both methods have been applied separately to
various problems (see [30, 88]). Nonetheless, the integration of the two approaches poses a different
task, viz. th a t of using the tools of both CP and IP for modelling and solving COP of general form.
The necessity of this direction becomes more apparent as problem types diversify and problem sizes
grows.

Chapters 4 &; 5 have illustrated that IP & CP models are solved using analogous algorithmic
schemes. Both IP and CP use the “Divide & Conquer” principle, i.e. they recursively divide the
original problem into subproblems and form a search tree. Both methods are exact, in the sense that
they guarantee a complete search. The prospect of integration will be discussed with respect to the
generic algorithm shown below. Notice th a t Algorithms 4.1 and 5.4 are special cases of this scheme.

A lg o rith m 6.1 A t each node/subproblem:
(I) Preprocess C O P (x, / , C , D);

i f (feasible)
repeat

{
(II) Solve R E L {x , / , C", D');
(III) Infer additional constraints;

}

CHAPTER 6. Integrating Constraint and Integer Programming 150

u n til (x G D) o r (infeasible) o r (no inference)
i f (no inference) a n d (x £ D) a n d (R E L (x , f ,C ' ,D ') remains feasible))

(IV) Create subproblems;
else

prune this node;
re tu rn ;

Concerning IP, Step I involves variable preprocessing ([78]). Using simple logical connections and
information from the variables already fixed, additional variable fixing is attem pted. Although not
mentioned explicitly in Algorithm 6.1, preprocessing is iteratively applied until no more variables
can be fixed (see also Algorithm 4.2). Step II implies solving a continuous relaxation of the problem,
derived by dropping the integrality constraints. The L P relaxation can be solved efficiently using
interior point or simplex-based algorithms. Its main advantage is th a t it provides an assignment
of values to all variables and, if infeasible, it implies infeasibility for the original (sub)problem.
If, however, a feasible but non-integer solution is derived, IP proceeds by introducing additional
inequalities, which cut-off this fractional solution and restrict further the feasible region D ' of the
relaxation. This is Step III. The process of solving the relaxation and extracting further inference
in the form of cutting planes is repeated until the problem becomes infeasible or an integer solution
is found or no additional constraints can be produced. Identifying families of efficient cutting planes
normally requires a polyhedral analysis of the problem.

For CP, Steps I Sz III are essentially the same process. Constraint propagation removes incon
sistent values from the domains of the uninstantiated variables. Although domain reduction can
be efficiently performed to achieve 1 & 2-consistency, higher consistency levels require considerable
computational effort. Exceptions occur in the case of structured constraints, like the alLdifferent
constraint. Step II is not performed by CP, since it lacks a proper relaxation, although recent
work ([53, Chapter 21]) explores the potential of defining useful discrete relaxations. Constraint
propagation is repetitively applied until no more domain filtering is possible. The more intense the
propagation performed at each node, the larger the computational effort required and the smaller
the number of nodes created. This behaviour was observed in Section 5.4 with respect to the OLS
problem. The leverage point cannot be theoretically justified and is probably located in moderate
options, which apply constraint propagation periodically. The counterpart for IP algorithms is the
persistence in generating violated cuts. The number of cuts added to each problem and the frequency
of cut addition must balance between efficient solution of subproblems and early pruning of infeasible
branches (see Section 4.6). For both methods, the question is identical and is concerned with the
effort devoted to infer additional constraints at Step III.

Step IV is conducted in analogous ways by both methods. The standard method is to select a
variable and split its domain to create two or more subproblems. Heuristic criteria for this choice
are common to both methods. Examples are to select the variable with the smallest domain, or
the variable, which participates in most constraints, or the one, which is expected to improve the
objective function most. It has been argued ([13]) th a t branching on Special Ordered Sets is a
valuable option for IP. The corresponding branching method for CP is to simply split the domain
of the branching variable recursively until a single value remains available. Equivalently, the CP
algorithm can directly create a number of nodes equal to the cardinality of the domain and set
the branching variable to a different value in each node. Recall th a t this is exactly the branching
mechanism used for the OLS problem.

6.3. Design of hybrid algorithms 151

It follows th a t CP & IP can be integrated in an algorithmic sense. For Step I, logical preprocessing
conducted by IP is a subset of the sophisticated tools available for CP. The crucial contribution of IP
is the powerful relaxation lacking from CP. The inference Step (III) can still be performed by both
methods. The complementarity exists in the fact th a t CP directly reduces the solution space of the
original problem in contrast to IP, which reduces the solution space of the relaxation. Finally, one of
the two, or both, methods can be applied at Step IV to determine the partition of the subproblem.

An im portant aspect of complementarity is that CP forms only partial assignments of values
to variables, except for the point where a feasible solution is identified. In contrast, IP constantly
constructs complete assignments for the relaxed problem, which can possibly be feasible solutions
for the original problem. Moreover, from a more abstract viewpoint, both methods depend on
an interplay between search and inference. Exhaustive search enumerates the possible options for a
subproblem, whereas inference accelerates the search by reducing the solution space and by providing
certificates of optimality or infeasibility. This fundamental feature is observed and discussed in [52].

Substantial ideas regarding the integration of CP and IP are exhibited in [16], where it is proposed
th a t the constraint set C is partitioned into primitive and non-primitive constraints. A constraint is
characterised as primitive, if an efficient solver is available, which can provide a complete assignment
of values to all variables without any further search. The best example is linear constraints on
real variables. All other constraints are classified as non-primitive. For example, the only non
primitive constraint in an IP model is an integrality constraint. This work also proposes an interesting
algorithmic framework, named “Branch &; Infer” : at each node of the search tree, both methods infer
primitive constraints, e.g. cutting planes, which axe added to problem’s relaxation. Independently of
whether the modelling framework allows for both CP Sz IP constraints to be inserted, the immediate
requirement is for a proper decomposition of the problem. Such a decomposition should allow for
an IP and CP solver to be used in parallel, without the overhead of maintaining and updating two
models and two search trees becoming overwhelming.

The theoretical connections and equivalences between CP & IP do not guarantee a beneficial
integration; they primarily illustrate the feasibility of the project. The virtue of integration can be
properly justified only if the inference generated by the two m ethods can be viewed as complementary.
In other words, it has to be concluded th a t one approach succeeds in cases where the other fails. So
far, evidence for this fact remains mostly empirical. In theory, CP is much faster in searching the
solution space, since it does not have to solve a relaxation. However, it is exactly the LP-relaxation,
which gives IP its global perspective and allows for a solution to be found without extensive branching
([52]). Next section examines, in more detail, algorithms integrating the two methods.

6.3 Design of hybrid algorithms

We propose two algorithms for the OLS problem th a t incorporate both CP and IP methods. A
critical issue concerning the design of these algorithms is whether the problem will be decomposed
into two components to be handled by either CP or IP. We select to perform no decomposition, i.e.
both CP and IP representations are retained. The first reason is th a t the cost of maintaining both
models is negligible. Most im portant, we wish to extract the best possible implicit information from
both models and also assess the quality of inference achieved by each of the two methods. This will
hopefully lead to valuable insights about whether CP and IP complement each other.

According to the above discussion, Steps I-III of Algorithm 6.1 can be performed by CP and IP
w ithout any overlap. At each subproblem, Step IV is the only one th a t has to be determined by a

CHAPTER 6. Integrating Constraint and Integer Programming 152

single method. The selected method determines the form of the search tree, since branching via IP
always creates two branches, whereas branching on a CP variable results in a number of subproblems
equal to the cardinality of its domain. Hence, partition into subproblems can be decided by:

A . IP alone, which implies embedding IP within a CP search tree;

B . CP alone, which implies embedding CP within an IP search tree;

C. both IP and CP, which implies interchanging between the IP and CP search trees according to
a certain criterion.

In case (A), Step I is implemented by both IP & CP repetitively. Each method operates on its own
model and, if a variable is fixed or a domain is filtered, the information is passed to its counterpart.
Steps II-IV are implemented only by IP. Concerning case (B), Steps I & IV are performed by CP
alone. IP solver is called at certain nodes and performs the “loop” of steps (II) & (III). The inference
achieved by CP in Step (I) is passed to the relaxation in the form of bounds on the (continuous)
variables. Finally, case (C) is a combination of the previous two. Both search trees remain active
and, whenever the search procedure is transferred from one to the other, all the inference produced
is also conveyed. The roles of IP and CP in cases (A) & (B) are reproduced when the search is
implemented at the IP or CP tree, respectively.

These cases encompass all options for hybridisation, with case (C) integrating the two methods
more closely. The algorithms proposed for the OLS problem adopt options (A) and (B). Option (C)
is incorporated in an algorithm for triples of MOLS, to be presented in Section 6.5.

6.3.1 A lgorithm IPC

Algorithm IPC is the B&C algorithm, described in Chapter 4, incorporating also constraint prop
agation as an additional preprocessing step. At each node of the search tree, IP preprocessing is
applied first, exactly as illustrated at Algorithm 4.2. If this procedure term inates without proving
infeasibility, the CP preprocessor is called, thus attem pting to fix additional variables to 0. The aim
is not only to enhance the preprocessing of each node, but also to reveal the extent to which CP can
be beneficial in terms of detecting infeasible nodes before the LP is solved.

Observe th a t there exists an alLdifferent constraint associated w ith each of the 6 constraint sets
of model (IP 1). For example, consider constraint set (4.6):

: k G K ,l G L} = 1, Vi G I , j G J

which states th a t exactly one pair (k,l) can be assigned to any cell (i , j) . Assume variables Wij,
having domains D w i:j — {0, ... ,n 2 — 1}. There is a 1 — 1 correspondence between any ordered pair
(k , l) and a value in D w ir Hence, the constraint is:

alLdifferent{Wij : i E I , j £ J}

Note th a t this is exactly the constraint on the variables of the CP model (in Section 5.3.1).
The alLdifferent predicates for the remaining constraint sets (4.1)-(4.5) are similarly defined. Again,
observe th a t each of these predicates corresponds to one of the 6 representations discussed in Section
5.3.1.

6.3. Design of hybrid algorithms 153

Let C denote the set of n4 0 — 1 variables and F s C V the set of variables already fixed at a certain
node Qs . Define W s = {Wij : Xijki G V \F S for some k E K , I E L}, i.e. W s is the set of cells, which
have not been assigned a pair. For Wij E W s, define = {(k + n- l) : Xijki G V \ F S}, i.e. is
the set of pairs still allowed for cell (i, j) . The extra preprocessing step regarding constraint set (2.1)
is the application of the filtering algorithm of [77] to the predicate alLdifferent(W). This algorithm
will either signify th a t the predicate, and therefore Qs , is infeasible, or return a list of domain values
to be removed as inconsistent. If value (k + n - l) is removed from 1) ^ , variable x^ki of the IP model
is fixed to 0. The same algorithm is then applied to the alLdifferent predicates associated with the
constraint sets (2.1)-(2.5). W hen this process is complete, an IP constraint might have been left
w ith a single variable at its left-hand side not fixed to 0. This variable should be explicitly set to 1.
For this reason, the IP preprocessing procedure is called again. Clearly, the entire process must be
repeated in order to detect any further repercussions of variable fixing. Algorithm 6.2 illustrates all
steps in pseudo-code.

A lg o rith m 6.2 (IP C)
repeat

{
Apply Algorithm 4-2 to Qs;

i f (Qs remains feasible)
Apply the filtering algorithm to the alLdifferent constraint associated with (4-1)',

i f (Qs remains feasible)

{
Fix variables to 0;

Apply the filtering algorithm to the alLdifferent constraint associated with (4-2);

}

i f (Qs remains feasible)

{
Fix variables to 0;

Apply the filtering algorithm to the alLdifferent constraint associated with (4-6);

}
Apply Algorithm 4-2 to Qs;

}
u n til (Qs becomes infeasible) o r (an integer solution is found) o r (no more variables are

fixed)

i f (Qs has become infeasible) o r (an integer solution has been found)
prune Qs;

re tu rn ;

Once more, an upper bound on the number of iterations has to be defined. A multiple of n appears
a reasonable choice for the OLS problem. Moreover, although IP preprocessing is implemented in
0 (n 4) steps, each call to the filtering algorithm requires 0 (n 8) steps. This implies th a t the filtering
algorithm should be applied only at a subset of nodes. This issue is to be further analysed via
com putational experimentation in Section 6.4.

CHAPTER 6. Integrating Constraint and Integer Programming 154

Notice th a t all other methods for constraint propagation, e.g. degrees of freedom, have been
ignored. The reason is th a t these methods are already captured by IP preprocessing, and would also
be enforced when the LP is solved. If the domain of a variable X i0j0 or Yi0j0 in CP becomes empty,
Algorithm 4.2 will detect that all variables in the left-hand side of row (i o , j o) of constraints (2.6) are
fixed to 0. On the other hand, the LP will be infeasible since constraint (i o , j o) of (2.6) is violated.
If the domain of a variable X i0j0 becomes a singleton {ko}, only IP variables of the form Xi0j0k0i
will remain in the left-hand side of row (i o , j o) of (2.6). An identical condition occurs concerning
degrees of freedom. For example, if X C - D F j 0k0 becomes 0, the infeasible row will be (j o , k o) of
(2.3). Exactly because the IP formulation involves four indices, whose roles are indistinguishable, all
6 symmetric representations exhibited in Section 5.3.1 are encompassed. The only domain reduction
(variable fixing) not detected by IP preprocessing is the one accomplished exclusively by the filtering
algorithm of [77].

6.3.2 A lgorithm CPI

The second hybrid scheme, embedding IP within CP, is Algorithm CPI. It is based on the FC
algorithm, the additional feature being to call the IP solver a t a subset of subproblems. Assume a
certain subproblem Q s in the search tree created by the FC algorithm. As long as this node remains
feasible after constraint propagation and there exist still uninstantiated variables, the status of the
variables’ domains is passed to IP in the form of variable fixing. Clearly, if ko ^ D x lQjQ, all variables
{xiojokoi ’■ I £ L} are fixed to 0. Similarly, if Iq ^ D yiojQ, all variables {xi0j0ki0 ' ko G K } are fixed to
0. A variable X i 0j 0 k 0 i0 is set to 1 only if X i 0j 0 = k o and Y i 0j 0 = I q . Recall from Section 4.4.1 th a t IP
variables are fixed by altering their bounds. The process of passing CP information to IP involves
checking the domains of all and Yij variables and requires 0 (n 4) steps. Before calling the IP
solver, all constraint propagation procedures of CP are applied (Table 5.2). The reason is not only
to avoid solving an infeasible IP but also to detect cases where IP can prove infeasibility although
CP cannot. Integer preprocessing is not performed, since its task has already been accomplished by
constraint propagation in CP.

IP is called in order to extend a partial solution achieved by CP to a complete one. By solving
the LP-relaxation, IP assigns values to all problem variables. Since fractional solutions might occur,
the IP solver generates cutting planes for up to 2 • n iterations. The procedure for cut addition is
the “Cliques first” scheme, exactly as presented in Section 4.6.4. The initial LP is solved by the
Newton-Barrier methods, whereas all other iterations use the Dual Simplex algorithm. A random
objective function is introduced in order to avoid degeneracy in the dual LP (see Section 4.4.4). If
the procedure is completed without proving infeasibility and without identifying an integer feasible
solution, the IP solver is term inated and CP determines the next subproblem to be examined. Hence,
the IP algorithm solves a single node without performing any branching. The reason is th a t our aim
is to either extend a partial CP solution to a complete one or prune a branch as infeasible. This
approach is also valuable in terms of comparing the inference strength of the two methods.

In fact, a more general framework for integrating IP and CP can be defined. Whereas CP is
used to efficiently enumerate a large set of subproblems, IP is periodically called in order to possibly
generate a complete assignment early in the search. The valid inequalities of IP complement C P ’s
ability to identify infeasible branches. In theory, this is a closer integration than certain algorithms
presented in the literature. For example, the C P /L P algorithms presented in [44, 65] solve only a
single LP for deriving reduced costs, which are subsequently used for selecting the most promising

6.4. Computational experience 155

branching variable. Apart from the fact th a t this strategy suits an optimisation problem, hence is not
applicable to OLS, it is also a scheme ignoring the inference power of IP th a t is mainly manifested
in the form of cutting planes.

The only issue not discussed is the criterion determining when the IP solver is called. It is easy to
see th a t the IP solver consumes significant computational time, therefore it should not be called at
every single node. One the other hand, it is expected th a t the larger the number of nodes applying
IP, the better the inference generated. This question is further analysed in the following section via
experimentation.

6.4 Com putational experience

This section investigates the performance of algorithms IPC and CPI and compares their behaviour
with th a t of “pure” IP and CP algorithms. All algorithms return a solution or prove th a t the problem
is infeasible for the case of n = 6, where a complete search is required. Most im portant, all algorithms
incorporate the preliminary variable fixing, as exhibited at Section 4.2 and apply the same branching
mechanism, as first presented in Section 4.4.2. The implementation of IP and CP components has
been presented in Sections 4.5 and 5.3.4, respectively. All experiments were conducted on a PC
under WinNT, with a Pentium -Ill processor, 800MHz and 256Mb of main memory.

First, we examine separately the performance of each of the two hybrid algorithms and comment
on the aspects influencing their behaviour. The last part of this section discusses the comparative
performance of the hybrid algorithms against the IP and CP algorithms of Chapters 4 and 5.

6.4.1 A lgorithm IPC

The main question concerning algorithm IPC is the frequency of calling the additional preprocessing
routine, implemented by CP. We present three variants of algorithm IPC, which differ only in the
criterion for determining whether CP would be incorporated at a certain node. We name these vari
ants Conservative, M oderate and Aggressive. The conservative version employs CP only whenever
IP preprocessing detects th a t the first column of square Y or an entire transversal has been fixed, i.e.
whenever (n — 1) variables have been set to 1. Notice th a t this is also the criterion used by the IP
algorithm for cut generation. The moderate variant calls CP procedures whenever half a transversal
has been fixed. This condition occurs at most every • log2 n levels in the IP search tree. Finally,
the aggressive version employs CP whenever a variable is set to 1, i.e. at most every log2 n levels.
Notice th a t numerous other variations are possible. The ones presented here have been selected only
as a representative subset, which is sufficient to illustrate the core findings. The actual criterion is,
once more, problem specific. A more general criterion would be to apply CP whenever a fraction of
IP variables has been fixed. For example, the conservative approach employs CP whenever of
the variables have been fixed to 1.

Table 6.1 illustrates the results obtained. The percentage of elapsed time devoted to preprocessing
(Algorithm 6.2) is also depicted. The “Nodes” field contains only the nodes where the LP had to be
solved, i.e. nodes where infeasibility was not detected during preprocessing. The best performance
is exhibited by the moderate approach, which creates more nodes than the aggressive one and
significantly less than the conservative one. Apparently, the aggressive version employs more rigorous
constraint propagation without managing to substantially reduce the number of subproblems. The
additional effort required in a large subset of nodes results in the elapsed time growing dramatically

CHAPTER 6. Integrating Constraint and Integer Programming 156

for large n. This is because the percentage of time absorbed by preprocessing is immense. For
example, considering n = 6, the aggressive strategy proves infeasibility in more than double the
time required by the moderate approach. On the other hand, for n = 8, it cannot reduce at
all the number of subproblems. The conservative version actually improves over pure IP (Table
4.20) in terms of elapsed time, whereas the aggressive one is much worse. The more balanced
behaviour of the moderate scheme ensures th a t the cost of ex tra preprocessing is compensated by
solving fewer subproblems. There exists, once more, a critical point regarding the aggressiveness
of constraint propagation. Performing more consistency checks among the uninstantiated variables
remains beneficial up to this point and becomes detrimental thereafter.

Table 6.1: Results for algorithm IPC
n | T ime N o d e s

| Cons. Moder. Aggr. Cons. Moder. Aggr.
Prep. Total Prep. Total LP Total

4 1 .4 4 1 .4 4 1 .5 5 1 1 1
5 1.6 10 1 .7 10 1 .9 1 4 1 1 1
6 1 .7 5 1 3 2 .4 4 8 4 3 .3 9 7 2 2 9 7 3 2 6 7 2 2 1 7 4

7 1.8 3 0 5 9 2 .5 2 9 3 7 3 .8 4 8 5 2 2 7 3 2 4 6 2 1 6

8 1 .4 2 4 6 1.8 2 3 1 3 .2 4 8 3 5 1 4 7 4 7

9 2.1 1 6 7 3 2 2 .7 1 5 8 2 6 3 .6 2 2 5 6 1 3 2 4 7 1 3 0 2 8 4 2 9 5 1 7

10 2.0 2 1 1 7 3 2 .5 1 9 3 0 6 3 .8 2 6 2 8 5 4 . 9 3 E + 5 3 . 7 1 E + 5 3 . 0 8 E + 5

11 2.2 2 4 8 3 4 2 .7 2 3 5 3 8 3 .7 3 1 7 4 1 8 . 3 7 E + 5 7 . 4 1 E + 5 6 . 8 3 E + 5

12 2.1 3 1 4 9 7 2 .9 2 9 2 1 3 3 .6 4 8 7 4 9 2 . 1 2 E + 6 1 .8 4 E + 6 1 . 2 8 E + 6

6.4.2 A lgorithm CPI

The experiments conducted for algorithm CPI are analogous. The issue addressed here is the criterion
for calling the IP solver at a CP node. For clarity of presentation, the three variants examined are
almost similar to the variants of algorithm IPC. The schemes named Conservative, Moderate and
Aggressive, call the IP solver whenever an entire transversal (i.e. 2(n — 1) CP variables), half a
transversal or two pairs (i.e. 4 CP variables), respectively, have been fixed. Computational results
are depicted in Table 6.2. Nodes are presented in logarithmic scale.

Not surprisingly, the aggressive approach behaves poorly, regardless of the small number of nodes
it creates. Identifying violates cuts and, mostly, re-optimising LPs is an expensive task, as discussed
a t Section 4.7. Although the reduction in the number of subproblems signifies th a t cutting planes can
detect infeasible subproblems much earlier, the time required becomes prohibitive. Perhaps the most
critical observation is th a t the conservative approach is the best for orders up to 10. This implies
that, for smaller problem instances, IP should be called less frequently, even if the number of nodes
remains unaffected. However, the picture is inverted for n = 11 and 12, where IP ’s contribution,
through the moderate strategy, becomes more substantial. As n grows, cutting planes are more
powerful for pruning despite the fact that re-optimising LPs becomes also more laborious.

6.4.3 The benefits o f integrating IP and CP

This section replicates results presented previously, in order to examine the impact of integrating IP
and CP methods. Table 6.3 summarises the performance of the best variants of the B&C algorithm
(Chapter 4) and the FC algorithm (Chapter 5). Hence, columns labelled IP and CP reproduce results
from Table 4.19 (Section 4.6.5) and Table 5.6 (Section 5.4.2), respectively. The remaining columns,

6.4. Computational experience 157

Table 6.2: Results for algorithm CPI
n T im e N o d e s (l o g)

| Cons. Moder. Aggr. Cons. Moder. Aggr.
4 l 1 1 l l 1
5 l 1 1 4 .1 3 .5 3 .4

6 2 8 7 3 7 6 1 0 5 6 1 6 .4 1 4 .6 1 4 .2

7 5 9 7 8 5 4 1 6 3 6 1 8 .1 1 6 .0 1 5 .7

8 8 3 112 3 9 2 8 .9 7 .4 6.8
9 1 2 3 7 6 1 4 4 3 9 1 7 8 3 4 1 9 .8 1 8 .4 1 7 .7

10 1 9 4 8 1 1 7 8 4 2 2 4 5 0 7 2 3 .2 21.8 21.2
11 2 7 5 7 3 2 1 6 5 1 3 2 1 7 4 2 4 .8 2 3 .4 22.8
12 3 4 9 5 8 2 6 9 8 3 3 9 8 6 1 2 6 .4 2 5 .1 2 4 .9

namely IPC and CPI, are replicates of tables in the previous sections. Note th a t the number of
nodes is illustrated in logarithmic scale.

For all feasible instances, all algorithms return the same pair of OLS. Table 6.3 primarily shows
th a t all schemes present the same general behaviour, with complexity exploding after n = 9. Focusing
first on the comparative performance of IP and CP, observe th a t IP is initially much slower. CP is
the best method for the complete search required for n = 6. However, the gap is gradually reduced
and IP becomes more efficient for n > 11. Although the burden of solving linear programs becomes
larger as n increases, the global view adopted by IP proves to be more effective. For large values of
n, CP is practically absorbed in enumerating fruitless branches in the tree, whereas IP can detect
those branches much earlier. This is also reflected, and explained, by the substantial difference in
the number of nodes. These results resemble the theoretical evaluations and experimental results of
related literature (e.g. [30, 52]).

Algorithm IPC is consistently faster than algorithm IP and also creates slightly less nodes. There
fore, incorporating CP within IP is clearly advantageous. The improvement arises from the fact that
more subproblems are pruned as infeasible without having to solve the LP-relaxation. Moreover, by
fixing even more variables, preprocessing reduces further the size of the LP-matrix, thus accelerating
its solution. The extra effort required for the CP procedure does not affect the performance, precisely
because it is called periodically. Between two successive calls to CP, domains have been sufficiently
altered for the filtering algorithm of [77] to detect a notable number of variables th a t must be set to
0. In this way, CP is capable of compensating by generating inference, which would be intractable
otherwise.

The improvement achieved in CPI by employing IP within CP is more remarkable. Observe
first the striking difference in the number of nodes created by CP and CPI. This constitutes a clear
indication of CPI pruning infeasible branches much earlier by complementing C P ’s inference strength
with th a t of IP. In terms of elapsed time, CPI is slower than CP for orders up to 10 and eminently
better thereafter.

Overall, incorporating CP within IP is indeed beneficial but does not really alter the differences
between the performance of CP and IP. In particular, algorithm IPC behaves in approximately the
same fashion as algorithm IP and is worse than CP for small orders. A much more balanced and
robust performance is accomplished by the second hybrid scheme. In terms of both time and nodes,
CPI lies approximately in the “middle” of IP and CP for orders up to 9. For n > 9, CPI outperforms
all other schemes. Hence, this scheme appears to integrate more efficiently CP and IP.

Table 6.4 provides further insights on the performance of the hybrid algorithms. It depicts the
percentage of infeasible nodes pruned by IP in algorithm CPI and the percentage of infeasible nodes

CHAPTER 6. Integrating Constraint and Integer Programming 158

Table 6.3: Comparative results for C P /IP algorithms
n T ime N o d e s (l o g)

L IP IPC CP CPI IP IPC CP CPI
4 4 4 1 1 0.0 0.0 1.0 1.0
5 11 10 1 1 0.0 0.0 4.3 3.58
6 527 484 43 376 11.5 11.4 17.1 14.65
7 3278 2937 523 854 8.1 7.9 18.5 16.0
8 254 231 3 112 5.8 5.6 9.3 7.4
9 17592 15826 6745 14439 15.0 14.9 20.2 18.4
10 21903 19306 20935 17842 18.6 18.5 23.6 21.8
11 25713 23538 29423 21651 19.6 19.5 25.2 23.4
12 33872 29213 37161 26983 21.2 20.8 26.9 25.1

pruned by CP in algorithm IPC. In more detail, indicator INFC is the percentage of infeasible nodes
in the search tree of IPC, which were detected by CP during preprocessing. On the other hand,
INFI denotes the percentage of infeasible nodes in the search tree of CPI, which were pruned only
by solving the corresponding IP. Recall th a t these nodes correspond to subproblems made already
consistent by CP alone. Therefore, INFI also indicates the percentage of cases where the inference
generated by IP could achieve what CP alone could not, except by further branching. In other words,
INFC and INFI are indicators of the usefulness of incorporating CP within the IP search tree and
IP within the CP search tree, respectively. According to Table 6.4, only up to 6% of the nodes in
the IP search tree are pruned as infeasible during preprocessing. On the contrary, at least 25% of
nodes in the CP search tree are pruned by IP. Note th a t for n — 6, INFI rises to 66%. This explains
the superior performance of algorithm CPI in terms of nodes. CP is clearly useful within IP but to
a smaller extent.

Table 6.4: Percentage of infeasible nodes pruned
n 5 6 7 8 9 10 11 12

INFI 0.532 0.657 0.416 0.227 0.321 0.315 0.264 0.250
INFC 0.0 0.046 0.052 0.059 0.032 0.032 0.048 0.024

Another measure of the inference strength is the early identification of infeasible branches. A
representative criterion, independent of the actual form of the search tree, is the number of transver
sals fixed before pruning a node. We briefly report the results regarding the infeasible case of n = 6.
Algorithms IP, IPC and CPI need to fix at most one transversal before proving th a t a specific branch
is infeasible, i.e. all of them generate approximately the same quality of inference. In contrast, al
gorithm CP is able to prune a node as infeasible, after fixing a single transversal, only in around
10% of the cases; in the remaining ones, it has to fix up to 4 transversals before proving infeasibility.
Analogous results appear for larger values of n and explain the fact th a t algorithm CP creates the
largest number of nodes. Algorithm CPI is faster than algorithms IP and IPC for n = 6, exactly
because it solves a much smaller number of linear programs and employs IP only after the problem
has been restricted enough for cutting planes to become capable of proving infeasibility. On the
contrary, algorithms IP and IPC insist on solving LPs and generating cutting planes in between
without pruning any further branches.

These observations have obvious implications for more general combinatorial optimisation prob
lems. Given th a t a problem is in N V , obtaining a complete polyhedral description is as hopeless as
finding a polynomial algorithm. Partial polyhedral description can be efficiently used to reduce the
search, but usually cannot become effective unless the problem has been sufficiently restricted. For

6.5. An algorithm for triples of MOLS 159

example, obtaining an integer solution or a certificate of infeasibility at the top node of a B&C tree
is possible only for very small problem instances. For larger instances, CP can provide substantial
improvement by enumerating all partial assignments to a certain number of variables. IP can then
be applied to the restricted problem and attem pt to extend the partia l solution to a complete one or
prune the partial solution without any further enumeration. If IP fails to do either, CP can again be
used to extend the partial solution by instantiating further variables before IP is called again. The
point where the algorithm must “switch” between CP and IP is, most probably, problem specific. In
the case of OLS, the notion of transversals offers a convenient criterion. Finally, the role of a useful
relaxation appears to be crucial, since inference is more efficiently generated for the relaxed rather
than the original problem.

6.5 An algorithm for triples of MOLS

This section extends the ideas presented above to the problem of identifying a triple of Mutually
Orthogonal Latin Squares (MOLS) of order n. Recall from Section 1.1 th a t k Latin Squares (k > 3)
are called mutually orthogonal if they are pairwise orthogonal. I t is known th a t there can exist at
most n — 1 MOLS of order n. This upper bound is actually attainable if n is a prime power and
for all n < 9, except of course for n = 6. For all other n, the maximum number of MOLS remains
unknown. The lack of a general theoretical argument has motivated the use of computer-based
methods to answer the question for small values of n. The most famous example is the proof for the
non-existence of a set of 9 MOLS of order 10 ([58]).

The case of n = 10 is particularly interesting because it is the smallest order, which disproves
Euler’s conjecture. Recall that Euler had conjectured the non-existence of a pair of OLS when n is
an odd multiple of 2. The conjecture is true only for n = 2,6 and fails for the first time for n = 10.
Although it has been easy to construct a pair of OLS of order 10, multiple attem pts have failed to
answer the question about whether any such pair is extendible to a triple. It follows th a t 10 is the
smallest order for which the maximum number of MOLS remains unknown.

Based on the experience accumulated for the OLS problem, we design an algorithm th a t identifies
triples of MOLS. This algorithm is integrating IP and CP methods, motivated by the results of the
previous sections. The algorithm is successful for orders up to 9 and fails to answer the question
for n = 10. Note th a t if there exists no triple of MOLS for n = 10, a complete enumeration is
required. Since this last instance appears intractable, we descend to only providing an upper bound
on the computation time, in case the problem is indeed infeasible. The related literature contains
numerous construction methods for sets of MOLS, maximal or not (see [35, Chapter 5]). These
methods are straightforward, in the sense that no search is required. However, they are valid only if
n has specific properties, e.g. prime number. Although our method is enumerative and, in the worst
case, of exponential complexity, it appears to be more generic in the sense of employing no further
assumptions about the value of n. This is probably a fundamental discourse between algorithmic and
analytical methods.

We proceed by exhibiting IP and CP models for the problem of a triple of MOLS, or 3-MOLS
for short. Next, we present the algorithm and discuss computational results.

CHAPTER 6. Integrating Constraint and Integer Programming 160

6.5.1 IP and CP m odels for the 3-MOLS problem

The models of this section anticipate the more general models presented in the next chapter. Let
X , Y, U denote the three Latin squares of order n, which are pairwise orthogonal.

Considering first the IP model, assume five n-sets, namely I , J , K , L , M, indexing the rows,
columns and values of the three squares, respectively. Let the binary variable X i j k i m be 1, if cell (i , j)
of square X , Y, U contains value k , l ,m , respectively. Since squares Y and U must be orthogonal, it
follows th a t each ordered pair (l ,m) must occur exactly once, regardless of value k. The constraint
ensuring this property is:

^ ~ 2 { x i j k i m : i € I , j £ J ,k £ K] = l , V l £ L ,m £ M (6.3)

Exactly as in Section 1.5, by taking into account th a t the roles of the five sets are purely conventional,
we are allowed to interchange them. This leads to (2) = 10 constraint types, analogous to (6.3). The
sum of all variables defines the objective function. Hence, the IP model for the 3-MOLS problem is
the following.

max ^ 2 { x i j klm : i £ I , j G J ,k £ K , L £ L ,m € M }

subject to :

^ { x i j k i m - i £ l , j £ J , k £ K } = 1 ,VZ € L ,m e M

^ { x i j k i m : i £ I , j £ J , l £ L} = l,Vfc £ K , m £ M

5 ~2, {x i j k i m : i £ I , j £ j , m £ M } = 1 , V k £ K , l £ L (6.4)

2 ~ 2 { x i j k i m • i £ I , k £ K , l £ L } = 1 , Vj £ J , m £ M

' ^ {X i jk im : k £ K , I £ L ,m £ M } = l,V i G I , j £ J

Xijkim G {0, l}Vz £ I , j £ J ,k e K , l £ L ,m e M

This model is defined on n 5 0 —1 variables and contains 10n2 equality constraints, each involving
n 3 variables. Each integer feasible solution has exactly n 2 variables set to 1, one for each cell

The CP model is more intuitive. Let variables X i j , Y ij , Uij denote the content of cell (i , j) in
squares X , Y, U, respectively. The domain for all these variables is {0, ...,n — 1}. As in Section 5.3.1,
auxilliary variables Z™, Zf™ are introduced in order to enforce the orthogonality condition
between each of the three pairs of OLS. The domain of each Z variable is {0,..., n 2 — 1}, where each
value has a 1 — 1 correspondence with one of the ordered pairs {(0,0),, (n — 1, n — 1)}. It is not
difficult to see th a t the CP formulation for 3-MOLS is the following.

alLdifferent{Xij

alLdifferent{ Xij

al Ldifferent{ Y\j

al L different{ Y.\j

i £ I} , for all j G J

j £ J] , for a l i i £ I

i £ /} , for all j £ J

j £ J} , for all i £ I

6.5. An algorithm for triples of MOLS 161

alLdifferent{Uij : i E I} , for all j E J

alLdifferent{Uij : j E J} , for a llz G /

a l L d i f f e r e n t { Z : i E I , j E J}

alLdiffere^Zfff : i E I , j E J } (6.5)

alLdifferent{Zf™ : i E I , j E J}

Z f/ = Xij + n • Yy, for all i E l j E J

Zfj1 — X{j + n • Uij, for all i E I , j E J

Zfj = Yij + n ■ Uij, for all i E I , j E J

Dx = Dy = A / = {0, . . . ,n — 1},

= { 0 , . . . , n 2 — 1}

This formulation requires 6n2 variables, 6n alLdifferent predicates of cardinality n, 3 alLdifferent
predicates of cardinality n 2 and 3n2 equality constraints. It is clearly a more compact representation
of the problem, involving significantly less variables th a t the IP model.

6.5.2 A lgorithm s for the 3-MOLS problem

It is easy to see th a t the size of the IP model is enormous. Therefore a pure IP algorithm could
not constitute a viable solution method, except for small values of n. For n = 10, this model would
include 105 binary variables and even a single linear program would take several minutes to be solved.
On the other hand, the CP model is not prohibitively large. Hence, a CP algorithm, analogous to the
one of Chapter 5, is applied to the 3-MOLS problem, mainly for assessment purposes. Nevertheless,
the superiority of algorithm CPI in large instances of the OLS problems indicates th a t this algorithm
should also be the most appropriate for the 3-MOLS problem. Especially if the instance of n = 10
is infeasible, it is of crucial importance th a t the best possible inference is extracted by both CP and
IP.

Before presenting the algorithms, we must note th a t the preliminary variable fixing of Table 4.2
(Section 4.2) is naturally extended to triples of OLS. It is not difficult to see th a t the first row in
all three squares can be fixed in natural order. Similarly, the first column of squares X and Y is
fixed as in Table 4.2, whereas the first column of square U remains intact. The only values removed
from the domains of variables Uio, i E I , are the ones excluded by the orthogonality constraints. For
example, since Xio = 1, Yio = 2, values 1,2 are initially removed from the domain of variable Uiq.

The CP algorithm incorporates model (6.5) and is a simple extension of the algorithm described
in Section 5.3.3. At each step, the algorithm selects a cell (i , j) for which X ij is uninstantiated.
It then instantiates variable X ^ first, followed by variables Yij and Uij. The algorithm always
selects a cell in a different row and column, thus fixing transversals of squares Y and U. For each
such transversal, it is easy to see th a t all cells in square X are instantiated to the same value, i.e.
the algorithm fixes all Os, then all Is and so on in square X . Fixing transversals is more efficient
than simply fixing rows or columns of the three squares, according to arguments similar to those of
Section 4.4.2. At each node of the search tree, the CP algorithm performs simple domain reduction
and updates degrees of freedom (DOF) for rows and columns of all three squares. It also checks
DOF for pairs of values regarding all three pairs. The filtering algorithm for alLdifferent constraints

CHAPTER 6. Integrating Constraint and Integer Programming 162

is implemented whenever a transversal, i.e. (n — 1) cells in all squares, has been fixed. Notice that
the complexity of all procedures for domain reduction is identical to the one presented in Table 5.2
(Section 5.3.3). For example, updating DOF for rows and columns still requires 0 (n) steps. This
constitutes an obvious advantage for CP and arises from the fact th a t the CP model requires 0 (n 2)
variables for both the OLS and 3-MOLS problems.

The hybrid algorithm, called CPI(3) hereafter, incorporates the main aspects of algorithm CPI.
Because of the IP model being immense, it is difficult to m aintain both CP and IP models, as for the
CPI algorithm. In contrast, the 3-MOLS problem is decomposed into two parts to be handled by CP
and IP. In particular, squares X and Y are instantiated using IP, while CP deals only with square U.
The search is initiated by CP, which fixes values 0,...., t in square U, where t < n — 1 is a parameter
of the algorithm. Each value is assigned to n — 1 cells in pairwise different rows and columns. Let
us define Tm0 = { {h j) : Uij = mo) for mo E {0, ...,i}. It is not difficult to see th a t cells in each Tm0
must form a transversal in squares X and Y . The CP algorithm performs domain reduction based
only on the constraints concerning square U being Latin. Once values 0,..., i have been assigned, the
IP solver is called in order to create squares X and Y . These squares must be orthogonal to each
other and also to the partially instantiated square U. To accomplish this, further constraints must
be appended to the IP model. For each mo, cells in 'U'mo must possess pairwise different values. In
other words, for every ko E K , at most one of the variables {xijk0i : { i , j) £ Tmo > I E L} must be
equal to 1. Similarly, for every lo E L, at most one of the variables {xijhi0 : (i , j) e Tmo,k e K }
must be equal to 1. Therefore, the additional constraints for the IP model are:

: (*’■?) € TmoJ e £} = 1, for all k0 E K , for all m 0 < t

: (i , j) E Tmo, k E K } = 1, for all l0 E L, for all m 0 < t (6.6)

This is a total of 2(t + l)n constraints. The larger the value of t the more constrained the IP model.
For t = n — 1, i.e. when square U is completely fixed, the number of constraints (6.6) rises to 2n2.

The IP model is solved by the Branch Sz Cut algorithm described in Section 4.4. The outcome is
either a feasible solution or a proof of infeasibility. If a feasible integer solution is returned, meaning
a pair (X, Y) , the CP solver instantiates the remaining cells of square U, under the additional
constraints for orthogonality with squares X , Y . If it succeeds, a solution for the overall problem
has been found and the algorithm terminates. If not, the IP solver is called again. Note th a t the
partially instantiated square U has not changed, therefore the search in the IP tree must be resumed
at the point where it previously stopped. The IP solver might return no feasible solution because
either (a) there exists no OLS pair (A, Y), orthogonal to partial square [/, or (b) all feasible solutions
have already been generated. In both cases, the CP algorithm has to backtrack and provide another
partial square U. In essence, algorithm CPI(3) interchanges between the two solvers and keeps both
search trees active. Notice th a t both CP and IP control the creation of subproblems in different
stages, i.e. Step IV of Algorithm 6.1. Hence, this hybrid scheme implements option (C), as described
in Section 6.3.

The critical aspect controlling the performance of CPI(3) is param eter t. The larger this pa
rameter, the more cases will be examined by CP for partially generating square U and the more
restricted the solution space for the IP solver will be. In general, we would like the IP search tree
to remain small, since an IP node requires much more effort than a CP node. This automatically
suggests setting t to a large value. However, IP has proved to be more efficient in pruning infeasible
branches. Hence, large values of t imply more calls to IP, which do not necessarily exploit IP ’s

6.5. An algorithm for triples of MOLS 163

inference strength. The extreme case of setting t = n — 1, which implies examining every single Latin
square of order n, is clearly impractical. On the other hand, setting t — 1 implies th a t most of the
search will be implemented in the IP search tree. W hether this is indeed efficient is highly correlated
with the ability of IP to identify a solution or prove infeasibility early in the search. For the 3-MOLS
problem, the question is further addressed via experimentation.

6.5.3 C om putational R esults

This section provides results for algorithm CPI(3) in terms of elapsed time. It is basically examined
whether this algorithm can efficiently identify triples of MOLS and, most im portant, whether it can
search the entire space for n = 10 in reasonable time.

First, we compare algorithm CPI(3) with the CP algorithm. Param eter t is set to [^ J . Table
6.5 illustrates the elapsed time for orders up to 9. The upper bound on computation time is again
5 x 104 seconds. All algorithms exceed this limit for n = 10. Note th a t the case of n = 6 is clearly not
applicable. Once more, the results demonstrate the comparative efficiency of the hybrid algorithm.
For both n = 7 and n = 8, algorithm CPI(3) identifies a solution much earlier because the cutting
planes of the IP solver force the dual simplex algorithm to select an integer extreme point.

Table 6.5: Identifying triples of MOLS of order n
T ime

n 4 5 6 7 8 9
CPI(3) 2 12 n/a 1785 4967 18413
CP I 2 n/a 4729 15370 38194

The next experiment investigates the impact of param eter t on the performance of algorithm
CPI(3). The values of t examined are {1, [j J , , (n — 1)}. The results in terms of elapsed
time are depicted in Table 6.6. Again, no algorithm terminates within the time limit for n = 10. For
t = (n — 1), the time limit is also exceeded for n = 9. These results show th a t the extreme values of
t constitute inadequate options. For small n, values and are more efficient, also because
they are closer to value [p j . For n = 8, the best result is achieved for t = . Actually, the optimal
value for t is |_f J + 1 = 3, although not listed in Table 6.6. As n becomes larger, elapsed time for
t = [p j is significantly shorter. The overall conclusion is th a t intermediate values of t balance more
efficiently the strengths and weaknesses of the two solvers: CP enumerates quickly a number of cases,
restricting the problem sufficiently for IP to find a pair (X, Y) in reasonable time.

Table 6.6: Examining the role of param eter t
T i m e

n 4 5 6 7 8 9
t - 2 14 n/a 2392 11837 34581
t = n

4 2 14 n/a 2392 4146 21068
t = n

2
2 12 n/a 1785 4962 18413

t = 3 n
4 2 17 n/a 1963 13325 30752

t = (n — 1) 2 21 n/a 4258 27613 *

Since no result is accomplishable for n = 10, we propose a method for deriving an upper bound
on the completion time. Since the CP solver is partially fixing square 17, it will s ta rt by fixing value
0 in (n — 1) cells of pairwise different rows and columns. Recall that, by having fixed the first row of
U in natural order, value 0 has already appeared in column 0. Hence, there are (n — 1) possible cells

CHAPTER 6. Integrating Constraint and Integer Programming 164

of row 1, where value 0 can be fixed. Having fixed value 0 in row 1, there exist (n — 2) cells of row
2 still having value 0 in their domains. In general, having already fixed 0 in rows 1, ..., i — 1, (n — i)
options remain for row i. It is not difficult to see th a t the total number of ways for fixing 0 in (n — 1)
cells of U is exactly Fn — (n — 1)!. For n — 10, this number is Fio = 9! or Fio — 3.63 x 106. Let
T im eo denote the elapsed time for proving that, for one particular fixing of Os in U , there exists no
solution to 3-MOLS. It follows th a t T im eo • Fio provides an estim ate for the to tal completion time,
if the problem is infeasible.

To check the existence of a solution for a particular fixing of Os, it is sufficient to include this in
the preliminary variable fixing, which is performed before the search starts. This implies th a t the
search will now start by fixing Is in square U, for each of the .Fio subproblems. Note that there
exists no justifiable argument about whether the solution time of a subproblem varies substantially
for different fixings. Therefore, we generate 10 different fixings randomly, run algorithm CPI(3) for
each instance and calculate the average elapsed time. The estimated elapsed time, for different values
of t, is depicted in Table 6.7.

Observe th a t the average time is reduced as t increases up to 6 and starts increasing drastically
thereafter. Once more, values of t close to achieve the best results. However, the shortest
completion time, in case th a t there exists no triple of MOLS of order 10, is (23,724 seconds)-Fio — 273
years. Moreover, this is only an estimate, which implies th a t it is not necessarily accurate. In order
to assess the validity of our estimate, we have repeated the experiment for 100 randomly generated
fixings of 0s in square U and for t = 6. The average time for each instance has been 23,296 seconds,
which is relatively close to the average time obtained for 10 instances.

Table 6.7: Estimating the average elapsed time for an instance of n = 10
t 1 2 3 4 5 6 7 8 9 10
T im eo (se c) 40573 36827 29634 27613 24867 23724 32159 37492 45091 45134

6.6 Concluding remarks

This chapter has investigated the potential for integrating IP with CP. Certain methods of integrating
the two methods have been implemented in the form of hybrid algorithms. Extensive experimentation
has been conducted in order to compare these hybrid schemes against the IP and CP algorithms
presented in Chapters 4 and 5, respectively, The main conclusion is th a t hybrid algorithms are more
efficient, especially for large problem instances, suggesting th a t the integration of the two methods is
advantageous. Although the experimental results concern exclusively the OLS problem, the observed
behaviour allows for conclusions to be drawn for general combinatorial problems. Despite the fact
th a t a hybrid algorithm performs much better for the OLS problem, it has been unable to provide a
definite answer to the open question of the existence of a triple of MOLS for n = 10. Nevertheless, it
is still encouraging th a t the hybrid algorithm provides much better results, compared to a traditional
CP scheme.

Chapter 7

M ultidim ensional Assignm ent
Problem s

This chapter generalises the results, derived for the OLS problem, to multidimensional assignment
problems. Assignment structures are embedded in numerous combinatorial optimisation problems.
An assignment occurs whenever a member of an entity must be allocated/m apped to a member of
another entity. The simplest case of an assignment problem is the well-known 2-index assignment,
which is equivalent to the weighted bipartite matching problem. Applications include the assignment
of facilities to locations and the assignment of delivery points to vehicles.

Extensions of the assignment structure to more than two entities give rise to multidimensional
(or multi-index) assignment problems, formally introduced in [70, 71]. These problems essentially
ask for a minimum weight clique partition of the complete fc-partite graph (see also [12]). A k-
index assignment problem is defined on k sets, usually (but not always) assumed to be of the same
cardinality n. The goal is to identify a minimum weight collection of n disjoint tuples, each including
a single element from each set. This is the class of axial assignment problems ([9, 79]). Its IP
formulation involves 0 — 1 variables with k indices and the constraint sets are derived by summing
over all possible sets of k — 1 indices. The weighted sum of the variables constitutes the objective
function, a fact th a t justifies the alternative term linear sum assignment problems ([22]). As an
example, recall the formulation of the 3-index assignment problem (3A A P n), presented at Section
2 . 1 .

If the aim is, instead, to identify a collection of n 2 tuples, partitioned into n disjoint sets of
n disjoint tuples, a different structure appears. By way of illustration, consider the problem of
allocating n teachers to n student groups for sessions in one of n classrooms and using one of n
laboratory facilities (i.e. n 2 quadruples), in such a way th a t all teachers teach all groups, using each
time a different classroom or a different facility (for a relevant case, see [39]). These assignment
problems are called planar and are directly linked to Mutually Orthogonal Latin Squares (MOLS)
([60]). The IP formulation of planar problems can be defined on n k 0 — 1 variables (each having
k indices) and the constraint sets are derived by summing over all possible sets of k — 2 indices.
Examples are the formulations of the Latin square problem (3P A P n) and the OLS problem (APAPn),
presented at Section 2.1.

Generalising this concept, we could ask for a minimum weight collection of n s tuples, thus defining
the (k , s) assignment problem of order n, hereafter denoted as (k , s)A P n . According to this notation,
(k, l)A P n and (k, 2)APn denote the A;-index axial and planar problems, respectively. A more formal

165

CHAPTER 7. Multidimensional Assignment Problems 166

definition appears in the following section. The IP formulation of (k , s)A P n requires n k 0—1 variables.
Its constraints are derived by summing over all possible sets of k — s out of k indices.

An excellent review for assignment problems is [79], where complexity and approximability issues
are covered. It is known th a t the 2-index problem is polynomially solvable, whereas the 3-index
axial and planar problems are A/’P-hard (see [43] and [55], respectively). The authors of [21] prove
th a t the multidimensional (axial) assignment problem remains AfP-hard for k > 4, if the coefficient
vector of the objective function fulfills an Anti-Monge condition.

Apart from its theoretical significance, the (k ,s)A P n has interesting applications. Multidimen
sional (axial) assignment structures have recently received substantial attention, because of their
applicability in problems of d ata association. Such problems arise naturally in m ulti-target/m ulti-
sensor tracking in satellite surveillance systems (see [72]). An application to the problem of tracking
elementary particles at the large electron-positron collider of CERN is reported in [75]. The planar
problems share the diverse application fields of MOLS, discussed in Section 1.4.

This chapter provides an Integer Programming formulation of the (k ,s)A P n (Section 7.1) for
general values of k, s, n. The framework introduced enables the polyhedral study of entire families of
assignment problems. A number of boundary conditions is exhibited in Section 7.2.1. The dimension
of the linear assignment polytope is established in Section 7.3. In Section 7.4, we examine certain
properties of the convex hull of integer vectors, provide a necessary condition for the existence of
a solution to the (k, s)APn and propose a hierarchy of assignment problems. The dimension of the
axial assignment polytopes is established in Section 7.5, while a family of facets is exhibited in Section
7.6. Section 7.7 establishes the dimension of the planar assignment polytopes. Finally, modelling
the (k ,s)A P n via Constraint Programming is the topic of Section 7.8.

7.1 M athem atical formulation

This section provides a formal definition of the (k ,s)A P n . As mentioned before, we consider an IP
model derived by summing over all possible subsets of k — s out of k indices. Such a formulation
unifies and generalises known IP models for assignment problems. In order to exhibit this compact
formulation, we need to formally define the associated problem, i.e. the (A;, s)A P n , which encompasses
the definitions of axial and planar assignment problems.

Let us motivate our discussion with a number of examples. Table 7.1 exhibits a pair of OLS of
order 4. The sets of rows and columns correspond to student groups and classrooms, while the sets
of values for the two squares denote teachers and topics. The (2, 1)AP4 asks for an allocation of
teachers to groups. A solution consists of 4 ordered pairs or 2-tuples, e.g. {(1,1), (2,2), (3,3), (4,4)}.
The (3 ,1)AP4 is the problem of allocating each teacher to a single group and a single classroom.
A solution is composed of 4 3-tuples of the form (group,classroom,teacher). The solution {(0,0,0),
(1 ,1 ,3), (2 ,2,1), (3,3,2)} is illustrated by the bordered cells of the first square. Evidently, a solution
to (3, l)A P n defines a transversal of a Latin square of order n.

If all teachers must teach all groups in all classrooms, the underlying problem is the (3,2)AP4.
It follows th a t each (group,classroom) tuple must be included exactly once and each teacher must
be allocated to a set of 4 disjoint 2-tuples. For example, the solution indicated by the first Latin
square implies th a t teacher 0 is allocated to the pairs {(0,0), (1,2), (2,3), (3,1)}. Hence, the
(3, 2)APn asks for n 2 2-tuples, which can be partitioned into n disjoint sets of n disjoint 2-tuples.
The (4 ,2)AP4 includes the additional requirement th a t all topics should be taught to all groups

7.1. M athematical formulation 167

Table 7.1: Examples of assignment structures
T e a c h e r s

C la ssr o o m s
0 1 2 3

0 0 1 2 3
G r o u p s 1 2 3 0 1

2 3 2 1 0
3 1 0 3 2

T o p i c s

C la ssr o o m s
0 1 2 3

0 0 1 2 3
G ro u p s 1 1 0 3 2

2 2 3 0 1
3 3 2 1 0

and in all classrooms. It is not difficult to see th a t each topic must be associated with 4 disjoint
(group,classroom,teacher) tuples. It follows that a solution to (4,2) APn is a set of n 2 3-tuples, which
can be partitioned into n disjoint sets of n disjoint 3-tuples.

In general, a solution to the (k, l)A P n is composed of n disjoint fc-tuples, whereas a solution to
the (A;,2)APn contains n 2 (k — l)-tuples, partitioned into n disjoint sets of n disjoint tuples.

D e fin itio n 7.1 Let K = { 1 , . . . , A:} and an integer s E {1,...,A: — 1}. Consider k disjoint n-sets
M i, M2, . . . ,Mfc and select any (k — s + 1) of these sets. Let zi, . .. ,ik~s+i be any k — s distinct
integers from 1 to k. Define the following sequence of powersets:

W0 = {(mM, ...,m tfe- s+1) E M ^ x ■ • • x M»fc_.+1, i t G K }\
For t = 1,..., s — 1 :

W t = { { z i , . . . , z n} : Zi E Wt_!,z = 1 , . . . , n, and Zi D Zj = 0 ,V z^ j} \
Ws = {{zi , ... ,zn } : Zi E W 8- \ , i = l , . . . , n , and z t D zj = 0,V z ^ j };

Hence, W q is the set of all (k — s + l)-tuples and W\ is the set of all subsets of Wo th a t consists of
n disjoint (k — s + l)-tuples. For t = 2,..., s, Wt is the set of all subsets of W t_i th a t consist of exactly
n disjoint members of Wt~\. Assume also a weight function w : M k —> where M k = Mj.

D e fin itio n 7.2 The (k , s)A Pn problem asks for a minimum weight member o f the set W s .

It follows th a t the (k ,s)A P n problem asks for a minimum weight collection of n® (k — s + 1)-
tuples. Note th a t an equivalent representation could be expressed in terms of asking for n®-1 clique
partitions in the complete (k — s -f- l)-partite graph. The above definition also implies th a t the axial
and planar problems ask for a minimum weight member of sets Wi and W2, respectively.

The Integer Programming formulation of the (k , s)A P n requires a binary variable xmim2...mfc and
a weight coefficient wm for each fc-tuple (m 1, m 2, . . . , m k). Any (k — s + 1) out of the k n-sets
M i , . . . , Mk can be regarded as indexing the (k — s + 1)— tuples, while the remaining (s — 1) sets index
the members of the powersets W i , . . . , Ws_i selected. For example, xmim2...mfc = 1 implies selection
of the tuple c = (ra1,?™2, . .. , m k~s+1). Among the n (disjoint) members of set Ws_i selected, tuple
c belongs to the m kth one. This member of Ws_i consists of n disjoint members of Ws_2 and tuple
c belongs to the m k~1th one, and so on.

We examine a simple corollary of the above. Let c, d E M k and x c,xa be the corresponding
variables. If \c D d\ > s, the variables x c,Xd have at least s indices in common, hence, assume
m %1, . . . , m la to be these s common indices. The fact x c = Xd = 1 implies the existence of a pair of
(k — s + l)-tuples, both belonging to the same member m %t of powerset Wit , for all £ = 1 , . . . , s — 1.
But then, member m %1 of powerset Wi contains two (f c - s + l)-tuples having index m %B in common,
i.e. two non-disjoint tuples, which is a contradiction to Definition 7.1. It follows that a pair of
variables, which have at least s indices in common, cannot simultaneously take value 1. This fact is

CHAPTER 7. Multidimensional Assignment Problems 168

reflected in the integer programming formulation of (k , s)A P n , which is derived by summing over all
possible subsets of k — s out of k indices.

min ^ ■•■mk ' ^ > • • • > ^ ^ }

^ { x m ima...mfc : m l £ M i, . . . ,m k 3 1 £ M k 3 1, m k 3 £ M k_3} = 1

for all m k~3+l £ M k- s+i , m k~3+2 £ M k- 3+2, . . . ,m k £ M k

: m 1 £ M i , . . .)m k~3~1 £ M k~3~ 1, m k~3+l £ M k- s+i}

for all m k~s £ M k- S, m k~s+2 £ M *_s+2, . . . ,m k £ M k

(7.1)

^ { x mim2.i>Tnfc : m 3 £ M s ,m s+2 £ M s+2, . . . ,m k £ M k} = 1

for all m 1 £ M \, £ M s , m 3+1 £ M s+1

^ { x mim2...mfc : m 3+1 £ M s+1,m 3+2 £ M 3+2, . . . ,m k £ M k} = 1

for all m 1 £ M \, . . . ,m 3~ 1 £ M s- \ , m s £ M s

Xm'm2...mk € {0, 1}, i™}, m 2, . . . , 771*) G M K] (7.2)

For any S C A , define M s = 0 M*. For s £ K , define Q k>3 = {5 C K : |S| = s}, i.e. QkjS is
ies

the set of all subsets of K w ith cardinality s, also called s-subsets. Observe th a t each constraint set
corresponds to a single S £ Q kiS. There are exactly s “fixed” indices in each constraint. The set of
indices appearing in the sum is M K\ s , whereas M s is the set of indices common to all variables in
a constraint. Let A ^ ’s ̂ denote the (0,1) m atrix of the constraints (7.1). The matrix has n k
columns and (*) • n 3 rows, i.e. n 3 constraints for each of the (*) distinct S £ Q k,s- Each constraint
involves n k~3 variables with coefficient 1.

Under these definitions, it is obvious th a t (2,1)A P n refers to the 2-index assignment problem,
(3,1)APn to the 3-index axial assignment problem ([9, 38]), (3 ,2)A P n to the 3-index planar assign
ment problem ([37, 63]), and (4,2)APn to the 4-index planar assignment problem ([2]). Note that
param eter s is central to the type of assignment required at each problem, i.e. the axial problems
imply s = 1 and the planar problems imply s — 2. An alternative formulation and classification
appears in [79].

7.2 Assignm ent polytopes and related structures

7.2.1 General concepts

Definitions from polyhedral theory were given in Section 3.1. Recall that, if denotes the matrix
of the minimum equality system for a polyhedron P, it holds that:

dimF = n — r a n k B = (7.3)

The convex hull of the integer points satisfying the constraints (7.1) is the (k , s) assignment
polytope, denoted as P jk,s\ Formally, P^k’3̂ = conv{x £ {0,1}™* : A n ’̂ x = e}, where e is a column
vector of ones. The linear relaxation of p ^k,3\ also called the linear assignment polytope, is the

7.3. The (k , s) linear assignment polytope 169

polytope p (k’s) = [x £ Rnfc : A ^ ’s x̂ = e,x > 0}. Obviously, p (k,s ̂ C p (fc>s).

Clearly, the assignment polytope is a special case of the set-partitioning polytope defined as
Ps p = {y G {0, l} g : B y = e}, where B is a 0 — 1 matrix. A close relative of P sp is the set-packing
polytope P s p , defined exactly as P sp but with “= ” replaced by “< ” . In our case, Pfk,a) = conv{x £
{0, l} nfc : A ^ ' ^ x < e}. A relation, inherited from the general case, is th a t p j k,s ̂ is a face of p j k,s^
implying d im P jk's ̂< dim P\k,s\ Polytope p^k,s ̂ is full dimensional, hence dim P \k's ̂ = n k, i.e. its
dimension is independent of s. For a survey on Ps p , Ps p and on related problems, see [8].

Another class of polytopes related specifically to P jk’̂ is given by the multi-index generalised
assignment problems. The simplest representative is the 2-index generalised assignment problem
(GAP) ([64]). These problems are defined for s = 1, i.e. they constitute an extension of the axial
assignment problems. One of the constraint sets consists of equalities of the type “ = 1” , whereas the
rest consist of inequalities of the type “ < 6t” , where bt £ t £ K \ {1}. The IP model for the
fc-index generalised assignment problem is illustrated in [3]. Applications of this model, for k = 3,
can be found in [41, 42, 64]. Finally, we note th a t a similar approach can be used for modelling
an extension of the transportation problem, called the solid (multi-index) transportation problem,
introduced in [48].

7.2.2 Two special cases

For s = k, constraints (7.1) reduce to the system of trivial equalities

= 1. V ^ 1, 7712, . . . , 771*) £ M K (7.4)

whereas, for s = 0, constraints (7.1) result in the single equality constraint

: {m1 , m 2, . . . , m k) £ M k } - 1 (7.5)

L em m a 7.1 rankAn = n k and d im P (k,k) = d im P \k,k ̂ = 0.

P ro o f . Trivially, A ^ ' k ̂ = I (n k). Therefore, rankA ^ ’k ̂ = n k and both polytopes contain the
single point x = e. ■

L em m a 7.2 rank Ank’°̂ = 1 and d im P (k,°) = dim P jk,0 ̂ — n k — 1.

P ro o f . From (7.5), rank A 1*’°̂ = 1. The n k unit vectors belong to both p (fc’°) and p ^k,Q\ The
result follows from (7.3). ■

C o ro lla ry 7.3 p j k,°̂ is a facet of P jk'°K

P ro o f . p (k,°) c p (k,0\ since point x = (0, . . . , 0) T belongs to p ^k,°̂ but not to p (k,0\ The
result follows from Lemma (7.2) and from the fact th a t dim P jk,°̂ — n k. ■

7.3 The (&;, s) linear assignment polytope

This section establishes the dimension of polytope p (*’s) by determining the rank of m atrix An'8'*.
Before illustrating the main proof, certain intermediate results are presented.

CHAPTER 7. Multidimensional Assignment Problems 170

First, we propose an ordering of the rows and columns of A ^ ' s\ Observe th a t each set S G Qk,s
is uniquely associated to a row set of A ^ ’s\ Each such S can be regarded as a subset of s indices,
written (by convention) in ascending order (i \ , .. . , i a), where i t < it+i for t = 1 , . . . , s — 1.

D e fin itio n 7.3 Let S , S" G Qk,s, where S = (i\ , . . . , i s), S ' = (i[, . . . , i's). It holds that S > S ' i f and
only i f there exists t G { 1 , . . . , s} such that iv — i'p for p = 1 , . . . , t — 1 and i t > i't .

It follows th a t there exists a strict lexicographic order on all subsets of s indices, i.e. a strict
order of all S G Qk)S- Based on this ordering, row sets of are positioned in descending order.
W ithin a particular row set, a row corresponds to an s-tuple of the set Ms- These rows are placed
in ascending order with respect to the corresponding s-tuples. Columns of A ^ ’s ̂ appear also in
lexicographic order.

/ 4 \
E x am p le 7.1 For k = 4, s = 2, there exist I J — 6 row sets. They are considered in descend

ing order with respect to the pair of “fixed” indices, i.e. {(m3, m 4), (m2, m 4), (m2,m 3), (m 1,m 4),
(m ^ m 3), (m},rn2)}. Rows in, say, the second row set are identified by the values of the pair
of indices (m2, m 4). The values of this pair of indices are considered in ascending order, i.e.
(1 ,1) , . . . , (1, n) , . . . , (n, 1) , . . . , (n, n). The columns of A^4,2 ̂ are ordered lexicographically with re
spect to the values of the 4-tuple (m1,m 2,ra3, ra4), i.e. (1 ,1 ,1 ,1), . . . , (1,1, l ,n) , . . . , (n, 1,1,1),
. . . , (n, n, n, n).

Next, we wish to determine the exact position of each row set in the m atrix A n ’s\ Let ro =

(*i, .. - , i 3) € Qk,s» where ii < i2 < • • • < i s - Define the function / : Qk,s —► {1, • • •, |Q*,*I}> where

10*,.I = (*) =

s (k—(s—t) . \

= E (I t) r + 1, <7-6)
t=i [j = i t+i ')

We show th a t / provides the position of row set ro in m atrix A ^ ,s\ i.e. it is equal to the
number of row sets preceding ro plus one. Let r\ be a preceding row set indexed by the same
indices as r 0 in positions 1 , . . . , t and indices [fc — (s — t) + 1] , . . . , k in positions t + 1 , . . . , s, i.e.
n = { h , *2) ■ • •, U, k — (s — t) + 1 , . . . , k). Any row set preceding r\, which has the same indices as ro
in positions 1 , . . . , t — 1, must have an index j in position t, such th a t j G {it + 1, - - - , k — (s — t)}. For
each such j , positions t + 1 , . . . , s, at the s-tuple indexing the row set, can be completed by choosing
s — t out of k — j indices. This holds because there are s — t positions to be filled and k — j indices
with value larger than j . This results in (*1^) possible row sets for each j G {it + 1, •. •, k — (s — t)}.
Repeating this process for all i t , t = 1 , . . . , s , and taking the sum for all i t , results in the total
number of row sets preceding ro. Therefore, the row set (* i , . .. , i s), i\ < • • • < i s, includes rows
f (i i) • • •»i s)-ns-\-l to (f (i i , . . . , i s) + l) -n s , i.e. one row for each value of the s-tuple (m %1, . . . ,m ta). It
can be seen that, regarding the first and the last row set, f (k — s + 1 , . . . , k) = 1 and / (l , . . . , s) = (*)
respectively, as required.

The following lemma establishes an equality, which is to be utilised later in this section.

L em m a 7.4 Let k e z+ \{ 0 ,1}. For integers s ,r , where r < s < k — 1, the following identity holds

7.3. The (k,s) linear assignment polytope 171

P ro o f. Equation (7.7) can be re-written as:

£ + m) _ £ (*) . (;) . (_ i r . (7.8)

We proceed by induction on param eter s. For s = 0, both sides of eq. (7.8) are equal to 1. Assuming
th a t (7.8) holds for certain s, we prove th a t it is also true for s + 1, i.e.:

_ ,) - ! (;) 0 - < - « — ■ r n

The right-hand side of (7.9) can be w ritten as:

gO-■

- <-)■g o - c) (- » -

- < - ■ > ± 0 0 < - w <™>/ / V r / Vs + l / V r ,Z=r x

Since (7.8) holds for s, the first term of (7.10) can be replaced by its equal. Hence, we obtain that:

| 0 (* - " 7 ■+ i>) C : 1)

Given (7.11), (7.9) can be w ritten equivalently as:

k - (s - l + 2) \ / I \ ' / k - (s - l + l) \ { I \ (k \ (s + 1£ (*-(7 ,+2)) U J + 1, vs + 1 — r j V ̂ J \ s ~ f"J Vs + 1/ V r/= s+ l—r N ' l = s —r '

or

f k — (s — I + 1)\ / I + 1 \ \ f k — (s — I + 1)\ / I \ / k \ / s -f-1
^ r V l + l J \ s + l - r) + I J \ s - r) = \ s + 1) \ r

By replacing I by s — I in this last expression and including both term s in a single summand, we
obtain:

StCil 10Ctj-O * Ci-rOC*-')} - c;0 - Cto ™
Observe th a t (k~ ^ 1) = (^ J z j) • and (aaZ lr) = C + J l ') ■ Hence, equation (7.12) is
equivalent to

Term ^1 +) *s independent of I, thus can be placed outside of the sum. After performing

CHAPTER 7. Multidimensional Assignment Problems 172

certain arithm etic operations, we obtain the following equation.

To summarise the steps up to this point, we have to illustrate the inductive step of our proof,
which is formalised by equation (7.9). After various transformations, we have shown that (7.9) holds
if and only if (7.13) holds. To prove the validity of (7.13), it is sufficient to examine the values of
r — 0, ...,s by induction. The case of r — 0 is trivial. Assuming th a t (7.13) holds for a certain r, we
can prove its validity for r + 1 by applying a transformation analogous to the one applied to derive
equation (7.12) from equation (7.9). This shows the validity of the induction on parameter s. The
proof of (7.7) is now complete. ■

T h e o re m 7.5 r a n k A £ ,s>) — X)r=o((r)(n ~ 1)r }-

P ro o f. For s = k and s = 0 the theorem stands by virtue of Lemmas 7.1 and 7.2, respectively.
For 1 < s < k — 1, the proof includes s + 1 steps. Let r = 0 , . . . , s denote the step counter. At each
step we remove sets of linearly dependent rows. The number of remaining rows provides an upper

(k s)bound on rank An ’ . Next, we identify a non-singular square subm atrix consisting of these rows
and an equal number of columns. This approach was followed in the proof of Theorem 3.2, which is
actually a special case of this theorem.

Observe first th a t the sum of all equalities belonging to the same row set yields an equality stating
th a t the sum of all variables is equal to n 3. Therefore, we remove the first row from all the row sets
except for the first one. The total number of rows removed is (*) — 1 = (q)(ti — l)°((s) — !)• This
is the step r = 0.

At step r = 1, for each index q £ K , consider the subset of row sets R q = {S' € Q k , s '■ q € S},
|iig| = (*Zi)- Each row set belonging to R q is further partitioned into n subsets, one for each value
of the index m q. The rows of the row sets, belonging to the same subset, form a (k — 1, s — 1)APn:
index m q is fixed, therefore its presence in both sets S and K can be ignored. Observe that the n
(k—1, s —\) A P n problems formed in this way, (i.e. one problem for each value of m q), are independent
of each other, since each problem has a distinct set of variables and constraints. Each such problem
consists of (*Zi) row set s) the sum of rows in each row set stating th a t the sum of all the n k~ l variables
is equal to n s_1. Hence, for each such problem, except for the (k — 1, s — l) A P n defined for m q = 1, we
remove the first row from each row set, excluding the first row set. Note th a t the “first” row set is the
one appearing first in m atrix A n ,s^, according to the ordering described previously. In other words,
for each of the n — 1 (k — 1, s — 1)APn problems, we remove (*Zj) — 1 rows. Hence, for each q 6 K ,

we remove (n — l) ((* l j) — 1) rows, yielding a total of k{n — l)((*Zi) — 1) = (J)(n — l) 1((s l j) — 1)
rows removed in this step.

E x am p le 7.1 (co n t.) The row sets {(m l ,m 4), (m ^ r a 3), (m l , m 2)} f o r m n independent (3, l)A Pn ,
one for each value of index m 1. For all m 1 ^ 1, a row is removed from each of the sets {(ra1,?™3),
(m 1^ 2)}, i.e. a total o /2 (n — 1) rows.

Similarly, at step r (r < s), sets of exactly r distinct indices are considered. Let
denote such a subset. We define the subset of row sets R i 1>,. . ti r = { S € Q k , s • Up=i(^p} — ^}>
|-Rii,...,ir | = CZrr)- Each row set belonging to R i lt...iir is further partitioned into n T subsets, one
for each value of the r-tuple (m 11, . . . ,m lr) € M i y x • • • x M i r . Again, the rows of the row sets,

7.3. The (k , s) linear assignment polytope 173

belonging to the same subset (identified by the same value of the r-tuple (m*1, . .. , m v)) form a
(k — r ,s — r)A P n . Since there are n T distinct subsets, we have n r independent (k — r ,s — r)APn .
Each (k — r ,s — r)A P n consists of row sets, the sum of rows in each row set stating that the
sum of all the n k~r variables is equal to n s~r . Hence, for each of these problems, excluding the ones
defined by the r-tuples (rri11, . . . , m lr) for which at least one of the indices is equal to 1, we remove
the first row from each of its last (*l£) — 1 row sets. Therefore, for each (k — r ,s — r)A P n , defined
by the r-tuple (raM, . . . , m lr), rri1? ^ 1, Vp = 1 , . . . , r, we remove (*l£) — 1 rows. The exact rows
removed for the problem identified by (m %1, . . . , m lr) are defined via the following remark.

R e m a rk 7.1 Let t* denote the maximal element of i.e. t* > t for all t E R ilt...,ir (Defini
tion 7.3). For each t E i T. \ { ^ * } > we remove the row which has m i = 1 for every j E t \ { i i , . . . , ir }
and (m11, . . . , m %r) in positions (i i , . . . , i r), where m lp 1, Vp = 1 , . . . , r. There is a 1 — 1 cor
respondence between each t E R ilj...Iir \ {t*} and each row removed. Obviously, \ {t*}\ =

Because there are (n — l) r such problems, we remove (n — l) r • ((*l£) — 1) rows for each distinct
r-set («i , . . . , i r). There are (*) distinct r-sets of indices, therefore the number of rows removed at
step r is a t most

Assume, without loss of generality, th a t row removal is implemented (i) in increasing order with
respect to r and (ii) for a certain r, in increasing order w ith respect to row ordering. For example,
the step r = 1 is preceding step r — 2 and the {k — 2, s — 2)A P n problems corresponding to the
pair of indices (m 1 , m 2) are considered before the (k — 2 ,s — 2)A P n problems corresponding to the
pair (■m l ,m ,3). To show th a t the upper bound defined by (7.14) is attainable, we need to prove the
following lemma.

L em m a 7.6

(i) No rows of the (k — r ,s — r)A P n problems indexed by the r-tuple ro were removed at a previous
step involving an r-tuple fo examined before ro.

(ii) No rows of the (k — r ,s — r)APn problems indexed by the r-tuple ro were removed at a previous
step involving a v-tuple Vo where v < r.

P ro o f . To prove (i), let ro = (i i , . . . , i r), fo = (? i , . . . , 2r) be two distinct r-tuples, i.e. there
exists at least one q E (1 , . . . , r}, such that i q ^ i q. Let fo be considered first and let t be an s-tuple,
indexing a row set, such th a t r0,fo C t. If t = t* (or t = £*), where t* (t *) is the maximal element
of R ix ir {Ri1,...,ir respectively), then no row is removed from row set t with respect to ro (fo).
Thus, we assume th a t t ^ t*,t*. This implies th a t the rows of t belong to the (k — r ,s — r)APn
problems considered for both ro and fo- Let m r° = (m 11, . . . , m lr) and m r° = [m%l, . . . , m %r). For
each value of m r°, where m lp ^ 1, for all p = 1 , . . . , r , a row having mJ = 1, for all j E t \ f o
is removed (Remark 7.1). This implies th a t this row has raJ = 1 for all j E ro \ (ro D fo) Recall
th a t when considering ro, only (k — r ,s — r)A P n problems corresponding to values of m r° with no
index equal to 1 are examined. Therefore, all rows removed when considering r-tuples m r° belong
to (k — r ,s — r)A P n problems not examined when considering r-tuples m r°.

The proof of (ii) follows the same idea. Assume ro = (i i , . . . , i r) and vq = (? i, . . . , i v), v < r.
There exists at least one index i t belonging to ro but not to vq. Let also t be an s-tuple indexing a

CHAPTER 7. Multidimensional Assignment Problems 174

row set such that ro, C t. If a row is deleted when considering the (k — v ,s — v)APn corresponding
to a certain value m Vo, not having any index equal to 1, then all indices of t \ vq will have value
1 (Remark 7.1). This includes the value of the index m lt , i t G ro \ vq. But then this row would
belong to the problem (k — r ,s — r)A P n corresponding to a value of rar°, where at least one of the
indices has value 1. This problem is not examined when considering ro, since all problems defined
have m lt ^ 1. ■

(Back to the proof of Theorem 7.5) Summing over all r, we obtain a total number of linearly
dependent rows of equal to

which yields the following upper bound on the r a n k A ^ ’s :̂

rank A £*■•> < (*) ■ n ‘ - £ { (*) • (n - I)' - ((J "') - 1)}

r = 0 ' '

By using the property (*) (*~^) = (J) (*), we obtain

™ "“ “ 5 SOC) - s 0 0 -l" - " ’

+ £ (*) > - i r
r = 0 ' '

or

rankA

To complete the proof, we must provide an equal lower bound on rankAn'^ ■ For this purpose, we
exhibit a number of linearly independent columns equal to the number of independent rows exhibited
previously. Each column is presented using the notation (m1, . . . , m k~s , m fc-s+1, . . . , m k), i.e. it is
im portant to differentiate between the values of the first k — s indices and the values of the last s

indices. Consider the following (disjoint) sets of columns.

a) Columns having the first k — s indices equal to 1 and all possible values for the last s indices
in increasing order. These columns are

(l , . . . , l , l , . . . , l) , . . . , (l , . . . , l , n , . . . , n)

There are ns such columns.

b) Columns having any k — s — 1 of the first k — s indices equal to 1 and all possible values, except
for 1, for the remaining index. These columns also have ra*;_s+i = 1 and all possible values,

7.3. The (k , s) linear assignment polytope 175

including 1, for the last s — 1 indices. An example is the subset of columns

Columns : (1 , . . . , 1 , 2 , 1 , 1 . . . , 1) , . . . , (1 , . . . , 1,2, l , n , . . . ,n)
'-----------V----------- '

No. of indices : k — s

The cardinality of a given subset of columns which has the first k — s indices fixed is n s~ l .
There are n — 1 such subsets th a t have the value 1 in the same k — s — 1 out of the first k — s
indices. There are k — s distinct configurations, for which the k — s — 1 out of the first k — s
indices have value 1 and the remaining index has a value different than one. Thus, the total
number of columns in this set is (k — s) ■ (n — 1) • n s_1.

c) Columns having any k — s — 1 of the first k — s — 1 + r (2 < r < s — 1) indices equal to 1 and any
possible value, except for 1, for the r remaining indices m n , . . . , m %r, iq € { 1 , . . . , A; — s — 1 + r} ,
for all q E { 1 , . . . , r}. These columns also have m k~s+r = 1 and any possible value for the last
s — t indices. For example, let r = 2 and let the last two, of the first k — s — 1 + 2, indices
have values different from 1. Then the subset of columns defined is

Columns : (1 , . . . , 1 , 2 ,2 ,1 ,1 , . . . , 1) , . . . , (1 , . . . , l , n , n , 1,n , . . . ,n)
s v.. — ✓ v ^ ✓

No. of indices : k — s — 1 + 2 k — s — 1 + 2

ĝ j* J \ \
J options for selecting the indices rri11, . . . , rriLr and, for each such

option, n s~r ■ (n — l) r columns are included.

d) Columns having any k — s — l of the first k — 1 indices equal to 1 and any possible value, except
for 1, for the s remaining indices ral1, . . . , m la , i q £ { 1 , . . . , k — 1}, for all q € { 1 , . . . , s}. These

columns also have m k = 1. There are ^ ^ options for selecting the indices m %1, . . . ,m %a

and for each option (n — l) scolumns are included.

The total number of columns exhibited in (a),...,(d) is

- t { (‘ - v + v - - g { Q - < - ^ i } <“ >

The right-hand side of (7.16) can be w ritten in the form X)r=o nT ' 9(r)- To identify g(r), observe
th a t n l , for all i € {0 , . . . , s}, can be derived as n l • n°, for r = s — i and I = r = s — i (Table

7.2). The binomial coefficients of (7.16) will then be ^ ^S ^ = ^

n w * .s — IJ
It follows th a t g(r) = (—I)5-7- • Y a =s- t (fc_^ “ z+1)̂ (s^ r). Thus, (7.16) becomes

CHAPTER 7. Multidimensional Assignment Problems 176

n l m I '■-'771 mCi
n { ■ n°
n i_1 • n 1

p — i
p — i + 1

p — i
p — i

k—i— \sp—i
k—i/~i^p —i+l

P-'Cp-i • (- l) P - 1
P-i+fCp- i • (- l) P - {

n° ■ n { P p — i k—l f iOp PCv- i • (-1)*-*

Table 7.2:

Expressing term (n — l) r in (7.15) using Newton’s polynomial, we obtain

SQ-'""’’ - S© { § (0

It follows from Lemma 7.4 th a t the coefficients of n r in the right-hand sides of (7.17) and (7.18)
are equal. Hence, we obtain the following identity:

£ (*) > - i r = £ (* " (T +1)) - n'_r'(n- 1>r
r=0 r=0

The subm atrix of A 1*’̂ formed by these columns and the remaining rows is square upper trian
gular with each diagonal entry equal to 1, therefore non-singular. This provides a lower bound on
r a n k A ^ ’9̂ equal to the upper bound illustrated in (7.15). The proof is complete. ■

C o ro lla ry 7.7 dim,P(k,s) = Ylr=o 1 (r) ‘ (n — *

P ro o f. Follows from (7.3) by expressing term n k using Newton’s polynomial:

* * = e :u e) - (" - !) * • ■

7.4 The (k , s) assignment polytope

Amongst assignment problems, the one with the longest history is the two-index assignment prob
lem. From early on, it was known th a t p j 2>1̂ = This is a direct consequence of Birkhoff’s
theorem on permutation matrices (see [22, Theorem 1.1]). Hence, dim P j2,1 ̂ = d im P(2,1\ which by
Corollary 7.7 is equal to (n — l)2. In Table 7.3, we state the known values of d im P jk,s ̂ for given
(k , s), other than (2,1). We also state the values of n for which the proofs are valid, along with the
appropriate references.

Table 7.3: Known values of dim P jk,s\
(k ,s) n d im P \k'9̂ References

(A;,0), VA; E > 0 n k- 1 Lemma 7.2

(3,1) > 3 n 3—3 t2 + 2 R. Euler ([38]), E. Balas et al. ([9])

(3,2) > 4 { n - l f R. Euler et al.([37])

; (4,2) > 4 , ^ 6 774 —6?72+8n — 3 G. Appa et al.([2])
(k, k) ,Vk E Z+ > 0 0 Lemma 7.1

7.4. The (k , s) assignment polytope 177

For general (k , s), Corollary 7.7 implies dim P jk,a ̂ < X^r=o_1 (r) '(n — since P jk,s ̂ C p (k>s).
However, establishing the exact value of d im P \k,s ̂ is not straightforward. Note also th a t p j k,s ̂ = 0
for certain values of k, s, n (for example, consider the polytope for k = 4, s — 2, n = 2).

First, let us take a closer look at the integer vectors of P jk,a\ Definition 7.1 implies th a t n s
A:-tuples have to be selected, therefore an integer vector must have exactly n s variables equal to 1.
Moreover, any integer vector must signify n disjoint members of powerset Ws_i , each one containing
n s~ l tuples (i.e. variables). Since any index m 1 G Mt, t G K, can be regarded as indexing powerset
W s- 1, any of its values rriQ must appear in exactly n s_1 non-zero variables. Hence, at an integer
point of p (k,s\ each element of any of the sets M i , . . . , Mk appears in exactly n s_1 variables set
to one. This remark is very useful in terms of providing a mechanism for transition from one
integer point to another. Consider an arbitrary integer point x G p j k,a\ and a pair of index values
mQ,m\ G M t , t G K . We set m 1 — m \ for all the (k — s + l)-tuples with m* = tuq and also m l = ttiq
for all the (k — s + l)-tuples with m 1 = m \. The derived structure corresponds to another integer
point x € since there are again exactly n s_1 “new” variables set to one with m 1 = rriQ and
n s_1 “new” variables set to one with m 1 = m \. The variables, w ith m 1 = tuq and m* = m \, set to one
at point x , are set to zero at point x and vice versa. The values for the rest of the variables remain
the same at both points. This notion of interchanging the role of two index values is formalised with
the introduction of the interchange operator (<->). Hence, by setting x = x(mQ *-*■ m j) t , we imply
that, at point x, we interchange the index values mg and m \ , thus deriving point x. The conditional
interchange is defined accordingly (See Section 3.2).

Given (A:,s,n), an im portant issue is whether p j k,s ̂ ^ 0. This question is difficult to answer for
general (k , s ,n) . However, for certain values of s, we know th a t p f k,s) ^ 0. We have seen two such
cases in Section 7.2.2. Another such case is obtained for s = 1. It is easy to see th a t P ^ ’1̂ ^ 0,
Vfc,n G Z +. This is because the diagonal solution, noted as x (xn...\ = ■ • • = x nn...n = 1), always
satisfies constraints (7.1), (7.2), for 3 = 1. For general s > 2, we provide the following necessary
condition for P^k,s ̂ to be non-empty.

P ro p o s itio n 7.8 For s > 2, o necessary condition for the existence of a solution to the (k ,s)APn
is k < n + s — 1.

P ro o f. Observe first that, according to (7.1), variables appear at the same row if and only if
they have at least s indices in common (common values for indices belonging to m s).

Given th a t p ^k,s ̂ ^ 0 and s > 2, consider the point x' G P^k,s ̂ having x 1...lma...mk = x 1...lTns...mk
= ■ ■ • = = 1. Such a point always exists, since rows (1 , . . . , 1, rrij) G Mi x M2 • • • x M s ,
j = 1 , . . . , n must have exactly one variable equal to 1. Also note th a t all indices , j = 1 , . . . ,n,
must be pairwise different since otherwise a constraint would have a left-hand side equal to 2.
Consider the following sequence of points:

x s = x '(m \ 7̂ 1 ?mf «-► l) s (m,2 7̂ 21ms2 2)s • • • (m* 7̂ n?m* <-> n)s

x s+1 = x s (m 3̂ 1 ± l? m j+1 <-> l) s+i (m 2+1 7̂ 2?ms2+1 2)a+i • • • (m ®+1 7̂ n?msn+1 n)a+1

x k = 7 ̂ 17m* l)fc(ra2 7̂ 2?m2 2)k ■ ■ • (m* 7̂ n?m* <-> n)k

Let x = x k . At point x we have X1...H...1 = x i...i2 --2 = • • • = x\...in...n = 1. The notation implies
th a t the first s — 1 indices are equal to 1 and the indices s , . . . , k have the same value. Point x must

CHAPTER 7. Multidimensional Assignment Problems 178

satisfy all constraints including row (2 ,1 , . . . , 1) G M \ x M2 • • • x M s. Consequently, there must be
exactly one variable of the form £21 with value 1. None of the indices m s+1, . . . ,m s can
take the value 1, because the left-hand side of a constraint would then become 2. For the same
reason they must be pairwise different. Therefore, at most n — 1 values must be allocated to k — s
indices. This implies k — s < n — l < & k < s + n — 1. ■

For s = 2, this theorem states the well-known fact th a t there can exist no more than n — 1 MOLS
of order n ([60, Theorem 2.1]).

Let us explore the relationship between the (k ,s)A P n and the problems arising when decreasing
by one any of the parameters k,s. First recall th a t a member of powerset W s is equivalent to n
disjoint members of powerset Ws- 1, i.e. to n sets of n s~ l (k — s + 1) tuples each. It follows that a
solution of (k , s)A P n is equivalent to n disjoint solutions of (k — 1, s — 1)A P n. Equivalently, a vector
x G p (k,s ̂ can be used to construct n linearly independent vectors x % G p (k~1,s~ 1̂ i = 1 , . . . , n. The
construction is quite straightforward: for a certain index ra* , £ G K , and x G P^k,s\ define

'^mi ...7nt_1mt+1 ...mk ^m1 ...mk

for all (m1, ...,m t_1, m t) . . . ,m k) G M ^ \y ty and i = 1 , . . . , 71. It is easy to verify th a t x 1 G
for i = 1 , . . . , n . As an example, observe that a solution to (4 ,2)APn (OLS) is equivalent to n
independent solutions of (3,1)A P n (i.e. n disjoint transversals). Let x G P j4’2 ̂ and m 1,.. .,™4 be
the four indices. For m 4 = m j , i = l , . . . ,n , define the vector ^ lm2m3 = xm 1m2m3m*■ ^ is not
difficult to see th a t x l G P j3,1\ i = 1 , . . . , n.

In an analogous way, a solution of (k , s)APn implies a solution to (k — 1, s)A P n . As an example,
let s = 2 and notice th a t a solution to (4,2)APn implies a solution to (3,2)APn , i.e. a pair of OLS
implies a certain Latin square. Observe th a t the (k — 1, s)A P n requires an integer solution with
n s variables set to one, but with one index less (i.e. n s (k — s) tuples). Let the index dropped be
m* € M t , t e K. Assuming x G p j k,s\ a (single) vector x' G p ^ k~ 1,s ̂ is derived as follows:

/_________________ f if 3 m 0 G Mt . x mi mt - imtmt+ 1 mk 1 1
m1...mt- 1mt+1...mfc | o, otherwise J ’

for all (m 1, ...,77it-1 ,ra t , . . . ,m k) G

In contrast, a solution of (A;, s)APn cannot give rise to a solution of (&, s — 1) APn and vice versa.
Note also th a t the inverse of the above is not true, i.e. a single solution to either (k — 1, s — 1)APn
or (k — 1 , s)A P n is not always extendable to a solution of the (k ,s)A P n . The hierarchy implied by
these observations is illustrated in Figure 7.1.

(M A P .

(k-l,s)AP. (k-l,s-l)AP.

Figure 7.1: A hierarchy of assignment problems

7.5. The axial assignment poly topes 179

The only exception is the case of (k — 1,1)APn , whose solutions can always be extended to
solutions of (k , l)A P n . Observe th a t a solution to (k — 1, l)A P n is a collection of n disjoint (k — 1)-
tuples, whereas a solution to (k, l) A P n requires a collection of n disjoint /c-tuples. Hence, given a
solution of (fc — 1, l)A P n , the introduction of an additional n-set Mk, and the augmentation of each of
(k — l)-tuples of the solution by a different element m k 6 Mk yield a solution of the (k , 1)A P n - This
observation has obvious algorithmic implications; instead of solving the (k , 1)A P n directly (especially
for large values of k), one can solve a lower dimensional axial assignment problem (k ' , l) A P n , for
k' << k, and, consequently, extend the solution to th a t of the higher dimensional problem. This
algorithmic aspect is exploited in [73], within a scheme based on Lagrangean relaxation. It also
appears in [12], the authors of which propose simple heuristics, which extend a solution of (2, l)A P n
to a solution of (k, l) A P n by sequentially solving (k — 1) bipartite matchings. A branch-and-bound
scheme, exploiting this feature, for the (3,1)A P n is presented in [11]. The principle is also applicable
for s > 2, the difference being that solutions of (k — 1, s)A P n might not be extendable to solutions of
(k ,s)A P n . A simple case is th a t of pairs of MOLS, i.e. solutions to (4,2)A P n , which are not always
extendable to triples of MOLS , i.e. solutions of (5,2)APn . Another such case is the algorithm
presented in [63], where an upper-bound heuristic for (3,2)A P n , based on the same principle, is
described.

A statem ent summarising the above, in terms of polyhedra, is the following.

R e m a rk 7.2 For s > 2,

) = p i

projxep,k- 1>a){Pik's)) C P f - 1>s)

7.5 The axial assignment polytopes
(2 1} (3 1)The two most prominent representatives of this class are the polytopes P) ’ and P) . We have

seen th a t d im P j2,1 ̂ = (n — l) 2. Other basic properties of P j2,1 ̂ can be found in [22, Theorem
1.2]. The facial structure of P j3’1̂ has also been substantially studied. As mentioned earlier, the
dimension of this polytope is established, independently, in [9, 37]. Several classes of facets, induced
by cliques and odd holes of the underlying intersection graph, are identified in [9, 76]. Separation
algorithms for some of these classes are given in [9].

To the best of our knowledge, (2, l) A P n and (3, l) A P n are the only axial assignment problems,
whose underlying polyhedral structure has been studied. However, several applications of axial
assignment problems for k > 3, have been reported (see [22, 71]). This suggests th a t the study of

(k 1)Pj ’ , for general k, is of both practical and theoretical interest. We have already mentioned that
p j* ’1) ^ 0} \Jk,n 6 Z+. Further, it can be proved, by induction on n, th a t the number of vertices of
p j* ’1) is equal to (n!)fe_1. The proof is a simple extension of [9, Theorem 1.1]. Next, we establish
the dimension of P jk,1\ thus unifying and generalising the corresponding results obtained for P j2,1^

(3 1)and Pj . Recall from Corollary 7.7 that the dimension of the poly tope associated with the linear
relaxation of P jk,1\ i.e. polytope pf*-1), is d im P ^ ’1) = Ylr=o ir) ‘ (n ~ ^)k~r -

T h e o re m 7.9 For n > 3, dim P jk = X^=o 0 ' (n — ■*■)* T•

CHAPTER 7. Multidimensional Assignment Problems 180

P ro o f. We know th a t dim (P*’1) < dim (Pfc’1), since p j k’̂ c P ^ ’1) Strict inequality holds if
and only if there exists an equality ax = ao satisfied by all x E P^fc,1\ which cannot be expressed as
a linear combination of the equality constraints A ^ ' ^ x — e. If we prove th a t no such equality exists,
we essentially prove th a t the system A^f ’̂ x = e is the minimum equality system for both p (fc>1) an(j
p (M) Therefore, d im (P jfc’1̂) = dim (P(fc,:l)).

Assume th a t every x E p j k’1̂ satisfies the equality ax = ao, a E R nk, ao £ R. Then, we show
below th a t there exist scalars A* ,£ = 1 , k, j = 1, . .,n, such that:

k

G M u t G K (7<19)
t = 1

“o = E { [E (A- * : mt 6 M‘}] : t £ K } (7-2°)
Define:

^m k mk •
\2 _

771*-— ̂̂ 1 . . .T T lk ̂1

\ A:—1
A 77l 2 — a l 77l 2 l . . . l — a l l . . . l)
\ k
A m l = a m i 1...1 — a i l . . . l

By substituting in (7.19) we get:

^TTl1 . . .m k ^ 771̂ 1... 1 T ® l 77l 2 . . . l "f- '••• “I” ® l . . . l 77l fc l) ® l l . . . l

We will prove (7.21) by examining a number of collectively exhaustive cases. The proof essentially
proceeds by induction on the number of indices that are different from 1. Also note th a t all the points
used throughout the proof can be constructed by applying a series of index interchanges on the point
x E P jk,1\ defined as:

Xmi...mk = 1) if m 1 = m 2 = ... = m k
x m\ mk = 0, otherwise

No more than three distinct values will be assumed for each index, hence the proof is valid for
n > 3.

C ase 7.9.1 All indices are equal to 1.
Equation (7.21) becomes a tautology.

C ase 7.9.2 Exactly one of the indices is different from 1.
W.l.o.g. assume the case of al i m k all other cases being symmetrical. Substitution alone proves

(7.21).

C ase 7 .9 .3 Exactly two of the indices are different from 1.
W.l.o.g. assume the case of a-̂ l m k - i m k, all other cases being symmetrical. Equation (7.21) can

be written as:

Q‘l...lmk~1mk ® l . . . l m fc —*1 ”b ® l . . . l m fc ®11...1» (7.22)

Consider a point x E Prk,1\ such that x \ i = x , * = 1, where:
r l ' 1 . . . 1 m L m * . . . m 3 7 T i *

s E M k~l , m l 7̂ 1 for all t E K, m k~ l ^ 1, m k~l 7 ̂m k~1.
Note that x = x (m 1 ^ m 2l m 1 m 2)2(m1 7̂ m k-1l m l m k~1) k - i (m 1 7 ̂m k?m1 <-> m k)k-

7.5. The axial assignment poly topes 181

Define the point x' = x{ l <-» m k)k. This implies that

X 'l 1 = X ' \ r r , 2 fc = 0 , X ' i fc = X ' f c_ J = 1a...i m 1 raz .. .ma m K * m 1m z . . .m 3 1

whereas x' = x in all other vector positions. Since x , x ' G P jk,l\ they must both satisfy the equality
ax — ao, i.e. ax = ax'. Cancelling out terms on both sides results in:

O H . . . 1 + a m i m 2 . . . m £ - 1m fc = a l...lm * + a m i m 2 . . . m * - 1 l (7 -2 3)

Consider also a point x G P jk,1\ such that ’x \ \ . . . \ rn k- 1m.k = #mim2 = 1- This point can be
derived from point x as follows:

(i) Let x ' -- x(l <-> m*-1)fc_ i (l m k)k . Observe that x'n lmk_lmk - 1.

(ii) L e tx = x ^ m 1 m 2l m l <-► m 2)2...(m 1 m k~l lm } «-> Observe th a txmlfn2 ^ - 4
= 1 a n d a /s o = 1, since m 1,m 2, . . . ,m k~2, m k~l are different from 1 a n d m k_1 m k~1.

Define the point x' = x (m k *-* 1)*. Clearly,

X l l . . . l m k~ 1m k = = 0 > 1 = Xm l m 2 ...m *-l m fc = 1

a n d x ' = x in all other positions. Both points belong to the polytope P jk,l\ therefore ax = ax'.
Cancelling out terms gives us:

a l . . . l m k- 1m k + a m 1m 2. . .m s ~ 1l = a H . . . l m fc- 1 l + a m 1m 2 ...rris~1m k (7 , ^ 4)

Adding equations (7.23) and (7.24) and cancelling terms results in:

a l l . . . l + a l . . . l m k- 1m k — ® ll. . . lm fc-1l + a l . . . lm fc

or

m k~ 1m k 11 ®11...1>

which is equation (7.22).

C ase 7 .9 .4 For 2 < r < k, exactly r of the indices are different from 1.

W.l.o.g. assume the case of ai lmk-r+1mki aM other cases being symmetrical. Equation (7.21)
can be written as:

a l . . lm fc- r+ 1..m fc = a l . . lm fc- r+ 1l . . l + a l . . lm fe- r+2l . . l + ••• + a l . . . lm fc — (r — 1) ' a l l . . l (7 -25)

The proof in this case constitutes the actual step of the induction. By the hypothesis of the
induction, (7.21) is true i f exactly r — 1 of the indices are different from 1. This implies that the
following equation holds.

a l . . l m k- r+'2. .m k = fll . . lm fc- ’’+21„1 + a l . . lm fc~ r+3l . . l + ••• + a l . . . lm fc ~ (r — 2) • a i l . . l (7.26)

Using (7.26), equation (7.25) can be equivalently re-written as

r+1l . . l "h [® l..lm fc-r+ 2 l„ l "I- ••• “f" ® l...lm fc (T ® ll . .l] ® ll. .l

CHAPTER 7. Multidimensional Assignment Problems 182

or

® l..lm k~r+ 1. . mk ® l..lm fc_T'+1l . . l ”1“ . . l m k~ r . . mk ® l l . . l

or

® l . . lm k~r+1 , . mk “I” ® l l . . l ® l . . lm fc_T'+1l . . l “I” ® l . . lm k~ r . . mk (7 .2 7)

Consider a point x £ such that X 1 ...1 = £ m i m 2 m fc -^ + im fc-r- + 2 m /t = 1 , wi* / 1 for all
t £ K , m k~r+1 7̂ 1, m j" r+1 m*-r+ 1 . 77iis point can be derived from x following a variant of the
interchanges used in Case 7.9.3.

Define the point x' = x{ \ m k~r+2)k - r+2 ---{l *-> rnk)k■ One can verify that

x l . . . l = Xm i 1.m i-r + 1 ..m* = ^ l . . l m fc- r+2.,mfc = Xm 1...mJ_r+1l . . l = 1

Since both points belong to P jk,1\ the equality ax = ax' holds. Cancelling terms gives us:

a l . . . l + a m l m 2..m £ - - + l m k - r +2._rnk = a i . , l m fc -r+ 2 . .m fc + ®m i,,,m J_r+1i . , i (7 -2 8)

Consider another point x £ P jfc,1\ 5uc/i th a tx mlm2 mfc- r+1i i = ®i..imk- r+1..mfc = 1 (also deriv
able from x). Define the point x' £ p j k,1\ such tha tx ' = x (l <-► m k~r+2) k - r+ r n k)k- Observe
that

a;m 1m a..m i~r+Il . . l = ,.mfc = 0 , X rTl1 m 2 . . m ^ - r+1m k- r +^ . .mk = X l . . l m k~r + 1l . . l ~ 1

Again, the equality ax = ax' is valid and results in:

a m 1m 2..m £-r+11..1 + a l . . lm fc- ’~+1..mfc = a m 1m 2 . .m ;-T’+1mfc-^+2..mfc + a l . . l m fc- ”+ 1l . l (7 .2 9)

Combining equations (7.28) and (7.29) and cancelling out terms from both sides gives us equation
(7.27). This completes the proof of equation (7.19).

^ (k 1) ^Finally, since x £ P) ’ , x must also satisfy the equation ax = ao. Substituting the terms
a m 1 . . . mk from (7 .1 9) gives us the following:

ao = o i . . . i 4 - U 2 ...2 + ••• + an...7i

or

ao = a 1 ..1 + [<2,21..1 + •• + <21..12 — (k ~ l)&i..i] + . . . + [uni..i + •• + <21.,in — (k — l)ai..i]

or

a 0 — [(a 21..1 — a l . . l) + ••• + (a n l . . l — a l . . l)] + + [(a 1..21 — a l . . l) + ••• + (a l . .n l — a l . . l)]

+ (&!..1 + Ul.,12 + ••• + & l..ln)

or

as required. ■

Let us examine which of the faces induced by the constraints of p (* ’ are facets of P jk,1K All the
equality constraints (7.1) are satisfied by all points of p \ k,1\ therefore they define improper faces of

7.6. A family of facets for the axial assignment polytopes 183

p(M) show below that, for c E M k , the inequalities x c > 0 define facets of P jk,1\ In contrast,
the inequalities x c < 1 are redundant, i.e. implied by the original constraint set.

P rop osition 7.10 For n > 3, every inequality x c > 0, for c E M k , defines a facet of P jk,1\

P ro o f. For any c E M k , consider the polytope p (k,1 ĉ = {x E p^k,V) : x c = 0}. It is sufficient
to show th a t dim P jfc,1̂ c = d im P j* ’1̂ — 1. Evidently, d im P j* ’1̂ < n k — 1 — rank Ai*’1̂ , where
A is the m atrix obtained from by removing column c. It is not difficult to see th a t the
rank of A^f'1̂ 0 is equal to the rank of A ^ ’1̂ . This is immediate if the column a° is not among the
columns of the upper triangular matrix described in Theorem 7.5, otherwise it follows by symmetry.

Therefore, dim P j fc,1̂ c < X)r=o (r) ' (n — — 1- To prove th a t this bound is attained, we use the
same approach as in the proof of Theorem 7.9, i.e. show th a t any equation ax = ao (different than
x c = 0) satisfied for every x E P^k,1 ĉ is a linear combination of the system A ^ ' ^ ° x — e. The proof
goes through essentially unchanged. ■

(k 1)P rop osition 7.11 For n > 3, every inequality x c < 1 for c E M k does not define a facet of Pj ’ .

P ro o f. For any c E M k consider the polytope p (k,1 ĉ = {x E p j k>1̂ : x c = 1}. We will show
th a t d im P j* ’1̂ < d im P ^ ’1̂ — 1. We know already th a t d im P j* ’1̂ < d im P (fc,1)c, where p (k'l)c is
the LP-relaxation of P ^ ’1̂ . Setting xc to one is equivalent to setting the variables, which appear
at the same constraints with x c, to zero. Note th a t a variable xa appears at the same constraint
with x c, if and only if it has a t least one index in common with xc, i.e. if and only if |c fl d\ > 1.
The number of variables Xd, such th a t |cfl d\ = 0 is (n — l) fc. It follows th a t the number of variables
having at least one index in common with x c, i.e. set to zero, if x c = 1, is n k — (n — l) fc.

Hence, dim p (/c’1)c _ n k _ ^n k _ _ rank(Aifc,1̂ c) where Ai*’1̂ 0 is the m atrix obtained from

A ^ ’1'1 by removing the columns corresponding to the variables set to zero. Obviously, rank A ^ ’1̂ <
rankA i*’1̂ . It follows that

dim Pl*’1)0 < n k - [nk - (n - 1)*] - rankA ^-1*

< d im P jfc,1) — [nk — (n — 1)*]

Taking into account th a t n k — {n—l) k > 1 for n > k > 3, it holds th a t dim p (k'l)c < d im Pj*’1̂ — 1.
The result follows. ■

7.6 A family of facets for the axial assignm ent polytopes

Let C denote the index set of columns of the 0 — 1 m atrix A. We refer to a column of the A matrix
as ac for c E C. The intersection graph Ga = {V,E), has a node c E V for every ac E A, and an
edge (cs ,ct) E E for every pair of nodes with aCs • aCt > 1. Let Ga = (C^k,1\ E ^ ’1̂) denote the
intersection graph of A n ’l \ Then, C ^ ’1) = M k and (cs ,ct) E P ^ ’1) for ap cs ,ct E with
\c, fl Ct| > 1. By definition, c E C^*’1) refers to the fc-tuple (m*, . . . , m k) E M k - Hence, the variable
x c is equivalently denoted as x^mit...jTnfc).

P rop osition 7.12 The graph G a = (C^k,1\ E ^ ' 1̂) is regular o f degree

CHAPTER 7. Multidimensional Assignment Problems 184

P ro o f. For each Co G C^k,1\ there are exactly (n — l) fc nodes with no index in common with
Co. Since Co is incident to all other nodes of G a , the degree of node Co is n k — (n — l) fc — 1 =

E L (?) (» - 1) *- ‘ - (» - 1)* - 1 = E t , 1 (J) (» - ■

C orollary 7.13 I#**'1)! =

P ro o f. The number of edges in a graph is the sum of the degrees of all nodes, divided by 2. ■
For cq G C^k,1\ define

Q1̂) = { c t G : |cq n c t | > + 1}

In other words, Q 1 (c q) is the set of nodes having a t least + 1 indices in common with node c q .

D e fin itio n 7.4 Consider CQ,ct G C^k,l\ with \ c q D ct \ > 1. The complement of ct with respect to Co
is any element ct (co) G C*^’1) such that \ct fl ct (co)| = 0, |co fl ct \ + |co fl c*(co)| = k.

As an example, let k = 4 and Co = (72, 72, 72, 72), ct = (io , jo ,n ,n). It is not difficult to see that
Ct(co) = (n , n , k 0, l0), where io , jo ,k0,l0 ± n. Note th a t {ct ,c t (co)) g E^k'l \

For the rest of the section, assume k > 3. A clique is defined as a maximal complete subgraph.

P ro p o s itio n 7.14 For each cq G C^k’1̂ and k odd, the node set Q ^co) induces a clique. There are
n k cliques o f this type.

P ro o f. Let ci,C2 G Q 1(co)- Since both ci,C2 have a t least [|J + 1 indices common with Co, they
must have at least one index in common with each other. It follows th a t (ci,C2) G E^k,l\ To show
th a t Q 1(co) is also maximal, consider C3 G C ^ ' 1̂ \ Q 2(c0). This implies |co D C31 < [| J . Because of k
being odd, it holds th a t |c0 D c3(co)| > [|J + 1 , implying c3(co) G Q x(c0). Since (c3,c3(co)) ^ E (ktl\
the graph induced by Q a(c0) U {C3} is not complete, i.e. a contradiction. There is a distinct clique
of this type for each node of , i.e. the total number of cliques is n k. M

R em ark 7. 3 Observe that |Q1(c0)| = J+i (?) ' (n “ 1)*"

For k > 6 and even, it can be verified th a t Q1(c0) is not maximal, i.e. it has to be augmented
by introducing additional nodes. Consider the example of k = 6 and let Co = (n , n , n , n ,n , n) . Given
th a t [|J + 1 = 4, the node set Q 1(c0) includes, apart from Co, nodes having 4 or 5 indices in common
with Co. Hence:

0) = {(m 1, 71, n , n , n , n) , ..., (n , n , n , n , n , m 6)} U

{(m 1, m 2, n, n, n, n) ,..., (72, 72, n , n , m 5, m 6)} U

{(72 , 72 , 72 , 72 , 72 , 72)}

where m 1, . . . ,m 6 € {l,...,7i}. Notice that node ct = (7?21,7T22,7723, 72, 72, 72) is also connected to all
nodes in Q 1(co). Therefore, Q 1(co) is not maximal. Nevertheless, it is not possible to include
all nodes having 3 indices in common with Co, since, for example nodes (m 1,m 2,7723, 72, 72, 72) and
(72,72,72,7724,7725,7T26) are not connected. Observe th a t (n , n , n , m 4, m 5, m 6) = ct(co).

To describe the set of nodes added to Q 1(co), a number of intermediate definitions are necessary.
For Cq G and S C K, define:

4 M)(co) = {c, € : (co n Ct) € M s)

7.7. The planar assignment polytopes 185

It is easy to verify th a t \ct fl cu \ = 0, for all ct £ (^ ’̂ (co), cu £ (c°)- ^or ^ even> define
G = { S C K : \S\ — 1} , |G| = (fc). Observe that, for k even, S € G if and only if K \ S € G.
Therefore, the set G can be partitioned into sets G+ , G ~ , such th a t G = G+ U G~ and S € G+ if
and only if K \ S £ G ~ . There are 2J"2"L such partitions. Define, finally, the set of nodes

<?G+(C») = (J C'S*'I>(C °)
5eG +

The node set Q2G- (co) is defined analogously. It follows th a t ct G Q ^ +(c0) if and only if ct (co) G

Q g - (c°)-

P ro p o s itio n 7.15 For each cq G C^*’1) and k even, the node set Q 1,2(co) = Q l (co) U Q‘g+(co)
induces a clique.

P ro o f. Let ci,C2 G Q 1,2(co). If both ci,C2 G Q 1(co) or both ci,C2 G Q g+(cq), it is easy to verify
th a t |ci 0 C2I > 1, i.e. (01, 02) £ E^k,1h If c\ £ Q 1(c0), C2 G Q g+(cq), c\ has f + 1 indices in common
with cq, and C2 has | indices in common with cq. Because of k being even, it follows th a t ci, C2 have
at least one index in common.

To show th a t Q 1,2{cq) is maximal, consider C3 G C^k>1̂ \ Q 1,2{cq) and note th a t either |c3 fl cq| <
| — 1 or |c3 fl co| = f . The first case implies that |c3(co) fl co| > § + 1, i.e. 03(00) G Q 1^) . Hence,
the graph induced by Q 1,2(cq) U {03} is not complete. In the second case, clearly, 03 ^ Q q+(co).
Hence, there exists at least one element of Q‘g+(cq), namely 04, such th a t |c3 fl 041 = 0, i.e. the graph
induced by Q 1,2(co) U {03} is not complete. ■

For k even, it can be verified that:

|QI,SM = E (!0 > ~ 1)*~, + H i) ' (n“ 1)4t=-J + 1

Overall, the node set of cliques belonging to this family is:

0 (C) = I Ql(C) : k ° dd 1
\ Q 1,2(c) '■ b even J

T h e o re m 7.16 For k > 3, n > 4, the inequality

: 9 e ^(<01 - 1 (7-30)

defines a facet of P jk,1\ for every c £ C ^ ' 1̂ .

The proof of the following theorem can be found in [3]. Note th a t this class of facets induced by
clique inequalities is a generalisation of a family of facets in [9].

7 , 7 The planar assignment polytopes

Each integer point of P^3,2) corresponds to a Latin square of order n ([37]). The polytope p j3,2 ̂
is also referred to as the Latin square polytope. In general, P^k’2̂ can be called the (k — 2)MOLS
polytope. The connection between MOLS and p j k'2 ̂ provides information on the non-emptiness of
p (fc.2) £or certain values of the parameters k, n. An immediate result is th a t p j 3,2 ̂ ^ 0, Vn G Z+ \{1},

CHAPTER 7. Multidimensional Assignment Problems 186

since there exist more than one Latin square for any n > 2 . Further, it is known th a t there cannot be
more than n — 1 M OLS of order n ([60, Theorem 2.1]). This implies th a t k — 2 < n — 1 or A: < n 4-1
is a necessary condition for P^k'2̂ ^ 0. Observe th a t this is a special case of Proposition 7.8. The
theory of M O LS provides us with further results, not implied by Proposition 7.8. For example, it is
known th a t p)4,2 ̂ ^ 0, Vn £ Z + \ {1,2,6} ([60, Theorem 2.9]).

The facial structure of P)3,2 ̂ and P}4,2 ̂ have been studied in [37] and [2] respectively. The
following theorem unifies and generalises the results of both studies concerning the dimension.

T h e o re m 7.17 For n > 5, k < n 4- 1, i f P^k’2 ̂ ^ 0 then d im (P jfc’2)̂ =]Cr=o 0 ' (n —

P ro o f. Since p j k'2 ̂ c p (fc>2), it follows that d im P jk’2)̂ < d im (P (k,2)), strict inequality holding
if and only if there exists an equality ax = ao satisfied by all x £ p ^k,2>>} which cannot be expressed

(k 2)as a linear combination of the equality constraints A n ’ x — e. Proving th a t no such equality exists,
implies th a t the system A ^ ’2^x = e is the minimum equality system for both p (fc’2) and P . It follows
th a t dim {P jk'2)̂ = dim (P^k'2^).

Assume th a t every x £ p j fc’2) satisfies the equality ax = ao, a £ R n>c, ao £ R. Then, there exist
1 2 S fc(fc~1}scalars Amfc- i mfc, Amfc_2mfc, Amfc_2mfc_ i , ..., A , 2 . , such that:

ami

ao =

 \ i i \ 2

Ai

4 -A c-i + ... + A.
(-*>

E
(mfc_1 ,mfc)GMfc_ i x M fc

Define:
\ *

m k~ 1 m k m k~ l m k
A2m k~ 2m k ® l.. . lm *_ 2 lm fc ®l.. l m k

^ m k~ 2m k~ l ® l. . . lm fc-2m fc_11 ® l.. l m k
A4m fc-3m fc ® l. . . lm fc_3 l l m fc
\5
/^m k~ ^ m k~ 2 ® l. . . lm fc_3m fc_2l l

fc(fc-i)
A 2

m l m 2

1 mk “I- 4* ^ ^
(m1 ,m 2)£M i x M 2

m - n
A 2s\ i 2m m

(7.31)

(7.32)

Observe the difference in the expression of A^imj , t, i , j £ K , i < j , when j = k and j / /c. For
j — k, only n rows of the corresponding row set (m s,m k), 1 < s < k, are assigned a zero weight,
whereas for j = k, exactly 2n — 1 rows are assigned a zero weight. These rows are the ones removed
as linearly dependent in the proof of Proposition 7.5.

By substituting the values of scalars in equation (7.31), we obtain:

Q*<m 1 Q 'm 1Tn2 l . . l “I” ^ m 1 l m 3 l . . l 4" 4" “I”

- (* - 2) - (Q"m 1 l . . l 4- U l m 2 l . . l 4- ••• 4- a l . . l m fc- 1 l 4- +

(ft - 1) - (* - 2)
H-------------- n------------- 011..1

(7.33)

Before we proceed, we have to use an intermediate result. A point x £ P^k'2 ̂ represents a set of
k — 2 MOLS of order n. Assume w.l.o.g. th a t sets M \ and M 2 index the rows and the columns of
the Latin squares respectively. The values of Latin square L t , t = — 2, belong to set M t+2-
The content of cell (m 1 ,m 2) at Latin square L t at point x can be denoted as m t+2(m l ,m 2)x . The
following proposition is simply the generalisation of Proposition 3.6.

7.7. The planar assignment polytopes 187

P ro p o s itio n 7.18 For n > 5, k < n + 1, i f P k'n ^ 0 the following equation holds.

m 3m 3(m >m i) .m k (m d - ® m] m \ m 3 (ttI j m |) , m fcK ™ !) +

m 2m 3 (m ^ 2) ,m k (m ,777*2 d “ ® m] m 3m 3 (m l tti3) ■ 777fc(m2m ?) d -

a m \ .m k (m ,7̂ 2 d " ‘̂m ^m ^m 3 (m l 7772) . m fc(m2 m ?) +

a m \ m ^ m 3 (m , m f) .m k (m ,771.2 d " ^ m ^ m ^ m 3 (m*l m 2) , m fc (m l m |)

a m \ m 3m 3(rn im l) .m k (m ,777*2 d " 7773 (777^ m ?) , m fc (m l m f) d -

a m \ . m * (m ,777 ̂ d ” 7̂77 J T773 7773 (77I2 m |) . m fc (m l m 2) +

a m \ m \ m 3(m. .m?) .m k (m ,777 j a777 l 7n 2 7773 (777l m |) , m fc(m2, m 2) +

a m \ rrv^m3 (m .m k (m ,7772 d - & m \ m \ m 3 (777*2 m f) ,m k (m l , m ?)

for all m \ ,m \ G M i , m \ ,m \ G M 2 , m \ 7̂ m^, m \ ^ m^.

P ro o f. Assuming P^k’2 ̂ ^ 0 , there exists an arbitrary point X\ G P jk,2\ having four specific
variables set to 1, as illustrated in Table 7.4, where 777} G M t , i = 1, ..,4, t G {3,..., &}. Existence of
such a point allows for the points x?, = x \(m \ <-> m ^ i , £3 = x (m \ 7712)2, £4 = £3(7711 <-> 7772)1 to
be derived. Tables 7.5, 7.6 and 7.7 depict these points.

Table 7.4: Point x i (Proposition 7.18)
771*1 ^ 2

m]
3 A-

. . . m *
3 k

m ^ . . . 777,2

m \
3 k

m ^ . . . 777,3 777,4 . . .777,4

Table 7.5: Point X2 (Proposition 7.18)
777,| m 2

777, { 7 7 7 , |. . .7 7 7 ,J

777,2
3 A-

777,i ...7 7 7 ,1 7 7 1 2 - - -777,2

Table 7.6: Point x$ (Proposition 7.18)
777,'i 7 772

777,} 7 7 7 * 2 ... 777,2 7 7 7 i . . . 7 7 7 i

77^2 7 7 7]} . . .7 7 7 ^
3 A-

7773 . . . 7 7 7 3

CHAPTER 7. Multidimensional Assignment Problems 188

Table 7.7: Point (Proposition 7.18)
m i

m j

m \

Since x i, X2 £ P \k,2\ the equation ax\ = ax2 holds. Observe th a t the two points have exactly the
same non-zero variables, except for variables corresponding to cells a t rows m \ and m \, i.e. variables
of the form s miTn2..mfc> * = 1,2. Cancelling those identical terms on both sides of the equation, we
get:

®‘m \ m \ m \ . . m k d" m fc + ^] & m \ m 2m 3 (m \,rn 2)xi . .m k (m \ , m 2)xi d "

d" flm i m 2m 3 m fc ^] a rn2Tn2rn3(rn2,m2)xl ..rnk(m2,rn2)xi

f l r a } r a j m 3 . . m 3 d - t t m i m 2 m 3 m fc -) - ^] ® m l m 2 m 3 (m b m 2) x a . , m k (m ^ , m 2) X 2 d “

m 2£ M 2 \{ m b » r i |}

a “m \ T n \ m \ ..mf d" a m \ m \ m \ , . m % d~ ^ ^ a r n \ r n 2 r n 3 { m \ , r a 2) X 2 . . r n k { r n \ , T n 2) X2 (7.35)
m 2G M 2 \{ m | , m |}

Since S3, X4 G P^k,2\ the equation <2x3 = ax± also holds. Again observe that the points X3 & S4
have exactly the same non-zero variables, except for variables corresponding to cells at rows m \ , m \,
i.e. variables x mim 2 _mk, i = 1,2. Cancelling out those identical terms on both sides of the equation,
we get:

^ m \ m \ r n 2 . . m 2 d - & m \ m ‘2 r n \ . . m k d ~ ^ ^ & m \ m 2 m 3 (m \ , m 2) X 3 . . m k (m \ , m 2) X 3 d "

m2£M 2\{m 2,m2}

a m 2 m \ m \ . . m k d" ^ m ^ m ^ m 3 . . m ^ d" ^ ̂ a m 2 m 2 m a { m 2 , r n 2) X i . . r n k { r r i 2 , r n 2) X3

m2(E.M2\{m2,m2}

Q ' m \ m \ m \ . .m k P a m \ m 2m^..m^ d~ ^ a m } m 2m 3(rrij,m 2)X2, ,m fc(m l ,m2)I4 d ~

m 2GM2\{m.3,m2}

/̂m 2m2m2..mk d” &m^m2m\..rnk d- ^ ̂ &rn2rn2m2(rn2,rn2)X2..mk{Tn2,rri2)Xtk (7.36)
m 2£ M 2\ { m j ,m |}

The critical step of this proof is to observe that, for m 2 G M 2 \{m i,rr i 2 }, t G {3,..,/s}, the
following equations hold.

(i) m t (m J,m 2)Xl = m t (m \im 2)X31 ra^ra^, m 2) ^ = m t { m \,m 2)x,

(ii) m t (m \ ,m 2)X2 = m 2)Xi, m t (m ^im 2)X2 = m t (m ^,m 2)s

7.7. The planax assignment polytopes 189

Table 7.8: Point x q (Theorem 7.17)
1

N
Oe

1 1 1 . . 1
T 4 1cm*rn{ . . . m*

m 0 7772777,2 . . . 777^
X 4 k .

. . . m 3

Table 7.9: Point x'Q (Theorem 7.17)
1

N
O

1
2 ,

777Q 777Q . . . 777q
* 1 4 k

777^ 777^ . . . 7 7 7 *

777J
t 4 Jtrn\m \ . . .

7 4 h
7 7 7 3 7 7 7 3 . . . 7773

Therefore, subtracting equation (7.36) from (7.35) results in

^ m f r n f r n f ..m f + a m\ m jm ^ . .m f a mJ m f m f . .m f ' d> 1 2 n_-|_i 3m^ tt% 2 •.m‘

+ ^ m ^ m ^ m ^ . .m f + a m\ m ^ m f . ■ m ’l a m f m f m f . ■ m ’l - a m f m f m f .. .m.

= a m } m f m | . .m f + a m\ m f m f . ■ m'l — a“m \rn\m \. ■m'l - a m f m f m f . .771.

+ ^ m f m f m f . fc.m f + a m\ m 2m 2- .m f m f m f .. m f ”~ ^ m f m f m f ..m-

Changing the side of negated terms and substituting m \, m^, m \, m \ by m t (m \,m \) , m t {m \,m 2),
m f i jn ^ m 2), respectively, illustrates th a t the above equation is identical to (7.35). ■

(Back to the proof of Theorem 7.17). To prove th a t (7.33) holds, we examine a number of
collectively exhaustive cases and proceeds by induction on the number of indices m t , t € K , which are
different from 1. The essential part of the proof, repeated for all cases, involves two steps. First, given
th a t p (k’2 ̂ is non-empty, there exists a point x q , as illustrated at Table 7.8. This point represents a
set of A: — 2 MOLS. Each Latin square has element 1 at cell (1, 1). Moreover, at cell (m j, m 2), square
L \ has element m \, square L 2 has element 777,3, etc. In general, for t = 3 , . . . ,A;, square L t - 2, has
element m \ at cell (l ,m 2), element at cell (m j, 1) and element 777.3 ce^ (m o>m o)- The second
im portant aspect is that, by applying certain index interchanges, we can derive additional integer

(A; 2)points of Pj ’. By hypothesis, all these points satisfy the equality ax = ao.
We first prove the existence of point x q . Given th a t P^k’2 ̂ 0, a certain point x'Q can be assumed

to have the general form shown at Table 7.9. Consider the point:

x 0 = x i(m j ^ l?777o «-+ 1)3(t^o ^ 1?mo 1)4 • • • (^0 ^ l ?m o !)fc

and observe th a t it has exactly the form of Table 7.8.

Let us now present the steps of the induction.

C ase 7.18.1 All indices are equal to 1.

Equation (7.33) becomes a tautology.

C ase 7.18.2 One or two of the indices is different from 1.

CHAPTER 7. Multidimensional Assignment Problems 190

Table 7 .10 : Point X2 (Theorem 7 .17 , Case 7 .18.3)
1

N
O

1 7 7 2 0 1 . . . 1

m 0 7722 • • • 7 7 2 * - 2 7 7 2 2 _ 1 7722 777,3 • • • 777,3 _ 2 7 7 2 3 _ 1 777,3

W.l.o.g., forrriQ,mQ ^ 1 , assume the cases of aTn̂ 1 n and amim21..1, respectively, all other cases
being symmetrical. Equation (7 .33) can be proved by substitution.

C ase 7 .1 8 .3 Exactly three of the indices are different from 1 .

W.l.o.g., /o r rag, rag, mg ^ 1 , assume the case of amim2m3lifl, all other cases being symmetrical.
Equation (7.33) can be written as:

(7 .37)

Assume point x\ = x q .

At point x \, equation (7 .34) ^ written as:

a l l . . . l “I" “I” a lm §m f.. .m f "b "b

...mf "b ^ m o l " b omol-.l <̂»Tiomom 3’"m3

"b "b ® lm §l. . l "b "b

a m o l l . . l "b a molm|. . .m3 "b "b a,mQmQm\.. .m^ (7 .38)

Consider the elements 7723,777,3. Ao£e that, since pair (1, 1) appears already at cell (1 , 1) for the
pair of Latin squares L \, L2, at most one 0/7713,777,3 can be equal to 1 . Assume w.l.o.g. that 777,3 7̂ 1 -
7/777,3 = 1, it must be that 777,3 7̂ 1 anc ̂ iye can simply interchange the roles of sets M3, M4.

Derive the point X2 = x \{ \ <-» 7720)3, illustrated at Table 7 .1 0 .

A t point Xi, equation (7 .34) *5 written as:

a l lm g l . . l + a llm3...mJ + a lmgm?.. .mf + a l m X - m 2 +

"b "b ®mQm§mol..l ~b a mJmQm3.,.mJ

"b ...m£ "b a lm§m^l..l "b a lm §m |.. .m £ *b

^m olm ol- . l b- b~ <2m i)7Tl2m3 m fc *b <2m i m 2m3 mfc (7 .39)

Subtracting equation (7.39) from equation (7.38) results in

® l l . . l ^ l l m o l . , 1 b” ® m o 7 T i Q l . . l . 1

7.7. The planar assignment polytopes 191

Table 7.11: Point x \ (Theorem 7.17, Case 7.18.4)
1

N
O

1 m n . . m f j _ 1 l . . . 1 7 7 1 ? . . . 7 7 7 ? 2 7 7 l t 1 7 7 l f

m n 777-2 • • • 777,2 ~ 2 777-2 _ 1 777,2 777-3 • • • 777-^ _ 2 777, 3 _ 1 777,3

or

^rnQmgl.-l 4” 4“ fllmomQl..l

_ a m J 1 ..1 — a l m g l . . l — a l l m g l . . l + a l l . . l

which is equation (7.37).

C ase 7 .18.4 For 3 < r < k, exactly r of the indices are different from 1.
W.l.o.g., for m o,ra0, . .. ,m rQ ^ 1, assume the case o / a mim2 mr! 1; all other cases being symmet

rical. Equation (7.33) can be written as:

a m j 7n g m g l . . l = a m ^ m g l . . l + a m i l m g l . . l + ••• +

— (r — 2) • + a i m g i . . i + ••• + a i . . i m | ; i . . i)

+ (’-_- l) ± _-2 j 0 l l (7.40)

This case represents the actual step of the induction. Let us assume that equation (7.33) holds
for all coefficients having exactly r — 1 indices different from 1, therefore being true for coefficients

a m'0m l . . . m r0- 1 i.. i> a im § m 3 . .m n . . i . OmJimg..m5i..i- Equation (7.33) must also hold by hypothesis for
all coefficients having exactly r — 2 indices different from 1, including coefficients flmi n mi„mrliil,
a imgim^..m5i..i) a iimgmg..m5i.. i• The same being true for coefficients with exactly r — 3 indices dif
ferent from 1, coefficient aUm3 j satisfies equation (7.33).

By substituting terms, it can be proved that the following equation is identical to (7-40).

a m*m%...m£ 1..1 = 1..1 "P a lm lm % ..m r l . . l +

a'mollmo..mol..l ®lmolmo..mol..l a llmQmQ..mQl..l

+ a i l m g . . m 5 - 1 l . . l (7 -4 1)

Assume point x \ = rco(l 777,0)3...(1 mQ- 1)3, depicted at Table 7.11.

A t point x \ , equation (7.34) is written as:

a i lm 3 . .m 5 -1l . . l + a l l + a l m gm ^„m 2fc +

= G l l m f - m * + a l l m 3. . . m £ + a l 7n g m § . . m ; ; - 1 l . . l + a l m g m f . . . m * +

amilm3..mS_1l..l + (7.42)

Consider again the elements m ^ ,m ^+1. Note that, since pair (1,1) appears already at cell (1,1)

CHAPTER 7. Multidimensional Assignment Problems 192

Table 7.12: Point X2 (Theorem 7.17, Case 7.18.4)
1 mg

1 m ^..m (A . . . 1 mi • ■ • rnk~2m k~l m k

m l m 2 . . . m k~2m k~1m k raj* . . . m k~2m k~l m k

for the corresponding pair o f Latin squares (i.e. L r- 2 , L r - i) , at most one of can be equal
to 1. Assume w.l.o.g. that m 3 ^ 1. I f m 3 = 1, then certainly m ^+1 7̂ 1 and we can interchange the
roles of sets M r ,M r+\.

Derive point X2 = £ i(l Tng)r , illustrated at Table 7.12.
A t point X2 , equation (7.34) ^ written as:

® l l m Q . . m Q l . . l " b 4 * O i m 2 m 3 m fc + U i m 2 m 3 _ m k +

. . .m i "h 4” ®mgmQmg..m51 . ,l "b ...m*

= a llrnf.- .mf + "h a l " b

®mQlmQ..mol..l "b ,̂rnQlm^...m^ d" n m i m 2m3_ _m fc + 0,m i m 2m3__ m fc (7.43)

Subtracting equation (7.43) from equation (7.42) results in

a llm g..m 5_1l . . l — a llmg..mj;i .. l + a,m£mgmg..mS~11..1 — a mimgmg..mS 1..1

= a lmgmg..mo- 1 l . . l ~ a lm§mg..m51 .,l + a m£lmg..m£_11..1 ~ a m£lmg..m|;i. .l

which is equation (7-41) •

Up to this point, equation (7.33) and its equivalence, equation (7.31), have been proved. Equation
(7.32) can be proved by considering an arbitrary point x E P jk,2\ which is assumed to be non-empty.
Substituting this point in the minimum equality system of and summing over all equations,
weighted by the corresponding scalars A, results in equation (7.32). ■

As in the case of p (k>1̂ (Propositions (7.10) and (7.11)), it can be shown that, for n > max{5, k —
1} and p (k'2 ̂ zfz 05 the inequalities x c > 0 define facets of P jk,2\ whereas inequalities x c < 1 are
redundant. The proofs are analogous. Evidently, constraints (7.1) define improper faces of P jk,2K

7.8 Constraint Programming formulations

This section examines the application of Constraint Programming (CP) methods for modelling mul
tidimensional assignment problems. It also proposes algorithms integrating CP and IP for solving
the (k ,s)A P n , by generalising the approach exhibited in Chapter 6.

It is expected th a t CP models will be more compact. It is also natural to exclusively incorporate
the all-different predicate. Starting from the simplest case of (2,1)A P n) it is easy to see that the
CP formulation is:

all-different(Xi : i = 0, ...,n — 1),

D x = {0, ...,n - 1}

(7.44)

7.8. Constraint Programming formulations 193

Hence, the above formulation provides n pairs (z, X i), i = 0,..., n — 1. In other words, Xij = 1 if and
only if X i = j (see also [53], [89]).

Concerning the (3, l)A P n , recall that a solution to this problem is a set of n disjoint triples.
Hence, define variables X } , X f and the auxilliary variable Z\. We wish to form n triples (z, X f , X f) ,
for i = 0 ,..., n — 1. Variables X f must be pairwise different and the same must hold for variables X f .
The formulation is the following:

all-different(Xf : z = 0 ,. . . ,n — 1)

alLdifferent(X f : z = 0,..., n — 1)

D x = {0, ...,n — 1}

Notice again th a t Xijk = 1 if and only if X* = j and X f = k.

Generalising this approach, the formulation of (k , l)^4Pn is the following:

alLdifferent(X f : z = 0, ...,n — l),fo r p = 1,..., k — 1

D x = {0 , ...,n - 1}

This is a formulation involving (k — 1) • n variables and (k — 1) all-different constraints. The
variable of the IP model is 1 if and only if X ^ i = m 2, ..., X ^ 1 = m k.

The constraints for the Latin square problem ((3,2)i4Pn) and for the OLS problem ((4 ,2)AP n)
have already been given in Section 5.3.1, while the CP formulation for a triple of MOLS ((5,2)A P n)
was presented in Section 6.5.1. We examine the generalisation of this formulation to the problem of
finding k — 2 MOLS ((k , 2)A P n), where k < n + 1 (Proposition 7.8). The formulation for the 3-MOLS
problem was presented in Section 6.5.1. Let variables X f j , p = 1,..., A: — 2 denote the contents of
the p th Latin square. Let also variables ZfJ, q, r = 1 , . . . ,n ,q < r, enforce the orthogonality between
any of the Q) pairs (q, r) of Latin squares, by imposing th a t = X \- + n • Xf-. Variables Xf-
and Zfj have domains of cardinality n and n 2, respectively. All-different constraints are required to
ensure th a t (a) cells in each row and column of all squares contain pairwise different values and (b)
all ordered pairs of values appear exactly once in any pair of Latin squares (i.e. all Zfff variables are
pairwise different, for a certain pair (L q,L r) of Latin squares. The CP formulation is the following:

all-different (Xf j : i = 0 , ...,n — 1), for j = 0 ,..., n — 1, p = l , . . . , k — 2

alLdifferent(Xfj : j = 0, ...,n — 1), for z = 0,..., n — 1, p = l , . . . ,k — 2

all-different(Zfj : z, j = 0, ...,n — 1), for <7, r = 1,.., k — s, q < r (7-45)

z ij = x ij + n ' X f j , for i , j , = 0,..., n — 1, q ,r = l,..,fc - 2,q < r

D x = {0, ...,n — 1}, D z = {0, ...,n 2 — 1}

This is a model involving (k — 1) • n 2 variables and (2) (1 + n 2) +2- (k — 2) -n constraints. Notice
th a t the number of indices for each variable is 2, i.e. equal to param eter s, and th a t the number of
X variables is A: — 2, i.e. k — s.

Hence, for s > 2, k — s < n — 1 (Proposition 7.8), the CP formulation requires (k — s) n-ary
variables with s indices, i.e. variables X ^ mS, p = 1, . . . ,k — s , and m l G {0, ...,n — 1} for z = 1,
It also requires (™) auxilliary variables again with s indices and domains of cardinality n s , in order to

1 s
enforce the “hyper-orthogonality” constraints among the X variables. These are variables Z ^ 1.. mS,

CHAPTER 7. Multidimensional Assignment Problems 194

where p 1 < ... < ps and pl € {l,...,fc — s} for i = 1 , ...,p. The CP formulation for (k ,s)A P n is the
following:

alLdifferent(X^ll mS : m 1 = 0,..., n — 1), for m 2, ..., m s = 0 ,..., n — 1, p = 1,..., k — s

alLdifferent(X^ll ma : m s = 0, ...,n — 1), for m 1, ..., m s~l = 0 ,..., n — 1, p = 1,..., A; — s

alLdifferent(' [pmB : m 1, ...ms = 0, ...,n - 1), for p 1, ...,ps = 1,.., fc - s, p 1 < ... < ps(7.46)

m 1, m '" 1 = 0, . . , 71 - 1, p 1 < ... < pS
i = 1

-Dx = {0, ...,n - 1}, D z = {0, ...,7is - 1}

These formulations can be used to solve the (k , s)APn via CP methods. The central procedure
to be applied is the algorithm of [77], which achieves generalised arc-consistency for alLdifferent
constraints. Recall th a t this algorithm runs in 0 (p 2d2) steps for p variables with domains of cardi
nality a t most d. For an alLdifferent constraint on the Z variables in (7.46), this algorithm requires
0 ((n s)2 • (tis)2) = 0 (n 4s) steps.

Algorithms integrating CP and IP are easy to design. First, recall algorithm CPI of Chapter 6,
i.e. an algorithm incorporating IP within a CP search tree. This scheme is naturally generalised for
the (k , s)A P n . The main principle is to assign values to subsets of variables with CP and periodically
call IP in order to (a) derive a tighter bound on the objective function or (b) prove infeasibility or
(c) extend a partial CP assignment to a complete one.

For an extension of algorithm IPC (Chapter 6), one would have to incorporate CP techniques
to preprocess each subproblem of the IP search tree. Observe that each constraint set of (k ,s)A P n
can be associated to an alLdifferent constraint. As an example, consider one of the constraint sets
of the OLS problem:

, 7712 = 0, ...,77. - 1} = 1, for m 3,77l4 = 0, ...,77 - 1

The alLdifferent constraint associated to this constraint set is

alLdifferent{Wmim 2 : m 1 ,m 2 = 0, ...,ti — 1}

D w = {0, • •., 7i2 — 1}

where each value of D w has an 1 — 1 correspondence to each ordered pair (m 3,m 4). Hence, two
indices are retained explicitly in the CP variables, while the remaining two indices are incorporated
in the domain. If constraint propagation implies that (7n3,77i4) ^ D w mim2 then variable xmim2Tn3m4
of the IP model must be set to 0. Note that, by symmetry, an equivalent constraint would be:

alLdifferent{Wm2 mi : m 3,m 4 = 0, ...,ti — 1}

D w = {0, • • •, 7i2 — 1}

where each value of D w would have an 1 — 1 correspondence to each ordered pair (rn1,7n2).

7.9. Concluding remarks 195

For the (k , s) A P n consider, without loss of generality, the constraint set:

i m 2 , . . m fc : m 1 G M 1,.. . ,m k~s~1 £ M k~s~ l , m k~s £ M k_s} = 1

for all m k~s+1 £ M k- s+i ,m k~s+2 £ M k -s+2 , •••, m k £ M k

There are s indices left “free” , i.e. outside the sum, and k — s used for the summation. An
associated alLdifferent constraint should incorporate all indices either in the variables or in their
domains, exactly as for the OLS problem. The constraint is as follows:

alLdifferent{Wmi...rnk-3 : m 1, ... ,m k~s = 0, ...,n — 1} (7.47)

D w = {0, ... ,n s — 1}

if k — s < s, i.e. s > and

alLdifferent{WTnk-s+i...rnk : m k~s+1, ... ,m k = 0, ...,n — 1} (7-48)

D w = {

if s < | . The reason we have to distinguish between these two cases is th a t an alLdifferent is feasible
only if the number of variables is less than or equal to the cardinality of the domains (Remark 5.2 .
Notice for example that, for s < constraint (7.47) is infeasible.

7.9 Concluding remarks

This chapter introduced IP and CP models for general assignment problems. The IP model estab
lishes a framework for unifying the polyhedral analysis of all assignment polytopes belonging to this
class. In particular, the dimension of the linear relaxation of all members of this class is derived. A
hierarchy among assignment polytopes is naturally imposed. Focusing on the classes of axial and
planar assignment polytopes, it has been proved th a t their dimension equals a sum of terms from
Newton’s polynomial. The potential of this unified approach is dem onstrated by identifying a family
of clique facets for all axial assignment polytopes, for k > 3. We also proposed CP models, which
can be linked to the IP ones within a framework integrating CP and IP.

CHAPTER 7. Multidimensional Assignment Problems 196

List of Figures

2.1 The antiweb AW(8,3) ... 18
2.2 The antiweb A (c ,d) .. 19
2.3 A wheel of size 7 ... 20
2.4 The nodes of a lifted wheel inequality .. 28
2.5 A 5-wheel with triple sets on the s p o k e s .. 30
2.6 A 9-cycle of type I .. 32
2.7 A 9-cycle of type II, (m = 3) ... 34
2.8 An 11-cycle of type II (m = 4) .. 35
2.9 Nodes of a lifted 9-cycle in e q u a lity .. 37
2.10 The antihole of Case 2 .3 4 .1 ... 39
2.11 The antihole of Case 2 .3 4 .5 ... 40
2.12 The antihole of Case 2 .3 4 .6 ... 41
2.13 The antihole of Prop. 2 .3 5 ... 42

3.1 The m atrix A for n = 2 .. 45
3.2 The upper triangular m atrix for n = 2 .. 48
3.3 A solution violating (3.31) for n = 6... 60
3.4 A solution violating (3.31) for n o d d .. 60
3.5 A solution violating (3.31) for n = 7 .. 61

4.1 An example of the branching m echanism .. 105

5.1 An example of arc-consistency.. 127
5.2 Second step in achieving arc-consistency.. 127
5.3 Arc consistent s u b g ra p h .. 127
5.4 An example of a BT search t r e e ... 130
5.5 The search tree for FC .. 132
5.6 The BJ s c h e m e .. 134

7.1 A hierarchy of assignment problems ... 178

197

LIST OF FIGURES 198

List of Tables

1.1 A pair of OLS of order 4 .. 1
1.2 The multiplication table of (Z±, +) .. 2
1.3 Isotopic and isomorphic squares of L\ ... 4
1.4 A pair of incomplete OLS of order 2 ... 10

2.1 Odd cycle for m odd and m e v e n ... 34
2.2 Odd cycle of G a , m odd .. 35

3.1 Linearly dependent rows removed at Step I .. 46
3.2 Linearly dependent rows removed at Steps I - I I .. 46
3.3 Linearly dependent rows removed at Steps I - I I I .. 47
3.4 Linearly dependent rows removed at Steps I - I V .. 47
3.5 Linearly dependent rows removed at Steps I - V .. 47
3.6 Point x q ... 50
3.7 An arbitrary point x E Pj (Lemma 3 . 4) .. 50
3.8 Point x Proposition 3 . 6) ... 51
3.9 Point x' (Proposition 3 . 6) .. 52
3.10 Point x (Proposition 3.6) 52
3.11 Point x' Proposition 3 .6) .. 52
3.12 Point ^ (T h eo rem 3 .5) ... 54
3.13 Point X3 (Theorem 3 .5) ... 55
3.14 Point x (Lemma 3 .2 4) ... 67
3.15 Point x (Lemma 3 .2 4) ... 67
3.16 Point x (Lemma 3 .2 5) ... 69
3.17 Point x (Step 1) ... 71
3.18 Point x (Step 2) ... 71
3.19 Point x (Step 4) ... 73
3.20 Point x t a b l e ... 73
3.21 Rectangle R 1 ... 78
3.22 Rectangle R 2 ... 79
3.23 Rectangle R1 & R2 for m =5 79
3.24 Rectangle R1 for Case 3.29.1, k o d d ... 80
3.25 Rectangle R1 for Case 3.29.1, k e v e n ... 80
3.26 Rectangle R1 for m =5 for Case 3.29.1, k odd & even resp.. 80
3.27 Rectangle R1 for Case 3.29.2, j o d d .. 81
3.28 Rectangle R1 for Case 3.29.2, j e v e n .. 81

199

LIST OF TABLES 200

3.29 Rectangle R1 for m =5 for Case 3.29.2, j odd & even resp.. 81
3.30 Rectangle R1 for Case 3.29.3, i o d d .. 82
3.31 Rectangle R1 for Case 3.29.3, i e v e n .. 82
3.32 Rectangle R1 for m =5 for Case 3.29.3, i odd & even resp.. 83
3.33 Remaining cases to be e x a m in e d ... 83
3.34 Rectangle R1 for Case 3 .2 9 .4 .. 84
3.35 Rectangle R1 for m =5, Case 3 .2 9 .4 ... 84
3.36 Rectangle R1 for Case 3.29.5, k=m +2,...,n 84
3.37 Rectangle R1 for Case 3.29.5, k = 4 .. 85
3.38 Rectangle R1 for Case 3.29.7, k=m +2,...,n 85
3.39 Rectangle R1 for Case 3.29.7, k = 3 .. 86
3.40 Rectangle R1 for Case 3.29.7, k=m +2,...,n 86
3.41 Rectangle R1 not belonging to Q .. 86
3.42 Rectangle R2 belonging to Q .. 87

4.1 A pair of OLS of order 4 .. 91
4.2 Variable fixing and domain red u ctio n ... 94
4.3 The two Latin squares of order 2 ... 94
4.4 Dual values for a reduced Latin square of order 2 .. 95
4.5 A Latin square of order 6, belonging to the second main c l a s s .. 96
4.6 Dual values for a reduced Latin square of main class 2 ... 98
4.7 Counting the number of values removed from square Y .. 103
4.8 A pair of OLS after preliminary variable f i x i n g ... 105
4.9 Allowed values at the first row ... 105
4.10 Results for LP-solving a lg o rith m s.. I l l
4.11 Results for the branching s tra teg ie s ... 112
4.12 The impact of a random objective f u n c t io n .. 112
4.13 Results for preprocessing.. 113
4.14 Branch &; Cut with a single family of cutting p l a n e s ... 114
4.15 Number of nodes when a single family of cutting planes is u s e d 115
4.16 Cuts added per n o d e ... 115
4.17 Branch & Cut with different orders of s e p a ra t io n .. 115
4.18 Strategies for cut a d d it io n ... 117
4.19 Results for three cut s t r a te g ie s ... 117
4.20 Improvements over simple Branch & B o u n d .. 117

5.1 Formula for OLS of order 2 .. 123
5.2 Methods for constraint p ropagation .. 142
5.3 Counting the number of reduced Latin s q u a r e s .. 143
5.4 Comparing branching rules for the BT a lg o r ith m .. 143
5.5 Comparing branching rules for the FC a lg o r i th m .. 144
5.6 Comparing propagation p rocedures.. 144
5.7 Frequency of filtering ... 145

6.1 Results for algorithm I P C ... 156
6.2 Results for algorithm C P I ... 157

LIST OF TABLES 201

6.3 Comparative results for C P /IP a lg o rith m s... 158
6.4 Percentage of infeasible nodes pruned .. 158
6.5 Identifying triples of MOLS of order n .. 163
6.6 Examining the role of parameter t .. 163
6.7 Estim ating the average elapsed time for an instance of n = 1 0 ... 164

7.1 Examples of assignment s t r u c tu r e s .. 167
7.2 176
7.3 Known values of d im P jk,s^.. 176
7.4 Point x \ (Proposition 7 . 1 8) .. 187
7.5 Point X2 (Proposition 7 . 1 8) .. 187
7.6 Point £3 (Proposition 7 . 1 8) .. 187
7.7 Point £4 (Proposition 7 . 1 8) .. 188
7.8 Point £q (Theorem 7 .1 7) ... 189
7.9 Point x'Q (Theorem 7 .1 7) ... 189
7.10 Point £2 (Theorem 7.17, Case 7 .18.3).. 190
7.11 Point £1 (Theorem 7.17, Case 7 .18.4).. 191
7.12 Point £2 (Theorem 7.17, Case 7 .18.4).. 192

LIST OF TABLES 202

Bibliography

[1] Appa G., M athematical programming formulations of the orthogonal Latin square problem.
LSEO R Working Paper Series: LSEOR 01.37.

[2] Appa G, Magos D., Mourtos I., Janssen J.C.M. (2001): On the Orthogonal
Latin Squares polytope. Discrete Mathematics, accepted subject to revision (URL:
http://www.cdam .lse.ac.uk/Reports/Files/cdam -2001-04.pdf)

[3] Appa G., Magos D., Mourtos I. (2002): On the assignment polytope. Submitted to Mathematical
Programming. (URL: http://www .cdam .lse.ac.uk/Reports/Files/cdam -2002-01.pdf)

[4] Appa G., Mourtos I., Magos D. (2002): Integrating Constraint and Integer Programming for
the Orthogonal Latin Squares Problem. In van Hentenryck P. (ed.), Principles and Practice of
Constraint Programming (CP2002), Lecture Notes in Computer Science 2470, Springer-Verlag,
17-32.

[5] Applegate D., Bixby B., Chvatal V., Cook W. (2001): TSP cuts which do not conform to the
tem plate paradigm. In Jiinger M., Naddef D. (eds.) Computational Combinatorial Optimization,
Lecture Notes in Computer Science 2241, Springer Verlag, 261-304.

[6] Atamtiirk A., Nemhauser G.L., Savelsbergh M.W.P. (2000): Conflict graphs in solving integer
programming problems. European Journal o f Operational Research 121, 40-55.

[7] Balas E. (1965): An additive algorithm for solving linear programs with zero-one variables.
Operations Research 13, 517-546.

[8] Balas E., Padberg M. (1976): Set partitioning: a survey. SIA M Rev. 18, 710-760.

[9] Balas E., Saltzman M.J. (1989): Facets of the three-index assignment polytope. Discrete Applied
Mathematics 23, 201-229.

[10] Balas E., Qi L. (1993): Linear-time separation algorithms for the three-index assignment poly
tope. Discrete Applied Mathematics 43, 201-209.

[11] Balas E. and Saltzman M.J. (1991): An algorithm for the three-index assignment problem.
Operations Research 39, 150-161.

[12] Bandelt H.J., Crama Y. and Spieksma C.R. (1994): Approximation algorithms for multi
dimensional assignment problems with decomposable costs. Discrete Applied Mathematics 49,
25-50.

[13] Beale E.M.L., Forrest J.J.H . (1976): Global optimization using special ordered sets. Mathemat
ical Programming 10, 52-69.

203

http://www.cdam.lse.ac.uk/Reports/Files/cdam-2001-04.pdf
http://www.cdam.lse.ac.uk/Reports/Files/cdam-2002-01.pdf

BIBLIOGRAPHY 204

[14] Bessiere C., Freuder E.C., Regin J.C. (1999): Using constraint meta-knowledge to reduce arc-
consistency computation. Artificial Intelligence 107, 125-148.

[15] Blair C., Jeroslow R.G., Lowe J.K. (1988): Some results and experiments in programming tech
niques for propositional logic. Computers and Operations Research 13, 633-645.

[16] Bockmayr A., Casper T. (1998): Branch and infer: a unifying framework for integer and finite
domain constraint programming. INFORM S Journal on Computing 10, 187-200.

[17] Bollobas B. (2002): Modem Graph Theory. Springer

[18] Borndorfer R. (1998): Aspects of Set Packing, Partitioning and Covering. PhD thesis, TU
Berlin.

[19] Bose R.C., Shrikhande S.S. (1960): On the construction of sets of mutually orthogonal Latin
squares and the falsity of a conjecture of Euler. Transactions o f the American Mathematics
Society 93, 191-209.

[20] Bose R.C., Shrikhande S.S., Parker T.E. (1960): Further results on the construction of sets of
mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canadian Journal of
Mathematics 12, 189-203.

[21] Burkard R.E., Rudolf R., Woeginger G.J. (1996): Three-dimensional assignment problems with
decomposable cost coefficients. Discrete Applied Mathematics 65, 123-139.

[22] Burkard R.E., Qela E. (1999): Linear Assignment problems and Extentions. In Pardalos P., Du
D.Z. (eds.), Handbook o f Combinatorial Optimization, Kluwer Academic Publishers.

[23] Chandru V., Hooker J.N. (1999): Optimization methods fo r logical inference. J.Wiley (NY).

[24] Christof T., Loebel A. (1997), The PORTA software, University of Heidelberg.

[25] Chvatal V. (1973): Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics 4, 305-337

[26] Chvatal V. (1975): On certain polytopes associated w ith graphs. Journal of Combinatorial
Theory Series B 13, 138-154.

[27] Cook W., Coullard C.R., Turan G. (1975): On the complexity of cutting plane proofs. Discrete
Applied Mathematics 18, 25-38.

[28] Cooper M.C. (1989): An optimal k-consistency algorithm. Artificial Intelligence 41, 89-95

[29] Dantzig G.B. (1963): Linear programming and extensions. Princeton University Press.

[30] Darby-Dowman K., Little J., M itra G., Zaffalon M. (1997): Constrain logic programming and
integer programming approaches and their collaboration in solving an assignment scheduling
problem. Constraints 1, 245-264.

[31] Dash Associates (2001): XPRESS-M P Optimiser Subroutine Library XOSL Version 12, Refer
ence Manual.

[32] Davis M., P utnam H. (1960): A computing procedure for quantification theory. Journal of the
AC M 7, 201-215.

BIBLIOGRAPHY 205

[33] Dechter R. (1990): Enhancement schemes for constraint processing: backjumping, learning and
cutset decomposition. Artificial Intelligence 41, 273-312.

[34] Denes J., Keedwell A.D. (1974): Latin Squares and their applications. Academic Press, North
Holland.

[35] Denes J., Keedwell A.D. (1991): Latin Squares: New developments in the Theory and Applica
tions. North-Holland.

[36] Euler L. (1849): Recherches sur une nouvelle espece de quarres magiques, Memoire de la Societe
de Flessingue. Commentationes arithmetice collectae 2 (eloge St. Petersburg 1783), 302-361.

[37] Euler R., Burkard R.E., Grommes R. (1986): On latin squares and the facial structure of related
polytopes. Discrete Mathematics 62, 155-181.

[38] Euler R. (1987): Odd cycles and a class of facets of the axial 3-index assignment polytope.
Zastosowania Matematyki XIX(3-4), 375-386.

[39] Euler R., Le Verge H. (1996): Time-tables, polyhedra and the greedy algorithm. Discrete Applied
Mathematics 65, 207-221.

[40] Freuder E.C., Wallace R .J., editors, (1998): Constraint Programming and Large Scale Discrete
Optimization. DIM A C S Series in Discrete Mathematics and Theoretical Computer Science 57,
American Mathematics Society.

[41] Frieze A.M. (1974): A Bilinear programming formulation of the 3-dimensional assignment prob
lem. Mathematical Programming 7, 376-379.

[42] Frieze A.M., Yadegar J. (1981): An algorithm for solving 3-dimensional assignment problems
with application to scheduling a teaching practice. Journal o f the Operational Research Society
32, 989-995.

[43] Frieze A.M. (1983): Complexity of a 3-dimensional assignment problem. Journal o f the Opera
tional Research Society 13, 161-164.

[44] Gomes C., Shmoys D. (2002): The Promise of LP to Boost CSP Techniques for Combinatorial
Problems. CP-AI-O R’02, 291-305, Le Croisic, France.

[45] Gomory R.E. (1960): Faces of an Integer Polyhedron. Proceedings of the National Academy of
Science 57, 16-18

[46] Grossmann I.E., Hooker J.N., Raman R., Yan H. (1997): Logic cuts for processing networks
with fixed charges. Computers and Operations Research 21, 265-279.

[47] Grotschel M., Padberg M.W. (1985): Polyhedral Theory. In Lawler E.L., Lenstra J.K ., Rinnooy
Kan A.H.G., Shmoys D.B. (eds.) The Traveling Salesman Problem: a guided tour of combina
torial optimization, 251-305, J.Wiley & Sons.

[48] Haley K.B. (1963): The multi-index problem. Operations Research 11, 368-379.

[49] Van Hentenryck P., Deville Y., Teng C.M. (1992): A generic arc-consistency algorithm and its
specialisations. Artificial Intelligence 57, 291-321.

BIBLIOGRAPHY 206

[50] Hoffman K.L., Padberg M. (1993): Solving airline crew scheduling problems by branch-and-cut.
Management Science 39, 657-682.

[51] Hooker J.N. (1992): Generalised resolution for 0-1 linear inequalities. Annals of Mathematics
and Artificial Intelligence 6, 271-286.

[52] Hooker J.N., Osorio M.A. (1999): Mixed logical/linear programming. Discrete Applied Mathe
matics 96-97, 395-442.

[53] Hooker J.N. (2000): Logic-Based Methods for Optimization: Combining Optimization and Con
straint Satisfaction. J. Wiley (NY).

[54] Jeroslow R.E. (1987): Representability in mixed integer programming, I: Characterization re
sults. Discrete Applied Mathematics 17, 223-243.

[55] Karp R.M. (1972): Reducibility among combinatorial problems. In Miller R.E., Thatcher J.W.
(eds.), Complexity o f Computer Computations, 85-103, Plenum Press, NY.

[56] Kondrak G., van Beek P. (1997): A theoretical evaluation of selected backtracking algorithms.
Artificial Intelligence 89, 365-387.

[57] Kumar V. (1992): Algorithms for Constraint Satisfaction Problems: a Survey. Artificial Intel
ligence 13, 32-44.

[58] Lam C.W.H. (1991): The Search for a Finite Projective Plane of Order 10. Amer. Math. Monthly
98, 305-318.

[59] Land A.H., Doig A.G. (1960): An automatic method for solving discrete programming problems.
Econometrica 28, 497-520.

[60] Laywine C.F., Mullen G.L. (1998), Discrete Mathematics using latin squares. J.Wiley &; Sons.

[61] Little J.D .C., Murty K.G., Sweeney D.W., Karel C. (1963): An algorithm for the traveling
salesman problem. Operations Research 11, 972-989.

[62] Magos D. (1993): Solution Methods for Three-Dimensional Assignment Problems. Ph. D. Thesis,
Athens School of Economics and Business.

[63] Magos D., Miliotis P. (1994): An algorithm for the planar three-index assignment problem.
European Journal of Operational Research 77 141-153.

[64] Martello S., Toth P. (1987): Linear assignment problems. Annals o f Discrete Mathematics 31,
259-282.

[65] Milano M., van Hoeve W .J. (2002): Reduced cost-based ranking for generating promising
subproblems. In van Hentenryck P. (ed.), Principles and Practice of Constraint Programming
(CP2002), Lecture Notes in Computer Science 2470, Springer-Verlag, 1-16.

[66] Miliotis P. (1978): Using cutting planes to solve the symmetric travelling salesman problem.
Mathematical Programming 15, 177-188.

[67] Mohr R., Henderson T.C. (1986): Arc and path consistency revisited. Artificial Intelligence 28,
225-233.

BIBLIOGRAPHY 207

[68] Nemhauser G.L., Wolsey L.A. (1988): Integer and Combinatorial Optimization, J.Wiley.

[69] Padberg M.W. (1973): On the facial structure of set packing polyhedra. Mathematical Program
ming 5,199-215.

[70] Pierskalla W.P. (1967): The tri-substitution method for the three-dimensional assignment prob
lem. CORS Journal 5, 71-81.

[71] Pierskalla W.P. (1968): The multidimensional assignment problem. Operations Research 16,
422-431.

[72] Poore A.B. (1994): Multidimensional assignment formulation of data association problems aris
ing from m ultitarget and multisensor tracking. Computational Optimisation and Applications
3, 27-57.

[73] Poore A.B., Robertson A.J. (1997): A new Lagrangian relaxation based algorithm for a class of
multidimensional assignment problems. Computational Optimisation and Applications 8, 129-
150.

[74] Pulleyblank W.R. (1989): Polyhedral Combinatorics. In Nemhauser G.L., Rinnooy Kan A.H.G.,
Todd M.J. (eds.) Optimization, 371-446, North Holland.

[75] Pusztaszeri J.F ., Rensing P.E., Liebling T.M. (1996): Tracking elementary particles near their
primary vertex: a combinatorial approach. Journal o f Global Optimization 9, 41-64.

[76] Qi L., Balas E., Gwan G. (1993): A new class of facet-defining inequalities for the three in
dex assignment polytope. In Dong-Zu Du and Jie Sun (eds.) Advances in Optimization and
Approximation, 256-274, Kluwer Academic Publishers.

[77] Regin J.C . (1994), A filtering algorithm for constraints of difference in CSPs. Proceedings of
National Conference on Artificial Intelligence, 362-367.

[78] Savelsbergh M.W.P. (1994), Preprocessing and Probing for Mixed Integer Programming Prob
lems. ORSA Journal on Computing 6, 445-454.

[79] Spieksma F.C.R. (2000): Multi-index assignment problems: complexity, approximation, appli
cations. In Pitsoulis L., Pardalos P. (eds.), Nonlinear Assignment Problems, Algorithms and
Applications, 1-12, Kluwer Academic Publishers.

[80] Stinson D.R. (1984): A short proof of the non-existence of a pair of orthogonal Latin squares
of order 6. Journal of Combinatorial Theory, series A 36, 373-376.

[81] Tarry G. (1900): Le Probleme de 36 officiers. C. R. Assoc. France Av. S c i 29, P art 2, 170-203.

[82] Trotter L.E. (1975): A class of facet producing graphs for vertex packing polytopes. Discrete
Mathematics 12, 373-388.

[83] Tsang E. (1993): Foundations of Constraint Satisfaction. Academic Press (London).

[84] Tsang E. (1998): No more “Partial” and “Full Looking Ahead” . Artificial Intelligence 98, 351-
361.

BIBLIOGRAPHY 208

[85] Williams H.P. (1976): Fourier-Motzkin elimination extension to integer programming problems.
Journal o f Combinatorial Theory 21, 118-123.

[86] Williams H.P. (1977): Logical problems and integer programming. Bulletin of the Institute of
Mathematics and its Implications 13, 18-20.

[87] Williams H.P. (1995): Logic applied to integer programming and integer programming applied
to logic. European Journal of Operations Research 81, 605-616.

[88] Williams H.P., Wilson, J.M. (1998): Connections between Integer Linear Programming and
C onstraint Logic Programming - An Overview and Introduction to the Cluster of Articles.
INFO RM S Journal on Computing 10 (3), 261-264.

[89] Williams H.P., Yang H. (2001): Representations of the all-different Predicate of Constraint
Satisfaction in Integer Programming. INFORM S Journal on Computing 13, 96-103.

[90] Wilson, J.M. (1990): Compact Normal Forms in Propositional Logic and Integer Programming
Formulation. Computers and Operations Research 17 (3), 309-314 .

[91] Wright S.J. (1997): Primal-dual interior-point methods. Society for Industrial and Applicable
M athematics (SIAM).

[92] Yan H., Hooker J.N. (1999): Tight representation of logical constraints as cardinality rules.
Mathematical Programming 85, 363-377.

[93] Zhang H., Hsiang J. (1994): Solving open quasigroup problems by propositional reasoning.
Proceedings o f International Computer Symposium , Hsinchu, Taiwan.

