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Abstract

We investigate higher order asymptotic theory in nonparametric time series analysis.
The aim of these techniques is to approximate the finite sample distribution of estimates
and test statistics. This is specially relevant for smoothed nonparametric estimates in
the presence of autocorrelation, which have slow rates of convergence so that inference

rules based on first-order asymptotic approximations may not be very precise.

First we review the literature on autocorrelation-robust inference and higher order
asymptotics in time series. We evaluate the effect of the nonparametric estimation of
the variance in the studentization of least squares estimates in linear regression models
by means of asymptotic expansions. Then, we obtain an Edgeworth expansion for the
distribution of nonparametric estimates of the spectral density and studentized sample
mean. Only local smoothness conditions on the spectrum of the time series are assumed,
so long range dependence behaviour in the series is allowed at remote frequencies, not

necessary only at zero frequency but at possible cyclical and seasonal ones.

The nonparametric methods described rely on a bandwidth or smoothing number.
We propose a cross-validation algorithm for the choice of the optimal bandwidth, in a
mean square sense, at a single point without restrictions on the spectral density at other

frequencies.

Then, we focus on the performance of the spectral density estimates around a singu-
larity due to long range dependence and we obtain their asymptotic distribution in the
Gaussian case. Semiparametric inference procedures about the long memory parameter
based on these nonparametric estimates are justiﬁéd under mild conditions on the dis-
tribution of the observed time series. Using a fixed average of periodogram ordinates,
we also prove the consistency of the log-periodogram regression estimate of the memory

parameter for linear but non-Gaussian time series.
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Chapter 1

Introduction

1.1 Autocorrelation-robust inference

The main feature of time series data is their dependence across time. Accounting for se-
rial dependence can considerably complicate statistical inference. The attempt to model
the dependence parametrically, or even nonparametrically, can be difficult and computa-

tionally expensive.

In some circumstances, the serial dependence is merely a nuisance feature, interest
focusing on ”static” aspects. Here we can frequently base inference on point or func-
tion estimates that are natural ones to use in case of independence, and may well be
optimal in that case. Such estimates will generally be less efficient than ones based on
a comprehensive model that incorporates the serial dependence. But apart from their
relative computational simplicity, they often remain consistent even in the presence of
certain forms of dependence, and can be more reliable or "robust” than the ”efficient”
ones, which can sometimes become inconsistent when the dependence is inappropriately

dealt with, leading to statistical inferences that are invalid, even asymptotically.

Exact finite-sample distributions of estimates and test statistics are only available for
simple functions of the data and when the likelihood function is completely specified.
Then, we have to rely on approximations to the sampling distributions, based typically
on the central limit theorem. Asymptotic or large-sample theory is relatively simple to

use, and also relies on milder assumptions than finite-sample theory, and can thus be



more widely applied, at least given data sets of reasonable size. In the asymptotics for
time series, a very important role is played by the stationarity assumption, and indeed
by further restrictions on the dependence of a (possibly unobservable) process associated

with the data or the statistical model.

Valid inference based on an asymptotically normal statistic requires only a consistent
estimate of the variance matrix in the limiting distribution. Then the statistic can be
studentized, consistent confidence regions set, and asymptotically valid hypothesis tests
carried out. Usually the variance is affected by the dependence, and requires a different,
and more complicated, type of estimate than that under independence. This can be
based on a parametric model for the autocorrelations. However nonparametric types of

estimate are more popular, being consistent under broader conditions.

Alternate methods related with the bootstrap have been proposed recently for depen-
dent observations (Kiinsch (1989), Politis and Romano (1995), Bertail et al. (1995)). The
bootstrap proposed originally by Efron (1979) does not work in this case, but is possible
to approximate the distribution of the statistic of interest by the empirical distribution
of that statistic calculated from a large number of blocks of consecutive observations.
Connected ideas to those and the jackknife apply as well for estimation of the variance

of different statistics (see Section 1.3).

We now describe three general frameworks were an adaptation for serial dependence
is necessary in the estimation of the asymptotic variance, complicating asymptotic in-
ference. However, there are situations were independence-based rules continue to apply,
like nonparametric probability density and regression functions estimation. For more

examples see Robinson and Velasco (1996).

1.1.1 Sample mean

Let {X;,t=1,2,...} be a real-valued covariance stationary sequence with expectation

p = E[X;], lag-j autocovariance

7(J) = E[(X;: — u)(Xeq5 — 1),
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and spectral density f(A) given by
YG) = / F(X) cos jAdA. (1.1)

The existence of f(A) requires that the autocovariances y(j) must decay to zero fast
enough. A sufficient condition for that is the absolute summability of v(j),
o0
2. )l < 0. (1.2)
j=—o0

The faster y(j) decay to zero, the smoother f(A) will be. Relation (1.1) gives for j =0

10 = [ 2,

a decomposition of the variance of the time series across frequencies. Therefore, the
magnitude of f(A) is a measure of the importance of the frequency A in the variance of

the time series.

Inference on the mean p given observations Xj,...,Xn is typically based on the

sample mean
Y:iix
N 2 ts

which is the ordinary least squares estimate (OLSE) of . With dependent observations
X is no longer a best linear unbiased estimate (BLUE) or maximum likelihood estimate
(if X; is Gaussian) as in the independent case, but it is unbiased and Grenander (1954)
showed that if f()) is continuous and positive at A = 0, X is asymptotically efficient
within the class of linear unbiased estimates, so no differential weighting need to be

considered. Also

N-1 .
val¥l=5 > (1-4)50), (13)

t=1-N
and under various conditions permitting dependence in X, expressed in terms of the

a-mixing numbers or linear process conditions (see Ibragimov and Linnik (1971) and

Hannan (1979)) we can obtain

X—p

W —q N(0,1), as N — oo. (1.4)

These conditions imply that the y(j) decay fast enough to be absolutely summable (c.f.
(1.2)), and thus that f(A) is continuous for all A, so they can be referred to as "weak

11



dependence” conditions. Hence we have from Fejér’s theorem (Zygmund (1977), p. 89)
and also from (1.2)
N Var[X] — 27 f(0), as N — cc.

Therefore, to implement large-sample inference it remains to find an estimate f(O) of

f(0) such that

F(0) =, £(0), as N — oo, (1.5)
for then s (__ )
N X -
o™ . (1)

can be approximated by a M(0,1) variate. Given a parametric model for (j), equiva-
lently for f()), like a stationary autoregression (AR), invertible moving average (MA),
or stationary and invertible autoregressive moving average (ARMA), we can estimate the
unknown parameters, insert them in the formula for f(0), and obtain an N 1/2_consistent
estimate. However, (1.5) requires no rate of convergence, and there has been greater
stress on using nonparametric spectrum estimates which are consistent in the absence of
assumptions on the functional form, though as even the early papers on studentizing the
sample mean of a time series by Jowett (1955) and Hannan (1957) illustrate, the same
estimates of f| (0) can be interpreted as either parametric or nonparametric. We review

the literature about such estimates in Section 1.3.

1.1.2 Linear regression

The simple previous location model extends to the multiple regression
n=ﬂ,Zt+Xt, t=1,2... (1.7)

where X, is, as before, covariance stationary, but it now has zero mean and is unob-
servable, the scalar Y; and ¢-dimensional column vector Z; being observed. Again the

properties of the OLSE
R N “1/N
t=1 t=1
of the vector (3 partially extend from independent to dependent situations. In particular,

Grenander (1954) gave conditions under which B is asymptotically as efficient as the

12



BLUE of 3, in case of nonstochastic Z;. These conditions are satisfied if, for example
Z; is a vector of polynomials of trigonometric functions in ¢ and f(}) is continuous and
positive for all A € (—x,7]. Even when these conditions are not satisfied B is often
consistent and asymptotically normal, whereas a generalized least squares estimate of 3,
obtained under a misspecified parametric model for f(), might be inconsistent. However,
whether or not it is asymptotically efficient, the asymptotic variance of ,3 is not the same

as it would for uncorrelated disturbances X;.

Assume that the matrix of sample correlation coefficients of Z; for both stochastic
and nonstochastic regressors achieve a limit as the sample size increases. Denote this
limit matrix for lag j as R(j) = (ph,:i(j)) and assume that it is positive definite for j =0

and

R(j):/ ¢ G(N),  j=0,%1,...

-7
for some matrix G with Hermitian nonnegative definite increments, continuous from the

right and with G(—7) = 0. G is usually called the spectrum measure of the regressors.

Then, under regularity conditions on the asymptotic behaviour of the regressors, and

on the errors X; similar to those sufficient for (1.4) we can obtain,
D(B - B) —»a N(0,R(0)"*SR(0)™),
where D =diag{Ds,...,D,} with D; = (LN, th)lﬁ, and

S=or /_ : FONAG(A). (1.8)

Because R(0) is consistently estimated by D~'3", Z;Z; D1, it remains to estimate S.

Equivalently, we have the approximation
R N -1 N N -1
B—aN |8, [Z tht'l Va,r[ tht] [E ztzt'] :
t=1 t=1 t=1
where Var[] refers now to the covariance matrix of its argument. Then
N
Var [Z ZtXt] ~DW2SDY2 =T as N 00,

t=1

80 We require an estimate T of T such that
D~YYT —T)D™Y? -, 0.

13



Several nonparametric estimates of T have been proposed in both the time and frequency
domains (see Section 1.3.2). Many of them are also valid for more complicated inference

procedures, specially methods used recently in econometrics reviewed in Section 1.1.3.

The OLSE is a special case (with h = 1) of

N 1N
B(h) = (Z IZ()‘j)h(AJ)) > Izv(A)R(X)), (1.9)
j=1

j=1
where Izy(\) = (27N)(DN, Ze*) (TN, Y;e®*) and h()) is a real, nonnegative func-

tion. For general h,
D (B(h) - B) —a
N (0, [ /_ : h(/\)dG(,\)]—IQW /_ : FOWRINEG(N) [ /_ : h(,\)dG(A)]—l), (1.10)

under regularity conditions. The user-chosen function % can achieve two distinct goals.
One is to reduce bias due to misspecification of (1.7) from errors in the observation of
regressors. Then, we take h(A) = 0 for frequencies where the signal-to-noise ratio is
feared to be low, like can be at high frequencies for white noise errors in the observations
or at seasonal ones when the noise is seasonal. The idea of omission of frequencies was
proposed by Hannan (1963a), and justified theoretically by Hannan and Robinson (1973),
Robinson (1972).

Irrespective of whether or not we eliminate frequencies, there remains the choice of
h at the other frequencies. Hannan (1963b) showed, for a modification of (1.9), that the
data-dependent choice h(A) = f~1(X), with f representing a nonparametric spectrum
estimate, achieves the same asymptotic efficiency as the GLSE using a parametric model
for f(A) and is asymptotically normal distributed. Robinson (1991) showed that this
remains true in case of a general data dependent bandwidth in f, and allowed also for

omission of frequencies.

Samarov (1987) investigated if adapting unknown correlation is necessary when there
is only a small unspecified autocorrelation from the point of view of loss of efficiency with

respect to the OLSE.

One important class of estimates of location and regression models, which generalizes

the OLSE, are M-estimates. These estimates are designed to avoid distortions in finite

14



samples from a few ”outliers”, seemingly contaminated observations that are of much
greater magnitude than are the bulk of the data. Here, parallel, but more involved

results apply. See Robinson and Velasco (1996), Section 4 for more details.

1.1.3 Econometric models

Due to the occurrence of macroeconomic and financial time series data, many econometric
methods are devised with possible serial dependence in mind. In fact relatively early
econometric work stressed the efficiency gains due to the GLSE in regression models in
the presence of autocorrelated errors, see e.g. Cochrane and Orcutt (1949). This interest
has continued, and more recently it has been fashionable to employ point estimates
which may well be inefficient, but studentize them to allow for serial dependence. A
feature of much econometric work is the relative complexity of modelling, often involving
nonlinearity and multivariate data, for example. Some similar models have been used
in non-economic applications but we have chosen to categorize as "econometric models”
ones which are more complicated than the simple location and linear regression models

treated so far.

Many important problems, involving nonlinearities and other complications, are cov-
ered by the model
Ytth(9)+Xt, t= 1,2,... (1.11)

where now Y; and X; are p x 1 vectors and H;(f) is a p X 1 vector of possibly nonlinear
functions of an unknown s x 1 vector €, and of observable stochastic or nonstochastic
explanatory variables to which explicit reference is suppressed. Again X; is unobservable.
The function H;(#) could be linear in the observables,
00
H(6) = w(O)+ Y. A(0)Zcj, (112)
j=—o00

where the Z; are the ¢ X 1 explanatory variables, the A;(@) are p X ¢ matrix functions
of 8, and p(6) is a vector. This includes static linear simultaneous equations models of
econometrics and distributed lag models. Also nonlinear models are covered by (1.11),

like static scalar or multivariate nonlinear regression models.

Suppose first that the processes { H¢(6)} and {X;} are independent of each other and

15



stationary. A minimum-distance or Gaussian estimate of § is given by
R N
0= argmin > 112(A)" {wy (A) ~ wr (i )P,
i=1

where || - || means Euclidean norm, () is a p X p positive definite Hermitian matrix,

and

N N
wy(A) = (2rN)1/2 Z Ve,  wg(A) = (2rN)"/? Z Hy(9)e't,
t=1 t=1

and O is a compact subset of R®. In case (1.12) leads to H including some unobservable

Z3, we can consider instead

N
8= argmin 3 [8(1)"/*{wy (A;) - AQ; Dwz (AP,
J=1

N oo
wz(A) = (2rN)V23" 2™, AN9) = S A(9)eN

t=1
Such estimates were considered by Hannan (1971), Robinson (1972), and cover many

cases. Under regularity conditions given in these references,
NY2(§ — §) -4 N(0, T(®)"1U(8f3)¥(d)?), (1.13)

where

1 9
VO =5 [ g @O L 0

U(® fd) is the same quantity with ®()) replaced by ®(A)f(A)®(A), and F satisfies

E[H(0) Hyy(90)] = [ P dF(N; 00,9))

-

When ¢ = I, f can be neatly written in time domain form, and when p = 1,
NY2(@ - 6) -4 N(0, A"1BA™Y), (1.15)

where A = E[0H.(0)/00 0H,(0)/0¢'], B = 27 f,(0), where f,(A) is the spectral density
matrix of U; = X;0H,(8)/08.

One approach much stressed in the subsequent econometric literature is as follows.

Let a vector parameter satisfy the equation
E[U:(8)] =0, t=1,2,..., (1.16)

16



where the dimension of U; is at least as great as that of # and may also depend on other
unknown parametric and/or nonparametric functions. In particular (1.16) embodies the
econometric model, or the principal part of it. Given a suitable matrix S of the same rank,
and proxies ﬁt(e) for U;(0), involving estimates of any nuisance parameters/functions,
and possibly each depending on all the data, we estimate 6 by

~ N ~ ~ ~ N ~

6 = arg gleig; Ui(9)S8'S ; U (9)

for a compact set ©. Under regularity conditions
NY2(§ - 8) -4 N(0,C~DC™Y), (1.17)

where
oU(8)
09 |’

and f,(A) is the spectral density matrix of Uy(@). The generalized method-of-moments
(GMM) estimates of Hansen (1982) fall into this scheme.

C=SE D = 52r £,(0) S,

1.2 Plan of the Thesis

In this thesis we analyze different aspects of studentization in dependent situations us-
ing nonparametric estimates of the variance. Since nonparametric techniques estimate
in theory an infinite number of (nuisance) parameters, they have typically slower rates
of convergence than parametric ones and poorer small sample properties. Thus, there
is a special concern about how this slow convergence will affect the properties of the
studentized estimates and, therefore, about the merits of the asymptotic normal approx-
imation, which is not affected by the smoothing number employed in the nonparametric
estimation.

We consider the studentization of the sample mean and least squares estimates in a
general linear time series regression model with nonstochastic regressors. We start with

the regression model in Chapter 2 and then we specialize to the sample mean in Chapter 3

under much milder assumptions.

For the sample mean (or for any other simple trigonometric or polynomial in ¢ regres-

sion) only the behaviour of f(A) at a particular frequency is relevant, given the form of

17



the matrix S when dG(A) is a (single) jump function (see equation (1.8)). Therefore, in
these situations it is difficult to justify any condition on the dependence structure of the
time series that implies a global smoothness restriction on the spectrum, like (1.2) or con-
ditions on the mixing coefficients, and the assumptions should concentrate only at that
particular frequency. A minimum requirement across all frequencies is the integrability

of the spectral density in (—, 7], necessary for covariance stationarity.

The analysis of the properties of the nonparametric studentization will be based on
higher order asymptotic properties of the distribution of the studentized estimates. We
justify asymptotic expansions of the Edgeworth type for those statistics under Gaussian
assumptions for X;. The Gaussianity will allow us to express the restrictions on the
dependence of the time series in terms of the autocovariance sequence or in terms of the
spectral density, since all the higher order cumulants are zero. Also, this will enable us to
concentrate on departures from normality due exclusively to the nonparametric variance

estimation.

In the next section of this Introduction we present the topic of nonparametric esti-
mation of the spectral density and of the variance in linear regression and more general
models. Then we review in Section 1.4 the main higher order asymptotic methods, fo-
cusing in time series applications. The literature survey is not intended to be exhaustive,

its aim being just to provide examples of the main developments in each context.

Nonparametric estimation depends heavily on the choice of a smoothing number. This
topic is introduced in next section and elaborated further in Section 1.5. In Chapter 4 of
this thesis we propose a new cross-validatory technique for spectrum bandwidth choice

at a particular frequency, valid assuming only local conditions on the spectral density.

Situations where (1.2) does not hold have also been considered in the literature. In
Section 1.6 we focus on long range dependence time series models for which f(0) = oo
and on semiparametric inference for them. Then, in Chapter 5 we discuss some topics
about the log-periodogram estimate of the memory parameter for long range dependence

time series, extending some previous results available in the literature.
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