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Abstract

We investigate higher order asymptotic theory in nonparametric time series analysis. 

The aim of these techniques is to approximate the finite sample distribution of estimates 

and test statistics. This is specially relevant for smoothed nonparametric estimates in 

the presence of autocorrelation, which have slow rates of convergence so th a t inference 

rules based on first-order asymptotic approximations may not be very precise.

First we review the literature on autocorrelation-robust inference and higher order 

asymptotics in time series. We evaluate the effect of the nonparametric estimation of 

the variance in the studentization of least squares estimates in linear regression models 

by means of asymptotic expansions. Then, we obtain an Edgeworth expansion for the 

distribution of nonparametric estimates of the spectral density and studentized sample 

mean. Only local smoothness conditions on the spectrum of the time series are assumed, 

so long range dependence behaviour in the series is allowed at remote frequencies, not 

necessary only at zero frequency but at possible cyclical and seasonal ones.

The nonparametric methods described rely on a bandwidth or smoothing number. 

We propose a cross-validation algorithm for the choice of the optimal bandwidth, in a 

mean square sense, at a single point without restrictions on the spectral density at other 

frequencies.

Then, we focus on the performance of the spectral density estimates around a singu­

larity due to  long range dependence and we obtain their asymptotic distribution in the 

Gaussian case. Semiparametric inference procedures about the long memory param eter 

based on these nonparametric estimates are justified under mild conditions on the dis­

tribution of the observed time series. Using a fixed average of periodogram ordinates, 

we also prove the consistency of the log-periodogram regression estimate of the memory 

param eter for linear but non-Gaussian time series.
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Chapter 1

Introduction

1.1 Autocorrelation-robust inference

The main feature of time series data is their dependence across time. Accounting for se­

rial dependence can considerably complicate statistical inference. The attem pt to model 

the dependence parametrically, or even nonparametrically, can be difficult and computa­

tionally expensive.

In some circumstances, the serial dependence is merely a nuisance feature, interest 

focusing on ” static” aspects. Here we can frequently base inference on point or func­

tion estimates tha t are natural ones to  use in case of independence, and may well be 

optimal in tha t case. Such estimates will generally be less efficient than ones based on 

a comprehensive model tha t incorporates the serial dependence. But apart from their 

relative computational simplicity, they often remain consistent even in the presence of 

certain forms of dependence, and can be more reliable or ’’robust” than the ’’efficient” 

ones, which can sometimes become inconsistent when the dependence is inappropriately 

dealt with, leading to statistical inferences that are invalid, even asymptotically.

Exact finite-sample distributions of estimates and test statistics are only available for 

simple functions of the data and when the likelihood function is completely specified. 

Then, we have to rely on approximations to the sampling distributions, based typically 

on the central limit theorem. Asymptotic or large-sample theory is relatively simple to 

use, and also relies on milder assumptions than finite-sample theory, and can thus be
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more widely applied, at least given data sets of reasonable size. In the asymptotics for 

time series, a very im portant role is played by the stationarity assumption, and indeed 

by further restrictions on the dependence of a (possibly unobservable) process associated 

with the data or the statistical model.

Valid inference based on an asymptotically normal statistic requires only a consistent 

estimate of the variance matrix in the limiting distribution. Then the statistic can be 

studentized, consistent confidence regions set, and asymptotically valid hypothesis tests 

carried out. Usually the variance is affected by the dependence, and requires a different, 

and more complicated, type of estimate than that under independence. This can be 

based on a parametric model for the autocorrelations. However nonparametric types of 

estimate are more popular, being consistent under broader conditions.

Alternate methods related with the bootstrap have been proposed recently for depen­

dent observations (Kiinsch (1989), Politis and Romano (1995), Bertail et al. (1995)). The 

bootstrap proposed originally by Efron (1979) does not work in this case, but is possible 

to approximate the distribution of the statistic of interest by the empirical distribution 

of that statistic calculated from a large number of blocks of consecutive observations. 

Connected ideas to those and the jackknife apply as well for estimation of the variance 

of different statistics (see Section 1.3).

We now describe three general frameworks were an adaptation for serial dependence 

is necessary in the estimation of the asymptotic variance, complicating asymptotic in­

ference. However, there are situations were independence-based rules continue to apply, 

like nonparametric probability density and regression functions estimation. For more 

examples see Robinson and Velasco (1996).

1.1.1 Sam ple m ean

Let {X t , t = 1 ,2 ,...}  be a real-valued covariance stationary sequence with expectation 

H = E[Xt], lag-jf autocovariance

7 (j) = E [ ( X t - r i ( X t+ j - » ) ] ,
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and spectral density /(A) given by

7 ( j ) =  f /(A)cosjAdA. (1.1)
J — 7T

The existence of /(A) requires tha t the autocovariances j ( j )  must decay to zero fast 

enough. A sufficient condition for tha t is the absolute summability of 7 (j),

OO

Y ,  ItO')I < 00• (i-2)
j = — OO

The faster 7 (7) decay to zero, the smoother /(A) will be. Relation (1.1) gives for j  = 0

7 (0) =  f  /(A)dA,
J —TT

a decomposition of the variance of the time series across frequencies. Therefore, the 

magnitude of /(A) is a measure of the importance of the frequency A in the variance of 

the time series.

Inference on the mean /i given observations X i , . . . , A jv is typically based on the 

sample mean
1 N  

t= 1

which is the ordinary least squares estimate (OLSE) of /u. W ith dependent observations 

X  is no longer a best linear unbiased estimate (BLUE) or maximum likelihood estimate 

(if X t is Gaussian) as in the independent case, but it is unbiased and Grenander (1954) 

showed tha t if /(A ) is continuous and positive at A = 0, X  is asymptotically efficient 

within the class of linear unbiased estimates, so no differential weighting need to be 

considered. Also

V" W  = j  E  (* - 14 ) ^
t = l - N  X 7

and under various conditions permitting dependence in X t , expressed in terms of the 

a-mixing numbers or linear process conditions (see Ibragimov and Linnik (1971) and 

Hannan (1979)) we can obtain

^ Z £ _ ^ (0, i ) ,  as iV —* 00. (1.4)

These conditions imply that the 7 ( j)  decay fast enough to be absolutely summable (c.f. 

(1.2)), and thus that /(A) is continuous for all A, so they can be referred to as ’’weak
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dependence” conditions. Hence we have from Fejer’s theorem (Zygmnnd (1977), p. 89) 

and also from (1.2)

jVVarpf] —► 2t t / ( 0), as N -+ oo.

Therefore, to implement large-sample inference it remains to find an estimate /(0 )  of 

/ ( 0) such that

/(0 ) /(0 ) , as N  -> oo, (1.5)

for then
A 1/ 2 ( x - n )

K ( o )]1/2 ( 1 ' 6 )

can be approximated by a AT(0,1) variate. Given a parametric model for 7 (j),  equiva­

lently for /(A), like a stationary autoregression (AR), invertible moving average (MA), 

or stationary and invertible autoregressive moving average (ARMA), we can estimate the 

unknown parameters, insert them in the formula for / ( 0), and obtain an iV1/ 2-consistent 

estimate. However, (1.5) requires no rate of convergence, and there has been greater 

stress on using nonparametric spectrum estimates which are consistent in the absence of 

assumptions on the functional form, though as even the early papers on studentizing the 

sample mean of a time series by Jowett (1955) and Hannan (1957) illustrate, the same 

estimates of /(0 )  can be interpreted as either parametric or nonparametric. We review 

the literature about such estimates in Section 1.3.

1.1.2 Linear regression

The simple previous location model extends to the multiple regression

Yt = /3'Zt + X t , i =  1 ,2 . . .  (1.7)

where Xt  is, as before, covariance stationary, but it now has zero mean and is unob­

servable, the scalar Yt and <7-dimensional column vector being observed. Again the 

properties of the OLSE
-1

M I H ’ (§“ )
of the vector /3 partially extend from independent to dependent situations. In particular, 

Grenander (1954) gave conditions under which /? is asymptotically as efficient as the
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BLUE of /?, in case of nonstochastic Z%. These conditions are satisfied if, for example 

Zi is a vector of polynomials of trigonometric functions in t and /(A) is continuous and 

positive for all A £ (—7r ,7r]. Even when these conditions are not satisfied j3 is often 

consistent and asymptotically normal, whereas a generalized least squares estimate of /?, 

obtained under a misspecified parametric model for /(A ), might be inconsistent. However, 

whether or not it is asymptotically efficient, the asymptotic variance of ft is not the same 

as it would for uncorrelated disturbances Xt.

Assume that the matrix of sample correlation coefficients of Zt for both stochastic 

and nonstochastic regressors achieve a limit as the sample size increases. Denote this 

limit matrix for lag j  as R( j)  = (ph,i{j)) and assume tha t it is positive definite for j  — 0 

and

R (j) ~  f  e'ixdG{\) ,  j  =  0 , ± 1 , . . .
J  — 7T

for some m atrix G with Hermitian nonnegative definite increments, continuous from the 

right and with G{—7r) =  0. G is usually called the spectrum measure of the regressors.

Then, under regularity conditions on the asymptotic behaviour of the regressors, and 

on the errors Xt  similar to those sufficient for (1.4) we can obtain,

D 0  ~ H) V (0, ^(O )-1^ ) - 1),

where D  =diag{Z?i,. . . ,  Dg] with Dj =  (X3t=i Z ^ )1/ 2, and

5  = 2)r f ” /(A)dG(A). (1.8)
J — TV

Because R (0) is consistently estimated by D~x J^t , it remains to estimate S.

Equivalently, we have the approximation

N

Lt=l

-1
Var

N

E z ‘x t
it=i

N

J 2 z <z 't
lt=i

- v

where Var[-] refers now to the covariance matrix of its argument. Then

Var
r n

Lt=1
D 1/2S D 1/2 = T  as N  —> oo,

so we require an estimate T  of T  such that

D - i /2( f  _  y ^ - i /2 _ + p  o.
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Several nonparametric estimates of T  have been proposed in both the time and frequency 

domains (see Section 1.3.2). Many of them are also valid for more complicated inference 

procedures, specially methods used recently in econometrics reviewed in Section 1.1.3.

The OLSE is a special case (with h = 1) of

(  N  \  -1  N
m = l ' £ l z ( \ j )h.(\j ) \  (1.9)

y = i /  j =i

where /zy(A ) =  (2 ZtettX)(Y^u=\ YteitX) and h{A) is a real, nonnegative func­

tion. For general h,

D (p(h)  -  /?) ^  

AT (o , \ j * h(X)dG(X) 2 t f(X)h?(X)dG(X) \ T  h(X)dG{X)
- 1 '

, (1-10)

under regularity conditions. The user-chosen function h can achieve two distinct goals. 

One is to  reduce bias due to misspecification of (1.7) from errors in the observation of 

regressors. Then, we take h{A) = 0 for frequencies where the signal-to-noise ratio is 

feared to  be low, like can be at high frequencies for white noise errors in the observations 

or at seasonal ones when the noise is seasonal. The idea of omission of frequencies was 

proposed by Hannan (1963a), and justified theoretically by Hannan and Robinson (1973), 

Robinson (1972).

Irrespective of whether or not we eliminate frequencies, there remains the choice of 

h at the other frequencies. Hannan (1963b) showed, for a modification of (1.9), that the 

data-dependent choice h(A) = / - 1(A), with /  representing a nonparametric spectrum 

estimate, achieves the same asymptotic efficiency as the GLSE using a parametric model 

for /(A) and is asymptotically normal distributed. Robinson (1991) showed tha t this 

remains true in case of a general data dependent bandwidth in / ,  and allowed also for 

omission of frequencies.

Samarov (1987) investigated if adapting unknown correlation is necessary when there 

is only a small unspecified autocorrelation from the point of view of loss of efficiency with 

respect to the OLSE.

One im portant class of estimates of location and regression models, which generalizes 

the OLSE, are M-estimates. These estimates are designed to avoid distortions in finite
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samples from a few ’’outliers” , seemingly contaminated observations that are of much 

greater magnitude than are the bulk of the data. Here, parallel, but more involved 

results apply. See Robinson and Velasco (1996), Section 4 for more details.

1.1 .3  E conom etric m odels

Due to the occurrence of macroeconomic and financial time series data, many econometric 

methods are devised with possible serial dependence in mind. In fact relatively early 

econometric work stressed the efficiency gains due to the GLSE in regression models in 

the presence of autocorrelated errors, see e.g. Cochrane and O rcutt (1949). This interest 

has continued, and more recently it has been fashionable to employ point estimates 

which may well be inefficient, but studentize them to allow for serial dependence. A 

feature of much econometric work is the relative complexity of modelling, often involving 

nonlinearity and multivariate data, for example. Some similar models have been used 

in non-economic applications but we have chosen to categorize as ’’econometric models” 

ones which are more complicated than the simple location and linear regression models 

treated so far.

Many im portant problems, involving nonlinearities and other complications, are cov­

ered by the model

Yt = H t(9) + X u t = 1 ,2 ,. . .  (1.11)

where now Yt and X t are p x 1 vectors and H t{9) is a p x 1 vector of possibly nonlinear 

functions of an unknown s x l  vector 9, and of observable stochastic or nonstochastic 

explanatory variables to which explicit reference is suppressed. Again X t  is unobservable.

The function H t(0) could be linear in the observables,

oo

/?,(<?) = £  Aj{e)z,.h  (1.12)
j = z  —  O Q

where the Z* are the q x  1 explanatory variables, the Aj{9)  are p x q matrix functions 

of 9 , and p{9) is a vector. This includes static linear simultaneous equations models of 

econometrics and distributed lag models. Also nonlinear models are covered by (1.11), 

like static scalar or multivariate nonlinear regression models.

Suppose first tha t the processes {Ht(9)} and {AT*} are independent of each other and
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stationary. A minimnm-distance or Gaussian estimate of 0 is given by 

6 =  argmin ^  ||$(Aj )1/ 2{u;y(Ai ) -  ^)} ||2,
vfcW .

3 = 1

where || • || means Euclidean norm, $(A) is a p x p positive definite Hermitian matrix, 

and
N  N

wY(X) =  (2 ?r i V ) - 1/ 2 X ; V i e 1'1\  w „( \ )  =  (2 tt  J V ) '1/ 2 £  j r ( (< ? K ‘\
<=1 <=1

and 0  is a compact subset of 7£s. In case (1.12) leads to H  including some unobservable 

Zt , we can consider instead

9 = argmin £  ||$(A j)1/2{wy(Aj) -  A(Ai ;i?)ii;z (Ai )}||2,
3= 1

JV oo

wz { A) =  (2 ?r i V ) - 1/ 2 £  V \  j4(A ; 0 )  =  £  A j { ? y » .
t = 1  — OO

Such estimates were considered by Hannan (1971), Robinson (1972), and cover many 

cases. Under regularity conditions given in these references,

N ll2( Q - 0 ) - > d M {0, ^ ( $ ) _1^ ( $ / $ ) $ ( $ ) _1), (1.13)

where

*<*> = h L (1.14)

\I/($/3>) is the same quantity with $(A) replaced by $(A)/(A)$(A), and F  satisfies 

E[Ht(K)H't+j(0b)] =  r  e ^ d F { \ - , 0 a,A ) -
J—7r

When $  =  / p, 0 can be neatly written in time domain form, and when p = 1,

N 1/2( S - 9) -*d M {0, A ~ 1B A ~ 1), (1.15)

where A = E[dHt(0)/d6 dHt(6)/d9'], B  =  2irfu(0), where f u(A) is the spectral density 

matrix of Ut = X tdHt(6)/dQ.

One approach much stressed in the subsequent econometric literature is as follows. 

Let a vector parameter satisfy the equation

E[Ut(0)\ = 0, * =  1, 2 , . . . ,  (1.16)
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where the dimension of Ut is at least as great as that of 9 and may also depend on other 

unknown parametric and/or nonparametric functions. In particular (1.16) embodies the 

econometric model, or the principal part of it. Given a suitable matrix S  of the same rank, 

and proxies Ut(9) for Ut(0), involving estimates of any nuisance parameters/functions, 

and possibly each depending on all the data, we estimate 6 by

* = U t W S ' S ^  U t W
e t=i t=i

for a compact set 0 . Under regularity conditions

N 1/2(0 -  $) M(0,  C - ' D C - 1), (1.17)

where

C = S E
dUt(9)

D = S2ir / u(0) S',
09'

and f u(A) is the spectral density matrix of Ut{9). The generalized method-of-moments 

(GMM) estimates of Hansen (1982) fall into this scheme.

1.2 Plan o f the Thesis

In this thesis we analyze different aspects of studentization in dependent situations us­

ing nonparametric estimates of the variance. Since nonparametric techniques estimate 

in theory an infinite number of (nuisance) parameters, they have typically slower rates 

of convergence than parametric ones and poorer small sample properties. Thus, there 

is a special concern about how this slow convergence will affect the properties of the 

studentized estimates and, therefore, about the merits of the asymptotic normal approx­

imation, which is not affected by the smoothing number employed in the nonparametric 

estimation.

We consider the studentization of the sample mean and least squares estimates in a 

general linear time series regression model with nonstochastic regressors. We start with 

the regression model in Chapter 2 and then we specialize to the sample mean in Chapter 3 

under much milder assumptions.

For the sample mean (or for any other simple trigonometric or polynomial in t regres­

sion) only the behaviour of /(A) at a particular frequency is relevant, given the form of
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the matrix S  when dG(A) is a (single) jump function (see equation (1.8)). Therefore, in 

these situations it is difficult to justify any condition on the dependence structure of the 

time series tha t implies a global smoothness restriction on the spectrum, like (1.2) or con­

ditions on the mixing coefficients, and the assumptions should concentrate only at that 

particular frequency. A minimum requirement across all frequencies is the integrability 

of the spectral density in (—7 r , 7 r ] ,  necessary for covariance stationarity.

The analysis of the properties of the nonparametric studentization will be based on 

higher order asymptotic properties of the distribution of the studentized estimates. We 

justify asymptotic expansions of the Edgeworth type for those statistics under Gaussian 

assumptions for Xt.  The Gaussianity will allow us to express the restrictions on the 

dependence of the time series in terms of the autocovariance sequence or in terms of the 

spectral density, since all the higher order cumulants are zero. Also, this will enable us to 

concentrate on departures from normality due exclusively to  the nonparametric variance 

estimation.

In the next section of this Introduction we present the topic of nonparametric esti­

mation of the spectral density and of the variance in linear regression and more general 

models. Then we review in Section 1.4 the main higher order asymptotic methods, fo­

cusing in time series applications. The literature survey is not intended to be exhaustive, 

its aim being just to provide examples of the main developments in each context.

Nonparametric estimation depends heavily on the choice of a smoothing number. This 

topic is introduced in next section and elaborated further in Section 1.5. In Chapter 4 of 

this thesis we propose a new cross-validatory technique for spectrum bandwidth choice 

at a particular frequency, valid assuming only local conditions on the spectral density.

Situations where (1.2) does not hold have also been considered in the literature. In 

Section 1.6 we focus on long range dependence time series models for which /(0 )  = oo 

and on semiparametric inference for them. Then, in Chapter 5 we discuss some topics 

about the log-periodogram estimate of the memory param eter for long range dependence 

time series, extending some previous results available in the literature.
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1.3 Nonparametric tim e series estim ation

1 .3 .1  S p e c t r a l  d e n s i ty  e s t im a t io n

Nonparametric spectrum estimates have been used for a long time in different sciences. 

The descriptive characteristics of the spectrum are even more interesting since the esti­

mates for distinct frequencies tend to be nearly statistically independent when the sample 

size N  is large. The estimates of 7 (j) contain identical information but they do not share 

tha t property. Beyond the studentization problem in a variety of frameworks, spectral 

density estimates can also be employed for detection of hidden periodicities, hypothe­

sis testing, discrimination and classification, model identification, parameter estimation, 

prediction and smoothing, and seasonal adjustments. Brillinger (1975) and Robinson 

(1983) contain descriptions of many applications of spectral density estimation.

We consider nonparametric estimates of the spectral density of the quadratic type. 

These estimates are quadratic forms of the observed stretch of data, and can be written 

in the time domain in terms of weighted sums of the sample autocovariances,

W )  =  J f  E  ( X , - X ) ( X t+ j - X ) ,  j  = 0, ± 1, . . .
1 < t,t+ j<N

and in the frequency domain as averages of the periodogram,

N
/ (A) = -  X )e M

t= 127t N

Consider a real, even, bounded and integrable function K (X ), satisfying

/oo
K(X)dX = 1,

-00

and define
K m {\) = M  K(M[X + 2wj]), I

j=z — OO

where M  is called a ’’lag” or ’’bandwidth” number. Then the weighted autocovariance 

estimates of /(A) are given as

f c ( A) =  j ^ K M{X -a )I (o t )da  =  ^  Y ,  TO) cosjA,
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where

/ OO

K(A)eixXdA.
-OO

For the same K  and M, f c(X)  is typically closely approximated by a discrete average of 

periodogram ordinates
2tt N~x

= *  E  k ^ x -  (L18)
3= 1

where Aj = 2 n j / N  are the Fourier frequencies, and because these I(Xj)  are invariant to 

location shift in X t  no mean correction of Xt  is necessary in (1.18).

The choice of M  and K  has been extensively discussed, mainly from the standpoint of 

bias and variability. For given FT, variances tend to increase with M.  On the other hand, 

when estimating / ( 0), a small M  lead to Km(X)  not being heavily concentrated around 

the origin, and bias from the influence of frequencies near zero, most likely negative bias 

if there is a spectral peak there. For given Af, a similar dilemma is faced in the choice 

of K.  Distant frequencies can also cause bias. Many K  produce side-lobes in Km,  so  

coincidence of a side-lobe with a large spectral peak in /(A) can give an inflated estimate

of /(0 ) .

On computational grounds u  having compact support in fc{X), u>(x) =  0, |z | > 1, is 

desirable because then only about Af 7 (j)  need be computed, whereas the (contradictory) 

practice of choosing K  to have compact support in f p ( A), so K(X)  =  0, |A| > v,  is 

desirable because then only about N / 2 M  of the I (X j ) need be computed. On the other 

hand, all N —1 7 ( j)  and N / 2 1(Xj) can be rapidly computed via the fast Fourier transform, 

so these considerations are of minor importance. In Chapter 2 we employ compact 

support w, mostly for convenience, thus avoiding additional conditions on the tails of u.  

We justify compact support kernels K  in Chapters 3, 4 and 5, in order to avoid leakage 

from other frequencies when we assume only local conditions on the spectral density.

The desirable requirement of non-negativity of a variance estimate is implied if

K ( A) > 0, all A.

Several elaborations of f c(X)  and /p(A) have been proposed in the spectrum estimation 

literature, like tapering and prewhitening. Tapering (Tukey (1967)) multiplies Xt  by a 

sequence which decays smoothly to zero at t =  1 and t =  IV in order to reduce the
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effect of contamination of /(A) from other frequencies. Prewhitening (Press and Tukey 

(1956)) entails fitting a preliminary AR to X t , forming f c  or f p  from the residuals, and 

then multiplying by the AR transfer function. This recognizes tha t a quadratic spectrum 

estimate may not be very good at fitting a sharp peak, such as indeed appears at zero 

frequency in many empirical series. In fact pure AR spectrum estimation, without the 

kernel smoothing involved in f c  or f p ,  became popular, see Burg (1975), Parzen (1969); 

here the AR order replaces M  as the bandwidth and is regarded as increasing slowly 

to infinity with N  in the asymptotics. Mixed ARM A models have also been used, as 

well as many other nonquadratic estimators, with the idea of obtaining higher resolution 

techniques (see Robinson (1983), Section 3).

In the operational research literature different quadratic estimators of the variance of 

the sample mean have been justified under different considerations. For a recent review 

see Song and Schmeiser (1993).

Brillinger (1973) discussed the problem of inference on the mean of a continuous time 

process, which is either observed continuously or at possibly unequally-spaced times that 

are either finite or random. He suggested splitting the observation interval (0, N )  into 

m  disjoint subseries of lengths I  =  N / m , showed tha t for fixed m  the sample means of 

each stretch are asymptotically independent and identically distributed as N  —> oo, and 

then used the sample variance of the m  sub-series means to  estimate the overall sample 

mean. Carlstein (1986) and Kiinsch (1989) adapted Brillinger’s subsamples method to 

more general statistics, showing the consistency of a ’’block” jackknife under conditions 

on the number and size of the subsamples. These estimates are quadratic functions of 

the data as well, and in some cases, special versions of 27r/c'(0).

The asymptotic statistical properties of quadratic spectrum estimates have been stud­

ied extensively. Both types of estimates considered, f c  and fp ,  have similar character­

istics. If M  is increasing slowly with respect to N,  /(A) is a mean square consistent 

estimate of /(A). Furthermore \ J N / M  (/(A ) — / ( A)) converges to a normal distribution 

under suitable conditions on the dependence structure of the time series and the lag 

number M  (see for example Hannan (1970)).

Given the slow rate of convergence of nonparametric spectrum estimates, y / N /M ,  al­
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ternative approximations for the distribution of such estimates have been pursued. These 

approximations can be based on x 2 distributions (Brillinger (1975)) or on asymptotic ex­

pansions (Bentkus and Rudzkis (1982)), but also more nonparametric approaches have 

been considered. Thus, Franke and Hardle (1992) obtained a bootstrap approximation 

for the distribution of estimates of discrete periodogram average type, and Politis and 

Romano (1992) modified the block bootstrap for dependent data of Kiinsch (1989) to 

cover smoothed spectral estimates of f c  type.

For the studentization of the sample mean we consider nonparametric estimates of 

the form /c(A ) at A = 0, which can be written down easily as quadratic forms in the 

vector of observations. Our high order results for this nonparametric estimate are an 

extension of those of Bentkus and Ruzdkis (1982). The main contribution is that we do 

not require boundedness of the spectral density for all frequencies, allowing for a much 

more general class of dependence characterizations.

There are several references about spectral estimation under mild smoothness condi­

tions. Bentkus (1985) and Rudzkis (1985) analyzed the mean squared minimax asymp­

totic risk and the distribution of the maximum deviation for related (unfeasible) esti­

mates, assuming only /(A) E Zhurbenko (1984) considered the properties of estimates 

of the spectral density obtained by a time shift under a perturbation of the spectrum 

caused by a blip or pulse at a remote frequency. Estimation of the spectrum for long 

memory time series (with a pole at the origin; see Section 1.6) has received also some 

attention in recent years: Hidalgo (1994) considered the estimation of /(A ), A ^  0, under 

a linear process condition and Soulier (1993) discussed the same problem for Gaussian 

fields. See also von Sachs (1994b) for related references about nonparametric spectral 

estimation in the presence of peaks.

1.3.2 V ariance estim ation

Eicker (1967) proposed for the estimation of the variance of the vector of OLSE in linear 

regression the following estimate of T,

Ti = N 2 E 1 W M ,  (l-W )
j = l —M  ••'I
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where

= jf E z‘zUi
1 < t,t+ j< N

and for the calculation of 7 (j)  we use the OLS residuals X t =  Yt — fi'Zt, and M  has 

analogous interpretation as before, increasing slowly with N  in the asymptotics. T\ is 

suggested by applying Parseval’s equality,

OO

s= E RUhU)’
j = - 00

and then inserting sample estimates and truncating the sum. To guarantee a positive 

semi-definite T  it is possible to introduce suitable weights in (1.19), corresponding to 

weights guaranteeing a nonnegative estimate of /(0 ). This is best seen in the frequency- 

domain version

f t  =  (27r)2 X^T>(Aji)/(A i ),
j = l

considered for example by Hannan and Robinson (1973), where I z ( ^ j )  is the periodogram 

matrix of Z* and /(A j) is a smoothed estimate of /(A). This estimate is valid for both 

stochastic and nonstochastic regressors.

However, the methods used to robustify against autocorrelation many more compli­

cated statistics, specially methods used recently in econometrics, can be seen as exten­

sions of those proposed much earlier for the mean by such authors as Jowett (1955), 

Hannan (1957) and Brillinger (1979). In the linear regression framework with Zt station­

ary and ergodic, we can estimate T  by

f 3 = 27rjV/c7(0), (1.20)

where f u { 0) is an smoothed estimate of the spectral density matrix of Ut = Z tX t , com­

puted with X t replaced by the OLS residuals Xt.  This approach has been stressed in the 

econometric literature and it has the advantage over T\ and X2 of not requiring indepen­

dence, at least up to fourth moments, between Z* and X t , but only tha t Zt and X t are 

uncorrelated. On the other hand, it makes less use of the structure of the model if such 

independence is reasonable, when it might be expected to possess inferior finite-sample 

properties.
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In the more general case of (1.10) we can estimate the covariance matrix of the 

asymptotic distribution by

in the same spirit as T2, and when h{A) =  /  (A),

N  \

is asymptotically multivariate standard normal under regularity conditions.

Moving to minimum distance estimates and in a similar fashion, we can estimate 

in (1.14) by

j =1

W(X) = ± . iWH( \ -e )  or W { \ )  = A A(A; #)wz ( A).

Let § ( $ / $ )  be defined analogously, with /(A) an estimate of /(A) as before, based on 

residuals. Then 0 in (1.13) is approximately

Af(6, iV-1$ ( $ ) - 1$ ( $ / $ ) $ ( $ ) " 1).

This approach was suggested by Hannan and Robinson (1973), Robinson (1976) in special 

cases where Ht is given by (1.12).

As we have commented before, estimates of the form T3 can alternatively be used as 

for linear regression, just starting from expression (1.15). This was advocated by White 

and Domowitz (1984), though they suggested using the truncated version of f c • This 

approach has been stressed in the bulk of subsequent relevant econometric literature, in 

which special names have been invented for the topic, such as ’’autocorrelation-consistent 

variance estimation” , ’’heteroskedasticity and autocorrelation-consistent variance estima­

tion” and ’’long run variance estimation” . Then in (1.17), the f u(0) in D  can be estimated 

as before, from the Ut(0), while C  can be estimated by a sample average. Also optimal 

matrices S  can be approximated in a similar way.

Particular cases of, or modifications of, the various spectrum estimates have been 

proposed in the econometric literature, concerning the selection of weights, functions K
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and prewhitening, among others. The dependence conditions stressed in the economet­

ric literature have been mixing conditions, with rate conditions on the mixing numbers. 

These are attractive because the Ut(0) may be complicated, nonlinear functions of un­

derlying variables, but inherit the mixing properties of these; this is not the case if the 

underlying variables are linear filters of white noise. Also mixing conditions readily allow 

a degree of non-trending nonstationarity, indicative of forms of asymptotic stationarity 

as in Parzen (1962).

Our analysis of the studentization of the OLSE in Chapter 2 will be based in an 

estimate related to Ti, using general weights u  with compact support. We include the 

normalization ZtZ[)~l in c(j), instead of 1 /IV, to account for possibly nonstationary 

behaviour in the nonstochastic regressors.

1.4 Higher order asym ptotics

Most of the statistical inference is carried out on the basis of asymptotic or large-sample 

results as approximations for the distribution and properties of estimates and test statis­

tics. This is almost always the case for dependence and nonparametric situations, since 

the exact results are here even more intractable. Therefore, it is desirable to describe 

conditions under which the asymptotic approximations are reasonable and to obtain al­

ternative methods when the asymptotic approximations break down for reasonable finite 

sample sizes. These approximations, generally of density and distribution functions, but 

also of moments and other quantities of interest, can be used to improve numerical cal­

culations from the data or to evaluate and compare theoretically alternate statistical 

procedures.

One interesting question which readily lends itself to higher-order asymptotic study 

is the cost of correcting for autocorrelation in estimating Var[X] when none exists. This 

is a special case of a more general problem, that of over-specifying M  in f c  or f p  relative 

to an actual MA order less than M , or over-specifying the AR order. Albers (1978) 

considered the case when the prescribed MA or AR order is fixed relative to N , and the 

observations are uncorrelated. He found that while there is no asymptotic loss of power 

of (1.6) relative to the ordinary t-ratio, the deficiency measure of Hodges and Lehmann
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(1970) - the difference between the numbers of observations required to achieve the same 

power - is non-zero to order 0(iV -1 ), and he estimated this deficiency.

Many statistical problems can be indexed by the sample size N  =  1 , 2 , . . or other 

number reflecting the quantity of information available. Consider a sequence of estima­

tors 0/v- In many situations, centred and normalized versions of the estimate $n  are 

asymptotically normal. However, it is possible to develop other approximations and to 

estimate the asymptotic error.

1.4.1 A sy m p to tic  expansions

There are different methods for obtaining higher-order approximations, most based on 

Fourier inversion of the approximate characteristic function. Let tp{t) =  E[exp{itYjv}] 

be the characteristic function for the normalized version of 6n , Yn , and <p(t) = \ogip(t) 

its cumulant generating function. Then, if ^  is integrable, the density function f a  of Y)v 

can be written as

1 r°° 1 r°° / \
( n ( x )  =  ^ J  ^  J  e - ' ^ W d t .  ( 1.21)

The cumulant generating function <p(t) can be expanded in a series where the successive 

terms are increasing powers of TV-1/ 2. Then, expanding the exponential and integrating 

term by term, an approximation can be found for the density f a .

Barndorff-Nielsen and Cox (1989) constitutes a general introduction to asymptotic 

theory and asymptotic expansions in particular. Bickel (1974), Phillips (1980), Rothen- 

berg (1984a), Bhattacharya (1987) and Reid (1991) are comprehensive reviews, with 

different emphasis and many interesting references about both the statistics and econo­

metrics literature.

Different approximations can be obtained, depending on the point t where we expand 

<p(t). The Edgeworth approximation is obtained by expanding ip(t) around t =  0 and 

the saddlepoint one around the saddlepoint value t* tha t maximizes the integrand. The 

la tter approximation has an alternative interpretation as an Edgeworth expansion around 

the mean of a transformed random variable. The saddlepoint approximation typically 

gives more accurate approximations especially in the tails of the distribution, although
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requires close knowledge of the cumulant function. Barndorff-Nielsen and Cox (1979), 

Reid (1988) and Jensen (1995) are detailed accounts for the saddlepoint approximation.

We will focus on the Edgeworth approximation, since it is simpler and more common, 

and can be calculated from the low order cumulants of Yn . If Yn  = N 1̂ 2($n  — #o) is 

asymptotically normal distributed with zero mean and variance cr, then, integrating the 

density in (1.21), the distribution function of N 1!2(0n  — 9o) can be expanded as a power 

series in TV-1/ 2,

P{iV1/2(#jv -  00M<r < *}

= $(a:) +  N ~ ^ 2Pi (x )4>(x ) +  . . .  +  N ~ ^ 2pj(x)<t>(x) + . . . ,  (1-22)

where 4>{x) =  (2'K)~1l 2e~x2l 2 is the standard normal density function and

$(z)  =  f  <J>(u)du
J—oo

is the standard normal distribution function. Then (1.22) is called an Edgeworth ex­

pansion. The functions pj are polynomials with coefficients depending on the cumulants 

of On  — #o- Usually (1.22) is only available as an asymptotic series, or an asymptotic 

expansion, meaning tha t if the series is stopped after a given number of terms then the 

remainder is of smaller order as IV —► oo than the last term  tha t has been included. 

Of course, for given sample size N  the order of magnitude of the asymptotic error does 

not tell us anything about the absolute magnitude of the error of the approximation, 

although it might be a useful indicator of the approximation error for moderate values 

of N.  The terms in N ~ 1̂ 2 and in iV-1 can be described as corrections for skewness and 

kurtosis, respectively, since for the normal distribution all the cumulants of order bigger 

than two are zero.

The inverse expansion of (1.22) for the quantiles is denominated Cornish-Fisher ex­

pansion. If <7 is unknown, it can be substituted by a consistent estimate, obtaining a 

related expansion. Empirical Edgeworth expansions can be obtained from (1.22), substi­

tuting the unknown cumulants (or equivalently, moments) in the functions pj by sample 

consistent estimates. Then, it is possible to estimate the magnitude of the stochastic 

errors for the feasible approximation of the distribution.

This method is a natural extension of traditional large-sample techniques based on the
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central limit theorem: since the expansions are constructed in terms of the normal and 

chi-square distributions, the usual asymptotic approximation is the leading term of the 

Edgeworth expansion. Also, its general availability and simplicity lead to a useful, com­

prehensive approach to second-order comparisons of alternative procedures (e.g. Akahira 

and Takeuchi (1981)). This fact has been used extensively in the bootstrap literature 

for the comparison against first order asymptotics (e.g. Singh (1981), Bhattacharya and 

Qumsiyeh (1989) and Hall (1992)).

The simplest example to introduce Edgeworth expansions is the sum of independent 

and identically distributed (i.i.d.) random variables. In the previous references can be 

found several intuitive expositions on how to arrive to expressions like (1.22) in this 

case. Proofs are available in general probability texts, like Feller (1971), Chapter XVI, 

or Petrov (1975), Chapter VI. Bhattacharya and Rao’s (1975) monograph presents all 

the main results for sums of independent random vectors, including the lattice case. The 

conditions used are mainly stated in terms of regularity of the characteristic function and 

enough moments. Additionally, some heterogeneity can be allowed.

The theory also applies to smooth functions of such sample sums of i.d.d. variables, as 

conjectured by Wallace (1958), (e.g. Bhattacharya and Ghosh (1978 and 1989)), including 

minimum contrast estimators (e.g. Pfanzagl (1973)), estimates of regression models with 

i.i.d. errors (Qumsiyeh (1990)), discrete Fourier transforms of i.i.d. sequences (Chen and 

Hannan (1980)) and U-statistics (e.g. Bickel et al. (1986)). In a econometric context 

the validity of Edgeworth expansions was proved by Sargan (1976) and Phillips (1977b), 

completing some previous ideas of Chambers (1967).

Other parameters different from the sample size N  can index the sequence of prob­

lems. For example, in nonparametric estimation of the probability density function for

i.d.d. random variables, the index is constructed in terms of N h,  where h = hpj is a 

sequence of numbers tending to zero as N  increases (Hall (1991)). This is also the case 

in nonparametric estimation of the spectral density and most smoothed estimates.

However, in semiparametric frameworks where we estimate nonparametrically a nui­

sance function, often the asymptotic distribution and the rate of convergence are not 

affected by the bandwidth, like in the studentization problem, where only a consistent
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estimate is required (see Robinson (1995a)). Nevertheless, it appears that the presence 

of slowly converging nonparametric estimates in JV1/2-consistent estimates might lead to 

inferior higher-order asymptotic properties than those of estimates based on a correct 

parametric model (see, e.g., Linton (1996)).

Varied asymptotic expansions and higher order results of different type are possible. 

They include Gram-Charlier and Laplace expansions, Berry-Esseen bounds and large 

deviation approximations. (See for example Phillips (1980) for a neat introduction and 

more references).

1.4.2 T im e series higher order a sym p totic  th eory

Many of the above results can be extended to weak dependence situations. The more 

general result in this field is due to Gotze and Hipp (1983), where earlier related refer­

ences can be found. They established the validity of an Edgeworth expansion for sums 

of weakly dependent random vectors (see Lahiri (1993) and the references therein, for 

recent extensions). The essential regularity conditions required relate with the depen­

dence structure of the time series, expressed in terms of the strong mixing coefficients 

(Rosenblatt (1956)).

Under equivalent conditions to those of Gotze and Hipp, Lahiri (1991, 1994) and 

Gotze and Kiinsch (1995) compared approximations based on bootstrap methods and 

Edgeworth expansions for the distribution of time series statistics tha t can be approx­

imated by sample means. Bentkus et al. (1995) is a recent reference for Berry-Essen 

bounds in dependence situations. Similar ideas have been applied to approximate the 

distribution of various statistics. Bose (1988) considered the case of the sample auto- 

covariances and Janas (1993) and Janas and von Sachs (1993) applied his results to 

functions of the periodogram of stationary time series.

The validity of Edgeworth expansions for a general class of statistics in time series 

models is analyzed in Gotze and Hipp (1994). They extended some results of Taniguchi 

(1983,1984 and 1986) concerning Gaussian ARMA models estimators and test statistics. 

Taniguchi (1991) is a complete survey of higher order asymptotic theory for time series 

models and contains many references of interest up to 1991. Section 2.5 of Taniguchi
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(1991) review the literature for linear time series regression estimation, always assuming 

a parametric covariance matrix for the observations.

Expansions connected with the saddle-point approximation and suitable for time 

series statistics are described in Durbin (1980a and 1980b), extending some earlier results 

of Daniels (1956) for the serial correlation coefficient. Related problems are studied under 

different sets of conditions in Phillips (1977a) and Kakizawa (1993).

1.5 Bandwidth choice in nonparametric serial dependence 

estim ation

Most of the nonparametric methods tha t have been used in statistics to allow for serial de­

pendence are appealing because they are justifiable in the absence of precise assumptions 

about the dependence, which can be very hard to motivate. Nonparametric estimation 

is involved in one way of another in the previous estimates of the variance we have con­

sidered, so discussion on the problem of selecting bandwidth numbers is important. In 

nonparametric estimation of the spectral density and other variance quantities, the user- 

chosen parameter M  controls the smoothness, and therefore the statistical properties of 

the estimate. The asymptotics require tha t this number (proportional to the inverse of 

the actual bandwidth of K m ) is increasing at a suitable rate with the sample size, but 

they give not practical guidance when N  is finite.

Indeed, the distinction between ’’nonparametric” and ’’parametric” estimation resides 

principally in their interpretation in large samples, and in both cases a particular func­

tional form has to be chosen, the same one may be used in either case, and the outcome 

of inferences will be dependent, possibly greatly so, on the choice of the functional form. 

For example, f c  and f p  depend on K  and M , AR spectrum estimates depend on AR 

order, and prewhitened quadratic estimates depend on them all.

Consider the choice of M  in f c  or fp .  Because bias tends to vary inversely with 

M , and variance tends to vary directly, minimization of mean squared error (MSE) 

E [ ( f (A) — /(A ))2] was proposed by Grenander and Rosenblatt (1957) as a simple criterion
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for producing a balancing M .  Under regularity conditions

lim N 2vE [ ( f (A) -  /(A ))2] =  ^  r  w2(x)dx{l + /(A =  0)} + c2-[«(">/(-)(A)]2,
N-> oo C J -oo

(1.23)

where

c = lim ------ —----- , (1.24)
N —*oo M

= lim 1 ~ fa,(!C) , (1.25)
x —>0 Xv

1 oo

/ M(A) = ^  E  \jlv7(j>-tfA. (1-26)
j= -o o

and i; is the largest real number for which c and are assumed finite. Often v = 2, 

though for the Barlett window v  =  1. Then, in view of (1.24) we should choose M

proportional to N 1̂ 1+2v\  and minimizing (1.23) with respect to c gives the optimal

choice of M ,

M  =  jv1/(1+2ld/c*,

where
/ 2( A) /  w2(*)<M l +  / ( A = 0)}11/(1+2v)

2v [k(v) f ( y)(\)]2

In practice, though v  can be reasonably picked as the largest value such tha t (1.25) 

is finite, (i.e. trusting tha t (1.26) is finite) there is a strong element of circularity in 

tha t c* depends on /(A) itself, and also on /^ ( A ) .  This problem is standard in the 

smoothed estimation of nonparametric functions, and a standard proposal to deal with 

it is to replace /  and by ’’pilot” estimates based on either a simple parametric model 

or on an initial choice of bandwidth, in the hope tha t M* will not be too sensitive to 

the design of the pilot estimates, though it can be very hard to accurately estimate c*. 

Andrews (1991) has developed this approach in case of pilot AR spectrum estimates, 

and also showed tha t the eventual spectrum estimates are still consistent in the presence 

of the data-dependent M .  Newey and West (1994) justified the optimality of methods 

using an initial choice of bandwidth. Bulhmann (1995) considered a similar approach and 

designed an iterative procedure to reduce the high variability of these methods, typical 

of bandwidth choice algorithms.

For estimates of the variance, say in linear regression, of the form Ti or T2, /  has to be 

estimated across all the Nyquist band (—x ,7r]. It would be possible to determine suitable
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M  as in the previous paragraph, in a frequency-dependent way. A simpler approach is 

to obtain a single M  which reflects characteristics of the data across all frequencies. To 

seek an optimal choice, consider the integrated MSE

f  £[(/(A ) -  f ( X ) f ] X{X)d\, (1.27)
J —7r

for a weight function x(^)- Lomnicki and Zaremba (1957) suggested x (^) =  and Jenk­

ins and W atts (1968) suggested x M  = 1 / f 2W  because /(A) has asymptotic variance 

proportional to /(A )2. We minimize (1.27) asymptotically by

' 2 d JV (k (v>)2 JZt /< v ) (A )2x ( A ) d A '11/(1+2,' )
M  = (1.28)

P , P ( X ) X( X ) d X / Z ^ ( x ) d x  

Again this can be estimated using pilot estimates of /  and Hurvich (1985), Beltrao 

and Bloomfield (1987) and Robinson (1991) considered a fully automatic cross validation 

method. One version of this is as follows. Introduce the leave-two-out spectrum estimate

f p ( * i ) = Y  E - X e ) I ( X t ) ,
e=i

and the pseudo log-likelihood criterion

E {log/p*(Al) + I(Xj)/fp\Xj)} .
3=1

Then, Robinson (1991) showed that M  minimizing this is consistent for M* in (1.28) 

with x(^) =  1 / / 2(^) and extended the results about f  for a wider class of situations, 

including statistics related to T2 .

Franke and Hardle (1992) proposed a bootstrap approximation for the optimal band­

width for the discrete periodogram average spectral estimates fp .  See the survey by 

Hannan (1987) for AR order selection in AR spectrum estimation.

The previous cross-validation methods select a global bandwidth for all the range 

of frequencies [— 7r ,7r] or for a fixed non-null subset of it. In Chapter 4 of this thesis 

we propose a modified version of cross-validation to justify a local bandwidth choice 

for a single frequency, as it is relevant, for example, in the case of the sample mean 

studentization or T3. Concentrating in a single frequency, we only need to use local 

smoothness properties of the spectral density of the time series around this frequency, 

allowing for a broader range of dependence models.
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1.6 Long memory tim e series

For the inference using the sample mean we have assumed tha t /(0 )  was bounded above

(and away from zero), but there has been considerable interest in the possibility that 

/(0 )  = oo, though /(0 )  = 0 has also been considered. Both possibilities are covered by 

the model

for 0 < G < oo. The case d =  0 covers the bounded /(0 )  situation. When 0 < d < 1/2, 

the case of most interest, we say that there is long range dependence. When —1/2 < d < 0 

there is antipersistence. Condition (1.29) is closely related to

g =  2 G T (1 — 2d)cos7r(d +  1/ 2),

so 7 ( j)  is not summable when d > 0. Examples of (1.29) and (1.30) are given by the 

fractional ARIMA models, in which

Long memory stationary time series models have been described in many sciences for 

some time now. They characterize strongly dependent stochastic processes where the 

observations are quite dependent even from large lags, since the autocovariances decay 

only hyperbolically, and not exponentially, like in ARMA models. The rate of decay of 

the autocovariances is determined by the parameter d, which determines the long range 

properties of the time series. Justification, statistical properties of inference methods, 

and an extensive literature for long memory time series can be found in Robinson (1994a) 

and Beran (1994).

/ (A )~ G A " 2‘,j as A —> 0+ , —1/2 <  rf < 1/2, (1.29)

7 as j '-> o o , (1.30)

where

(1.31)

where a 2 > 0 and a and b are polynomials of finite degree having no zeros in or on the 

unit circle, and the fractional noise model where

l O ^ y O i  +  l l ^ ' - Z l l l ^  +  l i - l l 2̂ 1) ,  j  =  ± 1 , . . .  (1.32)
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For a covariance stationary sequence {X*}, with mean fi and spectrum and autoco­

variance satisfying (1.29) and (1.30), X  is no longer asymptotically a BLUE of fi when 

d ^  0, see Adenstedt (1979). Samarov and Taqqu (1988) found tha t f o r —l / 2 < d < 0  

the efficiency can be poor, though for 0 < d < 1/2 it is at least 0.98. In any case X  is 

still unbiased and consistent for and is a computationally simple candidate for use in 

inference, especially in the Gaussian case.

Under (1.30),
— a N 2d~x

v * * ~ w + w r  _  (L33)
so X  is less than TV1/ 2-consistent when 0 < d < 1/2. Hence, when X  is asymptotically 

normal, the studentization proposed previously will not produce consistent interval esti­

mates or asymptotically valid hypothesis tests if d ^  0. In practice d is unknown. Given 

the asymptotic normality of X , and (1.33), Robinson (1994a) observed that

1/2 _
(x - m) - m J V ( 0 , 1 )jy1/2-c 2 d (d +  1/ 2)

_2GT(1 — 2d)cos7r(d +  1/2) 

if the estimates G, d, satisfy

G —>p G, logiV — d̂ j —>p 0.

Robinson (1994b, 1995b, 1995c) has verified these properties for three different types 

of estimate, all of which are based only on local assumptions for /(A ) near A = 0, and 

which do not require parameterization of /  across all frequencies. A corrected specified 

parametric /(A) or 7 (j)  (as in (1.31) and (1.32)) can yield N 1/ 2-consistent estimates (e.g. 

Fox and Taqqu (1986) and Dahlhaus (1989)) and Beran (1989) considered studentization 

based on such estimates, with an alternative type of approximate distribution to that 

arising in (1.33). However, if /(A) is incorrectly specified, such estimates will be incon­

sistent, indicating a cost to modelling high frequency behaviour in a situation in which 

only low frequency behaviour is of real interest.

Further models and techniques in a long range dependence environment, including 

OLSE, GLSE and M-estimates of linear regression and nonlinear models, are described 

in Robinson and Velasco (1996).

Robinson (1995b) shown that a modified version of the log-periodogram estimate of 

d proposed by Geweke and Porter-Hudak (1983), was consistent and asymptotic normal
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for Gaussian sequences. Taking logarithms in (1.29),

log/(A ) ~  logG — 2dlog A, as A —► 0+ ,

and introducing the periodogram for Fourier frequencies A j close to zero, j  =  1, . . .  ,ra, 

with m  increasing in the asymptotics but slower than N , we can obtain

log J(Aj) «  log G -  2d log A j +  log j j r ^ >  j  =  1 , . . . ,  m.

Believing that the last term in the previous expression is approximately i.i.d. as in the 

weak dependence case, the estimate of d proposed by Geweke and Porter-Hudak is the 

ordinary least squares estimate in the linear regression between the logarithm of the 

periodogram and (a regressor equivalent to) —2 log A for frequencies in a degenerating 

band around the origin. However the periodogram for frequencies close to the origin 

does not behave in the same fashion for long range than for weak dependence series, and 

Robinson (1995b) proposed a trimming of frequencies too close to the origin, following 

the proposal of Kiinsch (1986). He also used a pool of contributions from periodogram 

ordinates at adjacent frequencies.

Two questions arise at this point: the substitution of the periodogram ordinates by 

consistent, nonparametric smoothed estimates of the spectral density, and the validity 

of the estimation procedure for non Gaussian time series. In Chapter 5 of this thesis 

we obtain the consistency of the log-periodogram estimate for linear time series, non 

necessarily Gaussian, for both situations: with and without smoothing. Again, only 

local conditions on /  are needed, so high frequency behaviour modelling is avoid.
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Chapter 2

Edgeworth expansions for tim e  

series linear regression

2.1 Introduction

Autocorrelation consistent estimation of covariance matrices of param eter estimates in 

linear and nonlinear models has been a growing field of research in recent years in econo­

metrics and time series (e.g. Hansen (1982), W hite and Domowitz (1984), Newey and 

West (1987 and 1994), Andrews (1991), Robinson (1991). See Robinson and Velasco 

(1996) for a review). Since statistical inference is typically based on central limit theo­

rems, a consistent estimate of the variance of the distribution is necessary. For time series 

statistics this variance estimation requires explicit consideration of the dependence, and 

nonparametric set-ups have been stressed in much of the literature.

Most of the techniques proposed relate with ideas developed in spectral analysis 

since the seminal works of Jowett (1954) and Hannan (1957). They were concerned 

with the variance of the sample mean of a stationary process, but their work extends 

to  the estimation of the covariance matrix of the least squares estimator in a linear 

regression model with serial dependent errors of unknown form. And as we have seen 

in the Introduction of this thesis, this framework can cover also nonlinear regressions 

and many more complicated models. An alternate approach is due to  Eicker (1967), who 

proposed an estimate of convolution type for linear regression, using the special structure
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of the model.

This chapter analyzes higher order properties of Eicker’s class of estimators of the 

variance of least squares estimates in a time series linear regression model. These es­

timates are defined in terms of a weighting scheme for the sample autocovariances of 

observed least squares residuals and on the choice of a lag or smoothing parameter. Lit­

tle is known about how the use of nonparametric estimates affects the distribution of the 

studentized estimator. Although the asymptotic distribution remains unaffected, small 

sample properties may deteriorate, since, typically, nonparametric estimates have slower 

rates of converge than parametric ones. This is reflected in the higher order terms of the 

Edgeworth expansions for the distributions of the variance and studentized estimates, 

which depend on the lag-number used in the nonparametric smoothing.

Higher order asymptotic methods have been used in time series analysis and in linear 

regression for some time now (see for example Taniguchi (1991) and the references there). 

Among others, Rothenberg (1984b), Toyooka (1986) and Magee (1989) have studied 

different higher order properties of generalized least squares estimates using parametric 

estimates of the covariance matrix of the observations. See Taniguchi (1991, Section 2.5) 

for a general discussion. However, their results rely on parametric assumptions and do not 

consider the studentization problem. For our purposes most of the previous higher order 

asymptotic work is not pertinent, as we face two main complications: nonparametric 

estimation and autocorrelation of unknown form.

A great deal of higher order asymptotic research in nonparametric situations has been 

based on independent observations. Bentkus and Rudzkis (1982) is a notable exception. 

They obtained asymptotic expansions and large deviation theorems for the distribution 

of nonparametric spectral density estimates for Gaussian sequences. We adapt some of 

their techniques to our situation under Gaussianity assumptions. Next chapter extends 

some of their results in the context of the studentization of the sample mean of a  vector 

of autocorrelated observations.

Lahiri (1994) obtained an Edgeworth expansion for studentized M-estimates in lin­

ear regression, with disturbances satisfying Gotze and Hipp’s (1983) conditions. He also 

showed tha t a block-bootstrap can be second order correct, outperforming the normal
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approximation. We consider here a similar nonparametric variance estimate for a much 

more general class of regressors and dependence structures, but our distributional as­

sumptions are significantly stronger. Under Gotze and Hipp’s (1983) assumptions it has 

not been possible yet to obtain expansions for smoothed statistics which estimate pa­

rameters of the whole distribution of a stationary sequence, like variances of estimates of 

regression coefficients or spectral estimates.

We first present our main definitions and assumptions, and some auxiliary results, in 

next section. Then, in Section 2.3 we analyze the asymptotic properties of a nonparamet­

ric estimate of the variance of least squares estimates for linear regression. In Section 2.4 

we consider the joint distribution of the least squares and variance estimates. Then, we 

study the properties of the studentized estimate in Section 2.5. First, we concentrate 

on the studentization problem in a model with only one regressor. Later we cover the 

situation with two regressors (probably one of them an intercept) and from there, the ex­

tension for a general multiple regression seems straightforward, but notationally involved. 

All the proofs can be found at the end of the chapter in three Appendices, together with 

the details of the bivariate regression in a final Appendix.

2.2 Assum ptions and definitions

We assume Gaussian (unobservable) disturbances and nonstochastic regressors, satisfying 

Grenander and Rosenblatt (1957) conditions, with some modifications. Thus, we allow 

for trending and other types of nonstationary regressors. Eicker’s (1967) nonparametric 

convolution estimates tha t we consider are analogous to the class of weighted autocovari­

ance estimates of spectral density, and therefore can be written as a continuous average 

of the periodogram of the observed least squares residuals.

Some restrictions are needed on a user-chosen bandwidth number for the nonpara­

metric smoothing as well as on the dependence structure of the time series. We formulate 

them in terms of summability conditions on the autocovariance sequence of the errors, 

which imply some smoothness properties of the spectral density.
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Let the observable sequence {Y*} be given by the following regression model

Yt = f3Zt +  X t , t =  1 , . . . ,  AT,

where the regressor {Z t} is an observable nonstochastic sequence and {X*} is a stationary 

Gaussian sequence with E[Xt] =  0, autocovariance function 7 and spectral density /(A),

7{j) = E [ X tX t+j}=  j  f ( X ) e ^ d \ ,  
J n

satisfying /(A) < 00, A E II =  (—7r, 7t]. The analysis of this restricted model will be very 

helpful for Section 2.6, where we consider in detail the more interesting situation,

Yt =  otZij + 0^2,t +  X t, t =  1, . . . ,  N.

Here, when Z \tt =  1, we obtain the typical linear regression with intercept.

Let X  = ( X i , . . .  , X n )' be a vector of N  consecutive observations of X t . Then X has 

a multivariate normal distribution A/^O, £/v), with covariance matrix

[E w]r,j =  l { r  -  j ) , r , j  =  1,...,1V .

Denoting Z =  ( Z i , . . . ,  Z ^ ) '  and Y  =  (Yi, . . . ,  Yn )' the classical estimate of /3 is the OLS 

estimate

p  = (z 'z ^ z 'y  =  p  +  (z'z)- 1z'x,

assuming Z'Z > 0. Then we have that (Z 'Z ) l !2{fi — ft) has a normal distribution 

Af(0,Vjv), where

VN = (Z,Z)~1Z ,'En Z = ( z z ? )  E  £  z t z f l (t -  f )  = £  1  U )R nU ),
\ t = 1 /  t= l t’= l j = l - N

and

R n (J )=  ( ± z A  £  z >z <+j’ j  = 0 , ± 1 , . . . , ± ( N  - 1 ) .
\ i= l  J  l< t,t+ j< N  

Let us define the centered and standardized variable

= V ^1/ 2(Z'Z y / H P - 0 ) ,  

which is distributed as a A/^O, 1) variate, and also =  Var[/?] =  Yjv(Z'Z)-1 .
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In a first stage we will consider unfeasible estimates of Vn  constructed with the 

unobserved sequence X t . We will consider later estimates formulated in terms of the 

observable residuals given by X t = Yt — j3Zt .

Defining the unfeasible (biased) estimator of the autocovariance function as

W )  =  4  E  x ‘x ‘+i’ j  = 0 , ± 1 , . . . , ± ( J V - 1 ) ,
1 < t,t+ j< N

we consider the following unfeasible estimate of Vjv based on the weighting function u;,

v N =  x;1 )r n (i )
1=1 - N  X '

1 N N / r _ A

= -^X'Q m X,

where Q m  is the N  X N  matrix

[QmLj = Qm (t — j )  d— Rs(r -  =  RN( r - j )  j ^ K M( X ) e ^ - ^ d \

and K m W  is a kernel function with smoothing number M, defined as the Fourier trans­

form of f°r periodic smoothing in (—7r ,7r]. Here we use the scale-type weights

given by the function u;(-) and by the number M ,  which in the asymptotics is growing 

with the sample size N ,  but slower, to achieve consistency. For the construction of this 

estimate of Vn  we do not require any precise assumption about the asymptotic behaviour 

of the regressors, and it is consistent under regularity conditions for both stationary and 

trending or trigonometric regressors.

The estimate Vn  is basically the proposal of Eicker (1967) when least squares residuals 

are used, see T\ in (1.19), here with general weights u .  Given the Gaussianity of Xt,  this 

class of estimates Vn  is quite appropriate and easy to  handle in our set-up. Estimates of 

the type T3 (see ( 1.20)) are not easily tractable with nonstationary regressors.

Define the function QM as the Fourier transform of Qm ,
1 00 1 00 ✓ • \

Qm W  -  2 ^ E  QMU)eijX =  2? £ " ( £ )  RNU )eiiX.
—  OO — OO '

Using the normalized periodogram of the regressors Z,
/  N  \ _1 N  N

R n W  =  2 * E * < 2 E E
V t=i /  t=1 t'=i
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so that

R n U) =  f  # 7v(A)etjAdA,
J n

it is possible to write QM as a convolution of K m  and of R n ,

Qm W  =  [  ^m (A  -  a)Riv(a)da.
J n

We define the estimates 7 (j)  of the autocovariances and Vn  of Vn  in the same way 

as 7 (j)  and Vn  respectively, but using X t instead of X t . The difference between both 

estimates of the variance of (5 is analyzed in Lemma 2.5.

The function K m  is constructed in the following way. Define, for a sequence of 

positive integers M  =  M n  tending to infinity with N  but slower, and for an even, 

integrable function K  which integrates to one:

00

Km(X) = M £  K(M[\  + 2 j t j ])
j —  —  OO

so K m {A) is periodic of period 27r, even and integrates to 1. Then we have

/oo
etrx K  (x)dx

-O O

and u;(0) =  1. Positive estimates Vn  are guaranteed with positive functions K .

We make the following assumptions about the covariance sequence and spectral den­

sity of {X*}, the asymptotic behaviour of the regressors {Z t} and on the user-chosen 

functions K  and u.  All the limits and error bounds are taken as N  —► 00, unless stated 

otherwise.

A ssu m p tio n  2.1 For an integer d > 2, and 0 < g < 1

00

\j\d+ah U ) \<  °°-
j = — 00

A ssu m p tio n  2.2 The function u  is even, bounded and satisfies u;(0) =  1 and lj( x ) = 0 

for  |x| > 1. K  is bounded, continuous and integrable.

A ssu m p tio n  2.3 The function u  satisfies for an even integer q, 0 < q < d,



A ssu m p tio n  2.4 The regressor sequence {Zt} satisfies as N  —► oo

1. d ^ ^ Z ’ - o o .
t=1

2. m a x ^ -  =  0 ( N ~ P), p 6 ( 0 , l ] .
1 a N

3. R n U ) = d N2 ]C  ZtZt+j p ( j),
l<*,t+j<N

where

PU)  =  f e ^ ( A ) ,
Jtt

and G{ A) is a function with nonnegative increments, continuous from the right, satisfying 

G(7t) — G (—7r) =  1. Further, we assume for the same p,

R n U) =  p(j)  +  0 ( N ~ p/2 +  j  N ~p), uniformly for j  = o(Np).

A ssu m p tio n  2.5 We assume

f  f(X )dG (X )> 0 .
J n

From Assumption 2.1, / (A) has rfth derivative, satisfying a uniform Lipschitz condi­

tion of order g > 0. We use it in all its strength to evaluate the bias of the nonparametric 

estimate. In fact, for most of our analysis, continuity of /(A ) or weaker conditions on the 

summability of the autocovariance sequence are enough. For all our results concerning 

the estimation of the higher order cumulants, d = 0 and g = 1 are sufficient conditions 

(see, e.g., the proof of Lemma 2.4 below).

The bounded support for u  in Assumption 2.2 may be relaxed with enough conditions 

on its tail behaviour, but it simplifies considerably the proofs and many functions used 

in practice satisfy tha t condition. For K  we require only very mild restrictions on its 

tails and continuity. Those imply the integrability and continuity of K m  in (—7r, 7r] for 

all M.

Assumption 2.3 deals with the smoothness of the weighting function around the origin 

and it is employed to estimate the bias of the variance estimate in a similar way as with 

nonparametric spectral density estimates. Assumptions 2.2 and 2.3 are satisfied, for 

example, with q = 2 for the Parzen kernel (Priestley (1981), p. 446).
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Assumption 2.5 guarantee tha t the variance of (3 and of the estimates of Vn  are well 

defined after appropriate normalizations. It holds if we assume /(A ) > 0 for all A.

In Assumption 2.4 we follow Grenander and Rosenblatt (1957), except that we im­

pose rates in terms of 0 ( N ~P) for the limits in conditions 2. and 3., instead of assuming 

simply o(l). The explicit rate in 2. is used to estimate the error in several approxima­

tions. Related conditions have been employed in other higher order asymptotic work for 

regression models, with dependent and independent errors. Our assumption is milder 

(even with p = 1) than the one of Lahiri (1994), who assumed bounded Z* and

lim inf %  > 0, (2.1)
iV—►oo N

SO

max ^ -  = 0 ( N - 1). (2.2)
1 a N

Qumsiyeh (1990) also assumed (2.1) and max* |Z*| = 0 (NS) for some 6 E [0, ^), so the 

left hand side of (2.2) would be 0 ( N 26~1), with — 1 < 28 — 1 < 0. However the condition 

on the max* |Z*| rule out regressors like the polynomials in t , for which 6 can be bigger 

than 1. In this case, if Z* = tn for some n > 0, say, then,

Z 2 N 2n 
m .a x ^ f  ~  772̂ +r =  0 { N ~ l ), 

a N  i ^ + r

where a ~  b means that the ratio a/b is tending to one (as N  —► oo).

The asymptotic error rate in Assumption 2.4.3 is needed for the proof of Lemma 2.2. 

For the intuition on this assumption we first introduce two general conditions on the 

regressors Z tha t include many cases of interest, like ‘stationary’ and polynomial and 

trigonometric regressions.

Condition 2.1 We assume that G(A) is absolutely continuous and

oo
2  IKi)l < °°>

j=-OO

so G(A) has continuous density fif(A).

Condition 2.2 The spectral measure of the regressors, G( A), has jumps and, possibly, an 

absolute continuous part. We assume that the discrete part of G( A) has a fixed number
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of jumps, each of size A j at frequencies X j £ (—7r , 7r], and the continuous part has a 

continuous density gc(A), such that,

E / i + / n 9 W  A =

When we use Assumption 2.4 we will always assume tha t either Condition 2.1 or Con­

dition 2.2 holds. Different and intermediate situations are possible, but we concentrate 

on these two simple cases.

Then for Assumption 2.4.3, first imagine tha t under Condition 2.1 the regressors 

behave roughly like the realization of a stationary and ergodic stochastic process with 

continuous spectral density (see Anderson (1971), pp. 582 and 596). Then, the bound 

0 ( N ~ pf 2) would be equivalent to the term  for the variance of the sample autocovariances 

(with p =  1 under regularity conditions on the moments and the dependence structure 

of the series; see for example Robinson (1991, pp. 1333-1334) for sufficient conditions). 

The error bound 0 ( j  N ~p) corresponds to  the bias term due to the use of biased auto­

covariances.

In the case of Condition 2.2, this condition is satisfied with p — 1 for the trigonometric 

and polynomial regression. For example, take as before, Z* =  tn for some n > 0. Then

N l\Jn+l
E tn = ^ r j  + ° ( N n )’
t=l

and therefore, for j  > 0,

=  — —

^ ( 1  +  0(JV-1))

= 1 + O U N - 1).

From Assumptions 2.1 and 2.4, since -Rjv(i) converges boundedly to p(j)  (see for 

example Hannan (1963b), p. 25), we have tha t, as N  —► oo,
oo .

v v -  E  7 0 > ( i )  =  2 i r /  /(A)dG(A) 
_  J n

< OO.
j n ~ '

J = — OO

Under Condition 2.1 Vn  converges to

2ir f  f(X)g(X)dX 
J n
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and under Condition 2.2 to

2 x ' £  Aj f ( \ j ) + 2w f  f(X)gc(X)dX. (2.3)
•> t/n

Before finishing this section we give two lemmas tha t will be useful in the subsequent 

discussion. First we prove a lemma about the behaviour of the spectral window K m -, 

both in the origin and in the tails, as M  —> oo.

Lemma 2.1 Under Assumption 2.2, as M  —► oo,

K m (0) = M  K(0) + o ( l ) ,

and for all A G (0, it], fixed,

K m { A) = o(l).

Proof o f Lemma 2.1. From the definition of Km-, because K  and u  are even,
oo

M - 1 K m (0) -  isT(O) = 2 Y ,  M  j) .
j = 1

Since K  is integrable, \K(x)\ =  0 ( |x |-1 -e ), e > 0, as |x| —► oo. Then,

oo /  oo \

\K (2 * M j) \  = O j t f - 1- '  £ r 1_e =
3= 1  \  3=1 /

The argument for Km(X),  |A| > 0, is exactly the same, since now as M  —> oo, K (M X )  =  

0 (M -1 -e ) =  o(M ~l ). □

Now it is interesting to study the function Qm ( in the different situations tha t may 

arise as a consequence of the type of regressors. First we will prove that Qm W  converges 

to
1 ^  / * \ [

under the two conditions we consider in Assumption 2.4. Basically we require that the 

sequence R n  converges to the sequence p faster than the kernel function K m  tends to a 

Dirac’s delta as N  —► oo.

Lemma 2.2 Under Assumptions 2.2, 2.4 and M-1 + M 2N ~ P —» 0,

QmW- h w(i)p{i)+o(1)-j = - M  
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P ro o f o f Lem m a 2.2. Under the assumptions of the lemma,

=  o ( m N ~ p/2+ M 2N ~ P>) = o( 1),

M

b=-M v

and the lemma follows. □

This result is related to Helly’s Theorems (see for example Kawata (1972), Theorem 

9.1.2.) about the weak convergence of R n (X) to  (7(A) and the limits

lim /  h(x)R,N(x)dx =  /  h(x)dG (x), 
f-*oo J n J nN

for continuous functions h(x). We can not use here these results directly, because K m  

is not bounded as N  —> oo, and even more, K m (x ) /M  is depending on N  by means of 

M .  Under Condition 2.2 it could seem tha t a bound o(M) would suffice in Lemma 2.2, 

but we will employ later this result to approximate the higher order cumulants of Vn  in 

Lemma 2.6 and in that case the bound o(M ) is not enough.

Then from Lemma 2.2, if Condition 2.1 holds, Qm (^) converges to <7(A) < oo, by the 

continuity of g and using standard arguments. Under Condition 2.2 Qm W  tends to

£  A,-JT*(A -  A,-) +  / (A ) ,

since K m  is continuous for all M  and because gc is continuous too. From here, we can 

see tha t, asymptotically, in the case of a regressor with mixed, continuous and discrete, 

spectral measure, only the jumps will m atter for the analysis of V/v, since the continuous 

part contribution is bounded and the discrete one diverges with M.

One leading example satisfying Condition 2.2 is when Zt = 1, Vt. Then j3 is just then 

sample mean and (7(A) has simply a jump of size 1 in the origin, i.e., dG(X) is a Dirac’s 

delta at zero. Therefore Qm W  is equal to K m {A) and we are in the same situation as 

with the nonparametric estimate of /(0 ). We will consider this framework in the next 

chapter of this thesis under different conditions.
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2.3 D istribution of the estim ate o f the variance

In this section we investigate the asymptotic distribution of the estimation of the variance 

V n -  To tha t end we concentrate first on the unfeasible estimate V n  and then estimate 

the difference between both estimates as N  —► oo.

We begin with a lemma for the bias of V n ,  which is closely related with the results for 

nonparametric estimates of the spectral density. Hannan (1958) studied a bias correction 

for the spectral density estimate after a general form of trend has been removed. When 

a trend is present in the regressors (Condition 2.2), to studentize the OLS estimate we 

only need to estimate the spectral density /  at the correspondent frequencies if known 

(see expression (2.3) with gc =  0). However we do not assume explicitly any structure 

for the regressors.

We focus now on the smoothing bias, and leave the bias due to the use of regression 

residuals to Lemma 2.5.

Lemma 2.3 Under Assumptions 2.1, 2.2, 2.3, 2.4 and M -1 + M N -1 —»• 0,

E[Vn ] - V n  = a N N '1 +  bNM ~ q +  0 ( M ~q~Q),

where on is the bias from the use of the biased autocovariances

N - i  . . v

a N =  ^ 2  I J M
j = l —N  '

and, denoting by f W  the dth derivative o f f ,  bN is the smoothing bias,

bN = —2t t ( - 1)9/ 2o f  f W ( \ ) R N( \ ) d \ .
J n

Next, we study the cumulants of the distribution of VJv, as a first step to approximate 

its distribution. Since X  is normal distributed, the cumulants of Vn  are given by the 

formula for the cumulants of a quadratic form in a vector of normal variables (see for 

example Kendall and Stuart (1969), p. 357),

Cumulants[V/v] =  ^   Trace [(E ^ Q m )s] ,

so we have to  study the trace of the m atrix (E ^ Q m )s as N  —> oo.
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Lem m a 2.4 Under Assumptions 2.1, 2.2, 2.4 and M  1 + M 2N  p —*■ 0, s — 2 ,3 , . . . ,

Trace [(E^Qm )*] =  N ( 2 w f ^ 1f  f ‘ (X)Q’M( \ ) d \  + o (m in  | m s, M 2 ^ . | p ( j ) |
3 —1

where the bound has to be interpreted as 0 { M S) i f  ^2 \p(j)\ diverges and as 0 ( M 2) oth­

erwise, and the leading term is 0 ( N M s~1) in the first case and 0 ( N ) in the second.

The properties of the leading term follow easily from Lemma 2.2. Now we are in 

conditions of estimate the cumulants of V/v. Let us analyze first the variance of V/v. We 

have tha t [with Assumptions 2.1, 2.2, 2.4, 2.5 and M -1 +  N ~ PM 2 -+ 0]

SN,2 =f  Var[yjv] = -JjT race [(EjvQm )2]

Jn f \ X ) Q iM(X)dX + 0 ( N - 2M 2)

N 2
2(2tr f

N

and then the variance 8^,2 can be of order IV- 1  (like in a parametric framework) in 

the smooth dG(A) situation [Condition 2.1], since in this case QN (A) tends to <?(A). 

However, the variance would be only of the ‘nonparametric’ rate M / N  if the function G( A) 

has jumps [Condition 2.2]. In the later case Q n (A) tends to some linear combination 

^2j Aj Am(A — A j ) ,  plus a term of smaller order of magnitude due to the continuous 

contribution to G. Here

r n 2
/  / 2(A) J 2  A ) K M(X -  Xj) d X ~ M  K 2(x)dx  £  .A } f \ X j )  =  O (M ),

J  n  ̂ J y

since the cross-products of two kernels at fixed frequencies apart lead to negligible con­

tributions (cf. Lemma 2.1). Therefore, in this case the estimate has a slower rate of 

convergence, and the constant term of the variance depends on the magnitude of the 

noise at the frequencies where the spectral measure of the regressors has jumps.
^   1/2

Normalizing the estimate V/v by 6N £ , the random variable

u2 = '  (vN -  E[VW]) ,

has zero mean and unit variance. In general, we have tha t [under the same assumptions 

that for the variance], s =  2 , 3 , . . . ,

/c/v[0 ,s ]  d —  Cumulants [712] =  Cumulants [V)v]
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=  6n T  —  5-1 Trace [(EjvQm)8]

=  S ~n ¥  ~  ~1)1 ^ - i 2^ 2" 1 J  r(A )Q M (A )rfA

+ o f o 2/2 iV -m in  { m \ M 2 [ £ . |p ( i ) l
S — 1

Therefore as TV1-5 Jn f s( \ )Q sM( \ ) d \  = 0 (6 Ŝ )  from Lemma 2.2, W2 has higher order 

cumulants of order 0 ( ^ 12̂ 2) = o(l),  5 = 3 , 4 , . . and tends in distribution to aA/^O,1) 

variate.

Using the previous results for the cumulants of Vjv we investigate higher order asymp­

totic features of the distribution of this unfeasible estimate for large samples. As X is 

N (0,XJ;v) distributed, the characteristic function of the normalized variable, u2, is,

- 1 /2

exp { - i t 2E[u2]} .V>(t2) =

We now modify and extend a result of Bentkus and Rudzkis (1982), Theorem 1.2, to 

prove the validity of an Edgeworth expansion for the distribution and density functions 

of u2. They studied the case of the estimate of the spectral density at a fixed frequency 

for a zero mean Gaussian time series.

Bentkus and Rudzkis (1982) use the following result from Feller (1971) and Petrov 

(1975). Let a random variable ca> with E[ca] = 0, Var[<TA] =  1 satisfy

|Cumulants[<rA]| < s\ H  A2_s, 5 = 3 , 4 , . . . ,  (2.4)

where H and A are positive numbers, A —► oo. Then, if for some a, 0 < a < (1 + 2 if)-1 ,

\ip(t)\dt =  <9(A- r )> r > 2,
S \t\' | t |> a A

where ^  is the characteristic function of <ta, the density of ca exists and the Edgeworth 

expansions up to order 0 (A 1-r) for the density and distribution function of <ta are valid.

Concentrating on an expansion of second order, i.e., up to and including terms 0 ( 8 ^ \)  

we can obtain the following theorem (further higher order terms are possible from the 

proof):
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Theorem 2.1 Under Assumptions 2.1, 2.2, 2.4, 2.5 and M ~ l +  M 2N ~ P —*■ 0, the dis­

tribution function of U2 , F(x), has density F'(x), and they satisfy, uniformly with respect 

to x,

F{x)  =  $(&) +  ^ kn [0,3](1 -  x2)4>(x ) +  0(SN,2)

and

F'(x) = <f>(x) +  i«iv[0,3](x3 -  3x)<f>(x) +  0(6n,2), 
b

where $  and (f> are the distribution function and density, respectively, of a standard 

Gaussian random variable.

This result simplifies to Bentkus and Rudzkis’s Theorem 1.2 with Zt = 1, Vi, and 

can be used directly if we assume that E[Xt] =  0. In the general case we face two 

problems. First, we can not calculate in practice Vn , only Vn  (since (3 is unknown and 

we do not observe the disturbances Xt),  so we have to evaluate the difference between 

using the random variables X t  or the OLS residuals Xt.  The second problem is that, 

even in the case where the previous Edgeworth expansion refers to a feasible statistic, 

we would need to estimate the higher order cumulants, the variance and the bias of Vn , 

with negligible asymptotic error, not to make the contribution of the terms of smaller 

magnitude meaningless with respect to the error term.

Using the previous results for Vn  we can approximate to first order the distribution 

of Vn  after evaluating the effect of the residuals estimation. Later we will consider the 

studentization of the regression coefficient estimate. For the approximation of Vn  by Vn 

we use the techniques developed for the evaluation of the cumulants of U2 . This also will 

allow us to obtain a result about the bias of the estimate of the variance, parallel to that 

of Hannan (1958) for the bias of the spectral density estimate.

Lemma 2.5 Under Assumptions 2.1, 2.2, 2.4, 2.5 and M ~ l -f M 2N ~ P —► 0,

V n  =  V n  +  Sn, 2 &v, 

where £n is a> random variable with bounded moments of all orders, and 

E[SN,2 M  ~  J  (2 t tVn  f  }{X)QM{ \ ) R N( \ ) d \  — 4ir /  j ( \ ) Q M(X)RN { X ) d \ \ . (2.5)
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We can now evaluate the bias term (2.5). W ith Lemma 2.2 and Condition 2.1 the 

right hand side of expression (2.5) times N  tends to

(2tt)2 /  f(X)g(X)dX f  f(X )g2(X)dX — Aw f  f(X )g2(X)dX,
J n J n J n

and under Condition 2.2, neglecting the continuous part of dG and the cross products of 

kernels K m  centered at different frequencies, to

(2*)2M iir(0) £

From Theorem 2.1 and Lemmas 2.3 and 2.5 it is immediate to obtain a central limit 

theorem for the feasible estimate Vn -

Theorem 2.2 Under Assumptions 2.1, 2.2, 2.4, 2.5 and M -1 +  M 2N ~ P —► 0,

Var[Viv]1/2 {V V  -  £ {v W ]}  v  N { 0 ,1 ) ,

with Var[V)v] ~  f>N,2- We can substitute E{Vn ] by Vn , i f  additionally N  M ~ 2q —► 0 under 

Condition 2.1 or i f  N  M ~ l ~2q —> 0 under Condition 2.2.

Exactly as in the case of many nonparametric estimation problems, we could propose 

an optimal choice for the bandwidth M  in terms of minimizing of the leading term of the 

asymptotic Mean Square Error of the estimate Vn - The situation under Condition 2.2 

is equivalent to the nonparametric estimation of the spectral density /  (since then the 

leading term of the variance Vn  is a linear combination of the values of the spectral 

density at certain frequencies). However, under Condition 2.1, the results are quite 

different, since the rate of convergence of the estimate is now root-lV (not depending 

on M ), so the optimal choice of M  should be the one minimizing the bias, given the 

restriction N ~ PM 2 -* 0.

2.4 Joint distribution o f the regression and variance esti­

m ates

In this section we give several results about the joint distribution of j3 and Vn , that will 

be used in next section for the analysis of the distribution of the studentized version of

Mi.
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Since X  is AẐ O, £/v) distributed, the joint characteristic function of the vector of 

standardized variables, u =  (u\,U 2 ), is given by, t  =  { t \ , t 2 )‘,

- 1/2

t )  = I -  ^ % S / vQm

x exp < \ t \  V^d~N2 Z ' f l  -  Z N Z  -
\  2 /

To analyze the joint distribution of u we first study the cross cumulants between 

the normalized variables U\ and U2 . Given the Gaussianity of the vector X , the (2, 5) 

cross-cumulants are the only ones different from zero,

def
r S / 2

_  N,2
2 
N

K7v[2,«s] = Cumulant2,s[ui,u2] = T/ 2ss \Z ,('En Q m )sV n Z
N sd%VN

Let us study the expression d̂ v2Z/(E ^ Q M )s5]^Z using the techniques we developed for 

the analysis of Trace[(£;vQM)5] in Lemma 2.4.

L em m a 2.6 Under Assumptions 2.1, 2.2, 2.4 and M ~ l +  M 2N ~ P —► 0, s =  2 , 3 , . . . ,

- ^ - Z ' ( E w Q M ) s S N Z  =  ( 2 7 T ) 2 * + 1  f  r +1(X)Q“M(X)RN(X)dX 
a™ J n

+ O ^ A T p min j  M S+1, M 2 

where the bound has to be interpreted as in Lemma 2.4.

s— 1

Then we can conclude that [with Assumptions 2.1, 2.2, 2.4, 2.5, M  1 +  N ~ PM 2 —> 0],

; S / 2(2n)2s+1S~s/ r_______ _ _
k jv [ m  =  Jn f ‘+1(x )Q M W R N (X )dx

E ^ 0 ' ) l

■ s / 2

+ 0 | - ^ m h J M » + \ . M 2

(2.6)

where under Condition 2.1, expression (2.6) is 

5 ! ( 4 t t ) s / 2
N s/2 [Jn f(X)g(X)dx] ' [ j f / W ( A ) d A ]  Ji i f ‘+1(X)g‘+1(X)dX
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and under Condition 2.2

M \ s!'1 t  —1 r /* 1 — s / 2- )  s \(i^  £.*,■/(*>)] ^(0)EiAr 1/’+1(Ai).
We use a more general approach in this section than in the previous one to justify 

our asymptotic expansions. Chapter 3 will follow the same lines for the sample mean 

under different assumptions. In order to prove the validity of an Edgeworth expansion 

for the joint distribution of the vector u  we have to check tha t the characteristic function 

of tha t expansion approximates well the true characteristic function. We do this in two 

steps. First, using the previous results on the cumulants of u  we can check that the 

approximation for ^ ( t )  inside a circle, with radius going to infinity with N ,  has an error 

of the desired order of magnitude. And second, we have to  see that the contribution of 

the tails of ip(t) is negligible outside this circle. After this, we are in conditions to use 

a smoothing lemma which will measure the difference between the true distribution and 

the Edgeworth series approximation.

Let us start constructing the approximation for As in Taniguchi (1987, pp. 11- 

14), using the fact that only the cumulants of the form /c/v[0>s] and kjv[2,5] are different 

from zero, we can write the generating cumulant function as ( r  =  1,2, . . . ) ,

lo g ^ (t)  =  h \ i t \ \2 +  J] i  - ^ —rKN lr u r 2 \( iti)r i(it2y 2 + R n ( t )
z  s = 3  | r |= s  1 2 '

+1 1 r s(s —!)___ rn „ \2( 1 4  \ S - 2k n [0 ,s ](^ 2)s +  — - — «at[0 ,5-2](«< i) ( i t2y
1 / 'ri 1 

= IlNI’+ E jf
5 = 3

+R n( t ) ,  (2.7)

where the vector r is of the form (r*i,r2), with rj 6 {0,2}, and |r| = T\ + r2, and the 

remaining term R n  is of this form, if r  is even:

Rn (t ) = RN[Q,T+2](it2)T+2 + RN [2,T]{iti)2{it2)T,

or of this other form, if r  is odd:

R n (t ) = KN[0,r+2](it2)T+2 + (r + 2Kr + 1) /CiVp ,r ] (^ i )2(^ 2)T
(r  + 2)!
+ J7 /v [0 ,t+ 3 ](iJ2)71*3 +  .Rjv[2,T+1](*^i)2(^ 2)t ^1» 

2) / 2 ,where the i2jv[*»i] are )•
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We are interested in obtain an approximation for the characteristic function of the 

vector u  from its cumulant generating function. This approximation, A( t , r )  say, should 

have leading term e x p { |||i t ||2}, multiplied by a polynomial in t ,  depending on the higher 

order cumulants of u. For general r ,  this approximation has this general form

A ( t , r )  =  e x p | i | | i t | | 2 | i + E E I I
r + i  t +2 JK7V[0j5 ] ( ^ 2)* +  £ i^U «;7V[ 0 ,5 - 2 ] ( i / i ) 2( i t2 ) s"2

r n  -i

r3! - - - rT+2!j = 3 r  n = 3

where r  =  (7*3, . . . ,  rT+2), rn E {0, 1, . . . }  and the summation extends for all the vectors r  

tha t satisfy the condition
T + l

5 ^ ( n - 2 ) r n =  ; - 2 ,
71=3

so each summand in j  would be a polynomial in t with coefficients 0 ( £ ^ 22̂ 2) depending 

on the cumulants of u.

For our purposes, we will justify a second order Edgeworth expansion, with r  =  2. 

That is, including in A{t , 2)  terms up to order 0 ( ^ / 2)  approximate the distribution 

of u with error 0( ^ , 2)• Applying the general formula we get

A(t,2) = exp { I | |* | |2} 1 +  KN [0,3](it2)3 +  Zkn [2, l](iti)2 (it2j\ .

The next lemma measures the accuracy of this approximation for the characteristic func­

tion.

L em m a 2.7 Under Assumptions 2.1, 2.2, 2.4, 2.5 and Af-1 +  M 2N ~ P —► 0, there exists 

a positive number Ci > 0 such that, for  ||t|| < Ci^jv*/2 and a num^er d\ > 0:

IV»(t) — v4(t, 2)1 < ex p {—d i||t | |2}F (||t||)0 (£ jv ,2 ) (2.8)

where F  is a polynomial in t with bounded coefficients.

Having approximated the characteristic function for values of t such tha t ||t|| <

Ci^jv,2 » following step is to study the behaviour of this function in the tails. By con­

struction of the Edgeworth expansion, based on the normal distribution, the contribution 

of the tails of its characteristic function can be always neglected.
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Lem m a 2.8 Under Assumptions 2.1, 2.2, 2.4, 2.5 and M  1 +  M 2N  p —► 0, there exists

a positive constant > 0 such that for ||t|| > Ci^v,2>

W*i,*2)| < exp { - ^ 2 ^ 2/2} • (2*9)

The next goal is to estimate the distribution of the vector u from the approximation to 

its characteristic function. To measure the distance between the true distribution and the 

Edgeworth expansion distribution, we apply a Smoothing Lemma due to Bhattacharya 

and Rao (1975, pp. 97-98, 113) and referenced in Taniguchi (1987, p. 18).

Lemma 2.9 (Bhattacharya and Rao) Let P  and T be probability measures on 9ft2 

and B 2 the class of all Borel subsets o/9ft2. Let a  be a positive number. Then there exists 

a kernel probability measure ^ a such that

sup IP (B )  -  r(B )\ < I i k p  -  r ) * « a || +  \  sup r{ (9 £ )2“ }
BeB2 * 6 BeB2

where satisfies

t a(B (0,r)«) = < ? ( ( £ ) * )  (2.10)

and its Fourier transform satisfies

= 0 for  ||t|| > 8 • 24/3/7r1/3a . (2.11)

(dB )2a is a neighbourhood of radius 2a of the boundary of B ,  || || is the variation norm 

of a measure in this case, and ★ means convolution. □

Introduce the notation, B  G B2, 

Pn {B }  =  Prob{u e B }

1 +  ^y{^Ar[°,3] -ff3(u 2 )+ « jv [2 ,1 ] H 2( u i ) H i ( u 2)} du

= f  M u)QN\u)duy (2-12)J B

say, where <̂>2(u ) is the density of the bivariate normal distribution and Hj(-) are the 

univariate Hermite Polynomials (bivariate ones are not needed since the covariance matrix 

is diagonal). The measure r ( 2){*} corresponds to the characteristic function A(t ,2).  As 

a direct application of the previous lemma, we get
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Lem m a 2.10 Under Assumptions 2.1, 2.2, 2.4, 2.5 and M  1 + M 2N  p —> 0, for  a/v =

{f*Na)p> i / 2 < P <  i ;

sup |i>jv(B) -  r<2>(B)| =  o ( f $ )  + i  sup r<2> { (9 5 )20" }  .
B e B 2 '  '  O B e B 2  ̂ J

2.5 Approxim ation for the distribution of the studentized  

estim ate

In this section we obtain an Edgeworth expansion for the distribution of the studentized 

least squares estimate, with the estimate Vn  using the regression residuals X t . First, we 

obtain a linear stochastic approximation to the studentized OLS estimate of the regression 

coefficient and prove tha t it is correct up to order o(6 ^22).

At this point it is necessary to make some additional assumption about the relation 
1 /2between S ^ 2 and M .  We will assume

lim inf Sl(l M" > 0. (2.13)
N —t-OO ’

This guarantees that the bias of Vn  (or Vn ) for Vn  is at most of the same order than the
1 /2standard deviation of Vn , the above limit diverges, then the bias is negligible with

respect to the standard deviation. Note tha t under Condition 2.2 it is possible to propose 

an optimal choice of M  from the mean square error of the estimate Vn  point of view, 

but this is not so simple under Condition 2.1. In any case we would need the condition 

M 2N ~ p —> 0 to be satisfied, which together with (2.13) requires under Condition 2.1,

1
P >  ~

q

and under Condition 2.2
2

P > 2q + l

Then we introduce the following assumption:

A ssu m p tio n  2.6 We assume simultaneously (2.13) and that the parameter p is big 

enough so that M ~ l +  M 2N ~ P —► 0 as N  —> oo.
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In the expression for the bias from Lemma 2.3 we can always neglect the term  in ajy, 

since this is 0 ( N ~ 1) and the standard deviation of Vn  never decreases faster than iV-1/ 2.

We write the studentized estimate of the regression coefficient in the following way,

Yn  = ' V ^ / 2 dN ( p - l 3 )

= ui ^1 + B n  ■+- A n  +  >

where B n  is the bias term, defining b'N =

B n  = V n 1 (e[VV] -  VN) =  b'NM->  +  +  N ~ l ),

and A n  is the residuals effect,

A n  =  Zn V ^ S n # ,

where the random variable £n  has moments of all orders from Lemma 2.5. Define 

h N  =  ( l  +  B n ) - 1/ 2 = 1 -  ^b'N M - "  +  0 ( M ~ q- ‘  +  1V"1).

Setting a neighbourhood of the origin

SIn =  {u  : |ut-| < 0 < fi < 1/ 6, i = 1, 2} ,

where c; are some fixed constants, we can expand the studentized estimate of the re­

gression coefficient, Y n ,  in terms of the normalized variable u around 0 in Qn,  with 

1*1 < 1,

Yn  = hNui -

+ g ( l  +  B n  +  [AnO +  ^ n 1 ^n,2 u‘̂ \ *) wi A Y n 1 u2 ^n ^

= - ^ Ul0 ( M - q- e + N - 1)

- ^ u i u 2 V n X6 ) l *2 -  i u iA n  +  ui [.An  +  0 ( M ~ q)

+  g ( l  +  Bn  +  [4 /v  +  Yn 1 n̂ '̂ ,u \̂ * ) \An  +  YN lu2blĴ 2 

= 1*1 -  \V n U iM ~ 9 +  ^ ( 1 )^ ,2

~ 2 UlU2^ N 1^ N a  +  W n (2 )S n ,2 +  W n (3 )S n ,2 

+ W n ( 4 )6 n ,2

=  Ui  -  -  ^ u i U 2 V ^ 6 ] ^ 2 +  W n SN ,2

— Yn  +  W n 8 n,2 ,
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c— 1
°N, 2 ’

say, where
4

w n  = J 2 W nU ),
j = 1

and the error terms are

W iv(l) = - i « i  +  iV- ' ) ^ 2

Wjv(2) = -g U iA jv ^ J ,

WV(3) = [Aa, +  u2 V f f H ^  0 ( S ^ { 2)

W N{4) = |  ( l  +  Bjv +  Ajv0! +  V ^ i ] i l u ^ y 5 1 2  u\ [As + V ^ u ^ l

and

=  “ 1 -

In general, the bias problem could be neglected up to first order if we assume enough 

degree of undersmoothing (M  big enough) in the nonparametric estimate V/y.

Now we use a similar lemma to Taniguchi (1987, Lemma 4), which is a direct modi­

fication of Chibisov (1972, Theorem 2), to  prove that we can neglect the remainder term 

Wn  when we approximate the distribution of Yn  by tha t of Yfr.

Lemma 2.11 (Chibisov, 1972) Let Y t  be a random variable which has a stochastic 

expansion as T  —► oo,

Yt  = yJ.2) + T~1i T,

where the distribution o f Yp has the following Edgeworth expansion:

P { Y ^  G B } = J  4{x)p l(x)dx  +  o tT -1/2),

where B  6 B, the class of Borel sets of V} satisfying

sup f  (f>(x)p2 (d)dx =  0 (8 ) .  (2-14)
BeB0 J(dB)£

Also satisfies

n i f x l  > Pt V t } = o (T -1/ 2),

where px  —► 0, p x T 1/ 2 —̂ oo as T  —> oo. Then

P{Yt  E B }  = f  (j)(x)pl(x)dx +  o(T_1/2),
Jb

for B  E B0.
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Lem m a 2.12 Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, Yn  has the same
1/2Edgeworth expansion as Yfr for convex sets up to the order S2 N .

The next step is to calculate an Edgeworth expansion for the distribution of Yj^ from 

tha t of u. This expansion will be valid for Yn  up to order 0 ( 6 ^ 22). We follow mainly 

Taniguchi (1987, Section 6). Consider the transformation

s =
(

\
= ®(u)

U2

and its inverse
u \ { s i , s 2)

U2

where we can write, using (1 +  x)-1 =  1 — x +  x 2 — x 3  -\----- , for |x| < 1, uniformly in H/v,
\

< (s )  = si 1 + lb 'NM - i  + ±u2 Vn 6 1 ' 2N, 2 + ° ( 6N,I ) ’ (2.15)

where the truncation of the term in s \s 2 0 (6 n,2 ) with error o(6 ^ 22) is allowed due to the 

definition of the set ft/v- Writing for convex sets C

Prob {Yn  e C }  = Prob {u  E * _1(C x R)}

as in Taniguchi (1987, p. 22), it follows from Lemma 2.10 tha t (as ^  is a C°° mapping

on fIn ),

sup2 1 Prob {u E tf_1(C x 5?)} -  { tf_1(C x » )} |

= 0( ^ 2) +  const, sup r<2) U d ^ ~ l {C X R))2ow} , (2.16)
ceB2 1 J

where aw =  (£jv,2)p» 1/2 < p < 1. Also, from the continuity of we can obtain, for

some c > 0,

r (2> x R))2*"}  < r (2) x » ))}  (2.17)

and

r<2) / ( $  !(CxK))} = f

Jn
<h(V 1(s)) |J |d s  + o(<$ * ) ,

in*Nn{CxSt}
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where </>2(-) is the bivariate standard normal density, Ofa = ^(fi/v) and | J\ is the Jacobian 

of the transformation.

Then we can obtain, if P j ( s )  denote polynomials not depending on N  or M  

x  » ) }  =  ^ ^ 2 { s ) [ l  + Pi(s)6^ l+ p 2( s )M- q]ds+o(6]jl)

= Jc ^ M y j ^ . + p 1 (s)51^ 2 +p2(s)M-^<f)(s2)ds2^ds1 + o(6 l l l )

= Jc <f>(si) 1 +  n(si)<5j/ (2 +  r 2( s i ) A f 9] dsi +  0 (6 ^ ) ,

where r j( s i)  are polynomials on si independent of N .  Since we have that

JS M  = « ( * $ )

£[«?] =  E [ u \ -  Vn M ~ H \  -  ttfujVjvf $ ]  +  o{S]i l )  =  1 -  b'N M - "  +  o ( « $ )

£[«?] = E  

it can be seen that

uf -  \b'NM - " u \  -  u \u 2 VN 6 $ ]  +  o{S% )  =  0 (6 % ) ,

T \ ( x ) ~  0

r2 {x) =  -& 5 v ~ rr~

So we have obtained our main result, remembering (2.16), (2.17) and Lemma 2.12:

T h e o re m  2.3 Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, for convex sets C  G B 

and aw  =  {8 n,2 )p, 1/2 < p < 1,

sup
c

ProbfYjq G C} — [  <f>{x) [1 +  r2 (x )M  9] dx 
Jc

= |  sup f  cq <f>(x) [1 +  r2 (x )M ~ q] dx +  0 (6 $ )
O fj J I yo ] Nc  J(dC)caN

and, in particular, for the distribution function (C =  (—00, y\):

sup 
2/e£

Prob{YN < y} -  I  <f>(x) [l +  r 2 (x )M  9] dx
J —00

-  ° ( ^ r e ­

integrating this last expression and making a Taylor expansion of the standard nor­

mal distribution function, $(y), we can get uniformly in y , under the conditions of
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Theorem 2.3:

Prob{YN < y }  = *(y) + l<H.y)t>'N M -*  + o(6 t f 2)

=  * ( y + f M r « ) + o ( 0

=  * (y )  +  0 ( « $ ) .

These expressions can be used to construct Edgeworth size corrections for tests of signif­

icance of the OLS estimates in the same spirit as Magee (1989) did for GLS estimates 

with a parametric AR(1) model for the disturbances.

2.6 M ultiple regression

In this section we consider the extension of the previous analysis to the two regressors 

framework. The model is now

Yt = a Z i j  +  (3%2,t +  X t,  f =  1 ,...,1V , (2.18)

where {Zi,*}, i =  1,2 are two observable non-stochastic sequences, which we assume 

satisfy a natural extension of Assumption 2.4, with equivalent interpretation:

A ssu m p tio n  2.7 The regressor sequences {Z ij} ,  i = 1,2 satisfy as N  —>• oo,

• 1 .

d l N = f ' Z Zh -  °°-
t= 1

• 2 .
z?

max = 0 ( N ~ Pi), p{ € (0,1].
* i ,N

• 3. For r = 0, ± 1 , . . . ,

R ij(r )  d= (di.Ndj.N) - 1 £  Zi,,Zj,t+r
1 < t , t + r < N

= f t j 'M  +  +  rA rto + w )/2).

• 4. The matrix p(0) = {a,j(0), i , j  =  1,2} is nonsingular.
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We define the regression spectral measure G(A) as the 2 x 2  Hermitian matrix satisfying,

p( j )=  / V ’AdG(A),
J  7r

where G(A) has nonnegative definite increments, is continuous from the right, and satis­

fies G (7r) — G (—7r) = 1.

Now R i j ( r ) =  R j ti ( —r ) and the same holds for the p sequences. Therefore, the Ri,i(r)  

are even, i = 1,2, but Ri,j {r ) are not, i ^  j .  The rate in Assumption 2.7.3 is also used 

to simplify the approximations when pi,2(0) = 0.

The OLS estimate of (3 satisfies

3 EZi(Z2, , - z 2z ht)Yt 
Z { L i(Z 2 ,t -  Z i Z i J Z v ’

where Z 2 is the regression coefficient between the two regressors,

a l  ,N  t=1

and
j  (o m __ J2 tLiiz 2,t -  z 2z lft) x t
d2,N{P - P ) ~  , - 1  (7------ 7  * (2'2°)

“2,7V 2^t=UZ2,< -  ^2^1,tj^2)<

The leading example is the regression with intercept, where Z i(t =  1, Vt. Then Z 2 is just 

the sample mean of Z 2,t- We deal with the general case, but this particular example will 

be considered several times.

Also, we can see tha t the generalization to multiple regression models does not require 

new ideas, since in our approach we concentrate on the estimation of the variance for 

each coefficient estimate separately. To tha t end, instead of Z 2Z \ j ,  we should write in 

(2.19) and (2.20) the value of the projection of Z 2j  on the other regressors, and given 

Assumption 2.7.4 the analysis would follow the same lines as for the bivariate regression. 

The consideration of the distribution of the whole covariance m atrix of a general vector 

of coefficient estimates would require multivariate Edgeworth expansions and it is not an 

immediate generalization of our analysis. One simplified approach is to work with fixed 

linear combinations of the vector of least squares estimates.

The denominator in (2.20) can be written as

/  fv 'N . z, , z „ , \ 2\
= d2iN( l - R l t2( 0 ) ) ^  0 0 ,

N  _
d2\ i  Y X Z u  -  Z 2 Z i j ) Z 2j  = d2iN

t= 1

{2-stLi Z \,tZ 2 ,t)
H2 d2a l,iV a 2,iV j
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since 1 — R \  2(0) > 0 as N  —► oo, from Assumption 2.7.4. Operating in the numerator of 

(2 .20),

A -  1 E &1 Zv X ,  R lt2(0) E fa l  Zu X t
^  P) (1 -  JJj2,2(0)) d,,N ( l - * ? , 2(0)) dhN

=  r i - ^ G ro)) [T2’w ~ ^ ’2(0)Tl-w1’ ( 2 - 2 1 )

say, where T*,# z =  1,2 are two linear forms of the vector X  on the normalized regression 

vectors Z \  and Z£, Z* =  d ^ Z ,-, and the normalized OLS estimate is a linear combination 

of them with coefficients depending on the sample correlation between the two regressors, 

# 1,2(0). Then the analysis is not different from the univariate regressor situation, the 

only new feature being the cross terms between the two linear forms. As we saw before 

for the univariate situation,

Var[T,- N] Vi,N =  £  l i M U i ) ,  
j = l - N

and
TV TV

Cov[T1,JV,T 2,Ar]'W  y iv v  = (dhNd2 tN) - 1 Y i ' £ z ht'r(’' - t ) Z 2 ,r
t= l r= l 

TV—1

=  (^ 1,TV̂ 2 ,TV) - 1  ^ 2  l U ) ^ 2  Z h t Z 2,t+j
j = l - N  t

= ^ 2  i (J )R i , 2 U )=  J 2
j = l —TV j = l —N

since 7 ( j)  is even. Compiling results and using the same notation as in the previous case,

VN V  V a r i e s  - 13)]

V i , N  +  R l j f Q W l . N  -  2 J ? i ,2 ( 0 ) V 'i2iw  

TV-1

(1 -  < 2(0))2

(l _ I  v-.y E  7(J) {*2,200 + iJ?,2(0 )fJ i,i(j)-2JJ i,2(0)^ll2( i) }
\ 1,2\ )) j =i —N

TV-1

(1 -  R l 2(0))2 7 0 ‘)S’w a ) . (2-22)

say, where Sn U) is observable and only depends on the regressor sequences. From (2.21) 

we may look at the normalized estimate in another useful way. Defining



we have that
N

d2,w O §-/?) =  X > X < =  H 'X ’
t = 1

with the vector H  = ( h i , . . . ,  h x ) '  and ht satisfying

N 1r /,2 _  1

Then, we are in a univariate set-up, since (2.22) is valid with the normalized regressors 

ht , defining for j  =  0, ± 1, . . . ,

5 Jv (j)  =  ( i - jr?,2(0))2 E  M h ;  =  ( i - £ 1,2(0 )) ( f > ? )  2  htht+j.
l < t , t + j < N  \ t = l  /

The normalization is not exact now by the factor 0 < 1 — R \  2(0) < 1. In ht we consider 

the cross effects between the different regressors. Now, defining similarly as with the 

functions R n , the real periodogram of the observables ht (up to a normalization) S n (^), 

we have that

Sn W  = ~ : E  s N(j)e‘» >  0,
t = l —N

from Assumption 2.7.4 and S n ( \ )  is also integrable since

f  S N(X)dX = SN(0) = 1 -  R \  2(0) <  1.
J  n

We are going to concentrate in certain special situations. The different sets of condi­

tions we will consider are the following:

• Case A. Both regressors satisfy Condition 2.1. We assume also that the series 

pi,j(r) and Ri,j(r) are absolutely summable.

• Case B. Both regressors satisfy Condition 2.2, with regression measures with null 

continuous part. Then ^1,2(0) will only be different from zero if the regression 

spectra share at least one frequency. Let us denote as A zj( r )  the jump at frequency 

Ar for the function dGij(X).

• Case C. The first regressor satisfies Condition 2.2 [with regression measures with 

null continuous part] and the second, Condition 2.1. We assume that pi,j{t) =  0, 

W, i ^ j ,  and this limit is approached with the rate imposed in Assumption 2.7.3.
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Case C is a simplified situation but interesting since it includes the case of mean 

correction, Z\t — 1 with stationary Z2>t- The coefficients S n U )  inherit the summa- 

bility properties of its components R n U )  in (2.22), in fact, the mildest ones when the 

regressors satisfy different sets of conditions. When both regressors are of the same type, 

we assume in Cases A and B that the sequences p ij ,  i ^ j  have the same properties as 

Pi,ti i =  1»2.

In Case A , Vn  defined in (2.22) tends to

(1 - p \ 2(0))2 In ^  l52’2̂  + Pb(°)Si.i(A) - 2ft,2(0)51,2(A)| dX.

In Case B, with both sequences satisfying Condition 2.2 and Z \s>t =  1, £1,2(0) would 

be only different from zero if the spectral distribution function of the second regressor 

Z 2 has a jump at the zero frequency, since in this case the spectral measure of Z\  has all 

its power at the origin. In this concrete situation, the variance in (2.22) is now tending 

to, with A j* = 0,

O <jr
( l _ p2 2(0))2[ S j A 22(.?)/(Ai) +  />;,2(0)A ii(j*)/(0) -  2pw (0)A laU *)/(0 )  

and if £1,2(0) =  0 this is just the variance in the univariate case.

In Case C, we study the case of regressors like Z \ it =  1, when we only make a mean 

correction for Yt. Since />i,2(0) = 0, we are in the same situation as in the univariate case 

and (2.22) converges to

2?r /  f(X)g2,2(X)dX.
J n

Now we can construct the two estimates of V n  we have considered previously, using 

Sn  instead of R n - As before, we can study first the unfeasible estimate Vn  and then 

approximate the distribution of V n -  We work with exactly the same definitions for the 

function Qm  and its Fourier Transform QM and for the matrix Q Mi but employing now 

S n  where we had previously R n -  Like in the one regressor framework, the different 

behaviours of the regressors will determine the properties of the estimates of the variance 

by means of the function Qm- Again, we do not use extra information about the regressors 

when we compute the estimates of V n -

A wide combination of outcomes is possible, but the general conclusion is that the 

general higher order results of previous sections for the univariate case go through for
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multiple regression set-ups with the obvious modifications. Defining for the model (2.18)

Yn  = V ^ 1/ 2 d2,N0  -  /}),

P given by (2.19) and Vn  defined as before with <Sjv(i)/(l — # i ,2(0))2 instead of R n U ) i 

and rm(x), bn  and b'N as before, with S n (X) in the place of R n {A), we discuss the main 

differences and some particular cases in an Appendix (see Section 2.11). So we obtain 

finally:

T h e o re m  2.4 Under Assumptions 2.1, 2.2, 2.3, 2.5, 2.6 and 2.7, the conclusions of 

Theorem 2.3 hold.

2.7 Conclusions

From the discussion in Section 2.6, we concluded tha t all the previous results hold for 

the two regressors situation (Cases A, B and C) under the multivariate version of the 

Grenander conditions in Assumption 2.7. A complete multivariate version of the results 

could be obtained, considering fixed linear combinations of the least squares coefficients, 

or by means of multivariate Edgeworth expansions.

The consideration of more general set-ups than Conditions 2.1 or 2.2 should be pos­

sible, but these conditions may lead to not easy interpretable conclusions. Of specially 

interest are the limits for the function in these circumstances. This is related to the 

rates in Assumptions 2.4 and 2.7, necessary due to the presence of the smoothing param­

eter M  tending to infinity with the sample size, and which makes impossible application 

of standard results on weak convergence of spectral measures.

We can make the following points:

• Although the rate of convergence of the least squares regression estimate is deter­

mined by dN,2? this does not affect directly the rate of convergence of the estimate 

of the variance Vn , \ f N  or y /N /M , depending on the possible nonstationary prop­

erties of the regressor at hand.

• The lag number M  may not affect the variance of Vn , but will always decide the 

magnitude of the bias. This asymmetry under certain conditions makes unsuitable
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the typical bandwidth choice criterion based on minimization of the asymptotic 

mean square error. The leading term in the bias depends on the derivatives of 

the spectral density of the noise sequence, as in many nonparametric problems, 

weighted by the regression spectrum.

• The error incorporated in the estimation of Vn  from the residuals of the least 

squares estimation is of order 6 n,2 and its asymptotic rate does not depend on d,Nt2  

directly (as occur with the rate of convergence of Vn  itself).

• When more than one regressor is present, the same conclusions apply, and the rate 

of convergence of the estimates of the other regression coefficients has not influence 

in Vn -

• In the Edgeworth expansion for the distribution of the studentized estimate of /?
1/2the only factor up to order tha t matters is the bias, due to the symmetry of 

the distribution of X t. Therefore, the normal approximation for the studentized 

estimate is correct up to order 0 (6^ 22), but assuming enough undersmoothing to 

reduce bias, errors of magnitude 0( ^ / 2) are P°ssible (see condition (2.13)). Cor­

rections for the kurtosis (of 6 2 ,N magnitude) are possible considering the residual 

estimation effect in the linearization of the studentized estimate. We pursue this 

approach further in next chapter for the sample mean and nonparametric estimates 

of the spectral density at the origin.

• From Taniguchi’s (1991, pp. 58-61) discussion, we can conclude tha t the studentiza- 

tion with the nonparametric estimate Vn  will affect some second-order asymptotic 

optimality properties of the standardized least squares estimate. Further research is 

desirable in order to compare the properties of studentized least squares estimates 

with respect to asymptotically optimal (studentized) generalized least squares ones, 

based on nonparametric estimates of the disturbances spectral density.
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2.8 Appendix: Proofs o f Section 2.3

P ro o f  o f  L em m a 2.3. First, in Assumption 2.3, if is the gth derivative of u ,

< » (0 )  . n 
Uq -  /  0,

at the same time tha t all the other derivatives evaluated at the origin of smaller order 

than q are zero. Then, from the definition of the function K , for even q,

and

WM (0) = ( - 1)’/ 2 j  K (x )x qdx, 

J  K (x )x rdx =  0, 0 < r  < 9,

for integer r [for odd r this is implied also for the evenness of K], The typical case will 

be q =  2, which allows a positive K  (see, for example, Anderson (1971), p. 523, for a 

further discussion). Next,

N~x r -
Vn  = £  l ( j ) R N(j)  =  27T /  f ( X ) R N(X)dX,

3 = 1  - N  ■'n

since R n U) — 0 for all j  > N ,  and

E[VN] =  7 (r -  g )RN{r -  g)
r = 1 5 = 1  

N - 1

= E [1_
j = l —N  J v '

N - 1 ,  • v

£  “ I ' m ) 7 0 ) R n (3) + o>n , (2.23)
j = l - N  V J 

where the first term  in (2.23) can be written as

27r [  / (  —A2 — M (^ 2 )RN{^ 3 )d^ 2 d^3 ' (2.24)
in 2

Now, given the properties of w and K ,  uniformly in A3,

f  K M(X2 ) f ( - X 2 -  A3)dA2 =  /(A 3) +  [  x qK{x)dx  +  0(1*-*-*),

so using this last expression in (2.24) the lemma follows, given the expression for Vn - □
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P ro o f  o f  L em m a 2.4. Making a change of variable we can obtain, 

Trace [(E jvQ m )5]

^ 2  7f(ri -  r 2 M T2 M T3 )R N{r2 -  r3)- • •T fo .- i  -  r 2 s) u C ^ j p - ) R N {r2 s - r x)
l<ri ,...,T2s< N

E  7(JiM -w)-RjvC72)” - 7 ( J 2 . - i H  M  ’--- ) R n ( - 1 i ------
- N < j i    < N

x[ N - H U i , . . . ,  1 2 . - 1 )] (2.25)

where , j 2 s - i ) is defined suitably and satisfies (see Taniguchi (1991), p. 17)

• • • J 2 s - l ) \  <  \ j i \  H----------- h | j 2 s —11-

Then we can write (2.25) as (j = j i , . . . ,  j(2s_ i),

n  E  7 ( h H j f ) R N ( j 2 )  ■ ■ ■ 7 O2.-1 M  J l~' '  frX 2-26)
-o o < j1,...,j2s-i<oo r= 1

+ JV E  7 O1 • • • 7 (J 2 .- iM ~J r ' ~  J2a~1 ) ^ ( ~  E *  JVX2.27)
lii l  lia—1 1> A7 M  m  r = l

E #  ■ ■ ■ 7 ( j a . - i M ~ Jl- ‘ I ) ^ A f ( - E 1> ) .  (2.28)
li i l  lia—xKJV r = l

The leading term in the trace, (2.26), is

E 70’iMĵ )flAr0'2)-"7(?2.-1M Jl M''2s~1)RN(-h--
- 0 0 < j l , . . . , j 2 « - l < 0 0

= N  [  /(A i)Q m (A2) • * •/(A 2s_i)(5m(^2s)
./n23
x  ^  e x p { i [ ; i ( A i  -  A2a) +  . . .  +  j 25- i (A2s- i  -  A2s) ] } d A i  . . . d A 2s

J l  | . ” ) J 2 a —1

= N(27t)2s~1 /  f s(X)QsM(X)d\.  (2.29)

If Condition 2.1 holds, from Lemma 2.4, expression (2.29) converges to

N ( 2 t ) 2 ‘ ~ 1 /  f ‘ ( \ )g ‘{ \ ) d \  =  0 ( N ) ,
J n

but under Condition 2.2 this tends to

H Z * ) 2’- 1 /  / * ( A) E  AJJTJ,(A -  Aj)dA ~  N M ‘ - 1(2w)2‘ - 1Y / A ‘j r ( X j )\ \K\\l ,
JU  ■*
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which is 0 ( N M s~l ), since by Lemma 2.1 we can neglect a term of smaller order of 

magnitude due to the integrals of cross products of kernels K m  centered at different 

frequencies and the continuous part of G does not contribute to the leading term.

Since Qm {X) behaves in very different ways depending on the properties of regressors, 

we need to get totally different estimates of the error terms (2.27) and (2.28) in the 

approximation for the trace, depending on which assumptions we make. The way of 

taking the properties of the sequence Zt into account is bounding the summations with 

indexes in the functions u  and R n  at the same time: if G(A) is continuous and the 

sequence p is absolute summable, in the evaluation of these errors we can add in terms 

of R n , obtaining 0 (1) bounds:

M  oo /  M  \  ,  \

E \rnU)\< E  \pU)\ + o\mn-*i2 + n-* E  lil =o(E>0')l)-
j = - M  j = - o o  \  j = - M  )

Otherwise, if this last bound is not possible, like with Condition 2.2, instead of adding in 

R n , we have to add for those indexes in the function lj, getting bounds in terms of M.

First, under Condition 2.2, (2.27) is bounded by

2 s—1 oo oo oo oo

Y  Y  ••• Y  Y  l̂ i Y  ••• Y
h = l  j i = - o o  i h - i  =  - o o  \jh\>N jh+ i =  -o o  j 2 s - i = - o o

~ j l ------.72s—1/ J2 \
|^7v(j2)|-*-|7(i2s-l)| w(-

M
2 s—1 oo oo oo oo

<w*E E ••• E E \jk\ E ••• E
h=l i i = - o o  jh - i= - ° c >  |ih |> iV  jh+ i = - o o  j 2l- i = ~ o o

l70 i)l 

=  0 ( N 1 ~dM ‘~1)

( ^  \ 
Id

j 2 s - 2

This bound results as follows. First if the index jh coincides with a 7 function, then the 

sum in jh is of order 0 ( N 1~d) (d > 2 in Assumption 2.1). The remaining sums in 7 are 

all 0 (1 ), and since |jfyv(j)| < 1, the s — 1 sums in w(-) are each O(M ). In the case that 

the index jh is summing in a a; function, the whole expression is zero, since in this case 

\jh\/M > 1 for \jh\ > N ,  as M /N  -* 0.

On the other hand, if we assume Condition 2.1 we can bound (2.27) in the following
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alternate way: (2.30) is now not greater than

2s— 1 oo oo
UJ

oo oo oo

X X X X X! ••• X
/i= l ji= -o o  ih - i= -o o  |jh|>iV ih+ l=-oo  J2s — 1

/  .7*2 \ , j 2 s - 2 s 
w(^ - } I-RjvC/2—2)II'T(J2. - i ) | .  (2.31)

Now, when the index jh  coincides with uj{^)Riq{jh)  we have that

X w
Ufcl>jv

/ Jh  \ 
U{M ] = 0,

since u> is zero for all the values of the index. Next, for the same reason and for any other 

index j  ±  jh

X
j  = — oo yM )

M

|£w (i)l =  E
j = - M

u ( - )
M

\R n V ) \ < » * E  MtoO)l =  0[ E IpCj)II -
j = - M l 7 =  - 0 0

using M 2N  p —► 0 and because the last sum is finite with Condition 2.1. Therefore, as 

all the summations in 7 (j)  (whether corresponding to jh or not) are bounded, (2.31) is

X > w i lo = 0 (1).

Now, dealing with the two types of conditions simultaneously and noting that the sums 

in (a>Rn ) are only for indexes less than M  in absolute value, (2.28) is not bigger than

X {Iiil  +  - -  +  |j2.-i|}
|jl |v i | j 2a—1 |<-W

X h ( h ) \ H ~ ) | | l f r ( f t ) |  • • • ^ ) P w ( - j l  • • -  J*2a—1 )|
S —  1

using exactly the same arguments as for (2.27), where the minimum in the order of 

magnitude has to be interpreted as 0 ( M a) when the sum in p diverge. The factor M 2 

show up because when the index in curly braces is summing in (cj R n )  we have to use a 

bound for J2 \ j \ \ ^  we no  ̂ wan  ̂ impose further restrictions on the sequence 

p(j)  in Condition 2.1, like Ylj\j\\p{j)\ < °°. To the bound being completely meaningful 

we need additionally iV- 1M 2 —»• 0, implied by the conditions of the lemma. □
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P ro o f  o f  T h e o re m  2.1. First, from the results about the cumulants of Vn , under 

Condition 2.1 we have then that

«*[<>,«] ~  j n r w ( \ ) d \

~  JV1-» /2 (s _ i ) ! ( 4ff)»/2-i j  /»(A)s *(A)dA \ f f ( X ) g 2 (X)dX 

< jV1-’/2 (47t)s/ 2 -i ( s —1)!2jt [ll/H^llfflloo2 / n / 2(A)s2(A)dA

-s/2 

- s / 2

< Hi  s! ( C i i V ) 1 - s / 2 , (2.32)

with Hi  < oo and

0 < Ci = (47r)_ 1( | | / | |00||<gr||00)~2 f  f 2 (X)g2 (X)dX < oo.
Ju

Equivalently, if Condition 2.2 holds,

k„[CM] ~  j u n  A ) E  A p j f r f o  ~  A)dA

<  (4 tM J V -> )* /» -1 ( < -1 ) !  [ | | #  |l7S| | / l l « l | f f  IIj Y .  A ? / 2(Ai)]~3/2

< H 2 s'.(C2 N  M - 1)1- ’/ 2, (2.33)

with H 2 < oo and

0 <  c 2 =  ( 4 * ) - 1( | | j r | | . | | / | | 00) - 2 | | j r | | 3 £  A J A A ,- )  <  0 0 .

Denoting by /ij the eigenvalues of the matrix U n Q m ,

1 = Val[“ 21 =  ^ Trace[(^ Q M )2] =

and therefore

=  \ n 2 6 n, 2 -
j =1

Also we have that

m ax \fi j \  = sup |(£ w Q Ma ,a ) | =  ||EjvQm || <  ||E;v||||Q m ||.
3 l l a l N l
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To evaluate the norm of the matrices S jv and Qm > first,

||Q m || =  sup |(Q Ma ,a ) |
a =1

= sup
lla||=l

/ QM W e i{h- j)XdX
3,h Jn

< supp /=1 Ju

N

E » . |0 M(A)|dA

< sup sup|<3M(A)| /  
IH|=i a Jn

< ciNSptfi,

N
■eijX d \

(2.34)

where ci is a constant depending on supA |A(A)| or on sup^<7(A), in relation to which 

type of conditions on the regressors we take in Assumption 2.4. Because the last integral 

is equal to 27r, we have under Condition 2.1, c iN 6 n i2  =  2x 11̂ 1100 and with Condition 2.2, 

CiN 6 n > 2  =  27r M  \\KWoo. On the other hand

| £ j v || = sup
l|a||=l i,h Jn

< supP sup |/(A)| f  
=1  A J u

N
. J j A

3=1
d \

def
= 27r||/||oo = c2 < 00

Then from (2.34) and (2.35), for c = c\ c2, 0 < c < oo,

max|/LZj| < c N S n ^ '  
j

(2.35)

(2.36)

Introduce the notation

gj = HjC 1 [ N 6 N a ]  1,- l

where \gj\ < 1, so

and

J ^ g ]  = c 2 [NSn ,2] =  2^ 2sn]
j = 1 j = 1

N  /  ..2 \  “1/4
1̂ 2)1 = n ^ 4*

,2 ^
N* 6 N i 2
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=  n ( i + 4 * i  c2s i w r 1/4
j=1

< n ( i + ^ c 2 ^ , 2) i9j
i=i

(2.37)

where we have applied the inequality (1 +  6$) > (1 +  t)b, valid for t > 0, 0 < b < 1. 
Therefore denoting,

- 1 /2
A = A n  =  (4c2 <^,2) 

as N  —*■ oo, we have obtained that

oo. (2.38)

a  \ ~ 2- iA 2
| ^ 2)| < [ 1  +  ,

and recalling (2.32) and (2.33), condition (2.4) is satisfied for the same A of (2.38) and 

one H  < oo. Next, for any a > 0,

U " 2 T ‘ ■

= 2Aa’ j H  (a 2 + <2) |A2dt

and this is not bigger than

2Aa2 J * (A2 + i2) _ dt

if a A > 1 given A —► oo, and making the change of variable tf2 =  2, the previous 

expression is equal to

a a2 r  ( a 2 + * )  ^  dz =  a a2
J(aA)2 V '

(A 2 +  z)X-21- iA 2

1 -
A 2

=  - A

=  2

(“A)2

A2 2A2-a2(1 4- a2)1 -2 a2
2 - A 2

A 2 2\1-^A 2
A 2 - 2

(1 +  a ) 2

and this tends to 0 faster than any power of A 1 as N  increases, since a > 0. So we can 

justify an Edgeworth expansion of any order for the distribution of V)v. □
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P ro o f  o f Lem m a 2.5. First, since we can write

X  = Y  -  /3Z =  (I -  Z (Z 'Z )~1Z/)X

we have

VN =  VN -  - |-X 'Q m Z (Z 'Z )-1Z 'X  +  -^:X 'Z (Z 'Z)_1Z 'Q m Z (Z 'Z )- 1Z'X

= VW -  2£w(l) +  6 v(2),

say. The cumulants of &v(l) are

Cumulant, [fjv (1)] =  T raceK E /vQ M Z fZ 'Z r'Z ')8] 3 = 1, 2, . . . ,

where

Trace[(SwQ MZ (Z 'Z )-1Z ')a] =  Trace[(Z 'E NQ MZ)s] =  [ r f^ Z 'E NQ MZ

Then, using Assumption 2.4.2, with A/ -1 +  N ~ PM 2 —*■ 0, with a change of variable and 

neglecting a similar term to (2.28),

ĉ Z'EjvQmZ = d r f Zn7(ri - r2)u j(^ —p - ) R N (r2 -  r3)Z r3
l< ri ,r2 ,r3 <N

E  l ( h M ^ ) R N { h ) R N ( - h  -  h )  +  0 ( N ~ pM 2)
l - N < j u j 2 < N - l

~  2% [  f (X)QM{X)RN (X)dX (2.39)
J n

=  0 ( N 6 n ,2),

so the 5-th cumulant of £/v(l) is 0 (£ jy2), s =  2 ,__

Moving now to £w(2), 5 =  1 ,2 , . . . ,

(«-!)! 28_1
Cumulants[fjv(2)] =  i -21 Trace[(EArZ(Z'Z)“ 'Z 'Q M Z (Z 'Z )_ 1Z ')s],

with

Trace[(ENZ (Z 'Z )-1Z 'Q MZ (Z 'Z )-1Z ')s] =  d ^ s T i ^ [ ( Z " S NZ(Z 'Z )- 'l Z ' q MZY  

d r f  Z 'E WZ (Z 'Z )-1Z 'Q MZ
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Reasoning in the same way,

^ 2Z 'S a,Z (Z 'Z )-1Z,Q m Z = <rN 2 J 2  2 n 7 ( n - i - 2 ) % ^ - a . ( 2 ^ i ) ^ ( r 3 - r 4)Zr,
l< n ,. . .fr4<N d N  M

Y  l U l ) R N ( j l )  Y  UJ( ^ f ) R N { h ) R N ( - j 2 )
h = l - N  j 2 = l - N

= 2ttVn  f  f ( X) QM(X)RN(X)d\  (2.40)
Ju

=  0(NSNa),

where the bound results as before. Then the 5-th cumulant of &v(2) is 0  ( ^ 2) • There­

fore, focusing in the bounds for the cumulants of £/v(l) and £n(2) and on the special case 

5 =  1 for the bias, we have proved the lemma. □

2.9 Appendix: Proofs o f Section 2.4

P ro o f  o f  L em m a 2 .6 . Making a change of variable in the indexes of the sums, 

4 - Z '( E wQ m )”S n Z
N

=  w  Y  Z ril { n - T 2y  • -oj(r2s ^ s+1 ) R N ( r 2s - r 2s + i ) /y { r 2s + i - r 2s+2 ) Z r2s+2
a N l < r i ,...,r W < N  M

Y  T(il) • - ^ ( J- Tr ) RN{ j 2 s ) l { j 2 s + l ) RN{ - j l  j2s+l)

_  R e s ( j i , . . . , j 2a+i)
d2N

where the term R es^ 'i,. . . , j 2,+ i) is defined suitably as a sum of product terms of the 

form ZtZti, whose total number satisfies

#{Res(,7i , . . .  J 2 S + 1 ) }  <  \ j i \  H h |j2*+iI-

Next, reasoning as in the proof of Lemma 2.4,

Y  l i f t )  ' ' ' UJ( T 7 ) R N ( j 2 s ) l ( j 2 s + l ) R N { - j l  j 2 s + l )
- N < h  j 2a+ i < N

Y  * * ' u ( 3j ^ ) R N ( 3 2 s ) l ( j 2 s + l ) R N ( - j l ------- 3 2 s + 1) (2.41)
00<jl,...,j2s + l <00

+0 (jV-1min(jlf8+1, [E>(i)l]S}) >
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and then (2.41) is equal to

(2;r)2a+1 f  f s+1 ( \ )Q sM( \ ) R N ( \ ) d \ .  (2.42)
Ju

Therefore, under Condition 2.1, (2.42) is tending to

( 2 tt)2s+1 /  / a+ 1 (A)<?a+1(A )dA  <  oo 
J n

and under Condition 2.2, expression (2.42) converges to (neglecting the continuous part 

contributions),

(2tt)2s+1 [  f s+1 (A) Aj) *dG(X)d\
J u  I J J

~ (2irJ2*+1E . A ' / * +1(AiO -  A;)]*

~  (2x)2s+1E j A f 1r +1(Ai ) ^ ( 0)

=  M a(27r)2a+1iirs(0) ^ j A j+1/ a+1(Ai) = 0 (M a),

since the cross products with any kernel function evaluated at a frequency apart from 

the origin are always of smaller order of magnitude as M  —> oo.

Now using Assumption 2.4.2 and \Rn \ < 1 we can see tha t

7(il) • "V( ^7 ) RN ( j 2 S) l ( j 2 s + l ) R N ( - j l ------ j2*+l)
- N < j i , . . . J 2,+ i< N

\ztz t.\

Res ( j ! ,. - . ,  J2»+i)

< max
*•*' —iV < ja  j 2 i+ 1 <jV

= JV-p min ( m s+1,M 2 f e - M O l

rj2s\
\RNU2.)\\lU2s+l)\

3—1

using the same reasonings as in the proof of Lemma 2.4, but taking into account that 

now we have 5 sums in the function u>(]jy)-Rjv(j)> one of them possibly multiplied by the 

index |j |.  The Lemma is proved. □

P ro o f  o f  L em m a 2.7. Similarly to Feller (1971, p. 535) or Durbin (1980a, p. 325) we 

have for complex a  and r

\ea — 1 — t\ < e7 j|a — t\ + Jy-J
where 7 = m ax{|a |, |r |} . Let’s take (with r  =  2 in (2.7)):

a: = log^(t) -  i | | i t | | 2  = 5 3  —j—rKN[ri,r2 ](i<i)r i (tt2 ) r 2  + Rn {2) } r i\r 2 \

(2.43)

lr  1=3
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and

T =  £  -T r7 « N [n ,r2](»ti)r , (»<2P,

then we have

\ a - r \  < \RN [0,4](it2)4+RN[2,2](it i)2{it2)2 < ^i(||t||)0(^Ar,2) 

where F\ is a polynomial of degree 4. Now

f  < f t ( | | t | | ) 0 ( ^ )

where F2 is a polynomial of degree 6. Then

|a  -  r |  +  f  <  F ( | | t | | ) 0 ( ^ , 2) (2.44)

for some polynomial F. Define the normalized cumulants KN[hj] =  Sjj j  JKN[hj] = 

0 (1 ). To study 7 , we first bound |r | for ||t|| < C r ^ 1/ 2’ Cr > 0

H  < ||t ||2 { f  ( |« jv[0,3]| +  3 |kw[2, 1]|)}

< l|t||2 { | ^ 2/2 (l«iv[0,3]| +  3|RW[2,1]|)}

<  l|t||2IV (2.45)

with 0 < Tt < 1/4 if we choose (T small enough, given the previous results for the 

cumulants of order 3. Now for a  we can choose a ( a > 0 small enough, such that, for

||t|| < <asJJ2,

M  < H*i|2{ f  i ..:: ,3 ] | +  3 |« M 2 ,l])l) ||t +  ( |^ [ 0 ,4 ] |  +  |^ [ 2 ,2 ] | ) | | t | |2} 

<  l |t ||2{ | ^ /2 ( M 0 ,3 ] |  +  3|kjv[2, 1]|) +  C2Jn ] 2 ( l^ [ 0 ,4 ] | +  |i?/v[2,2]|)}

< ' (2-46)

From (2.45) and (2.46) we have that

f 11*1121
e7 < exp

4 J
for ||t|| < C i ^ 2/2 where Cl =  min{Ca,Cr}- Then,

exP { — + t } < exp { —rfiHtH2} (2.47)
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for one c?i > 0, ||t|| < ( l^ y 1/ 2- Since our approximation to  ip(t) = ex p { |||z t||2 +  a} is 

A (t,2 ) = exp | | | | * t | |2|  [1 + r], using (2.44) and (2.47) the lemma is proved. □

P ro o f  o f  L em m a 2 .8 . Since the characteristic function of U2 appears in the joint 

characteristic function itself, we can follow Bentkus and Rudzkis (1982) and the proof of 

Theorem 2.1.

From expression (2.37), we can see tha t for all rj > 0, and N  and M  big enough we 

have that

|V<<2)I <  (l  + v i y ^ 2 (2-48)

for 1̂ 21 > V*n T  ar|d some > 0 and rft >  0 depending on rj.

Returning to the bivariate characteristic function, its modulus is equal to

W *i,*2)| =

r -| - 1/2

Det 1 -  ^ 1 7 2
N 6 n I

X

=  |^(<2)I exp -  b ?  W Z ' T J  ( 1 -  - ^ % 2 n Q m  ) SjyZ
N 6 Nt 2

where 1Z stands for real part. From Anderson (1958, p. 161), 

is positive definite as ^ Q m  is real (for every N). Then

d t f Z 'K  11 -  - ^ 7 2  S wQm ] SwZ > 0
\  N $N} 2 /

for all t 2 E and for |^21 < C^jv*/2* ^  >

d r fZ 'K  I /  -  I S WZ > t
\  N *>N, 2 /

for some e > 0, since we obtained previously tha t, cf. (2.36),

||£ jvQ m || =  0  (NSn#)  •
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Then,

exp< 1 1 j —2 rw f^r>  I  t  2 i^ 2
- ^ N  dN z  n  [ 1  ~ ^ n Q m  j V n z

iV,2

 ̂ < e x p | - ^ ? € i |

< exp { - J elCl2^ 2} (2-49)

for |£i|\/2  > Ci^ 1/ 2 an4 1̂21 < Ci îvV"2’ an4 some €i > 0 depending on £i-

Lastly, from (2.48) and (2.49), we have that for ||t|| > 2» f^ere exists one number

d2 > 0  such that

l ^ i , <2)1 < e x p { -d 2^ 2}>

as j t  : ||t|| > Ci^iv^2} C 2?i U J?2 where

B l = {*: i<21 >

B i  =  j t : |*2| <  ~ ^ N , 2  a n ^ M  >  ^ 2 ^ n , (  )  > 

and the lemma is proved. □

P ro o f  o f  L em m a 2.10. First,

| | ( iV -r < 2>)**0„|| = 2 sup | ( / v - r < 2>)*$
BeB*

Qf jv I

< sup [|(Pjv -  T W ) * y aN\;B C B(0,7*iv)c]

+  sup [l(PN -  T W ) * V aN\;B C 5 (0 , r^)] ,

where rjv =  ^/V2’ ( t >0  to be chosen later). 

Now for B  C 5 (0 ,rjv )c we have uniformly

First,

l ( / V - r < 2>)*$„w| < |Pw *$«„|  + |r(2> *$c,N|

< Prob{||u || > rjv/2}

+  2 $ ajv{B(0, rtf/2)c}

+ 2 Y ^ { B ( 0 , tn / 2)c}.

r<2>{B(0,rw/2)c} = o ( $ 2),
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as this measure corresponds to a polynomial with bounded coefficientes times a Gaussian 

density. Also

Prob{||u|| > rN/ 2} = o(6 ]fe), 

as u  has finite moments of all orders. Finally

* „J»{B(0,rw/ 2)'} = 0 ([aw/r»]2) = = <*«$),

since p +  r  > 1/ 6.

For B  C B(0,rj\[) we have by Fourier Inversion

|(P „  -  r<2>) * * aw| < [ ( £ ) 5* d r]  /  I(*W -  r<2l)(t)$0i,(t)|rft, (2.50)

and as we know tha t P/v = ^ ( t)  and f ( 2) =  A (t,2 ), using Lemma 2.7, (2.50) is bounded 

by

° ( SN a n ) L „  e - j W f i d l t l l )  |$ „ „ ( t ) |d t  (2.51)

+ 0 ( ^ 2t ) /  „ ,, ,  l (A  -  f « ) ( t )  » aw( t) |*  (2.52)

as from (2.11), $  is zero for ||t|| > a'6 ^ 2 and a7 = 8 • 24/37T-1 /3. Then for (2.51) to be 

° ( ^ n \ )  ^  1S necessary to  chose r  < 1/4. Next, (2.52) is dominated by

0{rN̂ ) e - d*s»* +  o (< 5 $ )  =  o ( « $ ) .

Applying the Smoothing Lemma the proof is complete. □

2.10 Appendix: Proofs o f Section 2.5

P ro o f  o f  L em m a 2.12. Since convex sets satisfy (2.14), we can apply Lemma 2.11, 

proving tha t

Prob {|W)v| > Wv«2'w/2} =  < * 0  (2-53)

for some positive sequence p ^  —> 0 and Pn ^ n  °°* Let’s choose pw =  l/log[5j]y].

Then we have

{[Wrvl > M 2"jv/2} < X ) Prob {|Wjv(i)l > 7 /b v ^ j f j
3=1  L }
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so writing now, for some e > 0

6%WN{ 1) = + N -')rNf  = u ,0 (^ ,2)

^J/,2^ ( 3) = W1 [A N +  0 (1) =  [ttifrr +  « l« 2]0 ( ^ f2)

and applying Chebychev’s inequality, as £#, wi and U2 have finite moments of all orders, 

(2.53) is satisfied at once. Now write

W n (4) =  ( l  +  B n  +  [Ajv +  V ^1^J/)2W2]  ̂ -K;v(2) = -R;v(l)-ftjv(2),

say, where R n (2) is a random variable with bounded moments of all orders. As before,

in order to satisfy Chibisov condition (2.53), we need

Prob { \R N(1)RN (2)\ > P N ^ l T }  = " ( O ’ (2-54)

but the probability in the left hand side of (2.54) is less or equal than

Prob { |£ j v ( l ) | f $  > p t f }  + Prob { |f ljv (2 ) |« $  >  p t f }  = Pi + Pi,

say. Now P2 =  ° ( ^ n ) applying Chebychev inequality. For i \ ,  since B n  = 0 ( M  q),

Pi = Prob ( | ( l  +  B n  + [Ajv +  ^ # > 2] # )” 5/2 > Pw/2}

= P ro b { |l  + B n  + A n S + V « $ t » 20| < P n ' * }

< P ro b { |l  +  O (M -o)  + tf-J/ 10 < p^1/5} ,

where R'N is a random variable with bounded moments of all orders. Now, as N  —► 00,

for some positive constant c > 0, the last probability is not greater than

P rob{ |c  +  R'n S\%\ < * $ V /5} < Prob { | l & « $ |  > | }  =  o ( 0 ’

applying again Chebychev inequality, since ^2 ] ^  p j}^b * 0 from the choice of pN- D

2.11 Appendix: Bivariate regression

Here we analyze briefly the main differences that arise in the two regressors framework 

with respect to  the single regressor case.
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First, we need to study the behaviour of the function Qm(A) under the different 

sets of conditions. Then, under Assumption 2.7 and M -1 +  M 2 N ~ P —»■ 0, where now 

p = m in{pi,p2}5 we can obtain results similar to Lemma 2.2:

• Case A. Both regressors satisfy Condition 2.1. In this case Qm(A) *s tending to

J  K m (X -  a)  [022(a) +  /t>i2(O)0ii(a )  -  ^12(0)012(0;) -  012(0)021(0 )] da,  

and this converges to 022(A) +  P i 2(O)0 n ( A )  -  p i 2(O)0 i 2(A) -  Pi2(O)02i(A).

• Case B. Both regressors satisfy Condition 2.2. Now there are only discrete contri­

butions and then Qm {A) is tending to

£ / m ( A  -  A j )  [ a 22(j) +  0i2(O )A n(i) -  02i(O)A2i( j )  -  0i2(O)Ai2(j)] =  0 ( M) ,  

so in this case the estimate of the variance will have a slower rate of convergence.

• Case C. Because the first regressor satisfies Condition 2.2 and the second regressor, 

Condition 2.1, p i2(0) = 0, and Qm (A) is tending simply to 022(A), as in the univari­

ate case. Then, in the mean correction situation (Z \t =  1) the variance estimate 

of a coefficient corresponding to  a regressor with continuous spectral distribution 

function shows exactly the same first order asymptotic properties as when the mean 

correction is not performed.

We now check step by step several results about the variance estimates and the 

studentized least squares estimate.

2 .1 1 .1  B ia s

From the previous discussion it is immediate to check tha t the proof for the bias of the 

estimate Vjv remains valid, since of course S n ( A) is integrable. Then under the same set 

of Assumptions (2.1, 2.2, 2.3, 2.5 and 2.7, M -1 +  MiV-1 —► 0), we have in exactly the 

same way as in Lemma 2.3,

E[VW] -  VN =  aNN _1 +  bN M ~ q +  0 (A f-?-«),
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where now

bN = ( - 1),/2 2x f  f<d\ \ ) S N( \ ) d \ ,
J n

and a^v has the same modification in terms of S n (-).

2 .11 .2  C um ulants

As we have discussed previously, the sequence Siv(r) will have the same properties as 

the sequences Ri j (r ) .  Therefore, the bounds employed for the one regressor case are still 

valid, but taking the worst ones, in the sense that with one or more of the regressors 

satisfying Condition 2.2 we should always employ the bounds in terms of M , using the 

properties of u>.

In exactly the same way as before (see Lemma 2.4), we have for the variance of Vn  

th a t [with Assumptions 2.1, 2.2, 2.5, 2.7 and M -1 +  N ~ PM 2 —»• 0]

Sn,2 d= Var[VAr] =  Ttace^SjvQ m )2] =  j f / 2(A)$m( *)<** +  o ( n ~ 2 M 2) -(2.55)

Now it can be interesting to study the limit of f  f 2 (X)Q2M(X)d\  in the different 

situations we are considering.

• Case A. The integral tends to f  f 2(A) [^22(A) +  Pi2(0)<7n M  -  2p i2(0)<7i2(A)]2 d \  =  

0 (1 ), so the variance of Vn  is of order iV-1 .

• Case B. Since now the asymptotic leading term of Qm (^) 1S a linear combination 

of the kernel K m  at different frequencies, the variance now is of order M / N .

• Case C. Since pi,j(0) =  0, to have a variance of Vn  of order A -1 we need to check 

tha t in fact Ri,j(0 ) —► 0 fast enough, because in the variance there are typical terms 

like (up to a constant),

^ i , i ( r s -  r2)7 (r4-  r3 V ( ^ j j ~  u )-  

The sum in the previous expression tends to
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and in order to have this term negligible with respect to the leading term in the 

variance we need

f l i f2(0)Af 0, (2.56)

but this holds since the right hand side of (2.56) is 0(N~^Pl+P2 ^M) = 0 ( N ~ 2pM)  = 

o(l) if N ~ PM 2 -> 0.

We have to consider also other terms, with typical sums in R 2 2(0) E  R i,iR 2 ,2 , 

-^1,2(0) E  # 1,2^ 2,2? ^1,2(0) E  Ri,iRi,2 and -Ri)2(0)Z^-^i,2-R2,i, but those lead to 

terms in Q M  with at most one function K m , s o  the integral in the variance 6n ,2 is 

always 0 (1) and they do not contribute to the leading term.

The same type of comments apply for all the higher order (cross) cumulants and for 

the joint characteristic function, so results similar to Theorem 2.1,2.2 and 2.3 are possible 

under the same assumptions. The only step that is slightly different, is the residual effect 

in the estimate Vn , but a result parallel to Lemma 2.5 can be obtained in the following 

lines.

2.11 .3  R esid ual approxim ation

Using the OLS estimates of a  and /?, we get immediately tha t

o  ^ ~ z ^ i ( Z i , t - z 1z 2,t) x t „ z { L i ( Z 2,t - z 2z 1,t) x t
A t -  A t  -  4 l , t  N  (ry 77 ~  w  z 2 ,f-= NEt=i(Zi,t - z 1z2,t)z1,t E ili(Z2,t -  z2zu)z2tt

and with straightforward algebra this is equal to

Y  1 ( E* Zi)txt + e* z2)txt \
1 ( i -  -̂ 1,2(0)) V di,N 1 d2,N 7

where h* is defined as ht but interchanging Z\ and Z 2. Next,

Vn  = Vn  -  2fjv(l) +  6 v (2),

where

«»<■> =
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JV(1 -  ii?,2(0)) ™  \  *d2,N d2,N

= JV(1 - * ? i2(0))X'QmJ"X’
say, where the vector H* is defined similarly to H  but with h*. Therefore for each element 

of the N  X N  matrix J ^ ,  we have

m a x |J t)j | =  0 ( N ~ P).

Equivalently,

« 2> ■ W i ^ k s f  ,§ * "  «“<*-•■>
f J2r  Z l , r X r * ^ 2 , r X r , I y

X I  j   *2 +   j  " * 2  X t2
d l ,N  d 2,N

1 tX 'J'jvQm JjvX,
iV(l -  fl?,2(0))2

Consequently, given the structure of the matrix J^v, we can proceed as in the proof 

of Lemma 2.5 and obtain that the 5-th cumulants of £/v(l) and £/v(2) are 0(<^v,2) ’ 

obtaining an equivalent approximation as for the single regressor model in Lemma 2.5, 

with N ~ pM 2 -* 0.
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Chapter 3

Edgeworth expansions for spectral 

density estim ates and studentized  

sam ple mean

3.1 Introduction

In this chapter we analyze higher order asymptotic properties of nonparametric estima­

tion of the variance of the sample mean for autocorrelated observations. Our aim is 

to  investigate the effects of studentization techniques based on nonparametric weighted- 

autocovariance spectral density kernel estimates at the origin. This technique was pro­

posed by Jowett (1954), and Hannan (1957) made the connection with the spectral anal­

ysis literature. As we have seen previously, these ideas extend to more general models 

and are of wide use in several statistical inference problems. The studentization re­

quires only consistent estimates, and nonparametric ones are robust to different types of 

misspecification. However, the performance of these estimates depends crucially on the 

bandwidth employed and, typically, have slower rates of converge than parametric ones. 

Though this does not affect the asymptotic distribution of the studentized statistic, little 

is known about how the use of nonparametric estimates affects higher order properties 

of the distribution of the studentized statistic.

87



W ith respect to the previous chapter, we concentrate here in the location problem. 

Therefore, under Gaussianity assumptions, only conditions on the spectral density around 

the zero frequency are relevant. We obtain asymptotic expansions of the Edgeworth type 

for the distribution of the spectral estimate and the studentized mean. Several corrections 

for the first order approximations are found, trying to correct for possible non optimal 

choices of the bandwidth number, and we show how to estimate them consistently.

Our higher order theory for nonparametric spectral estimates is based on Bentkus 

and Rudzkis’ (1982) work. They obtained asymptotic expansions and large deviation 

theorems for the distribution of nonparametric spectral density estimates for zero mean 

Gaussian sequences with bounded spectral densities. We cover also spectral densities 

tha t might have singularities due, for example, to seasonality or cycles. We express 

our conditions in terms of smoothness of the spectral density of the time series, but 

only in an interval of the zero frequency. Nonparametric estimation of functions with 

possibly inhomogeneous smoothness characteristics has also been considered by Lepskii 

and Spokoiny (1995) among others. They applied the projective adaptive procedure of 

Lepskii (1991) to a ’’signal+noise” model on degenerating intervals around the point of 

interest, finding a trade-off between accuracy and adaptive properties.

The flexibility on the dependence assumptions has to  be compensated with strong 

distributional assumptions, like Gaussianity. This is a serious limitation, but allows us 

to distinguish clearly the effects due to the variance estimation from those related with 

the basic standardized statistic.

We use kernel functions for the nonparametric smoothing with finite support spectral 

window, in order to avoid leakage from other frequencies. However, it is possible to use a 

kernel function with infinite support if we are willing to make further assumptions over 

the integrability of the spectrum, which would imply in turn  restrictions on the size of 

any possible singularity. Similar results to  those presented here can be obtained under 

stronger assumptions (like the summability conditions on the covariance sequence of the 

previous chapter), but this would lead to restrictions on the global smoothness of the 

spectrum across all frequencies.

Relaxing the Gaussianity assumption with Gotze and Hipp (1983) conditions, Gotze
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and Kiinsch (1995) have shown the second order correctness of Kiinsch (1989) block 

bootstrap for the studentized version of time series statistics tha t can be expressed as 

sample means. The strong mixing conditions used by them imply restrictions on the serial 

dependence structure much stronger that ours, and these conditions do not seem to allow 

for expansions of the distribution of smoothed nonparametric estimates. The reason is 

tha t multivariate asymptotic expansions are only valid for fixed dimension vectors, so 

they do not extend to nonparametric estimates of parameters of the whole distribution 

of a stationary sequence.

This chapter is organized as follows. In next section we give the main definitions and 

assumptions which we will use throughout. We consider in Section 3.3 the distribution 

of the nonparametric estimate of the spectral density. In Section 3.4 we analyze the joint 

distribution of the variance estimate and the sample mean. In Section 3.5 we give an 

Edgeworth expansion for the studentized sample mean and give consistent estimates for 

the higher order correction terms. Finally, we extend the previous results to obtain a 

third order approximation in Section 3.6. All proofs are given at the end of the chapter, 

in three appendices.

3.2 Assum ptions and Definitions

In this section we set our general framework and assumptions. Let {At} be a stationary 

Gaussian sequence with E[Xt] = //, autocovariance function

~,(r) = E [ ( X t - n ) ( X t+r- t i ) ] ,  

and spectral density /(A ) defined by, II =  (—7r, 7r],

7 (r) =  f  f (X )e " xd \ ,
J n

satisfying 0 < / ( 0) < oo.

Let X  =  ( X i , . . .  ,X /v)' be a vector of N  consecutive observations of X t . Then X has 

a multivariate normal distribution E;v), where

[^N]r>g = l i r -  g ) , r , g =  1, . . . , X .
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W ithout loss of generality we take /z =  0. Let X  =  N ~ x J2jL 1 X j  be the sample mean 

of the N  observations of Xt  and denote

N - 1

VN = V ar[V FX ] = £  f l  -  W )  TO)- 
j = l - N  V '

V n x

j=i

Then for all N  we have

AT(0,1). (3.1)
%/V/v

Since V/v is the Cesaro sum of the Fourier coefficients of /(A) at the origin, if /(A) is 

continuous at 0 then limjv-foo Vn  — 27r/(0). If /(0 )  is a consistent estimator, such that

7 (0) -+p / ( 0), then _
^  de/ x/lV X  n
Yn  = ■ / ^  A (0, 1).

y  27t/(0 )

Assume tha t the mean fi =  0 is known. Later we drop this assumption (see Sec­

tion 3.5.1). Defining the (biased) estimator of the autocovariance function as

W ) = V  E  t  =  0 , ± l , . . . , ± ( N - l ) ,
l< t , t + £ < N

we consider the weighted-autocovariance type nonparametric spectral estimate

* >  ■

where W m  is the N  X N  matrix

[ffM̂ = " (!l £) = /nZMtA)e,M1(iA (3'2)

and K m ( A) is a kernel function with smoothing number M, constructed in the following 

way. Define, for a sequence of positive integers M  =  Mjy such that M  —► oo and 

N M ~ l —► oo as N  —► oo, and for an even, integrable function K  which integrates to one:

oo
K m W  = M J2  K(M[X + 2wj]),

j = — OO

so K m (X) is periodic of period 2it, even, integrable and

r  K M{ \ ) d \  =  1. (3.3)
J — TV
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Also we have u;(r) =  etTXK(x)dx  and u;(0) =  1.

We introduce the following assumptions about the dependence structure of the time 

series X t and about the nonparametric estimate /(0 ) . They are stated in terms of the 

spectral density / ,  the function K  and the lag-number M.

Assum ption 3.1 /(A ) has d continuous derivatives (d > 2) in an interval [—e, e] around

the origin, for any e > 0, and the dth derivative satisfies a Lipschitz condition of order

Q, 0 < Q < 1.

Assum ption 3.2 The spectral density /(A) E Lp, for some p > 1 , i.e.

ll/ll? d= / "  / p(A)dA < oo. (3.4)
J  — TV

Assum ption 3.3 K (x )  is a bounded, even, integrable function, —t  < x < 7C, and zero 

elsewhere, with

j  K{x)dx  =  1. (3-5)
J — 7T

A ssum ption 3.4 K (x )  satisfies a uniform Lipschitz condition (of order 1 )  in [—7r ,7r]. 

Assum ption 3.5 Defining for j  =  0 ,1 , . . . ,  d, d >  2 and r = 1 ,2 ,. . .

K (r) dej F oo 
/
—oo

[K{x)\

the function K  satisfies

=  1 j  = 0

=  0 j  < d

j  = d.

A ssu m p tio n  3.6 M ~ l + M N ~ l -* 0, as N -> 00.

This assumption is necessary for the definition of the estimate f .  Sometimes we will 

want to  make explicit the exact form of the lag number M  satisfying Assumption 3.6 in 

terms of N:

A ssu m p tio n  3.7 M  =  C  • N g, with 0 < q < 1, and a constant C, 0 < C < oo.
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Assumption 3.1 is satisfied with g =  1 if /  has bounded (d + l) th  derivative around 

0. For most of the results, the continuity of the dth derivative would be enough, but 

in order to prove tha t the bias estimation does not affect the asymptotic distribution 

we need an explicit rate for the bias error (see Lemma 3.7). Assumption 3.1 would be 

implied by conditions like (see Assumption 2.1)
oo

1 ]  \j\d+6\l{j)\ < OO-
j = — OO

However these conditions imply global smoothness conditions on the spectral density /  

and are too strong when we want to focus on a particular frequency, restricting consid­

erably the class of admissible serial dependence models.

Assumption 3.2 imposes some restrictions on the density /  beyond the origin. In fact 

a p > 1 arbitrarily close to  1 will be enough for all our results (see Lemma 3.5 below). 

We can obtain a central limit theorem for /(0 )  by the method of cumulants, assuming 

only p =  1, implied by stationarity (see expression (3.10) below).

From Assumption 3.3, the function u>(r) defined by (3.2) is even and bounded. Also, 

Assumption 3.3 imposes a kernel function K  defined in a finite support, so it is not nec­

essary to make further assumptions about its tail behaviour (the same results could be 

obtained with a support of the form [—r ,r ]  for any 0 < r  < x). Asymptotically we only 

use information around A =  0 so we do not need to impose strong conditions about /  be­

yond this frequency. Assumption 3.4 is needed to evaluate the cumulants of the estimate 

/(0 )  and it is satisfied for most kernels used in practice satisfying Assumption 3.3.

Examples of kernels satisfying Assumptions 3.3, 3.4 and 3.5 for d = 2 are the uniform 

and the Barlett-Priestley. For d > 2, possible examples are the following ones constructed 

from the uniform density in [—7r,7r]:
For d = 4:  K 4( A) = ±  -  § A > .

n , ,, „  225 525 . j  , 945 l4
For rf =  6 : * , ( A) = _  _ — A + — A ,

with lag windows, respectively:
0

u>4 (r) =  3 g [57rrcos 7T7" — (5 — 7r27"2) s in x r

15 r 
=  g '5 5 [(—189x7" +  14x37"3)cosx?" -f (189 +  77x2r 2 +  x4r4)s in x r
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To analyze the joint distribution of the sample mean and the spectral estimate of its 

variance, it is convenient to work with standardized statistics with zero mean and with 

the same rate of convergence. Let’s introduce some more notation. Suppose that the 

estimate /(0 )  is y / N /M - consistent. Defining

X
qi = V m -

t/ V n '

we obtain y/N /M qi  N ( 0,1), from (3.1). We can write y /N /M qi  as a linear form in 

the vector X, f/yX say, where

£n  — 1y/NV.n '

and 1 is the N  X 1 vector ( 1 , . . . ,  1)'.

The denominator of Yn  can be written in terms of one statistic with the same rate 

of convergence, zero mean and unit variance,

■ / N X  ( ,  , £ [2fr /(0)] — Vn  , 2 ,r/(0) -  £ [2 x /(0 ) ] \ " 1/2
^ =--------- Vn--- +-----Vn-----J

=  j N / M q i i l  + b N + q i ) - 1*

= \ jN jM q - i  (1 +  6;v +  <tat?2 ) -1 2̂

where
bN =  £[2tr/(0)] -  VN

Vn

is the bias of the spectral estimate with respect to the true variance of y/~NX, multiplied 

by 27r/V}v- Here, crjj is the variance of the normalized spectral estimate

f i w - q 2 H! 2 t / (0 )  -  g I2T /(0)]|
VN

in a way tha t \ f N j M q 2 = y / N / M  q-il^N has mean zero and variance 1. Therefore 

• j N j M q i  is a centered quadratic form in the vector X ,

J N / M q 2 = X ' f - - 1 W^ ) x - e \x ' (  }  )
* \ y / N M  ctnVn J \ y / N M  <?n Vn  J

= X 'Q NX - E [ X fQNX] 

where the matrix Qn  is given by

O 1 W M
y/NMcrN VN '
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Set the random vector u =  (u i, ^ ) 7 =  y / N / M q  =  y /N /M (q i ,q 2 )' , obtaining finally

Yn  =  u\ ^1 +  bw +  0"jvU2

As X  is N ( 0 , E n ) distributed, the joint characteristic function of u  = (wi,tt2)7 is

^(^1,^2) =  |^ -  -  2ii2SivQAr)-:l -  i^2^ |

where E  =  E[X 'Q n X] =  Trace[EjvQjv]- Therefore, due to the normalizations, u has 

identity covariance matrix, and from its cumulant generating function

(f(tu t2) = lo g ^ ( i i ,f2)

= -  -  log | J  -  2 U2 'EnQn\ ~ {I ~  2^ 2^ n Q n ) - 1  £jv6 v ~ i h E ,

the only bivariate cumulants different from zero are

• /t[0,s] =  2s- 1(5- l)!T ra ce [(S iVQiv)s], 5 > 1.

• «[2,s] = 2as!£/y(EjvQiv)s£;vfjv, s > 0.

3.3 D istribution o f the nonparametric spectral estim ate

In this section we analyze the asymptotic distribution of the nonparametric spectral 

estimate /(0 ) . These results constitute an extension of the work of Bentkus and Rudzkis 

(1982), in the sense tha t we do not need to assume boundedness of the spectral density at 

frequencies apart from the origin. In Section 3.5.1 we also evaluate the error incorporated 

in the estimation of /(0 )  when we use the mean corrected series X t — X  (or, like in the 

previous Chapter, the least squares residuals).

First we give two lemmas about the bias of the estimate /(0 )  for Vjy The first one 

is a standard result in Fourier analysis about the convergence of the Cesaro series of 

functions with bounded derivative. The logarithm term could be eliminated assuming 

summability conditions on the autocovariance sequence of the spectral density / .

L em m a 3.1 Under Assumption 3.1, d =  1, g =  0,

VN -  2*7(0) =  O ( n - 1 logjv) .
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Lem m a 3.2 Under Assumptions 3.1, 3.3, 3.5 and 3.6

-E[/(0)] -  /(0 ) -  =  o ( N - 1logN  +  M ~d~s)

where f ( d\ 0) is the dth derivative of f ( A) evaluated at X = 0.

Then from Lemmas 3.1 and 3.2 we have tha t under Assumptions 3.1, 3.3, 3.5 and 

3.6, as M  increases,

/(<*)( 0)
— i y i  / v  i f  i u  / v i i  i  / : n '

.2t t / ( 0)

= b\M ~d +  0 { M ~ d~Q +  N ~ x logiV),

fw = ( ^ y ^  + 0(JV-1logJV)y27rl^Miir<1)M-'i + 0(Jl/-'i- e + iV-1logJV)

where
/(■Q(o)jjrP>

1 d i m  ‘

We will need to consider the following quantity

6 n  =  (1 +  fyv)-1^2

= l - i & i M ^  +  O C M - ^  +  A-MogiV),

under the same set of assumptions, since for all M  big enough 1 -f > 0. Also

6 % = 1 — ^-b\M~d + 0 ( M ~ d~e +  JV-1 logiV)

6 % = 1 + 0 ( M ~ d + N ~ l logiV).

Now we study the cumulants of /(0 ). We obtained for s > 2 

k [0 , s ] = 2S-I( s - 1)! Trace [(?>n Qn )s]

where we can write

Trace [(SW(?N)S] = * (M N ) - >2 Trace [(Sjv WMf ]  •

P ro p o s itio n  3.1 Under Assumptions 3.1, 3.3, 3.4, +  JV- 1M log2a-1iV —► 0, for

s> 2 ,

d
T m c e ^ W M ) ’ ] =  N { 2 * ) 2s- l Y 1L , ( i ) M ’ - 'L- i  +  0 [ n M ° - le N { s )  +  N M —»-<*-«) ,

j = 0
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where ejv(-s) = [N  1M log2s 1iV)]1/2 and

i f f
A =0

with \Ls(j)\ < oo and, as K j S\  the constants L s{ j ) are only different from zero for j  

even (j = 0 , . . .  ,d).

The proof is based on the definition of a multivariate version of Fejer kernel (see 

Appendix in Section 3.8) and on the fact tha t, given the compact support of K ,  asymp­

totically we only smooth for frequencies in a band around zero.

Therefore, under the conditions of Proposition 3.1, the normalized cumulants result

as

« [M  d= ( j g )  2 «[0,s]

Depending on the concrete asymptotic relation between M  and N , some values in the 

expansion can be included in the error term, since we have only assumed that ejv(s) —> 0 

as N  —> oo. Now we can apply Proposition 3.1 to evaluate crjy under the same set of 

assumptions (s =  2). As ajy is the variance of a/A/M 27t/(0)/V jv, a, quadratic form in 

the Gaussian vector X ,

=  + 0 ( e N (2) + M - d~e) (3.7)
j =0

from the proof of Proposition 3.1, if now N -1M log3A —► 0. For example

I 2(0) =  f m ™  = f \ 0 ) \ \K \ \ l  (3.8)

£ 2(1) =  0 

£ 2(2) =
A =0

and 47t/2(0)Ao2  ̂ =  47r / 2(0) | |i f ||2 is the asymptotic variance of \ / N / M f ( 0).
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Now as 0 < £ 2(0) < 00 and all Z2C7) are fixed constants independent of N  or M , we 

can write for some constants Js

d
S =  (4,r) " S/2E J . { j ) M - i + 0 ( e N{2) + M - i - ‘) ,  (3.9)

where for example,

7=0

7,(0) =  L 2{ 0 ) -5/2 

7,(1) =  0

7,( 2) =  - ^ L 2 (0 ) - ^ L 2 (2 ).

5—2
Now, denoting C (0 ,5) =  (4 7 r)~ (5  —1)! we can obtain from (3.6) and (3.9) the 

following expansion in powers of M _1 for the normalized cumulants, under the conditions 

of Proposition 3.1,

' d
«[0,5] = C (0 ,s) £  + 0 ( e N( 2) +  M - d~e)

7 = 0

£  + 0  (eN(s) + M - d~s)
7 = 0  

d
C(0,s ) J 2 T , U ) M - ^  + o ( e N (s) + M - d- ‘ ) , (3.10)

where

Ts(j)  = j 2 J , ( t ) L sU - t )
t=0

are constants not depending on N  or M , and depending only on the spectral density /  

and on the Kernel K .  Immediately it follows that

r.(o) = Js(0)Ls(0)

r,(i) = 0

r,(2) = J S(0 )LS(2 ) +  J S(2)ZS(0).

We also need expressions for on  and its powers. First, for j  =  ± 1 ,± 2 , . . . ,  from 

Lemma 3.1
VN
2 w

= f 3 (0 ) + O ( N ~ 1 logAT).
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Then, as 0 < 47r£ 2(0) < oo, and cr/vV/v > 0 for all M  big enough, under the conditions 

of Proposition 3.1 and N ~ 1 M log3N  —► 0, for constants 0 ( j) ,

\ / 47r d

and
2 4?t d

° N  ~

For example,

0(0) = I 2(0)1/2 

0 (1) = 0 

0 ( 2 )  =  i £ 2 ( 0 ) 1/ 2 i 2 ( 2 ) .

From the previous results we can justify an optimal choice of the smoothing number 

M  in terms of the value which minimizes the Mean Square Error (MSE) of the spectral 

estimate, E [ ( f (A) — /(A ))2], at A = 0. Since in this case we are only interested in the 

estimation of the spectral density at the origin, it is sensible to use local rules for the 

choice of the bandwidth.

Assuming conditions 3.1, 3.3, 3.4, 3.5, M -1 -f IV-1 M  log3N  —̂ 0, from Lemma 3.2 we 

obtain an expression for the bias and from (3.8)

^■V ar[/(0)] =  4 w f 2 (0)\\K\\l + o ( e N(2) +  I tf"2) .

Then the smoothing or lag number which minimizes asymptotically the MSE is of the 

form

Af = c • jV'1/(2d+1), 0 < c < oo,

in order to make squared bias and variance of the same order of magnitude. The optimal 

constant c* tha t provides the minimum asymptotic MSE is

c*( f ,K )  =
2 d (  f W { 0 ) K ^ y  
4* U / ( 0) | | f f ||2

21 2 d + l

(3.11)
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Obviously this choice is unfeasible as depends on the unknown spectral density, but 

initial, consistent estimates of /(0 )  and f ( d\ 0 )  can be plugged in. In next chapter we 

propose a local cross-validatory procedure that avoids this estimation.

3.4 Joint distribution o f the spectral estim ate and the sam­

ple mean

In this section we prove the validity of an Edgeworth expansion to approximate the 

distribution of the vector u. Of course this will imply the validity of that expansion for 

the distribution of the spectral density estimate /(0 ) . First we study the cross cumulants 

of the form ( s > 0):

k [ 2 , s ]  =  2 s s \( 'n ( ' £ n Q n ) 3 ' ^ n ^ n

1 ,

-  251— n — u i + r . 1 ( * n W m ) % i ,
iY VN  ° N  

with similar techniques to those of Proposition 3.1.

P ro p o s itio n  3.2 Under Assumptions 3.1, 3.3, 3.4, M ~ l +  iV- 1M log2s+1iV —> 0, for 

s > 1 ,

1'(£jvWm)s£ n 1 = JV(27r)2s+1[/(0)]s+1[^M(0)]s + (jlf5+1log2s+1iv ) .

Then, under the conditions of Proposition 3.2 the normalized cumulants are equal to 

N  \ s ! 2
d-  ^[2, s]

2’r/ ( ° )  )»s !/(Q)a^ ( o )5 +  o ( ^ l o g 2a+1jv )  ,2 w
Vn <t n . Vn

as K m {0) =  M K ( 0 ) given the compact support of K .  Substituting the expansion for the 

value of Vnctn and using Lemma 3.1, we obtain:

L em m a 3.3 Under Assumptions 3.1, 3.3, 3.4, M  1 + N  1 M \o g 2s+3N  -+0, s > 1, 

«[M = “[l + ocJv-Mogiv^ î/coriircor + o^iog2̂ 1̂
2tt

=  (4jt) - s/2
j =o
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= C ( 2 , s ) Y , J , ( j ) M - j + 0 ( e N(s) + M - d- ° ) ,
j =0

where C(2,s)  =  (4n)s/ 2 s \ f s(0)Ks(Q) and the J s( j ) are defined as before.

In order to prove the validity of an Edgeworth series expansion for the joint distri­

bution of the vector u we have to check tha t the characteristic function of the expansion 

approximates well the true characteristic function. We use the same two step proce­

dure as in the previous chapter. However, here we include only the leading terms of 

the expansions for the cumulants of the joint distribution, incorporating the error of this 

approximation in the general error term for the estimate of the characteristic function.

Let’s start constructing the approximation for ^(t). As in Taniguchi (1987, pp. 11- 

14) or Durbin (1980a), using the fact tha t only the cumulants of the form «[0,s] and 

k[2, s]  are different from zero, we can write the generating cumulant function as

logV’(t) =  l lM I 2 +  J 2  2 E  —rr;« ['~ i,'-2](»<i)r*(»t2)r2+  R n ( t ) , (3.12)
Z 3=3 |r|=s 1 2 *

where the vector r  is of the form ( r i , r 2), with r\ G {0, 2} and |r | =  r*i +  r2, and the

remaining term Rpj is of this form, if r  is even:

R n ( t )  =  ( J ^ j [ ^ 0 , r + 2 ( ^ 2 ) T + 2  +  # 2 , t ( ^ i ) 2 ( ^ 2 ) T , 

or of this other form, if r  is odd:

R n ^  =  ( j ^ )  2 ( r  +  2)! [*[°>r  +  2](rt2)T+2+ - + 2 2 r ^-- «[2,r] ( r t1)2(rt2)T

( a ? )  r [■ °̂'t +3('*2)T+3 + -^2,r+l(**l)2(**2)T+1 , (3.13)

where the Roj  and R 2 J are bounded. So we can write from (3.10) and Lemma 3.3

K[0,s](tl2)s + -  2}(it1)’2(it2y~iogv-(t) =  I | | i t n 2 +  E
s = 3

+ R n {t )

1+1 ( E X 5
2 " * ' "

+ R n (t ),

= s H I ’+ E ®  2 [ ^ ( 3 , t ) + { ( i « 1r + ( i l 1)2(i«2)»-2} o (e N(S) +  M - J-^)]
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where we have grouped terms in powers of M  1 in J3jv(s,t):

B N ( s , t )  =  i  { c ( 0 , s ) r s ( i ) ( i« 2)s +  S- ^ ^ C ( 2 , s - 2 ) J s - 2( j ) ( i h ? ( i h T 2
S ' j = 0  L

We are interested in obtain an approximation for the characteristic function of the 

vector u  based on its cumulant generating function. This approximation (A (t,r ) , say) 

should have leading term  exp{^||*t||2}, multiplied by a polynomial in t ,  depending on 

the cumulants of u, N  and M.  For general r ,  this approximation has this form

f 1 1 T+1 /  N  \  T+1
A (t,r )  =  e x p | - | | j t | |2j  l  +  £ ( ] j f )  E  I I  [•BAf(».t)]rn r 3! - - - rT+i!

where r  =  ( 7*3 , . . .  , r T+ i), rn E {0, 1, . . .}  and the summation extends for all the vectors r  

tha t satisfy the condition
T + l

— 2)rn =  i  — 2.
n = 3

We will only need to keep terms in the expansions up to a certain power of (iV/M )-1/2. 

Thus, some of the terms in big powers of M ~ l in t )  may be included in the general

error term , without increasing its magnitude.

In the following we are going to concentrate in obtaining a second order Edgeworth 

expansion, r  =  2, tha t is, including in A (t,2) terms up to order (iV/M )-1/ 2. In Sec­

tion 3.6 we consider a third order approximation with r  =  3. Applying the general 

formula we would get

N  \  -1 /2"

However from the expression for B n (s , t)  we can see tha t in the term of order (iV/M)-1/ 2 

of A (t,2) it is only necessary to keep the leading term (in M°)  in the expansion for the 

cumulants of order 3.

L em m a 3.4 Under Assumptions 3.1, 3.3, 3.4, M  1 +  N  1 M \o g sN  —*■ 0, there exists a 

positive number <$1 > 0 such that, for  ||t|| < b w / N / M  and a number d\ > 0;

M '
N  /

where F  is a polynomial in t  with bounded coefficients and 

A{t ,2 )  =  exp | ^ | | i t | | 2|  1 + 0 0  1  {C (0 ,3 )r30 ')(ii2)3 +  C(2, l)J i(j)(» 'ii)2(*t2)}

\ f { t )  -  A (  t ,2 ) |  <  e x p {-< ia| |t | |2} F ( | | t | | ) o ( ’ ( J : T 1 /2 [ m - 2 +  ew (3)] +  ~  ) 0 .1 4 )
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Having approximated the characteristic function for values of t  such that ||t|| < 

S i y / N f M , the following step is to study the behaviour of this function in the tails.

L em m a 3.5 Under Assumptions 3.1, 3.2 (somep > 1 ), 3.3, 3.4, M  *+N  1M log3iV —► 

0 there exists a positive constant d<i > 0 such that for  ||t|| > Situn,

\ip(h,t2)\ < e x p { -d 2ra)v} (3.15)

where
N  V / 2 „ E = I  

.M log 2 N,
mjq =  min { ( — 2 7 7  ) i  N  p \ —> oo as N  —>oo.

du

Let’s introduce the notation 

Pjv{B}  =  Prob{u G B}

{ - > » ’} x

u +  ( y )  ’ ~{C (0.3)r1(jtff3(U!) + c ( 2 , i y l (j}^2(.i)ffl M }

= f fa(u)qffl(u)du, (3.16)
J b

say, where f a (u) is the density of the bivariate normal distribution and H j ( ’) are the uni­

variate Hermite Polynomials of order j .  The measure Q ^ { - }  is the Edgeworth expansion 

for the distribution of the vector u, and its characteristic function is A( t , 2).

To prove the validity of the asymptotic expansion we will use the previous lemmas 

and the Smoothing Lemma 2.9, for which, in the following we assume condition 3.7: 

M  =  C  • N q, with 0 < q < 1, and some constant 0 < C < oo, but we do not assume 

yet the choice q =  1/(1 +  2d) and/or C  =  c* that would minimize the MSE of /(0 ). If 

not stated otherwise, only the condition 0 < q < 1 is required in Assumption 3.7. This 

implies Assumption 3.6 for this particular M . The reason to impose this specific form of 

M  is tha t Assumption 3.7 also implies tha t, for some e > 0 depending on q and p and a 

positive constant

raw > const.iV£, e > 0. (3-17)

Now we can prove tha t is indeed a valid Edgeworth expansion for the probability

Pn  corresponding to the random variable u.
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Lem m a 3.6 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.7, for a #  = (N /M ) p,

1/2 < p  < 1;

JUP | i V ( f l )  -  Q<2> (B )| =  O )  +  1  sup Q W  { ( 0 f l ) 2“ * }  .

3.5 A sym ptotic expansion for the distribution o f the stu- 

dentized mean

The distributions of u  = y / N / M q and Yjsj are functions of quantities, like <jjv, Krs, etc., 

which depend on the sample size and on the bandwidth employed in the spectral estima­

tion. We have obtained expressions up to a certain degree of error for these quantities 

in powers of N  and M.  The constants of these expansions depend on the value of the 

spectral density and its derivatives at the origin (unknown) and on the user-chosen kernel 

K( X) .

The accuracy to  which we can evaluate the above quantities depending on N  de­

termine the order of the error of the feasible Edgeworth expansion for the distribution 

of Yn . This accuracy depends mainly on the value of the smoothing number M.  In 

this section we assume condition 3.7 with q =  1/(1 +  2d), but not necessarily C  = c*. 

Then 0 < M ~ d/ ( N / M ) ~ l / 2 < oo as IV —► oo, and we have tha t the bias correction is of 

the same magnitude as the correction term we obtained in v l(t, 2), or as the standard 

deviation of / ( 0).

We first work out a linear stochastic approximation to the function Y/v(u) and prove 

tha t it is correct up to order o((iV/Af)-1/ 2). Then, the asymptotic approximation for 

the distribution of the linear approximation is valid also for Yn  with tha t error. We 

assume conditions 3.1, 3.2 (some p > 1), 3.3, 3.4, 3.5 and 3.7, q =  1/(1 +  2d), but not 

necessarily C  =  c*. Then /(0 )  is y / N / M  consistent and the approximation we obtained 

in Section 3.2 for Yn  is valid.

Set the neighbourhood of the origin

A n  =  j u  : |ttf| < a N p, 0 < p <  3^ 2 dy  i = l , 2 j  ,
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where c, are some fixed constants, and expand Yn  around 0 in A n ,  with \9\ < 1: 

Yn  =  SN ui -  ^Sn(tn uiU2 { N / M ) ~ 1 / 2

+ |  ( l  + bN + gn0u2(N/M) 1/2) 5/2 ajfUiuKN/M) \

- 5 / 2

Yn

u\u2(N IM)*1!2

remembering tha t 6n = (1 + Set Zn{ 1) = § ( l  + fyv +  g n 0 u 2 ( N /A f)-1 /2^

and substituting for the values of gn and 6n and their powers, from the results 

of the previous sections, we can write

=  t*i 1 -  i& iM ~ d +  0 ( M ~ d~e +  N - 1 logiV)|

[l+ 0 ( M ~ d +  N _1 logTV)

+ Z w(l)(iV /M ) - 1

=  U,
L &

+ Z n (1 ) (N /M ) - 1

+u 1 0 ( N ~ 1 log N  + M - d~e)

+ u ,n 20  ( ( N / M r ' ^ l M - 2 + ejv(2)]) . (3.18)

^ 0 (O) +  O (ew(2) +  M - 2)

1 -  h i M - 1 -  i\/5F||Jif||2ti,u2(N/M)-V2

Define

Y n  = Y 1 ZnU)>
j = i

where ( N /M )  xZn(2) and ( N /M )  1Zn(3) are the last two terms in (3.18) with leading 

terms in u\  and u \u 2 respectively. Thus

YN = Y}f + Zn (N /M ) - l

where

YL = u i

Now we use Chibisov’s (1972) result to prove tha t the error in the previous linear ap­

proximation can be neglected with error o((M/TV))1/ 2.

L em m a 3.7 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.5 and 3.7, q =  1 /(1 +  2d), 

Yn  has the same Edgeworth expansion as Yfj for convex sets up to the order ( N / M ) ~ l I2.
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The next step is calculate an Edgeworth Expansion for the distribution of Yn  from 

tha t of u. Consider the transformation

s =
si

S2

^ y ^ { uu u2) ^

V U2

= * (  u)

/
and its inverse

 ̂ Wi(5i,52)

\ U2

1 +  \ h M ~ d +  ) f / a \ \ K h u i ( N I M ) - V 2 +  o((JV/M )-1/2), (3.19)

where we can write, using (1 +  x) 1 =  1 — x +  x 2 — x 3  -\-----, for |x| < 1, uniformly in A n ,

u[(s) =  Si

where the truncation of the term in s \ s \ 0 ( ( N with error o((N f  M ) ~ 1!2) is allowed 

due to the definition of the set A n -

Writing for convex sets C

Prob {Vjv € C}  =  Prob | u  € ®_1(C X » )}  ,

as in Taniguchi (1987, p. 22), it follows from Lemma 3.6 tha t (as ^  is a C°° mapping on 

A n ),

sup
cez?2

Prob {u 6 ® -x(C x &)} -  Q m  { * " 1(C x » )} |

=  o U N / M ) - 1) + const, sup Q(2) x  K))2“w)  , (3.20)
C€02 1 ’

where ayv =  (N / M ) ~ p, 1/2 < p < 1. Also, from the continuity of we can obtain, for

some c > 0,

q W  { ( 0 $ - i ( c  x SK))20'" }  < Q<2> { ( $ - 1((9C )c“"  x » ))}  (3.21)

and exactly as we did in the previous Chapter (see the lines after expression (2.17)), 

Q W { y - 1{Cx&)} = J<t>{s1)^+r1(s1) (N /M )-1/2+ r 2(s1) M - ‘\ds1+o((N/M)-1/2), 

where rj(si)  are polynomials on Si independent of N.  Since we have tha t 

£ [4l] =  o((JV /M )-1/ 2)

£[«?] =  E \u\ -  h M ^ u l  -  V ^ \ \ K H N / M r 1 / 2 « i« 2 } + o{(N/M)~1/2)

105



= 1 -  b iM ~ d +  o d N / M ) - 1/ 2) 

£[«?] = E

= o ( ( N /M ) - ' / 2),

u\ -  h i M - du\ -  \ ^ \ \ K \ \ 2 ( N I M ) - l l 2 u\u 2 +  o( (N /M )~1/2) 
z z

it can be seen that

ri(x) = 0 

r2 (x) = -b i
x — 1

So we have obtained, remembering (3.20), (3.21) and Lemma 3.7:

T h e o re m  3.1 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.5 and 3.7, q =  l / (  1+2d), 

for convex sets C  6 B and =  (N / M ) ~ p, 1 /2 < p e l ,

sup
c

Prob{YN E C }  -  f  4>{x) [l +  r2 ( x )M ~ d 
Jc J

= 77 sup /  (f>{x) [l +  r2 {x)M~d dx +  o{(N fM )~ 1̂ 2)
3 c  J(dC)caN L

and, in particular, for the distribution function (C =  (—oo, y\):

P r o b { Y i v < y } — f  (j>(x) l  + r2 (x )M ~ d dx = o((iV/M)-1 /2) 
J—oo

sup

Integrating this last expression, and making a Taylor expansion of the distribution

function of the standard normal, $(?/), we can get uniformly in y , under the conditions

of Theorem 3.1:

Prob{yw < y} = Hy)  + l<t>(y)h M ~ d + o((iv/M )-1/2) (3.22)

=  * (y ) + 1  <Ky)fWf j $  1 M ~ d +  o((n / m ) -* /2)

= * ( y + l  b1M ~ d'\ +  o ( ( N / M ) - ‘/2) (3.23)

= i ( j )  +  0 ( W M ) - 1/!) .

If we had made the ‘optimal’ choice C = c* in Assumption 3.7 from (3.11), then the 

approximations above could be written as

Prob{Y jv<2/} = $(y)  + y(f>(y)b[ N ' w *  + o ^ N ~ i + ^

= $  (y +  y&J ,
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where - d
, ~ „ , ! ,  X 2d+l

b[ = —
1 2

or equivalently, operating with the values of b\ and c*,

Prob{ljv < y} =  $ (» ) + (JV/Af*)“ 1/ 2^(ff)a1 + o[(N/M*)~1/2)  (3.24)

=  *  (y +  a , » {N/M*)~1/2) + o((JV /M *)-1/2) , (3.25)

with

«i =  sign[/M (0) i ^  .

When d = 2 the approximations (3.23) and (3.25) have a very intuitive interpretation. 

In this case we have that

h  = / ^ m k (i) ai =  ^ | | /ir||2Sign [ /(2)(0) i $ y .

Suppose tha t = f  x 2 K(x)dx  > 0 (e.g. if K ( x ) > 0, Vx). Then if / ( A )  has a 

peak at A = 0, typically /^ 2̂ (0) < 0 and we are probably underestimating /(0 ) , as

the contribution from the adjacent frequencies cannot help to resolve the peak. Then

we underestimate the variance of X  and the confidence interval for y / N / V ^  X  is too 

narrow for Y}v, obtaining too many rejections, since the ratio Yn  tends to increase. The 

above approximations tend to correct this problem as in both cases we have tha t they 

approximate the distribution with $(y k N )  where fcjv < 1, so for the same confidence 

level, the critical value y obtained in this way is bigger (in absolute value) than the one 

obtained using the raw normal approximation. In this way the confidence interval is 

wider and we do not have so many rejections.

We can make the same reasoning in the other direction, when we have a trough in 

/ ( A )  at A = 0. For d > 2 the interpretation is equivalent, but in this case we have to 

take into account the sign of K ^ \  which can be negative, as it is the case for the Kernel 

K±(x) and d = 4.

The approximations (3.24) and (3.25) are more attractive, since if we believe to have 

chosen M  in an optimal way by any means, we only need to  estimate the sign of / ^ ( 0 ) ,  

not its value, to achieve an asymptotic second order correction.
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3.5.1 M ean Correction

All the previous results have been obtained under the assumption that the mean of the 

time series was known. Now we drop the assumption of known mean for the sequence 

{ X t}. We still considering E[Xt\ =  p = 0, without loss of generally, and modify the 

definition of the estimates of the autocovariance function based on the mean corrected 

series X t  — X:

E ( * « - * ) ( * « + / - * ) >  t  = 0 , ± l , . . . , ± ( N - l ) ,
i  <t,t+e<N

and the corresponding nonparametric spectral estimate

N - 1

/(») = h i j

All the definitions we did before can be adapted with /(0 )  substituted by /(0 ). To 

prove the validity of the previous results we study the difference between both spectral 

estimates. We obtain

X  +  (x f fl > ( W a . )  1
\ 2 w N J

m  = f ( o ) —2

=  f { Q ) - 2 Z N + R N , (3.26)

say. We study now the cumulants of the random variables Zn  and R n . First we note 

that

where A n  = (2 w N 2 ) ~ 1W m 1 l x is a N  x  N  matrix.

Lemma 3.8 Under Assumptions 3.1, 3.3, 3.4, M ~ l  + N _ 1 M  log2 N  —* 0, s =  1,2, . . .  

Trace[C£NWM l  1')*] =  ( M N ) ‘ f(2;r)2/(0 )^ (0 )]S +  0 ( ( N M ) ‘ - 1) M 2 log2JV).

Then we can obtain under the same set of assumptions of the Proposition 3.8 that 

Cumulants [Zn ] =  csTrace[(EjvAjv)s]

=  cs 0 0 S [2ir/(0)A’(0)]5 + 0  (  ( f )  >+1 log2N j  ,

where cs =  2S-I(s — 1)!. Then (N / M ) Z n  has bounded moments of all orders.
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Lem m a 3.9 Under Assumptions 3.3, 3.4, M  1 + N  1M lo g N  —► 0,

= M if(0 ) + O ^ l o g j v j  .

As X  A/^O, V n / N )  and from Lemma 3.1, under Assumption 3.1, Vn  =  2nf(0)  +  

0 ( N _ 1  logA), it follows that (N /M )  R n  has bounded moments of all orders too.

Therefore, from (3.26),

< - >

where Ajv is a random variable with bounded moments of all orders, and expectation

—2irK(0)f(0)  ( — )  ,

from Lemmas 3.8 and 3.9. Therefore the distribution of /(0 )  is alfected to a second 

order ( ( M / N ) 1̂ 2) by the mean correction. The bias term is the same as that studied 

by Hannan (1958) in the context of estimation of the spectral density after removal of 

a general type of trend. Of course, the asymptotic relationship of this bias with the 

smoothing bias studied in Lemma 3.2 depends on the degree of smoothing (that is, the 

relation between M  and N ). In Section 3.6 we analyze this issue further.

Denote as Yfi the studentized mean when we use /(0 )  and equivalently u\  as u<i with 

/(0 ). Then u j =  u2 +  (A /M )- 1/ 2AJV, where the random variable A'N =  0(1)Ajv has the 

same properties of A n - N o w

rxf =  tii

+Zn (1 ) (N /M ) - 1 

+ u iO (N ~ 1 log N  + M ~ d~e)

+u 1 u 2 0 { ( N / M ) - 1 ^ [ M - 2 + ew(2)])

+ A % ( N / M ) ~ \

where A ^  depends on A n ,  u\ and U2 , and has moments of all orders, so it can be 

neglected when we approximate Yfi with Y/j. Therefore the studentized sample mean 

with the ‘mean corrected’ spectral estimate has the same Edgeworth approximation for its 

distribution function up to order o( (N /M )~ 1!2) as when the mean is known. However, 

the expansion for the distribution of /  would differ from tha t for /  in terms of order 

(iV /M )"1/ 2.
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3 .5 .2  E m pirical approxim ation

The above approximations to the distribution of the studentized mean and to the opti­

mal bandwidth choice depend on the unknown derivative f ( d\ 0 )  and on /(0 ). These two 

quantities can be substituted by initial estimates to obtain an empirical Edgeworth ap­

proximation. The estimate of /(0 )  can be obtained using an initial guess for the optimal 

bandwidth in / ( 0).

In the remaining of this section we propose nonparametric estimates of the derivatives 

of /  at any frequency a  and prove their consistency under local conditions. To estimate 

derivatives further smoothness restrictions on /  will be necessary, but only around the 

frequency of interest.

First we introduce the class of Kernels (is, r) v =  0 ,1 , . . .  ,r  — 1 to estimate the u-th. 

derivative of the spectral density, following Gasser et al. (1985). Define the kernel Vu of 

order (^,r) as a function such that

r  K M
J  — 7T

x 3 dx =  i

0 j  = 0, . . . , ^  — l , i /  +  l , . . . , r  — 1

(—1 )"*/! j  = v

$ ^  0 j  =  r,

with support [— 7r, 7t], and satisfying a Lipschitz condition of order 1. If v =  0 then we 

estimate the function itself and Vo has equivalent properties to the kernel K  we used to 

estimate /  (compare this with Assumptions 3.3, 3.4 and 3.5). We define for a sequence 

of integers m v =  m I/(iV), satisfying at least

- + I F - 0 ’m v N

the function, x 6 [—7r,7r],

KijyC®) = 77ll/V̂ /(77ll/a?),

such that

/  \Vmv(x )\dx < oo, and /  \xVmv(x) \dx =
J n J n

Then the proposed estimate /m j(« ) for the u-th. derivative of /(A) at A = a  is

/ W ( a )  =  ( m u f  j f  Vm„(A ) I N ( a  -  X ) d \ .
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In the following two lemmas we summarize the results about the expectation and the 

variance of these estimates under the local smoothness assumptions.

L em m a 3.10 Under Assumption 3.1, d =  v + a, g =  0, for  /(A) around any fre­

quency A =  a, and a Kernel of order (u, I' +  a), for some integer a > 2 , and +

iV- 1(m J/),/logiV’ —► 0 then

E [fln}(a )\ -  = O ^ m v Y l N - ' l o g N  + .

L em m a 3.11 Under the conditions of Lemma 3.10, with I f  +iV-1 m u log3N  —*■ 0,

(m *)2 v+i = 2 tt /2(q:)||V^||1 [1 +  6 0,a] +  o(l).

These two lemmas justify consistent empirical Edgeworth expansions based on the 

above results, plugging in consistent estimates of the unknown constants. The reason is 

tha t the correction terms are of order (M / N )*/2 and the use of consistent estimates for 

/  and /M  will introduce only an error of magnitude o p { (M /N )1!2).

Examples of the class of Kernels (u, r) obtained from the uniform distribution on 

[—7r,7r] are,

For t/=2, r=4, V2 {x) =

^ s 525 2205 2 4725 4
For v= 2 , r= 6, Va(») =  -  ̂ 3  +  ^ ^ r

. « , 2835 14175 2 , 33075 4
For i/=4, r= 6, Vt (s)  = ^

The asymmptotic distribution of fml{ot) can be analyzed using related techniques to 

those we have employed for the distribution of / ( 0).

3.6 Third order approximation

In this section we concentrate on obtaining a third order approximation (that is, including 

terms of order M / N ) for the distribution of the studentized sample mean. The previous 

results are not sufficient to prove the validity of such approximation when we consider 

the effect of the mean estimation in the nonparametric spectral estimate. In the following 

we will show the main modifications of the previous scheme tha t will allow us to prove 

that third order approximation.
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3.6.1 D istribution of the nonparametric spectral estim ate

The main idea is to work directly with the mean corrected nonparametric spectral esti­

mate / ( 0) instead of / ( 0) and analyze the effect of mean correction in all the steps of the 

previous development. As we have seen in Section 3.5.1, the effect of the estimation of 

the unknown expectation of the time series in the spectral estimate is of order ( M / N ) 1/2, 

so it will have an effect of order M / N  in a third order approximation for the studentized 

mean.

As before, we will denote with a star superscript, *, all the quantities when the 

estimate /(0 )  is used instead of /(0 ). First we will study the bias. The following lemma 

is a simply extension of Lemma 3.2 using Lemmas 3.8 and 3.9:

L em m a 3.12 Under Assumptions 3.1, 3.3, 3.4, 3.5, 3.6 and M ~ x +  N ~ XM  logiV —► 0,

E [ / m - m  =  + o ( ^ - +  M - d-o+
ATI
N

2
log iV .

The second term on the right hand side is due to the mean correction in /(0 ) .

Define now similarly as U2  but with /(0 )  in the place of /(0 ) . For the analysis of 

its cumulants, we can write the random variable u\  compactly as a quadratic form in the 

vector X,

tij = X'Q *N X  -  £[X'Q^X],

where the N  X N  matrix

*  11 '
Qn  =  A n Qn A n , A n  = I n  -

is the mean corrected version of Qn . We can define equivalently W-fa in terms of W m - 

Now it is possible to obtain, under the conditions of Proposition 3.1,

d
Trace[(EjvWm )5] = N M S~ \ 2tt)2s- 1 ^ i s(0) +  0 { n M ^ e ^ s )  + N M S~3) ,

j =o

so the cumulants k[0,s]* (of wj) have the same asymptotic approximation as k[0, s ]. This 

can be seen using the same techniques as in the proof of Proposition 3.1, since now the 

Fourier transform corresponding to the m atrix A n  is
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where

D n ( A ) =  E  e ' ,A
j= l-JV

is a version of Dirichlet kernel. Therefore, obtaining all possible cross products due to 

the function Aj^(X) in the corresponding expression for the trace, the only one with the 

factor (2ir)~s is equal to the trace of Meanwhile, all the other terms (with at

least one function Dn(X)  in them) are of an M / N  order of magnitude smaller for each 

Dirichlet kernel D ^ ( A) function present in the product (so they are incorporated in the 

error term  0 ( N M s~1 eN(s))).

Consequently, all the conclusions about the variance and optimal bandwidth assuming 

known mean, still go through, since the previous expressions for tha t quantities are valid, 

up to  order M / N .  We will see later, tha t estimating only the leading term  of the higher 

order cumulants of u\  is sufficient to obtain the approximation with the desired error.

3 .6 .2  Jo in t d istr ib u tion  o f th e  sp ectra l e stim a te  and th e  sam ple m ean

Concerning the cross-cumulants, it is possible to  obtain, under the conditions of Propo­

sition 3.2,

1'(Ea,M^)*Sw 1 = JV(21r)2»+1[/(0)]s+1[ifM(0)]s + O (m s+1 log2s+1 Tv) ,

and therefore the cumulants k [ 2 , s ] *  have the same asymptotic behaviour as «[2,s], just 

by using the same argument for the function A(A) as for the cumulants of the normalized 

spectral density estimate.

The next goal is to approximate the joint characteristic function of u* = (w i,^)- 

Define, for tha t approximation,

A *(t,3) -  exp | - | |* t | |2|  1 +  i?jy(3,t) ^ +  j# 5 v (4 ,t)  +  2^ ( 3, t ) 2|  j ,

where, we include in the correspondent cumulants, not only the leading terms of 

their expansions (as we did in Chapter 2),

1
si

Now we can obtain similar results to Lemmas 3.4 and 3.5:
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Lemma 3.13 Under Assumptions 3.1, 3.3, 3.4, M  1 +  N  1M \o g rN  —>• 0, there exists

a positive number 8\ > 0 such that, for  ||t|| < 6 i y / N / M  and a number d\ > 0:

|^* (t) -  A*(t,3)| < e x p { -d i||t ||2} F ( | | t | | ) 0 ^ ^  j  , 

where F  is a polynomial in t  with bounded coefficients.

L em m a 3.14 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, M -1 +  N ~ l M  log3N  —*■ 0 

there exists a positive constant d2 > 0 such that for  ||t|| > 6 i m ^ ,

I |  < exp \ - d 2 m 2N } .

The last lemma follows using the fact that the asymptotic variance of the spectral 

estimate is the same, with and without mean correction, and tha t the norms of the 

matrices HfqWpj and En W$j have the same asymptotic bounds. Next, defining,

P f ,{B}  = Prob{u* £ B}

« <3)* { 5 }  =  ^ ^ e x p { - l | | u | | 2 } [ l  +  1  { « [0 ,3 ] * . f f 3 ( « 2 )  +  « [ 2 , 1}*

+ 2(3!)^  {(«[0,3]*)2J 6(«2) +  (k[2, I]*)2^ 4(«i)ff4(u2) 

+2k[0,3]*k[2, 1]*H2(ui)H4{u j )}

du+ i  {/c[0,4]*#4(ii2) + k [2,2f H2(ui)H2(u2)}
= /  (f>2 (u)q$*(u)du,  say,

JB>B

we can get, for the approximation of the distribution of the vector u*,

L em m a 3.15 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.7, for  = (N / M ) ~ p,

1/2 < p < 1:

B e B 2 \ \ m  /  J  J  B e B 2
sup I P*n ( B )  -  Q ® ( B ) \  = o ( ( J )  + \  sup Q &  {(9i?)2“w}

3 .6 .3  D istr ib u tion  o f th e  stu d en tized  m ean

Now we move to the studentized sample mean Yjy with the nonparametric estimate /(0 ) , 

using the results concerning the Edgeworth expansion for the distribution of u*. First
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we can obtain a linear approximation for Y fi. The main problem here is the bias term

b*N = h M ~ d + 62^  +  O ( N - 1 logN  + M ~ d- Q +
~N

log 2N  ,

with 62 =  —27rif(0). If we want to make the bias term bjy negligible up to order M / N  

we can not assume tha t M  has the optimal rate tha t minimizes the mean square error 

of /(0 ) . Instead, we need to impose a condition like,

lim % M d >  0,
iV—►OO N

(3.28)

which guarantees tha t the bias term of order M ~ d is at most of order M / N , and that 

the term 0 ( M ~ d~e) will not affect the third order approximation under Assumption 3.7. 

Of course this implies an im portant undersmoothing: M  has to grow much faster than
j y l / ( l+2d)^  a t  je a s j. ag j y l / ( l + d ) '  ]\JOWj

S*N =  1 -  \ h M ~ d -  \ b 2^  +  0  ( IV” 1 logJV +  M ~ d~> +
m
~N log 2N  ,

and we can obtain

=  \ / 4 7 r | | J r | |2 +  e ;v ,

where en  =  0 ( M  2 +  ejv(2)), and we do not need its exact value. Therefore we can write

Yfi = Y ^  + Z n { N / M ) - 3/ 2,

where 

Yn  = u 1 1, nr  — d 1 J ^   ̂ f /I  1 II TSII (  ^  \ ^ 2 3 11 TV 112 2 ^- ^ b 2— - - { y / 4 w  + eN j \ \ K \ \ 2U2 ^ — j  +  g  4jr||Jfi'||2« 2—

and the stochastic approximation error Z n ( N / M )~3/2 can be neglected in an approxi­

mation up to order M / N . Now we can use the same arguments as before to justify the 

Edgeworth approximation for YjJ in terms of tha t for u*, since, under condition (3.28),

£[si] =  o(M /N )

E[sl] =  E ? f 1 -  h M - d- 62^  -  { V ^ \ \ K h  +  e*} +  4x||Jir||

+ o(M /N )

2M  J  
2 N U21

= 1 -  b \M ~ d + ^  [-62 +  4 x ||* ||5  -  4x*(0)] +  o(M /N )
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£[«?] = o (M /N )  

£[«}] = E ? (1  -  2 { h M - d+  h ^ }  -  2 { V ^ \ \ K \ \ 2 +  eN }  ( ^ J / 2 « 2

+  o(M /N )

= 3 — 6 b iM ~ d + ‘-^r -662 -  4 8 ^ ( 0 )  +  36jrl|jr||^ + o ( M /N ) ,
N

defining the polynomial

rN(x) = [4jr|[AT||  ̂ -  2irK(0) -  b , N M _1-1 -d X2 -  1
+ [l27r||if H2 -  24wK(0)]

x 4 — 6 x 2 +  3 
24

we can obtain,

T h e o re m  3.2 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.5, 3.7 and (3.28), for  

convex sets C  E B and a n  = (N / M ) ~ p, l / 2 < p <  1,

sup
c

, ,M 1 
1 +  rjv(ar) —Prob {YyJ e C } -  I  4>(x)

J C

= r y L r ^  I1 + t n ( x ) ^ }  d x + ° ( t )  •'(dC)caN
It can be observed that the sign and magnitude of the constants in the polynomial 

rpf(x) do not depend on the spectral density or any other magnitude of the distribution 

of the time series (only depend on the characteristics of the kernel K ), except the term 

61, which is a function of the value of the spectral density and its d-th derivative at the 

origin. The reason for this fact is tha t the standard deviation of /(0 )  is proportional to 

/ ( 0), so the normalized distribution has constant variance and higher order cumulants 

(up to a first order) with respect to /(0 ). This term 61 in the polynomial rw(x),  of order 

of magnitude could be neglected assuming enough degree of undersmoothing,

that is, if in expression (3.28) the limit is tending to infinity as N  —► 00. In tha t way, the 

expansion will not depend on any unknown parameter. Of course, the bigger the number 

M , the worse the approximation from the point of view of the M / N  corrections.

Alternatively, more informative expansions for the bias can be obtained, using higher 

order derivatives of the spectral density at the origin and appropriate conditions on the 

kernel. In such case, a restriction like (3.28) would not be necessary in its full strength,
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therefore allowing the term in b\ to be of bigger order of magnitude that M / N  and also 

allowing mean squared error based choices of M.

Following Hall (1992, Section 2.5) and using Theorem 3.2, we can obtain an approxi­

mation of the Cornish-Fisher type for the quantiles of the distribution of the studentized 

mean Yfi. Write wa = wa( N , M )  for the a-level quantile of Yjy, determined by

wa =  inf {x : Prob{Yjv < x} > a } ,

and let za be the a-level standard normal quantile, given by $ ( z a) =  a. Then it is 

immediate

Theorem 3.3 Under Assumptions 3.1, 3.2 (p > 1), 3.3, 3.4, 3.5, 3.7 and (3.28),

, >. M  / M \
Wa = za - r N(x)—  + o ^ — ) ,

uniformly in e < a  < 1 — a for each e > 0, where rjy is defined as before.

3.7 Conclusions

In addition to our all previous comments we would like to stress the following points:

• Equivalent results to those obtained here for /(0 )  hold, with the obvious modifi­

cations, for nonparametric estimates of the spectral density at other frequencies 

A /  0. This, for example, covers the estimation of the spectrum for long range 

dependent stationary time series at smooth frequencies (beyond the origin).

• We have concentrated on the studentization at the zero frequency, but similar 

conclusions are valid for the discrete Fourier transform of X t  and the spectral 

estimate at any other fixed frequency (not at Fourier frequencies, since there the 

discrete Fourier transform has mean identically equal to zero).

• The location problem can be seen as a particular case of the more general linear 

regression framework of Chapter 2. In the sample mean case it is possible to 

specialize the assumptions about /  for a particular frequency (as could be done for 

a simple trigonometric regression at a known frequency).
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• We expect tha t the corrections proposed here can outperform in applications the 

raw normal approximation for high positively autocorrelated processes, often found 

in practical applications. In this particular case, the nonparametric bias is of special 

significance, and would have severe influence on the finite sample distribution of 

the studentized mean.

• We have seen tha t the accuracy of the asymptotic distribution will depend asymp­

totically on the local behaviour of the spectral density (at the origin in this case). 

The same comment applies for nonparametric estimation of the spectral density 

at any frequency. Furthermore, the choice of the lag number M  for finite sample 

sizes N  when we estimate the spectrum at one frequency should adapt to the local 

properties of the spectral density. We explore a possible criterion for this local 

choice of M  in next chapter for a related estimate to  / .

• The results on nonparametric estimation of the spectral density assuming only 

local conditions can be applied successfully to  semiparametric models where we 

only assume a parametric model in a band of frequencies and leave the rest of 

the spectrum as a nuisance nonparametric function. We adopt this approach in 

Chapter 5 for the estimation of the memory param eter for stationary long range 

dependent time series.

3.8 Appendix: Proofs o f Section 3.3

The structure of the proofs for this chapter is very similar to  tha t of the previous chapter. 

However, here we have expressed our assumptions in the frequency domain, so the analysis 

of the cumulants of the distributions can not be done in terms of the autocovariance 

sequence. Therefore, we have to rely on spectral analysis methods.

First we introduce some functions tha t will arise in the following discussion, and 

establish some of their properties. Define the Multiple Fejer Kernel as in Bentkus (1972) 

and in the same spirit of Dahlhaus (1983) for the tapered case:

, ( n), _  1 siniV xi/2 s m N x n/2
N (27r)n-1iV s in z i/2  s m x n/2
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N

r S ' " '  •

with x n = — Y%=i x j- For n = 2 this is the Fejer Kernel. Then $ j ^ ( x i , . . .  , x n) has the 

following properties:

sup f  • • • /
N  J—ir J —7r I

ctai • • • dxn-1 < oo. (3.29)

[  ••• [  $ $ ( x i , . . . , x n) d x i - - -d x n- i  =  1.
. /  — 7T J —  TV

•  For 6  > 0, N  > 1

(3.30)

JD' \ * n \ x -  o  ^jv^inrf/2 ’)  ^3'31^

where D c is the complementary of the set D  =  {x E : |#j | < S, j  = 1 , . . . ,  n—1}.

For j  =  l , . . . , n -  1,

log n_1iV 
N

(3.32)

• These properties follow due to

$ { ^ ( z i , . . . , ^ )  < ^2 ir^ - i N  Ivw (s2)| • • • |y>jv(a?n)|, (3.33)

where (pm(x) is the Dirichlet Kernel, <p n ( x ) = exp{ita}, which satisfies:

Ivw(a0l < min |iV ,2 |x | 1| (3.34)

£ \(pN (x)\dx  =  O(logiV). (3.35)

We have followed the same convention as in Keenan (1986, p. 137): although the 

functions depend here on only n — 1 arguments, we will use in the notation 

variables, with the restriction Xj = 0(mod27r).

n
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Proof o f Lemma 3.1. By standard Fourier Analysis, we can apply the Mean Value 

Theorem for /  around the origin, for some |0| < 1 depending on A,

|V jv -2j t / ( 0)| =  |2tt /  / (A )S $ (A )d A -2 ir /(0 )  /  $$ (A )d A  
I Jn J n

< 2 * £ / ( A ) - / ( 0 ) | |< I > $ ( A ) |d A

< 2 r f  | / ( A ) - / ( 0 ) | |$ « ( A ) |d A  +  2 J  | / ( A ) - / ( 0 ) |  «^>(A)|<fA
J\ \ \< t  1 1 ^|A|>e 1

=  0  |A| \ f ( X 0 ) \ |$^ (A )|dA  +  [ ||/ | |i  +  /(0 )] iV -A

= c ^ A rM o g iv )

using the integrabiHty of /  (implied by the stationarity), its differentiability around the 

origin and the property of due to (3.33) and (3.34):

|${J>(A)| =  O ^ N - 1), i f | A | > « > 0 .  □

Proof o f Lemma 3.2. The spectral estimate can be written as

m  = r  K M (X) IN (X)dX
J — 7T

where I n (A) is the periodogram of the series . . . ,  Xjv, with expectation

E  M A )]  =  f  S $ (A  -  a ) f ( a ) d a
J — 7T

so substituting we have

£ [ / ( 0)] =  r  K m (A) r  $ % \ a ) f ( \  + a )dad\ .
J — 7T J  — 7T

Then can write the bias of the spectral estimate as

£ [ /(0)] -  m  -  H i  = £  k m{X) £  , g ) (o) [/(A + a) _ /(A)] d a d \

[ K m W  [/(A) -  m  -  S- ^ P - K ^ M - d+

= bi +  62 ,

dX

say, where we have used (3.3). Denote the sets D =  { |o |, |A| < e/2} and D° its comple­

mentary in [—7r ,7r]2. Let bn  and 612 be the integrals in 61 corresponding to the sets D  

and D° respectively. Then, for |0| < 1, depending on a

611 =  /  i r M (A )§ jJ ) ( a ) [ / , (A +  9a )a ]d o < /A
J d
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and

I (-ill < sup |/'(A)| f  |Jfa(A)|<iA /  |ap $ (a ) |d a  = 0  f ^ )  . (3.36)
lAKe J\X\<e/2 J\a\<e/2 \  /|A|<e ^ |A |< e /2  « 'M < « /2

To study bi2 we note first that D° C A \ U A 2 where

Then

(3.37)

A\ -  { |a | > e /2} and A 2 = {|A| > e /2, \a\ < e /2}.

|J J a K M ( X ) * %\ a ) [ f ( X  + a ) - f ( X ) ] d a d X

= /  /  A-M(A)[/(A + a)-/(A)]<tt*$(a)da
J\a\>t/2 Jll

= 0  (iV-1 j  J  |JfM(A) [/(A + a) -  /(A)]| dXda )

=  O l N - ' l f  \KM (A)/(A)| dX + f  \KM (X)f(X)\  dX
\  L*/ iAi<e J \x\>*

=  o h i - 1 J \KM( X) \ dx \

= o ( n - 1) ,

as the second integral in (3.37) vanishes as M  —► 00. On the other hand, reasoning in a 

similar way, if M  is big enough

l / j f  ffM(A)§£)(a)[/(A + a)-/(A)]<(a<iA

f  f  K M ( X ) ^ \ a ) [ f ( X  + a ) - f ( X ) } d a d X
J\\\>e/2J\a\<e/2

=  0 .

So finally

612 = O (N - 1) . (3.38)

Now for 62, splitting the integral in two parts for |A| < e and |A| > e, and denoting 

these two parts as 621 and 622 respectively, we have first, constructing a Taylor expansion, 

(with |0 | < 1 , depending on A),

621 =  /  K m { A)
J |A|<e

= /  ifjlf(A)
*/|A|<e

/(A) -  / ( 0 ) -
d\

dX

d- 1 X3
£  / ^ O ) ^  +  / M (0A ) ^  -

j = 1 •/ ’ d\
dX
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d- 1

= £  / (i)( o )^  f  V K M ( \ ) d \  + /  k m {\)  fSw {»\)  -  / M (o)l \ d d \
r- Jn J\\\<n/M 1 J

< o U \ K M { m M d+i>d>)

=  o(JW_d_e), (3.39)

as all the integration is done inside [—6, e] since M  —► oo and using the Lipschitz property 

of Obviously 622 is zero due to the compactness of the support of K.

So, using (3.36), (3.38) and (3.39), the error in estimating the bias is of order

O (n - 1 log N  +

and the lemma is proved. □

For the proof of Proposition 3.1 we follow Bentkus (1976), although our assumptions 

are different. First we prove the following Lemma, which could have been taken as an 

Assumption, instead of giving a sufficient condition for it 21s Assumption 3.4. However, 

we will use later in the proof of Proposition 3.2 the smooth properties of the function K.

L em m a 3.16 Under Assumptions 3.3 and 3.4 for any sequence 6n =  o(M~1) as M  —> 

0 0 ,

sup r  \K m { \  + h ) -  K m {A)| dx = 0 ( M 6 n ).
J — IT

P ro o f  o f  L em m a 3.16. As K m  is symmetric and periodic we only consider h > 0. 

Using the compact support of K  and the definition of K m ,

sup f T \KM(X + h ) - K M(X)\dX
|/i|<5^ J - r

/ i r / M
\K (M [ \  + h] )~  K(MX)\dX

_ _ -7r/M
I” r i r / M —h r i r / M

= sup M  \K (M [ \  + h])~  K ( M \ ) \ d \ +  \K(MX)\dX
|/i|<5j\r \ J - n / M  J i r / M —h

'TT — M h= sup
IMS'S AT

/ ■K—m n  rff
\K(x + h M ) - K ( x ) \ d x +  /  \K(x)\dx

-7T J - K  —  M h

= 0 ( M 6 n ),

where for the last step we have used the Lipschitz property of K. □
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P ro o f  o f  P ro p o s itio n  3.1. We do the proof in two steps. 

First step. We study the difference:

A  =

First we rewrite the trace as 

Trace [(SjvWm )5]

Trace [(T,NW M)S] -  N(2n)2^  f  f ‘(X)K‘M(X)dX
J n

(3.40)

Y  7 (r i ~  i p - Y ' - r u M ' ' 1)
T2s - T \

M

i < n ,

l< ri,...,r2s<iV

1 <TU...,T2s<N Ju2a
x e x p { i[A i( r i- r2) +  A2(r2- r 3) +• • • +  A2s(r2s -r i) ]} d A r  • -A2s 

f  /(^ i)^M (A 2)*--/(A2»-i)^M(A25)exp < i ^ r j P j  i
^ r 2a< N Jn2a \  U  j

= N  f (  X - p 2-------- P2s) K m {^ ~PZ  P2 s ) - " f { ^ - ^ 2 s ) K M W
J n2a

x ( 2 n ) 29~1^ s\ p 1 , . • ' , H 2 s ) d \ d p 2 - • ’dp,2s

where we have made the change of variable

pi  =  Ai -  A2s

P2 =  A2 Ai 

P2s — A2s — A2s_ i,

rfAi* • *A2s

(it is immediate tha t J 2 j L  1 P j  = 0)? and setting A =  A2s, we express all the variables A j  

in terms of A and P j ,  j  = 2 , . . .  ,2s:

A2s_l =  A — fl2s 

A2S-2 =  A -  P2s — P2s -1

Ai = A -  p2i p 2 =  A -  pi,

Then we have that

A < J ^ { \ - p T — p2s)KM { \ - p Z - - p 2 s y - f { \ - p 2 s ) K M W - f SW K ^ \ \ \

xiV(27r)2s_1 . . , P 2 s )  d X d p 2- - - d p 2s- (3.41)
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We split the above integral into two sets, for small and for big /ij. For a sequence 

8n  = o(M -1 ), to be chosen optimally later, define the set

D =  j / i  G 7£25-1 : supj|/ij| <

Taking into account tha t |A| < x /M  due to the compactness of the support of K ,  in the 

set D all the functions /  are boundedly differentiable. Then we can use the inequality
r —1

\Ai • • • A r — B\  • • • B r \ < ^ 2  \Bi • • •B q (Bg+i — A q+i) A q+2 • • • A r \ (3.42)
9 = 0

and supA \Km (^)\ = O(M)  to bound the integral of (3.41) over D with
s —1

° ( N M ‘ - ' j p J ^ J D  |/(A  -  i n * , - - M  -  /(A )| d X d ^ r  ■ -d/22s(3.43)

+ 0 ( N M a~ 1) ip J n  J j K M (X - M S B , - -  A*J*) -A"m(A)| |*P *>0.)| dXdtn-  • -d/22,- (3.44) 

Then, applying the Mean Value Theorem and using (3.32) we obtain tha t (3.43) is 

0 ( N M f  | t f M(A)|dA £ ;  /  |/i,| ^ ,) (/2)|d/22---dM23 = 0 (M J- 1log25- 1iV).
■'n q ^ 2 Jn  '

(3.45)

On the other hand, applying Lemma 3.16 and using (3.29), (3.44) is of order

0 ( N M s6n ) . (3.46)

Denote as D c the complementary of D  in II25-1. The integral in A corresponding to 

the set D c is then less than

N ( 2 i r f 3~1f  f  | / ( A - /22-------- M2S)^m (A -M 3-------- /22»)---/(A -/<2J)^m (A)|
Jn Jd c

• • • ,H2, ) \dXdn2- ■ -d ill, (3.47)

+  N(2ir)2̂  f  \ f a(X)KaM(X)\dX f  | ^ s)(/2i ,- '- ,M 2»)|d/22" -d /22S. (3.48)
J n Jdc

The expression in (3.48) is 0 { M S~X log2*-1 JV<$_1)> by (3.31) and f  \ f s(X)K^(X)\dX = 

0 (M 5-1), which follows from the compact support of K .  Now for (3.47) we have

N { 2 ^ f 9~l (  f  |/ (A - /z 2---------/*25)#M(A-jU3-------- ^25)**7(A-//2s)ArM(A)|
J n J d c 

X |$ $ s)(/2i> • • • ,H2,)\dXd)l2- • -d/225 

< /  I/(Ai ) ^ m (A2)---/(A2^i )A'm (A25)
J D *

x < ĵv(Ai — A2s)< ĵv(A2 — Ai) • • • v?at(A2s — A2s_ i) | dAi* • *A2s,
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where D* is the correspondent set to D c with the old variables Xj, j  =  1 , . . . ,  2s, defined 

by the conditions

D * = {|A2 -  Ai| > 8n } U {|A3 -  A2| > 8n } U . . .  U {|A2s -  A2s_ i| > 8n }-

Also the last integral is only different from zero if

IA2|, |A4| , . . . ,  |A2s| < — .

We are going to consider only the case where just one of the events in D* is satisfied, 

|A2j — A2j-_i | > 8n  (1 < j  < s), say, the situation with an odd index or with more than 

one event is dealt with in a similar or simpler way.

First, if |A2j — A2j _ i| > 8n,  then \<fN(^2j — A2j-_i) | =  0(8 j^1). Second, we can bound 

the integrals in A2j and A2j_i in this way:

/  \<pN(^2j+i — A2j)^Tjif(A2j) | dA2j =  O(MlogN) ,
Jn

using (3.35) and

/  |^v(A 2j_ i -  A2j _2)/(A 2j_ i) | dX2j - i  =  f  + /  . (3.49)
JII J\\2j—1|<£ J\\2j—l|>e

If |A2j-_i| < e then /(A 2j _ i) is bounded and the correspondent integral is of order 

O(logiV). If |A2j_ ! | > e, as |A2j_2| < ir/M,  we obtain tha t |A2j_ i -  A2j_2| > c/2, say, 

as M  —► oo, and then |<^v(A2j_i — A2j_ 2)| =  0 (1). Thus the second integral is finite due 

to the integrability of / .  Then (3.49) is O(loglV).

There are 5 — 1 integrals of each type, which can be handled in the same way. The 

remaining integral is of this general form:

/  /  |^m (A 25)/(A 1) ^ ( A 1 -  A2.) | d X ^ s  = O(loglV),
Jn Jn

since, as before, the integral in \ i  is O(logJV), and /  |-KM(A2s)|dA25 is 0 (1 ). Finally the 

integral over D* is of order

O i t r f M ’- 1 log 25- xJV), (3.50)

and compiling results we can obtain

A = 0  [ M s~l log2s~l N  + 6n N M ’ + log2 3 - 1 = 0  (n  M ° - ' e N(s)) ,
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where ejv(s) =  [N 1M  log2* 1iV)]1/ 2 —► 0 under the conditions of the lemma, and we 

have made the optimal choice 6pj = [(MiV)-1 )log2s_1 IV]1/2 =  o(M -1 ).

Second step. If we define

d
Cm (s) =

3=0

=  E r w K P M '~ 1~i 

= g jr(^ )J/s(0)/nAĵ (A)dA’
then, as M  —► oo,

| | n J& (A )/* (A)«fA- CW(a)| < / * ( A ) - ^ i ( A J r ( 0)V  |jr*(A)|dA

=  0  (sup |irM|5- 1 J |A|‘l+«|JK-Ar(A)|rfA  ̂ (3.51)

= 0 { M s~l ~d- Q),

using the Lipschitz property of f ^d\ A) in the same way as in the proof of Lemma 3.2. 

□

3.9 Appendix: Proofs o f Section 3.4

P roof o f Proposition 3.2. We can write

1'(EwW m)sE ;v1

E  l ( r i - r 2) • • -a>C 2s ^ 2’+1 )7 (r2,+ i- t - 2,+2)
0<ri ,."mt’2s+2 <JV—1

E  /  /(Ai)̂ m(A2)-”̂ (A2.)/(A;wi)
i<n , . .7l„2<NJn w  

X exp {t [A!(ri-r2) +  A2(r2- r 3) H----- 1- A2»n(r2»n - r 2»,.2)]} ^Ar  • -A^r

= (27t)2s+11V f  A2#h)
j ip h -i

x $ ^ s+2^(Ai, A2-Ai,- • •, A2»+.i-A2S, --A2»fi)dAi- • *^ 2^-1

= (27r)2s+1lV f  /(Aii)-^M(Afi+Ai2)‘ • ----- hA*2a)/(/JiH-----./n2s+i

x $ $ s+2)0 i , -  • -,/X2a+i, - E j = t V j ) ^ r  ' -dp2a+u (3-52)
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where we have made the following change of variable:

Hi ~ Ai

/X2 = A2 — Ai

with X]j=t2 =  0, and

l^2s+l =  A23+I ~  ^2s 

V2s+2 =  ~ ^ 2 s+ l

Ai =  Hi 

^2 =  ^1 +  H2

A2s — A*i H h H2s

A2S+1  = Hi H 1" Â 2s+i •

To study the difference between the integral in (3.52) and [/(0)]*+1[.Ka/(0)]* we divide 

the range of integration, II2s+1, into two sets, D and its complementary D c, where D is 

defined by the condition

D  =  {\Hj\ < tt/[M (2s+2)], j  =  l , . . . , 2 a  +  1}.

In this case we only need the smoothness properties of K  at the origin (inside D).  For 

the difference in the set D , we can use inequality (3.42), the Lipschitz property of K  and 

the differentiability of / :

/  f(ti>i)KM(Hi+H2)’ ” K m {^ i -\------H/̂ 2s)/(a4iH------\-H2»h )\Jd

X $ ^ +2)(/il,- • -,/i2.+l, - E ^ l 1 1- •

- JD /»+1(0)̂ (0)$SJs+2)(mi .• • •, M2.+1, -EjS1 « ) < ^ i  ■ ■ -̂ +1
<  o ( M s+1)jf I w l +5)0 ‘ i>-• • ./‘2.+ 1. « ) | < V ■ -< W + i

3—2

= o ( M 5+1JV-1log2s+1iv) , (3.53)

using (3.32) for the last step.

Now, focusing in the integral over the set D c, we can see in first instance that, by 

(3.31),

/  f ( ^ l ) ^ M ( f J-l+fJ'2)' -------------  l"M2s)/(/^lH------h/^s+l)
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X < C +2V l , -  • -.M2S+1. “ E j S 1 HiHHV • -dH2,+l 

-  /  /*+1(0) ^ ( 0)#{J*+2)(m1i. • - E ? 3 ‘ ■ ■dw.+i
J D C

5; I  1 /(^ 1  )^ m (A 41 + ^ 2)' ' •■^Af(/i lH f'Ai2 s )/(A tlH----- hM2S+-1) I
J D C

X |$5Js+2) (p i , . . . , / i2, + i , - E 2r f 1w )  dfiv --dn2s+i (3.54)

+  0  (il/ s+1 A T1 log2s+1 a t) .

As we did in the previous appendix, the integral over D c in (3.54) is less or equal 

than

(2k)29* n  JD*
x w ( A i) w ( A 2“ A i)*-*^(A 2» n -A 2a)v?N(-A2*fi)|dAi---dA2*n, (3.55)

where D* is the set

{ |Ai| > 7r/[Af(25 +  2 )]}U{|A2 — Ai| > 7r/[M(25+2)]}U.. . U { |A23—1 +  A2«| > 7r/[Af(2 s+2 )]}.

Also, the integral in (3.55) is different from zero only if | A21, |A41,. . . ,  |A2S| < 1r/M .

If we are in the situation where |Aj+i — Aj| > 7r/[M (2s +  2)] for at least one j  E 

{1, . . . ,  2s} we can repeat the same process of Proposition 3.1 to obtain a bound of order 

0 ( N ~ 1M s+1 log2**1 N )  for this part of the integration in (3.55).

Let’s study the case in which |Ai| > w/[M(2s + 2)]. F irst, |^jv(Ai)| =  0 ( M ) .  Now 

truncating the integral at |Ai| =  e,

/  /(A i) |W (A2 -  AOIdAi = O(loglV),
J n

as |A2 — Ai| > c/2 if |Ai| > e and |A2I < e/[M (2s +  2)], since M  —► 00. Now

/ |A M(A2Viv(A3 - A 2)|dA2 = 0 (M logA ),
Jn

and the integrals with respect the rest of variables can be bounded in the same way, 

being (3.55) of order 0 ( N ~ 1M s+1 l o g j V )  again.

Therefore, from (3.53), (3.54) and the previous discussion for (3.55), we have that 

(note tha t we have dropped the N  in (3.52)),

1 '(S W m )* E jv 1  =  (2jr)2s+1iV[/(0)]3+1[.fi_M(0)]<' +  0  (il45+1 log2,+1iv ) . D
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P ro o f  o f  L em m a 3.4. Similarly to Feller (1971, p. 535) or Durbin (1980a, p. 325) we 

have for complex a , (3

\ea - l - P \  < e 7 | | a - / 8| +  ^ | ,  (3.56)

where 7 =  max{|o!|, \/3\}. Let’s take (with r  = 2 in (3.12)):

a  = log v?(t) — i ||z 't ||2 

A/A1/2

| r |= 3

and

= ( f f 2 E  + r n ( 2)

P = (^)1/*5f{C(0,3)rs(;)(<*>)3 + C(2tl)J1a)(«i)a(<*a)},
then we have, using (3.10) and Lemma 3.3 for 5 =  3,

\<x-P\ < 0(Af_2+eiv(3)) [(^2)3+ ( i / i ) ^ 2)]+^-[-Ro4(^2)4+-K22( î)2(^2)5

< fi(l|t ||)o ((5 ) U2[M-2+eN(3)]

where Fi is a polynomial of degree 4. Now

w 2

M \  
+ Nr) '

2

where F2 is a polynomial of degree 6. Then

l« -  P\ +  ^  < F ( | | t | | ) 0 ^ ) ‘ 1/2[M - 2 + eN (3)\ +  ^ 0  (3.58)

for some polynomial F. Now to study 7 ,  we first bound \(3\ for ||t|| < Spy/WjM, 6p > 0:

m < II*H2 (^)”1/2[|C’(o,3)r3(o)H-3|e(2,i)̂ 1(o)|]||t|||
< lltll2 [|C(0,3)r3(0)| + 3|C(2,l)Ji(0)|]}

< l|t!|2T>, (3.59)

with 0 < Tp < 1/4 if we choose 6p small enough. Now for a  we can choose a 8a > 0 

small enough, such th a t, for ||t|| < SoyfNjM,

1 / N V 1/2 r
\a \  < 5 f ® "  [lC'(°-3)r 3(0) l+ 3|C (2, l ) / i ( 0) |+ o ( M - 2+ e Jv(3))]||t||
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+ ;~  [|i204l + l^22|] ||t||2}

< ||t||2{ ^ [ |C (0 ,3 )r3(0 )|+ 3 |C (2 ,l)J ,(0 )|+ o (M -2+ e w(3))]+^[|ilo4|+|ii22|]}

< l|t||2 { j  +  0 (A f" 2+ ^ ( 3 ) ) } .  (3.60) 

From (3.59) and (3.60) we have tha t

e7 < exp {' -  +  0  (M  2 +  ejv(3)^

for ||t|| < <$iyJN/M  where =  min{^a ,^ } .  Then,

exP { —̂ IKII2 +  < e x p | | | t ||2 ^ - i  +  0 (M - 2 +  eiV(3)) |

< exp { —d i | | t ||2 j  (3.61)

for one d\ > 0, ||t|| < 8 \y /N jM .  Since our approximation to (p(t) =  e x p { |||i t ||2 +  a} is 

yl(t,2) =  exp { || |* t | |2} [1 +  0], using (3.58) and (3.61) the lemma is proved. □

P ro o f  o f  L em m a 3.5. F irst, following Bentkus and Rudzkis (1982) we study the 

characteristic function of the estimate of the spectral density, which itself appears in the 

joint characteristic function. Define

r(t2) = E 

= E

= \I — 2U2'En Qn \ exp {—it2E}

I -
2it2

Now define

y j  N M a j s j V j q

A h )  =

'En Wm

I -

~1/2 r - i u  i
expl v F F ^ 1Yace[s",M

2 it2
yj NMctnVnZ n W m

= TT (i - 2i t2 /—- —fJi V V N M ctn Vn

- 1/2

- 1 /2

where fij are the eigenvalues of the matrix Obviously | t ( /2)| =  lr / (^2)|- Now as

l  = Var [Vfq2] = ^ T r a c e R E  n Wm)2}

N

M N  cr%V* *E /* J ,

130



we can obtain
N 1

£ / * ?  = - a l V t $ M N  =  0 { M N ) .
3 = 1

Also we have that

max|/Xj| = sup \{Y>nWm z,z)\  = ||£;vWm||* 
3 11*11=1

To evaluate the norm of the m atrix En W m ,

W^n W m W =  sup
j,h

first set for any vector 2 with ||2|| =  1,

^2 ZjZh f /(A)AM(w)y57v(A - u)el(huj Ĵ d\dw
77 Jn

, (3.62)

N
ZN ( \ )  = Y , Z j e ijX-3=1

In the integral in (3.62) we have to consider only the interval w G [—7r/M , 7r/Af], with 

7r/Af < e as Af —► oo. Denote the supremum of /(A ) when A G [—c,c] as | | / e||oo- Then

we have

sup I I f(\)\KM(v)<pN(X — u )Zn (—\ ) Z n (u))\cI \ cIw 
\\g\ \ = i J \ \ \ < e J n

< sup Af llooll/elloo /  f \<pn(X -  u ) Z N ( - \ ) Z N (u)\d\(L>
||*||=i J n

= sup Mprilooll/elloo I I \<pN (a)Z N( - a - u ) Z N(u) \dadu  
||*||=i *'ii J n

< sup Afll-K'Hooll/elloo /  \<Pn (®)\\ [  \ZN {-CL -  u) \2 du !  \ZN (u)\2du; da
l|z||=i Jw. IJ n  v n

< 27rM||A||00||/e||00 f \(pN(a)\da 
J n

< c ( f , K ) M \ o g N ,  (3.63)

where c( f , K)  is an absolute constant depending on /  and K , and we have used the 

change of variable a  =  A — uj and the fact tha t f n \ Z^(uj)\2duj =  2ir. For the other values 

of A we can see tha t |A| > e and |u>| < 7r/M  imply |A — u>\ > c/2, say, as M  —* oo, 

so |< ĵv(A — cj)| < const. Then, for 1 < p < 2 and using supz |Zjv| < V N  and Holder 

inequality,

sup f f /(A ) |Km{v)<pn{v ~ \ ) Z n ( - X ) Z n ( u ) \  dXdw
||*||=1 * |̂A|>e J n
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< const sup j I  / (A ) \Km (v )Zn (v )Zn (—A)| dXdu
||*||=i «/n J  n

< const sup [/  \ K m ( w ) \2 du> f  |Z /v ( k > ) |2 du;l [/  f p(X)dX
ll*ll=i Un  Jn J u n

\ J j Z N ( -X) \

1 / p

p - 1

x I I |Zw(-A)|?=r<JA| '

< constH A -II^II^IK II/llpiV ^A f1/ 2

= c ' ( f , K ) N 2* M 1/2, (3.64)

using supz \Zn \ < V N  and / \Zj^\2 =  2ir. Then from (3.63) and (3.64), and N  big enough

||EjvWm|| < ci max |ik f  l o g i V , j  =

say, where c\ is a constant depending on /  and K .  Thus we can write

m ax \fij\ < ci#7v- 
j

Introduce now the notation

gj =  nj[c  i^iv]-1

where \gj\ < 1. Now we have

N (  1 \ 2 N

V ‘ ’  (^ ) §"'
-  1

-  2c\ N N 4j ,  ’

and (note tha t —*■ oo, Vp > 1)

N (  a 2- \ ~ 1/4
W 1.) | -  1 1 ( 1 + 413™ ^ )

N  /  „2„2„<)2 \  -1 /4



where C2 = c2/(7r247r/2(0)||iif||2) is a constant from the expansion for a and we have 

applied (1 -f at) > (1 +  t )a, valid for t > 0, 0 < a < 1.

So for all 7] > 0, as N,  M  —> oo we have that

.. NM 
—  7)0  a

\r{t2)\ < ( l  + »7i) (3.65)

for |^21 > rjy/NM  /$ #  and for 771 > 0 and 772 > 0 depending on 77.

Then returning to the bivariate characteristic function, its modulus is equal to

M h y h ) ]  =  IDet [I -  2it2XNQN]-1/2 |exp -  2it2£jvQjv)_1£jv6 v j
= \T(h )\exp ~ ,

where stands for real part.

From Anderson (1958, p. 161) ^ (S ^ 1 -  2 H2 Qjv)-1 =  9£(J — 2^ 2%nQn)~1^ n  is 

positive definite as ^Qiv is real (for every N). Then — 2it2%nQn)~1'En£n > 0

for all <2 £ And for 1̂ 1 < S y / N M /#/v, V<5 > 0,

for some 6 > 0 fixed depending on 6, since we have that

IIEjvOaHI = o ( (M iV )-1/ 2||EA,W'M||)

= 0  ((Af JV)-l / 2̂ jv) ,

and since ||£jv|| =  1/Vfr, with V)v —► 27r/(0), 0 < /(0 )  < 00, as N  —► 00. Then,

ex p { - ^ <i^ * (7 -2 i< jE jv O A r)- 1Sjv{jv} < e x p ( - l t ? « i |  

< (3‘66)

for \h \V2  > 61V N M / # n  and \t2 \V 2  < 8 \y /N M /$ N i  and some €\ > 0 depending on 6\.

So now from (3.65) and (3.66) we have that for ||t|| > 8 \ y / N M /$w , there exists one 

number ^2 > 0 such that
f , a m  

IW i,* 2)| < e x p  j - c k ^ T "
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as | t  : ||t|| > S i y / N M C B\  U B 2 where 

B i  =  | t  : |t2| >

B 2 =  | t : \t2\ < J = V N M / O n  and |ti | >  ^ = V N M / # n }

and the lemma is proved, since

N M  N M

("max |  M  logN,  M ' I 2X \

= M N  m in i  - 1 ,
\  M 2 log IV J

= m% —► 00.

It can be noted tha t p > 2 in B2(p) does not give any further improvement in any bound. 

□

P ro o f  o f  L em m a 3.6. First,

||( fS v -< ? (2))* ® a w|| =  2 SUP

< sap [KPjv -< 3 (2)) * * « „ |; B  C B (0 ,tn )c]

+  sup [ |( /V - Q < 2>)*® aw|;.B C B(0,rw )] ,

where rjq = (/5>0 to be chosen later).

Now for B  C B(0,  r/v)c we have uniformly

| (Pn - Q W ) * 9 aN I < \Pn * &N I

< ProbiliyjvAMqH > rjv/2} 

+2Va„ {B (0 , r N /2 )c}

+ 2Q W {B (0 ,rN / 2 f } .

Now

Q W {B (0 ,rN /2)c} = o((lV /M )-1/2) 

as this is the measure of a polynomial in Gaussian variables. Also

P ro b { ||0 V /M q || > rN / 2} = o((lV /M )-1/ 2),
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as y j N / M q  has finite moments of all orders. Finally, from (2.10)

{ £ (0, ^ / 2)'} = 0{[aN/ r Nf )  = 0 ( ( N / M ) ' 3^ )  =  o((JV/  M )" 1' 2),

since p + (3 > 1/6.

For B  C J5(0, r^v) we have by Fourier Inversion

\{Pn  ~  <3(2)) * ® « J  < [(2^ 2' ^ ]  /  -  e (2)) ( t)* « w( t ) l* ,  (3.67)

and as we know tha t P/v = <p(t) and Q^2) =  A(t,2), using Lemma 3.4, (3.67) is bounded

by

° { { i T ' n  [""+*»<»]) (*• “>

as, from (2.11), is zero for ||t|| > a / ( N / M y  and a' =  8 • 24/37r-1/3.

Then for (3.68) to be o((lV/M)-1/2) it is necessary to  chose (3 < 1/4 (due to the 

definition of eyv(3) and (3 < q/{ 1 — 9).

Finally, from (3.15) in Lemma 3.5, valid for ^m jv  < ||t|| and also for <$1 y / N / M  < ||t||, 

since tun  < y / N / M  for N  big enough (from the first element in the minimum of the 

definition of rajv), we have that (3.69) is

0 ( ( N / M ) 213) [  e“ * m» d t + o d N / M ) - 1/ 2),
J S iy /  N/M<\ \ t \ \<a'(N/M)P

and then (3.69) is dominated by 0((JV /M )2̂ +2?)e-d2mw+o((lV/Af J -1/ 2) = o ( { N / M ) - 1!2), 

from (3.17). Applying the Smoothing Lemma the proof is complete. □

3.10 Appendix: Proofs o f Section 3.5

P ro o f  o f  L em m a 3.7. We are going to make direct use of the result due to Chibisov 

(1972, Theorem 2), proving that

Prob ( \ Z N \ > pN y / N / M ^  =  o((iV/Af)_1/2) (3.70)
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for some positive sequence pat —» 0 and p ^ y / N / M  —► oo. Let’s choose p?j =  1/ log IV. 

Then we have

Prob ||Z jv | > pnsJ n Jm )  < E Prob { \ z n U)\ > \ p n ^ /n / m }  , 

so writing now

{ N /M ) ~ 1/2Z n {2) =  u-iO{{NIM)xl 2[N~l logJV +  M ~ d~1]) (3.71)

{ N / M ) - x/ 2Zn ( 3) =  U1U20(M-2 + eN( 2)) (3.72)

and applying Chebychev’s inequality, as u\ and u2 have finite moments of all orders it 

is possible to see tha t for (3.70) to hold it is sufficient tha t the error terms in the right 

hand sides of (3.71) and (3.72) be 0((1V/M )_,i), for some p  > 0, which is true due to 

3.7, q =  1/(1 + 2d).

Now write

Zn { 1) =  g ( l  +  fyv +  (t n 0u2( N / M ) -1/ 2')  ̂ <j 2nuiu\  =  R n ( 1) • R ^ ( 2),

say, where R ^ ( 2) = ^ gn uiu2 is a random variable with bounded moments of all orders. 

As before, in order to satisfy Chibisov condition (3.70), we need

Prob ( | i M l )  • fljv(2)| > Pn ( M / N ) - x!2}  =  o i{M /N )x/ 2), (3.73)

but the probability in the left hand side of (3.73) is less or equal than

P r o b { |^ ( l ) |(A f / iV )1/4 > p j f  } +  P ro b { |i^ (2 ) |(M /JV )1/ 4 > p j f }  =  Pi + P 2,

say. Now P2 =  o((M / N ) 1' 2) applying Chebychev inequality. For Pi, since 6jv =  0 ( M ~ d+ 

N ~ x\ogN) ,

Pi = P i o b ^ \ { l  +  bN +  <rN e u 2( N / M ) - x/ 2y 5/2 ( M / N ) 1/ 4 >  p ] ( 2 )  

= Prob { |l  +  bN +  aN0u2{ N / M ) - V 21 (M / N ) -1/10 < p^1/5}

< Prob { |l  +  0 ( M ~ d +  JV 'logIV ) + R ’n ( M / N ) ^ 2| (M / N ) ~ 1/10 < p ^ 1/5} ,

where R'N is a random variable with bounded moments of all orders. Now, as N  —► oo, 

for some positive constant c > 0, this is not greater than

P ro b d c  +  P j v W ^ ) 172! < ( M / N f ^ p ^ 5}  <  P r o b l ^ M / J V ) 1/ 2! >

= o ( (M /N )xI2),
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since (M/TV)1/ 10/ ) ^ 5 —► 0 and applying again Chebychev inequality. □ 

P ro o f  o f  L em m a 3.8. First we observe that

Trace[(S7vVFMl  l')*] = (T race^ 'E N ^M l])4 =  (1'EjvW m I)4 .

Then

I 'E wWm I = (2ttf N  f /(A1)ffM(A2)$S?)(A,,A2 -Ai)(iA1dA2
Jn2

= (27t)2N  [  +  Ai2)^Sv)(// i ^ 2)d/iid/z2. (3.74)
Jn2

Denote the set

D  =  {\fij\ < ?r/[2M], j  =  1,2}.

Then, using Assumptions 3.4 and 3.1, d =  1,

(2tr)2iV f  + ^ 2 ) ^ )(/^i,Ai2 ) ^ i d / i 2
Jd

- N  [(2ir)2/ ( 0 ) ^ M(0)] J  # $ V i ,M 2)<fmoip2 

<  O(iV) /  | / ( W )A-m(Pi +  W) -  /(0)JfM (0)|
•/ z?

= O ( N M )  ] T  f  l / ^ S v ^ i , / ^ )  dfi^/12 
j=\,2 n

+ 0 (iVM2) ^  dfi\dfj,2
J=l,2 -711

= 0 (M 2 log2 A ).

The expression in (3.74) for the complementary of the set D can be seen to be of order of 

magnitude 0 ( M 2 log2N ) ,  operating in the same way as in the proof of Proposition 3.1. 

□

P ro o f  o f  L em m a 3.9. We have

= ^ e e - P ^ )
r  i  r2

=  ^ j v E E /  p { i A ( r x - r 2 ) }
ri r2 ./n

= f Km(A)sjJ>(A)dA  
./n

=  -S'm (O) +  0  ( l ogi v)  , (3.75)
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using the Lipschitz property of K  and the properties of the Fejer Kernel. □

P ro o f  o f  L em m a 3.10. Following the proof of Lemma 3.2, we have

EU kl(oc)] = ( m vy  r  Vm„(A) f  -  A -  9)d»dX.
J  —  7T J  —  7T

We can write the bias of the spectral estimate as

£ [ & ! ( < * ) } - / £ 2( « )  =  r  V m ,(A ) f  * $ ( » )  [ / ( «  -  A -  0 ) -  f ( a  -  \ ) \d 9 d \
J — 'K J  — 7T

+ {m „ y  j T  Vm.(A) [ / ( a  -  A) -  ^ L - ^ a )

= &i +  62 ,

dA

say. Then we can reproduce exactly the same methods of Lemma 3.2, using the properties 

of the kernel Vv, to obtain

61 =  o ( ( r o „ ) ,,J V -1 lo g J v )

b2 = 0((m„)~a) ,

and the lemma follows. □

P ro o f  o f  L em m a 3.11. Likewise for the discussion of the cumulants of the spectral 

estimate contained in Proposition 3.1 we can write

1 27T f
= -  £ ----  /  Z(A +  <!)a-//2-/i3-^4)V rmI,(A -//3 -^ 4 )/(A  + (5Q!-/i4)KiI,(A)

 ̂ g nriy Jn4

X ( / z i , . . .,//4)d//i • • • dfi^dX (3.76)
1 27T /*

+  ̂ E —  /  / ( ^  +  ̂ « -M 2- ^ 3-At4)Vrm„(A -/i3-/Z4)/(A +  ̂ a-/X 4)Vrmi/(A + 2^Q!) 
m v j n4

x $ ^ ( / i i , . . .,{i4)dfii • • -d/^dA, (3.77)

where the summation is over the two values 6 E {—1,1}. As in Proposition 3.1 we have 

to take care of the possibly unbounded values of /  outside the origin. We can consider 

the set of integration

D  =  { f i e  [—tt,7r]3 : \nj\ <  SN , j  =  2, . ..,4 } ,
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for the sequence 6pj =  [(iVra^)-1 log3^ ] 1/2 =  o(mu). Also Lemma 3.16 holds for V ,̂ 

substituting M  for m v. Then, the terms in the summation correspondent to (3.76) over 

the set D  are equal to

J  J  / 2(A +  «a)V^(A)<iA + 0 ([ iV -1m ,lo g 3iV]1/2)

=  —  / 2(a) f  V^ ( \ ) d \  +  o([7V_1m „log37V]1/2 +  m ~ l )
m u Jn u \ j

=  2t t / 2 (q : ) | |V ^ || |  -h o ( l ) ,

using the evenness of /  and its differentiability around / ( a ) .  The integral in (3.76) over 

the complementary of the set D  can be seen to be 0([iV“ 1mj/ log3iV]1/ 2), using the finite 

support of Vv and the properties of as ^he Pro°f °f Proposition 3.1.

The terms contained in (3.77) are identical to the ones in (3.76) if a  =  0 or negligible 

if a  ^  0 as the two functions Vmu are centered in frequencies away for a positive quantity 

and they have compact support. □
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Chapter 4

Local Cross Validation for 

Spectrum  Bandw idth Choice

4.1 Introduction

In this chapter we propose an automatic method of determining a local bandwidth or 

smoothing number for nonparametric kernel spectral density estimates at a single fre­

quency. This method is a modification of a cross-validation technique for global band­

width choices of the discrete periodogram average type estimates.

Like in many nonparametric methods of inference, smoothed estimation of the spec­

tra l density of stationary time series relies on the choice of a bandwidth or lag number 

depending on the sample size. The properties of the estimates depend crucially on the 

value of this number. Asymptotic theory prescribes a rate for the lag number M  with 

respect to  the sample size N  as this tends to infinity, but gives no practical guidance 

for the choice of M  in finite samples. Different techniques have been proposed in the 

literature to tha t end. The usual criterion is the minimization of some estimate of the 

asymptotic mean square error of the estimator. This can be implemented by plug-in 

or cross-validation methods. Also, global and local choices are possible, depending on 

whether we are interested in the behaviour of the spectral density for all range of fre­

quencies or in a concrete point or small interval.

The plug-in method consists in substituting the unknowns of the leading term in
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the asymptotic expression for the mean square error by consistent estimates, generally 

nonparametric, but also parametric ones based on approximate models can be used. Cross 

validation procedures avoid the use of those initial estimates and approximate the mean 

square error indirectly. They are based in estimates which do not use the information of 

the sample about the function of interest at each point (at each Fourier frequency in this 

case).

Beltrao and Bloomfield (1987) [BB hereafter] justified a method based on a cross­

validated form of W hittle’s frequency domain approximation to the likelihood function 

of a stationary Gaussian process. Robinson (1991) extended their results under more 

general conditions for a wider class of situations, and proved the consistency of the 

estimate of M.

This cross-validated method selects a global bandwidth for all the range of frequencies 

[— 7r, 7r] or for a fixed subset of it. Here we propose a modified version of cross validation 

to justify a local bandwidth choice for a single frequency, following some ideas suggested 

in Robinson (1991, p. 1346), related with the work of Hurvich and Beltrao (1994) in a dif­

ferent context. For this single frequency choice, we only use local smoothness properties 

of the spectral density of the time series around this frequency, allowing for a broader 

range of dependence models. This local adaptation could lead also to some efficiency 

gains. There are related works for different nonparametric problems, like Brockmann et 

al. (1993) for kernel regression estimators and Lepskii and Spokoiny (1995) for projective 

estimates in a ’’signal+noise” model. Here the interval of estimation is split on degener­

ating intervals with the asymptotics and different smoothing parameters are estimated 

independently for each one.

Next section is devoted to the assumptions tha t we will use in this chapter, together 

with a brief introduction to the main cross validation concepts for nonparametric spec­

trum  estimation. In Section 4.3 we analyze the mean square error for the spectral estimate 

at a fixed frequency. Section 4.4 introduces the local cross validation criterion and the 

main result of the paper, which is proved in an Appendix. Then we carry out a Monte 

Carlo analysis of the finite sample behaviour of the techniques proposed. Finally we give 

some lemmas required for the proof of the results in another Appendix.
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4.2 Assum ptions and definitions

In this section we will introduce some assumptions and definitions, together with some 

intuitions about cross validation and BB’s results.

For completeness we present first the conditions assumed by BB. They are: {X*} is 

a Gaussian process and (cf. Theorem 3.1. of BB):

(i) E [ X o] = 0.

(ii) The autocovariance function 7 (r) =  E  [X qX t ] satisfies

(X)

] T r |7 (r)| < 00.
1

i- l v^oo(iii) The spectral density /(A) = (2tt) 1 7 (r)exp{«rA} is everywhere positive.

(iv) K  is a non-negative, even, bounded function, and

/oo r 00

K (x)dx  =  1, / x 2K (x)dx  < 00.
-00 J — 0 0

(v) K (x )  = f  w(y) exp{ixy}dy,  where w is of compact support.

(vi) =  0 ( N P), for some p < 2/5.

(vii) hN = o(l).

Given the observed data X t , t =  1 , 2 , . . . , N  we introduce the periodogram at the 

frequency A j =  2irj /N,  j  integer,

N
I { ^ i )  d— 127tN

yZ Xt  exp{itAj}
t=1

— 7,-1and the averaged-periodogram spectral estimate with lag number M  =  Mjv =  , where

h is the bandwidth of the estimate in BB’s notation, and kernel (or spectral window) 

K  [this function was denoted by W  in BB, but we use this notation later for another 

analogous function],

M Ai) = -  A*),
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where the summation runs for all values of k in the support of K  (not including the 

zero frequency periodogram ordinate to account for mean correction). We now stress the 

dependence of /  on M  in the notation, since this is the parameter of interest.

The ‘leave-two-out version’ of tha t estimator [we leave only two frequencies out if K  

were actually compactly supported inside [—7 r , 7 r ] ,  as we will assume later on, or if we 

had defined its periodic version in tha t interval] is

t o )  = -  A*), (4.1)
k

where Y k  rtms f°r same values as before, except in the set of indices of frequencies 

A j — Ajt with the same periodogram ordinate as /(A j), i.e., k E {0, ±1V,...}  U {2j,2 j ±  

N , ...} . Also, the normalizing numbers <j m  and <jjtM are equal to

aM =f E ajM ^  YlK(MXk)-
k k

Introduce the pseudo log-likelihood type criterion

£(/) =' E {!°g f(xi) + J(A#)//(*i)} •
j =1

BB showed under the previous conditions that

L  ( / m )  -  U f )  =  f  IMSE(M)

plus a term  of smaller order in probability, where IMSE(M) is the discrete approximation 

to the Integrated Mean Squared Error of / m , weighted by / -1 :

IMSE(M) =' N - 1 E  E  -  / (A3)} //(Aj)]2 .
j=l

Then minimizing and IMSE(Af) should be approximately equivalent, and this is

the basis for the estimation of the M  tha t minimizes the IMSE of /m (^) in [—7r ,7r].

If we are interested in the nonparametric spectral estimation at a single frequency 

(of special interest is the zero one) or we want to achieve possible efficiency gains using 

different bandwidths for each frequency we need a criterion to  choose a local bandwidth. 

The Mean Square Error at a frequency u,

MSE((/, M )  = ' E  [ { / m M  -  /(</)} / / M ] 2 ,
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is the usual criterion employed to assess nonparametric estimates of this class at a single 

frequency. We consider only fixed frequencies of the form v =  2irv/N , where v is an inte­

ger. We restrict to 0 < v < N / 2, given the symmetry and periodicity of the periodogram 

and the spectral density. We will use the following Assumptions:

Assum ption 4.1 X t , t =  1 ,2 ,. . .  is a Gaussian stationary time series.

Assum ption 4.2 The spectral density o f X t has three uniformly bounded derivatives 

in an interval around the fixed frequency v, with /(A ) > 0 for  A in that interval, and 

f  E Lp[—7r,7r] for some p > 5/3.

Assum ption 4.3 The function K  is non-negative, even, bounded, zero outside [—7r,7r], 

of bounded variation and

/ oo roo
K (x)d x  =  1, I x 2 K (x)d x  =  u>2 < oo.

-oo J —oo

Assum ption 4.4 The function K  has Fourier transform w(x) =  (27r)-1 K ( \) e %Xxd \  

satisfying

J |x||iy(a:)|da; < oo.

Assumption 4.1 was used also in BB, but we do not need to assume zero mean since 

we avoid the zero frequency periodogram ordinate in the definition of our estimates. 

Assumption 4.2 only requires smoothness properties of /  around the frequency we are 

interested in, allowing for a wide class of spectral densities, including ones with zeros 

and poles outside a neighbourhood of v. The only requirement outside this band is an 

integrability condition to ensure ergodicity (with respect to  second moments) of the series 

(see Lemma 4.5).

A compact support kernel in Assumption 4.3 is then the complementary of Assump­

tion 4.2 in order to guarantee tha t we only use information in an interval around u. The 

rest of conditions on K  are standard, Assumption 4.4 being necessary to approximate 

with a weighted autocovariance type estimate in Lemma 4.5. From this lemma, both es­

timates have the same asymptotic distribution and mean square error, so the bandwidth 

choice techniques for one are valid for the other.
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W ith Assumption 4.3, the summation in k in the definition of / m  takes values in

{ j  — N  +  1 , . . . ,  j  — 1} due to the compact support kernel.

4.3 M ean square error o f the nonparametric spectrum es­

tim ates

In this section we present and prove a result concerning the mean square error of the 

estimate First we give two lemmas about the discrete Fourier transform and

periodogram of the observed sequence, that we will need in the proof. The proofs are in 

the first appendix of this chapter.

Lemma 4.1 Under Assumption f . t ,  i f  f  satisfies a uniform Lipschitz condition o f order 

0 < a < 1 in an interval around a fixed frequency v, then for Fourier frequencies such 

that supA/ \v — Â | < const • m -1 , I  G {j , k} ,  for some positive sequence m such that

1/m  +  m /N  —► 0, uniformly in j  and k, ( j , k  ^  0),

E 4 (A i )dx(A*)] -  2jrJV/(Aj) =  logJV),

where dx(Xj) is the discrete Fourier transform of the series X t,

N

d.(A j) = Y , x <e~iX,t-
t = 1

L em m a 4.2 Under Assumption 4-1, if  f  satisfies a uniform Lipschitz condition o f order 

0 < a  < 1, in an interval around a fixed frequency v and i fsupxjr W ~  ^jr I < const *m-1 , 

r =  1 , . . .  ,q, for some positive sequence m  such that 1 /m  +  m /N  —» 0, then, uniformly 

in j r ±  0, with j r ±  j r>, r ^  r',

E

and

Lr=l
= n p - / ( A> )Pr + 0 ( N ~ a log N),  (4.2)

r=l

E
Air ) '

lL \  v f ( ^ )  .
=  0 ( N ~ a logN).  (4.3)

Define \\K\\^ =  f  K 2 (x)dx.  In the following lemma we study the asymptotic behaviour 

of the mean square error of the nonparametric estimate, distinguishing between estimates 

for frequencies close to the origin, and at any other frequency.
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L em m a 4.3 Under Assumptions 4-1, 4 and 4-3> if  M  = const • N 1/5, for frequencies 

Xj =  27r j / N  such that \v — Xj\ < const • m -1 for some positive sequence m  such that 

1 /m  +  m /M  —*■ 0, then, uniformly in j ,  for v  > 0,

=  ^ \ \ K \ \ \ S { \ , f  +  M~*

and for v = 0.

( m 2

+0(f2+JV“1)- (4-5)

where 0 < SmU)  < 1 measures the degree o f overlapping between different kernels K  at 

a distant 2MXj  apart when Xj —► 0. For j  = 0, 6 m(J) = 1 VM,  and for Xj > 2 ir/M,

6 m U )  = °-

P ro o f. An equivalent lemma is evidently valid for more general choices of M , but we 

are specially interested in this particular case. We can take an e > 0 as small as we want, 

in such a way tha t in the interval I v =  [v — e, v  +  c] the conditions of Assumption 4.2 are 

satisfied. Then for m  big enough we have tha t \u — Xj\ <  const • m _1 implies Xj E I v . 

Therefore when v  > 0 we have tha t for N  big enough, 0 < Xj ~  v,  so (Aj) 1 = 0 (1 ), 

where a ~  b means a/6  —► 1 as N  —» oo. We study first the bias and the variance.

Bias. Similarly to Theorem 5.6.1 of Brillinger (1975, p .147) and using now Lemma 4.1 

with a = 1, we get,

= r  K M I t o - m W  + O W N )
J  —  7T

= f ( x i )  +  + 0  ( ^  + AT3)  .

The bounded variation condition on K  and the derivability of /  are used to approximate 

the discrete average of K  and /  by and integral with error 0 ( M / N ), since by Assump­

tion 4.2 and for M  big enough we are only averaging inside I v , thanks to the compact 

support of K.

Variance. First, it is more convenient to write the spectral estimate using only N  

frequencies in this way:

- i  N - 1 
M

MTu&i) = %-'£ KM(h -
k=1
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where K m {X) — Ylj M  K ( M [A +  2irj]) is the periodic extension of M K ( M X ) .  Then we 

have

V arl/jv ,^)] =  ^ ^ iS -M C A fc -A ^ V a r^ A * )] (4.6)

- 2

-  X>)k m {Ai -  Aj)Cov[/(At),/(Ai)]. (4.7)
k i-fik

Then, from Lemma 4.2 we get Var[/(Afc)] =  / ( A^)2 +  0(iV 1 logiV) and, for k ^  i,

C o v [ / ( A Jk) , / ( A i )] =
/(Ajt)2 +  0(iV -1 log IV) 

O ^ " 1 log IV)

Also we have tha t £Tm = N/ (2 ttM )  +  0 (1 ). Then (4.6) is 

(2t t )2

if k = N  — i 

otherwise.

N2 ^ i ^ A i - A . f / ^  + O ^ l o g l v )

/ IT (  1 / 2
M K ( M X )  f ( \ j  +  \ )  dX + 0

-7r

k
27tM

N
2irM

N / 7T /  1 /

^ ( A ) 2dA +  0 ( -

JV2
M
n + m

In (4.7) we only have to consider the situation where k = N  — i, since for the other 

frequencies we have a bound of 0 ( N ~ 1 log N )  for the covariance from Lemma 4.2.

Then, if v  =  0 and A j =  0, (4.7) is similar to (4.6). In general, if v =  0 and 

|Aj| < 27r /M  then the two kernels in (4.7) overlap in some interval for all M . Taking into 

account only the frequencies i = N  — k, for which the leading term of the covariance is 

also / ( Xk) we have tha t (4.7) is equal to, using the periodicity of K m ,

^  £  Km{Xk -  +  Aj) [ /(A * )2 +  0 ( T V 1 log N )] (4.8)
k
2 ir
~N

f  K m ( \ ) K m (X +  2Xj)f(X -  Xj)2dX + 0 ( ( M / N ) 2 +  lo g N  ^  )  

= M i ) / ( A ; ) 2^  K(X) 2 d.X +  0 ( m N ~

for some 0 < 'W (i) <  1-

If IAj| > 27r /M  then the two kernels in (4.8) do not overlap at all and the covariance 

terms do not contribute to  the leading term in the variance of / m  , and the lemma follows. 

□
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We would take M  =  r A 1/5, for some 0 < r  < oo, to make the bias and the variance 

of the same order of magnitude and then MSE will be of order M -4 ~  const.M / N .  From 

the previous lemma, the optimal constant r* tha t minimizes the leading term of MSE of 

is
1 /5

r.  ( “ 2 /p > w 2 v /0
\ 2 ^ \\K \\lS (uY  j  '

if v ^  0 and with Air instead of 2ir for u =  0. Now it is possible to estimate the value 

of r* using initial, pilot estimates of the spectral density and its second derivative at v. 

This is the approach of several authors, like Andrews (1991), Newey and West (1994) 

or Biilhmann (1995), just to give some recent contributions. In the following section we 

adopt instead an indirect approach using a cross-validation argument.

4.4 Local cross validation

Consider for some positive sequence m  =  m #  such tha t m  1 +  m /M  —► 0 as A  —► 0, one 

form of local integrated mean square mean,
jv_ i

IMSEm(i/,Af) ^  £  Wm(Xj -  i/)E [{ /M (A j)  -  /(A ,- )}  / / ( A,-)]’ ,
3 =  1

where W m(X) = m  J2j W(m[X  +  2nj]) for some appropriate kernel function W  satisfying 

Assumption 4.3. For W  =  (2ir)~l and m  =  1, IMSEm(i/,M ) =  IMSE(M) for all 

v.

Then, from Lemma 4.3 and v > 0, we can obtain under the same regularity conditions, 

for m  big enough

IMSEm(i/, Af) = ^ 2 w \ \K \\ l+ M ~ 4
m2

2 f(u)
=  M SE(i/,M ) +  o(MSE(r/,M)),

‘ ( M 2 1 M
( ~7V7T "AT “jvT\ A 2 A  A

m  1 
A  m

where the errors in m  come from the continuous approximation for the sum and because 

the ratio has bounded derivative. Therefore, IMSEm(i/, M )  approximates

MSE(*/, M )  when v > 0 as m  —> oo.

When u =  0. we can see that

27r N - 1

IMSEm(0 ,M ) = —  £
3=1

(4.9)
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+ M -4 W2 / (2)( 0) J  M 2 . M
+  ° h v 7  +  iV + JV

m
N  + m

-1
2 / ( 0)

Now in the summation in (4.9) we can consider the values of A j  smaller and bigger 

than  27r /M  in absolute value. Since \S\f(j)\ < 1 V7, \6 mU)\  =  0 if |Aj| > 27r/Af (i.e. 

|j | > N / M )  and m / M  —► 0, with supmj- |Wm(Aj)| = 0 (m ),

2Jr||isr||2{l +  «M0-)}

N N N

j
’ n ^ n2 /  M  m \  / M \M.

iV
(4.10)

Therefore, when i/ =  0, IMSEm(0, Af) only estimates half of the variance in M SE(0,M ).

A possible approach to  obtain a consistent estimate of the optimal local bandwidth 

which minimizes MSE(^, M ), M  =  r^iV1/ 5, is to minimize one estimate of MSE(z/, M )  

or of IMSEm(i/,Af), which approaches MSE as m  increases. Some adjustments may be 

necessary in the case v =  0. The presence of two related bandwidth parameters, m  and 

M , seems to imply a circular argument like the one present in a plug-in method, where 

pilot estimates of the spectral density and its derivatives are used, depending on other 

bandwidths or parametric assumptions. To circumvent this problem we propose some 

procedures that connect both choices.

The logical cross validation argument in this case would be the minimization with 

respect to M  of the function (remembering the definition in (4.1) of the ‘leave-two-out’ 

spectral estimate),

N - 1
CVLl m ( v , M )  =!  2t  £  Wm{ -  v)  [log/xkAy) +  .

j=1

which is a likelihood tha t tends to use only the information around v as m  —► oo. As 

W  has compact support [—7r ,7r], just about N / m  frequencies around v are used. It is 

likely th a t this procedure lead to more variability than the global one, since we are not 

using all information of the sample (see Brockmann et al. (1993) for a related problem 

in nonparametric regression).
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To justify the above ideas we have the following Proposition, proved in the second 

appendix of this chapter.

P ro p o s itio n  4.1 Under the Assumptions 4-1, 4-%> 4-3, 4-4) W  satisfying Assumption 

4-3, M  — const - iV1/ 5 and m -1 +  m /M  —> 0,

N —l
CVLLm ( u , M )  =  2x  ^  W m(Xj — v)[log/(Aj) +  /(Aj)//(Aj)]

j = 1

+ y  IMSEm(v ,M )  +  oP(N IMSEm),

where 0 < c\ < IMSEmj  IM SE < C2 < oo as N  —>• oo, and the first term on the right 

hand side depends only on m (but not on M ).

Then, under regularity conditions, CVLLm is a consistent estimator of IMSEm up 

to a constant not depending on M . From tha t, minimization of CVLLm should be 

approximately equal to minimization of IMSEm. Since the la tter approximates MSE(^) 

under similar conditions on m, we can expect to obtain reasonable estimates of the local 

optimum M  using the local cross-validation criterion.

BB did not require to estimate explicitly IMSE or its asymptotic rate of convergence, 

but in our case we need to do so as we estimate a local MSE from an IMSE calculated 

around a single frequency. To this end, additional stronger conditions are required for 

the spectrum at tha t frequency, but we do not need to make global assumptions for the 

spectral density.

4.5 M onte Carlo work

In this section we try  to assess if all the asymptotic arguments given before are good 

approximations for reasonable finite sample sizes. We have concentrated on the special 

case of the estimation of the bandwidth for the nonparametric spectral estimate at the 

origin (i/ =  0). From (4.10) we know that for this frequency in particular, IMSEm(0, M )  

does not approach M SE(0,M ) due to the different variance of the spectral density esti­

mates around the origin. Nevertheless, from Lemma 4.3, the transition from the variance 

°f /m (0) to  the variance of an estimate at a frequency apart from the origin (one half of
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the previous one) is smooth, depending on the shape of the kernel used. Then we can 

expect tha t the approximation behaves approximately well also for this case.

We have used the following equivalent version of the cross-validated log-likelihood,

given the periodicity and symmetry of Wm, /  and / ,
[N/ 2 ]

CVLL* (0, M ) = 2tt £  W - M  [loS .
j=-[N/ 2]

dropping the frequency j  =  0, (for mean correction purposes and due to the different 

asymptotic behaviour of /m (0))> and we define IM SE^ accordingly.

We have calculated both functions CVLLJ^ and IMSEJ^ by Monte Carlo simulation for 

Gaussian sequences following five different models and sample size N = 256. The models 

considered are the following AR(3) processes,

X t =  OilXt-l +  Oi2 X t - 2 +  a 3 ^ t-3  “H ^  A/"(0,1),

with parameters

MODEL 1:

0IIe a 2 = -0 .5 , a 3 =  0.4.

MODEL 2: 0:1 =  0.6, a 2 =  —0.6, <23 =  0.3.

MODEL 3: a i =  0-6, Oi2 =  —0.9.

MODEL 4: ol\ =  0.8, a 2 =  - 0.6.

MODEL 5: a i =  0.8,

and ai =  0 if not stated. These models are convenient because of their simplicity and 

the different spectra they represent. From Figure 1, Model l ’s spectral density exhibits 

a peak at Ao and at A63, approximately, for this sample size. Model 2 is similar, with a 

less sharp peak at the origin and other peak at about the same position as before. AR(2) 

Models 3 and 4 have spectral densities much more flat at the origin, but with very strong 

peaks at frequencies about A50 and A40. Finally the AR(1) spectrum of Model 5 shows 

the typical peak at the origin, taking small values for all the other frequencies.

W ith these processes we will be able to assess the performance of the approximations 

in situations where global bandwidths might be not be very appropriate due to the 

presence of special features in the spectral density at the frequency of interest or at other 

frequencies, which can distort global procedures.
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We employ the Barlett-Priestley Kernel (for both K  and W ), with spectral window:

* ( A ) = f  | A| ^ T>
0, I AI > 7r.

This kernel does not satisfy Assumption 4.4. However this condition is only used in the 

proof of Lemma 4.5 in expression (4.15). Since the lag-window of the Barlett-Priestley 

kernel is
. 3 f sin i r x  )

w(x) -    TT- <-------------COS 7TX > ,
( 7r x ) z  I  ttx  J

we have tha t (4.15) is O p ( N - 1 M 2 log N) ,  since |it?(x)| =  0 ( x ~ 2) uniformly, and therefore,

the remaining results go through without further problems. The uniform kernel was

also tried, with much less smooth results as a consequence of the non continuity in the

boundaries of its support and a lag-window with tails slow decreasing to zero.

All the experiments are based on 1000 Monte Carlo replications. The tables with the 

simulation outcomes and the plots are given at the end of the chapter.

4.5 .1  R esu lts  for IM SE m

The first goal is to check if IMSEm estimates MSE properly and how sensitive is to the 

choice of m. Specially interesting are the cases with big values of m  for which the IMSEm 

are very close to the MSE at the frequency of interest. Due to the problems commented 

before we cannot expect high precision, but yes certain information about the shape of 

the spectral density in different intervals around the origin.

To evaluate IMSEm, we first estimate MSE(Aj, M )  by Monte Carlo replications for all 

j  and a grid of M  =  1(.5)30, which cover all reasonable M ’s, including the optimal values 

for sample size N  =  256. The optimal values are calculated using the usual pointwise 

result for the MSE at a single frequency, r*, depending on the kernel used and on the 

values of /  and its second derivative. Then IMSEm is evaluated for different values of m  

and the minimum with respect to M  found. The values of m  were chosen (see Table I) 

in terms of the number of different Fourier frequencies around Ao over which the kernel 

W  averages in each case, denoted as ‘band’:



The correspondent grid is band= 1(4)129, which covers all the possibilities for N  =  256.

The results are reported in Table I and the correspondent plots are in Figures 2 to 

6 (in the two-dimensional graphs each horizontal line corresponds with one value of m). 

From high values of m  we can check that the asymptotic expression for the optimal M  

for /m (0) it is not very precise for Models 1, 2 and 5. These are the situations with a 

peak at /(0 )  and where the bias for the M  minimizing IMSEm is very big and negative. 

Specially in Models 2, 3 and 4 there is substantial variability between the plots of IMSEm 

for different values of ra, accounting for the particular features of the spectral densities: 

when the kernel W  averages for the MSE corresponding to frequencies with sharp peaks or 

troughs in / ,  the IMSEm is inflated and the M  predicted can be too high for a particular 

frequency. Then the approximation of MSE by IMSEm is adequate for moderate values 

of m.

4 .5 .2  R esu lts  for CVLLm

We next estimate the function CVLLm(0,M ) for a grid of values of m  and M.  It is 

possible to see in the plots (Figures 7 to 11) for all models tha t the functions CVLLm 

depend substantially on the value of m  and the minima for different values of m  can be 

far apart. Therefore, CVLLm reflects the different characteristics of the spectral density 

and can be a useful means of studying local properties of the spectral density.

In Table II we give the results for the M  estimated by the minimization of CVLLm for 

a grid of values of ra. Again the dependence on ra is clear. Concentrating in the rows with 

m=9.8 and 18.2, we can see tha t for all the models the mean across replications of the 

M  estimated is not far from the one which minimizes IMSEm, with reasonable standard 

deviations. These values of ra employ information from only 19 and 13 frequencies around 

the origin, respectively, so for the spectral densities simulated, the cross-validation uses 

local enough information and it is not influenced by the characteristics of /  at other 

frequencies.

For example, Model 3 shows a peak at A50 and it is very flat anywhere else. Then, 

when we weight for all the frequencies in CVLLm, including the peak, the values of M  

found are much bigger than the optimal ones, specially when we do not use the frequencies
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higher than the one corresponding to the peak. However, when CVLLm includes just the 

frequencies around the origin, skipping the peak, the M  estimated are much smaller and 

are very close to the optimal value for m  big enough. In the case of Model 5 it is precisely 

at the origin where the spectrum has its main feature. Then, when we give weight to 

frequencies beyond the low ones, this entails the use of information where the spectrum 

is very flat, hence too small M  are predicted. Consequently the bias is bigger for small 

values of m  as expected.

The variability of the estimates is relatively high, as in most of bandwidth choice 

methods, characterized by slow rates of convergence. Like in any nonparametric method 

this variance tends to increase in general with the value of m  (which is proportional to 

the inverse of the actual bandwidth of the kernel W m).

4 .5 .3  T w o-step  procedure

From a theoretical point of view, the choice of m  has not a definitive answer. One 

possibility is a selection criteria depending only on the sample size. In the first three rows 

of Table III we explore the properties of choices like m  =  iV*1, iV*15, iV-2, which almost 

agree with the condition required by the asymptotic theory, m  =  o(M ), for M  =  c-iV1/5. 

However, these values of m  lead to possibly too many frequencies being used in CVLLm 

for this sample size (see the column ‘in. band.’ or initial bandwidths in Table III), so we 

complement the experiment with the values m  =  6 and 10 in the fourth and fifth rows 

of Table III, corresponding to bandwidths of 21 and 12 frequencies, approximately.

In the last five rows of Table III, we use for m  the value of M  estimated in the first 

five rows, in a two-step procedure. In this experiment we use the uniform kernel for W ,  

this choice being of not decisive significance.

As expected, for the first five rows the best results from the bias point of view, 

correspond to the fifth one, with the largest m  (sometimes also using a MSE criterion). 

For the two-step estimations (rows 6 to 10) the results are not uniform and depend on 

the concrete model. For Models 1 and 5 with a sharp peak at the origin, there are not 

big differences between any of the initial choices of m. For Model 2, the first two options 

give much bigger bias than the last three, and for Models 3 and 4 all give similar results,
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except the fifth one which shows considerable bias.

In conclusion, the third and fourth choices for the two-step procedure provide the 

best results in most of the situations, specially from the bias point of view. At the same 

time tha t the second step tends to reduce the bias, the variability across replications 

tends to  increase when two steps are used instead of one.

4 .5 .4  Itera ted  procedure

Finally we implement two iterative methods to check if any advantage can be gained 

from the bias or variance point of view when the information from previous estimates 

is used successively. W ith each method we employ two initial choices for mo, 7 and 

9.84, corresponding to ‘band’ numbers of 19 and 13. For the selection of m  in each step, 

Method 1 takes m,- =  0.9 • Mt-_i and Method 2,

Both criteria are based fundamentally in the previous values of M  found by a one-step 

cross validation, but the second one also takes into account the sign in the change of the 

last two estimates obtained. The maximum number of iterations is 5 and the procedures 

stop if there is change smaller than 0.1. The algorithms check for values of m out a 

sensible range given the sample size.

The results of the Monte Carlo experiment for the two methods (with the two initial 

choices of m) and the five AR(3) models are summarized in Table IV. First, there are not 

significant differences between any of the four combinations and in most cases there is a 

trade-off between bias and variance. These results are specially interesting in comparison 

with those of Table III. For Model 1 we have achieved in all cases a certain bias reduction, 

but at the cost of higher variability. Similar conclusions hold for Model 5. The iterated 

method for Model 2 produces a bias corresponding to the highest magnitude in Table 

III, but there is little reduction in the standard deviation across replications. In the case 

of Model 3, the bias is kept relatively small and there are some little gains in variance 

reduction. In Model 4 the bias is not much larger than in the Table III, but now the 

variance has increased.
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In general, there are not evident benefits from the iteration of these two algorithms 

with respect to  a simpler two-step scheme.

4.6 Conclusions

In this Chapter we have justified a procedure for local bandwidth choice of nonparametric 

spectral estimates and shown its performance in finite sample sizes. We have assumed 

throughout Gaussianity, but this seems not essential, except, perhaps, in the proof for 

the supremum of the periodogram in Lemma 4.4. However, we conjecture that this 

condition can be avoided assuming summability conditions on higher order cumulants as 

in Brillinger (1975), except for the second order ones (autocovariances), imposing then 

only local conditions on the (second order) spectral density.

A multivariate version on the method will be very useful in practical work, but if we 

want to stress the specific characteristics of each univariate time series it could be better 

to apply the method to each of them separately or to a fixed linear combination of the 

series, like in Newey and West (1994).

Further investigation seems necessary in the design of (iterative) algorithms tha t, 

linking m  and M , would reduce the variability inherent to bandwidth choice procedures. 

Then additional finite sample evidence should be found for other models and distribu­

tions.

4.7 Appendix: Technical proofs

P ro o f  o f  L em m a 4.1 . This lemma is a restatement of, for example, the Lemma in p. 

835 of Hannan and Nicholls (1977), assuming only local conditions on / .  As in the proof 

of Lemma 4.3 we can fix one e > 0 such tha t, if I v — [v — e, J'+e], Aj, E I v for N  big 

enough. Defining the Dirichlet kernel </?jv(A),

W (  A) =  Y l etX3’
j=i
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we have that for j  ^  fc, mod (iV),

/  ¥>Ar(Aj -  A)y>jv(A -  Afe)dA = 0.
J  —  TT

Then, if j  7̂  A:, mod (N ),

E d*(Aj)<WA*)] =  J ^ w ^ - A J w C A - A t M A J - Z C A j J l d A .  (4.11)

Now we divide the range of integration in (4.11) in the following intervals. First,

L

X j + N -l

A j - N - 1
^at( A j -  \)<pN( X - A;t)[/(A) -  f(Xj)]dX

,A  J+N - '
< constiV /  |A — X j \ a

•Xj+N- 1  

l X j - N -  

< const iV1-",

dA

using supAe/i/ |/(A) — /(A j)| < const • |A — Aj|" in the interval considered, and

lwv(A)| < min{2|A |-1 , i v } .

Next,

L

A k + N - 1
<pN ( \ j  -  X)(pN (X -  Xk)[f(X) -  f (Xj)]dX

X k - N - 1

< const • iV-1 sup |y>(A — Ajt)| sup |A — Aj|a-1 < const • N 1~a , 
|A -A * | < N ~ i  \X-Xk\<N~'

since the range of integration was of order N  1. Define the set I u( k , j )  as the interval 

substracting the previous two neighbourhoods of radius JV-1 around Â  and A j .  Then

/  <pN (Xj -  X)<fN(X -  Xk)[f(X) -  f(Xj)]dX
Jlv{k,j)

/ TT

|(̂ 7v(A — A)t)|dA

< const • JV1-" log JV, 

using |</?jv(A)|dA < const • logiV. Finally in the complementary set of 

/  <pN (Xj -  \)<pN(X -  Xk)[f(X) -  f(Xj)]dX
J 19.

< const sup \<fiN{Xj — X)(pw(X — Afc)| 
I£

/(A i) +  f  f (X)dX
J —  TT

< const,

and the lemma follows in the case j  k because any of the bounds depends on j  or k. 

If j  =  k then we can use the same methods as before together with

r  |W (A)|2dA =  2 irJV,
J —  TT
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to get the desired result. □

P ro o f  o f  L em m a 4.2 . The proof it is immediate in the light of the Proposition in page 

31 of BB and our Lemma 4.1, as by the Gaussianity of Xt  only cumulants of order two 

of the discrete Fourier transform of X t have to be considered.

Here the bound in (4.3) is only 0 ( N ~ QlogN ) and not this bound to  the power of q 

as in BB. The problem with their proof is the following. At the beginning of their page 

33, for k € their notation, cum{dx(Ajti),dx(A*;2)}A -1 =  0 (1 ) at most, because we 

can have A*! = A^ for all elements in one of the possible partitions. Then, the second 

bound in the third full paragraph formula of the same page is only 0 (1 ) and the first one 

is 0 ( N ~ a \ogN)  (actually 0 ( N ~ 1) under their conditions), since we have # v i  < 1. □

We give now some lemmas needed for the proof of Proposition 4.1.

L em m a 4.4  Under Assumptions 4-1, if  f  satisfies a uniform Lipschitz condition o f order 

0 < a  < 1, in an interval around a fixed frequency u, I u =  [u — e, v  +  e] for some e > 0, 

then for frequencies A j =  2 'Kj fN, j  /  0 such that sup^  \v — Aj| < const • m -1 , for some 

positive sequence m  such that 1/m  +  m /N  —» 0, uniformly in j  ^  0,

lim sup/(Aj) < 2 log N  sup /(A) w.p.l.
W— oo Xj A€ /„

P ro o f. We can proceed as in the proof of Theorems 4.5.1 and 5.3.2 of Brillinger (1975), 

taking the mean of X t as zero, since we do not include the zero frequency. In our case, 

since X t is a Gaussian series and j  ^  0, all the cumulants of order bigger than two are 

zero. From Lemma 4.1 we can obtain, uniformly in j ,  for m big enough,

oN =  Varpted^A,-)] =  ^ 2 ir /(A j)  +  O fJV '^ lo g  JV).

Then, for Xj E I v and any 9 and one e as small as we want, from Gaussianity, as N  —+ oo,

E [exp {0Redx(Aj)}] < exp | ^ 227riV/(Aj)(l +  c ) / 4 | .

Next,

Eexp < 0sup |Redx(Aj)| > < ^ 2  Eexp {9 |R edx(Aj)|}
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Now define, for 6 > 0

Then

< J 2  exp{0227riV/(Aj)(l +  e)/4}
A j£ lii

< 2exp < logJV +  02 2wN snp /(A )(l -f e)/4
I a e i v

a2 = 27r(l +  e)(2 +  6)N logN  sup /(A).
A £ I V

}•

Prob < sup |Re</x(Aj)| > a > < exp{—0a}2exp < logiV +  622nN  sup /(A )(l +  e)/2 >. 
[ a ,  J { agj„ J

Taking

this is less or equal than 

2 exp  ̂ —a2

6 =  a 2 i t N( \  +  e) sup /(A) 
A e l u

- l

-i - l
27riV sup / (A)( l  +  e) 

A e i „
exp {log JV} < const • N - 1 - 6

Using this last line and the Borel-Cantelli Lemma, as e and 6  were arbitrary, we obtain 

that

lim sup |Reda;(Aj)|/ [ 2 x N logiV]1/ 2 <
TV—►oo \ .

sup /(A ) 
a  e / „

1 /2

w .p.l.

A similar result is possible for the imaginary part of dx and then the lemma follows from

|4 (A j)| < |R edx(Aj)| +  |Imda.(Aj)| 

and I(Xj)  = (2 /k N ) ~ 1 \dx(Xj)\2. □

L em m a 4.5 Under Assumptions 4-1, 4-%> 4-3> 4-4> for frequencies Xj = 2wj / N such that 

sup^. \v — Aj| < const • to-1 , for some positive sequence m  such that 1 /m  +  m /N  —> 0, 

uniformly in j ,

sup
A ,

f M( Xj ) - f ( Xj )
f (*j )

= O p (  N - ' M 2 + N ^ r M  +  A T 1 log N  + A T 1)  =  oP (l).

P ro o f. Define the weighted autocovariance spectral estimate corresponding to the con­

tinuous average in when the mean of Xt  is known, (and assumed to be 0 without 

loss of generality),
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where K m {') = M K ( M - )  periodically extended and

7 (*) =  N - 1 £  *<*<+*•
l< t,t+ k< N

This estimate is unfeasible if the mean of the series is unknown, but we only need its 

definition for the proofs. Now we have, proceeding as in the proof of Theorem 2.1 of 

Robinson (1991),

sup |/Af(Aj) -  / (Aj) |  < sup |/M(Aj) -  ^&(Aj)| 
X j  X j

+ SUP |/& (Aj) -
X j

+ su p |E [/^ (A j)]  -  f (Xj )
Ai

(4.12)

(4.13)

(4.14)

Now (4.12) is less or equal than (see Robinson, 1991, p. 1353),

W 1 E  w( j f )  IWV-r)| = 0P ( N-1
1—N  V 7 \  1 - N  V 7

(4.15)

using Assumption 4.4 and the fact tha t 7 ( N  — r)  is a sum of r terms whose mean exists 

and is uniformly bounded. Next (4.13) is not bigger than

N - 1
(2*-)-1 £

1 - N
W

M |7 (r) -  £[7(r)]| =  Op w ( j j )
1 -P

N  2 p

= O p  ( N  2p M  J =  op(l),

because Assumptions 4.2 and 4.4, and Lemma 4.7 bellow. Finally (4.14) is bounded by 

sup I f Km{^ j  -  u )  {E[I(u)  -  f (v)]}  duj (4.16)
X j  K - 7 T

+ s u p | /  K(u>) { f ( \ j  — lj/ M )  — f(oj)}du> . (4-17)
X j  I J n

Denote by Fejer Kernel $at(A) = (27rJV)-1 |<£7v(A)|2. Similarly to Lemma 4.1, we 

have tha t in (4.16) oj lies in the interior of I„ as M  —► 00 due to the compact support of 

A , and for fixed 6  > 0 small enough,

sup \E[I(w)] -  f ( u )| < sup I f  $ N (ot -  u) [ f (a)  -  f (u)]da
u s £ l v  l j £ I u  IJ  —  7r
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< sup |f ' ( w )| I  |$ 7v(a  — o;)||q: — a;|c?o:
oj£lu J\jj—ot\<8

+  sup f  \ $ N ( a - u ) \ [ f ( a )  + f ( u ) ] d a
(jj£lu > 8

= 0 { N - x \ogN)  + 0 { N ~ 1)

= 0 { N ~ X logJV),

uniformly in u  E I„, so (4.16) is 0 ( N  1 logiV), since f  \KM{&)\da < oo. Next, as 

M  —► oo, (4.17) is bounded by (denoting by A* a value between Xj and Xj — oj/ M ) ,

sup J K( u j ) [ f ( X j - oj/ M )  -  f(Xj)]duj<s\iip J |^ (t^ )| |/'(A*)|
OJ

~M
du = 0 { M ~J),

A , J \

using the compact support of K  and tha t of f  is bounded in I v. □

L em m a 4.6  Under the Assumptions o f Lemma 4-5, uniformly in j ,

f L ^ i )  -  /(A ,)sup
A, /(A i)

=  Op ( n ~1M 2 + N ^ M  +  iV"1 logiV +  AT ')

P ro o f. The proof is exactly the same as how is done in Lemma 4 of BB, using now our 

Lemma 4.5. □

L em m a 4.7  Under Assumptions 4-1 and 4-2, uniformly in r, p > 1,

Far [7 (7*)] =  0  ^ .

where 7 (r) is the (biased) estimate o f the lag-r autocovariance 7 (7") when the expectation 

of X t is known,

?(r) = i? E (** - Eixi])(*‘+- -
1 < t , t + r < N

P ro o f. From e.g. Anderson (1971, p.452), denoting as before the Fejer kernel by 4>;v,

N  Var [7 (7*)] =  f  f  $iv(a  — uj)(1 + e~t(a+Ui)r) f (a) f (uj )dadu,J — 7T J — 7T

and now the result follows applying Holder inequality twice, with |$ jv(^)| =  0 ( N )  

uniformly in a;, |1 +  e-*(“+w)r | < 2 uniformly in r and f * T f p < 00 by Assumption 4.2. 

□
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4.8 Appendix: P roof of Proposition 4.1

From the proof of Theorem 3.1 in BB the Lemma will follow, using their definitions, if 

we show

N - 'T i  =  op(IMSEm) i = 1,2 

N -'T a  = IMSEm +  op(IMSEm) .

First we have, denoting now aj =  a ^m -> from the last steps in the proofs of BB,

N
£[Ti] =  2 i r £ W m(AJ' -  =  0 (1),

j= l  k

and, denoting as IMSE(„(i/, M ) the IMSEm calculated from the modified spectral estimate

(4-1), 

£[7?] = N MISE'm + 2tt]T Wm(A,- -  i')2aJ2' £ ' Y , ' K (MX*)K (MX*)0 (N ~~>)
j  k n

+ 2 » £ £ l T n,(Ar r ) f f m(A r r )< T jV -1X ;'X ;'jf ( ilfA ll) lf(M A ,)0 (iV -2)
j  k n

+ 2wY ,W m(XJ -  v f a ~ 2 Y l Y l K (M X>>?
j  k K

= NIMSE^+0(m)  + 0(m) + 0(rn./VIMSEm) 

= 0(roiV IMSEm),

since sup^ m |Wm(A)| =  0 (m ). Then using IMSEm =  0 ( M / N ) we can obtain

J )  =  Op(IMSEm [ra/Af]1/ 2) = op(IM SEm),

because m / M  —> 0.

Now, in a similar fashion,

N
E[T2] = 2 -  v ' i o f Y ^ Y l H M X k W i M X J O i N - 1) = 0(1),

j =1 k n

and as before

E[T2] =  0 (m  JVIMSE^).

(Note tha t in BB’s expression they have IV-1 instead of N  in the correspondent formula, 

although in the statements in the main part of their paper they give the right bounds). 

Then N ~ ' T 2 =  Oj>(IMSEm [m/N]1/2) = op(IMSEm).

162



Next,

£[T3] =  iVIMSEn, +  0([iV /M ]_1 N IMSETO) +  0([iV /M ]-1 ) +  0 ( [ N / M ] - 1  M )

= iVIMSEm +  0([JV/M]_1 JVIMSEro),

and reasoning in the same way as before,

Var[T3] =  0(roJVIM SEm).

Then AT-l T3 = IMSEm +  0 P (IMSEm[m /M ]1/2) = IMSEm +  0f>(IMSEm).

The proof for the remainder term in BB’s expression (3.2) continues the same here, 

using now our Lemmas 4.1, 4.4 and 4.5 instead of their references, since the bound for 

the third term in the expansion still holds for the modified (local) cross-validation.
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TABLE I M m inimizing IMSEm estimated by Monte Carlo
SAMPLE SIZE: 256
REPLICATIONS: 1000
AR(3) MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5
Coeff. = 0.70 -0.50 0.40 0.60 -0.60 0.30 0.60 -0.90 .00 0.80 -0.60 .00 0.80 .00 .00
M*= 15.9 7.2 7.1 7.7 20.3
m band M bias M bias M bias M bias M bias

1 129 9.00 -6.9 9.00 1.84 24.00 16.9 9.50 1.83 9.00 -11.34
1.024 125 9.00 -6.9 9.00 1.84 24.50 17.4 10.00 2.33 10.00 -10.34
1.058 121 9.00 -6.9 9.00 1.84 24.50 17.4 10.00 2.33 10.00 -10.34
1.094 117 9.00 -6.9 9.00 1.84 24.50 17.4 10.00 2.33 10.00 -10.34
1.133 113 9.00 -6.9 9.00 1.84 25.00 17.9 10.00 2.33 10.00 -10.34
1.174 109 9.00 -6.9 9.00 1.84 25.00 17.9 10.00 2.33 10.00 -10.34
1.219 105 9.00 -6.9 9.00 1.84 27.50 20.4 10.00 2.33 10.00 -10.34
1.267 101 9.00 -6.9 9.00 1.84 27.50 20.4 10.00 2.33 10.00 -10.34
1.32 97 9.00 -6.9 9.00 1.84 27.50 20.4 10.50 2.83 10.00 -10.34

1.376 93 9.00 -6.9 9.00 1.84 27.50 20.4 10.50 2.83 10.00 -10.34
1.438 89 9.00 -6.9 8.50 1.34 27.50 20.4 10.50 2.83 10.00 -10.34
1.506 85 9.00 -6.9 8.50 1.34 28.00 20.9 10.50 2.83 10.50 -9.84
1.58 81 8.50 -7.4 8.00 0.84 28.00 20.9 10.50 2.83 10.50 -9.84

1.662 77 8.50 -7.4 7.00 -0.16 28.00 20.9 10.50 2.83 10.50 -9.84
1.753 73 8.50 -7.4 7.00 -0.16 28.50 21.4 10.50 2.83 10.50 -9.84
1.855 69 8.50 -7.4 7.00 -0.16 28.50 21.4 10.50 2.83 10.50 -9.84
1.969 65 8.50 -7.4 7.00 -0.16 28.50 21.4 10.50 2.83 11.00 -9.34
2.098 61 8.50 -7.4 6.00 -1.16 24.00 16.9 9.50 1.83 11.50 -8.84
2.246 57 8.50 -7.4 6.00 -1.16 24.00 16.9 9.50 1.83 11.50 -8.84
2.415 53 9.00 -6.9 6.00 -1.16 23.00 15.9 9.00 1.33 11.50 -8.84
2.612 49 9.00 -6.9 6.00 -1.16 23.00 15.9 9.00 1.33 11.50 -8.84
2.844 45 9.00 -6.9 6.00 -1.16 22.50 15.4 9.50 1.83 12.00 -8.34
3.122 41 9.00 -6.9 5.50 -1.66 15.00 7.87 9.00 1.33 12.00 -8.34
3.459 37 9.00 -6.9 5.50 -1.66 13.50 6.37 9.00 1.33 12.00 -8.34
3.879 33 9.00 -6.9 5.00 -2.16 12.00 4.87 9.00 1.33 12.50 -7.84
4.414 29 9.00 -6.9 4.50 -2.66 10.00 2.87 9.00 1.33 12.50 -7.84
5.12 25 9.00 -6.9 3.50 -3.66 9.00 1.87 8.50 0.83 12.50 -7.84

6.095 21 8.50 -7.4 2.00 -5.16 8.50 1.37 8.00 0.33 12.00 -8.34
7.529 17 8.00 -7.9 2.00 -5.16 8.00 0.87 8.00 0.33 11.50 -8.84
9.846 13 8.00 -7.9 2.00 -5.16 7.50 0.37 7.50 -0.17 10.50 -9.84
14.22 9 8.50 -7.4 2.00 -5.16 7.00 -0.13 7.00 -0.67 10.50 -9.84
25.6 5 8.50 -7.4 2.00 -5.16 6.50 -0.63 6.50 -1.17 11.00 -9.34
128 1 9.00 -6.9 2.00 -5.16 6.50 -0.63 6.00 -1.67 11.00 -9.34



TABLE II M minimizing CVLLm

SAMPLE SIZE: 256
REPLICATIONS: 1000

AR(3) MODEL 1 MODEL 2
Coeff. = -0.70 0.50 0.40 -0.60 0.60 0.30
M optimal: 15.9044 7.1582

m band bias sd mse bias sd mse

1.1130 115 -5.7347 4.2256 50.7429 3.4179 4.2028 29.3461
1.1743 109 -5.6041 4.2929 49.8351 3.4658 4.2195 29.8161
1.2427 103 -5.5431 4.2450 48.7461 3.4853 4.1938 29.7353
1.3196 97 -5.5121 4.3242 49.0821 3.5214 4.2704 30.6369
1.4066 91 -5.4037 4.4323 48.8454 3.6778 4.3772 32.6856
1.5059 85 -5.3072 4.4142 47.6524 3.8019 4.3616 33.4782
1.6203 79 -5.2542 4.4281 47.2154 3.8310 4.3600 33.6859
1.7534 73 -5.2212 4.3238 45.9555 3.9054 4.4545 35.0946
1.9104 67 -5.2831 4.5622 4&.7246 3.9159 4.6323 36.7926
2.0984 61 -5.5326 4.7588 53*2557 3.6130 5.0502 38.5588
2.3273 55 -5.6068 5.0999 57.4451 3.0805 5.6247 41.1269
2.6122 49 -5.4980 5.3163 58*4910 2.8014 6.1766 45.9976
2.9767 43 -5.3557 5.4418 58*2968 2.8498 6.1333 45.7392
3.4595 37 -5.1626 5.6488 58*5615 2.9835 6.2250 47.6519
4.1290 31 -5.0566 5.9339 60*7806 2.9191 6.2713 47.8507
5.1200 25 -4.4755 6.4985 62.2608 3.0200 6.8305 55.7757
6.7368 19 -6.3533 5.4734 70*3223 -3.5810 3.4400 24.6574
9.8462 13 -5.1687 6.2085 65*2603 -2.1784 3.8172 19.3167

18.2857 7 -5.3244 7.0861 78*5618 0.3782 4.6491 21.7571
128.0 1 0.8368 10.2568 105.9012 9.1475 10.3880 191.5881

MODEL 3 MODEL 4 MODEL 5
0.60 -0.90 00 -0.80 0.60 0.0 0.80 00 .00 0.00

7.1313 7.6765 20.3404

bias sd mse bias sd mse bias sd mse

9.5363 4.5366 111.5222 1.4702 3.4220 13.8718 -10.9760 4.0756 137.0838
9.7627 4.5883 116.3635 1.5720 3.5742 15.2457 -10.8475 4.2369 135.6194
9.9614 4.5717 120.1307 1.9109 3.9794 19.4871 -10.7431 4.3208 134.0830

10.1111 4.6696 124.0395 2.0393 5.3365 32.6367 -10.7395 4.2656 133.5331
10.5429 4.8515 134.6894 2.0031 5.0676 29.6935 -10.5524 4.3692 130.4432
11.0105 5.0425 146.6572 2.1934 5.0871 30.6892 -10.4085 4.4552 128.1851
11.5546 5.5167 163.9421 2.1636 5.1391 31.0910 -10.3393 4.2701 125.1359
11.8803 5.5563 172.0136 2.5442 5.2694 34.2399 -10.2190 4.3819 123.6284
12.3251 5.6733 184.0950 2.6846 5.3070 35.3714 -10.0506 4.5354 121.5846
12.8032 6.1161 201.3294 2.6156 3.4356 18.6445 -9.9045 4.5193 118.5226
13.0760 6.5479 213.8564 2.7709 5.2225 34.9527 -9.7337 4.6224 116.1121
10.8304 5.9349 152.5214 2.8512 3.4704 20.1731 -9.4131 4.9357 112.9684
9.9504 5.3064 127.1676 2.8067 3.9345 23.3579 -9.1663 5.0796 109.8234
6.2626 4.6367 60.7188 1.5185 4.3205 20.9724 -8.6592 5.5261 105.5207
4.3187 4.4768 38.6931 1.6265 5.2705 30.4240 -8.5783 5.5709 104.6233
2.9687 5.1594 35.4326 1.9333 4.5559 24.4937 -7.8403 6.1015 98.6986
0.8741 4.1158 17.7040 .045 3.3079 10.9443 -8.2622 6.0502 104.8678

-0.1370 4.0081 16.0833 -0.8112 3.0549 9.9903 -6.6447 7.1031 94.6061
.0613 5.5129 30.3962 -0.8962 3.2507 11.3703 -6.8540 8.2943 115.7717

4.0041 9.4054 104.4943 4.1955 7.1068 68.1096 -3.9746 9.7834 111.5118



TABLE IQ. M minimizing CVLLm (One or two steps)
SAMPLE SIZE 256
REPLICATIONS: 1000

AR(3) MODEL 1 MODEL 2
Coeff. = .70 -0.5 0.40 .30 -0.6 0.30
M optimal= 15.9044 5.0027

in. band. bias sd mse bias sd mse

1 73.5167 -7.4608 3.0699 65.0875 5.0688 3.6586 39.0782
2 55.7152 -8.3296 3.8143 83.9314 3.4675 3.7525 26.1044
3 42.2243 -8.0190 4.2081 82.0128 2.3919 3.7072 19.4646
4 21.3333 -7.0055 5.0544 74.6239 -0.6236 3.3794 11.8092
5 12.8000 -6.4002 5.4968 71.1769 -0.5553 3.4884 12.4769

6 -6.1724 6.0389 74.5669 -0.2459 4.0659 16.5917
7 -6.2867 5.9513 74.9413 -0.1840 4.0064 16.0851
8 -6.2920 5.8987 74.3840 -0.2820 3.6636 13.5017
9 -6.3485 5.9847 76.1195 1.7977 3.6270 16.3865

10 -6.2322 6.1396 76.5342 2.2112 4.3895 24.1574

Table IV. M minimizing CVLLm Iterating 
SAMPLE SIZE: 256 
REPLICATIONS: 1000

Method bias var mse bias var mse
initial=7 1 -5.8181 6.1809 72.0534 -3.6862 3.4772 25.6786

2 -5.4958 6.6031 73.8048 -3.4473 3.8295 26.5493
initial=9.84 1 -5.4299 6.5005 71.7397 -2.9269 3.9415 24.1024

2 -5.4216 6.3673 69.9362 -2.6903 4.2291 25.1228

MODEL 3 MODEL 4 MODEL 5
.60 -0.9 .00 .80 -0.6 .00 .80 .00 .00

7.1313 7.6765 20.34

bias sd mse bias sd mse bias sd mse

11.8405 5.5821 171.3574 1.5077 3.3717 13.6417 -12.2643 3.1808 160.5296
12.6728 6.1371 198.2639 2.2025 4.0805 21.5012 -11.7260 3.5404 150.0345
9.9881 5.6038 131.1655 1.5955 4.2409 20.5312 -11.0842 4.0881 139.5715
1.5389 4.2894 20.7674 1.0255 4.4797 21.1194 -8.8957 5.6586 111.1531

-0.0177 4.0179 16.1435 -0.3503 4.4327 19.7713 -8.2941 5.9674 104.4029

0.1169 5.3848 29.0093 -0.1250 4.2616 18.1765 -8.1885 6.5430 109.8613
0.2037 5.6205 31.6316 -0.1065 4.5131 20.3791 -8.0138 6.5751 107.4537
0.1864 5.4737 29.9963 -0.1141 4.4898 20.1717 -8.0135 6.8935 111.7364
0.3649 4.0747 16.7361 -0.0180 4.4489 19.7931 -7.6091 7.5891 115.4934
2.6026 4.9888 31.6618 1.1668 4.9722 26.0845 -7.7459 7.4518 115.5277

bias var mse bias var mse bias var mse
0.8595 4.169 18.1191 0.6705 4.943 24.8827 -7.1909 6.6827 96.3673
0.8615 4.2236 18.5814 0.6458 5.2504 27.9837 -6.8425 6.9557 95.2017
1.0322 4.4533 20.8968 0.805 4.9801 25.449 -6.9862 6.7258 94.0435
1.0801 4.562 21.9785 0.9054 5.5208 31.2992 -6.796 6.8886 93.6373
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FIGURE 1. Model 1. S p e c t r a l  d e n s i t y  A R (3)  .7  /  —.5  /  .4
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FIGURE 2 .  Model 1. E s t im a te d  IMSEm AR(3) .7  /  - . 5  /  .4
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FIGURE 3 .  Model 2 .  E s t im a te d  IMSEm AR(3) .6  /  - . 6  /  .3
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FIGURE 4 .  Model 3 .  E s t im a te d  IMSEm AR(2) .6  /
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FIGURE 6 .  Model 5 .  E s t im a te d  IMSEm AR(1) .8
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FIGURE 7 .  Model 1. CROSS VALIDATED LIKELD. AR(3) .7  /  - . 5  / A
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FIGURE 8 .  Model 2 .  CROSS VALIDATED LIKELD. A R(3)  .6  /  - . 6  / . 3
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FIGURE 9 .  Model 3 .  CROSS VALIDATED LIKELIHOOD AR(3) .6  /  - . 9
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FIGURE 11 .  Model 5 .  CROSS VALIDATED LIKELIHOOD AR(1) .8
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Chapter 5

Log-periodogram regression for 

long range dependent tim e series

5.1 Introduction

In this chapter we consider statistical inference for long range dependence time series. In 

particular, we concentrate on the semiparametric estimate of the long memory param eter 

based on the regression on the logarithm of the periodogram at Fourier frequencies close 

to the origin.

Properties of maximum likelihood methods have been analyzed extensively for para­

metric models of long range dependence (see, for example, Fox and Taqqu (1986) and 

Dahlhaus (1989)). However, if we are only interested in the estimation of long range 

dependence characteristics, semiparametric and nonparametric models are more robust 

against any sort of misspecification of the short term behaviour of the time series.

Semiparametric models focus on some properties of the autocovariance sequence (hy­

perbolic decay) or of the spectral density (singularity at the zero frequency). They are 

semiparametric because they do not make explicit assumptions on the behaviour of the 

autocovariances at short lags or on the spectral density apart from the origin.

We set our conditions in the frequency domain in terms of the spectral density since 

they are much more neat and cover a broader range of possibilities. We will assume that
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the spectral density satisfies

/(A) ~  G \~ 2d as A - > 0 + , (5.1)

where d E (0 ,1 /2), is the self similar parameter tha t governs the degree of strong de­

pendence of the series. This is the interval of values of d for which the series exhibits 

long range dependence and is stationary. Expression (5.1) reflects a linear relationship 

between the spectral density and the frequency in log-log coordinates, with slope —2d, 

and this is the basis for the log-periodogram estimate.

Robinson (1994, 1995b and 1995c) and Lobato and Robinson (1994) have used similar 

assumptions to the ones we employ here to study the asymptotic behaviour of several 

semiparametric estimates of d. Robinson (1995b) justified a modified version of a pro­

cedure proposed by Geweke and Porter-Hudak (1983) based on the regression of the 

logarithm of a pooled periodogram on the logarithm of the Fourier frequencies close 

to  the origin. He proved the consistency and asymptotic normality of the estimate for 

Gaussian vector time series. In this chapter we extend his consistency results for linear 

processes not necessarily Gaussian.

Let {X t , t =  1 ,2 ,...}  be a stationary process with spectral density satisfying (5.1). 

Given an observable sequence X t , t  = 1 , . . . ,  JV, we introduce the discrete Fourier trans­

form at the frequency Aj =  2irj/N ,

N
d x ( \ j )  =

t=  1

and the periodogram

Define for J  =  1 ,2 ,. . . ,  fixed, (assuming (m  — i ) / J  integer),

y*(J) =  log f Y , !(■W J ) j  k = t  + J , t  + 2 J , . . . ,m .

The estimate considered in Robinson (1995b) is

- l

* =  ( e a 2* ) ’
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where A^ = Zk — z , z  = Ylk zk an(l zk — —2 log A*. Here m  is an integer smaller than 

N  and I is a user-chosen trimming number. In the asymptotics both numbers tend to 

infinity with the sample size N , but more slowly.

In the first part of the chapter, we analyze the possibility of substituting the finite 

averages (for J  fixed) of the periodogram in Y^J\  by consistent estimates of the spectral 

density f ( Xk )• We will consider estimates of the weighted-autocovariance type, which 

can be written as a continuous average of the periodogram as in Chapter 3, n  = [—7r ,7r],

Mh) = j f  Km{\ -  A*)J(A)dA = A  £  u , ( ^ )  7(j')cosjA*,

where 7 (j)  is the (biased) estimate of the j - th  autocovariance (assuming now zero mean), 

W )  =  i 7  £  x *x ‘+i’ j  = 0, ± l , . . . , ± ( N - l ) ,
1 <t , t+ j , < N

and M  =  Mjy is a lag-number, tending to infinity with the sample size, but at a slower 

rate. We will assume

K m W  = M - K ( M  A),

where K { •) is an even function, tha t integrates to one, with compact support to avoid 

smooth the periodogram for frequencies very close to the origin and leakage from the 

pole of /(A ) at A =  0. The function u;(-) or ‘lag-window’ is the Fourier transform of K,

u{r) =  f  K ( \ ) e irXd \.

In the analysis of this class of estimates of d, the main problem resides in the proof of 

the consistency of the nonparametric estimates /m (^a)) after suitable normalization, for 

frequencies tha t are tending to zero, but not including the origin itself. Gaussianity is not 

needed for tha t, but when we assume tha t X t  is Gaussian, we are able to prove a central 

limit for these estimates of / .  Then, the consistency of the appropriate modification of 

d follows easily from the consistency of /m(^A:)- Regrettably, the properties of /m(^A:) 

can not be deduced from the standard results on nonparametric estimation of the spec­

trum . Typically, the conditions assumed in the literature include at least boundedness 

of the spectral density, and it has not been considered the case of estimation around a 

singularity.
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The situation is quite different when we consider fixed averages of the periodogram. 

We have to deal now with the logarithm of the periodogram, which is a random vari­

able and not a consistent estimate of anything. Non-linear functions (the logarithm in 

particular) of the periodogram of stationary sequences have been considered under dif­

ferent set-ups (see e.g. Hannan and Nicholls (1977), Taniguchi (1979), Chen and Hannan 

(1980), von Sachs (1994a), Janas and von Sachs (1993), Robinson (1995b) and Comte 

and Hardouin, (1995a and 1995b), and the references cited there). These works assume 

Gaussianity to obtain the main results, except Chen and Hannan, and Janas and von 

Sachs, who work with a linear process condition.

These last two references use higher order properties of the asymptotic distribution of 

the periodogram. Janas and von Sachs apply the results for weakly dependent sequences 

of Gotze and Hipp (1983), making almost impossible to relax their assumptions for long 

range dependence situations. Instead, the approach of Chen and Hannan (1980) is based 

in the factorization of the periodogram of the observable sequence in the transfer function 

of the linear filter, times the periodogram of the i.i.d. innovations, plus a stochastic error 

term. The magnitude of this error depends on the smoothness of the spectral density 

and on the number of moments assumed for the innovations. Obviously the conditions 

they assumed, (J3 < oo, 6  > 1/2, see Assumption 5.7 below), rule out any long

memory behaviour or any singularity in the spectral density of X t, but their results are 

based mainly on the properties of the periodogram of the i.i.d. innovations sequence, for 

which we assume the same set of conditions as in their Theorem 2 (see Assumption 5.9 

below).

A related approach is used by Comte and Hardouin in a long-memory environment but 

assuming Gaussianity. We use one idea of them to avoid a modification of the estimate 

of d in the same spirit as the one Chen and Hannan (1980) did to account for too small 

values of I (Xj ) / f (Xj ) .  Here, instead of redefining the periodogram with a truncation, we 

use an average of periodogram ordinates. Then we can use their higher order asymptotic 

results and the long range dependence results of Robinson (1995c) to approximate the 

periodogram of Xt  by that of the linear i.i.d. innovations times the long memory transfer 

function.

The chapter is organized as follows. In next section we give the basic results about
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/ m  when Gaussianity is assumed, and then we use / m  to  estimate d in Section 5.3. 

In Section 5.4 we show the robustness of the previous results for non Gaussian linear 

processes. Finally in Section 5.5 we give sufficient conditions for the consistency of d 

when finite averages of the periodogram are used. All the proofs and auxiliary lemmas 

are given in appendices in the last three sections of the chapter.

5.2 Nonparam etric estim ates o f the spectral density

In this section we consider asymptotic properties of nonparametric kernel estimates of 

the spectral density of long range dependent series for frequencies tending to  zero as the 

sample size increases. We need to impose some restrictions on the semiparametric model 

for the spectral density, the form of the kernel function K  and on the smoothing number 

M  and the frequencies A j  included in the estimate of the long memory param eter d.

We first introduce two conditions about the spectral window K , equivalent to the 

ones used in Chapter 3:

Assum ption 5.1 K ( x ) is a bounded, even function, —n < x < ir, and zero elsewhere, 

with

f  K(x)dx  =  1.
J  n

Assum ption 5.2 K( x )  satisfies a uniform Lipschitz condition (of order 1) in [—7r, 7t].

Now we introduce some assumptions about the behaviour of the spectral density 

around the origin, following Robinson (1995b and 1995c), but not considering negative 

values of d ,

Assum ption 5.3 X t is covariance stationary and as A —► 0+ ,

/(A ) =  GA_2d +  0 ( \ ll~ 2d) ,  

with d E [0,1/2), ft E (0,2] and 0 < G < oo.

Assum ption 5.4 In a neighbourhood o f the origin f  is differentiable and

^ l o g / ( A )  =  0 ( A - 1).
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Finally we present one assumption about the frequencies A j = 2wj /N,  allowing j  to 

increase with N,  for which we will consider the nonparametric estimates fM(^ j ) ,  and 

about the lag-number M ,

A ssu m p tio n  5.5 As  N  —► oo,

M  1 j  N
~rr +  —  +  —  +  ■. ■■ —*■ 0. (5*2)N  M  N  j M

Assumptions 5.1 and 5.2 guarantee a well-behaved kernel K  and as in Chapter 3 the 

compact support is intended to avoid leakage from other frequencies, in the long memory 

case specially from zero frequency. We chose to split them in two conditions, because 

Assumption 5.2 is not necessary to  analyze the expectation of /m - They are satisfied 

by several kernels used in practice, like the uniform and Barlett-Priestley kernels. It 

would be equivalent to define the function K  in any compact support [—r, r] for finite 

r  > 0, and all the results are valid with the obvious modifications in the proofs. We can

also assume tha t K ( a)  is nonnegative to avoid meaningless negative estimates of /  or

problems with the logarithm function.

No assumptions are imposed on /  outside a neighbourhood of the origin, apart from 

integrability, due to stationarity. They are satisfied for long range dependence parametric 

models like the fractional ARIMA (1.31) and the fractional noise (1.32) with (3 = 2. See 

Robinson (1995b) for a general account about these conditions and their connection with 

the closely related (and more restrictive) condition, 0 < g < oo,

7 (r) =  Cov[Xf,X*+r] ~  g r 2d~1, as r -*■ oo.

The first two conditions in Assumption 5.5 are standard in nonparametric estimation 

of the spectral density. The third condition implies tha t Xj —* 0 as N  —*■ oo. The last 

condition in Assumption 5.5 is used, jointly with the compact support kernel K m  (cf. 

Assumption 5.1), to avoid averaging for periodogram ordinates too near to the origin, 

since necessarily j  —► oo as N  —* 0. If, for example, j / N  tends to 0 very fast, we need 

the kernel K m  to close around Xj even faster. This has also implications from the bias 

of the estimate point of view. Then, for |A| < ir/M  and j  > 0,

inf A + A,- > 2 tt^ -  — = 7r 
|a |< tt/ m  j ~ N  M

1H 
| ! 1

CN 
| = 7T M  1

I j M  1 
2  __ 1

L A  M  J N
> cM "1, (5.3)
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as N  —► oo, for some constant c > 0. Hence we can take A+A j  > 0 under Assumption 5.5, 

| A | < 7r/M  and j  > 0. The condition

v i M  ^  1lim sup —— > -
TV—>00 A  2

would imply also (5.3), but it is not sufficient due to  bias problems (see Lemma 5.1).

We now present several results concerning the asymptotic behaviour of /m (Aj) when 

we assume tha t X t is a Gaussian stationary sequence. They are not very different from 

the standard results on nonparametric estimation of smooth spectral densities, after 

appropriate normalization.

L em m a 5.1 I f  X t is a zero mean covariance stationary sequence, then, under Assump­

tions 5.1, 5.3, 5.4, 5.5 and additionally j _1loglV —► 0,

Define

£ [ /m ( A ,- ) ]  - / (A ,- )  - / ' l o g J V  N \  
/ ( A j )  \  j  j M )

\\K\\l =  /  K \x ) d x .
Jn

L em m a 5.2 I f  X t is a zero mean Gaussian stationary sequence, under Assumptions 5.1,

5.2, 5.3, 5.4, 5.5, and M N ~ l log3N  -+ 0,

= 2 « m i +o nM-jj- log3 JV
i / 2 tv

+ j -1 log3 A  +  -
j M

Note tha t Assumption 5.5 and M N ~ 1 \og3N  -+ 0 imply l o g ^ / j  —*■ 0 as N  —► 00. 

Similar techniques as the ones used in the proof of this lemma can be utilized to estimate 

the covariance of two spectral estimates for frequencies apart more than M -1 .

In the previous lemmas we have assumed that the mean of the time series was known 

and equal to zero without loss of generality. Now we investigate the consequences of the 

estimation of the expectation of the series using the sample mean. As it is well known, 

under long memory conditions the rate of convergence of the sample mean is slower 

than under weak dependence conditions. Assuming zero mean w.l.o.g., Assumption 5.3
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and covariance stationarity, we can get (see Adenstedt (1974)), tha t the variance of the 

sample mean, X  =  A " 1 J2tLi satisfies

Var[X] =  0 (W 2<i_1).

We now consider a continuous average of the periodogram of the mean corrected series,

/ ( a )  =  r  K M{ \ - a ) I * ( \ ) d , \
J 7T

where
N

1 £ ( X ,  -  X )e itx
2* N  <=i

In the next lemma we estimate the error introduced by the estimation of the expectation 

of X t  by X .  This error is negligible with respect to the standard deviation and bias of 

the estimates, so in the following, we will work with the estimate / ,  bearing in mind that 

all the results will go through for /  as well.

L em m a 5.3 I f  X t is a covariance stationary sequence, under Assumptions 5.1, 5.3, 5.5 

and j -1 log2TV —► 0,

Finally we give a central limit theorem for the centred and normalized estimate.

T h e o re m  5.1 I f  X t is a Gaussian stationary sequence and under Assumptions 5.1, 5.2,

5.3, 5.4, 5.5 and M N ~ 1 \og23~1N  —»• 0, for all s > 2 ,

/ I ( / m (a, ) / ( a? ) / m(Aj)1)  ^

5.3 Estim ation o f the long memory parameter based on 

nonparametric spectrum  estim ates

The estimates ca;n be used to  construct a semiparametric estimate of the param­

eter d tha t governs the long range behaviour of the time series. We should use those
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estimates for frequencies tending to  zero, j / N  —> 0, for which Assumption 5.3 is reason­

able, and in a number tending to infinity to achieve consistency. This idea has been used 

for strongly dependent Gaussian times series previously by Hassler (1993), Chen et al. 

(1994) and Reisen (1994). However there are problems in their proofs similar to those 

in Geweke and Porter-Hudak’s (1983), as was pointed out by Robinson (1995b). We 

consider first the Gaussian case in this section. Then, in next section we extend these 

results to non-Gaussian series under a linear process condition and mild assumptions on 

the fourth-order cumulants.

We follow a similar approach to tha t of Robinson (1995b). We modify his estimate d 

with regressors based on /m (^')> assuming now K  is positive and defining

dM = (  £  A fc lo g /M ^ ))  f  E  A i)  •
\fc=m  /  \fc=*+i /

Equivalently, we could have constructed the estimate with the sum in k running for

values k =  I  +  ,£ + 2 ^  , . . . ,  ra (we assume tha t (to —̂ ) ^  is integer). In this way

we would have divided the spectral band close to the origin in non-overlapping intervals 

of width so tha t the regressors in dj^j were asymptotically uncorrelated. Then, in 

Robinson’s notation, J  ~  and now we would be using about y  ~  771W  regressors 

instead of m  — I. The proofs for this situation are not very different from the case we 

study in detail here.

To avoid any problem with the logarithm in the definition of the estimate, we include 

in Assumption 5.1 that K  is positive, so is /m  for all N .

There are two main differences between d and d\f-

• The estimate dm  uses continuous averages of the periodogram Q m  is a weighted 

autocovariance type nonparametric estimate), meanwhile d is based on a discrete 

average of periodogram ordinates.

• In the expression for d , Y^  is a sum of a fixed number of periodogram ordinates, 

so it is not a consistent estimate of /(A*), but fM(^k)  iu d>M is consistent under 

appropriate conditions.

We set the following assumption about the sequences M , m  and N , for the consis-

186



tency of dm '

A ssu m p tio n  5.6 A s  A  —> oo,

£ (logA)2 A M  log3 A  A  logA logm m
m  + M 7 + A + W m  +  A  *

Mainly, Assumption 5.6 imposes an im portant lower bound on the rate of increase of 

M  and £ with A. For example, for the choice m  = A 1/ 2, recommended by Geweke and 

Porter-Hudak (1983) for their estimate, M  has to grow faster than A 1/ 2. Then, it will be 

possible to  find I  sequences satisfying the first two conditions in Assumption 5.6. This 

issue is related with a bias problem: we cannot expect to estimate /  properly around 

the origin if we use a very broad band for the kernel (i.e. M  too small), or if we are too 

close to 0 (i.e. I  too small), since /  is very steep this region. Then m  has to increase, 

basically, slower than A  but faster than A /M .

T h e o re m  5.2 Under Assumptions 5.1, 5.2, 5.3, 5.4 and 5.6, (1m  —>p  d.

Condition 5.6 could have been written down in terms of the difference m  — l  instead of 

in terms of the ratio mj£.  In the case were only m ^  regressors are used, the consistency 

of dM will follow substituting Assumption 5.6 by

£ (logA)2 A M  log3 A /  A  \ 2 log A  logm m
m  +  M l + N  + \ M )  m  + N  '

The log A-consistency of (1m  for studentization purposes will follow from the next 

condition, slightly stronger that Assumption 5.6:

l  (logN f  N  M  log4N  N  log2N  logm
m M t  N  M m  \ N )  ° g '

In order to  obtain the asymptotic normality of it seems difficult to derive the

cumulants or moments of log / m  from those of /m - One approach could be to prove an

Edgeworth expansion for the density of Jm  , which will allow for the estimation of the

moments of log / m  (similar to the one in Chen and Hannan (1980) for /(A^)).

5.4 R obustness to non-Gaussianity

In this section we propose conditions on the sequence X t to  obtain the consistency of 

/m (Aj) and of (1m when X t  is no longer assumed Normal distributed. This, basically,
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will require conditions on the fourth cumulant structure of the series. A bounded fourth 

order spectral density condition would do the job, but we allow for long memory also in 

the fourth cumulants via a linear process condition.

Instead of Gaussianity we introduce a fourth order stationary linear process condition, 

with filter coefficients compatible with Assumptions 5.3 and 5.4:

Assum ption 5.7 X t  s a t i s f i e s

x t = Y l  w3et- j ,  X wj  < 0°,
j = 0  j =0

where E[ef[ < oo.

A ssu m p tio n  5.8 In Assumption 5.7 et is a fourth-order stationary process with fourth 

cumulant K \( t i , t 2 , tz)  =  Cumulant(€tl+ t^ t2 +ty e*3+t, €*), Vtf, satisfying
oo

X  |«4^ 1^ 2,t3)| < OO,
<1,*2 ,<3 =  —OO

and second-order spectral density satisfying

0  < / e(A) < oo 

for values o f A in an interval around the origin.

Under Assumptions 5.7 and 5.8, X t is fourth-order stationary and it is immediate 

tha t has uniformly bounded fourth-order spectral density defined by

1 00
f l ( v  1,^ 2,^3) =  7^-73 X  «4^i»t2,<3)exp{-t(i/iti -f v2 t 2 +  ^ 3)}.

'  <i,<2,<3 =  - 0 0

Setting,
00

wW  = X wi exP{*A-?}’
j =0

we have tha t /(A) = |w(A)|2/ e(A), with

H A ) | =  0 ( /^ (A ))  as A —> 0+ .

Note tha t we do not need to assume tha t the et are i.i.d., uncorrelated or independent 

up to four moments: we only require the €t ’s to be short-memory in the fourth-cumulants

188



(bounded fourth-order spectral density) and with no long range dependence in the sec­

ond moments (bounded second-order spectral density around the origin). We need the 

boundedness of f c away from zero for small frequencies just for compatibility with As­

sumption 5.3 about / .

These conditions imply that the long range dependence properties of Xt  at A =  0 

come only from the linear filter {wj}  and not from the innovations et . But X*’s second 

order (for frequencies different from zero) and fourth order dependence characteristics 

for A ^  0 are freely determined by the shape of u>(A) and / c(A).

To establish the consistency of /m  we only need to  estimate its first two moments. 

In the evaluation of the bias we have presented before we only used the second-order 

stationarity of Xt  and no specific Gaussian properties. Therefore Lemma 5.1 is valid 

under Assumptions 5.7 and 5.8 instead of Gaussianity. The same applies for Lemma 5.3.

We now establish our first result about the variance of the nonparametric estimate 

of the spectral density for frequencies close to the origin, which is exactly the same as 

Lemma 5.2:

L em m a 5.4 Under Assumptions 5.1, 5.2, 5.3, 5.4, 5.5, 5.7, 5.8 and M IV-1 log3N  —> 0, 

the conclusions o f Lemma 5.2 hold.

Then, since / m (Aj ) has the same asymptotic variance and bias under Assumption 5.8 

tha t under Gaussianity, we have the equivalent to Theorem 5.2:

T h e o re m  5.3 Under Assumptions 5.1, 5.2, 5.3, 5.4, 5.6, 5.7 and 5.8, d \f  —>p d.

5.5 Estim ation of the long memory parameter based on 

finite averages o f the periodogram

In this section we will consider Robinson’s (1995b) estimate d when finite averages (for J  

fixed) of the periodogram of X t are used under the linear process condition in Assump­

tion 5.7. As we commented in the Introduction, the consistency proof is based on the 

approximation of the logarithm of the periodogram of X t by tha t of et , times the transfer
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function |a^(A)|2 multiplied by 2ir. This approximation will depend on the properties of 

the filter {o>j} and on the distribution of the linear innovations e*. Special care is needed 

because of the singularity of the logarithm function at the origin.

We introduce the next assumption following Chen and Hannan (1980) to analyze that 

stochastic approximation:

A ssu m p tio n  5.9 The et in Assumption 5.7 are i.i.d., with characteristic function Q(6 ) =  

E{etdet] satisfying

sup \q ( 0 )\ =  <5(0o) < 1? V0o > 0, and 
\e\>e01 1

/oo ^
\Q(6)\pd9 < oo, for some integer p > 0.

-oo

Note tha t Assumption 5.9 implies Assumption 5.8. Here we do not need to take care 

of the mean of the series, since we are omitting the periodogram at zero frequency in the 

definition of d.

The conditions of Assumption 5.9 are needed to prove the validity of an approximation 

in Lemma 5.10 for the density of the Fourier Transform of the innovations et. The first 

line is a Cramer condition. The second condition is used to approximate the density and 

it would not be necessary to approximate the distribution function. It implies tha t the 

distribution of et has a bounded continuous density (see, for example, Theorem 3 in p. 

509 of Feller (1971)).

In the proofs we are able only to deal with the case J > 2. The reason is the follow­

ing. The average of J  periodogram ordinates of an i.i.d sequence will be asymptotically 

distributed as a x i j  (UP constants). But for the approximation between the peri- 

odograms of X t and of et we need to consider the inverse moments of the periodogram 

of et . The trick is that if Z  ~  E[ Z -1] < oo for J  > 2 (see Lemma 5.11 below).

Of course, to approximate the moments of a random variable we need something more 

tha t its asymptotic distribution. That is why we approximate the density of the Fourier 

transform of et and the regularity conditions on Assumption 5.9. We conjecture tha t a 

related argument to the truncation of Chen and Hannan (1980) can be used to construct 

a proof for J  = 1. These results in form of Lemmas 5.10 and 5.11 are postponed to the 

Appendix in Section 5.9.

190



We will make direct use of some results of Robinson (1995b and 1995c) to analyze 

the characteristics of the linear filter w(A) under Assumptions 5.3 and 5.4. We introduce 

some more notation. Write Ij  =  /(Aj) and f j  =  /(A j), and for the periodogram of the e* 

sequence, I cj = / e(Aj). Let J  be a given, fixed, integer greater than or equal to 2. Define

_  J

I k — ^   ̂Ik+j—J ,  k = £ + J,£ + 2 J , . . . ,  771,

3 = 1

and equivalently

_  J

Itk  — ^  ; Ie,k+j—J 5 ^ — I  “I” J)£ 2 J , .  . . ,  771.
3 = 1

We suppress the dependence on J  in the notation I k  and I e k - Then we can write, following 

Comte and Hardouin, (1995a and 1995b),

logI k =  log fk  +  log2irlek +  log(l +  Fk) +  log ^1 +  , (5.4)

where

r ,  5 Z j= l  I e , k + j - J  [ f k + j - J  ~  f k ]

Fk -  7a h
J

H k  =  ^  y 2 f t I t , k + j - J f k + j —J
3 = 1

h  =  h  ~ Ilk-

We are interested in bound in probability the last two terms in equation (5.4), but 

first we prove a lemma that allows us to take logs of I ek (and therefore of I k ) and to 

divide by I e k -

Lemma 5.5 Under Assumption 5.9, J  > 2, k ^  0,

l tk > 0 w.p.l.

Lemma 5.6 Under Assumptions 5.3, 5.4, 5.7 and 5.9,

log(l +  Fk) =  Op{k~x), k = £ + J,£ + 2 J , . . . , m .

Lemma 5.7 Under Assumptions 5.3, 5.4, 5.7 and 5.9, J  > 2 ,

h_
H k

log ^1 +  ] =  0 P
lofif 7771

5 , k = £ + J,£ + 2 J , . . . , m .
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After these results, we are in conditions of proving the consistency of d for non- 

Gaussian series under conditions 5.7 and 5.9. First, we introduce the following condition 

on the bandwidth numbers.

A ssu m p tio n  5.10 A s N  oo,

^ (logA)2 t logm  t logm  log2A  t m  n 
m  + I  + m  + I f

This assumption is almost minimal given the structure of the estimate d. Then our 

main result is

T h e o re m  5.4 Under Assumptions 5.3, 5.4, 5.7, 5.9 and 5.10, with J > 2, d — d.

Again, the log iV-consistency of d will follow under a mild condition: as A  —► oo,

I  (logA)2 +  logm  +  logm  log4A  +  ( ™ Y i o g N  0
m l  m

Note tha t we do not need to strengthen all the conditions in the same way, and that 

some are left unmodified. This is straightforward from the proof of Theorem 5.4. For 

example, log m / t  —>- 0 is only used to obtain uniform bounds for the transfer function 

approximation, but it does not appear itself in the approximation of d by d.

To derive the asymptotic normality of the estimate is of evident interest. First, it 

is necessary to improve the approximation results between the periodogram ordinates 

of the observables and of the innovations, and obtain the asymptotic rate of the mean 

square error of d. Then, a central limit theorem has to be proved for the random variable 

£/v in the proof of Theorem 5.4.

5.6 Conclusions

Although we have given no asymptotic distribution for the semiparametric estimates of 

d considered, they are consistent under very mild conditions on both the distribution 

and dependence structures of the observed time series. Therefore, these estimates can 

be used in studentization problems and to initialize iterative procedures to approximate 

more efficient estimates. Further work could be done on some of the following points:
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• Related arguments can be used for the analysis of both estimates in the antipersis- 

tent case d E where /(0 )  =  0. This can arise in practice as a consequence

of overdifferencing nonstationary time series.

• It is still unknown if the trimming, due to  the non-standard behaviour of the peri­

odogram for low frequencies, is necessary to achieve consistency of the estimates of 

d. In any case, it could be a good practice to skip in the regressions the very first 

frequencies to avoid serious bias problems.

• Straightforward modifications of the results presented here could be used to obtain 

the properties of the estimate of d proposed by Parzen (1986). His estimate is 

based as well on the logarithm of consistent estimates of the spectral density, and 

its asymptotic distribution can be deduced from Theorem 5.1.

• The asymptotic normality of Jm  could be obtained in the non-Gaussian case under 

a linear process condition where the innovations have bounded spectral densities of 

all orders, using related methods to those of Theorem 5.1.

5.7 Appendix: Proofs o f Section 5.2

We will use the same definitions and properties as in Section 3.8.

P ro o f  o f  L em m a 5.1. Writing

= r  k M{x -  \ j )  r  a + 0 )d$d\.
J —ir J —7r

we have

E [ /m (A;)] -  f (Xj )  =  r  K m{ \ )  f  [/(A  +  0 +  Aj) -  /(A  +  A;)] dBdX
J  — 7T J  —7T

+ f"  K m W  [/(A +  Aj) -  /(Aj)] dX
J  — IT

=  bi -f 62 ,

say. We start bounding the integral

sup r  $ $ ( 0 )  [/(A  +  e +  Aj) -  /(A  +  Aj)] M (5.5)
|A |< 7 t/ M - Z - tt
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for values |A| < tt/ M .  We can now consider under the assumptions of the lemma a 

fixed value e > 0, small enough such that /(A) satisfies /(A) < Ce|A|_2d and |/'(A)| < 

<7'|A|-2d_1, for A E [—e, e] and some constant 0 < C't < oo. Then, for N  large enough 

2|A + Aj| = 2[A + A j] <  e for |A| < tt/ M  and using (5.2). Now we split the interval of 

integration in (5.5), proceeding as in the proofs of Theorems 5 to 8 in Robinson (1995b):

I f ~ ‘ + r \  <  sup |* $ ( 0 ) | /  |/(A +  Xj + 6 ) -  f(X  +  Xj)\d9 
\J—7r Je I

= o (jv- 1 [i + |a +  aj-|-m])

= 0  ( n - 1 [A + A,]-2*) ,

since d >  0. Next, as 1 — 2d >  0 and |$ ® (0 )| <  const.N _1 0~ 2 ,

f .

—2 | A + A j |

+ / (A  +  Ay) * $ (0 )d fi
J 2 |A + A j  |

=  0  (f|A  +  A j |-<(_1/ 2 ) - l  f °°  &~(3+2d)/’2d9 +  JV_1 |A +  Xj\~2df *  e-^do) 
\ U  ’ N J i x + x j  | J |A +A>| J

=  o ( | A + A j r (1+:w )jV _ 1 ) .

Further, in the same way, se can get

|/(A  +  Aj +  0)| 1 f ” e ^ - u ^ 2 ^ & ( 6 )de 
J ^2|A+Aj|

Now

/
I A+Aj |/2

<
1 /■|A+A j | / 2  , .

sup | /  (A + Aj +  d)| > I m % \ 9 ) d B
. 0 G [ - | A + A j  | / 2 f | A + A j | / 2 ]  J - / - | A + A , - | / 2

= o(\\ + / |A+Ajl/2
V J-  IA+Aj

= o ( |A  +  X j ^ + ^ N - ' l o g N )

1/2
I <Pn ( 0 ) \ M

Finally,

j:— |A +A j| | /2  

2 | A + A j |

< sup
0 e [ - 2 | A + A j | , - | A + A j | / 2 ]

* —|A + A j | / 2

{|/(A  +  Aj +  0)| +  |/(A  +  Aj)|} dO
- 2 |A + A j |

- 2  a t -  1= o |A +  A j|-2/V
- | A + A j | / 2

(A +  A j +  0) 2dd0 +  | A +  Aj|
2 |A + A j  |

1 - 2  d
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Now, for |A| < tt/ M  and with (5.2)

sup |A +  Ail’ 1 < 
|A |< tr / M

-1

^ j  7T 27r - ---------
- 1 - 1

1rH - 1

iV M V jv; L 2jMJ
=  H ) ~ [ 1  -  ° ( 1 ) 1 _ 1 = K ) ' [ 1 + 0 ( 1 ) 1 = ° ( j )  ■

Then we have, using f  \Km (X)\<IX < oo and (5.6),

&i = o ( N 2 dj - ( w d ) \ogN)  .

Consider now 62 :

h  <  s u p  |/ '(A ,-  +  A ) | /  |A||isTM (A )|d A
| A |< i r / M  . / | A | < i r / M

(5.6)

= 01 sup \Xj +  A|
\ |A |< 7 t/ M

=  ° { w j ? dp

- 1 - 2  d./If-

Then, using f (Xj )  = 0 ( ( j / N )  2d), the lemma follows. □

Prior to study the variance and asymptotic distribution of the estimates / m we 

obtain a general expression for its cumulants under the Gaussianity assumption. Let 

X  = (X i , . . . ,  X n ) '  be the vector of N  consecutive observations of X t .  Then X  has a 

multivariate Normal distribution Af([i, £/v)> where

=  7 ( r - f l0 »  ri9 = 1

Then we can write,

/m (« ) = ^ X ' W M(a)X,

where Wm {&) is the matrix

[WM{a)l,g = ei(r- ,)a j  K u W e ^ - ^ d X

>( r - g ) a  K M(X) cos(r -  g)XdX, 
J n

= cos

r,g =  1 , . . .  , N .  Therefore the characteristic function of /m (« ) is

- 1/2
¥>(<) =

2  it 
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Now the 5-th cumulant of / m («) is given by

o s - V c - iy  
k,  =  - ^ A - r r ^ T r a c e K E

(2ir)aN l

We can write for the trace

Trace [(S iv % (Q ))5]

2  7(r i -  r 2 M ~ ^ j-p-)  cos(r 2 -  r3 )ot' • '7^23-1 -  r i s M ’2̂ ' 1) cos(r2s -  n  )a
7*2 s ~r i

M
1 < r i , . . . , T 2a< N

= 4  E  /  / ( « l ) ^ ( “ 2 ) -" /(« 2 ^ l)^ M (a 2.)
Z l < r 1)...,r2s<iV '/I12a

X [exp{z(r2 —r3)o;}-}-exp{—i(r2 —r3)a}] • • • [exp{z(r2s-r i)a } + e x p { -z ( r2s-r i)a } ]  

X e x p { z [a i(r i-r2) + a 2(r2- r 3) + • • - + Q:2s(r-2s-r i) ]}  dar  • -da2s

= E * ^  E  /  / ( « i ) ^ M ( a 2) - - - / ( a 2̂ i)A 'M («2s)
Z l < r l l ... ,r2 -<JV •/ I P '

X exp {z [ri(a i -  a 2s +  a<$(25,1))

+ r2(a 2 — o t\— or^(3,2))

+r3(<*3 -o i2  + 0^6(3,2))

+^2S(0!2s ~  Q!25- i  -  aS(2s, 1))]} dav  • •a 2i 
N .

^ ' fn2‘
x K m {A - a [ t f (2s , l ) - t f ( 3, 2) ] - / i 3 -------- / i 2s)

X • • • f ( \  — a8(2s, 1)-/Z2s) ^ m (A )$^s)(/zi, • • • ,/z2s)dAd/z2* • -d/i2s,

= (2ir)23-1̂ ;^y J 2J(X-a8(2s,l)-fi2---- /*2,)

(5 .7)

where each +  1,j )  is equal to +1 or —1 and the summation adds for all the 2 s 

possible combinations of the 5 different <5(-,-)’s. In the last equality we have done this 

change of variable,

Mi =  0ti ~ a 2 s +  ot6 (2 s, 1) 

fi2 = a 2 -  (*i -  a£ (3 ,2) 

ft3  = «3 -  oi2 + oi8 {3,2)

ft2s = OL2s ~ « 2s - l — Ot8{3 , 2 ),
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obtaining £)j=i P j  = 0, and setting A =  0:25, we can get

a 2s-i = A -  p 2s ~ a8(2s , 1)

( X 2 S - 2  = A -  H2s -  P 2 s - 1  -  <*[£(25, 1) -  <5(3, 2)]

Oi = A — p 2s  1*2-  Ot8{2s, 1) .

P ro o f  o f  L em m a 5.2. Using (5.7) we can write the variance of /m(<\?) as, i G {1,2},

y y E * J  -------- h )k m { * -

• • • ,p 4 )d \d p 2' • -dp4, (5.8)

where the summation JZ* runs for all the combinations £,• G {—1,1}.

Let’s analyze first the case where 8 i = 8 2  = 8  = ± 1 . We are interested in study the

difference between the integral in (5.8) and

/  /(A  -  6 \ j ) 2 K M ( \ ) 2 d\ .  (5.9)
J  n

Consider a sequence pw —► 0, pN = M _1), (to be chosen later) and the sets

D =  {/z G U 3  : supj\pj\  <

and D c, its complementary in 1Z3. Then we have tha t in the set D this difference is not 

greater than [we take 8 = — 1 for simplification, w.l.o.g],

j \ M < j D ^ 6 X j  +  X ~ ^ 2 --------------------------- — P Z ~  P 4 ) f ( 6 X j  +  \  — ^ 4 ) — f { X  +  8 \ j ) 2K M ( X ) \

x \K m ( ^ ) \ \$ n \p i ,  • • • ,m ) \d \d p 2 - • -dp4

< < sup sup |/(A  +  Xj +  p 2 ----- //4)|2 > (su p |ifM (A )|l
U a | < t t / m  n e D  J I  a  J

xsup /  \KM{ X - p 3 - p 4 ) - K M{X)\d\  /  \ $ $ ( p i , - - - , p 4 )\dp2 ' " d p 4 (5.1Q)
n€DJ\\ \<ir/M J n 3

+  < sup sup |/(A  +  A j  +  P 2 ------- P a )  I \  {  sup sup |/'(A  +  A j  +  P 2  ^ 4 )1  \
[ \ \ \ < n / M  » e D  )  [ \ \ \ < i r / M  » € D  J

x |s u p |i fM (A ) || j  \ K M W \ d X ^ 2  J ^ J p j W ^ i p ! , ' "  , p 4 ) \ d p 2 ' " d p A .  (5.11)

Using Lemma 3.16 we have that (5.10) is

o ( m 2p n \X + = o ( M 2pN( j /N ) -4d) ,
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and (5.11) is

o ( m J V _ 1 1 a  +  A3- | - ‘‘,_ 1 lo g 3Jv) =  o{M{ j lN) -u j~x lo g 3iv )  .

Now we consider the contribution from the set D c. First we consider the contribution 

from the integral in (5.9)

f  f(X  + 6 \ j ) 2 K/n(X) 2 d \  f  
7 |a |< tt/m  J d c

=  01  sup / 2(A +  A3)suP |A:m(A)| [ iKMiXydXiNp^- ' lof fN
\|A |<tt/M  a J

= 0 (^M(NpN )~x( j / N ) " * 1 log3n )  ,

using the properties of the Fejer Kernel inside D c.

Now we have tha t for the contribution of (5.8)

/  /  l/(£A,- + ^-M2--------Ai4)^M (A-/i3- / i 4)/(^Aj + X -p 4)KMW\
1A|<7r/M JDC 

x |$ ^ ( /x i ,  • • • , p 4 )\d \dp2- • 'dfi4

~  (2?r) 3N  Jd * +  OLi)K m ^OL2) ^ X3 +  ol3 )K m {oca)

x (pN(a i -  a 4 )ipN(a2 -  a i)y w (a 3 -  ot2 )<pN (a 4  -  a 3)| dar  • -a4, (5.12)

where, as in the proof of Proposition 1, D* is the correspondent set to Dc with the 

variables ctj, j  = 1 , . . .  ,4, i.e.

D * =  {\a2 -  a i | > Pn}  U {\a3  -  a 2\ > pN } U {|a:4 -  a 3\ > pN],

and the last integral is only different from zero if

We are going to consider only the case where just one of the conditions tha t define 

the set D* is satisfied, \a2 — cki| > p ^ ,  say. Then we have,

N - 1 \<pN (a 2 - a 1)\ = 0 ( ( N p N) - 1) (5.13)

and, because sup |K m {X) = O ( M ) | and (3.35),

f  \v n ( < * 3  ~ ot2 )KM{oL2 )\da2 = O ( Ml o g N) .  (5.14)
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Next, defining hn  =  (Xj +  7 t / M ) / 2 ,  we have hn  =  O(Aj) and Then we

can write

r r - e  r - A h ^  f - f i N  /*e V r
I — a 4 ) /(a i +  Aj)|do:i =  / + /  + /  + /  + /  (5.15)

./FI J—7r ./ —e J —Ahjf J — h.H Jt

for € fixed small enough in a way tha t f (Xj  -f o i)  satisfies f (Xj  +  a i)  < Cc\Xj +  Q!i|-2d

for ai  E [—€,€]. Now

f  \<pN \ f d a 1 = 0 (l),  

since in this case sup|a i |>e \<pn(oli +  Aj)| =  0 (1 ) as A j —► 0. Then,

/ -4hN ( 1 r-4hN
\<PN\fdai < < sup f ( a i  +  Xj) > / \<pN (oti -  ot4)\dati

■£ ( —e < a j < —4/ijv  J J  — (■

= 0  ( s u p |a i  +  ^ i\~ M J  lwv(“ i -  a 4) |d a i)

= 0  (A- 2”1 logN )  =  0  ( ( j / N ) - 2 i logN) .

Next,

/ -J ijv  r - h N
\(Pn \ f  da\ < sup |yw (ai -  a 4)| /  / ( « i  +  Aj)dai

-4hfj J— 4hfj
—4/i tv ^  Oi < —hjv

|0!4| < 7r/M

= 0  ( sup |a i -  a 4\~l /  |« i +  Aj|-2ddai J
J —4hff J

= O ( a - 1 A - m + 1 )  =  0  ( ( j / N) - 2d) ,

as h/v =  Aj(l +  o ( l) ) /2, using (5.2). Also

f  \<Pn\ f  dai < sup f (Xj  +  o i)  f  \<pN\dai
J—hff JN

=  0((A j +  i r / M) - 2 i logN)  =  0 ( ( j / N ) ~ 2d log N) .

Then (5.15) is

0 ( ( j / N ) ~ 2d log N).  (5.16)

The remaining integral in D* is:

f  [  \KM(oi4 ) f (Xj  + a 3 )<pN(a 4 - a 3 )\d a 3 doi4  = 0 ( ( j / N ) ~ 2 d\ogN),  (5.17)
oil Ju

reasoning for 0:3 as for the integral in a i  and using /  \KM{oL4 )\da4  =  0 (1).
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Then from (5.13) to (5.17) we have that (5.12) is

0 ( ( /5NJV)-1M (J7JV)-4‘, log3 n ) .

Compiling results we have tha t the difference between the two integrals in (5.8) and 

(5.9) is of order

0 ( M 2 pN ( j / N ) ~ id +  M ( j / N ) - * dj ~ 1 logi N  + ( N p N ) - 1 M { j / N ) - 4 dlogi N )  , 

so the optimal choice is
2 _  M  log3  N  _  log3jV

Pn  ~  N M 2 ~  N  M  ’

which gives an error of

0 ( i j / N ) ~ 4d [M3 / 2 N ~ 1/ 2 \og3/2N  + M i-1 log3# ] )  . (5.18)

For this choice of pN to be o(M~1) we need

lim Mp N =  lim ( —  J log3/2 N  =  0,
N —*oo N —k x > \  J\l J

which is satisfied under the conditions of the lemma.

Now we have, from (5.9), operating as with b\ in the proof of the previous lemma,

I /  /(A  +  6 \ j f K M ( \ ) 3d \  -  f ( SXj ) 2 (  iTM(A)2dA|
|7n Ju I

< 2 sup | / ( a , + > ) / '(« ,•  + A)| su p |jrM(A)| /  |A||ffM(A)|dA
| A | < i r / M  a  J n

=  0 (  sup |A,-+  A |-1- w ) = 0 U j l N ) - l - dd) ,  (5.19)

using / |A | |^ M|dA = O i M - 1).

Now, since / #m (A )2</A =  M ||# | |2, we have obtained the leading term for the vari­

ance, taking into account tha t in (5.8) the integral for <5 =  1 and 6  =  — 1 is multiplied 

by 2ir/2N  and /  is even. The errors are obtained multiplying (5.18) and (5.19) by 

(M /CA j)2)" 1 =  0 { M ~ \ H N Y d).

It only remains to check that we can neglect the contribution from the two terms in 

(5.8) with = — 6 2  = 6  = ± 1 . Proceeding in the same way as before we can see that 

these terms converge to the integral

/  /(A  -  S \ j f K M { X ) K M {X -  (5.20)
Ju
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with the same errors as before. In (5.20) we have two functions K m  centered in frequen­

cies 2Aj away. Since j / N  —► 0 slower than M -1 —► 0, from (5.2), we have tha t the two 

kernels do not overlap and (5.20) is zero for N  big enough. □

P ro o f  o f  L em m a 5.3. As before, we can express y / N / M f ( X j )  as a quadratic form in 

the vector X  — I X , where 1 is the N  X 1 vector ( 1 , . . . ,  1)':

= (X -  IX)' I  = L  WM(\j )  I (X  -  IX)
K ' \ 2 n V N M f ( \ j )  m i , ) K ’

M  / ( Xj) 2xy / MNf ( \ j )  2Tt\fMN/(A>)

~  2 A l^Â  +  A2(A>)’

say, using the same definitions as before. Let’s study A i first. The variance of X 'W jv(Aj)l 

is the equal to

l ' W M (Xj)ZNWM(Xj)l

J2  “ f 11 / 1 )  T 'f o  -  r 3 ) t J ( r 3 j f r 4 )  co s  AJ '(r i  -  r a j c o s  A ,-(r3 -  r 4 )
rj "T4 =1

=  (27r)3j E  L  K M(<*i)f(<*2 )KM (a3)
8

x $ ^ ( a i  +  Xj 6\ , ot2 — (Xi — Xj 6i , 03 — «2 +  Aj<!>2>— 0:3 — Aj^)dA, (5.21)

where the summation runs for the all the combinations 6 {—1,1}. Then making a 

change of variable, the modulus of (5.21) is not bigger than

(27r)3^  ^ 2  /  ~ Xj6i)f(f i i  +  ii2)KM{ni +  ( * 2  + 1 *3  -  Aj<5>2) $ ^ ( / i ) |  dp
8 n3

-  /  I^m(^1 -  Aj<5l)/(/il +fi2)KM(fJ'l + ^2 + A*3 -  Aj^2)4 5 jn 3

x^7v(Mi)v?iv(At2)^iv(^3)v?7 v ( - E j= i^ j )  dfjL. (5.22)

We consider the case Si =  6 2  =  1. Now, given the compact support of K  the previous

expression is only different from zero if

^  x T 'fJ>i, Mi +  fJ>2 + fi>3 G Xj -  — , Xj +  —  ,

with fi 1, +  /i2 +  M3 ~  Aj, given Assumption 5.5. Therefore, using the properties of <p n >

|w ( a * i ) w ( - £ ? = iW )  = 0 ( X 2j ) ,
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and also,

\ K m ( » 1  +  M2 +  /^3  — X j )  I =  O ( M ) .

Then,

/  |wv(A*3)|d/*3 =  O(logiV).

Now we claim tha t

J f(Pi +  A*2)|w (a*2 ) |^ 2  =  0(Aj- 2dlog JV), (5.23)

and since

/  |#m(a*i -  Aj)|d^i = 0 (1),
J n

the variance of X ,W n (Xj ) 1 is

0 ( A - 2 ( l + d ) M i o g 2 JV)

Consequently, A i(A j )  is, using the rate of convergence of the variance of the sample 

mean,

/  ^2d \
O p f - ^ A - ' - ^ l o g J V J V ^ 1/ 2 ! =  O p ( j d~l l ogN)  = o p (;T 1/2logjv) =  o p (l) ,

since d < 1/2. Now we prove our claim in (5.23). Proceeding as in the proof of Lemma 5.1, 

we can split the integral in (5.23) in the following intervals, for some e > 0 fixed,

/ , = 0 ( 1 ) ’*̂ |M2 I>e

and since fii r>j \ j  ̂

r-Xj/2 /  r-Xj/ 2 \
/  =  0  sup \<Pn(H2 )\ \m  + V2 \~2 ddii2 \

e \M2€[-e,-Aj/2] J-t J

= 0  ( x j 1 sup |/ii +  /i2|1_2d>) =  0 ( X j2d).
\  H2 €[-c,-Xj/2] J

Finally,

f  = 0  ( sup /(^1  +  /*2)| I  \<pN (^ 2 )\dfJ, 2 ) =  o  (a j 2d log n )  .
y - A j / 2  \M 2 G [-A i /2 ,e]  ^ - A j / 2  /  V 7

The analysis of A 2(Aj) is simpler. We can see that

l'WM(Xj)l = o(J Km (Xj -  A)|w (A)|2dA) ,
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and this expression is only different from zero if |Ay — A| < n /M ,  so we have to consider 

only the values of A such tha t A ~  Xj given Assumption 5.5. Then |</?tv(A)|2 = 0 ( X j ) ,  

and the same bound applies for the whole integral. Therefore, A 2(Aj) is

* ( * “  - ° ^ S ) - A m - ) ■ ■

using d < 1/2. □

P ro o f  o f T h e o re m  5.1. From Lemma 5.2, it only remains to check th a t all the higher 

order normalized cumulants converge to zero. We shall prove that for s =  3 ,4 ,..

Cumulant,
M  /(A ,)

/ M \ V  
\ n )

log 2̂ N
N M

1/2
N  log2*"1 A 

H f- — -------

s — l 
2

=  +«((#)
Then, the Theorem will follow because M /N  —► 0 as N  —► oo.

Similarly as in the proof Lemma 5.2, we have to  study the difference 

N  I f
T T T T T  /  / ( A — <5iAy — /x 2 --------------/J'2s ) K m { ^ - [ ^ i  ~ ----------------------------------------------- -^ 2 s \
J s{Aj)\Jn2a

X n 2a)KM{X)$N (pi’ • • '  ’ P 2 , ) d \ d i i ' 2 - ■ -dfj,2s

- 2 /  / 5(Aj +  \ ) K ’M( \ ) d \  
J n

(5.24)

for all combinations Si G {1 ,-1 } . The reason is because, as with the variance, only the 

situations where all the <5; are equal in Y ?  contribute to the main term of the correspon­

dent cumulant, since, otherwise, we have at least two kernels centered in two frequencies 

away |2Ay |, which is bigger than the width of K m (A).

Consider the set, for some sequence pw —► 0, p n  =  o(M -1 ),

D  =  {/i G V?s 1 : supy |/̂ y | < /ijv} •

Assume then tha t Si =  6 2  =  . . .  =  Ss =  ±1. Now the contribution to  the difference 

in (5.24) of the set D is, for |A| < 7r/M ,
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taking out supAjM6£> /(A — + Aj) = 0( f ( Xj ) ) -  Then, applying the Mean Value

Theorem and using (3.32) we obtain tha t (5.25) is

On the other hand, applying Lemma 3.16 and using (3.29), (5.26) is of order

The expression in (5.30) is 0 ( M S 1log2s_1 N 6  *), using (3.29) and /  s(Aj) f  \ f s(±Xj +  

A)A”j^(A)|<fA =  0 ( M S~1), which follows from the compact support of K . Now for (5.29)

X  <Pn ( ol 1 -  a 2 s )(pN (0C 2  -  O i l ) ' - '  <Pn {012s -  « 2 s - i ) |  d a • - a 2 5 ,  

where D* is the correspondent set to D c with the old variables a j , j  = 1 , . . .  ,2s, i.e.

D* = { \ot2 -  ail > 8n} u { |a3 -  0 :2 ! > 8n} U . . .  U { |a2s -  a 2s_i| > Sn}- 

Also the last integral is only different from zero if

0 { N M ’- \ j ! N ) - x) \KM (X)\dX £  K l |$ ! ? s)(p)|dM2---<ip2
q—2

= 0 { M s~1(j !N )~ 1 \ o ^ s~ 1 N ). (5.27)

0 ( N M sSn ). (5.28)

For the contribution of the complementary of the set D  in II2s *, denoted as D°. The

integral corresponding to the set D c is then less or equal than

+ 2------V2s)K m (X -H 3------ M2s)-*-/(±Aj +  A - ^ 2s)Am(A)|
J s{Xj)JnJDc

• ■, fi2s)\dXdfi2' • 'dfi2s (5 -21

IA ± A j +  \)K°M( \ ) \ d \J Dc (5.3>

we have

J s(Xj)Ju J D C

x /(± A j +  A -/i2s)AM(A)| ^ 2 s)\dXdiJ,2 "'dfj,2 .

f  \ f(Xi  +  ai)AM (a2)* • • /(A,- + a2s_i)A'm(q2s)



We are going to consider only the case where just one of the events in D* is satisfied, 

\cx.2j — <*2.7- 11 > &N (1 < j  < 5)> say, the situation with an odd index or with more than 

one event is dealt with in a similar or simpler way.

First, if \ct2j -  <*2j - i |  > then \(p^(a2j -  <*2j - i ) |  =  0 (6 ]^). Second, we can bound 

the integrals in ct2j and a 2j - i  in this way,

/  \<PN(<*2 j+l ~  OC2j )K M{oi2j)\doi2j =  O(MlogiV),
JU

using (3.35) and

/  Ivw faty-i -  <*2j - 2)/(A j +  <*2j —1)| da 2j -1 = 0 ( ( j /N ))~ 2d logN ), (5.31)
J  n

as with (5.15). There are 5 — 1 integrals of each type, which can be handled in the same 

way. The remaining integral is of this general form:

f  f  |^m(<*23)/(± A j +  a 1 )(pN (a i -  <*2 a)| da\dot2 s = 0 ( ( j /N )~ 2 d\ogN),
J  n  J u

as we did before for (5.17).

Finally the contribution from the integral over D c is of order

log2*"1 N ) ,  (5.32)

and therefore, the optimal choice for pw is,

,  lo g ^ J V  
P n ~  N M  '

From (5.27), (5.28) and (5.32), we can see tha t (5.24) is

'log2*-1 TV
0 \  N M 5—1

N M

1/2

Then, since

2 N  j f  f s(Xj +  X )K sM (X)dX =  2 N f* (X j) K ’M(X)dX +  0  { f s(Xi ){ji/N )~ l N M ‘~2) 

the estimate for the cumulant follows and the Theorem is proved. □
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5.8 Appendix: Proofs o f Sections 5.3 and 5.4

P ro o f  o f  T h e o re m  5.2. First, write fk  and fk  for f(X k)  an<l fM{Xk), respectively. 

Using the results for the bias and the variance of f k , we have,

M l 1/ 2'
.a J

'M l 1/ 2'
A

k = £ +  1,1 +  2, . . . , 771, 

= 1 + op (l),
£ ' t M _

uniformly in k , under Assumption 5.6, because N /M  £+M  log3A /A  —> 0 imply logN /£

0. Then we can write as A  —► oo, using |log (l +  x)| < 2\x\ for |z| < 1/2,

1/2 \
log fk  =  log fk  +  0 P | —7—  +  7-77 +

/  log AT A 
\  k  +  k M

r m
A

From Robinson (1995b) and the definition for the summation in k , we can obtain

S A fc  =  4 m (l +  o(l)),
k
sup |A*| =  O (logA ),

£<k<m

5]|A jb |p = O(m), p > l .  
k

(5.33)

Then we have
- l

Sm  = ^

= A i +  A 2,
L k

’M ' 1/2 y

.A . ) .

say. First we have, as J3Zl=i & =  O(logm),

/lo g 2A log ra  A  log A  log m  
A 2 = U p ------------------1------------—------ +

M
A

l/2>
=  »/>(!), (5.34)

V m  m  M

using Assumption 5.6, since it follows that log2 A  log m /m  —► 0 from the first three 

conditions on Assumption 5.6.

Next, with Assumption 5.3, k = £ + 1 ,£ +

log/* -logG A T *4 = O(Af) =  o ( [m /jV f)  , 

uniformly in k. Since Z ^A jtlogG A j^  =  d ^ A 2, by H16 definition of A*, we have that



from the last condition in Assumption 5.6, and the Theorem follows from (5.35) and 

(5.34). □

For the estimation of the variance of / m  under a linear process condition we state 

two lemmas needed later:

Lemma 5.8 (Hosoya and Taniguchi, Lemma A2.1, 1982) Under Assumptions 5.7 

and 5.8, the process X t has fourth order spectral density, denoted by f± { v i , i^ ,i^ ) ,  sat­

isfying

f* { v  1,^2, ^3) =  w{v\ +  V2 +  J '3 M -* 'lM -* '2 M -* '3 ) /4 ( I'l  + " 2  + ^ 3 ,^ 2 ,^ ) 0,.e. 

Lemma 5.9 (Bentkus, (8.1) and (8.2), 1976) Under Assumptions 5.1, 5.7 and 5.8, 

C0 V^fM(0 ia) j M ( 0 ib)] = ^  ^ 2 , Pz)dp,

where,

G(p)  =  /  K m (vi ~ aa)KM{v2 +  <Xb)fA{V\ +  v\,V‘2 - v i , P 3  +  V2)dvl dv2(5M)
J n 2

+ /  K m (v ~ OLa)K M(v  +  Mi +  P2 ~  a b)f((j,i +  v ) f ( p z ~  v)dv  (5.37) 
J n

+ f  K M{y -  a a)K M (v  +  Pi +  P2 +  a b) f ( p ! +  i/)/(/i3 -  v)dv. (5.38) 
Ju

Proof o f Lemma 5.4. Using Lemma 5.9 we can see tha t (5.37) and (5.38) are just the 

Gaussian terms of the variance (take a a = a b = Aj), which give the result for the variance 

of /m  when X t is Gaussian. So we have to study the fourth cumulant contribution of 

(5.36). Now, employing Lemma 5.8, we can write the contribution from (5.36) to the 

variance of the spectral estimate as

f  f  K m M K m M  +  P2 +  A*3 +  V2 -  Aj)
A  Ju2 Jn 3

x w ( - p i  - v i -  Aj) w ( - p 2  +  v\ +  Aj) w (- f i 3  -  v2 +  Aj)

xf t i v i  + ^2  + 3̂ + ^2 -  Aj, - p i  -  vx -  Aj, - p 2 + vx + Aj)$$(/i)d/zch/i dv2

= o(sup\fl\^~ f  f  \KM(l'l)KM(v2 ) \ f 1/2(Vl + P2+P'3 + V2 - ^ j )
\  A Ju2 Jn3

x / 1/2(-/z 1 -  vx -  Aj)/1/2( - / i2 + y\ + Aj ) f 1/2(~P3 - V 2 +  Aj)

X \ ^ \ p ) \ d p d u \  dv2 j  , (5.39)
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since |u;(A)|2 =  / ( A ) / /e(A) = 0 ( f ( A)) as A —► 0 and / |  is uniformly bounded in that 

interval. Define the set D by

D =  {sup \jij\ < M  }. 
j

Then, taking into account that \vj\ < irM _1, and that

s u p /1/2(^i + M2 + M3 + ^2 -  Aj) =  0 ( / l/2(Aj)),
D

and similarly for the other functions f 1 / 2 in (5.39), all with bound 0 ( f 1 ^2 (Xj)) inside D, 

we can see tha t the integral in D in (5.39) is of order

= 0 ( / 2(Aj)iV_1) , (5.40)

because all the integrals are bounded, using the properties of the multiple Fejer Kernel 

and /  \K M{X)\d\ < oo.

Now, for the contribution in the complementary of the set D  in II3, D c say, we can 

write the integral in (5.39) in the following way, up to finite constants,

N - 2 !  f  \KM{vi)KM(v2)\}ll2{cL3 + v i - \ j )
J n2 j d c

x f 1 / 2 ( - a i -  vi -  Aj) / 1/2( - a 2 +  a i  +  ui +  Aj) / 1/2( - a 3 + a 2 -  ^2 +  Aj) 

x |0 n (o i)  4>n{<*2 -  « i ) <}>n(ol3  -  a 2)(f>N(~oi3)\dadv, (5.41)

where we have made the change of variable

a i =  Mi 

<*2 =  Mi +  M2

o3 = /ii + //2 + /i3,

and then we have

D c =  {|a i | > A T 1} U { |q 2 -  a i l  > M - 1}  U { |a3 -  a2| > A T 1}.

We are now going to bound all the integrals in (5.41) under the assumption tha t only one 

of the conditions tha t define D c, |a i | > M -1 , say, is satisfied. The procedure is exactly 

the same in the other situations. First we have

l< M « i) l  =  O ( M ) .  
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Next, using the periodicity of /  and (f>N, setting x =  — 0 : 2  +  < * 1  +  ^1 ,

f  f 1 / 2 ( - a 2 +  <*1 +  1/1 +  Aj)|<£iv(a2 -  a i ) |d o : i  =  f  f 1/2(x +  A j) |^ jv (—ar +  1/1 ) |d *  
Jn ./n

=  O ( /1/2(Aj)logi\0, (5.43)

proceeding in exactly the same way as in the bound for expression (5.15), replacing /  by 

f x' \  since \v\\ < 7r/M . Using the same argument we have tha t

/  / 1/2(-Q!3 +  <*2 -  ^2 +  Aj)|</>7v(<*3 -  a 2)|rfa2 =  0 ( / 1/2(A j)logiV ), (5.44)J n

/  / 1/2(<*3 +  ^2 -  Aj)|0iv(-Q!3)|da3 =  0 ( f 1 / 2 (X j)\ogN ). (5.45)
J n

Now the remaining term can be dealt with in this way:

f  \ K m ( v i ) K m (v2 ) \ / 1/2( - « i  -  v \  ~  \ j ) d v i d v 2 
J n 2

< const. /  |i rM( ^ i ) | / 1/2(
J n

< const. a  \K m {^i ) \ 2 d fi  J  / ( - a i  - v i -  Aj Jdi'ij 

=  0 ( i l /1/2), (5.46)

since sup |Ajvf(A) |  = 0 ( M ) and /  is integrable by stationarity. From (5.42) to (5.46) we 

obtain that (5.41) is

0  ( / 3/2(Aj )N ~ 2 M 3 / 2  log3iv) . (5.47)

Then, with the bounds in (5.40) and (5.47), we have tha t the contribution to the variance

°f / m (A j ) / / ( A j )  from the fourth cumulant term (5.36) is

o ( n ~ x +  iV-2 M 3/ 2log3iv ) =  o ( ^  [ a t 1 +  J V - ' i l f^ lo g 3^ ] )

1/2

M
= 0  ¥

M . 3 .7.
—  log N

I /2 AT
+  j -1 log3iV +  -

3 m \ )

under the condition j N -1 + M1V-1 log3iV —> 0, and then the Lemma follows. □

5.9 Appendix: Proofs o f Section 5.5

L em m a 5.10 (C h en  a n d  H an n an  (1980)) Under Assumption 5.9 , the distribution 

function Qn  ° f  the vector

WN = N - 1/2Y,Yt ,  
t=1
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where

Yt' = Y '( j ( l ) , . . . , j ( k ) )  = >/2€t(costAi(1),sintA i(1) ,. .. ,c o s tA i (ib) ,s in U i(jfc)),

has density qpj fo r all sufficiently large N  and
1

s u p  (1  +  | | y | | “ ) 
yeTlk

q n (y )  ~ ^ 2 n  r /2 Pr{-< i> : x v,n ){y )
r = 0

=  0(JV_1), (5.48)

where Pr are polynomials in the average of the joint cumulants ofYt  (1 < t < N ) of order 

v = (i/i,. . . ,  V2k)> Xv,n> 'multiplied by the 2k th multivariate Normal density 4> and where

Po{y) = <K y)-

This is a simplified version of Chen and Hannan’s Lemma 2, where we only use the 

first two terms of an Edgeworth expansion for the density of the Fourier transform of e*, 

so only four bounded moments are required.

L em m a 5.11 Under Assumption 5.9 , for J  > 2,

E [(7et)-1] < 00.

P ro o f  o f  L em m a 5.11. First, from Lemma 5.10, 2nItk has the density of a \ x 2J 

distribution with error (using only Po) of order 0 ((1  +  ||y ||4)-1 N -1/ 2)- Also the density 

of a x l j  is
x ^~i e~ x ! 2

* ^ - x) = (J  — 1)!2J ° -  * < °°-

Then it is clear tha t if X  ~  x%j th611 -£'[^-1 ] < oo if «/ > 2. Then we would need only to

check that the error in the evaluation of the inverse moment of I €k using the Lemma 5.10 

is bounded. If we write

7et =  =  Y X & I  +  »»>)
j = i  i = i

we need

N - 1 / 2  j n J i  + I ly l lT 1 ( E to a j  +  y & Y 'd y  <  OO. (5.49)

First, defining the sets A  =  [—1, l]2*7 and A° its complementary in 1Z2J,

^ 2J(i + llyll4) 1 + vld) lrfy ^ const.jf (E(j& + y«)) lrfy
+ const, f (1 +  ||y ||4)_1dy 

Jac

< const. J (Y,(ylj + ybjj) ’<iy + const.,

>AC

'A
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since ( 1 +  ||y||4) 1 and (£(3/aj +  ylj))  * are bounded from above in A  and A c, re­

spectively. Next, to bound the remaining integral, if <£(.) denote the densities of the 

correspondent distributions, we have

00 > /o  =  Jn u  ( £ / » £ •  +  »?>)) to (o j ,j) ( y )d y

> const. L  ( » > -  

as the Normal density is bounded from below in A. Hence, we have got

JA + ylji) lrfy < const- < °°-
Then, the l.h.s. of (5.49) is 0(iV -1/ 2), and the Lemma follows.

An alternate way of checking that the error is actually 0 { N ~ 1!2) is bounding directly 

the integrals

Jnu0 + llyll4)-1 (E(s& + $)) ljy -  const-JA + Vij)) + const~
This can be done as follows. In parenthesis appears the code number of the integral used 

from Gradshteyn and Ryzhik (1980). In each step we denote as p the sum of the squares 

of the remaining variables with respect to we are not integrating. Then, using (3.241.4),

Jq (z2 + p )~ Xdx =  | p " 1/2,

and from (2.271.5)

/  (z2 + p )~ ^ 2dx =  log(l -|- \ /p +  1) -  i  log p.Jo i
Now we have

J  ^log( 1 +  y/x  +  1) -  i  log X dx < 00,

and the global integral is bounded; to make this process we have needed 3 integrals: that 

is the reason why we need J  > 2 to get at least 4 degrees of freedom. □

P ro o f  o f  L em m a 5.5. Using Lemma 5.11 we have tha t, for any 9 > 0,

P{Iej = 0} < P{7ck< N - 6} 

< P { T J  > N s } 

=  0 ( N - e),
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and the lemma follows from the Borel-Cantelli Lemma, choosing 0 > 1. □

P ro o f  o f  L em m a 5.6. For j  =  1 +  k — J , . . . ,  k we have

max \fj — fk\ < max sup |/'(A )| |Aj -  Afc|
J 3 Ae[A*,Aj]

= 0 ( h \ ? N - ' )

Then we have, since I cj > 0,

\ n \  <  m" * 1f i - M 1*  = 0(fc->).
fklck

Then F  ̂ =  Op(^-1 ), uniformly in k , and using | log( 1 +  a;)| < 2\x\ for \x\ < 1/2, we 

obtain as I  —»■ oo

|log (l +  / i ) |< 2 |F * |  =  Of (fc-1). □

P ro o f  o f  L em m a 5.7. First, for summations running from j  =  1 +  k — J  to j  =  k, 

E[{Hk)-'] =  E [ ( 2 7 r ^ . / J / y / 1J

< (27T)-1 |m a x / “ ' I  E  [(7<(l)_1]

= o  ( / ; ' ) ,

using Lemma 5.11. Now, from Robinson (1995c, expression (3.17)),

Y ,  Ij 27r/ej f j

< E  \Ij 2 irltj f j  |

=  0  ( max f j  
\  j

log j

= O l f k
log A:

L J J 
1/ 2'

1/ 2'

Then the result follows from 6 k =  O p(fk log k 
k

k

1/ 2 .
) and (Hk) 1 = O p (fk 1), and the same

reasoning of the previous lemma, since \6 k/Hk\ = op( 1), uniformly in k. □
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P ro o f  o f  T h e o re m  5.4. As we did before in the proof of Theorem 5.2, under Assump­

tion 5.3,
/ _  . \ - 1 _  / rm -1 ^

(5.50)£ A * lo g  fk  = d + 0
< k J k

m
N

Now, from Lemmas 5.6 and 5.7 we have that

log 7* =  log f k +  logJefc +  0 P
log m 1/ 2'

(5.51)

Substituting in the definition of d and using (5.50), Y lk A k = 4(m  ~  -0 /7  +  O(logiVTogra) 

and sup |A^| =  O(logiV),

d =

1 /2 M

- 1 /2

< k /  \  k J

~  j  Ak l0s  fk  +  lo& 2 wI*k + Op  ^ fc_1 log m

= d + ( 1 2  A*j Ak loS 2irf*k j  + ° P  (loS m)1/2 H  k

+ 0([m N ~ 1 ]P)

= d + £N + Op (log A(log m )1/2m~1/2 +  [raiV-1] ^  , say,

= d +  &v +  op (l),

where the last line follows from Assumption 5.10.

To prove the consistency of the estimate d we only need to calculate the first two 

moments of

=  Afcj ^ 2  Ak loS 2irI*k j
k /  \  k

To evaluate the moments of I tk , we approximate the density of the Fourier transform, 

Qn {y), using Chen and H annan’s Lemma 5.10. This result uses some results in Bhat- 

tacharya and Rao (1975) to  approximate the density of the Fourier transform dt{A) of 

the sequence et . They employed a finite fifth moment of €* to get a stronger result. For 

our purposes with Lemma 5.10 is enough.

Set 47rI ck = J2j=i(vlj + Vbj) were Vaj an(  ̂ Vbj correspond to  the sine and cosine sum­

mations, respectively of 4wI ej .  Now, from Chen and Hannan (1980), (see Lemma 5.10),



As M = 3 the terms in Pi are of one of the following types when we are considering the 

joint distribution in 1Z4J of 47TI ek and 4irltk', k ^  kr (up to  constants):

1. H z(ys)4>(y), where Hi are the Hermite polynomials of order i and s 6 { 1 ,...  ,4«/}. 

Then this term  is odd in the component ys of y  (since H 3  is odd and 4> is even).

2. H 2 {ys)H\{yr)<t>{y), yr /  ys and r,$  E { 1 ,. . . ,4 J } .  Then this term  is odd in the 

component yr .

3. H i(ys)H 1 (yr)H i(yu)(j)(y), yr , ys, yu all different. Then this term  is odd in the 

components ys, yr and yu.

If k = we consider only a distribution in 1Z2J and the typical terms of Pi are:

1. H z(ys)(f>{y), where s E { 1 ,. . .  ,2 J}. Then this term is odd in the component ys of

y-

2. H 2 (ys)H i(yr)<f>(y), r ^  s and r, 5 E { 1 ,. .. ,2 } . Then this term  is odd in the 

component yr .

Then we have

E  [log27rTefc] +  log2 = J ^  log { ^ . { y l j  +  ylj^j  qN{y)dy

= j n2J log +  Vbj))  [^(y) +  N ~ 1 / 2 P i(y)\ dy  +  0 (N ~ l )

=  ^ ( J )  +  log2 +  0 ( ^ ) ,

since / (J>°(loga;)/l/ ( l  +  x 4)dx < 00 and f£ ° (x lo g x )he~xdx < 00, for all h > 0. ip(z) = 

d /dz  logT[^] is the Psi function. The contribution from -Pi(y) is 0 since the interval of 

integration is (—00, 00) and Pi is always odd in one component of y  and the log term is 

even in all the components.

Consider now the Covariance terms. Denote Ek =  £[log27rJeA;]. Then (k ^  k1)

Cov [log27rTdt,log27r7efc']

=  Jnlj [*°g ( £ / ! & •  +  » « ))  -  E k log +  S i,') )  -  E *

= j nlJ  [log ( £ / » L -  +  »m)) -  E k los  ( 1 + V ij')) ~  E k'

9N(y)dy
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x [</>(y) +  iV -1/2Pi(y)] dy + 0 (N  

=  O iN - 1),

P i{y) + 0 ( ± )

as <̂ >(y) is the density of the standard Normal density in 1Z4J (with uncorrelated compo­

nents!), and since the contribution from Pi cancel out by the same argument as before.

Now for the variance we have:

Var [log 2ir7((;] =  [log +  »&)) ~  £ *] 9 w (y)dy

= Jn2Ĵ 0&(j2j(yh+yh))-Ek] [,/,(y)+-ftrl/2pi(y)]dy + 0 (;^)
= i}'(J )  + 0 { N - 1),

reasoning as before.

Then it is immediate that

P [ M  = 0 ( iV '1 logJV),

and that

Varte*] =  + 0  ( j^f) ~

Therefore £/v = op (l) with Assumption 5.10 and the theorem is proved. □
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Chapter 6

Conclusions

In this thesis we have studied different aspects of nonparametric estimation for time series 

analysis. Nonparametric techniques are relevant to  avoid misspecification problems in 

the modelling of the serial dependence of the observations and are very appropriate for 

the design of autocorrelation robust techniques under mild conditions.

Generally, the properties of nonparametric statistics can only be analyzed by means 

of asymptotic techniques, as the sample size, or other index, increases. Due to  the 

presence of a smoothing number, nonparametric estimates typically present slower rates 

of convergence than parametric competitors, being inefficient compared to them.

Given the previous limitations, there is a special interest on assessing how well asymp­

totic properties describe the actual performance of nonparametric techniques in finite 

samples. Also, it is necessary the construction of objective means of selection of the 

bandwidth number and to  find alternatives for situations where these methods are no 

longer consistent, like with long range dependence time series models.

In the first part of this thesis we have made extensive use of higher order asymptotic 

theory to analyze nonparametric variance estimates of least squares estimates of linear 

models. Variance estimates are required to carry out valid inferences based on central 

limit theorems, and nonparametric ones are predominant among practitioners in the last 

years.

We have obtained Edgeworth expansions for the distribution of nonparametric vari­
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ance estimates of least squares estimates in linear regression under wide conditions on 

the nonstochastic regressors. Then we have shown th a t, although the asymptotic distri­

bution of the least squares estimates is not affected by the nonparametric studentization, 

higher order terms are. However, when we have stationary regressors, the series expan­

sions are constructed only in terms of the sample size. This parallels the well-known fact 

tha t the rate of convergence of nonparametric variance estimates in those situations is 

still square root of N , not being affected by the lag number M . Nevertheless, the bias is 

always affected by the degree of smoothing, so the problem of bandwidth choice in that 

situation is still open.

Then we have concentrated in the location problem. The variance of the sample mean 

of weak dependence observations is proportional to the spectral density at the origin, so 

we have to consider nonparametric spectrum estimates at this point. Since here only 

the behaviour of the time series at a single frequency is relevant, we have found more 

natural to impose conditions on the serial dependence in the frequency domain. We have 

developed Edgeworth approximations for both the spectral density estimate and the 

studentized sample mean, extending previous results. We have proposed higher order 

corrections in terms of the bandwidth number used in the nonparametric estimation and 

shown how to approximate them using nonparametric estimates of the derivatives of the 

spectral density.

The performance of nonparametric estimates of the spectral density relies on the 

choice of the smoothing number. In Chapter 4 we have suggested an automatic method 

for such choice when we are only interested in a particular frequency, like zero frequency 

in the case of the studentization of the sample mean. Again, we have concentrated on 

local conditions on the spectral density to modify a cross validation procedure in the 

frequency domain. In a limited Monte Carlo experiment we found tha t our proposal 

captures the features of the spectrum we are mostly interested in, so it can improve on 

global choice methods.

Finally, we have considered time series inference problems in a different set-up. We 

have been assuming tha t the observed time series satisfied weak dependence conditions. 

However, for long range dependent time series these conditions do not hold and conse­

quently most of the techniques analyzed before are no longer appropriate. The main
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interest is now centred on the estimation of the memory parameter. Semiparametric 

procedures are again pertinent on robustness grounds, and one of the most popular in 

practice is the log-periodogram regression.

Inference using the log-periodogram estimate of the long range dependence param­

eter has only been justified rigorously for Gaussian sequences. We have shown that 

this estimate is consistent under much broader conditions if we make a pooling of con­

tributions from adjacent periodogram ordinates as it had been proposed earlier in the 

literature. This can be done with finite averages of periodogram ordinates or with consis­

tent estimates of the spectral density similar to those considered under weak dependence 

conditions.

218



Bibliography

[1] Adenstedt, R.K. (1974). On large-sample estimation for the mean of a stationary 

random sequence. Annals of Statistics 2, 1095-1107.

[2] Akahira, M. and K. Takeuchi (1981). Asymptotic Efficiency of Statistical Esti­

mators: Concepts and Higher Order Asymptotic Efficiency. Springer-Verlag, New 

York.

[3] Albers, W. (1978). Testing the mean of a normal population under dependence. 

Annals of Statistics 6, 817-858.

[4] Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, 

New York.

[5] Anderson, T.W. (1971). Statistical Analysis of Time Series. Wiley, New York.

[6] Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covari­

ance m atrix estimation. Econometrica 59, 817-858.

[7] Barndorff-Nielsen, O. and D.R. Cox (1979). Edgeworth and saddle-point approxi­

mations with statistical applications. Journal o f the Royal Statistical Society, Series 

B, 41, 279-312.

[8] Barndorff-Nielsen, O. and D.R. Cox (1989). Asymptotic Techniques fo r  Use in 

Statistics. Chapman and Hall, London.

[9] Beltrao, K.I. and P. Bloomfield (1987). Determining the bandwidth of a kernel 

spectrum estimate. Journal o f Time Series Analysis 8, 21-38.

219



[10] Bentkus, R.Y. (1972). On the error of the estimate of the spectral function of a 

stationary process. Lithuanian Mathematical Journal 12, 55-71.

[11] Bentkus, R.Y. (1976). On semi-invariants of estimates of the spectrum of a station­

ary sequence. Lithuanian Mathematical Journal 16, 37-61.

[12] Bentkus, R. (1985). On the mean square minimax asymptotic risk of the statistical 

estimators of the spectral density in the space Z-2- Lithuanian Mathematical Journal 

25, 23-42.

[13] Bentkus, V., F. Gotze and A. Tikhomirov (1995). Berry-Essen bounds for statistics 

of weakly dependent samples. Preprint University of Bielefeld.

[14] Bentkus, R.Y. and R.A. Rudzkis (1982). On the distribution of some statistical 

estimates of spectral density. Theory o f Probability and its Applications 27, 795- 

814.

[15] Beran, J. (1989). A test of location for data with slowing decaying serial correlation. 

Biometrika 76, 261-269.

[16] Beran, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall, Lon­

don.

[17] Bertail, P., D.N. Politis and J.P. Romano (1995). On subsampling estimators with 

unknown rate of convergence. Preprint.

[18] Bhattacharya, R.N. (1987). Some aspects of Edgeworth expansions in statistics and 

probability. In New Perspectives in Theoretical and Applied Statistics, M.L. Puri, 

J. Perez Vilaplana, and W. Wertz, eds., pp. 157-170. Wiley, New York.

[19] Bhattacharya, R.N. and J.K. Ghosh (1978). On the validity of the formal Edgeworth 

expansion. Annals o f Statistics 6, 434-451.

[20] Bhattacharya, R.N. and J.K. Ghosh (1989). On moment conditions for valid formal 

Edgeworth expansions. In Multivariate Statistics and Probability: Essays in Mem­

ory o f P.R. Krishnaiah, C.R. Rao and M.M. Rao, eds., pp. 68-79. Academic, New 

York.

220



[21] Bhattacharya, R.N. and M. Qumsiyeh (1989). Second order Lp comparisons be­

tween the bootstrap and empirical Edgeworth expansion methodologies. Annals of 

Statistics 17, 160-169.

[22] Bhattacharya, R.N. and R.R. Rao (1975). Normal Approximation and Asymptotic 

Expansions. Wiley, New York.

[23] Bickel, P.J. (1974). Edgeworth expansions in nonparametric statistics. Annals of 

Statistics 2, 1-20.

[24] Bickel, P.J., F. Gotze and W.R. van Zwet (1986). The Edgeworth expansion for 

U-statistics of degree two. Annals o f Statistics 14, 1463-1484.

[25] Bose, A. (1988). Higher order approximations for autocovariances from linear pro­

cesses with applications. Statistics 19, 259-269.

[26] Brillinger, D.R. (1973). Estimation of the mean of a stationary time series by 

sampling. Journal o f Applied Probability 10, 419-431.

[27] Brillinger, D.R. (1975). Time Series, Data Analysis and Theory. Holt, Rinehart 

and Winston, New York.

[28] Brillinger, D.R. (1979). Confidence intervals for the crosscovariance function. Se- 

lecta Statistica Canadiana 5, 3-16.

[29] Brockmann, M., T. Gasser and E. Herrmann (1993). Locally adaptive bandwidth 

choice for kernel regression estimators. Journal o f the American Statistical Associ­

ation 88, 1302-1309.

[30] Biilhmann, P. (1995). Locally adaptive lag-window spectral estimation. Technical 

Report, Statistics Department, University of California, Berkeley.

[31] Burg, J.P. (1975). Maximum entropy spectral analysis. Ph.D. dissertation, Stanford 

University, Stanford, California.

[32] Carlstein, E. (1986). The use of subseries values for estimating the variance of a 

general statistic from a stationary sequence. Annals o f Statistics 14, 1171-1179.

221



[33] Chambers, J.M. (1967). On methods of asymptotic approximation for multivariate 

distributions. Biometrica 54, 367-383.

[34] Chen, G., B. Abraham and S. Peiris (1994). Lag window estimation of the degree 

of differencing in fractionally integrated time series models. Journal o f Time Series 

Analysis 15, 473-487.

[35] Chen, Z.-G. and E.J. Hannan (1980). The distribution of periodogram ordinates. 

Journal o f Time Series Analysis 1, 73-82.

[36] Chibisov, D.M. (1972). An asymptotic expansion for the distribution of a statistic 

adm itting an asymptotic expansion. Theory o f Probability and its Applications 17, 

621-630.

[37] Cochrane, D. and G.H. Orcutt (1949). Application of least squares regression to 

relationships containing autocorrelated error terms. Journal o f the American Sta­

tistical Association 44, 32-61.

[38] Comte, F. and C. Hardouin (1995a). Regression on log-regularized periodogram un­

der assumption on bounded spectral densities: the non fractional and the fractional 

cases. Working Paper CREST.

[39] Comte, F. and C. Hardouin (1995b). Regression on log-regularized periodogram for 

fractional models at low frequencies. Working Paper CREST.

[40] Dahlhaus, R. (1983). Spectral analysis with tapered data. Journal o f Time Series 

Analysis 4, 163-175.

[41] Dahlhaus, R. (1989). Efficient param eter estimation for self-similar processes. A n­

nals o f Statistics 17, 1749-66

[42] Daniels, H.E. (1956). The approximate distribution of serial correlation coefficients. 

Biometrika 43, 169-185.

[43] Durbin, J. (1980a). Approximations for densities of sufficient estimators. 

Biometrika 67, 311-333.

222



[44] Durbin, J. (1980b). The approximate distribution of partial serial correlation coef­

ficients calculated from residuals from regression on Fourier series. Biometrika 67, 

335-349.

[45] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals o f 

Statistics 7, 1-26.

[46] Eicker, F. (1967). Limit theorems for regression with unequal and dependent errors. 

In Proceedings o f the Fifth Berkeley Symposium on Mathematical Statistics and 

Probability, 59-82, University of California Press, Berkeley, California.

[47] Feller, W. (1971). A n Introduction to Probability Theory and its Applications, Vol. 

2, 2nd Edition. Wiley, New York.

[48] Fox, R. and M.S. Taqqu (1986). Large-sample properties of parameter estimates 

for strongly dependent stationary Gaussian time series. Annals o f Statistics 14, 

517-532.

[49] Franke, J. and W. Hardle (1992). On bootstrapping kernel spectral estimates. A n­

nals of Statistics 20, 121-145.

[50] Gasser, T., H-G. Muller and V. Mammitzsch (1985). Kernels for Nonparametric 

Curve Estimation. Journal o f the Royal Statistical Society, Series B , 47, 238-252.

[51] Geweke, J. and S. Porter-Hudak (1983). The estimation and application of long 

memory time series models. Journal o f Time Series Analysis 4, 221-238.

[52] Gotze, F. and C. Hipp (1983). Asymptotic expansions for sums of weakly dependent 

random vectors. Z. Wahrsch. verw. Gebiete 64, 211-239.

[53] Gotze, F. and C. Hipp (1994). Asymptotic distribution of statistics in time series. 

Annals o f Statistics 22, 2062-2088.

[54] Gotze, F. and H.R. Kunsch (1995). Second-order correctness of the blockwise boot­

strap for stationary observations. Preprint.

[55] Gradshteyn, I.S. and I.M. Ryzhik (1980). Table o f integrals, series and products. 

Academic Press, Orlando.

223



[56] Grenander, U. (1954). On the estimation of regression coefficients in the case of an 

autocorrelated disturbance. Annals o f Mathematical Statistics 25, 252-272.

[57] Grenander, U. and M. Rosenblatt (1957). Statistical Analysis o f Stationary Time 

Series. Wiley, New York.

[58] Hall, P. (1991). Edgeworth expansions for nonparametric density estimators, with 

applications. Statistics 22, 215-232.

[59] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New 

York.

[60] Hannan, E.J. (1957). The variance of the mean of a stationary process. Journal 

Royal Statistical Society, Series B , 19, 282-285.

[61] Hannan, E.J. (1958). The estimation of the spectral density after trend removal. 

Journal o f the Royal Statistical Society, Series B , 20, 323-333.

[62] Hannan, E.J. (1963a). Regression for time series with errors of measurement.

Biometrika 50, 293-302.

[63] Hannan, E.J. (1963b). Regression for time series. (Proc. Symp. on) Time Series 

Analysis, (ed. M. Rosenblatt), 17-37. Wiley, New York.

[64] Hannan, E.J. (1970). Multiple Time Series. Wiley, New York.

[65] Hannan, E.J. (1971). Non-linear time series regression. Journal o f Applied Proba­

bility 8, 767-780.

[66] Hannan, E.J. (1979). The central limit theorem for time series regression. Stochastic 

Processes and their Applications 9, 281-289.

[67] Hannan, E.J. (1987). Rational transfer function approximation. Statistical Science 

2, 135-161.

[68] Hannan, E.J. and D.F. Nicholls (1977). The estimation of the prediction error 

variance. Journal o f the American Statistical Association 72, 834-840.

224



[69] Hannan, E.J. and P.M. Robinson (1973). Lagged regression with unknown lags. 

Journal o f the Royal Statistical Society, Series B, 35, 252-267.

[70] Hansen, L.P. (1982). Large sample properties of generalized method of moments

estimates. Econometrica 50, 1029-1059.

[71] Hassler, U. (1993). Regression of spectral estimators with fractionally integrated 

time series. Journal o f Time Series Analysis 14, 369-380.

[72] Hidalgo, J. (1994). Spectral analysis for bivariate time series with long memory.

Preprint, London School of Economics.

[73] Hodges, J.L. Jr and E.L. Lehmann (1970). Deficiency. Annals o f Mathematical 

Statistics 41, 783-801.

[74] Hosoya, Y. and M. Taniguchi (1982). A central limit theorem for stationary pro­

cesses and the parameter estimation of linear processes. Annals o f Statistics 10, 

132-153.

[75] Hurvich, C.M. (1985). D ata driven choice of a spectrum estimate: extending the 

applicability of cross-validation methods. Journal o f the American Statistical A s­

sociation 80, 933-950.

[76] Hurvich, C.M. and K.I. Beltrao (1994). Automatic semiparametric estimation of the 

memory param eter of a long-memory time series. Journal o f Time Series Analysis 

15, 285-302.

[77] Ibragimov I.A. and Y.V. Linnik (1971). Independent and Stationary Sequences of 

Random Variables. Wolters-Noordhoff, Groningen.

[78] Janas, D. (1994). Edgeworth expansions for spectral mean estimates with applica­

tions to W hittle estimates. Annals o f the Institute o f Statistical Mathematics 46, 

667-682.

[79] Janas, D. and R. von Sachs (1993). Consistency for non-linear functions of the 

periodogram of tapered data. Journal of Time Series Analysis 16, 585-606.

225



[80] Jenkins, G.M. and D.G. W atts (1968). Spectrum Analysis and its Applications. 

Holden-Day, San Francisco.

[81] Jensen, J.L. (1995). Saddlepoint Approximation. Oxford Statistical Science Series - 

16. Clarendon Press, Oxford.

[82] Jowet, G.H. (1954). The comparison of means of sets of observations from sections 

of independent stochastic series. Journal Royal Statistical Society, Series B, 17, 

208-227.

[83] Kakizawa, Y. (1993). Valid Edgeworth expansions for some estimators and Boot­

strap confidence intervals in the first order autoregression. Preprint Osaka Univer­

sity.

[84] Kawata, T. (1972). Fourier Analysis in Probability Theory. Academic Press, New 

York.

[85] Keenan, D.M. (1986). Limiting behavior of functionals of higher-order sample cu- 

mulant spectra. Annals o f Statistics 14, 134-151.

[86] Kendall, M. G. and A. Stuart (1969). The Advanced Theory o f Statistics, Volume

I. Charles Griffin, London.

[87] Kiinsch, H.R. (1986). Discrimination between monotonic trends and long-range 

dependence. Journal of Applied Probability 23, 1025-1030.

[88] Kiinsch, H.R. (1989). The jackknife and the bootstrap for general stationary ob­

servations. Annals o f Statistics 17, 1217-1241.

[89] Lahiri, S.N. (1991). Second order optimality of stationary bootstrap. Statistics and 

Probability Letters 11, 335-341.

[90] Lahiri, S.N. (1993). Refinements in asymptotic expansions for sums of weakly de­

pendent random vectors. Annals o f Probability 21, 791-799.

[91] Lahiri, S.N. (1994). On Edgeworth expansion and moving block bootstrap for stu- 

dentized M-estimators in multiple linear regression models. Preprint, Iowa State 

University.

226



[92] Lepskii, O.V. (1991). Asymptotically minimax adaptive estimation I: Upper 

bounds. Optimally adaptive estimates. Theory o f Probability and its Applications 

36, 682-697.

[93] Lepskii, O.V. and V.G. Spokoiny (1995). Local adaptivity to inhomogeneous 

smoothness. 1. Resolution Level. Preprint.

[94] Linton, O.B. (1996). Second order approximation in a linear regression with het- 

eroskedasticity of unknown form. Econometric Reviews 15, 1-32.

[95] Lobato, I. and P.M. Robinson (1994). Averaged periodogram estimation of long 

memory. Journal o f Econometrics, forthcoming.

[96] Lomnicki, Z.A. and S.K. Zaremba (1957). On estimating the spectral density of a 

stochastic process. Journal of the Royal Statistical Society, Series B , 19, 13-37.

[97] Magee, L. (1989). An Edgeworth test size correction for the linear model with 

AR(1) errors. Econometrica 57, 661-674.

[98] Newey, W.K. and K.D. West (1987). A simple positive semi-definite, heteroskedas- 

ticity and autocorrelation consistent covariance matrix. Econometrica 55, 703-708.

[99] Newey, W.K. and K.D. West (1994). Automatic lag selection in covariance matrix 

estimation. Review o f Economic Studies 61, 631-653.

[100] Parzen, E. (1962). Spectral analysis of asymptotically stationary time series. Bul­

letin of the International Statistical Institute 39, 87-103.

[101] Parzen, E. (1969). Multiple time series modelling. In: P.R. Krishnaiah, ed., Multi­

variate Analysis - II , 383-509. Academic Press, New York.

[102] Parzen, E. (1986). Quantile spectral analysis and long memory time series. In Es­

says in time series and allied processes: papers in honour o f E.J. Hannan, J. Gani 

and M.B. Priestley, Eds. Allied Probability Trust, Sheffield.

[103] Petrov, V.V. (1975). Sums of Independent Random Variables. Springer-Verlag, 

Berlin.

227



[104] Pfanzagl, J. (1973). Asymptotic expansions related to minimum contrast estima­

tors. Annals o f Statistics 1, 993-1026.

[105] Phillips, P.C.B. (1977a). Approximations to  some finite sample distributions asso­

ciated with a first order stochastic difference equation. Econometrica 45, 463-485; 

erratum, 50, 274.

[106] Phillips, P.C.B. (1977b). A general theorem in the theory of asymptotic expansions 

as approximations to the finite sample distributions of econometric estimators. 

Econometrica 45, 1517-1534.

[107] Phillips, P.C.B. (1980). Finite sample theory and the distributions of alternative 

estimators of the marginal propensity to consume. Review o f Economic Studies 47, 

183-224.

[108] Politis, D.N. and J.P. Romano (1992). A general resampling scheme for triangular 

arrays of a-mixing random variables with application to the problem of spectral 

density estimation. Annals o f Statistics 20, 1985-2007.

[109] Politis, D.N. and J.P. Romano (1995). A general theory for large sample confi­

dence regions based on subsamples under minimal assumptions. Annals of Statis­

tics, forthcoming.

[110] Press, H. and J.W . Tukey (1956). Power spectral methods of analysis and their 

applications to  problems in airplane dynamics Bell Systems Monograph 2606.

[111] Priestley, M.B. (1981). Spectral Analysis and Time Series. Academic Press, London.

[112] Qumsiyeh, M.B. (1990). Edgeworth expansion in regression models. Journal of 

Multivariate Analysis 35, 86-101.

[113] Reid, N. (1988). Saddlepoint methods and statistical inference (with discussion). 

Statistical Science 3, 213-238.

[114] Reid, N. (1991). Approximations and asymptotics. In Statistical Theory and Mod­

elling, eds. D.V. Hinkley, N. Reid and E.J. Snell. Chapman and Hall, London.

228



[115] Reisen, V.A. (1994). Estimation of the fractional difference parameter in the 

ARIMA(p.d.q) model using the smoothed periodogram. Journal o f Time Series 

Analysis 15, 335-350.

[116] Robinson, P.M. (1972). Non-linear regression for multiple time-series. Journal of 

Applied Probability 9, 758-768.

[117] Robinson, P.M. (1976). The estimation of linear differential equations with constant 

coefficients. Econometrica 44, 751-764.

[118] Robinson, P.M. (1983). Review of various approaches to power spectrum estima­

tion. In Handbook o f Statistics, Volume 3, D.R. Brillinger and P.R. Krishnaiah eds., 

pp. 343-368. Elsevier Science Publishers, New York.

[119] Robinson, P.M. (1991). Automatic frequency domain inference on semiparametric 

and nonparametric models. Econometrica 59, 1329-1363.

[120] Robinson, P.M. (1994a). Time series with strong dependence. In Advances in 

Econometrics. Sixth World Congress, Vol. /, C.A. Sims ed., pp. 47-95. Cambridge 

University Press, Cambridge.

[121] Robinson, P.M. (1994b). Semiparametric analysis of long-memory time series. A n­

nals of Statistics 22, 515-539.

[122] Robinson, P.M. (1995a). The normal approximation for semiparametric averaged 

derivatives. Econometrica 63, 667-680.

[123] Robinson, P.M. (1995b). Log-periodogram regression of time series with long range 

dependence. Annals o f Statistics 23, 1048-1072.

[124] Robinson, P.M. (1995c). Gaussian semiparametric estimation of long range depen­

dence. Annals o f Statistics 23, 1630-1661.

[125] Robinson, P.M. and C. Velasco (1996). Autocorrelation robust inference. Forth­

coming in Handbook of Statistics.

[126] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. 

Proceedings National Academy o f Sciences USA 42, 4-47.

229



[127] Rothenberg, T. (1984a). Approximating the distributions of econometric estimators 

and test statistics. Ch. 14 in Handbook o f Econometrics, Vol. 2, ed. by Z. Griliches 

and M. Intriligator. North Holland, New York.

[128] Rothenberg, T. (1984b). Approximate normality of generalized least squares esti­

mates. Econometrica 52, 811-825.

[129] Rudzkis, R. (1985). On the distribution of the maximum deviation of the Gaussian 

stationary time series spectral density estimate. Lithuanian Mathematical Journal 

25, 118-130.

[130] von Sachs, R. (1994a). Estimating non-linear functions of the spectral density, using 

a data-taper. Annals o f the Institute o f Statistical Mathematics 46, 453-474.

[131] von Sachs, R. (1994b). Peak-insensitive nonparametric spectrum estimation. Jour­

nal o f Time Series Analysis 15 , 429-452.

[132] Samarov, A.M. (1987). Robust spectral regression. Annals o f Statistics 15, 99-111.

[133] Samarov, A. and M.S. Taqqu (1988). On the efficiency of the sample mean in long 

memory noise. Journal o f Time Series Analysis 9, 191-200.

[134] Sargan, J.D. (1976). Econometric estimators and the Edgeworth approximation. 

Econometrica 4, 421-448; erratum  45, 272.

[135] Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Annals of 

Statistics 9, 1187-1195.

[136] Song, W .T. and B.W. Schmeiser (1992). Variance of the sample mean: properties 

and graphs of quadratic-form estimators. Operations Research 41, 501-517.

[137] Soulier, P. (1993). Pointwise estimation of the spectral density of a strongly depen­

dent stationary Gaussian field. Preprint, University of Paris, Orsay Cedex.

[138] Taniguchi, M. (1979). On estimation of parameters of Gaussian stationary pro­

cesses. Journal o f Applied Probability 16, 575-591.

[139] Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators of 

Gaussian ARMA Processes. Annals of Statistics 11, 157-169.

230



[140] Taniguchi, M. (1984). Validity of Edgeworth expansions for statistics of time series. 

Journal of Time Series Analysis 5, 37-51.

[141] Taniguchi, M. (1986). Third order asymptotic properties of maximum likelihood 

estimator for Gaussian ARMA Processes. Journal of Multivariate Analysis 18, 1- 

31.

[142] Taniguchi, M. (1987). Validity of Edgeworth expansions of minimum contrast esti­

mators for Gaussian ARMA processes. Journal of Multivariate Analysis 21, 1-28.

[143] Taniguchi, M. (1991). Higher Order Asymptotic Theory for Time Series Analysis. 

Lecture Notes in Statistics, 68. Springer-Verlag, Berlin.

[144] Toyooka, Y. (1986). Second-order risk structure of GLSE and MLE in a regression 

with a linear process. Annals of Statistics 14, 1214-1225.

[145] Tukey, J.W. (1967). An introduction to the calculations of numerical spectrum 

analysis. In B. Harris, ed., Advanced Seminar on Spectral Analysis of Time Series, 

25-46. Wiley, New York.

[146] Wallace, D.L. (1958). Asymptotic approximations to distributions. Annals of Math­

ematical Statistics 29, 635-654.

[147] White, H. and I. Domowitz (1984). Nonlinear regression with dependent observa­

tions. Econometrica 52, 143-161.

[148] Zhurbenko, I.G. (1984). On the efficiency of spectral density estimates of a station­

ary process. II. Theory of Probability and its Applications 29, 409-419.

[149] Zygmund, A. (1977). Trigonometric Series. Cambridge University Press, Cam­

bridge.

231

( f O N O J N .


