

The Discursive Constitution
of Software Development

Francis Cornut
Department of Management

London School of Economics and Political Science

Thesis submitted for the degree of Doctor in Philosophy

February 2009

 1

Abstract

The successful development of software continues to be of central interest, both as an

academic topic and in professional practice. Consequently, several software

development approaches and methodologies have been developed and promoted over

the past decades. However, despite the attention given to the subject and the

methodical support available, software development and how it should be practiced

continue to be controversial.

This thesis examines how beliefs about software development come to be socially

established as legitimate, and how they come to constitute software development

practices in an organization. It is argued that the emergence of a dominant way of

conceiving of and practicing software development is the outcome of power relations

that permeate the discursive practices of organizational actors. The theoretical

framework of this study is guided by Pierre Bourdieu’s theory of symbolic violence

and organizational discourse theory.

As a research method, ethnographic research techniques are utilized as part of a case

study to gain deep insights into the standardization of software development

practices. The research site is the IT division of a large financial services

organization and is composed of ten units distributed across eight countries. The

tumultuous development of a knowledge management programme intended to

institutionalize a standard software development process across the organization’s

units provides the case for this research.

This thesis answers the call for studies providing detailed accounts of the socio-

political process by which technically oriented practices are transferred and

standardized within organizations. It is submitted that a discourse theoretical

approach informed by Bourdieu’s thinking enables us to conceptualize this process in

a more meaningful, and theoretically rigorous, manner. In providing this theoretical

approach, the thesis seeks to contribute to current research on technology and

innovation management, and to offer guidance on some issues concerning the

management of the software development process.

 2

Acknowledgements

Throughout the period of this PhD, my supervisor, Professor Chrisanthi Avgerou,

has generously given of her time and wisdom. In supporting me on this intellectual

journey, Chrisanthi has helped me become more the person I want to be. I simply

could not wish for a better supervisor and mentor. First and foremost, my thanks go

to her.

I am also indebted to Dr. Shirin Madon who, while serving as PhD Programme

Director, lent me an attentive ear and helped me overcome the obstacles I

encountered. Shirin has had a positive impact on my life – probably a lot more than

she might imagine. I can never hope to repay her kindness.

Information Systems and Innovation Group at the London School of Economics is a

vibrant intellectual environment, and I am indebted to its members who have

contributed to my development on a day-to-day basis. In particular, I would like to

thank Dr. Edgar Whitley who taught me many of the things that a researcher must

know.

The LSE Studentship awarded by Information Systems and Innovation Group

provided substantial resources for this study. I am grateful for its generous support.

Finally, on a different note, I wish to thank members of the case study organization

with whom I worked for nearly a year. Special thanks to Alex, Corinne, Francis, and

Richard.

 3

Contents

1 Introduction ... 5
1.1 The standardization of software development ... 8
1.2 Contributions of the research ...11
1.3 Structure of the thesis ..13

2 Literature Review..15
2.1 Past debates and established ideas ...15
2.2 The formation of beliefs and practices ...29

3 Theoretical Framework ...38
3.1 Organizational discourse theory...39
3.2 Critical discourse theory ..43
3.3 Symbolic power ..52
3.4 Critical synthesis ...58

4 Research Methodology..67
4.1 Philosophical perspectives...67
4.2 Some difficulties with subjectivism ...70
4.3 Interpretivism as a preferred research approach73
4.4 Research strategy...74
4.5 Data collection method..77
4.6 Data interpretation...80

5 Case Description ...87
5.2 The standardization of software development ..94
5.3 Software process improvement ..110

6 Empirical Findings..118
6.1 Participant observations...118
6.2 Organizational texts...126
6.3 Connections and contradictions ...140

7 Analysis ..147
7.1 Field of struggles...147
7.2 Capital...151
7.3 Field of forces ...159
7.4 Symbolic power and software development...173

8 Conclusion..176
8.1 Overview of the dissertation ..176
8.2 Contribution of the research...179
8.3 Limitations ..192
8.4 Future research: Beyond software..196

Appendix 1: IBTech’s Global Organization Chart...200
Appendix 2: Capability Maturity Models ..201
Appendix 3: Agile Software Development ..204
9 References ..206

 4

List of Tables

Table 1: Theoretical concepts used by Hirschheim et al. (1996)32

Table 2: Key theoretical constructs ...62

Table 3: Two main paradigms in IS research...70

Table 4: Pre-acquisition assets of America’s biggest banks88

Table 5: Number of permanent employees at IBTech per locations89

Table 6: The ‘learning organization’ program and its mechanisms92

Table 7: The CMM for software..95

Table 8: Seven organizational discourses ..127

Table 9: Strength of the connection between discourses ..141

Table 10: CMM for software – Maturity levels and key process areas...................202

List of Figures

Figure 1: The analysis of texts and discourses ...82

Figure 2: The learning organization governance structure93

Figure 3: Connections among discourses...141

 5

1 Introduction

Four decades ago, it became recognized that developing good software was difficult.

This emerging reality was in evidence in the high proportion of projects completed

late and over budget, and in the density of errors in systems. Too often, systems did

not function as intended and had to be substantially redesigned. The causes of what

became known as the “software crisis” were multiple and cumulative, but essentially

stemmed from general inexperience in developing large and complex software.

The software crisis affected both the corporate world and the military, but it is from

the latter quarter that a response was first heard. In 1968, the NATO Science

Committee convened a group of computer scientists and captains of industry to plot a

course out of the software crisis. The general consensus that emerged from the

NATO conference was that the answer to the software crisis lay in changing software

construction from an ad hoc skill to an engineering discipline. In practical terms, this

entailed formalizing software development.

There are two fundamental ways in which an organization can go about formalizing

the development process. First, an organization can acquire a methodology and adapt

it for its own particular needs. A methodology generally consists of a set of

guidelines, techniques and tools based on a particular philosophy of software

development (Avison and Fitzgerald, 2003; Wynekoop and Russo, 1997). A

methodology makes explicit the tasks to be completed and restricts the number of

arbitrary ways in which they can be completed. Secondly, an organization can

implement a software process improvement (SPI) scheme to manage and control its

software development process. SPI involves assessing the quality of the process and

finding ways of systematically improving it (Paulk et al., 1993). Today, it is the

capability maturity model (CMM) that crystallizes the basic concepts of SPI; as a

result, CMM is widely regarded as the reference model in the field.

Methodologies and SPI schemes are associated with the engineering approach to

software development because they encapsulate the scientific principles known to

established engineering disciplines. While there has been a marked tendency to

 6

attempt to resolve the difficulties associated with developing software by relying on

formal practices based on scientific engineering principles, there has always been a

feeling of uneasiness with such practices. For as long as software development has

been practised, it has been recognized that this activity requires a great deal of

intuition and creativity. There is a sentiment that formal practices impose unwanted

restrictions on the software development process, and that formal practices may take

away the human aspect that is required in software development.

It is perhaps the apparent irrationality of software professionals and their practices

that has, more than anything else, provided an impetus for the development and

diffusion of formal practices. For outsiders to the field- particularly observers

adopting the instrumental rationality of engineering- software professionals often

appear to engage in activities that have little value. Instrumental thinking suggests

that when an activity is pursued rationally – systematically, with a focus on the

desired results – difficulties will be minimal. According to this line of reasoning, the

problem of completing projects on time and within budget is principally attributable

to the irrationality of the practices on which individuals are reliant (Baskerville et al.,

1992; Introna, 1996).

Critics have argued that software development practices are often the expression of a

“hidden rationality,” reflecting a need to acquire a “complex and disparate view” of

the development process (Stolterman, 1991). It is suggested that many situational and

contextual factors may influence a developer’s decision to pay attention to one thing,

rather than another, at a given point in the development process. This decision may

not always appear rational in a strictly scientific sense; nonetheless, many software

professionals believe it to be justified. For example, Naur famously argued that

“software development in all its phases, and irrespective of the techniques employed

in its pursuit, must and will always depend on intuition.” (Naur, 1985). If it is to be

believed that software development normally necessitates intuition and tacit

knowledge, there is a strong argument for promoting the value of the practical and

situated rationality of humans and discouraging the kind of universal rationality that

methodologies and standardized SPI approaches promote.

 7

In a similar vein, it is a frequently repeated statement that the universal laws on

which traditional engineering disciplines are based do not necessarily apply to

software development. Several commentators have pointed out that unlike the

construction of a bridge or an airplane, during which projects, the laws of physics

remain the same, the construction of software cannot be pursed as a strictly-

sequenced activity—and, certainly, not as an automated one. In practice, many

details only become known to software professionals as they progress in the

implementation. Even if all the relevant facts are available to them at the outset of a

project, human beings appear unable to comprehend fully the plethora of details that

must be taken into account to design and build software (Parnas and Clements, 1986;

Simon, 1957). This fact has led some commentators to conclude that software

development has little to do with engineering, and that imposing the formalism of

traditional engineering disciplines on software professionals will not improve the

efficiency of the process or the quality of the applications.

Today, there may or may not be a software crisis, but there is definitely what might

be called an “identity crisis” (Keil-Slawik, 1996). This condition is evidenced by the

fact that no consensus as to what software development is, and how it should be

practiced, has been reached after more than four decades, since the software crisis

was first identified. To be sure, considerable advances have been made in the design

and construction of software, and in the management of projects. Software projects

are overall better managed than they used to be and programmers, more productive

than ever (Krishnan et al., 2000; Sauer and Cuthbertson, 2003). However, the fact

remains that software professionals are, even today, persistently engaged in an

ideological struggle to justify their beliefs and their use of particular practices. The

phrases that commentators use to describe this struggle, such as “emotionally

complicated topics” and “methods wars” (Boehm and Turner, 2004), appear very apt.

It is important to recognize that the application of methodologies and SPI schemes in

practice and in attitude is never an all or nothing proposition. Past research suggests

that software engineering standards regarding practices tend to be adapted and used

on a piecemeal basis, rather than being consumed in entirety or completely rejected

(Russo and Stolterman, 2000a). In this sense, software professionals appear to form

an appropriate software development approach out of the intellectual and material

 8

resources (i.e. ideas and artefacts) available to them. Moreover, it would seem that

such a process is informed by what the developer conceives software development to

be (Russo and Stolterman, 2000b). This research endeavours to unpack how a

collective agreement about the nature of software development may be negotiated,

and what it should involve in terms of practices.

1.1 The standardization of software development

This thesis reports on an in-depth, qualitative case study documenting the tumultuous

development of a knowledge management program intended to institute a standard

software development process within an organization. The study organization is the

IT division of a large investment bank and is composed of ten units, or software

houses, geographically distributed in ten locations. The knowledge management

program was primarily motivated by the perceived need to improve the quality of the

software products and the efficiency of development process.

For the purpose of synergy and efficiency, organizations often engage in cross-unit

transfers of internal best practices. Internal best practices are those work practices

that are believed to be more effective at delivering particular outcomes than any

other internal practices. In the past decade, the transfer of internal best practices has

been high on the priority list of most IT organizations, and has been seen as critical

to a firm’s ability to build a competitive advantage (Dyer and Singh, 1998;

Szulanski, 1996). Consequently, a large number of IT organizations have undertaken

programs with the objective of becoming able to systematically assess their practices

and to ensure that the practices that are proven superior are institutionalized within

the unit in which they are found or across the organization.

Prior to the commencement of the study, the ten software houses had established

their own software process based on their respective best practices. The knowledge

management program initiated aimed at constructing a standard organizational

software process from the software houses’ best practices. The program entertained a

vision of an organization in which software development would be done in a

standardized way across geographical boundaries, and in which practices found

superior in one unit would be seamlessly transferred across the whole organization.

 9

This vision had earned the knowledge management program the name ‘learning

organization’ program.

The learning organization program resonated with several ideas that had pervaded

the management discourse for the past decades. The most influential of such ideas

included the application of management approaches aimed at creating process-

oriented organizations and fostering continuous and effective learning (Hammer and

Champy, 1993; Senge, 1990). Like countless other corporations, the study

organization had found in those popular ideas an approach to determine how to best

construct its work processes and to improve the quality of its output. In this sense,

the learning organization program seemed, at first sight, rather innocuous; it

appeared to be just another attempt to do more with less. However, as this thesis will

gradually demonstrate, the program had far-reaching consequences for the

organization.

Commentators have noted that the sort of program initiated by the study organization

entails an intervention in the organizational culture and in the practices of software

professionals. For Ngwenyama & Nielsen (2003), for example, it “is an attempt to

change how software professionals think and act in their everyday organizational

activity.” In this study, the learning organization program is understood as: an

attempt to change how a majority of the software professionals think about and

practice software development.

Commentators have observed that the implementation of programs intended to

improve the development process and the quality of software applications often turns

out to be a long and complex process because organizational actors find themselves

confronted with dilemmas based on contrary demands and value conflicts (Iversen

and Mathiassen, 2003). In the study organization, these dilemmas were in evidence

in the difficulties associated with reconciling the needs for predictability and

efficiency with the need for adaptability and creativity. Consequently, devising a

standard software process involved negotiating the degree of control and adaptability

that software development should allow. Finding this balance proved to be arduous

because of the dissimilarity in ways of conceiving and instantiating software

developed in one software house, as opposed to another.

 10

For the software houses involved in this study, adhering to a standard organizational

process entailed abandoning valuable knowledge that comprises a tacit component.

Face-to-face interactions and work within small groups, within a given software

house, had produced highly idiosyncratic practices. Within the software houses, the

development process was built from knowledge embedded partly in individual skills

and partly in collaborative social arrangements. This study suggests that the

constitution of standard organizational software process is a socio-political process

involving negotiations among organizational actors to determine how software

development should be thought of and practiced.

The organization had set itself the objective of institutionalizing a standard software

process a year before the research began. During that year and the ten-month period

during which fieldwork was conducted by the researcher, the organization

experimented with different ways to come up with a standard software process. It

initially attempted to develop the standard process from its own best practices, and

failing this, went on to make use of a well-known methodology said to embed

industry best practices. Both attempts turned out to be plagued by major difficulties.

Over a period of almost two years, the organization was exposed to many ideas and

practices. Some appeared highly appealing and exciting, while others disappointed

and caused anxiety. This study unpacks how different visions of software

development were constituted over almost two years, and how the values of the

practices these visions presuppose were negotiated.

The research approach is designed to achieve an in-depth understanding of how

individuals belonging to the same organization go about negotiating the legitimacy of

different ways of conceiving of and instantiating software development. This study

pays particular attention to the ideas that pervade the context and that influence

individuals. A key idea put forward in this study is that software development is the

outcome of the communicative practices of software professionals. Software

development is here seen as being constituted through the practice of writing and

speaking; that is to say, through the production, diffusion, and interpretation of

written and spoken texts (Oswick et al., 2000). Thus far, scholars have tended to see

software development as being shaped by systems development methodologies and

 11

methods (Avison and Taylor, 1997; Boehm and Turner, 2004; Russo and Stolterman,

2000a), or by some philosophical and paradigmatic underpinnings found in the

research literature (Constantine, 1993; Hirschheim et al., 1996). The focus of this

study is in contrast to the practical situated context in which development takes

place. It is submitted that approaching software development as being locally

discursively constituted enables us to conceptualize in a more meaningful, and

theoretically rigorous, manner the process by which beliefs about software

development and practices are established as legitimate. In providing this theoretical

approach, the thesis seeks to contribute to current research on software development.

An important proportion of the total budget of the learning organization program was

allocated to fund SPI-related activities. This study focuses on SPI practices for two

reasons. First, it is through SPI that the legitimacy of development practices was

negotiated in the study organization. SPI provided the mechanism for negotiating the

value of ideas across many locations and served as a means to constitute a standard

software process. Moreover, the SPI practices in place, themselves, reveal a lot about

what software development is in a particular organizational context. As will be

explained in the details of this thesis, an organization that values efficiency and

predictability is more likely to invest resources in the management of software

development process than an organization that does not.

In light of the debate over the nature of software development, the overall research

question addressed in this study is: How do beliefs about software development

and software development practices come to be socially established as legitimate

in a software development organization? This general research question is further

defined in the following way: How are the contradictory needs for creativity and

agility, on the one hand, and efficiency and productivity, on the other, negotiated?

What bearings does the institutional context have on the manner in which software

development is principally thought of and practiced in a software organization?

1.2 Contributions of the research

Researchers have identified a bias towards normative studies and surveys to account

for what is happening in software organizations. As such, studies generally seek to

 12

provide guidance for the selection and implementation of methodologies, tools, and

approaches without paying much attention to organizational and social elements

(Hirschheim and Klein, 2000; Wynekoop and Russo, 1997). As Russo & Stolterman

(2000a) note, “Only a small percentage of information systems methods has

employed in-depth studies of the actual process of system design and development”.

Consequently, there is a great need for “in-depth studies of practice” that “create rich

descriptions of practice, and come up with interpretations and analysis of this

practice.”

This study answers the call of IS researchers for studies providing detailed accounts

of the practices of software professionals. To obtain such an account, an in-depth

immersion in the field was necessary. The focus is placed primarily on the practices

of text production, diffusion, and interpretation of software professionals. The

practice perspective chosen for this study has not been widely used in the IS field,

and this study will yield some useful methodological findings. The adoption of a

practice perspective informed by discourse theory will help to capture the influence

of the institutional context within which individuals are situated, while

acknowledging the purposeful, result-oriented nature of their practices.

The research conceptualizes software development by devising a theoretical

framework from theories which are known within the social sciences, including

organization studies, but which are, so far, unfamiliar to IS research. Pierre

Bourdieu’s theory of symbolic power and Norman Fairclough’s critical discourse

analysis are joined together to probe how software development is constituted, and

why it is primarily constituted in a certain way, rather than in others, in a particular

development context. Previous research has recognized that software development

can be conceived of and instantiated in different ways (e.g. Constantine, 1993;

Hirschheim et al., 1996; Iivary et al., 1998), but this constitutive process has

remained unexplained (for a notable exception see Madsen et al., 2006). Moreover,

because of the predominant normative outlook they have adopted, IS researchers

have been generally preoccupied with finding the conditions that render certain

forms of software development successful, without paying much attention to the

organizational and social factors that cause their emergence and acceptance at

grassroots level (e.g. Boehm and Turner, 2004). The theoretical framework was

 13

devised with the aim of filling in this important gap in our understanding of software

development.

1.3 Structure of the thesis

In this introductory chapter, issues surrounding the practice of software development

have been introduced. The constitution of software development has been identified

as the topic of the thesis. The role of tools, methods, and methodologies has been

drawn to the foreground. Following this, a highlight of the contributions has been

provided. The remaining of the thesis is organized as follows:

Chapter 2 describes the different ways in which software development has been

conceived since the software crisis was first identified. An historical account

suggests that tools, methods, and methodologies have played a centrally-important

role in defining, at particular points in time, how to rationally practice and conceive

software development. It is also in this chapter that the research questions are

developed.

Chapter 3 establishes the research framework. The theoretical framework takes as

its point of departure organizational discourse theory. Critical discourse analysis and

the theory of symbolic power are combined to form a theoretical framework

applicable to developing an enhanced understanding of the organizational

phenomenon under study. The roles of institutions and the theme of power are

central to the framework. The theoretical framework is sensitive to the effects of

unequal power relations among organizational actors, and to the influence of

institutional forces.

Chapter 4 describes the important contribution that methodological choices have

made to this research with regard to the constitution of software development. It is

argued that the two main paradigms in social science research, positivism and

interpretivism, have, in the present case, substantial limitations which can be

bypassed by relying on a practice perspective. The case study is identified as an

appropriate research strategy. The application of Paul Ricoeur’s hermeneutics of

suspicion as an epistemology of data interpretation is justified.

 14

Chapter 5 presents the research setting and the knowledge management program

intended to institute a standard software development within the organization.

IBTech is an IT organization responsible for developing and maintaining the

software products of an investment bank. A key feature of the organization is that its

members are geographically-dispersed. The knowledge management program, whose

evolution was followed over a 10-month period by the researcher, is principally

based on the precepts of the CMM.

Chapter 6 presents the data collected and analyzed. Analysis of the organizational

texts collected has revealed that seven organizational discourses form two conflicting

ways to thinking of and practicing software development. Significantly, those two

visions possess different degrees of legitimacy within the organization.

Chapter 7 theorizes the findings by critically engaging with Fairclough’s critical

discourse analysis and Bourdieu’s theory of symbolic power. The analysis reveals

how the particularities of the socio-institutional context induce organizational actors

to practice and discursively represent software development the way they do. The

correspondence between the micro and the macro is illuminated by paying particular

attention to the relationship between the discursive and non-discursive practices of

organizational actors, on the one hand, and the influence of the socio-institutional

context, on the other.

Chapter 8 provides an overview of the thesis as a whole. The core contributions that

this research makes to the IS literature are presented and followed by a discussion of

the limitations of the research. Finally, some key areas for future research are

identified.

 15

2 Literature Review

Software development has been thought of and practiced in different ways over the

past four decades. This chapter begins by chronologically tracing the evolution of

software development. This evolutionary sketch suggests that tools and methods

have played a significant role in defining how software development should be

practiced in different contexts. The chapter then examines how the changing nature

of software development can be accounted for. The research questions are also

developed in this chapter.

2.1 Past debates and established ideas

2.1.1 Software development as applied science

Until the 1960s, very few individuals were professional programmers. Programming

was essentially an ad hoc skill that technical individuals developed to resolve the

problems of their fields involving the use of computers (Cerruzi, 1998).

Consequently, there were no established principles or standards for writing code

methodically. This unsystematic approach caused no major problems as long as

programs remained simple.

As transistors replaced vacuum tubes in the early 1960s, computer performance

improved spectacularly. More complex software projects were initiated and the

problem of software started to dominate the problem of hardware. The lesson that

was being learned at that time, simultaneously in many projects, was that software

projects which were large, complicated, and involved unfamiliar aspects were

particularly vulnerable to large, unanticipated problems. In the same vein, it was also

becoming increasingly clear to software professionals that software programming did

not scale up linearly; big projects required proportionally more manpower than small

projects (Brooks, 1975).

The ‘software crisis’ was a term introduced in the late 1960s to describe the impact

of rapid increases in computer power and the complexity of the problems which

 16

could be tackled. The software crisis manifested itself in projects running over-

budget and over-time, software of low quality, and code difficult to maintain. Some

authors also identified programmer shortages as central to the crisis. The software

crisis affected both the military and the corporate world, but it was particularly

evident in America, where more than half of the global stock general-purpose

computers were (Campbell-Kelly, 2003: 90).

The NATO Science Committee sponsored the first conference on software

engineering in 1968, an event that was widely regarded as marking the origin of the

software engineering discipline (Friedman, 1989; Mahoney, 2004). The conference

set out to plot a course out of the software crisis. In defining software engineering as

“the application of systematic, disciplined, quantifiable approaches to the

development, operation, and maintenance of software” (NATO Science Committee,

1968), the committee made clear that the answer to the software crisis lay in

changing software programming from an ad hoc skill, to an engineering discipline. In

particular, it was recognized that mathematics would have to play an appropriate role

in software engineering, just as it did in well- established engineering fields. Whether

software development lent itself to the application of a scientific approach was not

questioned.

During the late 1960s and early 1970s, the conviction that the use of sound

programming technique, connected with mathematics and computational science,

could improve the quality of the software gradually solidified. Formal methods were

to provide the mathematically-based techniques for the construction of systems,

especially large scale systems (Banach, 2007). In effect, it was believed that formal

methods, such as structured programming, could offer a way out of the crisis.

Dijkstra coined the term “structured programming” in 1969, in a now-classic article

that emphasized the importance of error prevention, as opposed to error cure

(Dijkstra, 1969). Briefly summarized, structured programming is a programming

paradigm that limits the number of arbitrary ways in which a program can be written

(see also Jackson, 1975). This paradigm is most famous for removing or reducing

reliance on the ‘goto’ statement, a statement criticized for producing code that is

unreadable and, generally, not maintainable (Dijkstra, 1968; Knuth, 1974).

 17

Structured programming is based on a top-down approach. It recommends breaking

down a program into simple subroutines with a single point of entry and using local

variable within such subroutines. As a consequence, this programming paradigm

makes it easier for programmers to understand small pieces of code without having

to understand the whole program at once. Furthermore, it makes it easier to

implement and test small operations, and tie them together into the whole program

(Jackson, 1983). Dijkstra successfully made structured programming the educational

standard, but did not succeed in making it a strict requirement.

In sum, during the late 1960s and early 1970s, the conviction that programming

techniques could improve the quality of software prevailed. This conviction

resonated with the sentiment that the software crisis could be hit at its core by

establishing a strong mathematical foundation. The argument was put forward that

expressing program designs in simple algebraic forms made it easier to avoid serious

mistakes, and made the complexity of programs manageable. The sense of comfort

that structured programming and other such programming techniques had created did

not last long, however.

Boehm demonstrated in 1973 that the majority of errors in software were made

during the design phase-- that is, before the construction of the software begins

(Boehm, 1973). Moreover, being a mathematician, Boehm could make his point

using the legitimate language of the time, mathematics. The argument laid out

suggested that a solution to the software crisis was not to be found in better

programming techniques. But Boehm did not stop there; three years later, he

delivered a strong criticism of the mathematical approach to software engineering:

Those scientific principles available to support software engineering
address problems in an area we shall call Area 1: detailed design and
coding of systems software by experts in a relatively economics-
independent context. Unfortunately, the most pressing software
development problems are in an area we shall call Area 2: requirements
analysis design, test, and maintenance of applications software by
technicians in an economics-driven context. (Boehm, 1976: 67)

 18

In defining software engineering as “the application of systematic, disciplined,

quantifiable approaches to the development, operation, and maintenance of

software,” the NATO Scientific Committee had omitted the term, ‘design.’ Being

predominantly scientists and practitioners of a mathematical bent (physicists,

engineers, etc.), members of the committee did not see design as being relevant, as it

was felt to be outside the domain of the ‘measurable.’ However, by defining

software engineering as “the practical application of scientific knowledge in the

design and construction of computer programs and the associated documentation

required to develop, operate, and maintain them,” Boehm (1976) sought to give

design central importance.

More significantly, the work of Boehm initiates a shift in the way software

development should be conceived. The US government, in general, and the

Department of Defense, in particular, were important consumers of programming

services, as well as sponsors of several of the large software projects. Many of these

projects were conducted under the pressure of the competition between the USA and

the USSR during the Cold War, and, more specifically, during the space race. The

fact that NATO sponsored the first conference on software engineering is evidence

of the strong presence of the military in the software world. However, governments

are generally less subject to economic constraints than businesses, especially in a

militarily-tense climate where national security is believed to be under threat. Thus,

Boehm sought to develop a vision of software development that is more in tune with

the logic of the market than with the logic of the military.

2.1.2 The methodology movement

The work of Barry Boehm contributed to turning attention to analysis and design

practices. The creation and diffusion of structured analysis and design methodologies

quickly followed, giving rise to the methodology movement. Methodology set down

the necessary steps to be taken to develop software applications. These steps

typically involve ascribing roles to individuals, formalizing the process of software

development into a discreet number of stages, and specifying a full set of necessary

and sufficient activities within each stage. Although structured analysis and design

methodologies differ at the level of their techniques, they all purport to provide a

 19

framework for mapping the behavior of the system and the ways in which users will

interact with it.

Interestingly, different countries have tended to develop and use their own types and

styles of methodologies (Avgerou and Cornford, 1993). Moreover, the diffusion of

methodologies has occurred through different channels across countries. In the

United Kingdom, Structured Systems Analysis and Design Methodology (SSADM)

was produced for the Central Computer and Telecommunications Agency (CCTA), a

governmental office concerned with the use of technology in government. SSADM

quickly achieved significant penetration in commercial IT because the government

frequently imposed it on contractors. In America, on the other hand, the means of

diffusion of structured analysis and design methodologies occurred principally

through books and training materials intended for practitioners. De Marco, Yourdon,

and Constantine were the figureheads of the new structured analysis and design

movement. In 1978, De Marco published his seminal work, “Structured Analysis and

System Specification” (De Marco, 1978), which signalled the beginning of the

movement’s bandwagon. A year later, Yourdon and Constantine paired up to

produce “System Design” (Yourdon and Constantine, 1979). To accelerate the

propagation of his ideas and those of his like-minded colleagues, Yourdon

established his own publishing house, Yourdon Press.

In the early 1990s, the diffusion of methodologies led the development of computer-

aided software engineering (CASE) tools. CASE tools transferred the precepts and

practices of methodologies into software intended for software professionals. Such

tools arose out of developments such as Jackson Structured Programming and the

software modelling techniques of SSADM and structured programming. CASE tools

placed particular emphasis on analysis and design, but they frequently comprised

modules and tools that supported code reuse, code translation, project management,

and testing and quality control.

The methodologies movement had a decisive impact on software development in

many respects. First, it established analysis and design as necessary steps in the

development process. As a result, software development effectively became an

activity concerned with the establishment of a mix of social and technical

 20

considerations. This prompted an interest in the so-called ‘hybrid manager.’ Earl &

Skyrme (1992) argued that if a such a role could be created, filled by an individual

with both a solid understanding of software development and a knowledge of the

particular business, greater success would be achieved in development. Although the

welcoming of soft elements seemed, at first sight, to take software development

along a totally different path than that originally cleared by the scientists of NATO, it

is must be recognized that the methodology movement also contributed to bringing

software development close to industrial engineering.

The development of methodologies helped to popularize the application of scientific

management to software development. Within academia and industry, it is still today

a frequently-repeated statement that methodologies make possible the dissemination

of an understanding of software development and development practices (Avison and

Fitzgerald, 2006). Although methodologies often differ considerably (Avison and

Taylor, 1997), they are almost always an application of division of labour to software

development: they break software development into a discrete number of stages,

prescribe a full set of necessary and sufficient activities within each stage, define the

roles and responsibilities according to required technical competence, and seek to

impose a ‘one best way’ on (knowledge) workers.

It is with Taylorism and the factory system in mind that the ‘software factory’

approach was developed (Johnson, 1991; Swanson et al., 1991). This approach

suggested that software organizations could become more efficient and flexible by

relying extensively on the strategic reuse of codes, product specifications and

designs, documentation and manuals, test cases, and personal experience. The

adoption of the software factory approach required the deliberate (rather than

accidental) sharing of resources across different projects within an organization. The

approach aimed to make software organizations benefit from economies of scope,

“cost reductions or productivity gains that come from developing a series of products

within one firm (or facility) more efficiently than building each product from scratch

in a separate project” (Cusumano, 1991: 8).

Despite the fact that the term ‘software factory’ quickly became part the IT buzzword

lexicon, the application of mass production techniques to software development was,

 21

in fact, nothing new. Already in the 1960s, subroutine libraries that were reusable in

a broad array of engineering and scientific applications were built and used

(Cusumano, 1989; Mahoney, 2004). The idea that software should be built from

prefabricated components was first published in Douglas McIlroy’s address at the

first NATO conference on software engineering (McIlroy, 1968). However, the

software factory concept received attention in part because it resonated with another

approach that also received a great deal of attention in the early 1990s, object-

oriented system development (OOSD).

The object-oriented approach suggests that a computer program be viewed as a

collection of objects interacting with one another. This view stands in marked

contrast to that of the structured approaches introduced above, which conceptualize a

program as a collection of functions or procedures. For this reason, it is often

claimed that OOSD brought about a shift in paradigm.1

According to several practitioners, the effective reuse of component makes software

development practices more efficient than those previously used (Booch, 1994; Coad

and Yourdon, 1991; Jacobson et al., 1995; Johnson, 2002). Until recently, however,

researchers expressed serious concern about the value of this approach. Several

studies suggest that the adoption of object-oriented technology is often more a matter

of fashion than of reasoned development (Smith and McKenn, 1996). For example,

Briand et al. (1999), who studied the impact of object-oriented on systems

development practices, note that “[object-oriented] technology adoption is mostly the

result of marketing forces, not scientific evidence.”(Ibid.: 388)

In retrospect, the 1980s and 1990s witnessed the emergence and growth of a mixture

of instruments intended to stabilize software development. In particular, this period

was marked by the proliferation of methodologies and CASE tools designed to

provide knowledge about the required practices of software development. At a more

conceptual level, methodologies and CASE tools also provided adopting

1 The researcher does not see object-oriented as a programming paradigm, but rather as a design
paradigm. A system is designed by defining the objects that will exist in that system. The code that
actually does the work is irrelevant to the object, or the people using the object, due to encapsulation.
For this reason, the term “object-oriented approach” is in this text used instead of “object-oriented
programming”.

 22

organizations (perhaps unintentionally) with a vision of what software development

was and how it should be practiced (Andersen et al., 1990; Mathiassen, 1998). The

vision in force was the software factory. Although it is industrial engineering and

scientific management, rather than mathematics and computational science, that

provided the roadmap for the evolution of software development, one would presume

that sufficient progress would have been made to overcome the software crisis.

However, the 1994 figures of an America research firm, The Standish Group,

implied that the software crisis was still very much alive.

A result from the Standish Group’s CHAOS report that received a considerable

amount of attention was the reported 189% average cost overrun on so-called

challenged projects (ie, projects not on time, on cost, and with all the specified

functionality) (The Standish Group, 1994). The report has been criticized on many

grounds, and the question of whether it meets the standards of a good academic study

is still debated today (Jørgensen and Molokken-Ostvold, 2006). The popularity of the

report among practitioners, and the rate at which it was cited in the mass media and

by consulting firms, nonetheless says something important about the state of

software development: a wealth of ill-founded, yet compelling, claims appear to have

been formulated to maintain a climate of crisis. Consulting firms, technology vendors

and other such knowledge merchants may be the most to blame, as it was they that

had an interest in maintaining a sentiment of crisis in order to promote their ideas and

products as crisis solutions (Glass, 2006). In a similar vein, the fact that the software

crisis was still talked about, and that products and approaches were being developed

and presented as ‘crisis solutions’ in the 1990s, suggests that the discipline remained

anxious about the quality and appropriateness of its practices.

2.1.3 The quality turn and software process improvement

In the early 1980s, the concept of quality became widespread in the business world

and companies began to implement quality improvement methodologies such as Six

Sigma, Total Quality Management, and Zero Defects. While the principles behind

modern quality management originated decades earlier with the work of Walter

Deming, it is in the 1980s that quality management became explicitly articulated

 23

with the concept of (business) process popularized by Peters and Waterman in the

book, “In Search of Excellence” (Peters and Waterman, 1982).

The popularity of quality management reached the software industry and gave rise to

the Capability Maturity Model (CMM). The CMM is an application of quality

management and process improvement to software development. The original

concept of the framework was developed in the early 1980s by Watts Humphrey at

IBM. Humphrey’s unique insight was that software organizations had to remove

impediments to continuous improvement in a specific order if they wished to keep

improving their processes capability over time. Appendix 2 describes the

components of the framework.

The development of the CMM began formally in 1986 through a collaboration

between the Software Engineering Institute (SEI) of Carnegie-Mellon University and

the U.S. federal government. The goal was to produce a framework for the U.S.

federal government to assess the capabilities of its contractors in the area of software

development. The first version of the framework, released in 1991, gained rapid

acceptance in the defense industry because the Department of Defense used the

CMM process maturity level as an exclusion criterion for awarding many of its

largest software acquisition contracts.

The introduction of the CMM is a major milestone in the evolution of software

development. Most of the tools and methods mentioned previously seek to mitigate

the risk of project failure by prescribing analysis, design, and development practices.

The CMM instead draws attention to management of the software process. With the

CMM, therefore, the relevant question is not what tools or methods are best, but what

the most appropriate way of managing the software process is, in order to

systematically eliminate defects by improving the process.

2.1.4 The emergence of the consumer software industry

Before the personal computer, software products available on the open market were

expensive, typically costing between $5,000 and $250,000. Software packages were

developed by professionals and the intervention of salesmen was often required to

 24

sell them because of their perceived complexity. The availability of after-sales

support was a criterion considered important in the choice of a software product, and

was often offered by the software maker or by authorized distributors. A few

hundred sales were generally needed to make a corporate/business software product

successful (Campbell-Kelly, 2003: 208-209).

From the early 1980s, with the proliferation of personal computers in homes and

schools, a market for personal computer software developed. This had the effect of

making software products consumer items (Pugh et al., 1991). Consumer software

was considerably less expensive than corporate/business software and sold in much

greater volume: it was typically priced between $50 and $500, and several thousands

of units were generally sold. Unlike corporate/business software products, consumer

software products were more often than not developed by small groups of amateur

programmers, and, in some cases, by a lone programmer (Friedman, 1989). The

highly-successful database program dBase II, which was written by a moonlighting

programmer, is a prominent example.

The personal computer explosion and the emergence of a consumer software industry

had a noteworthy effect on the discipline of software development. As explained

above, the consumer software industry developed and operated quite independently

from the business and scientific software industry. It retained for some time its own

rules and logic. Within the consumer software industry, the software crisis was not a

tangible reality. As a consequence, programmers did not feel the need to appropriate

the development practices of established software producing organizations and

remained experimental. In a sense, it can be said that a new way of conceiving and

practicing software development spun off the personal computer explosion

(Campbell-Kelly, 2003: 227).

Analogies have often been made between the personal computer software industry

and the music or book publishing industries. Within the personal computer software

industry, software development was principally about releasing a product that

appealed to the customer; thus, software development practices had to be customer-

focused. In particular, it became good practice to continually improve products

incrementally, to release products periodically, and to make products evolve as part

 25

of a product family. Improving products incrementally helped to minimize the risks

of releasing products whose features were inconsistent with what customers

expected. In a similar vein, releasing products periodically enabled software

organizations to remain in constant touch with the market (Gates, 1995: 14-35).

Prototyping became highly topical because it allowed customers to use a software

product and give its designers feedback before the software product was released.

The importance of prototyping was emphasized in a number of best-selling books

and semi-academic publications (e.g., Cusumano, 1998; MacCormack, 2001). Often,

Microsoft success stories were used to illustrate the importance of prototyping (e.g.

Cusumano and Selby, 1997; MacCormack and Herman, 2000).

Producing families of software represented a radical break from developing

‘industrial strength’ software. Significantly, the production of families of software

appeared better suited to the industrialization of the software development process

than the sporadic production of large software. Indeed, producing families of

software made code reuse possible on a large scale. Reuse enabled improvement in

productivity and quality by incorporating components whose reliability had already

been established (Selby, 2005; Wasserman, 1996). OOSD, which happened to

promise more effective code reuse, emerged as particularly relevant in the context of

the personal computer revolution.

In the mid-1990s, the internet developed into a mainstream medium and began to

change the way people interacted (Besser, 1995). A sudden demand for the

development of informational and transactional web sites and web-based applications

followed, causing rapid growth in the internet sector and related fields. Many

entrepreneurially-minded software professionals understood that highly flexible

development methods were highly appropriate in the business context created by the

internet (Cusumano, 2004; Cusumano and Selby, 1997; MacCormack et al., 2001).

Meanwhile, scholars and consultants announced alternative software development

models intended to reduce development time and ensure that application met users’

expectations (Highsmith, 1997; MacCormack, 2001). One such model, the rapid-

prototyping model, supported the development of disposable prototypes intended to

establish customer preferences. Significantly, relying on prototyping and the

 26

incremental delivery of functionalities had the effect of reducing the need for

structured methodologies. In the internet context, responsiveness and flexibility

became the watchwords.

It is important to note, however, that the new software development practices that

gained acceptance with the emergence of the personal computer and the internet did

not invalidate the more conventional ones. For example, although developing

iteratively and making software evolve in the manner of consumer products became

recognized as appropriate practices to reduce risk and time to market, methodologies,

quality-centric models, and other such applications of Taylor’s principles remained

widely used. In fact, it seems that it is the development practices of the internet era

that lend themselves best to the factory model because they encourage the reuse of

components across the different software of a family. To be convinced, one just has

to think how game engines, which form the core software component of a computer

video game, tend to remain the same for a series of games, or how electronic

catalogues are reused across different transactional websites.

While the new software development practices of the personal computer and internet

era did not invalidate the more conventional ones, they presupposed different visions

of software development. A dissonance seems to have developed at a conceptual

level-- that is to say, at the level of how software development should be conceived

of. Based on the literature so far reviewed in this chapter, it is quite clear that

software development is principally about writing good quality programs on time and

on budget, but is it more akin to creative work or factory work? Is software

development more akin to a craft or a science? To make things even more complex:

can creative work take place in a regimented factory environment? Are craft and

science mutually exclusive? The feeling of discomfort in the discipline, vis-à-vis its

identity, certainly predates the personal computer and the internet, but it becomes

particularly evident when one follows the discipline’s evolution-- that is, when

changes in practices and beliefs are examined chronologically.

In recent years, confusion about the discipline’s identity grew with the expansion of

agile methodologies. Agile methodologies are often presented as the solution to the

ills that the methodology movement created. In particular, they seek to reduce the

 27

level of bureaucratic activities that the reliance on methodologies tends to entail,

encourage a focus on the activities that add value for the customer, and make the

release of software more predictable by relying on the adaptive capability of

programmers, rather than on rigorous planning. Although agile methodologies often

differ considerably in terms of development practices, they all purport to re-establish

software development as a creative and people-oriented activity. In 2001, famous

members of the software community crystallized the values and principles behind

this novel approach to software development by writing and signing the “Agile

Manifesto” (see Appendix 3).

Agile methodologies seek to take software development along a totally different

trajectory than that it has followed for the past 40 years. Since the first NATO

conference, the prevailing belief has been that imposing discipline and rigor upon

software development would make this activity more predictable and more efficient.

CASE tools, methodologies, and quality centric model have all attempted, in one

way or another, to do this. Agilists – proponents of agile development – argue that if

development projects often go wrong still today, in spite of the use of sophisticated

management and technological innovations, it is chiefly because software

professionals have attempted to make an activity characterized by change and

emergence predictable. Agilists maintain that software development can become

more predictable if risks are mitigated throughout projects by relying on approaches

that effectively empower the adaptive capabilities of humans. The key to this, agilists

claim, is iterative development.

2.1.5 Open source development

The term ‘open source’ refers to software whose source code is published and made

available to the public, enabling anyone to copy, modify and redistribute the source

code without paying royalties or fees. Open source software is typically created as a

collaborative effort whereby a community of users improves upon the code and

shares the changes. From an open source development perspective, the value of

software lies primarily in its usefulness to the developer or organization, rather than

in the amount of profit it brings to its owner (Peizer, 2006).

 28

The open source development model differs in many respects from the development

approaches that have come and gone since the first NATO conference on software

engineering: from an open source perspective, software development is neither a

formally organized activity, nor an economic activity intended to generate profit. For

this reason, some commentators see open source development as a radically new way

of conceiving of software development (Raymond, 2000). However, it can be argued

that open source development is nothing other than a return to an old approach, to a

time when software was developed by its users and exchanged among a community

of users. Indeed, from an open source perspective, as in the days when software

development was an ad hoc activity, software is valued according to its usefulness or

‘use value’ (Adler, 2006).

While the vision of software development that the open source development

approach entails may be old wine in new bottles, the practices it involves are

unquestionably novel. In his 1997 essay, “The Cathedral and the Bazaar,” Raymond

proposes a model for developing open-source software known as the ‘bazaar model.’

With the bazaar model, roles remain loosely-defined and development takes place in

a decentralized way. The internet is the medium that renders the decentralization of

the development activities and the collapse of the divide between developers and

users possible. In the same spirit, Robles (2004) argues that the general structure of

the software should be modular in order to allow for the parallel development of

different releases. In sum, the open source development methodology represents a

radical break from more traditional software development approaches, in which

people are ascribed roles (e.g., coders, testers, architects) and in which the system

design is done by a few architects in order to preserve the architectural integrity of a

system.

Advocates of open source development claim that it is superior in a number of ways

to the closed source method (DiBona et al., 2000). Raymond (1998) goes as far as to

suggest that the open source enables more potential for the development of higher

quality software than any other methodology and technique. Critics, however,

attribute the popularity of the open source model not so much to the resulting quality

of software products, but to the appeal of its anti-commercial rhetoric. The question

of whether the open source development methodology is better suited to a particular

 29

context or a particular type of application is still hotly contested, and has recently

spurred the development of think tanks and consultancy organizations (Peizer, 2006).

This chapter has, up to this point, mapped the evolution of software development as a

discipline by examining the rise and demise of particular ideas and practices. This

evolutionary sketch suggests that tools, methods, and methodologies have played a

crucial role in defining how software development should be practiced at different

points in time. Drawing on the academic literature, the remainder of this chapter will

examine how the changing nature of software development is accounted for.

2.2 The formation of beliefs and practices

Hirschheim, Klein and Lyytinen (1996) set themselves the task of delineating the IS

community’s understanding of information systems development (ISD). The general

argument that the authors put forward is that researchers have conceptualized ISD in

many different ways because they are relating and interpreting core research results

from many schools of thought that differ in terms of research domains and research

approaches. These schools of thought, the authors argue, form the intellectual

structures of ISD.

For anyone with a basic knowledge of the social sciences, such an argument has a

familiar ring to it. Burrell & Morgan (1979) have previously argued that social

theory can be conceived in terms of four paradigms, based upon different

assumptions with regard to the nature of social science and the nature of society.

Before them, Anthony (1965) established fundamental categories according to which

the field of decision making and management control was cultivated. Hirschheim et

al.’s argument, in spite of being conventional, is interesting because it directly

addresses the different ways in which ISD is conceived. It effectively makes us

realize that ISD can be conceived in different ways. Moreover, the argument pays

due justice to the crucial role that tools, methods, and methodologies play in shaping

ISD. Let us take a closer look at the concept they develop.

Although the authors start off the article by focusing on how IS researchers conceive

ISD in the academic literature, they quickly bring into their narrative how system

 30

developers conceive and practice ISD. Hirschheim et al. use the terms ‘object system

class’ and ‘development strategy’ to distinguish between, respectively, the

representation of ISD offered by scholars and the social practice of developing IS.

The latter term deserves closer attention.

By using the term ‘development strategy,’ the authors seek to draw attention to the

practical character of ISD work. A development strategy embeds a set of consistent

and often deep-seated social practices that developers can draw upon while

developing an IS:

[Development strategies] convey enduring and persistent development
practices which are gradually solidified from the development experience
and learning. Development strategies thereby “crystallize” existing
know-how of workable development practices. They are emergent in the
sense that they evolve while the programs are instantiated whereby
material ISD methods and tools get more sophisticated. (Hirschheim et
al., 1996: 27)

The choice of a development strategy, which may be intended or unintended, is

fundamentally justified by the desire to achieve some desired outcomes that are in

harmony with a set of development ‘principles.’ Principles, in Hirschheim et al.’s

terms, are the “broad normative guidelines and evaluative and behavioral

dispositions that underlie the application of specific tools and methods.”

Development strategies are not developed from scratch, but assembled from tools

and methods that provide the rules of actions, resources, and skills required to

develop an IS. Principles guide the selection of the concrete methods and tools, and

embody the norms “that give legitimacy of using certain tools and methods and

thereby certain actions during system development.”

The concepts of ‘development strategy’ and ‘principle’ suggest that the development

activity is based on an actor’s underlying set of beliefs and assumptions about the

nature of his or her work. Presumably, most system developers see their work as

being directed toward the construction of functional IS, but there is a whole spectrum

of views on what the task of constructing information systems is. For example, as

Lanzara (1983) points out, system development may be seen as solving problems

related to the use of information systems based on the assumption that viewpoints

 31

and interests do not change the problem itself, or may be seen as defining and

understanding problems related to the use of information systems based on the

assumption that the uniqueness of the situation affects the design choice. This sort of

nuance, which is inherent in ISD research and practice, leads Hirschheim et al.

(1996: 24) to recognize that IS development necessarily occurs by accepting specific

development principles that are often ideologically invested-- that is, biased in favour

of the use of particular tools and methods.

The first part of this chapter has already presented an overview of the principal tools

and methods of the discipline over a period of approximately four decades. A

relationship between the manner in which software development is principally

thought of and practiced at a given point in time, and the prevalence of certain tools,

methods, and methodology has already been observed. Hirschheim et al. offer an

elegant explanation for this apparent relationship, but before taking a closer look at

this explanation, let us first clarify what the authors mean by tools, methods, and

methodologies. ‘Methods’ are conceived of as prescriptions and rules of action for

the development of IS. ‘Tools’ are the material instruments for the execution of some

procedures defined by the methods. When merged together, methods and tools form

‘methodologies’ (see Table 1). These definitions are not without problems (see, for

example, Avgerou and Cornford, 1993), but the researcher accepts them without

reservation in order to proceed with more important points.

Tools and methods play an important role within Hirschheim et al.’s thesis in many

respects. First of all, tools and methods are integral to the stock of intellectual and

material resources that system developers can draw upon while instantiating a

development strategy. More specifically, they compose the stocks of knowledge and

procedures to carry out the ISD process (see also Baskerville, 1991). Moreover, tools

and methods limit the number of ways in which system developers can conceive ISD

by drawing attention to only selected aspects of the activity. Hirschheim et al. are,

however, careful not to suggest that tools and methods deterministically produce

development strategies. Methods and tools can be assembled in multiple ways to

produce different development strategies.

 32

Table 1: Theoretical concepts used by Hirschheim et al. (1996)

Theoretical Concept

Definition

Development Strategy Development strategies convey enduring development
practices which are gradually solicited from experience
and learning. Development strategies crystallize existing
know-how of workable development practices.

Development Principle Development principles are the broad normative
guidelines and evaluative and behavioral dispositions that
underlie the application of specific tools and methods that
build up the development strategy. Development
principles embody the norms that give legitimacy to using
certain tools and methods and, therefore, certain practices
used during systems development.

Orientation An orientation represents a consistent set of attitudes,
beliefs, assumptions and intentions which a developer
brings to the process of IS change. An orientation captures
the underlying values, goals and epistemological
underpinnings that drive the development activity.

Method Methods are prescriptions and rules of action for the
development of IS.

Tool Tools are material instruments for the execution of some
procedures defined by methods.

Methodology Methodologies are the combination of tools and methods.
Methodologies embody practices and cognitive frames
that can be taught, shared and refined in practice.

Following Habermas (1984; 1987), Hirschheim et al. (1996:10) define an orientation

as “a consistent set of attitudes, beliefs, assumptions and intentions that developers

bring to the process of IS change.” In other words, orientations comprise the beliefs

and epistemological underpinnings that drive the development activity. So, while the

development principles provide rational justification and necessary ideologies for the

use of concrete tools and methods, an orientation encompasses the beliefs and

assumptions that form an understanding of what ISD is.

Hirschheim et al. submit that there is a two-way relationship between orientations

and principles, but the authors do not elaborate on the nature of this relationship. In a

few passages, however, the authors imply that it is principally the choice of an

 33

orientation that affects the adoption of principles: “First of all their [the development

strategies] content depends on which domain and orientation have been chosen by

the actor and how the change is consequently legitimized by accepting specific

development principles” (Id.: 24). Elsewhere, Hirschheim et al. also suggest that the

choice of orientation is the starting point of everything: “the choice of a development

strategy is fundamentally justified by the desire to achieve some of the desired

‘outcomes’ that are in harmony with the development principles. The framework

suggests that the outcomes depend on the actor’s dominant orientation” (Id.: 27).

Thus, the beliefs, assumptions and intentions – that is, the orientation – that a

developer adopts largely determine what ISD is in his or her eyes, as well as what the

ensuing development principles should be.

A few examples of implicated issues are, at this point, appropriate to show the

myriad of ways in which ISD can be conceived of. Implications for the practice can

be identified for each example provided.

• Example 1: Should one see ISD as the construction of an IS or the resolution of an
organizational problem? In other words, is ISD a task best left to technical
experts? (Hirschheim and Klein, 1989; Mumford, 1983) Mumford & Weir (1979)
and Checkland (1981) address issue of participation. They believe that that the
intended users of the system should play an active role in defining what the
organizational problem to be resolved is.

• Example 2: Should one understand ISD as a rational, systematic activity or an
activity in which many of the important details generally become known to
system developers as they progress with the implementation? (Boehm, 1988;
Markus, 1983; Parnas and Clements, 1986; Stolterman, 1991)

• Example 3: Should one conceive of ISD as a predictable activity, along the lines
of factory work? Or should one see ISD as an art or a craft? These alternative
conceptions of the activity are discussed in “Japan’s software factories: A
challenge to U.S. Management” (Cusumano, 1991).

• Example 4: Should one see ISD as an activity that is inescapably bureaucratic? Or
should one see ISD as an activity where face-to-face interaction should be
favoured in order to keep paperwork to a minimum? (Cockburn and Highsmith,
2001; Highsmith, 2002; McBreen, 2001)

• Example 5: Should one see ISD as an activity geared towards the construction of
an IS that meets particular requirements? Or should one see ISD as an activity
geared towards the production of business value, even if this involves going
beyond the requirements? (Fowler, 2003)

• Example 6: Should one see ISD as a commercial activity that produces fees and
profits for an IT organization? Or should one see ISD as an activity that produces
business value for the users and their organizations? (Adler, 2006)

 34

• Example 7: Should one think of ISD as a purely-instrumental activity geared
toward resolving organizational and/or technical problems? Or should one think
of software development as an activity that encompasses an important symbolic
dimension; that is, ensuring the legitimacy of the organization in the eyes of both
internal and external stakeholders? (Adler, 2006; Avgerou, 2000).

In valuing a particular way of thinking of ISD, the adoption of a certain set of

practices is encouraged. For instance, in understanding ISD predominantly as a

systematic and predictable activity (see Example 2 and 3 above), people’s attention is

directed towards the waterfall model and other such plan-driven methodologies. On

the other hand, adopting the spiral model makes sense in a context in which it is

believed that ISD entails changes to the requirements as projects progress. As the

seven examples presented above show, the literature provides ample evidence that

beliefs influence how software development should be practiced. If beliefs are so

decisive in framing how ISD should be conceived and practiced, how, then, do they

become established in an organization? This leads us to formulate the following

research question:

Research Question 1:

How do beliefs about software development and
software development practices come to be established
as legitimate in a software development organization?

To be sure, as a number of scholars have observed, actors can change their

orientations relatively quickly (Dubé, 1998; Dubé and Robey, 1999). Moreover,

actors may adopt multiple orientations during ISD, especially if they have to interact

with numerous different parties. Consequently, actors involved in a project may very

well possess different (and even conflicting) beliefs about the nature of ISD and how

it should be practiced.

Divergence in ways of conceiving of software development touches the core of the

research. The question that this doctoral study investigates pertains to the perceived

validity and appropriateness – that is to say, the legitimacy – of the beliefs about

software development. The main objective of this study is to understand the process

by which organizational actors go about constituting what developing software

means. In particular, the study aims to shed light on how the legitimacy of a vision of

software development is negotiated, challenged and, if it is the case, established.

 35

Moreover, this research seeks to refine our understanding of what those beliefs

involve in terms of practice adoption.

As noted above, the literature on ISD indicates that beliefs influence how software

development should be practiced. This idea is well articulated in Hirschheim et al.’s

article. In Hirschheim et al.’s terms, the ‘dominant orientation’ adopted by

developers is largely responsible for determining the ‘development principles’

underlying the development activity. In other terms, it is submitted that the beliefs

that actors bring to the development activity legitimize the use of certain tools and

methods, and, therefore, certain practices. The proposition that beliefs influence how

software development should be practiced is accepted as true by the research until

evidence is found to contradict this proposition.

The management of the process of ISD, the role of methods, and the tasks of

software professionals are themes that have remained central in the ISD literature

(Mathiassen, 1996). Straddling these three broad themes is the question of balancing

the need for creativity and flexibility with the need for operational efficiency and

predictability (Boehm and Turner, 2004). The argument is put forth that ISD

encompasses many non-routine activities and involves the resolution of emergent

issues that require creative thinking and adaptability, but that it can, nonetheless, be

made efficient thanks to a certain degree of standardization and formalization (Adler,

2006). Again, how an actor sees ISD along the continuum of creativity/flexibility –

efficiency/predictability is very much a question of belief. The following research

question is derived from the main research question:

Research Question 2:

How are the contradictory needs for creativity and
flexibility, on the one hand, and efficiency and
predictability, on the other, negotiated?

The chronological review undertaken in the previous section sought to highlight the

changes that software development has undergone over the past four decades. It

should be clear by now that software development was thought of differently in

different contexts. The military clearly did not understand software development in

the context of Cold War in the same way as business people, prior to the personal

computer explosion, did-- or as agilists, in our current internet world, do. In a related

 36

vein, the wide-scale acquisition of tools and methods seems to be associated with

some of the distinct ways of thinking about software that prevail in certain contexts.

According to Hirschheim et al., the orientation that actors generally adopt in a

particular context informs the normative guidelines and evaluative and behavioural

dispositions (i.e. the development principles) that underlie the application of specific

tools and methods (Hirschheim et al., 1996: 24). It would seem, therefore, that the

context has a bearing on the acquisition and local appropriation of tools and methods.

Moreover, since these tools and methods are, according Hirschheim et al.,

instrumental in determining what software development is all about, one can expect

the context to influence how software development is predominantly thought of and

practiced in an organization. Answering the following research question will help to

answer the main research question of this doctoral dissertation:

Research Question 3:

What bearings does the institutional context have on
the manner in which software development is
principally thought of and practiced in a software
organization?

It is now accepted within organization studies in general, and IS research in

particular, that institutional contexts shape organizational activities (Orlikowski and

Barley, 2001). Institutionally-informed studies have made us realize that the

legitimacy of particular ideas about organization and practices are often influenced

by institutional forces. Researchers have provided compelling evidence that the trade

literature, popular books, conferences, sales presentations, casual conversations

among practitioners, and, most recently, electronic forums provide the channels

through which ideas circulate and through which organizational practices are made to

evolve (Sahlin-Andersson and Engwall, 2002a). These channels frequently provide a

means to introduce and collectively determine how tools and methods for software

development can be applied (Swanson and Ramiller, 1997).

An institutional argument runs through this dissertation. It is assumed that in order to

understand how beliefs about software development and software development

practices come to be established as legitimate in an organization, it is necessary to

pay attention to the influence of institutional structures that characterize the

organization’s context. As will be explained in due course, emphasis is placed on the

 37

normative dimension of institutions (Scott, 2003; Scott, 2001). Attention is directed

to the taken-for-granted beliefs that constitute social reality and provide the

normative frames that support social practices.

The next chapter presents the theoretical framework used for this study. One of the

strengths of the theoretical framework is that it enables the researcher to appreciate

the interplay between different levels of analysis. In particular, it enables the

researcher to appreciate the manner in which organizational actors go about

establishing beliefs about software development and software development practices

as legitimate, while paying due attention to the effects of the institutional context in

which organizational actors are situated.

 38

3 Theoretical Framework

From the middle of the 20th century, over a period of approximately two decades,

sociology took as its principal object of inquiry the function of social structures.

During this period, the prevailing belief was that these structures were functional in

the sense that they ensured that society would operate smoothly. Emphasis was

placed on the norms and value deemed necessary to organize relationships among

members of society. Talcott Parsons, the figurehead of sociology during this period,

stressed, and placed at the center of analysis, social structures, and ascribed to these

structures social functions. Without strong structures, Parsons and his followers

argued (Parsons, 1951; 1961), stability and internal cohesion of societies is

impossible.

This sociological paradigm, known today as functionalism and structural-

functionalism, is a macro sociological paradigm. It gives a great deal of attention to

the structures of society. It looks at things on an aggregated scale. It favours the long-

term – or a period time sufficiently long to explain the development of patterns of

behavior – rather than the episodic. A common criticism directed at functionalism

(and other macro sociological paradigms) is that it contains no sense of agency.

Within this paradigm individuals are seen more or less as puppets, acting as their role

requires. It is criticized for falling short of providing evidence of how intentions

orient action without relying on notions such as roles and norms (Elster, 1990). More

recently, functionalism has been criticized by conflict theorists, Marxists, feminists

and postmodernists for giving far too much weight to integration and consensus, and

neglecting independence and conflict (Holmwood, 2005).

The limitation of functionalism led to the development of alternative theoretical

approaches to explain how society and organizations can exist in the face of

individual interest, and in the 1960’s, an ethnomethodology and cognitive revolution

was initiated. Harold Garfinkel, a Parsons student influenced as well by the

phenomenology of Alfred Schutz, sought to discover the nature of the glue which

cements people together in society and the role of cognition in face-to-face

interaction. His unique insight was that social order does not derive automatically

 39

from shared norms and social roles, but is constituted, as practical activity, in the

course of everyday interaction (Garfinkel, 1967). Also influential on sociology, but

coming from outside it, Herbert Simon (Simon, 1957) and his colleagues (Simon and

March, 1958) helped accelerate a shift from a functionalist to a cognitive paradigm

of organized action.

This revolution marked a shift from a view of the individual as relatively

uninteresting entity sleepwalking through interactions to a view of the individual

actively engaged in making sense of his or her world. Understanding social

phenomena from the perspective of those situated within it became relevant, which

required interpretive approaches. Though Parsonian and other strands of functionalist

sociology could accommodate the assumption that social structures operated from

within the individual, this new sociological paradigm provided the intellectual

material needed to articulate the idea that individuals are the creators of their social

world. Social structures could be seen as emerging from interactions. And since

language is key to mediating interactions among humans, this major intellectual

recasting called for language-sensitive approaches (Knorr-Cetina, 1981).

3.1 Organizational discourse theory

This research seeks to bring about a finer understanding of the process by which an

organizationally-related object, software development, is constituted. In this sense,

the objective of the study is commensurate with the objective of organizational

discourse approaches. According to Hardy,

Scholars interested in the constitutive role of discourse, in one way or
another, subscribe to the view that discourse comprises sets of statement
that bring social objects into being and, in using the term organizational
discourse, refer to structured collections of texts that bring
organizationally related objects into being as they are produced,
disseminated and consumed. (Hardy, 2004)

Hardy defines an organizational discourse as a “structured collection of texts.” A text

is generally understood to be a piece of written language. Within organizational

discourse studies, a text may be either written or spoken, so that, for example, the

words used in a conversation constitute a text. To regard the words spoken as being

 40

text only makes sense considering that those words have to be transcribed in order to

be analyzed. Thus, texts can be considered to be a manifestation of discourse and the

discursive unit.

Having introduced the notion of organizational discourse, it becomes possible to

delineate how it is to be used. The concept of organizational discourse reflects a

number of tensions and debates, and it is, therefore, necessary to designate the

flavour that is given to it. How the notion of discourse is utilized in this study is

largely commensurate with how Ian Parker understands it:

Discourses do not simply describe the social world, but they […] bring
phenomena into sight. A strong form of argument would be that
discourses allow us to see things that are not ‘really’ there, and that once
an object has been elaborated into a discourse it is difficult not to refer to
it as if it were real. Discourses provide frameworks for debating the value
of one way of talking about reality over other ways. […] A good working
definition of a discourse should be that it is a system of statements which
constructs an object. (Parker, 1992)

An important idea that Parker addresses is that discourses have constituting power.

Granting constituting power to discourses provides a basis of the frequently-repeated

statement that discourses do not simply mirror the social world, but bring it into

being (Rorty, 1967). This perspective on discourse, of course, presupposes a

particular conception of the social world. As suggested above, the idea that language

has a role in the constitution of reality has become commonplace in a wide segment

of the social sciences, primarily as a result of work in social constructionism (Berger

and Luckmann, 1967; Wittgenstein, 1953).

In a similar vein, Parker indicates that different ways of talking about something

carry different weight. This implies that individuals value discourses differently. An

issue that is hotly debated is whether individuals can use discourses intentionally to

produce outcomes. The approach adopted in this study rests on the assumption that

discourses can be used by individuals in attempts to constitute an organizational

object (Grant et al., 1998; Hardy et al., 2000; Phillips and Hardy, 1997). Discourses

are presented as resources for debating the value of one way of talking about an

organizational object, as opposed to other ways (Parker, 1998).

 41

Seen this way, discourses are constantly valued and evaluated, acclaimed and

contested, by individuals who produce and receive them as part of their

communicative practices. In other words, they are seen as the object of ‘processes of

valorization’-- that is, processes by which and through which they are ascribed

certain kinds of value (Thompson, 1990). A number of factors affect the value of a

particular way of talking about something. For example, the way in which a

discourse draws on other discourses, which Fairclough (1995) refers to as

interdiscursivity, can influence the impact it will have. Moreover, certain

characteristics of actors can contribute to making discourses influential in a given

context. One may think, for example, of the resources and capacities of various

kinds, such as the rhetorical skills of actors and the formal legal authority granted to

actors by an organization.

Although it is believed that discourses can be used by individuals, it is not assumed

that individuals have conscious control over the value they collectively ascribe to

discourses. As is the case with any other kind of resource, the value of a discourse

appears to be largely determined by the context in which it is found. Parker captures

this idea by saying that discourses are implicated in the structures of institutions. The

concept of institution will be discussed in detail in this chapter, but for the moment, it

can be provisionally defined as customs and behavior patterns important to a social

group. The term ‘institution’ is, therefore, taken to mean, ‘social institution.’ Seen

this way, individuals situated in a particular institutional context would tend to value

in a similar way a set of statements. It is always the individual who values the

discourse, though s/he uses the valuation criteria that the institutional context

provides him/her with. Consequently, a discourse that appears perfectly credible in

one particular context may be highly questionable in another.

That the value of a discourse varies across contexts suggests that it is not the

properties of the text (i.e. content and structure) that primarily determine the value of

a discourse. In other words, the value of a discourse does not primarily come from

inside its texts but from outside them. For this reason, some theorists contend that the

analysis of texts should not be artificially isolated from an analysis of the

organizational and institutional context within which texts are embedded (e.g.

 42

Fairclough, 1995; Fairclough and Wodak, 1997). What can be inferred from texts,

and how context can and should be used to inform the analysis, is an area of

disagreement within discourse theory. The researcher’s position is that one cannot

properly understand what goes on in any interactional episode unless one knows its

place in the relevant institutional context. This point is an important one because it

leads the researcher to reject text-centred theories, such as conversation analysis,

which represent an important segment of discourse-sensitive studies.

Organizational discourse theory has made important contributions to organizational

theory by highlighting how struggles around meanings are played out in

organizations. Seen from this broad theoretical perspective, meanings are created and

contested as a result of discursive interactions among actors with different interests

(Grant and Hardy, 2003; Mumby and Clair, 1997). Consequently, the dominant

meaning taken by an organizational object often emerges as alternative discourses

are subverted or marginalized. The organizational context appears here characterized

by unequal relations of power and populated by individuals possessing different

resources.

Parker (1992) believes that institutions are structured around and reproduce power

relations, and that “we should talk about discourse and power in the same breath.”

The point is that the texts in which discourses are actualized are produced,

transmitted, and interpreted by individuals who are situated within specific

institutional contexts and who possess various kinds of resources. Although the

quality and quantity of resources available to individuals can reasonably be presumed

to vary from one individual to another, individuals are never outside an institutional

context (Fish, 1980). Framed in these terms, this suggests that individuals within a

particular institutional context stand in an unequal position of power vis-à-vis one

another. That is to say, individuals occupy positions that are marked by different

abilities to produce, transmit, and interpret texts, and, hence, different capacities to

discursively constitute a social object (Mumby and Clair, 1997). There is, of course,

 43

more to the claim that discourse and power should be handled as joined concepts, but

this aspect of the relationship is the one that is relevant within the present study.2

This high level discussion has delineated a particular area within discourse theory.

This area is primarily concerned with the constitution of an organizational object,

rather than with the creation and recreation of the organization. In this respect, the

organization is a site of struggle where individuals try to affect and stabilize the

meaning of an organizational object. While texts are instrumental in bringing

organizational objects into being, they are not presumed to possess agency. Agency

is a faculty of human beings and is manifested in one’s capacity to produce, transmit,

and interpret texts. Thus, certain characteristics of actors within the context of a

particular institution will accord them agency. The theoretical framework adopted

must, therefore, be power - and context- sensitive.

3.2 Critical discourse theory

Few discourse theorists would admit that their approach is not context-sensitive. The

reason most theories can be said to be context-sensitive is that there are many

possible interpretations of what counts as ‘context,’ and how the effects of the

context in which a discursive event takes place can be analytically understood. For

example, conservation analysts presume that the context is constituted in and through

the text produced (e.g. Sacks et al., 1974). Thus, limiting inferences as to what can be

validated by reference to what is observable in the texts being analyzed is deemed

sufficient to reveal the effects of the context (Heritage, 1984). Admittedly, some

discourse analytic approaches are more context-sensitive than others. As such,

approaches that explicitly seek to show how discourses and discursive events shape

and are shaped by the institutional context are generally regarded as context-sensitive

(Hardy, 2004). One of the most influential context-sensitive approaches to the study

of organizational discourse has been that of critical discourse analysis (henceforth

CDA). Developed by Norman Fairclough (1989; Fairclough, 1995), this approach is

distinctive in that it rejects barriers between the study of the micro events and the

2 Additional aspects of the relationship between discourse and power include the constitution of a
subjective identity through discursive practices and the maintenance of a “regime of truth.” According
to Foucault (1972), a regime of truth is a system of beliefs and values created by a society that enables
one to distinguish true and false statements.

 44

macro structures by integrating three layers of analysis. This section focuses on the

theoretical propositions inherent to CDA.

CDA is an analytical technique and a set of theoretical propositions for studying

language in relation to power and ideology. It is founded on the idea that inferences

of an ideological character are pervasive in discourses and discursive practices (see

more below on ideology). CDA adopts critical goals: it is designed and presented as

“a resource for people who are struggling against domination and oppression in its

linguistic forms” (Fairclough, 1995: 1).

As an analytical technique, CDA integrates (a) the analysis of text, (b) the analysis of

processes of text production, consumption and distribution, and (c) the socio-cultural

analysis of the discursive events as a whole. These three dimensions are respectively

referred to as the ‘text,’ ‘discourse practice,’ and ‘social cultural practice’ dimension.

CDA is a multi-level analytical technique: by integrating three levels of analysis, it

seeks to connect what is going on socially with what is going on linguistically. More

specifically, the approach seeks to capture how social structures determine the

properties of discourse and how discourses determine social structures (Fairclough,

1995: 27).

CDA is as much a methodology as it is a theory for understanding the operation

power and ideology in language use. Power is conceptualized both in terms of

asymmetries between actors in discourse events, and in terms of unequal capacity to

control how texts are produced, distributed, and consumed in a particular socio-

institutional context. An ideology can be broadly defined as a belief that benefits

some social class, stratum, or group. A wide range of properties of texts may be

considered ideological, including the choice of the words, the formatting devices,

and the metaphors invoked. Ideologies may also permeate the norms of interaction

that structure discursive events, for example, by determining the turn-taking system.3

While the whole of CDA – theory and method – is of value, the researcher is only

interested in the theoretical proposition of the analytical framework. Fairclough’s

3 In conversation analysis, “turn-taking” is a process by which interactants allocate the right or
obligation to participate in an interactional activity (Sacks et al., 1974).

 45

theoretical propositions offer remarkable insight into how some beliefs and practices

come to be regarded as legitimate in a given social setting. CDA (the theory) frames

the work of many of the key figures of the social and political thought of the last

century, including Louis Althusser, Jürgen Habermas, and Michel Foucault, among

others. So, beyond the mere methodology, Fairclough creates a ‘state of mind’ that

can be adopted for clear analysis. Let us now examine these propositions.

Fairclough advances the idea that the language used in speech and writing – what he

understands as ‘discourse’ – may help produce and reproduce unequal power

relations among individuals belonging to distinguishable social bases. From this

perspective, language is the medium through which asymmetrical power relations are

actualized.

Power is here principally understood as the capacity to shape the discourses and

discursive practices associated with a particular social domain or institution. It is the

stuff that makes an individual or a group of individuals capable of sustaining the

legitimacy of particular ways of talking and ways of thinking. As such, the

vocabulary chosen, metaphors invoked, and the discourse conventions in force may

be indicative of the operation of power.

Fairclough submits that a discourse functions ideologically when it represents some

aspects of the social world (i.e. a social object) in a way that sustains or reinforces

the privileged position of power of an individual or a group of individuals.

Importantly, ideologies are thought to be located as much in the said (the explicit

statement) as in the unsaid (the implicit statement). From this perspective, a text that

ignores matters that do not benefit those in a privileged position of power may be

considered ideologically invested.

Borrowing from Marx, Fairclough goes on to say that ideologies are produced by

those who benefit from them. Ideologies are, therefore, not self-generating and do

not happen to prevail in a social field or institution simply by chance. However,

ideologies may become dissociated to a greater or lesser degree from those who

generated them and become adopted by individuals who derive little or no benefit

from their prevalence. Such a case arises when ideologies become naturalized.

 46

‘Naturalization’ occurs when an ideology is largely seen to be commonsensical and

based in the nature of things or people. It renders the original reasons for the creation

of an ideology invisible. As a process, naturalization involves making what is

sectorial, universal and partisan, neutral. In terms of effects, it creates a sort of

solidarity between ideology-producers and their antagonists in a social setting.

Depending on the degree of naturalization reached, identities, defined in terms of

belonging to a group and (ideological) beliefs, may be substantially transformed.

Dominated factions may adopt the ideology of a dominating faction as their own

without being aware of the forces at play, which may lead to the collapse of

differences between individuals and groups of individuals.

Having introduced the concepts of discourse, power, and ideology, as Fairclough

understands them, it becomes possible to discuss the critical aspect of CDA.

According to Fairclough, the degree of dominance of an ideology is mainly

determined by its degree of naturalization; that is to say, by the extent to which the

manner in which an ideology serves those in a privileged position of power is

masked. From this perspective, a discourse analytical approach capable of making

visible implicit propositions of an ideological character that are present in discourse

has the potential to denaturalize them.

Adopting a critical goal, Fairclough asserts, “means aiming to elucidate such

naturalizations, and more generally make clear social determinations and effects of

discourse which are characteristically opaque to participant” (Fairclough, 1995: 28).

In the same vein, the author adds that “[t]o denaturalize them [ideologies] is the

objective of a discourse analysis which adopts ‘critical’ goals.” (Fairclough, 1995:

27). Domination and oppression in its linguistic form should disappear as ideologies

are denaturalized.

This doctoral research does not follow a critical agenda-- at least, not in the sense of

aiming at liberating individuals from domination and oppression. If care is taken to

explain the critical ‘philosophy’ on which CDA is based, it is because it leads to two

crucial theoretical propositions: that the micro and macro level of analysis have to be

integrated, and that institutions have to be the pivotal point between those two levels.

Let us consider the following statement:

 47

The critical approach has its theoretical underpinnings in the views of the
relationship between ‘micro’ event […] and ‘macro’ structures which see
the latter as both the conditions for and the products of the former, and
which therefore reject rigid barriers between the study of the ‘micro’ (of
which the study of discourse is part) and the study of the ‘macro.’
(Fairclough, 1995: 28)

Why does a theoretical approach that is critical have to account for the relationship

between the micro and the macro? The message Fairclough is trying to convey is that

a theoretical approach that is ‘critical’ has to go beyond describing that which is

immediately visible in texts and interactional episodes, and address the deeper causes

of things. Fairclough sees descriptive approaches-- approaches that focus exclusively

on the content and structure of the text-- as inadequate for explaining why an

interactional episode unfolded as it did and what its effects are. Given the effects of

ideologies, the analyst must step in and bring his or her understanding of the wider

context into the analysis:

… the concept of ideology is incompatible with the limited explanatory
goals of the descriptive approach, for it necessarily requires reference
outside the immediate situation to the social institution and the social
formation in that ideologies are by definition representations generated
by social forces at the levels. (Fairclough, 1995: 45)

But CDA also goes beyond the micro (and that which is descriptive and ‘uncritical’)

by seeking to understand ‘how things are,’ and by extrapolating how micro

interactional episodes cumulatively constitute the macro institutional context.4 The

author notes:

… descriptive work generally has been little concerned with the effects
of discourses. And it has certainly not concerned itself with effects which
go beyond the immediate situation. For critical discourse analysis, on the
other hand, the question of how discourse cumulatively contributes to the

4 So, although discourse analysis approaches are generally associated with a social constructivist
ontology, critical analytical approaches (including CDA) are generally rooted in a realist ontology in
that they acknowledge the existence of a reality existing outside human consciousness. In a recent
article, Fairclough (2005) stated his position as follows: “From the perspective of the realist view of
discourse I have outlined [i.e. CDA], it makes little sense to see […] agency and structure … as
alternatives one has to choose between.”

 48

reproduction of macro structures is at the heart of the explanatory
endeavour. (Fairclough, 1995: 43)

Hence, in Fairclough’s view, a theory that is critical is a theory that makes visible the

interconnectedness of things. CDA is considered ‘critical’ because it has the power to

reveal how the macro influences the micro and how the macro is reproduced through

micro events. Furthermore, an approach that is critical does not stop at answering the

‘what’ and ‘how’ questions, but has to look into the causes of things by answering a

‘why’ question.

The question of how the macro influences the micro is highly relevant to this

doctoral thesis. The researcher realized at a very early stage of the research that a

theoretical framework that takes into account the influence of institutional forces was

required to better understand how beliefs about software development come to be

socially established as legitimate. So, for the moment, the term ‘macro’ is broadly

understood as ‘institutional.’ This treatment of the macro will become more precise

as the doctoral thesis progresses. However, it is important to note that how the micro

creates and recreates the macro is outside the scope of this doctoral thesis. The

research clearly does not seek to develop an understanding of how micro-episodes of

social action (e.g. discursive events) in an organization contribute to creating and

recreating a largely- shared, perhaps even institutionalized, way of thinking of and

practicing software development outside the study organization.

Having examined the rationale for using a theoretical framework capable of taking

into account the relationship and tension between the micro and the macro, let us

look at the claim for considering the institution as the median point between the two

levels. Referring to questions concerning the naturalization of ideologies, Fairclough

writes:

My reasoning is in essence simply that (a) such questions can only be
broached within a framework which integrates ‘micro’ and ‘macro’
research, and (b) we are most likely to be able to arrive at such research
integration if we focus upon the institution as a ‘pivot’ between the
highest level of social structuring […] and the most concrete level, that of
a particular social event or action. (Fairclough, 1995: 37)

 49

In this quotation, it is not clear what “highest level of social structuring” can possibly

be. The reader is left to figure out what operates above the institutions. In any cases,

CDA falls short of accommodating a level which is much higher than that of the

institution. Indeed, the ‘social cultural dimension’ of the model appears quite similar

to what is normally understood as the ‘institutional dimension’ within organization

studies (Scott, 2001; Zucker, 1987).

A close look at the theoretical approach reveals that Fairclough actually assumes that

the socio-cultural context is composed of a number of institutions that crisscross each

other. Moreover, the distinction between socio-cultural context and institutions does

not appear so important. The author often talks of the socio-cultural context and

institutions in the same breath without making a clear demarcation between them.

What is original, however, is how the author defines an institution (or a social

institution).

In keeping with the linguistic approach to the study of power and ideology he

advocates, Fairclough defines a (social) institution as an “apparatus of verbal

interaction.” From this perspective, a social institution is an entity that possesses its

own conventions or norms of language use. A social institution also defines the

social identities and relationships of its members, the topics of importance, and the

goals to be achieved.

Fairclough insists that a social institution simultaneously constrains and enables the

verbal interactions of its members. A social institution provides its members “with a

frame for action, without which they could not act, but it thereby constrains them to

act within that frame” (Fairclough, 1995: 38). Moreover, it should be noted that such

an institutional frame consists of formulations and symbolizations that are

ideologically invested, with formulation referring to a particular way of talking, and

symbolization to a particular way of representing and seeing a social object. So, in

keeping with the definition given above, institutions are apparatus of verbal

interaction that sustain a set of ideological and discursive norms.5

5 This definition is by no means final. It will later be explained that an institution houses many
different sets of ideological and discursive norms.

 50

Fairclough submits that an institution typically provides alternative sets of discursive

and ideological norms. In other words, there is, according to the author, a one-to-

many relationship between the institution and the ideological positions that its

members may adopt. Thus, a given institution may accommodate two or more

distinct ways of talking about and seeing a social object. This diversity of ideological

positions, Fairclough notes, “is a consequence of, and a condition for, struggles

between different forces within the institution.” (Fairclough, 1995: 40). In keeping

with the neo-Marxist tenet, this struggle is presumed to be connected to class

struggle. And at stake in the struggle between classes is the ideological and

discursive control of the institutions itself.

The idea that an institution accommodates a plurality of discursive and ideological

norms becomes particularly well articulated as Fairclough deploys the concept of

“ideological-discursive formation” (IDF). An IDF, as the term indicates, is a sort of

coherent ensemble of discourses that sustain a particular way of talking about a

social object that is of interest within a social institution. An IDF favours a particular

vocabulary, or more generally, a language for talking about something – for example,

the language of science, of Christianity, of management.

The concept of IDF serves two purposes. First and foremost, it cements the

relationship between a way of seeing and a way of talking. The logic is that by

structuring what can and should be said within a particular social-institutional

context, an IDF structures how a social object can be represented – hence, the

complex ideological-discursive. So, strictly speaking, it is not the institution as such

that sustains an ideological representation, but an IDF contained within the

institution. This leads us to the second role the concept of IDF is made to play within

Fairclough’s intellectual arsenal: the role to depict institutions as being ideologically

fragmented.

It is the concept of IDF that makes convincing the claim that a given institution may

house two or more distinct ideological positions. Implicit in this claim is the

theoretical proposition that institutions are pluralistic rather than monistic.

Furthermore, it is Fairclough’s contention that it is the plurality of IDFs that creates

class division within an institution and fuels the struggles between classes. That said,

 51

one cannot help wondering why Fairclough chooses not to see classes – classes, it

must be emphasized, that possess their own discursive and ideological norms – as

institutions in their own right. A probable answer is that these classes are intertwined

in linguistic interactions – a typical case of ‘bourgeois meet proletarians.’ After all,

if classes were not in relationship to one another, domination and oppression could

not occur, nor could struggles ensue.

Fairclough’s depiction of institutions as fragmented entities stands in marked

contrast to the conventional treatment of institutions within the social sciences in

general, and organization studies in particular. When the concept of institution is

invoked in organization studies, it is more often than not to accent social order and

consensus, rather than contradiction and conflict (Scott, 2001). The proposition that a

social institution houses many IDFs is interesting, for the full explanatory power of

the theoretical approach becomes discernible.

Thus empowered, Fairclough goes on to say that IDFs within a social institution are

ordered in dominance. Discursive practices, he notes, “are characteristically ordered

in dominance in the sense that there may be a dominant (‘normal,’ naturalized)

practice and dominated (marginalized, ‘alternative’) practice (Fairclough, 1995: 12).

In this sense, the struggle that occurs within the institution “can be seen as centering

upon maintaining a dominant IDF in dominance (from the perspective of those in

power) or undermining a dominant IDF in order to replace it” (Fairclough, 1995: 41).

It is when an IDF has undisputed dominance in an institution that the ideological and

discourse norms of the IDF become the most naturalized. In such cases, the norms of

the IDFs may come to be seen as the norms of the institution itself.

The limitations of Fairclough’s theoretical propositions will be discussed in detail at

the end of this chapter. One of the main problems that the author of this dissertation

sees with CDA is that it does not possess the analytical constructs needed to capture

and contextualize relevant factors that fall outside the immediate remit of the

linguistic. The theory of symbolic power and its afferent concepts are introduced at

this point as an addition to the theoretical framework being devised. It is the

researcher’s contention that the notion of symbolic power and the dual concepts of

 52

‘capital’ and ‘field’ will empower substantially the analysis by creating an

indissolvable bond between the discourses and the institutional context.

3.3 Symbolic power

Born in 1930 in Béarn, a province in Southern France, Pierre Bourdieu received a

degree in philosophy before moving into anthropological and sociological research.

While serving in the French Army in Algeria, Bourdieu carried out ethnographic

work that led to the publication, in 1958, of a book about the Kabyle society. The

research in Algeria formed the basis of much of his subsequent theoretical writing,

most notably, “Outline of a Theory of Practice” (Bourdieu, 1977) and “The Logic of

Practice” (Bourdieu, 1990).

Bourdieu’s theory of practice is founded on the idea that the deep-seated practices of

individuals (including their linguistic practices) reflect the social condition within

which these practices were acquired. Individuals following a comparable life

trajectory should face similar challenges and respond to them with similar actions.

Bourdieu is particularly interested in how homogeneity among individuals of similar

backgrounds creates an observable heterogeneity across groups of individuals of

different backgrounds, and how these differences are exploited knowingly and

unknowingly by individuals. The author describes the pervasive production,

reproduction, and exploitation of the systems of difference as ‘symbolic power’ (or,

in some cases, as ‘symbolic violence’). This section introduces the notion of

symbolic power and afferent terms.

The notion of symbolic power is a rather flexible one which is used in many different

ways throughout Bourdieu’s writings. However, one interpretation that stands out is

the power of constituting the taken-for-granted through utterances, “of making

people see and believe, of confirming or transforming the vision of the world and,

thereby, action on the world and thus the world itself” (Bourdieu, 1991: 170). It

enables one to obtain without physical or economic force, thanks to the acceptance

and collaboration of (dominated) individuals, a standard vision of the world that is

suited to those occupying privileged positions.

 53

As the foregoing quotation illustrates, Bourdieu uses the word ‘world’ abundantly

when speaking of symbolic power, but, in fact, what he means is “the objects of the

social world” (e.g. Bourdieu, 1989: 20). This precision may appear trivial, but it is

important to making clear the fact that the theory of symbolic power may be applied

to understanding any kind of social object – not just the world as a whole. Such a

social object may be a specific thing, individual, state of affairs, and so on. It is also

worth noting that, as the previous quotation also suggests, symbolic power not only

affects perception, but also affects action. Depending on how an object is perceived,

the ensuing action on the objects of the social world may differ.

The notion of symbolic power implies four key characteristics. First, it is a

consensual notion of power in that it involves the willing participation of individuals

to accept of particular vision of the world: “Symbolic power is that invisible power

which can be exercised only with the complicity of those who do not want to know

that they are subject to it or even that they themselves exercise it” (Bourdieu, 1991:

164). It never involves economic or physical coercion. Secondly, symbolic power is

a relational notion of power. Symbolic power does not reside in a particular symbolic

system or do anything by itself. Rather, it is constantly “defined in and through a

given relation between those who exercise power and those who submit to it…”

(Bourdieu, 1991: 170). Thirdly, symbolic power is pervasive. Symbolic power is not

a specific type of power, but rather an aspect of most forms of power as they are

routinely deployed in social life (Bourdieu, 1989: 23). Finally, symbolic power is

insidious, as its degree of efficacy is directly proportional to its ability to disguise

itself. When symbolic power is exposed, it evaporates. This last characteristic

deserves a deeper consideration, as it touches on the concept of ‘misrecognition’.

In Bourdieu’s view, when power that could be excised through physical force

becomes transmuted into a symbolic form, it acquires a legitimacy that it would not

otherwise have. The author expresses this point by saying that symbolic power is

‘misrecognized,’ as such, and thereby ‘recognized’ as legitimate. The term

‘recognition’ underscores the idea that the exercise of power through symbolic

means always rests on a foundation of shared beliefs (or knowledge)-- that is, on an

understanding and acceptance of an institutionally-organized symbolic system. This

fact means that symbolic power resides in, and is sustained by, the very structure of

 54

the institution in which the beliefs are produced and reproduced. In actual fact, it is

by adjusting itself to the structures of an institution that symbolic power becomes

misrecognized.

The French scholar wrote extensively on how the mental structures of social agents

(i.e. “subjective structures”) become aligned with the structures of the institutions

(i.e. “objective structures”). According to Bourdieu, social agents situated within a

particular institutional context tend to perceive the institutional constraints as neutral

because their minds (their cognitive structures) are issued out of the structure of the

institution. This leads social agents to misrecognize their condition as being natural

and based on the natural order of things. Misrecognition thus subtly guarantees the

cooperation of the dominated in the maintenance of the very institutional structures

that may disadvantage them.

For example, using the case of the French education systems, the author illustrates

how teenagers raised in a working class environment, who tend to be economically

and culturally disadvantaged in comparison to those raised in professional class

environment, are led to leave educational institutions relatively early to take on

manual work. In this case, symbolic violence occurs when working class teenagers

come to assume that their limited academic prospect is due to a lack of scholastic

ability, rather than to the maintenance of a system that makes access to and success

within academia more difficult.

Like Fairclough, Bourdieu uses the concept of ‘class’ to refer to a group of social

agents who possess similar attributes and derive common benefits from the

production and maintenance of a particular representation of the social world or a

social object. For both scholars, classes remain theoretical constructs produced by

analysts to explain or depict observable social phenomena. The use of the concept is,

however, more central and complex in Bourdieu’s theory of symbolic power, as class

positions are determined by the volume of ‘capital’ possessed by social agents and

the relative value granted by the ‘field’ to the different forms of capital. The concepts

of ‘capital’ and ‘field’ are presented in the sections that follow.

 55

3.3.1 Capital

Capital is at once the resource available to social agents to impose or inculcate a

vision of a social object, and a marker of social status. There are three principal

forms of capital in Bourdieu’s writing. ‘Economic capital’ includes money and other

material assets. ‘Cultural capital’ includes academic credential, knowledge, and

skills. ‘Symbolic capital’ refers to the other various forms of capitals perceived and

recognized as legitimate.

Because of the discourse-sensitive theoretical approach adopted herein, it is

necessary to at least introduce the notion of ‘linguistic capital.’ Bourdieu posits that

social objects are constituted through a wide array of practices. The notion of

linguistic capital is designed to draw attention to the role of discursive practices in

constituting social objects. Linguistic capital is understood as the competence, or

resource, required to constitute a social object compellingly, and to change or

reaffirm the practices of individuals in relation to the social object (Bourdieu, 1991:

37 & 56). In order words, linguistic capital is the resource that enables social agents

to make the texts they produce and diffuse consequential.

Bourdieu is careful not to let his readers assume that the quantity of linguistic capital

a person possesses is determined by the quality of the person alone (Bourdieu, 1991:

73). As such, the competence to constitute a social object through discursive

practices must not be equated with rhetorical skills or the technical mastery of a

language in a strict linguistic sense (i.e. the knowledge of a body of words and the

rules for combining them). According to the author, linguistic competence is

determined by a number of institutional factors, including the institutional role of the

text producer (e.g. his title) and his practical understanding of the norms regulating

discursive practices that reside outside the purely linguistic aspect of language: “The

competence adequate to produce sentences that are likely to be understood may be

quite inadequate to produce sentences that are likely to be listened to […]”

(Bourdieu, 1991: 55).

For Bourdieu, authority, or the ability to constitute the given through words, does not

reside in the words that one utters, but in the power that is endowed to an individual

by an institution or field. The author expresses this point as follows:

 56

[…] authority comes to language from the outside […] The efficacy of
speech does not lie in ‘illocutionary expressions’ or in discourse itself
[…] for it is noting other than the delegate power of the institution.
(Bourdieu, 1992: 147)

Like the three other forms of capital introduced above, linguistic capital contributes

to establishing the status of a social agent in a given social setting. All other things

being equal, the more linguistic capital an individual possesses, the more s/he is able

to represent a social object in a way that suits his or her interests and, hence, exert

symbolic power. Seen this way, linguistic exchanges are not merely relations of

communication between a sender and a receiver, but also relations of symbolic

power. According to Bourdieu, “linguistic relations are always relations of symbolic

power through which relations of force between the speakers and their respective

groups are actualized in a transfigured form. […] Even the simplest linguistic

exchange brings into play a complex and ramifying web of historical power relations

between the speaker, endowed with a specific social authority, and an audience,

which recognizes this authority to varying degrees” (Bourdieu, 1992: 142-143). But

the value of a form of capital is not absolute. The value granted to the different forms

of capital varies across institutional settings, or ‘fields.’ To be more accurate, it is the

field that determines the value of a certain form of capital. We see here how the

notions of capital and field are interconnected.

3.3.2 Field

Bourdieu has been praised for his effort to move beyond a series of oppositions and

antinomies that are well embedded within the social sciences (e.g. Ritzer, 1996). For

anyone involved in the social sciences today, these oppositions have a familiar ring:

agency versus structure, micro versus macro, subjectivism versus objectivism, etc.

The dual notions of ‘field of forces’ and ‘field of struggle’ are one instance of the

care the author takes to dissolve such oppositions by integrating different levels of

understanding.

In the course of an interview with Loïc Wacquant, Bourdieu provided us with a

concise explanation of the notion of ‘field’ and its place in his thinking. A field,

 57

according to Bourdieu, is a social space where manoeuvres take place over specific

stakes. To think in terms of field involves recognizing the centrality of social

relations in social analysis:

I define a field as a network, or a configuration, of objective relations
between positions objectively defined, in their existence and in the
determination they impose upon their occupants, agents or institutions,
by their present or potential situation […] in the structure of the
distribution of power (or capital) whose possession command access to
the specific profits that are at stake in the field […] (Bourdieu and
Wacquant, 1989: 39)

When viewed as a ‘field of forces,’ the field is a space with its own logic, rules and

regularities. The field of forces is shaped by the structure of the existing balance of

forces between different forms of capital-- that is to say, by the relative value it

attaches to the different forms of capital. When viewed from this angle, the field

structures, yet without determining. The field of force presupposes, and generates by

its very functioning, the belief in the value of the stakes it offers. The field of force

aligns the action of individuals who enter it in the pursuit of its cause through the

means it imposes on them. John B. Thomson, one of Bourdieu’s principal

commenters in the English-speaking world, explains:

The very existence and persistence of the […] field presupposes a total
and unconditional ‘investment’, a practical and unquestioning belief, in
the game and its stakes. Hence the conduct of struggle within a field […]
always presupposes a fundamental accord or complicity on the part of
those who participate in the struggle. (Thompson, 1991: 14)

When viewed as a ‘field of struggle,’ the field is a social space characterized by

conflict. It is a site on which social agents’ strategies are concerned with the

preservation or improvement of their positions with respect to the defining capital of

the field. Within economic organizations, this struggle may take the form of a clash

between occupational groups, for instance, “between production and publicity,

between engineering and marketing” (Bourdieu, 1984: 309). The field is dynamic in

that the outcome of a struggle may change the structure of a field – ultimately

determining which forms of capital are subordinated to others, and which groups of

capital holders (i.e. class) are dominant.

 58

Having presented the notion of field, it is appropriate to make two observations on

the notion of field. First, like the notion of class, the notion of field is an analytical

construction. While there are cases in which the boundaries of the field are legally

determined, such boundaries are often imprecise and generally require an empirical

investigation to be determined (Bourdieu and Wacquant, 1989: 39). Within the

context of this doctoral research, the notion of field is used to refer to the unit of an

economic organization. As will be justified later in this chapter, this unit can be

considered a field in its own right because it has its own particular stakes and rules.

Moreover, the notion of field allows for accounting of agency and remains open to

the possibility of change. In a field, social agents constantly work, collectively or

individually, to differentiate themselves from their closest rivals in order to reduce

competition. They sometimes succeed, which enables them to impose and inculcate

an alternative vision of a social object as legitimate. Hence, the theory of symbolic

power is not merely about reproduction and stability. This is where the theory of

symbolic violence differs most from conventional structuralist theories that pay little

attention to the role played by social agents and the possibility of discontinuity.

3.4 Critical synthesis

In this doctoral dissertation, organizational discourse theory is taken as the primary

theoretical lens. Organizational discourse theory, as explained above, is concerned

with understanding how organizationally-related objects are brought into being, as

texts embodied in the practices of talking and writing are produced, disseminated,

and consumed. From this perspective, discourse is the principal means by which

organizational members create their social world, and language is the instrument that

enables them to do so.

Within the majority of discourse analytical theories, discourse is seen as being

central to the social construction of reality (Phillips and Hardy, 1997). Indeed, a

frequently-repeated statement is that discourses not only merely represent the objects

of the social world, but constitute them. Such an assumption, at first sight, appears to

betray a blatant allegiance to a strongly constructivist ontology: objects of the social

 59

world are not known for what they are, but for what they are perceived to be. Seen in

the light of this ontological approach, only observational claims matter. From there,

an array of all-too-familiar criticisms can be generated, including, of course, that

organizational discourse theory denies the existence of a ‘real’ world and the effects

of social structures (Guba and Lincoln, 1994).

However, if one dares to dig deeper, it quickly becomes obvious that different

approaches within organizational discourse theory focus on different aspects of the

process whereby the social world is brought into being. Phillips & Hardy (2002) call

attention to the differences in the degrees to which researchers focus directly on the

dynamics of power, and differentiate between ‘constructivist’ and ‘critical’ discourse

studies. Critical studies are distinctive in that they recognize that discourse embodies

structures of power and ideologies (Hardy, 2004). Whereas constructivist studies are

primarily concerned with explaining ‘how’ social interactions mediated through

language produce objects, critical studies seek to uncover ‘why’ an object is

constituted predominantly in one particular way, rather than in another.

With CDA, an object does not emerge out of interactions occurring in some kind of

contextual vacuum. Understanding and examining power dynamics and the

ideologies that characterize context are important to tackling the ‘why’ of a social

phenomenon. Fairclough (2005) clearly spells out his ontological position in these

terms: “My position is an ontological realist one: the social world is indeed a socially

(and in part discoursally) constructed world, but at any point in time people are

confronted with a pre-structured world which has real properties and a real structure

which cannot be reduced to, and are unconditionally subject to, people’s knowledge

of it …”

In this doctoral dissertation, it is recognized that discourses embody ideologies and

structures of power. The constitution of an organizational object is not presumed to

be neutral. However, unlike most critical discourse studies, this dissertation does not

aim at liberating organizational actors from the unnecessary constraints that prevent

their development as individuals – a concern at the heart of the ‘critical’ project

(Alvesson and Willmott, 1992). CDA is here stripped of its radical edge by seeing

 60

‘ideologies’ as ‘beliefs.’ Consequently, any group has its particular beliefs

corresponding to its position in social life.

In a same vein, the notion of power which carries a pejorative connotation in the

writings of Fairclough – for it is the cause of domination and oppression – is toned

down and taken the way Bourdieu has taken it. Although Bourdieu is concerned with

issues of domination and oppression, symbolic power remains principally an

analytical concept. The theory of symbolic power is not designed to change the

world in practice or in theory. As one of the French sociologist’s long-term

collaborators observes, Bourdieu has “always studiously kept aloof from anything

that marches under the self-proclaimed banner of ‘radical’ sociology or ‘critical’

theory” (Bourdieu and Wacquant, 1989: 192).

Bourdieu believes that science is still the best tool available for the critique of

domination, but he also believes that scientists tend to overestimate their capacity to

elide domination in practice. Bourdieu, in fact, reckons that the involvement of

scientists in struggles against domination often mask their specific interests-- that is,

the interests of the social class to which they belong (Bourdieu, 1992: 193).

Consequently, using science as a weapon to fight domination is considered

contributing to the reproduction of relations of power, rather than to the elision of

power. The author of this dissertation adopts Bourdieu’s critical attitude towards

theories explicitly designed as a resource for people engaged in social action.

In terms of limitations, CDA focuses on the use of language to an extent such that it

is inclined to reduce social life to a way of staging texts. Although Fairclough

contends that CDA is as much about the use of language as it is about the study of

power and ideology, the fact remains that the theory is based and depends entirely on

an analysis of language. As Fairclough overtly acknowledges, CDA is nothing other

than “an analytical framework – theory and method – for studying language”

(Fairclough, 1995: 1). This myopic view of texts and the way they are produced,

disseminated, and consumed may easily lead analysts to miss important details that

can be more easily captured and understood by other means-- for example, through

an ethnographic analysis of social structures and settings. Consequently, Fairclough

constantly has to defend the claim that “language is not just a way of staging a text

 61

[but also …] involves particularities of ‘field’ – what social practices are referred to

and how they are signified, of ‘voice’ – who the participants are […], of ‘style’ –

how participant relations are constructed, and of ‘mode’ – what forms of

textualization and of text-context relation apply” (Fairclough, 1995: 14).

However, CDA falls short of providing the analytical constructs needed to attend to

such particularities. Although the problems associated with concentrating on the use

of language can be easily resolved at the level of method by bringing together CDA

and an in-depth immersion in the field, the lack of analytical constructs needed to

understand and explain how things are, and why they are as they are, remains

problematic. To put the matter differently, CDA does not possess the analytical

constructs needed to capture and contextualize relevant factors that cannot be

captured in terms of discourses and discursive practices. That is why making use of

the theory of symbolic power and its afferent concepts is appropriate.

The theory of symbolic power does not focus on the use of language to the extent

discourse theoretical approaches do, yet it remains discourse-sensitive. The thrust of

the argument Bourdieu lays out is that language is the vehicle of power relations,

rather than a mere means of communication, and that it must be studied within the

interactional and structural contexts of its production and circulation. Moreover,

Bourdieu offers the analytical constructs to do so.

To be fair, one cannot criticize Fairclough for not delivering what he promises. CDA

is not intended to be a set of logically-interconnected propositions framed in terms of

precise, unambiguous concepts. The theory is particularly ill-suited to a logical and

propositional reading of the world. What CDA is meant to do is to communicate a

certain posture, to offer a certain way of looking at the world in order to change it –

and it does that very well. CDA and the theory of symbolic power are highly

commensurate. Although with some nuances, both theories seek to connect the micro

and the macro in order to gain an understanding of why things are the way they are;

both theories take seriously the roles and effects of institutions; and both theories

recognize that some individuals are more able than others when it comes to

determining how the objects of the social world should be seen and represented.

However, the analytical constructs are generally more thoroughly-articulated in the

 62

writings of the French scholars, and come to form a whole. Table 2 presents the main

analytical constructs that compose the theoretical framework. These constructs

inform the research by providing the vocabulary and proposition necessary to

understanding and representing the social phenomenon observed.

Table 2: Key theoretical constructs

Theoretical construct

Definition

Organizational discourse Structured collection of spoken and written texts that
bring organizationally-related objects into being as they
are produced, disseminated, and consumed.

Ideological-discursive
formation

A complex of (organizational) discourses that exist
within an institution and that correspond to a particular
“way of talking” and “way of seeing.”

Institution An apparatus of verbal interaction that sustains a set of
ideological and discursive norms.

Symbolic power The power to confirm or transform the manner in which
agents see a social object and, thereby, the power to
change and reaffirm the practices of agents in relation to
a social object without physical or economic force.

Capital A marker of social status. The resource drawn upon to
change or reaffirm beliefs and representations.

Field of force A social space with its own logic [stakes] and rules
whose structure is determined by the value it attaches to
different forms of capital.

Field of struggle A social space where agents seek to improve their
relative position of power by legitimizing particular
ways of seeing and engaging with a social object.

Apparatus A field where the dominant has annulled the resistance
and reaction of the dominated. A field where the effects
of domination are such that changing the structure of the
field is impossible.

So far, it is the limitations of CDA that have been scrutinized. The theory of

symbolic violence, it is argued, can help to alleviate and resolve some of those

limitations. However, the theory of symbolic violence has itself a number of

limitations that cluster around two broad themes. These are the emphasis the theory

 63

places on the effect of structures and on social reproduction at the cost of neglecting

agency and social change.

The limitations of the theory of symbolic violence are, in part, attributable to its

structuralist roots. Structuralism is a theoretical perspective and methodological

approach in contemporary social sciences concerned with understanding how

language builds upon some higher mental, linguistic, social, or cultural structures

(Manning and Cullum-Swan 1994: 467). In terms of methodology, experience is

secondary to the deep structures by which meaning is produced and reproduced

within a culture.

Structuralism had its moment of glory on the French intellectual scene and helped

bring about the “linguistic turn” in social theory. Structuralism, however, became

increasingly criticized from the early 1960’s for being ahistorical and for favouring

deterministic structural forces over the ability of individual people to act. The student

uprisings of May, 1968 led French scholars to pay greater attention to issues of

power and political struggle, and helped accelerate the transition from structuralism

to post-structuralism.

3.4.1 Agency

Post-structuralism has been criticized for allowing little scope for agency, for

reducing individuals to passive entities subject to the effects of social structures and

institutions. According to Jenkins (2001), the theory of symbolic violence has little to

say about the motives of individuals as agents. Moreover, the extent to which

individuals are capable of making choices and imposing these choices on the world

appears, within the confines of the theory, relatively limited. However, the theory is

not completely devoid of any sense of agency.

It cannot be denied that Bourdieu is only moderately interested in the way agents

think about, account for, or represent the objects of the social world. The theory of

symbolic violence was developed as part of a concern for better understanding what

make the practices of social agents, and invites analysts to examine the structures

capable of guiding or constraining the agents’ practices. However, the theory of

 64

symbolic violence maintains that individuals are actively involved in a struggle over

the symbolic representation of the world. Thus, agency and the agent clearly matter.

Moreover, resistance plays a central role in the theory of symbolic violence.

Defending himself from the accusation of leaving little room for agency, Bourdieu

makes the following point: “I cannot begin to comprehend how relation of

domination, whether material or symbolic, could possibly operate without implying,

activating resistance” (Bourdieu and Wacquant, 1989: 80).

In sum, the theory does not celebrate agency to an extent that would satisfy scholars

accustomed to working in the tradition of Schutz’s phenomenology, Blumer’s

symbolic interactionism, or Garfinkel’s ethnomethodology. The theory does not take

as its starting point how individuals perceive and construct the objects of the social

world, but rather what the practices (including discursive practices) of individuals

are, and how these practices are animated and constrained by structures. Bourdieu

labels his own orientation ‘constructivist structuralism’ (or “structural

constructivism”).

3.4.2 Change

Bourdieu’s structural constructivism is an orientation which emphasizes the

regulatory character of social life. It attributes to individuals a propensity to

reproduce the social structures and accept their existing condition. The theory of

symbolic violence offers an explanation of how the structures of power are

reproduced, as well as why societies tend to hold together, rather than fall apart.

Numerous scholars have criticized the theory of symbolic violence, and other of

Bourdieu’s models, for leaving little room for the change and the irruption of history

(Collins, 1981; DiMaggio, 1979; Jenkins, 1982). Giroux (1983: 92) asserts that, for

Bourdieu, “working-class domination … appears as part of a Orwellian nightmare

that is irreversible as it is unjust.” Bourdieu’s skeptical position regarding the

capacity to bring about change may, indeed, appear fatalistic.

Once again, Bourdieu falls back on the notion of resistance to show that the theory of

symbolic violence is open to change, and is not ahistorical. For him, resistance is

 65

fuelled by a desire for, and a capacity to, change. However, Bourdieu does not ignore

the fact that resistance and the status quo often coexist within deterministic models of

social reproduction, as was made obvious by Marx. For Bourdieu, if change were to

happen, it would be radical, as foreseen by Marx. In this sense, the theory of

symbolic violence does not say much about ongoing adaptation and evolution.

In sum, the theory of symbolic violence and CDA have their own strengths and

weaknesses. CDA presents the potential to understand how an organizational object,

such as software development, is constituted and why it is constituted the way it is.

In essence, it draws attention to the relationship between the micro and the macro,

and the ideologies at work within the institution in which social agents are situated.

However, this theory may tend to focus too much on the textual character of social

life and be overconfident of its power to change the social world for the better. The

theory of symbolic violence, on the other hand, offers powerful analytical constructs

to understand the relationship between the micro and the macro, but only

superficially addresses the notion of change.

The theory of symbolic violence and CDA share many similarities. They are both

concerned with understanding power relations. They both share an interest in

illuminating how beliefs come to be accepted as legitimate and be reflected in the

practices of actors. More importantly, they both recognize that studying the use of

language can provide insights into the process by which an object, such as software

development, is constituted.

As argued above, organizational discourse theory is highly appropriate to

investigating how beliefs are negotiated in organizations and how these struggles

shape organizational practices (Grant and Hardy, 2003: 6-7). Taking organizational

discourse theory as an anchoring point, the theory of symbolic violence and CDA are

combined to form a theoretical framework to study the constitution of software

development. It is believed that conducting an analysis in terms of ‘field of

struggles,’ ‘field of forces,’ and ‘capital’ can enable a theoretically-rigorous analysis

of the process by which beliefs about software development and software

development practices come to be established as legitimate in an organization. Such

 66

a Bourdieuan analysis will benefit from several of Fairclough’s ideas, such as the

idea that an institution functions as an “apparatus of verbal interaction”.

The nature of reality and the purpose of research have been in the background of the

discussion throughout this chapter. The next chapter will delve into the philosophical

beliefs adopted for this study and explain how the empirical study was conducted in

order to answer the research questions.

 67

4 Research Methodology

This chapter presents the philosophical assumptions that underlie the present study

and the methods employed to collect and interpret data. Primary emphasis was

placed on selecting methods effective at capturing and preserving the depth and

richness of the data throughout the research process. The data were collected during

an in-depth immersion in a software organization, and consists of participant

observations and organizational texts.

4.1 Philosophical perspectives

In philosophy of knowledge, philosophical assumptions are abstract principles

combining beliefs about ontology, epistemology, and methodology. These

assumptions shape how researchers see the world and act in it, and provide criteria

for evaluating the knowledge they produce (Denzin and Lincoln, 1994; Pfeffer,

1993).

Paradigms (or research paradigms) are formed by the adoption of particular

ontological, epistemological, and methodological beliefs. Acknowledging that

several paradigms are available to researchers, this section contrasts the

philosophical assumptions of the two main research paradigms found in IS research,

positivism and interpretivism.

4.1.1 Positivism

Positivist studies are based on the ontological assumption that reality is objective and

singular, and independent from the researcher. In this frame, the world is premised

on the existence of hard facts that can be measured by adhering to strict rules of

procedure (Benbasat et al., 1987). Knowledge typically consists of verified

hypotheses which can be accepted as facts (Guba and Lincoln, 1994). For IS

researchers adhering to a positivist paradigm, the aim of the inquiry is to achieve

explanation, prediction, and control of the phenomena in which IT plays a central

role (Orlikowski and Baroudi, 1991).

 68

Owing to its epistemological posture, positivism assumes that researchers can

achieve a state of objective detachment from the world in which they are situated.

This enlightened state of objectivity makes them able to discover “how things really

are” and “how things really work” (Guba and Lincoln, 1994: 108). Thus, within

positivism, it is posited that researchers are capable of studying a phenomena without

influencing it or being influenced by it (Darke et al., 1998). Researchers following

the same procedure for collecting evidence and analyzing data should arrive at the

same conclusions in different contexts or at different times. Although qualitative

research methods are sometimes adopted in positivist studies, the methods of the

natural sciences have traditionally been favoured because of the importance

attributed to reliability (Klein and Myers, 1999). Thus, in sum, positivist studies

favour an objectivist understanding of socio-technical phenomena-- that is to say, an

understanding that breaks the immediate experience of the social world.

Positivism faces significant difficulties when it comes to generating a theory about

an organization-specific phenomenon or obtaining insights into the social aspects of

IS (Orlikowski and Baroudi, 1991). For a start, positivist research methodologies are

ill-equipped to appreciate the richness of the context. In order to control particular

variables, these methodologies have to rule out other variables which exist in the

context, variables which may have a bearing upon the findings if they are allowed to

exert their effects. Moreover, insights into human affairs can hardly be reduced to a

few variables without losing their richness and significance (Guba and Lincoln,

1994). Finally, the neutrality of the researcher is, at best, questionable when it comes

to examining a complex social phenomenon such as that being considered in this

doctoral study.

Because of the problems inherent in positivism, interpretivism has become

recognized as a valid alternative paradigm in organization studies in general, and IS

research in particular. As Walsham (1995) notes, interpretivism is now part and

parcel of mainstream IS research, and the choice between interpretivism and

positivism is, more than ever, an important issue for IS researchers.

 69

4.1.2 Interpretivism

Interpretivism is premised on the ontological belief that reality is socially constructed

through interactions. IS researchers following this paradigm maintain that a certain

technology or state of affairs can have different meanings for informants and

researchers (Lee, 1991). Whereas positivist methods tend to bracket some of the

particularities of the social-organizational context, interpretivist methods are very

much context-sensitive. Generalization of the research results from the setting to a

population is generally not sought or believed to be possible (Lee and Baskerville,

2003).

Epistemologically, scientific knowledge is created in interactions between the

researchers and the informants. The mathematical logic of natural science is rejected

in favour of methods which enable the researcher to understand symbolic actions and

subjective meanings (Orlikowski and Baroudi, 1991). It is perhaps in its commitment

to the study of the world from the point of view of the interacting individual that

interpretivism most stands out (Denzin and Lincoln, 1994). As a result,

interpretivism is often equated in the IS literature with the subjectivist pursuit of

individual meanings (Silverman, 1998).

In terms of limitations, the interpretivist paradigm offers little internal validity. A

research study has internal validity if the variables representing a phenomenon can

be accurately measured, controlled, or manipulated. Under the interpretivist

paradigm, reality is always multiple or, if what Orlikowski and Baroudi (1991) call a

“radical interpretivist” stance is adopted, literally created by the researcher (Latour

and Woolgar, 1986). In a similar vein, the extent to which findings can be

generalized to other similar settings is always questionable (Lee and Baskerville,

2003). However, it is perhaps on the question of reliability, the extent to which

findings can be replicated or reproduced by other scientists, that interpretivist IS

studies are the most vehemently criticized (Benbasat et al., 1987; Darke et al., 1998;

Walsham, 1993). Finally, the extent to which the findings of interpretive IS studies

are free from bias is always a concern. This fact is in evidence in the effort of

researchers to triangulate their methods in order to inject objectivity and credibility

into the findings (e.g., King, 1996). Table 3 summarizes the philosophical

assumptions of the two research paradigms.

 70

Table 3: Two main paradigms in IS research

Philosophical
Assumptions

Positivism Interpretivism

Ontology: What is nature
of reality?

Social reality has an
existence which is as hard
and concrete as the natural
world.

Social reality is
symbolically constructed
and reconstructed by
humans.

Epistemology: What is the
nature of the relationship
between the IS researcher
and the known?

The IS researcher can
study the organization
without influencing it or
being influenced by it.

Scientific knowledge is
created through interaction
among the IS researchers
and the informants.

Methodology: How is
knowledge of the world
gained?

Favors experimental and
manipulative methodology
based on verification of
hypotheses.

Places considerable stress
upon exploring the
particularities of context
and getting close to the
informant.

4.2 Some difficulties with subjectivism

The previous description of positivism and interpretivism indicates that these two

paradigms sustain different ways of studying a phenomenon. The description

highlights the objectivist and subjectivist orientation that positivism and

interpretivism respectively favour. To reiterate, objectivism presupposes a break with

the immediate experience. This orientation seeks to understand the immutable

principles governing the social world without necessitating the researcher to become

part of it. On the other hand, subjectivism seeks to grasp the way the social world

appears to the individuals who are situated within it. Subjectivism presupposes the

possibility of understanding the lived experience of others, and theorizes that such an

understanding can, by itself, derive an adequate form of knowledge about the social

world (Thompson, 1991: 11).

The objective of this doctoral research, as the research questions formulated in

Chapter 2 make clear, is to increase our understanding of a social phenomenon

within a specific cultural and contextual setting. Particular attention is paid to the

context within which beliefs about software development and software development

 71

practices are established as legitimate. The research does not seek to measure

variables, test hypotheses, or produce generalizable knowledge. Rather, it seeks to

develop a meaningful and theoretically rigorous account of a phenomenon by

utilizing theories so far little-known to IS research. In this sense, the research adheres

predominantly to the philosophical assumptions underlying the interpretive paradigm

(Cavaye, 1996).

However, for reasons that will be justified as this chapter progresses, the researcher

endeavors to move beyond the subjectivism characteristically associated with the

interpretive paradigm, yet to avoid relapsing into the objectivism of the positivist

paradigm. In order to identify some misconceptions about the interpretive paradigm

and some limitations of subjectivism, the three following claims, contained in IS

research, are examined:

1. Interpretive research involves an enquiry from the perspective of the
informants;

2. Subjective understanding is the de facto alternative to objective
understanding;

3. A subjectivist understanding of the social word is trustworthy.

Claim 1: Interpretivism as a subjectivist approach

It is widely assumed in the IS literature that interpretive research implies enquiry

from the point of view of the participants. For example, Orlikowski and Baroudi

(1991) write that “The primary endeavor [of the interpretive research approach] is to

describe, interpret, analyze, and understand the social world from the participant’s

perspective…” and that interpretive “researchers thus attempt to understand

phenomena through assessing the meanings that participants assign to them.”

In the same vein, Walsham (1995) contends that to be interpretive, IS research must

provide “evidence of a nondeterministic perspective, and intent to increase

understanding of the phenomena within a specific cultural and contextual setting, and

an examination of the phenomena and the setting from the perspective of the

participant” (emphasis mine). Moreover, Walsham implies that IS research which

does not adhere to these three criteria simultaneously is not interpretive research.

 72

Claim 2: Objectivism and subjectivism are the two alternatives

In the IS literature, the interpretive research approach is generally seen as the

alternative to the positivist research approach. As Lee (1991) remarks, “it often

appears that the two approaches are opposed,” and that the interpretive approach is

“the alternative to the positivist approach.” Similarly, Walsham (1995) observes that

“the epistemological choice between interpretivism and positivism is an important

issue for IS researchers.” As a consequence, it is generally believed that researchers

have to choose between understanding the social world as it appears to the

individuals who are situated within it (i.e. the subjectivist orientation) or breaking

with the immediate experience in order to identify the principles governing the social

world (i.e. the objectivist orientation).6

Claim 3: A subjectivist understanding is trustworthy

The third claim asserts that researchers can acquire a trustworthy understanding of

the social world by studying how the informants perceive and describe it. However,

as indicated by Van Maanen (1979: 546), researchers “can be misled because

informants are sometimes totally unaware of certain aspects underlying many of their

own activities. Like fish who are presumably unaware of the water in which they

swim,” informants take the things that are associated with their daily work for

granted. Thus, it would not always be useful for researchers to attempt to capture

how informants ‘see things.’ The value of a subjectivist understanding depends

largely on the research objective. For example, a study that aims to understand how

individuals in a particular context perceive something or themselves may benefit

from a subjectivist understanding. However, if the objective is to understand the

mechanisms that prevent individuals from conceiving of something in a different

way and reject their identity, a purely subjectivist understanding is at best limited

because individuals are not likely to be aware of how these mechanisms operate.

The problems associated with the trustworthiness of subjectivism have puzzled social

scientists for at least a century. Karl Marx, for example, recognized that any attempt

6 Although some scholars (Chua, 1986; Orlikowski and Baroudi, 1991) treat critical research as a
distinct research paradigm, it is here considered to be a philosophical orientation that can be adopted
as part of the positivist or interpretivist paradigm.

 73

to view reality as perceived by the actor would be likely to reproduce the false or

twisted version of ideas propagated by the reigning orthodoxy (Marx, 1867). This

doctoral dissertation seeks to avoid the pitfalls of relying on a subjectivist approach,

while remaining sensitive to the particularities of the context.

4.3 Interpretivism as a preferred research approach

There is no reason to assume that an interpretivist study offers an understanding

based only on the perspective of the informants. Equating the subjectivist approach

with interpretivism seems to be based upon the misconception that positivist research

is ‘objective,’ in the sense of not being influenced by interpretations or prejudices.

Following this erroneous line of thinking, a study that is not ‘objective’ is

‘subjective’ and, hence, subjectivist in orientation (Silverman, 1998).

As to what concerns the assumption that objectivism and subjectivism are alternative

to one another, it is clear that there exist other possibilities beyond them. It is entirely

possible that a researcher is neither seeking to see through the eyes of informants, nor

seeking to measure variables or test hypotheses. Suchman (1987), in her influential

study of human-computer interaction, offers an example. She focuses on the

practices of actors. In so doing, Suchman avoids losing sight of the phenomena by

reducing social reality to a set of variables or the definition of the participants.

A practical solution to the limitations of the subjectivist orientation is to focus on

what people are doing. Maynard explains how the traps of subjectivism can be

sidestepped:

The question that ethnographers have traditionally asked – “How do
participants see things?” – has meant in practice the presumption that
reality lies outside the words spoken in a particular time and place. The
… [alternative] question – “How do participants do things?” suggests
that the microsocial order can be appreciated more fully by studying how
speech and other face-to-face behaviours constitute reality within actual,
mundane situations. (Maynard, 1989)

Referring to the point made by Maynard above, and the work of ethnographers

working within the IS field (Orlikowski, 1991; Suchman, 1987), Silverman (1998)

 74

notes, significantly, “that the simplistic opposition between positivist and

interpretivist models of social research is an unhelpful basis for qualitative or case

study research.” The objective of the research should determine the paradigm

adopted and the research strategy to be deployed to fulfil this objective.

The objective of this doctoral research, as the research questions formulated in

Chapter 2 make clear, is to increase our understanding of a social phenomenon

within a specific cultural and contextual setting. The research does not seek to

measure variables, test hypothesis, or draw inferences about phenomena from a

typical organization to similar organizations. In this sense, this research adheres

predominantly to the philosophical assumptions underlying the interpretive

paradigm. However, the identification of interpretivism with an analysis of how

informants ‘see things’ is rejected (Silverman, 1998). An analysis of how people ‘do

things’ is instead chosen. It is believed that by adopting a practice perspective, the

risks of being misled by informants’ views can be partly avoided. More importantly,

it is believed that informants’ accounts could not adequately explain how the process

of institutionalization of software development practices and beliefs occur in the

study organization.

4.4 Research strategy

A research strategy is “a way of going about one’s research, embodying a particular

style and employing different methods” (Galliers, 1992). The case research strategy

involves gathering detailed information about an organization or a functional

department (Denzin and Lincoln, 1994; Yin, 1981), and typically combines multiple

data collection methods for gathering qualitative and/or quantitative evidence

(Eisenhardt, 1989). The case research strategy is utilized for the present doctoral

research to gain in-depth knowledge of the process by which beliefs about software

development and software development practices come to be established as

legitimate within an IT organization. The case study research strategy is appropriate

for three principal reasons.

First, as indicated by Benbasat et al. (1987), a case strategy is an appropriate way to

research an area in which few previous studies have been carried out. An abundance

 75

of academic literature has been produced on the management of the software process.

However, how software development practices come to be deemed legitimate in

organizations still puzzles researchers (Madsen et al., 2006; Truex et al., 2000).

Positivist research strategies are, therefore, inadequate at this stage because of the

great number of variables potentially relevant, but still unknown (Denzin and

Lincoln, 1994; Yin, 1981).

Secondly, a study of the process by which a collective agreement about the nature of

an object is established has to be conducted in a real-life context. Consequently, a

study of the social phenomenon of interest should be conducted in an organizational

setting. Russo and Stolterman (2000a) claim that the bias towards positivist research

strategies such as surveys “has limited the knowledge of what is actually happening

in IS practice.” The case study strategy, which involves the study of a phenomenon

within its real-life context, offers the possibility of delving into the complexity of the

context (Benbasat et al., 1987; Eisenhardt, 1989).

Finally, and closely related to the two previous points, a research strategy that

enables the gathering of qualitative data is needed. Although the case research

strategy can be used to obtain quantitative data (Lee, 1991), it allows, in the present

case, for a combination of two qualitative data collection methods. The idea is to

accurately represent what is really happening in the situation, in all its richness and

complexity (Benbasat et al., 1987; Yin, 1984).

4.4.1 Other research strategies considered

In addition to the case study, two other research strategies were considered: action

research and ethnographic research. Those are action research and ethnographic

research. Action research pursues the dual objectives of bringing about positive

change in an organization and monitoring the results. According to Rapoport (1970),

this research strategy “aims to contribute both to the practical concerns of people in

an immediate problematic situation and to the goals of social science by joint

collaboration within a mutually acceptable ethical framework.” Although there is still

considerable debate in the IS literature as to the scientific merits of action research

 76

(Baskerville and Myers, 2004; Baskerville and Wood-Harper, 1996), it is widely

used with the field because of the close link between the theory and the practice.

Although the researcher was paid for his professional services by the study

organization, the present study does not qualify as an action research for three

reasons. First, the researcher did not play a role in the organization that was

significant enough to instil change (Baskerville and Myers, 2004). Instead of being

responsible for the outcome of a specific project, the researcher was involved in

several different projects assigned to him by his then-superior. Secondly, to qualify

as an ‘action research,’ members of the organization must become involved in the

research at all levels, from defining the aim of the study to writing the results

(Robson, 1993). However, the study organization was primarily interested in making

use of the professional expertise of the researcher, and not in his research project.

Finally, researchers adopting action research as a research strategy should tell

practitioners of the host organization something useful, or at least attempt to do so.

This research was not conducted with this aim in mind. However, the researcher

hopes that the conclusions reached in this study will eventually inform the work of IS

practitioners.

Ethnographic research is the other research strategy that was considered by the

researcher. The distinction between in-depth case studies and ethnographies is often

blurred (Klein and Myers, 1999). Ethnographies require the researcher to spend a

considerable amount of time in the field. It is not uncommon that researchers spend

more than a year in the field in order to place the phenomenon studied in its social

and cultural context (Reeves Saunday, 1979). Although ten months were spent in the

field and a thorough understanding of the social and cultural context was sought, the

researcher did not pursue “the essential ethnographic question” of what it is to be a

member of the organization (Van Maanen, 1988). The researcher did not “go native”

and always saw himself as a researcher having infiltrated the corporation for the

purpose of carrying out a study. Ethnographic data collection methods, such as

recording observations in a diary, were, nonetheless, used.

 77

4.5 Data collection method

In interpretive research, the most commonly-used data collection methods are

interview methods and observation methods (Creswell, 1998; Denzin and Lincoln,

1994). Interview methods differ from observation methods in that they are

interventionist – they interfere to some degree with the natural stream of everyday

life. Researchers using interview methods often ask the informants questions, pose

tasks to them, or deliberately confront them by pointing out the contradictions

present in their accounts. Interviews are often conducted outside the normal flow of

activities. Researchers relying on observation methods, on the other hand, seek to

gather impressions of the surrounding world and witness the phenomena they are

studying in action. This task usually requires direct contact with the observed

individuals as they go about their routine daily activities (Adler and Adler, 1994).

For this reasons, observation methods are particularly well-suited to a study of

everyday practices.

Researchers utilizing observation methods can take roles that range from hidden

voyeur, who watches from outside, to active participant. Some advantages of opting

for participant observation include direct exposure to the social context and to the

flow of interaction among informants. Thus, even if an understanding from the point

of view of the informant is not sought, participant observation enables researchers to

take part in organizational activities to gather evidence without disrupting the natural

stream of everyday organizational life (Adler and Adler, 1994: 378). Participant

observation has the potential to generate findings that more accurately represent what

is really happening in the situation than interview methods.

In the previous chapter of this doctoral dissertation, a discursive theoretical approach

was proposed to illuminate the research questions previously posed. Organizational

discourse theory was presented as a potent theory for understanding how beliefs are

negotiated and established in an organization, and how such struggles shape

organizational practices. A key idea underlying the theoretical framework is that the

analysis of discourses should not be isolated from an analysis of the socio-

institutional contexts in which discourses are embedded. This is because the context

is deemed to influence the value that discourses are endowed with-- that is, the

manner in which organizational actors normally “valorize” (i.e. assess the value of)

 78

discourses (Bourdieu, 1991; Thompson, 1990). In order to address the particularity

of the context, a context-sensitive theoretical framework was favoured over

conversation analysis and other such text-centric theories. In the light of these

research objectives, participant observation emerged as an appropriate data collection

method.

4.5.1 Participant observation

Participant observation was utilized as a data collection method in order to obtain a

rich understanding of the context. Over a ten-month period, from March 2003 to

January 2004, the researcher spent between 40 and 50 hours per week in the

organization. During this period, the researcher served as an employee with the

organization’s governance group. Organizational members were informed that the

researcher was doing a study, but did not show any interest in it. Probably because of

his status as employee and his professional background, organizational members

identified the researcher, from his first day in the workplace, as being one of them.

Thus, the presence of the researcher did not represent an intrusion in the corporate

workers’ natural stream of everyday life.

An electronic diary was meticulously kept. In this diary, the researcher recorded

observations about a wide range of practices enacted by organizational members as

part of their routine daily activities. Observations were recorded as discreetly as

possible, typically after work hours. However, any relevant informal verbatim

statements that were formulated by organizational actors were noted as soon as

possible after their occurrence.

The diary consisted of Microsoft Word documents, usually created for a specific

workday. By organizing the diary chronologically, rather than thematically, the

researcher could easily go back to previous pages of the diary and further develop a

previously-recorded observation from a different point of view, or in the light of a

new observation. About one hundred and fifty files were created, resulting in a diary

of more than one hundred and forty pages.

 79

Participant observations provided rich insights into the sort of ideas and values that

were esteemed in the organization. For example, the care that organizational actors

took in cultivating a professional image and the importance granted to producing

written documents were identified as a particularity of the study organization. The

observations recorded were often juxtaposed with some organizational text collected.

4.5.2 Formal documents collection

Formal documents that described the vision, mission and business strategy of the

study organization were collected and examined. These documents were typically

electronic files that were discovered in the numerous Lotus Notes databases and on

intranets of the organization. The documents included software development codes

of practice, presentation material, quarterly organizational objectives, software

development standards, and other such organizationally-sanctioned documents. It is

believed that these documents were carefully-engineered texts that had been

designed to circulate ideas which reflected the reigning orthodoxy. Forty formal

documents were collected in total.

The researcher realized during the second month of immersion that formal

documents said little about the process by which beliefs about software development

and software development practices were established as legitimate. In retrospect,

informal documents provided more valid data and proved to be more analytically

meaningful than formal documents.

4.5.3 Informal documents collection

Informal documents differ from formal documents in that they are not intended to be

distributed widely across the organization. In the context of the immersion, these

documents included, but were not limited to, minutes of meetings, memoranda, and

emails. Informal documents were encountered by the researcher during his day-to-

day work and were also found in the Lotus Notes databases of the firm.

These organizational texts provided the researcher with a window on the practical

problems associated with the orderly, and sometimes naïve, perspective offered by

 80

formal documents. Informal documents often expressed alternative ideas and

provided insights into how the legitimacy of some beliefs had been established.

Furthermore, studying these documents enabled the researcher to examine the

evolution of some ideas before beginning the study. For instance, it is by scrutinizing

informal documents that the researcher made sense of how some organizational

initiatives intended to standardize software development had come about. In total,

more than five hundred and sixty informal documents were collected.

4.5.4 Interviews

In January 2004, during the last two weeks of fieldwork, the researcher conducted

twenty five interviews in order to clarify some ambiguities. One question the

researcher needed to further explore was the extent to which organizational members

were conscious of their actions. Did they do what they did and say what they said

with a conscious intent in mind, or did they function instinctively? It will become

clear as this dissertation progresses that understanding the extent to which the

context structures the discursive and non-discursive practices of organizational actors

is analytically vital.

Twenty two individuals of diverse hierarchical levels and backgrounds were

interviewed. The interviews lasted, on average, fifty minutes and were conducted

outside the normal work hours. All interviews were tape-recorded. The researcher

did not judge it necessary to transcribe the interviews because interview data are not

a source of findings for this study. Interviews were conducted in order to clarify

issues, rather than to generate findings.

4.6 Data interpretation

All data obtained were qualitative. The literature states that the methods used to

interpret qualitative data can be divided into two categories: quantifying methods and

non-quantifying methods (Hussey and Hussey, 1997: 248-249). Quantifying methods

involve turning the qualitative data into a numerical data. However, because of the

ontology favoured, a non-quantifying method was deemed more desirable to

preserving as much as possible the deep meaning of the qualitative data (Kaplan and

 81

Maxwell, 1994). Thematic classification (i.e. coding) was, nonetheless, used as a

means of synthesizing, referencing categories, and retrieving data.

The organizational texts collected and analyzed were classified by themes.

Proceeding inductively (Miles and Huberman, 1994), the researcher did not begin the

analysis of data with a set of themes in mind, but rather let these themes emerge.

Themes were progressively delineated as organizational texts were iteratively re-

examined. It was not uncommon that organizational texts superimposed, knotted into

one another and were found to belong to more than one theme. In keeping with the

discourse analytic approach adopted, those themes are considered to be

organizational discourses in their own right-- that is to say, sets of statements that

bring organizationally-related objects into being (Grant and Hardy, 2003: 6). In order

to reduce the biases inherent in the researcher’s interpretation of the texts, a form of

hermeneutics was utilized (see below).

4.6.1 How discourse analysis is done

A large number of non-quantifying methods can be used to reveal the discourses

inhabiting organizational texts. The researcher did not feel the need to utilize a well-

known method, and broadly followed some of the principles for analyzing discourses

laid out by Parker (1992). In broad strokes, the analysis of texts and discourses

involved three phases: identifying discourses, examining the points of tension within

discourses, and discovering the pattern of relationship among discourses. Figure 1

provides a brief description of these phases, as well as identifies the key questions

that need to be addressed phase 1 and phase 2.

 82

Figure 1: The analysis of texts and discourses

In the first phase of analysis, general themes present in organizational texts were

identified by asking and answering the question, “What is this text about?” The

following excerpt from an internal report about software process improvement is

helpful for illustrating the process of discourse identification:

[…] we can approximate a statistical quality control over the human
failures that plague projects: underestimation, schedule slippage,
requirements mismatch, and so on. We must begin by cataloguing such
failures and learning from their patterns. The PIR plays a key role in this
process. [Internal report, 01-08-2003]

In the previous excerpt, the acronym “PIR” refers to a project retrospective. In

software engineering, a project retrospective is a process carried out by a project

team at the end of a project, aimed at discussing what was successful about the

project covered by that retrospective, what could be improved, and how to the

successes and improvements of the project could be incorporated into future projects.

The excerpt justifies the rationale for systematically completing the PIR. It is about

the PIR. Moreover, the text argues that the PIR has to involve statistical quality

control. Thus, the text is also about ‘measurement.’ In a similar vein, the researcher

interprets issues of estimation and schedule slippage as difficulties associated with

Phase 1: Identifying themes/discourses
Key questions: “What is this text about?”

“Does keeping two or more themes apart contribute to the analysis?”

Phase 2: Recognizing contradictions within discourses
Key question: “Does this discourse represent/constitute software

development in different ways?”

Phase 3: Understanding the links between discourses

 83

predicting. Thus, the text segment, “human failures that plague projects:

underestimation, schedule slippage,” refers to the theme, ‘predictability.’ Finally, the

text segment, “learning from their patterns,” refers to the theme, ‘learning.’

Being familiar with the texts collected was necessary to identifying the relevant

themes. For example, the researcher realized through an ongoing analysis of the

findings that although the word ‘quality’ is used in the previous extract, ‘quality,’

cannot be considered a theme because it is too all-encompassing. If quality is broadly

understood to be the ability of a software application or component to fulfil the

requirements of the customer (IEEE, 1990), then everything that people do in a

software organization has to do, in one way or another, with producing or managing

quality.

On the other hand, ‘statistical quality control’ was, at some point in the data

interpretation process, aggregated with other themes to become ‘measurement’

because this theme offered a coherent set of statements referring to software

development. Keeping the themes apart would not have contributed to the analysis,

while further aggregating ‘measurement’ with other themes would have hampered

the analysis. Seven themes were, in total, identified. These themes sustain certain

visions of software development and, hence, are considered to be organizational

discourses.

In a second phase of analysis, following the principles for analysis discourse laid out

by Parker (1992), the researcher examined the contradictions that existed within

discourses by asking and answering the question, “Does the discourse represent or

constitute software development in different ways?” In the foregoing extract, for

example, ‘learning’ is associated with the process of systematically identifying and

measuring unwanted patterns. This perspective on learning stands in marked contrast

to that promoted by agile development. For advocates of agile development, as will

be explained in detail in this doctoral dissertation, learning occurs at a human level,

rather than at a process level. Thus, ‘learning’ is found to carry two contradictory

meanings.

 84

Finally, still following Parker’s (1992) principles, the researcher determined how the

seven organizational discourses identified related to, or opposed, one another. The

researcher found hand-drawn diagrams and tables very useful tools. By going back to

the data and by using mapping techniques, the researcher could see how some

discourses depicted software development coherently. For example, in the previous

extract, ‘measurement’ and ‘learning’ were identified as mutually supportive

discourses: measuring enables learning.

Ricoeur’s hermeneutics of suspicion (Ricoeur, 1974; 1981; 1991), which involves

formulating and comparing different interpretations of a text, proved particularly

useful for identifying contradictions within discourses. The next section explains

what the hermeneutics of suspicions involves and how it informed the interpretation

of organizational texts.

4.7 Hermeneutics

Hermeneutics is generally described as a mode of analysis (or a philosophy) that

strives to recreate or re-experience the thoughts of the author of a text in order to

allow for a better understanding of what the text means (e.g., Kets de Vries and

Miller, 1987). While this concern to ‘view through the eyes’ of the author is central

to many forms of hermeneutics, it is secondary in Paul Ricoeur’s work (Ricoeur,

1981; 1991). This section explains how the epistemology underlying Ricoeur’s

hermeneutic of suspicion was adopted as part of the analysis of organizational texts

and how it enriched the analysis.

It is well-known to discourse analysts that texts, especially texts produced in

informal oral communication, often take sudden shifts, leave ideas incomplete, and

are contradictory (Fairclough and Wodak, 1997). Consequently, in most cases,

analysts have to use their discretion when interpreting texts. Unquestionably,

analysts want to understand texts in all their complexity and to grasp the objectives

which have motivated text producers. In practice, however, this goal is never

possible because text producers and analysts are different entities. Text producers

and analysts are often situated in different social contexts, have different

backgrounds, and pursue different objectives.

 85

Ricoeur’s hermeneutics of suspicion is a paradigm of text interpretation developed to

interpret the texts that constitute discourses. Central to this paradigm is the notion

that texts take an autonomous character once produced. Seen in this light, texts do

not contain fixed meanings that can allegedly be recovered through a socio-historical

reconstruction. Rather, texts invite plural readings and interpretations. The role of the

analyst, who is presumed incapable of recovering the original meaning of texts, is to

distil from texts an interpretation that opens a window of understanding.

The hermeneutic of suspicion actively seeks to overcome the effects of ideologies.

For Ricoeur, text interpretation becomes ideologically distorted when one transposes

one’s ways of thinking or points of view on the texts. However, Ricoeur is wary of

other forms of hermeneutic that seek to project the analyst in a context that is not his.

Whereas Gadamer’s philosophical hermeneutic (Gadamer, 1977) and Habermas’

critical hermeneutics (Habermas, 1980) both strive to recreate the socio-historical

conditions of the text producer, the hermeneutics of suspicion seeks to strip away

layers of ideological historical and personal distortions. Ricoeur does not, however,

claim that discourse analysts can arrive at an ideology-free, authentic account

through a hermeneutic mode of analysis. Because “the critique of ideology is a task

which must always be begun, but which in principle can never be completed”

(Ricoeur, 1981: 245), the objective of the hermeneutic is to develop interpretations

which will contribute to understanding the texts without denying the possibility of

alternative interpretations.

For the purpose of this doctoral research, the researcher adopted the epistemology

underlying the hermeneutic of suspicion to interpret the organizational texts collected

and to identify the discourses that inhabit them. In simple terms, this meant

acknowledging that a particular organizational text can be understood differently,

and making an effort to develop alternative interpretations. In doing so, the

researcher sought to go beyond what appeared immediately obvious to him in the

organizational texts. In detailed terms, employing the hermeneutics involved (a)

carrying out cross-checking of interpretations through iterative hermeneutical circles;

(b) relating single texts to the organization’s intertextual space within every iterative

hermeneutical circles; and (c) acknowledging that a “true” interpretation cannot be

reached.

 86

It was found that employing the hermeneutic of suspicion injected rigor into the

analysis of organizational texts. Employing this paradigm of text interpretation

proved particularly rewarding in the third phase of analysis described above (see

Figure 1). It helped the researcher to recognize the contradictory ways in which some

organizational discourses could be understood-- for example, the different meanings

‘learning’ can be endowed with (see above). Moreover, although hermeneutics is not

unknown to the field of IS research (Boland, 1991; Lee, 1994; Myers, 1995), the

explicit application of the hermeneutic of suspicion represents an addition to IS

research because the principle of suspicion is by far the least-developed in the IS

research literature (Klein and Myers, 1999). The researcher thus gained first-hand

experience in a means of engaging with organizational texts that is little-known in

the field of IS research.

 87

5 Case Description

John Pierport Morgan (1837-1913) is considered by many the greatest financier in

the history of United States business. Morgan joined his father’s banking firm in

1856 and established J.P. Morgan and Co. (hereinafter J.P. Morgan) in 1895, which

became specialized in financing American business and marketing American

securities to Europe. In the aftermath of the Civil War (1861-1865), J.P. Morgan

helped pay off the country’s enormous debt and raised vast amounts of money in

foreign investment to help build railroads in the United States

As the most prominent financial service company of the Progressive Era (1900-

1920), J.P. Morgan financed many of the giants of the America’s industrial heyday.

Often, it entered into the councils of these companies and acquired control over their

administrations. The firm also exerted considerable power outside the United States,

endowing its actions with broad significance in terms of American foreign policies.

J.P. Morgan is reported to have stopped panics, saved the gold standard, rescued

New York City from bankruptcy, and, less famously, coaxed America into war for

profit (Chernow, 1986) three times.

The Chase Manhattan, although also associated with the leading figures of corporate

America, and bigger than J.P. Morgan in terms of assets, has never enjoyed the

patriotic reputation J.P. Morgan possessed. This, however, did not prevent Chase

Manhattan from buying J.P. Morgan in a stock deal in September, 2000. The

acquisition was a means for the Chase Manhattan, a commercial bank, to take a big

step forward in investment banking following the dismantlement of the Glass-

Steagall Act, and to acquire the prestigious J.P. Morgan name.7 The new company

was called J.P. Morgan Chase and Company (hereinafter J.P. Morgan Chase),

combining two of the most established names in U.S. banking. Three years later, in

7 As a consequence of the bank runs and failures of the Great Depression, Congress passed Glass-
Steagall Act in 1933 in order to protected bank depositors from the additional risks associated with
security transactions. The act prohibited commercial banks offering general services to businesses
from collaborating with investment banks issuing stocks and bonds. J.P. Morgan chose to remain an
investment bank. In 1999, the Glass-Steagall Act was dismantled as a result of the Financial Services
Modernization Act of 1998.

 88

July 2004, the newly-formed company acquired Bank One Corporation, bringing its

total assets to $1.1 trillion. Table 4 presents the assets (in billions of US dollars) of

the major American banks prior to the acquisition of J.P. Morgan by Chase

Manhattan.

Table 4: Pre-acquisition assets of America’s biggest banks

Bank Assets ($ billion)
as of Quarter 2 of 2000

Citigroup $792

Bank of America $680

Chase Manhattan $396
Bank One $273

J.P. Morgan $266

First Union $258

Wells Fargo $234

Washington Mutual $186

FleetBoston Financial $181

SunTrust $100

Source: AmericanBanker.com, accessed 12 January 2005

5.1.1 Mission and structure

J.P. Morgan Chase operates six divisions: asset and wealth management, card

services, commercial banking, investment banking, retail financial services, and

treasury and securities services. The study was conducted within the investment

banking division of the firm. Investment Bank Technology (IBTech) is the IT

organization responsible for developing and maintaining the technological

infrastructure and software products of the investment banking division. IBTech’s

mission is to “deliver innovative and commercial solutions in close partnership with

the business and operations through a committed team of outstanding technologists”

[A27]. The organization has approximately 830 permanent employees and 200

contractors in 10 locations. Table 5 presents a breakdown of the number of

permanent employee per location.

At the time the study was carried out, IBTech had ten major IT projects in progress.

These projects were intended to enable the business growth of the investment

banking division by $917 million, and to generate efficiency and productivity

savings of $92 million over a five-year period (2003 to 2007). The total technology

 89

spending was budgeted at $122 million for this period, of which approximately one

third was spent while fieldwork was being conducted.

Table 5: Number of permanent employees at IBTech per locations

City Number of permanent employees
London 386

New York 217

Tokyo 52

Hong Kong 40

Dover (Delaware, USA) 37

Glasgow 35

Sydney 32
Mumbai 12

Johannesburg 12

Singapore 10

The IT products developed at IBTech are, in most cases, highly innovative. They

include, among others, a proprietary global equity trading platform, a novel

settlement and clearing infrastructure for the EMEA region (Europe, Middle East and

Africa), and an advanced revenue-reporting engine to calculate commissions on

transactions.

Appendix 1 shows that the organization structure adopted by IBTech was rather

conventional. Being part of one of the world’s largest and most established banks

gave IBTech poise, poise reflected in the adoption of a traditional hierarchical

organization structure to ensure coordination. Chief Business Technologists are

responsible for delivering information systems in a region (i.e., EMEA, Asia,

Americas) or for a global line of business (i.e., Futures and Options, Equities

Research). Global Managers are accountable for standardizing and making the work

of others more efficient by managing global programs. Chief Business Technologists

and Global Managers report directly to IBTech’s Chief Technology Officer.

5.1.2 IBTech as an innovative high-tech organization

IBTech differs substantially from the archetypical innovative organization depicted

in popular press and textbooks. Mintzberg’s conceptualization of the Adhocracy

 90

provides a useful starting point for discussing some of the features of innovative

organizations:

To innovate means to break away from established patterns. So the
innovative organization cannot rely on any form of standardization for
coordination. In other words, it must avoid all the trappings of
bureaucratic structure, notably sharp divisions of labor, extensive unit
differentiation, highly formalized behaviors, and an emphasis on
planning and control systems (Mintzberg, 1979: 432-433).

Regarding the development and assimilation of standardized practices, Mintzberg

remarks that “the Adhocracy cannot rely on the standardized skills of these experts to

achieve coordination, because that would lead to standardization instead of

innovation” (Mintzberg, 1979: 434). Similar portrayals of the innovative

organization can also be found in the writings of Kanter (1988), Quinn (1985),

Tushman & Nadler (1986), and Van de Ven (1986), among others.

Whether developed internally or acquired from vendors, standardized practices play,

at IBTech, a central role in enabling new product development. Perhaps because of

its sector of activity, its history, or diverse contingency factors (Mintzberg, 1983;

Pettigrew, 1979), the organization is highly bureaucratic and reliant on the

formalization of behaviors. However, in spite of these fundamental differences from

what is expected of a ‘typical’ innovative organization, IBTech can clearly be

characterized as such.

IBTech’s IT products are highly knowledge-intensive and characterized by a high

degree of novelty. Products developed by the organization are, in general, distinctive

from any other products which exist in the competitive environment. They are

typically developed to meet specific needs and usually help the investment bank

division to perform mission-critical activities more efficiently, with less risk, and/or

at lower costs, than its competitors. Although statistical information about the profile

of the workforce could not be obtained for this study, it is obvious that it is

predominantly composed of corporate workers whose knowledge and skills grant

them the ability to directly contribute to the design and development of technological

products.

 91

IBTech operates more than sixty proprietary information systems [A40].8 These

systems include sophisticated order and executions trading systems, risk

management applications, and communication platforms linking multiple exchanges.

In many cases, the information systems are used by a broad institutional client base,

ranging from financial institutions, asset managers and industrial groups to

professional traders and private clients, and represent important sources of revenues

for J.P. Morgan Chase. Needless to say, the knowledge and creativity embedded in

the IS is fiercely protected by an array of patents.

IBTech supports many programs designed to foster innovation. Within the past two

years, through the ‘IB Technology Patent Program,’ employees have obtained twelve

patents on IBTech’s behalf. Those innovative ideas were either incorporated into

existing products or used internally by the employees in their day-to-day activities.

The ‘Productivity and Innovation Initiative,’ another program intended to foster

innovation, delivered a novel data storage technique following a research and

development project. A third program, ‘Business Innovation Through Technology,’

seeks to foster a culture of innovation and the transfer of knowledge from adjacent

fields. In sum, although IBTech is part of a conservative corporation, it possesses

many characteristics of an innovative organization.

At IBTech, it is believed that organizational learning fosters innovation. The

‘learning organization’ program has as its objective to transform IBTech into a

“Learning Organization.” An organizational document describing the ‘learning

organization’ program defines a “Learning Organization” in the following terms:

“An Organization that learns and encourages learning among its people. It promotes

exchange of information between people hence creating a more knowledgeable

workforce. This produces a very flexible organization where people will learning

from experience and adapt to new ideas and change through a shared vision” [A31].

As will become clear as the discussion proceeds, in the present context, learning

centres principally on the development of standardized software development

practices and is closely connected to software process improvement. The ‘learning

8 A capital ‘A’ followed by a number in between square brackets ‘[]’ refers to the code given by the
researcher to an organizational text.

 92

organization’ program is based on six mechanisms. Table 6 presents these

mechanisms and specifies their importance in terms of effort and budget.

Table 6: The ‘learning organization’ program and its mechanisms

Mechanism Effort (Months) Budget (US$)
CMM & CMMI: The models consist of best
practices that address the development and
maintenance of products and services, covering the
product lifecycle from conception through delivery
and maintenance.

30 $675,000

EPF: The equity process framework (EPF) is a
standard software development process. It is
necessary for the organization to institutionalize a
standard software development process to be
accredited CMM level 3.

45 $1,012,500

SEPG: The software engineering process group
(SEPG) is the forum intended to facilitate the
definition, maintenance, improvement and
establishment of the software development
processes for IBTech. SEPG allows areas for
improvement to be identified and good practices to
be retained.

10 $225,000

PIR: The post implementation review (PIR) is a
project retrospective used to prioritize process
improvement actions to the SEPG.

7.5 $168,750

Metrics: Performance indicators are devised to
enable the measurement of improvement. The
development of metrics is necessary for the CMM
& CMMI initiatives.

2.5 $56,250

Knowledge Management: Training and the
development of knowledge management intranet
fall under this category.

3 $67,500

Source: [A31]

The ‘learning organization’ program is an umbrella for closely-related mechanisms

intended to create and implement more effective software development practices.

This program is comprised of a formal governance structure that ensures that

learning opportunities are systematically identified and exploited by the whole

organization. Figure 2 illustrates this structure. According to this structure, regional

Software Engineering Process Groups (SEPG) are responsible for presenting to the

SEPG Steering Committee practices that have been found to provide good results in

a particular software house, and that present learning opportunities for other regions.

These local ‘best practices’ are identified by the software houses’ quality working

 93

groups. Moreover, several SEPG Working Groups exist at IBTech, and aim to

advance knowledge in particular areas, such as agile and iterative development and

the use of metrics, for the whole organization. The regional SEPG are established by,

and report to, the SEPG Steering Committee. The SEPG Steering Committee is made

up of Chief Technology Officer, the Chief Business Technologists, and the leaders of

a few quality working groups. It is the existence of a program intended to foster

learning, in addition to the existence of this formally-organized group, which leads

some corporate workers to describe their organization as a ‘learning organization.’

Figure 2: The learning organization governance structure

 94

5.2 The standardization of software development

This section provides an overview of the evolution of the ‘learning organization’

program. This program was intended to standardize software development practices

across IBTech’s ten software houses. In a first stage, following the precepts of the

CMM/I, IBTech attempted to build its standard software development process from

internal best practices. The organization later went on to acquire two commercial

methodologies.

5.2.1 The Capability Maturity Model

The CMM is a framework that provides the guidelines for developing a disciplined

software process. The original concept of the framework was developed in the early

1980s by Watts Humphrey and his colleagues at IBM. Humphrey’s unique insight

was that software organizations had to remove impediments to continuous

improvement in a specific order if they were to keep improving their processes

capability over time. Readers who are not already familiar with the CMM can refer

to Appendix 2 for an overview.

The CMM defines five maturity levels, each of which builds on the lower levels by

adding additional practices (see Table 7). At Level 1, the software process is ad hoc

and chaotic. In order to progress to Level 2, basic project management processes are

introduced to track costs and schedule. At Level 3, the software process is

documented and standardized across the organization. At Level 4, the software

process is quantitatively managed and controlled. Finally, at Level 5, the software

process is optimized.

Since its introduction in 1991, the framework has spread across industries and has

achieved significant penetration into commercial IT. Since 2001, however, the

Capability Maturity Model Integration (CMMI) has progressively replaced the

CMM. The CMMI encompasses the CMM, but possesses two additional disciplines:

‘supplier evaluation’ and ‘contract monitoring.’ IBTech used the two models, and in

order to facilitate further discussion, the term ‘CMM/I’ will be used in this text to

refer to the two models without distinction.

 95

Table 7: The CMM for software

Maturity Level Generic goals Practices

5 Institutionalize an
optimizing process

Ensure continuous process improvement
Correct root causes of problems

4 Institutionalize a
quantitatively
managed process

Establish quantitative objective for the
process
Stabilize subprocess performance

3 Institutionalize a
defined process

Establish a defined process
Collect improvement information

2 Institutionalize a
managed process

Establish an organizational policy
Plan the process
Provide resources
Assign responsibility
Train people
Manage configuration
Identify and involve relevant
stakeholders
Monitor and control the process
Objectively evaluate adherence
Review status with high-level
management

1 Achieve specific goals

Perform base practices

IBTech began to implement process improvement based on the CMM/I with one

pilot project in 2001, and became fully compliant with the level 2 requirements at the

end of the year 2003. In practical terms, this means that requirements were managed

and that processes were planned, performed, measured, and controlled. Corporate

workers had demonstrated that projects were performed and managed according to

their documented plan, even when they were working under pressure, and that a

certain degree of consistency had been achieved across projects. Moreover, corporate

workers had demonstrated that stakeholders were involved in reviewing the quality

of the applications.

A Maturity Level 2 organization does not have to have a set of standard processes.

At the end of the year 2003, when it reached a CMM/I Level 2, IBTech had ten

software houses spread across the globe adhering to different processes. A few weeks

later, when it revealed its objectives for 2004, the organization set itself the

ambitious objective of becoming a Level 3 organization by the end of year.

 96

A critical distinction between Level 2 and Level 3 is the degree of process

consistency established across the organization. At Maturity Level 3, the processes

are more consistently defined and applied because they are based on standard

processes. Processes are well understood and applied, and are explicitly described in

a ‘process asset library.’ Thus, the process asset library stipulates what process can

be used. Software houses may, nonetheless, tailor their processes from the standard

processes to suit particular needs. However, if a software house considers it

appropriate to tailor a process, it must do so in accordance with the tailoring

guidelines because the principal objective is to institutionalize standard processes

across the organization. Institutionalization implies that the process is ingrained in

the way the work is performed within the organization.

Another critical distinction between Level 2 and Level 3 is the emphasis given to

measures and other process improvement information that relate to describing,

implementing, and improving processes (see Table 7). At Level 3, an organization

must have the mechanisms necessary to gather improvement information and enable

the continuous improvement of the standard processes. As will be explained in

details in this section, a post-implementation review process (PIR) and a software

engineering process group (SEPG) were used in the study organization to this

achieve this end (see Table 6).

During the fourth quarter of the year 2004, corporate workers involved in the

‘learning organization’ program were becoming increasingly aware of the challenges

posed by institutionalizing a standard software process. It was clear that a group from

the head office could not design and impose a standard software process on

geographically-dispersed software houses. Corporate workers would simply not

abandon their existing practices to absorb a new one overnight, even if they were

formally told to do so – the exception being corporate workers based in Asia, who

were known at IBTech for their obedience. As a result, a collaborative approach

based on trust was adopted. It was claimed that such an approach had been made

possible by the cultural change engendered by the ‘learning organization’ program.

Document evidence collected by the researcher indicates that the architects of the

‘learning organization’ program liked to emphasize the notion that within one year,

 97

they had achieved a radical ‘cultural transformation.’ An electronic presentation

document asserted that individuals who were, in 2003, initially hostile to the change

brought about by the CMM/I, could, only a year later, not get enough of process

improvement, thanks to this ‘cultural transformation’:

The initial CMM thoughts were “It will add no value to anybody, us or
the Business”, “CMM is inappropriate for us”, “Nice in theory”, “Are
you a boy scout after another badge!” […]

In February 2004, teams bought-in and committed to the Learning
Organization Transformation Program. […] A culture of continuous
process improvement is now in place at team level. CMM level 3 is a
2004 objective defined and committed by teams themselves with no push
from the management. […] Process improvement is possible at the
organizational level and can be driven by individuals from team.
[Electronic presentation file, June 2004]

The foregoing excerpt may easily lead one to assume that corporate workers

generally embraced the process improvement objective and, indeed, spearheaded it.

There is, indeed, no question that individuals attached to the software houses played

a central role in defining local best practices and actively worked for their

institutionalization. These individuals played this role through their involvement in

SEPG, and were members of the software houses’ quality working groups. However,

contrary to what the text implies, the development of a standard software process

was not unanimously embraced or advocated by all. In fact, as far as the CMM/I was

concerned, the general feeling was that of mild indifference.

The following excerpt from an email (written at a time IBTech should have been

progressing significantly towards achieving its process improvement goal) more

accurately reflects the passivity of corporate workers and the key role that

individuals involved in the ‘learning organization’ program played:

About CMM level 3, we have to make some progress by the end of this
year. […] As soon as we have CMM L3 success stories in the AD
[application development] teams (this year hopefully), I’m confident that
we will be able to leverage these success stories to get other believers and
buyers. The timeframe is tight but we have no choice. [Head of
Governance, email 21-09-2004. Emphasis in original document]

 98

The two previous extracts indicate that corporate workers were well aware that

moving from Level 2 to Level 3 involved changing how software development was

executed. They were also cognizant that it involved developing a “culture of

continuous process improvement,” and standardizing how software development was

thought of. For this reason, corporate workers recognized the importance of creating

what CMM/I authorities call a “shared vision” [A31]-- that is to say, “a common

understanding of guiding principles including mission, objectives, expected behavior,

values, and final outcomes which are developed and used by a group such as an

organization” (Chrissis et al., 2003: 628).

5.2.2 The launch of the GreenBook Transformation program

The idea of transforming IBTech into a learning organization-- a concept which had

existed in a latent form for years-- became concrete with the launch of a high-profile

program in 2003. The “GreenBook Transformation” program was officially kicked

off in May with an exceptionally long newsletter:

The GreenBook was created and launched four years ago. It has been the
starting point for process assessment and improvement. Today, a
transformation is required to adapt to our continually changing
environment. [Newsletter, May 2003]

For most IBTech employees, it came as a surprise that the GreenBook had been

created four years previously. Except for those actively involved in quality working

groups, no one had a clear idea of what the GreenBook actually was. Despite this

fact, its goal seemed harmless enough:

The GreenBook program has the goal of transforming IBTech Equities
into a “learning organization”, this being the only way to adapt, survive
and succeed in an increasingly distributed, complex environment and a
competitive, uncertain world. [Newsletter, May 2003; emphasis in
original document]

To clarify things up front, the memo defined a learning organization as an

organization skilled at “engaging all employees,” “creating, acquiring, retaining, and

 99

transferring knowledge,” and “modifying it behavior to assess and improve its

products and processes continuously” [Newsletter, May 2003].

The newsletter made clear that the GreenBook had a specific role to play when it

came to helping IBTech become a more effective ‘learning organization’:

we need to develop and organizational capability that will allow us to:

• Learn from experience and best practices

• Systematically solve problems and experiment with new
approaches

• Acquire and transfer knowledge quickly and efficiency
throughout the Organization.

The GreenBook Transformation will enable this organizational
capability. [Newsletter, May 2003; emphasis in original document]

The second section of the newsletter opened by giving an update on the current status

of the initiative:

During the last two years, multiple Codes of Practice have been created
in each region [America, Asia, EMEA] in most cases several per
Software House. These COPs make some reference to the GreenBook
processes. This has allowed us to achieve a certain maturity level
corresponding to the Capability Maturity Model (CMM) level 2. From a
management perspective this is a considerable achievement, supporting
better visibility and increased control at the Software House level.
[Newsletter, May 2003]

It is not clear what the author of the newsletter sought to achieve by saying that the

codes of practices developed within software houses made reference to the

GreenBook. This was not possible because the GreenBook existed only in an

embryonic form at the time the newsletter was published. The existence of

documented processes at software-house level was, nonetheless, sufficient for the

software houses to achieve a CMM/I level 2:

The GreenBook is our central body of standards and practices and
encompasses IBTech’s best practices. It is based on existing codes of
practice and leverages local expertise. Having such a body of standards
and practices is necessary for IBTech to be accredited CMM level 3.
However, the main motivation for developing the GreenBook is not the
CMM accreditation, but rather the development and implementation of
efficient, rationalized work practices. In doing so, we eliminate

 100

unnecessary procedural duplication and bureaucracy, which make us
more “mature” according to external quality/maturity standard.
[Newsletter, May 2003]

In the newsletter, an attempt was made to create a distinction between the CMM and

the GreenBook. The CMM was a process maturity framework. It was used at IBTech

“to assess our maturity and define our gap against the next level.” The GreenBook

was the “body of standards and practices” that IBTech had to have to reach a

Maturity Level 3. Whereas at Level 2, software houses could have their own codes of

practices, at Level 3, all software houses would have to use the same process for a

key process area—hence, the need for the GreenBook.

Thus, the ‘transformation’ the GreenBook involved was to have a direct impact on

the execution of software development. It was no longer only something about

“learning from experience” and “experimenting with new practices.” The GreenBook

consisted of “Prescriptive standards at the IBTech Equities organizational level that

everyone uses for Project Management [and a] Catalogues of Software Engineering

practices” [Newsletter, May 2003; emphasis in original document].

The GreenBook, in addition to being a set of prescriptive standards and catalogue of

practices, was to be, “an interactive application that everybody will use to manage

their projects”:

• This application will allow you to create new projects and
manage existing ones by being guided through the steps of your
project based on the lifecycles you have chosen. You will also be
able to create new documents from standard templates.

• Standards and adapted to different types of projects both in terms
of size and software engineering methods.

• Relevant metrics for continuous process improvement will be
defined and gathered automatically through the interactive
application. [Newsletter, May 2003]

In sum, what the newsletter depicted was an information system that contained the

different software development lifecycles appropriate for all types of projects.

Depending on the expected development time and the budgeted development cost, an

appropriate lifecycle was to be imposed. The GreenBook was to be the repository

 101

integrating all the processes needed, and containing all associated procedures,

flowcharts, templates, standards, and guidelines. This information system was to

ensure that all processes were completed correctly and that the project was on time

and within budget.

In line with the objectives of a ‘learning organization,’ employees working for

different software houses and regions were to take ownership of the maintenance of

the GreenBook: “the processes will be kept up-to-date by allowing the owner of any

new process to document it directly in the GreenBook”. It was believed that the

benefits arising from the ‘transformation’ would include:

• Individuals project teams no longer have to spend valuable time on the
maintenance and conformance to their own disparate COPs.

• Provide a standard look and feel to the project management and software
development process across IBTech regardless of location.

• Provide a common language that facilitates interaction between internal
teams.

• New changes to IBTech practices can be rolled out globally and consistently.

• New starters can quickly be trained in “the way we do things here in
Equities” and get up to speed.

• People transferring from one location to another still perform tasks in the
project lifecycle in the same way.

• Assist in the achievement of CMM level 3. [Newsletter, May 2003]

The transformation was to be achieved in two phases and within an aggressive time

frame:

From Q1 to Q3 2003: Phase 1 – Reengineering the GreenBook

• New contents defined and documented

• Interactive GreenBook application developed

• New ownership and maintenance model in place

From Q3 2003: Phase 2 – Leveraging the GreenBook momentum in
order to become a Learning Organization

• Institutionalize process improvement: with the creation of
motivated and dynamic working groups that will focus on solving
problems and driving experimentation into new approaches.
When the new approach is considered successful, new practices
or processes will be documented in the GreenBook.

• Leverage relevant Six Sigma projects: incorporate Six Sigma
project outcomes into the GreenBook

 102

• Performance indicators: define, set-up and use metrics at the
project management and software engineering levels for
continuous process improvement.

• Continuous assessment of our processes and products: […]
deliver CMM level 3 roadmap and compare internal service
provision against industry-wide practices.

• Work with knowledge Management: to quickly and efficiently
transfer the Knowledge created and capture in the GreenBook.
[Newsletter, May 2003]

When the researcher joined the organization in March 2004, there was no GreenBook

in place. No GreenBook had ever been near to completion. In fact, not even an

embryonic version of it had been developed. Standardizing software development

practices had turned out to be more difficult than expected.

5.2.3 From GreenBook Transformation to Equity Process Framework

When the newsletter presenting the GreenBook Transformation program was

published in May 2003, it was clear to many corporate workers that a promise that

could not be kept had been made. Developing the information system was only the

tip of the iceberg; defining and documenting standard software development

processes and making them part of a software lifecycle so far unknown to most

corporate workers turned out to be the real challenge. In spite of the great fanfare

surrounding the GreenBook, no significant results were visible.

At the end of July 2003, a solution had to be found to save face. The GreenBook

Transformation was renamed the Equity Process Framework (EPF). It was hoped

that the term ‘EPF’ would better reflect its purpose than the term ‘GreenBook

Transformation.’ The change in term was also an opportunity to subtly narrow down

the program to a more realistic scale. The July newsletters opened:

EPF is the new name for our GreenBook, reflecting its increased scope
and overall purpose. […] Good progress was made in June, completing
and agreeing with management: the scope of the EPF, the blend of
internal/external best practices and the approach to piloting out
recommended approach. [Newsletter, July 2003]

 103

The EPF did not conserve the idea of a grand program aimed at transforming IBTech

Equities into a “Learning Organization.” From that point on, the EPF was to be only

one among many components of the ‘learning organization’ program, not the key

enabler the GreenBook purported to be. Corporate workers were also much more

careful in their approach, considerably less confident in their ability to

institutionalize at will a standard process across the organization. Piloting processes

and gaining feedbacks from process users became salient:

Pilots have the following objectives: (1) Road-test EPF on several
projects, improving EPF based on feedback during pilots. (2)
Demonstrate group/personal productivity improvements. (3) Show that
management and software engineering practices knit together seamlessly.
(4) Show lifecycle and processes integrate well with management and
engineering toolset. (5) Serve as a model for deployment of EPF into
other team. [Project Brief, July 2003]

Although the EPF was less ambitious than the GreenBook Transformation program

in terms of scope, it offered an additional element of complexity. The EPF was to be

based on an off-the-shelf software engineering process. Whereas the GreenBook

purported to formalize in-house software engineering practices, the EPF was based

on Rational Unified Process (RUP):

Equity Process Framework (EPF) will be a set of process assets for all of
IBTech […] These assets being acquired to meet our business objectives
and they represent investments that are expected to provide real business
value. They include: (1) A set of Standard processes. (2) Description of
life-cycle models. (3) Guidelines and criteria for projects to tailor the
EPF’s set of standard processes, balancing: (a) Flexibility to address
contextual variables such as the domain, nature of the customer, cost,
schedule [… and] (b) Consistency so that organizational standards […]
are appropriately addressed. [Project Brief, July 2003]

The EPF represented the key element to possess in order to achieve a CMM/I level 3.

Although IBTech could no longer let its software houses develop codes of practices

autonomously, awareness of the balance between flexibility and consistency was

recognized. It was further recognized that the standard development practices would

have to allow for some variations across sites.

 104

5.2.4 Rational Unified Process

The waterfall model is a discredited, but still popular, process for the creation of

software. To follow the waterfall model, one proceeds from one phase to the next in

a purely sequential manner. Thus, the waterfall model maintains that one should

move to a phase only when the preceding phase has been completed and perfected.

One important, yet controversial, assumption underlying the model is that the

requirements can be unambiguously defined at the outset of the software project, and

that those requirements will not change during the development process.

Iterative development, on the other hand, does not assume a fixed set of requirements

at the inception of a software project. It allows the requirements to be refined as the

project evolves. With iterative development, working subsets of the final product are

reworked as the project evolves. Consequently, software professionals have to revise

the requirements and the design during a project and conduct many rounds of testing.

Iterative development differs from the waterfall model in that it more easily

accommodates change.

RUP is an iterative software development methodology owned and distributed by

IBM. The methodology is composed of four phases: inception, elaboration,

construction and transition. Each phase contains one or more iterations in which

several ‘development disciplines’ (e.g. requirements, analysis and design, testing) are

revisited throughout the development process. Today, a common way for

organizations to develop software iteratively is to acquire RUP and tailor the generic

process to their needs. The product is sold under the form of a web site that can be

deployed on an intranet.

The benefits that IBM consultants and salespersons highlighted when describing

RUP captivated IBTech’s corporate workers. Memos and other documentary

evidence collected by the researchers show that corporate workers responded

positively to the claims that RUP “provides a disciplined approach to assigning task

and responsibilities,” “ensures the production of high-quality software […] within a

predictable schedule and budget,” is a set “of industry proven best practices,” and is

“an enabler for reaching CMM levels 3” (IBM Rational, 2000; 2001).

 105

Following the difficulties experienced with the ‘learning organization’ program,

acquiring the RUP platform emerged as the way forward to quickly establish a

standard software process and reach CMM/I Level 3. Consultants and salespersons

demonstrated, using carefully-selected examples from the industry, that while

CMM/I had become the most popular model for improving software process

maturity, RUP had emerged as the de facto off-the-self software engineering process.

The argument was put that RUP helped to increase the process maturity of software

organizations undergoing a CMM/I initiative. According to this line of thinking, it

was believed that all that IBTech would need to do would be to roll out a process

platform on a server, and to progressively tailor down the generic software

engineering process to reflect the organizational particularities.

The RUP platform was purchased in July 2004 to lay the foundation of the EPF. The

plan was to use the generic RUP process as soon as it was deployed and to

progressively customize the process using internal best practices. Thus, the

identification and selection of best practices, using the ‘learning organization’

governance structure, was to remain an ongoing effort. It was believed that the

anticipated benefits would be worth the effort:

Example of anticipated benefits from developing and deploying EPF are:

• It forms a common language that aids interaction between internal
team.

• New changes to IBTech practices can be rolled out globally and
consistently.

• It forms an important part of the foundation required in the
achievement of CMM level 3.

• Give a standard look and feel to the project management software
engineering processes across IBTech, regardless of location of
project area. [Project Brief, July 2004]

The EPF surely had the professional look and feel to give IBTech the appearance of

being a mature software organization, but, as often as not, those who encountered it

took a dislike to it. The generic platform was so large in scope and content that

corporate workers could not distil from it anything practical for their work. Many

corporate workers introduced to the EPF feared that even more documents would

have to be completed because of the comprehensiveness of the RUP process.

 106

Corporate workers involved in the decision to purchase the platform and to deploy it

soon realized that the organization could not expect its members to use the generic

platform. It was decided that the generic process would have to be customized first,

and then would have to be launched again. This change of direction is ironic,

considering that RUP was initially acquired in an attempt to avoid progressively

defining a standard process.

IBM Rational consultants and salespersons had ensured IBTech that “an easy-to-use

process authoring tool” would enable them to customize RUP for their precise

requirements. Customizability was, in fact, one of the main selling points of the

methodology:

RUP is a flexible process platform […] With RUP Builder you can select
and implement just the plug-ins that are necessary, while IBM
Workbench helps you model and develop your own knowledge assets
into process plug-ins […] the simple, four-step user interface helps you
customize your process. (IBM Rational, 2001)

Although many individuals at IBTech were highly technologically proficient, the

platform appeared rigid to those who attempted to customize it. For one thing, the

process authoring tools required particular technical knowledge to be used. For

another, to delete a generic process or add a new one required some knowledge of

the entire RUP process. The processes were closely intertwined, and deleting a

process often resulted in cancelling the creation of a seemingly insignificant artefact

that was, nonetheless, refined over time into a mandatory artefact. Thus, corporate

workers realized that in order to modify RUP, an extensive knowledge of the entire

generic software development process was generally required.

The difficulties associated with customizing RUP and the negative reactions it

evoked were the source of bitter disappointment. This state of mind was expressed in

many stories heard at IBTech, some funny, others serious. Yet, in spite of all the

difficulties, some corporate workers became very attached to the idea of developing

software iteratively. As one of the main advocates of RUP said, “all investment

banks develop iteratively and don’t see why we don’t. Welcome the twenty-first

century.”

 107

5.2.5 Agile Methodologies

It was widely believed at IBTech that RUP was too comprehensive—a belief that

corporate workers made no secret of. It was obvious that if the EPF were ever going

to be used, it would have to become more accessible and less intimidating. In other

words, the right level of process formality that would meet the organizational need

would have to be found. In November 2004, a newsletter discussed the situation

overtly:

The Equities Process Framework (EPF) is currently based on Rational
Unified Process (RUP). RUP is comprehensive and designed to be
configured by an organization but there is the opinion that it could be too
heavyweight for the organizational needs. There is the thought that Agile
practices could be applicable in this instance. [Hot Topics, 08-11-2004]

In the business media, agile development is said to provide an antidote to

bureaucratic methodologies and to re-establish software development as a creative

and people-centered activity. Agile development evolved in the mid 1990’s as part of

the reaction against methodologies like RUP, which emphasized process definition

and the production of written documentation. The agile manifesto, created in 2001,

promotes four values that encapsulate the core philosophy supporting this software

development approach: individuals and interactions over processes; working

software over comprehensive documentation; customer collaboration over contract

negotiation; and response to change over following a plan. Readers who are not

already familiar with agile development can refer to Appendix 3 for an overview.

In November 2004, a SEPG Working Group, the “agile task group,” was formed and

given the mission to examine what agile methodologies had to offer. The SEPG

Steering Committee wanted to know how agile development could be utilized within

IBTech. As corporate workers became increasingly eager to better understand agile

methodologies, the methodologies became part of the organizational landscape and

everyday talks.

Due to the inability to customize the RUP platform and the growing popularity of

agile development, corporate workers considered acquiring an agile commercial off-

the-self component for the RUP platform. The component, also distributed by IBM,

 108

would not require changing the generic RUP process or using the authoring tool.

More importantly, it could allow the organization to get, overnight, a more

reasonable level of process formality than with RUP.

It is important at this point to note that most corporate workers involved in the

‘learning organization’ program remained only superficially familiar with iterative

development. While adopting a RUP platform, and, increasingly, an agile

methodology, seemed to make sense, IBTech still used a waterfall process;

requirement analysis, design, coding, and testing were completed sequentially.

Software products were released at the end of the development lifecycle, which

sometimes lasted more than a year. IBTech valued predictability and discipline, and

executed software development accordingly.

Iterative development was said to enable adaptability, enable early risk mitigation,

help manage complexity, and reduce defects. Agile development was said to foster

innovation. What IBTech sought, however, was to institutionalize a standard

software process across several sites. In other words, it was the idea of an out-of-the-

box standard that had made RUP and agile methodologies appealing, not their

technical merits.

IBTech relied heavily on consultants to comprehend and implement practices. In an

attempt to better assess how agile practices could be applied, corporate workers’

immediate reaction was to hire the services of Bill Jobs (fictional name), a well-

known agile consultant and author of the agile manifesto. At IBTech, Jobs was

solemnly referred to as ‘the guru.’ In a tone which echoed that used previously by the

IBM consultants, Jobs delivered a series of lectures at some of IBTech’s sites,

including Asia, America, and EMEA.

The key idea underlying Jobs’ presentation was that software development is new

product development. The consultant defended the argument that software

development is an activity that requires adaptive steps driven by ‘build-feedback

cycles.’ Consequently, in Jobs’ view, formulating a plan and estimates for a whole

project at its inception was nonsense. Using the counter analogy of mass

manufacturing, the consultant argued that “a waterfall lifecycle, big up-front

 109

specifications, estimates, and speculative plans applicable to predictable

manufacturing have been misapplied to software projects, a domain of inventive,

high-change, high-novelty work.”

Being aware that his discourse might not appeal to a management audience, and,

indeed, might be perceived as anti-managerial, Jobs adroitly managed to give agile

development a distinctive strategic flavor. An electronic presentation slide read as

follow:

Agility […] is about succeeding and about winning: about succeeding in
emerging competitive arenas, and about winning profit, market share,
and customers in the very center of the competitive storms many
companies now fear.

The consultant also fervently attacked the CMM/I and other means of formalizing

the software process. Quoting a study on the productivity gains offered by the CMM

(Harter et al., 2000), Jobs presented a slide, written in bold, that said that “Increasing

CMM process maturity was associated with lowered productivity.”

A corporate worker actively involved in the ‘learning organization’ program

interrupted the speaker during his attack on the CMM/I and plainly asked him to

emphasize the benefits of agile methodologies, rather than the problems associated

with formalism. The content of the presentation had become an embarrassment for

her and several of her like-minded colleagues in the audience.

Jobs’ presentation generated much talk at IBTech. A consensus regarding the

importance of institutionalizing a standard software process existed within the

organization. However, every time an effort was made in this direction, other equally

important beliefs were shaken. The CMM/I lead assessor felt betrayed by the

argument publicly presented by Jobs, as did many CMM/I advocates. The content of

the presentation was a blow for many.

 110

5.3 Software process improvement

Software process improvement is a pervasive idea within software engineering. It

seeks to improve the execution of the software development process – reducing cost

associated with discovering and fixing software defect, improving the productivity of

developers, eliminating unwanted deviations from standard processes, etc, and,

ultimately, improving product quality. In the organization studied, it was believed

that a software process improvement program “delivered little value without a

systematic approach and technique for correcting processes” and that learning could

only occur when processes “are identified, measured, and controlled” [A43].

5.3.1 The post-implementation review

The post-implementation review (PIR) provides an ideal context in which to examine

software process improvement in relation to the standardization of software

development practices. This is because the PIR was both a standard software process

and a key component of the ‘learning organization’ program (see Table 6). A

presentation of the PIR is, at this point, useful for establishing details regarding the

process by which standard software practices should, in theory, have been created,

and may illustrate the difficulties associated with institutionalizing standard

processes across IBTech. The SEPG Steering Committee wanted to make the PIR the

first standard software process institutionalized across the ten software houses.

However, the PIR was never fully institutionalized and, interestingly enough, was

further de-institutionalized while the researcher was carrying out fieldwork.

The PIR corresponds to what is also sometimes called a ‘project retrospective’ or a

‘postmortem review.’ Since IBTech did not develop software iteratively at the time

the research was carried out, the completion of the PIR marked the end of a project.

The following extract from the process guidelines highlights the objectives of the

PIR:

The PIR objectives are to identify and share areas for improvement and
lessons learnt; […] to highlighting success stories and best practices used
during the project; to better capture and communicate the business and
technology satisfaction level on the project; to prioritize the process

 111

improvement actions on a continuous basis through the Software Process
Group (SEPG). [PIR process definition, 03-08-2004]

The project manager was responsible for all steps of the PIR. The process involved

creating a web-based survey questionnaire and sending it out to the project

participants. The survey was the instrument used to collect information about

completed projects without compromising the confidentiality of the project

participants. Respondents included the project sponsors, the users of the system, the

project managers, the environment team, the release team, and software developers.

Depending on the types of project, the project manager might have to send two

different survey questionnaires for a single project, one covering principally

technical questions, the other covering business questions.

The project manager was responsible for compiling the survey results and producing

a provisionary PIR report. At that stage, the project manager also had to track down

and integrate into the provisionary report three categories of project metrics (costs

metrics, schedule metrics, scope metrics). The survey results and the metrics were

the information to be discussed in a PIR meeting. The objective of the meeting was

to allow the project participants the opportunity to give feedback about the project.

The project manager had to take note of the important points raised during the

meeting. Following the meeting, the project manager had to produce the final PIR

report, which presented clear areas for improvement, lessons leaned, and best

practices. A PIR summary report also had to be produced by the project managers for

high-profile projects. The final step of the PIR was to transmit to SEPG the areas for

improvement, lessons leaned, and best practices via a workflow management system

called the ‘SEPG CD system.’ The PIR report also had to be made available to all

employees on an intranet and, in some cases, presented to high-ranking executives.

Only a bird’s eye view of the PIR process is given here. The flowchart describing the

process and the documents to be produced at each step of the process could cover a

whole wall. The PIR was of such complexity that milestones had to be established

for it in a process management system. The distribution of the surveys and the

transformation of the survey data into information were, by themselves, projects of

their own. It was quite common for project participants to ignore emails requesting

 112

them to complete the web-based surveys. The response rate was sometimes so poor

that project managers had to call respondents in person to encourage them to fill the

surveys out. Project managers who had two types of questionnaires to deal with for a

single project assumed a heavier bureaucratic burden.

The PIR process was standard across IBTech when the researcher entered the

organization, but was not fully institutionalized. The PIR was vehemently criticized

for being too rigid and bureaucratic. The following statement illustrates the project

managers’ general feeling vis-à-vis the process:

The Post Implementation Review is fundamentally flawed. It is not
possible to create milestones in advance for when a post implementation
review should take place as it is not possible to state when the
application/product will be finally implemented. Also, the process is
over-engineered. [Project manager, Call raised to SEPG 07-08-2004]

Even though the PIR was recognized as being a key component of the ‘learning
organization’ program, some project managers energetically attempted to by-pass the
PIR. One common strategy was to ignore the PIR and claim to have other priorities.
The following thread of emails shows how this was done:

Hi Gerald [Project manager],
Following on from our previous conversation – please can you let me
have an update of your PIR […] [Project manager officer, email 19-07-
2004]

have done nothing at all… too busy
are you sure I have to do one? [Project manager, email 19-07-2004]

Gerald – we have been over this and it is a definite requirement. [Project
manager officer, email 20-07-2004]

What am I meant to do with this reply??!!?? [Project manager officer to
manager responsible for the PIR, email 20-07-2004]

Gerald,
Yes, a PIR must be completed for all demands and initiatives. [Manager
responsible for the PIR, email 21-07-2004]

fine – well haven’t done it. [end of the email] [Project manager, email
23-07-2004]

 113

Another strategy used by project managers to get around the PIR was to periodically

report the creation and distribution of the internet-based survey in the workflow

management systems (the ‘SEPG CD system’) used to monitor the progress of a PIR.

In one case, the project manager reported the target date of the PIR of one month

eleven times over a year. A year after the completion of the project, the PIR was

finally cancelled as none of the project participants could remember enough about

the project to comment on it.

The corporate worker responsible for the PIR routinely faced hostile reactions in

relation to the process. However, instead of making the PIR less exhaustive or

allowing the project managers to identify areas for improvement, lessons learned,

and best practices in a way they found appropriate (i.e., de-standardize the PIR), the

corporate workers preferred to play with its presentation in the hope that it would

appear less bureaucratic:

I have even reduced the number of pages in our PIR report template to
make it less intimidating. Many still see the PIR, and in particular PIR
documentation, as an unnecessary overhead, even though there is little
effort involved… it’s a culture change we are pushing at the moment.
[Manager responsible for the PIR, email 06-08-2004]

It is ironic that the process meant to enable process improvement did not lend itself

to improvement. According to documentary evidence collected, process

improvement was, by and large, understood in the study organization as the

enhanced standardization of software development practices. In accordance to the

logic of the CMM/I, process improvement is about process definition, process

documentation, and process optimization. Seen this way, having stable processes is

the key to predicting the outcomes of projects, which is the key indicator of maturity,

according to the CMM/I. So, when the corporate worker talked of “pushing a cultural

change” in the earlier quotation, he meant having corporate workers accept that

software development is a formal, disciplined activity.

Corporate workers at IBTech generally agreed that software development should be

disciplined and predictable. Corporate workers liked to know what was expected of

them in terms of deliverables and schedule, and they liked to meet these

 114

expectations. However, they were not always ready to devote their time and energy

to accepting the practices that the logic of the CMM/I presupposes. Could the PIR

have pushed the level of bureaucracy that corporate workers were able to tolerate too

far? Could corporate workers not have seen the connection between the PIR,

learning, and the establishment of more disciplined and predictable software

development practices?

In August 2004, the CMM/I lead assessor surrendered to the increasingly-frequent

and vehement attacks delivered against the PIR. He had been convinced that the PIR

was unnecessarily bureaucratic and standardized, and, in an email addressed to Chief

Business Technologists of the three regions (Asia, EMEA, North America), called

for a bold process change:

Software Houses are free to develop and implement their own PIR
process. […] The PIR Report must include good working practices,
lessons learnt, and recommended changes to existing processes. […]
Improvement to local Software House practices will be identified and
documented in the Software House and/or Code of Practice. [CMM/I
lead assessor, email 01-08-2004]

The implications of the process change were two-fold. First, the change meant that

software houses would no longer have to use the standard PIR process. Software

houses could use a survey other than that sanctioned by IBTech—one which was

possibly much shorter-- or no survey at all. For example, a project manager officer

based in Asia suggested that an informal meeting should be sufficient to identify

good working practices and develop the global software processes:

The PIR report isn’t something that people in Asia really look at or are
managed against. For that reason, it is ineffective right now. We want to
ensure that our pms [project managers] are incentivised/held accountable
for delivering pirs but so far we can’t justify tasks which don’t deliver the
value they ought to. […] My view is that a regular […] review is the
right forum in which to discuss [process improvement]. [Project manager
officer, Email 07-08-2004]

More significantly, however, the CMM/I lead assessor suggested that software

houses should keep building their own code of practice-- that is, managing their own,

 115

local software development methodology. In this sense, the email can be seen as a

statement in favour of a plurality of understanding of what software development is,

and how it should be practiced. Thus, it is a move in favour of de-standardization.

5.3.2 The Software Engineering Process Group

As was previously explained, the ‘learning organization’ governance structure

provided a framework for ensuring that novel practices and process improvement

opportunities discovered in a particular software house become known and

applicable in other software houses. SEPG played a key role in this framework; it

created a synergy among software houses, allocated resources to pilot and implement

new processes, established process standards, and, more generally, promoted a

learning mindset in the organization:

The Software Engineering Process Group (SEPG) is the forum to
facilitate the definition, maintenance, improvement and establishment of
the software engineering and management process for IBTech, allowing
Areas for Improvement and Best Practices to be evaluated, and
developing a culture of Continuous Process Improvement. SEPG has a
direct correlation with two IBTech Equities vision principles: Provide
Excellent Solutions With Greatest Efficiency and Be a Learning
Organization and Innovate. [SEPG description document, 06-14-2004]

A PIR process was considered completed only when the process improvement

suggestions captured in the final PIR report were transmitted by a project manager to

a regional SEPG Definition Group. Process improvement suggestions were

transmitted to the SEPG Definition Groups through a workflow management system,

the ‘SEPG CD System.’ A member of a SEPG Definition Group then ascribed a

priority level to the improvement suggestions based on their perceived complexity

and relevance. ‘Big tickets’ were used for improvement suggestions that were

deemed important, and that were likely to require a considerable commitment of time

to be institutionalized. ‘Small tickets,’ on the other hand, were used for minor

changes to an existing process.

Following the ‘learning organization’ governance structure presented in Figure 2, big

tickets were given priority and submitted to the SEPG Steering Committee for

 116

further review. The SEPG Steering Committee could choose to pilot a new practice

or process within a set time and budget constraints. Depending on the pilot outcomes,

the SEPG Steering Committee could establish an implementation plan for the new

process to be institutionalized. Standard software development practices, according

to organization-sanctioned documents, were institutionalized at an organizational

level when incorporated into the EFP. Small tickets were, as a general rule, handled

by the regional SEPG Definition Groups and did not require the involvement of the

SEPG Steering Committee.

The SEPG was often criticized for being highly bureaucratic. Although the project

manager who submitted a process improvement suggestion on the behalf of project

participants should, in theory, have expected a response from the SEPG within two

weeks, the response was usually only an acknowledgement that the improvement

idea had been received. Once a process improvement idea was entered into the SEPG

CD System, it disappeared into a bureaucratic black hole. Despite the effort needed

to complete a PIR and identify process improvement suggestions, it was not rare that

an improvement idea would stay in the Equities SEPG CD System for more than six

months without being proactively dealt with [A26, 28-06-2004; A28, 01-07-2004].

Members of the SEPG Definition Groups, who were responsible for transmitting

critical improvement ideas to the SEPG Steering Committee, themselves showed

little interest in the bureaucratic SEPG. Until July 2004, meetings were cancelled

week after week. At some point, the corporate workers involved in SEPG did not

even bother to cancel, leaving the Chair of the weekly meeting alone. An email with

the heading, “3rd Consecutive SEPG Definition Group Meeting – CANCELLED,”

opened,

We have a weekly SEPG at 9 AM (EST) every Wednesday. 2 weeks ago
this meeting was cancelled on the day of the meeting because a number
of people were attending a conference. As people probably planned to
attend the conference, we could have planned in advance to reschedule
this meeting for another date. Last week, this meeting was cancelled on
the day of the meeting with no stated reason. This week, I did not receive
a meeting cancellation notice or any other notice, so I again assumed that
the meeting was on. However, none dialed in to the conference, so it
appears to be cancelled for the 3rd week in a row. [Quality Leader –
North America, Email 30-06-2004]

 117

In July 2004, a member of the SEPG Steering Committee made use of her authority

to reinvigorate the SEPG meetings, but later acknowledged during a one-to-one

meeting with the researcher that the SEPG had been proven unviable. She observed

that although most corporate workers agreed that learning was important and fostered

innovation, few seemed to agree that it should take place according to the ‘learning

organization’ governance structure. In her view, all that SEPG did was to perpetuate

the myth that learning had to occur through a formal and systematic process. It was

becoming clear to her that corporate workers had a different view of how software

development should be practiced, but she could not pin down what it was.

This chapter has provided an overview of the evolution of the ‘learning organization’

program and of the context in which software development took place. The chapter

which follows will present the organizational discourses that circulated at IBTech,

and the role they played in the constitution of ‘software development.’ This chapter

will also take a closer look at some particularities of the context that are, analytically,

highly relevant.

 118

6 Empirical Findings

This chapter outlines the data collected in the study organization over a ten-month

period, from March 2003 to January 2004. The data were mainly obtained from

participant observations and organizational texts. Participant observation data are

systematized into three themes characterizing the organizational context: hierarchy

and status, bureaucracy, and consumption practices.

More than six hundred relevant organizational texts were analyzed in order to

identify the discourses that are at work in them. The analysis has revealed that seven

discourses form two distinct representations of the object ‘software development.’

The hermeneutic of suspicion was applied in both the analysis of field notes and

organizational texts.

6.1 Participant observations

An in-depth immersion in the organization was necessary to understand the context,

with ‘context’ referring to the wider environment in which corporate workers are

situated. Thus, by spending considerable time (40 to 50 hours per week over 10

months) in the organization, the researcher not only acquired a sense of what it is like

to work at IBTech, but also refined his knowledge of what it is like to work for an

investment bank and in the corporate world. Acquiring an understanding of the

context was necessary to interpreting the organizational texts and comprehending the

discursive practices of corporate workers. As Bourdieu notes, by focusing

exclusively on the texts produced, transmitted, and interpreted by individuals in a

particular setting, as some discourse analysts sometimes do, an analyst is bound to

miss the question of why individuals say what they say, in the way in which they say

it (Bourdieu, 1991: 44 & 237; 1992: 149).

The following insider account presents three distinctive characteristics of the

organizational context. These characteristics will help at a later stage to explain how

software development is constituted at IBTech and why it is constituted the way it is.

These characteristics include the existence of an ongoing struggle for status elevation

 119

and conservation, the prevalence of a bureaucratic ethos, and the role played by

consumption as a means of communicating the possession of a valued set of norms.

6.1.1 Status elevation and conservation

IBTech has a traditional hierarchical structure. The distance between hierarchical

levels informs how interaction takes place between individuals. If more than one

hierarchical level separates individuals, interaction will, as a general rule, take place

through the formal communication channels provided by the hierarchy and involve

intermediary managers. However, in parallel to the role and authority structure

provided by the hierarchy, there exists in the organization an informal status

structure. Status, as it is understood here, is highly consensual and determined by the

recognition one receives from others.

The recognition one receives from others is determined by the extent to which one’s

behavior is perceived to be appropriate. More specifically, one gains recognition

from others by acting consistently over time in accordance to the normative standard

of behavior that prevails in the organization. In IBTech’s language, the term

‘professional’ is commonly used to encapsulate this general idea of

‘appropriateness.’ Possessing a high status results, according to a corporate worker,

in one being “more popular with managers and more influential with colleagues.”

It is important to note that the existence of an informal status structure does not go

against the authority structure and the mode of communication established by the

formal hierarchy. In fact, the informal status structure contributes in the present case

to reinforcing the formal hierarchy: it leads individuals to act in accordance to the

formal procedures in order gain recognition.

Corporate workers show remarkable status consciousness. Indeed, an important

aspect of their jobs appears to involve cultivating a professional identity and seeking

to obtain the recognition of superiors and colleagues. The desire to improve one’s

status is deeply seated in the organizational life and is in evidence in several

practices. In order to elevate their status, corporate workers must demonstrate that

they possess a relative degree a mastery of the organization’s de facto way of doing

 120

things. This entails, for example, addressing other corporate workers with an

adequate level of formality and impersonality, showing interest in the work itself,

and, more generally, showing commitment to the organization. Failure to conform to

the prevailing way of doing things typically leads to a person and his work being

perceived of as being unprofessional or plain careless.

It is important to note that the pursuit of status is so deeply-seated in organizational

life that it does not seem to operate at a conscious level. Corporate workers do not

seem to be consciously strategizing their next move so as to elevate themselves on

the organization’s honour scale. In a related vein, what the corporation expects from

its employees is not fully explicit. As one corporate worker told the researcher,

“There are a million little rules to obey.” Corporate workers, nonetheless, understand

with varying degrees of sophistication what is expected from them and what

practices can provide them with the recognition of others.

So, corporate workers do things because they are the right things to do. To put the

matter differently, they often perform a particular action simply because they sense it

is the right thing to do for the organization and themselves. The following dialogue

between the researcher and a corporate worker that took place during an interview is

illustrative of this fact:

The researcher: How do managers know you’ve got what it takes [to
succeed professionally]?

Corporate worker: Because I show that I really want to.

The researcher: How do managers know that you work well?

Corporate worker: Because I’m among those on this floor that put in the
longest hours and spent the most time at work.

The logic to which the individual subscribes is, of course, that the quality of the

results is proportional to the work put in. However, in this case, it is clear that it is

not only achieving high quality results that is the source of motivation. The answer

given to the researcher’s questions suggests that the individual is also concerned with

communicating that he is willing to place the interest of the corporation before his

own interests. The corporation expects commitment from its employees, and working

 121

long hours and adopting the normatively-sanctioned way of conducting oneself are

prime signs of devotion.

Obvious acts of professionalism are also apparent in several other organizational

texts. Every fortnight, IBTech releases a memo entitled, “A day in the life of…,”

intended to present a typical workday of an employee. The texts, which are always

written by the employee profiled, are interesting in that they illustrate the perception

corporate workers would like others to have of them. Moreover, these texts richly

capture the correspondence between what the corporate workers feel is expected of

them and the extent to which they are willing to meet these expectations. Reference

is usually made to the long period of time spent at the office and to attendance to

meetings where highly ranked corporate workers (e.g. the CTO) are present. Here is

a typical example:

My alarm clock starts to go off at 5:15 AM. […] I usually get to work
around 6 AM […] When I get to my desk, I check my email for any
Production issues, which require my immediate attention. Then I look for
any issues Asia or London connectivity teams might have escalated to us
(if they didn’t already wake me up in the middle of the night) […]

8:30 AM, Market Open. The hotline may start ring a lot more now. OK,
so I’m done with the morning issues […] for the next 6+ hours I’m on a
billion conference calls […] In between these meeting, we are monitoring
our FIX Connections for their connection status […] Throughout the day,
I may find time to grab some food to bring back to my desk and eat.

3:00 PM Market Close. End of day issues start rolling in. […] I could be
out of door anywhere between 7 PM –12 AM. [Newsletter, 09.12.2004]

The inculcation of professional norms and an interest in status elevation and

conservation is not purely incidental. An individual working in the area of human

resources mentioned to the researcher during an informal conversation that her role

involved developing the mechanisms required to make corporate workers go beyond

the minimum of their contractual relationship with IBTech. She lamented that it was

difficult to convince technical contractors to adopt the desired patterns of behavior

because they did not feel the pressure to conform as much as permanent employees.

In her view, the problem was mainly caused by the fact that technical contractors,

 122

who are often with the organization for set period of time, did not see the point of

seeking to elevate themselves in the organization’s honour scale.

A discussion of why conformity matters so much from the point of view of the

organization cannot be attempted here. The important point to note for now is that

corporate workers are inclined to conform to the norms of professional behavior that

prevail because conformance leads to status elevation. The enactment of the

corporate norms in routine work practices determines in large measure the status of

corporate workers. In this sense, IBTech’s corporate workers answer to an ideal that

is not so different from the ideal of the chivalry epitomized by the pursuit of glory

and repute.

6.1.2 Bureaucracy

IBTech is remarkably bureaucratic. Information that is not documented is typically

regarded as anecdotal and, hence, inadequate for supporting action. This attitude

towards written documents may be explained in terms of the ideal of professionalism

that corporate workers share. Corporate workers value that which appears formal,

exact, and rational, because it appeals to their sense of professionalism. The mere act

of documenting information has the power to confer it with greater veracity and the

document producer with appropriateness.

The high level of bureaucracy in software development is at IBTech justified by the

fact is that investment banking involves a significant sum of money. One

organizational member put the matter this way: “The reason we celebrate success

with such enthusiasm is because we know how costly a mistake can be. […] As a

bank, we need to have policies and procedure because there’s risk embedded in

almost everything we do.” Corporate workers involved in software development

prefer to think of themselves as investment bankers rather than as IT professionals.

An informant once remarked in a conversation that “You have to look like an

investment banker.” In the corporate worker’s mind, investment bankers are

disciplined and formal in their approach to work. Adhering to policies and

procedures, and producing documents with care, contributes to reinforcing the sense

 123

of professionalism that is expected of an investment banker, i.e. someone dealing

with phenomenal sums of money.

Producing written documents in accordance to the policies and procedures is, on the

whole, seen as professional, while seeking to gain autonomy over one’s work is

unprofessional. Because status is at IBTech given great importance, and because

complying with the bureaucratic way of doing things is associated with the behavior

of those of a high status and an ideal of professionalism, organization members tend

to comply with the bureaucratic procedures. There are, however, exceptions. In the

following excerpt, a corporate worker contests the idea that for a best practice to be

learned, it has to be identified by means of a PIR and documented:

‘Lessons learned’ aren’t learned, they are just written down. They are in
the head of the best people. PIR is a joke; there is just no time for that. A
team must quickly attack a new project; there is no time for discussing
metrics. Senior people possess a massive amount of knowledge. [Project
manager, 11-05-2004]

Bureaucratic annoyances at IBTech are balanced by the obvious pride many people

take in working for a leading investment bank. These annoyances are seen as being

part of the experience, as observed by one individual: “It’s necessary evil, and if you

enjoy your job you’ve got to enjoy everything that comes with it.” So, bureaucracy

should be understood as an important aspect of the life at IBTech, and acceptance of

the bureaucracy as an acceptance of this life.

One thing that corporate workers do not tolerate is being requested to complete

documents by someone who does not occupy a position superior to theirs in a direct

hierarchical relationship. This request is likely to be perceived as an illegitimate

subordination attempt, and even an outrage to the norms of the corporation. As

explained above, the authority structure provided by the hierarchy determines the

span of control that a corporate worker has over the work of others and the nature of

their professional relationships with other corporate workers (i.e. either subordinate

or superior). This mode of communication, which takes place principally between

superiors and subordinates, complicates the task of those involved in standardizing

 124

software development. Quality representatives very seldom have the authority to

request that others take part in software process improvement.

6.1.3 Consumption practices

Employees of investment banks are usually better paid than individuals working in

other sector of activities, especially those to a lesser degree connected to the

corporate world. In the United Kingdom, graduates with a Bachelors or Masters

degree begin as Analysts on around £35,000 base salary. Considering that the

average starting salary for all graduates and for graduates in the top 100 AGR blue-

chip firms are £15,500 and £23,000, respectively (BBC, 2006), a salary in the mid-

thirties is relatively high. Those with MBAs and some prior work experience can

expect to begin as Associates at around £60,000.

Folk rumour has it that employees of investment banks receive an important portion

of their total compensation in bonuses. This is only sometimes true for employees of

‘front office’ divisions, and almost never true for employees of ‘back office’

divisions such as IBTech. In spite of the virtual absence of bonuses in IBTech,

corporate workers earn enough to engage in non-utilitarian consumption. For

example, a corporate worker confessed to the researcher during an informal

exchange that the act of consumption in any form was her way “to take some stress

out.” The shopping bags she was carrying at the time the conservation took place

suggested that she had had a successful shopping excursion to a well-known fashion

retailer targeting female professionals.

At IBTech, several practices involving the consumption of products and services

have the power to communicate an understanding and acceptance of the prevailing

norms. As cliché as it might sound, choice of dress, hairstyle, reading, entertainment,

etc. have the power to signal acceptance of the prevailing norms. In most cases, the

products and services corporate workers consume appear to reinforce their

professional identity rather than individuality. Considering that the status of

individuals is determined in large part by the ability to communicate to others their

acceptance of the norms of the corporation, it becomes understandable why

consumption practices are so significant.

 125

It is important to note that fieldwork data do not suggest that the status of corporate

workers is determined by their pecuniary strength. In the present context,

consumption is instead understood as an act resulting from, and being used to

communicate, the possession of a particular set of norms. Thus, the amount spent is

not as important as the accepted symbolic value of goods with which one chooses to

surround oneself. It is also important to note that fieldwork data do not suggest that

corporate workers consume goods in order to (i.e. with the conscious intent to)

communicate that they are committed to their organization. Rather, corporate

workers appear to possess an acute sense of the kind of actions that can position in

the informal organizational order.

The attitude towards consumption that corporate workers display in their private

lives is also reflected in their professional functions. This fact has critical

implications for the present study. Corporate workers make their organization

acquire several management techniques over a relatively short period of time, in

some cases without really knowing what they entail in terms of practices.

Observations suggest that the ideal of professionalism and rationality that consultants

and vendors offer is often rich in meaning and very seductive to corporate workers.

In one particular case, it took only a few minutes for an individual to determine that a

particular management technique, until then only remotely known to him, was

required. The CD demo received from a vendor had been sufficient to determine that

Rational Unified Process ideationally converged with what the organization valued.

The demo presented impeccable interfaces that signalled rigor and discipline. The

individual’s approval of the product presented him with the means to show

allegiance to the norms of the corporation – the very norms that he was expected to

adopt and maintain to maintain his status.

For corporate workers, questioning too forcefully the appropriateness of management

techniques which promise the sort of things the organization values can have

negative consequences. It may be perceived as an act of resistance to the norms of

the corporation and, equally harmful professionally, as an inability to adopt the

prevailing norms. During sales presentations, nodding to signal agreement to an ideal

of professionalism found in the thickness of the reports, and to the veneer of order

 126

and discipline found in commercial off-the-shelf software process, is often to best

thing to do from a career point of view.

6.2 Organizational texts

More than six hundred organizational texts were collected and analyzed for this

doctoral research. The term ‘text’ is used here to refer to assemblages of oral and

written forms (Putnam and Cooren, 2004). Thus, mundane conversations among co-

workers are considered to be as analytically relevant as formal organizational

documents. The objective of the analysis was to systematically identify the

organizational discourses that inhabited the texts that corporate workers produced,

transmitted, and consumed as part of their routine daily activities and, ultimately,

cast light on how software development is constituted through the discursive

practices of corporate workers.

Organizational texts analyzed were classified by themes. Proceeding inductively

(Miles and Huberman, 1994), the researcher did not begin the analysis of data with a

set of themes in mind, but rather let these themes emerge. Themes were

progressively delineated as organizational texts were iteratively re-examined. It was

not uncommon that organizational texts superimposed, knotted into one another, and

were found to belong to more than one theme. In keeping with the discourse analytic

approach adopted, these themes were considered to be organizational discourses in

their own right; that is to say, sets of statements that bring organizationally related

objects into being (Grant and Hardy, 2003: 6). A summary of the seven organization

discourses identified is presented in Table 8.

This section presents snippets of organizational texts in order to introduce the seven

organizational discourses discovered. This section also highlights the tensions and

connections that exist among discourses and the contradictions that exist within

discourses. Significantly, an analysis of the manner in which seven discourses relate

to one another has revealed that discourses constitute two conflicting objects

‘software development.’

 127

Table 8: Seven organizational discourses

Organizational discourses

Explanation

DISCIPLINE The ‘discipline’ discourse stresses the importance of
adopting an approach to software development in
which the roles, the responsibilities, and the
documents to be produced at each stage of the
process are clearly specified. The discourse implies
commitment to such an approach and rigor.

PREDICTABILITY The ‘predictability’ discourse generally refers to the
ability to accurately estimate the costs and schedule
for a project before it has begun. The discourse also
occasionally refers to mediating risks throughout
projects.

MEASUREMENT The ‘measurement’ discourse emphasizes the
importance of specifying metrics and collecting
information about processes in order to find ways to
improve them.

BUREAUCRACY The ‘bureaucracy’ discourse is about the elimination
of activities that slow down the software
development process and that contribute little to end
results. The discourse implies efficiency.

COMMUNICATION The ‘communication’ discourse stipulates that sound
communication among parties involved in software
development reduces development time and effort,
and fosters the transfer of knowledge. This discourse
principally centers on person-to-person
communication, rather than on written
communication.

INNOVATION The ‘innovation’ discourse typically depicts software
development as an activity characterized by rapid
change and emergence.

LEARNING The ‘learning’ discourse generally emphasizes the
idea that software development is dependent on the
ability of individuals and organizations to acquire
knowledge. The discourse also occasionally refers to
the ability to systematically improve a software
process by means of software process improvement.

 128

6.2.1 Discipline

The ‘discipline’ discourse surfaces in organizational texts on a broad range of topics.

The following excerpt from an internal report shows that the ‘discipline’ discourse

inhabits organizational texts on RUP:

RUP is a proven methodology used by industry leaders. It provides a
disciplined approach to assigning tasks and responsibilities. The plan is
to utilize RUP to help IBTech keep track of the evolution of ours
projects… [Internal report 29-08-2004, A67]

A ‘disciplined approach’ is defined in the same text as a software development

approach in which the ‘who,’ ‘what,’ ‘when,’ and ‘where’ of software development

are explicit and followed to the letter. RUP allegedly instills discipline into software

development by answering the following questions:

• What are the processes in terms of activities, roles, and artifacts?

• Who are associated with the key processes?

• When should the processes be initiated?

• Where can artifacts and templates be found?

[Memo 29-08-2004, A67]

It is in organizational texts appertaining to the CMM/I that the ‘discipline’ discourse

is, perhaps, most manifest. The concept of institutionalization, by referring to the

commitment and consistency to performing a standard process, clearly implies

‘discipline.’ Here is an extract from the CMM/I reference book used by IBTech

corporate workers:

“Institutionalization” is an important concept in process improvement.
When mentioned in the generic goal and generic practice descriptions,
institutionalization implies that the process is ingrained in the way the
work is performed and there is commitment and consistency to
performing the process. (Chrissis et al., 2003: 33)

Similarly, a consultant report obtained by IBTech from Gartner, a technology-related
research firm, emphasizes the model’s potential to generate discipline:

 129

At its core, the CMM is a model of organizational development and
change… During the evolution through the five maturity levels,
development practices are transformed from an ad hoc, undisciplined

state into disciplined processes capable of predictable results. [Consultant
report 15-02-2004, A124].

6.2.2 Predictability

The ‘discipline’ discourse is closely related to the ‘predictability’ discourse. The

more disciplined a process is, the more predictable the outcomes should, in theory,

be. ‘Predictability’ thus implies an ability to carry out application development and

maintenance work on schedule and on budget.

The primary objective of the CMM/I is to achieve optimal repeatable processes for

software development. Maturity level 5 focuses on continually improving

performance, a goal made possible by having processes that produce predictable

results. Maturity, therefore, implies predictability:

Since improved organizational maturity is associated with improvement
in a range of expected results that can be achieved by an organization, it
is one means of predicting the general outcomes of the organization’s
next project (Chrissis et al., 2003: 81-82).

The ‘predictability’ discourse is implicitly brought up in the description of a

‘managed process’ (Level 2). A ‘managed process’ is a process that is executed in

accordance with the plan and that results in the achievement of a specific objective

established for the process, such as cost, schedule, and quality objectives. The text

segment ‘consistent performance’ here implies, to some degree, predictability: “A

managed process achieves the objectives of the plan and is institutionalized for

consistent performance” (Chrissis et al., 2003: 34).

‘Predictability’ is explicitly addressed from Maturity Level 3. The benefits reaped

from the commitment to and consistency of performing the process in a qualitatively

predictable manner pave the way for subsequent maturity levels:

A critical distinction between maturity levels 3 and 4 is the predictability
of process performance. At maturity level 4, the performance of
processes is controlled using statistical and other quantitative techniques,

 130

and quantitatively predictable. At maturity level 3, processes are typically
only qualitatively predictable (Chrissis et al., 2003: 81).

The ‘predictability’ discourse also inhabits organizational texts about IBTech’s

standard software development process. The following excerpt from an electronic

presentation file used by members of the quality teams shows that RUP is linked to

the ‘predictability’ discourse:

Rational Unified Software:

• Provides guidelines for efficient development of quality software.

• Reduces risks and improve predictability.

• Promote common vision and culture. [...]

This standard software process ensures predictability for IBTech in
meeting schedule, cost and high quality standards. [Electronic
presentation file 10-08-2003, A123]

However, it appears that the notion of predictability is understood in the organization

in a way that differs from what RUP suggests. The term ‘predictability,’ when

referring to an iterative methodology, generally refers to mediating risks and

avoiding the drama and unpredictability of ‘big bang’ release by delivering multiple

releases of a product:

On every project, you want to minimize risks, ensure predictable results
[…] Using RUP’s iterative approach to development, project managers
can more accurately gauge progress by assessing key milestones at each
iteration – increasing the predictability of the entire development effort.
[IBM-Rational white paper, 2001]

The foregoing quotation from a white paper found at IBTech explains that with an

iterative methodology, there is a constant reworking of the plan with each iteration.

Thus, the closer the end of project, the more the organization should know about

what the outcome will be. Seen this way, ‘predictability’ does not refer to the ability

to accurately estimate costs and schedule for an entire project before the project has

begun. A corporate worker particularly knowledgeable about agile and iterative

development explained the different meanings the term ‘predictable’ may take:

 131

Predictability in terms of plan-driven means that if you draw up a plan
which says ‘we will analyze, develop, implement’ and that says ‘we will
deliver on August 6th’we know what we are doing and will know if we
are off course. That’s one sense of ‘predictability’ where you are trying
to map out the future. Given that you can’t have any control over the
past, you are trying to exert control over the future. And that’s a
particular engineering perspective on the world.

Agile and iterative development take it at a totally different level, which
say ‘try not too much about controlling the big future, think about how
you might control the next week, the next month and work at controlling
in small slices’. That way you will achieve the level of control over the
future that will mean that you don’t get into messes where after eighteen
months work you discover that you will not have any chance of making
the delivery. [Interview, 14-12-2004]

Corporate workers were uncomfortable with the idea of developing iteratively, as it

suggested that cost and schedule could not accurately be predicted. The following

except from an email shows this discomfort:

[The CTO] agrees that RUP can help us reduce risks, but I’m not sure
how he sees his BTs [Business Technologists] kick-off a project without
knowing upfront how long the project is going to last […] it’s [iterative
development] a double-edged sword […] [Email from the head of
governance, 23-11-2004]

6.2.3 Measurement

The ‘measurement’ discourse was principally found in documents highlighting the

importance of specifying and collecting standard metrics across IBTech. A Metric

Working Group was in place to fulfil this purpose:

The problem of inconsistent and fragmented metrics for projects,
programmes, and vendors affects all of us. Since each team collects
metrics in a different format there isn’t an easy way to compare metrics
across teams and regions. Due to all of the above it is difficult to measure
achievement of organizational goals.

The objective of the Metrics Working Group is to define a consistent set
of metrics that will be collected and reported by AD [application
development] team […] Each metric will relate to one or more
organizational goals that have been defined by the CTO. [A41]

 132

A frequently-repeated statement at IBTech is that metrics should be developed to

support management information needs and, ultimately, enable process

improvement. This vision of software development concurs with that of the SEI:

The primary reasons for doing measurement and analysis is to address
identified needs and objectives. Measurement results based on objective
evidence can help to monitor performance, fulfill contractual obligations,
make informed management and technical decisions, and enable
corrective actions to be taken. (Chrissis et al., 2003: 256)

The SEI also clearly specifies what measurement and analysis involve:

The Measurement and Analysis process involves the following:

• Specifying the objectives of measurement and analysis such that they
are aligned with identified information needs and objectives

• Specifying the measures, data collection and storage mechanisms,
analysis techniques, and reporting and feedback mechanism

• Implementing the collection, storage, analysis, and reporting of the
data

• Providing objective results that can be used in making informed
decisions, and taking appropriate corrective actions (Chrissis et al.,
2003: 247)

The importance granted to the CMM/I objective contributed to making the

‘measurement’ discourse circulate at IBTech. In many cases, organizational

documents about measurement were inspired by the CMM/I reference books quoted

above. For example, here is an extract from an organizational text written by a

corporate worker:

The goal of the Metrics Working Group is to develop a measurement
capability that is used to support the Management information needs.

[Internal report 09-01-2004, A41]

And here is an extract from the text that inspired the author of the text above:

 133

The purpose of Measurement and Analysis (MA) is to develop and
sustain a measurement capability that is used to support management
information needs (Chrissis et al., 2003: 247)

The SEI provides a wealth of resources to talk about ‘measurement.’ In an electronic

presentation document, presumably to add weight to the claim that measurement

matters, a corporate worker used the results of a survey completed by the SEI:

A further survey described the potential gain of 35% in productivity,
19% reduction in defects, and 19% reduction in time-to-market […] High
maturity organizations have demonstrated that the key to process
improvement success is to be able to measure the process in order to
make informed decision making. [Electronic presentation file 02-03-
2004]

The PIR process described in the previous chapter is intended to measure variations

to the plan, in terms of days and costs, and to identify the causes of such variations:

The PIR delivers little value without a systematic approach and technique
for correcting the process in light of lessons learnt, where process critical
success factors are implicit but not identified, measured or controlled
[…] Historically in IBTech […] the PIR has not been done consistently.
Lessons learnt have been anecdotal and qualitative, with low potential for
determining the full set of opportunities for improvement. [IBTech
intranet 10-06-2004, A8]

However, as was noted earlier in the chapter, not all corporate workers agree that

measuring variations to the plan, identifying the causes of variation, and formulating

‘lessons leaned’ lead to process improvement:

‘Lessons learned’ aren’t learned, they are just written down. They are in
the head of the best people. PIR is a joke; there is just no time for that. A
team must quickly attack a new project; there is no time for discussing
metrics. Senior people possess a massive amount of knowledge. [Project
manager, 11-05-2004]

6.2.4 Bureaucracy

In October 2004, a colourful and visually-rich pamphlet entitled “Our Operating

Principles” was physically distributed to all employees. The document stated that the

 134

executive management team had created a series of principles for employees to

follow: “Our success relies on our collective ability to understand these principles

and aspire to live by them everyday.” According to the document, “operations should

be fast and simple” and corporate workers should strive to “eliminate unnecessary

bureaucracy” [Our Operating Principles, 2004].

The ‘bureaucracy’ discourse typically is about the elimination of activities that slow

down the software development process and that do not contribute any value to end

results. The following extract from a newsletter distributed electronically to all

corporate workers outlines the importance of eliminating bureaucracy in order to

become more efficient:

Bureaucracy has real dollar costs. There’s nothing worse than having to
experience dumb policies and procedures […] It’s important for
managers to emphasize simplicity and efficiency as a guiding principle.
Procedures often are put in place to accomplish a particular goal or
address a particular issue, then continue to be used long after the issue
becomes irrelevant. […] identifying day-to-day opportunities to eliminate
bureaucracy is important in shaping an efficient culture. [Newsletter 26-
05-2004, A99]

The development and maintenance of regional software development processes can

be depicted as a bureaucratic activity:

During the last two years, multiple codes of practices have been created
in each region, in most cases, several per software house. This has
allowed us to achieve a certain maturity corresponding to the CMM level
2. […] However, the development and documentation of a new COP
each time a team wants to achieve CMM level maturity is highly time
consuming and bureaucratic. [Newsletter 25-11-2004, A96]

In this frame, having a single software process to develop and maintain would appear

less bureaucratic. Thus, institutionalizing a standard organizational software process

can be said to contribute to eliminating unnecessary bureaucracy:

The GreenBook is a central body of standards and practices that
represents IBTech best practices […] If we are successful then our body
of standards and practices will help those trying for CMM level 3 to get
there more easily […] as we develop and implement efficient,

 135

rationalized working practices we eliminate unnecessary procedural
duplication and bureaucracy. [Newsletter 25-11-2004, A96]

Following this line of reasoning, RUP, which was intended to provide IBTech with a

standard software development process, should have contributed to eliminating

unnecessary bureaucracy. However, as explained in the previous chapter, RUP was

in the organization generally perceived as being too comprehensive and excessively

document-centric. In September 2004, a newsletter discussed the limitation of the

RUP platform overtly:

The Equities Process Framework (EPF) is currently based on Rational
Unified Process (RUP). RUP is comprehensive and designed to be
configured by an organization but there is the opinion that it could be too
heavyweight for the organizational needs. There is the thought that Agile
practices could be applicable in this instance. [Newsletter 08-09-2004]

When asked if he believed that developers find the claim that RUP would reduce the

non-value added activities credible, a project manager said: “My understanding –

that will give rise to great hilarity among developers. I don’t think they’ve got any

great affection for RUP.”

For some, however, there is nothing wrong with RUP: the problem resides in the way

the platform is enacted. According to one corporate worker, a software organization

has to strip RUP from unnecessary process and artifacts in order to reduce

bureaucracy activities to an acceptable level:

A cause of failure of RUP projects is the tendency of process-immature
organizations like IBTech to examine RUP and say “There’s a lot of
good stuff here; this is perfect for us”. These organizations then install
the base RUP product and tell their staff to follow all of its 3,000+
HTML pages. There is a lot of good stuff in RUP, but we need only a
small subset of it. [Email from CMM representative 26-05-2004, A13D]

The ‘bureaucracy’ discourse also surfaces in organizational texts about the PIR. The

PIR is particularly vulnerable to anti-bureaucracy rhetoric because this process is not

essential to the software development process. The PIR is criticized for being too

bureaucratic, as the manager responsible to process confesses:

 136

I have even reduced the number of pages in our PIR report template to
make it less intimidating. Many still see the PIR, and in particular PIR
documentation, as an unnecessary overhead, even though there is little
effort involved… it’s a culture change we are pushing at the moment.
[Email from manager responsible for the PIR 06-08-2004]

6.2.5 Communication

The ‘communication’ discourse surfaces in the organizational text entitled, ‘Our

Operating Principle.’ The document previously introduced contains a section entirely

devoted to communication. Under the heading “Communicate honestly, clearly and

often,” the document urges corporate workers to:

• Share ideas and information as quickly as possible

• Share your passion for learning and knowledge

• Reinforce important messages clearly in writing

• Communicate important message in person

• Be concise and keep it simple [Our Operating Principles, 2004]

The ‘communication’ discourse inhabits most organizational texts about agile

development. The following extract from a newsletter discussing the benefits of agile

illustrates this:

The largest single implication to managers working in the agile manner is
that much more emphasis is placed on people factors in the project […]
the quality of communication become first-rate items of concern for the
would-be agile team. [Newsletter 20-10-2004, A180]

In the same spirit, an internal report written by members of IBTech’s agile working

group identified communication as a critical success factor:

Critical success factors: […] Communication: talking and engaging with
customers in a collaborative fashion is very important. This should be
maintained throughout the project, but is especially critical early on.
[Internal report 24-09-2004]

 137

The ‘communication’ discourse is also invoked when it comes time to sell agile

development to the different software houses following an allegedly-successful pilot

implementation. The following extract shows this:

Using Agile has really streamlined MISTE’s [market interactive system
for trading electronically] end-to-end project processes. MISTE now has
a dynamic approach to gathering user requirements, estimating and
scheduling releases, and monitoring and controlling project deliverables.
Overall, it has […] established better communication with dependant AD
[application development] teams. [Newsletter 21-10-2004, A81]

The ‘communication discourse’ also inhabits organizational text appertaining to

RUP. A passage from an IBM Rational white paper found at IBTech is illustrative:

Improved Communication: By using a proven methodology [the RUP
methodology] and sharing a single comprehensive process, your team
will be able to communicate more effectively and work more efficiently.
[IBM Rational white paper 2001, A53D]

In all the excerpts above, ‘communication’ is understood along the lines of agile

development-- that is to say, as face-to-face communication, not document-based

communication. The ‘communication’ discourse can, nonetheless, occasionally be

found in organizational text about the CMM/I, the PIR, and SEPIG. For example, a

guide for software improvement obtained by IBTech from the SEI depicts

communication as a tightly-managed activity involving the creation of a

communication plan and formal meetings:

Communication plans also need to be developed to insure that
communication of the events associated with the SPI program are
received properly by the organization. Each of these plans will have
schedules that must be monitored and defined milestones that must be
reviewed [p. 167]. Establish organization-wide communication vehicles
(such as newsletters, town-hall type meetings, brown bag seminars) to
keep the entire organization informed on the progress and results of the
SPI program. The members of the organization should be periodically
surveyed to ensure that the messages are being received. [p. 39].
(McFeeley, 1996)

 138

6.2.6 Innovation

The ‘innovation’ discourse pervades the organizational document outlining IBTech’s

objectives for 2004. Objectives under the heading, “Be an innovative organization,”

include the followings:

• Institutionalize the Productivity and Innovation process to ensure a
culture that encourages and rewards innovation

• Enable people to feel empowered to propose radical ideas

• Share ideas and market intelligence between groups

• Ensure knowledge about patent process is clear and people dedicate
time to this agenda [A37]

The patent process referred to in the foregoing extract deals extensively with the

subject of innovation:

We need to take our passion for excellence and translate it into
innovations that take our business to the next level. We encourage you to
think critically about how we do business and how we can improve our
processes and products. Innovation not only cuts costs, eliminates errors,
reduces effort, and creates new opportunity: Innovation can also be the
intellectual capital that attracts new clients and talented employees to our
firm. [IB Technology patent program 15-11-2004]

The document also includes a quotation from a highly-ranked corporate worker

emphasizing the importance of innovation for IBTech:

We need 20% growth to stay competitive, and 10% more to move ahead.
That extra 10% comes from innovation – good old-fashion product and
process development. This has to be a top priority for the firm. [IBTech
patent program document 15-11-2004]

The ‘innovation’ discourse inhabits organizational texts about agile development. In

a lecture delivered at IBTech, Jobs, the agile and iterative development consultant,

argued that software development is innovation development in these words: “Most

software is not a mass manufacturing problem. Software development is new product

development” [A24]. Another organizational text about agile development states

that:

 139

Agile development combines creative teamwork with an intense focus on
manoeuvrability […] JP Morgan’s leadership is fueled by innovation –
the new idea that become broadly adopted and has big economic impact.
The ability to innovate effectively is a hallmark of the best organization.
[Internal report 15-11-2004]

6.2.7 Learning

The notion of a ‘learning organization’ expounded by Peter Senge in the renowned

book, “The Fifth Discipline,” captivated many corporate workers. From Senge’s

original notion, corporate workers derived their own definition of a learning

organization:

An Organization that learns and encourages learning among its people. It
promotes exchange of information between people hence creating a more
knowledgeable workforce. This produces a very flexible organization
where people will learn from experience and adapt to new ideas and
changes through a shared vision. [Electronic presentation document 02-
02-2004, A37]

The standard software process – at different points in time known as the GreenBook,

the EPF, and RUP – aimed, among other things, at transforming IBTech into a

learning organization:

The GreenBook program has the goal of transforming IBTech Equities
into a “learning organization”, this being the only way to adapt, survive
and succeed in an increasingly distributed, complex environment and a
competitive, uncertain world. [Newsletter, May 2003]

The ‘learning’ discourse inhabiting organizational texts about the “GreenBook

Program” was so forceful that the “GreenBook Program” was, in 2004, renamed the

“Learning Organization Program.” Traces of the ‘learning’ discourse can indeed be

found in organizational texts about all components of the “Learning Organization

Program’ (see Table 6 in Chapter 5). The following extract shows that the ‘learning’

discourse inhabits organizational texts about SEPIG:

 140

The Software Engineering Process Improvement Group (SEPIG) is the
forum to facilitate the definition, maintenance, improvement and
establishment of the software engineering and management process for
IBTech, allowing Areas for Improvement and Best Practices to be
evaluated, and developing a culture of Continuous Process Improvement.
SEPIG has a direct correlation with two IBTech Equities vision
principles: Provide Excellent Solutions With Greatest Efficiency and Be
a Learning Organization and Innovate. [Intranet 06-14-2004, A23]

Agile and iterative development place a considerable emphasis on learning. The

following excerpt from the company intranet shows that the ‘learning’ discourse is

present in organizational texts on agile and iterative development:

Underpinning this approach [agile development] is the assumption that
adapting to a fast and iterative cycle […] and learning to speed up our
delivery and build on experience is critical. […] The cycles need to be
short, so teams can learn from small rather than large mistakes. […]
Iterative development and PIR are practices that expose results to
scrutiny. [IBTech intranet 18-11-2004, A27]

Corporate workers describe the CMM/I in an electronic presentation document as a

model that enables “better knowledge transfer and reuse.” Moreover, the model is

said in the same text to lead to the establishment of “more consistent processes” that

enable the “internal transfer of lessons learned and best practices.” The term

‘learning’ is not used explicitly, but it seems that the ‘learning’ discourse also

inhabits organizational text on the CMM/I.

‘Learning’ is undoubtedly the most intricate discourse of all. This is so because

‘learning’ is highly interpretatively malleable and, therefore, may mean different

things in different contexts. The next section discusses the tensions that exist within

discourses.

6.3 Connections and contradictions

This section both concentrates on the connections among the discourses constituting

software development in the organization, and highlights the contradictions within

discourses. In Figure 3, discourses are represented by circles. A solid line denotes a

strong connection between two discourses, and a dotted line, a very weak connection.

 141

When applying the hermeneutic of suspicion, it becomes clear that a particular

theme, a particular discourse, can be endowed with different meanings. In fact, a

discourse can mean different things to different people.

Figure 3: Connections among discourses

The frequency with which two or more discourses were found to be mutually

supportive in the organizational texts analyzed was calculated and used as an

indicator of the strength of the connection between two discourses. As such,

discourses which were found together relatively often, and which supported one

another, were identified as being mutually supportive. Table 9 shows the number of

times that two discourses were found to be mutually supportive.

Table 9: Strength of the connection between discourses

 D
is

ci
p

li
n
e

P
re

d
ic

ta
b
il

it
y

M
ea

su
re

m
en

t

B
u
re

au
cr

ac
y

C
o
m

m
u
n
ic

at
io

n

In
n

o
v
at

io
n

L
ea

rn
in

g

Discipline 54 33 45 2 0 8
Predictability 36 31 0 1 7

Measurement 24 0 0 7

Bureaucracy 0 0 4

Communication 14 17

Innovation 18

 142

6.3.1 Discursive connection: Dominant IDF

The ‘discipline’ discourse is strongly associated with the ‘predictability’ discourse.

Organizational texts analyzed imply that the more disciplined a process is, the more

predictable the outcomes should be. The following extract from an IBM Rational

white paper clearly shows the association between the ‘discipline’ discourse and the

‘predictability’ discourse:

The Rational Unified Process or RUP product is a software engineering
process. It provides a disciplined approach to assigning tasks and
responsibilities within a development organization. Its goal is to ensure
the production of high-quality software that meets the needs of its end
users with a predictable schedule and budget. [IBM-Rational white paper
2001, A22]

In the same spirit, the ‘measurement’ discourse connects harmoniously with the

‘discipline’ discourse and ‘predictability’ discourse. In the following quotations, the

‘discipline’ discourse, which inhabits the text segment “defined roles and

responsibilities,” dovetails with the ‘predictability’ and ‘measurement’ discourses:

I can’t overemphasize the importance of having a disciplined process
because without it we can’t make predictable deliveries. It is not that we
are under intense pressure to periodically release software like Microsoft,
but there is always room to further improve team efficiency and costs
[…] As far as predictability is concerned […] we have to have well
defined roles and responsibilities, and with time, metrics to be measured
against. [Interview 15-09-2004]

The CMM/I literature provides ample evidence that ‘predictability,’ ‘discipline,’ and

‘measurement’ are mutually-supportive discourses. This collection of quotations

from the CMM/I reference book used at IBTech illustrates this fact:

These [maturity] levels are a means of predicting the general outcomes of
the next project undertaken. (Chrissis et al., 2003: 75)

At maturity level 3, the standards, process descriptions, and procedures
for a project are tailored from the organization’s set of standard processes
to suit a particular project or organizational unit and therefore are more
consistent […]

At maturity level 3, processes are managed more proactively using […]
detailed measures of the process […]. At maturity level 4, the
organization and projects establish quantitative objectives for quality and

 143

process performance […] Quality and process performance is understood
in statistical terms […] detailed measures of process performance are
collected and statistically analyzed. (Ibid: 80)

In the foregoing quotation, the concept of ‘maturity level’ is said to be used as a

means of predicting the outcomes of software projects. The ‘predictability’ discourse

thus seems to inhabit the concept of ‘maturity level.’ Moreover, the ‘discipline’

discourse appears to inhabit the notion of ‘consistency,’ which is reflected in an

organization’s maturity level. From this perspective, to be consistent is to be

disciplined. Finally, the maturity level is an indicator of the extent to which the

software process can be accurately measured.

Significantly, organizational texts analyzed imply that a process that is undisciplined

and difficult to measure, and whose outcomes are unpredictable, is inefficient and

ineffective. For example, a quality policy document states that “The purpose the

Software Development Lifecycle shall be to […] adhere and comply with defined

software development process to produce correct, consistent software products

effectively and efficiently” [Internal report, A14]. Processes that do not comply with

the standard development process are assumed to be inefficient and ineffective, and

are labeled ‘bureaucratic.’ The following except demonstrates that the ‘bureaucracy’

discourse supports the ‘discipline’ and ‘predictability’ discourses:

The GreenBook is a central body of standards and practices that
represents IBTech best practices […] If we are successful then our body
of standards and practices will help those trying for CMM level 3 to get
there more easily […] as we develop and implement efficient,
rationalized working practices we eliminate unnecessary procedural
duplication and bureaucracy. [Newsletter 25-11-2004, A96]

However, organizational texts analyzed do not show the existence of strong links

between ‘discipline,’ ‘predictability,’ ‘measurement,’ ‘(anti-)bureaucracy’ and the

other discourses found in the organization. These four discourses – and only these

four discourses – work together to constitute a vision of software development.

 144

In sum, four discourses work together to constitute a vision of software development:

software development is an activity that is best when discipline, predictable,

measurable, and efficient (non-bureaucratic).

6.3.2 Discursive connection: Alternative IDF

‘Communication’ and ‘learning’ are mutually-supportive discourses. For example, a

connection between the ‘communication’ discourse and the ‘learning’ discourse is

manifest in the memo announcing the launch of a wiki at IBTech:

The idea is to create a way for technologists to form a community where
they can ask questions, gain insights and share lessons learnt. […] If it is
easy and they know others will use it [the wiki], people willingly reach
out and share their information. The idea is to make communication and
knowledge sharing so easy, that people just do it.

One of IB Technology’s goals is to be a learning organization. This [the
wiki] is a bottom-up tool that works as a means to share knowledge at
every level of the organization. [Memo 05-06-2004, A21]

In the foregoing excerpt, a link between the ‘communication’ discourse and the

‘learning’ discourse is made. Wikis, the argument goes, make communication easy

and so foster learning.

A connection between the ‘communication’ discourse and the ‘innovation’ discourse

is also apparent. The following extract highlights the importance of sound internal

and external communication to innovate:

Frequent and continuous communications, both within and outside the
team and firm, are critical to the success of the development process […]
The more frequent the communications, the more information can be
transferred. Moreover, because of the uncertainty often associated with
these projects, different types of innovation may be needed as more
uncertainties are resolved. Thus, communication should not only be
frequent, they should also be continuous over the life of the project […]
[Internal report 06-08-2004]

However, despite frequent attempts, the ‘learning’ discourse was only linked to the

‘measurement’ discourse with great difficulty. From an engineering perspective,

 145

learning depends on measuring variations to the plan. The quality of a process is

measured in terms of how well it goes according to the plan. In this frame, the PIR

and SEPIG could be said to enable learning by qualitatively and quantitatively

identifying variations to the plan. The official description of the PIR makes this

claim:

PIR delivers little value without a systematic approach and technique for
correcting the process in light of lessons learnt, where process critical
success factors are implicit but not identified, measured, and controlled.
PIR is a process review and a learning component of the software
development model […] areas for improvement, lessons learned, best
practices are used in the Software Engineering Process Improvement
Group (SEPIG). [Intranet 23-03-2004. A8]

However, many see the notion of learning as being at odds with the engineering

perspective, which emphasizes discipline, predictability, measurability, and efficient

software development. For example, in the following verbal exchange, an agile

consultant hired by IBTech rejects the connection between the ‘measurement’

discourse and the ‘learning’ discourse:

Consultant: A key part of agile development that is now recognized – I
think – is the notion of retrospective […] The one I’ve seen were
iteration retrospectives, which would only take about one hour.

Researcher: It’s a kind of mini PIR, isn’t?

Consultant: Well, no. It’s not a PIR because you are not trying to find out
who was at fault - simply what worked well, what didn’t work so well,
what we could change. They are also done at a release level and take a
day, two days.

Researcher: Do you associate the PIR with finding the one who’s at
fault?

Consultant: That’s one of the key things that agile would not attempt to
do. I think a very good example of a learning organization in practice is
[company ABC]. It’s one of the first ever XP teams and they had a
complete commitment to continually try reflect on where they are, where
they are going. They introduced a range of strategies that tried to
recognize the role of the individual, despite the importance of the team.
So they introduce the notion of ‘gold card days’. Each developer was
given two ‘gold card days’ each month. So they took explicit action.9

9 A gold card allowed a developer to spend a day per month studying a technical subject of his or her
choice.

 146

Those are the kinds of practical concern that allows that sort of group to
say ‘we are a leaning organization’. [Interview 14-12-2004]

In sum, the analysis has revealed that there is an association between the

‘measurement’ discourse and the ‘learning’ discourse, but that the association

remains weak. The association is considered weak because the link between the two

organizational discourses is seldom made, and when it is made, it is generally

contested. The agile consultant’s narrative, presented above, exemplifies this fact.

Strong associations exist between ‘learning,’ ‘innovation’ and ‘communication.’

These three organizational discourses are mutually-supportive and work together to

constitute an alternative vision of software development. The vision of software

development the three aforementioned discourses sustain is considered to be

“alternative” (Fairclough, 1995: 12) because ‘learning,’ ‘innovation’ and

‘communication’ are less frequently present in organizational texts than those of the

“dominant” IDF. Moreover, when present in organizational texts, the discourses

generally serve to represent something novel that requires explanation, such as agile

development, iterative development, or the use of wikis.

 147

7 Analysis

This chapter illuminates how and why organizational actors at the study organization

came to think about software development in certain ways and adopted particular

practices. The chapter argues that developing an in-depth understanding of the

relationship between the actors’ interests and the social-organizational structures

provides greater insights on the discursive constitution of software development.

Bourdieu’s concepts of ‘field of struggles,’ ‘field of forces,’ and ‘capital’ are

employed to illuminate the relationship between, respectively, the professional

struggle in which actors were engaged, the logic of the broader socio-institutional

context, and the competences that actors possessed.

7.1 Field of struggles

All of what was done at IBTech was, in one way or another, related to the business of

software development. It was the organization’s mission to develop and maintain

software systems, and corporate workers were expected to advance causes that

directly or indirectly contributed to this mission. The responsibilities attached to an

organizational role specified how an individual should contribute to the

organization’s mission.

In the process of fulfilling their responsibilities and enacting their professional roles,

corporate workers supported beliefs about software development. For example, in

completing a PIR, a project manager contributed to reaffirming the importance of

process improvement and upheld the particular vision of software development that it

implied. Alternatively, by repeatedly reporting the completion of a PIR, a project

manager signalled that process improvement was less important than other concerns,

or that the particular vision of software development that the PIR presupposed did

not concur with what s/he believed software development was. So although the work

of corporate workers took place within the boundaries set by their respective roles,

corporate workers possessed a fair degree of discretion as to what they did within

these boundaries. Consequently, corporate workers possessed a certain degree of

discretion over the beliefs they chose to endorse through their practices.

 148

Corporate workers tended to practice software development in a way that was

consistent with their beliefs regarding what software development should be, and

should involve. When asked to justify their practices, corporate workers generally

invoked an “efficient resources allocation” argument. For example, when asked why

an activity that should have been completed had not been completed, they would

often claim that they had lacked the resources, or had chosen to use their resources

elsewhere, in an attempt to give priority to more important activities. Seen this way,

corporate workers were constantly engaged in confirming or contesting how software

development should be thought of and practiced.

It is suggested here that the constitution of software development occurred in reality

through mundane practices and was ongoing. Although the ‘learning organization’

program was supposed to provide the formal mechanisms to shape software

development, its shaping was constantly occurring. For this reason, there is a strong

argument for concentrating on the actions of individuals in situ – i.e., on their

practices. At IBTech, the production, transmission, and interpretation of texts about

software development was part and parcel of, and inseparable from, the activity of

software development. From this perspective, what corporate workers wrote and said

in the context of work was always intended to confirm or change what software was.

Significantly, findings do not suggest that the way in which software development

was principally thought of and practiced had a major implication on corporate

workers at a personal level. The degree of legitimacy that beliefs and practices were

endowed with did not change anything as regards a corporate worker’s salary, and

had little bearing on his or her career prospect. Role and departmental boundaries

limited the amount of influence that an individual could have on software

development, and corporate workers were cognizant that their individual contribution

to changing how software development is understood and practiced could only be

minor. Moreover, it was quite common for individuals to occupy a position for only

a limited number of years and then move on to another position outside IBTech

within the investment bank. For these reasons, corporate workers generally did not

regard the definition of software development as a professional project.

 149

Because the manner in which software development was principally thought of and

practiced was fairly inconsequential to corporate workers at a personal level, one

would expect them not care about it. However, as participant observations suggested,

corporate workers were expected to be interested in the organization’s pursuits to the

point of willingly subordinating their personal interests to those of the organization.

The extent to which professionalism and a sense of duty was reflected in corporate

workers’ behaviour contributed to the elevation of their status. The definition of

software development provided an opportunity to demonstrate an interest in what the

organization did, and an ability to live by the organization’s values.

The previous chapter opened with an insider account intended to give some sense of

the authority structure that prevailed in the case study organization. It was noted that

although corporate workers showed a remarkable status consciousness, status must

not be understood simplistically in terms of rank in the formal hierarchy. It was

observed that status was primarily determined by the recognition one received from

others. Recognition was gained by showing commitment to the organization by

adhering to its symbolic universe. More specifically, this entailed adopting the

lifestyle that the corporation promoted and placing the interest of the corporation in

front of one’s own interest. At IBTech, producing such patterns of behaviour was

understood as professionalism.10 One’s position in the formal hierarchy was,

therefore, more a consequence of the recognition received than a source recognition

and authority valid outside the vertical lines of the communication system of the

formal hierarchy.

Participant observations also drew attention to the strong desire of corporate workers

to elevate their status. Although this desire may be a human trait observable in most

professional environments, it should not be too rapidly dismissed as being

analytically irrelevant. At IBTech, a remarkably strong desire to improve one’s status

provided an impetus for the enactment of discursive and non-discursive practices

intended to communicate professionalism. For this reason, it is appropriate to see the

10 This treatment of the concept of professionalism is consistent with the literature. For Roberts
(2005), professionalism refers to the extent to which one accepts the values of a role or a profession,
and can be evidenced by an individual’s ability to meet the normative expectation of a role or a
profession.

 150

discursive practices produced as part of the activity software development as

practices capable of communicating professionalism. This proposition will be refined

as the analysis progresses.

It is important to note that the proposition does imply that corporate workers produce

texts with the conscious intent of communicating professionalism and improving

their position in the organization. The discursive practices of corporate workers seem

to escape any conscious strategizing and cause-effect calculation. As will be shown

in details in this chapter, corporate workers possessed a distinctive set of norms that

inclined them to talk about software development in a particular way.

Corporate workers shared distinctive norms which defined them as a cohesive group.

Central to these norms were the importance granted to status, and the link, in the

corporate workers’ minds, between professionalism and status. The noteworthy

desire to elevate their status ensured their commitment in the constitution of software

development. Corporate workers were generally not inclined to critically question the

basis for status determination, but accepted the pursuit of a higher status as a matter

of course. Moreover, they agreed that the stakes were worth struggling for, even if

their chances of success were low compared to those of other individuals.

The continuation of the struggle required an unconditional investment and an

unquestioning belief in the struggle. To challenge the value of status and the

legitimacy of the factors that determined it would have meant that the struggle was

not acceptable as it was. Hence, the conduct of the struggle presupposed a

fundamental accord or complicity on the part of corporate workers.

Of course, the corporate workers could, in theory, have refused to conduct

themselves in accordance with the normative standards of their professional group.

For example, they could have been cynical regarding the level of bureaucracy, and

openly questioned the technical merits of established ways of doing things. More

specifically, they could have very well rejected bureaucracy as a means of

coordination and ignored the vertical communication channels provided by the

hierarchy. However, corporate workers, who were status conscious, had an interest in

 151

behaving to the best of their ability, for opting out of the struggle means abandoning

one’s status. As Bourdieu observes:

The only absolute freedom the game leaves is freedom to withdraw from
the game, by an heroic renunciation which – unless one manages to set
up another game – secures tranquility only at the cost of social death
(Bourdieu, 1981: 316)

Some discourses at IBTech were valued more highly than others, and the way one

demonstrated competency was by producing texts that were highly valued. Using the

notion of capital, the next section explains how the competence to create and use

texts to constitute the object ‘software development’ authoritatively functioned as a

marker of social status.

7.2 Capital

For Bourdieu, an analysis in terms of field necessarily involves analysing the

“structure of the relations between the positions occupied by the agents […] who

compete for the legitimate form of specific authority” (Bourdieu and Wacquant,

1989: 40). The form of authority is what Bourdieu also referred to as ‘capital.’

Analytically, the position of agents within the field is determined by the volume of

capital possessed and the relative weight that the field grants to the different forms of

capital.

Let us begin by examining what the forms of capital active at IBTech were, and how

they structured the position of corporate workers. ‘Position’ should here be

understood in two ways: as the stance of agents regarding how to think of and

practice software development, and as the position occupied by agents in the field

(e.g., dominant or dominated). As should be clear to the reader by now, the theory of

symbolic violence is founded on the idea that there is a correspondence between the

stance of agents and the position determined by the volume and forms of capital

possessed.

Corporate workers communicated through a number of practices that they in effect

adopted the lifestyle that the corporation promoted and placed the interests of the

 152

corporation in front of one’s own interests. At the risk of sounding cliché, this point

was illustrated in the previous chapter by drawing attention to a number of non-

discursive practices that corporate workers engaged in, including the choice of dress,

hairstyle, and entertainment. Wearing a necktie, sporting business look hairstyle,

leaving the office late, and playing golf at weekends were instances of practices that

evoked professionalism and called for recognition. In a similar vein, it was advanced

that organizationally-sanctioned consumption was also a practice that communicated

an understanding of what the organization valued, as well as a willingness to meet

the expectation of the organization. For example, the professionalism that RUP

radiated weighted heavily on the decision to acquire the process.

More significantly, however, the discursive practices of organizational actors were

not only practices capable of transmitting a message between a sender and a receiver,

but were also practices that communicated an understanding of what the organization

expected, and a willingness to meet its expectations. In this sense, discursive

practices, just like the non-discursive practices referred to above, are practices

capable of signalling one’s degree of professionalism and, hence, one’s status.

Bourdieu nicely expresses this point in relation to the concept of capital as follows:

“Every linguistic exchange contains the potentiality of an act of power, and all the

more so when it involves agents who occupy asymmetric positions in the distribution

of the relevant capital” (Bourdieu, 1992: 145).

Seen this way, the discourses that corporate workers drew on in their routine

activities were not only capable of expressing their position on relevant software

development issues, but also indicated these workers’ positions in the social order.

The capacity to use and create texts appropriately in the organization (i.e.

professionally) had the effect of signalling where one stood, and served as a resource

to maintain or elevate one’s status. For this reason, it is appropriate here to speak in

terms of ‘linguistic capital’ (Bourdieu, 1991: 66).

As previously explained in the theory chapter of this doctoral thesis, linguistic capital

is the capacity, or competence, to create and use texts to constitute a social object

compellingly and, thereby, change or reaffirm the practices of individuals in relation

to the social object. It is important to note, however, that the notion of linguistic

 153

capital goes beyond the purely linguistic aspect of language and represents a

practical understanding of the norms regulating discursive practices. The next section

will provide justification for employing this notion in order to understand why

software development was constituted as it was at IBTech.

7.2.1 Justifying the use of the concept of ‘linguistic capital’

Before deploying analytically the notion of ‘linguistic capital,’ it is necessary to

justify why it is better suited than other more conventional notions of authority. In

particular, it is appropriate to examining why the authority derived from the

occupancy of a post (bureaucratic authority) and technical expertise (professional

authority) could not be used by organizational actors to shape software development

and could not be considered here as active forms of capital.

We recall that for Bourdieu, the notion of capital plays a dual analytical role. First,

capital functions as a weapon of struggle. Furthermore, capital is a marker of social

status. Consequently, in order to identify what the forms of capital active in the field

were, two questions were probed: What resources were drawn upon to establish the

legitimacy of beliefs about software development and constitute software

development practices? What determined the status of individuals at IBTech?

Findings suggest that bureaucratic authority was largely inadequate for establishing

the legitimacy of beliefs about software development. Bureaucratic authority gives

an office holder the right to issue commands and expect obedience from his or her

subordinates (Weber, 1968), but it cannot be used to make people believe on demand

that one particular software development practice is superior to another. When it

comes to changing beliefs in an economic organization, unobtrusive and normative

mechanisms are generally deemed more effective (Jermier, 1998; Sewell, 1998).

Bureaucratic authority was, nonetheless, used at IBTech to retain control over the

choice and use of instruments of normative control (e.g., the ‘learning organization’

model).

Regarding the constitution of software development practices, bureaucratic authority

was not a resource drawn upon by corporate workers. This is primarily because a

 154

bottom-top approach was utilized to constitute software development practices. With

the ‘learning organization’ governance structure, areas for improvement and best

practices were identified and communicated by means of a PIR report completed by

project members. There was an attempt to impose a standard software development

process “from above” with the GreenBook, but it resulted in a humiliating disaster.

The possession of technical expertise, in the sense of technological proficiency,

appears marginal in the constitution of beliefs and practices. To be sure, a certain

degree of technical expertise was required to meet the requirement of an

organizational role. However, findings do not suggest that technical expertise

determined the capacity of a corporate worker to establish beliefs about software

development and constitute software development practices. As a result, technical

expertise cannot be a relevant form of capital.

The second question (“What determined the status of individuals at IBTech?”) is

appropriate because capital, by definition, determines who occupies the dominant

status within a field of interaction. Participant observation data indicated that the

status of individuals was not determined by the hierarchical rank they occupied.

Despite of IBTech’s traditional hierarchical organizational structure, status was

largely determined by the recognition one received from others. A high hierarchical

ranking and the possession of a significant volume of bureaucratic authority were

consequences of the recognition one had received, but not the main source of

recognition. A corporate worker had to be known to adhere to the norms promoted

by the firm, consistently and over time, in order to be promoted. Consequently, the

bureaucratic authority granted by a formal hierarchical rank cannot be considered a

form of capital.

To reiterate a point previously made, recognition from others was principally

obtained by communicating an allegiance to the norms of the organization through a

wide array of practices. For example, commitment to the norms of the corporation

was expressed non-discursively by leaving the office late and discursively by

speaking about software development in a way that was deemed appropriate.

Corporate workers that were capable of showing that they adhered to the values of

their organization tended to receive recognition from others and a higher status. On

 155

the other hand, those who did not understand what their organization expected from

them, because of a lack of aptitude or experience, or who showed themselves to be

discursively hostile to what working for an investment bank involved, were generally

condemned to an ‘unprofessional’ social identity and a lower status.

7.2.2 Linguistic capital

The notion of linguistic capital, as hinted above, implies the capacity to produce texts

that are effective. In order to speak effectively, individuals must make the texts they

produced concur, to some extent, with the demand of the field in which they are

situated. In a given field, some discourses are valued more highly than others, and

part of the practical competence of individuals involves knowing how and being able

to produce utterances that are highly valued in the field concerned.

In the study organization, linguistic capital not only operated at the sender’s end;

linguistic capital was also the competence that enabled the readers and hearers of a

text to recognize its meaning and value. Thus, the effectiveness and consequentiality

of a text not only depended on the capacity of the sender to make his/her product

conform to the orthodoxy of the field, but also depended on the capacity of the

receiver of the text to let meaning emerge from it, appropriate it, and allow the text to

become consequential. Bourdieu captures this idea by asserting that “agents [are]

endowed with schemes of perception and appreciation” (Bourdieu, 1991: 39).

Linguistic capital is a powerful notion that goes beyond the conventional treatments

of authority. In the present case, bureaucratic authority and professional authority did

not do adequate justice to the complexity of the phenomenon under study. Linguistic

capital functioned as a form of authority that enabled corporate workers to produce

texts that were consequential and to use them effectively in the definition of software

development.

However, linguistic capital was not a ‘magic powder’ that could make everything

written or said consequential. The fact that a corporate worker possessed a significant

volume of linguistic capital did not mean that any texts he or she produced were

automatically consequential. Linguistic capital is a capacity that enables individuals

 156

to produce texts that meet the criteria of acceptability of the field. To put the matter

differently, it is a capacity to communicate what the field, and in those engaged in it,

value and believe to be right. For example, corporate workers at IBTech generally

valued what was disciplined and predictable within the context of work.

Consequently, texts depicting software development as a disciplined and predictable

activity tended to be received favourably in this organization. The possessor of a

significant volume of linguistic capital knew (at least implicitly) that depicting

software development as an activity that could not be made predictable due the

emerging nature of the requirements could only be done at the risk of being frowned

upon.

One of the key ideas of the previous section is that there was at IBTech a

correspondence between the definition of software development and the struggle for

status elevation. The definition of software development essentially provided the

platform for reasserting and negotiating statuses. In other words, statuses were

reasserted and negotiated in acts of communication occurring in the process of

negotiating how software development should be thought of and practiced. Seen this

way, every act of communication became an opportunity to display the possession of

linguistic capital.

At IBTech, utterances formulated within the context of software development –

although the utterances needed not be about software development – provided cues

as to “who was in and who was out,” and “who had it and who did not.” Based on

those cues marking the practical competence of corporate workers, the social identity

and self-image of individuals was established. This observation concurs with

Bourdieu’s assertion that linguistic capital serves as a marker of identity and status.

For him, the “sense of the value of one’s own linguistic product is a fundamental

dimension of the sense of knowing the place which one occupies in the social space”

(Bourdieu, 1991: 82).

However, the term ‘linguistic’ is somewhat misleading. In common usage,

‘linguistic’ refers to the knowledge of words and the rules for combining them. From

a strictly linguistic point of view, as Bourdieu colorfully remarked, “anyone can say

anything and the private can order his captain to clean the latrines” (Bourdieu, 1991:

 157

191). Because of the problems that the use of the term ‘linguistic’ poses, the notion

of linguistic capital will have to be refined later in this chapter to account for the

distinctive language on which it is based. ‘Language,’ in addition to signifying a

code that establishes equivalence between symbols and meanings, means “a system

of norms regulating linguistic practices” (Bourdieu, 1991: 45). A language is a

system of norms that provides a proficient language user a sense of what can and

cannot be said. Languages, thus,

imply a certain propensity to speak and say determinate things (the
expressive interest) and a certain capacity to speak, which involves both
the linguistic capacity to generate and infinite number of grammatically
discourses, and the social capacity to use this competence adequately in a
determinate situation. One the other hand, there are structures of the
linguistic market, which impose themselves as a system of specific
sanctions and censorships. (Bourdieu, 1991: 37)

To view a language as a system of norms regulating practices is consistent with the

description of the field of struggles offered in the previous section. Corporate

workers who abided by the demands of the corporation had to learn to speak in a

certain manner and say determined things. Linguistic capital thus functioned as a

practical mastery of a language that enabled the effective production of texts and

utilization of discourses in the definition of software development.

To sum up, linguistic capital is the competence that enabled corporate workers to use

a language to produce texts that were likely to be judged acceptable. Linguistic

capital also enabled corporate workers to distinguish the texts that were acceptable

from those that were not. All other things being equal, the more capital one

possessed, the greater his or her ability to discursively influence the object of interest

and, thereby, change and reaffirm the practices of individuals in relation to that

object. The next section examines the language that was principally used at IBTech

to talk about software development and valorise the texts produced and interpreted.

7.2.3 The corporate language

It is proposed that to understand the discursive constitution of software development,

it is necessary to pay attention to the unequal capacity of corporate workers to exploit

 158

the discourses that were valued in the context in which they were situated. When

producing texts about software development, corporate workers, who were generally

eager to improve their status, tended to draw on discourses that made them appear

professional and that were likely to provide them the approval of others. The closing

part of this section takes a closer look at the particular language that was

predominantly used at IBTech and that served as a standard to valorise the texts that

corporate workers produced and disseminated. In so doing, the following pages seek

to clarify what mode of expression was used to communicate that one abided by the

firm’s normative expectations.

In the present context, ‘language’ refers to a way of perceiving and talking shared by

a community, a system of norms, rather than knowledge of individual words and the

rules for combining them. The extent to which the majority of corporate workers had

internalized the norms of the corporate world was observable in a plethora of non-

discursive practices. Significantly, the internalization of the corporate way of life was

also reflected in a shared way of perceiving the objects of the social world and

representing them through language. Consequently, it is appropriate to think of

linguistic capital as relating to a mastery of the corporate language.

The corporate language is seen here a system of norms reflecting the way of seeing

and way of talking that the corporate context upholds. Within the study organization,

a practical competence in the use of this language represented a form of capital

because it enabled corporate workers to actively engage in the constitution and

maintenance of a representation of software development. Seldom was software

development represented in purely technical or analytical terms as computer

scientists and social scientists, respectively, tend to represent it. Indeed, at IBTech, it

was corporate language that was favoured over any other language when it came to

speaking about software development.

Moreover, because the degree of mastery of the corporate language signalled the

degree to which the norms of the corporation inhabited an individual, a practical

competence in the use of the corporate language functioned as the marker of social

status par excellence. The possession of outstanding technical competencies mattered

little in comparison to a practical mastery of the logic and rhetoric that prevailed in

 159

the corporate context. Seen this way, use of the corporate language demonstrated the

possession of a legitimate competence (i.e. the ability to use to use the corporate

language with ease) and contributed to reasserting or elevating one’s status

(Bourdieu, 1991: 55).

Discursive practices expressing the possession of linguistic capital provided an

indication of the capacity of an individual to meet the expectations of the field. And

since the perceived capacity of an individual to meet the firm’s expectations

principally determined the status of this individual, the importance of demonstrating

a mastery of the corporate language becomes clear. Every discursive practice

provided some signs as to where the individual was located in the social order.

However, this does not mean that texts at IBTech were primarily produced,

disseminated, and consumed in order to elevate oneself in the social order.

Conspicuous acts of professionalism were reported in the previous chapter, but texts

were generally not produced with the calculated intent of elevating status. On this

point, the researcher could not agree more with Bourdieu, who believes that all

practices function as signs of distinction, although they are generally not primarily

intended to be so. Bourdieu observes:

all practice […] is distinctive, whether or not it was inspired by the desire
to get oneself noticed, to make one self conspicuous, to distinguish
oneself or to act with distinction. Hence every practice is bound to
function as a distinctive sign and, when the difference is recognized,
legitimate and approved, as a sign of distinction. […] The pursuit of
distinction – which may be expressed in ways of speaking […] –
produces separations which are meant to be perceived or, more precisely,
known and recognized as legitimate differences. (Bourdieu, 1991: 237-
238)

7.3 Field of forces

So far the analysis has centred on the struggle waged at IBTech and the resources

that corporate workers brought to bear on this struggle. The attention will now be

directed towards the wider institutional context in which this struggle took place.

This stage of the analysis is critical as it here that the correspondence between the

micro and the macro is revealed. Using Bourdieu’s concept of field of forces, this

section endeavours to demonstrate how the socio-institutional context structured

 160

what counted as a legitimate way of thinking of and practicing software

development.

Before delving into the argument, it is necessary to expound how the field of forces

is analytically constituted. The field of forces gives a particular form of capital its

value. Consequently, the point at which its value evaporates marks the borders of the

field of forces (Bourdieu, 1992: 198-199). Common sense suggests that the social

ability to use the corporate language adequately is principally useful within the

corporate context. Other languages may prevail in other contexts (e.g. medical

research and the military) and be deemed appropriate to talking about software

development. Because it is presumably in the corporate context that the mastery of

the corporate language functions as a form of capital, it is appropriate to analytically

consider this socio-institutional context as the field of forces.

Following Fairclough (1995: 36-42), an institution was previously defined as an

apparatus of verbal interaction that sustains particular ways of talking based on

particular ways of seeing (see Table 2 in Chapter 3). From this discourse analytic

perspective, an institution is an entity that possesses its own norms of language use.

It is proposed that the corporation can be considered as an institution. More

specifically, the corporation is seen here as a normative institution that provides its

members the norms needed to produce, interpret, and valorise texts. For the sake of

clarity, this institution will henceforth be referred to with the use of a capital “C” (i.e.

“the Corporation”).

The use of Bourdieu’s terminology has introduced a difficulty which can now be

dissolved. This difficulty is of a terminological nature, and in part due to the

translation of the author’s work from French to English. Conceiving the mastery of

the corporate language as linguistic capital has the effect of implying that the

efficacy of the texts one produces depends on one’s linguistic abilities. The term

‘linguistic’ poses problem because language does not, in this study, function in a

purely linguistic sense (e.g. see Bourdieu, 1991: 44). Language implies a way of

seeing the objects of the social world, an understanding of when to speak and when

to be quiet, a way of speaking (including the correct choice of analogies), an

understanding of a symbolic world, a bearing, an attitude, and other signs that are

 161

noticeable in the discursive practices of individuals (Bourdieu, 1991: 123-124). Since

the particular form capital the researcher has in mind was produced by the corporate

context and indicated a mastery of the corporate language, it will hereafter be

referred to as ‘corporate capital’ rather than ‘linguistic capital.’

7.3.1 The Corporation as a normative institution

This section brings to light the intricate way in which the socio-institutional context

structured what came to be seen as an acceptable way to talk about and practice

software development. Particular attention is placed on the harmony that existed

between the corporate workers, their practices, and what they did and what the

Corporation asked them to do-- or, in Bourdieu’s terms, on the “harmony […]

between their [the agents] subjective ‘vocation’ (what they felt ‘made’ for) and their

objective ‘mission’ (what was expected of them).”

The correspondence between the position of corporate workers in the field of

struggles and the expectations of the field of forces is vividly exemplified in the

profile corporate workers made accessible in the employee directory. Here is an

example:

Jim began his financial industry career in 1986 at Chase Manhattan Bank
as a clerk in Check Processing. He held several different roles involving
Corporate Data Center management responsibilities in operation
management until 1993 where he joined JP Morgan. During his tenure at
JPM till 1997 Jim managed FX Option Middle Office Operation and was
the Business Manager for Emerging Market Front Office. Jim
experienced the merger between Citibank and Travelers and held
responsibilities which included Head of Asia Pacific Trading and Capital
Markets Operations, Business Manager for Trade Operations and more
recently Business Manager of North America Equities Technology. He is
currently responsible for Financial Control, Quality control, Compliance,
Governance and IT Management for the region. […] Jim holds an MBA
from Columbia Business School. [IBTech intranet, 12-07-2004]

This professional biography, complete with a photo of Jim, open-collared and

smiling happily (not provided here), expresses the harmony between what the

corporate worker has been doing and what the corporate world expects from its

employees. Although Jim started as a clerk in check processing, an area seen as

 162

being particularly unglamorous, he improved his position in the field in remarkable

ways by making his life concur with the expectations of the Corporation for almost

two decades. The professional profile presents an individual who has showed

allegiance to the corporate world and the way of life it presupposes, and who has

gained a practical understanding of its functioning. For Jim, such an understanding

has represented an asset, something to be proud of. For Jim, the corporate world has

become home territory.

This professional profile not only presents the success of a single individual, but also

provides a model to emulate. The text subtly communicates the kind of behaviour

that is expected from a corporate worker. The text presents an ideal through which

success can be achieved by adopting the corporate way of life as one’s own way of

life, and by placing the interests of the Corporation in front of one’s own interests.

Jim, like may others at IBTech, is presented as living proof that individuals disposed

to enact the behavior (discursive and non-discursive practices) that is valued in this

particular socio-institutional context tend to rise to the top of the pile.

More significantly, the text exemplifies a natural ability to fulfil one’s job well,

thanks to the fit between dispositions (of the agent) and expectations (of the field). In

Bourdieu’s words:

This harmony [between disposition and expectation] may be expressed in
their sense of being ‘at home’ in what they are doing, of doing what they
have to do and doing it happily, or with a resigned conviction that they
cannot do anything else, which is another way, though less happy one, of
feeling ‘made’ for one’s job. (Bourdieu, 1981: 308)

At IBTech, the harmonious correspondence between what was expected from

corporate workers and their struggle for distinction was also manifest in texts

produced by individuals whose experience of the corporate world was relatively

recent. In a document intended to explain why a promotion was deserved, an

individual in his early thirties wanting to become vice-president expressed the

reasons that he feels himself to be the perfect candidate for the job, referring to

himself in the third person:

 163

John has established credibility and strong working partnership with
technologists […] This level of partnership is evidenced by the comfort
shown in these external groups such as Legal Sourcing in allowing John
to lead and manage complex and high priority sourcing engagement for
the Bank […] This type of involvement is indicative of John’s level of
commitment and of his attitude to his professional career and life in
general, setting a positive role model for those around him. [John D., 30-
07-2004]

In this quotation, the corporate worker seeks to convince those who have the

authority to promote him that he possesses the norms required to be a vice-president.

In order to show that he possesses these norms, John invokes his level of comfort

with working with individuals who were apparently inculcated the prevailing norms.

By blurring the distinction between his professional and private life – “his attitude to

his professional career and life in general” – John alleges that there is perfect

harmony between his subjective ‘vocation’ (what he feels made for) and his

objective ‘mission’ (what the corporate world expects of him). In other words, John’s

struggle for recognition involves acquiring the norms of the Corporation and

communicating to others that he possesses them.

The correspondence between the socio-institutional position of individuals, their

norms, and the expectation of the Corporation was also noticeable in several texts

about software development. These texts suggest that their authors adhere strongly to

the corporate logic that prevails at IBTech. Let us consider Eric’s email reply to a

colleague’s follow up on an artefact for the RUP process-platform:

Eric,

I just wanted to touch base and see if you can send me updated relevant
artifacts for the RUP platform. I am sure you are aware that the Learning
Organization Transformation is a high priority.

Vince [Email, 01-11-2004]

Vince,

I have been working on a number of significant matters the last few
weeks for [the CTO] and unfortunately these have priority. I now have
some assistance of a BIM [a recruit] who will be working on this for me
so I am hoping to have revised content available for you next week. I am
consistently working 65 hour weeks as it is so it’s not a question of me
simply ignoring this work but of limited bandwidth, until recently there

 164

has only be one of me covering 3 lines of business globally which is
really a 3 person job.

[Email, 02-11-2004]

Eric makes clear in his reply to Vince that he worked directly with the CTO. The

researcher interprets this statement as an attempt to establish an ideational proximity

with a high-status individual, which suggests status consciousness on the part of Eric.

Moreover, in the original text, Eric referred to the CTO by his Christian name to

emphasize his proximity and his ease in working with people who possess a

significant volume of corporate capital. The message that Eric wants to communicate

is that he possesses the norms that are valued. The second sentence makes clear that

Eric is now someone’s boss, which shows allegiance to the corporate way of doing

things. The sentence suggests respect for the formal hierarchy, which indicates

respect for the corporate way of life. Finally, Eric takes the opportunity to mention

that he consistently works 65 hours per week. Working long hours is a means

commonly used to communicate that one meets the expectations of the Corporation,

and that one places the interests of the Corporation in front of one’s own interests.

It is important to note that the three previous texts presented were not consciously

intended to display professionalism or serve as ammunition in a struggle for status

conservation and elevation. That is to say, the texts were not purposefully formulated

in order to express the adoption of a worldview (i.e. a collection of beliefs about life

and work) or the possession of the norms of language use of the Corporation. Rather,

the texts were formulated in the de facto language without any apparent strategizing.

Thus, the acceptance of the norms of the Corporation, including the norms of

language use, was inscribed in the corporate workers way of being. This

interpretation is commensurate with Bourdieu’s observation that the acceptance of a

language as legitimate is normally inscribed in the dispositions and practices of

actors:

The recognition of the legitimacy of the official language has nothing in
common with an […] intentional act of accepting the ‘norm’. It is
inscribed, in a practical state, in disposition which are impalpably
inculcated, through a long and slow process of acquisition, by the
sanctions of the linguistic market [i.e. the field], which are therefore
adjusted, without any cynical calculation or consciously experience
constraint, to the chances of material and symbolic profit which the laws

 165

of price formation characteristic of a given market objectively offer to the
holders of a given linguistic capital. (Bourdieu, 1991: 51)

In sum, there existed a harmony between the corporate workers and their practices

and what the Corporation asked them to do. Being inculcated with the dominant

normative understanding of work and life renders individuals sympathetic (or

antipathetic) to some discourses and practices. Let us now transpose this argument to

the case of the discursive constitution of software development.

7.3.2 Field of forces and software development

Corporate workers were inculcated, through immersion in the corporate context, with

the norms prevailing in this context (including the norms of language use). It is the

possession of these norms that defined corporate workers as a cohesive group. An

important aspect of these norms consisted of the remarkable significance granted to

status and the manner in which discourses were valued.

The norms that corporate workers possessed were reflected in language use. These

norms predisposed them to use the language of the Corporation, rather than any other

languages, to produce and interpret texts about software development. These norms

also made them sympathetic to certain discourses. Because corporate workers had to

be perceived as being professional in order to maintain and improve their status, they

tended to use the language that was most likely to make them look professional when

producing and interpreting texts about software development. This language was the

language of the Corporation.

It should be stressed once more that from the analytic perspective adopted, the

Corporation sustained not only a way of talking, but also a way of seeing the objects

of the organizational world. The institution (the Corporation) privileged certain

discourses over others, which were used to represent the objects of the organizational

world (Bourdieu, 1991: 67 & 169; Fairclough, 1995: 37-41). Consequently, the

institution structured how the objects were discursively constituted. In the case of

software development more specifically, findings suggest that the Corporation put a

premium on discourses of ‘discipline,’ ‘predictability,’ ‘measurement,’ and ‘(anti-)

 166

bureaucracy.’ These four discourses formed the object ‘software development’ that

was ‘dominant’ at IBTech.

The corporate language dominated the texts that individuals at IBTech encountered

as part of their routine daily activities. This language often concerned itself with the

effective and efficient pursuit of an instrumental goal. This goal needed not be

software development per se. For example, texts formulated in the corporate

language were often about managing human and material resources, employing

techniques designed to increase the efficiency of outputs, and affecting

organizational changes effectively. What made the corporate language distinctive

was that it tended to represent an activity as an instrumental activity and, what is

more, an activity based on considerations of efficiency and calculation. Almost

everything surrounding the an activity became seen as “business problematic”

(Swanson and Ramiller, 1997).

However, although the texts that circulated within corporate field were generally not

produced with software development in mind, they were, in the present case,

received in an organization whose mission was to develop software systems and to

manage software projects. The discourses those texts conveyed composed the stock

of discourses of the organization. In other words, they were the “discursive

resources” (Hardy et al., 2000) available to corporate workers to take positions on

issues involving software development.

For example, the ‘learning’ discourse, which is a discourse accepted within the

corporate field (Contu et al., 2003), suggests that the know-how of individuals has to

be managed in a way that helps to achieve specific outcomes. The general ‘learning’

discourse was, at IBTech, tied to software development and utilized to represent it.

The ‘learning’ discourse was utilized, among other things, to promote organizational

goals such as improving the firm’s capacity to innovate and transfer internal best

practices across regions.

Using the corporate language to formulate and interpret texts about software

development induced corporate workers to draw on discourses that the Corporation

celebrated. As if by magic and without any apparent effort on the part of corporate

 167

workers, the use of corporate language tended to help these workers adjust their

discursive products to the expectations of the Corporation.

It was in the practices of the text production and interpretation that the symbiosis

between the corporate worker and his position in the field, on the one hand, and the

Corporation, on the other, was most apparent. One was not a corporate worker until

one had demonstrated possession of a certain volume of corporate capital. Until

one’s ability to utilize the language of the Corporation was known, one remained an

outsider, excluded from the social-institutional context in which this form of capital

was created. The desire to conserve the capital acquired through previous struggle

led corporate workers to utilize the language of the Corporation – to enact the

Corporation (as an apparatus of verbal interaction) – when taking a position on

software development. In so doing, his position in the field (qua corporate worker)

was made to converge with his position on software development (that of a ‘genuine’

corporate worker). There was nothing the corporate worker could do to advance his

position that did not, ipso facto, served the Corporation.

Following this line of reasoning, it would be a mistake to try to understand how

software development was discursively constituted in terms of the immanent logic of

the field of forces (i.e. the macro), just as it would be a mistake to try to account for

it exclusively in terms of the individuals’ interactions and mundane practices enacted

as part of an ongoing status competition (i.e. the micro). Software development was

the offshoot of two compounding forces (micro and macro). Software development

was formed through the repeated encounters of individuals with an institution – by

the struggles of individuals to appropriate an institution by using its language.

It is important to stress that the corporate worker did not demonstrate a conscious

desire to promote the interests of the Corporation. It just happened, thanks to the

correspondence between the corporate worker’s desire to elevate himself in the social

order (by accumulating the capital which enabled him to do so) and the norms that

were inculcated through immersion and which served him of capital. The corporate

worker was totally identified with his position in the field of forces – to the point that

it would be impossible to try to determine which of his practices in the corporate

context were the product of his volition, and which were those of the Corporation.

 168

The Corporation functioned as a apparatus which, once set in motion, produced

enough energy of its own to remain in motion. Corporate workers, once they had

acquired the norms of the socio-institutional context, had no choice but to seek to

maintain or elevate their social status-- i.e. to conserve or increase the specific capital

that was only created within the field. Corporate life presupposed a genuine interest

in the struggles in which corporate workers engaged. To refuse to produce accepted

statements, which was never an option consciously considered by a sufficiently

socialized individual, would have meant falling into oblivion (Bourdieu, 1991: 316).

The corporate worker had an acute understanding of what was expected of him in

terms of discursive practices. He was in harmony with what was expected of him.

This harmony was expressed in his talking about software development in the

language of the Corporation with the conviction that this was how one should

rationally talk about software development.

7.3.3 Double vision of a single object

Focusing on the influence of the socio-institutional context, it was argued above that

the Corporation imposed its own particular logic on its corporate workers in such a

way that these corporate workers and the Corporation became one. From this

perspective, the interests of the Corporation and those of its members became

inseparable: there was nothing that they could do to advance their own interests that

did not, by the same token, help defend the interests of the Corporation.

However, if the Corporation imposed its logic so forcefully on its members, how,

then, can one explain the existence of two different discursive ensembles – one

‘dominant,’ the other ‘alternative’? These discursive ensembles sustained different

ways of thinking about software development and presupposed different software

development practices. Does not the existence of two different ways of thinking

about and practicing software development at IBTech prove that the Corporation had

only a limited capacity to wield power -- hence proving that resistance to its logic

was alive and well?

 169

Fairclough notes that “it is generally possible to identify a ‘dominant’ IDF and one or

more ‘dominated’ IDFs in a social institution” (Fairclough, 1995: 41). From this

perspective, the struggles between the different factions within the institution centre

upon keeping a ‘dominant’ IDF dominant, or challenging this dominant IDF in order

to replace it. Fairclough contends that it is when the dominance of an IDF is

unchallenged that the practices it presupposes become most naturalized.

Seen this way, the ‘dominant’ discursive ensemble at IBTech should, in theory, have

reflected the orthodoxy of the Corporation, and the ‘alternative’ discursive ensemble,

challenged it. Thus, the ideal of the Corporation should have been quite

commensurate with the discourses of the ‘dominant’ ensemble, but should have

clashed with those of the ‘alternative’ ensemble. The discourses of ‘learning,’

‘innovation,’ and ‘communication’ should have represented a source of resistance to

the orthodoxy of the Corporation.

Here, the researcher’s interpretation of the findings does not concur with the

theoretical propositions laid out by Bourdieu and Fairclough. In the study

organization, the software development practices that were most naturalized leaned

towards the model offered by the ‘dominant’ discursive ensemble. Although

corporate workers resisted the ‘learning organization’ model and the associated

practices (most notably the PIR), there was a sense that the vision of software

development this model offered corresponded to what software development was,

and was about. There was no question that ‘predictability,’ ‘discipline,’

‘measurement,’ and ‘(anti-)bureaucracy’ were legitimate discourses. However,

corporate workers also recognized (albeit to a lesser extent) that ‘learning,’

‘creativity,’ and ‘communication’ were legitimate discourses when it came to

software development. Thus, it seems clear that the legitimacy of the discourses of

one discourse ensemble was not established at the expense of the discourses of the

other.

There was no struggle at IBTech to either maintain or displace a discursive ensemble

in dominance. Rather, the challenge that corporate workers faced was to constitute

software development in the most legitimate manner, given the constraints that the

Corporation imposed, without denigrating the ‘alternative’ ensemble.

 170

Ideally, all seven discourses would have dovetailed into each other without

contradiction. Software development would have been efficient, yet creative;

predicable, yet agile; disciplined, yet able to accommodate changes seamlessly;

measured with precision, yet lean; and so on and so forth, ad infinitum. And it was

this ideal that corporate workers at IBTech aspired to. Corporate workers hoped that

this ideal state had become real through the consumption of models that conveyed

these ideas. As a result, a waterfall lifecycle coexisted with a generic iterative

lifecycle, and the CMM was found next to an agile development plug-in. The pursuit

of this ideal made IBTech a context in which anything capable of communicating

commitment to the symbolic universe of the Corporation – its demagogy of

efficiency, happy committed workers, infinite flexibility, order, control – was

uncritically consumed.

A crucial error that can easily be made is to equate the norms of the Corporation only

with considerations of efficiency and calculation-- that is to say, to assume that the

Corporation is about “rationalization” in a Weberian sense (Weber, 1968). The

popular anti-corporate rhetoric can easily lead us to do so. For example, Ritzer

(2000), in ‘The McDonaldization of Society,’ uses as an analogy the fast-food

industry and the success of McDonald’s restaurant to explain and criticize the model

that large multinational corporations across different industries often follow. In short,

the model is the combination of four principles: predictability, control, calculability,

efficiency.

To be sure, these four principles are strikingly similar to the discourses which formed

the ‘dominant’ discursive ensemble. It would be tempting to posit that what the

Corporation was all about was the pursuit of predictability, control, calculability, and

efficiency; or, in the researcher’s terms, predictability, discipline, measurement, and

(anti-)bureaucracy. It would also be tempting to assume that what fell outside these

four principles or discourses was opposed to the tenets of the Corporation. Making

such assumptions would be a mistake.

The discourses which formed the alternative discursive ensemble were also part and

parcel of the stock of discourse of the Corporation. ‘Learning,’ ‘innovation’ and

 171

‘communication’ are recurring themes in the normative management literature and

the business press. To be convinced of this fact, one needs do little more than to open

an issue of Harvard Business Review or Business Week. Management consultants

also restlessly promote techniques and tools intended to make organizations and the

individuals they employ learn better, innovate faster, and communicate effectively,

regardless of location (Rovik, 2002; Sahlin-Andersson and Engwall, 2002b).

Although the main selling point of these tools and techniques remains the conjecture

that their adoption will make the organization more effective and efficient at

developing software or achieving other instrumental goals, several other themes are

also tapped extensively. Consequently, it would be incorrect to consider ‘learning,’

‘innovation’ and ‘communication’ discourses that went against the code of beliefs of

the Corporation and a source of resistance to what the Corporation stood for.

In sum, and contrary to Fairclough, the existence of two objects ‘software

development’ in the study organization does not imply that a ‘dominant’ discursive

ensemble based on the core precepts of the Corporation was challenged by a

contending discursive ensemble. Rather, it points to the complexity that corporate

workers experienced in reconciling the contradictory ideas that the Corporation

promoted. For example, an individual might well have talked up the merits of the

CMM/I, and genuinely believed in the model’s merits, and a few hours later, have

stressed the importance of creativity in software development with the same

conviction. Corporate workers held diffuse ideas about what software development

was and how it should be practiced.

In recent years, many commentators have contrasted the different ways in which

software development can be thought of and practiced by emphasizing extremes. For

example, commentators frequently suggest seeing software development on a

continuum ranging from agile to plan-driven, or from adaptive to predictive (Boehm

and Turner, 2004). By considering some critical factors (e.g., project size and

criticality of the product developed), a software organization should be able find and

establish an appropriate middle ground. Seen this way, agility and creativity are

acquired at the expense of control and predictability.

 172

At IBTech, corporate workers refused to sacrifice agility and creativity for control

and predictability. To them all of these qualities were desirable, and their associated

discourses were valid within the corporate context. Corporate workers wanted the

best of each software development approach. The line of attack they took was to

exploit the tensions that existed within discourses in the form of linguistic ambiguity.

The linguistic ambiguity that was inherent in texts and discourses enabled corporate

workers to go back and forth from one discourse ensemble to another in order to

draw on the discourses they needed to formulate acceptable texts.

For example, two different ideas existed in tension within the ‘learning’ discourse.

From a software process improvement perspective, learning occurs when a process is

stable, the causes of deviation from prediction are systematically identified, and

when the process is improved based in these observations. Seen this way, learning

occurs at the process level. On the other hand, learning can be seen as a human

phenomenon, facilitated by sound communication among individuals. Learning is

here seen as critical for innovation, and as being in tune with the human facet of

software development.

The ‘predictability’ discourse also allowed for a great deal of linguistic ambiguity. A

consultant employed by IBTech explained the different meanings the discourses

might take in the following way:

‘Predictable’ is at least contestable […] Predictability in terms of plan-
driven means that if you draw up a plan which says ‘we will analyze,
develop, implement’ and that says we will deliver in August 6th. We
know what we are doing and will know if we are off course. That’s one
sense of ‘predictability’ where you are trying to map out the future.
Given that you can’t have any control over the past, you are trying to
exert control over the future. And that’s a particular engineering
perspective on the world.

[Iterative development] takes it at a totally different level, which say ‘try
not too much about controlling the big future, think about how you might
control the next week, the next month. And work at controlling in small
slices.’ That way you will achieve the level of control over the future that
will mean that you don’t get into messes where after eighteen months
work you discover that you will not have any chance of making the
delivery. [Interview with a technical contractor, 10-12-2004]

 173

Of course, not all discourses possessed the same degree of interpretive malleability.

For instance, the ‘discipline’ discourse unambiguously implied adhering to a process.

However, the extent to which the process had to be defined remained flexible. In this

sense, all of the seven discourses allowed for some degree of flexibility. Corporate

workers could always play with the interpretive malleability of a discourse in order

to playfully emphasize some aspects of software development.

7.4 Symbolic power and software development

The notion of symbolic violence is a rather flexible notion which is used in many

different ways across Bourdieu’s writings. Symbolic violence occurs when the

meanings or ways of seeing imposed by a particular group is accepted in a social

context. A consequence of the acceptance is that it becomes difficult to develop ways

of talking about or engaging with an object that are different from those which have

been established. The overall effect of the acceptance, as Bourdieu sees it, is the

preproduction of the structure of the distribution of certain forms of capital, and

hence the reproduction of the total institutional structure.

Institutions simultaneously facilitate and constrain the discursive practices of their

members (Fairclough, 1995: 38). In the case of IBTech, the Corporation provided

corporate workers with a mode of expression that enabled relations of

communication. More specifically, the Corporation provided particular ways of

talking and ways of seeing that were shared by the majority of IBTech’s corporate

workers. The corporate language provided a standard way of talking about software

development and assessing the value of the statements formulated, regardless of the

corporate workers’ geographical locations or academic backgrounds. However, the

Corporation discouraged corporate workers, who were concerned with preserving the

capital that was created by the Corporation, from using other languages. As a

consequence, the Corporation induced corporate workers to represent software

development in a particular way – a way that concurred with its expectations. In this

sense, the institution restricted the number of arbitrary ways in which software

development could be seen.

 174

Symbolic violence was in operation in the study organization because the use of any

modes of expression other than that of the Corporation was discouraged. Other

languages could only be used at the risk of facing sanction (i.e. the diminution of the

amount of capital accumulated). In providing a predefined repertoire of discourses to

represent software development, and in channelling how software development

should be talked about, the Corporation structured how corporate workers could

understand software development. The Corporation encouraged the adoption of

particular beliefs-- for example, the belief that software development has to be made

disciplined and that the ability to learn for those involved in software development

matters. The discursive constitution of software development, therefore, took place

under the influence of a particular social-institutional context and, to a large extent,

within the limits set by the Corporation.

Symbolic violence also had effects that spilled over into the practice of software

development. As explained in the opening of this chapter, there was a relationship

between beliefs and practices. Corporate workers tended to practice software

development in accordance with what they believed software development was. For

example, at IBTech, corporate workers resisted some of the software process

improvement practices (most notably the PIR) because these practices went against

their beliefs concerning the degree of bureaucracy that software development should

accommodate. Corporate workers occasionally had to enact practices that conflicted,

to some extent, with their beliefs; there was, nonetheless, some degree of

convergence between the way software development was generally thought of and

the way it was practiced. In this sense, it is useful to think of the object as something

aspired to, a somewhat ideal representation that orients the choice of practices.

In limiting the manner in which software development could be understood, the

Corporation limited the different ways in which it could be practiced. The way in

which the RUP platform was received vividly exemplified this point. Corporate

workers acknowledged that development work should be carried out iteratively

because it ensured (according to the text provided by IBM’s sales representatives at

least) more disciplined and predictable results. However, corporate workers struggled

a great deal to make sense of iterative development, as it seemed to contradict what

they believed about software development. In particular, it was not clear to them how

 175

RUP could make software development more predictable if the predictions were

worked out throughout a project. Software development was never practiced

iteratively in the study organization because it conflicted too much with what

software development was understood to be.

The notion of symbolic power is often used to analyze how one class dominates over

another by confirming or transforming the manner in which the dominated class

perceives and engages with the objects of the social world (e.g. Bourdieu and

Passeron, 1977). This is facilitated by the imposition of the language of the dominant

class on the dominated class. The case of the discursive constitution of software

development at IBTech is interesting because corporate workers formed a uniform

class, rather than divided classes seeking to impose meanings that benefitted their

interests. The phenomenon witnessed at IBTech represents a case of unification.

Unification takes place when a group of individuals is led in practice to accept one

specific language as the only legitimate language (Bourdieu, 1991: 44-52). This

language becomes the norm against which all discursive practices are assessed. It

involves the operation of an institution powerful enough to impose the universal

acceptance of the legitimate language (Bourdieu, 1991: 46). In the present case, the

stranglehold of the Corporation restricted the possibility of using languages other

than the corporate language to produce and interpret texts about software

development.

In sum, the constitution of software development in keeping with the tenets of the

Corporation represented an act of symbolic violence. Symbolic violence, which

involves the complicity of the dominated, was in evidence in the acceptance of the

corporate language as the sole language legitimate to talk about software

development. The uncritical acceptance of this language had the effect of directing

attention to specific discourses and constrained the manner in which corporate

workers engaged in the activity of software development.

 176

8 Conclusion

Software development is today thought about and executed in a variety of ways

under such names as agile, open source, and plan-driven. There is, however,

surprisingly little empirical knowledge about how and why people come to think

about software development in a certain way and adopt certain practices.

Practitioners certainly tend to embrace the software development approach that they

believe most suitable, but how this perceived suitability is collectively formed in real

organizational contexts remains largely misunderstood. This issue, it is argued, has

far-reaching implications as it touches the core of what software professionals across

functions and industries do. The purpose of this research was to elucidate how

actors’ understanding of software development and the legitimacy of the practices

they adhere to is shaped.

The concluding chapter provides an overview of the thesis as a whole. It also outlines

the core contributions that this research makes to the literature and the practice.

Finally, the limitations of the research are discussed and some key areas for future

research are identified.

8.1 Overview of the dissertation

To assist the reader, this section restates the research question and summarizes the

major points developed within the preceding chapters. The dissertation began with an

introduction to the rationale supporting the formalization of software development

practices. In essence, it was the large number of project failures that provided an

impetus for the development of systematic development practices. Since their

inception, however, there has been a sentiment that systematic development practices

impose unwanted restrictions on the software development process. The question of

how to best practice software development is still today highly topical.

The literature review in Chapter 2 showed us that software development has been

thought of and practiced in very different ways over the past four decades. A

chronological review of the most influential ideas and texts revealed that the methods

 177

and applications of process and quality management have played a significant role in

defining how software development should be practiced in different contexts. The

academic literature corroborated this observation and suggested that beliefs inform

the adoption of development practices. However, it is not clearly understood how

beliefs about software development and software development practices come to be

established as legitimate in an organization. In the backdrop of this topic, the

research question informing the study is concerned with the establishment of beliefs

about software development and software development practices within an

organization.

The theoretical framework of the study was established in Chapter 3. Organizational

discourse theory was identified as being highly appropriate to examining how the

legitimacy of beliefs and practices are negotiated. Critical discourse analysis and the

theory of symbolic violence were introduced and provided the analytical constructs

needed for this research. The theoretical framework was designed with the goal of

remaining analytically sensitive to the operation of power in language use and

revealing the interaction between (discursive) practices and the wider socio-

institutional contexts in which they occur.

Chapter 4 presented the interpretive research methodology and the case research

strategy. A qualitative analysis of the texts that organizational actors produced,

transmitted, and interpreted as part of the activity of ‘software development’ was

adopted and complemented by observational data. Ricoeur’s hermeneutics of

suspicion was selected as a paradigm of text interpretation. This paradigm enriched

the analysis by encouraging the researcher to develop plural plausible readings of the

organizational texts and explore the interpretive flexibility of discourses inhabiting

them.

Chapter 5 presented the study organization and provided an overview of the

evolution of the ‘learning organization’ program. This program was intended to

standardize software development practices across IBTech’s ten software houses. In

a first stage, following the precepts of the CMM/I, IBTech attempted to build its

standard software development process from internal best practices. The organization

later went on to acquire two commercial methodologies. Throughout Chapter 5,

 178

particular attention was paid to the organization’s software process improvement

practices in order to provide a concrete illustration of the difficulties of creating and

adapting a standard software development process.

Chapter 6 outlined the seven organizational discourses inhabiting the organizational

texts collected and analyzed. The chapter also highlighted the tensions and

connections that existed among discourses, as well as the contradictions that existed

within discourses. An analysis of the manner in which the discourses relate to one

another revealed that they constitute two conflicting objects ‘software development’

– one ‘dominant,’ the other ‘alternative.’ Participant observation data provided the

researcher with the holistic understanding of the socio-institutional context needed to

theorize the findings.

The case analysis in Chapter 7 revealed that a struggle for professional recognition

waged within IBTech led actors to adopt normatively-sanctioned practices. Actors

were successful in this professional struggle to the extent that they possessed the

ability to understand what was expected of them in terms of behaviour and to

communicate this understanding through their practices (including their discursive

practices). As such, software development acted as a platform for professional

recognition. Bourdieu’s concepts of ‘field of struggles,’ ‘field of forces,’ and

‘capital’ were employed to illuminate the relationship between, respectively, the

professional struggle in which actors were engaged, the logic of the broader socio-

institutional context, and the competences that actors possessed.

The analysis showed that individuals had absorbed a system of norms that regulated

their discursive practices. It was argued that the constitution of software

development, in keeping with the logic of the corporate language, represented a form

of symbolic violence. The uncritical acceptance of this language had the effect of

directing attention to specific discourses, and constrained the manner in which

people could execute software development.

The case study showed that it is through a discursive process that the actors’

understanding of software development and the legitimacy of the practices they

adhere to is shaped. This process involves balancing creativity and flexibility with

 179

efficiency and predictability. In the present case, however, the use of the legitimate

language encouraged the simultaneous adoption of the two conflicting visions of

software development.

In the next section of the chapter, we consider the implications of the study for

research and for practice. We start off with a retrospective assessment of a discourse

analytical approach that is grounded in the day-to-day practices of organizational

actors. Then, the merits of a discourse theoretical approach informed by Fairclough

and Bourdieu’s ideas for research are discussed. On a more practical note, it is

argued that the insights that the study produced have significant implications for

practitioners seeking to transfer knowledge within organizations, and to balance

agility and discipline agility and discipline in software development.

8.2 Contribution of the research

The research contributes to the knowledge base of the information systems discipline

in three principal ways: (1) by providing rich and contextually-grounded insights

illuminating how beliefs about software development and software development

practices come to be established as legitimate, (2) by proposing a discourse

theoretical approach, and (3) by highlighting how the transfer of internal knowledge

can be facilitated in a geographically-distributed organization and how a compromise

between agility and discipline can be found in a software organization. These are,

respectively, the methodological, theoretical, and practical contributions of the

research.

8.2.1 Methodological contribution

Information system development has remained one the most widely-researched areas

in the IS field (Avison and Fitzgerald, 2006). Because of the close link between the

research and the practice in this area, IS researchers have traditionally been

preoccupied with finding the practices (including methods and tools) that provide

superior technical results for certain types of projects, without paying much attention

to social and organizational factors that define the perceived appropriateness of such

practices in their context of use.

 180

Even in rare cases where social and organizational factors are taken into

consideration when examining the engagement of actors in the activity of software

development, it is more often than not an examination that is positivistically

motivated, as several authors have noted (Nandhakumar and Avison, 1999; Russo

and Stolterman, 2000b). Typically, the studies’ objective is to provide causal

explanations between variables (e.g., Iivary and Huisman, 2007; Serour and

Henderson-Sellers, 2002). Usually survey-based, such studies are characteristically

conducted across large populations of organizations. Furthermore, several of these

studies are normative in orientation, and seek to facilitate the adoption of methods

and the implementation of tools deemed to provide efficiency gains.

In spite of a marked interest in what software professionals do and should do, the IS

literature says almost nothing about the social process through which these actors

come to regard particular development practices as being appropriate. All in all, rich

descriptions of the behavior of software professionals are lacking (Dubé and Robey,

1999; Gasson, 1999; Madsen et al., 2006; Nandhakumar and Jones, 1997; Russo and

Stolterman, 2000a). Few commentators recognize or address the critically-important

social, political, and organizational dimensions of software development. It is the

researcher’s contention that this caveat in the literature is, in part, due to the fact that

IS research has traditionally been dominated by a positivist orientation, and that

questions such as those addressed herein, though highly relevant for the theory and

practice of software development, can hardly be answered by using the methods of

the natural sciences. Thus, in order to contribute significantly to the theory of

software development, it was necessary to transcend the prevailing positivist

orientation and develop a rich and contextually-grounded understanding of the

practices of actors involved in software development.

The interpretive approach emerged as a necessary choice for developing a finer

understanding of the phenomenon. Retrospectively, looking at practices at a distance

from the context could not have told a complete story. However, asking actors about

their beliefs and intentions in the context of an interview could not have produced

unsatisfactory insights either. The problem, as countless scholars have observed, is

that informants are sometimes totally unaware of certain aspects underlying many of

their own activities, and have little real understanding of the phenomenon that

 181

scientists are interested in (Denzin and Lincoln, 1994; Van Maanen, 1979). The

difficulty is attributed to the taken-for-granted nature of the social world for those

who are situated in it.

The question of how to produce knowledge of the social world which is not reducible

to the practical knowledge possessed by lay actors, or which breaks with the

immediate experience of the social world, has generated a vigorous debate among

social scientists. It was argued in the methodology chapter that one way to avoid the

main limitations of the two dominant modes of knowledge production (what

Bourdieu calls ‘subjectivist’ and ‘objectivist’) is to focus on the practices of actors in

the context in which they naturally occur. For Bourdieu, adopting a practice

perspective involves taking into consideration, on the one hand, the interactions of

actors and the structures of the field, and, on the other hand, the actors’ dispositions

to produce particular practices and their perceptions that result from their inhabiting

the field. The research operationalized this practice perspective.

So, rather than focusing on the “provoked narrative” of actors, this interpretive

research concentrated mainly on their actions – their practices in situ (Czarniawska,

1992). More precisely, it concentrated on the actors’ discursive practices and the

traces they leave (i.e. the texts) (Ricoeur, 1991). The choice of a discursive approach

was particularly appropriate because interactions are principally mediated through

language in professional service firms such as IBTech. Thus, in order to develop a

context-based interpretation of the manner in which beliefs are articulated and tied

into the activity ‘software development,’ the focus was placed on the texts that actors

produced, circulated through more-or-less formal channels, and interpreted. These

texts were generally about software development since they were collected in the

context of software development. In this sense, they reflected and were indicative of

the prevailing beliefs and of the development practices adopted at a particular point

in time.

If one seeks to understand the intricate manner in which beliefs and practices come

to be socially established as legitimate, one should ideally seek prolonged exposure

to the context in which this process unfolds or has unfolded. The researcher had the

unique opportunity to have not only exposure to the social-organizational context in

 182

which software development took place, but also a first-and view of the SPI process

– the very process designed to establish the legitimacy of software development

practices at IBTech. The merits of this line of inquiry are well-established in many

disciplines, and are seen increasingly in IS research. However, as far as our

understanding of software development is concerned, evidence for the merits of this

line of enquiry still needs to be presented (Nandhakumar and Jones, 1997; Ronkko et

al., 2002). In presenting this evidence, this dissertation contributes to the knowledge

base of information systems research.

Another contribution was made in the area of data interpretation. The interpretation

of organizational texts was conducted under the assumption that a text may take

several different meanings. As such, it was deemed futile to attempt to extract the

‘true’ meaning of the texts, which is usually assumed to be what the text producer

meant (Gadamer, 1977; Habermas, 1980). Ricoeur’s hermeneutics of suspicion

proved very useful in making sense of the texts and letting discourses emerge from

them. Adopting this paradigm of text interpretation invited the researcher to

recognize his ability to act as objective interpreter and encouraged him to develop

plural readings of the same texts. The texts were revisited several times through

hermeneutic circles in order to go beyond what appeared immediately obvious in

them.

Adopting Ricoeur’s hermeneutics enabled the researcher to understand better the

texts and the interpretive flexibility of the discourses inhabiting them. It is by

employing this mode of analysis that the researcher became aware that a discourse

could carry different meanings. In particular, it is through a Ricoeurian engagement

with the texts that the researcher discovered how, in this particular organization, it

had been possible to espouse two different visions of software development, rather

than to sacrifice efficiency and control for agility and creativity.

Although hermeneutics is not unknown to the field of IS research (Boland, 1991;

Lee, 1994; Myers, 1995), the application of the hermeneutic of suspicion represents

an addition to IS research because the principle of suspicion is by far the least-

developed in the IS research literature (Klein and Myers, 1999). The dissertation

 183

demonstrated the application of a potent means of engaging with organizational texts

that was little known to the field of IS research.

8.2.2 Theoretical contribution

Adopting a discursive lens, this dissertation has posited that software development

has an important linguistic dimension. From this perspective, the mundane

production, distribution, and consumption of texts by members of the study

organization was part and parcel of the activity ‘software development.’ The

dissertation has demonstrated that an object ‘software development’ was shaped as

the result of the discursive practices of individuals. The discursive lens offers a novel

perspective for looking at the process through which certain ways of thinking of and

practicing software development are constituted. This lens is of theoretical value

because it helps us to shed light on the long-standing open question of how actors

come to adopt certain beliefs about software development and how certain software

development practices come to be established as legitimate. Developing the right

framework was critical to developing a meaningful and theoretically-rigorous

interpretation of this complex human process.

There exists a vast array of different discourse analytic approaches. These

approaches differ in the manner in which they conceptualize agency and to the extent

to which they focus directly on the dynamics of power. Furthermore, approaches

differ to the extent to which the broader context is deemed relevant to the analysis of

the texts (Hardy, 2004; Hardy et al., 2005). The theoretical framework adopted is

distinctive in that it rejects barriers between the micro discursive events and the

macro structures. A key analytical contribution the framework enables is to

effectively relate the wider institutional context with the interests of organizational

actors. In fact, one of the key objectives actively pursued by the researcher was to

better understand the constitution of software development by overcoming the

simplistic opposition between agency and structure. By drawing on Fairclough and

Bourdieu, and by combining the ideas of both authors in such a way that their

respective strengths offset their limitations, the study showed that individuals are

motivated and torn from a state of indifference by the stimuli sent by a certain field –

and not others. At IBTech, the great desire to improve one’s status, and the need to

 184

develop a positive professional image in order to do so, led individuals to enact

particular discursive practices. The statements formulated by actors, and the manner

in which these statements were formulated, represented practices to be appreciated--

signs of possession of valued capital. Thus, the study showed that the context matters

and that it cannot be analytically separated from the agency of organizational actors.

The study conjectured that individuals neither acted of their own free will, nor that

their actions were mechanically instantiated in response to social structures. To

articulate this idea, it was argued that it is appropriate to think of the relation between

the actor and his social world as one of mutual possession. The concept of ‘corporate

worker’ was instrumental in articulating this idea clearly. IBTech’s organizational

actors were not ordinary IT professionals; rather, they were corporate avatar. They

were, in essence, self-interested creatures caught in a dynamic within which being

good to the Corporation equalled being good to themselves. Software development

provided an occasion to embellish their own professional image (through a display of

valued competences) and positively distinguish themselves from others.

All in all, the theoretical framework proved particularly efficient at unpacking the

manner in which the context – or, in analytical terms, how the actors’ investment in a

field – came to shape the actors’ understanding of software development and the

legitimacy of the practices they adhered to. The case analysis showed that the context

might not have to be thought of as operating autonomously and externally from the

agents, or as something that exerts its effect without the willing participation of

purposeful individuals. From the discursive perspective adopted, agents and their

discursive practices were embedded in the context.

In order to relate the context to the discursive practices in as rich a manner as

possible, several detours were necessary. Drawing on the deep understanding

acquired through an in-depth immersion in the field, the researcher expounded the

prevailing organizational values. More specifically, it was explained what working

for a leading investment bank meant to the corporate workers and the pride they

derived from it. It was also described how an ideal of professionalism and a

meritocratic ideology were consumed. With hindsight, the theoretical framework

proved to be very effective in bringing these ideas together, and enabled the

 185

contextualization of the discursive practices. For the point was not only to appreciate

what the actors said, but to understand why they said what they said.

The theoretical framework also allowed for important nuances. For example, and

contrary to common wisdom, it was clear that hierarchical ranks did not determine

social positions. Hierarchical ranks were the result, but not the cause of, social

positions. The notion of capital proved particularly useful in this respect. The

analysis showed that hierarchical ranks were the result of the accumulation of

corporate capital, which was also required for development of a viable professional

image. Whatever their position in the formal hierarchy, corporate workers derived

gratification from demonstrating their ability to produce discourses that are valued. It

flattered their egos and made them feel professional, competent, important, and

potent. The dynamic is complex, yet fundamental to understanding the discursive

constitution of software development.

In summary, the value of the theoretical framework rests in the incisiveness and

richness of the interpretation it enabled. A discursive approach informed by the work

of Bourdieu and Fairclough permitted a detailed and sophisticated consideration of

issues of power and of the relationship between the micro and the macro. To date, the

literature on software development has not incorporated such a perspective in spite of

the advantages it presents for better understanding the establishment of particular

practices. By demonstrating the value of a discursive approach informed by the work

of Bourdieu and Fairclough, a theoretical contribution was made (Barrett and

Walsham, 2004).

8.2.3 Practical Contributions

The internal transfer of knowledge and the standardization of practices

Programs intended to enable the internal transfer of knowledge (i.e. good practices),

such as those undertaken by IBTech, have been widely adopted by software

organizations. These programs typically aim to transfer knowledge among several

geographically-distributed units or, increasingly, from a parent organization to

offshore development teams in outsourcing context.

 186

As the case of IBTech illustrates, however, the internal transfer knowledge poses

several challenges to practitioners. Knowledge for software development often has a

tacit component. Consequently, knowledge may be rooted in experiences and

idiosyncratic personal relationships and be difficult to communicate to the rest of an

organization. Even in cases where the source unit is willing to share knowledge, the

recipient units may not be willing to discard old practices and sustain new ones

(Szulanski, 2000). This situation was particularly evident at IBTech. The case of

IBTech also shows that identifying and communicating knowledge and good

practices, even in a case where formal channels exist, may be a burden for software

professionals. It may distract software professionals from what they consider their

normal activities, especially when producing additional documents and attending

meetings is required.

In the mainstream of management literature, the difficulties have principally been

associated with difference of language, cultural conventions, and identities. The

solution is typically formulated in terms of sound leadership. The argument is put

that if managers could nurture a cohesive set of sociocultural practices, then several

of the difficulties associated with transferring knowledge would be overcome. This

view is widely-accepted in the strategic management literature. For example,

Ghoshal & Barlett (1988) argue in a seminal article that “normative integration”

between different parts of a firm is key for the effective diffusion of innovations

(including processes) within an organization:

High levels of normative integration and information exchange can
enhance the salience of the convergent interests and […] lead to more
vigorous participation of the subsidiary in the tasks of creating, adopting,
and diffusing innovations that benefit the company as a whole. In the
absence of such integration, however, the conflicting interests may
become relatively more salient […] (Ghoshal and Barlett, 1988: 386)

Similarly, Szulanski (1996) observes that the transfer of best practices inside the firm

is facilitated by homogeneity among individuals. Common norms and the use of a

shared language make relationships straightforward and simulate the exchange of

knowledge:

 187

The success of [individual] exchanges depends on some extent on the
ease of communication and on the ‘intimacy’ of the overall relationship
between the source unit and the recipient units. (Szulanski, 1996: 32)
[…] shared meanings and behaviors facilitate coordination of the
activities, making behaviors understandable, predictable and stable. In
this way, new practices become institutionalized. (Szulanski, 1996: 29)

More recently and directly apropos of software development, Levina & Vaast (2008)

observe that it is accepted in the literature that the differences in identities and

language create impediments for effective collaboration among teams spanning

multiple geographies (cf. Levina and Vaast, 2005; Orlikowski, 2002). Thus, software

organizations wanting to transfer knowledge should strive to cultivate a common

mode of expression and shared norms among their members.

Significantly, many of the factors deemed capable of enabling the efficient transfer

of knowledge were present at IBTech, including strong normative integration, shared

identities and the acceptance of the corporate language to talk about software

development. Yet, transferring knowledge and practices so as to constitute a standard

software development process proved unfeasible.

A wider implication of these findings for the practice is the proposition that

standardizing software development goes beyond merely standardizing software

development practices. It also involves standardizing the beliefs that software

professionals have about their work and ensuring that these beliefs are congruous.

The case demonstrated that in spite of the prevalence of a common language, shared

identity and cohesive norms, individuals (and even an individual) may hold diffuse

ideas about what software development is.

Leaders must be attentive to the actors’ competing and divergent visions of software

development, all of which may very well be legitimate in the context in which their

organizations operate. Understanding the different visions of software development

may be achieved by paying attention to the manner in which software development is

depicted by software professionals, and in the texts they are constantly exposed to.

This task becomes salient as organizations increasingly conduct several initiatives in

parallel and pursue mixed objectives, such as increasing process maturity and

 188

becoming more agile. While following contradictory objectives may appear to be

symptomatic of a lack of focus, it reflects the reality of many software organizations.

In practice, software organizations not only have to develop products efficiently, but

also have to meet the normative expectations of their field (Adler, 2006; Meyer and

Rowan, 1977).

For software organizations seeking to standardize its practices, the starting point

should be to establish a vision of the development approach to institutionalize. The

vision must provide a strong focus on how the practices are to contribute to the

development approach aimed at. This way, instead of attempting to transfer unrelated

software development practices, the firm will concentrate on preserving and

transferring the practices that contribute to getting closer and, ultimately, to attaining,

the vision of software development aimed for. In proceeding this way, the practices

will be judged by the firm according to how well they contribute to getting closer to

the vision, rather than by only how effective they are in a particular context.

This vision of software development was missing at IBTech. Good practices were

selected according to whether they provided good results in a particular context;

however, the local good practices that populated the ‘SEPG CD system’ never

formed a coherent whole. Consequently, after two years of sustained effort and major

investments, no standard process had developed.

Working around a vision also provides a sense of direction as to how to proceed to

preserve and transfer practices. For example, if attaining a high level of process

maturity is commensurate with the vision, then a traditional SPI approach like the

one used at IBTech is likely to be appropriate. However, if the vision leans towards

developing the ability to respond quickly to change, then more informal practices,

such as peer programming and the daily sunrise meeting, would probably be more

appropriate to foster the transfer of knowledge between individuals. The point is to

avoid relying on practices for the transfer of knowledge that clash with the vision

aimed for, and that are likely to give rise to resistance.

In summary, the message this dissertation conveys with regard to the transfer of

knowledge and the standardization of practices is that actions should be guided by a

 189

vision of software development. Working from a vision helps to ensure that the

practices transferred are coherent and can lead to the development of a practical

standard software process. It is true that organizations may have to pursue more or

less inconsistent initiatives simultaneously. This reality should not so much be seen

as an impediment to the establishment of a vision, but rather as a reality that

confirms the crucial importance of proceeding with a clear vision. One of the tasks of

leaders is to communicate the vision across sites and monitor conformance to it by

looking at how software professionals discursively constitute software development.

Leaders must also ensure that the mechanisms for the transfer of knowledge are

congruous with the vision.

Balancing agility and discipline

Software professionals assuming a managerial role are confronted with many

challenges. First, managers are under pressure to develop their organization’s ability

to deliver software better, faster, and at less cost. At the same time, they face a

demand for increasingly sophisticated products. This is also true for organizations,

such as JP Morgan Chase, which are not software companies, but which find that

much of their operations rely on software. These challenges are further complicated

by the fact that organizations often span geographically, thus creating the need to

acquire the means to enable coordination between software houses.

The pressure to become more efficient and the increasing complexity of the products,

coupled with the need to enable coordination between individuals, provide a

justification for adopting disciplined approaches to developing software (Parnas and

Clements, 1986). Methodologies are still today the tools of choice in the attempt to

more systemically organize the design and construction of software. However,

practitioners have expressed the concern that the discipline recommended by

methodologies is sometimes experienced as burdensome and coercive constraints.

Critics have argued that adherence to the methodology rule book stifles the

motivation and creativity that are, over the long run, required for high-quality

software development (Introna, 1996; Wastell, 1996).

In the literature intended for software practitioners, there is increasing interest in the

question of how to balance discipline and agility. This interest stems from the

 190

realization that addressing the challenges that software development poses is not

about making the activity as disciplined as can be imagined. For managers,

methodologies have historically played-- and perhaps, now more than ever, play-- a

central role in finding a practical middle ground between control and flexibility.

That some software development methodologies are appropriate in some situations,

but not in others, has the earmarks of a truism (Avison and Fitzgerald, 2006). In this

light, the problem for practitioners is generally seen as being about determining

which methodology to use given their own situation. In order to help in this practical

decision, researchers have classified methodologies according to the situations in

which they are most appropriate (Avison and Taylor, 1997). The selection of a

suitable methodology should thus involve a fairly rational choice process whereby

particular projects and organizational characteristics determine an acceptable choice.

And this is how practitioners are, in the main, expected to balance discipline and

agility.

The recent work of Boehm and Turner (2004) offers a case in point. The authors

argue that there are five “critical factors” involved in determining the relative

suitability of agile and disciplined methodologies. These are project’s size, critically,

dynamism, personnel (i.e. skills), and culture factors. Boehm and Turner (2004)

consider the critical factors to be unbiased by commercial interests and urge

practitioners to use them to find a sensible balance between agility and discipline.

Hence, practitioners are presumed to select methodologies relatively rationally, in the

sense of having their selection process guided primarily by an efficiency concern.

However, this view fails to grasp the significance of the political behavior of

software professionals. It depoliticizes the process by which balancing agility and

discipline unfolds. In doing so, it obscures the fact that exploring the space between

alternative visions of software development can be linked to personal interests.

Denying the political dimension of selecting a methodology promotes a limited

understanding of the question and prevents software professionals from assuming a

management role to act effectively. This dissertation, in contrast, draws attention to

the political nature of the process by which agility and discipline are negotiated and

the role methodologies play in this process.

 191

As the case analysis showed, personal interests fundamentally motivated corporate

workers. Corporation workers were primarily concerned with constructing a positive

professional image and elevating their status. These objectives were the stakes that

the corporate field offered, and pursuing them involved the use of some form of

power (i.e. capital). In this sense, the pursuit of personal interests and the use of

capital permeated the constitution of the object ‘software development’ and software

development practice. The balance between agility and discipline accidentally

emanated from this struggle.

Once dismissed as counterproductive, it has been recognized that organizational

politics are inevitable and not necessarily a bad thing (Mintzberg, 1984; Pfeffer,

1981). In the normative management literature, it is a frequently repeated statement

that the challenge for leaders is to align the interests of actors with those of their

organization in a ‘productive way.’ In the present case, the interests of corporate

workers were almost perfectly aligned with those of the Corporation. As a result, a

rather disciplined form of software was maintained in dominance. However, whether

relying on a relatively disciplined approach was a good thing, and whether the

organization would have benefited from more flexible practice, remains an open

question.

The case of IBTech is illustrative of the reaction of software professionals to the

introduction of methodologies intended to provide the benefit of common

organizational practices. Important lessons for the practice can be derived from the

case. First, it is interesting to note how actors responded to RUP and the agile

module. The principles of these two methodologies were at odds with many

principles that the ‘learning organization’ program promoted, which created a

dilemma for corporate workers to resolve. On the one hand, they could ignore or

challenge the methodologies, but only at the cost of losing capital. On the other hand,

they could embrace the principles of these methodologies, yet without turning their

back on other ideas and practices they knew to be legitimate. The latter approach

proved to be more diplomatic and politically astute and did not involve the reduction

of capital.

 192

In the same vein, the case study suggests that balancing discipline and agility may

very well be an ongoing process. It seems hard to believe that all members of an

organization like IBTech could agree that the methodology they used provided a

juste milieu between discipline and agility. Although the idea of a perfect

compromise is seductive, whether it can be attained and maintained is questionable.

In the study organization, the need to change some practices was constantly being

stimulated as ideas circulating in the environment (agile and iterative development)

received interest, created dissatisfaction with the current state, and encouraged

experimentation. Some corporate workers sought to maintain a status quo; others

attempted to change it. In this process, the agile-discipline balance was revisited.

This dynamic was particularly evident when the agile consultant employed by

IBTech outraged the actors responsible for the ‘learning organization’ program by

criticizing the CMM/I.

The case analysis points to the imagination of organizational actors in finding a

practical solution to the intricate question of how software development should be

thought of and practiced. Leaders must be aware that status and career prospects may

be attached to the question and that it may have far-reaching implications for

individuals. Leaders must, therefore, be wary of the claim that methodologies are

instruments capable of providing the desired balance between agility and discipline.

In reality, as the case of IBTech vividly demonstrated, the balance is not embedded

in the methodologies as such; rather, it is negotiated as individuals juxtapose their

interests with the discourses that the methodologies convey.

8.3 Limitations

As is the case with any research, this study has several limitations. What, exactly,

these limitations could be seen as being might depend, to a large extent, on the

reader, and on his/her scholarly interpretation of what good research is, and what

criteria should be used to assess the quality of the research. Addressing these

limitations provides the researcher with an opportunity to clearly state his position on

them.

 193

8.3.1 Question of generalizability

For many scholars, the key limitation of studies based on a single case study is that

the findings do not generalize. The basis for this judgement is that there is no ground

for assuming that what was observed or discovered in the study’s setting is

applicable to other organizations (Whetten, 1989). From such a standpoint, the

conclusion reached in this doctoral study remains highly specific to the setting in

which the study was conducted. And since the objective of any scientific endeavour

is to generate knowledge that can be used as a basis to understand a phenomenon in

settings different from the one where it was confirmed, the present study is of little

scientific value.

This line of reasoning implies a particular model of science (Orlikowski and Baroudi,

1991) which has not been adopted for this doctoral research. Rather than seeking to

produce abstract generalizations about the behaviour of people involved in software

development, the present research sought to generate a justified interpretation of a

phenomenon in order to improve the appreciation of a community of researchers.

Here, the key determinant of the value of a research is whether the interpretation

suggested is well-reasoned and can be justified to a knowledgeable cynical audience

(Barrett and Walsham, 2004; Klein and Myers, 1999). The knowledge that is

developed through the research process may or may not hold true to other

organizations, but this is not the relevant question (Walsham, 1995). The relevant

question is, rather, whether the claims made by the researcher based on the data

collected and presented are plausible and whether they are of interest to an academic

community (Lee, 1999).

Although the study was not conducted in order to produce abstract generalizations

about the behavior of people involved in software development, it is believed that the

knowledge the study produced may be useful to make sense of what happens in other

organizations (Lee, 1999; Lee and Baskerville, 2003). The study may be useful not in

the sense of explaining in mechanistic terms, but in the sense of providing richer

insights into a socio-organizational phenomenon and demonstrating the value of an

analytical approach. It is the researcher’s contention that the study has contributed to

developing awareness of some dynamics needed to better understand the

standardization of practices in other knowledge-intensive organizations.

 194

8.3.2 The concepts of corporation and corporate field

Strictly speaking, a corporation does not have to be a capitalist enterprise. Nor does it

have to be privately owned. Churches, municipalities, and universities can be

corporations. The term ‘corporation’ was used in this dissertation as it is used in

common parlance to refer to a large business corporation, and implied a form of

business enterprise. It is recognized that the concept of ‘corporation’ is complex and

that the term can mean different things to different people. For example, it can be a

way of organizing, a legal entity, and a means to centralize resources in the hands of

a class (McCraw, 1997; Roy, 1997).

The studies would have benefited from an in-depth theorizing of what the

corporation as a social institution (the Corporation with a capital ‘C’) implied. In this

institution, a distinctive logic prevailed. In addition to an obvious concern for

efficiency and profitability, the Corporation implied a set of norms and values and a

particular way of seeing and engaging in the social world. It implied a way of life.

IBTech and its parent organization were posited to be archetypes of this social

institution. The life of IBTech’s members was assumed to be typical of those

working for other corporations. Future research might examine in greater detail the

features of the corporation as a normative institution.

Had time and space allowed, the research would have benefited from an empirical

demonstration of the existence of the Corporation and of the corporate field. This

demonstration might have been conducted according to the procedure that Bourdieu

advocated.

Bourdieu states that the boundaries of a field should be determined by an empirical

investigation. Such an investigation entails identifying the interests that are distinct

to the field. With regard to the corporate field specifically, it should entail looking at

the factors that lead young professionals to complete an internship in corporations,

study for an MBA, or enter the corporate field, rather than another. It should also

involve identifying the forms of capital that are valid in the field and the point where

their value evaporates. Consequently, the researcher should provide evidence of what

determines statuses within the field. Finally, common distinctive traits should be

found among participants, e.g. similar views, tastes, practices (Bourdieu, 1984).

 195

Common traits may be found by looking at consumption practices, professional

values, and language.

The researcher did not conduct an empirical analysis of the Corporation. Rather, the

corporate field was constituted by the researcher through his experience at IBTech

and background knowledge of the ‘corporate world’ (i.e. the world of knowledge

work done for a large multidivisional business corporation). An empirical

investigation like that advocated by Bourdieu would have provided more concrete

evidence of distinctive practices, including the use of language in the corporate

context, and would have added weight to the argument presented herein.

8.3.3 The relationship between beliefs and practices

The doctoral dissertation assumes that there is some correspondence between beliefs

and practices. This assumption penetrated the study from two fronts. First, it was

acquired from the literature review presented in Chapter 2. The historical review

showed that software development practices and discourses have coevolved. The

second part of the literature review on the formation of belief and practices

demonstrated that the IS literature recognizes that beliefs influence the adoption of

development practices. This idea was particularly prominent in Hirschheim et al.’s

(1996) article. The authors submitted that the beliefs that actors bring to the

development activity legitimize the use of certain tools and methods, and, therefore,

certain practices.

Secondly, the assumption was acquired from the theoretical framework. Fairclough

contends that it is when the dominance of an ideological-discursive formation (see

Table 2 in Chapter 3) is unchallenged that the practices it presupposes become most

naturalized. Similarly, Bourdieu’s notion of symbolic violence implies that the

meanings attributed to objects structure the manner in which actors engage with them

and discursively represent them.

The present case would have been more interesting if the object ‘software

development’ had evolved during the course of the study and if the associated

changes in beliefs had triggered noticeable changes in development practices. The

 196

case is somewhat static. Consequently, it does not explain the process of change as

such, but provides a post hoc explanation for an observable state. The case analysis

offers an interpretation of why development practices did not change significantly in

spite of an attempt to standardize them.

Although the objective of the study was not to explain the change process, but rather

to elucidate the establishment of beliefs and practices, a case showing how the

establishment of beliefs and practices unfolded would have been more stimulating.

The chances of coming across more dynamic episodes would have certainly been

higher if several case studies had been conducted. On the other hand, conducting

many case studies could not have been practically done within an acceptable

timeframe without forfeiting some of the richness of the data.

8.4 Future research: Beyond software

The work conducted for this doctoral research will develop into a broader research

program on innovation development. The program, as the researcher sees it, will

focus on the socio-political and context specificity dimensions of innovation

development. The program’s aim will be to advance theoretical and methodological

development by demonstrating how Bourdieu’s ideas and a discursive lens can

significantly contribute to the development of more sophisticated and detailed

interpretations of the innovation related-issues in economics organizations (including

software organizations).

Recent developments in the innovation literature increasingly attempt to understand

the intricate relationship between innovation development practices and the context

in which they are used. A theoretical approach that is highly commensurate with that

utilized for the present study posits that innovation depends on the knowledge that is

embedded in (discursive) interactions and situated practices. From this perspective,

the ability to innovate depends crucially on the ability to share and integrate

knowledge within and across organizations. In the coming years, this doctoral

research will be used to advance theoretical development in this emerging area,

which is known as the “knowledge-based perspective” or the “interactive

perspective” on innovation (Newell et al., 2006; Swan and Newell, 2000).

 197

As demonstrated in this study, the ‘field’ is a powerful notion for conceptualizing the

context. The field is constituted, in part, by the adoption of common practices. These

practices determine who are part of a field and who are outsiders. As such, several

fields may exist within an organization, making it challenging to exchange the

knowledge that practices embed. The value of the notion of field is increasingly

being recognized within organization studies and is extremely promising to bring

light on knowledge-related issues in innovative organizations. Future research might

want to look at the characteristics of the field(s) to better understand the micro-

processes of knowledge sharing and integration within and across innovative

organizations.

A dimension of the notion of ‘field’ that organization theorists have neglected is the

struggle it implies. This notion is generally used to delineate a context in which

cohesion exists and to highlight the difficulty of transferring some form of expertise

across different contexts (e.g., Levina and Vaast, 2005; 2008). Thus, frictions occur

only across fields, not within. This dissertation provides evidence that there is a need

to account for the struggles that may occur within fields. In a related vein, the

knowledge-based perspective on innovation outlined above says little about power

relations. Individuals within a community sharing a similar form of knowledge are

generally presumed to have common interests. Moreover, these interests are

generally presumed to relate directly to a legitimate organizational goal (Contu and

Willmott, 2003; Fox, 2000). This dissertation provides evidence that there is a need

to re-examine this assumption through in-depth description and analysis of the

practices of actors.

The notion of situated knowledge – knowledge as being embedded in interactions

and situated in the practices of actors – has its roots in “situated learning theory”

(Brown and Duguid, 1991; Lave and Wenger, 1991). Situated learning theory

encourages a focus on the enculturation process and the practical embeddedness of

knowledge. However, in the manner in which Lave and Wenger’s idea have been

popularized, relations of power are dimly recognized or discarded (Contu and

Willmott, 2003; Fox, 2000). From a Bourdieuan perspective, knowledge is both

situated and necessarily implicated in power relations-- that is to say, in the relations

 198

between individuals possessing unequal volume of capital. More specifically to

innovation development, Bourdieu’s ideas have the potential to enable the

development of a more sophisticated account of the effect of power while

recognizing the embeddedness of knowledge in practices. This dissertation has

offered a preview of how power might be linked to the themes of innovation and

knowledge. Future research might pursue in this direction.

There is a need to better understand how the characteristics of the context may act as

barrier to knowledge transfer. Organization theorists have shown that boundaries of

fields created by discontinuities in interest and practice are impediments to the

exchange of knowledge (Bechky, 2003; Carlile, 2002; 2004). This idea has been

useful to shedding light on the challenges of transferring knowledge and

collaborating in multiparty information system development projects (Levina and

Vaast, 2008). However, the case analysis suggests that discontinuities in interest and

practices do not tell the whole story. The study shows that the norms of the field

itself may be a key impediment to effective knowledge transfer (see also Metiu,

2006). Despite the prevalence of fairly uniform interests and practices, the corporate

context encouraged distant and formal relationships, rather than intimate and

authentic relationships which are believed to facilitate knowledge transfer among

individuals (Lave and Wenger, 1991). These observations are of crucial importance

for scholars seeking to understand through practice theory-based framework how

impediment to knowledge transfer may be overcome. Future research might

investigate how characteristics of the field, rather than differences between fields,

facilitate and hinder knowledge transfer in software development (see for example

Szulanski, 1996).

Central to the knowledge-based perspective on innovation is the idea that developing

more interactive and collaborative modes of working facilitate knowledge diffusion

(Newell et al., 2006; Swan and Newell, 2000). Future research might investigate how

the use of Web 2.0 technologies and other such collaborative technologies facilitate

(or impede) knowledge transfer and innovation. In the same vein, there is also a need

to better understand how Web 2.0 technologies might foster shared interests and

practices. More specifically, it would be relevant to develop rich description of how

the use of Web 2.0 technologies may lead to the emergence of “new joint fields”

 199

(Levina and Vaast, 2005) and affect the innovation development process. If the

precepts of the knowledge-based perspective on innovation hold true in practice

(which still need to be verified), Web 2.0 may offer great potential for innovation

organizations, including software organizations. Yet for the most part, the application

of Web 2.0 technologies is still something new and yet to be understood.

For the purpose of this doctoral dissertation, large business software applications

developed to meet the particular needs of the bank were the innovations of interest.

Because the software applications were developed for and primarily used by the

bank, the focus on the research was, to some extent, inwardly directed. There

certainly is a need to see how the theoretical framework can be used to study

attempts to change practices in firms developing commercial, off-the-shelf software

(i.e. software that is not designed for meet the needs of its maker). It would be

interesting to see whether and how the logic of other fields penetrates practices of

software organizations, as the corporate logic imbued IBTech. Does developing

software for a certain industry or field lead software organizations to adopt certain

beliefs and practices of this industry or field? If so, can this be explain in terms of

symbolic power?

In a related vein, it would be highly pertinent to put the theoretical framework to the

test in innovative contexts other than software development. This could be done, for

example, in the field of medical research or entertainment where innovative

hardware products are developed. Different contexts and different types of

innovation might provide additional dimensions of similarity and contrast to be

explored.

 200

Appendix 1: IBTech’s Global Organization Chart

Chief Technology Officer, Institutional Equities, Futures & Options

& Prime Brokerage

(London)

Global Infrastructure Manager Chief Business Technologist, Americas

Global Financial Manager Chief Business Technologist, Equities, EMEA

Global Application Delivery Services & Controls

nager

Chief Business Technologist, Asia

Chief Business Technologist, Futures and Options

Chief Business Technologist, Global Equities Global Resource Manager

Global Chief Architect

Global Business/Market Intelligence

Global Prime Brokerage Program Director

Global Business Manager

 201

Appendix 2: Capability Maturity Models

This appendix is intended to provide the reader with the high-level understanding of

the Capability Maturity Model for Software (CMM) that is needed to understand the

case presented in this doctoral dissertation.

Software process improvement

Within the realm of software engineering, ‘process improvement’ is a program of

activities designed to improve the process capability of an organization’s processes.

‘Process capability’ is the ability of a process to produce planned results. As the

capability of each process is improved, it becomes predictable and measurable, and

the most significant causes of poor quality and productivity are isolated or

eliminated. By progressively improving its process capability, an organization is said

to mature.

The CMM

The CMM is a framework that describes the key elements of an effective software

process. The framework can be used to appraise the process capability of an

organization or help an organization to develop its process capability. The CMM is

not prescriptive in that it does not prescribe a specific software process: it describes

“what” is to be done to increase the process capability of an organization, but does

not say “how” it should be done.

History

The original concept of the framework was developed in the early 1980s by Watts

Humphrey and his colleagues at IBM. Humphrey’s unique insight was that software

organizations had to remove impediments to continuous improvement in a specific

order if they were to keep improving their processes capability overtime.

The development of the CMM formally began in 1986 as a collaboration between the

Software Engineering Institute (SEI) of Carnegie-Mellon University and the U.S.

federal government. The goal was to produce a framework for the U.S. federal

government to assess the capabilities of its contractors in the area of software

 202

development. The first version of the framework, released in 1991, gained rapid

acceptance in the defense industry because the Department of Defense used the

CMM process maturity level as an exclusion criterion for awarding many of its

largest software acquisition contracts.

Maturity levels

The CMM is composed of five maturity levels (see Table 10). Each maturity level

provides a layer in the foundation for continuous process improvement. At Level 1,

the software process is ad hoc and chaotic. In progressing to Level 2, basic project

management processes are introduced to track costs and schedule. At Level 3, the

software process is documented and standardized across the organization. At Level 4,

the software process is quantitatively managed and controlled. Finally, at Level 5, the

software process is optimized.

Table 10: CMM for software – Maturity levels and key process areas

Maturity Level

Focus Key Process Areas

5 Continual process
improvement and
optimization

Process Change Management
Technology Change Management
Defect Prevention

4 Product and process
quality; Manage by
measures

Software Quality Management
Quantitative Process Management

3 Engineering processes
and organizational
support; Standard
processes

Organization Process Focus
Organization Process Definition
Peer Reviews
Training Program
Intergroup Coordination
Software Product Engineering
Integrated Software Management

2 Project management
processes; Tame local
chaos

Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

1 Competent people and
heroics; Chaotic
process

None

 203

Key process areas

With the exception of Level 1, each maturity level is composed of several key

process areas (see Table 10). Each key process area, in turn, is composed of a cluster

of related activities that, when performed collectively, achieve a set of goals

considered important for establishing process capability at that maturity level. By

developing its process capability in the key process areas corresponding to a maturity

level, an organization develops its overall process capability.

The CMMI

Since its introduction, the framework has spread across industries and has achieved

significant penetration into commercial IT. Since 2001, however, the Capability

Maturity Model Integration (CMMI) has progressively replaced the CMM. The

CMMI encompasses the CMM, but possesses two additional disciplines – ‘supplier

evaluation’ and ‘contract monitoring.’ IBTech used the two models, and in order to

facilitate further discussion, the term ‘CMM/I’ is used in the present doctoral thesis

to refer to the two models without distinction.

 204

Appendix 3: Agile Software Development

Agile software development evolved in the mid 1990s as part of a reaction against

process- and document-centric methods. In 2001, prominent members of the

software community created the “Manifesto for Agile Software Development,”

which spelled out the values and principles encapsulating the essence of agile

software development (www.agilemanifesto.org).

Values of agile development

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Principles behind the agile manifesto

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity – the art of maximizing the amount of work not done – is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Methods

Popular agile methods include Scrum, Crystal Clear, Adaptive Software

Development, and Dynamic Systems Development Method. It is perhaps Extreme

 205

Programming that contributed the most to establish the popularity of agile methods.

Extreme Programming was created by Kent Beck in 1996 as a way to rescue a high-

profile project at automotive manufacturer. The agile off-the-shelf component

acquired at IBTech is based on the Extreme Programming methodology.

 206

9 References

Adler, P. A. and P. Adler (1994). Observational Techniques. In: N. K. Denzin and Y.
S. Lincoln (ed.). Handbook of Qualitative Research. Thousand Oaks: 377-
392.

Adler, P. S. (2006). "The Evolving Object of Software Development." Organization

12(3): 401-435.

Alvesson, M. and H. Willmott (1992). "On the Idea of Emancipation in Management

and Organization Studies." The Academy of Management Review 17(3):
432-464.

Andersen, N. E., F. Kensing, F. Lunding, L. Mathiassen, A. Munk-Madsen, M.

Rabech and P. Sorgaard (1990). Professional Systems Development:
Experiences, Ideas, and Action. Prentice-Hall.

Anthony, R. (1965). Planning and Control Systems: A Framework for Analysis.

Cambridge, MA, Harvard University Press.

Avgerou, C. (2000). "IT and Organizational Change: An Institutional Perspective."

Information Technology & People 13(4).

Avgerou, C. and T. Cornford (1993). "A Review of the Methodologies Movement."

Journal of Information Technology 5: 277-286.

Avison, D. E. and B. Fitzgerald (2003). Information Systems Development:

Methodologies, Techniques, and Tools. New York, McGraw-Hill.

Avison, D. E. and B. Fitzgerald (2006). Information Systems Development:

Methodologies, Techniques and Tools. London, McGraw-Hill.

Avison, D. E. and V. Taylor (1997). "Information Systems Development

Methodologies: A Classification According to Problem Situation." Journal of
Information Technology 12: 73-81.

Banach, R. (2007). "Formal Methods: Guest Editorial." Journal of Universal

Computer Science 13(5).

Barrett, M. and G. Walsham (2004). Making Contribution from Interpretive Case

Studies: Examining Processes of Construction and Use. Relevant Theory and
Informed Practice: Looking Forward from a 20-year Perspective on IS
Research: IFIP TC8 WG8.2 20th Year Retrospective, Manchester, England,
Dordrecht: Kluwer.

Baskerville, R. (1991). Practitioner Autonomy and the Bias of Methods and Tools.

In: H. E. Nissen, H. K. Klein and R. A. Hirschheim (ed.). Information

 207

Systems research: Contemporary Approaches & Emergent Traditions.
Amsterdam, North-Holland: 673-698.

Baskerville, R. and M. D. Myers (2004). "Special Issue on Action Research in

Information Systems: Making IS Research Relevant to Practice-Foreword."
MIS Quarterly 28(3): 329-225.

Baskerville, R., J. Travis and D. Truex (1992). Systems without Methods: The

Impact of New Technologies on Information Systems Development Projects.
In: K. E. Kendall, K. Lyytinen and J. I. DeGross (ed.). The Impact of
Computer Supported Technologies on Information Systems Development.
North-Holland, Amsterdam: 241-269.

Baskerville, R. L. and A. T. Wood-Harper (1996). "A Critical Perspective on Action

Research as a Method for Information Systems Research." Journal of
Information Technology 11: 235-246.

BBC (2006). Graduate Job Market 'on the Rise'. Accessed 12 January 2006.

http://news.bbc.co.uk/1/hi/education/4603420.stm.

Bechky, B. A. (2003). "Sharing Meaning Across Occupational Communities: The

Transformation of Understanding on a Product Floor." Organization Science
14(3): 312-330.

Benbasat, I., D. K. Goldstein and M. Mead (1987). "The Case Reseach Strategy in

Studies of Information Systems." Management Information Systems
Quarterly 11(3): 369-386.

Berger, P. L. and T. Luckmann (1967). The Social Construction of Reality. London,

Allen Lane The Penguin Press.

Besser, H. (1995). The Information SuperHighway: Social and Cultural Impact. In: I.

Boal (ed.). Resisting the Virtual Life: The Culture and Politics of
Information. San Francisco, City Lights Press.

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement."

Computer 21(5): 61-72.

Boehm, B. and R. Turner (2004). Balancing Agility and Discipline: A Guide for the

Perplexed. Boston MA, Addison Wesley.

Boehm, B. W. (1973). "Software and Its Impact: A Quantitative Assessment."

Datamation 19(5): 48-59.

Boehm, B. W. (1976). "Software Engineering." IEEE Transactions on Computers C-

25(12): 1226-41.

Boland, R. J. (1991). Information System Use as a Hermeneutic Process. In: H.-E.

Nissen, H. K. Klein and R. A. Hirschheim (ed.). Information Systems

 208

Research: Contemporary Approaches and Emergent Traditions. Amsterdam,
Elsevier: 439-464.

Booch, G. (1994). Object-Oriented Analysis and Design with Application. Redwood

City, CA, Benjamin/Cummings.

Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge, Cambridge

University Press.

Bourdieu, P. (1981). Men and Machine. In: K. Knorr-Cetina and A. V. Cicourel

(ed.). The Micro-Sociological Challenge of Macro-Sociology: Towards a
Reconstruction of Social Theory and Methodology. London, Routledge: 304-
317.

Bourdieu, P. (1984). Distinction: A Social Critique of the Judgement of Tastes.

London, Routledge.

Bourdieu, P. (1989). "Social Space and Symbolic Power." Sociological Theory 7(1).

Bourdieu, P. (1990). The Logic of Practice. Cambridge, Polity.

Bourdieu, P. (1991). Language and Symbolic Power. Cambridge MA, Harvard

University Press.

Bourdieu, P. (1992). An Invitation to Reflexive Sociology. Oxford, Polity Press.

Bourdieu, P. and J.-C. Passeron (1977). Reproduction in Education, Society and

Culture. London, Sage.

Bourdieu, P. and L. J. D. Wacquant (1989). "Towards a Reflective Sociology: A

Workshop with Pierre Bourdieu." Sociological Theory 7: 26-63.

Briand, L., E. Arisholm, S. Counsell, F. Houdek and P. Thevenod-Fosse (1999).

"Empirical Studies of Object-Oriented Artifacts, Methods, and Processes:
State of the Art and Future Directions." Empirical Software Engineering: An
International Journal 51: 245-273.

Brooks, F. (1975). The Mythical Man-Month: Essays on Software Engineering. New

York, Addison-Wesley.

Brown, J. S. and P. Duguid (1991). "Organizational Learning and Communities of

Practice: Toward a Unified View of Working, Learning and Innovation."
Organization Science 2: 40-57.

Burrell, G. and G. Morgan (1979). Sociological Paradigms and Organisational

Analysis. Hants, Ashgate.

Campbell-Kelly, M. (2003). From Airline Reservations to Sonic the Hedgehog: A

History of the Software Industry. Cambridge, MA, MIT Press.

 209

Carlile, P. R. (2002). "A Pragmatic View of Knowledge and Boundaries: Boundary
Objects in New Product Development." Organization Science 13(4): 442-455.

Carlile, P. R. (2004). "Transferring, Translating, and Transforming: An Integrative

Framework for Managing Knowledge Across Boundaries." Organization
Science 15(5): 555-568.

Cavaye, A. L. M. (1996). "Case Study Research: A Multi-Faceted Research

Approcah for IS." Information Systems Journal 6: 227-242.

Cerruzi, P. E. (1998). A History of Modern Computing. Cambridge, MA, MIT Press.

Checkland, P. (1981). Systems Thinking, Systems Practice. New York, John Wiley

& Sons.

Chernow, R. (1986). The House of Morgan: An American Banking Dynasty and the

Rise of Modern Finance. Boston, Harvard Business School Press.

Chrissis, M. B., M. Konrad and S. Shrum (2003). CMMI: Guidelines for Process

Integration and Product Improvement. Boston, MA, Addison-Wesley.

Chua, W. F. (1986). "Radical Development in Accounting Thought." The

Accounting Review 61: 601-632.

Coad, P. and E. Yourdon (1991). Object-Oriented Analysis. Englewood Cliffs, NJ,

Yourdon Press.

Cockburn, A. and J. A. Highsmith (2001). "Agile Software Development: The

People Factor." IEEE Software 34(11): 131-133.

Collins, R. (1981). Cultural Capitalism and Symbolic Violence. In: (ed.). Sociology

Since Mid-Century: Essays in Theory of Cumulation. New York, Academic
Press.

Constantine, L. (1993). "Work Organization: Paradigms for Project Management and

Organization." Communications of the ACM 36(10).

Contu, A., C. Grey and A. Ortenblad (2003). "Against Learning." Human Relations

56(8): 931-951.

Contu, A. and H. Willmott (2003). "Re-embedding Situatedness: The Importance of

Power Relations in Learning." Organization Science 14(3): 283-296.

Creswell, J. (1998). Qualitative Inquiry and Research Design: Choosing Among Five

Traditions. Thousand Oaks, California, Sage Publications.

Cusumano, M. A. (1989). "The Application Software Factory: A Historical

Interpretation." IEEE Software March: 23-30.

 210

Cusumano, M. A. (1991). Japan's Software Factories: A Challenge to U.S.
Management. Oxford, Oxford University Press.

Cusumano, M. A. (1998). Microsoft Secrets: How the World's Most Powerful

Software Company Creates Technology, Shapes Markets and Manages
People. New York, Free Press.

Cusumano, M. A. (2004). The Business of Software: What Every Manager,

Programmer, and Entrepreneur Must Know to Thrive and Survive in Good
Times and Bad. New York, Free Press.

Cusumano, M. A. and R. W. Selby (1997). "How Microsoft Builds Software."

Communications of the ACM 40(6): 53-61.

Czarniawska, B. (1992). Exploring Complex Organizations: A Cultural Perspective.

London, Sage.

Darke, P., G. Shanks and M. Broadbent (1998). "Successfully Completing Case

Study Research: Combining Rigour, Relevance and Pragmatism."
Information Systems Journal 8: 273-289.

De Marco, T. (1978). Structured Analysis and System Specification. New York,

Yourdon Press.

Denzin, N. K. and Y. S. Lincoln (1994). Entering the Field of Quantitative Research.

In: N. K. Denzin and Y. S. Lincoln (ed.). Handbook of Qualitative Research.
Thousand Oaks, CA, Sage Publication: 1-17.

DiBona, C., S. Ockman and M. Stone (2000). Open Sources: Voices from the Open

Source Revolution. Sebastopol, CA, O'Reilly & Associates.

Dijkstra, E. (1968). "Go To Statement Considered Harmful." Communications of the

ACM 11(3): 147–148.

Dijkstra, E. W. (1969). Structured Programming. Software Engineering: Concepts

and Techniques, Rome, Petrocelli/Charter.

DiMaggio, P. J. (1979). "Review Essay on Pierre Bourdieu." American Journal of

Sociology 84(6): 1460-1474.

Dubé, L. (1998). "Teams in Packaged Software Development: The Software Corp.

Experience." Information Technology and People 11(1): 36-61.

Dubé, L. and D. Robey (1999). "Software Stories: Three Cultural Perspectives on the

Organizational Context of Software Development Practices." Accounting
Management and Information Technologies 9(4): 223-259.

Dyer, J. H. and H. Singh (1998). "The Relational View: Cooperative Strategy and

Sources of Interorganizational Competitive Advantages." Academy of
Management Review 23(4): 660-679.

 211

Earl, M. J. and D. J. Skyrme (1992). "Hybrid Managers - What Do we Know about

them?" Journal of Information Systems 2: 169-187.

Eisenhardt, K. M. (1989). "Building Theories from Case Study Research." Academy

of Management Review 14(4): 532-550.

Elster, J. (1990). Merton's Functionalism and the Unintended Consequences of

Action. In: J. Clark, C. Modgil and S. Modgil (ed.). Robert Merton:
Consensus and Controversy. London, Falmer Press.

Fairclough, N. (1989). Language and Ideology. London, Longman.

Fairclough, N. (1995). Critical Discourse Analysis: The Critical Study of Language.

London, Longman.

Fairclough, N. (2005). "Discourse Analysis in Organization Studies: The Case for

Critical Realism." Organization Studies 26: 915 - 939.

Fairclough, N. and R. Wodak (1997). Critical Discourse Analysis. In: T. A. V. Dijk

(ed.). Discourse as Social Interaction. London, Sage. 2: Discourse Studies -
A Multidisciplinary Introduction: 258-284.

Fish, S. (1980). Is There a Text in This Class? Cambridge, MA, Harvard University

Press.

Foucault, M. (1972). The Archaeology of Knowledge. London, Tavistock.

Fowler, M. (2003). The New Methodology. Accessed 12 January 2007.

http://www.martinfowler.com/articles/newMethodology.html#N101B3.

Fox, S. (2000). "Communities of Practice, Foucault and

Actor-Network Theory." Journal of Management Studies 37(6): 853-867.

Friedman, A. L. (1989). Computer Systems Development: History, Organization and

Implementation. New York, Wiley.

Gadamer, H.-G. (1977). Philosophical Hermeneutics. Los Angeles, University of

California Press.

Galliers, R. D. (1992). Choosing Information Systems Research Approaches. In: R.

D. Galliers (ed.). Information Systems Research: Issues, Methods and
Practice Guidelines. Oxford, Blackwell Scientific Publication: 144-162.

Garfinkel, H. (1967). Studies in Ethnomethodology. Englewood Cliffs, NJ, Prentice-

Hall.

Gasson, S. (1999). "A Social Action Model of Situated Information Systems

Design." Data Base 30(2): 82-97.

 212

Gates, B. (1995). The Road Ahead. New York, Penguin Books.

Ghoshal, S. and C. Barlett (1988). "Creation, Adoption, and Diffusion of Innovations

by Subsidiaries of Multinational Corporation." Journal of International
Business Studies 19(365-388).

Giroux, H. (1983). Theory and Resistance in Education: A Pedagogy for the

Opposition. New York, Begin and Garvey.

Glass, R. L. (2006). "The Standish Report: Does it Really describe a Software

Crisis." Communications of the ACM 49(8): 15-16.

Grant, D. and C. Hardy (2003). "Struggles with Organizational Discourse."

Organization Studies 25(1): 5-13.

Grant, D., T. Keenoy and C. Oswick (1998). Introduction: Organizational

Discourses: Of diversity, Dichotomy and Multi-disciplinary. In: D. Grant, T.
Keenoy and C. Oswick (ed.). Discourse and Organization. London, Sage: 1-
13.

Guba, E. G. and Y. S. Lincoln (1994). Competing Paradigms in Qualitative

Research. In: N. K. Denzin and Y. S. Lincoln (ed.). Handbook of Qualitative
Research. Thousand Oaks, Sage.

Habermas, J. (1980). The Hermeneutic Claim to Universality. In: J. Bleicher (ed.).

Contemporary Hermeneutics. London, Routledge Kegan Paul.

Habermas, J. (1984). The Theory of Communicative Action - Reason and the

Rationalization of Society. Boston, MA, Beacon Press.

Habermas, J. (1987). The Theory of communicative Action - Volume Two:

Lifeworld and Systems: A Critique of Functionalist Reason. Boston, MA,
Beacon Press.

Hammer, M. and J. Champy (1993). Reengineering the Corporation: A Manifesto for

Business Revolution. New York, Harper Business.

Hardy, C. (2004). "Scaling Up and Bearing Down in Discourse Analysis: Questions

Regarding Textual Agencies and their Context." Organization 11(3): 415-
425.

Hardy, C., T. B. Lawrence and D. Grant (2005). "Discourse and Collaboration: The

Role of Conversations and Collective Identity." Academy of Management
Review 30(1): 58-77.

Hardy, C., I. Palmer and N. Phillips (2000). "Discourse as a Strategic Resource."

Human Relations 53(9): 1227-1248.

 213

Harter, D. E., M. S. Krishnan and S. A. Slaughter (2000). "Effects of Process
Maturity on Quality, Cycle Time, and Effort in Software Product
Development." Management Science 46(4): 451-466.

Heritage, J. (1984). Garfinkel and Ethnomethodology. Cambridge, Polity Press.

Highsmith, J. A. (1997). "Messy, Exciting, and Anxiety-ridden: Adaptive Software

Development." American Programmer X(1).

Highsmith, J. A. (2002). Agile Software Development Ecosystems. Boston, MA,

Addison-Wesley.

Hirschheim, R. and H. K. Klein (2000). Information Systems Research at the

Crossroads: External Versus Internal Views. In: R. Baskerville, J. Stage and
J. DeGross (ed.). Organizational and Social Perspectives on Information
Technology (pp. 233-254). Boston: Kluwer Academic. Boston, Kluwer
Academic: 233-254.

Hirschheim, R. A. and H. K. Klein (1989). "Four Paradigms of Information Sytems

Development." Communications of the ACM 32(10): 1199-1214.

Hirschheim, R. A., H. K. Klein and K. Lyytinen (1996). "Exploring the Intellectual

Structures of Information Systems Development: A Social Action Theoretic
Analysis." Accounting Management and Information Technologies 6(1/2): 1-
64.

Holmwood, J. (2005). Functionalism and its Critics. In: A. Harrington (ed.). Modern

Social Theory: An Introduction. Oxford, Oxford University Press: 87-109.

Hussey, J. and R. Hussey (1997). Business Research. Houndmills, Palgrave.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology,

Institute of Electrical and Electronics Engineers.

Iivary, J., R. A. Hirschheim and H. K. Klein (1998). "A Paradigmatic Contrasting

Development Approaches and Methodologies." Information Systems
Research 9(2).

Iivary, J. and M. Huisman (2007). "The Relationship Between Organizational

Culture and the Deployment of Systems Development Methodologies." MIS
Quarterly 30(1): 35-58.

Introna, L. D. (1996). "Notes on Ateleological Information Systems Development."

Information Technology & People 9(4): 20-39.

Iversen, J. and L. Mathiassen (2003). "Cultivation and Engineering of a Software

Metrics Program." Information Systems Journal 13: 3-19.

Jackson, M. A. (1975). Principles of Program Design. London, Academic.

 214

Jackson, M. A. (1983). System Development. New York, Prentice-Hall.

Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard (1995). Object-Oriented

Software Engineering: A Use Case Driven Approach. Wokingham, England,
Addison-Wesley.

Jenkins, R. (1982). "Pierre Bourdieu and the Reproduction of Determinism."

Sociology 16(2): 270-281.

Jenkins, R. (2001). Pierre Bourdieu. New York, Routledge.

Jermier, J. M. (1998). "Introduction: Critical Perspective on Organizational Control."

Administrative Science Quarterly 43: 235-256.

Johnson, J. (1991). The Software Factory: Managing Software Development and

Maintenance. Wellesley, MA, QED Information Sciences.

Johnson, R. A. (2002). "Object-oriented systems Development." Communications of

the Association for Information Systems 8: 65-81.

Jørgensen, M. and K. Molokken-Ostvold (2006). "How Large Are Software Cost

Overruns? A Review of the 1994 CHAOS Report." Information and Software
Technology 48(4): 297-301.

Kanter, R. M. (1988). "When a Thousand Flowers Bloom: Structural, Collective, and

Social Condition for Innovation in Organization." Research in Organizational
Behavior 10: 169-211.

Kaplan, B. and J. A. Maxwell (1994). Qualitative Research Methods for Evaluating

Computer Information Systems. In: J. G. Anderson, C. E. Aydin and S. J. Jay
(ed.). Evaluating Health Care Information Systems: Methods and
Applications. Thousand Oaks, CA, Sage: 45-68.

Keil-Slawik, R. (1996). History and Identity. History of Software Engineering,

Paderborn.

Kets de Vries, M. F. R. and D. Miller (1987). "Interpreting Organizational Texts."

Journal of Management Studies 24(3): 233-247.

King, S. (1996). "Case Tools and Organizational Action." Information Systems

Journal 6: 173-194.

Klein, H. K. and M. D. Myers (1999). "A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems." MIS Quarterly
23(1): 67-94.

Knorr-Cetina, K. (1981). The Micro-Sociological Challenge of Macro-Sociology:

Towards a Reconstruction of Social Theory and Methodology. In: K. Knorr-
Cetina and A. V. Cicourel (ed.). Advances in Social Theory and
Methodology. London, Routledge: 1-47.

 215

Knuth, D. (1974). "Structured Programming with Goto Statements." Computing

Surveys 6(4): 261-301.

Krishnan, M. S., C. H. Kriebel, S. Kekre and T. Mukhopadhyay (2000). "An

Empirical Analysis of Productivity and Quality in Software Products."
Management Science 46(6): 745-759.

Lanzara (1983). The Design Process: Frames, Metaphors and Games. In: C. Ciborra

and L. Schneider (ed.). Systems Design for, with and by the Users.
Amsterdam, North-Holland Publishing Company.

Latour, B. and S. Woolgar (1986). Laboratory Life: The Construction of Scientific

Facts. Princeton, NJ, Princeton University Press.

Lave, J. and W. Wenger (1991). Situated Learning: Legitimate Peripheral

Participation. Cambridge, Cambridge University Press.

Lee, A. S. (1991). "Integrating Positivist and Interpretive Approaches to

Organizational Research." Organization Science 2(4): 342-365.

Lee, A. S. (1994). "Electronic Mail as a Medium for Rich Communication: An

Empirical Investigation Using Hermeneutic Interpretation." MIS Quarterly
18(2): 143-157.

Lee, A. S. (1999). "Rigor and Relevance in MIS Research: Beyond the Approach of

Positivism Alone." MIS Quarterly 23(1).

Lee, A. S. and R. L. Baskerville (2003). "Generalizing Generalizability in

Information Systems Research." Information Systems Research 14(3): 221-
243.

Levina, N. and E. Vaast (2005). "The Emergence of Boundary Spanning

Competence in Practice: Implications for Implementation and Use of
Information Systems." MIS Quarterly 29(2): 335-363.

Levina, N. and E. Vaast (2008). "Innovating or Doing as Told? Status Differences

and Overlapping Boundaries in Offshore Collaboration." MIS Quarterly
32(2): 307-332.

MacCormack, A. (2001). "Product-Development Practices that Work: How Internet

Companies Build Software." MIT Sloan Management Review Winter: 75-84.

MacCormack, A. and K. Herman (2000). Microsoft Office 2000. Harvard Business

School Case. Boston, MA, Harvard Business School.

MacCormack, A., R. Verganti and M. Iansiti (2001). "Developing Products on

Internet Time: The Anatomy of a Flexible Development Process."
Management Science 47(1).

 216

Madsen, S., K. Kautz and R. Vidgen (2006). "A Framework for Understanding How
a Unique and Local IS Development Method Emerges in Practice." European
Journal of Information Systems 15: 225-238.

Mahoney, M. S. (2004). "Finding a History for Software Engineering." Annals of the

History of Computing 26(1): 8-19.

Markus, L. (1983). "Power, Politics and IS Implementation." Communications of the

ACM 26(6).

Marx, K. (1867). Capital I. Moscow, Progress Publishers.

Mathiassen, L. (1996). "Information Systems Development: Reflections on a

Discipline." Accounting Management and Information Technologies 6(12):
127-132.

Mathiassen, L. (1998). "Reflective Systems Development." Scandinavian Journal of

Information Systems 10(1 & 2).

Maynard, D. (1989). "On the Ethnography and Analysis of Discourse in Institutional

Settings." Perspectives on Social Problems 1: 127-146.

McBreen, P. (2001). Software Craftsmanship: The New Imperative. New York,

Addison-Wesley.

McCraw, T. K. (1997). Creating Modern Capitalism: How Entrepreneurs,

Companies, and Countries Triumphed in Three Industrial Revolutions.
Cambridge, MA, Harvard University Press.

McFeeley, B. (1996). IDEAL: A User's Guide for Software Process Improvement.

Pittsburgh, PA, The Software Engineering Institute, Carnegie Mellon
University.

McIlroy, M. D. (1968). Mass Produced Software Components. Software

Engineering, Report on a conference sponsored by the NATO Science
Committee, Garmisch, Germany, Scientific Affairs Division, NATO.

Metiu, A. (2006). "Owning the Code: Status Closure in Distributed Groups."

Organization Science 17(4): 418-435.

Meyer, J. W. and B. Rowan (1977). "Institutionalized Organizations: Formal

Structure as Myth and Ceremony." American Journal of Sociology 83: 364-
385.

Miles, M. B. and A. M. Huberman (1994). Qualitative Data Analysis: An Expanded

Sourcebook. Thousand Oaks, CA, Sage.

Mintzberg, H. (1979). The Structuring of Organizations: A Synthesis of the

Research. Englewood Cliffs, Prentice Hall.

 217

Mintzberg, H. (1983). A Typology of Organization Structure. In: D. Miller and P.
Friesen (ed.). Organizations: A Quantum View, Prentice Hall.

Mintzberg, H. (1984). "The Organization as Political Arena." Journal of

Management Studies 22(2): 134-154.

Mumby, D. K. and R. Clair (1997). Organizational Discourse. In: T. A. VanDijk

(ed.). Discourse as Structure and Process. London, Sage: 181-205.

Mumford, E. (1983). Designing Human Systems for New Technology: The ETHICS

Method. Manchester, Manchester Business School Press.

Mumford, E. and M. Weir (1979). Computer Systems in Work Design: The ETHICS

Method. New York, NY, John Wiley & Sons.

Myers, M. D. (1995). "Dialectical Hermeneutics: A Theoretical Framework for the

Implementation of Information Systems." Information Systems Journal 5(1):
51-70.

Nandhakumar, J. and D. E. Avison (1999). "The Fiction of Methodological

Development: A Field Study of Information Systems Development."
Information Technology & People 12(2): 176-191.

Nandhakumar, J. and M. Jones (1997). "Too Close for Comfort? Distance and

Engagement in Interpretive Information Systems Research." Information
Systems Journal(7): 109-131.

NATO Science Committee (1968). Software Engineering: Concepts and Techniques.

Proceedings of the NATO Conferences. Software Engineering: Concepts and
Techniques., Garmisch, Germany.

Naur, P. (1985). Intuition in Software Development. In: H. Ehrig, C. Floyd, M. Nivat

and J. Thatcher (ed.). Formal Methods and Software Development. New
York, Springer.

Newell, S., M. Robertson and J. Swan (2006). Interactive Innovation Processes and

the Problems of Managing Knowledge. In: B. Renzl, K. Matzler and H.
Hinterhuber (ed.). The Future of Knowledge Management. Basingstoke,
Palgrave Macmillan: 115-136.

Ngwenyama, O. and P. A. Nielsen (2003). "Competing Values in Software Process

Improvement: An Assumption Analysis of CMM From an Organizational
Culture Perspective." IEEE Transactions on Engineering Management 50(1):
100-112.

Orlikowski, W. J. (1991). "Integrated Information Environment or Matrix of

Control? The Contradictory Implications of Information Technology."
Accounting Management and Information Technologies 1(1): 9-42.

 218

Orlikowski, W. J. (2002). "Knowing in Practice: Enacting a Collective Capability in
Distributed Organizing." Organization Science 13(3): 249–273.

Orlikowski, W. J. and S. R. Barley (2001). "Technology and Institution: What can

Research on Information Technology and Research on Organizations Learn
from Each Other." MIS Quarterly 25(2): 145-165.

Orlikowski, W. J. and J. J. Baroudi (1991). "Studying Information Technology in

Organizations: Research Approaches and Assumptions." Information
Systems Research 2(1): 1-28.

Oswick, C., T. Keenoy and D. Grant (2000). "Discourse, Organizations and

Organizing: Concepts Objects and Subjects." Human Relations 53(9): 1115-
1123.

Parker, I. (1992). Discourse Dynamics: Critical Analysis for Social and Individual

Psychology. London, Routledge.

Parker, I., Ed. (1998). Social Constructionism, Discourse and Realism. London, Sage

Publications.

Parnas, D. L. and P. C. Clements (1986). "A Rational Design Process: How and Why

to Fake it." IEEE Transactions on Software Engineering 12(2).

Parsons, T. (1951). The Social System. London, Routledge.

Parsons, T. (1961). Theories of Society: Foundations of Modern Sociological

Theory. New York, Free Press.

Paulk, M. C., B. Curtis, M. B. Chrissis and C. V. Weber (1993). Capability Maturity

Model for Software, Version 1.1. Pittsburgh, PA.

Peizer, J. (2006). The Great Software Debate: Technology and Ideology, Internaut

Consulting. 2006.

Peters, T. and R. Waterman (1982). In Search of Excellence. New York, Harper and

Row Publishers.

Pettigrew, A. M. (1979). "On Studying Organization Cultures." Administrative

Science Quarterly 24: 570-581.

Pfeffer, J. (1981). Power in Organization. Marshfield, MA, Pitman.

Pfeffer, J. (1993). "Barriers to the Advance of Organizational Science: Paradigm

Development as an Independent Variable." Academy of Management Review
18(4): 599-620.

Phillips, N. and C. Hardy (1997). "Managing Multiple Identities: Discourse,

Legitimacy and Resources in the UK Refugee System." Organization 4(2):
159-185.

 219

Phillips, N. and C. Hardy (2002). Understanding Discourse Analysis: Investigating

Processes of Social Construction. Thousand Oaks, CA, Sage.

Pugh, E. W., L. R. Johnson and J. H. Palmer (1991). IBM's 360 and Early 370

Systems. Cambridge, MA, MIT Press.

Putnam, L. and F. Cooren (2004). "Alternative Perspectives on the Role of Text and

Agency in Constituting Organizations." Organization 11(3): 323-333.

Quinn, J. B. (1985). "Managing Innovation: Controlled Chaos." Harvard Business

Review 63(July-August): 73-84.

Rapoport, R. N. (1970). "Three Dilemmas in Action Research." Human Relations

23(4): 499-513.

Raymond, E. S. (1998). Homesteading the Noosphere, Retrieved 19 April 2006 from

http://www.catb.org/~esr/writings/homesteading/homesteading/.

Raymond, E. S. (2000). The Cathedral and the Bazaar, Retrieved 19 September 2004

from http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/index.html.

Reeves Saunday, P. (1979). "The Ethnographic Paradigm." Administrative Science

Quarterly December(4): 527-538.

Ricoeur, P. (1974). The Conflict of Interpretations: Essays in Hermeneutics.

Evanston, IL, Northwestern University Press.

Ricoeur, P. (1981). Hermeneutics and the Human Sciences. Cambridge, Cambridge

University Press.

Ricoeur, P. (1991). From Text to Action. Evanston, IL, Northwestern University

Press.

Ritzer, G. (1996). Sociological Theory. New York, McGraw-Hill.

Ritzer, G. (2000). The McDonaldization of Society. Thousand Oaks, CA, Pine Forge.

Roberts, L. M. (2005). "Changing Faces: Professional Image Construction in Diverse

Organizational Settings." Academy of Management Review 30(4): 685-711.

Robles, G. (2004). A Software Engineering Approach to Libre Software, Retrieved

20 April 2005 from http://www.opensourcejahrbuch.de/2004/pdfs/III-3-
Robles.pdf.

Robson, C. (1993). Real World Research. Oxford, Blackwell.

 220

Ronkko, K., O. Lindeberg and Y. Dittrich (2002). Are Software Engineering and
Ethnographic Discourses Incompatible? International Symposium on
Empirical Software Engineering (ISESE 2002), Nara, Japan.

Rorty, R. (1967). The Linguistic Turn. Chicago, The Chicago University Press.

Rovik, K. A. (2002). The Secrets of the Winners: Management Ideas that Flows. In:

K. Shalin-Andersson and L. Engwall (ed.). The Expansion of Management
Knowledge. Stanford, CA, Stanford University Press: 113-144.

Roy, W. G. (1997). Socializing Capital: The Rise of the Large Industrial Corporation

in America. Princeton, NJ, Princeton University Press.

Russo, N. and E. Stolterman (2000a). "Exploring the Assumptions Underlying

Information Systems Methodologies: Their impact on Past, Present and
Future ISM Research." Information Technology and People 13(4).

Russo, N. and E. Stolterman (2000b). Identifying Assumptions Underlying

Information Systems Methodologies. In: R. Hackney and D. Dunn (ed.).
Business Information Technology Management: Alternative and Adaptive
Futures. New York, Macmillan Publishing.

Sacks, H., E. Schegloff and G. Jefferson (1974). "A Simplest Systematics for the

Organization of Turn-taking for Conversations." Language 50(4): 696-735.

Sahlin-Andersson, K. and L. Engwall (2002a). Carriers, Flows, and Sources of

Management Knowledge. In: K. Shalin-Andersson and L. Engwall (ed.). The
Expansion of Management Knowledge. Stanford, Stanford University Press:
3-32.

Sahlin-Andersson, K. and L. Engwall, Eds. (2002b). The Expansion of Management

Knowledge: Carriers, Flows, and Sources. Stanford, CA, Stanford University
Press.

Sauer, C. and C. Cuthbertson (2003). The State of IT Project Management in the UK

2002-2003. Oxford, University of Oxford.

Scott, R. W. (2003). "Institutional Carriers: Reviewing Modes of Transporting Ideas

Over Time and Space and considering Consequences." Industrial and
Corporate Change 12(4): 879-894.

Scott, W. R. (2001). Institutions and Organizations. Thousand Oaks, CA, Sage.

Selby, R. W. (2005). "Enabling Reuse-Based Software Development of Large-Scale

Systems." IEEE Transactions on Software Engineering 31(6).

Senge, P. (1990). The Fifth Discipline: The Art and Practice of the Learning

Organization. New York, Doubleday.

 221

Serour, M. K. and B. Henderson-Sellers (2002). The Role of Organizational Culture
on the Adoption and Diffusion of Software Engineering Process: An
Empirical Study. Proceedings of the IFIP WG8.6 Fifth International Working
Conference on the Adoption and Diffusion of IT in an Environment of
Critical Change. August 1-3 2002, Sydney, Australia, Pearson Publishing.

Sewell, G. (1998). "The Discipline of Teams: the Control of Team-based Industrial

Work Through Electronic and Peer Surveillance." Administrative Science
Quarterly 43: 397-428.

Silverman, D. (1998). "Qualitative Research: Meaning or Practices?" Information

Systems Journal 8: 3-20.

Simon, H. (1957). Models of Man. New York, Wiley.

Simon, H. and J. G. March (1958). Organizations. New York, John Wiley & Sons.

Smith, H. A. and J. D. McKenn (1996). "Object-Oriented Technology: Getting

Beyond the Hype." The Data Base for Advances in Information Systems
27(2): 20-29.

Stolterman, E. (1991). "How System Designers Think About Design and Methods."

Scandinavian Journal of Information Systems 3: 137-150.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human/Machine

Communication. Cambridge, Cambridge University Press.

Swan, J. and S. Newell (2000). Linking Knowledge and Innovation. Proceedings of

the European Conference on Information Systems, Vienna.

Swanson, B. E. and N. C. Ramiller (1997). "The Organizing Vision in Information

Systems Innovation." Organization Science 18(5): 458-474.

Swanson, K., D. McComb, J. Smith and D. McCubbrey (1991). "The Application

Software Factory: Applying Total Quality Techniques to Systems
Development." MIS Quarterly December: 567-579.

Szulanski, G. (1996). "Exploring Internal Stickiness: Impediments to the Transfer of

Best Practice within the Firm." Strategic Management Journal 17(Winter):
27-43.

Szulanski, G. (2000). "The Process of Knowledge Transfer: A Diachronic Analysis

of Stickiness." Organizational Behavior and Human Decision Processes
82(1): 9-27.

The Standish Group (1994). The CHAOS Report. Boston, MA.

Thompson, J. B. (1990). Ideology and Modern Culture: Critical Social Theory in the

Era of Mass Communication. Stanford, CA, Stanford University Press.

 222

Thompson, J. B. (1991). Editor's Introduction. In: J. B. Thompson (ed.). Language
and Symbolic Power. Cambridge, Blackwell: 1-31.

Truex, D., R. Baskerville and J. Travis (2000). "Amethodical Systems Development:

The Deferrred Meaning of Systems Development Method." Accounting
Management and Information Technologies 10: 53-79.

Tushman, M. L. and D. Nadler (1986). "Organizing for Innovation." California

Management Review 28(Spring): 74-92.

Van de Ven, A. H. (1986). "Central Problem in the Management of Innovation."

Management Science 32: 590-607.

Van Maanen, J. (1979). "The Fact of Fiction in Organization Ethnography."

Administrative Science Quarterly 24(4): 539-550.

Van Maanen, J. (1988). Tales of the Field: On Writing Ethnography. Chicago,

University of Chicago Press.

Walsham, G. (1993). Interpreting Information Systems in Organizations. Chichester,

Wiley.

Walsham, G. (1995). "The Emergence of Interpretivism in IS Research." Information

Systems Research 6(4): 376-394.

Wasserman, A. I. (1996). "Toward a Discipline of Software Engineering." IEEE

Software(November): 23-31.

Wastell, D. (1996). "The Fetish of Technique: Methodology as a Social Defence."

Information Systems Journal 6(1): 25-40.

Weber, M. (1968). Economy and Society. New York, Bedminster Press.

Whetten, D. A. (1989). "What Constitute a Theoretical Contribution?" Academy of

Management Review 14(4): 490-495.

Wittgenstein, L. (1953). Philosophical Investigations. Oxford, Blackwell.

Wynekoop, J. and B. Russo (1997). "Studying Information Systems Development

Methodologies." Information Systems Journal 7(1): 47-65.

Yin, R. (1984). Case Study Research: Design and Methods. Berverly Hills, CA,

Sage.

Yin, R. K. (1981). "The Case Study Crisis: Some Answers." Administrative Science

Quarterly 26(1): 58-65.

Yourdon, E. and L. Constantine (1979). Structured Design. Englewood Cliffs, N.J.,

Prentice Hall.

 223

Zucker, L. (1987). "Institutional Theories of Organization." Annual Review of
Sociology 13: 443-464.

