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ERRATA

Page 1, line 11 should read "considerable" instead of
"considerably".

Page 2, line 6 should read "intrinsic" instead of "intrisic".
Page 11, line 20 should read "stationarity" instead of

"stationary".
Page 12, line 3 should read "Judge" instead of "Jugde".
Page 13, line 21 should read "is the use" instead of "is to use". 
Page 14, line 16 should read "make use of" instead of "emploit" and 

in line 19 should read "have been" instead of "has been".
Page 20, line 13 should read "Ft(x ) by F(x)" instead of "F(x) for

Ft (x )".

Page 26, the last term of expression (1.6) should be multiplied by 
T
£ h(yj )K( (x0-xj )/a).
J=1

Page 28, equation (1.7) should be the expression:

T
S h(yi)WT,i(x). 
i=l

Page 29, the equation of definition 2.1.4 should be 
T~ 1 myT(x)= £ yiWT,i(x). 
i=l

Page 30, line 5 should read "depends on" instead of "is conditional
to".

Page 37, line 4 should read "principle" instead of "principal".
Page 40, in equation (3.4), by " Var[P0,n~Pi,n]" we—mean "total 

variation of the difference between P0,n and Pifn"•



Page 41, the second integral sign in line 7 and 9 should be

Page 60, line 12 should read "behaviour of the estimator of 0" 
instead of "behaviour of 0".

Page 61, in the second line of lemma 3.3.1 should read ■V T|0t-0|"

Page 62, the integrals in definition 3.3.2 are evaluated in the set

At-
Pages 65, 66 and 67, 0 and 0 should be removed wherever theyT

appear, and therefore the two paragraphs which follow equation (5.7) in
page 67 should be omitted.

Page 68, in definition 3.5.3 should read "S " instead of "S ",ur up
and in line 8 should read "extent" instead of "extend".

Page 72, line 6 should read "a=0(T )" instead of "a=0(T )".
Page 84, the second line of (A.11) should read:

is the information set up to time t-1, and line 4 " ii) lim

removed.

"^Mal J|K(r)(v)|adv" instead of "^Ma(1 a) raJ|K(r)(v)| dv".

Page 109, line 2 should read "i) plim ZEv^|^t 1s=a'2" w^ere 0,

Page 110, the second inequality of (B. 3) should read "^/^supt

Page 116, the L.H.S. of the last equation should read

E[—
30

II

Page 143, line 12 should read "that is" instead of "that it".
Page 149, the R.H.S. of equation (2.7) should be multiplied by 

.2 -2<Tj. and should be added to the R.H.S. of equation (2.8).



ABSTRACT

This thesis proposes and justifies parameter estimates in two 
semiparametric models for economic time series. In both models the 
parametric component consists of a linear regression model. The 
nonparametric aspect consists of relevant features of the 
distribution function of the disturbances. In the first model the 
disturbances follow a possibly non-linear autoregressive model, with 
autoregression function of unknown form. In the second model the 
disturbances are both linearly serially correlated and 
heteroscedastic, the serial correlation and heteroscedasticity being 
of unknown form. For both models estimates of the regression 
coefficients of generalized least squares type are proposed, and 
shown to have the same limiting distribution as estimates based on 
correct parameterization of the relevant features of the 
disturbances. Monte-Carlo simulation evidence of the finite sample 
performance of both estimates is reported.
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CHAPTER 1 

INTRODUCTION

This thesis is concerned with precise estimation of time series 
linear regression models in two semiparametric settings. Throughout 
it is assumed that we observe a scalar yt and a k-dimensional column 
vector xt at time points t-l,2,...,T. These variables are connected 
by a regression model of the form:

(1.1) yt“0'xt+ut t-1,2,...

where ut is an unobservable disturbance term such that

(1.2) E[utixs; s-l,2,...]-0 a.s. for all t

and where jS' is the transpose of a kxl column vector 0 whose 

estimation is of interest.

The linear regression model is of considerably theoretical and 
practical interest in statistics and econometrics. With a view to 
econometric applications to time series data our specification is of 
somewhat limited use because it precludes the possibility of lagged
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dependent variables Yt-j i-n xt- vi-ew °f the interest in 
non-linear regression models the linearity of the specification (1.1) 
is also restrictive. Moreover the scalar character of yt and lack of 
allowance for any simultaneity equation structures limits the 
economic relevance of the model. However, we have chosen the model
(1.1) not merely because of its intrisic interest, but because the 
methodology and theory that we develop is complicated and as the 
simplest interesting case (1.1) is convenient for expository 
purposes. It seems that our results should extend fairly 
straightforwardly to non-linear regression, multivariate regressions, 
and non-dynamic linear simultaneous equation systems. Some 
extensions to linear or non-linear regression models containing 
lagged dependent variables should also be possible.

Our description so far of the model (1.1) only partly specifies 
the data-generating mechanism. On asymptotic efficiency grounds, we 
seek estimates of /3 within the class of generalized least squares 
(G.L.S.) estimates. This requires something to be said about the 
variances and autocovariances of ut. We assume that they are not 

generated by a finite-parameter model, but by a nonparametric one.
Two different such models are studied in this thesis, each of which 
manifests some behaviour not covered by the literature on regression 
estimation to data, and entails substantially different methodology 
and theory.
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1.1.- NON-LINEAR AUTOREGRESSION MODEL

The first model for ut is the possibly non-linear first order 
autoregression (AR(1))

(1.3) t-1,2,---

The function p is of unknown form and is such that ut is at least 
stationary, with independent and identically distributed (i.i.d.) 
zero mean and finite variance innovations et. We also assume that 
the process {ut} has zero mean and is independent of the sequence 
{xt}, thereby satisfying (1.2). There has been a good deal of 
interest in non-linear time series models in recent years, such as 
non-linear moving averages (Robinson, 1977), bilinear models (Granger 
and Andersen, 1978), and several forms of non-linear autoregression 
functions as (e.g. Jones, 1978, Haggan and Ozaki, 1980, Tong and Lim, 
1980). The model (1.3) is of the latter type, but unlike these 
authors we specify no functional form for p, since this form is 
likely to be hard to identify in view of the many possibilities once 
linearity is abandoned.

If ut is non-Gaussian, but has finite second moments and satisfies 
suitable regularity conditions, linear modelling is sufficient for 

the calculation of the G.L.S. estimates, since this only involves 
second moments of û . On the other hand it is not generally the case 
that the autocovariances of ut implied by (1.3) even for a given 
non-linear p can be obtained, and they will certainly not have the 
same structure of the autocovariances generated by a linear AR(1) 
process. Therefore, there is some interest in employing the
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non-linear model (1.3) in forming estimates of G.L.S. type. Whereas 
G.L.S. estimates based on linear time series models tend to have the 
same asymptotic efficiency as full Gaussian maximum likelihood (M.L.) 
estimates, this does not seem to be true for our estimates based on a 
non-linear model, and we have not been able to show that our 
estimates necessarily improve over linear-in-y estimates. However, 
we present some favourable Monte-Carlo evidence of finite-sample 
performance of our estimate. In addition to asymptotic distribution 
theory the model (1.3) seems a natural starting point for the 
introduction of nonlinear disturbance structures, in view of the 
historical importance of the linear AR(1) in regression estimation.
It seems relatively straightforward to extend our work to non-linear 
AR(P) models

ut-p(u t-, ut_p)+et,

for some given finite P, when p is assumed of unknown form.
Extension of our methodology to other non-Markovian or non-linear 
models seems less feasible because a finite AR transformation cannot 
be used. Another possibility that we do not employ is that ut is 
generated by a linear model with unknown distribution function for 
the innovations, when G.L.S. estimates can certainly be improved upon.

When the function p is known, a G.L.S.-type estimate of 0 would be 

T
(1-4) (8- arg min J (yt-b'xt-p(yt-1-b,xt_1))

b t-2

minimizing over some set of admissible values for 0. Because we 
assume that the functional form of p is unknown, it is appropriate to 
insert smoothed nonparametric estimates of p in (1.4), defining
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another estimate 0. Under regularity conditions 0 is just as 
efficient asymptotically as 0 that is based on a known p. We can 
thus say that 0 "adapts" for the unknown 0 learning from the data.
In fact the estimate that we study is not the extremum estimate 0, 
but an estimate 0 given by one step Gauss-Newton type algorithm 
towards 0 commencing from the ordinary least squares (O.L.S.) 
estimate of 0. However 0 has the same asymptotic efficiency as 0 and 

0.

The combination of the parametric regression model (1.1) and the 
nonparametric model (1.3) for the disturbances can be called a 
"semiparametric" model. Correspondingly, an estimate of 0 that uses 
nonparametric estimation of the nuisance function p is termed a 
"semiparametric" estimate.

1.2.- LINEAR HETEROSCEDASTICITY MODEL

The second model for ut in (1.1) is of the form

(2.1) ut-a(xt)vt

00 00

(2.2) V t- 2 ajet-j » 5; I0(j icoa.
j - o  j - o

Here et is again a sequence of i.i.d. zero mean and finite variance 
random variables. They are assumed independent of the sequence (xt), 
therefore so are the vt, although the ut are not independent of the 
xt, the condition (1.2) is again satisfied. Neither the aj in (2.2)
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nor the function a in (2.1) are assumed to be known functions of 
parameters. Thus the model (2.1) and (2.2) for ut can be termed 
nonparametric, and the combination of (1.1), (2.1) and (2.2) is again 
a semiparametric model.

The model (2.1), (2.2), where the ut are both serially correlated 
and heteroscedastic conditional on {xt}, combines two familiar 
non-standard features of disturbance behaviour. Even for the case 
that the aj and a are both parametrically modelled or when only one 
of them is, the literature contains little discussion. Evidence of 
either or both serial correlation and heteroscedasticity in 
disturbances is frequently found in econometric data and it seems 
appropriate to consider allowing for both possibilities in estimating 
0. In general economic theory seems unlikely to lay down any 
parametric model for the aj or <r, and the presence of both features 
is likely to make the identification of the parametric model 
especially difficult. Thus, there seems to be grounds for treating 
the aj and a as nonparametric functions, especially if they are only 
"nuisance" functions and not of intrinsic interest.

Our specification of vt implies that they are covariance 
stationary, so that the autocovariance matrix of the vector 
v^(vt, . . . ,v«jO ' is of the Toeplitz form r-(7i_j) , where

00

7i~E(vtvt+i>“ I a1a1+ij-0

and where the variance of ct is equal to 1 with no loss of 
generality. The covariance matrix of (u,,...,^)' is

fi-ofVr
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where

cr-diagfô x,) a(xT)}.

Given knowledge of the aj and <r2, and thus of T and <r, we could form 
the G.L.S. estimate

- i  - i  - i

(2.3) jS-CX’fi X) X’fl Y 

where

X-(xt , . . . ,xT) ' and Y-(y, yT) ' .

Given only a finite parameterization of r and a we could insert 
estimates of the unknown nuisance parameters in (2.3) and obtain an 
estimate of 0t denoted by 0, with the same asymptotic efficiency as 
0. We shall achieve the same asymptotic efficiency as 0 and 0 by an 
estimate 0 that employs nonparametric estimation of T and a. In fact 
we do not estimate the aj or directly, but instead we adopt a 
frequently domain approach, entailing nonparametric estimation of the 
spectral density function of vt. Again, we may term our estimate 
"semiparametric".

It must be stressed that (2.1) and (2.2) are only one way of 
describing serial correlation and heteroscedasticity. Other models 
are possible, for example, ut might be modelled by a linear process 
where the innovations ct have variance depending on xt. Mention must 
also be made of the ARCH models that describe conditional 
heteroscedasticity and serial dependence.
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1.3.- PARAMETRIC ESTIMATES OF B

In order to place our work in some perspective it is appropriate 
to review the literature on the estimation of /3 in the cases of 
purely parametric modelling of the autocovariance structures of the

uf

By far the most popular method of estimating 0 has been O.L.S.. 
This is in part due to its computational simplicity and in part due 
to its good statistical properties under suitable conditions. When 
the ut are uncorrelated and homoscedastic, and X has full rank,
O.L.S. is the best linear unbiased (BLU) estimate of /3, attaining the 
Gauss-Markov bound. Moreover, when ut is also normally distributed, 
O.L.S. is also normally distributed, which is a convenient property 
for hypothesis testing and interval estimation. When ut is not 
assumed normal there is a need to develop asymptotic theory in order 
to allow approximate inferences. It is known under suitable 
conditions that O.L.S. is asymptotically efficient relative to all 
linear unbiased estimates of /3, when the ut are, say, i.i.d. and 
homoscedastic. Eicker (1963,1967) established asymptotic normality 
of O.L.S. under such circumstances, and proposed methods of 
consistently estimating the covariance matrix of the limiting 
distribution, and thus to be able to obtain approximately valid 
statistical inferences. This work has been developed in the more 
recent econometric literature by Domowitz and White (1982), White and 
Domowitz (1984), Newey and West (1987). Moreover, Grenander (1954) 

showed that O.L.S. is even asymptotically efficient in the presence 
of serially correlated ut when the xt are of certain type,
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polynomials and certain trigonometric functions of time.

In general, however, O.L.S. will not be asymptotically efficient 
when the ut are serially correlated or heteroscedastic. There is 
evidence that O.L.S. can be very inefficient, see for instance Watson 
(1955) or Watson and Hannan (1956) with respect to G.L.S.. Moreover, 
though O.L.S. can be used in statistical inference with a covariance 
matrix estimate, the resulting inferences will not be asymptotically 
efficient. In general one needs to correct for the serial 
correlation and/or heteroscedasticity in order to obtain efficient 
point estimates and inferences.

1.3.1.- Weighted Least Squares

The estimation of 0 in the case of heteroscedasticity of known 
form is known as weighted least squares. It can be based on a 
two-step algorithm which can be iterated, although the asymptotic 
properties of the estimate of 0 are not altered. In the first step, 
the heteroscedasticity function a(xt) is estimated by least squares 
regression of a certain transformation of the residuals obtained by 
yt-0'xt, where 0 is an estimate of 0, for example the O.L.S. 
residuals, on a transformation of the function <r(xt) , see Judge et 
al. (1985). In the second step, a weighted least squares estimate of 
/3 is obtained, where the weights are the inverse of the estimated 
heteroscedasticity function. It is worth pointing out that although 
the least squares estimates of the parameters that the 
heteroscedasticity depends on are not the most efficient one, as far 
as the 0 estimates is not relevant, see for instance Theil (1971),
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Judge et al. (1985), Amemiya (1973a) or Harvey (1976) among others.

1.3.2.- Parametric Estimation with Serial Correlation

In the estimation of 0 when the residuals are autocorrelated, we 
will distinguish two cases. The first one is the pure autoregressive 
(AR) process and the second one is the autoregressive moving average 
(ARMA) process, since the inclusion of the MA factor induces certain 
difficulties or characteristics in the estimation procedure, which do 
not appear in the pure AR case.

In both cases if the variance-covariance matrix T of the residuals 
were known then we can apply G.L.S., i.e. equation (2.3) where a is 
the identity matrix, obtaining the BLU estimate. Generally, the 
covariance matrix is unknown and therefore it has to be estimated.

1.3.2.1.- Estimation under AR(P> Errors

Three specifications are the most common. The first one is known
as the feasible G.L.S. (F.G.L.S.) estimate. Using the transformation
matrix Q, see Fuller (1976, p.423) for a general expression of Q, of
the covariance matrix, such that QrQ'-I, we can use a two step
algorithm. In the first step, an estimate of the AR parameters is
obtained and used in place of the true ones in Q, giving Q. In the

• •second step, the 0 estimate is obtained by regressing QY on QX. If
In this step the first P rows are omitted, we obtain the

Cochrane-Orcutt (1949) algorithm. Several procedures have been
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suggested for the estimates of the AR parameters. Among them are the 
least squares estimate (L.S.E.) of the residuals upon its P-period 
past values or Durbin's (1960) procedure.

The second specification is non-linear least squares (NLS). This 
procedure estimates both 0 and the AR parameters that minimize 

(Y-X/3)’Q'Q(Y-X/3) . In this case the estimator of 0 will still be of 
the same form as in the previous precedure, but the estimator of the 
AR parameters need no correspond to the Durbin or L.S.E. ones.

The third specification is M.L. assuming normality. In a series 
of papers Beach and MacKinnon (1978a,b) give an algorithm to estimate 
the /S’s and autoregressive parameter(s) . Although the estimate for /3 
is of the same type as the F.G.L.S., the estimate of the 
autoregressive parameters is different than for the above two 
specifications. For the linear AR(1) model, the M.L. estimate of the 
autoregressive parameter is obtained by solving a third order 
equation. They claim that this algorithm is not more expensive 
computationally than methods based on Cochrane-Orcutt and proved that 
it is more efficient in small samples. For the linear AR(2), Beach 
and MacKinnon (1978b) proposed a M.L. estimate which incorporates the 
stationary restriction, as in the AR(1) model, and the technique used 
is the fixed point or simplicial search algorithm. They also 
indicate that the algorithm can be extended to higher order 
autoregressive models. In the AR(2) model Fair (1973) discarded the 
first two observations in the specification of the likelihood 
function, and then it follows a direct generalization of the 
Cochrane-Orcutt procedure. It is worth noting that all the above 
methods give the same asymptotic efficiency for the estimate of 0.
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1.3.2.2.- Estimation under ARMA Errors

Due to the impossibility to obtain the Q transform, except for the 
MA(1) and ARMA(1,1) cases, see Jugde et al. and Tiao and Ali (1971) 
respectively, to obtain a two-step F.G.L.S estimate is not possible 
and therefore we will concentrate on M.L. and non-linear least 
squares estimates. However, Amemiya (1973b) obtains an 
asymptotically efficient estimate of the 0 parameters where the 
autocovariances are estimated from the L.S. regression of the 
calculated residuals upon its N-period past values, where N depends 
on the number of observations T. Also Harvey and Phillips (1979) 
give an algorithm to get the G.L.S. estimate of 0 by using the Kalman 
Filter algorithm and also, they give indications to obtain the exact 
M.L. estimate of 0 by the Kalman filter.

Pierce (1971) shows that there is no difference between M.L. and 
the various versions of NLS, which differ in the treatment of the 
presample observations, where two methods are the usual ones. The 
first one treats the presample observations as equal to zero, and the 
second one uses the backforcasting procedure to treat the presample 
observations, see Box and Jenkins (1976) for this method.

1.4.- SEMIPARAMETRIC G.L.S. ESTIMATE OF 6

If in estimating 0 parametrically, we use a misspecified model for
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the autocovariance and conditional heteroscedasticity of ut, then the 
estimate will still often be consistent and asymptotically normal. 
However, it will generally not be efficient, indeed there is evidence 
(Engle, 1974) that we can do even worse than using O.L.S. These 
circumstances motivate an estimate of 0 where the autocovariances 
and/or heteroscedasticity of ut are estimated via nonparametrie 
methods.

A variety of such semiparametric estimates of 0 have been 
proposed. Our discussion of these, and of the alternative 
semiparametric estimates which are in the next section is in part 
adapted from the survey article of Robinson (1988b)

Assuming that ut is stationary and independent of all the xt,
Hannan (1963) proposed an estimate of 0 that has the same asymptotic 
efficiency as the best linear unbiased estimate, without employing a 
parametric model for the autocovariances of ut. Using the fact that 
the Fourier transformation of the Toeplitz matrix of autocovariances 
approximately produces a diagonal matrix with diagonal elements equal 
to the ut’s spectral density, Hannan estimated a Fourier transformed 
version of (1.1) using weighted least squares, where the weights are 
the reciprocals of nonparametric spectral estimates. In a different 

fashion from Hannan's original version is to use of periodograms of 
Iyx and Ix instead of spectral weighting as in Hannan (1971),
Robinson (1972), Hannan and Robinson (1973) or Hannan and Terrell
(1973) among others.

More recently, a similar solution to the conceptually simple 

problem is when the ut's are independent but conditionally
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heteroscedastlc with heteroscedasticity function of unknown form. 
Assuming the model ut-a(xt)vt, where a is of unknown form and the vt 
are i.i.d. with zero mean and independent of all the xt ( i.e. a 
special case of (2.1), (2.2)), Carroll (1982) estimated the or2(xt) by 
nonparametric regression and established asymptotic efficiency of a 
weighted G.L.S. estimate of /3. Robinson (1987a) considerably relaxed 
Carroll's conditions in several respects. One of these has bearing 
on efficiency. Robinson assumed that the relation between xt and ut 
was generated only by the conditional moment restriction

(4.1) E[ut|xt}-0, V[ut:|xt}-<r2(xt)

rather than independence of xt and ut. Under (4.1) Robinson's G.L.S. 
estimate is the most efficient possible one in the presence of an 
unknown a2, achieving the semiparametric efficiency bound defined and 
obtained by Begun et al. (1983), Chamberlain (1987) and others.
Under Carroll's conditions, however, a better estimate than G.L.S. 
exists, because G.L.S. does not omploib his independence assumption. 
This has implications also for other estimates. Some extensions of 
semiparametric G.L.S. estimates to ARCH regression models, when the

! V . ■'
ARCH structure is nonparametric has been considered by Robinson 
(1987c), and applied empirically by Whistler (1988). Delgado (1989) 
has extended Robinson's work to non-linear regressions. Our 
treatment of (1.1), (1.3) is in a similar spirit to that of the above 
authors, except that our unknown function is the AR function p, 
rather than the heteroscedasticity function a2.

Some semiparametric work that allows for both serial correlation 
and heteroscedasticity simultaneously has been carried out. Harvey 
and Robinson (1988) assumed the model
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P
ut“^tvt. vt" IJ-l

where p is given and is an unknown function of t. Thus this model 
for the ut's autocovariances is itself semiparametric rather than 
nonparametric, since it imposes a parametric time series model on vt, 
unlike our model (2.2). Moreover, this specification that assumes 
that the variances a2 depend on t and not on xt is a more restrictive 
specification than our (2.1). By estimating 0 under the 
semiparametric model (2.1), (2.2), we extend the work of Hannan 
(1963), Carroll (1982) and Robinson (1987a).

1.5.- MORE EFFICIENT SEMIPARAMETRIC ESTIMATES OF B

To place our work in full perspective it is worth discussing some 
literature that suggests that even more efficient estimates of 0 can 
be obtained than ours.

If the joint distribution of the ut in (1.1) is of known 
parametric form, then at least in principle M.L. estimates of 0 can 
be obtained, and shown to be asymptotically efficient among the class 
of all regular estimates, achieving the asymptotic Cramer-Rao bound. 
Some versions of Huber's (1980) M-estimates have this property.

When the parametric form of the ut's distribution is misspecified, 
then estimates of 0 will not only be inefficient but they may even be



-16-

inconsistent. Following earlier work of Stone (1975) for a simple 
location model, Bickel (1982) considered a semiparametric estimation 
of 0 in (1.1), assuming that the disturbances ut are i.i.d. with 
unknown distribution function. By employing nonparametric estimation 
of the probability density function of ut, Bickel obtained estimates 
of 0 that he showed to be asymptotically as efficient under suitable 
conditions as ones based on a correct parametric distribution 
function for the ut disturbances.

This work has been extended by a variety of authors, such as 
Manski (1984) and Kreiss (1987), who considered semiparametric 
estimation of non-linear regression models and semiparametric 
estimation of the coefficients of a parametric linear time series 
model in the presence of innovations whose distribution is of unknown 
form respectively. In this thesis we have not attempted to adapt for 
the full distribution of the ut, but only to certain features 
relevant to G.L.S. estimation, so our efficiency goal is less 
ambitious. The possibility of extending our work by adapting more 
fully to the ut distribution remains a challenging open question.

1.6.- PLAN OF THE THESIS

Our estimates require introducing a good deal of machinary on 
nonparametric estimation, consisting of nonparametric regression, 

probability density estimation and spectral density estimation. This 
is described in Chapter 2. In Chapter 2 it is also convenient to
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introduce the type of time series that will be used in deriving the 
limiting distributions of our estimates. Chapters 3 and 5 describe 
the methodology of semiparametric estimation of 0 under models (1.3) 
and (2.1), (2.2) respectively. Both estimates are shown to be 
asymptotically normal and consistent estimates of the limiting 
covariance matrix are presented. The proofs of these asymptotic 
results are in appendices. Chapters 4 and 6 describe Monte-Carlo 
evidence of the finite sample behaviour of our estimates.
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CHAPTER 2

SOME NONPARAMETRIC METHODOLOGIES AND THE CONCEPT OF MIXING CONDITION

In this chapter we will discuss some general background about the 
methodologies that we will use throughout chapters 3 and 5, as well 
as the mixing conditions of weak dependence in time series which will 
play a fundamental role in this thesis. The methodologies to be used 
are kernel regression and spectral estimation. It is convenient also 
to specify alternative methodologies to the kernel regression 
estimators and describe why we will not proceed with such 
alternatives. The plan for this chapter is as follows: in section 1 
we will introduce the kernel regression estimator and one of its 
competitors, in section 2 we will introduce the kernel spectral 
methodology in time series regression models; finally, in section 3 
we will discuss the mixing conditions of weak dependence of a 
stationary stochastic process.
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2.1.- THE KERNEL AND NEAREST NEIGHBOUR REGRESSION ESTIMATORS

Both these methodologies are known In the statistical literature 
as nonparametric estimators. But, what do we understand by 
nonparametric regression estimation? We will answer this question by 
means of an example. A practitioner has observations

(yi*xi)i— i T from a population (Y,X) . He may know certain
conditional moments up to a set of parameters /3, i.e. E[Y|X]-p(X,/3) , 
and thus, based on the available data he will estimate the parameters 

0.

Another possibility arises when the practitioner is not able to 
parameterize the function p. In this situation, he may still use 
statistics, based on the available sample, to estimate the unknown 
function p(*) of a certain point xQ. These statistics are known as 
nonparametric estimators, their targets being not parameters but 
infinite dimensional-functions.

2.1.1.- Kernel Regression Estimation

Before introducing the kernel regression estimator, one has to 
point out that although this thesis is dealing with time series data, 
it is better to introduce it in the independent and identically 
distributed (i.i.d.) context, since it may then be easier to get the 
basic idea behind the estimator.

Because the kernel regression estimator is based on the kernel
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probability density estimator, we will introduce the latter first.
Let xt xj be a random sample from a population with probability
density function f(x). Let us suppose that we are interested in the 
estimation of f(x) at the point xQ. We know that a natural estimator 
of the distribution function F(x) at x-xQ is its sample analogue 
Ft(x0) defined by:

Ft (Xq)- ^ (n° of observations in the sample < xQ).

If we pay a little attention to the mathematical definition of the 
probability density function in the point x0, i.e. f(xQ), this value 
can be approximated by the equation:

. F(xn+a)-F(xn-a) f(x0)« -i— Q— ga v Q— -

for an a sufficiently small and hence, a natural estimator of f(xQ) 
turns out to be the above equation by substituting F(x) for F-p(x) , 
i.e.:

Let us now consider a function K defined by:

K(y)'
r *
o

if tyI<1 

if lyI>1

which turns out to be the uniform function in the interval [-1,1], 
It is obvious that the estimator f-p(x0) can be rewritten as:

(1.1) I •
J - l
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Consequently, if instead of having chosen the uniform distribution 
for the K function we would have chosen any other function, with the 
requirement that it integrates 1, we would get what it is known as 
the kernel estimator of the probability density function in the point 
x0. We may think of the function K as a weighted function of the xj 
data. In other words, consider a ball with centre xQ and radius a; 
then the importance that we give to the xj observation in the 
estimation of f (xD) is measured by the quantity Kj , where Kj is equal 
to:

Thus, when we use the uniform distribution function as the K function 
we give the same importance to all observations made inside the ball 
of radius a around the point x0.

The initiative to estimate a probability density function in this 
way was first shown by Parzen (1962). It is to be noted that we do 
not assume the function K to be non-negative for reasons that will 
become clear in the next chapter, but, on the other hand, we need 
that this function to be highly concentrated around the origin, since 
more relevance is given to those observations which are closer to xQ.

This nonparametric method involves the feature of a "bandwidth" or 
"smoothing" parameter a, which is positive, selected by the 
practitioner and regarded as converging to 0 (not too slow or too 
fast) as T (the number of observations) approaches infinity. In 
fact, any choice of a in finite samples implies a trade-off between 
bias and variance, and this parameter a can be seen as a measure of
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the degree of smoothing of the kernel estimator in such a way that 
the larger a becomes the larger the degree of smoothing.

In the p-dimensional case, the natural generalization of the 
estimator given by the equation (1.1) is

T
(12) I KtO'c-M)'*” ’ ]

j-i

where |a| stands for the determinant of the p-dimensional a matrix, 
that goes to 0 as T approaches to infinity. A special case arises 
when the a matrix is diagonal and K(u) is the product of p univariate 
functions; then the K function is the product of p-univariates lO-'s, 
such that

K(u'a-i)- n Kigi] 
i-1 laiJ

obtaining the estimator, for the case a^-a Vi-1,...,p,

(1-3)
Ta j-1 1“L 

Definition 2.1.1

Given a sample x, ,x2, . .. jX-p from a p-dimensional population X, we 
will define the kernel density estimator of f(x) by (1.3).

It is worthwhile noting that there does not exist any unbiased 
estimator of the probability density function f(x) (see Rosenblatt,
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1961).

Following this discussion a natural question which might arise is: 
given a random sample (y, ,x1 (ŷ .x̂ ) from a, say, bivariate 
population with probability density function f(y,x), and assuming the 
existence of the conditional expectation of y on x, which is:

R is the real line and fy|X(y,x) *-s t*ie conditional distribution 
function of Y on X, is there any way to estimate the regression 
function y(x)?

The answer to this question was first shown by Watson (1964) and 
Nadaraya (1964) who independently proposed an estimator based on 
kernel functions and whose motivation is explained in the next 
paragraph.

We have seen that the probability density function was estimated 
by the equation (1.2). This leads us to think that a sensible 
candidate for an estimator of y(x) is given by one in which we 
substitute the estimators of the probability density functions 
f(y,x) and g(x) in the regression equation y(x), as given by 
definition 2.1.1. Therefore the estimator of y(x) will be given by:

y(x>-fR y fyix(yix)dy

■JRy f(X>y)/g(x)dy = where g(x)-f f(x,y)dy,J R
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T
•a ( J ? ,,

J - i

j-1

after we Integrate the R.H.S. of the first equation by parts, and 
where:

m(x)-|RyK(x,y)dy

and

J(x)-[RK(x,y)dy.

If, in addition, it is assumed that K(x,y)-J(x)L(y) and L(y) is a 
symmetric function, then the estimator of the regression function 
y(x) will become:

j-l

since m(x) will be equal to zero.

The term (1.4) is the kernel regression estimator which was 
proposed by Watson (1964) and Nadaraya (1964) and which may be 
generally considered as:
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Deflnttlon 2.1.2

Given a random sample (y,,Xj),...,(yp,xp) from a population (Y,X) 
of dimension (1+p) , we define the kernel regression estimator of the 
conditional expectation of h(y) given x~xQ, i.e. E[h(y) lx-xQ ], by:

T

where the K function is defined as in (1.3).

Frequently, the investigator is concerned with the estimation of 
functionals which involve derivatives of unknown functions, such as 
the score function or the information matrix of a density function, 
or the derivative of a regression function, whenever there exist.
For example, in the model which we will present in the next chapter, 
the estimation procedure of the parametric part of the model involves 
the derivative of a regression function. If the functional form of 
the regression function is unknown, so is the derivative, and 
therefore this derivative has to be estimated via nonparametric 
methods.

It seems that a sensible estimator of the derivative of an unknown 
function in view of the definition 2.1.2 is given by:

Definition 2.1.3

Given a random sample (y, ,x1),..., (yp,x-p) from a population (Y,X) 
of dimension (1+p), the derivative kernel regression estimator of 

9/8xDE[h(y)ix-x0] is:
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a.6) P*?1]/ j Kpĉ i] “ *JtK ̂ ^/(J Kpi>3i])
j - i  j - i

where K' is the derivative of the function K.

From this definition it is obvious that the kernel function K has 
to be differentiable.

Before finishing this subsection it is useful to realize that the 
implementation of the estimators involves two different aspects. 
Firstly, the choice of the kernel function K, and secondly, the 
bandwidth parameter a. Several K functions have been proposed in the 
literature. Some popular ones are:

a) Ke 3/4 (l-l/5t2)/Jl 111<'̂5.

b) Gaussian l/,/2x exP(~it2) tcR.

• i It|<1
c) Rectangular -

. 0 otherwise.

Epanechnikov (1969) showed that Ke is the kernel function which 
minimizes (asymptotically) the function

J^>E{f(x)-f(x)},dx

that is, the mean integrated square error (M.I.S.E.), where this 
value can be seen as a global measure of discrepancy between f(x) and 
its estimator f(x). It can be seen that the relative efficiency of 
the other kernels to the Epanechnikov (Ke) is very close to 1.
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Bearing in mind that this relative efficiency is an asymptotic 
result, it implies that the choice of the kernel function K will not 
have much importance on the basis of M.I.S.E.. Thus, it is perfectly 
legitimate, and also desirable, to choose the kernel function K based 
on other considerations such as differentiability or computational 
properties.

As far as the choice of the the bandwidth a is concerned, it is 
more crucial than the choice of the K function. While it may be 
possible to choose the bandwidth automatically based on some 
functional optimization, we are not going to proceed in this 
direction in choosing our a. In the simulations that we will report 
in chapters 4 and 6, we have decided to adopt the practice of doing 
the calculation over a grid of bandwidths by trial and error.

2.1.2.- Nearest Neighbour Estimation

The purpose of this section is to specify one of the most relevant 
alternative methodologies to the kernel regression one that has 
appeared in the nonparametric literature and to discuss its 
disadvantages with respect to the kernel methodology.

2.1.2.1.- Nearest Neighbour

The Nearest Neighbour(NN) methodology is, perhaps, the most 
important and exhaustively studied among the alternative 
methodologies to the kernel regression used in nonparametric
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estimation.

Let (X,Y) denote a random vector belonging to RPxR, and let

(xi*Yi)i-l T be a rand°m sample from such a population. An
alternative estimator to the kernel regression estimator given by 
definition 2.1.2 is:

T
(1.7) yT(x)- J h(yi)WT i(x) 

i-1

if E|h(Y)|<oo and where W^^(x) are weights following a probability 
function. The Wj j_(x) weights those values of i for which the 
corresponding X£ is close to x (in a metric defined below) more 
heavily than those values of i for which x̂  is further from x.

Because the explanatory variables x, in an econometric model, may 
not be measured in the same units, we divide each variable in the x 
vector by their sample standard deviation prior to applying the 
Euclidean metric, that is let sm be:

sm- (T-l)-'Ji[xim-(Jixim/T)]= for all l<m<p

and the metric is defined by the equation:

P
Pi" ̂  [xim-xm]2 ...

m-1

The question which arises is how to apply the NN estimator of the 
conditional expectation of h(y) on x?. Given x, the data (x̂ .ŷ ) 
l<i<T is rearranged according to the distances p£. Let us define:
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Pi“1+2 I(Pi<Pi)
j

and

qi-i+2 i(pi“pi) 
j

where the sums are from j-1 up to j-T, j*i, and I(.) is the usual 
indicator function. Let W^^(x) be defined by:

Pi+qi-1 
WT|i(x)-qii j wT,i<x> 

j“Pi

then the NN estimator of ŷ Cx) is defined as:

Definition 2.1.4

Given a random sample (x^y^),....-j* from a population (X,Y), we
define the NN estimator of y(x) by:

T
yT(x)- 2 h(yi>w*Tfi(x). 

i-1

When there are no ties, then W*^^(x) is equal to W^^Cx). One 
important subclass of NN estimators is the k-Nearest Neighbour (k-NN) 
which is such that W^j^x) is equal to zero if i>k. Some examples of 
k-NN weights are:

the uniform: l<i<k,

the triangular: £(x)«k-i+l l<i<k

and
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the quadratic: i(x)«(k2-(i-l) 2) l<i<k.

The objective of the triangular and quadratic k-NN estimators is 
to achieve greater smoothness in the k-NN estimator.

In fact, the NN estimator adapts the amount of smoothing to the 
"local" density of data. The degree of smoothing is conditional to 
the integer k, chosen to be considerably smaller than the sample 
size, although it goes to infinity as T approaches to infinity.

Once we have introduced the NN estimators, it is reasonable to 
discuss the reasons why we have not proceeded with this methodology, 
discussing its disadvantages with respect to the kernel regression 
estimator.

Most of the theory about the NN-estimators has been developed in 
an i.i.d. environment. There are some results on k-NN estimators 
under dependence, i.e. by Collomb (1985) and Yakowitz (1987), but 
nothing so far as we know which parallels the results of Stone (1977) 
for the independence case, which plays a fundamental role in all 
semiparametric estimation with the NN methodology. By contrast, all 
the theory available for kernel estimators in the i.i.d. case can be 
translated, under appropriate conditions, to the time series 
environment. Thus, because we are dealing with time series models, 
it is justifiable to use kernel regression estimation instead of NN.

Another drawback of the NN-estimator is that it is not 
differentiable. This is a serious problem since many semiparametric 

models involve the estimation of the derivatives of unknown
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conditional moments, as it is the case in the model of chapter 3.

2.2. KERNEL SPECTRAL ESTIMATOR

Before introducing the estimator of the coefficients of a time 
series regression model in the frequency domain, it will be 
convenient to give the definition of the kernel spectral estimator of 
the spectral density function of a stochastic process, and some of 
its asymptotic properties which will be used to prove the theorem of 
chapter 5.

2.2.1.- The Definition of the Spectral Density Function
and its Estimator

In this subsection, we are going to give the definition of the 
spectral density function, assuming that it exists, of a real 
stochastic process xt with autocovariance matrix function 

{7(t)}t-—oo, . fco> where the ij-th element is (t)-E(x£sXjt+s) .

Definition 2.2.1

Let {xt}t— oo, . . .  , o o  be a (kxl) vector of a real stochastic process
with autocovariance matrix function ... We will define
the spectral density function of the process xt as the (kxk) matrix 

<*>, which ij-th element is defined as:
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00
(2.1) fiJ(x)-L I 7i.j(t)eitX

2t t“—oo

The spectral density function and the autocovariance matrix 
function are two equivalent concepts, in the sense that, knowing one 
of them you can identify the other completely.

But, y(t) Is, of unknown parametric form, and so is fxx(X)• An 
obvious estimator of the spectral matrix density function, based on T 
observations, is the (kxk) matrix ’ w^ere element is:

f̂ ' j ^ Y  7 1>J<t>eltX2x -T+l

where y(t) , i.e. the sample autocovariance, is an estimator of y(t) , 
which ij-th element is defined as:

1 T“ 1t1
•yi,J(t) 2 Xisx1s+It| •T s-1

It can be shown that f ^  *-s not a consistent estimate of the 
spectral density function, and therefore it is not useful. But a 
slight modification is consistent.

Let us introduce a function K^f-l.l]— »R, where Kt is at least 
even and K^CO-l. Let also M be a nonnegative integer; the larger T 
is, the larger M should be. In spectral analysis the function K1 is 
called the lag-window and M the lag-number.
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Deflnitlon 2.2.2

Let «> oo be a (kxl) vector of a real stochastic
process. We define the kernel spectral density estimator of such a 
process, based on T observations, as:

M
(2.2) f—  (X)-l/2l I K,(VM)Y(t)eitx .

-M+l

The lag-number marks the cutoff-point of the sample 
autocovariance to be used in equation (2.2).

Several functions have appeared in the literature. Some of the 
most popular ones are:

(2.3) Truncated Kt(s)-
I s |<M

I s | >M,

(2.4) Barlett Kt(s)-
l-|s|/M |s|<M

I s | >M,

(2.5) Tukey-Hanning K1(s) ■
l-2a+2acos(TS/},() |s|<M

I s |>M

and

(2.6) Parzen K^s)-
1-6(|s |/M )2+6(|s |/M )3 |s i <M/2

2(1-|s|/m) M / 2 < I s |<M

0 is |>M.

Like in the kernel density function of section 2.1.1, the 
selection of the lag-window is not relevant, what it is more



-34-

important is the lag-number M that we choose.

In order to give some of the asymptotic properties of the kernel 
spectral density estimator, we have to introduce the concept of the 
characteristic exponent, which plays a fundamental role.

Definition 2.2.3

We define the characteristic exponent of K1 as the greatest 
integer r for which

u-»o

is finite.

Assuming that:

00
1) J Itî iyCt)|«», q<r, where r is the characteristic exponent 

t*—w

and

2) K, is a bounded function

then (see Parzen, 1957 or Hannan, 1970 pp. 280-283) the mean square 
error of f^(X) is 0(T_1M+M-2<I) .
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2.2.2.- The Generalized Least Squares Estimator In
The Frequency Domain

Let the following linear regression model be

yt-/3'xt+ut
(2.7) 6t i.i.d. with zero mean and variance 1.

00 00

ut “  2 a j € t - j  2 i« j  i

Here, we are going to describe two methods of estimating the 
coefficients 0 of the model (2.7) in the frequancy domain.

METHOD 1.

Hannan (1963) showed that in the absence of knowledge of the 
coefficients aj, we can estimate the parameter 0 of equation (2.7) 
efficiently. His estimator is given by:

where f^(X) is as in definition 2.2.2., but the autocovariances are 
estimated with the estimated O.L.S. residuals instead of the true 
ones.

M M

-M+l -M+l

The intuition behind this estimator is given by the fact that, if 
outside a frequency interval (suppose xt is scalar), xt does not have 
spectral mass and the spectral density function of the residuals
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varies very little over such an interval, then the efficiency of the 
least squares of 0 will be nearly unity.

Then, if we are able to have a set of mutually exclusive filters, 
say r filters, whose union is [0, t ] and such that the variation of 
the spectral density of ut is small over each interval, then the 
efficiency of the estimation of (3 over each interval is nearly 
unity. Therefore, if we combine each of this estimates of 0 
optimally, we will obtain an estimate of 0 whose efficiency will not 
be less than for each of those estimates.

Although such filters are not available, we can still use an 
equivalent approximation. Since * t*ien

3<k)-f^(lk/M) f—  <Tk/M>

will be a plausible estimate of 0. This estimate of 0 has an 
asymptotic variance proportional to t Hence,
equation (2.8) will give the optimal weighting of the several /3(k) if 
the correlations between the several j3(k) are not taken into account.

METHOD 2.

The suggestion for this method comes from the fact that 
Wu(^s)"<,)y^s)~^,o>x(Xs) where o>z is the discrete Fourier transform of 

{zt}t-i,...,T defined as

a (x)-i—  I Zj eiXJ 
2̂»T j-1
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where Xs-2xS/x, has under regularity conditions an asymptotic 
distribution function N(0,f^[(Xs)), and the (^(Xs) are approximately 
independent for different Xs.

Then, the G.L.S. principal will suggest as an estimate of 0

T T
(2.9) e- ( l Ix(Xs)g"(Xs) ') ’( I Ixy(Xs)gGG(Xs) ’)

s-1 s-1

where Iy^X)-^^)^'(-X) and gflft(X) is an estimator of the spectral 
density function defined as

T
(2.10) gaa(x)“(2xT) 1 2 KMCx-^s^aa^s)s-1

where (X) — K2(M(X+2ts)) and K2 is a real even function which
integrates 1 and is absolutely integrable. This function is known as 
the spectral window.

Here M is not restricted to be an integer, as in method 1. One 
difference between the two methods is that method 2 uses (2.10), i.e. 
we weight the periodogram instead of weighting the autocovariances as 
in (2.2), apart from the formula for the 0 estimator. Another 
difference is that in this method, we use the periodograms in (2.9) 
instead of the smoothed spectral estimates as in (2.8)



2.3.- THE CONCEPT AND EXAMPLES OF MIXING PROCESSES

The purpose of this section is twofold. First, to give a 
description of some of the mixing conditions that have appeared in 
the statistical literature, some of which will be used frequently in 
chapters 3 and 5. Secondly, and perhaps more important, to give 
several sufficient conditions under which a given stationary 
stochastic process is mixing, as well as some examples; and therefore 
to be able to check that the models used in the simulations of 
chapters 3 and 5 satisfy the required conditions imposed in their 
respective theorems.

2.3.1.- Some Definitions of Mixing Processes.

The first question that comes to the mind is, what do we 
understand by a mixing process?

Definition 2.3.1

We say that a strictly stationary vector stochastic process {xt} 
is mixing if VA,BcF^ (i.e. the cr-algebra generated by  «,)

(3.1) lim P(AnT"mB)-P(A)P(B) m—>a>

where T stands for the usual shift operator on events in F^.

That is, loosely, although events determined by sets of xt may be 
considerable dependent on recent events, they are almost independent
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provided they are far apart in time. Thus, mixing is a form of 
asymptotic independence.

From this definition, it is readily seen that the mixing property 
is a sufficient condition for ergodicity by taking A=B-invariant 
where we obtain that P(A)2-P(A) so that P(A)-1 or 0.

Several measures of dependence have been proposed. The weakest 
one which we will consider is strong-mixing (Rosenblatt, 1956). 
Consider all events depending only upon xt for t<p. These events 
constitute a a-algebra Bp. Similarly Ap+r is the o—algebra of events 
determined by xt t>p+r. Define a(#) as a function such that:

(3.2) sup |P(BnA)-P(A)P(B)|<a(r), where a(r)>0 and r>0.
BeB AeA P P+r

Definition 2.3.2

We say that the stationary stochastic process {xt} is 
strong-mixing if a(r) goes to zero as r goes to infinity.

It is obvious that strong-mixing implies mixing (i.e. (3.1)) and 
then the ergodicity of the process.

The next measure of dependence, stronger than strong-mixing is the 
absolutely regular condition, which was first studied by Volkonskii 
and Rozanov (1961) and who attributed it to Kolmogorov. Define Bp 

and Ap+r as we did above. Define i'(r) a function such that:
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(3.3) f(r)-sup E[ sup {|P(A|Bp)-P(A)| ].
P A6Ap+r

Definitlon 2.3.3

We say that the stationary stochastic process {xt} is absolutely 
regular if f(r) goes to zero as r goes to infinity.

An alternative characterization given by Volkonskii and Rozanov 
(1961) is:

(3.4) f(n)-} Var[Pon-P, n]

where PQ>n is the measure induced by the process . f_1 ,o,i , . . .
on the a-algebra and Pt >n is the measure defined for A a n d
B€#£«> given by the equality:

As Yoshihara (1976) noted, this form of characterizing an 
absolutely regular process is more useful from an empirical point of 
view.

At this point, it will be worth reciting the fundamental lemma 

taken by Yoshihara (1976, lemma 1) and by Denker and Keller (1983, 
lemma 6); which is going to be extensively used along the proofs of 
theorem 1 of chapter 3 and the theorem of chapter 5.

Lemma 2.3.1

Let {xt, t-0,±1,±2,...} be a stationary absolutely regular process
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with mixing coefficient f(n). Let tt<t2<...<tk be arbitrary 
integers. For any r (l<r<k-l) put

Pr(k)(E(r)xE(k-r))-P((xtl... xtr)€E(r>)P((xtr+1... xtk )eE(k_r))

and:

P^k)(E(k))-P((xti....xtk)€E(k>).

Let M x , ,...fxk) be a Borel function such that for any r:

Jftkp } |k(xi*•••»xk)J1+̂ dP£k)<M<a> for some 6>0

then:

'Ir*? Jh(x'  xk)dp£k) Jpkp JhCx, , . . . ,X|c)dPr(k) |<

4M1 A* + %5/(i +5)( tr +1 - tr) .

Proof:

See Yoshihara (1976) lemma 1.

If the function h(x1,...fxk) is separable in the form

(x! xm)h2(xm+1, . . . ,xk), T(n) might be replaced by the
corresponding strong-mixing coefficient and thus, we obtain 
essentially the inequality first given by Davydov (1968).

The next measure of dependence which has a close relationship with 
the absolutely regular one is the condition proposed by Gastwirth and 
Rubin (1975) (GR), and which is defined as follows. Let Y and Z be 
(...,x_1fx0) and (xr,xr+1,...) respectively. If the conditional



-42-

distribution of Z given Y-y exists, define dr(y) as

(3.5) sup {/h(z)Pr(dziy)-/h(z)P+(dz)}
Ih|<l

where Pr(dz|y) and P+(dz) denote respectively the conditional 
probability distribution of Z given Y-y and the probability 
distribution function of Z. As a measure of dependence between Y and 
Z we take the Ls norm of dr denoted by lldr||s (0<s<a>) .

Definition 2.3.4

We say that the stationary stochastic process {xt} satisfies the 
GR mixing condition if lldr||s— >0 as r— for a given 0<s<».

It is clear that if lldj-tl,— >0 then also llAr||s— >0 for every s, 
0<s<a>, since Ar<2. Also it is worth noting that for s-1 this is 
exactly the definition of absolutely regular process.

It can be shown a(r)<f(r), and a(r)<4||drii1 .

Intuitively, a(r) , f(r) or lldr||s measure the dependence of events 
in Ap+r on those of Bp in terms of how much the probability of the 
joint ocurrence of an event in each tr-algebra differs from the 
product of the probabilities of each event occurring.

2.3.2.- Examples and Sufficient Conditions for Mixing Processes

In the previous subsection we have given several measures of
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dependence on stationary processes. But, once, a particular process 
is presented, one may ask whether it satisfies one of the above 
mixing conditions and whether it is possible to know the rate at 
which the mixing coefficient tends to zero. This is particularly 
important in order to be able to give examples of processes where the 
conditions of the theorems in chapters 3 and 5 are satisfied.

The first and more trivial example is the independent identically 
distributed process. This process for its own definition is GR, 
absolutely regular and therefore strong-mixing.

The second process to consider is the MA(Q) (moving average) 
process. Since observations separated by more than Q periods are 
independent, it implies that the stochastic process is mixing in the 
sense of any of the above four definitions.

The next process to consider is the linear process, i.e.

00

xt- J ai€t-i where €i are i.i.d. 
i-0

Pham and Tram (1985) studied this model, and gave sufficient 
conditions under which the above linear process is absolutely 
regular. In particular they show that

r(n)-0< i [ 1 iaJl],/(,*a))k-n j-k

where y>0, if:

i) f lgt(v_u)“gt(v) ldv<C||u|| for all t, where ĝ (u) is the pdf of
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€t»

00 00 1ii) J 1041<» and J cn zJ*0 for all |z|<l 
j-0 J-0

iii) E| €t|°*<o» for all t and w>0, and

iv) I I I l«J I ]“/<,*"5)««».k-1 j-k

Thus, if laj |-0(j“(a(i+o)) + ( 1 + 20)) }/w) then ^(n)—0(n~a) . Note that 

for autoregressive moving average processes this is true for any a>0, 
that is f(n) converges exponentially to zero. Thus, up to now, we 
have given a description of the mixing conditions for any linear 
process. But what can we say about non-linear models such as 
bilinears or non-linear autoregressive models? All the theory 
available about mixing conditions on these models is based on the 
ergodicity properties of Markov chains. Thus, we will only discuss 
the mixing conditions for Markov Chains.

Before giving sufficient conditions under which a Markov Chain is 
ergodic, it is important to ask ourselves: what do we understand by 
ergodicity in a Markov Chain?

Definition 2.3.5

A Markov Chain is said to be ergodic if there exists an invariant 
probability function x.



-45-

Another concept very useful is geometric ergodicity.

Definition 2.3.6

A Markov Chain is said to be geometrically ergodic if it is 
positive recurrent and there exists $ (0<^<1) such that:

||P(t)(yf .)_T„«o(^t) as t goes to infinity a.e. x, and 
VycR, where p(t)(y,A) stands for the t-th transition probability 
function from y to A.

This property plays a fundamental role in checking the mixing 
conditions, as it will be seen in the next theorem. Due to Nummelin 
and Tuominen (1982), in a Markov chain, geometric ergodicity and 
absolute regularity are two equivalent properties or concepts.

Theorem 2.3.1

If a stationary stochastic process is geometrically ergodic, then 
there exists \j/<1 such that:

| x(dy)i|P^̂  (y, • )-x( . as t goes to infinity.

Proof:

See Nummelin and Tuominen (op. cit.).

Recalling the absolutely regular mixing condition, we can realize 
that it is in fact the above equation. Furthermore, this theorem 
tells us that the rate of convergence of the absolutely regular
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process is geometric. Also, we can conclude that the probability 
distribution function r is absolutely continuous.

Hence, it only remains to see under which circumstances we can 
say that a Markov chain is geometrically ergodic. Two sets of 
sufficient conditions will be given. The first set is a theorem by 
Feigin and Tweedie (1985). The second set is a theorem by Mokkadem 
(1987).

Theorem 2.3.2

Assume that the stochastic process xt is a Feller Chain, that is 
if for every bounded continuous function Q(x) E[Q(xt+1)|xt-x ] is 
a continuous function of x, and that there exist a measure £ and a 
compact set A with £(A)>0 such that:

(i) The chain is {-irreducible.

(ii) There exists a non-negative continuous function g:R— >R 
satisfying g(x)>l VxcA. Also for some 5>0

E[g(xt)|xt_,]<(l-5)g(x) XfAc 

then the chain is geometrically ergodic.

For the next theorem, we suppose that the process is a rion-1 inear 
autoregressive model defined by:

*t“P(*t:-i>+«t,xt_1

where we stand for ct,xt_1 a process which may depend on xt-1, for 
instance in a bilinear model this process can be €txt_t.
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Theorem 2.3.3

Assume that the Markov Chain is aperiodic and p-irreducible (p 
stands for the Lebesgue measure). Also 3 M>0, v<l and s>0 such that:

E|p(x)+£tjXis<r m s V|x|>M

and

sup E|p(x)+ct xls«»
| X | < M

then the chain is geometrically ergodic and r admits a moment of 
order s.

As a corollary, we can observe that if the function p(*) is 
bounded and the innovation £t,x does not depend on x, the chain is 
geometrically ergodic (Doukhan and Ghindes, 1980).
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CHAPTER 3

ADAPTIVE ESTIMATION WITH NON-LINEAR AUTOREGRESSIVE DISTURBANCES

3.1.- INTRODUCTION

In an econometric time series model, serial dependence in the 
residuals exists when the expectation of those residuals conditional 
on its own past is different than a constant, that is:

E[ut|us, s<t^constant.

In fact, serial dependence may be the rule rather than the 
exception in macro-economic models.

In this chapter, we will consider the multiple regression model: 

(i.D yt-(J'xt+ut

where /3 and xt are k-dimensional vectors and yt and ut are scalars.
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Also it is assumed that ut has an autoregressive representation of 
known order P given by the ^quation^1) (footnotes are at the end of 
the chapter):

(1.2) ut-p(ut_i...VP)+V

where ct, t-1,2,..., are innovations which are assumed to be an
independent and identically distributed process and with a symmetric 
distribution function. In the econometric literature up to now, it 
has been assumed that the p function is a linear function, i.e.

p(ut-,.ut-p)-p.ut-t+-• -+pput-p-

Under this assumption, the parameters 0 of the model (1.1), (1.2) can
be estimated via a non-linear least squares algorithm, given a 
generalized least squares (G.L.S.) type estimate. If, in addition, 
the innovations et are normally distributed, then this estimate will 
be asymptotically equivalent to the maximum likelihood estimate and 
hence the Cramer-Rao bound will be achieved.

A frequent assumption behind linear time series models is 
Gaussianity. In a Gaussian environment, linear models are 
appropriate. But once such an hypothesis of Gaussianity is 
abandoned, two possibilities emerge. The first one emerges when the 
autoregression function p in equation (1.2) is non-linear and the 
innovations et are either Gaussian or not. The second possibility 
emerges when the autoregression function is linear but the 
innovations et are not Gaussian. We share the opinion of Davies, 
Petruccelli and Watson (1987) by saying that once the hypothesis of 
Gaussianity is abandoned the first possibility is the most likely 
that it happens. Thus, non-linear time series models are called for.
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As it was said in the first chapter, recently non-linear time 
series models have become popular among statisticians. These models, 
unlike linear ones, may capture characteristics like limit cycles and 
jumping behaviour which are observed in many time series. The 
jumping behaviour in a process may be viewed as a process which 
fluctuates around one of its stable singular points(2) and jumps from 
one stable singular point to another depending on the innovations of 
the model. As regards the limit cycle, it may be observed in time 
series which have a periodic character but the time series model is 
not constrained to be sinusoidal. The latter type of series implies 
that the system has a "self-exciting" mechanism, i.e. for small 
values of the process the system tends to "explode" while for large 
values the system tends to "damp down" towards its mean, say zero.

We know of no attempt to study the statistical properties of 
estimators of 0 in the model (1.1) where ut may follow a possibly 
non-linear AR model. Hence, it would be interesting to study the 
statistical properties of the least squares estimators of 0 (0) when 
the autoregression function p is given but not constrained to be 
linear, i.e.

T
“in j (yt-0,xfP<yt-i-0'xt-i yt-p-0'xt-p>>2“
0 t-P+1

T
2 (yt-&'xt-p(yt-i-£'xt-i yt-p-&'xt-p>>2t-p+i

where 0 may be obtained via a non-linear minimization algorithm 
procedure.
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Once the hypothesis of linearity of the ARMA models is relaxed, 
allowing for further structures as the bilinear, smooth threshold 
autoregressive (S.T.A.R.)> or exponential autoregressive models, to 
identify such structures may be a very difficult task. However, it 
is worthwhile noting that the hypothesis of linearity can be tested 
in an AR framework via nonparametric methods by using a test proposed 
by Robinson (1983). On the other hand, if the interest of the 
practitioner is not to model the residual structure itself, but to 
get estimates of 0, one can ask himself if there is an estimation 
method whose asymptotic performance is as good as the estimates that 
we would get if the structure of the residuals were perfectly known.

To do so, we use nonparametric estimators of the non-linear 
autoregression function of the ut's and, as will be shown in theorem 
1 below, we obtain an estimator of 0 which is asymptotically as 
efficient (to first order) as the least squares estimator 0' Thus we 
would be able to adapt to the unknown autoregressive structure of the 
residuals. This semiparametric estimator would be, if the 
innovations et were normal, Cramer-Rao efficient because 0 would be 
the maximum likelihood estimator.

One question arises from all this discussion. In the linear 
framework it is very well known that when the true structure of the 
autoregression is mis-specified, then the estimator of the regression 
parameters may be inefficient (see for instance Hannan (1970) Ch. 7 
for an extensive discussion on this point). Moreover, it may happen 
that this estimator is more inefficient than the O.L.S., see for 
instance Engle (1974). Hence, in our setting, if the model is 

estimated in the belief that the residuals follow a linear AR model,
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what can we say about their asymptotic covariance matrices of that 
mls-speclfled estimator and the least squares estimator 0?

For simplicity, let us suppose until the end of this section that 
there is no intercept, xt is scalar and P-l.

The asymptotic variance of the 0 estimator will be given by:

T
(1.3) a\ [plim T_1 £ (xt-xt-.̂ ' (u^,)) 2 ] 1

t-2

where p'(.) is the derivative of the function p, and <j\ is the 
variance of et. In terms of the spectrum (1.3) is equal to:

(1.4) a\ { jITf̂ (X){l+E{p' (u)2}-2Ep‘ (u) cosX} dX}”1 

where ^£(X) is the spectrum of xt.

One can mis-specify the p-function, and let us suppose that the 
investigator believes that the p-function is a linear function 
instead of the true non-linear one. Under this belief, he would 
estimate the parameters of the model via a Cochrane-Orcutt or Durbin 
algorithm, for example, that is we do a G.L.S. as if the ut has 
spectrum fQ(X). Therefore, its asymptotic variance is:

77 fl fx(X)f”S(X)f(X)dX
(1.5) T--------------(k jVxCMCwdx]2

where f(X) is the actual spectrum of ut. By the Cauchy-Schwartz 
inequality we have that:
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(1.6) (1.5) > [ ̂  Jl^fxOOf ’ (X)dx) ’

where the RHS of (1.6) Is the Gauss-Markov bound achieved when 
f0(X)-f(X) and also by Hannan's estimate.

Intuition tells us that the asymptotic variance of the parametric 
estimator of 0, i.e. (1.4), is lower than (1.5) (the variance under 
the mis-specification). A sufficient condition for (1.5) > (1.4) is:

RHS of (1.6) > (1.4) 

and a sufficient condition for the last expression is:

(1.7) <re/2i < f(>'){l+E(P'(u)J)-2Ep'(u) cosX}.

Unfortunately, I do not know how to get a formula for the 
spectrum of a non-linear AR model. Also, I do not see how the 
derivatives of the p-function enter. However, there is a possibility 
about the last point which consists in computing numerically these 
expectations using Jones' (1978) approach.

This point deserves much more attention, since it will be 
interesting to know under which circumstances equation (1.6) is 
satisfied. It would be more interesting and odd, if one finds an 

example where the mis-specified model performs better than the 
parametric estimator. This would be in view of the maximum 
likelihood interpretation of the least squares estimator very 
strange, since in this case we will achieve the Cramer-Rao bound. 
Instead, we will present some Monte-Carlo evidence in the next 
chapter about this interesting point, where the M.S.E. of the
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estimates of 0 is studied under the true and false specification of 
the residuals ut, as well as for the semiparametric estimator of 0 
which will be introduced in section 3 below.

The remaining of the chapter is organized as follows: In §2 we 
will describe the kernel estimators which we are going to use. In §3 
we will introduce the semiparametric estimator of the parameters 0. 
Also, we will discuss a computational method for such estimators, 
based on a modification of the well known Cochrane-Orcutt algorithm 
for the linear AR(1) model. In §4 we will specify the concept of 
mixing condition that will be employed. In §5, we .are going to 
describe the conditions on the model under which the semiparametric 
estimator of 0 is root-T consistent, and has the same asymptotic 
distribution as the least squares estimator, and finally in §6, a 
summary of the chapter and possible extensions are given. The 
lengthy proofs of the theorems are in appendices.

3.2.- THE KERNEL ESTIMATOR

Let z be a random variable and let g(z) be a Borel function such 
that E|g(z) I<oo. Let K be a real bounded function such that:

JpK(u)du-l.

Let us also assume a positive number a which depends on T, and it 

goes to zero as T approaches to infinity. Then we define the
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Watson-Nadaraya type estimator of the conditional expectation of 
g(zt) given y^-y by definition 2.1.2 of chapter 2, i.e.:

T

t-1

where ][K( (yt~y)/a)/Ta estimates the probability density function of 
the process yt at the point y, i.e. f(y), and Jg(zt)K(yt_y/a)̂ -pa 
estimates f(y)E[g(zt)iyt-y].

Thus, if g(zt)-ut and yt“ut-i we bave that an estimator of 
E[ut|ut_t-u], given ut t-1,2,..., will be given by:

T

t-2

It is worth noting that the K function is not constrained to be a 
density function itself because, as it will be seen in section 5, we 
want to allow K to take negative values.

The above estimator of p(uj_t )-E[ut lUf-̂ -Uj., ] is not generally 
antisymmetric, but a modified version is. We modify it as follows 
(and for technical reasons we also use the "leave-one-out" estimator):

T
(2.2) P(Uj-,)-5̂  I Ut{K((ut-1-uj_1)/a)-K((ut_1+uj_1)/a)}f-'(uj_,) 

t-2

where ^(uj^) is the estimator of the probability density function of 
uj_t as defined in definition 2.1.1. But this estimator is not
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general ly symmetric, as the density function of is by a result
of Pemberton and Tong (1981), thus we modify it as follows:

T
J  {K((ut-,-Uj_))/a )+K((ut_ 1+ U j _ 1)/a ) } -f(uj_1). 
t-2

If we are interested in an estimator of the derivative of 
p(uj_t)-E[ut|ut_1-uj_1] with respect to uj_1, this will be obtained 
by differentiating the equation (2.2) with respect to , i.e. 
definition 2.1.3 of chapter 2.

Let the observations {yt>xt}t-l,..,T from a random variable 
(Y,X) , where xt is a k-dimensional vector. The least squares 
estimator of the parameters of the model (1.1) which takes into 
account that the residuals follow a possible non-linear AR(1) model, 
i.e.

(3.1) ut-p(ut«,,0)+£t t-2....T

where p is an antisymmetric function in ut_., and 6 is a qxl vector of 
parameters, may be obtained, for instance, by the Gauss-Newton 
iteration procedure:

3.3.- THE SEMIPARAMETRIC ESTIMATOR OF B

(3.2) Q^t/ax^t/ax') ldet/d\etw-[p' ,d' ]'
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where the summands from now on, unless otherwise specified, run from 
t-2 up to t-T, and (/S',0')' is a previous estimate of the parameters 
(/S' , 0' ) ' .

If the initial estimator of the parameters is root T-consistent 
then the second round in the iteration procedure is asymptotically 
equivalent to the least squares estimator 0 and 0 which minimizes the 
sum of squares

2(yt-0'xt~p(ut-i.*))2-

As was said in the introduction, when the autoregression function 
of the residuals ut is linear, i.e. p(ut_1,0)-0ut_t, the 
Cochrane-Orcutt (1949) algorithm is asymptotically equivalent to the 
Gauss-Newton procedure described in equation (3.2). It is worthwhile 
writing down here the Cochrane-Orcutt algorithm, since the estimation 
method is based on a non-linear version of this algorithm:

1st step: The O.L.S. estimator of /3 is obtained, i.e /50,^*s*.

2nc* step: An estimator of 0, 01 is obtained by regressing ug*^*s* 
on ut_?-l-s-, where for t—1,2,... are the O.L.S. residuals.

3r<* step: We regress y^^^t-i on xt~^1xt-i» an(* obtaining and 
updating estimator of 0.

Repeat steps 2 and 3 up to the convergence of the parameter 
estimates is obtained.

Step 3 can be rewritten as:
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(3.3) 0-0+ (J (xt_xt_, 0 ) (xt—xt_10 ) ' ) (xt-xt.,0 ) (ut~*̂ ut_1) .

This method (Cochrane-Orcutt) is an iterative technique which 
disregards the first observation. Therefore, it will be equivalent 
to the G.L.S. estimator only asymptotically. We could adopt a G.L.S. 
estimator by noting that the expected value of e,2 conditional on ut 
is (l-02)Ul2 and to minimize

2 (yt~0,xt-0(yt-i-0'xt-i>>2+(yi-0'xi)2(i-02)

which is known as the iterative Prais-Winsten (1954) algorithm, 
instead of minimizing the sum of squares

2 (yt-0'xt-0(yt-i-0,xt-i>>•

The Cochrane and Orcutt and Prais-Winsten are two particular 
algorithms. Instead, we can use more general non-linear methods, as 
the Gauss-Newton or Davidon-Fletcher-Powell iteration techniques, or 
searching algorithms, by selecting a number of values of 6 over the 
interval [-1,1], and to minimize simultaneously upon 0 and 6.

If the innovations et were normal, the maximum likelihood 
function of 0 and 6 after concentrating out ae2 ( the variance of the 
disturbance et) and ignoring constants would be:

1/2 -T/2
Cl-02) [ J (yt-0,xt-fl(yt_1-0'xt_1))2+(y1-0,x1)2(l-«2)]

or alternatively:

l/2log(l-»2)-T/21og[2 (yt-0'xt-ff(yt_1-p'xt_,)) 2+(y1-(j'x1 )2(l-»2) ].
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The M.L.E. would be obtained by maximizing the above equation in 0 
and 9 by iterative or search algorithms. Since the first term of the 
above equation does not depend on T, the G.L.S. and the M.L.E., i.e. 
the 0 which maximizes the above term, will be asymptotically 
equivalent.

Also, we are aware that the estimation procedure for this simple 
AR(1) model can be generalized to the AR(P) or ARMA(P,Q) models, via 
iterative and search algorithms, see for example Harvey (1981) or 
Judge et al. (1985) for several estimation procedures.

Before introducing the semiparametric estimator of the parameters 
0, a word about the reason why we use a non-linear version of the 
Cochrane-Orcutt algorithm is worthwhile. The Cochrane-Orcutt method 
is a step-wise optimization algorithm. It is based on the fact that 
in the Gauss-Newton procedure (in the linear AR case) the asymptotic 
covariance matrix for the estimator of 0 on the one hand and the 
estimator of 6 on the other is block diagonal, i.e. they are 
asymptotically independent.

In the non-linear framework, unlike the linear model, a closed 
formula for the expected value of e,2 conditional on u1 is not 
generally possible. Hence, a "full" optimization algorithm where 
"all" the observations were taken into account, as in the 
Prais-Winsten (1954) algorithm, for instance, would be difficult to 

implement or impossible.

However, when the autoregression function of the residuals is 
non-linear then 6 and 0ut_1 in equation (3.3) have to be substituted
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by:

dp(\it_̂  ,6)

and p(ut_1P0) respectively, given the announced non-linear version of 
the "Cochrane-Orcutt" algorithm.

By a result of Pemberton and Tong (1981) , a necessary and 
sufficient condition for the probability density function of the 
process ut to be symmetric is that the autoregression function is 
antisymmetric given that the disturbances of the model, i.e. et, has 
a symmetric probability density function. This result will allow us 
to say that also in the non-linear framework, the estimator of 0 and 
6 are asymptotically independent. So, as long as our interest is 
focussed on the asymptotic behaviour of 0, we can assume that the 
parameter 6 is known throughout the remaining of the chapter, since 
this parameter may be considered as a nuisance parameter.

On the other hand, in our model no functional form of the 
autoregression function is assumed or specified and therefore neither 
p(u,0) or its derivative with respect to u is knovm. Thus, we must 
substitute it by a nonparametric estimator as described in §2 and 
given by definitions 2.1.2 and 2.1.3 of chapter 2, which do not 
depend on any functional form, i.e. equation (2.2) and its derivative 
with respect to Uj_,. Since in the model the process ut is not 
observed, we should replace the ut by an estimator ut given by

ut-yt-0'xt

which is updated at each iteration. (From now on, we will always let 
ut be the t-th residual computed from the estimator of 0 that we will
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cons ider).

From now on, ve are going to restrict ourselves, for technical 
reasons, to discrete sequences of estimators according to:

Let 0 be an Initial estimator (for Instance the O.L.S.) of 0 such 
that:

^T(0-0)-Opg(l)

then the estimator /S-p is given by one of the vertices of {/3 such that 
(it ,12 ik)* i1,...,ikcZ) nearest to 0.

Of course, /3p satisfies the following more general discreteness 
property.

Definition 3.3.1

A sequence {/3p} °f estimates is called discrete if there exists a 
CcN such that independently of TcN fa takes on at most C different 
values in:

Qn“{0oeRp > Sr\0o-0\<*} c>0 fixed.

Lemma 3,3,1

Let {£t(/3) ,TeN) be a sequence of random variables which depends on 
0e01 . If for each sequence {/S-pJCQ, satisfying that T̂(/3p-/5) is 
bounded by a constant c>0 and

S T W - O p W when 0 holds,
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then also holds under 0 for discrete estimators {/S-p}
which are root T-consistent.

Proof:

See Kreiss (1987), lemma 4.4.

From this lemma, it will only be necessary to establish theorem 1 
in section 5 for sequences of estimators of the form flp-fl+hp̂ "1, 
where hp is a bounded sequence, because of fa is a root T-consistent 
estimator and its intersection with any sphere of radius center
in 0 is finite with cardinality bounded independently of T.
Therefore 0p may be seen as a generalization of the discretizised 
estimator fa.

We are now going to introduce the concept of contiguity of two 
probability measures, see for instance the monograph by Roussas 
(1972),,as a criterion of nearness of sequences of probability measures.

Definition 3.3.2

It is said that two measures Pp and Qp are contiguous if and only 
if for every measurable sequence of events Ap£RTt T—1,...,» /dQp— >0 

implies that /dPp— >0 for such an Ap as T— and the other way round.

Consequently, in order to prove theorem 1 of section 5, we will 
prove that the probability measures generated by the computed 
residuals ut-yt-0x*Xt and by the true ones that is the
probability measures generated by fa and by 0 are contiguous. The
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importance of this result is that if we are able to prove that 
theorem 1 of section 5 is true under the probability measure 
generated by the computed residuals then it is also for the 
probability measure generated by the true residuals. Thus, in view 
of lemma 3.3.1., the theorem 1 is also true for the discrete 
estimator (3̂.

Lemma 3.3.2
The measures generated by and {ut}t«12 are

contiguous.

Proof
See appendix C.

As in other uses of kernel regression, the estimator p(ut_.,) is 
technically difficult to handle owing to the random denominator of 
p(ut_.,) unless we assume that ut has a compact support and its 
probability density function is bounded away from zero. Therefore, 
in order to avoid such an assumption, we "trim" out small values of 
f(ut_.,) as in Bickel (1982), Manski (1984) and Robinson (1988c). To 

do that, we define b>0 which tends to zero as T goes to infinity and 
It_1-I(|ft-il>b) where I stands for the usual indicator function. 
Therefore, the semiparametric estimator of 0 will be:
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where ) is obtained by differentiating equation (2.2)
w.r.t. ut-1 and evaluating it at

3.4.- MIXING CONDITION

As it was seen in chapter 2, the literature on mixing conditions 
is very vast. Also throughout the years many definitions of mixing 
processes have been discussed in the statistical literature.

For our purposes we are going to use the absolutely regular 
condition, that as it was seen in the earlier chapter is stronger 
than the strong mixing condition. On the other hand, this condition 
is very similar to the one proposed by Gastwirth and Rubin (1975) , 
being in fact identical for s-1 (see chapter 2 for further details) .

The reason why this mixing condition is used and not others is 
because it is easier to handle in relation with the U-statistics and 
V-statistics that we will encounter along the proof of theorem 1 in 
section 5, and to be able to use the results of Yoshihara (1976) on 
U-statistics for those processes. However, the strong mixing 
condition could be used by employing the characteristic version of 
the kernel function as it was employed by Robinson (1984) although we 
have, in that case, to strengthen the conditions of theorem 1.
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3.5.- CONDITIONS AND THEOREMS

In the parametric case it was seen that the estimator of /3 was 
given by the equation:

(5.1) iM5T+(2( > ]x[xc-xt. , ^ l >  ]■)-'
3ut-i ^t-i

;[ Xt-xt_, 8p(u<= 1■8I) ](ut -p(ut_,, 0T)) 
8ut_,

while in the nonparametric case was given by the equation:

(5.2) 0*-0T+(S[xt- 8p(ut~l> xt-.lt-.jxfx,.- 8p(ut-1> xt.,!,-.,]-)-'
aut_, aut_,

x jJXt_ 9p(?t-_i.) xt_, It_,] (u^(iit_,)it-,) •
aut_,

The adaptiveness of the semiparametric estimator /3* will be 
established in two steps. In the first one, it will be shown that 
siCe-e*) is Op(l). In the second one, it will be proved that the 
parametric estimator (3 is square root T consistent and moreover

converges in law to a Normal distribution with zero mean and 
variance-covariance matrix <r|V-1.

From equations (5.1) and (5.2) it is easily seen that (̂0-/3*) is 
equal to:

(i S(xt-xt_, 8p(gt-1;..*I>. ]x[xt-xt_, 8p(V,.»I> ]■)-• 
aut-, 9ut_,

x (-T2[xt-xt-i9p(Ut ',9?1 ) (ut"P(ut-i T* 8ut_,
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4 2[xtr*t-. ̂ (l>t 1> —(Ufc [) it-,]') 19ut_, 9ut_,

x (4s[xt-xt-,^nl It-,) (ut-p(ut-,)it-,))-T1 9ut_, J

In order to prove that x£(0-0*)-Op(l), it will be sufficient to 
show that the next two expressions, namely:

(5.3) yS[xt~xt-,8p (ut~ 1 > Tt_, ]x[xt-xt_t̂ ^ £ ^ -
9“t-i

]x[xt-xt„ , t e ^ M  ]• 
aut-, 3ut_,

and

(5-4> s[xt- ][ut-p(ut-i>lt-i ]t4 aut_,

- (xt-xt- > 9p(ut <,I>t)] [ ut-p (ut_,, «T) ] 
9ut-i

are both Op(l)

Recalling that the probability measures under (0,8) and (0x,0), 

i.e. P(£y0) and P(̂ 3t at 0-0x. are contiguous, to prove that (5.3) 
and (5.4) are Op(l), it will suffice to show that they are Op(l) 

under the probability measure induced by (0x,0), e*g* by ut“yt~0Xxt» 
since by lemma 3.3.1, it will be true that (5.3) and (5.4) are both 
op(l) under the probability measure generated under (0,0).

(5.4) can be split into the following three terms, i.e.

(5.5) 1/Ti X(p(ut_1,0T)-p(ut_1)It_1)(xt-p,(ut_1,0T)xt_l),
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(5.6) )
^ t -1 ^Ut-1

and

(5.7) It-^P^t-,.*!:)-?^-.)^-,)-
^t-i

As long as Interest Is focussed on the asymptotic distribution of 
(3 and to show that ^(0-0*)-Op(l) , in view of the discussion in 
section 3.3 it will be necessary to show that (5.3), (5.5)-(5.7) are 
Op(l), where instead of writing p(u^^;8^) or its derivatives with 
respect to ut-1, we can write pCû -.̂ ;#) or its derivatives with 
respect to ut_1 in order to prove theorem 1 below.

Also in theorem 2, we will give a proof for the case in which the 
p-function is perfectly known, i.e. its functional form and its 
parameters 0.

We will adopt the "higher-order" kernel approach to bias-reduction 
proposed by Barlett (1963). Since a sufficiently smooth function 
behaves locally like a polynomial of a certain degree, we can exploit 
this property by using a kernel function with enough zero moments, so 
that the bias can be reduced rapidly enough with a. For a 
construction of such kernel functions we refer to Robinson (1988c) or 
Prakasa-Rao (1983).

Definition 3.5.1
Kr r>l is the class of functions K:R— »R satisfying:
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JpuiRCu) du-5 io i-0....r-1

where is the Kronecker delta.

The classes Kr confer increasingly small bias on kernel 
estimators as r increases, but also increasingly large variance, the 
latter varying directly with / K(u)2 du. However, the asymptotic 
distribution of 0* is independent of K, detecting no disadvantage in 
a Kr, with even arbitrary large r. Nevertheless, it would be 
surprising if, in finite samples, /3* did not to some extend inherit 
variance properties of the kernel estimators from which it is 
formed. Then, while increasingly r cannot shrink, and may widen, the 
band of a-sequences satisfying the theorem 1, we caution against 
choosing r too large.

Some further, practically unrestrictive, conditions on K will be 
imposed, such as boundedness and thin tails. Introduce:

Definition 3.5.2 

N^-{K: R— »R; /1 u | MI K(u) | du<»J.

Definition 3.5.3 

su/r{v:vfR/|u-v|<7} VufR» 7>0•

Choosing KeKr will not work unless the function p and f are 
collectively sufficiently smooth, and it seems reasonable to suppose
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that the smoother they are the better 0* will on average be.

Definition 3.5.4
A^-{K:R— »R;sup|u|/*iK(u) K®}. 

u

Definition 3.5.5
Hou{g:R— )R;/lg(u) 1° f(u)du<®} and f(.) is the probability density 

function of u.

Definition 3.5.6

is the class of g functions belonging to 2° such that there 
exist heH0* and some 7>0 such that:

lg(u)-g(v)-Q(u,v)|
sup   < h(u) , a.e. (u)

veSû  |u-v|/*

for integer m such that m-l</i<m

Q(u.v)- I (u-v)r
r-1

and -ffg(u) f2“ ou

Loosely speaking, X̂[ consists of functions g which can be 
expanded in a Taylor series of degree (m-1) and with a remainder term 
of degree fi, whose coefficients have a finite a-th moment as do g and 
its first m-1 partial derivatives.
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ASSUMPTIONS

Al.- The process ut is a stationary absolutely regular 
process with finite 2+6-moments for some 6>0, and where the mixing 
coefficient f (n) , given in definition 2.3.3, satisfies 
f(n)-0(n“[(2+̂ ')/6'1) for some $'>0 and 0<fi'<6.

A2.- xt are either stochastic or nonstochastic, and in the 
former is a stationary and ergodic vector process with 
finite second-moments.

A3.- xt and us are independent for all t and s for the 
stochastic xt.

A4.- the p function belongs to where X>2 and 5>0.

A5.- f(u), the probability density function of ut, belongs 
to where X>2.

A6.- Ta6b4— as T— >».

where:

7-^t (2+g) with 6 and fi' as in Al.

A8.- ax 2b 2— >0, where X is as in A4 or A5.

A9.- Ta4X~2b”4— >0.
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A10.- The kernel function K belongs to K4, and has first 
continuous derivatives.

All.- The characteristic function of K, k(v), defined by 

*(v)-JpK(u)eiuvdu 

is such that |vk(v)i is integrable.

Theorem 1

Under Al to All:

Jt opd).

Proof:

See appendix A.

Remark:

In appendix A, we will use ut instead of ut to make easier the 
notation.

Before writing down the assumptions needed for theorem 2, a 
comment about the assumptions A6-A9 is necessary.

While A6-A9 prevent b from converging to 0 too fast, there is 
nothing to stop it converging arbitrary slowly. If the rate of 
convergence of f (n) is geometric then y can be taken equal to 1. In
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that case, A7 is weaker than A6. This will be the case for all the 
examples that they will be studied in the next chapter.

For sake of argument consider the case *y—1. A sufficient 

condition for reconciling A6, A8 and A9 is: b-1*o(a2_V 4) » an<* thus, 
A6: T“1a_(4+̂ )— >0 or finite, and A9: Ta3̂  — >0 or finite. Thus, to 

reconcile the last two, we can take a-0(T~V3^)*

A kernel function which satisfies A10 and All and also definitions 
3.5.2 and 3.5.3 is:

(1.5-0.5u2)K(u) 

where K(u)-V</2xexP(~^/2u2) *

For the asymptotic convergence of , it will be assumed the
following conditions:

ASSUMPTIONS

Bl.- Let be an i.i.d. stochastic process such that: 
E|et|2r«» where r>l.

B2.- Efxt-xt_, 9P<u^ lU xfxt-xt_, VI B u t - n J I B u t - ,  J
exists and is positive definite.
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B 3 r — ^2p ût̂  i has finite 1+6 moments, where 6>0.I 3 u £  J

Theorem 2

Under B1-B3 and also A1-A4 we have that
is asymptotically N(0,alV"”1) where V is equal to X'4>X and 

4>-diag(l, 1+Ep* (ut) 2,..., 1+Ep'(ut) 2)-Ep'(ut) (J+J') where J is a matrix 
whose (i,j) element is 1 if j-i+1 and i—1,...,T-1 and zero 
otherwise. This V matrix is consistently estimated by:

and being <r£ the variance of the residuals et.

Proof:

See appendix B.

3.6.- EXTENSIONS AND CONCLUSIONS

We have dealt with a very simple linear regression model where the 
residuals follow an AR(1) model, but where its functional form is 
unknown to the practitioner. A semiparametric estimator of the 
regression parameters has been proposed, whose asymptotic 
distribution function is the same as that of the parametric
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estimator , although we have posed an open question about the 
efficiency of the estimator, which we are only able to answer by a
Monte-Carlo experiment given in the next chapter.

Several extensions could come to our minds in view of the studied
model, but three of them are the most obvious.

The first extension to the model is when the residuals follow a 
non-linear AR(P) with P>1. In view of the proof of theorem 1, it is 
obvious that the proof for this case is only a mathematical 
complication in notation terms, although they are the same.

The second extension is when we have lagged dependent variables in 
the regression model, i.e. we have yt-j *-n **1® xt vector* This 
extension could be more interesting from an econometric point of 
view, since in a lot of applied work lagged dependent variables 
appear in the regression equation.

In this case, the problem of mis-specification might be more 
important, because we can have inconsistencies in the estimation of 
the parameters affecting the lagged dependent variables, by using 
estimation procedures as the Gauss-Newton algorithm, or Hatanaka 
(1974) algorithm.

The last possible extension of our model by inspecting the proofs 
of our theorems 1 and 2 is the non-linear regression model.

Like in most of the nonparametric literature there exists a 
problem in how to choose the "bandwidth" parameter a. This problem
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is far from being solved, although some attempts have been made. 
However, some possible cross-validation could be applied to our 
problem. This entails a huge computational burden, and whether for 
this choice of a theorem 1 still holds is a question that remains to 
be answered. Even the consistency of the semiparametric estimator 
with this choice of the bandwidth parameter may be difficult to prove.
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footnotes

(1) Although ve are going to discuss the case of a general P In 
the introduction, we are going to discuss only the case for P-l in 
the remainder of the chapter, mainly to ease the notation and 
arguments.

(2) We understand for stable singular point, a point in which in 
the absence of pertubations in the system, this, the system, will 
tend to that point. This is analogue to the concept of stable point 
in a differential equation system.
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APPENDIX A

NOTATION

From now on we will denote Kjfz and Kjt_z by:

and

The derivatives of the above equations with respect to z are 
going to be named Kj>z and Kj ̂ _2 respectively.

Also we write K j z and Kj>z for:

and

Kj ̂ Z-K +K [Ẑ Z] respectively.

The first lemma is taken from Robinson (1988c), but owing to its 
importance we think that it is worthwhile reproducing it here.
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Lemmfl 1

Let f(u)g(u) be a function that belongs to X̂ , and the kernel 
function KeA0nN̂ nKr. Then, if X satisfies r-l<X<r where r>l

(A. 1) sup | | i Ku^gC^fCuJdu -f(z)g(z) |-0(ax) .

Proof:

Call the function g(u)f(u)-h(u). Since h(u)eX^, there exists a 
function Q(u,z) which is equal to:

r-1
h(z)+ y 4  (u-zl^ Mz).

■ V ! 9ui1-1

Define R“EZpuEZp, where p>0 and EZp-{u/|z-u|<p}. Define also 
A(z;E) by:

}Ea 'Kp-EjpiCuJ-hCzyjdu.

Therefore, (A.l) is less than or equal to:

sup | A, (z;Ezp)i+sup|A2(z ;Ezp)|+sup|A(z;Ezp)I 
z z z

where:

A1(z;Ezp)-|E a {Q(u, z)-h(z)}duzp

and

A2(z;Ezp)-JE a ’Kpjp] (h(u)-Q(u, z)}du. zp
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Now then, A ^ zjRJ-O since the integrand has only elements of the 
form:

JuiKCiOdu

and they are equal to zero since KeKr. Therefore A1(z;EZp)=
-A^zjEZp). Because r>l, we have that:

_ r-1 _
lQ(u,z)-h(z)|I(ueEzp)<M J |u-z|sI(ucEzp)

s-1

<M |u-z|xI(ucEzp).

Recall that we are in the set EZp, and here |u-z|>p>0. This 
implies: |u-z|<M|u-z|2<...<M|u-z|x. Hence, applying lemma 1 of 
Robinson (1988c) we can conclude that:

sup|A,(z;Ezp)i-0(ax). 
z

Because |h(u)-Q(u,z) |<M |u-z|x , ucEZp it implies that:

sup |A2(z;EZp)|-0(ax) as well, 
z

Finally,

sup |A(z;Ezp) | <2sup h(z) j- a'MlCplE] Idu 
z z zp I I

<M a 1 p  ̂J |u-z|X|K[— -] |du

-0(ax)



by lemma 1 of Robinson (1988c) .

Lemma 0

Let zt be a stationary strong mixing stochastic process as It was 
defined In definition 2.3.2., with strong mixing coefficient a(n) 
such that:

2na ( n ) V 2+fi<«>

and g(zt) has finite 2+6 moments, and 6>0. Let the function g(z)f(z) 
be such that it belongs to and All, then:

T
(A.2) sup I =i- J g(2j)K[5AZ£]- g(z)f(z)|-Op(aX+T *a ').

j-1

Proof:

In order to prove the lemma we are going to use the trick of 
employing the characteristic function of the K function, and hence to 
be able to avoid the term in z.

The left hand side of (A.2) is bounded by (A.3)+(A.4), where:
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- For (A.4) we apply lemma 1 to conclude that it is O(a^).

- For (A.3), we have, by taking into account that k (z ) is the 
characteristic function of K(z), that the expectation of this term is 
equal to:

E sup| J*(av)e iuz[̂  J g(zj)e”iuZj-Eg(zj)e iuzj]dv|
2  J - l

(A.5) <| |#c(av)| e | i ̂  g(zj)eiuZj- Eg(zj)eiuZj |dv.

But, on the other hand we have that :

T
E| T ][ g(zj)eiuZJ-Eg(Zj)eluzj |2-0(T_1)

J - l

since the L.H.S. of this equation is equal to:

T T
-i J Var[g(zj)eiuZJ ]+—  J Cov(g(zj )eiuzJ ,g(zm)eiuZm) .
T 2 “  T2 “
j-l m<j

By assumption, g(zj) has finite 2+6 moments, so the first term is 
clearly 0(T-1)* About the second term, its absolute value is bounded 
by:

T
2/2+6-1 , v iuziI 2+6\ 2 « ( j >  / j + { E | g ( Z j ) e i u z J| 

J - l

by Davydov (1968) inequality, and as the function g(zj) has finite
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2+6 moments we have that also this term Is 0(T_1). Therefore the
equation (A.5) Is Op(a_1T“i) by also using All.

Q.E.D.

Lemm* ft

Let zt be a stationary strong mixing stochastic process as It was 
defined In definition 2.3.2., with strong mixing coefficient a(n) 
such that:

I a(n)6/2+« <00 
n

and g(zt) has finite 2+6 moments, and 6>0. Let the function 
^/3zg(z)f(z) be such that it belongs to then:

T
(A.6) sup | - i -  ^-g(zj)K’ 3/3zg(z)f(z) |-Op(aX+T *a *) .

2 Ta2j-1

Proof:

We are going to prove the lemma by the usual trick of employing, 
once again, the characteristic function of the kernel function K, and 
so to avoid the term in z.

The left hand side of (A.6) is bounded by (A.7) + (A.8), where:

(A.7) sup | —  ̂ -g(zj)Kj z- Eg(zj)Kj>z|
z TaV i

and
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i
(A.8) sup | -i- J  E g ( z j ) K j  jZ- 3 / a z f ( z ) g ( z )  | .

- As far as (A.8) Is concerned, this is equal to:

sup | J_L_ Kj zg(zj)f(zj)dzj-3/3zf(z)g(z)| 
z a2

and calling g(z)f(z)—h(z), we have that this term is equal, when we 
integrate by parts, to:

-  £ KPF]h(2J>|l+ j£ KprJh'tzjJdzj-h'U)
and arguing as we did in (A.4) of lemma 2 we have that is O(a^).

- About (A.7), we have that the expectation of this term is equal 
to (taking into account that k (z ) is the characteristic function of 
K(z)):

T
E sup I |ivK(av)e”iuz[i T g(zj)e iuZj-Eg(zj)e iuzJ]dv|

2 j“l

T
(A.9) <| |vk(av)| e | i £ g(zj)eiuzj- Eg(zj)eiuZJ|dv.

j-l

But, on the other hand we have that:

T
E| T 1 g(zj>eiUZj-Eg(zj>eiUZj |V')

j-l

if we argue as we did in the preceding lemma. Therefore (A.9) is
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Op (a 2T i), and the lemma is proved.
Q.E.D.

For the next lemma we are going to use the following notation:

where Kr(u) stands for the r-th derivative of K(u).

Lemma 4

Let tzj)j-i,2,.. . an absolutely regular stationary stochastic 
process, as it was defined in definition 2.3.3.. Then for r>l and 
a>0, and assuming that the r-th derivative of the probability density 
function of zj exists, then:

Pretend for the moment that ẑ  and zj are independent. Then we 
have that:

a

Proof:

E|K.gr |̂ -a(1“a)_ra | |K(r) (v) |af (z^)f (zj+av)dzjdv

<Ma(1-a) ra | |K(r)(v)|dv

(A. 11) -0(a(1_a)_ro)

where M is a generic constant.
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But (A. 11) also holds for absolutely regular processes in view of 
lemma 8 of Denker and Keller (1983).

Q.E.D.

Lemma 5

Let v be a random variable with probability density function f(x) 
such that f(x)*0. Then:

E{IV}— >1 as b— >0, where:

’ 1 if f(v)>b
V-

. 0 otherwise.

Proof:

It is immediate

Lemma 6

Let g(u), h(u) and f(u) be the kernel estimators of the functions 
g(u), h(u) and f(u) respectively such that:

(A.12) sup|g(u)-g(u)|-0p(T“ia~ft+ax), 
u

(A.13) sup|h(u)-h(u)i-Op(T“ia-0+ax) 
u

and

(A.14) sup|f(u)-f(u) |-0p(T ia ^a^) 
u
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and assuming that X(ut) is Op(l) and It-I(f(ut_t)>b) then:

(A. 15) -1 J it
T*t-1 f(«t>•

-°P
T ia""(a+^)+a2̂ Ti+a  ̂ô -â  P

b 2-bc(J[ T â 1 +â  ]

Proof:

Using the facts that

1) (f(ut)-sup|f(ut)-f(ut)|)It<|f(ut)|It 
ut

and

2) The L.H.S. of the above inequality, i.e. (f(ut)- 
sup|f(ut)-f(ut)|)It is a positive random variable except in a set S 
which measure tends to zero as T goes to infinity,

we have that the absolute value of the L.H.S. of equation (A. 15) is 
less than or equal to, for T sufficiently large:

sup lg(ut)-g(ut)| sup|h(ut)-h(ut)| T

4 I

but by equations (A. 12)-(A. 14) and because |X(ut)i is Op(l) we have 
that this last term is in fact:

r T“ia“(a+/3)+a2XTi +ax“0+ax-0
^ [ v,2_k„b -bc^T 2a +a ] J

Q.E.D.
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Lemma 7

Let ut be a stationary absolutely regular stochastic process, as 
it was defined in definition 2.3.3.. Assume Al and A6. Let 

7”2(6-6,)/5*(2+5)>0. Then:

(A'16) I [ 1 esa-,Kt-,,s-1]lt-,-OptT(3/,-T'/2)a_(,+S/2+«)b",].
t-2 s-2

Proof:

Ve have that the L.H.S. of equation (A. 16) is equal to:

T
(A.. 17) J —y  e8a“1Kt_iis-1It-,+ f (Us i ) €ta_1Ks-i ,t-iIs-r

t<s

Calling yt“Ut'ut-i) we have that (A. 17) can be written as:

T
(a.18) ^g(ys.yt>-

t<s

On the other hand, we have that the expectation of the function 
g(ys,yt) with respect to ys or yt is equal to zero, since by 
construction the function Kt_1>s_1 is antisymmetric in its 
arguments. This implies that as long as the function g is symmetric 
in its arguments we can apply the theory already done for 
U-statistics to conclude that the expected square of (A.18) is less 
than or equal to:
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b"V ^[E[i*t-,.s-,]J+8] V2+4

and by lemma 4 this is in fact:

fl+61
O p ^ - h d b - , ] .

Q.E.D,

Lemma 8

Let ut be a stationary stochastic process satisfying the same 
conditions as in lemma 7. If in addition we assume A4 and A8 then:

(A19) zi I [t(Uti O ~ ,)]p(u‘-’)It-’-°p(1)-
r t-2

Proof:

The L.H.S. of (A.19) is equal to:

j . 2f(Ut ])] p(u^> It ]_
t,s

T
(A.20) —  y r rKt-i.S-l

* 3 = ^  - ; Et_,Ks_, Is-, ]

a Es-iEt-i,s-i] j It-i+

T

(A‘21) +2Ti J 2[ f I It_,.



-89-

As regards (A.20), call g(ut_1,us_1) the term inside the square 
brackets. It is easy to show that the expectation of this term over 
each of the arguments when they are taken as independent is equal to 
zero. Also, as long as the function g(.,.) is symmetric in its 
arguments we can use lemma 2 of Yoshihara (1976) on U-statistics to 
conclude that it is Op(l). In fact this term is:

- As far as (A. 21) is concerned, it can be rewritten as

~7 I M u t_,) 
t-2

where h(ut-1) is equal to the term inside the summand of (A. 21) and 
it has zero expectation. Thus, as long as ut-1 is absolutely 
regular, we have that the second moments are bounded by:

T T
I J Eh2(ut_,)+ ^ f(n)5/2+8(Eh(ut_,)2+«)V2+« 
t-2 n-1

but we have that the expectation of the term in the square brackets
of (A.21) is o(l) by lemma 2. Therefore the lemma is proved.

Q.E.D.



-90-

NOTATION

T
us *s-,jU

s-2

and g(u)-f(u)p(u).

In view of the contiguity property, I will write always ut 
instead of ut, where ut-yt-0'j;,xt. Also It will stand for:

' 1 if f(ut)>b

and b— >0 as T— *».

From now on, t-2 or s-2 below the summand sign means that the 
summand goes from t-2 up to t-T or s-2 up to s-T, unless otherwise 
specified.

Proposition 1

Let ut be a stationary stochastic process satisfying Al, A4-A11. 
Then if f(u)p(u)eX̂ :

. 0 otherwise
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Proof:

The L.H.S. of (A.22) is equal to:

(A. 23) -i J (ut_, )It-,
T‘ t-2

t-2

- About (A.24), we have that:

E((A.24)2)— i £ Ep2(ut-1)p'2(ut_,)^1-It_,}2 
t-2

T
+ I (p(ut_, )p' (ut_,) {1-It_,} ) (p(us_, )p ’ (US-1) {1-IS-1} >

t<s

which is Op(l) by lemma 5 and the mixing condition of the stochastic 
process ut. Note that E(p(ut)p'(ut){l-It})-0, by symmetry of the 
probability density function of ut.

- As far as (A.23).

This term can be split up into two terms:

2 P(us—i)̂ t—i,s-i
(A'25) -T I [p(ut-.> -S~2 v  --------- ] P'(ut-,)It-,

T*t-2 ,s-is—z

and
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 ̂ 2 esKt-i,s-i

(A>26) ^  t S=Tii-------T t-2 s£2Kt~i,s-i

(A.26) is the easiest one. This is equal to

^ X  € S ^ t - 1 , S - 1

<A,27) ITT* ̂
81  t - 2

, ( X £sKt-i,s-i)(i(ut-i)-f<ut-i))1 y s-2(A.28) +  . /- :-------------------  P'(ut-
a T , i t _ 2 f ( u t _ , ) . f ( u t _ , )

By lemma 7 and since E|p'(ut_1) we can conclude that (A. 27)
is:

Using the facts that:

and

sup (f(ut_1)-f(ut_1))-Op(T ia 1+ax) 
t

by lemma 6, we conclude that (A.28) is:

f T“ ia-2+ax_1 1 /1NPi •> _1 _, \ I “0p(i) if'
lb -bc^r T ^a +a 1 J

Ta4b4— *», and ax *b 2— >0.
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Thus, the term (A.26) is Op(l). Therefore, in order to prove the 
proposition it only remains to show that (A.25) is also Op(l). Now 
then, it is very easy to see that it is equal to:

T
(A. 29) -1 T (8(ut-l )-f<ut-l >> It_,p'(ut_,)

f(ut_,)-f<ut_,)

(A.30) + —  T P(ut_t)(f<ut-i>-f(ut-i»2 (ut-i)
^t-2 «»*_,)•£*(«„_,)

(a-3i) + ̂  I p(ut-,)(f(u^ ^ ; ^ - |>)

(A'32) + It-’p,(ut-’)-

About (A.29) and (A.30), we apply lemma 6 to conclude that they 
are Op(l). About (A.31) we call for lemma 8. Therefore it only 
remains to show that (A.32) is Op(l) to conclude the proposition.
But this is equal to:

T
— , y[[p(us_ , ) K ^  - 2f(ut_1)p(ut_1)] . It_,p'(ut_,)
2T1 ̂t<s ^ ut-i>

(A'33) *[f(ut.,)KS-l.t-l - 2f (us_, )p(us_,)] Is-,p' (Us-,) ].

Let hCuj-.^Ug.^ be the term inside the summamd sign and 

M ut-i)“Es_1h(ut_1.Ug.,)
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“(|p(us-, )̂ t~, .s-,f(us-,)/adus_, -2f(ut_, )p(ut_,) •

We have that (A.33) is equal to:

T
h(ut_,.Ug.,)-h(ut_,)-h(us_1)

t<s

h(ut_,).
2

For the first term we apply once again lemma 2 of Yoshihara 
(1976). And for the second one, arguing as we did in (A.21) of lemma 
8 we have that is equal to ô (l).

With this term we have concluded the proof of proposition 1. 

NOTATION

For the next proposition, g(u)-^/0uf(u)p(u) and g(u) is the 
nonparametric estimator of this g function.

Proposition 2

Let ut be a stationary absolutely regular process, as it was 
defined in definition 2.3.3., satisfying A1 to All. Then:

< A '3 4 )  iU/'kfc p ( U t - ' ) I t - ’ _
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Proof:

The L.H.S. of (A.34) is equal to: 

(A.35) -t £ +
T J t - 2

(A.36) -i y et{p' 
Tit-2

- About (A.35), only it has to be noted that et is an i.i.d. 
process with finite second moments (p'(u) may be considered as a 
bounded function) and using lemma 5 we conclude that this term is 

O p d ) .

-About (A.36). This term is equal to: 

Ta 1 £ŝ t-,,s-i
(a. 3D !- y «t — 2=2 It )

jit-2

Ta I esKt-i.s->
(A. 38) + —  y et -- 21?--------  It_,

Tit-2

(A.39) hi-
Ta ̂  P(us-i>Kt-i,s-i

t-2
s-2 g ( u t - i )  TAt-i

(A.40) + 1- y «t[ 
Ti L

Ta I P(us-i>Kt-i,s-i

t-2
s-2
f(ut-i) fCut-,)
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- About (A. 37). We are going to do the same trick as usual, i.e 
to split it up into two terms:

TS 1 esKt-«,s-i
(a .41) i- y «t — !=?--------- it_,

Tit_2

and

(A
•4 2 )  h  I £ t  K  I Ki-< -s-'  —  1 1

Tit-2 s-2
t-1

As regards (A.41), this term is equal to:

X

177 1 t£s£t K£(ut!;) lt-> + £s*t ls-']

and, once again, a straightforward application of Yoshihara (1976) 
lemma 2, when we take (et,ut_t)-zt, and bearing on mind that E| 
h(zs,zt)«0, then this term is Op(l). (By E|, is meant the conditional 
expectation on zs) .

As far as (A.42) is concerned, it is just only an application of 
lemma 6 once again, and therefore we have that it is also Op(l). 
Hence (A.37) is Op(l). In fact (A.42) is:

f T~ia~3+a^~2 j
Lb2-bc0.[T ^a 1+a^] J
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- About (A. 38). Once again we are going to split up into two 
terms:

(A.43) i- I et ][ es Kt_, ,s_, It_,
Tlt-2 s-2 f2(ut->

< * •“ > + h h * r a h s
t-2 s-2 f2<ut-.>

(A.44) is Op(l) as we did with (A.42) since:

sup l5>sKt-i,s-il -°p(T*> t s

and

sup if' (ut.,)-!' (ut_t) l-Op(T ia 2+ax ’) 
t

and if feFJ it implies that f' .  Hence (A.44) is

. r T-ia~3+ax~2 l 
P[b2-bc„rT_ia_,+aX1] P()':<r[

About (A.43), we have that it is equal to:

i- y , 1 y , k f^ut-i) T, / Ct Ta / CS t— 1 , S— 1 ^t-1
t-2 s-2 f2(ut-.>

—  T £fc r- J «s Kt., s., fiLiHt=i> - £0*^1) I 
T i t - 2  s-2 ^ 2 ( u t - , >  f2(ut-,)J

t— 1

Therefore, the first term is Op(l) by U-statistic theory (see 
Yoshihara, 1976), and using assumption A7 for the rate of
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convergence, and the second by taking the supremums as It was done in 
(A.44) for Instance, and using assumptions A8 and A9. Thus, (A.38) 
is also Op(l).

- As regards (A.39). As we did in equation (A.25) of proposition 
1, this term can be written down as follows:

(A.45) -1 y et Ifc_i +
T*t-2

(A.46) J: T *t g(ut-i><?<ut-l>-f<ut-l»2 i +
Tit-2 fCut.^.f^u,..,)

(A.47) -1 J et §(ut-,) (f(ut_,)-f(ut_,)) ^  + 
^t-2

< * •“ > ■ « -

- For (A.45) and (A.46) we use lemma 6 to conclude that they are 
Op(l), by assumptions A8 and A9.

- As regards (A.48). It is easy to show that this term is equal
to:

T
“71 2 f(ut!;) [ a p(us-i>^t-i,s-i“[g^~|- f(ut-i >P<ut-i>] *t-i 
T Jt*s
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and in a more compact notation to:

(A.49) -L. y h(yt,ys)
T1 it<s

where yt“(€t*ut-i) an(* h(yt,ys) *s ecIual to:

( a P(us-1 >*t-1, s-1- [ It-i +

(̂Ugf,) [ a P(ut-i^s-i ,t-i'[ fCUs-^pCug-,)] Is-,-

Therefore (A.49) can be written as:

(A.50) —  Th(yt.1,ys.l)-h(yt_;)-h(ys.1),
9T1 *  U2T1 it<s

(A.51) -i- J h(yt_,)
2TIZA t-2

and

h(yt-,)“r(u-^-y[ ̂  ^(P^s-i^t-i ,s-i> f(ut-i >P(ut-i)] It-,

Thus, the term (A.51) is Op(l) since h(yt_!) is a martingale 
difference and by lemma 3

s“p ll Eys(p(Us-')Ke-'.s-')-(9 ~ _ f(ut-i)p(ut->)| it-i-OpC1)

and as far as the term (A.50) is concerned, once again, we apply the 
U-statistic methodology to say that it is
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0plT"7/,a V 1].

- As far as (A.47) is concerned, this term is equal to:

which it can be written into the sum of

(A•52) -i- T h(yt_t ,ys_t )-h(yt-1 )-h(ys_1)
9 T 1 9 u2T1 i _t<S

and

(A.53) —  ) h(yt_,)
2 T t-2

where h(yt_, ,ys_,)■

et Sliltnl [I Kt_, s_,-2f(ut_,)]lt-,+ 
f’Cu,-.,) la

eg SCUg-j,) g _2f(us_1)]ls_,
f’K-,) La

and h(yt-,)-£5̂ ^_-) [ ; Ey^t_,, s_, )-2f (ut_, )]g(ut_,) It_,.

Obviously, there is nothing new in this two terms with respect to 
what we have said in (A.50) and (A.51) respectively. Thus, these two 
terms (A.52) and (A.53) are both Op(l).

With this, we conclude that the term (A.39) is Op(l). Therefore,
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in order to prove the proposition, it only remains to show that the 
term (A.40) is Op(l).

- As far as (A.40) is concerned, i.e.:

(A.40)
t-2

YJi ̂  p(us—i )̂ t—i >s-i
s-2
f(ut-i)

p(ut-!>
i<ut_; y f,<ut-i>]It-i

can be written as:

(A.54) L  J ,t lt_t
T*t-“ C 1

(A.55) + et(p(ut_, )-p(ut_,))[ (f' =i21 +

(f (ut_, )-f (ut_, ) ) J f (ut_, )-f (ut_, )
  +   +
f(ut_,)f2(ut_,) f(ut_,)

(f • (Ut.,)-f • (Ut.,))(f(Ut.,)-f(Ut_,))
] It-1

- 1 >>

(f(Ut_,)-f(Ut_,))2 f(Ut_,)-f(Ut_,) 
 +   +

f(ut_,)f2(ut_,) f(ut-i)

(f • (Ut_,)-f•(Ut_,))(f(Ut-,)-f(Ut-,))

f(ut-i)
] It-1
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Each term from (A.54)-(A,56) is Op(l) since their terms are 
nothing different from what we have done in proposition 1 or in 
proposition 2 up to now.

Q.E.D.

Proposition 3

Let ut be as in proposition 2. Let also assume the same 
conditions as in proposition 2. Then:

(A-57) hi xt-.<p<ut-.>-p<ut - , > > ^ ^ i t-,-opa>.
T t-2

Proof:

The L.H.S. of equation (A.57) is equal to:

(A-58) hi
T t-2

(A.59) + i- 7 xt-t(p(.ut_,)-p(ut_,)) p' 
t-2

The most easy term to show that it is Op(l) is (A.59), since in 
fact it is nothing different than what we have done in proposition
1. The only difference is that we have xt-1 in (A.58) and (A.59), 
but it does not make any difference at all since it is independent of 
us with finite second moments.

- About (A.58) is evident that it is Op(l) since the only thing
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to do Is to split It up in

- p(ut.,) and

as we have done in proposition 1 and 2 and to take the supremums as 
we did with the terms (A.46) and (A.47) for instance. (See remark at 
the end of proposition 4).

Proposition 4

Let ut be a stationary stochastic process as in proposition 1 or
2. Let also assume that Al, A2 and A3 are satisfied. Then:

(A.60) ^ ̂  [ Ut-xt-,
t-2

9?(ut-i> ! v- ------- At-i'
9ut_,

(xt-xt_1p,(ut_1))(xt-xt_1p' (ut_,))' J-°p(l).

Proof:

The L.H.S. of (A.60) is equal to:

i £ [xt-.xt'-fxtxt.,' It-^P' (ut_,)) ]
t-2

t-2

" f 1 txt-ixt,+xtxt-i' -P'(ut-1))] It-
t-2
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+ T I [ xt-1 xt' +xtxt-,' ]p ' <ut-.) t1"11-1}
t-2

+ T I 8^ ^ ~ ] )2 )!t-.
t-2 '

+ T I *t-i*’t-iP'<ut-i)J{1-It-i}-
t-2

Now the second and fourth terms involve only an application of 
lemma 5, and the first and third ones are Op(l) by lemma 6. Although 
we do not have here ĉ-, there is nothing to worry about since we have 
1/T instead of l/ji- Thus, only we are going to need that the 
difference to be Op(l), i.e. its consistency.

Remark:

Take into account that although we have the xt's inside the sums, 
it does not cause any problem in order to apply propositions 1 and 2, 
since by assumption A3, the process xt is independent of ut and by 
assumption A2 it has finite second moments.

Theorem 1

Under the same conditions of proposition 4, we have that: 

T}0}*-§)-op(l).

Proof:

From (5.1) and (5.2) as we have said in section 5 of the chapter
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we only need to show that (5.3) and (5.5)-(5.7) are Op(l).

In order to prove the theorem, we are going to use a device by 
Hardle and Stoker (1987) of proving that (5.3) and (5.5)-(5.7) are 
op(l) for an uncomputable estimator, i.e. when the trimming It_, Is 

substituted by It-i*

and after that, to prove that in fact it does not make any difference 
at all asymptotically between the computable (when we use It-i) an<* 
the uncomputable one.

Now from proposition 1 through proposition 4 we have seen that 
(recall the remark at the end of proposition 4):

1 if I f (uj-.., ) |>b

. 0 otherwise

is substituted by

r 1 if f(ut_1)>b

. 0 otherwise

1)

3)
t-2



-106-

4> y £ <xfxt-i ̂ ^3^- It-i)x(xt-xt-i 1 t - ^ )’
t-2

-(xt~xt-iP' (ut-^JxCxt-x^^' (Ut.,))'

are all Op(l), but also this is still true if b, the trimming 
parameter, is substituted by:

b-ca(T â Va^^-b-c-j.

Recall that this b-cj still 0(b), since b”1̂ — >0, so for this 
trimming parameter b-cj 1),2),3) and 4) are still Op(l).

But by construction:

p{ £ xt(P(ut-t)“P(ut-i)*t-i> |>e» lf(ut.,)-f(ut_,) i<cT, Vt}<

p{ I “T J xt̂ P(ut-i )~P(ut-i )Jt-i ) |>€ ’ l£(ut-i)“f(ut-i)l<cT* Vt}-'tj u '

But, on the other hand, we have that:

P{ sup |f(ut_,)-f(ut_1) |>cT} 
t

goes to zero as T goes to infinity, and consequently we can conclude 
that:

p{ \ xt<P(ut-i)“P(ut-i>^t-i> |>£» if^-^-f^.^KCx.Vt}

goes to zero and so:

>e } goes to zero.
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Therefore 1) Is also true when we substitute It-i by *t-i 
2), 3) and 4) we can-argue in the same way to conclude that:

T}«?*-0)-op(l). 

and theorem 1 of section 5 is proved.

With
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APPENDIX B

In this appendix we are going to give the proof of theorem 2. 
Since, as we have shown elsewhere (see section 3 of this chapter), 
that the estimation of the parameters /3 is asymptotically independent 
of the parameter(s) 6 of the p-function, we are going to prove the 
theorem as if these parameters were known to the practitioner as well.

Before proving the Central Limit Theorem (C.L.T.) of the 0 
estimates, we are going to prove a previous lemma which turns out to 
be a corollary of a theorem by Brown (1971).

Lemma 1

Let vt be a sequence of martingale difference variables such that 
they have 2+6 finite moments (6>0). Then we have that:

(B.l) -T 2 V t  
T*

has the Central Limit Property, i.e. its limit distribution is a

N(0,<r), where <r2-lim ^/x2Ev2t.
T
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Proof:

We only need to prove that

i) plim i £ Ev^lpast-o2

and

ii) lim Evjl( |v, |>eT<r2)“0.

Let ns show first i).

Due to the fact that we do not assume existence of the fourth 
moments of vt we do the usual trick of truncating the vt’s.

Calling vt-vtI(|vt|<a)

To deal with Evt2 or Ev£ no really matters for our purpose since 

the difference is equal to

and

vt-vtI(|vt|>a).

6 J|vt|>a|vt|2+idFt<
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a

and for sufficiently large a this is less than or equal to some e

On the other hand:

(B.3) E{I I Et_,v£ - i I I E(Et-,v£-v£)2
t t T

4  E(Et_,v£-v£)2

which goes to zero if a-o(Ti).

By (B.2) and (B.3)

plim [f I Vt " f J Et~ivt] is e(lual to zero,

So, if we prove that:

1 — 2 2(B.4) plim | J vt -<r then i) will be proved.

But, on the other hand, we have that the L.H.S. of (B.4) is equal
to:

plim T I “ plim T £
and by Chebyshev's theorem and (B.2) we have that the last term of 
this difference goes to zero. Hence, part i) is proved.
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Part ii) is obvious since vt2 is uniformly integrable. Q.E.D. 

Lemma 0

Assume Bl, B2, B3 and A2. Then:

1 2 82p(ut_i) xt_lx^_1€t— *0 in probability, 
t au2t_,

Proof:
It follows immediately by noting that ct is an i.i.d. process and 

that:

t-,>, x;At-1At-13ut_,2

which by assumption B3 has finite 2+5 moments, where 5>0.

This lemma will allow us to say that:

(B.5) ap(ut-l>)(xt-xt_, 8P(ut-l>)'
t dut-1 cklt-1

and

1 2(xt-xt_, §£<^l2)(xc-xt_, M i t i )  ).+ 
t au,.., 8ut_,

V-------- xt-ixt-i€t'aujt_,

which is the second derivative w.r.t. 0 of 

f 1 (“t-P(ut-i))2



have the same probability limit, and which by assumption B2 is finite 
and definite positive.

Lemma 3

Let 1 <xf xt-i T2 t
9p(ut-i)
dut-i

>€t" I vtTz t

then under Bl, B2, B3 and A2

where 0<C is the probability limit of (B.5).

Proof:

E(vt|vt_1 v^-O by B2 and therefore vt is a martingale
difference. Now by B2 and A2 E|vt|2+̂ «» uniformly, so we apply lemma 
1 to obtain the required result.

Q.E.D.

Therefore by lemma 3 and B2 we have that

(B.6) (i 2(xt“xt-i 9p(utA j. -t aut_, 9ut_,

9p(u£-12)

converges to a N(0 ,ff*) where a* is given by C 1 Ee£ because the are
i.i.d., and where the matrix C is given by (B.5)

In our Gauss-Newton framework we have:
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e-Pr+Wxt-xt-, — 9 p ( U t - i ) )')-'t But_,

t 3ut_,

Now if. is consistent then the limit distribution of >/T(/3-/3) 
has the same distribution as in (B.6) because in general if we have 
that vi— >r0 in probability and 1 Qx(**)~Q(̂ ) l-*0 uniformly in v in 
probability then Qt(i'x)— Q(vo) also, by lemma 4 of Amemiya (1973).

Therefore Theorem 2 of section 5 has been proved.



-114-

APPENDIX C

Here, we are going to prove that the measures generated by (ut) 
and {ut} are contiguous. To do that, we have to check all the 
assumptions listed in Roussas (1972) chapter 2, i.e.:

define q(ut ;0,0*)’
fdpi(u,,0)

(u, ,/S*)

and

q(u2,u1 ;0,0*)-
dP2(u1 ,u2,0)
dP2(u1 ,u2,0*).

(A.l) For each 0C0J, the Markov process {ut}, t>l is stationary 
and ergodic.

(A.2) The probability measures are mutually
absolutely continuous for all t>l.

(A.3) Let ^(0,0*)-
q(u2,ut;0,0*)

q(u,;0,0*)
be ,then

(i) For each 060,, the random function ^(0,0*) is 
differentiable in quadratic mean (q.m.) [Pp] with respect to 0* at
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0*-0.

Let y?, <<3) be the derivative in q.m of ̂ (0,0*) w.r.t. 0* at 0. 
Then:

(ii) (0) is a measurable function.

Let r(0)-4E0[p(0)pO})']. Then:

(iii) r(0) is a positive definite matrix for all 060,.

(A.4) (i) For each 0e0, , q(ut ,u2;0,0*)—*l in P, q as 0*— >0.

(ii) V0e01, q(uf;0,0*) and q(u, ,u2 ;0,0*) are measurable.

In the model what we have to check is (A. 3), because of (A.l) is 
satisfied by assumption and (A.2) is satisfied providing that the 
probability density function of the disturbances is different than 
zero. About (A.4), if (A.3) is true then the conditional probability 
distribution of the residuals under 0* converges to the one under 0 
and the probability density function under 0* converges in 
probability to the probability measure under 0. Thus, the only 
problem is to check condition (A.3).

Lemma 1

Assume that the random variable et in (3.1) has a continuously 
differentiable probability density function g such that:

(i) g(x)*0 VxeR
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(il) "g(x)dx<<

and

(lii) JpX2g(x)dx<c

and the common distribution o£ the ut's admits the following 
decomposition:

T
fi(ui uT)-f(u1) U gCufpCut.,))

t-2

where ut, t-1,2 T, are the residuals obtained from yt~/3'xt,
t-1,2 T,. Then the condition (A.3) is satisfied.

Proof:

Let u*-y t-/3*' xt be. It can be seen that: 

. /*> o*N_rg(u?-p(ut))i *.g(u2-p(u,))

Then, the derivative of this function with respect to 0* 

evaluated at 0 is equal to:

| ju.2„P^ij| (x2-x,p(u,) ) . 2g(u2-p(u1)) 2

Hence, we have that:

E(9/3*30*• lp*-/s) " I 84g(u2-p(i|)) **'f<Ui>duiduj-

where x-(x1-x2p(u1)).
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Therefore, what we have to prove Is that:

But the L.H.S. of the above equation Is less than or equal to 2 
times

Thus, if each of this two terms goes to zero then we have proved 
part (i) of (A.3). The proof of the second term is identical to 
theorem 3.3. of Kreiss (1987) but instead of having Xĥ Z(j-l,/3,/3*) we 
have v(h'x2-h'x1p(u1)).

About the first term, this is equal (applying the mean value 
theorem and e2 standing for a point lying between 
€2-vh'x2-(p(u1-vh'x1)-p(u1)) and e2-vh'x2-vh'x1p(u1)) to:

p(u,)J- i (pCUj-h'vx,)-p(u,))} ]2 g(€j)df(u,)du1de2.
g(e2)

Now then:

gi(u2-p(ut))

since g and its derivative are continuous and also:
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lim { h'x^Cu, )-l/v(p(u1-vh'x1 )-p(u1) )—0. 
v->0

Therefore we can conclude that (A. 3) (1) Is satisfied by applying 
the Lebesgue dominated convergence theorem since we are able to 
introduce the lim inside the integrand sign.

Also r(/3)>0 since by hypothesis the information matrix is less 
than infinity (see assumption B2), and the measurability is also true 
since the limit of measurable functions is a measurable function as 
well.

Q.E.D.
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CHAPTER 4

SOME FINITE SAMPLE EVIDENCE ABOUT THE ADAPTIVE ESTIMATOR OF CHAPTER 3

In this chapter, we provide some finite sample evidence about the 
semiparametric estimator which we have studied in chapter 3.

We simulated a wide variety of models. We report only few of 
them, since the findings on the other models are of a similar kind. 
Throughout the whole set of simulations the regression model has been:

(1.1) yt-a+0xt+ut

where xt-0.9xt_,+vt, and vt are independent and identically 
distributed zero mean normal with variance equal to 4. We have 
chosen a-1 and 0-2.

We consider seven different models for the autoregression 
function of the residuals ut. These are as follows:

Model 1. ut~ Ut.1—  +«e .

Model 2. ut-ut_1(.25+5exp(-ut_12))+Ct *
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Model 3. ut-ut_1(.25-5exp(-1/9Ut-12))+fit »

Model 4. ut-ut_1exp(-1/9ut-i2)>+€t »

Model 5. u^-Ssinu^^e^. ,

Model 6. ut-5(sinut_1+0.5sin(2ut_1))+«t,

Model 7. ut—,5ut_1+et

where the e '̂s are Independent zero mean normals with a variance of 4,

All of these seven models considered above satisfy the 
assumptions of theorem 1 of chapter 3, the view associated with 
theorems 3.2.2 and 3.2.3 of chapter 2 and by Pham and Tram's (1985) 
result for model 7.

By parametric estimator of a and 0 we will understand the least 
squares estimator of these parameters when the autoregression 
function of ut is perfectly known, i.e. the functional form and the 
parameters that the autoregression function may have. On the other 
hand, by MIS we will understand the estimator of a and 0 that we 
obtain when we estimate the regression model in the belief that the 

autoregression function of the residuals follows a linear AR(1) model.

In section 4.1, we will see the performance, in terms of the Mean 
Square Error (M.S.E.) of the parametric, semiparametric and the MIS 
estimators of the model studied in chapter 3. In section 4.2, we 
examine the power of a Wald test for the parameters of that model and 

for the different estimators, e. g. parametric, semiparametric and 
MIS.
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4.1.- NUMERICAL RESULTS IN FINITE SAMPLES OF THE ADAPTIVE ESTIMATOR

In this section we provide some finite sample evidence about the 
performance of the semiparametric estimator of a and 0, and give some 
evidence through a Monte-Carlo experiment of the open question posed 
in the introduction of chapter 3. This turns out to be very 
important in view of the inability to give, in mathematical terms, a 
proof for the inequality (1.4) > (1.5) or the inequality given in 
equation (1.7) of that chapter.

All the computations were carried out in double-precision FORTRAN 
on the University of London's Amdahl computer, using a random 
generator from the NAG library and the Marquardt subroutine taken 
from Press et al. (1986) to minimize the non-linear least squares. 
For each of the seven models we generated 1000 bivariates time series 

and xt of lengths T-100 and 200.

In tables 4.1-4.7 below, we only report the M.S.E. for a and 0 
since the bias is much the same for the parametric, MIS, and the 

semiparametric estimator, and its contribution to the M.S.E. is 
negligible.
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TABLE 4.1
M.S.E. for model 1 with sample sizes of T—100 and T—200, 
and 1000 replicates.

T-100 T—200

a B a B

Parametric .0570 .0029 .0270 .0013
MIS .0650 .0035 .0316 .0016
a-. 65 .0670 .0034 a-. 35 .0340 .0017
a-. 95 .0640 .0033 a-. 65 .0310 .0015
a-1.25 .0640 .0034 a-. 95 .0310 .0015

TABLE 4.2
M.S.E. for model 2 with sample sizes of T-100 and T-200, 
and 1000 replicates.

T-100 T-200

a B a B

Parametric .0180 .0013 .0058 .0003

MIS .1600 .0071 .0750 .0031
a-. 35 .0900 .0031 a-. 35 .0300 .0006
a-. 65 .0790 .0027 a-. 65 .0260 .0007

a-. 95 .0850 .0033 a-. 95 .0320 .0010
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TABLE 4.3
M.S.E. for model 3 with sample sizes of T-100 and T-200, 
and 1000 replicates.

T-100 T-200

a e a 6

Parametric .0082 .0004 .0034 .0002
MIS .1162 .0066 .0522 .0027
a—. 65 .0154 .0005 a-. 35 .0120 .0002
a-.95 .0157 .0006 a-. 65 .0100 .0002
a-1.25 .0180 .0007 a-.95 .0100 .0002

TABLE 4.4
M.S.E. for model 4 with sample sizes of T-100 and T-200, 
and 1000 replicates.

T-100 T-200

a 6 a B

Parametric .0750 .0035 .0330 .0014
MIS .1200 .0055 .0570 .0025
a-. 65 .0950 .0045 a-.35 .0480 .0022
a-. 95 .0970 .0042 a-. 65 .0430 .0018
a-1.25 .0990 .0044 a-. 95 .0570 .0018
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TABLE 4.5
M.S.E. for model 5 with sample sizes of T-100 and T-200, 
and 1000 replicates.

T-100 T-200

a 6 a B

Parametric .0037 .0002 .0017 .00009
MIS .1500 .0096 .0689 .0040
a-. 35 .0175 .0006 a-. 35 .0110 .0001
a-. 65 .0147 .0005 a-.65 .0100 .0001
a-. 95 .0194 .0007 a-. 95 .0122 .0002

TABLE 4.6
M.S.E. for model 6 with sample sizes of T-100 and T-200, 
and 1000 replicates.

t-:100 T-200

a e Of e

Parametric .0022 .0003 .0008 .00005
MIS .2700 .0130 .1200 .0058
a-. 35 .0750 .0015 a-. 35 .0170 .00008

a-. 65 .0590 .0007 a-.65 .0160 .0001

a-. 95 .0730 .0014 a-.95 .0250 .0005
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TABLE 4.7
M.S.E. for model 7 with sample sizes of T-100 and T-200, 
and 1000 replicates.

T-100 T-200

Of 8 Of 6

Parametric 
MIS 
a-.65 
a-. 95 
a-1.25

.1800 .0070 .0900 .0031

.2100

.1900

.1800

.0083

.0075

.0073

a-. 35 
a-. 65 
a-. 95

.1000

.1000

.0920

.0041

.0036

.0034

From the above tables, we can distinguish three different kinds of 
results, as far as the M.S.E. is concerned. For model 1, we observe 
that there does not seem to be a loss of efficiency when we estimate 
the parameters of equation (1.1) in the belief that the residuals ut 
follow a linear AR(1) instead of the true non-linear one. For model 
4, we observe that the ratio between the M.S.E.'s of the MIS and the 

parametric estimator is near 2, and this ratio gets better as the 
sample size increases. And finally, for models 2, 3, 5 and 6, we 
observe that this ratio is quite enormous, for example in model 6 it 
is as big as 116, and once again this ratio increases with the sample 
size.
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This difference in the results may be explained by the severity of 
the non-linearity in the autoregression function p. In all of these 
models, the autoregression function has one singular point at the 
mean of the process, that is at zero. But the characteristic which 
differentiates models 1 and 4 from models 2, 3, 5 and 6 is that the 
latter models have more than one singular point, as it is the case 
for model 2, or that the autoregression function induces a cyclical 
pattern in the residuals ut, as it is the case for models 3, 5 and 
6. These last four models are such that the non-linearity is likely 
to be more "severe”, and thus its approximation by a linear model may 
be very poor, a fact reflected in the M.S.E. of the estimators of a 
and 0 for the MIS and parametric estimators.

Although models 1 and 4 have only one singular point and they do 
not have a cyclical behaviour, their difference is that for model 4 
the non-linearity may be a little more severe than for model 1, 
especially for small values of ut, where the distribution of the ut 
is more concentrated. This may explain why the results for model 4 
are better, as far as the behaviour of the parametric estimator is 
concerned.

As a whole, the results are very encouraging, showing that there 
is going to be a loss of efficiency for the estimators of a and 0 if 
we estimate the model in the manner of a linear AR(1) model, and this 
loss of efficiency depends on the severity of the non-linearity of 
the autoregression function.

As far as the bandwidth parameter a is concerned, we observe that
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the a, for which the semiparametric estimate proposed in the previous 
chapter performs better in terms of the M.S.E., is quite stable 
throughout the models. Also, it seems that the range of "best" a's 
is quite wide. This "best” bandwidth parameter a seems to be between 
0.65 and 0.95, but with the important characteristic that the 
difference in the M.S.E. when the bandwidth parameter a is 0.65 or 
0.95 is quite negligible, except in model 6, although for both a-0.65 
and a—0.95 the performance of the semiparametric estimator is much 
better than the MIS one. For the sample size of 200, the stability 
seems greater, and although the bandwidth parameter is between .35 
and .65, their difference in performance is very small. It is 
worthwhile pointing out that we are aware that this parameter a may 
be influenced by the variance of the process ut, although this 
influence may be difficult to determine in view of the difficulty to 
obtain a close expression for the variance of a non-linear AR model. 
But, we can point out that as a rule of thumb, we might choose a to 
be a value around T-0*1 which is perfectly legitimate in view of the 
assumptions of theorem 1 of chapter 3. All this discussion excludes 
model 7, but even in this model, the M.S.E. of the semiparametric 
estimator is near identical for all the bandwidths, and very close to 
the parametric one.

As it was pointed out earlier, we simulated other models to see 
especially the performance of the parametric versus the MIS estimator 
of a and 0, in view of the inability to show the inequality of
(1.4)<(1.5) or the inequality given by equation (1.7) in chapter 3.
An important fact that we found, as we might expect, is that the gap 

between the MSE's of the parametric and MIS decreases when the 
autocorrelation goes to 1. This fact is expected since as the
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autocorrelation goes to 1, ut may be written as a linear combination 
of ut-1, i.e. the model becomes linear. We have also studied the 
performance of the parametric and MIS estimators with a sample size 
of 1000. Although this sample size is unrealistic for most time 
series data sets available, we have done it to see their 
performance. We observed two facts. First, for the estimated 
asymptotic covariance matrix given by the M.S.E. times the sample 
size is "identical" for T-200 and T-1000. And secondly, the 
performance of both estimators are more similar than for samples 
sizes of T-100 or T-200. These last two points may corroborate the 
conjecture that the inequalities given in equation (1.7) or (1.4) >
(1.5) are in fact true.

4.2.- THE BEHAVIOUR IN FINITE SAMPLES OF THE ADAPTIVE ESTIMATOR IN
HYPOTHESIS TESTING

In this section we explore finite sample evidence of test 
statistics for the parameters of the regression model using the 
parametric, semiparametric and MIS estimators. The reason for this 
study is the same as in the previous section. If the inequalities 
(1.7) or (1.4) > (1.5) were true, as intuition tells us, then 
although we can still form consistent tests under the MIS model, 
these tests would have less power than the ones under the true 

specification.

Thus, as it was already argued in the previous section, it would
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be Interesting to observe the finite sample behaviour of test 
statistics of the model for the different estimators.

We have used two sample sizes of lengths T-100 and 200, and 
replicated the model 1000 times for both sample sizes. We have used 
the same seven models as in the previous section. All the 
computations were carried out on the University of London's Amdahl 
computer.

We have to mention that we have changed the regression model 
slightly. As we have seen in the tables of section 1, the estimated 
variances for the different models were rather small. Thus, this 
will imply that unless the difference between the true parameter and 
the hypothesized one is rather small, the power of the 
test-statistics for the MIS, the parametric and the semiparametric 
estimators will be near 1. There are two options whereby the 
variance of the estimator could be increased. The first one is to
increase the variance of the innovations et. The second one is to
decrease the variance of the regressors. We have chosen the second
alternative, and we have chosen for the xt the following model:

x -.9x +v t t-i t

where the vt's are independent zero mean normal with a variance of
0.16.

We also have to point out that we have calculated the power of the 
test-statistics in a different way, although it makes no difference 
at all, as far as the conclusions that we can draw from it are 
concerned. Normally simulation studies of test-statistics are
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carrled out by varying the a's and 0's of the model and keeping the 
null hypothesis constant. By contrast, we have studied the power of 
the tests by keeping the parameters of the model fixed and varying 
the null hypothesis. Our test-statistics are given by:

and

i~T(p-0)V(2,2)~' (0-0)i>x’

where V(i,l) 1—1,and 2 stands for an estimator of the asymptotic 
variance of T̂(a-a) and Jt(0-0) respectively.

Tables 4.8-4.14 show the proportion r of rejections in 1% and 5% 
tests for the different estimators. The numbers .35 or .65 or .95 or 
1.25 stand for the chosen bandwidth parameter a of the semiparametric 
estimator.
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TABLE 4.8

it's for model 1, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

G.L.S. HIS a-.35 a-. 65 G.L.S. MIS a—.65 a-. 95
a-1.00 .020 .033 .029 .018 .023 .023 .022 .015
a-1.25 .092 .095 .102 .072 .180 .167 .174 .149
o—l.50 .399 .370 .364 .316 .739 .684 .694 .678
o-2.00 .968 .933 .928 .916 1.00 1.00 .998 .998

0-2.00 .027 .023 .023 .021 .021 .015 .020 .018
0-2.25 .112 .062 .091 .064 .181 .128 .167 .145
0-2.50 .373 .271 .353 .287 .678 .593 .642 .622
0-3.00 .908 .822 .861 .843 .995 .995 .992 .992

o-l.00 .082 .099 .095 .067 .072 .070 .073 .063
a-1.25 .228 .231 .215 .185 .380 .339 .360 .336
a-1.50 .621 .564 .591 .543 .882 .833 .854 .839
o-2.00 .994 .981 .975 .967 1.00 1.00 1.00 1.00

0-2.00 .075 .064 .096 .064 .073 .067 .077 .064
0-2.25 .233 .184 .218 .195 .352 .294 .325 .316
0-2.50 .591 .478 .543 .506 .842 .770 .805 .795
0-3.00 .971 .926 .938 .945 1.00 .999 .999 .999
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TABLE 4.9

t ' s  for model 2, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

MIS a-. 35 a-. 65 G. L. S. MIS a-. 35 a-. 65
a-1.00 .044 .048 .103 .035 .018 .026 .037 .009
cr-1.25 .459 .067 .343 .088 .833 .091 .600 .205
O-1.50 .978 .182 .793 .456 .999 .316 .974 .867
o-2.00 .999 .631 .963 .939 1.00 .906 .998 .999

0-2.00 .060 .019 .092 .021 .031 .014 .028 .006
0-2.25 .401 .040 .310 .078 .711 .080 .494 .168
0-2.50 .905 .146 .721 .393 .996 .281 .965 .806
0-3.00 .998 .542 .968 .914 1.00 .880 .998 .999

o-l.00 .106 .110 .168 .063 .061 .086 .082 .027
a-1.25 .698 .164 .536 .275 .943 .199 .772 .425
a-1.50 .994 .342 .886 .710 .999 .519 .983 .970
o-2.00 .999 .804 .976 .964 1.00 .976 .998 1.00

0-2.00 .118 .064 .160 .055 .085 .067 .085 .021
0-2.25 .609 .136 .486 .201 .871 .180 .703 .377
0-2.50 .964 .310 .847 .635 .999 .518 .985 .933
0-3.00 .999 .744 .979 .965 1.00 .955 1.00 1.00



-133-

TABLK 4.10

t ' s  for model 3, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

G.L.S. MIS a-. 65 a-. 95 G.L.S. MIS a-. 35 a-. 65
a-1.00 .030 .028 .015 .007 .019 .011 .036 .016
a-1.25 .680 .056 .483 .329 .957 .067 .918 .897
o-l.50 .998 .160 .978 .945 1.00 .356 .998 .999
o-2.00 1.00 .644 1.00 1.00 1.00 .961 1.00 1.00

0-2.00 .030 .005 .011 .004 .016 .007 .023 .008
0-2.25 .587 .032 .396 .276 .865 .055 .850 .790
0-2.50 .978 .120 .931 .864 1.00 .250 1.00 1.00
0-3.00 1.00 .522 .999 .999 1.00 .851 1.00 1.00

o-l.00 .091 .083 .057 .034 .064 .058 .100 .048
0-1.25 .861 .139 .697 .593 .999 .178 .972 .964
a-1.50 1.00 .344 .988 .985 1.00 .590 .999 .999
o-2.00 1.00 .862 1.00 1.00 1.00 .988 1.00 1.00

0-2.00 .084 .044 .047 .029 .073 .034 .085 .048
0-2.25 .750 .107 .627 .504 .962 .153 .936 .925
0-2.50 .994 .287 .972 .951 1.00 .498 1.00 1.00
0-3.00 1.00 .724 1.00 1.00 1.00 .956 1.00 1.00
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TABLE 4.11

t ' s for model 4, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

G.Li. S. MIS a-. 65 a-.95 G.L. S. MIS a-. 65 a-. 95
o-l.00 .025 .038 .036 .024 .019 .028 .022 .011
o-1.25 .087 .074 .090 .058 .140 .096 .140 .106
o-l.50 .324 .211 .361 .221 .627 .393 .573 .520
o-2.00 .907 .745 .847 .809 .997 .964 .990 .990

0-2.00 .025 .018 .050 .030 .019 .013 .021 .015
0-2.25 .094 .059 .099 .063 .157 .091 .146 .107
0-2.50 .332 .170 .295 .226 .601 .359 .555 .495
0-3.00 .860 .649 .813 .760 .995 .938 .984 .973

o-l.00 .086 .114 .110 .081 .063 .084 .080 .057
o-1.25 .184 .160 ' .208 .154 .318 .230 .312 .259
a-1.50 .542 .395 .502 .426 .809 .622 .752 .717
o-2.00 .973 .872 .934 .912 .999 .991 .997 .996

0-2.00 .084 .067 .103 .069 .067 .064 .072 .048
0-2.25 .218 .136 .211 .167 .323 .214 .297 .260
0-2.50 .535 .344 .482 .331 .794 .604 .748 .703
0-3.00 .939 .813 .908 .896 .999 .977 .996 .995
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TABLE 4.12

t ' s  for model 5, with sample sizes of T—100 and 200, 
and 1000 replications.

T-100 T-200

G.L.S. MIS a-. 35 a-. 65 G.L.S. MIS a-. 35 a-. 65
o-l.00 .023 .023 .043 .011 .024 .025 .038 .019
a-1.25 .968 .040 .831 .678 1.00 .058 .988 .973
a-1.50 1.00 .120 .987 .993 1.00 .253 1.00 .999
o-2.00 1.00 .551 1.00 1.00 1.00 .894 1.00 1.00

0-2.00 .023 .010 .025 .004 .023 .011 .011 .002
0-2.25 .868 .032 .737 .573 .999 .047 .983 .926
0-2.50 1.00 .097 .989 .985 1.00 .193 1.00 1.00
0-3.00 1.00 .388 .998 1.00 1.00 .734 1.00 1.00

o-l.00 .071 .078 .102 .032 .064 .055 .088 .019
a-1.25 .993 .116 .994 .855 1.00 .155 .990 .989
a-1.50 1.00 .291 .994 .997 1.00 .479 .997 .999
o-2.00 1.00 .771 1.00 1.00 1.00 .963 1.00 1.00

0-2.00 .098 .057 .078 .023 .073 .061 .053 .019
0-2.25 .950 .101 .865 .774 .999 .134 .998 .983
0-2.50 1.00 .218 .992 .995 1.00 .374 1.00 1.00
0-3.00 1.00 .591 1.00 1.00 1.00 .873 1.00 1.00
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i m & a.,13

t 's for model 6, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

G. L. S. MIS a-. 35 a-. 65 G.L. S. MIS a-. 35 a—.6!
o-l.00 .030 .034 .072 .032 .010 .023 .047 .045
a-1.25 1.00 .049 .886 .610 1.00 .051 .990 .933
o-l.50 1.00 .108 .972 .964 1.00 .172 .996 .993
o-2.00 1.00 .379 .991 .990 1.00 .683 .999 .999

<5-2.00 .038 .014 .047 .007 .012 .008 .007 .003
<5-2.25 .979 .022 .818 .506 .999 .040 .991 .904
<5-2.50 1.00 .058 .970 .942 1.00 .167 1.00 .999
<5-3.00 1.00 .264 .993 .992 1.00 .569 1.00 1.00

o-l.00 .081 .093 .114 .057 .063 .077 .093 .088
a-1.25 1.00 .136 .941 .800 1.00 .146 .994 .973
a-1.50 1.00 .248 .981 .979 1.00 .343 .997 .995
o-2.00 1.00 .601 .993 .991 1.00 .855 .999 .999

<5-2.00 .088 .048 .092 .030 .067 .053 .033 .027
<5-2.25 .989 .078 .900 .724 1.00 .113 .997 .968
<5-2.50 1.00 .164 .979 .976 1.00 .311 1.00 1.00
<5-3.00 1.00 .479 .995 .997 1.00 .765 1.00 1.00
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TABLE 4.14

t ' s  for model 7, with sample sizes of T-100 and 200, 
and 1000 replications.

T-100 T-200

G.L.S. MIS a-. 95 a-1.25 G.L.S. MIS a-. 65 a-. 95
o-l.00 .039 - .052 .047 .028 - .062 .048
a-1.25 .056 - .087 .089 .078 - .134 .114
a-1.50 .151 - .190 .202 .248 - .330 .327
o-2.00 .531 - .591 .622 .820 - .873 .873

0-2.00 .026 - .041 .046 .015 — .047 .040
0-2.25 .145 - .081 .082 .070 - .140 .117
0-2.50 .140 - .207 .214 .280 - .388 .359
0-3.00 .530 - .624 .632 .883 - .922 .912

o-l.00 .110 — .139 .142 .083 - .151 .125
a-1.25 .153 - .196 .197 .171 - .251 .233
o-l.50 .283 - .333 .337 .437 - .524 .508
o-2.00 .723 - .763 .773 .934 - .948 .953

0-2.00 .077 - .119 .116 .070 - .113 .098
0-2.25 .134 - .190 .192 .190 - .269 .230
0-2.50 .298 - .367 .375 .500 - .574 .560
0-3.00 .736 - .783 .788 .956 - .958 .954
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From Tables 4.8-4.14 we observe that the x's decrease with a, 
although their sensitivity to the increase in a seems surprisingly 
small. The test seems to reject the null hypothesis too frequently, 
especially in model 2, without any plausible explanation for this 
phenomena in this model. Also, as the sample size increases, it 
seems that the number of times that we reject the null hypothesis 
when it is true goes to the value predicted by the asymptotic theory 
(as we may expect). As far as the power of the tests is concerned, 
the power for the MIS estimator is surprisingly small compared with 
the parametric and the semiparametric estimators. This is especially 
true in those models where the "loss of efficiency", measured by the 
M.S.E., is bigger, as we may expect. We also note that the power of 
the test, when the semiparametric estimator was used, tends to be 
very close to the power for the parametric estimator. Only in model 
1 is the power of the tests for the different estimators very close 
one from the each other, although the power for the parametric 
estimator seems slightly better.

Also, it is worth mentioning two further points. Firstly, the 
sensitivity of the x's to the bandwidth parameter used for the 
semiparametric estimator is less as the sample size increases. 
Secondly, the power of the test of the MIS estimator compared with 
the parametric will depend presumingly on the severity of 
non-linearity of the autoregression function, as we may suspect from 
the results obtained in tables 4.1-4.7 of the previous section.
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CHAPTER 5

ADAPTIVE ESTIMATION IN A HETEROSCEDASTIC TIME SERIES REGRESSION MODEL

5.1.- INTRODUCTION

In econometric regression models serial correlation and 
heteroscedasticity are two familiar non-standard features of 
disturbance behaviour. In econometric time series models, serial 
correlation in the disturbance is a rule rather than the exception.
On the other hand, heteroscedasticity appears when the variance 
across the observations varies. Although heteroscedasticity has been 
identified more for cross-section data, there is no reason to 

restrict it to these sort of observations. In fact, in pure time 
series modelling where no regressors appear, Box-Cox transformation 
may be a way to eliminate heteroscedasticity. An example is that the 
variance depends on the level of the data. A way to stabilize the 
variance is to take logarithms of the series. Thus, an econometric 

time series model where both serial correlation and 
heteroscedasticity are present is not unrealistic.
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There is a large literature concerning efficiency under serial 
correlation or heteroscedasticity. The case in which both "problems" 
are present has led some research, see for instance Harrison and 
McCabe (1975). In a semiparametric set up Harvey and Robinson (1988) 
allow the residuals to be heteroscedastic and serial correlated, 
being the serial correlation generated by an AR(P) process with known 
P and the heteroscedasticity an unknown function depending on t.

Consider the multiple regression model:

(l.i) yt-0*xt+ut

ut-a(xt)vt

where 0 and xt are k-dimensional column vectors and yt, (r(xt) and ut 

are scalars. Let {vt}t-i,2,... an unobservable strictly
stationary stochastic process with zero mean and variance 1, defined

as:

00 00

vt" I «1 ift-l and I I Qf 11 <«>j-0 j-0

where ijt is i.i.d process. It follows that:

Etyt|xtH ,xt

and

Var [ y 11 xt ]-Var (<r (x t) vt 1 x t)

-a2(xt).
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On the basis of T observations yt and xt t—1,...,Tf the 
generalized least squares estimator of 0 has an asymptotic covariance 
matrix

[E[X,<r",rr1<r1X]]"1

where (p-diagCcrCx!) tfCx-j-)), T is the covariance matrix of the
process vt and X is the regression matrix defined as (x,tx2 x-p)' ,
or in the frequency domain the above covariance matrix can be written 
as:

(12> ( 57

where is the spectral density function of vt and which is
going to be assumed, from now on, bounded away from zero, i.e. 3 d 
such that VXe[-T,x] and is the spectral density
function of the process x/0-(x) , which unlike is not needed to
be bounded away from zero.

Remark

Here, it is interesting to mention that the spectral distribution 
function of x/a(x) need not be absolutely continuous for the results 
to follow, although for expositional purposes it will be assumed that 
this is the case.

Since <r(xt) and T are unknown to the practitioner, often he 
assumes a parametric form for them and estimates the resulting 
parameters based on the O.L.S. residuals of equation (1.1).

But, an incorrect parameterization of a(xt) or T, although it will
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no t prevent consistency of 0 in (1.1), will produce Inconsistent 
estimates of their asymptotic covariance matrix. It is, of course, 
possible to estimate consistently the asymptotic covariance matrix of 
the O.L.S. estimator in the presence of both serial dependence and 
heteroscedasticity as first shown by Eicker (1963,1967). But on the 
other hand, while this leads to asymptotically valid inferences, they 
will not be asymptotically efficient, and any test based on O.L.S. 
estimates will be asymptotically suboptimal compared with the G.L.S. 
estimator.

Unless the parameterization of both serial dependence and 
heteroscedasticity is of interest on its own, it will be better to 
avoid some parameterization of them, and to use instead some 
nonparametric estimator of T and <r(x)• Those nonparametric 
estimators are inserted in the estimator of the 0 parameters which 
would be obtained if r and <r(x) were known. The goal is to see that 
the semiparametric estimator of 0 does not entail any loss in 
asymptotic first-order efficiency relative to the case where T and 
o'(x) are known.

This adaptive estimator extends the one studied by Harvey and 
Robinson (1988) by allowing the covariance matrix T to be unknown, 
and by not requiring <r(xt) to depend only on t, and that of Robinson 
(1987a) and Carroll (1982) by additionally allowing serial dependence 
instead of i.i.d. Also our semiparametric estimate extends Hannan's 
estimate in the opposite way, by allowing the disturbances to be 
heteroscedastic instead of homoscedastic.

The estimator that we are going to use for the parameters 0 is of
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the same kind as that of Hannan (1963; 1970, chapter 7), i.e. we use 
spectral techniques rather than time domain ones, but the unknown 
function <r(xt) is replaced by a Watson-Nadaraya kernel type estimator.

5.2.- THE SEMIPARAMETRIC ESTIMATOR OF 6 AND NOTATION

Before describing the semiparametric estimator of 0 and the 
natural extension of Hannan's (1963) estimator to the case of unknown 
heteroscedasticity, it is worthwhile introducing some notation and 
the kernel estimator of the conditional variance <r2(xt).

Let K, be a function defined as in section 2.2.1 of chapter 2 with
characteristic exponent q>0 defined as in definition 2.2.3 of such a
chapter.

Let K be a function :Rk - > R ,  that it non-negative and integrates 1. 
Also, this function is assumed to be even. We define the 
Watson-Nadaraya kernel estimator of the conditional variance as it

was defined in definition 2.1.2. of chapter 2 by:

(2.D j.p-x,]

j-i

where It is the indicator function defined as:
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1 if g(xt)>b

0 otherwise

where g(x̂ ) stands for the kernel probability density estimator of 
the probability density function g(xt) of the regressors xt, uj

stands for the O.L.S. residuals yt”Xt,̂ °*^*S* mo<*el (1.1), and
b is a parameter which goes to zero as T— *». Let us also define the

that the estimator of the conditional variance is greater than or 
equal to zero since the kernel function is greater than or equal to 
zero).

"sampling splitting" in f$ as in Carroll (1982), a feature not 
employed by Bickel (1982), Manski (1984) in different adaptive 
estimator or Robinson (1987a) where he discards ut2 for the 
estimation of (r(xt)2.

Before introducing the semiparametric estimator, some notation 
will be needed.

estimator of <r(xt) as the positive square root of <r(xt)2. (Recall

Note that o^2 does use all the ut2, so there is not any element of

M y ut“t+j
t̂̂ t+j

M y “t“t+j
<Vt+j
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i I S 3
-M+l

* S < » - 5  I k .(4)*1JX T I ^
-M+l - *t*t+j

I K’ & « 1JX f  I 2 S H
-M+l ^t+j

Jy5(x>-57 I K-S)elJX T I
-M+l

I K-(&eijx f I S S s i-M+l t̂̂ t+j

-M+l at̂ t+j

^ < x>-27 I K . & * ijx t I S S a
-M+l *t*t+J

««<»-» I T I
-M+l ‘Vt+J

tIt+j •

Itlt+j •

In the above equations, the second suamand runs over all terms for
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vhich the products are defined.

We already know from Hannan (1963) (see also Hannan (1970) 
chapter 7) that if the (r(xt)2,s were known, then an asymptotically 
efficient estimator of 0 in equation (1.1) is given by:

M M

-M+l -M+l

which may be rewritten as:

M M

-M+l -M+l

We also know that T̂(0*-0) converges, under regularity 
conditions, to a normal distribution with zero mean and covariance 
matrix equal to the inverse of:

-i fT f— (X)f— (-X)dX .2x J - t  w  ' xx

Observed that the only difference between the 0* estimator and the 
one proposed by Hannan (op. cit.) is that instead of the spectral 
density function of xt we have the spectral density function of the 
process xt/o-(xt).

Remark 2.1

It is worthwhile noting that Hannan (1963 and 1970 chapter 7) 
assumes that:
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oo
vt- 1 “j Vt-J j— 00

but by an extension to the well known Paley-Wiener theorem to the 
discrete-time case as long as the spectral density function is 
bounded away from zero and continuous, then vt can be written as

and thus, it does not represent a real restriction to the model.

Of course the <r(xt)'s are unknown to the practitioner and 
therefore the estimator of 0 given by equation (2.2) is not 
feasible. Thus, we have to substitute this unfeasible "G.L.S." 
estimator of 0 by its corresponding feasible one, where the a2(xt)'s 
are substituted by some estimated values. In this case the 
functional form of the heteroscedasticity is unknown and thus, a 
nonparametric estimator is called for. Thus, a sensible estimator of 
0 will be

00

M M
(2.3)

-M+l -M+l

The aim will be to see that 0 is an adaptive estimator of 0, i.e. 
Sf(0-0) is asymptotically normal with zero mean and covariance matrix 
given by equation (1.2).

But to show the adaptation of the semiparametric estimator is 

enough to show that:
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because of *̂ (/3*-0) is asymptotically normal with zero mean and 
covariance matrix given by (1.2). Noting that equation (2.3) can be 
written as:

Then it suffices to note that the following two expressions:

are both Op(l).

To finish this section it is worth pointing out that several 
alternatives to the conditional variance estimator (2.1) have 
appeared in the literature. By noting that E[u2t|xt J- 

E[y2t>xt h ( E[yt«xt ]>2» a natural alternative estimator to (2.1) is 
given by:

M M

-M+l -M+l

M M
(2.4)

-M+l -M+l

and

M M

-M+l -M+l

S ys ̂ s,t *t I ys ̂ s,t t̂
t r T 2

Another two alternatives are:
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T

(2.7) S(xt) (Uj3/a A  K 1 i  J Kp r ^ ]
j-1

and

T
(2.8) ff(xt)*- ̂ (uJ-<l2)KP ^ ] Iy' y Kpcj-xtj

j-i

where as2 are nonnegative given proxies or estimated finite 
parameterization of ô Xf-)2, for example the L.S. estimate on, say, a 
polynomial of xt and Ks>t stands for K((xs-xt)/a).

5.3.- CONDITIONS AND ITS IMPLEMENTATION

AIn order to establish the asymptotic efficiency of 0 we introduce 
the following conditions.

CONDITIONS

Cl.- Let {vt} be a stationary absolutely regular stochastic 

process with zero mean and variance 1 and the fourth cumulant is 
absolutely summable in all of its arguments. The absolutely regular 

coefficient f(n) satisfies f(n)-0(n_^2+̂ V$)> an(* vt has finite first 
6+36' moments where 0<5<5'. Also:
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2 ly(s) I isiq<«> s-0
where y(s) Is the autocovariance function of the stochastic process 
vt and q>J.

C2.- Let {xt} be a vector stationary strong-mixing stochastic 
process with finite first 6+3X moments, for some X>0, and where the 
strong mixing coefficient a(n) satisfies:

2 a(n)V(2+*)<co. 
n

C3.- xt and vs are independent for all t and s.

C4.- T 1—^M3a 1— >0 where M — *», a— >0 and b— >0

_ . 2(6’-6) as T— and

C 5 M  a4b~2— >0.

C 6 T ~ 2M3a”4kb_2—>0.

C 7 M  — >0.

C8.- The regressors xt weighted by the heteroscedascity, i.e. 
xt/<r(xt) , satisfy

T
i y Xt x t ““"̂ kxjc positiv® definite (p.d.)
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although to some extent C2 will be responsible for this.

Observe that this condition does not permit trending behaviour In 
the xt's variables, as Hannan (1963; 1970, chapter 7) or Harvey and 
Robinson (1988) does, although that case may be handled if <r(xt) 
would not depend on the trending variables, and 1/<j is substituted 
appropriately. Also condition C8 is a sufficient condition so that 
the covariance matrix of the 0 estimator, i.e. expression (1.2), is 
p.d., since the matrix H is p.d. and the spectral density function of 
the process vt (f~(M) is bounded away from zero VX (see Hannan 
(1970), pp 427-428).

C9.- K1 (s) is a bounded even function defined on (-1,1) and 
K,(0)—1 with characteristic exponent, see definition 2.2.3. of 
chapter 2, of order r>q, where q is as in Cl.

CIO.- a(xt)2>c>0 Vt.

This condition will prevent us from having infinite weights in 
equation (2.2).

CH.- <r(xt) 2g(xt) is twice differentiable with respect to xt.

This condition will allow the bias of our kernel estimator of 

a2(xt) to tend sufficiently fast to zero.

C12.- The kernel function K has absolutely integrable 
characteristic function #c(z) 7
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Having written down some sufficient conditions to establish the 
theorem given in the next section, we now discuss its implementation 
and regularity conditions.

Comments on implementation and regularity conditions

The semiparametric estimator /3 involves two bandwidths or
smoothing parameters which we have called a and M. These bandwidth's
choices are more crucial than the kernel and lag window functions K 
and Kj respectively. The nonparametric literature discusses several 
automatic bandwidth determination procedures based on function 
optimization, although reproducing the asymptotic theory with a 
data-driven a and M would not be easy to implement.

The choice of the lag window has been exhaustively studied in 
the spectral estimation literature (see e.g. Hannan, 1970, Ch. 5).
Eicker (1967), Levine (1983) White and Domowitz (1984) use K,= 1,
although it is quite unpopular since it does not sufficiently protect 

against influence of spectral peaks at distant frequencies. Newey 
and West (1987) used the modified Barlett window K1(m)-l-|m|, i.e 
equation (2.4) of chapter 2, and Robinson (1987b) used a 
Hanning-Tukey type given by equation (2.5) of chapter 2.

In spectral estimation, an automatic method to choose the lag 
number M has been justified by Beltrao and Bloomfield (1987). In a 
time series regression model Robinson (1988a) has established the 
asymptotic normality and efficiency of a modification of Hannan's
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(1963 and 1970, chapter 7) estimator, when the parameter M optimizes 
a form of cross-validated Gaussian pseudo-likelihood, i.e. Robinson 
allows H to be data-dependent.

The absolutely regular condition imposed on aj is stronger than 
the condition j l^lyQ) l<», since a sufficient condition for the 
latter to be true is aj-oQ-*!-1), as we can conclude for Pham and 
Tram (1985), see section 2.3.1 of chapter 2 aj-o(j~2-a) f being q<2 
and of-̂ +2/$>l as usual. Also note that for the case in which is a 
Gaussian process u> may be any positive number and thus aj-0(j-0f“2).

Assumption C7 is a standard one in spectral density estimation.
C5 is true if M is taken to be 0(a“4b2). This leads us to say that 
C6 is true if T-1a“4(k+i) is finite or goes to zero, and hence C4 
will be a stronger assumption than C6 depending on whether 7>4 or 
7<$. So far the case and k-1, a can be chosen to be of order 
0(T“i). Then M-0(Tib2) and C7 is satisfied as well. Also condition 
C5 could be relaxed if higher order kernels were used, but this would 
imply that 2 can be negative and this would not be very useful 
since in the proofs of propositions 1 and 2 we need an estimate of 
the standard deviation instead of the variance.

Finally, one point to mention is that in the semiparametric 
estimator 0 we have not used higher order kernel functions to 
estimate the conditional variances, even in the case of large k.
This is quite unusual in semiparametric problems where higher order 
kernels are frequently used to reduce the bias of the function 
estimates especially when the dimension of the nonparametric 
function, i.e. k, is large, although it should be noted that neither
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Carroll (1982) or Robinson (1987a) use them.

5.4.- THEOREM

In this section It will be established in the theorem below the 
adaptiveness of the semiparametric estimator 0. Due to the lengthy 
proof, we will prove two propositions which will allow us to follow 
the proof of the theorem more easily.

Proposition 1 

Under Cl to C12

<*-l> ( ® I  H S I  O S n l « = H n ) ] - v »
-M+l -M+l

Proof:

The L.H.S. of (4.1) is equal to:

<4-3> - [ S I
-M+l
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M
■yf
-M+l

where:

K- i elJXT I Xt+J 5^ ;  itit+j
-M+l t-1

and

M T-|j|

f̂a-i)(x)-5vl Kifi)'iJxi I X~J t̂̂ t+j -M+l t-1

- About (4.4):

This term is Op(l) by lemma 2 of appendix A.

- About (4.3)

This term may be rewritten as:

-M+l

SI £«-„FS W-?)
-M+l

where f  ̂vv( 1—X)  ̂w   ̂^wX end

<x>-27 I K<[s]elJX T I ^ ^ t + j
-M+i t-i

t+j).
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The proof that the first term of the above summand is Op(l) is 
identical to the proof of lemma 2. Also it must be taken into 
account that:

m  I P£Gr)- f̂ lT)]f«(-ff5)-0p(MV,+M,"2q)
-M+l

see for instance Hannan (1963).

The second term is more cumbersome.

First note that:

f—  -f—  -f—  w(l-I) w  wl

where

fwl "57 j S +17<J) fiiĵ  f ] •

Let the term in brackets be h(j )“VlS^i^i+j * anc* call 
7(j )”Y(j )Mj ) • If fw l  were greater than or equal to d>0, we could 
use a theorem due to Wiener (see Naimark I960, pg-205), and conclude 
that the inverse of ^^1 has an absolutely convergent Fourier series,
i.e. their coefficients belong to the L1 space. But to prove that 
f— I is greater than or equal to d>0, all that is needed is to show 

that:

sup I 57 2 ]el̂ X+7r 2 7(j)e1JX|-op(l).X 1 iJ i<T ijlXT '
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The expectation of the L.H.S. of that equation Is less than or 
equal (except for the 2t  factor) to:

I I7<j)l E|l-h(j)|+ I 
I j I<T ljl>T

But E| l-h(j) |-o(l) Vj by lemma 6 of Robinson (1988c) and lemma 2
of chapter 3, or by using proposition 4 of Robinson (1988c), since

sup | g(z)-g(z)|-Op(l). 
z

Hence, ><*>0 and thus we can conclude that:

fi^r 2 2(j)«iJXj

where d(j) belongs to the Lj-space.

On the other hand we have by definition that:

t ZtO>«1JX] [ 2*<j)e1JX]-l 
j j

and

t 2 7(j)eljX] [ J H(j)e1JX]-l 
IjI<T j

and also that 7(j)~7(j)-op(l), Vj.

From the above equations we can straightforwardly conclude that: 

1) El (2 7(J)eiJX) ( I 4<j)eijX)-ll-o(l)
j j
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and

j j

since the spectral density function of the process vt Is bounded away 
from zero by assumption.

The next question will be to show that d(j )-d(j )-d(j) goes to 
zero in probability. But since d(j) belongs to L1, we can say by the 
inverse of the Fourier transform that d(s) is equal Vs to:

because the expectation inside the integrand is less than or equal to 
e and therefore the above equation is equal to e.

Since it is Ve>0, we conclude that d(j)— >0 in probability.

With those ingredients we can show that:

2(s)-4(s)-4(s)-ji JI1r(i:4(j)eljX)e isXdX.

Therefore

< dX

M T-1 j I

t̂̂ t+j

is op(l) by the following argument. We already know that d(j) is
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Op (1) and the term In parenthesis is Op(l). But the term d(j) also 
belongs to the space Lt thus, we can apply Fatou lemma in order to be 
able to introduce the lim operation after the expectation has been 
taken, that is:

M T-ljl
lim 3 7 1 EI*<J> K.(n]eiJX <3 I *t+j W j ) |

-M+l 1 t-1

which is less than or equal, by Cauchy inequality, to

M T-ljl
C( £ lim(E|4(j)|2)}Hm(E|ij J xt+J ItIt+J I 2)*
-M+l T t-1 6

but lim E|d(j)l2-0 since E |A(j ) | 2<sup |d(j ) l E|A(j)| and then, the 
above term is less than or equal to

C JO -0, and so (4.3) is Op(l).

Hence, (4.1) will be true if

< * • »  K l !  H i !  ‘ S ,
-M+l -M+l

But in order to prove this fact, it will be sufficient to show 
that the next three terms are in fact Op(l), namely

,iM
<4-6> 3H I-M+l
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M
(4.7)  ̂y  ff” -~ f— i f—L I w  wIJ vxl

-H+l

and

<4-8> h I ^-M+l

By lemmas 8 and 9 is already known that:

E || f~- f^j||2< C 0(T_2M3a“kb_2+T“2M2a“4kb“2+a4b_2)

except on a set S whose measure tends to zero as T approaches to 
infinity.

On the other hand, by lemmas 1 and 3 and since JKj (s/ĵ )—0(M) ;

T E II i~- O p d ^ V V V ' l l V V ’+ M W )

and finally, we know that:

T*f™i II2- V M>

by the same argument as those used by Hannan (1963) pg. 27.

As far as (4.8) is concerned, we can split this term into two 
terms:

( 4 -8 -1 > 5 m  I  f^ I  <fi x --M+l



- Consider now (4.8.1):

All what we need to show is that

- c  )  g o es  t o  z e r o  i n  p r o b a b i l i t y  w h e revx vxl

T-ljl

c- r ?  ^  xt+j ^  itit+j

and

T-|j|
Cvx ” T I Xt+j a xt ItIt+j 

t-1 t̂̂ t+j

but by lemma 3 of appendix A, it is of probability order: 

°p ( t”"*V 2 a”̂ / 2b~1 +a 2b~1).

- About (4.8.2), it will be of order:

Op (T-’ V V  ’+T- V a -4 V '+T‘’ M Vb" 2 ) ,
by lemmas 1 and 3 of appendix A and since (s/m )-0(M).

And thus, (4.8) is Op(l).

- About (4.7). We already know that:
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M

-M+l

which will imply that (4.7) is of probability order:

Op (T" V a ^ V  2+T~ 2M V V 2+K a V  2 )

by lemma 8 of appendix A. Therefore, it only remains to prove (4.6) 
to conclude the proposition.

- About (4.6):

If (4.7) and (4.8) are both Op(l) evidently (4.6) is also

Op(l).
Q.E.D.

The next proposition will prove that (2.4) is Op(l).

Proposition 2

Under Cl to C12

M M

-M+l -M+l

Proof:

The L.H.S. of (4.9) is equal to the following three terms:

M M
(4.10)

-M+l -M+l



-163-

M

-M+l

In order to prove that (4.11) and (4.12) are both Op(l), note that 
the method follows the same lines as the proof of (4.3) and (4.4).
Also observe that in this case, we do not have the factor li as
previously.

Now, we will show that the expression (4.10) is Op(l). To show 
that in fact this expression is Op(l), it is equivalent to show that 
each of the next three terms are in fact Op(l), namely

M
<4 - 13> m l-M+l

M

<4 - i 4 > + M  m -  ^ i ]-M+l

M
<4 - 15> + 5 i I-M+l

Noting that the basic difference with the terms (4.6)-(4.8) is
that here we have:

instead of and
XX v x
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f— _ Instead of Ti f— T. xxl xvl

In order to show that (4.15) is Op(l), we repeat the same 
arguments as we did for the term (4.8), but where lemma 1 of appendix 

A it is substituted 1/Ĵ  by /̂t an<* ut by xt» an<* lemma 3 of 
appendix A we substitute V«/t by an<* vt by xt*

As far as (4.14) is concerned, note that it is identical to what 
it was explained for (4.7), with the above remark. Finally, (4.13) 
is also op(l) since (4.14) and (4.15) are.

Q.E.D.

THEOREM 1 

Under Cl to C12

and

M
b) i m  I ?4 Gr]fi i H r ]  ] ' is a conslstent estimator

-M+l

of the covariance matrix (1.2).

Proof:

In order to prove part a) of the theorem it suffices to show that:

(a! I
-M+l -M+l
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and

M M

-M+l -M+l

are both Op(l) , but they are Op(l) by propositions 1 and 2

As regards part b) of the theorem, we already know that:

M

-M+l

converges in probability to the inverse of (1.2), and so by part a)

M
<416> bn 2

-M+l

also converges in probability to the inverse of (1.2). But on the
other hand we know that this matrix is p.d. and therefore the inverse
of (4.16) converges in probability to (1.2).

Q.E.D.

5.5.- CONCLUSIONS

In this chapter we have studied first order efficiency in 
estimating the parameters of a linear regression model, when both 

heteroscedasticity and serial correlation are present but neither are 
parameterized. The conditions about the regressors and the
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stochastic process vt are not much stronger than the conditions 
needed in a parametric setting. The semiparametric estimator of 0 
turns out to be a natural extension of works by Hannan (1963 and 
1970, chapter 7), Robinson (1987a) or Harvey and Robinson (1988).

Some possible extensions come to the mind. The first one, in 
view of the works by Hannan (1963) is the multivariate regression 
model. A second possible extension, which from an econometric point 
of view is more relevant, is the linear simultaneous equation model 
with exogenous regressors. And a third one is the non-linear 
multivariate regression model, in view of the work of Robinson (1973).



APPENDIX A

In this appendix we will prove a series of lemmas which are used 
in several places in the proof of the propositions 1 and 2 of the 
chapter.

Before attacking the following lemmas, some notation will be 
introduced which is used thereafter. We will define <r2(xt) as:

T

Let the conditions Cl to C3 and C9 hold and ^Vg(2+61)*

j - 1

where Kj ̂ t-K((xj xt)y&).

Lemma 1

Then:



Proof

The L.H.S. of the above equation can be rewritten as:

(A.l) T’iak I Kut1 g(xt)

-gl !j Kj.tlj].
aj s(xj>

Here, what has been done is to make symmetric the double sum 
and thus, to be able to employ U-statistic theory for absolutely 
regular stochastic processes. Also, we have discarded the terms t-j 
since as far as the asymptotic result is concerned it does not make 
any difference. Expression (A.l) can be written as:
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If one calls p^(zj,zt) the term Inside the first term of the above 
expression where ẑ  stands for (û .x̂ ), it is straightforward to show 
that its expectation is equal to zero when zj and zt have been taken 
as independent. Therefore, taking the expectations conditional on xj 
or xt we can conclude that this term is of probability order:

by lemma 2 of Yoshlhara (1976).

About the other two terms it is obvious that they are also:

°p[T~^/2a~k/2b 1]

°p[T~y/2a k/2b 1].
Q.E.D.

Lemma 2

Let the conditions Cl, C2 and C7 hold. Then:

(A.2)
-M+l

Proof:

The L.H.S. of equation (A.2) is equal to:

M

-M+l

M

-M+l
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* ABy noting that the difference between fvv(X) and f^(X) Is that 
the former uses the O.L.S. residuals and by Hannan (1961) the latter 
Is greater than or equal to d>0 except In a set S which measured 
tends to zero as T approches to Infinity, we can say that the squared 
norm of the first term Is dominated by a constant times

M M

kl  II G r K ;  If) if b I  II Irlll'
-M+l -M+l

The first term of the product is Op(T-1M+M”2CI) (see Hannan (1970) 
or section 2.2.1 of chapter 2). As regards the second term of the 
product, one can realize, following standard steps, that it is equal 
to:

M T-|s|

This term is very easy to show that it is Op(M) . Because of 
ut-vt(rt and the vt are absolutely regular, the above term without the 

term (l-It̂ t+s) Op(l)* Consequently, using lemma 6 and 
proposition 4 of Robinson (1988c) we can conclude by assumption C2 
that the E[l-ItIt+s] is o(l), and therefore the above term is in fact 
Op(M). Hence, we can say that the first term is Op(M2/T+M1_2C0 , 
which by assumption C7 and q>J is Op(l). Therefore, it only remains 
to show that the second term is also Op(l) . But this term is equal 
to:
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M T-s
i(s) [-i y ^ t + s  (1-Itit+S)] . 

-M+l ^t-1 ^t+s

For the same argument as above, the term In brackets is Op(l) for 
all s. Moreover it is known that A(s) belongs to the L,-space.
Therefore we claim the Lebesgue dominated convergence theorem to
conclude that this second term is also op(l).

Q.E.D.

Lemma 3

Given the conditions Cl, C2, C4, C7, C8 and CIO then:

T-s
(A‘3> 7= 1 Vt xt+s(fftis_̂ t+s)ItIt+s"0P(T”ia”2kb~2+T"i7a~k/2b”1+a2b~1)

Tt-1

Proof:

The L.H.S. of (A.3) is equal to:

T-s
I ) vt xt+s [ I ” Z l*t*t+s 

L *t+s *t+sJ

T-s
+ 7 : J vt Xt+S [ J:---- — liti

L *t+s ort+sJ
t+s

The second term is a straightforward consequence of lemma 2 of 

chapter 3, and so it will be

0p(a2b ’+T“*a kb”1),
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since, although we have the square roots of the variances and at+s, 
it does not make any difference by noting the usual trick of 

multiplying and dividing by, 0t+s+at+s* an<* observing that <rt+s>c>0 
by assumption.

Thus, it only remains to find the probability order of the first 
term of the above expression. Using the equality (see Robinson, 
1987a):

-i ~ -q-i. , \T+i -i -r-ix " 2. (y-x) T +(y-x) X y q-o
ve can rewrite this first term of the above term as:

T-s
(a.4) i- £ vt xt+s [ <££±a^£±a>litit+s

■̂ t-l I °t+S *

T-s _ 2 
.. .. f (Ot+s^t+s) 1T t t+S(A.5) ^  *t+s [ i2£±a-£t±al-]iti

^t-1 °t+S ^t+S *

- As far as (A. 5) is concerned:

Appealing to lemma 6 of chapter 3 and using the argument of the 
above paragraph, we can say that this term is of probability order:

- For (A.4), we have that it is equal to (multiplying and 

dividing by at+s+at+s):
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T-s
: L
■t_l<Tt+s<<rt+s+<rt+s)g(xt) Ta j_!

Although we have solved the problem of the square roots, we still 
have the problem of the denominator (<rt+s), which depends on all the 
observations and in particular on u,,... ,uj. Thus, in order to 
overcome this problem we will use the following device, since

[ ^ —  - - r _ < W w  i
'■°t+S+̂ t+S ^̂ t+S ■* ^(T̂ sCOt+s+O't+s)^

* f e
(gt+s~at+s>

rt+s (^t+s+^t+s ) 

the above term (A.4.1) is equal to:

T-sy  ,, v t  x ^ f  [— k  y  <u]-<r]) K t+Sij ]it i t+s+
2ai+s Ta j_1

T-s
~r I , Vt *l\s I < « M >  Kt+s,j ]

 r 2— K w
(*̂ t+s+̂ t+s) ^ t̂+s

By lemma 1, the first term is of probability order:

OpCTV’a'Vjb'’),

and arguing as we did with (A.5), the second term can be shown to be 

of probability order:
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Op(T Ja jkb ').
Q.E.D.

Lemma 4

Let vt and xt be two stationary stochastic processes as defined in 
lemma 2. Then:

T-s t+s
(A.6) I I (vtvt+s~7(s)Hvj~l)gj Kj>t ItIt,s-Qp(TsiaVi).

t-1 j-t+l

Proof:

The absolute value of the L.H.S. of equation (A.6) is less than or 
equal to:

T-s t+s 2 , v 2

t-1 j-t+l 6*<xt)<7t

T-s t+s
l l Kj,t iti„,
t-1 J-t.l S!<»t>»t

About the second term it is very easy to check that it is the 
R.H.S. of (A.6) times *y(s), since:

[̂ (vj-1) ]2-°p(s) and E|KjftKlft|-0p(a2k)

Insofar as the first term is concerned:

*
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T-s t+s
2 vt[ 2 (Vj-l) ] vt+s|< 

It-1 j-t+l I

T-s t+s ,
J (E|vt|3)’/3(E| I (v!-l)|3)V3(E|vt+s|3)1/3-0(TsJ) 
t-1 j-t+l

and as long as E|Kj ̂ ^ t|-0(a2̂ ) we conclude that the first term is.
also just the R.H.S. of equation (A.6).

Q.E.D.

Lemma 5

Under the same conditions given in lemma 3.

(A.7) f' y .^tVt+s-^mvj-lH Kj t itit+s-op(Ts*aV*). 
t-1 j-t+s+1 S*<xt)»t

Proof:

E[ (A.7) 2 ]<

(A. 8) eT <vtvt + s ) (Vj2-l)ffj (vrvr+s-7(s)) (v̂ -Dffi 
l<t+s<r+s<j<1<T i*(*r>*r

x ItIt+s IrIr+s ]+

(A 9) Ey (vtvt»s~7(s)> (vj-l)gj (^r+s~7(»)> (vr 1)<rl 
l<t+«<J <r+s<T g*(*t>*t ii(xr)ff3

x Ki,r Itlt+s Ir̂ r+s]-

As regards to (A.8), it can be split up into two further terms:
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1 + I •

The second term Is the simplest one because the proof of Its 
statistical order Is the same as certain steps of the proof of
Yoshlhara's (1976) lemma 2, and It Is of order:

T2a2kb-12 r(k)V«+2(k+l)- T3"^a2kb"1 
k

where f(k) is the absolutely regular coefficient.

As far as the first term is concerned, we can distinguish three
different possibilities, i.e.:

a) r-t<s,

b) s+l<r-t<2s

and

c) 2s<r-s.

- About a), it is easy to show that it is

T2a2kb_1J f(k)6/5+2(k+l)-0(T2s1̂ ya2kb"1) 
k

since we consider ut on the one hand and the remaining of the u's on 
the other.

- About b), we will have:

2s
T2a2kb_1 £ r(s)V*+2(k+l)-0(T2s2r(s)6/2+*a2kb"1). 

k-s
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- About c) , this last term will be of order:

T V ^ 1 2 r(s+k)5/«+2(2s+k)-0[T3_7+T2s]a2kb ’)
2s+l

Thus, we have that the term (A.8) is:

[T3"7+T2s]a2kb”1.

Therefore it only remains to check (A.9) to conclude the lemma.
But arguing in the same way as in (A. 8) we can conclude that it is of
the same probability order.

Q.E.D.

Lemma 6

Under the same conditions of lemma 2 and C5, C6, we have that:

M T-|s|
(A.10) I K,g]eisXi £ (vtvt+s-7(s)) )ItIt+s-Op(D •

-M+l t-1

Proof:

The L.H.S. of the above equation can be split up into three terms 
(following the same steps as in lemma 2):

(A.11) ij K,g] eisXi T itit+s
“ -M+l t-1 6<*t>
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T
- 1x [ ~ T  I  K J . t ]

Ta 3-1

(A. 12) + J K.g] eis> I" f  Wt+s^(s)) ItIt+s
-M+l t_i °t g<itt)[<rt-<Tt]

T
- 1x
T<* J-l

(A. 13) + \  K,[i] e1̂  \ f (I f r S? (S)) Itlt+s 
-M+l t-1 *t g<*t>

[ I ui t A  1 KJ.13*)*
Ta j-i - Ta j-i

(A.12) and (A.13) are both Op(l) , by arguing as we did with (A. 5) 
for instance, in fact they will be:

Op(T 'a ,kM b ’).

The cumbersome term will be the first one, that is (A.11), but 
this term is equal to:

(A.11.1) J K.g] f W t + s - 7 ( s>> I f c W
-M+l t-1 g(x^

1 (xlraP Kj.th 
j-i

X
1 Ta



M T-|S|
(A.11.2) (p-e0'1'8*)^ eisX I (vtvr r (s))

-M+l t-1 g(Xt)

T
- 1x
I a  j - i

M T-|s|
(A.11.3) (<3-/3°-1*S' ) *7 K, [g] eisX J <vt^t+s"7(s))

-M+l t-1 at s(Xt)

Ta j-i

But (A.11.2) and (A.11.3) are both Op(T_1Mb“i), and 
(A.11.1), this is equal to

M T-|s| t
i j Ki(a ,..x j j i w ^

2T a -M+l t-1 j-l "t 8(*t)f

M T-ISI T
■ i  j  K i ( a  . i . x  j  2 < v » y » » < 2 r » i i

a -M+l t-1 j-t+s+1 g^xt)

M T—|s| t+|s|
1 2 K.g) .1“  I I (v.v„.7 <.)K.j-i,.;

2T a -M+l t-1 j-t+l gJ(xt)

xtxt+s

xtxt+s

about

,t xtxt+s+

,t xtxt+s

Kj ,t xtxt+s

Each term is by lemmas 4 or 5 of probability order:
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LenrniA 7

Under the assumptions given in lemma 5 and C6, C7, we have that:

M T-|s|
(A.14) ^ K , g ] e i s X i  1 (vtvt+s-7(S))<rt(^' -<,£') ItIt+s-op(l).

-M+l t-1

Proof:

By Parzen (1957) theorem 5A, conditional on xt, (A. 14) is 

Op(T-1M).

Also we have that:

E[ )ItIr ]<

]2lJ J EeI ^ ’-ct"1 ]2Ir3 •

Recalling that:

[ ) Jlt-^t^t1 (^t^t) 1 xt

we have, by lemma 6 of the previous chapter, that the supremum of the 
above equation is of probability order:

Op< . V * + l f V ,V ,>

and thus we conclude the lemma.
Q.E.D.
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Lctp* ft

Under the same conditions given in the previous lemma we have 

that:

(A.15) || - I— J|2-Od(T 2M3a *b 2+T 2a 4kM2b 2+a4b 2)-w  wl PN

Proof:

Jw-'f̂ r I K<G]eisX t I St«[ A ----- — b t w— — - - 1 ̂ t+s^t Gt+Ŝ t*-M+l t-1

On the other hand, the difference between this and the expression 
with ut is of order less than T~i. This can be seen very easily. 
Hence we should work out:

I K1 K)eiSX T I ut ut+s[ T-^~Z----- — K ^ + sw. 1 L 0V-4-cO’t-J-M+l t-1

which is equal to the sum of the following three terms: 

M T-|s|
(A.16) J K,[i]eisXi J vt vt+s (rt+s[ 7i----- — 1

.... A  I <T̂ .« (Tt-i.Jt *t*t+s+-M+l t-1 " fft+s fft+s;

M T-|s|
(A.il) I K,(!)elsX£ j vt vt+s <rt[ - — ]ltW  

-M+l t-1 l 't

(A. 1.8) J K , g ] e i s X ^  J ut ut+s f J: - — 1 [7^  " — K W  
_M+1 *■ °t *-°t+s t̂+s-*

Therefore, the expectation of (A.15) is less than or equal to:
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OpCT-1 )+4{||A. 16||2+||A. 17||2+||A. 18||2}

- About (A. 17). This term is equal to:

M T-isi
I Ki(SelSX f I (vt vt+s-7(s>> *tf ~ — ]ItIt+s 
-M+l t-1 U t

* 1  K. ( H l e l S V s ) T I fft[ t1 -  — K w
-M+l t-1 1

But by lemmas 6 and 7, the first term of ||A.17||2 is of probability 
order:

0p(T~1M a4b"2+T~2M2a“4kb~4+T~2M3a”kb“2) 

while the second term is of probability order:

Op(T_V 2V 2+aV2)
since the function K, is uniformly bounded and 7(s) is absolutely
summable. The term ||A. 16||2 is identical, and ||A. 18||2 works in the
same fashion.

Q.E.D.

The next lemma is very important since it allows us to say that:

as T goes to infinity, where C is a generic constant.

It is very well known, see Hannan (1961) (since |aj i-KKa-  ̂1) and
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q>i), that

max | f~(Xj)~ f(Xj)| goes to zero in probability,

Thus, we only need to establish that:

max | f^(Xj)- f— (Xj)| goes to zero in probability,

Lemma 9

Under the same conditions of lemma 6, we have that:

(A. 19) max I f~(X)- f— (X) |-op(l).

Proof:

We have that the L.H.S. of equation (A.19) is equal to:

(A.20) max| I K, [i] els* l f ' [  ItIt+s - 1
 ̂ -M+l t-1 ^t+s^t tft+ŝ t *

But the term inside the square brackets is equal to:

Utut+S [ 4 4 ^  - ■I.tIttsl- [ utut+s utut^s|ititts+ 
 ̂^t^t+s t̂<̂ t+SJ °t ^t+s

n titl.) ucut+s 1 C t+Sj 0tBt»g

and hence, the term inside the vertical bars of (A.20) is equal to:

I K- [r] elSX T I “*"»•[_M+1 t_i I ^t+s^t <̂ t+ŝ t J
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(0-0°-1-s-)- I k-K) elSX T I “txt+s[ J - r  - _ L _  ]ltIt+s-
-M+l t-1 ^t+S^t ^t+S^t “*

(0-eo l s y  I K,g] eisX * I ut+sxt[ - _ i _  |ltW
_M+1 t-1 ^t+S^t at+Sat *

<.e-(to l s -yl K,g]elsX * I xtx-t+sL l ^ _  - _ i — l i t w n 0,1-8-) 
_M+1 t-1 t+s t̂ <rt+s*tJ

■ I K'fi]eiSXT 1 ut*'t+sf - 1 —  ] ((S-(3°1 s )-
—M+l t-1 1 *t+s*t J

I K1 (s] ®iSX f I ut+sx'tf — -— 1 
-M+l t-1 *• ̂ t+s^t J

(/?-0o l s-)^ K,g] eisX £ T xtx't+sf — *---1 (0-0o l s )
-M+l t-1 1 ̂t+ŝ t-l

f ^iild-Itlt+s)
-M+l t-1 t̂+ŝ tJ

Since by assumption the function K1 is uniformly bounded, then 
5]|K1 (s/jj) |-0(M). Also since the O.L.S. estimator of the parameters 0 
is root-T consistent, it is very easy to show that the supremum in X 
of the second four terms is Op(l).

As regards the last term, it is also very easy to show that it 
is op(l) since adding and substracting y(s) into the term in 
brackets, we have that as long as



-185-

T 1 2{l-ItIt+s}-op(l)

then also this term Is Op(l). Therefore, in order to prove the 
lemma, It only remains to show that the first term of the above 
expression Is also Op(l). Note that this term Is equal to:

M T-|s|
£ Ki [S ®iSX T 1 <vtvt+s<rt>(^tis-^tis>ItIt+s+
-M+l t-1

M T-|s|
(A.21) ^ Ki[fi]eiSXf \ (vtvt+ŝ t+s>(^t1-^t1>1t1t+s+

-M+l t-1

M T-|S| ̂Ki K] eiSX f £ (vtvt+s^t+s>C^tis-^t+s>(^t1-^t1)ItIt+s 
-M+l t-1

and taking Into account that:

T - isi

T ^ (vtvt+s°t) (^t+s-^t+s^t^t+s 
t-1

T-|s|
" t ^ (vtvt+s“7(s) ̂ t^t+s^t+s^t^t+s

t-1

T-|s|
+ ^ ^ 7^s)^t^t+s-^t+s^t^t+s

t-1

it is very easy to show that it is Op(T“i)+Op(l)7(s). Hence, when 
the supremum in X is taken, the first term of (A. 21) will be Op(l) .
As regards the other two terms of (A.21), they are also Op(l) arguing 
in the same way.

Q.E.D.
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CHAPTER 6

A FINITE SAMPLE STUDY OF THE ADAPTIVE ESTIMATOR OF CHAPTER 5

The aim of this chapter is to give some evidence about the 
performance in finite samples of the semiparametric estimator which 
we have studied in the previous chapter, and also to compare it with 
the G.L.S. estimator when the conditional variances are known. Also 
it would be interesting to observe how inaccurate is the G.L.S. 
estimator when we mis-specify(MIS) the heteroscedasticity.

In this study the semiparametric estimator involves two bandwidth 
parameters, i.e. M and a, which, as we have already been seen in 
section 5.3 of the previous chapter, are directly related via the 
assumption C5.

As it was pointed out in section 5.3 of chapter 5, Robinson 
(1988a) allowed the M parameter to be data-dependent, in an 
homoscedastic framework, without losing any of the good statistical 
properties of the estimated regression parameters. He pointed out 
that in a heteroscedastic regression model setting, the bandwidth 
parameter a can be chosen to maximize a pseudo-Gaussian likelihood
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allowlng a to be data-dependent and establishing asymptotic normality 
and efficiency. However, in this case it was decided to choose a set 
of representatives H and a's.

Four different models, given by equation (1.1) of chapter 5, were 
simulated with k—1, where xt and vt are both Gaussian zero mean 

process x -̂Ut+ro)̂ , , vt”£t+ 5̂t-i * ^  an<* are n°lse having
unit variances. The value of r was taken as 0.5. The four models 
can be distinguished for both the parameter 0 and the 
heteroscedasticity function. We have considered:

Model 1: 0-0.5 <r(xt)-exp(0.125+0.4xt),

Model 2: 0-0.5 <r(xt)-exp(0.25+0.8xt),

Model 3: 0-0.9 a(xt)-exp(0.125+0.4xt),

Model 4: 0-0.9 <r(xt)-exp(0.25+0.8xt)

although we are going to present only the results for the first two 
models since the findings for models 3 and 4 are in the same spirit.

A decision was made to choose 0-0.5 or 0.9, since they were used 
by other investigators, e.g. Robinson (1988a). Also, two 
heteroscedasticity models were used. The severity of the 
heteroscedasticity will be measured by the coefficient of variation 
of <r2(xt), defined as the ratio of its standard deviation to its 
mean. The coefficient of variation for the model
cr(xt)-exp(. 125+0.4xt) is equal to 1.05, while for the second one it 
^s 2.84.



-188-

The simulation study was performed using the two different 
methods for the estimation of the parameter 0 as described in section 
2.2.2 of chapter 2. By means of method 1, one could understand the 
procedure described in chapter 5, i.e. via smoothing the spectral 
density estimates. A second method of estimation (method 2) makes 
use of the periodograms, as in Robinson (1973,1976,1988a) and Hannan 
(1971). For a complete description of this two methods see for 
instance Robinson (1988a) pp. 8-9 and section 2.2.2 of chapter 2.
The only difference is that before getting the discrete Fourier 
transform (DTF) of yt and xt, these random variables are divided by 
<jr(xt)*, where cr(xt)* will be an estimate of the conditional variance, 
e.g. <r(xt)* will be the true ones, the nonparametric estimate defined 
by equation (2.1) of chapter 5, or a parametric estimate of the 
conditional variance when we believe that it follows a polynomial 
function.

Although, only the theorem of chapter 5 was shown for method 1, 
i.e. via smoothing the spectral densities, we see no reason why this 
theorem will not hold under method 2, since for the parametric case 
the difference between both methods are negligible in large samples, 
in fact they converge to the same asymptotic distribution function. 
However, it was decided to use this method in this simulation study 
since, the results of Robinson's (1988a) study could be used to guess 
the possible grid of M's for this particular setting. As a result, a 

comparison could be made between both methods of estimation for 
finite samples.

In order to see what could happen when the heteroscedasticity 
function was mis-specified, a pseudo G.L.S. estimate of 0 was
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compute d when the <r(xt) are estimated from the regression equation:

t̂"Vi+72xt+73xt 

In the usual fashion.

Two more points have to be mentioned. The first one Is that no 
attempt was made to get the G.L.S. estimate of 0 based on parametric 
modelling of the disturbances, because the real aim of this 
Monte-Carlo experiment is to know how good the adaptive estimator is, 
especially against the heteroscedasticity, and because several 
Monte-Carlo studies of Hannan's estimate have been reported, e.g. 
Duncan and Jones (1966), Engle and Gardner (1976), Robinson (1976). 
The second point is that different windows were used for these 
methods. In method 1 a Hanning-Tukey type of kernel given by equation 
(2.5) of chapter 2 was used, while in the weighted periodogram the 
Parzen window was used, given by equation (2.6) of chapter 2 due to 
its computational advantage, and also because the Hanning-Tukey type 
kernel function has a spectral window which is not positive.

All computations were carried out in double precision FORTRAN on 
the University of London's Amdahl computer, using a random number 
generator and fast Fourier transform (FFT) algorithm from the NAG 
Library. For each of the four models, 1000 bivariate time series ut 
and xt of lengths T-27 and 2® were generated and 500 for T-29.

In what follows, method 1 stands for the estimate of 0 via 

smoothing the spectrum, while method 2 stands for the weighted 
periodogram. In tables-6.1-6.6 only the M.S.E. for the parametric, 

mls-speclfied and semiparametric was reported, for different M's and
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a's. Also the M.S.E. for the O.L.S. estimate was reported. The 
reason, why only the M.S.E. was shown, Is that the findings of this 
study about the bias are exactly the same as those of Robinson 
(1988a), i.e. the bias decreases as the sample size increases owing 
perhaps to the "imperfection" in the random generator whereby the 
"normal" deviates were not quite symmetric.

As it is impossible to give a closed formula for the asymptotic 
covariance matrix of the G.L.S. estimator of 0, in terms of r and 0, 
as it will be the case in the absence of heteroscedasticity, it was 
decided to give an estimate of this covariance matrix by the M.S.E. 
of the G.L.S. estimate of 0. The values that we have found were: 
for model 1 and T-128 1-.00474, for T-256 1-0.00195 and for T-512 
1-0.00098. For the second model and T-128 1-.00115, for T-256 
1-.00039 and for T-512 1-.000172.
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TABLE 6.1

M.S.E. for model 1 with sample size T-128, and 1000 replicates. 

O.L.S. 0.0360

Method 1.-

M—1 M—3 M-5 M-7 M—9

G.L.S. 0.0060 0.0059 0.0051 0.0050 0.0050
a-. 4 0.0083 0.0082 0.0075 0.0075 0.0076
a-. 7 0.0084 0.0083 0.0076 0.0076 0.0077
a-1.0 0.0097 0.0097 0.0088 0.0088 0.0090
MIS 0.0189 0.0189 0.0175 0.0170 0.0168

Method 2.-

M-3.69 M—4.75 M-5.80 M-6.86 M-7.91

G.L.S. 0.0050 0.0048 0.0048 0.0048 0.0048

a-. 4 0.0070 0.0069 0.0068 0.0069 0.0069

a-. 7 0.0070 0.0068 0.0068 0.0068 0.0069
a-1.0 0.0081 0.0079 0.0079 0.0080 0.0080

MIS 0.0174 0.0172 0.0171 0.0171 0.0171
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TABLE 6.2

M.S.E. for model 1 with sample size T-256, and 1000 replicates. 

O.L.S. 0.0175

Method 1.—

M-3 M-6 M—9 M—12 M—15

G.L.S. 0.0026 0.0021 0.0020 0.0020 0.0020
a-. 3 0.0034 0.0030 0.0029 0.0029 0.0030
a-. 5 0.0032 0.0027 0.0027 0.0027 0.0028
a-. 7 0.0033 0.0028 0.0028 0.0028 0.0029
MIS 0.0087 0.0080 0.0079 0.0078 0.0077

Method 2

M-4.24 M-5.45 M-6.67 M-7.88 M-9.09

G.L.S. 0.0020 0.0020 0.0020 0.0020 0.0020

a-. 3 0.0028 0.0027 0.0027 0.0027 0.0027
a-. 5 0.0026 0.0025 0.0025 0.0025 0.0025
a-. 7 0.0027 0.0026 0.0026 0.0026 0.0026
MIS 0.0080 0.0079 0.0079 0.0079 0.0079
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TABLE 6.3

M.S.E. for model 1 with sample size T-512, and 500 replicates. 

O.L.S. 0.00874 

Method 1.—

M-5 M-8 M—11 M-14 M—17

G.L.S. 0.00102 0.00102 0.00102 0.00104 0.00109

CMi 0.00151 0.00150 0.00150 0.00151 0.00154
a—. 4 0.00125 0.00124 0.00125 0.00125 0.00129
a-. 6 0.00125 0.00124 0.00124 0.00126 0.00129
MIS 0.00335 0.00336 0.00336 0.00338 0.00348

Method 2.-

M-4.87 M-6.27 M-7.66 M-9.05 M—10.45

G.L.S. 0.00101 0.00100 0.00099 0.00099 0.00099
a-. 2 0.00146 0.00144 0.00143 0.00143 0.00143
a—.4 0.00120 0.00119 0.00118 0.00118 0.00112
a-. 6 0.00120 0.00119 0.00119 0.00119 0.00119
MIS 0.00344 0.00342 0.00342 0.00342 0.00343
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TABLE 6.4

M.S.E. for model 2 with sample size T-128, and 1000 replicates. 

O.L.S. 0.3105 

Method 1.—

M—1 M—3 M-5 M-7 M—9

G.L.S. 0.0016 0.0016 0.0013 0.0013 0.0013
a—.4 0.0073 0.0079 0.0080 0.0086 0.0092
a-.7 0.0070 0.0078 0.0079 0.0084 0.0090
a-1.0 0.0092 0.0102 0.0103 0.0108 0.0116
MIS 0.0196 0.0200 0.0188 0.0185 0.0182

Method 2.-

M-3.69 M-4.75 M-5.80 M-6.86 M-7.91

G.L.S. 0.0013 0.0012 0.0012 0.0012 0.0012
a-. 4 0.0059 0.0058 0.0058 0.0059 0.0060
a-. 7 0.0056 0.0055 0.0056 0.0056 0.0057
a-1.0 0.0074 0.0073 0.0073 0.0073 0.0074

MIS 0.0186 0.0186 0.0185 0.0185 0.0186
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TABLE 6.5

M.S.E. for model 2 with sample size T-256, and 1000 replicates. 
O.L.S. 0.1596

Method 1.—

M-3 M-6 M-9 M—12 M—15

G.L.S. 0.0005 0.0005 0.0004 0.0004 0.0005
a-. 3 0.0023 0.0023 0.0025 0.0027 0.0030
a-. 5 0.0020 0.0020 0.0022 0.0024 0.0027
a-. 7 0.0021 0.0021 0.0022 0.0024 0.0027
MIS 0.0089 0.0080 0.0078 0.00768 0.0076

Method 2.-

M-4.24 M-5.45 M-6.67 M-7.88 M-9.09

G.L.S. 0.0004 0.0004 0.0004 0.0004 0.0004

a-. 3 0.0018 0.0018 0.0018 0.0019 0.0019

a-. 5 0.0015 0.0015 0.0016 0.0016 0.0016

a-. 7 0.0015 0.0016 0.0016 0.0016 0.0016

MIS 0.0079 0.0078 0.0078 0.0078 0.0078
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TABLK 6.6

M.S.E. for model 2 with sample size T-512, and 500 replicates. 
O.L.S. 0.0789

Method 1.—

M-5 M—8 M—11 M-14 M—17

G.L.S. 0.00019 0.00019 0.00019 0.00020 0.00021
a-. 2 0.00089 0.00085 0.00081 0.00077 0.00074
a—.4 0.00077 0.00073 0.00069 0.00066 0.00062
a-. 6 0.00075 0.00071 0.00067 0.00063 0.00059
MIS 0.00366 0.00367 0.00371 0.00377 0.00392

Method 2.-

M—4.87 M-6.27 M-7.66 M-9.05 M—10.45

G.L.S. 0.00018 0.00018 0.00018 0.00018 0.00018

a-.2 0.00064 0.00065 0.00065 0.00066 0.00067
a-. 4 0.00054 0.00054 0.00055 0.00056 0.00057
a-. 6 0.00050 0.00051 0.00052 0.00053 0.00054

MIS 0.00372 0.00372 0.00373 0.00374 0.00375
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From the above tables It can be seen that both methods of 
estimating the parameter 0 perform very similar, although method 2 
seems to perform slightly better. However, it seems that the 
performance of the weighted periodogram is better across both models 
and both sample sizes when the 0-2(xt) is estimated 
nonparametrically. Two additional features are the "stability" of 
the M.S.E. across the a's and also the M's, and the similarity 
between the G.L.S., MIS and the semiparametric estimator. The second 
characteristic is that the "best" M for the G.L.S. and the 
semiparametric estimator are the same, as it would be expected from 
the conditions of the theorem since in this example k—1. Also O.L.S. 
performs very badly in the presence of both serial correlation and 
heteroscedasticity, the latter perhaps being the major cause of its 
poor performance.

As expected, it was observed that as the severity of the 
heteroscedasticity increases, the performance of the mis-specified 
estimator under both methods of estimation is worse compared with the 
parametric and semiparametric estimators.

Also, it turned out that the "best" a in terms of the M.S.E. of 
the estimator of 0 is the same for both methods of estimation, and 
the smooth parameter M seems to be in the same "region" for both 
methods of estimation.

Also, as expected the performance of the semiparametric estimator 
of 0, for both methods 1 and 2, worsens as the severity of the 
heteroscedasticity increases. It was observed that in this case a 

greater amount of data was needed to adapt to the unknown
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heteroscedasticity, owing to the fact that the estimation of the 
residuals via the O.L.S. estimator is poorer, and the estimator (2.1) 
used in this study may be more sensitive to this O.L.S. residuals 
than for the estimation of the spectral densities or periodograms.
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