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ABSTRACT

This thesis concentrates on testing fractional (and seasonally fractional)
integration and cointegration in macroeconomic time series.

Fractional integration has recently emerged in the literature as an alternative
plausible way of modelling economic series, and here we focus mainly on some
empirical applications of a testing procedure suggested by Robinson (1994c) for
testing unit roots and other nonstationary hypotheses in raw time series. These tests,
described in Chapter 2, are asymptotically most powerful against fractional
alternatives, have asymptotic critical values given by a chi-squared distribution, and
allow great flexibility in the choice of null and alternative hypotheses, which can
entail one or more integer or fractional roots of arbitrary order anywhere on the unit
circle in the complex plane. In Chapter 2 we also make some simulations,
comparing the size-corrected versions of the tests with those based on asymptotic
critical values, and other existing unit root tests.

The tests of Robinson (1994c) are applied in Chapter 3 to an extended
version of the data set used by Nelson and Plosser (1982). These are fourteen U.S.
macroeconomic variables in annual data, and we focus here on cases where the root
is located at zero frequency.

In Chapter 4 we concentrate on seasonality. Robinson’s (1994c) tests are
now applied to quarterly U.K. and Japanese consumption and income series, using
the same data as in Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and
Hylleberg, Engle, Granger and Lee (HEGY, 1993). We test for the presence of unit
or fractional roots, not only at zero but also at seasonal frequencies.

A multivariate version of the tests, based on the score, likelihood-ratio and
Wald principles is obtained in Chapter 5 and some simulations, based on Monte
Carlo experiments, are carried out at the end of the chapter.

The multivariate tests of Chapter 5 are applied in Chapter 6 to some pairs of
macroeconomic variables claimed to be cointegrated by many authors. Using the
same data as in Engle and Granger (1987) and Campbell and Shiller (1987), we
analyze the relationship between U.S. consumption and income, prices and wages,
GNP and money and stock prices and dividends. A testing procedure to investigate
if these pairs of variables are fractionally cointegrated is also described and applied
in Chapter 6.
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CHAPTER 1

1. INTRODUCTION

The purpose of this section is two-fold. First we motivate and define what
we understand by long memory and fractional integration, then we go on to
summarize some results concerning estimation and testing in the context of long

memory processes.

1.1. GENERAL INTRODUCTION

It is broadly accepted that one feature of macroeconomic variables is that the
level of the series evolves or changes with time, although in a rather smooth fashion.
A common practice to explain and model these smooth movements was to assume
that the series fluctuate around a deterministic trend, via a polynomial and/or a
trigonometric function of time, which are fitted by linear regression techniques. A
second way came after Nelson and Plosser’s (1982) influential work, who following
the work and ideas of Box and Jenkins (1970), argued that these fluctuations in the
level were better explained by means of the so-called unit roots, or in other words,
that the change in level is "stochastic” rather than "deterministic”. Both "schools"
try to model this persistent trend-cycle behaviour of the data although from a
different perspective.

Mandelbrot (1969) and Mandelbrot and co-authors discussed a third way of
explaining these fluctuations in the level. He argued that while many
macroeconomic series exhibit a persistent trend-cyclical behaviour for a stretch of
the data, when the same data is examined for a longer period, the persistent
behaviour tends to disappear. The same type of phenomenon was observed in other
areas, notably in hydrology, and called the Hurst effect, in honour of the hydrologist
Hurst, (Hurst (1951), (1957)), who, studying the records in the level of the river
Nile, noticed that kind of pattern in its behaviour. In particular, he noticed that the
autocorrelations took far longer to decay to zero than the exponential rate associated
with the autoregressive moving average (ARMA) class of models. These kind of
processes are called long memory, due to their ability to display significant
dependence between distant observations in time.

We can give two definitions of long memory. Given a discrete covariance
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stationary time series process, say {x,}, with autocovariance function E(x,-Ex,)(X,;-
Ex,)) = 7, according to McLeod and Hipel (1978), the process is long memory if
T
limT—-u E | YJ |
j=r
is infinite. A second way to characterize this type of processes is in the frequency
domain. For that purpose, suppose that {x,} has an absolutely continuous spectral
distribution, so that it has a spectral density function, denoted f(A), and defined as

f(A) = 2—1ﬂ E YjcosAj, -t <A <T

j=-eo

Thus, we can say that x, displays the property of long memory if the spectral density
function has a pole at some frequency A in the interval [0,x]. One model capable
of explaining this feature is the fractional Gaussian noise model, analyzed in
Mandelbrot and Van Ness (1968), and characterized by having an autocovariance

function defined as
1 . . . 1oeds , . .
Yy = SY¥(|F+ 1P -2f P+ -1, F=1,2,...,

where 0 <d < 1/2. Another model, very popular among econometricians, is the so-
called fractionally integrated model. A popular technique to analyze this model is
through the fractional difference V¢, where
Wo- (1-0¢ = Y (-1 (§) £*
k=0
and L is the lag operator. To illustrate this in case of a scalar time series x,, t=1,2,...,
suppose that u, is an unobservable covariance stationary sequence with spectral

density that is bounded and bounded away from zero at any frequency, and
(L -L)¥x, = u, t = 1,2,... (1)

The process u, could itself be a stationary and invertible ARMA sequence, when its
autocovariances decay exponentially, however, they could decay much slower than
exponentially. When d =0 in (1), x, = u, and thus, x, is weakly autocorrelated’, also
termed ’weakly dependent’. If 0 < d < 1/2, x, is still stationary, but its lag-j
autocovariance y; decreases very slowly, like the power law j>*! as j—eo and so the
Y; are non-summable. We say then that x, has long memory given that its spectral

density f(A) is unbounded at the origin. It may also be shown that these kind of
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processes satisfy’

Yy~ ¢ ¥, as j-oee for |c| < = (2)
and
£(A) ~c, 2724, as A -0* for 0 < ¢, < =, (3)

where the symbol ~ means that the ratio of the left hand side and the right hand side
tends to 1, as j — e in (2), and as A — 0" in (3). Conditions (2) and (3) are not
always equivalent but Zygmund (1995, Cap.V, Sect.2), and more generally Yong
(1974) give conditions under which both expressions are equivalent. Finally, as d
in (1) increases beyond 1/2 and through 1 (the unit root case), x, can be viewed as
becoming ’'more nonstationary’ in the sense, for example, that the variance of the
partial sums increases in magnitude. This is also true for d > 1, so a large class of
nonstationary process may be described by (1) with d = 1/2. Processes like (1) with
positive non-integer d are called fractionally integrated processes and when u, is
ARMA(p,q), x, has been called a fractional ARIMA(p,d,q) process. These kind of
models provide a type of flexibility in modelling low frequency dynamics not
achieved by non-fractional ARIMA models. They were introduced by Granger and
Joyeux (1980), Granger (1980, 1981) and Hosking (1981), (although earlier work by
Adenstedt (1974) and Taqqu (1975) shows an awareness of the representation), and
were justified theoretically by Robinson (1978) and Granger (1980). They observed
that if the individual series follow AR(1) processes, i.e.,

Xie = 03 X; 9 + Uy i=1,...N, t£=1,2,...,

then the aggregate series

N
Xy = Xi, ¢t

im
can exhibit long memory if, for instance, o; are drawn from a Beta B(p,q)
distribution for certain values of p and q.

So far we have considered processes which have (or have after taking
appropriate differences) a singularity in the spectrum at zero frequency. However,
f(A) might also display poles at any other frequency in (0,x]. Gray et al. (1989,

1994) generalized (1) to allow persistent cycle behaviour and considered the

! Condition (2) is satisfied by the fractional ARIMA(0,d,0) case. However,
including ARMA components, it is required all ; to be eventually non-negative.
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Gegenbauer process
d
(1-2nL+L3%) 2 x, = u, t=1,2,... (4)

which is stationary if either |n|<1 and d<1 or |n|=1 and d<1/2, and the spectrum
is infinite at A = arccos(n). By analogy with the fractional ARIMA(p,d,q) process,
(4) can be generalized to include autoregressive and moving average components in
u,.

A further parametric long memory process suggested by Porter-Hudak (1990)
is the seasonal fractionally integrated process given by

(1-L%)9x, = u,, t=1,2,..., (5)

with d € (-1/2,1/2), where s is the seasonal period and u, may be represented as an
ARMA(p,q) process. When d > 0, the spectrum is unbounded at frequencies
lj=21tj/s for j=0,1,2,...,s/2, so the model contains a persistent trend and s/2 persistent
cyclical components. Hence, this process shows a behaviour at seasonal frequencies
similar to that of the fractional ARIMA process at zero frequency, and thus, much
nonstationary behaviour may be modelled at seasonal frequencies allowing d = 1/2.
Therefore, there is some interest in estimating the fractional differencing parameter
d. This is important, not only because it reflects the degree of strong dependence
in a series, but also because rates of convergence of some statistics that are relevant
for statistical inference depend on d. In the following section we review and discuss
some aspects concerning estimation and testing in long memory series, and in

particular, in fractionally integrated series.

1.2. GENERAL RESULTS ON ESTIMATION AND TESTING

In the previous section we have discussed the role that the parameter d plays,
since that parameter gives an indication of the strength of dependence in the time
series. Hence, it appears that one important point is how can we estimate d in a
given stretch of data.

There are two main approaches to estimate the parameter d. The first
approach is parametric, i.e., the model is specified up to a finite number of
parameters of which d is one. The second is semi-parametric and is based on the
limiting relationships (2) or (3). The methods presented below require that d must
belong to the stationary region, so that if the time series is nonstationary, then an

appropriate number of differences have to be taken before proceeding to the
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estimation.

Starting with parametric methods, d is estimated jointly with all the other
parameters that specify the model, and the analysis can be carried out in the
frequency or in the time domain. In the frequency domain, it is assumed that the
spectral density function, f(A,0), is known up to a certain parameter vector 8 (de 0),
where 0, denotes the true value, and the estimation procedure consists in estimating
0 by some Gaussian methods. Fox and Taqqu (1986) assumed Gaussianity of the
process, and minimized the Whittle function (an approximation to the exact

likelihood function)

Tﬁti(logfu,e) + %)dl (6)

where I(A) is the periodogram of the process x,, defined as

2
1

I(A) = m

T

iti
Y % e
t=1

The estimate is shown to be consistent and asymptotically normal under appropriate
conditions, which are satisfied by fractional models as in (1) with 0 < d < 1/2.
Another estimate with the same asymptotic behaviour is obtained if (6) is replaced
by a sum over the Fourier frequencies, i.e., minimizing

I(A;)
£(1;,0)

T-1

1 .
—_— logf(A;,0) +
2Tj=1( ?

), with lj=2nj.
T

Sowell (1992a) analyzed in the time domain the exact maximum likelihood
estimates of the parameters of a fractional ARIMA model, using recursive procedures
that allow quick evaluation of the likelihood function. A limitation of his procedure
is that the roots of the AR polynomial cannot be multiple and the theoretical mean
parameter must be either zero or known. Although the time and the frequency
domain ML estimators are asymptotically equivalent, their finite sample properties
differ, and the Monte Carlo analyses carried out in Sowell (1992a) show that the
time domain ML estimator gives better finite-sample properties than the frequency
domain ML estimator when the mean of the process is known. Cheung and Diebold
(1994) show, however, that the finite-sample efficiency of a discrete version of the
approximate (Whittle) frequency domain ML relative to exact time domain ML rises

dramatically when the mean is unknown and it has to be estimated.
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In addition, Dahlhaus (1989) also assumes Gaussianity but considers the exact

likelihood function and minimizes
1 1 -
ﬁlog | TT(f(e) ) I + ?i_, (XT_l"'T) /TT(f(e) ) . (XT_p'T)
where T((f(0)) is a TxT matrix with (r,s) element:

(T,(£(0))}

(r,s)

T
= ff(k,ﬂ) ellz-s1iq), for r,s, =1,...T,
-

p; estimates consistently the mean p, and T denotes the sample size. He proves that
his estimate and the one studied by Fox and Taqqu (1986) are both not only
asymptotically normal but also asymptotically efficient in the sense of Fisher, i.e.

their asymptotic variance is equal to the inverse of the information matrix I'(8,):
1
T2(6-0,) -4 N(O,T'(6,)7).

It is worth pointing out that all these parametric estimates have the same
asymptotic properties of T"*-consistency and asymptotic normality, and when x, is
actually Gaussian, asymptotic efficiency. Finally, Giraitis and Surgailis (1990) relax
the Gaussianity assumption and analyze the Whittle estimate for linear processes,
showing that it is T"?-consistent and asymptotically normal, although the estimate
is no longer asymptotically efficient, while Hosoya (1997) extends the previous
analysis to a multivariate framework.

However, on estimating with parametric approaches, the correct choice of the
model is important; if it is misspecified, the estimates of d are liable to be
inconsistent. In fact, misspecification of the short run components of the series can
invalidate the estimation of its long run behaviour. Thus, there might be some
advantages in estimating d on the basis of semi-parametric approaches. They are
called semi-parametric models because they parameterize only the long-run
characteristics of the series. There is a price to be paid in terms of efficiency in not
using a correct parametric model, but when the sample size is large the greater
robustness of semi-parametric models-based procedures is relevant.

Before considering some semi-parametric estimates discussed in the literature,
we should mention an estimate (Hurst (1951)) that is based on the so-called adjusted

rescaled range, or "R\S" statistic, and defined as
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J J
maxlsjsTZ (Xt:_)—{) - minlsjsTE (Xt_)_{)
R\S - t=1 t=1

1
T -_—
1 2
[$2 =)
where X is the sample mean of the process x,. The specific estimate of d

(Mandelbrot and Wallis (1968)) is given by:

log(R\S) _ 1
logT 2

Its properties were analyzed in Mandelbrot and Wallis (1969), Mandelbrot (1972,
1975) and Mandelbrot and Taqqu (1979). Beran (1994) provides a neat explanation
of how to implement the R\S procedure. Finally, Lo (1991) modified the R\S
statistic to be robust to weak dependence.

Several methods of estimating semi-parametrically the fractional differencing
parameter d were examined in a number of papers by Robinson (1994a, 1994b,
1995a, 1995b) which we are to describe. Using the time domain, Robinson (1994a)
suggested the log autocovariance estimate, which is based on taking logs in
expression (2),

logy; ~ logc,+ (2d-1) logj, as Jj - o,
and substituting

7-3
9, = %; (X=X (Xpy=X) j=0,1,...7-1

for . The OLS regression of log ¥; on log j then leads to the estimate

T-1
Y log?;(logi-Tog7) -1
&=—2]: 1+ j=T‘;_1 , where TogJ = % Z logj
Y. (logj-TogH* T
J=T-r

and r is a large integer less than T. A disadvantage of this estimate is that even if
the 1; are all positive for large j, some ; can be negative, especially when ¥; is close
to zero. An alternative procedure described in the same article is the minimum

distance autocovariance estimate, which is implicitly defined by
T-1
(@, 8) = argming,, ZT: (- ¢, 7291)2,
J=T-r .

ford € (0,1/2) and ¢, € R.
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Semi-parametric estimates based on the frequency domain are the log-
periodogram estimate proposed by Geweke and Porter-Hudak (1983) and modified
by Kiinsch (1986) and Robinson (1995a); the averaged periodogram estimate
proposed by Robinson (1994b), and the quasi maximum likelihood estimate
(Robinson (1995b)). The first of these estimates is based on the regression model
like

logI(i;) = C - 2dlogh; + €; (7)

21 J
T

- ; - m -
where Aj; = j=1,...m, T 0,

C ~ log(ZL:t £(0) ), €; = log( I(Ay) ),

£05)

and the estimate of d is just the OLS estimate of d in (7). Unfortunately, it has not
been proved that this estimate is consistent for d, but Robinson (1995a) modifies the
former regression introducing two alterations:

- use a pooled periodogram instead of the raw periodogram, and

- introduce a trimming number p, so that frequencies A;, j=1,...p, are excluded from
the regression, where p tends to infinity slower than m, so that p/m tends to zero.

So, the final regression model is

Y37 = c - 2dlogi, + UMY

k = p+Jd, p+2J, ...m,

J
where Y7 = log(z I(Apej-g)
31

where J controls the pooling and p controls the trimming. Assuming Gaussianity,
he proves the consistency and asymptotic normality of this estimate in a multivariate
framework.

The average periodogram estimate of Robinson (1994b) is based on the
limiting relation (3). The estimate employs an average of the periodogram near zero

frequency,
P(ay) = 22Y 1(h)),
T j=1

and suggesting the estimator

F(ghi,)
log| 2 %%’
°9[ F(hy)

2logg where A_-= 21””, LI",—'O

1_
2 m T

for any constant qe (0,1). He proves the consistency of this estimate under very mild
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conditions, and Lobato and Robinson (1996a) shows the asymptotic normality for 0
< d < 1/4, and the non-normal limiting distribution for 1/4 < d < 1/2.

Finally, the quasi maximum likelihood estimate in Robinson (1995b) is
basically a "local Whittle estimate" in the frequency domain, considering a band of
frequencies that degenerates to zero. The estimate is implicitly defined by:

m
argming | log&(d) - 2 dTln; logh,

for de€( ), & m;ux])x s , 2 -0,

2’2 T
Under finiteness of the fourth moment and other conditions, Robinson (1995b)
proves the asymptotic normality of this estimate, which is more efficient than the
former ones (Robinson, 1995a, 1994b). Multivariate extensions of these estimation
procedures can be found in Lobato (1995).

All estimation methods presented so far concentrate on cases where the pole
in the spectrum occurs at zero frequency. Hidalgo and Yajima (1996) suggest two
semi-parametric estimates of d when f(A) ~ C |A - A,|**as A = A, and A, € [0,n].
These estimates, which have explicit though complicated solutions, are shown to be
asymptotically normal, achieving an optimal rate of convergence and being as
efficient as the others suggested in the literature. Finally, Hidalgo (1996) proposes
an estimator of A, which is asymptotically normal, showing that d can be estimated
as well as when the singularity A, is known.

Up to now, we have given a brief discussion of estimation methods in the
context of long memory processes. Our next step is to describe some of the most
relevant literature on testing in this context. Testing with long memory is an area
of research that is attracting growing interest. Tests for white noise against
stationary fractional alternatives were developed in Davies and Harte (1987) and
Robinson (1991). In the former, they propose tests of white noise against the
fractional Gaussian noise alternative. In Robinson (1991), a Lagrange Multiplier
(LM) test is described under the standard assumptions which, under the null
hypothesis of white noise will have an asymptotic chi-squared distribution. The

alternatives are of the class

X, = Z;¢j(6)xt_j + u,, (8)
=
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where the u, in (8) are the disturbances in a linear regression model satisfying: E(u,
| B) = 0, and E(u? | B) = 6% where B, is the o-field of events generated by u,, s
< t. The coefficients ¢,(8) are uniquely defined functions of the vector 6, such that
¢,(6) = 0 for all j 2 1 if and only if the null hypothesis 6 = 0 holds. Thus, under the
null, x, is white noise. The partial derivatives at 6 = 0, ¢, = (9/06)¢,(6) must be

square-summable and also

Y d;05 > o,
Jj=1

meaning that the matrix is positive definite. The square-summability condition on
the ¢; is weak enough to include long memory alternatives, as fractional Gaussian
noise, and in particular the ARIMA(0,d,0) class.

Wu (1992) and Agiakloglou and Newbold (1993) examine LM tests of
ARMA(p,q) models against fractional ARIMA(p,d,q) alternatives. In the latter, they
suggest two variants of a LM test which are identical in spirit to the tests for
additional autoregressive or moving-average parameters of Godfrey (1979). They
show that the tests have low power when the orders (p,q) are over-specified in the
ARMA representation. Lobato and Robinson (1996b) also propose a LM test for
testing that a vector process is weakly correlated against alternatives which might be
fractionally integrated. The test is non-parametric and they apply the LM principle
to the objective function used by Robinson (1995b), obtaining a simply-computed
test that is likely to have good efficiency properties. They give some conditions
under which the statistic has a limiting null sz distribution.

Beran (1992) analyzes for long memory series a goodness-of-fit test proposed
by Milhoj (1981) in the frequency domain. This test is an extension of the Box-
Pierce (1970) statistic, taking into account all the computable correlations. They
show that the asymptotic distribution under the null hypothesis is the same as in the
weak autocorrelation case.

Hidalgo and Yajima (1996) consider semiparametric tests for weak
dependence (i.e., d = 0) against the alternative of long memory ( d > 0) when the
singularity or pole of the spectrum is left unknown. These tests are based on the
limiting distributions of the estimates obtained in Hidalgo and Yajima (1996).
Finally, Hidalgo and Robinson (1996) propose a Wald test for structural break at a

known period of time (say 7) in a linear regression model
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, B, t=1,2,...7
VYV, = zZ + X = ’
e = Pz, t B. B, t=t+l,...T

with stochastic and nonstochastic regressors z,, and x, being a Gaussian long memory
process. Existing tests for structural breaks based on x, being white noise or weakly
dependent will not hold.

Unlike most of these previous procedures, Robinson (1994c) establishes a
very general framework in which many long memory as well as nonstationary
models can be considered as null or alternative hypotheses. The model he considers

is

1]
[
~
\V}
-

(9)

Ye = B/Zt+xt t
p(L;0) x, = u, t=1,2,.... (10)

where y, and the (kx1) vector z, in (9) are observable and P is an unknown (kx1)
vector. The elements of z, are assumed to be non-stochastic (such as polynomials
in t), and u, in (10) is a covariance stationary sequence with zero mean and weak
parametric autocorrelation. p(L;0) is a prescribed function of the backshift operator

and the (px1) vector 0, of form

Yj+elj

h
p(L;B) = (1-L)"" % (1+1)"" ][ (1-2coswyL+L?) (11)

3=3
for given Y j=1,...h, where for each j, eij = 0, for some 1, and for each 1 there
is at least one j such that eij = 0,, thus, h > p.

The null hypothesis is
H;:0=0, (12)

where there is no loss of generality in using the vector of zeros instead of an
arbitrary given vector, and the test statistic will be a LM test based on the frequency
domain. Given the functional form chosen for p in (11), we can consider several
cases of fractional integration under the null and alternative hypotheses. Thus,
fractional integration of the form as in (1) can be tested if p(L;0) = (1 - L)**%; cyclic
behaviour as in (4) if p(L;8) = (1 - 2coswL + L»*® for 0 < w < m; seasonally
fractional integration as in (5) if p(L;0) = (1 - L)**%, and so on. (Note that in the
first two cases, h = p = 1, and in the third one, if s =4, h =3 and p = 1. However,

we could also consider cases with p > 1, for instance, p(L;0) =
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(1 - L)d1"91 (1 + L)dz"ez (1 + LZ)ds+93) ]

The tests of Robinson (1994c) are asymptotically locally most powerful when
directed against fractional alternatives, and have asymptotically critical values given
by a chi-squared distribution. They constitute the basis of this thesis. In Chapter
2 we describe the tests, justify their null and local limit distributions and make some
simulations studying the finite sample behaviour of sized-corrected versions of the
tests. Given the great flexibility allowed by Robinson’s (1994c) tests for testing
different forms of nonstationarity, we use them in Chapter 3 to analyze an extended
version of the data set used by Nelson and Plosser (1982). These are historical
annual data of fourteen U.S. macroeconomic variables and have been widely
analyzed in the literature. We concentrate in this chapter on processes of form as
in (1), i.e. fractionally integrated processes with the singularity in the spectrum
occurring at zero frequency, and we model the stationary disturbances u, in (7) not
only as white noise or AR processes, but also including the Bloomfield exponential
spectral model. Chapter 4 begins by reviewing the literature on seasonality, and
different versions of Robinson’s (1994c) tests are later applied to some U.K. and
Japanese quarterly data analyzed in Hylleberg, Engle, Granger and Yoo (1990) and
Hylleberg, Engle, Granger and Lee (1993) respectively. A conclusion drawn in this
chapter is that seasonal fractional integration might be another viable way of
modelling the nonstationary seasonal component of the series. Multivariate versions
of Robinson’s (1994c) tests, based on the score, likelihood-ratio and Wald principles
are described in Chapter 5. They are shown to be relevant to analyze the
interrelationships between different variables, and some Monte Carlo experiments
comparing results on finite samples are carried out at the end of this chapter.
Finally, these multivariate tests are applied in Chapter 6 to some pairs of economic
variables claimed by many authors to be cointegrated. Fractional cointegration is
defined and a testing procedure for this hypothesis, based on Robinson’s (1994c)

tests, is also suggested and applied in this chapter.



21
CHAPTER 2

ROBINSON’S (1994c) UNIVARIATE TESTS
In this chapter we describe Robinson’s (1994c) univariate tests for testing unit
roots and other nonstationary hypotheses. We present the tests, their limiting
distributions and make some simulations comparing the size-corrected versions of

the tests with the non-corrected ones and other existing unit roots tests.

2.1 INTRODUCTION

Versions of the score, likelihood-ratio and Wald principles have been much
used in testing for a unit root in a time series against AR alternatives that are
stationary or explosive. The test statistics often have nonstandard null and local
asymptotic distributions and typically, critical values have to be calculated
numerically on a case-by-case basis. However, the AR model is merely one of many
models that nest a unit root. We can test H, (1.12) in (1.10) with p(L;0) = (1 - L)"**®
instead of the AR alternatives described by p(L;0) = (1 - (1+6)L). Robinson (1994c)
stresses that the "nonstandard" asymptotic behaviour of commonly used unit roots
tests is a consequence of the AR alternative, and provides a different and unified
treatment of testing unit roots (and many other hypotheses) as a "standard" problem,
in the sense that the test statistics will have an asymptotic X;' null distribution,
where p is the number of restrictions tested. Also his tests will be efficient when x,
is Gaussian and more generally, more efficient than other statistics that are also
based on sample second moments of x,, We start first by mentioning some of the
most salient features of the tests.

As mentioned in Chapter 1, the tests will allow great flexibility in the choice
of the null and alternative hypotheses, which can entail one or more integers or
fractional roots of arbitrary order anywhere on the unit circle in the complex plane.
This will permit us to test a great variety of model specifications, including seasonal
and cyclic behaviours of any stationary and nonstationary degree. Note that under

H, (1.12), (1.10) becomes
p(L)x, = u, t =12,.. ' )

with
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p(L) = p(L;0=0) = (1—L)’“(1+L)"2III_’;3 (1—2cosij+L2)Y’
for given h, for given distinct real numbers w; j=3...h on the interval (0,%], and for
given real numbers ¥, j=1,...h. We can briefly indicate some null hypothesized
models of interest:
a) "I(1)": p(L) = (1 - L). Then x, given in (1) is a random walk when u, is a
white noise sequence.
b) "I(2)": p(L) = (1 - L)%
c) "Cyclic I(1)": p(L) = (1 -2 cos wL + L%, for 0 < w < 7.
d) "Quarterly I(1)": p(L) = (1 -L*) = -L) (1 + L) (1 + L.
e) "1/f noise": p(L) = (1 - L) which is of interest since x, in (1) is then a
fractionally differenced process that is "just nonstationary"” opposed to stationary
when p(L) = (1 - L) with d < 1/2.
1) "1/f"2 noise": p(L) = ( 1 - L), etc.

Furthermore, x, need not be observable but can be the errors in a multiple
regression model as in (1.9), where the elements of z, are assumed to be
nonstochastic, such as polynomials in t, to include the null hypothesis of a unit root
with drift, for example. The limiting null and local distributions of the test statistics
will be unaffected by the presence of such regressors. In contrast, asymptotic
distributions of test statistics for a unit root null for x, in (1.9) against AR
alternatives seem to be dependent on characteristics of the z, sequence (see, eg.
Schmidt and Phillips, 1992).

The initial discussion of the tests assumes that the u, in (1) are white noise,
so the only nuisance parameters are  and the variance of u,. Unlike tests based on
AR alternatives, the tests of Robinson (1994c) cannot be robustified to allow for
weak nonparametric autocorrelation in u,. (Tests against fractional alternatives with
nonparametric autocorrelation under the null would have negligible efficiency
relative to parametric autocorrelation). Thus, he includes an extension to the case
of weak parametric autocorrelation in u,, of quite general form to cover stationary
and invertible ARMA behaviour and the exponential spectrum model of Bloomfield
(1973) (see (12) below), as well as autocorrelations that decay fairly slowly.

The test statistics are derived via score principle, and though undoubtedly the
same asymptotic behaviour can be expected of Wald and likelihood-ratio tests, he

uses score tests with the usual computational motivation that they entail estimation
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only under the null hypothesis (1.12). Efficient estimates of fractional models have
been studied (see Chapter 1), but they require numerical optimization, have not been
very widely used and are not featured in the most widely used time series software
packages.

The tests are expressed in the frequency domain. There exists time domain
versions of the tests, but the preference here of the frequency domain approach is
because of its comparative elegance; the ease with which it accommodates
autocorrelation corrections for u,; and the natural way in which it exploits the fast
Fourier transform in case of long time series.

The following section describes the test statistic for the case of white noise
u, and present null and local limit distribution theory in this case. Section 3 does the
same, extending the tests for weakly autocorrelated u,, and finally Section 4 uses
Monte Carlo simulations to study finite sample behaviour of sized-corrected versions

of the tests.

2.2 SCORE TEST UNDER WHITE NOISE

Robinson (1994c) shows that a score statistic for testing H, (1.12) in the
model given by (1.9); (1.10) with
x, =0 fort<0 )
under the presumption that u, in (1.10) is a sequence of zero mean uncorrelated

random variables with unknown variance o° takes the form

_ T _
[T LW A- 2(1—%)%% v = Re(a—";logp(e'*;m)
W I=1

T T r
52 = %E i, = p(L)O,-P'z), B = [Z w,w,/) [Z W,p(L)}’,}
t=1 t=1 t=1

where I is the pen'odogram of the @, sequence; w, = p(L)z, and v, is given by

expanding y(A) above as Z y,cosli; He approximates R by
1=1

B=TLad's-#r 7=T_g4 3)
6.4 62
where @ = -2—2 YONL(,
T J
- T-1 l p 2 *
A= (1 - —)1]1,1]1, or 2¥ or Y V() v )
= T T
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. 1 7 ,
= A A)YdA,
with ¥ = — f YA W)

in which A; = 2nj/T and the sums on * are over A; € M, where M = {A: -t <A <,
Ae (p -A,p + A), 1=1,...,5}, such that p,, I=1,...,s < o are the distinct poles of
Y(A) on (-m,x]. Thus, he uses a discrete approximation to the integral a, omitting
the contribution from the finitely many A; in an open A,-neighborhood of any of the
P

Notf that by Parseval’s equality,

¥ = 1y g,

213
so that asymptotic equivalence of the first two formulas in (4) readily follows.
Sometimes a simple closed form is available for ¥; for example, ¥ = /12 y,=-
I''), when p(L;0) = (1 - L)*®. More generally, for example when p(L;8) has
complex zeros, a simple formula may be unavailable, and the first expression in (4)
may be cumbersome to calculate if the y, are not of simple form, in which case the
final option in (4) may be preferred.

Theorems 1 and 2 below describe the null and local limit distributions
respectively. Theorem 1 is a large-sample justification for rejecting H, at the
1000% level when R > x;,a where P( X; > X;,a ) = o.. It also justifies one-

sided tests when p=1: H, is rejected in favour of H,: 6 > 0 ( 0 < 0) at the 1000.%

level, when T > z,, (F < - z,), where the probability that a standard normal variate

exceeds z, is o. The proofs of the theorems are given in Robinson (1994c).

Theorem 1

Let {u, t=0,+1,...} € F, where F is the class of sequences {v,, t=0,+1,...} of
stationary random variables satisfying E(v,| B,,) = 0 and E(v2| B,,) = ¢ almost
surely, where 0 < 6 < = and B, is the o-field of events generated by v,, s < t.

Let {z, t=0,%1,...} € G, where G is the class of (kx1) vector sequences {z,
t=0,+1,...} such that z =0 for t<0 and E;T=1 W¢W¢/ is positive definite for
sufficiently large T.

Let p(L;0) € H, where H is the class of functions p(z;0) such that p(0;0)=1
for all 6 and W(A) as defined above has finitely many poles p,, I=1,...,r, on (-7t,]

such that | y(A\)ll is monotonically increasing as A—p,. and as A—p,,, for I=1,...,
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and there exist disjoint intervals S,, I=1...,r such thatU,_, . S, e (-n,xl, p, € S, p, ¢
S, for 1 #k, and

SUD ) e5,~(py-8,p,+8) ( |A-p,| ‘w().) - W(Ai% 6) l
for k=1,...,r and some n>1/2, where | - I denotes Euclidean norm.
Then, under H,, defined by (1.10) and (1.12), the condition
0 < det(¥) < o' (5
is sufficient for T in (3) —4 N(0,L,), as T—eo, where I, is the p-rowed identity matrix.

) = 0(d8"), as o6 -0,

The class F imposes a martingale difference assumption on the white noise
u,, which is substantially weaker than the Gaussianity used in motivating the test
statistic and in particular requires a second moment condition that is clearly minimal.
Class G imposes a mild lack-of-multicollinearity assumption on the w,, that is
satisfied by, for example, z, with elements that are polynomials in t. Finally, class
H includes technical assumptions on W that are costless, but required to justify
approximating integrals by sums.

Theorem 2 below justifies optimality of R in the sense of providing an

asymptotically most powerful test against local alternatives of form
1

H: 6 = 6, =4 §T 2, ©

where 8 is any non-null (px1) vector.

Theorem 2
Let {u, t=0,%1,...} € F, let {z, t=0,£1,...} € G and let
Yr = B’z + X, @)
where
pLODx, =u, t21, x,.=0, t<0, 8

where 0; satisfies (6) and p(L;0) € J, where J is the subclass of H such that for
all p € J, &(z:0) = {p(z)/p(z;0)}{(3/90) log p(z;0)} is continuous in O at @ = 0 for
almost all z such that | zI = 1, and for a neighborhood S of 6 = 0,

[ supocs 1EE 0 PdA < o

Let &, A, and &% now be defined in terms of x,; rather than x,. Then,

! Note that the right-side inequality in (5) is not satisfied by the AR alternative
p(L;0) = (1-(1+06)L), but is satisfied by "fractional" alternatives p(L;0) = (1 - L)d+e
for any real d, for example.
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condition (5) is sufficient for f—, N(-¥'?3, 1), as T—ee.

Class J entails a strengthening of the restrictions on p, but it is readily
checked in case of (1.11). Theorem 2 implies that under local alternatives, R—, xpz
(8°¥9), indicating a noncentral y,” distribution with noncentrality parameter 8 ¥
which is optimal under Gaussianity of u,. In non-Gaussian environments the test is
no longer fully efficient, but it is still the most efficient test based on quadratic

functions of the data.

2.3 SCORE TEST UNDER WEAK PARAMETRIC AUTOCORRELATION

The test developed in the preceding section can be robustified to allow weak
parametric autocorrelation in u,. Let u, be covariance stationary with spectral density
of form f(A,1,06%) = (6*2m)g(AT), -® < A < 1, where g is a known function of A and
the unknown (gx1) vector T, such that T and ¢ are not a priori related. Note that
o’ is generally no longer the variance of u,, but rather the variance of the innovation
sequence in a normalized Wold representation for u,.

By extending the argument in Section 2, Robinson (1994c) shows that an

approximate score statistic for testing (1.12) in (1.9); (1.10) and (2) is

A T A ;- A Ala A Tln 2 - A
R=—=a'd"a=#¢ #=-—A", ©)
64 6.2

where & = 2253 w(A)g(hi) L),
J
A is either 2(¥Y-®E'®') or
* * * -1
%E w(x,-)w(x,-)’%z: w(Aj)é(A,)’[%Eé(A,)é(x,.)'] Zed) vy, (o)
. . j

_ 1 / _ 1y / I
@ f PMeW)dh, B = - f" CNeMWdh, () = —logg(hs),

T-1
e, = a—‘ilogg(x;e), t = argmin_.0%(x), 0%(x) = Z'TEZ g0 L),
j=1

and &° = 6°(%), where T" is a compact subset of q-dimensional Euclidean space.
Some technical assumptions are made on g in the statements of Theorems 3

and 4; their principal practical implications being that though u, is capable of

exhibiting a much stronger degree of autocorrelation than stationary and invertible

ARMA processes, its spectrum must be bounded and bounded away from zero.
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Though q can be arbitrarily large, we assume it is finite, thus treating only
parametric alternatives. As explained in Robinson (1994c), a unit root test against
fractional alternatives with nonparametric autocorrelation under the null would have
negligible efficiency relative to parametric autocorrelation.

The following theorem strictly relaxes the conditions of Theorem 1, so that,

for example, we continue to require finiteness of only second moments of u,.

Theorem 3

Let {u,t=0,%+1,..} be such that u, = ;0 we,; t=0,%+1,..., where {g,
t=0,t1,..} € Fand E;lfmlajl < oo .

Let {z,t=0,+1,..} € G, letpe H, and let ge L where L is the class
of functions g(A;T) on (-nt,x]xT* such that g(\;T) = IZ;O «(i;T) el r’ o(0;%)=
1, ag;t) = o j=0,1,.., where 7 is the true value of T; 7T is an interior point of T,
g% # g(A\t) for T e T' - {1}; for all A, g(A;T) is bounded away from zero on a
neighborhood S of T; g(A;T) is continuous in (A,T) for T € S and has first and second
derivatives with respect to 1 that are also continuous in (A,%) for T € S; g(A,7) and
(9/07) g(A;7) satisfy a Lipschitz condition in A of order > 1/2. Let also (1.9) and
(2) be true.

Then, under H, defined by (1.10) and (1.12), the condition
0 < det(¥ - PE'P’) < o (11)
is sufficient for  —4 N(0,L,), as T—oo.

Theorem 2 can likewise be extended.

Theorem 4

Let {u, t=0,+1,...} be as in Theorem 3, let {z, t=0,%+1,...} € G, and let (7)
and (8) hold where 0, satisfies (6) and p(L;0) € J. Let 4, A and &% now be defined
in terms of x,; rather than x,.

Then condition (11) is sufficient for  —, N(-(¥ - ®="'®’)"?5, 1), as T—reo.

The most obvious choice of a time series model for u, satisfying the
conditions above is a stationary and invertible ARMA, where relatively simple
formulas for g and € are available. Thus, in the pure AR case,

q -2
_ ijA
1 ,-E=1 T8

g(A;t) = ,  €[A) = (Z(COSIA - zq: 'rjcos(l-j)l)g().;t)),
j=1
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where g(A) corresponds to the I element of £(A). However, there are some grounds
for preferring the exponential spectrum model of Bloomfield (1973):
q
g(A;1) = exp(ZE rjcosjl.), -T < A < T (12)
j=1
Like the stationary AR case, this has exponentially decaying autocorrelations,
and he showed that (12) was remarkably successful at fitting practical data. This

expression leads to a neat version of our frequency domain test statistic. In fact,

e(d) = 2cosiA), E =21, @ =(Y..¥), and ¥ -GE D/ =% 3

I=g+1
Unlike in the AR model, €(A), and thus ¥ - ®¥'®’ are free of the nuisance

parameter vector T, and therefore, expression (10) simplifies.

24  FINITE SAMPLE PERFORMANCE AND COMPARISON

In this section we examine the finite-sample behaviour of sized-corrected
versions of Robinson’s (1994c) tests by means of Monte Carlo simulations, and
compare the results obtained here with those in Section 8 in Robinson (1994c),
where his tests based on asymptotic critical values were performed and compared
with a number of leading unit root tests. Robinson (1994c) stresses large-sample
theory and suggests only large-sample approximate critical values. We have
considered it convenient in this chapter to attempt a size correction version of his
tests in order to study more deeply its finite-sample behaviour.

In Table 2.1 we have calculated the empirical size of T in (3) for different
sample sizes, T = 25, 50, 100, 200 and 500, based on 10,000 replications. In the
upper part of this table we give the critical values of ¥ when PB=0 is correctly
assumed, (i.e., y, = X,), while in the lower part, we give the critical values of the test
statistic with unknown B and z, = (1,t)’. In both cases we take u, as a Gaussian
white noise process with zero mean and variance 1, generated by the routines
GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986)>.. We
observe that the empirical distributions are similar in both cases, with a negative
mean, positively skewed, and with Kurtosis greater than 3, but as we increase the

sample size, the values approximate to those given by the Normal distribution, with

2 The Fortran codes used in this section require only slight modifications of the

program described in Appendix 4.3 in Chapter 4.
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the three statistics (mean,skewness and kurtosis), improving with T in both cases.
We also note in this table that for most of the quantiles, both the lower and the
upper tail critical values are smaller than those given by the Normal distribution.
Thus, when testing H, (1.12) against H,: 8 < O, the test statistics based on the
asymptotic critical values will reject the null more often than those based on the
size-corrected values; however, when testing (1.12) against H,: 6 > 0, the test
statistics based on the asymptotic critical values.will not reject the null as often as
the size-corrected ones.

Tables 2.2-2.9 correspond to Tables 2-9 in Robinson (1994c). In this article,
Robinson’s (1994c) tests based on asymptotic critical values were performed jointly
with seven existing tests that had a random walk null hypothesis. We present the
same results here, adding those of the size-corrected tests based on the empirical
distributions obtained in Table 2.1.

The null model consists of (1.9); (1) and (2), with p(L) = (1 - L), and the u,
in (1) correctly assumed to be white noise. The test denoted S1 in this section is a
test of F in (3) with B=0 and p(L;0) = (1 - L)"*®, and the test S2 is the corresponding
test with unknown B and z, = (1,t)’, both based on the asymptotic critical values of
the Normal distribution; S1" and S2" are the size-corrected versions of S1 and S2
tests respectively. The P and % tests are due to Fuller (1976) and to Dickey and
Fuller (1979), and they assume that B=0 and are designed to be particularly sensitive
to AR alternatives, p(L;0) = (1 - (1+6)L); Likewise, p, and %, tests of Fuller (1976)
and Dickey and Fuller (1979) take z, = (1,t)’ in (1.9) but assume that the second
element of B is zero. The { and % tests are due to Schmidt and Phillips (1992) and
they result from application of a version of the score principle to (1.9); (1.10) and
(2) with p(L;0) = (1 - (1 46)L), z, = (1,t)’; The F test from Robinson (1993) is an
exact test under Gaussianity when B=0 in (1.9) and was shown to be consistent
against fractional and AR alternatives. For the seven tests directed against AR
alternatives, finite-sample critical values derived from the tables of Fuller (1976) and
Schmidt and Phillips (1992) for the p, %, p,, 1., P, and 7 tests, and from the standard
F tables for the F test, were used. As explained in Robinson (1994c), all these tests
have asymptotic validity with respect to the same null hypothesis: y, = x,; (1-L)x, =
u,; u, white noise.

Because each of the tests is motivated by either fractionally differenced or
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AR alternatives, the performances of all tests is evaluated against data generated by
both types of model. For both the fractional alternative p(L;08) = (1 - L)*%, and the
AR alternative p(L;0) = (1 - (1+0)L), the values 6 = 0, £.05, +.1, +£.2, £.3, .5, +.7
and +.9 are used, and thus, covering the null unit root model as well as stationary,
less nonstationary, and more nonstationary fractional alternatives and stationary and
explosive AR alternatives. We use sample sizes of T = 25, 50, 100 and 200, and
generate Gaussian series, with 5,000 replications of each case. The finite-sample
critical values of Fuller (1976) and Schmidt and Phillips (1992) are all apparently
based on Gaussian series.

Tables 2.2 and 2.3 contain Monte Carlo rejection frequencies for one-sided
tests against fractional alternatives 0 > 0, with nominal sizes 5% and 1%
respectively. Tables 2.4 and 2.5 correspond, with AR alternatives. Tables 2.6 and
2.7 cover fractional, and Tables 2.8 and 2.9 AR alternatives with © < 0. Tables 2.2-
2.5 omit the F test, because this test covers only alternatives 6 < 0.

The first thing that we observe in these tables is that the sizes of S1° and S2°
are closer to the nominal ones than those of S1 and S2. This is observed for all
sample sizes and when directed against both 6 > 0 and 0 < 0. The sizes of S1 and
S2 were too small when directed against 0 > 0, but too large when directed against
0 < 0. Using the size-corrected versions S1” and S2°, the sizes increase for positive
0, and decrease for negative 0. This is what we should expect in view of the
empirical distributions in Table 2.1, where the critical values were smaller than those
given by the Normal distribution. When directed against 8 > 0, the sizes range
between 4.5% and 5.1% at the 5% level, and between 0.8% and 1.2% at the 1%
level; For 0 < 0, they range between 3.9% and 5.2% at 5%, and between 0.5% and
1% at the 1% level. Results here are competitive with those obtained in the
remaining tests.

Looking again at Table 2.2, the improvement in size observed in S1” and S2°
relative to S1 and S2, is associated with some superior rejection frequencies in all
cases and all sample sizes. These rejection frequencies are also higher for S1° and
S2" than for the other tests, except in some cases when 0 and T are small. We
observe that when T = 25 and 0 = .05, the highest rejection frequency is obtained
for %, with a rejection probability of .090, compared with .073 for S1" and S2°, and
.028 and .026 for S1 and S2 respectively. Also with T = 25, if @ = .1 £ and % beat
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S1° and S2°, however, if 0 = 0.2, only % is slightly better, and for all other values of
0, S1° and S2" give the highest rejection frequencies. With T > 25, S1" and S2°
outperform the other tests at all values of 0.

Table 2.3 presents a similar picture with higher rejection frequencies for the
size-corrected tests over the others except when T and © are small, with £ and %
performing slightly better in some cases. The efficiency of S1 and S2 in these two
tables appears to assert itself as well with S1" and S2°, observing higher rejection
frequencies in S1° and S2° over the others for small departures from the null,
especially when T is large.

Tables 2.4 and 2.5 correspond to the tests directed against AR alternatives
and 6 > 0. Again we observe higher rejection frequencies in S1° and S2° relative to
S1 and S2, though they are smaller than in the remaining tests, which is not at all
surprising given that Robinson’s (1994c) tests are not efficient with respect to AR
alternatives. Comparing S1° and S2° with the tests directed against these
alternatives, we observe in Table 2.4 that when T = 25, S1* and S2" behaves better
than %, for 0 = .05, and they outperform p and T for 6 = .2. We also observe that
when T = 100, S1" and S2" are as good as the others for 8 > 0.3, and when T = 200
for 8 > .2. Similar results are obtained in Table 2.5, with higher rejection
frequencies for the size-corrected tests over the non-corrected ones, and competitive
results with respect to the other tests when T and 0 are large.

Performing the one-sided tests against 0 < 0, (in Tables 2.6-2.9), the sizes of
S1 and S2 were too large. Using the size-corrected versions S1° and S2°, the sizes
decrease, especially when T is large. When T = 25, sizes are now too small, with
4.1% for S1" and 3.9% for S2" at the 5% level, and 0.6% and 0.5% at the 1% level;
however, as T increases, they approximate to the nominal ones, and thus, with T >
50, they range between 4.8% and 5.2% at the 5% level, and between 0.8% and 1.0%
at the 1% level.

The smaller sizes observed in these tables in S1” and S2 relative to S1 and
S2 are also associated with smaller rejection frequencies and thus, S1* and S2" in
Tables 2.6 and 2.7 are beaten not only by S1 and S2 but also by the remaining tests
(especially f, % and p,) when T is small, even for the fractional data. However as
T increases, S1, S2, S1* and S2° give higher rejection frequencies than the remaining

tests, showing again the efficiency property of Robinson’s (1994c) tests, especially
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with T = 200.

Finally in Tables 2.8 and 2.9, we again observe smaller rejection frequencies
in S1° and S2” relative to S1 and S2, which must be due to the smaller size of the
size-corrected tests. S1" and S2" are beaten in practically all cases by the other tests,
and this might be due to the lack of efficiency of Robinson’s (1994c) tests when
directed against AR alternatives, and the lower size of S1" and S2* relative to the
other tests.

In Table 2.10 we have calculated the empirical distributions for R in (3),
again with T = 25, 50, 100, 200 and 500, and for the two cases of § = 0 a priori,
and of unknown B with z, = (1,t)’. The critical values are similar in both cases, and
as we should expect, increasing the sample size, the values approximate to those of
the x,* distribution. We note in this table that at 90% and 95% percentiles, the
critical values are greater than those given by the y,* distribution. Therefore, when
testing the null (1.12) against the alternative: H,: 6 # O at the 10% and 5%
significance level using the asymptotic critical values, the null hypothesis will be
rejected more often than when using the size-corrected critical values.

Table 2.11 concerns two-sided tests based on S1 and S1” (its size-corrected
version), and the test T1", which denotes R in (3) with B = 0 using the empirical
distribution in Table 2.10, for the same (fractional Gaussian) process used in Tables
2.2,2.3,2.6 and 2.7, but for 6 =0, +£.05, +.1, +£.2 and +.3, with T = 100 and 200 and
nominal sizes of 10%, 5%, 1% and 0.1%. Results for S1 are taken from Table 10
in Robinson (1994c). Looking at S1, the sizes are closer to the nominal ones than
in previous tables, though they are too large at 10% and 5%. Using the size-
corrected versions S1" and T1" , the sizes are smaller and they approximate even
more to the nominal ones. They range between 9.8% and 10% at the 10% level,
between 4.7% and 5.3% at the 5% level; between 0.8% and 1.2% at 1%, and are
exactly 0.1% at the 0.1% level. Comparing the rejection frequencies in the S1 test
with the size-corrected versions S1° and T1%, we observe that for nominal sizes of
10% and 5% level, they are slightly higher in S1” than in S1 for 8 > 0, however, for
0 < 0, S1 gives higher rejection probabilities than the size-corrected tests. These
rejection frequencies decrease in S1” and T1” with respect to S1 for positive 6 but
increase for negative 0, correcting slightly the bias observed in S1 where higher

rejection frequencies were observed for negative 0 than for positive ones. Using
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smaller nominal sizes, results are not very conclusive: S1 is the best when a =
0.1%, with 8 > 0 and T = 200, and with 6 < 0 and both sample sizes. S1° gives the
highest rejection frequencies when o = 1% with 8 > 0 and T = 200 and with 6 <0
and T = 100, and also when o. = 0.1%, 8 > 0 and T = 100; Finally T1" beats S1
and S1° when o = 1% with 8 > 0 and T = 100, and with 8 < 0 and T = 200.

As in Robinson (1994c), we also extended the analysis to cover corrections
for AR autocorrelation in u, and departures from Gaussianity in u,, However, in
order to save space, we have decided not to include the results here. (Note that in
doing so, we should also include the empirical distributions of the tests, which are
different for each of the parameterizations in the AR representation and are also
different for the different distributional assumptions in u,). Robinson’s (1994c) Table
11 reports results of the two-sided S1 as in Table 10 but replacing Gaussianity by
a ty-distribution for the white noise u,. His results were competitive with the
Gaussian ones, with the sizes closer to the nominal ones. Using the size-corrected
versions S1” and T1", our results were similar to those in Robinson (1994c), though
the sizes were slightly smaller and also the rejection frequencies were smaller than
in S1.

Attempting AR-corrections to u,, Robinson’s (1994c) Tables 12 and 13 report
two-sided tests with u, generated as white noise (AR(0)) and AR(2) of form u, = u,,
- .5u,, + €, and the white noise €, being generated as N(0,1) and t,. His results
indicated that the sizes were too large in all cases. Using the size-corrected versions
of the tests, the sizes were much smaller and thus, closer to the nominal ones. On
the other hand, because of these smaller sizes, we also obtained smaller rejection
frequencies in practically all cases.

Finally, we should also mention here that in the empirical work carried out
in Chapters 3, 4 and 6, we rely on the asymptotic critical values given by the
Normal ( or %?) distribution, motivated mainly by the different models considered
in (1.9); the different models used for describing the disturbances u,; and the
different functions p(L;0) used in (1.10), especially in Chapter 4. Note that for each
of these cases, the empirical distributions are different. Furthermore, Robinson
(1994c) stresses the large-sample theory in justifying the tests, and therefore, we
have considered more convenient for the remaining work the use of the large sample

approximate critical values rather than the size-corrected ones.



TABLE 2.1

Critical values on finite samples of ¥ in (3) with =0

Perc\ T 25 50 100 200 500
0.1% -2.934 -2.985 -2.852 -3.034 -2.963
0.5% -2.677 -2.690 -2.586 -2.560 -2.563
1.0% -2.566 -2.539 -2.406 -2.385 -2.387
2.0% -2.432 -2.314 -2.234 -2.176 -2.155
2.5% -2.392 -2.254 -2.173 -2.106 -2.072
5.0% -2.190 -2.037 -1.933 -1.873 -1.804

10.0% -1.941 -1.764 -1.644 -1.548 -1.403

20.0% -1.618 -1.408 -1.261 -1.167 -1.086

30.0% -1.352 -1.129 -0.985 -0.868 -0.791

40.0% -1.107 -0.890 -0.741 -0.615 -0.543

50.0% -0.865 -0.650 -0.495 -0.374 -0.286

60.0% -0.621 -0.407 -0.238 -0.132 -0.028

70.0% -0.329 -0.122 0.038 0.142 0.252

80.0% 0.008 0.211 0.370 0477 0.596

90.0% 0.537 0.741 0.876 0.993 1.080

95.0% 1.024 1.171 1.331 1.414 1.502

97.5% 1.440 1.610 1.762 1.784 1.869

98.0% 1.565 1.709 1.879 1.937 1.966

99.0% 1.895 2.104 2.172 2.301 2.275

99.5% 2.268 2.505 2.506 2.661 2.579

99.9% 2.895 3.402 3.316 3.436 3.193

Mean: -0.768 -0.567 -0.424 -0.320 -0.235

Skewness: 0.569 0.518 0.434 0.367 0.266

Kurtosis: 3.145 3.394 3.211 3.298 3.107

Critical values on finite samples of F in (3) with unknown B and z, = (1,t)°

Perc\ T 25 50 100 200 500
0.1% -2.934 -3.036 -2.842 -3.081 -2.967
0.5% -2.697 -2.693 -2.587 -2.557 -2.572
1.0% -2.581 -2.553 -2.425 -2.386 -2.373
2.0% -2.439 2313 -2.237 -2.181 -2.153
2.5% -2.380 -2.252 -2.167 -2.113 -2.072
5.0% -2.192 -2.046 -1.929 -1.890 -1.811
10.0% -1.940 -1.756 -1.636 -1.554 -1.483

20.0% -1.620 -1.409 -1.258 -1.157 -1.086

30.0% -1.352 -1.131 -0.979 -0.868 -0.793

40.0% -1.113 -0.891 -0.738 -0.612 -0.540

50.0% -0.869 -0.658 -0.494 -0.370 -0.277

60.0% -0.618 -0.402 -0.241 -0.137 -0.023

70.0% -0.339 -0.118 0.037 0.142 0.256

80.0% 0.015 0.229 0361 0.472 0.601

90.0% 0.547 0.742 0.876 0.998 1.077

95.0% 1.029 1.172 1.350 1.418 1.495

97.5% 1.442 1.623 1.751 1.789 1.862

98.0% 1.558 1735 1.853 1.905 1.985

99.0% 1.950 2.097 2171 2.308 2272

99.5% 2242 2.509 2.509 2.674 2.585

99.9% 2.823 3.435 3.381 3.469 3.126

Mean: -0.768 -0.566 -0.421 -0.320 -0.235

Skewness: 0.564 0.521 0.430 0.367 0.266

Kurtosis: 3.114 3.454 3.199 3.326 3.313



0 .016
05 .028
1 .047
2 120

3 230

5 516
7 772
9 .909

0 .023
.063
125
323
.583
.906
.991
999

CNULwiv=D
v

0 .030
.100
233
631
.897
.998
1.000
1.000

L=
&

0 S1

0 .030
.05 .168
1 A47
2 910
3 .995
5 1.000
7 1.000
9 1.000

*: §1" and S2° are sized-corrected S1 and S2 tests respectively.

TABLE 2.2

Rejection frequencies for Upper-Tailed 5% Test and Fractional x,.

S2

016
026
.047
17
225
S11
775
916

S2

.023
.063
124
324
579
.902
.992
1.000

S2

.030
101
232
.628
.896
997
1.000
1.000

S2

030
169
449
911
995
1.000
1.000
1.000

049
073
114
233
J38s
662
871
949

050
117
191
439
672
943
995
999

049
144
322
703
931
999
1.000
1.000

s1’

046
214
519
931
997
1.000
1.000
1.000

S2°

045
073
113
227
377
657
870
953

051
116
188
437
671
946
995
999

046
141
312
700
930
999
1.000
1.000

s2°

.045
209
S14
930
997
1.000
1.000
1.000

T=25
p %
053 .049
076  .082
107 130
181 241
265 362
424 574
563 .703
662 785
T =50
p %
054 050
080  .092
113 148
197 .288
290 435
455 651
585 771
681 836

T =100

p t
049 050
086 111
140 187
240 358
338 516
498 715
626  .823
705 872

T = 200

p %
055 052
096 114
152 214
272 416
375 588
529 .780
639 866
719 906

P-

.046
067
093
149
227
379
524
.633

P:

.053
.088
126
237
360
.565
.694
.746

P.

.046
.092
.156
.309
483
718
779
.796

P

051
112
.193
400
611
814
.838
.826

064
.084
132
192
.306
393
465

.052
.080
.116
195
285
423
508
525

.046
.087
.138
244
361
513
559
553

050
.100
160
307
430
574
.580
565

048
.072
.109
193
.306
544
735
.859

.056
.096
152
321
495
769
914
973

.052
.109
.199
442
.670
915
.986
.998

054
134
254
572
818
982
999
1.000

.063
.090
126
220
.335
578
.763
.873

.061
.102
.164
332
.508
178
919
975

.057
.116
209
454
679
.920
.988
.998

054
135
256
574
818
983
999
1.000
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0 .004
05 .009
1 015
2 051

3 124

] 374
7 .652
9 .840

0 .007
.020
.057
195
428
.832
975
.997

L=
G

0 009
.05 039
1 123
2 468

3 .805

5 .993
7 1.000
9 1.000

0 S1

0 .009
.05 .070
1 270
2 822

3 988

.5 1.000
7 1.000
9 1.000

*: S1" and S2°

TABLE 2.3

Rejection frequencies for Upper-Tailed 1% Test and Fractional x,.

S2

.003
.010
.016
.050
120
362

.847

S2

.006
.020
057
.193
426
.831
975
998

S2

.009
039
125
467
.805
.993
1.000
1.000

S2

.009
.070
270
.821
.988
1.000
1.000
1.000

012
019
035
099
193
460
736
880

008
028
064
229
461
.864
978
998

008
050
.143
504
837
996
1.000
1.000

sr°

009
067
281
822
987
1.000
1.000
1.000

009
018
033
091
182
446
729
880

008
027
065
232
463
860
979
997

008
048
144
498
835
997
1.000
1.000

s2°

008
067
279
822
988
1.000
1.000
1.000

T=25
p %
011 009
017 .019
024 .039
048 .108
077 213
153 441
239 610
317 717
T=50
p %
013 010
020 028
032 .059
062 .159
099 296
180 554
268 705
358 .790

T =100

p %
011 010
021 032
035 .080
078 234
121 397
209 641
292 .73
387  .840

T = 200

p %
o011 013
024 044
044 098
093 292
144 482
234 725
311 832
404 878

are sized-corrected S1 and S2 tests respectively.

P

.008
013
.020
042
076
171
270
.366

Pe

009
019
.033
082
149
296
407
471

P.

.008
022
.045
123
210
398
498
547

P.

.010
.029
.064
.166
.287
504
582
.596

008
013
019
041
074
.164
254
336

.008
.019
.034
.076
137
270
.365
419

.008
.020
041
.110
.186
.346
429
467

010
.027
.059
.147
.249
409
475
498

010
017
029
069
143
350
573
.743

.011
028
.061
157
318
.626
.836
930

012
033
074
245
475
.822
.954
989

011
.044
114
372
.656
945
.994
1.000

.014
022
.039
089
.166
385
.604
7

013
.032
.066
.168
330
639
.841
934

.013
034
.076
251
482
.826
955
.989

on
047
117
378
663
946
994
1.000
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0 .016

5 .014
.014
135
879
.982
.999
1.000

LuUbhbiv=D

0 .023
.05 .022
1 232
2 924

3 999

S 1.000
7 1.000
9 1.000

0 030
5 087
937
999
1.000
1.000
1.000
1.000

U=

0 S1

0 .030
.833
.999
1.000
1.000
1.000
1.000
1.000

LU=
N =

*: S17 and S2°

TABLE 24

Rejection frequencies for Upper-Tailed 5% Test and AR x,.

S2

.016
015
014
173
.890
.985
.999
1.000

S2

023
.022
247
926
999
1.000
1.000
1.000

S2

.030
.091
937
.999
1.000
1.000
1.000
1.000

S2

030
.833
999
1.000
1.000
1.000
1.000
1.000

are sized-corrected S1 and S2 tests respectively.

049
045
045
268
912
984
999
1.000

050
050
334
942
999
1.000
1.000
1.000

049
122
944
999
1.000
1.000
1.000
1.000

st

046
.850
999
1.000
1.000
1.000
1.000
1.000

s2°

045
046
047
297
918
985
1.000
1.000

051
048
343
94
999
1.00
1.00
1.00

046
121
94
999
1.000
1.000
1.000
1.000

s2°

045
852
998
1.000
1.000
1.000
1.000
1.000

T=25
p £
053 .049
105 123
288 325
709 691
963 956
993 991
1.000 999
1.000  1.000
T =50
p %
054 050
202 251
730 711
970  .963
1.000 999
1.000  1.000
1.000  1.000
1.000  1.000
T = 100
p %
049 050
602 .59
972 .968
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
T = 200
p %
055 052
938 926
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000

Pe

046
047
.049
391
939
991
1.000
1.000

P.

053
.049
417
.954
999
1.000
1.000
1.000

P

.046
211
.961
1.000
1.000
1.000
1.000
1.000

Pe

051
.902
999
1.000
1.000
1.000
1.000
1.000

044

049
378
941
992
1.000
1.000

.052
048
409
954
999
1.000
1.000
1.000

046
208
963
1.000
1.000
1.000
1.000
1.000

050
.902
.999
1.000
1.000
1.000
1.000
1.000

.048
.046
.046
.240
.901
985
999
1.000

.056
.047
309
933
999
1.000
1.000
1.000

052
.144
945
1.000
1.000
1.000
1.000
1.000

054
.864
999
1.000
1.000
1.000
1.000
1.000

063
060

.059

.268
907
.987
.999
1.000

061
052
319
934
999
1.000
1.000
1.000

057
.153
.946
1.000
1.000
1.000
1.000
1.000

054
.865
999
1.000
1.000
1.000
1.000
1.000
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0 .004
.05 003

1

2 069
3 .839
S 979
7 999
9 1.000

0 .007
.05 .005
1 .163
2 .908

3 999

.5 1.000
7 1.000
9 1.000

0 .009
.039
928
.999
1.000
1.000
1.000
1.000

LWL =D
G

0 S1

0 .009
.807
.999
1.000
1.000
1.000
1.000
1.000

CRCRIRIN Ry
3

TABLE 2.5

Rejection frequencies for Upper-Tailed 1% Test and AR x,.

S2

.003
.003
.003
105
.860
.980
.999
1.000

S2

.006
.006
177
913
999
1.000
1.000
1.000

S2

.009
.042
929
.999
1.000
1.000
1.000
1.000

S2

009
.808
.999
1.000
1.000
1.000
1.000
1.000

s1’

012
010
007
154
882
979
999
1.000

008
009
216
927
999
1.000
1.000
1.000

008
046
934
999
1.000
1.000
1.000
1.000

st

009
812
999
1.000
1.000
1.000
1.000
1.000

s2°

.009
009
008
172
892
980
999
1.000

008
009
230
930

1.000
1.000
1.000

008
049
934
999
1.000
1.000
1.000
1.000

s2°

008
812
998
1.000
1.000
1.000
1.000
1.000

T=25
p %
011 .009
020 036
058 178
481 595
956  .940
992 .989
1.000 999
1.000  1.000
T =50
p %
013 010
044 129
541 627
965 956
1.000 999
1.000  1.000
1.000  1.000
1.000  1.000
T = 100
p %
011 .010
298 495
969 962
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
T = 200
p %
011 013
922 910
1.000 .99
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000
1.000  1.000

Pe

.008
.008
.009
238
918
.989
1.000
1.000

Pe

009
01
280
941
.999
1.000
1.000
1.000

P.

.008
098
952
1.000
1.000
1.000
1.000
1.000

P:

010
.869
999
1.000
1.000
1.000
1.000
1.000

*: S1° and S2" are sized-corrected S1 and S2 tests respectively.

.008
009
010
232
918
.989
1.000
1.000

008
010
274
941
999
1.000
1.000
1.000

008
093
953
1.000
1.000
1.000
1.000
1.000

010
.869
.999
1.000
1.000
1.000
1.000
1.000

010
010
009
.108
.843
978
.999
1.000

.011
.009
.184
910
999
1.000
1.000
1.000

.012
.055
.930
999
1.00
1.00
1.00
1.00

.011
821
999
1.000
1.000
1.000
1.000
1.000

014
013
012
126
.855
980
999
1.000

013
011
.196
912
.999
1.000
1.000
1.000

013
056
931
999
1.000
1.000
1.000
1.000

01
.822
.999
1.000
1.000
1.000
1.000
1.000
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TABLE 2.6

Rejection frequencies for Lower-Tailed 5% Test and Fractional x.

-9 .983 981 868 8338 1.000  .998 933 879 .905 .886 310
-7 .938 .934 705 .664 .964 .955 173 675 740 709 .260

-5 819 816 485 466 710 682 507 416 484 446 179
-3 566 565 237 229 327 306 244 203 232 203 .116
-2 418 417 142 139 198 181 .58  .132 147  .128 088
-1 279 275 073 071 109 095 095 .08  .084 072  .068
-05 224 217 057 055 079 071 069 067 .066 .057  .058
0 A75 173 041 039 056 .049 051 .052 049  .041  .047
T =50
] S1 S2 s1° s2° p 2 p. R, p 1 F

-9 1.000 1.000 999 999 1.000 1.000 1.000 1.000 1.000 1.000 .443
-7 998 .998 989 986 1.000 1.000 .997 991 989 986 376

-5 976 975 902 890 932 925 888  .840 866 .853 254
-3 763 761 551 536 496 484 479 420 461 439 147
-2 542 539 312 301 278 268 260 221 252 237  .108
-1 297 295 .32 .31 .130 .25 120 114 .114 108 .07l
.05 196 195 .082 075 08 .081 081 083 077 070  .059
0 117 117 044 042 053 051 054 057 048  .043 .05
T = 100
) S s2  sI1 s p % p. £, p % F

-9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .594
-7 1.000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 .502
-5 1.000 1.000 999 999 .996 .996 .998 994 995 .994 339

-3 960 960 905 905 679 667 768 712 754 741 174
-2 772 768 622 622 380 370 439 388 435 420 115
-1 387 387 245 250 158 154 178 161 175 167  .072
-.05 209 213 122 .d24 09 .091 .100 .095 .106 .101  .058
0 097 097 052 052 049 .047 056 057 057 053  .047
T = 200
] S1 S2 ST S2° p 3 [ %, p t . F

-9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 .768
-7 1.000 1.000 1.000 1000 1000 1000 1000 1000 1.000 1.000 .672
-5 1.000 1.000 1.000 1.000 1000 1000 1000 1.000 1.000 1.000 .459
-3 1.000  .999 998 998 .820 .815 951 927 933 931 213

-2 .959 958 920 918 496 487 .666 .608 .631 626 135
-1 561 562 432 423 199 .198 256 224 .249 245 088
-.05 265 .267 179 171 .108 105 124 d12 122 119 067
0 085 .085 051 048 .048 048 .053 052 050 .049 .045

*: S1” and S2" are sized-corrected S1 and S2 tests respectively.
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TABLE 2.7

Rejection frequencies for Lower-Tailed 1% Test and Fractional x,.

T =25
0 S1 s2  sIt s p % P %, p % F
-9 793 788 604 535 981 976 724 600 677 639 055
-7 607 595 39 339 799 775 464 340 425 385 055
-5 364 356 .95 .178 391 368 216 153 .197  .166  .036
-3 156 152 072 059 120 108 078 053 069 .057  .022
-2 092 089 .035 .31 057 .050 .041 .032 .038 .031 018
-1 049 047 014 012 025 022 022 018 .017 013 013
-05 035 03 009 008 016 .014 016 015 011 008 .010
0 024 024 006 005 011 010 011 011 .007 .006 .010
T =50
) S1 s2  s1t s p 2 B 2, p 1 F
-9 994 994 983 975 1.000 1.000 .999 998  .992 .91 096
-1 957 955 .898 .872 995 995 961 929 933 924 080
-5 761 756 614 585 745 733 657 576 619 598 050
-3 348 348 213 197 239 230 202 .167 .193  .178 029
-2 164 166 .08 .079 098 .095 090 .076 .081 .074 022
-1 059 057 .028 .26 037 .035 .035 .029 .028 025 .018
-05 033 033 .013 010 019 020 020 .018 .017 015 013
0 018 017 .008 .006 013 013 013 012 010 .009 013
T = 100
0 S s2 s1t s p % P, %, ) % F

-9 1000 1000 1.000 1000 1.000 1.000 1000 1000 1.000 1.000 .137
-1 1.000 1.000 1.000 1.000 1000 1.000 1000 1000 1.000 1.000 .110

-5 99 990 988 984 955 953 978 963 .961 959  .075
-3 749 746 700 685 426 415 499 432 482 465 037
-2 384 381 322 309 172 .164 200 .166  .194  .184 020
-1 101 .101  .083 .080 .049 .046 059 .051 057 .054  .013
-05  .041 041 .030 .030 .024 .024 029 .027 .028 027 010
0 015 015 010 .09 012 010 012 .013 012 012  .008
T =200
0 S1 s2 st s p % P %, p 1 F

-9 1.000 1.000 1.000 1.000 1000 1000 1.000 1000 1.000 1.000 .201
-7 1.000 1.000 1.000 1000 1000 1000 1000 1.000 1.000 1.000 .157
-5 1.000 1.000 1.000 1.000 .999 .998 1.000 1.000 .999 999 .099

-3 .984 .985 985 985 630 623 .825 768 773 71 046
-2 776 777 745 746 272 .266 405 335 .360 .355 .029
-1 220 221 186 186 .063 .065 092 073 082 079 019
-.05 .067 067 057 055 027 .027 033 027 031 .030 011
0 013 013 009 008 .010 .010 .010 .010 010 009 .009

*: §1° and S2" are sized-corrected S1 and S2 tests respectively.
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TABLE 2.8

Rejection frequencies for Lower-Tailed 5% Test and AR x,.

T=25
) S1 s2  S11 s2° p % p. %, p % F
-9 978 974 836 .803 1000 999 926 .863 901  .881  .309
-7 703 694 328 291 928 913 403 303 412 370 231
-5 422 418 130 130 599 567 170 128 173 .145  .181

-3 299 293 085 076 350 325 .109 .085 .099 .084 155
-2 210 211 052 052 161 141 066 061 064 054 .108
-1 183 183 042 038 .097 .087 055 054 055 .045 083

05 175 175 038 039 071 062 052 053 .050 041  .066
0 175 173 041 039 056 049 051 052 049 041 047
T =50
) S s2  s1° s p % P, %, p 1 F
-9 1000 1.000 999 998 1.000 1.000 1.000 1000 1000 1.000 .449
-7 922 920 .768 738 1000 1.000 .933 883 931 924 350
-5 613 607 362 341 975 969 505 410 539 516 265
-3 393 390 188  .181 782 772 247 194 270 247 212
-2 217 213 088 .08 332 326 .102 092 .101 092 .152
-1 150 150 058 058 147 145 067 065 063 057 .114
-05 124 125 .47 044 083 081 057 058 050 046  .077
0 117 117 044 042 053 051 054 057 048 043 051
T = 100
) s s2  s1° s p % P 2, p z F

-9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .595
-7 997 997 991 989 1000 1.000 1.000 1.000 1.000 1.000 .462
-5 .891 .888 750 745 1.000 1.000 .982 959 .983 .980 .366
-3 .630 .630 451 442 998 998 743 642 783 770 .309

2 285 284 153 155 772 770 243 192 277 264 220
-1 162 159 085 .086 317 316 .106 092 115 .106 .164
.05 109 .107 .054 058 124 .124 067 065 068 063 099
0 097 097 052 .052 049 047 056 057 .057 053 047
T = 200
) s1 s2 st s p 2 P, 3 p z F

-9 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000 1000 .768
-7 1.000 1.000 1000 1.000 1000 1.000 1.000 1.000 1000 1.000 .629
-5 .995 995 986 984 1.000 1.000 1.000 1.000 1.000 1.000 .511
-3 .899 .895 823 810 1.000 1.000 1.000 .999 997 997 421
-2 470 470 359 348 .999 998 728 .625 765 .876 313

-1 221 221 132 127 759 760 .245 191 27 .266 218
-.05 118 119 072 067 239 .240 091 073 .090 .089 133
o - .08 .085 051 048 .048 .048 053 052 .050 .049 .045

*: S1" and S2" are sized-corrected S1 and S2 tests respectively.
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TABLE 2.9

Rejection frequencies for Lower-Tailed 1% Test and AR x,.

T =25
) St s2  Ss1I°t s2 p % p. 3 p % F
-9 756 746 552 478 989 984 693 563 659 611  .056
-7 224 215 102 .084 601 568 .143 087 .137 116  .045
-5 087 085 .033 .028 207 .186 .04 027 039 .031  .040

-3 051 048 017 017 .090 078 022 015 020 016 032
-2 .030 031 008 008 029 027 013 011 .009 .007 022

-1 026 026 005 .005 018 015 012 011 007 006 .016
-05 024 024 006 .005 014 011 010 011 007 .005 .0I3
0 024 024 006 .05 011 010 011 011 007 .006 .010
T =50
) s1 s2  Ss1° s? p % P, %, p z F
-9 991 991 972 958 1.000 1.000 999 998 993 992 099
-7 566 562 405 374 994 992 984 577 679 658 075
-5 192 192 095 084 716 710  .188 133 208  .191  .055
-3 083 084 041 036 334 332 071 050 076 066 .042
-2 033 034 014 013 087 083 023 017 023 021 .029
-1 022 021 009 .009 .03 03 014 011 013 011 .025
.05 018 017 .006 .04 019 018 011 010 011 010 .01I5
0 018 017 .08 006 013 013 013 012 010 009 .013
T = 100
0 s1 2 s1I1 s p % p. %, p 1 F
-9 1000 1.000 1.000 1.000 1.000 1.000 1.000 1000 1000 .00 .135
-7 955 952 935 922 1000 1.000 1000 1.000 997 997  .093
-5 514 511 447 426 999 999 839 746 851 840 074
-3 220 218 .184 170 925 923 371 285 419 401  .066
-2 061 059 045 044 319 314 070 050 080 075 046
-1 027 027 018 .016 084 082 026 019 027 025 .035
-05 018 017 012 011 027 026 013 013 016 015 020
0 015 015 010 .09 012 010 012 013 012 012 .008
T = 200
) S1 s2  s1t s p % B, %, p % F

-9 1.000 1.000 1.000 1000 1.000 1000 1.000 1000 1.000 1000 .199
-7 1.000 1.000 1.000 1000 1000 1000 1.000 1.000 1.000 1.000 .140
-5 925 924 908 909 1.000 1.000 1.000 1.000 1.000 1.000 .109
-3 587 587 547 551 1.000 1.000 .986 963 970 968 087

-2 .149 151 135 138 924 .922 361 261 .386 379 072
-1 .049 049 036 037 323 323 068 .045 075 071 .045
-.05 021 021 016 018 .059 057 .020 016 019 018 027
0 .013 .013 009 008 .010 010 010 010 010 009 .009

*: S1" and S2” are sized-corrected S1 and S2 tests respectively.
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TABLE 2.10

Finite sample critical values of R in (3) with B = 0

Perc\ T 25 50 100 200 500

0.001% 6.47E6 1.57E6 5.95E6 2.62E6 2.7TTE6
0.005% 1.03E4 9.10E5 7.23E5 3.48E5 5.84E5
0.01% 3.88E4 2.64E4 2.34E4 1.51E4 205E4
0.02% 0.001 0.001 7.71E4 6.76E4 TT1IEA
0.025% 0.002 0.001 0.001 9.81E4 0.001
0.05% 0.009 0.006 0.005 0.004 0.004
0.1% 0.038 0.026 0.020 0.018 0.018
0.2% 0.155 0.112 0.086 0.076 0.072
0.25% 0.242 0.177 0.138 0.117 0.118
0.3% 0.361 0.262 0.200 0.172 0.172
0.5% 0.988 0.731 0.607 0.532 0.517
0.7% 2.353 1.552 1.344 1.228 1.172
0.75% 2762 1.883 1.629 1.498 1.428
0.8% 2.900 2.268 1.983 1.832 1.760
0.9% 3.900 3.416 3.153 2.969 2.828
0.95% 4.976 4.428 4.234 4.089 3.953
0.975% 5.847 5.491 5.190 5.093 5.139
0.98% 6.093 5.957 5.546 5.564 5.459
0.99% 6.835 7.102 6.588 6.753 6.602
0.995% 7.523 8.001 7.577 8.290 7.989
0.999% 9.244 11.578 11.039 11.935 10.293
Mean: 1.553 1.302 1.164 1.099 1.061

Finite sample critical values of R in (3) with unknown B and z, = (1,t)°

Perc\ T 25 50 100 200 500
0.001% 4.19E6 1.93E6 6.41E6 1.71E6 6.ME7
0.005% 9.09ES5 6.77TES 9.80E5 4.82E5 321E5
0.01% 4.66E4 2.34E4 2.57TE4 1.99E4 1.66EA
0.02% 0.002 9.24E4 9.00E4 7.65E4 6.80E4
0.025% 0.003 0.001 0.001 0.001 0.001
0.05% 0.011 0.006 0.005 0.004 0.004
0.1% 0.040 0.028 0.020 0.019 0.017
0.2% 0.162 0.120 0.084 0.075 0.071
0.25% 0.250 0.175 0.133 0.117 0.114
0.3% 0.359 0.255 0.197 0.173 0.171
0.5% 0.997 0.734 0.599 0.529 0.515
0.7% 2.015 1.562 1.327 1.231 1.173
0.75% 2.370 1.881 1.624 1.485 1.422
0.8% 2.782 2.264 1.965 1.833 1.749
0.9% 3.922 3.405 3.110 2.987 2.824
0.95% 4.950 4.512 4.246 4.096 4.007
0.975% 5.800 5.495 5.253 5.146 5.120
0.98% 6.110 5.972 5.558 5.567 5.439
0.99% 6.938 6.932 6.491 6.680 6.622
0.995% 7.551 8.023 7.554 8.334 8.074
0.999% 9.114 11.804 11.436 12.061 10.175

Mean: 1.554 1.305 1.158 1.101 1.061
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*: S1” and T1" are sized-corrected S1 and T1 tests respectively.

TABLE 2.11

Rejection frequencies of Two-Sided S1 and S1°, and T1" tests with Gaussian u,.
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CHAPTER 3

FRACTIONAL INTEGRATION IN MACROECONOMIC TIME
SERIES

In this chapter we use Robinson’s (1994c) tests described in Chapter 2 for
testing fractional integration in macroeconomic time series when the root is located
at zero frequency. We will apply a particular form of these tests to an extended
version of the fourteen macroeconomic variables used by Nelson and Plosser (1982).

A reduced version of this chapter is Gil-Alafia and Robinson (1997).

3.1 INTRODUCTION

Specialized members of fractionally integrated stochastic processes play a
considerable role in modelling macroeconomic behaviour. For the purpose of the
present chapter, we define an I(d) process x,, t = 0,1,..., as (1.1) and (2.2). The
macroeconometric literature stresses the cases d = 0 and d = 1, and much
controversy in macroeconomics has revolved around the question of the suitability
of I(1) models, also termed unit root or difference-stationary models, for describing
raw time series. These models are in the class of so-called nonstationary stochastic
trend models, which typically imply that the mean and variance increase without
bound over time, the precision of the forecast error is unbounded, and the effect of
shocks persists. Another approach to modelling nonstationarity consists of so-called
trend-stationary models, where the raw series is described as an 1(0) process plus a
deterministic trend (often a linear function of time). Here, the mean of the series is
described by the trend function, the variance of the forecast errors remains finite, and
shocks have only a transitory effect. The issue of stochastic versus deterministic
trend models has considerable implications for our understanding of the economy,
and economic planning. In particular, real GNP having a unit root or stochastic
trend supports the real business cycle hypothesis, since it is widely accepted that
shocks that result in permanent increases in the level of real GNP can only plausibly
be interpreted as permanent productivity improvements. In the context of stochastic
trends, any shock to the economic system will have a permanent effect, so a policy
action will be required to bring the variable back to its original long term projection.

On the other hand, in trend-stationary models, fluctuations will be transitory and
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therefore there exists less need for policy action, since the series will in any case
return to its trend sometime in the future.

Unit roots, and linear time trends, each constitute extremely specialized
models for nonstationarity, but each has the advantage of conceptual and
computational simplicity, and they are naturally thought of as rival models because
a unit root without or with a drift implies a constant or linear trend function, the
distinction then being in the disturbance terms. The appropriate treatment of trends
in economic time series is important. There is evidence that removal of an estimated
(typically linear) deterministic trend from time series that are in fact integrated can
lead to spurious cyclical behaviour in the detrended series. Chan et al. (1977)
studied both inappropriate detrending of integrated series and inappropriate
differencing of trending series, and showed that the former produced spurious
variation in the detrended series, while the latter produced spurious variation in the
differenced series at high frequencies. These results have been amplified by Nelson
and Kang (1981, 1984) and Durlauf and Phillips (1988).

Despite the interest aroused in unit root models by Box and Jenkins (1970)
and Dickey and Fuller (1979), the deterministic trend approach tended to prevail in
macroeconomics until Nelson and Plosser (1982) reported strong evidence of unit
roots in U.S. historical annual time series. They considered fourteen macroeconomic
series, starting from 1860 through 1909 and ending in 1970, analysing the logged
series in all but one of these cases. Lety, t =1,2,... be the series to be studied. The

unit root model tested by Nelson and Plosser (1982) was essentially

(1-L)y, =« + u, t=1.2,..., 1)
where
ou, = €, =12, @

in which ¢ is a k-th. degree polynomial, all of whose zeroes lie outside the unit
circle and g is a white noise sequence. In the terminology of Box and Jenkins
(1970), (1) and (2) constitute an ARIMA(k,1,0) model, with drift when o # O.
Nelson and Plosser (1982) nested (1) in

(1-pLl)y, = p +yt+u, t =1.2,.. 3)
Thus (1) corresponds to the null hypothesis

H: p=1and y =0 4

[
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in (3), whereas |p| < 1 corresponds to a (linear) trend-stationary model. We can
impose the same initial condition on y, in (1) and (3), on taking @ = p + 7. For
various k in (2), Nelson and Plosser (1982) tested for a unit root, using tests of
Dickey and Fuller (1979), Fuller (1976). These tests, based on t-ratios, are not
approximately t-distributed under the null, but Dickey and Fuller tabulated the null
distribution. The tests failed to reject the unit root null (1) in all series except
unemployment rate.

The paper of Nelson and Plosser (1982) has led to much subsequent
research. Some of it has involved applying similar methodology to Nelson and
Plosser’s (1982) to other macroeconomic series, for example non-U.S. series, and
some to criticism of their methodology and application of modified or alternative
approaches. We attempt only a brief and partial summary of this literature.

Starting with the same model as Nelson and Plosser (1982), Stock (1991)
provided asymptotic confidence intervals for the largest autoregressive root when this
root is close to one, motivated by concern that reporting only test outcomes or point
estimates fails to convey adequate information about sample uncertainty or the range
of models consistent with the data. When applied to the Nelson and Plosser (1982)
data set, his main conclusion was that the confidence intervals were typically wide,
containing p = 1 for all series except unemployment and bond yield, but typically
also values significantly different from one. Another theme has involved the
replacement of (2) by alternative or more general models for the stationary
disturbance u,. The tests used by Nelson and Plosser (1982) lose validity if u, is not
autoregressive (AR), as remarked by Schwert (1987) who found that Dickey-Fuller
critical values can be misleading even for large sample sizes in case of a mixed
ARIMA process. He applied tests of Said and Dickey (1984, 1985) to monthly and
quarterly series based on a mixed autoregressive moving average (ARMA) model for
u, with positive moving average order. (These tests approximate the ARMA by an
AR.) Also Schwert (1987), Stock and Watson (1986) and Perron (1988) employed
tests of Phillips (1987), Phillips and Perron (1988) which, more generally, are valid
in case of nonparametric autocorrelation; these tests employ a nonparametric estimate
of the spectral density of u, at zero frequency, for example a weighted
autocovariance estimate. All these authors obtained results very similar to those

obtained by Nelson and Plosser (1982). Choi (1990) dealt with disturbance
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autocorrelation using feasible generalized least squares, coming to rather different
conclusions.

Kwiatkowski et al. (1992) observed that taking the null hypothesis to be I(1),
rather than I(0), might itself have led to a bias in favour of the unit root hypothesis;
they proposed an 1(0) test which formulates the null as a zero variance in a random
walk, and applied it to the Nelson and Plosser (1982) data. They concluded that for
many of these series the hypothesis of trend-stationarity could not be rejected. In
the same line, Leybourne and McCabe (1994) proposed a similar test for a unit root,
where the null was an AR(k) process and the alternative was an integrated ARMA
(ARIMA) model with AR order k and unit MA order. Their test differs from that
of Kwiatkowski et al. (1992) in its treatment of autocorrelation under the null
hypothesis, its critical values appearing more robust to certain forms of
autocorrelation.

Campbell and Mankiw (1987) and Cochrane (1988) studied the problem in
terms of measures of persistence in macroeconomic series. Campbell and Mankiw
(1987) considered the sum of the Wold decomposition weights for the differenced
series, which will be zero under trend-stationarity, and estimated this using ARIMA
models and nonparametric spectral methods. Their analysis suggested that shocks
in U.S. GNP are largely permanent, consistent with the stochastic differencing
advocated by Nelson and Plosser (1982). Cochrane (1988) proposed a nonparametric
variance ratio statistic and came to empirically different conclusions. Other
measures of persistence also suggested by Cochrane (1987, 1988) are based on the
spectral density of the differenced series at zero frequency, but Quah (1992) argued
that such measures did not identify the magnitude of the permanent component,
unless this is a random walk.

Related work has been done by Christiano and Eichenbaum (1990). The tests
referred to so far are motivated by their asymptotic statistical properties, but
Bhargava (1990) applied tests of Bhargava (1986) with finite sample optimality
properties to test for a unit root in quarterly U.S. GNP, finding that it is the inability
to capture the complex deterministic trend component that can cause non-rejection.
Bayesian procedures have also been employed. Sims (1988) and Sims and Uhlig
(1991) used Bayesian arguments to criticize classical unit root testing methodology

in abstract. Also DeJong and Whiteman (1989, 1991, for example) conducted
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empirical research with flat-prior Bayesian techniques and challenged unit root
findings in many cases, including Nelson and Plosser’s (1982) series. Schotman and
Van Dijk (1991) analyzed from a Bayesian viewpoint the random walk hypothesis
for real exchange rates, and came to different conclusions from those reached by the
classical tests. However Phillips (1991), using objective ignorance priors rather than
flat priors, obtained results closely related to those obtained by the classical methods:
seven of Nelson and Plosser’s (1982) series showed evidence of stochastic trends.
Phillips (1991) found that flat priors on the AR coefficients were informative,
contrary to their apparent intent, and unit and explosive roots were downweighted
in the posterior distribution. Among other authors working with Bayesian
procedures, DeJong (1992) and Zivot and Phillips (1994) showed respectively the
importance of choice of prior in distinguishing between difference- and trend-
stationary, and trend determination with the possibility of structural breaks.

In fact, the implications of structural change on unit root tests which take no
account of this possibility has itself been a major focus of attention since Perron
(1989, 1993) found that the 1929 crash and the 1973 oil price shock are a cause of
non-rejection of the unit root hypothesis, and that when these are taken into account,
a deterministic trend model is preferable. This question has been pursued by authors
such as Christiano (1992), Krol (1992), Serletis (1992), Demery and Duck (1992),
Mills (1994) and Ben-David and Papell (1995), the first author arguing that the date
of the break should be treated as unknown, and suggesting that tests for a structural
break are themselves biased in favour of non-rejection, and by means of tests based
on bootstrap critical values, coming to different conclusions from Perron (1989).
Zivot and Andrews (1992) allowed the structural break to be endogenous, finding
less conclusive evidence against unit roots than did Perron (1989). Stock (1994)
applied a Bayesian procedure that consistently classifies the stochastic component
of a time series as I(1) or 1(0), applying it to Nelson and Plosser’s (1982) data with
both linear detrending and piecewise linear detrending, supporting their conclusions
in the former, but not the latter, case.

There has been a growing literature which studies the source of
nonstationarity in macroeconomic series in terms of fractionally differenced time

series. We can replace the alternative (3) by

(A-Lyy, = p+yt+u, t=12,. (5)
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so (1) results when d = 1, Y= 0. On the other hand, if p = y=0, if u, is an 1(0)
series, and if 0 < d < 1/2, then y, is a covariance stationary I(d) series, having
autocovariances which decay much more slowly than those of an ARIMA process,
in fact so slowly as to be non-summable; thus, if we first-difference y,, the unit root
null corresponds to d = 0, but the close alternatives are very different from those in
(3). Models such as (5) provide a type of flexibility in modelling low frequency
dynamics not achieved by non-fractional ARIMA models. In empirical applications,
Diebold and Rudebusch (1989), Haubrich and Lo (1989) and Sowell (1992b)
obtained estimates and tests using nonparametric and parametric methods based on
differenced quarterly data, while Cheung and Lai (1992) appear to have estimated
d from undifferenced data. Sowell’s (1992b) model nested both a deterministic trend
and a unit root with drift, neither being rejected as a model for postwar US quarterly
real GNP. Hauser et al. (1992) and Mills (1992) have discussed the relevance of
fractional models in measuring persistence, while Koop (1991a) proposed a Bayesian
fractional approach.

Conspicuous features of many of the methods used in the empirical work
described above, and of the bulk of all available methods for testing for unit roots
(for a review see Diebold and Nerlove, 1989) are the nonstandard nature of the null
asymptotic distributions which are involved, and the absence of Pitman efficiency
theory. Many of these tests can be viewed as resulting from implementation of the
Wald, likelihood ratio (LR), or Lagrange multiplier (LM) rules. Such rules are
frequently motivated by the desirable properties of a null chi-squared asymptotic
distribution, and Pitman efficiency, but such propertiés are not automatic, rather
depending on what might be called a degree of "smoothness" in the model across
parameters of interest, in the sense that limit distributions do not change in an abrupt
way with small changes in the parameters. They do not hold in case of unit root
tests against AR alternatives such as (3) - as the work of Dickey and Fuller (1979)
and numerous subsequent authors indicates, the null asymptotic distribution is
nonstandard, and while local alternatives can be considered this does not seem to
lead here to a neat optimality theory (though Elliott et al. (1996) show how the tests
can be improved). This is associated with the radically variable long-run properties
of AR processes around the unit root. Under (3), with, for simplicity, p =y =0 and

u, Gaussian white noise, for |p| > 1 u, is explosive, for |p| < 1 u, is covariance
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and strictly stationary and is I(0) (indeed strongly mixing with exponentially
decaying mixing numbers), and for p = 1 it is nonstationary but non-explosive.
Some of the other procedures that have been used in unit root testing are not derived
by the Wald, LR, or LM rules, but many of these seem, therefore, if anything more
ad hoc.

The present chapter applies to an extended version of the data set used by
Nelson and Plosser (1982), and uses a particular form of Robinson’s (1994c) tests
for testing unit roots and other nonstationary hypotheses when the root is located at
zero frequency. As mentioned in Chapter 2, the tests do possess the standard
properties of efficiency and have a null asymptotic chi-squared distribution. This is
due to the fact that they are directed against fractional alternatives, which turn out
to be a "smoother” class than the AR ones. Salient features of the tests, when
compared with those directed against AR alternatives, are described in the following
section. The empirical work is in Section 3, and Section 4 contains some concluding
comments. The FORTRAN codes used to obtain the tests in this chapter are given

in an appendix at the end of Chapter 4.

3.2 L.M. TESTS AGAINST FRACTIONAL ALTERNATIVES

Despite the extent to which it has been stressed in the literature, the AR
dynamics in (3) is merely one out of any number of ways of nesting the unit root
(1). The literature on long memory or fractional processes, which is of quite long
standing and has become rather extensive of late suggests a rival class of
alternatives, the I(d) class with fractional d, as defined in (1.1) and (2.2). Following
discussions of Bhargava (1986), Schmidt and Phillips (1992) of parameterization of
unit root models, let us first take (1.9) where, following Robinson (1994c), x, is an

I(d) process given as in (1.1) and (2.2). (1.1) can be compared to the AR class
(d-pDx, = u, t=12,., (6)
advocated by Bhargava (1986) and others in the regression setting (1.9). Trivially
(1.1) and (6) give an 1(0) x, when d = 0 and p = 0, respectively, while the I(1), or

unit root, hypothesis corresponds to

H: d = 1 7

in (1.1) and
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H: p =1 (8)
in (6). Fractional and AR departures from (7) and (8) have very different long run
implications. In (1.1), x, is nonstationary but non-explosive for all d = 1/2. As d
increases beyond 1/2 and through 1, u, can be viewed as becoming "more
nonstationary”, but it does so gradually, unlike in case of (6) around (8). The
dramatic long-run change in (6) around p = 1 has the attractive implication that
rejection of (8) can be interpreted as evidence of either stationarity or explosivity.
However, rejection of the null does not necessarily warrant acceptance of any
particular alternative, and even when unit root tests are derived by either the Wald,
LR or LM criteria against AR alternatives, they can still be expected to be consistent
against many of the numerous other possible types of departure (see Robinson
(1993)). Tests against (7), proposed by Robinson (1994c), can at the very least be
regarded as a useful diagnostic tool to supplement tests directed against such
alternatives as AR ones.
There is also interest in other hypotheses within the class (1.1) such as d =
2, (which is also in the class of tests against AR alternatives, in this case AR(2)
ones, see eg. Johansen, 1992). Robinson’s (1994c) approach to deriving tests (via
the LM criterion) against (7) applies equally to any real null hypothesized value of
d, and the same, standard, null and local limit distribution theory obtains. (The I(d)
class comprises many stationary, nonstationary, invertible and non-invertible
processes.) This is in sharp contrast to asymptotic theory for statistics directed
against AR alternatives, where, for example, different null theory obtains for 1(2)
than for I(1). Often when we construct a test of a nonstationary hypothesis against
AR alternatives we have to contemplate the possible occurrence of a somewhat new,
nonstandard, null limit distribution, the approximation of which may require a new
piece of numerical work. As well as any integer, the null d can be fractional, for
example d = 1/2, which is of interest in that it represents the boundary between
stationarity and nonstationarity in the I(d) class. It may be that the immense
econometric stress on so specialized a form of nonstationarity as unit root behaviour
owes something to the even more long-standing popularity of stationary AR models,
and that this behaviour deserves to be less at the forefront when other classes of

model are contemplated. Thus, in the present chapter we report also tests of other
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hypothesized values of d. We could also test for null stationary d values, indeed
Robinson (1991) earlier proposed analogous tests of d = 0.

Observing {(y,z)t=1,2,...T} in (1.9); (1.10); and (2.2), with
p(L;6) = (1 - L)* 9)

we want to test the null hypothesis (1.12) for a given real number d. We make use
of the test statistic f in (2.9), which includes T in (2.3) as a particular case with g =
1. In Chapter 2 we showed that

F -4 NWO,1) as T - o 10
and thus, an approximate one-sided 1000.%-level of (1.12) against alternatives

H: 06 >0 11)
is given by the rule:

Reject H, if F > z (12)

a
where the probability that a standard normal variate exceeds z, is o.. Conversely,

an approximate one sided 100a%-level test of (1.12) against alternatives

H: 8 < 0 (13)
is given by the rule:

Reject H, if F < -z (14)

.

As mentioned in the previous chapter, these tests will be efficient, in the
Pitman sense that against local alternatives, T has an asymptotic normal distribution
with variance 1 and mean which cannot (when u, is Gaussian) be exceeded in
absolute value by that of any rival regular statistic. Of course, this efficiency
property holds only in respect of fractional alternatives, and not AR alternatives, for
example. We believe that as in other standard large-sample testing situations, Wald
and LR test statistics against fractional alternatives will have the same null and local
limit theory as our LM tests (unlike in case of AR alternatives). Sowell (1992b)
employed esséntially such a Wald testing procedure. Wald and LR tests require an
efficient estimate of d, and while such estimates can be obtained, the LM tests seem
computationally more attractive. As usual, the LM, Wald and LR tests will have
differing finite sample properties. However, as mentioned in Chapter 2, we use the
asymptotical critical values given by the Normal distribution, instead of the finite-

sample critical values obtained in that chapter. The reason for this is mainly because
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Robinson’s (1994c) tests allow a great variety of model specifications, each with a
different empirical distribution in finite samples. As specified below, the model will
allow different regressors, different models for the disturbances u,, and in Chapter
4, we will also allow different functions p(L;0) in (1.10), each with a different
empirical distribution. Thus, we have decided to use the large-sample approximate

critical values, rather than the size-corrected ones.

3.3 EMPIRICAL RESULTS

The extended version of the annual data set of fourteen U.S. macroeconomic
variables analyzed by Nelson and Plosser (1982) ends in 1988; as with their data,
the starting date is 1860 for consumer price index and industrial production; 1869
for velocity; 1871 for stock prices; 1889 for GNP deflator and money stock; 1890
for employment and unemployment rate; 1900 for bond yield, real wages and
wages; and 1909 for nominal and real GNP and GNP per capita. As in Nelson and
Plosser (1982), all the series except the bond yield are transformed to natural
logarithms. Plots of the series are given in Figure 3.1 and we observe that all except
unemployment and velocity increase over the sample period, with two possible
structural breaks due to the 1929 crash and World War II in 1945."! Figure 3.2
contains plots of sample autocorrelations and Figure 3.3 of estimates of the spectral
density function?, observing in all except unemployment a slow decay in the former
and a peak around zero frequency in the latter, suggesting nonstationary or at least
fractionally integrated behaviour. The first fourteen sample autocorrelations for each
series are plotted in Table 3.1, while the autocorrelations of the first differences are
plotted in Table 3.2. Qualitatively, these results are similar to those in Tables 2 and
3 of Nelson and Plosser (1982): in Table 3.1, except for unemployment the
autocorrelations start at around 0.96 and then decay slowly, which could be
consistent even with the simple random walk hypothesis, whereas in Table 3.2 we
still see significant autocorrelations, especially at lag 1, with also some apparent slow

decay and/or oscillation in some cases, which could be indicative of fractional

! The presence of a possible structural break on the data will be studied in

Appendix 3.1 at the end of the chapter.

2 They are estimates of the standardized spectral density function, using

Barlett, Tukey and Parzen lag windows of size T-1.
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integration of greater than or less than a unit root.
Denoting any of the series y,, we employ throughout the model (1.9); (1.10);
(2.2) and (9) with z, = (1,t)’, t 2 1, z, = (0,0)’. Thus, under H, (1.12),
y = B, + Bt + x, t=12,.., (15)

(1-L¥x, = u, t=12,., (16)

z
and we treat separately the cases B, = B, = 0 a priori, B, unknown and 3, = 0 a
priori, and (B,, B,) unknown. We will model the I(0) process u, to be both white
noise and to have parametric autocorrelation. Our findings can be briefly
summarized as follows. When u, is white noise, the unit root null is seldom rejected,
but a greater degree of integration, d, is sometimes more plausible. When u, is AR,
the tests are suggestive of smaller d’s. When u, follows the Bloomfield (1973)
exponential model (2.12) the range of plausible d-values tends to be narrowed for
any given series, though the plausibility region varies significantly across series.
We start with the assumption that u, in (16) is white noise. Thus when d =
1, for example, the differences (1 - L)y, behave, for t > 1, like a random walk when
B, =0, and a random walk with drift when B, # 0. However we report test statistics
not merely for the case of d = 1 in (16) but for d = 0.50 (0.25) 2.25, thus including
also a test for stationarity (d = 0.5) and for I(2) (d = 2), as well as other possibilities.
The test statistic reported in Table 3.3 (and also in Tables 3.9-3.14) is the
one-sided one given by t in (2.9), so that significantly positive values of this, see
(12), are consistent with (11), whereas significantly negative ones, see (14), are
consistent with (13). A notable feature of Table 3.3 (i), in which u, is taken to be
white noise (when the form of t significantly simplifies) and B, = B, = 0 a priori, is
the fact that we cannot reject the unit root hypothesis in any of them, while in three
(real GNP, real wages and money stock) we cannot reject the null when d = 0.5 or
d = 0.75. However, in each of these three series, and in the GNP deflator and
wages, we also observe some lack of monotonic decrease of  as d increases, for the
smaller values of d. Such monotonicity is a characteristic of any reasonable statistic,
given correct specification and adequate sample size, because, for example, we
would wish that if (1.12) is rejected against (11) when d = 0.75, an even more
significant result in this direction would be obtained when d = 0.5. However in the

event of misspecification (which in this specialized model can be due to a departure
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from white noise in u, to y, having a drift, or to both) monotonicity is not
necessarily to be expected: frequently misspecification inflates both numerator and
denominator of f, to varying degrees, and thus affects ¥ in a complicated way.
Computing f for a range of d values is thus useful in revealing possible
misspecification, though monotonicity is by no means necessarily strong evidence
of correct specification. Looking at the nine series where there is monotonicity in
f in Table 3.3 (i), industrial production and unemployment rate are consistent with
d = 0.75, while bond yield is the only one in which we cannot reject the null with
d = 1.25. The departures from monotonicity in Table 3.3 (i) are nowhere so great
as to result in contradictory verdicts of tests. '

Tables 3.3 (ii) and (iii) give results with, respectively, 3, = 0 a priori (no time
trend in the undifferenced regression), and both B, and B, unrestricted, still with
white noise u,. In every case in both tables, f is monotonic, and moreover, while
there are sometimes large differences in the values of T across Tables 3.3 (ii) and
(iii) for the same series/d combination, the conclusions suggested by both seem very
similar, that on the whole the extreme nonstochastic trends are inappropriate. The
most nonstationary series seem to be the consumer price index and money stock,
where d > 1.5 is suggested and d = 1 is rejected. We also reject the unit root
hypothesis in the GNP deflator, nominal GNP and wage series, against more
nonstationary alternatives. Notice that these five series are a subset of the ones in
which the lag-1 autocorrelation was significant in Table 3.2, so the lack of allowance
for even I(0) autocorrelation in u, could be the cause of rejection. The other results
could all be consistent with a unit root. The results here are in line with those of
DelJong et al. (1992) who did not reject the unit root hypothesis in most series when
ignoring the possibility of disturbance autocorrelation. In our case, most of the
series could also be fractionally integrated for some d > 1, except for industrial
production and unemployment rate; these are the only series in which we cannot
reject the null with d = 0.75 (throughout Table 3.3).

In Table 3.4 we report results of the tests for the same null and alternative
hypotheses as in Table 3.3, but using the time domain version. Robinson (1994c)

shows that the one-sided test statistic for this case of white noise u, is

A ?a, a7
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T-1

T-1 T-1
A=Y [1-Lis 4= rtcw: = LY aa.; o= C0),
T I=1 T_l

=1 t=1

and @, as described in Chapter 2. It is known that in finite samples the time and
frequency domain versions of the tests might differ substantially, however, looking
at Table 3.4 we see that though the values differ analytically in some cases,
qualitatively the same conclusions hold, with non-rejections occurring practically at
the same values of d in both tables, especially when we include an intercept or a
linear time trend in the model.

In Table 3.5 we report sample autocorrelations of estimates of x, in (15) and
(16), obtained by selecting, for each series, the value of d which produces the most
insignificant f in Table 3.3 (iii), using the OLS estimate of 8, and B, based on that
differenced model. While the autocorrelations are generally lower than those of
Table 3.1, and indicate a somewhat faster rate of decay, they are again significant
and persistent. In Table 3.6 we report sample autocorrelations r; of the d differences
of the estimated x, used in Table 3.5. Notice that for nine of the series the r,’s are
smaller in Table 3.6 than in Table 3.2, often much smaller, while four are the same;
for r,;, seven are smaller and six are the same.

The bond yield is the only unlogged series (as in Nelson and Plosser, (1982)),
but we also computed the tests in both domains for the logged bond yield, (in Table
3.7), and there was no qualitative change; in both cases (and across Tables 3.3 and
3.4 ((i)-(ii1)) there was similar evidence of somewhat greater than unit root
integration.

In view of Tables 3.3 and 3.4 ((ii) and (iii)) there is some interest in a joint
test for

H: 6=0 and B, =0. (18)

This possibility is not addressed by Robinson (1994c), but we can derive an LM test
of (18) against the alternatives,

H: 6=+0 or B, =0, (19)

as follows. To be slightly more general, consider the regression model (1.9) with
the vector partitions z, = (z,,’,zg,’)’, B = (B.’,Bs’)’, and we want to test Hy: 6 = 0 and

Bs = Bg,- Then an LM statistic may be shown to be #* plus
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T , T , T . T , -1T , 1r
E 4,wp Z WpWae ~ E WmWAt(Z WAtWAt) Z W Wa Z 4,wp, (20)
t=1 t=1 t=1 =1

t=1 t=1

with (W, ,wg’) = w, = (1 - LY z,
-1 T

T
4, = (1- L%, - (BBedw, B, = (E wA,w,:,) Y w,(1- LYy,
=1 t=1

62 =T Tl 12'2, and # calculated as described in Chapter 2 but using the i,
t=

just defined. If the dimension of z;, is qg, then we would compare (20) with the

upper tail of the Xiqn distribution. In case of testing (18) against (19) in model
(15) wehaveqy = 1, z,, = 1, zz, = t fort =2 1. In Table 3.8 we present the
statistic (20) for the same d values as before. In each series except industrial
production (where the test picks up an effect not immediately noticeable from Tables
3.3 (ii) and (iii)) we find non-rejection values of d. These are similar to those in
Tables 3.3 (ii) and (iii), but with a narrowing-down effect (so far as number of non-
rejections is concerned) in some of the series, but even the reverse effect (possibly
indicative of the loss of power due to the extra degree of freedom) in a couple of
others. For unemployment rate, a relatively attractive model in view of Tables 3.3
and 3.8, has B, = 0 and d = 0.75, whereas this hypothesis is rejected in all the other
series. We do not reject the null when d = 1 is paired with [, = 0, in less than half
the cases in which it was rejected in Tables 3.3 (ii) and (iii), suggesting the
importance of the trend term in a number of these cases. Notice that even for d =
2 the null hypothesis is less strongly rejected than for small d; this accords with the
similarity in the corresponding statistics between Tables 3.3 (ii) and (iii). It could
also relate to the fact that whereas (1-L)% tends to zero for d > 1 as t increases, it
continues to trend with t for d < 1 (whereas (1-L)%t® tends to a non-zero constant for
all d). Except in the one case of industrial production, the conclusion seems to be
that when an appropriate differencing order is used, the time trend is unimportant.
In connection with the power properties of Robinson’s (1994c) tests, it must
be stressed that it is only in a local sense that they are optimal, and doubtless they
could be bettered against non-local departures of interest by some point optimal
procedure. In view of this there is some satisfaction in the fact that the null is
always decisively rejected in Tables 3.3 and 3.4 ((ii) and (iii)) ford 22 and d = 0.5.

On the other hand, these significant results might be due in large part to
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unaccounted-for 1(0) autocorrelation in u,, even bearing in mind the monotonicity of
t in d achieved in these tables. Thus we also fitted non-seasonal, seasonal, and '
mixed seasonal/non-seasonal AR in u, as anticipated in Section 2, for the same d
values and the same cases of no regressors, an intercept and a linear time trend as
in Tables 3.3 and 3.4. When modelling with no regressors, the monotonic decrease
in t with respect to d did not occur very often among the different specifications for
the disturbances. Including an intercept or an intercept and a time trend, results were
similar in both cases, with unemployment as the less nonstationary series, and
consumer prices and money stock as the most nonstationary ones when modelling
u, as seasonal and non-seasonal AR, but observing again a lack of monotonicity in
f with respect to d in practically all series when u, was a mixed seasonal and non-
seasonal AR process.

In Table 3.9 we concentrate on non-seasonal AR(k) u,, with k=1,2,...5, and
present results only for a subset of the values obtained, choosing for each series a
single k across all d. An alternative approach would be to pick a k for each series/d
combination, on some basis. This is what Nelson and Plosser (1982) did, but they
considered only a single d. We have preferred to choose the k for each series which
produces the smallest value of ||, across d. This enables better comparison with
Table 3.3 and indicates the strongest support for any one hypothesis, while also
having a tendency to be accompanied by relatively small |f| throughout, thereby
providing an impression of relatively lower power. Results are similar for the three
cases of no regressors, an intercept and a time trend, with non-rejections occurring
practically always when d < 1.50. Looking at Table 3.9 (iii), which is the most
interesting case in view of monotonicity in the value of ¥ with respect to d, we see
that k = 1 or 2 in eight cases, whereas k = 5 in only one. It is striking that in many
of the series the non-rejection d’s tend, in Table 3.9 (iii), to be smaller by about 0.5-
0.75 than those in Table 3.3 (iii), indicating how the AR model is somewhat
confounded with the fractional one in finite samples, and the delicacy of modelling
in this situation. (We used Yule-Walker estimates of the AR coefficient, which
entail AR roots that are automatically less than one in absolute value, but can be
arbitrarily close to one.) We find that when d = 1.75 the null is rejected in all
series, and there are numerous rejections with d = 1.25 and 1.5. The strongest

evidence of nonstationarity is found in the GNP deflator and consumer prices. The
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unit root hypothesis is now rejected only in case of real GNP and industrial
production; they are series in which it was not rejected in Table 3.3 (iii),  there
being positive in these cases, whereas it is negative throughout the unit root column
in Table 3.9 (iii). Moreover, when d = 0.75 the null is now never rejected, and
when d = 0.5 is only rejected in cases of consumer prices, money stock and velocity,
while t is even negative for several of the other series.

AR modelling of I(0) processes is very conventional, but there exist many
other types of I(0) process, including ones outside the stationary and invertible
ARMA class. As we saw in Chapter 2, one that seems especially relevant and
convenient in the context of the present tests is that proposed by Bloomfield (1973),
in which g is given by (2.12). Like the stationary AR(k), this has exponentially
decaying autocorrelations. Formulae for Newton-type iterations for estimating the
T; are very simple (involving no matrix inversion), updating formulae when k is

increased are also simple, and we can replace A in (2.9) by the population quantity
Z;-kd i”=n?6- E;(ﬂ i

which indeed is constant with respect to the T; (unlike what happens in the AR case).
Using (2.12), the T; in & were estimated by a Gauss-Newton iteration, convergence
being achieved within about seven iterative steps throughout.. We again tried k =
1,...,5 for each series/d combination. Overall, there is a somewhat larger proportion
of rejections of the higher d than for white noise or AR u,. As a much more striking
comparison with the AR case, when d = 0.5 the null is now rejected in the great
proportion of series, and when d = 0.75 in around half. Perhaps this is due to the
stationarity of the Bloomfield process for all real values of T;, so that it may be less
inclined to try to model the nonstationary part than the AR process. We do not
report all the results here, but first present, in Table 3.10, ones for the same k values
as in Table 3.9 (iii), to facilitate comparison between the two 1(0) models. The
results are indicative of a somewhat greater degree of nonstationarity, and are
definitely less ambiguous, than those just discussed, in all but two cases the non-
rejection d’s forming a proper subset of those in Table 3.9 (iii); the exceptional time
series are money stock, where there is one extra non-rejection value in Table 3.10,
and wages, where there is one fewer but they are 1 and 1.25 rather than 0.5, 0.75
and 1. Moreover, in seven of the series there is only one d where the null is not

rejected; these d-values are quite variable across the series, being 0.5 for industrial
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production, 0.75 for real GNP, real per capita GNP and employment, 1 for nominal
GNP and velocity, and 1.25 for consumer prices. These results for the Bloomfield
model also entail a greater proportion of rejections than those based on white noise
u, in Table 3.3 (iii), despite the additional parameters; we attribute this to smaller
&’s. We also give, in Table 3.11, results for the Bloomfield model when we choose
k on the same basis as in Table 3.9. Though nine of the k’s differ from those in
Table 3.10, the results are very similar in both numbers of rejections and favourable
d-values, the only somewhat exceptional case that may deserve mention being

industrial production, where the null is now rejected when d = 0.5.

34  FINAL COMMENTS

The conclusions suggested by the tests of Robinson (1994c), carried out on
the extended version of Nelson and Plosser’s (1982) data, vary substantially across
the fourteen series and across various models for the I(0) process u,, When u, is
taken to be white noise, the unit root hypothesis is rejected in as many as five series,
in each of which a somewhat greater (but less than 1(2)) degree of nonstationarity
is indicated, while even when the unit root is not rejected there is also evidence of
possible fractional differencing. With AR u, there tend to be fewer rejections, and
the evidence points to a substantially smaller degree of nonstationarity, though this
may be due in large part to competition with the autoregression in describing the
nonstationarity. The results using the Bloomfield u, are perhaps the most interesting,
because of the many rejections and strong evidence in favour of single values of d
in a number of series, most of which are 0.75 or 1. Attempting to summarize the
conclusions for individual series from the various statistics, we are left with the
impression that consumer prices and money stock are the most nonstationary,
followed by the GNP deflator and wages, whereas unemployment rate, followed by
industrial production, seem closest to stationarity.

It would be worthwhile proceeding to get point estimates of d, perhaps
especially in the Bloomfield case. However, not only would this be computationally
more expensive, but it is then in any case confidence intervals rather than point
estimates which should be stressed, while available rules of inference seem to require
preliminary integer differencing to achieve stationarity and invertibility. The

approach used in this chapter generates simply-computed diagnostics for departures
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from any real d. It is not at all surprising that, when fractional hypotheses are
entertained, some evidence supporting them appears, because this might happen even
when the unit root model is highly suitable. However, even though our practice of
computing test statistics for a wide range of null hypotheses does lead to ambiguous
conclusions, often the bulk of these hypotheses are rejected, suggesting that the
optimal local power properties of the tests, shown by Robinson (1994c), may be
supported by reasonable performance against non-local alternatives. It is the known
efficiency property of the tests which really distinguishes them from much other
work on testing for unit roots (and indeed fractional roots).

The frequency domain seems to be unpopular with many econometricians,
and it is important to stress that our frequency domain formulation of the test
statistics has nothing to do with nonparametric spectral estimation. We have also
reported results of the time domain version of the tests, (see also Robinson (1991))
for some cases but our preference here for the frequency domain set-up of Robinson
(1994c) is motivated by the somewhat greater elegance of formulae it affords,
especially when the Bloomfield model is used. Though the results in both domains
for white noise u, using Nelson and Plosser’s (1982) data are similar, in general, in
finite samples the time and frequency domain versions of the tests will differ from
each other, in some cases possibly considerably. Under the null, the difference is
OP(TV’), but substantial differences could appear when the null hypothesis is seriously
in error, because of the great degree of non-circularity of nonstationary processes.
It is not known in general to what extent this could lead to different testing
conclusions. Some attempt has been made to study the problem analytically, but it

is complicated and one may need to resort to Monte Carlo simulations.

APPENDIX 3.1

Following work of Perron (1988) and other authors mentioned in Section 1,
we are concerned in this appendix with the effect that a possible structural break
may have had on the above results, in particular one due to World War II. Table
3.12 corresponds to Table 3.3, i.e., reporting results of the tests for white noise u,,
based only on post-war data. There are numerous non-rejections in Table 3.12 (i)
for the lower d-values, and some lack of monotonicity of f in d. In Tables 3.12 (ii)

and (iii) we again find significant f, even for d = 2.25 in case of the GNP deflator
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and consumer prices, while in few of the series the null is not rejected when d = 0.5
in one or both these tables. However, the greater amount of non-rejections could be
largely due to the smaller sample size, and, qualitatively, we see that as in Table 3.3
industrial production and unemployment rate are the least nonstationary series,
whereas consumer prices, GNP deflator, wages and money stock are the most
nonstationary ones, and in nine series in both Tables 3.3 (iii) and 3.10 (iii) (albeit
not entirely the same ones) the unit root null is not rejected. Very similar results
were obtained when we used the time domain version of the tests, with the non-
rejections occurring at practically the same d-values as in Table 3.12.

Looking at Figure 3.1 we observe that the series might have a different
growth rate after World War II. In Table 3.13 we give results of the tests for white
noise u, but including dummy variables for the changing slope in the trend function
of the series in 1946. Thus, instead of (15), we consider

Y, = B, + Byt + (B, - By)dt + x, t=12,.., (21)
where dt = t - t if t > t" and O otherwise, and t* refers to the period of time
corresponding to 1945. Monotonicity is now always achieved and the unit root null
hypothesis is rejected in favour of more nonstationary alternatives in the same five
series as in Table 3.3 (ii1). In fact, all non-rejections values of d in Table 3.13 are
exactly the same as in Table 3.3 (iii) except for velocity and consumer prices, where
the null is rejected for d = 0.75 in Table 3.3 (iii) but not in Table 3.13. In view of
these results we can conclude by saying that there is no significant improvement
when including dummy variables for the changing growth at least for white noise u,.

Allowing AR u, with the dummies for the changing trend, results were similar
to those when we included a simple linear time trend in the model, with
unemployment and industrial production as the less nonstationary series, and money,
consumer prices and GNP deflator as the most nonstationary ones. In Table 3.14,
we resume these results choosing for each series a particular order of the
autoregression, using the same criterion as in Table 3.9. Comparing results here with
those in Table 3.9 (iii) we see that in nine of the fourteen series k is the same, and
in five of them the non-rejections occur at exactly the same values of d.

In view of all these results, we could conclude by saying that in the provided
model, the presence of a possible structural break on the data does not greatly affect

the main conclusions obtained in the chapter.



FIGURE 3.1: Extended version of Nelson and Plosser’s (1982) data.
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FIGURE 3.2: Autocorrelation functions of the extended version of Nelson and Plosser’s (1982) data.
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FIGURE 33: Various estimates of the spectral density of the extended version of Nelson and Plosser’s (1982) data.
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TABLE 3.1
Sample autocorrelations of the raw extended Nelson and Plosser data.
Series n I, I, ©; I, Is To I; Iy Iy T I I I3 Iy

Real GNP 80 96 92 89 .85 .82 .78 .75 .71 .68 .64 .61 58 .54 .51
Nominal GNP 80 96 91 .87 .83 .79 .75 .70 .66 .62 59 .55 .52 49 45
Real p.cap GNP 80 96 92 87 .84 .80 .77 .73 .69 .66 .63 .59 .56 .53 .50
Ind.production 129 97 94 92 89 .87 .84 .82 .80 .77 .75 .72 .70 .68 .66
Employment 99 .96 92 88 .84 .80 .76 .73 .69 .65 .62 .58 .55 .53 .50
Unemployment 99 75 46 .31 .17 .04 .00 -.04 -.15 -.21 -.22 -.26 -.29 -.28 -.25
GNP deflator 100 96 93 89 .85 .81 .77 .73 69 .65 .61 .57 .54 .50 47
Cons. prices 129 .96 .92 .88 .85 .81 .78 .74 .71 .67 .64 .61 .58 .55 .53

Wages 89 96 .92 89 .85 .81 .77 .74 .70 .66 .62 .58 .55 .51 48
Real wages 89 97 95 92 .89 .86 .84 .81 .78 .75 .72 .69 .66 .62 .59
Money stock 100 96 .93 89 .86 .82 .79 .76 .72 .69 .65 .62 .59 .56 .53
Velocity 120 95 91 .88 .84 .81 .79 .76 .73 .69 .66 .62 .58 .55 .51
Bond yield 89 95 89 .84 .77 68 .62 .55 47 41 37 .33 29 25 .20

C.stock prices 118 .96 .92 .88 .85 .82 .80 .77 .74 .72 .69 .67 .64 .62 .59

The natural logs of all the data are used except for the bond yield, n is the sample size and r, is the ith
order sample autocorrelation. The large sample standard error under the null hypothesis of no
autocorrelation is 1/NT or roughly 0.10 for series of length considered here. Real p.cap GNP is real per
capita GNP; Unemployment r. is unemployment rate; Cons. prices is consumer prices index; and C.stock
prices is common stock prices.

TABLE 3.2

Sample autocorrelations of the first differences of the extended Nelson and Plosser data.

Series L L LI, s I I I G Ty Ty T I o, S(n)
Real GNP .33 .02 -.18-.22-.17 .01 .07 -.05-.21-20-00-03 .03 .10 .11
Nominal GNP’ 44 .10 -.08 -20 -.04 .16 .15 .07 -.06 -.10 -.02 -.16 -.22 -.17 .11
Real p.cap GNP 32 .01-17-20-.16 .01 .08 -.05-.20-.19 -.00 -.05 .01 .08 .11
Ind.production .03 -.12-.01 -.09 -25 .04 .13-01-.18-.01 .10-.10 .10 .11 .08
Employment .31 -.06 -.08 -.16 -.19 .00 .10 .01 -.16-.14 -02 -.10-.03 .09 .10
Unemployment r. .09 -29 .01-.02-17 .00 .14 -.11 -.10 .04 -.00 -.09 -.02 -.00 .10
GNP deflator’ 49 28 .15 .04 .11 .09 .05 .07 .02 .03-01-13-16-20 .10
Cons. prices’ 62 .24 11 .10 .14 .12 08 .09 .08 .06 -.02-.10-.08 -.13 .08
Wages’ 47 .13 .01 -05-05 .09 .16 .02-.11-12-12-35-24-20 .10
Real wages .22 -.03 -.06 -.06 -.07 -.06 .06 .10-.03 -.11 .00-05 .10 .13 .10
Money stock™ 62 .31 .15 .03 -.02-.00-.02-.07-.12 -.14 -.19 -.33 -.40 -30 .10
Velocity J12-02-14-13-09 .11 .07 .06-.05-.02 .07-12 .15 .05 .09
Bond yield 17 -14 .13 .02 -24-.10-.00 -.01 -.08 .06 .20 .05-05 .11 .10
C.stock prices .19 -.13 -.06 -.10 -.21 -.01 .12 .05 .01 .13 .03 -.11-.17 -.00 .09

r; is the ith order autocorrelation coefficient.
*: Time series where the unit root hypothesis is rejected in Table 3.3 (ii) and (iii) below. s(r) is the large
sample standard error under white noise, namely 1/T.



TABLE 3.3
f in (2.9) with white noise u,
d
050 0.75 1.00 1.25 1.50 1.75

(i): with no regressors.

Real GNP 1.877 194 -043 -220 -3.19 -3.78
Nominal GNP 212 208 -042° -223 -321 -3.79
Real per capita GNP 267 218 -045 -223 -321 -3.79
Industrial production 245 087 -0.80° -236 -346 -4.17
Employment 356 280 -041° -243 -350 -4.13
Unemployment rate 362 1260 -0.78 -2.07 -288 -341
GNP deflator 219 230 -0477 -244 351 -4.13
Consumer prices 487 4.7 039" -246 -388 -4.63
Wages 198 213 044> 232 -334 -394
Real wages 1.89° 193 -0.53 -232 -332 -392
Money stock 1.01" 135 0.66° -1.55 -3.01 -3.83
Velocity 955 346 -0.73° -279 -3.84 -445
Bond yield 6.14 346 0.19° -1.60° -261 -3.28

Common stock prices 356 2.88 002> -209 -331 -4.03

(ii): with an intercept.

Real GNP 733 262 .10  -0.200 -137"7 -2.30
Nominal GNP 727 324 2.12 0.66° -0.777 -1.85
Real per capita GNP 772 325 123 -0.28 -146° -2.37
Industrial production 793 111’ -0.83% -239 -346 -4.17
Employment 6.10 187 1.1’ -032" -1.64" -2.58
Unemployment rate 294 071° -093 -2.08 -286 -3.40
GNP deflator 1046 6.66 4.48 1,46° -0.89° -2.39
Consumer prices 15.81 1.50 7.41 3.21 054" -1.05
Wages 7.99  3.65 2.62 1.0 -063 -1.84
Real wages 9.14 3.62 1.12> -093 -223 -3.05
Money stock 725 249 2.82 2.78 0.88° -0.89
Velocity 861 375 033 -1.83 -3.04 -3.83
Bond yield 10.38  4.65 071" -136" -251 -3.20

Common stock prices 1049 3.96 035 -1.52° -262 -3.36

(iii): with a linear time trend.

Real GNP 5.95 3.46 1.39° -0.18" -1.39° -2,31

Nominal GNP 10.74  6.69 3.23 0.81’ -0.78 -1.87
Real per capita GNP 5.84 342 133 -026° -146° -2.37
Industrial production 5.33 142> -1.000 -251 -350 -4.18
Employment 6.93 3.84 1377 -040° -1.677 -2.58
Unemployment rate 295 071" -093° -2.08 -2.86 -3.39
GNP deflator 1432 1037 575 1777 -0.86° -2.40
Consumer prices 10.72 15.13 8.42 343 0.56’° -1.1r
Wages 11.13 743 3.95 126" -0.59° -1.8%
Real wages 9.11 4.86 1.26© -095 -223 -3.02
Money stock 12.03 9.36 6.30 3.34 091’ -0.84
Velocity 13.85 541 035 -190° -3.09 -3.85

Bond yield 1037 452 0717 -135 -251 -3.20

Common stock prices 9.52 3.79 0377 -148 -260 -334

*: Non-rejection values for the null hypothesis at 95% significance level.

2.00

-4.15
-4.16
-4.16
-4.67
-4.53
-3.78
-4.53
-5.08
-4.33
-4.31
-4.33
-4.85
-3.78
-4.49

-3.00
-2.64
-3.05
-4.66
-3.25
-3.78
-3.34
-2.12
-2.69
-3.60
-2.13
-4.40
-3.65
-3.90

-3.01
-2.65
-3.05
-4.66
-3.25
-3.77
-3.35
-2.12
-2.69
-3.56
-2.07
-4.41
-3.65
-3.87

225

-4.41
-4.41
-4.42
-5.02
-4.81
-4.05
-4.81
-5.38
-4.60
-4.58
-4.66
-5.14
-4.17
-4.81

-3.54
-3.24
-3.57
-5.01
-3.74
-4.07
-3.97
-2.89
-3.29
-4.00
-2.98
-4.82
-3.97
-4.30

-3.54
-3.24
-3.57
-5.01
-3.74
-4.05
-3.97
-2.83
-3.30
-3.98
-2.94
-4.84
-3.97
-427
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(i): with no regressors.

Real GNP

Nominal GNP

Real per capita GNP
Industrial production
Employment
Unemployment rate
GNP deflator
Consumer prices
Wages

Real wages

Money stock
Velocity

Bond yield
Common stock prices

(ii): with an intercept.
Real GNP

Nominal GNP

Real per capita GNP
Industrial production
Employment
Unemployment rate
GNP deflator
Consumer prices
Wages

Real wages

Money stock
Velocity

Bond yield

Common stock prices

0.50

143
2.76
3.22
2.12
3.13
4.01
2.75
5.09
2.90
1.09°
1.01°
9.20
6.92
3.38

8.93
7.63
743
7.31

5.60
2.50
10.81
15.15
7.07
9.06
7.64
8.32
10.52
10.70

(iii): with a linear time trend.

Real GNP

Nominal GNP

Real per capita GNP
Industrial production
Employment
Unemployment rate
GNP deflator
Consumer prices
Wages

Real wages

Money stock
Velocity

Bond yield
Common stock prices

*: Non-rejection values for the null hypothesis at 95% significance level.

4.99
8.88
4.89
4.64
5.99
251
12.30
17.88
942
7.70
10.29
12.12
8.71
8.15

0.75

1.83°
291
3.00
0.2r
2.69
136’
2.83
4.97
3.03
1.15°
1.70°
3.38
3.58
2.89

229
3.26
3.20
1.63
2.17
0.61°
6.59
11.73
4.38
3.37
2.56
3.96
429
4.18

2.92
5.70
2.90
127
3.30
0.62’
9.66
13.34
6.45
4.04
8.09
5.15
3.88
3.53

TABLE 34

t in (17) with white noise u,

1.00

-0.10°
-0.09°
-0.117
-0.82’
-0.08’
-0.52°
-0.25°

037
-0.09°
-0.04’

0.85°
-0.51°

0.34
-0.03’

118’
2.77
1.15°
-0.86’
119
-0.78°
5.44
7.46
341
1.05°
241
042
0.61’
0.44°

1.17
2.76
1.14
-0.87
1.18
-0.78’
5.35
7.49
3.40
1.06’
545
0.44°
0.61°
043

1.25

-1.73
-1.79
-1.80°
-2.11
-2.02
-1.70°
-2.03
-2.13
-1.87
-1.84°
-1.19°
-2.38
-1.38’
-1.66

-0.17
0.60°
-0.23
-2.12
-0.28’
-1.77
134
291
0.96’
-0.74°
2.88
-1.58’
-1.15%°
-1.32°

-0.15°
0.69°
-0.20°
-2.20
-0.34’
-1.77
1.58’
3.08
1.06’
-0.78’
2.88
-1.65°
-1.14°
-1.27
