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ABSTRACT

This thesis concentrates on testing fractional (and seasonally fractional) 
integration and cointegration in macroeconomic time series.

Fractional integration has recently emerged in the literature as an alternative 
plausible way of modelling economic series, and here we focus mainly on some 
empirical applications of a testing procedure suggested by Robinson (1994c) for 
testing unit roots and other nonstationary hypotheses in raw time series. These tests, 
described in Chapter 2, are asymptotically most powerful against fractional 
alternatives, have asymptotic critical values given by a chi-squared distribution, and 
allow great flexibility in the choice of null and alternative hypotheses, which can 
entail one or more integer or fractional roots of arbitrary order anywhere on the unit 
circle in the complex plane. In Chapter 2 we also make some simulations, 
comparing the size-corrected versions of the tests with those based on asymptotic 
critical values, and other existing unit root tests.

The tests of Robinson (1994c) are applied in Chapter 3 to an extended 
version of the data set used by Nelson and Plosser (1982). These are fourteen U.S. 
macroeconomic variables in annual data, and we focus here on cases where the root 
is located at zero frequency.

In Chapter 4 we concentrate on seasonality. Robinson’s (1994c) tests are 
now applied to quarterly U.K. and Japanese consumption and income series, using 
the same data as in Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and 
Hylleberg, Engle, Granger and Lee (HEGY, 1993). We test for the presence of unit 
or fractional roots, not only at zero but also at seasonal frequencies.

A multivariate version of the tests, based on the score, likelihood-ratio and 
Wald principles is obtained in Chapter 5 and some simulations, based on Monte 
Carlo experiments, are carried out at the end of the chapter.

The multivariate tests of Chapter 5 are applied in Chapter 6 to some pairs of 
macroeconomic variables claimed to be cointegrated by many authors. Using the 
same data as in Engle and Granger (1987) and Campbell and Shiller (1987), we 
analyze the relationship between U.S. consumption and income, prices and wages, 
GNP and money and stock prices and dividends. A testing procedure to investigate 
if these pairs of variables are fractionally cointegrated is also described and applied 
in Chapter 6.
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1. INTRODUCTION

The purpose of this section is two-fold. First we motivate and define what 

we understand by long memory and fractional integration, then we go on to 

summarize some results concerning estimation and testing in the context of long 

memory processes.

1.1. GENERAL INTRODUCTION

It is broadly accepted that one feature of macroeconomic variables is that the 

level of the series evolves or changes with time, although in a rather smooth fashion. 

A common practice to explain and model these smooth movements was to assume 

that the series fluctuate around a deterministic trend, via a polynomial and/or a 

trigonometric function of time, which are fitted by linear regression techniques. A 

second way came after Nelson and Plosser’s (1982) influential work, who following 

the work and ideas of Box and Jenkins (1970), argued that these fluctuations in the 

level were better explained by means of the so-called unit roots, or in other words, 

that the change in level is "stochastic" rather than "deterministic". Both "schools" 

try to model this persistent trend-cycle behaviour of the data although from a 

different perspective.

Mandelbrot (1969) and Mandelbrot and co-authors discussed a third way of 

explaining these fluctuations in the level. He argued that while many 

macroeconomic series exhibit a persistent trend-cyclical behaviour for a stretch of 

the data, when the same data is examined for a longer period, the persistent 

behaviour tends to disappear. The same type of phenomenon was observed in other 

areas, notably in hydrology, and called the Hurst effect, in honour of the hydrologist 

Hurst, (Hurst (1951), (1957)), who, studying the records in the level of the river 

Nile, noticed that kind of pattern in its behaviour. In particular, he noticed that the 

autocorrelations took far longer to decay to zero than the exponential rate associated 

with the autoregressive moving average (ARMA) class of models. These kind of 

processes are called long memory, due to their ability to display significant 

dependence between distant observations in time.

We can give two definitions of long memory. Given a discrete covariance
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stationary time series process, say {xt}, with autocovariance function E(xt-Ext)(xt.j- 

Ext) = Yj, according to McLeod and Hipel (1978), the process is long memory if
T

l i m p . .  Y ,  I Yj  I
j — T

is infinite. A second way to characterize this type of processes is in the frequency 

domain. For that purpose, suppose that {xj has an absolutely continuous spectral 

distribution, so that it has a spectral density function, denoted f(A,), and defined as
oo-1

f  ( X)  =   Yj  C O s X j ,  -7C < k Z 7C
J  - - C O

Thus, we can say that xt displays the property of long memory if the spectral density 

function has a pole at some frequency X in the interval [0,7l]. One model capable 

of explaining this feature is the fractional Gaussian noise model, analyzed in 

Mandelbrot and Van Ness (1968), and characterized by having an autocovariance 

function defined as

Yj  = ■ | Y 0( | j  + l | 2d*1 - 2 | j | 2d* 1 +  | j - l | 2d*1h  j  = 1 - 2 , -------

where 0 < d < 1/2. Another model, very popular among econometricians, is the so- 

called fractionally integrated model. A popular technique to analyze this model is 

through the fractional difference Vd, where

Vd = ( 1  -  L ) d = Y  ( - 1 )  * ( ^ )  L k .
k=0 ' '

and L is the lag operator. To illustrate this in case of a scalar time series Xt, t=l,2,..., 

suppose that ut is an unobservable covariance stationary sequence with spectral 

density that is bounded and bounded away from zero at any frequency, and

( 1  -  L ) d X t = u t t  = 1 , 2 ,  ... (1)

The process ut could itself be a stationary and invertible ARMA sequence, when its 

autocovariances decay exponentially, however, they could decay much slower than 

exponentially. When d = 0 in (1), \  = ut and thus, xt is ’weakly autocorrelated’, also 

termed ’weakly dependent’. If 0 < d < 1/2, xt is still stationary, but its lag-j 

autocovariance Yj decreases very slowly, like the power law j2(1-1 as j— and so the 

Yj are non-summable. We say then that xt has long memory given that its spectral 

density f(A,) is unbounded at the origin. It may also be shown that these kind of
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processes satisfy1

Yj ~ c1 j 2d_1, a s  j  -  oo f o r  \ c± | < °° (2)

and

f ( X)  ~ c2 X~2d, a s  X - 0 + f o r  0 < c2 < » . (3)

where the symbol ~ means that the ratio of the left hand side and the right hand side 

tends to 1, as j —> oo in (2), and as X —» 0+ in (3). Conditions (2) and (3) are not 

always equivalent but Zygmund (1995, Cap.V, Sect.2), and more generally Yong 

(1974) give conditions under which both expressions are equivalent. Finally, as d 

in (1) increases beyond 1/2 and through 1 (the unit root case), Xt can be viewed as 

becoming ’more nonstationary’ in the sense, for example, that the variance of the 

partial sums increases in magnitude. This is also true for d > 1, so a large class of

nonstationary process may be described by (1) with d > 1/2. Processes like (1) with

positive non-integer d are called fractionally integrated processes and when is 

ARMA(p,q), xt has been called a fractional ARIMA(p,d,q) process. These kind of 

models provide a type of flexibility in modelling low frequency dynamics not 

achieved by non-fractional ARIMA models. They were introduced by Granger and 

Joyeux (1980), Granger (1980, 1981) and Hosking (1981), (although earlier work by 

Adenstedt (1974) and Taqqu (1975) shows an awareness of the representation), and 

were justified theoretically by Robinson (1978) and Granger (1980). They observed 

that if the individual series follow AR(1) processes, i.e.,

x  ̂ t -  a ± Xj ̂  t-1 + u±r t* 2 - 1 / . . .  N, t  — 1 , 2 / . . . ,

then the aggregate series
N

x t = T ,  x i . t
i =l

can exhibit long memory if, for instance, cXj are drawn from a Beta B(p,q) 

distribution for certain values of p and q.

So far we have considered processes which have (or have after taking 

appropriate differences) a singularity in the spectrum at zero frequency. However, 

f(X) might also display poles at any other frequency in (0,7t]. Gray et al. (1989, 

1994) generalized (1) to allow persistent cycle behaviour and considered the

1 Condition (2) is satisfied by the fractional ARIMA(0,d,0) case. However, 
including ARMA components, it is required all ^  to be eventually non-negative.
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Gegenbauer process
d

( l - 2 r | L + L 2) 2 x t = u t t  = 1 , 2 ,  . . .  (4)

which is stationary if either Ir| I <1 and d<l or It) 1=1 and d<l/2, and the spectrum 

is infinite at X = arccos(r|). By analogy with the fractional ARIMA(p,d,q) process, 

(4) can be generalized to include autoregressive and moving average components in

ut-
A further parametric long memory process suggested by Porter-Hudak (1990) 

is the seasonal fractionally integrated process given by 

(1 - L s ) d x t = u t . t  = 1 , 2 ,  . . . , (5)

with d e (-1/2,1/2), where s is the seasonal period and may be represented as an 

ARMA(p,q) process. When d > 0, the spectrum is unbounded at frequencies 

A,j=27tj/s for j=0,l,2,...,s/2, so the model contains a persistent trend and s/2 persistent 

cyclical components. Hence, this process shows a behaviour at seasonal frequencies 

similar to that of the fractional ARIMA process at zero frequency, and thus, much 

nonstationary behaviour may be modelled at seasonal frequencies allowing d > 1/2. 

Therefore, there is some interest in estimating the fractional differencing parameter 

d. This is important, not only because it reflects the degree of strong dependence 

in a series, but also because rates of convergence of some statistics that are relevant 

for statistical inference depend on d. In the following section we review and discuss 

some aspects concerning estimation and testing in long memory series, and in 

particular, in fractionally integrated series.

1.2. GENERAL RESULTS ON ESTIMATION AND TESTING

In the previous section we have discussed the role that the parameter d plays, 

since that parameter gives an indication of the strength of dependence in the time 

series. Hence, it appears that one important point is how can we estimate d in a 

given stretch of data.

There are two main approaches to estimate the parameter d. The first 

approach is parametric, i.e., the model is specified up to a finite number of 

parameters of which d is one. The second is semi-parametric and is based on the 

limiting relationships (2) or (3). The methods presented below require that d must 

belong to the stationary region, so that if the time series is nonstationary, then an 

appropriate number of differences have to be taken before proceeding to the
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estimation.

Starting with parametric methods, d is estimated jointly with all the other 

parameters that specify the model, and the analysis can be carried out in the 

frequency or in the time domain. In the frequency domain, it is assumed that the 

spectral density function, f(X,0), is known up to a certain parameter vector 0 (de 0), 

where 0O denotes the true value, and the estimation procedure consists in estimating 

0 by some Gaussian methods. Fox and Taqqu (1986) assumed Gaussianity of the 

process, and minimized the Whittle function (an approximation to the exact 

likelihood function)

*  f i o r ) '11  < s l“71

where I(A,) is the periodogram of the process x,, defined as
2

JL
J(A ) = 2n T

e itx
t=i

The estimate is shown to be consistent and asymptotically normal under appropriate 

conditions, which are satisfied by fractional models as in (1) with 0 < d < 1/2. 

Another estimate with the same asymptotic behaviour is obtained if (6) is replaced 

by a sum over the Fourier frequencies, i.e., minimizing

'I , . 2 * 2

Sowell (1992a) analyzed in the time domain the exact maximum likelihood 

estimates of the parameters of a fractional ARIMA model, using recursive procedures 

that allow quick evaluation of the likelihood function. A limitation of his procedure 

is that the roots of the AR polynomial cannot be multiple and the theoretical mean 

parameter must be either zero or known. Although the time and the frequency 

domain ML estimators are asymptotically equivalent, their finite sample properties 

differ, and the Monte Carlo analyses carried out in Sowell (1992a) show that the 

time domain ML estimator gives better finite-sample properties than the frequency 

domain ML estimator when the mean of the process is known. Cheung and Diebold 

(1994) show, however, that the finite-sample efficiency of a discrete version of the 

approximate (Whittle) frequency domain ML relative to exact time domain ML rises 

dramatically when the mean is unknown and it has to be estimated.
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In addition, Dahlhaus (1989) also assumes Gaussianity but considers the exact 

likelihood function and minimizes

■ j^ ,log | TT( f ( 6 ) ) | + {xT-\aT) 'T T(f(Q)  J ' 1 (x T- n T) 

where TT(f(0)) is a TxT matrix with (r,s) element:

{rr(f (6) )}(r,s) = f  f d . O )  e i ir~s)kd \  f o r  r , s ,  =l , . . . r,
-It

(iT estimates consistently the mean jJq and T denotes the sample size. He proves that 

his estimate and the one studied by Fox and Taqqu (1986) are both not only 

asymptotically normal but also asymptotically efficient in the sense of Fisher, i.e. 

their asymptotic variance is equal to the inverse of the information matrix r(0o):

t (0 -  0O) - d ^ ( c n n e j - 1) .

It is worth pointing out that all these parametric estimates have the same 

asymptotic properties of T1/2-consistency and asymptotic normality, and when x, is 

actually Gaussian, asymptotic efficiency. Finally, Giraitis and Surgailis (1990) relax 

the Gaussianity assumption and analyze the Whittle estimate for linear processes, 

showing that it is T1/2-consistent and asymptotically normal, although the estimate 

is no longer asymptotically efficient, while Hosoya (1997) extends the previous 

analysis to a multivariate framework.

However, on estimating with parametric approaches, the correct choice of the 

model is important; if it is misspecified, the estimates of d are liable to be 

inconsistent. In fact, misspecification of the short run components of the series can 

invalidate the estimation of its long run behaviour. Thus, there might be some 

advantages in estimating d on the basis of semi-parametric approaches. They are 

called semi-parametric models because they parameterize only the long-run 

characteristics of the series. There is a price to be paid in terms of efficiency in not 

using a correct parametric model, but when the sample size is large the greater 

robustness of semi-parametric models-based procedures is relevant.

Before considering some semi-parametric estimates discussed in the literature, 

we should mention an estimate (Hurst (1951)) that is based on the so-called adjusted 

rescaled range, or "R\S" statistic, and defined as
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max
R \ S  =

l i j & T £  (x t -3c) -  m i n ^ ^  (x t -x)
t=i t=i

- £  ( X t - x )
1 t=l

\ 1
2

where x is the sample mean of the process xt. The specific estimate of d 

(Mandelbrot and Wallis (1968)) is given by:

log ( R \ S )  _ 1 
logT  2 ’

Its properties were analyzed in Mandelbrot and Wallis (1969), Mandelbrot (1972, 

1975) and Mandelbrot and Taqqu (1979). Beran (1994) provides a neat explanation 

of how to implement the R\S procedure. Finally, Lo (1991) modified the R\S 

statistic to be robust to weak dependence.

Several methods of estimating semi-parametrically the fractional differencing 

parameter d were examined in a number of papers by Robinson (1994a, 1994b, 

1995a, 1995b) which we are to describe. Using the time domain, Robinson (1994a) 

suggested the log autocovariance estimate, which is based on taking logs in 

expression (2),

logy^ ~ l o g c 1+ ( 2 d - l )  l o g j ,  a s  j  -  «>,

and substituting 

1 T~jVj = -j- Y  (xt t j - x ) , j = o,i,.. .r-i
1 t=l

for yj. The OLS regression of log ^  on log j then leads to the estimate

T - l

Y, log?^ (logj-Togj)
2

1 + j = T - r
T - l

£  ( l o g j  -  l o g  j )
j = T - r

1 r-i
, where  l o g j  = — l o g j

r  J — rp_r.J - T - I

and r is a large integer less than T. A disadvantage of this estimate is that even if 

the yj are all positive for large j, some ^  can be negative, especially when Yj is close 

to zero. An alternative procedure described in the same article is the minimum 

distance autocovariance estimate, which is implicitly defined by
T - l

d±) = a r g m i n dtCi ( f y -  c±j 2d_1) 2,
j = T - r

for d g (0,1/2) and q  € R.
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Semi-parametric estimates based on the frequency domain are the log- 

periodogram estimate proposed by Geweke and Porter-Hudak (1983) and modified 

by Kiinsch (1986) and Robinson (1995a); the averaged periodogram estimate 

proposed by Robinson (1994b), and the quasi maximum likelihood estimate 

(Robinson (1995b)). The first of these estimates is based on the regression model 

like

logJUj) = C - 2dlogXJ. + (7)

where Xj = j  = - 0,

C -  l o g [ - j ^ f  (0 )  ] ,  e ,  = l o g f

and the estimate of d is just the OLS estimate of d in (7). Unfortunately, it has not 

been proved that this estimate is consistent for d, but Robinson (1995a) modifies the 

former regression introducing two alterations:

- use a pooled periodogram instead of the raw periodogram, and

- introduce a trimming number p, so that frequencies Xj, j=l,...p, are excluded from 

the regression, where p tends to infinity slower than m, so that p/m tends to zero. 

So, the final regression model is

y (j) = C (j) _ 2 dlogX * + Ui{J)

where Y% = log
Jc T u k

( j  '
(•7) - E

\ j =i
k = p+J, p+2J, . . .m,

where J controls the pooling and p controls the trimming. Assuming Gaussianity, 

he proves the consistency and asymptotic normality of this estimate in a multivariate 

framework.

The average periodogram estimate of Robinson (1994b) is based on the 

limiting relation (3). The estimate employs an average of the periodogram near zero 

frequency,
m

=  ^ E
1 j - l

and suggesting the estimator
/ A /  * V \

—  - log 2 a 2 logg where Xm = ZEE,

for any constant qe (0,1). He proves the consistency of this estimate under very mild



conditions, and Lobato and Robinson (1996a) shows the asymptotic normality for 0 

< d < 1/4, and the non-normal limiting distribution for 1/4 < d < 1/2.

Finally, the quasi maximum likelihood estimate in Robinson (1995b) is 

basically a "local Whittle estimate" in the frequency domain, considering a band of 

frequencies that degenerates to zero. The estimate is implicitly defined by:

Under finiteness of the fourth moment and other conditions, Robinson (1995b) 

proves the asymptotic normality of this estimate, which is more efficient than the 

former ones (Robinson, 1995a, 1994b). Multivariate extensions of these estimation 

procedures can be found in Lobato (1995).

All estimation methods presented so far concentrate on cases where the pole 

in the spectrum occurs at zero frequency. Hidalgo and Yajima (1996) suggest two 

semi-parametric estimates of d when f(X) ~ C |A, - ^0|‘2d as X —> X0 and X0 e [0,tc]. 

These estimates, which have explicit though complicated solutions, are shown to be 

asymptotically normal, achieving an optimal rate of convergence and being as 

efficient as the others suggested in the literature. Finally, Hidalgo (1996) proposes 

an estimator of X0, which is asymptotically normal, showing that d can be estimated 

as well as when the singularity X0 is known.

Up to now, we have given a brief discussion of estimation methods in the 

context of long memory processes. Our next step is to describe some of the most 

relevant literature on testing in this context. Testing with long memory is an area 

of research that is attracting growing interest. Tests for white noise against 

stationary fractional alternatives were developed in Davies and Harte (1987) and 

Robinson (1991). In the former, they propose tests of white noise against the 

fractional Gaussian noise alternative. In Robinson (1991), a Lagrange Multiplier 

(LM) test is described under the standard assumptions which, under the null 

hypothesis of white noise will have an asymptotic chi-squared distribution. The 

alternatives are of the class

1 _ _

argrmind logC (d ) -  2 d — l ogX^ 
V m j - i
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where the in (8) are the disturbances in a linear regression model satisfying:

I Bt) = 0, and E(u,2 I Bt) = o2, where Bt is the G-field of events generated by us, s 

< t. The coefficients <(>j(0) are uniquely defined functions of the vector 0, such that 

<j>j(0) = 0 for all j > 1 if and only if the null hypothesis 0 = 0 holds. Thus, under the 

null, ^  is white noise. The partial derivatives at 0 = 0, = 0/00)({)j(0) must be

square-summable and also

X) > o ,
J=1

meaning that the matrix is positive definite. The square-summability condition on 

the <|>j is weak enough to include long memory alternatives, as fractional Gaussian 

noise, and in particular the ARIMA(0,d,0) class.

Wu (1992) and Agiakloglou and Newbold (1993) examine LM tests of 

ARMA(p,q) models against fractional ARIMA(p,d,q) alternatives. In the latter, they 

suggest two variants of a LM test which are identical in spirit to the tests for 

additional autoregressive or moving-average parameters of Godfrey (1979). They 

show that the tests have low power when the orders (p,q) are over-specified in the 

ARMA representation. Lobato and Robinson (1996b) also propose a LM test for 

testing that a vector process is weakly correlated against alternatives which might be 

fractionally integrated. The test is non-parametric and they apply the LM principle 

to the objective function used by Robinson (1995b), obtaining a simply-computed 

test that is likely to have good efficiency properties. They give some conditions 

under which the statistic has a limiting null %p2 distribution.

Beran (1992) analyzes for long memory series a goodness-of-fit test proposed 

by Milhoj (1981) in the frequency domain. This test is an extension of the Box- 

Pierce (1970) statistic, taking into account all the computable correlations. They 

show that the asymptotic distribution under the null hypothesis is the same as in the 

weak autocorrelation case.

Hidalgo and Yajima (1996) consider semiparametric tests for weak 

dependence (i.e., d = 0) against the alternative of long memory ( d > 0) when the 

singularity or pole of the spectrum is left unknown. These tests are based on the 

limiting distributions of the estimates obtained in Hidalgo and Yajima (1996). 

Finally, Hidalgo and Robinson (1996) propose a Wald test for structural break at a 

known period of time (say T) in a linear regression model
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f P i  t  = l , 2  x )
Y t  ~  P t z t + x c P C = | p 2 t  = T + 1, . . . r J '

with stochastic and nonstochastic regressors zt, and xt being a Gaussian long memory 

process. Existing tests for structural breaks based on xt being white noise or weakly 

dependent will not hold.

Unlike most of these previous procedures, Robinson (1994c) establishes a 

very general framework in which many long memory as well as nonstationary 

models can be considered as null or alternative hypotheses. The model he considers 

is

y t = P' z t + x t  t  = 1 , 2 ,  . . . (9)

p ( L ; 0 )  x t = u t t  = 1 , 2 , -------  (10)

where yt and the (kxl) vector zt in (9) are observable and P is an unknown (kxl) 

vector. The elements of Zj are assumed to be non-stochastic (such as polynomials 

in t), and Uj in (10) is a covariance stationary sequence with zero mean and weak 

parametric autocorrelation. p(L;0) is a prescribed function of the backshift operator 

and the (pxl) vector 0, of form

p (L; 0) = ( l - L ) Yl+011 ( l + L ) Y2+6i2J J  (1 - 2  c o s  WjL + L 2) Yj+01̂  ( n )
J = 3

for given Y, j=l,...h, where for each j, 0. = 0j for some 1, and for each 1 there

is at least one j such that 0. =0,; thus, h > p.

The null hypothesis is 

H0: 0 = 0, (12)

where there is no loss of generality in using the vector of zeros instead of an 

arbitrary given vector, and the test statistic will be a LM test based on the frequency 

domain. Given the functional form chosen for p in (11), we can consider several 

cases of fractional integration under the null and alternative hypotheses. Thus, 

fractional integration of the form as in (1) can be tested if p(L;0) = (1 - L)d+e; cyclic 

behaviour as in (4) if p(L;0) = (1 - 2coswL + L2)d+e for 0 < w < n; seasonally 

fractional integration as in (5) if p(L;0) = (1 - Ls)d+0, and so on. (Note that in the 

first two cases, h = p = 1, and in the third one, if s = 4, h = 3 and p = 1. However, 

we could also consider cases with p > 1, for instance, p(L;0) =
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(1 -  L )dl+01 (1 + L ) d2+°2 (1 + £ 2) d3+03) _

The tests of Robinson (1994c) are asymptotically locally most powerful when 

directed against fractional alternatives, and have asymptotically critical values given 

by a chi-squared distribution. They constitute the basis of this thesis. In Chapter 

2 we describe the tests, justify their null and local limit distributions and make some 

simulations studying the finite sample behaviour of sized-corrected versions of the 

tests. Given the great flexibility allowed by Robinson’s (1994c) tests for testing 

different forms of nonstationarity, we use them in Chapter 3 to analyze an extended 

version of the data set used by Nelson and Plosser (1982). These are historical 

annual data of fourteen U.S. macroeconomic variables and have been widely 

analyzed in the literature. We concentrate in this chapter on processes of form as 

in (1), i.e. fractionally integrated processes with the singularity in the spectrum 

occurring at zero frequency, and we model the stationary disturbances Uj in (7) not 

only as white noise or AR processes, but also including the Bloomfield exponential 

spectral model. Chapter 4 begins by reviewing the literature on seasonality, and 

different versions of Robinson’s (1994c) tests are later applied to some U.K. and 

Japanese quarterly data analyzed in Hylleberg, Engle, Granger and Yoo (1990) and 

Hylleberg, Engle, Granger and Lee (1993) respectively. A conclusion drawn in this 

chapter is that seasonal fractional integration might be another viable way of 

modelling the nonstationary seasonal component of the series. Multivariate versions 

of Robinson’s (1994c) tests, based on the score, likelihood-ratio and Wald principles 

are described in Chapter 5. They are shown to be relevant to analyze the 

interrelationships between different variables, and some Monte Carlo experiments 

comparing results on finite samples are carried out at the end of this chapter. 

Finally, these multivariate tests are applied in Chapter 6 to some pairs of economic 

variables claimed by many authors to be cointegrated. Fractional cointegration is 

defined and a testing procedure for this hypothesis, based on Robinson’s (1994c) 

tests, is also suggested and applied in this chapter.
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CHAPTER 2 

ROBINSON’S (1994c) UNIVARIATE TESTS

In this chapter we describe Robinson’s (1994c) univariate tests for testing unit 

roots and other nonstationary hypotheses. We present the tests, their limiting 

distributions and make some simulations comparing the size-corrected versions of 

the tests with the non-corrected ones and other existing unit roots tests.

2.1 INTRODUCTION

Versions of the score, likelihood-ratio and Wald principles have been much 

used in testing for a unit root in a time series against AR alternatives that are 

stationary or explosive. The test statistics often have nonstandard null and local 

asymptotic distributions and typically, critical values have to be calculated 

numerically on a case-by-case basis. However, the AR model is merely one of many 

models that nest a unit root. We can test Hq (1.12) in (1.10) with p(L;0) = (1 - L)1+e 

instead of the AR alternatives described by p(L;0) = (1 - (1+0)L). Robinson (1994c) 

stresses that the "nonstandard" asymptotic behaviour of commonly used unit roots 

tests is a consequence of the AR alternative, and provides a different and unified 

treatment of testing unit roots (and many other hypotheses) as a "standard" problem, 

in the sense that the test statistics will have an asymptotic null distribution, 

where p is the number of restrictions tested. Also his tests will be efficient when xt 

is Gaussian and more generally, more efficient than other statistics that are also 

based on sample second moments of xt. We start first by mentioning some of the 

most salient features of the tests.

As mentioned in Chapter 1, the tests will allow great flexibility in the choice 

of the null and alternative hypotheses, which can entail one or more integers or 

fractional roots of arbitrary order anywhere on the unit circle in the complex plane. 

This will permit us to test a great variety of model specifications, including seasonal 

and cyclic behaviours of any stationary and nonstationary degree. Note that under 

H q ( 1 .1 2 ) ,  ( 1 .1 0 )  becomes 

p (L )x t = ut t = 1,2,... (1)

with
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p(L) = p(X;0=O) = ( l - I ) T'(l+ L )Tl] ^ J ( l - 2 c o s w /+ I 2)Y'

for given h, for given distinct real numbers wj5 j=3...h on the interval (0,7t], and for 

given real numbers y  ̂ j=l,...h. We can briefly indicate some null hypothesized 

models of interest:

a) "1(1)'': p(L) = (1 - L). Then ^  given in (1) is a random walk when ut is a 

white noise sequence.

b) "1(2)": p(L) = (1 - L)2.

c) "Cyclic 1(1)": p(L) = (1 - 2 cos w L + L2), for 0 < w < tc.

d) "Quarterly 1(1)": p(L) = (1 - L4) = (1 - L) (1 + L) (1 + L2).

e) "1/f noise": p(L) = (1 - L)m which is of interest since ^  in (1) is then a

fractionally differenced process that is "just nonstationary" opposed to stationary 

when p(L) = (1 - L)d with d < 1/2.

f) "l/f1/2 noise": p(L) = ( 1 - L)1/4, etc.

Furthermore, xt need not be observable but can be the errors in a multiple 

regression model as in (1.9), where the elements of zt are assumed to be 

nonstochastic, such as polynomials in t, to include the null hypothesis of a unit root 

with drift, for example. The limiting null and local distributions of the test statistics 

will be unaffected by the presence of such regressors. In contrast, asymptotic 

distributions of test statistics for a unit root null for xt in (1.9) against AR 

alternatives seem to be dependent on characteristics of the Zj sequence (see, eg. 

Schmidt and Phillips, 1992).

The initial discussion of the tests assumes that the Uj in (1) are white noise, 

so the only nuisance parameters are (3 and the variance of ut. Unlike tests based on 

AR alternatives, the tests of Robinson (1994c) cannot be robustified to allow for 

weak nonparametric autocorrelation in i .̂ (Tests against fractional alternatives with 

nonparametric autocorrelation under the null would have negligible efficiency 

relative to parametric autocorrelation). Thus, he includes an extension to the case 

of weak parametric autocorrelation in \\, of quite general form to cover stationary 

and invertible ARMA behaviour and the exponential spectrum model of Bloomfield 

(1973) (see (12) below), as well as autocorrelations that decay fairly slowly.

The test statistics are derived via score principle, and though undoubtedly the 

same asymptotic behaviour can be expected of Wald and likelihood-ratio tests, he 

uses score tests with the usual computational motivation that they entail estimation
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only under the null hypothesis (1.12). Efficient estimates of fractional models have 

been studied (see Chapter 1), but they require numerical optimization, have not been 

very widely used and are not featured in the most widely used time series software 

packages.

The tests are expressed in the frequency domain. There exists time domain 

versions of the tests, but the preference here of the frequency domain approach is 

because of its comparative elegance; the ease with which it accommodates 

autocorrelation corrections for ut; and the natural way in which it exploits the fast 

Fourier transform in case of long time series.

The following section describes the test statistic for the case of white noise 

ut and present null and local limit distribution theory in this case. Section 3 does the 

same, extending the tests for weakly autocorrelated Up and finally Section 4 uses 

Monte Carlo simulations to study finite sample behaviour of sized-corrected versions 

of the tests.

2.2 SCORE TEST UNDER WHITE NOISE

Robinson (1994c) shows that a score statistic for testing Hq (1.12) in the 

model given by (1.9); (1.10) with

xt = 0 for t < 0 (2)

under the presumption that \\ in (1.10) is a sequence of zero mean uncorrelated 

random variables with unknown variance a 2 takes the form

R = — a ' A la, 
a 4

T- 1
5  = W ) I a( \ ) d \ ;  A=  E [ l -£ ]* /* &  * W = /& |^ lo g p (e u ;0)j

1 T

a2 = - £  , «, = p(Z,)(y,-p zt), P
I t= 1

where IQ is the periodogram of the ut sequence; wt = p(L)zt and vj/, is given by
Oft

expanding i|/(A,) above as ^  i^cos/A,; He approximates R by
/=1

5  T  - / r- i  ~ T ^ r-i/2 ~R = — a A a = r r, r =  A a, (3)
6 4 6 2

where d = i|r(
1 j

A = ( i  -  T )  or 2W or ♦(AJ)iK *p/ (4)
j ’ t \  1 /  1 j

( T \ -i ( r  \
E w,wt E w. p (L)y<

W=i U-i /



with Y = —  /* i|j(X) A.,
2% J

-it

in which Xj = 27tj/T and the sums on * are over Xj e M, where M = {A,: -n < X < 7t, 

X £ (p, - Xlt p, + X,), 1=1,...,s}, such that p„ 1=1,...,s < <» are the distinct poles of 

\|f(X) on (-7t,tc]. Thus, he uses a discrete approximation to the integral a, omitting 

the contribution from the finitely many in an open ^-neighborhood of any of the

Pi-

Note that by Parseval’s equality,

Y = x EL z=i
so that asymptotic equivalence of the first two formulas in (4) readily follows. 

Sometimes a simple closed form is available for 'F; for example, *F = 7T2/! 2 (\j/, = - 

l'1), when p(L;0) = (1 - L)d+e. More generally, for example when p(L;0) has 

complex zeros, a simple formula may be unavailable, and the first expression in (4) 

may be cumbersome to calculate if the are not of simple form, in which case the 

final option in (4) may be preferred.

Theorems 1 and 2 below describe the null and local limit distributions 

respectively. Theorem 1 is a large-sample justification for rejecting Hq at the 

100a% level when R > Y2 where P( v2 > y2 ) = ol. It also justifies one-Ap,a v A.p,a J

sided tests when p=l: H0 is rejected in favour of 0 > 0 ( 0 < 0) at the 100a% 
level, when r > za, (r < - za), where the probability that a standard normal variate

exceeds za is a. The proofs of the theorems are given in Robinson (1994c). 

Theorem 1

Let {lit, t=0,±l,...} g F, where F is the class of sequences {vt, t=0,±l,...} of 

stationary random variables satisfying E(vt I BM) = 0 and E(vt21 Bt.j) = a 2 almost 

surely, where 0 < a 2 < «> and Bt is the G-field of events generated by vs, s < t.

Let {zt, t=0,±l,...} g G, where G is the class of (kxl) vector sequences {zt, 

t=0,±l,...} such that zt = 0 for t< 0  and wtwt Posilive definite for

sufficiently large T.

Let p(L;0) g H, where H is the class of functions p(z;0) such that p(O;0)=l 

for all 0 and \j/(^) as defined above has finitely many poles pj, 1=1,...,r, on (-71,7i] 

such tha " T v‘ ," is monotonically increasing as X—»p,_ and as A.^p1+, for 1=1,...,r,47
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and there exist disjoint intervals Slf 1=1...,r such that U]=1 r S! g (-ft,ft], pj e Sl9 p, g 

Sk for 1 * k, and

= 0 ( 6 n ) ’ ^  6  "  0 ’

for k=l,...,r and some r|>l/2, where II • II denotes Euclidean norm.

Then, under H0 defined by (1.10) and (1.12), the condition 

0 < det('F) < oo1 (5)

is sufficient for r in (3) —»d N(0,lp), as T— where Ip is the p-rowed identity matrix.

The class F imposes a martingale difference assumption on the white noise 

ut, which is substantially weaker than the Gaussianity used in motivating the test 

statistic and in particular requires a second moment condition that is clearly minimal. 

Class G imposes a mild lack-of-multicollinearity assumption on the wt, that is 

satisfied by, for example, zt with elements that are polynomials in t. Finally, class 

H includes technical assumptions on \j/ that are costless, but required to justify 

approximating integrals by sums.

Theorem 2 below justifies optimality of R in the sense of providing an 

asymptotically most powerful test against local alternatives of form

0 = 0r  =(def> 6 T  21 (6)

where 5 is any non-null (pxl) vector.

Theorem 2

Let {1̂ , t=0,±l,...} g F, let {zt, t=0,±l,...} e G and let 

ytT ~ P + xtT* (7)

where

p (L;dT)xtT = ut, f* l ,  xtT = 0, tzO, (8)

where 0T satisfies (6) and p(L;0) g J, where J is the subclass of H such that for 

all p g J, £(z;0) = {p(z)/p(z;0)}{0/90) log p(z;0)} is continuous in 0 at 0 = 0 for 

almost all z such that I z I = 1, and for a neighborhood S of 0 = 0,

/ . / “■Peesi U e ix; 6 ) f d \  < <».

Let a, A, and a 2 now be defined in terms of XtX rather than xt. Then,

1 Note that the right-side inequality in (5) is not satisfied by the AR alternative 
p(L;0) = (1 -(1 +0)L), but is satisfied by "fractional" alternatives p(L;0) = (1 -L)d+e 
for any real d, for example.
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condition (5) is sufficient for r—>d N(-vF1/25, Ip), as T—

Class J entails a strengthening of the restrictions on p, but it is readily 

checked in case of (1.11). Theorem 2 implies that under local alternatives, R—>d %p2 

(S’̂ S), indicating a noncentral %p2 distribution with noncentrality parameter 5’¥ 8  

which is optimal under Gaussianity of i .̂ In non-Gaussian environments the test is 

no longer fully efficient, but it is still the most efficient test based on quadratic 

functions of the data.

2.3 SCORE TEST UNDER WEAK PARAMETRIC AUTOCORRELATION

The test developed in the preceding section can be robustified to allow weak 

parametric autocorrelation in ut. Let u, be covariance stationary with spectral density 

of form f^ T .o 2) = (o2/27C)g(A,,x), -Tt<X<%, where g is a known function of X and 

the unknown (qxl) vector T, such that T and o2 are not a priori related. Note that 

a 2 is generally no longer the variance of ut, but rather the variance of the innovation 

sequence in a normalized Wold representation for i .̂

By extending the argument in Section 2, Robinson (1994c) shows that an 

approximate score statistic for testing (1.12) in (1.9); (1.10) and (2) is

R = —  d 'A ^ d  = f'f, r = (9)

1 j

A is either 2 ( T - $ E " 10 /) or 

1 i  1 J \ 1 i  /
it n

® = J -  f t W e (X ) ' dX ,  S = -1- f  e(X)e(X)'dX, e(X) = -^ - lo g g ^ T ) ,
2n J 2n J ox-n -n

Ft Ow T~l
HXj) = — logg(X,i), i = argmint6T.a2(T). a2(x) =

and d2 = ct2̂ ), where T* is a compact subset of q-dimensional Euclidean space.

Some technical assumptions are made on g in the statements of Theorems 3 

and 4; their principal practical implications being that though Uj is capable of 

exhibiting a much stronger degree of autocorrelation than stationary and invertible 

ARMA processes, its spectrum must be bounded and bounded away from zero.

d p * * /  (i0)
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Though q can be arbitrarily large, we assume it is finite, thus treating only 

parametric alternatives. As explained in Robinson (1994c), a unit root test against 

fractional alternatives with nonparametric autocorrelation under the null would have 

negligible efficiency relative to parametric autocorrelation.

The following theorem strictly relaxes the conditions of Theorem 1, so that, 

for example, we continue to require finiteness of only second moments of u,.

Theorem 3

Let {Up t=0,±l,...} be such that u = a e . » t=0,±l,..., where {£,,
t ^—7=0 j  t-j

t = 0,±1,...} 6 F and j  V2 | | < »  .

Let {Zj, t=0,±l,...} e G, let p e H, and let g e  L where L is the class 

of functions g(X;X) on (-7t,7t]xT* such that g(X;x)

1, a(j;x) = (Xj, j=0,l,.., where x is the true value of X; x is an interior point of T \ 

g(X;X) ^  g(A,;x) for t  e T*- {x}; for all X, g(A,;X) is bounded away from zero on a 

neighborhood S of x; g(A,;X) is continuous in ( ,̂X) for X e S and has first and second 

derivatives with respect to X that are also continuous in (>.,X) for X e S; g(X,x) and 

(3/3x) g(X;x) satisfy a Lipschitz condition in X of order rj > 1/2. Let also (1.9) and 

(2) be true.

Then, under Hq defined by (1.10) and (1.12), the condition 

0 < detOF - O E 1̂ ’) < oo (11)

is sufficient for r —>d N(0,lp), as T—><».

Theorem 2 can likewise be extended.

Theorem 4

Let {ut, t=0,±l,...} be as in Theorem 3, let {zt, t=0,±l,...} e G, and let (7) 

and (8) hold where 0T satisfies (6) and p(L;0) e J. Let a, A and d2 now be defined 

in terms of xtT rather than xt.

Then condition (11) is sufficient for r —>d ^ - ( 'F  - OE'1̂ ’)'1̂ ,  Ip), as T—>°o. 

The most obvious choice of a time series model for ut satisfying the 

conditions above is a stationary and invertible ARMA, where relatively simple 

formulas for g and £ are available. Thus, in the pure AR case,
9 -2 /

f 9 )
\

1 - £  
/ - i

> = 2 cos  IX -  J ]  T̂ COS (/ - j )  X
\ y'=l ; /
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where e,(A,) corresponds to the 1th element of e(A,). However, there are some grounds 

for preferring the exponential spectrum model of Bloomfield (1973):

g(A;x) = exp
f * \
2 E  XjCOSjk

\  j =1
-% < X <> Ti. (12)

Like the stationary AR case, this has exponentially decaying autocorrelations, 

and he showed that (12) was remarkably successful at fitting practical data. This 

expression leads to a neat version of our frequency domain test statistic. In fact,

efk)  =(2cos/A), E =2Iq, $  = ( i^ , . . . ,^ ,  and Y - $  E 1# '  = ^
2 /=0+1

Unlike in the AR model, e(k), and thus ¥  - are free of the nuisance

parameter vector t, and therefore, expression (10) simplifies.

2.4 FINITE SAMPLE PERFORMANCE AND COMPARISON

In this section we examine the finite-sample behaviour of sized-corrected 

versions of Robinson’s (1994c) tests by means of Monte Carlo simulations, and 

compare the results obtained here with those in Section 8 in Robinson (1994c), 

where his tests based on asymptotic critical values were performed and compared 

with a number of leading unit root tests. Robinson (1994c) stresses large-sample 

theory and suggests only large-sample approximate critical values. We have 

considered it convenient in this chapter to attempt a size correction version of his 

tests in order to study more deeply its finite-sample behaviour.

In Table 2.1 we have calculated the empirical size of r in (3) for different 

sample sizes, T = 25, 50, 100, 200 and 500, based on 10,000 replications. In the 

upper part of this table we give the critical values of r when (3=0 is correctly 

assumed, (i.e., yt = xt), while in the lower part, we give the critical values of the test 

statistic with unknown p and zt = (l,t) \ In both cases we take ut as a Gaussian 

white noise process with zero mean and variance 1, generated by the routines 

GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986)2. We 

observe that the empirical distributions are similar in both cases, with a negative 

mean, positively skewed, and with Kurtosis greater than 3, but as we increase the 

sample size, the values approximate to those given by the Normal distribution, with

2 The Fortran codes used in this section require only slight modifications of the 
program described in Appendix 4.3 in Chapter 4.
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the three statistics (mean,skewness and kurtosis), improving with T in both cases. 

We also note in this table that for most of the quantiles, both the lower and the 

upper tail critical values are smaller than those given by the Normal distribution. 

Thus, when testing Hq (1.12) against Ha: 0 < 0, the test statistics based on the 

asymptotic critical values will reject the null more often than those based on the 

size-corrected values; however, when testing (1.12) against Ha: 0 > 0, the test 

statistics based on the asymptotic critical values will not reject the null as often as 

the size-corrected ones.

Tables 2.2-2.9 correspond to Tables 2-9 in Robinson (1994c). In this article, 

Robinson’s (1994c) tests based on asymptotic critical values were performed jointly 

with seven existing tests that had a random walk null hypothesis. We present the 

same results here, adding those of the size-corrected tests based on the empirical 

distributions obtained in Table 2.1.

The null model consists of (1.9); (1) and (2), with p(L) = (1 - L), and the Uj 

in (1) correctly assumed to be white noise. The test denoted SI in this section is a 

test o ff in (3) with [3=0 and p(L;0) = (1 - L)1+0, and the test S2 is the corresponding 

test with unknown (3 and zt = (l,t) \ both based on the asymptotic critical values of 

the Normal distribution; SI* and S2* are the size-corrected versions of SI and S2 

tests respectively. The p and t  tests are due to Fuller (1976) and to Dickey and 

Fuller (1979), and they assume that (3=0 and are designed to be particularly sensitive 

to AR alternatives, p(L;0) = (1 - (1+0)L); Likewise, PT and t T tests of Fuller (1976) 

and Dickey and Fuller (1979) take zt = (l,t)’ in (1.9) but assume that the second 

element of [3 is zero. The p and X tests are due to Schmidt and Phillips (1992) and 

they result from application of a version of the score principle to (1.9); (1.10) and

(2) with p(L;0) = (1 - (1 +0)L), 7̂  = (l,t)’; The F test from Robinson (1993) is an 

exact test under Gaussianity when [3=0 in (1.9) and was shown to be consistent 

against fractional and AR alternatives. For the seven tests directed against AR 

alternatives, finite-sample critical values derived from the tables of Fuller (1976) and 

Schmidt and Phillips (1992) for the p, t, PT, %  p, and T tests, and from the standard 

F tables for the F test, were used. As explained in Robinson (1994c), all these tests 

have asymptotic validity with respect to the same null hypothesis: yt = xt; (1-L)xt = 

ut; ut white noise.

Because each of the tests is motivated by either fractionally differenced or
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AR alternatives, the performances of all tests is evaluated against data generated by 

both types of model. For both the fractional alternative p(L;0) = (1 - L)1+e, and the 

AR alternative p(L;0) = (1 - (1+0)L), the values 0 = 0, ±.05, ±.1, ±.2, ±.3, ±.5, ±.7 

and ±.9 are used, and thus, covering the null unit root model as well as stationary, 

less nonstationary, and more nonstationary fractional alternatives and stationary and 

explosive AR alternatives. We use sample sizes of T = 25, 50, 100 and 200, and 

generate Gaussian series, with 5,000 replications of each case. The finite-sample 

critical values of Fuller (1976) and Schmidt and Phillips (1992) are all apparently 

based on Gaussian series.

Tables 2.2 and 2.3 contain Monte Carlo rejection frequencies for one-sided 

tests against fractional alternatives 0 > 0, with nominal sizes 5% and 1% 

respectively. Tables 2.4 and 2.5 correspond, with AR alternatives. Tables 2.6 and 

2.7 cover fractional, and Tables 2.8 and 2.9 AR alternatives with 0 < 0. Tables 2.2-

2.5 omit the F test, because this test covers only alternatives 0 < 0.

The first thing that we observe in these tables is that the sizes of SI* and S2* 

are closer to the nominal ones than those of SI and S2. This is observed for all 

sample sizes and when directed against both 0 > 0 and 0 < 0. The sizes of SI and 

S2 were too small when directed against 0 > 0, but too large when directed against 

0 < 0. Using the size-corrected versions SI* and S2*, the sizes increase for positive 

0, and decrease for negative 0. This is what we should expect in view of the 

empirical distributions in Table 2.1, where the critical values were smaller than those 

given by the Normal distribution. When directed against 0 > 0, the sizes range 

between 4.5% and 5.1% at the 5% level, and between 0.8% and 1.2% at the 1% 

level; For 0 < 0, they range between 3.9% and 5.2% at 5%, and between 0.5% and 

1% at the 1% level. Results here are competitive with those obtained in the 

remaining tests.

Looking again at Table 2.2, the improvement in size observed in SI* and S2* 

relative to S1 and S2, is associated with some superior rejection frequencies in all 

cases and all sample sizes. These rejection frequencies are also higher for SI* and 

S2* than for the other tests, except in some cases when 0 and T are small. We 

observe that when T = 25 and 0 = .05, the highest rejection frequency is obtained 

for f, with a rejection probability of .090, compared with .073 for SI* and S2*, and 

.028 and .026 for S1 and S2 respectively. Also with T = 25, if 0 = . 1 t  and t  beat
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SI* and S2*, however, if 0 = 0.2, only t  is slightly better, and for all other values of 

0, SI* and S2* give the highest rejection frequencies. With T > 25, SI* and S2* 

outperform the other tests at all values of 0.

Table 2.3 presents a similar picture with higher rejection frequencies for the 

size-corrected tests over the others except when T and 0 are small, with t  and X 

performing slightly better in some cases. The efficiency of SI and S2 in these two 

tables appears to assert itself as well with SI* and S2\ observing higher rejection 

frequencies in SI* and S2* over the others for small departures from the null, 

especially when T is large.

Tables 2.4 and 2.5 correspond to the tests directed against AR alternatives 

and 0 > 0. Again we observe higher rejection frequencies in SI* and S2* relative to 

S1 and S2, though they are smaller than in the remaining tests, which is not at all 

surprising given that Robinson’s (1994c) tests are not efficient with respect to AR 

alternatives. Comparing SI* and S2* with the tests directed against these 

alternatives, we observe in Table 2.4 that when T = 25, SI* and S2* behaves better 

than t T for 0 = .05, and they outperform p and t  for 0 > .2. We also observe that 

when T = 100, SI* and S2* are as good as the others for 0 > 0.3, and when T = 200 

for 0 > .2. Similar results are obtained in Table 2.5, with higher rejection 

frequencies for the size-corrected tests over the non-corrected ones, and competitive 

results with respect to the other tests when T and 0 are large.

Performing the one-sided tests against 0 < 0, (in Tables 2.6-2.9), the sizes of

51 and S2 were too large. Using the size-corrected versions SI* and S2*, the sizes 

decrease, especially when T is large. When T = 25, sizes are now too small, with 

4.1% for SI* and 3.9% for S2* at the 5% level, and 0.6% and 0.5% at the 1% level; 

however, as T increases, they approximate to the nominal ones, and thus, with T > 

50, they range between 4.8% and 5.2% at the 5% level, and between 0.8% and 1.0% 

at the 1% level.

The smaller sizes observed in these tables in SI* and S2* relative to SI and

52 are also associated with smaller rejection frequencies and thus, SI* and S2* in 

Tables 2.6 and 2.7 are beaten not only by SI and S2 but also by the remaining tests 

(especially p, t  and PT) when T is small, even for the fractional data. However as 

T increases, SI, S2, SI* and S2* give higher rejection frequencies than the remaining 

tests, showing again the efficiency property of Robinson’s (1994c) tests, especially
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with T = 200.

Finally in Tables 2.8 and 2.9, we again observe smaller rejection frequencies 

in SI* and S2* relative to SI and S2, which must be due to the smaller size of the 

size-corrected tests. SI* and S2* are beaten in practically all cases by the other tests, 

and this might be due to the lack of efficiency of Robinson’s (1994c) tests when 

directed against AR alternatives, and the lower size of SI* and S2* relative to the 

other tests.

In Table 2.10 we have calculated the empirical distributions for R in (3), 

again with T = 25, 50, 100, 200 and 500, and for the two cases of P = 0 a priori, 

and of unknown P with = (l,t) \ The critical values are similar in both cases, and 

as we should expect, increasing the sample size, the values approximate to those of 

the distribution. We note in this table that at 90% and 95% percentiles, the 

critical values are greater than those given by the %\ distribution. Therefore, when 

testing the null (1.12) against the alternative: Ha: 0 * 0 at the 10% and 5% 

significance level using the asymptotic critical values, the null hypothesis will be 

rejected more often than when using the size-corrected critical values.

Table 2.11 concerns two-sided tests based on SI and SI* (its size-corrected 

version), and the test Tl*, which denotes R in (3) with p = 0 using the empirical 

distribution in Table 2.10, for the same (fractional Gaussian) process used in Tables 

2.2, 2.3, 2.6 and 2.7, but for 0 = 0, ±.05, ±.1, ±.2 and ±.3, with T = 100 and 200 and 

nominal sizes of 10%, 5%, 1% and 0.1%. Results for SI are taken from Table 10 

in Robinson (1994c). Looking at SI, the sizes are closer to the nominal ones than 

in previous tables, though they are too large at 10% and 5%. Using the size- 

corrected versions SI* and Tl* , the sizes are smaller and they approximate even 

more to the nominal ones. They range between 9.8% and 10% at the 10% level; 

between 4.7% and 5.3% at the 5% level; between 0.8% and 1.2% at 1%, and are 

exactly 0.1% at the 0.1% level. Comparing the rejection frequencies in the SI test 

with the size-corrected versions SI* and Tl*, we observe that for nominal sizes of 

10% and 5% level, they are slightly higher in SI* than in SI for 0 > 0, however, for 

0 < 0, SI gives higher rejection probabilities than the size-corrected tests. These 

rejection frequencies decrease in SI* and Tl* with respect to SI for positive 0 but 

increase for negative 0, correcting slightly the bias observed in SI where higher 

rejection frequencies were observed for negative 0 than for positive ones. Using
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smaller nominal sizes, results are not very conclusive: SI is the best when a  =

0.1%, with 0 > 0 and T = 200, and with 0 < 0 and both sample sizes. SI* gives the 

highest rejection frequencies when a  = 1% with 0 > 0 and T = 200 and with 0 < 0 

and T = 100, and also when a  = 0.1%, 0 > 0 and T = 100; Finally Tl* beats SI 

and SI* when a  = 1% with 0 > 0 and T = 100, and with 0 < 0 and T = 200.

As in Robinson (1994c), we also extended the analysis to cover corrections 

for AR autocorrelation in and departures from Gaussianity in i .̂ However, in 

order to save space, we have decided not to include the results here. (Note that in 

doing so, we should also include the empirical distributions of the tests, which are 

different for each of the parameterizations in the AR representation and are also 

different for the different distributional assumptions in ut). Robinson’s (1994c) Table 

11 reports results of the two-sided SI as in Table 10 but replacing Gaussianity by 

a t3-distribution for the white noise ut. His results were competitive with the 

Gaussian ones, with the sizes closer to the nominal ones. Using the size-corrected 

versions SI* and Tl*, our results were similar to those in Robinson (1994c), though 

the sizes were slightly smaller and also the rejection frequencies were smaller than 

in SI.

Attempting AR-corrections to u,, Robinson’s (1994c) Tables 12 and 13 report 

two-sided tests with ut generated as white noise (AR(0)) and AR(2) of form ut = u^ 

- .5 ut_2 + £t, and the white noise £j being generated as N(0,1) and t3. His results 

indicated that the sizes were too large in all cases. Using the size-corrected versions 

of the tests, the sizes were much smaller and thus, closer to the nominal ones. On 

the other hand, because of these smaller sizes, we also obtained smaller rejection 

frequencies in practically all cases.

Finally, we should also mention here that in the empirical work carried out 

in Chapters 3, 4 and 6, we rely on the asymptotic critical values given by the 

Normal ( or %2) distribution, motivated mainly by the different models considered 

in (1.9); the different models used for describing the disturbances i ;̂ and the 

different functions p(L;0) used in (1.10), especially in Chapter 4. Note that for each 

of these cases, the empirical distributions are different. Furthermore, Robinson 

(1994c) stresses the large-sample theory in justifying the tests, and therefore, we 

have considered more convenient for the remaining work the use of the large sample 

approximate critical values rather than the size-corrected ones.
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TABLE 2.1

Critical values on finite samples of r  in (3) with P = 0

PercA T 25 50 100 200 500
0.1% -2.934 -2.985 -2.852 -3.034 -2.963
0.5% -2.677 -2.690 -2.586 -2.560 -2.563
1.0% -2.566 -2.539 -2.406 -2.385 -2.387
2.0% -2.432 -2.314 -2.234 -2.176 -2.155
2.5% -2.392 -2.254 -2.173 -2.106 -2.072
5.0% -2.190 -2.037 -1.933 -1.873 -1.804
10.0% -1.941 -1.764 -1.644 -1.548 -1.403
20.0% -1.618 -1.408 -1.261 -1.167 -1.086
30.0% -1.352 -1.129 -0.985 -0.868 -0.791
40.0% -1.107 -0.890 -0.741 -0.615 -0.543
50.0% -0.865 -0.650 -0.495 -0.374 -0.286
60.0% -0.621 -0.407 -0.238 -0.132 -0.028
70.0% -0.329 -0.122 0.038 0.142 0.252
80.0% 0.008 0.211 0.370 0.477 0.596
90.0% 0.537 0.741 0.876 0.993 1.080
95.0% 1.024 1.171 1.331 1.414 1.502
97.5% 1.440 1.610 1.762 1.784 1.869
98.0% 1.565 1.709 1.879 1.937 1.966
99.0% 1.895 2.104 2.172 2.301 2.275
99.5% 2.268 2.505 2.506 2.661 2.579
99.9% 2.895 3.402 3.316 3.436 3.193

Mean: -0.768 -0.567 -0.424 -0.320 -0.235
Skewness: 0.569 0.518 0.434 0.367 0.266
Kurtosis: 3.145 3.394 3.211 3.298 3.107

Critical values on finite samples of r in (3) with unknown P and zt

wII

PercA T 25 50 100 200 500
0.1% -2.934 -3.036 -2.842 -3.081 -2.967
0.5% -2.697 -2.693 -2.587 -2.557 -2.572
1.0% -2.581 -2.553 -2.425 -2.386 -2.373
2.0% -2.439 -2.313 -2.237 -2.181 -2.153
2.5% -2.380 -2.252 -2.167 -2.113 -2.072
5.0% -2.192 -2.046 -1.929 -1.890 -1.811
10.0% -1.940 -1.756 -1.636 -1.554 -1.483
20.0% -1.620 -1.409 -1.258 -1.157 -1.086
30.0% -1.352 -1.131 -0.979 -0.868 -0.793
40.0% -1.113 -0.891 -0.738 -0.612 -0.540
50.0% -0.869 -0.658 -0.494 -0.370 -0.277
60.0% -0.618 -0.402 -0.241 -0.137 -0.023
70.0% -0.339 -0.118 0.037 0.142 0.256
80.0% 0.015 0.229 0.361 0.472 0.601
90.0% 0.547 0.742 0.876 0.998 1.077
95.0% 1.029 1.172 1.350 1.418 1.495
97.5% 1.442 1.623 1.751 1.789 1.862
98.0% 1.558 1.735 1.853 1.905 1.985
99.0% 1.950 2.097 2.171 2.308 2.272
99.5% 2.242 2.509 2.509 2.674 2.585
99.9% 2.823 3.435 3.381 3.469 3.126

Mean: -0.768 -0.566 -0.421 -0.320 -0.235
Skewness: 0.564 0.521 0.430 0.367 0.266
Kurtosis: 3.114 3.454 3.199 3.326 3.313
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TABLE 2.2

Rejection frequencies for Upper-Tailed 5% Test and Fractional xt.

T = 25

0 SI S2 SI* S2* P t Px tx P

0 .016 .016 .049 .045 .053 .049 .046 .044 .048 .063
.05 .028 .026 .073 .073 .076 .082 .067 .064 .072 .090
.1 .047 .047 .114 .113 .107 .130 .093 .084 .109 .126
.2 .120 .117 .233 .227 .181 .241 .149 .132 .193 .220
.3 .230 .225 .385 377 .265 .362 .227 .192 .306 .335
.5 .516 .511 .662 .657 .424 .574 .379 .306 .544 .578
.7 .772 .775 .871 .870 .563 .703 .524 .393 .735 .763
.9 .909 .916 .949 .953 .662 .785 .633 .465 .859 .873

T = 50

6 SI S2 SI* S2* P f Px t. P

0 .023 .023 .050 .051 .054 .050 .053 .052 .056 .061
.05 .063 .063 .117 .116 .080 .092 .088 .080 .096 .102
.1 .125 .124 .191 .188 .113 .148 .126 .116 .152 .164
.2 .323 .324 .439 .437 .197 .288 .237 .195 .321 .332
.3 .583 .579 .672 .671 .290 .435 .360 .285 .495 .508
.5 .906 .902 .943 .946 .455 .651 .565 .423 .769 .778
.7 .991 .992 .995 .995 .585 .771 .694 .508 .914 .919
.9 .999 1.000 .999 .999 .681 .836 .746 .525 .973 .975

T = 100

6 SI S2 SI* S2* P Px tx P t

0 .030 .030 .049 .046 .049 .050 .046 .046 .052 .057
.05 .100 .101 .144 .141 .086 .111 .092 .087 .109 .116
.1 .233 .232 .322 .312 .140 .187 .156 .138 .199 .209
.2 .631 .628 .703 .700 .240 .358 .309 .244 .442 .454
.3 .897 .896 .931 .930 .338 .516 .483 .361 .670 .679
.5 .998 .997 .999 .999 .498 .715 .718 .513 .915 .920
.7 1.000 1.000 1.000 1.000 .626 .823 .779 .559 .986 .988
.9 1.000 1.000 1.000 1.000 .705 .872 .796 .553 .998 .998

T = 200

0 SI S2 SI* S2* P t Px *x P X

0 .030 .030 .046 .045 .055 .052 .051 .050 .054 .054
.05 .168 .169 .214 .209 .096 .114 .112 .100 .134 .135
.1 .447 .449 .519 .514 .152 .214 .193 .160 .254 .256
.2 .910 .911 .931 .930 .272 .416 .400 .307 .572 .574
.3 .995 .995 .997 .997 .375 .588 .611 .430 .818 .818
.5 1.000 1.000 1.000 1.000 .529 .780 .814 .574 .982 .983
.7 1.000 1.000 1.000 1.000 .639 .866 .838 .580 .999 .999
.9 1.000 1.000 1.000 1.000 .719 .906 .826 .565 1.000 1.000

*: SI* and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 23

Rejection frequencies for Upper-Tailed 1% Test and Fractional xt.

T = 25

6 SI S2 SI* S2* P t Px % P t

0 .004 .003 .012 .009 .011 .009 .008 .008 .010 .014
.05 .009 .010 .019 .018 .017 .019 .013 .013 .017 .022
.1 .015 .016 .035 .033 .024 .039 .020 .019 .029 .039
.2 .051 .050 .099 .091 .048 .108 .042 .041 .069 .089
.3 .124 .120 .193 .182 .077 .213 .076 .074 .143 .166
.5 .374 .362 .460 .446 .153 .441 .171 .164 .350 .385
.7 .652 .644 .736 .729 .239 .610 .270 .254 .573 .604
.9 .840 .847 .880 .880 .317 .717 .366 .336 .743 .771

T = 50

e SI S2 SI* S2* P t Px tx P t

0 .007 .006 .008 .008 .013 .010 .009 .008 .011 .013
.05 .020 .020 .028 .027 .020 .028 .019 .019 .028 .032
.1 .057 .057 .064 .065 .032 .059 .033 .034 .061 .066
.2 .195 .193 .229 .232 .062 .159 .082 .076 .157 .168
.3 .428 .426 .461 .463 .099 .296 .149 .137 .318 .330
.5 .832 .831 .864 .860 .180 .554 .296 .270 .626 .639
.7 .975 .975 .978 .979 .268 .705 .407 .365 .836 .841
.9 .997 .998 .998 .997 .358 .790 .471 .419 .930 .934

T =  100

0 SI S2 SI* S2* P t Px % P t

0 .009 .009 .008 .008 .011 .010 .008 .008 .012 .013
.05 .039 .039 .050 .048 .021 .032 .022 .020 .033 .034
.1 .123 .125 .143 .144 .035 .080 .045 .041 .074 .076
.2 .468 .467 .504 .498 .078 .234 .123 .110 .245 .251
.3 .805 .805 .837 .835 .121 .397 .210 .186 .475 .482
.5 .993 .993 .996 .997 .209 .641 .398 .346 .822 .826
.7 1.000 1.000 1.000 1.000 .292 .773 .498 .429 .954 .955
.9 1.000 1.000 1.000 1.000 .387 .840 .547 .467 .989 .989

T = 200

6 SI S2 SI* S2* P t Px % P f

0 .009 .009 .009 .008 .011 .013 .010 .010 .011 .011
.05 .070 .070 .067 .067 .024 .044 .029 .027 .044 .047
.1 .270 .270 .281 .279 .044 .098 .064 .059 .114 .117
.2 .822 .821 .822 .822 .093 .292 .166 .147 .372 .378
.3 .988 .988 .987 .988 .144 .482 .287 .249 .656 .663
.5 1.000 1.000 1.000 1.000 .234 .725 .504 .409 .945 .946
.7 1.000 1.000 1.000 1.000 .311 .832 .582 .475 .994 .994
.9 1.000 1.000 1.000 1.000 .404 .878 .596 .498 1.000 1.000

*: SI* and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 2.4

Rejection frequencies for Upper-Tailed 5% Test and AR \ .

T = 25

e SI S2 SI* S2* P Px t, P t

0 .016 .016 .049 .045 .053 .049 .046 .044 .048 .063
.05 .014 .015 .045 .046 .105 .123 .047 .044 .046 .060
.i .014 .014 .045 .047 .288 .325 .049 .049 .046 .059
.2 .135 .173 .268 .297 .709 .691 .391 .378 .240 .268
.3 .879 .890 .912 .918 .963 .956 .939 .941 .901 .907
.5 .982 .985 .984 .985 .993 .991 .991 .992 .985 .987
.7 .999 .999 .999 1.000 1.000 .999 1.000 1.000 .999 .999
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T = 50

0 SI S2 SI* S2* P t Px t . P t

0 .023 .023 .050 .051 .054 .050 .053 .052 .056 .061
.05 .022 .022 .050 .048 .202 .251 .049 .048 .047 .052
.1 .232 .247 .334 343 .730 .711 .417 .409 .309 .319
.2 .924 .926 .942 .944 .970 .963 .954 .954 .933 .934
.3 .999 .999 .999 .999 1.000 .999 .999 .999 .999 .999
.5 1.000 1.000 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000
.7 1.000 1.000 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000

T = 100

6 SI S2 SI* S2* P t Px *x P t

0 .030 .030 .049 .046 .049 .050 .046 .046 .052 .057
.05 .087 .091 .122 .121 .602 .594 .211 .208 .144 .153
.1 .937 .937 .944 .944 .972 .968 .961 .963 .945 .946
.2 .999 .999 .999 .999 1.000 1.000 1.000 1.000 1.000 1.000
.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T = 200

0 SI S2 SI* S2* P t Px *x P T

0 .030 .030 .046 .045 .055 .052 .051 .050 .054 .054
.05 .833 .833 .850 .852 .938 .926 .902 .902 .864 .865
.1 .999 .999 .999 .998 1.000 1.000 .999 .999 .999 .999
.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

*: SI* and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 2.5

Rejection frequencies for Upper-Tailed 1 % Test and AR xt.

T = 25

e Si S2 SI* S2* P t Px % P

0 .004 .003 .012 .009 .011 .009 .008 .008 .010 .014
.05 .003 .003 .010 .009 .020 .036 .008 .009 .010 .013
.i .004 .003 .007 .008 .058 .178 .009 .010 .009 .012
.2 .069 .105 .154 .172 .481 .595 .238 .232 .108 .126
.3 .839 .860 .882 .892 .956 .940 .918 .918 .843 .855
.5 .979 .980 .979 .980 .992 .989 .989 .989 .978 .980
.7 .999 .999 .999 .999 1.000 .999 1.000 1.000 .999 .999
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T = 50

6 SI S2 SI* S2* P t Px P I

0 .007 .006 .008 .008 .013 .010 .009 .008 .011 .013
.05 .005 .006 .009 .009 .044 .129 .011 .010 .009 .011
.1 .163 .177 .216 .230 .541 .627 .280 .274 .184 .196
.2 .908 .913 .927 .930 .965 .956 .941 .941 .910 .912
.3 .999 .999 .999 .999 1.000 .999 .999 .999 .999 .999
.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T =  100

0 SI S2 SI* S2* P t Px tx P t

0 .009 .009 .008 .008 .011 .010 .008 .008 .012 .013
.05 .039 .042 .046 .049 .298 .495 .098 .093 .055 .056
.1 .928 .929 .934 .934 .969 .962 .952 .953 .930 .931
.2 .999 .999 .999 .999 1.000 1.000 1.000 1.000 .999 .999
.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000
.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000
.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 1.000

T = 200

0 SI ' S2 SI* S2* P t Px tx P t

0 .009 .009 .009 .008 .011 .013 .010 .010 .011 .011
.05 .807 .808 .812 .812 .922 .910 .869 .869 .821 .822
.1 .999 .999 .999 .998 1.000 .999 .999 .999 .999 .999
.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

*: SI* and S2* are sized-corrected SI and S2 tests respectively.



39

TABLE 2.6

Rejection frequencies for Lower-Tailed 5% Test and Fractional x..

e SI S2 SI*

-.9 .983 .981 .868
-.7 .938 .934 .705
-.5 .819 .816 .485
-.3 .566 .565 .237
-.2 .418 .417 .142
-.1 .279 .275 .073
-.05 .224 .217 .057
0 .175 .173 .041

T = 25

S2* P t Px

.838 1.000 .998 .933

.664 .964 .955 .773

.466 .710 .682 .507

.229 .327 .306 .244

.139 .198 .181 .158

.071 .109 .095 .095

.055 .079 .071 .069

.039 .056 .049 .051

*x P X F

.879 .905 .886 .310

.675 .740 .709 .260

.416 .484 .446 .179

.203 .232 .203 .116

.132 .147 .128 .088

.086 .084 .072 .068

.067 .066 .057 .058

.052 .049 .041 .047

e SI S2 SI* S2* P

-.9 1.000 1.000 .999 .999 1.000
-.7 .998 .998 .989 .986 1.000
-.5 .976 .975 .902 .890 .932
-.3 .763 .761 .551 .536 .496
-.2 .542 .539 .312 .301 .278
-.1 .297 .295 .132 .131 .130
-.05 .196 .195 .082 .075 .085
0 .117 .117 .044 .042 .053

T = 50

t Px % P X F

1.000 1.000 1.000 1.000 1.000 .443
1.000 .997 .991 .989 .986 .376
.925 .888 .840 .866 .853 .254
.484 .479 .420 .461 .439 .147
.268 .260 .221 .252 .237 .108
.125 .120 .114 .114 .108 .071
.081 .081 .083 .077 .070 .059
.051 .054 .057 .048 .043 .051

0 SI S2 SI* S2* P

-.9 1.000 1.000 1.000 1.000 1.000
-.7 1.000 1.000 1.000 1.000 1.000
-.5 1.000 1.000 .999 .999 .996
-.3 .960 .960 .905 .905 .679
-.2 .772 .768 .622 .622 .380
-.1 .387 .387 .245 .250 .158
-.05 .209 .213 .122 .124 .096
0 .097 .097 .052 .052 .049

T = 100

t Px % P X F

1.000 1.000 1.000 1.000 1.000 .594
1.000 1.000 1.000 1.000 1.000 .502
.996 .998 .994 .995 .994 .339
.667 .768 .712 .754 .741 .174
.370 .439 .388 .435 .420 .115
.154 .178 .161 .175 .167 .072
.091 .100 .095 .106 .101 .058
.047 .056 .057 .057 .053 .047

6 SI S2

-.9 1.000 1.000
-.7 1.000 1.000
-.5 1.000 1.000
-.3 1.000 .999
-.2 .959 .958
-.1 .561 .562
-.05 .265 .267
0 .085 .085

SI* S2* P

1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
.998 .998 .820
.920 .918 .496
.432 .423 .199
.179 .171 .108
.051 .048 .048

T = 200

t Px %

1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
.815 .951 .927
.487 .666 .608
.198 .256 .224
.105 .124 .112
.048 .053 .052

P X F

1.000 1.000 .768
1.000 1.000 .672
1.000 1.000 .459
.933 .931 .213
.631 .626 .135
.249 .245 .088
.122 .119 .067
.050 .049 .045

*: SI* and S2* are sized-corrected SI and S2 tests respectively.



40

TABLE 2.7

Rejection frequencies for Lower-Tailed 1% Test and Fractional x..

0 SI S2 SI*

-.9 .793 .788 .604
-.7 .607 .595 .396
-.5 .364 .356 .195
-.3 .156 .152 .072
-.2 .092 .089 .035
-.1 .049 .047 .014
-.05 .035 .034 .009
0 .024 .024 .006

e SI S2 SI*

-.9 .994 .994 .983
-.7 .957 .955 .898
-.5 .761 .756 .614
-.3 .348 .348 .213
-.2 .164 .166 .086
-.1 .059 .057 .028
-.05 .033 .033 .013
0 .018 .017 .008

e SI S2 SI*

-.9 1.000 1.000 1.000
-.7 1.000 1.000 1.000
-.5 .990 .990 .988
-.3 .749 .746 .700
-.2 .384 .381 322
-.1 .101 .101 .083
-.05 .041 .041 .030
0 .015 .015 .010

6 SI S2 SI*

-.9 1.000 1.000 1.000
-.7 1.000 1.000 1.000
-.5 1.000 1.000 1.000
-.3 .984 .985 .985
-.2 .776 .777 .745
-.1 .220 .221 .186
-.05 .067 .067 .057
0 .013 .013 .009

S2* P

T = 25 

t Px

.535 .981 .976 .724
339 .799 .775 .464
.178 .391 .368 .216
.059 .120 .108 .078
.031 .057 .050 .041
.012 .025 .022 .022
.008 .016 .014 .016
.005 .011 .010 .011

S2* P
o10 

<H
IIH

Px

.975 1.000 1.000 .999

.872 .995 .995 .961

.585 .745 .733 .657

.197 .239 .230 .202

.079 .098 .095 .090

.026 .037 .035 .035

.010 .019 .020 .020

.006 .013 .013 .013

T = 100

S2* P t Px

1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
.984 .955 .953 .978
.685 .426 .415 .499
309 .172 .164 .200
.080 .049 .046 .059
.030 .024 .024 .029
.009 .012 .010 .012

T = 200

S2* P t Px

1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
1.000 .999 .998 1.000
.985 .630 .623 .825
.746 .272 .266 .405
.186 .063 .065 .092
.055 .027 .027 .033
.008 .010 .010 .010

*x P f F

.600 .677 .639 .055

.340 .425 .385 .055

.153 .197 .166 .036

.053 .069 .057 .022

.032 .038 .031 .018

.018 .017 .013 .013

.015 .011 .008 .010

.011 .007 .006 .010

% P F

.998 .992 .991 .096

.929 .933 .924 .080

.576 .619 .598 .050

.167 .193 .178 .029

.076 .081 .074 .022

.029 .028 .025 .018

.018 .017 .015 .013

.012 .010 .009 .013

t, P T F

1.000 1.000 1.000 .137
1.000 1.000 1.000 .110
.963 .961 .959 .075
.432 .482 .465 .037
.166 .194 .184 .020
.051 .057 .054 .013
.027 .028 .027 .010
.013 .012 .012 .008

% P t F

1.000 1.000 1.000 .201
1.000 1.000 1.000 .157
1.000 .999 .999 .099
.768 .773 .771 .046
.335 .360 .355 .029
.073 .082 .079 .019
.027 .031 .030 .011
.010 .010 .009 .009

*: SI* and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 2.8

Rejection frequencies for Lower-Tailed 5% Test and AR x..

e SI S2 SI*

-.9 .978 .974 .836
-.7 .703 .694 .328
-.5 .422 .418 .130
-.3 .299 .293 .085
-.2 .210 .211 .052
-.1 .183 .183 .042
-.05 .175 .175 .038
0 .175 .173 .041

0 SI S2 SI*

-.9 1.000 1.000 .999
-.7 .922 .920 .768
-.5 .613 .607 .362
-.3 .393 .390 .188
-.2 .217 .213 .088
-.1 .150 .150 .058
-.05 .124 .125 .047
0 .117 .117 .044

0 SI S2 SI*

-.9 1.000 1.000 1.000
-.7 .997 .997 .991
-.5 .891 .888 .750
-.3 .630 .630 .451
-.2 .285 .284 .153
-.1 .162 .159 .085
-.05 .109 .107 .054
0 .097 .097 .052

e SI S2 SI*

-.9 1.000 1.000 1.000
-.7 1.000 1.000 1.000
-.5 .995 .995 .986
-.3 .899 .895 .823
-.2 .470 .470 359
-.1 .221 .221 .132
-.05 .118 .119 .072
0 .085 .085 .051

S2* P

T = 25

Pt

.803 1.000 .999 .926

.291 .928 .913 .403

.130 .599 .567 .170

.076 .350 .325 .109

.052 .161 .141 .066

.038 .097 .087 .055

.039 .071 .062 .052

.039 .056 .049 .051

S2* P

T = 50 

t Px

.998 1.000 1.000 1.000

.738 1.000 1.000 .933
341 .975 .969 .505
.181 .782 .772 .247
.085 .332 .326 .102
.058 .147 .145 .067
.044 .083 .081 .057
.042 .053 .051 .054

S2* P

T = 100 

t Px

1.000 1.000 1.000 1.000
.989 1.000 1.000 1.000
.745 1.000 1.000 .982
.442 .998 .998 .743
.155 .772 .770 .243
.086 .317 .316 .106
.058 .124 .124 .067
.052 .049 .047 .056

S2* P

T = 200 

t Px

1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
.984 1.000 1.000 1.000
.810 1.000 1.000 1.000
348 .999 .998 .728
.127 .759 .760 .245
.067 .239 .240 .091
.048 .048 .048 .053

*x P F

.863 .901 .881 .309

.303 .412 .370 .231

.128 .173 .145 .181

.085 .099 .084 .155

.061 .064 .054 .108

.054 .055 .045 .083

.053 .050 .041 .066

.052 .049 .041 .047

t, P T F

1.000 1.000 1.000 .449
.883 .931 .924 .350
.410 .539 .516 .265
.194 .270 .247 .212
.092 .101 .092 .152
.065 .063 .057 .114
.058 .050 .046 .077
.057 .048 .043 .051

tx P t F

1.000 1.000 1.000 .595
1.000 1.000 1.000 .462
.959 .983 .980 .366
.642 .783 .770 .309
.192 .277 .264 .220
.092 .115 .106 .164
.065 .068 .063 .099
.057 .057 .053 .047

*x P f F

1.000 1.000 1.000 .768
1.000 1.000 1.000 .629
1.000 1.000 1.000 .511
.999 .997 .997 .421
.625 .765 .876 .313
.191 .271 .266 .218
.073 .090 .089 .133
.052 .050 .049 .045

*: SI’ and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 2.9

Rejection frequencies for Lower-Tailed 1% Test and AR xt.

0 SI S2 SI*

-.9 .756 .746 .552
-.7 .224 .215 .102
-.5 .087 .085 .033
-.3 .051 .048 .017
-.2 .030 .031 .008
-.1 .026 .026 .005
-.05 .024 .024 .006
0 .024 .024 .006

0 SI S2 SI*

-.9 .991 .991 .972
-.7 .566 .562 .405
-.5 .192 .192 .095
-.3 .083 .084 .041
-.2 .033 .034 .014
-.1 .022 .021 .009
-.05 .018 .017 .006
0 .018 .017 .008

0 SI S2 SI*

-.9 1.000 1.000 1.000
-.7 .955 .952 .935
-.5 .514 .511 .447
-.3 .220 .218 .184
-.2 .061 .059 .045
-.1 .027 .027 .018
-.05 .018 .017 .012
0 .015 .015 .010

S2* P

T = 25 

t Px

.478 .989 .984 .693

.084 .601 .568 .143

.028 .207 .186 .044

.017 .090 .078 .022

.008 .029 .027 .013

.005 .018 .015 .012

.005 .014 .011 .010

.005 .011 .010 .011

S2* P

T = 50 

t Px

.958 1.000 1.000 .999

.374 .994 .992 .984

.084 .716 .710 .188

.036 .334 .332 .071

.013 .087 .083 .023

.009 .034 .034 .014

.004 .019 .018 .011

.006 .013 .013 .013

T = 100

S2* P f Px

1.000 1.000 1.000 1.000
.922 1.000 1.000 1.000
.426 .999 .999 .839
.170 .925 .923 .371
.044 .319 .314 .070
.016 .084 .082 .026
.011 .027 .026 .013
.009 .012 .010 .012

% P X F

.563 .659 .611 .056

.087 .137 .116 .045

.027 .039 .031 .040

.015 .020 .016 .032

.011 .009 .007 .022

.011 .007 .006 .016

.011 .007 .005 .013

.011 .007 .006 .010

tx P X F

.998 .993 .992 .099

.577 .679 .658 .075

.133 .208 .191 .055

.050 .076 .066 .042

.017 .023 .021 .029

.011 .013 .011 .025

.010 .011 .010 .015

.012 .010 .009 .013

t, P X F

1.000 1.000 .000 .135
1.000 .997 .997 .093
.746 .851 .840 .074
.285 .419 .401 .066
.050 .080 .075 .046
.019 .027 .025 .035
.013 .016 .015 .020
.013 .012 .012 .008

0 SI S2

-.9 1.000 1.000
-.7 1.000 1.000
-.5 .925 .924
-.3 .587 .587
-.2 .149 .151
-.1 .049 .049
-.05 .021 .021
0 .013 .013

SI* S2* P

1.000 1.000 1.000
1.000 1.000 1.000
.908 .909 1.000
.547 .551 1.000
.135 .138 .924
.036 .037 .323
.016 .018 .059
.009 .008 .010

T = 200

X Px t,

1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 .986 .963
.922 .361 .261
.323 .068 .045
.057 .020 .016
.010 .010 .010

P X F

1.000 1.000 .199
1.000 1.000 .140
1.000 1.000 .109
.970 .968 .087
.386 .379 .072
.075 .071 .045
.019 .018 .027
.010 .009 .009

*: SI* and S2* are sized-corrected SI and S2 tests respectively.
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TABLE 2.10

Finite sample critical values of R in (3) with P = 0

PercA T 25 50 100 200 500
0.001% 6.47E6 1.57E6 5.95E6 2.62E6 2.77E6
0.005% 1.03E4 9.10E5 7.23E5 3.48E5 5.84E5
0.01% 3.88E4 2.64E4 2.34E4 1.51E4 2.05E4
0.02% 0.001 0.001 7.71E4 6.76E4 7.71E4
0.025% 0.002 0.001 0.001 9.81E4 0.001
0.05% 0.009 0.006 0.005 0.004 0.004
0.1% 0.038 0.026 0.020 0.018 0.018
0.2% 0.155 0.112 0.086 0.076 0.072
0.25% 0.242 0.177 0.138 0.117 0.118
0.3% 0.361 0.262 0.200 0.172 0.172
0.5% 0.988 0.731 0.607 0.532 0.517
0.7% 2.353 1.552 1.344 1.228 1.172
0.75% 2.762 1.883 1.629 1.498 1.428
0.8% 2.900 2.268 1.983 1.832 1.760
0.9% 3.900 3.416 3.153 2.969 2.828
0.95% 4.976 4.428 4.234 4.089 3.953
0.975% 5.847 5.491 5.190 5.093 5.139
0.98% 6.093 5.957 5.546 5.564 5.459
0.99% 6.835 7.102 6.588 6.753 6.602
0.995% 7.523 8.001 7.577 8.290 7.989
0.999% 9.244 11.578 11.039 11.935 10.293

Mean: 1.553 1.302 1.164 1.099 1.061

Finite sample critical values of R in (3) with unknown P and zt » (M )’

PercA T 25 50 100 200 500
0.001% 4.19E6 1.93E6 6.41E6 1.71E6 6.94E7
0.005% 9.09E5 6.77E5 9.80E5 4.82E5 321E5
0.01% 4.66E4 2.34E4 2.57E4 1.99E4 1.66E4
0.02% 0.002 9.24E4 9.00E4 7.65E4 6.80E4
0.025% 0.003 0.001 0.001 0.001 0.001
0.05% 0.011 0.006 0.005 0.004 0.004
0.1% 0.040 0.028 0.020 0.019 0.017
0.2% 0.162 0.120 0.084 0.075 0.071
0.25% 0.250 0.175 0.133 0.117 0.114
0.3% 0.359 0.255 0.197 0.173 0.171
0.5% 0.997 0.734 0.599 0.529 0.515
0.7% 2.015 1.562 1.327 1.231 1.173
0.75% 2.370 1.881 1.624 1.485 1.422
0.8% 2.782 2.264 1.965 1.833 1.749
0.9% 3.922 3.405 3.110 2.987 2.824
0.95% 4.950 4.512 4.246 4.096 4.007
0.975% 5.800 5.495 5.253 5.146 5.120
0.98% 6.110 5.972 5.558 5.567 5.439
0.99% 6.938 6.932 6.491 6.680 6.622
0.995% 7.551 8.023 7.554 8.334 8.074
0.999% 9.114 11.804 11.436 12.061 10.175

Mean: 1.554 1.305 1.158 1.101 1.061
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TABLE 2.11

Rejection frequencies of Two-Sided SI and SI*, and Tl* tests with Gaussian ut.

Two-sided SI test

Size 10% 5% 1% .1%
T 100 200 100 200 100 200 100 200

-.3 .960 1.000 .904 .997 .581 .963 .116 .710
-.2 .772 .959 .609 .905 .236 .640 .019 .200
-.1 .387 .561 .231 .395 .048 .130 .002 .013
-.05 .215 .268 .112 .154 .018 .033 .001 .001
0 .127 .115 .063 .057 .011 .012 .001 .001
.05 .140 .186 .084 .125 .028 .050 .009 .016
.1 .249 .450 .117 .356 .096 .219 .038 .108
.2 .632 .910 .555 .872 .407 .783 .259 .650
.3 .897 .995 .859 .992 .767 .983 .638 .959

Two-sided SI* test

Size 10% 5% 1% .1%
T 100 200 100 200 100 200 100 200

-.3 .907 .998 .822 .995 .580 .986 318 .696
-.2 .627 .928 .477 .864 .225 .652 .079 .183
-.1 .242 .442 .147 .320 .049 .136 .010 .011
-.05 .127 .191 .065 .118 .013 .036 .012 .002
0 .098 .099 .053 .051 .012 .009 .001 .001
.05 .150 .229 .083 .148 .028 .044 .006 .011
.1 303 .522 .203 .416 .091 .223 .026 .098
.2 .699 .934 .595 .899 .431 .765 .231 .584
.3 .928 .998 .878 .996 .777 .982 .594 .938

Tl* test
Size 10% 5% 1% .1%
T 100 200 100 200 100 200 100 200

-3  .942 .999 .869 .997 .592 .962 .103 .596
-.2 .710 .952 .554 .891 .234 .634 .015 .121
-.1 310 .517 .190 362 .053 .126 .002 .007
-.05 .168 .247 .089 .141 .014 .032 .002 .000
0 .097 .100 .052 .047 .011 .008 .001 .001
.05 .100 .168 .061 .116 .025 .050 .009 .013
.1 .208 .434 .155 .360 .086 .234 .034 .107
.2 .593 .907 .528 .865 .417 .776 .259 .605
3  .876 .996 .839 .993 .766 .983 .629 .946

*: SI* and Tl* are sized-corrected SI and Tl tests respectively.
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FRACTIONAL INTEGRATION IN MACROECONOMIC TIME 

SERIES

In this chapter we use Robinson’s (1994c) tests described in Chapter 2 for 

testing fractional integration in macroeconomic time series when the root is located 

at zero frequency. We will apply a particular form of these tests to an extended 

version of the fourteen macroeconomic variables used by Nelson and Plosser (1982). 

A reduced version of this chapter is Gil-Alana and Robinson (1997).

3.1 INTRODUCTION

Specialized members of fractionally integrated stochastic processes play a 

considerable role in modelling macroeconomic behaviour. For the purpose of the 

present chapter, we define an 1(d) process xt, t = 0,±1,..., as (1.1) and (2.2). The 

macroeconometric literature stresses the cases d = 0 and d = 1, and much 

controversy in macroeconomics has revolved around the question of the suitability 

of 1(1) models, also termed unit root or difference-stationary models, for describing 

raw time series. These models are in the class of so-called nonstationary stochastic 

trend models, which typically imply that the mean and variance increase without 

bound over time, the precision of the forecast error is unbounded, and the effect of 

shocks persists. Another approach to modelling nonstationarity consists of so-called 

trend-stationary models, where the raw series is described as an 1(0) process plus a 

deterministic trend (often a linear function of time). Here, the mean of the series is 

described by the trend function, the variance of the forecast errors remains finite, and 

shocks have only a transitory effect. The issue of stochastic versus deterministic 

trend models has considerable implications for our understanding of the economy, 

and economic planning. In particular, real GNP having a unit root or stochastic 

trend supports the real business cycle hypothesis, since it is widely accepted that 

shocks that result in permanent increases in the level of real GNP can only plausibly 

be interpreted as permanent productivity improvements. In the context of stochastic 

trends, any shock to the economic system will have a permanent effect, so a policy 

action will be required to bring the variable back to its original long term projection. 

On the other hand, in trend-stationary models, fluctuations will be transitory and
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therefore there exists less need for policy action, since the series will in any case 

return to its trend sometime in the future.

Unit roots, and linear time trends, each constitute extremely specialized 

models for nonstationarity, but each has the advantage of conceptual and 

computational simplicity, and they are naturally thought of as rival models because 

a unit root without or with a drift implies a constant or linear trend function, the 

distinction then being in the disturbance terms. The appropriate treatment of trends 

in economic time series is important. There is evidence that removal of an estimated 

(typically linear) deterministic trend from time series that are in fact integrated can 

lead to spurious cyclical behaviour in the detrended series. Chan et al. (1977) 

studied both inappropriate detrending of integrated series and inappropriate 

differencing of trending series, and showed that the former produced spurious 

variation in the detrended series, while the latter produced spurious variation in the 

differenced series at high frequencies. These results have been amplified by Nelson 

and Kang (1981, 1984) and Durlauf and Phillips (1988).

Despite the interest aroused in unit root models by Box and Jenkins (1970) 

and Dickey and Fuller (1979), the deterministic trend approach tended to prevail in 

macroeconomics until Nelson and Plosser (1982) reported strong evidence of unit 

roots in U.S. historical annual time series. They considered fourteen macroeconomic 

series, starting from 1860 through 1909 and ending in 1970, analysing the logged 

series in all but one of these cases. Let yt, t = 1,2,... be the series to be studied. The 

unit root model tested by Nelson and Plosser (1982) was essentially

in which (j) is a k-th. degree polynomial, all of whose zeroes lie outside the unit 

circle and £t is a white noise sequence. In the terminology of Box and Jenkins 

(1970), (1) and (2) constitute an ARIMA(k,l,0) model, with drift when a  & 0. 

Nelson and Plosser (1982) nested (1) in

(1 -  L)yt = a + ue t = 1,2,..., (1)

where

<!>(£)«, = 6,, t = 1,2,..., (2)

( l - p ^ ) y ,  = P + Y t + Up t = 1,2,... (3)

Thus (1) corresponds to the null hypothesis 

Ha: p = 1 and y = 0 (4)
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in (3), whereas | p | < 1 corresponds to a (linear) trend-stationary model. We can 

impose the same initial condition on y0 in (1) and (3), on taking a  = p + y. For 

various k in (2), Nelson and Plosser (1982) tested for a unit root, using tests of 

Dickey and Fuller (1979), Fuller (1976). These tests, based on t-ratios, are not 

approximately t-distributed under the null, but Dickey and Fuller tabulated the null 

distribution. The tests failed to reject the unit root null (1) in all series except 

unemployment rate.

The paper of Nelson and Plosser (1982) has led to much subsequent 

research. Some of it has involved applying similar methodology to Nelson and 

Plosser’s (1982) to other macroeconomic series, for example non-U.S. series, and 

some to criticism of their methodology and application of modified or alternative 

approaches. We attempt only a brief and partial summary of this literature.

Starting with the same model as Nelson and Plosser (1982), Stock (1991) 

provided asymptotic confidence intervals for the largest autoregressive root when this 

root is close to one, motivated by concern that reporting only test outcomes or point 

estimates fails to convey adequate information about sample uncertainty or the range 

of models consistent with the data. When applied to the Nelson and Plosser (1982) 

data set, his main conclusion was that the confidence intervals were typically wide, 

containing p = 1 for all series except unemployment and bond yield, but typically 

also values significantly different from one. Another theme has involved the 

replacement of (2) by alternative or more general models for the stationary 

disturbance ut. The tests used by Nelson and Plosser (1982) lose validity if ^  is not 

autoregressive (AR), as remarked by Schwert (1987) who found that Dickey-Fuller 

critical values can be misleading even for large sample sizes in case of a mixed 

ARIMA process. He applied tests of Said and Dickey (1984, 1985) to monthly and 

quarterly series based on a mixed autoregressive moving average (ARMA) model for 

ut with positive moving average order. (These tests approximate the ARMA by an 

AR.) Also Schwert (1987), Stock and Watson (1986) and Perron (1988) employed 

tests of Phillips (1987), Phillips and Perron (1988) which, more generally, are valid 

in case of nonparametric autocorrelation; these tests employ a nonparametric estimate 

of the spectral density of ut at zero frequency, for example a weighted 

autocovariance estimate. All these authors obtained results very similar to those 

obtained by Nelson and Plosser (1982). Choi (1990) dealt with disturbance
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autocorrelation using feasible generalized least squares, coming to rather different 

conclusions.

Kwiatkowski et al. (1992) observed that taking the null hypothesis to be 1(1), 

rather than 1(0), might itself have led to a bias in favour of the unit root hypothesis; 

they proposed an 1(0) test which formulates the null as a zero variance in a random 

walk, and applied it to the Nelson and Plosser (1982) data. They concluded that for 

many of these series the hypothesis of trend-stationarity could not be rejected. In 

the same line, Leyboume and McCabe (1994) proposed a similar test for a unit root, 

where the null was an AR(k) process and the alternative was an integrated ARMA 

(ARIMA) model with AR order k and unit MA order. Their test differs from that 

of Kwiatkowski et al. (1992) in its treatment of autocorrelation under the null 

hypothesis, its critical values appearing more robust to certain forms of 

autocorrelation.

Campbell and Mankiw (1987) and Cochrane (1988) studied the problem in 

terms of measures of persistence in macroeconomic series. Campbell and Mankiw 

(1987) considered the sum of the Wold decomposition weights for the differenced 

series, which will be zero under trend-stationarity, and estimated this using ARIMA 

models and nonparametric spectral methods. Their analysis suggested that shocks 

in U.S. GNP are largely permanent, consistent with the stochastic differencing 

advocated by Nelson and Plosser (1982). Cochrane (1988) proposed a nonparametric 

variance ratio statistic and came to empirically different conclusions. Other 

measures of persistence also suggested by Cochrane (1987, 1988) are based on the 

spectral density of the differenced series at zero frequency, but Quah (1992) argued 

that such measures did not identify the magnitude of the permanent component, 

unless this is a random walk.

Related work has been done by Christiano and Eichenbaum (1990). The tests 

referred to so far are motivated by their asymptotic statistical properties, but 

Bhargava (1990) applied tests of Bhargava (1986) with finite sample optimality 

properties to test for a unit root in quarterly U.S. GNP, finding that it is the inability 

to capture the complex deterministic trend component that can cause non-rejection. 

Bayesian procedures have also been employed. Sims (1988) and Sims and Uhlig 

(1991) used Bayesian arguments to criticize classical unit root testing methodology 

in abstract. Also DeJong and Whiteman (1989, 1991, for example) conducted
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empirical research with flat-prior Bayesian techniques and challenged unit root 

findings in many cases, including Nelson and Plosser’s (1982) series. Schotman and 

Van Dijk (1991) analyzed from a Bayesian viewpoint the random walk hypothesis 

for real exchange rates, and came to different conclusions from those reached by the 

classical tests. However Phillips (1991), using objective ignorance priors rather than 

flat priors, obtained results closely related to those obtained by the classical methods: 

seven of Nelson and Plosser’s (1982) series showed evidence of stochastic trends. 

Phillips (1991) found that flat priors on the AR coefficients were informative, 

contrary to their apparent intent, and unit and explosive roots were downweighted 

in the posterior distribution. Among other authors working with Bayesian 

procedures, DeJong (1992) and Zivot and Phillips (1994) showed respectively the 

importance of choice of prior in distinguishing between difference- and trend- 

stationary, and trend determination with the possibility of structural breaks.

In fact, the implications of structural change on unit root tests which take no 

account of this possibility has itself been a major focus of attention since Perron 

(1989, 1993) found that the 1929 crash and the 1973 oil price shock are a cause of 

non-rejection of the unit root hypothesis, and that when these are taken into account, 

a deterministic trend model is preferable. This question has been pursued by authors 

such as Christiano (1992), Krol (1992), Serletis (1992), Demery and Duck (1992), 

Mills (1994) and Ben-David and Papell (1995), the first author arguing that the date 

of the break should be treated as unknown, and suggesting that tests for a structural 

break are themselves biased in favour of non-rejection, and by means of tests based 

on bootstrap critical values, coming to different conclusions from Perron (1989). 

Zivot and Andrews (1992) allowed the structural break to be endogenous, finding 

less conclusive evidence against unit roots than did Perron (1989). Stock (1994) 

applied a Bayesian procedure that consistently classifies the stochastic component 

of a time series as 1(1) or 1(0), applying it to Nelson and Plosser’s (1982) data with 

both linear detrending and piecewise linear detrending, supporting their conclusions 

in the former, but not the latter, case.

There has been a growing literature which studies the source of 

nonstationarity in macroeconomic series in terms of fractionally differenced time 

series. We can replace the alternative (3) by 

(1 ~L)dyt = p + y t  + ut, t = 1,2,... (5)
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so (1) results when d = 1, y = 0. On the other hand, if p = y = 0, if u, is an 1(0) 

series, and if 0 < d < 1/2, then yt is a covariance stationary 1(d) series, having 

autocovariances which decay much more slowly than those of an ARIMA process, 

in fact so slowly as to be non-summable; thus, if we first-difference yt, the unit root 

null corresponds to d = 0, but the close alternatives are very different from those in

(3). Models such as (5) provide a type of flexibility in modelling low frequency 

dynamics not achieved by non-fractional ARIMA models. In empirical applications, 

Diebold and Rudebusch (1989), Haubrich and Lo (1989) and Sowell (1992b) 

obtained estimates and tests using nonparametric and parametric methods based on 

differenced quarterly data, while Cheung and Lai (1992) appear to have estimated 

d from undifferenced data. Sowell’s (1992b) model nested both a deterministic trend 

and a unit root with drift, neither being rejected as a model for postwar US quarterly 

real GNP. Hauser et al. (1992) and Mills (1992) have discussed the relevance of 

fractional models in measuring persistence, while Koop (1991a) proposed a Bayesian 

fractional approach.

Conspicuous features of many of the methods used in the empirical work 

described above, and of the bulk of all available methods for testing for unit roots 

(for a review see Diebold and Nerlove, 1989) are the nonstandard nature of the null 

asymptotic distributions which are involved, and the absence of Pitman efficiency 

theory. Many of these tests can be viewed as resulting from implementation of the 

Wald, likelihood ratio (LR), or Lagrange multiplier (LM) rules. Such rules are 

frequently motivated by the desirable properties of a null chi-squared asymptotic 

distribution, and Pitman efficiency, but such properties are not automatic, rather 

depending on what might be called a degree of "smoothness" in the model across 

parameters of interest, in the sense that limit distributions do not change in an abrupt 

way with small changes in the parameters. They do not hold in case of unit root 

tests against AR alternatives such as (3) - as the work of Dickey and Fuller (1979) 

and numerous subsequent authors indicates, the null asymptotic distribution is 

nonstandard, and while local alternatives can be considered this does not seem to 

lead here to a neat optimality theory (though Elliott et al. (1996) show how the tests 

can be improved). This is associated with the radically variable long-run properties 

of AR processes around the unit root. Under (3), with, for simplicity, p = y  = 0 and 

ut Gaussian white noise, for |p | > 1 is explosive, for |p | < 1 ut is covariance
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and strictly stationary and is 1(0) (indeed strongly mixing with exponentially 

decaying mixing numbers), and for p = 1 it is nonstationary but non-explosive. 

Some of the other procedures that have been used in unit root testing are not derived 

by the Wald, LR, or LM rules, but many of these seem, therefore, if anything more 

ad hoc.

The present chapter applies to an extended version of the data set used by 

Nelson and Plosser (1982), and uses a particular form of Robinson’s (1994c) tests 

for testing unit roots and other nonstationary hypotheses when the root is located at 

zero frequency. As mentioned in Chapter 2, the tests do possess the standard 

properties of efficiency and have a null asymptotic chi-squared distribution. This is 

due to the fact that they are directed against fractional alternatives, which turn out 

to be a "smoother" class than the AR ones. Salient features of the tests, when 

compared with those directed against AR alternatives, are described in the following 

section. The empirical work is in Section 3, and Section 4 contains some concluding 

comments. The FORTRAN codes used to obtain the tests in this chapter are given 

in an appendix at the end of Chapter 4.

3.2 L.M. TESTS AGAINST FRACTIONAL ALTERNATIVES

Despite the extent to which it has been stressed in the literature, the AR 

dynamics in (3) is merely one out of any number of ways of nesting the unit root 

(1). The literature on long memory or fractional processes, which is of quite long 

standing and has become rather extensive of late suggests a rival class of 

alternatives, the 1(d) class with fractional d, as defined in (1.1) and (2.2). Following 

discussions of Bhargava (1986), Schmidt and Phillips (1992) of parameterization of 

unit root models, let us first take (1.9) where, following Robinson (1994c), xt is an 

1(d) process given as in (1.1) and (2.2). (1.1) can be compared to the AR class

advocated by Bhargava (1986) and others in the regression setting (1.9). Trivially

(1.1) and (6) give an 1(0) Xj when d = 0 and p = 0, respectively, while the 1(1), or 

unit root, hypothesis corresponds to

( l - p  L)X' = «t> t = 1,2,... (6)

H0: d  = 1 (7)

in (1.1) and
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Ha: p = 1 (8)

in (6). Fractional and AR departures from (7) and (8) have very different long run 

implications. In (1.1), xt is nonstationary but non-explosive for all d > 1/2. As d 

increases beyond 1/2 and through 1, can be viewed as becoming "more 

nonstationary", but it does so gradually, unlike in case of (6) around (8). The 

dramatic long-run change in (6) around p = 1 has the attractive implication that 

rejection of (8) can be interpreted as evidence of either stationarity or explosivity. 

However, rejection of the null does not necessarily warrant acceptance of any 

particular alternative, and even when unit root tests are derived by either the Wald, 

LR or LM criteria against AR alternatives, they can still be expected to be consistent 

against many of the numerous other possible types of departure (see Robinson 

(1993)). Tests against (7), proposed by Robinson (1994c), can at the very least be 

regarded as a useful diagnostic tool to supplement tests directed against such 

alternatives as AR ones.

There is also interest in other hypotheses within the class (1.1) such as d = 

2, (which is also in the class of tests against AR alternatives, in this case AR(2) 

ones, see eg. Johansen, 1992). Robinson’s (1994c) approach to deriving tests (via 

the LM criterion) against (7) applies equally to any real null hypothesized value of 

d, and the same, standard, null and local limit distribution theory obtains. (The 1(d) 

class comprises many stationary, nonstationary, invertible and non-invertible 

processes.) This is in sharp contrast to asymptotic theory for statistics directed 

against AR alternatives, where, for example, different null theory obtains for 1(2) 

than for 1(1). Often when we construct a test of a nonstationary hypothesis against 

AR alternatives we have to contemplate the possible occurrence of a somewhat new, 

nonstandard, null limit distribution, the approximation of which may require a new 

piece of numerical work. As well as any integer, the null d can be fractional, for 

example d = 1/2, which is of interest in that it represents the boundary between 

stationarity and nonstationarity in the 1(d) class. It may be that the immense 

econometric stress on so specialized a form of nonstationarity as unit root behaviour 

owes something to the even more long-standing popularity of stationary AR models, 

and that this behaviour deserves to be less at the forefront when other classes of 

model are contemplated. Thus, in the present chapter we report also tests of other
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hypothesized values of d. We could also test for null stationary d values, indeed 

Robinson (1991) earlier proposed analogous tests of d = 0.

Observing {(yt,zt),t=l,2,...T} in (1.9); (1.10); and (2.2), with 

p(L;0) = (1 - L)d+e (9)

we want to test the null hypothesis (1.12) for a given real number d. We make use 

of the test statistic r in (2.9), which includes r in (2.3) as a particular case with g =

1. In Chapter 2 we showed that

r -+d AT(0,1) as T -  (10)

and thus, an approximate one-sided 100a%-level of (1.12) against alternatives

0 > 0 (11)

is given by the rule:

Reject HQ if r > za (12)

where the probability that a standard normal variate exceeds za is a . Conversely, 

an approximate one sided 100a%-level test of (1.12) against alternatives 

Hy 0 < 0 (13)

is given by the rule:

Reject H0 if r < - za . (14)

As mentioned in the previous chapter, these tests will be efficient, in the 

Pitman sense that against local alternatives, r has an asymptotic normal distribution 

with variance 1 and mean which cannot (when is Gaussian) be exceeded in 

absolute value by that of any rival regular statistic. Of course, this efficiency 

property holds only in respect of fractional alternatives, and not AR alternatives, for 

example. We believe that as in other standard large-sample testing situations, Wald 

and LR test statistics against fractional alternatives will have the same null and local 

limit theory as our LM tests (unlike in case of AR alternatives). Sowell (1992b) 

employed essentially such a Wald testing procedure. Wald and LR tests require an 

efficient estimate of d, and while such estimates can be obtained, the LM tests seem 

computationally more attractive. As usual, the LM, Wald and LR tests will have 

differing finite sample properties. However, as mentioned in Chapter 2, we use the 

asymptotical critical values given by the Normal distribution, instead of the finite- 

sample critical values obtained in that chapter. The reason for this is mainly because
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Robinson’s (1994c) tests allow a great variety of model specifications, each with a 

different empirical distribution in finite samples. As specified below, the model will 

allow different regressors, different models for the disturbances ut, and in Chapter 

4, we will also allow different functions p(L;0) in (1.10), each with a different 

empirical distribution. Thus, we have decided to use the large-sample approximate 

critical values, rather than the size-corrected ones.

3.3 EMPIRICAL RESULTS

The extended version of the annual data set of fourteen U.S. macroeconomic 

variables analyzed by Nelson and Plosser (1982) ends in 1988; as with their data, 

the starting date is 1860 for consumer price index and industrial production; 1869 

for velocity; 1871 for stock prices; 1889 for GNP deflator and money stock; 1890 

for employment and unemployment rate; 1900 for bond yield, real wages and 

wages; and 1909 for nominal and real GNP and GNP per capita. As in Nelson and 

Plosser (1982), all the series except the bond yield are transformed to natural 

logarithms. Plots of the series are given in Figure 3.1 and we observe that all except 

unemployment and velocity increase over the sample period, with two possible 

structural breaks due to the 1929 crash and World War II in 1945.1 Figure 3.2 

contains plots of sample autocorrelations and Figure 3.3 of estimates of the spectral 

density function2, observing in all except unemployment a slow decay in the former 

and a peak around zero frequency in the latter, suggesting nonstationary or at least 

fractionally integrated behaviour. The first fourteen sample autocorrelations for each 

series are plotted in Table 3.1, while the autocorrelations of the first differences are 

plotted in Table 3.2. Qualitatively, these results are similar to those in Tables 2 and 

3 of Nelson and Plosser (1982): in Table 3.1, except for unemployment the

autocorrelations start at around 0.96 and then decay slowly, which could be 

consistent even with the simple random walk hypothesis, whereas in Table 3.2 we 

still see significant autocorrelations, especially at lag 1, with also some apparent slow 

decay and/or oscillation in some cases, which could be indicative of fractional

1 The presence of a possible structural break on the data will be studied in 
Appendix 3.1 at the end of the chapter.

2 They are estimates of the standardized spectral density function, using 
Barlett, Tukey and Parzen lag windows of size T-l.
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integration of greater than or less than a unit root.

Denoting any of the series yt, we employ throughout the model (1.9); (1.10);

(2.2) and (9) with zt = ( l,t) \ t > 1, zt = (0,0)’. Thus, under H0 (1.12),

y t = P i + P21 + xt> 1 = ( 15)
(1 - V f x ,  = «„ t = 1,2,..., (16)

and we treat separately the cases Pj = P2 = 0 a priori. unknown and p2 = 0 a

priori, and (plf p2) unknown. We will model the 1(0) process ut to be both white 

noise and to have parametric autocorrelation. Our findings can be briefly 

summarized as follows. When u, is white noise, the unit root null is seldom rejected, 

but a greater degree of integration, d, is sometimes more plausible. When Uj is AR, 

the tests are suggestive of smaller d’s. When ut follows the Bloomfield (1973) 

exponential model (2.12) the range of plausible d-values tends to be narrowed for 

any given series, though the plausibility region varies significantly across series.

We start with the assumption that Uj in (16) is white noise. Thus when d = 

1, for example, the differences (1 - L)yt behave, for t > 1, like a random walk when 

P2 = 0, and a random walk with drift when p2 ^  0. However we report test statistics 

not merely for the case of d = 1 in (16) but for d = 0.50 (0.25) 2.25, thus including

also a test for stationarity (d = 0.5) and for 1(2) (d = 2), as well as other possibilities.

The test statistic reported in Table 3.3 (and also in Tables 3.9-3.14) is the 

one-sided one given by r in (2.9), so that significantly positive values of this, see 

(12), are consistent with (11), whereas significantly negative ones, see (14), are 

consistent with (13). A notable feature of Table 3.3 (i), in which is taken to be 

white noise (when the form of r significantly simplifies) and pt = p2 = 0 a priori, is 

the fact that we cannot reject the unit root hypothesis in any of them, while in three 

(real GNP, real wages and money stock) we cannot reject the null when d = 0.5 or 

d = 0.75. However, in each of these three series, and in the GNP deflator and 

wages, we also observe some lack of monotonic decrease of r as d increases, for the 

smaller values of d. Such monotonicity is a characteristic of any reasonable statistic, 

given correct specification and adequate sample size, because, for example, we 

would wish that if (1.12) is rejected against (11) when d = 0.75, an even more 

significant result in this direction would be obtained when d = 0.5. However in the 

event of misspecification (which in this specialized model can be due to a departure
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necessarily to be expected: frequently misspecification inflates both numerator and 

denominator of r, to varying degrees, and thus affects r in a complicated way. 

Computing r for a range of d values is thus useful in revealing possible 

misspecification, though monotonicity is by no means necessarily strong evidence 

of correct specification. Looking at the nine series where there is monotonicity in 

r in Table 3.3 (i), industrial production and unemployment rate are consistent with 

d = 0.75, while bond yield is the only one in which we cannot reject the null with 

d = 1.25. The departures from monotonicity in Table 3.3 (i) are nowhere so great 

as to result in contradictory verdicts of tests.

Tables 3.3 (ii) and (iii) give results with, respectively, P2 = 0 a priori (no time 

trend in the undifferenced regression), and both pj and p2 unrestricted, still with 

white noise ut. In every case in both tables, r is monotonic, and moreover, while 

there are sometimes large differences in the values of r across Tables 3.3 (ii) and 

(iii) for the same series/d combination, the conclusions suggested by both seem very 

similar, that on the whole the extreme nonstochastic trends are inappropriate. The 

most nonstationary series seem to be the consumer price index and money stock, 

where d > 1.5 is suggested and d = 1 is rejected. We also reject the unit root 

hypothesis in the GNP deflator, nominal GNP and wage series, against more 

nonstationary alternatives. Notice that these five series are a subset of the ones in 

which the lag-1 autocorrelation was significant in Table 3.2, so the lack of allowance 

for even 1(0) autocorrelation in ut could be the cause of rejection. The other results 

could all be consistent with a unit root. The results here are in line with those of 

DeJong et al. (1992) who did not reject the unit root hypothesis in most series when 

ignoring the possibility of disturbance autocorrelation. In our case, most of the 

series could also be fractionally integrated for some d > 1, except for industrial 

production and unemployment rate; these are the only series in which we cannot 

reject the null with d = 0.75 (throughout Table 3.3).

In Table 3.4 we report results of the tests for the same null and alternative 

hypotheses as in Table 3.3, but using the time domain version. Robinson (1994c) 

shows that the one-sided test statistic for this case of white noise Ut is
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where

and ut as described in Chapter 2. It is known that in finite samples the time and 

frequency domain versions of the tests might differ substantially, however, looking 

at Table 3.4 we see that though the values differ analytically in some cases, 

qualitatively the same conclusions hold, with non-rejections occurring practically at 

the same values of d in both tables, especially when we include an intercept or a 

linear time trend in the model.

In Table 3.5 we report sample autocorrelations of estimates of \  in (15) and 

(16), obtained by selecting, for each series, the value of d which produces the most 

insignificant r in Table 3.3 (iii), using the OLS estimate of pj and p2 based on that 

differenced model. While the autocorrelations are generally lower than those of 

Table 3.1, and indicate a somewhat faster rate of decay, they are again significant 

and persistent. In Table 3.6 we report sample autocorrelations q of the d differences 

of the estimated xt used in Table 3.5. Notice that for nine of the series the r,’s are 

smaller in Table 3.6 than in Table 3.2, often much smaller, while four are the same; 

for r13, seven are smaller and six are the same.

The bond yield is the only unlogged series (as in Nelson and Plosser, (1982)), 

but we also computed the tests in both domains for the logged bond yield, (in Table 

3.7), and there was no qualitative change; in both cases (and across Tables 3.3 and 

3.4 ((i)-(iii)) there was similar evidence of somewhat greater than unit root 

integration.

In view of Tables 3.3 and 3.4 ((ii) and (iii)) there is some interest in a joint

test for

This possibility is not addressed by Robinson (1994c), but we can derive an LM test 

of (18) against the alternatives,

as follows. To be slightly more general, consider the regression model (1.9) with 

the vector partitions zt = (zAt’,z P = (Pa\P bT ,  and we want to test Hq: 0 = 0 and 

pB = Pbo- Then an LM statistic may be shown to be r2 plus

Ha: 0 = 0  and P2 = 0. (18)

Hy 0 / 0  or P2 /  0, (19)



58

T f T T ( T ) - I T ^ 1 Ta /E“rW*E Wfl,Wflr“E WBtWA, E WMWA, E wa,wL E (2°)t=1 Kt=l r=1 (r=l J r= 1 r=l
with (wAt\w Bty  = wt = (1 - L) z<, 

ut = ( l~ L) dyt -  (PA,P^)vv Px = J 2 wAtwAt E  ' V 1 " ^ t *
( f=l ;  r=l

o2 = m2 andr2 calculated as described in Chapter 2 but using the u.

just defined. If the dimension of zBt is qB, then we would compare (20) with the 

upper tail of the Xi+qB distribution. In case of testing (18) against (19) in model 

(15) we have qB = 1, zAt = 1, zBt = t for t > 1. In Table 3.8 we present the 

statistic (20) for the same d values as before. In each series except industrial 

production (where the test picks up an effect not immediately noticeable from Tables

3.3 (ii) and (iii)) we find non-rejection values of d. These are similar to those in 

Tables 3.3 (ii) and (iii), but with a narrowing-down effect (so far as number of non

rejections is concerned) in some of the series, but even the reverse effect (possibly 

indicative of the loss of power due to the extra degree of freedom) in a couple of 

others. For unemployment rate, a relatively attractive model in view of Tables 3.3 

and 3.8, has P2 = 0 and d = 0.75, whereas this hypothesis is rejected in all the other 

series. We do not reject the null when d = 1 is paired with fl2 = 0* less than half 

the cases in which it was rejected in Tables 3.3 (ii) and (iii), suggesting the 

importance of the trend term in a number of these cases. Notice that even for d > 

2 the null hypothesis is less strongly rejected than for small d; this accords with the 

similarity in the corresponding statistics between Tables 3.3 (ii) and (iii). It could 

also relate to the fact that whereas (1-L)dt tends to zero for d > 1 as t increases, it 

continues to trend with t for d < 1 (whereas (1-L)dtd tends to a non-zero constant for 

all d). Except in the one case of industrial production, the conclusion seems to be 

that when an appropriate differencing order is used, the time trend is unimportant.

In connection with the power properties of Robinson’s (1994c) tests, it must 

be stressed that it is only in a local sense that they are optimal, and doubtless they 

could be bettered against non-local departures of interest by some point optimal 

procedure. In view of this there is some satisfaction in the fact that the null is 

always decisively rejected in Tables 3.3 and 3.4 ((ii) and (iii)) for d > 2 and d = 0.5. 

On the other hand, these significant results might be due in large part to
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unaccounted-for 1(0 ) autocorrelation in ut, even bearing in mind the monotonicity of 

r in d achieved in these tables. Thus we also fitted non-seasonal, seasonal, and 

mixed seasonal/non-seasonal AR in u  ̂ as anticipated in Section 2, for the same d 

values and the same cases of no regressors, an intercept and a linear time trend as 

in Tables 3.3 and 3.4. When modelling with no regressors, the monotonic decrease 

in r with respect to d did not occur very often among the different specifications for 

the disturbances. Including an intercept or an intercept and a time trend, results were 

similar in both cases, with unemployment as the less nonstationary series, and 

consumer prices and money stock as the most nonstationary ones when modelling 

ut as seasonal and non-seasonal AR, but observing again a lack of monotonicity in 

r with respect to d in practically all series when Uj was a mixed seasonal and non- 

seasonal AR process.

In Table 3.9 we concentrate on non-seasonal AR(k) ut, with k=l,2,...5, and 

present results only for a subset of the values obtained, choosing for each series a 

single k across all d. An alternative approach would be to pick a k for each series/d 

combination, on some basis. This is what Nelson and Plosser (1982) did, but they 

considered only a single d. We have preferred to choose the k for each series which 

produces the smallest value of |r|, across d. This enables better comparison with 

Table 3.3 and indicates the strongest support for any one hypothesis, while also 

having a tendency to be accompanied by relatively small |r| throughout, thereby 

providing an impression of relatively lower power. Results are similar for the three 

cases of no regressors, an intercept and a time trend, with non-rejections occurring 

practically always when d < 1.50. Looking at Table 3.9 (iii), which is the most 

interesting case in view of monotonicity in the value of r with respect to d, we see 

that k = 1 or 2 in eight cases, whereas k = 5 in only one. It is striking that in many 

of the series the non-rejection d’s tend, in Table 3.9 (iii), to be smaller by about 0.5- 

0.75 than those in Table 3.3 (iii), indicating how the AR model is somewhat 

confounded with the fractional one in finite samples, and the delicacy of modelling 

in this situation. (We used Yule-Walker estimates of the AR coefficient, which 

entail AR roots that are automatically less than one in absolute value, but can be 

arbitrarily close to one.) We find that when d > 1.75 the null is rejected in all 

series, and there are numerous rejections with d = 1.25 and 1.5. The strongest 

evidence of nonstationarity is found in the GNP deflator and consumer prices. The
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unit root hypothesis is now rejected only in case of real GNP and industrial 

production; they are series in which it was not rejected in Table 3.3 (iii), r there 

being positive in these cases, whereas it is negative throughout the unit root column 

in Table 3.9 (iii). Moreover, when d = 0.75 the null is now never rejected, and 

when d = 0.5 is only rejected in cases of consumer prices, money stock and velocity, 

while r is even negative for several of the other series.

AR modelling of 1(0) processes is very conventional, but there exist many 

other types of 1(0 ) process, including ones outside the stationary and invertible 

ARMA class. As we saw in Chapter 2, one that seems especially relevant and 

convenient in the context of the present tests is that proposed by Bloomfield (1973), 

in which g is given by (2.12). Like the stationary AR(k), this has exponentially 

decaying autocorrelations. Formulae for Newton-type iterations for estimating the 

Tj are very simple (involving no matrix inversion), updating formulae when k is 

increased are also simple, and we can replace A in (2.9) by the population quantity

E “ , i  j  "2 =

which indeed is constant with respect to the Tj (unlike what happens in the AR case). 

Using (2.12), the Tj in a were estimated by a Gauss-Newton iteration, convergence 

being achieved within about seven iterative steps throughout. We again tried k = 

1,...,5 for each series/d combination. Overall, there is a somewhat larger proportion 

of rejections of the higher d than for white noise or AR ut. As a much more striking 

comparison with the AR case, when d = 0.5 the null is now rejected in the great 

proportion of series, and when d = 0.75 in around half. Perhaps this is due to the 

stationarity of the Bloomfield process for all real values of Tj, so that it may be less 

inclined to try to model the nonstationary part than the AR process. We do not 

report all the results here, but first present, in Table 3.10, ones for the same k values 

as in Table 3.9 (iii), to facilitate comparison between the two 1(0) models. The 

results are indicative of a somewhat greater degree of nonstationarity, and are 

definitely less ambiguous, than those just discussed, in all but two cases the non

rejection d’s forming a proper subset of those in Table 3.9 (iii); the exceptional time 

series are money stock, where there is one extra non-rejection value in Table 3.10, 

and wages, where there is one fewer but they are 1 and 1.25 rather than 0.5, 0.75 

and 1. Moreover, in seven of the series there is only one d where the null is not 

rejected; these d-values are quite variable across the series, being 0.5 for industrial
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production, 0.75 for real GNP, real per capita GNP and employment, 1 for nominal 

GNP and velocity, and 1.25 for consumer prices. These results for the Bloomfield 

model also entail a greater proportion of rejections than those based on white noise 

ut in Table 3.3 (iii), despite the additional parameters; we attribute this to smaller 

d ’s. We also give, in Table 3.11, results for the Bloomfield model when we choose 

k on the same basis as in Table 3.9. Though nine of the k’s differ from those in 

Table 3.10, the results are very similar in both numbers of rejections and favourable 

d-values, the only somewhat exceptional case that may deserve mention being 

industrial production, where the null is now rejected when d = 0.5.

3.4 FINAL COMMENTS

The conclusions suggested by the tests of Robinson (1994c), carried out on 

the extended version of Nelson and Plosser’s (1982) data, vary substantially across 

the fourteen series and across various models for the 1(0) process When is 

taken to be white noise, the unit root hypothesis is rejected in as many as five series, 

in each of which a somewhat greater (but less than 1(2 )) degree of nonstationarity 

is indicated, while even when the unit root is not rejected there is also evidence of 

possible fractional differencing. With AR ut there tend to be fewer rejections, and 

the evidence points to a substantially smaller degree of nonstationarity, though this 

may be due in large part to competition with the autoregression in describing the 

nonstationarity. The results using the Bloomfield Ut are perhaps the most interesting, 

because of the many rejections and strong evidence in favour of single values of d 

in a number of series, most of which are 0.75 or 1. Attempting to summarize the 

conclusions for individual series from the various statistics, we are left with the 

impression that consumer prices and money stock are the most nonstationary, 

followed by the GNP deflator and wages, whereas unemployment rate, followed by 

industrial production, seem closest to stationarity.

It would be worthwhile proceeding to get point estimates of d, perhaps 

especially in the Bloomfield case. However, not only would this be computationally 

more expensive, but it is then in any case confidence intervals rather than point 

estimates which should be stressed, while available rules of inference seem to require 

preliminary integer differencing to achieve stationarity and invertibility. The 

approach used in this chapter generates simply-computed diagnostics for departures
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from any real d. It is not at all surprising that, when fractional hypotheses are 

entertained, some evidence supporting them appears, because this might happen even 

when the unit root model is highly suitable. However, even though our practice of 

computing test statistics for a wide range of null hypotheses does lead to ambiguous 

conclusions, often the bulk of these hypotheses are rejected, suggesting that the 

optimal local power properties of the tests, shown by Robinson (1994c), may be 

supported by reasonable performance against non-local alternatives. It is the known 

efficiency property of the tests which really distinguishes them from much other 

work on testing for unit roots (and indeed fractional roots).

The frequency domain seems to be unpopular with many econometricians, 

and it is important to stress that our frequency domain formulation of the test 

statistics has nothing to do with nonparametric spectral estimation. We have also 

reported results of the time domain version of the tests, (see also Robinson (1991)) 

for some cases but our preference here for the frequency domain set-up of Robinson 

(1994c) is motivated by the somewhat greater elegance of formulae it affords, 

especially when the Bloomfield model is used. Though the results in both domains 

for white noise ut using Nelson and Plosser’s (1982) data are similar, in general, in 

finite samples the time and frequency domain versions of the tests will differ from 

each other, in some cases possibly considerably. Under the null, the difference is 

Op(T'/2), but substantial differences could appear when the null hypothesis is seriously 

in error, because of the great degree of non-circularity of nonstationary processes. 

It is not known in general to what extent this could lead to different testing 

conclusions. Some attempt has been made to study the problem analytically, but it 

is complicated and one may need to resort to Monte Carlo simulations.

APPENDIX 3.1

Following work of Perron (1988) and other authors mentioned in Section 1, 

we are concerned in this appendix with the effect that a possible structural break 

may have had on the above results, in particular one due to World War n. Table 

3.12 corresponds to Table 3.3, i.e., reporting results of the tests for white noise i ,̂ 

based only on post-war data. There are numerous non-rejections in Table 3.12 (i) 

for the lower d-values, and some lack of monotonicity of r in d. In Tables 3.12 (ii) 

and (iii) we again find significant r, even for d = 2.25 in case of the GNP deflator
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and consumer prices, while in few of the series the null is not rejected when d = 0.5 

in one or both these tables. However, the greater amount of non-rejections could be 

largely due to the smaller sample size, and, qualitatively, we see that as in Table 3.3 

industrial production and unemployment rate are the least nonstationary series, 

whereas consumer prices, GNP deflator, wages and money stock are the most 

nonstationary ones, and in nine series in both Tables 3.3 (iii) and 3.10 (iii) (albeit 

not entirely the same ones) the unit root null is not rejected. Very similar results 

were obtained when we used the time domain version of the tests, with the non

rejections occurring at practically the same d-values as in Table 3.12.

Looking at Figure 3.1 we observe that the series might have a different 

growth rate after World War II. In Table 3.13 we give results of the tests for white 

noise u, but including dummy variables for the changing slope in the trend function 

of the series in 1946. Thus, instead of (15), we consider

y t = P i  + 021* + ( P 2 2 _  P 2 1 ) *  + xp f  = 1>2 >-> (2 1 )
where dt = t - t* if t > t* and 0  otherwise, and t* refers to the period of time 

corresponding to 1945. Monotonicity is now always achieved and the unit root null 

hypothesis is rejected in favour of more nonstationary alternatives in the same five 

series as in Table 3.3 (iii). In fact, all non-rejections values of d in Table 3.13 are 

exactly the same as in Table 3.3 (iii) except for velocity and consumer prices, where 

the null is rejected for d = 0.75 in Table 3.3 (iii) but not in Table 3.13. In view of 

these results we can conclude by saying that there is no significant improvement 

when including dummy variables for the changing growth at least for white noise 1̂ .

Allowing AR with the dummies for the changing trend, results were similar 

to those when we included a simple linear time trend in the model, with 

unemployment and industrial production as the less nonstationary series, and money, 

consumer prices and GNP deflator as the most nonstationary ones. In Table 3.14, 

we resume these results choosing for each series a particular order of the 

autoregression, using the same criterion as in Table 3.9. Comparing results here with 

those in Table 3.9 (iii) we see that in nine of the fourteen series k is the same, and 

in five of them the non-rejections occur at exactly the same values of d.

In view of all these results, we could conclude by saying that in the provided 

model, the presence of a possible structural break on the data does not greatly affect 

the main conclusions obtained in the chapter.
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FIGURE 3.2: Autocorrelation functions of the extended version of Nelson and Plosser’s (1982) data.
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FIGURE 33: Various estimates of the spectral density of the extended version of Nelson and Plosser’s (1982) data. 
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TABLE 3.1

Sample autocorrelations of the raw extended Nelson and Plosser data.

Series n *i *2 *3 *4 r 5 *6 f 7 h *9 r io * n r l2 r l3 h*

Real GNP 80 .96 .92 .89 .85 .82 .78 .75 .71 .68 .64 .61 .58 .54 .51
Nominal GNP 80 .96 .91 .87 .83 .79 .75 .70 .66 .62 .59 .55 .52 .49 .45
Real p.cap GNP 80 .96 .92 .87 .84 .80 .77 .73 .69 .66 .63 .59 .56 .53 .50
Ind.production 129 .97 .94 .92 .89 .87 .84 .82 .80 .77 .75 .72 .70 .68 .66
Employment 99 .96 .92 .88 .84 .80 .76 .73 .69 .65 .62 .58 .55 .53 .50
Unemployment 99 .75 .46 .31 .17 .04 .00 -.04 -.15 -.21 -.22 -.26 -.29 -.28 -.25
GNP deflator 100 .96 .93 .89 .85 .81 .77 .73 .69 .65 .61 .57 .54 .50 .47
Cons, prices 129 .96 .92 .88 .85 .81 .78 .74 .71 .67 .64 .61 .58 .55 .53
Wages 89 .96 .92 .89 .85 .81 .77 .74 .70 .66 .62 .58 .55 .51 .48
Real wages 89 .97 .95 .92 .89 .86 .84 .81 .78 .75 .72 .69 .66 .62 .59
Money stock 100 .96 .93 .89 .86 .82 .79 .76 .72 .69 .65 .62 .59 .56 .53
Velocity 120 .95 .91 .88 .84 .81 .79 .76 .73 .69 .66 .62 .58 .55 .51
Bond yield 89 .95 .89 .84 .77 .68 .62 .55 .47 .41 .37 .33 .29 .25 .20
C.stock prices 118 .96 .92 .88 .85 .82 .80 .77 .74 .72 .69 .67 .64 .62 .59

The natural logs of all the data are used except for the bond yield, n is the sample size and rs is the ith 
order sample autocorrelation. The large sample standard error under the null hypothesis of no 
autocorrelation is 1/VT or roughly 0.10 for series of length considered here. Real p.cap GNP is real per 
capita GNP; Unemployment r. is unemployment rate; Cons, prices is consumer prices index; and C.stock 
prices is common stock prices.

TABLE 3.2

Sample autocorrelations of the first differences of the extended Nelson and Plosser data.

Series h r 2 *3 *4 r 5 *6 h r8 *9 rio fii *12 *13 *14 s(r)

Real GNP .33 .02 -.18 -.22 -.17 .01 .07 -.05 -.21 -.20 -.00 -.03 .03 .10 .11
Nominal GNP* .44 .10 -.08 -.20 -.04 .16 .15 .07 -.06 -.10 -.02 -.16 -.22 -.17 .11
Real p.cap GNP .32 .01 -.17 -.20 -.16 .01 .08 -.05 -.20 -.19 -.00 -.05 .01 .08 .11
Ind.production .03 -.12 -.01 -.09 -.25 .04 .13 -.01 -.18 -.01 .10 -.10 .10 .11 .08
Employment .31 -.06 -.08 -.16 -.19 .00 .10 .01 -.16 -.14 -.02 -.10 -.03 .09 .10
Unemployment r. .09 -.29 .01 -.02 -.17 .00 .14 -.11 -.10 .04 -.00 -.09 -.02 -.00 .10
GNP deflator* .49 .28 .15 .04 .11 .09 .05 .07 .02 .03 -.01 -.13 -.16 -.20 .10
Cons, prices* .62 .24 .11 .10 .14 .12 .08 .09 .08 .06 -.02 -.10 -.08 -.13 .08
Wages* Al .13 .01 -.05 -.05 .09 .16 .02 -.11 -.12 -.12 -.35 -.24 -.20 .10
Real wages .22 -.03 -.06 -.06 -.07 -.06 .06 .10 -.03 -.11 .00 -.05 .10 .13 .10
Money stock* .62 .31 .15 .03 -.02 -.00 -.02 -.07 -.12 -.14 -.19 -.33 -.40 -.30 .10
Velocity .12 -.02 -.14 -.13 -.09 .11 .07 .06 -.05 -.02 .07 -.12 .15 .05 .09
Bond yield .17 -.14 .13 .02 -.24 -.10 -.00 -.01 -.08 .06 .20 .05 -.05 .11 .10
C.stock prices .19 -.13 -.06 -.10 -.21 -.01 .12 .05 .01 .13 .03 -.11 -.17 -.00 .09

Tj is the ith order autocorrelation coefficient.
*: Time series where the unit root hypothesis is rejected in Table 3.3 (ii) and (iii) below. s(r) is the large 
sample standard error under white noise, namely 1/T.
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TABLE 33

f in (2.9) with white noise 

d

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

(i): with no regressors.
Real GNP 1.87’ 1.94’ -0.43’ -2.20 -3.19 -3.78 -4.15 -4.41
Nominal GNP 2.12 2.08 -0.42’ -2.23 -3.21 -3.79 -4.16 -4.41
Real per capita GNP 2.67 2.18 -0.45’ -2.23 -3.21 -3.79 -4.16 -4.42
Industrial production 2.45 0.87’ -0.80’ -2.36 -3.46 -4.17 -4.67 -5.02
Employment 3.56 2.80 -0.41’ -2.43 -3.50 -4.13 -4.53 -4.81
Unemployment rate 3.62 1.26’ -0.78’ -2.07 -2.88 -3.41 -3.78 -4.05
GNP deflator 2.19 2.30 -0.47’ -2.44 -3.51 -4.13 -4.53 -4.81
Consumer prices 4.87 4.71 0.39’ -2.46 -3.88 -4.63 -5.08 -5.38
Wages 1.98 2.13 -0.44’ -2.32 -3.34 -3.94 -4.33 -4.60
Real wages 1.89’ 1.93’ -0.53’ -2.32 -3.32 -3.92 -4.31 -4.58
Money stock 1.01’ 1.35’ 0.66’ -1.55’ -3.01 -3.83 -4.33 -4.66
Velocity 9.55 3.46 -0.73’ -2.79 -3.84 -4.45 -4.85 -5.14
Bond yield 6.14 3.46 0.19’ -1.60’ -2.61 -3.28 -3.78 -4.17
Common stock prices 3.56 2.88 0.02’ -2.09 -3.31 -4.03 -4.49 -4.81

(ii): with an intercept.
Real GNP 7.33 2.62 1.10’ -0.20’ -1.37’ -2.30 -3.00 -3.54
Nominal GNP 7.27 3.24 2.12 0.66’ -0.77’ -1.85’ -2.64 -3.24
Real per capita GNP 7.72 3.25 1.23’ -0.28’ -1.46’ -2.37 -3.05 -3.57
Industrial production 7.93 1.11’ -0.83’ -2.39 -3.46 -4.17 -4.66 -5.01
Employment 6.10 1.87’ 1.11’ -0.32’ -1.64’ -2.58 -3.25 -3.74
Unemployment rate 2.94 0.71’ -0.93’ -2.08 -2.86 -3.40 -3.78 -4.07
GNP deflator 10.46 6.66 4.48 1,46’ -0.89’ -2.39 -3.34 -3.97
Consumer prices 15.81 1.50 7.41 3.21 0.54’ -1.05’ -2.12 -2.89
Wages 7.99 3.65 2.62 1.04’ -0.63’ -1.84’ -2.69 -3.29
Real wages 9.14 3.62 1.12’ -0.93’ -2.23 -3.05 -3.60 -4.00
Money stock 7.25 2.49 2.82 2.78 0.88’ -0.89’ -2.13 -2.98
Velocity 8.61 3.75 0.33’ -1.83’ -3.04 -3.83 -4.40 -4.82
Bond yield 10.38 4.65 0.71’ -1.36’ -2.51 -3.20 -3.65 -3.97
Common stock prices 10.49 3.96 0.35’ -1.52’ -2.62 -3.36 -3.90 -4.30

(iii): with a linear time trend. 
Real GNP 5.95 3.46 1.39’ -0.18’ -1.39’ -2,31 -3.01 -3.54
Nominal GNP 10.74 6.69 3.23 0.81’ -0.78’ -1.87’ -2.65 -3.24
Real per capita GNP 5.84 3.42 1.33’ -0.26’ -1.46’ -2.37 -3.05 -3.57
Industrial production 5.33 1.42’ -1.00’ -2.51 -3.50 -4.18 -4.66 -5.01
Employment 6.93 3.84 1.37’ -0.40’ -1.67’ -2.58 -3.25 -3.74
Unemployment rate 2.95 0.71’ -0.93’ -2.08 -2.86 -3.39 -3.77 -4.05
GNP deflator 14.32 10.37 5.75 1.77’ -0.86’ -2.40 -3.35 -3.97
Consumer prices 10.72 15.13 8.42 3.43 0.56’ -1.11’ -2.12 -2.83
Wages 11.13 7.43 3.95 1.26’ -0.59’ -1.83’ -2.69 -3.30
Real wages 9.11 4.86 1.26’ -0.95’ -2.23 -3.02 -3.56 -3.98
Money stock 12.03 9.36 6.30 3.34 0.91’ -0.84’ -2.07 -2.94
Velocity 13.85 5.41 0.35’ -1.90’ -3.09 -3.85 -4.41 -4.84
Bond yield 10.37 4.52 0.71’ -1.35’ -2.51 -3.20 -3.65 -3.97
Common stock prices 9.52 3.79 0.37’ -1.48’ -2.60 -3.34 -3.87 -4.27

: Non-rejection values for the null hypothesis at 95% significance level.
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TABLE 3.4

r in (17) with white noise 

d

(i): with no regressors.
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP 1.43’ 1.83’ -0.10’ -1.73’ -2.66 -3.16 -3.47 -3.69
Nominal GNP 2.76 2.91 -0.09’ -1.79’ -2.67 -3.16 -3.47 -3.69
Real per capita GNP 3.22 3.00 -0.11’ -1.80’ -2.68 -3.17 -3.48 -3.48
Industrial production 2.12 0.21’ -0.82’ -2.11 -3.03 -3.66 -4.09 -4.40
Employment 3.13 2.69 -0.08’ -2.02 -2.98 -3.53 -3.88 -4.11
Unemployment rate 4.01 1.36’ -0.52’ -1.70’ -2.43 -2.91 -3.23 -3.46
GNP deflator 2.75 2.83 -0.25’ -2.03 -2.98 -3.53 -3.88 -4.12
Consumer prices 5.09 4.97 0.37’ -2.13 -3.39 -4.07 -4.47 -4.73
Wages 2.90 3.03 -0.09’ -1.87’ -2.80 -3.33 -3.66 -3.89
Real wages 1.09’ 1.15’ -0.04’ -1.84’ -2.77 -3.30 -3.64 -3.87
Money stock 1.01’ 1.70’ 0.85’ -1.19’ -2.47 -3.21 -3.67 -3.97
Velocity 9.20 3.38 -0.51’ -2.38 -3.33 -3.88 -4.24 -4.49
Bond yield 6.92 3.58 0.34’ -1.38’ -2.34 -2.91 -3.28 -3.54
Common stock prices 3.38 2.89 -0.03’ -1.66’ -2.64 -3.28 -3.72 -4.05

(ii): with an intercept. 
Real GNP 8.93 2.29 1.18’ -0.17’ -1.15’ -1.92’ -2.51 -2.96
Nominal GNP 7.63 3.26 2.77 0.60’ -0.64’ -1.54’ -2.21 -2.71
Real per capita GNP 7.43 3.20 1.15’ -0.23’ -1.22’ -1.98 -2.55 -2.98
Industrial production 7.31 1.63’ -0.86’ -2.12 -3.04 -3.67 -4.10 -4.40
Employment 5.60 2.17 1.19’ -0.28’ -1.40’ -2.20 -2.78 -3.20
Unemployment rate 2.50 0.61’ -0.78’ -1.77’ -2.44 -2.90 -3.24 -3.48
GNP deflator 10.81 6.59 5.44 1.34’ -0.78’ -2.05 -2.86 -3.40
Consumer prices 15.15 11.73 7.46 2.91 0.50’ -0.92’ -1.86’ -2.54
Wages 7.07 4.38 3.41 0.96’ -0.50’ -1.54’ -2.27 -2.78
Real wages 9.06 3.37 1.05’ -0.74’ -1.85’ -2.56 -3.04 -3.38
Money stock 7.64 2.56 2.41 2.88 0.85’ -0.70’ -1.79’ -2.53
Velocity 8.32 3.96 0.42’ -1.58’ -2.66 -3.34 -3.84 -4.20
Bond yield 10.52 4.29 0.61’ -1.15’ -2.12 -2.71 -3.09 -3.36
Common stock prices 10.70 4.18 0.44’ -1.32’ -2.28 -2.92 -3.38 -3.74

(iii): with a linear time trend. 
Real GNP 4.99 2.92 1.17’ -0.15’ -1.16’ -1.93’ -2.51 -2.96
Nominal GNP 8.88 5.70 2.76 0.69’ -0.65’ -1.56’ -2.22 -2.71
Real per capita GNP 4.89 2.90 1.14’ -0.20’ -1.22’ -1.98 -2.55 -2.98
Industrial production 4.64 1.27’ -0.87’ -2.20 -3.07 -3.67 -4.10 -4.40
Employment 5.99 3.30 1.18’ -0.34’ -1.43’ -2.21 -2.78 -3.20
Unemployment rate 2.51 0.62’ -0.78’ -1.77’ -2.44 -2.90 -3.23 -3.47
GNP deflator 12.30 9.66 5.35 1.58’ -0.76’ -2.06 -2.87 -3.40
Consumer prices 17.88 13.34 7.49 3.08 0.51’ -0.97’ -1.86’ -2.49
Wages 9.42 6.45 3.40 1.06’ -0.50’ -1.55’ -2.28 -2.79
Real wages 7.70 4.04 1.06’ -0.78’ -1.88’ -2.56 -3.02 -3.37
Money stock 10.29 8.09 5.45 2.88 0.78’ -0.73’ -1.78’ -2.53
Velocity 12.12 5.15 0.44’ -1.65’ -2.70 -3.35 -3.85 -4.22
Bond yield 8.77 3.88 0.61’ -1.14’ -2.12 -2.71 -3.09 -3.36
Common stock prices 8.15 3.53 0.43’ -1.27’ -2.27 -2.91 -3.38 -3.73

: Non-rejection values for the null hypothesis at 95% significance level.
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TABLE 3.5

Sample autocorrelations of the yt - - $2t, where $, and are OLS estimates from the d-th differenced
(16), using the "best" choice for d in each series from Table 3.3 (iii).

Series do *i r2 r3 r4 f5 h h h *9 rio ril rl2 rL3 *14

Real GNP 1.25 .90 .75 .59 .47 .38 .33 .29 .22 .16 .13 .15 .16 .19 .21
Nominal GNP 1.50 .94 .85 .75 .65 .58 .51 .43 .33 .23 .13 .05 -.02 -.08 -.12
Real p.cap GNP 1.25 .90 .74 .59 .46 .38 .33 .28 .21 .14 .11 .11 .12 .15 .17
Ind.production 1.00 .84 .66 .53 .40 .30 .28 .25 .18 .12 .12 .12 .09 .10 .07
Employment 1.25 .91 .76 .63 .51 .42 .37 .31 .23 .15 .10 .08 .06 .06 .06
Unemployment r 0.75 .75 .47 .33 .18 .05 .01 -.03 -.14 -.20 -.21 --.25 -.28 --.27 --.24
GNP deflator 1.50 .96 .92 .88 .83 .79 .74 .69 .65 .60 .56 .52 .48 .44 .40
Cons.prices 1.50 .98 .95 .93 .89 .85 .81 .78 .74 .70 .66 .63 .59 .56 .52
Wages 1.50 .94 .86 .77 .67 .58 .49 .40 .30 .20 .11 .03 -.03 -.07 -.09
Real Wages 1.25 .96 .92 .87 .83 .80 .77 .74 .70 .66 .62 .60 .57 .54 .51
Money Stock 1.75 .97 .92 .87 .81 .76 .70 .65 .61 .56 .51 .47 .43 .40 .37
Velocity 1.00 .94 .88 .82 .78 .74 .71 .67 .63 .58 .53 .48 .43 .40 .36
Bond Yield 1.00 .94 .87 .82 .74 .65 .60 .54 .48 .44 .41 .37 .32 .27 .22
C.stock prices 1.00 .91 .79 .69 .62 .56 .54 .53 .50 .47 .42 .36 .29 .24 .22

^ is the ith order autocorrelation coefficient.

TABLE 3.6

Sample autocorrelations of d-th differences of the y, - - 02t in Table 3.5

Series do *i *2 *3 *4 *5 *6 h *8 *9 rio *11 *12 *13 *14

Real GNP 1.25 .15 -.05 -.21 -.20 -.15 .06 .12 -.01 -.18 -.18 .04 -.03 .03 .10
Nominal GNP 1.50 .08 -.11 -.17 -.30 -.07 .18 .11 .07 -.09 -.09 .11 -.08 -.13 -.01
Real p.cap GNP 1.25 .14 -.06 -.20 -.19 -.15 .06 .12 -.01 -.18 -.16 .06 -.05 .01 .09
Ind.production 1.00 .03 -.12 -.01 -.09 -.25 .04 .13 -.01 -.18 -.01 .10 -.10 .10 .11
Employment 1.25 .14 -.17 -.09 -.14 -.19 .03 .14 .03 -.15 -.11 .03 -.09 -.02 .13
Unemployment r 0.75 .24 -.16 .00 -.04 -.16 -.02 .08 -.12 -.12 -.00--.04 -.12 -.06 -.05
GNP deflator 1.50 .00 -.05 -.05 -.19 .03 .00 -.03 .04 -.02 .06 .04 -.10 -.05 -.04
Cons.prices 1.50 .25 -.21 -.18 -.09 .03 .01 -.03 .01 .03 .06- .03 -.12 -.00 -.09
Wages 1.50 .10 -.16 -.11 -.13 -.14 .08 .20 .02 -.11 -.02 .08 -.31 -.04 -.00
Real Wages 1.25 .03 -.13 -.10 -.06 -.07 -.08 .06 .10 -.03 -.12 .02 -.08 .09 .12
Money Stock 1.75 .07 -.17 -.06 -.10 -.11 .03 .02 -.00 -.03 .02 .09 -.14 -.23 -.04
Velocity 1.00 .12 -.02 -.14 -.13 -.09 .11 .07 .06 -.05 -.02 .07 -.12 .15 .05
Bond Yield 1.00 .17 -.14 .13 .02 -.24 -.10 -.00 -.01 -.08 .06 .20 .05 -.05 .11
C.stock prices 1.00 .19 -.13 -.06 -.10 -.21 -.01 .12 .05 .01 .13 .03 -.11 -.17 -.00

^ is the ith order autocorrelation coefficient.
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? in (2.9) and

TABLE 3.7

r in (17) for logged bond yield with white noise u,

0.50 0.75 1.00

d

1.25 1.50 1.75 2.00 2.25

FREQUENCY DOMAIN (?) 

with no regressors: 6.38 3.17 -0.11’ -2.15 -3.18 -3.80 -4.24 -4.56

with an intercept: 10.59 4.96 1.24’ -1.55’ -2.87 -3.57 -4.01 -4.32

with a time trend: 13.59 6.62 1.23’ -1.54’ -2.87 -3.57 -4.00 -4.31

TIME DOMAIN (r)

with no regressors: 6.43 3.92 0.18’ -1.79’ -2.78 -3.31 -3.64 -3.86

with an intercept: 12.61 6.06 1.06’ -1.31’ -2.42 -3.02 -3.39 -3.65

with a time trend: 11.41 5.65 1.06’ -1.30’ -2.42 -3.02 -3.39 -3.65

Non-rejection values for the null hypothesis at 95% significance level.

TABLE 3.8

Joint test of (18) against (19) in model (15) with white noise u,.

d

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP 123.47 56.27 17.86 2.87’ 2.35’ 5.43’ 9.12 12.59
Nominal GNP 124.15 68.39 31.86 6.47 1.64’ 3.74’ 7.20 10.68
Real p. cap. GNP 114.77 37.92 7.70 0.92’ 2.23’ 5.63’ 9.34 12.77
Ind. production 180.50 82.66 21.30 8.18 12.28 17.47 21.78 25.18
Employment 123.29 62.94 19.65 3.02’ 3.09’ 6.73 10.59 14.01
Unemployment rate 8.68 0.52’ 0.88’ 4.35’ 8.24 11.66 14.46 16.77
GNP deflator 89.28 102.58 43.13 5.59’ 0.86’ 5.77’ 11.27 15.84
Consumer prices 319.17 175.01 69.35 13.46 1.24’ 1.39’ 4.51’ 8.62
Wages 143.97 78.63 37.49 7.46 1.47’ 3.80’ 7.54 11.10
Real wages 158.31 61.83 14.09 2.64’ 5.45’ 9.75 13.58 16.73
Money stock 147.86 92.02 63.05 24.79 4.55’ 2.46’ 6.03 10.42
Velocity 119.75 29.69 2.40’ 3.85’ 9.65 15.20 19.88 23.68
Bond yield 127.76 28.46 1.65’ 1.98’ 6.33 10.26 13.35 15.82
C.stock prices 181.33 45.69 5.58’ 2.89’ 6.94 11.36 15.29 18.67

Non-rejection values for the null hypothesis at 95% significance level.



72

TABLE 3.9

r in (2.9) with AR(k) for a particular choice of k.

d

k
(i): with no regressors.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP: 1 -2.29 -0.47’ -0.87’ -1.77’ -2.52 -3.06 -3.46 -3.75
Nominal GNP 1 -4.19 -1.73’ -1.25’ -1.66’ -2.20 -2.66 -3.03 -3.32
Real p.cap.GNP 1 -3.01 -0.43’ -0.86’ -1.78’ -2.53 -3.07 -3.46 -3.76
Indust. prod. 2 -3.71 -1.20’ -1.99 -2.23 -2.60 -2.98 -3.33 -3.69
Employment: 1 -2.57 0.02’ -0.76’ -1.89’ -2.73 -3.31 -3.72 -4.04
Unemployment: 2 0.32’ -0.21’ -0.51’ -1.01’ -1.56’ -2.10 -2.58 -3.01
GNP deflator: 3 0.16’ -0.84’ -1.27’ -1.86’ -2.36 -2.72 -3.01 -3.27
Consumer prices: 2 0.33’ -0.75’ -0.65’ -1.14’ -1.75’ -2.31 -2.82 -3.28
Wages: 1 -1.27’ -0.23’ -0.91’ -1.90’ -2.66 -3.19 -3.58 -3.88
Real wages: 1 -3.78 -1.07’ -1.21’ -2.01 -2.70 -3.21 -3.59 -3.88
Money stock: 3 12.63 -0.04’ -1.85’ -2.47 -2.87 -3.10 -3.23 -3.33
Velocity: 1 -0.10’ 0.79’ -0.99’ -2.39 -3.26 -3.83 -4.23 -4.54
Bond yield: 1 1.07’ 0.29’ -1.37’ -2.17 -2.66 -3.07 -3.45 -3.80
C. stock prices: 1 4.29 -0.02’ -1.97 -3.02 -3.66 -4.05 -4.31 -4.50

(ii): with an intercept.
Real GNP: 3 -7.65 -0.98’ -1.94’ -2.46 -2.75 -2.99 -3.17 -3.28
Nominal GNP: 4 -4.38 -6.71 0.36’ -0.19’ -1.05’ -1.98 -2.79 -3.36
Real p.ca 3 -12.15 -1.04’ -1.94’ -2.41 -2.72 -2.96 -3.14 -3.25
Industrial prod.: 4 -4.43 -1.71’ -2.67 -2.80 -2.99 -3.10 -3.14 -3.17
Employment: 2 -7.64 -2.04 -1.69’ -1.92’ -2.28 -2.61 -2.88 -3.11
Unemployment: 2 -0.77’ -0.88’ -1.16’ -1.59’ -2.05 -2.50 -2.90 -3.25
GNP deflator: 4 -5.70 -7.34 -0.82’ -0.40’ -0.77’ -1.42’ -2.12 -2.70
Consumer prices: 5 8.74 -0.18’ -1.42’ -1.65’ -1.75’ -2.23 -2.72 -2.94
Wages: 2 -3.10 -3.80 -1.00’ -1.66’ -2.14 -2.53 -2.83 -3.05
Real wages: 4 -0.56’ -2.65 -0.47’ -1.75’ -2.49 -2.89 -3.06 -3.13
Money stock: 1 -4.38 -3.47 -1.23’ -1.99 -2.26 -2.65 -3.04 -3.38
Velocity: 4 1.63’ 2.06 0.15’ -1.70’ -2.87 -3.52 -3.90 -4.14
Bond yield: 1 -1.50’ 0.24’ -1.31’ -2.41 -3.16 -3.68 -4.03 -4.31
C. stock prices: 4 -5.53 -0.12’ -1.65’ -2.84 -3.46 -3.76 -3.84 -3.78

(iii): with a linear time trend.
Real GNP 3 -0.92’ -1.41’ -1.97 -2.43 -2.76 -3.00 -3.17 -3.27
Nominal GNP: 2 0.03’ -0.80’ -1.46’ -2.18 -2.69 -2.95 -3.05 -3.06
Real per capita 3 -0.96’ -1.43’ -1.94’ -2.38 -2.72 -2.97 -3.13 -3.24
Indust, product. 4 -0.66’ -1.70’ -2.66 -3.33 -3.73 -3.93 -4.06 -4.14
Employment: 4 -0.99’ -1.12’ -1.65’ -2.25 -2.78 -3.22 -3.55 -3.77
Unemployment: 2 -0.77’ -0.87’ -1.16’ -1.58’ -2.04 -2.48 -2.90 -3.28
GNP deflator: 1 1.11’ -1.02’ -1.21’ -1.07’ -1.75’ -2.35 -2.86 -3.30
Consumer prices 5 10.44 -0.96’ -1.33’ -1.37’ -1.70’ -2.19 -2.71 -2.92
Wages: 1 1.41’ -0.14’ -1.62’ -2.06 -2.49 -2.86 -3.17 -3.44
Real wages: 1 -0.11’ -0.22’ -1.26’ -2.16 -2.73 -3.06 -3.31 -3.57
Money stock: 1 3.47 1.32’ -1.07’ -2.06 -2.22 -2.53 -2.91 -3.29
Velocity: 3 1.96 1.59’ -0.73’ -2.54 -3.38 -3.59 -3.68 -3.76
Bond yield: 1 0.06’ 0.05’ -1.31’ -2.39 -3.16 -3.67 -4.02 -4.29
C. stock prices: 2 1.37’ -0.21’ -1.41’ -2.17 -2.61 -2.85 -3.00 -3.17

’: Non-rejection values for the null hypothesis at 95% significance level.
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TABLE 3.10

f in (2.9) with a time trend and Bloomfield exponential ut and the same value of k as in Table 3.9 (iii).

d

k 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP: 3 3.20 -0.14’ -2.33 -3.72 -4.70 -5.52 -6.34 -7.24
Nominal GNP: 2 8.88 2.65 -0.38’ -2.06 -3.14 -3.92 -4.56 -5.16
Real per c. GNP 3 3.07 -0.16’ -2.27 -3.65 -4.66 -5.51 -6.36 -7.30
Ind. production: 4 1.14’ -2.18 -4.01 -5.24 -6.17 -6.95 -7.86 -9.12
Employment: 4 2.79 -0.38’ -2.68 -4.28 -5.56 -6.73 -8.00 -9.36
Unemployment: 2 0.56’ -0.70’ -1.68’ -2.71 -3.87 -5.09 -6.40 -7.67
GNP deflator: 1 10.79 4.05 0.86’ -0.58’ -1.72’ -2.70 -3.61 -4.45
Consumer prices 5 57.09 18.96 5.13 0.03’ -2.08 -3.56 -5.53 -7.24
Wages: 1 8.03 2.94 0.32’ -1.14’ -2.17 -2.99 -3.71 -4.35
Real wages: 1 3.73 1.02’ -0.77’ -2.09 -3.06 -3.76 -4.36 -4.97
Money stock: 1 11.77 5.58 1.80’ -0.20’ -1.41’ -2.32 -3.12 -3.89
Velocity: 3 11.15 3.01 -0.95’ -3.92 -5.88 -6.80 -7.62 -8.76
Bond yield: 1 4.95 1.18’ -0.91’ -2.41 -3.58 -4.47 -5.17 -5.77
C. stock prices: 2 5.85 0.87’ -1.57’ -3.08 -4.17 -4.95 -5.50 -6.03

’:Non-rejection values for the null hypothesis at 95% significance level.

TABLE 3.11

f in (2.9) with a time trend and Bloomfield exponential ^  for a particular choice of k

d

k 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP: 1 2.01 -0.14’ -1.33’ -2.03 -2.55 -3.05 -3.57 -4.12
Nominal GNP: 3 11.71 4.04 0.01’ -2.46 -4.18 -5.42 -6.39 -7.24
Real per c. GNP 4 3.94 0.10’ -2.38 -4.12 -5.51 -6.73 -7.97 -9.30
Ind. production: 5 3.52 0.40’ -1.64’ -3.61 -5.36 -6.18 -6.66 -7.67
Employment: 3 3.50 0.15’ -1.91’ -3.25 -4.29 -5.25 -6.27 -7.37
Unemployment: 1 -0.13’ -1.47’ -2.56 -3.52 -4.35 -5.06 -5.65 -6.15
GNP deflator: 4 24.72 9.83 2.62 -0.23’ -1.68’ -2.50 -3.61 -5.41
Consumer prices 5 57.09 18.96 5.13 0.03’ -2.08 -3.56 -5.53 -7.24
Wages: 1 8.03 2.94 0.32’ -1.14’ -2.17 -2.99 -3.71 -4.35
Real wages: 4 7.75 2.41 -0.56’ -2.54 -4.26 -5.30 -5.55 -5.97
Money stock: 1 11.77 5.58 1.80’ -0.20’ -1.41’ -2.32 -3.12 -3.89
Velocity: 4 13.30 3.73 0.29’ -3.32 -6.71 -8.17 -9.10 -10.60
Bond yield: 1 4.95 1.18’ -0.91’ -2.41 -3.58 -4.47 -5.17 -5.77
C. stock prices: 1 4.21 0.29’ -1.70’ -2.94 -3.83 -4.52 -5.08 -5.61

’ :Non-rejection values for the null hypothesis at 95% significance level.
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TABLE 3.12

f in (2.9) with white noise u, for the extended Nelson and Plosser data starting in 1946.

d

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

(i): with no regressors.
Real GNP 1.20’ 1.00’ -0.59’ -1.86’ -2.61 -3.06 -3.36 -3.56
Nominal GNP 1.20’ 1.02’ -0.56’ -1.83’ -2.59 -3.05 -3.34 -3.55
Real per capita GNP 1.43’ 1.07’ -0.60’ -1.87’ -2.61 -3.06 -3.36 -3.56
Industrial production 0.91’ 0.99’ -0.45’ -1.74’ -2.51 -2.99 -3.30 -3.51
Employment 1.52’ 1.10’ -0.58’ -1.86’ -2.60 -3.05 -3.35 -3.55
Unemployment rate 0.40’ -0.33’ -1.47’ -2.24 -2.71 -3.03 -3.25 -3.42
GNP deflator 1.07’ 1.01’ -0.49’ -1.78’ -2.55 -3.01 -3.32 -3.53
Consumer prices 1.23’ 1.27’ -0.52’ -1.99 -2.82 -3.32 -3.65 -3.87
Wages 1.15’ 1.00’ -0.56’ -1.83’ -2.59 -3.04 -3.34 -3.55
Real wages 1.28’ 0.97’ -0.68’ -1.93’ -2.65 -3.09 -3.37 -3.57
Money stock 0.85’ 0.80’ -0.63’ -1.86’ -2.60 -3.05 -3.34 -3.54
Velocity 0.27’ 0.89’ 0.01’ -1.60’ -2.60 -3.12 -3.43 -3.64
Bond yield 1.38’ 0.66’ -0.32’ -1.21’ -1.89’ -2.40 -2.80 -3.11
Common stock prices 0.52’ 0.61’ -0.89’ -2.24 -2.96 -3.33 -3.54 -3.69

(ii): with an intercept.
Real GNP 3.33 0.54’ -0.29’ -1.13’ -2.07 -2.71 -3.12 -3.40
Nominal GNP 4.04 1.22’ 0.20’ -0.68’ -1.81’ -2.59 -3.03 -3.30
Real per capita GNP 3.43 0.60’ -0.63’ -1.60’ -2.32 -2.82 -3.17 -3.42
Industrial production 2.77 -0.17’ -1.21’ -2.01 -2.57 -2.92 -3.16 -3.33
Employment 4.21 1.34’ -0.20’ -1.44’ -2.14 -2.56 -2.85 -3.09
Unemployment rate 0.99’ -0.60’ -1.49’ -2.09 -2.53 -2.84 -3.09 -3.28
GNP deflator 4.90 2.49 1.88’ 1.37’ 0.34’ -0.58’ -1.20’ -1.61’
Consumer prices 5.58 2.92 2.42 1.67’ 0.33’ -0.70’ -1.36’ -1.78’
Wages 3.86 1.16’ 0.53’ 0.43’ -0.44’ -1.57’ -2.30 -2.74
Real wages 4.55 2.91 1.94’ 0.01’ -1.35’ -2.10 -2.54 -2.84
Money stock 5.33 2.79 1.71’ 0.68’ -0.72’ -1.70’ -2.20 -2.50
Velocity 1.68’ 0.40’ -0.29’ -1.62’ -2.51 -3.00 -3.28 -3.46
Bond yield 4.92 1.83’ 0.08’ -1.07’ -1.86’ -2.37 -2.72 -2.98
Common stock prices 2.60 0.75’ -0.32’ -1.56’ -2.30 -2.69 -2.92 -3.10

(iii): with a linear time trend.
Real GNP 3.13 0.80’ -0.77’ -1.76’ -2.38 -2.78 -3.09 -3.35
Nominal GNP 9.15 5.56 1.55’ -1.08’ -2.36 -2.96 -3.30 -3.51
Real per capita GNP 1,63’ 0.14’ -0.99’ -1.82’ -2.40 -2.79 -3.10 -3.36
Industrial production 1.58’ -0.48’ -1.68’ -2.35 -2.75 -3.00 -3.19 -3.36
Employment 4.17 1.41’ -0.50’ -1.59’ -2.20 -2.58 -2.85 -3.08
Unemployment rate 0.32’ -0.69’ -1.49’ -2.09 -2.53 -2.84 -3.09 -3.28
GNP deflator 11.26 9.51 6.54 3.39 1.27’ 0.24’ -0.52’ -1.28’
Consumer prices 11.06 8.69 5.57 2.58 0.50’ -0.68’ -1.37’ -1.80’
Wages 9.08 6.66 3.75 1.08’ -0.79’ -1.91’ -2.64 -3.13
Real wages 9.24 5.91 2.19 -0.25’ -1.44’ -2.03 -2.44 -2.78
Money stock 11.06 10.43 8.28 4.20 0.54’ -1.16’ -1.83’ -2.23
Velocity 4.05 1.99 -0.28’ -1.88’ -2.75 -3.16 -3.38 -3.51
Bond yield 2.76 1.45’ 0.06’ -1.08’ -1.87’ -2.38 -2.73 -2.98
Common stock prices 4.75 1.68’ -0.53’ -1.70’ -2.31 -2.70 -2.99 -3.19

Non-rejection values for the null hypothesis at 95% significance level. All the series are transformed 
to natural logarithms except bond yield.
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TABLE 3.13

? in (2.9)) including dummy variables for the changing slope in 1945, and white noise u,.

d

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP 5.57 3.33 1.38’ -0.13’ -1.21’ -2.06 -2.83 -3.46
Nominal GNP 7.61 5.23 2.80 0.76’ -0.71’ -1.74’ -2.57 -3.22
Real per capita GNP 5.58 3.45 1.34’ -0.21’ -1.30’ -2.14 -2.89 -3.50
Industrial production 5.07 1.32’ -1.03’ -2.45 -3.29 -3.96 -4.57 -5.01
Employment 6.94 3.83 1.37’ -0.36’ -1.64’ -2.55 -3.22 -3.71
Unemployment rate 2.90 0.69’ -0.95’ -2.06 -2.77 -3.27 -3.70 -4.03
GNP deflator 10.62 7.87 4.60 1.50’ -0.88’ -2.41 -3.35 -3.98
Consumer prices 14.05 10.10 6.25 2.93 0.50’ -1.08’ -2.08 -2.82
Wages 8.54 6.11 3.50 1.19’ -0.50’ -1.67’ -2.58 -3.27
Real wages 8.75 4.67 1.16’ -0.98’ -2.20 -2.95 -3.52 -3.97
Money stock 11.50 9.10 6.32 3.52 0.88’ -1.09’ -2.23 -2.99
Velocity 4.83 1.54’ -0.62’ -1.96 -2.88 -3.80 -4.52 -4.98
Bond yield 5.39 2.32 0.07’ -1.50’ -2.54 -3.21 -3.65 -3.98
Common stock prices 4.35 1.70’ -0.26’ -1.61’ -2.52 -3.25 -3.84 -4.27

’: Non-rejection values for the null hypothesis at 95% significance level. All the series are transformed 
to natural logarithms except bond yield.

TABLE 3.14

r in (2.9) with dummy variables for the changing growth and AR(k) u, for a particular choice of k.

d

k 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Real GNP: 3 1.18’ -1.58’ -2.03 -2.39 -2.51 -2.54 -2.73 -2.98
Nominal GNP: 2 -0.04’ -1.88’ -1.98 -2.36 -2.69 -2.83 -2.91 -2.95
Real per 1 0.12’ -2.36 -2.56 -2.48 -2.37 -2.32 -2.48 -2.75
Indust, product. 4 -0.76’ -1.75’ -2.69 -3.14 -2.82 -2.69 -3.08 -3.48
Employment: 1 0.31’ -1.84’ -2.43 -2.71 -2.79 -2.86 -3.17 -3.58
Unemployment: 2 -0.78’ -0.89’ -1.18’ -1.54’ -1.75’ -1.99 -2.46 -2.98
GNP deflator: 1 0.44’ -1.92’ -1.79’ -1.26’ -1.69’ -2.33 -2.86 -3.30
Consumer prices 5 10.12 -0.06’ -0.15’ -1.73’ -1.82’ -2.40 -2.90 -3.16
Wages: 1 1.53’ -0.68’ -2.06 -2.20 -2.44 -2.64 -2.90 -3.22
Real wages: 2 -0.94’ -0.06’ -0.95’ -1.91’ -2.43 -2.61 -2.77 -3.04
Money stock: 1 3.42 1.34’ -1.07’ -1.78’ -1.91’ -2.52 -2.97 -3.32
Velocity: 4 -0.15’ 0.56’ -1.44’ -1.68’ -2.27 -2.73 -2.82 -3.60
Bond yield: 1 -0.10’ -1.76’ -1.87’ -2.60 -3.20 -3.68 -4.02 -4.29
C. stock prices: 4 -1.24’ -1.84’ -2.58 -3.06 -3.01 -2.98 -3.11 -3.13

: Non-rejection values for the null hypothesis at 95% significance level.
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CHAPTER 4 

SEASONAL FRACTIONAL INTEGRATION IN MACROECONOMIC 

TIME SERIES

In this chapter the tests of Robinson (1994c) are applied to quarterly U.K. 

and Japanese consumption and income series that were analyzed in Hylleberg, Engle, 

Granger and Yoo (HEGY, 1990) and Hylleberg, Engle, Granger and Lee (HEGL,

1993) respectively. We show that seasonal fractional integration, even with different 

amplitudes at different frequencies might be an alternative plausible way of 

modelling these series.

4.1 INTRODUCTION AND SUMMARY

Many economic time series contain important seasoned components and it is 

a common belief that modellers need to pay specific attention to the nature of 

seasonality rather than essentially to ignore it. The concept of seasonality is seldom 

defined rigorously. It seems clear that any definition of seasonality must include 

something like a ’systematic intra-year movement’, though the relevant question 

should be how systematic such movement is. In order to resolve that question we 

need to consider the causes of what we call a seasonal movement as done by 

Thomas and Wallis (1971), Granger (1978) and Hylleberg (1986). Following 

Hylleberg (1992) these causes can be grouped into three classes: a) weather (i.e. 

temperature, precipitation, etc.); b) calendar events (i.e. the timing of religious or 

secular festivals, etc.); and c) timing decisions (i.e. school vacation, industry 

vacation, etc.). Some of these causes may be unchanging over long periods 

(Christmas), while others may change at discrete intervals (vacations), and still others 

are continuously varying but predictable (Easter), while other varying causes are 

unpredictable (the weather). The following definition of seasonality in Economics 

is found in Hylleberg (1992): "Seasonality is the systematic, although not necessarily 

regular, intra-year movement caused by the changes of the weather, the calendar, and 

timing decisions, directly or indirectly through the production and consumption 

decisions made by the agents of the economy. The decisions are influenced by 

endowments, the expectations and preferences of the agents, and the production 

techniques available in the economy". Seasonality and its appropriate modelling
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have been the focus of interest in recent years, however, there is little consensus on 

how seasonality should be treated in empirical applications on aggregate data. Since 

the statistical properties of different seasonal models are distinct, the imposition of 

one kind when another is present can result in serious bias or loss of information, 

and it is therefore useful to establish what kind of seasonality is present in the data.

Traditionally, seasonal fluctuations have been considered a nuisance that 

obscure the more important components of the series (presumably the growth and 

cyclical components, eg. Bums and Mitchell, (1946)), and seasonal adjustment 

procedures have been implemented to eliminate seasonality. Of the large number of 

seasonal adjustment procedures, the most widely used was the Census X-l 1 method, 

described in Shiskin et al. (1967). This method uses a set of moving averages to 

produce seasonally adjusted data. The X -ll program and other methods that have 

been empirically developed later (such as the ARIMA X -ll) tend to produce what 

their developers feel are desirable seasonal adjustments, but their statistical properties 

are difficult to assess from a theoretical view-point. These methods dominated 

applied time series econometrics until quite recently, and a survey and a discussion 

of some of the major issues involved in the seasonal adjustment of time series data 

can be found in Bell and Hillmer (1984). In the past few years, a new viewpoint has 

emerged, in which seasonal fluctuations are not taken as nuisance but as integral part 

of the economic data. Contributors to this view include Ghysels (1988), Barsky and 

Miron (1989), Braun and Evans (1995), Chatterjee and Ravikumar (1992) and 

Hansen and Sargent (1993) among others. The first two articles point out that 

seasonal adjustment might lead to mistaken inferences about economic relationships 

between time series data. In fact, seasonal fluctuations have been found to be 

economically significant and an important source of variation in economic time 

series. Thus, seasonal adjustment might cause a significant loss of valuable 

information about the time series behaviour of economic variables.

Three classes of time series models commonly used to model seasonality can 

be called:

a) Purely deterministic seasonal processes

b) Stationary stochastic seasonal ARMA processes

c) Integrated (and fractionally integrated) seasonal processes.

A purely deterministic seasonal process is a process generated by seasonal
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dummies such as:
s - l

y c = mo + E  mi sit w
i= l

where s is the number of time periods in a year and the nij are the coefficients 

corresponding to the seasonal dummies Sit. The seasonal dummy definition simply 

allows for the mean of the series to vary by season, so the presence of seasonal 

dummy seasonality raises no interesting statistical issues per se. The reason for 

using models like (1) is that the factor that might produce the seasonal variation can 

be readily identifiable (eg. school calendars, the timing of tax collection, etc.). This 

means that there may be situations in which we have identifying restrictions 

available for the seasonal variation. For example, a December boom in output can 

reasonably be attributed to a demand shift (Christmas) as opposed to an improvement 

in the technology. Therefore, identifying restrictions provided by considering the 

sources of seasonal dummy variation can be exploited in evaluating competing 

economic hypotheses.

A stationary stochastic seasonal ARMA process can be expressed as 

$ P( L S) y t = Qq{L s) e t €t ~ i i d  (2)

where Op(Ls) and ©Q(LS) are polynomials in Ls (the seasonal lag operator, Ls Xt = xt_s) 

of orders P and Q respectively, with the roots of Op(Ls) outside the unit circle and 

the roots of 0 Q(LS) outside or on the unit circle. If the roots of 0 Q(LS) are strictly 

outside the unit circle, the process is invertible, and (2 ) can be written as an infinite 

autoregression of form 

p ( L s ) y t = e t e t ~ i i d  (3)

with all the roots of p(Ls)=0 lying outside the unit circle and where some of them 

are complex pairs with seasonal periodicities. More precisely, the spectrum of a 

process like this will be given by

f U )  = -----— (4)
2 n  | p ( e lXs) |2

where a 2 = Var(e,) and f(A,) will have peaks at some of the seasonal frequencies Xs. 

An example of this type of process would be

Y t  = PVt - s  + e t (5)

with |p | < 1, and s=4, for example, for quarterly data; in this case, the spectrum 

would have a peak at the seasonal frequencies n/2 (and 3tc/2) and n as well as at
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zero frequency. A crucial fact about series displaying stationary stochastic 

seasonality of this form is that they are not qualitatively different from series 

displaying no-seasonal stationary stochastic ARMA behaviour. Consider, for 

example, the case of s=l in (5). The spectrum of this process differs from that with 

s=4 in that most of its power is located now at the so-called business cycle 

frequencies. For both processes (s=l and s=4) however, the spectrum has power at 

all frequencies, including both the seasonal frequencies and the business cycle 

frequencies. The relative amount of power at the two sets of frequencies differs, but 

there is no logical way to say how much of the power at particular frequencies is 

due to particular lags in the AR representation.

While it is common practice to model a seasonal component as having a 

deterministic or stationary path of forms a) and b), there may be cases where it is 

appropriate to allow the model of the seasonal component to drift substantially over 

time. This possibility is implicit in the practice of seasonal differencing (see eg. Box 

and Jenkins (1970)) whereby a process observed s times per year would be 

transformed to its s-period difference, on the assumption that the process contains 

an integrated seasonal component. If the lag polynomial in (3) is given by (1-LS) 

corresponding to a seasonal unit root, then it can be factorized as (1-LS) = (1- 

L)(l+L+L2+...+Ls l) = (l-L)S(L). That is, the seasonal difference operator can be 

broken down into the product of the first difference operator and the moving-average 

seasonal filter S(L) containing further roots of modulus unity. Engle et al. (1989) 

define a variable yt to be seasonally integrated of orders d and D (denoted SI(d,D)), 

if (l-L)dS(L)Dyt is stationary. Thus for quarterly data, in the terminology established 

above, if (l-L4) ^  is stationary, then yt = SI(d,d) with S(L) = (1+L+L2+L3). Further, 

noting that

( 1 - L 4) = (1 -L)  ( 1 +L+L2+ L 3) = ( 1 - L )  (1+L) ( 1 + L 2) ,  (6)

the quarterly seasonal process above has four roots of modulus unity: one at zero 

frequency, one at the two cycles per year corresponding to frequency K, and two 

complex pairs at one cycle per year corresponding to frequencies 7t/2 and 3k/2 (of 

a cycle 27t), all of them with the same integration order d; however, in view of the 

decomposition in (6 ) we see that a seasonal process might also present different 

integration orders for each of these frequencies. Then, if the innovations of such a
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process are an 1(0 ) series1, the process will be stationary if all the integration orders 

are in the interval (-1/2 , 1/2 ), and we say that yt has seasonal long memory at a 

given frequency if the integration order at that frequency is greater than zero. A 

seasonal series might also display only a single root at a particular frequency. For 

example, an integrated process with a single root at two cycles per year is 

( 1 +  L ) d y t = e t , (7)

and at one cycle per year it is 

( 1  + L 2 ) d y t = e t . (8)

Thus, if et is an 1(0) series and if 0 < d < 1/2, yt will be in both cases covariance 

stationary with the spectral density unbounded at frequency K in (7), and at 

frequency tc/2  in (8 ).

Combining these last two approaches (b and c) in the classical Box-Jenkins 

(1970) framework, the modelling of time series with seasonal components takes 

place by applying the seasonally fractional differences in addition to the first 

fractional differences in the stationary producing phase of the process. The final 

model can be written as 

+ (L) <&(Z,S) ( 1 -  L ) d ( 1 -  L S) D y t = 0 (L) 0  (L s) e c (9)

where the seasonal and non-seasonal autoregressive (AR) operators, 0(Ls)=(l-0jLs- 

...-OpLsP) and <()(L)=( 1 -<|),L-..,-<|)pLp) have zeros outside the unit circle; the seasonal 

and non-seasonal moving average (MA) operators, 0(Ls)=(l+01Ls+...+0QLsQ) and 

0(L)=(l+01+...+0qLq) have zeros outside or on the unit circle, and the £t’s are 

independently distributed with zero mean and variance a 2. Then we say that yt 

follows an ARIMA (p,d,q) x (P,D,Q) model. ARIMA models of the form of (9) 

have been widely used in the literature to model seasonality and they have been 

found to be flexible enough to describe the behaviour of many actual nonstationary 

and seasonal time series.

Finally, time varying coefficient models of the forms a), b) and c) have also 

arisen in the seasonal literature and they can be called periodically (deterministic, 

autoregressive or integrated) seasonal processes. Possible economic motivations for

1 We define now ahead an 1(0) process ut, t=0,±l,..., as a covariance stationary
process with spectral density bounded and bounded away from zero at any
frequency.
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time-varying parameter models are that economic agents may have seasonally 

varying utility functions (Osborn (1988)), seasonally varying expectations (Franses

(1992)), and/or periodic adjustment costs. A good survey of time varying models 

of seasonality can be found in Hylleberg (1986, Chapter 6 ).

We attempt now to describe a brief and partial summary of the main findings 

on modelling seasonality in economic time series. Starting with deterministic 

patterns, Barsky and Miron (1989) considered a model that included both 

deterministic and stochastic seasonal components and investigated the seasonal 

fluctuations in a wide selection of post-war quarterly U.S. macroeconomic variables. 

Their empirical results suggested that deterministic seasonals played a very important 

role in explaining the variation of the data, while models of stationary indeterministic 

seasonalities played a secondary role. Deterministic seasonal models have also been 

proposed in Clare et al. (1995) for describing the monthly U.K. returns on the FT-A 

share index, and in McDougall (1995) for some New Zealand macroeconomic series. 

Also deterministic models, but allowing for time variation in the magnitude of the 

seasonal dummy coefficients have been analyzed by Stephenson and Farr (1972) and 

Hylleberg (1986), while Canova (1992) analyzed seasonality as a sum of a 

deterministic process and a stationary stochastic process. In this model, deterministic 

seasonals are captured by seasonal dummies, and the stochastic seasonals are 

accounted for by a set of uncertain linear restrictions on the AR coefficients of the 

model. He uses a Bayesian AR approach, and its method is applied to ten quarterly 

U.S. macroeconomic series, concluding that seasonality can be well modelled as the 

sum of deterministic seasonals and a stationary AR process.

Nelson and Plosser (1982) and subsequent work have indicated that a unit 

root model provides a better approximation to the trend in many economic time 

series when compared to a deterministic-trend model. As in that work, seasonal unit 

roots have emerged in this literature, motivated essentially by the possible changing 

nature of the seasonal component in economic time series. Hylleberg, Engle, 

Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal unit roots 

in the quarterly U.K. nondurable consumption and disposable income, using a 

general procedure that allows tests for unit roots at some seasonal frequencies 

without maintaining that unit roots are present at all of them. This procedure (that 

will be explained briefly in the next section) allows the model to include a constant,
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seasonal dummies or a time trend. A good deal of empirical work has been done 

following this general approach: Otto and Wirjanto (1990), after applying the HEGY 

procedure to fourteen quarterly Canadian economic time series found evidence in 

favour of seasonal unit roots. Similar evidence was found in Lee and Siklos (1991,

1994), and also in Linden (1994) for the Finnish economy. Beaulieu and Miron

(1993) extended the HEGY procedure for monthly data and examined twelve U.S. 

macroeconomic series in monthly and quarterly data. In contrast with most of these 

previous studies, they concluded that evidence in favour of a seasonal unit root was 

weak. In the same line, Osborn (1990) using the Osborn et al. (1988) and the 

HEGY tests, found little support for seasonal unit roots in a survey of thirty quarterly 

U.K. macroeconomic variables. The findings of Beaulieu and Miron (1993) have 

been seriously questioned by Hylleberg et al. (1993). Their conclusions are that 

seasonality in many cases is variable, not fixed. Abeysinghe (1994) examined the 

consequences of using seasonal dummies in regression when seasonality is generated 

by seasonal unit roots. It was shown in that paper that subtracting fixed seasonal 

means from a seasonally integrated series changes the covariance structure of the 

series, and often the mean subtracted series may take the appearance of a stationary 

series in small samples, suggesting that spurious regressions can arise in practice. 

Mills and Mills (1992) proposed a model with both deterministic and stochastic 

factors, these factors being estimated by signal extraction. Using standard F- 

statistics, they analyzed a set of quarterly U.K. macroeconomic series and concluded 

that both forms of seasonality are present in the data, with the majority of the series 

containing both seasonal and non-seasonal unit roots. Finally, Hylleberg, Engle, 

Granger and Lee (1993) (henceforth HEGL) performed the HEGY test on the 

quarterly series of the Japanese real consumption and real disposable income. Their 

results showed that the income series was integrated of order 1 at all frequencies, 0 , 

7t/2  (and 3tc/2), and 7t, while the consumption series was integrated of order 1 at 

frequencies 0  and n, but the tests had some difficulty in separating unit roots at 

frequency n/2 from a deterministic seasonal pattern. Osborn (1993) in the discussion 

following that paper suggests that a nonstationary periodically AR(1) or a 

periodically integrated 1(1) process could be a better modelization. Theoretical 

analyses of periodic models have been developed by Tiao and Grupe (1980) and 

their application to economic data appears in Osborn and Smith (1989), Franses and
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Romijn (1993), Franses (1994), and Franses and Paap (1994) among others.

In relation to fractional models, few empirical studies have been carried out. 

The notion of a fractional Gaussian noise model with seasonality was suggested by 

Jonas (1981) and extended in a Bayesian framework by Carlin et al. (1985) and 

Carlin and Dempster (1989). In Porter-Hudak (1990) a seasonal fractionally 

integrated model was applied to some quarterly U.S. monetary aggregates with the 

conclusions that a fractional ARMA model could be more appropriate than the usual 

ARIMA models for these aggregate data. Advantages of seasonal fractionally 

differencing models for forecasting monthly data are illustrated in Sutcliffe (1994) 

and another empirical application is found in Ray (1993).

In the next section we briefly describe some of the common tests for seasonal 

integration, and compare them with Robinson’s (1994c) tests for nonstationary 

hypotheses which permit us to test seasonal fractional integration of any stationary 

or nonstationary degree in raw time series. In Section 3, the tests of Robinson 

(1994c) are applied to some macroeconomic data of Japan and United Kingdom that 

were used in HEGL (1993) and HEGY (1990) respectively, and finally Section 4 

contains some concluding remarks of these empirical applications.

4.2 TESTS FOR SEASONAL INTEGRATION

In this section we present some of the most commonly used tests for seasonal 

integration and compare them with Robinson’s (1994c) tests for nonstationary 

hypotheses described in Chapter 2. As previously mentioned, the latter tests are very 

general and they will permit us to test seasonal fractional and non-fractional 

integration at some or all seasonal frequencies.

We first consider the Dickey, Hasza and Fuller (DHF, 1984) test which is 

basically an extension of the test of Dickey and Fuller (1979) to processes such 

as

( 1 - p SL S) y t = e t €c ~ i i d ( 0 , o 2) (10)

where ps = 1. The test is based on the auxiliary regression of form 

( 1  - L s) y t = n y t_a + e t ( 1 1 )

and the test statistic is the ’t-value’ corresponding to n in (11). Due to the 

nonstandard asymptotic distributional properties of the ’t-values’ under the null 

hypothesis H0: n = 0, DHF (1984) provide the fractiles of simulated distributions
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which give us the critical values to be applied when testing the null against the 

alternatives: Hji n < 0. In order to whiten the errors in (11), the auxiliary regression 

may be augmented by lagged values of (1-Ls)yt, and with deterministic parts as an 

intercept, seasonal dummies or a trend, but unfortunately this changes the distribution 

of the test statistic. (An extension of these tests, accommodating deterministic 

seasonal trends is developed in Cho et al. (1995)). In addition, the use of the correct 

augmentation is of great importance for the size and power of the tests in finite 

samples. Another limitation of DHF’s (1984) test is that it is a joint test for roots 

at long run and seasonal frequencies, and therefore it does not allow for unit roots 

at some but not all the seasonal frequencies. Also the alternative is a specific sth 

order autoregression. Similar problems arise in the tests proposed by Bhargava 

(1985). As an example, if we take s=4 in (11), extending the decomposition in (6 ), 

(1-L4) = (l-L)(l+L)(l-iL)(l+iL), with roots L = +l,-l,+i,-i, all of length 1 and 

corresponding to the zero frequency (L= 1), the semiannual tc, (L = -l), and the 

annual frequencies n/2 and 3n/2, (L = ±i), if the data are quarterly. Athola and Tiao 

(1987) proposed tests for the case of complex roots in the quarterly case, and all 

these previous ideas are the basis for the extension of the DHF’s (1984) tests by 

HEGY (1990) who propose a test for the quarterly case that, unlike the DHF’s 

(1984) tests, looks at unit roots at some frequencies without maintaining that unit 

roots are present at all of them. The test is based on the auxiliary regression 

( 1 - L 4) y t = n 1y l t _1 + n 2y 2t_1 + n 3y 3t_2 + n 4y 3t_1 + e t ( 12)

where ylt = (1+L+L2+L3)yt removes the seasonal unit roots and leaves in the zero 

frequency unit root; y2t = -(1-L+L2-L3)yt, leaves the root at frequency n; and y3t = - 

(1-L2)yt leaves the unit roots at frequencies k/2 and 3tc/2. The existence of unit roots 

at 0, 71, 7t/2  (and 37t/2 ) implies that 7̂ =0 , k2=0, and 7C3=7t4= 0  respectively. The t- 

values on and 7  ̂ are shown to have the known Dickey-Fuller distribution (see 

Fuller (1976)) under the null of 7 ^= 0  and n2=0 respectively, while the t-value on 7t3 

has a DHF distribution with s=2 conditional on 7t4=0 . Also a joint test of 7t3=7t4= 0  

is proposed based on the F-value, and the critical values of the distribution are 

tabulated. To show how these limiting distributions relate to the classical unit root 

tests, a test of 7tj = 0 in (12) will have the familiar Dickey-Fuller distribution if n2 

= 7t3 = 7t4 = 0 since the model can be written in the form 

y l t  = ( l + T i ,) + e t .
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and similarly, if 7̂  = n3 = n4 = 0 , the model becomes 

y 2t = - ( 1 +  WjJyj t . !  + 6 t , 

and testing tt2 = 0 above is a test for a root of -1 which was shown by Dickey and 

Fuller (1979) to be the mirror of the Dickey-Fuller distribution. A test of ti3 = 0 can 

be written as 

y3C = - ( 1 + ic3)y3t_2 + e t ,

assuming that 7i4 = 0 which is therefore the mirror of the DHF distribution for 

biannual seasonality, and the inclusion of y3t.1 in (12) recognizes potential phase 

shifts in the annual component. Since the null is that k3 = tz4 = 0, the assumption 

that n4 = 0  may merely reduce the power of the test against some alternatives.

A crucial fact in these tests is that the same limiting distributions are obtained 

when it is not known a priori that some of the tc’s are zero: if the 7t’s other than the 

one to be tested are truly nonzero, then the process does not have unit roots at these 

frequencies and the corresponding y’s are stationary. The regression is therefore 

equivalent to a standard augmented unit root test. If however some of the other Tt’s 

are zero, there are other unit roots in the regression, but the corresponding y’s are 

now asymptotically uncorrelated, and the distribution of the test statistics will not be 

affected by the inclusion of a variable with a zero coefficient which is orthogonal 

to the included variables. To see this, note that the homogeneous solutions to 

equations

(1 - L ) y t = e t ; (1 + L ) y t = e t ; a n d  (1 + L 2) y t = e c, 

are given, respectively, by
fc-l fc-l int[(t-l)/2]

t is divisible by four, the covariances are all zero, and at other values of t, the 

covariances are at most o2, so the series are asymptotically uncorrelated as well as 

being uncorrelated in finite samples for complete years of data. Thus, for example, 

when testing = 0  in (12), if we suppose that 7t2 = 0  but y2 is still included in the 

regression, y1 and y2 will be asymptotically uncorrelated since they have unit roots

e t - j ' ( l  and  S3t ( 1)
J = 0  J = 0 J = 0

The variances of these series are given by

where a 2 is the variance of and if these series are excited by the same {8^ and
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at different frequencies and both will be asymptotically uncorrelated with lags of y4 

which is stationary. Therefore, the test for = 0 will have the same limiting 

distribution regardless of whether y2 is included in the regression, and similar 

arguments can be used for the other cases. As in DHF (1984) test, the auxiliary 

regression has to be augmented with lagged values of the dependent variable in order 

to whiten the errors, and deterministic components can be introduced in the auxiliary 

regression (12), however, again the distribution changes. An extension of this 

procedure for monthly data can be found in Beaulieu and Miron (1993), and another 

extension to allow joint HEGY-type tests for the presence of unit roots at zero and 

all seasonal frequencies, and only for seasonal frequencies is given in Ghysels et al.

(1994). It is shown in this article that the test statistics will have the same limiting 

distribution as the sum of the corresponding squared t-statistics for Ttj (i=l,2,3,4) in 

the former, and nr (i=2,3,4) in the latter test.

Other seasonal unit roots tests presented in the literature are Hasza and Fuller 

(1982) which discuss using an F-type statistic in the model 

( 1 -L ) ( 1 - L 4) y t = + P2 z 5 t _4 + e t (13)

with z4t = (l-L)y, and z5t = (l-L4)y„ and again possible augmented autoregressions in 

the left hand side in (13). The null hypothesis will correspond to a 1(1,1) process 

(using the Box-Jenkins’ (1970) terminology) and the alternatives are 1(0,0), or 1(1,0) 

or 1(0,1). Dickey and Pantula (1987) pointed out the inappropriateness of such tests 

since they are two sided in nature whereas the alternative of stationarity is one-sided. 

Using the same model (13), Osbom et al. (1988) proposed t-ratios on p, and p2 for 

the same null and alternatives hypotheses as in Hasza and Fuller (1982) and a score 

test was proposed by Ahn and Cho (1993) as an another alternative test for seasonal 

AR unit root.

All these procedures referred to so far are tests for a unit root in the seasonal 

AR operator and have stochastic nonstationary as the null hypothesis. Canova and 

Hansen (1995) extended the test of Kwiatkowski et al. (1992) to the seasonal case, 

and proposed a LM test, (the CH test), based on the residuals from a regression 

extracting the deterministic seasonal components and other deterministic components, 

for testing the null of stationarity around a deterministic seasonal pattern. In 

Hylleberg (1995), small sample properties of HEGY (1990) and CH (1995) tests for 

seasonal unit roots in quarterly time series are evaluated and compared. He
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concludes that both tests complement each other. Finally, Tam and Reinsel (1996) 

propose in a recent article a test for a unit root in the seasonal MA operator, testing 

the null of deterministic seasonality against the alternative of stochastic 

nonstationary. They consider the (integrated) SMA(l) model,

y t = \Lt + e t t  = 1 - s ,  . . . 0  (14)

(1 ~ L S) y t = (1 - a L s ) e t t  = 1 , 2 . . . ,  ( 15 )

where Pt is a deterministic seasonal mean function, so that Pt-Pt.s = 0 , and £j is, 

initially, a white noise process. Thus, a test of a  = 1 in (15) can be interpreted as 

a test of deterministic seasonality against the alternative, a  < 1 of stochastic 

integrated seasonality. The test can be extended to a more general case with ^  in

(15) replaced by ut, where ut is a stationary and invertible ARMA process <J)(L) Ut = 

0(L) £j, and also to allow for a deterministic linear trend in the series yt, leading to 

a different nonstandard null limit distribution.

All tests presented so far particularized the case of a unit root at some or all 

seasonal frequencies. Robinson’s (1994c) univariate tests described in Chapter 2 are 

more general in the sense that they allow us to test any integer or fractional root of 

any order, and therefore do not concentrate merely on the unit root situation. 

Similarly to HEGY’s (1990) tests, they improve tests of DHF (1984) allowing for 

roots at all seasonal frequencies, but unlike these tests, the model will allow us to 

test different amplitudes and different frequencies not only under the alternative but 

also under the null hypothesis. In HEGY (1990) they test the presence of a unit root 

at each frequency and several null hypotheses will be tested for each case of interest. 

Extending (12) to allow augmentations of the dependent variable and deterministic 

paths, the auxiliary regression in HEGY (1990) is

4>(D (1-L4) y c=ni y'lt-l + n2y 2t-l + Jt3>'3t-2 + *4 Ĵ t-l + ’It + et <16> 
where <j)(L) is a stationary lag polynomial in the fourth difference of yt and rit is a 

deterministic process that might include an intercept, a time trend and/or seasonal 

dummies. If we cannot reject the null hypothesis nl = 0 against the alternative 71, 

< 0  in (16), the process will have a unit root at zero frequency whether or not other 

(seasonal) roots are present in the model. In Robinson’s (1994c) tests, the null will 

include a particular model that might include the unit root at zero frequency as the 

only root in the process but it can also be specified in a way that allows roots at



88

various seasonal frequencies. Thus in his model, substituting (1.9) by 

y t = r\ t  + x t t  = 1 , 2 , ---------------------  ( 17 )

and specifying (1.10) as

(1 ~ L ) 1+ ®xc = Uc t  = 1 , 2 ................................   ( 18)

and (2 .2 ), the null hypothesis (1.12) will imply that the process has a single unit root 

at this zero frequency and no other roots will be present given the requirements on 

ut in (18) which, in this Robinson’s (1994c) setting, are that Uj must be a covariance 

stationary process with at most weak parametric autocorrelation. Thus, we rule out 

here the possibility of testing, as in HEGY (1990), for a unit root whether or not 

other roots are present in the process, since the spectrum of ut must be bounded and 

bounded away from zero at any frequency. In fact, the test statistics will be 

functions of the hypothesized differenced series which have short memory under the 

null and thus, if we suppose the process has some seasonal roots, we must specify 

at what particular frequencies these roots are located and which are their integration 

orders, in order to take appropriate differences to satisfy the conditions on ut. Thus,

we could have instead of (18)

(1 -  L 2) d+ex t = u t t  = 1 , 2 , . . . .  ( 19)

or alternatively

(1 -  L + L 2 -  L 3) d+0x t = u t t  = 1 , 2 ,  . . . .  ( 20)

or

(1 -  L &) d+eXf. = u t t  = 1 , 2 , ............. ( 21)

In all these situations, with d = 1, under the null (1.12), the process will display a 

unit root at zero frequency, with another one at frequency n in (19); with two 

complex ones corresponding to n/2 and 3n/2 in (20), or with all them as in (21). 

Similarly, using HEGY’s (1990) tests once more, the non-rejection of the null Kj = 

0  in (16) will imply that the process displays a unit root at frequency K 

independently of other possible roots in the process, and this hypothesis can be 

consistent with (2.2) and (17) jointly with (19) or (21) among other possibilities 

covered by Robinson’s (1994c) tests. Furthermore, testing sequentially, (or jointly 

as in Ghysels et al. (1994)), the different null hypotheses in (16), if we cannot reject 

that 7tj = 0 for i=l,2,3 and 4, the overall null hypothesized model in HEGY (1990) 

becomes
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* ( L )  ( 1 -  L 4) y t = T]t + € t t  = 1 , 2 , - ( 22)

and we can compare it with the set-up in Robinson (1994c) using (2.2), (17), and 

(2 1 ) with

* ( L )  u t = e t t  = 1 , 2 , . . .  ( 23)

which, with d = 1, under the null (1 .12) becomes 

♦  (L) ( 1 - L 4) y t = 4>(L) ( 1 - L 4) t  = 1 , 2 , . . .  (24)

Clearly, if we do not include any explanatory variable in (16) and (17), (i.e. r|t = 0), 

(24) becomes (22), and if r\t & 0 the difference between the two models will only 

come through the deterministic components of the process. Similarly, if we cannot

reject that tzx and Kj are equal to zero but we reject a joint test of 7t3 = k4 = 0 in

(16), a plausible model in HEGY (1990) would be

<MD (1 -  L 2) y t = rit + e t , t  = 1 , 2 ,  . . . ( 25)

and the corresponding setting in Robinson’s (1994c) tests would be (2.2), (17), and 

(23) jointly with 

(1 -  L 2) 1+ ex c = u t , t  = 1 , 2 ____

Robinson’s (1994c) tests will also allow us to test different integration orders for 

each of the frequencies. Thus, instead of (21) we could consider for instance,

( 1 -  L ) dl+01 ( 1 +  L ) d2+02 ( 1 +  L 2) da+03x t = u t , t  = 1 , 2 , . . .

and test the null hypothesis: 0  = (0 1,0 2,0 3)’ = 0 , for different values of d1? d2 and d3. 

This possibility is also ruled out in HEGY (1990) and the other tests presented 

above, which just concentrate on the unit root situations.

Finally, we can also compare the tests of Robinson (1994c) with those 

proposed in Tam and Reinsel (1996). For a general ARMA case, they considered 

the model

y t = \ i t + u t t  = 1 -  s ,  . . .  0 (26)

( 1 - L S) y t = ( l ~ a L s ) u t t  = 1 , 2 . . . ,  ( 27)

where is as in (14), (i.e., Pt - Pt_s = 0), and Uj is a stationary and invertible 

ARMA(p,q) process. They tested the null hypothesis

H0: a  = 1 (28)

in (27) against the alternative Ha: a  < 1. The non-rejection of the null (28) in (26)
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and (27) would imply that yt follows a deterministic seasonal pattern plus a 

stationary stochastic process, (i.e., like (26) with t = 1,2 ,...), while its rejection would 

give us evidence in favour of seasonal integration. We can now take fractional 

alternatives instead of the MA alternatives in the right hand side in (27), and also 

allow for fractional integration instead of the unit root case in its left hand side. 

Thus, instead of (27) we could consider 

( 1 - L s ) d y t = ( 1 - L S) Y izt t  = l , 2 . . .  (29)

with d > 0, and given the common factors appearing in both sides in (29), calling 

5 = y - d, the model can be rewritten as (26) with 

(1 - L s ) * y c = u c t  = 1 , 2 . .  (30)

and we can test here the null hypothesis H0: 6  = 0, against the alternative: H„: 8  > 

0. The non-rejection of H0 in (26) and (30) would imply that yt behaves like (26) 

with t = 1,2 ,..., (i.e. a deterministic seasonal plus a stationary process), while its 

rejection would imply that yt follows a seasonal fractionally integrated process. Note 

that the same models under the null and alternative hypotheses can be obtained using 

Robinson’s (1994c) setting in (2.2), (17) and (18), with r|t in (17) replaced by 14, and 

0  = 8  - 1 in (18).

Finally we stress again that the standard null limit %2 distribution in 

Robinson’s (1994c) tests is constant across different specifications of p(L;0) and 

regressors, and thus does not require any nonstandard distribution unlike the tests 

presented previously. In the next section we apply different versions of Robinson’s 

(1994c) tests to macroeconomic data of Japan and United Kingdom that were 

analyzed in HEGL (1993) and HEGY (1990) respectively.

4.3 EMPIRICAL RESULTS

The relationship between consumption and income is arguably one of the 

most important in macroeconomics. The most influential and perhaps most widely 

tested view of the relationship between these two variables is the permanent income 

hypothesis (PIH), (see Hall (1989) for a literature review). Thus, it is not surprising 

that a considerable amount of effort and empirical evidence have been generated to 

determine the nature of the time series behaviour of these two variables separately 

as well as, of course, their joint statistical relationship.

The finding that many macroeconomic time series, including consumption and
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income, might be represented as integrated processes (Nelson and Plosser (1982) and 

subsequent work) raises the possibility that unit roots may be common, leading to 

the concept of cointegration suggested by Granger (1981). Indeed this notion has 

found a natural application in the PIH since Hall’s (1978) influential article showed 

that U.S. consumption behaved like a random walk. Other papers that test various 

versions of the PIH in the context of cointegration analysis are King et al. (1991), 

Han and Ogaki (1991) and Corbae et al. (1994). Relatively less attention has been 

paid to the case of quarterly data. Examples in the literature that study the case of 

seasonal integration and cointegration for consumption and income with quarterly 

data are HEGY (1990), Wirjanto (1991), HEGL (1993) and Lee and Siklos (1994).

In this section we concentrate on the univariate treatment of these two 

variables, and apply different versions of Robinson’s (1994c) tests to some 

seasonally unadjusted, quarterly data for Japan and United Kingdom, using the same 

data sets as in HEGL (1993) and HEGY (1990) respectively.

For both countries we follow the same procedure. We test H0 (1.12), in a 

model given by (1.10); (2 .2 ) and

where 0 in (1.10) is a (p x 1) vector, Slt, S2t and S3t in (31) are the seasonal 

dummies, \\ in (1.10) is a 1(0 ) process (i.e., with spectral density positive and finite 

at any frequency), and p(L;0) in (1.10) is a known function of L and 0 adopting 

different forms for the different cases considered. We test in a sequential way. Since 

the data are quarterly, we start by assuming that the process xt in (31) has four roots 

and take

and given that 0 is in this case a scalar (p=l), we test H0 (1.12) against the one

sided alternatives

Thus, under (1.12) the series will follow an 1(d) process with one root at zero 

frequency; one at frequency n ; and two complex ones corresponding to frequencies 

7t/2  and 3k/2, all them with the same integration order d.

In order to allow different integration orders at different frequencies we also 

consider

(31)

p(L;0) = ( 1 - L 4) d*e (32)

Hsl: 0 < 0, or H^: 0 > 0. (33)
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p ( L ; 0) = ( 1 - L 2) dl+01 (1 + L 2) d2+e\  ( 34)

and more generally,

p ( L ; 0) = ( 1 - L ) dl+01 ( 1 + L ) d2+02 ( 1 + L 2) d3+03 . ( 35)

Therefore, 0 = (01,02)’ under (34) and (O ^ ^ )*  under (35), and we test H0 (1.12) 

against the two-sided alternative

Ha: 0 0. (36)

Clearly, when departures are actually of the specialized form (32), a test of (1.12) 

directed against (36) will have greater power than ones directed against (34) or (35), 

but these tests have power against a wider range of alternatives.

Following this sequential way of testing we next assume xt displays only 

three roots: two of them complex, corresponding to frequencies 7t/2  and 3n/2, and 

one real that might be either at zero frequency or at frequency n. Thus, we perform 

the tests when

p ( L ; 0 )  = (1 -  L + L 2 -  L 2) d+e ( 37 )

and
p (L;  0) = (1 + L + L 2 + Z,3) d+e, ( 38 )

and extending now the tests to allow different integration orders at the complex and 

at the real roots, we also consider two-sided tests where

p ( L ; 0 )  = ( 1 - L ) dl+01 ( 1 + L 2) dz+02 (39)

and

p ( L ; 0) = ( 1 +  L ) dl+01 ( 1 +  L 2) dz+02. ( 40)

In a further group of tests, we assume that the hypothesized model contains only two 

roots, one at zero frequency and the other at frequency n. Again we start looking 

at one-sided tests against 

p ( L ; 0 )  = ( l - i 2) d*e ( 41)

and then at two-sided tests against 

p ( L ; 0) = ( 1 - L ) dl+01 ( 1 + L ) d2+02. ( 42)

Finally we consider the possibility that the process might be well modelled 

with a single root (or perhaps two complex ones), and therefore we look at

p (L; 0) = ( l - i ) d*e / ( 43 )
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p (L) 0) = ( 1  + D d+e, (44)

and finally,

p (L; 0) = (1 + L 2) d+0. (45)

Note that all these specifications of p(L;0) above can be viewed as particular 

cases of the general form specified in (1.11) and thus, satisfying the conditions 

required in Theorems 1-4 in Chapter 2. In all these cases the tests will be performed 

for different model specifications in (31). First we assume that a  = p0 = pj = p2 = 

p3 = 0 a priori, i.e., we will include no regressors in (31). Next we take a  as 

unknown and ft = 0 for i=0,...3 a priori, i.e., introducing only an intercept. The 

other three cases are: a time trend (a  and p0 unknown, and Pi = 0 for i=l,...3 a 

priori): an intercept and the dummy variables (P! = 0  a priori, and the rest of the 

parameters unknown); and the general case of an intercept, a time trend and the 

dummies (i.e., with all parameters in (31) unknown). In all cases we consider a 

wide range of null hypothesized values for d (and for the dj’s when p > 1), going 

from 0.50 to 2.25 with 0.25 increments, and white noise Up though in some cases of 

interest, when testing a single parameter (i.e., p = 1), we extend the results to 1(0 ) 

parametric autocorrelation in ut, allowing seasonal and/or non-seasonal AR. We first 

present the results for Japanese data.

4.3.a The Japanese case

We analyze here the log of total real consumption (ct), the log of real 

disposable income (yt), and the difference between them (ct-yt) in Japan from 1961.1 

through 1987.4 in 1980 prices. In Figure 4.1 we plot the original time series, their 

sample autocorrelations and estimates of the spectral density function2, observing 

much clearer seasonal components in yt and ct-yt than in ct. This can be better 

viewed in Figure 4.2 which shows the four quarters of each of the individual series 

after subtracting the average value of the year. Graphs like these were advocated by 

Franses (1994) and in case of a constant seasonal pattern, the series should be 

parallel. In these figures we observe that both series seem to present a changing

2 As in Chapter 3, they are estimates of the standardized spectral density 
function, using Barlett, Tukey and Parzen lag windows of size T-l.
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seasonal pattern, more marked for yt than for ct.

These series have been analyzed in HEGL (1993) to test the presence of 

seasonal integration and cointegration. In this work (and in an earlier version 

(HEGL (1991)), they apply the HEGY (1990) tests to these data and their 

conclusions can be summarized as follows: for ct, integration is obtained at 

frequencies 0, tc/2, k and 3n/2 (of a cycle 2tc) if there are no regressors in the model 

or if only a time trend is included; however, if dummies are also included, only two 

unit roots are observed: one at zero frequency and other at frequency n. Therefore, 

a plausible model for this series would be (22) when T|t = 0 or r|t = (l,t) \ but (25) 

if T|t includes the seasonal dummies. For yt, unit roots are not rejected at any of 

these frequencies when there are no regressors or a time trend and/or dummies are 

introduced, but if only an intercept is included the unit root at zero frequency is 

rejected. Finally, for ct-yt, the unit root nulls are not rejected at these frequencies, 

independently of the regressors used, so (2 2 ) again seems to be an appropriate way 

of modelling this series. We now set out the main results obtained across this work.

The first thing we do is to plot the individual series after applying the filter 

(1 - L4) and thus, removing all possible unit roots at zero and at seasonal 

frequencies. This is done in Figure 4.3, which also shows the autocorrelation 

functions and estimates of the spectral density function. In this figure we observe 

that both individual series still present a nonstationary appearance, with a possible 

different mean before and after 1973. This may be related to the different slope 

observed in the trend of both series after the oil crisis in that year. (See again Figure 

4.1)3. In the same figure we still observe significant autocorrelations in both series, 

with a slow decay and/or oscillation, while estimates of the spectral density have a 

large value around zero frequency, both of which could be indicative of fractional 

integration greater than a unit root, especially at this zero frequency. For ct-yt, plots 

seem to accommodate better to a possible stationary situation.

Tables 4.1a and 4.1b report the one-sided test statistic r in (2.9) when p(L;0) 

in (1.10) adopts the form in (32). Therefore we assume xt has four roots: one at

3 In order to deal with the problem of a possible structural break in the slope 
of the series, we calculate in Appendix 4.1 some of the tests performed below for 
the two subsamples: 1961.1-1973.4 and 1974.1-1987.4. In Appendix 4.2 we perform 
the tests including dummy variables for the changing growth of the series.
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zero frequency, one at frequency n , and two complex at frequencies n il  and 3tu/2. 

In Table 4.1a we take ut as white noise. We observe here that if we take all 

parameters in (31) to be zero a priori, we cannot reject (1.12) for d = 0.75 and d = 

1 in either individual series (ct and yt), while in ct-yt, these two cases are also not 

rejected as well as the case of d = 0.50. When regressors such as an intercept, a 

trend or seasonal dummies are included in (31), the unit root hypothesis is rejected 

in both series in favour of more nonstationary alternatives (d > 1), but in some cases 

we observe a lack of monotonic decrease in the test statistic with respect to d. As 

we explained in Chapter 3, such monotonicity is something that we should expect 

of any reasonable statistic, given correct specification and adequate sample size 

because they are one-sided test statistics. In particular, we observe that monotonicity 

is not captured when we include an intercept, and an intercept and the dummies for 

ct, and an intercept and the dummies for yt. Looking at ct-yt, monotonicity is always 

achieved and the nulls of d = 1 and of d = 0.75 are never rejected. We could 

conclude from this table that if Xj is an 1(d) process of form (1-L4)dxt = \\, and Ut is 

in fact white noise, the two individual series are clearly nonstationary with d greater 

than 1 in most cases; however their difference seems less integrated (with d < 1), 

suggesting that some fractional cointegration could exist between both series, for the 

cointegrating vector (1,-1), using a simplistic version of the permanent income 

hypothesis theory as discussed by Davidson et al. (1978), for instance.

The fact that d = 1 is not rejected for ct and yt when there are no regressors, 

and for ct-yt independently of the regressors used in (31), is consistent with the 

results in HEGL (1993) though they allow augmentations incorporating significant 

lagged values at the fourth difference of the series. Thus, in Table 4.1b we suppose 

that ut follows an AR(k) process, with k=l,2,3 and 4. Monotonicity is now observed 

in many cases, especially when we consider the series ct-yt, and the order of the 

autoregression is low. The range of non-rejection values of d goes from 0.50 

through 1 for ct and ct-yt, and from 0.50 through 1.25 for yt. When d > 1.25, the 

null is rejected in all cases where monotonicity is achieved. The lower integration 

orders observed in this table compared with Table 4.1a can be in large part due to 

the fact that the AR estimates are Yule-Walker, entailing roots that are automatically 

less than one in absolute value but which can be arbitrarily close to one, and 

therefore, they pick up at least part of the nonstationary component of the series.
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If we concentrate on the AR(1), we see that the unit root is not rejected for yt but 

is for ct when the dummies are included in the model, again in line with HEGL 

(1993).

We also calculated the test statistics when Uj was a seasonal AR process with 

one and two parameters. However, we do not report the results here since, though 

we observed many non-rejections, in any single case we obtained monotonic 

decrease in the test statistic with respect to the integration order d. This can suggest 

that the use of seasonal AR for modelling Ut when xt is given by (1-L4)d xt = ut, is 

not a correct way of specifying it, given that seasonality can be picked up either by 

seasonal integration above or by deterministic patterns (seasonal dummies) in (31). 

Similarly, supposing ut follows a mixed seasonal and non-seasonal AR process, the 

monotonic decrease in r with respect to d was again unlikely achieved, probably 

because of the same reasons as above.

In all cases considered so far we have assumed that the four roots in xt must 

have the same integration order. In the following table we allow this integration 

order to differ between complex roots and real ones. Table 4.1c corresponds to two- 

sided tests, reporting R in (2.9) when p(L;0) adopts the form in (34) and a  = (pj)i=of3 

= 0  a priori; a  unknown and (Pi) i=03 = 0  a priori: and finally a  and p0 unknown and 

(Pi)i=i,3 = 0  a priori, i.e., we consider the cases of no regressors, an intercept and a 

time trend respectively. We present results for values of dj and d2 ranging between 

0.50 and 1.50. When there are no regressors, the null hypothesis is rejected in all 

cases for both individual series with the lowest value of the test statistic achieved 

when dj = 1 and d2 = 0.50, suggesting that in these two series perhaps the complex 

roots are not required and a model with only two roots (one at zero frequency and 

the other at frequency n) might be more plausible. A test of this hypothesis will be 

conducted later. Looking at ct-yt, we observe some non-rejection cases: if d! = d2, 

the null is not rejected when this integration order is 0.50, 0.75 and 1. These three 

possibilities were also non-rejected in Table 4.1a when we considered one-sided 

tests, however, the lowest value is now achieved when d! = 0.75 and d2 = 0.50. 

Including an intercept or a time trend, we observe now some non-rejections for ct 

and yt. Starting with ct, the null hypothesis is not rejected when dj = 1.25 or 1.50 

and d2 = 0.50, 0.75 or 1, observing therefore a greater degree of integration at the 

0/k frequencies than at the complex ones. Similarly, for yt, all non-rejections occur
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when dj is slightly greater than d2, and for ct-yt, the lowest test statistic is obtained 

at dj = d2 = 0.75. The null hypothesis of a unit root at all frequencies (dj = d2 = 1) 

is either non-rejected in this series which is again consistent with Table 4.1a and 

with results given in HEGL (1993).

In Table 4.Id we are slightly more general in the specification of p(L;0), and 

a different integration order is allowed at each frequency. Therefore p(L;0) takes the 

form in (35) and again in this table, we present results of R for cases of no 

regressors, an intercept, and a time trend, with white noise i .̂ As in Table 4.1c, 

when there are no regressors the null is always rejected for the individual series with 

the lowest value obtained at dj = 1.50 and d2 = d3 = 0.50, indicating therefore the 

importance of the root at zero frequency as was pointed out before in view of Figure

4.3. For ct-yt there are non-rejections at some alternatives with the lowest value 

obtained at dj = 1.50, d2 = 0.50 and d3 = 1, but the case of dj = d2 = d3 = 1 is ' 

rejected in this series. Finally, including an intercept or a time trend, results are 

similar in both cases. For ct, the lowest statistic is obtained when dj = 1.50, =

1.00 and d3 = 0.50; for yt, when dj = 1.50, and = d3 = 1.00; and for ct-yt, when 

dj = 1.00, d2 = 0.50 and d3 = 1.00. All these results corroborate the importance of 

the root at zero frequency over the others for the three time series.

In Tables 4.2a and 4.2b we suppose xt contains only three roots: two

complex corresponding to the annual frequencies tz!2 and 3tc/2, and a real one at zero 

frequency. In both tables we take Ut as white noise. Table 4.2a gives results of r 

when p(L;0) adopts the form (37). The unit root is rejected for all series and all 

specifications in (31) and we observe that the only non-rejection cases correspond 

to both individual series when d = 0.75 if there are no regressors or if the seasonal 

dummies are included. The great amount of rejections observed in this table is in 

line with results for two-sided tests in Table 4.2b, where we allow a different 

integration order at zero and at complex frequencies. In this table p(L;0) takes the 

form in (39) and we observe that the null hypothesis is always rejected. When there 

are no regressors, the lowest statistic is obtained at d} = 1 and d2 = 0.50 for the 

individual series, indicating again the importance of the root at zero frequency. In 

all the other cases and in the three series, the lowest statistic corresponds to dj = d2 

= 0.50, which is consistent with the results given in Table 4.2a where the lowest test 

statistic corresponded to d = 0.50. Rejections of the unit root in this table might be
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in large part due to no inclusion of the root at frequency 7t, and this is corroborated 

by looking at Figure 4.4 which shows plots of the series, their sample 

autocorrelations and estimates of the spectral density after applying the filter (1- 

L+L2-L3) on them. In this figure we see that the series are clearly nonstationary, 

with significant autocorrelations and with the estimates of the spectrum showing a 

large value around the frequency n and therefore suggesting the need to include the 

root at such frequency. Excluding the root at zero frequency and taking p(L;0) as 

given by (38) or (40) resulted in rejecting the null for all cases in the three series. 

This was not surprising given the random walk character observed in the series in 

Figure 4.1 and the importance of the root at this zero frequency previously 

mentioned.

Following this sequential way of performing the tests, we assume Xt has only 

two roots, one at zero frequency and the other at frequency n. As in previous cases, 

we start plotting the differenced series, their sample autocorrelations and estimates 

of the spectral density for the unit root case. This is done in Figure 4.5, and we 

observe that even removing the unit roots at these two frequencies, the series are still 

nonstationary, suggesting in view of the correlograms and the estimates of the 

spectral density that the root at complex frequencies might also be important. First 

we take p(L;0) as in (41) so 0 consists of a single parameter. Tables 4.3a and 4.3b 

give results for one-sided tests with white noise and seasonal AR Uj respectively. 

Results with non-seasonal and mixed seasonal and non-seasonal AR ut were not very 

conclusive with monotonicity only obtained at a few specifications in (31). In Table 

4.3a we observe that though monotonicity is always achieved, results are quite 

variable across the different specifications in (31). Starting with ct, if there are no 

regressors, the non-rejection values of d range between 0.75 and 1.25; when a time 

trend is considered, the only non-rejection case occurs at d = 0.50, and including 

dummies the values of d where the null is not rejected are 1 and 1.25. For yt, if 

there are no regressors, the null is not rejected when d = 0.75 and 1; including an 

intercept, the only non-rejection value occurs at d = 0.5, and with seasonal dummies, 

the only non-rejection value of d is 0.75. For ct-yt, the null is rejected in favour of 

stationary alternatives for the first three cases, however, including dummies, the null 

is not rejected when d = 0.50. For the unit root null, our results are consistent with 

those of HEGL (1993). In fact, the unit root is not rejected for ct when the dummies
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are included, but is nearly always rejected for yt and ct-yt, due perhaps to exclusion 

of the unit root at the complex frequencies 7t/2  and 3tc/2, as was suggested by these 

authors.

Allowing seasonal AR ut, we see in Table 4.3b that the monotonic decrease 

in r with respect to d is always achieved. In this table we observe that for ct, the 

values of d range between 0.5 and 1.25, and the unit root is now never rejected. 

However, looking at yt, the unit root null is rejected in favour of less nonstationary 

alternatives in all cases except when there are no regressors where the unit root is 

not rejected. Since this null hypothesis is not rejected for ct, but it is for yt and ct-yt, 

again results in this case with seasonal AR ut support the evidence found in HEGL 

(1993) that only two unit roots (at zero and n frequencies) were present in 

consumption. For ct-yt, only when there are no regressors and d = 0.50 is the null 

non-rejected, and in all other cases, stationary alternatives seem more plausible, so 

again here, we could say that a certain degree of fractional cointegration seems to 

exist at these two frequencies, according to the permanent income hypothesis.

Extending now the tests to allow different integration orders at these two 

frequencies, results are given in Table 4.3c. We observe across this table just a 

single case where the null is not rejected and it corresponds to c, when there are no 

regressors and = 1.25 and d2 = 0.50. Results here are consistent with those given 

in Table 4.3a when we tested a scalar 0, especially for cases of an intercept and a 

time trend: with an intercept, we saw in Table 4.3a that the only non-rejection case 

was for y, with d = 0.50. In Table 4.3c this hypothesis is rejected but it corresponds 

to the lowest value obtained across the table. Similarly for the case of a time trend, 

the only non-rejection value in Table 4.3a corresponded to ct with d = 0.50 and again 

this hypothesis is the one which produces the lowest statistic in Table 4.3c.

Finally, we examine the case of xt containing a single root, and first we 

concentrate on the case of this root located at zero frequency. Thus p(L;0) will 

adopt the form (43). This can be motivated by looking again at Figure 4.1 where 

we see that both individual series may have a random walk character (though this 

is less likely for ct-yt). In Figure 4.6 we plot first differences of the series, their 

sample autocorrelations and estimates of the spectral density, observing in the latter 

peaks at both frequencies tz/2 and K, especially pronounced at n. Looking at the 

results for white noise Ut (in Table 4.4a), we observe that the unit root null is not
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rejected for ct and yt when there are no regressors, but is strongly rejected for ct-yt 

in favour of stationary alternatives. There are few non-rejections in this table (only 

5 of the 120 cases presented), and apart from the two cases of a unit root, the other 

three non-rejection cases correspond to d = 0.5 with a time trend for ct, and d = 0.75 

with seasonal dummies for yt. In case of ct-yt, the null is rejected in favour of 

stationary alternatives for the whole variety of specifications in (31), suggesting that 

at this zero frequency, a degree of fractional cointegration might also occur and 

referring again to the permanent income hypothesis.

We do not report here the results for non-seasonal AR i ,̂ mainly because we 

observed very few cases where monotonicity was achieved across the different 

values of d. This might be explained because seasonality is not captured now by 

first differences, and deterministic components do not seem to be sufficient to pick 

up this effect. However, we report in Table 4.4b results for seasonal AR ut, 

observing that monotonicity is now achieved in practically all cases, with results very 

similar when we take only one or two parameters. If there are no regressors, the 

unit root null is not rejected for ct and yt. In the latter, the null d = 0.75 is also non

rejected; however, for ct-yt, the only non-rejection case occurs at d = 0.50. 

Including some regressors, the case of d = 0.75 is not rejected for ct in any 

specification in (31); the values of d range between 0.50 and 0.75 for yt and is 

always rejected in favour of stationary alternatives for ct-yt, so here again we found 

evidence in favour of the permanent income hypothesis. The great proportion of 

rejections of the unit root null observed across this table is in line with HEGL (1993) 

who suggest that other unit roots apart from the one at zero frequency might be 

required when modelling these series. In Table 4.4c we present results for mixed 

seasonal and non-seasonal AR i .̂ Monotonicity is obtained now in some cases: 

when we include an intercept or a time trend for ct; a time trend for yt, and a time 

trend and the dummies for ct-yt. For ct and yt, the non-rejection values of d range 

between 0.75 and 1.75, while for ct-yt are slightly smaller going from 0.50 through 

1.50.

Finally, we also performed the tests for white noise u,, assuming that xt has 

a single root at frequency 7t, (i.e., p(L;0) adopting the form in (44)), and taking xt 

as an 1(d) process with two complex roots corresponding to frequencies n il and 

3tc/2, (i.e., p(L;0) as in (45)). However, we do not present the results here, since H0



101

was always rejected for all series and all specifications in (31). This may be due to 

the fact that we do not allow for presence of other roots and thus, modelling the 

series with a single root at these seasonal frequencies does not seem appropriate.

As a conclusion we can summarize the main results obtained for the Japanese 

case by saying that if xt is 1(d) with four seasonal roots of the same order d, and ut 

is white noise, the values of d where the null hypothesis is not rejected are greater 

than or equal to one for ct and yt, and less than or equal to one for ct-yt. If ut is AR, 

d ranges in most cases between 0.50 and 1 for the three series, and allowing 

different integration orders for the different frequencies, the most noticeable fact is 

the relative importance of the root at the zero frequency over the others. Excluding 

one of the real roots (either at zero or at frequency n), the null hypothesis is rejected 

in practically all situations, indicating the importance of these roots. Taking xt as 

1(d) with two roots, at zero and at frequency n, if ut is white noise, the null 

hypothesis is not rejected for ct when d ranges between 0.75 and 1.25 while for yt 

and ct-yt the non-rejection cases correspond to d < 1. Modelling here \\ as seasonal 

AR, the unit root is not rejected for ct but is for the other two series, and if we 

permit different integration orders at these two frequencies the only non-rejection 

case occurs for c, with the integration order at zero frequency slightly greater than 

at frequency n. Finally, if we assume that the process has a single root at zero or 

at frequency n (or two complex ones corresponding to frequencies 7t/2  and 3tc/2), the 

unit root will be rejected in practically all cases in favour of less nonstationary 

alternatives. Results presented in this section are consistent with those given in 

HEGL (1993) for the case of unit roots. Thus, yt and ct-yt can be well modelled as 

1(1) processes with four unit roots, while ct might also be described as an 1(1) 

process with only two unit roots, at zero and at frequency n. As a final comment, 

given that the values of d where the null is not rejected are in practically all 

situations smaller for ct-yt than for the individual series, we could conclude by saying 

that there might exist a certain degree of fractional cointegration between these two 

variables at zero and at seasonal frequencies for a given cointegration vector (1,-1), 

according to the permanent income hypothesis.
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TABLE 4.1a

f  in (2.9) with p(L;0) = (1 - L4)d+e and white noise ut

(Japanese case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ 2.61 0.77’ -1.02’ -2.36 -3.22 -3.76 -4.12 -4.37
I 4.36 2.64 3.05 1.36’ -0.89’ -2.54 -3.50 -4.04
I,T 9.12 7.28 3.83 0.00’ -2.72 -3.76 -4.01 -4.17
I,D 4.41 2.80 4.39 2.95 0.34’ -1.78’ -3.06 -3.76
I,T,D 10.02 8.34 5.14 1.04’ -2.11 -3.51 -3.99 -4.24

y ,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 2.54 0.72’ -1.05’ -2.38 -3.23 -3.77 -4.13 -4.38
I 4.70 3.34 2.21 -0.08’ -2.10 -3.37 -4.06 -4.44
I,T 7.80 6.04 2.54 -0.91’ -3.11 -3.76 -3.77 -3.86
I,D 4.95 4.12 4.78 2.33 -0.57’ -2.63 -3.72 -4.25
UVD 10.28 8.48 5.10 0.84’ -2.30 -3.69 -4.19 -4.44

ct-y, \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 1.53’ -0.08’ -1.77’ -2.93 -3.63 -4.05 -4.33 -4.52
I 2.41 0.46’ -1.54’ -2.84 -3.60 -4.05 -4.34 -4.54
I,T 2.34 0.45’ -1.54’ -2.86 -3.58 -3.82 -3.89 -4.02
IJ> 3.42 0.35’ -1.79’ -3.06 -3.76 -4.15 -4.39 -4.55
UVD 3.31 0.34’ -1.79’ -3.06 -3.76 -4.15 -4.39 -4.55

Non-rejection values of the null hypothesis (1.12) at 95% significance level; Letters in bold correspond 
to the cases where monotonicity with respect to d is achieved.

ct: Log of total consumption in Japan, 1961.1 to 1987.4 
yt: Log of disposable income in Japan, 1961.1 to 1987.4

—: No intercept, no time trend and no seasonal dummies.
I : Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,TJ): Intercept, time trend and seasonal dummies.
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TABLE 4.1b 

f in (2.9) with p(L;0) = (1 - L4)d+e and AR(k) ut 

(Japanese case) 

k = 1

c, \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.13 -3.50 -3.83 -4.13 -4.38 -4.57 -4.71 -4.83
I -1.59’ -0.67’ -0.51’ -1.79’ -2.78 -3.50 -3.99 -4.30
I,T 2.57 1.01’ -0.65’ -2.01 -3.19 -3.82 -4.09 -4.27
W> -2.87 -3.21 -3.31 -3.51 -3.73 -4.05 -4.35 -4.56
I,TJ) -1.05’ -2.67 -3.30 -3.63 -4.12 -4.48 -4.64 -4.74

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.01 -3.47 -3.82 -4.12 -4.37 -4.57 -4.71 -4.83
I -0.03’ 0.87’ 0.23’ -1.38’ -2.67 -3.52 -4.03 -4.34
I,T 3.09 2.07 0.24’ -1.64’ -3.09 -3.67 -3.80 -3.96
I,D -2.51 -2.37 -1.71’ -1.88’ -2.50 -3.34 -3.99 -4.36
I,TJ) 0.29’ -1.41’ -1.61’ -1.98 -3.08 -3.91 -4.28 -4.49

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.87’ -0.84’ -2.29 -3.21 -3.77 -4.13 -4.37 -4.54
I 1.94’ -0.01’ -1.78’ -2.91 -3.59 -4.01 -4.28 -4.48
I,T 1.89’ -0.02’ -1.78’ -2.93 -3.58 -3.86 -4.00 -4.16
tD 1.34’ -1.29’ -2.66 -3.46 -3.95 -4.25 -4.44 -4.58
UVD 1.29’ -1.29’ -2.66 -3.46 -3.95 

k = 2

-4.25 -4.45 -4.58

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.19 -3.53 -3.81 -4.09 -4.34 -4.54 -4.70 -4.82
I -1.53’ -0.51’ -0.85’ -2.14 -2.96 -3.56 -4.01 -4.36
I,T 1.77’ 0.16’ -1.35’ -2.37 -3.30 -3.88 -4.15 -4.34
I,D -2.90 -3.26 -3.56 -3.82 -3.99 -4.24 -4.48 -4.66
I,T,D -1.23’ -2.84 -3.60 -3.92 -4.29 -4.60 -4.74 -4.83

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

__ -3.08 -3.50 -3.80 -4.09 -4.34 -4.54 -4.70 -4.82
I -0.29’ 0.75’ 0.20’ -1.31’ -2.54 -3.41 -3.96 -4.30
I,T 2.69 1.61’ 0.04’ -1.55’ -3.04 -3.66 -3.77 -3.93
I,D -2.54 -2.57 -2.53 -2.78 -3.05 -3.57 -4.07 -4.39
I»T,D 0.11’ -1.99 -2.59 -2.72 -3.33 -3.97 -4.31 -4.51

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.80’ -0.88’ -2.27 -3.18 -3.75 -4.11 -4.36 -4.53
I 1.85’ 0.03’ -1.72’ -2.89 -3.60 -4.02 -4.30 -4.49
I,T 1.81’ -0.01’ -1.72’ -2.91 -3.59 -3.85 -3.97 -4.12
IJ ) 0.45’ -1.67’ -2.77 -3.47 -3.94 -4.24 -4.44 -4.58
I,T4) 0.40’ -1.68’ -2.77 -3.47 -3.94 -4.24 -4.44 -4.58

cont..
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k = 3

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

__ -3.25 -3.57 -3.80 -4.06 -4.33 -4.56 -4.75 -4.91
I -1.53’ -0.28’ -0.61’ -2.03 -2.85 -3.49 -4.01 -4.38
I,T 1.74’ 0.13’ -1.37’ -2.31 -3.29 -3.97 -4.26 -4.47
U> -2.95 -3.30 -3.69 -3.97 -4.16 -4.41 -4.67 -4.88
i ,t ,d -1.34’ -2.89 -3.71 -4.07 -4.47 -4.82 -4.99 -5.08

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.13 -3.53 -3.80 -4.07 -4.34 -4.57 -4.76 -4.92
I -0.23’ 0.79’ 0.19’ -1.20’ -2.34 -3.28 -3.93 -4.34
I,T 2.30 1.17’ -0.16’ -1.42’ -2.92 -3.65 -3.77 -3.95
I,D -2.66 -2.82 -3.05 -3.38 -3.55 -3.85 -4.21 -4.47
I,TO) 0.08’ -2.21 -3.13 -3.34 -3.67 -4.13 -4.40 -4.57

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

• • 0.78’ -1.07’ -2.44 -3.29 -3.85 -4.22 -4.49 -4.68
I 2.00 -0.04’ -1.78’ -2.89 -3.59 -4.03 -4.33 -4.54
I,T 1.95’ -0.06’ -1.79’ -2.91 -3.59 -3.84 -3.96 -4.12
14) 0.25’ -2.00 -2.98 -3.56 -3.97 -4.26 -4.46 -4.60
I,TJ) 0.20’ -2.01 -2.98 -3.56 -3.97 -4.26 -4.46 -4.60

ct \ d 0.5 0.75 1.00

__ -3.29 -3.52 -3.60
I -1.93’ -1.24’ -1.54’
I,T 0.11’ -1.21’ -1.75’
I,D -3.03 -3.19 -2.74
I,T,D -1.35’ -2.41 -2.63

yt \ d 0.5 0.75 1.00

. . -3.21 -3.50 -3.59
I -1.16’ -0.89’ -1.34’
I,T -1.89’ -2.34 -1.77’
I,D -2.69 -2.76 -3.14
I,T,D -0.05’ -2.53 -3.36

ct-yt\d 0.5 0.75 1.00

__ -4.68 -2.68 -2.58
I -4.61 -2.21 -1.76’
I,T -4.72 -2.24 -1.77’
I4> -2.11 -2.72 -2.86
UVD -2.22 -2.74 -2.86

k = 4

1.25 1.50 1.75 2.00 2.25

-3.71 -3.89 -4.10 -4.29 -4.45
-2.05 -2.21 -2.59 -3.14 -3.62
-1.72’ -2.42 -3.43 -3.83 -4.07
-2.60 -2.36 -2.51 -3.06 -3.62
-2.23 -2.60 -3.58 -4.09 -4.35

1.25 1.50 1.75 2.00 2.25

-3.71 -3.90 -4.10 -4.30 -4.46
-1.36’ -1.54’ -2.22 -2.98 -3.53
-1.06’ -1.94’ -2.90 -2.95 -3.15
-3.28 -2.89 -2.92 -3.45 -3.96
-2.91 -2.74 -3.47 -4.00 -4.29

1.25 1.50 1.75 2.00 2.25

-3.00 -3.44 -3.79 -4.06 -4.25
-2.34 -2.99 -3.49 -3.84 -4.09
-2.36 -2.99 -3.11 -3.07 -3.22
-3.19 -3.63 -3.99 -4.24 -4.41
-3.19 -3.63 -3.99 -4.25 -4.41

Non-rejection values of the null hypothesis (1.12) at 95% significance level; Letters in bold correspond 
to the cases where monotonicity in the value of the tests with respect to d is achieved.



TABLE 4.1c

R in (2.9) with p(L;0) = (1 - L2)dl+ei

No intercept and no trend

d, d2 ct c,-y,
0.50 0.50 41.03 39.76 5.25’
0.50 0.75 47.92 46.58 12.86
0.50 1.00 53.35 51.97 19.48
0.50 1.25 57.72 56.32 24.32
0.50 1.50 61.28 59.88 28.05

0.75 0.50 17.12 16.72 0.42’
0.75 0.75 22.42 22.01 2.95’
0.75 1.00 27.06 26.61 8.97
0.75 1.25 31.19 30.72 14.18
0.75 1.50 34.94 34.45 18.52

1.00 0.50 7.76 7.64 3.58’
1.00 0.75 10.73 10.62 1.45’
1.00 1.00 13.33 13.22 4.71’
1.00 1.25 15.72 15.59 7.98
1.00 1.50 17.98 17.84 10.53

1.25 0.50 8.07 7.98 8.32
1.25 0.75 9.93 9.91 4.61’
1.25 1.00 11.30 11.30 6.64
1.25 1.25 12.40 12.40 9.30
1.25 1.50 13.37 13.37 11.08

1.50 0.50 10.37 10.25 12.16
1.50 0.75 12.16 12.13 7.72
1.50 1.00 13.30 13.31 8.85
1.50 1.25 13.99 14.02 11.58
1.50 1.50 14.45 14.48 13.53

(1 + L2)^ 02 and white noise ut (Japanese case)

Intercept Intercept and time trend

ct yt Ct-yt c, yt c,-y,
64.79 63.91 6.83 167.85 107.69 6.49
72.81 75.60 15.02 192.19 150.17 14.47
79.24 83.19 23.76 201.74 168.45 23.03
84.92 89.31 30.32 207.12 178.07 29.41
90.11 94.67 35.22 210.65 183.90 34.14

22.81 13.95 4.30’ 77.49 29.81 4.23’
34.46 30.38 0.50’ 117.38 68.97 0.52’
42.28 43.89 5.08’ 137.50 100.85 5.16’
48.55 53.78 11.17 150.13 123.02 11.27
54.07 61.56 16.86 159.27 138.97 16.96

8.74 8.21 10.28 11.04 8.56 10.27
22.43 5.76’ 2.66’ 29.89 6.90 2.67’
35.55 14.50 2.39’ 48.00 18.11 2.41’
45.91 26.86 4.86’ 62.37 33.81 4.89’
54.34 38.69 7.33 74.08 49.01 7.35

1.82’ 11.98 15.19 1.96’ 14.05 15.31
3.85’ 2.95’ 7.92 0.36’ 5.22’ 8.04
11.73 0.30’ 6.31 5.01’ 0.43’ 6.41
20.03 4.29’ 8.09 10.88 2.47’ 8.20
27.56 9.91 9.77 16.30 6.18 9.88

3.37’ 16.22 18.62 6.01 19.15 19.08
0.37’ 9.18 11.92 3.78’ 14.25 12.22
2.37’ 3.32’ 9.31 5.14’ 7.65 9.29
6.04 3.81’ 11.01 7.96 8.00 10.92
9.44 5.56’ 13.00 9.94 9.71 12.92

Non-rejection values for the null hypothesis (1.12) at 95% significance level.



TABLE 4.1d
R in (2.9) with p(L;0) = (1 - L)dl+ei (1 + L)*12*02 (1 + L2)d3+03 and white noise ut (Japanese case)

d, d2 d3
0.50 0.50 0.50
0.50 0.50 1.00
0.50 0.50 1.50
0.50 1.00 0.50
0.50 1.00 1.00
0.50 1.00 1.50
0.50 1.50 0.50
0.50 1.50 1.00
0.50 1.50 1.50
1.00 0.50 0.50
1.00 0.50 1.00
1.00 0.50 1.50
1.00 1.00 0.50
1.00 1.00 1.00
1.00 1.00 1.50
1.00 1.50 0.50
1.00 1.50 1.00
1.00 1.50 1.50
1.50 0.50 0.50
1.50 0.50 1.00
1.50 0.50 1.50
1.50 1.00 0.50
1.50 1.00 1.00
1.50 1.00 1.50
1.50 1.50 0.50
1.50 1.50 1.00
1.50 1.50 1.50

No intercept and no trend

c, yt c,-yt
103.66 101.27 21.28
125.45 122.99 49.44
138.97 136.53 63.60
117.27 114.99 43.61
136.62 134.40 94.74
148.39 146.29 120.92
123.50 121.33 57.72
140.31 138.24 107.66
150.64 148.71 131.71
18.90 18.50 2.03’
29.47 28.91 2.04’
38.39 37.60 3.03’
31.34 30.89 6.50’
45.88 45.45 16.30
57.62 57.14 29.12
39.66 39.20 8.21
54.65 54.24 26.23
66.40 65.97 43.02
10.33 10.11 2.94’
13.25 13.06 1.78’
14.41 14.16 2.00’
14.23 14.01 11.25
19.69 19.56 7.84
23.28 23.11 11.94
19.04 18.81 12.79
27.05 26.95 12.38
32.83 32.72 20.29

Intercept

Ct yt Ct-y.
141.71 136.00 18.03
166.31 169.76 49.62
183.92 188.44 66.73
154.99 157.32 44.85
177.59 188.17 129.43
194.11 205.87 176.67
164.44 169.23 63.62
185.10 196.22 152.38
200.60 212.57 196.08
9.87 3.73’ 4.01’
32.10 4.74’ 0.53’
45.26 8.71 1.04’
24.98 12.03 11.13
81.47 39.02 7.86
113.61 79.39 17.82
40.61 16.16 11.31
106.91 65.41 15.61
138.79 115.71 32.58
9.57 3.89’ 3.94’
31.88 3.95’ 1.19’
44.10 5.65’ 1.34’
3.21’ 14.26 16.43
3.62’ 1.58’ 7.17’
11.54 5.77’ 10.30
5.20’ 16.52 18.79
14.48 6.84’ 10.62
30.45 13.79 16.00

Intercept and time trend

Ct yt c,-y,
281.38 181.08 17.54
334.06 276.40 48.41
346.47 298.25 64.88
320.99 259.76 43.82
366.44 370.88 127.32
377.28 395.97 173.92
335.74 292.35 62.24
371.11 383.19 150.03
379.89 403.28 193.24
10.73 3.66’ 4.01’
36.42 4.94’ 0.54’
50.98 8.85 1.04’
28.27 12.33 11.12
100.22 44.08 7.87
142.03 92.80 17.82
47.66 17.03 11.30
135.75 77.02 15.62
179.06 142.14 32.60
11.15 4.33’ 3.99’
35.86 4.40’ 1.20’
48.52 6.02’ 1.35’
4.79’ 16.22 16.73
3.57’ 3.72’ 7.13’
9.18 8.36 10.26
6.49’ 19.23 19.22
9.75 8.65 10.47
18.91 12.28 15.69

Non-rejection values for the null hypothesis (1.12) at 95% significance level.
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TABLE 4.2a

? in (2.9) with p(L;0) = (1 - L + L2 - L3)d+e and white noise ut

(Japanese case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

.. 5.30 1.41’ -2.75 -5.93 -7.91 -9.04 -9.68 -10.04
I 2.33 -9.68 -10.83 -11.00 -11.08 -11.11 -11.13 -11.14
I,T -4.90 -9.68 -10.81 -11.04 -11.10 -11.12 -11.13 -11.13
IJ> 8.20 1.06’ -6.85 -9.38 -10.32 -10.62 -10.73 -10.79
WVD 10.90 1.31’ -6.96 -9.79 -10.49 -10.66 -10.73 -10.78

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 4.13 -0.12’ -4.39 -7.27 -9.87 -9.72 -10.18 -10.44
I -6.23 -10.90 -11.07 -11.10 -11.11 -11.12 -11.13 -11.13
I,T -9.47 -10.82 -11.06 -11.11 -11.12 -11.13 -11.13 -11.14
IJ> 8.55 -0.05’ -7.66 -9.76 -10.45 -10.69 -10.80 -10.86
I,TJ) 9.94 -0.52’ -7.78 -9.96 -10.51 -10.70 -10.80 -10.86

ct-yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -10.28 -10.85 -11.03 -11.09 -11.11 -11.12 -11.12 -11.12
I -10.60 -11.01 -11.09 -11.11 -11.11 -11.11 -11.12 -11.12
I,T -10.58 -11.00 -11.09 -11.11 -11.11 -11.12 -11.12 -11.12
I,D -6.85 -9.60 -10.42 -10.70 -10.81 -10.86 -10.90 -10.92
UVD -6.90 -9.60 -10.42 -10.70 -10.81 -10.85 -10.88 -10.91

Non-rejection values of the null hypothesis (1.12) at 95% significance level. Letters in bold correspond 
to the cases where monotonicity with respect to d is achieved.

ct: Log of total consumption in Japan, 1961.1 to 1987.4 
yt: Log of disposable income in Japan, 1961.1 to 1987.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.



TABLE 4.2b

R in (2.9) with p(L;0) = (1 - L)dl+ei (1 + L2)d2+e2 and white noise ut. (Japanese case)

No intercept and no trend

d» dj ct yt c,-yt
0.50 0.50 131.72 106.24 107.21
0.50 0.75 149.78 119.39 112.08
0.50 1.00 163.55 128.88 113.78
0.50 1.25 174.36 135.96 114.58
0.50 1.50 183.05 141.40 115.05
0.75 0.50 42.42 32.73 114.68
0.75 0.75 53.76 40.51 118.93
0.75 1.00 63.05 46.29 120.34
0.75 1.25 70.86 50.73 120.95
0.75 1.50 77.58 54.24 121.28
1.00 0.50 15.33 21.28 118.04
1.00 0.75 21.27 27.52 121.65
1.00 1.00 25.75 32.00 122.78
1.00 1.25 29.19 35.31 123.24
1.00 1.50 31.92 37.84 123.47
1.25 0.50 24.31 36.49 119.77
1.25 0.75 31.37 45.21 122.81
1.25 1.00 36.65 51.72 123.74
1.25 1.25 40.64 56.70 124.09
1.25 1.50 43.73 60.64 124.25
1.50 0.50 38.10 51.35 120.87
1.50 0.75 47.40 61.80 123.44
1.50 1.00 54.49 69.56 124.19
1.50 1.25 59.99 75.49 124.45
1.50 1.50 64.36 80.17 124.56

Intercept Intercept and a time trend

ct yt c,-y, ct yt ct-yt
52.79 113.57 55.44 93.01 137.12
95.94 54.71 118.15 50.50 97.28 117.80
103.93 54.96 119.45 51.57 98.47 119.11
110.64 54.78 119.89 52.00 98.88 119.56
116.53 54.48 120.05 52.24 99.07 119.73
92.65 116.10 118.47 91.85 114.23 118.27
96.77 120.15 122.41 97.13 118.40 122.19
97.39 121.09 123.47 98.74 119.46 123.24
97.11 121.26 123.80 99.39 119.77 123.56
96.54 121.21 123.90 99.72 119.85 123.65
111.70 119.31 120.03 111.45 119.12 120.00
117.11 122.92 123.30 116.72 122.68 123.26
118.76 123.83 124.12 118.22 123.54 124.08
119.45 124.08 124.34 118.78 123.75 124.29
119.81 124.16 124.38 119.03 123.79 124.33
115.82 120.47 120.95 116.62 120.64 120.97
120.45 123.47 123.67 121.21 123.62 123.69
121.79 124.18 124.33 122.51 124.32 124.34
122.32 124.37 124.48 122.99 124.48 124.49
122.59 124.41 124.50 123.22 124.51 124.50
118.10 121.33 121.63 118.63 121.52 121.69
122.04 123.85 123.92 122.53 124.01 123.97
123.19 124.45 124.46 123.63 124.58 124.50
123.65 124.60 124.58 124.05 124.72 124.61
123.90 124.64 124.59 124.27 124.74 124.61

Non-rejection values of the null hypothesis (1.12) at 95% significance level.
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TABLE 4.3a

r in (2.9) with p(L;0) = (1 - L2)d+0 and white noise ut

(Japanese case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 4.42 1.78’ -0.47’ -1.91’ -2.75 -3.25 -3.58 -3.80
I 2.75 -4.04 -4.61 -4.75 -4.84 -4.88 -4.91 -4.92
I,T -0.96’ -3.71 -4.58 -4.82 -4.89 -4.92 -4.94 -4.95
I4> 6.87 3.85 1.94’ -0.84 -2.80 -3.73 -4.14 -4.34
IX D 12.14 7.99 2.04 -1.93’ -3.49 -3.99 -4.21 -4.35

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ 4.13 1.55’ -0.66’ -2.06 -2.87 -3.35 -3.67 -3.89
I -1.23’ -4.72 -4.83 -4.87 -4.90 -4.92 -4.93 -4.94
I,T -3.38 -4.51 -4.81 -4.89 -4.92 -4.94 -4.95 -4.96
U> 6.57 0.44’ -2.84 -4.05 -4.55 -4.73 -4.79 -4.81
I,T4> 7.78 1.25’ -2.86 -4.28 -4.66 -4.72 -4.72 -4.74

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -4.25 -4.63 -4.80 -4.87 -4.91 -4.93 -4.94 -4.95
I -4.55 -4.81 -4.87 -4.89 -4.91 -4.92 -4.92 -4.93
I,T -4.51 -4.79 -4.86 -4.89 -4.91 -4.92 -4.93 -4.94
I4> -1.11’ -3.40 -4.20 -4.50 -4.63 -4.69 -4.73 -4.76
UVD -1.14’ -3.39 -4.20 -4.50 -4.62 -4.66 -4.67 -4.69

Non-rejection values of the null hypothesis (1.12) at 95% significance level. Letters in bold correspond 
to the cases where monotonicity in the value of the tests with respect to d is achieved.

ct: Log of total consumption in Japan, 1961.1 to 1987.4 
yt: Log of disposable income in Japan, 1961.1 to 1987.4

—: No intercept, no trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, trend and seasonal dummies.
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TABLE 4.3b

? in (2.9) with p(L;0) = (1 - L2)d+0 and seasonal AR(K) ut 
(Japanese case)

K = 4
ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.67’ 0.96’ -0.52’ -2.00 -2.95 -3.50 -3.81 -4.01
I 0.50’ -1.25’ -1.74’ -2.10 -2.42 -2.67 -2.89 -3.09
I,T 0.95’ -0.84’ -1.73’ -2.18 -2.50 -2.76 -3.00 -3.21
I4> 1.91’ 1.42’ -0.31’ -1.68’ -2.85 -3.48 -3.78 -3.95
I,TJ) 3.15 1.32’ -0.29’ -2.23 -3.24 -3.61 -3.79 -3.93

y , \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.41’ 0.63’ -0.85’ -2.21 -3.05 -3.52 -3.80 -3.98
I -0.18’ -2.44 -2.46 -2.58 -2.76 -2.94 -3.11 -3.26
I,T -0.91’ -2.00 -2.39 -2.62 -2.83 -3.03 -3.22 -3.41
IJ) 1.53’ -1.56’ -3.19 -3.66 -3.94 -4.11 -4.22 -4.30
I,TJ) 0.09’ -2.01 -3.20 -3.76 -4.00 -4.10 -4.13 -4.14

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-1.86’ -2.34 -2.69 -2.94 -3.13 -3.29 -3.42 -3.53
I -2.56 -2.79 -2.90 -3.01 -3.13 -3.25 -3.37 -3.48
I,T -2.42 -2.72 -2.88 -3.02 -3.16 -3.29 -3.41 -3.55
IJ) -2.28 -3.26 -3.70 -3.94 -4.10 -4.20 -4.28 -4.34
I,T4> -2.28 -3.25 -3.70 -3.94 -4.10 -4.18 -4.22 -4.23

K = 8
c, \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.69’ 0.88’ -0.53’ -2.02 -2.99 -3.53 -3.84 -4.03
I 1.23’ -0.64’ -1.65’ -2.14 -2.57 -2.90 -3.16 -3.38
I,T 1.84’ -0.38’ -1.62’ -2.27 -2.70 -3.01 -3.28 -3.51
I,D 2.11 1.31’ -0.52’ -1.79’ -2.85 -3.47 -3.81 -4.02
I,TJ) 3.64 1.45’ -0.51’ -2.26 -3.19 -3.58 -3.81 -3.98

y , \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.49’ 0.58’ -0.87’ -2.21 -3.05 -3.52 -3.81 -4.01
I 0.80’ -2.57 -2.65 -2.79 -3.02 -3.22 -3.41 -3.58
I,T -0.65’ -2.06 -2.56 -2.85 -3.10 -3.31 -3.51 -3.71
IJ) 1.78’ -1.53’ -3.37 -3.85 -4.13 -4.29 -4.40 -4.46
UVD 0.33’ -2.11 -3.39 -3.94 -4.18 -4.27 -4.29 -4.30

ct-y,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

— -1.71’ -2.39 -2.89 -3.23 -3.45 -3.61 -3.74 -3.85
I -2.68 -3.01 -3.16 -3.31 -3.45 -3.58 -3.71 -3.82
I,T -2.51 -2.93 -3.15 -3.32 -3.48 -3.61 -3.74 -3.89
I,D -2.33 -3.33 -3.81 -4.06 -4.22 -4.33 -4.40 -4.45
I,TJ) -2.33 -3.33 -3.81 -4.06 -4.22 -4.30 -4.33 -4.34

Non-rejection values of the null hypothesis (1.12) at 95% significance level. Letters 
in bold correspond to monotonocity with respect to d.



TABLE 4.3c

R in (2.9) with p(L;0) = (1 - L)dl+01 (1 + L)d2+02 and white noise ut. (Japanese case)

No intercept and no time trend ______ Intercept______  Intercept and time trend

d, d2 ct yt c,-yt
0.50 0.50 63.67 58.38 18.26
0.50 0.75 72.47 67.13 17.99
0.50 1.00 79.47 74.24 17.20
0.50 1.25 85.18 80.15 16.25
0.50 1.50 89.94 85.14 15.22

0.75 0.50 21.45 19.22 21.17
0.75 0.75 27.81 25.23 21.55
0.75 1.00 33.37 30.59 21.26
0.75 1.25 38.30 35.44 20.80
0.75 1.50 42.74 39.86 20.26

1.00 0.50 6.44 6.18 22.31
1.00 0.75 9.51 8.92 23.11
1.00 1.00 12.28 11.41 23.09
1.00 1.25 14.85 13.76 22.92
1.00 1.50 17.28 16.02 22.70

1.25 0.50 5.75’ 6.22 22.60
1.25 0.75 7.42 7.73 23.69
1.25 1.00 8.73 8.86 23.82
1.25 1.25 9.84 9.80 23.77
1.25 1.50 10.86 10.64 23.68

1.50 0.50 7.58 8.19 22.55
1.50 0.75 9.01 9.59 23.91
1.50 1.00 9.97 10.48 24.13
1.50 1.25 10.63 11.03 24.15
1.50 1.50 11.11 11.39 24.11

c« yt ct-yt ct yt ct-y,
34.93 7.74 20.83 7.15 12.41 20.43
44.65 9.18 20.85 8.78 11.44 20.46
54.82 11.70 20.29 11.30 10.22 19.93
65.42 15.58 19.54 15.21 9.05 19.23
76.26 20.99 18.66 20.81 8.10 18.40

17.19 22.08 22.54 14.80 20.34 22.36
16.67 22.32 23.18 14.41 20.46 22.98
15.33 21.87 23.15 13.36 20.00 22.94
13.70 21.14 23.00 12.12 19.35 22.78
11.99 20.19 22.77 10.85 18.57 22.56

20.65 22.58 22.75 20.50 22.47 22.73
21.44 23.32 23.62 21.24 23.17 23.60
21.33 23.38 23.72 21.09 23.20 23.70
20.94 23.29 23.71 20.67 23.08 23.68
20.41 23.14 23.67 20.12 22.91 23.64

21.39 22.70 22.72 21.80 22.84 22.73
22.60 23.65 23.79 23.08 23.81 23.81
22.76 23.79 23.95 23.31 23.98 23.97
22.65 23.77 23.96 23.28 23.99 23.99
22.45 23.72 23.95 23.16 23.96 23.98

21.63 22.67 22.56 21.92 22.80 22.58
23.20 23.84 23.86 23.55 24.00 23.89
23.53 24.06 24.08 23.93 24.24 24.11
23.55 24.08 24.11 24.00 24.29 24.16
23.49 24.05 24.11 23.99 24.28 24.16

Non-rejection values for the null hypothesis (1.12) at 95% significance level.
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TABLE 4.4a

f  in (2.9) with p(L;0) = (1 - L)d+0 and white noise u,

(Japanese case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 8.47 3.43 -0.37’ -2.49 -3.61 -4.27 -4.70 -4.99
I 3.17 -4.31 -4.61 -4.83 -5.02 -5.18 -5.33 -5.46
I,T -1.51’ -3.93 -4.59 -4.85 -5.04 -5.19 -5.33 -5.46
I,D 12.74 3.01 -2.47 -4.54 -5.37 -5.68 -5.83 -5.93
UVD 16.98 5.30 -2.52 -4.86 -5.47 -5.69 -5.82 -5.91

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

__ 7.35 2.47 -1.07’ -2.98 -3.98 -4.57 -4.95 -5.21
I -2.71 -4.98 -5.11 -5.27 -5.42 -5.55 -5.67 -5.78
I»T -4.03 -4.82 -5.10 -5.28 -5.43 -5.56 -5.68 -5.78
u> 11.76 -0.13’ -3.38 -4.26 -4.62 -4.81 -4.96 -5.08
I,TJ) 10.31 0.31’ -3.42 -4.35 -4.64 -4.79 -4.90 -5.00

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -4.74 -5.09 -5.31 -5.47 -5.60 -5.72 -5.82 -5.91
I -4.95 -5.16 -5.32 -5.47 -5.60 -5.71 -5.82 -5.91
I,T -4.89 -5.14 -5.32 -5.47 -5.60 -5.72 -5.83 -5.91
I,D -2.88 -4.56 -5.10 -5.35 -5.51 -5.63 -5.74 -5.82
WVD -2.91 -4.56 -5.10 -5.35 -5.50 -5.60 -5.67 -5.73

’: Non-rejection values of the null hypothesis (1.12);at 95% significance level. Letters in bold com
to the cases of monotonicity with respect to d.

ct: Log of total consumption in Japan, 1961.1 to 1987.4
yt: Log of disposable income in Japan, 1961.1 to 1987.4

No intercept, no trend and no seasonal dummies. 
I: Intercept.

I,T: Intercept and trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, trend and seasonal dummies.
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TABLE 4.4b

r in (2.9) with p(L;0) = (1 - L)d+e and seasonal AR(K) ut
(Japanese case)

K = 4
ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

5.44 2.82 -0.39’ -2.51 -3.66 -4.32 -4.75 -5.04
I 3.82 -1.27’ -2.71 -3.36 -3.97 -4.44 -4.82 -5.11
I,T 2.44 -1.16’ -2.62 -3.49 -4.13 -4.62 -4.97 -5.22
U> 6.23 1.08’ -2.71 -4.05 -4.77 -5.18 -5.43 -5.60
I,TJ) 5.09 0.33’ -2.81 -4.21 -4.84 -5.19 -5.42 -5.57

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

4.46 1.69’ -1.14’ -2.87 -3.84 -4.46 -4.88 -5.18
I 3.17 -3.51 -2.91 -3.41 -3.94 -4.38 -4.74 -5.03
I,T -1.13’ -2.17 -2.85 -3.48 -4.06 -4.56 -4.92 -5.17
IJ) 5.43 -1.67’ -3.90 -4.46 -4.78 -4.99 -5.14 -5.25
I»T,D 0.80’ -2.56 -3.98 -4.53 -4.80 -4.95 -5.02 -5.06

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

• • -1.60’ -2.64 -3.40 -3.96 -4.40 -4.74 -5.01 -5.23
I -3.07 -3.17 -3.50 -3.95 -4.37 -4.72 -5.00 -5.22
I,T -2.63 -3.04 -3.49 -3.96 -4.43 -4.83 -5.13 -5.33
14) -3.05 -4.08 -4.61 -4.94 -5.17 -5.33 -5.45 -5.53
I,T,D -3.06 -4.08 -4.61 -4.94 -5.15 -5.26 -5.28 -5.27

K = 8
ct \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

5.37 2.74 -0.40’ -2.52 -3.66 -4.32 -4.75 -5.05
I 5.27 -1.17’ -2.74 -3.44 -4.06 -4.54 -4.91 -5.20
I,T 2.96 -1.01’ -2.65 -3.57 -4.23 -4.72 -5.07 -5.32
14) 6.53 1.35’ -2.69 -4.08 -4.82 -5.23 -5.48 -5.63
I,T4) 5.75 0.48’ -2.81 -4.23 -4.87 -5.23 -5.46 -5.61

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 4.61 1.74’ -1.04’ -2.78 -3.78 -4.42 -4.84 -5.14
I 4.30 -3.57 -2.96 -3.47 -4.01 -4.46 -4.82 -5.11
I,T -1.15’ -2.20 -2.89 -3.54 -4.13 -4.64 -5.00 -5.26
14) 5.78 -1.65’ -3.94 -4.48 -4.77 -4.97 -5.11 -5.22
I,T4) 0.99’ -2.63 -4.02 -4.54 -4.80 -4.94 -5.00 -5.04

ct-y,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-1.54’ -2.68 -3.48 -4.05 -4.49 -4.83 -5.11 -5.32
I -3.12 -3.23 -3.58 -4.04 -4.46 -4.81 -5.10 -5.32
I,T -2.66 -3.10 -3.56 -4.05 -4.52 -4.92 -5.22 -5.42
14) -3.09 -4.15 -4.68 -5.00 -5.22 -5.38 -5.49 -5.57
I,T4) -3.11 -4.15 -4.67 -4.99 -5.20 -5.31 -5.34 -5.34

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold
correspond to monotonicity with respect to d.
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TABLE 4.4c

r  in (2.9) with p(L;6) = (1 - L)d+e and seasonal and non-seasonal AR(k,K) ut.
(Japanese case)

ct \ d 0.5 0.75 1.00

k = 1 &

1.25

K = 4

1.50 1.75 2.00 2.25

_ -7.17 -0.35’ -0.41’ -1.75’ -2.76 -3.47 -3.99 -4.39
I 5.64 2.51 0.44’ -0.49’ -1.42’ -2.23 -2.96 -3.60
I,T 7.42 2.66 0.54’ -0.74’ -1.79’ -2.70 -3.42 -4.00
I,D -9.46 2.88 1.29’ -0.54’ -2.06 -3.15 -3.89 -4.41
I,T,D -14.04 1.26’ 1.21’ -0.87’ -2.24 -3.15 -3.83 -4.32

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -3.40 0.47’ -0.07’ -1.24’ -2.18 -2.92 -3.55 -4.07
I 7.14 -0.90’ 0.35’ -0.30’ -1.07’ -1.81’ -2.50 -3.11
I,T 3.23 1.39’ 0.44’ -0.42’ -1.34’ -2.26 -3.03 -3.60
I,D -9.16 -1.56’ -3.73 -4.44 -4.86 -5.12 -5.27 -5.33
I,T,D -7.65 -2.95 -3.84 -4.57 -4.93 -5.02 -4.90 -4.71

cr yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

2.21 0.89’ -0.13’ -0.95’ -1.66’ -2.29 -2.85 -3.34
I -0.00’ 0.07’ -0.29’ -0.93’ -1.60’ -2.25 -2.83 -3.35
I,T 0.76’ 0.28’ -0.27’ -0.96’ -1.74’ -2.56 -3.25 -3.76
14) -0.69’ -2.04 -2.91 -3.52 -3.96 -4.28 -4.49 -4.59
I,T,D -0.70’ -2.04 -2.91 -3.51 -3.91 -3.98 -3.75 -3.44

ct \d 0.5 0.75 1.00

k = 2 &

1.25

K = 4

1.50 1.75 2.00 2.25

_ -8.45 -1.91’ -0.60’ -1.36’ -2.13 -2.71 -3.18 -3.57
I 8.21 5.94 3.59 2.26 0.84’ -0.59’ -2.05 -3.47
I,T 11.68 6.17 3.65 1.95’ 0.33’ -1.31’ -2.82 -4.19
I,D -3.80 -2.02 -2.29 -1.35’ -1.84’ -2.75 -3.62 -4.33
I,T,D -2.90 -9.36 -2.48 -0.93’ -1.64’ -2.54 -3.38 -4.04

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -4.81 -1.68’ -0.80’ -1.26’ -1.80’ -2.33 -2.83 -3.31
I 11.30 1.65’ 2.81 1.68’ 0.34’ -1.01’ -2.36 -3.62
I,T 7.39 4.40 2.91 1.51’ -0.03’ -1.72’ -3.25 -4.49
I,D -11.28 0.29’ -1.71’ -2.88 -3.79 -4.46 -4.92 -5.21
I,T,D -12.83 -1.98

r-001—H1 -3.07 -3.90 -4.28 -4.23 -4.05

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

4.97 3.15 1.62’ 0.26’ -1.00’ -2.20 -3.32 -4.33
I 2.24 2.14 1.41’ 0.29’ -0.91’ -2.13 -3.29 -4.33
I,T 3.26 2.41 1.44’ 0.24’ -1.14’ -2.66 -4.02 -5.07
I,D -0.83’ -1.46’ -2.47 -3.38 -4.15 -4.75 -5.16 -5.38
I,T,D -0.89’ -1.47’ -2.47 -3.37 -4.06 -4.25 -3.93 -3.51

cont..
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k = 1 & K = 8

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -7.55 -0.51’ -0.42’ -1.75’ -2.77 -3.48 -4.00 -4.40
I 8.73 2.91 0.54’ -0.51’ -1.53’ -2.41 -3.18 -3.85
I,T 8.55 3.15 0.66’ -0.80’ -1.94’ -2.91 -3.67 -4.26
I,D -9.30 3.39 1.47’ -0.47’ -2.07 -3.14 -3.82 -4.27
I,T,D -13.11 1.57’ 1.34’ -0.80’ -2.20 -3.09 -3.71 -4.14

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -2.90 0.62’ 0.08’ -1.10’ -2.10 -2.91 -3.55 -4.06
I 9.00 -0.97’ 0.35’ -0.34’ -1.16’ -1.95’ -2.66 -3.30
I,T 3.35 1.46’ 0.46’ -0.47’ -1.44’ -2.41 -3.22 -3.81
I,D -8.68 -1.52’ -3.88 -4.56 -4.95 -5.18 -5.30 -5.35
I,T,D -7.51 -3.09 -3.99 -4.67 -5.00 -5.09 -4.97 -4.79

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 2.56 1.00’ -0.15’ -1.04’ -1.79’ -2.44 -3.02 -3.51
I 0.03’ 0.07’ -0.32’ -1.01’ -1.73’ -2.40 -3.00 -3.51
I,T 0.88’ 0.31’ -0.30’ -1.05’ -1.88’ -2.73 -3.44 -3.94
I,D -0.73’ -2.23 -3.15 -3.74 -4.15 -4.43 -4.60 -4.67
I,T,D -0.75’ -2.23 -3.15 -3.73 -4.10 -4.15 -3.91 -3.62

k = 2 & K = 8

ct \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

__ -8.85 -1.95 -0.62’ -1.34’ -2.00 -2.52 -2.95 -3.32
I 12.08 6.14 3.71 2.32 0.84’ -0.58’ -1.94’ -3.20
I,T 12.45 6.60 3.80 1.97 0.31’ -1.27’ -2.65 -3.83
I,D -3.45 -0.58’ -1.42’ -1.21’ -1.73’ -2.51 -3.20 -3.71
I,TX> -2.92 -5.68 -1.64’ -0.81’ -1.50’ -2.29 -2.95 -3.45

y ,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

— -3.74 -1.19’ -0.54’ -1.01’ -1.59’ -2.14 -2.65 -3.11
I 13.98 1.60’ 2.50 1.54’ 0.31’ -0.87’ -1.97 -2.97
I,T 6.91 4.05 2.70 1.37’ -0.03’ -1.46’ -2.71 -3.68
I,D -11.73 0.48’ -1.81’ -2.98 -3.86 -4.46 -4.84 -5.04
I,T,D -12.07 -2.01 -1.98 -3.16 -3.95 -4.30 -4.22 -4.02

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

5.16 3.14 1.53’ 0.20’ -0.95’ -1.98 -2.90 -3.68
I 2.23 2.04 1.31’ 0.23’ -0.88’ -1.95’ -2.91 -3.73
I,T 3.26 2.33 1.34’ 0.18’ -1.09’ -2.41 -3.54 -4.34
I,D -0.82’ -1.54’ -2.50 -3.89 -3.88 -4.30 -4.54 -4.62
I»T,D -0.89’ -1.54’ -2.50 -3.28 -3.82 -3.90 -3.57 -3.19

Non-rejection values of the null hypothesis (1.12) at 95% significance level. Letters in bold correspond
to the cases where monotonicity in the value of the tests with respect to d is achieved.
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4.3.b The U.K. case

We analyze here the quarterly United Kingdom data set used in HEGY 

(1990). ct is now the log of consumption expenditure on non-durables and yt is 

logged personal disposable income for the time period 1955.1 through 1984.4. The 

data are shown in Figure 4.7 and we see that both individual series may have a 

random-walk character, implying that we would expect to find a unit root at zero 

frequency. We also observe in this figure that slopes are in both series slightly 

flatter after oil-crisis in 1973, suggesting the possibility of a structural break in that 

year1. In relation to seasonal pattern, it seems clear that ct contains a much stronger 

and less changing seasonal pattern than yt, although even the seasonal consumption 

pattern changes over the sample period. This can be better viewed in Figure 4.8 

showing the four quarters for each time series. The conclusions obtained in HEGY 

(1990) were that ct could be 1(1) at each of the frequencies 0, ti/2, K and 37C/2 of a 

cycle (2n), so a plausible model for ct would be

<t> (L) (1 -  L 4) c t = r |c + e t t = l , 2 , . . . ,  ( 46)

where e, is an iid process, T|t can be zero, but also any kind of deterministic process 

(as an intercept, a time trend or seasonal dummies), and <|>(L) is the possible 

augmentation of the fourth difference of ct. For yt, their results suggested that 

income contained only two roots, one at zero frequency and other at frequency n, so 

the model would become

4>(L) ( 1 - L 2) y t = T)t + € c t = l  , 2 ,  . . . , ( 47)

again for different specifications in T|t. Finally for ct-yt, they found evidence of four 

unit roots if the dummies were not introduced in the model, but two unit roots of 

form as in (47) if they were included.

Following the same line as in the Japanese case, we will present results of 

Robinson’s (1994c) tests assuming first that the model specified in (1.10); (2.2) and

(31) has four roots on the unit circle. In Figure 4.9 we plot the series, their sample 

autocorrelations and estimates of the spectral density after removing the unit root at

1 Similarly to Japanese data, we will perform at the end of this chapter some
of the tests for the two subsamples: 1955.1-1973.4 and 1974.1-1984.4 (in Appendix
4.1), and including dummy variables for the changing trend (in Appendix 4.2).
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zero and at seasonal frequencies. We observe in this figure that the series might 

have a stationary appearance, though still observe significant autocorrelations at some 

lags in ct and yt. Tables 4.5a and 4.5b are analogous to Tables 4.1a and 4.1b above, 

showing results of one-sided statistic r in (2.9) when p(L;0) takes the form given in

(32). Table 4.5a gives results for white noise ut, and we observe in this table that 

the monotonic decrease in r with respect to d is always achieved for all 

specifications in (31) and for the three series. For ct and yt, the null hypothesis is 

never rejected when d = 0.75 and d = 1, and also the case of d = 1.25 is not rejected 

when we include as regressors an intercept and dummies. For ct-yt, the values of d 

where H0 is not rejected are slightly smaller (d = 0.50 and d = 0.75), and in this 

series we see that the unit root null is clearly rejected in all cases in favour of less 

nonstationary alternatives, suggesting that if the two individual series were in fact 

1(1), a degree of fractional cointegration may exist for a given cointegration vector 

(1,-1). The fact that the unit root null is never rejected for ct is consistent with 

HEGY (1990), however we observe that this hypothesis is either non-rejected for yt, 

while HEGY (1990) found evidence of only two unit roots (at zero and at frequency 

7t) in this series. Various tests of this hypothesis will be performed later in a further 

group of tests.

In Table 4.5b we take AR(k) u, with k=l,2,3 and 4. Monotonicity is achieved 

in practically all cases and the unit root null is rejected in all situations across this 

table. The non-rejection values correspond to d = 0.50 and d = 0.75, and in those 

cases where the former is rejected, always is in favour of stationary alternatives. As 

we explained before for the Japanese case, this smaller degree of nonstationary 

(compared with Table 4.5a), could be in large part due to competition between 

integration orders and AR parameters in describing the nonstationary component. 

Allowing Uj to be seasonal or a mixed seasonal and non-seasonal AR, we observed 

few cases where monotonicity was achieved, suggesting that they were not a correct 

specification in this case since seasonality might be better explained either by 

quarterly integration or by seasonal dummies.

Table 4.5c gives results of the two-sided test statistic R in (2.9) when 0 is 

(2x1). p(L;0) is now given in (34) and therefore we allow different integration 

orders for the real and complex roots. If there are no regressors in the model, H0 is 

rejected in all cases for the individual series and the lowest statistic is achieved when



124

dj = 1 and d2 = 0.5, indicating perhaps the importance of real roots over complex 

ones. For ct-yt, we observe in this table that all non-rejections correspond to values 

of d2 (i.e. the integration order of the complex roots) smaller than dj (i.e. the 

integration order for the two real roots), and the lowest statistic is now obtained at 

d, = 0.75 and d2 = 0.50. Including a constant or a time trend gives similar results 

in both cases: for ct, all non-rejections occur when = 1.00, 1.25 or 1.50 and when 

d2 = 0.50 and 0.75, with the lowest value obtained at dj = 1 and d2 = 0.5. For yt, 

we observe only three non-rejection cases corresponding to dj = 1.00, 1.25 and 1.50, 

with d2 = 0.50, which might indicate that complex roots are not required when 

modelling this series, as was pointed out in HEGY (1990); for ct-yt, there are some 

more non-rejections, with the lowest statistic obtained at dj = 0.75 and d2 = 0.5. 

Thus, we observe in all cases a greater degree of integration for real roots than for 

complex ones, and also smaller integration orders for ct-yt than for ct and yt.

Finally in this group of tables, we extend these tests to allow different 

integration orders at zero and at frequency n. In this case p(L;0) takes the form 

given in (35) and results appear in Table 4.5d. They are consistent with the previous 

ones: in fact, when there are no regressors, the null is always rejected for ct and yt, 

while for ct-yt there are some non-rejections, with the lowest value achieved at dj =1 

and d2 = d3 = 0.50, (i.e. the same alternative as in Table 4.5c). Including a constant 

or a time trend, the lowest statistic occurs when dj = 1 and d2 = d3 = 0.50 for ct and 

ct-yt, and when dj = 1.50, d2 = 1.00 and d3 = 0.50 for yt. All these results seem to 

emphasize the importance of the root at zero frequency over the others, given its 

greater integration order.

In the following group of tables we suppose Xj can be well modelled as an 

1(d) process with three roots and first, in Tables 4.6a and 4.6b, we show results for 

white noise i ,̂ excluding the root at frequency 7t. In Table 4.6a, p(L;0) adopts the 

form in (37), and we observe few cases where the null is not rejected, corresponding 

to ct and yt when d = 0.50 or 0.75; however, looking at ct-yt, we see that the null 

is always rejected for all specifications in (31) in favour of stationary alternatives. 

The unit root null is rejected in all series for all cases considered, which is in line 

with HEGY (1990), who suggested the need of the unit root at frequency K for the 

three series. This can also be viewed through Figure 4.10 which shows plots of the 

series, their sample autocorrelations and estimates of the spectral density after
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removing the unit root at zero and at frequencies 7t/2 and 3tc/2, showing, especially 

at the latter, the importance of the root at frequency n when modelling in this way.

Results for two-sided tests when p(L;0) is of form of (39) are given in Table 

4.6b. We see that the null hypothesis is always rejected across this table. If there 

are no regressors, the lowest statistics are obtained when dj = 1 and &2 = 0.50 for ct 

and yt, and when dx = d2 = 0.50 for ct-yt, indicating once more the importance of the 

root at zero frequency for the individual series when modelling in this way, and 

including an intercept or a time trend, the lowest values appear when d! and d2 are 

0.50 or 0.75. Performing the tests when excluding the root at zero frequency 

resulted in rejecting the null in all cases. This was observed when using both the 

one-sided tests with p(L;0) as in (38), and the two-sided ones with p(L;0) as in (40). 

Thus, we could conclude by saying that real roots are, as in the Japanese case, both 

important when modelling these series.

In the next group of tables we suppose that xt has only two roots: one at 

zero frequency and the other one corresponding to frequency n. Plots for the unit 

root case are given in Figure 4.11, and we observe that sample autocorrelations are 

still significant but smaller for yt than for the other two series, and the estimates of 

the spectral density have a peak at frequency tc/2  in all them, with larger values for 

ct and ct-yt than for yt. First we take p(L;0) as in (41) so the same integration order 

is assumed at both frequencies. This way of specifying the model is interesting in 

view of results in HEGY (1990), who suggested that only two unit roots at these 

frequencies were present in yt and in some cases for ct-yt. Results for white noise 

ut are given in Table 4.7a. Monotonicity is now always achieved and the non

rejection values occur when d = 0.75 and 1 for ct and yt, and d = 0.50 for ct-yt, 

suggesting again the possibility of a fractional cointegration relationship at these two 

frequencies for the cointegrating vector (1,-1). The hypothesis of two unit roots (d 

= 1) is always rejected for ct if we include regressors. These rejections are in line 

with HEGY (1990), who indicated that complex unit roots should be included. For 

yt we observe that d = 1 is not rejected in 3 of the 5 possible specifications in (31) 

which is also consistent with HEGY (1990).

Allowing non-seasonal AR i ,̂ results varied widely depending on the order 

of the autoregression, and though we do not report results here, again the values of 

d where the null was not rejected were smaller for ct-yt than for ct and yt. Results
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for seasonal AR ut are given in Table 4.7b. Monotonicity is always achieved and 

the non-rejections occur for values of d ranging between 0.50 and 1 for the 

individual series, but only the case of d = 0.50 is not rejected for ct-yt. We observe 

in this table more non-rejections for yt than for the other two series when testing the 

unit root hypothesis which is once more consistent with HEGY (1990). Performing 

the tests when ut was mixed seasonal and non-seasonal AR, we observed less cases 

where monotonicity was achieved, though the same conclusions as in the previous 

tables hold with non-rejection values for d smaller for ct-yt than for the individual 

series.

In Table 4.7c we allow integration orders to differ at zero and at frequency 

7t, and thus, we take now p(L;0) as in (42). If there are no regressors, the null is 

always rejected and the lowest statistic is obtained at d, = 1.25 and d2 = 0.50 for the 

individual series, and at dj = 0.50 and d2 = 1.50 for ct-yt, so if there are no regressors 

and Xj displays two real roots, the root at zero frequency appears more important 

than the seasonal one for the individual series, but the one at frequency n is the most 

important when modelling ct-yt. Including a constant or a time trend, results are 

consistent with those given in Table 4.7a. In that table we saw that the only non- 

rejection case for a model with an intercept or a time trend corresponded to yt with 

d = 0.75. In Table 4.7c, this alternative is narrowly rejected but is not the case of 

dj = 0.75 and d2 = 0.50, and in all the other situations, the null hypothesis is always 

rejected as was in Table 4.7a.

In the last group of tables we assume xt has a single root located at zero 

frequency (in Tables 4.8a and 4.8b), at frequency n (in Table 4.8c), and finally we 

suppose xt contains two complex roots corresponding to frequencies 7t/2  and 3tc/2 (in 

Table 4.8d). Thus, p(L;0) takes the form in (43) in the first two tables. Plots of 

first differences of the series, their sample autocorrelations and estimates of the 

spectral density function are given in Figure 4.12. In this figure we observe that the 

seasonal component still remains in all of them, and though the unit root at zero 

frequency has been removed, the estimates of the spectral density still present large 

peaks at frequencies 7t/2  and 7t, more pronounced for ct-yt and ct than for yt. Starting 

with the case of white noise U, (in Table 4.8a), as with the Japanese case, we observe 

that if there are no regressors, the unit root null is not rejected for ct and yt, but is 

strongly rejected for ct-yt in favour of stationary alternatives. There are few non
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rejections in this table and they correspond to values of d ranging between 0.50 and 

1 for the individual series; for ct-yt, the only two non-rejection cases occur at d = 

0.50 if the dummies are included, but for the remaining specifications, this null is 

strongly rejected in favour of stationary alternatives. The fact that the unit root is 

rejected in this table for all series when some regressors are included in (31) can be 

consistent with HEGY (1990), who suggest the need of at least one seasonal unit 

root.

Allowing Ut to be non-seasonal AR, we observed in many cases a lack of 

monotonic decrease in the value of the test statistic with respect to d. This can be 

explained since seasonality is not described now by first differences, and seasonal 

dummies on their own do not seem to be sufficient to pick up this effect. To 

corroborate this, if Ut follows a seasonal AR process (in Table 4.8b), we see that 

monotonicity is always achieved. In this table, H0 is not rejected in some cases for 

ct and yt when d = 0.75 and d = 1. For ct-y„ only if the regressors include an 

intercept and the dummies, d = 0.50 is not rejected but in all other cases, this 

hypothesis is always strongly rejected in favour of stationary alternatives, suggesting 

again that at zero frequency, fractional cointegration might occur claiming the 

simplistic version of the PIH. Performing the tests with mixed seasonal and non- 

seasonal AR, monotonicity was achieved in some cases, with the non-rejections 

occurring in practically all cases when d > 1 for ct and yt, but when d < 1 for ct-yt.

Finally, Tables 4.8c and 4.8d give results for white noise Ut and p(L;0) of 

forms given in (44) and (45) respectively. We observe in both tables that including 

regressors, the null is always rejected in all series due perhaps to exclusion of the 

root at zero frequency. The only non-rejection cases observed across these two 

tables correspond to ct and yt when there are no regressors, but is now difficult to 

distinguish here a proper integration order for the seasonal roots since the values of 

d where the null is not rejected vary widely in both series, from 0.50 through 1.50 

in Table 4.8c, and from 0.50 through 1.25 in Table 4.8d.

To summarize the main results obtained in the U.K. case, we can say that if 

xt is 1(d) with four roots of the same order and ut is white noise, the values of d 

where the null is not rejected range between 0.75 and 1 for the individual series and 

are slightly smaller for the difference ct-yt. If ut follows an AR process, d ranges 

between 0.50 and 0.75 for the three series considered. Allowing different integration
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orders at each frequency, we observe that the root at zero frequency seems more 

important than the seasonal ones, and the seasonal root at frequency 7t appears also 

more important than the two complex ones corresponding to frequencies nl2  and 

3tc/2. Modelling xt as 1(d) with three roots, results strongly reject the null when the 

excluded root corresponds to frequency zero. If the excluded root is the real 

seasonal n, results also reject the null in practically all cases, suggesting the 

importance of these two roots when modelling these series. If we take Xj as an 1(d) 

process with two real roots, the model seems more appropriate for yt than for ct or 

ct-yt, which is in line with results in HEGY (1990). Finally, modelling xt as 

fractionally integrated with a single root at zero frequency, the range of d where H0 

is not rejected goes from 0.50 to 1 for the individual series but close to stationarity 

for ct-yt, but using a single seasonal root at frequency n or a pair of complex ones 

at frequencies Till and 3tu/2 seems inappropriate in view of the great proportion of 

rejections.
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(1 - LJ) q  in U.K. (1 - V) y, in U.K. (1 - L2) (c, - yt) in U.K.
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FIGURE 4.12
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TABLE 4.5a

? in (2.9) with p(L;0) = ( 1 - L4)d+e and white noise u,

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 3.31 1.02’ -1.00’ -2.43 -3.32 -3.88 -4.25 -4.51
I 5.09 1.31’ -1.11’ -2.00 -2.79 -3.42 -3.86 -4.18
I,T 2.65 0.41’ -1.26’ -2.33 -3.02 -3.46 -3.75 -3.99
I4> 5.17 1.32’ -1.09’ -1.87’ -2.62 -3.24 -3.70 -4.04
I,TO) 2.70 0.31’ -1.25’ -2.23 -2.87 -3.34 -3.72 -4.04

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

3.29 1.01’ -1.00’ -2.42 -3.31 -3.87 -4.24 -4.50
I 5.16 1.31’ -1.11’ -2.00 -2.79 -3.42 -3.86 -4.18
I,T 2.50 0.45’ -1.06’ -2.11 -2.84 -3.37 -3.76 -4.07
14) 5.16 1.21’ -0.97’ -1.76’ -2.53 -3.16 -3.64 -4.00
WVD 2.41 0.39’ -1.06’ -2.06 -2.76 -3.28 -3.69 -4.02

ct-y,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -0.66’ -1.48’ -2.21 -2.84 -3.32 -3.69 -3.99 -4.24
I 1.09’ -1.37’ -2.39 -3.05 -3.53 -3.88 -4.15 -4.37
I,T -0.20’ -1.44’ -2.39 -3.06 -3.53 -3.86 -4.11 -4.32
I,D 1.34’ -1.19’ -2.21 -2.89 -3.41 -3.79 -4.08 -4.32
i ,t ,d -0.01’ -1.26’ -2.21 -2.92 -3.43 -3.82 -4.11 -4.35

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold 
correspond to the cases where monotonicity with respect to d is achieved.

ct: Log of total consumption in U.K., from 1955.1 to 1984.4 
yt: Log of disposable income in U.K., from 1955.1 to 1984.4

No intercept, no time trend and no seasonal dummies.
I: Intercept.
I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.
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TABLE 4.5b

f in (2.9) with p(L;0) = (1 - L4)d+e and AR(k) ur  (U.K. case)

k = 1

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -3.26 -3.62 -3.96 -4.27 -4.52 -4.72 -4.87 -4.98
I -0.84’ -0.78’ -2.10 -3.13 -3.76 -4.17 -4.44 -4.63
I,T 1.07’ -0.82’ -2.32 -3.25 -3.81 -4.16 -4.39 -4.55

-2.27 -2.65 -3.34 -3.75 -4.05 -4.29 -4.49 -4.65
i ,t ,d -1.08’ -2.64 -3.38 -3.81 -4.10 -4.32 -4.50 -4.65

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.26 -3.62 -3.96 -4.27 -4.52 -4.71 -4.86 -4.98
I -1.81’ -1.77’ -2.59 -3.32 -3.85 -4.23 -4.49 -4.69
I,T -0.24’ -1.69’ -2.69 -3.40 -3.90 -4.25 -4.50 -4.68
14) -2.43 -2.52 -3.01 -3.47 -3.87 -4.18 -4.43 -4.62
I,T4> -1.23’ -2.32 -2.99 -3.51 -3.90 -4.21 -4.44 -4.63

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -0.86’ -1.85’ -2.60 -3.17 -3.59 -3.91 -4.17 -4.38
I -0.30’ -1.79’ -2.66 -3.25 -3.69 -4.01 -4.25 -4.45
I,T -0.62’ -1.80’ -2.66 -3.26 -3.69 -3.99 -4.22 -4.41
14) -0.29’ -1.67’ -2.52 -3.13 -3.58 -3.93 -4.20 -4.41
I,T4> -0.57’ -1.69’ -2.52 -3.14 -3.60 -3.94 -4.21 -4.43

k = 2

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.30 -3.62 -3.91 -4.21 -4.48 -4.69 -4.85 -4.98
I -1.11’ -1.10’ -2.25 -3.18 -3.77 -4.16 -4.42 -4.61
I,T 0.45’ -1.17’ -2.47 -3.32 -3.85 -4.18 -4.39 -4.54
I,D -2.35 -2.80 -3.49 -3.88 -4.15 -4.36 -4.54 -4.68
I,T4) -1.29’ -2.81 -3.53 -3.93 -4.20 -4.39 -4.55 -4.68

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.29 -3.61 -3.91 -4.21 -4.47 -4.68 -4.85 -4.98
I -2.13 -2.27 -2.89 -3.47 -3.92 -4.26 -4.51 -4.69
I,T -1.10’ -2.19 -2.96 -3.54 -3.97 -4.29 -4.51 -4.69
14) -2.62 -2.81 -3.20 -3.59 -3.92 -4.20 -4.43 -4.61
I,T,D -1.79’ -2.64 -3.18 -3.61 -3.95 -4.23 -4.45 -4.62

c,-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -0.90’ -2.02 -2.79 -3.31 -3.69 -3.97 -4.20 -4.40
I -0.68’ -1.99 -2.83 -3.39 -3.78 -4.07 -4.29 -4.47
I,T -0.71’ -1.96 -2.82 -3.39 -3.78 -4.06 -4.27 -4.44
14) -0.69’ -1.90’ -2.72 -3.29 -3.70 -4.02 -4.26 -4.46
W 4> -0.67’ -1.88’ -2.71 -3.29 -3.71 -4.03 -4.28 -4.47

cont..
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c, \ d 0.5 0.75 1.00

-3.35 -3.64 -3.88
I -1.13’ -1.10’ -2.30
I,T 0.51’ -1.14’ -2.54
14) -2.40 -2.88 -3.59
I,T4> -1.26’ -2.85 -3.62

yt \ d  0.5 0.75 1.00

-3.35 -3.63 -3.87
I -2.20 -2.40 -3.11
I,T -1.28’ -2.42 -3.22
I,D -2.70 -2.94 -3.38
I,T4> -1.97 -2.82 -3.37

ct-yt\d 0.5 0.75 1.00

-0.94’ -2.06 -2.84
I -0.80’ -2.04 -2.87
I,T -0.77’ -2.01 -2.86
14) -0.76’ -1.93’ -2.75
I,T4) -0.71’ -1.92’ -2.75

k = 3

1.25 1.50 1.75 2.00 2.25

-4.16 -4.44 -4.69 -4.88 -5.04
-3.26 -3.85 -4.24 -4.50 -4.69
-3.43 -3.97 -4.29 -4.49 -4.63
-3.97 -4.23 -4.45 -4.63 -4.78
-4.05 -4.31 -4.49 -4.64 -4.78

1.25 1.50 1.75 2.00 2.25

-4.16 -4.44 -4.68 -4.88 -5.04
-3.70 -4.15 -4.49 -4.74 -4.92
-3.80 -4.23 -4.54 -4.75 -4.91
-3.77 -4.11 -4.39 -4.63 -4.81
-3.81 -4.17 -4.44 -4.66 -4.83

1.25 1.50 1.75 2.00 2.25

-3.37 -3.74 -4.02 -4.25 -4.44
-3.43 -3.82 -4.10 -4.32 -4.50
-3.43 -3.82 -4.09 -4.30 -4.47
-3.33 -3.74 -4.06 -4.30 -4.48
-3.33 -3.75 -4.07 -4.31 -4.50

ct \ d 0.5 0.75 1.00

-3.39 -3.59 -3.67
I -1.42’ -1.49’ -2.54
I,T -0.95’ -1.61’ -2.71
14) -2.39 -2.80 -3.63
I,T4) -1.18’ -2.81 -3.67

yt \ d 0.5 0.75 1.00

. . -3.39 -3.60 -3.68
I -2.16 -2.19 -3.01
I,T -1.68’ -2.59 -3.22
I4> -2.71 -2.93 -3.45
I,T4> -2.29 -3.06 -3.50

ct-yt\d 0.5 0.75 1.00

. . -3.19 -3.27 -3.60
I -2.67 -2.91 -3.37
I,T -3.01 -3.06 -3.40
I,D -1.72’ -2.43 -3.00
UVD -1.93’ -2.58 -3.03

k = 4

1.25 1.50 1.75 2.00 2.25

-3.80 -4.01 -4.23 -4.43 -4.59
-3.37 -3.89 -4.22 -4.41 -4.53
-3.56 -4.09 -4.37 -4.46 -4.47
-4.03 -4.28 -4.46 -4.59 -4.67
-4.16 -4.43 -4.55 -4.62 -4.67

1.25 1.50 1.75 2.00 2.25

-3.81 -4.02 -4.23 -4.43 -4.59
-3.54 -3.88 -4.12 -4.29 -4.41
-3.69 -4.03 -4.25 -4.38 -4.44
-3.75 -3.98 -4.16 -4.30 -4.40
-3.83 -4.08 -4.25 -4.36 -4.43

1.25 1.50 1.75 2.00 2.25

-3.78 -3.88 -3.94 -4.00 -4.07
-3.63 -3.79 -3.90 -3.98 -4.06
-3.65 -3.79 -3.87 -3.93 -4.00
-3.34 -3.58 -3.77 -3.92 -4.04
-3.35 -3.60 -3.80 -3.96 -4.09

’: Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold
correspond to monotonicity across the values of d.



TABLE 4.5c

R in (2.9) with p(L;0) = (1 - L2)dl+ei (1 + L2)d2+02 and white noise ut. (U.K. case)

No intercept and no trend

d, d2 ct yt ct-y,
0.50 0.50 52.45 52.15 3.42’
0.50 0.75 60.69 60.37 9.92
0.50 1.00 67.35 66.99 14.87
0.50 1.25 72.87 72.47 18.35
0.50 1.50 77.53 77.09 20.95

0.75 0.50 19.80 19.76 1.05’
0.75 0.75 25.89 25.85 5.65’
0.75 1.00 31.25 31.19 10.25
0.75 1.25 36.06 35.98 13.73
0.75 1.50 40.45 40.34 16.43

1.00 0.50 8.31 8.29 2.03’
1.00 0.75 11.56 11.57 4.20’
1.00 1.00 14.42 14.44 7.73
1.00 1.25 17.08 17.10 10.62
1.00 1.50 19.61 19.62 12.90

1.25 0.50 8.60 8.55 4.99’
1.25 0.75 10.58 10.56 5.34’
1.25 1.00 12.05 12.04 7.84
1.25 1.25 13.24 13.24 10.04
1.25 1.50 14.30 14.31 11.73

1.50 0.50 11.09 11.01 8.22
1.50 0.75 12.97 12.92 7.49
1.50 1.00 14.16 14.12 9.30
1.50 1.25 14.90 14.87 11.08
1.50 1.50 15.39 15.36 12.34

Intercept Intercept and time trend

c, yt ct-yt c, yt ct-yt
79.34 83.17 11.36 33.55 40.66 3.65’
88.99 91.84 22.06 46.54 48.22 10.31
96.04 99.10 31.11 54.20 53.60 15.80
102.02 105.50 38.64 59.62 57.75 19.94
107.41 111.28 45.04 63.87 61.09 23.15

12.96 18.85 0.86’ 7.51 14.80 0.86’
23.48 26.73 4.90’ 16.69 21.37 4.82’
31.01 33.24 9.40 23.30 26.30 9.24
36.87 38.92 13.17 28.11 30.26 12.80
41.85 44.05 16.36 31.94 33.59 15.69

0.86’ 5.43’ 2.76’ 1.03’ 5.61’ 2.75’
6.07 10.23 4.48’ 6.47 10.40 4.46’
11.13 14.03 7.61 11.48 14.06 7.59
14.86 17.17 10.23 15.03 17.03 10.22
17.78 19.92 12.30 17.74 19.60 12.30

0.98’ 3.89’ 5.88’ 1.36’ 4.47’ 5.91’
4.14’ 7.44 6.20 4.78’ 7.98 6.26
8.23 10.23 8.52 8.93 10.61 8.58

11.18 12.46 10.57 11.71 12.59 10.63
13.34 14.42 12.07 13.60 14.27 12.13

2.96’ 5.40’ 8.93 3.22’ 6.04 8.89
5.14’ 8.19 8.41 5.57’ 8.93 8.37
8.68 10.28 10.22 9.35 11.04 10.20

11.10 11.67 12.03 11.89 12.38 12.04
12.54 12.76 13.28 13.35 13.35 13.31

Non-rejection values for the null hypothesis (1.12) at 95% significance level.



TABLE 4.5d
R in (2.9) with p(L;0) = (1 - L)dl+ei (1 + L)*2*62 (1 + L2)d3+83 and white noise ut. (U.K. case)

No intercept and no trend Intercept Intercept and time trend
d, d2 d3 ct yt Ci-yt c, yt Cfyt c, yt Ci-yt

0.50 0.50 0.50 127.05 126.62 10.53 164.90 171.34 28.14 76.44 95.29 11.08
0.50 0.50 1.00 152.82 152.31 26.92 193.94 198.38 59.74 112.61 117.81 28.76
0.50 0.50 1.50 169.81 169.18 35.71 212.63 218.33 81.57 127.96 130.52 39.38

0.50 1.00 0.50 142.22 141.65 26.75 184.11 191.31 59.23 104.44 118.39 29.54
0.50 1.00 1.00 165.31 164.67 53.77 209.65 215.12 105.01 142.48 139.65 59.23
0.50 1.00 1.50 180.43 179.68 67.65 226.66 232.99 133.04 158.39 151.31 75.56

0.50 1.50 0.50 150.03 149.37 37.56 196.00 203.51 80.41 117.98 128.19 42.68
0.50 1.50 1.00 170.47 169.75 65.60 218.48 224.71 126.01 150.78 146.37 73.77
0.50 1.50 1.50 184.05 183.24 78.90 234.23 241.05 151.84 164.90 156.38 89.06

1.00 0.50 0.50 21.14 21.23 2.00’ 2.11’ 7.68’ 3.10’ 2.15’ 7.91 3.05’
1.00 0.50 1.00 32.90 33.08 11.08 13.72 18.10 12.88 13.78 18.22 12.76
1.00 0.50 1.50 42.95 43.14 17.44 21.12 25.66 19.76 20.99 25.47 19.62

1.00 1.00 0.50 34.51 34.56 4.70’ 11.11 23.34 4.20’ 11.61 24.20 4.21’
1.00 1.00 1.00 50.50 50.61 14.55 35.02 42.05 11.58 35.77 42.70 11.60
1.00 1.00 1.50 63.55 63.64 23.00 49.17 55.45 18.64 49.29 55.41 18.68

1.00 1.50 0.50 43.38 43.39 9.64 19.96 35.22 8.32 20.30 35.77 8.33
1.00 1.50 1.00 59.88 59.92 27.72 49.19 56.68 23.42 49.65 56.71 23.42
1.00 1.50 1.50 72.94 72.96 41.97 64.53 70.88 37.01 64.43 70.11 36.92

1.50 0.50 0.50 11.07 10.99 9.41 8.22 12.24 10.38 8.67 12.65 10.37
1.50 0.50 1.00 14.13 14.11 26.61 28.72 28.64 27.95 29.62 29.17 27.95
1.50 0.50 1.50 15.38 15.37 38.31 41.79 42.13 39.74 42.71 42.74 39.74

1.50 1.00 0.50 15.57 15.54 6.04’ 2.54’ 6.03’ 6.53’ 2.62’ 6.32’ 6.50’
1.50 1.00 1.00 21.47 21.53 9.41 8.79 11.69 10.53 8.87 11.84 10.52
1.50 1.00 1.50 25.43 25.52 13.63 13.54 15.15 15.15 13.47 14.94 15.17

1.50 1.50 0.50 20.77 20.74 8.93 6.09’ 12.07 9.28 6.03’ 12.23 9.24
1.50 1.50 1.00 29.37 29.42 11.63 19.63 23.26 11.43 19.50 23.13 11.42
1.50 1.50 1.50 35.65 35.72 16.43 29.30 31.77 15.58 28.84 31.08 15.60

’: Non-rejection values of the null hypothesis (1.12) at 95% significance level.



140

TABLE 4.6a

r  in (2.9) with p(L;0) = (1 - L + L2 - L3)d+e and white noise ut.

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

6.41 1.90’ -2.64 -6.04 -8.15 -9.36 -10.05 -10.44
I 0.35’ -10.39 -11.20 -11.38 -11.48 -11.53 -11.57 -11.59
U -8.32 -10.51 -11.16 -11.38 -11.48 -11.54 -11.57 -11.59
U> 8.42 -2.38 -8.04 -9.80 -10.63 -11.00 -11.18 -11.26
UVD 1.58’ -4.47 -8.11 -9.86 -10.65 -11.01 -11.17 -11.26

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 6.39 1.91’ -2.64 -6.04 -8.16 -9.37 -10.06 -10.45
I 5.36 -7.41 -9.87 -10.65 -11.08 -11.30 -11.41 -11.47
I,T -2.70 -7.59 -9.78 -10.68 -11.09 -11.30 -11.41 -11.47
I4> 7.67 -3.58 -8.37 -10.00 -10.77 -11.12 -11.28 -11.37
UVD 0.77’ -4.94 -8.40 -10.05 -10.79 -11.13 -11.29 -11.37

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -8.09 -9.94 -10.83 -11.21 -11.38 -11.46 -11.50 -11.52
I -7.06 -10.01 -10.86 -11.21 -11.36 -11.44 -11.48 -11.50
U -7.96 -10.03 -10.86 -11.21 -11,36 -11.44 -11.48 -11.50
I4> -3.04 -7.68 -9.46 -10.32 -10.75 -10.97 -11.09 -11.16
U0> -4.34 -7.67 -9.46 -10.32 -10.75 -10.97 -11.09 -11.15

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold 
correspond to the cases where monotonicity with respect to d is achieved.

ct: Log of total consumption in U.K., from 1955.1 to 1984.4 
yt: Log of disposable income in U.K., from 1955.1 to 1984.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.



TABLE 4.6b

R in (2.9) with p(L;0) = (1 - L)dl+ei 

No intercept and no trend

d, d2 ct c,-y,
0.50 0.50 170.02 169.51 67.67
0.50 0.75 192.35 191.80 80.49
0.50 1.00 209.87 209.22 86.55
0.50 1.25 224.08 223.33 89.88
0.50 1.50 235.89 235.04 91.97
0.75 0.50 51.35 51.42 86.72
0.75 0.75 64.85 64.97 100.30
0.75 1.00 76.12 76.22 106.66
0.75 1.25 85.76 85.82 110.15
0.75 1.50 94.19 94.21 112.34
1.00 0.50 16.48 16.50 99.53
1.00 0.75 22.94 23.03 112.41
1.00 1.00 27.85 27.96 118.28
1.00 1.25 31.68 31.78 121.45
1.00 1.50 34.75 34.85 123.40
1.25 0.50 25.48 25.45 107.22
1.25 0.75 32.89 32.95 118.75
1.25 1.00 38.39 38.48 123.88
1.25 1.25 42.53 42.62 126.61
1.25 1.50 45.72 45.81 128.27
1.50 0.50 40.53 40.55 112.17
1.50 0.75 50.42 50.54 122.24
1.50 1.00 57.92 58.08 126.64
1.50 1.25 63.72 63.89 128.96
1.50 1.50 68.32 68.49 130.37

(1 + L2) ^ 82 and white noise ut. (U.K. case)

 Intercept  Intercept and a time trend

ct yt c,-y, ct yt ct-y,
65.47 155.32 54.54 65.47 155.32 54.54
73.99 173.08 64.15 73.99 173.08 64.15
79.74 187.54 68.41 79.74 187.54 68.41
84.32 199.93 70.54 84.32 199.93 70.54
88.24 210.84 71.71 88.24 210.84 71.71

104.81 60.14 88.31 104.81 60.14 88.31
110.45 64.14 101.52 110.45 64.14 101.52
112.02 65.63 107.61 112.02 65.63 107.61
112.51 66.17 110.89 112.51 66.17 110.89
112.64 66.28 112.90 112.64 66.28 112.90
118.83 89.13 100.58 118.83 89.13 100.58
124.78 96.27 113.20 124.78 96.27 113.20
126.79 100.15 118.95 126.79 100.15 118.95
127.76 102.69 122.06 127.76 102.69 122.06
128.38 104.56 123.98 128.38 104.56 123.98

123.13 101.91 107.50 123.13 101.91 107.50
128.18 108.90 118.75 128.18 108.90 118.75
129.83 112.69 123.78 129.83 112.69 123.78
130.63 115.16 126.48 130.63 115.16 126.48
131.12 116.94 128.14 131.12 116.94 128.14
125.92 109.96 112.07 125.92 109.96 112.07
130.23 116.46 121.88 130.23 116.46 121.88
131.67 119.99 126.21 131.67 119.99 126.21
132.38 122.28 128.53 132.38 122.28 128.53
132.85 123.90 129.95 132.85 123.95 129.95

Non-rejection values of the null hypothesis (1.12) at 95% level.
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TABLE 4.7a

? in (2.9) with p(L;0) = (1 - L2)d+e and white noise ut

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

5.23 2.04 -0.47’ -2.00 -2.87 -3.38 -3.72 -3.95
I 2.06 -4.26 -4.74 -4.86 -4.95 -5.01 -5.04 -5.06
I,T -3.21 -4.30 -4.71 -4.89 -4.98 -5.03 -5.06 -5.09
I4> 7.14 0.17’ -2.49 -3.40 -3.98 -4.33 -4.53 -4.66
I,T,D 2.60 -0.66’ -2.50 -3.48 -4.03 -4.34 -4.54 -4.66

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . 5.18 2.00 -0.51’ -2.03 -2.89 -3.40 -3.74 -3.97
I 6.47 -0.69’ -2.81 -3.64 -4.16 -4.47 -4.65 -4.76
I,T 1.99 -1.05’ -2.80 -3.72 -4.23 -4.49 -4.65 -4.76
I,D 7.52 1.52’ -1.16’ -2.38 -3.23 -3.75 -4.07 -4.28
I,T4> 4.09 0.96’ -1.18’ -2.50 -3.29 -3.78 -4.08 -4.28

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.97 -4.47 -4.77 -4.93 -5.01 -5.05 -5.07 -5.08
I -3.11 -4.35 -4.70 -4.86 -4.94 -4.98 -5.01 -5.03
I,T -3.76 -4.40 -4.70 -4.86 -4.94 -4.99 -5.02 -5.04
14) -0.54’ -3.03 -3.84 -4.27 -4.51 -4.66 -4.75 -4.82
UVD -1.64’ -3.06 -3.85 -4.27 -4.51 -4.66 -4.75 -4.81

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold
correspond to the cases where monotonicity in the value of the tests with respectto d is achieved.

ct: Log of total consumption in U.K., from 1955.1 to 1984.4 
yt: Log of disposable income in U.K., from 1955.1 to 1984.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.
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r  in (2.9) with p(L;0) = (1 -

ct \d 0.5 0.75 1.00

__ 1.93’ 1.17’ -0.49’
I 0.59’ -1.39’ -2.26
U -0.77’ -1.68’ -2.28
14) 1.87’ -0.54’ -2.40
I,T4> 0.80’ -1.12’ -2.41

yt\d 0.5 0.75 1.00

. . 1.91’ 1.13’ -0.54’
I 1.55’ -0.99’ -2.27
U 0.56’ -1.26’ -2.44
14) 2.05 0.55’ -1.46’
W4> 1.95’ 0.17’ -1.49’

cryt\d 0.5 0.75 1.00

-2.14 -2.76 -3.25
I -1.97 -2.71 -3.09
U -2.19 -2.81 -3.19
14) -1.35’ -2.92 -3.54
I,T4) -1.86’ -2.92 -3.54

ct \ d 0.5 0.75 1.00

. . 1.94’ 1.08’ -0.49’
I 1.46’ -0.87’ -2.01
U -0.19’ -1.15’ -2.00
14) 2.08 -0.45’ -2.14
UVD 0.74’ -0.99’ -2.15

yt \ d 0.5 0.75 1.00

. . 1.92’ 1.05’ -0.54’
I 2.64 -1.07’ -2.76
I,T 0.54’ -0.91’ -1.95’
14) 2.24 0.54’ -1.50’
U 4 ) 1.86’ 0.10’ -1.53’

ct-y,\d 0.5 0.75 1.00

. . -1.91’ -2.65 -3.30
I -2.04 -3.03 -3.56
I,T -1.95’ -2.74 -3.28
14) -1.34’ -2.91 -3.54
I,T4) -1.92’ -2.91 -3.54

TABLE 4.7b

V ) M  and seasonal AR(K) ut. (U.K. case)

K = 4
1.25 1.50 1.75 2.00 2.25

-2.09 -3.10 -3.66 -3.99 -4.19
-2.65 -2.92 -3.11 -3.27 -3.40
-2.67 -2.94 -3.15 -3.34 -3.51
-3.13 -3.59 -3.87 -4.05 -4.17
-3.17 -3.60 -3.88 -4.05 -4.18

1.25 1.50 1.75 2.00 2.25

-2.12 -3.12 -3.69 -4.01 -4.20
-2.87 -3.26 -3.51 -3.68 -3.80
-3.13 -3.53 -3.77 -3.94 -4.06
-2.59 -3.39 -3.88 -4.16 -4.33
-2.69 -3.45 -3.90 -4.17 -4.34

1.25 1.50 1.75 2.00 2.25

-3.58 -3.80 -3.93 -4.02 -4.08
-3.34 -3.51 -3.63 -3.74 -3.83
-3.42 -3.58 -3.71 -3.81 -3.91
-3.91 -4.14 -4.29 -4.40 -4.48
-3.91 -4.14 -4.29 -4.40 -4.48

K = 8
1.25 1.50 1.75 2.00 2.25

-2.11 -3.14 -3.71 -4.03 -4.22
-2.65 -3.09 -3.39 -3.60 -3.75
-2.66 -3.13 -3.46 -3.71 -3.92
-2.90 -3.47 -3.85 -4.09 -4.26
-2.93 -3.47 -3.84 -4.09 -4.26

1.25 1.50 1.75 2.00 2.25

-2.15 -3.17 -3.73 -4.04 -4.23
-3.57 -4.15 -4.52 -4.74 -4.88
-2.72 -3.28 -3.67 -3.93 -4.12
-2.59 -3.38 -3.87 -4.16 -4.34
-2.70 -3.43 -3.89 -4.17 -4.35

1.25 1.50 1.75 2.00 2.25

-3.75 -4.02 -4.19 -4.29 -4.34
-3.89 -4.09 -4.22 -4.32 -4.40
-3.62 -3.84 -3.98 -4.10 -4.19
-3.92 -4.16 -4.31 -4.42 -4.49
-3.92 -4.16 -4.31 -4.41 -4.48

Non-rejection values of the null hypothesis (1.12) at 95% significance level. Letters in bold correspond
to the cases where monotonocity in the value of the tests with respect to d is achieved.



TABLE 4.7c

R in (2.9) with p(L;0) = (1 - L)dl+ei (1 

No intercept and no trend

di d2 ct yt ct-y,
0.50 0.50 81.29 80.38 16.06
0.50 0.75 91.34 90.37 16.37
0.50 1.00 99.46 98.47 15.89
0.50 1.25 106.20 105.24 15.08
0.50 1.50 111.95 111.01 14.15
0.75 0.50 25.29 24.99 19.09
0.75 0.75 32.42 32.03 20.13
0.75 1.00 38.66 38.21 20.12
0.75 1.25 44.23 43.76 19.63
0.75 1.50 49.27 48.81 18.88
1.00 0.50 7.24 7.25 20.56
1.00 0.75 10.61 10.54 22.31
1.00 1.00 13.63 13.50 22.84
1.00 1.25 16.43 16.26 22.80
1.00 1.50 19.09 18.90 22.46
1.25 0.50 6.36 6.50 20.82
1.25 0.75 8.21 8.30 23.13
1.25 1.00 9.65 9.70 24.05
1.25 1.25 10.86 10.87 24.35
1.25 1.50 11.97 11.94 24.33
1.50 0.50 8.26 8.43 20.47
1.50 0.75 9.86 10.02 23.22
1.50 1.00 10.93 11.06 24.43
1.50 1.25 11.67 11.77 24.95
1.50 1.50 12.21 12.28 25.13

D«u+m an(j white noise ut. (U.K. case)

______ Intercept_______ Intercept and a time trend

c, yt c,-yt ct yt cry,
26.81 101.13 10.85 11.79 25.48 14.58
36.50 115.60 10.93 11.41 34.07 14.88
47.24 128.02 10.49 10.60 41.85 14.42
59.01 139.06 10.00 9.86 49.40 13.68
71.59 149.02 9.68 9.40 56.85 12.84
18.45 4.73’ 18.05 18.45 5.34’ 18.37
18.45 8.54 19.12 18.89 8.81 19.50
17.44 11.96 19.18 18.42 11.25 19.61
16.05 15.71 18.78 17.62 13.57 19.26
14.48 20.06 18.17 16.65 16.15 18.68
21.21 6.40 19.78 21.08 6.44 19.80
22.44 9.50 21.59 22.28 9.60 21.61
22.56 10.58 22.20 22.37 10.70 22.22
22.32 10.84 22.27 22.13 10.98 22.30
21.90 10.88 22.08 21.71 11.03 22.11
21.75 8.43 20.02 21.94 8.80 20.02
23.41 12.62 22.36 23.62 13.09 22.36
23.77 14.25 23.32 23.99 14.76 23.32
23.76 14.59 23.67 24.01 15.12 23.67
23.62 14.39 23.73 23.88 14.92 23.73
21.94 9.54 19.68 22.14 9.82 19.69
24.01 14.73 22.45 24.23 15.11 22.46
24.53 17.12 23.70 24.77 17.55 23.72
24.64 17.94 24.24 24.89 18.40 24.26
24.62 18.04 24.45 24.88 18.51 24.47

’: Non-rejection values for the null hypothesis (1.12) at 95% significance level. 4^



TABLE 4.8a

r  in (2.9) with p(L;0) = (1 - L)d+e and white noise ut

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

9.89 3.91 -0.30’ -2.55 -3.73 -4.43 -4.87 -5.18
I 1.57’ -4.49 -4.76 -5.01 -5.23 -5.42 -5.59 -5.74
I,T -3.32 -4.31 -4.74 -5.02 -5.25 -5.44 -5.61 -5.76
I,D 11.91 -0.91’ -3.37 -4.28 -4.83 -5.18 -5.42 -5.61
I,T4> 3.84 -1.13’ -3.34 -4.34 -4.87 -5.21 -5.45 -5.64

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

9.83 3.87 -0.31’ -2.55 -3.73 -4.42 -4.86 -5.17
I 8.65 -3.00 -4.31 -4.95 -5.37 -5.65 -5.85 -6.00
I,T 1.13’ -2.69 -4.27 -4.99 -5.41 -5.67 -5.87 -6.02
14) 11.76 -0.86’ -3.49 -4.60 -5.24 -5.61 -5.85 -6.02
I,TO) 4.76 -0.77’ -3.44 -4.66 -5.28 -5.64 -5.87 -6.04

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-3.66 -4.26 -4.63 -4.87 -5.06 -5.22 -5.38 -5.52
I -3.00 -4.20 -4.61 -4.87 -5.07 -5.24 -5.40 -5.54
I,T -3.50 -4.23 -4.61 -4.87 -5.07 -5.24 -5.39 -5.54
14) -1.09’ -3.67 -4.42 -4.85 -5.13 -5.34 -5.51 -5.65
I,T 4) -1.95’ -3.63 -4.42 -4.85 -5.13 -5.34 -5.50 -5.65

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in 
correspond to the cases of monotonicity with respect to d.

ct: Log of total consumption in U.K, from 1955.1 to 1984.4 
yt: Log of disposable income in U.K, from 1955.1 to 1984.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.
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TABLE 4.8b

r  in (2.9) with p(L;0) = (1 - L)d+e and seasonal AR(K) ut. (U.K. case)

K = 4
c, \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

6.13 3.29 -0.29’ -2.58 -3.79 -4.48 -4.93 -5.24
I 3.04 -0.71’ -1.43’ -2.31 -3.13 -3.83 -4.42 -4.89
I,T 1.52’ -0.18’ -1.38’ -2.35 -3.22 -3.98 -4.60 -5.07
U> 5.11 -1.00’ -2.80 -3.75 -4.41 -4.88 -5.22 -5.48
I,T0> 2.34 -0.91’ -2.74 -3.78 -4.45 -4.93 -5.28 -5.54

yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

6.11 3.25 -0.31’ -2.59 -3.79 -4.48 -4.92 -5.23
I 3.89 -1.44’ -2.44 -3.30 -3.98 -4.52 -4.95 -5.29
I,T 1.67’ -0.87’ -2.35 -3.32 -4.02 -4.56 -4.99 -5.32
14) 5.05 -1.03’ -2.90 -3.92 -4.59 -5.05 -5.38 -5.63
I,T4> 2.94 -0.74’ -2.83 -3.95 -4.62 -5.08 -5.41 -5.66

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-2.46 -3.73 -4.54 -5.02 -5.32 -5.53 -5.68 -5.81
I -2.28 -3.71 -4.45 -4.92 -5.25 -5.49 -5.67 -5.80
I,T -2.59 -3.75 -4.45 -4.92 -5.25 -5.48 -5.65 -5.77
14) -1.80’ -3.76 -4.53 -5.00 -5.31 -5.53 -5.69 -5.82
I,T4) -2.23 -3.72 -4.53 -5.01 -5.31 -5.52 -5.68 -5.81

K = 8
ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

6.03 3.20 -0.28’ -2.58 -3.79 -4.49 -4.94 -5.25
1 4.52 -0.15’ -1.36’ -2.43 -3.30 -4.00 -4.56 -5.01
I,T 2.39 0.28’ -1.30’ -2.47 -3.39 -4.15 -4.74 -5.18
I,D 5.58 -0.41’ -2.47 -3.64 -4.40 -4.88 -5.23 -5.48
O T ) 2.61 -0.42’ -2.42 -3.66 -4.43 -4.93 -5.28 -5.53

yt \d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

6.02 3.16 -0.31’ -2.59 -3.79 -4.48 -4.93 -5.23
I 4.60 -0.85’ -2.25 -3.34 -4.12 -4.67 -5.09 -5.41
I,T 2.10 -0.39’ -2.17 -3.36 -4.16 -4.71 -5.12 -5.44
I,D 5.33 -0.87’ -2.79 -3.90 -4.61 -5.08 -5.42 -5.66
UVD 2.84 -0.64’ -2.73 -3.92 -4.64 -5.11 -5.44 -5.69

cryt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

— -2.32 -3.71 -4.59 -5.09 -5.39 -5.60 -5.76 -5.88
I -2.17 -3.75 -4.53 -5.01 -5.33 -5.57 -5.74 -5.87
I,T -2.48 -3.78 -4.53 -5.01 -5.33 -5.56 -5.72 -5.84
IJ> -1.78’ -3.76 -4.52 -4.97 -5.28 -5.49 -5.65 -5.78
I,T4) -2.29 -3.73 -4.52 -4.98 -5.27 -5.48 -5.63 -5.76

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold
correspond to the cases where monotonocity in the value of the tests with respect to d is obtained.
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TABLE 4.8c

? in (2.9) with p(L;0) = (1 + L)d+e and white noise u,

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

. . -0.34’ -0.51’ -0.92’ -1.34’ -1.71’ -2.04 -2.32 -2.55
I -4.65 -4.67 -4.69 -4.71 -4.72 -4.73 -4.74 -4.74
U -3.84 -3.97 -4.07 -4.16 -4.23 -4.30 -4.36 -4.41

-4.71 -4.73 -4.75 -4.77 -4.77 -4.77 -4.77 -4.77
UVD -4.59 -4.61 -4.63 -4.64 -4.66 -4.67 -4.68 -4.69

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-0.71’ -0.76’ -1.09’ -1.46’ -1.80’ -2.11 -2.37 -2.60
I -4.69 -4.71 -4.73 -4.74 -4.74 -4.75 -4.75 -4.76
U -4.54 -4.60 -4.63 -4.65 -4.66 -4.67 -4.68 -4.69
I4> -4.71 -4.74 -4.75 -4.77 -4.77 -4.77 -4.77 -4.77
I,T4> -4.63 -4.63 -4.64 -4.65 -4.66 -4.67 -4.68 -4.69

c,-y,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-4.13 -4.24 -4.30 -4.35 -4.39 -4.42 -4.45 -4.46
I -4.18 -4.30 -4.38 -4.44 -4.49 -4.53 -4.57 -4.60
u -3.18 -3.37 -3.50 -3.61 -3.71 -3.81 -3.90 -3.99
W -4.48 -4.56 -4.62 -4.65 -4.68 -4.69 -4.71 -4.72
UVD -3.78 -4.01 -4.14 -4.24 -4.31 -4.37 -4.41 -4.45

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold 
correspond to the cases of monotonicity with respect to d.

ct: Log of total consumption in U.K, from 1955.1 to 1984.4 
yt: Log of disposable income in U.K, from 1955.1 to 1984.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.
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TABLE 4.8d

? in (2.9) with p(L;0) = (1 + L2)d+e and white noise u,

(U.K. case)

ct \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

-0.16’ -0.41’ -1.19’ -1.91’ -2.53 -3.05 -3.50 -3.87
I -7.06 -7.11 -7.15 -7.17 -7.19 -7.21 -7.22 -7.23
I,T -7.02 -7.16 -7.19 -7.20 -7.21 -7.21 -7.21 -7.21
I,D -7.10 -7.11 -7.22 -7.25 -7.26 -7.26 -7.26 -7.25
i »t ,d -6.92 -6.97 -7.00 -7.03 -7.05 -7.08 -7.09 -7.11

yt \ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -0.25’ -0.66’ -1.35’ -2.02 -2.61 -3.12 -3.55 -3.91
I -7.09 -7.13 -7.17 -7.19 -7.21 -7.22 -7.23 -7.24
I,T -6.98 -7.05 -7.07 -7.08 -7.08 -7.09 -7.09 -7.09
I4> -7.11 -7.17 -7.22 -7.25 -7.26 -7.26 -7.26 -7.26
I,T4> -6.92 -6.92 -6.92 -6.94 -6.96 -6.98 -7.00 -7.01

ct-yt\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

_ -6.76 -6.86 -6.87 -6.87 -6.86 -6.86 -6.86 -6.86
I -6.85 -7.03 -7.12 -7.17 -7.20 -7.22 -7.23 -7.25
I,T -5.90 -6.44 -6.68 -6.81 -6.88 -6.93 -6.97 -6.99
I4> -6.82 -6.98 -7.07 -7.12 -7.16 -7.18 -7.20 -7.21
I,T,D -5.67 -6.23 -6.48 -6.60 -6.68 -6.74 -5.77 -6.80

Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold 
correspond to the cases of monotonicity with respect to d.

ct: Log of total consumption in U.K, from 1955.1 to 1984.4 
yt: Log of disposable income in U.K, from 1955.1 to 1984.4

—: No intercept, no time trend and no seasonal dummies.
I: Intercept.

I,T: Intercept and time trend.
I,D: Intercept and seasonal dummies.
I,T,D: Intercept, time trend and seasonal dummies.
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4.4 CONCLUDING REMARKS

We have presented a variety of model specifications for quarterly 

consumption and income data in Japan and the U.K.. Given the number of 

possibilities covered by Robinson’s (1994c) tests, it is difficult to draw clear 

conclusions about which might be the best way of modelling these series. In fact, 

using these tests, the null hypothesized model will permit different deterministic 

paths; different lagged functions p(L), allowing roots at some or all seasonal 

frequencies (as well as at zero frequency), each of them with a possible different 

integration order; and will also allow different ways of modelling the 1(0 ) 

disturbances u  ̂ Looking at the results presented above as a whole, some common 

features are observed for all series in both countries and they can be summarized as 

follows:

First, modelling ^  as a quarterly 1(d) process (i.e., of the form: (1-L4)dx, = 

ut, t=l,2,...) seems to be appropriate when ut is white noise or a non-seasonal AR, 

however, if ut is seasonal AR, results are worse in both countries, in the sense that 

monotonicity in the test statistic with respect to d is not achieved in most cases. This 

can be explained because seasonality can be captured in this case either by quarterly 

integration above or by seasonal dummy variables in (31). We also observe that the 

integration order seems slightly smaller if u, is AR rather than white noise, due 

perhaps to AR picking up part of the nonstationary component of the series. The 

results emphasize the importance of real roots over complex ones, given the greater 

integration order observed in the former roots, and this is even clearer when we 

allow different integration orders for each frequency. Excluding one real root results 

in rejecting the null in practically all situations. If p(L,0) is given by (41), we 

observe some non-rejections if ut is white noise, and allowing 1(0 ) autocorrelation, 

results are now better for seasonal AR than for non-seasonal AR processes. This can 

be explained because the lagged function p(L) does not seem to capture now 

seasonality at all and therefore, the seasonal AR component may play an important 

role in this situation. Separating here the roots at zero and at frequency n, results 

emphasize the importance of the root at the long run frequency, but modelling the 

series as a simple 1(d) process with a single root does not seem appropriate in most 

cases.

Another common feature observed across all these tables is the fact that the
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integration order for the individual series seems to range between 0.50 (or 0.75) and 

1.25, independently of the lagged function used when modelling ^  and the inclusion 

or not of deterministic parts in (31), indicating clearly the nonstationary nature of 

these series; however, ct-yt seems less integrated in practically all situations. 

Therefore, if we consider that the series are well modelled by a given p(L), a certain 

degree of fractional cointegration would exist between consumption and income for 

a given cointegration vector (1,-1), using a very simplistic version of the permanent 

income hypothesis.

We can compare these results with those obtained in HEGL (1993) and 

HEGY (1990) for unit root situations. Results in HEGL (1993) for Japanese data 

indicated the presence of unit roots at all frequencies for yt and ct-yt, and the same 

conclusions hold for ct if the dummies were not included in the model, but only the 

two real unit roots would be present if these dummy variables were included. If we 

look now at our tables, we observe that the unit root null is not rejected for yt in any 

specification in (31) when p(L,0) adopts the form in (32) with AR uSimi lar ly  for 

ct-yt, we cannot reject the unit root null for the same p(L;0) and white noise Uj. For 

ct, the null of four unit roots is not rejected when there are no dummies, but if they 

are included non-rejections will occur when p(L,0) takes the form of (41) with white 

noise or seasonal AR ut. For the U.K. case, results in HEGY (1990) suggested that 

four unit roots could be present for ct, and for ct-yt if the dummies were not 

included, and two real unit roots for yt, and for ct-yt if these were included. Our 

results again show a certain consistency with theirs given that the unit root null is 

not rejected for ct if p(L,0) adopts the form in (32) with white noise ut, and for yt 

this hypothesis is not rejected if p(L,0) takes the form of (41) and Ut is white noise 

or seasonal AR.

Finally, in the appendices of this chapter, (and set out below), we have 

considered the possibility of a structural change occurring in the slope of the trend 

function of the series, and due to oil price shock in 1973. First, in Appendix 4.1, 

we performed some of the tests in Section 3 on two subsamples, splitting the data 

in that year. In Appendix 4.2, we modelled the shock as exogenous, including 

dummies in the regression model to correct the changing growth in the series. In 

both cases results were similar to those in Section 3, finding therefore little evidence 

of structural change in these data. Though the results presented in this chapter can



151

lead to ambiguous conclusions, we find them interesting in the sense that they 

suggest an alternative way of modelling seasonality, allowing fractional roots at some 

or all seasonal frequencies as well as at zero frequency, and allowing also different 

integration orders in each of these frequencies.

APPENDICES TO CHAPTER 4

As mentioned in Chapter 2, Perron (1989, 1993) found that several stylized 

facts, such as the 1929 crash and the 1973 oil price shock, might be a cause of non

rejection of the unit root at zero frequency in macroeconomic data, and that when 

these were taken into account, deterministic trend models might be preferable. 

Following this work, we are concerned by the effect that a possible structural break 

in the long run component of the series may have had on results in Section 3, in 

particular, one due to oil crisis in 1973. Tables in Appendix 4.1 correspond to some 

of the tests performed in Section 3, splitting the sample period in two subsamples 

basing on pre and post-oil crisis data. Tables in Appendix 4.2 correspond to similar 

tests, but treating the price oil shock as exogenous and modelling the change in the 

slope of the trend function with dummy variables.

APPENDIX 4.1

a) The Japanese case

The sample periods are now 1961.1 - 1973.4 and 1974.1 - 1987.4. Thus, we 

have 52 observations in the first subsample and 56 in the second one. Tables 4.9a 

and 4.9b report results of r in (2.9) in both subsamples respectively, when p(L;0) 

adopts the form given in (32) and ut is white noise or non-seasonal AR. We focus 

on these types of disturbances since these were the cases where monotonicity was 

most likely achieved across the different models for ut. Results are similar in both 

tables and non-rejections occur in practically all cases when d ranges between 0.50 

and 1. We observe that if ut is white noise, the non-rejection d’s are slightly smaller 

than those in Table 4.1a, but allowing AR ut, results are in line with those in Table 

4.1b.

Excluding the root at frequency k gave us similar results to those in Table 

4.2a, with the only non-rejection cases corresponding to ct and yt with d = 0.75 and 

no regressors. Excluding the root at zero frequency, the null was rejected in
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practically all cases in favour of stationary alternatives as in Section 3.

In Tables 4.10a and 4.10b we examine the case of two real roots in Xp with 

white noise and seasonal and non-seasonal AR Up Again results are similar in both 

samples, and we see that the non-rejection values of d range between 0.50 and 1.25 

for ct and yt with white noise or seasonal AR and also for ct-yt with seasonal AR, but 

these hypotheses are practically always rejected if ut follows a non-seasonal AR. 

Again these results are in line with those in Section 3 when we looked at the whole 

period of time.

Tables 4.11a and 4.11b perform the tests when xt contains a single root 

located at zero frequency and ut is white noise or seasonal AR. Comparing these 

results with those in Tables 4.4a and 4.4b we observe now some more non

rejections, which might be related with the smaller sample size, but in general, we 

see that the values of d where the null was not rejected in Tables 4.4a and 4.4b are 

non-rejected when we split the sample size in Tables 4.11a and 4.11b, with values 

of d ranging now between 0.50 and 1.25 in the first subsample, and between 0.50 

and 1.50 in the second one.

b) The U.K. case

The sample periods are now 1955.1 - 1973.4 and 1974.1 - 1984.4, so that we 

have 76 observations in the first subsample and 44 in the second one. Tables 4.12a 

and 4.12b report the one-sided test statistic r in (2.9) when xt contains four roots on 

the unit circle, and ut is white noise and a non-seasonal AR. Results are similar in 

both samples with the non-rejections occurring at the same values of d in both tables 

and ranging in most cases between 0.50 and 1. These non-rejection d’s also coincide 

with those given in Tables 4.5a and 4.5b when we considered the whole period of 

time.

Excluding the root at frequency n we obtained few non-rejection cases, 

corresponding to ct and yt with d = 0.50 and d = 0.75. The same conclusions were 

obtained when we considered the whole sample period in Table 4.6a. Excluding the 

root at zero frequency, the null was rejected in all cases and in the three series, as 

it also was in Section 3.

Tables 4.13a and 4.13b present results when Xt contains only two real roots, 

and again results are similar in both subsamples, with the non-rejections occurring
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for ct and yt when d ranges between 0.50 and 1.25 for white noise and seasonal AR 

ut. Looking at ct-yt, the null is practically always rejected in the first subsample 

though in the other subsample is not rejected the case of seasonal AR(1) i ,̂ with d 

ranging again between 0.50 and 1. Comparing these results with those for the whole 

sample period, we observe that they are rather similar, with non-rejections also 

ranging between 0.50 and 1 in most cases for individual series, and rejecting the null 

in favour of stationary alternatives for ct-yt.

Tables 4.14a and 4.14b show results when Xj contains a single root located 

at zero frequency. These tables correspond to Tables 4.8a and 4.8b in Section 3. 

Starting with white noise ut, we saw in Table 4.8a that the only non-rejection cases 

for ct corresponded to d = 1 with no regressors and to d = 0.50 with an intercept. 

For yt, the non-rejections were d = 1 with no regressors and d = 0.50 with a time 

trend. In Tables 4.14a and 4.14b we see that these cases are among the few where 

the null is not rejected. Allowing seasonal AR ut, the null hypothesis was not 

rejected in Table 4.8b for c, when d was 0.75 or 1, and for yt when d was 0.75. 

Splitting the sample we see that these cases are either non-rejected as well as the 

case of d = 0.50.

As a conclusion of all these tables we see that results do not differ much 

when we split the sample period in two subsamples based on pre and post-oil crisis 

data from those obtained when we considered the whole period of time. In fact, 

apart from a somewhat greater proportion of non-rejections, due to smaller sample 

sizes, the values of d where the null are not rejected are practically the same in all 

series across both countries.

APPENDIX 4.2

Another way of dealing with the problem of a structural change in the long 

run component of the series might be to include some dummy variables in the 

regression model in order to take into account of a possible change in the slope of 

the trend function. The model becomes (1.10) and (2.2) with
3

y c = « + P o i t + (P0 2 - P 01) d t  + E  Vis±t+Xt t  = 1 . 2  T  (48)
i =1

where dt = t - t* if t > t*, and 0  otherwise, and t* refers to the period of time at 

which the change in the slope occurs, (in our case, the fourth quarter of 1973).
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Across Tables 4.15a-4.17b, we perform Robinson’s (1994c) tests in (1.10); 

(2.2) and (48), testing the null (1.12) against the one-sided alternatives (33), for some 

specialized forms p(L;0) used in Section 3, and for a range of values of d from 0.00 

through 2 .0 0  with 0.25 increments, treating separately the cases a, p01, P02 unknown 

and pj = p2 = P3 = 0  a priori, and (a, P01, P02, p1? P2, p3) unknown. Note that non

rejections of H0 when d = 0 would imply that the series are 1(0) stationary around 

deterministic functions, with the slowdown in growth after 1973 modelled as 

exogenous as was advocated by Perron (1989) and others.

Tables 4.15a and 4.15b give results of r in (2.9) for Japanese and U.K. data 

respectively, with p(L;0) as in (32) and white noise and non-seasonal AR \\. 

Looking at the Japanese data, we see that if we do not include seasonal dummies, 

there is a lack of monotonic decrease in r with respect to d when d is in the 

stationary region. Including these dummies, monotonicity is always achieved and 

the null is not rejected for ct when d ranges between 0.25 and 0.75; for yt when d 

= 0.50, and for ct-yt when d is 0.50 or 0.75. Note that the null is always rejected 

when d = 0 , in favour of alternatives with d > 0 , rejecting therefore that the series 

follow a deterministic trend model with 1(0 ) iif

Results for the U.K. data are given in Table 4.15b and we see that 

monotonicity is achieved even for the case of (pj)i=i 2,3 = 0  a priori, in yt and ct-yt. 

In this case we see that the null is not rejected when d = 0, however, we observe 

that lower statistics are obtained when d is slightly greater. Including seasonal 

dummies, the non-rejection values of d range in most of the cases between 0.25 and 

0.75. Comparing results in these two tables with those given in Section 3 when we 

considered a simple linear time trend, (in Tables 4.1a, 4.1b, 4.5a and 4.5b), we 

observe that there is now a somewhat larger proportion of non-rejections at smaller 

values of d, though most non-rejections in those tables are non-rejected now when 

we consider the structural break.

Excluding one of the real roots, either at frequency n or at zero frequency 

resulted in rejecting the null in practically all cases in all series, as was the case in 

the Section 3 tests.

In Tables 4.16a and 4.16b we take p(L;0) as in (41), and \  contains only two 

real roots. We observe in both tables that the non-rejection d’s tend to be slightly 

smaller by about 0.25 than those in Section 3. Including seasonal dummies, the null
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is not rejected when d = 0 for yt with white noise, AR(1) and seasonal AR(1) u  ̂and 

for ct-yt with seasonal AR using Japanese data (in Table 4.16a), and with seasonal 

and non-seasonal AR(1) ut using U.K. data, (in Table 4.16b), though in most of 

cases, lower statistics are obtained if d is greater than 0. Stationary alternatives of 

this type were also plausible in tests of Section 3 in view of Tables 4.3b and 4.7b. 

We also observe that the unit root null is not rejected for Japanese consumption and 

U.K. income as in the tests of Section 3.

Finally, in Tables 4.17a and 4.17b, we suppose xt contains a single root 

located at zero frequency. Monotonicity is obtained in some cases for Japanese data 

and in all of them for U.K. data. The non-rejection values of d are 0.50 and 0.75 

for ct in Japan, and for ct and yt in the U.K., and range between 0.00 and 0.50 for 

Japanese yt and for ct-yt in both countries. Again results here are in complete 

analogy with those in Section 3 when we included a simple linear trend.

Results in this second appendix show that even correcting the model of a 

possible structural change in the slope of the trend function, does not significantly 

affect the results in Section 3. Though we observe in these tables slightly smaller 

non-rejection d’s than those in Section 3, these non-rejections occur in many cases 

at the same values of d, suggesting that the structural break in the trend function is 

not relevant at all when modelling this series. Finally, since the null of d = 0 is 

rejected in most of cases where monotonicity is achieved, these results suggest that 

deterministic trend models of the form advocated by Perron (1989) are inappropriate 

in these series.

APPENDIX 4.3

The Fortran program used to obtain Robinson’s (1994c) univariate tests is 

described in this appendix. If the null hypothesized model is

y c = P V t + t  = i , 2 , . . . r

p ( L ) x t = u t t  = 1 , 2 , . . . T

x t = 0 t  £ 0

ut ~ J ( 0 ) ,

the test statistic is given by: TEST(I,L,K,IQ), 

where I = 1,2,...7, and
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1 = 1  means that |it = 0  

1 = 2  means that ̂  = 1

1 = 3 means that rit = (l,t)’

1 = 4 means that rit = (l,Slt,S2t,S3t)’

1 = 5 means that r|t = (l,t,Slt,S2t,S3t)’

1 = 6  means that rit = (l,tj,t2)’

1 = 7 means that T|t = (l,tj,t2,Slt,S2t,S3t)’

(i.e. (-)  in Tables 4.1a - 4.17b) 

(i.e. (I))

(i.e. (I,T))

(i.e. (I,D))

(i.e. (I,T,D))

(i.e. (I,T*) and 

(i.e. (I,T*,D),

where tj and t2 are dummy variables for the changing growth in the trend function.

L = 1,2,...7, and

L = 1 means that p(L) = 

L = 2 means that p(L) = 

L = 3 means that p(L) = 

L = 4 means that p(L) = 

L = 5 means that p(L) = 

L = 6  means that p(L) = 

L = 7 means that p(L) =

(1 + L 2)d

(1 - L + L2 - L3)d

(1 - L)d

(1 + L + L2 + L3)d 

(1 + L)d 

(1 - L2)d 

(1 - L4)d.

K = 1,2,...ND, where ’ND’ can be any integer number, and it corresponds to the 

value of d above, using the relation: d = K/4 + 0.25. Thus,

K = 1 means that d = 0.50

K = 2 means that d = 0.75

K = 3 means that d = 1.00 and so on.

Finally, IQ = 1,2,...11, where

IQ = 1 means that \\ is an AR(1) process.

IQ = 2 means that ^  is an AR(2) process.

IQ = 3 means that \\ is an AR(3) process.

IQ = 4 means that Uj is an AR(4) process.

IQ = 5 means that is a white noise process.

IQ = 6  means that Uj is a seasonal AR(1) process.

IQ = 7 means that is a seasonal AR(2) process.

IQ = 8 means that is a seasonal and non-seasonal AR(1,1)

IQ = 9 means that Uj is a seasonal and non-seasonal AR(1,2)

IQ = 10 means that ut is a seasonal and non-seasonal AR(2,1)

IQ = 11 means that ut is a seasonal and non-seasonal AR(2,2).
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PROGRAM APPENDIX 4.3
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER(N=* ,N2=(N/2)-1 ,N 1 =N/4,N3=3*N/4,ND=4,NS=* *,NK=N-1 ,NWA=5*N) 
DIMENSION XL(N),Y(8,N),R(7,N),V(N,2),W(N,2),S(7,N),X(8,7,N),A1(2,1),

+ A2(3,2),A3(4,3),A4(5,4),A5(6,5),A6(7,6),02(2,2),03(3,3),04(4,4),B(7),
+ 05(5,5),06(6,6),CF2(2),CF3(3),CF4(4),CF5(5),CF6(6),AL(8,8),U(7,N),
+ P(N),G(N),EX(N,8),RE(N),SX(8,8), YE(8),XP(8,8),P1 (1 ),P2(2),P3(3),P4(4),
+ P5(5),p6(6),CV(N),PAR(4),MM(7),SX2(3,2),CR(N),XP2(2,2),T2(2),SX3(4,3),
+ XP3(3V3),T3(3),WA(NWA),SX4(5,4),XP4(4,4),T4(4),MMM(7),AE(2,2),PARA(2),
+ WWA(NWA),NM(7),AA(4,2,2),AO(2,2,2),AU(2,2,2),XB(4),XGU(2,2,N),
+ GG(2,2 ,N),VRR(2,2),EXX(4,2,2,N),XSA(2,2),EX1 1 (4,4,4),XA 10(2,2),
+ EX1(4,4,4),WW1(3,2),FE(4,4),WW2(4,3),ZZ2(3,3),ZZ3(3,3),WW2(3,2),
+ WW4(5,4),ZZ4(4,4),ZZl(2,2),XGO(2,2,N),XXB(4),TEST(7,7,ND,l 1)

XN=N
PI=3.141592654
OPEN(100,FILE=’****.DAT,,STATUS=,OLD’)
DO 1 I=1,N 

XI=I
XL(I)=2.*PI*XI/XN 
READ(100,101) Y(1,I)
Y(2,I)=1.
Y(3,I)=I
Y(4,I)=0.
Y(5,I)=0.
Y(6,I)=0.

1 CONTINUE
101 FORMAT(F9.7)

Y(4,l)=l.
Y(5,2)=l.
Y(6,3)=l.
DO 2 1=1 JSI1-1 

J1=4.*I+1 
J2=4*I+2 
J3=4.*I+3 
Y(4,J1)=1.
Y(5,J2)=1.
Y(6,J3)=1.

2 CONTINUE 
DO 3 1=1,NS

Y(7,I)=I
Y(8,I)=0.

3 CONTINUE 
DO 4 I=NS+1,N

Y(7,I)=NS
Y(8,I)=I-NS

4 CONTINUE 
DO 5 F=1,N-1

R(1 ,F)=LOG(ABS(2.*COS(XL(F)»)
R(3,F)=LOG(ABS(2.*SIN(XL(F)/2.)))
R(2,F)=R(1,F)+R(3,F)

5 CONTINUE 
R(1,N1)=0.
R(1,N3)=0.
R(2,N1)=0.
R(2,N3)=0.
D0 6F=lJSf2

R(5 ,F)=LOG(2. *COS (XL(F)/2.))
R(4,F)=R(5,F)+R(1 ,F)
R(6,F)=R(5,F)+R(3,F)
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18

DO 18 M=1,J-1 
S (7, J)=S (7 J)+W (M,2)*X(I,4, J -M) 

CONTINUE 
X(I,7,J)=S(7,J)+X(I,4,J)

10 CONTINUE
DO 1000 L=l,7 

IF (L.LE.3) THEN 
NNN=N 

ELSE 
NNN=N2+1 

END IF 
DO 1911=1,6 
DO 19 12=1,6 

A1(I1,I2)=0.
A2(I1,I2)=0.
A3(I1,I2)=0.
A4(I1,I2)=0.
A5(I1,I2)=0.
A6(I1,I2)=0.

19 CONTINUE 
DO 20 IS=1,7

B(IS)=0.
20 CONTINUE 

DO 21 J=1,N
A1 (1,1 )=A 1 (1,1 )+X(2,L,J)**2.
A3(1,1)=A1(1,1)
A6(1,1)=A1(1,1)
A4(1,1)=A1(1,1)

DO 22 11=1,2 
A3( 1,11+1 )=A3( 1,11+1 )+X(2,L, J)*X(I1 +6,L,J)
A6( 1,11+1 )=A6( U1+1 )+X(2,L,J)*X(11 +6,L,J) 
A3(I1+1,1)=A3(1,I1+1)
A6(I1+1,1)=A6(1,I1+1)

DO 23 12=1,2 
A2(11,12)=A2(11,12)+X(11+1 ,L,J)*X(I2+1 ,L,J)
A3(11+1,12+1 )=A3(11+1,12+1 )+X(11 +6,L,J)*X(I2+6,L,J) 
A6(11+1,12+1 )=A6(11+1,12+1 )+X(11 +6,L,J)*X(I2+6,L,J) 

23 CONTINUE
22 CONTINUE

DO 24 11=2,4 
A4( 1,11 )=A4(1,11 )+X(2,L,J)*X(11 +2,L,J)
A6( 1,11 +2)=A6( 1,11 +2)+X(2,LJ)*X(Il+2,L,J) 
A4(I1,1)=A4(1,I1)
A6(11 +2,1 )=A6( 1,11 +2)
A6(2,11 +2)=A6(2,11 +2)+X(7,L,J)*X(I1 +2,L,J)
A6(3,11 +2)=A6(3,11 +2)+X( 8 ,L, J)*X(I1 +2,L, J)
A6(11 +2,2)=A6(2,I1 +2)
A6(11 +2,3)=A6(3,11 +2)

DO 25 12=2,4 
A4(11,12)=A4(11,12)+X(11 +2,L,J)*X(I2+2,L,J)
A6(I1 +2,I2+2)=A6(11 +2,I2+2)+X(11 +2,L,J)*X(I2+2,L,J)

25
24

CONTINUE 
CONTINUE 
DO 26 11=1,5 
DO 26 12=1,5

A5(I1,12)=A5(I1,12)+X(I1+1 ,L,J)*X(I2+1 ,L,J)
26 CONTINUE 

DO 27 IS=1,7
B(IS)=B(IS)+X(1,L,J)*X(IS+1,L,J)
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DO 37 J=1,N 
UME=UME+(1 ./XN)*U(I,J)

37 CONTINUE 
SVAR=0.
DO 38 J=1,N

SVAR=SVAR+(U(I,J)-UME)**2.
38 CONTINUE

V AR=S V AR/XN 
DO 39 LL=1,N-1 

CV(LL)=0.
DO 40 J=1,N-LL 

CV(LL)=CV(LL)+(U(I,J)-UME)*(U(I,J+LL)-UME)
40 CONTINUE 

CR(LL)=C V (LL)/S V AR
39 CONTINUE 

DO 41 F=1,N-1
XC=0.
XS=0.

DO 42 J=1,N 
XJ=J
XC=XC+U(I,J)*COS(XL(F)*XJ)
XS=XS+U(I,J)*SIN(XL(F)*XJ)

42 CONTINUE 
P(F)=(XC**2.+XS**2.)/(2.*PI*XN)
RE(F)=R(L,F)

41 CONTINUE 
DO 1000 IQ=1,11

IF (IQ.LE.5) THEN 
MM(1)=IQ 
NPAR=IQ
CALL G13ADF(MM,CR,NK,VAR,NPAR,WWA,NWA,PAR,RV,ISF,IFAIL) 

DO 43 IPAR=1,IQ 
AL(IPAR,IQ)=PAR(IPAR)

43 CONTINUE
IF (IQ.EQ.5) THEN 

DO 44 IPAR=1,IQ 
AL(IPAR,IQ)=0.

44 CONTINUE 
END IF

DO 45 F=1,N-1 
S1=0.
S2=0.

DO 46 10=1,IQ 
S1 =S 1 +AL(IO,IQ)*SIN(XL(F)*IO)
S2=S2+AL(IO,IQ)*COS(XL(F)*IO)

46 CONTINUE
G(F)=1 ./((l .-S2)**2.+S 1 **2.)

45 CONTINUE 
VR=0.
DO 47 F=1,N-1 

VR=VR+(2.*PI/XN)*P(F)/G(F)
47 CONTINUE 

DO 48 F=1,N-1 
DO 48 IP=1,IQ

EXE=0.
DO 49 10=1,IQ 

EXE=EXE+AL(IO,IQ)*COS((IP-IO)*XL(F))
49 CONTINUE

EX(F,IP)=2.*(COS(IP*XL(F))-EXE)*G(F)



CONTINUE 
DO 50 11=1,IQ 
DO 50 12=1,IQ 

XA=0.
XAA=0.
SX(I1,I2)=0.
YE(I1)=0.

DO 51 F=1,NNN-1 
XA=XA+((-l)*2.*PI/XN)*RE(F)*P(F)/G(F) 
XAA=XAA+(2./XN)*RE(F)**2.
SX(11,12)=SX(11,12)+EX(F,11 )*EX(F,I2)
YE(11 )=YE(11 )+RE(F)*EX(F,Il)

CONTINUE 
CONTINUE 

IF (IQ.EQ.l) THEN 
XP(1,1)=1./SX(1,1)
YEA=(2./XN)*YE( 1 )*XP(1,1)*YE( 1)

ELSE IF (IQ.EQ.2) THEN 
DO 52 11=1,2 
DO 52 12=1,2 

SX2(11,12)=SX(11,12)
CONTINUE
CALL F01ABF(SX2,3,2,XP2,2,T2,IFAIL)
XP2( 1,2)=XP2(2,1)
YEA=0.

DO 53 Ml=l,2 
DO 53 M2=l,2 

YEA=YEA+(27XN)* YE(M 1 )*XP2(M 1 ,M2)*YE(M2) 
CONTINUE 

ELSE IF (IQ.EQ.3) THEN 
DO 54 11=1,3 
DO 54 12=1,3 

SX3(11,12)=SX(11,12)
CONTINUE
CALL F01ABF(SX3,4,3,XP3,3,T3,IFAIL)
DO 55 11=1,2 
DO 55 12=1+11,3 

XP3(11,12)=XP3(I2,11)
CONTINUE
YEA=0.
DO 56 Ml=l,3 
DO 56 M2=l,3 

YEA=YEA+(2./XN)*YE(M 1 )*XP3(M 1 ,M2)*YE(M2) 
CONTINUE 

ELSE IF (IQ.EQ.4) THEN 
DO 57 Ml=l,4 
DO 57 M2=l,4 

X4(M 1 ,M2)=SX(M 1 M2)
CONTINUE
CALL F01ABF(SX4,5,4,XP4,4,T4,IFAIL)
DO 58 11=1,3 
DO 58 12=1+11,4 

XP4(I1,12)=XP4(I2,I1)
CONTINUE
YEA=0.
DO 59 Ml=l,4 
DO 59 M2=l,4 

YEA=YEA+(2./XN)*YE(Ml)*XP4(Ml,M2)*YE(M2) 
CONTINUE
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ELSE IF (IQ.EQ.5) THEN 
YEA=0.

END IF 
YA=XAA-YEA
TEST(I,L,K,IQ)=((XNArA)**0.5)*XA/VR 
ELSE IF (IQ.GT.5.AND.IQ.LT.8) THEN 

IOO=IQ-5 
MMM(4)=I00 
MMM(7)=4 
NPAR=IOO
CALL G13 ADF(MMM,CR,NK, VAR,NPAR,WA,NWA,PARA,RV,ISFJFAIL) 
DO 60 IPAR= 1,100 

AE(IPAR,IOO)=PARA(IPAR)
60 CONTINUE 

DO 61 F=1 JsT-1
S1=0 .
S2=0.

DO 62 10=1,100 
S1 =S 1 + AE(IO,IOO) * SIN(XL(F) *4. *10)
S 2=S2+AE(IO,IOO) *COS (XL(F) *4. *10)

62 CONTINUE
G(F)=1 7((1 ,-S2)**2.+S 1 **2.)

61 CONTINUE 
VR=0.
DO 63 F=1 JSI-1 

VR=VR+(2.*PI/XN)*P(F)/G(F)
63 CONTINUE 

DO 64 F=1,N-1 
DO 64 IP=l,IOO

EXE=0.
DO 65 10=1,100 

EXE=EXE+AE(IO,IOO)*COS(4.*(IP-IO)*XL(F))
65 CONTINUE 

EX(F,IP)=2.*(COS(4.*IP*XL(F))-EXE)*G(F)
64 CONTINUE 

DO 66 11=1,100 
DO 66 12=1,100

XA=0.
XAA=0.
SX(I1,I2)=0.
YE(I1)=0.

DO 66 F=1,NNN-1 
XA=XA+((-l)*2.*PI/XN)*RE(F)*P(F)/G(F)
XAA=XAA+(2./XN)*RE(F)**2.
SX(I1,12)=SX(I1,12)+EX(F,I1 )*EX(F,I2)
YE(11 )=YE(11 )+RE(F)*EX(F,11)

66 CONTINUE
IF (IQ.EQ.6) THEN 

XP(1,1)=1./SX(1,1)
YEA=(2./XN)* YE( 1 )*XP( 1,1 )* YE( 1)

ELSE IF (IQ.EQ.7) THEN 
DO 67 11=1,2 
DO 67 12=1,2 

SX2(11,12)=SX(11,12)
67 CONTINUE

CALL F01ABF(SX2,3,2,XP2,2,T2,IFAIL)
XP2( 1,2)=XP2(2,1)
YEA=0.
DO 68 M l=1,2
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DO 68 M2=l,2 
YEA=YEA+(2./XN)*YE(Ml)*XP2(Ml ,M2)*YE(M2)

68 CONTINUE 
END IF 
YA=XAA-YEA
TEST(I,L,K,IQ)=((XN/YA)**0.5)*XA/VR 

ELSE IF (IQ.GT.7.AND.IQ.LT.12) THEN 
IF (IQ.EQ.8) THEN 

IZl=IQ-7 
IZ2=IQ-7 
NM(1)=IZ1 
NM(4)=IZ2 
NM(7)=4 
NPAR=IZ1+IZ2
CALL G13 ADF(NM,CR,NK, VAR,NPAR,WA,NWA,PARA,RV,ISF,IFAIL) 
DO 69 IPAR=1,NPAR 

AA(IPAR,IZ1 ,IZ2)=PARA(IPAR)
69 CONTINUE

ELSE IF (IQ.EQ.9) THEN 
IZl=IQ-7 
IZ2=IQ-8 
NM(1)=IZ1 
NM(4)=IZ2 
NM(7)=4 
NPAR=IZ1 +IZ2
CALL G13 ADF(NM,CR,NK, VAR,NPAR,W A,NWA,PARA,RV,ISF,IFAIL) 
DO 70 IPAR=1,NPAR 

AA(IPAR,IZ1 ,IZ2)=PARA(IPAR)
70 CONTINUE

ELSE IF (IQ.EQ.10) THEN 
IZl=IQ-9 
IZ2=IQ-8 
NM(1)=IZ1 
NM(4)=IZ2 
NM(7)=4 
NPAR=IZ1+IZ2
CALL G13ADF(NM,CR,NK,VAR,NPAR,WA,NWA,PARA,RV,ISF,IFAIL) 
DO 71 IPAR=1,NPAR 

AA(IPAR,IZ1 ,IZ2)=PARA(IPAR)
71 CONTINUE

ELSE IF(IQ.EQ.ll) THEN 
IZl=IQ-9 
IZ2=IQ-9 
NM(1)=IZ1 
NM(4)=IZ2 
NM(7)=4 
NPAR=IZ1+IZ2
CALL G13ADF(NM,CR,NK, VAR,NPAR,WA,NWA,PARA,RV,ISF,IFAIL) 
DO 72 IPAR=1,NPAR 

AA(IPAR,IZ1 ,IZ2)=PARA(IPAR)
72 CONTINUE 

END IF
AO(l,l,l)=AA(l,l,l)
AO( 1,1,2)=AA( 1,1,2)
AO( 1,2,1 )=AA( 1,2,1)
AO(2,2,1 )=AA(2,2,1)
AO( 1,2,2)=AA( 1,2,2)
AO(2,2,2)=AA(2,2,2)
AU(1,1,1)=AA(2,1,1)
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AU( 1,2,1 )=AA(3,2,1)
AU(1,1,2)=AA(2,1,2)
AU(2,1,2)=AA(3,1,2)
AU(1,2,2)=AA(3,2,2)
AU(2,2,2)=AA(4,2,2)
DO 73 F=1,N-1
IZ1=2
IZ2=2
DO 73 11=1,IZ1 
DO 73 I2=1,IZ2 

S1=0.
S2=0.
S3=0.
S4=0.

DO 74 10=1,11 
S1 =S 1 +AO(IO,11,I2)*SIN(XL(F)*I0)
S2=S2+AO(IO,Il ,I2)*C0S(XL(F)*I0)

74 CONTINUE 
DO 75 10=1,12

S3=S3+AU(IO,11,I2)*SIN(XL(F)*4.*IO)
S4=S4+AU (10,11,12) *COS (XL(F) *4. *IO)

75 CONTINUE
GO=((l .-S2)**2.+S 1 **2.)
GU=((1 .-S4)**2.+S3**2.)
XGO(11,12,F)=1 ./GO 
XGU(I1,I2,F)=1./GU 
XG=GO*GU 
GG(Il,I2,F)=iyXG 

73 CONTINUE
DO 76 11=1,IZ1 
DO 76 12=1,IZ2 

VRR(I1,I2)=0.
DO 76 F=1 JSI-1 

VRR(11,12)=VRR(I1,12)+(2.*PI/XN)*P(F)/GG(I1,12,F)
76 CONTINUE

DO 77 F=1,NNN-1 
EXX( 1,1,1 ,F)=2. * (COS (XL(F))-AO( 1,1,1 ))*XGO( 1,1 ,F)
EXX(2,1,1 ,F)=2.*(COS (4.*XL(F))-AU( 1,1,1 ))*XGU( 1,1 ,F)
EXX( 1,2,1 ,F)=2. * (COS (XL(F))-AO( 1,2,1 )-AO(2,2,1 )*COS((-1 )*XL(F)))*

+ XGO(2,l,F)
EXX(2,2,1 ,F)=2.*(COS(2.*XL(F))-AO( 1,2,1 )*COS(XL(F))-AO(2,2,1 ))*

+ XGO(2,l,F)
EXX(3,2,l,F)=2.*(COS(4.*XL(F))-AU(l,2,l))*XGU(2,l,F)
EXX(1,1,2,F)=2.*(COS(XL(F))-AO(l ,1,2))*XGO(l ,2,F) 
EXX(2,l,2,F)=2.*(COS(4.*XL(F»-AU(l,l,2)-AU(2,l,2)*COS((-4.)*XL(F)» 

+ *XGU(1,2,F)
EXX(3,1,2,F)=2.*(COS(8.*XL(F))-AU(l ,1,2)*COS(4.*XL(F))-AU(2,l ,2))* 

+ XGU(1,2,F)
EXX( 1,2,2,F)=2.*(COS(XL(F))-AO(l,2,2)-AO(2,2,2)*COS((-1 )*XL(F)))*

+ XGO(2,2,F)
EXX(2,2,2,F)=2.*(COS(2.*XL(F))-AO(l,2,2)*COS(XL(F))+AO(2,2,2))*

+ XGO(2,2,f)
EXX(3,2,2,F)=2.*(COS(4.*XL(F))-AU(l,2,2)-AU(2,2,2)*COS((-4.)*XL(F») 

+ *XGU(2,2,F)
EXX(4,2,2,F)=2.*(COS(8.*XL(F))-AU(l,2,2)*COS(4.*XL(F))+AU(2,2,2))* 

+ XGU(2,2,F)
77 CONTINUE 

DO 78 11=1,2 
DO 78 12=1,2
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XSA(I1,I2)=0.
DO 79 F=1,NNN-1 

XS A(11,I2)=XSA(I1,12)+RE(F)*P(F)/GG(I1,12,F)
79 CONTINUE

XA10(11,12)=(-2.*PI/XN)*XSA(11,12)
78 CONTINUE

XAA=0.
DO 80 F=1,NNN-1 

XAA=XAA+(2VXN)*RE(F)**2.
80 CONTINUE 

DO 81 11=1,4 
DO 81 12=1,4

EX1(1,I1,I2)=0.
EX1(2J1,I2)=0.
EX1(3,I1,I2)=0.
EX1(4,I1,I2)=0.

DO 81 F=1,NNN-1 
EX 1 (1,11,12)=EX 1(1,11,12)+( 1 ./XN)*(EXX(11,1,1 ,F)*EXX(I2,1,1 ,F)) 
EX1 (2,11,12)=EX1 (2J1,12)+(1 VXN)*(EXX(I1,2,1 ,F)*EXX(I2,2,1 ,F)) 
EX1 (3,11,12)=EX 1 (3,11,12)+( 1 ./XN)*(EXX(I1,1,2,F)*EXX(I2,1,2,F)) 
EX1 (4,11,12)=EX1 (4,11,12)+(1 ./XN)*(EXX(I1,2,2,F)*EXX(I2,2,2,F))

81 CONTINUE 
DO 82 11=1,2 
DO 82 12=1,2

WW1 (11,12)=EX 1 (1,11,12)
82 CONTINUE

CALL F01ABF(WW1,3,2,ZZ1,2,QQ1,IFAIL)
ZZ1(1,2)=ZZ 1(2,1)
DO 83 11=1,2 
DO 83 12=1,2 

EX11 (11,12,1 )=ZZ 1 (11,12)
83 CONTINUE 

DO 84 11=1,3 
DO 84 12=1,3

WW2(I1,12)=EX1 (2,11,12)
84 CONTINUE

CALL F01ABF(WW2,4,3,ZZ2,3,QQ2,IFAIL)
ZZ2( 1,2)=ZZ2(2,1)
ZZ2(1,3)=ZZ2(3,1)
ZZ2(2,3)=ZZ2(3,2)
DO 85 11=1,3 
DO 85 12=1,3 

EX 11 (11,12,2)=ZZ2(11,12)
85 CONTINUE 

DO 86 11=1,3 
DO 86 12=1,3

WW3(I1,12)=EX1 (3,11,12)
86 CONTINUE

CALL F01ABF(WW3,4,3,ZZ3,3,QQ3,IFAIL)
ZZ3( 1,2)=ZZ3(2,1)
ZZ3(1,3)=ZZ3(3,1)
ZZ3(2,3)=ZZ3(3,2)
DO 87 11=1,3 
DO 87 12=1,3 

EX11(I1,I2,3)=ZZ3(I1,I2)
87 CONTINUE 

DO 88 11=1,4 
DO 88 12=1,4

WW4(I1,12)=EX1 (4,11,12)
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88 CONTINUE
CALL FO1 ABF(WW4,5,4 ,ZZ4,4 ,QQ4,IFAIL)
DO 89 11=1,3 
DO 89 12=1+11,4 

ZZ4(I1,12)=ZZ4(I2,I1)
89 CONTINUE 

DO 90 11=1,4 
DO 90 12=1,4

EX11 (II ,I2,4)=ZZ4(I1,12)
90 CONTINUE 

DO 91 IM=1,4 
DO 91 IN=1,4

FE(IM,IN)=0.
91 CONTINUE

DO 92 F=1,NNN-1 
DO 92 IK=1,4 

FE( 1 ,IK)=FE(l,IK)+( 1 ./XN)*RE(F)*EXX(IK, 1,1 ,F) 
FE(2,IK)=FE(2,IK)+(1 ./XN)*RE(F)*EXX(IK,2,1 ,F) 
FE(3,IK)=FE(3,IK)+(1 ./XN)*RE(F)*EXX(IK,1,2,F) 
FE(4,IK)=FE(4,IK)+(1./XN)*RE(F)*EXX(IK,2,2,F)

92 CONTINUE 
SXS1=0.
SXS2=0.
SXS3=0.
SXS4=0.
DO 93 11=1,4 
DO 93 12=1,4 

SXS1 =SXS 1+EX11 a  1,12,1 )*FE( 1,11 )*FE( 1,12) 
SXS2=SXS2+EX 11 a  1,12,2)*FE(2,11 )*FE(2,I2) 
SXS3=SXS3+EX11 a  1,12,3)*FE(3,11 )*FE(3,I2) 
SXS4=SXS4+EX 11 (11,12,4)*FE(4,11 )*FE(4,I2)

93 CONTINUE
XB( 1 )=XAA-2.*SXS 1 
XB(2)=XAA-2.*SXS2 
XB(3)=XAA-2.*SXS3 
XB(4)=XAA-2.*SXS4 
DO 94 IV=1,4 

IF(XB (IV) .LT.O) THEN 
XXB(IV)=0.0000000001 

ELSE 
XXB(IV)=XB(IV)

END IF
94 CONTINUE

TEST(I,L,K,8)=((XN/XXB(1 ))* *(0.5))*XA10( 1,1 )/VRR( 1,1) 
TEST(I,L,K,9)=((XN/XXB(2))**(0.5))*XA10(2,1 )/VRR(2,1) 
TEST(I,L,K, 10)=((XN/XXB(3))**(0.5))*XA10( 1,2)/VRR( 1,2) 
TEST (I,L,K, 11 )=((XN/XXB(4))* *(0.5)) *XA 10(2,2)/VRR(2,2) 

END IF 
1000 CONTINUE 

END



TABLE 4.9a

f  in (2.9) with p(L;0) =  (1 - L4)d+# for Japanese data from 1961.1 to 1973.4.

Series: c, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

0.16’ -0.64’ -1.49’ -2.23 -2.80 -3.20 -3.49 -3.70
I 1.08’ -0.02’ -1.74’ -2.27 -2.48 -2.89 -3.30 -3.63
I,T -0.36’ -1.25’ -2.15 -2.81 -3.24 -3.46 -3.52 -3.56

AR(1) u,:
- -2.82 -3.10 -3.33 -3.54 -3.72 -3.87 -3.99 -4.08
I -1.60’ -1.18’ -1.31’. -2.10 -2.64 -3.09 -3.42 -3.66
I.T -0.41’ -1.06’ -1.84’ -2.50 -2.97 -3.25 -3.40 -3.51

AR(2) u,:
- -2.89 -3.15 -3.35 -3.53 -3.70 -3.85 -3.98 -4.08
I -1.65’ -1.17’ -1.22’ -2.03 -2.58 -3.02 -3.35 -3.59
I»T -0.43’ -1.06’ -1.85’ -2.50 -2.97 -3.25 -3.41 -3.52

Series: y, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 0.16’ -0.64’ -1.48’ -2.22 -2.79 -3.19 -3.48 -3.69
I 1.00’ -0.12’ -1.65’ -2.42 -2.85 -3.24 -3.57 -3.82
I,T -0.14’ -0.84’ -1.76’ -2.52 -3.04 -3.29 -3.37 -3.44

AR(1) u,:
- -2.74 -3.08 -3.32 -3.53 -3.71 -3.86 -3.98 -4.08
I -0.55’ -0.31’ -1.11’ -1.99 -2.57 -3.05 -3.41 -3.67
I,T -0.22’ -0.70’ -1.43’ -2.13 -2.68 -3.03 -3.23 -3.38

AR(2) u,:
- -2.80 -3.12 -3.34 -3.53 -3.70 -3.85 -3.90 -4.08
I -0.77’ -0.37’ -1.02’ -1.90’ -2.44 -2.90 -3.28 -3.55
I,T -0.46’ -0.83’ -1.48’ -2.15 -2.68 -3.01 -3.19 -3.35

Series: c,-y,\d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- -0.04’ -0.75 -1.55 -2.22 -2.74 -3.12 -3.41 -3.63
I -0.16’ -0.98 -1.87 -2.56 -3.05 -3.39 -3.64 -3.82
I,T -0.27’ -1.03 •1.88 -2.54 -2.99 -3.26 -3.40 -3.53

AR(1) u, :
- -0.11’ -0.88’ -1.73’ -2.40 -2.88 -3.24 -3.50 -3.70
I -0.14’ -0.86’ -1.69’ -2.37 -2.86 -3.23 -3.50 -3.69
I»T -0.27’ -0.93’ -1.71’ -2.36 -2.84 -3.14 -3.34 -3.50

AR(2) u,:
- -0.10’ -0.87’ -1.72’ -2.39 -2.89 -3.23 -3.49 -3.69
I -0.29’ -1.14’ -1.97 -2.58 -3.02 -3.33 -3.56 -3.73
I,T -0.62’ -1.27’ -1.99 -2.57 -2.98 -3.23 -3.37 -3.51

’: Non-rejection values of the null hypothesis (1.12) at 93 % significance level. The letters in bold
correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.9b

r in (2/9) with p(L;0) =  (1 - L4)d+# for Japanese data from 1974.1 to 1987.4.

Series: c, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- 0.48’ -0.46’ -1.42’ -2.22 -2.82 -3.24 -3.53 -3.74
I 0.79’ -0.62’ -1.45’ -1.65’ -2.13 -2.67 -3.11 -3.45
I,T 0.66’ -0.04’ -1.09’ -2.02 -2.69 -2.99 -3.00 -3.04

AR(1) u,:
- -2.89 -3.15 -3.38 -3.59 -3.77 -3.92 -4.05 -4.14
I -1.12’ -0.87’ -0.93’ -1.49’ -2.20 -2.78 -3.20 -3.52
I,T 0.55’ 0.18’ -0.63’ -1.51’ -2.18 -2.61 -2.89 -3.13

AR(2) u,:
- -2.94 -3.19 -3.39 -3.57 -3.75 -3.90 -4.03 -4.14
I -1.17’ -0.72’ -0.48’ -0.79’ -1.38’ -1.93’ -2.40 -2.78
I.T -0.64’ -0.36’ -0.24’ -0.98’ -1.65’ -2.13 -2.47 -2.77

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- 0.52’ -0.44’ -1.41’ -2.22 -2.82 -3.24 -3.54 -3.75
I 0.13’ -0.89’ -1.73’ -2.38 -2.90 -3.29 -3.57 -3.77
I.T 0.11’ -0.62’ -1.62’ -2.44 -2.96 -2.99 -2.74 -2.70

AR(1) u,:
- -2.84 -3.14 -3.39 -3.60 -3.79 -3.94 -4.06 -4.15
I 0.06’ -0.63’ -1.35’ -2.02 -2.62 -3.06 -3.39 -3.62
I.T 0.01’ -0.50’ -1.27’ -2.07 -2.65 -2.87 -2.89 -2.98

AR(2) u,:
— -2.89 -3.17 -3.38 -3.58 -3.70 -3.91 -4.04 -4.15
I -0.06’ -0.63’ -1.32’ -1.90’ -2.48 -2.94 -3.29 -3.55
I.T -0.00’ -0.51’ -1.21’ -1.98 -2.60 -2.79 -2.73 -2.82

Series: c,-y,\d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- 0.74’ -0.30’ -1.41’ -2.30 -2.94 -3.37 -3.66 -3.86
I 0.09’ -1.06’ -2.09 -2.76 -3.18 -3.48 -3.69 -3.84
I.T -0.27’ -1.17’ -2.10 -2.75 -3.12 -3.14 -3.02 -3.08

AR(1) u,:
- -0.77’ -1.25’ -2.33 -3.06 -3.51 -3.80 -4.00 -4.13
I 0.09’ -0.94’ -1.86’ -2.57 -3.05 -3.38 -3.61 -3.78
I.T -0.45’ -1.08’ -1.87’ -2.57 -3.02 -3.17 -3.18 -3.28

AR(2) u,:
- -1.00’ -1.52’ -2.10 -2.74 -3.25 -3.61 -3.87 -4.05
I -0.06’ -0.98’ -1.84’ -2.53 -3.03 -3.37 -3.60 -3.77
I.T -0.38’ -1.08’ -1.85’ -2.53 -2.99 -3.12 -3.11 -3.22
Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.10a

t in (2.9) with p(L;0) = (1 - L2)^ ' for Japanese data from 1961.1 to 1973.4

Series: c, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
- -1.86’ 0.56’ -0.66’ -1.58’ -2.17 -2.56 -2.82 -3.01
I 0.52’ -3.31 -3.86 -3.80 -3.81 -3.83 -3.85 -3.87
I.T -3.67 -3.77 -3.81 -3.84 -3.86 -3.88 -3.89 -3.90

AR(1) u,:
- -1.99 -2.13 -2.31 -2.53 -2.76 -2.94 -3.08 -3.19
I -2.66 -3.41 -3.85 -3.81 -3.81 -3.83 -3.85 -3.87
I.T -3.67 -3.77 -3.81 -3.84 -3.86 -3.88 -3.89 -3.90

SAR(l) u,:
0.80’ 0.22’ -0.67’ -1.61’ -2.30 -2.72 -2.97 -3.12

I 0.15’ -0.62’ -1.51’ -1.72’ -1.92’ -2.10 -2.27 -2.41
I.T -0.83’ -1.21’ -1.52’ -1.78’ -2.00 -2.19 -2.37 -2.53

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

1.88' 0.59’ -0.61’ -1.52’ -2.12 -2.52 -2.79 -2.98
I -2.10 -3.85 -3.85 -3.81 -3.82 -3.83 -3.85 -3.86
I.T -3.75 -3.79 -3.81 -3.82 -3.85 -3.87 -3.89 -3.90

AR(1) u,:
- -1.85’ -2.02 -2.21 -2.46 -2.69 -2.89 -3.04 -3.16
1 -2.85 -3.85 -3.86 -3.82 -3.83 -3.84 -3.85 -3.87
I.T -3.75 -3.80 -3.81 -3.83 -3.85 -3.87 -3.89 -3.91

SAR(l) u,:
— 0.78’ 0.21’ -0.65’ -1.56’ -2.23 -2.65 -2.90 -3.06
I -0.05’ -1.03’ -1.46’ -1.69’ -1.92’ -2.12 -2.29 -2.45
I.T -0.75’ -1.10’ -1.43’ -1.72’ -1.97 -2.19 -2.41 -2.60

Series: c,-y,\ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- -3.46 -3.59 -3.69 -3.76 -3.81 -3.84 -3.86 -3.88
I -3.81 -3.82 -3.79 -3.80 -3.81 -3.83 -3.84 -3.85
I.T -3.72 -3.76 -3.78 -3.80 -3.82 -3.85 -3.87 -3.89

AR(1) u,:
- -3.49 -3.62 -3.71 -3.77 -3.82 -3.85 -3.87 -3.89
I -3.81 -3.83 -3.80 -3.80 -3.82 -3.83 -3.85 -3.86
I.T -3.73 -3.77 -3.79 -3.81 -3.83 -3.85 -3.87 -3.89

SAR(l) u,:
- -1.09’ -1.37’ -1.65’ -1.90’ -2.10 -2.28 -2.43 -2.56
I -1.93’ -1.77’ -1.77’ -1.93’ -2.10 -2.27 -2.43 -2.57
I.T -1.51’ -1.60’ -1.74’ -1.93’ -2.13 -2.33 -2.52 -2.70
Non-rejection values of the null hypothesis (1.12) at 93% significance level and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.10b

t in (2.9) with p(L;0) = (1 - L2)d+* for Japanese data from 1974.1 to 1987.4.

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
— 2.22 0.72’ -0.62’ -1.60’ -2.22 -2.62 -2.80 -3.07
I -1.97 -3.93 -3.90 -3.88 -3.90 -3.92 -3.94 -3.96
I>T -3.67 -3.80 -3.86 -3.90 -3.93 -3.96 -3.98 -4.00

AR(1) u,:
_ -2.09 -2.20 -2.37 -2.61 -2.84 -3.02 -3.16 -3.27
I -2.90 -3.93 -3.91 -3.88 -3.90 -3.93 -3.94 -3.96
I,T -3.69 -3.81 -3.87 -3.90 -3.94 -3.96 -3.98 -4.00

SAR(l) u,:
— 0.88’ 0.31’ -0.63’ -1.64’ -2.35 -2.79 -3.04 -3.20
I -0.24’ -0.72’ -1.08’ -1.50’ -1.83’ -2.10 -2.32 -2.50
I,T 0.27’ -0.49’ -1.10’ -1.55’ -1.89’ -2.17 -2.42 -2.64

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

2.30 0.80’ -0.55’ -1.53’ -2.16 -2.57 -2.84 -3.03
I -3.63 -3.66 -3.88 -3.88 -3.90 -3.91 -3.93 -3.94
I,T -3.71 -3.81 -3.85 -3.89 -3.92 -3.94 -3.96 -3.98

AR(1) u,:
_ -2.01 -2.15 -2.33 -2.57 -2.80 -2.99 -3.13 -3.24
I -3.64 -3.96 -3.89 -3.89 -3.91 -3.92 -3.94 -3.95
I»T -3.71 -3.82 -3.87 -3.90 -3.93 -3.95 -3.96 -3.98

SAR(l) u,:
- 0.90’ 0.37’ -0.55’ -1.55’ -2.28 -2.74 -3.00 -3.17
I -1.15’ -2.06 -1.83’ -1.97 -2.14 -2.30 -2.45 -2.59
I,T -1.47’ -1.59’ -1.78’ -1.99 -2.18 -2.33 -2.47 -2.64

Series: c,-y,\d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

_ -1.73’ -2.74 -3.30 -3.59 -3.73 -3.81 -3.86 -3.90
I -3.41 -3.76 -3.85 -3.88 -3.90 -3.92 -3.93 -3.94
I»T -3.58 -3.77 -3.84 -3.89 -3.92 -3.92 -3.93 -3.95

AR(1) u,:
- -2.31 -3.04 -3.44 -3.65 -3.77 -3.84 -3.88 -3.91
I -3.41 -3.77 -3.86 -3.90 -3.92 -3.93 -3.94 -3.95
I.T -3.58 -3.78 -3.86 -3.90 -3.93 -3.93 -3.94 -3.95

SAR(l) u,:
_ -0.81’ -1.43’ -1.83’ -2.08 -2.26 -2.41 -2.53 -2.65
I -1.55’ -1.95’ -2.12 -2.23 -2.34 -2.44 -2.55 -2.65
I.T -1.82’ -1.98 -2.11 -2.24 -2.37 -2.42 -2.46 -2.56
Non-rejection values of the null hypothesis (1.12) at 93% significance level and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.11a

? in (2.9) with p(L;0) =  (1 - L)d+* for Japanese data from 1961.1 to 1973.4

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 4.42 1.77’ -0.45’ -1.88’ -2.72 -3.23 -3.56 -3.78
I 0.64’ -3.48 -3.69 -3.78 -3.91 -4.03 -4.15 -4.25
I,T -3.39 -3.52 -3.66 -3.80 -3.93 -4.05 -4.16 -4.26

SAR(l) u,:
- 3.38 1.57’ -0.44’ -1.89’ -2.74 -3.25 -3.58 -3.80
I 3.39 0.51’ -1.80’ -2.19 -2.67 -3.10 -3.46 -3.75
I,T 0.03’ -0.92’ -1.69’ -2.32 -2.85 -3.28 -3.61 -3.87

SAR(2) u,:
- 3.40 1.57’ -0.44’ -1.89’ -2.74 -3.25 -3.58 -3.80
I 4.66 0.44* -1.82’ -2.23 -2.71 -3.15 -3.51 -3.81
I»T 0.07’ -0.94’ -1.72’ -2.36 -2.89 -3.32 -3.66 -3.92

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
— 4.33 1.72’ -0.48’ -1.90’ -2.75 -3.27 -3.60 -3.83
I -2.19 -3.48 -3.53 -3.66 -3.81 -3.94 -4.07 -4.17
I,T -3.25 -3.36 -3.51 -3.67 -3.82 -3.96 -4.08 -4.18

SAR(l) u,:
- 3.22 -1.43’ -0.51’ -1.91’ -2.75 -3.27 -3.61 -3.85
I -3.65 -1.15’ -1.47’ -2.09 -2.67 -3.16 -3.54 -3.83
I,T 0.32’ -0.59’ -1.42’ •2.16 -2.78 -3.30 -3.68 -3.94

SAR(2) u,:
- 3.26 1.44’ -0.51’ -1.91’ -2.75 -3.27 -3.61 -3.85
I 4.44 -1.27’ -1.48’ -2.11 -2.71 -3.20 -3.59 -3.88
I*T 0.41’ -0.54’ -1.41’ -248 -2.82 -3.34 -3.73 -3.99

Series: c,-y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- -2.85 -3.08 -3.31 -3.50 -3.66 -3.80 -3.93 -4.05
I -3.18 -3.22 -3.33 -3.49 -3.65 -3.80 -3.93 -4.05
I,T -3.03 -3.16 -3.32 -3.50 •3.66 -3.81 -3.94 -4.06

SAR(l) u,:
- -0.19’ -1.01’ -1.79’ -2.45 -2.99 -3.41 -3.74 -3.98
I -1.50’ -1.42’ -1.85’ -2.44 -2.97 -3.40 -3.73 -3.97
I,T -0.70’ -1.19’ -1.83’ -2.46 -3.02 -3.48 -3.81 -4.04

SAR(2) u,:
- 0.11’ -0.82* -1.71’ -2.44 -3.01 -3.45 -3.78 -4.03
I -1.43’ -1.35’ -1.79’ -2.43 -2.99 -3.44 -3.78 -4.02
I.T -0.50’ -1.06’ -1.76’ -2.45 -3.04 -3.52 -3.86 -4.03
Non-rejection values of the null hypothesis (1.12) at 95% significance level and the letters

bold correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.11b

f  in (2.9) with p(L;0) =  (1 - L)d+' for Japanese data from 1974.1 to 1987.4.

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 5.02 2.02 -0.39’ -1.91’ -2.78 -3.30 -3.64 -3.88
I -1.83’ -3.37 -3.36 -3.49 -3.65 -3.80 -3.95 -4.07
I,T -2.98 -3.16 -3.34 -3.51 -3.68 -3.83 -3.90 -4.08

SAR(l) u,:
- 3.67 1.78’ -0.38’ -1.92’ -2.80 -3.33 -3.66 -3.90
I 2.64 2.22 0.37’ -0.69’ -1.55' -2.27 -2.86 -3.33
I,T 3.83 1.74’ 0.27’ -0.82’ -1.74’ -2.51 -3.09 -3.51

SAR(2) u,:
- 3.70 1.77’ -0.38’ -1.92’ -2.80 -3.33 -3.67 -3.90
I 4.14 2.05 0.37’ -0.68’ -1.54’ -2.25 -2.85 -3.34
I,T 3.76 1.71’ 0.28’ -0.81’ -1.71’ -2.48 -3.08 -3.52

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1,75 2.00 2.25
White Noise u,:
- 3.05 2.02 -0.41’ -1.93’ -2.81 -3.35 -3.69 -3.93
I -4.09 -4.13 -4.17 -4.29 -4.42 -4.52 -4.61 -4.68
I»T -3.93 -4.02 -4.16 -4.30 -4.43 -4.54 -4.63 -4.70

SAR(l) u,:
- 3.59 1.70’ -0.43’ -1.94’ -2.82 -3.35 -3.70 -3.94
I -0.68’ 0.64’ -0.20’ -1.13’ -1.92’ -2.58 -3.12 -3.53
I.T

SAR(2) u,:
1.98 0.90’ -0.22’ -1.20’ -2.07 -2.81 -3.39 -3.81

- 3.64 1.69’ -0.43’ -1.93’ -2.81 -3.34 -3.70 -3.94
I -0.71’ 0.63’ -0.91’ -1.15’ -1.97 -2.64 -3.17 -3.59
I,T 1.92’ 0.91’ -0.21’ -1.22’ -2.11 -2.86 -3.44 -3.87

Series: c,-y. \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
- -3.42 -4.03 -4.34 -4.51 -4.62 -4.70 -4.76 -4.81
I -4.19 -4.31 -4.41 -4.52 -4.62 -4.69 -4.75 -4.80
I.T -4.20 -4.29 -4.41 -4.53 -4.63 -4.71 -4.77 -4.82

SAR(l) u,:
- 1.81’ 0.51’ -0.54’ -1.40’ -2.12 -2.71 -3.19 -3.56
I 1.21’ 0.40’ -0.51’ -1.38’ -2.13 -2.75 -3.24 -3.62
I.T 1.13’ 0.44’ -0.51’ -1.42’ -2.24 -2.92 -3.45 -3.83

SAR(2) u,:
- 2.59 0.88’ -0.45’ -1.43' -2.18 -2.77 -3.24 -3.62
I 1.33’ 0.47’ -0.48’ -1.42’ -2.20 -2.82 -3.31 -3.69
I.T 1.24’ 0.54’ -0.48’ -1.46’ -2.32 -3.00 -3.52 -3.92
Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in bold

correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.12a

r in (2.9) with p(L;«) =  (1 - L4)i+# for U.K. data from 1955.1 to 1973.4.

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 1.51’ 0.11' -1.22’ -2.66 -2.98 -3.45 -3.78 -4.01
I 1.92' -0.34’ -2.19 -2.69 -3.15 -3.60 -3.95 -4.20
I«T -0.06’ -1.04’ -1.94’ -2.65 -3.18 -3.55 -3.76 -3.89

AR(1) u,:
- -3.01 -3.30 -3.57 -3.82 -4.03 -4.20 -4.33 -4.43
I -1.39’ -1.52’ -2.38 -3.13 -3.59 -3.89 -4.10 -4.24
I,T -0.02’ -1.20’ -2.38 -3.14 -3.58 -3.83 -3.98 -4.08

AR(2) u,:
- -3.06 -3.32 -3.55 -3.78 -4.00 -4.17 -4.32 -4.43
I -1.67’ -1.85’ -2.49 -3.10 -3.52 -3.80 -4.01 -4.17
I,T -0.34’ -1.45’ -2.49 -3.17 -3.57 -3.80 -3.94 -4.04

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
- 1.52’ 0.12’ -1.21’ -2.25 -2.97 -3.45 -3.77 -4.00
I 1.54’ -0.87’ -2.00 -2.31 -2.91 -3.50 -3.96 -4.25
I,T 0.41’ -0.58’ -1.53’ -2.36 -3.05 -3.59 -3.96 -4.19

AR(1) u,:
- -3.01 -3.30 -3.57 -3.82 -4.03 -4.20 -4.33 -4.43
1 -2.16 -2.47 -3.06 -3.53 -3.87 -4.13 -4.31 -4.44
I»T -0.70’ -2.08 -3.03 -3.59 -3.92 -4.14 -4.30 -4.41

AR(2) u,:
- -3.06 -3.32 -3.55 -3.78 -3.99 -4.17 -4.32 -4.43
I -2.42 -2.77 -3.22 -3.64 -3.94 -4.16 -4.33 -4.45
I,T -1.08’ -2.28 -3.17 -3.69 -3.99 -4.19 -4.33 -4.42

Series: c,-y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
- -0.16’ -0.71’ -1.47’ -2.21 -2.82 -3.28 -3.63 -3.88
I -0.67’ -1.80’ -2.34 -2.81 -3.22 -3.54 -3.79 -3.98
I.T -0.38’ -1.46’ -2.26 -2.83 -3.23 -3.53 -3.76 -3.94

AR(1) u,:
- -0.54’ -1.51’ -2.30 -2.87 -3.29 -3.60 -3.83 -4.01
I -0.99’ -2.00 -2.61 -3.08 -3.43 -3.69 -3.89 -4.04
I,T -0.65’ -1.77’ -2.56 -3.09 -3.44 -3.68 -3.87 -4.02

AR(2) u,:
- -0.60’ -1.53’ -2.31 -2.88 -3.29 -3.59 -3.82 -3.99
I -0.99’ -2.01 -2.62 -3.08 -3.43 -3.69 -3.89 -4.04
I.T -0.70’ -1.78’ -2.57 -3.09 -3.44 -3.68 -3.87 -4.02
Non-rejection values of the null hypothesis (1.12) at 95% significance level and the letters !

bold correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.12b

r in (2.9) with p(L;tf) = (1 - L4)d+* for U.K. data from 1974.1 to 1984.4.

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
— -0.22’ -0.91’ -1.62’ -2.25 -2.75 -3.11 -3.38 -3.57
I 0.31’ -0.83’ -1.83’ -2.39 -2.74 -3.00 -3.21 -3.38
I.T -1.10’ -1.57’ -1.99 -2.34 -2.63 -2.81 -2.89 -2.95

AR(1) u,:
- -2.87 -3.08 -3.27 -3.46 -3.62 -3.75 -3.86 -3.96
I -0.38' -1.05’ -1.97 -2.66 -3.10 -3.38 -3.57 -3.70
I,T -0.73’ -1.41’ -2.13 -2.68 -3.06 -3.30 -3.43 -3.51

AR(2) u,:
_ -2.93 -3.13 -3.30 -3.45 -3.60 -3.74 -3.85 -3.95
I -0.51’ -1.11’ -1.97 -2.62 -3.05 -3.33 -3.52 -3.66
I.T -0.73’ -1.45’ -2.15 -2.68 -3.05 -3.28 -3.41 -3.49

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

-0.22’ -0.91’ -1.62’ -2.25 -2.74 -3.11 -3.37 -3.57
I 0.34’ -0.66’ -1.35’ -1.76’ -2.10 -2.42 -2.71 -2.97
I.T -0.80’ -1.08’ -1.40’ -1.74’ -2.06 -2.35 -2.59 -2.77

AR(1) u,:
-2.86 -3.07 -3.27 -3.45 -3.62 -3.75 -3.86 -3.95

I -2.07 -2.26 -2.56 -2.87 -3.13 -3.34 -3.50 -3.63
I.T -1.85’ -2.24 -2.57 -2.86 -3.11 -3.31 -3.45 -3.55

AR(2) u,:
-2.92 -3.12 -3.29 -3.45 -3.60 -3.75 -3.85 -3.95

I -2.20 -2.40 -2.68 -2.95 -3.18 -3.35 -3.49 -3.60
I.T -2.03 -2.41 -2.71 -2.97 -3.18 -3.34 -3.46 -3.55

Series: c,-y,\ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

-0.52’ -0.98’ -1.50’ -1.98 -2.40 -2.74 -3.03 -3.27
I -0.60’ -1.26’ -1.82’ -2.28 -2.66 -2.97 -3.23 -3.45
I.T -0.60’ -1.26’ -1.83* -2.28 -2.64 -2.93 -3.17 -3.39

AR(1) u,:
-0.72’ -1.54’ -2.17 -2.62 -2.96 -3.22 -3.44 -3.61

I -0.62’ -1.30’ -1.89’ -2.35 -2.72 -3.02 -3.27 -3.49
I.T -0.62’ -1.31’ -1.89’ -2.35 -2.71 -2.99 -3.22 -3.43

AR(2) u,:
-1.19’ -1.89’ -2.39 -2.74 -3.02 -3.25 -3.45 -3.61

I -0.83’ -1.55’ -2.11 -2.52 -2.85 -3.12 -3.35 -3.54
I.T -0.83’ -1.56’ -2.12 -2.52 -2.84 -3.09 -3.31 -3.50
Non-rejection values of the null hypothesis (1.12) at 95% significance level and the letters

bold correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.13a

r in (2.9) with p(L;0) = (1 • L1)
Series: c, \ d 0.50 0.75 1.00
White Noise u,:

- 3.25 1.17’ -0.59’
I 0.56’ -3.67 -4.16
I.T -3.41 -3.88 -4.11

AR(1) u,:
- -2.25 -2.36 -2.59
I -2.69 -3.79 -4.18
I.T -3.52 -3.93 -4.14

SAR(1) u,:
- 1.25’ 0.61’ -0.61’
I 0.41’ -0.81’ -2.17
I»T -0.96’ -1.70’ -2.18

Series: y, \d 0.50 0.75 1.00
White Noise u,:

— 3.23 1.15’ -0.61’
I 2.92 -1.57’ -3.13
I»T -0.53’ -2.07 -3.04

AR(1) u,:
- -2.29 -2.39 -2.61
I -2.60 -2.82 -3.43
I.T -2.22 -2.89 -3.38

SAR(l) u,:
- -1.25’ 0.59’ -0.64’
I 0.33’ -1.15’ -2.30
I|T -0.63’ -1.62’ -2.29

Series: c,-y, \d 0.50 0.75 1.00
White Noise u,:

- -3.48 -3.82 -4.06
I -3.22 -3.86 -4.05
I.T -3.52 -3.89 -4.06

AR(1) u,:
- -3.61 •3.88 -4.09
I -3.39 -3.90 4.07
I.T -3.62 -3.93 4.07

SAR(l) u,:
- -1.97 -2.37 -2.70
I -1.91’ -2.38 -2.64
I.T -2.08 -2.42 -2.64

for U.K. data from 1955.1 to 1973.4
1.25 1.50 1.75 2.00 2.25
-1.76’
4.22
4.23

-2.47
4.27
4.29

-2.91
4.31
4.32

-3.19
4.33
4.34

-3.39
4.34
4.36

-2.89
4.24
4.24

-3.15
4.28
4.30

-3.35
4.32
4.32

-3.50
4.33
4.34

-3.61
4.35
4.36

-1.83’
-2.50
-2.47

-2.65
-2.67
-2.66

-3.12
-2.80
-2.80

-3.40
-2.91
-2.93

-3.56
-3.01
-3.07

1.25 1.50 1.75 2.00 2.25
-1.79’
-3.59
-3.59

-2.49
-3.88
-3.80

-2.93
4.04
4.01

-3.21
4.14
4.07

-3.41
4.20
4.13

-2.91
-3.75
-3.73

-3.17
-3.95
-3.94

-3.37
4.00
4.05

-3.52
4.16
4.11

-3.63
4.21
4.16

-1.86’
-2.73
-2.68

-2.67
-2.94
-2.90

-3.14
-3.07
-3.01

-3.41
-3.17
-3.08

-3.57
-3.24
-3.15

1.25 1.50 1.75 2.00 2.25
4.20
4.14
4.14

4.27
4.19
4.19

4.31
4.22
4.23

4.33
4.24
4.26

4.34
4.26
4.28

4.21
4.15
4.15

4.28
4.19
4.20

4.31
4.22
4.23

4.33
4.24
4.26

4.34
4.26
4.28

-2.94
-2.80
-2.80

-3.11
-2.92
-2.93

-3.23
-3.03
-3.04

-3.31
-3.12
-3.15

-3.35
-3.20
-3.25

Non-rejection value* of the null hypothesis (1.12) at 95% significance level, and the letters in
bold correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.13b

r in (2.9) with p(L;0) = (1 - L,)d+> for U.K. data from 1974.1 to 1984.4

Series: c, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

- 1.48’ 0.30' -0.78’ -1.59’ -2.14 -2.49 -2.74 -2.91
I -2.19 -3.24 -3.42 -3.48 -3.53 -3.57 -3.60 -3.62
I*T -2.90 -3.21 -3.38 -3.48 -3.54 -3.59 -3.63 -3.66

AR(1) u,:
- -2.11 -2.20 -2.33 -2.52 -2.71 -2.87 -3.00 -3.10
I -2.71 -3.31 -3.45 -3.51 -3.55 -3.59 -3.61 -3.63
I»T -3.04 -3.29 -3.43 -3.51 -3.57 -3.61 -3.64 -3.67

SAR(l) u,:
- -0.55’ 0.02’ -0.79’ -1.64’ -2.25 -2.63 -2.85 -2.99
I 0.17’ -0.89’ -1.44’ -1.72’ -1.92’ -2.08 -2.22 -2.34
I.T -0.03’ -1.08’ -1.44’ -1.71’ -1.93’ -2.11 -2.28 -2.44

Series: y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise ut:

- 1.46’ 0.28’ -0.79’ -1.61’ -2.16 -2.51 -2.75 -2.92
I 1.20’ -0.58’ -1.51’ -2.12 -2.56 -2.87 -3.00 -3.21
I.T 0.47’ -0.56’ -1.44’ -2.10 -2.57 -2.90 -3.12 -3.27

AR(1) u,:
_ -2.14 -2.23 -2.35 -2.54 -2.73 -2.89 -3.01 -3.11
I -2.11 -2.26 -2.51 -2.75 -2.95 -3.12 -3.25 -3.34
I.T -1.71’ -2.16 -2.48 -2.74 -2.96 -3.14 -3.27 -3.37

SAR(l) u,:
_ 0.54’ 0.02’ -0.82’ -1.66’ -2.27 -2.64 -2.86 -3.00
I 0.41’ -0.57’ -1.34’ -1.86’ -2.23 -2.45 -2.59 -2.67
I,T 0.38’ -0.51’ -1.28’ -1.84’ -2.22 -2.46 -2.62 -2.72

Series: c,-y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

-1.69’ -2.43 -3.01 -3.36 -3.54 -3.63 -3.68 -3.70
I -2.75 -3.19 -3.41 -3.52 -3.58 -3.61 -3.63 -3.64
I|T -2.71 -3.17 -3.40 -3.52 -3.59 -3.62 -3.65 -3.67

AR(1) u,:
-2.42 -2.85 -3.20 -3.44 -3.58 -3.65 -3.69 -3.72

I -2.77 -3.20 -3.42 -3.53 -3.59 -3.62 -3.64 -3.65
I,T -2.74 -3.19 -3.41 -3.53 -3.59 -3.63 -3.66 -3.68

SAR(l) u,:
-0.46’ -1.12’ -1.67’ -2.07 -2.34 -2.52 -2.65 -2.73

I -1.43’ -1.93’ -2.23 -2.40 -2.52 -2.62 -2.70 -2.77
I,T -1.48’ -1.94’ -2.23 -2.41 -2.53 -2.63 -2.72 -2.81
Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.14a

f  in (2.9) with p(L;fl) =  (1 - L)"*1 for U.K. data from 1955.1 to 1973.4

Series: c, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 225
White Noise u,:
- 6.66 2.63 -0.40’ -2.17 -3.14 -3.71 -4.08 4.33
I 0.05’ -4.00 -4.26 -4.44 -4.61 -4.76 -4.88 4.98
I,T -3.49 -3.95 -4.24 -4.45 -4.62 -4.76 -4.89 4.99

SAR(l) u,:
- 4.53 2.27 -0.39’ -2.19 -3.17 -3.74 -4.11 4.37
I 3.54 -0.54’ -1.64’ -2.30 -2.94 -3.50 -3.96 4.32
I»T 0.69* -0.66’ -1.57’ -2.34 -3.03 -3.63 -4.09 4.44

SAR(2) u,:
4.53 2.24 -0.39’ -2.19 -3.17 -3.75 4.11 4.37

I 5.03 -0.36’ -1.76’ -2.46 -3.08 -3.61 4.05 4.40
I*T 1.10’ -0.65’ -1.71’ -2.49 -3.16 -3.73 4.18 4.52

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 225
White Noise u,:
. - 6.63 2.61 -0.42’ -2.18 -3.14 -3.71 4.07 4.33
I -4.14 -3.13 -4.14 -4.53 -4.77 -4.93 -5.05 -5.14
I»T -1.49’ -3.25 -4.10 -4.54 -4.77 -4.90 -5.01 -5.11

SAR(l) u,:
- 4.51 -2.23 -0.42’ -2.20 -3.18 -3.74 4.11 4.36
I 3.25 -0.56’ -2.35 -3.11 -3.65 -4.05 4.34 4.54
I,T 0.73’ -0.11’ -2.31 -3.10 -3.64 -3.95 4.11 4.28

SAR(2) u,:
- 4.52 2.20 -0.42’ -2.21 -3.18 -3.74 4.11 4.36
I 5.09 1.28’ -1.85’ -3.02 -3.66 -4.07 4.35 4.55
I,T 2.40 -0.01’ -1.86’ -2.97 -3.60 -3.89 4.08 4.29

Series: c,-y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:
— -2.72 -3.23 -3.55 -3.74 -3.89 -4.02 4.16 4.29
I -2.41 -3.18 -3.48 •3.68 -3.85 -4.01 4.16 4.31
I.T -2.72 -3.21 -3.48 -3.68 -3.85 -4.01 4.15 4.29

SAR(1) u,:
- -1.69’ -2.79 -3.46 -3.83 -4.05 -4.21 4.34 4.47
I -0.99’ -2.29 -2.97 -3.41 -3.75 -4.02 4.24 4.42
I.T -1.49’ -2.38 -2.98 -3.41 -3.75 -4.00 4.18 4.33

SAR(2) u,:
- -1.46’ -2.70 -3.46 -3.86 -4.09 4.25 4.39 4.52
I -0.81’ -2.28 -3.01 -3.47 -3.80 -4.07 4.29 4.47
I»T -1.36’ -2.37 -3.02 -3.47 -3.81 -4.06 4.24 4.40
Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.

TABLE 4.14b

f  in (2.9) with p(L;fl) = (1 - L)4** for U.K. data from 1974.1 to 1984.4.

Series: c, \ d 
White Noise u,:

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
- 3.88 1.46’ -0.53’ -1.83’ -2.59 -3.06 -3.36 -3.57
I -1.69’ -2.56 -2.71 -2.90 -3.09 -3.26 -3.41 -3.55
I,T -2.04 -2.41 -2.68 -2.90 -3.11 -3.29 -3.44 -3.57

SAR(l) u,:
_ 3.00 1.30’ -0.53’ -1.84’ -2.61 -3.07 -3.37 -3.58
I 1.70’ -0.06’ -0.79’ -1.48’ -2.08 -2.59 -3.02 -3.35
I»T 1.23’ 0.11’ -0.77’ -1.52’ -2.17 -2.73 -3.17 -3.49

SAR(2) u,:
— -3.04 1.31’ -0.53’ -1.84’ -2.61 -3.08 -3.38 -3.59
I 2.82 0.72’ -0.38’ -1.30’ -2.03 -2.59 -3.03 -3.36
I,T 2.23 0.87’ -0.35’ -1.34’ -2.12 -2.74 -3.19 -3.50

Series: y, \ d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

— 3.84 1.42’ -0.57’ -1.85’ -2.61 -3.07 -3.37 -3.58
I 2.61 -0.47’ -1.83’ -2.61 -3.11 -3.43 -3.65 -3.81
I.T 1.69’ -0.39’ -1.78’ -2.62 -3.13 -3.44 -3.63 -3.76

SAR(l) u,:
_ 2.96 1.26' -0.57’ -1.86’ -2.62 -3.08 -3.38 -3.59
I 1.56’ -0.56’ -1.72’ -2.48 -2.99 -3.35 -3.60 -3.79
I»T 1.58’ -0.34’ -1.66’ -2.50 -3.03 -3.37 -3.57 -3.72

SAR(2) u,:
_ 3.01 1.27’ -0.57’ -1.87’ -2.63 -3.08 -3.38 -3.39
I 1.28’ -0.72’ -1.73’ -2.51 -3.03 -3.37 -3.60 -3.77
I,T 0.59’ -0.55’ -1.67’ -2.52 -3.06 -3.39 -3.57 -3.70

Series: c,-y, \d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
White Noise u,:

-1.67* -2.60 -3.17 -3.47 -3.64 -3.77 -3.88 -3.97
I -2.79 -3.11 -3.32 -3.50 -3.65 -3.78 -3.89 -3.99
I.T -2.71 -3.08 -3.32 -3.50 -3.66 -3.78 -3.89 -3.99

SAR(l) u,:
0.30’ -1.19’ -2.38 -3.12 -3.54 -3.78 -3.94 -4.05

I -2.10 -2.61 -2.92 -3.21 -3.47 -3.68 -3.84 -3.97
I.T -2.00 -2.54 -2.91 -3.22 -3.48 -3.69 -3.85 -3.97

SAR(2) u,:
0.47’ -1.09’ -2.40 -3.19 -3.61 -3.85 -4.01 -4.12

I -2.11 -2.67 -3.00 -3.30 -3.55 -3.76 -3.92 -4.03
I.T -2.00 -2.60 -2.99 -3.30 -3.57 -3.78 -3.94 -4.06
Non-rejection values of the null hypothesis (1.12) at 95% significance level, and the letters in

bold correspond to those cases where monotonicity with respect to d is achieved.



TABLE 4.15a

f  in (2.9) with p(L;0) =  (1 - L4)‘*+' and dummy variables for the changing trend in Japanese
data.

Series: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

i .r
i,r,D

0.40’
3.63

1.11’
1.54’

0.88’
-0.30’

-0.60’
-1.65’

-2.00
-2.62

-2.94
-3.30

-3.52
-3.76

-3.85
4.05

4.06
4.26

AR(1) u,:
i .r
i,r,D

0.47’
5.31

1.10’
2.11

1.14’
-1.20’

-0.17’
-3.05

-1.72’
-3.85

-2.78
4.25

-3.43
4.48

-3.83
4.63

4.09
4.73

AR(2) u,: 
I.T* 
i,r,D

0.91’
3.85

1.23’
0.70’

1.05’
-1.84’

-0.32’
-3.30

-1.84’
4.00

-2.86
4.37

-3.48
4.59

-3.87
4.72

4.14
4.81

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

i .r
i,r,D

0.22’
5.49

0.73’
2.52

1.01’
-0.37’

-0.25’
-2.13

-1.84’
-3.06

-2.91
-3.62

-3.48
-3.99

-3.67
4.24

-3.72
4.43

AR(1) u,: 
I.T* 
i,r,D

0.29’
5.55

0.90’
2.59

0.94’
-0.47’

-0.17’
-2.32

-1.61’
-3.21

-2.67
-3.71

-3.30
4.04

-3.61
4.28

-3.77
4.45

AR(2) u,: 
I.T’ 
I.T'.D

0.29’
5.10

0.61’
2.45

0.51’
-0.47’

-0.44’
-2.36

-1.74’
-3.24

-2.73
-3.73

-3.32
4.05

-3.58
4.28

-3.73
4.45

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

i .r
i.r.D

0.75’
6.09

1.11’
3.55

0.87’
0.80’

-0.57’
-1.21’

-2.04
-2.51

-3.01
-3.33

-3.55
-3.85

-3.78
4.18

-3.87
4.40

AR(1) u,: 
I.T*
i.r.D

0.96’
6.23

1.45’
3.68

0.85’
0.39’

-0.59’
-1.89’

-2.04
-3.00

-3.00
-3.61

-3.56
4.00

-3.84
4.27

4.00
4.45

AR(2) u,:
i .r
i,r,D

1.16’
6.09

1.45’
3.55

0.84’
0.80’

-0.64’
-1.21’

-2.08
-2.51

-3.03
-3.33

-3.57
-3.85

-3.82
4.18

-3.96
4.40

Non-rejection values of the null hypothesis (1.12) at 95% level. The letters in bold correspond
to those cases where monotonicity is achieved. T’ means that we include dummy variables for the
change in the slope in the trend.

TABLE 4.15b

r in (2.9) with p(L;0) =  (1 - L4)d+> and dummy variables for the changing trend in U.K.
data.

Series: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I,T 0.63’ 0.54’ -0.30’ -1.30’ -2.10 -2.71 -3.23 -3.67 -3.96
I,r,S  2.03 0.40’ -0.78’ -1.58’ -2.18 -2.69 -3.20 -3.66 4.00

AR(1) u,:
IT 0.64’ 0.85’ 0.44’ -1.06’ -2.42 -3.29 -3.85 -4.23 -4.46
I,r,S  4.37 1.25’ -1.41’ -2.84 -3.50 -3.89 -4.18 -4.41 -4.59

AR(2) u,:
I,T* 0.66’ 0.73’ -0.13’ -1.28’ -2.52 -3.33 -3.86 -4.21 -4.44
I,T\S 4.45 1.11’ -1.55’ -2.97 -3.62 -3.99 -4.25 -4.46 4.62

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

1,T 1.66’ 0.89’ -0.11’ -1.01’ -1.77’ -2.43 -3.02 -3.57 4.00
I,T*,S 2.00 0.75’ -0.28’ -1.10’ -1.78’ -2.40 -2.98 -3.53 -3.96

AR(1) u,:
I,r  1 .6 1 ’ 1 .0 6 ’ - 0 . 4 5 ’ - 1 . 8 0 ’ - 2 . 7 6  - 3 .4 3  - 3 .9 3  4 . 3 1  4 . 5 8
I , r , S  3 .0 2  0 . 4 2 ’ - 1 . 4 1 ’ - 2 .4 2  - 3 .0 5  - 3 .5 4  - 3 .9 4  4 . 2 8  4 . 5 3

AR(2) u,:
I,r  0.76’ 0.03’ -1.15’ -2.19 -2.97 -3.54 -3.97 4.31 4.57
I,r,S  1.45’ -0.49’ -1.89’ -2.69 -3.20 -3.61 -3.96 4.26 4.51

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

I , r  1.45’ 0.81’ -0.37’ -1.54’ -2.43 -3.08 -3.54 -3.88 4.14
I ,r ,S  2.98 1.26’ -0.20’ -1.36’ -2.24 -2.90 -3.40 -3.79 4.11

AR(1) u,:
I,T* 1.38’ 0.55’ -0.70’ -1.85’ -2.68 -3.27 -3.69 4.00 4.24
I,r,S  2.83 0.87’ -0.64’ -1.72’ -2.52 -3.12 -3.57 -3.92 4.28

AR(2) u,:
I,r  1.44’ 0.55’ -0.78’ -2.00 -2.84 -3.40 -3.79 4.06 4.28
I,T\S 3.23 1.03’ -0.71’ -1.90’ -2.71 -3.28 -3.69 4.01 4.27

’: Non-rejection values of the null hypothesis (1.12) at 95% level and the letters in bold
correspond to those cases where monotonicity is achieved. T* means that we include dummy
variables for the change in the slope in the trend.



TABLE 4.16a

{■ in (2.9) with p(L;0) = (1 - Ll)d+* and dummy variables for the changing trend in Japanese
data.

Scries: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I.T’ -2.46 -3.99 -4.55 -4.75 -4.83 -4.86 -4.87 -4.86 4.86
I,T\D 5.99 2.90 0.20’ -1.62’ -2.73 -3.38 -3.77 -4.02 -4.19

AR(1) u,:
IT -2.59 -3.99 -4.56 -4.75 -4.83 -4.86 -4.87 -4.86 -4.86
I,T\D 6.69 1.22’ -1.68’ -2.68 -3.21 -3.60 -3.86 -4.06 -4.21

SAR(l) u,:
I,r  0.88’ -0.13’ -0.86’ -1.40’ -1.81’ -2.14 -2.36 -2.47 -2.55
I,r,D  2.63 1.32’ -0.31’ -1.69’ -2.57 -3.08 -3.39 -3.59 -3.73

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I.T* -2.68 -4.46 -4.82 -4.88 -4.90 -4.90 -4.89 -4.89 -4.89
I.r.D  0.32’ -2.51 -3.78 -4.28 -4.51 -4.62 -4.68 -4.70 -4.71

AR(1) u,:
I.r -4.06 -4.51 -4.82 -4.88 -4.90 -4.90 -4.89 -4.89 -4.89
I,T\D 0.34’ -2.56 -3.80 4.29 -4.51 -4.62 -4.68 -4.70 -4.71

SAR(l) u,:
I , r  -1.23’ -1.89’ -2.09 -2.26 -2.42 -2.59 -2.73 -2.83 -2.92
I .r .D  -1.07’ -2.39 -3.08 -3.44 -3.66 -3.83 -3.95 -4.02 4.04

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I.T* -1.56’ 4.01 4.69 4.83 4.87 4.89 4.88 4.88 4.89
I .r .D  5.10 0.27’ -2.66 -3.84 4.30 4.51 4.61 4.65 4.67

AR(1) u,:
I,r -2.47 4.03 4.69 4.84 4.87 4.89 4.89 4.89 4.90
I.r.D 5.20 0.11’ -2.83 -3.91 4.33 4.52 4.62 4.65 4.67

SAR(l) u,:
I . r  -0.35’ -1.86’ -2.43 -2.70 -2.86 -2.99 -3.10 -3.19 -3.28
I ,r ,D  0.45’ -1.37’ -2.73 -3.38 -3.70 -3.90 4.03 4.12 4.15

’: Non-rejection values of the null hypothesis (1.12) at 95% level and the letters in bold
correspond to those cases where monotonicity is achieved. T* means that we include dummy
variables for the change in the slope in the trend.

TABLE 4.16b

f  in (2.9) with p(L;6) = (1 - LJ)d+* and dummy variables for the changing trend in U.K.
data.

Series: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00White Noise u,:
i ,r -1.26’ -3.00 4.01 4.51 4.76 4.89 4.96 4.99 -5.03
i,r,s 3.77 1.63’ -0.28* -1.80’ -2.89 -3.62 4.09 4.37 4.55

AR(1) u,:
i ,r -1.20’ -3.22 4.15 4.57 4.79 4.91 4.97 -5.01 -5.07
i,r,s 2.79 -0.88’ -2.38 -3.05 -3.53 -3.94 4.25 4.46 4.60

SAR(l) u,:
i .r 1.21’ 0.02’ -0.93’ -1.67’ -2.22 -2.61 -2.88 -3.05 -3.17
i,r,s 2.52 1.00’ -0.49’ -1.74’ -2.64 -3.25 -3.64 -3.89 4.04

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00White Noise u,:
i ,r 4.14 2.07 -0.16’ -1.91’ -3.09 -3.81 4.23 4.49 4.65I»T* ,S 5.59 3.57 1.55’ -0.23’ -1.66’ -2.69 -3.39 -3.85 4.12

AR(1) u,:
i*r 2.40 -0.11’ -1.95’ -2.98 -3.65 4.10 4.40 4.60 4.73
i,r,s 5.64 1.28’ -1.12’ -2.24 -2.92 -3.43 -3.82 4.11 4.30

SAR(l) u,:
i ,r 2.65 1.21’ -0.38’ -1.70’ -2.60 -3.18 -3.53 -3.75 -3.89
i,r,s 3.37 2.16 0.81’ -0.59’ -1.87’ -2.87 -3.55 -3.96 4.20

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

i ,r -0.61’ -2.70 -3.86 4.40 4.72 4.86 4.93 4.96 4.99
i,r,s 2.90 0.23’ -1.84’ -3.13 -3.87 4.28 4.52 4.66 4.75

AR(1) u,:
i .r -0.77’ -2.92 -3.95 4.47 4.73 4.87 4.93 4.97 4.99
i,r,s 1.56’ -0.65’ -2.26 -3.31 -3.95 4.32 4.55 4.68 4.76

SAR(l) u,:
i .r 0.16’ -1.24’ -2.18 -2.77 -3.12 -3.34 -3.49 -3.60 -3.69
i,r,s 1.29’ -0.47’ -1.97 -2.97 -3.56 -3.91 4.14 4.28 4.39

’: Non-rejection values of the null hypothesis (1.12) at 95% level and the letters in bold
correspond to those cases where monotonicity is achieved. T* means that we include dummy
variables for the change in the slope in the trend.



TABLE 4.17a

t in (2.9) with p(L;6) =  (1 - L)d+* and dummy variables for the changing trend in Japanese
data.

Series: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I.r -2.78 -3.84 -4.25 -4.49 -4.68 -4.82 -4.91 -5.02 -5.20
I,r,D 9.24 3.27 -1.20’ -3.58 -4.67 -5.17 -5.41 -5.58 -5.75

SAR(l) u,:
I,T* 5.08 2.28 -0.04’ -1.58’ -2.62 -3.29 -3.25 -2.61 -2.83
I,T\D 6.58 2.82 -0.27’ -2.24 -3.46 -4.23 -4.66 -4.86 -5.02

SAR(2) u,:
I T  5.98 2.92 0.17’ -1.56’ -2.69 -3.38 -3.32 -2.68 -2.97
I,r ,D  6.42 3.18 0.15’ -2.06 -3.48 -4.33 -4.79 -5.02 -5.22

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

I,r  -4.45 -4.68 -4.83 -4.97 -5.12 -5.25 -5.33 -5.43 -5.57
I ,r ,D  0.34’ -2.30 -3.45 -3.98 -4.28 -4.48 -4.63 -4.73 -4.82

SAR(1) u,:
I.T* 0.27’ -1.35’ -1.88’ -2.24 -2.80 -3.32 -3.39 -3.31 -3.23
I,T,D 0.11’ -1.98 -3.17 -3.85 -4.29 -4.59 -4.78 -4.78 -4.78

SAR(2) u,:
I ,r  0.58’ -1.29’ -1.88’ -2.26 -2.85 -3.38 -3.42 -2.99 -3.26
I ,r ,D  0.33’ -1.95’ -3.23 -3.91 -4.32 -4.60 -4.77 -4.78 -4.79

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1,75 2.00
White Noise u,:

I ,r  -3.81 -4.65 -4.97 -5.16 -5.31 -5.44 -5.53 -5.62 -5.74
I,r ,D  3.43 -1.67’ -3.88 -4.74 -5.13 -5.35 -5.51 -5.60 -5.67

SAR(l) u,:
I,T 0.98’ -1.41’ -2.49 -2.97 -3.43 -3.87 -4.06 -3.91 4.05
I,r,D  1.27’ -1.72’ -3.29 4.10 4.59 4.92 -5.13 -5.21 -5.21

SAR(2) u,:
I.T 1.55’ -1.23’ -2.50 -3.05 -3.54 -3.98 4.13 -3.96 4.14
I ,r ,D  1.53’ -1.57’ -3.32 4 .19 4.68 4 .99 -5.20 -5.28 -5.29

Non-rejection values of the null hypothesis (1.12) at 95% level and the letters in bold
correspond to those cases where monotonicity is achieved. T* means that we include dummy
variables for the change in the slope in the trend.

TABLE 4.17b

? in (2.9) with p(L;6) = (1 - L)d+I and dummy variables for the changing trend in U.K. data.

Series: c, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I,T -0.50’ -2.79 -3.86 4.41 4.75 4.98 -5.14 -5.31 -5.51
I,r,S  8.75 4.46 0.59’ -2.04 -3.55 4.36 4.86 -5.18 -5.43

SAR(l) u,:
I , r  6.09 3.66 1.45’ -0.14’ -1.31’ -2.24 -2.84 -3.17 -3.68
I ,r ,S  7.61 4.23 1.03’ -1.31’ -2.83 -3.79 4 .41  4 .8 4  -5.18

SAR(2) u,:
IX 5.88 4.63 2.46 0.35’ -1.26’ -2.41 -3.06 -3.38 -3.89
I,T*,S 5.22 3.34 1.38’ -0.71’ -2.48 -3.68 4.42 4.88 -5.21

Series: y, \ d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:

I,r  8.53 3.15 -0.92’ -3.21 4.37 -5.00 -5.37 -5.64 -5.86
I,r,S  11.32 6.56 1.73’ -1.72’ -3.69 4.72 -5.30 -5.64 -5.87

SAR(l) u,:
I ,r  7.68 4.01 0.96’ -1.06’ -2.39 -3.30 -3.97 4.78 4.90
I,r,S  8.74 5.27 1.56’ -1.25’ -2.97 -3.98 4.62 -5.07 -5.41

SAR(2) u,:
I,T* 5.43 3.45 1.44’ -0.60’ -2.24 -3.39 4.14 4.66 -5.06
I,r,S 6.63 4.12 1.27’ -1.15’ -2.86 -3.96 4.66 -5.12 -5.44

Series: c,-y,\d 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
White Noise u,:
I.r 0.87’ -2.19 -3.60 4.25 4.61 4.84 4.96 -5.09 -5.27
I,r,S 6.31 1.05’ -2.13 -3.68 4.44 4.85 -5.12 -5.30 -5.46

SAR(l) u,:
I,r  2.48 -0.66’ -2.62 -3.75 4.45 4.89 -5.10 -5.12 -5.16
I,r,S 4.05 0.23’ -2.34 -3.76 4.54 -5.01 -5.30 -5.48 -5.62

SAR(2) u,:
I X  2.51 -0.33’ -2.51 -3.79 4.54 4.99 -5.18 -5.18 -5.24
I,r,S 3.41 0.01’ -2.40 -3.77 4.53 4.98 -5.26 -5.43 -5.57

’: Non-rejection values of the null hypothesis (1.12) at 95% level and the letters in bold
correspond to those cases where monotonicity is achieved. T* means that we include dummy
variables for the change in the slope in the trend. t—»O
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MULTIVARIATE TESTS OF FRACTIONALLY INTEGRATED 

HYPOTHESES

5.1 INTRODUCTION

In this chapter we extend the tests of Robinson (1994c) described in Chapter 

2  to a general multivariate context, testing the presence of unit roots and other 

nonstationarities on the residuals in a multiple time series system. The multivariate 

case is relevant in order to analyze the interrelationships between different variables, 

and it can provide a more detailed insight into properties and stochastic behaviour 

than the univariate work. In particular, we will initially take the underlying 1(0) 

sequence to be contemporaneously correlated but uncorrelated in time, then go on 

to extend the treatment to a general case of 1(0 ) parametric autocorrelation.

Multivariate tests for unit roots have been widely analyzed in the literature, 

and they are commonly related to the problem of cointegration, testing the number 

of common unit roots in a system of equations, (e.g., Johansen (1988)). The test 

statistics presented in this chapter go beyond that in the sense that they will allow 

us to test not only unit roots, but also fractional roots of any order for each one of 

the time series analyzed, and some tests for cointegration, or more generally, 

fractional cointegration will be developed in the next chapter.

We consider a multivariate regression model of form

Yt  = Z t ( 6)  + X t t  = 1 , 2 ,  . . . (1)

with
X t = 0 ,  t  <L 0 (2)

where the column vectors Yt and Xt each have N components, and by 8  we mean a 

(K x 1) vector of real parameters, and Z,(S) is a (N x 1) vector of possibly non-linear 

functions of 8  and, in general a number of predetermined variables.. We will assume 

that under the null hypothesis to be tested and described below, Xt in (1) and (2) 

satisfies

® (L) X t = Ut , t  = 1 , 2 ,  . . . (3)

where O(L) is a (N x N) diagonal matrix function of the backshift operator L, and



178

Ut is a (Nxl) 1(0) vector process1 with mean zero and weak parametric correlation. 

We consider a given matrix function O(z;0) of the complex variate z and the p- 

dimensional vector 0  of real-valued parameters, where <E>(z;0 ) = O(z) for all z such 

that I z I = 1 if and only if the null hypothesis defined by 

H0: 0 = 0 (4)

holds, where there is no loss of generality in using the vector of zeros instead of an 

arbitrary given vector. In doing so, we can cast (3) in terms of a nested composite 

parametric null hypothesis, within the class of alternatives

® (L;0)  X t  = Ut t  = 1 , 2 , ----  (5)

We take O(z) to have u diagonal element of form
h u

p u(z) = (1 - z) Yl (1 + z) Y2 n ( 1 - 2  c os  wf z  + z 2) yj
J = 3

for a given hu, given distinct real numbers w“, j=3,4,..hu on the interval (0 ,7t) and 

given real numbers y“ for j=l,...hu. Thus, a model like (3) will include a wide range 

of possibilities to be tested for each time series, such as 1(d) processes with a single 

root at zero frequency, if pu(z) = (l-z)d; quarterly 1(d) processes with four roots if 

pu(z) = (l-z4)d; 1/f noise processes if pu(z) = (l-z)1/2, etc.

We specify now O(z;0) in a way such that we take each diagonal element of 

O(z;0), pu(z;0), to depend on 0 but not necessarily involving all elements of 0. To 

do that, we take

pu(z;0)  = ( l - z ) * - *  (1 ♦ * ) * - *  & (1-2COSw f z + z 2)'1**9"1* (6)
J = 3

where for each combination (u,j), 0^ = 0 j for some 1; and for each 1, there is at least 

one combination (u,j) such that 0 j“ = 0 j, where 0 j corresponds to the 1th element of 

0. This is a fairly general specification in the sense that we allow for duplications 

not only within equations but also across equations. Furthermore, this way of 

specifying O(z;0 ) permits us to specifically consider situations where 0  is the same 

across all equations, and also the case when 0  is taken as strictly different for each 

equation. This will be illustrated with some examples in Section 4.

We adopt the normalization pu(O;0) = 1 for all 0 and u = 1,2,...N, and we 

assume that pu(z;0 ) is differentiable in 0  on a neighbourhood of 0  = 0  for all I z I

1 We define an 1(0) vector process Ut, t = 0,±1,..., as a covariance stationary 
vector process with spectral density matrix f(A) that is finite and positive definite.



= 1. Also we assume that for any u,v = 1,2,...,N 

det(Euv) < oo (7)

where  E uv = - ± -  f ( e (u) (X) e (v) (X) ' + e (v) (X) e (u) (X) ' )dX

5 l o g p u ( e iX; 0 )
( 8 )

for real X, and £(u)(X) as the conjugate vector of £(u)(A,). Note that the (p x 1) vector 

£(u)(X) is independent of 0  given the linearity of log pu(elA,;0 ) with respect to 0  in (6 ). 

In particular, its real part takes the form

for 1=1,...,p and |A,| < n, where 8/  = 1 if 0yU = 0j and 0 otherwise. Condition (7) 

is not satisfied if we include AR alternatives of form: pu(z;0) = (1 - (l+0)z), but it 

is satisfied by fractional alternatives of form: pu(z;0 ) = (l-z)d+e, for example.

It should also be noted that under the null hypothesis, defined in (4), the 

model will be completely specified by (l)-(3), and it can be redefined as 

$ ( L )  Y t  = Wc ( 6 )  + Ut  (9)

general form of a regression model which includes multivariate linear and non-linear 

models and simultaneous equation systems, and its possible non-linear nature is 

motivated given that in economics and the physical sciences, multivariate regression 

models that are essentially of a non-linear nature have frequently been proposed to 

describe phenomena that may be of a continuous nature but are sampled at equal 

intervals of time. (See e.g. Robinson (1972), (1977)).

The initial discussion of the tests will assume that Ut in (3) is a white noise 

vector process, so the only nuisance parameters will be the elements of Zt(8 ) in (1) 

and those of the variance-covariance matrix of Ut. Then, we will extend the tests 

to a quite general form of 1(0) autocorrelation in Ut, which will include as specific 

examples, the type of multiple autoregressive-moving average (ARMA) models.

We will start by presenting the functional forms of the test statistics based 

on the three general principles when deriving nested parametric hypotheses, namely, 

the score, Wald and likelihood-ratio principles, and we will do so for the two 

situations mentioned above, that is, white noise and weak parametric autocorrelation 

in Ut. As usual, it should be possible to show that the tests based on these three

S ^ l o g  2 s in -^  + b ^ l o g i z  c o s ^ \  + 8 ^2 lo g |2  ( c o s X - c o s  wf )  |,

where Wt(5) = (Wlt(5);W2t(5);...;WNt(8))\ with Wut(8 ) = pu(L)Z^(8 ). (9) is a very
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principles will have the same null limit distribution ( a %p2 distribution where p is the 

number of restrictions tested). However, we do not present rigorous proofs of the 

asymptotic properties, but rather informal statements. It will undoubtedly be possible 

to extend the asymptotic null and local distribution theory of Robinson (1994c) for 

the scalar case, to our multivariate situation under natural generalizations of his 

conditions. Once we have obtained the functional forms of the tests, we will rewrite 

them for two cases of particular interest: First, when 0 in (5) is the same across all 

diagonal elements in O(z;0 ) and then, we will consider the case when 0  is strictly 

different for each element in O(z;0). In the final part of this chapter, some 

simulations based on Monte Carlo experiments will be carried out in order to study 

the finite-sample behaviour of versions of the tests. Appendices 5.1 and 5.2 show the 

derivations of the test statistics of Sections 2 and 3, and Appendix 5.3 describes the 

Fortran program used in obtaining the score test statistics.

5.2 SCORE TEST FOR WHITE NOISE Ut

In this section we describe a score test for the null hypothesis (4) in a model 

given by (1), (2) and (5), under the presumption that Ut in (5) is a vector sequence 

of zero mean uncorrelated in time random variables, with unknown variance- 

covariance matrix K. One definition for the score test is as follows. Let L(r|) be 

an objective function (such as the negative of the log-likelihood) and take T| = 

(0\D’) \  where f\ = (0’,v’)’ are the values that minimizes L(r|) under the null 

hypothesis. A score test (see Rao (1973), page 418) is then given by

0 I * ( V
0 V

d-Mg) 0L ( q ) 
dil 0 V

M d£(ti)
011

[0 =  0 
v -  v

( 10)

where the expectation is taken under the null hypothesis prior to substitution of v. 

However, the same asymptotic behaviour will be expected if we replace the inverted 

matrix appearing in (10) by alternative forms such as the sample average or the 

Hessian. For convenience in the derivation below, we will make use of the expected 

information matrix, so the score test will take the form

01* (T| )
0 V

E d L 2 (Ti) 
° 9t| 3 r|'

-1
0 1 * (t| ) 

0 q |e=o.
v = v

( 11)

We now describe the test statistic. We take L in (11), with T| = (O’,5’,a ’)’ 

and a  = v(K), to be the negative of the log-likelihood based on Gaussian Ut. In 

Appendix 5.1 it is shown that (11) takes the form
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S t = T {&*)  -1 a fc ( 12)

where a* is a (p x 1) vector of form

&t  = - E E r E ^ c «v( s ; { >' (13)
U=1 V = 1  s = 1

and *|/̂ u) is obtained by expanding
o*

i|r(u) (A.) = Re  [ e (u) (A.) ] a s  £  i|fsU) co s  k s .
s = 1

( 1 4 )
u=l v=l s = l  \ 1 I

duv is the (u,v)th element of K 1; duv is the (u.v)* element of K; and Cuv(s;S) is the 

(u.v)* element of Qj(s), where

k  = Ot (b)'i cels) = -|E  Ut(8) &t.Bl6)';
2 t=l 1 t = l

Ut(5) = d>(L)Yt - Wt(8 ), and 8  must be at least a T1/2- consistent estimate of the true 

value 8 .

Clearly, as in the univariate tests of Chapter 2, concise formulas for vj/s(u) are 

available in some simple cases; for example, \|/s(u) = -s'1, when pu(L;0) = (1 - L)d+e. 

However, we can also express the test statistic in the frequency domain and, under 

certain suitable conditions2, approximate this to obtain an alternative, asymptotically 

equivalent, form. a‘ in (13) can be written as

- l E E  6 f  <e(»>a) +eMii) ) iuva ;6)di,
Z  U = 1 V=1

where £(U)(A,) is as in (8 ) and £(v)(X) is the conjugate vector of £(v)(A.); IuV(A,;S) is the 

(u^)* element in the cross-periodogram of Ut(8 ) = (Ult(8 );...;UNt(8 ))’:

I uva , & )  = Wu(X;b) wv(li 8) , Wu {X;b)  = , 1 T  u..At>) e i x t .

where the line over WV(A,;S) denotes complex conjugate. To see the previous result 

note that a1 in (13) can be decomposed into

E d““E ^ u)cuu<s;S)+4 E E duvE
U= 1 S ~ 1  U=1 V=1 S = 1

v*u

and it can be shown that

2 These conditions are basically a generalization of those of Robinson (1994c),
requiring technical assumptions on pu (and thus on £(U)(A.)) to justify approximating
integrals by sums.
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T - 1

£  Cuu( s ; 8 )  = \  f  (e (11) (X) + e (u) (X) ) J UU(X;8) dX,
S=1 ^  4

a/3d £  (tyiu) Cuv( s ; 8 )  + tyiv) C ^ i s j S )  )
s = 1

I t  71

• § / <6 (U) (*> + e (v) ( X ) ) I u v U ; 8 ) d X  + j f ( e M (X) + ( X) ) (X; 8) dX
-71 -71

Also, under suitable conditions, keeping 6 UV and 6UV fixed, A1 in (14) becomes

asymptotically

Y Y d UVd mr Y t i U>* y ' ,  ( 1 5 )
LZ=1 V=1 S=1

and using Parseval’s relationship, this quantity can be expressed as 

£  d uvduV- ^ h < u > ( ^ e <vl( X ) ' * e (r>( X) e (u>(X)' )dX= f )  8 - d uv£uv,
U, V=1 1 U, V=1

since (15) can also be decomposed into 

£  « UU«UU£  t s u) * i u)' = £  » uu®uu- ^ r  /  («(« (A) «(„) <*>'> dX.
U=1 S = 1 U=1 -7T

i  £  £  »uv8uv £  ( ♦ i - ' t i ’* ' + =2̂
 U—1 V=1 s = 1

2V 71

£  £  8uv8u„ x b  f  e„(X) ¥V(X)' + ev(X) 6„(X)')dX
U=1 V*U -71

V=1

Therefore, the score statistic in (12) can be approximated in the frequency 

domain by the expression 

S f = T £ f' (Af) -1 £ f  (16)
where

■ - ^ £ £ 8UV£  (e«u,(Xr) -  e (v)(Xr >> J uv(Xr ; 8 ) ,  (17)
U=1 V - l  I

and

*” » .» £  <6(U) (^)6(v) ( ^ ) ' +e,., (Ar )€(B) (Xr)') , (18)
^  1  U=1 V = 1  I

\  = 27tr/T, and the sums on the asterisk are over \  in M where M = {X; -K < X 

< 7t; X £ (pr A,;p,+A,), 1= 1,2 ,...,s}, such that p„ 1=1,2 ,...s are the distinct poles on 

e(u)(A.) on (7t,7c] for u=l,2,...,N. Note that if, for example, pu(L;0) is given by (1- 

L)d+e, we calculate e(u)(Xt) as 

R e [ e (u) (Xr ) ] = i|r(u) U r ) = l o g • K2 s i n —  2 , and Im[e{u) (Xz) ] = - z-■ %
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with r=l,2,...,T-l.

We should expect that under some regularity conditions, (basically a natural 

generalization of those in Robinson (1994c)), the test described below will have the 

same optimal asymptotic properties as Robinson’s (1994c) univariate tests. These 

conditions impose a martingale difference assumption on the white noise vector Ut;3 

also W as defined in Appendix 5.1 must be a positive definite matrix; and pu(z;0), 

u=l,2...,N must belong to Class H as defined in Chapter 2, with e(u)(A,) satisfying the 

same conditions as \(f(k) in that chapter. We believe that under these conditions, 

(12) and (16) will have a null limit %p2 distribution, and under local alternatives of 

form (2 .6 ), a %p2(v) distribution with a non-centrality parameter v, which is optimal 

under Gaussianity of Ut.

Thus, a large-sample 100a%-level test for rejecting H0 (4) against the 

alternative: 0 ^ 0 ,  will be given by the rule: "Reject H0 if Sl ( or Sf) >

3C2p .«"’ where P(Xp2 > x\.J = «.

5.3 SCORE TEST FOR WEAKLY PARAMETRICALLY CORRELATED Ut

The test statistics presented in Section 2 can be robustified to allow weakly 

parametrically autocorrelated Ut. We can consider the model in (1), (2), and (5), 

with Ut in (5) as a vector process with N components generated by a parametric 

model of form
e*

Uc = £ A ( j ; t )  e,..., t  = 1 , 2 . . . . ,  ( 19)
j =0

where ^  is a vector white noise process, and K is now the unknown variance- 

covariance matrix of In relation with (19), the corresponding spectral density 

matrix is

f  (X; x ) = — - k ( A ; x ) K k ( A , ; x )  + , (20)
2 tt CO

where k(A;x)  = A( j  ; x) e u j , an^ k* means the complex conjugate
j =0

transpose of k.

A number of conditions are required on A and f in Appendix 5.2 when 

deriving the test statistic; their practical implications being that though Ut is capable 

of exhibiting a much stronger degree of autocorrelation than multiple autoregressive

3 That is, E(Ut I B^) = 0 and E(Ut Ut’ I BM) = K, where Bt is the a-field of 
events generated by Us, s < t.
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moving average ARMA processes, its spectral density matrix must be finite, with 

eigenvalues bounded and bounded away from zero. Thus, it cannot include 

fractional processes with positive or negative differencing parameters.

By extending the argument in Section 2 and Appendix 5.1, we show in 

Appendix 5.2 that, under Gaussianity of Ut, an approximate score statistic for testing 

(4) in (1), (2), (5) and (19) is

S  = T S' B ' 1 £  ( 2 1 )

and B is C - D’ E' 1 D, where

B -  - t f E E E  («(u)<*r> + e (v)a I ) ) i „ a I { « ) f ™ a r {*) .2 T r u=i v=i

* N

r u,v=l

n / = -
* N

D =

and

(E)

2 T
_ d£uv(Xx; f )

r u,v=l dx‘

-A. £  t J t - U X ' i T )
2 T — r dz„ 1 dx„

I„V(A,;8 ) is the (UjV)* element of the periodogram of Ut, Iu(A;8 ), as was given in 

Section 2; f^A^t) and f^A^t) correspond to the (UjV)* elements of fCA t̂) and 

f  ̂ A^t) respectively, with

ft*.;?) = — k(X;T) K k(X;f)*
2n

and

x = argminTeT-
/  T  1 * ^
|logdet f(lr;x) + tr[f"1(l.r;x)Iu(A.I;8) (22)

where T* is a compact subset of q-dimensional Euclidean space.

We can see that the test statistic obtained in (21) becomes (16) when we 

consider the case of white noise Ut. In such situation, f^A^x) = 6uv/2n, and fuv(Ar;x) 

= 27t duv. Then,
* N N

b -  ^ E E E ( « * A > + « ( v A ) ) u M ) b
A r u=l v=l

vu _

N N

C l
u=l v=l r

= -=pLE E d“vE(e(uA) + in (17).A 11s
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Similarly,

2 ■ ^ E E E I ' m  (‘ . I ' m  ' * ‘ w  ( » . ) ' ) » » » ”  -  A £
^  1 r u=l v=l

in (18) and finally, D and E are now zero matrices, so we have that S in (21) takes 

the same form as Sf in (16).

Extending the conditions in Robinson (1994c) to this multivariate context, we 

should expect that, allowing a martingale difference assumption on et in (19), 

with Y ~ j 1/2 ||A (j ; t )  || < oo , where ||A|| means any norm for the matrix A,

for example the square root of the maximum eigenvalue of A*A; with W as a 

positive definite matrix; pu, u=l,...,N, satisfying the same conditions as in Section 

2 ; and fuv(A,;x), and 3fuv(^;x)/3T satisfying a Lipschitz condition in X of order r| > 

1/2, for all u,v=l,...,N, then, under H0 (4): s  —d Xp2 as T oo, and S should also 

satisfy the same asymptotic efficiency properties as Sl and Sf in Section 2.

5.4 PARTICULAR CASES OF THE SCORE TESTS

In the preceding sections we have presented three different versions of the

score test statistic: (12), which corresponds to the time domain representation of the 

test for white noise Ut; (16), which approximates (12) in the frequency domain; and 

(2 1 ) which is the frequency domain version of the test statistic for weakly 

parametrically autocorrelated Ut. In this section we consider two particular cases of 

interest for each version of these tests. The first case corresponds to the test statistic 

when we take 0 in (5) as a (p x 1) vector containing exactly the same elements 

across all diagonal elements in O(z;0 ), while the second case takes this vector 0  as 

strictly different for each diagonal element in O(z;0 ).

We illustrate this with two simple examples in a bivariate model: First we

test if one of the series is an I(dj) process and if the other is I ^ ) .  Thus, we

consider that both series have a root at the same zero frequency. In the second 

example, we consider that the series might differ in the number of roots in its 

bivariate representation. Thus, we test the same hypothesis, (I(dj)), for the first 

series and a quarterly I(d2) process in the second one. Therefore, the model will be 

specified, under the null hypothesis, in the first of these examples as

(1 -L )d> 0

0  (1  - L f i ,

Llf

A r l  V 2tJ

Uu

V 2tJ
t = 1,2.....  (El)
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and in the second as

(1 -  L f 0

(1 - L 4f ,

/ v  N 
Ll*

L2r u.2t,
(E2)

where Xt = (Xlt,X2t)’ = 0 for t<0, and Ut = (Ult,U2t)’ follows an 1(0) process.

5.4.a Same 6 across the equations

We consider the model in (1), (2), and (5), but now we take <b(z;0) to be of 

form such that its u* diagonal element is
h u

Pu(z;Q) = ( l~ z )Yl 8<l ( l  + z)Y2 6,2 I I  ( l-2 co sw yz + z2)^ \
7=3

and for each j, 0 y = 0 j for some 1, and for each 1, there is at least one j such that 0 y 

= 0j. Therefore we take the parameter vector 0 to be exactly the same across all 

equations in (5), and the difference between one equation and another comes now 

through the coefficients yj for i=l,2,...,hu and u=l,2,...,N. Thus, in the first example, 

the model will be specified as

(1 -L )  

0

0

iX-L)

(X \it

2tJ u.21,

t = 1,2.....

and we will test here the null hypothesis, H0: 0 = 0, against the alternative, Ha: 0 ^  

0. Given that in this case 0 is a scalar, we can also consider one-sided tests for the 

same null hypothesis against the alternatives: Hal: 0 < 0 or Ha2: 0 > 0.

In the second example, the model will take the form

(1-Z .)1 ‘(1 +L) 2(1+L2) 3 0

0 (1 -Z,)^*9l(l +L)d‘* \ l  +L2)‘̂ *03;

f x .It

2t, u.2t.
which, under the null hypothesis, H0: 0 = (01,02,03)’ = 0, becomes (E2), implying that 

X2t behaves as a quarterly I(d2) process, and therefore, with all roots with the same 

integration order d2. Clearly we could also have tested the model, allowing different 

integration orders at zero and at seasonal frequencies.

This specification is a particular case of the general model presented in 

Section 1 where now

e(«)W
aiogpK(ea ;0 )

a e
(23)
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(23) implies that ^  for all u=l,2,...,N, and then, we can immediately

describe the functional forms of the three test statistics. Starting with white noise 

Ut, substituting (23) in (12) - (14), the time domain version of the test statistic is

s (1 = T a ,u ( i ' 1)-' a'1 (24)

where
T - l  N  N

* '  = -  E  * , E  E  v c j b i )  = [ r 1 c ^ s ) \
S=1 U=1 V=1 S=1

and

S=l \ 1 J U = 1 V=1 S = 1 \ 1 J

Expressing now the test statistic in terms of its frequency domain

representation 

S/1 = Ta<" a*' (25)

N  N

E E
m-1 v=l r

where = -vE  E ® " E  ( W  + * ( K ) ) W )1 u = 1

AT

r u=l 1 ru=1 
v=l

K=1
V=1

■ f E W W  = ^ r E w w 7-

Finally, allowing weak parametric autocorrelation in Up substituting (23) in 

(2 1 ), we obtain that the test statistic is

S 1 = T £ v  ( c 1 -  D v  E '1 D 1)'1 b 1 (26)

where

bl - E (<K) + W iE E uM xra,;*) -
r u=1 v=l

^ E  W E  E  U K M ' X w  -  - ^ E
■* r a=l v=l 1 r

N N
- 1

N  N

c 1 -  ^ E ( W W / +
r «=1 v=l

* * 

- ^ E W W '  = ^ E W W ' *
-* r  ■* /■

(27)
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a 1' -
r «=1  v = l  O X

^ E  >K*r>
■* r

fr
3ti

/ ( M )
0 T9 /J

(28)

and

4 v  2 r E
■ 3 /(A ;x) .  3/(A ,t)

OX.. OX..
(29)

5.4.b Different 0’s across equations

A second case of interest might be when we take the (p x 1) vector 0 

appearing in (5) to be equal to (01’;02’;...;0N’) \  where 0U is a (pu x 1) vector affecting 

only the uth equation. That is, the vector of parameters involving 0 will be strictly 

different for each equation. We can now write down the u* diagonal element in 

O(z;0 ) as

pu(z;0 “) = (1  -  z)Tl °*1 ( 1  + z)Yz °‘2 JJ ( 1 " 2cosuyz + z 2f J &ij
J-3

(30)

where for each j, 0 ^ = 0 J for some 1, and for each 1, there is at least one j such that 

0j“ = 0“. Thus, in the first of the examples mentioned above, the model will be of 

form

v<*i+e! 0
\ (x )It S ' ,

x 2t \ 2t) &

(1 - I )

, 0  (1 -L )

with 0  = (0 1; 02)’ = (0 [; 0?)’, and in the second example

t = 1,2 ,....,

(1 -L)‘,1*e‘(l +L)e*(l +L2)8’ "o (X )It S ' ,

o (1 - 1 ) ^ ( 1  1 +L2f 2'e\ x 2t \ 2t) S ,

with 0  = (0 1*; 0 2’)’ = (0 J ,0 * ,0 j; 0 ? ,0 2 ,0 2)’.

Again this way of specifying the model is a particular case of the general 

model presented in Section 1. We need to define the (pu x 1) vectors

OlogpH(ea ;0 “)
= ~ — ; /(-)W  = & [e"»(l)1.

for all u=l,2,...,N, sharing the same properties as £(U)(A.) and \j/(u)(A.) in Sections 1-3.
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To show that this is a particular case of the general specification given before, we 

just need to note that

(3D

where Pu is a (p x pu) matrix of l ’s and 0’s of form

P u  =

I 0 J
and substituting (31) in (12), (16) and (2 1 ) we can easily obtain the functional forms 

for the three test statistics. Starting again with white noise Ut, in the time domain 

representation, and noting that xj/w) = p  f^u) where fs(u) comes from expanding 

f(u)(A.) as cos X 5, the test statistic takes the form
5=1

a .2 -2/ a “ 1
S' = T d' ( A ' )  d l (32)

where a' =

< .2 \ 

»t2
<h

aN

N  T -1
with au = - E d“vE

V=1 S=1

and A '2

A tan
A ta IN

A taN1 —  **NN
A ta ,

. with (33)

The corresponding test statistic in the frequency domain representation is 

§f2 = T d fl> (A*2)-1 d fl (34)

where a fl -

' * f 2 N

- / 2 
<h

, with a!u -2n N

E d“vE
v=l
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and

A ?  =

a[x ...

am —

(35)

with

4 i  = ^ “̂ E  « « a p « o » (^  -  / ^ - E W W '  (3fi)
* r * r

Finally, the test statistic in the frequency domain for weakly parametrically 

autocorrelated Ut takes the form

S2 = T b2' {c2 - D1\ E y lD1)~'b1 (37)

b2 =

s 2
\  " /

vvz'r/z b*  = -  — /te
r

AT
(«)

\  r  v=l

c 2 =

with

 ̂c c ^L11 — L1AT

CA7 — CNN f

cm = —Re
U V  r p

(38)

D 2'

with

%

d 'NJ

d ' = - - R e , n f  \ £“>7iE *oA )E -H ^ t> ay
r v=l OX y

(39)

(40)

and Euv remains unchanged, i.e. as in (29).

5.5 WALD TESTS

Once we have obtained the functional forms of the score test statistics, we 

can use and extend the derivations of previous sections to obtain representations of
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the tests based on the Wald and likelihood-ratio principles. In this section we 

concentrate on Wald tests, and present functional forms of the three cases studied 

before, i.e., the time domain and the frequency domain versions of the tests for white 

noise Ut, and the frequency domain representation when Ut is weakly parametrically 

autocorrelated.

5.5.a Wald test for white noise Ut

Here we describe a Wald test for the null hypothesis (4) in the model (1), (2), 

and (5) under the presumption that Ut in (5) is a vector sequence of zero mean 

uncorrelated random variables, with unknown variance-covariance matrix K. 

Recalling from Section 2, r| = (0’,8 \a ’) \  L(r|) is the negative of the log-likelihood 

based on Gaussian Ut, (with a minimum at T| = fj), and given the asymptotic block 

diagonality of the second derivative matrix of L(r|), (see (A13) in Appendix 5.1), a 

general form of the Wald test can be written as

We start specifying the test statistic in its time domain representation. 

Denoting f| any admissible value of Tj, the negative of the log-likelihood, apart from 

a constant, can be expressed as

where Ut(0,8) = <J>(L;0) Yt - Wt(8 ), and the supscript *t* on L(f|) indicates the time 

domain form of the log-likelihood. By the same arguments as those given in 

Appendix 5.1 it can be shown that

where 6 UV = {K(dt)_1)uv and Uut(0,8) is the u* element of Ut(0,8). Taking now the 

expectation in this last expression, evaluated under the null (4) and at 8  = 8 , it is 

zero for the first summand, and for the second term becomes

(41)

though any other T1/2-consistent estimate of T|, under (4) could also be adopted in 

(41).

T

L \n )  = -?logdet(#T(d)) + - ± £  U $ A ) ' K W 1 Ujfi.t)
2  2  f=i

(42)

8000

N T - 1  T - s  (  » \ Nw—i fiA

N  T - l  T - s  N

u=1 s=l f=l v=l m=1
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(T -s )  £ e E  ♦ “ * ? ' d“v E(UuJii)UvJi6)) =
«=1 V=1 J=1

n r-i / x
(V)

■ r E E  « " « . , E
«=1 V=1 S=1

given the uncorrelatedness in Ut.

Substituting now (43) in (41), we obtain that a Wald test statistic in the time 

domain context takes the form

w ‘ = (44)
where is obtained throughout the minimization of Ll(r|) in (42), using T1/2 -

consistent estimates 8  and ft, under the null hypothesis (4), and

-  E f i - ^ E E ^ ^ V)>s=l V 1 Ju=1 v=l
that is, adopting the same form as in (14).

For the frequency domain version of the test statistic, we can approximate the 

negative of the log-likelihood function as

L \ fj) = |logdetf^-JC (d)j + n E ^ f W 1/ ^ 6;4)] (45>

where ^ ( ^ ,6 ,8 ) is now the cross-periodogram of Ut(6 ,8 ) evaluated at

Starting with the derivation with respect to 6 ,
* '

* E  <t
3Z/(rj) d 1 *

ae ae V r

* / a \ * N N dT (A. 'fl'M^E 4 v e c ' ( / ^ r;0;6)) v e c ^ d ) - 1) = * E E E  ~
r { d d  ' ’) r t ^ l U d Q

and using the same arguments as in Appendix 5.2, under suitable conditions, this last 

expression becomes asymptotically

* E E E
r u-1 v=l

and thus, d2 Lf(r|) /d 6  d 6 ’ evaluated at 6  = 0 and at 8  = 8  becomes asymptotically

* E E E  + %(K)) + ̂ (W U M ) a”
r u=1 v=l

whose expectation for large T will be given by

X E E E W +?<v)(̂ > (e<»A>+ W ) '  d„v «"•
z  r «=1 v=l
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Therefore, a Wald test statistic in this context will adopt the form

¥  = t V  A f & (46)

where 0f is obtained now throughout the mininimization of Lf(r|) in (45) with T1/2

consistent estimates S and & under the null, and
* V  V

hv

* N  N

by the same arguments as those given in previous sections.

5.5.b Wald test for weakly parametrically correlated Ut

Analogously to what we did for the score test, we can now robustify the test 

statistic in (46), to allow for weak parametric autocorrelation in Ut. We take Ut as 

in (19) and again here, the same conditions as those given in Section 3 and 

Appendix 5.2 will be required on Ut to obtain the test statistic. Recalling T| from 

Section 3, the Wald test in this context will take the form

where rj is the value that minimizes L(tj) in Appendix 5.2, though again any other 

T1/2-consistent estimate can be adopted, and

is the expected information matrix. Now, given the derivations carried out in 

Appendix 5.2, a Wald test statistic will adopt the form

with C,D and E as in (21), t  as in (22) and 0 obtained by minimizing L(t|) in (B4) 

in Appendix 5.2 with t  = t.

5.5.C Particular cases

We can stress the two cases of interest mentioned in Section 4. First, we 

consider 0 is exactly the same parameter vector across all equations in (5). The test 

statistic for white noise Ut in the time domain representation takes the form

0; F ee 0 1 -It) -T)

where F

w  = re' (c - d ' (£)■' d  ) e (47)
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A . 1 A . 1 /  A . 1 A . 1

W ‘ = T &  (A' ) 0' (48)
T~ 1

with i ' 1 = N  £  [ 1 - 4 W ,  fj*
S = 1 V i  J

and 0fl as in (44) but minimizing L'Cp) with 4>(L;0) as defined in Section 5.4.a. 

The frequency domain version is 

Wfl = T &U (Af l) ¥  (49)

with 0^ as in (46), and A fX = ^(^7) ^(^7 ) ’
^  r

and if Ut is weakly parametrically autocorrelated, the test statistic becomes

w 1 = t  e1' ( c 1 -  d 1' (£)■' 6 1) e 1 (50)

with 01 as in (47), and C1, D1 and E as in (27), (28) and (29) respectively.

Finally, we consider the different versions of the test statistics when we take 

the parameter vector 0 to be strictly different for each equation in (5). The time 

domain representation for white noise Ut is
A -2 A .? /  A -2 A jr

W 1 = T V  (51)

with 0t2 as in (44), i.e. minimizing (42) under the null hypothesis (4) and using now 

the new matrix O(L;0) specified in (30) and At2 as in (33). The frequency domain 

version of the test statistic is

W? = T  <y2/ ( i /2) (52)

with as in (46) and A° as in (35) and (36); and finally, if U, is weakly 

parametrically autocorrelated, the test statistic becomes

W2 = T  e2/ (C 2 -  D2' (£)■" D 2) e2 (53)

with 02 as in (47) and C2, D2 and E as in (38-40).

5.6 LIKELIHOOD RATIO TESTS

Finally, we can also compute pseudo likelihood ratio test statistics under the 

same situations as in previous sections. Starting with the case of white noise Ut, a 

pseudo log-likelihood ratio test will adopt the form 

LR = 2 (L(fi)- L(q)) 

where L(r|) is the negative of the log-likelihood; f| = (O’; S’; &’)’ as in Section 2 , 

and f| = (6 ’; $; a ’)’, where 8  minimizes L(0 ’; S’;&*) and a  is obtained using 0 and
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S. First we concentrate on the time domain version of the test. From previous 

sections, we can write
T

i 'W )  = ^ io gdet*(&) + I f ,  u , m lm r ' u lw
2 2 f=1

= ^logdet£(a) + ^tr

T N T= - lo g  detect) + — ,

T  r=l

(54)

and similarly,
T

L ‘(m) = flo g d e tA ®  + 17,(6', t y K ( f i r 1Uj&,l)2 2 t=i

= — logdet£(a) + —tr 
2 2

= ^logdetJT(a) + (55)

Using (54) and (55), we can write a pseudo log-likelihood ratio test statistic

as

LR< = T  log detA'(̂ -> 
detiT(a)

(56)

where

AT(a) = i  £  f),(6) (7,(6)', 
f f=l

C r t ( 8 )  = Ut(S), and 8 is as given in Section 2 (i.e., a T1/2-consistent estimate of 5 

under the null hypothesis) , and

K ( a )  =  W  U,(6‘MU'(.6\t,y
* r=l

and 8* obtained throughout the minimization of Ll(r|) based on 8 and A.

Similarly, we can derive the test statistic in its frequency domain 

representation. Again from previous sections we have that

l/(rt) = l l o g d e t f J - ^ a ) ]  + (/•[JC(o)1/ t/(Xr;8)]
\ ^ y T

^ -log27i + ^logdctAT(d) + utr m y i Y ,  / „ ( M )
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= C + ^logdet(£(a), where C = ^ ^ ( l- lo g 2 7 i)  

and similarly,

l/( ii)  = C + -lo g d et£ (a)
2

so, a pseudo LR test statistic in this context can be approximated by

detect)J. lUg

where now

LRf  = r i o g ^ ^ Z  (57)
detK(a)

m )  -
■* r

and

*(«) = y E ' A ® ) .
■* r

and 0f minimizes the frequency domain version of the log-likelihood based on 8 and 

fit.

Extending the tests for weak parametric autocorrelation in Ut, the test statistic 

takes the form

LR = T log detjir(“> (58)
detK(a)

where 

K(&) =
* r

and

K&) -
■* r

with f, t, 0f and 8 as they were given in all previous pages.

Finally, for the two particular cases considered in Section 4, the test statistics 

will take the same form as in (56), (57) and (58) with the only difference in the 

specification of the matrix O(L;0) appearing in (5).

5.7 FINITE SAMPLE PERFORMANCE

In this final section we examine the finite sample behaviour of some of the 

test statistics presented in previous sections, by means of Monte Carlo simulations. 

All calculations were carried out using Fortran and the NAG’s library random
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number generator, on LSE’s VAX computer. Given the variety of tests and the 

number of possibilities covered by them, we concentrate on a bivariate model where 

the null hypothesis will be two time series following a random walk. We will 

consider a model of form

(1 - L) 

0

i+e. 0

(1 - L)1*®2

X 'A lt u It

u.
(59)

(60)

y, ) \ ~2t ;

X, = (Xlt, X2t)’ = 0  for all t < 0, 

where under the null hypothesis given by:

H0: 0 = (0j, 02)’ = 0, (61)

Ut = (Ult, U2t)’ will be initially, a white noise vector process with mean zero and 

variance-covariance matrix E. First, and without loss of generality, we assume that 

E = I2, but we also present results, for a given positive definite matrix E, in order to 

check if the test statistics are robust for a different specification of E. We look first 

at rejection frequencies of the score test statistic given in (32), for fractional 

alternatives, where ( 0 j ) i=1>2 in (59) takes values: -0.8; -0.6; -0.4; -0.2; 0; 0.2; 0.4; 0.6 

and 0.8. Then, we generate Gaussian series for different sample sizes (50, 100 and 

200 observations) taking 5000 replications of each case, and present results for four 

different nominal sizes: 10%, 5%, 2.5% and 1%. The reason for focusing on the test 

statistic given in (32), (i.e., the time domain version), rather than in its frequency 

domain representation (i.e., (34)), is that the latter form of the test statistic is much 

more expensive computationally in terms of CPU time. We know that in finite 

samples, the results of the two test statistics can vary substantially, though 

asymptotically the difference will be negligible. Furthermore, in view of the 

empirical results presented in the following chapter, we see that even when the 

sample size is not very large, results in both cases are very similar, rejecting the null 

hypothesis for the same type of situations.

In Table 5.1 we present rejection frequencies of the test statistic S12 in (32) 

when E = I2, for three different sample sizes (T = 50, 100 and 200) and a nominal 

size of 10%. Tables 5.2-5.4 are similar to Table 5.1 but with nominal sizes of 5%, 

2.5% and 1%, respectively. Looking across these tables, we see that the sizes of the 

tests are too small in all cases, however they tend to improve as we increase the 

number of observations. For example, we observe in Table 5.1 (a  = 10%), that
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when the sample size is 50, the size is 3.3%, but increases to 5.3% when T = 100, 

and to 7.2% when T = 200. Similarly in Table 5.2 (a  = 5%), the sizes are 1.2% for 

T = 50, 2.0% for T = 100, and 3.2% for T = 200. The same behaviour is observed 

in Tables 5.3 and 5.4, with all sizes smaller than nominal ones but increasing with 

the number of observations. If we concentrate now on small departures from the 

null (61), we observe that these rejection frequencies increase strongly, especially 

when the sample size is large (e.g. T = 200). This increase is more marked when 

0j and 02 take the same value, though it is also noticeable when 0t and 02 are 

different. In Table 5.1c (T = 200, a  = 10%) we see that the lowest rejection 

probability, apart from that of the true model (0j = 02 = 0), is 0.827 which is 

obtained when 0, = 0 and 02 = -0.2, and becomes 0.993 when 0t = 02 = -0.2. 

Similarly in Table 5.2c, (when T = 200 and a  = 5%), the values for the same 

alternatives are 0.671 and 0.997; in Table 5.3c (a  = 2.5%) are 0.495 and 0.941, and 

in Table 5.4c (a  = 1%) 0.279 and 0.848.

Another remarkable feature of these results is that when the sample size is 

small (e.g. T = 50), it seems that there is a bias toward positive values of 0j and 02. 

This bias is especially clear when the nominal size is also small. We can see 

through Tables 5.2a, 5.3a and 5.4a that if 0j and 02 are both greater than or equal to 

0, rejection frequencies are always greater than those obtained when the values of 

0! and 02 were less than or equal to 0. Taking nominal sizes of 2.5% and 1%, this 

bias also appears for a sample size of 100 observations (Tables 5.3b and 5.4b); 

however, increasing the sample size to 200 observations, the bias tends to disappear. 

A particularly poor result is obtained in Table 5.4a (T =50; a  = 1%), when 0j (or 

02) is equal to 0 and 02 (or 0j) is negative. In such situations, the rejection 

probabilities never exceed 0.100. Again these results improve considerably when we 

increase the sample size to 100 or 200 observations (Tables 5.4b and 5.4c). Finally 

we observe that in all cases, rejection frequencies increase with absolute value of 0 

and with sample size T, and when T = 200, the rejection probability of 1 is obtained 

in most of cases when 10j |i=1,2 -  0.4 for a  = 10% and 5%, and when 10j |i=lf2 ^ 0.6 

for a  = 2.5% and 1%.

Tables 5.5-5.8 report rejection frequencies of the same statistic as above, but
( \  l"\

now we take Z as a positive definite matrix of form: . In doing so, we can
U  v

see if the test statistic is robust to a different specification of the variance-covariance
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matrix of the differenced residuals. Table 5.5 is the counterpart of Table 5.1 for the 

new variance-covariance matrix 2. Similarly, Tables 5.6-5.8 corresponds to Tables 

5.2-5.4 above. We observe now that sizes are slightly greater than before, but again 

too small with respect to nominal ones though increasing with the sample size T. 

In Table 5.5 (a  = 10%), we see that sizes are now 3.9% for T = 50; 6.1% for T = 

100; and 7.5% for T = 200. Across Tables 5.6-5.8 we see that in five cases (Tables 

5.6c, 5.7b, 5.7c, 5.8a and 5.8c), sizes are the same as when 2  = I2, while in the other 

four cases (Tables 5.6a, 5.6b, 5.7a and 5.8b) they are slightly greater, but not 

exceeding in 0.02% those results obtained across Tables 5.2-5.4. A bias for positive 

values of 0j and 02 is again observed when nominal sizes and sample sizes are small; 

however, the pathological cases observed in Table 5.4a have now disappeared (Table 

5.8a). All rejection frequencies increase with sample size T, but in a few cases, we 

now observe a lack of monotonicity of these rejections with respect to ( 0 j) j=lt2, when 

the sample size is small and ( 0 j ) i=li2 takes low values. Comparing these results in 

Tables 5.5-5.8 with those obtained in Tables 5.1-5.4, we see that in most of the 

cases, rejection frequencies are now slightly greater, but in general, results are 

similar across all tables, suggesting that the test statistic is not affected much by the 

different specifications of the variance-covariance matrix 2.

In Tables 5.9 and 5.10 we present empirical sizes of the test in the frequency

domain representation. Table 5.9 reports sizes of the test statistic S° in (34),
assuming first, in Table 5.9a, that 2  = I2, while in Table 5.9b we take 

(1 1̂12  = As in all previous tables, we see that sizes are very small when T

= 50, however they improve considerably when we increase the sample size. 

Comparing empirical sizes in Table 5.9a with those in Tables 5.1-5.4, we see that 

they are very similar. When T = 50 the sizes are now slightly smaller than in the 

time domain versions of the tests, but when T = 100 or 200, they are slightly greater. 

We should mention here that results obtained in Table 5.9 (and also in Table 5.10) 

have been obtained using 1000 replications of each case, (unlike the 5000 

replications used in Tables 5.1-5.8). Therefore the difference may be largely due to 

the different number of replications used. When 2 & I2 (Table 5.9b) the same 

conclusions hold, with empirical sizes smaller than nominal ones but increasing with 

T, and observing few differences with respect to empirical sizes obtained in the time 

domain representation of the tests across Tables 5.5-5.8. Comparing results in Table
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5.9b with those obtained in Table 5.9a, we again observe few differences, with the 

highest one occurring when T = 50 and a  = 10%; in this case, the empirical sizes 

are 2.8% in Table 5.9a and 3.6% in Table 5.9b, while in the remaining cases, the 

differences are not greater than 0.03% between both tables.

Finally, Table 5.10 reports sizes for the test statistic S2 in (37), i.e., the 

frequency domain representation of the test when Ut is weakly parametrically 

autocorrelated. In Table 5.10a we assume that Ut follows a VAR(l) representation, 

and we choose the parameterization

( u  1u lt '0.5 0.2  ̂ ( u  1u it-i
/ \ 
€lt

u , tV 2 t / ,0.3 0 .5 ,  ̂ 2 t ~ 1 / l €2tj

where £, is normally distributed with mean zero and variance-covariance matrix I2. 

In Table 5.10b we consider a VMA(l) structure on Ut using the same parameters as 

in the VAR(l) case. That is,

f u lt) V +
0.5 0.2' ( \ 

6lt-l
K J ,€2t; (0.3 0.5,

and again et normally distributed with mean 0 and variance I2.

In both tables we see that sizes are now too large for all nominal sizes, 

especially when T = 50; however, as we increase the number of observations, these 

empirical sizes reduce and then tend to approximate to nominal ones. Thus, for the 

VAR(l) case (Table 5.10a), we see that if the number of observations is 200, the 

sizes are 10.4% for a  = 10%; 6.0% for a  = 5%; 3.1% for a  = 2.5%; and 1.2% 

for a  = 1%. When the VMA(l) structure is considered (Table 5.10b), empirical 

sizes are now slightly greater than in the VAR(l) case, but again we observe a 

considerable improvement when we increase the number of observations. Similar 

results were obtained when we used different parameters in (62) and (63) and a 

different variance-covariance matrix for the residuals Ej.

As a conclusion, we can summarize the results obtained across these tables 

by saying that the score test statistics obtained in this chapter seem to be adequate 

to test the null hypothesis of a random walk in this bivariate context. Though sizes 

are smaller than nominal ones in most of cases, the performance of these tests seems 

quite good even for small departures of the null hypothesis (61), especially as we 

increase the number of observations.
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APPENDIX 5.1: DERIVATION OF THE SCORE STATISTIC S‘

The negative of the log-likelihood under (1), (2), (5), and Gaussianity of Ut, 

can be expressed, apart from a constant as

T

2   2 £^ * t=l
1 , ( 0 ,  6 ,  d )  = — l o g d e t x ( d )  + Ut ( 6 , 6 ) ' K ( & )  1 C7c ( 0 , 6 )

= - | l o g d e t J C ( d )  + £  Xt (6)  '4> (z.;0) X ( d ) _1® (L;0) 2rt (6) , ( a z )
^ 2 t=1

for any admissible Cl and 8, where Ut(0,8) = O(L;0)Xt(8) and Xt(8) = Yt - Zt(8). 

Starting with the first derivatives in (11),

8l (0, 8 ,  a) _ 8
80 80 X c( 6 ) ' $ ( L ; 6 )  JC(d) _1 ® (L;6)  Xc (6)2 t=l

t=l

t=l
a i o g P l (L;6) ; ;

30 JC(d)  ( 0 , 6 )

where U,(0,S) = (Ult(0,8);..;UN1(0,8))’ and X,(8) = (X„(S);..;XNt(8))\ and evaluating 

now this last expression at 0 = 0 we obtain

£  [e(1) (L) ul c (6) (L) Um ( i )  ]JC(d) -1 Ut (8) (A?)
t=l

where  e (u) (L) = dlogp,^(L,0)  ^  expa nded  a s  i|r^u> Z,■s/
s=180

in view of (8) and below, and the expression in (A2) becomes

t=i £  V s 1)Ul . t - s l * )
L\ s = i

t=l
E ^ 1’Pi.

Vs=l

E t .p . .Vs=1

( _ \
( N )E+«p».Vs=i /J

X(d) -1UC(.6) =
/  J

V=1

£  oNvuv t{&)
v —l

( A3 )

N T " N

£  £  £  £  *uvuv. t (*>) «
U=1 t = l  S=1 V=1
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N T - l  T -S
( U )

N

= E E ♦; E a»t&)EU=1 s = 1 t=l V = 1

N N T - l

= ?E E d“vE >i'su)Cuv(s-6) - ( A 4 )
U=1 V=1 S=1

where duv is the (UjV)* element of K(tic)'1 and

T -S

C u v ( s , 6 ) = ^ E  pu.c<*> •
^ t-l

Calling L„ = L(fi)6=0, the first derivative with respect to 8 is

dL„ gO _
06 86

•f E ( i W e<8) )'®(L) *r(d) -1*  (L) (Yt - Z t {b) )
z  t-l

r
= [-|E *vt(6)/iC<*)_1 <6) E wt(8)'jf(d)-1® (l) ytdo 2 t-i t = i

£  Y't<b(L) K d t ) ' 1 Wt (8 ) ]
fc=l

_a^
06

wt {6) 1 K{d)~x wt {6) -  Y  wt ( 6 ) /K( d ) - 1^ ( L )  Yt
2 t=i t=i

■Et=i - i f f ' i b)  -  Y ,  dWil?) Yt
do t î 0o

0 wt (6 ) 4
-  Y  — ^ — K(d)~1u t (6) .

t=i 06
(A5)

From (Al) we have that L0 can be expressed as 

— lo g  d e t e c t )  + — t r [K(d)  ~1S( 6)  ],2 2 

T
where s (6) = Y  C/t ( 6 ) 7 * and differentiating L0 with respect to Cl leads to

t=i

I ’ t r  [ JC<&) -1 (d*r(dt))] t r  [ i f (d ) -1 (diCfdc) ) JC(d)-l S(8)  ] (AS)

= —|  t r  [ (dtf(d) JC(d) -1 (5 ( 8 )  - TK( a)  ) K(A)  -1]
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= - ( v e c ( dK (d ) )); {K(a)  _1 ®  K i d ) _1) v e c ( S { 6 )  - T K( a )  )

= d v ( K ( d )  ) , D,m ( K( d ) - 1 ®  K i d ) ' 1) v e c i  S i b)  -  TK(d)  ) , (A7)

where Dm is the duplication matrix, and using the well known result that tr[ABCD] 

= (vec A)’(D’ <S> B)(vec C). Then, from (A7) we easily observe that

dL
= ~ 4 D b(K(a ) - 1 €> K ( i ) - 1} v e c ( S ( 6 ) ~  TK(a)) ,  doc 2 (AS)

Next we look at the second derivative matrices appearing in (11), and first 

concentrate on the (pxp) matrix cPLJd 00 0’. From the equality above (A4)

fST N T - l  T -S  N

° = E E ^ “’E E <>uvuVit,s( t ) .
U=1 S = 1  t = l  V=1dd

and then we have that 

d* L
a ea e '

-  E  E  d l o g p  (L;0)  ^ (ft) £  +
u=1 s=l t=l v=l

£  E ♦i-’E £  ^ 31O9PJ L;0) uV'tte(6)
u —1  s = 1  t = l V=1 a e '

#  T - i

- E E + i - ’ E  E 6uri7r . +
u = 1 s = l  t = l  \ m = l  /  v = l

£  £  * JU) £  ^ ( 5 )  £  *"1 £
U=1 s-1 t = l V=1 \/n=l

In order to form (11), we need to take the expectation of this last expression. 

(Note that it is evaluated at 0 = 0, i.e. under H0 (4)). It is zero for the first summand 

given the uncorrelatedness in Ut and since it involves terms of the form Uu t.m and 

Uv t+s, for m,s > 0. The expectation of the second summand is

u = 1 s - 1

N N T - l

v = l t=l

E E E <r- s) ^ u) ^E (i --f )£  £
U=1 V - l  S - 1  S = 1 ' I u - 1  V = 1
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Again from the equality above (A4), we have that OLyOO can be rewritten as

E E tiu)E(pu<£> Yut - «ut(6>)E *u,,(Pv(i) *v.E*s -u-l s-1 t=l V=1

and from this expression, we observe that

& L N
o _ a-, fE E ^"’E -Pu(i) Yut *aeaft' aft' Si s i  Si v= 1
N N

x  £  a uv wv, c. s ( 6 )  -  ftuc( 6 )  E l  ^  p „ ( l )  r v, £^ )  ] =
V=1 V=1

(u, £ ?  ,a* /u£( 6 ) A  ,
AT

E E ^ ’ E  < e a - w v, t .s (S) +nru t( f t ) E ° uye ^ : : s/ (6>
LJ = 1  S = 1  t  = l  C /O  V=1 V=1 D O

-  Pu(L> yutE
v=i do do v=i

AT T-l T-s
E E * iu,EVu=l S=1 t=l

dWuC( U _ £  d uVUv c t j 6 )  t t ,a t ({ ) ^ 3 . « (8>
V=1 V=1 06'

N T - l N T-S

=-E E *” E 4"vEU=1 S=1 V=1 t=l ( 6 ) + ^ (ft) aft'
(A9)

For the derivation of O^yOGOtic’, we have that calling Pt(S) = [Plt(8);...;PNt(8)] the 

(p x N) matrix appearing in (A3), then

dL° = E  p t (A> K W  ~1uc(6) ,
t=i00

and differentiating this expression with respect to (5c, we obtain

p t (6) k ' 1 { d k ) k ^ U t i b )  = -  j 2 ( u t ( 6 ) ® p t ( 6 ) ) v e c ( k ~ 1( dk ) k~1)
t=i t=i

= -E  (Dt<®> ®  ) ( k ' 1®  k ' 1 ) Dn, d v ( k )
t=l

where K = K((5c), and therefore,

& L
000a

= “ E  ( ( * )  ®  P t ( 6 )  ) ( K ( A ) - 1 ®  K W 1 ) Dm.4# / * ' (AlO)
t = l
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Finally in order to complete the Hessian in (11) we still have to calculate some

second derivatives with respect to 8 and Cl. From (A5)
/  _ \

d2 L,
3 6  3 6 '  3 6 '

X  3&U6) , . .  , . . .
V t=1 C7 0

08 '

T dW (8 )
  K W 1 (O(L) Yt -  wc ( 6 ) )

V t=i

t=l

dwt (6)
68

Next we consider d2 LJd 8 d Cl’, and since

a8

differentiating this expression with respect to (5c,

T dw (6)
Y ,  — h — K ( a ) - 1 (dJC(a) ) K W ' U t i b )
t=l 0 8

( Al l )

=  £  '  ®  aWQ (' * ) W e e  [ * : ( & ) -1 ( d K ( o t ) )  K ( a ) _ 1 ]

= ) (*•(&) -1 ® JC(dt) -1) Dm d v ( K ( k )  ) ,
t=i V do J

and therefore, 

0 2 L,
080i

—/ = £  ( jc(d)-1 ® K W 1) D„. (A12)
ot t-i \ 36 ;

The final term in (11) that we should look at is d2 LJd Cl d Cl* . Differentiating 

(A6) with respect to (5c, and recalling again K = K((5c), we have

—| ’t r  [K_1 (dk) K '1 (dk)  ] + - |  t r  [iT 1 (dK) /T 1 (dtf) ^ _15(8 )  ]

+ — t r  [ iT 1 (di<r) jc_1 (dk) k~1s ( 6 )  ]2

= t r  [ (dlb .KT-1 (d£) i(r-1 ] + t r  [ (dRT) i^’1 (dtf) £ _1S(8) K _1 ]

=- — vec(d^T)/ (iC"1®iC"1) v e c (d k )  + v e c ( d k ) / (k~1S(6)  j r 1® ^ -1) v e c (d k )  
2
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= - £ d v { k ) 'D ^ k - 1® ^ 1)Dmd v (k )  + d v (k ) ,D!„(k-1s (& )k '1® ^ 1) Dmd v ( k ) , 

obtaining as a final expression for d2 LJd  &’

- ^ D ' m ( K(a)  _1®i<r(a) -1) Dm+ Dfm (K(d)  _15(6)  K(d)  - ^ K i d )  ) Dm.

We can get now consistent and efficient estimates of 5 and a  by equating 

(A5) and (A8) to zero; however, for practical purposes and in order to simplify the 

computations, we can take any T1/2-consistent estimates of 5 and a. We will assume 

that 8 is a consistent estimate of 8 and we will take K = K(&) = T'1 S(8). It follows 

then from previous pages that

a  r  / «  *  A  \  N T - 1  T - s  N

dL{0' ° ' &) = £  £  ^ U)E E duv°v.t+s(S) =60
N T - l  N

u=1 s=l t=l

T - s

v = l

TE E E ^ u> »uvi E  =J t=iU=1 S = 1  v = l

w r -i n

U=1 S = 1  V =1
rE E E +iu,a“vcliy(s;8).

y L ^ ; a ) ) -  T ±  £  e - a inr| : ( i - 4 ) * * " » t A t ,

and the asymptotic expectation matrix in (11) multiplied by 1/T will take the form

A ls o ,  E\

f A 0 0 '

0 w 0 (.A13)
0 0 ^ dU k -1 ®  K - ')D m 

*

N N »

where A = £  o uva uv£  Vs , a n d
U=1 V=1

T /

s=l

1 t=l

dWt (d) dWt ( 5) 
ic -------65 65'

is a positive definite matrix by assumption. (Note that the block diagonality in 

(A13) follows from expressions (A9), (A 10) and (A 12), given that 6 UV consistently 

estimates c uv and Ut(8) has zero expectation).
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APPENDIX 5.2: DERIVATION OF THE SCORE STATISTIC S

For the derivation of the score test statistic in this context of weak parametric 

autocorrelation in Ut, we assume that k and K in (20) are parameterized separately, 

so t  is taken to specify k and Cl to specify K. Thus, the spectral density matrix of 

Ut(0;8) for any admissible 8 and t  is

f(A;d;x) = —  k(X;i)K(d)k(A.;x)* (Bl)
2 tz

CO

where k(A.;t) = A(j;i)elA-’.
j=0

It is also assumed that A(0;t) = IN (the N-rowed identity matrix) for any t  

in Euclidean space Rq, and that f(A;&;t) is a finite, positive matrix, with eigenvalues 

bounded and bounded away from zero at any frequency on a neighborhood N* of T 

and M* of a. Also, we assume that each element of f(X;t), fuv(X;t), as defined below 

(B4), must be continuous in (A,t) for t e  N* and have first and second derivatives 

with respect to t  continuous in (X,t) for t  e  N*.

Taking now T) = (0’;a ’;8’;T’) \  the negative of the log-likelihood based on 

Gaussianity of Ut can be expressed as

10i) = ilogdetJ(d;x) + U (0,8)' J _1(d;x) U (0,8), (B2)
Zr £

where U(0,8) = (Uj(0,8); U2(0,8);...;UX(0,8))’, and J(c5t,t) is a (NT x NT) matrix with 

Js_t(0c,t) = f n e i(s~̂ x/(X;d;i)dk in the (t,s) block of N2 elements, for any admissible
J - n

Cl, 8 and t. However, given the computational difficulty of this expression, 

especially when N and T are large, under suitable conditions, (B2) can be 

approximated by

L(6;d;6;x) = ^logdetf(A,r;d;t) + tr[f̂ "1(Xr;d;x)Iu(A^0;6)], (B3)

where Iy ^ O ^ )  is the periodogram of Ut(0;8) evaluated at frequencies A* = 2tzt/T 

and the sum on * is as described in page 182.

Calling now 8 any T1/2-consistent estimate of 8 and & as defined in Appendix 

5.1, we can concentrate both out and consider

L(0;x) = L(0;d;8;x) = ^logdetf(Xr;x) + trtf ' ^ x j i ^ e ) ] ,  (B4)
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where
1

f { X - i )  =  - ^ * ( i r ; x ) j r ( S ) * ( X r ; i r ,
2 71

and

V M )  = tfU r;0)tiU r;0), with W(Xr$ )  = - j — y  U,(©;&)«“ ''•
y/2nTt=i

Then we can express a score test statistic as:

6L(0;x) E'S’f.COjx)' F 32L(0;x)'|/P \_1p '32£(0;t)'|
60' aoao/ ̂ uUuU j  ̂ 303x' , \ v 6T6T7 J / k 3x30' J.

-l
6L(8;i)

60 e W B5>

where the expectation is taken under the null hypothesis (4) prior to substitution of 

where X can be any consistent estimate of x under (4).

We start with 6L (0;t)/9 0, and from (B4), we see that it is

_6_
60

2, r \  u\J )

\ i  e  e
^  r u=l v=l OU

m

where Iuv(X,;0) is the (u.v)111 element of and fJV(X.r;t) is the (u.v)01 element of
A <

f  (/-rix). We first concentrate on

60 10=0 60

T T

£  Uu>t(0;S)Uv,s(e;S)ei<,-5)Al |„.o
 ̂ Z7T 1 t=1 S=1 )

T T

271 1 t=1 S=1

' 31ogpu(L;0)
U^(0;8)

l T T

£  £  UJ0;

30

' 31ogpv(L;0)

Uv̂ (0;6)e i(t-s)Xr
10 =0

Uv.(0;8) ao Vi*
i(t-s)A.r

| 0=O

T T T T

- A £ £ £2ttT t=1 S=1 m=1 2tcT t=1 S=1 m=l
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T - l 1 T -m  T  T - l 1 T  T -m

■E *2>«“’V = E  E ̂ w ' ^ ’+E ♦?*n“,y ? E  E uu,v)uji>)ea«-»
m -l Z n l  t=i 5=1 m=1 f=l s =l

and, under suitable conditions, (with m=l,2,...,M < T-l, for sufficiently large M), 
this expression becomes asymptotically

W V  + *«<*,)) W M > -  <B7>

Substituting now (B7) in (B6 ) we obtain that OL(0;t) / 60 ^  is asymptotically

|E  E E w y  + W )  w>
r u=l v=l

We next examine the second derivative matrices appearing in (B5), and 

we start with 92 L(0;t)/ 9 0 0 0 ’.

S*Z(8;i) /» ■> -  /•. NX aO ArJ®) ^

and using again (B7), this last expression evaluated at 0 = 0, becomes for large T

|e ee (« o A >  + i<v,(̂ )) (%{ky + s / v
*  r  u=l v—1

whose asymptotic expectation is

| E E E  KA) + e<A>)(6«A>' +
L  r u=1 v=l

given that, heuristically, if f(X;x) is continuous in X, E(IUV(A,)) —►T_ 00 fuv(X;x), for fixed 

X. (See Brillinger (1981)). We can write this last expression as

“53 53 53 (€(«)(̂ r) e(«)̂ p/ + €(«)(̂ P e(v)(̂>) + €(v)(̂ P €(«)̂ r) + €(v)(̂ P e(y)&y) X
z  r  u=l v=l

*  = ^ E E  e w ( ^ 6 W(Ar) '  E A / M ) A ^ * )

-(v)V'V '•(v)
V=1 «=1

+ |E E E  <»>
z  r  «=1 v=l
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which first two summands will be approximately zero noting that

= E / j m x H m )  = 1 a n d
V=1 u=1

(BIO)

for all u,v = 1,2,..,N. To see this last result, note that approximating the sum by an 

integral

f ^ w ^ i x y d x  =
s=1 rn=l

/E  ( c o s A.5 + i s i n X s ) ^  (cosA.ni + isinXm)dX
_«r5=l m=1

■ E E ♦."♦S'
5=1 m=l

j  cosXscosXmdX -  J  sin X s sin A. m d  X =  0 ,

and identically for the second term in (BIO).

Now we look at the (p x q) matrix d2 L(0;t)/3 0 d t ’ in (B5) which, evaluated 

at 0  = 0 , is

dx / 1 v=l

* N N

= x E E E  ( ^ a > + d f  f f T)
L  r m=1 v=l OX

and whose expectation for large T is

* N N

^ E E E  ( ^ A >  + W J M )
1 V=1 dx1

(BU)

This last expression can also be shown in terms of the derivatives of f with
A |

respect to t  (instead of the derivatives of its inverse, f  ). (B1 1) can be expressed as
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0  S  G(u)( r̂) *4v^r»T) - . ,
L  r u - \  v=l O T

t „ * £ * „  _ a / X ; t )
+ 2 ^ ^  6(v)(^r)$^ J u v ^ r ^  »

where

v=l

• x \

a t 7

Now using the relationship

at, at \ * * /

a/'V^t) a./ur;t) ._i
= -  /  (A,;*) — ——  /

d i i

we have that

/cx it)

and
at.

at.

ax.

i-i.a/ (A. :t) . A_, a/(A..;t)
r X M )  -  -  f  ( M )at,

implying this two equalities that 

» . 3 f ( i ; i )
E/-A*> r

at.

V=1

and

at.
^  C A , ; 4)
v -i 9 t ,
E "‘"I/- A m )

^ a r ( A r;x)
/J ^ )  = " E /  (XriT)/  I V

1 4 = 1

(BI2)

(B13)

(BI4)

(BIS)
at, " r ^  r a t

respectively. Substituting now (B14) in (B12) and (B15) in (B13), (Bll)  becomes

1 V ' V ' o  x V ' d f J x rr t- t E E  e(«)̂ r) E /  (̂ ;t)—— -
Z, r u=' *v=l

- ^ E E  ^ E A V )

at;

ry £ ^ l  '(v)A r V=1 U=1

* N  N

«vv r*

at7

- - |E  E E + c w «
z  r  u=l v=l d T
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Finally, we look at the (q x q) matrix 3 2L(0;t)/313 1 \ The u* element of 

3 L(0;t)/31 is

3L(0;x) _ 1

3x. 5 ? *

a _j 3?(X ;x) 

d x
u /

+ £ >
^  r 3x.

1 A
2 E t rr

, ,  af(x :t)  a f _1(xr; t ) .

f  + . . . r - i ^ M )OX.. CT

- X >  2 r
/  - A W  \ - ' - f

d x . dx.

Then, —  * , evaluated at Q = 0, becomes:
a i »9 i v

-1.

- E * *
2 V  3xv 0 xf - 1  + / (K>v

d x  dxU V
dx 9t

-1,
. d A W  d f ‘( k r; i )

-  f ( . W  . .  - ? ( W  a .CT..OT. OT„ dx. V M ) )  =

1 ^ , ^  *-i„ a/U ,;*)*-i,, , x 7 ( M )  *-i„ , N  ^ - 1 , ,  ,N
(* ,:T) — r : — /  (* ,v 0 — r : —  + f  (*-,?T) . . . .  + /  (A.r; t )2 r dx dx  ̂ '  r " 3x dxu u v

9A^r>^) ; - l / i  - s r  / I  i \  i - 1 / 1  - \ £- 1, ,* — r: --------—— /  (A.r;t)/o(Ar;8) - /  (X,;t) — — - /  (Ar; t )  /„(A,;8) +
dx dx dx dx

V V U V

4-1 3 --1  o^A, ;x) . j  s
/  a r; i ) ^ f - 7  ).dx.. dx..

and whose asymptotic expectation is

- E *
2 r

a _! d?(A, ;x) a _j d?(A ;x)
f  a r; i )— ' ( M>  r

dx . d x
(BIT)

v y

Substituting now (B8 ), (B9), (Bll)  and (B17) in (B5), evaluated at t  = t, we 

form (2 1 ).
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APPENDIX 5.3

In this appendix we describe the Fortran program used to calculate the 

multivariate score statistics given in (32), (34) and (37). This program was used in 

the simulations carried out in Section 7 above, and will also be used in Chapter 6  

where a number of empirical applications will be performed. If the null hypothesized 

model is

'*11  *12 ’' I'M= +
J i t , ^ 2 1  ^ 22 ,

( 1  - L ) dl 
0

0

( 1

xc = U l t , * 2t)' = o

' J t

J i t ,

t  £ 0

<ul t \

C7,,,\  2 t  /
~ J ( 0 ) ,

the test statistic will be given by: TST(I,K1,K2,J), where

I = 1,2,3 and

1 = 1  means that By = 0  for i,j = 1,2 ,

1 = 2 means that Bi2 = 0 for i = 1,2, and 

1 = 3 means that By is unknown for i = 1,2.

K1 and K2 = 1,...,ND, where ND can be any integer number, and they 

correspond to dj and d2 above according to the relationship: d; = Ki/10, i= l,2, and 

finally,

J = 1,2,3,4 where

J = 1 means that Ut is a VAR(l) process,

J = 2 means that Ut is a VMA(l) process,

J = 3 means that Ut is a white noise process, (and the test statistic is 

calculated in the frequency domain), and

J = 4 means that Ut is a white noise process, (and the test statistic is 

calculated in the time domain).
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D O  15 J=1 JM 
U D ( U )= U ( I ,I .K U )
UD(2,J)=U(1,2,K2,J)

15 CO NTINUE  
D O  16M 1 = 1X V  
D O  16 M 2=1,N V  
D O  16 J=1,N1

A A 1=0.
B B 1 =0.

DO 17 IT=1,N  
DO  17 IS=1,N  

SIGN=1.
IF((IT-IS).LT.O) THEN  
SIGN =-1.
ENDIF
LL=ABS((IT-IS)*J)-INT(ABS((rr-IS)*J/XN))*XN 
AA1 =AA 1 +UD(M 1 ,IT)*UD(M2,IS)*CO(LL)
BB 1 =BB 1 +U D (M  1 ,IT)*U D (M 2,IS)*SIG N *SI(LL)

17 CO NTINUE
PRE(M 1 ,M 2,J)=A A l/(P I2*X N )
PIM(M 1 .M2 J)=B B 1/(P I2*X N )
P IM (1,U >=0.
PIM (2,2J)=0.

16 C O NTINUE
D O  18 11 = 1, NPA R  

PAR(I1)=0.
PLD(11 )=.FALSE.
PARM (I1)=0.

18 CO NTINUE  
D O  19 I1 = 1X V 1  
D O  19 12=1 JMV

QQ(I1,I2)=0.
QQM (I1,12)=0.

19 CONTINUE  
D O  20  I7=1,NV

U M (I7)=0.
DO 21 J=1,N  

U M (I7)=U M (I7)+( 17X N )*U D (17J)
21 CONTINUE
20  CO NTINUE  

D O  22 12=1 X V  
D O  22 J = 1 X V  
D O  22 L=1,N-1

X XC (I2,J,L)=0.
DO 23 K =I,N -L
XXC (I2,J.L)=XXC (I2 J .L )+ ( 1 /X N )*(U D (I2,K )-U M (12))*(U D (J.K +L)-U M (J))

23  CONTINUE
22  CO NTINUE  

D O  24 17=1 X V  
D O  24 J = 1 X V

X K K =0.
DO  25 K=1,N  

X K K =X K K +(U D (I7,K )-U M (I7))*(U D (J.K )-U M (J))
25  CO NTINUE

XK V(17,J)=XKK/XN
24 CONTINUE

1FAIL=0.
CALL F01 A B F (X K V X  1 X V .X K V  1 X V .Q .IF A IL )
DO 26 I7= 1X V -1  
DO  26 J=I7+1,N V  

XK V (J.I7)=X K V (I7J)
X X V 1 (I7,J)=XK V 1 (J.I7)

CONTINUE  
DO  27 18= I X V  
DO 27 J=1,NV  

X A A (I8J)=(P IC 2/6.)*X K V (I8.J)*X K V 1(I8J)
CO NTINUE

CALL F01 A B F (X A A ,N V 1 .N V .X A A  1 X V .P .IF A IL )
DO  28 i8 = l,N V -l  
DO 28 j=>8+1 ,NV  

X A A (J,I8)=X A A (I8J)
X A A  1(I8,J)=XAA 1 (J.I8)

CONTINUE  
DO  29  I2=1,N V  

XAT(I2)=0.
XA F(I2)=0.

DO 30 L = 1X 1  
D O  30 k = lX V  

Z Z U L
X A T (I2)=X A T(I2)+( 17ZZL)*XK V 1 (I2,K )*X XC(12,K ,L)
X A F (I2)=X A F (12)+((-1 )*PI2/X N )*X K V  1 (I2,K )*(X R E(L)*PR Ed2.K .L)-X IM (L)*PlM (I2,K .L)) 

CO NTINUE  
C O NTINUE  

STIM E=0.
SFREQ=0.
DO 31 12=1 X V  
D O  31 J = 1 X V  

STIM E=STIM E+XAT(12)*XAA 1 (I2,J)*XAT(J)
SFREQ=SFREQ +XAF(I2)*XAA 1 (12 J)*X A F(J)

C ONTINUE  
D O  1000 IRE=1,4 

EXACT=.TRUE.
M EAN=.TRUE.
IPRINT=-1
CTOL=0.0001
M C AL=5000
ISHOW =0
IFAIL=-1
IF (IRE.EQ. 1) THEN  

call g l  3dcf(nv,n ,l ,iq,mean,par,npar,qq,nv 1 ,ud,pld,exact,iprint.
+ ciol.m cal.ishow ,niter,rlogl,v,g,cm ,icm ,w k,lw k,iw ,liw ,ilail)

r 1 =par( 1) 
r2=par(2) 
r3=par(3) 
r4=par(4) 
ifail=0
call t01abf(qq,nvl,nv,qql,nv,p7,ifail)
q q l( l .2 )= q q l(2 ,l)
do 32 j= l ,n l

fa = p i2 * (q q l(l,l)* (l.+ r l* * 2 -2 .* r l *co(j))+ qq l(2 ,2 )* (r3**2 .)+ 2 .*q q l(l,2 )*r3*(r l-co (j)))  
fb=pi2*(qq 1(1,1 )*r2*(rl-co(j))+qq 1 (2,2)*r3*(r4-co(j))+qq I (1 ,2)*(1 .+rl *r4+r2*r3-(rl +r4)*co(j))) 
Ic=pi2*(qq 1(1,1 )*r2-qq 1 (2,2)*r3+qql (1 .2)*(r4-rl ) )* s .( j )
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TABLE 5.1

Rejection frequencies of Sa in (32) with £ = I2 

True model: 0, = 02 = 0. No. of replications: 5000

a = 10 %

Table 5.1a): T = 50

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 1.000 .999 .998 .977 .939 .952 .988 .998 1.000
-0.6 .999 .998 .984 .904 .772 .829 .953 .994 .999
-0.4 .996 .982 .910 .677 .428 .576 .871 .982 .997
-0.2 .979 .902 .674 .322 .128 .316 .751 .957 .996

0 .933 .768 .430 .126 .033 .206 .660 .939 .992
0.2 .954 .823 .563 .308 .203 .336 .725 .944 .994
0.4 .985 .952 .863 .746 .661 .724 .894 .980 .997
0.6 .999 .994 .978 .953 .930 .944 .979 .995 .999
0.8 1.000 .999 .999 .995 .992 .992 .998 .999 1.000

Table 5.1b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 .999 .999 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 .989 .933 .979 .999 1.000 1.000
-0.2 1.000 1.000 .989 .805 .417 .751 .987 1.000 1.000

0 1.000 .998 .935 .411 .053 .516 .964 .999 1.000
0.2 1.000 .999 .971 .756 .518 .767 .985 .999 1.000
0.4 1.000 1.000 .999 .987 .967 .984 .998 1.000 1.000
0.6 1.000 1.000 1.000 .999 .999 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.1c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .993

0 1.000 1.000 1.000 .827
0.2 1.000 1.000 1.000 .988
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.834 .984 1.000 1.000 1.000
.072 .849 .999 1.000 1.000
.858 .984 1.000 1.000 1.000
.999 .999 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.2

Rejection frequencies of S'2 in (32) with I  = I2

True model: 02 = 02 = 0.

Table 5.2a): T = 50

e, /e2 -0.8 -0.6 -0.4 -0.2

-0.8 .999 .998 .981 .889
-0.6 .997 .986 .918 .708
-0.4 .980 .919 .726 .400
-0.2 .888 .700 .394 .132

0 .741 .457 .170 .037
0.2 .805 .591 .350 .205
0.4 .944 .873 .769 .659
0.6 .993 .977 .959 .927
0.8 1.000 .999 .996 .991

No. of replications: 5000

a  = 5 %

0 0.2 0.4 0.6 0.8

.744 .811 .947 .993 .999

.462 .601 .879 .984 .998

.181 .358 .778 .962 .996

.039 .209 .660 .935 .990

.012 .147 .585 .910 .987

.137 .256 .646 .923 .989

.582 .648 .846 .968 .996

.904 .920 .967 .992 .998

.987 .988 .997 .999 1.000

Table 5.2b): T = 100

0 , /e2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 .998 .989 .996 1.000 1.000 1.000
-0.4 1.000 1.000 .998 .958 .803 .925 .998 1.000 1.000
-0.2 1.000 .998 .958 .618 .221 .632 .976 1.000 1.000

0 1.000 .987 .798 .206 .020 .426 .945 .999 1.000
0.2 1.000 .996 .922 .637 .425 .693 .976 .999 1.000
0.4 1.000 1.000 .997 .975 .949 .975 .997 1.000 1.000
0.6 1.000 1.000 1.000 .999 .999 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.2c): T = 200

0! /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .997

0 1.000 1.000 .999 .671
0.2 1.000 1.000 .999 .969
0.4 1.000 1.000 1.000 .999
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.999 1.000 1.000 1.000 1.000
.680 .966 1.000 1.000 1.000
.032 .793 .999 1.000 1.000
.808 .972 1.000 1.000 1.000
.999 .999 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 53

Rejection frequencies of S“ in (32) with £ = I2

True model: 0, = 02 = 0.

Table 5.3a): T = 50

e, /e2 -0.8 -0.6 -0.4 -0.2

-0.8 .997 .982 .905 .672
-0.6 .985 .926 .750 .428
-0.4 .905 .745 .471 .170
-0.2 .666 .412 .174 .044

0 .404 .182 .053 .011
0.2 .548 .358 .228 .137
0.4 .863 .776 .681 .578
0.6 .976 .960 .935 .900
0.8 .999 .997 .993 .986

No. of replications: 5000

a  = 2.5 %

0 0.2 0.4 0.6 0.8

.416 .563 .869 .982 .998

.187 .371 .784 .965 .995

.054 .232 .682 .940 .992

.010 .143 .585 .906 .986

.004 .105 .521 .880 .981

.100 .198 .575 .895 .984

.516 .581 .798 .951 .993

.872 .891 .956 .988 .998

.979 .984 .994 .999 1.000

Table 53b): T = 100

0 , /e2 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 .999
-0.6 1.000 1.000 1.000 .995
-0.4 1.000 1.000 .992 .880
-0.2 1.000 .992 .880 .413

0 .997 .953 .591 .089
0.2 .999 .980 .836 .527
0.4 1.000 .999 .992 .961
0.6 1.000 1.000 1.000 .999
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

.998 .999 1.000 1.000 1.000

.955 .983 .999 1.000 1.000

.602 .834 .993 1.000 1.000

.092 .526 .963 .999 1.000

.010 .354 .924 .998 1.000

.349 .621 .963 .999 1.000

.928 .963 .996 1.000 1.000

.999 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

Table 5.3c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .941

0 1.000 1.000 .996 .495
0.2 1.000 1.000 .999 .941
0.4 1.000 1.000 1.000 .999
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.996 .999 1.000 1.000 1.000
.495 .934 1.000 1.000 1.000
.014 .742 .999 1.000 1.000
.754 .957 1.000 1.000 1.000
.999 .999 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.4

Rejection frequencies of Sa in (32) with I  = I2 

True model: 0, = 02 = 0. No. of replications: 5000

a = 1 %

Table 5.4a): T = 50

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 .962 .874 .651 .289 .096 .293 .740 .956 .994
-0.6 .875 .704 .406 .134 .035 .204 .661 .933 .990
-0.4 .646 .403 .164 .039 .010 .141 .583 .905 .986
-0.2 .288 .136 .040 .006 .001 .096 .500 .869 .979

0 .098 .034 .010 .003 .001 .070 .438 .832 .973
0.2 .281 .205 .136 .091 .066 .141 .500 .853 .976
0.4 .734 .663 .573 .494 .442 .500 .739 .932 .989
0.6 .950 .928 .898 .862 .830 .850 .931 .983 .997
0.8 .995 .991 .985 .977 .970 .974 .988 .997 .999

Table 5.4b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 1.000 1.000 1.000 .995 .979 .991 1.000 1.000 1.000
-0.6 1.000 1.000 .997 .956 .805 .925 .998 1.000 1.000
-0.4 1.000 .998 .962 .688 .307 .685 .982 1.000 1.000
-0.2 .997 .958 .692 .199 .026 .416 .941 .998 1.000

0 .976 .801 .295 .025 .004 .281 .892 .997 1.000
0.2 .990 .923 .685 .405 .279 .530 .944 .999 1.000
0.4 .999 .997 .980 .937 .897 .945 .994 .999 1.000
0.6 1.000 1.000 1.000 .999 .998 .999 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.4c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 .999
-0.2 1.000 1.000 .999 .848

0 1.000 1.000 .971 .279
0.2 1.000 1.000 .998 .892
0.4 1.000 1.000 1.000 .999
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.975 .997 1.000 1.000 1.000
.275 .886 .999 1.000 1.000
.005 .673 .999 1.000 1.000
.686 .932 1.000 1.000 1.000
.998 .999 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.5

Rejection frequencies of S12 in (32) with E = | j * )

True model: 0, = 02 = 0. No. of replications: 5000

a = 10 %

Table 5.5a): T = 50

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 1.000 .999 .998 .997 .998 .999 .999 1.000 1.000
-0.6 1.000 .998 .989 .969 .982 .997 .999 1.000 1.000
-0.4 .998 .987 .912 .770 .841 .975 .998 1.000 1.000
-0.2 .998 .968 .768 .346 .319 .816 .983 .999 1.000

0 .998 .985 .834 .323 .039 .431 .921 .994 .999
0.2 .999 .997 .974 .813 .442 .340 .824 .987 .998
0.4 1.000 .999 .998 .981 .917 .824 .895 .985 .999
0.6 1.000 1.000 1.000 .999 .995 .987 .987 .996 .999
0.8 1.000 1.000 1.000 .999 .999 .999 .999 .999 1.000

Table 5.5b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 .999 .996
-0.2 1.000 1.000 .996 .813

0 1.000 1.000 .998 .768
0.2 1.000 1.000 1.000 .995
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1 000 1.000 1.000 1.000 1.000
.998 1.000 1.000 1.000 1.000
.764 .997 1.000 1.000 1.000
.061 .821 .998 1.000 1.000
.825 .765 .992 1.000 1.000
.999 .994 .998 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

Table 5.5c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .993

0 1.000 1.000 1.000 .990
0.2 1.000 1.000 1.000 .988
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.991 1.000 1.000 1.000 1.000
.075 .989 1.000 1.000 1.000
.989 .983 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.6

Rejection frequencies of Su in (32) with £  = |  j  ^ )

True model: 0, = 02 = 0. No. of replications: 5000

a  = 5 %

Table 5.6a): T = 50

0, /02 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 .999 .998 .990 .979 .986 .997 .999 1.000 1.000
-0.6 .997 .987 .932 .866 .921 .986 .998 .999 1.000
-0.4 .988 .930 .743 .503 .625 .920 .992 .999 1.000
-0.2 .975 .861 .500 .152 .144 .688 .964 .996 .999

0 .986 .913 .618 .149 .014 .327 .882 .987 .999
0.2 .996 .984 .916 .685 .340 .256 .766 .978 .997
0.4 .999 .998 .992 .960 .879 .764 .846 .976 .997
0.6 1.000 1.000 .999 .998 .991 .979 .977 .992 .999
0.8 1.000 1.000 .999 .999 .999 .999 .999 .999 1.000

Table 5.6b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 .999 .982
-0.2 1.000 .999 .983 .630

0 1.000 1.000 .992 .594
0.2 1.000 1.000 1.000 .985
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.993 1.000 1.000 1.000 1.000
.571 .989 1.000 1.000 1.000
.021 .750 .998 1.000 1.000
.754 .689 .988 1.000 1.000
.999 .989 .997 1.000 1.000

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

Table 5.6c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .979

0 1.000 1.000 1.000 .968
0.2 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 .999
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.970 1.000 1.000 1.000 1.000
.032 .979 1.000 1.000 1.000
.980 .972 1.000 1.000 1.000

1.000 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.7

Rejection frequencies of Su in (32) with £  = ( |  2 )

True model: 0, = 02 = 0. No. of replications: 5000

a  = 2.5 %

Table

0, /02

5.7a): T 

-0.8

= 50 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8 .997 .987 .942 .889 .921 .981 .996 .999 .999
-0.6 .984 .928 .786 .634 .753 .939 .992 .999 .999
-0.4 .937 .786 .487 .243 .366 .817 .977 .996 .999
-0.2 .876 .627 .247 .051 .005 .553 .934 .991 .999

0 .918 .737 .374 .061 .005 .251 .835 .982 .998
0.2 .980 .937 .814 .556 .261 .196 .709 .968 .995
0.4 .996 .992 .973 .927 .826 .702 .798 .963 .996
0.6 .999 .999 .998 .993 .983 .969 .968 .988 .997
0.8 .999 .999 .999 .999 .999 .998 .997 .998 1.000

Table 5.7b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 .999
-0.4 1.000 1.000 .993 .939
-0.2 1.000 .999 .938 .431

0 1.000 1.000 .974 .392
0.2 1.000 1.000 .999 .971
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.975 1.000 1.000 1.000 1.000
.380 .972 1.000 1.000 1.000
.010 .668 .996 1.000 1.000
.689 .618 .983 1.000 1.000
.997 .985 .997 1.000 1.000

1.000 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

Table 5.7c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .942

0 1.000 1.000 1.000 .920
0.2 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.922 1.000 1.000 1.000 1.000
.014 .966 1.000 1.000 1.000
.968 .957 1.000 1.000 1.000

1.000 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.8

Rejection frequencies of S“ in (32) with E  = |  \

True model: 0, = 02 = 0. No. of replications: 5000

a  = 1 %

Table 5.8a): T = 50

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 .966 .890 .722 .552
-0.6 .885 .720 .452 .263
-0.4 .716 .446 .184 .006
-0.2 .553 .260 .062 .007

0 .638 .400 .140 .021
0.2 .879 .791 .634 .415
0.4 .971 .955 .930 .870
0.6 .993 .993 .989 .982
0.8 .999 .999 .998 .999

0 0.2 0.4 0.6 0.8

.651 .883 .975 .993 .998

.402 .797 .965 .992 .998

.137 .643 .938 .991 .998

.016 .404 .880 .984 .998

.001 .182 .769 .973 .995

.190 .140 .632 .947 .994

.763 .640 .735 .947 .994

.971 .949 .952 .982 .996

.997 .996 .996 .998 .999

Table 5.8b): T = 100

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 .999
-0.6 1.000 1.000 .999 .994
-0.4 1.000 .999 .963 .792
-0.2 1.000 .995 .798 .213

0 1.000 .998 .898 .198
0.2 1.000 1.000 .997 .934
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
.997 1.000 1.000 1.000 1.000
.907 .998 1.000 1.000 1.000
.205 .938 .999 1.000 1.000
.003 .579 .992 1.000 1.000
.600 .533 .976 1.000 1.000
.993 .974 .994 1.000 1.000

1.000 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

Table 5.8c): T = 200

0, /02 -0.8 -0.6 -0.4 -0.2

-0.8 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .853

0 1.000 1.000 1.000 .819
0.2 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000

0 0.2 0.4 0.6 0.8

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
.810 1.000 1.000 1.000 1.000
.005 .942 1.000 1.000 1.000
.948 .929 1.000 1.000 1.000

1.000 .999 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
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TABLE 5.9

Table 5.9a: Empirical sizes of Sa in (34) with X = I2 

True model: 6j = 02 = 0. No. of replications: 1000

T\oc 10% 5% 2.5% 1%

50 0.028 0.012 0.001 0.000
100 0.058 0.019 0.010 0.006
200 0.074 0.038 0.020 0.008

Table 5.9b: Empirical sizes of S12 in (34) with X ■( 15)
le model: 0, = 02 = 0. No. of replications: 1000

T\oc 10% 5% 2.5% 1%

50 0.036 0.012 0.002 0.000
100 0.057 0.021 0.008 0.005
200 0.076 0.035 0.017 0.006

TABLE 5.10

Table 5.10a: Empirical sizes of S2 in (37) with a VAR(l) structure on Ut 

True model: 6t = 62 = 0. No. of replications: 1000

T \ a 10% 5% 2.5% 1%

50 0.134 0.074 0.040 0.017
100 0.123 0.069 0.035 0.014
200 0.104 0.060 0.031 0.012

Table 5.10b: Empirical sizes of S2 in (37) with a VMA(l) structure on Ut 

True model: 0, = 02 = 0. No. of replications: 1000

T \ a 10% 5% 2.5% 1%

50 0.207 0.154 0.127 0.097
100 0.137 0.090 0.054 0.045
200 0.131 0.062 0.038 0.023
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EMPIRICAL APPLICATIONS OF THE MULTIVARIATE TESTS AND 

FRACTIONAL COINTEGRATION

6.1 INTRODUCTION

In this chapter we will consider several pairs of variables that have been 

widely analyzed in the literature mainly in order to detect the presence of 

cointegrating relationships between them. In particular we will analyze the common 

behaviour between consumption and income, wages and prices, and nominal G.N.P. 

and money, using the same data as in Engle and Granger (1987), and the relationship 

between stock prices and dividends, using the data in Campbell and Shiller (1987). 

All these pairs of variables have been studied by many authors. Thus, the 

relationship between consumption and income has been analyzed by Davidson, 

Hendry, Srba and Yeo (henceforth DHSY (1978)), and also in Hall (1978), Campbell 

and Mankiw (1990), Qin (1991) and Ermisch and Westaway (1994) among others. 

The relation between wages and prices appears in Hall (1988), Mehra (1977, 1991), 

Ashenfelter and Card (1982), Stein (1979, 1984) and Darrat (1994). An article 

relating stock prices and dividends is Campbell and Shiller (1987), and those relating 

nominal G.N.P. and money include McElhattan (1976), Hafer (1984) and Sims 

(1994). All these groups of variables were also analyzed from a Bayesian viewpoint 

in DeJong (1992).

For each data set the analysis will be conducted as follows: first, we will 

calculate Robinson’s (1994c) univariate tests for each series in order to detect what 

might be the proper integration order of each individual series, and will compare 

these results with those obtained using classical Dickey-Fuller (DF) and augmented 

Dickey-Fuller (ADF) tests for unit roots. We will also present results of the 

multivariate score tests of Chapter 5, investigating how plausible a fractionally 

integrated bivariate representation of the two series together might be, and finally, 

we will study the possibility of fractional cointegration for each pair of these 

variables.

The components of a (Nxl) vector Xj are said to be fractionally cointegrated 

of order d,b, (Xt ~ CI(d,b)), if a): all components of Xt are integrated of order d
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(Xit ~ 1(d)), and b): there exists a vector r (r s* 0) such that Nt = r’Xt is integrated 

of order d-b (Nt ~ I(d-b)) with b > 0 .1 The vector r is called the cointegrating 

vector and r’Xt will represent an equilibrium constraint operating in the long run 

component of Xt. If Xt has more than two components, then there may be more than 

one cointegrating vectors r, though in what follows, we will assume that Xt has only 

two components, so that Xt = (yt,zt)’ where yt and zt correspond to the pairs of 

variables that will be analyzed later. In this bivariate context, a necessary condition 

for cointegration is that both individual series must be integrated of the same order 

and thus, a plausible way of testing CI(d,d-b) might be to consider a joint test of the

null hypothesis

H0: 0j = 02 = 0 and 8  = 0 (1)

against the alternative Ha: 0j * 02 or 8  * 0 in a model given by

y t  = a z t + x t t  = 1 , 2 , . . . . ( 2 )

( l  -  L) d t9 ly t  = V1£ t  = 1 , 2 ............ (3)

(1 -  L) d*9* z c = V2C t  = 1 , 2 , -------  (4)

( l - L ) * +* x e = V3t. t  = 1 , 2 , -------  (5)

with zt = x, = 0  for t < 0 , where a  is a scalar, and with possibly correlated white 

noise disturbances vlt, v2t and v3t. However, we observe in this set-up that, if we 

take b < d in (5), the null hypothesis (1) would imply that yt and zt are fractionally 

cointegrated of order d,d-b, but rejections of the null do not guarantee no

cointegration since 0 j = 0 2 with 8  greater than or smaller than zero might still imply 

that both series are fractionally cointegrated. Similarly, if we take b = d in (5), the 

null hypothesis (1) would imply no cointegration, but the alternative would not 

guarantee cointegration at all, given that 0 j might be different from 02, and also 8

1 A more general definition of fractional cointegration allowing different
integration orders for each series is found in Marinucci and Robinson (1997). They
define Xt ~ CI(d!,...dN,b) if Xjt ~ I(d}) for all i, and there exists a (Nxl) vector r * 0
such that Nt = r’Xt ~ 1(d), where d = maxl£a!£N (dr b). Note that this property is
possible and meaningful if and only if b > m ax^^  dt - min,*^ dr
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might be greater than zero.

An alternative procedure might be to test initially that both individual series, 

yt and zt, are integrated of order d, using either Robinson’s (1994c) univariate tests 

described in Chapter 2 or the multivariate version in Chapter 5, and test the null 

hypothesis

H„: 5 = 0 (6 )

against the one-sided alternative Ha: 5 < 0, in a model given by (2) and (5) with b 

= d, but in this case the parameter vector a  will not be identified under the null 

hypothesis (6 ). We can illustrate this with a simple example. Suppose now that the 

two series yt and zt are jointly generated as a function of possibly correlated white 

noise disturbances elt and £2t according to the model

y t =  P z c  +  u i f  U - L ) d  U1C =  € l t  ( 7 )

y c = a  z t  + u2 t , ( 1 - L ) d t t  u2t = e 2C w i t h  8 < 0 .  (8)

Clearly the parameters a  and P are unidentified in the usual sense as there 

are no exogenous variables and the errors are contemporaneously correlated. The 

reduced form of the system will take the form

Y t
a P  U1(. + -=-E— Up - a  “1C p - a  2t

l  1
^  t  O ^ 1 1 f i  ^ 2 1 /c p - a  1C p - a  2C

and since yt and zt are linear combinations of ult and u2t, both variables will be 

integrated of order d. Equation (8 ) describes a particular linear combination of the 

random variables which is integrated of order smaller than d, and thus, yt and zt are 

fractionally cointegrated. Since the null hypothesis is taken to be no cointegration, 

or 8  = 0 , if a  were known, a test for the null hypothesis (6 ) could be constructed in 

(2) and (5) with d = b, taking xt as the series to be integrated of order d under the 

null. However, if a  is unknown, it must be estimated from the data, but if the null 

is true, a  is not identified. Thus, only if the series are cointegrated can a  be 

estimated by the cointegrating regression.
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We will present here a testing procedure that follows a similar methodology 

to the one proposed in Engle and Granger (1987). First, we test that both series are 

integrated of the same order d. This can be done using either Robinson’s (1994c) 

univariate tests, or the multivariate version described in Chapter 5. We could 

consider the model

against the alternative Ha: 0 = (01# 02)’ ^  0, for a prescribed value d > 1/2, and white 

noise or weakly autocorrelated elt and e*. Thus, the non-rejection of the null 

hypothesis (9) will imply that both series are nonstationary with the same integration 

order d.

Once we have checked this, we can estimate the cointegrating parameters 

from the cointegrating regression. Since all the linear combinations of yt and zt 

except the one defined in (8 ) will be integrated of order d, the least squares estimate 

from the regression of yt on zl, under cointegration, will produce a good estimate of

a. In standard cointegration analysis (in which cointegration of order 1,1 is 

considered), Stock (1987) showed that the least squares estimate of the cointegrating 

parameter was consistent and converged in probability at the rate T1"8 for any 8  > 0, 

rather than the usual rate T1/2. Cheung and Lai (1993) and others extended the 

analysis to the case of fractional cointegration, and showed that the least squares 

estimate was also consistent though with possible different convergence rates, 

according to the cointegration order. In particular, they showed that under the 

general hypothesis of cointegration of order d,b with d > 1/2  and b > 0 , the least 

squares estimate was consistent and converged at the rate Tb'5 and thus, included the 

Stock’s (1987) convergence result as a special case with b = 1. Given the 

consistency of the least squares estimate of a  in (8 ), we can now use Robinson’s 

(1994c) univariate tests for testing the integration order in the equilibrium errors et 

= yt - Cl zt, with Cl as the least squares estimate of a, and the test statistic will still

( 1  -  L ) d+01 0  ^
0  ( l - L ) ^ ]  ( z j  |e2ty

( y t , z t ) '  = 0 t  <> 0

and test the null hypothesis

H0: 0, = 02 = 0 (9)
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remain with the same standard limit distribution. Thus, we could consider the model 

(1 - L)”*4 e, = u, t = 1,2,... (10)

e, = 0 , t < 0 ,

with 1(0 ) Ut, and test the null hypothesis:

H0: 0  = 0 , (11)

for different values of b, using Robinson’s (1994c) univariate tests. We could take 

b = d in (10), and test H0 (11) against the alternative

Ha: 0 < 0, (12)

and the test statistic will have an asymptotic null N(0,1) distribution. Rejections of 

(11) against (12) will imply that yt and zt are fractionally cointegrated, given that the 

equilibrium errors et present a smaller integration order than the individual series yt 

and zt. However, given that the equilibrium errors are not actually observed but 

obtained from minimizing the residual variance of the cointegrating regression, in 

finite samples the residual series might be biased toward stationarity, and thus, we 

would expect the null hypothesis to be rejected more often than suggested by the 

nominal size of Robinson’s (1994c) tests. A similar problem arises in Engle and 

Granger (1987) and Cheung and Lai (1993) when testing cointegration. In order to 

cope with this problem, the empirical size of Robinson’s (1994c) tests for 

cointegration in finite samples is obtained using a simulation approach.

In Table 6.1 we report the empirical size of Robinson’s (1994c) tests for 

cointegration corresponding to different sample sizes (T = 50, 100,200 and 300). We 

use the Monte Carlo method in 50,000 replications, assuming that the true system 

is of two 1(d) processes with Gaussian independent white noise disturbances, that are 

not cointegrated, (i.e., b = d in (10)), and take values of d ranging from 0 .6  through 

1.5 with 0.1 increments. For simplicity, we assume that in (10) is white noise, so 

we use the test statistic r given in (2.3), though we could also have extended the 

analysis to cover the case of weak parametric autocorrelation in ut. We observe in 

this table that the empirical distributions are similar across different values of d. 

They have a negative mean and the critical values are smaller than those given by 

the Normal distribution, which is consistent with the earlier discussion that, when 

testing H0 (11) against (12), the use of standard critical values will result in the
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cointegration tests rejecting the null hypothesis of no cointegration too often. On 

the other hand, when testing (11) against alternatives of form Ha: 0 > 0, using the 

Normal distribution, we should expect not to reject the null so often as when using 

the finite sample critical values. We also see in this table that the empirical 

distributions are positively skewed with kurtosis greater than 3, though increasing the 

sample size, the three statistics (mean, skewness and kurtosis) approximate to the 

values corresponding to the Normal distribution. The Fortran code used in this 

experiment is given in Appendix 6.1.

We next examine the power property of Robinson’s (1994c) tests for 

cointegration relative to the ADF and Geweke and Porter-Hudak (GPH,1983) tests 

for cointegration. We consider a bivariate 1(1) system, claimed to be non

cointegrated under the null hypothesis. The ADF unit root test recommended by 

Engle and Granger (1987) is given by the usual t-statistic for b0 in

(1 -L)  e t = + b x (1 -L)  + . . .+ bp ( l - L )  e c.p + e t ,

where et are the equilibrium errors and the lag parameter p can be selected using 

some model-selection procedures such as the Akaike and the Schwarz information 

criterions. The GPH test for cointegration proposed by Cheung and Lai (1993) is 

based on the estimation of the fractional differencing parameter d, in the linear 

regression

l n d ' U j ) )  = p0 + p1l n ( 4 s i n 2 (A.j/2)) + ut ,

where X,j = 27tj/T and I(A,j) is the periodogram of et at the ordinate j. Given that the 

least squares estimate of Pi provides a consistent estimate of 1-d (see Robinson 

(1995a)), hypothesis testing concerning the value of d is based on the t-statistic of 

the regression coefficient.

In Table 6.2 we perform the power function of the three tests (ADF, GPH 

and Robinson) for cointegration against fractional and AR alternatives. Results for 

ADF and GPH tests have been taken from Cheung and Lai (1993) and the Monte 

Carlo experiment conducted is described in Appendix 6.2. The power of a test is 

measured as the percentage of the time the test can reject a false null hypothesis of 

no cointegration. We have performed Robinson’s (1994c) test statistics r in (2.3) 

and r in (2.9), for four different possibilities, assuming that the differenced series are 

white noise and AR processes of orders 1, 2 and 3, for 5% and 10% significance
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levels. We use the asymptotic critical values given by the Normal distribution, 

mainly because of the different models used for the disturbances and of the optimal 

asymptotic properties of Robinson’s (1994c) tests stressed in Chapter 2. 

Furthermore, in the empirical applications carried out below, we use the standard 

N(0,1) distribution, given that the test statistics will be performed not only for 

different models for the disturbances, but also for different values of d, and also 

including deterministic paths, as an intercept and a linear time trend.

When testing against fractional alternatives, Robinson’s (1994c) tests perform 

better than the ADF and GPH tests, and this is observed for white noise disturbances 

but also if they follow AR processes. The highest rejection frequencies are obtained 

with white noise disturbances if the integration order ranges between 0.05 and 0.75, 

but when this parameter approximates to 1, better results are obtained for weakly 

parametrically autocorrelated disturbances.

When testing against AR alternatives, again better statistical power properties 

are observed in Robinson’s (1994c) tests relative to ADF and GPH tests, with higher 

rejection frequencies obtained at all values of the AR parameter <J>. If this parameter 

ranges between 0.05 and 0.55, results are better when the disturbances are white 

noise, but if it ranges between 0.55 and 0.95, the tests behave better for weakly 

parametrically autocorrelated disturbances. The relative pronounced difference in 

power between Robinson’s (1994c) tests and the ADF and GPH tests for 

cointegration is not surprising given that the ADF test assumes a strict 1(0) and 1(1) 

distinction and the GPH test requires estimation of the differencing parameter, 

whereas Robinson’s (1994c) tests do allow fractional differencing and do not require 

estimation of the fractional differencing parameter. The performance of Robinson’s 

(1994c) tests in this context of cointegration is examined at the end of each of the 

examples considered. We start now describing the first of these relationships.
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TABLE 6.1

Empirical sizes of Robinson’s (1994c) tests for cointegration.*

T = 50
d:

Perc.
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -2.94 -2.94 -2.95 -2.93 -2.93 -2.93 -2.93 -2.92 -2.93 -2.92
0.5% -2.65 -2.66 -2.66 -2.67 -2.66 -2.66 -2.66 -2.66 -2.65 -2.65
1.0% -2.51 -2.52 -2.53 -2.52 -2.52 -2.52 -2.52 -2.51 -2.50 -2.50
2.5% -2.29 -2.30 -2.31 -2.30 -2.30 -2.30 -2.29 -2.29 -2.28 -2.27
5.0% -2.09 -2.10 -2.11 -2.11 -2.10 -2.09 -2.08 -2.08 -2.07 -2.07

10.0% -1.84 -1.85 -1.85 -1.84 -1.84 -1.84 -1.83 -1.82 -1.82 -1.81
20.0% -1.50 -1.51 -1.51 -1.51 -1.50 -1.50 -1.49 -1.49 -1.48 -1.48
30.0% -1.25 -1.26 -1.26 -1.26 -1.25 -1.25 -1.24 -1.23 -1.23 -1.22
40.0% -1.02 -1.03 -1.03 -1.03 -1.02 -1.01 -1.01 -1.00 -0.99 -0.99
50.0% -0.79 -0.81 -0.81 -0.80 -0.80 -0.79 -0.78 -0.78 -0.77 -0.76
60.0% -0.55 -0.57 -0.57 -0.57 -0.56 -0.55 -0.54 -0.54 -0.53 -0.53
70.0% -0.29 -0.30 -0.31 -0.30 -0.30 -0.29 -0.28 -0.27 -0.26 -0.26
80.0% 0.04 0.02 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.06
90.0% 0.52 0.50 0.50 0.50 0.51 0.52 0.53 0.54 0.54 0.55
95.0% 0.96 0.94 0.93 0.93 0.94 0.95 0.96 0.97 0.97 0.97
97.5% 1.35 1.34 1.34 1.36 1.37 1.38 1.38 1.38 1.39 1.40
99.0% 1.87 1.85 1.86 1.86 1.87 1.87 1.87 1.88 1.88 1.88
99.5% 2.30 2.27 2.24 2.24 2.25 2.24 2.22 2.23 2.25 2.23
99.9% 3.06 3.08 3.08 3.07 3.04 3.03 3.05 3.04 3.06 3.01

Mean: -0.70 -0.72 -0.72 -0.72 -0.71 -0.70 -0.70 -0.69 -0.68 -0.68
Skewness 0.59 0.59 0.59 0.59 0.58 0.57 0.56 0.56 0.55 0.54
Kurtosis 3.67 3.68 3.69 3.70 3.68 3.64 3.60 3.59 3.53 3.50

T = 100
d:

Perc.
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.1% -2.96 -2.95 -2.95 -2.97 -2.96 -2.94 -2.95 -2.96 -2.96 -2.96
0.5% -2.64 -2.65 -2.64 -2.63 -2.63 -2.62 -2.62 -2.61 -2.60 -2.60
1.0% -2.48 -2.49 -2.48 -2.48 -2.47 -2.47 -2.46 -2.45 -2.45 -2.44
2.5% -2.23 -2.24 -2.24 -2.23 -2.23 -2.22 -2.21 -2.21 -2.20 -2.20
5.0% -2.01 -2.00 -2.00 -2.01 -2.00 -2.00 -1.99 -1.99 -1.99 -1.98

10.0% -1.74 -1.75 -1.75 -1.74 -1.74 -1.72 -1.71 -1.71 -1.71 -1.70
20.0% -1.38 -1.39 -1.39 -1.38 -1.38 -1.37 -1.36 -1.36 -1.35 -1.35
30.0% -1.11 -1.12 -1.12 -1.12 -1.11 -1.10 -1.09 -1.09 -1.08 -1.08
40.0% -0.87 -0.88 -0.88 -0.88 -0.87 -0.86 -0.85 -0.84 -0.84 -0.84
50.0% -0.63 -0.65 -0.65 -0.64 -0.64 -0.63 -0.62 -0.61 -0.61 -0.60
60.0% -0.39 -0.40 -0.40 -0.40 -0.39 -0.38 -0.38 -0.37 -0.36 -0.36
70.0% -0.11 -0.13 -0.13 -0.13 -0.12 -0.12 -0.11 -0.10 -0.09 -0.09
80.0% 0.21 0.19 0.19 0.19 0.20 0.20 0.21 0.22 0.22 0.22
90.0% 0.69 0.68 0.67 0.67 0.67 0.68 0.69 0.70 0.71 0.72
95.0% 1.11 1.10 1.10 1.10 1.11 1.11 1.12 1.13 1.13 1.14
97.5% 1.50 1.49 1.48 1.49 1.49 1.50 1.49 1.50 1.51 1.52
99.0% 1.99 1.98 1.96 1.96 1.97 1.97 1.98 1.97 1.98 1.98
99.5% 2.36 2.31 2.29 2.29 2.29 2.31 2.33 2.36 2.34 2.34
99.9% 3.15 3.13 3.11 3.11 3.09 3.08 3.08 3.10 3.13 3.12

Mean: -0.56 -0.57 -0.58 -0.57 -0.56 -0.56 -0.55 -0.54 -0.54 -0.53
Skewness 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.44 0.44 0.45
Kurtosis 3.41 3.40 3.39 3.39 3.40 3.40 3.38 3.35 3.34 3.34

cont..
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d: 0.6 0.7 0.8 0.9
T = 

1.0
200

1.1 1.2 1.3 1.4 1.5
Perc.
0.1% -3.04 -3.08 -3.07 -3.14 -3.19 -3.20 -3.12 -3.12 -3.10 -3.06
0.5% -2.71 -2.73 -2.70 -2.70 -2.66 -2.64 -2.62 -2.61 -2.63 -2.64
1.0% -2.50 -2.48 -2.47 -2.46 -2.45 -2.46 -2.45 -2.44 -2.44 -2.43
2.5% -2.21 -2.20 -2.20 -2.21 -2.20 -2.20 -2.20 -2.19 -2.18 -2.18
5.0% -1.95 -1.97 -1.97 -1.97 -1.97 -1.96 -1.94 -1.94 -1.93 -1.93
10.0% -1.64 -1.65 -1.67 -1.66 -1.66 -1.65 -1.63 -1.62 -1.62 -1.61
20.0% -1.26 -1.28 -1.28 -1.29 -1.28 -1.27 -1.26 -1.25 -1.25 -1.25
30.0% -0.89 -1.00 -1.01 -1.00 -1.00 -0.99 -0.99 -0.98 -0.98 -0.97
40.0% -0.74 -0.75 -0.75 -0.75 -0.74 -0.73 -0.73 -0.73 -0.72 -0.72
50.0% -0.49 -0.50 -0.52 -0.51 -0.51 -0.50 -0.49 -0.48 -0.48 -0.48
60.0% -0.24 -0.26 -0.27 -0.27 -0.26 -0.25 -0.24 -0.23 -0.23 -0.23
70.0% 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.04
80.0% 0.36 0.33 0.32 0.31 0.33 0.33 0.34 0.35 0.36 0.36
90.0% 0.83 0.81 0.79 0.79 0.79 0.79 0.81 0.81 0.81 0.81
95.0% 1.22 1.20 1.19 1.19 1.21 1.22 1.23 1.23 1.24 1.27
97.5% 1.59 1.55 1.52 1.54 1.55 1.58 1.59 1.60 1.63 1.64
99.0% 2.07 2.02 2.00 1.99 2.01 2.02 2.06 2.07 2.08 2.11
99.5% 2.36 2.34 2.34 2.37 2.33 2.38 2.37 2.48 2.49 2.49
99.9% 2.85 2.80 2.79 2.84 2.98 3.03 3.10 3.03 3.05 3.07

Mean: -0.44 -0.46 -0.46 -0.46 -0.46 -0.45 -0.44 -0.43 -0.43 -0.42
Skewness 0.31 0.30 0.30 0.31 0.32 0.32 0.33 0.34 0.35 0.36
Kurtosis 3.18 3.17 3.18 3.23 3.26 3.27 3.28 3.28 3.30 3.31

d: 0.6 0.7 0.8 0.9
T = 
1.0

300
1.1 1.2 1.3 1.4 1.5

Perc.
0.1% -2.96 -2.96 -3.04 -3.12 -3.19 -3.22 -3.19 -3.17 -3.17 -3.15
0.5% -2.52 -2.56 -2.63 -2.61 -2.60 -2.59 -2.60 -2.59 -2.61 -2.61
1.0% -2.41 -2.42 -2.44 -2.45 -2.44 -2.44 -2.44 -2.44 -2.44 -2.44
2.5% -2.17 -2.18 -2.19 -2.20 -2.18 -2.17 -2.16 -2.14 -2.13 -2.13
5.0% -1.90 -1.91 -1.92 -1.92 -1.91 -1.90 -1.89 -1.88 -1.87 -1.87
10.0% -1.59 -1.60 -1.60 -1.61 -1.60 -1.60 -1.60 -1.59 -1.58 -1.58
20.0% -1.20 -1.20 -1.22 -1.22 -1.21 -1.21 -1.21 -1.21 -1.20 -1.19
30.0% -0.92 -0.93 -0.93 -0.93 -0.92 -0.91 -0.91 -0.90 -0.90 -0.89
40.0% -0.67 -0.68 -0.68 -0.68 -0.67 -0.67 -0.67 -0.66 -0.65 -0.65
50.0% -0.43 -0.44 -0.44 -0.43 -0.43 -0.43 -0.43 -0.42 -0.42 -0.42
60.0% -0.18 -0.19 -0.19 -0.19 -0.19 -0.19 -0.18 -0.18 -0.18 -0.18
70.0% 0.09 0.07 0.07 0.07 0.07 0.08 0.09 0.09 0.09 0.09
80.0% 0.41 0.40 0.38 0.38 0.40 0.41 0.41 0.42 0.42 0.42
90.0% 0.91 0.89 0.87 0.87 0.87 0.87 0.88 0.89 0.89 0.89
95.0% 1.33 1.31 1.30 1.29 1.29 1.30 1.31 1.31 1.31 1.34
97.5% 1.68 1.65 1.67 1.66 1.69 1.71 1.73 1.74 1.74 1.75
99.0% 2.10 2.08 2.07 2.10 2.12 2.12 2.12 2.15 2.15 2.15
99.5% 2.40 2.32 2.33 2.35 2.41 2.41 2.44 2.41 2.42 2.41
99.9% 2.92 2.90 2.88 2.87 2.91 2.94 2.85 2.84 2.84 2.84

Mean: -0.37 -0.39 -0.39 -0.39 -0.39 -0.38 -0.38 -0.37 -0.37 -0.36
Skewness 0.31 0.29 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30
Kurtosis 3.07 3.08 3.10 3.13 3.15 3.15 3.15 3.14 3.13 3.13

*: The empirical size is obtained based on 50,000 replications in simulation, assuming that the true system 
is two non-cointegrated 1(d) processes. The test statistic is r in (2.3), and the Fortran code used in this 
experiment is given in Appendix 6.1.
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TABLE 6.2

Power of the ADF, GPH and Robinson tests for cointegration against fractional alternatives: (1 - L)d 
u2t = e*.*

d

Size Test .95 .85 .75 .65 .55 .45 .35 .25 .15 .05

5% ADF (p = 4) .06 .07 .10 .14 .19 .26 .36 .50 .61 .73
GPH (p = .55) .06 .09 .15 .21 .30 .37 .47 .56 .61 .64
GPH (p = .575) .06 .10 .16 .24 .33 .42 .53 .62 .67 .71
GPH (p = .60) .06 .11 .18 .28 .40 .52 .63 .73 .78 .81
ROBINSON (W.N.) .07 .22 .50 .78 .94 .99 .99 1.00 1.00 1.00
ROBINSON (AR(1)) .15 .22 35 .52 .71 .85 .94 .97 .99 .99
ROBINSON (AR(2)) .22 .26 31 .41 .54 .67 .78 .86 .92 .95
ROBINSON (AR(3)) .30 32 35 .41 .50 .59 .68 .76 .82 .85

10% ADF (p = 4) .11 .13 .18 .24 .32 .41 .53 .67 .78 .87
GPH (p = .55) .12 .17 .26 .35 .46 .56 .65 .72 .76 .78
GPH (p = .575) .12 .18 .27 .38 .50 .60 .71 .77 .81 .83
GPH (p = .60) .12 .19 .30 .43 .57 .68 .79 .85 .88 .90
ROBINSON (W.N.) .16 37 .66 .88 .97 .99 1.00 1.00 1.00 1.00
ROBINSON (AR(1)) .26 36 .51 .69 .84 .94 .98 .99 .99 .99
ROBINSON (AR(2)) .32 37 .45 .57 .69 .81 .89 .94 .97 .98
ROBINSON (AR(3)) .40 .43 .47 .55 .64 .73 .81 .87 .91 .94

Power of the ADF, GPH and Robinson tests for cointegration against autoregressive alternatives: 
(1 - <t>L)u2, = e*.*

♦

Size Test .95 .85 .75 .65 .55 .45 .35 .25 .15 .05

5% ADF (p = 4) .07 .16 .29 .42 .53 .61 .66 .73 .75 .77
GPH (p = .55) .07 .17 .33 .49 .59 .64 .67 .69 .68 .66
GPH (p = .575) .07 .17 .35 .52 .63 .69 .73 .75 .74 .72
GPH (p = .60) .07 .18 .37 .56 .70 .76 .81 .84 .83 .83
ROBINSON (W.N.) .07 .21 .46 .72 .90 .98 .99 1.00 1.00 1.00
ROBINSON (AR(1)) .18 36 .59 .76 .88 .94 .97 .98 .99 .99
ROBINSON (AR(2)) .27 .42 .58 .70 .80 .86 .90 .93 .95 .96
ROBINSON (AR(3)) .37 .49 .60 .69 .75 .80 .83 .86 .87 .88

10% ADF (p = 4) .14 .28 .46 .60 .71 .78 .82 .86 .88 .89
GPH (p = .55) .14 .29 .50 .66 .75 .78 .81 .82 .81 .79
GPH (p = .575) .14 .30 .52 .69 .78 .82 .85 .86 .85 .84
GPH (p = .60) .14 .30 .54 .72 .82 .87 .90 .91 .92 .91
ROBINSON (W.N.) .16 38 .65 .87 .97 .99 .99 1.00 1.00 1.00
ROBINSON (AR(1)) 30 .54 .76 .89 .95 .98 .99 .99 .99 .99
ROBINSON (AR(2)) 39 .58 .74 .84 .90 .94 .96 .97 .98 .98
ROBINSON (AR(3)) .47 .63 .74 .82 .87 .90 .92 .93 .94 .95

*: ADF is augmented Dickey-Fuller test statistic and p is the lag parameter selected using AIC and SIC 
criterions. GPH is Geweke-Porter-Hudak test statistic and p is the value used in the sample-size function 
n=T*. Results for ADF and GPH have been taken from Cheung and Lai (1993), (pages 108 and 109). 
Robinson’s tests are r in (2.3) and r in (2.9). The power of each test is based on 10,000 replications and 
the Monte Carlo experiment with the Fortran code is described in Appendix 6.2.
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6 .a CONSUMPTION AND INCOME

The data are U.S. quarterly real per capita consumption on non-durables and 

real per capita disposable income from 1947.1 to 1981.11 and plots of the series are 

given in the upper part of Figure 6.A1. In these plots we observe that both series 

seem to present similar nonstationary behaviour, increasing slowly during the 50’s, 

growing at a higher rate since 1960 with a sharp decay after the crisis in 1973, and 

increasing strongly afterwards. The nonstationary character of these two series can 

be better viewed through the other plots in this figure, which show the sample 

autocorrelations and estimates of the spectral density function1: we observe here a 

very slow and persistent decay in the autocorrelations, and a peak on the estimated 

spectrums at zero frequency, which might indicate that both series require some kind 

of differencing in order to get stationarity.

These two series were analyzed from an error correction point of view in 

Davidson, Hendry, Srba and Yeo (DHSY, 1978) and from a time series viewpoint 

in Hall (1978) and others. In the first of these studies, evidence was presented for 

the error correction model of consumption behaviour from both theoretical and 

empirical points of view: consumers make plans which may be frustrated; they 

adjust next period’s plans to recoup a portion of the error between consumption and 

income. Hall (1978) found evidence that U.S. consumption was a random walk and 

that past values of income had no explanatory power which implied that income and 

consumption were not cointegrated. Neither of these studies modelled income itself 

and it was taken as exogenous in DHSY (1978). Engle and Granger (1987) 

performed first the DF and ADF tests to check if both individual series were 1(1). 

Then they performed several cointegration tests in order to check if both variables 

were in fact cointegrated, concluding that they were, though income may be 

exogenous in view of the error correction representation. Using the same data set, 

DeJong (1992) used a Bayesian approach to analyze the cointegration inference in 

these variables and he concluded that when trend-stationary was given zero prior 

probability the cointegration inference was often supported. When this prior was 

relaxed, however, the data supported the trend stationary representations.

1 As in previous chapters, they are estimates of the standardized spectral 
density function, using Barlett, Tukey and Parzen lag windows of size T-l.



239

As we have just mentioned above, Engle and Granger (1987) started by 

testing if the two series were individually integrated of order 1. They regressed the 

change in consumption on its past level and two past changes obtaining a t-test of 

0.77, and therefore suggesting that the series was not stationary in level. Running 

the same model with second differences on lagged first differences and two lags of 

second differences, the t-test was -5.26 indicating that the first difference was 

stationary. For income, four past lags were used and the two test statistics were 

-0.01 and -6.27 respectively, again establishing that income was 1(1).

In Table 6.A1 we perform Robinson’s (1994c) univariate tests in order to 

investigate more deeply what the appropriate integration order for each of the 

individual series might be. Therefore, we consider the same model as that used in 

Chapter 3 for Nelson and Plosser’s data. In both series we calculate the one-sided 

test statistic r in (2.9), for different specifications in the regression model (i.e., 

including no regressors, an intercept, and an intercept and a time trend), and for 

different modelizations for the disturbances (as white noise, and seasonal and non- 

seasonal AR processes). In this table we observe that the unit root null hypothesis 

is never rejected in either of the series, and though there are some other cases where 

the null is also non-rejected, (as when d takes the value 0.9 or 1.1), the lowest 

statistics across different values of d are obtained in practically all situations when 

d = 1. If the disturbances follow a non-seasonal AR, we observe in some cases, a 

lack of monotonic decrease in r with respect to d. This may be due to the fact that 

the data are quarterly, and though they are deseasonalized, certain seasonal structure 

may remain, especially for consumption. In fact, if the disturbances follow a 

seasonal AR process, monotonicity is always achieved, with the non-rejection values 

ranging again from 0.9 through 1.1, and with the lowest statistics corresponding to 

the unit root case.

In view of this table we can say that the two series are 1(1) though slight 

variations in the integration order might also be plausible, which is not at all 

surprising given the smoothness in the behaviour of the fractional processes apart 

from the case of the boundary situation between stationary and non-stationary 

processes, i.e., when d = 0.5. In this case, the null was always decisively rejected 

in favour of more nonstationary alternatives, indicating strong evidence against the 

trend-stationary representations. We also observed that the results are not greatly
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affected by the different regressors in the model, and they seem to corroborate the 

findings of Engle and Granger (1987) and others, that both series are integrated of 

order 1. Next, in the following four tables, we present results of the multivariate 

tests.

We start by specifying the model in its more general form which, in this 

bivariate set-up will take the form

'Vt' 'Bu  B12' f1 !— +
^b21 b 22j

t  = 1 ,  2 ,  . . . T (13)

and

' (1 - L ) dl+01 0 ' fXi t  ' /

o (1 - L ) d2+02; \

( V i t

a
t = l , 2 , . . . T (14 )

2 t

with

Xit = 0 for i = 1,2 and t < 0, (15)

where yt and zt are the original time series, (in this case, consumption and income); 

Ut = (Ult, U2t)’ is a stationary 1(0) vector process, and the null hypothesis is given 

by:

H0: 0, = 02 = 0. (16)

We present results of the score test statistics in (5.32) - (5.37), depending 

basically on the choice for the disturbance vector Ut in (14), and the inclusion or not 

of restrictions in the elements of the matrix B in (13), and give results for values of 

dj and d2, ranging from 0.60 through 1.40 with 0.10 increments.

In Tables 6.A2 and 6 . A3 we report results of the score test statistics in (5.32) 

and (5.34), respectively, i.e., the time and the frequency domain versions of the tests 

for white noise Ut. In both tables we start presenting results imposing B = 0 a 

priori, i.e., including no regressors in (13); then, we take B12 = B22 = 0 a priori, i.e., 

including only an intercept, and finally we consider the model in its more general 

form, i.e., imposing no restrictions on the regression model (13). Clearly, if dj = d2 

= 1, the model behaves, for t > 1, as a random walk vector process if B12 = B22 = 

0, and as a random walk with an intercept if B * 0. The first thing we observe in 

these two tables is that results are very similar in both domains, with all non-
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rejection cases occurring for the same values of dj and in both tables; thus, the 

difference between the time and the frequency domain versions of the tests seems 

small even though the sample size is not very large (T = 138). In the upper part of 

these two tables we observe that when there are no regressors, the only non-rejection 

case occurs when dj = = 0.9, and any departure from this case increases strongly

the value of the test statistic. Thus, we see in Table 6.A2 that if there are no 

regressors, the lowest statistic is 3.68 corresponding to dj = d2 = 0.9, and the closest 

departures are dj = d2 = 1 and dj = d2 = 0.8 with St2 = 7.00 and 9.52 respectively. 

Similarly, in the upper part of Table 6.A3, the only non-rejection case is dj = d2 = 

0.9 with a test statistic of 3.84, and again the closest departures are dj = d2 = 0.8 

and dj = = 1 with Sn = 7.02 and 7.64 respectively. Including an intercept or a

time trend there are more non-rejections and all of them occur for values of d! and 

d2 around 1, with the lowest statistics again obtained at dj = d2 = 0.9 in both cases 

and in both tables. The fact that the null hypothesis is not rejected in these tables 

for the case of two unit roots but is rejected for any value of d! and d2 smaller than 

0.9 or greater than 1.1 corroborates the results of Table 6.A1 that both series might 

be integrated of order 1.

In the next two tables, a richer structure is allowed in Ut. First, in Table 

6.A4, we assume Ut is VAR(l) and we observe in the upper part of this table that 

if there are no regressors, the null is always decisively rejected. Thus, modelling 

these series with no regressors appears not to be a correct way of specifying the 

model. Including an intercept or a time trend, we observe some non-rejections, 

always for values of di and d2 smaller than 1.2  and in most of cases for values of 

dj (the integration order of consumption) equal or slightly smaller than d2 (the 

integration order of income). The lowest statistics are now obtained at dj = 0.6 and 

d2 = 0.7 when including an intercept, and at dt = 0.7 and = 0.8 when a time trend 

is considered. Results in this table appear less nonstationary than in the previous 

ones, (related with white noise Ut), but this can be explained by the fact that the 

parameters in the VAR representation have been obtained using the method of 

maximum likelihood throughout a quasi-Newton algorithm, and in some cases these 

parameters can be close to nonstationary. In fact, looking at the lower part of the 

table, the lowest statistic when including a time trend is obtained at d, = 0 .6  and d2 

= 0.7 taking a value of 0.28, and with an estimated structure on Ut as follows
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Therefore, the determinant of the AR polynomial evaluated at z = 1 takes the 

value of 0.639. However, though it is not shown in the table, other non-rejection 

cases are also obtained for values of dj and smaller than 0 .6 , and as we 

approximate to stationary, the determinant in these situations will be approximately 

zero. For example, when dj = 0.5 and &2 = 0.6, the value of the test statistic is 0.79 

and the determinant is 0.309, and if dj = 0.4 and d2 = 0.5, the value of the test is 

1.57 and the corresponding value of the determinant is 0.185. Thus, we could say 

that competition between the VAR structure on Ut and the orders of differencing 

may exist, for picking up the nonstationary component of the series, and as these 

parameters in the VAR representation approximate to the nonstationary case, 

integration orders seem to be smaller in both series. We also see here that the null 

hypothesis of two unit roots (dj = d2 = 1) is not rejected in this case, and a model 

like this, for t > 1, behaves like the one performed in Engle and Granger (1987) 

though they allowed higher order autoregressions. They used this unrestricted VAR 

representation to establish that the joint distribution of consumption and income was 

an error correction model, through a way of eliminating those parameters that were 

not significant in the VAR representation. Our results show that though this case of 

dj = d2 = 1 may be possible, other fractional possibilities for dj and d2 might be even 

more plausible, in view of the lower statistics obtained in some cases.

Finally in these multivariate tests, we present results when Ut is VMA(l). 

Results are given in Table 6.A5, and as in Table 6.A4, if we do not include 

regressors, the null is always rejected, suggesting that a model with no regressors is 

not the correct way of specifying it. We also see here that the lowest statistic occurs 

in this case at d{ = d2= 1, with S2 = 7.63. Including a constant or a time trend there 

are a lot of non-rejections and all of them correspond to values of dt and d2 greater 

than or equal to 0.7. This is not surprising given that the VMA(l) structure on Ut 

is always stationary and therefore, the nonstationarity character of the series must be 

picked up mainly through the differencing orders. We also observe in this table that 

the lowest statistics with an intercept and with a time trend are achieved in both 

cases at d{ = d2 = 0.9, that is, for the same values as in Tables 6.A2 and 6 .A3 when
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Ut was white noise. As a conclusion of these multivariate tests it seems clear that 

both series are nonstationary with integration orders fluctuating around 1 in most of 

the cases, but also smaller if Ut follows a VAR representation and greater if it 

follows a VMA process.

In the final part of this section we try to find if a cointegrating relationship 

might possibly exist between these two variables. In order to examine this problem, 

we run the regression of consumption (ct) on income (yt) and a constant, and its 

reverse, as was done in Engle and Granger (1987), and the resulting equations were

(-50) (123) (t-values)

In Table 6 .A6  we have performed Robinson’s (1994c) univariate tests on 

these estimated residuals, and the structure in this table is similar to Table 6.A1, 

showing results of r in (2.9) for the different cases of no regressors, an intercept, and 

an intercept and a time trend. The most noticeable thing observed here is that the 

unit root null is rejected in practically all cases (except when the disturbances 

follow an AR(1) process, but in this case there is a wide range of values of d where 

the null is not rejected, and furthermore, monotonicity is not achieved for values of 

d smaller than 0.6). Apart from this situation, all the other non-rejections always 

take place for values of d smaller than or equal to 0 .8 , which is in sharp contrast to 

results presented in Table 6.A1 for the original time series, where the null was not 

rejected when d was greater than or equal to 0.9. Therefore these results suggest 

that both series are fractionally cointegrated given that the estimated residuals display 

a lower integration order than the individual series. We also observe in this table 

that the lowest statistics across different values of d are always obtained at d = 0.7, 

independently of the inclusion or not of an intercept and/or a time trend in the 

model, indicating therefore that the estimated residuals from the cointegrating 

regressions are still nonstationary but with a mean-reversion property.

Engle and Granger (1987) studied the cointegration relationship between these 

two variables, testing the null of nonstationarity in the estimated residuals in (17)

ct = 0.52 + 0.23 yt
(85) (123) (t-values)

(17)

and

yt = -0.22 + 4.30 ct. (18)
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and (18) and therefore, testing the null hypothesis of no cointegration between them. 

Using the cointegrating regression Durbin-Watson test (CRDW), the null was 

rejected at 5% significance level but hardly at 1%, and using the DF and ADF tests, 

was rejected for the latter but hardly for the former even at 5% significance level. 

A problem with these testing procedures is that they only concentrate on the case of 

1(0 ) residuals and do not consider other fractionally integrated possibilities.

In Table 6.A7 we again use Robinson’s (1994c) univariate tests in order to 

check if these estimated residuals might be stationary. Therefore, we perform the 

same test statistic as in Table 6 .A6 , but now choosing values of d ranging from 0.00 

through 0.50. We see in this table that the null is always rejected, and even at the 

boundary case of d = 0.50, the null is decisively rejected in favour of more 

nonstationary alternatives and thus, finding conclusive evidence against stationary 

residuals.

Therefore, we have found certain evidence of fractional cointegration for 

consumption and income, with the deviations from an equilibrium following a 

nonstationary fractional process with the integration order smaller than one. The 

distinction between 1(d) processes with d = 1 and d < 1 is important from an 

economic point of view: if xt is an 1(d) process with d e [0.5, 1), the process will 

be covariance nonstationary but mean-reverting since an innovation will have no 

permanent effect on the value of xt. This is in contrast to an 1(1) process which will 

be both covariance nonstationary and not mean-reverting, and the effect of an 

innovation will persist forever. Results presented above give evidence that the 

equilibrium errors display mean reversion and the effect of a shock to the system 

will eventually die out so that an equilibrium relationship between consumption and 

income will prevail in the long run.

As a conclusion, we can summarize the main results obtained in this section 

by saying that consumption and income both seem nonstationary with the integration 

order fluctuating around 1, independently of the inclusion or not of an intercept or 

a time trend in the model. This unit root behaviour observed in the series is 

obtained when we use the univariate representation of the tests but also when the 

multivariate tests are performed, though here, if Ut follows a VAR(l) process, 

integration orders can be smaller due to competition with VAR parameters in 

modelling the nonstationarity.
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Finally, both series seem fractionally cointegrated with the integration order 

of the residuals in the cointegrating regressions fluctuating around 0.70, and therefore 

with the equilibrium errors displaying slow mean reversion, unlike the individual 

series where shocks seem to persist forever. These results are interesting in that they 

seem to connect the opposing findings between Hall (1978) and others, who came 

to the conclusion that both variables were not cointegrated, and Engle and Granger 

(1987) and others, who found cointegration between consumption and income. Our 

results suggest that both variables might be fractionally cointegrated, with 

nonstationary equilibrium errors but with a mean reverting behaviour.
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TABLE 6.A1

f in (2.9) for U.S. Consumption and Income 

Consumption

d 0 . 6 0.7 0 . 8 0.9 1 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.13 4.81 2.74 1 .0 0 ’ -0.40’ -1.49’ -2.33 -2.98 -3.50 -3.91

AR(1) -0.02 0.24 0.06 -0.37 -0 . 8 8 -1.41 -1.89 -2.32 -2.70 -3.03
AR(2) -1.40 -0.94 -0.81 -0.92 -1.18 -1.49 -1.81 -2 . 1 2 -2.41 -2.67

SAR(l) 5.52 4.09 2.51 0.96’ -0.39’ -1.50’ -2.36 -3.03 -3.55 -3.97
SAR(2) 5.39 4.02 2.49 0.96’ -0.39’ -1.50’ -2.37 -3.04 -3.56 -3.98

b) Intercept.
W.N. 16.57 11.00 5.78 2.23 0.05’ -1.35’ -2.32 -3.04 -3.59 -4.03

AR(1) -3.77 2.32 2.54 1.24 0 . 1 0 -0.73 -1.38 -1.93 -2.42 -2.85
AR(2) -3.82 -2.51 0.18 0.13 -0.32 -0 . 6 8 -0.93 -1.16 -1.40 -1.65

SAR(l) 6.94 6.47 4.55 2 . 1 0 0 .1 1 ’ -1.31’ -2.31 -3.06 -3.63 -4.08
SAR(2) 6.87 6.56 5.30 2.91 0.60’ -1.06’ -2.19 -2.97 -3.54 -3.98

c) Intercept and a time trend.
W.N. 9.40 6.50 3.89 1.73’ 0.04’ -1.25’ -2.24 -2.99 -3.57 -4.01

AR(1) 1.13 1.48 1.25 0.71 0.06 -0.62 -1.26 -1.85 -2.36 -2.82
AR(2) -0.51 -0.37 -0.24 -0.25 -0.37 -0.57 -0.81 -1.07 -1.35 -1.62

SAR(l) 7.10 5.43 3.55 1.71’ 0 .1 1 ’ -1 .2 0 ’ -2 . 2 2 -3.00 -3.60 -4.06
SAR(2) 7.62 6.14 4.32 2.37 0.57’ -0.91’ -2.04 -2.87 -3.49 -3.94

d 0 . 6 0.7 0 . 8 0.9

Income

1 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 6.74 4.40 2.36 0.65’ -0.73’ -1.80’ -2.63 -3.27 -3.77 -4.16

AR(1) 1.05’ 0.80’ 0.41’ -0 .1 2 ’ -0.71’ -1.30’ -1.84’ -2.31 -2.72 -3.08
AR(2) -0.54’ -0.57’ -0.63’ -0.81’ -1.09’ -1.44’ -1.79’ -2.14 -2.46 -2.75

SAR(l) 5.22 3.68 2.09 0.58’ -0.75’ -1.82’ -2.67 -3.32 -3.82 -4.22
SAR(2) 5.15 3.67 2 .1 1 0.60’ -0.74’ -1.84’ -2.69 -3.34 -3.84 -4.24

b) Intercept. 
W.N. 18.35 13.52 7.24 2.55 -0.09’ -1.55’ -2.44 -3.08 -3.56 -3.95

AR(1) -3.32 1.83 3.37 1.41 -0.30 -1.35 -2 .0 1 -2.47 -2.85 -3.18
AR(2) -3.87 -1.37 2 .1 1 1 . 2 0 -0 . 1 2 -0.98 -1.46 -1.75 -1.96 -2.14

SAR(l) 6.87 7.35 6 . 0 2 2.85 0.17’ -1.49’ -2.51 -3.18 -3.68 -4.07
SAR(2) 7.53 6 . 1 2 4.82 2.60 0.19’ -1.48’ -2.52 -3.21 -3.70 -4.09

c) Intercept and a time trend. 
W.N. 11.10 7.28 4.06 1.61’ -0.17’ -1.43’ -2.35 -3.03 -3.55 -3.95

AR(1) 3.59 3.09 1.96 0.75’ -0.31’ -1.17’ -1.85’ -2.40 -2.83 -3.18
AR(2) 1.58 1 .8 6 1.31 0.57 -0.16 -0.78 -1.27 -1 .6 6 -1.94 -2.15

SAR(l) 7.73 6 . 2 2 4.12 1.94’ 0.07’ -1.35’ -2.39 -3.13 -3.67 -4.07
SAR(2) 6.70 5.53 3.86 1.92’ 0 .1 1 ’ -1.33’ -2.39 -3.15 -3.69 -4.09

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (l-L )^  at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.A2

Multivariate score tests in the time domain (St2 in (5.32)) with no regressors and white noise Ut. dj and 
d2 are the differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 158.76 214.49 259.27 265.21 254.36 237.55 219.35 201.78 185.71
0.7 113.59 45.57 135.21 187.45 197.06 189.79 176.82 162.57 148.85
0 . 8 195.62 67.13 9.52 83.65 129.55 140.33 136.53 127.68 117.58
0.9 233.77 157.57 45.19 3.68’ 54.21 88.82 98.92 97.78 92.45
1 .0 236.76 187.60 116.69 29.20 7.00 39.79 63.65 72.10 72.57
1 .1 225.45 186.93 140.02 80.07 19.67 12.65 34.16 49.93 56.52
1 .2 209.33 175.59 139.38 99.20 53.30 16.55 18.51 33.07 43.43
1.3 192.43 161.33 130.62 100.35 69.17 37.27 17.93 23.92 34.09
1.4 176.46 147.11 119.77 95.00 72.17 50.03 29.84 21.64 28.72

Multivariate score tests in the time domain ( St2 in (5.32)) with an intercept and white noise Ut. dj and dj 
are the differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 184.65 1 1 2 . 0 0 136.87 179.24 205.61 217.40 2 2 1 . 6 6 222.83 222.94
0.7 232.62 83.11 44.39 62.31 83.46 96.33 103.07 106.55 108.44
0 . 8 281.84 105.17 20.48 10.54 20.06 29.06 35.21 39.33 42.21
0.9 311.28 132.30 27.67 1.14’ 2 .2 1 ’ 7.26 11.67 15.18 18.01
1 .0 323.68 149.17 38.83 4.77’ 1.65’ 4.59’ 7.86 10.74 13.24
1 .1 326.94 157.27 46.89 1 0 .0 1 4.99’ 7.02 9.79 12.34 14.63
1 .2 326.68 160.62 51.95 14.44 8.62 10.28 1 2 . 8 6 15.31 17.51
1.3 325.59 161.85 55.15 17.92 11.85 13.36 15.90 18.34 20.54
1.4 324.62 162.26 57.25 20.64 14.59 16.06 18.62 21.09 23.33

Multivariate score tests in the time domain ( S12 in (5.32)) with a time trend and white noise Ut. d, and 
d2 are the differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 73.46 42.55 47.62 62.90 76.47 85.58 90.88 93.68 95.04
0.7 84.23 29.59 16.54 22.60 32.86 41.63 47.82 51.82 54.31
0 . 8 99.27 33.50 7.25 4.16’ 9.46 16.03 21.55 25.68 28.61
0.9 111.15 42.72 9.56 0.30’ 1.55’ 5.80’ 10.16 13.81 16.64
1 .0 118.44 51.25 15.50 2.92’ 1.65’ 4.29’ 7.70 10.82 13.41
1 .1 1 2 2 . 1 2 57.37 21.34 7.33 4.72’ 6.46 9.29 12.08 14.47
1 .2 123.58 61.26 25.95 11.59 8.40 9.68 12.25 14.88 17.20
1.3 123.93 63.60 29.31 15.12 11.76 12.87 15.34 17.95 20.28
1.4 123.84 64.99 31.71 17.89 14.59 15.67 18.13 20.77 23.15

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.A3

Multivariate score tests in the frequency domain (S*2 in (5.34)) with no regressors and white noise Ut. dj 
and d2 are the differencing orders for consumption and income respectively.

d.Xd, 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 122.55 172.91 215.06 221.57 212.69 198.34 182.67 167.51 153.64
0.7 104.72 33.79 111.52 157.70 166.76 160.97 150.09 138.00 126.29
0 . 8 184.68 61.22 7.02 72.15 112.35 122.14 119.24 111.84 103.25
0.9 217.32 143.00 40.55 3.84’ 49.58 80.36 89.56 88.83 84.32
1 .0 217.96 168.65 104.29 26.61 7.64 38.33 60.21 68.05 68.64
1 .1 206.37 167.29 124.77 72.11 18.89 13.15 33.84 48.84 55.11
1 .2 190.92 156.84 124.29 89.42 49.42 16.82 18.77 32.97 43.16
1.3 175.06 143.98 116.71 90.87 64.12 36.09 18.60 23.98 33.90
1.4 160.21 131.23 107.28 86.50 67.29 48.12 30.04 22.35 28.64

Multivariate score tests in the frequency domain ( S*2 in (5.34)) 
and d2 are the differencing orders for consumption and income

with an intercept 
respectively.

and white noise 1

0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 157.37 95.36 120.74 157.40 179.09 188.52 191.90 192.86 193.02
0.7 203.96 68.94 37.29 53.74 72.31 83.64 89.71 92.96 94.82
0 . 8 247.10 88.92 16.75 8.94 17.74 26.10 31.92 35.89 38.69
0.9 270.05 1 1 2 . 1 2 23.24 0.85’ 2 .1 1 ’ 6.99 11.33 14.81 17.60
1 .0 278.38 126.19 33.18 4.30’ 1.70’ 4.59’ 7.85 10.75 13.25
1 .1 279.82 132.92 40.49 9.32 4.98’ 6.96 9.71 12.29 14.59
1 .2 279.00 135.81 45.22 13.64 8.60 10.19 12.75 15.20 17.42
1.3 277.89 137.00 48.29 17.05 11.81 13.27 15.77 18.22 20.43
1.4 277.11 137.53 50.38 19.73 14.53 15.97 18.48 20.96 23.21

Multivariate score tests in the frequency domain (S*2 in (5.34)) with a time trend and white noise Ut. d! 
and d2 are the differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 69.22 39.25 44.85 59.61 72.38 80.83 85.72 88.27 89.49
0.7 80.97 27.07 14.93 20.92 30.72 39.06 44.96 48.79 51.18
0 . 8 95.91 31.25 6.44 3.75’ 8.92 15.27 20.64 24.67 27.54
0.9 106.91 40.06 8.77 0.23’ 1.55’ 5.72’ 1 0 .0 1 13.62 16.44
1 .0 113.30 48.03 14.46 2.80’ 1.70’ 4.32’ 7.69 10.80 13.39
1 .1 116.36 53.75 20.08 7.11 4.73’ 6.45 9.26 12.03 14.43
1 .2 117.48 57.43 24.56 11.30 8.37 9.65 12.18 14.80 17.12
1.3 117.67 59.67 27.85 14.79 11.72 12.83 15.26 17.85 20.17
1.4 117.54 61.04 30.21 17.55 14.54 15.62 18.04 2 0 . 6 6 23.04

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.A4

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ut. d, and d2 are the 
differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 204.84 141.87 120.55 108.22 83.98 198.70 252.71 504.53 4512.0
0.7 411.69 253.45 144.94 116.66 91.14 141.66 177.43 334.94 775.54
0 . 8 96.71 599.55 220.34 95.25 53.30 104.83 138.94 263.32 514.89
0.9 96.07 102.14 106.35 177.36 115.98 109.78 162.26 341.17 623.47
1 .0 172.19 129.77 103.78 75.04 23.51 376.02 440.21 585.36 743.66
1 .1 254.57 200.31 199.41 575.05 113.04 26.59 133.87 318.95 550.06
1 .2 8543.7 1800.7 980.56 131.15 175.73 98.58 23.72 117.00 353.22
1.3 119.10 102.25 13.51 170.54 219.82 124.11 62.39 19.96 191.08
1.4 655.37 551.04 127.18 246.93 361.62 310.23 165.95 57.48 17.51

Multivariate score tests (S2 in (5.37)) with an intercept and a VAR(l) structure on Ut. d, and d2 are the 
differencing orders for consumption and income respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 6.39 0.98’ 6.24 1 2 .1 1 14.76 15.08 14.45 13.72 13.32
0.7 18.13 6.03 0.44’ 7.82 16.59 22.40 25.32 26.28 26.09
0 . 8 23.47 22.59 3.65’ 1.08’ 7.95 15.51 2 1 . 2 2 24.93 27.00
0.9 22.15 36.20 15.79 1.92’ 2.35’ 7.08 12.23 16.71 2 0 . 2 0

1 .0 18.50 42.28 27.99 8.30 3.09’ 4.40’ 7.50 11.09 14.58
1 .1 14.94 42.91 35.81 15.60 7.04 5.83’ 7.04 9.27 11.99
1 .2 12.44 40.60 39.31 21.50 11.89 9.21 9.07 10.07 11.81
1.3 11.27 37.07 39.82 25.50 16.54 13.37 12.46 12.56 13.40
1.4 11.38 33.39 38.59 27.85 20.49 17.63 16.50 16.08 16.25

Multivariate score tests (S2 in (5.37)) with a time trend and a VAR(l) structure on Ut. d, and d2 are the 
differencing orders for consumption and income respectively.

djNdj 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 7.20 0.28’ 3.64’ 10.65 16.95 20.95 22.52 22.24 20.90
0.7 20.33 4.70’ 0.34’ 4.72’ 1 1 . 8 6 18.34 22.82 25.08 25.47
0 . 8 32.32 15.05 2.56’ 1.04’ 5.63’ 11.94 17.66 21.80 24.13
0.9 39.05 26.09 9.53 2 .0 0 ’ 2.39’ 6.51 11.60 16.21 19.64
1 .0 40.64 34.09 17.93 6.67 3.09’ 4.34’ 7.71 11.60 15.11
1 .1 38.56 38.07 25.02 12.84 6.67 5.42’ 6 . 8 6 9.46 12.30
1 .2 34.40 38.57 29.62 18.64 11.55 8.69 8.55 9.84 11.74
1.3 29.57 36.68 31.70 23.07 16.45 12.98 1 1 . 8 6 12.14 13.14
1.4 35.21 33.63 31.90 25.96 20.65 17.41 15.95 15.63 15.96

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.A5

Multivariate score tests (S2 in (5.37)) with no regressors and a VMA(l) structure on Ut. dj and dj are the 
differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 999347 89912 75.37 80.31 83.55 91.00 109.73 166.80 521.03
0.7 34.38 46.92 54.66 62.72 75.02 97.33 160.94
0 . 8 54.31 398.45 2790.6 15.66 27.77 38.76 50.00 63.10 80.82
0.9 651.20 929.68 114.53 302.14 7.63 18.72 31.71 41.72 49.63
1 .0 3311.8 5175.0 13017 3543.0 11.32 7.73 34.83 28.38 32.09
1 .1 6793.2 5472.7 5703.4 6937.4 8 8 6 6 . 2 29731 38.07 24.26 22.05
1 .2 8109.1 5077.3 3902.3 3447.5 3343.2 2739.0 1873.9 73.13 18.91
1.3 8727.7 5379.6 3471.9 2461.0 1908.3 1553.8 1115.9 519.46 50.21
1.4 8285.1 6023.2 3600.7 2 1 0 0 . 6 1338.8 933.86 679.56 607.46 138.35

Multivariate score tests (S2 in (5.37)) with an intercept and a VMA(l) 
differencing orders for consumption and income respectively.

structure on Ut. dj and d2 are

djXdj 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 67.90 37.18 53.88 75.16 86.76 90.29 88.61 83.61 77.60
0.7 94.77 30.46 13.55 26.53 40.02 46.94 48.38 45.81 40.97
0 . 8 111.08 44.92 7.19 3.34’ 11.73 18.92 22.31 22.16 19.41
0.9 114.94 55.93 14.29 0.53’ 1.59’ 5.84’ 8.96 9.92 8.85
1 .0 112.26 59.87 20.57 3.98’ 1 .1 0 ’ 1 .8 8 ’ 3.16’ 3.98’ 3.86’
1 .1 107.04 59.29 23.45 7.05 2.99’ 2 .2 0 ’ 1.45’ 1.35’ 1.49’
1 .2 101.15 56.28 23.56 8.44 4.37’ 3.43’ 1.98’ 0.89’ 0.65’
1.3 95.45 52.06 21.72 8.18 4.67’ 4.03’ 2.91’ 1.58’ 0.78’
1.4 90.98 47.78 18.76 6.63 3.86’ 3.66’ 3.14’ 2 .2 2 ’ 1.25’

Multivariate score tests (S2 in (5.37)) with a time trend and a VMA(l) structure on Ut. d, and d2 are the 
differencing orders for consumption and income respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 24.52 10.82 16.81 27.99 36.90 41.46 41.49 37.91 34.04
0.7 34.56 8.89 3.40’ 9.34 17.46 23.46 25.81 24.44 21.19
0 . 8 43.16 14.45 1.78’ 1.07’ 5.66’ 10.79 14.01 14.47 12.74
0.9 47.51 20.36 5.16’ 0.28’ 1.08’ 3.65’ 6 . 0 2 7.42 7.24
1 .0 48.11 24.05 9.10 2.56’ 1 .1 0 ’ 1.25’ 1.58’ 2.81’ 3.61’
1 .1 46.05 25.14 11.69 5.06’ 2.76’ 1.85’ 0.55’ 0.51’ 1.32’
1 .2 42.24 23.99 12.42 6.55 4.26’ 3.21’ 1.62’ 0.39’ 0.41’
1.3 37.64 2 1 . 2 0 11.36 6.60 4.81’ 4.06’ 2 .8 8 ’ 1.54’ 0.57’
1.4 33.56 17.72 9.04 5.32’ 4.23’ 3.94’ 3.36’ 2.54’ 1.29’

Non-rejection values of the null hypothesis (5.4) at 95% level and "—" means that the test statistic is 
greater than 99999.
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TABLE 6.A6

r in (2.9) for the estimated residuals

c, - 0.52 - 0.23 y,

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 0.98’ -0.24’ -1.27’ -2 . 1 2 -2.83 -3.40 -3.87 -4.26 -4.58 -4.85

AR(1) 0.50’ -0.63’ -0.87’ -1.17’ -1.52’ -1.87’ -2.23 -2.58 -2.91 -3.23
AR(2) -2 . 1 2 -2 .0 1 -1.94 -1.90 -1.90 -1.93 -1.99 -2.06 -2.16 -2.28

SAR(l) 1.42’ 0.06’ -1 .1 2 ’ -2 . 1 0 -2.89 -3.52 -4.02 -4.42 -4.74 -5.01
SAR(2) 1.42’ 0.05’ -1.14’ -2 . 1 2 -2.91 -3.54 -4.04 -4.43 -4.75 -5.01

b) Intercept. 
W.N. 0.99’ -0.32’ -1.44’ -2.36 -3.09 -3.66 -4.11 -4.47 -4.76 -4.99
AR(1) 0.07’ -0.05’ -0.40’ -0.87’ -1.38’ -1.85’ -2.29 -2 . 6 8 -3.04 -3.35
AR(2) -1.69 -1.46 -1.38 -1.43 -1.55 -1.70 -1.85 -2 . 0 0 -2.15 -2.30

SAR(l) 1.47’ 0.06’ -1 .2 0 ’ -2.26 -3.10 -3.74 -4.23 -4.61 -4.90 -5.14
SAR(2) 1.51’ 0 .1 1 ’ -1.17’ -2.24 -3.09 -3.74 -4.24 -4.61 -4.91 -5.14

c) Intercept and a time trend. 
W.N. 1.17’ -0.24’ -1.42’ -2.36 -3.09 -3.66 -4.11 -4.47 -4.75 -4.98

AR(1) 0.35’ 0 .1 0 ’ -0.34’ -0 .8 6 ’ -1.38’ -1 .8 6 ’ -2.29 -2 . 6 8 -3.02 -3.31
AR(2) -1.47 -1.33 -1.32 -1.41 -1.55 -1.70 -1 .8 6 -2 . 0 0 -2.13 -2.23

SAR(l) 1.67’ 0.17’ -1.16’ -2.25 -3.10 -3.74 -4.23 -4.60 -4.89 -5.12
SAR(2) 1.73’ 0 .2 2 ’ -1 .1 2 ’ -2.23 -3.09 -3.75 -4.24 -4.61 -4.90 -5.12

d 0 . 6 0.7 0 . 8 0.9

yt + 0 . 2 2

1 .0

- 430 c, 

1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 0.95’ -0.26’ -1.27’ -2 . 1 2 -2.81 -3.39 -3.86 -4.25 -4.57 -4.84

AR(1) -0.57’ -0.69’ -0.91’ -1 .2 1 ’ -1.54’ -1.89’ -2.24 -2.58 -2.91 -3.22
AR(2) -2.18 -2.06 -1.98 -1.94 -1.93 -1.95 -2 . 0 0 -2.08 -2.17 -2.28

SAR(l) 1.38’ 0.04’ -1.13’ -2 . 1 0 -2.89 -3.51 -4.01 -4.41 -4.73 -4.99
SAR(2) 1.38’ 0.03’ -1.15’ -2 . 1 2 -2.90 -3.53 -4.03 -4.42 -4.74 -5.00

b) Intercept.
W.N. 0.90’ -0.37’ -1.48’ -2.39 -3.11 -3.67 -4.12 -4.47 -4.76 -5.00

AR(1) -0 .0 1 ’ -0 .1 0 ’ -0.43’ -0.90’ -1.40’ -1.87’ -2.30 -2.69 -3.04 -3.36
AR(2) -1.75 -1.49 -1.41 -1.45 -1.57 -1.71 -1 .8 6 -2 . 0 2 -2.16 -2.31

SAR(l) 1.38’ 0 .0 0 ’ -1.24’ -2.29 -3.12 -3.75 -4.24 -4.62 -4.91 -5.14
SAR(2) 1.42’ 0.04’ -1 .2 1 ’ -2.27 -3.11 -3.76 -4.25 -4.62 -4.92 -5.15

c) Intercept and a time trend.
W.N. 1 .1 2 ’ -0.28’ -1.45’ -2.38 -3.11 -3.68 -4.12 -4.47 -4.76 -4.98

AR(1) 0.33’ 0.08’ -0.36’ -0 .8 8 ’ -1.39’ -1.87’ -2.31 -2.69 -3.02 -3.31
AR(2) -1.47 -1.33 -1.33 -1.42 -1.56 -1.72 -1.87 -2 .0 1 -2.14 -2.24

SAR(l) 1.62’ 0 .1 2 ’ -1 .2 0 ’ -2.28 -3.12 -3.76 -4.24 -4.61 -4.90 -5.13
SAR(2) 1 .6 8 ’ 0.18’ -1.16’ -2.26 -3.11 -3.76 -4.25 -4.62 -4.91 -5.13

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (1-L)d+0 at 95% significance level when
monotonicity in the value of the tests with respect to d is observed.
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TABLE 6.A7

r in (2.9) for the estimated residuals with d < 0.50

c, - 0.52 - 0.23 yt

a) No intercept and no time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.45 9.60 7.69 5.80 4.02 2.40
Seas. AR (1): 9.00 8.14 7.09 5.84 4.42 2.91
Seas. AR (2): 8.84 8.07 7.08 5.85 4.44 2.92

b) Intercept.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.45 9.60 7.69 5.82 4.05 2.44
Seas. AR (1): 9.00 8.13 7.09 5.84 4.42 2.94
Seas. AR (2): 8.84 8.07 7.07 5.85 4.45 2.98

c) Intercept and a time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.57 9.78 7.96 6.17 4.43 2.75
Seas. AR (1): 9.06 8 . 2 2 7.22 6.05 4.71 3.23
Seas. AR (2): 8.90 8.16 7.22 6.07 4.75 3.28

y»+ 0 . 2 2  - 430 c,.

a) No intercept and no time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.27 9.42 7.54 5.69 3.94 2.35
Seas. AR (1): 8.87 8.03 7.00 5.76 4.35 2 . 8 6

Seas. AR (2): 8.72 7.97 6.98 5.77 4.36 2 . 8 6

b) Intercept.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.27 9.42 7.52 5.66 3.91 2.33
Seas. AR(1): 8.87 8.03 6.99 5.73 4.31 2.83
Seas. AR(2): 8.72 7.97 6.97 5.74 4.33 2.87

c) Intercept and a time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.49 9.70 7.89 6 . 1 0 4.36 2.69
Seas. AR (1): 9.01 8.18 7.18 6 . 0 0 4.66 3.18
Seas. AR (2): 8 . 8 6 8 . 1 2 7.18 6.03 4.70 3.22
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6.b PRICES AND WAGES

The nature of the relationship between prices and wages has long been the 

subject of ongoing debate. The expectations augmented Phillips-curve theory 

contends that the two variables are mutually causal. However, the original wage 

type Phillips-curve model argues it is inflation that cause wage growth rather than 

vice versa. The price mark-up scheme holds an opposing view and asserts that wage 

growth plays an independent causal role in the inflationary process, and other 

theories, (eg. the monetarist) deny the presence of any reliable linkage between 

wages and prices.

Researchers have also expended enormous effort attempting to investigate 

empirically the relationship between these two variables but with mixed results. For 

example, Mehra (1977) and Ashenfelter and Card (1982) report results suggesting 

a bidirectional causality; Barth and Bennett (1975) and Stein (1984) find causality 

running from prices to wages without feedback, while Shannon and Wallace (1986) 

report results showing causality only in the reverse situation. Gordon (1977), 

Bazdarich (1978) and Batten (1981) find no causal linkage between the two 

variables. Such remarkably mixed evidence is unfortunate in light of the 

implications for economic and public policy. Mehra (1991) employed the technique 

of cointegration modelling U.S. quarterly data. His model encompassed three basic 

variables, namely, prices, wages and an output-gap proxy. He tested each of the 

three variables (in logs) for the presence of unit roots, finding evidence of two unit 

roots in prices and wages, but a single unit root in the output-gap variable. Applying 

cointegration techniques, he concluded that first differences (but not levels) of prices 

and wages were cointegrated. Darrat (1994) used an error correction representation 

which also included other relevant variables (such as money supply, exchange and 

interest rates) and he concluded that wages and prices were not cointegrated and 

therefore did not exhibit a reliable long run relationship. His results were consistent 

with Gordon (1988), supporting the view that wages and prices are irrelevant to each 

other.

In order to examine these two variables, we use the same data set as in Engle 

and Granger (1987). They analyzed logs of C.P.I. and production worker wage in 

manufacturing throughout the 1950’s, 60’s and 70’s with monthly data and found no 

evidence of cointegration either for the individual decades or for the whole sample.
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Over the whole period of time, the Durbin-Watson cointegration test (CRDW) from 

the cointegrating regression in either direction was 0.0054, suggesting that it was 

insignificantly different from zero. The ADF test of the regression of prices on 

wages was -0.6 and for the reverse regression 0.2. Adding a twelfth lag, the test 

statistics were 0.88 and 1.55 respectively. None of these values approached the 

critical value of 3.2 and therefore, their evidence accepted the null hypothesis of no 

cointegration between wages and prices. For individual decades, again none of the 

ADF tests were significant at even 10% level and the largest statistic was obtained 

in the 1950’s when regressing prices on wages, but still below the critical value. 

Thus, they found conclusive evidence that prices and wages were not cointegrated.

Figures 6.B1 and 6.B2 contain plots of the original series for C.P.I. and 

wages, their sample autocorrelations and estimates of the spectral density function, 

considering the whole sample size and individual decades as well. We observe in 

the up-left hand side of these figures that both series increases over the whole 

sample period, with a possible changing growth around 1973 due perhaps to the oil 

crisis in that year. The slow decay of sample autocorrelations and the peak in the 

estimated spectrums at zero frequency suggest the nonstationary component of the 

series.

In Tables 6.B1-6.B4 we present results of Robinson’s (1994c) univariate tests, 

reporting r in (2.9), when testing (1.12) in (1.9) and (1.10) with p(L;0) = (1 - L)d+e, 

using the whole sample size in Table 6.B1, and each individual decades in Tables 

6.B2-6.B4. In Table 6.B1 we observe that the unit root null hypothesis is never 

rejected for C.P.I. when we do not include regressors. However, including an 

intercept or an intercept and a time trend, this hypothesis is always strongly rejected 

in favour of more nonstationary alternatives, observing also in these cases, a lack of 

monotonic decrease in r with respect to d for most specifications of the disturbances. 

We see that the only non-rejection value of d among those cases where monotonicity 

is achieved occurs at d = 1.4 when including a time trend with white noise and 

seasonal AR(2) ut. For wages, we see in the lower part of this table, that the non

rejection values of d always range between 1 and 1.2  if we do not include regressors, 

with monotonicity achieved in all cases, and with the lowest statistics occurring at 

d = 1 for white noise and seasonal AR ut, and at d = 1.1 for non-seasonal AR u  ̂

However, including an intercept and an intercept and a time trend, monotonicity is
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again unlikely to be achieved, and in those cases where it is, the non-rejection values 

of d are 1 and 1.1.

Looking at individual decades, in Tables 6.B2-6.B4, results are very similar 

to those in Table 6.B1. Starting with C.P.I., we observe in the upper part of these 

tables that the non-rejection values of d range between 0.9 and 1.1 if we do not 

include regressors, with monotonicity achieved for cases of white noise and seasonal 

AR disturbances, and with the lowest statistics obtained in all decades when d = 1. 

Including an intercept, monotonicity is never achieved in the 50’s, (Table 6.B2), 

though this property is captured for seasonal AR ut in the 60’s, (Table 6.B3), and for 

white noise and seasonal AR(2) in the 70’s, (Table 6.B4). In all these cases the 

non-rejection values of d are always greater than 1, with the lowest statistics 

occurring at d = 1.2 in the 60’s and at d = 1.4 in the 70’s. Including an intercept 

and a time trend, monotonicity is again only achieved for white noise and seasonal 

AR disturbances, with non-rejection d’s ranging between 1.3 and 1.5 in the 50’s and 

70’s, and between 1.1 and 1.3 during the 60’s. For wages, we see in the lower part 

of these tables that the non-rejection values of d range in most cases between 0.9 and 

1.1 in the three decades. This is observed independently of the regressors used in 

the model and the ways of modelling the disturbances, and the lowest statistics 

appear in practically all cases when d takes values 0.9 and 1.

As a conclusion of these univariate tests, we see that C.P.I. and wages might 

be both individually integrated or order 1 if we do not include regressors. However, 

including an intercept or an intercept and a time trend, wages seems to be also 1(1) 

though C.P.I. appears as more nonstationary, (i.e., with d > 1), especially when we 

consider the whole sample period, and the decades of the 50’s and 70’s.

In the next group of tables, we calculate the multivariate score tests first in 

Tables 6.B5-6.B8, considering the whole sample period, and then studying the 

different decades separately. Tables 6.B5 and 6 .B6  give results of the multivariate 

score tests of Chapter 5 in the time and the frequency domain respectively, when the 

disturbances follow a white noise vector process. Thus, we report the statistic S*2 

in (5.32) in Table 6.B5, and Sa as given in (5.34) in Table 6 .B6 . In both tables 

results are very similar, with few non-rejection cases, and occurring at the same 

values of dj and d2: if there are no regressors, the only non-rejection value

corresponds to the case of two unit roots (i.e. d, = d2 = 1), but including an intercept
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or a time trend, this case is rejected, and the only non-rejection occurs now when dj 

(the integration order of log of C.P.I.) is 1.4, and d2 (the integration order of log of 

wages) is 1. Therefore, these results corroborate the findings of the univariate tests 

above, that both series are 1(1) if we do not include regressors but C.P.I. might be 

of a higher integration order if an intercept or a time trend is included.

In Table 6.B7 we allow Ut to follow a VAR(l) process: if we do not include 

regressors, the two unit roots null is strongly rejected, and the only non-rejection 

case occurs at dj = = 1.4, with S2 = 3.36. Including an intercept or an intercept

and a time trend, there are some isolated cases where the null is not rejected but 

results do not show much consistency, suggesting perhaps that this is not a correct 

way of specifying the model. This might be related to the lack of monotonic 

decrease observed in r with respect to d in Table 6.B1 when ^  was AR and the 

model included an intercept and/or a time trend. If we take Ut as a VMA(l) 

process, in Table 6 .B8 , the null is always rejected if there are no regressors, and 

including an intercept and an intercept and a time trend, the only cases where the 

null hypothesis is not rejected are dj = 1.4 and d2 ranging between 1.1 and 1.3, once 

more showing a higher integration order of C.P.I. over wages. The lowest statistics 

occur in both cases when dj = 1.4 and d2 = 1.3, with S2 = 2.83 when including an 

intercept, and with S2 = 2.30 when including an intercept and a time trend. Thus, 

we can summarize the results of the multivariate tests on the thirty year period by 

saying that both series might be 1(1) when we do not include regressors, but 

integration orders higher than one might be required, especially for prices, when 

including an intercept and/or a time trend.

The next group of tables follow the same structure as the previous ones, but 

we concentrate now on individual decades. Starting with the 1950’s, we observe in 

Tables 6.B9 and 6.B10 that if Ut is a white noise vector process, the non-rejection 

cases coincide in both tables and correspond to dj = = 0.9, 1 and 1.1 when there

are no regressors, and to dt = 1.3 and 1.4 and d2 ranging from 0.8 to 1.1 when an 

intercept or a time trend is included. The lowest statistics in these two tables are 

obtained in both domains when we include a time trend and dj = 1.4 and d2 = 0.9, 

with the test statistics S12 = 0.19 in Table 6.B9, and Sc = 0.09 in Table 6.B10. 

Allowing weak parametric autocorrelation in Ut, we do not report results here, 

however, the main conclusions obtained were: with VAR(l) Ut and no regressors,
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the only non-rejection case corresponded to dj = = 1.4 (that is, for the same

values as in Table 6.B7 when we considered the thirty year period), and including 

regressors, the null was almost never rejected, with the lowest statistics appearing 

when dj ranged between 1 and 1.3 and = 1.1; with VMA(l) Ut, the only non

rejection case with no regressors was dt = 0.9 and d2 = 0.8, and including regressors, 

the non-rejections occurred in practically all cases when dj and d2 were greater than 

1, and dx > d2.

Looking at the 1960’s, in Tables 6.B11-6.B13, results are more definite. 

Thus, if we do not include regressors, the null of dj = = 1 is the only non

rejection case for white noise Ut. (See the upper part of Tables 6.B11 and 6.B12). 

This hypothesis was also non-rejected for the VAR(l) case, and though it is rejected 

for VMA(l) disturbances, (in Table 6.B13), it does correspond to the lowest statistic 

across all possibilities presented in that table. Thus, these results are in complete 

analogy with the univariate ones presented in Table 6.B3 where the unit root case 

was the most plausible alternative for both series when modelling with no regressors. 

Including an intercept or a time trend, the non-rejection cases correspond to dt 

between 1.2 and 1.4 and d2 between 0.9 and 1.1 for white noise and VMA(l) 

disturbances, corroborating again the results in Table 6.B3 that C.P.I. is of a higher 

integration order than wages when including an intercept and/or a time trend. In 

fact, the lowest statistics appear for white noise Ut when dt = 1.2 and d2 = 1 with 

an intercept, and when dj = 1.3 and d2 = 1 with an intercept and a time trend. For 

VMA disturbances, the lowest statistics occur at dj = 1.4 and d2 = 1.1 for both cases 

of an intercept and an intercept and a time trend. Allowing VAR(l) Ut, we do not 

report results since they did not show much coherence, suggesting that the VAR 

representation, when including an intercept or an intercept and a time trend, was not 

a correct way of specifying the model in this decade.

Finally, in Tables 6.B14-6.B16, we concentrate on the 1970’s. Results in 

these tables are similar to those given previously. Starting with white noise Ut, we 

see in Tables 6.B14 and 6.B15 that if there are no regressors, the only non-rejection 

cases occur when dj = d2 = 1 and 1.1, using the time domain version of the test, but 

also when dt = = 0.9 using its frequency domain representation. In both cases the

lowest statistics correspond to the two unit roots null, with Sa = 2.48 in Table 6.B14 

and S° = 2.89 in Table 6.B15. However, as in previous tables, if we include an
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intercept or a time trend, these hypotheses are strongly rejected and the non-rejection 

values are dj = 1.3 and 1.4, and d2 between 0.8 and 1.1. If Ut follows a VAR(l) 

process, (in Table 6.B16), the null hypothesis of two unit roots is the only non

rejection case if there are no regressors, and any departure from this case strongly 

increases the value of the test statistic. This hypothesis is also not rejected if we 

include regressors though lower statistics are obtained for smaller values of dj and 

d2. In fact, the lowest statistics are obtained in these cases when dL = 1 and d2 = 0.7 

when including an intercept, and when dj = 1.1 and d2 = 0.7 with a time trend. 

Allowing VMA(l) Ut we do not report results, since the null was always rejected 

when modelling with no regressors, and few non-rejections appeared with an 

intercept and a time trend when dj =1.4 and d2 ranged from 0.9 to 1.4.

Results of univariate and multivariate tests above suggest that both series 

might be integrated of order 1 if we do not include regressors in the model. This 

is observed for the whole sample size but also when individual decades are 

considered. In view of these results we next examine if both variables might be 

fractionally cointegrated and, as we did in the previous section, we run the 

cointegrating regressions of one of the variables against the other.

The next tables report results of Robinson’s (1994c) univariate tests on the 

estimated residuals from the cointegrating regressions. When we consider the whole 

sample period, these regressions are

log CPIt = 3.91 + 0.70 log Wt

(429.3) (101.1) (t-values)

and

log Wt = -5.31 + 13.6 log CPIt.

(-84.1) (101.1) (t-values)

Table 6.B17 reports r in (2.9) on the estimated residuals above. We see in 

this table that if the disturbances are modelled with non-seasonal AR processes, 

monotonicity in r with respect to d is never achieved, indicating that the model 

might be misspecified in these cases. If the disturbances are white noise or seasonal 

AR, monotonicity is always achieved and the unit root null hypothesis is always 

rejected in favour of more nonstationary alternatives. This is observed in both series
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of residuals and for the three cases of no regressors, an intercept and an intercept and 

a time trend. In fact, the only cases where the null hypothesis is not rejected occur 

when d = 1.1, therefore providing conclusive evidence against the hypothesis of 

cointegration between both variables at least when we consider the whole sample 

period. Thus, results in this table indicate that the estimated residuals from the 

cointegrating regressions are nonstationary and non-mean reverting, supporting the 

view of Gordon (1988) and others that prices and wages move separately without 

any reliable long run relationship.

If we concentrate on individual decades, starting with the 1950’s, we see in 

Table 6.B18 that the non-rejections always occur for values of d greater than 1 if the 

disturbances are modelled as white noise or seasonal AR. If they are non-seasonal 

AR, there is a wide range of values of d where the null is not rejected, some of 

which are smaller than 1. However, the bulk of the results in this table reject the 

null when d = 1 in favour of alternatives with d > 1, with the lowest statistics 

appearing in most cases when d takes values 1.2 and 1.3, suggesting therefore that 

both series of residuals are nonstationary and are not mean-reverting in this decade.

Results for the 1960’s are given in Table 6.B19. Monotonicity is achieved 

across all specifications for the disturbances. If they follow a non-seasonal AR(1) 

process, there is a wide range of values of d where the null is not rejected, which 

makes it difficult to distinguish an appropriate integration order in this case. The 

lowest statistics across the different values of d are obtained in these cases at d = 0.9 

when including no regressors, and at d = 0 .8  if we include an intercept or a time 

trend. Results for white noise or seasonal AR are more definite, with non-rejection 

values of d ranging between 0 .8  and 1.1, and with the lowest statistics obtained in 

all cases when d = 0.9. Thus, we conclude the analysis of this decade by saying that 

C.P.I. and wages might be slightly fractionally cointegrated, with the estimated 

residuals from the cointegrating regressions showing a small component of mean 

reversion.

Results for the 1970’s, in Table 6.B20, are very similar to those given in the 

previous table. If the disturbances follow an AR(1) process, the non-rejections occur 

when d ranges between 0 .6  and 1.1, with the lowest statistic obtained in all cases at 

d = 0.9. If they are white noise or seasonal AR, the band of non-rejection d’s 

narrows, going from 0 .8  through 1.1, with the lowest values obtained again at d =
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0.9. Thus, we also observe in this decade nonstationary residuals but with a small 

component of mean reversion.

Summarizing the main results obtained in this section, we see that prices and 

wages are both individually integrated of order 1, though prices might display a 

higher integration order when an intercept or an intercept and a time trend is 

included in the model. The multivariate tests support this view, finding two unit 

roots when there are no regressors, but rejecting this hypothesis in favour of more 

nonstationarities for prices when including an intercept or a time trend. Looking at 

the possibility of fractional cointegration, prices and wages seem to move apart when 

we consider the whole sample size, though during the 1960’s and 1970’s, a small 

degree of fractional cointegration might occur between both variables, with the 

estimated residuals from the cointegrating regressions being nonstationary, but 

showing a small component of mean reversion.
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FIGURE 6.B2
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TABLE 6.B1

r  in (2.9) for log of U.S. C.P.I. and wages 

C.P.I. (1950.1 - 1979.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 17.44 11.40 6.41 2.60 -0.17’ -2.16 -3.60 -4.66 -5.47 -6 . 1 0

AR(1) 4.02 3.93 2.71 1 .2 0 ’ -0.26’ -1.50’ -2.52 -3.35 -4.03 -4.59
AR(2) 1.34 1.94 1.51 0.64 -0.35 -1.28 -2 . 1 0 -2.79 -3.38 -3.87

SAR(l) 11.04 8.56 5.47 2.41 -0.18’ -2.17 -3.65 -4.74 -5.57 -6 .2 1

SAR(2) 10.13 7.96 5.22 2.35 -0.18’ -2.17 -3.66 -4.76 -5.59 -6.23

b) Intercept.
W.N. 43.39 45.74 45.58 40.32 30.67 19.76 10.69 4.40 0.38 -2.19

AR(1) -7.00 -6.74 -6.70 -5.66 3.81 9.50 7.66 4.67 2 .0 1 -0.03
AR(2) -4.36 -4.31 -4.11 -4.00 -1.95 3.49 4.74 3.14 1.24 -0.39

SAR(l) 8.56 8.50 8.84 9.94 11.54 11.05 7.85 3.79 0.31 -2 . 2 0

SAR(2) 1 1 . 2 0 11.24 1 0 .8 8 9.44 8.54 7.87 5.99 3.06 0 . 1 1 -2.24

c) Intercept and a time trend.
W.N. 56.07 52.88 47.95 40.63 31.00 20.54 11.37 4.68 0.33’ -2.35

AR(1) -2.92 -4.76 -5.82 -4.21 4.76 9.80 8.05 4.88 1.93 -0.29
AR(2) 1.19 -1.25 -2.78 -3.28 -1.57 3.33 4.92 3.32 1.18 -0.64

SAR(l) 11.69 9.87 9.45 10.41 11.61 1 1 .1 2 8.16 4.00 0.29 -2.36
SAR(2) 15.70 13.34 11.04 9.37 8.49 7.75 6.03 3.15 0.06’ -2.40

Wages (1959.1 - 1979.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 27.84 16.41 8.91 3.93 0.57’ -1.73’ -3.33 -4.47 -5.32 -5.97

AR(1) 18.06 12.05 7.26 3.85 1.36’ -0.49’ -1 .8 6 ’ -2.89 -3.67 -4.29
AR(2) 13.91 1 1 .0 1 7.05 4.12 1.92’ 0.24’ -1.04’ -2 . 0 2 -2.78 -3.39

SAR(l) 15.42 11.92 7.55 3.65 0.55’ -1.74’ -3.38 -4.56 -5.42 -6.08
SAR(2) 11.80 9.97 6.73 3.36 0.46’ -1.77’ -3.40 -4.57 -5.43 -6.09

b) Intercept.
W.N. 34.79 31.88 22.60 10.38 2.40 -1.69’ -3.85 -5.13 -5.98 -6.60

AR(1) -8 . 6 6 -5.99 9.41 10.06 5.20 1.31 -1.06 -2.53 -3.51 -4.23
AR(2) -5.93 -6.36 -0.65 7.23 5.09 1.97 -0 . 2 0 -1.55 -2.42 -3.02

SAR(l) 8.93 8.73 10.06 7.72 2.41 -1.54 -3.84 -5.21 -6 . 1 0 -6.74
SAR(2) 9.85 7.89 6 . 6 6 5.53 1.90’ -1.61’ -3.86 -5.23 -6 . 1 2 -6.75

c) Intercept and a time trend.
WJV. 43.40 32.26 19.88 9.47 2.49 -1.59’ -3.90 -5.25 -6 . 1 0 -6.69

AR(1) -2.25 12.29 14.45 10.39 5.42 1.44 -1.19 -2.82 -3.83 -4.51
AR(2) -4.38 -0 .2 1 8.33 8.61 5.43 2 .1 1 -0.38 -1.98 -2.94 -3.49

SAR(l) 9.59 11.74 11.38 7.52 2.49 -1.44 -3.89 -5.35 -6.24 -6.84
SAR(2) 6.93 7.00 7.16 5.47 1.95 -1.52 -3.91 -5.37 -6.26 -6 . 8 6

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (1-L)d+8 at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.B2 (1950’s decade)

r  in (2.9) for log of U.S. C.P.I. and wages.

d 0 . 6 0.7 0 . 8 0.9

C.P.I. (1950.1 - 

1 .0  1 .1

1959.12)

1 .2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 7.46 5.00 2.82 1 .0 2 ’ -0.39’ -1.48’ -2.30 -2.92 -3.41 -3.79

AR(1) -0.51 0.31 0.29 -0.13 -0 . 6 8 -1.25 -1.78 -2.23 -2.62 -2.95
AR(2) -2.77 -1.37 -0.81 -0.76 -0.97 -1.29 -1.64 -1.98 -2.29 -2.57

SAR(l) 5.20 3.94 2.44 0.94’ -0.40’ -1.48’ -2.32 -2.96 -3.46 -3.85
SAR(2) 5.02 3.80 2.38 0.92’ -0.40’ -1.48’ -2.33 -2.97 -3.46 -3.85

b) Intercept.
W.N. 9.66 10.87 11.54 10.37 8.24 5.91 3.75 1.90 0.40 -0.78

AR(1) -2.64 -0.82 -0.37 -0.27 0.44 0.74 0.54 0.09 -0.45 -0.99
AR(2) -3.48 -0.85 0 . 0 2 -0 . 2 2 -0 . 2 0 -0.16 -0.32 -0.63 -1.03 -1.45

SAR(l) 7.25 8 .0 1 8 . 2 2 7.55 6.42 4.98 3.37 1.78 0.37 -0.79
SAR(2) 7.25 8.05 8.16 7.27 5.96 4.50 2.99 1.53 0 .2 1 -0 . 8 8

c) Intercept and a time trend. 
W.N. 18.12 16.55 14.15 11.25 8.26 5.52 3.21 1.38’ -0 .0 1 ’ -1.05'

AR(1) -0.19 -1 .0 2 -1.48 -0.78 0.45 0.64 0.26 -0.28 -0.83 -1.29
AR(2) 0.05 -0.89 -1.25 -0.95 -0.35 -0.24 -0.50 -0.92 -1.36 -1.73

SAR(l) 9.68 9.10 8.45 7.61 6.38 4.77 3.00 1.35’ -0 .0 2 ’ -1.05’
SAR(2) 10.23 9.56 8.53 7.28 5.86 4.30 2 . 6 8 1.16’ -0 .1 2 ’ -1 .1 2 ’

d 0 . 6 0.7 0 . 8 0.9

Wages (1950.1 - 

1 .0  1 .1

1959.12)

1 .2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 5.82 4.23 2.59 1.07’ -0 .2 2 ’ -1.26’ -2.08 -2.72 -3.23 -3.64

AR(1) 1.10 1.17 0.91 0.44 -0 . 1 2 -0.71 -1.25 -1.75 -2.18 -2.55
AR(2) 0.32 0.38 0.37 0 .2 1 -0.09 -0.46 -0 . 8 6 -1.25 -1.62 -1.97

SAR(l) 4.75 3.64 2.35 1 .0 1 ’ -0 .2 2 ’ -1.27’ -2 .1 1 -2.76 -3.28 -3.69
SAR(2) 4.58 3.51 2.27 0.98’ -0.24’ -1.27’ -2 .1 1 -2.76 -3.28 -3.69

b) Intercept.
W.N. 9.95 5.01 0.99’ -0.53’ -1.26’ -1.95’ -2.61 -3.20 -3.70 -4.11

AR(1) -7.57 -2.58 -0.82 -0 .2 1 0.14 0 .1 1 -0.19 -0.60 -1.05 -1.49
AR(2) -7.74 -8.83 -5.01 -2.81 -1.62 -1.04 -0.82 -0.81 -0.91 -1.07

SAR(l) 5.16 3.57 1.03’ -0.43’ -1 .2 1 ’ -1.94’ -2.63 -3.24 -3.75 -4.16
SAR(2) 5.23 3.57 1.08’ -0.42’ -1 .2 2 ’ -1.94’ -2.63 -3.23 -3.73 -4.13

c) Intercept and a time trend. 
W.N. 7.96 4.87 2.26 0.26’ -1.19’ -2.23 -2.98 -3.54 -3.96 -4.28

AR(1) 1.84 2.28 1.87 1 .1 2 0.33 -0.38 -0.97 -1.43 -1.78 -2.06
AR(2) -1.93 -1.27 -0.89 -0.95 -1 .2 0 -1.48 -1.72 -1.89 -1.98 -1.99

SAR(l) 5.46 3.87 2.04 0.29’ -1.15’ -2.24 -3.03 -3.60 -4.01 -4.34
SAR(2) 5.34 3.76 1.99 0.27’ -1.16’ -2.24 -3.02 -3.58 -3.99 -4.30

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (l-L)d+e at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.B3 (1960’s decade) 

r in (2.9) for log of U.S. C.P.I. and wages. 

C.P.I. (1960.1 -1969.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.40 4.97 2.82 1.03’ -0.38’ -1.46’ -2.28 -2.91 -3.40 -3.78

AR(1) -0.38 0.36 0.30 -0 . 1 2 -0.67 -1.24 -1.76 -2 . 2 2 -2.61 -2.94
AR(2) -2.54 -1.25 -0.75 -0.72 -0.94 -1.26 -1.61 -1.95 -2.26 -2.54

SAR(l) 5.23 3.95 2.45 0.95’ -0.38’ -1.46’ -2.30 -2.95 -3.44 -3.83
SAR(2) 5.06 3.82 2.40 0.94’ -0.38’ -1.46’ -2.31 -2.95 -3.45 -3.84

b) Intercept.
W.N. 17.44 17.55 16.65 13.54 8.73 4.01 0.59 -1.49 -2.69 -3.41

AR(1) -5.26 -6 . 0 0 -7.08 -3.30 4.11 4.00 2.05 0.14 -1 .2 1 -2.06
AR(2) -2.78 -2.95 -3.60 -4.60 -1.97 2.40 1 .8 8 0.34 -1.06 -2.03

SAR(l) 4.89 4.48 3.99 3.96 3.90 2.49 0.34’ -1.49’ -2.70 -3.45
SAR(2) 7.46 7.16 5.97 3.93 2.55 1.45’ -0.08’ -1.61’ -2.73 -3.46

c) Intercept and a time trend.
W.N. 23.06 20.81 17.64 13.59 9.09 4.85 1.47’ -0.90’ -2.41 -3.33

AR(1) -3.64 -4.53 -4.09 1 .8 6 4.99 4.45 2.74 0.81 -0.82 -1.95
AR(2) -1.53 -2.67 -3.53 -3.70 -0.73 2.41 2 . 2 0 0.89 -0.62 -1 .8 8

SAR(l) 6.39 5.13 4.68 4.64 4.18 2.83 0.89’ -1 .0 0 ’ -2.43 -3.36
SAR(2) 10.13 7.72 5.39 3.74 2 . 6 8 1.65’ 0.29’ -1 .2 1 ’ -2.48 -3.37

Wages (1960.1 - 1969.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.12 4.83 2.77 1.04’ -0.35’ -1.42’ -2.25 -2 . 8 8 -3.38 -3.77

AR(1) 0.60 0.80 0.54 0.04 -0.55 -1.14 -1.67 -2.14 -2.53 -2.87
AR(2) -1.04 -0.50 -0.36 -0.50 -0.80 -1.17 -1.55 -1.90 -2 . 2 2 -2.51

SAR(l) 5.36 4.00 2.48 0.98’ -0.35’ -1.43’ -2.27 -2.92 -3.42 -3.82
SAR(2) 5.17 3.88 2.43 0.97’ -0.35’ -1.43’ -2.28 -2.92 -3.43 -3.82

b) Intercept.
W.N. 14.41 1 1 . 0 2 6.08 1.69’ -1.03’ -2.51 -3.35 -3.89 -4.27 -4.57

AR(1) -7.60 -4.52 2.52 2.45 0.89 -0.40 -1.23 -1.77 -2.19 -2.54
AR(2) -3.49 -4.42 -4.51 -1.06 -0.84 -1.35 -1.71 -1.87 -1.93 -1.97

SAR(l) 4.65 4.58 4.14 1.80’ -0.84’ -2.54 -3.49 -4.05 -4.43 -4.71
SAR(2) 5.65 4.39 3.32 1.58’ -0.81’ -2.57 -3.54 -4.10 -4.46 -4.73

c) Intercept and a time trend.
W.N. 1 1 . 0 0 7.01 3.56 0.90’ -0.99’ -2.29 -3.17 -3.79 -4.24 -4.57

AR(1) 4.50 4.44 3.50 2.25 1 .0 2 ’ -0.05’ -0.91’ -1.58’ -2 . 1 2 -2.54
AR(2) -0.78 -0.32 0.08 -0.15 -0.62 -1.09 -1.47 -1.73 -1.91 -2 . 0 2

SAR(l) 7.51 5.91 3.63 1.23’ -0.80’ -2.27 -3.26 -3.93 -4.39 -4.71
SAR(2) 5.55 4.62 3.12 1.15’ -0.77’ -2.27 -3.30 -3.97 -4.42 -4.73

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (1-L)d+0 at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.B4 (1970’s decade) 

r in (2.9) for log of U.S. C.P.I. and wages. 

C.P.I. (1970.1 - 1979.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.26 4.90 2.78 1 .0 2 ’ -0.38’ -1.45’ -2.28 -2.91 -3.40 -3.78

AR(1) -0.31 0.36 0.29 -0 . 1 2 -0.67 -1.24 -1.76 -2 .2 1 -2.60 -2.94
AR(2) -2.39 - 1 .2 1 -0.75 -0.73 -0.94 -1.26 -1.61 -1.95 -2.26 -2.55

SAR(l) 5.20 3.92 2.43 0.94’ -0.38’ -1.46’ -2.30 -2.95 -3.44 -3.83
SAR(2) 5.04 3.80 2.38 0.93’ -0.38’ -1.46’ -2.30 -2.95 -3.45 -3.84

b) Intercept.
W.N. 16.23 15.98 15.79 14.22 10.90 7.09 3.88 1.46’ -0.34’ -1 .6 8 ’

AR(1) -5.74 -6.30 -6.79 -7.47 -1.75 2 . 8 8 3.30 2.65 1 .6 8 0 . 6 6

AR(2) -3.39 -3.38 -3.15 -3.41 -4.16 -3.12 -0 .1 1 0.80 0.75 0.35
SAR(l) 5.16 4.93 4.96 5.05 5.06 4.45 3.08 1.42 -0.18 -1.53
SAR(2) 6.63 6.44 6.35 5.78 4.89 4.09 3.04 1.67’ 0.17’ -1 .2 2 ’

c) Intercept and a time trend.
W.N. 20.41 19.02 17.11 14.61 11.59 8.26 4.99 2.14 -0 .1 0 ’ -1.71’

AR(1) -2.09 -3.57 -4.82 -5.06 -0.71 2.91 3.62 3.09 1.99 0.74
AR(2) 1.73 0 . 0 2 -1.32 -2.43 -3.33 -3.44 -1 .2 0 0.50 0.79 0.44

SAR(l) 9.83 8.23 7.00 6.17 5.53 4.70 3.43 1.74’ -0.03’ -1.57’
SAR(2) 1 0 .2 1 9.13 7.90 6.59 5.36 4.27 3.14 1.79’ 0.24’ -1.28’

Wages (1970.1 - 1979.12)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 6.58 4.51 2.60 0.95’ -0.38’ -1.44’ -2.25 -2 . 8 8 -3.37 -3.76

AR(1) 0.29 0.54 0.37 -0.06 -0.60 -1.15 -1.67 -2.13 -2.53 -2 . 8 6

AR(2) -1.36 -0.78 -0.55 -0.60 -0.83 -1.14 -1.49 -1.83 -2.14 -2.43
SAR(l) 5.04 3.76 2.32 0.89’ -0.39’ -1.44’ -2.27 -2.92 -3.42 -3.81
SAR(2) 4.92 3.67 2.29 0 .8 8 ’ -0.39’ -1.45’ -2.28 -2.92 -3.42 -3.81

b) Intercept.
W.N. 15.14 12.46 7.11 1.42’ -1.35’ -2.33 -2.78 -3.10 -3.40 -3.67

AR(1) -6.45 -6.81 -0.24 -0.23 -2.05 -2.79 -3.02 -3.18 -3.36 -3.56
AR(2) -5.99 -9.30 -2.30 0.76 -0.53 -1.27 -1.39 -1.41 -1.50 - 1 .6 6

SAR(l) 5.05 4.43 3.64 1 .1 0 ’ -1.33’ -2.35 -2.81 -3.14 -3.43 -3.70
SAR(2) 5.86 4.51 3.01 0.98’ -1.29’ -2.35 -2.82 -3.14 -3.43 -3.70

c) Intercept and a time trend.
W.N. 6.04 3.46 1.37’ -0 .2 0 ’ -1.34’ -2.16 -2.75 -3.20 -3.54 -3.81

AR(1) 2.39 1.18’ 0 .0 0 ’ -1.04’ -1 .8 8 ’ -2.53 -3.02 -3.40 -3.67 -3.88
AR(2) 2.51 1.94’ 1 .2 2 ’ 0.45’ -0.28’ -0.90’ -1.41’ -1.81’ -2 . 1 0 -2.29

SAR(l) 4.84 3.07 1.32’ -0.17’ -1.32’ -2.17 -2.79 -3.24 -3.59 -3.85
SAR(2) 4.49 2.92 1.31’ -0.14’ -1.30’ -2.16 -2.79 -3.25 -3.60 -3.86

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (l-L)d+e at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.B5 (1950.1 - 1979.12)

Multivariate score tests in the time domain (S'2 in (5.32)) with no regressors and white noise Ut. dj and 
d2 are the differencing orders for log of CPI and wages respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 1818.1 1635.2 1227.0 914.79 860.39 804.72 747.77 693.58 644.53
0.7 1674.7 1253.6 767.76 658.72 649.68 627.87 591.05 548.66 506.62
0 . 8 1589.8 987.83 412.54 267.03 330.75 375.03 380.84 365.88 342.69
0.9 1560.4 879.34 345.75 649.54 87.87 17.14 218.64 233.33 230.42
1 .0 1526.4 827.74 411.02 105.15 0.99’ 44.04 103.13 139.32 154.53
1 .1 1471.6 774.45 445.48 197.88 40.87 8.15 40.44 77.73 103.15
1 .2 1403.2 715.06 439.25 246.03 105.38 31.61 25.86 47.73 71.34
1.3 1330.9 655.89 413.42 256.91 144.93 70.60 39.75 43.08 57.83
1.4 1261.2 601.23 381.86 249.63 151.65 99.34 63.45 52.68 58.19

Multivariate score tests in the time domain (S'2 in (5.32)) with an intercept and white noise Ut. d, and dj 
are the differencing orders for log of CPI and wages respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 2215.7 2040.1 2160.2 2503.4 2492.8 2953.6 3023.2 3054.8 3071.2
0.7 2157.8 1920.5 1994.0 2324.5 2274.4 2772.9 2843.1 2875.1 2891.7
0 . 8 2108.3 1753.3 1672.0 1920.5 1896.8 2324.2 2391.1 2422.4 2438.9
0.9 2054.6 1575.6 1250.4 1325.5 1341.9 1617.2 1673.1 1700.9 1716.3
1 .0 1773.1 1270.0 804.65 684.95 740.46 862.97 901.03 922.22 935.17
1 .1 2 1 1 1 . 6 1445.6 672.47 342.53 312.37 335.99 352.73 363.28 370.62
1 .2 2 2 2 1 . 2 1495.9 605.73 171.27 90.31 97.57 109.88 118.75 125.44
1.3 2313.6 1551.4 601.37 119.62 18.71 22.85 34.01 42.49 49.05
1.4 2372.0 1589.9 613.16 113.03 5.62’ 10.14 21.17 29.63 36.19

Multivariate score tests in the time domain (S12 in (5.32)) with a time trend and white noise Ut. d, and d2 

are the differencing orders for log of CPI and wages respectively.

djNdj 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 2226.6 1895.5 2 0 0 1 . 1 2254.0 2557.1 2601.7 2668.5 2700.9 2717.4
0.7 2332.2 1834.6 1824.9 2035.7 2238.5 2378.3 2448.9 2483.9 2501.9
0 . 8 2309.7 1702.2 1558.7 1693.0 1812.9 1992.8 2060.8 2095.8 2114.2
0.9 2155.5 1487.0 1207.6 1235.5 1283.7 1450.7 1508.0 1539.2 1556.4
1 .0 1957.3 1214.7 792.36 696.84 740.46 856.11 896.65 920.70 935.07
1 .1 1744.1 1035.2 553.53 373.42 357.08 380.67 399.14 410.93 418.75
1 .2 1639.0 927.85 401.22 167.97 115.18 122.13 135.44 145.05 151.99
1.3 1603.3 893.43 348.32 92.38 24.52 27.88 39.58 48.59 55.33
1.4 1601.1 892.90 341.89 78.33 5.71’ 9.44 20.89 29.85 36.60

Non-rejection values of the null hypothesis (5.4) at 95% significance level.



TABLE 6.B6 (1950.1 - 1979.12)

Multivariate score tests in the frequency domain (SK in (5.34)) with no regressors and white noise U,.
and d2 are the differencing orders for log of CPI and wages respectively.

djXdj 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 2195.7 1322.8 1011.1 1072.2 990.35 919.59 852.48 790.50 735.08
0.7 1926.0 1038.3 615.45 557.15 571.13 560.78 531.46 494.47 457.84
0.8 1672.0 926.84 347.63 220.52 294.42 342.85 351.96 340.02 319.66
0.9 1500.2 941.15 360.09 55.96 76.61 16.20 208.44 223.62 221.83
1.0 1376.9 947.92 467.33 116.44 0.73’ 44.85 103.07 138.17 153.22
1.1 1274.2 914.21 515.51 222.19 43.61 8.20 42.85 80.43 105.53
1.2 1182.8 857.63 510.35 275.33 113.01 30.78 25.73 50.36 74.98
1.3 1101.4 794.65 481.20 286.43 155.44 71.78 37.72 42.87 60.45
1.4 1029.7 733.89 444.88 277.41 160.28 102.35 62.00 50.17 57.95

Multivariate score tests in the frequency domain (S12 in (5.34)) with an intercept and white noise Ut. 
and 62 are the differencing orders for log of CPI and wages respectively.

dj\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 2066.2 1928.2 1995.4 2251.51 2797.6 2633.0 2701.5 2735.0 2753.0
0.7 1925.3 1738.3 1782.0 2033.68 2616.6 2414.6 2483.2 2516.9 2534.9
0.8 1863.2 1565.7 1491.8 1682.53 2179.5 2026.3 2091.3 2123.8 2141.5
0.9 1808.0 1398.8 1135.7 1192.81 1504.0 1443.6 1497.6 1526.1 1542.4
1.0 2043.5 1459.4 879.55 731.92 796.83 800.69 837.59 859.08 872.51
1.1 1803.8 1225.0 599.36 329.30 303.96 326.74 343.33 354.04 361.53
1.2 1884.9 1249.6 521.67 161.71 91.70 98.87 111.06 119.99 126.75
1.3 1964.9 1293.0 509.97 107.55 19.43 23.68 34.70 43.19 49.79
1.4 2020.2 1328.0 519.12 99.45 5.21’ 9.94 20.81 29.26 35.87

Multivariate score tests in the frequency domain (S*2 in (5.34)) with a time trend and white noise Ut. 
and d2 are the differencing orders for log of CPI and wages respectively.

djNdj 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 2278.7 1953.7 2073.1 2336.6 2470.5 2687.8 2752.8 2783.4 2798.5
0.7 2324.4 1814.9 1809.2 2026.9 2244.6 2371.6 2440.5 2473.8 2490.6
0.8 2289.3 1652.3 1500.3 1635.4 1869.9 1934.6 2000.9 2034.3 2051.7
0.9 2151.4 1442.1 1143.7 1166.5 1354.3 1378.5 1434.3 1464.2 1480.5
1.0 1934.2 1236.6 838.36 750.69 796.83 798.29 837.71 860.92 874.67
1.1 1790.2 1037.1 531.70 343.67 325.41 349.43 367.61 379.18 386.83
1.2 1696.2 943.74 395.77 156.22 102.60 110.41 123.68 133.23 140.09
1.3 1662.2 913.73 349.72 89.03 21.15 25.36 37.14 46.13 52.82
1.4 1658.1 913.01 344.76 77.44 5.23’ 9.73 21.28 30.24 36.93

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.B7 (1950.1 - 1979.12)

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ut. d, and are
the differencing orders for log of CPI and wages respectively.

dAd* 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 304.56 318.83 341.97 339.79 334.83 324.35 327.78 176.68 574.47
0.7 314.06 228.84 260.87 280.64 290.36 293.07 308.76 306.05 111.79
0.8 210.15 157.28 215.17 264.16 288.45 300.68 316.48 352.22 388.97
0.9 164.16 120.38 98.36 331.68 343.30 344.86 358.71 403.73 477.21
1.0 275.78 27.31 83.46 70.29 2919.0 854.12 30.34 247.70 596.84
1.1 96.90 89.40 193.08 281.39 223.15 1402.9 374.73 164.54 393.21
1.2 53.02 100.21 100.77 27.94 14.47 18.90 85.59 399.88 606.75
1.3 47.34 77.12 128.88 126.49 80.79 41.44 17.36 83.05 218.00
1.4 96.15 123.54 198.48 322.34 375.18 268.36 131.06 31.17 3.36’

Multivariate score tests (S2 in (5.37)) with an intercept and a VAR(l) structure on Ut. dj and d2 are 
the differencing orders for log of CPI and wages respectively.

dj\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 2.62’ 1.27’ 2.23’ 4.63’ 6.51 7.55 9.37 12.57 16.67
0.7 12.59 7.60 10.75 14.77 17.05 17.88 19.14 21.78 25.47
0.8 31.74 19.01 23.41 29.79 32.87 33.50 33.96 35.69 38.68
0.9 39.54 16.94 21.38 26.80 26.67 24.35 23.02 23.84 26.39
1.0 35.43 2.45’ 16.85 15.23 3.22’ 0.33’ 5.65’ 13.72 21.35
1.1 9.58 3.64’ 47.16 45.17 24.56 30.07 45.82 59.96 70.32
1.2 47.78 8.92 82.66 78.64 39.66 34.07 42.04 50.93 58.24
1.3 50.90 6.30 106.64 93.15 34.90 17.71 19.36 24.94 30.63
1.4 48.49 1.55’ 123.68 98.69 28.58 5.77’ 5.05’ 9.63 14.94

Multivariate score tests (S2 in (5.37)) with a time trend and a VAR(l) structure on Ut. d, and d2 are 
the differencing orders for log of CPI and wages respectively.

d^dj 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 28.80 16.50 11.40 11.57 13.24 25.73 29.83 34.00 38.01
0.7 45.00 36.99 28.84 27.01 27.89 40.38 44.12 47.99 51.76
0.8 53.65 54.17 43.32 37.19 35.90 45.87 49.12 52.59 56.07
0.9 39.30 58.27 47.95 31.61 23.50 25.54 28.23 31.50 34.91
1.0 9.67 55.78 56.20 23.33 3.22’ 7.52 19.71 30.54 38.60
1.1 5.28’ 71.60 94.39 51.20 23.78 39.38 59.77 74.89 84.76
1.2 9.50 83.11 129.07 80.63 40.72 38.79 52.48 63.39 71.02
1.3 6.87 80.04 141.51 88.11 35.30 16.84 25.63 34.15 40.74
1.4 2.82’ 75.18 144.24 87.57 27.80 3.18’ 10.60 18.68 25.19

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.B8 (1950.1 - 1979.12)

Multivariate score tests (S2 in (5.37)) with no regressors and a VMA(l) structure on Ut. d, and d2 are the
differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 ___ 436.51 489.73 545.22 696.44 1133.9 1818.0
0.7 80.21 285.62 357.50 511.95 950.71 1851.9
0.8 88.58 47317 119.74 224.71 421.00 880.94 1782.6
0.9 248.96 232.36 14158 75.37 157.87 491.88 1024.3 1778.6
1.0 221929 6483.7 8745.1 603.67 1187.9 1743.6 2114.3
1.1 ----- 95874 69882 43503 335548 27129 7316.8 4247.7
1.2 10343 11845 12148 11328 9190.1 6693.7 7107.9 6865.0 4752.9
1.3 2807.2 3741.6 4371.4 4279.6 3674.8 2986.7 2239.3 2867.1 2294.5
1.4 1282.6 1792.8 2270.8 2348.9 1956.0 1681.6 1196.6 1093.2 1645.9

Multivariate score tests (S2 in (5.37)) with an intercept and a VMA(l) structure on Ut. d, and d2 are the 
differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 1592.3 1585.0 1613.3 1706.8 1813.1 1897.0 1953.5 1989.2 2010.5
0.7 1343.2 1321.9 1353.9 1450.6 1556.1 1633.8 1681.6 1709.0 1723.0
0.8 1151.5 1025.7 990.95 1049.6 1135.8 1204.4 1247.6 1272.2 1284.1
0.9 1040.9 798.44 659.57 647.18 692.54 740.88 774.75 794.79 804.46
1.0 1006.4 676.49 442.86 356.93 354.68 376.13 395.93 408.60 414.10
1.1 1023.8 638.95 339.97 200.31 161.66 153.26 157.88 162.04 181.21
1.2 1062.2 644.87 305.80 133.37 73.45 55.26 55.40 56.53 80.37
1.3 1101.1 663.61 301.13 110.03 39.05 16.84 15.76 15.84 40.20
1.4 1128.0 681.51 305.80 104.28 27.75 3.97’ 2.90’ 2.83’ 21.49

Multivariate score tests (S2 in (5.37)) with a time trend and a VMA(l) structure on Ut. d, and d2 are the 
differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 1754.7 1636.9 1710.4 1846.5 1967.6 2048.8 2095.2 2118.4 2125.7
0.7 1575.8 1337.7 1322.4 1412.3 1518.2 1599.9 1651.3 1679.4 1690.1
0.8 1379.9 1057.0 956.65 985.28 1057.8 1126.0 1174.1 1202.9 1215.7
0.9 1200.2 825.02 655.47 622.96 653.50 698.09 735.01 759.09 770.28
1.0 1061.1 660.85 444.48 363.13 354.68 373.42 395.26 411.03 417.48
1.1 969.82 562.67 320.93 208.33 172.10 162.74 167.58 173.53 202.04
1.2 918.79 513.00 260.33 131.40 79.54 61.03 61.25 62.70 97.28
1.3 894.99 492.29 235.75 99.51 40.41 18.09 16.97 16.79 53.14
1.4 886.81 486.50 228.71 89.38 27.34 3.70’ 2.61’ 2.30’ 29.47

Non-rejection values of the null hypothesis (5.4) at 95% significance level, ant "—" means that the test
statistic exceeds 999999.
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TABLE 6.B9 (1950’s decade)

Multivariate score tests in the time domain (S12 in (5.32)) with no regressors and white noise Ut. di and
dj are the differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 146.56 224.79 264.76 271.49 262.44 246.98 229.60 212.45 196.58
0.7 41.68 45.70 136.52 186.71 197.60 191.50 179.16 165.17 151.50
0.8 156.59 57.83 10.41 78.69 125.47 137.61 134.42 125.74 115.61
0.9 211.85 154.73 55.32 1.19’ 45.76 82.66 94.09 93.31 87.98
1.0 217.69 182.39 122.76 40.42 0.87’ 29.49 55.96 65.74 66.57
1.1 206.56 178.77 139.01 86.53 26.55 4.21’ 22.90 41.04 49.00
1.2 190.62 165.83 134.39 98.59 57.84 19.06 9.11 21.41 33.69
1.3 174.28 151.05 123.83 96.05 68.18 39.96 17.52 14.40 22.46
1.4 159.15 136.96 112.40 89.15 68.19 48.98 31.31 19.54 19.44

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ur dj and d2 
are the differencing orders for log of CPI and wages respectively.

dj\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 220.62 195.98 191.70 193.62 197.29 201.26 204.92 208.06 210.67
0.7 187.40 162.98 156.90 157.82 161.59 166.22 170.62 174.33 177.28
0.8 150.39 127.63 120.81 120.59 123.75 128.32 132.97 137.00 140.23
0.9 111.56 90.86 84.45 83.54 85.85 89.87 94.31 98.34 101.67
1.0 76.25 57.21 51.85 50.80 52.39 55.69 59.64 63.45 66.71
1.1 49.32 31.23 26.97 26.13 27.27 29.93 33.37 36.84 39.98
1.2 32.37 14.61 11.18 10.63 11.55 13.79 16.83 20.07 23.01
1.3 23.92 6.10 3.14’ 2.84’ 3.67’ 5.66’ 8.44 11.48 14.33
1.4 21.15 3.13’ 0.38’ 0.20’ 1.01’ 2.86’ 5.51’ 8.44 11.24

Multivariate score tests in the time domain (S*2 in (5.32)) with a time trend and white noise Ut. d, and 
are the differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 226.47 218.11 228.38 242.93 255.00 263.24 268.45 271.74 274.03
0.7 205.47 187.09 191.05 202.98 214.51 223.05 228.73 232.44 235.01
0.8 170.43 143.62 139.98 147.28 156.59 164.32 169.88 173.71 176.45
0.9 131.31 99.29 89.19 91.63 98.07 104.38 109.37 113.06 115.83
1.0 98.09 64.00 49.75 48.46 52.39 57.27 61.55 64.96 67.65
1.1 75.19 41.00 24.76 21.23 23.46 27.27 30.96 34.09 36.67
1.2 62.11 28.61 11.70 7.09 8.38 11.55 14.86 17.79 20.28
1.3 56.20 23.40 6.42 1.38’ 2.23’ 5.08’ 8.18 10.99 13.43
1.4 54.60 22.25 5.37’ 0.19’ 0.86’ 3.55’ 6.56 9.32 11.74

Non-rejection values of the null hypothesis (5.4) at 95% significance level.



TABLE 6.B10 (1950’s decade)

Multivariate score tests in the frequency domain (S*2 in (5.34)) with no regressors and white noise Ut.
and d2 are the differencing orders for log of CPI and wages respectively.

d M 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 111.58 174.91 206.29 210.78 202.77 189.80 175.45 161.42 148.49
0.7 30.70 34.06 108.49 148.89 157.54 152.65 142.78 131.58 120.60
0.8 125.51 45.28 7.29 65.05 103.85 114.16 111.99 105.26 97.21
0.9 170.28 124.62 44.96 0.83’ 40.40 72.14 82.29 82.18 78.12
1.0 175.22 147.87 101.75 34.72 1.40’ 28.54 52.25 61.19 62.34
1.1 166.47 145.81 116.47 75.44 24.46 4.85’ 24.21 41.16 48.52
1.2 153.73 135.97 113.75 87.05 53.74 18.38 9.56 23.82 35.80
1.3 140.57 124.38 105.77 85.85 64.03 39.11 16.67 14.59 25.30
1.4 128.31 113.16 96.75 80.56 64.71 48.33 31.00 17.93 19.42

Multivariate score tests in the frequency domain (S12 in (5.34)) with an intercept and white noise 1
and d2 are the differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 218.56 196.19 191.91 193.78 197.47 201.40 204.95 207.96 210.49
0.7 183.06 160.80 154.98 156.09 160.00 164.61 168.87 172.41 175.25
0.8 144.32 123.51 117.01 117.07 120.43 124.99 129.49 133.33 136.42
0.9 105.22 86.31 80.20 79.57 82.09 86.11 90.40 94.24 97.42
1.0 70.84 53.54 48.41 47.60 49.39 52.70 56.52 60.15 63.28
1.1 45.22 28.88 24.80 24.14 25.47 28.16 31.48 34.82 37.81
1.2 29.34 13.37 10.08 9.68 10.76 13.03 15.97 19.04 21.90
1.3 21.52 5.56’ 2.72’ 2.52’ 3.50’ 5.52’ 8.22 11.11 13.87
1.4 19.05 2.93’ 0.28’ 0.20’ 1.14’ 3.03’ 5.58’ 8.38 11.08

Multivariate score tests in the frequency domain (S'2 in (5.34)) with a time trend and white noise Ut. 
and d2 are the differencing orders for log of CPI and wages respectively.

d.Xd, 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 218.02 208.99 219.15 233.09 244.51 252.37 257.44 260.74 263.06
0.7 195.02 175.35 179.13 190.58 201.57 209.77 215.32 219.02 221.60
0.8 161.43 133.45 129.94 137.05 146.03 153.53 159.00 162.82 165.55
0.9 124.88 92.23 82.72 85.33 91.67 97.88 102.83 106.53 109.29
1.0 93.61 59.43 46.21 45.39 49.39 54.27 58.57 62.01 64.71
1.1 71.63 37.78 22.87 20.00 22.41 26.28 30.02 33.20 35.80
1.2 58.81 25.90 10.51 6.67 8.20 11.45 14.83 17.81 20.32
1.3 52.84 20.78 5.44’ 1.23’ 2.34’ 5.27’ 8.44 11.31 13.77
1.4 51.12 19.59 4.40’ 0.09’ 1.02’ 3.80’ 6.87 9.69 12.12

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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Multivariate score tests in the time domain (S12 in (5.32)) with no regressors and white noise U,. d, and
d2 are the differencing orders for log of CPI and wages.

d.Nd, 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 331.23 411.10 373.07 334.27 299.61 269.15 242.70 219.95 200.56
0.7 228.78 157.52 308.70 284.52 252.81 223.92 198.78 177.27 159.03
0.8 296.92 200.43 49.47 218.39 207.24 183.67 161.58 142.46 126.29
0.9 288.72 240.21 159.15 8.81 147.00 146.18 130.50 115.05 101.63
1.0 266.70 226.38 183.17 117.88 2.09’ 96.87 102.51 93.32 83.39
1.1 242.59 204.99 169.58 134.44 84.43 5.83’ 65.57 74.05 69.46
1.2 219.75 183.75 151.74 123.86 97.57 61.09 11.50 48.10 56.96
1.3 199.28 164.54 134.87 110.58 90.66 72.34 46.73 16.95 39.45
1.4 181.42 147.81 120.04 98.31 81.70 68.61 56.49 38.92 21.80

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ut. d, and d2 
are the differencing orders for log of CPI and wages.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 341.78 360.59 392.15 432.12 464.37 483.65 493.96 499.71 503.32
0.7 303.38 320.79 353.56 394.49 426.99 446.18 456.35 461.98 465.51
0.8 251.19 253.24 274.73 308.26 336.36 353.25 362.32 367.44 370.74
0.9 200.65 173.38 168.20 183.90 202.33 214.67 221.78 226.07 229.02
1.0 179.28 118.68 80.02 73.47 80.70 88.23 93.41 96.94 99.56
1.1 192.38 105.84 40.74 17.68 17.62 22.40 26.59 29.73 32.19
1.2 218.65 116.16 35.58 4.07’ 1.03’ 4.97’ 8.91 11.96 14.37
1.3 240.53 129.37 40.96 5.76’ 1.78’ 5.59’ 9.53 12.58 15.00
1.4 254.50 138.89 46.70 9.88 5.60’ 9.42 13.38 16.46 18.89

Multivariate score tests in the time domain (S'2 in (5.32)) with a time trend and white noise Ut. dt and dj 
are the differencing orders for log of CPI and wages.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 301.10 325.78 350.89 372.05 387.89 398.89 406.33 411.45 415.11
0.7 263.92 281.15 304.45 325.88 342.40 353.96 361.76 367.09 370.85
0.8 212.68 216.84 232.49 249.94 264.51 275.14 282.53 287.67 291.35
0.9 155.57 143.56 147.23 157.26 167.69 176.18 182.51 187.15 190.58
1.0 109.80 82.42 73.34 75.02 80.70 86.72 91.82 95.86 99.01
1.1 86.50 47.87 28.90 24.04 26.08 30.25 34.46 38.07 41.00
1.2 82.63 37.42 12.53 3.88’ 3.93’ 7.17 10.95 14.36 17.19
1.3 88.14 39.64 11.77 1.35’ 0.58’ 3.50’ 7.15 10.51 13.32
1.4 95.37 45.34 16.10 4.91’ 3.86’ 6.71 10.36 13.73 16.55

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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Multivariate score tests in the frequency domain (S*2 in (5.34)) with no regressors and white noise Ut.
and d2 are the differencing orders of log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 251.43 315.77 290.51 261.28 234.08 209.71 188.32 169.84 154.04
0.7 204.88 114.84 238.73 225.37 202.30 180.08 160.24 142.99 128.20
0.8 254.81 178.99 34.48 173.07 169.25 152.27 135.24 120.03 106.90
0.9 245.06 207.82 143.44 6.03 121.46 124.50 113.12 100.96 90.02
1.0 225.40 194.69 161.49 108.28 2.57’ 84.61 91.68 84.87 76.79
1.1 204.52 176.20 149.33 121.81 79.52 6.63 60.83 69.46 65.98
1.2 184.87 158.06 134.02 112.51 91.23 58.99 12.05 47.00 55.51
1.3 167.26 141.65 119.57 101.02 85.16 69.67 45.93 17.26 39.84
1.4 151.89 127.29 106.79 90.33 77.24 66.38 55.59 38.52 21.96

Multivariate score tests in the frequency domain (S*2 in (5.34)) with an intercept and white noise U,. 
and d2 are the differencing orders of log of CPI and wages respectively.

d.Vda 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 303.02 328.04 354.40 381.50 401.98 414.35 421.45 425.86 428.93
0.7 246.26 266.98 295.51 324.95 346.62 359.38 366.56 370.94 373.97
0.8 196.02 197.82 216.73 241.66 261.08 272.71 279.30 283.39 286.26
0.9 157.73 130.53 127.48 139.93 153.30 162.24 167.68 171.25 173.88
1.0 143.79 87.25 57.83 54.52 60.67 66.69 70.99 74.09 76.52
1.1 154.77 76.63 26.86 11.89 13.34 17.74 21.48 24.37 26.71
1.2 175.40 84.23 22.61 1.66’ 1.25’ 5.21’ 8.85 11.71 14.02
1.3 193.04 94.74 27.06 3.47’ 2.49’ 6.43 10.09 12.97 15.29
1.4 204.79 102.73 32.05 7.27 6.11 10.08 13.79 16.68 19.02

Multivariate score tests in the frequency domain (S*2 in (5.34)) with a time trend and white noise Ut. 
and d2 are the differencing orders of log of CPI and wages respectively.

djXd, 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 306.35 339.12 367.27 386.95 399.49 407.29 412.33 415.85 418.50
0.7 242.14 263.14 288.33 308.37 321.98 330.68 336.32 340.18 343.00
0.8 181.99 185.08 201.12 217.32 229.58 237.94 243.56 247.49 250.38
0.9 130.56 114.04 117.23 126.54 135.55 142.52 147.61 151.36 154.19
1.0 96.15 62.89 53.49 55.41 60.67 65.94 70.31 73.77 76.50
1.1 81.87 37.47 18.97 15.36 17.83 21.82 25.66 28.91 31.56
1.2 81.99 31.68 8.11 1.46’ 2.47’ 5.85’ 9.45 12.61 15.23
1.3 87.93 35.02 9.11 1.13’ 1.57’ 4.77’ 8.32 11.47 14.09
1.4 94.23 40.30 13.41 4.92’ 5.20’ 8.38 11.94 15.12 17.76

’: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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Multivariate score tests (S2 in (5.37)) with no regressors and a VMA(l) structure on Ut. dj and d2 are the
differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 223.70 119.79 70.42 33.95 43.51 709.51 12778
0.7 54.25 164.04 241.17 79.28 77.15 177.59 1551.3
0.8 22.23 38.38 91.44 114.23 114.53 109.38 284.41 1137.7
0.9 10.23 66.70 50.12 122.51 148.93 144.47 165.32 229.69
1.0 1237.6 42.95 212.94 117.43 10.07 611.56 181.51 934.05 122.71
1.1 923625 137.90 330.74 462.54 300.35 25489 736.78 162.68 90.47
1.2 531.73 503.82 428.84 2132.2 755.45 167.07
1.3 811793 701643 2349.4 590.39 446.51 332.75 291.95 485.85 146.41
1.4 427061 105494 938.07 346.69 227.70 188.95 161.35 149.31

Multivariate score tests (S2 in (5.37)) with an intercept and a VM A(l) structure on Ut. dj and are the 
differencing orders for log of CPI and wages respectively.

d M 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 191.75 212.84 225.22 233.36 240.12 246.47 252.53 258.06 262.13
0.7 134.87 151.57 166.21 177.64 186.64 193.85 199.68 204.14 205.90
0.8 93.39 96.64 105.87 115.88 124.74 131.92 137.43 141.17 141.37
0.9 71.55 60.08 59.29 63.89 70.11 75.97 80.67 83.67 82.88
1.0 65.26 42.71 31.89 29.88 32.38 36.26 39.88 42.23 41.37
1.1 67.97 38.38 20.09 12.62 11.88 13.99 16.70 18.71 18.36
1.2 74.15 40.39 17.31 6.21 3.27’ 4.15’ 6.21 8.02 8.25
1.3 79.97 43.89 18.13 5.01’ 0.80’ 0.89’ 2.43’ 4.00’ 4.53’
1.4 83.82 46.27 19.25 5.32* 0.56’ 0.17’ 1.28’ 2.57’ 3.15’

Multivariate score tests (S2 in (5.37)) with a time trend and a VM A(l) structure on Ut. d, and d2 are the 
differencing orders for log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 175.91 195.91 211.22 220.85 226.68 230.63 234.03 237.61 240.97
0.7 122.43 134.45 147.73 157.99 165.17 170.35 174.54 178.20 180.37
0.8 84.40 86.09 93.97 102.04 108.64 113.83 118.08 121.53 122.73
0.9 60.98 53.19 54.57 58.93 63.62 67.86 71.58 74.59 75.19
1.0 48.95 33.98 29.51 30.01 32.38 35.29 38.22 40.73 41.17
1.1 44.51 24.82 16.01 13.37 13.74 15.43 17.62 19.74 20.32
1.2 44.26 21.82 10.25 5.50’ 4.46’ 5.26’ 6.93 8.79 9.64
1.3 45.65 21.79 8.74 2.81’ 0.95’ 1.22’ 2.55’ 4.25’ 5.33’
1.4 46.83 22.42 8.80 2.42’ 0.22’ 0.22’ 1.34’ 2.92’ 4.13’

Non-rejection values of the null hypothesis (5.4) at 95% significance level and "—" means that the tests
statistic exceeds 999999.



277

TABLE 6.B14 (1970’s decade)

Multivariate score tests in the time domain (St2 in (5.32)) with no regressors and white noise Ut. d, and
d2 are the differencing orders of the log of CPI and wages respectively.

di\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 376.13 403.36 360.48 323.14 290.45 261.62 236.36 214.46 195.65
0.7 210.93 165.83 302.64 276.22 246.05 218.71 194.73 174.03 156.34
0.8 285.14 207.31 42.62 215.48 202.73 180.19 159.07 140.65 124.94
0.9 278.06 240.23 174.39 6.46 147.58 144.63 129.24 114.21 101.10
1.0 257.09 224.40 188.27 133.86 2.48’ 100.16 102.94 93.38 83.45
1.1 233.90 202.55 171.62 140.84 97.70 5.44’ 70.21 75.54 70.17
1.2 211.80 181.27 152.64 127.09 103.26 70.56 9.55 52.86 58.84
1.3 191.91 162.17 135.26 112.49 93.59 76.56 52.70 13.74 43.53
1.4 174.51 145.55 120.17 99.55 83.43 70.72 59.29 42.27 17.72

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ut. d, and dj 
are the differencing orders of the log of CPI and wages respectively.

d ^ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 362.76 352.82 386.54 434.95 462.79 472.48 475.86 477.79 479.37
0.7 373.15 330.80 356.39 409.53 442.05 453.83 457.87 459.96 461.56
0.8 380.08 303.33 297.57 339.55 370.35 382.39 386.69 388.83 390.39
0.9 368.75 266.75 215.69 229.28 249.70 258.93 262.51 264.40 265.83
1.0 348.29 229.78 137.51 119.50 126.86 132.01 134.40 135.91 137.20
1.1 332.45 203.42 85.74 48.82 49.03 52.09 53.92 55.32 56.62
1.2 323.90 188.54 59.45 16.04 14.64 17.46 19.31 20.80 22.22
1.3 320.67 182.01 48.88 4.29’ 3.04’ 5.99 7.95 9.53 11.04
1.4 321.12 181.07 46.82 2.28’ 1.20’ 4.17’ 6.13 7.73 9.29

Multivariate score tests in the time domain (S12 in (5.32)) with a time trend and white noise Ut. d, and dj 
are the differencing orders of the log of CPI and wages respectively.

d , ^ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 274.35 283.15 295.59 306.50 314.59 320.29 324.32 327.28 329.55
0.7 261.87 264.83 274.80 285.09 293.30 299.26 303.54 306.67 309.06
0.8 234.89 230.74 236.11 243.93 250.95 256.37 260.40 263.42 265.75
0.9 193.37 182.61 182.68 187.03 192.01 196.28 199.66 202.32 204.42
1.0 142.96 127.39 122.93 123.99 126.86 129.87 132.52 134.74 136.59
1.1 93.88 75.79 68.49 67.34 68.76 70.90 73.05 75.00 76.70
1.2 56.60 37.81 29.37 27.28 28.11 29.95 31.97 33.89 35.61
1.3 35.90 17.20 8.62 6.42 7.24 9.14 11.26 13.28 15.11
1.4 29.19 10.64 2.19’ 0.13’ 1.10’ 3.14’ 5.37’ 7.49 9.39

Non-rejection values of the null hypothesis (4.4) at 95% significance level.



TABLE 6.B15 (1970’s decade)

Multivariate score tests in the frequency domain (S'2 in (5.34)) with no regressors and white noise Ut.
and d2 are the differencing orders of log of CPI and wages respectively.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 291.50 316.70 284.83 255.48 229.24 205.83 185.20 167.25 151.82
0.7 180.61 126.62 240.83 222.32 199.09 177.47 158.23 141.45 127.00
0.8 237.77 175.69 32.31 176.19 168.12 150.82 134.08 119.21 106.35
0.9 230.45 200.95 149.05 5.22’ 125.44 124.73 112.81 100.70 89.90
1.0 212.56 187.71 160.34 117.15 2.89’ 89.18 92.79 85.27 77.05
1.1 193.04 169.76 146.93 123.62 88.56 5.95’ 65.60 71.10 66.78
1.2 174.44 152.20 131.46 112.57 94.15 66.54 9.92 51.57 57.40
1.3 157.67 136.32 117.11 100.53 86.25 72.58 51.36 13.95 43.89
1.4 142.95 122.40 104.50 89.66 77.64 67.65 57.96 41.84 17.80

Multivariate score tests in the frequency domain (S*2 in (5.34)) with an intercept and white noise Ut. 
and d2 are the differencing orders of log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 314.14 314.89 338.55 366.90 382.22 387.97 390.68 392.57 394.12
0.7 302.00 269.29 288.78 323.74 344.11 351.92 355.26 357.32 358.89
0.8 306.90 237.54 230.90 259.35 280.05 288.70 292.39 294.51 296.07
0.9 303.32 210.46 167.87 176.81 191.53 198.77 202.06 203.99 205.43
1.0 288.61 183.26 110.19 97.30 103.64 108.26 110.67 112.25 113.55
1.1 272.69 160.21 68.85 42.69 44.14 47.23 49.11 50.52 51.81
1.2 262.49 145.42 45.49 14.49 14.71 17.50 19.33 20.77 22.13
1.3 258.65 138.87 35.47 3.32’ 3.52’ 6.35 8.20 9.71 11.15
1.4 259.19 138.15 33.54 1.20’ 1.41’ 4.19’ 6.02 7.54 9.02

Multivariate score tests in the frequency domain (S° in (5.34)) with a time trend and white noise Ut. 
and are the differencing orders of log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 272.76 284.02 296.71 306.66 313.60 318.35 321.71 324.23 326.19
0.7 240.61 244.75 254.56 263.86 270.98 276.07 279.74 282.47 284.58
0.8 204.94 200.99 205.97 212.94 219.07 223.80 227.37 230.08 232.20
0.9 164.13 153.11 152.91 156.75 161.19 165.05 168.17 170.66 172.66
1.0 120.19 104.33 99.92 100.91 103.64 106.54 109.13 111.32 113.15
1.1 79.35 61.13 54.23 53.38 54.96 57.21 59.44 61.44 63.17
1.2 48.96 30.20 22.39 20.83 21.98 24.01 26.16 28.14 29.88
1.3 32.43 13.88 6.04 4.44’ 5.61’ 7.71 9.93 11.99 13.80
1.4 27.56 9.18 1.50’ 0.03’ 1.34’ 3.54’ 5.85’ 7.97 9.83

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.B16 (1970’s decade)

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ut. d, and dj are the
differencing orders of log of CPI and wages respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 117.96 214.71 264.33 270.33 246.36 2204.2 1227.5 904.01 6076.6
0.7 77.93 142.21 171.16 209.92 227.56 240.45 466.10 1311.0 7120.8
0.8 42.07 68.57 112.16 152.05 198.54 249.87 28950 1463.3 6863.1
0.9 33.80 41.94 63.61 114.90 154.33 240.39 499.99 1256.9 5603.7
1.0 832.06 647.84 480.58 220.72 4.51’ 376.55 1192.8 2485.8 5098.7
1.1 170247 673495 100878 14366 1961.5 215.20 363.83 2581.4 4838.0
1.2 735696 674218 423953 58132 10531 1279.5 134.14 956.36 3221.4
1.3 53448 295376 610815 134237 21935 6046.0 1058.1 11.16 1264.0
1.4 51775 181795 576768 274222 38219 11392 4737.3 1307.7 9.54

Multivariate score tests (S2 in (5.37)) with an intercept and a 
differencing orders of log of CPI and wages respectively.

VAR(l) structure on U,. dj and d2 a

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 1.34’ 2.47’ 4.16’ 5.58’ 6.88 7.76 8.42 9.16 10.08
0.7 4.08’ 1.82’ 3.62’ 6.08 7.67 8.50 9.15 9.92 10.91
0.8 7.92 5.27’ 7.01 10.78 13.06 13.83 14.30 15.02 16.09
0.9 6.88 5.52’ 7.35 11.54 14.31 14.95 15.18 15.83 16.95
1.0 2.78’ 0.49’ 0.99’ 1.58’ 4.43’ 6.60 7.81 8.82 9.91
1.1 5.96’ 1.95’ 3.75’ 2.83’ 7.57 11.65 13.53 14.56 15.42
1.2 11.62 5.37’ 9.19 7.01 11.33 15.21 16.82 17.66 18.41
1.3 11.99 4.92’ 10.02 5.96’ 9.61 13.35 14.91 15.78 16.63
1.4 8.70 2.99’ 8.67 2.80’ 5.95’ 9.73 11.43 12.47 13.52

Multivariate score tests (S2 in (5.37)) with a time trend and a 
differencing orders of log of CPI and wages respectively.

VAR(l) structure on Ut. d, and d2 a

djXdj 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 5.33’ 5.05’ 5.97’ 7.45 9.15 10.89 12.58 14.14 15.49
0.7 10.92 10.16 10.76 12.14 13.82 15.58 17.29 18.89 20.30
0.8 14.56 13.38 13.57 14.70 16.25 17.93 19.60 21.19 22.62
0.9 10.90 9.57 9.38 10.23 11.61 13.19 14.80 16.33 17.73
1.0 2.67’ 1.53’ 1.42’ 2.57’ 4.43’ 6.51 8.51 10.30 11.83
1.1 2.30’ 1.27’ 1.54’ 3.39’ 6.07 8.89 11.45 13.60 15.32
1.2 7.02 5.91’ 6.05 7.84 10.54 13.41 16.03 18.23 19.99
1.3 8.07 6.96 6.74 8.08 10.43 13.07 15.58 17.77 19.57
1.4 5.17’ 4.17’ 3.71’ 4.74’ 6.84 9.37 11.87 14.13 16.05

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.B17

? in (2.9) for the estimated residuals.

log CPI, - 3.91 - 0.70 log W,

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 35.07 24.95 15.55 8.10 2.83 -0.68’ -2.97 -4.49 -5.52 -6.26

AR(1) 8.95 13.04 10.43 6.81 3.46 0.74 -1.29 -2.75 -3.79 -4.53
AR(2) 2.41 7.93 8.23 5.83 3.14 0.76 -1.13 -2.54 -3.54 -4.23

SAR(l) 15.27 14.51 11.52 7.19 2.91 -0.50’ -2.91 -4.53 -5.62 -6.38
SAR(2) 11.41 10.88 9.25 6.26 2.70 -0.49’ -2.87 -4.51 -5.63 -6.40

b) Intercept.
W.N. 37.90 27.78 17.78 9.61 3.84 0.12’ -2.23 -3.76 -4.81 -5.58

AR(1) -0.39 7.12 8.42 5.88 2.91 0.45’ -1.31 -2.52 -3.35 -3.96
AR(2) -1.75 2.15 5.47 4.45 2.24 0.16 -1.43 -2.51 -3.23 -3.70

SAR(l) 13.99 13.69 12.14 8.30 3.88 0.26’ -2.23 -3.86 -4.95 -5.72
SAR(2) 9.71 9.39 8.73 6.56 3.26 0.08’ -2.28 -3.87 -4.95 -5.73

c) Intercept and a time trend.
W.N. 38.07 27.85 17.76 9.57 3.85 0.14’ -2.21 -3.74 -4.80 -5.58

AR(1) -0.94 7.00 8.42 5.87 2.91 0.48 -1.28 -2.49 -3.34 -3.96
AR(2) -1.98 2.05 5.48 4.44 2.24 0.19 -1.39 -2.48 -3.21 -3.70

SAR(l) 13.73 13.65 12.14 8.29 3.88 0.29’ -2.20 -3.84 -4.94 -5.72
SAR(2) 9.64 9.37 8.74 6.56 3.26 0.10’ -2.26 -3.86 -4.95 -5.73

log W, + 5.31 - 13.6 log CPI,

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 32.40 22.63 13.86 7.04 2.22 -1.02’ -3.16 -4.60 -5.60 -6.31

AR(1) 10.42 12.26 9.42 6.00 2.89 0.37 -1.52 -2.90 -3.89 -4.61
AR(2) 3.85 8.19 7.54 5.15 2.64 0.43 -1.33 -2.65 -3.60 -4.27

SAR(l) 15.42 14.02 10.69 6.39 2.32 -0.86’ -3.12 -4.65 -5.69 -6.43
SAR(2) 11.91 10.99 8.94 5.74 2.21 -0.82’ -3.08 -4.64 -5.70 -6.45

b) Intercept.
W.N. 36.33 26.17 16.47 8.73 3.33 -0.17’ -2.40 -3.87 -4.88 -5.63

AR(1) 1.41 8.00 8.08 5.41 2.53 0.20 -1.47 -2.61 -3.41 -4.01
AR(2) -0.97 3.20 5.48 4.10 1.91 -0.09 -1.58 -2.61 -3.28 -3.73

SAR(l) 14.65 13.85 11.80 7.78 3.43 -0.04’ -2.41 -3.97 -5.03 -5.78
SAR(2) 9.89 9.56 8.67 6.26 2.91 -0.19’ -2.46 -3.99 -5.03 -5.78

c) Intercept and a time trend.
W.N. 36.82 26.51 16.59 8.75 3.33 -0.16’ -2.39 -3.86 -4.88 -5.63

AR(1) -0.05 7.59 8.10 5.41 2.53 0.21 -1.46 -2.60 -3.41 -4.01
AR(2) -1.61 2.76 5.46 4.11 1.91 -0.07 -1.57 -2.59 -3.27 -3.73

SAR(l) 14.04 13.71 11.82 7.78 3.43 -0.03’ -2.40 -3.97 -5.02 -5.78
SAR(2) 9.65 9.44 8.65 6.26 2.91 -0.18’ -2.45 -3.98 -5.03 -5.78

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
test statistic with respect to d is observed.
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TABLE 6.B18 (1950’s decade)

r  in (2.9) for the estimated residuals.

log CPI(50)t - 4.16 - 0.36 log W(50)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 9.35 7.32 5.44 3.75 2.30 1.07’ 0.03’ -0.84’ -1.57’ -2.19

AR(1) 2.02 2.06 1.61 1.09 0.58 0.07 -0.41 -0.86 -1.28 -1.67
AR(2) 3.00 2.27 1.71’ 1.23’ 0.81’ 0.40’ 0.02’ -0.35’ -0.70’ -1.04’

SAR(l) 7.53 6.46 5.15 3.73 2.34 1.08’ 0.01’ -0.89’ -1.63’ -2.24
SAR(2) 7.51 6.42 5.12 3.72 2.35 1.10’ 0.03’ -0.86’ -1.61’ -2.23

b) Intercept.
W.N. 13.24 11.69 9.34 6.69 4.25 2.24 0.68’ -0.49’ -1.38’ -2.06

AR(1) 1.32’ 0.82’ 0.56’ 0.40’ 0.03’ -0.47’ -0.99’ -1.44’ -1.82’ -2.12
AR(2) 3.64 1.59’ 0.42’ -0.07’ -0.46’ -0.91’ -1.36’ -1.76’ -2.08 -2.32

SA R(l) 8.78 8.25 7.31 5.92 4.18 2.38 0.79’ -0.48’ -1.44’ -2.15
SAR(2) 8.62 7.69 6.44 5.05 3.56 2.04 0.63’ -0.55’ -1.46’ -2.15

c) Intercept and a time trend. 
W.N. 14.88 12.56 9.71 6.80 4.24 2.18 0.62’ -0.55’ -1.42’ -2.08

AR(1) 0.19 -0.14 0.18 0.33 0.01 -0.50 -1.03 -1.48 -1.84 -2.12
AR(2) 1.28’ 0.14’ -0.13’ -0.22’ -0.51’ -0.94’ -1.39’ -1.78’ -2.08 -2.30

SA R(l) 8.81 8.24 7.33 5.94 4.17 2.33 0.72’ -0.55’ -1.48’ -2.17
SAR(2) 8.71 7.64 6.39 5.03 3.54 2.00 0.57’ -0.61’ -1.51’ -2.18

log W(50), + 10.29 - 2.48 log CPI(50)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 10.80 8.40 6.20 4.29 2.69 1.36’ 0.26’ -0.64’ -1.39’ -2.03

AR(1) 2.66 2.84 2.14 1.39 0.73 0.15 -0.36 -0.82 -1.23 -1.60
AR(2) 4.46 3.21 2.27 1.55’ 0.95’ 0.44’ -0.01’ -0.41’ -0.76’ -1.09’

SAR(l) 8.15 7.13 5.78 4.26 2.75 1.39’ 0.24’ -0.70’ -1.47’ -2.10
SAR(2) 8.03 6.94 5.63 4.17 2.71 1.39’ 0.25’ -0.68’ -1.45’ -2.09

b) Intercept.
W.N. 13.64 11.48 8.82 6.09 3.68 1.76’ 0.30’ -0.79’ -1.62’ -2.26

AR(1) 0.76 0.54 0.57 0.41 -0.02 -0.56 -1.08 -1.52 -1.87 -2.15
AR(2) 2.46 1.00’ 0.24’ -0.16’ -0.57’ -1.04’ -1.49’ -1.88’ -2.17 -2.38

SAR(l) 8.69 8.06 7.04 5.54 3.73 1.93’ 0.39’ -0.81’ -1.69’ -2.35
SAR(2) 8.43 7.36 6.09 4.68 3.17 1.64’ 0.27’ -0.85’ -1.71’ -2.35

c) Intercept and a time trend.
W.N. 14.29 11.88 9.00 6.15 3.68 1.73’ 0.26’ -0.83’ -1.64’ -2.27

AR(1) 0.21 0.08 0.42 0.38 -0.03 -0.58 -1.10 -1.54 -1.88 -2.15
AR(2) 1.35’ 0.32’ -0.01’ -0.23’ -0.60’ -1.06’ -1.51’ -1.89’ -2.16 -2.36

SAR(l) 8.67 8.05 7.05 5.55 3.72 1.90’ 0.34’ -0.85’ -1.72’ -2.37
SAR(2) 8.43 7.33 6.06 4.67 3.16 1.62’ 0.23’ -0.89’ -1.74’ -2.37

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
value of the tests with respect to d is observed.
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TABLE 6.B19 (1960’s decade)

r  in (2.9) for the estimated residuals.

log CPI(60), - 3.88 - 0.68 log W(60)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 6.21 3.93 2.03 0.50’ -0.71’ -1.67’ -2.42 -3.02 -3.51 -3.91

AR(1) 1.04’ 0.75’ 0.32’ -0.13’ -0.56’ -0.95’ -1.31’ -1.64’ -1.96 -2.24
AR(2) 0.32’ -0.45’ -1.11’ -1.62’ -1.97 -2.21 -2.36 -2.46 -2.52 -2.57

SA R(l) 6.23 4.19 2.24 0.58’ -0.74’ -1.75’ -2.52 -3.11 -3.59 -3.98
SAR(2) 6.14 4.19 2.25 0.58’ -0.72’ -1.70’ -2.44 -3.01 -3.47 -3.86

b) Intercept.
W.N. 5.51 3.38 1.64’ 0.25’ -0.86’ -1.75’ -2.46 -3.04 -3.51 -3.91

AR(1) 0.18’ 0.08’ -0.16’ -0.46’ -0.76’ -1.06’ -1.34’ -1.62’ -1.99 -2.15
AR(2) -0.59’ -1.23’ -1.73’ -2.10 -2.36 -2.52 -2.61 -2.65 -2.68 -2.70

SAR(l) 5.65 3.63 1.79’ 0.26’ -0.94’ -1.86’ -2.57 -3.13 -3.58 -3.96
SAR(2) 5.55 3.61 1.79’ 0.28’ -0.88’ -1.76’ -2.43 -2.97 -3.41 -3.79

c) Intercept and a time trend.
W.N. 5.51 3.37 1.63’ 0.25’ -0.86’ -1.74’ -2.45 -3.03 -3.51 -3.91

AR(1) 0.21’ 0.10’ -0.16’ -0.46’ -0.76’ -1.05’ -1.33’ -1.61’ -1.98 -2.15
AR(2) -0.56’ -1.20’ -1.72’ -2.10 -2.35 -2.51 -2.59 -2.63 -2.66 -2.68

SAR(l) 5.66 3.63 1.78’ 0.26’ -0.94’ -1.86’ -2.56 -3.13 -3.58 -3.96
SAR(2) 5.57 3.62 1.78’ 0.28’ -0.88’ -1.75’ -2.42 -2.96 -3.41 -3.79

log W(60)t + 5.60 - 1.44 log CPI(60)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 6.11 3.87 1.99 0.48’ -0.73’ -1.68’ -2.43 -3.04 -3.52 -3.92

AR(1) 1.09’ 0.77’ 0.33’ -0.12’ -0.56’ -0.96’ -1.32’ -1.66’ -1.98 -2.28
AR(2) 0.36’ -0.44’ -1.09’ -1.58’ -1.93’ -2.16 -2.31 -2.41 -2.48 -2.53

SA R(l) 6.17 4.14 2.21 0.57’ -0.75’ -1.76’ -2.53 -3.13 -3.60 -3.99
SAR(2) 6.14 4.17 2.23 0.57’ -0.74’ -1.72’ -2.46 -3.04 -3.51 -3.89

b) Intercept.
W.N. 5.27 3.19 1.52’ 0.17’ -0.91’ -1.78’ -2.48 -3.06 -3.53 -3.92

AR(1) 0.14’ 0.00’ -0.24’ -0.52’ -0.80’ -1.08’ -1.36’ -1.62’ -1.89’ -2.16
AR(2) -0.64’ -1.32’ -1.82’ -2.17 -2.40 -2.54 -2.62 -2.65 -2.67 -2.69

SAR(l) 5.48 3.46 1.65’ 0.17’ -1.00’ -1.90’ -2.60 -3.15 -3.60 -3.97
SAR(2) 5.45 3.46 1.65’ 0.18’ -0.94’ -1.80’ -2.46 -2.99 -3.43 -3.81

c) Intercept and a time trend.
W.N. 5.26 3.19 1.51’ 0.17’ -0.91’ -1.78’ -2.48 -3.05 -3.52 -3.92

AR(1) 0.10’ 0.00’ -0.24’ -0.52’ -0.80’ -1.08’ -1.35’ -1.62’ -1.88’ -2.15
AR(2) -0.69’ -1.32’ -1.81’ -2.17 -2.40 -2.53 -2.61 -2.64 -2.66 -2.67

SAR(l) 5.47 3.46 1.65’ 0.16’ -1.00’ -1.90’ -2.59 -3.15 -3.60 -3.97
SAR(2) 5.42 3.46 1.65’ 0.18’ -0.94’ -1.79’ -2.45 -2.98 -3.43 -3.81

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
value of the tests with respect to d is observed.
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TABLE 6.B20 (1970’s decade)

r  in (2.9) for the estimated residuals.

log CPI(70)t - 3.60 + 0.91 log W(70)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 7.37 4.78 2.48 0.57’ -0.91’ -2.01 -2.82 -3.41 -3.84 -4.17

AR(1) 1.99 1.87’ 1.25’ 0.40’ -0.50’ -1.34’ -2.05 -2.61 -3.05 -3.39
AR(2) 0.08 0.68 0.65 0.28 -0.27 -0.87 -1.45 -1.93 -2.32 -2.62

SA R(l) 5.58 4.00 2.27 0.60’ -0.84’ -1.97 -2.82 -3.43 -3.88 -4.21
SAR(2) 5.57 4.14 2.52 0.86’ -0.62’ -1.83’ -2.73 -3.39 -3.86 -4.21

b) Intercept.
W.N. 6.88 4.36 2.17 0.39’ -0.98’ -2.00 -2.75 -3.30 -3.72 -4.04

AR(1) 1.42’ 1.40’ 0.90’ 0.16’ -0.63’ -1.36’ -1.98 -2.48 -2.88 -3.20
AR(2) -0.48 0.24 0.35 0.11 -0.32 -0.81 -1.29 -1.70 -2.04 -2.32

SA R(l) 5.18 3.62 1.94’ 0.36’ -0.97’ -2.00 -2.78 -3.35 -3.77 -4.09
SAR(2) 5.16 3.73 2.13 0.55’ -0.84’ -1.96 -2.77 -3.36 -3.80 -4.13

c) Intercept and a time trend. 
W.N. 6.88 4.34 2.15 0.38’ -0.98’ -1.99 -2.74 -3.30 -3.71 -4.04

AR(1) 1.43’ 1.41* 0.89’ 0.16’ -0.63’ -1.35’ -1.97 -2.47 -2.87 -3.19
AR(2) -0.47 0.25 0.35 0.11 -0.31 -0.80 -1.27 -1.69 -2.03 -2.31

SA R(l) 5.19 3.61 1.93’ 0.36’ -0.97’ -2.00 -2.77 -3.34 -3.77 -4.09
SAR(2) 5.17 3.74 2.13 0.54’ -0.84’ -1.94’ -2.76 -3.36 -3.80 -4.12

log W(70)t + 3.92 - 1.08 log CPI(70)t

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 7.36 4.78 2.47 0.57’ -0.91’ -2.02 -2.83 -3.42 -3.85 -4.17

AR(1) 2.04 1.88’ 1.24’ 0.39’ -0.52’ -1.36’ -2.06 -2.63 -3.07 -3.41
AR(2) 0.17 0.71 0.65 0.26 -0.29 -0.90 -1.48 -1.97 -2.36 -2.66

SA R(l) 5.62 4.02 2.28 0.61’ -0.83’ -1.97 -2.82 -3.44 -3.89 -4.22
SAR(2) 5.61 4.17 2.54 0.88’ -0.61’ -1.82’ -2.73 -3.39 -3.86 -4.21

b) Intercept.
W.N. 6.81 4.29 2.12 0.36’ -0.99’ -2.00 -2.75 -3.30 -3.71 -4.04

AR(1) 1.43’ 1.38’ 0.86’ 0.13’ -0.65’ -1.38’ -1.99 -2.49 -2.89 -3.20
AR(2) -0.40 0.25 0.34 0.09 -0.33 -0.82 -1.30 -1.71 -2.05 -2.32

SA R(l) 5.17 3.59 1.91’ 0.34’ -0.98’ -2.01 -2.78 -3.34 -3.77 -4.09
SAR(2) 5.17 3.72 2.11 0.52’ -0.86’ -1.96 -2.77 -3.36 -3.80 -4.12

c) Intercept and a time trend. 
W.N. 6.82 4.29 2.11 0.36’ -0.99’ -2.00 -2.74 -3.30 -3.71 -4.03

AR(1) 1.41’ 1.38’ 0.86’ 0.13’ -0.65’ -1.37’ -1.99 -2.48 -2.88 -3.20
AR(2) -0.44 0.25 0.34 0.09 -0.33 -0.82 -1.28 -1.70 -2.04 -2.31

SA R(l) 5.17 3.59 1.90’ 0.34’ -0.98’ -2.01 -2.77 -3.34 -3.76 -4.09
SAR(2) 5.16 3.72 2.11 0.52’ -0.86’ -1.95’ -2.77 -3.36 -3.79 -4.12

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
value of the tests with respect to d is observed.
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6.c GROSS NATIONAL PRODUCT AND MONEY

In this section we examine the relationship between nominal G.N.P. and 

nominal money. This is based upon the quantity theory equation: M V = P Y, and 

most empirical applications stem from the assumption that velocity is constant or at 

least stationary. Under this general condition, log M, log P and log Y should be 

cointegrated with known unit parameters, and similarly, nominal G.N.P. and nominal 

money should also be cointegrated.

A test of this hypothesis was conducted in Engle and Granger (1987) and 

DeJong (1992). In the first of these articles, four different measures of money were 

used: M l, M2, M3 and the total liquid assets L, and in each case, the sample period 

was 1959.1 through 1981.2 quarterly. After applying the ADF tests on the estimated 

residuals of the regression of log G.N.P. on log of each of the monetary aggregates 

(and also the reverse situations), only in one of the cases, results of the tests were 

significant at the 5% significance level and it corresponded to the regression of log 

of M2 on log of G.N.P. Therefore, they concluded that the only stable relationship 

was between M2 and nominal G.N.P. but for the other aggregates, the tests rejected 

the hypothesis of cointegration and stationarity of velocity.

DeJong (1992) examined the relationship between nominal G.N.P. and M2 

for the same period of time. First, the integration inference was investigated for the 

individual series using the DeJong and Whiteman’s (1991) Bayesian approach: 

Using zero trend priors, results strongly supported the inference of integration, 

however, when non-zero trends were considered the evidence was in favour of trend- 

stationary alternatives. Similarly, when testing the hypothesis of cointegration, if 

zero-trend priors were given, nominal G.N.P. and money seemed cointegrated but for 

a more general prior, this result was relatively implausible. The relationship between 

these two variables has also been studied in Moazzani and Gupta (1995) who 

considered a dynamic regression model for estimating the long run relationship 

between nominal G.N.P. and money. Their results supported the neutrality 

proposition implied by the quantity theory of money. Among other studies also 

analysing the relation between output and money are Stein (1982), Lothian (1985), 

Geweke (1986), Dwyer and Hafer (1988) and Hayakawa (1988).

We consider here the same data set as in Engle and Granger (1987) and 

DeJong (1992), i.e. logs of G.N.P. and the four monetary aggregates, Ml, M2, M3
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and L in the United States, from 1959.1 through 1981.2 quarterly. Plots of the raw 

time series, their sample autocorrelations and estimates of the spectral density 

function are given in Figure 6.C1 and we observe that all series exhibit a 

nonstationary character with a smooth trend over time. The slow decay observed in 

the sample autocorrelations and the peaks around zero frequency in the estimates of 

the spectral density function suggest that all series might display a unit root 

component.

We start by examining the nonstationary nature of each individual series. In 

Engle and Granger (1987) all of them were assumed to be 1(1) while in DeJong 

(1992), the integration inference was supported only if zero trend priors were 

considered. In Tables 6.C1 and 6.C2 we have calculated Robinson’s (1994c) 

univariate tests for logs of G.N.P. and money respectively, performing r in (2.9), for 

different specifications in (1.9), with p(L;0) = (1 - L)d+e in (1.10), and modelling the 

disturbances as white noise, seasonal and non-seasonal AR processes. The first 

thing we observe in these two tables is that if the disturbances follow a non-seasonal 

AR process, monotonicity in ? with respect to d is never achieved, implying perhaps 

that a seasonal component still remains on the series even though they have been 

deseasonalized previously.

Starting with log of G.N.P., in Table 6.C1, we observe that if we do not 

include regressors, all non-rejections occur when d ranges between 0.8 and 1.1, and 

in all cases the lowest statistics across different values of d are obtained when d = 

1; however, including an intercept or an intercept and a time trend, we see that the 

unit root null is always rejected in favour of more nonstationary alternatives, with 

d ranging now between 1.1 and 1.3, and with the lowest statistics occurring at d = 

1.1 when including an intercept, and at d = 1.2 with an intercept and a time trend.

Similar evidence is found when we analyze the log of the monetary 

aggregates in Table 6.C2: if there are no regressors, the unit root null is never 

rejected, and though other possibilities with d slightly greater than or smaller than 

1 seem also plausible, the lowest statistics across different values of d are always 

obtained when d = 1; however, including an intercept and an intercept and a time 

trend, this hypothesis is always decisively rejected in favour of other more 

nonstationary alternatives, with d ranging now between 1.1 and 1.4 for the log of 

Ml, but greater than 1.3 for the other measures of money, and thus, strongly
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rejecting the trend-stationary representations advocated by some authors. Therefore, 

we can conclude the analysis of the individual series by saying that all of them seem 

to be 1(1) when modelling with no regressors, but integration orders greater than one 

should be required when we include an intercept and/or a time trend in the model.

In the following group of tables we calculate the multivariate score tests of 

Chapter 5 for each pair of variables, i.e., the log of G.N.P. and logs of each 

monetary aggregate M l, M2, M3 and L. In Tables 6.C3 and 6.C4 we analyze the 

first of these relationships (i.e., using Ml as the monetary aggregate), reporting 

results of the time and the frequency domain versions of the test statistics with white 

noise Ut. We observe that if we do not include regressors, the only non-rejection 

cases occur when dj = d2 = 1 and 1.1. In both tables the lowest values appear for 

the case of two unit roots, obtaining the test statistics S*2 = 0.09 in Table 6.C3, and 

Sn = 0.07 in Table 6.C4. Including an intercept or an intercept and a time trend, 

results are similar in both cases, and the null hypothesis of two unit roots is always 

decisively rejected in favour of other more nonstationary alternatives with dj and d2 

greater than or equal to 1.1. In fact, the lowest statistics are obtained in both 

domains at d, = 1.1 and = 1.2 when including an intercept, and at dj = d2 = 1.2 

with an intercept and a time trend. Allowing Ut to be weakly autocorrelated, we do 

not report results, but the most interesting cases were obtained here when Ut 

followed a VAR(l) process and we did not include regressors, in which case the 

only non-rejection case occurred again when d, = d2 = 1, and when Ut followed a 

VMA(l) process and we included regressors, with the non-rejection cases occurring 

then when dt and d2 were greater than or equal to 1. Thus, results of the 

multivariate tests, when using Ml as the measure of money, support the evidence 

found in the univariate tests in Tables 6.C1 and 6.C2 that both series might be 1(1) 

when modelling with no regressors but greater integration orders might be required 

when including an intercept or an intercept and a time trend.

Very similar results are obtained when we analyze the same relationship but 

using now the other monetary aggregates. Tables 6.C5-6.C7 show results using M2 

instead of Ml. Starting with white noise Ut, (in Tables 6.C5 and 6.C6), we see that 

the non-rejections occur at the same values of dt and d2 in both domains: if there 

are no regressors, the null hypothesis is not rejected if dj = d2 = 1, 1.1 and 1.2, and 

the lowest statistics are obtained at dj = d2 = 1.1 in the time domain, with S12 = 0.89,



287

(in Table 6.C5), and at dj = = 1 in the frequency domain with S12 = 0.88 (in Table

6.C6). Including an intercept, these hypotheses are strongly rejected and the non

rejections appear now when dj ranges between 1.1 and 1.3 and = 1.4. Finally, 

including an intercept and a time trend, the two unit roots null is again rejected and 

the non-rejection values range between 1.1 and 1.4 for dj, and are 1.3 and 1.4 for d2.

Therefore, we again observe here greater integration orders in both variables when 

including an intercept or an intercept and a time trend in the model. Allowing Ut 

to be VAR(l), the most interesting case appeared here when we did not include 

regressors, where the null dj = = 1 was the only non-rejection case. Including an

intercept and an intercept and a time trend, there were more non-rejections but they 

did not show much coherence, suggesting that the model might be misspecified in 

these cases. This might be related to the lack of monotonic decrease observed in ? 

with respect to d in the univariate results in Tables 6.C1 and 6.C2 with AR 

disturbances. If Ut is VMA(l), we observe in Table 6.C7 that the two unit roots 

hypothesis is always decisively rejected in favour of alternatives with dj and d2 

greater than 1. The lowest statistics appear in this case when dt = 1.3 and d2 = 1.4 

(with no regressors), 1.2 (with an intercept), and 1.3 (with an intercept and a time 

trend). Thus, results of the multivariate tests, when using M2 as the measure of 

money, are again in line with those obtained with the univariate tests in Tables 6.C1 

and 6.C2, suggesting that both series might be 1(1) when modelling with no 

regressors, but rejecting this hypothesis in favour of more nonstationarities when an 

intercept and/or a time trend is included.

In Tables 6.C8-6.C10 we consider M3 as the monetary aggregate. Across 

Tables 6.C8 and 6.C9 (related with white noise Ut), we observe only five cases 

where the null is not rejected: when dj = d2 = 1, 1.1 and 1.2 with no regressors, 

with the lowest statistics at dj = = 1.1 in the time domain (Table 6.C8) and at dj

= d2 = 1 in the frequency domain (Table 6.C9), and when d2 = 1.3 and 1.4 and d2 

= 1.4 with an intercept and a time trend. Thus, results here are once more in 

complete analogy with those obtained in Tables 6.C1 and 6.C2 for the univariate 

tests, failing to reject the unit root null when we do not include regressors, but 

rejecting this hypothesis in favour of more nonstationarities if we include an 

intercept and/or a time trend in the model. If Ut is VAR(l), in Table 6.C10, the 

two unit roots null is the only non-rejection case if we do not include regressors,
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with a test statistic S2 = 0.53, and including an intercept and an intercept and a time 

trend, there are much more non-rejections with the lowest statistics corresponding 

to dt = 1 and d2 = 0.8 with an intercept, and to dj = 1.1 and d2 = 0.8 with an 

intercept and a time trend. In these cases we also observe non-rejections for values 

of dt and d2 smaller than one. As we explained in previous sections, this may be 

due to the fact that the VAR parameters have been obtained throughout a quasi- 

Newton algorithm which can give us results arbitrarily close to stationarity and thus, 

it is the competition between the VAR parameters and the differencing orders in 

describing the nonstationary, which causes this smaller degree of integration 

observed in some cases. Though we do not report results, we also computed the 

test statistic when Ut was VMA(l): if there were no regressors, the only two non

rejection cases occurred when dt = 1.4 and d2 = 1.2, and when dj = 1.3 and d2 = 1.4; 

however, including an intercept and an intercept and a time trend, results were 

similar in both cases, with all non-rejections occurring when dj and were equal 

to or greater than 1. This was not surprising given that the VMA representation is 

always stationary, and the nonstationary component of the series must be mainly 

described throughout the differencing parameters.

Finally in Tables 6.C11-6.C13 we use the total liquid assets L as the measure 

of money, and the non-rejections occur practically at the same values as in previous 

tables. Thus, if Ut is white noise (in Tables 6.C11 and 6.C12), dt = d2 = 1 and 1.1 

are the only two non-rejection cases when we do not include regressors, but these 

hypotheses are decisively rejected in favour of more nonstationary alternatives when 

including an intercept and an intercept and a time trend. In fact, the lowest 

statistics are obtained in these cases when dj = 1.1 and d2 = 1.4 with an intercept, 

and when d} = 1.2 and d2 = 1.4 with an intercept and a time trend. If Ut is VAR 

(1), (in Table 6.C13), the two unit roots null is the only non-rejection case with no 

regressors (as was in Table 6.C10 when using M3), but including an intercept or an 

intercept and a time trend, there are more non-rejection values, with the lowest 

statistics in both cases achieved at d! = 0.9 and d2 = 0.8. Here we also observe that 

the null is not rejected when d, = = 0.6, but as we explained above, this smaller

degree of integration might be due to competition between the VAR parameters and 

the differencing orders in describing the nonstationary. We do not report the results 

for VMA(l) Ut, but the main conclusions here were that all non-rejections occurred
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when dj and d2 were greater than 1, with the lowest statistics obtained at d! = 1.1 

and d2 = 1.2 when including an intercept, and at dj = 1.2 and d2 = 1.3 with an 

intercept and a time trend.

As a conclusion of the multivariate tests presented above we see that results 

here are in line with those obtained previously with the univariate tests. Thus, the 

two unit roots null hypothesis is not rejected when we do not include regressors in 

the model, but this hypothesis is decisively rejected in favour of more nonstationary 

alternatives, with integration orders greater than one in both variables, when 

including an intercept and/or a time trend.

In the final part of this section we look at the possibility of fractional 

cointegration between both variables. Across Tables 6.C14-6.C17 we present results 

of Robinson’s (1994c) univariate tests on the estimated residuals, after regressing log 

of G.N.P. on log of each of the monetary aggregates, and their reverses, performing 

r as given in (2.9), for different specifications in (1.9) and different types of 

disturbances. First in Table 6.C14 we take Ml as the measure of money. The most 

noticeable thing observed here is that the unit root null is rejected in most cases 

when we do not include regressors, and this hypothesis is always rejected in favour 

of less nonstationary alternatives. In fact, apart from the case of AR(2) disturbances, 

all non-rejections take place when d ranges between 0.6 and 0.9, with the lowest 

statistics occurring at d = 0.7 with AR(1) disturbances, and at d = 0.8 for the 

remaining cases; including an intercept or an intercept and a time trend, the non

rejections appear in most of cases when d ranges between 0.6 and 1.1 and the lowest 

statistics are obtained when d takes values 0.8 or 0.9. Therefore we could infer 

from this table that a certain degree of fractional cointegration might exist between 

G.N.P. and Ml, with the estimated residuals from the cointegrating regressions being 

nonstationary but with a small component of mean reversion.

In Table 6.C15 we perform the same statistics as above but using M2 as the 

measure of money. In this table we observe that the monotonic decrease in r with 

respect to d is only achieved for white noise and seasonal AR disturbances. In 

these cases, the non-rejection d’s always range between 1 and 1.3 with the lowest 

statistics obtained in all cases when d = 1.1. This is observed in both series of 

residuals and for the three cases of no regressors, an intercept, and an intercept and 

a time trend. Therefore, these results show that the estimated residuals from the
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cointegrating regressions, when using M2 as the monetary aggregate, are 

nonstationary and non-mean reverting, suggesting that no reliable long-run 

relationship exists between these two variables.

Similar results are obtained in Table 6.C16, when using M3 as the measure 

of money. We again observe a lack of monotonic decrease in the value of the test 

statistic with respect to d when the disturbances are non-seasonal AR. For the 

remaining specifications, the non-rejection values of d always range between 1 and 

1.3, with the lowest statistics occurring in all cases when d = 1.1. Thus, given that 

the null hypothesis is practically always rejected when d is smaller than one, these 

results suggest that M3 is non-cointegrated with G.N.P.

Finally, in Table 6.C17, we take L as the measure of money. Results in this 

table are very similar to those given in Table 6.C14 when using M l, with 

monotonicity achieved in all cases, and the non-rejection values of d ranging 

between 0.7 and 1.1 for white noise and seasonal AR disturbances, and between 0.6 

and 1.2 for non-seasonal AR. In this table we observe that the unit root null is 

almost never rejected, however, the lowest statistics appear in all cases when d is 

smaller than 1. Thus, results in this table suggest that L might be fractionally 

cointegrated with G.N.P., with the estimated residuals from the cointegrating 

regressions showing a certain component of mean reversion.

Engle and Granger (1987) used the ADF tests to check if the estimated 

residuals were stationary and in particular, if they followed an 1(0) process. Their 

results rejected the hypothesis of stationarity in all cases except when regressing log 

of M2 on log of G.N.P., in which case the test statistic was significant at the 5% 

level. Our results show that all the estimated residuals appear as nonstationary, and 

regressing log of M2 on log of G.N.P., the estimated regression was

log M2 = 6.48 + 0.99 log GNP,

(168.9) (180.4) (t-values)

and we see in the lower part of Table 6.C15 that testing here the null hypothesis for 

different values for d, as we approximate to the stationary case, the values of the test 

statistic increase strongly, implying the rejection of the null in favour of more 

nonstationary alternatives. Only if the disturbances follow a non-seasonal AR 

process, we observe some non-rejections even for d = 0.6, but in these cases we
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observe a lack of monotonic decrease in r with respect to d which might indicate that 

the model is misspecified.

We can summarize now the main results obtained in this section by saying 

that nominal G.N.P. and the different measures of money are all individually 

integrated of order 1 when we do not include regressors in the model; however, 

including an intercept or an intercept and a time trend, greater integration orders 

must be required. Similar results were obtained when using the multivariate tests, 

finding two unit roots in all cases when modelling with no regressors, but rejecting 

this hypothesis in favour of more nonstationarities when including an intercept and/or 

a time trend. Testing the possibility of a cointegrating relationship between G.N.P. 

and money, only when using Ml or L as the monetary aggregates, we found a 

certain degree of fractional cointegration, with the estimated residuals from the 

cointegrating regressions being nonstationary but mean reverting. Using M2 or M3 

as the measures of money, the equilibrium errors were nonstationary and not mean 

reverting, with the integration order of the estimated residuals equal to or greater 

than 1 in practically all cases.
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TABLE 6.C1

f in  (2.9) for log of G.N.P.

Log of nominal G.N.P.

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.

W.N. 5.48 3.72 2.10 0.70’ -0.44’ -1.35’ -2.05 -2.60 -3.03 -3.38

AR(1) -0.88 -0.26 -0.19 -0.44 -0.82 -1.26 -1.67 -2.05 -2.39 -2.67

AR(2) -2.84 -1.73 -1.20 -1.05 -1.13 -1.34 -1.59 -1.85 -2.11 -2.35

SAR(l) 4.18 3.09 1.87’ 0.65’ -0.44’ -1.35’ -2.07 -2.63 -3.07 -3.41

SAR(2) 4.12 3.04 1.84’ 0.64’ -0.44’ -1.35’ -2.07 -2.63 -3.07 -3.42

b) Intercept.

W.N. 13.01 12.58 11.53 8.26 3.49 0.09’ -1.48’ -2.18 -2.60 -2.94

AR(1) -4.94 -5.14 -4.32 0.93 1.38 -0.64 -1.92 -2.45 -2.69 -2.88

AR(2) -2.29 -2.11 -2.14 -2.77 0.04 -0.69 -1.80 -2.28 -2.46 -2.58

SAR(l) 4.46 4.08 3.84 3.78 2.60 0.11’ -1.51’ -2.24 -2.65 -2.98

SAR(2) 6.05 5.61 4.85 3.66 2.41 0.24’ -1.57’ -2.36 -2.75 -3.05

c) Intercept and a time trend.

W.N. 14.28 11.96 9.18 6.28 3.64 1.50’ -0.11’ -1.26’ -2.05 -2.60

AR(1) -0.79 -0.76 0.64 1.36 0.97 0.22 -0.61 -1.34 -1.91 -2.31

AR(2) -1.42 -1.81 -0.77 0.34 0.49 0.13 -0.43 -1.02 -1.52 -1.87

SAR(l) 6.90 6.03 5.19 4.15 2.77 1.24’ -0.16’ -1.27’ -2.07 -2.62

SAR(2) 7.06 5.96 4.93 3.93 2.77 1.39’ -0.02’ -1.22’ -2.10 -2.68

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (1-L)*1*® at 95% significance level when
monotonicity in the value of the tests with respect to d is observed.



TABLE 6.C2 

? in (2.9) for the log of money.

d 0.6 0.7 0.8 0.9

a) No intercept and no lime trend.
W.N. 5.65 3.80 2.13 0.70’

AR(1) -1.17 -0.33 -0.20 -0.43
AR(2) -3.44 -1.99 -1.30 -1.10

SAR(l) 4.19 3.11 1.87’ 0.64’
SAR(2) 4.12 3.05 1.85* 0.64’

b) Intercept.
W.N. 14.56 14.58 13.86 11.00

AR(1) -3.44 -2.95 -2.20 -0.23
AR(2) -1.91 -1.82 -2.19 -2.43

SAR(l) 5.18 5.22 5.15 4.64
SAR(2) 6.83 6.75 6.27 5.00

c) Intercept and a time trend.
W.N. 15.64 13.99 11.72 8.94

AR(t) -1.82 -2.06 -1.20 1.15
AR(2) -1.68 -2.77 -3.46 -0.45

SAR(l) 6.99 6.00 5.18 4.44
SAR(2) 7.77 6.59 5.44 4.45

d 0.6 0.7 0.8 0.9

a) No intercept and no time trend.
W.N. 5.62 3.79 2.12 0.70’

AR(1) -1.12 -0.31 -0.19 -0.42
AR(2) -3.36 -1.96 -1.29 -1.09

SAR(l) 4.18 3.10 1.87’ 0.65’
SAR(2) 4.11 3.04 1.85’ 0.64’

b) Intercept.
W.N. 12.71 12.38 12.06 10.49

AR(1) -5.02 -5.30 -4.91 -4.07
AR(2) -3.63 -4.14 -5.25 -9.77

SAR(l) 4.91 4.86 5.31 6.27
SAR(2) 5.94 5.68 5.72 6.22

c) Intercept and a time trend.
W.N. 14.18 12.73 11.11 9.39

AR(1) 1.69 1.15 0.41 -0.56
AR(2) 5.31 4.11 2.02 -0.80

SAR(l) 9.39 8.97 8.44 7.75
SAR(2) 9.49 9.11 8.62 7.94

log of M l

1.0 1.1 1.2 1.3 1.4 1.5

-0.46’ -1.37’ -2.07 -2.62 -3.05 -3.39
-0.82 -1.25 -1.67 -2.05 -2.38 -2.67
-1.16 *1.36 -1.61 -1.87 -2.12 -2.35
-0.46’ -1.37’ -2.09 -2.65 -3.08 -3.42
-0.46’ -1.37’ -2.09 -2.65 -3.08 -3.43

6.30 2.05 -0.47 -1.70 -2.32 -2.70
2.33 0.73 -1.06 -2.17 -2.74 -3.06
2.19 2.24 0.96 -0.22 -0.92 -1.32
3.61 1.58 -0.43 -1.65 -2.30 -2.69
3.58 1.83’ -0.36’ -1.87’ -2.62 -3.02

6.02 3.35 1.17’ -0.45’ -1.59’ -2.35
1.92 1.41 0.42 -0.68 -1.69 -2.48
1.77 2.36 2.19 1.53 0.62 -0.32
3.54 2.33 0.92’ -0.42’ -1.53’ -2.31
3.55 2.51 1.20’ -0.25’ -1.55’ -2.50

log of M2

1.0 l . l 1.2 1.3 1.4 1.5

-0.45’ -1.36’ -2.06 -2.61 -3.04 -3.38
-0.80 -1.24 -1.66 -2.04 -2.37 -2.66
-1.15 -1.34 -1.59 -1.85 -2.10 -2.34
-0.45’ -1.36’ -2.08 -2.64 -3.07 -3.42
-0.45’ -1.36’ -2.08 -2.64 -3.08 -3.42

7.50 5.09 3.87 3.13 2.40 1.61'
-3.89 -3.97 -3.13 -2.29 -1.66 -1.29’
-7.21 -4.14 -3.33 -2.78 -2.34 -2.00
6.41 5.19 4.14 3.42 2.71 1.93’
6.37 4.68 3.19 2.58 2.05 1.37’

7.67 6.03 4.52 3.15 1.96 0.96'
-1.84 -2.95 -2.96 -2.52 -2.17 -1.94’
-2.74 -3.31 -3.32 -3.18 -3.00 -2.79
6.86 5.81 4.63 3.40 2.21 1.16’
6.99 5.76 4.29 2.75 1.32’ 0.18’

com...

log of M3

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 5.61 3.79 2.13 0.71’ -0.44’ -1.35’ -2.06 -2.61 -3.03 -3.38

AR(1) -1.09 -0.30 -0.19 -0.42 -0.80 -1.24 -1.66 -2.04 -2.37 -2.66
AR(2) -3.28 -1.91 -1.27 -1.07 -1.14 -1.33 -1.58 -1.84 -2.10 -2.33

SAR(l) 4.19 3.11 1.88’ 0.65’ -0.45’ -1.36’ -2.08 -2.64 -3.07 -3.42
SAR(2) 4.11 3.05 1.85’ 0.65’ -0.45’ -1.36’ -2.08 -2.64 -3.07 -3.42

b) Intercept.
W.N. 12.67 12.36 12.18 11.03 8.46 6.07 4.75 3.97 3.25 2.47

AR(1) -5.22 -5.57 -5.18 -3.92 -2.49 -2.31 -2.71 -2.62 -2.29 -2.00
AR(2) -3.21 -3.27 -3.07 -3.50 -6.21 -3.49 -2.87 -2.61 -2.42 -2.31

SAR(l) 4.86 4.79 5.24 6.28 6.90 6.18 5.21 4.48 3.77 2.95
SAR(2) 5.92 5.68 5.81 6.43 6.92 6.30 5.28 4.58 3.90 3.09

c) Intercept and a time trend.
W.N. 15.35 14.02 12.47 10.78 9.06 7.39 5.85 4.45 3.22 2.17

AR(1) 3.68 3.14 2.40 1.60 0.75 -0.33 -1.71 -2.57 -2.63 -2.45
AR(2) 15.73 16.47 2.85 -1.10 -2.07 -2.33 -2.47 -2.59 -2.70 -2.77

SAR(l) 9.39 9.09 8.79 8.40 7.84 7.07 6.06 4.89 3.65 2.47
SAR(2) 9.47 9.13 8.79 8.41 7.92 7.22 6.27 5.08 3.74 2.45

log of L

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 5.61 3.78 2.12 0.70’ -0.45’ -1.36’ -2.06 -2.61 -3.04 -3.38

AR(1) -1.09 -0.30 -0.19 -0.42 -0.81 -1.24 -1.66 -2.04 -2.37 -2.66
AR(2) -3.29 -1.92 -1.27 -1.08 -1.15 -1.34 -1.59 -1.85 -2.11 -2.34

SAR(l) 4.18 3.10 1.87’ 0.64’ -0.46’ -1.37’ -2.08 -2.64 -3.08 -3.42
SAR(2) 4.11 3.04 1.85’ 0.64’ -0.46’ -1.37’ -2.09 -2.64 -3.08 -3.42

b) Intercept.
W.N. 13.47 13.61 14.08 13.83 11.71 8.03 4.94 3.25 2.28 1.46

AR(1) -4.63 -4.63 -3.90 -2.56 -1.27 -0.96 -1.75 -1.93 -1.75 -1.56
AR(2) -2.78 -2.67 -2.26 -1.91 -1.69 -1.38 -1.78 -2.09 -2.03 -1.86

SAR(l) 5.03 5.06 5.51 6.26 6.88 6.65 5.11 3.62 2.62 1.77
SAR(2) 6.40 6.39 6.63 6.92 7.03 6.66 5.17 3.52 2.51 1.69

c) Intercept and a time trend.
WJS. 17.83 16.95 15.74 14.14 12.19 9.99 7.70 5.47 3.46 1.82’

AR(1) 1.12’ 1.05’ 0.84’ 0.44’ -0.03’ -0.49’ -0.96’ -1.15’ -1.22* -1.38’
AR(2) 4.27 3.98 3.07 1.79’ 0.53’ -0.60’ -1.08’ -1.23’ -1.44’ -1.66’

SAR(l) 8.55 8.21 7.93 7.68 7.44 7.07 6.40 5.28 3.75 2.12
SAR(2) 9.29 8.79 8.30 7.88 7.50 7.07 6.44 5.41 3.88 2.09

Non-rcjection values of the null hypothesis (1.12) with p(L;0) = (1-L)4** at 95% significance level when
inonotonicily in the lest statistic with respect to d is observed.
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TABLE 6.C3 Gog GNP - log Ml)

Multivariate score tests in the time domain (S12 in (5.32)) with no regressors and white noise Ut. d, and
d2 are the differencing orders for log of GNP and Ml respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 327.75 220.70 222.86 207.30 189.24 171.62 155.42 140.99 128.39
0.7 286.78 211.35 189.96 182.08 165.21 148.16 132.52 118.69 106.70
0.8 251.21 229.92 89.34 153.30 142.01 126.55 112.09 99.36 88.42
0.9 224.75 199.35 176.88 16.61 118.30 107.29 94.68 83.46 73.87
1.0 202.01 175.82 152.11 131.47 0.09’ 89.11 80.17 70.80 62.73
1.1 181.94 155.83 132.63 112.83 95.94 3.12’ 67.23 60.82 54.37
1.2 164.30 138.60 116.36 97.91 82.97 70.44 7.79 52.23 48.07
1.3 148.93 123.79 102.64 85.63 72.36 62.10 53.50 11.46 42.74
1.4 135.67 111.14 91.07 75.46 63.72 55.04 48.55 42.95 14.43

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ut. d, and d2 
are the differencing orders for log of GNP and M l respectively.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 181.44 205.91 228.20 239.65 256.30 276.14 287.17 289.73 289.52
0.7 187.89 159.76 170.06 192.79 222.47 250.75 265.55 269.02 268.60
0.8 200.38 155.82 125.67 124.10 148.48 177.84 194.11 198.34 198.05
0.9 215.12 178.36 123.82 74.02 60.97 74.32 86.36 90.54 90.95
1.0 244.82 218.60 159.30 77.90 23.06 12.09 16.21 19.30 20.43
1.1 274.02 254.75 196.81 103.79 27.04 1.43’ 1.03’ 3.56’ 5.04’
1.2 288.81 272.85 216.61 120.61 35.74 3.95’ 1.89’ 4.42’ 6.12
1.3 294.09 279.36 224.13 127.83 40.46 6.24 3.45’ 6.04 7.87
1.4 296.13 281.79 227.05 130.96 42.93 7.74 4.59’ 7.19 9.10

Multivariate score tests in the time domain (Sa in (5.32)) with a time trend and white noise U,. d, and d2 
are the differencing orders for log of GNP and M l respectively.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 139.79 152.58 162.65 165.11 164.35 163.18 162.03 160.94 160.32
0.7 130.34 115.68 112.51 114.18 118.35 123.21 126.83 128.52 128.85
0.8 141.42 109.48 85.03 72.38 70.75 75.16 80.47 84.01 85.53
0.9 157.49 121.45 81.75 51.46 37.33 35.66 39.20 43.01 45.35
1.0 173.28 139.85 93.21 49.74 23.06 13.47 13.46 16.37 18.97
1.1 186.48 157.53 109.22 58.20 22.33 5.94’ 2.44’ 4.15’ 6.69
1.2 196.03 171.22 123.63 69.08 27.53 6.35 0.20’ 0.92’ 3.34’
1.3 202.12 180.40 134.23 78.45 33.78 9.56 1.60’ 1.66’ 4.00’
1.4 205.68 185.94 141.12 85.21 39.01 13.00 3.88’ 3.51’ 5.83’

Non-rejection values of the null hypothesis (5.4) at 95% significance level.



TABLE 6.C4 Gog GNP - log Ml)

Multivariate score tests in the frequency domain (S'2 in (5.34)) with no regressors and white noise Ur
and dj are the differencing orders for log of GNP and Ml respectively.

diNd* 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 247.09 179.02 178.03 164.74 149.81 135.32 121.99 110.11 99.73
0.7 220.00 153.52 154.94 147.19 133.51 119.82 107.21 95.98 86.19
0.8 ' 193.73 177.77 62.09 127.12 117.49 105.20 93.66 83.41 74.49
0.9 173.22 156.10 139.79 10.43 100.75 91.75 81.71 72.67 64.82
1.0 155.21 138.39 122.47 107.62 0.07’ 78.57 71.33 63.74 57.08
1.1 139.16 122.95 107.92 94.46 82.16 3.58’ 61.60 56.35 50.97
1.2 124.97 109.44 95.39 83.16 72.75 63.36 8.07 49.60 46.11
1.3 112.57 97.69 84.60 73.55 64.47 57.04 50.31 11.69 41.72
1.4 101.87 87.57 75.37 65.40 57.49 51.29 46.36 41.71 14.72

Multivariate score tests in the frequency domain (S'2 in (5.34)) with an intercept and white noise Ut. 
and dj are the differencing orders for log of GNP and M l respectively.

d M 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 146.23 183.61 217.13 227.01 230.20 232.49 231.93 230.01 228.86
0.7 155.66 118.40 137.15 163.35 183.40 196.02 199.86 199.00 197.66
0.8 176.01 115.24 86.67 92.22 113.25 131.29 138.76 139.43 138.41
0.9 187.88 136.17 83.46 47.99 42.82 52.84 59.99 61.98 61.97
1.0 203.57 163.85 108.73 49.08 13.90 8.09 11.23 13.45 14.42
1.1 218.77 186.51 134.21 66.99 16.51 1.64’ 0.95’ 3.11’ 4.55’
1.2 227.12 198.15 147.92 79.13 23.10 2.87’ 1.99’ 4.19’ 5.83’
1.3 230.83 203.01 153.73 84.83 27.05 5.07’ 3.64’ 5.87’ 7.62
1.4 232.86 205.40 156.49 87.71 29.41 6.73 5.01’ 7.24 9.04

Multivariate score tests in the frequency domain (S*2 in (5.34)) with a time trend and white noise U,. 
and d2 are the differencing orders for log of GNP and M l respectively.

dt\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 126.82 141.94 160.70 168.86 168.02 162.43 155.57 149.89 146.75
0.7 116.53 92.28 93.59 102.03 108.46 110.81 109.90 107.52 105.43
0.8 133.33 85.16 60.71 54.76 57.52 61.75 64.25 64.77 64.36
0.9 152.25 98.03 56.52 33.61 26.18 26.74 29.30 31.23 32.20
1.0 166.48 114.76 66.25 31.49 13.90 8.76 9.35 11.31 13.01
1.1 175.58 128.67 79.01 38.06 13.28 3.13’ 1.37’ 2.76’ 4.69’
1.2 180.67 138.20 89.79 46.40 17.42 3.75’ 0.09’ 0.85’ 2.71’
1.3 183.19 143.99 97.38 53.47 22.36 6.53 1.55’ 1.82’ 3.72’
1.4 184.41 147.27 102.23 58.59 26.57 9.51 3.68’ 3.61’ 5.49’

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C5 (log GNP - log M2)

Multivariate score test in the time domain (S'2 in (5.32)) with no regressors and white noise Ut. d, and dj
are the differencing orders of log of GNP and M2.

d,\d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 315.95 219.22 221.80 206.63 188.85 171.41 155.32 140.96 128.40
0.7 286.77 208.60 188.07 181.14 164.70 147.88 132.38 118.64 106.69
0.8 250.94 230.99 100.05 151.62 141.28 126.19 111.91 99.29 88.40
0.9 224.40 199.77 178.47 27.51 117.03 106.79 94.46 83.36 73.84
1.0 201.62 176.01 152.83 133.10 2.08’ 88.29 79.88 70.68 62.69
1.1 181.54 155.91 133.06 113.55 97.27 0.89’ 66.79 60.68 54.33
1.2 163.88 138.62 116.65 98.34 83.53 71.33 5.32’ 52.08 48.04
1.3 148.51 123.78 102.84 85.92 72.68 62.45 54.00 9.62 42.75
1.4 135.26 111.11 91.22 75.67 63.93 55.22 48.72 43.17 13.08

Multivariate score test in the time domain in (5.32)) with an intercept and white noise Ut. d, and dj 
are the differencing orders of log of GNP and M2.

d M 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 254.48 304.75 323.89 323.63 317.35 306.46 294.69 286.94 283.47
0.7 197.52 229.61 269.65 289.66 294.47 286.47 273.32 263.52 258.76
0.8 175.66 165.22 182.72 207.06 220.30 216.35 203.74 192.80 186.47
0.9 184.74 155.61 125.41 109.32 108.91 106.52 98.37 89.85 83.53
1.0 220.01 192.02 137.87 75.35 41.04 31.13 26.80 22.74 18.73
1.1 256.16 233.76 174.89 90.88 32.70 13.48 8.81 6.60 4.28’
1.2 275.74 257.40 199.32 108.61 39.64 14.78 8.65 6.38 4.44’
1.3 283.51 267.23 210.58 118.51 45.32 17.55 10.32 7.65 5.62’
1.4 286.67 271.34 215.71 123.77 49.09 19.86 11.94 8.92 6.71

Multivariate score test in the time domain (Sa in (5.32)) with a time trend and white noise Ut. dj and d2 
are the differencing orders of log of GNP and M2.

d M 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 204.58 212.63 216.03 211.95 202.21 189.57 176.59 165.34 157.29
0.7 164.61 165.19 168.82 168.52 163.28 154.50 144.19 134.23 126.18
0.8 132.77 121.07 117.86 116.17 112.63 106.69 99.13 91.20 84.17
0.9 118.45 95.82 81.93 73.68 67.80 62.28 56.46 50.55 45.15
1.0 .120.42 91.76 68.53 52.02 41.04 33.48 27.72 22.95 19.01
1.1 130.75 100.39 71.50 48.23 31.83 21.06 14.05 9.37 6.21
1.2 142.39 112.72 81.34 53.79 33.13 19.24 10.50 5.22’ 2.19’
1.3 151.85 123.73 91.78 62.01 38.55 22.22 11.84 5.71’ 2.42’
1.4 158.33 131.80 100.20 69.52 44.45 26.46 14.77 7.82 4.15’

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C6 (log GNP - log M2)

Multivariate score tests in the frequency domain (Sa in (5.34)) with no regressors and white noise Ut. d,
and d2 are the differencing orders for log of GNP and M2 respectively.

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 237.57 178.16 177.36 164.31 149.56 135.19 121.94 110.11 99.76
0.7 219.58 150.83 153.81 146.61 133.18 119.64 107.12 95.96 86.20
0.8 193.32 178.06 69.27 126.09 117.03 104.96 93.55 83.36 74.49
0.9 172.82 156.13 140.49 17.67 99.93 91.42 81.56 72.61 64.81
1.0 154.83 138.33 122.75 108.47 0.88’ 78.01 71.12 63.66 57.06
1.1 138.80 122.86 108.06 94.82 82.98 1.37’ 61.28 56.25 50.96
1.2 124.62 109.33 95.46 83.37 73.09 64.01 5.79’ 49.50 46.11
1.3 112.23 97.58 84.64 73.69 64.67 57.30 50.74 10.03 41.80
1.4 101.54 87.46 75.39 65.49 57.62 51.44 46.52 41.94 13.57

Multivariate score tests in the frequency domain (S'2 in (5.34)) with an 
and dj are the differencing orders for log of GNP and M2 respectively.

intercept and white noise 1

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 217.20 279.92 298.85 287.65 266.59 247.05 234.59 228.84 226.92
0.7 155.42 184.23 226.16 239.74 232.17 216.46 202.94 195.19 192.00
0.8 147.19 124.00 139.68 161.45 166.43 156.88 144.40 135.43 130.57
0.9 159.26 119.25 91.15 81.96 81.70 77.10 69.15 61.90 56.68
1.0 183.06 146.35 99.72 55.60 32.47 24.65 20.52 16.77 13.20
1.1 205.72 175.29 126.50 67.18 26.93 12.56 8.39 6.14 3.91’
1.2 218.51 192.07 144.71 80.98 32.87 14.04 8.60 6.26 4.34’
1.3 224.33 199.76 153.75 89.19 37.98 16.78 10.32 7.58 5.57’
1.4 227.30 203.55 158.38 93.97 41.64 19.25 12.13 9.03 6.83

Multivariate score tests in the frequency domain (SR in (5.34)) with a time trend and white noise Ut. d, 
and dj are the differencing orders for log of GNP and M2 respectively.

d 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 194.16 205.53 209.88 204.31 191.93 176.67 161.74 149.48 141.40
0.7 144.82 144.86 149.17 148.61 142.12 131.79 120.17 109.47 101.31
0.8 118.12 101.71 97.54 95.79 91.94 85.42 77.33 69.16 62.24
0.9 112.07 82.83 67.06 58.95 53.47 48.14 42.41 36.66 31.58
1.0 118.40 82.92 58.00 42.25 32.47 25.81 20.63 16.31 12.78
1.1 128.84 92.06 62.08 40.40 26.02 16.79 10.79 6.76 4.07’
1.2 138.48 102.84 70.98 45.75 27.79 15.98 8.58 4.12’ 1.60’
1.3 145.59 111.84 79.87 52.95 32.71 18.85 10.06 4.89’ 2.17’
1.4 150.24 118.28 86.94 59.46 37.97 22.73 12.82 6.93 3.86’

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C7 Gog GNP - log M2)

Multivariate score tests (S2 in (5.37)) with no regressors and a VMA(l) structure on Ut. dj and dj are the
differencing orders of log of GNP and M2 respectively.

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 87.10 147.19 18107 70959 444225
0.7 93.96 841.89 434.86 17950 96958 ------
0 . 8 5067.4 137.81 417.98 322.76 13765 92644 ------
0.9 339893 14503 132.27 20.74 183.44 5979.4 29475 88172 380063
1 .0 164959 57884 11215 194.69 11.53 125.84 1860.4 2541.0 7930.7
1 .1 391644 191334 41179 418.07 244.56 6451.4 2 2 . 6 8 278.86 216.24
1 .2 858214 119252 18131 63.21 85.52 582.00 4.84’ 16.03
1.3 195901 403564 33732 3706.1 385.40 23.55 442.25 0.95’
1.4 1392.2 201563 420984 3719.4 2 1 1 . 6 8 15.06 6.63 135.84

Multivariate score tests (S2 in (5.37)) with an intercept and a VMA(l) structure on Ut. d, and d2 are the 
differencing orders of log of GNP and M2 respectively.

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 ________ 113.11 138.36 127.58 109.29 99.23 95.54 95.17 96.03
0.7 31.19 97.68 103.67 97.06 90.32 86.17 84.68 84.87
0 . 8 — _ 6.87 52.38 64.58 61.35 56.55 52.36 49.98 49.25
0.9 ------------ 103.97 31.44 33.55 26.41 21.58 18.07 15.82 14.62
1 .0 ------------ 454.53 34.08 22.04 9.66 5.00’ 2.95’ 1 .8 8 ’ 1 .2 2 ’
1 .1 1114.7 46.27 23.06 5.28’ 1.07’ 0.31’ 0.29’ 0.40’
1 .2 57.58 29.97 5.79’ 0.61’ 0.19’ 0.46’ 0.87’
1.3 10.03 63.96 36.59 8.08 0.74’ 0.05’ 0.15’ 0.40’
1.4 18.39 66.34 40.71 10.48 6.27 18.50 0.36’ 0 .1 1 ’

Multivariate score tests (S2 in (5.37)) with a time trend and a VMA(l) structure on Ut. dj and d2 are the 
differencing orders of log of GNP and M2 respectively.

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 65.93 82.51 83.36 77.50 69.78 62.44 56.51 52.40 50.31
0.7 37.32 52.84 55.43 52.07 46.76 41.30 36.51 32.83 30.48
0 . 8 2 2 . 2 2 34.20 35.40 32.31 28.14 23.96 20.27 17.30 15.17
0.9 17.65 26.42 24.53 20.17 16.11 12.69 9.92 7.71 6 .1 1

1 .0 19.44 26.25 20.67 14.18 9.66 6.62 4.52’ 3.02’ 2 .0 2 ’
1 .1 24.22 30.35 21.39 12.13 6.65 3.75’ 2.15’ 1 .2 0 ’ 0.65’
1 .2 29.49 36.12 25.18 12.89 5.66’ 2.47’ 1 .2 0 ’ 0.67’ 0.45’
1.3 33.66 41.64 30.66 15.96 6.30 2.08’ 0.78’ 0.54’ 0.58’
1.4 35.88 45.44 36.04 20.47 8.43 2.62’ 0.81’ 0.60’ 0.77’

’: Non-rejection values of the null hypothesis (5.4) at 95% significance level and "—" means that the value
of the test statistics exceeds 999999.
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TABLE 6.C8 (log GNP - log M3)

Multivariate score tests in the time domain (S12 in (5.32)) with no regressors and white noise Ur dj and
d2 are the differencing orders of log of GNP and M3 respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 306.41 223.07 223.01 207.20 189.17 171.62 155.47 141.08 128.49
0.7 283.38 195.82 190.48 181.96 165.10 148.13 132.55 118.76 106.79
0 . 8 248.93 228.46 89.17 153.18 141.85 126.50 1 1 2 . 1 0 99.42 88.50
0.9 222.97 198.37 176.66 22.95 118.05 107.20 94.68 83.50 73.94
1 .0 200.49 175.05 151.90 131.89 1.54’ 88.95 80.15 70.84 62.79
1 .1 180.60 155.18 132.45 112.97 96.52 1.05’ 67.19 60.85 54.42
1 .2 163.06 138.04 116.21 97.99 83.21 70.93 5.18’ 52.29 48.13
1.3 147.78 123.29 102.51 85.69 72.50 62.29 53.83 9.21 42.83
1.4 134.58 1 1 0 .6 8 90.96 75.50 63.82 55.15 48.67 43.16 12.54

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ut. d, and dj 
are the differencing orders of log of GNP and M3 respectively.

d.Nd, 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 257.81 307.59 327.51 326.04 319.91 312.77 303.72 295.79 290.48
0.7 207.15 229.99 268.39 288.44 295.16 292.85 283.78 274.41 267.91
0 . 8 190.59 175.16 184.23 204.14 219.34 222.27 214.78 205.09 197.61
0.9 200.34 175.22 143.09 117.06 110.52 1 1 1 . 1 0 107.06 100.26 93.77
1 .0 233.73 213.68 166.90 100.27 52.38 36.37 31.88 28.45 24.55
1 .1 267.34 253.52 205.94 124.28 52.04 21.24 12.84 9.72 7.01
1 .2 284.98 274.93 229.19 144.15 62.67 24.51 13.18 9.20 6.43
1.3 291.62 283.27 239.07 154.11 69.84 28.49 15.54 10.83 7.75
1.4 294.19 286.51 243.21 158.96 74.18 31.54 17.74 12.56 9.17

Multivariate score tests in the time domain (S12 in (5.32)) with a time trend and white noise Ut. d, and d2 

are the differencing orders of log of GNP and M3 respectively.

d ,^ 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 207.44 213.75 219.14 218.21 211.58 201.31 189.46 177.83 167.98
0.7 174.79 168.29 169.71 170.62 168.16 162.37 154.28 145.27 136.74
0 . 8 154.24 134.00 123.95 119.19 115.76 111.62 106.17 99.75 93.16
0.9 148.84 1 2 0 .6 6 98.51 83.27 73.51 66.90 61.55 56.54 51.69
1 .0 154.84 124.89 95.16 70.30 52.38 40.57 32.86 27.48 23.40
1 .1 165.40 137.11 104.48 73.62 49.08 31.90 20.79 13.83 9.47
1 .2 175.38 149.82 117.07 83.46 54.81 33.58 19.36 10.49 5.27’
1.3 182.66 159.65 127.96 93.61 62.89 39.11 22.60 12.07 5.87’
1.4 187.16 166.10 135.69 101.57 70.08 44.94 26.95 15.19 8.15

Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C9 (log GNP - log M3)

Multivariate score tests in the frequency domain (SG in (5.34)) with no regressors and white noise Ut. d,
and dj are the differencing orders of log of GNP and M3 respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 230.53 180.78 178.17 164.69 149.78 135.34 122.05 110.19 99.83
0.7 217.86 141.97 155.34 147.13 133.46 119.82 107.25 96.05 86.28
0 . 8 * 192.46 176.95 62.09 127.04 117.39 105.17 93.69 83.46 74.56
0.9 172.32 155.61 139.79 14.89 100.55 91.68 81.71 72.71 64.89
1 .0 154.52 138.05 122.44 108.04 0.69’ 78.42 71.30 63.77 57.14
1 .1 138.59 122.69 107.90 94.65 82.72 1.51’ 61.54 56.37 51.03
1 .2 124.48 109.23 95.38 83.30 73.00 63.87 5.61’ 49.64 46.17
1.3 112.13 97.52 84.61 73.66 64.64 57.27 50.70 9.58 41.84
1.4 101.47 87.43 75.38 65.49 57.62 51.44 46.52 41.97 12.95

Multivariate score tests in the frequency domain (S12 

and d2 are the differencing orders of log of GNP and
in (5.34)) with an intercept 
M3 respectively.

and white noise 1

0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 217.96 276.66 298.35 289.63 271.40 254.84 243.35 236.54 232.52
0.7 169.76 182.07 221.08 237.73 234.71 223.85 212.65 204.55 199.49
0 . 8 166.56 134.24 138.59 157.63 166.87 163.32 154.22 145.72 139.62
0.9 176.32 137.33 104.37 86.63 83.54 82.01 76.91 70.62 64.98
1 .0 196.26 164.31 1 2 1 . 1 0 73.07 41.27 29.78 25.51 2 2 . 0 0 18.25
1 .1 215.65 190.41 148.23 90.23 41.44 19.54 12.61 9.46 6 . 6 6

1 .2 226.43 204.82 164.84 105.02 49.91 22.57 13.26 9.36 6.51
1.3 231.24 211.17 172.57 113.01 56.00 26.29 15.60 1 1 .0 1 7.84
1.4 233.73 214.25 176.39 117.38 60.04 29.37 17.94 1 2 .8 8 9.39

Multivariate score tests in the frequency domain (SR in (5.34)) with a time trend and white noise Ut. d, 
and dj are the differencing orders of log of GNP and M3 respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 196.67 204.49 211.93 211.37 203.57 191.41 177.69 164.70 154.18
0.7 159.02 147.41 148.61 150.26 147.82 141.26 132.11 122.19 113.13
0 . 8 145.88 115.68 102.38 97.60 94.71 90.72 85.06 78.35 71.61
0.9 148.10 108.49 81.87 66.42 57.78 52.16 47.39 42.65 38.00
1 .0 156.68 115.49 81.55 57.12 41.27 31.43 25.06 20.49 16.89
1 .1 165.69 126.74 90.57 61.04 39.59 25.33 16.30 10.63 7.01
1 .2 172.50 136.75 101.09 69.57 44.85 27.30 15.76 8.59 4.32’
1.3 176.72 143.84 109.65 77.92 51.73 32.20 18.81 10.26 5.19’
1.4 179.00 148.23 115.57 84.39 57.80 37.27 22.72 13.16 7.37

’: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C10 (log GNP - log M3)

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ut. d, and d2 are the
differencing orders for log of GNP and M3 respectively.

d.Xdj 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 127.14 228.18 251.89 212.29 3614.9 -----
0.7 158.17 122.35 226.26 215.35 2396.9
0 . 8 252.33 95.01 102.35 248.81 1757.1 522665 -----
0.9 185.48 160.72 61.04 82.88 1357.4 29792 244167
1 .0 270.18 185.29 135.21 76.38 0.53’ 11670 11692 14106 23538
1 .1 9766.0 15690 5545.6 3350.7 1271.6 8.95 7545.8 6391.3 21604
1 .2 56356 297999 556356 6873.0 2206.4 5981.3 6.58 5244.4 16478
1.3 174476 566107 5002.6 4397.8 4525.3 7.50 4990.9
1.4 963196 ----- 13636 27720 18486 4332.8 14.40

Multivariate score tests (S2 in (5.37)) with an intercept and a 
differencing orders for log of GNP and M3 respectively.

VAR(l) structure on Ut. dj and are

*1*2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 12.64 68.23 95.67 9.54 0.96’ 0.41’ 1.87’ 2.98’ 3.42’
0.7 0.37’ 13.47 24.66 10.48 2.03’ 0.46’ 1.17’ 2.04’ 2.55’
0 . 8 4.39’ 1.34’ 14.76 14.51 5.70’ 1.42’ 0.63’ 0.91’ 1.28’
0.9 5.54’ 0 .2 0 ’ 4.28’ 12.46 1 1 .6 8 6.99 3.57’ 1.99’ 1.39’
1 . 0 4.65’ 1.32’ 0.16’ 3.76’ 7.62 7.54 5.28’ 3.31’ 2 .1 2 ’
1 .1 4.34’ 1.95’ 0.34’ 0.34’ 2.82’ 4.28’ 3.69’ 2.65’ 1 .8 8 ’
1 .2 4.70’ 2.31’ 1.27’ 0.43’ 2.05’ 4.58’ 5.24’ 4.78’ 4.16’
1.3 5.36’ 2.75’ 2.16’ 1.30’ 2.31’ 5.22’ 6.90 7.04 6.60
1.4 6.18 3.41’ 3.11’ 2.41’ 2.96’ 5.67’ 7.80 8.42 8.24

Multivariate score tests (S2 in (5.37)) with a time trend and a 
differencing orders for log of GNP and M3 respectively.

VAR(l) structure on U, d, and are

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 18.78 24.39 19.31 1 1 . 6 6 6.03 2.65’ 0.84’ 0.18’ 0.38’
0.7 8.25 16.85 19.79 16.58 11.50 7.00 3.66’ 1.48’ 0.33’
0 . 8 3.55’ 8.58 14.46 16.61 15.20 1 2 . 0 2 8.43 5.20’ 2.75’
0.9 3.04’ 3.01’ 6.73 10.85 13.01 12.81 10.85 8.03 5.21’
1 .0 4.80’ 1.44’ 1.53’ 4.34’ 7.62 9.61 9.70 8.19 5.90’
1 .1 7.25 2.71’ 0.19’ 0.79’ 3.37’ 6 .0 1 7.39 7.11 5.62’
1 .2 9.47 5.15’ 1.43’ 0.30’ 1.73’ 4.16’ 6.05 6.56 5.76’
1.3 11.09 7.63 3.70’ 1.54’ 1.97’ 3.95’ 6 . 0 0 6.99 6.72
1.4 1 2 .1 1 9.69 6.05 3.39’ 3.05’ 4.55’ 6.55 7.90 8.08

Non-rejection values of the null hypothesis (5.4) at 95% significance level, and "—" means that the
value of the test statistics exceeds 99999.
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TABLE 6.C11 Gog GNP - log L)

Multivariate score tests in the time domain (S'2 in (5.32)) with no regressors and white noise U,. dj and
d2 are the differencing orders of log of GNP and L respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 310.01 224.20 223.39 207.35 189.21 171.60 155.42 141.02 128.43
0.7 283.18 192.54 191.37 182.21 165.18 148.13 132.51 118.71 106.73
0 . 8 248.77 228.06 79.26 153.82 142.01 126.52 112.08 99.37 88.45
0.9 222.85 198.09 176.22 15.40 118.47 107.27 94.67 83.47 73.89
1 .0 200.40 174.84 151.60 131.51 0.15’ 89.20 80.17 70.81 62.75
1 .1 180.52 155.01 132.24 112.74 96.27 2 .6 8 ’ 67.32 60.85 54.40
1 .2 163.00 137.89 116.03 97.81 83.05 70.80 7.38 52.36 48.12
1.3 147.72 123.16 102.36 85.55 72.38 62.20 53.78 1 1 . 2 2 42.87
1.4 134.53 110.56 90.83 75.39 63.73 55.09 48.63 43.16 14.28

Multivariate score tests in the time domain (S'2 in (5.32)) with an intercept and white noise Ut. d, and dj 
are the differencing orders of log of GNP and L respectively.

d.Xda 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 201.40 273.78 323.14 330.75 321.47 312.96 305.92 296.84 289.19
0.7 193.65 184.69 226.96 264.63 280.96 287.90 287.52 279.52 270.81
0 . 8 206.04 178.15 165.07 170.24 188.27 207.88 216.60 212.79 205.18
0.9 224.73 208.57 181.01 138.26 99.77 92.90 100.95 102.96 99.83
1 .0 258.42 254.81 231.89 176.06 94.64 38.27 24.41 23.82 23.25
1 .1 289.62 293.75 276.09 219.95 125.25 43.54 12.19 5.23’ 3.26’
1 .2 304.82 312.33 297.45 242.69 145.60 55.79 17.28 7.21 3.96’
1.3 309.90 318.40 304.51 250.73 154.08 62.60 21.61 10.35 6.57
1.4 311.67 320.32 306.63 253.25 157.29 6 6 . 0 0 24.37 12.67 8.69

Multivariate score tests in the time domain (S'2 in (5.32)) with a time trend and white noise Ut. d, and d2 

are the differencing orders of log of GNP and L respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 172.97 194.79 221.92 234.35 232.64 221.95 206.70 190.41 176.12
0.7 175.14 158.78 160.77 167.12 169.92 167.75 161.66 153.29 144.49
0 .8 194.79 165.84 141.92 124.64 114.05 108.14 104.36 100.92 97.17
0.9 214.94 189.94 156.75 120.51 89.62 68.92 57.79 52.89 50.93
1 .0 232.25 215.49 183.35 139.55 94.64 58.68 35.79 24.32 20.18
1 .1 245.40 236.20 208.33 163.78 112.64 66.85 33.97 15.09 6 . 8 8

1 .2 253.88 250.26 226.66 183.94 131.22 80.66 41.50 16.94 4.90’
1.3 258.43 258.31 237.96 197.50 145.29 93.10 50.70 22.56 7.75
1.4 260.40 262.12 243.83 205.25 154.17 101.90 58.21 28.16 11.61

Non-rejection values of the null hypothesis (5.4) at 95% significance level.



TABLE 6.C12 Gog GNP - log L)

Multivariate score tests in the frequency domain (Sn in (5.34)) with no regressors and white noise Ut.
and d2 are the differencing orders for log of GNP and L respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 233.14 181.47 178.40 164.78 149.79 135.31 1 2 2 . 0 0 110.14 99.77
0.7 218.00 139.16 155.89 147.28 133.50 119.80 107.21 96.00 86.23
0 . 8 192.53 176.90 54.56 127.45 117.48 105.18 93.66 83.42 74.52
0.9 172.38 155.55 139.63 9.47 100.84 91.73 81.70 72.68 64.85
1 .0 154.57 138.00 122.32 107.85 0.05’ 78.61 71.33 63.75 57.11
1 .1 138.64 1 2 2 . 6 6 107.81 94.52 82.56 3.24’ 61.66 56.37 51.01
1 .2 124.53 109.20 95.31 83.20 72.89 63.76 7.80 49.71 46.16
1.3 112.18 97.49 84.54 73.58 64.56 57.19 50.64 11.63 41.87
1.4 101.51 87.40 75.32 65.42 57.56 51.38 46.48 41.95 14.78

Multivariate score tests in the frequency domain (S'2 in (5.34)) with an intercept 
and d2 are the differencing orders for log of GNP and L respectively.

and white noise L

d.Nd, 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 164.88 252.50 314.09 320.22 298.89 272.12 250.64 236.62 229.05
0.7 164.33 139.26 187.06 232.00 243.21 234.81 2 2 0 . 8 6 208.03 199.40
0 . 8 184.49 135.89 115.74 127.88 150.36 161.44 159.26 151.06 143.32
0.9 197.72 162.42 126.74 92.89 71.96 70.34 73.30 71.70 67.77
1 .0 215.49 193.40 163.21 118.83 65.26 29.35 19.09 17.25 15.81
1 .1 231.87 217.48 193.09 149.89 87.53 33.99 11.28 5.02’ 2.72’
1 .2 240.47 229.27 207.72 166.34 102.93 44.06 16.14 7.32 3.95’
1.3 244.12 233.85 213.24 172.79 109.90 50.04 20.40 10.56 6.64
1.4 246.05 235.97 215.56 175.44 113.05 53.39 23.34 13.14 8.98

Multivariate score tests in the frequency domain (SG in (5.34)) with a time trend and white noise Ut. 
and d2 are the differencing orders for log of GNP and L respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 159.37 178.68 213.93 234.36 236.64 225.75 207.36 186.63 168.11
0.7 165.86 130.90 131.56 145.48 155.77 157.18 50.64 139.24 126.62
0 . 8 193.35 140.05 106.72 92.91 90.56 91.25 90.18 8 6 .1 1 79.99
0.9 215.47 165.60 120.29 85.26 62.88 51.10 45.62 42.63 40.07
1 .0 229.38 188.31 143.83 100.90 65.26 40.28 25.58 18.30 15.22
1 .1 236.72 203.73 163.95 1 2 0 . 6 6 79.67 46.49 23.80 1 0 .8 8 5.01’
1 .2 239.52 212.39 177.34 136.34 94.50 57.72 30.14 12.78 3.94’
1.3 239.77 216.25 184.75 146.40 105.54 67.83 37.93 17.84 6.78
1.4 239.08 217.43 188.16 151.89 112.42 75.03 44.36 22.90 10.48

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.C13 (log GNP - log L)

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ur dt and dj are the
differencing orders for log of GNP and L respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 132.62 223.58 243.89 209.06 2803.7 ____ ___ ___ ___
0.7 181.56 125.09 219.89 208.22 1925.9 -----
0 . 8 271.18 108.86 99.10 240.86 1515.9 568672 ----- -----
0.9 195.76 214.33 73.18 82.56 1365.3 27025 183711 -----
1 .0 273.63 189.77 141.86 82.37 0.55’ 9200.2 10787 13189 22436
1 .1 10897 172755 5652.2 3135.5 1043.6 7.24 7153.4 6180.7 21671
1 .2 662272 337983 475161 92183 1747.2 5635.0 7.07 5135.3 16846
1.3 191153 636489 798930 4680.8 5033.1 4464.3 13.55 5659.1
1.4 ----- ----- ----- 13736 31204 21053 4574.4 22.39

Multivariate score tests (S2 in (5.37)) with an intercept and a VAR(l) structure on Ut. d, and dj are the 
differencing orders for log of GNP and L respectively.

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 4.86’ 73.37 45.21 242.72 11.09 2.31’ 0.60’ 1.32’ 2 .1 2 ’
0.7 6.93 3.85’ 29.68 27.68 11.47 4.37’ 1.70’ 1.43’ 1.79’
0 . 8 16.10 2.61’ 2.96’ 14.67 14.74 8.77 3.44’ 1.69’ 1.58’
0.9 11.62 6.34 0.90’ 1.57’ 7.64 11.07 8.74 4.80’ 2.72’
1 .0 7.27 5.90’ 3.44’ 1 .2 0 ’ 1.71’ 4.20’ 6.03 5.63’ 4.38’
1 .1 5.97’ 4.87’ 4.33’ 3.51’ 3.08’ 3.36’ 3.29’ 2.83’ 2.37’
1 .2 6.54 4.54’ 4.45’ 4.84’ 5.00’ 5.42’ 5.76’ 5.24’ 4.43’
1.3 7.60 4.86’ 4.63’ 5.49’ 6.17 6 . 8 8 7.66 7.81 7.17
1.4 8.67 5.53’ 5.09’ 6.04 6.97 7.97 8.93 9.48 9.14

Multivariate score tests (S2 in (5.37)) with a time trend 
differencing orders for log of GNP and L respectively.

and a VAR(l) structure on Ut. d, and d2 ai

d M 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 5.45’ 26.21 37.24 29.14 17.16 8.93 4.26’ 1 .6 6 ’ 0.31’
0.7 1.78’ 3.05’ 15.83 24.63 24.15 18.78 12.35 6.95 3.16’
0 . 8 7.98 1.04’ 1.76’ 9.68 17.39 20.93 19.89 15.57 10.25
0.9 11.26 5.82’ 0.98’ 1 .2 0 ’ 6 . 2 0 12.35 16.54 17.16 14.44
1 .0 11.49 9.44 5.07’ 1.52’ 1.71’ 4.94’ 8.99 11.75 1 2 . 0 0

1 .1 1 0 . 0 2 10.78 8.76 5.02’ 2.80’ 3.09’ 4.86’ 6.73 7.62
1 .2 7.93 10.47 10.75 8.33 5.69’ 4.53’ 4.64’ 5.13’ 5.36’
1.3 6 . 0 2 9.31 1 1 .2 1 10.40 8.37 6 . 8 6 6 . 2 2 5.96’ 5.62’
1.4 4.77’ 8 .0 1 10.73 11.23 10.15 8.92 8.13 7.63 7.13

Non-rejection values of the null hypothesis (5.4) at 95% significance level and "—" means that the value
of the test statistics exceeds 999999.
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TABLE 6.C14 (log GNP & log Ml)

f  in (2.9) for the estimated residuals.

log GNP + 12.08 -1.54 log M l

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 3.15 1.26’ -0 .2 2 ’ -1.32’ -2.13 -2.71 -3.13 -3.44 -3.67 -3.86

AR(1) 0.93’ 0.14’ -0.71’ -1.50’ -2.16 -2 . 6 8 -3.06 -3.33 -3.52 -3.65
AR(2) 0:65’ 0.33’ -0.25’ -0.94’ -1.63’ -2.25 -2.74 -3.12 -3.38 -3.56

SAR(l) 2.40 0.96’ -0.32’ -1.35’ -2.14 -2.73 -3.15 -3.47 -3.70 -3.89
SAR(2) 2.60 1 .2 2 ’ -0.07’ -1.16’ -2 . 0 0 -2.63 -3.09 -3.43 -3.68 -3.87

b) Intercept.
W.N. 4.16 2.49 1.05’ -0.14’ -1.07’ -1.77’ -2.29 -2 . 6 8 -2.99 -3.23

AR(1) 1.61’ 0 .8 8 ’ 0.03’ -0.82’ -1.57’ -2 . 2 0 -2 . 6 8 -3.06 -3.36 -3.60
AR(2) 2 . 0 0 2.04 1.75 1.24 0.60 -0.06 -0 . 6 6 -1.18 -1.63 -2 .0 2

SAR(l) 2.69 1.58’ 0.55’ -0.39’ -1.19’ -1.83’ -2.33 -2.71 -3.01 -3.26
SAR(2) 3.04 2.13 1.19’ 0.17’ -0.80’ -1.62’ -2.25 -2.73 -3.08 -3.36

c) Intercept and a time trend.
W.N. 5.14 3.07 1.33’ -0.04’ -1.05’ -1.79’ -2.33 -2.74 -3.06 -3.30

AR(1) 2.09 1 .2 2 ’ 0.23’ -0.73’ -1.56’ -2.23 -2.76 -3.17 -3.50 -3.74
AR(2) 2.32 2.30 1.94’ 1.34’ 0.62’ -0 .1 0 ’ -0.77’ -1.38’ -1.91’ -2.36

SAR(l) 3.08 1.91’ 0.74’ -0.31’ -1.18’ -1.85’ -2.36 -2.76 -3.08 -3.32
SAR(2) 3.30 2.40 1.38’ 0.27’ -0.78’ -1.65’ -2.32 -2.82 -3.19 -3.47

log M l - 7.81 - 0.64 log GNP

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 3.24 1.31’ -0.19’ -1.31’ -2 . 1 2 -2.70 -3.12 -3.43 -3.67 -3.85

AR(1) 1 .0 2 ’ 0 .2 0 ’ -0.67’ -1.48’ -2.16 -2 . 6 8 -3.06 -3.34 -3.53 -3.66
AR(2) 0.78’ 0.44’ -0.17’ -0 .8 8 ’ -1.59’ -2 . 2 2 -2.73 -3.11 -3.38 -3.56

SAR(l) 2.44 0.99’ -0.30’ -1.34’ -2.14 -2.72 -3.15 -3.46 -3.70 -3.89
SAR(2) 2.65 1.26’ -0.04’ -1.14’ -1.99 -2.63 -3.09 -3.42 -3.67 -3.87

b) Intercept.
W.N. 4.30 2.58 1 .1 0 ’ -0 .1 1 ’ -1.06’ -1.76’ -2.28 -2 . 6 8 -2.99 -3.23

AR(1) 1.69’ 0.94’ 0.07’ -0.79’ -1.56’ -2.19 -2 . 6 8 -3.06 -3.36 -3.60
AR(2) 2.06 2.08 1.79’ 1.27’ 0.62’ -0.04’ -0.65’ -1.18’ -1.63’ -2 .0 2

SAR(l) 2.75 1.63’ 0.58’ -0.38’ -1.19’ -1.83’ -2.32 -2.71 -3.01 -3.26
SAR(2) 3.08 2.17 1 .2 2 ’ 0 .2 0 ’ -0.79’ -1.61’ -2.25 -2.73 -3.08 -3.36

c) Intercept and a time trend.
W.N. 5.18 3.11 1.35’ -0 .0 2 ’ -1.04’ -1.78’ -2.33 -2.74 -3.06 -3.30

AR(1) 2 .1 1 1.25’ 0.25’ -0.71’ -1.55’ -2 . 2 2 -2.75 -3.17 -3.49 -3.74
AR(2) 2.32 2.32 1.96 1.36’ 0.64’ -0.09’ -0.76’ -1.37’ -1.91’ -2.35

SAR(l) 3.10 1.92’ 0.75’ -0.30’ -1.17’ -1.84’ -2.36 -2.76 -3.08 -3.32
SAR(2) 3.31 2.41 1.39’ 0.28’ -0.77’ -1.64’ -2.31 -2.81 -3.19 -3.47

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity
in the test statistic with respect to d is observed.
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TABLE 6.C15 (log GNP & log M2)

r  in (2.9) for the estimated residuals.

log GNP + 6.49 - 1.00 log M2

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.82 6.06 4.35 2.78 1.40’ 0.23’ -0.72’ -1.48’ -2.08 -2.55

AR(1) -1.61 -1.47 -1.58 -1.77 -2.03 -2.35 -2.67 -2.99 -3.27 -3.51
AR(2) -0.82 -0.67 -0.65 -0.74 -0.90 -1 .1 2 -1.37 -1.64 -1.90 -2.14

SAR(l) 6.31 5.07 3.75 2.43 1 .2 0 ’ 0 .1 2 ’ -0.79’ -1.52’ -2 .1 1 -2.58
SAR(2) 6.45 5.12 3.68 2.25 0.95’ -0.16’ -1.06’ -1.76’ -2.30 -2.73

b) Intercept.
W.N. 7.65 5.87 4.15 2.58 1 .2 2 ’ 0 .1 1 ’ -0.79’ -1.51’ -2.07 -2.51

AR(1) -1.52 -1.07 -0.70 -0.72 -0.98 -1.35 -1.75 -2.14 -2.48 -2.78
AR(2) -1.55 -0.97 -0.60 -0.46 -0.49 -0.64 -0 . 8 6 -1 .1 1 -1.36 -1.60

SAR(l) 5.94 4.75 3.50 2.25 1.07’ 0.03’ -0.84’ -1.54’ -2 . 1 0 -2.55
SAR(2) 5.92 4.70 3.41 2 .1 1 0.87’ -0.19’ -1.06’ -1.73’ -2.26 -2 . 6 6

c) Intercept and a time trend.
W.N. 7.69 5.88 4.14 2.57 1.23’ 0 .1 1 ’ -0.78’ -1.49’ -2.04 -2.44

AR(1) -1.54 -1.07 -0.71 -0.74 -0.99 -1.35 -1.74 -2 .1 1 -2.43 -2 . 6 8

AR(2) -1.63 -0.98 -0.60 -0.46 -0.49 -0.64 -0.85 -1.08 -1.30 -1.46
SAR(l) 5.93 4.75 3.50 2.25 1.07’ 0.04’ -0.83’ -1.53’ -2.07 -2.48
SAR(2) 5.90 4.70 3.41 2 . 1 0 0.87’ -0.19’ -1.05’ -1.72’ -2 . 2 2 -2.60

log M2 - 6.48 - 0.99 log GNP

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend
W.N. 7.79 6.04 4.34 2.77 1.39’ 0.23’ -0.72’ -1.48’ -2.08 -2.56

AR(1) -1.63 -1.52 -1.63 -1.81 -2.08 -2.39 -2.71 -3.02 -3.30 -3.54
AR(2) -0.82 -0.69 -0 . 6 8 -0.77 -0.93 -1.15 -1.40 -1.67 -1.93 -2.17

SAR(l) 6.31 5.07 3.75 2.43 1 .2 0 ’ 0 .1 2 ’ -0.79’ -1.53’ -2 . 1 2 -2.59
SAR(2) 6.46 5.12 3.68 2.25 0.94’ -0.16’ -1.06’ -1.76’ -2.31 -2.73

b) Intercept.
W.N. 7.61 5.85 4.14 2.57 1.23’ 0 .1 1 ’ -0.79’ -1.50’ -2.06 -2.51

AR(1) -1.52 -1.09 -0.72 -0.73 -0.99 -1.35 -1.75 -2.13 -2.48 -2.78
AR(2) -1.50 -0.97 -0.61 -0.47 -0.50 -0.64 -0 . 8 6 -1 . 1 0 -1.36 -1.60

SAR(l) 5.95 4.75 3.50 2.25 1.07’ 0.03’ -0.83’ -1.54’ -2 . 1 0 -2.54
SAR(2) 5.93 4.69 3.41 2 . 1 0 0.87’ -0.19’ -1.05’ -1.73’ -2.25 -2 . 6 6

c) Intercept and a time trend.
W.N. 7.67 5.87 4.14 2.57 1.23’ 0 .1 2 ’ -0.78’ -1.48’ -2.03 -2.44

AR(1) -1.55 -1.08 -0.72 -0.74 -0.99 -1.35 -1.74 -2 .1 1 -2.43 -2.67
AR(2) -1.64 -0.99 -0.61 -0.47 -0.50 -0.64 -0.85 -1.08 -1.30 -1.46

SAR(l) 5.93 4.75 3.50 2.25 1.07’ 0.04’ -0.83’ -1.52’ -2.07 -2.48
SAR(2) 5.89 4.69 3.41 2 . 1 0 0.87’ -0.18’ -1.04’ -1.71’ -2 . 2 2 -2.60

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
test statistic with respect to d is observed.
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TABLE 6.C16 (log GNP & log M3)

r in (2.9) for the estimated residuals.

log GNP + 5.26 - 0.90 log M3

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.28 5.48 3.77 2.25 0.94’ -0.13’ -0.99’ -1.67’ -2 .2 1 -2.63

AR(1) -1.59 -1.51 -1.55 -1.74 -2 . 0 2 -2.34 -2.65 -2.94 -3.19 -3.41
AR(2) -1.09 -0 . 8 8 -0.85 -0.96 -1.16 -1.42 -1.70 -1.99 -2.25 -2.49

SAR(l) 5.95 4.69 3.35 2.05 0.87’ -0.13’ -0.94’ -1.59’ -2 .1 1 -2.52
SAR(2) 6.13 4.88 3.50 2 . 1 2 0.87’ -0.18’ -1 .0 2 ’ -1.67’ -2.18 -2.59

b) Intercept.
W.N. 7.33 5.54 3.82 2.29 1 .0 0 ’ -0.06’ -0.89’ -1.55’ -2.07 -2.48

AR(1) -1.17 -0.82 -0.70 -0 . 8 8 -1 .2 1 -1.60 -1.97 -2.31 -2.61 -2.85
AR(2) -0.99 -0.53 -0.35 -0.39 -0.58 -0.85 -1.14 -1.43 -1.70 -1.94

SAR(l) 5.83 4.67 3.41 2.13 0.95’ -0.07’ -0.89’ -1.54’ -2.05 -2.46
SAR(2) 5.93 4.80 3.55 2.26 1.03’ -0.04’ -0.91’ -1.57’ -2.09 -2.49

c) Intercept and a time trend.
W.N. 7.40 5.56 3.83 2.29 1 .0 0 ’ -0.05’ -0.89’ -1.55’ -2.06 -2.46

AR(1) -1.14 -0.80 -0.70 -0 . 8 8 -1 .2 1 -1.60 -1.97 -2.31 -2.59 -2.81
AR(2) -1 . 0 0 -0.52 -0.34 -0.39 -0.58 -0.84 -1.14 -1.43 -1 .6 8 - 1 .8 8

SAR(l) 5.83 4.68 3.41 2.13 0.95’ -0.07’ -0.89’ -1.54’ -2.04 -2.43
SAR(2) 5.92 4.80 3.56 2.26 1.03’ -0.04’ -0.90’ -1.57’ -2.08 -2.47

log M3 - 5.82 - 1.09 log GNP

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 7.25 5.45 3.75 2.23 0.94’ -0.13’ -1 .0 0 ’ -1 .6 8 ’ -2 . 2 2 -2.64

AR(1) -1.56’ -1.57’ -1.60’ -1.78’ -2.05 -2.36 -2.67 -2.96 -3.21 -3.43
AR(2) -1.14 -0.92 -0.89 -1 .0 0 -1 . 2 0 -1.45 -1.73 -2 .0 1 -2.28 -2.51

SAR(l) 5.94 4.68 3.34 2.04 0 .8 6 ’ -0.13’ -0.95’ -1.60’ -2 .1 1 -2.53
SAR(2) 6 . 1 2 4.86 3.48 2 . 1 0 0 .8 6 ’ -0.19’ -1.03’ -1 .6 8 ’ -2.19 -2.60

b) Intercept.
W.N. 7.29 5.51 3.81 2.29 1 .0 0 ’ -0.05’ -0 .8 8 ’ -1.54’ -2.06 -2.48

AR(1) -1.19 -0.85 -0.72 -0.89 -1 .2 2 -1.60 -1.97 -2.31 -2.60 -2.85
AR(2) -1 . 0 0 -0.55 -0.36 -0.40 -0.58 -0.85 -1.14 -1.43 -1.70 -1.94

SAR(l) 5.83 4.66 3.41 2.13 0.95’ -0.06’ -0.89’ -1.54’ -2.05 -2.45
SAR(2) 5.93 4.80 3.55 2.26 1.03’ -0.04’ -0.90’ -1.57’ -2.08 -2.49

c) Intercept and a time trend.
W.N. 7.39 5.56 3.83 2.29 1 .0 0 ’ -0.05’ -0 .8 8 ’ -1.54’ -2.06 -2.45

AR(1) -1.15 -0.81 -0.70 -0.89 -1 .2 2 -1.60 -1.97 -2.31 -2.59 -2.81
AR(2) -1 .0 1 -0.53 -0.35 -0.39 -0.58 -0.85 -1.14 -1.43 -1 .6 8 - 1 .8 8

SAR(l) 5.83 4.68 3.42 2.13 0.95’ -0.06’ -0.89’ -1.53’ -2.04 -2.43
SAR(2) 5.92 4.80 3.56 2.26 1.03’ -0.04’ -0.90’ -1.57’ -2.08 -2.46

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
value of the tests with respect to d is observed.
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TABLE 6.C17 (log GNP & log L)

r  in (2.9) for the estimated residuals.

log GNP + 6.17 - 0.96 log L

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept dnd no time trend.
W.N. 3.04 1.64’ 0.47’ -0.49’ -1.25’ -1 .8 6 ’ -2.34 -2.73 -3.04 -3.29

AR(1) -0.39’ -0.71’ -1.13’ -1.57’ -1.98 -2.35 -2 . 6 6 -2.92 -3.13 -3.31
AR(2) 0.04’ -0 .1 0 ’ -0.39’ -0.76’ -1.16’ -1.55’ -1.90’ -2 . 2 0 -2.45 -2.65

SAR(l) 2.83 1.61* 0.48’ -0.48’ -1.26’ - 1 .8 8 ’ -2.37 -2.75 -3.06 -3.31
SAR(2) 2.88 1.70’ 0.58’ -0.40’ -1 .2 1 ’ -1.85’ -2.35 -2.74 -3.05 -3.31

b) Intercept.
W.N. 3.03 1.67’ 0.54’ -0.38’ -1.13’ -1.74’ -2.23 -2.63 -2.96 -3.23

AR(1) -0.39’ -0.71’ -1.13’ -1.57’ -2 . 0 0 -2.39 -2.73 -3.02 -3.27 -3.47
AR(2) 0.03’ -0.08’ -0.34’ -0 .6 8 ’ -1.06’ -1.43’ -1.79’ -2 . 1 2 -2.41 -2 . 6 6

SAR(l) 2.82 1.63’ 0.55’ -0.38’ -1.14’ -1.75’ -2.24 -2.64 -2.97 -3.24
SAR(2) 2.87 1.73’ 0.65’ -0.30’ -1.09’ -1.73’ -2.24 -2.65 -2.98 -3.25

c) Intercept and a time trend.
W.N. 3.06 1.70’ 0.56’ -0.37’ -1 .1 2 ’ -1.73’ -2.23 -2.62 -2.94 -3.18

AR(1) -0.38’ -0.71’ -1.13’ -1.57’ -2 . 0 0 -2.38 -2.72 -3.01 -3.23 -3.37
AR(2) 0.06’ -0.06’ -0.33’ -0.67’ -1.05’ -1.43’ -1.78’ -2 . 1 0 -2.34 -2.49

SAR(l) 2.85 1.65’ 0.56’ -0.37’ -1.13’ -1.75’ -2.24 -2.63 -2.95 -3.19
SAR(2) 2.90 1.75’ 0.67’ -0.29’ -1.09’ -1.73’ -2.23 -2.64 -2.96 -3.20

log L - 6.43 - 1.03 log GNP

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 3.06 1 .6 6 ’ 0.49’ -0.47’ -1.24’ -1.85’ -2.34 -2.72 -3.03 -3.29

AR(1) -0.38’ -0.70’ -1.13’ -1.57’ -1.98 -2.35 -2 . 6 6 -2.93 -3.14 -3.31
AR(2) 0.06’ -0.08’ -0.37’ -0.75’ -1.15’ -1.54’ -1.89’ -2.19 -2.45 -2.65

SAR(l) 2.85 1.63’ 0.50’ -0.47’ -1.25’ -1.87’ -2.36 -2.74 -3.05 -3.31
SAR(2) 2.90 1.72’ 0.60’ -0.38’ -1.19’ -1.84’ -2.34 -2.73 -3.05 -3.30

b) Intercept.
W.N. 3.04 1 .6 8 ’ 0.55’ -0.38’ -1.13’ -1.74’ -2.23 -2.63 -2.96 -3.23

AR(1) -0.38’ -0.70’ -1.13’ -1.57’ -2 . 0 0 -2.39 -2.73 -3.02 -3.27 -3.47
AR(2) 0.04’ -0.07’ -0.34’ -0 .6 8 ’ -1.05’ -1.43’ -1.79’ -2 . 1 2 -2.41 -2 . 6 6

SAR(l) 2.83 1.64’ 0.55’ -0.38’ -1.14’ -1.75’ -2.24 -2.64 -2.97 -3.23
SAR(2) 2 . 8 8 1.73’ 0.65’ -0.30’ -1.09’ -1.73’ -2.24 -2.65 -2.98 -3.25

c) Intercept and a time trend.
W.N. 3.06 1.70’ 0.56’ -0.37’ -1 .1 2 ’ -1.73’ -2.23 -2.62 -2.94 -3.18

AR(1) -0.38’ -0.71’ -1.13’ -1.57’ -2 . 0 0 -2.38 -2.72 -3.01 -3.23 -3.37
AR(2) 0.06’ -0.06’ -0.33’ -0.67’ -1.05’ -1.43’ -1.78’ -2 . 1 0 -2.34 -2.49

SAR(l) 2 . 8 6 1 .6 6 ’ 0.56’ -0.37’ -1.13’ -1.75’ -2.24 -2.63 -2.95 -3.19
SAR(2) 2.91 1.75’ 0.67’ -0.29’ -1.08’ -1.73’ -2.23 -2.64 -2.96 -3.20

Non-rejection values of the null hypothesis (1.12) at 95% significance level when monotonicity in the
test statistic with respect to d is observed.
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6.d STOCK PRICES AND DIVIDENDS

In this section we study the relationship between stock prices and dividends. 

If the present value model were true, a linear combination of both variables (which 

must be integrated of order 1) should be stationary and thus, prices and dividends 

would be cointegrated. Though much literature exists on this topic, little consensus 

exists about what might be the correct model specification for these two variables. 

Thus, using the DF and ADF tests with a time trend, Shiller (1981) tested and 

rejected the hypothesis of integration for Standard and Poor’s (S&P) dividends over 

the years 1872-1978; however, Kleidon (1986), using the same tests with an 

intercept on a shorter S&P’s data set (1926-1979) argued that dividends and prices 

were both integrated. Perron (1988) used tests of Phillips (1987) and Phillips and 

Perron (1988) for testing unit roots on the S&P’s 1871-1984 data set and found 

evidence of a unit root on prices but stationary around a deterministic trend on 

dividends.

Campbell and Shiller (1987) and DeJong (1992) tested a present value model 

in the stock market using time-series data for real U.S. annual prices and dividends, 

on a broad stock index from 1871 to 1986. In the first of these articles, they applied 

the ADF tests, with and without a time trend, on both individual series, and their 

results suggested that both series were integrated of order 1. Using the DF and ADF 

tests on the residuals from the cointegrating regressions, their results were mixed: 

the former test rejected the null hypothesis of no cointegration at the 5 per cent level 

while the latter narrowly failed to reject it at the 10 per cent level. DeJong (1992) 

used a Bayesian approach to investigate the integration inference for these two 

variables and his evidence was in favour of trend-stationary representations. 

Similarly, Koop (1991b), using a different data set, came to the same conclusions 

that both variables were stationary with a time trend, and even assuming unit roots, 

he found little evidence of cointegration. Finally Fama and French (1988), Lo and 

MacKinlay (1988) and Poterba and Summers (1988) developed "variance ratio" tests, 

and suggested that stock prices exhibited mean reverting behaviour. In contrast with 

these previous studies, DeJong and Whiteman (1992) found no mean reversion in 

S&P prices and dividends.

In this section we use the same data set as in Campbell and Shiller (1987) 

and DeJong (1992), studying the relationship between real U.S. annual dividends and
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stock prices from 1871 to 1986. Figure 6.D1 contains plots of both series, their 

sample autocorrelations and estimates of the spectral density function. In this figure 

we observe that both series seem to present a very similar nonstationary behaviour, 

with some peaks and troughs, especially pronounced during the crisis in 1929 and 

1973. The nonstationary character of the series may be better viewed through 

sample autocorrelations, which decay very slowly and persistently, and from 

estimates of the spectral density function, which show a very large value around zero 

frequency and thus, suggesting the unboundedness of the spectrum at such frequency.

As in previous sections, we start calculating Robinson’s (1994c) univariate 

tests in order to investigate more deeply what might be the appropriate integration 

order for each series. Clearly, under the trend stationary representations suggested 

in Perron (1988), Koop (1991b), DeJong (1992) and others, we should expect not 

to reject the null hypothesis when this integration order is zero.

Table 6.D1 reports results of r in (2.9), when testing (1.12) in a model given 

by (1.9) and (1.10) with p(L;0) = (1 - L)d+e, for cases of no regressors, an intercept 

and an intercept and a time trend, and with white noise, non-seasonal and seasonal 

AR disturbances. Starting with stock prices, we see in the upper part of this table 

that the monotonic decrease in f with respect to d is only achieved for white noise 

and seasonal AR disturbances. In these cases, the non-rejection values of d always 

range between 0 .8  and 1.1, with the lowest statistics occurring when d takes values 

0.9 and 1. This is observed independently of the inclusion or not of an intercept 

and/or a time trend in the model, and of the different ways of modelling the 

disturbances. Looking at dividends, (in the lower part of this table), we observe that 

if there are no regressors and the disturbances follow a non-seasonal AR process, 

there is a wide range of non-rejection values of d, but apart from this case, the 

values of d where the null is not rejected always range between 0.9 and 1.4, with the 

lowest statistic occurring in most of cases when d = 1.1. Including regressors, such 

as an intercept or an intercept and a time trend, results are similar in both cases, 

with the non-rejection d’s ranging from 0.9 through 1.3, and with the lowest statistics 

occurring again at d = 1.1.

To conclude with respect to this table, we see that both series might be well- 

modelled as 1(1) processes, independently of the inclusion or not of an intercept 

and/or a time trend in the model, and of the way of modelling the disturbances. We
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also observe that the integration order seems to be slightly greater for dividends than 

for prices: in fact, for dividends, integration orders of 1 or 1.1 might be most 

preferable, while for prices, the most plausible ones are 0.9 and 1. Given that the 

null hypothesis is not rejected for prices when d = 0.9 (and in some cases when d 

= 0 .8 ), these results might indicate the presence of a small component of mean 

reversion in this series and thus, they would be consistent with those obtained in 

Fama and French (1988), Lo and McKinlay (1988) and Poterba and Summers 

(1988); however, since the null is practically always rejected in both series when 

d = 0 .6  in favour of more nonstationary alternatives, and the bulk of these results fail 

to reject the unit root null, we could conclude by rejecting the trend-stationary 

representations proposed in DeJong (1992) and others, and supporting the view in 

Campbell and Shiller (1987) that both series are integrated of order 1. Next we look 

at the results in a multivariate context.

Tables 6.D2-6.D5 contain results of the multivariate score tests of Chapter 

5. In Tables 6.D2 and 6.D3 we report the test statistics in the time and the 

frequency domain respectively, assuming that Ut is a white noise vector process. 

Results in both tables are similar and we observe that the subset of values of and 

d2 where the null is not rejected remains the same for the different cases of no 

regressors, an intercept, and an intercept and a time trend. These values range 

between 0.8 and 1.1 for d! (the integration order of prices), and between 0.8 and 1.3 

for d2 (the integration order of dividends). Therefore, we again observe here a 

greater integration order for dividends than for prices. The two unit root null 

hypothesis (i.e. d2 = = 1) is never rejected in these tables, though lower statistics

are obtained in some cases when dj and/or d2 are smaller than 1. In fact, looking at 

the results in the time domain, we see in the upper part of Table 6.D2, that if there 

are no regressors, the lowest statistic is obtained when dj = 0.9 and d2 = 1, with St2 

= 0.19. Including an intercept and an intercept and a time trend, the lowest statistics 

appear in both cases at dj = d2 = 0.9, with Sa = 0.21 when including an intercept, 

and with Sa = 0.20 when including an intercept and a time trend. Similarly, looking 

at the results in the frequency domain, in Table 6.D3, the lowest statistics occur at 

d, = 0.9 and d2 = 1 when modelling with no regressors, and at dj = d2 = 0.9 when 

including an intercept and an intercept and a time trend.

In Table 6.D4 a VAR(l) structure is assumed for Ut. Here again results seem
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quite robust to different regressors. We observe that the two unit roots null 

hypothesis is always rejected in favour of less nonstationary alternatives, with dj and 

d2 ranging between 0.6 and 0.9. The lowest statistics are obtained in this table when 

dj = d2 = 0 .6 , which is close to the stationary region, and this is observed for the 

three cases of no regressors, an intercept and an intercept and a time trend. As we 

explained in previous sections, this smaller degree of nonstationarity observed in this 

table compared with Tables 6.D2 and 6.D3 (referred to white noise Ut), might be due 

to the fact that the VAR parameters have been obtained using the method of 

maximum likelihood throughout a quasi-Newton algorithm, which can give us 

parameters arbitrarily close to nonstationary. Thus, competition may exist between 

the VAR parameters and the differencing orders in describing the nonstationary 

component of the series, and as we approximate to stationary, the value of the 

determinant in the VAR representation will be approximately zero.

In Table 6.D5 Ut is assumed to be VMA(l). We observe here a greater 

proportion of non-rejections compared with Table 6.D4, with the lowest statistics 

obtained in the three cases when dj = d2 = 0 .6 , that is, for the same values as in 

Table 5.D4. However, the two unit roots null is not rejected in this table, and other 

possibilities with dj and d2 greater than 1 are either non-rejected. This can be 

explained because Ut is now always stationary and thus, the nonstationary component 

of the series might be mainly described throughout the differencing parameters.

As a conclusion of the univariate and multivariate tests presented above, we 

see that both series might be integrated of order 1, though slight variations in the 

integration order, higher for dividends than for prices, also seem plausible. This unit 

root behaviour observed in the series is obtained independently of the regressors used 

in the model. If Ut is VAR(l), the integration orders are smaller in both series, 

perhaps due to the competition with the VAR parameters, but these orders vary 

widely when Ut is VMA(l).

In the final part of this section, we calculated the cointegrating regressions 

of one of the variables against the other, and its reverse, and the resulting regressions 

were:

pt = -0.12 + 30.99 d,,

(-6.27) (24.97) (t-values)
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and

d, = 0.005 + 0.027 pt,

(13.17) (24.97) (t-values)

where pt corresponds to stock prices and dj to dividends. Campbell and Shiller 

(1987) performed the DF and ADF tests for no cointegration in the estimated 

residuals above, finding mixed results: the test statistics rejected the null at the 5% 

level but narrowly failed to reject it at the 10% level.

Table 6 .D6  contains results of Robinson’s (1994c) univariate tests on these 

estimated residuals. We see that the non-rejections always occur at the same values 

of d for the different cases of no regressors, an intercept, and an intercept and a time 

trend. We also observe in this table that the unit root null hypothesis is rejected in 

all cases except if the disturbances follow an AR(2) process, but in this case there 

is a wide range of values of d where the null is not rejected and, though it is not 

shown in the table, there is a lack of monotonic decrease in the value of the test 

statistic with respect to d for values of d smaller than 0.6. All other non-rejection 

values always take place when d ranges between 0.6 and 0.9, with the lowest 

statistics across different values of d occurring in most of cases when d = 0.7. Thus, 

given that the unit root null is practically always rejected in favour of less 

nonstationary alternatives, we may conclude that both series are fractionally 

cointegrated, with the estimated residuals from the cointegrating regression showing 

a mean reverting behaviour.

We also see in the same table that the null hypothesis is not rejected when 

d = 0.6. Thus, it might also be of interest to test if the estimated residuals are 

stationary. In Table 6.D7 we calculate the same tests as in Table 6 .D6 , with d 

ranging now from 0.0 through 0.5. We observe here that the null hypothesis is 

always rejected for all values of d, and even at the boundary case of d = 0.5, it is 

decisively rejected in favour of more nonstationary alternatives with d > 0.5. 

Therefore we might conclude by saying that the estimated residuals are clearly 

nonstationary, with integration orders fluctuating around 0.7 and thus, showing mean 

reverting behaviour.

All these results alleviate the mixed evidence found in Campbell and Shiller 

(1987) when testing the null of no cointegration with the classical DF and ADF tests.
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As mentioned in previous sections, a problem in these testing procedures is that they 

only concentrate on 1(0 ) stationary and 1(1) nonstationary residuals, and thus, do not 

consider other fractionally integrated possibilities. Our results suggest that dividends 

and prices might be fractionally cointegrated, with the equilibrium errors from the 

cointegrating regressions, though nonstationary, displaying mean reverting behaviour. 

Thus, a shock to the system will eventually die out, implying a reliable long run 

relationship between prices and dividends in the stock market.

Summarizing the main results obtained in this section, we see that prices and 

dividends appear both individually integrated or order 1 independently of the 

inclusion or not of an intercept or a time trend in the model, though slight variations 

in this integration order (smaller than one for prices, but greater than one for 

dividends) might also be plausible. The multivariate tests corroborate these findings 

if the disturbances are white noise but integration orders smaller than one might be 

more appropriate if the disturbances are weakly autocorrelated. Results of 

Robinson’s (1994c) univariate tests on the estimated residuals from the cointegrating 

regressions indicate that both variables are in fact fractionally cointegrated with the 

integration orders of the cointegrating residuals fluctuating around 0.7 and thus 

implying mean reversion.
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TABLE 6.D1

r in (2.9) in the stock market.

S&P’s stock prices (1871 - 1986)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 6.02 4.03 2.35 0.95’ -0.19’ - 1 .1 0 ’ -2.03 -2.40 -2 . 8 6 -3.23

AR(1) 0.18 0.24 -0.07 -0.56 -1.14 -1.72 -2.28 -2.78 -3.21 -3.58
AR(2) 0.72 1.36 1.64 1.67 1.47 1 .1 1 0.63 0.09 -0.49 -1.05

SAR(l) 4.37 3.01 1.72’ 0.57’ -0.43’ -1.26’ -1.97 -2.50 -2.95 -3.31
SAR(2) 4.19 2.90 1 .6 6 ’ 0.53’ -0.45’ -1.27’ -1.97 -2.50 -2.94 -3.31

b) Intercept.
W.N. 6.06 3.89 2.14 0.73’ -0.40’ -1.30’ -2 . 0 0 -2.55 -2.99 -3.33

AR(1) -1 .0 2 -0.48 -0.61 -1 .0 2 -1.54 -2.09 -2.60 -3.06 -3.45 -3.79
AR(2) -0.55 0.57 1.03 1 .1 1 0.95 0.60 0.15 -0.37 -0.90 -1.42

SAR(l) 4.05 2.72 1.45’ 0.31’ -0.67’ -1.47’ -2.13 -2 . 6 6 -3.09 -3.43
SAR(2) 3.94 2.63 1.39’ 0.28’ -0 .6 8 ’ -1.48’ -2.13 -2 . 6 6 -3.08 -3.42

c) Intercept and a time trend.
W.N. 5.76 3.85 2.16 0.75’ -0.39’ -1.30’ -2 .0 1 -2.56 -3.00 -3.34

AR(1) -0.45 -0.27 -0.51 -0.97 -1.52 -2.09 -2.61 -3.08 -3.48 -3.81
AR(2) 0.14 0.84 1.16 1.18 0.97 0.60 0 . 1 2 -0.41 -0.95 -1.47

SAR(l) 4.14 2.78 1.49’ 0.34’ -0.65’ -1.47’ -2.13 -2 . 6 6 -3.09 -3.44
SAR(2) 3.92 2.67 1.43’ 0.30’ -0.67’ -1.48’ -2.13 -2 . 6 6 -3.09 -3.43

S&P’s dividends (1871 - 1986)

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 5.41 4.03 2.84 1.79’ 0 .8 6 ’ 0.04’ -0 .6 8 ’ -1.30’ -1.84’ -2.30

AR(1) -0.32’ -0.78’ -1.09’ -1.37’ -1.64’ -1.92’ -2 . 2 0 -2.48 -2.75 -3.01
AR(2) 0.08’ -0.07’ -0 .2 2 ’ -0.38’ -0.57’ -0.79’ -1.03’ -1.30’ -1.57’ -1.85’

SAR(l) 5.40 4.15 2.99 1.91’ 0.93’ 0.07’ -0 .6 8 ’ -1.32’ -1.87’ -2.34
SAR(2) 5.44 4.16 2.97 1 .8 8 ’ 0.90’ 0.03’ -0.71’ -1.35’ -1.90’ -2.36

b) Intercept.
W.N. 5.36 3.62 2.37 1.36’ 0.50’ -0.25’ -0.89’ -1.45’ -1.94’ -2.36

AR(1) -2.82 -2.44 -2.35 -2.39 -2.50 -2 . 6 6 -2.83 -3.02 -3.21 -3.39
AR(2) -1.78 -1.38 -1.27 -1.28 -1.36 -1.48 -1.64 -1.83’ -2.03 -2.23

SAR(l) 5.08 3.69 2.48 1.44’ 0.54’ -0.25’ -0.92’ -1.49’ -1.98 -2.41
SAR(2) 5.17 3.72 2.45 1.38’ 0.47’ -0.30’ -0.97’ -1.53’ -2 . 0 2 -2.43

c) Intercept and a time trend.
W.N. 4.78 3.52 2.38 1.38’ 0.51’ -0.24’ -0.90’ -1.46’ -1.97 -2.37

AR(1) -1.98 -2 . 1 2 -2 .2 1 -2.33 -2.48 -2.65 -2.84 -3.04 -3.23 -3.42
AR(2) -1.16 -1 .1 2 -1.14 -1 .2 1 -1.33 -1.48 -1 . 6 6 -1 .8 6 -2.06 -2.28

SAR(l) 4.80 3.63 2.51 1.47’ 0.55’ -0.24’ -0.92’ -1.50’ -2 . 0 0 -2.42
SAR(2) 4.78 3.60 2.45 1.41’ 0.49’ -0.30’ -0.97’ -1.55’ -2.03 -2.45

Non-rejection values of the null hypothesis (1.12) with p(L;0) = (l-L)**8 at 95% significance level when
monotonicity in the test statistic with respect to d is observed.
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TABLE 6.D2

Multivariate score tests in the time domain (S12 in (5.32)) with no regressors and white noise Ut. d, and
d2 are the differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 21.15 22.56 28.13 34.29 39.48 43.20 45.51 46.69 47.09
0.7 14.93 8.27 8.51 11.99 16.47 2 0 . 6 8 24.06 26.51 28.14
0 . 8 18.74 6.75 2.08’ 1.97’ 4.32’ 7.63 10.97 13.86 16.17
0.9 25.61 11.24 3.42’ 0.19’ 0.30’ 2.08’ 4.62’ 7.28 9.72
1 .0 31.98 17.22 7.96 2.97’ 1.16’ 1.48’ 3.01’ 5.08’ 7.26
1 .1 36.58 22.47 12.95 7.09 4.19’ 3.45’ 4.10’ 5.54’ 7.34
1 .2 39.36 26.29 17.14 1 1 . 1 0 7.69 6.32 6.37 7.31 8.72
1.3 40.70 28.72 2 0 . 2 0 14.38 1 0 . 8 6 9.19 8.89 9.48 10.61
1.4 41.09 30.06 22.24 16.81 13.41 1 1 .6 8 1 1 . 2 0 11.60 12.54

Multivariate score tests in the time domain (S12 in (5.32)) with an intercept and white noise Ut. dj and d2 

are the differencing orders for stock prices and dividends respectively.

0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 21.16 21.89 28.33 35.36 40.94 44.65 46.75 47.66 47.81
0.7 16.13 7.91 8.31 12.30 17.05 21.25 24.47 26.71 28.15
0 . 8 20.65 6.73 1.81’ 1.96’ 4.47’ 7.75 10.92 13.63 15.77
0.9 27.76 11.39 3.16’ 0 .2 1 ’ 0.36’ 2 .1 1 ’ 4.50’ 6.98 9.25
1 .0 34.04 17.34 7.63 2.82’ 1.19’ 1.52’ 2.93’ 4.83’ 6.85
1 .1 38.46 22.47 12.49 6.83 4.15’ 3.47’ 4.05’ 5.36’ 7.00
1 .2 41.06 26.17 16.56 10.72 7.57 6.31 6.32 7.15 8.43
1.3 42.29 28.52 19.53 13.90 1 0 . 6 6 9.13 8.82 9.33 10.34
1.4 42.62 29.82 21.52 16.26 13.15 11.57 1 1 . 1 2 11.44 12.28

Multivariate score tests in the time domain (S12 in (5.32)) with a time trend and white noise Ut. d, and 
are the differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 18.42 20.44 26.46 32.99 38.32 41.96 44.06 45.00 45.17
0.7 12.57 7.15 7.97 11.81 16.42 20.55 23.75 25.98 27.41
0 . 8 16.22 5.69’ 1 .6 6 ’ 1.91’ 4.39’ 7.64 10.81 13.51 15.65
0.9 22.95 1 0 .1 0 2.94’ 0 .2 0 ’ 0.36’ 2 .1 0 ’ 4.50’ 6.98 9.24
1 .0 29.18 15.94 7.37 2.80’ 1.19’ 1.51’ 2.92’ 4.83’ 6.85
1 .1 33.64 21.04 1 2 .2 1 6.81 4.15’ 3.46’ 4.04’ 5.35’ 6.99
1 .2 36.30 24.72 16.26 10.70 7.58 6.30 6.31 7.13 8.42
1.3 37.57 27.05 19.21 13.87 1 0 . 6 6 9.12 8.81 9.31 10.33
1.4 37.93 28.34 21.18 16.22 13.14 11.56 1 1 . 1 0 11.43 12.26

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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Multivariate score tests in the frequency domain (SR in (5.34)) with no regressors and white noise Ut. d
and d2 are the differencing orders for stock prices and dividends respectively.

d ,^ 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 22.79 22.91 27.64 33.33 38.31 42.00 44.42 45.79 46.42
0.7 17.17 9.39 8.73 11.60 15.73 19.80 23.21 25.79 27.61
0 .8 21.33 8.37 2.80’ 1.98’ 3.85’ 6.90 10.17 13.13 15.59
0.9 28.45 13.23 4.56’ 0.67’ 0.09’ 1.50’ 3.86’ 6.51 9.03
1 .0 34.98 19.50 9.45 3.69’ 1.23’ 1.07’ 2.32’ 4.29’ 6.49
1 .1 39.69 24.95 14.71 8 . 1 2 4.54’ 3.26’ 3.55’ 4.80’ 6.54
1 .2 42.53 28.90 19.09 12.38 8.30 6.36 6 . 0 0 6.67 7.97
1.3 43.91 31.40 22.28 15.83 11.67 9.44 8 . 6 8 8.98 9.96
1.4 44.29 32.77 24.38 18.37 14.37 12.09 11.16 11.24 1 2 . 0 0

Multivariate score tests in the frequency domain (S12 in (5.34)) with an intercept and white noise Ut. d 
and d2 are the differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 20.99 21.89 28.39 35.39 40.96 44.56 46.62 47.52 47.67
0.7 15.91 7.84 8.28 12.25 16.94 21.09 24.27 26.49 27.92
0 . 8 20.45 6 . 6 6 1.79’ 1.92’ 4.38’ 7.60 10.73 13.41 15.55
0.9 27.55 11.33 3.17’ 0.23’ 0.33’ 2.03’ 4.37’ 6.82 9.07
1 .0 33.81 17.26 7.65 2 .8 6 ’ 1 .2 1 ’ 1.50’ 2.87’ 4.74’ 6.74
1 .1 38.19 22.36 12.49 6 . 8 8 4.20’ 3.49’ 4.04’ 5.31’ 6.93
1 .2 40.77 26.03 16.53 10.76 7.63 6.35 6.33 7.13 8.39
1.3 41.98 28.36 19.49 13.93 10.71 9.18 8.85 9.33 10.32
1.4 42.31 29.66 21.47 16.29 13.20 11.63 11.15 11.46 12.27

Multivariate score tests in the frequency domain (S*2 in (5.34)) with a time trend and white noise Ut. d 
and d2 are the differencing orders for stock prices and dividends respectively.

diXda 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 18.50 20.49 26.49 33.01 38.32 41.95 44.05 45.00 45.19
0.7 1 2 . 6 6 7.18 7.97 11.79 16.37 20.49 23.68 25.93 27.38
0 .8 16.35 5.75’ 1 .6 8 ’ 1.89’ 4.34’ 7.56 10.72 13.44 15.59
0.9 23.14 1 0 . 2 0 3.00’ 0 .2 0 ’ 0.34’ 2.05’ 4.43’ 6.91 9.19
1 .0 29.40 16.09 7.48 2 .8 6 ’ 1 .2 1 ’ 1.50’ 2.89’ 4.79’ 6.82
1 .1 33.89 2 1 . 2 2 12.36 6.92 4.22’ 3.50’ 4.05’ 5.34’ 6.98
1 .2 36.57 24.93 16.43 10.85 7.68 6.37 6.35 7.16 8.43
1.3 37.85 27.27 19.41 14.04 10.80 9.23 8 . 8 8 9.37 10.37
1.4 38.21 28.56 21.38 16.40 13.30 1 1 . 6 8 1 1 . 2 0 11.50 12.32

’: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.D4

Multivariate score tests (S2 in (5.37)) with no regressors and a VAR(l) structure on Ut. dj and dj are the
differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 1 .1 2 ’ 5.02’ 11.60 18.83 25.11 29.58 31.99 32.57 31.79
0.7 2.83’ 2 .1 2 ’ 5.38’ 11.31 18.30 24.83 29.87 32.98 34.26
0 . 8 9.17 4.44’ 3.46’ 5.87’ 1 0 .8 6 17.20 23.52 28.78 32.47
0.9 18.00 10.98 6 . 6 6 5.27’ 6.83 10.87 16.41 22.28 27.55
1 .0 26.92 19.47 13.39 9.23 7.51 8.42 11.67 16.46 21.85
1 .1 34.14 27.80 21.45 15.92 11.92 11.54 13.11 16.31 20.54
1 .2 38.73 34.46 29.08 23.43 18.34 15.03 14.53 15.84 18.64
1.3 40.43 38.71 35.11 30.33 25.20 19.98 17.95 17.55 18.75
1.4 39.84 40.49 38.99 35.74 31.39 25.27 22.40 20.72 20.48

Multivariate score tests (S2 in (5.37)) with an intercept and a VAR(l) 
differencing orders for stock prices and dividends respectively.

structure on Ut. d, and a

djNdj 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 1.76’ 7.55 15.70 23.74 30.12 34.10 35.66 35.28 33.67
0.7 2.51’ 2.89’ 7.78 14.87 22.27 28.57 32.95 35.22 35.70
0 .8 8.70 4.04’ 4.36’ 8.16 14.02 20.53 26.47 31.04 33.95
0.9 17.60 9.93 6.33 6.30 9.11 13.84 19.44 24.91 29.51
1 .0 26.40 18.04 1 2 . 1 2 9.06 8.73 10.79 14.63 19.45 24.45
1 .1 33.23 26.02 19.52 14.72 1 2 .0 2 11.54 13.11 16.31 20.54
1 .2 37.21 32.30 26.62 21.42 17.40 15.03 14.53 15.84 18.64
1.3 38.36 36.08 32.21 27.69 23.38 19.98 17.95 17.55 18.75
1.4 37.38 37.48 35.72 32.63 28.90 25.27 22.40 20.72 20.48

Multivariate score tests (S2 in (5.37)) with a time trend and a VAR(l) 
differencing orders for stock prices and dividends respectively.

structure on Ut. dj and d2 a

dj\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 2.34’ 7.87 15.71 23.59 29.92 33.89 35.44 35.04 33.43
0.7 2.70’ 3.21’ 7.93 14.93 22.34 28.69 33.09 35.37 35.84
0 . 8 8.53 4.26’ 4.49’ 8.23 14.14 20.75 26.77 31.39 34.32
0.9 17.32 1 0 . 1 2 6.47 6.33 9.14 13.96 19.67 25.22 29.88
1 .0 26.17 18.29 12.36 9.14 8.73 10.82 14.73 19.64 24.71
1 .1 33.11 26.33 19.88 14.92 12.09 11.56 13.15 16.42 20.71
1 .2 37.02 32.61 27.07 21.73 17.56 15.10 14.59 15.92 18.76
1.3 38.07 36.34 32.65 28.07 23.62 2 0 . 1 2 18.05 17.65 18.87
1.4 36.95 37.63 36.12 33.02 29.18 25.46 22.53 20.84 20.60

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.D5

Multivariate score tests (S2 in (5.37)) with no regressors and a VMA(l) structure on Ut. d! and d2 are the
differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 0.05’ 1 .0 1 ’ 3.46’ 5.94’ 7.84 8.91 8.98 7.73 4.57’
0.7 1.92’ 0.74’ 2.05’ 4.09’ 6 . 0 0 7.33 7.87 7.25 4.80’
0 .8 4.79’ 1.92’ 2.14’ 3.67’ 5.43’ 6 . 8 8 7.70 7.55 5.72’
0.9 6.70 2.77’ 2.06’ 3.11’ 4.80’ 6.39 7.49 7.72 6.45
1 .0 7.42 3.27’ 1.87’ 2.30’ 3.72’ 5.38’ 6.72 7.31 6.54
1 .1 7.08 3.35’ 1.78’ 1.72’ 2.72’ 4.22’ 5.67’ 6.54 6.15
1 .2 5.96’ 2.89’ 1.53’ 1.28’ 1.89’ 3.12’ 4.54’ 5.61’ 5.60’
1.3 4.63’ 2.08’ 1.04’ 0.85’ 1.24’ 2 .1 1 ’ 3.33’ 4.48’ 4.85’
1.4 3.63’ 1.32’ 0.48’ 0.39’ 0.71’ 1.32’ 2.16’ 3.11’ 3.70’

Multivariate score tests (S2 in (5.37)) with an intercept and a VMA(l) structure on Ut. d, and are the 
differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 0 .0 0 ’ 1.74’ 4.86’ 7.61 9.55 10.65 10.93 10.28 8.26
0.7 1.83’ 0.98’ 2.95’ 5.40’ 7.48 8.94 9.70 9.64 8.33
0 . 8 4.75’ 1 .8 8 ’ 2 .6 8 ’ 4.74’ 6.84 8.54 9.65 10.03 9.27
0.9 6.59 2.48’ 2 .2 2 ’ 3.87’ 6.04 8 . 0 2 9.50 10.28 9.99
1 .0 7.16 2.78’ 1.71’ 2.69’ 4.65’ 6.77 8.55 9.72 9.87
1 .1 6.72 2.75’ 1.40’ 1.78’ 3.29’ 5.30’ 7.22 8.65 9.16
1 .2 5.60’ 2.29’ 1.07’ 1.13’ 2.13’ 3.83’ 5.76’ 7.41 8.25
1.3 4.32’ 1.59’ 0.63’ 0.62’ 1.24’ 2.45’ 4.13’ 5.88’ 7.08
1.4 3.36’ 1 .0 1 ’ 0.23’ 0 .2 2 ’ 0.62’ 1.37’ 2.48’ 3.92’ 5.28’

Multivariate score tests (S2 in (5.37)) with a time trend and a VMA(l) structure on Ut. d! and are the 
differencing orders for stock prices and dividends respectively.

d,\d2 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4

0 . 6 0.07’ 1 .8 6 ’ 4.73’ 7.37 9.33 10.48 10.80 10.17 8.14
0.7 1.46’ 1 .2 2 ’ 3.08’ 5.46’ 7.56 9.08 9.89 9.87 8.57
0 .8 3.85’ 1.95’ 2.80’ 4.80’ 6.91 8 . 6 6 9.84 10.27 9.56
0.9 5.33’ 2.40’ 2.30’ 3.90’ 6.06 8.07 9.61 10.45 10.23
1 .0 5.82’ 2.64’ 3.11’ 2.73’ 4.65’ 6.79 8.62 9.84 10.06
1 .1 5.42’ 2.63’ 1.52’ 1.85’ 3.30’ 5.30’ 7.26 8.74 9.31
1 .2 4.38’ 2.18’ 1 .2 1 ’ 1.24’ 2.18’ 3.84’ 5.78’ 7.46 8.37
1.3 3.13’ 1.47’ 0.77’ 0.76’ 1.34’ 1.57’ 4.16’ 5.92’ 7.16
1.4 2 .2 1 ’ 0.80’ 0.30’ 0.34’ 0.74’ 1.46’ 2.54’ 3.45’ 3.02’

: Non-rejection values of the null hypothesis (5.4) at 95% significance level.
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TABLE 6.D6

? in (2.9) for the estimated residuals.

p, + 0.12 - 30.99 dt

d 0 . 6 0.7 0 . 8 0.9 1 .0 1 .1 1 .2 1.3 1.4 1.5

a) No intercept and no time trend. 
W.N. 1.48’ 0.21’ -0.79’ -1.58’ -2 .2 a -2 . 6 8 -3.06 -3.37 -3.62 -3.83

AR(1) -0.83’ -1.38’ -1.97 -2.49 -2.95 -3.35 -3.68 -3.95 -4.18 -4.37
AR(2) 1.06’ 0.82’ 0.44’ -0.03’ -0.54’ -1.04’ -1.52’ -1.97 -2.38 -2.74

SAR(l) 1.15’ 0.05’ -0.87’ -1.61’ -2 . 2 2 -2.70 -3.10 -3.42 -3.70 -3.93
SAR(2) 1.15’ 0.05’ -0.87’ -1.61’ -2 .2 1 -2.70 -3.10 -3.42 -3.70 -3.93

b) Intercept. 
W.N. 1.46’ 0.18’ -0.83’ -1.63’ -2.24 -2.73 -3.11 -3.41 -3.66 -3.86

AR(1) -0 .8 6 ’ -1.45’ -2.03 -2.57 -3.04 -3.44 -3.76 -4.03 -4.24 -4.42
AR(2) 1 .0 2 ’ 0.75’ 0.32’ -0.18’ -0.71’ -1 .2 2 ’ -1.70’ -2.13 -2.52 -2.87

SAR(l) 1 .1 2 ’ 0 .0 1 ’ -0.92’ -1 .6 6 ’ -2.27 -2.75 -3.15 -3.47 -3.74 -3.97
SAR(2) 1 .1 2 ’ 0 .0 1 ’ -0.91’ -1 .6 6 ’ -2.26 -2.75 -3.15 -3.47 -3.74 -3.97

c) Intercept and a time trend. 
W.N. 1.46’ 0.18’ -0.83’ -1.63’ -2.24 -2.73 -3.11 -3.41 -3.66 -3.86

AR(1) -0.87’ -1.45’ -2.04 -2.58 -3.05 -3.44 -3.76 -4.02 -4.24 -4.42
AR(2) 1.03’ 0.73’ 0.31’ -0.19 -0.71’ -1 .2 2 ’ -1.69’ -2 . 1 2 -2.51 -2.85

SAR(l) 1 .1 1 ’ 0 .0 0 ’ -0.92’ -1.67’ -2.27 -2.75 -3.15 -3.47 -3.74 -3.97
SAR(2) 1 .1 1 ’ 0 .0 0 ’ -0.92’ -1 .6 6 ’ -2.26 -2.75 -3.15 -3.47 -3.74 -3.97

d 0 . 6 0.7 0.8 0.9

dt - 0.005 - 0.027 pt

1 .0  1 .1  1 .2 1.3 1.4 1.5

a) No intercept and no time trend.
W.N. 1.10’ -0.02’ -0.90’ -1.60’ -2.15 -2.60 -2.97 -3.27 -3.52 -3.74

AR(1) -1.40’ -1.85’ -2.29 -2.70 -3.07 -3.38 -3.66 -3.89 -4.10 -4.27
AR(2) 0.31’ 0.07’ -0.26’ -0.63’ -1 .0 2 ’ -1.40’ -1.78’ -2.14 -2.47 -2.78

SAR(l) 1.00’ -0.03’ -0.87’ -1.56’ -2 .1 1 -2.57 -2.95 -3.28 -3.55 -3.79
SAR(2) 0.99’ -0.03’ -0.88’ -1.56’ -2 .1 1 -2.57 -2.95 -3.28 -3.55 -3.79

b) Intercept.
W.N. 0.95’ -0.13’ -0.99’ -1 .6 8 ’ -2 . 2 2 -2.67 -3.02 -3.32 -3.57 -3.78

AR(1) -1.53’ -2 . 0 0 -2.45 -2 . 8 6 -3.22 -3.53 -3.79 -4.01 -4.20 -4.36
AR(2) 0 .2 1 ’ -0.09’ -0.46’ -0.87’ -1.27’ -1 .6 6 ’ -2 . 0 2 -2.35 -2 . 6 6 -2.94

SAR(l) 0 .8 6 ’ -0.15’ -0.97’ -1.64’ -2.19 -2.64 -3.02 -3.34 -3.61 -3.85
SAR(2) 0 .8 6 ’ -0.15’ -0.97’ -1.64’ -2.19 -2.64 -3.02 -3.34 -3.62 -3.85

c) Intercept and a time trend.
W.N. 0.89’ -0.15’ -1 .0 0 ’ -1 .6 8 ’ -2 . 2 2 -2 . 6 6 -3.02 -3.32 -3.57 -3.77

AR(1) -1.57’ -2.03 -2.47 -2.87 -3.22 -3.53 -3.79 -4.01 -4.19 -4.35
AR(2) 0.18’ -0.13’ -0.49’ -0 .8 8 ’ -1.28’ -1.65’ -2 .0 1 -2.34 -2.65 -2.92

SAR(l) 0.81’ -0.17’ -0.98’ -1.65’ -2.19 -2.64 -3.02 -3.34 -3.61 -3.85
SAR(2) 0.81’ -0.17’ -0.98’ -1.64’ -2.19 -2.64 -3.02 -3.34 -3.61 -3.85

*: pt corresponds to stock prices and d, to dividends. Non-rejection values of the null hypothesis (1.12)
at 95% significance level when monotonicity in the test statistic with respect to d is observed.
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TABLE 6.D7

r  in (2.9) for the estimated residuals with d < 0.50*

pt + 0.12 - 30.99 dt
a) No intercept and no time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 12.84 10.90 8.85 6.78 4.80 3.01
Seas. AR (1): 8.54 7.56 6.43 5.15 3.78 2.42
Seas. AR (2): 8 .1 1 7.32 6.31 5.09 3.75 2.40

b) Intercept.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 12.84 10.90 8.84 6.77 4.79 2.99
Seas. AR (1): 8.54 7.56 6.43 5.15 3.77 2.39
Seas. AR (2): 8 .1 1 7.32 6.30 5.09 3.74 2.38

c) Intercept and a time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 13.02 11.05 8.97 6.85 4.83 3.01
Seas. AR (1): 8.60 7.60 6.45 5.16 3.77 2.39
Seas. AR (2): 8.24 7.42 6.36 5.12 3.75 2.38

d f 0.005 - 0.027 pt
a) No intercept and no time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 12.74 10.51 8.26 6 . 1 0 4.15 2.47
Seas. AR (1): 8.09 7.31 6.26 4.98 3.58 2 . 2 2

Seas. AR (2): 8 . 1 0 7.32 6.26 4.97 3.57 2 .2 1

b) Intercept.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noose: 12.74 10.51 8.23 6 . 0 2 4.01 2.31
Seas. AR (1): 8.09 7.31 6.25 4.94 3.49 2.09
Seas. AR (2): 8 . 1 0 7.32 6.25 4.93 3.48 2.07

c) Intercept and a time trend.

Residuals \ d 0 . 0 0 0 . 1 0 0 . 2 0 0.30 0.40 0.50

White Noise: 11.04 9.14 7.22 5.37 3.66 2.16
Seas. AR (1): 8 .1 2 7.11 5.92 4.61 3.25 1,97
Seas. AR (2): 8.03 7.07 5.91 4.60 3.24 1.97

*: pt corresponds to stock prices and d, to dividends.
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6.2 FINAL COMMENTS

In this chapter we have analyzed several pairs of variables claimed by many 

authors to be cointegrated. In particular, we have examined the relationship between 

consumption and income, wages and prices, G.N.P. and money, and stock prices and 

dividends in United States, using the same data sets as in Engle and Granger (1987) 

and Campbell and Shiller (1987). All these pairs of variables were also analyzed 

from a Bayesian viewpoint in DeJong (1992).

Using Robinson’s (1994c) univariate tests, we started modelling the individual 

series, finding that all of them might be integrated of order one, though slight 

variations in this integration order might also be plausible. This unit root behaviour 

observed in the series was obtained independently of the way of modelling the 

disturbances and of the inclusion or not of deterministic regressors in the model; 

however, in some of these series, (in particular, nominal G.N.P., prices and money), 

integration orders greater than one were required when we included an intercept and 

an intercept and a time trend, and showing therefore, strong evidence against the 

trend-stationary representations advocated by some authors.

The multivariate versions of the tests corroborated the findings of the 

univariate tests when modelling together each pair of variables. Thus, two unit roots 

were found in most cases if we did not include regressors in the model and the 

disturbances were white noise or VMA(l) processes, though greater integration 

orders were more plausible in some series if we included an intercept and an 

intercept and a time trend. If the disturbances were VAR(l), the integration orders 

were slightly smaller and this might be explained by competition between the 

differencing orders and the VAR parameters in describing the nonstationary 

component of the series.

Finally, applying the tests of Robinson (1994c) on the estimated residuals 

from the regression of one of the variables against the other, results indicated that 

consumption and income, and stock prices and dividends were fractionally 

cointegrated, with the integration orders of the estimated residuals fluctuating around 

0.7 in both cases, and therefore, with equilibrium errors displaying mean reversion. 

Nominal G.N.P. was not cointegrated with nominal money when using M2 or M3 

as monetary aggregates, however, using Ml or L, results suggested the presence of 

a small component of fractional cointegration, with the integration orders of the
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residuals from the cointegrating regression fluctuating around 0 .8  in most of cases. 

Finally, prices and wages were clearly non-cointegrated when we considered the 

thirty year period (i.e. 1950-79) and when we looked at the 1950’s, though a small 

degree of mean reversion appeared during the 1960’s and 1970’s.

Results in this chapter alleviate the mixed conclusions obtained in previous 

works when classical cointegration was considered. In classical cointegration the 

individual series are assumed to be 1(1) but the estimated residuals must be strictly 

1(0) processes. In this chapter we have shown that though the individual series 

might be 1(1), the estimated residuals from the cointegrating regressions might be 

fractionally integrated, with the integration orders smaller than 1 (but greater than 

0.5) in some cases and thus, being nonstationary but with a mean reverting 

behaviour.

APPENDIX 6.1

In this appendix we describe the Fortran code used to calculate the empirical 

size of Robinson’s (1994c) tests for cointegration in Table 6.1.

C "EMPIRICAL SIZE OF ROBINSON’S (1994c) TESTS FOR COINTEGRATION"
parameter (n=**,nnd=10,nore=50000) 
implicit double precision (a-h,o-z)
dimension ds(nnd),xcv(nnd,nore),xl(n- 1 ),psi(n- 1 ),save(nnd),add(n),

+ u 1 (n),u2 (n),x 1 (n),x2 (n),z(n),y w(n),zd(n),p(n-1 ), w(nnd,nore)
dimension sm(nnd),s3(nnd),s4(nnd),skur(nnd),ske(nnd),var(nnd) 
xnore=nore 
pai=3.141592654 
ds(l)=0.50 
do 1 i=2 ,nnd 

ds(i)=ds(i-l)+0 . 1 0

1 continue 
xn=n 
xnl=n-l
do 2  i=l,n-l 

xi=i
xl(i)=(pai*2 .*xi)/xn
psi(i)=log(abs(2 .*sin(xl(i)/2 .)))

2  continue 
b= 0

do 3 i=l,n-l 
b=b+(l ./xnl)*psi(i)**2 .

3 continue 
xb=(2.*b)**(-0.5) 
do 9999 nd=l,nnd

d=ds(nd) 
add(l)=d 

do 4 j=2,n
xj=j
add(j)=((xj-d-1 .)/xj)*add(j-l)

4 continue
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7 

6

8

9

11

10

13 

12

14

15

16

9998

do 9998 ijk=l,nore 
call g05cbf(ijk) 

do 5 i=l,n 
u 1 (i)=g05ddf(.0,1.0) 
u2(i)=g05ddf(.0,1.0) 

continue 
xl(l)=ul(l) 
x2 (l)=u2 (l) 
do 6  i=2 ,n 

xl(i)=0 . 
x2 (i)=0 . 

do 7 j=l,i-l 
x 1 (i)=xl (i)+add(j)*x 1 (i-j) 
x2 (i)=x2 (i)+add(j)*x2 (i-j) 

continue 
xl(i)=xl(i)+ul(i) 
x2 (i)=x2 (i)+u2 (i) 

continue 
xalfal=0 . 
xalfa2 =0 . 
do 8  i=l,n 

xalfa 1 =xalfa 1 +x 1 (i)*x2 (i) 
xalfa2 =xalfa2 +x2 (i)* *2 . 

continue 
do 9 i=l,n 

z(i)=xl (i)-(xalfal/xalfa2 )*x2 (i) 
continue 
do 1 0  i=2 ,n 

yw(i)=0 . 
do 11  j=l,i-l 

yw(i)=yw(i) + ( ( - 1 )*add(j))*z(i-j) 
continue 

zd(l)=z(l) 
zd(i)=yw(i)+z(i) 

continue 
do 1 2  j=l,n-l 

ct=0 . 
st=0 . 

do 13 i=l,n 
xi=i
ct=ct+zd(i)*cos(xi*xl(j)) 
st=st+zd(i)*sin(xi*xl(j)) 

continue 
P(j)=(ct* *2 .+st* *2 .)/(pai *2 . *xn) 

continue 
a=0 .
do 14 j=l,n-l 

a=a+(pai*2 ./(-xn))*psi(j)*p(j) 
continue 
vm0 =0 . 
do 15 i=l,n 

vm0 =vm0 +( 1 Vxn)*zd(i) 
continue 
c0 =0 .
do 16 i=l,n 

c0 =c0 +(l ./xn)*(zd(i)-vm0 )**2 . 
continue
stat=(xn**0.5)*xb*a/c0
w(nd,ijk)=stat

continue
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9999 continue
do 17 k=l,nnd 

lim=nore-l. 
do 18 i=l,lim 

start=i+l 
do 18 j=start,nore 

if (w(k,i)-w(k,j)) 24,24,25
18 save(k)=w(k,i)

w(k,i)=w(k,j)
w(k,j)=save(k)

18 continue
17 continue

do 19 i=l,nnd 
sm(i)=0 . 

do 2 0  j=l,nore 
sm(i)=sm(i)+( 1 ./xnore)*w(i,j)

2 0  continue
19 continue

do 2 1  i=l,nnd 
var(i)=0 . 
ske(i)=0 . 
skur(i)=0 . 

do 2 2  j=l,nore 
var(i)=var(i)+(l./xnore)*(w(i,j)-sm(i))**2 . 
ske(i)=ske(i)+(lAnore)*(w(i,j)-sm(i))**3 
skur(i)=skur(i)+( 1Anore)*(w(i ,j)-sm(i))**4

2 2  continue
s3(i)=ske(i)/(var(i)**l .5) 
s4(i)=skur(i)/(var(i)**2.)

2 1  continue 
end

APPENDIX 6.2

To illustrate the potential difference in power between the tests of Robinson 

(1994c) and the GPH and ADF tests for cointegration, a Monte Carlo experiment, 

similar to that in Engle and Granger (1987) and Cheung and Lai (1993) is conducted. 

We consider a bivariate system where yt and zt are given by 

yt + zt = ult (Cl)

yt + 2 zt = u2t (C2)

where (1 - L)ult = elt, and u2t is generated, alternatively, as an autoregressive process 

(1 - pL)u2t = £*, (C3)

or as a fractional white noise process

(1 - L)d u2t = e*. (C4)

where the innovations £lt and are generated as independent standard normal 

variates. Thus, if p = 1 in (C3) or d = 1 in (C4), the two series are 1(1) and non

cointegrated; if u2t is generated by (C3) and I p I < 1, yt and Zj are cointegrated, and 

(C2) is their cointegrating relationship; alternatively, if u2t is generated by (C4) and
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d < 1, yt and zt are fractionally cointegrated. As in Engle and Granger (1987) and 

Cheung and Lai (1993), we used samples of size T = 76, and sample series of yt and 

zt were generated setting the initial values of Uj and u2 equal to zero, creating 126 

observations, of which the first 50 were discarded to reduce the effect of the initial 

conditions. We report the rejection frequencies at 5% and 10% significance level, 

based on 1 0 ,0 0 0  replications.

C "POWER FUNCTION OF ROBINSON’S (1994c) TESTS FOR COINTEGRATION
AGAINST FRACTIONAL AND AUTOREGRESSIVE ALTERNATIVES".

parameter (n=l26,nn=76,nm=50,nnd=l0,nore=l0,nwa=5*nn,nk=nn-l) 
implicit double precision (a-h,o-z)
dimension ds(nnd),xl(nn- 1 ),psi(nn- 1 ),cosl(nn,nn),sinl(nn,nn),

+ add(n),u 1 (n),u2(n),u3(n),x 1 (nn),x2(nn),z(nn),p(nn-1 ),e 1 (n),e2(n),
+ cv(2 ),xx 1 (nm+ 1 :n),xx2 (nm+ 1 :n),uu2 (n,2 ),zz(nn),cr(nn-1 )
+ stat(4,nnd),nrej(4,2,nnd,2),xnrej(4,2,nnd,2),mm(7),
+ w wa(nwa),par(3),al(3,3),g(nn-1 ),ex(nn-1,3),sx(3,3),ye(3),
+ xp(l,l),sx2(3,2),xp2(2,2),sx3(4,3),xp3(3,3),t2(2),t3(3)

do 1 i=l,4 
do 1 j= l , 2  

do 1 k=l,nnd 
do 1 1=1 ,2  

nrej(i,j,k,l) = 0

1 continue 
cv(l)=-1.64 
cv(2)=-1.28 
pai=3.141592654 
ds(l)=0.05
do 2  i=2 ,nnd 

ds(i)=ds(i-l)+0 . 1 0

2  continue 
xn=nn 
xnl=nn-l
do 3 i=l,NN-l 

xi=i
xl(i)=(pai*2 .*xi)/xn
psi(i)=log(abs(2 .*sin(xl(i)/2 .)))

3 continue 
b= 0

do 4 i=l,nn-l 
b=b+(17xnl)*psi(i)**2.

4 continue 
xb=(2.*b)**(-0.5) 
do 5 i=l,nn
do 5 j=l,NN 

xi=i
cosl(i,j)=cos(xi*xl(j))
sinl(i,j)=sin(xi*xl(j))

5 continue
do 9000 nd=l ,nnd 

d=ds(nd) 
add(l)=d 
do 6  j=2 ,n

xj=j
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add(j)=((xj-d-1 .)/xj)*add(j-1) 
continue
do 9001 ijk=l,nore 

call g05cbf(ijk) 
do 7 i=l,n 

e 1 (i)=g05ddf(.0,1.0) 
e2(i)=g05ddf(.0,1.0) 

continue 
ul(l)=el(l) 
uu2(l,l)=e2(l) 
do 8 i=2,n 

uu2(i,l)=0. 
do 9 j=l,i-l

uu2(i, 1 )=uu2(i, 1 )+add(j)*uu2(i-j, 1) 
continue
uu2(i, 1 )=uu2(i, 1 )+e2(i) 

continue 
do 10 i=l,n 

uu2(i,2)=0. 
do 11 j=0,i-l 

uu2(i,2)=uu2(i,2)+(d**j)*e2(i-j) 
continue 

continue 
do 12 i=2,n 

ul(i)=0. 
do 13 k=0,i-l 

ul(i)=ul(i)+el(i-k) 
continue 

continue 
do 9002 1=1,2 

do 14 i=l,n 
u2(i)=uu2(i,l) 

continue 
do 15 i=nm+l,n 

xx 1 (i)=2.*ul (i)-u2(i) 
xx2(i)=u2(i)-ul(i) 

continue 
do 16 i=l,nn 

xl(i)=xxl(i+50) 
x2(i)=xx2(i+50) 

continue 
xalfal=0. 
xalfa2=0. 
do 17 i=l,nn 

xalfal =xalfal +x 1 (i)*x2(i) 
xalfa2=xalfa2+x2(i)**2. 

continue 
do 18 i=l,nn 

zz(i)=x 1 (i)-(xalfal/xalfa2)*x2(i) 
continue 
z(l)=zz(l) 
do 19 i=2,nn 

z(i)=zz(i)-zz(i-l) 
continue 
ume=0. 
do 20 i=l,nn 

ume=ume+( 1 ./xn)*z(i) 
continue 
svar=0. 
do 21 i=l,nn
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svar=svar+(z(i)-ume)**2. 
continue 
var=svar/xn 
do 22 j=l,nn-l 

cvk=0.
do 23 i=l,nn-j 

cvk=cvk+(z(i)-ume)*(z(i+j)-ume) 
continue 
cr(j)=cvk/svar 

continue 
do 24 j=l,nn-l 

ct=0. 
st=0.
do 25 i=l,nn 

ct=ct+z(i)*cosl(i,j) 
st=st+z(i)*sinl(i,j) 

continue
p(j)=(ct**2+st**2.)/(pai*2.*xn)

continue
ta=0.
ta2=0.
do 26 j=l,nn-l 

ta=ta+psi(j)*p(j) 
ta2=ta2+p(j) 

continue
a=(pai*2.*ta)/(-xn) 
va=(pai*2.*ta2)/xn 
stat(4,nd)=(xn**0.5)*xb*a/va 
do 9003 iq=l,3 

mm(l)=iq 
npar=iq 
fail=0
call gl 3adf(mm,cr,nk,var,npar,wwa,nwa,par,rv,isf,ifail) 
do 27 ipar=l,iq 

al(ipar,iq)=par(ipar) 
continue 
do 28 if=l,nn-l 

sl=0. 
s2=0.
do 29 io=l,iq 

s 1 =s l+al(io,iq)*sin(xl(if)*io) 
s2=s2+al(io,iq)*cos(xl(if)*k>) 

continue
g(if)= 1 ./((l .-s2)**2.+sl **2.) 

continue 
vr=0.
do 30 if=l,nn-l 

vr=vr+(2.*pai/xn)*p(if)/g(if) 
continue 
do 31 if=l,nn-l 
do 31 ip=l,iq 

exe=0.
do 32 io=l,iq 

exe=exe+al(io,iq)*cos((ip-io)*xl(if)) 
continue
ex(if,ip)=2.*(cos(ip*xl(if))-exe)*g(if) 

continue 
do 33 il=l,iq 
do 33 i2=l,iq 

xr=0.
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34
33

35

36

37

38

39

9003

40
9002
9001

41
9000

xrr=0. 
sx(il,i2)=0. 
ye(il)=0. 
do 34 if=l,nn-l 

xr=xr+((-1 )*2. *pai/xn)*psi(if)*p(if)/g(if) 
xrr=xrr+(2./xn)*psi(if)**2. 
sx(i 1 ,i2)=sx(i 1 ,i2)+ex(if,i 1 )*ex(if,i2) 
ye(i 1 )=ye(i 1 )+psi(if)*ex(if,i 1) 

continue 
continue 
if(iq.eq.l) then 

xp(l,l)=l./sx(l,l) 
yer=(27xn)*ye( 1 )*xp( 1,1 )*ye( 1) 

else if(iq.eq.2) then 
do 35 il=l,2 
do 35 i2=l,2 

sx2(il,i2)=sx(il,i2) 
continue
call f01abf(sx2,3,2,xp2,2,t2,ifail)
xp2(l,2)=xp2(2,l)
yer=0.
do 36 ml=1,2 
do 36 m2=l,2 

yer=yer+(2Vxn)*ye(m 1 )*xp2(m 1 ,m2)*ye(m2) 
continue 

else if(iq.eq.3) then 
do 37 il=l,3 
do 37 i2=l,3 

sx3(il,i2)=sx(il,i2) 
continue
call f01abf(sx3,4,3,xp3,3,t3,ifail) 
do 38 il=l,2 
do 38 i2=l+il,3 

xp3(i 1 ,i2)=xp3(i2,i 1) 
continue 
yer=0.
do 39 ml=l,3 
do 39 m2=l,3 

yer=yer+(2./xn)*ye(m 1 )*xp3(m 1 ,m2)*ye(m2) 
continue 

end if 
ya=xrr-yer
stat(iq,nd)=((xn/ya)**0.5)*xr/vr 

continue 
do 40 iq=l,4 
do 40 i=l,2 

if(stat(iq,nd).lt.cv(i)) then 
nrej(iq,i,nd,l)=nrej(iq,i,nd,l)+l 

endif 
continue 

continue 
continue 
xnore=nore 
do 41 iq=l,4 
do 41 i=l,2 
do 41 1=1,2 

xnrej(iq,i,nd,l)=nrej(iq,i,nd,l)/xnore 
continue 

continue 
end
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CONCLUSIONS

Fractional integration has recently emerged in the literature as an alternative 

viable way of modelling economic time series. In this thesis we have concentrated 

on testing fractional and seasonal fractional integration and cointegration in 

macroeconomic time series. We used a testing procedure suggested by Robinson 

(1994c), which is very general in the sense that it allows us to test one or more 

integer or fractional roots of arbitrary order anywhere in the unit circle on the 

complex plane. These tests are described in Chapter 2; they are derived via the 

score principle, are efficient when directed against appropriate alternatives, and have 

standard null and local limit distributions. The empirical distribution of the tests in 

finite samples is also computed in Chapter 2, and some simulations, comparing the 

finite sample behaviour of Robinson’s (1994c) tests, using both, the size-corrected 

and the asymptotic critical values, with some other existing unit roots tests, are also 

carried out at the end of the chapter.

In Chapter 3 we concentrate on cases where the singularity in the spectrum 

occurs at zero frequency. We use a version of Robinson’s (1994c) tests for testing 

unit roots and other nonstationarities on an extended version of Nelson and Plosser’s 

(1982) data. These are fourteen U.S. macroeconomic variables in historical annual 

data. We model each series for different cases of no regressors, an intercept, and an 

intercept and a time trend, and for different types of disturbances, which, also 

unusually, include the Bloomfield exponential spectral model. The conclusions vary 

substantially across the fourteen series and across different models for the 

disturbances. When they are white noise, the unit root hypothesis is rejected in five 

series, in each of which a somewhat greater degree of nonstationarity is indicated, 

though even when the unit root is not rejected there is also evidence of possible 

fractional integration. With AR disturbances there are fewer rejections and evidence 

of smaller degree of nonstationarity, due perhaps to competition between the 

differencing parameter and the autoregression in describing the nonstationarity. 

Using the Bloomfield model, we find strong evidence in favour of single values for 

the differencing parameter, most of which are 0.75 and 1. Overall, the consumer 

price index and money stock seem the most nonstationary, followed by the G.N.P.
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deflator and wages, whereas industrial production and unemployment rate seem the 

closest to stationary.

In Chapter 4 we concentrate on seasonality and thus, we allow the 

singularities to occur not only at zero frequency but also at the seasonal frequencies. 

Robinson’s (1994c) tests are now applied to quarterly U.K. and Japanese 

consumption and income series, using the same data sets as in HEGY (1990) and 

HEGL (1993) respectively. We present a variety of model specifications for both 

series. However, given the number of possibilities covered by Robinson’s (1994c) 

tests, it is difficult to draw clear conclusions about which might be the best way of 

modelling them. In fact, the null hypothesized model includes different deterministic 

paths; different lagged functions, allowing roots at some or all seasonal frequencies 

(as well as at zero frequency), each of them with a possible different integration 

order; and different ways of modelling the 1(0) disturbances. Looking at the bulk 

of the results, some common features are observed for all series in both countries. 

Thus, modelling the series as quarterly 1(d) processes, (i.e., with p(L) = (1 - L4)d) 

seems appropriate when the disturbances are white noise or non-seasonal AR. 

Allowing different integration orders at real and at complex roots, the results 

emphasize the importance of the real roots over the complex ones, given the greater 

integration order observed in the former roots, and this is even clearer when we 

allow different integration orders at each frequency. Excluding one real root results 

in rejecting the null in practically all situations. When modelling with p(L) = (1 - 

L2)d, results are now better for seasonal AR than for the other cases, and separating 

here the roots at zero and at frequency K, results emphasize the importance of the 

long run frequency; however, modelling the series with a simple 1(d) process with 

p(L) = (1 - L)d seems inappropriate in most of the cases. Looking at individual 

series, integration orders range between 0.50 and 1.25 in both countries and for both 

series, indicating clearly the nonstationary nature of these series; however its 

difference seems less integrated, suggesting that a certain degree of fractional 

cointegration exists for a given cointegrating vector (1,-1), using a simplistic version 

of the permanent income hypothesis. These results are consistent with those 

obtained in HEGY (1990) and HEGL (1993) for the unit root case, though we show 

that seasonal fractional integration, even allowing different integration orders at 

different frequencies, might be an alternative plausible way of modelling these series.
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In Chapter 5 we extend the tests of Robinson (1994c) to the multivariate case, 

testing the presence of unit roots and other nonstationary hypotheses on the residuals 

in a multiple time series system. The multivariate case provides a more detailed 

insight into properties and stochastic behaviour than the univariate work. We 

describe the functional forms of the test statistics based on the three general 

principles when deriving nested parametric hypotheses, namely, the score, Wald and 

likelihood principles. Some particular cases of the tests, leading to neat forms of the 

test statistics are also presented, and finally, some simulations based on Monte Carlo 

experiments are carried out in order to study its finite sample behaviour. We show 

that results based on the score test seem to be adequate to test the null of a random 

walk in a bivariate context.

The multivariate tests of Chapter 5 are applied in Chapter 6 to some pairs of 

variables that might be cointegrated. In particular, we use the same data sets as in 

Engle and Granger (1987) and Campbell and Shiller (1987), studying the 

relationships between consumption and income, prices and wages, nominal G.N.P. 

and money, and stock prices and dividends. First, using Robinson’s (1994c) 

univariate tests, we found that all individual series might be 1(1) when modelling 

with no regressors, though in some of them, (in particular, prices, nominal G.N.P. 

and money) higher integration orders should be required when including an intercept 

and/or a time trend. The multivariate tests support this view, finding two unit roots 

when modelling without regressors, but rejecting this hypothesis in favour of more 

nonstationarities in some of them when including deterministic paths.

Finally we also presented a testing procedure for testing the hypothesis of 

fractional cointegration of given orders d, d-b, in the bivariate case. This procedure 

follows a similar methodology to the one proposed in Engle and Granger (1987). 

In the first step we test that both individual series are integrated with the same 

integration order d. This can be done using either Robinson’s (1994c) univariate 

tests or the multivariate version described in Chapter 5. Once we have checked that, 

we can again use Robinson’s (1994c) univariate tests, testing if the estimated 

residuals from the cointegrating regressions are fractionally integrated of order b, 

with b < d, and the test statistic will still remain with the same standard limit 

distribution. The empirical sizes of the tests on finite sample is obtained and the 

power properties of these tests relative to ADF and GPH tests for cointegration are
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also evaluated and compared. Robinson’s (1994c) tests behave better than the ADF 

and the GPH tests for cointegration when testing against both fractional and AR 

alternatives. This is not surprising if we take into account that the ADF test assumes 

a strict 1(0) and 1(1) distinction and the GPH test requires estimation of the fractional 

differencing parameter, whereas Robinson’s (1994c) tests do allow fractional 

integration and do not require estimation of d.

Performing the tests on the estimated residuals from the cointegrating 

regressions for each pair of variables, results suggest that consumption and income, 

and stock prices and dividends are fractionally cointegrated, with the equilibrium 

errors from the cointegrating regressions fluctuating around 0.7 in most cases, and 

thus being nonstationary but mean-reverting. Nominal G.N.P. seems non

cointegrated with money when using M2 and M3 as measures of money, though a 

small component of mean reversion appears on the estimated residuals when using 

Ml or L. Finally, prices and wages are clearly non-cointegrated when looking at the 

thirty year period, though a small degree of mean reversion appears in the 60’s and 

70’s.
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