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Abstract

This thesis introduces dynamic considerations and shows that knowledge 

spillovers (hereafter, spillovers) can also enhance the private returns to innovation 

(thus, reduce private obsolescence), should they feed back into the dynamic research 

of the original inventor. However, spillovers will always reduce private returns (thus, 

intensify private obsolescence) if the original inventor does not technologically 

benefit from the advancements other inventors build into its spilled knowledge.

The contribution of this thesis broadens the concept of private returns to 

innovation, by distinguishing between static and dynamic returns. Static returns are 

defined as the stream of profits directly associated with a single invention, whereas 

dynamic returns also consider the expected stream of profits the firm can receive from 

the subsequent developments of its knowledge.

We develop a conceptual framework as well as an empirical methodology that 

allow us to identify unique patterns of knowledge diffusion, which are defined as lines 

of research (they are empirically identified as unique sequences of patent citations). 

We classify the lines of research as two types, based on the feedback they yield to 

their inventors. A line of research is defined as Internalized, if knowledge returns to 

the boundaries of its inventor, after having been advanced by other firms, whereas a 

line of research is defined as Externalized, if knowledge does not return to the 

boundaries of its inventor, after having been advanced by other firms.

We find a substantial firm-level variation in the ability to reabsorb spilled 

knowledge, even within four-digit industries. This variation translates to differential 

private returns to innovation, where firms that enjoy a more Internalized and less 

Externalized pattern of diffusion capture higher private returns, as indicated by the 

effect of their R&D on their market value.

Moreover, we estimate a R&D equation and find preliminary evidence 

suggesting that firms adjust their R&D expenditures according to their ability to 

reabsorb their spilled knowledge. Firms that enjoy a more Internalized and less 

Externalized pattern of diffusion on average invest more in R&D.

We show that firms are able to internalise dynamically some of their 

knowledge that spills to other firms. To the extent that such internalisation occurs, the 

underinvestment problem in R&D will be mitigated.
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C hapter 1

Introduction and sum m ary o f 

results

Once knowledge leaves the boundaries of its inventor, private returns depreciate, as 

imitation and subsequent innovation occur1. Under cumulative innovation, knowl­

edge is sequentially developed2, mostly outside the boundaries of its original in­

ventor. The literature refers to this process as knowledge spillovers3 (hereafter, 

spillovers). Spillovers are argued to be socially desirable4, although they enhance 

private obsolescence (as a more advanced knowledge is now held at the hands of 

other inventors)5.

This thesis introduces dynamic considerations and shows that spillovers can 

also enhance the private returns to innovation (i.e., reduce private obsolescence), 

should they feed back into the dynamic research of the original inventor. However, 

spillovers will always intensify private obsolescence, if the original inventor does 

not technologically benefit from the advancements other inventors build into its

1For example, the patent system is designed to mitigate the erosion of private returns as a 
result of the spread of knowledge, so as to give a sufficient private incentive for innovation.

2As Arrow (1962) has stated “The school of thoughts that emphasizes the determination of 
invention . . .  emphasizes strongly the productive role of previous information in the creation of 
new information”.

3In this thesis, we refer to spillovers as the case an inventor builds on prior knowledge that 
was invented by a different inventor.

4 Grossman and Helpman (1991) and Romer (1990) model knowledge spillovers as an engine 
for economic growth.

5 The obsolescence of private returns to knowledge was addressed, among others, by Griliches 
(1979), Pakes and Schankerman (1984), Schankerman and Pakes (1986), Caballero and Jaffe 
(1993) and Lanjouw (1998).
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spilled knowledge6. We refer to the spilled knowledge as an originating knowledge 

(as it originates subsequent research) and to its inventor as an originating firm.

The contribution of this thesis broadens the concept of private returns to inno­

vation, by distinguishing between static and dynamic returns. Static returns are 

defined as the stream of profits directly associated with a single invention, whereas 

dynamic returns consider also the expected stream of profits the firm can receive 

from the subsequent developments of its knowledge.

In a static framework, knowledge is not sequentially developed. Hence, static 

and dynamic returns coincide. However, in a sequential innovation framework, 

dynamic returns rise with the ability of the firm to exploit the technological op­

portunities its invention introduces.

Spillovers enhance the technological opportunities of the originating knowl­

edge. The extent to which spillovers raise private returns depends on whether the 

originating firm benefits from these enhanced technological opportunities. Thus, 

spillovers can intensify private returns to knowledge through their interaction with 

the ability of the originating firm to reabsorb its spilled knowledge7. We will show, 

theoretically and empirically, that this ability has a positive effect on private re­

turns in a dynamic framework of sequential innovation.

We develop of a conceptual framework as well as an empirical methodology 

that identify the ability of firms to reabsorb their spilled knowledge, as described 

in detail in chapter 2. For this purpose we analyse patents and patent citations 

data, where patents are our empirical observation for knowledge and patent cita­

tions are our empirical observation for knowledge flow from the cited patent to the 

citing patent8. We follow the sequential development of knowledge by extracting 

sequences of citations, where we interpret every patent in this sequence as a subse­

quent development of its immediate ancestor. We apply the algorithm we develop

6 We use the terminology spilled knowledge, throughout the thesis, to refer to knowledge that 
creates spillovers (i.e., the knowledge that is sequentially developed by firms different from the 
original inventor).

7In other words, spillovers can benefit the inventor of the spilled knowledge in a dynamic per­
spective, through reducing the probability that the fine of research it originates will be terminated 
(once no firm invents). The extent to which these spillovers contribute to the original inventor 
depends on its ability to build on the inventions of others along the line of research it originates. 
This ability will be empirically measured, using data on patents and generation of citations.

8See, for example, Jaffe, Trajtenberg and Henderson (1993) and Jaffe, and Trajtenberg (1999).
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to a high order sequence of citations, which allows us to observe whether knowledge 

that leaves the boundaries of its inventor, returns to these boundaries after having 

been advanced by other inventors.

The data we extract are singleton sequences of citations, where singleton refers 

to the fact that every sequence of citations is not fully contained in any longer 

sequence of citations for the time period we examine (i.e., it is unique). We define 

these sequences of citations as lines of research, interpreted as unique paths along 

which the originating knowledge has been developed. We classify these lines of 

research as two types, based on the feedback they yield to the originating firm. 

Lines of research are defined as Internalized, if the originating knowledge returns 

to the boundaries of the originating firm, after having been advanced by other firms, 

whereas lines of research are defined as Externalized, if the originating knowledge 

does not return to the boundaries of the originating firm in the time period we have 

analysed9. Based on the sets of Internalized and Externalized lines of research, we 

construct diffusion variables tha t measure the extent to which spilled knowledge is 

reabsorbed by its inventor.

It should be noted that we assume an inventor desires to exploit the techno­

logical opportunities its invention creates by sequentially advancing it (thus, elim­

inating the case where an inventor retires after making an important discovery). 

For this purpose, we focus the analysis on a sample of firms that on average re­

main active for a substantial period of time after having invented the originating 

knowledge.

The thesis is structured as following: chapters 2 to 5 are mostly empirical and 

embody the main contribution of the thesis. Chapter 6 is a theoretical analysis of 

a strategic interaction of firms in managing their spilled knowledge.

In chapter 2 we introduce our conceptual framework and empirical methodology 

and in chapters 3 and 4 we analyse the circumstances under which a firm is more 

likely to reabsorb its spilled knowledge; where in chapter 3 we focus on the research 

environment of the firm and in chapter 4 we focus on the characteristics of the

9 The terminology Internalized and Externalized refers to whether the spillovers the originating 
knowledge creates, have been absorbed into the dynamic research of the originating firm.
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originating knowledge. Chapter 5 presents the main econometric analysis of the 

thesis, which estimates the countervailing effect spillovers have on private returns 

in a market value framework. Finally, in chapter 6 we develop a theoretical model 

that studies the strategic nature of knowledge flows, by allowing firms to affect the 

spillovers of their inventions.

We will next turn to explain the findings of this thesis, starting with the main 

empirical findings, before addressing the findings in each of the chapters of the 

thesis.

The main findings of this thesis are reported in chapter 5. We find a substan­

tial firm-level variation in the ability to reabsorb spilled knowledge, even within 

four-digit industries. This variation translates to differential private returns to in­

novation, as measured by the effect of R&D on the firm market value. Firms that 

enjoy a more Internalized and less Externalized pattern of diffusion capture higher 

private returns.

Moreover, we estimate a R&D equation and find preliminary evidence suggest­

ing that firms adjust their R&D expenditures according to their ability to reabsorb 

their spilled knowledge. Firms that enjoy a more Internalized and less External­

ized pattern of diffusion on average invest more in R&D. The importance of this 

finding extends also to the endogenous nature of knowledge flows, as it motivates 

developing a framework in which firms not only optimize their R&D activity, but 

also the diffusion of their knowledge (in chapter 5 we review case-study evidence, 

suggesting that firms manage the diffusion of their knowledge and in chapter 6 we 

introduce a theoretical model in which firms simultaneously optimize their R&D 

and the diffusion of their inventions).

In chapter 2 we introduce our conceptual and empirical framework, which iden­

tify the spillovers created by 104,694 patented inventions. We observe that about 

five percent of these spillovers have been internalized in the dynamic research of 

their creators. This percentage is stable over time and across technology sectors. 

Moreover, 7.6 percent of the lines of research (singleton sequences of citations) are 

Internalized, i.e., represent the case where spilled knowledge is reabsorbed by its 

inventor. This percentage is also stable across technology sectors and over time.
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In chapter 3 we examine the research environment of the originating firm and 

identify the factors that affect its ability to reabsorb its spilled knowledge. In this 

chapter, our unit of observation is a line of research. The dependent variable in the 

econometric analysis is an indicator that receives the value one for an Internalized 

line of research and zero for an Externalized line of research. We find that firms are 

more likely to  reabsorb their spilled knowledge, if its subsequent developments occur 

in lines of research that (1) have fewer firms, (2) are less technologically complex and 

(3) include firms that are more remote in the product market from the originating 

firm. Findings (1) and (2) are highly robust and evident also within technology 

sectors. W ith respect to finding (3), it is less robust to the type of estimation and 

is less evident within technology sectors (actually, we find a significant effect only 

in the “Chemicals” sector).

In chapter 4 we investigate the correlation between the diffusion pattern of 

knowledge and its ‘basicness’ characteristics. We test the hypothesis that ‘basic’ 

knowledge experiences a diffusion pattern which is more Externalized and less 

Internalized, so that its inventor is likely to face lower private returns. Our unit 

of observation in this chapter is the originating patent, whereas the dependent 

variable in the econometric analysis is the share of spillovers that are internalized 

in the dynamic research of the firm that created them. We find that patents that 

are more “general” and “original” have a lower share of internalized spillovers. This 

implies that as knowledge is more ‘basic’, its inventor is less likely to benefit from 

the advancement other inventors build into the spilled knowledge by reabsorbing 

it in a future period.

Chapter 5 includes the main econometric analysis we conduct in this thesis. We 

analyse the market valuation of the R&D stock of the firm (that proxies its knowl­

edge) and find that the market places a higher valuation on the R&D expenditures 

of firms th a t are more able to reabsorb their spilled knowledge (i.e., experience a 

pattern of diffusion which is more Internalized and less Externalized). Moreover, 

we find preliminary evidence suggesting that firms adjust their R&D decision ac­

cording to the diffusion pattern their inventions follow, where firms with a higher 

ability to reabsorb their spilled knowledge innovate more.

15



Chapter 6 presents a theoretical model and uses dynamic programming numer­

ical techniques to solve for a game in which firms strategically affect the spillovers 

that their inventions create, and link this strategic behaviour to the evolution pat­

tern of industries. We theoretically demonstrate the importance of studying the 

strategic component of knowledge flow for the effect of spillovers on industry evolu­

tion, by focusing on the well documented industry event of “producers’ shakeout” 

(which shapes the structure of the industry from fragmented to concentrated).

The mechanism tha t triggers industry shakeout in our model is based on strate­

gic knowledge flows10, as follows: at the early periods of the industry evolution 

firms have a strong incentive to share their knowledge with other firms in order 

to encourage the expansion of the market. As the industry matures, the positive 

incentive to share knowledge weakens, relative to the desire of firms to protect their 

market share, up to a point where firms choose to prevent the flow of their knowl­

edge, thus, diminishing spillovers. This triggers “producer’s shakeout” , as firms 

with lower innovative capabilities, which are able to survive only in the presence 

of spillovers, are forced out of the industry.

In summary, this thesis shows that spillovers can lower private obsolescence of 

knowledge, if they feed back into the dynamic research of their creator. This de­

pends on the characteristics of the research environment, the type of the knowledge 

created and the features of the firm. To the extent this internalisation of spilled 

knowledge occurs, the underinvestment problem in R&D will be mitigated.

10 In this chapter we explore a different mechanism by which firms can benefit from the spillovers 
they create. As in the empirical part of thesis firms can benefit from the spillovers they create 
technologically, in this chapter, the benefit comes from the expansion of the product market.
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C hapter 2

C onceptual Framework and 

Em pirical M ethodology

Using data on about 600,000 patents and 1.7 million patent citations for the US, 

we have measured the spillovers created by 104,694 inventions between 1975 and 

1995. We identify the extent to which firms reabsorb the knowledge they invent, 

after it is diffused and is advanced by other firms, and conceptually link it to the 

private returns to innovation. We find that about 5 percent of the spillovers that 

have been created by our sample of inventions, contributed to the dynamic research 

of their inventors. This percentage has been rather stable over time and on average 

does not vary much across technology sectors.

2.1 Introduction

Using data on about 600,000 patents and 1.7 million patent citations in the US, 

we have measured the spillovers created by 104,694 inventions, between 1975 and 

1995 by tracing the flow of knowledge across patented inventions, in a multiple 

generations of development framework.

We build on previous studies and identify knowledge flow as a patent citation1. 

We use citations data to  follow the diffusion of a piece of knowledge across multiple 

subsequent developments. In this chapter and throughout the empirical part of the 

thesis we demonstrate how the data we have developed can be used to address old

!See, for example, Jaffe, Trajtenberg and Henderson (1993) and Jaffe, and Trajtenberg (1999).
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and new questions in the economics of innovation field, focusing on the effect of 

knowledge spillovers on private returns to  innovation.

Once knowledge leaves the boundaries of its inventor, private returns depreciate, 

as imitation and subsequent innovation occur. The patent system is designed to 

mitigate the erosion of the private returns as a result of the spread of knowledge so 

as to give a sufficient private incentive for innovation. Under cumulative innovation, 

knowledge is sequentially developed, mostly outside the boundaries of its original 

inventor. This is addressed in the literature as knowledge spillovers (hereafter, 

spillovers). Spillovers are argued to be socially desirable2, although they enhance 

private obsolescence (as a more advanced knowledge is now held at the hands of 

other inventors)3.

This thesis introduces dynamic considerations and shows that spillovers can 

also enhance the private returns to innovation (i.e., reduce private obsolescence), 

should they feed back into the dynamic research of the original inventor4. However, 

spillovers will always intensify private obsolescence, if the original inventor does not 

technologically benefit from the advancements other inventors build into its spilled 

knowledge.

Identifying the conditions under which spillovers reduce obsolescence and en­

hance private returns should help in understanding the optimal design of patent 

policy. Spillovers are both socially and privately desirable when they unambigu­

ously reduce obsolescence, and in such cases public intervention is less required to 

stimulate innovation5.

In this thesis we show that there is an empirically identifiable pattern of diffusion 

that does not necessarily erode private returns, which can also rise through inspiring

2 Grossman and Helpman (1991) and Romer (1990) model knowledge spillovers as an engine 
for economic growth.

3The obsolescence of the private returns to knowledge was addressed, among others, by 
Griliches (1979), Pakes and Schankerman (1984), Schankerman and Pakes (1986), Caballero and 
Jaffe (1993) and Lanjouw (1998).

4In chapter 5 we actually show that the positive effect outweighs the negative effect. Thus, in 
this case spillovers reduce obsolescence.

5 Spence (1984) relates to the effect of spillovers on the incentive to innovate, by arguing that if 
firms are not aware of the spread of their inventions, spillovers will not undermine their incentive 
to innovate. Thus, other firms benefit from spillovers without depressing the perceived private 
returns to the knowledge they are benefiting from.
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the ideas of others, that will “feed back” into the dynamic research program of the 

original inventor.

We decompose the spillovers an invention creates into two components: spillovers 

that contribute to the dynamic research of the firm that created them, and spillovers 

that do not make this contribution. We define the first as Internalized and the 

second as Externalized. We conceptually link them to the private returns to inno­

vation, where the Internalized pattern reduces private obsolescence (thus, can have 

a positive net effect on private returns) and the Externalized pattern raises private 

obsolescence (thus, must have a negative effect on private returns).

The essence of our empirical methodology is as follows: for each patent in our 

sample we construct a “family-tree” , assuming that a patent citation is an indicator 

for knowledge flow from the cited patent to the citing patent. For example, assume 

patent j  cites patent i and patent k cites patent j .  Hence, the “family-tree” of 

patent i includes both patent j  and patent k, where, patent j  is the ‘child’ of 

patent i and patent k is the ‘grandchild’ of patent i. Giving this “family-tree” , we 

classify invention A; as an offspring invention of patent i, even though knowledge 

did not transfer directly from invention i to invention k. Applying this method to 

a high-order sequence of citations allows us to trace the trajectory knowledge has 

followed, while spreading across inventions and firms. Based on these trajectories, 

we can determine whether knowledge that leaves the firm and is further advanced 

by other firms, will have been reabsorbed by the original firm in a future period.

In conclusion, we have broaden the analysis of the dynamic production of knowl­

edge, by identifying two different patterns of diffusion, which have potentially coun­

tervailing effects on the private returns to innovation. An Internalized pattern of 

diffusion is the case where knowledge returns to  the boundaries of its inventor, after 

other inventors have advanced it. Whereas, an Externalized pattern of diffusion is 

the case where knowledge does not return to the boundaries of its original inven­

tor, after it has been advanced by others. In this chapter we examine the extent 

to which these two patterns appear in the data and vary across technology sectors 

and over time periods.

The rest of this chapter continues as following: the methodology is presented in

19



section 2, section 3 describes the data, section 4 discusses the findings and section 

5 summarizes and concludes.

2.2 Methodology

We aim at identifying the technological benefit firms receive from the spread of 

their discoveries to other firms. This section discusses the conceptual issues that 

underpin our empirical framework, with regard to how we should measure the 

technological contribution of an invention and the spillovers it creates.

We distinguish between two patterns of knowledge flows: the first pattern is 

where knowledge leaves the boundaries of its inventor and returns to these bound­

aries in a future period, after having been advanced by other inventors. The second 

pattern is where knowledge leaves the boundaries of its inventor and never returns 

to these boundaries, after others have advanced it. Finally, we describe the empir­

ical strategy that accommodates our conceptual framework.

2.2.1 Identifying the technological contribution o f an in­

vention

An invention contributes to technological research only if the knowledge it em­

bodies is diffused and is exploited by other inventions. Thus, the analysis of the 

technological contribution of an invention is equivalent to that of its diffusion pat­

tern.

We propose measuring the technological contribution of an invention in two 

dimensions. The first is the proliferation of research opportunities the invention 

creates and the second is the quality of these research opportunities.

A research opportunity is defined as a sequence of inventions, where every in­

vention is a follow-up development of its immediate ancestor. We require that this 

sequence of inventions be unique over a given time period, i.e., not to be fully con­

tained in a longer sequence of inventions. We define a sequence of inventions that 

satisfies these requirements as a line of research, the first invention in the line of 

research as an originating invention ( or an originating patent) and the firm that
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owns this invention as an originating firm ( or an originating inventor).

We link the quality of a line of research to the level of technological progress it 

provides. A line of research is assumed to be of a higher quality, should the number 

of subsequent developments of the originating invention it incorporates be larger.

Pattern 1 Pattern 2

Originating invention Originating invention

Figure 1: Patterns of diffusion

F ig u re  1: Circles in this figure represent inventions and arrows represent the 

direction of knowledge flow. Pattern 1 illustrates a singleton path of knowledge flow, 

which i s A - ^ B —̂ C - ^ D ,  while diffusion pattern 2 illustrates two unique paths 

of knowledge flows, which are A  —> B  —► C and A —> B  —> D. Determining the 

technological contribution of invention A under the two diffusion patterns requires 

weighing these lines of research by their quality, by measuring their length in terms 

of inventions.

In order to illustrate these two dimensions, it is useful to refer to figure 1, 

which describes two alternative diffusion patterns of invention A. Circles in this 

figure represent inventions, whereas arrows represent the direction of knowledge 

flow. Thus, invention A  in patterns 1 and 2 (the originating invention) contributes 

knowledge to inventions B , C  and D, which are developments of the knowledge 

embodied in invention A. Under pattern 1, invention B  benefits directly from
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invention A, invention C  benefits indirectly from invention A, via invention B  and 

invention D  also benefits indirectly from invention A, via inventions B  and C.

However, under pattern 2, invention B  benefits from invention A  directly, 

whereas inventions C  and D  benefit from invention A  indirectly, via invention

Focusing first on the proliferation of lines of research originated in invention 

A, the two patterns of diffusion represent different scenarios. Pattern 1 represents 

only one unique line of research, which is the sequence of inventions A  —> B  —> 

C —> D  (the arrows represent the direction of knowledge flow). However, pattern 

2 represents two unique lines of research, which are A  —> B  —> C  and A  —> B  —> D 

(since none of them is fully contained in the other). Thus, in terms of research 

opportunities, pattern 2 is more substantial.

Nonetheless, in order to complete the comparison of the technological contribu­

tion between the two patterns of diffusion, we take into consideration the second 

dimension, which is the quality of the lines of research that are originated in in­

vention A. As described above, we measure the quality of a line of research by 

the number of subsequent developments of the originating knowledge it incorpo­

rates. Therefore, the quality of the singleton line of research A  —* B  —* C —> D  

in pattern 1 is 3, as there are 3 subsequent developments of the originating knowl­

edge: B, C  and D. The qualities of the lines of research in pattern 2 are 2 for the 

line of research A  —> B  —► C  (inventions B  and C) and 2 for the line of research 

A  —> B  —> D  (inventions B  and D). Hence, each line of research in pattern 2 is of 

a lower quality than the singleton line of research in pattern 1. However, pattern 

2 is associated with more lines of research. Combining the two dimensions, pro­

liferation of lines of research and their quality, leads to the determination of the 

technological contribution of invention A, under each of these diffusion patterns.

We propose measuring the technological contribution of an invention as the 

quality weighted count of the lines of research it originates, as following:

Where, i is an originating invention, TCj is the technological contribution of

(2.1)
k € K i
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invention i ,  K i  is the set of lines of research originated in invention i, k  indexes lines 

of research in this set, LRk is a dummy that receives the value of 1 for line of re­

search k  and zero otherwise, and Qk is the quality of line of research k , as measured 

by the number of inventions that compose it6. Thus, our measure of the techno­

logical contribution of invention i  is the proliferation of research opportunities it 

originates, adjusted by the quality of these research opportunities.

Applying this formulation to the diffusion patterns in figure 1 yields:

T C \  = ( 1 x 3 )  =  3 (2.2)

Where, T C \  is the technological contribution of invention A  under pattern 1. 

The term 1 in the brackets represents the singleton line of research A —* B  —+ C  —> 

D  th a t is adjusted by its quality, which equals 3 (since it includes three subsequent 

developments of invention A: B ,C  and D). Thus, our measure of the technological 

contribution of invention A  under pattern 1 is 3.

Similarly, the technological contribution of invention A  under diffusion pattern 

2 is:

T C \ = (1 x 2) +  (1 x 2) =  4 (2.3)

Where, T C \  is the technological contribution of invention A  under pattern 2. 

The term  1 in the first brackets represents the line of research A  —> B  —* C  that is 

adjusted by its quality, which equals 2 (since it includes two subsequent develop­

ments of invention A: B  and C). The term 1 in the second brackets represents the 

line of research A  —* B  —> D  tha t is adjusted by its quality, which equals 2 as well 

(since it includes two subsequent developments of invention A: B  and D). Thus,

6 Simply counting the number of inventions along a line of research may be an overestimate of
the technological contribution of the originating invention. A subsequent invention which is a high
generation of development of the originating invention is more likely to have benefited from other
prior subsequent inventions along the fine of research, which may have a more important impact
on its creation than the originating invention. Thus, in practice we discount the inventions along
a fine of research by a discount factor of S (which we assume to be 15 percent per generation), 

j
thus, Qk =  ^ 2  £7 -1 , where, J  is the number of offspring inventions in fine of research k. Since our 

j =l
choice of the discount factor is arbitrary, we experiment with other values to test the robustness 
of our findings.
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our measure of the technological contribution of invention A  under pattern 2 is 4.

From this we conclude that the technological contribution of invention A  under 

diffusion pattern 2 is greater than its technological contribution under diffusion 

pattern 1 (intuitively, under both patterns of diffusion the number of subsequent 

developments is equal. However, there are more intense research opportunities 

under pattern 2, as indicated by the number of lines of research).

2.2.2 Identifying spillovers

After introducing the methodology we have developed in order to identify the 

technological contribution of an invention, we proceed to discussing our proposed 

measure of spillovers. We define spillovers as the external exploitation of the tech­

nological contribution of an invention, where external relates to the set of firms 

that are different from the originating firm. Following this definition, spillovers 

are measured as the number of external inventions along the lines of research the 

originating invention inspires.

For illustration, it is useful to examine a slightly more complicated diffusion 

pattern, as presented in figure 2. Shapes (denoted by a capital letter) represent 

inventions, whereas arrows represent the direction of knowledge flow. This figure 

plots the diffusion pattern of the originating invention A, where the offspring in­

ventions are B, C, D, E, F, G, H, I  and J. To complete the presentation, the 

shape of each figure represents a different firm, i.e., a circle firm (the originating 

firm), a triangle firm and a square firm.
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Second generation:

First generation:

Originating invention:

Figure 2: Measuring spillovers

F igure  2: This figure illustrates the diffusion pattern of the originating inven­

tion A. Inventions are represented by a capital letter, while the firm  that owns the 

inventions is represented by a shape (e.g., the originating firm  is the circle, since 

it owns the originating invention A ). We define the spillovers created by invention 

A, given this diffusion pattern, as the number of inventions that are owned by the 

square and triangle firms (all the firms in the figure which are different from the 

originating firm) along the lines of research invention A originates.

Following the methodology we have presented above, in order to measure the 

technological contribution of invention A , we need to identify the lines of research 

invention A  originates and weigh them by their quality. Since we define a line 

of research as a singleton sequence of subsequent developments of the originating 

knowledge, we identify five such lines of research: A - ^ B —̂ D ^ H , A ^ B —̂ 

A ^ C —> F —>I,  A - > C —* F - * J  and A C -* G ^  J . The 

technological contribution of invention A  following equation (2.1) is given by:

TCa =  (1 x 3) +  (1 x 3) +  (1 x 3) + (1 x 3) +  (1 x 3) =  15 (2.4)
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Since spillovers are defined as the external inventions tha t compose the lines of 

research an invention originates, they are formulated as:

Spilloversi — Y ,  LRk X S k (2.5)
k<=Ki

Where, i is an originating invention, Spillover  s* denotes the spillovers invention 

i creates, is the set of lines of research invention i originates, k indexes lines of 

research in this set, LRk is a dummy that receives the value 1 for line of research 

k and zero otherwise and Sk is the number of external inventions included in line 

of research k. Following this formulation, the spillovers created by invention A  are 

given by:

S p illo versA =  (1 x  3) +  (1 x 2) +  (1 x 2) +  (1 x 3) +  (1 x 3) =  13 (2.6)

Where, the second and third terms, ( 1 x 2 )  and ( 1 x 2 ) ,  correspond to the fact 

that invention I  is owned by the originating firm. Thus invention I  is excluded 

from the spillovers measure for invention A  (hence, the spillovers along lines of 

research A  —► B  —» E  —> I  and A  —► C —► F  —> I  are based only on inventions B , 

E, C and F )7.

Finally, we are interested in distinguishing between two types of spillovers: 

spillovers that contribute to the dynamic research of the originating firm and 

spillovers that do not make this contribution.

2.2.3 Internalized and Externalized lines o f research

We distinguish between two types of lines of research: the first type is lines of re­

search that are characterized by the originating knowledge leaving the boundaries 

of its inventor to return to these boundaries after having been further developed 

by other firms. The second type is fines of research characterized by the originat-

7 In some patterns of diffusion, the first subsequent development of the originating knowledge 
is invented by the originating firm (which is identified as a self-citation). Hence, knowledge does 
not immediately spread to other inventors. In this case, the ‘in-house’ subsequent development 
is not measured as spillovers.
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ing knowledge leaving the boundaries of its inventor so as not to return to these 

boundaries.

Spillovers along the former type are internalized in the dynamic research of the 

originating firm and, therefore, we define fines of research of this type as Internal­

ized lines of research. However, spillovers associated with the latter type do not 

contribute to the dynamic research of the originating firm. Therefore, we define this 

type of fines of research as Externalized lines of research (since the technological 

benefit they provide is exploited only by external inventors).

Based on the technological feedback the originating firm receives from the 

spread of its discovery, we decompose the spillovers created by an invention into two 

components: spillovers that contribute to the dynamic research of the originating 

firm and spillovers that do not.

Given this decomposition, the spillovers of an invention can be written as:

Spilloversi = E LRj  x Sj -f- ^   ̂ LRt x St (2-7)
j €  In ternalizedi t£E xtern alized i

Where i denotes an originating invention, Internalizedi is the set of Internal­

ized fines of research originated in invention i , Externalizedi is the set of Exter­

nalized fines of research originated in invention i , j  indexes fines of research in the 

Internalizedi set and t indexes fines of research in the Externalizedi set.

We define the first term  in the right-hand-side of equation (2.7) as Internalized  

Spillover Si and the second term  in the right-hand-side of equation (2.7) as Externalized  

Spillover Si. Hence, equation (2.7) becomes:

Spilloversi = Internalized Spilloversi +  Externalized Spilloversi (2.8)

Finally, we are interested in computing the share of spillovers tha t are internalized  

in the dynamic research of the originating firm. This share is computed simply as 

the ratio between In ternalized Spilloversi and Spilloversi, as following:

. T .. . _ ... Internalized Spilloversi /n
Share o f In ternalized Spilloversi =   ■ -   (2.9)

J Spillover Si v '
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In order to illustrate this decomposition, we refer back to figure 2. Out of the 

five lines of research that invention A  originates, two are Internalized and three are 

Externalized. Thus, the set InternalizedA  is:

InternalizedA =  {A B  —> E  I, A C  —> F  1}

Similarly, the set ExternalizedA  is:

ExternalizedA = {A  —* B  —> D  —> H, A  —> C  —> F  —+ J, A  —> C  —► G —» J}

Given this decomposition, In tern a lized  Sp illovers a — ( 1 x 2 ) +  ( 1 x 2 )  =  4 

(two external inventions in the first line of research and two external inventions in 

the second line of research in the In ternalizedA  set).

Similarly, E x tern a lized  Sp illovers a =  ( 1 x 3 ) +  ( 1 x 3 ) +  ( 1 x 3 )  =  9 (three 

external inventions in each of the three lines of research in the E xternalizedA  set).

Finally, the Share o f  Internalized Spillovers a is

This framework provides three units of analysis, separately addressed in the 

following chapters.

The smallest unit of observation is a line of research. In chapter 3 we closely 

examine the characteristics of lines of research and measure their effect on the 

likelihood that a line of research is Internalized.

The second unit of observation is the patent. In chapter 4 we aggregate the 

lines of research to the patent level and characterize its diffusion pattern under the 

Internalized and Externalized criterion. We measure the correlation between the 

‘basicness’ attributes of the patent and its Share of Internalized Spillovers.

Finally, our most aggregated unit of observation is the diffusion pattern at the 

firm level. In chapter 5 we aggregate the lines of research to the firm level to 

characterize the diffusion pattern of its inventions. We estimate the effect of the 

diffusion indices we have constructed on the private returns to innovation in a 

market value framework.
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2.2.4 Empirical strategy

Based on the conceptual framework we have presented above, we turn to discuss 

our empirical strategy.

We have made two building block assumptions tha t underpin our empirical 

methodology. First, patents are empirical observations for inventions. Second, 

patent citations are empirical observations for knowledge flows from the cited 

patents to the citing patents. Acknowledging the various noise and biases associ­

ated with these two assumptions8, the only defence we provide for imposing them is 

that these data are the most comprehensive source of information on the diffusion 

of knowledge, which have not been explored with regard to the ideas presented in 

this paper. We believe that the drawbacks of this data source are not large enough 

to prevent us from posing the questions we address in this research.

Based on data on about 600,000 citing patents (which can appear in the se­

quences of citations we extract), 570,000 cited patents and 1.7 million citations 

(links in the sequences of citations), we have constructed the diffusion pattern of 

104,694 originating inventions (which are a subset of the cited patents, as explained 

below) between 1975 and 1995 (we do not have information on citing patents that 

had been granted before 1975). The task we are facing is to effectively draw figure 

2 for these originating inventions.

We identify inventions as patents and flows of knowledge across inventions as 

patent citations. Thus, the inventions in figures 1 and 2 are empirically identified as 

patents, whereas the arrows in these figures are empirically identified as citations. 

For example, an arrow from invention A  to invention B  in figures 1 and 2 represents 

the fact that patent B  cites patent A.

Further, a unique line of research is empirically identified as a singleton sequence 

of citations (where, each patent cites its direct ancestor). As discussed above, we 

define that sequence of citations as singleton if it is not fully contained in a longer 

sequence of citations for the given time period we have been exploring.

8 See, for example, Trajtenberg (1990) for the potential bias in patents as indicators for inno­
vation output, and Trajtenberg, Jaffe and Fogarty (2001) for a study on the noise component in 
citations as indicators for knowledge flows.
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After extracting the lines of research for our sample of originating patents (i.e., 

all the singleton sequences of citations), we classify each line of research as ei­

ther Internalized or Externalized9, following the methodology we have described 

above10.

We have restricted the period for which we extract the diffusion pattern to 15 

years after the grant year of the originating patent. Thus, for a patent that was 

granted in 1975 we have extracted the lines of research it originates as long as the 

youngest invention in these lines of research has not been granted after 1990.

Furthermore, we stopped exploring the diffusion of knowledge along a given line 

of research if this line of research had already been classified as Internalized11.

Thus, our methodology extracts all the unique trajectories in which knowledge 

had left the boundaries of its inventor and returned to these boundaries in a time 

period of 15 years after the knowledge had been created12, as well as all the unique 

trajectories in which knowledge had left the boundaries of the firm and did not 

return to these boundaries in the same time period.

The algorithm that was developed to construct the data used in this thesis is 

described in the appendix. Overall, it has taken about 35 days to run this algorithm 

on our sample of patents and citations (the running time can be shortened either

9However, we find an additional pattern of citations, which is the case where knowledge does 
not leave the boundaries of the firm that has created it. Thus, all of the subsequent developments 
of the originating knowledge are invented ‘in-house’. Since we assume that technological spillovers 
can occur only if knowledge drifts outwards from the boundaries in which it has been created, we 
do not include this pattern in our study.

10 The reader who is familiar with the economics of patents literature can find our definition of 
an Internalized fine of research similar to a self-citation. Where the latter refers to the case in 
which a firm develops its prior knowledge directly, the former refers to the case in which the firm 
indirectly develops its prior knowledge, after it has been diffused and has been developed by other 
firms. Thus, an Internalized fine of research is a unique indirect self-citation, which we associate 
with a higher appropriability, as the existing literature does with self-citations (for example, see 
Hall, Jaffe and Trajtenberg, 2005).

11 E.g., consider the Internalized line of research A  —> B  —► E  —► I  that is presented in figure 
2. Assume that patent I  is cited by patent K ,  such that this line of research becomes A  —► B  —*■ 
E  —► I  —> K . The restriction we impose implies that we will extract only the line of research 
A  —► B  —► E  —> I  and will not refer to patent K  as being part of the spillovers created by 
invention A.

12 Since we refer to the grant year of the patent and not to its application year, the creation date 
of the patented knowledge is actually ear her. However, even though it may be more reasonable 
to refer to the application year of the patent rather than to its grant year, we find it technically 
(in terms of the running time of our algorithm) much more efficient to consider the latter over 
the former.
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by reducing the number of originating patents or the number of citations. Alter­

natively, one can run the algorithm simultaneously on any number of machines).

We conclude this section with two examples of lines of research that are ex­

tracted from our sample, as presented in figures 3 and 4. Figure 3 presents an 

Externalized line of research originating in patent 3,836,479 which is owned by 

IBM (the originating firm). This patent was cited by patent 3,915,883, which had 

been cited by patent 4,173,545. This patent was cited by patent 4,235,736, which 

had been finally cited by patent 4,474,679. This line of research (sequence of ci­

tations) is unique in the sense that it is not fully contained in any other longer 

sequence of citations within the time period we have been analysing (since the 

originating patent was granted in 1974, this period is 1974-1989). This line of re­

search is associated with knowledge leaving the boundaries of IBM to other firms 

and not returning to IBM during the 15 years after this knowledge was created. 

Therefore, the line of research is classified as Externalized (the spillovers the origi­

nating patent created, which are represented by the four external inventions along 

the line of research, were not technologically exploited by IBM’s research).

Patents Firms

cat=l, subcat=19, nclass=252, 
grant year=1982

cat=l, subcat=19, nclass=252, 
grant year=1980

cat=l, subcat=19, nclass=252, 
grant year=1979

cat=l, subcat=19, nclass=252, 
grant year=1975

cat=l, subcat=19, nclass=252, 
grant year=1974

4,474,679

4,173,545 TH O M SO N

EASTMAN
KODAK

IBM

©

srrt)
C/5
tD
3n
a

cat refers to one-digit technology sectors, subcat refers to two-digits technology sectors and nclass refers 
to three-digits technology sectors.

Figure 3: An example for an Externalized line of research
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Figure 3: This figure presents a unique line of research (a singleton sequence 

of citations) that is originated in invention 3,836,478 (the originating invention), 

which is owned by IBM  (the originating firm). Since the diffused knowledge along 

this unique path did not return to the boundaries of IBM  in the period 1974-1989 

(during 15 years after the grant year of the originating patent), this line of research 

is Externalized.

On the other hand, the line of research that is presented in figure 4 is Internalized. 

The originating patent 4,131,983 was cited by patent 4,282,646, which had been 

cited by patent 4,366,613. This patent was cited by patent 4,509,991, which had 

been finally cited by patent 4,621,276. Since the owner of patent 4,621,276 is the 

same as the owner of the originating patent 4,131,983 (Texas Instruments), the 

spillovers associated with this line of research are Internalized in the production of 

the knowledge embodied in patent 4,621,276.

P atents Firm s

cat=4, subcat=46, nclass=257, 
year=1986

cat=4, subcat=46, nclass=438, 
year=1985

cat=4, subcat=46, nclass=438, 
year=1983

cat=4, subcat=46, nclass=438, 
year=1981

cat=4, subcat=46, nclass=438, 
year=1979

IBM

IBM

TEXAS
INST.

IBM

rt>
S
I
2!

cat refers to one-digit technology sectors, subcat refers to two-digits technology sectors and nclass refers 
to three-digits technology sectors.

Figure 4: An example for an Internalized line of research

Figure 4: This figure presents a unique line of research (a singleton sequence 

of citations) that is originated in invention 4,131,983 (the originating invention), 

which is owned by Texas Instruments (the originating firm ). Since in this pattern of
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diffusion knowledge returns to the boundaries of its inventor, after being advanced 

by others (IBM) in the period 1979-1994 (during 15 years after the grant year of 

the originating patent), this line of research is Internalized.

2.3 Data

The patents and citations data are taken from the NBER USPTO data-set, which 

is described in details in Hall, Jaffe and Trajtenberg (2001) and in Jaffe and Tra­

jtenberg (2002). Our sample includes all the patents assigned to 2,859 US firms, 

which had been matched to the patents data by Hall, Jaffe and Trajtenberg (2001). 

A total of 915,021 patents are included in the sample, out of which, 599,884 patents 

(owned by 2,606 firms) cite 573,373 patents (owned by 2,696 firms)13.

We have designed the set of originating patents (the set of inventions whose dif­

fusion pattern we construct) to include all the patents owned by 800 US Compustat 

firms for which we have complete accounting data for the period of 1980-200114. 

Further, we included only the patents of these firms that were granted between 1969 

and 1980 and received at least one citation from one of the 599,884 citing patents 

in the sample (since non-cited patents do not experience a diffusion pattern which 

is empirically identifiable in this framework). This set of patents is defined as the 

set of ‘originating patents’, which includes 104,694 patents.

1,760,143 citations are included as technological links in the diffusion trees of 

the originating patents. The originating patents have received 626,359 direct cita-

13We only investigate patents, on which we have ownership information. Since the owner of 
a patent can be a subsidiary firm, it is important to ensure that a flow of knowledge from one 
patent to another is not a self-citation, as would be the case if the patent owners were subsidiaries 
of the same firm. Hall, Jaffe and Trajtenberg (2001) have constructed ownership structure for 
almost 3,000 patenting firms in the US. We use their ownership information. Since the ownership 
information is updated up to 1989 and the diffusion pattern we explore goes up to 1995, we are 
exposed to mistakenly interpreting a citation as an outward flow of knowledge in the period of 
1989-1995 (if, for some reason, the ownership information with regard to the cited and citing 
firms has changed in this period). In order to test the robustness of our findings, we have also 
constructed the diffusion indices up to 1990. We find our results to be robust for this potential 
bias.

14 In chapter 4 we estimate the effect of the diffusion pattern on the private returns to innovation. 
From that reason, we focus the analysis on the diffusion pattern of patents owned by firms that 
take part in the econometric analysis.
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tions (on average an originating patent receives 3.9 direct citations)15. Out of the

1,760,143 citations, 535,596 are self-citations (i.e., the citing and cited firms are 

identical).

The originating patents have received a total of 194,696 self-citations (out of a 

total of 626,359 citations these patents receive). 13,978 originating patents have 

received only self-citations, thus, the knowledge they embody does not leave the 

boundaries of their inventors directly {via the first generation of citation). They 

create spillovers only if their embodied knowledge leaves the boundaries of their 

inventors in a future period. In case all of the follow-up developments of these 

originating patents are created ‘in-house’, these originating patents do not create 

spillovers and the lines of research they originate are omitted from the sample. 

Out of the 13,978 originating patents that receive only self-citations, 6,773 patents 

do not create spillovers, i.e., the lines of research they inspire are pursued only 

‘in-house’ by the originating inventor.

A well known feature of the citations data is their sensitivity to  truncation, as 

presented in Figure 5. This figure shows tha t as the grant year of a patent exceeds 

1992, the number of citations it has received up to 1999 drops. Obviously, this 

does not imply that this patent is cited less over its whole life, relative to the older 

patents in the sample, since for this patent we have observed the citations received 

in a window of only 7 years. Therefore, we have restricted the grant year of the 

originating patents not to be greater than 1980, so that their diffusion pattern 

could be analysed in a wide enough time period16.

15The mean number of citations received by a cited patent in our sample is 4.3, while the mean 
number of citations made by a citing patent is 4.2. Table A1 in the appendix provides more 
information on the citations made and received by the citing and cited patents.

16 We can also include the originating patents granted up to 1984, since we have data on their 
diffusion pattern in a period of 15 years (up to 1999). However, we choose to avoid adding these 
extra years due to the huge spike in the citations sample between 1995 and 1999 (the number of 
citations rises by almost 800,000 during these five years). This rise in the number of citations 
‘explodes’ the number of lines of research we have extracted for the originating patents between 
1980 and 1984.
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Figure 5: Citations sample

Figure 5: This figure presents the number of citations made and received by 

patents in our sample. The upward sloping graph shows the number of citations 

made each year, where the U shaped curve shows the number of citations received 

each year.

Figure 6 presents the distribution of the average number of citations the origi­

nating patents receive across years. This figure shows that patents granted in early 

years were less cited. This pattern is well documented in the literature17 and might 

be attributed to increased computerization over time. The rise in the number of 

citations over time affects the number of lines of research we observe in the data. 

In order to control for this effect, in chapters 3 and 4 we always include a complete 

set of dummies for the grant year of the originating patents in the econometric 

analysis, whereas in this chapter we show that although the number of citations 

goes up over time, the relative number of Internalized versus Externalized lines of 

research remains stable over time18.

17See Jaffe and Trajtenberg (2002).
18 In chapter 5 we construct firm-level diffusion measures based on the aggregated number of 

Internalized and Externalized lines of research. In the econometric analysis we include the average 
patent and citation stocks of the originating firms over the period 1969-1980, as controls.
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Figure 6: Citations received by originating patents

Figure 6: This figure presents the citations received by the originating patents 

in our sample. We observe an increase in the number of citations received by the 

originating patents over time, although the number of originating patents tends to 

fa ll

Finally, the sample of originating patents varies across the five main technology 

sectors, as following: 36,514 originating patents are in the “Chemicals” sector, 

10,245 in the “Computers and Communications” sector, 4,481 in the “Drugs and 

Medicals” sector, 28,951 in the “Electronics and Communications” sector and the 

remaining 24,503 are in the “Mechanicals” sector.

We will now turn to explore the diffusion pattern of these inventions in further 

detail.

2.4 F indings

This section discusses our main findings regarding the diffusion pattern of the 

originating patents. In this chapter we look at the extent to which knowledge that 

leaves the boundaries of its inventor, will have returned to these boundaries in the 

form of a future improved invention. We investigate its variation across technology 

sectors and time.
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2.4.1 Lines of research - a first look

We extract 13,107,634 lines of research (singleton sequences of citations), which 

are originated in 97,921 inventions. 6,773 patents that appear in our initial set of 

originating patents do not originate Internalized or Externalized lines of research19. 

999,718 lines of research are classified as Internalized (7.6 percent of the total 

fines of research) and are originated in 29,964 patents (about 30 percent of the 

originating patents), while the remainder 12,107,916 fines of research are classified 

as Externalized and are originated in 97,212 patents20. The distribution of the 

Internalized fines of research across technology sectors and time periods is reported 

in tables A2 and the same distribution for the Externalized fines of research is 

reported in table A3, both in the appendix.

On average, about 30 percent of the originating patents have at least one In­

ternalized fine of research. This percentage is not stable across technology sectors. 

For example, in the “Computers and Communications” sector, about 50 percent of 

the patents have at least one Internalized fine of research, whereas it drops to 25 

percent in the “Chemicals” sector.

The average number of fines of research per originating patent rises over time. 

This rise can simply reflect the fact tha t the number of citations increases over 

time, as shown in figure 5. Later in this chapter, we report a robustness test in 

which we control for the number of citations the originating patents receive when 

calculating the spillovers created by an invention.

Overall, we observe a variation in the number of Internalized and Externalized 

fines of research across technology sectors and time periods, as indicated by tables 

A2 and A3. A more interesting question is whether we also observe this kind of 

variation in the share of Internalized fines of research out of the total number of 

fines of research. Table 1 summarizes the main findings in this regard.

19 These patents originate lines of research in which all the follow-up developments of the orig­
inating invention is done within the boundaries of the originating firm.

20The remaining 709 originating patents inspire only Internalized fines research (thus, all the 
spillovers these inventions create feed back into the dynamic research of their inventors).
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Table 1
Share of Internalized lines of research
Total lines o f  
research per 

originating patent3
T otal sam ple 1 9 69 -1975 19 7 6 -1 9 7 8 1979 -1 9 8 0

Pooled 125.2 7.6% 8.2% 7.6% 7.2%

Chemicals 71.6 6.2% 6.4% 6.3% 5.7%

Computers and 
Communications

337.2 7.6% 8.8% 7.1% 7.1%

Drugs and Medicals 115.2 15.0% 19.1% 16.8% 8.4%

Electrical and Electronics 182.5 7.4% 7.5% 7.1% 7.5%

Mechanicals 50.6 8.8% 9.1% 9.1% 7.9%

“Computed over the entire sample.

As mentioned above, 7.6 percent of the lines of research are Internalized. This 

percentage does not vary substantially over time21, ranging from 8.2% at the begin­

ning of the period to 7.2% at the end of the period. As reported in tables A2 and 

A3, the number of Internalized lines of research and Externalized lines of research 

rises over time, however, the latter rises mildly faster.

W ith respect to the variation of the share of Internalized lines of research across 

technology sectors, we find that in the “Drugs and Medicals” sector, in the entire 

period, the share is about twice the share in the other technology sectors. With 

the exception of “Drugs and Medicals” , the share of Internalized lines of research 

is rather stable, ranging from 6.2% in the “Chemicals” sector to 8.8% in the “Me­

chanicals” sector22. At the last period of our sample (1979-1980) we observe a 

convergence in the share of Internalized fines of research, even when including 

“Drugs and Medicals” . Thus, there is a sharp drop in the share of Internalized 

fines of research is “Drugs and Medicals” . This drop is attributed to a fall in the 

number of Internalized fines of research in this period, as shown in table A2 (the

21 We choose to present the variation across the specific time periods in table 1, since the number 
of total fines of research in each of these periods is similar.

22 The high stability of the share of Internalized fines of research across technology sectors 
is rather surprising, in fight of the finding we have reported above that the share of originat­
ing patents that have at least one Internalized fine of research substantially varies across these 
technology sectors.
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average number of Internalized lines of research in this sector drops from 85 in the 

period 1976-1978 to 39 in the period 1979-1980, whereas, the average number of 

Externalized lines of research rises in the same period, from 134 to 146).

Table 1 also reports the average number of lines of research (Internalized and 

Externalized) per originating patent in the whole sample and across technology 

sectors. We find a high variation in the number of lines of research per originating 

patent across these sectors, ranging from a low of 50.6 in the “Mechanicals” sector 

to a high of 337.2 in the “Computers and Communications” sector. However, the 

high variation in the total number of lines of research does not seem to affect the 

share of Internalized lines of research across the technology sectors.

So far, we have examined Internalized and Externalized lines of research and 

found that about 7.6 percent of the lines of research are Internalized. However, this 

preliminary observation does not fully inform us on spillovers, since the number of 

external inventions along these lines of research has not been yet considered.

2.4.2 Spillovers - a first look

In the presentation above we have considered only the number of lines research. 

This can be a misleading and incomplete indicator of spillovers. Assume an orig­

inating patent is cited by an external invention, however, this cited patent does 

not inspire any follow-up research. This will be accounted for an Externalized line 

of research; however, the spillovers it is associated with axe extremely low and 

cannot be compared to an Externalized line of research th a t experiences multiple 

generations of development. In order to capture this, our measure of spillovers is a 

weighed count of the lines of research a patent inspires, where the weights are the 

number of external inventions along these lines of research.

We examine four measures of spillovers, which axe explained in section 2: 

Spillovers, Internalized Spillovers, Externalized Spillovers and the Share of Inter­

nalized Spillovers. Table A4 (in the appendix) summarizes the main statistics for 

these measures and presents their breakdown across technology sectors.
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Table 2
The Share of Internalized Spillovers

Spillovers per 
originating patent2

Total sam ple 1969-1972 1973-1974 1975-1976 1977-1980

Pooled 368.1 4.6% 3.9% 4.8% 4.9% 4.9%

Chemicals 196.6 3.9% 3.4% 4.1% 4.1% 4.2%

Computers and 
Communications

993.2 5.5% 6.0% 5.3% 5.0% 5.1%

Drugs and 
Medicals

238.5 5.6% 4.8% 6.3% 6.0% 5.0%

Electrical and 
Electronics

559.9 4.3% 3.5% 4.6% 4.8% 4.7%

Mechanicals 133.5 5.3% 4.1% 5.7% 6.0% 6.1%

“Computed over the entire sample.

Table 2 is equivalent to table 1, however it looks at the Share of Internalized 

Spillovers (whereas table 1 looks at the share of Internalized lines of research). The 

Share of Internalized Spillovers over the entire sample is 4.6 percent (compared 

to a share of 7.6 percent of lines of research which are Internalized). Over time, 

this share rises, rather moderately from a low of 3.9% in 1969-1972 to a high of 

4.9% in 1977-198023. There has been very little change in the Share of Internal­

ized Spillovers in the period 1973-1980. From this we conclude tha t the Share of 

Internalized Spillovers has been stable over time.

A comparison of the Share of Internalized Spillovers across technology sectors 

also shows little variation. The Share of Internalized Spillovers varies from a low of 

4.2% in the “Electrical and Electronics” sector to a high of 5.5% in the “Computers 

and Communications” sector (calculated over the entire sample). The low variation 

of the Share of Internalized Spillovers across technology sectors is also evident across

23A rise in the Share of Internalized lines of research over time is observed, even though the 
share of Internalized lines of research falls over time (see table 1). A potential explanation is that 
over time the number of ’short’ Externalized lines of research has risen. This is consistent with 
what we observe in the data. Over time the ’quality’ of the citing patents drops, such that citing 
patents are less likely to be cited themselves (i.e., to be sequentially developed).

This raises the issue of the ‘quality’ of the citing patent (as opposed to the ‘quality’ of the cited 
patent, as measured by the number of citations it receives). We should expect that the quality 
of the cited patent would be lower if the quality of the patent that cites it is lower. We address 
this issue in more details in the appendix.
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time periods, where we even observe convergence over time (for example, in 1969- 

1972 the Share of Internalized Spillovers in the “Chemicals” sector is 3.4 percent, 

compared to 6.0 percent in the “Computers and Communications” sector. This 

difference falls over time to less than 1 percent in 1977-1980).

An interesting comparison is drawn between the share of Internalized lines of 

research, reported in table 1, and the Share of Internalized Spillovers, in particular 

with respect to “Drugs and Medicals” . Over the entire sample, the share of Inter­

nalized lines of research in the "Drugs and Medicals" sector is 15 percent, whereas 

the Share of Internalized Spillovers in this sector is only 5.4 percent. In the other 

sectors, the share of internalized lines of research is much more similar to the Share 

of Internalized Spillovers.

Moreover, the drastic drop in the share of Internalized lines of research towards 

the end of the sample (from 16.8 percent to 8.4 percent) is not as strongly evident 

in the Share of Internalized Spillovers (which only drops from 6.0 percent to 5.0 

percent). As the number of Internalized lines of research has drastically fallen, 

unlike the Share of Internalized Spillovers, this indicates tha t the remaining In­

ternalized lines of research include more external inventions, compared to earlier 

periods. We plan to examine this change more seriously in future research.

Finally, tables A5-A7 in the appendix report in more detail the time variations 

of the diffusion measures across technology sectors. The results are reported in 

two ways: in absolute terms and normalized by the number of direct citations the 

originating patents receive (by computing the spillovers measures per direct citation 

an originating patent receives). This normalization aims to control for the fact that 

over time there has been an increase in the number of citations (see figure 6), which 

may affect the Share of Internalized Spillovers.

We find an increase in Spillovers over time, both in absolute terms and per 

citation received. However, the Share of Internalized Spillovers remains stable, 

also after controlling for the number of citations received by the originating patents 

(when controlling for the number of citations the originating patent receives the 

Share of Internalized Spillovers is 5 percent, over the entire sample).

41



2.5 Summary and Conclusions

Once knowledge leaves the boundaries of its inventor, private returns depreciate, as 

imitation and subsequent innovation occur. Under cumulative innovation, knowl­

edge is sequentially developed, mostly outside the boundaries of its original inven­

tor, which raises the obsolescence of the private returns.

This thesis introduces dynamic considerations and shows that spillovers can 

also enhance the private returns to innovation (i.e., reduce private obsolescence), 

if they feed back into the dynamic research of the original inventor. However, 

spillovers will always intensify private obsolescence, if the original inventor does 

not technologically benefit from the advancements other inventors build into its 

spilled knowledge. In this chapter we show how we propose to identify the counter­

vailing effects knowledge flows might have on private obsolescence, in a sequential 

innovation framework, using data on patents and patent citations.

We measure the spillovers created by 104,694 patented inventions in our sam­

ple. We define spillovers as the number of external inventions along the lines of 

research our set of originating patents inspire, where a fine of research is defined 

as a singleton sequence of citations.

We report three main findings: (1) in numerous cases, knowledge returns to 

boundaries of its original inventor after having been advanced by other inventors 

(7.6 percent of the lines of research are Internalized). (2) The share of Internalized 

lines of research is stable over time and across technology sectors. The “Drugs and 

Medicals” sector is an exception, as it enjoys a much higher share of Internalized 

lines of research. However, this share converges to the share tha t is observed 

in the other sectors towards the end of the sample’s period. (3) The Share of 

Internalized Spillovers is about 5 percent and is highly stable over time and across 

all technology sectors. This finding is also robust for controlling for the direct 

citations the originating patents receive (by measuring the Share of Internalized 

Spillovers per citation).
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2.7 Appendix

2.7.1 The technological contribution of an invention - an  

alternative interpretation

Our methodology is a generalization of the accepted approach of measuring the 

quality of patents by counting the number of citations they receive.

In a dynamic framework, we do not simply count the number of citations the 

patent receives, but weigh these citations by their own quality (hence, link the 

quality of a patent to the quality of its subsequent inventions). For example, 

under the patterns of diffusion in figure 1, invention A  receives one citation from 

invention B. However, the quality of invention B  differs across diffusion pattern 

1 and 2. Invention B  is of a higher quality under diffusion pattern 2, it receives 

two citations, whereas under diffusion pattern 1 it receives only one citation. From 

this we conclude that we should give a higher weight to the quality of invention A  

under diffusion pattern 2, since it is cited by a higher quality patent (where, the 

traditional approach would assign the same quality to invention A, under the two 

patterns of diffusion).

In addition to weighing citations, our dynamic approach also suggests counting 

indirect citations when measuring the quality of an invention, thus, taking into 

account inventions tha t indirectly benefit from the originating invention. In the 

example presented in figure 1, this would mean to include patents C  and D  as 

offspring inventions of the originating patent A 24.

To summarize, our empirical methodology is essentially weighing the citations 

the patent receives by the quality of the citing patent (where the weights are the 

number of direct citations the citing patent receives) and also counting indirect

24 When doing so, we should be aware of the likelihood that the flow of knowledge from in­
vention A to inventions C  and D  is lower than the flow of knowledge to invention B, since the 
former citations are indirect. Currently, there is no satisfactory way to control for the amount 
of knowledge flow that is associated with indirect citations (and, in fact, also with the amount 
of knowledge flow that is associated with direct citations). In order to test the robustness of our 
findings to this bias, we discount every generation of citation by a discount factor (which is 15 
percent, so as to be consistent with previous studies, although this value is arbitrary). Moreover, 
we normalize the citing patents by the number of citations they make, under the assumption that 
if a patent cites more, its technological link to the originating patent is weaker (representing a 
lower flow of knowledge).
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citations. .

To illustrate, we refer back to figure 1. Under pattern 1 we observe three 

offspring inventions, and, therefore, we count three citing (direct and indirect) 

patents, where each citing patent is cited only once. It should be noted that we 

assume that the last patent in the sequence is counted as if it receives one citation. 

Thus, T C \  =  (1 x 1) +  (1 x 1) +  (1 x 1) =  3. W ith respect to diffusion pattern 

2, there are three offspring inventions as well. However, patent B  receives two 

direct citations and, therefore, it receives the weight of 2. This implies that T C \  

=  (1 x 2) +  (1 x 1) +  (1 x 1) =  4. In section 2, we show that these measures are 

identical to the lines of research approach.

A closer look at this methodology would show th a t the scheme is recursive. 

Assume patent C  in figure 1 under diffusion pattern 1 receives another citation 

from patent E  (thus, it is cited twice, by patent D  and patent E). Using the lines 

of research approach, we observe two lines of research: A  —> B  —> C  —► D and 

A —> B  —> C —> E. Thus, T C \ — (1 x 3) +  (1 x 3) =  6. Under the alternative 

approach discussed above, T C \  is computed as following: starting with patent C  

(we continue to assume that the edge patents, D  and E  in this case, are cited only 

once), it receives two citations, of quality one each (the quality of patents D  and E). 

Regarding patent B , it is cited only once (by patent C). However, since patent C  is 

of quality 2, we treat the citation from patent C to patent H, as if patent B  receives 

two citations. In this case, T C \  =  (1 x 2) +  (1 x 2) +  (1 x 1) +  (1 x 1) =  6, which 

is the same as the technological contribution under the lines of research approach.

More formally, the alternative interpretation of our methodology is the follow­

ing:

Where, Ki is the set of patents that cite directly or indirectly patent i, OSik 

denotes the offspring invention k E Ki, j  is another patent in the set Ki, which

(2.10)
k £ K i

And Qk is expressed as:

(2 .11)
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directly cites invention k , Jk is the set of patents tha t directly cite invention k (i.e., 

j  E Jk C Ki), OSkj denotes the offspring invention which directly cite patent k and 

Qj is the quality of invention j .  The algorithm that solves this recursive procedure 

is similar to the algorithm we develop, which is described below.

2.7.2 The Algorithm

Our task in this paper is to develop an algorithm that will generate a “family tree” 

for every originating patent in our sample. The information we desire to create is 

not only identifying the originating patent’s offspring inventions, but also identi­

fying all the different ways these offspring inventions are linked to the originating 

patent. For this purpose, it is natural to develop a ‘tree’ algorithm that stores all 

the unique sequences of citations the originating patents create.

Since the computational task we face is highly complex and demanding, the 

efficiency of the algorithm plays a major role in making our task feasible. We turn  

now to discuss the main steps our algorithm follows. For the interested reader, a 

more detailed description of our algorithm is available upon request.

Source File

The source file for the algorithm is a file containing the raw data, taken from the 

NBER Patents and Citations database. This file includes 1,760,143 rows, where 

each row corresponds to one patent citation, and 7 columns, which are the cited 

patent number, the citing patent number, the firm owning the cited patent, the 

firm owning the citing patent, the grant year of the cited patent, the grant year 

of the citing patent and an indicator to whether the cited patent is an originating 

patent.

The source file is sorted by the citing patent number. Thus, the first row is the 

earliest citation made in our sample, the second row is the second earliest citation 

etc. This sort allows us to save valuable running time due to the fact tha t a citing 

patent cannot be cited before it cites. We find that sorting in this way is crucial 

for the running time of the algorithm. The ‘cost’ of this sort is conceptual, as we 

assume that the grant year of the citing patent is the date in which knowledge has 

been transferred (the sequential number of the patent is determined by its grant
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year). It would have been preferred to look at the application year rather than the 

grant year, however, technically it is not applicable (as it will not allow us to sort 

the file according the ‘birth’ year of patents).

D a ta  S tru c tu re

In order to create an efficient algorithm that will produce the desired output in a 

reasonable time considering the amount of data, we use a combination of a Tree 

procedure and a Hash table.

The Tree algorithm is a dynamic procedure that creates a ‘tree’ of patents 

without any restrictions on the number of both direct and indirect offspring patents. 

Each node in the ‘tree’ contains two types of information: information extracted 

from the source file, such as citing patent number and citing firm, and information 

that the algorithm generates, such as the location of the offspring patent in the 

‘tree’. Note tha t the ‘tree’ is not balanced (its branches are not of equal length), 

thus it does not benefit from the advantages of balanced ‘trees’, whose maximum 

length we already know. This leads us to combine a Hash table, which allows us 

to efficiently store the information on the offspring patents in the diffusion ’tree’ 

and save valuable search time.

The Hash table contains information on all the patents in the source file, both 

citing and cited, which we define as items. Each item contains the following fields: 

the depth in the ‘tree’ (the generation of citation), the place in the ‘tree’ (how it 

is linked to the originating patent) and an indictor to whether the patent is an 

originating patent. The place of the patent in the ‘tree’ is stored as a vector of 

numbers, as we explain below.

R u n n in g  p rocess

The purpose of the algorithm is to create a diffusion ‘tree’ that holds information 

on all the unique ways the originating knowledge has been developed. For this 

reason, it is not enough to identify only the offspring patents, but also all the links 

between them  and the originating knowledge. In other words, we must extract all 

the branches in the diffusion ‘tree’, which makes our task harder.

It should be noted that every row in the source file indicates a ‘father-child’
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relationship in the ‘tree’. Our searching and updating procedure involves scanning 

the source file for every originating patent and updating the Hash table for each 

row according to the location of the citing patent in the diffusion ‘tree’ (in case a 

patent does not take part in the diffusion ‘tree’ of a given originating patent, its 

line is not updated).

The best way to explain the procedure of the algorithm is by a simple example. 

The following list of citing and cited patents is a sample taken from the source file 

(where we do not present the other columns for simplicity).

C itin g  P a te n t C ited  Pat<

3988245 3852388

3988250 3852388

4032309 3852388

4119408 4032309

4174374 4119408

4564373 4174374

4617029 4174374

4629563 3988245

4629570 3988255

4666607 3988245

4737166 4174374
Given this list, the algorithm will first scan the first row in the file, which tells 

us that patent number 3988245 cites patent number 3852388. As the algorithm 

starts to construct a new diffusion ‘tree’, it first checks whether the cited patent 

in the first row is part of the set of the originating patents. If it is not part of this 

set, the algorithm skips this row and jumps to the next one. If it does belong to 

the set of originating patents, the algorithm starts the construction of the diffusion 

‘tree’ for this patent by updating the Hash table for this row and for the next rows 

in the source file. We will show now how the updating procedure takes place.

The entries in the Hash table at the end on the running and updating procedure 

is as following (at the beginning of the procedure, the items in the Hash table are 

initialized to -1):
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Patent number Originating Place Depth

3852388 originating =  1 PlacelnTree  =  1 Depth =  1

3988245 originating =  0 PlacelnTree  = 1 1 Depth =  2

3988250 originating =  0 PlacelnTree  =  12 Depth =  2

4032309 originating =  0 PlacelnTree  =  13 Depth =  2

4119408 originating =  0 PlacelnTree  =  131 Depth =  3

4174374 originating =  0 PlacelnTree  =  1311 Depth — 4

4564373 originating =  0 PlacelnTree  =  13111 Depth  =  5

4617029 originating =  0 PlacelnTree  =  13112 Depth  =  5

4629563 originating =  0 PlacelnTree  =  — 1 Depth =  — 1

3988255 originating =  0 PlacelnTree  =  — 1 Depth =  — 1

4629570 originating =  0 PlacelnTree  =  — 1 Depth =  — 1

4666607 originating =  0 PlacelnTree  =  — 1 Depth =  — 1

4737166 originating =  0 PlacelnTree  =  13113 Depth  =  5

Once the algorithm finishes scanning the source file, another function is called in 

to print all the branches of the ‘tree’ into a file. These branches are unique sequences 

of patent citations, which we interpret as lines of research. The printed lines of 

research are than given in a text format ready to be analysed in any statistical 

package. Determining whether a fine of research is Internalized or Externalized is 

a straightforward task, as we only need to compare the first firm in the sequence of 

citations to the last firm. If these are identical (and there is at least one external 

invention along the line of research, such that spillovers are created), the line of 

research is Internalized. Other wise, it is classified as Externalized.

The next step is to clean the memory and initialize the Hash table before 

proceeding to the next originating patent, and repeating the same algorithm.
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The distribution of citing and not citing patents across years
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Table A1
Citations received by a cited patent

Number of 
cited patents

Mean Median Max Min

All cited patents 573,373 4.3 3 238 1

Citations received <3 281,884 1.4 1 2 1

2< Citations received <10 234,390 4.9 4 9 3

9< Citations received <50 56,226 16.1 14 49 10

Citations received >49 873 68.7 61 238 50

Citations made by a citing patent
Number of 
cited patents

Mean Median Max Min

All citing patents 599,884 4.2 3 259 1

Citations made <3 259,983 1.5 1 2 1

2< Citations made <10 294,566 4.8 4 3 9

9< Citations made <50 44,796 14.7 13 49 10

Citations made >49 539 72.5 60 259 50
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Table A2
Internalized lines o f research - distribution across years and m ain

technology sectors

Total sample 1969-1975 1976-1978 1979-1980

Pooled
Number of originating 
patents

104,694 62,673 27,360 14,661

Number of Internalized 
lines of research

999,718 328,732 387,255 283,731

Internalized lines of
research per originating 33.4 21.4 41.0 54.8
patent

Chemicals
Number of originating 
patents

36,514 22,036 9,536 4,942

Number of Internalized 
lines of research

161,491 59,611 63,521 38,359

Internalized lines of
research per originating 17.5 12.4 22.4 24.2
patent
Computers and
Communications
Number of originating 
patents

10,245 5,931 2,764 1,550

Number of Internalized 
lines of research

262,723 88,618 89,834 84,271

Internalized lines of
research per originating 51.3 33.1 56.4 98.3
patent

Drugs and Medicals
Number of originating 
patents

4,481 1,945 1,494 1,042

Number of Internalized 
lines of research

77,547 28,178 36,790 12,579

Internalized lines of
research per originating 63.8 61.9 84.8 38.5
patent

Electrical and Electronics
Number of originating 
patents

28,951 17,641 7,418 3,892

Number of Internalized 
lines of research

389,128 114,327 154,614 120,187

Internalized lines of
research per originating 45.7 26.3 55.8 86.2
patent

Mechanicals
Number of originating 
patents

24,503 15,120 6,148 3,235

Number of Internalized 
lines of research

108,829 37,998 42,496 28,335

Internalized lines of
research per originating 18.5 12.5 23.5 28.0
patent
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Table A3
Externalized lines o f research - distribution across years and m ain

technology sectors

Total sample 1969-1975 1976-1978 1979-1980

Pooled
Number of originating 
patents

104,694 62,673 27,360 14,661

Number of Externalized 
lines of research

12,107,916 3,696,270 4,738,837 3,672,809

Externalized lines of
research per originating 124.6 63.6 185.9 270.2
patent

Chemicals
Number of originating 
patents

36,514 22,036 9,536 4,942

Number of Externalized 
lines of research

2,451,285 875,050 945,533 630,702

Externalized lines of
research per originating 73.1 43.2 108.4 139.2
patent
Computers and
Communications
Number of originating 
patents

10,245 5,931 2,764 1,550

Number of Externalized 
lines of research

3,191,950 920,704 1,175,533 1,095,713

Externalized lines of
research per originating 319.9 159.9 432.5 729.5
patent

Drugs and Medicals
Number of originating 
patents

4,481 1,945 1,494 1,042

Number of Externalized 
lines of research

438,774 119,084 182,296 137,394

Externalized lines of
research per originating 107.5 66.9 134.0 146.0
patent

Electrical and Electronics
Number of originating 
patents

28,951 17,641 7,418 3,892

Number of Externalized 
lines of research

4,895,597 1,402,989 2,012,215 1,480,393

Externalized lines of
research per originating 178.1 84.1 283.5 400.0
patent

Mechanicals
Number of originating 
patents

24,503 15,120 6,148 3,235

Number of Externalized 
lines of research

1,130,310 378,443 423,260 328,607

Externalized lines of
research per originating 51.0 27.8 75.7 111.9
patent
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Table A4
Spillovers per originating patent - summary statistics

Mean S.D. Error Median Max Min

Spillovers

Pooled 368.1 11.5 9.1 545,262 0.72

Chemicals 196.6 8.2 9.1 93,365 0.72

Computers and 
Communications

993.2 41.8 46.3 104,311 0.85

Drugs and 
Medicals

238.5 17.1 8.9 29,123 0.72

Electrical and 
Electronics

559.9 35.7 9.6 545,262 0.72

Mechanicals 133.5 7.8 5.1 73,449 0.72

Internalized Spillovers

Pooled 20.9 0.8 0 22,921 0.00

Chemicals 8.5 0.5 0 7,860 0.00

Computers and 
Communications

54.6 2.9 0.9 9,621 0.00

Drugs and 
Medicals

25.9 2.3 0 2,570 0.00

Electrical and 
Electronics

33.2 2.3 0 22,921 0.00

Mechanicals 8.3 0.7 0 7,658 0.00

Externalized Spillovers

Pooled 347.0 11.0 8.7 544,711 0.00

Chemicals 188.1 8.0 8.7 93,216 0.72

Computers and 
Communications

938.6 40.2 43.1 103,902 0.72

Drugs and 
Medicals

212.5 16.4 8.5 29,037 0.72

Electrical and 
Electronics

526.7 34.2 9.1 544,711 0.72

Mechanicals 125.2 7.2 4.7 67,057 0.00

Share o f  Internalized Spillovers

Pooled 4.6% 0.0% 0.0% 100.0% 0.0%

Chemicals 3.9% 0.1% 0.0% 100.0% 0.0%

Computers and 
Communications

5.5% 0.1% 0.2% 100.0% 0.0%

Drugs and 
Medicals

5.6% 14.3% 0.0% 100.0% 0.0%

Electrical and 
Electronics

4.3% 11.9% 0.0% 100.0% 0.0%

Mechanicals 5.3% 14.8% 0.0% 100.0% 0.0%
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Table A5
Share of Internalized Spillovers per originating patent- variation over time

Pooled Chemicals
Computers and 

Communications
Drugs and 
Medicals

Electrical and 
Electronics

Mechanicals

1969-1972 3.9% 3.4% 6 .0 % 4.8% 3.5% 4.1%

1969 3.2% 2.4% 6.3% 4.8% 3.4% 3.0%
1970 3.6% 3.2% 6 .1 % 3.8% 2.9% 4.2%
1971 4.2% 3.9% 6 .0 % 5.3% 3.7% 4.3%
1972 4.5% 4.0% 5.7% 5.2% 4.0% 5.1%

1975-1976 4.8% 4.1% 5.3% 6.3% 4.6% 5.7%

1973 4.8% 4.2% 7.0% 5.9% 4.6% 4.9%
1974 4.9% 4.3% 4.8% 5.4% 4.3% 6.3%

1975-1976 4.9% 4.1% 5.0% 6 .0 % 4.8% 6 .0 %

1975 4.7% 4.0% 4.7% 7.4% 4.5% 5.6%
1976 4.8% 3.9% 4.7% 7.0% 4.8% 5.8%

1977-1980 4.9% 4.2% 5.1% 5.0% 4.7% 6 .1 %

1977 4.8% 3.6% 5.4% 5.5% 4.9% 5.8%
1978 5.2% 4.7% 5.2% 5.4% 4.9% 6.4%
1979 4.7% 4.1% 5.1% 4.1% 4.6% 5.8%
1980 4.9% 4.5% 4.8% 5.1% 4.2% 6.4%

T ota l sam p le 4.6% 3.9% 5.5% 5.6% 4.3% 5.3%
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Table A6
Spillovers per originating patent*- variation over time

Pooled Chemicals
Computers and 

Communications
Drugs and Medicals Electronics and Electrical Mechanicals

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

1969-1972 62.7 14.2 48.9 1 1 . 8 137.7 27.6 35.0 7.6 8 6 . 1 19.2 26.1 6 . 8

1969 19.1 6.1 18.4 5.7 39.2 10.6 9.3 2.8 21.7 7.5 11.1 3.8
1970 37.2 10.1 34.4 9.5 74.4 21.6 27.4 6.5 44.4 10.8 17.6 5.5
1971 58.6 14.3 47.2 11.0 137.0 28.1 42.1 8.7 71.9 19.5 22.2 6.3
1972 136.0 26.4 95.5 20.8 300.3 50.2 61.4 12.4 206.4 39.0 53.6 11.5

1973-1974 313.5 53.1 181.0 34.1 805.6 1 1 2 . 2 261.0 35.4 478.3 84.1 111.1 21.9

1973 256.4 42.8 128.6 26.1 614.4 80.1 174.9 28.3 404.9 66.9 104.9 22.4
1974 370.7 63.4 233.5 42.2 996.8 144.4 347.2 42.4 551.7 101.4 117.3 21.4

1975-1976 415.2 59.2 205.3 36.3 1107.3 129.6 250.0 30.2 689.0 97.0 136.7 23.9

1975 334.6 55.6 192.3 38.2 988.6 125.7 270.4 34.6 490.2 88.4 118.0 19.3
1976 495.8 62.8 218.2 34.5 1226.1 133.6 229.7 25.8 887.7 105.7 155.3 28.5

1977-1980 689.7 75.6 354.6 46.0 1840.1 173.0 299.7 36.9 1065.0 114.5 267.5 34.6

1977 562.0 65.1 252.8 32.2 1282.9 138.7 280.3 26.9 973.4 109.8 222.0 31.3
1978 608.1 62.1 388.3 41.4 1518.9 137.2 245.5 40.9 882.0 85.0 256.0 34.6
1979 809.9 86.8 393.3 56.3 1982.8 183.4 214.2 29.2 1352.8 136.8 360.5 39.9
1980 778.9 88.6 383.9 54.3 2575.9 232.8 458.8 50.7 1051.8 126.6 231.3 32.5

Total sample 392.4 51.5 208.5 32.6 1032.7 113.4 211.5 27.5 611.4 79.5 145.7 22.5

“Conditional on the originating patent creating spillovers (excluding 6773 patents that do not create spillovers, as explained in the text). From this reason the entries in this table are
higher than the entries in tables 2 and A4.
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Table A7
Internalized Spillovers per originating patent- variation over time

Pooled Chemicals
Computers and 

Communications
Drugs and Medicals Electronics and Electrical Mechanicals

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

1969-1972 3.6 0.7 2.0 0.4 11.8 2.0 4.8 0.7 3.9 0.8 1.9 0.3
1969 0.9 0.3 0.7 0 . 2 2.9 0 . 8 1 . 0 0 . 2 0.9 0.3 0.5 0 . 2

1970 2 . 0 0.5 1.5 0.3 5.9 1.5 2 . 0 0.5 1.9 0.4 1 . 1 0.3
1971 3.6 0.7 1.9 0.5 1 2 . 8 2 . 0 8.9 1 . 2 2.9 0.7 1.9 0.3
1972 7.8 1.3 4.0 0.7 25.8 3.9 7.1 1 . 1 9.7 1.7 4.0 0 . 6

1973-1974 20.1 3.0 8.8 1.4 50.7 6.8 27.1 2.9 33.3 5.1 6.7 1.1
1973 17.5 2.7 5.5 0 . 8 49.5 5.9 15.7 2 . 6 29.2 5.0 6 . 1 1 . 0

1974 22.7 3.3 1 2 . 0 2 . 0 52.0 7.7 38.6 3.2 37.5 5.2 7.4 1 . 2

1975-1976 23.4 3.2 8.2 1.2 55.7 6.4 39.0 3.2 40.8 5.9 7.9 1.3
1975 19.4 2.7 7.4 1.3 57.1 7.3 36.6 2.9 29.7 4.1 6 . 8 1 . 2

1976 27.4 3.7 8.9 1 . 2 54.3 5.6 41.4 3.5 51.9 7.8 9.1 1.3

1977-1980 37.5 3.6 15.0 1.7 94.6 8.8 27.6 2.7 61.2 5.5 16.6 1.7
1977 33.7 3.6 1 0 . 6 1 . 2 71.9 7.9 43.3 4.1 60.2 6 . 0 13.7 1.7
1978 34.1 3.0 19.9 1 . 6 80.8 7.2 25.0 2.4 47.3 4.2 19.6 1 . 8

1979 41.4 3.8 15.4 1.9 94.0 8.3 17.7 2 . 1 74.1 6.5 21.3 1 . 8

1980 40.7 3.9 14.0 2 . 0 131.7 11.7 24.3 2 . 2 63.3 5.3 11.7 1.7

Total sample 20.9 2.6 8.5 1.2 54.6 6.1 25.9 2.3 33.2 4.2 8.3 1.1
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Table A8
Externalized Spillovers per originating patent- variation over time

Pooled Chemicals
Computers and 

Communications
Drugs and Medicals Electronics and Electrical Mechanicals

Total
Normalized 
by citations

Total Normalized 
by citations

Total Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

Total
Normalized 
by citations

1969-1972 59.1 13.6 46.9 11.3 125.9 25.6 30.3 6.9 82.3 18.5 24.3 6.5
1969 18.2 5.9 17.7 5.5 36.3 9.8 8.3 2 . 6 2 0 . 8 7.3 1 0 . 6 3.7
1970 35.2 9.6 32.9 9.2 6 8 . 6 2 0 . 1 25.4 6 . 0 42.4 10.4 16.5 5.3
1971 55.0 13.6 45.2 10.5 124.2 26.2 33.2 7.6 69.0 18.8 20.3 6 . 0

1972 128.2 25.2 91.6 2 0 . 1 274.5 46.3 54.3 11.4 196.7 37.3 49.7 10.9

1973-1974 293.4 50.1 172.2 32.7 754.9 105.4 233.9 32.5 444.9 79.0 104.4 2 0 . 8

1973 238.8 40.2 123.0 25.3 565.0 74.2 159.2 25.7 375.7 61.8 98.8 21.4
1974 348.0 60.1 221.5 40.2 944.8 136.7 308.6 39.2 514.2 96.2 1 1 0 . 0 2 0 . 2

1975-1976 391.8 56.0 197.1 35.1 1051.6 123.2 2 1 1 . 0 27.0 648.1 91.1 128.7 2 2 . 6

1975 315.2 52.9 184.9 36.9 931.5 118.4 233.8 31.7 460.5 84.3 111.3 18.1
1976 468.4 59.2 209.3 33.3 1171.8 128.0 188.3 22.3 835.8 97.9 146.2 27.1

1977-1980 652.3 72.1 339.6 44.4 1745.5 164.2 272.1 34.3 1003.8 109.0 250.9 32.8
1977 528.3 61.5 242.1 30.9 1210.9 130.8 236.9 22.9 913.2 103.8 208.4 29.5
1978 574.0 59.1 368.4 39.8 1438.1 130.0 220.5 38.5 834.7 80.7 236.4 32.8
1979 768.5 83.0 377.9 54.4 1888.8 175.1 196.5 27.2 1278.7 130.3 339.3 38.1
1980 738.2 84.7 369.9 52.3 2444.1 2 2 1 . 1 434.6 48.5 988.5 121.3 219.5 30.8

Total 370.2 48.9 199.6 31.4 976.7 107.3 187.8 25.2 575.1 75.3 136.7 21.3

“Conditional on the originating patent having at least one Externalized line of research.
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Chapter 3

The D iffusion P attern  o f  

Technological Discoveries: 

Internalized and Externalized  

lines o f research

In this chapter we explore the factors affecting the likelihood that knowledge will 

return to the boundaries of its inventor, after having been advanced by other firms. 

We look at the attributes of the research environment of the originating firm, mainly 

at the level of competition in research it faces and the level of complexity of the line 

of research it pursues. We find that the firm is more likely to reabsorb its spilled 

knowledge when: (1) the line of research is more concentrated in terms of firms 

and (2) the line of research is less technologically complex. Moreover, we find 

preliminary evidence suggesting that when knowledge spills to firms that are closer 

to the originating firm  in the product market, it is less likely the originating firm will 

reabsorb this knowledge. Our empirical approach can shed light on the behaviour 

of firms in a dynamic research environment, where private returns depend on the 

follow-up research of other firms.
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3.1 Introduction

In this chapter we will ask the following question: when knowledge leaves the 

boundaries of its inventor, under what circumstances it is more likely to return 

to these boundaries after having been advanced by other firms? We answer this 

question by exploring the characteristics of Internalized and Externalized lines of 

research.

Our unit of observation in this chapter is a line of research and in the econo­

metric analysis we perform, the dependent variable is an indicator that receives the 

value one for an Internalized line of research and the value zero for an Externalized 

line of research.

The significant of this chapter relates to our argument (which we empirically 

support in chapter 5) that private obsolescence falls with more Internalized patterns 

of diffusion and rises with more Externalized patterns of diffusion. Identifying 

the circumstances under which a pattern of diffusion is Internalized can help in 

understanding the incentive to innovate in dynamic research environments.

We will focus on two main characteristics of the line of research. The first is 

the concentration of firms on the line of research, defined as Firm Concentration, 

and the second is the technological diversification of the line of research, defined 

as Complexity.

Firm Concentration is interpreted as a measure of competition the originat­

ing firm faces along a specific line of research, which is expected to be positively 

correlated with the likelihood that the line of research is Internalized, since the 

probability of ‘winning’ in every development stage falls, as the number of compet­

ing firms rises.

Further, we expect to observe a negative correlation between Complexity and 

the likelihood that a line of research is Internalized, as the originating firm has to 

possess more diverse innovation capabilities so as to continue inventing along a line 

of research that is less technologically specialized.

We find tha t the likelihood of a line of research to be Internalized is positively 

correlated with Firm Concentration and is negatively correlated with Complexity,
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as expected.

We also find that the likelihood of a line of research to be Internalized is lower 

when the originating knowledge spills to firms that are closer to the originating 

firm in the product market. Some evidence suggests that in case knowledge spills 

to rivals that are close to the originating firm in the technology space, it becomes 

less likely that the originating firm will reabsorb its spilled knowledge, as well. We 

interpret this finding as an indication of a lower ability of the originating firm to  

‘win’ subsequent development stages of its prior knowledge, once its close rivals in 

the product market and technology space also participate in the development race.

There is vast theoretical literature on sequential innovation that our empirical 

framework can contribute to. Green and Scotchmer (1995) and Scotchmer (1996) 

raise the concern tha t the inventor of the originating patent (the first generation) 

will capture a lower rent when follow-up developments of other inventors occur. 

Thus, the firm will have insufficient private incentive for innovation. In this thesis 

we show how we can empirically address this concern and examine under what 

circumstance it is more likely to arise. Under an Externalized line of research, this 

concern is justified, since the originating inventor does not technologically benefit 

from the subsequent inventions of others. However, under an Internalized line of 

research, this concern might we weaker, as the originating inventor benefits from 

the advancements built by others into its prior knowledge, which can raise private 

returns in a dynamic perspective that takes into account the future developments 

of the originating inventor.

Importantly, the above argument also holds in the presence of patent protection 

of both the originating and the subsequent inventions. This can contribute to the 

design of patent policy1, by identifying the circumstance under which the incentive 

to innovate in a dynamic framework is sufficient, even in the presence of spillovers 

(or to the contrary, the circumstance under which a stronger patent protection is 

required in order to ensure sufficient incentives to innovate, as might be the case 

under Externalized patterns of diffusion).

^ e e  for example, Klemperer (1990), Gilbert and Shapiro (1990), Scotchmer (1999) and Cor- 
nelli and Schankerman (1999).
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Moreover, Bessen and Maskin (2002) study the effect of competition on the 

incentive to innovate in a sequential innovation framework. They argue that com­

petition in research can raise private returns through enhancing the probability 

th a t an invention should occur. Our empirical framework can be used to test this 

argument. Along an Internalized line of research, stronger competition might have 

this positive effect, however, under Externalized lines of research, stronger compe­

tition must have a negative effect on private returns, since even if the probability 

of inventing a subsequent development rises, the originating firm does not benefit 

from the inventions of others. Therefore, it should not be positively affected by the 

higher probability of inventing, due to stronger competition.

This chapter looks at the effect of competition on the pattern of diffusion. We 

find that stronger competition in research reduces the probability a line of research 

is Internalized. Thus, even if stronger competition increases the probability of 

inventing, it reduces the probability the originating firm exploits this invention.

The rest of this chapter proceeds as following: section 2 presents the character­

istics of lines of research, section 3 discusses the data, section 4 reports the findings 

and section 5 summarizes.

3.2 The characteristics of lines of research

We choose to focus the analysis on two main characteristics of the lines of research. 

The first is concentration of firms and the second is technological complexity. We 

expect to find that the probability a line of research is Internalized is positively 

correlated with Firm Concentration and is negatively correlated with Complexity.

We mainly focus on Firm Concentration and Complexity, as the characteristics 

of the line of research. However, in order to identify their effect on the probability 

a line of research is Internalized, we ought to introduce other characteristics of the 

line of research, mostly as controls.

For example, we find it important to control for the length of the line of research 

in terms of the number of patents it includes, as it is likely that lines of research 

with more subsequent inventions will also include more firms. In case Externalized
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lines of research have more patents (which is, indeed, the case as reported in table 

A1 in the appendix), we will find a positive correlation between Firm Concentration 

and the probability that a line of research is Internalized, which will be wrongly 

interpreted.

Moreover, we need to introduce some measures that will inform us on the rele­

vance of the line of research to the research pursued by the originating firm. Failing 

to do so can lead to another bias in the interpretation of Complexity. A higher 

level of Complexity could mean that the originating knowledge is being developed 

in research areas tha t are irrelevant to the originating firm that chooses not to 

pursue them. In this case, lines of research with a higher value of Complexity are 

more likely to be Externalized, simply because they are distant from the research 

interests of the originating firm.

Due to the above, we will introduce two sets of controls: distance measures 

and length measures. The distance measures include the distance between the 

originating patent and its subsequent developments and the proximity between the 

originating firm and the other firms participating in the given line of research, in 

the product market and technology space.

The length measures include the number of patents in the line of research and 

the year lag between the grant year of the youngest patent in the line of research 

and the grant year of the originating patent.

We will tu rn  now to explain how we construct these variables.

Firm Concentration and Complexity are constructed as following:

F irm  Concentratiorii - we count the number of different firms participating in 

line of research z, normalized by the number of patents in the line of research, which 

we define as F irm s Per Patent*. The normalization by the number of patents 

aims to control for the likelihood that a fine of research will include more firms, if 

it includes more subsequent developments. F irm  Concentratiorii is defined simply 

as the reciprocal of F irm s Per Patenti.

F irm S i
F irm s Per Patenti =  -------- (3.1)

Patenti v '
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Where, FirmSi is the number of different firms (other than the originating firm) 

in line of research i and PatentSi is the number of patents in line of research i. 

Firm Concentration is computed as:

F irm  Concentrationi =
1

(3.2)
F irm s Per Patenti

Complexityi - we count the number of different three-digit technology sectors 

that take part in line of research i, normalized by the number of patents in this line 

of research. Thus, Complexityi is the number of different three-digit technology 

sectors that appear in line of research i , per patent. The normalization by the 

number of patents in line of research i aims to control for the higher likelihood that 

we will observe more three-digit technology sectors in lines of research tha t include 

more patents. This measure is constructed as:

pearing in line of research i.

We construct the distance measure, at the patent level, as following:

Patent Tech Distancei - This variable measures the technological distance be­

tween the originating patent and the offspring patents along line of research i. 

The technological distance is defined as the average of the technological distance 

between the originating patent and its subsequent developments along the line of

The distance measure is based on Trajtenberg, Henderson and Jaffe (1993) and 

is constructed as following: the distance between an originating patent and its 

offspring patent equals 1 if they do not appear in the same one-digit technology 

sector, 0.66 if they appear in the same one-digit technology sector but not in two- 

digits technology sector, 0.33 if they appear in two-digits technology sector but 

not in three-digits technology sector and 0 if they appear in the same three-digits 

technology sector.

2nclass is taken from the USPTO and is available in the NBER patents data-set (see Jaffe 
and Trajtenberg, 2002).

Complexityi
Patents.

(3.3)

Where, nclassi2 is the number of different three-digit technology sectors ap-

research.
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Thus, a higher value of Patent Tech Distancei implies that the originating 

patent is more remote in the technology space from its offspring inventions (direct 

and indirect).

The distance measures at the firm level include the average proximity between 

the originating firm and the other firms along the line of research, in the product 

market and in the technology space. These are constructed as following:

F irm  S IC  Proxim ityi - This variable measures the average product market 

proximity between the originating firm and the other firms in line of research i. 

We construct a pair-wise product market proximity index between the originating 

firm and each of the other firms on line of research z, in an identical way to Bloom, 

Schankerman and Van Reenen (2005), as following:

(SkS'j)
SICkj = -------, , J - /  . (3.4)

Where, k is the originating firm, j  G is a citing (direct or indirect) firm in 

line of research i and Ji is the set of citing (direct and indirect) firms in line of 

research z3. S' is a vector that its elements are the share of the firm’s sales in the 

lines of business at the four-digit industry SIC codes. The normalization by the 

vector size aims to control for product diversity4. After constructing the pair-wise 

proximity indices between the originating firm and each of the other firms in the 

line of research, we average these proximities over the number of patents in the line 

of research, as following:

F irm s S IC  Proxim ityi =  —
y PatentSi

The technology proximity measure between the originating firm and the other

3Note that the set Ji does not necessarily include different firms. If the same citing firm (direct 
or indirect) appears in the line of research more than once, it will appear the same number of 
time in the set «/*.

4The lines of business data are taken from Compustat 1993 to 2001. We use average share 
of sales per SIC code within each firm over the period as our measure of activity by product 
market, Si =  (Siti, Sit2 , ...5*,5 9 7 ), where Si;Tn is the share of sales of firm i in the four-digits SIC 
code m. We then compute the degree of orthogonality between every pair of firms and interpret 
this degree of orthogonality as their proximity in the product market (where higher orthogonality 
implies lower proximity).
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firms along the line of research is constructed in a similar way, as following:

F irm  T E C  Proxim ity  - This variable measures the technological proximity 

between the originating firm and the other firms in line of research i. We construct 

a pair-wise technology proximity index, in an identical way to Jaffe (1986), as 

following:

T E C kj = _V ' ' '  (3.5)
CT k T j )

Where, k is the originating firm, j  € Ji is a citing (direct or indirect) firm 

in line of research i, Ji is the set of citing (direct and indirect) firms in line of 

research i and T  is a vector that its elements are the firm’s share of patents in 

the three-digit technology sectors. The normalization by the vector size aims to 

control for patenting diversity5. After constructing the pair-wise proximity indices 

between the originating firm and each of the other firms along the line of research, 

we average these proximities over the number of patents in the line of research, as 

following:

T  ■ r -  J . T E C kj
F irm s T E C  Proxim ityi =  — 3—J:----------

PatentSi

Finally, our measures of the length of line of research i are the number of patents 

it includes, which we define as PatentSi, and the lag in years between the grant 

year of the youngest patent in the line of research (the last patent in the sequence 

of citations) and the grant year of the originating patent, which we define as Year  

Lagi.

As mentioned above, our main focus is on Firm Concentration and Complex­

ity. We interpret Firm Concentration as a proxy for the level of competition the 

originating firm faces along a given line of research. This interpretation requires 

assuming a link between the observed number of ‘winners’ at the different develop­

5 The technology space information is provided by the allocation of all patents by the USPTO 
into 426 different technology classes. We use the average share of patents per firm in each 
technology class over the period 1970 to 1999 to create the following vector for each firm: T{ =  
(Tit\ ,T it2 , 4 2 6 ), where TitJn is the share of patents of firm i in technology class m. We then
compute the degree of orthogonality between every pair of firms and interpret this degree of 
orthogonality as their proximity level in the technology space.
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ment stages and the number of competitors at each stage. Since we do not observe 

the number of competitors at every stage of development (which is the first-best 

measure of competition), we assume that the number of different winners along the 

line of research proxies the pool of potential winners (so that a less concentrated 

line of research is more likely to face a larger pool of competing firms at every 

development stage)6.

This concludes our set of line of research characteristics. We turn  to investi­

gate the correlation between these characteristics and the likelihood th a t a line of 

research is Internalized.

3.3 Data

In this chapter our unit of observation is a line of research taken from the sample 

of lines of research introduced in the previous chapter. For the sake of brevity we 

will not discuss this sample here and will not refer to the procedure used for its 

construction (the algorithm is described in the appendix of the chapter 2).

In order to cope with the massive data (about 13 million lines of research), we 

needed to reduce the size of our sample. Thus, we randomly sampled five percent 

of the population of lines of research (Internalized and Externalized). This leaves 

us with 655,377 lines of research tha t are used in the empirical analysis in this 

chapter.

Table 1 summarizes the statistics for the set of characteristics of the lines of 

research discussed above.

On average, a line of research includes 3.6 firms (that are different from the 

originating firm), where the maximum number of firms in a line of research is 11. 

The average length of a line of research in terms of patents is 6.5, where the longest 

line of research includes 15 patents (14 subsequent developments of the originating 

patent). On average, a firm that participates in a line of research develops about

6For example, assume that the probability of winning in one development stage is p (l — p)n_1, 
where p  is the probability on inventing, which is equal across firms, and n  is the number of 
competitors. As n rises, the probability of winning drops. Thus, observing many different winners 
along a fine of research would imply n is larger.
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1.5 subsequent inventions along this line of research.

Finally, the average year lag of a line of research is 14. This implies that our 

restriction on the diffusion pattern (the year lag between the youngest patent and 

the originating patent grant years must be less or equal to 15) is mostly binding.

Table A l in the appendix provides similar summary statistics, separately for 

Internalized and Externalized lines of research.

Table 1
Summary statistics for the constructed variables in the sample

Mean S.D. Error Median Min Max

Complexity 0.34 0.17 0.33 0.07 0 . 8 8

Firm Concentration 2.03 0.96 1.75 1.09 11.00

Firms2
3.64 1.52 4.00 1 . 0 0 11.00

Patent Tech Distance 0.45 0.28 0.40 0 . 1 0 0 . 0 0

Year Length 14.17 1.40 15.00 0 . 0 0 15.00

Patent Length 6.49 1.82 6 . 0 0 2 . 0 0 15.00

Firm SIC Proximity 0.07 0 . 1 2 0 . 0 1 0 . 0 0 0 . 8 8

Firm TEC Proximity 0.07 0 . 1 1 0 . 0 1 0 . 0 0 0.84

aThe number o f firms in a line o f research, as explained in the text.

The share of Internalized lines of research in the sample is 0.076, which is identi­

cal to the share in the whole sample (see chapter 2). The share of Internalized lines 

of research breaks down by technology sectors, as following: 0.062 in “Chemicals” , 

0.075 in “Computers and Communications” , 0.149 in “Drugs and Medicals” , 0.074 

in “Electrical and Electronics” and 0.088 in “Mechanicals” .

3.4 Findings

The empirical analysis starts with simple non-paxametric descriptive statistics, such 

as correlations and comparison of means. We proceed with an econometric estima­

tion of a Probit specification (where the dependent variable is an indicator for an
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Internalized line of research), which is followed by robustness tests using a linear 

probability specification.

Table 2 reports the correlation between Firm Concentration and Complexity 

and the other set of characteristics used in the estimation.

There is a high correlation between Firm Concentration and Firm SIC Proxim­

ity, in contrast with the low and negative correlation between Firm Concentration 

and Firm TEC Proximity. Thus, the originating firm is likely to be closer in the 

product market to the other firms along the line of research, if the line of research 

is more concentrated.

Also, the correlation between Firm Concentration and Patents is positive. This 

may indicate that lower competition along a line of research raises the probability 

of inventing, since lines of research including fewer firms tend to include more 

inventions7.

W ith respect to Complexity, it is highly correlated with Patent Tech Distance, 

as expected from the construction of the two measures (if the originating patent 

and the subsequent patents are in different three-digits technology sectors, both 

measures are higher).

Finally, we find a high negative correlation between Complexity and Patents, 

which implies that longer lines of research tend to include a fewer number of three- 

digits technology sectors. This finding is interesting as it may indicate that a more 

rapid scientific development is more technologically localized (a longer sequence of 

subsequent developments, in a period of 15 years, is more likely to occur in fewer 

three-digits technology fields).

7 Which is inconsistent with the theoretical argument of Bessen and Maskin (2002), by which 
stronger competition raises the probability of inventing.
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Table 2
Correlation o f Firm Concentration and  

Complexity with the other controls
Firm

Concentration
Complexity

Firm Concentration 0.002

Complexity 0.002

Patent Tech Distance -0.001* 0.500*

Firm SIC Proximity 0.214* -0.067*

Firm TEC Proximity -0.024* -0.218*

Year Length -0.032* -0.141*

Patent Length 0.047* -0.455*
* denotes a significance level of 5 percent (that indicates the 
correlation is different from zero).

3.4.1 Comparison o f means

Table 3 summarizes the results of comparing the means of Firm Concentration and 

Complexity across Internalized and Externalized lines of research.

A simple comparison of means across the whole sample shows that Internal­

ized lines of research are associated with a significantly higher Firm Concentration 

relative to Externalized lines of research.

Also, we find that Externalized lines of research are significantly more techno­

logically complex than Internalized fines of research.

This preliminary look at the data supports our prior expectation that Internal­

ized fines of research are associated with a lower degree of competition (a higher 

Firm Concentration) and with a lower degree of technological complexity (a lower 

Complexity).

A similar pattern of results also emerges when comparing the means across 

technology sectors. In all technology sectors, the level of Firm Concentration is 

higher for Internalized fines of research relative to Externalized fines of research 

and this difference is always significant at the five percent level.
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W ith the exception of “Computers and Communications” , Externalized lines 

of research have a significantly higher mean of Complexity relative to Internalized 

lines research.

Table 3
Internalized versus Externalized lines of research - Firms Concentration and 
______________________________ Complexity_____________________________

Internalized lines o f  
research

Externalized lines o f  
research

Firm
Concentration

Complexity
Firm

Concentration
Complexity

Pooled 2.407* 0.326* 2.002* 0.342*
(0.004) (0.001) (0.001) (0.0002)

Chemicals 2.692* 0.389* 2.334* 0.408*
(0.011) (0.002) (0.003) (0.001)

Computers and Communications 2.148* 0.367 1.763* 0.366
(0.006) (0.002) (0.002) (0.0004)

Drugs and M edicals 2.949* 0.285* 2.424* 0.373*
(0.014) (0.002) (0.007) (0.001)

Electrical and Electronics 2.204* 0.266* 1.845* 0.278*
(0.006) (0.001) (0.002) (0.0003)

M echanicals 2.944* 0.383* 2.475* 0.397*
(0.018) (0.002) (0.006) (0.001)

Standard errors are in brackets.
* denotes the difference in means is significant at the 5 percent level.

Table 4 reports the comparison of means of the ‘distance’ measures across In­

ternalized and Externalized lines of research.

W ith respect to Patent Tech Distance, we find its mean to be significantly 

higher for Externalized lines of research, in the whole sample, and for each of the 

technology sectors. This finding may imply that the originating firm is less likely to 

pursue lines of research that are technologically remote from its original knowledge.

W ith respect to Firm TEC Proximity and Firm SIC Proximity, their mean is 

higher for Externalized lines of research. This finding is stronger for Firm TEC 

Proximity, where for Firm SIC Proximity the pattern is less clear and varies across 

technology sectors. The implication of this finding is tha t the originating firm is 

less likely to reabsorb its knowledge once it spills to firms tha t are closer in the 

technology space (and less clearly for firms that are closer in the product market). 

This is rather puzzling, as we would expect the firm to be able to technologically
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benefit from firms that are closer in the technology space. A possible explanation 

would be to consider Firm TEC Proximity as a measure of competition in research 

the originating firm faces along the line of research (as the originating firm and 

the other firms in the line of research overlap more in their research areas, it is 

more likely they compete on similar research projects). Under this interpretation, 

a higher level of competition reduces the probability of ‘winning’ in subsequent 

development stages and, therefore, raises the likelihood that a line of research is 

Externalized.

Table 4
Internalized versus Externalized lines of research - distance measures

Internalized lines o f research Externalized lines o f  research

Firm SIC Firm TEC Patent Tech Firm SIC Firm TEC Patent Tech
Proximity Proximity Distance Proximity Proximity Distance

Pooled 0.066 0.062* 0.419* 0.065 0.071* 0.452*
(0 .001) (0 .001) (0 .001) (0 .0001) (0 .0001) (0 .0004)

Chemicals 0.058* 0.026* 0.543 0.065* 0.032* 0.544
(0 .001) (0 .001) (0.003) (0 .0004) (0 .0002) (0 .001)

Computers and Communications 0.046* 0.053 0.449* 0.049* 0.055 0.463*
(0 .0001) (0 .001) (0 .002) (0.0001) (0 .0002) (0 .001)

Drugs and Medicals 0.152* 0.045* 0.339* 0.142* 0.055* 0.470*
(0.002) (0 .001) (0 .003) (0 .001) (0 .0006) (0 .002)

Electrical and Electronics 0.045 0.095* 0.341* 0.055 0.109* 0.363*
(0 .001) (0 .001) (0 .002) (0 .0002) (0 .0002) (0 .001)

Mechanicals 0.138* 0.027* 0.499* 0.120* 0.039* 0.582*
(0 .003) (0 .001) (0 .004) (0 .001) (0 .0004) (0 .001)

Standard errors are in brackets. * denotes the difference in means is significant at the 5 percent level.

From the comparison of means we find tha t (1) Internalized lines of research 

are more concentrated (have a higher mean of Firm Concentration), (2) less tech­

nologically complex (have a lower mean of Complexity) and (3) include firms that 

are more remote in the technology space from the originating firm (and less clearly, 

more remote in the product market).

We will turn to investigate the robustness of these findings in an econometric 

analysis.
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3.4.2 Econom etric evidence

In this section the conditional correlation between the characteristics of the lines 

of research and their likelihood of being Internalized is examined. We estimate 

a Probit model, in which the probability of a line of research to be Internalized 

depends on its characteristics. We proceed by reporting robustness tests with a 

linear probability model, focusing mainly on fixed-effects at the originating patent 

and originating firm levels.

All the regressions reported in this section include a complete set of dummies 

for the grant year and one-digit technology sectors of the originating patent. The 

standard errors are always clustered at the originating firm level, in order to control 

for serial correlation across originating patents held by the same firm (we also 

experiment with clustering at the originating patent level, which yields similar 

results).

Table 5 reports the estimation results for the Probit model. Column 1 reports 

the estimation results of including only Complexity and Firm Concentration. Con­

sistent with our prior expectations, Complexity has a significant negative effect on 

the probability that a line of research is Internalized (-0.602 with a standard error 

of 0.149) and Firm Concentration has a positive and significant effect on the same 

probability (0.196 with a standard error of 0.022).

In column 2 we add the other control variables that have been discussed above 

(length and distance measures). The same pattern of results for Complexity and 

Firm Concentration holds. The effect of Patent Tech Distance on the likelihood 

th a t the line of research is Internalized is negative and significant. We interpret 

this finding as an indication that the originating firm is more likely to pursue 

sequential research in areas closer to its original knowledge. W ith respect to Firm 

TEC Proximity, we find a negative insignificant effect. However, the effect of Firm 

SIC Proximity is significantly negative. Thus, when knowledge spills to firms that 

are closer in the product market to the originating firm, the probability tha t the line 

of research will be Internalized drops (in the unconditional comparison of means, 

we found Firm TEC Proximity to be significantly higher in Externalized fines of 

research, where the mean comparison results for Firm SIC Proximity were less
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clear).

In column 3 we add two-digit technology sector dummies. The only important 

change, compared to  column 2, is that Patent Tech Distance becomes insignificant. 

Finally, in column 4 we add three-digit technology sectors dummies, which does 

not affect the results in an important manner.

Table 5
Internalized and Externalized lines o f research  

characteristics - Probit estimation

Dependent variable: a dummy for an Internalized line of research

0 ) (2 ) (3) (4)

Complexity -0.602* -0.511* -0.522* -0.497*
(0.149) (0.143) (0.135) (0.105)

Firm Concentration 0.196* 0.204* 0 .2 1 1 * 0 .2 2 2 *

(0.022) (0.019) (0.021) (0.026)

Patent Tech Distance -0.169* -0.057 -0 . 1 1 2

(0.070) (0.076) (0.068)

Firm TEC Proximity -0.259 -0.428 -0.531

(0.344) (0.363) (0.384)

Firm SIC Proximity -0.352* -0.439* -0.591*

(0.159) (0.165) (0.210)

Two-digit technology
sector effects3 No No Yes No

Three-digit technology
sector effects No No No Yes

Observations 655,377 655,377 655,377 655,377

R2 0.064 0.066 0.074 0.093
Standard errors are in brackets and are clustered by (421) firms.
* denotes a significance level of 5 percent.
All regressions include a complete set of originating patents grant year 
dummies and one-digit technology sectors.
All regressions include Patent and Year Length. For example, in column 1 the 
coefficient on Patents is -0.039 with a standard error of 0.009 and the 
coefficient on Year Lag is -0.142 with a standard error of 0.009. 
includes 36 two-digit technology sectors, 
includes 379 three-digit technology sectors.
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In summary, we have found so far that Internalized lines of research (1) have 

fewer firms, (2) are more technologically complex and (3) include firms that are 

remote in the product market from the originating firm. Findings (1) and (2) are 

consistent with the unconditional comparison of means reported in table 3, while 

finding 3 is less consistent with the mean comparison.

Quantifying the effects by technology sectors

After having identified the characteristics of the line of research that significantly 

affect the probability of its being Internalized, we turn  to investigate their quanti­

tative effect in the pooled estimation and for each of the main technology sectors, 

as summarized is table 6 (table A2 in the appendix reports the estimation results 

for each technology sector, which table 6 builds on). The entries in table 6 are 

the calculated semi-elasticities, which informs us on the change in the probability 

that a line of research is Internalized as a response to a percentage change the 

independent variables.

Table 6
Internalized and Externalized lines o f research characteristics: semi-elasticities

Dependent variable: a dummy for an Internalized line of research

(1) (2) (3) (4) (5) (6)

Pooled Chemicals Computers and 
Communications

Drugs and 
Medicals

Electrical and 
Electronics Mechanicals

Complexity -0.022* -0.031* -0.010 -0.108* -0.016* -0.012
(0.006) (0.008) (0.009) (0 .034) (0.005) (0.015)

Firm Concentration 0.053* 0.041* 0.057* 0.131* 0.061* 0.057*
(0.010) (0.007) (0 .016) (0.037) (0.015) (0 .013)

Patent Tech Distance -0.009* 0.006 -0.012 -0.067* -0.009 -0.031*
(0.004) (0.008) (0.013) (0.028) (0.007) (0.019)

Firm TEC Proximity -0.002 -0.001 0.002 -0.012 -0.007 -0.005
(0.003) (0.001) (0.003) (0.009) (0.008) (0 .004)

Firm SIC Proximity -0.003* -0.003* -0.002 -0.013 -0.001 -0.005
(0.001) (0.001) (0.002) (0.011) (0 .003) (0 .004)

Calculated from Probit specifications and evaluated at the mean: column (1) is from table S, and the other columns are from table A2. 
* denotes a significance level of 5 percent.
All regressions include Patents and Year Length as controls.
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A ten percent increase in Complexity reduces the probability that a line of 

research is Internalized by 0.2 percent (a one standard deviation increase in Com­

plexity reduces the probability that a line of research is Internalized by 1 percent), 

as estimated from the pooled sample. This effect varies across technology sectors. 

In “Drugs and Medicals” , the same ten percent increase in Complexity reduces 

the probability that a line of research is Internalized by 1.1 percent. On the other 

hand, in “Computers and Communications” , a ten percent increase in Complexity 

reduces the probability that a line of research is Internalized by only 0.1 percent, 

which is statistically not different from zero.

W ith respect to Firm Concentration, a ten percent increase in the level of 

Firm Concentration raises the probability that a line of research is Internalized by 

0.5 percent (a one standard deviation increase in Firm Concentration raises the 

probability that a line of research is Internalized by about 2.5 percent), estimated 

from the pooled sample. This percentage varies substantially across technology 

sectors, with the highest effect in “Drugs and Medicals” and the lowest effect in 

“Electrical and Electronics” .

This variation may indicate that the effect of competition on the incentive to 

innovate (as implied by the ability of the originating inventor to internalize the 

subsequent developments of its original knowledge) varies across technology types. 

For example, higher competition is more likely to reduce the incentive to innovate 

in “Drugs and Medicals” , compared to “Computers and Communications” (since 

in the latter sector the ability of firms to reabsorb their spilled knowledge will not 

be affected much, compared to firms in the former sector).

The effect of Patent Tech Distance is negative and significant in the pooled 

sample. However, a closer examination across technology sectors shows that it is 

driven mainly by the “Drugs and Medicals” sector (which is the only sector with 

a significant effect). Based on our interpretation of Patent Tech Distance, firms in 

the “Drugs and Medicals” sector are less likely to pursue a line of research that 

includes subsequent developments that are more remote in the technology space 

from the originating knowledge. This is consistent with our finding on Complexity, 

accordingly, in “Drugs and Medicals” the effect of a higher Complexity on the
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probability that a line of research is Internalized is significantly higher than in the 

other sectors.

Finally, the effect of the proximity between the originating firm and the other 

firms along the line of research in the technology space is not significantly different 

from zero in all technology sectors.

The significant and negative effect of the proximity of the originating firm and 

the other firms in the line of research in the product market is driven mainly by 

the “Chemicals” sector.

In order to look closer at the effect of these two proximity measures, we repeat 

the estimation for each technology sector by including only one proximity measure 

at a time, since the proximity measures are correlated (a correlation of about 0.3), 

and their separate effect may be hard to identify in a regression that includes both. 

Table A3 reports the estimation results. We find Firm SIC Proximity to have a 

significant and negative effect in “Chemicals” , “Drugs and Medicals” and “Mechan­

icals” , and Firm TEC Proximity to have a significant negative effect in “Drugs and 

Medicals” and “Mechanicals” (both are significant only at the 10 percent level).

3.4.3 Robustness tests

An important robustness test relates to whether the variation we observe across 

lines of research is indeed attributed to the line of research, or to the characteristics 

of the originating patent and the originating firm.

For example, the variation in technological complexity can arise from the char­

acteristics of the originating patents, so that a more ‘basic’ knowledge is likely to 

originate lines of research that include more technological area8.

In order to  identify whether the source of variation is at the line of research level 

or at the originating patent level, we estimate an originating patent fixed-effects 

specification, in which we exploit only the variation across lines of research that 

are originated in the same originating patent.

8In the next chapter we will investigate the correlation between the ‘basicness’ characteristics 
of the originating knowledge and the diffusion pattern it experiences.
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Similarly, the lines of research variation can be attributed to the characteristics 

of the firm. For example, if larger firms face a lower competition along their sequen­

tial innovation and also have more Internalized lines of research, our interpretation 

of the effect of Firm Concentration may be biased.

In order to test the robustness of our findings to this potential bias, we estimate 

an originating firm fixed-effects, using only the variation across lines of research 

that originate in the same firm.

For this purpose, we estimate a linear probability specification, which is not 

very applicable in terms of the point estimates it produces. However, we believe 

the linear specification is useful for testing the significance of our previous results 

and identifying the sources of variation in the data.

Column 1 in table 7 reports the estimation results without any type of fixed- 

effect. We find the same pattern of results as in the Probit specification. The effect 

of Complexity is negative and significant and the effect of Firm Concentration is 

positive and significant. With respect to the ‘distance’ measures (Patent Tech 

Distance, Firm TEC Proximity and Firm SIC Proximity), the same pattern of 

results holds as well.

Column 2 includes originating patent fixed-effects. The estimate of Complexity 

more than halves and its significance level drops. However, it remains negative and 

significant. This is consistent with our concern that the variation in the technolog­

ical complexity across lines of research is partly related to the ‘basicness’ attributes 

of the originating patent (so that more general originating patents are likely to be 

subsequently developed in more technology sectors).

W ith respect to Firm Concentration, the estimate actually rises and remains 

highly significant.

The most striking change occurs in the estimate of Firm TEC Proximity, which 

becomes highly significant and its effect substantially rises. Similarly, the effect of 

Firm SIC Proximity rises and it remains highly significant.

In column 3 we add originating firm fixed-effects, which mainly affect Firm SIC 

Proximity tha t is no longer significant. Finally, in column 4 we add a complete set
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of dummies for the two-digits technology sectors of the originating patents to find 

the same pattern of results.

Table 7
Internalized and Externalized lines o f research characteristics - 

fixed effects robustness tests: linear specification

D ependent variable: a dummy for an internalized line o f research

(1) (2) (3) (4)

Complexity -0.069* -0.033* -0.056* -0.056*
(0.016) (0.012) (0.014) (0.014)

Firms Concentration 0.034* 0.046* 0.036* 0.036*
(0.006) (0.009) (0.006) (0.006)

Patent Tech Distance -0.022* -0.034 -0.024* -0.023*
(0.009) (0.008) (0.009) (0.010)

Firm TEC Proximity -0.033 -0.258* -0.182* -0.184*
(0.047) (0.043) (0.029) (0.027)

Firm SIC Proximity -0.048* -0.122* -0.029 -0.032
(0.024) (0.047) (0.026) (0.026)

Originating patents fixed- 
effects3 No Yes No No

Firm fixed-effects No No Yes Yes

Two-digit technology sector
effects No No No Yes

Observations 655,377 655,377 655,377 655,377

R2 0.043 0.197 0.077 0.079
Standard errors are in brackets and are clustered by (421) firms.
* denotes a significance level of 5 percent.
All regressions include a complete set of dummies for grant year and one-digit 
technology sectors.
All regressions include Patents and Year Lag. 
includes 41,112 originating patents.

Finally, an additional source of concern is associated with the fact that by 

controlling for the originating patents fixed-effects we do not eliminate all the 

variation that is attributed to a single invention. It is possible to observe a scenario
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in which a second generation invention is a ‘bottle-neck’ for many lines of research 

(so that many lines of research that can originate in different patents use this second 

generation as a technological link). In this case, originating patent fixed-effects will 

not control for this second generation effect. In order to test whether this concern 

is serious, we have explored specifications with second and third generations fixed- 

effects. We find our results to hold in these cases as well.

In summary, the fixed-effects robustness tests we have performed in this section 

provide two main insights: (1) the positive effect of Firm Concentration and neg­

ative effect of Complexity on the likelihood of a line of research to be Internalized 

are strongly evident also within originating patents (lines of research tha t originate 

in the same patent) and originating firms (lines of research tha t originate in the 

same firm). (2) Once controlling for either originating patent or originating firm 

fixed-effects, the negative effect of Firm TEC Proximity becomes highly significant.

3.5 Interpretation and summary

In this chapter we have found that firms are more likely to reabsorb their spilled 

knowledge, if its subsequent developments occur in lines of research that (1) have 

fewer firms (2), are less technologically complex and (3) include firms tha t are more 

remote in the product market from the originating firm.

Findings (1) and (2) are highly robust and evident also within technology sec­

tors. W ith respect to finding (3), it is less robust to the type of estimation and 

is less evident within technology sectors (we find a significant effect only in the 

“Chemicals” sector).

How should we interpret these findings? Regarding our first finding tha t In­

ternalized lines of research have fewer firms, it is likely to  expect tha t in the case 

firms compete in subsequent patent races, it would become more difficult for the 

originating firm to ‘win’ a development stage if it faces stronger competition.

An alternative interpretation would be to consider an Internalized line of re­

search as a sort of tacit or explicit agreement among firms in sharing their dis­

coveries with one another. Economic theory regarding collusive behaviour of firms
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would suggest that as the number of participants increases, supporting collusion 

becomes more difficult.

The importance of this finding relates to the effect of competition on the incen­

tive to innovate in a dynamic framework. In the presence of sequential innovation, 

an increase in the number of firms will reduce the incentive to innovate, as the like­

lihood that the firm will benefit in the longer rim from its discovery drops. This 

implies a negative effect of competition in research on the incentive to innovate. 

Nevertheless, Bessen and Maskin (2002) present an argument in which a higher 

competition in research raises the probability of inventing and, therefore, raises 

private incentive to innovate. This argument is applicable only for Internalized 

lines of research, where the originating firm benefits from the inventions of others. 

This in principle could be empirically tested by conditioning the analysis on Inter­

nalized lines of research (for example, by looking at the effect of competition on 

R&D expenditures along Internalized lines of research).

Our second finding indicates that an invention that spreads to more technology 

sectors is less likely to return to the boundaries of its original inventor (a negative 

effect of Complexity on the probability that a line of research is Internalized). This 

finding implies a trade-off between the socially desired property that knowledge 

would spread and benefit inventors in numerous research areas and the desire to 

provide sufficient private incentive for innovation. In the next chapter we will 

further investigate the socially desirable attributes of knowledge and examine their 

relation to the diffusion pattern of knowledge.

Moreover, we find a high variation in the effects of Firm Concentration and 

Complexity on the likelihood that a line of research is Internalized across technology 

sectors. This high variation can indicate structural differences in research in these 

sectors.

For example, a ten percent increase in Complexity lowers the probability that 

a line of research is Internalized in “Computers and Communications” by only 0.1 

percent, where in “Drugs and Medicals” , a ten percent increase in Complexity low­

ers the probability that a line of research is Internalized by 1.1 percent. This huge 

difference can be associated with the higher technological complexity in “Comput­
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ers and Communications” , compared to “Drugs and Medicals” (for example, the 

number of three-digits technology sectors in ” Computers and Communications” is 

44, compared to 14 in “Drugs and Medicals”). Thus, firms that operate in “Com­

puters and Communications” are more likely to possess more diverse innovation 

capabilities, compared to firms in “Drugs and Medicals” and, therefore, should be 

less affected in their ability to reabsorb their spilled knowledge by an increase in 

the complexity of their research environment.

The same argument can be outlined with respect to the differential effect of 

Firm Concentration across technology sectors.

Finally, our third finding is tha t once knowledge spills to  firms closer to the 

originating firm in the product market, it is less likely th a t this knowledge will 

return to the boundaries of the originating firm. A possible interpretation of this 

finding is that the originating firm chooses to locate itself further away from its 

product market competitors, as it is less likely to pursue lines of research it origi­

nates that include subsequent developments of its close rivals. This interpretation is 

consistent with Bloom, Schankerman and Van Reenen (2005), who find the returns 

to innovation to be negatively affected by the R&D expenditures of close product 

market rivals. Our finding can add to the above by providing preliminary evidence 

th a t the technological location of the firm is determined strategically, depending 

on the follow-up research of its rivals.
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Table A1
Characteristics of Externalized lines of research

Chemicals Computers and Communications Drugs and Medicals Electrical and Electronics Mechanicals

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Complexity 0.41 0.08 0.88 0.37 0.07 0.88 0.37 0.09 0.86 0.28 0.07 0.88 0.40 0.08 0.88

Rim Concentration 2.34 1.11 11.00 1.76 1.10 10.00 2.43 1.13 9.00 1.85 1.09 10.00 2.47 1.11 11.00

Patent Tech Distance 0.55 0.04 1.00 0.46 0.00 1.00 0.47 0.09 1.00 0.36 0.08 1.00 0.58 0.10 1.00

Year Lag 13.98 1.00 15.00 14.39 1.00 15.00 14.18 0.00 15.00 14.31 0.00 15.00 14.04 1.00 15.00

Patents 6.02 2.00 15.00 6.44 2.00 15.00 5.84 2.00 12.00 7.04 2.00 15.00 5.86 2.00 13.00

Rims SIC Proximity 0.07 0.00 0.88 0.05 0.00 0.87 0.14 0.00 0.86 0.06 0.00 0.85 0.12 0.00 0.84

firms TEC Proximity 0.03 0.00 0.80 0.46 0.00 1.00 0.06 0.00 0.76 0.11 0.00 0.84 0.04 0.00 0.83

Observations 123256 123256 123256 159318 159319 159319 21924 21924 21924 244917 244917 244917 55981 55981 55981

Characteristics of Internalized lines of research
Chemicals Computers and Communications Drugs and Medicals Electrical and Electronics Mechanicals

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Complexity 0.39 0.08 0.88 0.37 0.07 0.86 0.29 0.09 0.83 0.27 0.08 0.88 0.38 0.10 0.83

firm Concentration 2.69 1.29 11.00 2.15 1.22 8.00 2.95 1.40 8.00 2.20 1.22 10.00 2.94 1.29 10.00

Patent Tech Distance 0.54 0.10 1.00 0.45 0.00 1.00 0.34 0.09 1.00 0.34 0.08 1.00 0.50 0.10 1.00

Year Lag 12.99 2.00 15.00 13.58 2.00 15.00 13.19 2.00 15.00 13.65 3.00 15.00 13.10 2.00 15.00

Patents 5.47 3.00 13.00 5.93 3.00 14.00 5.85 3.00 11.00 6.86 3.00 13.00 5.41 3.00 11.00

firms SIC Proximity 0.06 0.00 0.74 0.05 0.00 0.73 0.15 0.00 0.73 0.05 0.00 0.69 0.14 0.00 0.70

firms TEC Proximity 0.03 0.00 0.53 0.05 0.00 0.52 0.05 0.00 0.46 0.10 0.00 0.70 0.03 0.00 0.62

Observations 8158 8158 8158 13046 13046 13046 3844 3844 3844 19516 19516 19516 5422 5422 5422
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Table A2
Internalized and Externalized lines of research characteristics

technology sectors
- Probit estimation by

Dependent variable: a dummy f o r  an Internalized line o f  research

(1) (2) (3) (4) (5)

Chemicals
Computers and 
Communications

Drugs and Electrical and 
Medicals Electronics

Mechanicals

C om plexity -0.701* -0.210 -1.633* -0.459* -0.209

(0.165) (0.230) (0.403) (0.116) (0.269)

Firm Concentration 0.160* 0.256* 0.284* 0.258* 0.158

(0.021) (0.028) (0.055) (0.033) (0.028)

Patent Tech D istance 0.104 -0.207 -0.813* -0.195 -0.378

(0.138) (0.198) (0.307) (0.142) (0.209)

Firm TEC Proximity -0.155 0.194 -1.332 -0.487 -1.032

(0.408) (0.414) (1.048) (0.515) (0.543)

Firm SIC Proximity -0.419* -0.307 -0.515 -0.125 -0.275

(0.179) (0.289) (0.424) (0.374) (0.227)

Standard errors are in brackets and are clustered by (421) firms.
* denotes a significance level of 5 percent.
All regressions include Patents and Year Lag as controls.
All regressions include a complete set o f dummies for grant year and one-digit technology sectors.

________________________________ Table A3________________________________
Internalized and Externalized lines of research characteristics- Firm SIC Proximity and Firm

TEC Proximity

Dependent variable: a dummy for an Internalized line of research

(1) (2) (3) (4) (5)

Chemicals
Computers and 
Communications

Drugs and 
Medicals

Electrical and 
Electronics Mechanicals

Firm SIC Proximity -0.003** -0.002 -0.019** -0.002* -0.007**
(0.001) (0.002) (0 .009) (0.003) (0.004)

Firm TEC Proximity -0.001 0.001 -0.016* -0.007 -0.006**
(0.001) (0.002) (0 .010) (0 .007) (0.004)

Standard errors are in brackets and are clustered by (421) firms.
All regressions include Complexity, Firm Concentration, Patent Tech Proximity, Year Lag, Patents and complete sets of 
dummies for the grant year and one-digit technology sectors of the originating patent.
* and ** denote a significance level of 5 and 10 percent, respectively.
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Chapter 4

The D iffusion pattern o f ‘B asic’ 

Versus A pplied Knowledge: Is 

‘B asic’ Research Less Rewarded?

We investigate the correlation between the ‘basicness ’ attributes of knowledge and 

the technological feedback its inventor receives from its spillovers. We find that 

private returns should be lower in a dynamic perspective, if  the knowledge is more 

‘basic’, as an inventor is less likely to reabsorb this knowledge after its diffusion 

and benefit from the advancements other inventors build into it. In particular, the 

spillovers of more “general” and “original” knowledge are less likely to feed back 

into the dynamic research of the originating inventor. This indicates that there 

may be insufficient private incentive for ‘basic ’ innovation, which is worrying from  

a social point of view that values the ‘basicness ’ attributes of knowledge.

4.1 Introduction

Social returns to knowledge outweigh private returns due to the ability of knowledge 

to  spread and contribute to the research of others. A well-accepted notion is that 

‘basic’ knowledge is more socially desirable than applied knowledge1. The question 

we pose in this chapter is whether spillovers have a stronger negative affect on

1For example, Griliches (1986) shows that ‘basic’ research had an important contribution to 
the productivity growth in the US in the 70’s.
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private returns as the ‘basicness’ of knowledge rises. We address this question by 

studying the effect of the ‘basicness’ attributes of knowledge on the technological 

feedback an inventor receives from the spillovers of its discoveries.

As there is no clear definition of ‘basicness’, it is rather intuitive to think of 

knowledge characteristics tha t fall into the ‘basicness’ category. The most impor­

tant empirical paper, in our view, that looks into the ‘basicness’ characteristics of 

knowledge, using patents and citations data, is Henderson, Jaffe and Trajtenberg 

(1997). This paper outlines several characteristics of ‘basic’ knowledge, where the 

most important ones are Generality and Originality. We have followed their defini­

tion of ‘basicness’ and investigated whether the attributes they outline are system­

atically correlated with the diffusion pattern knowledge follows. More specifically, 

we examine whether more General knowledge, as implied by the number of different 

three-digit technology sectors it contributes to, and more Original knowledge, as 

implied by the number of different three-digit technology sectors it builds on, expe­

riences a pattern of diffusion that yields a lower Share of Internalized Spillovers2.

A long debated issue is whether firms have sufficient incentive to invest in ‘basic’ 

research rather than in applied research, under the notion that ‘basic’ research 

has a higher social value, however, may be less privately rewarded. This concern 

dates back to Arrow (1962) who argued that " .. basic research, the output of 

which is only used as an informational input into other inventive activities, is 

especially unlikely to be rewarded. In fact, it is likely to be of commercial value to 

the firm undertaking it only if  other firms are prevented from using the information 

obtained. ”

Little empirical attention has been devoted to investigate whether inventors 

face an insufficient incentive to create ‘basic’ knowledge, or alternatively, whether 

private returns fall as the ‘basicness’ of knowledge rises.

In this chapter we offer an indirect way to test this concern, which is based on 

the technological feedback an inventor receives from the spillovers of its knowledge.

2As a reminder, Share of Internalized Spillovers measures the extent to which spillovers feed 
back into the dynamic research of the originating firm (see chapter 2).
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Our working assumption is that private obsolescence is positively affected by In­

ternalized Spillovers and negatively affected by Externalized Spillovers. Thus, an 

inventor is likely to face lower private returns and, therefore, a lower incentive to 

innovate, if more ‘basic’ knowledge experiences a pattern of diffusion that yields 

less Internalized Spillovers and more Externalized Spillovers.

We find strong and robust evidence suggesting that in a dynamic perspective, 

private returns fall as knowledge becomes more ‘basic’. This is based on finding 

a negative correlation between the extent to which knowledge is “general” and 

“original” and the Share of Internalized Spillovers its diffusion yields. Thus, once 

more ‘basic’ knowledge is diffused and is further advanced by other inventors, it is 

less likely to be reabsorbed by the originating inventor.

We interpret this finding as an indication for insufficient incentive to invest 

in ‘basic’ research, as the originating inventor is less likely to enjoy the fruits of 

its technological success in the long run. Thus, the same mechanism (spillovers) 

that raises social returns above private returns, especially for ‘basic’ knowledge, 

intensifies private obsolescence as knowledge becomes more ‘basic’. This leaves 

room for government intervention, aiming to mitigate the stronger negative effect 

the diffusion of ‘basic’ knowledge has on its private returns.

The rest of this chapter proceeds as following: section 2 presents the method­

ology, section 3 describes the data, section 4 reports the findings and section 5 

summarizes.

4.2 Methodology

In chapter 3 the unit of observation is lines of research. In this chapter we move 

up in the level of aggregation to the originating patent level and decompose the 

spillovers a patent creates by the Internalized and Externalized criterion, as ex­

plained in detail in chapter 2. As a reminder, we briefly review the manner in 

which we have constructed the spillovers measures, before characterizing the ‘ba­

sicness’ attributes of knowledge.
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4.2.1 Diffusion measures

In chapter 2 we have shown how we define and compute the spillovers of an in­

vention. Based on this measure, we have decomposed spillovers into Internalized 

Spillovers and Externalized Spillovers, where Internalized Spillovers are spillovers 

that feed back into the dynamic research of the originating firm and Externalized 

Spillovers are spillovers that do not feed back into the dynamic research of the 

originating firm.

Internalized Spillovers are constructed following the first term in the right-hand- 

side of equation (2.7):

In ternalized Spilloversi = LRj x Sj (4.1)
j  Glnternalizedi

Where, i denotes the originating invention, Internalizedi is the set of Inter­

nalized lines of research that invention i originates, j  indexes lines of research in 

this set, LRj  is dummy tha t receives the value 1 for fine of research j  and zero 

otherwise, and Sj is the number of external inventions in line of research j ,  where 

external refers to the set of firms that do not own invention i.

Externalized Spillovers are constructed following the second term in the right- 

hand-side of equation (2.7):

Externalized Spilloversi =  L R t x S t (4.2)
tEExternalized

Where, i denotes the originating invention, Externalizedi is the set of Exter­

nalized lines of research invention i originates, t indexes lines of research in this set, 

LRt is a dummy tha t receives the value 1 for line of research t and zero otherwise, 

and St is the number of external inventions in line of research t.

Finally, the Share of Internalized Spillovers measures the extent to which spillovers 

created by an originating invention, contribute to the dynamic research of the 

originating inventor. The Share of Internalized Spillovers is computed following 

equation (2.9) and is our preferred spillovers measure in this chapter (it is the de­

pendent variable in the econometric analysis, where the independent variables are
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the patent characteristics. We assume that private returns rise with a higher Share 

of Internalized Spillovers and fall with a lower Share of Internalized Spillovers3.

4.2.2 ‘B asicness’ measures

In defining the characteristics of knowledge we refer to Trajtenberg, Henderson and 

Jaffe (1997). In particular, we adopt the following characteristics of an invention: 

Generality, Originality, the technological distance and year lag between an invention

invention receives and the number of citations it makes. We discuss the way these 

measures are constructed and their interpretation in this section.

The ‘basicness’ attributes of an invention can be empirically looked at in various 

dimensions. However, we find it useful to focus on two main measures, which we 

find to be the most compelling, and treat the other characteristics of the patent 

mostly as controls. These two measures are Generality and Originality, which are 

constructed as following:

Generalityi - This variable measures the extent to which knowledge i is applica­

ble for use in various technology sectors. We associate a ‘general’ knowledge with 

being socially desirable. Generality measures the number of different three-digit 

technology sectors that benefit from the invention. Thus, a higher value of Gener­

ality implies more “general” and more ‘basic’ knowledge. We construct Generality 

in an identical way to Trajtenberg, Henderson and Jaffe (1997), as one minus the 

H H I  index of concentration across three-digit technology sectors of the citations 

received by patent z, as following:

Where, i denotes the originating patent, j  denotes a three-digits technology sec-

and its immediate offspring and ancestor inventions, the number of citations the

Generalityi =  1 “ (4.3)

tor, CRij is the number of citations received by patent i from patents in technology 

sector j  and CRi is the total number of citations received by patent z. Figure 1

3This assumption is empirically verified in chapter 5.
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illustrates how we construct Generality and it is identical to the one presented in 

Trajtenberg, Henderson and Jaffe (1997).

O riginality i - This variable measures the extent to which invention i builds 

on different three-digits technology sectors. Thus, an invention that integrates 

pieces of knowledge from many different technology sectors is assumed to be more 

“original” , which we associate with a socially desirable knowledge attribute. We 

construct Originality identically to Trajtenberg, Henderson and Jaffe (1997), as 

one minus the H H I  index for the concentration across technology sectors of the 

citations made by patent i, as following:

O riginalityi =  1 — (4.4)

Where, i denotes the originating patent, j  denotes a three-digits technology 

sector, CMij is the number of citations made by patent i to patents in technology 

sector j  and CMi is the total number of citations made by patent i. Figure 2 

illustrates how we construct Originality and it is identical to the one presented in 

Trajtenberg, Henderson and Jaffe (1997).

Ncalss=100 Ncalss=200 Nclass=300

G en era lity  =  1 -

Ncalss=100 Ncalss=200 Nclass=300

G enerality  = 1 -  —

Figure 1: Measuring Generality

Figure 1: This figure illustrates the construction of the Generality measure.
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Patent A in the upper diagram is cited by three patents from different technology 

fields, whereas, in the lower diagram, patent A is cited by three patents from the 

same technology field (Nclass 200). Since in the upper diagram patent A is applica­

ble to additional technology fields, the knowledge it embodies is assumed to be more 

'‘general”.

Ncalss=200

Originality = 1 - MM*

Ncalss=100 Ncalss=200 Nclass=300

Originalit y = 1 - =  0

Figure 2: Measuring Originality

F igure 2: This figure illustrates the construction of the Originality measure. 

The upper diagram in this figure represents the case in which patent A cites three 

patents from three different technology fields, whereas, the lower diagram represents 

the case in which patent A cites three patents from the same technology field (Nclass 

200). The lower diagram is associated with lower Originality, since the knowledge 

embodied in patent A does not combine pieces of knowledge from many technology 

fields.

In addition to Generality and Originality, we construct measures for the techno­

logical distance between the invention and its immediate offspring inventions and 

immediate ancestors. Intuitively, an invention can be argued to be more ‘basic’ if its 

offspring inventions are more distant in the technology space, which can be linked 

to its level of Generality. Further, an invention that builds on prior inventions that 

are further away in the technology space can be argued to be more Original and,
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hence, more ‘basic’. Thus, the technological distance variables can be though of as 

complementary indicators for Generality and Originality, yet, they will not be at 

tlie focus of our analysis.

The technological distance measures are constructed as following:

Backward Tech - This variable measures the technological distance between an 

invention and the knowledge it builds on. This technological distance measure is 

the mean of the technological distance between the invention and its ancestors. We 

compute the distance between a pair of patents as following: the distance equals 

1 if both patents are not in the same one-digit technology sector, 0.66 if they are 

in the same one-digit technology sector, but not in the same two-digits technology 

sector, 0.33 if they are in the same two-digits technology sector, but not in the same 

three-digits technology sector and 0 if they are in the same three-digits technology 

sector. After computing the technological distance between the patent and its 

ancestors, we average these measures. As this variable is backward looking, it is 

likely to be correlated with the number of citations the patent makes.

Forward Tech - This variable measures the technological distance between an 

invention and its offspring inventions. The distance between any pair of patents 

is computed identically to Backward Tech. After computing the technological dis­

tance between the patent and its offspring inventions, we average these measures. 

As this variable is forward looking, it is likely to be correlated with the number of 

citations the patent receives.

In addition to the technology distance measures, we construct measures of year 

distance between the invention and its immediate offspring inventions as well as its 

immediate ancestors, as following:

Backward Lagi - This variable measures the mean citation lag between an 

invention and its ancestors (where a citations lag is the difference between the 

grant year of the citing and cited patents). It can be argued that an invention that 

builds on ‘older’ knowledge is more ‘basic’ in the sense that it is more “original” 

(whereas, advancing more recent pieces of knowledge is linked to a more applied 

knowledge).
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Forward Lagi - This variable measures the mean citation lag in years between 

an invention and its offspring inventions. It measures the speed of diffusion as 

indicated by the average time is takes to advance the knowledge. Moreover, it 

is important to control for the speed of citations in the context of the Share of 

Internalized Spillovers, due to the higher likelihood that a line of research will be 

Internalized, if the first citation in the sequence of citations arrives sooner (since in 

this case, there is a longer period in which a line of research can become Internalized, 

compared to the case where the first citation arrives later).

Finally, we introduce two additional variables which are the number of citations 

made and received by the patent, as following:

Backward Citationsi - This variable counts the number of citations made by a 

patent. We expect Backward Citations to be correlated with the backward looking 

measures, Originality and Backward Tech, which are based on the distribution of 

citations made by the patent. We mainly use Backward Citations as a control for 

Originality.

Forward Citationsi - This variable counts the number of citations received by 

a patent, and is mainly used in the literature as a measure for the quality of the 

patent (the more citations the patent receives, the higher is its perceived quality). 

Forward Citations are likely to be correlated with Generality and Originality, which 

are constructed based on the distribution of citations received by the patent.

4.3 Data

In this chapter our unit of observation is an originating invention. In chapter 2 we 

have described the set of originating patents, which includes 97,921 patents. The 

summary statistics for Share of Internalized Spillovers (and for the other spillovers 

measures) are reported in chapter 2 and for the sake of brevity, we do not discuss 

them here. Table 1 describes the summary statistics for the patent characteristics 

discussed above.
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Table 1
Patents main characteristics

variable Mean Median Std Dev Minimum Maximum

Main 'Basicness1 Measures

Generality 0.41 0.48 0.27 0 0.93

Originality8 0.32 0.38 0.28 0 0.90

Forward and Backward Citations

Backward Citations8 4.23 4.00 28.8 0 461

Forward Citations 8.02 6.00 8.2 1 239

Technology Distance

Backward Tech8 0.30 0.24 0.31 0 1

Forward Tech 0.35 0.33 0.29 0 1

Time Distance

Backward Lag8 8.64 8.33 3.75 0 26

Forward Lag 9.62 9.50 3.61 0 24
“The backward looking variables: Originality, Backward Tech, Backward Citations 
and Backward Lag, are computed over the period 1975-1980 (and the forward 
looking variables are computed over the period 1969-1980). The reason is explained 
in the text.

We do not have information on citations made by patents granted prior to 1975 

(however, we have information on patents that were cited prior to 1975). Con­

sequently, we observe Originality, Backward Tech, Backward Lag and Backward 

Citations only for 48,366 patents that were granted between 1975 and 1980. In 

the econometric analysis we tend to use the smaller sample, which has complete 

information on patent characteristics.

Table 2 reports the correlation between our two main ‘basicness5 measures, Gen­

erality and Originality, and the other characteristics described above. As expected, 

we find a high correlation between Generality and the forward looking variables, 

and a high correlation between Originality and the backward looking variables.

In particular, we are interested in the correlation of Generality and Originality 

with Forward Citations and Backward Citations, respectively. We find a high cor­

relation between Generality and Forward Citations (although in the construction 

of Generality we control for the number of citations the patent receives) and a
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high correlation between Originality and Backward Citations (although in the con­

struction of Originality we control for the number of citations the patent makes). 

Hence, as we are interested in the correlations between the Share of Internalized 

Spillovers and Generality and Originality, it is important to control for the number 

of citations the patent receives for Generality, and for the number of citations the 

patent makes for Originality.

Table 2
Correlation o f Originality and Generality with 

other 'Basicness' measures

Generality3 Originality1*

Forward Citations 0.287 0.101

Backward Citations 0.099 0.458

Forward Tech 0.525 0.245

Backward Tech 0.275 0.544

Forward Lag 0.169 0.030

Backward Lag 0.065 0.018

All correlations are greater than zero with a significant level 
of 1 percent, with the exception of the correlations between 
Originality with Forward Lag and Backward Lag.
Correlations of Generality with forward looking variables 
are based on 97,921 patents and the correlations with 
backward looking variables are based on 48,366 patents (see 
explanation in the text).
Correlations of Originality with all measures are based on 
48,366 patents (see explanation in the text).

As a final note, Hall, Jaffe and Trajtenberg (2001) show that Generality and 

Originality are biased, and the magnitude of this bias depends on the number of 

citations received by the patent for Generality, and on the number of citations made 

by the patent for Originality. Patents tha t receive few citations are more likely to 

be considered less “general” than patents that receive many citations. Similarly, 

patents that make few citations are more likely to be less “original” than patents
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tha t make many citations. The intuition for this bias relates to the fact that the 

H H I  index for both variables computes the share of citations made or received in 

every technology sector based only on observed citations. For patents tha t receive 

or make only few citations, the H H I  index will not coincide with the true H H I  

index, since the citations sample for these patents misrepresent the true citations 

distribution.

Therefore, for Generality, the number of citations the patent receives is posi­

tively correlated with Generality. For example, in case the number of citations re­

ceived by a patent is positively correlated with the Share of Internalized Spillovers, 

we may find that for patents that receive only few citations, low Share of Inter­

nalized Spillovers will be associated with lower Generality. We expect this bias 

to be eliminated as the number of citations received by a patent rises. The same 

argument holds for Originality and Backward Citations.

We cope with this bias as following: firstly, we control for the number of citations 

the patent makes and receives in order to mitigate the above concern (e.g., in the 

econometric analysis we condition on Forward Citations and Backward Citations). 

Secondly, we test the robustness of our findings for the correction proposed by Hall, 

Jaffe and Trajtenberg (2001), i.e., the bias-adjusted H H I  is H H I = N , 

where N  is the number of citations received for Generality and the number of 

citations made for Originality.

4.4 Findings

We report our findings by first looking at a non-parametric comparison of means 

of the ‘basicness’ variables across a set of patents characterized as having a high 

Share of Internalized Spillovers (hereafter, High) and a set of patents characterized 

as having a low Share of Internalized Spillovers (hereafter, Low). We proceed to 

looking at conditional correlations in an econometric analysis.

4.4.1 Non-param etric evidence

We examine the hypothesis tha t more ‘basic’ inventions are associated with a lower 

Share of Internalized Spillovers, as indicated by their pattern of diffusion. Our non-
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parametric test of this hypothesis is to examine whether the following inequality 

holds:

E (B k\Bk e  Low) > E (B k\Bk E High) (4.5)

Where, B k is the kth. ‘basicness’ indicator (mainly, k = {G enerality, Originality}). 

The sets Low and H igh  refer to whether the patent has a low or high Share of 

Internalized Spillovers.

A natural allocation of the originating patents across the two sets is based 

on whether they have at least one Internalized line of research. As described in 

chapter 2, about 30 percent of the originating patents have at least one Internalized 

line of research, while the remaining patents originate only Externalized lines of 

research. Thus, the set Low includes patents that do not originate Internalized lines 

of research and the set High includes patents that originate at least one Internalized 

line of research4.

Table 3 summarizes the comparison of means of the patent characteristics across 

the Low and High sets. W ith respect to the main ‘basicness’ measures, Generality 

and Originality, we find the following results: the mean of Generality is 0.447 with 

a standard error of 0.002 in the High set and 0.393 with a standard error of 0.001 

in the Low set (the difference in means between the two sets is different from zero 

at the 5 percent significant level). Further, the mean of Originality is 0.336 with a 

standard error of 0.002 for the High set and 0.303 with a standard error of 0.002 for 

the Low set (the difference in means between the two sets is different from zero at 

the 5 percent significant level). These two findings imply that more ‘basic’ patents 

have a higher Share of Internalized Spillovers. This contradicts our hypothesis that 

more ‘basic’ knowledge has a lower Share of Internalized Spillovers.

Moreover, patents in the High set are cited more and make more citations com­

pared to  patents in the Low set. This raises a concern of how we should interpret 

the above comparison of means. As reported in table 2, there is a high correlation

4 We test the robustness of the mean comparison results, by allocating patents to the High and 
Low sets based on the 75 percentile (which equals 0.022) and 90 percentile (which equals 0.142) 
thresholds. Our results are robust to the alternative allocation of patents.
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between Generality and Forward Citations and a high correlation between Origi­

nality and Backward Citations. In order to test whether High Share of Internalized 

Spillovers is associated with a higher Originality and Generality, we should com­

pare the mean of these measures, conditioned on the number of citations the patent 

receives and the number of citations it makes (the importance of conditioning on 

Forward Citations and Backward Citations also relates to the potential bias in 

Generality and Originality, as discussed in the previous section).

Table 3

Comparison of means: High vs. Low Share of Internalized Spillovers

High share of Low Share of
Internalized Spillovers1 Internalized Spillovers1

Main 'Basicness' Measures

Generality 0.447* 0.393*
(0.002) (0.001)

Originality2 0.336* 0.303*
(0.002) (0.002)

Forward and Backward Citations

Backward Citations3 4.734* 3.942*
(0.026) (0.017)

Forward Citations 12.074* 6.229*
(0.065) (0.021)

Technology Distance

Backward Tech3 0.309 0.301
(0.002) (0.002)

Forward Tech 0.336* 0.359
(0.002) (0.001)

Time Distance

Backward Lag3 8.000* 9.007*
(0.026) (0.022)

Forward Lag 8.787* 9.99*
(0.018) (0.015)

Standard errors are in brackets. * denotes the difference in means is greater 
than zero at the 5 percent significant level.
*We allocate a patent to the High set if it has at least one Internalized line of 
research and to the Low set, otherwise.
aThe backward looking variables: Originality, Backward Tech, Backward 
Citations and Backward Lag, are computed over 1975-1980, while the forward 
looking variables are computed over 1969-1980 (see explanation in the text).
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For this purpose, table 4 reports the comparison of means for Generality across 

the High and Low sets, conditioned on the number of citations the originating 

patents receive. We condition on the patent receiving more than 6 citations, which 

is the sample median, more than 10 citations, which is the sample 75th percentile 

and more than 16 citations, which is the sample 90th percentile. If our previous 

findings are robust, we expect to find a higher mean of Generality in the High set, 

independently from Forward Citations.

Table 4 shows that the results are not robust. Once conditioning on the patent 

receiving more than 6 citations, the mean of Generality in the High set is 0.495 with 

a standard error of 0.002, which is significantly lower than the mean in the Low 

set, which is 0.513 with a standard error of 0.002. This finding indicates that once 

conditioning on the quality of the patent (as implied by the number of citations 

it receives), a higher Generality is associated with a lower Share of Internalized 

Spillovers. This pattern of results continues to hold when we condition on the 

patent receiving more than 10 citations and more than 16 citations.

Table 4
Comparison of Generality means: High vs. Low Share of Internalized 

Spillovers - Conditioning on Forward Citations
High Share of 

Internalized Spillovers
Low Share of 

Internalized Spillovers

Unconditional 0.447* 0.393*
(0 .002) (0 .001)

Observations 2 9 ,964 6 7 ,957

Forward Citations>6 0.495* 0.513*
(0 .002) (0 .002)

Observations 19,916 23,535

Forward Citations>10 0.516* 0.538*
(0 .002 ) (0 .002)

Observations 12,714 10,081

Forward Citations>16 0.535* 0.565*
(0 .003) (0 .004)

Observations 6 ,514 3 ,219

Forward Citations=6 is the median, Forward Citations=10 is the 75th 
percentile and Forward Citations=16 is the 90th percentile.
* denotes the difference in means is different from zero at the 5 percent 
significance level.
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We perform a similar analysis for Originality, however, now we condition on the 

number of citations the patent makes (as Originality is a backward looking measure 

and is correlated with Backward Citations). We condition on the patent making 

more than 4 citations, which is the sample median, more than 6 citations, which is 

the sample 75th percentile and more than 8, which is the sample 90th percentile.

As we condition on the patent making more than 4 citations, our previous 

finding of a higher Originality in the High set disappears. As we tighten our 

restriction on Backward Citations, we find that a more Original patent is more 

likely to be associated with a lower Share of Internalized Spillovers.

Table 5
Comparison of Originality means: High vs. Low Share of Internalized 

Spillovers - Conditioning on Backward Citations
High share of 

Internalized Spillovers
Low share of 

Internalized Spillovers

Unconditional 0.336* 0.303
(0 .002) (0 .002 )

Observations 17,493 3 0 ,873

Backward Citations>4 0.450 0.457
(0 .003) (0 .0 0 3 )

Observations 7 ,813 10,599

Backwards Citations>6 0.478 0.491
(0 .004) (0 .004)

Observations 4 ,105 4 ,879

Backwards Citations>8 0.500 0.511
(0 .006) (0 .005)

Observations 2 ,023 2 ,148

Backward Citations=4 is the median, Backward Citations=6 is the 75th 
percentile and Backward Citations=8 is the 90th percentile.
* denotes the difference in means is different from zero at the 5 percent 
significance level.

Thus, in both cases, our previous findings, by which more General and Original 

patents enjoy a higher Share of Internalized Spillovers, are not robust. Once we 

condition on the number of citations the patent receives, patents that are more 

“general” have a lower Share of Internalized Spillovers, and once we condition on 

the number of citations the patent makes, patents th a t are more “original” have 

a lower Share of Internalized Spillovers. These two findings imply tha t private
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returns are more likely to be negatively affected by spillovers as knowledge is more 

‘basic’.

We will now turn to investigate the conditional correlations between the Share of 

Internalized Spillovers and Generality and Originality in an econometric approach 

to examine whether the same pattern of results still remains.

4.4.2 Econometric evidence

In the previous section we found that a more ‘basic’ knowledge, as indicated by its 

degree of Generality and Originality, is more likely to have a lower Share of Internal­

ized Spillovers, once conditioning on the number of citations it receives and makes. 

In this section we will extend the analysis and adopt an econometric approach 

of estimating the conditional correlation between the ‘basicness’ characteristics of 

patents and their Share of Internalized Spillovers.

Table 6 estimates a Tobit specification, where the dependent variable is the 

Share of Internalized Spillovers. We have chosen to use the Tobit specification due 

to the structure of the data, which include zeros for about 70 percent of the obser­

vations (as only 30 percent of the originating patents have at least one Internalized 

line of research)5.

In column 1 we include only Generality, which has a positive and significant 

effect on the Share of Internalized Spillovers. This is consistent with the uncondi­

tional correlation we report in table 3. In column 2 we control for the number of 

citations the patent receives. In this case, the effect of Generality becomes negative 

and significant, consistent with the comparison of means reported in table 4 (where 

we condition on the number of citations the patent receives).

In column 3 we include only Originality, which has a positive and significant 

effect on the Share of Internalized Spillovers, consistent with the findings reported

5An alternative estimation is Probit, where the dependent variable is an indicator to whether 
the patent originates Internalized lines of research. The Probit specification does not exploit 
the variation in the continuous part of the Share of Internalized Spillovers (which includes the 
patents originating Internalized lines of research), thus, it is less preferable in this case. Moreover, 
the Tobit specification may be more applicable, as we may suspect that the zeros component in 
the Share of Internalized Spillovers corresponds to some noise in the data that allows observing 
positive Internalized Spillovers only when they are greater than a given threshold.
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in table 3. However, once we condition on the number of citations the patent makes, 

as reported in column 4, the effect of Originality becomes negative and significant. 

This finding is consistent as well with the non-parametric analysis reported in table 

5.

Finally, in column 5 we include Generality and Originality, together with the 

number of citations made and received by the originating patent. We find the 

same pattern of results, by which Generality and Originality have a negative and 

significant effect on the Share of Internalized Spillovers.

Thus, so far the econometric results support our previous findings tha t indi­

cate that more ‘basic’ knowledge is likely to be associated with a lower Share of 

Internalized Spillovers.

Table 6
Regressions of Share of Internalized Spillovers on Generality and 

Originality - Tobit estimation

(1) (2) (3) (4) (5)

Generality 0.044*
(0 .004 )

-0.032*
(0 .005 )

-0.026*
(0 .006 )

Originality 0.191*
(0 .005 )

-0.019*
(0 .006 )

-0.022*
(0 .006)

Forward Citations 0.008*
(0 .0001)

0.007*
(0 .0 0 0 2 )

Backward Citations 0.008*
(0 .001 )

0.005*
(0 .001 )

Observations 97,921 97,921 48,366 48,366 48,366

R2 0.06 0.081 0.014 0.021 0.078
Standard errors are in brackets.
All regressions include one-digit technology sector dummies and originating patent 
grant year dummies.
* denotes a significant level of 5 percent.

Based on the estimates reported in table 6, we quantify the negative effect of 

Generality and Originality on the Share of Internalized Spillovers (by computing 

the elasticity of the Share of Internalized Spillovers with respect to Generality and 

Originality). W ith respect to Generality, a one standard deviation increase lowers 

the Share of Internalized Spillovers by 0.7. Thus, evaluated at the mean, the Share
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of Internalized Spillovers falls from 0.046 (chapter 2, table 2) to 0.039 (alternatively, 

a  10 percent increase in Generality lowers the Share of Internalized Spillovers by 

about 2.5 percent).

W ith respect to Originality, a one standard deviation increase lowers the Share 

of Internalized Spillovers by 0.6. Thus, evaluated at the mean, the Share of Inter­

nalized Spillovers falls from 0.046 to 0.040 (alternatively, a 10 percent increase in 

Originality lowers the Share of Internalized Spillovers by about 1.6 percent).

Next we will turn  to investigate the robustness of our findings to a linear specifi­

cation with firm fixed-effects. We find it important to control for firm fixed-effects, 

since the variation we observe across originating patents can be attributed to the 

originating firms. For example, if larger firms perform more applied research and 

also have a higher Share of Internalized Spillovers, this will be wrongly interpreted 

as a negative effect of the ‘basicness’ of knowledge on the Share of Internalized 

Spillovers.

R o b u stn ess  te s ts

Table 7 reports the estimation results of a linear specification, where the dependent 

variable is the Share of Internalized Spillovers, as before. In column 1 we include 

only Generality and Originality, which are both negative and significant, even when 

not conditioning on Forward Citations and Backward Citations (unlike in the Tobit 

specification). In Column 2 we add Forward Citations and Backward Citations, 

which yield a pattern of results similar to the equivalent Tobit specification (column 

4 in table 6). The estimate of Generality rises substantially in absolute value from 

-0.015 to -0.025, once including Forward Citations.

In column 3 we add firm fixed-effects. Rather surprisingly we do not observe a 

change in the estimates of Generality and Originality. This may indicate that the 

variation we observe in the ‘basicness’ attributes of knowledge is independent from 

firm level attributes tha t may simultaneously affect ‘basicness’ and the pattern of 

diffusion.

In column 4 we include three-digit technology sector effects, instead of firm 

fixed-effects. This is due to our concern that the ‘basicness’ attributes of knowl­

edge and its technology type co-vary with the Share of Internalized Spillovers. The
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pattern of results remains, where Generality and Originality are both negative and 

significant. The estimate of Generality falls from -0.025 to -0.019, which indicates 

tha t some of the effect Generality on the Share of Internalized Spillovers is at­

tributed to technology sectors variation. In column 5 we include firm fixed-effects 

and three-digit technology sector effects. The same pattern of results remains and 

we do not observe an important change in the estimates, compared to column 4.

Table 7
Regressions of Share of Internalized Spillovers on Generality and Originality -

linear fixed effects estimation

(1) (2) (3) (4) (5)

Generality -0.015* -0.025* -0.025* -0.019* -0.019*
(0 .005) (0 .005) (0 .005) (0 .004) (0 .004)

Originality -0.007* -0.011* -0.011* -0.008* -0.009*
(0 .003) (0 .003) (0 .003) (0 .003) (0 .003)

Forward Citations 0.001* 0.001* 0.001* 0.001*
(0 .0001) (0 .0001) (0 .0001) (0 .0 0 0 2 )

Backward Citations 0.001* 0.001* 0.0002 0.0001
(0 .0003) (0 .0002) (0 .0002) (0 .0 0 0 2 )

Firm fixed-effects No No Yes No Yes

Three digits technology
sectors fixed-effects3 No No No Yes Yes

Observations 48,366 48,366 48,366 48,366 48,366

R2 0.016 0.022 0.072 0.065 0.091
Standard errors are in brackets and are clustered by (480) firms.
* denotes a significance level of 5 percent.
All regressions include one-digit technology sector dummies and originating patent grant 
year dummies.
includes 391 technology sectors.

We add the other characteristics of the originating patent into the regressions 

reported in table 7: Forward Lag, Backward Lag, Forward Tech and Backward 

Tech. The estimation results are reported in table A l in the appendix.

The same pattern of results, as reported in tables 6 and 7, holds, where Gen­

erality and Originality are negative and significant. Interestingly, we find Forward
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Tech, which measures the average distance between the originating patent and its 

subsequent developments in the technology space, to have a significant and negative 

effect on the Share of Internalized Spillovers. Similarly, Backward Lag, which is the 

average lag in years between the originating patent and its immediate ancestors, 

has a negative and significant effect.

Both findings support our hypothesis that ‘basic’ knowledge is likely to have a 

lower Share of Internalized Spillovers, as we interpret Forward Tech as a comple­

mentary measure of Generality and Backward Lag as a complementary measure of 

Originality.

Our final robustness test is to directly correct for the bias in Generality and 

Originality, as suggested by Hall, Jaffe and Trajtenberg (2001). We recalculate 

the H H I  as H H I = for Generality and Originality (see the discussion in

section 3), where N  is the number of citations the patent receives for Generality 

and the number of citations it makes for Originality.

The unconditional comparison of means yields the following results: the mean of 

Generality in the High Share of Internalized Spillovers set is 0.531 with a standard 

error of 0.002, whereas the mean in the Low Share of Internalized Spillovers set is

0.563 with a standard error of 0.001 (the difference in means is different from zero 

at the 5 percent significance level). Similarly, the mean of Originality in the High 

Share of Internalized Spillovers set is 0.509 with a standard error of 0.003, whereas 

the mean of Originality in the Low Share of Internalized Spillovers set is 0.524 with 

a standard error of 0.002 (the difference in means is different from zero at the 5 

percent significance level). This indicates that patents that are more “original” are 

associated with a lower Share of Internalized Spillovers.

Thus, interestingly, we find that in the unconditional comparison of means, more 

‘basic’ patents have a lower Share of Internalized Spillovers, as well. Previously, we 

have found this pattern of results only once conditioning on the number of citations 

the patent receives (for Generality) and makes (for Originality).

We repeat the robustness test reported in table 7 with the bias-corrected Gen­

erality and Originality. The estimation results are reported in table A2 in the 

appendix. We find a similar pattern of results to the one reported in table 7, where 

the only important difference we observe is tha t in the bias-corrected estimation,
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adding Forward Citations and Backward Citations has little effect on the estimates 

of Generality and Originality.

Overall, we find the same pattern of results with the bias-corrected measures 

and when using the uncorrected measures, but conditioning on the number of 

direct citations the patent receives and makes. This pattern of results strongly 

suggests that more ‘basic’ patents are associated with a lower Share of Internalized 

Spillovers.

4.5 Summary and conclusions

We have investigated the correlation between the diffusion pattern of knowledge 

and its ‘basicness’ attributes and tested whether inventors of ‘basic’ knowledge are 

likely to face lower private returns, as implied by the Share of Internalized Spillovers 

the diffusion of their knowledge yields.

We have found strong and robust evidence that patents that are more General 

and Original have a lower Share of Internalized Spillovers, once we condition on the 

number of citations patents receives and the number of citations they make. This 

implies that as knowledge is more ‘basic’, its inventor is less likely to benefit from 

the advancement other inventors build into the spilled knowledge by reabsorbing 

it in a future period.

We interpret this finding as an indication that inventors face a lower incentive 

to invest in ‘basic’ knowledge, as they are less likely to benefit from the fruits of 

their discoveries in the long run, once other inventors further advance them. This 

interpretation supports the well-debated concern of a trade-off between private 

and social incentives for inventing ‘basic’ knowledge. Society values the spread of 

knowledge, however, as we have shown in this chapter, this spread of knowledge 

may come at the expense of the incentive to create knowledge at the first place, as 

knowledge becomes more ‘basic’.

In the next chapter, we will estimate the effect of the diffusion pattern  of knowl­

edge on its private returns. Thus, we will investigate whether the ability of an in­

ventor to technologically exploit the spillovers of its inventions, intensifies private
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returns. Finding that private returns rise with Internalized patterns of diffusion 

and fall with Externalized patterns of diffusion, will validate the approach we have 

taken in this chapter and justify the link we have drawn between the Share of 

Internalized Spillovers and private returns to innovation.
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4.7 Appendix

Table A1
Regressions of Share of Internalized Spillovers on Generality and 

Originality - linear fixed effects estimation

(1) (2) (3) (4)

Generality -0.017* -0.013* -0.012* -0.010*
(0.006) (0.005) (0.004) (0.004)

Originality -0.009* -0.009* -0.009* -0.009*
(0.003) (0.003) (0.003) (0.003)

Forward Citations 0.001* 0.001* 0.001* 0.001*
(0.0001) (0.0001) (0.0001) (0.0001)

Backward Citations 0.001* -0.001* 0.0002 0.0001
(0.0003) (0.0002) (0.0002) (0.0002)

Forward Tech -0.014* -0.016* -0.008* -0.011*
(0.003) (0.004) (0.003) (0.004)

Backward Tech 0.002 0.001 0.004 0.002
(0.003) (0.003) (0.003) (0.003)

Forward Lag -0.001* -0.002* -0.002* -0.002*
(0.0003) (0.0003) (0.0003) (0.0004)

Backward Lag -0.001* -0.0003 -0.001* -0.0004*
(0.0003) (0.0002) (0.0002) (0.0002)

Firm fixed-effects No Yes No Yes

Three-digit technology 
sector effects8 No No Yes Yes

Observations 48,366 48,366 48,366 48,366

R2 0.016 0.075 0.067 0.110
Standard errors are in brackets and are clustered by (480) firms.
* denotes a significant level of 5 percent.
All regressions include one-digit technology sector dummies and originating patent grant 
year dummies.
includes 391 technology sectors.
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Table A2
Regressions of Share of Internalized Spillovers on Generality and 

Originality: bias-corrected

(1) (2) (3) (4)

Generality -0.028* -0.028* -0.026* -0.022*
(0.005) (0.005) (0.004) (0.004)

Originality -0.004* -0.006* -0.006* -0.004*
(0.002) (0.002) (0.002) (0.002)

Forward Citations 0.001* 0.001* 0.001*
(0.0001) (0.0001) (0.0001)

Backward Citations 0.001 0.0002 -0.0001
(0.0002) (0.0002) (0.0002)

Firm fixed-effects No No Yes Yes

Three-digit technology
sector effects3 No No No Yes

Observations 46,017 46,017 46,017 46,017

R2 0.019 0.024 0.084 0.112
Generality and Originality are bias-corrected. See the text for more details.
Standard errors are in brackets and are clustered by (480) firms.
* denotes a significant level of 5 percent.
All regressions include two-digits technology sector dummies and originating patent
grant year dummies.
includes 391 technology sectors.

112



Chapter 5

Technology Diffusion, Firm  

Perform ance and Incentives for 

R&D: Theory and Em pirical 

Evidence

We broaden the concept of the private returns to innovation by studying the tech­

nological feedback firms receive from the diffusion of their inventions. The objective 

of this chapter is to exploit the firm-level variation in the ability to reabsorb spilled 

knowledge, through estimating the effect of Internalized Spillovers and Externalized 

Spillovers on private returns, as indicated by the market valuation of the R&D stock 

of the firm. We find that private returns rise with Internalized Spillovers and fall 

with Externalized Spillovers. Moreover, we find preliminary evidence suggesting 

that firms raise their R&D expenditures in response to a higher ability to reabsorb 

their spilled knowledge.

5.1 Introduction

In this chapter we aggregate Internalized Spillovers and Externalized Spillovers 

from the originating patent level to  the originating firm level. We exploit the firm- 

level variation in the ability of the firm to reabsorb its spilled knowledge, through 

estimating the market valuation of its R&D activity.
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We formalize the dynamic considerations introduced in this thesis, by show­

ing that spillovers can raise private returns, through enhancing the technological 

opportunities along the lines of research the originating knowledge inspires. The 

extent to which spillovers raise private returns depends on whether the originating 

firm benefits from the enhanced technological opportunities. Thus, spillovers can 

increase private returns via their interaction with the ability of the originating firm 

to reabsorb its spilled knowledge. In this chapter, we will show, theoretically and 

empirically, that this ability has a positive effect on private returns in a dynamic 

framework of sequential innovation.

A famous example that illustrates the importance of the diffusion pattern of 

a discovery for its private returns is the CT (Computed Tomography) scanners 

invention. There is no doubt that this invention has great social value (both for 

consumers and innovators), mainly for health care, as discussed by Trajtenberg 

(1990). However, private returns to this discovery were low, as it had mostly expe­

rienced an Externalized pattern of diffusion1. This new technology was developed 

by EMI (a British electronic company) and was patented in 1973. The new market 

for CT scanners emerged following rapid innovation aiming at exploiting the new 

technological opportunities. From 1975 onwards, hundreds of offspring inventions 

had been created. In the early years, most of these inventions were developed by 

EMI itself, however, after less than a decade EMI failed to capture any significant 

portion of the market (which was mainly dominated by General Electric), while not 

succeeding to remain at the frontier of the technology it had originally introduced. 

Thus, this implies that the diffusion of knowledge outwards from EMI had a cru­

cial impact on its ability to appropriate any substantial return on its remarkable 

invention.

In this chapter, we show that knowledge can leave the boundaries of the firm and 

still have a positive effect on private returns, if it is reabsorbed by the originating 

firm in a future period.

1We investigate the pattern of diffusion of this invention using the generation of citations 
approach we have developed in this thesis. Interestingly, the pattern of diffusion shows that the 
immediate subsequent developments were developed ‘in-house’, however, once knowledge had left 
the boundaries of EMI and was further developed by other firms, EMI was not able to reabsorb it. 
Thus, the lines of research the CT scanners invention had originated were mostly Externalized.
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The empirical analysis of this chapter exploits the firm-level variation in the 

extent to which spillovers are Internalized versus Externalized. Thus, we find it 

important to motivate the existence of this variation by looking at the strategic 

behaviour of firms optimizing the diffusion of their knowledge. We argue that the 

variation we observe in the data in the ability of firms to reabsorb their spilled 

knowledge may represent a differential ability of firms to manage their knowledge 

flows. We refer to several case-studies to introduce this motivation. We focus on 

the strategic behaviour of IBM and Intel to demonstrate how firms can affect the 

diffusion pattern of their knowledge, prior to referring to the case of Xerox, which 

demonstrates how firms vary in their ability to benefit from the spread of their 

discoveries2.

IBM and Intel share a common belief, according to which, knowledge cannot 

be kept secret and will eventually diffuse into the economy. W ith this notion in 

mind, both firms aim at optimizing not only their innovation, but also the diffusion 

of their knowledge, while choosing different approaches. The intellectual property 

(IP) strategy of IBM involves massive patenting. The patented inventions are then 

licensed and sold to external inventors. This method is a formal way of transferring 

knowledge. Also, in order to improve potential buyers’ access to  its inventions, IBM 

has recently invested $35 million in transferring its patents database into the most 

advanced patents search engine in the world3.

In contrast, Intel adopts an IP strategy that involves an informal way of manag­

ing its knowledge flows. This strategy includes organizing conferences with external 

scientists, publishing the Intel Technical Journal, which is freely available on the 

web4 and funding numerous external projects. In addition, patenting is not Intel’s 

favourite way of protecting its inventions. Only the most valuable discoveries are 

patented. For these, a strict infringement policy is adopted. Other unpatented

2These examples are based on Chesbrough (2003).
3 See IBM’s web site: http://www.ibm.com/ibm/licensing/. In this site, IBM states its deci­

sion guidelines on whether to license its inventions. One of the conditions to license is: “the 
relative importance of the technology to IBM ’s own present and future business”. This can be an 
indication for strategic behaviour of firms in managing their knowledge flows. Also, IBM relates 
to the technological proximity between itself and the licensee: “whether IBM wishes to have a 
continued presence in the particular technology field concerned” and also to the product market 
proximity between itself and the licensee: “any potential negative business impact resulting from  
the licensee’s activities”.

4http: / /developer.intel.com/ technology/IT J/ .
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knowledge, on the other hand, is published freely on the web.

We interpret our approach as empirically characterizing the ‘managerial skill’ of 

firms optimizing the diffusion of their knowledge, by identifying the extent to which 

they reabsorb their spilled knowledge. Hence, a firm enjoying higher Internalized 

Spillovers and lower Externalized Spillovers is argued to be better in managing the 

diffusion of its knowledge.

We estimate the effect of this ability on the market valuation of the R&D 

activity of the firm and define private returns as the change in market value that 

is associated with a change in the R&D expenditures of the firm. We find private 

returns to rise with Internalized Spillovers and fall with Externalized Spillovers. A 

one standard deviation increase in the firm level measure of Internalized Spillovers5 

raises the market valuation of an additional dollar spent on R&D by 30 percent.

In addition, we introduce a preliminary observation on whether firms internalize 

their ability to reabsorb their spilled knowledge once setting their R&D expendi­

tures. We estimate a reduced-form R&D equation and estimate the extent to which 

the R&D decision is affected by the diffusion variables. We find that Internalized 

Spillovers positively affect the R&D expenditures of the firm, whereas Externalized 

Spillovers negatively affect R&D expenditures.

The main contribution of this chapter is showing that spillovers can have coun­

tervailing effects on private returns, depending on the feedback they give to the 

originating firm. This supports and validates the findings reported in previous 

chapters and the policy implications they raise. Most importantly, we demonstrate 

that spillovers can be both privately and socially desirable, which may imply tha t 

under certain circumstances (which are analysed in chapters 3 and 4), firms have 

sufficient incentive to innovate, even in the absence of public intervention (such as 

designing the complex patent institution or R&D subsidies).

Moreover, the extent to which the firm-level variation in the diffusion variables 

we have constructed is attributed to differential managerial skills of firms optimizing

5 As Internalized Spillovers are a patent level measure, we aggregate them to the firm level by 
averaging Internalized Spillovers over all the originating patents of the firm. We do the same for 
Externalized Spillovers and Share of Internalized Spillovers.
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the diffusion of their knowledge, has important consequences to the analysis of 

spillovers. In this case, knowledge flows can no longer be assumed exogenous, but 

the result of a strategic behaviour of firms.

The rest of the chapter is organized as following: section 2 explores prior studies 

in the field, section 3 presents the analytical framework, section 4 describes the 

empirical methodology, section 5 discusses the data, the findings are reported in 

section 6 and section 7 concludes.

5.2 Prior Studies

This work builds on prior empirical studies on the valuation of innovation activity. 

In this section, we explore the main empirical studies that are the most relevant to 

this research, focusing on the use of patents and patent citations in analysing the 

returns to innovation.

There are two different strands in the literature regarding the role of patent 

citations in the analysis of innovation: the first is the use of patents and citations 

in measuring the value of knowledge and the second is the use of citations as 

indicators of technological links between inventions (i.e., a patent citation is an 

empirical observation of a flow of knowledge from the citing patent to the cited 

patent). Since these two strands play a central role in this study, we briefly review 

their evolution over the past two decades.

5.2.1 Patents, citations and the quality of innovation

For almost three decades, economists have been studying the private value of in­

novation by investigating data on R&D, patents and patent citations6. The most 

common approach for measuring the value of patented knowledge is by looking at 

market value data as suggested by Griliches (1981) in his seminal work in the field. 

This approach is equivalent to the Hedonic prices analysis, in which the value of

6There is an extensive literature on estimating the social returns to knowledge, by measuring 
spillovers in various ways (see Griliches (1992) and Keller (2004) for surveys of the literature). 
Since the focus of this thesis is mainly on the private returns to innovation (as a function of the 
mechanism that generates the social returns to innovation) we do not focus on this literature 
here.
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the firm depends on the value of its characteristics, which are assumed to be its 

tangible (physical) and intangibles (knowledge) assets. The market value approach 

has been extensively used thereafter, to find that the market places a high valuation 

on the R&D stock of the firm7. For example, Jaffe (1986) finds that the market 

prices the R&D stock of the firm three times more than its physical stock.

Moreover, In order to investigate whether the value of R&D varies with the 

ability of the firm to appropriate rents on its discoveries, Griliches and Cockburn 

(1987) conducted an important study which looks into survey data on industry 

specific appropriability indices. Although they find low cross-industry variation 

in their appropriability indices8, they find some evidence that the appropriability 

conditions the firm faces have an effect on the value of its innovation activity.

The market value approach has become highly accepted in the field and re­

searchers have adopted it to include measures of the innovation output, as well (in 

addition to the R&D input measure).

The first indicator to be examined was patents, hoping that it would provide 

additional information regarding the output of the research efforts of the firm. 

Griliches, Hall and Pakes (1988) were amongst the first to look into patents in 

the market value framework. Disappointingly, they find that patents are weakly 

correlated with the value of the firm, especially, when conditioning on R&D expen­

ditures. They interpret their results by arguing that patents are a highly skewed 

measure, so that without additional information on the distribution of the quality 

of patents, they do not provide information regarding the output of the research 

activity.

However, the disappointment from patents data did not last long. Trajtenberg 

(1990), in a landmark work, links the social value of a specific invention to the 

product market, by estimating the increase in consumers surplus as a response to 

the CT scanners invention. He shows that patents are correlated with consumers 

surplus only when controlling for their quality, using data on patent citations, under 

the assumption that more citations represent a higher quality patent.

7 See Hall, Czaxnitzki and Oriani (2005) for a review of the main empirical findings in the 
market value framework.

8 Although we use a different approach, the fact that the survey data variation is mainly within 
industries is encouraging for our research agenda, as it focuses on firm level appropriability indices.
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Prom then onwards, patent citations came into fashion as indicators for the 

quality distribution of patented inventions. The most recent study that incorpo­

rates citations data in the market value framework was conducted by Hall, Jaffe 

and Trajtenberg (2005), who study the market value of knowledge by using data 

on patent citations. They construct the knowledge stock of the firm by building 

a ‘stock’ of the citations it receives. They find the citations stock to be highly 

important for the valuation of the firm9.

In a completely different line of research, a very interesting literature has evolved 

through the analysis of data on patent renewal fees, aiming to estimate the private 

value of patented inventions, by examining at the decisions of inventors on whether 

to renew their patents at various points in their life span. Schankerman and Pakes 

(1986) and Pakes (1986) were the first to develop this framework, which has been 

found to be highly informative, mainly with respect to the evaluation of the value 

of patents over their life cycle and across (European) countries.

5.2.2 Patent citations and knowledge flows

As described above, patent citations are highly useful for recovering the quality 

distribution of patents. Nonetheless, this is not the only contribution of patent 

citations. A patent citation is also an empirical observation for a technological 

link between two patented inventions. This technological link corresponds to some 

sort of knowledge flow from the cited patent to the citing patent. We believe that 

the main contribution of patent citations to research in the field nowadays is their 

ability to shed light on the way knowledge moves in the economy, which has been 

a ‘black box’ in past decades.

This thesis adopts the notion that citations represent knowledge flows and se­

quential developments. Thus, we find it important to briefly review the previous 

literature we build on in this strand of research, which has been rapidly evolving 

in the past decade.

The first study tha t looks at citations as indicators of knowledge flows is Jaffe, 

Henderson and Trajtenberg (1993). They find that patent citations appear to be

9See also Lanjouw and Schankerman (2004).
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localized geographically; implying knowledge diffuses quicker within geographical 

regions.

Their findings have important implications, mainly for the economics of geog­

raphy, in the sense that physical distance does m atter for technological progress. 

Their finding of a geographic localization was supported by a later study by Jaffe 

and Trajtenberg (1999), who examined patterns of patent citations among the 

United States, United Kingdom, France, Germany and Japan. They also find sig­

nificant evidence for geographical localization of spillovers tha t fade slowly over 

time (they estimate the propensity of citations between and within countries and 

find a ‘home-bias’ effect in patent citations, which is a higher tendency of an in­

ventor to cite a different inventor from the same country).

Along the ‘macro’ framework of patent citations, Hu and Jaffe (2001) use patent 

citations to trace knowledge flows between the United States and Japan to Korea 

and Taiwan. They find that knowledge flows from the developed countries to Korea 

and Taiwan boosted their growth rates.

Patent citations were also integrated into a general equilibrium model by Ca­

ballero and Jaffe (1993). In our view, the main contribution of their study is the 

understanding that the rate by which knowledge becomes obsolete is endogenous 

and determined by the rate of technological developments, which bound the private 

rent on a technological discovery. In this thesis, we develop this idea by showing 

that there are two different patterns by which the knowledge of the firm can be 

sequentially developed by other firms, which have countervailing effects on the 

private obsolescence of knowledge.

Finally, Jaffe, Trajtenberg and Fogarty (2000) conduct the most important 

study on the validity of patent citations as indicators of knowledge flows, by survey­

ing 160 patentees who answered questions about their inventions, the relationship 

of their inventions to patents that were cited by their patents and the relationship 

to “dummy” patents that were technologically similar to the cited patents but not 

cited by the patentees. Their findings confirm that citations are a noisy measure, 

however, they do add substantial information regarding knowledge flows across 

patented inventions.
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5.3 Analytical framework

In this section, we formalize the ideas developed in this thesis in a simple model of 

sequential innovation. In this model, spillovers enhance the technological opportu­

nities created by the originating knowledge, through reducing the probability that 

subsequent inventions will not occur (hence, the line of research the originating 

knowledge inspires will be terminated). The extent to which spillovers raise pri­

vate returns depends on whether the originating firm benefits from these enhanced 

technological opportunities.

Thus, spillovers can increase private returns to knowledge, through their inter­

action with the ability of the originating firm to reabsorb its spilled knowledge. In 

this section, we represent this ability by a single parameter, 9. We show that there 

is a direct link between 9 and the private returns to the originating knowledge.

Our model assumes that firms do not behave in any strategic manner to affect 

9 or the flow of their knowledge to other firms (although these might be inter­

esting extensions. In the appendix we present a different model, in which a firm 

strategically affect the spillovers of its knowledge that yields similar implications).

We model a dynamic innovation process and distinguish between static returns 

and dynamic returns to innovation. We define static returns to innovation as the 

one period stream of profits attributed to a single invention. Dynamic returns, 

however, also consider the stream of profits the originating firm may capture by 

inventing subsequent developments along the line of research it originates. Its 

ability to do so will depend on the extent to which it can exploit the technological 

opportunities that other firms introduce along this line of research.

Assume firm i (the originating firm) holds a piece of knowledge k. The static 

returns to this knowledge include the stream of profits firm i receives from this 

invention, until it becomes obsolete, which we assume to occur with the develop­

ment of the next generation of the knowledge k , i.e., with the introduction of a 

subsequent stage of development.

Nevertheless, dynamic returns to the knowledge k take into account the ex­

pected stream of profits firm i will receive from its subsequent follow-up devel­

opments of the knowledge k. Thus, dynamic returns to the knowledge k  do not
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become obsolete once a subsequent development takes place, should the originat­

ing firm be able to invent in the future along the line of research knowledge k has 

originated.

We would like to investigate the value of this invention to firm i, under the 

assumption tha t the knowledge k has the potential of being developed an infinite 

number of times. Denote by v the one-shot pay-off associated with winning a 

development stage of the knowledge k. In every development stage there are n 

firms competing in a patent race (while the patent in every development stage 

provides a stream of profits only until the next generation of knowledge arrives). 

Denote by S -i the set of n —1 firms that participate in the line of research originated 

by knowledge k excluding firm i, where a line of research is defined as a specific 

research agenda along which knowledge k is being developed (as defined in chapter 

2).

In order to invent an offspring invention, which we define as a generation of 

development, the immediate ancestor of this invention ought to have already been 

invented. Hence, the dynamic innovation process is sequential, in the sense that one 

generation of development is the technological grounds for the follow-up generation.

The winner in every development stage is awarded with the prize v, which for 

simplicity we assume to be constant over time and across generations. I.e., the 

prize v does not depend on the discovery time of the follow-up generation. This 

assumption can be justified by assuming symmetry in the time elapsed between 

two proceeding generations and treating v as the value the patent holder receives 

in this in-between period.

Further, only one firm is allowed to win a development stage and receive the 

prize v. If more than one firm makes a discovery, a patent cannot be granted, and 

both firms engage in Bertrand competition tha t drives profits to zero. This simpli­

fying assumption implies that a firm is rewarded for the success of its innovation, 

only if it is the only successful inventor.

Every generation of development requires a constant R&D investment of x, 

which yields a probability p  of making a discovery by firm i (i.e., with probability 

p firm i discovers a piece of knowledge tha t awards the static payoff v, if no other
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firm invents the specific generation). Define q as the probability that at least one 

of firm z’s competitors along the line of research makes a discovery.

Given this set-up, the expected static rent firm i captures from participating in 

a development stage (which is constant across all stages, as indicated by the above 

assumptions) is:

Z  = p (l — q)v — x  (5.1)

Finally, we assume that the number of firms n  is constant across all development 

stages and that Z  is strictly positive.

5.3.1 The Dynam ic game and the ability to  reabsorb spilled  

knowledge

Our main interest in this chapter is to link the ability of the firm to benefit from the 

research of others, which builds on its prior research, to the rent it captures on its 

discovery. How should we define the rent an inventor captures on its technological 

discovery? In a static framework, a technological discovery does not inspire follow- 

up research and, therefore, private returns coincide with the one-shot value of 

the discovery. Nonetheless, under sequential innovation, a technological discovery 

inspires follow-up research. Therefore, dynamic returns associated with a sequential 

innovation should consider the expected valuation of continuing to improve the new 

technology along the line of research it originates.

We proceed to studying the dynamic returns firm i captures on its knowledge 

k as a function of its ability to reabsorb the knowledge k into its future research, 

after it has been further developed by other firms.

We assume the knowledge k has the potential to be sequentially developed an 

infinite number of times. In computing the dynamic returns firm i captures on 

its knowledge k, we ought to compute the expected value of the infinite stream of 

follow-up discoveries it will introduce along the line of research.

As a departure point, assume that once firm i fails to win in a given generation, 

it cannot continue developing the next generation, even if some other firm has been
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successful in inventing this generation (thus, the knowledge th a t is required for the 

production of the follow-up generation exists in the economy). In this case, we say 

that firm i has no ability to build on its own spillovers (alternatively, firm i cannot 

reabsorb its spilled knowledge). Firm i ’s dynamic returns to the knowledge k are 

given as:

Wi = (p(l -  q)v -  x) +  p( 1 -  q) (p( 1 -  q)v -  x) +  p2( 1 -  q)2 (p(l -  q)v -  x) +  ...

(5.2)

The first term on the right hand side of equation (5.2) is the expected static pay­

off of winning the first generation of development, the second term  is the expected 

static pay-off of winning the second generation of development, which occurs with 

probability p (l — q) (the probability of winning the first generation), the third 

term is the expected static rent of winning the third generation (which is possible 

if firm i had won the first and second generations of developments that occur with 

probability p2( 1 — q)2) and so forth.

It is straightforward to show that since we assume an infinite number of poten­

tial developments, Wi becomes

*  -  <M>
Next, assume that if firm i does not invent in a given generation, whereas 

one of its competitors does invent, firm i can still proceed to invent the follow-up 

generation, while building on the knowledge of its rival. We model the ability as 

the number of times the firm is allowed not to make a discovery in a development 

stage, and still remain in the dynamic game, by building on the knowledge that was 

invented by another firm. Thus, we model the ability of the firm to reabsorb its 

spilled knowledge along the line of research it originates, as the number of ‘second 

chances’ it gets, if it fails to invent in a development stage, but some other firm 

succeeds. We denote this ability by 6 (thus, in equation (5.2), 0 =  0, since the firm 

is not allowed to have any ‘second chances’, so that once it fails to  invent, it is out 

of the sequential development).
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Now consider the case where 6 = 1, i.e., if firm i fails to invent more than once, 

it is forced out from the dynamic race (firm i receives one ‘second chance’). In this 

scenario, the dynamic rent firm i captures on its knowledge k can be written as:

Wi(9 = 1) = p { l -  q)v -  x + p (l -  q) (p(l -  q)v -  x) + p 2(l -  q)2 (p(l -  q)v -  x) +  ...

+p{ 1 -  q)q{p{ 1 -  q)v -  x) +  2p(l -  q)( 1 -  p)q (p{ 1 -  q)v -  x) +  ... (5.4)

Where the second row on the right hand side of equation (5.4) represents the 

‘second chance’ firm i gets (for example, the first term in the second row is the 

additional expected rent the firm captures due to the fact it is allowed to fail in 

developing the first generation and still participate in the development race of the 

second generation). It is easy to show that equation (5.4) can be written as:

We can generalize this model to any 6 , and in the appendix we show that the 

dynamic rent can be written as a function of 6 in the following way:

This implies that the expected rent firm i faces increases in 6, since <

l 10.

This summarizes our empirical prediction, by which the ability of the firm to 

build on the research of its rivals along the line of research it originates has a 

positive effect on its private rent. We have developed a methodology, based on 

data on patents and citations, aiming to measure 6 for firms in our sample (as 

presented in chapter 2 ).

Finally, note that by substituting 6 = 0 into equation (5.6) we get equation

(5.2), which is the dynamic returns firm i captures on its discovery, if it has no

10As mentioned in the appendix, q is also the probability an invention occurs, however, firm i 
is not the ‘winner’. Thus, q =  q( 1 — p) +  pq, which is smaller than 1 — p  +  pq, as q <  1.
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ability to build on the discoveries of other firms along the line of research it origi­

nates. Moreover, when the firm has a complete ability to build on the research of 

its rivals (9 =  oo), the dynamic returns become:

TX7//1 \ v ( l - q ) p - x
=  ” ) = ( ! - „ ) ( ! - « )  <5'7)

Hence, the dynamic returns to innovation are the static returns per subsequent 

invention (Z  in equation (5.1)), discounted by the probability that the line of 

research will be terminated11 (which occurs with the probability (1 — p) (1 — q) , 

where no firm invents). As the probability that the line of research will be termi­

nated falls, dynamic returns rise.

So far, we have established tha t when we consider the private value of an inven­

tion in a dynamic perspective, this private value rises with the ability of the firm 

to build on external follow-up developments of its prior knowledge.

In the appendix, we present an alternative model that allows the firm to strate­

gically affect the diffusion pattern of its knowledge. We show that the above theo­

retical predication holds in that strategic framework as well.

5.3.2 The incentive for innovating along the line of research  

and 6

Next, we will turn to investigate the relationship between 6 and the incentive of firm 

i  to innovate along the line of research it originates (for presentation convenience, 

the subscript i  has been omitted in this section).

Assume the knowledge k  can originate two different lines of research. In the 

first line of research 6 =  0 , i.e., firm i  gets no ‘second chances’ to remain in the 

development race, if it fails to invent in previous stages (conditional on others 

inventing). However, in the second line of research, the firm has a complete ability

11 Compared to equation (5.3), where Z  is divided by the term 1 — p (l — q). This term is the 
probability that the line of research will be terminated in firm i ’s perspective, which occurs when 
firm i fails to win in a development stage.
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to build on the research of others along the line of research it originates (i.e., 

9 = oo).

Empirically, the case where 9 = 0 can be associated with an Externalized line 

of research, as the originating firm does not reabsorb its spilled knowledge (i.e., 

once other firms invent a development stage along the line of research invention k 

originates, firm i cannot invent a follow-up invention). Similarly, the case where 

9 = oo can be associated with an Internalized line of research, where the originating 

firm is able to reabsorb its spilled knowledge.

In this section, we investigate the optimal innovation efforts of the firm under 

each pattern of diffusion (lines of research). We modify the model we present above 

by letting firms choose the level of their R&D expenditures, x,  which affects the 

probability they will invent, p(x), with p' (x) > 0 , p" (x) < 0 , p(0 ) =  0 and p(oo) =

1. The most important assumption we make in this section is of a decreasing return 

to scales in the production of knowledge (which is necessary to ensure an interior 

solution for x 12).

We start by assuming that the firm has no ability to build on the research of 

others, i.e., 9 = 0. For simplicity, we assume that the firm is small in the sense 

there is no strategic interaction in R&D. In this case, the dynamic returns to the 

knowledge k are:

ffo-o-’fw;1:-»>-■ (5.s)
l - p ( x ) ( l - q )

The firm maximizes equation (5.8) with respect to its R&D expenditures, x, 

which yields the following first order condition:

12 The second order condition is:

dW2(.) 1
=  P ix ) ~d2x (1 — q)

Define x* as the optimal R&D decision, thus:

d W 2( )

dW(-)
dx

(W(-) +  v )‘
<0

d 2x
For x* to be a maximum we require p" (x) <  0.

X = X *  -- P (̂ O

127



(5-9>

Let x*(6 = 0) solve equation (5.9). Thus, the optimality condition equates the 

marginal benefit from R&D (the increase in the probability of a discovery that 

is achieved by a marginal increase in the R&D spending, p' (x)), adjusted by the 

probability that the firm will be the sole winner in the research race (while taking 

into account the one shot pay-off, v, and the total pay-off of winning the race, 

W  (6 = 0)), to the marginal cost of R&D, which is assumed to be 1.

An increase in q reduces the probability of winning the development stage and, 

consequently, reduces the R&D expenditures of the firm (note that W  (9 = 0) is a 

decreasing function of q). On the other hand, an increase in the one shot payoff, v, 

encourages the firm to innovate more (note that W  (6 = 0) is an increasing function 

of v). More importantly, a rise in the dynamic rent, given by W  (0 = 0), increases 

the innovation efforts of the firm.

Intuitively, since we have shown above that dynamic returns rise with 6, a 

higher 6 also implies a higher innovation effort of the firm, should we allow firms to 

optimize their R&D expenditures while internalizing the effect of 6 on the private 

returns they face.

Now consider the case where the knowledge k originates a line of research in 

which the firm has an infinite number of ‘second chances’, i.e., its ability to build 

on the research of others is complete (0 = oo). Dynamic returns to knowledge k 

are expressed as:

w ( e  =  oo) = v p ( x ) ( l - q ) - x  
° ° j  ( 1 - „ ( * ) )  ( l - 9 )

The optimality condition for x  is given as:

P'(x |g  =  O c ) = (1 _ g )( ty (1g =  ooy + ^  (5.11)

Let x*{9 =  oo) solve equation (5.11).

P ro p o sitio n  5.1 The firm  innovates more when it is able to build on the discover-
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ies of others (i.e., firm i innovates more when it has an infinite number of ‘second 

chances’, compared to the case that it has none).

Proposition 5.1 suggests that the innovation efforts of the firm increase with its 

ability to build on the inventions of others along the line of research it originates. 

The simple intuition behind this proposition is that the firm is willing to invest 

more in R&D, when private returns are higher.

Proving proposition 5.1 is straightforward.

It is enough to show tha t W  (9 = oo, x*{9 =  oo)) >  W  (9 = 0, x*{9 = 0)), since 

we assume decreasing returns to scale in the production of knowledge (p/f (x) < 

0). Suppose that W  (9 =  0, x*(9 =  0)) > W  (9 = oo, x*(9 = oo )). This inequal­

ity cannot hold, since we have shown above that W  (9 = oo, x) > W  (9 = 0, x ) . 

Thus, W  (9 = oo, x*(9 = 0)) >  W  (9 = oo, x*(0 = oo)), which is a contradiction of 

x*(6 = oo) being the optimal R&D investment when 0 = oo. Hence, it must be that 

W  (9 = oo, x*(0 = oo)) > W  (9 = 0, x*{6 =  0))13, which implies th a tp ' (x\9 = oo) < 

p' (x\6 — 0) and x*(9 =  oo) >  x*(9 =  0).

In conclusion, we have shown that not only the ability of the firm to exploit the 

research activity of other firms along the line of research it originates has a positive 

effect on private returns, but also that this ability has a positive effect on its R&D 

expenditures.

In the rest of the chapter, we turn to empirically estimate the effect of 9 on 

private returns and R&D investment. In the econometric section, we specify pri­

vate returns as J^-, where Vi is the market value of the originating firm and 

is its knowledge capital (which is approximated by its current and past stream of 

R&D expenditures). The theoretical predication outlined in this section is that 

private returns depend on 9, thus, we specify private returns as =  0(0). We 

empirically identify 9 by the measures of Internalized Spillovers and Externalized 

Spillovers, where 0 is assumed to be higher when the firm experiences more Inter­

nalized Spillovers and less Externalized Spillovers.

13The case where V  (9 =  oo, x*(6 =  oo)) =  V (9 =  0, x*{6 =  0)) cannot hold from exactly the 
same argument.
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Also, we empirically test prediction 5.1, by which the R&D expenditures of 

the firm rise with 9. In this econometric specification, we estimate the effect of 

Internalized Spillovers and Externalized Spillovers (which measure 9) on the R&D 

expenditures of the firm.

5.4 Methodology

The empirical methodology and conceptual framework are identical to the one 

described in chapter 2. For the sake of brevity, we do not describe them again 

in this chapter. We aggregate the diffusion variables from the originating patent 

level to the originating firm level. Thus, every firm in our sample will have three 

variables that will characterize the pattern of diffusion of its inventions, based on 

Internalized Spillovers, Externalized Spillovers and Share of Internalized Spillovers.

5.4.1 Firm level diffusion variables

We construct the firm-level diffusion variables in the simplest way possible14. The 

first variable measures the amount of spillovers the firm creates that feed back into 

its dynamic research. We label this variable as Internalized Flows and compute it 

as the mean of Internalized Spillovers, taken over all the originating inventions of 

the firm, as following15:

Internalized FlowSi = -y  Y"' Internalized SpilloverSj (5.12)
J i  , jr 

1 j£Pi

Where i denotes an originating firm, Ji is the number of originating inventions 

held by firm i, Pi is the set of originating inventions held by firm i and j  is an 

originating invention in this set.

14 We have also experimented with more complicated variables that directly control for the 
number of citations the firm receives and the total number of patents it holds. We have found the 
same pattern of results when using the complicated and simple indices. Since it is much easier 
(and intuitive) to interpret the simple indices, we adopt them in the estimation section. Below 
we explain how we plan to deal with the various potential biases they may be associated with.

15 In measuring the spillovers created by an invention, we discount each generation of cita­
tion by 15 percent, under the notion that a higher generation of citation is associated with less 
spillovers from the originating invention. Our results are robust for different discount factor values 
(including not discounting at all).

130



The second variable measures the amount of spillovers created by the firm that 

do not feed back into its dynamic research. We label this variable as Externalized 

Flows and compute it as the mean of Externalized Spillovers, taken over all the 

originating inventions of the firm, as following:

Externalized Flowsi =  -y- Externalized SpilloverSj (5.13)
U i _

1 jePi

We also aggregate to the firm level the Share of Internalized Spillovers, which 

measures the share of spillovers that feed back into the dynamic research of the 

firm. We label this variable as Internalized Share and compute it as:

In ternalized Sharei = -j- Share o f  Internalized Spilloversj (5.14)
* je P i

Thus, using the above definitions, the firm level equivalent of Internalized 

Spillovers is Internalized Flows, the firm level equivalent of Externalized Spillovers 

is Externalized Flows and the firm level equivalent of the Share of Internalized 

Spillovers is Internalized Share.

5.5 Data

We have collected accounting data on 800 US Compustat firms from 1980 to 200116. 

We ‘cleaned’ the data to remove major mergers and acquisitions, accounting periods 

below ten months and above fourteen months and firms with less than four years 

of consecutive data, which leaves us with 712 firms.

We match the 800 Compustat firms to the USPTO NBER  patents and citations 

data-set, described and studies in Hall, Jaffe and Trajtenberg (2001) and Jaffe and 

Trajtenberg (2002). We drop firms that did not have any cited patents in the period 

1969-1980 (where we require a firm to be cited at least once between 1975-1990, by 

one of the 2466 US firms th a t axe included in our sample of citing firms). We drop

16 The 800 firms in our original sample perform about 72 percent of the R&D performed by the 
2859 firms that had been matched to the US Patent Office by Hall, Jaffe and Trajtenberg (2001), 
over the period 1980-2001.
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firms that were not cited in the period 1969-1980, since we design our sample of 

originating patents, to include all the cited patents in this time period (see chapter 

2 for further details on the design of the originating patents set). This leaves us 

with 610 firms, whose diffusion pattern we analyse. Finally, after running the 

algorithm on this set of firms, we find that 502 firms have created spillovers, where 

the remaining firms have experienced only self-citations (all of their subsequent 

developments were owned by the originating inventor)17.

We match these 502 firms to the ‘cleaned’ accounting data, which leaves us 

with 476 firms, for which we have information on the diffusion pattern of their 

inventions and complete accounting data. Thus, our estimation sample includes an 

unbalanced panel of 476 firms18 in the period 1980-2001, as we keep exiters in the 

sample, and a total of 9,454 observations.

The un-weighted patents stock (simple patent count) and R&D stock were 

calculated using a perpetual inventory method with a 15% depreciation rate, while 

Tobin’s Q was calculated as the total firm value divided by the full book value 

of assets, following Hall, Jaffe and Trajtenberg (2000)19. The citations-weighted 

patent stock was constructed by normalizing the number of patents the firm owns 

according to the number of citations it receives and the average number of citations 

to all patents in the same year. Given this normalized patents count the stock is 

constructed using the perpetual inventory method. Finally, the citations stock was 

constructed in an analogous way to the patent and R&D stock.

An important issue in this chapter is how to treat firms that exit the sample. 

Since the diffusion variables are based on a pre-estimation period (the originating 

patents are granted in the period 1969-1980 and the estimation period is 1980- 

2001), a concern rises that once a firm exists, it will not perform R&D, which will

17The initial set of 610 cited firms included also firms that had received only self-citations. We 
did not drop these firms from the sample of originating firms at this stage, since it was possible 
for their knowledge to leave their boundaries via a subsequent invention.

18The 476 firms in our final sample perform about 85 percent of the R&D that is performed by 
the original sample of 800 firms in the period 1980-2001.

19For Tobin’s Q firm value is the sum of the values of common stock, preferred stock, long-term 
debt and short-term debt net of assets. Book value of capital includes net plant, property and 
equipment, inventories, investments in unconsolidated subsidiaries and intangibles (other than 
R&D).
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be captured by the diffusion variables (after a firm has exited the sample, it can 

experience only Externalized patterns of diffusion).

Due to the above, we find it important to focus on firms that are active for a sub­

stantial period of time after having invented their originating inventions (nonethe­

less, our sample is unbalanced, as we allow firms to exit)20.

The average number of years firms are active in the estimation sample is 18.5. 

The median number of years firms are active in the estimation sample is 21 (thus, 

during the entire estimation sample, 1980-2001), the 25th percentile is 18 and the 

10th percentile is 12. In order to test the robustness of our empirical findings, 

we condition our estimations on the firm being active for at least 10 years. Our 

findings are robust to this condition, but, conditioning on survival may change the 

interpretation of our results.

Table 1
Descriptive statistics: diffusion Variables: 476 firms

Variable Mean Median Min Max Std.

Internalized Flows 5.90 0.14 0 891 45

Externalized Flows* 0.43 0.04 0.001 39 2.5

Internalized Share 0.02 0.004 0 0.246 0.04
Externalized Flows is divided by 1000.

Table 1 summarizes the main statistics of the diffusion variables for the 476 

firms in our sample. We find that the mean of Internalized Share is about two 

percent (compared to about 5 percent at the invention level, as discussed in chapter 

2 ), which implies that only two percent of spillovers technologically contribute to 

the firms that originated them. However, we find this mean to vary across firms, 

reaching a maximum of about 25 percent.

20However, one should distinguish between two scenarios: first, a firm exists as a result of its 
not being able to exploit its own inventions and second, a firm exits due to a different reason, 
unrelated to the diffusion variables. In the first case, it is interesting to attribute the death of 
the firm to the pattern of diffusion of its knowledge. In the second case, the diffusion variables 
will capture the fact that the firm is dead, as it will be able to have only Externalized pattern of 
diffusion.
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Finally, table 2 summarizes the main sample statistics of the accounting and 

patenting variables.

Table 2
D escriptive statistics: accounting and patents variab les

9,454 observations and 476 firms

Variable Mean Median Min Max Std.

Tobin's Q 2.02 1.32 0.1 20 2.34

Market value 4,689 592 0 485,566 16,782

R&D stock 806 49 0 47343 3195

R&D stock / Assets 0.39 0.20 0 10 1

Capital stock 3,090 392 2.13 199,303 9,736

Patents stock 155 18 0.42 9,848 489

Patents stock 
weighted by citations

158 16 0.28 12,643 585

The statistics are computed over all the observations that were included in the estimation (1980- 
2001) and are given in thousands of 1996 USD.

5.6 Estimation

In this section, we present the estimation results of the effect of the diffusion pattern 

of knowledge on private returns to innovation and the R&D decision of the firm. 

Our main econometric analysis focuses on the market value framework, where we 

examine whether the market valuation of the R&D stock rises with the ability of 

the firm to reabsorb its spilled knowledge.

Further, we present a reduced form estimation of a R&D equation to provide a 

preliminary test to whether firms internalize their ability to reabsorb their spilled 

knowledge when making their R&D decisions.
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5.6.1 Market value specification

In order to estimate the effect of the diffusion pattern of knowledge on private 

returns to R&D, we adopt a simple version of the value function approach proposed 

by Griliches (1981)21. The market value of firm i at period t, Vu, takes the following 

form:

Vu = Kit {An +  7 Kn) (5.15)

Where, A it denotes physical assets, K it is the R&D stock (representing the 

intangible knowledge assets of the firm), 7  is the shadow price of the R&D stock 

(higher values of 7  indicate that the market valuation of the knowledge capital 

relative to physical capital rises)22.

The parameter 7  will capture the private returns to innovation, which we define 

as the change in the market value as a response to a change in the R&D stock of 

the firm.

Since we aim at investigating the effect of the pattern of diffusion on private 

returns, we model 7  as a linear function of Internalized Flows and Externalized 

Flows23, as:

7  =  7 o +  7 i {Internalized FlowSi) +  7 2 {Externalized FlowSi) (5.16)

We expect n/1 to be positive and 7 2 to be negative (the theoretical predication 

is that private returns rise with 6, which is the ability of the firm to reabsorb its 

spilled knowledge, as empirically identified by the diffusion variables).

Taking logarithms and dividing by An gives the traditional average Tobin’s Q, 

where its deviation from unity depends on the ratio between the R&D stock to the 

tangible stock ( ^ )  , Internalized Flows and Externalized Flows and k,u,

21See also Jaffe (1986), Hall et al (2005) or Lanjouw and Schankerman (2004).
22Note that we have assumed constant returns in the market value function, consistently with 

previous studies.
23We also report specifications where we include Internalized Share instead of Internalized 

Flows and Externalized Flows.
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iog ® =log Kit+log I1+7S) (5-i7)
When presenting the findings, we refer to 7 0 as the linear term of R&D over 

assets, as the interaction term of R&D over assets with Internalized Flows and 

7 2 as the interaction term of R&D over assets with Externalized Flows.

Finally, nit is specified as:

lognit =  Z'itl30+(31 log (Internalized FlowSi)+/32\og (Externalized Flows^+Tt+rji+tit

(5.18)

Where Zn is a vector of controls (such as industry effects, sales, patents stock 

etc.), r t denotes a complete set of time dummies, 77̂  denotes the firm fixed-effect, 

which we discuss in detail later in the chapter, and tu is an idiosyncratic error 

term.

The linear terms of Internalized Flows and Externalized flows are included 

in the specification, mainly as controls for the interaction terms, as specified in 

equation (5.16). Our preferred specification is to include only the interaction terms 

of Internalized Flows and Externalized Flows, as we predict these diffusion variables 

affect the value of the firm only through their interaction with the R&D stock. 

Nonetheless, the linear diffusion terms can be regarded as an approximation of 

the interaction effects and, therefore, we expect (31 to be positive and f32 to be 

negative. In specifications where it would be difficult to identify both the linear 

and interacted effects of the diffusion variables, we will include only the interaction 

terms.

Equation (5.17) is estimated by non-linear least squares, where standard errors 

are clustered by firms (robust to heteroscedacity and serial correlation), which is 

important due to our long panel (about 19 years per firm).

5.6.2 Identification issues

We interpret Internalized Flows and Externalized flows as measures of the ability 

of the firm to reabsorb its spilled knowledge. Nonetheless, we face two main con-
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cerns regarding this interpretation. The first relates to the correlation between the 

diffusion variables and other characteristics of the firm (such as patenting volume 

and product market size). The second relates to our estimation framework, which 

pools firms across different industries.

Identifying th e  ability to  reabsorb spilled knowledge from patenting vol­

um e and product market size

A firm that has a larger patents stock is more likely to have higher Internalized 

Flows and lower Externalized Flows, as it is more likely to randomly indirectly 

build on its prior knowledge. In case patents stock has a positive effect on private 

returns24, we will find a pattern of results by which Internalized Flows positively 

affect private returns and Externalized Flows negatively affect private returns.

In order to cope with this identification issue, we make the following argument: 

if, indeed, the diffusion variables capture the effect of patents stock, it should not 

have a significant effect on private returns, should we condition on the patents 

stock of the firm. Thus, we include the patents stock of the firm (adjusted for 

quality, as indicated by the number of citations received) linearly and interacted 

with the R&D stock over assets. In case the effects of Internalized Spillovers and 

Externalized Spillovers will not disappear, the above identification concern will be 

mitigated25.

In order to examine the correlation between the diffusion variables and patents 

stock, figure 4 plots Internalized Share for the top 200 patenting firms (as indicated 

by their mean of the citations-weighted patents stock over the estimation period), 

in an ascending order (where firms with higher stock of patents appear to  the left 

of the horizontal scale). We observe a high variation in Internalized Share, which 

is independent from patenting volume. This further mitigates the concern that 

all the variation we have observed in the data regarding the diffusion variables is 

driven by patenting volume.

24For example, patents stock can represent the intellectual property protection the firm faces, 
so that a larger stock of patents indicates stronger appropriability and higher private returns.

25 We also include the mean of the patents stock of the firm, R&D stock and citations stock, 
computed over a pre-estimation period, to capture any non-parametric shift in patenting perfor­
mance between the period that is used to construct the diffusion variables (1969-1980) and the 
actual estimation period (1980-2001).
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Figure 4: Internalized Share and patents stock

Figure 4: This figure plots the variation of Internalized, Share across the top 

200 patenting firm s in a descending order (firms with a larger stock of patents 

appear on the left of the horizontal scale). This illustrates that there is a high 

variation in Internalized Share, which is independent from the patenting activity of 

the firm.

Along this line of concern, we may also think that the diffusion variables capture 

the size of the firm in the product market, under the notion that larger firms have a 

higher ability to pursue dynamic research and capture higher private returns. Our 

strategy of coping with this concern is to include firm size measures, such as the 

firm market share, number of employees, sales and etc. Similarly to patents stock, 

in case our diffusion measures capture the size of the firm in the product market, 

once having controlled for the size of the firm, the diffusion variables should not 

provide any significant information.
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Controlling for cross-industry variation in the diffusion variables

Firms in our sample are located in different industries, which may vary in the 

private returns to innovation they provide. In case the diffusion variables vary as 

well across these industries, a pooling estimation across industries may capture 

industry variation in private returns, via the diffusion variables. For example, in 

case firms in the Computers industry enjoy higher private returns to innovation and 

also have higher Internalized Flows, compared to firms in the Chemicals industry, 

a pooling estimation, once not conditioning on industry effects, will yield a pattern 

of results by which Internalized Flows have a positive effect on private returns.

We cope with this serious concern in various ways. First, we have shown in 

chapter 2 that there is a little variation in the extent to which spillovers are In­

ternalized across technology sectors (the Share of Internalized Spillovers and the 

share of lines of research that are Internalized are stable across technology sectors). 

This slightly mitigates our concern that the diffusion variables capture industry ef­

fects, as they do not vary much across firms that operate in different technological 

environments.

Furthermore, in all the econometric specifications reported below, we include a 

complete set of two-digit industry dummies and a complete set of main technology 

sector indicators, which are the share of the firm’s patents in each of the five main 

technology sectors. Moreover, we test the robustness of our results to including a 

complete set of four-digit industry dummies.

Finally, we present a case-study on 30 firms that operate in high-tech industries 

(mainly Computer Hardware), where we expect the diffusion variables to m atter the 

most. As this set of firms is relatively homogenous in terms of the type of innovation 

they perform, finding the same pattern of results in this restricted sample will 

mitigate our concern that they are driven by cross-industry variation.

Table 3 offers a look into the variation of the diffusion variables across four levels 

of industry aggregation. The analysis of the variation of the diffusion variables 

shows tha t the main variation comes from within industries, mainly for Internalized 

Flows and Externalized Flows (Internalized Share seems to be more sensitive to 

industry effects, however, about 50 percent of its variation is still evident within
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four-digit industry breakdown). This finding is encouraging, since it is more likely 

that the source of variation in the ability of firms to reabsorb their spilled knowledge 

is not strongly associated with cross-industry variation26.

Table 3
Analysis of Variance - diffusion variables

One-digit
SIC

Two-digits
SIC

rhree-digits
SIC

Four-digits
SIC

Internalized Flows 1.51 0.30 0.23 0.24

% Between industries 
variation 3% 6% 8% 15%

% Within industries 
variation 97% 94% 92% 85%

Externalized Flows 2.84* 0.54 0.36 0.61

% Between industries 
variation 5% 9% 12% 31%

% Within industries 
variation 95% 91% 88% 69%

Internalized Share 1.37 1.71* 1.47* 1.52*

% Between industries 
variation

3% 25% 36% 52%

% Within industries 
variation 97% 75% 64% 48%

Table entries are the F -statistics for the null hypothesis of equal mean across the 
different industry breakdowns. * denotes that the mean varies across industries at 
the 5 percent significance level.

Finally, it is worth mentioning that if firms internalize the technological feed­

back they receive from the diffusion of their discoveries, we may find it difficult to 

identify an effect of the diffusion variables on private returns to innovation. This 

difficulty is especially likely to arise where we estimate the marginal returns to 

innovation. For example, in the case of decreasing returns in the production of 

knowledge, when firms with a higher ability to reabsorb their spilled knowledge

26The fact that firms operating in similar product markets differ in their ability to reabsorb 
their spilled knowledge may hint at a strategic behaviour of firms in managing the diffusion of 
their inventions.
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find it optimal to innovate more (as indicated by the theoretical model in section 

3), it would be difficult to recover the expected effect of the diffusion variables on 

private returns to innovation. Therefore, we believe that finding the expected effect 

of the diffusion variables will be an underestimate of their importance to private 

returns.

5.6.3 Econometric issues

The use of firm level accounting data may lead to the classical endogeniety bias. 

In particular, a higher market value can, indeed, be the result of conducting more 

R&D, however, the ability to devote more resources to R&D can reflect a higher 

market value that provides more finance to the innovative activity. Moreover, 

demand or supply shocks can simultaneously raise the R&D expenditures and the 

market value of the firm. In order to mitigate this potential bias we include a 

complete set of year dummies aiming at capturing transitory shocks27. Further, 

our main concern is to recover the effects of the diffusion variables, which are less 

sensitive to the endogeniety of the accounting variables, as the diffusion variables 

are time invariant and are constructed over an earlier period.

A more serious endogeniety bias (with respect to the focus of this chapter) may 

be associated with the diffusion variables themselves, so that they axe correlated 

with omitted variables that affect the market value of the firm. In order to  test this 

potential bias, we experiment with different time periods for the construction of 

the diffusion variables, so as to reduce the overlap with the estimation period (the 

endogeniety of the diffusion variables is mitigated, in case they are pre-determined 

in the estimation period).

For example, in the econometric analysis, the diffusion variables have been 

constructed in the period 1969-1995, which overlaps with the estimation period 

(1980-2001). Thus, we also construct the diffusion variables in the period 1969- 

1990, 1969-1985 and 1969-1980. We find the same pattern of results in each of these 

cases28. Finally, we test the robustness of the results for the potential endogeniety

27We also experiment with lagging the R&D stock by one period, which we find not to affect 
the pattern of results in a significant manner.

28Naturally, we are interested in studying a diffusion period which is as long as possible, and,
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of the diffusion variables by restricting the estimation sample to the period 1990- 

2001. Our findings are robust in these cases, as well.

We introduce firm fixed-effects into the Tobin’s Q specification using the “mean 

scaling” method of Blundell, Griffith and Van Reenen (1999). This method assumes 

that computing the mean of Tobin’s Q in a long enough pre-estimation period 

can be used as an initial condition to proxy for unobserved heterogeneity, if the 

first moment is stationary. Thus, we assume that the effect of the time-invariant 

attributes of the firm is captured in a pre-sample mean of Tobin’s Q.

In order to amplify the effectiveness of this method and test its robustness, 

we also include the pre-estimation means of other firm-level variables, such as 

sales, industry sales, employees, R&D stock, citations-weighted patents stock and 

citations stock29.

We do not include the traditional firm fixed-effects by adding a complete set of 

firm dummies, as the diffusion variables are time invariant and their effect cannot 

be identified in the presence of firm dummies30

In order to construct the pre-sample means of these variables, we refer to His­

torical US Compustat, which gives us an extra 10 years of data (1970-1979) for the 

476 firms in our sample, which are used to approximate the initial conditions of 

the firm fixed-effects.

Although some finite sample bias will exist, Monte Carlo evidence shows that 

this pre-sample “mean scaling” estimator performs pretty well.

5.6.4 Estim ation results

In this section, we present the estimation results of the effect of the diffusion pattern 

of knowledge on private returns to innovation. All the Tobin’s Q specifications

therefore, we decide to construct the diffusion variables from the period 1969-1995 (the probability 
to find an Internalized line of research increases with the length of the diffusion period).

29We also include the mean of these additional variables, as they are computed over the same 
time period used for the construction of the diffusion variables. Thus, their inclusion mitigates 
our identification concern, by which the diffusion variables capture the patenting activity of the 
firm or its size in the product market.

30This is obviously the case for the linear terms of Internalized Flows and Externalized Flows. 
With regard to their interaction terms with R&D stock over assets, their effect could be identified 
through the variation in the R&D stock over assets (in case the within firm variation in the R&D 
stock over assets depends on Internalized Flows and Externalized Flows). However, we do not 
find any significant interaction effect in the presence of firm dummies.
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reported in this section include a complete set of two-digit industry dummies (78 

dummy variables), a set of indicators for the share of patents the firm has in the five 

main technology sectors, a complete set of year dummies (20  dummy variables), a 

dummy variable that receives the value one if the R&D stock of the firm is zero 

and a dummy variable that receives the value one if Internalized Flows is zero. 

Further, the firm fixed-effects we use in the econometric analysis is always based 

on the “mean scaling” approach suggested by Blundell, Griffith and Van Reenen 

(1999) (thus, we do not use the classical firm fixed-effects of including a complete 

set of firm dummies).
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Table 4
The effect of Internalized Flows and Externalized Flows on private

returns to innovation

Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

(1) (2) (3) (4) (5)

R&D stock/Assets 0.280*
(0 .079)

0.145*
(0 .021)

0.152*
(0 .028)

0.167*
(0 .029)

0.217*
(0 .040)

Internalized Flows x 
(R&D stock/Assets)

0.208*
(0 .095)

0.096*
(0 .029)

0.059*
(0 .010)

0.059*
(0 .009)

0.062*
(0 .012)

Externalized Flows x 
(R&D stock/Assets)

-0.011*
(0 .003)

-0.005*
(0 .002)

-0.004*
(0 .001)

-0.004*
(0 .001)

-0.005*
(0 .002)

log(Intemalized Flows) 0.031*
(0 .005)

0.027*
(0 .005)

0.028*
(0 .005)

log(Extemalized Flows) -0.023*
(0 .004)

-0.026*
(0 .004)

-0.026*
(0 .004)

log(Sales) 0.031*
(0 .003)

0.028*
(0 .003)

log(Industry Sales) -0.024*
(0 .006)

-0.029*
(0 .006)

Sales Growth 0.533*
(0 .017)

Firm Fixed-Effects3 No Yes Yes Yes Yesb

Observations 9,454 9,454 9,454 9,454 9,015

R2 0.323 0.501 0.509 0.511 0.516
Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 
(clustered at the firm level). * denotes a significant level of 5 percent.
All regressions include 78 two-digits industry dummies, 4 technology indicators, a 
complete set of year dummies, a dummy variable for R&D stock equals zero and a 
dummy variable for Internalized Flows equal zero.
“Firm Fixed-Effects are approximated according to Blundell, Griffith and Van Reenen 
(1999). Thus, including a pre-sample mean of: Market Share, Employees, Tobin's Q, 
Sales, Assets, R&D stock, Patents stock and Citations stock.
Vor example, the estimates for the pre-sample mean variables are as following: Market 
Share -0.106* (0.018), Employees 0.003 (0.002), log(Tobin's Q)* 0.544 (0.011), Sales 
0.013 (0.027), Assets -0.856 (0.592), Patents stock -0.009 (0.013), Citations stock 0.029* 
(0.007) and R&D stock -0.292 (0.335).

Table 4 reports the estimation results of the nonlinear specification (equation

(5.17)). In column 1, we include the linear term of R&D over assets and its inter­

action terms with Internalized Flows and Externalized Flows. The estimate of the
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linear term of R&D over assets ( j 0) is positive and significant (0.280 with a stan­

dard error of 0.079). The interaction term of Internalized Flows with R&D over 

assets (7 X) is positive and significant (0.208 with a standard error of 0.095) and the 

interaction term of Externalized Flows with R&D over assets (7 2) is negative and 

significant (-0.011 with a standard error of 0.003). These findings are consistent 

with our expectations, under which private returns to R&D rise with a higher value 

of Internalized Flows and fall with a higher value of Externalized Flows.

Given these estimates, the elasticity of market value with respect to the R&D 

stock is 0.10331. This implies that an additional one dollar spent on R&D raises 

market value by 0.49 cents (which is already net of the R&D costs). A one standard 

deviation increase in Internalized Flows raises the private gain on an additional 

dollar spent on R&D to 0.63 (thus, a one standard deviation increase in Internalized 

Flows raises private returns to an extra dollar spent on R&D by 30 percent). A one 

standard deviation increase in Externalized Flows lowers these private returns to 

0.44 (thus, a one standard deviation increase in Externalized Flows lowers private 

returns to an additional dollar spent on R&D by 10 percent).

It is important to note that the estimated effects of Internalized Flows and 

Externalized Flows on private returns are underestimated, as we assume that a 

change in either measures does not affect the other. For example, it is likely that 

an increase in Internalized Flows will reduce Externalized Flows as well (thus, a 

line of research becomes Internalized instead of being Externalized). This indicates 

tha t private returns will rise as a result of the increase in Internalized Flows and 

also as a result of a decrease in Externalized Flows.

In column 2, we add firm fixed-effects, as described above32. The linear term of 

R&D stock over assets halves (from 0.280 to 0.145), however it remains significant. 

W ith regard to the interaction term of Internalized Flows with the R&D stock 

over assets, it drops from 0.208 to 0.096, however it remains significant. As for the 

interaction term between Externalized Flows and the R&D stock over assets, it

31 Our estimated elasticity is significantly lower from that reported in previous studies. For 
example, Bloom, Schankerman and Van Reenen (2005) report an elasticity of 0.24, using a similar 
estimation sample. However, they do not include industry or technology effects. We find a similar 
elasticity when including only one-digit industry dummies in our specification.

32The set of pre-sample means is jointly significant with a p-va/ue<0.001.
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drops in absolute value (from -0.011 to -0.005), but remains significant, as well.33

Moreover, the R 2 under firm fixed-effects rises substantially from 0.323 to 0.501, 

which indicates that the set of pre-sample means adds significant explanatory 

power.

Under firm fixed-effects, the elasticity of market value with respect to the R&D 

stock is 0.056 (compared to 0.103 without firm fixed-effects). An additional one 

dollar spent on R&D raises market value by 0.26 (compared to 0.49 without firm 

fixed-effects). A one standard deviation increase in Internalized Flows raises private 

returns to an additional dollar spent on R&D to 0.34. Thus, a one standard 

deviation increase in Internalized Flows raises private returns by about 30 percent, 

as is the case without firm fixed-effects. A one standard deviation increase in 

Externalized Flows lowers the private valuation of the additional dollar spent on 

R&D to 0.24. Thus, private returns fall by about 10 percent, as is the case without 

firm fixed-effects.

We find that adding firm fixed-effects scales down the estimated shadow price 

of the R&D stock, however, it does not influence the effect of Internalized Flows 

and Externalized Flows in relative terms.

In column 3, we add to the firm fixed-effects specification Internalized Flows 

and Externalized Flows linearly. The same pattern of results holds. The main 

change we observe is a drop in the interaction term between Internalized Flows 

and R&D stock over assets (from 0.096 to 0.059), which remains significant. The 

linear term of Internalized Flows is positive and significant, whereas the linear 

term of Externalized Flows is negative and significant, both are consistent with 

our expectations.

Importantly, we are able to identify the positive effect of Internalized Flows 

and the negative effect of Externalized Flows, both linearly and through their 

interaction with the R&D stock over assets, which amplifies the robustness of our 

findings.

33 We also interact the pre-sample mean of Tobin’s Q with R&D over assets, in order to test the 
robustness of the interaction terms of Internalized Flows and Externalized Flows. The coefficient 
on the interacted term of Internalized Flows rises to 0.112 with a standard error of 0.019 and the 
coefficient on the interacted term of Externalized Flows is 0.006 with a standard error of 0.001).
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In columns 4 and 5 we add the sales of the firm, the aggregate sales in the 

industry the firm operates in (industry sales) and the growth in the sales of the 

firm. We add these variables to capture transitory shocks in demand that may 

affect the R&D valuation of the firm and its pattern of diffusion.

The same pattern of results with respect to Internalized Flows and Externalized 

Flows (linear and interacted terms) remains. We find a positive and significant 

effect of sales and sales growth and a negative and significant effect of industry 

sales.

In table A5 in the appendix, we report the same estimations for Internalized 

Share. The interaction term of Internalized Share and R&D stock over assets is 

always positive and significant, consistent with the findings reported in table 4. 

Moreover, the linear term of Internalized Share is positive and significant, as well. 

The elasticity of market value with respect to the R&D stock is 0.154. This implies 

that an extra dollar spent on R&D raises the value of the firm by 0.73 cents. A 

one standard deviation increase in Internalized Share raises private returns to this 

extra dollar to 1 dollar. Thus, at the margin, private returns rise by 40 percent as 

a response to a one standard deviation increase in Internalized Share34.

Table 5 summarizes the quantitative effects of Internalized Flows, Externalized 

Flows and Internalized Share, as reported above (the columns correspond to the 

same columns in tables 4 and A5). Including firm fixed-effects does not change 

the effect of Internalized Flows and Externalized Flows (comparing column 1 to 

column 2), however, it raises the effect of Internalized Share. Adding the linear 

terms of the diffusion variables (column 3) substantially lowers the effect of the 

interaction terms.

34 Interestingly, this 40 percent increase in private returns is equivalent to a simultaneous one 
standard deviation rise in Internalized Flows and a one standard deviation fall in Externalized 
Flows.
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Table 5
Quantitative effects o f the pattern of diffusion on private

returns

Interaction
terms

Firm fixed- 
effects

Linear effects

(1) (2) (3)

One standard deviation
increase

Internalized Flows +30% +30% +16%

Externalized Flows -10% -10% -6%

Internalized Share +40% +50% +37%

Two standard deviations
increase

Internalized Flows +55% +53% +32%

Externalized Flows -18% -16% -12%

Internalized Share +74% +96% +71%

Note: columns (1), (2) and (3) are based on the corresponding columns in 
tables 4 and A5. Thus, column 1 includes only R&D stock over assets and 
interactions with Internalized Flows and Externalized Flows, column 2 adds 
firm fixed-effects and column 3 adds linear terms of Internalized Flows and 
Externalized Flows.

In conclusion, we find a pattern of results which is highly consistent with our 

expectations. The effect of Internalized Flows on market value is positive, which 

is identified linearly and through an interaction with the R&D stock. Similarly, 

the effect of Externalized Flows on market value is negative and is also identified 

linearly and through an interaction with the R&D stock. We also find these effects 

to be quantitatively important.

R obustness tests

This section begins with robustness tests for the nonlinear specification and pro­

ceeds by linearizing equation (5.17), using a polynomial series expansion.

Table 6 reports the robustness tests for Internalized Flows and Externalized
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Flows in the nonlinear specification, which uses column 5 in table 4 as a bench­

mark35.

The first concern we face relates to the interpretation of Internalized Flows and 

Externalized Flows. Our interpretation of the two variables is that they measure 

the ability of the firm to reabsorb its spilled knowledge (the parameter 0 in the 

theoretical section).

However, an alternative interpretation would be that these variables capture the 

patenting activity of the firm, so that firms that have more patents will have higher 

Internalized Flows and lower Externalized Flows (as the firm has more patents, the 

probability it will randomly indirectly cite its previous patents is higher). The same 

pattern of results can arise under this alternative interpretation, if patents have a 

positive effect on private returns.

In column 1 in table 6, we include the citations-weighted patents stock of the 

firm (denoted as CW Patents Stock). We argue that if Internalized Flows and 

Externalized Flows simply capture the patenting activity of the firm, they should 

be uninformative in this specification.

We find that the same pattern of results regarding Internalized Flows and Ex­

ternalized Flows holds, for the linear terms and the interacted terms (Internalized 

Flows is positive and significant and Externalized Flows is negative and signifi­

cant). However, the effect of the interacted term of Internalized Flows drops from 

0.062 to 0.048.

The estimate of the interaction term of the citations-weighted patents stock is 

positive and significant, whereas the estimate of the linear term is also positive, 

but not significant.

The second robustness test we perform relates to the size of the firm in the 

product market, aiming at mitigating the concern that larger firms are better able 

to perform sequential innovation and capture higher private returns on their R&D. 

We pursue the same reasoning and argue that if this were the case, Internalized 

Flows and Externalized Flows would not be informative in the presence of product

35We do not report the same robustness tests for Internalized Share for the sake of brevity; 
however, it is also robust for these tests.
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market size variables. As we have already included sales and industry sales, we 

add the market share of the firm (which is the ratio between sales and industry 

sales), linearly and interacted with the R&D stock over assets. We find the previous 

pattern of results to be robust in this case, as well.

Our final test in the nonlinear specification includes the external R&D stock 

the firm faces, as is reported in column 3. We define this measure as R&D Pool (its 

construction is explained in the appendix), which is the ‘classical’ measure widely 

used in the literature to measure the effect of knowledge spillovers36.

Our concern with regard to R&D Pool can go in two directions. First, R&D 

Pool can be negatively correlated with Internalized Flows and positively correlated 

with Externalized Flows, as a higher R&D Pool indicates that the amount of R&D 

conducted by the competitors of the firm is larger. Thus, it faces a higher com­

petition in research, which can translate into a lower ability to perform sequential 

innovation. In case private returns are lower when R&D Pool is higher, the same 

pattern of results regarding the diffusion variables will be observed.

Nonetheless, a higher R&D Pool also implies higher spillovers. Thus, the firm is 

more likely to learn from the research of others, which encourages sequential inno­

vation, i.e., R&D Pool should be positively correlated with Internalized Flows and 

negatively correlated with Externalized Flows. In case private returns are higher 

when R&D Pool is higher, we will observe the same pattern of results regarding 

the diffusion variables.

The same pattern of results regarding Internalized Flows and Externalized 

Flows also remains after the inclusion of R&D Pool linearly and interacted with 

the R&D stock over assets. The interaction term of R&D Pool is positive, however, 

not significant, whereas the linear term is negative and significant37.

Finally, in column 4 we have put together citations-weighted patents stock, 

market share and R&D Pool (all interacted and linearly). The same pattern of 

results regarding Internalized Flows and Externalized Flows remains38.

36See, for example, Jaffe (1986, 1988).
37Jaffe (1986) finds a similar negative linear effect of R&D Pool on market value, which he 

interprets as an indication of a negative competition effect in the technology space.
38 We have also experimented with including a measure of self-citations the firm receives (linearly
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Table 6
Robustness tests for the effect of Internalized Flows and 

Externalized Flows
Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

(1) (2) (3) (4)

R&D stock/Assets 0.204*
(0.039)

0.222*
(0.007)

0.183*
(0.037)

0.187*
(0.038)

Internalized Flows x 
(R&D stock/Assets)

0.048*
(0.013)

0.063*
(0.012)

0.062*
(0.012)

0.052*
(0.014)

Externalized Flows x 
(R&D stock/Assets)

-0.004*
(0.001)

-0.005*
(0.002)

-0.005*
(0.002)

-0.005*
(0.002)

log(Intemalized Flows) 0.025*
(0.005)

0.028*
(0.005)

0.024*
(0.005)

0.021*
(0.005)

log(Extemalized Flows) -0.027*
(0.004)

-0.026*
(0.004)

-0.026*
(0.004)

-0.027*
(0.004)

CW Patents Stock x 
(R&D stock/Assets)

0.006*
(0.002)

0.004*
(0.002)

log(CW Patents Stock) 0.010
(0.006)

0.016*
(0.006)

Market Share x (R&D 
stock/Assets)

-0.035
(0.066)

-0.058
(0.062)

Market Share 0.061
(0.049)

0.073
(0.051)

R&D Pool x (R&D 
stock/Assets)

0.074
(0.064)

0.059
(0.066)

log(R&D Pool) -0.018*
(0.009)

-0.024*
(0.009)

Firm Fixed-Effects8 Yes Yes Yes Yes

Observations 9,015 9,015 9,015 9,015

R2 0.516 0.516 0.516 0.516
Standard errors (in brackets) are robust to arbitrary heteroskedacity and 
serial correlation (clustered at the firm level). * denotes a significant level of 
5 percent.
All regressions include 78 two-digits industry dummies, 4 technology 
indicators, a complete set of year dummies, a dummy variable for R&D stock 
equals zero, a dummy variable for Internalized Flows equal zero, sales and 
industry sales.
“Firm Fixed-Effects are approximated according to Blundell, Griffith and 
Van Reenen (1999). Thus, including a pre-sample mean of: Market Share, 
Employees, Tobin's Q, Sales, Assets, R&D stock, Patents stock and Citations 
stock.

and interacted with the R&D stock over assets), under the notion that self-citations represent 
an ability of the firm to pursue dynamic research. In all the specifications, the same pattern 
of results regarding Internalized Flows and Externalized Flows (linear and interacted) remains. 
W ith respect to self-citations, we find the linear term to be positive and significant and the 
interacted term not to be significant.
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L inear ap p ro x im a tio n  Next, we turn  to  analyse a linear version of equation

(5.17) and to test the robustness of our findings to specifications, where the term 

log (I -f 7  is approximated by a polynomial series expansion. The series of 

functions used for this approximation is denoted by 7 $ ( ^ ) ,  which is linear in 7 . 

We experiment with a series expansion of degree one (4>(:̂ )  =  ^ ) ,  two (4>(^-) =

S  ( * f ) 5)>three = £  0 & ) ') 811(1 four = S  ( f f ) 5) - Thus’
j=i i=i j=i
equation (5.17) becomes:

log =  log Kit +  ^(^7 (5-19)

Where, 7  and log/^t are specified in equations (5.16) and (5.18), respectively. 

Equation (5.19) is estimated by OLS, where the standard errors follow the Newey- 

West correction (unless mentioned otherwise). We use the Delta method to com­

pute the standard errors of the marginal effects of the linear terms of 4 > (^ ) and 

the interacted terms of $ ( ^ )  with Internalized Flows and Externalized Flows.

Table 7 reports the estimation results with a series expansion of degree one 

(thus, log{ 1 +  7 ^ )  «  7 ^ ) .

Column 1 reports the estimation results of a specification that includes R&D 

over assets and interaction terms of Internalized Flows and Externalized Flows 

with R&D over assets (as in column 1 in table 4 for the nonlinear specification). 

The pattern of results is similar to the one we have observed in the nonlinear 

specification. The interaction term between Internalized Flows and R&D stock 

over assets is positive and significant and the interaction term between Externalized 

Flows and R&D over assets is negative and significant.

Compared to the equivalent nonlinear specification (column 2 in table 4), the 

linear specification yields a lower estimate of the interaction term  of Internalized 

Flows (0.089 compared to 0.208) and a lower estimate of the R&D over assets term 

(0.229 compared to 0.280). The estimate of the interaction term of Externalized 

Flows is similar to the estimate obtained from the nonlinear specification.

The elasticity of market value with respect to the R&D stock 0.093, compared
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to  0.103 in the equivalent nonlinear specification. An additional one dollar spent 

on R&D, raises the market value of the firm by 0.44 cents, compared to 0.49 cents 

in the nonlinear specification. A one standard deviation increase in Internalized 

Flows raises private returns by 17 percent (compared to 30 percent in the nonlin­

ear specification), whereas a one standard deviation increase in Externalized Flows 

lowers private returns by 5 percent (compared to 10 percent in the nonlinear speci­

fication). Thus, we observe that in the first-degree linear approximation the effects 

of Internalized Flows and Externalized Flows are lower, compared to the equivalent 

non-linear specification39.

In column 2 we add firm fixed-effects (using the same set of pre-sample means 

as in the nonlinear specification). The estimates of R&D stock over assets term and 

the interaction terms of Internalized Flows and Externalized Flows substantially 

drop, however, their signs do not change and they remain significant.

In column 3 we add the linear terms of Internalized Flows and Externalized 

Flows. The estimates of the linear terms of Internalized Flows and Externalized 

Flows are similar to those obtained from the nonlinear specification, i.e., the coeffi­

cient on Internalized Flows is positive and significant and the coefficient on Exter­

nalized Flows is negative and significant. The estimate of the interaction term of 

Internalized Flows drops, however it remains significantly positive. The estimate 

of the interaction term of Externalized Flows remains negative and significant with 

no important change in its size.

In columns 3 to 5 we repeat similar robustness tests as reported in table 6. Thus, 

adding linear and interacted terms of citations-weighted patents stock and R&D 

Pool. The same pattern of results regarding Internalized Flows and Externalized 

Flows (linear and interacted) remains.

39However, the effect of Internalized Share in the linear specification is identical to its effect in 
the nonlinear specification. A one standard deviation increase in Internalized Share raises private 
returns to an extra dollar spent on R&D by 39 percent.
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Table 7
The effect of Internalized Flows and Externalized Flows on private returns to

innovation
Linear estimation (Newey-West standard errors), dependent variable: log(Tobin's-Q)

(1) (2) (2) (3) (4) (5)

R&D stock/Assets 0.229*
(0.022)

0.137*
(0.025)

0.141*
(0.025)

0.185*
(0.028)

0.187*
(0.038)

0.174*
(0.037)

Internalized Flows x (R&D 
stock/Assets)

0.089*
(0.022)

0.044*
(0.015)

0.026*
(0.012)

0.030*
(0.015)

0.029*
(0.015)

0.028*
(0.014)

Externalized Flows x (R&D 
stock/Assets)

-0.008*
(0.002)

-0.004*
(0.002)

-0.004*
(0.002)

-0.004*
(0.002)

-0.004*
(0.002)

-0.004*
(0.002)

log(Internalized Flows) 0.032*
(0.008)

0.022*
(0.008)

0.031*
(0.008)

0.020*
(0.009)

log(Externalized Flows) -0.018*
(0.007)

-0.026*
(0.004)

-0.019*
(0.007)

-0.021*
(0.007)

CW Patents Stock x (R&D 
stock/Assets)

0.003
(0.020)

0.003
(0.020)

log(CW Patents Stock) 0.033*
(0.009)

0.016*
(0.006)

R&D Pool x (R&D 
stock/Assets)

0.002
(0.032)

0.002
(0.033)

log(R&D Pool) -0.018
(0.014)

-0.043*
(0.015)

Sales Growth 0.556*
(0.047)

0.557*
(0.048)

0.548*
(0.048)

Observations 9,454 9,454 9,454 9,015 9,015 9,015

Firm Fixed-Effectsa Yes Yes Yes Yes Yes Yes
Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation. * denotes a 
significant level of 5 percent.
All regressions include 78 two-digits industry dummies, 4 technology indicators, a complete set of year 
dummies, a dummy variable for R&D stock equals zero and a dummy variable for Internalized Flows 
equal zero.
“Firm Fixed-Effects are approximated according to Blundell, Griffith and Van Reenen (1999). Thus, 
including a pre-sample mean of: Market Share, Employees, Tobin’s Q, Sales, Assets, R&D stock, 
Patents stock and Citations stock.

In table 8, we experiment with higher degrees of polynomial approximation. 

For the polynomial approximation we report the computed marginal effects of the 

linear term of R&D stock over assets and the interaction terms between Internalized 

Flows and Externalized Flows with R&D stock over assets40. The coefficients on

40The marginal effects are computed by differentiating equation (5.19) w ith respect to each 
variable. Standard errors for the marginal effects are computed using the D elta method.
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the series expansion for the linear R&D stock over assets and its interaction terms 

with Internalized Flows and Externalized Flows are reported as well (below the 

marginal effects)41.

In columns 2 to 4, we report the estimation results with a polynomial expansion 

of degree two, three and four, respectively. We find the same pattern of results 

regarding the interaction terms of Internalized Flows and Externalized Flows with 

R&D stock over assets, where the interaction term of Internalized Flows is positive 

and significant, and the interaction term of Externalized Flows is negative and 

significant.

W ith regard to the coefficients size, as the degree of the polynomial expansion 

rises, the effects of the linear terms of R&D stock over assets and the interaction 

terms with Internalized Flows and Externalized Flows rise. For example, the elas­

ticity of Tobin’s Q with respect to R&D stock over assets in the fourth-degree 

polynomial approximation is 0.14, compared to 0.09 in the second-degree poly­

nomial approximation. Nevertheless, although the size of the effect changes, the 

pattern of results is very robust to any form of linear approximation.

41 In all specifications we have also experimented with including sales data (sales growth, sales 
and industry sales). The results are robust to adding these controls.
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Table 8
The effect of Internalized Flows and Externalized Flows on

private returns to innovation

Dependent variable: Log(Tobin's-Q); 9 ,454 observations

(1) (2) (3) (4)

R&D stock/Assets3
0.137*
(0.025)

0.233*
(0.041)

0.292*
(0.048)

0.353*
(0.056)

(R&D stock/Assets)
0.243*
(0.045)

0.344*
(0.061)

0.484*
(0.091)

(R&D stock/Assets)2
-0.013*
(0.005)

-0.069*
(0.026)

-0.184*
(0.062)

(R&D stock/Assets)3
0.005*
(0.002)

0.029*
(0.012)

(R&D stock/Assets)4
-0.001*

(0.001)

Internalized Flows x 

(R&D stock/Assets)3
0.044*
(0.015)

0.041*
(0.013)

0.059*
(0.013)

0.063*
(0.015)

Internalized Flows x 
(R&D stock/Assets)

0.087*
(0.031)

0.188*
(0.047)

0.266*
(0.067)

Internalized Flows x 

(R&D stock/Assets)2
-0.022*
(0.016)

-0.119*
(0.035)

-0.233*
(0.070)

Internalized Flows x 

(R&D stock/Assets)3
0.016*
(0.005)

0.056*
(0.021)

Internalized Flows x 
(R&D stock/Assets)4

-0.003*
(0.001)

Externalized Flows x 

(R&D stock/Assets)3
-0.004*

(0.002)
-0.005*

(0.001)
-0.007*

(0.002)
-0.008*

(0.002)

Externalized Flows x 
(R&D stock/Assets)

-0.012*
(0.004)

-0.024*
(0.006)

-0.0299*
(0.012)

Externalized Flows x 

(R&D stock/Assets)2
0.002*
(0.001)

0.009*
(0.003)

0.016*
(0.009)

Externalized Flows x 

(R&D stock/Assets)3
-0.001*
(0.0002)

-0.002*
(0.002)

Externalized Flows x 

(R&D stock/Assets)4
0.0001*

(0.0001)

Firm Fixed-Effectsb Yes Yes Yes Yes

Estimated marginal effects, evaluated at the mean. Standard errors are 
calculated using the Delta method.
Standard errors (in brackets) are robust to arbitrary heteroskedacity and 
serial correlation (Newey-West corrected). * denotes a significance level of 
5 percent.
All regressions include 78 two-digits industry dummies, 4 technology 
indicators, a complete set of year dummies, a dummy variable for R&D 
stock equals zero and a dummy variable for Internalized Flows equal zero. 
bFirm Fixed-Effects are approximated according to Blundell, Griffith and 
Van Reenen (1999). Thus, including a pre-sample mean of: Market Share, 
Employees, Tobin's Q, Sales, Assets, R&D stock, Patents stock and 
Citations stock.
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Finally, we test the robustness of the above findings to four-digit industry ef­

fects. We report the estimation results of including a complete set of four-digit 

industry dummies in a polynomial expansion of degree one and two. The results 

are reported in table A9 in the appendix. The same pattern of results hold, where 

Internalized Flows is positive and significant and Externalized Flows is negative 

and significant. Interestingly, we find that the effects of the linear term of R&D 

stock over assets and its interactions with Internalized Flows and Externalized 

Flows rise when exploiting only the variation within four-digit industry SIC codes.

In conclusion, we have linearized equation (5.17) using a polynomial series ex­

pansion of degrees one, two, three and four. We find the same pattern of results 

regarding the interaction terms between Internalized Flows and Externalized Flows 

with the R&D stock over assets, where the interaction term of Internalized Flows 

is positive and significant and the interaction term of Externalized Flows is neg­

ative and significant. We also find that the estimated effects in the polynomial 

approximations tend to be higher as the series expansion degree rises.

5.6.5 A reduced form R&D equation

In this section, we estimate a reduced form R&D equation aiming at finding prelim­

inary evidence suggesting the diffusion variables affect the R&D decision of firms. 

This may indicate that firms internalize their ability to reabsorb their spilled knowl­

edge when optimizing their R&D.

We estimate the effect of Internalized Flows and Externalized Flows on the R&D 

decision of the firm in two stages. In the first stage, we estimate the firm fixed-effect 

component in the R&D equation. In the second stage we project the estimated 

firm fixed-effects obtained from the first stage of the estimation on Internalized 

Flows and Externalized Flows.

The R&D equation we estimate in the first stage is:

log R h D it =  a.i -f- Z rit(3 +  €it (5.20)
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Where, RSzDu is the R&D expenditures of firm i in period i, a* is the firm fixed- 

effect, €it is an idiosyncratic error term and Zit is the following vector of controls: 

log (citations-weighted patents stock), log(sales) (current period and lagged by one 

period), log(industry sales) (current period and lagged by one period). We include 

the sales variables (current and lagged) so as to capture demand shocks that may 

affect the R&D incentives of the firm. The citations-weighted patent stock can be 

thought to affect the R&D decision of the firm in various manners. One possibility 

is th a t patents represent the intellectual property protection the firm faces, so that 

a larger patent portfolio (adjusted by its quality) will intensify private returns to 

R&D.

Finally, we also experiment with a dynamic specification tha t includes log R&Dit- i  

in the right-hand-side of equation (5.20). This dynamic specification is an impor­

tan t robustness test, as R&D investment is known to be persistent over time, thus, 

much of its variation can be explained by its lagged value.

Based on the estimates obtained from the R&D equation, we recover the esti­

mated firm fixed-effects, denoted by a*, and examine in the second stage the extent 

to which on is explained by Internalized Flows, Externalized Flows and Internalized 

Share, as following:

cii =  7 j (Internalized FlowSi) +  7 2 (Externalized Flowsi) +  SZi -t- z/* (5.21)

Where, a* is the estimated firm fixed-effects obtained from equation (5.20), Z{ 

is the mean of Za over the estimation sample (1980-2001) and 17 is the error term. 

We expect ry1 to be positive and 7 2 to be negative42.

We estimate three specifications of the firm fixed-effects. Our first specification 

includes only the diffusion variables. In this specification, we aim at identifying 

the extent to which cross-firm variation in the time-invariant component in their 

R&D decision is attributed to the diffusion variables.

42 In addition, we report specifications where we include Internalized Share instead of Internal­
ized Flows and Externalized Flows. In these specifications, we expect the coefficient on Internal­
ized Share to be positive.
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Our second specification adds the mean of the time variant variables used in 

the first-stage of the estimation, in the period 1980-2001, whereas in the third 

specification we add the set of pre-sample means of the variables used in the fixed- 

effects “mean scaling” approach we have adopted throughout this chapter.

Finally, we test whether our results also hold in a dynamic specification that in­

cludes the lag of R&D in the right-hand-side of equation (5.20). A well-documented 

stylized fact is that the R&D expenditures of the firm are strongly correlated over 

time. Thus, identifying the firm fixed-effect in a specification that already includes 

the lag of R&D would be a difficult task. Nonetheless, it is an important robustness 

test, as reported in table 10.

Table 9 reports the estimation results for the static specification (which does 

not include lagged R&D expenditures). In column ,1 we report the results from 

the first-stage estimation. Current and lagged sales have a positive effect of R&D 

expenditures, where the effect of industry sales is positive and significant only for 

the current term. Citations-weighted patents stock has a positive and significant 

effect on R&D expenditures.

In column 2, we project the firm fixed-effects that have been obtained from 

the first-stage estimation. The effect of Internalized Flows is positive and signifi­

cant, whereas the effect of Externalized Flows is negative and significant, both as 

expected. The R 2 is 0.39, which indicates that about 40 percent of the variation 

across firms in their R&D decisions can be explained by Internalized Flows and 

Externalized Flows.

In column 3, we add the mean across the estimation period of the variables used 

as controls in the estimation of the R&D equation. The estimates of Internalized 

Flows and Externalized Flows drop, however, they keep their signs and remain 

significant.

In column 4, we add the set of pre-sample means. The estimates of Internalized 

Flows and Externalized Flows continue to fall, however, they keep the ‘correct’ 

signs and remain significant.

In columns 5 to 7, we report the equivalent estimation results of projecting 

the estimated firm fixed-effects on Internalized Share. We find in all specifications
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the expected result, in which the coefficient on Internalized Share is positive and 

significant.

Table 9
Reduced form  R& D and firm  fixed-effects (FE1) estim ations - static

9,454 observations (in the R&D regression), 476 firms (for the fixed-effects regressions)

log(R&D) FE FE FE FE FE FE

Internalized Flows 0.028*
(0.003)

0.018*
(0.003)

0.015*
(0.003)

Externalized Flows -0.048*
(0.014)

-0.035*
(0.013)

-0.028*
(0.012)

Internalized Share 11.862*
(2.000)

9.531*
(1.608)

8..075* 
(1.392)

mean(Sales) 0.008
(0.007)

0.026
(0.011)

0.019
(0.013)

0.033*
(0.001)

mean(Industry Sales) 0.053*
(0.008)

0.042*
(0.009)

0.059*
(0.009)

0.041*
(0.008)

mean(CW Patents stock) 0.002
(0.002)

0.006*
(0.002)

0.004*
(0.002)

0.011*
(0.003)

mean(R&D stock) 0.003
(0.004)

-0.016
(0.011)

0.002
(0.005)

0.002*
(0.001)

log(Salest) 0.146*
(0.013)

log(Salest.1) 0.044*
(0.008)

log(Industry Sales,) 0.296*
(0.019)

log(Industry Sales,.,) -0.033
(0.023)

log(CW Patents stock) 0.286*
(0.011)

Pre-sample variables mean No No No Yes No Yes Yes

R2 0.778 0.391 0.507 0.552 0.113 0.347 0.425
’The estimated firm fixed-effects are fitted from the R&D regression that is reported in column 1. 
Robust standard errors are in brackets. * denotes a significance level of 5 percent.
The R&D equation includes a complete set of year dummies.

In table 10, we report the estimation results of the dynamic specification (adding 

the lag of R&D in the right-hand-side of equation (5.20)). The long-run fixed-effect 

term  is computed as 1_(̂ 56g, where 0.568 is the coefficient on the lag of R&D.

We find the same pattern of results when projecting the estimated firm fixed- 

effects on the diffusion variables. Thus, Internalized Flows is positive and sig-
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nificant, Externalized Flows is negative and significant and Internalized Share is 

positive and significant.

Table 10
Reduced form R&D and firm fixed-effects (FE1) estimations - dynamics

9,454 observations (in the R&D regression), 476 firms

log(R&D) FE FE FE FE FE FE

Internalized Flows 0.044*
(0.006)

0.028*
(0.006)

0.022*
(0.061)

Externalized Flows -0.110*
(0.028)

-0.085*
(0.026)

-0.070*
(0.025)

Internalized Share 18.523*
(3.436)

14.897*
(2.808)

12.156*
(2.402)

mean(Sales) 0.049
(0.031)

0.114*
(0.029)

0.067*
(0.033)

0.001*
(0.0001)

mean(Industry Sales) 0.079*
(0.014)

0.066*
(0.015)

0.084*
(0.015)

0.063*
(0.014)

mean(CW Patents stock) 0.002
(0.002)

0.001*
(0.003)

0.006
(0.005)

0.001*
(0.0005)

mean(R&D stock) -0.002
(0.010)

-0.001*
(0.0001)

-0.0005
(0.001)

-0.004*
(0.0002)

log(R&D,.,) 0.568*
(0.006)

log(Salest) 0.262*
(0.007)

log(Sales,.]) -0.199*
(0.007)

log(Industry Salest) 0.125*
(0.014)

log(Industry Sales,_i) -0.007
(0.008)

log(CW  Patents stock) 0.079*
(0.008)

Pre-sample variables mean No No No Yes No Yes Yes

R2 0.949 0.289 0.397 0.469 0.077 0.277 0.375

'The estimated firm fixed-effects are fitted from the R&D regression that is reported in column 1. 
Robust standard errors are in brackets. * denotes a significance level of 5 percent.
The R&D equation includes a complete set of year dummies.

In conclusion, in this section we have performed a preliminary test to whether 

the R&D decision of the firm is affected by the diffusion pattern of its inventions, 

under the hypothesis tha t the firm would invest more in R&D, should it face higher 

dynamic private returns (as indicated by the theoretical model we present in section
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3).

We find that R&D expenditures rise with higher Internalized Flows and lower 

Externalized Flows. This finding is also robust to a dynamic specification of the 

R&D equation, which includes the lag of R&D as an explanatory variable. This 

amplifies the robustness of our findings, as R&D investment is known to be time- 

persistence, which implies that identifying the fixed-effect component is this spec­

ification becomes a harder task.

In future research we plan to analyse a structural model in which the R&D 

decision of the firm takes into account dynamic consideration, where private returns 

to R&D depend on future subsequent developments. In chapter 5, we develop a 

theoretical model allowing firms to internalize the effect of the spillovers they create 

on their future profits and strategically manage the diffusion of their knowledge.

A case-study

We conclude the empirical analysis of this chapter with a case-study.

As our findings are based on a pooling estimation across industries, one of our 

main concerns is that the diffusion measures we have constructed capture variation 

in private returns across industries.

In order to mitigate this concern, we have controlled for industry effects, by 

including a complete set of two-digit industry dummies as a default in all specifi­

cations (in addition to main technology sector indicators). Furthermore, we have 

experimented with four-digit industry dummies and found our results to be robust.

Nevertheless, even if the cross-industry variation could be captured by two-digit 

industry dummies, they are included only linearly and not interacted with the R&D 

stock over assets (i.e., the linear industry effects are only an approximation of the 

cross-industry variation in private returns).

In order to further mitigate the above concern, we investigate in this section 

whether our findings are evident within a small sample of 30 firms that operate 

in high-tech industries, where we should expect the diffusion pattern of knowledge 

to  m atter the most. Encouragingly, we find the pattern of results in this smaller, 

high-tech sample to strongly confirm our previous findings from the pooled sample.
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We focus on a sample of 30 firms, which operate in the Computer Hardware 

industry (the four-digit SIC codes are listed in the appendix), over a period of about 

20 years. Table 11 reports the estimation results, where columns 1 and 2 refer to 

the Tobin’s Q estimation, whereas columns 3 and 4 refer to the R&D estimation.

Column 1 reports the estimation results of a Tobin’s Q specification that in­

cludes the R&D stock over assets, linearly and interacted with Internalized Flows 

and Externalized Flows43. We find that private returns significantly rise with In­

ternalized Flows and fall with Externalized Flows, as expected.

In column 2 we add firm fixed-effects. The same pattern of results regarding 

Internalized Flows and Externalized Flows remains, where the former is positive 

and significant, and the latter is negative and significant.

Columns 3 and 4 report the estimation results of the R&D equation (for the 

sake of brevity, we report only the second stage estimation). In column 3, we 

report the estimation results of the static R&D specification (identically to column 

2 is table 9). As expected, Internalized Flows is positive and significant, whereas 

Externalized Flows is negative and significant.

Finally, in column 4, we report the estimation results of the dynamic R&D 

specification (identically to column 2 in table 10). The pattern of results remains 

robust to this specification as well.

43Internalized Flows and Externalized Flows are not included linearly as well, since the small 
sample size does not allow us to simultaneously identify the effects of the linear and interacted 
terms of the diffusion variables. Including only the linear terms yields the same pattern of results 
reported in columns 1 and 2.
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Table 11
The effect of Internalized Flows and Externalized Flows - A

case study on R&D intensive firms

Tobin's Q Tobin's Q
R&D
Static

R&D
Dynamics

R & D  stock/Assets 0.056*
(0.029)

0.050*
(0.025)

Internalized Flow s x (R& D  

stock/A ssets)0
0.379*
(0.098)

0.211*
(0.085)

Externalized Flow s x (R& D  

stock/Assets)0
-0.011*

(0.005)
-0.016*

(0.006)

Intemallized Flow s 0.307*
(0.105)

0.288*
(0.116)

Externalized F low s 0.015*
(0.004)

0.012*
(0.004)

Firm Fixed-effects No Yes

Observations 594 594 30 30

R2 0.165 0.287 0.519 0.440
Standard errors in brackets are robust to arbitrary heteroskedacity. * denotes a 
significance level of 5 percent.

In conclusion, the case-study we have conducted in this section verifies our 

empirical findings that private returns rise with Internalized Flows and fall with 

Externalized Flows, and that firms with higher Internalized Flows and lower Ex­

ternalized Flows innovate more.

This mitigates our concern that our empirical findings are driven merely by 

cross-industry variation, as may be the case under pooling estimation.

5.7 Summary and conclusions

In this chapter we aggregate Internalized Spillovers and Externalized Spillovers 

from the originating patent level to the originating firm level (where the firm level 

measure of Internalized Spillovers is labeled as Internalized Flows and Externalized 

Spillovers is labeled as Externalized Flows). We exploit the firm-level variation in 

the ability of the firm to reabsorb its spilled knowledge, through estimating the
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market valuation of its R&D stock.

We formalize the dynamic considerations introduced in this thesis, by show­

ing that spillovers can raise private returns, through enhancing the technological 

opportunities along the lines of research the originating knowledge inspires. The 

extent to which spillovers raise private returns depends on whether the originating 

firm benefits from the enhanced technological opportunities. Thus, spillovers can 

increase private returns via their interaction with the ability of the originating firm 

to  reabsorb its spilled knowledge.

The main econometric analysis we have conducted in this chapter is the estima­

tion of a market value specification, in which the market valuation of the knowledge 

of the firm (which is proxied by its R&D stock) depends on Internalized Flows and 

Externalized Flows. We expect private returns, as measured by the change in the 

value of the firm as a response to a change in its R&D expenditures, to rise with 

Internalized Flows and to fall with Externalized Flows.

Moreover, we have performed a preliminary test to whether firms internalized 

their ability to reabsorb their spilled knowledge (and, hence, capture higher private 

returns), by estimating a R&D equation.

We find that private returns rise with Internalized Flows and fall with External­

ized Flows, as expected. A one standard deviation increase in Internalized Flows 

raises the market valuation of an additional dollar spent on R&D by 30 percent 

(evaluated at the mean).

Furthermore, we find preliminary evidence that firms adjust their R&D expen­

ditures according to their ability to reabsorb their spilled knowledge, where R&D 

expenditures rise with Internalized Flows and fall with Externalized Flows.

Our empirical findings validate the assumption we have made in chapters 3 and 

4, under which private returns are higher when knowledge creates more Internalized 

Spillovers and less Externalized Spillovers. This confirms the importance of the 

findings reported in these previous chapters.

Moreover, the extent to which the firm-level variation in the diffusion variables 

we have constructed is attributed to different managerial skills of firms optimizing
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the diffusion of their knowledge, has important consequences to the analysis of 

spillovers, as knowledge flows can no longer be assumed exogenous, but the result 

of a strategic behaviour of firms. This is further highlighted as our findings hint 

tha t firms adjust their R&D spending according to the pattern of diffusion their 

inventions follow.

In the next and final chapter of this thesis we develop a theoretical model 

that demonstrates the importance of the strategic nature of knowledge flows for 

the understanding of the effect of spillovers on economic performance. We design a 

mechanism tha t channels through the product market, via which a firm can benefit 

from the diffusion of its knowledge. We show that this mechanism can explain one 

of the most important events in the industry fife cycle, which the literature refers 

to as £ producers-shakeout ’.

166



5.8 References

Arrow, K, J., “Economic Welfare and the Allocation of Resources for Innovation” , 

(1962), in Nelson, editor, The Rate and Direction of Inventive Activity

Austin, D. (1993), “An Event Study approach to measuring innovative output: 

The case of Biotechnology” , American Economic Review, 83, 2: 235-258

Bloom, N., Schankerman, M. and Van Reenen, J., (2005), “Identifying technology 

spillovers and product market rivalry” , LSE mimeo

Blundell, R., Griffith R. and Van Reenen, J., (1999), “Market share, Market value 

and Innovation in a Panel of British Manufacturing Firms” , Review of Economic 

studies, 6 6 , 529-554

Chesbrough, H. W. (2003), “Externalized Innovation, The New Imperative for 

Creating and Profiting from Technology” , Harvard Business School Press

Cockburn I., Griliches Z., (1988), “Industry Effects and Appropriability Measures 

in the Stock Market’s Valuation of R&D and Patents” , American Economic Re­

view, Proceedings Issue Vol. 78, no. 2, PP. 419-423

Jones, C., Williams J., (1998), "Measuring the Social Rate of Return to R&D", 

Quarterly Journal of Economics, 113(4), 119-35.

Dasgupta, P.S., Stiglitz J. E., (1980), “Industrial Structure and the Nature of 

Innovative Activity” , Journal of Political Economy

Griliches, Z. (1979), “Issues in assessing the contribution of research and develop­

ment to productivity growth” , Bell Journal of Economics 10 (1), pp 92-1167

Griliches, Z. (1981), “Market Value, R&D and Patents” , Economics Letters, 7, pp 

183-187

Griliches, Z. (1992), “The search for R&D spillovers” , Scandinavian Journal of 

Economics 94, supplement, pp S29-S47

Griliches, Z. (1994), “Productivity, R&D, and the data constraint” , American Eco­

nomic Review 84, (1), pp 1-23

167



Griliches, Z. (1996), “R&D and productivity: The unfinished business” , in Z. 

Griliches (1998), R&D and Productivity: The Econometric Evidence, The Uni­

versity of Chicago Press, Chicago and London

Griliches, Z. (1998), R&D and Productivity: The Econometric Evidence, The Uni­

versity of Chicago Press, Chicago and London

Griliches, Z., Pakes, A., Hall, B. H. (1987), “The Value of Patents as Indicators of 

Inventive Activity” , Economic Policy and Technical Performance, eds. P. Dasgupta 

and P. Stoneman, pp. 97-124

Grossman, G. M. and Helpman, E. (1991), Innovation and Growth in the Global 

Economy, M IT  Press, Cambridge, Mass

Hall, B. H. (1996), “The private and social returns to R&D”, in Technology, R&D 

and the Economy, ed. B. Smith and C. Barfield, Brookings Institution and AEI, 

Washington D.C., pp 140-162

Hall, B. H., Jaffe A.B. , Trajtenberg M., “The NBER Patent Citations D ata File: 

Lessons, Insights and Methodological Tools” , NBER Working Paper 8498 (2001)

Henderson R., Jaffe A.,Trajtenberg M., “University versus Corporate Patents: A 

Window on the Basicness of Invention” (1997), Economics of Innovation and New 

Technology, 5 (1), pp. 19-50

Henderson R., Jaffe A.,Trajtenberg M., “Universities as a Source of Commercial 

Technology: A Detailed Analysis of University Patenting 1965-1988” , Review of 

Economics and Statistics, February 1998, Vol LXXX (1), pp. 119-127

Jaffe, A. (1986), “Technological opportunity and spillovers of R&D: Evidence from 

firms’ patents, profits and market value” , American Economic Review 76, pp 984- 

1001

Jaffe, A. (1988), “Demand and Supply Influences in R&D Intensity and Produc­

tivity Growth” , Review of Economics and Statistics, 70 (3), 431-437.

Jaffe, A. and Trajtenberg, M. (1999), “International knowledge flows: Evidence 

from patent citations” , Economics of Innovation and New Technology, Vol. 8 : 

105-136

168



Jaffe, A. and Trajtenberg, M (2002), “Patents, Citations and Innovations: A Win­

dow on the Knowledge Economy” , Cambridge, Mass.: MIT Press, August 2002

Jaffe, A., Trajtenberg, M. and Henderson, R. (1993), “Geographic localization 

of knowledge spillovers as evidenced by patent citations” , Quarterly Journal of 

Economics 108 (3), pp 577-598

Jaffe, A., Fogarty, S., Trajtenberg, M. (2000), “Knowledge Spillovers and Patent 

Citations: Evidence from A Survey of Inventors” , American Economic Review, pp. 

215-218

Keller, W. (2004), “International Technology Diffusion", forthcoming, Journal of 

Economic Literature

Lanjouw, J., Schankerman, M. (2004), “Patent Quality and Research Productivity: 

Measuring Innovation with Multiple Indicators” , Economic Journal, 114 (April), 

441-465

Levin, R. C. (1988), “Appropriability, R&D spending and technological perfor­

mance” , The American Economic Review 78, pp. 424-428

Lerner, J. (1997), “An Empirical Exploration of a Technology Race” , RAND Jour­

nal of Economics, 28(2), 228-247

Loury, C. G. (1979), “Market Structure and Innovation” , Quarterly Journal of 

Economics, 93, pp. 395-410

Manski, C., (1991), “Identification of Endogenous Social Effects: The Reflection 

Problem” , Review of Economic Studies 60 (3), 531-42

Pamela, M., Klock, M (1993), “The Impact of Intangible capital on Tobin’s q in 

the Semiconductor Industry” , American Economic Review, 83, 2, 265-269

Pakes, A (1985), “On Patents, R&D , and the Stock Market Rate of Return” , the 

Journal of Political Economy, Vol. 93, No 2,April, pp. 390-409

Pakes, A (1986), “Patents as Options: Some Estimates of the Value of Holding 

European Patent Stocks” , Econometrica, Vol. 54, no. 4,July, pp. 755-784

Schankerman M., Pakes A., “Estimates of the Value of Patent Rights in European

169



Countries During the Post-1950 Period” (1986), Economic Journal, Vol.96, pp. 

1052-1076

Spence, A. M. (1984), “Cost reduction, competition and industry performance” , 

Econometrica 52, pp 101-121

Levin, R. C., Cohen W. M., Mowey D. C., “R&D Appropriability, Opportunity, 

and Market Structure: New Evidence on Some Schumpeterian Hypotheses” (1985), 

American Economic Review, Vol. 75, pp. 20-24

Trajtenberg, M. “A Penny for Your Quotes: Patent Citations and the Value of 

Innovations” , The Rand Journal of Economics, Spring 1990, 21(1), 172-187

Trajtenberg, M. (1990), “Economic Analysis of Product Innovation: The Case of 

CT Scanners” , Harvard University Press, Cambridge, Mass

170



5.9 Appendix

5.9.1 D ata

Our sample combines data mainly from two sources: the patents and citations data 

are from T h e  N B E R  U S P T O  p a te n ts  d a tab ase 44 and the accounting data for 

the period 1980-2001 are from the T h e  C o m p u sta t N o rth -A m e rica  d a ta se t

For the patents data, we focus only on patents for which we have ownership 

information, including the patents of 2859 US organizations, out of which 800 

US firms are matched to The Compustat North-America dataset (we do not have 

complete accounting data on the other firms, but only patents data, which we use as 

technological links in the sequence of citations we have constructed and explained 

in chapter 2 )

The accounting dataset has been ‘cleaned’ to remove accounting years with 

extremely large jumps (> + 200% or <-6 6%) in sales, employment or capital sig­

nalling merger and acquisition activity. The book value of capital is the net stock 

of property, plant and equipment (Compustat Mnemonic PPENT); Employment 

is the number of employees (EMP). R&D (XRD) is used to create R&D capital 

stocks calculated using a perpetual inventory method with a 15% depreciation rate 

(Hall et al, 2005). For Tobin’s Q, firm value is the sum of the values of common 

stock, preferred stock, total debt net of current assets (Mnemonics MKVAF, PSTK, 

DT and ACT). Book value of capital includes net plant, property and equipment, 

inventories, investments in unconsolidated subsidiaries and intangibles other than 

R&D (Mnemonics PPENT, INVT, IVAEQ, IVAO and INTAN). Tobin’s Q was set 

to 0.1 for values below 0.1 and at 20 for values above 20. See also Lanjouw and 

Schankerman (2004).

We construct the pool of knowledge facing firm i in period t, defined as RSzD 

Poolit, as

RSzD Poolit =  T ijj^ iT E C i^R h D  Stockjt)

44 These data are collected from The US Patent and Trademark Office (PTO) and are described 
in detail in Hall, Jaffe and Trajtenberg (2001). These data contain detailed information on almost 
3 million U.S. patents granted between January 1963 and December 1999 (such as inventor, grant 
year, technology sector etc.) and a list of all the citations made in the period 1975-1999.
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Where TECij is defined in equation (3.5) and the index j  represents firms that 

operate in overlapping technology sectors to firm i.

Industry  Salesu is defined as the aggregate sales of other firms facing firm 

i (denoted by the index j) ,  which operate in overlapping product markets, as 

following:

Industry Salesu — T>jj^iSICij(SaleSjt)

Where, SIC ij is defined in equation (3.4). Industry price deflators were taken 

from Bartelsman, Becker and Gray, 2000, until 1996 and from the BEA 4-digit 

NAICS Shipment Price Deflators afterwards.

In Table 11, the industries we have included are: SIC 3570 to 3577 (Computer 

and Office Equipment (3570), Electronic Computers (3571), Computer Storage De­

vices (3572), Computer Terminals (3575), Computer Communications Equipment 

(3576) and Computer Peripheral Equipment Not Elsewhere classified (3577).
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5.9.2 Estim ation tables

Table A1
Analysis o f Variance - accounting and patents variables

One-digit Two-digits Three-digits Four-digits
SIC SIC SIC SIC

Log(Tobin's Q) 5.46 2.61 2.58 2.27
(0.000) (0.000) (0.000) (0.000)

R&D stock/Assets 4.78 1.94 1.33 1.65
(0.000) (0.000) (0.021) (0.000)

Assets 4.02 1.80 2.44 1.80
(0.000) (0.000) (0.000) (0.000)

Sales 3.41 0.97 1.06 1.35
(0.000) (0.551) (0.325) (0.011)

CW Patent stock 1.22 1.05 1.00 1.62
(0.279) (0.374) (0.497) (0.000)

Citations stock 3.31 1.61 1.31 1.35
(0.000) (0.003) (0.032) (0.014)

Table entries are the F -statistics for the null hypothesis of equal means across the 
different industry breakdowns. Pr[>F] is in the brackets.

Table A2
Conditional correlation between the diffusion m easures and  

main variables: OLS estimation
Internalized

Flows
Externalized

Rows
Internalized

Share

log(mean Sales) 4.162 0.338 -0.002

(3.585) (0.209) (0.003)

log(mean R&D Stock) -0.127 0.083 0.000

(1.138) (0.066) (0.001)

log(mean Employees) -5.079 -0.613 0.001
(3.994) (0.233) (0.003)

log(mean CW Patents Stock) 5.274 0.034 0.009

(1.873) (0.109) (0.001)

log(mean Citations Stock) 1.075 0.259 -0.001

(2.188) (0.128) (0.002)

The estimation sample includes the 476 firms that are in our final sample.
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Table A3
The effect of Internalized Share on private returns to innovation

Nonlinear Least Squares, dependent variable: log(Tobin's-Q)

(1) (2) (3) (4) (5)

R & D  stock/A ssets 0.330* 0.120* 0.135* 0.141* 0.217*
(0.101) (0.024) (0.026) (0.026) (0.040)

Internalized Share x (R & D  
stock/A ssets)

5.624*
(2.295)

2.341*
(0.507)

1.702*
(0.533)

1.379*
(0.498)

1.311*
(0.586)

log(Internalized Share) 0.016*
(0.004)

0.020*
(0.006)

0.025*
(0.007)

log(Sales) 0.035*
(0.004)

0.033*
(0.004)

log(Industry Sales) -0.005*
(0.006)

-0.011*
(0.006)

Sales Growth 0.538*
(0.018)

Firm Fixed-Effects3 No Yes Yes Yes Yes

Observations 9,454 9,454 9,454 9,454 9,015

R2 0.294 0.496 0.496 0.499 0.504

Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 
(clustered at the firm level). * denotes a significant level of 5 percent.

All regressions include 78 two-digits industry dummies, 4 technology indicators, a complete 
set of year dummies, a dummy variable for R&D stock equals zero and a dummy variable 
for Internalized Flows equal zero.
aFirm Fixed-Effects are approximated according to Blundell, Griffith and Van Reenen 
(1999). Thus, including a pre-sample mean of: Market Share, Employees, Tobin's Q, Sales, 
Assets, R&D stock, Patents stock and Citations stock.
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Table A4
The effect o f Internalized Share on private returns to

innovation
Linear estimation (Newey-West standard errors), dependent 

variable: log(Tobin's-Q)

(1) (2) (2) (3)

R&D stock/Assets 0.175*
(0.021)

0.167*
(0.021)

0.187*
(0.022)

0.190*
(0.023)

Internalized Share x (R&D  
stock/Assets)

2.829*
(0.553)

3.306*
(0.609)

2.189*
(0.605)

1.293*
(0.620)

log(Intemalized Share) 0.054*
(0.012)

0.050*
(0.011)

CW Patents Stock x (R&D 
stock/Assets)

0.013
(0.002)

log(CW Patents Stock) 0.045*
(0.009)

Sales Growth 0.767*
(0.055)

Observations 9,454 9,454 9,454 9,015

Firm Fixed-Effectsa Yes Yes Yes Yes
Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered at the firm level). * denotes a significant level of 5 
percent.
All regressions include 78 two-digits industry dummies, 4 technology 
indicators, a complete set of year dummies, a dummy variable for R&D stock 
equals zero and a dummy variable for Internalized Flows equal zero.
“Firm Fixed-Effects are approximated according to Blundell, Griffith and Van 
Reenen (1999). Thus, including a pre-sample mean of: Market Share, 
Employees, Tobin's Q, Sales, Assets, R&D stock, Patents stock and Citations 
stock.
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Table A5
The effect of Internalized Flows and Externalized Flows on 

private returns to innovation: four-digits industry effects

Dependent variable: Log(Tobin's-Q); 9,015 observations, 475 firms

(1) (2) (3) (4)

R & D  stock/A ssets3
0.197*
(0.042)

0.342*
(0.068)

0.199*
(0.042)

0.348*
(0.068)

R & D  stock/A ssets
0.366*
(0.074)

0.373*
(0.074)

(R & D  stock/A ssets)2
-0.030*
(0.009)

-0.031*
(0.009)

Internalized F low s x (R & D  

stock/A ssets)3
0.071*
(0.021)

0.054*
(0.015)

0.072*
(0.019)

0.055*
(0.014)

Internalized F low s x (R & D  
stock/A ssets)

Internalized F low s x (R & D  

stock/A ssets)2

0.109*
(0.041)

-0.021
(0.029)

0.111*
(0.039)

-0.022
(0.029)

Externalized F low s x (R & D  

stock/A ssets)3
-0.008*

(0.002)
-0.005*

(0.002)
-0.007*

(0.002)
-0.005*

(0.002)

Externalized F low s x (R & D  
stock/A ssets)

Externalized F low s x (R & D  

stock/A ssets)2

-0.014*
(0.005)

0.002*
(0.0006)

-0.012*
(0.005)

0.002*
(0.0006)

log(Internalized F low s) 0.005
(0.019)

0.005
(0.018)

log(Extem alized F low s) -0.009
(0.014)

-0.011
(0.014)

Sales Growth 0.551*
(0.055)

0.551*
(0.055)

0.549*
(0.054)

0.573*
(0.054)

Firm Fixed-E ffectsb Yes Yes Yes Yes

Four-digit Industry effects Yes Yes Yes Yes

R 2 0.569 0.568 0.569 0.572

“Estimated marginal effects, evaluated at the mean. Standard errors are 
calculated using the Delta method.
Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial 
correlation (clustered at the firm level). * denotes a significance level of 5 
percent.
All regressions include a complete set of year dummies, and a dummy for R&D 
stock equals zero and a dummy for Internalized Flows equal zero.
“Firm Fixed-Effects are approximated according to Blundell, Griffith and Van 
Reenen (1999). Thus, including a pre-sample mean of: Market Share, 
Employees, Tobin's Q, Sales, Assets, R&D stock, Patents stock and Citations 
stock.
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5.9.3 Theoretical m odel - sketch of proof (equation (5.6) in 

section 3)

In this section, we show how we have derived the expression of the dynamic returns 

in equation (5.6), as a function of the number of ‘second chances’ the originating

firm receives to stay in the development race, if it fails to win (recall that a win in

the case where firm is the sole inventor in a development stage).

The model does not include time, only generation of developments of the orig­

inating knowledge k. We assume the model starts from the point in time where 

knowledge k becomes available for sequential innovation by other firms (and by the 

originating firm i). All the computations of the expected number of wins relate to 

the point of view of this starting period.

The probability of winning at generation g is given by:

p (g) =  £  f 9 ~  1 I b(l -  9 ) F S 9s (5-22)
s=0 \  S )

It should be noted that the term qs reflects the ability of the firm to build 

on external research along the line of research it originates. The probability tha t 

knowledge is created in a given development stage and firm i not winning in this 

stage is q(l — p) +pq = q (since the firm does not win either if it fails to invent, or 

if it succeeds to invent, however, at least one other firm succeeds as well).

We aim at computing the expected dynamic returns to knowledge k, given the 

expected number of development stages won by firm i. For this purpose, we need 

to compute the following equation for the expected number of development stages 

won by firm i:

00 °° 9-1 /  a -  1 \
E{wins) =  £  P(9)  =  £  £  b ( l  -  9 )]9_s 9s (5-23)

5 = 0  5 = 0  s=0 \  S J

We turn  now to describe how this summation is computed to yield the expected 

number of development stages firm i wins.

Taking g to infinity (assuming the knowledge k has the potential of being devel­

oped an infinite number of times) and computing the expected number of inventions 

firm i makes along the fine of research can be expressed as following:
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p(i -  q)

p2{ l - q f  p { l - q ) q

p3( l - q ) 3 2p2{ l - q ) 2q p(l  -  q)q2

p \ \ - q f  Sp3( l - q ) 3q Sp2( l - q ) 2q2 p{l -  q)q3

p5{ l - q f  4p*( l -q)*q  6p3{ l - q f q 2 4p2{l -  q f q 3 p{l -  q)qA

Define h =  (1 — q) p. The summation of equation (5.23) over g can be computed

by first summing each column across its rows and then summing over columns.

Also, define s as the number of times the firm failed to win a development stage

and then summing over s equals 0 to infinity.

Summation of s =  0 (zero failures):

S° = h +  h2 +  h3 +  h4 +  ... (5.24)

5 ° =  t^  <5-25>
Summation of s =  1 (one failure):

S 1 = q (h  + 2 h2 +  3/i3 +  4ft4 +  ...) (5.26)

Which can be written, as following: 
ft ft2 ft3 ft4 ...

ft2 ft3 ft4 ...

ft3 ft4 ...

ft4 ...
Using the same method, we can first sum across rows and then across columns. 

This yields:

S 1 =  ~ - T  [ft +  ft2 +  ft3...] =  - r ^ - r S 0 (5.27)
1 — h, 1 — h

For s =  2 (two failures) we get the following summation:

S 2 = q2 (h + 3h2 +  6 /i3 +  10hA +  ...) 

Which can be expressed in the following form:
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h h2 h3 hA

h2 h3 hA

h2 h3 h4

h3 h4

h3 h4

h3 h4

h4

h4

h4

h4
Using the same method described above, this summation becomes:

S 2 =  - 2 - -q  (h +  2h2 +  3h? + 4/i4...) =  Vl g u. s '  (5.28)
1 — h v y (1 — /i)

W ith s =  3 (three failures) the summation is:

S 3 =  g3 (/i +  4/i2 +  10/i3 +  ...) (5.29)

Which can be expressed, as following: 
h h2 h3 ...

h2 h3 ...

h2 h3 . . .

h2 h3 ...

h3 ...

h3 . . .

h3 . . .

h3 ...

h3 . . .

h3 ...
As before, this summation becomes:

S s = rr^-rq 2 (h + 3h2 + 6 h3...) = 9 S 2 (5.30)
1 — h x ' (1 — h)

Thus, the summation of columns is a geometric series with a multiplicative
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factor equals ^ and the first argument in the series is .

Since we assume that the static payoff of winning every development stage is

Z  = p (l — q)v — x  (5.31)

The dynamic returns as a function of the number of ‘second chances’ the firm 

gets, 9, are given as (thus, 9 informs us on the number of columns we sum, where,

for 6 equals zero, we sum only the first column and when 0 goes to infinity we sum

all columns):

And in the limit where 9 goes to infinity we get:

- - t t s  <«>
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5.9.4 A sim ple model of strategic knowledge flows

We introduce a three stage patent race game that demonstrates the importance of 

the ability to benefit from own knowledge flows to the private value of innovation 

in a framework that allows for strategic behaviour in the diffusion of knowledge. 

This model is complementary to the model presented in section 3, which does not 

assume firms can affect the diffusion of their inventions.

We consider a model in which an originating firm internalizes the spread of its 

discovery and optimizes its diffusion by affecting the cost its rivals will incur when 

accessing it.

Assume firm i (the originating firm) holds the knowledge k. In order to com­

mercialize this knowledge a subsequent invention must occur. Denote by n the 

number of firms that aim at advancing the knowledge k (including firm i). Fur­

ther, we consider a patent race framework, in which the first firm to develop the 

knowledge k gains the prize v, while the rest gain nothing. Let S  = {1, ...,n} be 

the set of firms tha t participate in the patent race that the knowledge k originates 

and let S -i = {1, ...,z — l , i  +  1 , ...,n} be the set of firm z’s rivals in this patent 

race. In order to enter the patent race, firm j  £ S-i incurs access cost to the 

knowledge k , denoted by 7  ( r ) . For example, 7  (r) can represent formal licensing 

fees or informal searching and learning efforts, r  denotes policy measures firm i 

can adopt that affect the access cost of its n  — 1 rivals to the knowledge k, with 

> 0 (for example, r  can be the price of A; in a formal knowledge transfer or, 

alternatively, either keep the knowledge secret or make it publicly available). For 

simplicity, we assume firm i has no direct costs in setting r .

The key building block of this model is that firm i can benefit from its own 

spillovers, by using external research as an input in the production process of its 

future inventions.

Given this set up and following Loury (1979) and Dasgupta and Stiglitz (1980), 

we consider the following probability firm i invents before time t :

F(t) =  1 -  e - M * * .* -* )1 ( 5 . 3 4 )

Where h(xi ,x- i )  (also denoted by hi for ease of notation) is the hazard rate
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function45 of firm z, which is bounded between zero and one, X{ is the R&D expen­

ditures of firm z with > 0, <  0 and X-i = Xj with > 0. It is easy
jes-i

to  show that firm z’s innovation value is given in this case by

= v h j x ^ - c j x , )
a +  r v '

Where a = ^  hj, hj — h(xj) Vj ^  i is the hazard rate function of firm j , which
j t s

depends only on firm j ’s R&D expenditures46 tha t are denoted by Xj, c(xi) is the 

R&D costs of firm z with dĉ  > 0 and r  is the one period interest rate.

The probability that firm j  G S-i  will perform a successful invention before 

time t  is given by

F{t) = 1 -  e~h{x&  (5.36)

In this case, firm j  G S-i  innovation value can be expressed as

Wj = vh^ - ^ -  7(T<) (5.37)

Where, c (Xj) is the R&D cost of firm j  with > 0.

The effect of the spread of knowledge k on its value to firm z is ambiguous: 

on the one hand, the spread of this knowledge reduces the expected gains firm z 

receives, through increasing the probability that some other firm will be the first 

to invent the subsequent invention. On the other hand, the flow of the knowledge

k inspires research of others that contributes to the research of firm z, which raises

the probability it will make a discovery before its rivals do.

We consider a three stage game in which at the first stage firm z chooses its 

policy regarding external access to its private knowledge ( t * ) ,  at the second stage 

n — 1 firms decide whether to enter the patent race (after the fixed access cost to 

the knowledge k has been determined) and at the third stage, the patent race takes 

place (in which, the n  firms choose their optimal R&D investment strategy). We

45 Which is the probability that firm i makes the discovery at each point in time, given it has 
not done so before.

46 We assume that the hazard rate of firm j  depends only on firm jf’s R&D since this model 
focuses on the ability to benefit from own knowledge flows. In this model the knowledge flows 
are only from invention k to the n — 1 firms that participate in the patent race.

182



solve the model using backward induction. For notational ease, we denote 7  (t*) 

as 7  in solving for the third and second stages of the game.

T h ird  s tag e  At the third stage, firms optimize their innovation efforts. We 

assume that firms are small in the sense they take the expected discovery date as 

given, or equivalently, take a as given. Hence, there is no strategic interaction in 

R&D. For j  G S - i , the n — 1 first-order conditions of maximizing equation (5.37) 

with respect to 27 are given by

v d t p )  = dcjxj)  for € ^  
axj dxj

Due to symmetry, denote by Xj = x(v) the solution to (5.38) for j  G S-i. 

By definition of x_ i, X-i = (n — I)x(v)  is the sub-game solution for the aggre­

gate innovation efforts of firm z’s rivals. Substituting X-i into equation (5.35) and 

maximizing with respect to Xi, yields the following first order condition:

dh(xi , (n -  l)z(v)) dc (x {)
" — ^ —  =  (5-39)

Let Xi = Xi(v:n) solve equation (5.39).

Second s tag e  In the second stage, firms make their entry decisions. If they 

decide to enter the patent race they incur a fixed cost of 7 . Substituting xj = x(v) 

and Xi = Xi(v, n) into equation (5.37) and assuming free entry yields the following 

implicit solution for the number of firms that choose to participate in the patent 

race:

1
n  =

h(x(v))
v h ( x ( v ) ) - c ( x J v ) ) _ r _ H U v n ) )

+ 1  (5.40)
7

Denote by n the solution to equation (5.40) and substitute n into the optimal 

R&D of firm i that was found in the third stage, X i ( v , n )  =  X i ( v , n )  =  Xj(u,7, r). 

Substitute Xi(u,7 , r) back into equation (5.40) to get

n
h (x(v)) 7

+  1 (5.41)

Also, by the definition of a, it is given by
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x / - /  x w u  , /~ / XX vh(x(v))  -  c(x(v))a (v, 7 , r) =  (n (v, 7 , r) -  l) h (x(v)) +  h (xi(v, 7 , r)) = ------------------------------r

7  (5-42)

Further, substitute n (v ,7 , r) into X-i to get =  (n (v ,7 , r) — l)rc(v). For 

notational ease, denote a = a ( v , ' y , r ) , n  = n  (v , 7 , r) and =  Xi(v, 7 , r).

F irs t  s tag e  Substituting equations (5.41) and (5.42) and Xi(v, 7 , r) into equa­

tion (5.35) yields

w , = vh (xj (v,7 (1-), r ) , i - i  f a  7 ( t) ,r ) )  -  c f a  f a  7 (7-), r)) _
’ a (« ,7 ( r ) ,r )  +  r

For ease of notation, denote h(xi ( v , j , r) , ( f ,7 , r)) =  hi. As before, we as­

sume firm z does not internalize its impact on the discovery date via its own hazard 

rate. Thus, by setting r ,  firm i affects its own R&D (by changing n  which is a neg­

ative function of 7 ), which affects the expected discovery date (firm i takes a as

given and not as a function of hi). Nonetheless, firm i realizes its impact on the

discovery data through affecting the number of firms that participate in the patent 

race, h. Thus, firm i maximizes equation (4.42) with respect to r , which yields the 

following first order condition47:

dWj _  dq_ 
dr  dr

v[i d x-i (vhi — Ci) da
(5.44)

_(a +  r ) ^ 7 (r) (a +  r ) 2 d j ( r ) m

Where, 6 (v , r , r )  =  which is the effect of the optimal R&D expenditures of 

firm i ’s rivals on the hazard rate of firm i (which we link to its ability to  reabsorb 

its spilled knowledge, or alternatively, exploit the technological opportunities it 

creates).

Focusing on specifications that ensure an interior solution, it must satisfy equat­

ing the first order condition to zero:

47After substituting Xi and into equation (5.39), the envelope theorem implies that — 
-jj£: =  0. Thus, the chain role in differentiating equation (5.43) with respect to r  involves only the 
terms and ffiggfrhd .
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vex(v)m ^ {\>'r) =  (5.45)
v J d^(r)  a + r d j (r )  w  v '

Rearranging equation (5.45) yields the following condition for the optimal r  =

?i(v,r):

H v ^ ( r ) , r )  =  ^   ̂^  6

9(v)

Where, g(v) = % $ .

The total flows of knowledge outwards from firm i is determined by the number 

of rival firms in the patent race, which is given by n* (u ,7 ( r ) ,r )  — 1. Equation 

(5.46) shows that the ability of firm i to benefit from the knowledge spillovers it 

creates has a positive effect of the value of its innovation.

T h e o re tica l im plications a n d  em pirica l p red ic tio n s  The theoretical im­

plications of this model are summarized in equation (5.46). The ability of firm i to 

benefit from its own knowledge flows is given by 0 which is the effect of external 

research, that builds on the prior knowledge of firm i , on its hazard rate function. 

Equation (5.46) indicates a positive relation between the innovation value of firm 

i and its ability to technologically exploit its spilled knowledge.

The empirical implication of this model is that we should find a positive effect 

of the ability of the firm to build on its own spillovers on the private value of its 

knowledge, under the assumption that firms internalize and optimize the spread 

of their discoveries. Thus, this model is complementary for the model we have 

presented in section 3, which does not assume any strategic behaviour of firms.
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C hapter 6

Endogenous K nowledge Flows and  

Industry Evolution: A  T heory o f 

th e D ynam ic Incentive to  D iffuse 

K nowledge

We study the implications of allowing the firm  to internalize the feedback it receives 

from the spillovers its inventions create and affect the diffusion of its knowledge to 

the evolution of industries. We relate the incentive of a firm in a main indus­

try to diffuse its knowledge to a positive production externality, which is the result 

of its desire to stimulate the development of an ancillary industry that imposes a 

constraint on the growth possibilities of the main industry. The negative incentive 

to diffuse knowledge relates to the loss of market share associated with spreading 

valuable knowledge to rival firms. We demonstrate the importance of studying the 

endogenous and strategic nature of knowledge flows by simulating one of the most 

crucial phases in the industry life cycle, which the literature refers to as industry 

‘shakeout’, merely by studying the dynamics of the incentive to spread knowledge. 

Finally, we broaden the analysis of the effect of competition on innovation by con­

sidering the negative impact competition may have on the incentive to diffuse knowl­

edge. We show that stronger competition can discourage innovation by diminishing 

spillovers, as a result of a lower incentive of firms to share their knowledge.
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6.1 Introduction

The study of knowledge has been in the heart of economic research in the last three 

decades, due to its remarkable ability to diffuse and benefit innovators tha t have not 

invested resources in its creation. The large interest in knowledge as an engine for 

economic performance, in both micro and macro fields, is related to its public good 

characteristics and to the existence of spillovers. Numerous attem pts were made to 

identify spillovers and to quantify their effect1. However, in studying the positive 

externality associated with knowledge, the literature has assumed knowledge flows 

are exogenous, i.e., the diffusion of knowledge to the economy does not depend on 

the strategic behaviour of its inventor in shaping the way it spreads throughout 

the economy2. This strong assumption has no support in reality. On the contrary, 

firms have many methods that allow them to manage the flows of their inventions, 

such as patents, secrecy and informal and formal knowledge transfer (such as formal 

patent licensing and informal coordinated publications of recent developments)3.

This paper studies the endogenous nature of spillovers, by arguing that the 

inventor of knowledge internalizes the return it captures on the flows of its dis­

coveries and strategically optimizes them. In the empirical part of this thesis we 

have examined the return an inventor receives from the diffusion of its knowledge 

via inspiring the ideas of others, which may feed back into its future research in a 

sequential innovation framework.

Nevertheless, in this chapter we will focus on a different source of return the 

inventor receives from the diffusion of its knowledge, which is evoked from the 

product market. By focusing on this source of strategic behaviour in the diffu­

sion of knowledge, we hope to illustrate an interesting picture that will highlight 

the importance of the strategic nature of knowledge flows for explaining the effect 

of spillovers on the evolution of industries. For this purpose, we develop a dy­

1For surveys see Griliches (1992), Mairesse (1995), Hall (1996) and Keller (2001).
2 However, a different strand of literature has related to the endogenous nature of knowledge 

spillover (e.g., Cohen and Levinthal, 1989), through conditioning the ability of firms to benefit 
from external research on their attempt to absorb this research (which is referred to as absorptive 
capacity). However, knowledge flows are still exogenous in this framework.

3 See Chesbrough (2003), or the introduction to chapter 5 for examples for the strategic be­
haviour of firms in managing their knowledge flows.
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namic model of strategic interactions, which we solve using dynamic programming 

numerical methods.

We focus on the effect of the dynamic incentives of firms to diffuse their inven­

tions on the evolution pattern of industries. In particular, we study the remarkable 

phenomena of producers ‘shakeout \ which industries experience during their life 

cycle. Producers ‘shakeout’ is documented mainly in Gort and Klepper (1982), 

Klepper and Graddy (1980) and Utterback (1975, 1978)4. The large interest in 

identifying the triggers of producers ‘shakeout’ is related to the crucial role this 

‘shakeout’ plays in shaping industry structure as it evolves from birth to maturity.

The literature incorporates two different approaches for explaining producers 

‘shakeout’. The first approach is discussed mainly in Utterback (1975, 1978), Ut­

terback and Suarez (1993) and in Klepper and Graddy (1990). This approach 

relates producers ‘shakeout’ to an exogenous technological progress that changes 

the competition conditions in the industry, which, in turn, affects the survival haz­

ard of firms. This event usually occurs after the completion of the first phase of 

the industry evolution trajectory, in which there is intense product innovation and 

high entry. Once the exogenous technical change occurs, the technological oppor­

tunities change and the firms with higher learning capabilities and enhanced scale 

economics (due to being larger producers) can better exploit these new opportuni­

ties and become dominant, while the others are forced out of the industry.

A similar approach is discussed in Jovanovic and MacDonald (1994) who study 

a partial equilibrium model with a radical exogenous technological change that 

allows massive cost reduction for firms th a t shift to the new technology and force 

out of the industry firms that continue producing in the old-fashioned way.

The second approach is introduced in Klepper (1996)5 who suggests a model, 

in which a drastic innovation occurs endogenously as a result of R&D. Firms are 

able to invest in either product or process innovation, while their decision is based 

upon the return to each type of investments. By investing in process innovation,

4See also Klepper and Miller (1995), Klepper and Simons (1999) and Jovanovic and MacDonald 
(1994).

5 See also Klepper and Simons (2000).
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firms which are endowed with randomly allocated capabilities, can lower their cost 

of production. Thus, larger firms derive a higher return on process innovation than 

smaller firms. Further, firms can attract new consumers who are willing to pay 

more for the product by investing in product innovation and improving the quality 

of their brand. As the industry grows, the incentive to invest in process innovation 

rather in product innovation increases, since cost reduction can be applied over a 

higher production. There exists a production threshold, such that, after reaching 

it firms stop investing in product innovation and coordinate their innovative efforts 

only towards process R&D. The producers ‘shakeout’ occurs at this stage, when 

firms that have failed to reach this threshold are forced out of the industry.

In this chapter, we offer a third approach for explaining producers ‘shakeout’. 

At the early stages of the industry life cycle, the incentive to diffuse knowledge is 

strong, due to a desire to expand the market by encouraging the developments of 

crucial ancillary products, which constraint the growth of the main industry. This 

generates a positive production externality, which we refer to as a market expansion 

effect. Strong spillovers (due to the desire of firms to diffuse knowledge) at the early 

stages of the industry life cycle allows entry of firms with low innovative capabilities, 

whose survival is conditioned on their being able to access external knowledge (i.e., 

exploit spillovers). As the industry matures and the ancillary products develop, 

the constraint that these products impose on the growth of the main industry 

relaxes, causing a reduction in the incentive to share knowledge, until reaching a 

point where firms find it optimal to prevent the flow of their inventions. At this 

stage in the industry life cycle, spillovers fall, triggering producers ‘shakeout’ that is 

characterized by a mass exit of low-capability firms that find it too hard to survive 

without enjoying larger spillovers.

In order to better empathize the importance of the endogenous nature of knowl­

edge flows to the evolution of industries, it is useful to look at the early years of the 

US automobile industry and at the famous Selden patent. Selden was the first to 

invent the highway vehicle gasoline engine and applied for a patent in 1879. In that 

time, patents laws allowed for a large delay between the application date and the 

issue date of a patent. Selden exploited this law to delay the issue of his patent for
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16 years after his initial application6. The deliberate delay in the patent issue was 

due to the fact that the automobile industry in the United States was not devel­

oped enough to allow capturing a substantial return on this discovery. Eventually, 

Selden was forced to sell his patent to a group of Wall-Street investors who used 

this patent as a monopoly power on the gasoline engine automobile industry.

The monopoly power this patent created led to the formation of the Associa­

tion of Licensed Automobile Manufacturers (ALAM) in 1903. Entry into the US 

automobile was not possible in the absence of a license from the ALAM. The most 

famous producer who was not granted a license to enter the US automobile indus­

try  was Henry Ford. Although Ford did not believe in patents, he tried to get a 

license from the ALAM and was refused on the grounds of not having demonstrated 

sufficient ability for producing automobiles. Ford and others decided to fight the 

patent against the ALAM. The battle had dragged in courts for many years until 

1911, when the Circuit Court of Appeals found that the Selden patent did not 

cover the new technology that was in possession at that time. This was the end 

of the ALAM and the beginning of the mass production era in the US automobile 

industry that put Ford as the leading manufacturer.

Thus, the Selden patent is an important example for the endogenous nature 

of knowledge flows and for the ability of firms to control the access of other firms 

to their inventions (in the Selden patent case this was done formally via granting 

a license). Avoiding studying the strategic behaviour of firms in managing their 

knowledge flows, will prevent us from illustrating a more complete and a more 

reliable picture of the evolution of knowledge-based industries, as the evolution 

pattern the US automobile experienced in its early development stage.

In addition to studying the effect of endogenous knowledge flows on the dynam­

ics of industry structure, we aim to address the effect of competition on innovation. 

Previous studies in the literature have argued that there is a negative effect of com­

petition on innovation7, due to a reduction in the return to R&D as the degree of

6The patent was eventually granted in November, 5, 1895, and registered as a United States 
patent number 549160.

7E.g., Dasgupta and Stiglitz (1980).
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competition increases. Alternatively, recent studies have argued that the effect of 

competition on innovation is not monotonic, but rather shaped as an inverted U8.

In this paper, we offer an alternative analysis of the effect of competition on 

innovation, which also includes the effect of competition on the incentive to diffuse 

knowledge. Thus, as the degree of competition rises, firms become more reluctant to 

spread their discoveries, causing a reduction in spillovers tha t results in a reduction 

in the incentives to innovate. Hence, we argue that there exists another channel 

by which competition affects innovation, which is the effect of competition on the 

social return to innovation, via shaping the strategic component in the diffusion of 

knowledge.

Furthermore, we show that high innovation can be achieved as an equilibrium 

outcome in highly competitive industries, due to large spillovers when the incentive 

to  diffuse knowledge is high. Nonetheless, high innovation cannot be supported as 

an equilibrium outcome in highly competitive industries, when the incentive to 

share knowledge is low.

In conclusion, this paper is a theoretical attem pt to emphasize the importance 

of studying the strategic behaviour of firms in managing the flow of their knowledge. 

We will demonstrate the importance of the endogenous nature of knowledge flows 

by illustrating that one of the most important events in the industry life cycle, 

producers ‘shakeout’, can be explained merely on the basis of the dynamics of the 

incentive of firms to allow their knowledge to spill to others. Moreover, we will 

demonstrate that by investigating the incentives of firms to diffuse knowledge we 

can reassess and broaden the analysis of the effect of competition on innovation.

The rest of this chapter continues as following: section 2 provides a motivation 

for the theoretical model, section 3 presents the building blocks of the model, sec­

tion 4 describes the dynamic game, section 5 presents the computational method­

ology, section 6 reports the findings and section 7 concludes.

8 See Levin, Cohen and Mowary (1985) and Aghion, Bloom, Blundell, Griffith and Howitt 
(2002).
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6.2 Motivation

The model we develop in this chapter allows firms to optimize the diffusion of their 

inventions. Based on their expected pay-offs, firms decide whether to make their 

discoveries available to their rivals or keep them to themselves. The dynamics 

of the incentives to share or protect knowledge and their effect on innovation are 

explored, as the industry evolves from birth to maturity.

In deciding whether to make its knowledge publicly available, the firm has 

to reconcile the following trade-off: by diffusing knowledge to its rivals, the firm 

loses the competitive advantage its knowledge generates. This encourages the firm 

to prevent the spread of its knowledge. Nevertheless, the firm can benefit from 

spreading its knowledge to its rivals. In this chapter, we link the benefits from 

spreading knowledge to a market expansion effect, which is the increase in the 

size of the market as a response to an increase in the aggregate production. This 

effect is the result of a positive production externality, such tha t by increasing the 

production of its rivals, the firm benefits from a higher demand for its product.

We model the source of this production externality in the following manner: 

in consuming a core product (e.g., an automobile), consumers must purchase an 

ancillary product (e.g., fuel). In order to increase the demand it faces, the firm can 

stimulate improvements in the ancillary product, which will raise the attractiveness 

of the core product in the eyes of the consumers. Improving the ancillary product 

is a costly process that can be made only by the ancillary firms that invest in R&D. 

This investment depends on the demand for the ancillary product, which defines 

the expected return on a successful R&D. Therefore, by increasing its production, 

the firm in the core industry also increases the aggregate demand for the ancillary 

product, which encourages the ancillary firms to invest in R&D. The improvement 

in the quality of the ancillary product increases the market for the core product, 

which yields the positive feedback firms receive from diffusing their knowledge.

In order to motivate this issue further, it would be useful to re-examine the 

early development of the US automobile industry. The evolution of this industry is 

characterized by a great influence on ancillary industries, whose developments were
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crucial for the continuing growth of the automobile industry. The main industries 

that were affected by automobiles production were steel, petroleum, tires and oil.

The steel industry had changed its course of production by investing in new 

machinery that allowed for the development of the products demanded by the au­

tomobile manufacturers (such as processing alloy steel). Similarly, the petroleum 

industry was revolutionized. Before 1900, only about one-tenth of the petroleum 

refined had been converted into gasoline. Gasoline was regarded as an undesirable 

waste product. This situation dramatically changed as the production of automo­

bile started to rapidly rise. Furthermore, the rise in the demand for gasoline caused 

great increase in crude-oil production, so that total production rose from 60 million 

barrels in 1900 to 250 million in 1910. The production of tire and rubber had also 

been highly affected by the growth of the automobile industry. The high demand 

for tires encouraged firms in the tire industry to conduct intensive R&D to lower 

the production costs and to increase the quality of their product9.

The development of the ancillary industries was crucial for the development 

of the automobile industry, since these ancillary products imposed a constraint 

on either the ability to produce automobiles (e.g., alloy steel) or the desire of the 

consumers to purchase them (e.g., fuel). In the model we present in this chapter, 

firms in a core industry internalize the constraint an ancillary product imposes on 

the demand they face, while they strategically aim to relax this constraint through 

shaping the spillovers their knowledge creates.

9See Klepper and Simons (2000) and Klepper (1996) for an analysis of the evolution of the US 
tire industry.
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Ancillary Industry Consumers

Core Industry

Technological Leader Technological Follower

Figure 1: The interactions in the model

F igure  1: Arrow a describes the effect of the consumers on the ancillary in­

dustry. The consumers buy the ancillary product whenever they decide to purchase 

the core product (e.g., assume the core product is an automobile and the ancillary 

product is fuel, thus, the consumer must purchase fuel when she decides to pur­

chase an automobile). Arrow b describes the effect of the ancillary industry on 

the consumers through determining the quality of the ancillary product. Arrow c 

reflects the fact that consumers purchase the core product. Arrow d describes the 

effect of the core industry on the consumers, through determining the quality and 

the price of the core product. Arrow e represents the interaction between the two 

brands in the core industry. This interaction includes the static Cournot game of 

setting prices and quantities, and the dynamic game through R&D and knowledge 

diffusion strategies. The positive return to diffusing knowledge is governed by the 

fact that by encouraging the improvement of the quality of the other brand, the 

aggregate production of the core product increases. This increases the demand for  

the ancillary product, which stimulates its R&D. An increase in the quality of the 

ancillary product then raises the demand for the core product.

Figure 1 illustrates the interactions among the players in the model. In consum­

ing the core product, consumers must purchase the ancillary product as well, which 

is represented by arrows c and a. The ancillary firm affects the consumers by deter­
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mining the quality of the ancillary product (for simplicity, we assume that the price 

of the ancillary product is given), which is represented by arrow b. Similarly, firms 

in the core industry can affect the consumers by determining the price and quality 

of the core product, which is represented by arrow d. We assume there are two 

brands in the core industry: a technological leader and a technological follower. 

The interaction in the core industry is taking place only between brands (thus, 

firms in the same brand are homogenous and do not interact with other firms in 

the same brand). The interaction within the core industry between the two brands 

includes product market competition and interaction in R&D and knowledge dif­

fusion. Both firms decide upon their optimal level of R&D, however, firms in the 

technological leader brand also decide whether to share their knowledge with firms 

in the technological follower brand (for simplicity, we assume knowledge cannot 

flow from the technological follower to the technological leader). The interaction 

between the two brands is represented by arrow e.

The market expansion effect, which governs the positive incentives to transfer 

knowledge from the technological leader brand to the technological follower brand, 

is represented by arrows d —> a and b —> c. Thus, the technological leader brand 

internalizes the fact tha t by increasing the quality of the technological follower 

brand, the consumers will raise their demand for the core product (arrow d) and, 

therefore, they will also raise their demand for the ancillary product, since they 

must purchase the ancillary product together with core product (arrow a). When 

the ancillary industry faces a surge in demand, its incentive to innovate increases. 

Thus, the quality of the ancillary product increases (arrow b), which raises the 

demand for the core product (arrow c).

If the ancillary product is of low quality, firms in the core industry will face 

strong incentive to encourage its development, since it imposes a strong constraint 

on the growth opportunities of the core industry. As the quality of the ancillary 

product increases, this constraint relaxes, implying less incentive to share knowl­

edge. Strong spillovers at the early stages of the industry life cycle allows firms 

with low innovative capabilities to enter the technological follower brand. As the 

industry evolves, the incentive to diffuse knowledge weakens, until firms decide 

to prevent the flow of their knowledge, which eliminates spillovers. This triggers
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producers’ ‘shakeout’ which is characterized by mass exit of firms whose survival 

was conditioned on their ability to rely on external research, which is no longer 

available.

Finally, our focus in this model is only on non-cooperative knowledge sharing 

between firms. Thus, we focus on an equilibrium in which firms are not allowed 

to collude in research or in production. Since we focus on the early stages of the 

life cycle of industries, we find it less likely that this strategic behaviour will take 

place. In future work, we plan to extend our framework to allow firms to formally 

affect the diffusion of their discoveries, such as forming research joint ventures, 

cross-licensing agreements and etc.

6.3 The model

We consider an infinite horizon interaction game between firms in a core industry 

for a differentiated product with two brands, a firm in an ancillary industry and 

consumers who purchase products from both industries. The main focus is on the 

dynamics of the incentive to diffuse knowledge and to invest in R&D in the core 

industry, which underpins its evolution pattern.

In this section, we introduce the building blocks of the model, which include 

firms and consumers primitives and the basic set-up of the dynamic game.

6.3.1 Building blocks

The consumers

There are M  consumers in the economy that allocate their income between product 

C  (the core product), product A  (the ancillary product) and product Z  (an outside 

product). Each consumer is assumed to purchase one unit of a unique brand of 

product C, which must be consumed with <p(r) units of product A, where < 0 

and t  is the efficiency level of using product A  in the consumption of product C  

(e.g., consider product C  as an automobile and product A  as fuel, so that (p(r) 

denotes the number of gallons consumed per mile, or alternatively, consider product 

C  as the printers industry and product A  as the tuner ancillary product, where (p(r)
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denotes the number of papers printed, using one package of tuner). The consumer 

does not derive direct utility from purchasing the product A. Finally, the consumer 

uses the rest of her income on product Z. We disregard savings and consumers’ 

preference dynamics, i.e., consumers maximize each period a static utility function 

under their intra-temporal budget constraint.

We consider a model with two brands of product C, denoted by I and / .  We 

denote the two brands by c G {/, /} . These brands differ in the quality of their h a t­

tributes. Let qc =  (qci , ..., qch) be brand c attributes’ quality vector. Define uc(qc) = 

uc (ucl(qcl) , ..., uCh{qch)) as the value the consumer places on each brand as a func­

tion of its attributes’ quality, where, w ^(gcm) > 0, Vra G {1,..., h). Further, let 

cOq = cjc(cjci, ...,(dch) be the vector of knowledge stock indices that is associated with 

the vector of attributes’ quality, e.g., ujcm denotes the level of knowledge needed 

to produce an attribute with a quality level m. Hence, we can rewrite consumers’ 

utility from consuming brand c as uc (qc( v c)) = uc (ucl (qci(u ci)) , -. . ,uch (qch{uch) ) ) , 

where, ^ (w cm ) > 0, V m  G {1, ...,/i}. Thus, the utility of consuming product C  

can be simply described as uc(uc) =  uc (uci(^ci), •••> uch(ujch)) with u '^ c n )  > 0, V 

m  G {1, . . . , / i } .

We have followed the literature on discrete choice10 to characterize the maxi­

mization problem of the consumer by the following two stages: at the first stage, 

the consumer chooses the portion of her income which is devoted to product C  and 

product Z, while at the second stage, she chooses the unique brand of product C. 

The consumer is assumed to maximize the following random utility function under 

her budget constraint:

max Ui = U (wc(wc), y?(r), Z)  -I- e* ; s.t. pc + <p(t)pa  + Z = Y  (6.1) 
z„ce{i,f}

Where, e* is an independently and identically distributed random disturbance 

that represents the heterogeneity of consumers tastes for i G M, u(c) is the utility 

the consumer derives from consuming brand c (which depends on the quality of

10See McFadden (1981) and Small and Rosen (1981).
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brand c), pc is the price of brand c, pa is the price of the ancillary product A, 

the outside product’s price is normalized to unity and Y  is the income. The con­

sumption decision of product A  is already embodied in the consumption decision of 

the core product C, which depends on ip(r) (which is exogenous to the consumer). 

Since consumers maximize a random utility that depends on the distribution of 

consumers’ tastes, the demand function is probabilistic.

The consumer is assumed to purchase one unit of product C, therefore, she 

spends the amount of Z  = Y — pc —(p(r)pA on the outside good. Substituting Z  

into equation (6.1) and assuming e* follows a type I extreme-value (or Weibull) 

distribution, utility maximization yields the following probability that brand c will 

be consumed:

exp(yc)
c 1 +  exp(Vi) +  exp(V}) ( ’

Where, Vc is the deterministic component of the indirect utility function, which 

we assume to be linear in Y ,  pc and p (t )Pa - Thus, equation (6.2) becomes

exp {u(c) -  pc -  <p(r)pA)

1 +  exP ( « M  -  Pk ~  <p (t )p a )
k= l , f

Hence, ac is the market share of brand c (with <Ji +  <jf +  oz — 1, where crz is 

the market share of the outside product Z ).

6.3.2 The Core Industry

Two brands of product C  are offered to consumers in the core industry. We assume 

the first brand is technological inferior to the second. Denote the technological 

leading brand by I and the technological inferior brand by / .  The knowledge stock 

indices that are required for the production of each brand are given by the vector 

oj = cu(ui,ojf). Denote by ni the number of firms tha t produce brand I and by n / 

the number of firms tha t produce brand / .  For simplicity, we impose symmetry 

among firms in the same brand and focus the analysis on inter-brand interaction. 

The symmetry assumption implies that firms in the same brand hold identical 

knowledge, so tha t u  does not depend on n* and rif.
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Given this set-up, firms aim at maximizing their infinite discounted expected 

cash-flows. This maximization problem involves solving two steps; (1) maximizing 

the current period static profits and (2) computing the optimal expected discounted 

pay-offs using the inter-temporal strategies. We proceed by describing the behav­

iour of firms in each step.

Intra-tem poral strategies

The intra-temporal strategies are those that aim at maximizing the profits of the 

firm in the current period. We characterize the static equilibrium in the product 

market as one that is achieved through a Nash-Cournot game between a single 

representative firm from each brand type. Caplin and Nalebuff (1991) show that 

in a market with a bounded set of active brands, no fixed costs of production, 

constant marginal costs equal to me and firms choose prices to maximize profits, 

a unique Nash equilibrium exists and satisfies the following vector of first order 

conditions:

[-pc -  me] oc [1 -  ac] +  crc =  0 (6.4)

Where, ac is calculated from equation (6.3). The profits are then given by

7Tc(cc;, r)  =  M a c(u , r) \pc -  me] (6.5)

Equation (6.5) is the current period pay-offs for each brand, given the knowledge 

stocks u  and r .

Finally, in each period firms decide on whether to remain active or leave the 

industry. We assume there is free entry to each brand with fixed-costs that are 

proportional to the knowledge stock in that brand. Thus, the fixed-costs of pro­

duction in every period are equal to «o;Jc, where, the index t represents the period 

of entry. The free-entry condition implies that the number of active firms in each 

brand in every period is given by

n tc = (6.6)

Where, Vtc is the post-entry value of brand c (net of fixed-costs) at period t.
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Inter-tem poral strategies

The inter-temporal strategies of firms include the decisions they have made at the 

current period, but will affect their value in the next period. These strategies 

are R&D investment (for both firms) and knowledge diffusion (which is relevant 

only for brand I, as described below). A firm can increase its knowledge stock by 

investing in a risky R&D, which is denoted by x. The future period knowledge 

stock evolves as following (we have omitted the brand index for convenience):

cut+i = tut +  Ct — Qt (6-7)

Where, u t+i is the knowledge stock next period, f  t is the R&D stochastic output 

that receives the value 1 with probability P ( ( t = l \x t) and zero with probability 

P(Ct = ®\x t), for x t £ R+i and gt is an exogenous aggregate shock tha t hit the 

core industry with probability 8. Thus, gt receives the value 1 with probability 8 

and zero with probability 1 — 8. The evolution process of the knowledge stock uj is 

summarized as following:

P{ojt+1 =  cjt) = P ( ( t = 1|x t)6 +  P {( t =  0 |xt) (1 -  8)

P{ut+i = ujt + l) = P ( ( t = l \x t) { l - 8 )

P{ut+1 =  u t -  1) =  P(Ct =  0|xt)8

Where, the probability for a successful R&D is given by:

=  il**) =  T X X 7  (6-8)1 +  a x t

Where, a  represents the productivity of the innovation efforts of the firm. I 

assume a  is constant and equals for both brands. In addition, brand I can affect 

the R&D investment in brand /  by choosing to diffuse knowledge. Knowledge 

externalities are modelled as the effect of the knowledge of brand I on the R&D 

cost of brand / .  This effect exists only if brand I allows its knowledge to spread 

to brand / .  The R&D cost of brand I is denoted by 7 i5 while brand /  faces the 

following R&D cost, which depends on the knowledge stock of brand I and on the 

decision on whether to allow this knowledge to spread to brand / ,
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cr =  f (6.9)

Where, 7  ̂ is a constant component of the innovation cost of brand /  , with 

I t  > ° ’ and 61UJ1 denotes knowledge externality, with <  0 . 9i is an indica­

tor that receives the value 1 if brand I chooses to diffuse its knowledge and zero 

otherwise. Thus, < 0 if 0/ =  1 and d^ f Ul̂  = 0 if 0i =  0. The underlying as­

sumption is that a firm can completely prevent its knowledge from drifting outside 

its boundaries. Although this is a strong assumption, the theoretical implications 

are robust for relaxing it, on the expense of further complicating the model11.

6.3.3 The Ancillary Industry

The ancillary industry produces the product A  which is consumed together with 

the product of the core industry, C. There is a single producer, denoted by subscript 

a. This producer is engaged in production and in R&D, which aims at advancing 

the ancillary knowledge stock, denoted by r.

The future period knowledge stock evolves as following:

T t + l  =  T t +  Cat (6-10)

Where, r t+i is the next period knowledge stock , Cat is the current period R&D 

stochastic output that receives the value 1 with probability P(Ct =  1 |x at) and the 

value zero with probability P (( t = 0|xat) for x at G R+. For simplicity, we assume 

th a t the exogenous negative shock q, does not directly affect the ancillary industry. 

Thus, the evolution process of the knowledge stock r  is given by

y P(Ct = 0\xat)
n+i = (6.11)

Tt +  1; P{Ct = l\xat)

Where, the probability of a successful innovation is given, as in the core industry,

by

11 Nonetheless, the results will not be robust if we assume asymmetric information with regard 
to actual knowledge flows, i.e., if firm i believes it has a full control on its knowledge flows, where 
it does not fully control them. This relates to  the idea discussed in Spence (1984).
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P(  c* =  i w  =  (6-12)1 +  a X a t

Although the ancillary industry is governed by a single monopoly, we assume 

there is a constant threat of entry. In order to simplify the dynamics of the game, 

the price of the ancillary product remains constant over time. This allows for a 

clearer focus on the dynamics in the core industry, which is the main concern of 

this chapter.

Hence, we are interested in studying the effect of improving the quality of the 

ancillary good on the incentives to share knowledge in the core industry. If the 

ancillary price is allowed to shift with industry dynamics, identifying this desired 

effect would become more difficult. Therefore, despite being a monopoly, firm a 

cannot set the optimal monopolistic price, since it may collapse the entry barriers. 

Denote by pa the highest price the incumbent can charge so as to support entry 

deterrence. The incumbent profits are then given by

7ra(uJ, r) = D(cu, r)(Pa -  mca) (6.13)

Where, D (u , r )  is the demand facing firm a, which depends to the aggregate 

production in the core industry (e.g., the demand for fuel is a function of the 

number of automobiles produced and the fuel consumed per an automobile) and 

mca is the marginal cost of producing the ancillary product. The demand facing 

the ancillary industry is12

D(u, r) = M  (ai (u , r)  +  af  (u, r)) <p(r) (6.14)

The role of the ancillary industry in shaping the dynamics of the core industry 

relates to its effect on the incentive of brand I to  share its knowledge with brand / .  

The ancillary firm invests in R&D in order to increase the demand for its product,

12 Note the demand facing the ancillary firm can be either a positive or a negative function 
of r. By raising the quality of the ancillary product, the demand for automobile increases and, 
therefore, the demand for the ancillary product increases as well. However, by raising r, the 
number of units the consumers purchase of the ancillary product falls, when buying the core 
product. Thus, this causes a negative effect of raising r  on the demand facing the ancillary firm. 
We assume the former positive effect is stronger than the latter negative effect, implying that the 
R&D of the ancillary firm will always increase the expected demand it faces.
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by encouraging the demand for the core industry (note tha t consumers do not 

derive a direct utility from consuming the product A). Thus, higher demand for 

automobiles encourages the ancillary R&D, since the expected return to this R&D 

rises with the demand for the ancillary product. Internalizing this effect, brand I 

can increase the demand for the ancillary product by spreading its knowledge to 

brand / .  An improved ancillary product makes the core product more attractive 

to  consumers and, therefore, raises the market share of the core product relative 

to the market share of the outside product Z.

6.4 The dynamic game

The dynamic game solves for the optimal R&D investment of brand /, brand /  

and the ancillary firm a, in addition to the knowledge diffusion decision of brand 

I. The model is too complex to be solved analytically, thus numerical methods 

for dynamic programming are used. We have adopted the framework developed 

by Ericson and Pakes (1995) and Pakes and McGuire (1994). This framework 

provides an algorithm (which we refer to as EP) to compute a Markov-Perfect 

Equilibrium (MPE), which we have adjusted in order address the ideas developed 

in this chapter.

Several papers extended the EP framework to account for changes in the static 

profit function, dynamic demand, mergers and multiple states per-firm. Fershtman 

and Pakes (2000) provide a theoretical analysis of a dynamic game with collusive 

prices th a t allows current price to depend on past prices. Benkard (2000) analyzes 

a model of learning by doing with a dynamic cost function. Markovich (1998) 

provides a theoretical analysis of a market with hardware-software connections, 

while Byzalov (2002) provides a model of the OPEC cartel with dynamic demand 

for oil commodities. Gowrisankaran and Town (1997) study profit and non-profit 

hospitals, and investigate the impact of health policy changes on the evolution of 

the hospital industry.

In this chapter, we focus on Markov strategies as defined by Maskin and Tirole 

(1988), which are analysed in a sub-game perfect equilibrium only as a function of
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the relevant state pay-offs (by this, the enormous multiplicity tha t arises in dynamic 

models of this type is eliminated), and in which players’ expectations coincide with 

the actual distribution of the random variables in the model.

In particular, the strategies depend on the state space r}. Knowledge

diffusion is the strategy u / ,  r) , R&D investment is the strategy x c { u j i , u j f ,  r), 

prices in the core industry is the strategy p c ( u i , ujf , r ), entry is the strategy X c i ^ h U f ,  t )  

and exit is the strategy V,c(cj/,cj/,t). Finally, for firm a, the R&D investment is 

the strategy x a (u i,u jf ,r ) .

Firms maximize their discounted value conditional on expected industry struc­

ture. We focus on the dynamic interactions between firms in the core industry and 

between these firms and the ancillary industry. An outline of the dynamic game is 

as following:

• Firms in the core industry face a demand which is a function of their knowl­

edge stock uj and the ancillary knowledge stock r.

•  The core industry realizes its ability to increase the aggregate demand for 

product C  by raising the incentives of the ancillary industry to invest in R&D, 

in order to advance its knowledge stock t .  This will affect the consumers’ in­

come allocation in favour of product C  rather than the outside product Z. 

The relation between core and ancillary industries creates a positive produc­

tion externality in the core industry. Thus, by increasing its production, a 

firm in the core industry positively affects the demand facing the other firms 

in the core industry, via encouraging the improvement in the quality of the 

ancillary product. We refer to this externality as the market expansion effect, 

which creates the positive incentive for firms in brand I to share their knowl­

edge with firms in brand / .  Thus, although the diffusion of their knowledge 

erodes their market share, this effect can be offset by the positive production 

externality that stimulates the growth of the market. The exhaustion of the 

market expansion effect reduces the incentives to share knowledge, to a point 

where firms decide to prevent the spread of their inventions. This triggers 

the producers ‘shakeout’, which is in the focus of this research.
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• The ancillary firm maximizes its expected discounted value by investing in 

R&D. The demand for the ancillary product depends on the aggregate pro­

duction in the core industry (e.g., consider the automobile industry as in­

dustry C  and the rubber industry as ancillary industry A. The demand for 

rubber depends on the number of automobiles produced in the core industry).

6.4.1 Sequence of events and information structure

Each period is a five-stage game, which is characterized by the following actions 

and events: at the beginning of the period, firms realize the current period states 

{a;/, ujf, t}  . Further, the number of active firms in each brand is determined based 

on the free entry condition and the fixed-costs, as described in the previous sec­

tion13.

At the first stage, brand I decides whether to protect or diffuse its knowledge 

to brand / ,  denoted by 0/(o;/,a;/,r), based on the expected pay-offs from each 

strategy. Following this decision, spillovers exist if Qi(uji, ujf, r )  =  1 and does not 

exist if 6i(ui,ujf,T) = 0.

At the second stage, brand /  determines its R&D (while the R&D cost is 

determined based on the knowledge diffusion decision of brand I from the previous 

stage).

Following this and prior to the third stage of the game, the realization of the 

R&D of brand /  and the negative aggregate exogenous shock takes place. Thus, the 

knowledge stock of brand /  in the next period is revealed (however, the knowledge 

stock will be adjusted only in the next period).

Based on these realizations, brand I chooses its level of R&D. Following this 

decision and before the forth stage of the game, a realization of the R&D of brand 

I takes place.

At the forth stage, the ancillary firm sets its R&D. Finally, in the fifth stage, 

product market competition between brand I and brand /  takes place, where prices 

and quantities axe determined in a Cournot game.

13 We do not consider entry and exit as the first stage of the game, since it does not affect the 
solution methodology.
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6.4.2 Defining the Equilibrium

We define the equilibrium using the value function approach (Starr and Ho 1969) 

as a Markov Perfect Equilibrium. The MPE  is defined as the set of strategies

xc(uh u f , r), Qi(uh u f , r) ,pc(ui,Uf, r),

Xc(uJi,ujf, r), r), xa{uh u f , r)

and value functions {Vc(ui,Uf, r), Va(uji,ujf, r)}. In equilibrium, the strategies of 

each player are optimal, given the value functions, and the value functions of the 

firms are equal to the actual continuation values when all firms follow their optimal 

strategies.

Solving for th e  M P E  an d  defin ing th e  value functions

We solve the model in backward induction following the sequence of events that is 

described above. For each sub-game we define the relevant value function, which 

is maximized with respect to the relevant policies.

In the following presentation we denote the perfect-equilibrium of the game 

with ~ and by “ a sub-game equilibrium14. Further, we denote by u j  the vector of 

knowledge stock of brands I and /  in the current period, and by c</ the vector of 

knowledge stock of these brands in the following period.

F if th  s tage  At the last stage of the game the intra-temporal pay-offs are 

determined according to equations (6.3), (6.4) and (6.5). Denote by t t c ( u j , t )  and 

7va(uj, r)  the equilibrium profits of firms in the core industry and in the ancillary 

industry, respectively. Since, at this stage, firms maximize their current pay-offs, 

there is no associated value function.

F o u r th  stage  At this stage, the ancillary firm already knows the next period 

knowledge stock states of brands I and / .  Thus, the state space is given by ( u j ,  u j ' ,  r ) .

14 A perfect equilibrium in this model is an optimal strategy that does not depend on the 
behavior of firms in the other stages of the game (thus, it is defined only as a function of the state 
variables and not as the control variables). A strategy which is a sub-game equilibrium depends 
on the behavior of firms in the previous stages of the game (the strategy is a function of both the 
state and control variables)

206



The value function of the ancillary firm is maximized with respect to its R&D 

spending, x a, and is given by

VJio, d ,  t ) =  max r )  -  7 „ i0 +  0  ^  V°(u>’ T')p {T'\T> xa)
xa T,

Denote by x a(u, u j '  , t )  the optimal policy of the ancillary firms and by Va(uj,u)f, r )  

its corresponding optimal value. Note tha t the information structure and sequence 

of events imply that at this stage, the future knowledge stocks of brand I and /  

are already revealed.

T h ird  s tage  At the third stage, brand I determines its optimal R&D expen­

ditures, after realizing the R&D output of brand / .  Thus, the state space is given 

by (u,u'f1T).

(6.15)

V i ( u j ,  u j ' f ,  t )  = maxXl

7f/(o;,r) - 7 / Z / +

P ^ 2  x i)P (r '\r , x a{cjj uj', t) ) (6.16)

Denote by xi{uj,uj'f,T) the optimal R&D policy for brand I and by Vi{uj, u ' ^ t ) 

its corresponding optimal value. Note that at this stage, the future knowledge 

stock of brand /  is already known, hence, the optimal policy and value are derived 

for every possible realization of brand / ’s R&D and the aggregate shock (where, 

for every possible realization, the necessary adjustments are made in the transition 

probabilities of brand Vs knowledge stock15). Therefore, the value of brand I is a 

function of the future knowledge stock of brand / .

Second stag e  At the second stage, brand /  chooses its optimal R&D based 

on expectations regarding the future knowledge stock of brand I and the ancillary 

firm. Thus, the relevant state space at this stage is ( u j ,  t ) .  Further, the value 

function depends on the knowledge diffusion decision of brand I, which takes place 

at the first stage.

15 More details axe provided in the next section, where the computation algorithm is described.
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7Tf {cU, T) -Cf  (7 f ,OiUJi) Xf  +
Vf(u , r )  =  max u/y

xf
, X/, OiUJi)P{u Wlji, X i ( u , hA, t ) )P ( t ' |t ,  xa(w, a;', t))P(^)

(6.17)

Denote by £/(u;, t;0j) the optimal R&D policy for brand /  and by V/(cj, r; 6 ) 

the corresponding optimal value in the sub-game as a function of 61, which is to 

be determined at the first stage of the game. The optimal policy x / (cj, r ,  61) is the 

best response function of brand / ’s R&D to the knowledge diffusion decision of 

brand I.

F irs t s tage  At the first stage, brand I decides whether to diffuse its knowledge 

to brand / .  The decision rule is given as following:

Set 6  = 1 i f f

=  1)) > ' ^ 2 v l{u,u'f ,T)P(Lj’f \u)f,xf (LJ,T,0i =  0))
Uj'f Uj'j

(6.18)

And set 6  = 0 otherwise. Brand I will decide to diffuse its knowledge if its 

expected value for setting 6  = 1 (the Ihs of inequality (6.18)) is greater than its 

expected value for setting 6  = 0 (the rhs of (6.18)). The expectations are taken over 

brand / ’s next period knowledge stock. If an increase in brand / ’s knowledge stock 

is beneficial for brand I (due to the positive market expansion effect) it chooses to 

support the R&D of brand / .  Nevertheless, in case increasing the knowledge of 

brand /  is not desirable for brand I, it will discourage the innovation efforts of 

brand /  by eliminating spillovers.

Finally, the number of firms in each brand is determined following equation 

(6 .6).

6.5 Computation Methodology

Proof that an equilibrium exists for this model is straightforward and is essentially 

identical to the proof in Ericson and Pakes (1995). It is not possible to solve for
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the M P E  of the model analytically. However, numerical methods can be used. 

Pakes and McGuire (1994,1997,2000) provide two algorithms that can be used to 

solve this model: the first is the asynchronous parallel Guass-Seidel value iteration 

algorithm and the second is the synchronous (stochastic) algorithm which is based 

on the artificial intelligence literature. We have used an augmented version of 

the Pakes-McGuire (1994) asynchronous algorithm, with extensions to asymmetric 

value functions and internalizing knowledge externalities.

The algorithm iterates in order to find a fixed-point solution to the dynamic 

programming described above. When the value function does not change very 

much point-wise between iterations, the algorithm is assumed to have converged. 

The algorithm is not guaranteed to be a contraction mapping, hence, a solution 

is not guaranteed. However, in practice, the algorithm has generally converged to 

an equilibrium for almost any given set of parameters, based on the sequence of 

events and information structure we impose. Although non-convergence does not 

necessarily imply that an equilibrium does not exist, convergence of the algorithm 

is sufficient to ensure the existence of an equilibrium for the given parameters set.

6.5.1 The State Space

Each state is defined as the tuple t )  . As in EP, we restrict the states ui

and ujf to integers from 0 to u  and r  to integers from 0 to r . The values of ZJ and 

r  have been chosen to ensure that the upper bound of the state space does not 

bind in equilibrium. Furthermore, we assume that the knowledge stock of brand /  

cannot exceed the knowledge stock of brand Z. Thus, the size of the state space is 

i(w  +  l)2 x (r +  1).

The rest of this section discusses the iterative algorithm for computing the 

fixed-point solution of the dynamic programming problem. The reader who is not 

interested in these technicalities may comfortably proceed to the next section that 

presents the results.
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6.5.2 The A lgorithm  for Com puting th e Fixed-Point

In this section, we describe the computation procedure used to derive the fixed- 

point solution of the model. As discussed in the previous section, each period is a 

sequence of five stages, which we solve in backward induction. In this section, we 

denote by * a perfect equilibrium solution (which can differ from one iteration to 

the other) and by ~, a sub-game perfect equilibrium, as in the previous section.

F ifth  s tag e  The algorithm begins with computing the static profit pay-offs 

according to equations (6.3), (6.4) and (6.5), as well as the profit of the ancillary 

industry according to equations (6.13) and (6.14) . The equilibrium profit matrices 

7tc(u , t ) and nra(w ,r) are not part of the iterative procedure and are stored in 

memory at the beginning of every iteration.

F o rth  s tag e  At the beginning of the forth stage, the algorithm stores the 

current period profits tha t were computed at the previous stage in memory. At 

this stage the ancillary firm maximizes equation (6.15) with respect to its R&D. 

The first-order condition with respect to xa at iteration k for each point in the 

state set is given by

o =  -7 a  +  P £  V{uJ, r ')P (r '\xa) (6.19)
T

After substituting for the expected pay-offs, the optimal ancillary R&D at it­

eration k for every point in the state set, denoted by x ^ ( u j ,  <u/, t ) ,  is

=  q 7a +  y /a c f i fr ,  -  c t o f r .
a 2

Where, a is the expected value of the firm in the presence of a successful inno­

vation, whereas b is the expected value when the R&D project fails. Substituting 

x^ into the value function yields the optimal firm value at iteration k , denoted by 

Va(cj,cj',T,Xa) and the optimal policy Xa{uJ,uj',r, V * ) .  Note that x ^ u j . l j ' . t ,  V £ )  

is not a function of the R&D decisions of brands I and / ,  since the information 

structure assumes the realizations of the R&D in the core industry are already 

known at the stage the ancillary firm plays. This assumption allows to solve for
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the fixed-point solution of the ancillary firm before computing the R&D strategies 

of the core industry. The fixed-point solution for the ancillary firm is derived as 

following: at iteration k +  1, substitute the matrix V£(uj, u/, r ,  x%) for the rhs of 

equation (6.15) and repeat the procedure for finding the optimal R&D investment 

x^+1. Continue iterating until V™{uj, uj', t , x™) =  V™+1(u , lu\ t , x%+1). In this case 

the algorithm is assumed to have converged, where x%(l = x a{cj , oj' , t ) 

and u j ' , r ,  x%) =  Va(cu, u j ', r )  are the fixed-point solutions for the optimal R&D 

and firm value, respectively. Since the future periods states are already known once 

firm a plays, this algorithm is a contraction mapping for this stage, i.e., a conver­

gence for firm a is guaranteed.

T h ird  s tag e  At the beginning of the third stage, the algorithm stores the 

current period profits and the optimal R&D policy and value of the ancillary firm 

in memory. At this stage, brand I chooses its optimal R&D via maximizing equation 

(6.16). The first-order condition of maximizing equation (6.16) with respect to xi 

at iteration k for every point in the state set is given by

0 =  +  (6.21) 
w[,t'

The realizations of the R&D of brand /  are already known at this stage, thus, 

the expectation term does not include the future knowledge stock of brand / .  

The computation of the optimal policy of brand I is performed for every possible 

realization of the R&D of brand /  and the aggregate shock. In particular, the 

algorithm computes the optimal policy of brand I for ujf, ujj — 1 and ujf +  1 (with 

the necessary adjustments in the transition probability matrix. E.g., for ujf — 1 it 

must be that the aggregate negative shock had hit the core industry and, therefore, 

P ( uj'i =  uji +  1|ujuXi) =  0, \fxi G R + ). The future ancillary knowledge stock is 

unknown at this stage, therefore, expectations are formed based on the optimal 

strategy of firm a, which had been computed at the previous stage . The solution 

for brand Vs R&D is given by

i f  =  a ' 1 i  +  V a a 3 / 3 7 i  ~  (6  2 2 )
a2
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Where, a is the expected value of the firm in the presence of a successful inno­

vation for each possible outcome of the ancillary R&D, whereas b is the expected 

value when the R&D project fails, again taking into account the expected change 

in the ancillary knowledge stock. Substituting x f  into the value function yields 

the optimal value at iteration k, denoted by V k(uj, uj'j, r ,  xf )  and the optimal pol­

icy rule x k(u,uj'j, r , V k). Similarly to the ancillary firm, the fixed-point solution for 

this stage can be derived without solving for the second and first stages of the game. 

Thus, at iteration k + 1, substitute the matrix V k(uj, d f ,  r , x k) for the value function 

in the rhs of equation (6.16) and repeat this procedure so as to find the optimal 

R&D investment x k+1. Keep iterating until VI1 (uj, d j ,  r ,  x J1) =  V^+1(lj, d j ,  r ,  x?+1). 

Once this condition is satisfied, the algorithm is assumed to have converged, where 

xfiuj, uj'j, r , V™) =  x i(u , oj'f, r )  and Vin(uj, d j ,  r ,  rrf) =  Vi(cj, l/j, r)  is the fixed-point 

solutions for the optimal R&D and firm value, respectively. This iterative proce­

dure is not a contraction mapping for this stage and, therefore, convergence is not 

guaranteed.

Second stag e  At the beginning of the second stage, the algorithm holds in 

memory the static pay-offs, the optimal R&D strategy and value of the ancillary 

firm for all possible realization of the future period knowledge stocks of brands I and 

/ ,  and the optimal R&D strategy and value of brand I for all possible realizations of 

brand / ’s future knowledge stock. At this stage, an iteration consists of two steps: 

first, find the best response function of brand / ’s R&D to the knowledge diffusion 

decision of brand 1. Second, given this best response function, brand I determines 

its optimal knowledge diffusion decision at the first stage of the game. Maximizing 

equation (6.17) with respect to Xf yields the following first order condition:

0 =  - Cf V7(a; ' ,r/) P ( w // | a ; / , x a(a;,w, , r ) )

P{u)\\ujh Xi(u,  d f , t ) ) P ( t ' | t ,  Xa (uj, t ) ) P ( q) (6.23)

Solving for the optimal X f ( u , r \  OiUJi) at iteration k  yields:
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r . 9l) =  ac ; +  yqq»/?c/ -  g»t f r .
Or

Where, a is the expected firm value in the presence of successful innovation for 

each possible outcome of the ancillary firm and the brand Vs R&D output, while 

b is the expected value when the R&D project fails, again taking into account 

the expected change in the ancillary and brand / ’s knowledge stocks. In form­

ing these expectations, substitute for the expected outcome of firm a the optimal 

strategy computed in stage four and for the optimal strategy of the brand I com­

puted at stage three. Substituting Xf{uj,T\9{) into the value function yields the 

optimal firm value at iteration k , denoted by V k(u: r , xk\ 9i) and the optimal pol­

icy r , V f ’j 9{). At iteration k 4- 1, substitute the matrix V k(oj, r ,  x k;9{) for the 

value function in the rhs  of equation (6.17) and repeat this procedure for finding 

the optimal R&D, x k+1. Keep iterating until Vp(u, r , x7}; 61) = Vp+1(u, r ,  x^+1] 9{). 

Once this condition is satisfied, the algorithm is assumed to have converged, where 

xJ(uj,T,Vp-,6 i) = Xf{<jj,T\0i) and V f(u ,  r ,  x nj \ 6 {) =  Vf(u,T-,0i) is the fixed-point 

solutions for the optimal R&D and firm value, respectively, as a function of 61 , 

which is determined at the first stage. The iterative procedure for this stage is not 

a contraction mapping and, therefore, convergence is not guaranteed.

F irs t  s tag e  At the first stage of the game, brand I decides whether to diffuse 

its knowledge to brand / .  At the beginning of this stage, the algorithm stores in 

memory the following matrices: the current period pay-offs, the optimal R&D and 

value of the ancillary firm for every possible realization of the future knowledge 

stock of brands I and / ,  the optimal R&D and value of brand I for every possible 

realization of brand / ’s future knowledge stock and the best response function of 

the R&D of brand /  to the knowledge diffusion decision of brand 1.

Brand I chooses to diffuse its knowledge, i.e., set 9i =  1, i f f  the following 

condition is satisfied:

= 0)) > Y^Vik(u iu>'f i T)P(u/f\uf,xkf (u)llT-1Ol =  0))

(6.25)
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Otherwise, set 9 = 0. Denote by 9X t ;  x kj ( o j i ,  t ;  9x )̂ j ; the optimal knowl- 

edge diffusion decision at iteration k and 9x) as the optimal R&D pol­

icy of brand /  at iteration k. The corresponding value function of brand /  at

iteration k is V k(uj, r; x k(u, r; 9X )).Keep iterating until Vp(u, r; Xf{uj, r ; 9X)) =  

VJ1+1(cj, r; x^+1(o;, r; 9X )) and 9X (uj.t^x^) = 9X ( l j , t ; x ^ + 1 )  . Once this condi- 

tion is satisfied, the algorithm is assumed to have converged. Define Xf(cj, r ; 9X) =
^  / N 71 ^  '^'71  /  \

Xf ( u , r)  , Vp(u, r ; Xf(ou, t ; 9x )) =  Vpiw, r) and (cj, r; =  9i (co, r) as the fixed- 

point solutions for the R&D and value of brand /  and the knowledge diffusion 

decision for brand I, respectively.

This concludes the iterative procedure. Overall, we have found this game struc­

ture to be the least sensitive for choice of parameters. In most parameter sets er 

have experimented with, the algorithm has converged in approximately 200 itera­

tions, after running for one hour on a 1G RAM computer with a 2.9G processor.

6.6 Findings

We consider the following specification for the model described above:

The market share of brand c G I, /  is given by

=  7-  »  (6 .26)1 +  exp [ipuji - p i - * ) +  exp [ipuf -  p f -

Where, </?, A >  0. The parameter A reflects the effect of the ancillary product 

quality on the demand for the core product. As A increases, the development of 

the ancillary industry is more crucial for the growth of the core industry. Thus, 

we would expect to observe stronger incentives to share knowledge in order to 

encourage the development of the ancillary product as A increases. In the appendix, 

we will present comparative statics regarding the effect of A on the evolution pattern 

of the core industry.

In order to complete the specification of the model, the effect of spillovers on 

the R&D cost in brand /  is given by
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C f  ( 7 f , 9 U L J i \ 6 )  =
I f (6.27)

(1 4- Oilji)5

Where, 7 /  is the R&D costs of brand /  in the absence of spillovers. 8 > 0 

denotes the effect of spillovers on the R&D costs of the brand / ,  thus, higher value 

of 8 implies the spillovers of knowledge have a stronger effect on the R&D cost of 

brand / .  Finally, the parameters set is given in the appendix.

6.6.1 B aselin e  findings

In this section we describe the baseline findings regarding knowledge diffusion and 

innovation in the core industry. We focus on the effect of spillovers on the value 

and R&D of brand /  and present preliminary findings with respect to the probable 

impact of endogenously eliminating spillovers on the number of firms in the core 

industry.

2 3 4 5 6
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B rand I 11
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Figure 2: The area in the state space with endogenous knowledge flows

215



F ig u re  2: Area A in the four diagrams above denotes the points in the state 

space, where brand I decides to diffuse its knowledge to brand f . The dynamics 

of this decision is given by the reduction in area A as the ancillary knowledge 

improves. Thus, the upper-left diagram plots the existence of knowledge flows when 

the ancillary knowledge stock is at its lowest level ( r  =  1). The upper-right diagram 

denotes the existence of knowledge flows when the ancillary knowledge stock is 2, 

the lower-left diagrams plots the flow of knowledge when the ancillary knowledge 

stock is 3 and, finally, the lower-right diagram plots the existence of knowledge flows 

where the ancillary industry is highly developed, with its knowledge stock equals 15. 

The main point to be inferred from these four diagrams is that as the ancillary 

knowledge becomes more advanced, the quality of the ancillary product becomes less 

a constraints on the potential expansion of the core industry and, therefore, the 

incentive to diffuse knowledge fall.

Figure 2 plots the area in the state apace in which brand I finds it optimal to 

diffuse its knowledge to brand f .  We plot the area in the state space with positive 

spillovers in equilibrium, under four different levels of ancillary knowledge stock. 

By raising the knowledge stock of the ancillary industry, we would expect to  find 

lower incentives to share knowledge, since the market expansion effect weakens as 

the ancillary industry becomes more developed and therefore, constrains less the 

growth potential of the core industry.

The upper-left diagram shows the area in the state space that is associated with 

a decision to diffuse knowledge (the area A  in the diagram), where the ancillary 

knowledge stock is in its lowest possible level (r  =  1). In this case, the area A  

is very large (covers 71 percent of the state space), implying that the incentives 

to share knowledge are strong. Further, as brand / ’s knowledge stock becomes 

closer to that of brand I, we observe less knowledge sharing. This finding can be 

explained by the fact that as the level of competition becomes stronger (which is 

captures by the proximity of the knowledge stock of both brands), the desire to 

protect the market share is larger than the desire to expand the market.

The upper-right, lower-left and lower right diagrams plots the decision of brand 

I to share its knowledge with brand / ,  when the ancillary knowledge stock is 2, 

3 and 15, respectively. The main finding derived from of these diagrams is that
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the shaded area reduces, as the ancillary knowledge stock increases (covers 50 

percent of the state space when the ancillary knowledge stock equals 15). This 

relates to the fact that as the knowledge stock of the ancillary product rises, the 

potential additional increase in the market size of the core product, due to a further 

improvement in the quality of the ancillary product, reduces. Thus, the market 

expansion effect is exhausted as the ancillary knowledge stock improves, implying 

less incentives to share knowledge and less spillovers.

While figure 2 plots the dynamics of the incentives to share knowledge, figure 

3 plots the effect of endogenous knowledge flows on the number of producers in 

brand / .  For the purpose of identifying this effect, it is useful to look at the state 

space where brand / ’s knowledge stock equals 10 and the ancillary knowledge 

stock equals 1 and 2. From the upper-left and upper-right diagrams in figure 2 

we know that brand I finds it optimal to share its knowledge with brand /  when 

the ancillary knowledge stock is 1, for every possible level of brand Vs knowledge 

stock. However, when the ancillary knowledge stock is 2, brand I finds it optimal to 

prevent its knowledge from spilling over to the brand / ,  as the knowledge stock of 

brand I exceeds 15. Thus, this shift in the knowledge diffusion strategy enables to 

identify and assess the effect of endogenous knowledge flows on brand / ’s number 

of producers.

Therefore, figure 3 plots the value and number of active firms in brand /  when 

its knowledge stock of brand /  is 10, as a function of the knowledge stock of brand 

L As brand Vs knowledge stock exceeds 15, it finds it optimal to prevent the spread 

of its knowledge to brand / .  The effect of this decision is illustrated by the sharp 

drop in the value and number of active firms in brand / .  Thus, endogenously 

eliminating spillovers triggers mass exist of producers in brand / .
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Figure 3: Endogenous knowledge flows and producers ‘shakeout’

F igure  3: This figure plots brand f ’s value and number of active firms, when 

its knowledge stock equals 10, as a function of brand I ’s knowledge stock. The 

line with the circle shapes represents brand f ’s value when the ancillary knowledge 

stock equals 1 and the square shape represents brand f ’s value when the ancillary 

knowledge stock equals 2. The dark bar graph (left) represents the number of firms 

in brand f  when the ancillary knowledge stock equals 1 and the light bar graph 

(right) represents the number of firms in brand f  when the ancillary knowledge 

stock equals 2. Once brand l ’s knowledge stock exceeds 15, brand I finds it optimal 

to prevent its knowledge from spreading to brand f . This figure shows that the 

effect of this decision on the value and number of firms in brand f  is large. Thus, 

producers ‘shakeout’ can be the result of endogenously reducing spillovers, which 

affects the survival of the lower capable firms.

Figure 4 plots the R&D stock of brand /  as a function of the knowledge stock 

of brand I, similarly to figure 3. A sharp drop in the innovation efforts of brand 

/  is observed when the knowledge stock of brand I exceeds 15 and the ancillary 

knowledge stock is 2. We do not observe this drop when the ancillary knowledge 

stock is 1. This drop in innovation is the result of the decision to prevent knowledge 

flows. This decision takes place since as the ancillary product is of a higher quality,

218



the advantage of further improving the quality of this product is overweighed by 

the costs of losing market share, due to giving up valuable knowledge that will 

improve the future market position of a strong rival brand16.

2.5
T he R & D  o f  b ra n d /  w h en  its  k n ow led ge  stock  eq u als 10

6

5

Tau equals 1

^  41 Tau equals 2
The effect of 
knowledge spillover

2

0.5
: Tau equals 1 Tau equals 21

0
15 16 17 18 19 2014

The knowledge stock brand I

Figure 4: Endogenous knowledge flows and innovation

F igu re  4: This figure plots brand f ’s R&D, when its knowledge stock is 10, as 

a function of brand I knowledge stock. The line with the circular shapes represents 

brand f  ’s R&D when the ancillary knowledge stock equals 1, whereas the square 

shape represents brand f ’s R&D when the ancillary knowledge stock equals 2. From 

figure 2, brand I finds it optimal to diffuse its knowledge to brand f  for every 

level of its knowledge stock, when the ancillary knowledge stock is 1 and brand f  ’s 

knowledge stock is 10. However, when the ancillary knowledge stock is 2 (thus, the 

ancillary industry is more developed) brand I finds it optimal to prevent the spread 

of its knowledge when its knowledge stock exceeds 15, thus, eliminating spillovers. 

The large drop in brand f ’s R&D when the knowledge stock of brand I exceeds 

15 illustrates the importance of knowledge externalities to the innovative efforts of 

firms that benefit from these eoctemalities.

16 The set of chosen parameters condition the innovation of brand /  on the existence of knowl­
edge spillovers. Thus, in the absence of knowledge spillovers, brand /  finds it optimal not to 
innovate at all. The sharp drop in brand / ’s innovation is robust to choosing different parameter 
sets that allow for positive innovation also in the absence of knowledge spillovers.
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6.6.2 C om petition, endogenous knowledge flows and inno­

vation

We test the hypothesis tha t the effect of competition on innovation relates to 

the endogenous nature of knowledge flows. A stronger competition can reduce the 

incentives to share knowledge, due to stronger risks of losing valuable market share, 

so that, stronger competition can discourage innovation by reducing spillovers. This 

negative effect differs from the Schumpeterian approach, since the effect I discuss 

in this section relates to the negative effect of competition on innovation indirectly, 

through reducing the incentives to diffuse knowledge.

Figure 6 illustrates this idea for an industry where the technology frontier is 

constant and equals 15 (the knowledge stock of brand I) and the ancillary knowledge 

stock receives the values of 1, 2 3 and 14. The line graph represents the R&D of 

brand / ,  while the area graph represents the decision whether to diffuse knowledge 

(which is 1 for knowledge diffusion or 0 for eliminating knowledge flows). The 

knowledge stock of brand /  is given on the horizontal axis, while the degree of 

competition increases as brand / ’s knowledge stock gets closer to  15 (which is the 

knowledge stock of brand I).

Consider first the case tha t the ancillary knowledge stock equals 1. As the 

degree of competition increases, brand / ’s innovation changes in an inverted U 

shape. At the beginning it increases, until starting to fall before dropping to zero 

at the point where spillovers disappear. This inverted U relation is similar to 

that which was discussed in previous studies17. The fall in the innovation of the 

follower brand as it becomes closer to the technology frontier is consistent with the 

Schumpeterian approach in which the reward on becoming closer to the technology 

frontier falls as a function of the distance from this frontier. Nonetheless, when 

spillovers are endogenously eliminated as the ‘cost’ of sharing knowledge becomes 

too high, brand / ’s innovation drops to zero.

17See Levin, Cohen and Mowary (1985) and Aghion, Bloom, Blundell, Griffith and Howitt 
(2002).
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Competition, endogenous knowledge flows and innovation
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The knowledge of the b rand /

Figure 5: Competition, endogenous knowledge flows and innovation

F igure  5: This figure plots the effect of competition on innovation. Brand I ’ 

knowledge stock is kept constant at 15 (which is the technology frontier in the core 

industry), where the degree of competition is defined as the proximity of brand f  to 

this technology frontier (higher proximity corresponds to stronger competition). The 

equilibrium level of brand f  ’s R&D is plotted for different levels of ancillary knowl­

edge stocks. The effect of competition on innovation takes the shape of an inverted 

U, until dropping to zero when spillovers are endogenously eliminated. However, 

we cannot infer a relation between competition and innovation without understand­

ing the incentive to diffuse knowledge. High innovation can be supported as an 

equilibrium outcome in a competitive industry when the incentive to share knowl­

edge is strong (e.g., when the ancillary knowledge stock equals 1). Nonetheless, 

high innovation cannot be supported as an equilibrium outcome in a competitive 

industry when the incentive to share knowledge is low.

However, the inferred effect of competition on innovation is not as simple as 

that. As the ancillary knowledge increases, brand I decides to prevent the flow of its 

knowledge at a lower level of competition. Therefore, an equilibrium level of R&D 

can be supported in various industry structures, depending of the incentive of firms

2 2 1



to diffuse knowledge (e.g., if the ancillary knowledge stock is 1, high innovation can 

be associated with high competition. However, if the ancillary knowledge stock is 

14, high innovation cannot be sustained when competition is strong).

Therefore, the relation between market structure and innovation in a framework 

th a t allows firms to affect the spillovers their inventions create cannot be outlined 

without a complete consideration of the incentive to diffuse knowledge.

6.6.3 Simulation

Based on the numerical results described above, we simulate the evolution pattern 

of the core industry. The starting point is the state (5,1,1), i.e., at period zero 

brand Z’s knowledge stock is 5 and the knowledge stocks of brand /  and the ancillary 

industry is 1. We simulate the evolution trajectory of the core industry for 25 

periods, repeated 100,000 times, where for each period we present the simulation 

mean.

Figure 4 plots the simulation results for the value of brand /  and the percent­

age of draws with positive spillovers in equilibrium in every period. At the early 

stages of the industry life cycle, the incentive to share knowledge is high, due to a 

strong market expansion effect. Thus, the early periods in the industry evolution 

trajectories are characterized by intense spillovers. However, as the industry ma­

tures the incentive to diffuse knowledge is exhausted and brand I is reluctant to 

allow its knowledge to drift to brand / .  At this stage (a decade after the industry 

was born), firms in brand /  face a drastic increase in their innovation costs and, 

therefore, their market value drops.
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The value of brand /

Figure 6: Endogenous knowledge flows and simulated brand / ’s value

Figure 6: The area graph plots the percentage of periods in which brand I 

found it optimal to diffuse its knowledge to brand f .  The line graph represents the 

corresponding value of brand f . A decade after the industry was bom, the incentive 

to share knowledge disappears, due to exhausting the market expansion effect. The 

reduction in spillovers causes a hike in brand f  ’s innovation cost and, therefore, a 

drop in its value.

While figure 6 simulates the evolution of brand / ’s value, figure 7 simulates 

the evolution of the number of active firms in the core industry. The line graph 

represents the total number of firms in the core industry, where the dark (left) and 

light (right) bar graphs represent the number of firms in brand I and in brand / , 

respectively. The line graph shows that a ‘shakeout’ occurs in the number of active 

firms in the core industry, once spillovers disappear.

Decomposing the total number of firms into the number of firms in each brand 

yields the following pattern: at the early periods of the industry evolution path, 

most firms produce brand /, since its quality and associated market share are 

much larger than that of brand / .  Since the ancillary knowledge stock is low at 

the early periods, production externality is strong, implying a strong incentive 

to share knowledge. The existence of spillovers enables brand /  to develop its
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knowledge stock, which invokes a rise in the number of firms producing brand / .  

Nevertheless, the rising quality of the knowledge stock of brand I increases the 

fixed-costs of entering into the production of brand I more than it raises its value, 

therefore, the number of firms that can be simultaneously active in the production 

of brand I falls. As the industry reaches a certain threshold of development, the 

incentive to share knowledge disappears due to exhausting of the market expansion 

effect. At this stage, producers ‘shakeout’ occurs following a drop in the value of 

brand /  (see figure 6). After the ‘shakeout’, the number of producers in brand I 

slightly rise and than stabilizes (the ratio of brand Z’s value and the fixed-costs of 

production remains relatively constant), where the number of producers in brand 

/  continues to fall.

The number of firms in brands/  and /

% of draw s with knowledge spdlover 

Number of firms in brand f 

Number of firms in brand I 

Total num ber of firmsI ‘i■nihu us
’s h a k e o u t '

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P er iod

1 2 3 4 5 6 7

Figure 7: Endogenous knowledge flows and simulated producers ‘shakeout’

F igure  7: This figure plots the evolution of the number of active firms in

the core industry. The line graph represents the total number of firms in the core 

industry, where the dark (left) and light (right) bar graphs represent the number of 

firms in brand I and in brand / ,  respectively. Producers ‘shakeout ’ occurs as brand I 

finds it optimal to prevent its knowledge from spreading to brand f  (this is reflected 

by the reduction in the percentage of draws with positive knowledge flows at period
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10). After the ‘shakeout’, the number of firms in brand f  continues to fall, while 

the number of firms in brand I stabilizes (the rise in the value of brand I equals to 

the rise in the fixed-costs that are associated with more advanced knowledge stock).

Finally, we simulate the evolution pattern of an industry for two alternative 

levels of the parameter A, which represents the importance of the ancillary industry 

to  the growth of the core industry (higher A implies a stronger market expansion 

effect, where lower A implies a weaker market expansion effect). The simulation 

output is presented in the appendix.

The baseline value of the parameter A is set to 1. Given this level, the mean 

percentage of draws with positive spillovers in the first 25 years of the industry 

evolution is 25 percent over the total cohort. When decomposing the cohort into 

pre and post producers ‘shakeout’ cohorts, this number rises to 41 percent in the 

pre-‘shakeout’ cohort (the first decade) and falls to 15 percent in the post-‘shakeout’ 

cohort.

We expect that a higher A will result with stronger knowledge sharing. Thus, 

we raise A to be equal to 1.5. Given this level, the mean percentage of draws 

with positive spillovers in the first 25 years of the industry evolution is 90 percent 

over the total cohort. When decomposing the cohort into pre and post producers 

‘shakeout’ cohorts, this number rises to 100 percent in the pre-‘shakeout’ cohort 

(the first decade) and falls to 82 percent in the post-‘shakeout’ cohort. Thus, my 

prior regarding the intensity of knowledge sharing is supported.

Similarly, we expect tha t a lower A will result with less knowledge sharing. Thus, 

we lower A to be equal to 0.5. Given this level, the mean percentage of draws with 

positive spillovers in the first 25 years of the industry evolution is 24 percent over the 

total cohort. When decomposing the period into pre and post producers ‘shakeout’ 

cohorts, this number rises to  33 percent in the pre-‘shakeout’ cohort and falls to 

17 percent in the post-‘shakeout’ cohort. Thus, our prior expectation regarding 

the intensity of knowledge sharing is supported in this case, as well (mainly due to 

lower knowledge sharing in the pre-shakeout cohort).
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6.7 Summary and conclusions

This chapter investigates the role of the incentives of firms to diffuse their knowledge 

in shaping the evolution pattern of industries. In particular, we have aimed at 

exploring the ‘shakeout’ in the number of producers industries experience during 

their life cycle, based on a dynamic study of the incentives to spread knowledge.

Thus, we allow spillovers to depend on the strategic behaviour of firms, on 

whether to allow their rivals to benefit from their own inventions. We model the 

positive incentives to share knowledge as a positive production externality that 

relates to the desire to encourage the development of an ancillary product, which 

imposes a constraint on the growth of the main industry. We relate to this exter­

nality as a market expansion effect, which underpins the dynamics of spillovers. 

The negative incentive to diffuse knowledge relates to the loss of market share, due 

to potential improvement in the market position of rivals that benefit from this 

knowledge. Thus, the dynamics of the incentive to share knowledge consist of sat­

isfying these two opposite forces. As the industry matures, the market expansion 

effect is exhausted, since the constraint the ancillary product has imposed on the 

development of the main industry relaxes as the quality of the ancillary product 

increases over time (until reaching a point where it is no longer optimal to diffuse 

knowledge). At this stage, spillovers are reduced, causing mass exit of firms that 

conditioned their survival on being able to exploit external knowledge.

The mechanism that generates the endogenous flow of knowledge is able to 

simulate producers ‘shakeout’, by studying the dynamics of the incentives to diffuse 

knowledge. Although we do not argue that endogenous knowledge flows are solely 

responsibly for the drastic change in industries structure, the fact that we can 

simulate this drastic change simply by looking at the incentive to diffuse knowledge 

demonstrates the importance of understanding the endogenous nature of knowledge 

flows in a framework that allows firms to internalize the feedback they receive from 

the spread of their knowledge and optimize it.

In order to further demonstrate the importance of the endogenous nature of 

knowledge, we offer an alternative approach for characterizing the effect of compe­

tition on innovation. As the degree of competition increases, it becomes more costly
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to share knowledge due to the loss of valuable market share to rivals that benefit 

from this knowledge. Thus, firms are more reluctant to share their knowledge as 

the degree of competition increases, causing a reduction in spillovers and therefore, 

a reduction in innovation. Following this approach, the effect of competition on 

innovation should be negative.

However, we also show that a simple relation between competition and innova­

tion cannot be outlined without considering other factors that affect the incentive 

to  share knowledge. High innovation can be achieved as an equilibrium outcome 

in a highly competitive industries, where the incentive to diffuse knowledge is high 

(as a result of a strong market expansion effect), due to large spillovers. On the 

contrary, high innovation cannot be supported as an equilibrium outcome in highly 

competitive industries, where the incentive to share knowledge is low (as a result 

a weak market expansion effect).

Therefore, this chapter demonstrates the importance of studying the strategic 

behaviour of firms in managing the flow of their knowledge. The theoretical impli­

cations of understanding the endogenous nature of knowledge flows are shown to 

be invaluable.
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6 .9  A p p e n d ix

The set of parameters values is as following:
P a ra m e te r Value D escrip tion

a 3 The productivity of R&D

P 0.925 The discount factor

h 10 Brand Vs R&D cost

07 200 Brand / ’s R&D cost in the absence of knowledge flows

la 5 The ancillary firm’s R&D cost

A 1 Reflects the market expansion effect

M 1000 Market size

S 1.5 Reflects the effect of spillovers

rp 0.1 A parameter in the utility function

K 0.01 A parameter in the fixed-costs
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Increasing  th e  m arket expansion  effect (A=1.5)
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6.9.3 Correlation of R&D and endogenous knowledge flows

We estimate the effect of the decision to diffuse knowledge and competition on the 

innovation on the artificial data we generate, just to show some statistical links 

between the main variables in our model.

We treat each point in the state set as an observation for firms’ behaviour 

under different market structures (thus, an observation is defined over the tuple 

{cjiUf, r}). For each brand we estimate the following equation for the 3,800 obser­

vations (cells), which are included in the state space:

Xci = fi o +  HiX-d +  n2D i f f u  +  faCorrii +  fi^DiffCorrii + Vi + £i (6.28)

Where, c =  I, f ,  D i f f i  as an indicator that receives the value 1 if the brand I 

decides to diffuse its knowledge and zero otherwise, Com  is a variable that measures 

the degree of competition in the core industry as the ratio between the sales of brand 

/  and the sales of brand I (higher Com  implies stronger competition). The variable 

D i f f C o m  is an interaction term between D i f f i  and Com, v  is a fixed-effect term 

that includes a complete set of dummies for the knowledge stocks of brand Z, brand 

/  and the ancillary industry.
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Table 1
Competition, endogenous knowledge flows and innovation (sample: 3,800 observations)

R&D of brand/ R&D of brand / R&D of brand I R&D of brand I

R&D of brand I 0.038 0.036
(0.009) (0.007)

R&D of brand/ 0.044 0.131
(0.011) (0.018)

Competition3 -1.622 1.317 6.701 6.672
(0.164) (0.160) (0.188) (0.189)

'’D iff 3.615 0.972
(0.172) (0.114)

Competition x  Diff -1.453 -4.064
(0.354) (0.203)

R2 0.808 0.943 0.504 0.533

Robust standard errors are in brackets

All regressions include complete sets of dummies for the knowledge stock of brand / ,  the knowledge stock of brand 
/  and the knowledge stock of the ancillary industry.

a Competition is defined as the ratio of the total sales of brand / and the total sales of brand / .

b Diff is the equilibrium outcomes of knowledge spillover. When Diff equals 1, brand I decide to diffuse its 
knowledge, thus, knowledge spillover exists, while Diff equals 0 when brand / decides to protect its knowledge, 
thus, there is no knowledge spillover.

The estimation results axe summarized in table 1. Column 1 reports the esti­

mation results for brand /  without including the diffusion variable. The effect of 

xi is positive and significant, implying that the R&D of both brands are strategic 

complements, i.e., brand /  finds it optimal to increase its R&D as a response to an 

increase in the R&D of brand 1. The effect of competition on the innovation efforts 

of brand /  is negative, supporting the Schumpeterian hypothesis.

Column 2 reports the estimation results for brand /  after including the diffusion 

variables linearly and interacted with competition. The effect of D i f f i  is positive 

and highly significant, implying that spillovers, which is endogenous in this model, 

play an important role in shaping the R&D of brand / ,  which directly benefits 

from it. The linear effect of competition on the innovation efforts of brand /  

becomes significantly positive, however, the interaction term of competition and 

knowledge diffusion is negative. This finding implies tha t the effect of competition 

on innovation is negative only through the effect of competition on the decisions of 

firms to diffuse their knowledge, since higher competition leads to less knowledge 

sharing, less spillovers and therefore, less innovation. Thus, after controlling for the
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effect of competition on the incentives to share knowledge, stronger neck-to-neck 

competition raises the innovation efforts of the laggard brand, which contradicts 

the Schumpeterian hypothesis.

Columns 3 and 4 report the results of estimating equation (6.28) for the inno­

vation efforts of brand I. The findings are similar to those for brand / .  Stronger 

competition encourages the incentives to innovate, however, when 9 — 1 (knowl­

edge flow exists in equilibrium), stronger competition results with less incentives 

to innovate. This may be the result of reducing the incentives to share knowledge 

and therefore, not enabling to exploit the benefits of knowledge flows. Thus, brand 

I faces a reduction in the return it captures on its R&D, since it becomes too costly 

to share its knowledge with its rivals.
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