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Abstract

The thesis o f the present work is that throughout the modem era the dominant corpus 

of scientific ideas, as articulated around key machine technologies, has been reflected in 

the contemporary theories and practices of warfare in the Western world. Over the 

period covered by this thesis — from the ascendancy o f the scientific worldview in the 

seventeenth and eighteenth centuries to present day — an ever more intimate symbiosis 

between science and warfare has established itself with the increasing reliance on the 

development and integration of technology within complex social assemblages of war. 

This extensive deployment o f scientific ideas and methodologies in the military realm 

allows us to speak o f the constitution and perpetuation of a scientific way of warfare. There 

are however within the scientific way of warfare significant variations in the theories and 

practices of warfare according to the prevalence of certain scientific ideas and 

technological apparatuses in given periods o f the modem era. The four distinctive 

regimes I thereupon distinguish are those of mechanistic, thermodynamic, cybernetic, 

and chaoplexic warfare. Each of these regimes is characterised by a differing approach 

to the central question of order and chaos in war, on which hinge the related issues of 

centralisation and decentralisation, predictability and control.
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Chapter 1: Introduction

Every age had its own kind of war, its own limiting conditions, and its 
own peculiar preconceptions. Each period, therefore, would have held to 
its own theory of war, even i f  the urge had always and universally existed 
to work things out on scientific principles.

Carl von Clausewit:^

War and the threat o f war have been one o f the most persistent features o f human 

societies and show little sign o f setting beyond the horizon o f historical experience. 

However, notwithstanding the endurance o f the general phenomenon o f war, its 

multiple manifestations have been shaped by the material and ideational conditions of 

the societies and cultures that have waged it. As we are told by Clausewitz in the above 

quote, every age grapples with the conduct o f warfare in its own way, specific to its 

historical conditions and cultural baggage. Even if  war’s nature is invariant, as also 

claimed by Clausewitz, its character and form do change throughout the ages. It 

therefore behoves the study o f war to uncover the multiple connections that bind the 

theory and conduct o f warfare to the particular epoch and society to which they are 

contemporary.

The present thesis seeks to contribute to this undertaking through an enquiry into the 

interrelationship o f Western science and warfare from the beginning o f the modem era 

to present day. Its central claim is that these two fields o f social and cultural activity 

criss-cross one another, their multiple points o f contact and mediation particularly 

interwoven by the accelerated proliferation and diffusion of technology that has 

characterised this historical period. Science has at numerous points o f juncture seen 

itself oriented and driven by the particular technological and operational problems 

raised by modem war — the Manhattan Project is only the most visible and notorious o f 

these instances. Conversely, scientific theories and methods have been brought to bear 

upon the entire spectrum o f warfare for the purpose of bringing greater certainty and

1 Carl von Clausewitz, On War, translation by Michael Howard and Peter Paret (Princeton, NJ: Princeton 
University Press, 1984), p.593
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predictability to its conduct. I therefore wish to propose that we may speak o f a scientific 

way of warfare as a set o f ideas and practices, or discourse, which has gained ascendancy 

as a dominant approach to warfare in the Western world. While there is continuity in 

the appeal to technoscientific rationality, I will nonetheless distinguish between several 

distinct regimes o f the scientific way of warfare. Each o f these regimes is characterised 

by key ideas and practices which reflect the major evolutions in scientific worldview and 

technological development.

Although the thesis will draw from a wide range o f sources and writings, in the final 

instance it is concerned with the phenomenon of war understood as acts o f organised 

violence perpetuated by political units against each other. Its aim, in the broadest sense, 

is to shed light on the practice o f warfare at it has developed in the Western world 

throughout the modem  era, focusing on its scientific and technological dimensions. 

Therefore the thesis will not approach the question o f war in terms o f its causes (either 

general or specific), its ethical or moral justification, or the body o f laws and 

conventions which regulate its use. As such, it is probably best viewed as part o f the 

academic literature on the history o f war, even if its approach is more theoretical than 

most writings in the field and the latter part o f the thesis deals with present-day theory 

and practice (and thereby does not qualify as the history in the eyes o f most professional 

historians). In any case, it is within this literature that I will attempt in the next few 

pages to locate the present work and draw out some of the crucial issues it will 

necessarily engage with. I will then set out the outline o f the thesis according to the 

chapter structure along which it has been organised.

Locating the Thesis within the Historical Literature on War

War, Society, and Culture

It is unfortunate that a long-standing division o f academic labour has resulted in military 

history and broader social history developing into distinct traditions that have all too 

often eschewed meaningful dialogue and potentially fruitful cross-pollination. Many 

strands o f historical writing have thus tended to treat wars as essentially episodic bouts 

o f organised violence interrupting the regular course of political and social life.
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Accordingly, while wars have been considered worthy o f in-depth research as to their 

causes and their aftermath by historians o f this disposition, the assumption that the 

conduct o f wars is itself so different from ordinary social life has fuelled the notion that 

they have little to tell us about contemporary society as a whole. Conversely, military 

history has largely evolved as a distinct sphere o f historical research distinct from that of 

the rest o f the field, with a tendency among practitioners to focus on narrow areas of 

expertise, most frequently accounts o f battles and developments on the front. All too 

often this literature has been reticent to engage or take on any o f the findings in wider 

historiography and the social sciences.2 A large share o f the written output has also been 

directed towards the lucrative but less academically rigorous popular history market, 

which has further devalued the field in the eyes o f scholars in other fields. This 

prevailing compartmentalisation, although by no means absolute, has de facto 

constituted something o f blind spot in historical research, but thankfully one that has 

been increasingly addressed in recent times.

This thesis rests on the conviction that the experience and practice o f war has been one 

o f the central features o f the historical era spanning roughly the period from the 

seventeenth century to present day and commonly known as modernity.3 As such, war 

has influenced social and cultural developments beyond the narrow sphere o f military 

activity per se while simultaneously being conditioned by the broader historical context in 

which it has been set. Dissatisfaction with the limitations o f the dominant narrow 

approach o f military history in illuminating this co-constitutive relationship has led in 

the past few decades to a strong growth in alternative forms o f academic research into

2 Jeremy Black, Rethinking Military History (London: Roudedge, 2004), p.xi
3 I leave aside in this thesis any of the debates about the emergence of a new post-modem era. Much ink 
has been spilt over this, with authors seeking to capture a number of social, economic, and cultural 
changes with a plethora of different terms such as post-modemity (David Harvey, Frederic Jameson), 
‘late’ or ‘high’ modernity (Anthony Giddens), ‘second’ or reflexive modernity (Ulrich Beck), and liquid 
modernity (Zygmunt Bauman). While this debate has yielded valuable insights into recent and on-going 
processes of societal transformation, this literature will not be direcdy addressed in this thesis and I will 
avoid adopting any of the above terminologies. Instead, I will rely on an understanding of modernity as a 
historical era characterised by the widespread application of technoscientific rationality to the organisation 
of society, and which in this sense has not been in any way overcome or superseded. The periodisation I 
establish within this era of modernity is therefore primarily based on evolutions in scientific theory and 
practice and the development of related technologies, rather than on other social, political, or cultural 
changes. I do not make the pretence here that my definition of modernity is any sense more proper or 
correct than many of the other alternatives that have been formulated, simply than it is most appropriate 
to the thesis I am arguing for.
David Harvey, The Condition of Postmodemity: A.n Enquiry into the Origins of Cultural Change (Oxford: Basil 
Blackwell, 1990); Frederic Jameson, Postmodernism or The Cultural Logic of Late Capitalism (London: Verso, 
1991); Anthony Giddens, The Consequences of Modernity (Cambridge: Polity in association with Blackwell, 
1990); Ulrich Beck, Risk Society: Towards a New Modernity (London: Sage Publications, 1992); Zygmunt 
Bauman, Liquid Modernity (Cambridge Polity, 2000).
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the history of warfare, drawing notably on concepts and preoccupations originating in 

the social sciences.

This development in scholarly research is partly due to significant changes in the 

character o f war which have made the previous division o f academic labour largely 

untenable. Indeed, distinguishing between states o f war and peace has become 

increasingly difficult, particularly since World War II with the period o f the Cold War 

which immediately followed and now. beyond into the present War on Terror. The 

intense technological and logistical requirements of modem war have demanded of 

states that they put themselves in a condition o f permanent war readiness, able to 

launch offensives and respond to any aggression as swiftly as possible.4 Vast sectors of 

the economy, particularly in the United States but by no means exclusively, have 

become permanently directed towards maintaining and developing states’ military 

capacities and readiness.5 This generalised blurring of war and peace has contributed to 

making increasingly evident that the study o f war could be gready enhanced by a more 

contextual form o f historical investigation.

Thus the approach generally dubbed *war and society’ has developed a broader 

understanding o f war, concerning itself with the personal experience and backgrounds 

o f common soldiers, issues o f gender, race, and memory, along with the relationships 

between war, state-building, social change, and the disciplining o f bodies.6 Such work

4 In effect, the principle o f deterrence which structured the Cold War stalemate relied on the perpetual 
military mobilisation of societies on hair-trigger alert. Low-intensity violence by non-state actors such as 
guerrillas and terrorist groups has also served to lower the threshold of war and blur the line between 
policing and military operations in state responses to these actors.
5 This interconnection of industry and military is not so much a new phenomenon than an intensification 
of older trends. According to historian William McNeill, military-industrial complexes can be traced back 
to Great Britain in the late 19th century when a deliberate policy of driving technological innovation in 
the military and inducing firms to enter the armaments market was established. Similar military-industrial 
formations soon followed in France, Germany, the United States, and Japan. For van Creveld, it is after 
1830 that “military-technological innovation became not only rapid but institutionalised and permanent.” 
In any case, the phenomenon does appear to have intensified significantly after the Second World War, 
the conflict having itself demanded an unprecedented mobilisation of national resources.
William H. McNeill, “The Structure of Military-Technical Transformation” (USAFA Harmon Memorial 
Lecture #37,1994) http://www.usafa.af.mil/df/dfh/docs/Harmon37.doc
Martin van Creveld, Technology and War. From 2000 B.C. to the Present (New York: Free Press, 1989), p.223 
See also William H. McNeill, The Pursuit of Power Technology, Armed Force, and Society since A .D . 1000 
(Chicago: University of Chicago Press, 1982)
6 John Keegan, The Face of Battle (London: Cape, 1976); John Ellis, The Social History of the Machine Gun 
(Baltimore, MD: Johns Hopkins University Press, 1986); Linda Grant De Pauw, Battle Cries and Lullabies: 
Women in Warfrom Prehistory to the Present (Norman: University o f Oklahoma Press, 1998); Joshua S. 
Goldstein, War and Gender How Gender Shapes the War System and Vice Versa (Cambridge: Cambridge 
University Press, 2001); Sherie Mershon & Steven Schlossman, Foxholes and Color Lines: Desegregating the 
U.S. Armed Forces (Baltimore, MD: Johns Hopkins University Press, 1998); Jay M. Winter, Sites of Memory,
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has brought to fore the cultural and discursive dimensions o f war and the military, 

providing insights into how culture frames, organises, and imbues with meaning the use 

o f organised violence, along with the impact o f military values and experience on the 

wider culture o f human societies. Hence, for Keegan, war “is always an expression o f 

culture, often a determinant o f cultural forms, in some societies the culture itself.”7

The virtue o f such studies has been to bring back culture to the centre o f the picture, as 

opposed to being relegated to the manifestation o f other social forces. As Daniel Pick 

points out, the ideas and representations o f war prevalent in any given era should not be 

seen merely as the reflection o f some other underlying material strata o f reality:

Writing on war is part of the material culture and economy it represents, not some 
subsequent straightforward effect [...] Language shapes and is shaped by social, economic, 
political and technological change. Representation and the pressure of symbolisation in 
general is never a straightforward ‘reflection’ o f some other material ‘bedrock’, some 
supposedly non-discursive economic stratum, for instance, that can be privileged as 
determining ‘in the final instance’.8

However, if this focus on cultural variables has been a welcome addition to the literature 

on war, it has unfortunately seen some authors substituting one pitfall for another - for 

example, in erecting culture in turn as the determining stratum to which all other 

dimensions o f reality are subordinated in any explanatory account. Victor Davis Hanson 

has notably argued that the civic culture o f the West (understood as a coherent 

continuum from the Ancient Greeks to present day) has granted it a superior way of 

war.9 There are many problems with Hanson’s thesis - such as the fact that the historical 

record shows that the clear military superiority o f the West is in reality only a recent 

phenomenon - but none more serious than the author’s all too frequent essentialising 

and reifying o f culture as the single explanatory level o f reality.

John Lynn provided a welcome antidote with his 'Rattle: A  Histoiy of Combat and Culture™ 

While still focusing his analysis at the level of discourse and culture, Lynn carries out a

Sites of Mourning: The Great War in European Cultural Histoiy (Cambridge: Cambridge University Press, 1995); 
Eugen J. Weber, Peasants into Frenchmen: The Modernisation of Plural France, 1870-1914 (Stanford, CA:
Stanford University Press, 1976); Joanna Bourke, A n  Intimate History of Filling: Face-to-Face Killing in 
Twentieth-Century Warfare (London: Granta, 2000)
7 John Keegan, A  History of Warfare (London: Pimlico, 2004), p. 12
8 Daniel Pick, War Machine: The Rationalisation of Slaughter in the Modem Age (New Haven, CT: Yale 
University Press, 1993), p.52
9 Victor Davis Hanson, Why the West Has Won: Nine Landmark Battles in the Bmtal History of Western Victory 
(London: Faber, 2002)
10 John A. Lynn, Battle: A  History of Combat and Culture (Boulder, CO: Westview Press, 2003)
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broad sweep o f the history o f Western and non-Westem warfare to make the case for 

understandings and practices o f warfare that are culturally specific but also historically 

circumscribed. By appealing to a model in which discourse o f war and reality of war 

continually interact and co-constitute each other, Lynn allows for changes and 

evolutions in the discourses o f war, thereby avoiding the most serious pitfalls of 

Hanson’s work.

Accordingly, the conception o f culture I will employ in this study seeks to avoid reifying 

or essentialising any specific characteristics o f the Western practice o f warfare nor to 

argue for any intrinsic superiority over other ways o f war. The scientific way o f warfare I 

will argue for has been historically constructed and must be always situated within the 

wider transformations o f the modem era. Furthermore, the particular focus on the 

scientific features o f the Western culture o f warfare will be carried out alongside an 

analysis o f the role o f specific technological innovations in the process o f military 

change, so that both ideational and material factors will be considered in conjunction. 

This brings us to the technological dimension o f warfare, another central focus of this 

thesis, and for which I will now provide a brief review o f the literature.

War and Technology

In contrast with the only recent sustained academic treatment o f the relationship of 

wider culture and society to war, there exists a lengthier tradition o f writings on the 

relationship o f technology and warfare. However, it has tended to suffer from the 

almost exclusive focus on the impact o f technology, and particularly weapon systems, 

on tactics and operational organisation to the detriment o f developments in logistics and 

mobilisation. 11 Although it has been routinely observed that the technological 

development o f military forces has resulted in an increase in the ratio o f ‘tail’ (overhead 

resources and logistical personnel) to ‘teeth’ (warfighting units), focus has remained 

predominandy on the more glamorous technology of the latter.12

11 A detailed literature review of historical writing on military technology is available in Barton C. Hacker, 
“Military Institutions, Weapons, and Social Change: Toward a New History of Military Technology”, 
Technology and Culture, Vol. 35, No. 4. (Oct., 1994), pp. 768-834.
12 In its 2006 budget, the United States Department of Defense planned to spend three times as much on 
technology projects for the ‘tail’ (such as infrastructure, human resources management, and logistics) than 
for the ‘teeth’: $22.4 billion against $7.6 billion.
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Studies of this nature have tend to view technological change as an exogenous factor to 

military practice, frequently lapsing into technologically deterministic accounts in which 

the appearance o f new technologies, in particular those o f an offensive nature, induce 

fundamental transformations in the conditions o f war. Changes in tactics and 

organisational arrangements are here viewed merely as subsequent adjustments to a new 

technological reality. The origins o f technological innovation are rarely questioned and 

cultural variables are generally only treated in terms o f the extent to which they facilitate 

or impede the adoption o f inevitable changes in the practice o f warfare.

While perhaps narratively satisfying, such accounts have been justifiably criticised on the 

grounds o f their shaky philosophical and methodological foundations, as well as their 

reliance on an impoverished understanding o f social change.13 Black wisely advises that, 

“instead of assuming that organisational changes [are] driven by weaponry, specifically 

how best to use weapons, and maybe also how to move and supply them, it is necessary 

to appreciate the autonomous character of organisational factors, and their close linkage 

with social patterns and developments.”14 This is not to say that certain revolutionary 

weapons (such as the tank or nuclear weapons) cannot constrain and influence 

organisational developments, but that weaponry should not be systematically established 

as a first cause upon which other developments hinge.

There is a vast literature on technology and society and it would be too lengthy for me 

to review it in detail here. However, it is instructive to note that academic research into 

the relation o f technological entities to their social context can be broadly classified into 

three different approaches.15 The first considers the way in which technology emerges 

and is produced and which social factors play a role. A second type o f study concerns 

itself with the social impact of the introduction and diffusion o f a technology. Finally, a 

last approach consists in treating both processes together and approaching technology 

and society as co-constitutive o f each other and co-evolving together, sometimes even

Paul A. Strassman, “Taking a Bite Out of Overhead”, Baseline Magazine, May 2005, p.2
http: /  /  www.strassmann.com /  pubs/baseline/2005-05-a.pdf
13 In addition to charges of technological determinism, many of these accounts have been accused of 
vehiculing a Whig interpretation of history as a narrative of teleological progress in which social actors fall 
into either the camp of progressive or reactionary forces in relation to the inevitable course of historical 
development.
14 Black, Rethinking Military History, p. 11
15 Philip Brey, “Theorising Modernity and Technology” in Thomas J. Misa, Philip Brey & Andrew 
Feenberg (eds.), Modernity and Technology (Cambridge, MA: MIT Press, 2003), p.47
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dissolving the distinction between the two categories and preferring to speak of 

‘sociotechnology. ’ The present thesis locates itself quite clearly in the last approach, 

seeking to chart the multiple connections between the social and technological 

dimensions of war and science without establishing a primary ontological stratum of 

reality.

It is certainly the case that war cannot be fully understood without reference to its 

technological character and I can only follow van Creveld when he claims that:

War is permeated by technology to the point that every single element is either governed by 
or at least linked to it. The causes that lead to wars and the goals for which they are fought; 
the blows with which campaigns open and the victories with which they (sometimes) end; 
the relationship between the armed forces and the societies they serve; planning and 
preparation and execution and evaluation; operations and intelligence and organisation and 
supply, objectives and methods and capabilities and missions; command and leadership and 
strategy and tactics; and even the very conceptual framework adopted by our brains in 
order to think about war and its conduct — all are and will be affected by technology.16

However, if we are to extend the influence o f technology so widely as to include the 

very conceptual frameworks employed to think about war17 while avoiding resorting to 

an account o f the forms taken by thought which reduces them to mere reflections of 

material conditions, it impels us to recognise the irreducibly social and cultural character 

of technology. Technology affects every aspect of the social activity o f war because 

technology is innately social and cannot be truly grasped outside o f the social and 

cultural context in which it is produced and inserted. Technology is therefore not merely 

a set o f tools deployed in the social realm but is itself a certain way o f thinking and 

being in the world, “an abstract system of knowledge, an attitude towards life and a 

method for solving its problems.”18 Here, the proximity of scientific conceptualisations 

with the dominant technologies o f an era is instructive as to their combined 

development and constitutes one o f the vital relations I will seek to map out in the 

following chapters.

16 Van Creveld, Technology and War, p.311
17 “N ot only the conduct of war, but the very framework our brains employ in order to think about it, are 
pardy conditioned by the technical instruments at our disposal.” Van Creveld, Technology and War, p.247
18 Van Creveld, Technology and War, p.312
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Ways of Warfare

In accordance with the above discussion, the military history that is charted in the rest 

o f this thesis is one o f the organisation o f armed forces, understood as “an aspect of, 

and intersection and interaction with, wider social patterns and practices, leading to the 

social systematisation o f organised violence” , and which is to be at least in part 

accounted for by “the systematisation o f knowledge, such that it is possible better to 

understand, and thus seek to control, the military, its activities and its interaction with 

the wider world.”19 Hence, and this is where the present study is to be firmly located, “at 

one level, the study of Western warfare becomes an aspect o f the history o f systems as 

well as o f power.”20 Within such a history, speaking of a specifically scientific way of 

warfare suggests that it is possible to abstract a certain coherence or continuity in the 

theories and practice o f warfare during the studied period, that, in other words, we can 

find general trends in the conduct of, and dominant modes o f thinking about, war.

The notion o f ways o f war or warfare has previously been summoned by different 

authors and served as a framework for a variety o f interpretations, whether it has been 

viewed as the product o f political culture or o f national character and historical 

experience. Basil Liddell Hart spoke o f a British way in warfare in the 1930s, arguing 

that since the sixteenth century Britain had essentially relied on its naval might to 

achieve its greatest successes, primarily by disrupting the trade o f its enemies while 

financially and logistically supporting its allies, along with opportunistic littoral 

campaigns.21 He deplored the costly and largely ineffectual use o f a continental army in 

World War I as an abandonment o f this modus operandi. Liddell Hart attributed the 

“British way” to the country’s national culture which led it to treat war as a business-like 

affair in which the greatest possible economy o f force should be sought. Russell 

Weigley’s major work was concerned with an American way of war which he found to 

privilege wars o f annihilation where the objective is the complete overthrow of the

19 Jeremy Black, War. Past, Present, and Future (Stroud : Sutton, 2000), p.29
20 Black, Rethinking Military History, p.l 1
21 “Our historic practice, as we have seen, was based on economic pressure exercised through sea-power. 
The naval body has two arms; one financial, which embraced the subsidising and military provisioning of 
allies; the other military, which embraced seaborne expeditions against the enemy’s vulnerable 
extremities.”
David French, The British Way in Warfare 1688-2000 (London: Unwin Hayman, 1990), p.xv
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enemy’s military power rather than more limited wars o f attrition or exhaustion.22 

Although the United States initially practiced the latter type o f war, notably during the 

War o f Independence, he argued that it has moved towards a strategy o f annihilation as 

its industrial and military power has increased. As for Victor Hanson, he has sought to 

characterise an entire Western way of war by a common reliance on superior 

technology, organisation, discipline, morale, initiative, flexibility, and command which 

he all links to values of freedom, individualism and civic militarism.23

A way of warfare, as understood in this thesis, corresponds to an array o f rationalities, 

techniques, frameworks o f interpretation, and intellectual dispositions which 

characterise an approach to the use and application o f socially organised violence. As in 

the aforementioned works on Svays o f warfare’, the concern is not with the geopolitical 

aims or rationales behind the use o f military force but with the manner in which warfare 

has been shaped in order to be an as reliable as possible adjunct o f overall policy goals.

To summarise, therefore, the thesis o f a “scientific way of warfare” as presented here 

rests on a broad social and cultural understanding o f the role o f science and technology 

in distributing and organising bodies, both human and artificial, on the battlefield as well 

as orienting thought on the practice of warfare. It is thus necessary to study in 

conjunction the constitution and dissemination of scientific ‘truth’ with the forms of 

social life which accompany it. Conversely, it is also vital to uncover the manner in 

which social and cultural context, and particularly but not exclusively the militarization 

o f society, conditions scientific and technological development.

Thesis Outline

I will now briefly set out the thesis structure along which my argument will be 

developed, according to a broadly chronological sequencing.

Chapter 2 sets out the theoretical and methodological foundations o f the study, 

expanding on the observations made above. The ideas o f order and chaos are

22 Russell F. Weigley, The American Way of War. A  History of the United States Military Strategy and Poliy 
(Bloomington, IN: Indiana University Press, 1973), p.xxii
23 Hanson, Why the West Has Won
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introduced and related to the theories and practices o f both warfare and science. The 

intimate relationship of technology and science is elaborated, notably through the 

notion of a unitary phenomenon of technoscience. I discuss the concepts o f discourse 

and abstract machine and their. relevance and usefulness to the task o f a combined 

treatment o f both the material and ideational dimensions o f sociocultural change. The 

notion o f metaphor is developed as a useful conceptual lens to understand the 

movement o f ideas and practices from one domain to another, particularly in the 

context of the machinic metaphors I see at play in different scientific eras. A brief 

review of the key texts informing this thesis follows before the chapter concludes with a 

summary outline o f the periodisation o f the scientific way o f warfare developed in this 

thesis.

The historical study proper starts with chapter 3 and the first regime o f the scientific 

way of warfare: mechanistic warfare. The invention and dissemination o f the clock and 

clockwork mechanism is related to the emergence o f the first major scientific body of 

ideas constituted by the principles o f mechanism and Newtonian physics. Its ontological 

and epistemological implications, along with the mathematical and geometrical 

methodology which supports it, are discussed. I chart the manifestation o f these ideas 

and particularly that o f the clockwork metaphor in fields as diverse as cosmology, 

anatomy, and political theory before turning to their instantiation in the military sphere. 

The role of geometry and physics in the development of fortifications and ballistics is 

analysed here but attention is especially focused on the army of Prussia’s Frederick the 

Great as the epitome of mechanistic warfare in which soldiers are heavily drilled and 

disciplined to execute pre-ordained manoeuvres on the battlefield.

The following chapter turns to the next period in the development o f the scientific way 

of warfare, that o f thermodynamic warfare. The appearance o f the engine, first driven by 

steam and later by internal combustion and electricity, is placed in the context o f the 

industrialisation and motorisation o f Western societies. Within the new science of 

energy that is thermodynamics, the engine as a physical contraption and conceptual 

device occupies a central place. Theories o f energy proliferate in the physical and 

biological sciences, as well as in other fields o f social and cultural life. Warfare becomes 

thermodynamic in both the motorisation o f its forces which extends their reach across 

space and time as never before and in its quest for ever-more powerful energy weapons,
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culminating in the atom bomb. The chapter concludes with a reading o f Clausewitz’s 

writings through the lens o f thermodynamics.

Chapter 5 covers the genesis o f the computer within the lineage o f electromagnetic 

communication technologies and their applications in the military context. The 

emergence of the computer itself is tied to the Second World War and the momentous 

technological and scientific innovations which it stimulated. The sciences o f information 

and cybernetics are presented here with attention paid to the conceptual apparatus 

which lays down the foundations of a new informational paradigm in the natural and 

social sciences. This chapter’s purpose is to establish the key ideas and principles which 

inform the new regime of the scientific way of warfare discussed in the next chapter.

Accordingly, chapter 6 charts the ascendancy, dominance, and subsequent crisis of 

cybernetic warfare in Cold War America. Indissociable from the process o f computerisation 

o f the military in the wake o f the Second World War, a conception o f warfare resting on 

the notion that information is the paramount factor determining success emerges in this 

period, along with a belief that war can be completely managed and controlled. Its 

various manifestations are analysed here; from the development o f “command-and- 

control” as both an operational principle and a range o f sociotechnical systems to the 

meteoric rise to power o f operations researchers and system analysts. The chapter 

concludes with a study o f the spectacular failure of cybernetic warfare in Vietnam, 

drawing some preliminary lessons about the pitfalls and limitations o f this approach to 

war.

The next phase in the development o f the informational paradigm is the subject of 

chapter 7. Chaos theory and complexity science are presented here, with particular 

attention to the manner in which they develop cybernetic ideas yet also significantly 

break with some of their key assumptions, thereby forging a new body o f ideas with a 

wide-ranging effect on both the natural and social sciences. O f particular importance are 

the concepts of non-linearity and self-organisation, imposing both limitations on 

predictability o f systems and restoring the potential for creative transformation of those 

same systems. The dominant metaphor which surfaces here is that o f the distributed 

network which eclipses the computer as centralising information processing unit.
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Chapter 8 analyses the implication o f these new scientific ideas on the theories and 

practice o f warfare and postulates the emergence of the latest regime o f the scientific 

way of warfare: chaoplexic wa fare. I turn first to the ideas o f the fighter pilot and strategist 

John Boyd and connect many of his insights to those of chaos and complexity science. 

A return to Clausewitz and the non-linear aspects of his thoughts, particularly those 

pertaining to the question o f uncertainty, allow a further appraisal o f the potential 

applications o f the new sciences to warfare. The role o f networks in contemporary 

warfare is then considered, first through a discussion o f the operational methods of 

present terrorist networks, and then through an in-depth analysis o f the doctrine of 

network-centric warfare which the United States Department o f Defense has adopted.

The thesis is brought to a conclusion in the final chapter with a synthesis o f the main 

arguments developed throughout the study and a presentation o f its final findings. 

General ramifications and lessons to be drawn from these same findings will also be 

discussed, along with potential further avenues o f research suggested by them.
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Chapter 2: Technoscientific Regimes of Order in Warfare — A  
Theoretical and Methodological Framework

This chapter will lay out the theoretical and methodological foundations on which the 

thesis rests, providing an exposition o f my understanding o f science and technology and 

of their social and cultural relationship to war. In particular, I will develop the idea of a 

will to order exerting itself through human social and intellectual life and which will set 

out the context for the complex interplay o f chaos and order in the scientific way of 

warfare. I will elaborate on a number o f concepts, such as those o f discourse and 

metaphor, which will serve as useful analytical tools for the rest o f the thesis. The 

chapter concludes with a summary presentation o f the four regimes o f the scientific way 

o f warfare I will expound in the following chapters.

Civilisation and the Will to Order

The army general, the scientific inventor or the military theorist is caught 
up in an interminable quest to hold the internal and external forces of 
disruption in check.

Daniel Pick24

Throughout history, military leaders have sought to organise and direct their armies so 

that they can best preserve their order and coherence when faced with the centrifugal 

forces o f chaos unleashed on the battlefield. Thus they have tried to avert for as long as 

possible the state of disorganised free-for-all into which many an army has descended 

into. The forces that have succeeded in remaining organised while precipitating their 

adversaries into a state o f disarray have almost invariably prevailed in battle. 

Furthermore, a disorganised army means that a commander has lost any ability to exert 

any influence over the outcome, a loss o f control which is contrary to the very principle

24 Pick, War Machine, p.34
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o f the instrumental application o f force for political purposes. Hence, for Van Creveld, 

“the history o f command in war consists essentially o f an endless quest for certainty — 

certainty about the state and intentions of the enemy’s forces; certainty about the 

manifold factors that together constitute the environment in which the war is fought, 

from the weather and the terrain to radioactivity and the presence o f chemical warfare 

agents, and last, not but definitely not least, certainty about the state, intentions, and 

activities o f one’s own forces.”2* Likewise, John Keegan notes that the fundamental 

purpose o f training “is to reduce the conduct of war to a set o f rules and a system of 

procedures — and therefore to make orderly and rational what is essentially chaotic and 

instinctive.”26 We can therefore view the practice of warfare as the attempt to impose 

order over chaos, to exert control where it most threatens to elude, and to find 

predictability in the midst o f the greatest uncertainty.

States, along with other political entities, seek to employ organised violence in a manner 

such to attain certain political objectives. Military force is only one o f the instruments of 

statecraft and wise governance requires that its use be always commensurate with the 

overall objective to which it is intended to contribute — this is the meaning of 

Clausewitz’s oft-repeated dictum that war is the continuation o f policy by other means. 

War pursued for its own sake or as part o f a warrior lifestyle that seeks merely the 

perpetuation o f its own existence is therefore antithetical to any raison d'etat. The exercise 

o f judgement over the appropriate means to be deployed in the pursuit o f a given 

political end belongs to the domain commonly known as strategy. However, in order to 

allow for the formulation o f strategy and an assessment o f the role o f military force 

within it, it is necessary for states to develop an understanding o f the likely effects any 

course o f  action is likely to result in. As Colin Gray has pointedly observed, “if the 

essence o f strategy is instrumentality, the essence of instrumentality is predictability.”27 

Strategic thought and behaviour is thus necessarily accompanied by a rationalisation of 

military force as an instrument o f broader political objectives and a theorisation o f the 

potential and limits o f the use o f organised violence, all in an effort to bring order and 

predictability to activities which would otherwise be left entirely to chance and 

contingency.

25 Martin van Creveld, Command in War (Cambridge, MA & London: Harvard University Press, 2003), 
p.264
26 Keegan, The Face of Battle, pp. 18-19
27 Colin S. Gray, Strategy for Chaos: Revolutions in Military Affairs and the Evidence of History (London: Frank 
Cass, 2002), p.98
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Science bears a clear parallel to military organisation and the instrumental application of 

armed force in that its practitioners are always attempting to extract ‘patterns’ from 

‘noise’, to find regularities in the fog of randomness, to uncover the ‘laws’ governing the 

behaviour o f nature, to reveal the hidden order behind its apparent chaos. For the 

scientist Norbert Wiener, one o f the pivotal characters in this thesis, the “highest 

destiny” of mathematics, the universal ‘language’ o f science, was “the discovery o f order 

among disorder.”28 Alfred North Whitehead was making a very similar statement, albeit 

in a more poetic fashion, when he claimed that the pursuit o f mathematics was “a divine 

madness of the human spirit, a refuge from the goading urgency o f contingent 

happenings.” 29 With the discovery and formulation o f regularities comes greater 

predictability o f phenomena and an enhanced control over the natural world. Auguste 

Comte, the founder o f positivism, explicidy made this link: “from science comes 

prevision; from prevision comes control.”30 The scientific project is thus inextricably 

connected to the drive for greater control and power over the world — one only needs to 

refer back to the famous phrase o f one o f its earliest expositors, Francis Bacon: “scientia 

potentia est

Engineering again appears to obey to a similar logic in that it constitutes technological 

devices and systems whose purposes are to be ordered and predictable by exploiting 

laws of physics to resist those other physical forces which would undo them. For van 

Creveld, it is indeed the repetitive and predictable character o f physical nature which 

first made technology possible in primitive societies. As he further points out, 

technological progress from then on depended increasingly on the specialisation and 

integration o f different tasks and tools. The coordination necessary to constitute such 

systems “hinges on the ability o f management to predict the behaviour o f each and 

every part of the system. Ultimately, what is involved is nothing less than an attempt to 

insulate the system from uncertainty by creating a perfectly controlled and perfectly 

stable — since change means disruption — artificial world.”31

28 Steve J. Heims, John Von Neumann and Norbert Wiener. From Mathematics to the Technologies ofU fe andDeath 
(Cambridge, MA & London: MIT Press, 1980), p.68
29 Heims, John Von Neumann and Norbert Wiener, p.116
30 Ian T. King, Social Science and Complexity: The Scientific Foundations (Huntington, NY: Nova Science 
Publishers, 2000), p.20
31 Van Creveld, Technology and War, p.315
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In his piece entitled The Question Concerning Technology, Heidegger claims that “the essence 

o f t chnology is nothing technological” but rather that, along with science, it is an 

expression o f enframing (Ge-Stell), that is “ordering as the supposed single way of 

revealing.”32 The philosopher sees in enframing a will to dominate nature, to convert the 

whole universe into an undifferentiated “standing reserve” (Bestand) available to be put 

to work when needed. Heidegger seems to suggest this attitude to the world is implicit 

in the scientific project:

Man’s ordering attitude and behaviour display themselves first in the rise o f modem 
physics as an exact science. Modem science’s way of representing pursues and entraps 
nature as a calculable coherence of forces. Modem physics is not experimental physics 
because it applies apparatus to the questioning of nature. Rather the reverse is true. Because 
physics, indeed already as pure theory, sets nature up to exhibit itself as a coherence of 
forces calculable in advance, it therefore orders its experiments precisely for the purpose of 
asking whether and how nature reports itself when set up in this way.33

Science and technology are therefore the means by which the world is made to “reveal” 

itself in a certain way so as to order it. I f  Heidegger accepts that the instrumental 

understanding o f modem technology is correct in viewing it as a means to an end, he 

goes further by seeming to suggest that instrumentality itself flows from the way in 

which technology “brings forth” or reveals the world through enframing i.e. in our way 

o f “knowing” it.

I f  the ordering Heidegger is speaking of is one that corresponds to a specific 

technoscientific rationality, ordering as a codification o f the world which seeks to 

abstract regularities and correlations from it and dictate ways o f being within it appears 

to be central to all human societies, whether manifested in the form of law, religion, 

tradition, or morality.34 For Freud:

Order is a kind of compulsion to repeat which, when a regulation has been laid down once 
and for all, decides when, where and how a thing shall be done, so that in every similar 
circumstance one is spared hesitation and indecision. The benefits of order are 
incontestable. It enables men to use space and time to the best advantage, while conserving 
their psychical forces.35

32 Martin Heidegger, The Question Concerning Technology and Other Essays (Harper Torchbooks, 1977), p.32
33 Heidegger, The Question Concerning Technology and Other Essays, p.21
34 For Hedley Bull, “to say of a number of things that together they display order is, in the simplest and 
most general sense of the term to say that they are related to one another according to some pattern” and 
social order is “an arrangement of social life such that it promotes certain goals and values.”
Hedley Bull, The Anarchical Society: A  Study of Order in World Politics (London: Macmillan, 1977), pp.4-5
35 Sigmund Freud, Civilisation and its Discontents (London: Penguin, 2004), p.40
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If  the process o f ordering does appear to be a defining characteristic o f civilisation and 

social life, the specific forms it takes are not inconsequential, particularly with regards to 

the manner in which they mediate between order and chaos. What follows is an account 

o f the specific technoscientific regime o f order which emerges in the modem era, its 

relationship to the theories and practices of warfare, and the various ways in which the 

tensions between order and chaos are played out.

The Technoscientific Regime of Order

Scientific theory is a contrivedfoothold in the chaos of living phenomena.

Wilhelm Reich36

Behind military hardware there is hardware in general, and behind that 
there is technology as a certain kind of know-how, as a way of looking at 
the world and coping with its problems.

Martin van Creveld7

In the Western world, a particular regime of order emerged with modernity, displacing 

previously established mechanisms for the production o f order. Indeed, order came to 

be increasingly justified and organised on the basis o f a scientific and technical 

rationality. Knowledge produced through the inductive methods o f scientific enquiry 

gained ascendancy over deductive theological and scholastic claims about the world. 

Both the state entities and capitalistic forms o f economic organisation which emerged in 

this era relied on the rationalisation and systematisation o f processes and social 

interactions to manage enlarged bureaucracies and sites o f production. Efficiency 

considerations and cost-benefit or profit calculations increasingly supplanted tradition, 

custom or other grounds as the ordering principle of social organisation, thereby 

fuelling a systematic and continually complexifying division o f labour alongside 

accelerating technological development. A new regime of order meant that a new way of 

speaking about the world and dictating social arrangements within it had acquired 

predominant legitimacy.

36 Wilhelm Reich, The Function of the Orgasm (1927)
37 John Arquilla & David Ronfeldt, “Cyberwar is Corning!” in John Arquilla & David Ronfeldt (eds.), In 
Athena's Camp: Preparingfor Conflict in the Information Age (RAND, 1997), p.25
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Foucault would here speak o f a regime of truth produced by discourse and through 

which relations o f power are established and perpetuated:

In a society such as ours, but basically in any society, there are manifold relations of power 
which permeate, characterise and constitute the social body, and these relations of power 
cannot themselves be established, consolidated nor implemented without the production, 
accumulation, circulation and functioning of a discourse. There can be no possible exercise 
of power without a certain economy of discourse of truth which operates through and on 
the basis of this association. We are subjected to the production o f truth through power 
and we cannot exercise power except through the production of truth.38

It is crucial to note that discourse in this context should not be reduced to the 

semantical field o f spoken interaction and written text; “discourse goes beyond speech 

acts to refer to the entire field o f signifying or meaningfulpractices-, these social interactions — 

material, institutional, and linguistic — through which human knowledge is produced and 

reproduced. A discourse, then, is a way o f knowledge, a background of assumptions and 

agreements about how reality is to be interpreted and expressed, supported by 

paradigmatic metaphors, techniques, and technologies and potentially embodied in 

social institutions.”39 In accordance with this broad understanding o f discourse as a 

nexus o f ideas and practices which (re)produce social reality and a certain set o f power 

relations with it, modernity is to be viewed as “a structural organisation o f state, 

economy, society and culture; a power complex and a mode o f consciousness.”40

With the advent o f the Scientific Revolution at the dawn o f the seventeenth century, a 

new discourse emerged with its own set o f beliefs, tools and practices. A new method 

was established by which nature could be interrogated and its fundamental laws 

revealed. Its agenda was explicidy one o f extending control over the physical world, as 

evidenced by both Descartes’s invitation to seek a “practical philosophy” through which 

to “render ourselves the masters and possessors o f nature” and Bacon’s injunction to 

“extend the power and dominion o f the human race itself over the universe.”41 The 

scientific discourse grew rapidly in prestige and authority as it accumulated successes to

38 Michel Foucault, Power/Knowledge (Hemel Hampstead, Herfordshire: Harvester Press, 1980), p.93
39 Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America (Cambridge, 
MA: MIT Press, 1996), p.34
40 Philip K. Lawrence, Modernity and War. The Creed of Absolute Violence (Houndmills, Basingstoke: 
Macmillan, 1997), p.6
41 Langdon Winner, The Whale and the Reactor A  Search for Limits in an Age of High Technolog/ (Chicago, IL & 
London: University o f Chicago Press, 1986), p.123
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become the dominant ordering discourse o f Western civilisation.42 Some o f this 

authority derived from its ability to make predictions about natural phenomenon but an 

even greater prestige was derived from its close association with technology. The 

synthesis that would emerge remains one o f the defining characteristics o f modernity.

O f course, technology had always existed as a necessary requisite o f human civilisation 

but it previously had remained distinct from the theoretical contemplation of nature’s 

laws. Indeed, Prigogine and Stengers claim that with Plato and Aristode and their 

development o f natural philosophy:

the distinction between theoretical thinking and technological activity was established. The words 
we still use today — machine, mechanical, engineer — have a similar meaning. They do not 
refer to rational knowledge but to cunning and expediency. The idea was not to learn about 
natural processes in order to utilise them more effectively, but to deceive nature, to 
“machinate” against it — that is, to work wonders and create effects extraneous to the 
“natural order” of things. The field of practical manipulation and that o f rational 
understanding of nature were thus rigidly separated. Archimedes’ status is merely that of an 
engineer; his mathematical analysis of the equilibrium of machines is not considered to be 
applicable to the world of nature, at least within the framework of traditional physics. In 
contrast, the Newtonian synthesis expresses a systematic alliance between manipulation and 
theoretical understanding.43

Within this systematic alliance between science and technology, artefacts such as the 

clock, engine and computer were to play a key role. They allowed for the isolation and 

study o f physical forces, the resulting new theoretical understandings o f which would 

then feed back into the design o f these and other devices. For this reason, it is more 

apropos to speak o f the emergence of technoscience in the m odem era, an ever tighter 

symbiotic bond between these two spheres to the point- at which any distinction is 

merely definitional and o f limited conceptual value. Although this convergence is 

present at the very foundation o f modem science, the proximity between science and 

technology from World War II onwards is such that any major technological advance 

has been inextricably linked to scientific knowledge. Derrida correctly signalled that

42 This is not to say that science is the only ordering discourse of modernity or that it has not been 
contested since its very inception. N or could it have achieved pre-eminence without chiming with other 
contemporary discourses. It is also clear that mathematics and various brands of scientific endeavour also 
played major roles in Western and non-Westem societies previous to the modem era. However this thesis 
is concerned with the particular forms scientific knowledge and method took on with the ‘Scientific 
Revolution.’
43 Ilya Prigogine & Isabelle Stengers, Order out of Chaos: Man’s New Dialogue with Nature (Fontana: London, 
1985), p.39
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“one can no longer distinguish between technology on the one hand and theory, science 

and rationality on the other. The term techno-science has to be accepted.”44

We must therefore also dispense with the now widely discredited view of technology as 

merely applied science. Heidegger had already observed in 1954 that:

It is said that modem technology is something incomparably different from all earlier 
technologies because it is based on modem physics as an exact science. Meanwhile we 
have come to understand more clearly that the reverse holds true as well: modern physics, 
as experimental, is dependent upon technical apparatus and upon progress in the building 
of apparatus.45

There is much historical evidence that bolsters the insights o f both Heidegger and 

Prigogine & Stengers and affirms claims such as those according to which 

“thermodynamics owed much more to the steam engine than the steam engine ever 

owed to thermodynamics.”46 Further examples o f this process will be seen throughout 

the course o f this thesis. O f course, I do not wish either to fall in the opposite 

conceptual trap by denying the considerable role scientific discoveries have played in the 

development o f technology or to lapse into crude technologically deterministic forms of 

explanation. Rather, I will seek to demonstrate their co-constitutive interrelationship 

where necessary, in the knowledge that we are effectively considering a unitary 

phenomenon of technoscience as a way o f knowing and being in the world.

Likewise, the technological and industrial development o f Western societies under the 

conditions o f modernity cannot be merely understood as the introduction and 

application o f machinery for the purpose o f increasing productive capabilities. Equally 

important are the forms o f social organisation which allow for the implementation of 

specific technologies, enforcing new arrangements and combinations o f individuals and 

machinery. Fay states:

the obvious but important truth that the exploitation of nature for the production of goods 
and services can only occur through the cooperative effort o f men who undertake to do the 
work involved. This truth becomes a pre-eminent fact in a society which is devoted to a 
constant increase in production through the self-conscious organisation o f social labour; 
for in these societies rational administration directed towards ensuring continuity of 
operation, speed, precision, and an efficient employment of men and machines leads to an

44 Chris Hables Gray, Postmodern War. The New Politics of Conflict (New York: The Guilford Press, 1997),
p.262
45 Heidegger, The Question Concerning Technology and Other Essays, p. 14
46 Derek J. De Solla Price, “Notes Towards a Philosophy of the Science/Technology Interaction” in 
Rachel Laudan (ed.), The Nature of Technological Knowledge: Are Models of Scientific Change Pahvant? (Dordrecht, 
Holland: D. Reidiel Publishing, 1984), p. 106
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increasing division-of-labour in which men come to perform quite specialised functions, 
and in such a complex economy productive activity can go forward only when this activity 
is performed according to some highly abstract and general plan.47

What Fay says o f social organisation for the production o f goods and services is o f 

course no less true for the social organisations seeking to ‘produce’ destructive force. 

Kranzberg is eager to underline that “the introduction o f new analytical techniques in 

management forms the part o f technological history just as much as it does o f economic 

history and, now, of military history.”48 I f  a “highly abstract and general plan” is thus 

crucial to the organisation o f modem  modes o f both production and destruction, we 

should not assume that such a plan is exogenous or secondary to the process of 

technological development. In Pacey’s words, “technology can never be adequately 

understood in terms o f machines and techniques alone. Machines are always used within 

a framework of organisation and management, and often there are organisational 

changes at the heart o f important technological developments.” 49 I would go even 

further in claiming that those abstract organisational schemes are themselves 

technological in that they constitute social machines in which technical apparatuses are 

given function and meaning.

I follow here Deleuze and Guattari’s analysis o f technology:

The principle behind all technology is to demonstrate that a technical element remains 
abstract, entirely undetermined, as long as one does not relate it to an assemblage it 
presupposes. It is the machine that is primary in relation to the technical element: not the 
technical machine, itself a collection of elements, but the social or collective machine, the 
machinic assemblage that determines what is a technical assemblage at a given moment, 
what is its usage, extension, comprehension, etc.50

Deleuze and Guattari develop a flat ontology, a machinic conception o f society in which 

no domain or element is granted causal or deterministic prominence. In this conception, 

the machine is not primarily technical but describes any assemblage o f parts which

47 King, Social Science and Complexity, p.29
48 Melvin Kranzberg, “Science-Technology and Warfare: Action, Reaction, and Interaction in the Post- 
World War II Era” in Monte D. Wright & Lawrence J. Paszek (eds.), Science, Technology and Warfare: The 
Proceedings of the Third Military History Symposium — United Air Force Academy 8-9 May 1969, p. 133
49 Arnold Pacey, Technology in World Civilisation (Oxford: Basil Blackwell, 1990), p.157
50 Gilles Deleuze & Felix Guattari, A. Thousand Plateaus (London & New York: Continuum, 2003), pp.397- 
8
Also in Deleuze’s book on Foucault: “Machines are social before being technical. Or rather there is a 
human technology before there is a material technology. N o doubt the latter develops its effects 
throughout the entire social field; but, for it to be possible, the tools, the material machines, must have 
first been selected by a diagram, taken on by an assemblage.” (my translation)
Gilles Deleuze, Foucault (Paris: Les Editions de Minuit, 1986), p.47
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combine to work together. This allows for an understanding o f social developments in 

which technologies, organisational arrangements, and ideas all combine to constitute 

mixed assemblages that allow certain actions or Svays o f being’ and forbid others.

Throughout the different regimes o f the scientific way of warfare that I will distinguish, 

I will seek to bring to the fore those abstract and general plans according to which 

armies have been organised and that can be found operating through technical 

apparatuses, social organisations, and military thinking. While embodied in all these 

respective forms, such plans and diagrams can also be viewed as independent from any 

specific stratum o f reality. Foucault described the Panopticon, Jeremy Bentham’s plans 

for the ideal prison in which all inmates could be simultaneously supervised from a 

single omniscient position, as “a generalisable model o f functioning, [...] the diagram of 

a mechanism of power reduced to its ideal form [...] it is in fact a figure o f political 

technology that may and must be detached from any specific use.”51 De Landa, speaks 

o f the formation o f “abstract machines” as the point at which mechanical contraptions 

become “mechanism independent, that is as soon as they can be thought o f 

independently o f their physical embodiments.”52 Another way o f thinking such diagrams 

and models would be in terms o f metaphors — more on this later. For now, it is 

important to clarify the issues of causality and methodology raised by the above points.

Of Discourse and Polymorphous Correlations: Science and Culture

Having established the importance o f the question o f abstract machines and diagrams of 

power to the field o f inquiry of this thesis, it is crucial to note the role o f discourse in 

establishing and perpetuating them. Once again, my use o f discourse as an analytical 

tool implies much more than speech acts or written enunciation:

51 Michel Foucault, Surveiller et Punir (Paris: Editions Gallimard, 1975), p.239
52 Manuel De Landa, War in the Age of Intelligent Machines (New York: Swerve Editions, 1991), p.142
De Landa borrows the term ‘abstract machine’ from Deleuze and Guattari but uses the concept in a 
narrower sense than its originators, in accordance with the above definition. I will mainly be following De 
Landa’s understanding but it is useful to refer to the original formulation as it makes clear that abstract 
machines are to be understood as diagrams which cut across the physical and ideational realms but are not 
to be elevated as a. final cause since they are socially and historically produced: “an abstract machine in 
itself is not physical or corporeal, any more than it is semiotic; it is diagrammatic [...] [it] is neither an 
infrastructure that is determining in the last instance nor a transcendental idea that is determining in the 
supreme instance.”
Deleuze & Guattari, A  Thousand Plateaus, pp.141-142
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Discursive practices are not purely and simply ways of producing discourse. They are 
embodied in technical processes, in institutions, in patterns for general behaviour, in forms 
for transmission and diffusion, and in pedagogical forms which, at once, impose and 
maintain them.53

In this sense, discourses represent a form of power in determining the arrangements of 

bodies, machines and materiel according to abstract organisational diagrams and 

formulating the conceptualisations and theorisations that support such diagrams. 

Science and the worldview it promotes are particularly pervasive instances of such 

power, and are all the more enduring due to science’s ability to reformulate many of its 

theories while still retaining its core assumptions and method.

Thomas Kuhn’s seminal work on paradigms and scientific revolutions did much to 

challenge the established view o f a linear progression in the acquisition o f scientific 

knowledge.54 Kuhn’s historical study demonstrated that most scientific endeavour 

(“normal science”) occurred within well-established paradigms, defined as a set o f ideas 

and practices which determine what phenomena are to be observed and scrutinised, 

which kind of questions are to be asked, what constitutes a valid means o f interrogation 

and how results are to be presented and interpreted. Periods o f stability are punctuated 

by violent intellectual revolutions and episodes o f intense controversy in which an 

existing paradigm is found to be no longer adequate and is replaced by a new paradigm. 

While Kuhn’s work has been often, legitimately or not, called upon to undermine 

science’s truth claims and positivist understandings o f knowledge, it also serves to 

demonstrate one o f the fundamental strengths of scientific discourse, that is its ability 

to transform its constitutive theories and frameworks while still claiming a single corpus 

and methodology. It is this ability to remould itself which has secured science’s lasting 

legitimacy as an authoritative discourse in the Western world.

I f  some o f the accounts o f the development o f scientific theories included here will 

discuss the historical role o f specific scientists in their elaboration, their purpose is to set 

the context and chronological background o f these ideas rather than to present them as 

a series o f individual accomplishments. The romantic image o f the lone and 

misunderstood scientist or technologist toiling in his laboratory before a sudden

53 Foucault quoted in Mark C. Taylor, The Moment of Complexity: Emerging Network Culture (Chicago, IL: 
University of Chicago Press, 2001), p.57
54 Thomas S. Kuhn, The Structure of Scientific Revolutions - 3rd ed. (Chicago, IL: University of Chicago Press, 
1996)
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“eureka” moment in which all suddenly becomes clear may be narratively satisfying but 

is a far cry from the reality o f scientific endeavour. Science is always a collective 

enterprise conducted within a scientific community which shares and (reproduces the 

ideas, norms, and practices that constitute science. Ideas and theories are not produced 

in a vacuum but are the result o f an accumulation o f experiments, publications, and 

debates and only gain broad currency through their review by the scientific community. 

Hence we find the oft-observed phenomenon of multiple independent discoveries 

whereby similar discoveries are made by scientists working independently.55 This 

suggests that certain ideas or theories are ripe for formulation and diffusion at a given 

moment in history, as the result o f both the accumulated work o f previous scientists and 

the aptness of the cultural climate. Katherine Hayles argues in this way that the scientists 

behind the development o f chaos theory did not act in isolation; “they rather acted like 

lightening rods in a thunderstorm or seed crystals in a supersaturated solution. They 

gave a local habitation and a name to what was in the air. It was because the cultural 

atmosphere surrounding them was supercharged that these ideas seemed so pressing 

and important.”56

Indeed, science is not an activity separate from other contemporary social developments 

and ideational trends, much as some scientists may insist that the theories produced by 

the scientific method are formulated free from any o f ideological constraints or 

subjective judgments prevalent in other forms of enquiry into the world. For Margaret 

Wertheim, science is necessarily always a “cultural project”, in the sense that the 

widespread acceptance o f any understanding o f reality is necessarily the product o f the 

social and linguistic negotiation o f its epoch.57 In The Pearly Gates of Cyberspace, Wertheim 

charts the rise of the purely physicalist notion of space in the modem  age to the 

detriment o f the dualistic conception of body space and soul space prevalent in the 

Middle Ages. Medieval metaphysical dualism posited that reality was composed o f a 

finite earthly realm, as well as a spiritual dimension, which contemporary art made no 

attempt to represent in a naturalistic manner. This worldview was increasingly 

challenged in the late Middle Ages and Renaissance and eventually gave way to the

55 Famous examples of multiple independent discoveries include the discovery of calculus by Newton and 
Leibnitz, oxygen by Lavoisier and Priesdey, evolution by Darwin and Wallace, and the first law of 
thermodynamics by Joule, Mayer and Helmholtz.
56 N. Katherine Hayles, Chaos Bound: Orderly Disorder in Contemporary Literature and Science (Ithaca & London: 
Cornell University Press, 1990), p.174
57 Margaret Wertheim, The Pearly Gates of Cyberspace: A  History of Space from Dante to the Internet (New York: 
W.W. Norton, 1999), p.133
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desanctified vision o f a single unified physical reality that now dominates Western 

consciousness. While the scientific theories o f Kepler, Newton and Einstein underpin 

the elevation o f a homogenised space in which the totality o f reality is located, 

Wertheim argues that cultural developments such as the introduction o f perspective and 

spatial integrity in painting played a key role in allowing for the psychological shift that 

enabled minds to accept this radically new conception o f space.58

Along similar lines, the Nobel Pri2e physicist Edwin Schrodinger has claimed that:

All science is bound up with human culture in general, and [...] scientific findings, even 
those that which at the moment appear the most advanced and esoteric and difficult to 
grasp, are meaningless outside their cultural context. A theoretical science unaware that 
those of its constructs considered relevant and momentous are destined eventually to be 
framed in concepts and words that have a grip on the educated community and become 
part and parcel of the general world picture — a theoretical science, I say, where this is 
forgotten, and where the initiated continue musing to each other in terms that are, at best, 
understood by a small group of dose fellow travellers will necessarily be cut off from the 
rest of the cultural mankind; in the long run it is bound to atrophy and ossify however 
virulendy esoteric chat may continue within its joyfully isolated groups of experts.59

In order for any scientific truth to gain universal or even widespread acceptance beyond 

its tiny communities o f expertise, it therefore must necessarily be socially and culturally 

reproduced and validated. This entails presenting its core ideas and notions in terms that 

are coherent and comprehensible to the non-initiated, generally expressed through the 

medium of language but also eventually in a visual or experiential fashion. One crucial 

means by which the new can be apprehended in terms o f the familiar is through 

metaphor.

Prigogine and Stengers question the way in which the clock became so rapidly a symbol 

o f world order, their answer providing an insight into the methodology I will employ in 

this thesis:

A watch is a contrivance governed by a rationality that lies outside itself, by a plan that is 
blindly executed by its inner workings. The clock world is a metaphor suggestive of God 
the Watchmaker, the rational master of a robotlike nature. At the origin of modem science, 
a “resonance” appears to have been set up between theological discourse and theoretical 
and experimental activity — a resonance that was no doubt likely to amplify and consolidate 
the claim that scientists were in the process of discovering the secret o f the “great machine 
of the universe.” [...] It is not our intention to state, nor are we in any position to affirm, 
that religious discourse in any way determined the birth of theoretical science, or of the 
“world view” that happened to develop in conjunction with experimental activity. By using 
the term resonance — that is, mutual amplification of two discourses — we have deliberately

58 Wertheim, The Pearly Gates of Cyberspace, p .l 15
59 Prigogine & Stengers, Order out of Chaos, p. 18
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chosen an expression that does not assume whether it was theological discourse or the 
“scientific myth” that came first and triggered the other.”60

The authors later note that the manner in which irreve sible time is introduced into 

physics in the nineteenth century with the development o f thermodynamics, namely the 

claim to a universal “tendency towards homogeneity and death”, is reminiscent of 

“ancient mythological and religious archetypes” which they relate to a deep anxiety 

originating in “the rapid transformation o f the technological mode o f interaction with 

nature [and] the constantly accelerating pace o f change.”61 Certainly, Crosbie Smith’s 

masterful history o f the development o f the science o f energy in Victorian Britain 

persuasively argues for the influence o f the specific Protestant environment in which its 

formulators were immersed.62

The essential here however is Prigogine and Stenger’s notion o f ‘resonance’ between 

discourses and their refusal to commit to postulating the primacy of any particular 

discourse, preferring to opt for a more flexible contextual history which Smith also 

employs for his purposes in order to present “scientific work not as the product o f 

isolated individuals but as crucially contingent upon the cultural resources o f the age in 

which it was produced.” 63 For this task, Smith calls on “such seemingly diverse 

ingredients as industrial machines, social and institutional networks, and religious and 

political ideologies.”64 While this thesis distinguishes itself from these aforementioned 

authors in specifically focusing on the ‘resonances’ between warfare and technoscience, 

I nonetheless largely share their methodological and epistemological outlooks.

One o f the goals of Foucault’s work was to replace the “uniform, simple notion o f 

assigning causality” with a “whole play o f dependencies” and by “by eliminating the 

prerogative of the endlessly accompanying cause, bring out the bundle o f polymorphous 

correlations.”65 Hence, I will not be seeking to assign strict causality to any particular 

substrate or domain o f reality for the developments in technoscience and warfare I will 

be charting. Rather I will privilege an account which brings forth the resonances,

60 Prigogine & Stengers, Order out of Chaos, p.46
61 Prigogine & Stengers, Order out of Chaos, p.116
62 Crosbie Smith, The Science of Energy: A  Cultural History of Energy Physics in Victorian Britain (London: 
Athlone, 1998)
63 Smith, The Science of Energy, p.ix
64 Smith, The Science of Energy, p.ix
65 Michel Foucault (edited by Sylvere Lotringer), Foucault Live — Interviews 1961-1984 (New York, NY: 
Semiotext(e), 1996), p.38
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tensions, and breaks o f competing and complementary discourses across the 

sociocultural spectrum. In order to understand how different discourses can interact 

with one another and even co-constitute one another, it is necessary to turn to the 

notion o f metaphors.

The Power of Metaphors

You don't see something until you have the right metaphor to let you 
perceive it.

Robert Stetson Shaw (chaos theory pioneer)66

Traditionally understood as mere rhetorical flourish reserved to poetry and literature 

and viewed as the sign of muddled thinking in philosophy, the role o f the metaphor in 

language and human cognition has benefited from a major re-evaluation in recent times. 

In opposition to the view o f metaphor as mere statement o f similarity, paraphrase, or 

ornamental figure o f prose (‘saying one thing and meaning another’), Max Black has 

argued that the metaphor consists in viewing a principal conceptual domain — that is any 

coherent organisation o f experience — through the lens o f another subsidiary conceptual 

domain. The word ‘metaphor’ itself is from the Greek for ‘transfer’; effectively 

metaphors transfer meaning from one thing to another. But, as two different things 

cannot by definition be the same, metaphor necessarily involves an arbitrary 

simplification o f both objects since it must rely on illuminating certain features while 

obscuring others in order for the metaphor to work. Hence “the metaphor selects, 

emphasizes, suppresses, and organizes features o f the principal subject by implying 

statements about it that normally apply to the subsidiary subject.”67 The reverse is also 

true in that metaphors work both ways — the subsidiary subject comes to be seen to be 

more like the principal subject.

It has furthermore been argued that many ‘literal’ expressions are in fact simply ‘dead’ or 

‘frozen’ metaphors that we no longer recognise as such. Obvious examples would

66 James Gleick, Chaos: Making a New Science (London: Vintage, 1987), p.262
67 Max Black, Models and Metaphors: Studies in Language and Philosophy (Ithaca, NY: Cornell University Press, 
1962), pp.44-45
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include such expressions as the wings o f a building, the branches o f science, or the foot 

o f a mountain.68 Thus, according to Schon, all language is metaphorical and the creation 

o f metaphors is the process through which concepts are formed and displaced from old 

to new domains. “The metaphorical character o f language [...] is due to the fact that our 

language, at any given time, gives us a cross-section o f our processes o f concept 

formation or discovery. The metaphors in language are to be explained as signs o f 

concepts at various stages o f displacement, just as fossils are to be explained as signs o f 

living things in various stages o f evolution.”69

If  conceptual thought is therefore predominantly structured by specific metaphors, it 

follows that many (if not all) social activities and human representations o f the world 

around us are organised by metaphorical understandings. For Lakoff and Johnson, this 

implies that:

new metaphors have the power to create a new reality. This can begin to happen when we 
start to comprehend our experience in terms of a metaphor, and it becomes a deeper reality 
when we begin to act in terms of it. If a new metaphor enters the conceptual system that 
we base our actions on, it will alter that conceptual system and the perceptions and actions 
that the system gives rise to.70

While new metaphors can modify our conceptual system, they also help us apprehend 

novelty. Indeed, through them we can understand the new and unfamiliar in the terms 

o f images, objects or conceptual frameworks we are already comfortable with (we 

should not necessarily limit the concept o f ‘metaphor’ to language — “metaphors can be 

not merely linguistic but experiential and material as well” 71). As Richard Robbins 

observes:

Metaphors give a feeling of power and control. If we have a thorough understanding of 
one system of relations [...] we can use it to comprehend a system of relations we only 
begin to grasp, and, as a result, we get a feeling of security, well-being and power. Simply by 
naming features of a new experience, we fix and control that experience. In every instance 
of the use of a known metaphor to interpret a new experience there is a transition from 
helplessness to power. Where something was puzzling, it suddenly becomes clear.72

68 Alan D. Beyerchen, “Clausewitz, Nonlinearity, and the Importance of Imagery” in David S. Alberts and 
Thomas J. Czerwinski (eds.), Complexity, Global Politics, and National Security (Washington, D.C.: National 
Defense University, 1997), p.74
http://www.dodccrp.org/publications/pdf/Alberts Complexity Global.pdf
69 Donald A. Schon, Displacement of Concepts (London: Tavistock Publications, 1963), p.51
70 George Lakoff & Mark Johnson, Metaphors We Live By (Chicago, IL: University o f Chicago Press, 1990), 
pp.145-146
71 Edwards, The Closed World, p.30
72 Richard H. Robbins, The Belief Machine (1985)
http://faculty.plattsburgh.edu/richard.robbins/Belief/chapter two.htm
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Metaphors therefore constitute an ordering mechanism by which structure and meaning 

can be imposed on the chaos and confusion produced by novelty. It is on the basis of 

the new understanding afforded by metaphor that future actions can be justified and 

control exerted — we are back to the will to order discussed at the beginning o f this 

chapter.

For Black, theoretical models in science work very much like metaphors, requiring 

analogical transfer and revealing new relationships:

A memorable metaphor has the power to bring two separate domains into cognitive and 
emotional relation by using language directly appropriate to the one as a lens for seeing the 
other, the implications, suggestions, and supporting values entwined with the literal use of 
the metaphorical expression enable us to see a new subject matter in a new way. The 
extended meanings that result, the relations between initially disparate realms created, can 
neither be antecedendy predicted nor subsequently paraphrased in prose. We can comment 
upon the metaphor, but the metaphor itself neither needs nor invites explanation and 
paraphrase. Metaphorical thought is a distinctive mode of achieving insight, not to be 
construed as an ornamental substitute for plain thought. Much the same can be said about 
the role of [theoretical] models in scientific research. If the model were invoked after the 
work of abstract formulation had already been accomplished, it would be at best a 
convenience of exposition, But the memorable models of science are “speculative 
instruments” [...] They, too, bring about a wedding of disparate subjects, by a distinctive 
operation of transfer of the implications of relatively well-organised cognitive fields. And as 
with other weddings, their outcomes are unpredictable. Use of a particular model may 
amount to nothing more than a strained and artificial description of a domain sufficiently 
known otherwise. But it may also help us to notice what otherwise would be overlooked, to 
shift the relative emphasis attached to details — in short, to see new connections [original 
emphasis].73

From this emerges a much more general understanding o f metaphor than that allowed 

by its traditional literary definition since it applies to all cognitive processes by which a 

domain is viewed in terms o f another domain. Robbins advocates an equally broad view 

o f the metaphor, claiming that “many terms have been used to label the subsidiaries, the 

‘known,’ that we bring to each new experience to give it meaning: ‘schemata,’ ‘themata,’ 

‘paradigm,’ Svorld vision,’ Svorld view,’ ‘model,’ ‘framework,’ and ‘theory’ are just some 

of these labels. But, in the most rudimentary sense, all these things — schemata, theories, 

world visions, and the rest — are metaphors; like metaphors, we transfer theories and 

schemata, world visions and world views, paradigms and themata to experiential 

phenomena as our way of understanding the phenomena.”74

73 Black, Models and Metaphors, pp.236-237
74 Robbins, The Belief Machine http://faculty .plattsburgh.edu/richafd.robbins/Belief/chapter two.htm
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N or are scientists necessarily blind to the metaphorical nature o f their theoretical 

enterprises. To the quote o f Robert Shaw given at the beginning o f this section, should 

be added the claim of complexity theorist Brian Arthur from the Santa Fe Institute that 

science “is about the creation of metaphors.” 75 For the English cybernetician and 

psychologist Gordon Pask, cybernetics was nothing else than “the art and science o f 

manipulating defensible metaphors.”76

In the context of this thesis, I will be discussing the four specific machinic metaphors of 

clockwork, engine, computer, and network that have been central to the respective 

technoscientific discourses of mechanism, thermodynamics, cybernetics, and chaos 

theory/complexity. Each metaphor has been particularly influential as it has been 

enmeshed within a web o f theories and practices and supported by the dominant 

technology of the era. Within these discourses, the metaphor has both served as a point 

o f departure for scientific speculation and as a heuristic bolstering the theories that 

sprang from it.77

A Brief Review of the Relevant Core Texts

In The Future of War, Christopher Coker briefly discusses paradigmatic technologies and 

the metaphorical frameworks through which science and war are understood. He 

distinguishes three machine metaphors corresponding to distinct eras in warfare with 

the clock, the engine and the computer (see Figure 1). This typology has served as the 

conceptual framework through which I pursued most o f my early research and 

structured my thinking on this thesis.

75 King, Social Science and Complexity, pp.13-14
76 American Society for Cybernetics, “Defining ‘Cybernetics”’ http://www.asc- 
cybernetics.org /  found a tion s /  d e finitions. htm
77 For Michael Arbib and Mary Hesse, “scientific revolutions are in fact, metaphoric revolutions, and 
theoretical explanation should be seen as metaphoric redescription of the domain of the phenomena.”
Lily E. Kay, Who Wrote the Book of Life? A  Histoiy of the Genetic Code (Stanford, CA: Stanford University 
Press, 2000), p.22
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Clock Steam Engine Computer

Dominant tool in society. 
Tool a s  m etaphor for 
science leading to the new 
science of Newtonian 
mechanism .
M etaphor for scientific 
worldview based  on force. 
W ar a s  directed 
m echanised force.

Dominant tool in society. 
The object of scientific 
study leading to the new 
study of thermodynam ics. 
M etaphor for scientific 
worldview based  on 
energy.
W ar a s  directed energy.

Dominant tool in society. 
Tool for science and object 
of scientific study leading 
to the new science of 
physics and computation. 
Metaphor for scientific 
worldview b ased  on 
information.
W ar a s  negative 
information feedback.

Figure 1: Christopher Coker's m etaphors o f war78

I f  I still share much o f the analysis found in the few pages Coker dedicates to this 

question, my intent has been to develop the conceptual framework further and bring 

greater historical depth to this insight into technology as tools and metaphors 

connecting science and war. This has entailed delving at length into the scientific 

theories revolving around those technological metaphors with particular attention paid 

to the inter-relationships between these theories, including both the complementarities 

and continuities as well as the tensions and contradictions that characterise them. While 

a certain metaphor may appear to dominate a particular era, it does not necessarily 

replace wholesale previous metaphors and therefore I have avoided thinking o f them in 

terms o f paradigms because o f the notions o f incommensurability that Kuhn attached to 

them. Relative to Coker’s original typology, I have also sought to go further in 

distinguisliing between two metaphors and scientific corpuses under the informational 

worldview: the computer and cybernetics on one hand, and the network and chaos 

theory/complexity on the other. While the latter is in a sense an outgrowth o f the 

former through its notions o f systems and circular causality and the key operative 

concept o f information, the nexus o f ideas connected to each technoscientific metaphor 

have profoundly different implications both for the scientific Weltanschauung and military 

affairs.

A further crucial dimension o f this present thesis is the exploration o f the relationship 

between the ideas o f order and chaos in scientific discourse, and the parallels that exist 

in the military sphere. In this respect, Prigogine and Stenger’s Order out of Chaos and

78 Reproduced from Christopher Coker, The Future of War: The Re-Enchantment of War in the Twenty-First 
Century (Oxford: Blackwell Publishing., 2004), p.36
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Katherine Hayles’s Chaos Bound have been influential texts.79 Although they do not 

discuss warfare directly, they provide incisive commentaries on the relationship o f order 

to chaos in science, and the manner in which this relationship has been reconceptualised 

through different theories. For my purposes, a central issue related to that o f order and 

chaos has been that of the military tactics and strategies deployed to handle uncertainty 

and the different centralising and decentralising approaches taken by the commanders 

o f armies. Martin van Creveld remains here probably the most brilliant commentator 

with his seminal study o f military command through the ages, Command in War,, which 

complemented his equally illuminating Technology and War.80 Van Creveld argues that 

centralisation and decentralisation o f command constitute the two poles according to 

which military organisation has historically dealt with uncertainty (with greater success 

when tending towards the latter) and this view has informed my thesis in providing a 

lens o f analysis to apply when looking at technological metaphors and scientific 

discourses o f war. Furthermore, I also follow van Creveld in his insistence that “there 

does not exist, nor has there existed, a technological determinism that governs the 

method to be selected for coping with uncertainty” and have sought to avoid any 

simplistic technologically deterministic explanations in my account.81

Alongside the poles o f centralisation and decentralisation can also be found two 

conflicting approaches to the question o f predictability and control in warfare. A first 

approach strives for complete omniscience, driven by the belief that sufficient 

knowledge and data will provide a complete understanding o f both the laws o f war and 

a given military situation, thereby delivering absolute control and predictability over the 

practice of warfare. In other words, order must and can banish chaos. The second 

approach seeks to recognise the irreducible uncertainty o f war and consequently views 

the ideal o f omniscience and omnipotence in military affairs as a dangerous self- 

defeating fantasy. Warfare must therefore accept and exploit this essence o f 

unpredictability and fluidity in order for an army to prevail — here it is from chaos that 

order can emerge and it can necessarily only be transitory in the forms that it takes. A 

number of academic works have critiqued the former approach, notably in its 

manifestations in the American way of warfare, particularly during the Cold War. 

Among them are Gray’s Postmodern War, Edwards’s The Closed World, and Gibson’s

79 Hayles, Chaos Bound, Prigogine & Stengers, Order out of Chaos
80 Van Creveld, Command in War, Van Creveld, Technology and War
81 Van Creveld, Command in War, p.275
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account o f the Vietnam War in The Perfect W a r -  I have taken up much o f their critique 

o f technoscientific warfare in this thesis.82 However, I have also sought to analyse the 

second approach, afforded far less attention in secondary literature o f the 

aforementioned type, especially when considering the development o f network-centric 

warfare. This, I believe, allows for a nuanced and subtle reading o f the scientific 

approach to warfare which resists the seductive but reductive view that it necessarily 

implies a centralising worldview, a conclusion which might be drawn on the basis of 

some of the aforementioned works.

Manuel De Landa’s War in the Age of Intelligent Machines, published in 1991, does offer 

such a broad perspective, adopting van Creveld’s analysis on centralisation and 

decentralisation and also employing a characterisation o f epochs o f modem  warfare 

similar to that o f Coker and which he draws from Michel Serres’s writings on the history 

o f science.83 De Landa discusses three “machinic paradigms” with the clockwork, 

motor, and network acting as abstract machines organising military activity. His work is 

therefore another important point o f reference for my research and this present thesis. 

However, while De Landa brings in notions from chaos theory and complexity to 

explain the entire historical development o f warfare (a methodology he subsequently 

employed for non-military history in A  Thousand Years of Non-Unear History8*), he was 

writing at a time when these ideas had barely began to permeate military theory and the 

Cold War had only just ended. Thus, while he captured many o f the crucial 

technoscientific trends that were developing, he could only speculate that, as a threat to 

centralised command and control, they would long be resisted by the military.85 While 

the question o f whether a new technoscientific discourse has at present fully permeated 

military thought and practice is one that will be left open for now and addressed in the 

latter stages o f the present piece o f work, a vast military literature has certainly been 

produced on this theme since the early nineties. An in-depth comparison and analysis o f 

this literature is among the original contributions I hope to make with this thesis.

82 Gray, Postmodern War, Edwards, The Closed World, James Gibson, The Perfect War. Technowar in Vietnam 
(Boston, MA: Atlantic Monthly Press, 1986)
83 De Landa, War in the Age of Intelligent Machines, p.62 ; Michel Serres, Hermes: Literature, Science, and 
Philosophy (Baltimore, MD: John Hopkins University, 1983)
84 Manuel de Landa, A  Thousand Years of Non-Linear History (New York: Swerve Editions, 2003)
85 De Landa, War in the Age of Intelligent Machines, p. 130
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The Four Regimes of the Scientific Way of Warfare

There is not a movement of any body of men however small whether on 
horseback or on foot, nor an operation or march of any description nor 
any service in the field that is not founded upon some mathematical 
principle.

Arthur Wellesley, 1st Duke of Wellington86

A ll strategy is controlled by invariable scientific principles.

Henri Antoine de Jominf7

This thesis concerns itself with the development o f warfare in the Western world from 

the advent o f modernity, focusing on the role o f science and technology. In an era of 

rapid intellectual and societal change, the practice of the application o f force for military 

purposes was radically transformed and continues to be so. For Gray, three crucial 

trends emerging in the 16th century marked the beginning o f modem war:

- The application o f rationality to war instead o f tradition;

- The development o f administrative bureaucracies;

- The systematic application of science and technology.88

While the distinctions made by Gray are useful, these three trends are closely 

interwoven with rationalisation underpinning the administrative reform and the 

scientific project. With the Enlightenment and the Scientific Revolution, reason and 

scientific method were recruited for the study and organisation o f all fields o f natural 

phenomenon and human activity, including a quest for the discovery o f the fundamental 

laws governing warfare. In his Essai General de Tactique (1770), General Guibert deplored 

the fact that military science was yet to match the accomplishments o f the Newtons and 

D ’Alemberts and thereby sought to determine tactics which:

would constitute a science at every period of time, in every place, and among every species 
of arms; that is to say, if ever by some revolution among the nature of arms which it is not 
possible to foresee, the order o f depth should again be adapted, there would be no

86 John Shy, “Commentary on Western Military Education 1700-1850” in Wright & Paszek (eds.), Science, 
Technology and Warfare, p.67
87 Lawrence, Modernity and War, p.22
88 Gray, Postmodern War, p . l l l
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necessity in putting the same [tactics] in practice to change either manoeuvre or 
constitution.89

It should be noted that science had not waited for the modem world to forge a 

symbiosis with military affairs. Indeed the graecist John Onians has traced the origin o f 

Greek mathematics to “the importance o f absolute order in the military sphere which 

gave mathematics a dominant role in all Greek culture.”90 Unsurprisingly, the modem 

era consciously modelled itself on the classical world in heralding the reaffirmation of 

reason as the guiding light in a new age o f progress.

If  it is the claim of this thesis that if a scientific way of warfare emerged with the advent 

o f modernity and has since endured and gained in influence, there is nonetheless 

considerable variation in the ideas and practices advanced by it. I have organised the 

latter according to the machine metaphors which have dominated successive eras in the 

development of science and warfare (clockwork, the engine, the computer and the 

network) and the respective sciences they have supported (mechanism, 

thermodynamics, cybernetics, chaos theory/complexity). In conclusion, I will now 

briefly summarise the central characteristics o f the four regimes o f the scientific way of 

warfare I will distinguish, and according to which this thesis will be organised.

1. Mechanistic Warfare and the Clock

Mechanism constituted the first major scientific discourse and in many ways set the 

template for the future development of science. Under mechanism, the universe became 

understood as an entirely mechanical system composed wholly o f matter in motion 

under a complete and regular set o f laws of nature. The core ideas behind mechanism 

were the laws o f motion as formulated by Newton, the concomitant notions of gravity 

and mass, the reversibility o f time, and the belief that any whole could be understood

89 A2ar Gat, A. History of Military Thought: From the Enlightenment to the Cold War (Oxford: Oxford University 
Press, 2001), p.50
90 Bemhelm Booss-Bavnbek, “Mathematics and War” (Draft Essay for Hutchinson Companion 
Encyclopedia of Mathematics, 2001) http:/ /mmf.rac.dk/~-'booss/mathwar/bb mathwar.htm 
Erastosthenes (276 BC - 194 BC) claimed the main purpose for doing cube roots was to calculate settings 
for ballistae.
Alex Roland, “Science, Technology, and War”, Technology and Culture, Vol. 36, No. 2, Supplement: 
Snapshots of a Discipline: Selected Proceedings from the Conference on Critical Problems and Research 
Frontiers in the History of Technology, Madison, Wisconsin, October 30-November 3,1991. (Apr. 1995), 
p.95
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through the analysis o f its individual parts. The metaphor o f the world as a machine also 

begins here, to be carried on through different iterations under successive 

technoscientific discourses. However, the machine metaphor around which mechanism 

revolved was that o f the clock, or more specifically the clockwork mechanism. As the 

philosophy and science dominating European thought throughout the seventeenth and 

eighteenth centuries, mechanism used the clockwork metaphor as a symbol o f the order, 

regularity and predictability o f the universe and natural bodies, with the clockwork 

mechanism itself serving scientific enquiry as both a tool and an object o f study. By 

embodying a general concept o f operation or model o f organisation enmeshed in 

ascending cultural discourses, clockwork represented both the unveiled order o f the 

physical world and a prescribed ideal in human affairs. Chaos was exorcised by the 

invocation o f divine clockwork behind all phenomena and the promise o f complete 

predictability and control. A clockwork universe also implied a divine watchmaker who 

had constructed its mechanisms and set it into motion. This vision resonated with the 

enlightened absolutism of the day, its faith in the rational and orderly organisation o f 

government, and the position o f the monarch as uncontested divine representative and 

sole seat o f power. Mechanistic warfare was characterised by the same features with its 

armies emphasising rehearsed synchronous movements, the lack o f autonomy of their 

parts and their unflinching obedience to the pre-determined sequence o f battle decided 

upon by their commanders. Thus this conception of warfare attempted to maintain 

order and ward off chaos through a pre-programmed and centralised routine exerted 

against unresponsive matter. In this embodiment of the clockwork metaphor, the 

organisation and doctrine o f Frederick the Great’s Prussian army remain paradigmatic.

2. Thermodynamic Warfare and the Engine

With thermodynamics and the engine, science gained an understanding o f the energy 

which drove the previously studied mechanisms of motion. From the study o f heat 

derived from the engineering prowess behind the steam engine, nineteenth century 

thermodynamics proceeded to discover both the convertibility o f all forms o f energy 

and its inevitable dissipation into randomness through entropy. Time no longer 

appeared reversible but acquired direction, finding its arrow and leading to the inevitable 

heat death o f the universe — from order to chaos. The thermodynamic world was one of
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instability and change in which the cultivated stability o f the ancien regime was rapidly 

swept away by revolutionary and nationalistic fervour. But if time found its arrow, it was 

not always from order to chaos. Indeed, ideologies o f progress also proclaimed a 

direction to history at the end o f which lay a liberal, socialist, or national paradise — from 

the chaos of the age, a final and immutable order would emerge, even if more disorder 

would first be required in the form of war or revolution. Narratives o f optimistic 

progress and fearful decline alternated in the cultural imagination o f the nineteenth and 

early twentieth century European. But if there were conflicting accounts o f the direction 

time was taking, what remained undisputed was the new impermanence of the world 

and the uncertainty it brought with it. As the founder o f scientific socialism Karl Marx 

famously put it, “all that is solid melts into the air” in the foundry o f the new industrial 

world. The engine, the device that put to work the sources o f motive power and was 

central to industrialisation, replaced clockwork as the dominant machine metaphor and 

the theoretical and practical nexus for the new scientific worldview. Thermodynamic 

warfare saw increasing energy channelled into war, whether propelling motorised 

vehicles on land, sea and in the air, feeding the industrial economies mobilised for total 

war, both delivering and delivered by ballistic weapons, or drawing on the nationalistic 

ardour of conscripts and the home front. I f  the logistical requirements o f industrial 

warfare brought entire economies under unprecedented centralised control, the chaos of 

the battlefield imposed some tactical decentralisation, notably through the German 

army’s Auftragstaktik. Thermodynamic thought also expressed itself in the writings of 

the great strategist Carl von Clausewitz who recognised the essentially dynamic and 

irreducibly unpredictable nature o f war — chaos was here understood as inherent to 

warfare, a constant threat to the best laid plans and which military commanders should 

recognise and adapt to rather than engage in futile attempts to banish it.

3. Cybernetic Warfare and the Computer

As the intensity and breadth o f the battlefield grew along with its logistical requirements, 

communication technologies became necessary to achieve the required coordination of 

increasingly large and intricate military systems. The harnessing o f electromagnetic 

forces for telecommunication purposes proceeded with telegraphy and telephony and 

stimulated growing scientific interest in the concept o f information. Cybernetics
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emerged from the Second World War, offering a new science o f communications and 

control and promising to control chaos through self-regulating mechanisms o f negative 

information feedback. Through being defined as negative entropy (negentropy), 

information became conceptualised as the source of all order. The computer, also a 

product o f the war effort, became the new dominant machine metaphor through which 

the world could be understood in terms o f information processing. The dream of 

complete predictability and centralised control of mechanistic warfare was reborn with 

cybernetic warfare through computing and servomechanistic technologies and the 

analytical tools o f operations research and systems analysis. The Cold War and the 

permanent threat o f nuclear annihilation required ever greater levels o f automation and 

centralisation o f the war machine and cybernetic technology’s promise o f stability in the 

face o f perturbation appeared best suited to the containment and management of a 

conflict o f potentially apocalyptic proportions. Cybernetic warfare thus viewed military 

organisation purely as a top-down process, a vast techno-social machine to be integrated 

and directed through a strict hierarchy on the basis o f the calculations o f operations 

researchers and system analysts.

4. Chaoplexic Warfare and the Network

From the late 1960s and early 1970s onwards, this cybernetic discourse became 

increasingly challenged through scientific developments which grew out o f the original 

corpus o f cybernetics, military reversal in Vietnam, and geopolitical transformation. The 

increasing application o f computers to the study o f scientific problems, the rediscovery 

o f non-linear mathematics, and an extension of the cybernetic analysis o f systems to 

questions o f self-production and self-organisation constituted novel scientific 

approaches which crystallised in the theories o f chaos and complexity (referred to 

together as chaoplexity) in the 1980s. Information remains the central concept, and in this 

sense chaoplexity is an outgrowth o f cybernetics and information theory, but the focus 

on change, evolution, and positive feedback breaks with the concern for stability o f the 

cybernetic pioneers. While some of the certainties and predictability o f the existing 

scientific theories and methodology are terminally undermined, a hidden order is 

discovered behind chaos which itself becomes no longer an evil to avert but the very 

condition o f possibility of order. The key notions here are those o f non-linearity, self­
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organisation, and emergence, and the central metaphor is that o f the network, the 

distributed model o f information exchange perhaps best embodied by the Internet.

As the Cold War has receded, a monolithic threat viewed through the lens o f bipolarity 

has given way to a globalised world in which risks are diffuse and amorphous, requiring 

new approaches to security. Cybernetic warfare had failed spectacularly in Vietnam 

when faced with a diffuse and decentralised enemy, triggering a long debate on the need 

for reconceptualisation o f military organisation. If  the first incarnations o f the RMA 

only seemed to offer further extensions of the original cybernetic paradigm, a growing 

influence o f the ideas o f chaos, complexity, and the role o f networks can also be 

observed, leading to the adoption of the doctrine of network-centric warfare by the 

Pentagon in the late 1990s. Much of this doctrine draws explicitly or implicitly from the 

discourse and theories o f complexity and self-organisation with its use o f the notions of 

self-synchronicity and swarming. This thesis will seek to ascertain the extent to which 

one can now speak o f chaoplexic warfare and question how significantly network- 

centric warfare does in fact break with the conceptions o f cybernetic warfare.
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Chapter 3: Mechanistic Warfare and the Clockwork Universe

The clock is the first automatic machine applied to practical purposes. 
The whole theory of the production of regular motion was developed 
through it.

Karl Marx, 1863 letter to Engels 91

Mechanism, the science and philosophy dominating European thought throughout the 

seventeenth and eighteenth centuries and which characterised the first technoscientific 

regime of warfare, was crucially articulated around clockwork technology. While the 

clockwork mechanism itself served scientific enquiry as both a tool and an object o f 

study, the clockwork metaphor came to represent the order, regularity, and predictability 

in the motion o f the universe and its natural bodies. By embodying a general concept o f

operation or model o f organisation enmeshed in ascending cultural discourses,

clockwork represented both the unveiled order o f the physical world and a prescribed 

ideal in human affairs. Emulation o f the virtues o f clockwork were perhaps never more 

obvious than in the organisation and doctrine o f Frederick the Great’s Prussian army. 

However, before broaching mechanistic warfare itself and relating the machine 

metaphor to its contemporary form o f warfare, I will first review the genesis o f 

clockwork technology, its interplay with scientific theory and method, and its 

development into a metaphorical figure o f Western discourse.

From Mechanical Clocks and Automata to Clockwork Metaphor

While time-keeping devices such as the sundial and water clock had existed for 

centuries, their mechanical incarnation only appeared in Europe in the late thirteenth 

century.92 Combining the ancient Greek technology of toothed wheels and gear trains, a 

system o f weights, and the crucial addition o f an escapement mechanism allowing a

91 Coker, The Future of War, p.25
92 Sundials and water clocks can be traced as far back as Ancient Egypt. However, until the mechanical 
clock, time keeping was imprecise and tributary to meteorological conditions (the availability of the sun or 
o f temperatures above freezing).
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steady motion o f strictly constant velocity, the clockwork mechanism brought about a 

revolution in horology and the design o f automata.

Mechanical clocks remained expensive and bulky in the first two centuries that followed 

their invention but they nevertheless spread remarkably swiftly across Europe and, with 

an initial emphasis put on the production of tower clocks for public buildings, large 

numbers of individuals would have been familiar with their sight. The development of 

spring-based mechanisms in the late fifteenth century markedly improved the reliability 

and portability o f clockwork devices and contributed to their further dissemination in 

European society.93 In 1657, Christiaan Huygens, the discoverer o f the wave behaviour 

o f light, invented the first successful pendulum clock, markedly increasing the accuracy 

o f timekeeping. This new precision was o f huge scientific importance as without it the 

study o f physics in the following centuries would have been gready hampered.

The spread of the mechanical clock played a central role in reshaping social life, 

divorcing it from the natural cycles o f day and night and imposing a division o f time 

into constant and regular units. Clocks enabled a greater synchronisation of social 

activities, with punctuality elevated to a social virtue, particularly in courtly life. This new 

universal rhythm would play a major role in the ordering of emerging industrial societies 

since “the clock is not merely a means o f keeping track o f the hours, but of 

synchronising the actions o f men.”94 However, the clockwork mechanism itself had an 

equally far-reaching cultural effect as a metaphor for the motions o f celestial and natural 

bodies.

Indeed, as the clockmaking craft developed, timekeeping was often secondary to the 

display o f elaborate mechanisms that attempted to mirror the different aspects of the 

natural world. Chief among this was the design o f complex astronomical devices that 

indicated the motion o f planetary bodies such as the famous astronomical clock of 

Strasbourg, first constructed in 1354 and then rebuilt in 1574. The Strasbourg clock also 

included a rooster automaton, imitation of life being the other chief use of clockwork 

mechanisms. Automated reproduction o f music was also popular, effectively mimicking 

the actions o f a human instrumentalist.

93 Rodney Dale, Timekeeping (London: The British Library, 1992), p.44
94 David Landes, Revolution in Time: Clocks and the Making of the Modem World (Cambridge, MA: Harvard 
University Press, 1983), p.xix
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The cultural influence o f automata grew as clockwork mechanisms became more 

complex, to the extent that automata and clocks were essentially considered as a single 

type o f device. As Otto Mayr tells us, “in dictionaries from the sixteenth to eighteenth 

centuries, the automaton (a machine that moved independently on the strength o f both 

a power supply and a plan o f action, or program, of its own) was the higher, general 

category; the clock was merely a particular variety of automaton.”95 We can infer from 

this that it was the clockwork mechanism itself, above the specific uses to which it was 

put, which impressed itself most on the minds o f contemporaries, and particularly on 

those o f the intellectual class that drove the Scientific Revolution which culminated in 

the development o f Newtonian mechanics.96 Contemporary references to ‘machines’ 

evoked first and foremost clockwork as the most stunning technical achievement o f the 

times. In effect, the clockwork denomination went from simply designating a specific 

object (the clock) to what de Landa has called an ‘abstract machine’ — a general concept 

o f operation or model o f organisation.97 This conceptual shift would allow the 

clockwork metaphor to blossom until it formed a central piece o f the emerging 

philosophical and scientific worldview o f mechanism.

95 Otto Mayr, Authority, Liberty <&r Automatic Machinery in Early Modem Europe (Baltimore, MD & London: 
John Hopkins University Press, 1986), p.21
96 The Scientific Revolution refers to the establishment of modem scientific method (principally 
mathematisation, mechanisation, and empiricism) and the major theoretical developments that occurred 
from the discoveries of Kepler and Galileo in the late sixteenth century to the publication of Newton’s 
Principia (1687). The boundaries o f this ‘revolution’ are controversial, with some historians dating its 
beginnings to Copernicus’s work on a heliocentric model o f the solar system (1543) or extending it into 
the 18th century, while others even question its existence, generally on the grounds that it constituted an 
evolution rather than revolution. Regardless of the finer points o f this debate, it is clear that a powerful 
change in the scientific worldview occurred over this period in which the qualitative deductive 
Aristotelian conception of science, that had so dominated the later Middle Ages in its scholastic form, was 
replaced by a quantitative and empiricist inductive approach that still forms the basis of our present-day 
understandings of science.
97 De Landa, War in the Age of Intelligent Machines, p. 139
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The Clockwork Universe: the Ascendancy of the Mechanistic Worldview

The making of clocks [ ...]  is certainly a subtle and exact work; their 
wheels seem to imitate celestial orbs, and their alternating with orderly 
motion, the pulse of animals.

Francis Bacon, Novum Organum (1620fs

The reason that there is truth in the world is that it is a machine. Were 
it not to remain a machine, then the distinction between it and a dream 
would vanish.

Christian Wolff, Vemiinfftige Gedancken 
von Gott, der Welt und der Seek des 

Menschen (1 7 1 9 f

The clockwork ‘abstract machine’ is ever-present in the European scientific literature o f 

the sixteenth to early eighteenth centuries with its metaphorical effects being felt 

through scientific and philosophical discourse in multiple ways. Firstly, it served as an 

instrument o f demystification by demonstrating how apparendy inexplicable motion 

could be accounted for by a dissimulated assemblage of cogs, weights and springs rather 

than by a supernatural and/ or unknowable force. It also suggested that an 

understanding o f natural phenomena could be best deduced by breaking it up into 

smaller parts, the study and observation of which would illuminate the entire process, a 

break from the holistic approach o f the Aristotelian tradition. This brought to the fore 

the notion o f cause and effect in a new and powerful way, Hobbes presenting science as 

nothing else than “the knowledge o f consequences, and dependence o f one fact upon 

another.”100 Crucially, the clock as a time-keeping device also served to “disassociate 

time from human events and helped create the belief in an independent world o f 

mathematically measurable sequences: the special world o f science.” 101 In this sense, 

clockwork was the very foundational metaphor o f modem science.

98 Samuel Macy, Clocks and the Cosmos: Time in Western Life and Thought (Hamden, CT: Archon Books, 1980), 
p.74
99 Mayr, Authority, Liberty Automatic Machinery in Early Modem Europe, p.74
100 James King, Science and Nationalism in the Government of Louis X IV  (Baltimore, MD: John Hopkins Press, 
1949), p.17
101 Edwards, The Closed World, p.29
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These ideas and discursive practices were all central to the development o f the 

‘mechanistic’ approach that emerged over this period. In essence, mechanism posits that 

the universe is best understood as a completely mechanical system composed entirely of 

matter in motion under a complete and regular system o f laws of nature. For Karl 

Deutsch, the mechanistic model also:

implied the notion of the whole which was completely equal to the sum of its parts; which 
could be run in reverse; and which could behave in exactly identical fashion no matter how 
often these parts were disassembled and put together again, and irrespective of the 
sequence in which the reassembly would take place.102

The parallels which can be drawn between the above properties o f regularity, reversible 

motion, ease o f disassembly and reassembly, and those o f clockwork mechanisms are 

clear.

It is essential to understand that mechanism was as much a methodology as a set o f 

ontological commitments. It was postulated that the best method of scientific enquiry 

was to break down the phenomena under scrutiny into individual parts or sequences o f 

events which could be reliably distinguished, measured, and compared using the 

experimental apparatus o f the day. These batches o f knowledge could then be related to 

each other to detect regularities and formulate causal links, to extract a calculable 

coherence o f forces expressed by the way of geometrical representations and algebraic 

functions. This practice o f breaking down any problem into component parts which 

could be more effectively tackled individually before being reassembled is also common 

to that o f the modem division o f labour in which production was broken down into 

optimal stages in which individuals would specialise, granting greater efficiency to the 

overall process. We should therefore perhaps not be surprised that it is in the 

manufacture o f clockwork, the most advanced craftsmanship o f the time, that the 

division of labour was then applied most thoroughly.103

102 Stephen David Bryen, The Application of Cybernetic Analysis to the Study of International Politics (The Hague: 
Martinus Nijhoff, 1971), p.5
103 The horologist Ferdinand Berthoud listed sixteen different sorts o f workmen involved in producing 
clocks, and twenty-one making watches.
Daniel J. Boorstin, The Discoverers: A  History of Man’s Search to Know his World and Himself (Hamondsworth, 
Middlesex: Penguin, 1986), p.66
Deleuze and Guattari tell us that “the way in which a science, or a conception of science, participates in 
the organisation of the social field, and in particular induces a division of labour, is part of that science 
itself.”
Deleuze & Guattari, A  Thousand Plateaus, p.368-9
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Within the mechanistic worldview which rose to prominence in the seventeenth and 

eighteenth centuries, the clockwork mechanism functioned as a metaphor for all 

physical, and by extension social, reality, articulating statements about the movement 

and composition o f celestial and natural bodies as well as social constructs such as the 

state or army. English natural philosopher Robert Boyle explicitly linked clockwork to 

mechanist thought in 1665:

[The mechanist] hypothesis, supposing the whole universe (the soul o f man excepted) to be 
but a great Automaton, or self-moving engine, wherein all things are performed by the bare 
motion (or rest), the size, the shape, and the situation, or texture of the parts o f the 
universal matter it consists o f [...] So that the world being but, as it were, a great piece of 
clockwork, the naturalist, as such, is but a mechanician; however the parts of the engine, he 
considers, be some of them larger, and some of them much minuter, than those of clocks 
or watches.104

It is to these more specific, yet interconnected, metaphors that I will now turn, starting 

with the revolution in astronomy which culminated in the grand Newtonian synthesis.

The Clockwork Heavens: Newtonian Mechanics and the Clockmaker God

In the burgeoning scientific community o f the late middle ages and early modem era, 

the clockwork metaphor occupied a central position in the scholarly debates over the 

movements o f the heavens. The motion and regularity of clockwork mechanisms, 

although highly prone to breaking down in their earlier incarnations, were from very 

early on compared to that o f celestial bodies. Astronomical devices were among the first 

applications o f clockwork; Cardwell even suggests that attempts to reproduce the 

motion o f the heavens may have led to the very invention o f clockwork, prior to the 

design o f any mechanical time-keeping device.105 Certainly, as early as 1377, Nicolas 

Oresme observed that “the situation is much like that of a man making a clock and 

letting it run and continue its motion by itself. In this manner did God allow the 

heavens to be moved continually [...] according to the established order.” 106 It thus 

became customary to conceive o f God as the ultimate Clockmaker, the designer o f a 

perfect mechanism that would run its divinely-appointed course until the end o f time.

104 Robert Boyle, The Excellemy of Theology Compared with Natural Philosophy (1665) quoted in Mayr, Authority, 
Liberty Automatic Machinery in Early Modem Europe, p. 56
105 D.S.L. Cardwell, Turning Points in Western Technology: A  Study of Technology, Science andHistory (New York: 
Neale Watson Academic Publications, 1974), p.16
106 Nicolas Oresme, Le Livre du d e l et du Monde quoted in David Bolter, Turing's Man: Western Culture in the 
ComputerAge (London: Duckworth, 1984), p.27
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In the first half o f the sixteenth century, Copernicus greatly simplified the motion of 

heavenly bodies with his heliocentric theory, placing the Sun at the centre o f the known 

universe and overturning the accepted Ptolemaic geocentric system which had Earth at 

its centre. ..There was no significant concomitant increase in the precision of 

astronomical predictions however, but the new system’s superior aesthetic was 

seductive. Johannes Kepler soon added a new mathematical rigour and elegance to the 

theory, his avowed goal being “to show that the heavenly machine is not a kind of 

divine, live being, but a kind o f clockwork, insofar as nearly all the manifold motions are 

caused by a most simple, magnetic, and material force, just as all motions o f the clock 

are caused by a simple weight.”107 While Galileo’s telescopic observations did confirm 

the validity o f the heliocentric hypothesis, a unifying theory o f earthly and celestial 

motion to replace the discredited Aristotelian physics was still lacking. This crowning 

achievement o f the Scientific Revolution was to be the work o f Isaac Newton.

Newton expounded his conception o f the universe and the laws governing it in his 

Principles Mathematics published in 1687 and destined to become the scientific text which 

would set the standard for all the others that would follow. According to Newton, the 

natural world functioned in a completely rational and predictable way which could be 

described solely through the language o f mathematics and geometry. The motion of all 

terrestrial and celestial bodies was explained by the physical attraction exerted on each 

other, dubbed gravitas (gravity) and whose force is a function of their respective masses 

and o f the distance between them. Although Newton himself never explicidy used the 

clockwork metaphor in his work on the motion of physical bodies, his account of 

regular and ordered motion o f planets within a single gravitational system bolstered the 

popular notion o f a ‘clockwork universe.’108

Newton also found that the acceleration exerted by gravity on bodies is identical to that 

experienced by bodies set in motion by other forces, so that the rate o f change in the 

momentum of an object is direcdy proportional to the amount o f force acting upon it

107 Arthur Koestler, The Sleepwalkers (London: Arkana Books, 1989), p.345
108 Pre-eminent mechanists such as Descartes did however object virulently to the principle of ‘action at a 
distance’ required by the concept o f gravity, to which they preferred an explanation relying on the 
transmission of forces through the contact of particles and surfaces in the manner of cogwheels on one 
another, thereby defending a more faithful application of the clockwork metaphor.
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and in the direction in which the force is being applied.109 He had thus seemingly 

uncovered the single principle behind the movements of all physical bodies and had 

formulated this principle into a mathematical relationship. The world thereby became 

understood as matter in motion according to fixed laws that could be expressed 

mathematically.

A further implication o f Newton’s findings was that, equipped with the knowledge o f 

the fundamental laws governing it, it was possible (at least theoretically) to predict 

completely the future and past o f all physical systems. Indeed, if a system’s state at any 

given moment is known with precision, then the past and future o f the system can be 

predicted with complete reliability. The mathematician and astronomer Pierre-Simon 

Laplace later mused about the implications when the entire universe is considered as a 

single system:

We may regard the present state o f the universe as the effect of the past and the cause of 
the future. Given for one instant an intelligence which could comprehend all the forces by 
which nature is animated and the respective positions o f the beings which compose it, if 
moreover this intelligence were vast enough to submit these data to analysis, it would 
embrace in the same formula both the movements of the largest bodies in the universe and 
those of the lightest atom: to it nothing would be uncertain, and the future as the past 
would be present to its eyes.110

The Newtonian universe was therefore thoroughly deterministic, viewing all events as 

the necessary results o f a sequence o f causes and reducible to the transmission o f a 

single and invariant motive force. Such processes were also necessarily reversible: the 

original state o f any system could be restored by simply applying the reverse o f any 

dynamic changes it had gone through.

However, it should be noted that the laws o f motion were idealised in that they did not 

account for friction, the force which opposes the relative motion of two surfaces in 

contact and prevents motion from being fully transmitted from one body to the other. 

While not ignored by classical mechanics, friction was discounted and excluded from

109 Newton’s Second Law of Gravity from the Principia Matbematica (1792 translation from Latin): “The 
alteration of motion is ever proportional to the motive force impressed; and is made in the direction of 
the right line in which that force is impressed. I f  a force generates a motion, a double force will generate 
double the motion, a triple force triple the motion, whether that force be impressed altogether and at 
once, or gradually and successively. And this motion (being always directed the same way with the 
generating force), if the body moved before, is added to or subtracted from the former motion, according 
as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are 
oblique, so as to produce a new motion compounded from the determination of both.”
110 Pierre Simon de Laplace, “Theorie Analytique des Probabilites”, Oeuvres Completes de Laplace, Volume 
VII (Paris: Gauthier-Villars, 1820)
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Newton’s laws o f motion, downgraded to a “noise” which obscured the fundamental 

pattern. A main reason for this was one of practicality since one of the great advantages 

o f the laws as formulated by Newton was their linearity. In mathematical terms, linear 

systems are marked by proportionality (changes in system output are proportional to 

changes in system input) and additivity (the whole is equal to the sum of its parts). 

Linear functions are simple to solve as they can be broken up into individual parts 

which can be solved separately and their solutions added up. In contrast, non-linear 

systems are characterised by the absence o f proportionality and/or additivity. Inclusion 

o f the variable and non-linear phenomenon of friction would have prevented the 

formulation of universal and easily applicable laws o f motion. Fortunately, for many 

practical purposes and common speeds and accelerations o f motion, the effects of 

friction were small enough to ignore. When required, a coefficient o f friction could be 

included in calculations but could only be experimentally determined and remained an 

unsightly addendum to the idealised laws of motion. It is only with the development of 

thermodynamics that friction and the irreversible energetic losses that result from it 

would take to the centre stage o f the scientific worldview,111

In establishing a theory o f vast explanatory power resting on a simple fundamental 

principle from which all related phenomena could be deduced, Newtonian mechanics 

became a model for all scientists seeking to create an elegant system accounting for the 

behaviour o f the observable world. Diderot’s Encyclopedie summed up best the 

aspirations o f those seeking to emulate Newton in its article on ‘system’, with an 

exposition which relied once again on the clockwork metaphor:

System is nothing more than the disposition of the different parts of an art or a science into 
a state where they all mutually support each other and where the last ones are explained 
through the first. Those that account for the others are called principles, and the system is 
all the more perfect as the principles are fewer in number: indeed, it is desirable that they 
should be reduced to a single one. For, just as there is one main spring in a clock upon

111 It should be noted that while Newton’s laws of motion are indeed linear, the systems of bodies in 
motion that can be constructed with them are not necessarily so. One- and two-body problems can be 
effectively solved as linear systems and these included all the scientific triumphs o f the age, such as the 
calculation of the motion of celestial bodies (considered as a two-body problem in which two masses such 
as the Earth and the Moon exert gravitational attraction on one another) or the progress in ballistics 
(considered a one-body problem since the differentials in mass between a projectile and the Earth mean 
the former’s gravitational pull on the other can be safely ignored). However, problems composed of three 
or more bodies pose largely insuperable difficulties as non-linear effects prevent decomposition of the 
system and the formulation of a general analytic solution. Henri Poincare’s consideration of the three- 
body problem in the late nineteenth century is often seen as an early insight into what would become 
chaos theory (see chapter 7). While an awareness of non-linearity may have existed among some 
mathematicians of the seventeenth and eighteenth centuries, attention was naturally focused on the 
problems that could be solved with the result that the study non-linearity was largely neglected.
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which all others depend there is also in all systems one first principle to which the different 
parts that make it up are subordinated.112

The search for such systems has remained a constant for scientists ever since Newton’s 

formidable achievements.

The Clockwork Body and Soul: Descartes, La Mettrie and Mechanistic 

Physiology

The use o f the clockwork metaphor was not limited to the study o f celestial bodies, it 

was also present in the scientific enquiry into living bodies as part o f the search for 

universal laws governing the physical world. Rene Descartes, perhaps the most 

influential philosopher o f the seventeenth century, is here a crucial figure. Descartes 

employed analogies between nature and clockwork frequently and extensively: “it is 

certain that there are no rules in Mechanics which do not hold good in Physics [...] for 

it is no less natural for a clock, made o f the requisite number o f wheels, to indicate the 

hours, than for a tree which has sprung from this or that seed, to produce a particular 

fruit.”113

Descartes manifested a particular fascination for automata, even imagining some o f his 

own (although there is no evidence any o f them were realised), and he referred 

repeatedly to them when writing about the motion o f animals. He was more reluctant to 

extend this analogy to human beings, presumably to avoid offending the religious 

sensibilities o f the day and satisfy his own religious qualms, and when he did so, it was 

in an indirect fashion. In his Meditations, he insisted that simple observation could not 

disprove that humans might be mechanical automata. Statements such as that he could 

“see no difference between the machines built by artisans and the various bodies 

composed by nature alone” were also ambiguous as to whether humans were included 

in the natural bodies he was referring to.114

112 Mayr, Authority, Liberty &  Automatic Machinery in Early Modem Europe, p.79
113 Rene Descartes, Principia Philosophiae (1677) in Macy, Clocks and the Cosmos, p.80
114 Rene Descartes, Principia Philosophiae (pt. 4, chap. 203) in Mayr, Authority, Liberty &  Automatic Machinery 
in Early Modem Europe, p.63. Mayr convincingly argues that the bodies in question could not be celestial 
ones since Cartesian cosmology was based on vortices and therefore did not allow direct comparison with 
machinery (and such analogies are not to be found in any of his work). Hence, he must have been 
referring to natural bodies.
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Ultimately, his solution was what became known as Cartesian dualism: man was 

distinguished from animals in being composed o f both body and soul, the latter being 

the realm o f spiritual authority and not within the remit o f scientific enquiry. This 

allowed Descartes to describe the human body in rigorously mechanistic terms, even if 

he avoided direct analogies with clockwork devices. This did not prevent his works 

being posthumously placed on the Roman Catholic Church’s Index o f Prohibited Books 

in 1667 on the grounds o f their alleged atheistic bent.

Despite this, Descartes continued to exert considerable influence after his death, even if 

many thinkers generally avoided too close an association with him or went through 

ritualistic condemnation o f the philosopher. The clockwork metaphor in relation to 

human beings was used sparingly, although they can still be found in the writings o f 

Blaise Pascal, Baruch Spinoza, and Robert Boyle, and this despite the strong 

disagreements they expressed with some of Descartes’s ideas.115 Gottfried Leibniz went 

so far as to refer to the human soul as “a kind o f spiritual automaton”, specifying in a 

rather cryptic manner that “the operation o f spiritual automata, that is o f souls, is not 

mechanical, but it contains in the highest degree all that is beautiful in mechanism.”116

In the eighteenth century, French philosopher and physician Julien Offray de La Mettrie 

would go much further than Descartes could or dared, claiming that the soul was a 

physical phenomena and not an immaterial sphere separate from the body. La Mettrie 

used the clockwork metaphor extensively in his major work UHomme Machine, arguing 

that “the human body is a watch.” However, his most provocative statement was 

undoubtedly that:

Since all the faculties o f the soul depend to such a degree on the proper organisation o f the 
brain and o f the whole body, that apparendy they are but this organisation itself, the soul is 
clearly an enlightened machine. For finally, even if man alone had received a share of 
natural law, would he be any less a machine for that? A few more wheels, a few more 
springs than in the most perfect animals, the brain proportionally nearer the heart and for 
this very reason receiving more blood — any one of a number of unknown causes might 
always produce this delicate conscience so easily wounded, this remorse which is no more 
foreign to matter than to thought, and in a word all the differences that are supposed to 
exist here. Could the organism then suffice for everything? Once more, yes; since thought 
visibly develops with our organs, why should not the matter of which they are composed

115 Mayr, Authority, Liberty &  Automatic Machinery in Early Modem Europe, pp.67-68
116 G.W. Leibniz, Theodiy (1710) in Mayr, Authority, Liberty &  Automatic Machinery in Early Modem Europe, 
p.72 and p.224
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be susceptible of remorse also, when once it has acquired, with time, the faculty of 
feeling?117

In that single paragraph, La Mettrie postulated the primacy o f mechanistic physical 

embodiment over the immortal soul while also implying that what ultimately separated 

humans from animals were merely modest biological differences. Unsurprisingly, his 

defence that “I do not mean to call in question the existence of a supreme being; on the 

contrary it seems to me that the greatest degree of probability is in favour of this belief’ 

did little to stave off accusations of atheistic materialism. The condemnation o f the 

Church forced him to leave France and then Holland to live in Berlin under the 

protection o f Frederick the Great, the man who would best exemplify the ideals o f the 

clockwork state and army.

The Clockwork State: Enlightened Absolutism

The clockwork metaphor suggested a world o f harmony, order, and predictability with 

motion originating from a single impulse and transmitted perfectly by all the ‘wheels’ 

and ‘gears’ o f the underlying mechanism. This worldview naturally resonated most 

strongly with the aspirations o f the emerging doctrine o f enlightened absolutism: that of 

a rational and ordered system of government in which an all-powerful monarch 

determined the impulses to be given to the machinery o f state.

Thomas Hobbes, the most prominent theorist o f absolutism, is primarily known for 

comparing the state to the human body but given the popularity o f the clockwork 

metaphor in relation to natural bodies, we should not be surprised to find both 

analogies conflated in the opening paragraph of Ijeviatharr.

Nature (the art whereby God hath made and governs the world) is by the art of man, as in 
many other things, so in this also imitated, that it can make an artificial animal. For seeing 
life is but a motion of limbs, the beginning whereof is in some principal part within, why 
may we not say that all automata (engines that move themselves by springs and wheels as 
doth a watch) have an artificial life? For what is the heart, but a spring; and the nerves, but 
so many strings; and the joints, but so many wheels, giving motion to the whole body, such 
as was intended by the Artificer? Art goes yet further, imitating that rational and most 
excellent work of Nature, Man. For by art is created that great Leviathan called a Common­
wealth, or State (in Latin, Civitas), which is but an artificial man, though of greater stature

1,7 Julien Offray de La Mettrie, 'L ’Homme Machine (1748) 
h ttp ://  cscs.urnich.edu/~crshalm/LaMettrie/Machine
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and strength than the natural, for whose protection and defence it was intended; and in 
which the sovereignty is an artificial soul, as giving life and motion to the whole body.118

Louis XTV was arguably the paragon of absolutism, and is commonly attributed the 

perhaps apocryphal phrase: “l’etat, c’est moi” (Frederick II would make the more 

modest claim of being the “servant o f the state”). The designated virtues o f order and 

regularity were actively sought within the French government with reform achieved 

primarily through the instruments o f law and riglements. Statistical and social surveys 

became an institutionalised practice o f government, efforts were made to harmonise 

legislation across the territories, and the state bureaucracy was expanded and reformed 

to weaken traditional allegiances other than that to the king and to centralise power.119 

This vision o f the state endured beyond the lifetime o f Louis XTV; the general arid 

member of the French academy, Jacques-Antoine-Hippolyte de Guibert writing in 1772 

that “discipline must be made national. The state I depict will have simple, reliable easily 

controlled administration. It will resemble these huge machines which by quite 

uncomplicated means produce great effects.”120 For some Enlightenment thinkers (but 

certainly not all), the esprit de systeme and esprit geometrique were instruments o f despotism, 

notably illustrated by the fact that Marechal Vauban, responsible for the some of the 

most notable innovations in the application o f geometry to the design o f fortifications, 

was also behind plans for the equal taxation o f the produce o f all land in France.121

Louis XTV’s court life was notoriously regimented with his days’ following rigid 

timetables and etiquette, and with punctuality elevated to the noblest o f virtues. The 

King’s fondness for order and a linear aesthetic was also reflected in the pure geometric 

forms o f the palace garden in Versailles. He viewed French excellence in philosophy and 

science as a symbol o f prestige in Europe, establishing national academies and patronage 

for its promotion, but was personally o f a limited intellectual disposition and quick to 

censor any work that appeared incompatible with absolute monarchy. So while Louis 

XTV was a fine representative o f absolutism, his desire for order and stability echoing 

the clockwork metaphor, the title o f enlightened monarch is most appropriate for 

Frederick II o f Prussia, the Philosopher King.

118 Thomas Hobbes, Leviathan (1651) h ttp ://www-gutenberg.org/dirs/etext02/lvthnl0.txt
119 King, Science and Rationalism in the Government of Louis X IV , pp.312-313
120 Foucault, Surveiller et Punir, p. 198
The term used by Guibert in French for ‘means’ is ‘ressorts’ which is also the word for ‘springs.’
121 David D. Bien, “Military Education in 18th Century France; Technical and Non-Technical 
Determinants” in Wright & Paszek (eds.), Science, Technology and Warfare, p.57
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Aside from the aforementioned La Mettrie, to which he granted patronage when he was 

forced in exile and for which he even composed the official eulogy, Frederick the Great 

surrounded himself with many of the leading rationalist and mechanistically inclined 

philosophers o f his time, such as D ’Alembert, Voltaire, Euler, Maupertuis and Algarotti. 

Upon accession to the throne in 1740, he even recalled Christian Wolff, exiled by his 

father Frederick I in 1723 after it was suggested that his deterministic teachings implied 

that soldiers were automata and that punishment for desertion was therefore 

pointless.122 Frederick II undoubtedly shared many o f the mechanistic ideas o f these 

illustrious contemporaries and prided himself for his philosophical leanings.

Writing on the role o f laws in the state in 1750, Frederick’s mechanist beliefs are in clear 

evidence in his vision o f the ideal state:

A body of perfect laws should be the crowning achievement o f the human spirit as regards 
the politics of government: one would observe there a unity of design and of rules so exact 
and so well proportioned that a state conducted by such laws would resemble a watch all o f 
whose springs have been made for the same purpose; [...] everything would be anticipated, 
everything would be coordinated, and nothing would be subject to mishap.123

Johann Heinrich Gottlieb von Justi, the Prussian Kameralist, expressed best the role of 

the sovereign within mechanised government: “a well-constituted state must perfectly 

resemble a machine where all the wheels and gears fit each other with the utmost 

precision; and the ruler must be the engineer, the first driving spring or the soul [...] 

that sets everything in motion.”124

In both the reigns of Louis XTV and Frederick II, as well as to a lesser extent those of 

Joseph II o f Austria and Catherine II o f Russia, far-reaching rationalisation and 

centralisation o f the state were carried out, accompanied by an expanding bureaucracy, 

the “wheels and gears” o f government. This mechanising trend would perhaps be 

nowhere clearer than in the changes brought about in warfare, a social activity in which 

order and discipline were most naturally valued. It is with Frederick II’s army, the last 

great war machine before the advent o f the French imperial Grande Armee, that the 

clockwork model can be observed most clearly in military affairs.

122 Mayr, Authority, Liberty &  Automatic Machineiy in Early Modem Europe, pp.76 & 107
123 Mayr, Authority, Liberty &  Automatic Machineiy in Early Modem Europe, p.108
124 Mayr, Authority, Liberty <& Automatic Machineiy in Early Modem Europe, p. 111
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Mechanistic Warfate:Ftederiick the Great’s Clockwork Army

In the seventeenth andeighteemth centuries, the conduct of war increasingly came under 

scientific scrutiny, a trend that has only intensified ever since. In some cases, practical 

problems which arose n war sttimulated scientific discoveries; in other cases, it was the 

successes of the phydcal sciences which inspired the quest for the discovery of 

equivalent universal lavs. As Giat notes on the period which concerns us, “the ideal of 

Newtonian science excted the .military thinkers of the Enlightenment and gave rise to 

an ever-present yeamiig to infiuse the study of war with the maximum mathematical 

precision and certainty possible.!”125

Bombardment and forification became less empirical as they were increasingly guided 

by geometrical principbs and the  developing science of ballistics. Ballistic knowledge 

(and notably o f the parabolic trajectory of projectiles) was gready enhanced through 

Galileo’s discovery of he principle o f inertia, the law of freely falling bodies, and the 

principle o f the composition o f velocities, which he came to pardy through his study of 

military problems and participated in the erection o f classical physics.126 Virilio explicidy 

connects the subsequent progress made in ballistics to that of the astronomical sciences, 

as a well as to a whole range <of mathematical innovations from Descartes’ analytical 

geometry to Poncelet’s projective geometry and Euler’s method for calculating ballistic 

trajectories.127 In response to the destructive power of the cannon and the advantage it 

provided armies besieging cities, geometry was applied to the purpose o f optimising 

increasingly complex polygonal fortification designs such that “safety was achieved less 

by tangible masses of masonry than by abstract geometrical patterns of line o f fire”128 

(see Figure 3). Thus the British military theorist Henry Lloyd could say in 1766 that 

fortifications were “purely geometrical” and artillery “nothing but geometry.”129

125 Gat, A  History of Military Xhorght, p.30
126 De Landa, War in the Age of Ittelligent Machines, p.40
Mathematician and military engineer Benjamin Robins subsequendy improved markedly on Galileo’s 
calculations in the 1740s, adding a crucial understanding of air resistance. According to Steele, Robins’s 
analysis o f muzzle velocities of projectiles fired from muskets — assisted by a “ballistics pendulum’ of his 
own invention — marked an eary thermodynamic understanding of an internal combustion engine which 
may have played a role in the future development of the science of energy.
Brett D. Steele, “Muskets and Ptndulums: Benjamin Robins, Leonhard Euler, and the Ballistics 
Revolution”, Technology and Culture, Vol. 35, No. 2. (Apr. 1994), pp. 348-382.
127 Paul Virilio, The hast Dimtnsm (NewYork: Semiotext(e), 1991), p. 46
128 Thomas P. Hughes, “Commtntary” in Wright & Paszek (eds.), Science, Technology and Warfare, p-71
129 Gat ,A  History of Military Thotght, p.72
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N or was the belief that mechanistic conceptions could be applied to military affairs 

solely limited to ballistics and fortification. Indeed, Louis Pierre de Chastenet, the Count 

o f Puysegur, made the claim that military tactics “is easily reduced to sure rules, because 

it is entirely geometrical like fortifications.” 130 According to Lynn, it was Diderot’s 

epochal Encyclopedic which “enshrined the conviction that geometry linked fortress 

design, siege warfare, and battle tactics” when it listed military architecture and tactics as 

a form of “Elementary Geometry” under the entry on “Science o f Nature.” 131 The 

aforementioned Henry Lloyd was also clearly drawing from Newtonian mechanics when 

he asserted that mathematical principles extended to battle formations since “the 

impulse that bodies, animate or inanimate, make on each other [...] is in proportion to 

mass and velocity.”132

130 Lynn, Battle, p .126
131 Lynn, Battle, pp.120-121
See also John A. Lynn, “The Treatment of Military Subjects in Diderot's Encyclopedic”, The Journal of 
Military History, Vol. 65, No. 1. (Jan., 2001), pp. 131-165
Lynn also points to Pierre Lenfant’s painting of 1761 commemorating the French victory at the battle of 
Fontenoy in 1744 as the embodiment of the ideals of linear warfare’ in its depiction of the battle as 
elegandy ordered with the arrangement of troops obeying perfect geometrical regularity even in the heat 
o f combat. (Battle, p.114)
132 Gat, A  History o/M ilitay Thought, p.72
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Figure 2: Geometric warfare133

133 Benjamin Bramer, Bericht %uM. Jobsten Burgi Seligen Geometrischeti Triangular Instruments (Kassel, 1648)
http://w ww .m hs.ox.ac.uk/geometry/ fig68m.htm
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Figure 3: The geometry of fortification134

134 Leonhard Zubler, Fabrica et Usus Instrumenti Chorographici (Basel, 1607)
hQpj/./.»w^mh.s,.ux-ac-uk/geometry/fig4m.htm : http://uw w .rnhs.ox.ac.uk/geom etry/fig5m.htm 
Johann Christoph Sturm, Matbesis Compendiaria (Coburg 1714) 
http://uw w.m hs.ox.ac.uk7 geometry/figl Q3m.htm
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The question of formations and tactics was perhaps made all the more urgent by the 

considerable transformations in the composition of armies which occurred in this 

period. Improvements in firearm technologies made musket-equipped infantry the core 

unit o f any army, with mobile artillery providing support. With the adoption o f the 

bayonet at the end o f the seventeenth century, pikemen were rendered largely 

dispensable. As for the cavalry, its medieval glory days long gone, it remained as the 

bastion o f the aristocracy but its influence on the battlefield was in terminal decline. 

With chivalry now an archaic concept to which only the odd lip service was paid, 

eighteenth century armies were predominantly composed o f mercenaries and 

professional soldiers and desertion was an ever-present risk for them. Combined with 

the limited command and control technologies o f the age in increasingly noisy and 

smoke-filled battlefields and involving growing numbers of troops, this imposed severe 

limits on potential tactical flexibility.

Frederick the Great’s solution to this problem was to reduce individual initiative to a 

minimum, insisting in his own writings that military effectiveness “depended on strict 

discipline, unconditional obedience, prompt execution o f orders”, and that the common 

soldier should fear his officer more than the enemy.135 Van Creveld observes that 

“Frederick II was among the first modem commanders to try to command all o f his 

army all o f the time, but this could only be achieved by turning it into a mindless, lifeless 

machine.”136 It was a clear attempt to model an army on the regularity and predictability 

o f clockwork with every cog playing a pre-determined role fixed by the original 

conveyer o f motion. While such an army would be unable to respond dynamically to 

events on the battlefield, this would nonetheless allow Frederick to experiment with a 

number o f complex, although rigid, tactical deployments. The result was a formidable 

machine superior to anything rival states could field at the time and it became a model 

army which contemporaries sought to emulate, even to the point o f replicating the 

Prussian uniform in some cases. However, notwithstanding Frederick’s own input, in 

many ways it was also the end-product o f a lengthy process o f military transformation 

undergone across Europe over the two previous centuries and which had seen the 

establishment o f professional standing armies, the introduction o f the systematic drill,

135 Dennis Showalter, The Wars of the Frederick the Great (London & New York: Addison Wesley Longman, 
1997), p.330
136 Van Creveld, Command in War, p.45
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and the development o f gunpowder and firearms. Hence “its training, its discipline, and 

its tactics were refinements rather than innovations.”137

The introduction o f systematic drills can be dated to Maurice o f Nassau, Prince of 

Orange (1567-1625), covering the handling o f firearms, basic body positions and 

marching in ranks. Intensive drilling of troops meant that “the individual movements of 

soldiers when firing and marching as well as the movements o f battalion across the 

batdefield could be controlled and predicted as never before.”138 Over the course of the 

following 150 years, the practice of drilling spread throughout European armies, 

reaching its acme under Frederick the Great. Cadenced marching, the synchronisation 

o f the step o f all the men marching together, had been lost since Roman times and was 

introduced to the Prussian drill by Frederick William I in the 1730s. However it was his 

son that “systematically utilised for tactical purposes the Prussian army’s ability to march 

in step.”139 By the end o f the monarch’s reign, 75 steps per minute, a reasonably fast 

pace, had become the standard employed for movement at drill, on the march, in the 

field, off duty and even when carrying loads. French military officers Toulongeon and 

Hullin, visiting Prussia in 1786, remarked that “the measure o f this pace is imprinted in 

the soldier’s brain, and his legs have been so accustomed to working at this speed that 

they seem to act by clockwork.”140

Despite the poor quality o f Prussian muskets, Frederick’s army delivered fire faster than 

any other did in its age, thanks to its superior discipline. The introduction o f firearms 

meant that the importance o f individual physical prowess declined to the benefit of 

trained professional skill and, at a time where firearm technology did not allow any 

precision targeting, their effective use required both speed and regularity. Military 

commanders thus “broke down the motions needed to load and fire a gun into a cycle 

o f elementary operations, and began to drill their men day in and day out, until these 

operations had become automatic. By orchestrating this cycle so that as one rank loaded 

the other one shot, they were able to create tactical formations capable o f delivering 

almost continuous volleys o f fire.”141 The coordination o f such volleys allowed for the

137 Showalter, The Wars of the Frederick the Great, p.355
138 McNeill, Pursuit of Power, p.130
139 Showalter, The Wars of the Frederick the Great, pp. 109-110
140 Christopher Duffy, The Army of Frederick the Great (Vancouver: David & Charles, 1974), p.83
141 De Landa, War in the Age of Intelligent Machines, p.58
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maximisation o f the shock effect on enemy ranks, greatly improving the efficiency of 

firearms relative to other weapons.

Frederick was known to check the performance o f firing exercises with his watch, with 

elite troops able to fire as many as seven blank rounds a minute (although battle 

conditions would see this drop to three live rounds at the most). This emphasis on 

speed may however have been counter-productive at times, the Prussian officer von 

Gaudi complaining that “with this damned ‘minute fire’ the men become exhausted and 

incapable o f doing anything more after loosing off a few of these over-hasty salvoes. 

You could push them over with your little finger.” 142 Dennis Showalter has also 

commented that, in the latter part o f Frederick’s reign, “drill movements, always precise 

and demanding, became exacting to the point o f impossibility even for experienced 

men.” Regardless o f its excesses, the Prussian obsession with drilling produced highly 

trained and obedient troops which could perform on the battlefield with the regularity 

and precision o f automatons and played no small part in the repeated military successes 

o f Frederick the Great. The frequency o f drilling exercises also had the advantage of 

reducing the idleness o f troops whose time was mostly spent in anticipation of 

encounters with the enemy rather than in battle, enforcing discipline and contributing to 

an esprit de corps.

The Prussian soldier was ‘mechanised’ in the process o f drilling, his movements 

systematically dictated and rehearsed until they became instinctive. Maurice o f Nassau 

had discovered over a century earlier that by breakin down the process o f loading and 

firing matchlock muskets into a sequence o f individual moves, soldiers could be taught 

to carry them out in a synchronised fashion in response to shouted commands.143 In the 

Prussian army o f the eighteenth century, this practice was further refined and extended: 

“the regulations of 1743 laid down six stages to bring down the weapon to one’s foot, 

four to extend it, thirteen to raise it to the shoulder, etc.” 144 Each o f these stages, 

analogous to individual cogs in the operation o f a mechanical process, could be isolated 

and improved upon in terms o f speed and efficiency to contribute to the overall 

performance o f the process. Michel Foucault notes that “the celebrated automata [...] 

were not only a way of illustrating an organism, they were also political puppets; small-

142 Duffy, The Army of Frederick the Great, p.89
143 Paceyj Technology in World Civilisation, pp.98-99
144 Michel Foucault, Discipline and Vanish (London: Penguin Books, 1991), p. 154
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scale models o f power: Frederick II, the meticulous king o f small machines, well-trained 

regiments and long exercises, was obsessed with them.”145

Frederick’s army was akin to a giant clockwork mechanism in which bodies and 

technologies were combined to produce a Svar machine’ that embodied all the virtues o f 

its model: precision, predictability and order. While military exercises were designed 

with the end o f increasing battlefield effectiveness, they also served a symbolic and 

ritualistic function, embodying Frederick’s vision o f army and state. The clockwork 

appearance o f the Prussian army, most observable in the controlled conditions o f the 

biannual military reviews Frederick was so fond of, and in which up to 40,000 troops 

could be present, was not lost on contemporary commentators. On his only visit to 

Berlin in 1778, Goethe wrote that “from the huge clockwork that unrolls before you, 

from the movement o f the troops, you can deduce the hidden wheels, especially that big 

old [program] drum, signed F[redericus] R[ex], with its thousand pins which generate 

these tunes, one after another.”146

Naturally, actual combat conditions saw the war machine operating with much less 

order than its model, sometimes even prone to breaking down spectacularly, but the 

considerable military successes achieved by Frederick the Great during his reign are 

clear evidence o f its effectiveness and resilience. While tactical adjustments were 

practically impossible once battle had been initiated, uncertainty was minimised by 

automating the actions o f soldiers according to a centralised predetermined plan. 

Mechanistic warfare’s solution to the threat o f chaos on the batdefield was thus to 

preordain the actions o f every soldier in accordance with an overarching organisational 

plan which shaped the army, at least in theory, into an extension o f the sovereign’s will 

seen as the impulsion setting in motion an idealised clockwork mechanism.

Conclusion

Organised around the figure o f clockwork, mechanism constituted the first cohesive 

body o f scientific ideas and practices in the modem world. Its cultural resonance was 

far-reaching, impacting multiple areas o f knowledge and social activity and offering the

145 Foucault, Discipline and Punish, p. 136
146 Mayr, Authority, Liberty &  Automatic Machineiy in Early Modem Europe, p. 109
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promise o f an enlightened and permanently ordered world. Mechanistic warfare briefly 

appeared to provide a superior answer to the perennial uncertainties of batde and 

limitations to the exertion o f the commander’s will. However, the carefully cultivated 

order o f the ancien regime was about to be swept away in the birth pangs o f a new world 

marked by industrial and political upheaval. Along with it came new technologies and 

sciences, chief among which were the engine and thermodynamics, the science o f 

energy.
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Chapter 4: Thermodynamic Warfare and the Science of Energy

For classical mechanics the symbol of nature was the clock; for the 
Industrial Age, it became a reservoir of energy that is always threatened 
with exhaustion. The world is burning like a furnace; energy, although 
being conserved, also is being dissipated.

Ilya Prigogine and Isabelle Stengers147

The thermodynamic world was one o f instability and motion, a period of rapid and 

turbulent socio-cultural transformation whose paradigmatic technology was 

undoubtedly the engine. For Sadi Camot, the forefather o f thermodynamics, writing in 

1824, the engine seemed “destined to produce a great revolution in the civilised world”:

Already the steam-engine works our mines, impels our ships, excavates our ports and our 
rivers, forges iron, fashions wood, grinds grain, spins and weaves our cloths, transports the 
heaviest burdens, etc. It appears that it must some day serve as a universal motor, and be 
substituted for animal power, water-falls, and air currents.148 '

For Camot and others, such a revolutionary technology impelled science to uncover the 

physical laws governing it and this was achieved in the course o f the nineteenth century, 

transforming the entire scientific worldview in the process. In 1908, Joseph Larmor, 

who held the Lucasian Chair Mathematics at Cambridge once occupied by Newton 

could proclaim that thermodynamics “has not only furnished a standard of industrial 

values which has enabled mechanical power [...] to be measured with scientific 

precision as a commercial asset; it has also in its other aspect o f the continual dissipation 

o f mechanical energy, created the doctrine o f inorganic evolution and changed our 

conception of the material universe.”149

Following on the previous chapter’s structure, I will first discuss the development o f the 

engine as technological artefact before analysing its metaphorical and heuristic role in 

thermodynamics and finally turning to the corresponding regime of the scientific way of

147 Prigogine & Stengers, Order out of Chaos, p . l l l
148 Sadi Camot, Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power (1824) 
http://www.history.rochester.edu/steam/camot/1943/Section2.htm
149 Smith, The Science of Energy, p. 14
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warfare. Memorisation and industrialisation transformed the practice o f warfare but as 

early as the writings o f Clausewitz we can see thermodynamic notions infusing military 

thought.

The Engine: the Industrialisation and Motorisation of Society

While clockwork mechanisms could transmit motion steadily and efficiently, they still 

relied on an external source o f power: energy generated by the force of gravity (as with 

the weight-driven clock), the muscular power o f man and animal (be it directly 

transferred or stored as with the spring), or by the natural elements o f wind and running 

water. The eighteenth century would see the early development o f a dynamic technology 

that could drive itself by unlocking and harnessing intimate sources o f power.

Steam-powered devices were built as early as the turn o f the Christian era and even 

perhaps as far back as Ancient Egypt, but were little more than experimental or 

ornamental objects until the end o f the seventeenth century. Building on von Guericke’s 

scientific research on atmospheric pressure, Thomas Savery patented in 1698 the first 

steam-powered machine to pump water out o f coal mines. A partnership with Thomas 

Newcomen led to a commercially viable machine in 1712 with the addition o f piston 

and cylinder. It is estimated that over a thousand o f those “atmospheric steam engines” 

were built by the end of the century but their cost-efficiency was very poor and they 

were not employed outside the mining industry where coal, the engine’s fuel, was 

abundant. Realising in 1765 that the Newcomen steam engine was wasting nearly three- 

quarters o f the steam energy in heating the piston and chamber, James Watt significantly 

improved its design over the following years, thereby rendering it much more efficient 

and economical.150

By the beginning o f the nineteenth century, the steam engine had become a vital 

technology in industrialising Britain, converting energy into mechanical work and no 

longer limited to pumping water out o f mines to extract coal but also driving mills and 

powering the burgeoning factories. However, the steam engine was not only employed 

in a revolution in the means o f production; it would also herald an equally momentous

150 Robert Thurston, A  History of the Growth of the Steam-Engine (New York: Appleton, 1878)
http://mvw.history4mhester.edu/steam/thmston/1878/Chapter3.html
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revolution in transportation with the first application o f its motive power to maritime 

transport in 1788 and the construction o f the first railway in 1825. The rapid spread of 

railroads provided an expanding transport infrastructure which further stimulated 

economic development and social transformation. The steam-powered locomotive was 

as potent a symbol o f the thrust of modernisation as any, annihilating distances, 

transporting goods, bodies, and ideas over great distances and was undoubtedly an 

impressive sight for those unfamiliar with it. States enthusiastically embraced railways, to 

the extent that some countries, such as Spain, were so enraptured with their ‘railway 

dream’ that they neglected the development of the industries that would provide the 

freight for the railroads to carry.151

Marked by a dramatic transformation in the modes of economic production, 

demographic explosion, rapid urbanisation, and the emergence o f a new proletarian 

class, the nineteenth century was a time of great socio-economic upheaval in the rapidly 

industrialising world. By removing human dependency on wind and water streams as 

sources o f energy, the engine enabled the widespread automation o f processes 

previously executed by hand. Through division o f labour and the assembly line, labour 

was deployed in such a manner as to allow the smoothest possible operation of 

machines. As a result, the work rate was now imposed by mechanical devices onto the 

worker, reversing the relationship o f the labourer to his tools. This new organisation of 

production was rationalised in the ‘scientific management’ o f Taylorism at the turn of 

the twentieth century and its productive capacity further increased with the motorisation 

o f the assembly line introduced by Ford in 1913.

Although primitive devices existed as early as 1807, it was not until the second half of 

nineteenth century that practical internal combustion engines appeared, in no small part 

due to the theoretical advances o f thermodynamics discussed below. In 1859, Jean- 

Joseph Lenoir first demonstrated an electric spark internal combustion engine using a 

combination o f compressed air and coal gas as its energy source, applying it to sea and 

land transport in the following decade. By 1883, Daimler and Maybach had a successful 

combustion engine using liquid fuel running, followed by the construction o f the first 

automobiles by Daimler and Ben2 within a few years. Over the next fifty years, 

combustion engines were widely applied to land, air and sea transport as well as

151 Pacey, Technology in World Civilisation, p.141
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industry, signalling a shift from coal to petroleum fossil fuels as the main energy source. 

The electric m otor was bom  when Michael Faraday discovered electromagnetism in 

1821. Subsequent development o f large-scale electricity generating systems in the late- 

nineteenth and early-twentieth centuries led to numerous practical domestic and 

industrial applications for electric motors.

Despite their growing importance by the 1820s, the Watt steam engine and its 

successive incarnations had been the product o f only an approximate understanding of 

atmospheric phenomena and decades o f experimentation. A comprehensive scientific 

understanding o f the physical processes involved was still lacking. The first 

breakthrough would be found in the work o f French military engineer Sadi Carnot, 

giving birth to the science o f energy known as thermodynamics.

Thermodynamics: the Universe as a Heat Engine

While clockwork mechanisms merely transmit motion along a preordained path, heat 

engines generate their own energy and therefore motion — “the mechanical work 

produced must be seen as the result o f a true process o f transformation and not only as 

transmission of movement.”152 This distinction is central and would impact minds in a 

powerful manner. Scientific enquiry naturally turned to the study o f these processes of 

transformation, leading to the discovery o f the fundamental natural laws o f energy, 

thereby establishing the science o f thermodynamics and revolutionising all aspects of 

the scientific worldview. By 1875, the new science had gained such a prominent status 

that the Britannica entry for ‘energy’ could proclaim that “a complete account o f our 

knowledge o f energy and its transformations would require and exhaustive treatise on 

every branch of physical science, for natural philosophy [physics] is simply the science 

o f energy.”153

In 1824, the engineer Sadi Camot published his famous treatise, Reflections on the Motive 

Power of Fire.and on Machines Fitted to Develop that Power, in which he set out the physical 

principles behind the operation o f the heat engine. Camot had sought answer the much- 

debated question o f “whether the motive power o f heat is unbounded, whether the

152 Prigogine & Stengers, Order out of Chaos, p.106
153 Smith, The Science of Energy, p.2
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possible improvements in steam-engines have an assignable limit — a limit which the 

nature of things will not allow to be passed by any means whatever — or whether, on the 

contrary, these improvements may be carried on indefinitely.”154 He discovered in the 

process that heat flowed from warmer to cooler areas — from the hot boiler to the cool 

condenser in the steam engine. Camot thus showed that the efficiency o f an engine is 

proportional to the temperature difference between the input and output. Therefore 

total efficiency would require an infinite difference, a physical and theoretical 

impossibility that implied that there would necessarily always be a heat waste.155

Carnot’s work would permit the mathematical calculation o f the maximum amount of 

work that any given engine could produce but the wider implications o f his theory were 

much more profound. His discovery o f the physical laws upon which the operation of 

the steam engine relied required its conceptualisation as an abstract machine. Camot 

insisted, in what can be seen as the founding statement o f the science of 

thermodynamics, that:

In order to consider in the most general way the principle of the production of motion by 
heat, it must be considered independendy of any mechanism or any particular agent It is 
necessary to establish principles applicable not only to steam engines but to all imaginable 
heat engines, whatever the working substance and whatever the method by which it is 
operated.156

Through this formulation, Camot allowed for the engine to be understood as an 

abstract mechanism, a diagrammatic organisation detached from any single material 

embodiment and now ripe for conceptual and metaphorical migration. In 1854, scientist 

William Rankine was following in these footsteps in defining a “thermo-dynamic 

engine” as “any body, or assemblage o f bodies, which produces mechanical power from 

heat.”157 For De Landa, the abstract mechanism of the engine can be seen to consist of 

three separate components: “a reservoir (of steam, for example), a form of exploitable 

difference (the heat/cold difference) and a diagram or program for the efficient

154 Camot, Reflections on the Motive Power of Fire
http://www.history.rochester.edu/steam/camot/1943/Section2.htxn
155 Sadi’s father, the French revolutionary general Lazare Camot, had previously studied the efficiency of 
machines and some of his son’s later ideas can be traced back to those original insights. In his 1783 Essai 
sur les Machines en General,, Lazare had concluded that there was always a necessary loss o f “movement of 
activity” (i.e. of useful work) in any mechanical transmission of motion.
Lazare Camot, Essai sur les Machines en General (1786)
http://rnath-doc.ujf-grenoble.fr/cgi-bin/oeitemPid—OE CARNOT 1 R5 0
156 Hans Christian von Baeyer, Information: The New Language of Science (London: Weidenfeld & Nicolson, 
2003), p. 153
157 Smith, The Science of Energy, p. 155
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exploitation o f (thermal) differences.” 158 While in a steam engine the differences in 

pressure o f the air according to its temperature are used to set a piston in motion, 

electric engines exploit the differences in polarity in the electromagnetic field to convert 

electrical energy from a battery (or other electrical reservoir) into mechanical energy.

Carnot’s ideas gave birth to a new scientific worldview which he began to theorise:

It is to heat that we must attribute the great and striking movements on the earth. It causes 
atmospheric turbulence, the rise of clouds, rain and other forms o f precipitation, the great 
oceanic currents [...] lastly it causes earthquakes and volcanic eruptions. From an immense 
natural reservoir we can draw the motive power we need [,..] To develop that power, to 
appropriate it to our own use is the purpose of fire-engines.159

Along with thermodynamics came a conception o f the world very different from the 

ordered and precise universe conveyed by the clockwork metaphor; one in which 

disruption and instability were not incidental, or the product o f dysfunction, but 

intrinsic to its very nature.

James Joule discovered in the 1840s that energy could be converted from one form to 

another, heat being only one o f them. From this was postulated the first law of 

thermodynamics: that of the conservation o f energy. It stated that the total amount of 

energy in the universe was a constant; it simply took different forms. However, Clausius 

and Kelvin confirmed in the 1850s what had been hinted at in Carnot’s writings: within 

a closed system, the amount o f useable energy decreases as it is employed (the second 

law of thermodynamics). Entropy is the measure o f this phenomenon, namely that of 

the level o f disorder (i.e. unusable energy lost to dissipation or friction) within a system. 

Another way o f formulating it is to say that energy naturally flows only from being 

concentrated in one place to becoming diffused or dispersed i.e. from hot to cold and 

never the reverse. Hence the exploitable differences which could be converted into work 

within a closed system will be eventually irredeemably lost.

The ultimate implications o f the second law could no t be more dramatic: if the universe 

can be said to constitute a closed system, then it must necessarily be experiencing 

increasing and irreversible entropy. In other words, the universe is winding down, slowly 

cooling until its Tieat death’ when it will be but a lifeless and motionless void. The 

second law of thermodynamics became known as ‘time’s arrow’ as it stated a clear

158 De Landa, War in the Age of Intelligent Machines, p . 141
159 Bolter, Turing’s Man, p.32
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direction to physical processes: from order to disorder. This was a huge blow to the 

stable, reversible clockwork universe o f perpetual motion that the mechanist worldview 

supported. The dissipation o f energy implied non-reversible processes, in contrast with 

all previously established physical laws. It suggested direction, degradation and end to all 

the phenomena o f the physical universe.

In the place o f the stable and linear motion of clockwork, steam and fire also brought to 

the fore the notions o f randomness and unpredictability.160 In the science o f the day, 

this manifested itself by a shift from a world o f mathematical regularity and precision 

expressed through geometry to a stochastic world in which the mathematics o f 

probability played a growing role. In the second half o f the nineteenth century, Ludwig 

Boltzmann related the probabilistic behaviour o f material particles such as molecules 

with the phenomenon o f rising entropy in closed systems, formulating for the first time 

a physical law in statistical terms and founding the hugely influential disciplines o f 

statistical physics.161

Michel Serres sees in the painting o f Joseph Turner, the precursor o f Impressionism, the 

‘translation’ o f Camot, that is, the influence o f thermodynamic notions. Contrasting 

with the use o f “lines, points and circles” in the technique o f George Garrard (the 

development o f geometry having permitted the discovery o f classical perspective 

projection in art), Serres points at the randomness and fragmentation o f shape in scenes 

dominated by clouds, fire, smoke and fog: “the perception of the stochastic replaces the 

drawing o f form.” 162 Turner is most famous for his dramatic portrayals o f the 

turbulence and power o f nature, but, like many contemporaries, he was also fascinated 

by the wrenching transformation of,the Industrial Revolution. He painted the railroad in 

Rain, Steam, and Speed, ironworking in Dudley, textile mills in Leeds, and coal production in 

Keelmen Heaving in Coals by Night, seeking to reproduce motion and randomness in his art 

rather than the immaculate stillness o f classical painting.

160 Steam engines tended to be unstable, requiring a careful balance of pressure to maintain a constant 
speed (and, more critically, to avoid an explosion). This led to the invention of the centrifugal Watt 
governor, the first feedback control mechanism, allowing the automatic regulation of engine speed. The 
founders o f the science of cybernetics would later hail the Watt governor as one o f the finest 
embodiments of the early self-regulating servomechanism (see next chapter).
161 According to Boltzmann’s theories, the state of maximum entropy or disorder postulated by the 
second law of thermodynamics is only the probabilistic outcome of the motion of particles in a closed 
system. It is theoretically possible for total entropy in such a system to decrease but the probability of 
such an event is vanishingly small.
162 Michel Serres, Hermes III: La Traduction (Paris: Les Editions de Minuit, 1974), p.237
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In the 1860s, William Thomson (the future Lord Kelvin) and Peter Guthrie Tait 

published a highly influential treatise whose intention was to provide an overarching 

view o f the state o f understanding o f the physical sciences in view of the different 

advances made by thermodynamics. The resulting Treatise on Natural Philosophy received 

the following review in the Scotsman newspaper in 1868:

The world of which they give the Natural Philosophy is not the abstract world of 
Cambridge examination papers — in which matter is perfectly homogenous, pulleys 
perfecdy smooth, strings perfecdy elastic, liquids perfectly incompressible — but it is the 
concrete world of the senses, which approximates to, but always falls short alike of the ideal 
o f the mathematical as of the poetic imagination [...] Nowhere is there actual rest; nowhere 
is there perfect smoothness; nowhere motion without friction.163

Energy dissipation and entropy undermined the eighteenth century vision o f frictionless 

and reversible mechanisms and its promise o f absolute control and predictability. As 

Prigogine and Stengers observe, “unlike dynamic objects, thermodynamic objects can 

only be partially controlled. Occasionally they ‘break loose’ into spontaneous change.”164

With the ascendancy o f the engine, mechanical processes certainly did not become 

irrelevant but, in the industrial age, the focus shifted towards the laws o f energy that 

drove those mechanisms. Force was replaced by energy as the dominant currency o f the 

new scientific paradigm, and this shift is clearly observable in the contemporary ideas 

about body and mind.

The Human Engine: Thermodynamic Bodies and Minds

Whereas the clockwork metaphor had promulgated an understanding o f the human 

body as a cold, clean and quiet machine, animated as if  by levers, springs and cogs, 

thermodynamics would inspire a very different vision. The body was still a machine but 

now it was a hot, noisy, and dirty energy-consuming one; emphasis was put on 

respiration, blood circulation, and the consumption o f nutrients that provided the 

energy for it. Writing in 1887, the physiologist Auguste Chauveau claimed that “what we 

can state as far as the engines o f the physical world are concerned can necessarily and

163 Smith, The Science of Energy, p. 192
164 Prigogine & Stengers, Order out of Chaos, p .120
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completely be applied to organised machines, and [...] to the human machine, which we 

can study most easily and scientifically.”165

Analogies between heat engines and the human body can already be found in the work 

o f Antoine Lavoisier, often referred to as the father of m odem chemistry. Following 

experiments conducted on guinea pigs, he wrote in 1780 that:

Respiration is thus a very slow combustion phenomenon, very similar to that of coal; it is 
conducted inside the lungs, not giving off light, since the fire matter is absorbed by the 
humidity of the organs of the lungs. Heat developed by this combustion goes into the 
blood vessels which pass through the lungs and which subsequently flow into the entire 
animal body. Thus, air that we breathe is used to conserve our bodies in two fashions: it 
removes from the blood fixed air, which can be very harmful when abundant; and heat 
which enters our lungs from this phenomenon replaces the heat lost in the atmosphere and 
from surrounding bodies.166

Bodies were thus modelled like engines with a circulation diagram in which oxygen (a 

gas named by Lavoisier himself) acted as a fuel for the production o f heat, replacing that 

which was lost from the body’s activity. Further experiments enabled Lavoisier to 

establish that increases in oxygen consumption, pulse rate, and respiratory rate could be 

observed when the body was exerted, linking mechanical work to heat production. 

These ideas continued to gain credence throughout the scientific community in the 

nineteenth century.

Medical practitioners also came to an awareness o f the importance o f heat production 

to biological organisms, although nearly a century after Lavoisier’s discoveries. Daniel 

Fahrenheit had invented the mercury thermometer in 1714, along with the temperature 

scale that carries his name, thereby creating a much-needed universal standard o f heat 

measurement. However, clinical thermometry did not become an accepted part of 

medical diagnostics until the 1860s and the publication of Carl Wunderlich’s research. 

The German physician took over a million readings from 25,000 patients, establishing a 

range o f normal body temperature from 36.3 to 37.5°C. Since deviation from this could 

be indicative o f disease and a malfunction o f the human heat engine, thermometers 

thereupon become central instruments o f medical diagnostic.

165 Auguste Chauveau, La Tbermodynamique et le Travail Chevies Etres Vivants (Revue Scientifique, 1887), 
p.678 quoted in Jacques Gleyse & al., “Physical Education as a Subject in France (Shool Curriculum, 
Policies and Discourse): The Body and the Metaphors o f the Engine — Elements Used in the Analysis o f a 
Power and Control System during the Second Industrial Revolution”, Sport, Education and Society 1, vol. 7 
(2002), pp.5-23 http://recherche.unlv-montp3.fr/cerfee/artide,php3?id article=191
166 Frank Katch, “Antoine Laurent Lavoisier (1743-1794)” (Sportscience, 1998) 
http: /  / www.sportsci.org/news/history/lavoisier/lavoisier.html
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The nineteenth century and early twentieth century also yielded a greater understanding 

o f the human metabolism and the respective roles o f proteins, carbohydrates, and lipids 

in providing energy for the operation o f the human body. Metabolism (from the Greek 

word for ‘change5) refers to the manner in which the body consumes food and converts 

it into energy, measured in Calories that are ‘burnt’ through the exercise o f the body. 

The nutritional term o f Calorie is directly borrowed from the equivalent term in physics, 

defined as the amount o f heat necessary to raise the temperature o f 1 gram o f water by 

1 degree Celsius. Following on from the first law of thermodynamics, the Calorie unit 

allows for the quantitative measurement and convertibility o f all forms o f energy.

The evolution o f gymnastics as part o f the school curriculum in France is another 

instructive case study that reflects the shift towards an energetic paradigm. Until the 

1880s, gymnastics were essentially mechanistic with a focus on ground-based and 

segmented movements similar to the previously discussed drilling o f the Prussian army 

— an unsurprising fact given that teachers generally received their training during military 

service. Physiologists and chronophotographers Etienne-Jules Marey and Georges 

Demeny began to push, among others, for a new approach, emphasising the similarities 

between heat engine and body:

Our blood contains hydrocarbons similar to the oil burnt in our lamps, the coal burnt in 
our fires. It also contains oxygen which, as it combines with the former elements, causes 
their combustion, providing a source of heat and energy. Muscular contraction and 
movement are the result o f this physiological process. Will power provokes movement just 
as an electric spark will provoke an explosion in an unstable volatile matter.167

Subsequently, movement in gymnastics (soon renamed physical education), while not 

abandoning completely mechanistic conceptions, paid much greater attention to the 

energetic notions o f input and output, with a view to optimising those processes and 

avoiding ‘overheating.’ The military aspects o f gymnastics were largely expurgated from 

training manuals while the dynamic exercise o f sports and games played a greater role.168

Freud was also clearly influenced by thermodynamics for the elaboration o f his theory 

o f the mind, referring in 1895 to “psychical energy as bound (order) and unbound 

(disorder).”169 In effect, Freud’s understanding o f the mind parallels the processes o f an

167 Georges Demeny, Les Bases Scientifiques de ^Education Physique (Paris: Alcan, 1902), p.12
168 Gleyse & al., “The Body and the Metaphors o f the Engine”
169 John Lechte, Key Contemporary Concepts: From Abjection to Zeno's Paradox (London: Sage, 2003), p.207
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engine with a circulation diagram between conscious and unconscious. A decrease in the 

energy o f one area results in an equivalent increase in the energy o f the other (the first 

law o f thermodynamics) with a tendency for psychic energy to flow from the ‘hotter’ 

area to the ‘cooler’ area as in the resurgence o f repressed urges (the second law). The 

notion o f impulses as bursts o f psychic energy also suggests a disruptive and unstable 

force much more akin to the worldview expounded by thermodynamics than that 

presented by mechanism. The concept o f entropy can also be seen in the death drive’s 

urge for complete satisfaction, effectively a total dissipation of psychic energy as a form 

o f final equilibrium.170

Thermodynamic Warfare

The artillery of our division are excellent shots, the first impact arriving on the 
dot. The howling approach of the iron blocks grows increasingly dense and 
polyphonic, simplyfor the purpose of drowning the other side in a steadily swelling 
tide of vicious, raging and numbing sounds. Landmines draw their beaded arcs of 
sparks above us and shatter in volcanic explosions. White signal rockets flood 
the twinkling clouds of smoke, gases and dust, which simmer with a glaring light, 
like a boiling lake over the fields. Multicoloured rockets hang over the trenches, 
bursting into little stars and suddenly expiring like the coloured signals in a giant 
marshalling yard. A ll machine guns in the second and third lines are highly 
active. The hiss of their countless blurred shotsforms the grim background, which 

fills the minute gaps in the sound of the heaty guns.171

Ernst Jlinger, DerKampf als inneres Erlebnis (1922)

We have finally made the engine that can smash all engines, the power that can 
destroy allpower.

John Schaar on nuclear weaponry172

In the thermodynamic age, conflict rapidly grew in scope and intensity with states 

committing all their military, industrial and moral energies into war. The harnessing of 

industrial might resulted in increasing centralisation o f production and a trend towards 

command economies. Nationalist and revolutionary ideals galvanised entire societies

170 Lechte, Key Contemporary Concepts, p.207.
171 Translated from Ernst Jiinger, Der Kampf als Inneres Erlebnis (1922), p.31
http: /  /  mitglied.lycos.de /  nordolf/Ernst%20T%fcnger%20- 
%2QDer%20Kampf%20als%2Qinneres%2QErlebnis.doc
172 Lawrence, Modernity and War, p.88
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into bloody conflicts. War took on a powerful metaphysical role, an engine for a history 

which had discovered a teleological direction towards the promised lands of 

nationhood, empire, and socialism. The application of the motor to warfare also had 

momentous implications, introducing unprecedented vectors o f speed and movement 

into war and leading to wide-ranging tactical and strategic experimentation.

Conceptually, the engine promulgated a different mode o f operation and worldview 

from that o f clockwork. De Landa sees in Napoleon’s armies the manifestation o f an 

‘abstract motor’:

Napoleon himself did not incorporate the motor as a technical object into his wars [...], 
but the abstract motor did affect the mode of assemblage of the Napoleonic armies: 
‘motorised’ armies were the first to make use of a reservoir o f loyal human bodies, to insert 
these bodies into a flexible calculus (non-linear tactics), and to exploit the friend/foe 
difference to take warfare from clockwork dynastic duels to massive confrontation between 
nations.173

The Revolutionary and Napoleonic wars were not marked by rapid technological change 

but organisational and ideological transformations nevertheless altered the practice of 

warfare, as well as the meaning ascribed to it.

The successes o f Napoleon can be partly explained by the fruition o f tactical 

innovations introduced in the French army following disastrous defeats at the hands o f 

Frederick the Great’s armies during the Seven Years War. Comte Jacques de Guibert 

notably developed a more dynamic and mobile conception o f deployment on the 

battlefield, moving away from geometric conceptions o f manoeuvre and granting 

battalions greater autonomy.174 For Gat, he was the author o f revolutionary ideas with a 

lasting influence on the development o f the French army on the eve o f the Revolution. 

Guibert advocated “mobility, rapidity, and boldness in the conduct of operations [...]; 

movement in independent formations [...]; and flexible manoeuvring in open columns 

before deploying into the firing-line, instead o f the highly complex and rigid 

manoeuvring o f the linear formation that had been employed and perfected by the 

Prussians.”175 In contrast with Frederick’s attempts to control his entire army, Napoleon 

was to grant high levels o f autonomy to individual corps, allowing for the deployment 

o f forces over a wider area and greater flexibility and interchangeability in the position

173 De Landa, War in the Age of Intelligent Machines, p.141
174 Lawrence, Modernity and War, p.16
175 Gat, A  History of Military Thought, p.54
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and role of respective corps. According to van Creveld, “whereas Napoleon’s 

opponents sought to maintain* control and minimise uncertainty by keeping their forces 

closely concentrated, Napoleon chose the opposite way, reorganising and decentralising 

his army in such a way as to enable its parts to operate independently for a limited 

period o f time and consequently tolerate a higher degree of uncertainty.”176

Historian Richard Riehn argues that Napoleon’s scientific education is reflected in his 

particularly dynamic conception and practice o f warfare:

Trained in the artillery sciences, [Napoleon] had a keen grasp of the principles of physics 
and the concepts of energy and force. N o one understood better than he the relationships 
o f mass, time, and the distance that went into the creation of energy. This much is emerges 
from his methods o f conducting a campaign or battle [...] Once his plan developed, 
Napoleon’s understanding of the concepts of energy and force would erupt again. Massive 
batteries, massive infantry columns and on occasion, massive cavalry columns could break 
a wall by the concentration of great energy and create rapid concentrations of force at this 
chosen point of attack, achieving local superiority even if he did nor enjoy the overall 
advantages in numbers.177

Key to this ability to concentrate force and direct energies was the introduction o f the 

levee en masse. Conscription allowed military campaigns on an unprecedented scale by 

calling on all able-bodied men to fight for universalistic and /or nationalistic ideals, 

providing the Emperor with a fresh flow of loyal and fervent recruits.

Witnessing Napoleon riding past after his victory in Jena in 1806, Hegel saw in the 

Emperor the “world-spirit”, the embodied march of History. From conflicts serving the 

ambitions o f an aristocratic class, wars became understood as the ‘engines’ o f history, 

crucial junctures at which nations revealed their true nature and purpose, fulfilling their 

historical destiny.178 Despite all the attempts by Mettemich and the representatives of 

the Old Regime to turn back the ‘clock’ in 1815, the forces unleashed by the Napoleonic 

wars had definitively set the world on a new trajectory. From the second half o f the 

nineteenth century, war was increasingly rationalised with the aid o f evolutionary theory, 

a dynamic understanding o f biology that had replaced the taxonomy of eighteenth

176 Van Creveld, Command in War, p.61
177 Steele, “Muskets and Pendulums”, Technology and Culture, p.372
178 Trotsky later proclaimed that war was the “locomotive of history”, combining the notion of motorised 
acceleration with that of a teleological set o f ‘rails’ leading to a final destination, namely communism.
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century natural science.179 In the last pages of The Origin of Species, Charles Darwin 

claimed that:

From the war o f nature, from famine and death, the most exalted object which we are 
capable of conceiving, namely the production of higher animals, direcdy follows. There is 
grandeur in this view of life, with its several powers, having been originally breathed into a 
few forms or into one; and that, whilst this planet has gone cycling on according to the 
fixed law of gravity, from so simple a beginning endless forms most beautiful and most 
wonderful have been, and are being, evolved.180

Thus, war and conflict were elevated to a fundamental physical law as universal and 

uncontested as Newton’s theory o f gravity but which substituted the immutable 

cyclicality o f the latter for a diachronic theory of change. Being in accordance with the 

very laws o f nature, warfare was therefore considered a progressive and virtuous 

endeavour, the truest expression o f the nation-state’s vitality and historical destiny.

Entire nations would soon be pitted against each other, with each successive war 

announcing a new and unprecedented level in the mobilisation o f human, economic and 

industrial resources. As well as extending over regions, countries and continents rather 

than specific locations, battles would increasingly last days, weeks or even months.181 

The industrialisation o f the means o f destruction created huge problems in terms of 

logistics, not least for the supply o f ammunitions, spare parts and fuel. While in 1870-1 

over nine-tenths o f the supplies consumed by the German army were food and fodder, 

in 1916 two-thirds o f all the supplies for a British division were made o f ammunition, 

engineering materials and other kinds o f equipment.182

The first direct application of motor power to warfare can be seen in the use of railways, 

enabling both a rapid deployment of troops across great distances and reliable supply 

lines that would sustain large armies. Previously, armies would essentially depend on the 

resources they could find in the territory they were occupying; increasingly, they could

179 While thermodynamics pointed to a movement from the ordered to the chaotic and the differentiated 
to the homogenous with the dissipation of useable energy, the theory of evolution provided an account of 
increasing differentiation and complexity in the living world. This is not necessarily the contradiction it 
may at first appear to be since thermodynamics allows for pockets of decreasing entropy within an overall 
picture of rising entropy. Crucially, however, both theories provided a direction to physical processes, an 
arrow to time. Furthermore, Michel Serres sees in Darwin’s theories the manifestation of the ‘abstract 
motor’ with a reservoir o f populations generating dynamic evolution through the exploitation of 
differences in survival fitness, following a mechanism of circulation of naturally selected species.
De Landa, War in the Age of Intelligent Machines, p.141 
18° Pickj War Machine, pp.85-6
181 Van Creveld, Technology and War, p. 122
182 Van Creveld, Command in War, p.185
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be supported by agriculture and industries located hundreds o f kilometres away. As early 

as 1842, Prussia made plans for the construction o f a network o f strategic railways in 

preparation for the eventuality o f a simultaneous war against France and Russia. It went 

on to make increasing use o f railways in its spectacularly successful campaigns in 

Schleswig Holstein, Austria and France between 1864 and 1870. Combined with 

industrial production and the early electromagnetic telecommunication technologies 

(more o f which in the next chapter), railways participated in the constitution of the huge 

static war fronts o f W orld War I, capable o f sustaining enormous costs, both in lives 

and material.

Firearm technology also improved gready in the nineteenth century and first half o f the 

twentieth century, both in terms o f power and accuracy. Ballistics was complemented by 

a new understanding o f the chemistry o f explosives and the physical laws of heat, with 

focus shifting from the reversible phenomenon of ‘trajectory5 to the irreversible process 

o f ‘explosion.5183 I f  up to the mid-nineteenth century, the rifle could only be used with 

any significant effectiveness when employed in mass, new firearms now allowed 

precision targeting along with an exponential rise in the rate o f fire. Accompanied by the 

development o f ever more powerful artillery, this increasingly made tight formations of 

advancing men unsustainable although the military establishment was slow to recognise 

this. This tactical inertia led to disaster in World War I where the machine gun rendered 

charges across open ground all but suicidal.

Most o f World War I was thus characterised by a tactical and strategic stalemate during 

which European nations focused all the firepower and industrial might they could 

muster in very concentrated areas. The resulting casualties were horrendous: 260,000 

men died and a further 450,000 were injured during the Battle o f Verdun alone. As 

World War I veteran Ernst Jiinger put it, the soldier was thus reduced to fuel for the 

war machine, “just like charcoal, which is hurled under the glowing cauldron of war so 

as to keep the work going. ‘The troops are burnt to cinders in the fire5 is the elegant 

formula found in the manuals o f the military art.55184 Jiinger5s words remarkably echo 

those o f Clausewitz in his letter to Fichte in 1809, in which he insisted on the need for

183 De Landa, War in the Age of Intelligent Machines, p.242.
Van Creveld notes that a gun can be simply understood as an internal combustion engine acting in one 
direction instead of two.
Van Creveld, Technology and War, p.82
184 Jiinger, Der Kampf als Inneres Erlebnis, p.33
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“mobilising the energies o f every soldier to the greatest possible extent and in infusing 

him with the warlike feelings, so that the fire o f war spreads to every component o f the 

army instead o f leaving numerous dead coals in the mass.”185

But for Jiinger, men were not only consumed by the Great War; some were also recast it

in its fire. With machines o f fire and metal now dominating the battlefield, survival

required that men take on their attributes:

The spirit o f this Materialschlacht (battle of materials’) and war of the trenches, which had 
been fought more ruthlessly, more wildly and more brutally than any other, produced men 
which the world had not seen before. It was a new race, embodying energy and charged 
with the greatest strength. Sleek, lean and sinewy bodies with striking facial features, 
beneath the helmets were eyes petrified by a thousand frights. They were vanquishers, 
Stahlnaturen (‘natures o f steel*), tuned in with the struggle in its most abominable form.
Their approach over splintered landscapes meant the last triumph of a fantastic horror. 
Whenever their bold troops closed in on battered positions, where pale creatures with mad 
eyes stared at them, unforeseen energies were set free. As jugglers of death, masters of
explosives and the flame, and as glorious predators, they moved through the trenches.186

Like many young men of his generation, Jiinger was profoundly affected by what he saw 

and experienced during World War I. While the unspeakable horror o f the industrial 

battlefield had broken many men, among others such as Jiinger it was a revelatory 

experience, fuelling futurist fantasies which would resonate in the post-war politics o f 

traumatised European societies. Alongside the exaltation o f war, fascism embraced the 

cult o f the machine, the relentless advance o f modernisation, and the perceptible 

increase in speed that touched all aspects o f social life but were above all embodied by 

motorisation.187 Hitler wrote in MeinKampf o f “the universal motorisation of the world, 

which in the next war will be overwhelmingly decisive in the struggle.”188 For Mussolini, 

movement was the word which summed up best the new century: “movement towards 

the icy solitude o f the poles and towards the virgin peaks o f the mountains, movement 

towards the stars and towards the depths o f the seas... movement everywhere and 

acceleration in the rhythm of our lives.”189

In his book Fire and Movement, Ernst Jiinger identified motorisation o f movement as the 

very means to overcome the deadlock created by projected energy weapons in WWI: “It

185 Pick, War Machine, p.36
186 Jiinger, Der Kampf als Inneres Erlebnis, p. 14
187 For Paul Virilio, speed is inherently fascistic. If such a blanket statement is perhaps overly reductionist, 
he is correct is identifying an affinity which accounts for the enthusiasm of fascism for motorisation.
Paul Virilio, Speed and Politics: A n  Essay on Drvmology (New York: Semiotext(e), 1986)
188 Gat, A  History ofMilitaiy Thought, p.620
189 Gat, A  Histoiy ofMilitaiy Thought, p.581
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appears absurd to us today that the warring Will nearly exclusively uses the technical 

apparatus at its disposition to increase firepower, whereas movement in combat is still 

essentially limited to primitive energy, that o f the muscular strength o f man and 

horse.” 190 I f  the tank had arrived too late to prove decisive in World War I, it had 

nevertheless heralded the application o f the combustion engine to armoured ground 

vehicles — “it was the tank that regrouped all o f the operations in the speed vector and 

recreated a smooth space for movement by uprooting men and arms.” 191 If  most 

military practitioners were initially unsure about the value o f this new weapon system, 

Colonel J. F. C. Fuller had no doubts about its revolutionary impact:

As the tank can use its weapons and carry its own protection when in movement, it will 
enable the present static fighting to be replaced by dynamic fighting; that is to say, the 
soldier, whether infantryman or gunner, will not have to halt in order to deliver blows, but 
will do so whilst in movement. This possibility must sooner or later lead to a radical 
recasting of tactical organization, as radical as that which followed the introduction of 
gunpowder.192

Indeed, motorisation o f movement on the battlefield proceeded apace with the 

development o f armoured ground and airborne vehicles propelled by combustion 

engines.

As Fuller had foreseen, radical tactical experimentation followed, most notably in the 

Wehrmacht’s use o f Blitzkrieg in the first part o f World War II. Blitzkrieg relied on the 

combination o f aerial bombardment with motorised ground forces to achieve a high 

degree o f surprise through mobility and speed. The Wehrmacht privileged decentralised 

operations (Auftragstaktik, also known as mission-oriented tactics) with commanders 

providing overall objectives and troops granted a great level o f initiative to adapt to the 

fluidity o f the battlefield. Van Creveld observes that “like Napoleon, but in charge o f 

forces whose mobility was far superior and which consequently spread over much larger 

spaces, the World War II panzer leader was forced to decentralise the chain o f 

command and rely on intelligent initiative at every rank, beginning with the lowest in 

order to seize every opportunity and exploit it to the hilt.”193 The German army had 

already experimented with similar tactics in the later stages o f the First World War with

190 Ernst Jiinger, Feuer und Bewegung in Ernst Jiinger, Samtliche Werke, vol. 1-EX (Stuttgart, 1980) V, p.118
191 Deleuze & Guattari, A  Thousand Plateaus, p.397
192 J. F. C. Fuller, The Foundations of the Science of War (1926)
http:/ /  cgsc.leavenworth.army.mil/carl/resources/cs.i/fuller2/fuller2.asp
193 Van Creveld, Command in War, p.191
We will see in the next chapter the role electromagnetic telecommunication technologies played in 
maintaining coherence within such a decentralised organisation of troops.
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the use o f Sturmtruppen, elite shock troops that would infiltrate allied defences and use 

surprise to capture or destroy headquarters or strongpoints. Such battalions, o f which 

Jiinger was a distinguished member, employed flexible chains o f command and although 

their successes were insufficient to win the war, it foreshadowed the organisational 

innovations that would follow.

Finally, the new increase in mobility brought on by motorisation also resulted in the 

disappearance o f the front as strategic bombing brought lethality to entire nations. 

Civilian populations were soon explicidy targeted as war became total. Science and 

technology were directed to the development o f ever more destructive energy weapons, 

culminating in the atom bomb. When nuclear weapons were dropped on Hiroshima and 

Nagasaki, the spectacular closing chapter to the most destructive and cosdy war in 

history, few could doubt anymore the prescience o f the prediction made by the electrical 

engineer and scientist Nikola Tesla in 1900 concerning the evolution o f “the war 

apparatus toward the greatest possible speed and maximum rate o f energy-delivery.”194 

The final increase in the destructiveness of war which Hiroshima and Nagasaki heralded 

and which was pursed ad absurdum with the rapid development o f nuclear weaponry 

appeared to bring to a close the era of total war. Indeed, George Kennan would observe 

in 1961 that:

The atom has simply served to make unavoidably clear what has been true all along since 
the day of the introduction of the machine gun and the internal combustion engine into the 
techniques of warfare [...] that modem warfare in the grand manner, pursued by all 
available means and aimed at the total destruction of the enemy’s capacity to resist, is [...] 
o f such general destructiveness that it ceases to be useful as an instrument of any coherent 
political purpose.195

The application of the computer and electromagnetic telecommunication technologies 

to strategic and military affairs during the Cold War would largely preoccupy itself with 

trying to reconcile war with the existence of such terrible weapons, whether in 

preparation for a nuclear exchange or in managing conflict so that this threshold would 

never be passed.

Before we can move on to this next era however, I will conclude this chapter with a 

discussion o f Clausewitz and the relation of the ideas he developed in On War to the

194 H. Bruce Franklin, War Stars: The Superweapon and the American Imagination (New York: Oxford 
University Press, 1988), p.205
195 Gray, Postmodern War, p. 138
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thermodynamic world whose birth he was witnessing and to the later scientific 

developments he appeared to anticipate.

Clausewitz ‘Translates’ Thermodynamics

While Azar Gat has made a persuasive case for the influence o f romanticism and its 

anti-rationalistic stance on the writings of Carl von Clausewitz,196 it is nevertheless also 

possible to relate the Prussian officer’s ideas to the thermodynamic developments in 

science. Indeed, whereas Clausewitz neglected the growing importance o f new energy 

technologies, writing as he was at a time in which technological change in military affairs 

was still relatively slow, he was scientifically literate, reading mathematical treatises and 

attending physics lectures at a time where science was turning to the study o f energy and 

advances in the theories o f probability were being made. Despite his professed dislike of 

metaphors in military theory, Clausewitz employed a broad range o f them, many of 

which echo thermodynamic notions. Writing in an epoch on the cusp o f the science of 

energy, Clausewitz naturally inherited some terms that originated from the vocabulary of 

mechanism (centre o f gravity, friction, etc.) but many of the ideas he developed broke 

significantly with mechanistic approaches to warfare.

Notwithstanding his emphasis on genius and moral factors, those qualities most 

celebrated by the romantics, it would be misleading to view Clausewitz as anti-science or 

anti-reason. His major work On War work still sought to provide a reasoned 

understanding o f war but one which recognised the inherent limits o f reason when 

grappling with such a dynamic and complex phenomenon, in the same way that 

thermodynamicists had to trade the mechanistic claims o f complete predictability for a 

more stochastic understanding o f the natural world.

Clausewitz’s approach must be contrasted with many o f the popular contemporary 

military theorists, most prominently Jomini and von Biilow, who still sought to discover 

the eternal laws of war that had conferred victory throughout the ages. This led to the 

elaboration of a number o f fixed rules, algebraic formulas, and geometric principles 

which remained very much in the spirit o f mechanist conceptions o f warfare in

196 Gat, A  History of Military Thought
John Lynn has subsequently adopted and expanded on much of this analysis - Lynn, Battle, p.190-210
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assuming proportionality, linearity, and thus predictability. While Jomini, drawing on ids 

experience o f Napoleonic warfare, did advocate mobility, initiative, and aggressive 

conduct in military operations, his work remained heavily premised on the existence of 

optimal geometric lines o f operation which if properly followed would ensure victory at 

all times and places. This attitude was even more marked in Biilow with Newtonian 

physics weighing heavily on his theory o f military force, his use o f language and 

arithmetic mirroring that o f the law of gravitation:

The agency of military energies, like other effects or nature, becomes weaker [...] in an 
inverse ratio of the squares of the distance; that is to say, in this particular, of the length of 
the line of operations. Why should not this law, which governs all natural effects, be 
applicable to war, which now consists of litde more than the impulsion and repulsion of 
physical masses? If, which I do not doubt, it is admissible in the theory of the line of 
operations, we may in the future easily calculate the utmost extent to which military success 
may be carried.197

Clausewitz rejected the mechanistic approach, indicting it for only paying “regard to 

activity on one side, whilst war is a constant state o f reciprocal action, the effects of 

which are mutual.”198 It is useful to remind ourselves o f the original audience he was 

addressing in On War; namely the Prussian military elite which had suffered humiliating 

defeats at the hand o f Napoleon and longed for a return to its glory days. It would 

therefore be natural for Clausewitz to emphasise those elements o f the Prussian 

tradition which he considered harmful, namely the drive for “an army made like an 

automaton by its rigid formations and orders o f battle, which, movable only by the word 

o f command is intended to unwind its activities like a piece o f clockwork.” 199 For 

Clausewitz, such an approach came to the detriment o f an understanding of war as a 

dynamic process: “the shock o f two hostile bodies in collision, not the action of a living 

power upon an inanimate mass.”200

While the feedback process o f the ‘reciprocal actions’ by the two opposing forces would 

theoretically tend to the ‘extreme’ and the ‘absolute’, the escalation to pure unlimited 

war is impossible because conflict is necessarily circumscribed by its historical context 

and hence always by policy and its instrumental calculations.201 Clausewitz concludes 

that “if the extreme is no longer to be apprehended, and no longer to be sought for, it is

197 Gat, A. History ofMilitaiy Thought, p.85
198 Carl von Clausewitz, On War (Hertfordshire: Wordsworth, 1997), p.86
199 Pick, War Machine, p.37
200 Clausewitz, On War, p.8
201 Clausewitz, On War, pp.9-10
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left to the judgement to determine the limits for the efforts to be made in place of it, 

and this can only be done on the data furnished by the facts o f the real world by the laws 

of probability”202 The Prussian major-general proceeds:

The absolute, the mathematical as it is called, nowhere finds any sure basis in the 
calculations in the art o f war; [...] from the outset there is a play of possibilities, 
probabilities, good and bad luck, which spreads about with all the coarse and fine threads 
o f its web, and makes war of all branches of human activity the most like a gambling 
game.203

The role o f chance and the ‘fog o f war’ necessarily deny the military commander the 

complete predictability and control o f operations that mechanistic warfare promised — 

therefore “war must always set itself free from the strict law of logical necessity, and 

seek aid from the calculation o f probabilities.”204 Clausewitz’s emphasis on chance is to 

be contrasted with eighteenth century general Maurice de Saxe’s belief that “war can be 

made without leaving anything to chance. And this is the highest point o f perfection and 

skill in a general.”205

War is therefore for Clausewitz a phenomenon marked by uncertainty and capable o f 

erupting with the suddenness o f “a perfect explosion.” 206 Clausewitz returns several 

times to this conception o f war as an indeterminate release o f energy: “a pulsation o f 

violent force more or less vehement, consequently making its discharges and exhausting 

its powers more or less quickly.”207 Acting as a brake on the tendency o f war towards 

the extreme, policy is “interwoven with the whole action o f war, and must exercise a 

continuous influence on it” but only “as far as the nature o f the forces liberated by it 

will permit.”208 Reason, in the form o f policy, is crucial in order to exert some control 

over the use o f armed conflict and de facto prevents its escalation to the absolute, but this 

control is still nonetheless limited in the face of the energies released by war.

202 Clausewitz, On War; p.12
203 Clausewitz, On War, pp. 19-20
204 Clausewitz, On War, p.27
205 Lynn, Battle, p.129
206 Clausewitz, On War, p. 13
207 Clausewitz, On War, p.21
This notion o f war as an indeterminate release of energy that eventually exhausts itself manifests itself also 
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We can also see thermodynamic notions at play in the famous concept o f friction, the 

innate tendency for the accumulation o f small setbacks that can result in severe 

breakdowns in the operation o f the military machine. It might seem at first sight that the 

metaphorical term refers back to a mechanistic understanding o f war but closer analysis 

does not allow for such a straight-forward reading:

Everything is very simple in war, but the simplest thing is difficult. These difficulties 
accumulate and produce a friction which no man can imagine exacdy who has not seen 
war. [...] The military machine, the army and all belonging to it, is in fact simple, and 
appears on this account easy to manage. But let us reflect that no part of it is in one piece, 
that it is composed entirely of individuals, each of which keeps its own friction in all 
directions. Theoretically all sounds very well: the commander of a battalion is responsible 
for the execution o f the order given; and as the battalion by its discipline is glued together 
into one piece, and the chief must be a man o f acknowledged zeal, the beam turns on an 
iron pin with little friction. But it is not so in reality, and all that is exaggerated and false in 
such a conception manifests itself in war. The battalion always remains composed o f a 
number of men, o f whom, if chance so wills, the most insignificant is able to occasion delay 
and even irregularity.209

Clausewitz rejects here the linear notions o f additivity and assembly o f the clockwork 

metaphor, arguing that the military machine cannot be reduced to parts any larger than 

its most basic constitutive elements, human bodies. Hence, friction “is not 

concentrated, as in mechanics, at a few points” but rather “is everywhere brought into 

contact with chance, and thus incidents take place upon which it was impossible to 

calculate, their chief origin being chance.”210 Recall that the non-linear phenomenon of 

friction had been excluded from Newton’s laws o f motion on the grounds that its 

effects were so marginal for most cases that they could be safely ignored in any 

calculations. However, for Clausewitz friction is everywhere in war and can accumulate 

with disastrous consequences. Therefore, friction cannot be dismissed as an 

unimportant deviation from the ideal mechanism; rather it is a fundamental and 

irreducible property o f war. Clausewitz’s use o f the term ‘friction’ is hence much closer 

to the understanding o f thermodynamics than that o f mechanism since unpredictability 

and chance are endogenous to the system.211

Clausewitz’s greatest insights were slow to be recognised by the military establishment. 

Indeed, Jomini was the more popular theorist for at least fifty years after the publication

209 Clausewitz, On War, pp.66-67
210 Clausewitz, On War, p.67
211 U.S. Air Force Colonel John Boyd explicitly connected Clausewitzian friction with the second law of 
thermodynamics in his work on the warfighting decision cycle in the 1980s. The concepts of entropy and 
information are very closely linked, as we shall see in the next chapter.
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of On War. Even after he gained pre-eminence, Clausewitz’s indeterminacy has often 

been mistaken for a lack of clarity rather than an integral part o f his philosophy. 

Frequendy, military students o f his work have made the “implicit and even explicit claim 

that, if Clausewitz were only less confused and understood his own concepts better, he 

would sound like Jomini.”212 As a result, emphasis was recurrendy put on those elements 

o f his work which appeared to provide eternal rules for victory, such as the targeting of 

the enemy’s ‘centre o f gravity’, and the maximum concentration o f force and mass, 

those linear Newtonian concepts.

Unsurprisingly, it is among the German military establishment that his ideas would be 

best appreciated and understood, notably by Helmut von Moltke the Elder:

No plan of action can look with any certainty beyond the first meeting with the major 
forces of the enemy [...] The commander is compelled during the whole campaign to reach 
decisions on the basis of situations than cannot be predicted. All consecutive acts of war 
are, therefore, not executions of a premeditated plan, but spontaneous action, directed by 
military tact.213

Auftragstaktik would be a logical response to a Clausewitzian understanding o f war, 

distributing uncertainty, adjusting to contingency and navigating the inherent chaos of 

warfare.

Conclusion

I f  the harnessing o f intimate sources o f energy powered the rapid industrial 

development o f Western societies and dreams of unlimited progress, it also brought 

with it instability and the recurring fear o f their exhaustion. The linear certainties of 

mechanism appeared undermined by the discovery o f an ineluctable and irreversible 

drive towards physical disorder. Thermodynamic warfare was marked by an increasing 

intensity and breadth o f conflicts with the liberated energies and passions consuming 

continents until their eventual dissipation through the complete material and moral 

enervation o f the societies engaged in them. An awareness o f the irreducible uncertainty 

o f warfare and o f the consequent futility o f mechanistic warfare’s previous attempts to 

impose order through a static predetermined battle plan permeated the thought of the

212 Alan D. Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability o f War”, International Security,
17:3 Winter, 1992) http://www.clausewitz.com/CW ZHOMF./Beyerchen/CWZandNonlinearity.htm
213 Lynn, Battle, p.212
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more astute o f military observers. Notwithstanding, the quest for order was to continue. 

Indeed, the next milestone in technoscientific development would revolve around the 

concept o f information and its potential for managing thermodynamic uncertainty. 

Communication and control now took centre stage through electromagnetic 

technologies and particularly the computer.
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Chapter 5: Cybernetics and the Genesis of the Computer

The two previous chapters have each treated o f a separate regime of the scientific way 

o f warfare, combining a discussion o f both the respective key technologies and scientific 

principles along with an analysis of their relationship to the forms o f warfare 

contemporary to them. However the next two regimes will be covered over the course 

o f two chapters each, a first one setting out the central technological and scientific 

concepts and a second dedicated to their military embodiments. This is pardy due to the 

need for a longer exposition o f the scientific ideas which gain in complexity as we will 

progress but is above all demanded by the necessity o f a lengthier analysis of military 

theory and practice. Indeed, from the Second World War onwards, the mande of the 

scientific way of warfare clearly passes on to the United States and its conduct of war 

will remain the central focus o f the remaining study. With the particularly 

technologically-intensive American approach to warfare, reliance on science to think 

and practice warfare reaches a new apex and hence requires particular consideration.

I will provide here an account o f the genesis o f the computer in the context of the 

lineage o f electromagnetic technologies. Particular attention will be paid to military 

applications and the specific role which the Second World War played in the 

development of the computer and its related sciences. This will be followed by a 

discussion o f the scientific concept of information, the principles underpinning the 

cybernetic science o f control and communications, and the latter’s diffusion in fields as 

diverse as engineering, biology, human cognition, and the social sciences. The 

widespread military applications o f cybernetics and computers will be left to the next 

chapter.

Electromagnetic Telecommunications and War

Whereas the clock harnessed the laws o f motion (as subsequently theorised by classical 

mechanics) and the engine put to work the intimate sources o f energy o f inert matter by
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exploiting heat differentials (leading to the science o f thermodynamics), the technologies 

o f telecommunications and computing involved the mastering o f the electromagnetic 

field. Electricity was a phenomenon that had been observed for millennia but a real 

understanding of its nature and its relation to magnetism had to wait for the nineteenth 

century and the work o f such luminaries as Ampere, Faraday, and Maxwell. The 

application o f electricity and radio waves to communications would allow information 

to travel as fast as the physical limits o f the known universe, namely the speed o f light.

The electric telegraph heralded the start o f a telecommunications revolution that would 

lead to present-day computer networks.214 Previous to it, the speed o f communication 

over large distances was broadly limited to that o f the fastest existing means of 

transport. Beacons, smoke signals, or other visual signs could be relayed across vast 

expanses but weather and geography were a major hindrance to the performance and 

reliability o f these systems. Furthermore, the complexity o f messages that could be 

transmitted was very limited; the semaphore network used by Napoleon could only 

transmit two words a minute and the cost o f sending a message was roughly thirty times 

as high as for the electric telegraphs which would follow. Aside from being considerably 

more cost-effective, the latter could also transmit forty to fifty words a minute with the 

introduction o f the Morse code in 1844.215 The telecommunications device was an 

instant success with telegraphs accompanying the construction o f railroads, providing 

invaluable help in managing the expanding rail networks. By 1866, the first transatlantic 

telegraph cable had been completed, a formidable annihilation o f distance. The 

telegraph also allowed for the precise synchronous setting o f clocks and the 

establishment o f standardised time, often called ‘railway-time’ because o f its initial 

purpose in coordinating railroad timetables. We have here an example o f the 

complementarities o f different technologies when they are combined in complex 

technosocial assemblages, the mutual dependencies o f clock, telegraph and railways 

promoting and reinforcing their potential for organising social fife.

Armies relied on telegraphy from the very beginning, both as early warning systems of 

the movements o f any foreign army and to manage the huge logistical challenges o f

214 Telegraphy refers to the long distance transmission of written messages without physical transport. By 
this definition this would include non-electromagnetic telecommunication technologies such as smoke 
signals or other visual signs, as well as modem technologies such as email or fax. However, I will be using 
the term telegraph here to describe only the electric telegraph that employed Morse code.
215 Pacey, Technology in World Civilisation, p. 138
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industrialised war. Because o f their reliance on fixed stations and cables, both the 

telegraph and the telephone were best suited to defence than offence. The difficulty of 

extending a communications network in the field essentially limited their tactical 

application to siege warfare, an increasingly peripheral activity o f war.216 World War I 

saw the extensive use o f the telephone for communication between military 

headquarters and the front, but the lines stopped at the latter. Beyond the trenches, 

command relied on traditional means, namely optical and acoustic signals that were 

increasingly drowned out by the noise and smoke of the industrial battlefield.

Wireless telegraphy, the transmission o f text through radio waves, was pioneered in the 

last decade of the nineteenth century. Its early uses were primarily naval, enabling ships 

to send Morse code between themselves as well as with land. Voice was added to radio 

communications at the turn o f the century. It was not until the inter-war period 

however, that the technology was made reliable, mobile, and simple to use, accompanied 

by a broadening o f the frequency spectrum, thereby reducing the problem o f mutual 

interference that had plagued its tentative use in the trenches of the First World War 217 

The Germany military was the first to apply wireless telecommunications in a systematic 

manner: in World War II, most of its tanks and planes were equipped with two-way 

radio communication for contact with other vehicles and headquarters. This enabled the 

high degree of coordination and tactical flexibility that Blitzkrieg required, as discussed in 

the previous chapter. As with virtually all major technological innovations, the 

successful use o f radio by the German army had as much to do with the quality and 

quantity o f the device as with its integration within a new organisational and tactical 

scheme that could take full advantage o f it.

Electromagnetic communications continued to grow in importance after the Second 

World War as miniaturisation proceeded, transmission o f video was added to that o f 

audio, and orbiting satellites layered a telecommunications network across the entire 

globe. However, this period was also characterised by the increasing convergence of 

those technologies with that o f the computer, and so we must now turn to the latter’s 

genesis.

2,6 Van Creveld, Command in War; p.107
217 Van Creveld, Command in War, p. 191
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The Computer — Genesis and Embodiment of the Abstract Machine

The computer’s Anglo-Saxon name betrays its specific original function, that o f a 

complex calculator.218 In fact, computers initially referred to individuals, often women, 

employed to do arithmetic calculations, whether assisted or not by mechanical aids. One 

o f the first applications o f this ‘primitive’ computing power was the calculation of 

ballistics firing tables for artillery. Electronic computers were bom  as a technology 

designed for the automation o f these calculations; in that sense they are part o f the 

lineage of the slide rule and abacus. But the computer is first and foremost a conceptual 

machine that was imagined and theorised before its current embodiment was ever 

produced. This is in contrast to the clock and engine which only became abstract 

machines after the technologies reached a certain level o f refinement through the trial- 

and-error work o f coundess artisans.

The principles o f operation o f the computer rest on logic. Computing is essentially the 

repeated application o f a fixed and finite set o f rules to incoming data. As a purely 

conceptual machine, a computer could therefore exist in any number o f forms: from the 

simple use of pen and paper to a complex set o f cogs and gears or its more familiar 

electronic embodiment. In the 1830s, building on his work on gear-based calculators, 

mathematician Charles Babbage imagined the first programmable computer, the 

Analytical Engine. His design involved ‘programs’ using loops o f punched cards,219 a 

‘memory’ which could store the results o f intermediary calculations, a control unit and 

an output mechanism, all crucial features o f modem electronic computers. Unable to 

secure the necessary government funding, Babbage was never able to build his 

Analytical Engine.220

The abstract computer would resurface in 1937 as part of Alan Turing’s elaborate 

demonstration in the field of symbolic logic. In order to prove his point, Turing 

conceived o f what became known as a ‘Turing Machine’. The theoretical machine would

218 The different names given to the computer in various languages are instructive in that they reveal 
specific understandings of the technology’s purpose or nature. The French refer to it as the ‘ordinateur’ — 
a machine that puts things in order. In Finnish, it is a ‘rietokone’, which means Tmowledge machine.’ In 
Chinese, the computer is called ‘dian nao’ or ‘electric brain.’ Finally, the Icelandic language has a 
particularly poetic formulation with ‘tolva’, the ‘number prophetess.’
219 The use of punched cards as an early form of software can be traced back to Jacquard’s loom, which 
used cards to modify sewing designs at the turn of the nineteenth century.
220 In 1991, a team from the London Science Museum eventually built a working Analytical Engine, 
demonstrating the correctness of Babbage’s design.
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be able to read, write and erase data, and employed a memory, a central processing unit, 

and a program controlling the machine’s operations through a finite series o f 

mathematical instructions known as algorithms. Although Turing had only conceived of 

his machine for theoretical purposes, it would soon find a physical embodiment thanks 

to the progress made in the harnessing of electromagnetic forces. The physical 

computer would have no doubt emerged sooner or later but it was the technological 

impulse o f the Second World War that was crucial to the circumstances o f its genesis. 

The brute calculating power o f the computer became necessary for two technoscientific 

projects o f the war: cryptanalysis and nuclear physics.

Cryptography, the secret coding o f messages, had developed gready in order to protect 

electromagnetic telecommunications from interception and impersonation. Throughout 

World War II, the Allies expended great effort in breaking the Enigma code used by the 

German military for its telecommunications. Doing so required a phenomenal 

computing power for its day and which could only be achieved through an 

unprecedented efficiency in the automation of calculations. The technological 

breakthrough was so formidable that the German military, utterly convinced o f the 

inviolability o f the Enigma cipher, refused until the end to accept that it had been 

broken despite obvious indications that the Allies were receiving advance warning of 

their plans. Alan Turing was closely involved in the successful program in which 

Colossus, one o f the first digital, programmable, and electronic computers, played a 

central role. Though not strictly speaking a Turing machine, it was nevertheless one of 

several significant milestones in the development o f the modem computer.221

The development o f the nuclear bomb was an unprecedented industrial, technoscientific 

and military undertaking that mobilised up to one percent o f the United States federal 

budget. Recent advances in theoretical physics had made a nuclear bomb a tangible 

perspective but there remained major obstacles to its realisation. Incredibly complex 

calculations were necessary to strengthen the basic understanding o f nuclear fission and 

harness it into a practical device. The Manhattan Project began by relying on mechanical 

calculators operated by some of the wives o f the scientists but it soon became apparent

221 The tide of first electronic computer is fiercely disputed with other candidates including the Z3 and 
ENIAC computers. The intricacies of the arguments are less important than the fact that they simply 
illustrate that the development of the general purpose computer (i.e. Turing-complete) was complex, 
piecemeal, and contingent on the applications to which the device was put to and on the availability and 
cost of other technologies, in contrast to its theoretical and abstract model.
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that greater computing power would be required. Under the impulsion o f the 

mathematician John von Neumann, modified IBM punched-card machines were 

introduced and allowed the completion o f the project before the end o f the war.222

Von Neumann played an important role in the development o f the computer as both a

conceptual and physical machine. If  Turing had already imagined a machine that would

fulfil all the functions o f the modem computer, it was von Neumann who provided the

crucial bridge between the abstract mechanism and the material work electrical
*engineers were pursuing. According to Herman Goldstine, a mathematician and army 

officer who brought him in as a consultant at the University o f Pennsylvania in 1944 to 

work on the design o f high-speed digital computers contracted by the Army, von 

Neumann was the first person “who understood explicidy that a computer essentially 

performed logical functions, and that the electrical aspects were ancillary.” 223 By 

reducing all computing operation to logical functions, von Neumann was able to design 

a m ethod whereby problems could be broken down into a sequence o f discrete logical 

steps that could be programmed into a computer, establishing the approach of serial 

computing. He also gave his name to a computer architecture which distinguished itself 

from previous mechanical embodiments in that it used a single storage structure 

(memory) to contain both instructions and data. In this way, computers could be 

systematically reprogrammed for each new task rather than being purpose-built for a 

particular operation.

A diagram of the von Neumann architecture can be seen in Figure 4. The arithmetic 

logic unit (ALU) performs all the arithmetic computations according to instructions 

transmitted by the control unit (in practice, modem computers integrate these two 

elements in their central processing unit, the CPU). The memory unit serves as 

temporary storage for all the program instructions and data that are being executed by 

the computer. Intermediate results can be stored in the memory and recalled when 

necessary during the computation o f a problem with several discrete logical steps. Input 

and output connect the computer to its environment, allowing for the introduction of

222 In contrast to other scientists such as Robert Oppenheimer who became uncomfortable about the 
consequences of their work on the Manhattan project, von Neumann remained closely involved in the 
development of nuclear weapons until his death in 1957. A fervent proponent of nuclear build-up and 
even of a pre-emptive strike on the Soviet Union, he participated in the development of the hydrogen 
bomb and was appointed Commissioner of the Atomic Energy Commission in 1955.
223 Heims, John von Neumann and Norbert Wiener, p. 182
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new programs and data and the communication of computation results. O f course, the 

output can also serve as a new input for the computer, constituting a closed processing 

loop in which the computer responds to the stimulus of its own output. This point is 

particularly relevant to the below discussion of cybernetics.

m m r

CONTROL 
UNIT

ARITHMETIC
LOGIC

accum ulator

\

INPUT
v

OUTPUT

Figure 4: Diagram of the von N eum ann architecture224

Following their initial genesis for the purposes of code-breaking and the completion of 

the Manhattan project, computers subsequently continued to play a central role in the 

post-war military, involving the development of thermonuclear devices based on nuclear 

fusion and numerous military programs to be discussed in the following chapter. The 

electromagnetic computer was thus born and evolved as a military technology — “for 

two decades, from the early 1940s until the early 1960s, the armed forces of the United 

States were the single most important driver of digital computer development.”225

The formidable computational power and the exponential increase that has been 

observed since (based on empirical observation, Moore’s law states that computing 

power roughly doubles every 18 months) was made possible by the harnessing of 

electromagnetic forces and more specifically the understanding of the behaviour of 

electrons provided by quantum mechanics.226 The development of the transistor, a semi­

224 h ttp ://  upload w ikim cdia.org/w ikjpedia/cornm ons/l /1 c/V on Neumann architecture.png
225 Paul N. Edwards, “Why Build Computers?” in Merritt Roe Smith & Gregory K. Clancey (eds.), Major 
Problems in the History of American Technology: Documents and Essays (Boston: Houghton Mifflin, 1998), p.454- 
462
226 Quantum mechanics conform to thermodynamics but violate the linearity of Newtonian mechanics. At 
atomic or sub-atomic levels, the behaviour of matter no longer conforms to Newton’s predictions. This
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conductor device which can serve as the building-block for logic gates in computer 

architecture (binary bifurcations for any step o f a logical sequence) allowed both greater 

reliability and miniaturisation than the previous technology of vacuum tubes.

Whereas clockwork involves the transmission, storing and amplification o f mechanical 

force and the engine amounts to the conversion o f an energetic release from inert 

matter into mechanical work, the electronic computer’s ‘motion’ is not at the level of 

any o f its components but rather occurs at that of electrons whose patterns express 

logical and mathematical relationships. As Paul Edwards points out, “computers do not 

perform physical work [...] they can only control other machines that do, such as lathes, 

printers, or industrial robots. To do this, they transform information — programs, 

specifications, input from sensors — into control signals.”227

It is the computer’s ability to apply conditional branching and run programs that can 

respond to their own results as much as to external inputs that make it an ideal control 

mechanism. Thus a computer can be used to regulate and modify the behaviour o f 

other machines via feedback loops. As we shall see in the next section and Norbert 

Wiener’s work on servomechanisms, this was not a feature unique to the computer but 

the latter allowed a far greater complexity, precision and ubiquity o f such control 

mechanisms. The development o f the computer interface — an interface being defined as 

“where two or more information sources come face-to-face” 228 — has enabled 

progressively greater real-time control by the human user.

But to focus exclusively on its ability to execute logical programs and its application as a 

control device would mean neglecting another essential feature o f the computer, namely 

its capacity to manipulate any form of symbolic information and thus simulate any 

electronic symbol-producing machine. This includes all media technologies o f video and 

audio recording, processing and reproduction. For a long time, these technologies 

remained quite distinct from the computer but their relatively recent digitalisation is

implies that Newtonian physics are only an approximation of physical processes and that apply only at a 
macro level. The probabilistic behaviour of quantum particles revealed by measurement suggests the 
world might be fundamentally indeterminate and stochastic. This discovery delivered another blow to the 
totalising claims of mechanism, at least at the micro-level of reality, requiring the further extension of 
probabilistic mathematical instruments to apprehend natural phenomena. Chaos theory would later show 
that linear assumptions of mechanism blinded it to many physical processes at the macro-level, including 
those of a deterministic nature, (see chapter 7).
227 Edwards, The Closed World, p.28
228 Michael Heim, The Metaphysics of Virtual Reality (New York : Oxford University Press, 1993), p.77
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erasing any fundamental distinction between the computer and the specific technologies 

o f the television, camera or radio. We may distinguish devices by the type o f media 

content they produce or transmit or by the interface with which we interact with them, 

but ultimately they are all in a more or less advanced process o f cannibalisation by 

digital computer technology. This is seen in the current collapsing of devices: emails can 

be sent through a television, photographs taken with a telephone, films viewed on a 

personal digital organiser. The computer therefore constitutes an abstract machine that 

encompasses all electronic technology of symbolic representation.

Lastly, the conjunction o f computing and telecommunication technologies has enabled 

computers to network together and share information and processing power, with the 

Internet as perhaps the most spectacular product o f this tele-interaction o f computing 

devices). This has enabled the convergence observed today in electronic devices while 

also greatly extending the distances across which a computer can act as a control 

mechanism, whether automated or under human operation.

To summarise then, the contemporary networked computer can be understood as a 

single device capable o f four distinct yet interlocked functions:

1. a logic machine applying finite rules to data;

2. a control mechanism using information feedback (i.e. a servomechanism — 

see below);

3. a semiotic machine handling any symbolic information including numbers, 

characters and images;

4. an electromagnetic telecommunications device.

None o f these functions are exclusive to the computer and conversely many modem 

computing devices only fulfil one or a few o f these functions, depending on the purpose 

for which they were designed. However, the computer finds itself at the point o f 

convergence o f several techno-scientific developments whose conjunction has amplified 

and transformed their respective capabilities and potentialities.229 The computer’s ability 

to imitate any symbol-producing machine has enabled it to ‘cannibalise’ all such

229 A similar convergence was already observed when Alexander Graham Bell and others combined 
electric sound reproduction with telegraphy to give birth to the telephone in the last quarter of the 
nineteenth century.
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machines and integrate them under a single digital architecture. What unites all these 

separate technologies in a single device or abstract machine is the notion o f information. 

Indeed, narrowed down to its barest definition, the computer is first and foremost an 

information-processing device. In the theories o f Norbert Wiener and Claude Shannon, 

the three functions o f calculation, communication and control were already being linked 

in the 1940s before they were combined in any single machine. The concept which 

united these functions was that o f information. If  force was the core concept of 

Newtonian mechanics and energy that o f thermodynamics, it is information which 

would fulfil a similar organising function for the science o f cybernetics.

Bits and Negentropy: Information Becomes Physical

Information is information, not matter or energy. No materialism which 
does not admit this can survive at the present day.

Norbert Wiener*30

Before scientists began paying attention to it in the years preceding World War II, 

information was traditionally understood as the communication o f human knowledge. 

However, the scientific concept o f information which emerged in this period is quite 

distinct. The problem with the established definition o f information as necessarily 

connected to meaning, and therefore context, was that it made scientific quantification 

and general theorisation extremely complicated. Engineers seeking to improve the 

efficiency o f telecommunication technology therefore sought to detach the meaning o f 

information from the process of transmission. Ralph Harltey, responsible for some of 

the foundations of information theory, wrote in 1928 o f the need “to eliminate the 

psychological factors involved and to establish a measure o f information in terms of 

purely physical quantities.”231

Such a measure emerged from Claude Shannon’s war research on fire-control systems 

and cryptography at the AT&T Bell labs. As an engineer, Shannon was concerned with

230 Norbert Wiener, Cybernetics or Control and Communications in the Animal and the Machine (New York: Wiley, 
1949), p.155
231 Rafael Capurro, The Concept of Information (2003) http: /  /  www.capurto.de /infoconcep t.html
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the practical issue o f the reliability of the transmission o f a message, not its meaning. 

Communication and information were thus to be understood as a process between a 

sender and a receiver of communication that is distinct from the meaning being 

transmitted. Shannon’s colleague Warren Weaver emphasised this distinction:

The word information, in this theory, is used in a special sense that must not be confused 
, with its ordinary usage. In particular, information must not be confused with meaning [...]
The word information in communication theory relates not so much to what you do say, as 
to what you could say. That is, information is a measure of one’s freedom of choice when 
one selects a message [...] The concept of information applies not to the individual 
messages (as the concept of meaning would) but rather to the situation as a whole.232

For Katherine Hayles, this ‘meaninglessness’ allowed information to become 

disembodied and “to be conceptualised as if it were an entity that can flow unchanged 

between different material substrates.” 233 Information becomes “a pattern, not a 

presence.”234 Information could thus be theorised and mathematically expressed as an 

abstract value detached from its specific embodiments in a similar way to matter and 

energy. Concomitantly, the process o f communication was analogously abstracted from 

physical embodiment into a general diagram o f operation. This understanding of 

information and communication would be central to the constitution o f cybernetics as a 

science o f control and communications within and between systems, be they organic, 

mechanical or social.

Indeed, for Shannon, the aim was to “consider certain general problems involving 

communication systems” which required the representation o f “the various elefnents 

involved as mathematical entities, suitably idealized from their physical counterparts.”235 

In other words, to conceptualise an abstract communication machine. The abstract machine 

presented by Shannon consisted o f five different components: an information source which 

produced the message to be communicated, a transmitter which operates on the message 

in order to produce a signal suitable for transmission, a channel which provided the 

medium for the signal be transmitted, a receiver which reconstructs the message from the 

signal, and a destination to which the message was intended. In addition, Shannon 

considered a noise source which would introduce a stochastic interference to the signal

232 Tom Siegfried, The B it and the Pendulum: Prom Quantum Computing to M  Theory — The New Ply sics of 
Information (New York: John Wiley & Sons), p.167
233 N. Katherine Hayles, How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and Informatics 
(Chicago & London: University of Chicago Press, 1999), p.54
234 Hayles, How We Became Posthuman, p.18
235 Claude E. Shannon, “A Mathematical Theory o f Communication”, Bell System Technical Journal, Vol. 27, 
1948, pp.3-4 http://cm .bell-Iabs.com /cm /m s/what/shannonday/shannonl948.pdf
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and impede communication; the question then becomes the level of redundancy 

necessary to avoid the pattern of the message being drowned out by the noise — how to 

preserve order from chaos.

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

NOISE
SOURCE

Figure 5: Schematic diagram of an abstract com m unication m achine236

The basic unit of information would be the bit (binary digit) with one bit representing 

the choice between two mutually exclusive choices e.g. the true or false of logic, the 

zero or one of the digital computer. Since Shannon had demonstrated that binary 

choices were the least expensive way to handle information, the transmission of any 

information could therefore be broken down into a sequence of optimal (i.e. more or 

less equally probable) binary choices that would identify the correct message from the 

range of possible messages.237

Shannon’s probabilistic approach to information meant that the greater the uncertainty 

about a situation — in other words, the wider the range of equally probable alternative 

states that could be communicated — the larger the physical quantity of information 

necessary. Similarly, an improbable message would contain more information than a 

highly probable one. Shannon equated the mathematical measure of information with 

Boltzmann’s formula for thermodynamic entropy (the measure of unusable energy or 

disorder within a closed system) because of the similarity in the probability 

distribution.238

236 Shannon, “A Mathematical Theory of Communication”, p.3
237 Von Baeyer, Information, pp.30-31
238 Shannon’s discovery was made outside of the realm of the physical sciences but the immediately 
apparent overlap between the measurement of information and that of entropy and the explanatory 
power it seemed to offer soon led scientists to make the connection into a meaningful physical one, 
thereby initiating a momentous transformation in the scientific worldview. According to Henri Adan, “a 
real kinship between quantity of information and entropy means that not only does this notion of 
information have practical relevance for the statistical treatment of some communication problems but 
that it also expresses a universal physical reality in relation to other measurable physical magnitudes such 
as energy, temperature, etc... and that it thus fully enters the domain of the natural sciences.”
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However, Norbert Wiener, the founder of cybernetics, along with the physicist Leon 

Brillouin, effected a crucial change in sign to Shannon’s equation. Information became 

defined as the opposite o f entropy — negative entropy or negentropy.

The notion of the amount of information attaches itself very naturally to a classical notion 
in statistical mechanics: that of entropy. Just as the amount of information in a system is a 
measure of its degree of organisation, so the entropy of a system is a measure of its degree 
o f disorganisation; and the one is simply the negative of the other.239

Information therefore became a measure o f order and opposed to entropy as that o f 

disorder and randomness. Anthropologist and cyberneticist Gregory Bateson further 

expanded on this new understanding of information:

The technical term “information” may be succinctly defined as any difference which makes 
a difference in some later event. This definition is fundamental for all analysis o f cybernetic 
systems and organisations. The definition links such analysis to the rest o f science, where 
the causes of events are commonly not differences but forces, impacts, and the like. The 
link is classically exemplified by the heat engine, where available energy (i.e. negative 
entropy) is a function of a difference between two temperatures. In this classical instance, 
“information” and “negative entropy” overlap.240

Thus the function o f cybernetic systems driven by information feedback, that is systems 

endowed with the ability to adjust future conduct by past performance, is “to control 

the mechanical tendency towards organisation; in other words, to produce a temporary 

and local reversal o f the normal direction o f entropy.”241 The general tendency towards 

increasing entropy remains but, on the background of this rising chaos and 

indeterminacy (which Wiener designated as ‘evil’, the diabolical arch-enemy of the 

scientist in search o f the order governing the universe),242 information allows for the 

constitution o f pockets of decreasing entropy and growing complexity, and which 

Wiener explicitly links to progress.

Henri Atlan, ^Organisation Biologique et la Theorie de llnformation (Paris: Editions du Seuil, 2006), p. 174 
See chapter 4 for a discussion o f entropy and thermodynamics.
239 Wiener, Cybernetics, p. 18
The term of negentropy was first introduced by Erwin Schrodinger in his 1944 text What is Life.
Erwin Schrodinger, What is Life? A nd Other Scientific Essays (Garden City, NY: Doubleday Anchor, 1956)
240 John Arquilla & David Ronfeldt, “Information, Power, and Grand Strategy: In Athena’s Camp” in 
Stuart J.D. Schwartzstein (ed.), The Information Revolution and National Security (Washington, DC: The Center 
for Strategic and International Studies, 1996), p.137
241 Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (London: Eyre and 
Spottiswoode, 1954), pp.24-25
242 Wiener’s view of evil here is that which St Augustine characterises as incompleteness (negative evil) 
rather than the malicious type of the Manicheans (positive evil). Wiener, The Human Use of Human Beings, 
p. 11 & pp.34-35
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As Hayles points out, Shannon’s original theory “defines information as a probability 

function with no dimensions, no materiality, and no necessary connection with meaning. 

It is a pattern, not a presence.” 243 This shift was pursued further in cybernetics, 

reinforcing a conception of information which severed it from notions o f meaning and 

the individual contexts in which it is found to become a universal pattern common to all 

forms o f organisation — a scientific concept as crucial as those o f matter or energy. Later 

theories have posited that matter and energy are but the mere expression o f 

information, thereby elevating the latter to the sole metaphysical building-block o f the 

universe. Summing up this worldview, social theorist Kenneth Boulding described 

matter and energy as “mostly significant as encoders and transmitters o f information.”244

The dominance o f the scientific concept o f information appears today complete, having 

gained pre-eminence over those notions previously taken to be the core constituent of 

our reality. But such a momentous ontological shift in the scientific view of nature 

began with considerably more limited preoccupations centred around engineering 

problems and in the context o f the rapid technological transformations wrought by 

World War II. The science o f cybernetics that would emerge from this technoscientific 

endeavour would be the major contributor to the elaboration and the subsequent 

dissemination o f the informational paradigm.

Cybernetics: the Science of Control and Communications

The thought of every age is reflected in its technique.

Norbert Wiener*45

Although it drew on older ideas and research, cybernetics, just like the computer, was 

bom  from the imperatives o f war. Indeed, Norbert Wiener’s wartime research played a 

major role in the elaboration o f the central postulates o f cybernetics. Wiener worked on 

one o f the most urgent technological problems of the Second World War, namely the

243 Hayles, How We Became Posthuman, p. 18
244 Arquilla & Ronfeldt, “Information, Power, and Grand Strategy” in Schwartzstein (ed.), The Information 
Revolution and National Security, p.139
245 Wiener, Cybernetics, p.55
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improvement o f antiaircraft defences. With the increase in the speed and altitude of 

bomber aeroplanes, antiaircraft gunners could no longer simply visually target the plane 

since it would have moved out o f position in the short time necessary for the projectile 

to reach it. Antiaircraft defences were thus notoriously inefficient and successful hits 

resulted more from chance than the gunner’s accuracy. Whereas the traditional problem 

o f ballistics required the production o f lengthy tables detailing the appropriate artillery 

elevation according to type o f gun, shell, and range to a fixed target, fire control against 

a rapidly mobile target was a real-time computational problem. Wiener therefore 

focused on first developing a mathematical theory for making a statistical prediction of 

the future course of a plane given available information on its position and motion. 

Real-time application o f the theory required the processing o f information provided by 

radar (another product o f the discoveries o f electromagnetism) into adjustments in the 

aiming o f the gun. A missed shot would be followed by an adjustment of the aim, a new 

shot and further adjustment if  necessary. This led Wiener to think o f this process as a 

feedback loop in which information gathering and processing precedes an action that 

results in a changed state and new flow of information.

The etymology of cybernetics refers to the Greek for steersman or governor and 

reflected Wiener’s belief that a steersman and his rudder formed a feedback loop. The 

antiaircraft unit, whether fully automated or incorporating a human controller, thus 

formed a self-steering device guided by an information feedback loop. 246 Wiener 

designated all self-steering devices relying on negative information feedback as 

servomechanisms:

The machines of which we are now speaking are not the dream of the sensationalist, nor 
the hope of some future time. They already exist as thermostats, automatic gyro-compass 
ship-steering systems, self-propelled missiles — especially such as seek their target — anti 
aircraft fire-control systems, automatically controlled oil-cracking stills, ultra-rapid 
computing machines, and the like. They had begun to be used long before the war — 
indeed, the very old steam-engine governor belongs among them — but the great 
mechanization of the Second World War brought them into their own, and the need of 
handling the extremely dangerous energy of the atom will probably bring them to a still 
higher point o f development. [...] the present age is as truly the age of the servo-mechanisms as the 
nineteenth century was the age of the steam engne or the eighteenth century the age of the clock [my 
emphasis].247

246 It is necessary here to distinguish between negative and positive feedback loops. Negative feedback 
refers to a system that responds to changed inputs with a stabilising adjustment. Positive feedback loops 
respond to inputs by amplifying the change in the variable and further moving the system from its point 
of origin. Wiener’s work was essentially preoccupied with the first form of feedback. Positive feedbacks 
came to play a central role in the subsequent theories of chaos and complexity, as we shall see in chapter 
7.
247 Wiener, Cybernetics, p.55
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A cybernetic system, or servomechanism, is characterised by three distinct components: 

(a) receptors or sensors that can absorb informational input from its environment, (b) a 

processing unit which can record and process this input, compare it with the desired 

state of the input, and issue the necessary instructions onwards to (c) an output 

mechanism which can impact the environment in the required way. New outputs result 

in a new flow of input thereby closing the feedback loop. This continuous loop is 

enabled by the flow of information that links all the components together and allows 

the system to respond to changes in the perceived environment and adjust its behaviour 

accordingly (see Figure 6). This contrasts markedly with clockwork mechanisms which 

can only follow the pre-programmed path built into them and have no ability for self­

regulation.

SensorProcessor

Environment

Output
mechanism

Compare with 
desired state

Figure 6: Information feedback loop in a cybernetic system

The servomechanism also distinguishes itself in that it substitutes the chain of causality 

(A is the cause of effect B) suggested by clockwork and characteristic of traditional 

scientific theories with the notion of circular causality (A is the cause of effect B which 

is cause of A). Consequently, reductionist atomistic frameworks of interpretations give 

way to systemic holistic understandings of any object of study. Mechanism had sought 

to understand any whole by an analytical treatment of all of its individual components 

and of the sequential and linear causal relation of one component to the next. A 

clockwork mechanism could be perfectly theorised and subsequently perfected in this 

manner. In contrast, cybernetics and the affiliated methodologies focus on a holistic 

understanding of a system in which the components enter into relations of causal 

circularity. Thus in cybernetics the whole is superior to the sum of its parts.
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In his engineering work during the war Wiener had dealt with the probabilistic problem 

of predicting the future path of an airplane. Also reflected in his earlier work on 

statistical mechanics and quantum physics, Wiener’s view o f the world was 

fundamentally probabilistic and his mathematical work revolved around the means to 

grasp stochastic processes and exert predictability and control over them. Wiener had a 

predilection for mathematical problems which “involved finding predictability through 

chaos or signal through noise”248 and likened the discovery o f laws o f nature to the 

identification o f repetitive patterns involved in breaking a secret communications 

cipher.249 Cybernetic mechanisms therefore naturally appeared as the means by which 

order could be imposed over chaos. N or would such mechanisms be limited to solving 

engineering problems; Wiener would find cybernetic processes at work everywhere 

among living organisms. In this way the behaviour o f animal and machine could be 

brought under a single theory since the identification o f patterns o f communication and 

control could be substituted for the study o f specific physical embodiments.

Homeostasis was a term coined in the 1930s to describe the process by which living 

organisms adjust their internal environment to maintain a stable state. Examples would 

include the regulation o f body temperature and cardiac rhythm or the concentration of 

nutrients and waste products within the tolerable limits o f the organism. Wiener 

adopted the term and applied it more generally to all systems whose behaviour relies on 

negative feedback to stave off entropy. Homeostasis was thus the means by which a 

system could maintain its goal — survival in the case o f a biological life form (“the 

process by which we living beings resist the general stream of corruption and decay”250), 

the continued regulation o f a mechanical process within defined boundaries for a 

servomechanism — in a changing environment which could never be predicted with 

complete certainty. The pursuit of such a goal via negative feedback loops is what 

Wiener understood as the teleology o f a system. This is quite distinct from teleology as 

generally defined in the context o f political and historical ‘grand narratives’ since there is 

no finality of development, only the persistent effort to maintain a stable state.

248 Heims, John Von Neumann and Norbert Wiener; pp.146-147
249 Wiener, The Human Use of Human Beings, p. 124
250 Wiener, The Human Use of Human Beings, p.95
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It should be noted that if another cybernetic system was put in the place o f the 

environment in Figure 6, we would have two cybernetic systems interacting with one 

another as each tries to impose its own desired state on the other. I f  the respective goals 

are incompatible, the systems will be in a state o f conflict or competition; if the goals 

can be conciliated, a mutually satisfactory equilibrium may be reached. A control 

relationship is established wjien one system can dominate another system and impose its 

preferences over it. In cybernetics, control and communication are inextricably linked 

since control “is nothing but the sending o f messages which effectively change the 

behaviour o f the recipient.”251

Complex control systems are thus composed o f a hierarchy o f nested cybernetic 

systems, each with its own goal but subservient to the goal o f the system above it. For 

example, a machine or organism whose overall goal is survival might have a set o f 

subsidiary goals that serve this purpose: a regular supply o f energy, the evasion o f a 

threat, or any other behaviour that addresses a disturbance that takes the system away 

from its overarching desired state. The more complex the environment and the greater 

the variety o f possible perturbations, the more control loops will be required to attain 

and sustain the system’s goal. These nested hierarchies constitute a top-down 

architecture o f control which cyberneticists see as explanatory o f the “increasing 

complexity which characterises such fundamental developments as the origin o f life, 

multicellular organisms, the nervous system, learning, and human culture.” 252 

Bureaucratic organisations and their top-down command layers offer another obvious 

example in human societies.

Cybernetic Organisms: From Computerised Brains to Biological Computers

We believe that men and other animals art like machines from the 
scientific standpoint because we believe that the only fruitful method for 
the study of human and animal behaviour are the methods applicable to 
the behaviour of mechanical objects as well [ ...]  as objects of scientific 
enquiry; humans do not differ from machines.

251 Wiener, The Human Use of Human Beings, p.8
252 Francis Heylighen & Cliff Joslyn, “Cybernetics and Second-Order Cybernetics” in R.A. Meyers (ed.), 
Encyclopedia of Physical Science dr Technology - 3rd ed. (New York: Academic Press, 2001) 
http://pespmcl.vub.ac.be/Papers/Cybernetics-EPST.pdf p.18
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Norbert Wiener and Arturo Rosenbluth23i

While the clock and engine metaphors allowed frequent comparisons between machines 

and humans, the computer metaphor blurred even more drastically their borders since it 

theorised and enabled their combination under a single system linked by information 

feedback, as with the integration o f the human operator in an anti-aircraft unit. 

Consequendy, human and machine came to be described and analysed in the same 

terms. For Kenneth Craik, a British psychologist working on the problem of radar 

tracking during the war, “the human operator [of tracking devices] behaves basically as 

an intermittent correction servo” and both could be described by the same equations.254

Cybernetics was concerned from the very beginning with describing the universal 

mechanisms behind biological and mechanical systems and therefore naturally also the 

interface between them. This produced a discourse that combined the 

anthropomorphising o f machines and mechanisation o f biology and which quickly 

moved from the explicidy metaphorical to the literal. Neurophysiologist Ralph Gerard 

made this last observation at the seventh Macy conference (the inter-disciplinary 

conferences during which cybernetics were founded in the post-war period):

We started our discussion in the ‘as i f  spirit Everyone was delighted to express any idea 
that came to his mind, whether it seemed silly or certain or merely a stimulating guess that 
would affect someone else. We explored possibilities for all sorts o f ‘ifs.’ Then, rather 
sharply it seemed to me, we began to talk in an ‘is’ idiom. We were saying much the same 
things, but now saying them as if they were so.255

Wiener showed great interest in prosthetics, viewing improvements in the condition o f 

the invalid as one the most immediate promises o f cybernetics, especially given the post­

war concerns he expressed about the military applications o f cybernetics. But there is 

only one step from rehabilitation to enhancement and the term of cyborg (cybernetic 

organism) was later coined during research into cybernetic technologies that would 

enable humans to operate in hostile extraterrestrial environments (the battlefield is o f 

course one o f the most hostile terrestrial environments).

253 Norbert Wiener & Arturo Rosenbluth, “Purposeful and Non-Purposeful Behaviour”, Philosophy of 
Science 17, Oct 1950, p.326
254 Edwards, The Closed World, p. 182
255 Slava Gerovitch, From Newspeak to Cyberspeak: A  History of Soviet Cybernetics (Cambridge, MA & London: 
MIT Press, 2002), p.90
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Research into the brain and nervous system was gready influenced by the development 

o f computers and played a central role in cybernetic discourse. Wiener insisted that:

The ultra-rapid computing machine, depending as it does on consecutive switching devices, 
must represent an almost ideal model for the problems arising in the nervous system. The 
all-or-none character of the discharge of the neurones is precisely analogous to the single 
choice made in determining a digit on the binary scale, which more than one of us had 
already contemplated as the most satisfactory basis o f computing machine design.256

It was known that neurons were connected to each other via synapses through which 

electrical and chemical signals are transmitted. The input from other neurons determine 

whether an individual neuron will ‘fire’, that is send out a signal to those neurons 

connected to its output. A neuron can therefore be thought o f as in being in one o f two 

states: ‘firing’ or ‘not firing’; this binary choice naturally appeared analogous to the 0 or 

1 states o f computing logic gates.

Von Neumann’s theoretical elaboration o f the computer was developed in parallel with 

an analogous theory o f the human mind such that both coevolved together and “it is 

difficult to know which came first.” 257 Hence the discipline o f artificial intelligence 

emerged at the same time as modem computing and the general assumption was that 

computer science was uncovering the mechanisms of human thought. Consequently, in 

Capra’s words:

The computer model o f mental activity became the prevalent view of cognitive science and 
dominated all brain research for the next thirty years. The basic idea was that human 
intelligence resembles that of a computer to such an extent that cognition — the process of 
knowing — can be defined as information processing i.e. as manipulation of symbols based 
on a set of rules.258

Arthur Burks, a collaborator o f von Neumann notes that the mathematician thought of 

computers in two way: one as a “general-purpose computational device” and the other 

as a “general theory o f automata, natural and artificial.”259

Lily Kay has provided a detailed account o f the manner in which cybernetics and 

information theory impacted research into biochemistry and genetics after the war, 

shifting the scientific discourse from one based on notions o f chemical and biological

256 Wiener, Cybernetics, p.22
257 Fritjof Capra, The Web of Life: A  New Synthesis of Mind and Matter (London: Flamingo, 1997), p.66
258 Capra, The Web of Life, p.66
259 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (London: Viking, 
1992), p.161-2
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specificity to one articulated around informational conceptions.260 Nucleic acids became 

eventually designated as the carriers o f informational content, bearers o f a genetic ‘code’ 

to be broken by molecular biologists. The 1950s saw the discovery o f the structure of 

DNA, the nucleic acid believed to carry the genetic instructions for the development of 

all cellular life forms. Composed of only four different types o f chemical bases 

(abbreviated as A, T, G, and C) that connect the two strands of the famous double 

helix, DNA is seemingly able to account for the enormous differentiation and 

specialisation o f life-forms. Sequences of those elementary building blocks have been 

compared to the computer code which provides instructions to a computer. Small 

sequences of three bases (e.g. ACT, CAG, TTT) translate into ‘instructions’ for specific 

amino acids which then form proteins (amino acid sequences) according to a set of 

‘rules.’

Kay has persuasively related this informational discourse to the rise o f cybernetics and 

information theory and the military contexts in which they emerged so that within 

molecular biology “the genetic code became the site of life’s command and control.”261 

Indeed, for the geneticist and Nobel Prize winner Jacques Monod, the organism was 

nothing but “a cybernetic system governing and controlling the chemical activity at 

numerous points” and gene-enzyme regulations constituted a system “comparable to 

those employed in electronic automation circuitry, where the very slight energy 

consumed by a relay can trigger a large-scale operation, such as, for example, the firing 

o f a ballistic missile.”262

Even as the structure of DNA was being discovered, Wiener was putting forward a view 

o f life as a pattern o f organisation determined by its informational content and whose 

physical embodiment was both sustained and renewed by homeostasis. “O ur tissues 

change as we live: the food we eat and the air we breathe become flesh and bone o f our 

body, and the momentary elements o f our flesh and bone pass out o f our body every 

day with our excreta. We are but whirlpools in a river o f ever-flowing water. We are not 

stuff that abides, but patterns that perpetuate themselves.”263 For Wiener, therefore, the 

organism is the message. However, in the final instance, life remains nothing but a local

260 Kay, Who Wrote the Book of Life?
261 Kay, Who Wrote the Book of Life?, p.5
262 Kay, Who Wrote the Book of Life?, p.17
263 Wiener, The Human Use of Human Beings, p.96
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and temporary reversal o f entropy in a universe in which overall randomness and chaos 

is necessarily increasing — “life is an island here and now in a dying world.”264

Social Cybernetics

In the 1950s, cybernetics appeared to offer a whole new interdisciplinary theory and 

methodology with anthropologists, linguists, physiologists, sociologists, philosophers, 

engineers and computer scientists all applying cybernetic principles to their field. 

Cybernetics was not so much a traditional scientific discipline than a convergence of 

engineering techniques, scientific theories and philosophical concepts under a common 

discourse that allowed the discussion and analysis o f artificial machines, biological 

organisms, and social organisation as equivalent systems of control and communication 

operating under a single set o f principles. Upon opening the Third Congress o f the 

International Association o f Cybernetics in 1961, its president Georges Boulanger 

announced that cybernetics:

intends to investigate freely in the domain of the mind. It wants to define intelligence and 
to measure it. It will attempt to explain the functioning of the brain and to build thinking 
machines. It will assist the biologist and the doctor, and also the engineer. Educational 
practice, sociology, economics, law, and philosophy will become tributary to it. And it can 
be said that there is not a sector of human activity that can remain foreign to it.265

Initially, Wiener’s already ambitious goal for cybernetics was a theory o f “control and 

communications in the animal and the machine” 266 but the definition was soon 

expanded to the understanding of the behaviour of all complex systems, including 

social.267 After the first Macy conference in 1946, Wiener had proposed that fields as 

diverse as statistical mechanics, communication engineering, the theory of control 

mechanisms in machines, biology, psychology and social science could all be understood 

through an emphasis on the role o f communication:

The neuromuscular mechanism of an animal or o f man is certainly a communication 
instrument, as are the sense organs which receive external impulses. Fundamentally the 
social sciences are the study of the means of communication between man and man, or,

264 Wiener, The Human Use of Human Beings, p.95
265 Celine Lafontaine, UEmpire Cybemetique — Des Machines a Penser a la Pensee Machine (Paris: Editions du 
Seuil, 2004), p.25
266 Heims, John Hon Neumann and Norbert Wiener, p. 184
267 Charles R. Dechert, “The Development of Cybernetics” in Charles R. Dechert, The Social Impact of 
Cybernetics (Notre Dame, ID: University of Notre Dame, 1966), p.20
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more generally, in a community of any sort of being. The unifying idea of these disciplines 
is the MESSAGE, and not any special apparatus acting on messages.268

He further claimed in 1948 that “it is certainly true that the social system is an 

organisation like the individual, that is bound together by a system of communication, 

and that it has a dynamics in which circular processes o f a feedback nature play an 

important role.”269 Several social scientists would later develop these ideas and apply 

many of the principles o f cybernetics and systems analysis to their fields of.study. Chief 

among them, Karl Deutsch explicitly drew from cybernetics to introduce notions of 

information feedback to the understanding of social systems and the ‘steering’ of 

government in his seminal Nerves of Government while David Easton formulated a theory 

o f the political system defined as “a means whereby certain inputs are converted into 

outputs” and where the properties o f feedback allow it “to regulate stress by modifying 

or redirecting its own behaviour.”270

But while Norbert Wiener did see the potential applications o f his theory to social 

organisation, he was reluctant to grant this interpretation the same scientific credibility 

as to the study o f machines and organisms. A liberal humanist at heart, Wiener was 

particularly concerned about the implications for the liberal subject o f a cybernetic 

management o f society:

I have spoken of machines, but not only of machines having brains of brass and thews of 
iron. When human atoms are knit into an organization in which they are used, not in their 
full right as responsible human beings, but as cogs and levers and rods, it matters little that 
their raw material is flesh and blood. What is used as an element in a machine, is in fact an element 
in the machine. Whether we entrust our decisions to machines of metal, or to those machines 
o f flesh and blood which are bureaus, and vast laboratories and armies and corporations, 
we shall never receive the right answers to our questions unless we ask the right 
questions.271

If  Wiener was uneasy about ‘social machines’, his own language contributed to this 

logical extension o f the cybernetic conceptual apparatus. It is also quite obvious that no 

social machine treats individuals as “cogs and levers and rods” so completely than the 

military (an institution with which Wiener refused any association after the war, in 

contrast to von Neumann). Wiener tended to see a democratic potential in cybernetics

268 Steve J. Heims, The Cybernetics Group (Cambridge, MA: MIT Press, 1991), p.22
269 Quoted in Capra, The Web of Life, p.62
270 David Easton, A  Framework for Political Analysis (Chicago, IL &' London: University of Chicago Press, 
1979), p.l 12 & p.128; David Easton, A  Systems Analysis of Political Life (New York, NY: John Wiley & 
Sons, 1965); Karl Deutsch, The Nerves of Government (New York, NY: The Free Press, 1963)
271 Wiener, The Human Use of Human Beings, p.185-186.
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with its promise o f feedback and reciprocal influence. However cybernetics could just as 

well serve a hierarchical organisation in which subservient systems fulfilled individual 

homeostatic roles set by the overarching system.

Conclusion

As Slava Gerovitch points out, the scope o f the ambition o f cybernetics entailed the 

development o f a new language that would be common to all the scientists and social 

scientists studying systems of control and communications across all disciplines.272 

However, the promise of a new unified natural philosophy was never realised as 

cybernetics became a victim of both its own success and the overambitious goals it had 

set itself. Wildly popular in the fifties and sixties, it attracted a lot o f research funding 

for many projects that yielded disappointing results and lead to an inevitable fall from 

grace. Furthermore, the constitution o f something as broad as a science o f systems 

could only be sustained across such a broad range of disciplines and subject areas by 

diluting the conceptual and explanatory apparatus to the point at which its usefulness 

and incisiveness were severely impaired. The term itself fell out o f favour in the 1970s 

and 1980s and few scientists or academics would refer to themselves as cyberneticists 

today.

However, rather than disappearing altogether, cybernetics dispersed itself into all the 

fields it had touched and thus much o f its ontology and core concepts — namely those of 

information, circularity, and feedback — continued to play a major role in many 

disciplines. In a 1994 interview, Heinz von Foerster, one o f the founding fathers o f the 

cybernetics movement, stated that “cybernetics melted, as a field, into many notions of 

people who are thinking and working in a variety o f other fields.”273 In some ways, the 

influence o f cybernetic ideas is now more pervasive than when it was identified as a 

single discipline. The servomechanism would indeed become the defining technology of 

its age, rarely referred to as such but subsumed as one o f the functions o f the ubiquitous 

information-processing computer. The work o f the early cyberneticists would later feed 

into the development of the theories o f chaos and complexity in the 1970s and 1980s,

272 Gerovitch, From Newspeak to Cyberspeak
273 Stefano Franchi, Giiven Giizeldere, & Eric Minch, “Interview with Heinz von Foerster”, Stanford 
Humanities Review, Volume 4, Issue 2,1995 http: / / www.Stanford.edu/ group/ SHR/4-
2 /tex t/interviewvonf.html
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marking a crucial transformation in the informational paradigm and with major 

ramifications for this thesis, the discussion of which will have to wait until chapter 7. 

Indeed, it is necessary to first turn to the profound effects o f cybernetics and the 

computer on American military theory and practice during the Cold War.
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Chapter 6: Cybernetic Warfare: Computers at War

The most important single outcome of technological progress during the 
decades since World War II has been that, on the modem battlefield, a 
bli^pard of electromagnetic blips is increasingly being superimposed on — 
and to some extent substituted for — the storm of steel in which war used 
to take place.

Martin van Creveld274

This chapter concerns itself generally with the cybemeticisation and computerisation of 

the American military in the wake o f the Second World War along with the centralising 

trend that dominated it throughout the Cold War.275 The Cold War was characterised 

not only by a transformation in the structure o f world politics with the advent of 

bipolarity but also by momentous changes in the practice and theories o f warfare. I f  the 

role o f technology has been greatly studied, particularly in relation to nuclear weapons, 

the influence o f the scientific ideas which accompanied technological development has 

been afforded far less attention. Cybernetic concepts and technologies bolstered an 

understanding of war which strove to frame the use o f military force into an activity 

totally amenable to scientific analysis, to the detriment o f other forms o f thought.

The computer is naturally a central figure o f this chapter. Gene Rochlin lists five main 

roles fulfilled by computers in the military after World War II:

- embedded means of fire control for artillery and anti-aircraft guns;

- solvers o f long, complex technical and engineering problems;

- elements o f advanced command and control;

- basic tools for strategic analysis and war gaming;

274 Van Creveld, Technology and War, p. 282
275 The focus on the United States is a choice determined by two factors. Firsdy, the U.S. was the most 
enthusiastic adopter of the computer and its related sciences, making it the truest heir o f the scientific way 
of warfare. Secondly, although interesting parallels can no doubt be found in the Soviet Union, limits on 
the available literature and the greater secrecy of that society constitute an important obstacle to an in- 
depth discussion o f the role of the computer in its military. Nonetheless, it is hoped that further research 
in this area will be conducted and made available in the English-speaking world.
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- embedded and programmed controllers for self-glided weapons.276

All these aspects will be considered in this chapter but the treatment o f the computer as 

a tool will be secondary to an analysis o f its metaphorical function within the nexus of 

ideas and practices that make up a third regime of the scientific way o f warfare: cybernetic 

warfare.

I shall first discuss in general terms the ‘closed world’, following Paul Edward’s term, 

constituted by cybernetic warfare and in which cybernetic technologies proliferate 

alongside a conceptual and methodological apparatus which emphasises the controllable 

and predictable nature o f war. In the subsequent sections, I turn more specifically to its 

central features: the shift from traditional notions o f command to that o f ‘command- 

and-control’, the reduction o f war to a set of mathematical functions and cost-benefit 

calculations susceptible to optimisation through operations research and systems 

analysis, and the increasing modelling and simulation o f conflict. The chapter concludes 

with the Vietnam War, a conflict in which the aforementioned ideas and practices were 

truly put to the test and incurred spectacular reversals, thereby revealing many of the 

flawed assumptions o f cybernetic warfare.

The C losed World* of Cybernetic Warfare

In The Closed World, Paul Edwards relates the rapid computerisation of the military to 

the constitution o f a ‘closed world’ discourse conveying “a radically bounded scene of 

conflict, an inescapably self-referential space where every thought, word, and action is 

ultimately directed towards a central struggle.”277 Framed by the permanent threat o f 

nuclear devastation, the Cold War opposing the West and the East became the exclusive 

geopolitical framework through which all policies, events and rhetoric were interpreted 

and considered in relation to the goal of, if not winning, at least maintaining the status 

quo and surviving. Within this discourse, computers acted as powerful tools and 

metaphors promising “total oversight, exacting standards o f control, and technical- 

rational solutions to a myriad of complex problems.”278

276 Gene I. Rochlin, Trapped in the Net: The Unanticipated Consequences of Computerisation (Princeton, NJ: 
Princeton University Press, 1997), p.138
277 Edwards, The Closed World, p. 12
278 Edwards, The Closed World, p. 15
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In analysing this ‘closed world’ discourse, Edwards identifies several central features. 

Engineering and mathematical techniques which allow for the creation o f models of 

aspects o f the world as closed systems combine with technologies such as the computer 

which enable large scale simulation, systems analysis and central control. A language o f 

systems, gaming, communication and information is erected, privileging abstract 

formalisms over “experiential and situated knowledge.” Visions o f omnipotence 

through air power and nuclear weapons assisted by “centralised, instantaneous, 

automated command and control” are summoned in response to fears o f an 

expansionist Soviet Empire.279

Within this conceptual framework, uncertainty and unpredictability — chaos in other 

words — are understood as information deficiencies and thus susceptible to be overcome 

by the appropriate deployment o f negentropic information/communication 

technologies and computerised simulations o f conflict.

Edwards does indeed explicitly connect the ‘closed world’ discourse to the development 

o f cybernetics and computerisation. Computers are seen as participating in the creation 

and sustaining o f this worldview in two ways. “First, they allowed the practical 

construction o f central real-time military control systems on a gigantic scale. Second, 

they facilitated the metaphorical understanding o f world politics as a sort of system 

subject to technological management.” 280 Hence the closed world is not simply the 

proliferation and imposition o f the discursive framework o f superpower confrontation 

on all international and domestic politics but also an understanding o f the world that 

defines the latter as finite, manageable and computable.

The 1980s ‘Star Wars’ project (Reagan’s Strategic Defense Initiative) and its ambition 

for a defensive shield capable o f rendering nuclear weapons ineffective is frequently 

seen as the epitome of this worldview and Fred Reed also points to the computer 

metaphor in this context:

It consists in believing that the world is like the inside of a computer. In programming a 
computer, all things are clean and certain. Each instruction does one thing, precisely 
described in the manual, with only one possible result, which can be easily ascertained. As

279 Edwards, The Closed World, p. 15
280 Edwards, The Closed World, p.7
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long as a program is quite small, it will run to a foreseeable end with no surprises, click, 
click, click. This is a world of godlike certainty.281

Edwards convincingly connects cybernetics and computer sciences to an overarching set 

o f “tools, techniques, practices and languages which embody an approach to the world 

as composed o f interlocking systems amenable to formal mathematical analysis.” 282 This 

forms the basis on which a cybernetic understanding o f war and its “systems of 

organised complexity” is constructed. In his earlier work, Edwards was already charting 

this conceptual apparatus and speaking o f an “AI mentality — an approach to inherendy 

vague, ill-defined, constandy changing problems [whose] central belief is that by 

circumscribing a specific problem domain and formalising its features, problem-solving 

algorithms and heuristic logics can be created to find solutions automatically.”283

As direct experience o f total war receded and new inconceivably destructive weapons 

were developed, mathematical and logical models and simulations o f warfare became 

fetishised for their promises o f predictability and control. Defence intellectuals were 

perhaps their keenest practitioners and most outspoken proponents, wielding these 

instruments to the very highest spheres o f executive power. Convinced with often near­

religious fervour o f the superiority o f their method, they were determined to apply 

scientific rationalism to the entire spectrum of war. Sharon Ghamari-Tabrizi has noted 

that the quantitative studies they conducted and promulgated “often aimed toward an 

ideal o f omniscient information management.”284

Founded on a Weltanschauung that drew its conviction from the practical engineering 

successes o f the informational sciences, cybernetic warfare strove to shape military 

affairs into a perfectly modelled and controlled closed world. By importing this 

methodological and conceptual baggage, military thinkers internalised many of their 

assumptions. If, as “engineering approaches designed to solve real-world problems, 

systems theories tend in practice to assume the closure o f the system they analyse,”

281 Gray, Postmodern War, p.73
282 Paul N. Edwards, “The Closed World: Systems Discourse, Military Policy and Post-World War II US 
Historical Consciousness” in Les Levidow & Kevin Robins (eds.), Cyborg Worlds: The Militaiy Information 
Society (London: Free Association Books, 1989), pp.138-139
283 Gray, Postmodern War, p.72
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Sharon Ghamari-Tabrizi, The Worlds of Herman Kahn: The Intuitive Science of Thermonuclear War 
(Cambridge, MA: Harvard University Press, 2005), p .128
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military problems framed within the same conceptual and methodological framework 

naturally t nded to be also perceived in terms of closed systems.285

Such closed systems lend themselves perfecdy to modelling and simulation, the ability to 

run and re-run scenarios in the belief that all factors have been incorporated and 

appropriately weighted. Whatever the true usefulness o f such models (and cases of 

models being Validated’ by real events are scant), they have come to exert a powerful 

influence on military leaders and policymakers, all looking for certainty and mastery over 

events, however illusory. Bill Nichols points to the role o f cybernetic systems in:

creating a world of simulacra amenable to total control [...] cybernetic simulation renders 
experience, and the real itself, ‘problematic’. It draws us into a realm, a design for living, 
that fosters a fetishised relationship with the simulation as a new reality all its own, based 
on the capacity to control, within the domain of the simulation, what had once eluded 
control beyond it.286

It might be easy to dismiss all this as academic hyperbole if it wasn’t for senior military 

commanders and policy-makers frequently preaching from the same holy book. In 1969, 

General William Westmoreland, Commander-in-Chief o f U.S. forces in Vietnam, 

famously prophesised the imminent arrival o f the fully cybemeticised and frictionless 

battlefield:

On the battlefield of the future, enemy forces will be located, tracked, and targeted almost 
instantaneously through the use of data links, computer assisted intelligence evaluation, and 
automated fire control. With first round kill probabilities approaching certainty, and with 
surveillance devices that can continually track the enemy, the need for large forces to fix the 
opponent becomes less important. I see battlefields that are under 24-hour real or near-real 
time surveillance of all types. I see battlefields on which we can destroy anything we can 
locate through instant communications and almost instantaneous application of highly 
lethal firepower. [...] In summary, I see an Army built into and around an integrated area 
control system that exploits the advanced technology of communications, sensors, fire 
direction, and the required automatic data processing.287

As we shall see, such a drive for certainty and predictability was common among those 

who put faith in computerised systems and the analytical techniques of operations 

research and systems analysis in the 1950s and 1960s. For Edwards, Westmoreland’s

285 Edwards, “The Closed World” in Levidow & Robins (eds.), Cyborg Worlds, pp.138-139
286 Les Levidow & Kevin Robins, “Towards a Military Information Society?” in Levidow & Robins (eds.), 
Cyborg Worlds, p.173
287 William Westmoreland, Address to the Association of the U.S. Army, October 14,1969
http:/ /216.239.59.104/search?q:::::cache:Kw2tmkrW51gJ:www.stanford.edu/group/mmdd/SiliconValley/ 
Westmoreland/westmoreland.rtf
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speech epitomises the “vision o f a closed world, a chaotic and dangerous space rendered 

orderly and controllable by the powers o f rationality and technology.”288

More recently, the debate on the Revolution in Military Affairs (RMA), fuelled by the 

spectacular and virtually casualty-free success of the first Gulf War, has seen similar 

sentiments expressed. In 1997, former Air Force Chief o f Staff Ronald Fogleman told 

Congress that “in the first quarter o f the 21st century you will be able to find, fix or 

track, and target — in near real-time — anything o f consequence that moves upon or is 

located on the face of the Earth.”289 Since the mid-nineties, Admiral William Owens has 

been calling for the establishment of a ‘system of systems’ combining digital computing 

power, new communications technology and space-based systems to finally lift the 

Clausewitzian ‘fog o f war.’290

The appeal o f such certainty to an institution in which the training o f troops is designed 

“to reduce the conduct o f war to a set o f rules and a system of procedures — and thereby 

to make orderly and rational what is essentially chaotic and instinctive” is obvious.291 It 

is therefore not surprising that the military has embraced computers as the panacea to 

the eternal problem of uncertainty and unpredictability in war. Van Creveld facetiously 

sums up the attraction o f computers to the military machine:

Computers with their binary on-off logic seem to appeal to the military mind. This is because the 
military, in order to counter the inherent confusion and danger o f war, is forever seeking ways to 
make communications as terse and unambiguous as humanly possible. Computers by their very 
nature do just that. Had they only been able to stand at attention and salute, in many ways they 
would have made ideal soldiers.292

There are, however, specific cultural factors which made the United States military a 

particularly fertile ground for computerisation and a technoscientific approach to 

warfare even before World War II. Indeed the American experience and culture o f war 

is one in which engineering, logistics, and technology have long played a central role. As 

the first modem industrial war, the American Civil War had required the extensive uses 

o f railways and the North eventually prevailed due in large part to its industrial and

288 Edwards, “Why Build Computers?” in Smith & Clancey (eds.), Major Problems in the History of American 
Technology, pp.454-462
289 Michael O ’Hanlon, Technological Change and the Future of Warfare (Washington, DC: Brookings Institution 
Press, 2000), p. 13
290 William A. Owens & Edward Offley, Lifting the Fog of War (Baltimore, MD: John Hopkins University 
Press, 2000)
291 Gray, Postmodern War, p.95
292 Van Creveld, Technology and War, p. 239
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economic superiority. Later, the entry o f the U.S. into the First World War in April 1917 

had also necessitated a rapid mobilisation and the solving o f numerous logistical 

problems in transporting troops and material across the Adantic. N or can the weight of 

the West Point military academy in the training o f the country’s military elite be 

discounted. Following its founding in 1802 on the model of the French Ecole 

Polytechnique, West Point emphasised civil engineering as the foundation o f its 

curriculum and many of its graduates were responsible for the construction o f the 

American transport infrastructure in the 19th century. If  the curriculum has since been 

broadened, engineering and military science remain an important part o f it and 

contribute to fostering a conception of warfare as a problem to be solved through 

scientific rationality.

It is also possible to relate the longing for information omniscience and “godlike 

certainty” in military affairs to the increasingly instrumentalist understanding o f war that 

has developed in the West, and particularly the United States. As the existential and 

metaphysical dimensions o f war recede, war defined as “a rational instrument employed 

by states in a controlled manner for purposes that are either economic or political” by 

Coker293 finds in technoscience the tools o f such policy. Cybernetic thought provides a 

comforting lens through which to view the use o f force as it reduces military strategy to 

“a one-factor question about technical forces; success or failure is measured 

quantitatively [...] machine-system meets machine-system and the largest, fastest, most 

technologically advanced system will win. Any other outcome becomes unthinkable.”294 

This tendency to think o f armies as ‘machine-systems’ is a product o f the scientific and 

technological way of warfare and the increasing reliance on an industrial base to sustain 

war efforts.

Military commanders have always sought to maintain order in the face of chaos o f the 

battlefield and the constant threat o f a breakdown in the cohesion of their armies. 

Different epochs have responded in different manners to this challenge. Mechanistic 

warfare was an attempt to maintain order over the chaos o f the battlefield by reducing 

the behaviour o f soldiers to that of pre-programmed clockwork automats. With 

thermodynamic warfare, the increasingly powerful releases o f energy made 

communication o f orders on the battlefield extremely difficult but the industrialisation

293 Coker, The Future of War, p.6
294 Gibson, The Perfect War; p.23
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of warfare implied a development o f telecommunications, logistics, and production 

processes over which a great degree of centralising control could be achieved. The 

ability to marshal resources appropriately became the paramount factor determining 

military and strategic victory in those wars o f attrition. As van Creveld points out:

The technological revolution that opened with the telegraph and the railway very largely 
turned war itself into a question of managing complex systems. Time after time some new 
tactic or technological device seemed to offer a way out, but in each case the end result was 
more integration, not less. Integration permitted greater and greater forces to be mobilised, 
husbanded, focused, and finally hurled at the enemy. To this extent, it is understandable 
that victory in World War II did not go to the side whose soldiers had fought the hardest, 
or that came up with the most brilliant operational schemes. Rather, those belligerents 
gained the upper hand whose administrators, scientists, and managers developed the means 
by which to set up gigantic technological systems and run them as efficiendy as possible.295

The integration and operation o f these increasingly complex systems would only be 

made possible by the development and extension o f information and 

telecommunication technologies, leading to the establishment o f centralised command- 

and-control structures, to which I shall now turn.

From Command to Command-and-Control

Command-and-control has become the common term employed by the military brass to 

describe its function. The addition o f the term ‘control’ to what previously had simply 

been called ‘command’ is revealing in itself. Command suggests the mere transmission 

o f orders while control suggests a process that involves a feedback mechanism allowing 

the controller to obtain new information from the system, adjust its orders accordingly 

and thus direct far more accurately its subordinates. As Rochlin puts it:

Command was historically an open cycle process: the commapder set up the battle, gave 
instructions, provided for whatever contingencies could be planned for, and then issued the 
command to execute. After that, the ability to intervene was minimal. In contrast, control is 
a closed cycle process with feedback, analysis, and iteration; it was not possible even to 
consider the transition from command to command-and-control until modem technical 
means for intelligence and communications became available.296

295 Van Creveld, Technology and War, p.161
296 Rochlin, Trapped in the Net, p.204



M ilitary  strategist John Boyd contrasted command as directing, ordering, or compelling 

and control as regulating, restraining, or holding to a certain standard.297 Command and 

control infrastructures thus brought with them the hope that the inherent disorder o f 

the batdefield could be overcome through information flows in the same way cybernetic 

systems stave off entropy. In 1995, Lt. Gen. Carl O ’Berry spoke o f Horizon, an effort to 

ensure compatibility among all information systems in the U.S. military, in the following 

terms: “ [Horizon] brings order out o f something that until new has been an atmosphere 

o f entropy. For the first time we have taken interoperability to the domain of science 

instead o f emotion. I’m taking the guesswork out o f C4I systems architecture.”298

The shift from command to command-and-control is indicative o f new expectations 

about the role and capabilities o f the hierarchy in directing the operations o f the military 

machine. That this evolution is directly related to information is clearly illustrated by the 

litany o f acronyms that have since followed: C3I (Command, Control, Communications, 

and Information — or Intelligence), C4I2 (C3I plus Computers and Inter-operability), 

C3ISR (C3I plus Surveillance and Reconnaissance), C3ISRT (C3ISR plus Targeting), etc.

Integration o f armed forces into a coherent system maintained by information and 

communication technologies (ICTs) amenable to centralised control has been an 

observable trend in all modem industrial armies. As the range and specialisation o f 

military personnel and equipment increase along with the concomitant logistical 

challenges characteristic o f industrial warfare, reliable channels o f communication 

become essential. Furthermore, information demands tend to increase exponentially 

since, “as the number o f specialties grows, the amount o f information needed to 

coordinate their performance grows not arithmetically but geometrically, everybody (or 

groups o f every kind) having to be coordinated with everybody else.”299 The limitations 

o f early ICTs in terms o f their availability and the volume of information that could be 

processed and transmitted made centralisation all the more appealing since it reduced 

the number o f potential channels o f communication. For the major part of their 

existence, computers were too bulky and unwieldy to be brought onto the battlefield

297 Gregory A. Roman, “The Command or Control Dilemma: When Technology and Organizational 
Orientation Collide” (Research Paper Presented To Air Force 2025, April 1996), p.4
http:/ /  csatau.af.mil/2025/volume 1 /  vollch04.pdf
298 Arquilla & Ronfeldt, “Information, Power, and Grand Strategy” in Schwartzstein (ed.), The Information 
Revolution and National Security, p.146
299 Van Creveld, Command in War, p.235
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and computer scientists privileged centralised processing of information to maximise 

the limited processing power available.

However, there were also specific geopolitical conditions which combined with the new 

technology of nuclear weapons to particularly drive centralisation of the military in the 

post-war era. Indeed, concerns over the eventuality o f nuclear war, be it intentional or 

accidental, were omnipresent in the 1950s and continued, somewhat abated, throughout 

the Cold War. Due to the incredible destructive power o f nuclear weapons and the 

rapidity o f the delivery systems (first bombers then intercontinental ballistic missiles), it 

became crucial to ensure a very tight control over their use, as well as develop effective 

early warning mechanisms for a credible nuclear deterrent.

With the development of jet-powered aircraft, the time available in the window of 

opportunity for detection and interception o f bombers potentially carrying nuclear 

weapons shrunk and existing command-and-control systems were no longer adequate. 

Computers presented a clear technological solution to the problem of effective and 

rapid processing and transmission o f both incoming information (provided by radar and 

observation posts) and outgoing information (sent to anti-aircraft defences such as 

interceptor fighter planes or land-based weapons). As an article in the Air University 

Quarterly Review of Winter 1956-57 put it, “the speed with which these weapons could 

react, each to the other, seems to indicate that only a machine with vast memory and 

instant response could be expected to indicate a successful counter strategy in sufficient 

time to be useful.”300

Within a year of this article, the Air Force announced SAGE (Semi Automated Ground 

Environment), the first computer-based command, control and communications system 

for the purpose o f constituting a centralised air defence network. Based on information 

from radar echoes, the calculation o f precise positions and speeds o f multiple planes 

required massive computing power while the efficient and prompt transmission of this 

data to anti-aircraft weapon systems necessitated a reliable communications network. 

Target information collected and processed by SAGE would be transmitted to air 

defences, namely interceptor aircraft or missile systems.

300 Sharon Ghamari-Tabrizi, “U.S. Wargaming Grows Up: A Short History of the Diffusion of 
Wargaming in the Armed Forces and Industry in the Postwar Period up to 1964”, StrategyPage.Com 
http://www.strategypage.com/articles/default.aspPtarget-Wgappen.htm
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SAGE broke significantly with existing computer technology because of its requirement 

for real-time processing and responses to user inputs. Until then, the norm was batch 

processing, the execution of series of non-interactive jobs all at one time. Users 

programmed the computer, entered the data to be processed, and waited for its output 

to be generated and displayed via print-outs. Expanding on Whirlwind (MIT’s research 

project into a military flight simulator), SAGE resulted in several crucial developments 

in computer technology. Real-time processing required a revolutionary user interface, so 

SAGE was able to present data to a hundred operator stations via a cathode ray tube — 

the screen technology familiar to millions of computer users today -  and responded to 

requests for additional information from operators handling light guns directed at the 

screen (see Figure 7). The resulting decrease in the delay between inputs and outputs 

created a close cybernetic loop between computer and user which has only gained in 

complexity and intimacy since (see Figure 8). The use of telephone lines to transfer 

computer data was also pioneered by SAGE, an early premise of the technology that 

would lead to the development of the Internet.

Figure 7: SAGE operator and his console (circa 1959)301

301 http://w\vw.mitre.org/about/photo archives/sage photo.html
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Although obsolete by the time of its completion in 1963 (the deployment of ICBMs by 

the Soviet Union having rendered anti-aircraft defences largely irrelevant) and critically 

flawed in certain aspects, the system drove the development of crucial information 

technologies as well as the adoption of certain organisational principles. As such, 

“SAGE was less important as an actual defence system than as a symbol of things to 

come [...] it is the idea of automated control and information processes — the concept 

itself — that has shaped, more than any technology, the contemporary U.S. armed 

forces.”303 In total, between 8 and 12 billion dollars were spend on developing and 

implementing SAGE, a higher level of expenditure than had been dedicated to the 

Manhattan Project.

SAGE was followed by numerous related projects, most notably the World Wide 

Military Command and Control System (WWMCCS) in 1962 (see Figure 9). 

Progressively extended from Strategic Air Command to the rest of the military, 

WWMCSS allowed for centralised global command-and-control of American troops 

through a broad spectrum of telecommunication systems including military satellites. In 

1996, WWMCCS was deactivated and replaced by the Global Command and Control 

System (GCCS). Both projects have in common the extension and operation of

302 h ttp :// www.mitre.orp/about/photo archives/photos/low res/sage f4946.jpg
303 Edwards, “The Closed World” in Levidow & Robins (eds.), Cyborg Worlds, p. 143
Also see chapter 3 of Edwards, The Closed World for a detailed account of the development of SAGE.
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command-and-control structures across the globe, establishing cybernetic system 

closure over the entire planet.304
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Figure 9: WWMCCS architecture305

Such global ambitions require the availability of reliable telecommunications anywhere 

in the world. No technology has been more crucial in this respect than the artificial 

satellites now orbiting the earth in their thousands, our communication relays and eyes 

in the sky. The enclosure of the world within global command-and-control architectures 

required the militarisation of space and its occupation by human artefacts.306 The space 

race between the U.S. and U.S.S.R. triggered by the launch of Sputnik was therefore not 

merely a matter of prestige and propaganda for both nations; the balance of power in 

space had immediate practical implications for security and warfare back down on 

Earth. As early as 1946, the RAND project (more on which below) published its first 

study entitled Preliminary Design of an Experimental World-Circling Spaceship in which it was

304 There were also civilian applications of the technology such as air-traffic control systems and SABRE, 
the airline reservation system in operation since 1964.
305 The Federation of American Scientists http:/ / www.fas.org/nuke/guide/usa/c3i/wwmccs.htm
306 While satellite technology was initially exclusively reserved for scientific and military purposes, it is 
notable that a majority of operational satellites are today in the civilian field and providing commercial 
services from meterology to telecommunications.
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claimed that “a satellite vehicle with appropriate instrumentation can be expected to be 

one o f the most potent scientific tools of the twentieth century” and that its 

achievement “would produce repercussions comparable to the explosion o f the atomic 

bomb.”307

Encircling the globe in a mesh of geocentric orbits would not only allow for the final 

abolishing o f distance by enabling instantaneous communications from any location on 

the planet, it would also permit the precise coordinates of individuals or objects to be 

known and transmitted. The first satellite navigation system, NAVSAT, was made 

operational in 1964, initially for ballistic missile submarines. With an accuracy o f about 

two hundred metres provided by ten orbiting satellites, it was sufficient for the guidance 

o f nuclear missiles. 1967 saw the Russians launch their own satellite navigation system 

called Tsyklon. Research on a system .providing greater precision and coverage was 

iniated by the United States in 1973 and eventually led to the NAVSTAR Global 

Position System (commonly known as GPS) through a network o f 24 satellites made 

fully operational in 1995. While 40,000 U.S. troops were using GPS devices by 2002, the 

service was also made commercially available resulting in sales o f several million 

receivers, soon to become a standard function o f mobile phones.308 Concerned with its 

potential use by the military o f enemy states, the U.S. has retained the right and means 

to degrade its reliability through a feature named “Selective Availability” that reduces 

accuracy from 15 to 100 metres. This dependency on America, along with the appeal of 

significant commercial benefits, has prompted the European Union to launch its own 

satellite navigation system, Galileo, which will function with an accuracy o f five metres 

when it is operational around 2012. The expressed hostility o f the U.S. to this project 

underlines the importance attached to positioning systems and the military and strategic 

value of the information provided by them.

The Strategic Defense Initiative or ‘Star Wars’ project, whether under Reagan or its 

revised form under the Bush administration, is a clear descendent o f SAGE as a 

computer-controlled and centrally-commanded scheme, and epitomises the 

militarisation o f space and its potential impact on earth-bound warfare. An air defence 

system designed to intercept ballistic missiles fired at the United States through a

307 Project RAND, “Preliminary Design of an Experimental World-Circling Spaceship” (1946), pp. 13-14 
http://www.rand.org/pubs/special memoranda/2006/SM11827partl pdf
308 David Hambling, Weapons Grade (London: Constable & Robinson, 2005), p.43
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complex network of sensors and precision-guided missiles (some located on earth, 

others space-based), SDI was founded on a profoundly held faith in the potential for 

information technology to grant omniscience and omnipotence by providing an 

infallible shield against attack. However, the technological feats required for the 

effective operation of such a system remain enormous, then and now, with many 

experts casting doubts over their feasibility. Edwards goes as far as to say that the 1980s 

project was “almost entirely imaginary and ideological” and with a minimal military 

potential.309

Missile defence projects came out o f research initiated in World War II as a response to 

the emerging jet engine aircraft since the speed and altitude at which these planes 

operated rendered gun-based systems largely obsolete. Under its Ajax and Hercules 

iterations, Project Nike saw the development o f missile defence systems located in the 

proximity o f major industrial and urban centres. Aside from an improvement in speed 

and range over gun defences, Nike missiles could be guided from the ground so as to 

home in on their target. Radar stations would track the radar signature o f the missile and 

target aircraft, feeding this data to a computer which would calculate the missile’s 

optimal course for achieving interception, adjusting its flight as new information came 

in. At the point o f closest approach, the computer would send a ‘burst command’ that 

would cause the missile to detonate. A clear cybernetic loop is here in evidence: the 

radar acting as a sensor, the computer as the processor, and the missile’s behaviour as 

the output.

Edwards sees these cybernetic principles as applied throughout the military with 

machines, bodies, and organisations constituting:

command-control-communications systems [which] operated as a nested hierarchy of 
cybernetic devices. Airplanes, communications systems, computers, and anti-aircraft guns 
occupied the micro levels o f this hierarchy. Higher-level ‘devices’, each of which could be 
considered a cyborg or cybernetic system, included aircraft carriers, the WWMCCS, and 
NORAD early warning systems. At a still higher level stood military units such as battalions 
and the Army, Navy, and Air Force themselves. Each was conceptualised as an integrated 
combination of human and electronic components, operating according to formalised rules 
of action. Each level followed directives taken from the next highest unit and returned 
information on its performance to that unit. Each carried out its own functions with 
relative autonomy, issuing its own commands to systems under its control and evaluating 
the results using feedback from them.310

309 Paul N. Edwards, “From ‘Impact’ to Social Process: Computers in Society and Culture” in Sheila 
Jasanoff et al. (eds.), Handbook of Science and Technology Studies (Beverly Hills, CA: Sage Publications, 1994) 
http: /  /www.si.umich.edu/ ~pne /P D F / impactpdf. p.11
310 Edwards, The Closed World,, p.206
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This understanding o f military operations as interlocked systems obeying formalised 

rules invited, and indeed required, their analytical treatment through the lenses of 

mathematics and logic. In order to determine the formalised rules o f action according to 

which each level o f the hierarchy o f cybernetic devices should operate on the basis of 

incoming information, it was necessary to identify the parameters and signals upon 

which to act. Exhaustive models o f the behaviour o f both the U.S. military and that of 

its potential enemies were thus developed, thereby reducing war to a complex equation 

to be resolved by a technoscientific priesthood.

Operations Research and Systems Analysis: Solving the War Equation

Modem war has become too complex to be entrusted to the intuition of 
even the most experienced military commander. Only our giant brains 
can calculate all the possibilities.

John Kemeny, RA N D  Consultant and co-creator 
of the BASIC  computer language, 1961311

“The representation and analysis o f real world processes using logic, mathematics and 

computer science,” operations research (OR) and its offspring systems analysis (SA) 

transformed the manner in which war was prepared for, planned and imagined.312 

Despite initial resistance by officers, statistical control, OR and SA gained a rapidly 

growing influence over planning and operations in the post-war era. By 1962, this 

approach had become so popular and ubiquitous since its early applications in World 

War II that OR could proclaim itself to be “the attack o f modem science on complex 

problems arising in the direction and management o f large systems o f men, machines, 

material and money in industry, business, government and defence.”313 Systems analysis 

likewise “served as the methodological basis for social policy planning and analysis 

across such disparate areas as urban decay, poverty, health care, education, and the

311 Ghamari-Tabrizi, The Worlds of Herman Kahn, p.149
312 Department o f the Army Pamphlet 600—3—49, “Operations Research/Systems Analysis” (Washington, 
DC: Department of the Army, 1987) http://www.army.mil/usapa/epubs/pdf/p600 3 49.pdf
313 Nigel Cummings, “How the World of OR Societies Began” (The OR Society)
http:/ /www.orsoc.org.uk/orshop/(awaqdrfkrmznlwneegwigdqi)/ orcontent.aspx?inc—article news orclu 
b.htm
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efficient operation o f municipal services such as police protection and fire fighting.”314 

However, as De Landa has observed, m ost o f these techniques were pioneered in the 

military and the broad application o f this management science effectively marked the 

transfer o f “command and control structures of military logistics to the rest o f society 

and the economy.”315

Operations research seeks to improve operations by studying an entire system rather 

than exclusively concentrating on specific elements. In the context o f the transfer of 

operations research to business in 1950s-60s but equally applicable to military affairs, 

Gene Rochlin tells us that “the new agenda differed from the old in a major expansion 

of the scope o f analysis; instead o f treating the firm as a series o f isolated, interacting 

operations to be integrated from the top, it was now visualised as single, complex, 

interrelated pattern o f activities, to be analysed, coordinated and optimised as a 

whole.”316

In this sense OR and SA are very much in the cybernetic mould in their belief in a 

whole that is superior to the sum o f its parts and their assumptions about the closure of 

the systems being modeled. Stafford Beer is probably the most pre-eminent academic 

and consultant to have explicitly connected cybernetics to operations research and 

management, publishing the influential Cybernetics and Management in 1959.317 He was 

later entrusted with a project to develop a national real-time computerised system to run 

the entire Chilean economy under the Allende government from 1970 to 1973. For 

Beer, cybernetics is nothing less than “the science of which operational research is the 

method”:

Operational research comprises a body of methods which cohere to provide a powerful 
tool o f investigation. Cybernetics is a corpus of knowledge which might reasonably claim 
the status of a science. My contention is that the two are methodologically complementary; 
that the first is the natural technique in research of the second, and the second the natural 
embodiment in science of the first. By definition, each is concerned to treat a complex and 
interconnected system or process as an organic whole. By methodology, each is concerned

314 The RAND Corporation, “A Brief History of RAND” http://www.rand.org/about/history/
For a detailed account o f the applications of cybernetics, systems analysis, and computer simulations to 
urban planning and management in the US, notably by former defence intellectuals, see Jennifer S. Light, 
From Warfare to We fare: Defense Intellectuals and Urban Problems in Cold War America (Baltimore, MD & 
London: John Hopkins University Press, 2003)
315 De Landa, War in the Age of Intelligent Machines, p.5
316 Rochlin, Trapped in the Net, p.59
317 Stafford Beer, Cybernetics and Management - 2nd edition (London: English Universities Press, 1967)
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with models and analogies from every source. By science, neither is departmental. By 
philosophy, each attests to the indivisible unity of knowledge.318

Another source draws out further the similarities:

One major characteristic of cybernetics is its preoccupation with the construction of 
models and here it overlaps operational research. Cybernetic models are usually 
distinguished by being hierarchical, adaptive and making permanent use of feedback loops. 
Cybernetics in some ways is like the science of organisation, with special emphasis on the 
dynamic nature of the system being organised.319

The computer is here again central since the optimisation o f the mathematical models 

constructed by operations researchers and systems analysts is achieved through the use 

o f computer-based algorithms which calculate changes in the system’s behaviour 

resulting from any changes in the multiple variables that constitute the models. Without 

the computer, the widespread application o f OR and SA and the increasing complexity 

o f the models developed would have been impossible. In this sense, these analytical 

techniques are inseparable from the technologies that support them. The viability o f the 

models is dependent on their ability to be translated into computer code, that is into a 

program that can convert quantifiable inputs into quantifiable outputs. As system 

analysts James Martin and Adrian Norman put it, “a model without numbers cannot be 

manipulated so measurement and quantification is a fundamental part o f the description 

resulting from analysis, and the basis o f the evaluation o f systems design.” 320 

Consequently, that which cannot be assigned a number or expressed in terms of logical 

relationships is necessarily excluded.321

The following section will offer a brief history o f OR and SA, focusing on their rapid, 

although not uncontroversial, rise within the American defense establishment, 

culminating in the nomination of Robert McNamara to the position o f Secretary of 

Defense. Information on the use o f operations research and systems analysis in the

 !  /■
318 Stafford Beer, “What Has Cybernetics to Do with Operational Research?”, Operational Research 
Quarterly, Vol. 10, No. 1,1959)
319 F.H. George, “What is Cybernetics” http:/ /www.dcs.st- 
and.ac.uk/~mkw/IC Group/W hat is Cybemetics.html
320 James Martin & Adrian R.D. Norman, The Computerised Society (Harmondsworth, Middlesex: Penguin 
Books, 1973), p.569
321 Operations researchers do occasionally pursue qualitative research such as conducting interviews and 
open-ended surveys. However, these exercises are clearly secondary to the manipulation o f quantitative 
data and not the basis on which OR and its extended family of management sciences have asserted their 
institutional authority to analyse and determine organisational and operational structures. Therefore I will 
only consider these analytical techniques as being defined by their use of logic, mathematics and computer 
science.
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Soviet Union is harder to come by given the society’s highly secretive character.322 There 

is however no doubt that it found widespread applications and it is instructive to note 

that much of what is called OR and SA in the West was known in the Soviet Union as 

cybernetics, a discipline which, after at first being denounced as bourgeois ‘philosphical 

obscurantism’, was hailed at the 1961 Party Congress as a vital factor in the Soviet 

‘revolution o f the military system.’323

From the R A N D  Corporation to Robert McNamara: the Rise of the System Analyst

Operations research was pioneered by the British in the late 1930s and was 

enthusiastically embraced by the U.S. military during the Second World War. OR Air 

Force studies multiplied exponentially in this period: “offensive ones dealing with 

bombing accuracy, weapons effectiveness, and target damage [...] defensive ones 

dealing with defensive formations o f bombers, battle damage and losses o f our aircraft, 

and air defence o f our bases [...] studies of cruise control procedures, maintenance 

facilities and procedures, accidents, in-flight feeding and comfort o f crews, possibility of 

growing vegetables on South Pacific islands, and a host of others.”324

Van Creveld accounts for the initial success o f this mathematical approach with the 

particular nature o f strategic bombing and the defensive measures deployed against it.325 

The development of air defences necessitated the establishment o f socio-technical 

systems of a greater complexity than had ever been previously constructed. The 

integration o f radar required the creation o f an extended coverage of the airspace 

through individual radar stations (with particular attention paid to reducing overlap and 

mutual interference) along with a communications network that could transmit the 

relevant information to a centralised headquarters for processing and then onwards to 

air defense units such as anti-aircraft guns or fighter planes. Faced with such heavy 

defensive systems, it became necessary for bombers to fly at altitudes that were 

frequendy too high for the crews to direcdy observe their targets. Consequendy,

322 One notable exception is Slava Gerovitch’s fascinating work, From Newspeak to Cyberspeak: A  History of 
Soviet Cybernetics
323 Andrew Wilson, The Bomb and the Computer (London: Barrie & Rockliff, 1968), p.49
324 Clayton J. Thomas & Robert S. Sheldon, “Air Force Operations Analysis” in Carl Harris & Saul Gass 
(eds.), Encyclopaedia of Operations Research and Management Science (Kluwer Academic Publishers, 2000) 
http://www.mors.org/history/af oa.pdf
325 Van Creveld, Technology and War; pp.191-194
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operations had to be planned days ahead, as well as coordinated and integrated with 

ground facilities, air support and a host o f anti-radar measures. “Thus strategic bombing 

not only found itself opposed by a technological system but itself assumed all the 

characteristics o f such a system.”326 War in this arena thefore took on the characteristics 

o f a battle o f attrition between two competing technological systems. This configuration 

naturally lent itself to being run by centralised statistically-based forms o f management.

Naval warfare, particularly anti-submarine activities, was the other field in which 

operations research obtained impressive results during World War II. When British anti­

submarine aircrafts reduced the depth at which depth charges were to detonate on the 

recommendation o f operations researchers, the increase in successful attacks was so 

great that the German military became convinced the British were using a new type o f 

explosive. OR was also able to reduce the loss rate o f naval convoys when analysts 

realised that larger convoys suffered lower percentage losses than small convoys.

The greater simplicity and homogeneity o f the aerial and marine environments certainly 

played a crucial factor in the success o f OR since warfare in those milieus was easier to 

model mathematically than land operations. More generally, modem war involved 

“more repetitive operations susceptible to analysis” in that “a men-plus-machines 

operation can be studied statistically, experimented with, analysed, and predicted by the 

use o f known scientific techniques just as a machine operation can be.”327 Scientists felt 

that they were ideally trained to grapple with the problems of modem war with their 

ability “to get down to the fundamentals o f a question — to seek out broad underlying 

principles through a mass o f sometimes conflicting and irrelevant data [...] with the 

result that they were often able to discredit what the military regarded as 

‘commonsense’ solutions.”328

After the war, operations research — the optimizing o f existing systems — soon morphed 

into systems analysis — the design of the most effective system for the accomplishment 

o f a defined objective — granting analysts planning powers. After 1945, procurement 

cycles increased in terms of the time necessary for the research and development, 

production, and deployment o f any new technology. Furthermore, closer cybernetic

326 Van Creveld, Technology and War, p.194
327 Clayton J. Thomas & Robert S. Sheldon, “Military Operations Research” in Harris & Gass (eds.), 
Encyclopaedia of Operations Research and Management Science h ttp ://www.mors.org/history/mor.pdf
328 Wilson, The Bomb and the Computer, p.43
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integration o f vehicles, projectiles, communications, radar, and electronic counter­

measures created weapon systems whose components could not be designed separately 

in order for integration into a functioning whole to be successful. This naturally 

empowered those analysts that proposed a scientific methodology according to which 

technological and budgetary decisions could be determined. Systems analysis was 

perfectly suited to this task since its microeconomic logic and optimisation routines 

enabled planners to determine the best allocation o f resources given a limited supply of 

resources. Reviewed through a range o f possible future security and military 

environments, alternative systems could be compared and judged in terms o f efficiency 

and cost.

This approach promoted a worldview of warfare which reduced it to a mathematical 

problem with a number o f variables that could be manipulated and a production model 

that could be scientifically managed along Taylorist ideals.329 RAND, the think-tank 

created by the U.S. Air Force, became the home of systems analysis, often to the 

detriment o f any other forms o f thinking about national security. As Kaplan puts it, “for 

an organisation dominated by mathematicians, systems analysis appeared to be the way 

to get the scientific — the right — answer. Projects that involved no systems analysis, such 

as most of the work produced by the social science division, were looked down upon, 

considered interesting in a speculative way at best.”330

Models grew to astonishing levels of complexity, fuelled by the desire to create an 

accurate simulation o f conflict, a scientific understanding of a quite literal war machine. 

The father o f systems analysis, RAND researcher Ed Paxson, was symptomatic o f this 

with the minutiae o f his obsession in planning for World War III:

His dream was to quantify every single factor o f a strategic bombing campaign — the cost,
weight, and payload of each bomber, its distance from the target, how it should fly in

329 Fortun and Schweber have drawn out the similarities between Taylorism’s ‘scientific management’ and 
operations research in their efforts to improve system efficiency, but also underlining that the central 
difference between them is that whereas the former used exclusively deterministic models in which “the 
effect o f a given action was assumed to result in a well-defined and well-determined effect” (in other 
words, along the lines of the clockwork model of science), OR dealt principally with “stochastic processes 
and with probabilistic models that explicidy recognised uncertainty as an intrinsic feature of the processes 
being modelled.” Here, OR rejoins cybernetics again in that the science of communications and control 
sought to grapple with problems of a stochastic nature, such as the future positions of an enemy airplane 
that an anti-aircraft system was trying to track.
M. Fortun & SS. Schweber, “Scientists and the Legacy o f World War II: The Case of Operations 
Research (OR)”, Social Studies of Science, Vol. 23, 1993, p.624
330 Fred Kaplan, The Wizards of Armageddon (New York: Simon & Schuster, 1984), p.87
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formation with other bombers and their fighting escorts, their exact routing patterns, the 
refueling procedures, the rate o f attrition, the probability that something might go wrong in 
each step along the way, the weight and inaccuracy of the bomb, the vulnerability of the 
target, the bomb’s ‘kill probability,’ the routing of the planes back to their bases, the fuel 
consumed, and all extraneous phenomena such as the weather — and put them all into a single 
mathematic equation.™

Planning for the use o f nuclear weapons in a bombing campaign was a particularly 

urgent task during the Cold War and required continuous reviewing since the 

technology and availability of bombs and missiles were subject to rapid change. The 

explosive power o f individual devices — first triggered by nuclear fission in atomic 

bombs, then nuclear fusion for hydrogen bombs — escalated vertigineously with 1952 

witnessing the American test o f a 10.4 megaton bomb, nearly 700 times more powerful 

than the bomb dropped on Hiroshima and superior to the combined total explosive 

ordnance employed in the two world wars.332 Launching systems gained in range and 

accuracy; with the evolution from the medium-range bomber B-29 in 1945 to the 

intercontinental ballistic missile (ICBM) in 1957, full-blown nuclear war could be 

initiatied within a few hours o f the executive decision. Further shortened by the 

unavoidable delay in the detection o f such an attack from either o f the Cold War 

protagonists, this window might be the only one available to policy-makers in which to 

respond in kind before being ravaged.

There was to be no rehearsal or practice run for nuclear war, and perhaps no second 

chance. Consequently, a h o t’ World War III had to be planned for by being analysed, 

quantified, systematised, and simulated. Systems analysis, game theory and the whole 

range of available mathematical and statistical instruments were the only means to 

rationalise armageddon and “think the unthinkable.”333 The expected levels o f casualties 

and destruction o f a full-blown nuclear war were such that they threatened to render 

meaningless any notion o f strategy as the rational use o f force for political aims, in 

accordance with Clauswitz’s dictum. Perhaps even more terrifyingly, analysts believed 

that it might become rational for any one o f the adversaries to initiate nuclear war if it 

either believed that an attack against it was imminent or that it might be possible to 

survive retaliation after a first strike.

331 Kaplan, The Wizards ofA.rmageddon, p.87
332 In a game of one-upmanship typical of the Cold War, the Soyiet Union detonated a completely 
impractical bomb of 50 megatons baptised Tsar Bomba (the ‘Emperor Bomb’) in 1961. This remains the 
most powerful nuclear device ever detonated, even though the same bomb design could have been used 
for a 100 megaton explosion.
333 Thinking about the Unthinkable was the title of notorious nuclear strategist Herman Kahn’s second book 
that followed On Thermonuclear War m  1962.
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Faced with such a chilling prospect, defense intellectuals saw it as their duty to salvage 

strategic thinking and bring the nuclear face-off under rational and scientific 

management, viewing it as the only means by which to prevent or limit nuclear war. The 

priority o f the analysts therefore became to preserve the “delicate balance o f terror”334 

over and above any notion o f winning the face-off, to ensure that the ‘cold war system’ 

could return to homeostatic equilibrium and ward off the possibility o f it exceeding the 

bounds beyond which it would self-destruct in an apocalyptic spasm dubbed “wargasm” 

by the nuclear strategist Herman Kahn. Initially, the focus o f systems analysts was to 

ensure that the United States could incur a Soviet first strike and still retain enough 

nuclear weapons to ravage the Soviet Union under a policy o f ‘massive retaliation’; thus, 

it would never be rational to initiate a first strike.335 On the recommendation o f senior 

analysts, reinforced missile silos and airbases were constructed and a system whereby 

fleets o f bombers carrying nuclear payloads were permanendy in flight and others were 

ready to launch at short notice was established. Subsequently, some defence intellectuals 

such as Kahn sought to chart a path between the either/or o f complete restraint and 

full-blown armageddon by conceiving o f a rationalised limited use o f nuclear weapons. 

Under such a scheme, a graduated use o f nuclear weapons was imagined according to 

which a form of tit-for-tat bargaining with the enemy could proceed and avert automatic 

escalation to complete annihilation.

In the absence o f any battlefield experience o f nuclear weapons, systematic 

mathematical calculation o f the theoretical damage they would inflict on urban areas and 

troops was the only means by which to assess offensive and defensive requirements. 

Consequently, nuclear payloads, delivery systems, military and civilian defensive 

measures along with the strategies and tactics within which these would be inserted were

334 Albert Wohlstetter, “The Delicate Balance of Terror” (1958) 
http://www.rand.org/publications/classics/wohlstetter/P1472/P1472.html
335 Kubrick’s film Dr. Strangelove or How I  Learned to Stop Worrying and Love the Bomb pushed the logic of 
mutually assured destruction (MAD) to its absurd conclusion with the Doomsday Machine. Actually first 
imagined by Hermann Kahn, the device is constituted of a computer hooked up to a huge stock of 
thermonuclear bombs that will be automatically detonated and shroud the earth in radiation upon 
detection of a nuclear attack by the adversary. In taking the human out of the loop, deterrence could be 
made more effective since the adversary could not be tempted to gamble on a failure of nerve. As the 
eponymous D r Strangelove puts it: “deterrence is the art of producing in the mind of the enemy... the fear 
to attack. And so, because of the automated and irrevocable decision making process which rules out 
human meddling, the doomsday machine is terrifying. It's simple to understand. And completely credible, 
and convincing.”
Stanley Kubrick (director), Dr. Strangebve or How I  Learned to Stop Worrying and Love the Bomb (Columbia 
Pictures, 1964)
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also given the system analysis treatment. N or was systems analysis limited to nuclear 

aspects o f warfare, the entire spectrum of conventional military operations were subject 

to its scrutiny. As RAND’s first vice-president Alan Henderson declared in 1949, 

“systems analysis seeks to cover the full range o f possible future weapons characteristics 

and simultaneously analyse each set o f possible characteristics in all possible tactics and 

strategies o f employment.”336

However, while the consideration o f the relative merits of two bombers with ten 

variables as possible during World War II yielded already over 1,000 combinations, 

raising the number of systems being considered by only four resulted in over a million 

combinations for evaluation.337 Furthermore, the rapidly evolving characteristics o f the 

weapons required a constant revision of their potential and impact on existing tactical 

and strategic war plans. This exponential increase in possible permutations made this 

task perfecdy suited to, and only achievable by, the computer. Thanks to its formidable 

processing power — that is its ability to conduct logical tasks at great speed — the 

computer allowed for the creation o f complex models with multiple variables, providing 

a rapid calculation o f any changes in their values.

The same modelling techniques were also employed for a vast range o f wargames which 

simulated an array of operations from the tactical to the operational to the strategic, 

from individual battalions to anti-aircraft defenses to global geopolitical exercises. While 

wargaming had long been practiced — the Germans had been keen enthusiasts o f 

Kriegsspiel from the nineteenth century onwards — the new generation o f wargames and 

simulations were an extension o f OR and SA since they relied oh the same methodology 

for their models. COW, one o f the earliest games played at RAND in the early 1950s, 

involved 20 states interacting through a mathematical modelling of international 

relations. The Army’s STAG Directory listing deemed that “despite grossly unrealistic 

features, it demonstrated the possibility, in principle, of applying scientific modeling 

methodology to a field as vague as the political arena.”338

Ghamari-Tabrizi points to the manner in which these wargames constituted their own 

closed worlds:

336 Ghamari-Tabrizi, The Worlds of Herman Kahn, p.138
337 I.B. Holley Jr., “The Evolution of Operations Research and the Impact on the Military Establishment; 
The Air Force Experience” in Wright & Paszek (eds.), Science, Technology and Warfare, p.101
338 Ghamari-Tabrizi, “U.S. Wargaming Grows Up”
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Following the thread of systems thinking, the gamers tried to shoehorn everything of 
importance into game design and play. Since a major war would batter every department of 
life, they were tempted to expand their model into infinitely complex details in the 
simulation of reality. But at the same time, they were determined to set upper and lower 
boundaries, limits and constraints o f every kind onto that surging impluse towards the 
Weltbild. In other words, in war game design, one makes out a wish to catch a richly 
furnished world, but one sealed off like a terrarium or a tableau in a paperweight. This snug 
litde world, in which the totality could be grasped all at once, encompasses the universe of 
miniature life.339

Computers became increasingly employed in wargames, first to calculate the outcome of 

any decision by the players by processing it through complex models of warfare and 

international relations (thereby avoiding lengthy calculations on paper and references to 

rulebooks), and secondly as an interface for the players. With the aim o f providing 

greater realism, the environments of decision-makers were often reproduced 

painstakedly. Mediated through computerised displays and interfaces, real wartime 

situations and simulations would be largely indistinguishable. Wargamers at RAND 

would eventually grant computers an even greater role by making them fully-fledged 

players. Faced with human players that would persistently refuse to cross the nuclear 

threshold in simulated excercies, the simulationists developed artificial intelligences that 

could play the role o f the Soviet Union or United States, creating a variety o f iterations 

characterised by different personalities and willingnesses to resort to force.340 Computers 

were effectively the ideal wargamers: cold, logical, purely instrumental and devoid o f the 

messy cultural, social and historical attributes that plagued human players and could not 

be mathematically modelled. Fully computerised wargames allowed for the rapid testing 

o f an entire range of weapon system characteristics, logistics, tactics, and strategies for 

the purpose o f identifying the optimal combination.341

But the use o f wargames was not restricted to testing models; they could also provide 

their own facts and statistics for interpretation and inclusion in the models. As one 

wargamer observed: “as we recede from such sources o f empirical data as World War II 

and Korea, an ability to generate synthetic battlefield facts becomes increasingly

339 Ghamari-Tabrizi, The Worlds of Herman Kahn, p. 166
340 DeLanda, War in the Age of Intelligent Machines, p. 103
341 In the 1983 film Wargames, the U.S. military entrusts the launching of nuclear weapons to a computer 
called WOPR (War Operations Plan and Response) in a bid to eliminate the potential for human error 
and failure of nerve. A teenage hacker, convinced he is playing the latest computer game, inadvertendy 
triggers a countdown to thermonuclear war. At the climax of the film, the hero succeeds in convincing the 
computer to play out all the simulated scenarios and strategies for a full-blown nuclear exchange with the 
Soviet Union, resulting in the artificial intelligence’s realisation that these all lead to mutual annihilation 
and that therefore the only manner to win this particular ‘game’ is not to play.
John Badham (director), Wargames (MGM, 1983)
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important.”342 These synthetic facts drawn from the experiences of simulated conflict 

could then be fed back into further models o f war — simulation begetting simulation in a 

hyperreal feedback loop increasingly removed from situated experience o f combat in the 

‘real world’.

If  institutional resistance from the Air Force — RAND’s main sponsor — to studies that 

attempted to model warfare in its entirety forced the organisation into publicly 

downgrading the ambition in the scope o f their research projects, in practice, the 

systemic interelationship o f areas o f study and the commonly-held belief o f analysts in 

the superiority o f their methodology made such restrictions difficult to maintain. Alain 

Enthoven, Deputy Assistant Secretary for Systems Analysis under McNamara, once 

pointed out to a General that “I have fought as many nuclear wars as you have.” In fact, 

given his time at RAND modelling them and playing war games, Enthoven may well 

have believed that he had actually fought more nuclear wars, albeit simulated. Enthoven’s 

quip was symptomatic o f the attitude of RAND analysts towards the military brass, 

convinced as they were that “in order to approach nuclear war properly, one had to 

become a perfect amnesiac, stripped o f the intuitions, judgements, and habits cultivated 

over a lifetime of active duty.”343 Combat experience and traditional common wisdom 

o f the military were thus devalued in favour of the cool rational calculations o f the 

defence intellectual. In 1961, this latter vision appeared to have triumphed over the 

generals as Robert McNamara was made Secretary of Defense and proceeded to apply 

the paraphernalia o f systems analysis across the military more systematically than ever 

before.

Robert Strange McNamara had first risen to prominence during the Second World War, 

distinguishing himself as one o f the most brilliant analysts in the Statistical Control 

Office, where he conducted operations research on the Air Force operations using 

human computers and IBM counting machines. He was notably involved in the strategic 

bombing campaign o f Japan, recommending the switch to firebombing and lower 

altitude bombing which the notorious Air Force General Curtis LeMay (later head o f 

Strategic Air Command during the Cold War) adopted with devastating results for 

Japanese cities. After the war, he left the armed forces to join the Ford Corporation in

342 Ghamari-Tabrizi, The Worlds of Herman Kahn, p. 169
343 Ghamari-Tabrizi, The Worlds of Herman Kahn, p.48
Kahn echoed Enthoven’s sentiment when he asked officers who were critical o f his approach, “how 
many thermonuclear wars have you fought recendy?”
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1946, applying the same principles of scientific management with great success, before 

being offered the role o f Secretary o f Defense by President Kennedy. Surrounding 

himself with a team of ex-RAND analysts that shared his worldview, McNamara set out 

to extend these principles to all branches o f the military. A controversial figure, 

particularly unpopular with certain sections o f the military over which he asserted 

previously unseen levels o f civilian control, McNamara was once referred to as a 

‘“human IBM machine’ who cares more for computerised statistical logic than for 

human judgments.”344

McNamara instigated the Planning, Programming and Budgeting System (PPBS) in 

1962, perhaps his most lasting legacy, by institutionalising systems analysis in the • 

decision-making process o f military planning and procurement. With PPBS, cost-benefit 

and cost-effectiveness analysis were applied across all branches o f the military so that 

various military programs from different services could be evaluated, compared, and 

granted funding accordingly.345 Department o f Defense Comptroller Charles Hitch (ex- 

RAND) was responsible for the implementation o f PPBS, defining the system analysis 

approach that was being applied as:

economic analysis applied to the public sector. Economic analysis is concerned with the 
allocation of resources. Its maxim is: maximise the value of objectives achieved minus the 
value of resources used. In business this reduces itself to maximising profits. In Defence 
[...] we lack a common valuation for objectives and resources and therefore have to use 
one of two weaker maxims — maximise our objectives for given resources, or minimise our 
resources for given objectives.346

PPBS was subsequendy extended across the federal bureaucratic structure, in particular 

the social welfare agencies o f the Departments o f Health, Education and Welfare and 

Office o f Economic Opportunity. Hitch insisted that systems analysis acted merely as 

an instrument assisting decision-makers rather than being the decisive factor in 

determining spending plans. Gregory Palmer agrees that PPBS was often more o f a 

heuristic or ideal, but that “in its pristine form, PPBS was a closed system, rationally 

ordered to produce carefully defined outputs.”347 As such, critics claimed its influence 

was pervasive and dangerously misleading if  applied uncritically. I will now turn to some 

o f the criticisms directed towards operations research and systems analysis.

344 U.S. Department of Defense, “Biography of Robert S. McNamara” 
http://www.defenselink.mil/specials/secdef histories/bios/mcnamara.htm
345 Kaplan, The Wizards of Armageddon, p.254
346 Wilson, The Bomb and the Computer, p.49
347 Edwards, The Closed World, p.5
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Criticisms of Operations Research and Systems A.nalysis

In his Farewell Address to the people on January 17, 1961, President Eisenhower 

famously warned against “the acquisition o f unwarranted influence, whether sought or 

unsought, by the military-industrial complex.” Less often quoted are his words about 

the “danger that public policy could itself become the captive o f a scientific- 

technological elite.” 348 A military man, Eisenhower was most likely at least in part 

thinking o f the operations researchers and system analysts which rose to prominence 

during his presidency and were about to take control o f the Pentagon, equipped with 

instruments they believed could be used to tackle all social problems. “The military 

effect o f cybernetics and computers did more than bring about changes in 

administration, logistics, communications, intelligence and even operations,” van 

Creveld tells us, “they also helped a new set of people to take charge, people who 

thought about war — and hence planned, prepared, waged, and evaluated it — with the 

aid of fresh criteria and from a fresh point o f view.”349

Because o f the scientific and mathematical methodology upon which this new point of 

view relied, analysts systematically privileged the quantifiable aspects o f warfare:

With computers acting as the stimulus, the theory of war was assimilated into that of 
microeconomics [..] Instead of evaluating military operations by their product — that is, 
victory — calculations were cast in terms of input-output and cost effectiveness. Since 
intuition was replaced by calculation, and since the latter was to be carried out with the aid 
of computers, it was necessary that all the phenomena of war be reduced to quantitative 
form. Consequently everything that could be quantified was, while everything that could 
not be tended to be thrown onto the garbage heap.350

Under the impulse o f computer modelling and systems analysis, the understanding of 

war which emerged during the Cold War was therefore frequently biased towards those 

elements which could be quantified.

But even that which could be quantified could not necessarily be precisely measured or 

estimated and would frequently only be the product of more or less inspired guesswork. 

For Solly Zuckerman:

348 President Dwight Eisenhower, Farewell Address to the People, January 17,1961
349 Van Creveld, Technology and War, p.246
350 Van Creveld, Technology and War, p.246
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Operational analysis implies a kind of scientific natural history. It is a search for exact 
information as a foundation for extrapolation and prediction. It is not so much a science in 
the sense of a corpus of exact knowledge, as it is the attempted application of rigorous 
methods of scientific method and action to new and apparently unique situations. The less 
exact the information available for analysis, the less it is founded on experience, the more 
imprecise are its conclusions, however sophisticated and glamorous the mathematics with 
which the analysis is done.351

Thus, for all their scientific rigour, systems analysis and wargames relied heavily on 

intuitive and speculative guesses about numerous factors for which there was limited 

available information. As such, the outcome of systems analysis studies or war games 

was heavily dependent on the assumptions underpinning their models, some 

acknowledged by the analysts, others largely concealed or unquestioned.352 Driven by 

their desire for predictability, analysts constrained uncertainty by either setting the 

possible variations o f factors within clearly delineated numerical ranges and probability 

sets or by simply discounting all those elements that could not be treated in this 

bounded way. Princeton academic Klaus Knorr noted some of the uncertainties 

frequendy neglected by SA:

Costs may be uncertain, technology may be uncertain, the properties of military conflict 
situations may be uncertain, and the reactions and capabilites of the potential enemy 
nations are apt to be uncertain. The last uncertainty is of particular import; it is imperative 
that military choices be examined within a framework of interaction. An opponent’s 
responses to our choices may, after all, curtail ot altogether nullify the advantage we seek.
Nor is it enough to recognise the conflict aspects of the problem. The possibilities of tacit 
or formal co-operation may be equally significant.353

In fairness, senior system analysts recognised some of the limitations o f their studies 

and it would be erroneous to claim that policy was solely dictated by them. As Alain 

Enthoven himself put it, operations research and systems analysis “cannot be ‘objective’ 

in the sense o f being independent o f values [...] value judgments are an integral part o f 

the analysis: and it is the role o f the analyst to bring to light for the policymaker exactly 

how and where value judgments enter so that the latter can make his own value 

judgments in the light o f as much relevant information as possible.”334 Nevertheless, 

government policies increasingly required some form of scientific costing and analysis

351 Perry, “Commentary” in Wright & Paszek (eds.), Science, Technology and Warfare, p.l 17
352 Perhaps more so than any of his colleagues, Herman Kahn was particularly forthright about the 
speculative nature of much o f his work and how much of it relied on crucial assumptions that had little if 
any empirical foundation.. This frankness did not make Kahn’s work any less controversial, both pilloried 
and applauded for provocatively broaching the taboo subject of full-out nuclear war and envisaging a 
post-war world in On Thermonuclear War (1961).
353 Wilson, The Bomb and the Computer, p .l 14
354 Perry, “Commentary” in Wright & Paszek (eds.), Science, Technology and Warfare, p .l 17
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for their justification, even if other motives drove their promotion and adoption. The 

cybernetic model o f warfare erected by the system analysts was one that was frictionless, 

a perfectly oiled machine resting on elegant mathematical constructs. The leeway for 

intuition and guesstimates opened up these models to manipulation for political and 

institutional motives. As Fred Kaplan narrates, McNamara frequently used systems 

analysis models to placate the insatiable demands o f the air force for more nukes, 

insisting on ‘scientific’ justification for such expenditure. The services soon caught on to 

this new way o f determining procurement needs and created their own systems analysis 

departments that would produce reports that endorsed their own preferences. As senior 

RAND analyst Albert Wohlstetter bemoaned it, “the problem with the use o f numbers 

was that you’ve bequeathed them to people of bad faith and to people of good faith as 

well.”355

McNamara himself came to be disillusioned with the approach he had championed, 

recognising the impossibility o f making war into a fully rational and predictable 

instrument o f policy: “war is so complex, it’s beyond the ability o f the human mind to 

comprehend all the variables. Our judgement, our understanding, are not adequate.”356 

McNamara was to leam this lesson during his tenure as Secretary o f Defense between 

1961 and 1967, during which the United States got progressively sucked into a Vietnam 

War it could not win, despite (or perhaps because of) its army o f system analysts in the 

Pentagon. Hindsight is a precious commodity but Vice Admiral Rickover summed up 

what had long been military wisdom during a 1966 subcommittee hearing o f the House 

Committee on Appropriations in which he attacked the cost-effectiveness studies o f the 

Department o f Defense:

All wars and military development should have taught us that [...] a war, small or large, 
does not follow a prescribed ‘scenario’ laid out in advance. If we could predict the sequence 
o f events more accurately, we could probably avoid war in the first place.357

Vietnam and the Failure of Cybernetic Warfare

The limits of the centralising cybernetic model became clear in Vietnam, although its 

large role in the U.S. defeat has often been disregarded.358 James Gibson has perhaps

355 Gregg Herken, Counsels of War (New York, NY: Alfred A. Knopf, 1985), p.230
356 Errol Morris (director), Fog of War (Sony Pictures, 2004)
357 Wilson, The Bomb and the Computer, p .l 10
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done the most to document the dramatic failure o f ‘technowar’, “a production system 

that can be rationally managed and warfare as a kind of activity that can be scientifically 

determined by constructing computer models.”359 Since the development o f computers 

allowed for the gathering and processing o f vast amounts o f data, it was inferred that it 

would be possible to gain a far superior understanding and control o f military 

operations.

The principles o f OR and SA were systematically applied to provide analysis o f the 

conflict and guidance to the policymakers while cybernetic command-and-control 

technologies were widely deployed. Van Creveld concedes that because o f the ebb and 

flow of the conflict, the absence of a clear front, and the guerilla tactics of the Vietcong, 

it was extremely difficult to gain any insight into the conflict without statistical means.360 

Nevertheless, what developed in Vietnam can be appropriately described as an 

‘information pathology’, an obsession with statistical evaluations and directing the war 

from the top, perceived as the point of omniscience when in practice soldiers on the 

ground often understood far better than their superiors how badly the war was going. 

Beside masking the reality of the conflict, the informational demands o f this approach 

eventually overwhelmed the military infrastructure:

Extreme specialisation of personnel and units, coupled with adherence to the traditional 
triangular chain of command, meant that headquarters was piled upon headquarters and 
that coordination between them could only be achieved, if at all, by means of inordinate 
information flows. A tendency towards centralisation, the pooling of resources, and the 
running of the war by remote control — especially evident in the field of logistics and in the 
air war against North Vietnam — further augmented the demand for information. Though 
the signals network that the U.S. army established in South Vietnam was the most 
extensive, expensive and sophisticated in history, it proved in the end incapable of dealing 
with this “bottomless pit”, as General Abrams once put it.361

Gibson submits that technowar not only altered the conduct o f war but even the 

likelihood of the use of force: “by adopting microeconomics, game theory, systems

358 O f course, the reasons for American defeat in Vietnam are multi-faceted, and certainly cannot be 
reduced to the way in which military operations were pursued there. Furthermore, the military was not in 
any conventional sense of the word defeated by the Vietcong but the latter did succeed in convincing the 
American public and political class that the war could not be won either. While the war was therefore 
ultimately lost on the political battlefield, I would argue that it was a misplaced faith in the 
technoscientific approach to war which gave the war planners an illusory sense of what could be achieved 
through only military means and caused them to pay insufficient attention both their own political 
strategy and that of the North Vietnamese. Arguably, some of these mistakes were repeated in the Iraq 
war of 2003.
359 Gibson, The Perfect War, p. 156
360 Van Creveld, Command in War, p.253
361 Van Creveld, Command in War; p.258
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analysis, and other managerial techniques, the Kennedy asministration advanced 

‘limited’ war to greater specificity, making it seem much more controllable, manageable, 

and therefore desirable as foreign policy.”362 Henry Kissinger illustrated this very point 

and the dangerous hubris which resulted from it when he claimed in 1968 that “a 

scientific revolution has, for all practical purposes, removed technical limits from the 

exercise o f power in foreign policy.”363

The U.S.’s bombing campaign in Vietnam obeyed a gradation in the use o f force 

through which signals could be sent to the North Vietnamese. This amounted to a 

communicative theory o f war where the level of violence can be alternatively ratcheted 

up or alleviated according to the message to be sent. In this manner, the government 

wished to convince the N orth Vietnamese that they could not win, thereby forcing them 

to negotiate and steering them towards the desired behaviour. In Kissinger’s words once 

again, “in a limited war, the problem is to apply graduated amounts o f destruction for 

limited objectives and also to permit the necessary breathing spaces for political 

contacts.”364 This thinking emerged from attempts by defence intellectuals, frustrated by 

the paradoxical powerlessness of nuclear weapons so destructive they could not be used, 

to theorise and rationalise their limited use against the Soviet Union as bargaining chips 

in an eventual showdown. This strategy was ultimately abandoned because o f the 

impossibility to guarantee that nuclear war would not rapidly escalate into an apocalyptic 

war o f extermination but resurfaced in the context o f the Vietnam War.

By applying bargaining models based on game theory which assumed a common utility- 

maximising rationality and cost-benefit framework of analysis on all sides, strategists 

erected an understanding o f the enemy that was a mere reflection o f the their own 

worldview. This perception was further bolstered by the military and civilian leadership’s 

conception o f war as determined principally by the management o f complex industrial 

systems:

Limited war fought as a war of attrition means that only information about technological- 
production systems will count as valid knowledge about the enemy. For the military as well 
as civilian, the enemy becomes a mirror image of ourselves, only “less” so.365

362 Gibson, The Perfect War, p. 80
363 Henry Kissinger, “Central Issues of American Foreign Policy” in Henry Kissinger, Agenda for a Nation 
(Washington, D.C.: The Brookings Institution, 1968)
364 Gibson, The Perfect War, p.22
365 Gibson, The Perfect War, p.23
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Since military effectiveness could only be measured by the yardstick o f ‘technological- 

production systems/ the North Vietnamese were necessarily inferior and victory was the 

only conceivable outcome for the American war machine.

If  technowar’s closed self-referentiality was a major factor in bringing about its defeat in 

Vietnam, blinded as its proponents were to the successful asymmetric strategy deployed 

by the Vietcong, its principles could still prove formidably effective against the right 

opponent. In the Gulf War o f 1991, Saddam Hussein opposed the hierarchical system 

o f the U.S. army with his own inferior centralised and rigid system and was 

comprehensively defeated. Centralised command-and-control is suited to high-intensity 

wars of attrition in homogeneous environments such as was presented by Saddam’s 

attempt to fight a modem industrial war in the Iraqi deserts. However, when faced with 

low-intensity conflicts where a dispersed enemy merges into a complex environment 

(such as the Vietcong in the jungles o f Vietnam), the productivist logic o f technowar is 

susceptible to spectacular inefficiency and failure. Attempts to simplify the battlespace 

through the practice o f deforestation and the use of Agent Orange made little difference 

against an opponent that played to its strengths and understood its enemy far better 

than the Americans did. Witness North Vietnamese General Vo Nguyen Giap’s piercing 

observation:

The United States has a strategy based on arithmetic. They question the computers, add 
and subtract, extract square roots, and then go into action. But arithmetical strategy doesn’t 
work here. If it did, they would already have exterminated us with their airplanes.366

The American reliance on information technologies to direct the war brought its own 

problems. For one, whatever the improvements in information technologies, it is quite 

easy for the volumes o f information to escalate so fast that saturation and bottlenecks 

result, especially when command-and-control is highly centralised. Intelligence on 

Vietcong positions and movements frequently arrived too late to be actionable, delayed 

in an information-processing infrastructure unable to treat all the data it was fed. And 

this despite the creation o f an unprecedented telecommunications network in a field of 

operations, with electronic communications gear accounting for a third of all major 

items of equipment brought into the country and the first use o f satellite

366 Jeff Musrin, “Flesh and Blood: The Call for the Pilot in the Cockpit”, A ir  <& Space Power Journal - 
Chronicles Online Journal, July 2001 http: /  /  www.airpower.maxwell.af.mil/airchronicles/cc/mustin.html
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communications for military purposes in 1965.367 As Arquilla and Ronfeldt recognise, 

“informational overload and bottlenecking has long been a vulnerability o f centralised, 

hierarchical structures for command and control.”368

Central to this was the fact that the measure of information gathering was frequently 

one o f quantity over quality. The pressure on infantry units to produce detailed reports 

o f their operations and particularly to match their ‘production’ targets in terms of enemy 

casualties led to wildly inaccurate and overblown estimates that masked the extent to 

which the U.S. strategy was failing. Gibson points to a related problem in the 

intelligence field where operations were gauged primarily on data volumes:

Collection departments received most agency budgets and collection departments 
represented their progress in terms of how many ‘bits’ of information they collected, or 
how many hours o f radio messages were recorded. Since their work was so tangible and 
measurable, collection departments got the most. As one senior staff member of the 
National Security Council said, “95 percent o f the U.S. intelligence effort has been on 
collection, and only 5 percent on analysis and production [intepretation].”369

The paradox o f this informational approach to warfare is noted by van Creveld: 

“designed to produce accuracy and certainty, the pressure exercised at the top for more

and more quantitative information ended up by producing inaccuracy and

uncertainty.” 370 It had been widely assumed that the development of information- 

gathering and processing technologies would allow a far greater understanding and 

control o f military operations. In practice, the collection and production of information 

for its own sake created at best greater uncertainty and confusion and at worst a fictional 

account o f the conflict based on a misplaced sense o f omniscience and from which 

erroneous decisions would be made. As Pentagon systems analyst Alain Enthoven was 

himself to recognise, “you assume that there is an information system that will tell you 

what you want to know. But that just isn’t so. There are huge amounts of 

misinformation and wrong information.”371 Thus, far from eliminating the Clausewitzian 

‘fog o f war’, information-processing techno-social assemblages generate themselves “a

367 Van Creveld, Command in War, p.239
Van Creveld also tells us that there was one radio set for every 4.5 soldiers in Vietnam compared to one 
for every 38.6 soldiers during World War II
368 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.45
369 Gibson, The Perfect War, p.367
370 Van Creveld, Command in War, p.259
371 Herken, Counsels of War, p.220
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kind o f twilight, which, like fog or moonlight, often tends to makes things seem 

grotesque and larger than they really are.”372

Between 1967 and 1972, the Air Force ran Operation Igloo White at the cost o f nearly 

$1 billion a year. Through an array o f sensors designed to record sound, heat, vibrations, 

and even the smell of urine, feeding information to a control center in Thailand which 

sent on the resulting targeting information to patrolling jet aircraft (even the release o f 

bombs could be controlled remotely), this vast cybernetic mechanism was designed to 

disrupt the Ho Chi Minh Trail, a network o f roads and trails providing logistical support 

to the North Vietnamese. At the time, extravagant claims were made about the 

performance o f the system with the reported number o f destroyed trucks in 1970 

exceeding the total number o f truck believed to be in all o f North Vietnam.373 In reality, 

far fewer truck remains were ever identified, there were probably many false positives in 

target identification, and the N orth Vietnamese and their Laotian allies became adept at 

fooling the sensors. In spite o f all this, the official statistics still trumpeted a 90% 

success rate in destroying equipment travelling down the H o Chi Minh Trail, an 

assertion difficult to sustain given that the North Vietnamese conducted major tank and 

artillery operations in South Vietnam in 1972. Edwards incisively observes that 

“Operation Igloo White’s centralised, computerised, automated, power-at-a-distance 

method of ‘interdiction’ resembled a microcosmic version o f the whole U.S. approach 

to Vietnam.”374

It might be objected that specific mistakes were made in Vietnam and that subsequently 

the Pentagon and military addressed some of these operational and technological 

failings in future operations. Regular improvements in sensors and information 

processing and distributing technologies are also frequently touted as the panacea that 

can resolve past difficulties. Nevertheless, the inherent difficulty o f measuring quality o f 

information as opposed to its quantity, along with the natural tendency for subordinates 

to provide the data that their superiors want to see and according to which their careers

372 Clausewitz, On War; p.90
373 Paul N. Edwards, “Cyberpunks in Cyberspace: The Politics o f Subjectivity in the Computer Age” in 
Susan Leigh Star, ed., Cultures of Computing (Keele, UK: Sociological Review and Monograph Series, 1995), 
p p .69-84
http: /  /u Tww.si.umich.edu/~pne/cvberpunks.htm
374 Edwards, “Cyberpunks in Cyberspace”
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will be advanced, means that information-gathering always remains vulnerable to 

distortion, deception, and manipulation.

Lastly, an informational approach to war and a reliance on computers has the inevitable 

consequence that those elements which can be quantitatively measured are privileged 

over those that cannot. Intuition, courage, and willpower — attributes that have been 

considered central to war for centuries — become devalued. John Lewis Gaddis explicitly 

criticises a tendency in American strategic thought in postwar era “to equate the 

importance o f information with the ease of measuring it — an approach better suited to 

physics than to international relations.”375 The mindset thus produced is perhaps best 

summed up by McNamara’s response to a White House aide’s assertion that the 

Vietnam War was doomed to failure: “Where is your data? Give me something I can put 

in the computer. D on’t give me your poetry.”376

N ot only were the statistical indicators pointing to U.S. success in the Vietnam 

frequently erroneous and misleading, the models on which the war managers relied were 

equally faulty. Trapped in a mindset which treated the war as a purely technical problem 

to be solved through overwhelming application o f materiel according to a scientific 

methodology, these officials failed to grasp the sheer determination o f their opponents 

and the extent o f the success o f their political strategy. Colonel Harry Summers relates 

an anecdote whose absurdity aptly captures the disjuncture between the statistical 

assessment o f the war and its reality:

When the Nixon Administration took over in 1969 all the data on North Vietnam and the 
United States was fed into a Pentagon computer — populations, gross national product, 
manufacturing capability, number o f tanks, ships, and aircraft, size of the armed forces, and 
the like. The computer was then asked, ‘When will we win?’ It took only moments to give 
the answer: ‘You won in 1964I’377

Conclusion

Defeat in Vietnam exposed the shortcomings o f cybernetic warfare and revealed the 

inherent limitations o f any attempts to make war into an entirely controllable and

375 John Lewis Gaddis, Strategies of Containment: A  Critical Appraisal of Postwar American National Security Polity 
(Oxford: Oxford University Press, 1982), p.84
376 Edwards, The Closed World, pp. 127-128
377 Beatrice Heuser, Reading Clause wit^ (London: Pimlico, 2002), p. 170
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predictable activity. The cybernetic model o f warfare erected by the system analysts was 

one that was frictionless, a perfecdy oiled machine resting on elegant mathematical 

constructs. Rather than eternal attributes o f the battlefield, uncertainty and 

unpredictability became understood merely as a lack o f information which could be 

overcome through the deployment o f the proper information and communication 

technologies and elaboration o f appropriate models o f conflict.

The formidable technological impulse o f World War II, marked in particular by the 

development o f nuclear weaponry and information and communication technologies, 

empowered those individuals which mastered the language and methodology of the 

sciences that accompanied this technology. This was to the detriment o f established 

traditions o f military thought and practice o f warfare. Via an ‘“organised scientific 

discourse’ through multiple, but centralising relationships among high-bureaucratic 

positions, technobureaucratic or production logic in the structure of its propositions, 

and the conventional educated prose style,” cybernetic warfare excluded accounts o f the 

war which did not conform to the exigencies o f technoscientific discourse. For Gibson, 

this amounted to a neglect o f ‘warrior knowledge’ which he describes in terms of 

Foucault’s notion o f ‘subjected knowledge,’ 378 that is knowledge “disqualified as 

inadequate to their task or insufficiently elaborated: naive knowledges, located low down 

on the hierarchy, beneath the required level o f cognition or scientificity.”379

If  the debacle o f Vietnam provoked some serious soul-searching among American 

strategists and military men, it did not result in an immediate or widespread 

abandonment o f the worldview epitomised by cybernetic warfare or a significant 

revaluation o f other forms o f thought on war. Throughout the rest o f the Cold War and 

beyond, information technology has continued to be embraced as the panacea to the 

chaos and indeterminacy o f war. The Strategic Defense Initiative promised an 

invulnerable shield against nuclear attack through a combination o f computers and 

space weapons while revolutions in military affairs in the mould o f Westmoreland’s 

vision have been repeatedly heralded. However, the miniaturisation and diffusion of 

computers and telecommunication devices, accompanied by developments in the 

informational paradigm through the new scientific theories of chaos and complexity, has

378 Gibson, The Perfect War, p.467
379 Foucault, Power/Knowledge, p.82

157



led to a new understanding o f warfare revolving around the notion o f the network and 

which holds the promise of decisively breaking with cybernetic warfare.
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Chapter 7: A N ew  Informational Paradigm: Chaos Theory and
Complexity Science

The focus o f the original cyberneticists on control mechanisms as a means of 

overcoming disorder (or entropy) has in recent decades progressively given way to a 

consideration o f the distributed emergence o f ‘complexity.’ While information has 

remained the core concept o f this new approach, the new sciences o f chaos and 

complexity have reconceptualised disorder as a deterministic process and a necessary 

condition o f order as opposed to an unruliness to be warded off. As with cybernetics, 

chaos and complexity have constituted broad fields o f interdisciplinary enquiry that have 

left practically no area untouched and appear as part o f a broader cultural moment. This 

evolution is reflected in developments in military operations with a move away from 

computerised hierarchical centralisation towards decentralised self-synchronising 

networks, as we shall see in chapter 8.

For now, the present chapter will focus on presenting the conceptual framework o f the 

new scientific theories o f chaos and complexity (dubbed ‘chaoplexity’ by some 

commentators because o f their theoretical proximity and overlap380). Attention will be 

paid in particular to the manner in which they challenge many of the most fundamental 

assumptions about the possibilities for complete predictability and control o f systems as 

well as to the nature o f the processes underlying change and the very essence o f life. 

Central to this challenge are the non-linear dynamics and positive feedback processes 

underpinning ‘chaotic’ phenomena and the distributed networks around which the 

emergence and self-organisation o f complex systems occurs.

380 John Horgan, The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age (London: 
Abacus, 2002), pp.191-192



The Rediscovery of Non-Linearity: Chaos Theory and Positive Feedback

Early cybernetic thought mainly focused on how systems use information and control 

mechanisms to steer towards and maintain their goals while counteracting various 

disturbances. Drawn from a study o f engineering problems, the systems that were 

considered were viewed as closed and with overarching goals that were determined 

exogenously. Control hierarchies maintained a pre-designated behaviour through 

negative information feedback, with the explicit goal being homeostasis o f the system. 

Furthermore, early cybernetics was primarily preoccupied with linear phenomena since 

engineers traditionally strove to keep their systems linear, as it made them simpler to 

build and to predict. As we saw in the previous chapter, this approach dominated the 

technoscientific outlook o f the military for most o f the Cold War since the integration 

o f technological systems naturally predisposed planners to think in engineering terms.

However, cyberneticists and system theorists eventually began to broaden their field o f 

enquiry to question how systems reproduced themselves and even emerged in the first 

place. While the earlier approach had been suited to dealing with engineering problems 

and the practical issues o f machine design, it soon appeared limited for the 

consideration o f physical and biological phenomena. It was through their study o f 

biology that Humberto Maturana and Francisco Varela formulated the concept o f 

autopoeisis (‘self-creation’) in the early 1970s:

An autopoietdc machine is a machine organized (defined as a unity) as a network of 
processes of production (transformation and destruction) o f components, which: (i) 
through their interactions and transformations continuously regenerate and realize the 
network of processes (relations) that produced them; and (ii) constitute it (the machine) as 
a concrete unity in space in which they (the components) exist by specifying the topological 
domain of its realization as such a network.381

As in the ‘machines’ of first wave cybernetics, these were defined by sets o f relations 

between parts but here these relations not only accounted for their operation but also 

for their continual reproduction — “the living organisation is a circular organisation 

which secures the production or maintenance o f the components that specify it in such 

a manner that the product o f their functioning is the very same organisation that

381 Humberto Maturana & Francisco Varela, “Autopoiesis and Cognition: the Realization of the Living” in 
Robert S. Cohen & Marx W. Wartofsky (eds.), Boston Studies in the Philosophy of Science 42 (Dordecht: D. 
Reidel Publishing Co, 1980), p.78
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produces them.” 38" The living organism is thus primarily conceived o f as a self- 

perpetuating process by which its constitutive components and its pattern of 

organisation mutually sustain and reproduce one other in a closed causal loop.

Along with self-production, interest in the notion o f self-organisation grew in the 1970s 

in order to explain the dynamic emergence o f systems and here the departure from early 

cybernetics is particularly significant.383 The inquiry into self-organisation led to an 

exploration of the phenomenon of positive information feedback, which had previously 

been essentially seen as a disruptive process since it took systems away from their 

desired equilibrium. In theories o f self-organisation, positive feedback accounts for the 

emergence o f complexity in systems in which outputs feed back into them as inputs, 

allowing for runaway processes of change. The study o f non-linear relationships in 

which outputs are not proportional to inputs allowed for the formulation of exponential 

processes o f change central to the scientific theories o f chaos and complexity. “While 

negative feedback is the essential condition for stability, positive feedbacks are 

responsible for growth, self-organisation, and the amplification o f weak signals.”384

Ilya Prigogine related positive feedback to self-organisation in his Nobel Prize winning 

work on dissipative structures:

The initial step in the development of self-organizing systems, in Prigogine's analysis, 
occurs when energy flowing into a system increases and generates chaotic, or random, 
behaviour. Such behaviour arises through ‘positive feedback’, in which an initial change in 
the value of any parameter or value of the system results in an amplification of change 
elsewhere in the system. As a result, the system's components grow increasingly random 
and chaotic, and threaten to destroy the system altogether. If certain conditions are present, 
however, the system undergoes a radical transformation; at some point, the energy is 
channelled into new forms of behaviour, and the elements of the system interact in a 
uniform way, and what had been, or might have become, uncontrolled random behaviour 
is now channelled into highly structured interactions.385

382 Humberto Mathurana quoted in Hayles, How We Became Posthuman, p. 138
383 It would be inaccurate to say that the notion of self-organisation was absent from early cybernetics 
since scientists like Ross Ashby and Heinz von Foerster developed the concept in-their respective studies 
of the nervous system and biological systems. However, as Capra points out, the difference with latter 
understandings of self-organisation is that these allowed for the creation of new structures and new 
modes of behaviour, in contrast with the models of the early cyberneticists. “For Ashby all possible 
structural changes take place within a given Variety pool’ o f structures, and the survival chances of the 
system depend on the richness, or ‘requisite variety’ of that pool. There is no creativity, no development, 
no evolution.” Capra, The Web of Life, p.85
384 Heylighen & Joslyn, “Cybernetics and Second-Order Cybernetics” 
http://pespm cl .vub.ac.be/Papers/Cybernetics-EPST.pdf p.12
385 R A. Jenner, “Dissipative Enterprises, Chaos, and the Principles of Lean Organizations”, Omega: The 
InternationalJournal of Management Science, Vol. 26, No. 4, December, 1998
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The study o f positive feedback systems and non-linear functions in a variety o f fields 

encompassing meteorology, fluid dynamics, chemistry, and population biology led to the 

emergence o f a new interdisciplinary scientific corpus: chaos theory. The common 

thread to all these studies was the use o f mathematics to model physical systems and 

explore the behaviour and patterns o f non-linear functions. Mechanistic science had 

focused its attention on linear phenomena since the mathematical functions by which 

they could be expressed were easy to understand and solve. In contrast, non-linear 

equations have very complex behaviours, can have multiple solutions for any given 

value, and are largely impervious to analytical techniques (non-additivity means these 

equations cannot be broken up into smaller parts that are individually solved before 

being recombined, as is possible with their linear counterparts). While the privileging o f 

linear equations by scientists was essentially due to their greater ease o f manipulation 

and study, this methodological constraint came to be interpreted as reflecting the nature 

o f reality. As mathematician Ian Stewart has observed, “classical mathematics 

concentrated on linear equations for a sound pragmatic reason: it could not solve 

anything else [...] so docile are linear equations that the classical mathematicians were 

willing to compromise their physics to get them.”386 In other words, scientists came to 

view phenomena as essentially linear with non-linearity an aberration or deviation from 

the linear norm.

In fact, it is now held that the reverse is true: both mathematically and physically, linear 

equations are the exception, not the norm.387 Nature is fundamentally non-linear. While 

the behaviour o f all linear systems is consistent in the sense that they tend towards a 

fixed equilibrium, non-linear systems display a broad range o f behaviours dependent on 

their mathematical properties. Some tend towards fixed equilibrium in the same way as 

linear systems, others may enter a pattern o f regular oscillation between different points. 

Yet others revealed an unexpected behaviour that became the foundation o f chaos 

theory. Indeed, certain non-linear functions produce incredibly intricate patterns and 

non-periodic behaviour which seem completely random and disorderly. The great 

discovery o f chaos was that “simple deterministic models could produce what looked 

like random behaviour. The behaviour had an exquisite fine structure, yet any piece

386 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability of War”
387 David Campbell, Jim Crutchfield, Doyne Farmer, & Erica Jen, “Experimental Mathematics: The Role 
of Computation in Nonlinear Studies”, Communications of A C M  28(4), 1985, pp.374-384 
http://www.santafe.edu/~jdf/papers/experimentalmathematics.pdf
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seemed indistinguishable from noise.”388 Thus, it became possible to identify a structure 

and order to phenomena which previously appeared to have none. In this sense, chaos 

theory is a misnomer; the phenomena it models are not random, probabilistic, or truly 

chaotic since they obey deterministic laws. Disorder finds in chaos theory its own 

hidden order.

It was the computer that provided the tool for the exploration o f non-linear functions, 

its processing power allowing for the iteration o f calculations that uncovered the hidden 

patterns produced by these functions/systems. These patterns could be represented 

graphically as with the case o f Benoit Mandelbrot’s work on fractals, those infinitely 

detailed geometric objects produced by the repeated application of simple mathematical 

rules (see Figure 10). Fractals usually display the property o f self-similarity across scales, 

defined as a geometrical resemblance or physical correspondence between the parts of a 

system and the system as a whole. Indeed, similar or identical patterns can be observed 

at different levels o f magnification o f a given structure — increased detail never results in 

a decrease in the complexity o f the patterns (see Figure 11). This phenomenon is a result 

o f the iteration o f simple rules governing the constitution o f complex forms. Far from 

being limited to mathematical oddities, Mandelbrot’s work uncovered fractal structures 

in fern leaves, clouds, bronchia, rock formations, and even stock market prices.389 In his 

book The Fractal Geometry of Nature, Mandelbrot insisted on both the novelty of his work 

relative to traditional geometry and its replication in the observable world: “many 

patterns in Nature are so irregular and fragmented, that, compared with Euclid [...] 

Nature exhibits not only a higher degree but an altogether different level of 

complexity.”390

388 Gleick, Chaos, p. 79
389 For the latter, see Benoit B. Mandelbrot & Richard L Hudson, The (Mis)Behaviour of Markets: A  Fractal 
View of Risk, Ruin and Reward (London: Profile Books, 2004)
390 Quoted in Hayles, Chaos Bound, p. 164

163



Figure 10: M andelbrot set fractal391

391 http://upload.wikim edia.O rg/w ikipedk/com m ons/2/21/M andel zoom 00 mandelbrot set.jpg
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Figure 11: Self-similarity in a M andelbrot set fractal392

Such discoveries constituted unexpected scientific developments that emerged from the 

use of computers. It had been originally thought that computers might provide the 

processing power to perfecdy reveal the past and predict the future of physical systems, 

given a full understanding of the natural laws governing them. Recall Laplace’s 

invocation of a theoretical intelligence which could “comprehend all the forces by which 

nature is animated” and for which consequendy “nothing would be uncertain and the 

future as the past, would be present to its eyes.” 393 But such a claim relied on a 

Newtonian conception of the world which was to be terminally undermined by chaos 

theory. Indeed, the presumption of classical physics on which the Laplacian dream 

rested was that “very small influences can be neglected [...] there is a convergence in the 

way things work, and arbitrarily small influences don’t blow up to have arbitrarily large

392 h ttp ://asti~onomv.swin.edu.au/^pbourke/ fractals/selfsimilar/
393 Laplace, “Theorie Analytique des Probabilites”
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effects.”394 W hat the study o f non-linear equations revealed was their sensitive dependence 

on initial conditions, that is the non-proportionality o f cause to effect or input to output. In 

other words, minute variations in the initial conditions of a dynamical system can 

produce large variations in the long term behaviour o f the system. The popular 

metaphor employed to illustrate this phenomenon is the “butterfly effect’, the notion 

that a butterfly flapping its wings in Tokyo could cause a tornado in California. The 

implications o f sensitivity to initial conditions is that any finite model o f such a dynamic 

system is necessarily limited in its predictive capacity as there will always be unavoidable 

imprecision in our measurement o f initial conditions (due to both limitations in 

measurement instruments and the practical need to round off figures at some decimal 

point). Beyond a certain number, o f iterations, precise predictions become virtually 

useless. For example, this characteristic o f non-linear systems is evoked to explain the 

persistent inability o f meteorology to make any reliable forecasts beyond about a week.

It should be noted that the late-nineteenth century mathematician Henri Poincare had 

anticipated much of chaos theory by distinguishing chance as statistical randomness 

from chance as a deterministic process that could not be predicted due to sensitivity to 

initial conditions:

A very slight cause, which escapes us, determines a considerable effect which we can not
help seeing, and then we say this effect is due to chance. If we could know exacdy the laws
of nature and the situation of the universe at the initial instant, we should be able to predict
exactly the situation of this same universe at a subsequent instant. But even when the
natural laws should have no further secret for us, we could know the initial situation only
approximately. If that permits us to foresee the subsequent situation with the same degree
of approximation, this is all we require, [and] we say the phenomenon has been predicted,
that is ruled by laws. But this is not always the case; it may happen that slight differences in
the initial conditions produce very great differences in the final phenomenon; a slight error
in the former would make an enormous error in the latter. Prediction becomes impossible

395and we have the fortuitous phenomenon.

O f course, Poincare did not have at hand the computational instruments to demonstrate 

his powerful intuition and this remarkable insight could not seriously challenge the 

dominant linear paradigm of the physical sciences and remained neglected for nearly 

another century.

Although chaos theory has imposed a limitation on the long-term predictability o f non­

linear systems, it has simultaneously revealed an inherent order in phenomena that had

394 Gleick, Chaos, p .l5
395 Beyerchen, Clausewitz, “Nonlinearity and the Unpredictability o f War”
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previously appeared completely disordered, thereby allowing for a short-term 

predictability where there was none before. Furthermore, if precise long-term 

predictability as classically understood is now found to be impossible, a qualitative 

understanding of the behaviour of a system may in certain circumstances replace a now 

foreclosed quantitative one. The exact future state of a non-linear system may be 

impossible to predict but it is often possible to identify and model its overall behaviour, 

notably through the identification of its attractor.

An attractor is a set behaviour towards which a dynamical system evolves to in the long 

term. Such attractors come in different shapes, depending on the type of system and its 

behaviour within its phase space. In the fields of mathematics and physics, the phase 

space is the space in which all possible states of a system are represented, with each 

possible state of the system corresponding to one unique point in the phase space. Each 

parameter (or degree of freedom) of a given system constitutes an axis in a 

multidimensional space; thus, each possible state of the system can be represented by 

one point and one point only. A succession of plotted points allows for the 

representation of the system’s behaviour over time in a phase space diagram. In the case 

of a simple mechanical system like a swinging pendulum, the phase space can be 

constituted by two axes, one for position, the other for momentum. With friction, the 

pendulum will sway from side to side, progressively slowing down until it reaches its 

resting position (momentum and position 0). The attractor in this case is a fixed point to 

which the system converges to in what manifests itself as a spiral in the phase space 

diagram (see Figure 12).

0
position

Figure 12: Phase space diagram of a pendulum running down396

www.physicscentral .com /action /  images /  0 4 /
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A system that settles into a periodic and cyclical behaviour is said to have a limit cycle 

attractor (physical examples include clock pendulums and heartbeats at rest). In the case 

of a clock pendulum, the system would be represented in a phase space diagram as a 

circle. However, the type of attractor of real interest to chaos theorists is that known as 

strange attractors.

The Lorenz attractor was the first strange attractor to be discovered as part of 

meteorologist Edward Lorenz’s attempts in the early sixties to model the weather using 

non-linear equations within a computer simulation. A strange attractor represents a 

system whose long-term behaviour is non-periodic (i.e. whose trajectories never merge) 

and is sensitive to initial conditions. And yet, as in the case of the Lorenz attractor, the 

phase space diagram displays an intricate but clearly recognisable pattern which sheds 

light on the system’s long-term behaviour (see Figure 13).

Figure 13: Phase space diagram of a Lorenz attractor

As a system organised around a strange attractor cannot pass twice by the same point in 

its phase space (if it did so it would mean that the system had entered a periodic cycle), 

the structure of a strange attractor is therefore fractal, displaying the same infinite level 

of complexity at all scales as Mandelbrot’s geometrical constructs.

Prediction thus shifts from quantitative analysis (calculating where a point will be at a 

particular moment) to qualitative analysis (understanding the general behaviour of the
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system). N ot only is prediction of chaotic systems therefore not completely impossible, 

but even a certain degree of control appears within reach. By identifying unstable

periodic orbits (general areas of the phase space which the system returns to — by

definition, it cannot return to a same point), some systems can be nudged back into those 

orbits.397 While chaos control is still largely at an experimental stage, it demonstrates that 

chaos theory does not stand against or outside the technoscientific project o f control 

but rather recasts it so that order is not so much imposed on chaos as made to emerge 

from disorder by utilising the latter’s properties. The next stage in the development of 

the nonlinear sciences would suggest further such ways to mould reality since it would 

seek to uncover the processes behind the very spontaneity and malleability o f life.

Complexity and Networks of Life at the Edge-of-Chaos

Despite the sizeable contributions o f chaos theory, there was a sense among certain 

scientists that the theory didn’t go far enough. It explained how certain simple rules of 

behaviour could give rise to astonishingly complicated dynamics but it did not 

sufficiently address the apparently inexorable growth o f order and structure in the 

universe, particularly in the context o f biological evolution and social organisation. 

Further research in this area gave birth to another interdisciplinary science known as 

complexity whose focus was on the behaviour o f complex systems — systems composed 

o f many parts which are coupled in a non-linear fashion. The notion of network is 

essential here to describe the patterns o f interaction which are constituted by the 

interplay of entities in a complex system:

The first and most obvious property of any network is its non-linearity — it goes in all
directions. Thus the relationships in a network pattern are non-linear relationships. In
particular, an influence, or message, may travel along a cyclical path, which may become a 
feedback loop. The concept of feedback is intimately connected with the network 
pattern.398

A central related concept is that o f emergence, the process by which complex structures 

form on the basis o f simple rules. As scientist Stephen Wolfram put it:

397 One of the earliest papers on chaos control was Edward Ott, Celso Grebogi, & James A. Yorke, 
“Controlling Chaos”, Physical Review Letters 64, 1990, pp.1196—1199. Research is ongoing into chaos 
control in optical and electronic systems as well as cardiac dynamics.
398 Capra, The Web of Life, p.82
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Whenever you look at very complicated systems in physics or in biology, you generally find 
that the basic components and the basic laws are quite simple; the complexity arises 
because you have a great many of these simple components interacting simultaneously. The 
complexity is actually in the organisation — the myriad possible ways that the components 
can interact.399

This view is in opposition to reductionist approaches such as mechanism which view 

properties o f the system as the mere aggregation o f those o f their constituent parts. 

Emergent properties, however, are properties o f the whole that cannot be deduced from 

the properties of the individual parts making it up.

Complexity turns out to an exceedingly difficult term to define in a precise and definite 

manner and disagreements abound on the criteria which should determine whether an 

object o f study should be considered complex or not. The nebulous characteristic o f the 

term reflects in part the fact that it covers a broad field o f enquiry into non-linear 

dynamic systems rather than denoting a clearly defined scientific theory. For Murray 

Gell-Mann, the appropriateness of the word refers back to its etymology — plexus means 

braided or entwined, from which is derived complexus, meaning braided together.400 

Hence complexity suggests the “intricate intertwining or interconnectivity o f elements 

within a system, and between a system and its environment.”401

Complex adaptive systems constitute a special case o f complex systems that are capable 

o f changing and learning from experience. Complexity theorist John Holland defines a 

complex adaptive system as a dynamic network o f many agents acting in parallel, 

constantly acting and reacting to what the other agents are doing. The control o f a 

complex adaptive system tends to be highly dispersed and decentralized; any coherent 

behaviour in the system arises from competition and cooperation among the agents 

themselves. It is the accumulation of all the individual decisions taken by the multitude 

o f agents which produces the overall behaviour of the system, which can thus be said to
i 402be emergent.

Complex adaptive systems include living organisms, insect colonies, bird flocks, 

ecosystems, businesses, stock markets, and other forms o f social and cultural

399 Waldrop, Complexity, p.86
400 Murray Gell-Mann, “Let's Call It Plectics”, Complexity Journal, Vol. 1 / No. 5 (1995/96) 
http: /  /  www.santafe.edu/~mgm/plectics.pdf
401 James Moffat, Complexity and Network-Centric Warfare (CCRP Publications, 2003), p.68 
http://www.dodccrp.org/publications/pdf/Moffat Complexity.pdf
402 Waldrop, Complexity, pp. 145-146
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organisation with the constituent agents being cells, species, individuals, firms, or 

nations. According to Holland, there are common characteristics which characterise all 

these systems and that complexity science can reveal, thereby offering the promise of 

resolving many of the world’s problems:

Many of our most troubling long-range problems — trade imbalances, sustainability, AIDS, 
genetic defects, mental health, computer viruses — centre on certain systems of 
extraordinary complexity. The systems that host these problems — economies, ecologies, 
immune systems, embryos, nervous systems, computer networks — appear to be as diverse 
as the problems. Despite appearances, however, the systems do share significant 
characteristics, so much so that we group them under a single classification at the Santa Fe 
Institute, calling them complex adaptive systems (CAS). This is more than terminology. It 
signals out intuition that there are general principles that govern all CAS behaviour, 
principles that point to the way of solving the attendant problems. Much of our work is 
aimed at turning this intuition into fact.403

We see here that the explanatory scope attributed to complexity theory by its 

proponents is no less ambitious than that o f the original cyberneticists.

The exploration o f non-linear functions with computers also revealed the phenomenon 

o f bifurcation in the study of dynamical systems. The discovery was made that a small 

change made to the parameter or control values o f a system could cause a sudden 

qualitative change in the system’s long-run dynamical behaviour. The notion of 

bifurcation was to become key in explaining the transformation and evolution of 

systems — “systems reach points o f bifurcation when their behaviour and future 

pathways become unpredictable and new higher order, more differentiated, structures 

may emerge.”404 For certain control values, the system will respond to all perturbations 

by settling back down to an established stable state. When the control values are such 

that the system reaches its first point o f bifurcation, the system will develop two 

alternative stable states either o f which it will settle in, depending on the perturbations 

applied to it. As the parameters values continue to change, each stable will further 

bifurcate, multiplying the number o f possible states. Beyond certain parameter values, 

the system will shift to chaotic behaviour, following a strange attractor. It is just before 

the onset o f this behaviour, where bifurcations are greatest but stable states still exist, 

that system adaptability is maximised, at the ‘edge o f chaos’ (see Figure 14: Bifurcation 

diagram of a non-linear system).

403 Horgan, The End of Science, pp. 195-196
404 John Urry, Global Complexity (Cambridge: Polity, 2003), p.28
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Figure 14: Bifurcation diagram of a non-linear system405

Complexity thus redefines ‘life’ as a balance between forces of order and forces of 

disorder, between fixed rigid structures and chaotic motion. As Waldrop puts it:

Right in between the two extremes [of order and chaos], at a kind of abstract phase 
transition called ‘the edge of chaos’, you also find complexity, a class of behaviours in which 
the components of the system never quite lock into place, yet never quite dissolve into 
turbulence, either. These are the systems that are both stable enough to store information, 
and yet evanescent enough to transmit it. These are the systems that can be organised to 
perform complex computations, to react to the world, to be spontaneous, adaptive, and 
alive.406

405 Linda P. Beckerman, “The Non-Linear Dynamics of War”, Science Applications International 
Corporation, 1999
http://www.belisarius.com /modem business strategv/beckerm an/non linear.htm
406 Waldrop, Complexity, p.293

172

http://www.belisarius.com/modem


Building on the discoveries of chaos theory, complexity theorists found that it is at 

frontier o f the phenomena o f chaos, the “narrow domain between frozen constancy and 

chaotic turbulence,” that the most complex and adaptive structures can be found.407

It is through mechanisms of information processing, distribution and exchange that 

complex adaptive systems can emerge and evolve. According to Nobel Prize physicist 

Murray Gell-Mann:

A complex adaptive system acquires information about its environment and its own 
interaction with that environment, identifying regularities in that information, condensing 
those regularities into a kind of ‘schema* or model, and acting in the real world on the basis 
o f that schema. In each case, there are various competing schemata, and the results of the 
action in the real world feed back to influence competition among these schemata.408

It is via these schemata, by identifying patterns and correlations, that complex adaptive 

systems separate regularities from randomness in the raw data flow that traverses them. 

On this basis, the complex adaptive system can constitute a description o f an observed 

system, predict events, or create prescriptions for its own behaviour. Through a process 

o f continuous learning, these schemata are always being adjusted and rebuilt as the 

complex adaptive system interacts with its environment and other systems, and new 

information is absorbed.

Gell-Mann proposes that the length o f description of schemata be used as a measure of 

complexity. Descriptions o f systems showing completely regular, highly ordered, 

patterns o f behaviour would be low in informational content (since the pattern could be 

expressed in very few terms) while descriptions o f completely random behaviour would 

have no informational content at all (since no pattern at all can be discerned). Hence 

informational content and complexity are maximised in between these two extremities, 

at “the edge of chaos” (see Figure 15).

407 Francis Heylighen, “Complex Adaptive Systems” (Principia Cybemetica Web, 1996)
http:/ /pespmcl .vub.ac.be/CAS.html
408 Murray Gell-Mann, Tbe Quark and the Jaguar. Adventures in the Simple and the Complex (London: Little 
Brown & Company, 1994), p.17
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Order

Figure 15: Complexity is highest in between the poles of order and disorder

It should be noted that the sense in which complex systems are adaptive is quite distinct 

from traditional scientific understandings of the adaptation and optimisation of systems 

in that it allows for radical transformation by virtue of which new types of behaviours 

and goals can emerge. Whereas servomechanisms seek to regulate behaviour within the 

confines of an existing structure and a pre-determined goal via negative feedback, 

complex systems can modify their internal structure and redefine their objectives 

through positive feedback. As John Holland puts it, “adaptation, whatever its context, 

involves a progressive modification to some structure or structures.”409 Prigogine and 

Stengers make a similar distinction here:

It is obvious that the management of human society as well as the action of selective 
pressures tend to optimise some aspects of the behaviour or modes of connection, but to 
consider optimisation as the key to understanding how populations and individuals survive 
is to risk confusing causes with effects. Optimisation models thus ignore both the 
possibility of radical transformations — that is, transformations that change the definition of 
a problem and thus the kind of solution sought — and the inertial constraints that may 
eventually force a system into a disastrous way of functioning. Like doctrines such as Adam 
Smith’s invisible hand or other definitions of progress in terms of maximisation and 
minimisation criteria, this gives a reassuring representation of nature as an all-powerful and 
rational calculator, and of a coherent history characterised by global progress. To restore 
both the inertia and the possibility of unanticipated events — that is, restore the open 
character of history — we must accept its fundamental uncertainty.410

If the major contribution of chaos theory, complexity and self-organisation was to 

uncover the vital role of decentralised co-ordination and positive feedback mechanisms, 

it would be misleading to assume from this that hierarchical control and negative

409 John H. Holland, Adaptation in Natural and Artificial Systems (Cambridge, MA: MIT Press, 1995), p.3 
4,0 Prigogine & Stengers, Order out of Chaos, p.207
In the 19th century, Nietzsche had already criticised contemporary physiological and biological thought for 
only understanding organisms in terms of adaptation (in the sense of optimisation): “it fails to appreciate 
the paramount superiority enjoyed by those plastic forces of spontaneity, aggression, and encroachment 
with their new interpretations and tendencies, to the operation of which adaptation is only a natural 
corollary.”
Friedrich Nietzsche, The Genealogy of Morals, II 12 (Dover Publications, 2003), p.52
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feedback were now viewed as irrelevant. Rather, the new scientific consensus viewed 

opposing processes as complementary, balancing change and stability. Complexity 

theorist Doyne Farmer points out that

evolution thrives in systems with a bottom-up organisation, which gives rises to flexibility.
But at the same time, evolution has to channel the bottom-up approach in a way that
doesn’t destroy the organisation. There has to be a hierarchy of control — with information
flowing from the bottom up as well as from the top down.411

Likewise, both forms of feedback can generally be observed in complex systems as 

negative feedback serves to constrain the growth of positive feedback. W ithout the 

former, the latter would simply extinguish itself when it runs out o f resources to fuel its 

process o f expansion (as in the case o f a virus epidemic or the chemical process of 

combustion) or risk dissolution when run-away processes become too strong to 

preserve the fine balance between “frozen constancy and chaotic turbulence.” 

Nonetheless, chaos and complexity affirm the primacy o f positive feedback and 

decentralised emergence since they are the prerequisites for creation and change and 

that it is only through them that mechanisms for negative feedback and hierarchical 

control can then appear. In other words, an emergent structure may subsequently exert 

some downward causation on the parts whose interaction produced it in the first place 

but this is a secondary effect o f bottom-up self-organisation.

The worldview postulated by the sciences o f complexity is thus a seismic shift away 

from the dominant paradigm: “nature is to be viewed as a dynamical shifting web, not a 

mechanical, hierarchical pyramid.”412 N o longer is order a product o f a natural tendency 

towards equilibrium; on the contrary, it is with non-equilibrium that order emerges from 

chaos, at the point where instability and creative mutation allow for the genesis of new 

forms and actions.413 Consequendy, the systems produced through these processes o f 

self-organisation have distinct emergent features which cannot be understood solely 

through an analysis o f their atomistic components since it is their patterns o f interaction 

which constitute their complexity. In the field of genetics, this has lead to break from an 

understanding o f strands of genes in DNA as a biochemical computer executing a 

genetic program in favour of the view that the genome, the complete set o f genes in an 

organism, “forms a vast interconnected network, rich in feedback loops, in which genes

411 Waldrop, Complexity, p.294
412 King, Social Science and Complexity, p.48
413 Prigogine & Stengers, Order out of Chaos, p.287
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directly indirectly regulate each other’s activities.” 414 Hence, according to Francesco 

Varela, “the genome is not a linear array of independent genes (manifesting as traits) but 

a highly interwoven network o f multiple reciprocal effects mediated through repressors 

and depressors, exons and introns, jumping genes, and even structural proteins.” 415 

Nevertheless, complexity remains within the informational paradigm since these non­

linear interactions “do not have to be physical, they can also be thought of as the 

transference o f information.”416

Complex systems also tend to be open systems in their interactions with their 

environment, as such their borders may not always be easy to ascertain. Consequently, 

these characteristics pose many analytical challenges and have major implications for the 

approach o f any model or simulation o f a complex system:

Rather than trying to figure out all the chains of causality, the [non-linear] modeller looks 
for nodes where feedback loops join and tries to capture as many of the important loops as 
possible in the system’s ‘picture.’ Rather than shaping the model to make a forecast about 
future events or to exercise some central control, the non-linear modeller is content to 
perturb the model, trying out different variables in order to learn about the system’s critical 
points and its homeostasis (resistance to change). The modeller is not seeking to control 
the complex system by quantifying it and mastering its causality; (s)he wants to increase 
his/her ‘intuitions’ about how the system works so s(he) can interact with it more 
harmoniously.417

As with chaos theory, the traditional goal o f attaining complete and precise quantitative 

knowledge o f a system, and with that the possibility for gaining full control o f it, gives 

way to a more limited and qualitative understanding which relies more on a certain 

‘intuition’, perhaps the same continuous learning process described by the theory o f 

complex adaptive systems. Indeed, Gell-Mann sees schemata and adaptive learning at 

the heart of all cognitive processes.

Decentralised self-organising systems are also better equipped than centralised systems 

to deal with limited predictability and contingency. According to Langton, “since it's 

effectively impossible to cover every conceivable situation, top-down systems are 

forever running into combinations of events they don't know how to handle. They tend 

to be touchy and fragile, and they all too often grind to a halt in a dither o f

414 Capra, The Web ofUfe, p.199
415 Capra, The Web ofUfe, p.199
416 King, Social Science and Complexity, pp.76-77
417 King, Social Science and Complexity, p.54
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indecision.”418 In contrast, decentralised systems of quasi-autonomous units can operate 

more effectively and with a greater degree o f adaptability on the basis o f local 

calculations o f networked agents within it.

Conclusion

Whereas early cybernetics had focused primarily on self-regulating and stabilising 

systems, the sciences of complexity and chaos which followed have studied self- 

organising systems which develop emergent properties through positive feedback 

mechanisms. While the former were interested in stable systems maintaining themselves 

and converging towards a determined goal (homeostasis), the latter have turned to the 

decentralised mechanisms by which complex adaptive systems emerge, change, and 

reproduce themselves (autopoiesis).

These two approaches are not contradictory per se; rather the sciences o f self- 

organisation see the systems studied by early cyberneticists as only special cases within a 

broader study of systems. There is continuity in that systems remain the focus of 

analysis with the whole privileged over the parts, and in that information remains the 

core metaphorical concept. Circularity is also central to both approaches but these differ 

with regard to the circular processes which are emphasised. Early cybernetics saw 

positive feedback as essentially undesirable since it took systems away from their 

equilibrium and could even threaten their dissolution (as in a run-away engine 

accelerating till it falls apart or explodes): order giving way to disorder (i.e. entropy). 

Complexity and chaos theorists, on the other hand, have turned to positive feedback in 

order to explain systemic change and seemingly unpredictable yet deterministic forms o f 

behaviour — here apparent disorder finds its own order.

In summary, chaos and complexity (or chaoplexity) can be condensed into three main 

points:

non-linearity and sensitivity to initial conditions as observed in chaotic systems 

impose severe limits on attempts to predict the behaviour o f such systems.

418 Waldrop, Complexity, p.279
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Precise quantitative analysis must yield to a more qualitative understanding via 

the identification of system attractors;

decentralised and distributed network relations and positive feedback allow for 

the bottom up emergence and evolution of complex systems;

complexity and adaptability are greatest at the ‘edge-of-chaos’ where systemic 

structure can be retained but is also at its most flexible and creative. Such 

systems are best suited to responding to contingency and unpredictability.

In the next chapter, we will see how these ideas have permeated military thought and 

become the basis for the new theories and practices o f chaoplexic warfare.
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Chapter 8: Towards Chaoplexic Warfare? Network-Centric Warfare
and the Non-Linear Sciences

I f  mechanism and clockwork, thermodynamics and the engine, and cybernetics and the 

computer can all be related to specific contemporary approaches to the conduct o f war, 

does the emergence o f sciences o f chaos and complexity alongside the figure o f the 

network herald the appearance o f a new chaoplexic way o f warfare? On one level, there 

is ample evidence of the impact the non-linear sciences are having on the development 

o f technologies with potential military applications. Indeed, they have ramifications for 

the development of virtually all technologies deemed high priority by the military, 

including but not limited to semiconductor materials, microelectronics circuits, software 

engineering, high-performance computing, machine intelligence and robotics, simulation 

and modeling, radar, sensors, signal and image processing, and biotechnology.419 

However, this chapter will not be concerning itself with these direct applications of 

chaos and complexity theories to technological development but rather with the manner 

in which their concepts and principles can be seen working through present theories 

and practices o f warfare. I will argue that the non-linear sciences have clearly permeated 

a sizeable portion o f military literature in the United States, particularly the highly- 

influential one on network-centric warfare, now the official doctrine o f the U.S. 

Department o f Defense. However, since we still stand at the threshold between 

cybernetic and chaoplexic warfare, serious questions remain as to whether network- 

centric warfare really represents a full engagement with the principles and implications 

o f the non-linear sciences or simply a re-branding o f established cybernetic approaches.

The first section o f the chapter will turn to the influential ideas o f John Boyd, in 

particular his famous OODA loop, as they represent a first strain o f military theory to

419 Glenn E. James, “Chaos Theory: The Essentials for Military Applications” (Naval War College, 
Newport, Rhode Island, Center for Naval Warfare Studies, Newport Paper Number Ten, October 1996),
p-4
http://www.mvc.navy.mil/press/npapers/nplO/nplO.pdf
Panel on Mathematics (Nonlinear Science and the Navy), Naval Studies Board, Commission on Physical 
Sciences, Mathematics, and Applications, National Research Council, “Nonlinear Science” (Washington 
DC: National Academy Press, 1997)
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draw from scientific conceptions to move beyond the limitations o f the cybernetic 

understanding of warfare. Restoring contingency and unpredictability to military affairs 

and an understanding of the decision cycle akin to a complex adaptive system, Boyd 

made creative change central to success in war. The second section turns more 

specifically to the role of uncertainty in war with a rereading o f Clausewitz through the 

lens o f the non-linear sciences and further considers the implications for the 

organisation and tactics o f armed forces, a discussion that is carried on through to the 

two following sections on networks and swarming. Finally, the chapter concludes with a 

study o f the doctrine of network-centric warfare in the light o f earlier sections and 

determines whether it does indeed break decisively with cybernetic warfare and mark 

the emergence o f a new regime the scientific way of warfare.

John Boyd and the OODA loop

John Boyd is a crucial and pivotal figure in the emergence o f scientifically inspired 

military thought which, in the aftermath o f the Vietnam War, began to challenge many 

o f the entrenched principles of cybernetic warfare. One o f the most successful fighter 

pilots in the history o f the U.S. Air Force (he was known as “Forty-Second Boyd" for 

his ability to defeat any opponent in aerial combat in less than forty seconds), Boyd 

developed a theory o f aerial combat and was closely involved with the development o f 

the F-15 and F-16 fighter planes. I f  Boyd is increasingly considered to be one of the 

greatest military strategists o f recent times, he never wrote a key text, preferring instead 

a few short articles and numerous briefings to a both military and civilian audience. 

While Boyd was something of an iconoclast whose uncompromising stance and 

unconventional ideas generated hostility from the Air Force hierarchy, his ideas have 

gained widespread exposure within the U.S. military. The first organisation to adopt his 

ideas, and which remains probably the one that has stayed closest to their original spirit, 

is the Marine Corps. Boyd was closely involved in the elaboration o f the Corps’s 1989 

military manual, Warfighting (subsequently updated in 1997), which will be called upon in 

the next section.
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His most enduring contribution was the elaboration of the OODA ‘loop’ (see Figure 

16), a theory of the decision-making process of the fighter pilot which subsequendy 

became extended to all aspects of warfare, including the strategic dimension.

Observation Orientation Decision Action
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& Control
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Figure 16: John Boyd’s OODA ‘loop’420

OODA stands for Observe-Orient-Decide-Act and seeks to model the decision-making 

process a combatant goes through when engaged in the warfighting environment. It is 

effectively a cognitive theory that can be applied to any situation, which accounts for its 

current enthusiastic adoption in business management literature. In the observation phase, 

the actor (or system) absorbs information from his environment, his situation within it, 

and the actions of his adversary. In the orientation phase, the actor interprets this 

information through an existing framework of analysis which creates meaning, discerns 

existing opportunities and threats, and provides a range of responses to initiate. The 

decision phase sees the actor commit to a course of action which is subsequendy carried 

out in the following phase. Not only does the actor then return to the observation phase 

on the basis of the new information following from the action phase and consequent 

unfolding interaction with the environment, but feedback loops are operating between 

all stages in the cycle and the observation phase as the actor continually absorbs new 

information in order to adjust his frameworks and behaviour accordingly. For Boyd, the

420 Beckerman, “The Non-Linear Dynamics of War”
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O O D A  ‘loop’ was applicable across all levels o f warfighting from the individual 

combatant to command and control structures: “the process o f observation-orientation- 

decision-action represents what takes place during the command and control process — 

which means that the OODA ‘loop’ can be thought o f as being the C&C loop.”421 Since 

O O D A  ‘loops’ operate at all levels according to the same principles, the OO DA ‘loop’ 

can be thought o f as fractal in its self-similarity across scales.422

While at first glance the OODA ‘loop’ resembles a typical cybernetic loop whereby a 

system adjusts its behaviour to incoming information from its interaction with the 

environment in order to meet a desired objective, the crucial difference is the stage 

Boyd described as the most important: orientation. A closer look at the above diagram 

reveals that orientation actually exerts “implicit guidance and control” over the 

observation and action phases as well as shaping the decision phase. Furthermore, “the 

entire ‘loop’ (not just orientation) is an ongoing many-sided implicit cross-referencing 

process o f projection, empathy, correlation, and rejection” in which all elements o f the 

‘loop’ are simultaneous active.423 In this sense, the OO DA ‘loop’ is hot truly a cycle and 

is presented sequentially only for convenience of exposition (hence the scare quotes 

around ‘loop’).

With the orientation phase, Boyd allows for the analytical framework itself to be 

modified through the comparison o f observations o f the external world with the 

system’s internal framework, and thus for the system to act in new, unforeseen, ways. 

He distinguishes between two different processes that occur during orientation: 

“analysis (understanding the observations in the context o f pre-existing patterns of 

knowledge) and synthesis (creating new patterns of knowledge when existing patterns 

do not permit the understanding needed to cope with novel circumstances).”424 Boyd 

lists a number o f elements which come into play in determining new frameworks 

(cultural traditions, genetic heritage, previous experiences, new information) but these 

are less important than the very principle that such frameworks can and must change.

421 John R. Boyd, “Organic Design for Command and Control” (Briefing - May 1987) http:/ /www.d-n- 
i.net/hovd/pdf/c& c.pdf
422 David Nicholls & Todor Tagarev, “What Does Chaos Theory Mean for Warfare?”, Aerospace Power 
Journal, Fall 1994 h ttp ://www.ai.rpower.maxwell.af.mil/ajrchronicles/ apj/ apj94/nfchols.html
Nicholls and Tagarev also argue Sun Tzu was recognising the fractal nature of war when he wrote that 
“generally, management of many is the same as management of few.”
423 John R. Boyd, “The Essence of Winning and Losing” (Briefing, January 1996)
424 Chuck C. Spinney, “Genghis John”, Proceedings, U. S. Naval Institute, July 1997, pp. 42-47 
http://www.d-n-i.net/fcs/comments/cl99.htm
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Cybernetic warfare conceptualised as a negative feedback system necessitates a complete 

modelling o f war in which all factors and parameters have to be accounted for. Indeed 

for a negative feedback system to adjust to changes in the environment, it must be 

designed so that all eventualities have been foreseen and/or all parameters to be 

monitored have been designated; otherwise, it will be enable to initiate the required self- 

correcting behaviour. This fuels attempts to effect a systemic closure o f our 

understanding o f the phenomenon of war that characterise the drive of operations 

research and systems analysis to perfectly model and simulate war. However, Boyd 

explicitly rejects the possibility o f such a final and total understanding o f war and points 

to the irreducibly incomplete and evanescent character o f any theoretical framework 

seeking to encapsulate reality.

Indeed, Boyd repeatedly insists that regular overhauls o f such frameworks are both 

necessary and unavoidable. Invoking the second law of thermodynamics, Boyd 

postulates that, as closed systems, internal frameworks are unavoidably subject to rising 

entropy as the mismatch between a changing environment and model increases.425 For 

Boyd, entropy here designates “the potential for doing work, the capacity for taking 

action, or the degree of confusion and disorder associated with any physical or 

information activity.”426 Tinkering with the inner structure o f the framework in order to 

preserve it is a self-defeating effort: “any inward-oriented and continued effort to 

improve the match-up of concept with observed reality will only increase the degree of 

mismatch.” 427 Rigidly adhering to the same closed model o f reality leads to chaos 

(entropy) and eventually death. In order to counter this, Boyd advocates taking apart 

existing frameworks and reconstructing new ones through a perpetually ongoing process 

o f “destruction and creation”:

People using theories or systems evolved from a variety of information will find it 
increasingly difficult and ultimately impossible to interact with and comprehend 
phenomena or systems that move increasingly beyond and away from that variety — that is, 
they will become more and more isolated from that which they are trying to observe or deal

425 Boyd also draws on Heisenberg’s quantum uncertainty principle (it is impossible to simultaneously fix 
or determine precisely the velocity and position of a particle or body at the quantum level) and Godel’s 
incompleteness theorem (no logical or mathematical system can be complete in the sense that there are 
necessarily propositions that cannot be either proven or disproven from the axioms or postulates of the 
system) to argue for the impossibility of ever achieving a perfecdy consistent and stable system.
426 John R. Boyd, “Destruction and Creation” (1976)
http://www.belisarius.com/modem business strategy/boyd/destruction/destruction and creation.htm
427 Boyd, “Destruction and Creation”
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with, unless they exploit the new variety to modify their theories/systems or create new 
theories/systems.428

Akin to chaos and complexity theorists, Boyd reinvents entropy as the condition 

through which creation and novelty can emerge: “an entropy increase permits both the 

destruction or unstructuring o f a closed system and the creation o f a new system to 

nullify the march toward randomness and death.”429 The essence o f Boyd’s theory can 

be summed up by the following formula: “a changing and expanding universe of mental 

concepts matched to a changing and expanding universe o f observed reality.”430

The similarities between the OODA loop and Murray Gell-Mann’s theory o f schemata 

in complex adaptive systems are striking: “a complex adaptive system acquires 

information about its environment and its own interaction with that environment, 

identifying regularities in that information, condensing those regularities into a kind of 

‘schema’ or model, and acting in the real world on the basis o f that schema.”431 Gell- 

Mann’s own diagram of the operational process o f complex adaptive systems mirrors 

that o f the OODA ‘loop’ (see Figure 17). While Gell-Mann’s cycle differs from Boyd’s 

OODA ‘loop’ in that in that it is truly sequential and lacks the latter’s complex feedback 

loops and “implicit guidance and control” which prevent it from being a straightforward 

cycle,432 the essential remains that both theories postulate the need for ever-changing 

conceptual frameworks to cope with novelty. Indeed, Gell-Mann insists on the 

perpetually evolving nature o f schemata when faced with new information. In Mark 

Taylor’s words:

When there are too many discrepancies between the theory and the data o f experience, new 
ideas must be explored and concepts formulated. If the input of the so-called real world 
cannot be effectively processed, the schema either adapts or becomes obsolete.433

428 John R. Boyd, “The Conceptual Spiral” (unpublished briefing) 
http://www.d-n-i.net/boyd/pdf/intro.pdfp.18
429 Boyd, “Destruction and Creation”
430 Boyd, “Destruction and Creation”
431 Gell-Mann, The Quark and the Jaguar, p. 17
One could also note similarities between Boyd’s process of synthesis of new frameworks and the ideas of 
Thomas Kuhn concerning the emergence and collapse of scientific paradigms.
432 1 owe this insight to Chet Richards, one of Boyd’s close associates.
433 Mark C. Taylor, The Moment of Complexity, p.206
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Figure 17: Gell-Mann's diagram of the functional organisation of complex adaptive systems434

Certainly, Boyd’s theory became no less ambitious in the scope of phenomena it 

eventually strove to explain. According to Grant Hammond, the OODA ‘loop’ is 

nothing less than a theory of life since the “process of seeking harmony with one’s 

environment, growing, interacting with others, adapting, isolating oneself when 

necessary, winning, siring offspring, losing, contributing what one can, learning, and 

ultimately dying — is for Boyd reducible to a series of OODA ‘loops.’”435

For Chuck Spinney, a close collaborator of Boyd, the connections between the OODA 

‘loop’ and developments in the field of complexity and evolutionary biology are clear:

Each of us bases decisions and actions on observations of the outside world that are 
filtered through mental models that orient us to the opportunities and threats posed by 
these observations. As Konrad Lorenz and others have shown, these mental models, 
sometimes called paradigms, shape and are shaped by the evolving relationship between the 
individual organism and its external environment [...] Evolutionary biologists, ethologists, 
and cyberneticists will immediately recognize that the words ‘shape’ and ‘shaped by’ tell us 
the OODA loop is the product of a co-evolutionary interaction. Since all co-evolutionary 
processes embody positive as well as negative feedback loops, the OODA loop is 
necessarily a non-linear system and will exhibit unpredictable emergent behaviour.436

434 Reproduced from Gell-Mann, The Quark and the Jaguar, p.25
435 Grant T. Hammond, “The Essential Boyd”
http://www.bd.isarius.com/modem business strategy/hamm ond/essential boyd.htm
436 Chuck Spinney, “Asleep at the Switch in Versailles... or ... Why Nonlinear Realities Overwhelm Linear 
Visions ... or ... Why did Slobo Cave?” (Defense and the National Interest, September 6,1999)
http ://w w w .d-n-i.net/fcs/com m ents/c317.htm
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This notion o f unpredictability is crucial since Boyd believes in a perpetually renewed 

world that is “uncertain, everchanging, unpredictable”437 and thus requires continually 

revising, adapting, destroying and recreating our theories and systems to deal with it. 

Our understanding of the world is always playing catch-up with reality and our systems 

must consequently remain open to structural and behavioural change. Such a stance is in 

perfect accordance with the ideas o f complexity theory: “since the system has to cope 

with unpredictable change in the environment, the development o f the structure cannot 

be contained in a rigid [deterministic] programme that controls the behaviour o f the 

system.”438 Therefore our conceptual frameworks must stay open to change on the basis 

o f the new information from the external world and avoid at all cost closing on 

themselves, interpreting all new information through the prism of rigid and untouchable 

schemata — “the greatest danger is to get captured by your own thought processes rather 

than remaining sensitive to the changing environment and your opponent.”439 O r in 

other words, “the most dangerous internal state o f an OODA ‘loop’ occurs when the 

orientation process becomes so powerful that it force fits the organism’s observations 

into fitting a preconceived template, even when those observations threaten the 

relevance o f that template.”440

Boyd therefore moves from the traditional view of uncertainty as a threat that must be 

overcome to an irreducible characteristic o f being and the very condition o f possibility 

o f change and creativity:

Ambiguity is central to Boyd’s vision. It is not something to be feared but something that is 
a given. Being creative organisms, we should welcome it and make use of it. The world is 
ambiguous. [...] We never have complete and perfect information. [...] Our decisions and 
actions are hypotheses to be tested against this ambiguous environment. The best way to 
succeed in it is to revel in ambiguity.441

437 Boyd, “The Conceptual Spiral” http://www.d-n-i.net/hoyd/pdf/intro.pdf p.37
438 King, Social Science and Complexity, p.79
439 Hammond, “The Essential Boyd”
440 Chuck Spinney, “Is America Inside Its Own OODA Loop?” (Defense and the National 
Interest, January 26, 2005)
http://www.d-n-i.net/fcs/com m ents/c536.htm
441 Hammond, “The Essential Boyd”
For all the benefits o f this condition of permanent ambiguity, there are also risks which Spinney discusses 
with reference to notions from chaos and complexity theory:

Boyd showed that an OODA Loop (the decision cycle of an individual or any collection of 
individuals) is an open, far-from-equilibrium process. This is a crucial finding: students of 
chaos theory, systems control theory, or the theory of evolution will immediately recognize 
the implications of such a construction: the OODA Loop is capable of expansion and
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N ot only are ambiguity and unpredictability the conditions o f true creativity but they are 

also ass ts to be exploited against opponents. Indeed, predictable patterns o f military 

behaviour hand a crucial advantage to the opponent and exposes one to defeat. 

Conversely, making one’s actions unpredictable unsettles the opponent’s own OODA 

‘loop’ as he strives to discern a pattern amidst the ‘noise’ created by unpredicted actions. 

Since war pits opposing OODA ‘loops’, the most effective and evolutive ‘loop’ will 

prevail: “you can either go through the OODA ‘loop’ cycle faster than your opponent 

or you can vary your tempos and rhythms so your opponent cannot keep up with 

you.”442 The more overwhelmed the opponent is, the more likely he is likely to fold back 

on his existing schemata, desperately trying to match existing frameworks that are 

becoming increasingly isolated from reality until his final collapse. This is very much in 

accordance with a Clausewitzian understanding o f war as a ‘clash o f wills’ in which the 

primary target is the adversary’s will and ability to resist rather than his physical 

capabilities. The idea that “to win, you need to get inside the adversary’s OODA 

‘loop’”443 has become common-place in contemporary military literature, particularly in 

the network-centric variety, to the point that it has become an incantation that is not 

always based on a consistent and faithful understanding o f Boyd’s ideas, as we shall later 

see. For now, it is important to note that when Boyd talks about a “quicker OODA 

‘loop’”, he does not simply mean cycling through the sequence o f observation- 

orientation-decision-action faster but rather is referring to all the cross-referencing 

connections that make the OODA into a complex adaptive system. Hence, in order to 

confound and defeat an opponent, the OODA ‘loop’ must be “more subtle, more 

indistinct, more irregular, and quicker — yet appear otherwise.”444 Initiative, surprise and 

deception are thus key; merely increasing the speed at which one acts by responding to 

stimulus from pre-establised templates (i.e. without truly orienting) is not a quickening 

o f the OODA ‘loop’, a point missed by many subsequent theorists.

A crucial distinction between Boyd’s ideas and those governing cybernetic warfare, and 

one that parallels the development of chaos and complexity theories, is his focus on the

growth, but it is also inherently unpredictable and its pathway can lead also to chaos, 
because it incorporates positive as well as negative feedback control loops.

Spinney, ‘I s  America Inside Its Own OODA Loop?”
442 Hammond, “The Essential Boyd”
443 Hammond, “The Essential Boyd”
444 John R. Boyd, ‘Tattems of Conflict” (Presentation, December 1986)
http://www.d-n-i.net/boyd/patterns.ppt
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conditions o f emergence and transformation o f systems through information rather 

than merely the manner in which information is processed by a fixed organisational 

schema. Arquilla and Ronfeldt seem to be making a similar argument when they seek to 

distinguish the notion of information as process from that o f structure. For them, the 

notion o f information processing, which they attribute to Shannon, Wiener and the 

cyberneticists, useful as it may be, tends to overemphasise the importance of 

technological infrastructure to the detriment o f organisational arrangements.443 They 

remind us that:

All structures contain embedded information. Where there is structure — or pattern or 
organisation — there is information. Somehow the amount o f structure and the amount of 
information go together. Embedded information is what enables a structure — be it 
physical, biological, or social — to hold its form, to remain coherent, even to evolve and 
adapt. All forms of organisation thus depend on embedded information; they do not have 
shape, and cannot retain their shape, without it.446

Arquilla and Ronfeldt contrast information as merely processed by a system with 

information as the codification o f the structure o f the system itself. One recognises here 

again the shift from the regulation o f a system through information which concerned 

early cybernetics to the question o f the self-production and self-organisation o f systems 

in chaoplexity. By interpreting information as the pattern that constitutes form and 

organisation, Arquilla and Ronfeldt come to a new understanding of war as an 

informational process that goes beyond theories of communication:

Warfare has long revolved around who can hurl the most mass — as in the aptly named levee 
en masse o f the Napoleonic era, or the human wave assaults on the western front in World 
War I and the eastern front in World War II. In the nuclear age, the emphasis shifted to 
hurling energy, as exemplified by the shock waves and radiation released by the splitting or 
Rasing of atoms in bombs. Victory depended not only on directing mass or energy to 
deplete an enemy’s war-fighting stocks, but also on keeping that enemy from hurling mass 
and energy at oneself, and on being able to absorb and recover from whatever mass and 
energy it did hurl. If information is a physicalproperty, then in the information age winning wars 
may depend on being able to hurl the most information at the enemy while safeguarding 
against retaliation. The notion would affect how we think about all manner o f weapons 
systems. Compare, for example, a round shot fired from an eighteenth-century smoothbore 
cannon, to a shell fired from a modem rifled artillery barrel, to a new wire-guided antitank 
missile. How do they rate, relatively, in terms of mass, energy, and information? The mass 
of each may be about the same, but the energy each represents differs gready. More to the 

. point, each consists of different materials organised in dissimilar ways. Each sums up a very 
different set o f sciences and technologies. Thus, each represents a radically different 
embodiment of not only mass and energy but also information to hurl at an enemy. The 
one that represents the most information — the missile — is the most effective. As these

445 Arquilla & Ronfeldt, “Looking Ahead: Preparing For Information-Age Conflict” in Arquilla & David 
Ronfeldt (eds.), In Athena's Camp, pp.442-446
446 Arquilla & Ronfeldt, “Looking Ahead” in Arquilla & Ronfeldt (eds.), In Athena's Camp, pp.444-445
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systems exemplify, a historical progression has occurred in the amount o f information that 
can be hurled by weapons.447

Boyd’s other major ontological statement pertained to the inevitable uncertainty which 

permeates the activity o f warfare, rejecting the drive for predictability o f cybernetic 

warfare. This stance also echoes the discoveries o f the non-linear sciences and has 

crucial implications for the type o f control that armies should strive for. In the next 

section, I will look at this new understanding o f chaos and uncertainty, particularly 

through a rereading of Clausewitz, and the lessons which the new military theorists draw 

from it.

Uncertainty in War: the Non-Linear Clausewitz and the Future of Military 

Organisation

The fundamentally complex and interactive nature of war generates
uncertainty. Uncertainty is not merely an existing environmental
condition; it is a natural byproduct of war.

U.S. Marine Corps Command <& Control Doctrine, 1996m

In 1992, Alan Beyerchen published an influential article reading Clausewitz’s writings 

through the lens of developments in the non-linear sciences o f chaos and complexity. 

Indeed, Clausewitz’s insistence on unpredictability and the imperfection of knowledge 

in the practice o f war appears to echo similar claims made by the new sciences. 

Beyerchen finds in the strategist’s writings three considerations o f unpredictability in 

war: from interaction, from friction, and from chance. Interaction is inherent in war as it “is 

not an exercise o f the will directed at inanimate matter, as is the case with the

mechanical arts” but rather is “directed at an animate object that reacts,” effectively an

opposing will449 (this is the crux o f Clausewitz’s disagreement with mechanistic theorists 

o f war like Jomini and von Bulow). This reaction locks both wills and forces into 

feedback loops whereby positive feedback loops can cause run-away processes —

447 Arquilla & Ronfeldt, “Information, Power, and Grand Strategy” in Schwartzstein (ed.), The Information 
Revolution and National Security, p .147
448 MCDP 6: Command and Control, United States Marine Corps, 1996, p.55 
http://www.dtic.mil/doctrine/jel/service pubs7mcdp6.pdf
449 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability of War”
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Clausewitz’s tendency for war to become absolute — and make specific prediction 

impossible:

[Military action] must expect positive reactions, and the process of interaction that results.
Here we are not concerned with the problem of calculating such reactions [...] but rather 
with the fact that the very nature o f interaction is bound to make it unpredictable.450

Friction is quintessentially nonlinear as with it Clausewitz concerns himself with the 

disproportionate effect small events can have on a battle or campaign:

Success is not due simply to general causes. Particular factors can often be decisive — details 
only known to those who were on the spot [...] while issues can be decided by chances and 
incidents so minute as to figure in histories simply as anecdotes.451

Non-linear phenomena, characterised by positive feedback loops and sensitivity to initial 

conditions, are precisely those that allow for such an amplification o f ‘minute incidents.’ 

Another way of stating this in the phraseology of complexity theory is to say that “local 

causes can have global effects.”

As well as relating friction to the thermodynamic theories that were emerging at 

Clausewitz’s time and notably the concept o f entropy,452 Beyerchen also connects 

friction to information theory:

The second meaning of ‘friction’ is the information theory sense of what we have recently 
come to call ‘noise’ in the system. Entropy and information have some interesting formal 
similarities, because both can be thought of as measuring the possibilities for the behaviour 
of systfems. According to information theory, the more possibilities a system embodies, the 
more ‘information’ it contains. Constraints on those possibilities are needed to extract 
signals from the noise. Clausewitz understands that plans and commands are signals that 
inevitably get garbled amid noise in the process of communicating them down and through 
the ranks even in peacetime, much less under the effects of physical exertion and danger in 
combat. His well-known discussion of the difficulty in obtaining accurate intelligence 
presents the problem from the inverse perspective, as noise permeates the generation and 
transmission of information rising upward through the ranks. From this perspective, his 
famous metaphor of the ‘fog’ o f war is not so much about a dearth o f information as how 
distortion and overload of information produce uncertainty as to the actual state of 
affairs.453

As we saw in the earlier section on the Vietnam War, misperceptions and uncertainties 

in military affairs are fuelled by an inability to distinguish relevant from false

450 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability o f War”
451 Clausewitz, On War; translation by Michael Howard and Peter Paret (Princeton, NJ: Princeton 
University Press, 1984), p.595
452 See chapter 4
453 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability o f War”
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information (signal from noise) and excess volumes o f data can hinder more than assist 

in this.

Chance is Clausewitz’s blanket term for the uncertainty inherent to war and constitutes 

one part o f his famous trinity, standing between the poles o f irrationality (the natural 

force of violence, hatred and enmity among the people) and rationality (the instrumental 

subordination o f war to government policy). The very metaphor Clausewitz employs to 

describe the complex interplay of the three components o f the trinity is markedly non­

linear: “our task therefore is to develop a theory that maintains a balance between these 

three tendencies, like an object suspended between three magnets.”454 The Prussian 

officer is referring to a popular scientific experiment in which a metal object oscillates 

erratically between competing points of attraction in such a way that the pattern in 

unpredictable and for all practical purpose irreproducible — due to high sensitivity to 

initial conditions, minute differences in the location o f the object as it starts its motions 

result in wildly different patterns.

Returning to the question o f chance, Beyerchen calls on French nineteenth century 

mathematician Henri Poincare to distinguish between three ways in which chance 

manifests itself to us and which can be all found in Clausewitz:

as a statistically random phenomenon (the traditional understanding of 

stochastic chaos, best analysed through the use o f probabilities — Clausewitz’s 

references to war as the play o f probabilities and analogies to gambling); 

as the amplification of a micro-cause (deterministic forms o f chaos in systems 

showing sensitivity to initial conditions, as seen in friction); 

as a function o f our analytical blindness 455

The difference between the first two forms o f chance is crucial since the former is truly 

random and unpredictable while the latter is actually a highly ordered form of disorder 

as considered by chaos theorists. I f  sensitivity to initial conditions and irreducible 

constraints on the precision o f measurements impose limits on the long term 

predictability of systems characterised by this form of chaos, the discovery o f

454 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability of War”
455 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability of War”
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deterministic processes behind certain phenomena has shifted our understanding o f 

them away from the first category of stochastic chance. This is the central paradox of 

chaos theory and the non-linear sciences in general: linear, Newtonian concepts and 

methodologies are found to be inapplicable to a vast range of phenomena which have to 

be tackled by approaches which cannot apprehend them in a similarly precise and 

predictive manner but, at the same time, the discovery has been made that phenomena 

which previously appeared entirely random have in fact a complex and identifiable 

structure. O n one hand, the original promise o f absolute control and omniscience o f the 

Newtonian or cybernetic paradigms have to be abandoned. On the other, a new form of 

less direct and precise control and knowledge seems within reach to replace the former. 

In the words o f Katherine Hayles, chaos has been ‘bound.*456 This implies new ways of 

directing armies on the battlefield, as will be discussed below.

The last manifestation of chance — as a function of our analytical blindness — is a result 

o f our tendency to partition the world into discrete pieces amenable to analysis. When 

two such pieces interact, we are faced with phenomena that are unexplainable to us and 

appear as the product o f chance. What is required is a holistic approach that does not 

seek to isolate open systems from their environment but apprehends their profound 

interconnectedness. On the issue of critical analysis and proof, Clausewitz asserts the 

following:

It is bound to be easy if one restricts oneself to the most immediate aims and effects. This 
may be done quite arbitrarily if one isolates the matter from its setting and studies it only 
under those conditions. But in war, as in life generally, all parts of the whole are 
interconnected and thus the effects produced, however small their cause, must influence all 
subsequent military operations and modify their final outcome to some degree, however 
slight.457

This Clausewitzian understanding of war and reality as read through the non-linear 

sciences in which uncertainty, unpredictability and change are central implies a particular 

approach to the conduct o f warfare and the organisation o f armies. An understanding of 

war through the lens the complexity naturally calls for a direction o f the military systems 

fighting it that draws on the insights o f the new sciences. As Bar-Yam puts it:

In recent years it has become widely recognized in the military that war is a complex 
encounter between complex systems in complex environments. Complex systems are 
formed of multiple interacting elements whose collective actions are difficult to infer from

456 Hayles, Chaos Bound
457 Beyerchen, “Clausewitz, Nonlinearity and the Unpredictability of War”
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those of the individual parts, predictability is severely limited, and response to external 
forces does not scale linearly with the applied force. It is reasonable to postulate that 
warfare can be better executed by those who understand complex systems than those who 
focus on simple linear, transparent, classically logical, Newtonian constructs.458

If, as the U.S. Marine Corps’s 1989 warfighting manual postulates, “the occurrences of 

war will not unfold like clockwork,” it is futile to attempt to “impose precise, positive 

control over events” 459 and “it is unreasonable to expect command and control to 

provide precise, predictable, and mechanistic order to a complex undertaking like 

war.”460 As opposed to a process obeying eternal laws which can be uncovered and 

exploited to design infallible tactics, war is here an amorphous and constantly renewed 

phenomenon. Or to put it in Clausewitz’s words, “war is a chameleon” — its forms 

fluctuates and mutates, only its basic nature is invariant. The successful army must 

internalise this lesson and constitute itself accordingly:

Like friction and uncertainty, fluidity is an integral attribute of the nature o f war. Each 
episode in war is the temporary result of a unique combination of circumstances, requiring 
an original solution. But no episode can be viewed in isolation. Rather, each merges with 
those that precede and follow it — shaped by the former and shaping the conditions of the 
latter — creating a continuous, fluctuating fabric o f activity replete with fleeting 
opportunities and unforeseen events. Success depends in large part on the ability to adapt 
to a constantly changing situation.461

The ability to adapt in such fluid situations is dependent on being able to discern 

patterns from the seemingly random and here chaos theory provides new tools and 

insights. For Andrew Ilachinski, “implicit in any application o f the ‘new sciences’ to land 

combat [...] is the idea that there is some latent order underlying what appears on the 

surface to be irregular and chaotic.”462 Ilachinski dubs ‘intuition’ “the ability to perceive 

patterns in an otherwise patternless process,”463 echoing Clausewitz’s notions o f ‘genius’ 

and ‘coup d’oeil’ that constitute “that superb display o f divination” in the successful 

commander:

Circumstances vary so enormously in war, and are so indefinable, that a vast array of 
factors has to be appreciated — mostly in light o f probabilities alone. The man responsible 
for evaluating the whole must bring to his task the quality o f intuition that perceives the

458 Yaneer Bar-Yam, “Complexity of Military Conflict: Multiscale Complex Systems Analysis of Littoral 
Warfare”, New England Complex Systems Institute, 2003, p.l 
http://necsi.org/projects/yaneer/SSG NECSI 3 Litt.pdf
459 FMFM1: Warfighting, United States Marine Corps, 1989 
http://www.clausewitz.com/CWZHQME/Warfitl .htm
460 MCDP 6: Command and Control,’ United States Marine Corps, pp.46-47
461 Warfighting, FMFM1, United States Marine Corps
462 Andrew Ilachinski, Land Warfare and Complexity - Part I: Mathematical Background and Technical Sourcebook 
(Alexandria, VA: Center for Naval Analyses, July 1996), p.27 h ttp ://www.cna.org/isaac/lwpart2pdf
463 Ilachinski, Land Warfare and Complexity, p.27

193

http://necsi.org/projects/yaneer/SSG
http://www.clausewitz.com/CWZHQME/Warfitl
http://www.cna.org/isaac/lwpart2pdf


truth at every point. Otherwise a chaos of opinions and considerations would arise, and 
fatally entangle judgment.464

The recognition o f truth (or pattern) is what allows for a fleeting discernment o f order 

from the chaos o f the battlefield (reflected in a conceptual chaos in the mind) and 

appropriate responsiveness to the ever-fluctuating conditions o f war. We are reminded 

here o f Boyd’s frameworks o f orientation and Gell-Mann’s schemata.

N ot only are closed and rigid systems unable to respond to the eruption o f novelty and 

unexpected challenges but attempts to increase their performance exposes them to 

catastrophic breakdown. John Urry discusses this point generally in the context o f 

complexity theory but it bear clear parallels with military organization and Boyd’s own 

statements about the self-defeating nature o f efforts to perfect the internal coherence o f 

closed systems:

Up to a point, tightening the connections between elements in the system will increase 
efficiency when everything works smoothly. But, if one small item goes wrong, then that 
can have a catastrophic knock-on effect throughout the system. The system literally 
switches over, from smooth functioning to interactively complex disaster.465

The implication is that the components within a system should be loosely connected 

together with a built-in redundancy and ability to reconfigure their positions within the 

network when necessary, allowing for the emergence o f new behaviour and 

organizational arrangements. In other words, the military must be a complex adaptive 

system operating at the edge o f chaos:

This view sees the military organisation as an open system, interacting with its surroundings 
(especially the enemy), rather than as a closed system focused on internal efficiency. An 
effective command and control system provides the means to adapt to changing 
conditions. We can thus look at command and control as a process of continuous 
adaptation. [...] Like a living organism, a military organization is never in a state of stable 
equilibrium but is instead in a continuous state of flux — continuously adjusting to its 
surroundings.466

In these conditions of perpetual flux, traditional conceptualisations o f control have to 

be abandoned or redefined in favour o f a more modest channelling — “the best we can 

hope for is to impose a general framework of order on the disorder, to prescribe the 

general flow of action rather than to try to control each event.” 467 A new military

464 Clausewitz, On War; p.112
465 Urry, Global Complexity, p.35
466 MCDP 6: Command and Control, United States Marine Corps, p.46
467 FMFM1: Warfighting, United States Marine Corps, 1989
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doctrine and practice can only emerge by breaking with the command and control 

principles that governed cybernetic warfare during the Cold War:

Control Theory requires both prediction and the existence of an adequate set of levers of 
control. [...] [But] having effective, centrally managed levers that can control or even 
predictably influence a complex, adaptive system is far from guaranteed. [...] In the 
Information Age, control needs to be thought about and approached differently. Control is 
not something that can be imposed on a complex adaptive system, particularly when there 
are many independent actors. Control, that is, ensuring that behavior stays within or 
moving to within acceptable bounds, can only be achieved indirecdy. The most promising 
approach involves establishing, to the extent possible, a set of initial conditions that will 
result in the desired behavior. In other words, control is not achieved by imposing a parallel 
process, but rather emerges from influencing the behaviors of independent agents.468

I f  centralised control is no longer desirable and must give way to decentralised means 

for the coordination o f ‘independent agents’, a new organisational form is necessary to 

overcome the limitations of hierarchical structures. This form is that o f the network.

The Age of the Network

The future may belong to whoever masters the network form.

John Arquilla and David Ronfeldf69

Possibly the single most transforming thing in our force will not be a 
weapons system, but a set of interconnections.

Donald Rumfelct70

The network form can be seen to have presently truly come of age, at least in terms of 

featuring heavily in both public and academic consciousness. Manuel Castells’s highly 

influential opus on network society argues that networks constitute no less than “the 

new social morphology of our societies and the diffusion o f networking logic 

substantially modifies the operation and outcomes in the processes o f production,

468 David S. Alberts & Richard E. Hayes, Power to the Edge — Command... Control... in the Information Age 
(Department o f Defense CCRP, 2003), pp.206-208
469 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.40
470 Tim Weiner, “A ‘God’s-Eye View’ of the Batdefield”, The New York Times, November 20, 2004
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experience, power and culture.” 471 The network is hence taken to be the new 

predominant form of social organisation in a world perceived as globalised and 

interconnected through time- and space-defying technologies o f transport and 

telecommunications.

Unsurprisingly, much of the literature on the network form therefore connects its rise 

with the development of information and communication technologies (ICTs), pointing 

to the diffusion o f computers, mobile telecommunications and the Internet. The 

Internet famously finds its roots in a military program of the 1960s and 1970s under the 

U.S. Department o f Defense’s ARPA (the Advanced Research Project Agency, now 

known as DARPA).472 In 1962, ARPA created the Information Processing Technology 

Office (IPTO), led by J.C.R. Licklider, a veteran o f the Macy Conferences on 

cybernetics, for the purpose o f furthering research from the Semi Automatic Ground 

Environment (SAGE) program, the radar and air defence system discussed in chapter 6. 

The resulting ARPANET became the first operational packet-switching network.473 

After the military spun off the ARPANET to the civilian sector, what was to become 

the Internet took on a life o f its own, eventually reaching broader public awareness in 

the 1990s and transforming business and social interaction in a process that is still 

ongoing today. Along with the diffusion o f other telecommunication systems, the 

Internet became a central piece o f an emerging network culture which has promoted 

decentralised forms of organisation and non-hierarchical channels o f communication.

Castells sums up an increasingly commonly held belief with the idea that “networks are 

proliferating in all domains o f the economy and society, outcompeting and

471 For Castells, the network is intimately connected to the development of capitalism and late modernity 
in the last decades of the twentieth century. “Networks are appropriate instruments for a capitalist 
economy based on innovation, globalisation, and decentralised concentration; for work, workers and 
firms based on flexibility; for a culture of endless deconstruction and reconstruction; for a polity geared 
towards the instant processing of new values and public moods; and for a social organisation aiming at 
the supersession of space and the annihilation of time.”
Manuel Castells, The Rise of the Network Society - 2nd ed. (Cambridge, MA; Oxford, UK: Blackwell, 2000), p. 
500
472 (D)ARPA was created in 1958 in response to the Soviet launch of Sputnik and was designed to act as a 
technological ‘engine’ for the DoD, carrying out long term projects with potential military applications.
473 An enduring myth is that the rationale behind ARPANET was to build a telecommunications network 
able to survive a nuclear attack. While a RAND report did consider this eventuality, the aims of the 
ARPANET program were more general in simply seeking to improve the resilience and cost-effectiveness 
of existing telecommunications based on circuit switching. Resistance to network losses was certainly part 
of the project but was not initially conceived for the specific context o f a nuclear war.
See Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C. 
Lynch, Jon Postel, Larry G. Roberts & Stephen Wolff, “A Brief History of the Internet” (The Internet 
Society, 2003) http://www.isoc.org/internet/history/brief.shtml
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outperforming vertically organised corporations and centralised bureaucracies.’7474 While 

o f course the network form of social organisation existed long before the development 

and widespread diffusion of twentieth century ICTs, they have certainly acted as 

enablers for the formation and increased efficiency o f social networks, thereby 

challenging the previously dominant hierarchical form.475 For Arquilla and Ronfeldt:

The information revolution is strengthening the importance of all forms of networks — 
social networks, communications networks, etc. The network form is very different from 
the institutional form. While institutions (large ones in particular) are traditionally built 
around hierarchies and aim to act on their own, multi-organizational networks consist o f 
(often small) organizations or parts o f institutions that have linked together to act joindy.
The information revolution favors the growth o f such networks by making it possible for 
diverse, dispersed actors to communicate, consult, coordinate, and operate together across 
greater distances and on the basis of more and better information than ever before.476

While the technological infrastructure o f the network is important, even more crucial 

are the actual dynamics o f networks and here we find ourselves firmly within the 

conceptual frameworks o f chaos and complexity theory. Indeed, the network form 

implies a decentralized, open, and adaptable form of organization, naturally best suited 

to adjust to a rapidly changing environment through the self-organising and emergent 

properties o f the network. As Ian King puts it, “networking [is] a way of maintaining a 

low-level chaotic substrate so that — as in the brain — the chaos will from time to time 

give birth to an intellectual self-organising structure.” 477 Similarly, for Castells, “a 

network-based social structure is a highly dynamic, open system, susceptible to 

innovating without threatening its balance.”478 In the context o f military operations, the 

art o f war becomes the harnessing o f similarly fluid structures through informational 

exchanges between its interacting parts, a process in which information and 

communication technologies naturally play a crucial role.

Although much of this technology had been developed by the military, the latter only 

became aware o f these social transformations belatedly, triggering animated discussion 

o f the implications for military doctrine and practice. U.S. practitioners looked 

particularly to business for inspiration, invoking Alvin and Heidi Toffler’s mantra — “the

474 Manuel Castells, The Internet Galaxy (Oxford, New York: Oxford University Press, 2001), p .l
475 “While the networking form of social organization has existed in other times and spaces, the new 
information technology paradigm provides the basis for its pervasive expansion throughout the entire 
social structure.”
Castells, The Rise of the Network Society, p.500
476 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, pp.26-27
477 King, Social Science and Complexity, p.55
478 Castells, The Rise of the Network Society, pp.501-502
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way we make war reflects the way we make wealth”479 — and emphasising the role of 

information superiority, adaptability, the flattening of management structures, increases 

in speed, and, above all, networks.

Arquilla and Ronfeldt have been among the most vocal proponents of networked 

organisation, arguing that new related forms o f conflict are emerging. Although they 

distinguish between cyberwar — the conduct of organized violence according to 

information-related principles — and netwar — the use of information and media for 

propaganda and exertion o f influence — both are characterized by the predominance of 

networked actors (even though their leadership may be itself quite hierarchical). These 

emerging actors pose serious challenges to their more rigidly hierarchical rivals, 

particularly states and armies (which the authors dub ‘institutions’). Arquilla and 

Ronfeldt see cyberwar “in the realms o f low-intensity conflict — international terrorists, 

guerrilla insurgents, drug smuggling cartels, ethnic factions, as well as racial and tribal 

gangs.”480

Since September 11, the focus has naturally been on al-Qaeda and the wider movement 

of radical Islamic militancy and terrorism. The nebulous and dispersed nature o f these 

organizations has invited their analysis in terms o f decentralized networks and complex 

adaptive systems. “Organizationally, al-Qaeda is intentionally decentralized with 

recursive operational and financial interrelationships dispersed geographically across 

numerous associated terrorist organizations that adapt, couple and aggregate in pursuit 

o f common interests.”481 For Marion and Uhl-Bien, interactive non-linear bottom-up 

dynamics are behind the self-organisation o f al-Qaeda in which bin Laden and the al- 

Qaeda leadership are an emergent phenomenon: “leaders do not create the system but 

rather are created by it, through a process of aggregation and emergence.”482 While a 

diffuse movement of Islamic radicalism coalesced to create terrorist networks from

479 Alvin & Heidi Toffler, War and Anti-War. Survival at the Dawn of the 21st Century (Boston, MA &
London: Little, Brown & Company, 1993)
480 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.40
481 Michael F. Beech, “Observing A1 Qaeda Through the Lens of Complexity Theory: Recommendations ' 
for the National Strategy to Defeat Terrorism”, Center for Strategic Leadership, U.S. Army War College, 
July 2004
http: /  /  www.carltsle.army.mil/usacsl /Publications/S04-01 .pdf
482 Russ Marion & Mary Uhl-Bien, “Complexity Theory and Al-Qaeda: Examining Complex Leadership”, 
Presentation given at Managing the Complex IV: A Conference on Complex Systems and the 
Management o f Organizations, Fort Meyers, FL, December, 2002
http://isce.edu/ISCE Group Site/web-
content/ISCE%30Events/Naples 2002/Naples 2002 Papers/Marion Uhl-Bien.pdf p.5
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which the leadership could spring, the latter has also assisted the continued 

development o f a decentralised movement by maintaining and fostering “a moderately 

coupled network, but one possessing internal structures that were loosely and tightly 

organized as appropriate.”483 The authors distinguish between loosely coupled networks 

in which the parts have functional independence, thus granting the system great 

resilience to large-scale perturbations, and tighdy coupled networks in which the 

leadership imposes control mechanisms that enable it to direct activities and receive 

regular reports. In between these two poles, we find moderately coupled networks 

which allow some degree o f directing by leadership but retain great resiliency. I f  the 

wider radical Islamic movement is only loosely coupled and individual terrorist cells are 

tightly coupled, the pre-9/11 al-Qaeda leadership network sat somewhere in between, 

performing the function o f a galvanising interface.

Even in the case o f single operation such as September 11, it has become increasingly 

clear that its planning and execution were far more decentralised than initially supposed. 

The different cells in the plot, although tightly coupled internally, functioned quasi- 

autonomously, and although they received some financial, logistical and training support 

from other parts o f the organisation, were not exclusively dependent on them. Sheik 

Mohammed, said to be the operational ‘mastermind’ behind September 11 (a 

designation which, although commonly used in the media, is problematic as it suggests 

highly centralised planning and control) and now in American military custody, is 

alleged to have claimed that “the final decisions to hit which target with which plane 

was entirely in the hands o f the pilots.” 484 Sheikh Mohammed was only then 

subsequently informed of their decision in July 2001. According to this same testimony, 

bin Laden and the high ranks o f the al-Qaeda organisation were also only very loosely 

informed of specific details and had a very limited directing role. Many o f bin Laden’s 

close associates were never even made aware o f the plot. This form o f organisational 

and operational structure is one that is particularly alien to Western states and their 

hierarchical military and security apparatuses, as Mohammed himself recognises: “I 

know that the materialistic western mind cannot grasp the idea, and it is difficult for

483 Marion & Uhl-Bien, “Complexity Theory and Al-Qaeda”, p.27
484 Substitution for the Testimony of Sheik Khaled Mohammed
http://new s.bbc-co.U k/l/shared/bsp/hi/pdfs/06 04 06 testimony.pdfp.28
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them to believe that the high officials in al-Qaeda do not know about operations carried 

out by its operatives, but this is how it works.”485

The resilience and adaptability o f the network has been further demonstrated by events 

following September 11 and the American response. Despite the loss o f its host state o f 

Afghanistan, a global crackdown on the organisation and its financial sources, and the 

military intervention of the sole superpower, it cannot be said that al-Qaeda, or at least 

its ideology and methods, have been defeated. If  its original leadership has been mosdy 

arrested, killed, or so severely restricted in its movements and communications as to 

render it operationally impotent, 486 it remains a powerful symbol for the Jihadist 

movement at wide. Endowed with an authority and prestige which enables it to claim 

responsibility for attacks in Madrid and London despite scant evidence o f logistical or 

organisational connections to the responsible cells,487 al-Qaeda’s leadership has in a 

sense blended back into the loosely connected radical Islamic movement while giving a 

name and a face to the fluid and amorphous networks that compose it and crystallize at 

certain points to carry out violent actions — both for the West which tends to see al- 

Qaeda at every turn and for aspiring militants which see it as a model to follow.

Existing state structures are ill-equipped to deal with these new forms of threats since 

“it will take networks to fight networks.”488 For Arquilla and Ronfeldt, the emerging 

conflicts will:

require major innovations in organisational design, in particular a shift from hierarchies to 
networks. The traditional reliance on hierarchical design may have to be adapted to 
network-oriented models to allow greater flexibility, lateral connectivity, and teamwork 
across institutional boundaries. The traditional emphasis on command and control, a key 
strength of hierarchy, may have to give way to an emphasis on consultation and 
coordination, the crucial blocks of network designs.489

485 Substitution for the Testimony of Sheik Khaled Mohammed 
http://new s.bbc.co.U k/l/shared/bsp/hi/pdfs/06 04 06 testimony.pdfp.55
486 President Bush declared in his State of the Union address in January 2004 that “We are tracking al- 
Qaeda around the world, and nearly two-thirds of their known leaders have now been captured or killed.” 
George W. Bush, State o f the Union Address, January 20, 2004 
http://www.wh.itehouse.gov/news/releases/2004/01 /20040120-7.html
487 “Madrid bombing probe finds no al-Qaida link”, MSNBC, March 9, 2006 
http: /  /www.msnbc.msn.com/id/1 1753547 /from /R L.l /
Mark Townsend, “Leak reveals official story of London bombings”, Observer, April 9, 2006
http://politics.guardian.co.uk/labour/story/0tr1750264r00.html
488 Arquilla & Ronfeldt, “Looking Ahead” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.456
489 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.45
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However, the authors recognise that it is not possible or even desirable for state actors 

to completely abandon hierarchies (states have an irreducibly hierarchical core). The 

challenge is therefore for these actors to exploit the flexibility and adaptability o f 

networks while preserving some hierarchical features — hybridisation is the goal. For 

Ronfeldt and Arquilla, the ability o f the state to meet the challenges o f the twenty-first 

century will hinge on its ability to appropriate the network form, whether in the 

political, administrative, policing, or military sphere. In the latter, networks have the 

potential not only for new organisational forms but also for new tactics, in particular 

that o t swarming.

Swarming: Of Ants and Men

A  military force has no constant formation, water has no constant shape: 
the ability to gain victoiy by changing and adapting according to the 
opponent is called genius.

Sun T%u, The A rt of War

According to the new emerging military paradigm, operating as a networked force 

allows troops to act in ways which are impossible to their hierarchical counterparts. 

Drawing further from the writings o f complexity theorists and deploying biological and 

zoological metaphors, military theories appeal to the ‘swarm’, the networks of 

distributed intelligence which enable bees, ants, and termites to evolve complex forms 

o f collective behaviour on the basis of the simple rules o f interaction o f their individual 

members. O f particular interest is the resiliency and flexibility o f these swarms as 

amorphous ensembles in which no single individual is critical to their continued 

existence and successful operation. Military swarms promise not only more adaptable 

and survivable forces but also new offensive and defensive tactics better suited to the 

contemporary battlespace.

Kevin Kelly contrasts the clock model whereby “you construct a system as a long string 

o f sequential operations” with the swarm model, “systems ordered as a patchwork of 

parallel operations” where, in the absence o f a chain of command “what emerges from 

the collective is not a series o f critical individual actions but a multitude o f simultaneous
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actions whose collective pattern is more important.”490 These two models constitute for 

Kelly the two theoretical poles o f organisation and offer a trade-off between control and 

predictability on one hand and adaptability and resilience on the other. Real-life systems 

most often lie somewhere in between these two poles and if the military is not 

attempting to completely dispense with hierarchy, it is now feeling the pull o f the swarm 

pole most.

The fluidity o f swarms allows these forms of social organization to adapt more rapidly 

and effectively to the unforeseen. When discussing ant colonies, Nicolis and Prigogine 

argue that:

[a] permanent structure in an unpredictable environment may well compromise the 
adaptability of the colony and bring it to a subopdmal regime. A possible reaction toward 
such an environment is to maintain a high rate of exploration and the ability to rapidly 
develop temporary structures suitable for taking advantage of any favorable occasion that 
might arise. In other words, it would seem that randomness presents an adaptive value in 
the organization of society.491

W hat enables ants to identify the optimal state o f fitness in a given environment is the 

process o f distributed computing they can be thought o f as embodying. For'example, 

despite the limited perceptive apparatus and intelligence o f the single ant, a colony can 

identify rapidly the shortest route across a rugged landscape. This is achieved by the 

secretion o f pheromones which serves to communicate between its members — 

“pheromones can be thought o f as information broadcasted or communicated within 

the ant system.”492 In this manner, tiny pieces o f local knowledge acquired by individual 

ants combine to constitute the emergent global knowledge that characterises the colony 

as a whole. The sheer number o f ants allows for a process o f computational trial and 

error which enables the colony to evolve the optimal solution to any problem. As Kelly 

puts it, “this calculation perfectly mirrors the evolutionary search: dumb, blind agent, 

simultaneous agents trying to optimise a path on a computationally rugged landscape. 

Ants are a parallel processing machine.”493 This distributed form of computing is what 

grants complex adaptive systems their ability to change and produce creative solutions 

to new problems.

490 Kevin Kelly, Out of Control: The New Biology of Machines (Reading, Berks, UK: Cox & Wyman, 1994), p.27
491 Gregoire Nicolis & Ilya Prigogine, Exploring Complexity (New York: W.H Freeman, 1989), p.233
492 Kelly, Out of Control, p.395
493 Kelly, Out of Control, p.395
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For Marion and Uhl-Bien, al-Qaeda successfully constituted a distributed intelligence 

network which “enabled creativity and innovation on a large scale (such as that needed 

to pull off the 9/11 events), and helped assure the broadly based viability o f the 

system.”494 Sageman’s own account o f the manner in which jihadist networks carry out 

operations fits this picture:

When a terrorist network embarks on a major new operation, the people involved do not 
know exactly how they are going to do it. No role is specified in advance. Each mujaheed 
starts with a general notion of what is required of him and improvises with other mujaheed 
as he goes along. Terrorist operations are not so frequent that they become routine, for law 
enforcement forces would then catch on and be able to prevent them. These operations 
involve much uncertainty and many unanticipated obstacles. The state o f affairs requires 
communication among mutually dependent mujahedin, in the sense that each possesses 
information and resources relevant to the other and none has enough to act in isolation. At 
this local level, the mujahedin form a network of information processors, where the 
network handles large volumes of information efficiently without overloading any 
individual processor [...] Communications are possible horizontally among multiple nodes, 
allowing them to solve their problems locally without having to refer up to Central Staff 
and overwhelming the vertical links of communication.495

It is therefore through a form of parallel processing that jihadists find their way towards 

a solution to the organisational challenges o f fulfilling a designated mission and that 

collective behaviour emerges without the direction from a hierarchy.

Translated to the military field, swarms are the natural corollary o f the constitution of 

the networked forces, emergent phenomena produced by decentralisation and 

information-sharing:

in the future, platforms will evolve from being networked entities to being nodes in the 
network, to organizing efforts resembling ‘packs’ and ‘swarms.’ This transformation will be 
so complete that the packs and swarms that evolve from existing platforms will bear no 
resemblance to their distant (in generations, not time) predecessors. Hence, in the process, 
the very notion of a platform will evaporate; their raison d’etre will be satisfied by a new 
approach as a result of a series of transformations consisting o f ever-larger numbers of 
smaller, dumber, and cheaper components. These collections of entities will ultimately 
become dynamically reconfigurable packs, swarms, or other organizations of highly 
specialized components that work together like the cells of our bodies. As such, they will be 
able to be far more discriminating and precise in the effects they cause. They will become 
less mechanical and more organic, less engineered and more ‘grown.’496

The language employed suggests that these constituent ‘entities’ may not necessarily be 

human. Indeed, Glenn James predicts the battlespace o f the future may see what he 

dubs “‘fire ant’ warfare — combat o f the small and numerous” in which swarms

494 Marion & Uhl-Bien, “Complexity Theory and Al-Qaeda”, p.27
495 Mark Sageman, Understanding Terror Networks (Philadelphia, PA: University of Pennsylvania Press, 
2004), p.165
496 Alberts & Hayes, Power to the Edge, p. 169
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composed o f millions o f sensors, emitters, microbots, and micro-missiles and deployed 

via pre-positioning, burial, air drops, artillery rounds, or missiles, saturate the terrain of 

conflict.497

Beyond the flexibility and evolutionary capability that is attributed to military swarms, it 

is also claimed that they will also be able to bring force to bear in a new manner: “in 

netwar, attacks will come in ‘swarms’ rather than in more traditional ‘waves.’”498 Rather 

than throwing themselves onto the enemy, forces will be able converge on all directions 

for offensive bursts thereby maximizing the shock effect:

swarming is achieved when the dispersed nodes of a network of small (and also perhaps 
some large) forces can converge on an enemy from multiple directions, through either fire 
or maneuver. The overall aim should be sustainable pulsing — swarm networks must be able to 
coalesce rapidly and stealthily on a target, then dissever and redisperse, immediately ready 
to recombine for a new pulse. A swarm network should have little to no mass as a rule 
(except perhaps during a pulse), but it should have a high energy potential — like a swarm of 
bees that can fell a mighty beast, or a network of antibodies that can attack a spreading 
virus.499

Dispersing after an attack also renders troops less vulnerable to enemy attacks, 

particularly in the context o f the high lethality and precision o f contemporary and future 

battlefields.

Arquilla and Ronfeldt do not merely see swarming as a military tactic to come but as 

one that has been already successfully employed many times in the past, from the 

Mongol hordes o f Genghis Khan to the German U-Boat tactics in World War II. They 

also observe that similar tactics have been employed in non-military context by diverse 

activists during the civil rights, anti-Vietnam war, and Seattle anti-globalisation 

protests.500 While Linda Beckerman does not employ the term o f swarming, her 

description of the tactics o f “mass and disperse oscillation” deployed by Somali fighters 

during the infamous Battle o f Mogadishu in October 1993 (most commonly known as 

the Black Hawk Down incident) is also relevant.501 This broad range o f examples 

underlines again that such networked tactics are primarily organisationally driven rather 

than by technology, although developments in ICTs have certainly made them more 

widely applicable.

497 James, “Chaos Theory: The Essentials for Military Applications”, p.79
498 Arquilla & Ronfeldt, “The Advent O f Netwar” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.282
499 Arquilla & Ronfeldt, “Looking Ahead” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.465
500 A rquilla & Ronfeldt, “Looking Ahead” in Arquilla & Ronfeldt (eds.), In Athena's Camp, p.465
301 Beckerman, “The Non-Linear Dynamics of War”
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Arquilla and Rondfeldt propose a new doctrine o f BatdeSwarm that the U.S. military 

should adopt along with a greater networking o f its forces. This would entail a shift 

towards light networked semi-autonomous forces supported by the latest ICTs and 

directed by a command authority with informational topsight (a scheme that resembles 

very much that o f network-centric warfare, discussed in the following section). While 

the authors draw inspiration from complexity theory and studies o f the behaviour o f 

swarms, packs and flocks in the natural world, they recogni2e that the networked 

behaviour they are advocating is distinct in significant ways. Swarming networks in the 

natural world are more fluid and distributed than their military counterparts, while at the 

same time lacking in topsight. The swarming models created by complexity theorists and 

which provided the original insights into animal behaviour naturally share these features:

This theoretical and experimental work usually depicts swarming as a system in which 
autonomous agents interact and move around according to a set of rules and a schedule, 
often seeking an optimal outcome vis-a-vis another agent, set of agents, or environmental 
feature. The modeling allows for continual interactions among the agents, as they form and 
reform in fluid, shifting networks (and maybe hierarchies as well). These networks may 
persist for some time, or may break down and recombine into others opportunistically. 
Information may flow quite freely from one agent to the next about conditions near them 
in the model, but, in the examples we have seen, there is rarely an identifiable distribution 
of, or hub for distributing, topsight among all the agents. Some of the models and 
applications seem to be more about follow-the-leader or follow-your-neighbor ‘flocking’ 
behavior than swarming conjointly to attack an adversary or other target.502

The behaviour these models describe does indeed seem to resemble more that o f 

international jihadist terrorism and insurgency than the ideals o f BatdeSwarm in which 

‘autonomous’ agents are constrained within more formalised structures o f hierarchical 

authority and operate on the basis of centralised information. Once again, Arquilla and 

Ronfeldt strive for a hybrid model in-between the poles o f rigid centralisation and 

radical decentralisation.

The above sections have reviewed the connections between chaos theory and 

complexity science and new military thinking on warfare through the themes o f decision 

cycles, uncertainty, networks, and swarming. The discussion o f all these elements will 

come to bear on the following section in which the now official Pentagon doctrine o f 

network-centric warfare will be critically examined in order to determine how

jh-------------------------------------------------
502 John Arquilla & David Ronfeldt, Swarming and the Future of Conflict (RAND Corporation, 2000), 
pp.48-49
http://www.rand.org/pubs/documented briefings/2005/RAND D B 3tl.pdf
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significantly it breaks with cybernetic warfare and whether it truly heralds the emergence 

o f a new regime of chaoplexic warfare.

Complexity Goes To War? The Rise of Network-Centric Warfare

One of the things that has emerged out of the study of war is that to beat 
an enemy's complex system,you require a system thafs more complex.

Navy Vice Admiral Arthur Cebrowskfi03

The debacle in Vietnam delivered a strong blow to cybernetic warfare and its ambitions 

for informational omniscience and total predictability. Uncertainty and chaos had not 

been banished from the batdefield — on the contrary, the North Vietnamese had 

exploited it consummately to derail the American war machine and its reliance on 

technology. While the defeat in Vietnam prompted some soul-searching, most o f the 

armed forces refused to view it as a military defeat and blamed the political leadership 

for its inability to overcome an inferiorly equipped peasant guerrilla. Hence the lesson to 

be leamt was not how to win such wars but to avoid such conflicts in the first place. 

The military could thus return to focusing on preparing for war against an opponent 

similar to itself, namely the Soviet Union and the Warsaw Pact, and in which it could 

still place hope in the principles that had been so patently ineffective in Vietnam.

The ideals o f cybernetic warfare experienced a resurgence in the 1980s and then 1990s 

with the SDI project and debate over the forever imminent Revolution in Military 

Affairs (RMA). A key discursive reference for RMA proponents are the texts by 

futurists Alvin and Heidi Toffler, The Third Wave (1980) and War and Anti-W ar (1995)504 

— to the extent that critics frequently refer to RMA advocates as Tofflerians. The 

Tofflers famously argued that human civilisation was entering a third wave in its history; 

after the first agrarian and second industrial societies, comes the informational age. Each 

new wave supersedes the other and brings with it new techniques o f production and 

destruction since “nations make war the same way they make wealth.” Among the

503 Matthew French, “Cebrowski sees Transformation Change”, FCW.com, January 23, 2004 
http: /  /  www.fcw.com/few/articles72004/0119/ web-cebrowski-01 -23-04.asp
504 Alvin Toffler, The Third Wave (London: Collins, 1980); Alvin & Heidi Toffler, War and Anti-W ar
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criticisms levelled at the Tofflers is an excessively deterministic and technocentric 

outlook. Nonetheless, the Tofflers’ ideas proved to be immensely popular within the 

U.S. military and it became one o f the core texts of RMA advocates.

In the hands o f those evangelists, the Third Wave translated into an RMA vision in 

which the future was computers, information networks, and precision-guided 

munitions. Dreams of automated, centralised and even casualty-free wars were revived, 

fuelled in no small part by the spectacular success o f the Gulf War. As Atkinson and 

Moffat put it:

[The information age] brought with it an illusion or panacea that it might be possible to 
exercise control from the centre after all, that new information systems, and ever greater 
bandwidth and computing power would enable command to be controlled,’ and that, somehow, 
technology could, in itself, create the necessary interaction across the layers to enable 
automated control, that processes could be controlled through automation and it was only a 
matter of devising yet more capable computers and information systems.505

Under this worldview, uncertainty and disorder are merely temporary obstacles soon to 

be banished, a limitation o f existing technology. ‘W hat was often referred to as the ‘fog 

o f war’ is in reality disorder — the inability to maintain unity o f action due to 

shortcomings in the C3I systems.”506 A ‘system of systems’ which would allow for the 

interoperability and synergy of Command, Control, Computers, Communications, and 

Information (C4I) and Intelligence, Surveillance and Reconnaissance (ISR) systems was 

recurrently touted as the key to ‘information superiority’ and the eradication o f the ‘fog 

o f war.’

The discourse o f RMA proponents has followed a regular pattern over the years: new 

technology is within reach that will revolutionise warfare and will finally render it to a 

state o f full control and predictability. Admiral William Owens, one o f the keenest 

advocates in recent years, provides us here with a typical specimen:

There is profound information technology available in America. This technology would 
allow our country the capability for the first time in history of man, to be able to ‘see’ a 
very large strategic battlefield with great definition. That means that 24 hours a day, in real­
time, all weather, we could have the ability in a ‘strategic’ battlefield, the size of a country 
250 miles on a side, to see every activity and facility which might be of interest to our 
warfighting, peacemaking or peacekeeping effort. Every command centre, every vehicle

505 Simon Ray Atkinson & James Moffat, The Agile Organisation: From Informal Networks to Complex Effects 
and Agility (Department of Defense CCRP, 2005), pp.170-171
http://www.dodccrp.org/publications/pdf/Atkinson Agile.pdf
506 Norman C. Davis, “An Information-Based Revolution in Military Affairs” in Arquilla & Ronfeldt 
(eds.), In Athena's Camp, p.86
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moving down a road or in a battlefield, every radar and radio, and every critical facility 
could be identified and located to great accuracy, probably about 10 cm. And what is 
important is that if we are able to view a strategic battlefield this way and prevent an enemy 
from doing so, we have dominant battlefield awareness, and we are certain to prevail in a 
conflict.507

Although separated by thirty years, Owens has not departed in any way from the vision 

o f Westmoreland’s 1969 speech on the automated battlefield who at the time had 

foreseen its arrival in “no more than 10 years.”508 In the post-Cold War environment in 

which military budgets were cut as part o f the ‘peace dividend’, the promises o f the 

RMA were particularly appealing as they became a way o f doing more with less and 

substituting manpower for technology. Owens again:

We have too much functional redundancy across our military services and agencies, 
particularly in support and force enhancers like intelligence, medical, logistics, and 
communications, and perhaps in combat areas such as air defense and long range strike. In 
the past, redundancy was compelling because the ‘fog of war’ demanded it to compensate 
for the unexpected. Today, as a nation’s information edge becomes more prominent, the 
extent to which we need the same level of redundancy is questionable.509

This view of warfare is in complete contradiction with the teachings o f chaos and 

complexity theory. Warfare cannot be completely predicted or controlled, knowledge is 

imperfect, and redundancy allows for great adaptability and resilience in the face o f 

contingency. It would therefore appear that the RMA is a mere extension o f the 

principles o f cybernetic warfare and allied with a scientific worldview that has not taken 

on board the most significant recent developments in the field, despite a non-negligible 

military literature that has attempted to draw valuable lessons from them (as seen 

above).

However, the most recent, and now dominant, strand o f the RMA literature has drawn 

in particular from complexity theory and sought to combine past claims from RMA 

prophets with an organisational doctrine inspired by the language and concepts o f the 

non-linear sciences. According to its most vocal advocate and subsequent founding 

director of the Office o f Force Transformation, Vice Admiral Arthur Cebrowski, 

“network-centric warfare looks at war as a complex, adaptive system where nonlinear

507 Statement o f Admiral William A. Owens, USN (Ret) To The US Senate, February 12, 2001 
http://budget.senate.gov/democratic/testimony/2001 / owens defhrng021201 .pdf
508 William Westmoreland, Address to the Association of the U.S. Army, October 14,1969
http: /  /216.239.59.104/search?q~cache:Kw2tmkrWT51gJ:www.stanford.edu/group /mmdd /  SiliconValley/ 
Westmoreland Avestmoreland.rtf
509 Statement of Admiral William A. Owens, USN (Ret) To The US Senate, February 12, 2001
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variables continuously interact.”510 Through the establishment of information networks, 

it is claimed that military organisation can be radically decentralised, allowing for 

processes o f self-organisation and emergence. Although still in its infancy, the doctrine’s 

ultimate ambition is nothing less than a “new theory o f war.”511

The rest o f the section will seek to critically assess the claims o f network-centric warfare, 

identify the elements it draws from complexity theory, and attempt to establish the 

extent to which the doctrine truly constitutes a break with cybernetic warfare. It is my 

claim here that although network-centric warfare has indeed appropriated the language 

and ideas o f complexity, it has done so selectively and still rests on many of the 

presumptions of earlier RMA theories. Furthermore, while decentralisation — or rather 

self-synchronisation — appears to have become the new watchword, many of the 

information systems that network-centric warfare advocates also allow for greater 

centralisation and micro-management.

The doctrine o f network-centric warfare (NCW) first appeared on the scene in the late 

1990s, rapidly rising to prominence to become the new official Pentagon gospel under 

the agenda o f “Transformation.” NCW  now has its counterparts in most major Western 

militaries with Network Enabled Capabilities (NEC) in the U.K., NATO Network 

Enabled Capabilities (NNEC), and Network Enabled Operations (NEOps) in Canada. 

At first sight, network-centric warfare may appear to constitute a decisive break with 

established thinking, drawing explicidy from complexity theory and announcing a 

reversal o f the dominant centralising approach. While in some respects, this is a 

legitimate claim, the following analysis will seek to demonstrate that its practical 

implications are for more ambiguous and that in many ways it displays significant 

continuity with previous RMA theories.

Originating in the U.S. Navy, the ideas o f network-centric warfare started gaining wider 

attention with the evangelism of Arthur Cebrowski. In 1998, Cebrowski published with 

John Garstka an influential article entitled Network-Centric Warfare: Its Origin and Future in

510 Gray, Strategy for Chaos, p.105
511 “When you rack and stack all of that what we are really talking about is a new theory of war because 
we are talking about new sources of power.”
Navy Vice Adm. Arthur Cebrowski, Speech to Network-Centric Warfare Conference, January 22, 2003 
http://www.oft.osd.mil/library/library files/speech 143 CEBROWSKT%20SPEECH%20TQ%20NET 
WORK%20CENTRIC%20WAR.FARE%20CONFERENCE.doc
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which he announced a decisive shift in the theory and practice o f warfare. In order to 

bolster his claims for this RMA, Cebrowski pointed to changes in the economy and 

business management, a very Tofflerian move and in line with an understanding o f 

warfare as an activity that can be reduced to production. In the midst of the Internet 

boom o f the late nineties, the Vice Admiral waxed lyrical about a new economy that had 

turned the laws o f supply and demand “on their heads” and was “characterised by 

extraordinary growth and wealth generation.” 512 For Cebrowski, the source o f this 

revolution was clear and available to all in the military which were willing to listen:

Central to these developments is the shift to network-centric operations, which are 
characterized by information-intensive interactions between computational nodes on the 
network. Whether these interactions are focused on commerce, education, or military 
operations, there is Value’ that is derived from the content, quality, and timeliness of 
information moving between nodes on the network. This value increases as information moves 
toward 100% relevant content, 100% accuracy, and %ero time delay — toward information superiority. 
[emphasis added]513

Information superiority — which sounds a lot like Owen’s dominant battlefield 

awareness — is the key concept to NCW since this is the element from which increased 

combat power is believed to originate. Thus NCW defines itself as “an information 

superiority-enabled concept o f operations that generates increased combat power by 

networking sensors, decision makers, and shooters to achieve shared awareness, 

increased speed o f command, higher tempo of operations, greater lethality, increased 

survivability, and a degree o f self-synchronization.”514

While NCW  authors differ in the extent to which they believe the fog o f war can be 

irrevocably lifted, they all share a common understanding o f uncertainty as generated by 

a lack o f information. The response is therefore consistently the same: deploy 

technology to acquire, process and distribute more information and ensure certain 

victory through information superiority. While improving the reliability o f information 

can certainly be beneficial, the non-linear sciences point to the profound limitations of 

such an approach and there are three fundamental criticisms that can be levelled at the 

conception o f information in NCW  literature.

512 Arthur K. Cebrowski & John J. Garstka, “Network-Centric Warfare: Its Origin and Future”, Proceedings, 
U.S. Naval Institute, January 1998 http:/ /  www.usni.org/Proceedings/Articles98/PROcebrowski.htm
513 Cebrowski & Garstka, “Network-Centric Warfare”
514 David S. Alberts, John J. Garstka & Frederick P. Stein, Network-Centric Warfare: Developing and Leveraging 
Information Superiority, 2nd ed. (Department of Defense CCRP, 2000), p.2
http://www.dodccrp.org/publications/pdf/Alberts NCW.pdf
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Firstly, as chaos theory has demonstrated, the sensitivity to initial conditions o f non­

linear systems implies that no matter how precise our information about a system’s 

operation and its state at any given instant, our long term predictability is severely 

limited, if not completely inexistent. Such a conclusion applies to a perfecdy transparent 

set of non-linear functions run through a computer, let alone to a real-world 

phenomenon like war in which the system’s borders are uncertain, variables are 

undoubtedly far more numerous, and successfully identifying and measuring them is 

nigh impossible. O n its own this might not necessarily be a fatal criticism since short­

term predictability may still be possible and an approximate long term predictability may 

also be achievable if system attractors are identified.

Secondly, if we take Boyd’s OODA lo o p ’ seriously, we must accept that any fixed 

model o f reality is destined to experience entropic decay — information cannot merely 

traverse the system, it must also be the basis on which the latter can be reshaped and 

reorganised. However, in appropriating the OODA loop’, NCW has merely reduced it 

to a greatly simplified decision cycle which acts more like a cybernetic negative feedback 

loop than a complex adaptive system — more on this later.

Finally, NCW  proponents seem to discount completely one o f Clausewitz’s most 

famous pronouncements — “a great part o f the information obtained in war is 

contradictory, a still greater part is false, and by far the greatest part is o f doubtful 

character” 515 — or at least presume that it only applies to times bygone and is now 

rendered irrelevant by advances in ICTs. Indeed, NCW puts complete faith in sensor 

technology and the ability of computer systems to synthesise their input into a coherent 

and unambiguous shared operational picture of the battlespace on the basis of which 

military units will be able to develop new levels of collaboration and coordination. Such 

a view rests on several crucial assumptions such as the infallibility o f sensors and 

computer systems, discounting the ability o f adversaries to fool sensors and create a 

misleading picture, and presuming that common data will necessarily be interpreted in 

the same manner by all units. Furthermore, NCW  seems to assume that greater 

quantities o f sensor information will result in a higher quality of information — an 

assumption which again rests on the belief that ambiguity and uncertainty only results 

from a lack o f information, not from confusion produced by potentially conflicting

515 Clausewitz, On War
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pieces o f information or failures in their interpretation. As Milan Vego points out in 

referring back to Clausewitz, “uncertainty is not the result o f gaps in information but 

largely is caused by lack o f comprehension or false interpretation o f the information 

acquired.”516 By ignoring all these insights, the U.S. military runs the risk of designing an 

organisation which relies on reliable high-quality information rather than granting it the 

ability to adapt to uncertain conditions where information may be scarce, incomplete, or 

untrustworthy.

Therefore the most likely road to success does not lie in attempting the attain the 

illusory goal o f “100% relevant content, 100% accuracy, and zero time delay” which 

would allow the perfect operation o f a frictionless cybernetic war machine, but in 

embracing uncertainty and designing a resilient and flexible military that is capable of 

adapting to the unforeseen and contingent. Conversely, an advantage over the adversary 

can be acquired not merely through targeting his information systems or accelerating the 

tempo o f operations but by varying the tactics and offensive moves deployed against 

him. This would constitute a far more faithful application o f chaos and complexity 

theory than most o f the principles o f NCW, despite their regular references to the 

aforementioned sciences.

However, it is important to note that NCW does seem to break with previous 

conceptions o f the RMA in its goal o f self-synchronisation and draws here its 

inspiration and terminology directly from complexity theory. Self-synchronisation 

implies a radical decentralisation o f the command structure by increasing the freedom of 

low-level forces to operate nearly autonomously and coordinate themselves on the basis 

o f shared awareness, common doctrine and rules o f engagement, and the commander’s 

general intent (i.e. the overall objectives o f the mission) — a set-up reminiscent, at least 

on paper, o f the German Aufiragstaktik. The underlying principle is that forces will self- 

organise and emergent properties denied to top-down command will emerge. For 

Cebrowski and others, complexity theory is the key to unlocking increased combat 

power:

Military operations are enormously complex, and complexity theory tells us that such 
enterprises organize best from the bottom-up. Traditionally, however, military commanders 
work to obtain top-down command-directed synchronization to achieve the required level

516 Milan Vego, “Net-Centric Is N ot Decisive”, Proceedings, U.S. Naval Institute, January 2003 
http: /  /  www.usni.org/proceedings /  articles03 /  provegoO 1 .htm
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of mass and fires at the point of contact with the enemy. Because each element of the force 
has a unique operating rhythm, and because errors in force movement needlessly consume 
combat power, combat at the operational level is reduced to a step function, which takes 
time and provides opportunity to the enemy. After the initial engagement, there is an 
operational pause, and the cycle repeats. In contrast, bottom-up organization yields self­
synchronization, where the step function becomes a smooth curve, and combat moves to a 
high-speed continuum. The “Observe-Orient-Decide-Act (OODA) Loop” appears to 
disappear, and the enemy is denied the operational pause.517

Self-synchronised forces can therefore ‘mass effects’, increasing the combat tempo and 

raining blows on an adversary that is denied the time to respond and go through his 

own decision cycle, thus leading to his collapse (the phenomenon of ‘shock and awe’).

For the proponents of NCW, this new emerging form of warfare marks a momentous 

shift from ‘platform-centric’ organisations which privilege independent platforms 

(weapon systems) with their own sensors and weapons to ‘network-centric’ 

organizations that link together sensors, decision makers, and shooters into a single 

network. The network therefore constitutes the warfighting system in NCW with all 

nodes (platforms) on it ultimately substitutable. The principle is to create a form of 

distributed intelligence by sharing total information among all participants. According to 

the theory, this pooling of information creates a state of shared awareness among all 

actors which leads to self-synchronisation an emergent behaviour (see Figure 18).

. . sharedm formation —• awareness

Figure 18: From information to em ergence518

For NCW theorists, the communications network and the information superiority it 

provides constitute the substrate from which bottom-up self-organisation can emerge. 

“NCW works because it has identified, in general terms, the initial conditions that need 

to exist in order to achieve effective self-synchronization.”519

While self-synchronisation sounds a lot like self-organisation and that NCW advocates 

frequendy speak of it as if it was a straightforward lesson from complexity theory, the

517 Cebrowski & Garstka, “Network-Centric Warfare”
518 Moffat, Complexity and Network-Centric Warfare, p. 50
519 Alberts & Hayes, Power to the Edge, pp.208-209
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practices it covers are in fact much more ambiguous and decentralisation does not 

necessarily flow from it. Self-synchronisation is presented as the coordination o f units 

through the creation and distribution o f a common operational picture by networking 

sensors, shooters, and decision-makers. This theoretically overcomes the limitations o f 

platform-centric warfare in which information is ‘stove-piped’ in each individual 

platform and can only be communicated in a highly inefficient manner (traditionally 

using voice communication). However, this does not automatically mean greater 

autonomy and initiative for subordinate units since it in fact also allows for a tightening 

of the degree o f control o f the C&C hierarchy over them. Indeed, some have argued 

that “the seductiveness o f information technology stimulates military organisational 

orientation towards greater centralised control and more rigid hierarchical organisations 

instead o f the desired orientation o f decentralised control and more flexible 

organisations.”520

NCW talks o f decoupling sensors, actors, and decision-makers for the benefit of 

connecting them all to a common infostructure. However this also paves the way for an 

even greater differentiation between those units that command and those that merely 

carry out the orders. As Kolanda argues, a quite opposite argument to self­

synchronisation can be made on the basis of the same technological arrangements: “the 

core assumptions of this argument are that shared information leads to shared 

understanding, that decisions are made most effectively at higher echelons o f 

organization, that organisations consist o f ‘decision entities’ controlling ‘actor entities’ — 

and that networks permit fewer o f the former to control more o f the latter.”521 As some 

of the most prominent theorists o f NCW recognise themselves, “in general, greater 

capability to acquire, integrate, move, and process larger amounts o f information rapidly 

makes more centralised decisionmaking possible.”522 Thus, when NCW  advocates speak 

of “flattening hierarchies” in order to increase the “span o f control”,523 this may entail 

removing layers of middle management that came with industrial age bureaucracies 

(here the inspiration is again similar changes in business organisations) but does not 

necessarily lead to an emancipation o f lower-level forces from hierarchical control.

520 Gregory A. Roman, “The Command or Control Dilemma”, p.3
521 Christopher D. Kolenda, “Transforming How We Fight - A Conceptual Approach”, Naval War 
College Review, Spring 2003, Vol. LVT, No. 2
http:/ / www.nwc.navy.mil/press/Review/2003/Spring/art6-sp3.htm
322 David S. Alberts, John J. Garstka, Richard E. Hayes & David A. Signorip, Understanding Information Age 
Warfare (CCRP Publications, 2001), p. 177 h ttp ://www.dodccrp.org/publicadons/pdf/Alberts UIAW.pdf
523 Alberts, Garstka & Stein, Network-Centric Warfare, p.81
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For one, the full operational picture constituted through the infostructure is not 

available to all levels o f the hierarchy but only to the senior levels o f command & 

control which can subsequently decide what picture is made available to different units. 

While “shared awareness” is referred to as “a type o f collective consciousness”,524 in 

practice it implies total omniscience at the top which can then choose which parts o f the 

picture are made available to subordinates. NCW theorists concede that “current 

discussion o f the need for new C2 approaches in an era o f Information Age Warfare 

explicitly considers situations where the best (most current, accurate, and complete) 

information may no longer be located at the subordinate command engaged in the field, 

but rather may be located at senior headquarters.”525 This is in marked contrast with 

previous cases o f decentralised military organisation as employed by the German army 

in World War II with Blitzkrieg — the assumption was that subordinate units possessed 

more accurate local knowledge than headquarters and would therefore be better able to 

adapt to changing circumstances and demonstrate appropriate creativity and initiative.

Thomas Barnett expresses some serious reservations about the idea o f the ‘common 

operating picture’, the shared awareness which is supposed to be the catalyser for 

bottom-up self-synchronisation:

The common operating picture cannot really be shared in the sense that ownership will 
remain a top-down affair [...] NCW promises to flatten hierarchies, but the grave nature of 
military operations may push too many commanders into becoming control freaks, fed by 
an almost unlimited data flow [...] The infusion of information technology into hierarchical 
organisations typically reduces the traditional asymmetries o f information that define 
superior-subordinate relationships. Taken in this light, the common operating picture is an 
attempt by military leaders to retain the high ground of command prerogative — a sort of 
non-stop internal spin control by commanders on what is necessarily a constantly breaking 
story among all participants, given their access to information that previously remained 
under the near-exclusive purview of superior officers. That gets me to the question of the 
common operating picture's ‘realness’, for it suggests that the picture will be less a raw 
representation of operational reality than a command-manipulated virtual reality.526

Units whose operational picture consists merely o f a simplified version o f that available 

to their superiors are effectively deprived of any ground upon which to make 

recommendations and exert influence on their commanding officers, particularly when 

local and situated knowledge not represented in the networked infosphere is devalued.

524 Alberts, Garstka & Stein, Network-Centric Warfare, p.135
525 Alberts, Garstka, Hayes & Signorip, Understanding Information Age Warfare, p.178
526 Thomas P.M. Barnett, “The Seven Deadly Sins of Network-Centric Warfare”, Proceedings, U.S. Naval 
Institute, January 1999, pp.36-39 http://www.thomaspmbarnett.com/published/7d.htm
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In other words, it negates the possibility of realising command and control as theorised 

by the Marine Corps:

Command and control is not so much a matter of one part o f the organisation ‘getting 
control over’ another as something that connects all the elements together in a cooperative 
effort. All parts of the organisation contribute action and feedback — ‘command’ and 
‘control’ — in overall cooperation. Command and control is thus fundamentally an activity 
of reciprocal influence.527

The use of the Predator aircraft drone in Afghanistan is a case in point. Beaming images 

from the battlefield straight to U.S. Central Command headquarters in Tampa and at the 

Pentagon, the sensor provided soldiers on the ground “litde useful information and 

were sometimes a distraction, encouraging higher-level military staffs to try to 

micromanage the fighting.”528 As Vego argues, “having a common operating picture will 

lead operational commanders to be increasingly involved in purely tactical decisions, 

instead o f focusing on the operational and strategic aspects o f the situation within their 

respective areas o f responsibility.”529

Bar-Yam recognises that there are two fundamentally distinct approaches to networked 

operations:

The first involves networked action agents capable of individual action but coordinated for 
effective collective function through self-organiaed patterns. Analogous behaviors can be 
identified in swarming insects and the immune system. The second involves networked 
decision makers receiving information from a set of sensors and controlling coherent large 
scale effectors. Analogous organizational structures can be identified in the physiological 
neuro-muscular system. Each of these important models o f networks deserves 
consideration for the development of networked military forces. The two paradigms are 
also not restrictive in the sense that there are many intermediate cases that can be 
considered.5?0

We see here two conceptions o f warfare each with its respective scientific corpus and 

biological metaphors. While the former is a decentralised, self-organised network o f 

autonomous units, the latter is a centralised army in which the network serves only to 

strengthen the distinction between decision-makers and those that carry the actions out 

(the effectors). In the second case, there is no sense in which a true network has 

replaced a hierarchical structure.

527 MCDP 6: Command and Control, United States Marine Corps, pp.46-47
528 Thomas E. Ricks, “Beaming the Battlefield Home: Live Video of Afghan Fighting Had Questionable 
Effect”, Washington Post, 26 March 2002
529 Vego, “Net-Centric Is N ot Decisive”
530 Bar-Yam, “Complexity of Military Conflict”, p.23-4
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Arquilla and Ronfeld also recognise that networking does not simply entail 

decentralisation o f command and control but also greater ‘topsight’ for the hierarchy:

Moving to networked structures may require some decentralisation of command and 
control, which may well be resisted in light of earlier views that the new technology would 
provide greater central control of military operations. But decentralisation is only part of 
the picture; the new technology may also provide greater ‘topsight’ — a central 
understanding of the big picture that enhances the management o f complexity. Many 
treatments of organisational redesign laud decentralisation; yet decentralisation alone is not 
the key issue. The pairing of decentralisation with topsight brings the real gains.531

Both Bar-Yam and Arquilla and Ronfeldt posit two poles to military organisation o f 

hierarchies and networks within which the U.S. military can fluctuate according to its 

needs and opportunities. Official NCW  literature goes in the same direction: “NCW 

gives us the opportunity to explore the vast middle ground between the Industrial Age 

top-down hierarchical command and control approach and the highly decentralised 

model o f small units assigned pieces o f the problem with only their organic 

capabilities.”532

For Bar-Yam, the merits o f networks over hierarchies are to be found in the superiority 

of the formers’ distributed information processing; while hierarchical structures can be 

effective at ordering large scale operations, they are far less efficient in conditions o f 

high complexity:

Hierarchical command systems are designed for the largest scale impacts and thus relatively 
simple warfare. Indeed, traditional military forces and related command control and 
planning, were designed for conventional large scale conflicts. Distributed control systems, 
when properly designed, can enhance the ability to meet complex challenges.533

The real benefits o f the network are to be found in its capacity for distributed 

computing and overcoming the limitations of hierarchical command in complex 

environments (Bar-Yam contrasts the simplicity of maritime combat to littoral warfare, 

and the simple environments o f the desert and the plain to the complexity o f the jungle, 

mountains, and urban areas):

The key to this understanding is that each individual has a limited complexity. In particular, 
an individual is limited in ability to process information and to communicate with others 
(bandwidth). In an idealised hierarchy, only the single leader o f the organisation can 
coordinate the largest organisational units whose commanders are directly under his/her 
command. The coordination between these units cannot be of greater complexity than the

531 Arquilla & Ronfeldt, “Cyberwar is Coming!” in Arquilla & Ronfeldt (eds.), In Athena's Camp, pp.30-31
532 Alberts, Garstka & Stein, Network-Centric Warfare, p.162
533 Bar-Yam, “Complexity of Military Conflict”, p.l

217



leader. More generally, we can state that to the extent that any single human being is 
responsible for coordinating parts of an organisation, the coordinated behaviours o f the 
organisation will be limited to the complexity of a single individual. Since coordinated 
behaviours are relatively large scale behaviours, this implies that there is a limit to the 
complexity of larger scale behaviours of the organization. Thus, using a command 
hierarchy is effective at amplifying the scale of behaviour, but not its complexity., By 
contrast, a network structure (like the human brain) can have a complexity greater than that 
o f an individual element (neuron).534

While the logic o f this argument is sound and that different organisational arrangements 

may indeed suit different types o f war environments and situations, much will depend 

on the ability o f the U.S. military hierarchy to show appropriate judgement and resist the 

temptations o f centralisation and micro-management when it is counter-productive. The 

historical record in this respect should not inspire much confidence.

Jt is also necessary to point out that to present claims that shared awareness leads to 

bottom-up self-organisation as a straightforward application o f the principles o f 

complexity is to fundamentally misinterpret the scientific theory. As we saw in our 

discussion on swarming, complexity in natural or simulated systems does not emerge 

from a global shared situational awareness that would be available to all or any o f the 

components o f a system. This assumes a centralisation o f information that precedes any 

decentralized action by the parts of the system Rather, it is on the basis o f localised 

information, calculation and action that highly complex behaviour can emerge without 

any single entity possessing an overall knowledge o f the system and environment. No 

single ant has a complete knowledge o f the state o f its colony or environment at any 

given moment — it acts on the basis o f only partial knowledge o f its immediate vicinity 

as provided by its senses and o f information that has been passed to it by neighbouring 

ants or pheromone deposits — even if the colony as a whole appears to behave as if it 

did. This is how complex systems can develop emergent behaviour on the basis o f 

localised action. O r as the Marine Corps command and control doctrine puts it in 

discussing military organisation, “a complex system is any system composed o f multiple 

parts, each of which must act individually according to its own circumstances and 

which, by so acting, changes the circumstances affecting all the other parts.”335

This is not to discount the benefits o f shared informational awareness but to signal 

crucial divergences with the complexity sciences which NCW claims its authority from.

534 Bar-Yam, “Complexity of Military Conflict”, p.8
535 MCDP 6 Command and Control’ United States Marine Corps, 1996, p.41
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Rather than constituting a decentralised organisation which can operate on the basis o f 

limited and dispersed information, as in the case o f al-Qaeda, the US military is 

developing armed forces which are dependent on large volumes o f accurate information 

to take their decisions and act in unison.

This information is to be acquired, processed and distributed through an overarching 

“system of systems” that has been an ambition o f the U.S. military since General 

Westmoreland. For NCW  advocates, this is the “entry fee” to the brave new military 

world they promise and that has. prompted the Pentagon to earmark $200 billion or 

more in expenditure for the acquisition o f network hardware and software over the next 

decade.536 However, the very systems the whole edifice o f NCW is built on may in fact 

never perform as their proponents and manufacturers claim.

For critics like Chuck Spinney, the RMA and NCW are only further iterations o f the 

concepts that underlay Robert McNamara's failed Igloo White project, the cybernetic 

system designed to create an impassable electronic line in Vietnam.537 In every iteration 

the resulting “system of systems” relies on four components:

(1) observation systems to identify enemy forces and targets;
(2) orientation processes that filter observations through computerised target recognition 
templates based on the predicted ‘signatures’ we expect our adversary to exhibit on the 
battlefield;
(3) centralised command and control systems to orchestrate the mix of attack options on 
the selected set o f enemy signatures (the array targets);
(4) a mix of hi-tech precision-guided weapons to execute the desired attack options.538

Spinney finds three crucial assumptions underpinning such a project. The first is the 

ability to predict the signature pattern of the adversary. The second is the assumption 

that surveillance and reconnaissance systems will be able to distinguish enemy forces 

from background noise constituted by friendly forces, non-combatants, and the 

environment. Finally, and perhaps most importantly, the O O D A  ‘loop’ which 

proponents of these systems refer to is:

based on a simplistic cybernetic model that assumes the conduct of war can be 
methodically monitored and minutely regulated by a system of sensors and negative 
feedback control signals, much like the temperature of a room is monitored and regulated 
by the predicted target temperature (or template) and negative feedback signals o f a 
thermostat. One consequence of these assumptions is that the exclusive reliance on a

536 Weiner, “A ‘God’s-Eye View’ of the Battlefield”
537 See chapter 6
538 Spinney, “Asleep at the Switch in Versailles”
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negative feedback control architecture eliminates the possibility o f adapting to unforeseen 
circumstances. This limitation can turn Boyd's conception of a dialectical non-linear 
OODA ‘loop’ based on the idea of co-evolution into a one way non-adaptive road to 
confusion and disorder if the enemy chooses to act unpredictably.539

Indeed, while advocates o f NCW  refer to Boyd and the OODA ‘loop’, their main 

concern seems to be to defeat the enemy through an acceleration o f the decision cycle, 

as opposed to the ability to act unpredictably and creatively adapt in response to 

contingencies. Boyd did talk o f cycling through the OODA ‘loop’ quicker but in the 

sense o f adapting to the batde situation faster, not merely by executing the same 

commands at a faster pace. By emphasising speed above everything else, NCW  seeks 

merely to act faster by cutting down the time dedicated to all the phases in the decision 

cycle, including analysis and synthesis. General Myers’s pronouncement is symptomatic: 

“improved joint C4ISR will allow U.S. forces to exploit a decision cycle — to observe, 

decide, and act — faster than an adversary. History is pretty clear: The side that does this 

faster wins.”540 The omission o f the orientation phase from the decision cycle in Myers’s 

statement is revealing of the impoverished understanding o f the O O D A  ‘loop’ that is 

prevalent among NCW  evangelists. Rather than utilising gains in the speed o f 

information processing and distribution to increase the time available for orientation 

and thereby the ability to adapt to changing circumstances and surprise adversaries, 

NCW  persists with a rigid cybernetic understanding o f warfare that risks rendering U.S. 

military operations utterly predictable to a competent opponent.

Spinney points to the ease with which the Serbs were able to fool NATO sensors with 

relatively low-tech countermeasures (decoys, camouflage, fleeting emissions) during the 

Kosovo War. When the smoke from the campaign had cleared, the ineffectiveness o f 

the 78 day aerial bombardment became obvious, along with the extent to which NATO 

had been operating under a completely false sense o f success. Newsweek reported in 

2000 that an Air Force investigation discovered on the ground the remains o f only 14 

tanks (out o f 120 initially ‘confirmed’ strikes), 18 armoured personnel carriers (as 

opposed to 220), and 20 artillery pieces (out of the previously claimed 450).541 Despite 

such failures by electronic sensors and the systems designed to accumulate and process 

the information they receive, U.S. military gluttony for ever more information has

539 Spinney, “Asleep at the Switch in Versailles”
540 Richard B. Myers, “Understanding Transformation” Proceedings, U.S. Naval Institute, February 2003, 
pp. 39-40
541 John Barry & Evan Thomas, “The Kosovo Cover-Up”, Newsweek, May 15, 2000
http://www.medi.ll.northwestern.edu/wbca/2001poe2.html
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continued unabated. The new watchword is “persistent surveillance”, “the ability to 

place intelligence assets on a target continuously or near continuously,”542 with which a 

new raft o f hardware and software procurement is being justified and still premised on 

the notion that greater volumes o f information will deliver greater understanding and 

certainty.

Perhaps the hubristic quality o f the faith in the omniscient powers o f ICTs — if only 

enough information can be gathered — was never more flagrant than in DARPA’s now 

defunct Information Awareness Office (IAO). Created in January 2002, the IA O ’s 

purpose was to combine several DARPA projects for the application o f information 

technology to counter transnational threats to national security. According to the IAO:

The key to fighting terrorism is information. Elements of the solution include gathering a 
much broader array of data than we do currently, discovering information from elements of 
the data, creating models of hypotheses, and analyzing these models in a collaborative 
environment to determine the most probable current or future scenario.543

The most important and controversial program was the Total Information Awareness 

(TLA) project — later renamed Terrorism Information Awareness in response to 

criticism by privacy groups — a systems-level program which would integrate the 

technology from all the other IAO programs to create a “counterterrorism information 

architecture.” This architecture would then apply data-mining techniques imported from 

the business world to vast quantities o f information pooled from personal records, 

financial and commercial transactions, media content, private conversations, and 

existing intelligence in order to uncover suspicious correlations and patterns and thus 

pre-empt future terrorist attacks. The program would effectively create a virtual 

database of “an unprecedented scale,” “a new kind o f extremely large, omni-media, 

virtually-centralized and semantically rich information repository.”544 Related projects o f 

IAO included automated text and speech translation and summarisation, facial 

recognition, identification and classification o f human activities in surveillance 

environments (including crowds) using video and a range o f sensors, automatic

542 Tamara E. McFarren, ‘Tersistent Surveillance”, Military Geospatial Technology, Volume 2, Issue 3, 
September 28, 2004 http://www.military-geospatial-t.echno1opy.com/article.cfmPDocID—631
543 Information Awareness Office, DARPA
http://web.archive.org/web/20021017111910/http://www.darpa.mil/iao/
544 “BAA 02-08 - Information Awareness Proposer Information Pamphlet” (Information Awareness 
Office) http://infowar.net/tia/www.darpa.mil/iao/BAA02-08pdf
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extraction of intelligence from broadcasts, newswires and conversations, and assisted 

decision-making and predictive software.

Figure 19: The Information Awareness Office logo545

The original name of the project pointed to its ambition as an all-encompassing 

program of data processing and analysis through which an omniscient ability to ‘join the 

dots’ and filter valuable information from noise would be granted. The office’s chosen 

logo was revealing in itself, showing an all-seeing eye scanning the globe and bearing the 

Latin motto scientia est potentia — ‘knowledge is power’ (Figure 19). However, serious 

scepticism was expressed about the faith put in the system’s ability to foil terrorist 

attacks by identifying the ‘information signature’ of plotters and critics pointed to the 

high risk of false positives. According to the CEO of a data-mining software company 

that worked with DARPA on TLA-related technologies in the late 1990s, when it comes 

to terrorism, “there is no pattern.”546 Although the IAO was eventually defunded by 

Congress in September 2003 after mounting criticisms that it threatened domestic civil 

liberties, it has been claimed that many elements of its projects continue under different 

guises in different agencies (and with no supervision by Congress).

545 http://w eb.afchive.orfj;/web/200210.171 11910/h ttp ://www.darpa.m il/iao/
546 Shane Harris, “Total Information Awareness Official responds to Criticism”, GoExec.com, January 
31, 2003 h ttp :// www.govexec.com/dailyfed/0103/013103hl .htm
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The IA O  was symptomatic of the military’s approach to information and its drive for 

centralising ever greater quantities of data to be processed and filtered by ICTs. 

According to network-centric warfare, these huge volumes o f information and the 

resulting superior batdefield knowledge are supposed to be the basis on which force- 

multiplying decentralisation and self-synchronisation can be achieved. However, such a 

scheme jars with all the historical evidence on the successful practices pertaining to the 

organisation o f armies.

Conclusion

In his seminal text Command in War; van Creveld provides a masterly overview of 

command systems across the ages with particular attention to the manner in which they 

tackle the problem of uncertainty. Van Creveld concludes that when faced with a task 

for which insufficient information is available for its completion, a military organisation 

must choose from one o f two approaches: “one is to increase its information-processing 

capacity, the other to design the organisation, and indeed the task itself, in such a way as 

to enable it to operate on the basis o f less information.”547 The first approach results in 

a multiplication o f communication channels (not necessarily vertically but also 

eventually horizontally) and results in an increase in the size and complexity o f the 

“central directing organ.” The second approach offers two further alternatives: either to 

radically simplify the organisation by planning everything ahead and drilling troops into 

a sequential number o f moves to be repeated on the battlefield (such as was practiced 

by Frederick the Great) or to establish a force composed o f semi-autonomous units that 

can deal with parts o f the task separately. Van Creveld claims that the latter approach 

has proven itself consistendy superior to the other two throughout history. The 

peculiarity o f NCW is that it appears to  seek to chart a fourth approach by, on one hand 

increasing the information-processing capacity and multiplying the number of 

communication channels, and on the other calling for a decentralisation o f military 

organisation.

547 Van Creveld, Command in War, p.269
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The central purpose o f decentralisation is to distribute uncertainty throughout the 

organisation yet NCW remains attached to the notion that a technologically-driven 

centralisation and fusion o f information can overcome uncertainty and impose order on 

chaos. We are far from van Creveld’s exhortation to recognise that “a certain amount o f 

confusion and waste are, owing to the great uncertainty involved, inevitable in war; and 

that such confusion is not inconsistent with, and may indeed be a prerequisite for, 

results.”548 In designing a military that relies on historically unprecedented volumes o f 

information, NCW  makes the ICT infrastructure it depends on into a critical 

vulnerability and negates precisely the key advantage o f decentralised organisations, 

namely their ability to operate in conditions where only limited and uncertain 

information is available. NCW advocates may retort that their doctrine being nothing 

less than a ‘new theory o f war’, we should not be surprised to see it break established 

moulds and that NCW will in fact achieve the synthesis o f seemingly contradictory 

approaches. Only time will tell if this is indeed the case but for now it seems that, while 

appropriating some of the notions of complexity, NCW  will not break decisively with 

the principles o f cybernetic warfare. Nonetheless, the growing influence o f chaos theory 

and complexity science on military theory and practice is clearly visible today and the 

current contradictions of network-centric warfare are perhaps only the birth pangs o f a 

future truly chaoplexic regime in the scientific way of warfare.

548 Van Creveld, Command in War, pp. 270-271
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Chapter 9: Conclusions

While the history o f warfare in the Western world has been shaped by a variety o f 

sociocultural factors, I have chosen in this thesis to focus on the role of science and 

technology. What such an enquiry reveals is the formation o f a scientific approach to 

warfare in which prevalent technologies and scientific ideas and practices combine to 

resonate with other social and cultural developments underpintiing the profound 

transformations o f warfare in the modem  era. The influence of this scientific way of 

warfare is neither consistent nor the object of a linear rise to prominence, but one can 

nevertheless chart an overall ascendancy o f this discourse alongside the increasing 

industrialisation and technological dependency o f Western warfare throughout the 

studied period.

However we cannot satisfy ourselves with a monolithic treatment o f this discourse 

since, if the appeals to scientific method and prestige do endure, the ideas and principles 

embodied by the scientific way of warfare have been subject to considerable variation, 

both as a result o f changes internal to science and to broader socio-cultural (including 

military) transformations. This has led me to establish a speculative periodisation 

according to the dominant scientific ideas in different eras since the onset o f the 

Scientific Revolution and o f the historical epoch generally known as modernity. While 

the different scientific and military regimes I have thus described and analysed cannot 

be circumscribed by clearly delineated dates marking their beginning and end, it is 

nonetheless possible to point to historical intervals in which the ideas and practices 

characterised by a particular regime are seen to be dominant.

A Genealogy of Control

The mechanistic era can be broadly situated within the seventeenth and eighteenth 

centuries, present at the very foundation of modem scientific method. Organised
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around the clockwork metaphor, it vehicled a conception o f the world as perfectly 

ordered and intricately linked together in a divine mechanism set in motion by the 

Creator. This worldview found its echo in the absolutist monarchical regimes which 

emerged in Europe at this time. Mechanistic warfare itself peaked in the second half o f 

the eighteenth century, with Frederick the Great’s army as its paradigmatic embodiment. 

Geometry and the newly discovered laws o f motion had been already widely applied to 

improve fortifications and ballistics, but the Prussians did the most to turn the army 

itself into a giant clockwork mechanism. Via a process o f intense drilling which 

disciplined the bodies and minds o f soldiers, Frederick could not only ensure 

unprecedented speed and reliability in the execution of repeated firearm volleys but 

could also experiment with complex tactical deployments on the field. However, tactics 

had to be almost entirely decided on before engagement since all initiative had been 

removed from individual soldiers and contemporary communication technologies did 

not allow the commander much input once battle had begun. Only by meticulously 

planning ahead the course o f the battle and dictating the series o f manoeuvres to be 

carried out could the mechanistic commander chart a path to victory.

The industrialisation and motorisation o f society marked the advent of the 

thermodynamic age, a period of great political and social upheaval. Science turned to the 

study o f energy, articulating a new understanding o f the world and o f the irreversibility 

o f certain transformational processes within it. With the formulation o f entropy in 

particular, came a probabilistic approach to scientific problems, undermining the tidy 

linearity and precise predictability of mechanistic models. Thermodynamic warfare saw 

the channelling o f ever greater flows of energy into war, whether o f a ballistic, 

motorised, industrial or moral nature, as nation-states clashed in ever-wider conflicts 

which drew on all the resources at their disposal. Beginning with the feverish elan o f the 

French Revolution and Napoleonic wars o f conquest, it culminated in the ultimate 

paroxysm of the Second World War and the detonation o f the atom bomb. Although it 

was not consistently applied, a number o f armies in this era experimented with tactical 

decentralisation to manage the uncertainty caused by the friction and fog o f war which 

Clausewitz had theorised.

If  the Second World War was the apotheosis o f thermodynamic warfare, it also marked 

the threshold o f a new regime of the scientific way of warfare. Cybernetics offered a
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science of control and communications organised around the concept o f information 

and embodied in advances in electromagnetic telecommunication and calculation 

devices made during the war, most notably the computer. Information became 

conceptualised as the inverse o f entropy and thus the source o f all order. Vast 

command-and-control architectures were established in the context of a Cold War liable 

to escalate into a full-blown nuclear conflict, promising centralised control and 

stabilising self-regulation through negative information feedback. In the elusive quest 

for predictability, scientific methodology was applied more systematically than ever to 

warfare with the comprehensive treatment by operations research and systems analysis 

o f military and strategic questions.

With the Vietnam War, cybernetic warfare experienced its first serious reversal, 

exposing the limitations o f its conceptual framework and socio-technical arrangements, 

particularly when engaged in a low-intensity conflict. Simultaneously, scientists were 

developing their informational theories, outgrowing some of the limitations o f early 

cybernetics. From a focus on stability and self-regulation, they turned their interest to 

processes o f dynamic change such as those o f decentralised self-organisation. N on­

linear mathematics uncovered ordered processes behind seemingly random phenomena, 

giving birth to chaos theory. The figure of the network allowed for the formalisation of 

the patterns o f relations between autonomous agents which give rise to the emergence 

o f complex entities. Contemporary to these developments are the diffusion o f 

decentralised telecommunication networks such as the Internet and the forms o f social 

organisation that have accompanied them. Postulating that we may be in the midst of 

the emergence o f a new regime of chaoplexic warfare, this thesis has found a growing 

influence o f the ideas of chaos theory and complexity science in military theory and 

practice. On the face o f it, the new doctrine o f network-centric warfare would appear to 

mark its coming of age in the United States military with its emphasis on networked 

organisation, swarming and self-synchronisation. However, this study has found that 

there are serious question marks over whether network-centric warfare truly constitutes 

the arrival of chaoplexic warfare or whether it is a mere repackaging o f cybernetic 

warfare since many of the latter’s centralising impulses appear alive and well in current 

practices. Nevertheless, it is clear that the scientific discourse o f chaos and complexity is 

in the ascendancy and that both jihadist networks and the Iraqi insurgency are currently
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demonstrating the advantages of warfare based on decentralisation and self­

organisation.

It is important to note that the rise o f one regime of the scientific way of warfare has 

not necessarily signified the disappearance o f all the ideas and practices of previous 

regimes. Some elements o f past regimes remain relevant and even complementary under 

a new regime, albeit sometimes in a modified form. For example, the practice of 

intensive drilling of recruits which was so central to Frederick the Great’s clockwork 

army has been pursued ever since to enhance discipline and reliability in the execution 

o f orders, even if the robotic slavishness o f the Prussian soldier has been generally 

abandoned in favour o f a greater degree o f autonomy and initiative o f the individual in 

uniform. Similarly, if the drive for ever greater mobilisations and releases o f energy is no 

longer the central focus o f Western militaries, developments in the motorisation and 

destructive power o f military force have not been cast away but rather integrated into 

the set o f cybernetic technologies and principles which in the following era sought to 

bring more precise and targeted applications o f this energy. And if we are to see a new 

era of warfare in which self-organising dynamics and decentralised tactics will be 

privileged, these will in all likelihood be complemented by self-regulating processes of 

stabilisation and a degree o f top-down oversight.

One way o f understanding these developments is as a process o f evolution in the forms 

o f control adopted for the purpose of handling the uncertainty inherent in the practice 

o f warfare. I have sought in this thesis to relate the socio-technical assemblages 

embodying these forms o f control to their contemporary scientific worldviews. If 

successive worldviews shift the focus o f scientific analysis and formulate distinct 

ontological claims, thereby rejecting or limiting some o f the methods and assertions o f 

previous worldviews, acquired means of control do not thereupon vanish but instead 

remain part o f the ensemble of control assemblages liable to be deployed in the social 

field.

Katherine Hayles echpes the story told here in her own account o f James Beniger’s The 

Control Revolution:

In broad outline, the forms of control moved from mechanical (a cam directing a 
mechanical rod to follow a certain path) to thermodynamic (a governor directing the action 
of a heat engine) to informational (including cybernetic mechanisms of all kinds, from
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Chapter 9: Conclusions

While the history o f warfare in the Western world has been shaped by a variety of 

sociocultural factors, I have chosen in this thesis to focus on the role o f science and 

technology. What such an enquiry reveals is the formation o f a scientific approach to 

warfare in which prevalent technologies and scientific ideas and practices combine to 

resonate with other social and cultural developments underpinning the profound 

transformations o f warfare in the modem era. The influence o f this scientific way of 

warfare is neither consistent nor the object o f a linear rise to prominence, but one can 

nevertheless chart an overall ascendancy o f this discourse alongside the increasing 

industrialisation and technological dependency o f Western warfare throughout the 

studied period.

However we cannot satisfy ourselves with a monolithic treatment o f this discourse 

since, if the appeals to scientific method and prestige do endure, the ideas and principles 

embodied by the scientific way of warfare have been subject to considerable variation, 

both as a result o f changes internal to science and to broader socio-cultural (including 

military) transformations. This has led me to establish a speculative periodisation 

according to the dominant scientific ideas in different eras since the onset of the 

Scientific Revolution and o f the historical epoch generally known as modernity. While 

the different scientific and military regimes I have thus described and analysed cannot 

be circumscribed by clearly delineated dates marking their beginning and end, it is 

nonetheless possible to point to historical intervals in which the ideas and practices 

characterised by a particular regime are seen to be dominant.

A Genealogy of Control

The mechanistic era can be broadly situated within the seventeenth and eighteenth 

centuries, present at the very foundation o f modem scientific method. Organised
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these technologies on the world has been their material imprint but this should not 

obscure their profound cultural impact, enmeshed as they are in the discourses 

contemporary to them, whether they be scientific, philosophical, or other. Hence the 

present work shares Edwards’s ambition to write a history “neither o f ideas alone nor of 

machines and their effects, but o f ideas, experiences, and metaphors in their interaction 

with machines and material change.”351

Some Final Thoughts

While this study has primarily sought to chart the development and evolution o f a 

scientific way of warfare throughout the modem era rather than to offer any 

prescriptions as to the most effective means o f waging warfare, it is nonetheless possible 

to draw from this thesis a few conclusions about the respective merits o f the different 

approaches that have been distinguished.

We have seen that underpinning each o f the worldviews articulated under the scientific 

way of warfare is a distinct approach to control and to the problem of order and chaos. 

As was argued in the theoretical chapter and hopefully substantiated by the following 

chapters, the practice o f warfare, and in particular its instrumental use by the state, 

requires the establishment of an intellectual and organisational framework which 

provides a degree o f predictability and control over its outcome. Therefore in this sense, 

warfare can be seen as part o f the quest for order, that is the search for regularity and 

reliability o f behaviour which can be observed at work in other forms o f social activity. 

However, war is a specific field of human endeavour in that the nature o f combat, 

namely the fact o f two opposing wills pitted against each other and both seeking to 

outwit and undermine each other, entails an irreducible uncertainty and unpredictability 

in its pursuit and hence the permanent threat o f chaos erupting among even the most 

ordered o f arrangements. Indeed, victory in war generally requires the imposition of 

chaos on the adversary.

Here, warfare is to be distinguished in at least one regard from both science itself and 

from processes o f  economic production which have also developed in accordance with

551 Edwards, The Closed World, p.xv
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technoscientific evolutions.552 In contrast with warfare, both science and production are 

not pitted against a sentient foe consciously trying to disrupt their efforts to impose 

order. The chaos or resistance to order they seek to dispel is not the work of a trickster 

liable to change his ways from one moment to the next, rather it is a fixed and 

consistent obstacle to be overcome. Thus the scientist seeking to uncover nature’s laws 

through the discovery o f patterns o f regularities takes these laws to be universal and 

unchanging, waiting to be discovered and not susceptible to sudden change. Likewise, 

production is the exertion o f work on generally inanimate matter according to a general 

and abstract plan which divides and distributes labour. While manufacturing processes 

are almost always susceptible to further improvement and that occasional breakdowns 

will occur through mechanical or operator error, the actual matter being worked upon 

does not wilfully vary the nature o f its resistance.553

Clausewitz was making very much the same point when he warned against those 

approaches to war that treated it as another science or art:

War is no activity of the will, which exerts itself upon inanimate matter like the mechanical 
arts; or upon the living but still passive and yielding subject, like the human mind and the 
human feelings in the ideal arts, but against a living and reacting force. How litde the 
categories or the arts and sciences are applicable to such an activity strikes us at once; and 
we can understand at the same time how that constant seeking and striving after laws like 
those which may be developed out of the dead material world could not but lead to 
constant errors.554

Clausewitz is insisting here on precisely the distinction I have drawn between science 

and production on one hand and warfare on the other in relation to the respective 

passivity and reactivity o f their subject matter.

This is not to say that some aspects o f the requirements of modem warfare cannot 

benefit from the application of a productivist framework, notably for the purpose o f the

552 It is quite feasible to provide an account of the history of economic production according to a similar 
narrative of technoscientific change as is provided here for warfare. Clockwork and mechanism can be 
related to the principle of rationalised division of labour, the engine and thermodynamics to the 
motorisation and industrialisation of production, and the computer and cybernetics to automation and 
numerical control.
553 This observation no longer holds if we shift analysis from production per se to competition between 
different enterprises in the marketplace. Here we see sentient opposition of a similar nature to that found 
in war. This may account for the widespread use of military metaphors in the language of business and the 
current popularity of Sun Tzu in management and business strategy literature.
Mark R. McNeilly, Sun T%u and the A rt of Business: S ix Strategic Principlesfor Managers (Oxford University 
Press Inc, 2000); Gerald A. Michaelson, Sun T%u: The A rt of War for Managers - 50 Strategic Rules (Adams 
Media Corporation, 2001)
554 Clausewitz, On War, p. 103
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mobilisation o f a war economy or in the realm of logistics (although a higher degree o f 

redundancy will most likely need to be built into military logistics than in business). 

However, attempts to bring the entire spectrum of activity of war under such a 

framework can only be self-defeating. James Gibson’s analysis o f the specific failing o f 

‘technowar’ as “a production system that can be rationally managed” in Vietnam can 

thus be extended to a wider observation about the general unsuitability o f this approach 

to warfare.555

For Daniel Pick, we find “two interlocking projects in the history o f European culture 

and political thought: the one tracing the quest for a pure science o f war; the other 

charting the dissolution o f the belief that war can be reduced to laws or predictable 

patterns.” 556 While I generally agree with this account o f two conflicting stances in 

Western thought towards the question o f the possibility o f making warfare into a fully 

predictable and ordered affair, I would not so firmly oppose scientific thought to a non- 

scientific outside opposed to the former’s totalising drive. While science has indeed 

most often been recruited in the attempt to bring warfare under the complete control o f 

its practitioners, this thesis suggests that within science itself are present currents o f 

thought which posit intrinsic limits to predictability and ordering. In particular, we have 

seen how Clausewitz’s ideas about friction can be related to ideas articulated in the 

sciences o f thermodynamics, chaos theory and complexity.

The historical record does seem to substantiate the idea that attempts to render war fully 

predictable have been largely counter-productive and that “in armed conflict no success 

is possible — or even conceivable — which is not grounded in an ability to tolerate 

uncertainty, cope with it, and make use o f it.” 557 The successful pursuit of warfare 

therefore requires a recognition o f the inherent unpredictability that accompanies the 

use o f military force and to build into military organisation a tolerance to uncertainty 

and even a capacity to profit from it.

There is great danger in adopting a misguided faith in the efficacy and predictability o f 

military force. Such a belief tends to make war into a more attractive option among the 

instruments o f policy because o f its presumed decisiveness and unambiguity, thereby

555 Gibson, The Perfect War, p. 156
556 Pick, War Machine, p.l
557 Van Creveld, Technology and War, p.316
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resulting in the conceptual reduction o f complex strategic problems requiring a multi­

pronged approach into ones liable to be fully resolved through military intervention, and 

frequendy leading to disastrous consequences when acted upon on this basis. Arguably, 

it was a misplaced confidence in the capabilities o f the U.S. military (buoyed by the 

perceived early success in Afghanistan) and a grave underestimation o f the difficulties 

that would arise in the phase following the toppling o f the Baathist regime which have 

led to the current dire situation in Iraq.558

Related to the drive for order in military affairs is the age-old tension in the conduct o f 

military affairs between centralisation and decentralisation o f armed forces and in which 

the scientific approaches to warfare have fully played into. This tension has always 

presented an acute organisational dilemma for the military with the need to conciliate 

the tight control o f a hierarchy over its subordinates and the operational need to provide 

autonomy and flexibility to its constituent units. O f course, instrumentalist military 

thinking is above all concerned with efficiency, namely the perceived successes and 

failures o f respective approaches. As such, the security environment and challenges 

presented in any era play a crucial role in determining the direction these debates take. 

There is no doubt that centralised and hierarchical mechanisms were largely successful 

in the conduct o f the large-scale conflicts that characterised the major wars o f the 

twentieth century and in the management of the perpetual state o f nuclear readiness o f 

the Cold War. However, this approach has demonstrated severe limitations in the 

context o f counter-insurgency operations or guerrilla warfare, the Vietnam War or 

second Iraq conflict potently illustrating the inadequacy o f the American war machine 

when confronted with a decentralised and diffuse enemy operating in a complex 

environment. The redefinition o f the security environment and the new tasks given the 

military following the end o f the Cold War have provided a powerful impetus for new 

military thinking arguing for the benefits o f decentralisation.

558 It is notable that Donald Rumsfeld’s successor as Secretary of Defense has articulated a much more 
cautious view of the effects of the application of military force than his predecessor. When questioned by 
the Senate panel which approved his nomination about his views on possible military intervention against 
Iran, Robert Gates replied that “I think that we have seen in Iraq that once war is unleashed, it becomes 
unpredictable. And I think that the consequences of a military conflict with Iran could be quite dramatic.” 
David S. Cloud & Mark Mazzetti, “Senate Panel Approves Defense Nominee”, New York Times, 
December 5, 2006
http://www.nytimes.com/2006/12/05/washington/Q6gatescnd.htmlPex—1322974800&en:F7fce77a91bd 
cc4eQ&ei=5Q88partner:::::rssnyt&emc—rss
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While broad historical trends can be observed, we should resist the temptation of 

following an evolutionist line of thinking according to which centralisation would be 

irrevocably giving way to decentralisation. Centralisation and decentralisation are not so 

much antithetical as distinct poles within which organisational reality fluctuates. A pure 

state o f decentralisation is impossible since hierarchies are always being formed (a state’s 

armed forces are inconceivable without them) and likewise spheres o f autonomy and 

self-organisation necessarily emerge within a hierarchical structure, particularly in the 

context of the chaos o f the battlefield. Furthermore, even if network forms of 

organisation are being increasingly promoted, they are still institutionally contested and 

hierarchical command-and-control remains the dominant mindset in many branches of 

the military (and is likely to remain so for the foreseeable feature).

Since chaoplexic warfare has not itself fully arrived yet and that military theorists are still 

grappling with the full implications o f the non-linear sciences, it is far too early to 

speculate on what regime of the scientific way o f warfare may follow it. It does however 

seem probable that scientific discourse will continue to exert a powerful influence on 

theories and practices o f warfare as technological developments and their incorporation 

into m ilitary  activity continue apace. And regardless of the particulars o f future sciences 

and technologies, perhaps the only certainty we may have is that any future regime of 

warfare will necessarily mark another chapter in the continually renewed yet never 

settled quest for order on the battlefield.
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Information Warfare Site: http://www.iwar.org.uk/

Principia Cybemetica Web: http://pespm cl.vub.ac.be/

U.S. Department o f Defense: h ttp :/ / www.defenselink.mil/
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http://www.nytimes.com/2006/12/05/washington/06gatescnd.html?ex=13229
http://www.fcw.com/fcw/
http://www.govexec.com/dailyfed/0103/013103hl.htm
http://www.msnbc.msn.com/id/11753547/from/RL.l
http://www.strassmann.com/pubs/baseline/2005-05-a.pdf
http://politics.guardian.co.uk/labour/story/0,,1750264,00.html
http://www.asc-cybemetics.org/
http://www.fas.org/
http://web.archive.org/web/20021017111910/http://www.darpa.mil/iao/
http://www.iwar.org.uk/
http://pespmcl.vub.ac.be/
http://www.defenselink.mil/

