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Abstract

Nonlinear methodologies to estimate parameters of deterministic nonlinear 

models are investigated in the case where experimental observations are avail­

able and uncertainty sources are present, e.g. model inadequacy, model error 

and noise. The problem of parameter estimation is interpreted from a non­

linear dynamical time series analysis perspective; however deterministic and 

probabilistic techniques originated outside the nonlinear deterministic frame­

work are studied, implemented and discussed.

Conceptually, the Thesis is divided in two parts that explore two funda­

mentally different approaches: (a) Bayesian and (b) Geometrical estimation. 

Both approaches attem pt to estimate parameters and model states in the 

case where the system and the model used to represent it are identical, i.e. 

Perfect Model Scenario (PMS), even though the implications of the results 

obtained are considered for Imperfect Model cases. The performance of the 

resulting model parameter estimates in control monitoring and forecasting of 

the corresponding system is assessed in an application-oriented fashion and 

contrasted where possible with system observations, in order to look for a 

consistent way to combine probabilistic and deterministic approaches. Given 

the presence of uncertainty in the model used to represent a system and in



the observations available, combined methodologies enable us to best inter­

pret the resulting estimates in a probabilistic framework as well as in the 

context of a particular application.

The first conceptual part relates to the REMIND project, which is to find 

a way to meld advances in nonlinear dynamics with those in Bayesian esti­

mation for both mathematical systems and real industrial settings, i.e. for 

control monitoring the UK’s electricity grid system efficiently. Bayesian in­

ference is used to estimate model parameters and model states using Markov 

Chain Monte Carlo (MCMC) techniques. For the observations of grid fre­

quency and demand, the operational constraints of the data sets are main­

tained through the estimation process, for example in the situation where 

the data are provided at rates that restrict on-line storage and post process­

ing. When MCMC is applied to the Logistic Map, curious behaviour of the 

convergence of the Markov Chain and in the resulting parameter and states 

estimates are observed and are suspected to be a consequence of high multi­

modality in the resulting posterior, which in turn generates estimates with a 

low dynamical informational content. In the case when the MCMC is applied 

to a UK’s grid frequency dynamical model, the technique is implemented in 

such a way that gradually transform from the PMS case into a more realistic 

model representation of the system. Convergence of the MCMC algorithm 

for the grid frequency models is highly dependent on the quality of opera­



tional data, which fails to provide the information required by the tailor-made 

MCMC implementation. In addition, sanity checks are proposed to establish 

meaningful convergence of MCMC analyses of time series in general.

The second conceptual part explores a new approach to parameter esti­

mation in nonlinear modelling, based on the geometric properties of short 

term model trajectories, whilst keeping track of the global behaviour of the 

model. Geometric properties are defined in the context of indistinguishable 

states theory. Parameter estimates are found for low dimensional chaotic 

systems by means of Gradient Descent methods (GD) in the PMS. Some 

of the advances are made possible by means of improving the balance be­

tween information extracted from the observations and from the dynamical 

equations.

As a result of this investigation, it is noted that, even with perfect knowl­

edge of system and noise in both models, the uncertainty in the dynamics 

cannot be distinguished from the uncertainty in the observations. In ad­

dition, the Geometric approach and Bayesian approach of the problem of 

model parameter and state estimation for nonlinear models in the PMS are 

compared aiming to distinguish them based on dynamical features of the es­

timates. In the Bayesian formulation there are still fundamental challenges 

when a perfect model is not available.
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Chapter 1

The Problem

1.1 Introduction

The behaviour of natural and artificial systems has captured the attention 

of humans since the beginning of mankind. Every moment of every day, 

rationalisation of surrounding phenomena is performed.

Observations are constantly obtained and used in order to characterise 

and attem pt to control the surrounding reality. Sets of rules are assigned 

to represent this reality with the aim of reproducing the observed phenom­

ena. These sets of rules are the models that represent reality and differ from 

subject to subject depending on many different aspects such as current cir­

cumstances, awareness and interests, among others. Once phenomena are 

characterised according to the chosen model, the environment becomes more



secure and malleable—or it feels so at any rate. Although no model can 

change reality directly, such models help understand the world.

The information obtained from observations is incomplete and is fre­

quently corrupted. Furthermore, it is normally impossible to acquire all 

the relevant information needed to assign a consistent set of rules. As a 

consequence, the model is just an approximation of reality. Models used to 

represent reality are sometimes mistakenly thought of as reality itself, given 

the success of the model. Even when the chosen model does not provide a 

very accurate representation of reality, it is taken as reality itself.

Modelling reality plays a key role in the scientific method and in the 

applications of its laws and developments towards particular applications. 

In this very restricted context, reality is the system where the phenomena 

of interest happens, and observations are quantities that can be measured, 

i.e. quantities with units. Observations contain information on the system 

and are used to formulate a model or to refine a previously formulated one. 

Models are mathematical structures that formally described the system.

In the process of gathering all relevant information about a system, many 

obstacles are encountered. For example, storage capacity is finite, measure­

ments cannot be performed in continuous time, measurement devices have 

finite resolution, not all relevant variables can be observed and there are 

often systematic errors during the experimental process. Therefore the in­



formation available is uncertain. In addition, given that only observations 

are available, discriminating the nature of a system, i.e. stochastic or deter­

ministic, is impossible [64]. Therefore an a priori choice of a stochastic or a 

deterministic model is arbitrary.

Although uncertainty makes the view of reality fuzzy, it also can be used 

to extract useful information. In more optimistic terms, uncertainty in the 

observations and in the model chosen to represent the system may highlight 

the relative ability of a model to represent the system in terms of forecasting 

or control monitoring.

This Thesis focuses on the situation where model parameter values are 

to be found once a model has been formulated to represent a system of 

interest. Parameter estimation is a fundamental problem in both stochastic 

and deterministic frameworks although it is approached in different ways.

This work follows the idea that there is no “proper methodology” for 

parameter estimation when the only source of information is a time series. 

Furthermore, it considers two model choices to be used to represent the 

dynamical system: (1) separable dynamical models that are deterministic but 

contain a separable stochastic component referred to throughout this Thesis 

as measurement noise, and (2) stochastic dynamical models that contain 

a non-separable noise component called dynamical noise in addition to the 

traditional deterministic and separable noise components. The use of either
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of the two model choices is justifiable when formulated towards coping with 

uncertainty sources in the system. Given a particular system, validation of 

model choice and definition of “good” estimates are made from out of sample 

performance.

The use of dynamical models that can be either stochastic or determin­

istic leads to approaches to solve the problem of parameter estimation that 

meld methodologies from statistical and nonlinear times series analysis frame­

works.

In this Thesis, the problem of parameter estimation is interpreted from 

a non-linear time series analysis perspective; however, techniques originated 

outside the nonlinear deterministic framework are studied, implemented and 

discussed for dynamical systems.

This Thesis is structured as follows. Chapter 1 formulates the problem in 

simple terms. Chapter 2 introduces the techniques used at different stages 

in the research for particular applications and provides an overview of what 

is new in this Thesis.

Chapter 3 uses Bayesian methodologies of parameter estimation to esti­

mate parameters for the Logistic map [24]. The Chapter presents a correct 

formulation of the problem of parameter estimation in Bayesian terms and 

implements a tailored MCMC routine for this case [23].

Chapter 4 presents and describes a new methodology [88] that uses in­
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distinguishable state theory [54, 55] and ensemble construction to search for 

parameter estimates in nonlinear models.

Chapter 5 contrasts system state estimates obtained by two different ap­

proaches, Bayesian and dynamical. It provides interesting results which lead 

to an extensive plan of further work.

Chapter 6 describes the attempts and results to estimate parameters for 

a simple model of electricity grid frequency dynamics [20] using Bayesian 

methodologies and real experimental data [22].

Finally, Chapter 7 lists the new results and general outcomes of this work, 

highlighting further research in this area.

1.2 Statem ent of the Problem

Let S' be a time series of observations of a system’s temporal evolution. The 

temporal evolution of the system is given by the map, f { x t \ 0 ) : Rm — ► Rm, 

where at time t , the system state is given by

x t = f ( x t- 1;0 ), (1.1)

x t £ Rm are the system states at time t  £ Z and 0 £ R^ is the fixed value 

for the true parameter vector of the system.

Estimation of the true parameter value 0  can be performed in several 

possible scenarios. Each scenario represents a relationship between the sys-

12



tern’s temporal evolution and the model chosen to represent it. The possible 

scenarios are:

1. The Perfect Model Scenario (PMS):

The system and the model share the same mathematical structure. 

Therefore, x t =  x t for all t ; thus f  = f .  Given that the system’s 

temporal evolution is given by /  for a fixed value of the parameter 

vector 0, the model chosen to represent the system is chosen from the 

model class / (  • ; 9).

In the special case where the temporal evolution of the system states, 

x tl is modelled by the deterministic map, f  = f ( x t \0) : Rn — ► Rn,

x t+i =  (1.2)

where x t for all t are the model states and 0 G R^ is the model param­

eter vector. The map in equation (1.2) can be written in terms of an 

unknown initial condition xq by the t —fold composition of /  as

x t+ i  =  / * (z o ;0 ) .  (1.3)

At time t, it is assumed that all components of x t are observed, i.e. 

n = m, and the data point st e  R771 is recorded. In other words, the 

sampling rate is constant. The length of the data set S  is N  G N, and 

is equal to the number of times that a system trajectory is observed.

13



Given that each observation is subject to noise, the measurement noise 

component is

st = x t + r]u (1.4)

where r)t G Mm and rjt ~  IID (0 ,a^), an independent and identically 

distributed random variable with known variance a

Notice that in some cases, the system under observation is physically 

under the influence of internal random fluctuations. Therefore the sys­

tem states, x t , are randomly perturbed by dynamical noise. If the 

unknown initial true state of the system is xq, the additive dynamical 

noise is mathematically represented as

%t=1 =  f ( x 0 + 6o;0),

%2 = /(£i + î;0),

x t = f ( x t- i + 6 t-u 0 ) ,  

x t+i = f { x t + 6t]0). (1.5)

where 8t G Rm is a random variable with unknown mean and variance,

The perfect model scenario case can be dressed in two ways:

(1) The observations of the system (1.1) only contain measurement

14



noise, the PMS is a separable dynamical model given by equations 

(1.2) and (1.4), explicitly,

s t -  f t{xo\0)  +  r)u ( 1.6)

for t > 0. Note that in this case, the sequence of states, {^t}t>o, is 

indeed a trajectory of the system.

(2) The observations of the system (1.1) contain both additive noise 

components, the PMS is a stochastic dynamical model given by equa­

tions (1.2) to (1.5). Explicitly,

st = x t + rjt, (1.7)

where x t = f ( x t- 1 + 5t- i)  thus

s t =  / ( / ( • •  • /( /(® o +  ô) +  <5>i) H 5 t ~ 2) +  f i t - 1) +f7tj (1*8)' v '
t times

for St ~  IID(0,(Tfi). Therefore, the sequence of states, {£t}t>o, is no 

longer a trajectory of the system

The admission of the presence of dynamical noise in the observations 

may sometimes be seen as a “shadow” in low dimensions of higher 

dimensional dynamics with small amplitude [56]. In some sense, the 

random perturbation called dynamical noise affects the system states 

before the random perturbation called measurement noise affects the
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system states during the experimental process of gathering system ob­

servations. The effects on the dynamics from the presence of both noise 

types are studied in detail in [11] for chaotic systems.

2. The Imperfect Model Scenario (IMS):

The system is approximately represented by the model. Therefore, 

f  — f  and Xt 7̂  Xt- Perfect models are not available in cases where 

data comes from physical systems ([55] and references therein). The 

“Laws of Physics” are only a useful approximation of the system un­

der well defined conditions [15]. Model inadequacy arises when the 

model chosen to represent the system is structurally incorrect, is phe­

nomenological not derived from any physical principles, does not in­

clude unknown and not observed dynamical components of the system, 

involves coarse measured variables or variables representing averages, 

among other factors.

The only information available about the system states is provided 

by the observations recorded at time t. Given that the system /  is 

represented by an imperfect model, of the same dimension, /  : Rm —► 

Rm, it is assumed the observation are st G Rm, i.e. live in the same 

space Rm, and are recorded at a constant rate, with no loss of generality. 

The length of the data set S  is N  G N and is equal to the number of
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times the system trajectory is observed.

The measurement noise is mathematically represented by

st = x t +  T]t , (1.9)

for rjt ~  I ID (0, <jf) and the Xt s, t > 0, are the imperfect model states. 

Comparing equation (1.4) for the PMS and the equation above shows 

that the difference is that in the IMS, systems states are not available, 

only imperfect model states.

In this Thesis, model inadequacy or impersection is represented by an 

artificial dynamical noise component in the model, written as

xt+i =  f { x t \0) +  5t+1, (1.10)

for St G Mm, St ~  IID(0,(jfi) where erf is uknown. 5t is called arti­

ficial dynamical noise (c.t. equation (1.5)), and by no means, it does

represent any random perturbation physically happening in the system.

In this context, dynamical noise is then interpreted as model error 

rather than as a property of the observations.

3. The Real Model Scenario (ReMS):

In this case, the system is complex; / ,  does not exist and there is no 

model that includes all relevant degrees of freedom for the description

17



of the system dynamics; Observations are noisy and finite, and all 

available models are a simplification of the current state of the system.

The ReMS is a special case of the IMS, and it is known that the model 

used to represent the system is an ignored-subspace model [55] since it 

does not include an unknown and unobserved dynamical component of 

the system, and involves coarse measured variables or variables repre­

senting averages. This scenario is exemplified in Chapter 6 for the grid 

frequency dynamics.

Two different approaches are used throughout this Thesis in the attempt 

to estimate model parameter estimation from observations:

A. The Naive Realistic Approach (NRA):

Given a system in any of the scenarios described in parts 1 to 3, the 

model is assumed to be a perfect model describing the system. Differ­

ences between system and model are neglected and model error is not 

taken into account.

B. The Naive Statistical Approach (NSA):

Given a system in the PMS, the model is assumed to be stochastic even 

though the perfect model is known to be a nonlinear deterministic 

model. Although the stochastic model is inadequate to describ the 

system, it is used to ease numerical calculation and analysis and to

18



cope better with some uncertainty sources in a statistical framework.

The dangers of assuming a model class as perfect ignoring the natural 

difference between system and model are clearly posed by Chatfield [19] in

Chapter 3 and Chapter 13, respectively:

"... there is a real danger that the analyst will try many dif­
ferent models, pick the one that appears to fit best ... but then 
make predictions as i f  certain that the best-fit model is the true 
model. ”

“When a model is selected using the data, rather than being 
specified a priori, the analyst needs to remember that (1) the true 
model may not have been selected, (2) the model may be changing 
through time or (3) there may not be a ‘true’ model anyway. It 
is indeed strange that we often implicitly admit that there is un­
certainty about the underlying model by searching for a ‘best-fit’ 
model, but then ignore this uncertainty when making predictions.
In fact it can readily be shown that, when the same data are used 
to formulate and fit a model, as is typically the case in time-series 
analysis, then least squares theory does not apply. Parameter es­
timates will typically be biased, often quite substantially. In other 
words, the properties of an estimator may depend, not only on 
the selected model but also on the sesection process. ”

Chapter 3 of this Thesis explores issues related to parameter estimation 

in the PMS as defined in part 1 and also it uses intentionally the NSA to ob­

tain estimates of parameters and non-observed variables in order to compare 

with earlier results shown in [70]. Chapter 4 estimates model parameters for 

chaotic maps in the PMS from observations that contain only measurement 

noise as formulated in [68]. Attempts to implement methodologies of pa­

rameter estimation in the IMS for the special case of the real model scenario 

ReMS in part 3, are presented in Chapter 6 and intentionally the NRA is used
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to formulate a dynamical model. Once the model is formulated, the NSA is 

used to obtained parameter estimates from real data sets, assuming as PMS 

the imperfect model class formulated for the grid frequency dynamics.

The final solution to all parts of the problem, in particular part 2, i.e. the 

imperfect model scenario, where even the existence of “optimal” parameter 

values is doubtful, is beyond of the scope of this Thesis.

The results presented in this docuement highlight the importance of meld­

ing methodologies. The future paths to follow if “good” is defined in dynam­

ical rather than statistical terms, are described. Finally, advances towards 

obtaining “better” parameter estimates in nonlinear systems are made.
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Chapter 2

Background

Assume that a time series of observations of the system of interest is available. 

The features of the system’s temporal evolution are to be used to characterise 

the system for purposes of forecasting and control monitoring tasks. Looking 

at the time series of interest, the system under study is represented as a 

mathematical structure or model. Once this model-system relation is set, 

the problem of model parameter estimation from time series is understood 

as a model fitting problem. Uncertainty is present in the observations and in 

the model chosen to be the representation of the system. Methodologies used 

to solve this problem should include considerations of uncertainty sources to 

increase the reliability of the resulting estimates.

Uncertainty plays a key role in the unfolding of the dynamics and in the 

resulting reliability of the estimates. The aim of this Chapter is to describe
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the methods used at every stage of this investigation on how to find parameter 

estimates for nonlinear models. The Chapter is a list of recipes of the relevant 

methods for parameter estimation, and discussion of the issues related to the 

problem of interest is found in the main Chapters of this work.

A statistical approach to this problem is called inference or model eval­

uation. In that context, inference is the process of updating probabilities 

of outcomes based upon the relationships in the model and the evidence 

known about the situation at hand [9]. This Chapter presents the statis­

tical methodologies from the Bayesian and the Frequentist perspectives in 

section 2.1 and 2.2 respectively.

Traditionally, in the nonlinear dynamical perspective, uncertainty in the 

observations given by noise presence is accounted for by noise reduction meth­

ods [58, 16, 36, 26, 92] whilst methods to account for uncertainty in the model 

are still in development and subject to continuous progress [19, 87, 75, 54, 55, 

51]. section 2.3 presents the way indistinguishable states are found for the 

chaotic Logistic map [67] by means of the gradient descent (GD) algorithm 

following the work of Judd and Smith [54, 55].

In general terms, there is no method which could be labelled as a “proper” 

or “correct” approach without assessing the performance of the resulting esti­

mates for a given application. In addition, independently of the methodology 

used to find parameter estimates, even in simple scenarios, is impossible to
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identify the nature of all uncertainty sources. In most cases, there is a trade­

offs between the relevant information obtained while reducing uncertainty on 

the “uncertainty” of the nature of the uncertainty sources themselves. A suc­

cessful methodology is one that balances such trade-off for a given scenario 

in the context of a particular application.

2.1 Bayesian Parameter Estim ation

Bayesian inference is a statistical approach to estimate and predict a be­

haviour of interest [95, 70, 12]. In this framework, probabilities are inter­

preted neither as frequencies, proportions nor likely events. Instead, this ap­

proach can be seen as a way to formally model a system in terms of probabil­

ity distributions. These probability distributions combine “common-sense” 

knowledge and observational evidence [29].

Prom the Bayesian point of view, there is no fundamental distinction 

between variables and parameters in the model used to describe the situation 

of interest. In the first instance, parameter and model variables are both 

naively assumed to be random variables, if the model is a dynamical nonlinear 

system.

A distinction is made, however between observable and non-observable 

random variables in the model. An observable random variable is one which
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can be measured in the experimental process of observation, i.e. it can be 

replaced by data values. Often the non-observable random variables are 

called parameters, regardless of being model parameters or model variables.

In order to translate the statement of the parameter estimation problem 

for a dynamical system to the Bayesian framework, model variables, param­

eters and observations are classified either as observables or non-observables. 

The notation defined in Chapter 1 is going to be stretched in the Bayesian 

framework in a way that all observables are collected in S  whilst all non­

observables in the Bayesian parameter vector 0.

The statement of the problem in Chapter 1, section 1.2, provides a defi­

nition of the system dynamics of interest in equation (1.1), a data set S  of 

noisy observations (see equation (1.4)) and a model to represent the system 

dynamics given by equation (1.2).

Prom this statement of the problem and the principles of Bayesian in­

ference, classification as observables and non-observables is made as follows, 

and it is independent of the scenario the model is placed.

•  Observables, S:

The observations {st}£i are assumed to be a realisation of a random 

variable regardless of the dynamical information contained in each st . 

In addition, the mean and variance of the noise process are observables
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constrained to the known values of zero and cr̂ , respectively. Therefore, 

the observables in S  are all observations {st}£i and the two known 

parameters of the noise process, producing a set of observables with 

N  +  2 elements.

• Non-observables, 0:

After finding the observables contained in S, the rest of model param­

eters and variables are all included in the Bayesian parameter vector

0. The parameter vector includes the model states {zt}£Li, the ^ ~  

tial condition Xq and the I  model parameters in f { x t \ •), making 0 of 

dimension N  + 1 +  1.

Note tha t for particular examples, the parameter vector 0 will also in­

clude hyper-parameters [95], parameters of the random process associated to 

a component of 0 , which in turn will increase the dimension of the Bayesian 

parameter vector. Choice of hyper-parameters related to components of 0  is 

drawn from relevant background information on the system to be modelled, 

and it is denoted as I , following notation in [83].

Bayesian statistical inference requires setting up a joint probability distri­

bution, p(S, 0\I), of all random variables [95]. The joint probability density 

function (PDF) can be decomposed into the product

p(s,0\i)=p(s\e,i)p(0\i), (2.i)
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where p{0\I) is known as the prior distribution of all non-observables and 

p(S\0,1)  is called the Likelihood: a conditional PDF of all observables given 

the non-observables. As noted before, the prior contains all the information 

about parameters which is obtained by having knowledge about the situation 

before observing a data set S. The information coming from the experiment 

is contained in the Likelihood.

The prior and the Likelihood are updated via Bayes’ theorem [4] to a 

probability distribution of the parameters, given a realisation of the data set 

5, as follows:

f0 |c  n  =  p ( s \ 0 J ) Pm  ,2 2 ,
P{ 1 ’ ] fp (S \O ,I)p (0 \I)< i0  { - ]

where p (0 |5 ,1) is called the posterior probability distribution. The posterior 

is the distribution that contains all the samples from the prior that best 

resemble the data given the data set S  [95], and the relevant background 

information I. The background information I  is also referred to as prior 

information.

The denominator in equation (2.2) is a normalisation constant with re­

spect to 0. This distribution is known as the marginal distribution, m (S\I),  

given by

m (S \I)  = J  p(S\0 ,I)p(O \I)& 0  (2.3)

The explicit inclusion of the background information I  as a variable in
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each of the PDF involved in equation (2.2) is made to stress the fact that once 

the background information is different, the functional form of the posterior 

is changed.

In practice, a major technical difficulty in the implementation of Bayesian 

methods is the high dimensional integration involved in m (S\I)  and in the 

calculation of any expected value of the posterior distribution. The numerical 

implementation of Bayesian methods involves sampling algorithms that draw 

realisations from the posterior distribution. The majority of these algorithms 

are formulated in terms of non-normalised distributions.

In these terms, it is more convenient to write equation (2.2) as

Once a realisation of S  =  S' is obtained, equation (2.5) is evaluated on 

S  so that the posterior distribution p(0\S ,I)  is a function of 0 only. Thus 

the posterior distribution p(0\S, I) is denoted by 7Ts{0\I)- This new notation 

for the posterior emphasises the fact that the posterior distribution (2.5) is 

different for a different realisation of S  and what is considered in a particular 

case as relevant background information I.  The PDF, t t s {0 \ I )  is known as 

the full joint posterior distribution.

Formally, let S  =  {sj£Lx be the set of observations of the system of in­

p(0\S ,I)  oc p (S \0 ,I )p (0 \I) (2.4)

(2.5)
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terest, where st G Rm and TV G Z is the length of data available. Prom (2.5) 

it follows that

TTS(0\I) = p ( 0 \S = { s t} l 1,I) ,  (2.6)

is only a function of the parameter vector 0 and the prior information /.

The joint posterior distribution 7ts(@, -0 is the object of interest in the 

Bayesian framework since, in principle, any inference of any parameter in the 

model could be made from the knowledge of n s { 0 \ I ) .  In general, inference on

0 translates into the calculation of expected values of an arbitrary function

of 6 , g(0). The expectation of g{0) is defined by

E«,i W ) \  =  J  9(8) ttsW )  M -  (2-7)

For future reference, lets introduce some detailed notation for the compo­

nents of the parameter vector 0. Let 6,i G be the ith component of 0 for

1 < k < i  and i = 1, . . . ,  £, and let 0 be all components of 0 excluding the 

ith component 0.j. In general, 0* is not scalar, but for simplicity it is assumed 

to be scalar thus 0.* G R  Vi, with no loss of generality. For example, in this 

notation and for g($) — 0 equation (2.7) is written as

EvAe.il = /  B.i *s(0\I) d0 (2.8)

which clearly corresponds to the posterior mean of the ith component of 0.
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The calculation of such expected values as equation (2.7) involves at 

least two high dimensional integrals, one to obtain the marginal distribu­

tion m (S\I)  and one to project g(0) onto the measure induced by the full 

posterior irs{0\I). Such calculation could not be performed analytically and 

it becomes one of the main practical difficulties when making inference from 

a posterior.

In order to address this analytical intractability of the Bayesian formula­

tion, numerical integration of (2.7) is carried out by a Monte Carlo approx­

imation. This approximation involves getting random samples of t t s (0 \ I )  

by suitable sampling algorithms. In particular, samples are taken to be the 

states of a suitably constructed Markov chain such that t t s (0 \ I )  is its station­

ary distribution. The numerical implementation of Bayesian methods using 

realisations of Markov chains as samples drawn from the full joint posterior 

distribution (2.6) and Monte Carlo integration to calculate expected values 

(2.7) are known as Markov Chain Monte Carlo methods, or MCMC in short.

2.1.1 M CM C Techniques

Monte Carlo integration.calculates the expectation EVtj[-] in (2.7) by drawing 

samples { 0 ^ \ j  = 1, . . .  ,T} from the posterior 7Ts{9\I). In turn, posterior

29



\

samples are used to evaluate the expectation defined in (2.7) as follows

(2.9)

The set of posterior samples for the parameter vector 0 is denoted by

proportions. Sufficient independence can be understood to mean that sam­

ples of each of the components 0 * of 0 are independent from each other i.e. 

p(Q.i,6.i') ~  p(6.i) x p(9.i'),Vi 7̂  ir- Now, sufficient independency is achieved 

by constructing a Markov chain such that tts{0\ I )  is its stationary distribu­

tion.

Under precise regularity conditions (see [29] and references therein) a 

Markov chain is constructed such that when T  —> oo, the following asymp­

totic results are reached with probability one.

As such, the averages of chain values are equivalent to estimates of pa­

rameters in the limiting distribution 7r. For detailed discussion of this point

{ 0 ^ \ j  — 1» - . ,7 }  and can be generated by any process which draws “suffi­

ciently” independent samples throughout the support of 7 T s ( - | / )  in the correct

lim 0 ^  — ► 0 ~  7Ts{0\I)
T->oo

(2 .10)

and

(2 .11)

see [91, 95, 29],

30



MCMC is an iterative process in which samples of the components of 0 

are obtained from the states of a suitable Markov chain. Each state of the 

chain is a complete sample of the parameter vector 0 at a given iteration 

j .  Most of the effort is put in the generation of suitable chain states since 

inference is reduced to calculate geometric averages.

A suitable Markov chain is one whose transition probability, p ( 0 ^ ^ \ 0 ^ \  /) ,  

converges to the joint posterior tts{0\ I )  in the limit T  —*■ oo[66]. The tran­

sition probability is the conditional probability that the current state of the 

chain 0 ^  becomes the state 0 ^ +1\  This probability is also known as the 

transition kernel of the chain, and it is denoted by K ( 0 ^ +1̂ \0^).

Typically, the Markov chain takes values in R£, since 0 £ R*, and a 

Markov chain is constructed using the algorithm developed by Hastings [40], 

which is a generalisation of the method developed by Metropolis et al. in 

1953 [69], and is known as the Metropolis-Hastings (MH) algorithm [40, 69, 

30].

The MH algorithm generates a sequence {0 ^}J=i as follows:
Set in i t i a l  con d ition s: $ U = ° )

Loop ( j  =  1, . . .  ,T ) {
Sample a candidate sta te  j  + 1  : Y  ,( . ie » )
Sample a uniform random variable: U rsj U( 0,1)

I f : U <  a { p t i \  Y )  then: 0 U + V  =  Y

otherwise: =  @(j )

Increment j

}
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The algorithm proceeds at each time j  by choosing the next state of the 

chain 0 ^ +1̂  by first sampling a candidate state Y  from a proposal distribu­

tion q ( '\0 ^ )  which depends on the current state 0^t+1\  The candidate Y  is 

accepted with a probability of acceptance given by

a { 0 ^ \ Y )  = min
;r(y |/ )  9(0 “  |y )
■̂(©“ IJ) q { Y |0O))

(2.12)

The proposal distribution <?(-|-) could be in any functional form and the 

stationary distribution of the chain is 7 r ( - |I)  provided that the transition

equation in (2.13) constrains the rates of moves through states in detail for

see [9, 29, 95].

It is often more convenient and efficient, from the computational point 

of view, to divide 0 in components {0 1, 0.2, . . . ,  0.*,... ,  and then update 

these components one at a time. It is not necessary for each component to 

be scalar. When the parameter vector is divided into components, the up­

dating process used for constructing the appropriate Markov chain is known

kernel for the Metropolis-Hastings algorithm satisfies the detailed balance

equation

ir(x) K (x ,y )  = ir{y) K (y ,x ) (2.13)

when the chain moves from x  =  0 ^  to y — 0 ^ +1\  The detailed balance

every possible pair of states. Therefore, once 0® ~  t ts (0 \I)  is obtained, it 

is assured tha t is also sampled from 7Ts(0\I). For technical details,
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as the single-component Metropolis-Hastings algorithm and was the original 

structure proposed by Metropolis [69].

At each time step, the algorithm updates each of the I  components of 9  

using the Metropolis-Hastings algorithm. In the ]th iteration, the state of the 

chain is updated one by one for each of the I  components of 9.  Iteration j  

updates Ô p for i = 1, . . .  ,£ choosing Yti from qi(Yi\9^\ 0^ )  as a candidate 

for the updated value 0^+1̂  i.e. the 1th component of the next state in the 

chain. Explicitly, the term is

0.-1 =  ( ^ '+1), • • • - 0.¥-i \  0 % , Of ) .  (2.14)

Following (2.12), the candidate is accepted with probability

a ( ^ i \  0.-i> Y.i) = min S 1

where ^ (0 ^ 1 0 ^ , I) are the full conditional distributions for i — 1, . . . ,  A

If Yi  is accepted then 0^'+1  ̂ =  Yi, otherwise 0^+1  ̂ =  and the chain 

does not move. Note that no other component of 6 ^  is changed in step j .  

For clarity, the definition of the full conditional distributions is presented 

later in this section.

By analogy with the description of the MH algorithm, the general struc­

ture of the single-component algorithm is presented as follows:
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Set in i t ia l  conditions: 0^ °)
Loop ( j  =  {

Set coordinate itera to r  i  =  1 
Loop (z =  1, . . . , £)  {

Sample a candidate sta te  j  +  1: Xi ~  gi(Y]i|0^, 0 ^ )
Sample a uniform random variable: U  U (  0,1)
If: U  then: 0<f+1) =  Y t

otherw ise: <^+1> =
Increment z }

Increment j }.

Note that 0 ^  mixes the values of the components previously already 

updated in the current iteration j  (see equation (2.14)) and components 

updated in the previous iteration j  — 1 when 1 <  i  <  i  — 1.

Synoptically, given an arbitrary set of starting values 0 ^ , . . . ,  0 ^  the first 

iteration of the updating process looks as follows:

sim ulate 0 ^  ~  ^(^ i| • • • i -0

sim ulate 0 ^  ~  tt(0.2| . . . ,  0 ^ , I )

sim ulate 0(il) ~  7r(0.i| 0(i }, . . . ,  0 ^ 1 ,0(° j i , . • •, 0(° \  I )

• sim ulate 0 ^  ~  7r(0.̂ | 0 ^ , . . .  , 0 ^ , 7 )

and yields a chain with states 0 ®  =  (0 ? \ . . . ,  O ^ f )  after j  cycles. Con­

sequently, if all the full conditional distributions are available, all that is 

required is to sample iteratively from them.
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The full conditional distribution of 0® under 7r(-, I) is defined as

7TS(0|/)
f * s ( 0 \ i )  deA

(2.16)

Note that the normalisation constant in (2.16) is independent of 0j, since 

from equation (2.6) it is clear that the posterior distribution is proportional 

to the joint PDF of all observables and non-observables in the model.

In other words, the full conditional distribution of 0*, given the values of 

the other components 0. corresponds to those terms of ns(0\I)  in which 0A 

appears explicitly. This feature makes full conditional distributions straight­

forward to calculate. The process becomes even more straightforward when 

a conjugate functional form can be easily identified i.e. the full conditional 

distribution is in a closed form.

Let T  be a family of probability distribution functions f (x \0 )  (indexed 

by 9 ) .  A class T*  of prior distributions /*  is a conjugate family for T  if the 

posterior distribution is in the class J7* for all /  £ J7, all priors f*  £ J7*, and 

all x  £ X  [17, 29]. When this happens, the functional form of the distribution 

is said to be in a closed form. This class is closed under product, therefore if 

f  £ J7, the product /  • /*  £ J7*.

For example, if the Likelihood distribution belongs to the same conjugate 

family as the prior, then the resulting posterior will also belong to the same

7r(0.<|0 —i , / )  oc Trs (0\I) ocp(S = {st}, 0|7). (2.17)
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conjugate family. The role of conjugate families of distributions in the prac­

tical implementation of the MCMC methodology is very important and will 

be clearly visible in the example presented later in section 2.1.2 and in the 

applications of Bayesian perspectives for the Logistic map in Chapter 3 and 

for National Grid dynamics in Chapter 6.

One of the most important issues surrounding the implementation of 

MCMC techniques is the choice of the proposal distribution g(-)[95, 91, 61, 

80]. For computational efficiency, q(-) should be chosen so as to be easily eval­

uated and sampled from, and with associated high probability of acceptance 

given by equation (2.12).

A common way to choose the proposal distribution q is the process called 

Gibbs sampler [32, 30]. The Gibbs sampler is a special case of the single­

component MH algorithm, taking as the proposal distribution for the ith 

component of 0  its corresponding full conditional as defined in (2.16). The

candidate for the next step of the chain is drawn from the full conditional.

Therefore the MCMC with the Gibbs sampler is

qi(YM i,0 .- i)  = 7r(Yi \e.-uI)- (2-18)

Substituting equation (2.18) into equation (2.12) gives

a ( 6 ^ , e % Y . i) = 1, (2.19)

i.e. Gibbs sampler candidates are always accepted as the next step in the
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chain.

Having chosen the proposal distribution, the next step is to find out how 

the generated Markov chain is converging towards a stationary distribution, 

tts{0\I) .  This problem is known as chain m ixing  and is directly related to the 

mix values of past and present updates of components 0. Depending on the 

relation between the proposal distribution q = 7r(* |-) and the full posterior 

7rs(-|/), the mixing can happen at different rates. The slower the mixing of 

the chain, the larger the number of iterations needed to achieve convergency.

For the majority of applications, the complexity of the models makes it 

impossible to calculate analytically the rate of convergence of a particular 

transition kernel towards the stationary distribution, and it is therefore nec­

essary to develop numerical tools to check chain convergence (for a review of 

these tests see [13]).

To monitor convergence where only one realisation of the chain is avail­

able, the output of the Monte Carlo calculation using the posterior samples 

from the MH algorithm iteration are plotted and then the number of itera­

tions of the algorithm when the mixing appears to be achieved is chosen by 

eye [95]. When parallel runs are available leading to several realisations of 

the same chain, the Gelman and Rubin (GR) statistic [31] can be used to 

assess convergency.

Let r  be the burn-in time when the mixing is finished. The chain { 0 ^ \ j  =
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r  +  1 , T}  contains all T  — r  — 1 samples from the full posterior ns(0\I). 

Thus the estimator in equation (2.9) is given by

E v A g m  «  Y  9(0(i)y  (2.20)
j= T + 1

In practice, r  should be large enough to obtain consistent estimates. The 

size of t  is limited by computational resources. Evaluations of the full con­

ditional distributions make the numerical implementation costly in terms of 

running time and computational resources, which grow as the complexity of 

the model increases.

Note that the conditioning of the full conditional distributions changes at 

each iteration (since changes), each full conditional distribution 7Ti(-|0 ^ ,  I) 

being used only once per iteration j  and for each component t. Generating 

random samples for such distributions is, in general, time consuming, even 

more so when analytical reduction to a closed form for the full conditional 

distribution is not possible.

When the full conditional distribution is in a closed form, standard al­

gorithms should be used to generate random samples. When this is not 

the case, the Accept/Reject Algorithm is used for sampling from a general 

density fy(y)-  This algorithm is presented in [17] as the theorem 3.2.1 in 

section 3.2.1.4.

The following section will exemplify the Bayesian perspectives in a sim-
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pie example presented in Chapter 5 of [95]. The simple structure of this 

simple example gives insight on the implementation of the single-component 

Metropolis-Hastings algorithm, as well as on the definition, calculation and 

properties of the full conditional distributions, including the convergence of 

the transition kernel of the chain to the joint posterior distribution 7Ts{0\I).

2.1.2 Simple Example

Assume there is access to a data set of observations corresponding to reali­

sations of a random variable Y.  In order to infer any moment of Y ,  requires

setting up a probability model to represent it. Let y = {y i ,..,2/iv} be N

realisations of a random variable Y.  Based on I,  the background expert 

knowledge of the process associated with Y ,  and before any realisation of 

the process is observed, the yt*s are chosen to be normally distributed with 

unknown mean fi and variance <r2

yt ~  £ =  1 , . . . ,  TV. (2.21)

where are conditionally independent given f i  and a 2.

For unknown parameters, no information is available, so the following 

nori-informative priors are set reflecting / ,

/i ~  ^ ( 0 ,1 ) ,  (2.22)

^  -  £a(2 .01 ,l), (2.23)
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where independency between /x and cr2 is assumed and Qa(a, (3) is the generic 

notation for a Gamma distribution with mean a / (3 and variance ol/ 0 1 . Prom 

(2.23) is clear that o2 follows an Inverted Gamma distribution.

Equations (2.21) to (2.23) form a two-parameter Bayesian model. This 

model consists of one observable y and two non-observables /x and r . Fol­

lowing the notation introduced in last section, the parameter vector is 0 = 

2) =

From equations (2.4) and (2.5), the joint distribution of ?/, /x, and r  is 

given by
N

p(y , /x, a2\/ )  =  Y I  P{yt\v, o2,1) P W )  p (°2\I)- (2-24)
t= 1

Substituting equations (2.21) to (2.23) into (2.24),

p {y ,p ,a 2) =
N

t=  1 

Nn
t=i

1
\p2/KO"

exp

x AT(0,1) x ga(2 .01,l), 

r (:V t - P ) 2

2a 2
x

-H2/2 x
r ( 2.oi)(72

- 1/a2 (2.25)

is obtained.

If more relevant information about 0 were available, equation (2.25) had 

looked different since the different prior choices. The background information 

is translated into the priors and Likelihood terms by “relevant” probability 

distributions reflecting such information [83]. At this point, were the func-
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tional form of the posterior is written, the explicit notation of the dependency 

of equation (2.24) on I  is dropped for clarity.

Once the data set S  = {ytjtLi is observed, (2.25) is evaluated on the 

realisation of Y  and from equation (2.6) it follows that the functional form 

of the joint posterior distribution tts{ 9 )  is proportional to

#+iN

irs {0) oc ( — ] exp
a 2

As pointed out earlier, to construct the full conditional distribution asso­

ciated with the parameter 0 * one only needs to pick out the terms in (2.26), 

where 0 * appears.

Choosing the correspondingly appropriate terms in (2.26), for this two- 

parameter Bayesian model the full conditional distribution for the mean pa­

rameter is

7r(^|<72) oc ex p  j ~ 2 ^ 2  ~  ^ )2 “  j ’ ( 2 -27 )

whilst for the variance parameter is

7r(<T2|/i) oc ( —r ) exp
£+i

(2.28)

Rewriting equations (2.27) and (2.28), it is easily found that the full con­

ditional distributions for fj, and a 2 are proportional to Normal and Inverted
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Gamma distributions respectively. These full conditionals are then given by

Note that the prior distributions are in the conjugate family of the Like­

lihood p(y |/x, a2) in (2.21), and therefore the full conditionals are reduced to 

a closed form. According to (2.18) the proposal distributions, g, are chosen 

as the full conditionals (2.29) and (2.30)..

To generate the first state of the Markov chain given an arbitrary initial

using standard sampling algorithms for Normal and Gamma densities. Af-

(2.29)

and

(2.30)

condition 0 ^  )

simulate r\j

simulate ~ (2.31)

ter T  iterations of both simulations in (2.31), a Markov chain {0}J=1 =  

{ p P - \ r ^ )  values from which any inference can be made. Prom the equa­
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tions in (2.31) the single-component MH algorithm described earlier is easily- 

implemented.

Three parallel runs of the single-component MH algorithm using the 

Gibbs sampler were performed for T  = 1.1 x 105 iterations. A set of N=100 

observations, randomly distributed as

2* ~ V ( / i , a 2) (2.32)

for t = 1 , . . . ,  100 and true parameter values 0 = a 2) = (1.2029,27.4045)

were observed. Each run generates a Markov chain for the parameter vector 

0 — ( .̂i? 0.2)-

Once the chain is obtained, the convergency and mixing have to be as­

sessed by choosing the burn-in time r  where the samples drawn from the 

full posterior distribution are to be considered as samples of the posterior. 

Typically, convergency is physically assessed by plotting the output of a 

Monte Carlo approximation of any summary statistic, taking the Markov 

chain states obtained as samples, when only one chain is available. Plotting 

the Monte Carlo approximation of a summary statistic is the simplest way 

to check for convergence and mixing, i.e. the parameter space is explored 

with the support of the full posterior.

Given that the MCMC algorithm was run three times, three chains were 

obtained and the “eye” tests for convergency were applied for all chains.
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Figure 2.1 plots the estimated mean (solid line) for 6A =  ^  and 6,2 =  cr2 

in the left and right panels, respectively, as function of the iteration time. 

The estimated mean ±  the standard deviation of the distribution are plotted 

as the envelopes of the Monte Carlo mean estimate. For clarity, only the first 

100 iterations of the MCMC algorithm are shown. In this Figure it is clear 

how the initial posterior samples obtained by sampling the full conditional 

distributions in (2.29) and (2.30) start converging to a stable state. As more 

iterations pass, the non-informative priors, assigned for the components of 

6 , are sharpening toward a stationary distribution.
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Figure 2.1: The Monte Carlo mean is plotted for each component of the parameter 

vector 0 as function of the iteration time, for T  = 1, . . . ,  100. Left and right panels 

show the Monte Carlo mean for 6 and 0 i = cr2, respectively for all three 

chains. The envelopes of the mean correspond to the Monte Carlo mean ± the 

estimated standard deviation of the resulting distributions.

From the initial prior setting in equations (2.22) and (2.23), the prior
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variance is taken to be var(/z)^ =  1.00 and var(a2) ^  =  9.80 x 101, whereas 

the posterior variance tends to be reduced to var(//) =  3.80 x 1CT4 and 

var(<72) =  1.46 x 101 as T  »  1. Although it is clear that the uncertainty 

in the parameters [i and <j2 is shrinking, the point at which the mixing is 

complete is not clearly identified if only one chain is available.
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Figure 2.2: Monte Carlo mean for the components of 6 as function of the burn-in 

time. Estimated values for 9.i =  fi and 6.i =  a 2 are plotted in the left and right 

panels, respectively. Each trace in a panel corresponds to estimated values from 

one chain. The horizontal grey line locates the true parameter value.

In order to detect the stability of the chain(s), Figure 2.2 shows the Monte 

Carlo approximated mean for // and a2 from left to right as a function of the 

number of samples at the end of the chain used to calculated the estimations,

i.e. burn-in time. The x —axis is the burn-in time and take values ranging 

0 to T  and is the number of samples at the beginning of the chain that 

have been neglected when calculating estimates. Thus for example, for a
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burn-in time equal to 10 iterations, the mean for the last T  — 10 samples 

states of the chain is plotted. The smaller the sample size, the bigger the 

burn-in time and therefore the variation in the estimated mean. Each trace 

for this running mean corresponds in each panel to the estimates of a chain 

for a given parameter, a horizontal grey solid line locates the true value of 

the parameter Q̂ . Estimation for all three chains seem to stabilise after few 

iterations for both parameter components. In addition, for 0 2 =  &2 one of 

the chains tends to be slightly down shifted from the true values but only 

with an error of 1 x 10-2. In all cases, r  could be set for a value of less than 

2000 iterations. To refine further the value of the burn-in time, zooms of 

the samples and the Monte Carlo estimates should be made. In the typical 

case where only one chain is available, burn-in time estimation is made from 

plots like Figure 2.2 but looking only at one chain in isolation. Therefore, 

convergency assessment by eye can provide unreliable estimates of burn-in 

times, which may in turn affect the posterior estimates.

The theory described in the last section, assured that the chain generated 

by the Metropolis-Hastings algorithm in conjuction with the Gibbs sampler 

will reach the required target distribution, i. e. the posterior distribution but 

it does not give any details on when this will happen. Theoretical results are 

obtained asymptoticaly and it is a fact that the simulation of the chain cannot 

be run for infinite times. Henceforth, convergency diagnostics is a key part
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of the MCMC techniques. Any test that is used to diagnose convergency 

provides a final conclusion when the chain has not reach convergence to 

the target distribution but conclusions are always ambigouos for complete 

convergence. It is common that the chain may appear that has reached 

convergence however there is always the possibility that the chain is actually 

trapped for a finite time in a region or mode of the posterior rather than 

properly exploring the parameter space [31, 13].

In the MCMC literature, there are available several quantitative tests to 

diagnose convergency and mixing for a given chain or sets of chains. The 

more prominent tests used in several packages and software available for im­

plementation of MCMC techniques include: Gelman and Rubin (GR) statis­

tic [31], Geweke time series test [33], Heildelberger and Welch test [44], and 

the Raftery and Lewis test [78] among others.

In order to quantify the convergence of the algorithm, the GR statis­

tic [31, 95] is used throughout this Thesis to assess convergency in a more 

quantitative way. If only one chain is available, and is long enough, the 

GR statistic can be calculated by fragmenting the chain into segments and 

consider each of the segments as a chain itself [31, 95, 13].

The GR statistic is based on the idea that the best way to identify non- 

convergency [31, 13] is the simulation of multiple sequences for distinct and 

overdispersed starting points that can be generated in several ways [31, 2, 49].
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These dispersed points are used as initial conditions for the several chains

to be generated. Given that the Markov chain is built in such a way that 

asymptotically the chain states are a sample from the target distribution,

same behaviour. The variance within the chains should be the same as the 

variance across the chains [95] for all scalar summaries of interest from the 

resulting empirical distributions.

The GR statistic is defined for a single summary statistic of interest. Let 

£ be the summary statistic, e.g. the sample mean, median, etc. It is assumed 

there are available c parallel simulations of the same chain, each of length T. 

For a single summary statistic £, it is denoted £uv as the summary statistic up 

to the vth iteration time in the wth chain, for u = 1, . . . , c and v = 1, . . .  ,T .

For the c parallel sequences of length T  of the same summary statistic, 

both the between-sequence variance B  and the within-sequence variance W  

are calculated.

The between-sequence variance B  is defined as

chains starting from different initial conditions intuitively should show the

(2.33)

where

(2.34)
V=1
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is the mean of the summary statistic within the uth chain, and

(2-35)
C U=1

is the average of the summary statistic accross all parallel chains. Note that 

the between-sequence variance in equation (2.33) contains a factor of T  since 

it is defined in terms of the within-sequence means, £u., of equation (2.34), 

the averages of T  values £„„.

In the other hand, the within-sequence variance W  is defined as:

(2-36)c '

where

~  (2.37)
V=1

which represents the estimate of the average dispersion of the summary statis­

tic £ within a sequence u.

Once B  and W  are calculated from equations (2.33) and (2.36) respec­

tively, two estimates of the variance of summary statistic £ in the target 

distribution are constructed following [31]. These two estimates correspond 

to the upper and lower bounds of the variance of the summary statistic, 

var(£), and are denoted by var(£) and the already defined W.

Using equations (2.33) and (2.36), the upper bound of the variance is 

defined by:

var({) =  w  + ± B r (2.38)
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and is an unbiased under stationarity conditions, i.e. the initial conditions 

of the each parallel chains were actually drawn from the target distribution. 

Equation (2.38) is an overestimate of the variance of f  since the initial con­

ditions of the chains are overdispersed relative to the target distribution.

In the other hand, the across-sequence variance W  in equation (2.36) is 

the lower bound of var(f) since it is an underestimate. For finite iteration 

times T  the individual chains have not had time to explore the parameter 

space under the support of the target distribution, having less variability.

Convergency is reached for T  —► oo when W  —► var(£) <— var(£)- For 

finite iteration time, T, equation (2.38) is unbiased, and if B  = W  then 

convergence is assumed to be reached.

Gelman and Rubin [31] proposed to monitor the convergence of the 

Markov chain by monitoring the shinking factor of the upper bound for the 

variance of £, var(£). This ratio is the well known and used Gelman-Rubin 

statistic, G R , the ratio between the upper and lower bounds of the standard 

deviation of f . Then GR statistic is defined as:

and calculated as a function of the iteration time. Replacing the estimated 

upper and lower bounds on the variance of the summary statistic, var(f), 

given by equations (2.38) and (2.36) into equation (2.39), the GR statistic is
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written as:

and asymtotic results can be considered.

As T  —*■ oo the GR value tends to 1, therefore the scale reduction be­

tween both bounds reduces to 1, i.e. the Markov chains are overlapping, the 

within and across-sequence variance are equal (B = W )  and convergence is 

improving.

For finite T  there are three possible behaviours for the values of the GR 

statistic:

If B  = W  then GR= 1, convergence is reached, i.e. parallel chain se­

quences are overlapping.

If B / W  < 1 then G R~ 1 for finite T  1 and convergence can be 

assumed to be reached.

If B / W  > 1 then GR> 1 since the within-sequence variance is larger 

than the across-sequence variance. This case indicates poor convergence for 

some of the chains where the initial conditions are trapped in a local region 

rather than exploring the full posterior. More iterations of the algorithm are 

required to let the samples explore the parameter space.

In practice, values of GR  close to 1 do not secure convergence of the 

samples to the target distribution, and it can be that by chance B / W  is
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about 1 [13] eventually in highly dimensional and complex models and GR 

statistic should be monitor graphically along with the within and accross- 

sequence variance B  and W . Event hough convergency diagnosis is developing 

constantly, complete convergence is impossible to assess, leaving mist in the 

air, states of the Markov chain are considered to be samples of the posterior 

when convergence is not rejected any of the tests used.

cr 0 .8

0.6

0.4 10020 40
Itera tion

Figure 2.3: GR-statistic for the estimated mean and variance of each component of 

0 as a function of the iteration time. The horizontal line locates the pass mark of 

the test. Solid lines are used for median estimates whilst dashed lines for variance 

estimates. Grey colour corresponds to 0 1 = /i and black colour to 0 i = a2.

In this example, three chains are available and GR values for two summary 

statistics: the median and the variance of the resulting MCMC samples for 

6 as a function of the iteration time. Figure 2.3 shows the trace of the GR
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statistic for 9,i = fi in grey colour and in black for 9,2 =  cr2. Median and 

variance estimations are plotted using solid and dashed lines, respectively. 

Convergency is reached, in the GR sense, when GR  < 1.2 [95] and this 

pass mark corresponds to the horizontal line in the Figure. For all summary 

statistics and parameter vector components, the GR statistic tends to 1 after 

approximately 50 iterations of the MCMC routine, and for T  1 all GR 

values tend to one. From this result, together with the analysis of Figures 2.1 

and 2.2, the burn-in time is chosen to be r  =  50. The number of chain states 

taken to be samples from the full posterior (2.25) is 2000, taking the iterations 

for T  = r  +  1, . . . ,  2000 +  t  for the Monte Carlo approximation.
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1.15 1.2 1.25

Figure 2.4: Histogram for the samples of 0 i =  n collected form all tree M CM C 

chains in solid black line. Lighter histograms in the background correspond to 

each of the chains in isolation. The vertical lines locate the 5%, 50% and 95% 

isopleths for the resulting distribution.
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From these 2000 samples, any inference of 0. i = n and 0.2 =  can be 

made. Figures 2.4 and 2.5 shows the histograms for the resulting samples 

from the posterior of (2.25), obtained by MCMC for 0.i = fi and 0 2 =  cr2, 

respectively. The solid black line is the histogram of samples collected from 

all three runs for r+ 1  < T  < 2000+ t , and it is composed of 2000x3 samples. 

The background histograms correspond to each of the chains separately. The 

true parameter value is marked with a vertical solid line. In addition, the 

5%, 50%, and 95% are shown as vertical dotted and dashed lines.
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Figure 2.5: Histogram for the samples of 0 2 = cr2 collected form all tree MCMC 

chains in solid black line. Lighter histograms in the background correspond to 

each of the chains in isolation. The vertical lines locate the 5%, 50% and 95% 

isopleths for the resulting distribution.

The inferences of the parameter vector from the MCMC samples are 

summarised in Table 2.1 where the last row shows that error between the
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0 a 2

0 1.2027 27.4045

< * >
1.2029 27.3754

median (0) 1.2028 27.2265

5% Isopleth 1.1711 21.4185

95% Isopleth 1.2354 33.8735

var(0 ) 3.74 x 10" 4 1.43 x 101

( 0 ) - 0 2.70 x 10"4 2.90 x 10" 2

Table 2.1: Inferences for the components of 0 from 6000 MCMC samples.

estimated mean and the true value of 0 * is small enough to consider the 

estimates reliable.

The procedure presented here for this simple example is also applied in 

the applications described in Chapters 3 and 6 of the Logistic map and in 

the simplified model for the electrical grid frequency dynamics.
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2.2 M aximum Likelihood Parameter Estima­

tion

Maximum Likelihood parameter estimation technique is widely used for model 

fitting from a Frequentist approach. It can be regarded as a way of quan­

tifying the “common-sense” idea that some sets of parameters will result in 

model traces that resemble the dynamics contained in the data more than 

others.

The Maximum Likelihood technique is employed in the PMS as follows. 

Given a set of observations S  of the system of interest, a model that corre­

sponds exactly to that system and the model’s parameter vector 0 G R*. For 

a large subset of M.e, traces of the model can be obtained by using each point 

in the subset as a model parameter value. In this instance, it makes sense to 

think that some parameter values are more likely to generate model traces 

that closely match the data than others. This notion is quantified by using 

probabilities and asking the question:

Given a particular value of the model parameters 0, 

what is the probability that S  may occur?

The probability in question is then the conditional probability of the 

parameter 0  given a particular set of observations S , denoted by p(S'|0 ). 

This probability is identified with the Likelihood L(0\S)  of a particular data
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set S  given a set of parameters 0. With this identification, the best estimate 

for the parameter 0  given the observations is the one that maximises the 

Likelihood L(0\S).

Assuming that there is a data set, S  = {st}£Ln of IID observations known 

to be normally distributed with unknown mean [i and variance a2. The 

probability of the data set S  given the parameters fi and a 2, can be written 

as:

= bib) exp {-if> -^ 2}’ (2-41>
where the parameter vector is 0 =  (/i, cr2). In turn, the PDF of equation

(2.41) is identified with the Likelihood function L(0|{si}^:1).

Maximisation of the Likelihood function identified with the PDF in equa­

tion (2.41) implies the minimisation of the argument of the exponential func­

tion. In other words, finding the maximum of the Likelihood is equivalent 

to finding the minimum of the negative log-Likelihood of equation (2.41), 

also known as the cost function. The cost function or log-Likelihood is then 

written as:

1 N
Cs {v, <t) = N\og(o2) +  — ^ 2  (st ~  /-02 • (2-42)

°  t=i

The uncertainty in the estimates of 0 when the minimum of (2.42) is 

found is presented as error bars in the cases where the length of S  is large
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enough or several realisations of S  are available [17].

In the case where the variance cr2 is known or somehow given, equation

(2.42) is only a function of fi and the Normal Likelihood is maximise for the 

value of ii that minimises Cs(fi)-

In general, likely parameter values for a fixed set of observations S  can 

be found using maximum Likelihood techniques by designing a cost func­

tion that measures the agreement between the data and the model, given 

a particular set of model parameter values. Depending on the context of 

the model parameter estimation problem, the definition of “agreement” can 

change drastically.

Widely used cost functions to estimate parameters in deterministic non­

linear models are the Least Squares and Total Least Squares cost functions. 

In this document these are regarded as special cases of the maximum Likeli­

hood method and are presented in detail in Chapter 4, section 4.1.

2.3 Indistinguishable States

This section is devoted to describing briefly the methodology used to ob­

tain indistinguishable states [54, 55] of a dynamical system by a gradient 

descent (GD) algorithm. Indistinguishable states are found for a set of noisy 

observations of the system of interest. These states are considered to be
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indistinguishable from the noise reduction properties of the GD algorithm. 

It is guaranteed that a trajectory that shadows the true trajectory of the 

system is obtained.

Despite the fact that finding indistinguishable states is not by itself a 

methodology regarded as related to parameter estimation, Chapter 4 uses 

this idea to make advances into the solution of the problem of parameter 

estimation in nonlinear systems. Here, the problem is placed in the perfect 

model scenario (PMS) where the reality of the system under study matches 

exactly the model chosen to represent it. See Chapter 1 in section 1.2 for the 

definition of the PMS.

The ideas related to the indistinguishable state theory are closely related 

to noise reduction, state estimation and ^-shadowing but they differ from the 

approach presented in Chapter 4 in both technical details and motivation.

Reproducing equation (1.2), let x t G Rm be the system’s state variable 

which evolves by the map

x t+i =  /(xt;0), (2.43)

where the map is /  : Rm —► Rm and the model parameters are comprised in 

a vector 0G R*. Here, 6 is considered to be known and fixed and attention 

is focused on the true trajectory of the system generated by it.

The noisy observations are considered only to contain a measurement
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noise (i.e. additive) component. Each of the N  observations available are 

given by

for t =  1 , . . . ,  N, st E M771, and each random perturbation r]t is assumed to 

be IID Normal random variable, r/t ~  Af(0,  cr )̂, with no loss of generality.

Following the work of Judd and Smith in [54] regarding the calculation of 

indistinguishable states in the PMS, given a known or unknown noise model 

and a set of observations, an ensemble of indistinguishable states may be 

found. Such an ensemble is formed by states belonging to the maximum 

Likelihood trajectory. Following (2.43), a Maximum Likelihood trajectory is 

one tha t belongs to the set of all possible states yn  indistinguishable from 

Xn  given the entire history of observations S , where x n  and yn  are system

The state y ^  is indistinguishable from xn  when it belongs to H ( x n ). The 

definition of the set of indistinguishable states in equation (2.45) is con­

structed from the Likelihood of yt and x t being indistinguishable given all 

observations in S  and is written as

st = x t +  T)t (2.44)

states

The set of all possible indistinguishable states is defined as

(2.45)

Kvt - X t )  = -  log q(yt -  x t). (2.46)
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The Likelihood of yt and x t being indistinguishable can be regarded as the 

information gained when an observation is made at time t. In turn, q(yt — x t) 

is the distribution of the distances between the states x t and yt and it is pro­

portional to the joint probability density of the two being indistinguishable 

from each other, explicitly given by

p(st -  x t)p(st -  yt)dst , (2.47)

where p(-) is a generic PDF, and the normalisation constant in (2.47) is 

calculated when yt = x t and it is given by J[p(s*)]2dst.

From Figure 2.6 (reproduced from Figure 1 in [54]), the set of indistin­

guishable states for a set of observations with bounded noise are all points 

in the overlap (shaded area). For unbounded noise models and typical non­

linear systems, H(xjsr) is non-trivial and is a subset of the unstable set of Xjy 

as showed in [54]. In general, a set of indistinguishable states can be found 

for any t =  1, . . . ,  N.

An ensemble of such states is found by the minimisation of the mismatch 

between the state estimate ut and the one-step forecast f ( u t ',0). Formally, 

for the perfect model defined in (2.43) and a set of observations S , there 

exists a pseudo-state ut G Mm such that

ut+i -  f ( u t;0) = 0. (2.48)

For a time series of length N,  (2.48) conforms a set of equations for the
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Figure 2.6: Two states of a system trajectory are indistinguishable from each other 

at time t given an bounded noise model density when an observation s* falls into 

the shaded area. If an observation falls outside of the overlap at time t, such 

observation will distinguish xt from yt.

unknown pseudo-orbit u = (ui , . . . ,ujv) in a sequence space of dimension 

1̂ Nxm por a se£ 0f observations, S = {st}£i, define the mismatch cost 

function as

One solution of the system of equations in (2.48) can be given by attempting 

to find the minimum of (2.49). As shown in theorem 2 of [54] and in [79], 

Cm m M  has no local minimum other than where Cm m {u) = 0, i.e. when 

u is a deterministic trajectory. This implies that finding the solution of 

minu{Cm m (u)) is equivalent to finding the minimum of the mismatch by 

gradient descent as follows.

N - 1

(2.49)
t=i



2.3.1 Gradient Descent Algorithm

Finding the minimum of the mismatch is equivalent to solving

u =  -VC(u), (2.50)

where C  =  Cm m {u), with the initial condition for u ^  =  S. Note that the 

initial condition refers to the place where the iteration of the gradient 

descent algorithm starts, so it is iteration time rather that the system’s evo­

lution time.

Differentiating the mismatch cost function at each time gives the explicit 

recurrence relation which will generate a pseudo-orbit z®  at the }th iteration 

of the algorithm. Note that the { ^ } ’s are the W ) ’s that minimise equation

(2.50) by Gradient Descent methods. Explicitly,
f

~(z t+1 -  f(zt))  di f ( z t), t = 1

x  ̂ ~ ( z t ~  f { z t-i) )  + {zt+i - f { z t)) dtf ( z t), 1 < t < N  — 1 >

~ ( zt ~  f ( zt - 1)), t = N

where dtf ( z t) is the transpose of the Jacobian derivative of the map /  evalu­

ated at zt. Solving (2.50) by the Euler approximation, each iteration of GD 

produces a point in the sequence space R Nxm from iteratively calculating

dC _  2
dz N  + 1

2A
-  /(* » '))  dtf ( z Y ’),,0 ) 0 )' t = 1

N - l
x < (4 »  -  f ( z ^ ) )  -  (*{”  -  f ( z ? ’)) d t f W ) ,  1 <  t  < N  -  1,0) ,0) 0 )' ,0 )'

( 4 °  -  /(* & )) .
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for a suitable step size A.

For more details on the algorithm and its use for nonlinear noise reduction 

purposes see [26], for its use with purposes of state estimation see [54, 79, 55, 

51] and for details on how to use the methodology in the context of parameter 

estimation in nonlinear systems see Chapter 4.
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Chapter 3 

Bayesian Inference and Chaotic 

Dynam ics

The application of Bayesian methods to the estimation of parameters in 

chaotic maps was first addressed by Berliner in 1991 [5]. In 1992 a second 

paper was published by Berliner [7] and was extensively commented upon 

and criticised by other statisticians [6, 25, 35, 37, 93]. This discussion saw 

the beginning of a new philosophical debate on the uses and boundaries of 

Bayesian methods on dynamical systems that is still active.

In Berliner’s paper [5], noise free chaotic systems (in particular, the Lo­

gistic map) were presented in a didactic way. The aim was to point out how 

statisticians could understand chaotic behaviour using time series and the ap­

parent risks involved in the inference process from such chaotic Likelihoods.
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In particular, this work explores the dependency of the chaotic Likelihood’s 

behaviour on the length of the data set and the unknown initial conditions as 

commented in [89]. In recent years, among the dynamical community, new in­

terest on the application of Bayesian methods has arisen for the case of noisy 

chaotic time series as presented in several works, for example [12, 39, 70].

At present, time series analysis is carried out using both probabilistic and 

deterministic methods as the distinction between deterministic and random 

behaviour is difficult to ascertain. Sources of uncertainty in the observations 

from the systems under study and of the model’s correspondence with reality 

make for a challenging task. At this point, any methodology that generates 

parameter estimates or forecasts that are consistent with reality is valid and 

useful.

One reason that Bayesian methodology is used in the analysis of nonlin­

ear time series is that it incorporates in a “natural way” considerations of 

unknown parameters that can be interpreted as experimental information. 

For example, different types of noise present in the signal of interest [5, 42] 

can be incorporated into the modelling process. When the Bayesian per­

spective is applied numerically using Markov Chain Monte Carlo (MCMC) 

techniques, it seems that the use of stochastic models on chaotic systems 

provides impressively correct and unbiased parameter estimations [70, 12].

Implementation of the methodology suggests tha t it could help to deal
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with noise components (measurement and dynamical noise) and system char­

acterisation [e.g. parameter estimation and state estimation) simultane­

ously. Examples of the use of Bayesian methods in the analysis of com­

plex dynamical systems such as discrete and continuous chaotic systems 

[60, 63, 70, 43, 74, 12, 94, 84], population models [90], sea clutter [41], ecosys­

tem inverse problems [28], cardiorespiratory models [3, 62], and electricity 

grid dynamics [22], among others, are increasingly present in the literature.

Originally, Berliner [5], and later in [8, 52], addressed and presented 

a discussion about the possible flaws, shortcomings and inconsistencies of 

Bayesian estimations for nonlinear models. This discussion is re-addressed 

in this Chapter from a new perspective. Consistency tests are suggested in 

an effort to help recognise the validity and limitations of this approach in the 

case of parameter estimation for a grid frequency model, in conjunction with 

non-linear parameter estimation based on cost function methods [68, 76] and 

indistinguishable states theory.

Section 3.1 introduces chaotic maps from a Bayesian point of view. From 

the paradigm of Bayesian state-space modelling, a probabilistic model is pre­

sented to estimate parameters for a chaotic dynamical model. In particular, 

Section 3.2 discusses the case of the Logistic m ap’s probability model. Sam­

ples for the posterior given the Logistic map’s model and its corresponding 

noisy observations are generated using MCMC methods.
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The numerical implementation of MCMC is carried out in two stages. 

Section 3.2.1.3 presents how to use the publicly available software, Bayesian 

inference Using Gibbs Sampler ( WinBUGS). WinBUGS software is available 

free of charge from the BUGS project including manuals, tutorial and many 

examples. See ulr: h ttp ://w w w .m rc-bsu .cain .ac.uk/bugs.

The use of this software is shown to be inappropriate when dealing with 

chaotic Likelihoods, given that convergence of the posterior’s samples is not 

robust enough, among other reasons. Moreover, high resolution estimation 

of the unknown initial condition is required as commented in [52],

A “Tailored” implementation of the algorithm is developed where each of 

the unknown parameters of the probabilistic model is obtained by sampling 

its corresponding full conditional distribution, as presented in Section 3.2.1.4.

The performance of MCMC techniques for the Logistic map is studied 

through a series of experiments. First, a perfect model experiment is set up 

in Section 3.2 in order to explore the sources of uncertainty included in the 

formulation and to detect inconsistencies in the probability model. Secondly, 

Section 3.3, presents several experiments performed by using the formulation 

developed in 3.2. These are used to distinguish deterministic from random 

behaviour. The Bayesian parameter estimation approach is used, in con­

junction with surrogate data methods, to pin-point which features present 

in the data, the inferences are based on. In particular, the MCMC model
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based method is applied both to time series data, and to surrogate data sets 

{e.g. random draws from the observed time series) for which the dynamical 

relationship described by the model does not usefully apply. Surprisingly, 

the MCMC estimations for both data sets are often indistinguishable. The 

results of this work are to be published elsewhere [24]. In section 3.4, several 

possible origins of the shortcomings of the Bayesian approach are discussed 

for this ambiguity, and the use, in general, of Bayesian perspectives in chaotic 

systems is summarised.

3.1 State-Space Modelling: Bayesian  

Framework

In order to illustrate the Bayesian approach, assume that there exists a dy­

namical system that is observed for a period of time. Moreover, the model 

that represents the system corresponds to the system itself, i.e. the model 

and reality are the same. Observations of the system are obtained by measur­

ing the model variables at regular time intervals in order to produce a time 

series. It is assumed that the data set is normally perturbed by measurement 

and dynamical noise. Both noise components are taken to be independent 

and identically distributed random variables (IID).
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Following the definition of the Perfect Model Scenario in Chapter 1, the 

dynamics follow a deterministic model of the form

x t = /*(zo;0), t =  0 , l , . . . ,  (3.1)

where x t G Rm, /  : Rm —*■ Rm is a discrete map on t, 0 e  R£ is the vector of 

unknown parameters, and xq G Rm the unknown initial state (see equation 

(1.2) and (1.3) in Chapter 1, section 1.2). In a statistical framework, the 

deterministic model could be naively seen as a Nonlinear Auto-Regressive 

process (NAR) if the states x  were to be considered random variables.

Let S  be a data set not yet observed from a dynamical system /  subject 

to observational and dynamical noise. Dynamical noise is seen as a stochastic 

perturbation of the deterministic states x t given in general by:

Xt =  f (x t -v ,0 )  + St , 5t ~  IID(0, a]), (3.2)

where xt- i  = }{x t - 2 \ 0) +  5t-1 and as is the amplitude or standard deviation 

of the perturbation (see equation (1.10) in Chapter 1, section 1.2).

In addition, the measurement noise component is

st = x t +  rju T)t ~  IID(0,  ^ ) ,  (3.3)

with av as its corresponding amplitude. The deterministic states x t are often 

called latent variables since they are not observed directly (see equation (1.4) 

in Chapter 1, section 1.2).
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The joint probability distribution for the dynamical model /  [83], (£|0, /) ,

is updated via Bayes’ theorem [4] to the distribution of the data given the 

model parameters, so that

where the parameter vector 0 includes all the dynamical model parameters, 

the noise model parameters and any unknown parameters associated with 

the probabilistic model itself. Note that the parameter vector 0  contains 

all the non-observables whilst S  contains only the observed parameters or 

variables. The superscript ( /)  in the probability distribution notation em­

phasises the fact that the Bayesian perspective is model dependent, and I  is 

the background information about the dynamical system modelled by / .

The left hand side of equation (3.4) is known as the posterior distribution, 

which is decomposed into two terms: the Likelihood and the prior probability 

densities, respectively. The Likelihood contains the information of the data 

set given the model, whilst the prior contains information of the system itself 

and the model chosen to represent it (see section 2.1) and the background 

information I.

Assume now that a realisation S  = { s t} ^  is observed. Evaluating (3.4) 

on S  gives the joint posterior distribution

(3.4)

ns (0\I)  oc P^ ( S  =  { s ,} " , , 6\I), (3.5)
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where irs(0\I) contains all the samples from the prior that best resemble 

the data, given the parameter vector 0 and are consistent with the back­

ground information I. The prior contains all the physical knowledge on the 

parameters involved. In principle, any inference of 0 could be made from

(3.5). Note that, from now on, the superscript ( /)  in any probability density 

related to the probabilistic model is dropped for the sake of clarity and not 

because the dependency is forgotten.

In summary, the Bayesian framework does not make a fundamental dis­

tinction between model variables and model parameters, since all are naively 

considered as random variables in the context of dynamical systems. In 

addition, random variables are classified and collected in two categories: ob­

servables in S  and non-observables in 9. Any random variable which is not 

observed is included in 0 (this includes, among other quantities, the system 

states x t, the dynamical model parameters and the noise model amplitudes) 

and all are inferred in the process from the full posterior distribution of 

equation (3.5).

The Bayesian inference process can be seen as composed by:

1. Classification of all random variables in the model into observables and 

non-observables, collected in S  and 0, respectively..

2. Forming the posterior distribution p(S\0,1).
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a. Writing Likelihood terms, p(0\S, / ) ,  for all observables in S  and 

background information I.

b. Writing prior terms, p(0\I),  for all non-observables in 6  and prior 

information I.

3. Obtaining a realisation of S  to evaluate the posterior with.

4. Generating samples of the full posterior distributions tt(0\I).

In practice, random samples of tts(6 \ I )  are drawn using Markov Chain 

Monte Carlo techniques which are briefly described in section 2.1.1 and for 

the Logistic map in 3.2.1. section 2.1.2 exemplifies all these points for a 

simple two parameter probability model.

Up to this point, equation (3.5) is conformed by two terms: the Likelihood 

and the prior, with no apparent hurdle to overcome. Prior terms are not 

subject to any restriction, other than the one given by the model /  and the 

expert knowledge, / ,  of the system of interest. Unfortunately, the Likelihood 

associated with noisy chaotic observations is highly complex, multimodal and 

strongly dependent on the initial condition xq [5]. This fact makes it difficult 

to interpret the results obtained by the methodology in dynamical terms if 

the observations are known to contain only measurement noise as it is the
j

case in 3.2 and 3.2.1.
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3.2 Example: Bayesian Inference for the  

Logistic Map

Before applying the probabilistic methodology to dynamical systems anal­

ysis, the PMS is defined for noisy observations that are suspected of being 

generated by a system governed by the Logistic map [67] following the general 

definition of the dynamical system of interest in Chapter 1.

Let S  be a set of noisy observations of the system state x t . The underlying 

states follow the one dimensional map /  =  f { x t- u  a) such that

x t = l -  ax\_x =  / ( x t_i;a) =  / ‘(xo;a). (3.6)

Equation (3.6) is known as the Logistic map, where a G [0, 2] is the logistic 

parameter, x0 € [—L 1] its initial condition and /* is the t —fold composition 

of the map.

The observations are, in general, subject to measurement and dynamical 

noise such that

xt =  f ( x t- i \a)  + 8U S~J\f(0,(T$), (3.7)

st = x t +  ?7t , rj ~  A7(0, a*), (3.8)

where the measurement noise variance cr̂  is known. Note that equations (3.7) 

and (3.8) are included for the sake of generality, i.e. they do not correspond 

to the conditions of the PMS used in the examples of this Chapter.
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It is important to clarify that such a general setting is used to formulate 

the Bayesian methodology in the correct terms but the MCMC techniques 

will be implemented for the PMS conditions mentioned above, i.e. reality is

(3.6) and the observations are given by (3.8) only.

In the Bayesian framework and for the general setting where both obser­

vational and dynamical noise components are present, random variables are 

classified into observables and non-observables. The non-observable random 

variables correspond to the components of 0, given by

0  =  (x0, x u Xu . . . ,  Xn, a, a*, crf) . (3.9)

Prom further refinements of the probability model, the components of 0 will 

eventually increase/decrease in dimension as prior information is included 

through the modelling process.

Once a realisation of length N, S  = {st}£i, observed, the Likelihood 

in (3.4) is evaluated on S  so (3.5) becomes

7TS {0\I)  oc

N

x (3.10)Y [  p(st \xu a, I) p(xt |x*_i, a, aj, I)
t=l

p(x0,1) p(a, I) p{p\, I)  p{aj, /) , (3.11)

under normality and independency assumptions for rjt and St and each of the 

components of 0.

The Likelihood terms (3.10) show explicitly the contribution of both noise 

components in equations (3.7) and (3.8). The Likelihood accounts for un-
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certainty sources in the observations. Explicit contributions for dynamical 

noise are given by

St ~  JV(0,(r$)

p{xt\xt-i ,  a, cr|, I) = —^ L = e x p  ( f ( x t- u a )  -  z t) 2 j, (3.12)

and for the measurement noise component by

Th ~  V ( 0 (3. 13) 

= _L_exp ~  (3-14)

The probabilistic nature of this approach allows for the inclusion of a 

stochastic transition over time of the dynamical states in (3.12) and it could 

be interpreted in several ways. This multiplicity of meanings or interpreta­

tions has led to some misunderstandings and inconsistencies as in [70, 12], 

since the PMS is not well defined. The implications of such terms are dis­

cussed in sections 3.2.1.2 and 3.2.1.3. In the case where the noise model 

consists only of measurement noise, the stochastic evolution in time of the 

system’s states in equation (3.12) is an artificial construct that needs to be 

introduced in the probabilistic model, and the use of Bayesian techniques is 

made in the NSA. As will be shown in section 3.2.1.2, that is required in 

order to make the MCMC’s numerical implementation feasible. As discussed 

in section 3.2.1.2, the ad hoc “prior” knowledge of stochastic transition of the
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system’s states is included for the same reason. Therefore, it is not a nat­

ural feature of Bayesian methodology. Only where both noise components 

are present, i.e. dynamical and measurement noise, should the prior of the 

system’s states include both dynamical and measurement noise.

At this stage, the discussion of the application of the Bayesian perspec­

tives for the problem of the Logistic map is developed for the case where both 

measurement and dynamical noise are present in the observations following 

the general framework. Later in this Chapter, it will be reduced to a simpler 

case, where only measurement noise is present in the signal. This reduction 

is performed in order to make a consistent comparison with previous imple­

mentations of Bayesian methodologies to chaotic systems, in particular the 

work presented in [70].

The prior terms in (3.11) represent given uncertainty sources related to 

the model used to represent the data. Using prior knowledge of the model 

used, the priors are set as follows. A wide informative prior is chosen for the 

initial condition such that

x0 ~  U { - 1,1), 

p(xQ,I )  = I(ar0)[_iii], (3.15)

given that it is known that the initial condition must lie in the real interval
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[—1, 1], where I(a:)[Ujt,] is the indicator probability function given by

0, u < x

I( )̂[u,w] =  -d_ u < x < v (3.16)1 J v —u 5 — —

0, X  <  V

For the logistic parameter a, a non-informative prior is assigned to be

a ~  7 V ( 0 , 1 ) ,

p{a,I)  =  - i e - V * ,  (3.17)
v 27r

where cr2) is the Normal distribution with mean /x and variance a2.

The variance of the dynamical noise process in (3.7) is set to a prior that

reflects the expectation for dynamical noise to be small and close to zero.

The variance of the dynamical noise is written as a 2 and defined to be the 

prior for the dynamical noise variance given by

~ 2  ~  Ga(ot,0),a

a5 ~  lGa{a,{3),

p { a l I ) = m O i )  e'̂ ?’ ( 3 - 1 8 )

where Qa(a,0)  is the Gamma distribution with scale and shape parame­

ters a  and 0. The random variable, X  ~  Qa(a,0), is always positive and 

close to zero. If Y  = l / X  then Y  follows an inverted Gamma distribution 

TGa(a, 0)[17]. Here, the Gamma parameters are a = 2.01 and 0  = 0.0005,
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which corresponds to a Inverted Gamma distribution, denoted by XGa(a , (3), 

with mean and variance of 4 x 10-4 and 2 x 10-3.

The variance of the measurement noise process, cr̂ , is set to be constant 

and equal to the square of the known noise amplitude. When the amplitude 

of the measurement noise process is unknown, the prior for can be chosen 

to be an Inverted Gamma distribution.

Replacing equations (3.12) to (3.18) into the full posterior distribution 

7ts(0, /) , the full probability model for the PMS of the Logistic map is

for a parameter vector, 0E MiV+3.

Generating samples from (3.19) is difficult because calculation of the 

marginal distribution implies a high dimensional integration (~  R N+3), i.e. 

the normalisation constant of the posterior, as discussed in section 2.1.1.

MCMC techniques are independent of the normalisation constants. Hence 

what is important is the functional dependency of the posterior, and how 

components of 0  depend on other components of 0.

Figure 3.1 shows the graphical representation of this model by a Directed

(3.19)
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Figure 3.1: DAG for the Logistic map probability model structure. Squares rep­

resent model observables, circles non-observables, i.e. the model parameters, and 

double circles hyper-parameters included to model the probability model param­

eters. Dashed lines represent deterministic relations while solid lines stand for 

probabilistic dependency. The layered panels represent algorithmic iterations.

Acyclic Graph (DAG), where Directed means tha t each link between nodes 

is an arrow. It is Acyclic because it is impossible to return to a node after 

leaving it [95]. A graphical representation of model structure may be pro­

duced before any structural assumptions are made and helps to clarify the 

dependency or independency relations between parameters and observations
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Likelihood terms

Measurement noise: Vt

Dynamical noise: St St ~  Af{ f{x t ;0),a%)

Prior terms

Initial condition: x 0 X 0 ~  I (X o ) [ - l , l ]

Logistic parameter: a a ~  *A/"(0, 1)

Dynamical noise variance: o i ~ X G a ( a , f i

Table 3.1: Likelihood and prior terms for the PMS Logistic map probability model.

in the model. The graph is included here as a mnemonic resource for the 

probability model of the Logistic map. Relations among nodes in the graph 

resemble kinship relations, for details see [95].

In Table 3.1 all Likelihood and prior.terms defined for the PMS are col­

lected.

3.2.1 MCM C for the Logistic Map: In Practice

In practice, given the level of complexity of the probability models developed 

for dynamical systems [i.e. Logistic map), there are two possibilities for ob­

taining samples of the full posterior distribution given in general by (3.5). 

Perhaps the best option for the first approach to MCMC techniques is to use
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a “black box” package. The advantage is that samples are obtained by spec­

ifying the Likelihood and prior terms using a correct syntax. For example, 

once the syntax of the package is familiar, the MCMC implementation of the 

probability model given by equation (3.19) involves only writing the Likeli­

hood and prior terms explicitly. Changes in prior information or even noise 

model assumptions will only neglect some of the terms already described here 

and/or add some additional ones. Packages like WinBUGS [95] are very use­

ful for learning and training purposes since they prevent the user from the 

generating random samples from non-standard probability functions. For 

deeper studies, it is often unavoidable for the researcher to use “Tailored” 

routines in order to perform more refined calculations.

Another option is a personalised MCMC implementation for the model 

of interest. In this work, both ways of generating samples from the pos­

terior were used, given that some inconsistencies where found when using 

WinBUGS for the model described in section 3.2.

In any case, when using a “black-box” package or “Tailored” set of rou­

tines, the single component Metropolis-Hasting algorithm using a Gibbs sam­

pler (see section 2.1.1) is used. In that case the steps to follow to obtain 

samples from the posterior in equation (3.19) are:

1. Calculate the full posterior distributions as in section 3.2.1.1 for each
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of the components of 0 in equation (3.9).

2. Select a sampling method for each component of 0.

3. Set up the iterative process by which a Markov chain state is generated 

in each iteration t , by updating the full conditional distribution of each 

component of 0.

4. Approximate any inference of 0 by a Monte Carlo approximation.

As explained in section 2.1.1 and in Chapter 2, full conditional distribu­

tions play a key role in many applications of MCMC techniques. They are 

taken as the proposal distribution when using the Gibbs sampler, and are 

responsible for the update of each component of 0. section 3.9 calculates the 

full conditional distribution for the probabilistic model of the Logistic map.

The study of the Bayesian methodology for the inference of nonlinear 

dynamics involved the reproduction of the results obtained in [70, 12], par­

ticularly in the use of WinBUGS of Meyer and Christensen in [70].

Given that the parameter estimation problem stated in [70] only contains 

measurement noise, it is inconsistent with the probability model used, since 

the perfect model described at the begining of these chapter includes dynam­

ical noise as well. In consequence, the PMS described in section 3.2 is taken 

as one where only measurement noise is present in the Logistic m ap’s obser­

vations. section 3.2.1.2 presents a discussion of the reasons for the potentially
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misleading concepts used by Meyer and Christensen in order to justify their 

model assumptions and corresponding parameter estimates. Using one PMS 

formulation (with additive dynamical noise) to simulate observation known 

to be generated in a different PMS (without dynamical noise), misuses the 

technique and attempts to solve the problem in a NSA. In addition, a cor­

rect but not numerically tractable Bayesian formulation is developed which is 

consistent with the problem of estimating model parameters for the Logistic 

map.

For consistency, the WinBUGS package was used to generate samples of 

the posterior in the NSA in order to make a comparison with results in [70]. 

No consistency with the estimates presented in [70] was found. The failure of 

WinBUGS when applied to solve numerically probability models from chaotic 

time series is presented in section 3.2.1.3 a brief discussion of its shortcomings 

is as well presented. From now on, the explicit dependency of the full joint 

posterior and full conditional distribution on the background information I  is 

dropped off since it is already reflected in the way the posterior is constructed 

in this section.

84



3.2.1.1 Full Conditional Distributions: PM S Logistic 

Map

section 2.1.1 defines the full conditional distribution 'Ks{Q.i\Q.-i) as the dis­

tribution of the ith component of 9  conditioned on all the remaining compo­

nents. From equation (3.5), 0  has distribution 7Ts(-|-), the full conditional is 

then defined by

’ » « - ■ >  -  (1201

where, for the Logistic map, the probability model has i =  1, . . .  ,7V +  3 

components, with TV as the length of the observations available. The Gibbs 

sampler takes (3.20) as the proposal distribution from which the next step 

of the chain is updated. The proposal or full condition distribution is con­

structed from picking the terms in (3.5) which explicitly depend on 0*.

Table 3.2 summarises the full conditional distributions for each of the 

components of 0. These full conditionals are calculated from (3.19) by just 

picking the terms where the corresponding component appears. Given that 

the MCMC implementation is independent of the normalisation constant, all 

that is needed is the functional form of the posterior distribution and the 

corresponding full conditionals.
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The components of the 0  after the modelling process are:

0  =  (x0, Xi , . . . ,  xt, . . . ,  x N, a, . (3.21)

In order of appearance of the components of 0  (3.21), the full conditionals 

are listed in Table 3.2.

0 Full Conditionals PDF PDF parameters

component functional form

oHII e ~ A 1x $ - B 1x$
Quartic

exponential

A ,  — a?
1

D _ a(xi-l)
1

{* .}£ *  =  M & 1
g —A i X t —BiX$+CiXt

Quartic

exponential

D <r|+<r2+2acr2(xt+i-l)  
1 ~

0 . N + 1  =  X N
e - ( x N - n N )2/ 2  a% •A /W , ° n )

< T p N + t f ( 1- aX2N _ i) 
^  ~  o j + o l

a 2 _

Q.n + 2 =  a
e - ( a - H a ) 2/ 2 a l

2 a s
° a “  r f + E L i

6 . N + 3 — cr | ( l / a l ) a s + 1 e ~ P i / a 6 I G a ( a s , P s )

0 5

=  y  +  Q:

=  0  + 1  E t=i (*« - 1 +  “ t- l)

Table 3.2: Table of full conditional distributions for the probability model in the 

PMS for the Logistic map.

For example, the construction of the full conditional distribution of the
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first component of 0, 6,1 =  #o, Is as follows. Checking equation (3.19) for the 

terms where xq appears, it is found that the full conditional distribution of 

the initial condition is proportional to:

ns(xo\xi , . . . ,  x u . . . ,  x N, a, a]) oc e"^(/(xo;a)~Xl)2I(x0)[-i,i]. (3.22)

After some algebraic manipulation, the functional form is proportional to 

a quartic exponential distribution shown in Table 3.2. It is known that 

the indicator distribution is not conjugate to the Normal or Gamma prior 

conjugate family, and therefore equation 3.22 is not in a closed form. As 

described in section 2.1, the indicator distribution is not conjugate to the 

Normal distribution therefore the product of both does not belong to the 

conjugate family.

When a full conditional is not in closed form, a sampling random algo­

rithm has to be implemented [9, 17]. Only the full conditional distributions 

corresponding to the parameter vector components to the initial condition 

x 0 and the latent variables { x t } ^ 1 are not in closed form. Details on how 

samples are obtained when closed form of the full conditionals are not avail- 

abel for the components of 0 are given in [23] and in section 3.2.1.4. In the 

case that the full conditional distribution is in a closed form, any standard 

routine for generating random samples can be used, as is the case for the rest 

of the remaining components oi.O.
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3.2.1.2 Naive Statistical Approach for the Logistic Map

It is important to note that the motivation for this study comes from the 

works cited in [70, 12]. In both papers, the outstanding performance of the 

MCMC techniques when estimating parameters, unobserved components of 

the state vector and reducing noise in the reconstructed dynamics of chaotic 

systems, caught the interest in the use Bayesian perspectives for parameter 

estimation and even for inference of the nonlinear dynamics of chaotic time 

series. Both papers used WinBUGS as the numerical tool to implement the 

Bayesian inference process of any parameter in the corresponding model. 

Their performance of the methodology was apparently higher that any other 

methodology or technique that has been used in this framework for parameter 

estimation [54, 26, 27]. It looked suspiciously successful.

In terms of an analytical formulation, and even in prior formulation, the 

probability model presented by Meyer and Christensen and the one devel­

oped in section 3.2 are quite similar. The difference is subtle and it was 

only identified when problems arose in the numerical implementation and an 

interpretation of the estimates obtained was made.

The fundamental difference has roots in the PMS conditions presented 

in [70] and the general model setting scenario described earlier in Chapter 1 

and in this Chapter in section 3.1. The model used in [70] aims to solve a dif-

88



ferent problem than the one they described. In short, Meyer and Christensen 

want to solve the problem of parameter estimation of a chaotic system from 

noisy observations when there is only measurement noise in the signal. Note 

that if literally compared, i. e. equation by equation, both probability mod­

els appear equivalent. Intuitively, the two probability models should look 

different since the observations are conditioned differently and it is assumed 

that dynamical noise is not present in the observations.

Perfect model conditions are going to be described in detail, in order to 

clearly point out how Meyer and Christensen’s formulation is incorrect and 

how it is inappropriate to solve the problem of model parameter estimation 

of nonlinear models from observations subject only to measurement noise. 

In addition, based on these perfect model conditions a Bayesian probability 

model suitable to solve this problem (as stated in McSharry and Smith [68]) 

is going to be constructed. Please follow this description in parallel with the 

one that starts in equation (3.6).

Assume a set of noisy observations S  of the system state x t is obtained. 

The system states follow the one dimensional map /  =  f ( x t- i ,a )  such that

x t = l -  ax2t_x =  f ( x t- i ]a) = f { x 0; a), (3.23)

is the Logistic map.

The observations S  are known to be subject to measurement noise only

89



and are therefore given by

st = x t + rjt , rj ~  J\f(0,<?*), (3.24)

with known variance cr%. There is no dynamical noise.

Recalling tha t in the Bayesian framework where there is no distinction 

between parameters and variables, all model variables and parameters are 

considered random variables and in conjunction with the conditions of equa­

tions (3.23) and (3.24), the modelling process proceeds by classifying the ran­

dom variables as observables and non-observables. The non-observed random 

variables correspond to the components of 0  and are given by:

0 = (x0, x u x u  . . .  , x N,a,a%) . (3.25)

Once a realisation of length N, S  = {st}£i, is observed, equation (3.4) 

is evaluated on S  so (3.5) becomes

N

J J  p(st \xt , a , t f , I ) x (3.26)

p(x0, £ 1, . . . ,  x N, I) p{a, I)  p(cr^, I),  (3.27)

under normality and independency assumptions for r)t each of the components 

of 0.

The Likelihood terms in (3.26) contain the noise contributions. In this 

case the noise consists only of measurement noise. Explicitly this contribution
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is

rh ~  Af(0,rf) ,  (3.28)

(3.29)p(st \xt,a,(7*I) = ■■ J _  exp
\/27ra2

1 (st - : r t)2
2S2

Now, the priors for each of the components in 0 are set as in equations 

(3.15) for the initial condition, (3.17) for the logistic’s model parameter and 

the amplitude of the measurement noise is constrained to be a known con­

stant.

The priors for all latent states, Xi , . . . ,  x t , . . . ,  £jv, of the Logistic map are 

still to be chosen. Consistent with the background information I  tha t there 

is no dynamical noise, let the prior of the latent state x t be equal to a Dirac 

delta function of the form:

x t ~  6(x -  x t),

x t , x  = x t
(3.30)

0, otherwise

In addition, there is no reason why any other prior should be assumed since 

it is known with certainty that the model is perfect for the dynamics and the 

noise.

It is at this point that the interpretation of the probability model for the 

Logistic map starts to be confusing in [70]. Up to the choice of the prior for 

the system states, the use of Bayesian perspectives for parameter estimation
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of chaotic systems do not force nor prevent the choice of any prior or noise 

model in the formulation. Formally, there are no misleading assumptions in 

the probability model from equation (3.23) to (3.30). In turn, replacement 

of the Likelihood and prior terms into (3.5) gives the full joint probability 

distribution ^ ( 0 , 1)

dropping the dependency in the prior information since priors are conviniently 

chosen.

noisy observations S  given that the dynamics follow the logistic map and the 

noise model is composed of only one component: additive perturbations, i.e. 

measurement noise, and the prior information I.

This formulation is as realistic as it could be consistently with the formula­

tion of the problem scenario. The problem aims to find parameter estimates 

for an exactly known dynamical model, (3.23), and additive measurement 

noise model (3.24). Any other liberties given by the setting of priors are 

independent of the problem and consequently places the Bayesian attempt

Equation (3.31) is the posterior distribution that contains the information

from which any inference of the parameter vector 0 in (3.25) can be drawn.

This posterior distribution represents the values of 0 tha t best resemble the



to solve the problem as naive (NSA) even though valid if estimates obtained 

are consistently interpreted.

In the idyllic case where (3.31) is analytical, the solution of the problem 

is just as far as the evaluation of at least two integrals; one for the calculation 

of the normalisation constant of the posterior, i.  e. the marginal distribution, 

and another to calculate any expectation of a function g  of 0 ,  i . e .  to infer 

the parameter vector or any of its components.

Since it is known that the states x t  follow the Logistic map and tha t the 

prior chosen do not dependent on the dynamics, the Likelihood in (3.31) is 

explicitly as follows

Replacing (3.32) into the full posterior distribution (3.31), follows that

calculated, the next step is to performed the calculation of the full condi­

tional distributions. Going in order of the components in equation (3.25), 

the full conditional distribution for the first component of 0, |#.-i),

(3.32)

I(xo)[_ifi] x p (  X i ) . . . p { x t ) . .  . p { x N )  x —4 = e “2/2. (3.33)
V  Z7T

In order to generate samples of the posterior such that inferences of 0  are
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corresponding to the initial condition xq is proportional to

N

ns(xo\xi , . . .  , x N,a) oc exp f { x 0;a))'
2av t=i

(3.34)

In order to see clearly the functional form of the initial condition full 

posterior, the negative logarithm of (3.34) is taken to obtain

N

\og(7rs (x0\x1}. . . , x N,a)) oc f ( x 0;a))2, (3.35)

explicitly the polynomial

2av ,=1

oc (si -  (1 -  axo))2 +  (s2 -  (1 -  a ( l -  axg)2))2 H h2 \ 2 \ \ 2

once twice

(sN -  (1 -  a( 1 -  a ( l -  a ( l -  . . .  a ( l -  axl)2 . . .  )2)2)2)2))2. (3.36)
N  times

Henceforth the full conditional for Xq is an exponential distribution

r 9 o 2 N  1Trs^okij • • • 5 a) oc exp b0 +  bix0 +  b2x0 H 1- bv N {x0f  . (3.37)

Similarly, for the logistic parameter a, the full conditional is

7r5(a|:ro,Zi,. . .  , x N) oc exp . (3.38)

It is clear that both full conditional distributions are numerically in­

tractable even for N  ~  3. This fact is directly related to the remark of 

Berliner when referring to the wild behaviour of chaotic Likelihoods and it 

is exemplified there with numerical calculations [5]. Such high order polyno­

mials result in “wild” behaviour and large numbers of modes in the chaotic
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Likelihood. Note that it is easy to see that any other Likelihood associated 

with a chaotic map which is quadratic bears similar intractability issues.

If the priors are not chosen to be Dirac delta function nor any probability 

density function in which the latent states x t are IID, the more sensible 

choice will be to include dynamical noise in the probability model despite 

the fact that the observations do not contain any. Once the dynamical noise 

is included the direct dependency of the Likelihood on the dynamics is broken 

as explicitly calculated in section 3.2.1.1.

As it is clearly shown by equations (3.37) and (3.38), the justification of 

the introduction of dynamical noise in the probabilistic model for the Logistic 

map is ill posed and has to be included carefully. Meyer and Christensen 

literally argued in [70] that in order... “To develop this idea within a proper 

statistical paradigm requires treating the system states as stochastic instead 

of deterministic. We therefore consider the more realistic case that the system 

dynamics are subject to random disturbances.” This argument is only true 

if the given PMS problem that is aimed to be solved is the one of parameter 

estimation of chaotic systems from observations with both components of 

noise.

Prom the formulation of the problem presented in [70], such an argument 

only follows in order to achieve numerical tractability and it does not imply 

any correctness or proper implementation of Bayesian perspectives [24]. On
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the contrary, given the assumptions it is an incorrect formulation of the 

Bayesian approach to find parameter estimates for the Logistic map from 

observations that only contain measurement noise.

Although, the perfect model is known, to solve the problem, an imperfect 

model of the system is used in order to facilitate numerical calculation. This 

situation is referred to in Chapter 1 as the NSA.

Their inclusion of stochastic transition over time for the latent variables 

of the Logistic map is more justifiable and consistent with the approach if it 

is seen as a choice for the prior of the system states. Otherwise, it is just an 

ad hoc condition to force Bayesian perspectives into the dynamical settings.

Despite the inconsistencies in the problem formulation posed by Meyer 

and Christensen, the probability model which includes dynamical noise is 

correct when dynamical noise is also known to be present in S. When that 

is not the case, as in [70] the probability model is incorrect but it is useful in 

the sense that it provides a feasible numerical implementation. In order to 

have a tractable numerical probability model in the Bayesian framework, all 

experiments and simulations are going to be performed using this NSA.

Consistently the artificial dynamical noise included in the model could be 

seen as a term which accounts for model error and the resulting inferences 

should be interpreted accordingly. It is important to note that once the 

standard deviation of the dynamical noise as component tends to zero the
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regime whith only measurement noise is reached. Even though that limit 

is justifiable in dynamical terms, in the Bayesian framework it implies a 

fundamentally different probability model.

3.2.1.3 Using W inBUGS: Chaotic Bugs

The BUGS (Bayesian inference Using Gibbs Sampling) project is concerned 

with flexible software for the Bayesian analysis of complex statistical models 

using MCMC methods. The project began in 1989 in the MRC Biostatistics 

Unit and led initially to the ‘Classic’ BUGS program, and then onto the 

WinBUGS software developed jointly with the Imperial College School of 

Medicine at St Mary’s, London. The project first developed a DOS based 

program and later Windows based software, now widely used. At present, the 

software can also be run on from Unix-based platforms. For more information 

on the project please refer to h ttp ://w w w .m rc-bsu .cam .ac.uk /bugs/.

As a learning tool, WinBUGS is a very useful resource in conjunction 

with [95] for familiarisation with Bayesian modelling issues and numerical 

techniques involved in the process of posterior sampling. Most of the com­

ments included in this section are a result of various personal communications 

with Renate Meyer and Nelson Christensen from the Department of Statis­

tics, University of New Zealand, and Andrew Thomas from Imperial College,
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one of the main developers of the BUGS software. Contacts with Meyer and 

Christensen were made when many trials of different versions of their model 

were performed using BUGS/WinBUGS did not produce any output which 

resembled the results presented in [70]. Kindly, Christensen shared one of 

the original versions used for the calculations presented in their paper.

The study of the lack of convergence of the MCMC output for the prob­

ability model of the Logistic map and technical sampling errors with the 

algorithms when multimodal priors are used {e.g. slice sampling [71]) were 

done in collaboration with Andrew Thomas in a couple of meetings and sev­

eral personal communications [21]. As a result of these discussions, it was 

decided to build a “tailored” implementation of the MCMC techniques in or­

der to gain control on the process of monitoring sampling process and identify 

any possible faults. This implementation is described in 3.2.1.4.

In particular, BUGS or WinBUGS performance is put under strain when 

faced to high complex Likelihoods and uncertain convexity in the full condi­

tionals, the case when nonlinearities are present [21]. A. Thomas performed 

several corsections to the software in order to improve the sampling algorithm 

used in the such cases and also in the code interpreter.

A data set from the Logistic map of 100 points is generated for a = 

1.85 and initial condition x0 =  0-3. The Bayesian model implemented in 

WinBUGS is applied to several data files with noise levels varying from 0
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to 2, in variance. The data files contain only measurement noise for two 

noise processes Gaussian and Uniform. The noise level is defined as I = 

& noise /  & signal > where a is the standard deviation. Denote the Gaussian and 

Uniform noise amplitude as a function of the noise level as eg(l) and eu(l), 

respectively.

To obtain a sample from the posterior distribution for the Logistic noisy 

data, 1.1 x 105 iterations of the Gibbs sampler are performed. This number of 

iterations include a burn-in time of 1.0 x 104 iterations following [70]. To avoid 

highly correlated values and to reduce the size of the output, the resulting 

chain is thinned by taking every 20th  observation which yields a final sample 

size of 5000 points and took an average of 3 minutes on a Pentium IV, 2GHz 

processor PC for each data file. Only traces of the parameters corresponding 

to a, Xo and r 2 were recorded, the Logistic parameter, the initial condition 

and the precision parameter respectively. Note that r 2 corresponds to the 

variance of the dynamical noise parameter a2 = 1 / r 2.

To assess convergence, the GR statistic is calculated for the three param­

eters by fragmenting the chain into two parts of 2500 points each. Following 

Meyer and Christensen [70], after 1.0 x 104 iterations, the mixing of the chain 

is assumed to have finished. Figure 3.2 shows the GR statistic calculated for 

the median, variance and 97.5% isopleth, for a and a2. The horizontal line 

is the pass mark for the test. Given that the samples are approximately
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converging to samples of the full posterior, there is no clear evidence of con­

vergence as shown in the Figure 3.2.
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Figure 3.2: GR statistic for the Logistic parameter a and dynamical noise variance 

a2 from BUGS output. The GR statistic is calculated for the median (solid line), 

variance (dashed line) and 97.5% (dotted line). The horizontal line indicates the 

pass mark of the test.

For both parameters, the GR for the median presents very slow conver­

gence, whilst for the GR statistic for the variance and 97.5% reached con- 

vergency after approximately 100 iterations but start loosing this property 

as is shown by increasing GR statistic values. Figure 3.2 can be interpreted 

as evidence that the chain has not finish the mixing process. Note that the 

chain has been thinned down, therefore values in the x-axis of the Figure 

have to be multiplied by 20 and offset by 1 x 104.

Figure 3.3 provides a clear evidence that the convergency properties of the 

samples is intermittent. For median (solid line), the GR test oscillates from
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values that are higher and lower than the pass mark (black line, GR< 1.2). 

The chain has not mixed properly, therefore any inference from this sample 

is not reliable. There is no evidence that the samples are drawn from the 

stationary distribution of the chain, i.e. the full posterior (3.19).

2.5

o
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CCO

0.5, 1000 1500 2000 2500500
Iteration

Figure 3.3: GR statistic for the in itia l condition xq of the Logistic map from BUGS 

output. The GR statistic is calculated for the median (solid line), variance (dashed 

line) and 97.5% (dotted line). The horizontal line indicates the pass mark of the 

test.

Reasons for this are related to the multimodality of the resulting full 

conditionals [21]. Random generation from multimodal distributions carries 

the risk of getting trapped in one of the modes, and as a consequence are 

not visited often or even ever visited, generating correlated samples. Once 

this is realised, the slice sampling algorithm was introduced in WinBUGS 

to generate more accurate samples from multimodal distributions. These 

changes in WinBUGS were performed by A.Thomas. Unfortunately, it did
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not improve the  q ua lity  o f samples obtained for the Log istic  m ap ’s Bayesian 

m odel a t the tim e  th is  study was made.

a
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Figure 3.4: Logistic parameter, a. Top: Histograms of BUGS samples for each 

noise level considered, the line in the floor of the histograms indicates the true 

parameter value a = 1.85. Bottom: Mean (o), median (+), and envelopes of 5% 

and 95% isopleths (dotted lines) as a function of the noise level.

Despite the m ix ing  not being complete, inference o f some param eter com-
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Figure 3.5: Initial condition, x q . Top: Histograms of BUGS samples for each noise 

level considered, the line in the floor of the histograms indicates the true parameter 

value xq = 0.3. Bottom: Mean (o), median (+), and envelopes of 5% and 95% 

isopleths (dotted lines) as a function of the noise level.

ponents in 0 are made in order to compare with results obtained in Meyer 

and Christensen [70]. Figure 3.4 and Figure 3.5 shows the histograms (top) 

and traces (bottom) for the Monte Carlo estimates of the Logistic parameter
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a and the initial condition xo as function of the noise level.

As expected, the estimates of a decrease as the noise level is higher; 

surprisingly the 95% envelopes are wider for lower noise levels even though 

the uncertainty is lower. This fact, is clear as well in the histogram (top) 

since the empirical distribution obtained is sharper as the noise increases. 

Comparing with the corresponding figures of Meyer and Christensen in [70], 

the results are clearly not consistent despite the fact that they share some 

qualities.

After some more trials on different models, initial conditions, constant 

nodes, the convergence results obtained and the discussions with Andrew 

Thomas, it was necessary to implement a “tailored” MCMC routine. In par­

ticular, the problems concerning the implementation of the model in Win­

BUGS were related to intermittent convergence due to errors in the Greedy 

sampling algorithms used in the software itself [21].

Furthermore, well after the “tailored” implementation was on track se­

rious errors were found by developers of the software. Principally, mistakes 

were found in the code interpreter of WinBUGS. Details can be found in the 

discussion list of the WinBUGS project at h t t p : //www. m rc-bsu. cam. a c . uk/bugs/.

104



3.2.1.4 M CM C “Tailored” Im plem entation

This section presents the actual implementation of Bayesian parameter es­

timation techniques for the PMS described in section 3.2. The state-space 

Bayesian model is resumed in Figure 3.1 and explicitly in Table 3.1.

The implementation of the single component Metropolis-Hastings algo­

rithm [69] generates a sequence of Markov chain states for the parameter vec­

tor 6. Compared with the general Metropolis-Hastings algorithm described 

in section 2.1.1, when the Gibbs sampler is used, the candidates for the next 

chain state are always accepted when drawn from the full conditional distri­

butions. Each iteration of the algorithm generates a state of R iV+3 as in 

equation (3.21). The j th state of the chain is denoted by

Each of the full posteriors listed in Table 3.2 is used only once since 

as soon as one component is updated the full conditional distribution used 

to update the next component is evaluated at all other components values 

updated in the current iteration j  and at the last one j  — 1.

Note that the dynamical system information is included in the probability 

model only through the observations S  and the dynamical model structure is 

explicitly in the probability (or state-space) even when there are no system 

observations available. Whilst the iteration time is evolving, the chain is 

eventually becoming a sample of the posterior. In the first iteration, the
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initial chain state 0 ^  starts moving along each dimension at a time since 

only one component is changed. In contrast, the dynamics are refined for 

that window of length N  for each iteration j .  A new pseudo-trajectory of 

length N  is generated for each iteration j .  There is no temporal evolution of 

the states but a new realisation of the deterministic system states which best 

resemble the data S  given the dynamical model chose. There is no dynamical 

evolution involved.

The algorithm that generates a chain of J  states for each of the compo­

nents of 0 is presented in Figure 3.2.1.4.

# Set chain i n i t i a l  conditions

0<°> =  ( x o < ° \  * , « » , . . . ,  * , « » , . . . ,  * „ («> , a (° ), a ? (0))

# Generate the Markov chain s ta te s  

Loop (j = 1 to  J)

{

Sample Xq^  ~  ns(xo\xiV~1\  • • •, Xn ^~ 1\  a^~l\

Sample ~  'Ks{x \ \xq^ \x 2^~1\  . . . ,  x ^ ~ l\  a^~x\

Sample x t ĵ) ~  7rs(xt \x0(j \  x ^ j \  . . . ,  x t- 1 ĵ ) , x t + . . . ,  Xn ^-V ,  aS3~l\

Sample X j y ^  'KS{xN\xQ{:i), x 1t i \ . . . , X t {j), . . . , x N - 1W,a!J 1})

Sample a ^  ~  TTs(a\x0^ \  X i ^ \  . . . ,  x t^ \  . . .  , x ^ \ c r ^ ~ ^ )

Sample cr| (j) ~  ns (cr$\x0(j), X i ^ \  . . . ,  x t (j\  . • •, x N V \ a W )

}
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MCMC techniques can be seen as an alternative method for generating 

pseudo-orbits for the map / .  This point is discussed in more detail in sec­

tion 3.3 and Chapter 5 where pseudo trajectories generated using MCMC 

methodology and gradient descent (in Chapter 4) are compared.

Prom the description of the MH algorithm, the generation of the chain 

seems to be a straight forward procedure, all full conditionals are known ex­

plicitly as summarised in 3.2. All components of 0 are easily sampled from 

their corresponding full conditionals, except for the components correspond­

ing to the initial condition and latent states where full conditional are not in 

a closed form.

For the components corresponding to { x t } ^ ) 1 a sample generating rou­

tine was implemented. The routine might be useful in other implementations 

of Bayesian state-space models for quadratic maps, since the quartic expo­

nential comes from the quadratic term in the map [23].

In those cases, the full conditional distribution is not in a closed form, so 

standard algorithms for random sampling generation cannot be used. There­

fore, in order to generate samples for { a ^ } ^ 1, the Accept/Reject Algorithm 

for sampling from a general density f y ( y ) is used.

This algorithm is presented in [17] as the following theorem:
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THEOREM 3.2 .1  Let Y  ~  fy(y)  and v  ~  fv(v) ,  where fy (y )  and fv{v)  

have common support with

M  =  sup fo fe r < 00. (3.39)
v Jv(v)

Prom Theorem 3.2.1, the steps to be followed in order to generate a 

random variable Y  ~  fy(y)  are shown in Figure 3.2.1.4.

Step 1 . Sample a uniform random v a r ia b le : U ~ U ( 0,1)

Step 2 . Sample a random va r ia b le : V  rsj f v  

Step 3 . I f :  then: Y  = V

otherw ise: Go to  step  1.

Note that when the Accept/Reject algorithm is used to generate random 

samples of Y ,  it is necessary to ensure that the condition (3.39) is fulfilled 

in all points belonging to the range where f y(y)  is defined, otherwise the 

algorithm will generate samples very slowly. Also note that this algorithm 

does not depend on any of the normalisation constants of fy (y)  and fv iy) .  

The functional form of f y(y)  is

f Y ( y )  oc e - ^ + B v * + C y t (3  4 0 )

where the exponent is a quartic polynomial. For all { x t} ^ 1, A  > 0 and for 

the initial condition Xq, C = 0.



The quartic exponential in (3.40) requires that some conditions on A, B  

and C  to hold in order to obtain a convex probability density function and 

for many values of A , B  and C  equation (3.40) is symmetric and bimodal. 

Details on how to constrain the choice of f v iv )  in order to obtain samples 

of fy{y)  with a low frequency of resection (in step 3 of of the accept/reject 

algorithm) are discussed in [23].

The fact that (3.40) is bimodal makes the convergence of the chain slow 

and could be the reason why WinBUGS did not produce reliable Markov 

chain states. As described in section 3.2.1.3, sampling algorithms, such as 

the ones used in WinBUGS, could fail to generate reliable samples from such 

probability distributions.

Before doing any inference of 0, the MCMC output has to be tested for 

convergence. Such tests will determine the burn-in time r , i. e. the time when 

the mixing of sampled components of 0 is reached or is stable. After r  itera­

tions, each state of 0 is a state that is drawn from the posterior. In this work, 

the convergence tests used are “by-eye” methods where the trace is plotted 

against the iteration time, and the GR-statistic [31] calculated for parallel 

runs of the algorithm. Once reliable samples of the chain are generated fol­

lowing the procedure described for the Metropolis-Hastings algorithm, any 

inference of 0 can be obtained.
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3.3 Distinguishing Dynamics

Several experiments are performed on data sets with different qualities and 

characteristics. The inferences obtained from each experiment test the per­

formance of the Bayesian methodology for the Logistic map given that the 

answer is known. Even though the conditions of the experiments are set in 

the PMS, i.e. data is generated in the PMS, and following the discussion 

in 3.2.1.2, the Bayesian probability model formulated in the NSA Logistic’s 

noisy data is used. Recall, the experiments are performed in the NSA, since 

the data contains only measurement noise.

Table 3.3 lists the types of data sets used to feed the Bayesian state-space 

model for the Logistic map. Type 1 observations are noisy segments of length 

N  of a Logistic trajectory for fixed a and known initial condition xq. T w o  

values of the Logistic parameter are used, a =  1.35,1.85, corresponding to 

periodic and chaotic trajectories. Initial condition is taken to be xo = 0.3.

Type 2 data sets are surrogates generated to be normally distributed with 

mean and variance corresponding to =  0.227 and =  0.372. These values 

are the mean and variance of the true dynamical states. On top of that a 

noise component is added to the data set in order to simulate noisy data of 

Type 1 and lengths N  = 100, 512 per noise level.

Type 3 data is a second group of surrogates generated as a random draw
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of the type 1 observations of length N  = 100 of type 1. Randomisation of the 

Logistic observations is obtained by shuffling the time index t — 1, . . . ,  N , and 

different realisations are generated by shuffling the time indices for several 

random seeds.

All three data types are statistically indistinguishable up to second order, 

i.e. shared mean and variance of the noise free Logistic trajectory.

Type Description

i
st = x t + T]t, where x t = 1 -  ax\_x, t = 1 , . . . ,  N.

i
Tjt ~  A/"(0, av2) for 0 <  av2 < 2

2
rt = Qt + where Qt ~  <j2), t = l , . . . , N .  

\ix =  m e a n d x J ^ j)  and o 2x = v a r d ^ } ^ ) .  

rjt ~  AẐ O, 0T72), with 0 <  crv2 < 2.

3 m t is a random draw of type 1 data sets.

Table 3.3: List of data types on which the MCMC implementation is applied.

Despite the wide spectrum of data sets used to obtained MCMC esti­

mates of the Logistic parameter, this section focuses on the comparison of 

the results for data sets of type 1 and 2. A detailed and extensive description 

of the results obtained for the other data sets are to be presented in [24] and 

elsewhere. A more complete analysis is planned for future research.
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Figures 3.6 and 3.7 show in the left panel the reconstruction of noisy 

observations (+) on top of the reconstruction of noise free states (grey dots) 

for both data types, 1 and 2, respectively. In the right panel of Figures 3.6 

and 3.7, two histograms are overlapped, one for the noisy observations (black) 

and another for the noise free states (grey).
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Figure 3.6: Data set type 1: Noisy observations. Right: Reconstruction of the 

noise free states (grey dots) and the noisy observations (+ ) for noise level of 0.2. 

Left: Histograms of the noise free states in grey and the noisy observations in 

black.

The left panel of Figure 3.7 clearly shows that there is no evidence of any 

structure resembling the dynamics of the Logistic map; neither is the invari­

ant measure evident from the histogram in the right panel due its nonexis­

tence in the data and to the short length of the data sets.

Application of the Bayesian techniques to both data types is made in
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Figure 3.7: Data set type 2: Surrogate data. Right: Reconstruction of the noise 

free states (grey dots) and the noisy observations (+ ) for noise level of 0.2. Left: 

Histograms of the noise free states in grey and the noisy observations in black.

order to test MCMC parameter estimation performance for the Logistic map. 

MCMC is applied to type 1 observations of length N  = 100 in order to check 

for sensitivity of the burn-in time in at least five realisations of the noisy 

observations. For each of the data types described in Table 3.3, a chain for 

the parameter vector 6 is generated from T  = 1.1 x 105 iterations of the 

algorithm.

Inference of any component of 0 is reliable once convergence of the chain 

is assessed, i.e. burn-in time is estimated. In order to asses chain convergence 

and since there is only one realisation of the chain for each data type and each 

noise level, the Gelman-Rubin (GR) statistic [31] is calculated by segmenting 

the chain into two segments of equal length (i.e. 5.5 x 104). See definition
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in Chapter 2, section 2.1. The closer the GR statistic value is to 1, the 

more overlapping of the parallel Markov chains is evident [95]. Generally, 

GR values less than 1.2 are considered to be acceptable, passing the mark 

for convergence assessment [95, 13]. In the case that GR > 1.2 for “all” 

summary statistics of interest, it is safe to continue with further iterations 

until GR G [1.0,1.2].

In section 3.2.1.3 where the WinBUGS software is used, the output is 

thinned each 20th  chain state to reduce the correlation between samples if 

the convergence is not fully reached. In this section, all chain states for 

t > r  +  1 are taken for inference purposes.

Figures 3.8 to 3.11 show the GR values for two summary statistics of the 

MCMC output as a function of the iteration time. Each Figure is composed 

of two panels, in the left the GR values of the MCMC output from type 1 

(Logistic) data are plotted whilst in the right the corresponding estimates 

are plotted for type 2 (surrogates) data, both with noise level = 0.2. The 

GR statistic is calculated for the median (dashed line) and variance (dotted 

line) of the resulting chain, and the pass mark of the test is represented by 

a horizontal line. Figure 3.8 plots GR values for estimations of the Logistic 

parameter a, Figure 3.9 for the dynamical noise variance a], Figure 3.10 for 

the initial condition x0, and Figure 3.11 for the state estimate for x 3 7 .

In both panels of Figure 3.8, convergence is fully reached for the median
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Figure 3.8: GR statistic for the median (dashed line) and variance (dotted line) of 

the Logistic parameter a. MCM C output is generated for type 1 (left) and type 2 

(right) data w ith  a noise level of <r̂  =  0.2. The horizontal line corresponds to the 

pass mark for the test.

estimates, in  the  G R  sense, a fter 1 x 104. The chain is sa tis fac to rily  converging 

in  median towards to  the posterior d is tr ib u tio n  since the GR-values tend to  

one for b o th  da ta  types.

In  contrast, the chain is converging in  variance towards the posterior 

on ly fo r the da ta  type 2 (surrogates) a fte r few itera tions. As seen in  the le ft 

panel o f F igure 3.8, the G R values for the variance o f the d is tr ib u tio n  o f a- 

estimates fo r the  data  type 1, are less than  one only a fter approxim ate ly 2000 

itera tions. Suddenly, the G R  s ta tis tic  looses its  sk ill a t around 104 itera tions, 

i.e. G R  >  1, and shows a slow decrease towards 1, i.e. slow convergence of 

the  chain. A ltho u gh  th is  is the case, G R  < 1 . 2  soon after 3 x 104 iterations.



Convergence in  variance to  the posterior is slow and non-un ifo rm  when type  

1 data  is used to  feed the M C M C  algorithm .

Convergence in  variance is reached faster when the observations are o f 

type  2, i.e. when there is no dynam ical in fo rm a tion  in  the observations. The 

difference between variance convergence rates in  bo th  chains shows th a t the 

M C M C  technique shrinks the uncerta in ty on the Logistic param eter more 

e ffic ien tly  fo r the  surrogate data set than  the Logistic noisy data  set.
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Figure 3.9: GR statistic for the median (dashed line) and variance (dotted line) of 

the dynamical noise variance crj. MCMC output is generated for type 1 (left) and 

type 2 (right) data with a noise level of cr̂  =  0.2. The horizontal line corresponds 

to the pass mark of the test.

S im ilar results are obtained for the G R  s ta tis tic  o f the dynam ica l noise 

variance a f chain obtained using type 1 data  sets. Th is  p lo t is shown in  the 

le ft panel o f F igure 3.9. Poor and slow convergence is also shown for the
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median and variance estimates of this chain. In contrast, convergence is very 

fast and uniform when the data set is of type 1. As featured in Figure 3.8, 

convergence is reached faster when the observations used to evaluate the 

posterior do not contain dynamical information. This behaviour of the GR 

statistic is consistent for all noise levels and data types considered.

Given that convergence has to be assessed in all components of 0 in order 

to validate the samples obtained by MCMC as samples of the posterior [31, 

95, 13]; Figures 3.10 and 3.11 plot GR values for other components of 0 as 

a function of the iteration time. As described in last sections, the other 

components of the parameter vector are directly related with the dynamical 

nature of the Logistic model. This components correspond to the initial 

condition, Xo, and the latent states, x t .

The GR values calculated for the mean and variance of the distribution of 

estimates of the initial condition, xo, and the latent state, £37, display similar 

features of convergence as the ones described for the Logistic parameter a, 

and the dynamical noise amplitude cr|.

It is clear from Figure 3.10 that whilst convergence is fully reached in 

mean and variance for the chain generated using type 1 observations after 

104 iterations; the chain generated using type 2 data, i.e. noisy Logistic 

observations, is converging weakly, GR «  1.2.

In the inset of the left panel of Figure 3.10, a zoom of the GR values
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Figure 3.10: GR statistic for the median (dashed line) and variance (dotted line) 

of the in itia l condition x q . MCM C output is generated for type 1 (left) and type 

2 (right) data w ith  a noise level of =  0.2. The horizontal line corresponds to 

the pass mark for the test.

for iterations between 1.8 x 104 and 5.5 x 104 .is shown. In that period of 

iteration time, convergence is weak and oscillating around the pass mark of 

the test.

Figure 3.11 shows similar features of convergence of the chain obtained 

for the latent state £37. Poor convergence is reached for both the median 

and variance of the resulting distribution of samples of :r37 and for any t = 

1, . . . ,  100 .

In addition, the GR values calculated for the WinBUGS output obtained 

in section 3.2.1.3 and the convergence plots display there, clearly show that 

convergence reached by the “Tailored” implementation of the MCMC tech-
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Figure 3.11: GR statistic for the median (dashed line) and variance (dotted line) 

of the latent state, Z37. MCMC output is generated for type 1 (left) and type 2 

(right) data with a noise level of cr̂j = 0.2. The horizontal line corresponds to the 

pass mark for the test.

niques is more robust than for the convergence display in the chain obtained 

by WinBUGS software. Even though, oscillatory behaviour of the stable state 

of the chain (as shown by results obtained from the WinBUGS implementa­

tion of MCMC), in the case of the “tailored” implementation, oscillations are 

smaller in amplitude. Reasons for itermittency or oscillation of chain conver­

gence are directly related with the multimodality of the chaotic Likelihood 

associated with the Logistic map as discussed in section 3.2.1.3 and in [5]. 

Mitigation of this effect is obtained by the “Tailored” implementation since 

the sampling algorithms using in WinBUGS [21] are no longer used.

GR values for the chain obtained using all data types, noise levels and

119



parameter vector components consistently show that higher quality conver­

gence is reached when type 2 observations rather than type 1 observations are 

used to generate a chain by the “Tailored” implementation of MCMC. There 

is no evidence that this distinction could bring any light onto the distinction 

of deterministic and random behaviour. On the contrary, it highlights the 

type 1 data as time series generated from a deterministic system in this par­

ticular example and future research is planned to tackle such features of the 

MCMC estimates.

Convergence is assessed by the GR test and the burn-in time is set to 

be t  =  1 x 104 iterations. All samples obtained after r  iterations of the 

algorithm are considered as samples from the posterior, and inferences can 

be made by Monte Carlo approximations on the resulting chain of length 

1 x 105.

Remark that this section is focused on the deterministic structure of the 

state estimates rather than the Logistic parameter estimates themselves. As 

a consequence, evidence of determinism is searched for the resulting MCMC 

distributions of estimates for the latent states of the Logistic map.

The reconstruction of the estimated x t’s for several noise levels is shown 

in Figure 3.12 after discharging r  burn-in samples. The Figure is composed 

by 4 panels, in each panel the reconstruction of the true states and the 

median state estimates both the type 1 and 2 data sets are shown. From left
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Figure 3.12: Delay plots of the Logistic and estimated M CM C states for noise 

levels of crjj =  0.4,0.8,1.2,2.0, left to right. Grey dots are used for true Logistic 

states, (+ ) and (x )  for the median Logistic states estimates from type 1 and type 

2 data sets, respectively.

to right, the panels correspond to noise levels of = 0.4, 0.8,1.2 and 2.0, 

equivalent to 20%, 40%, 60% and 100% of the noise free signal approximately. 

The symbols in each panel correspond as follows: grey dots to true Logistic 

states, (+) and (x) to median state estimates from MCMC output using 

noisy Logistic observations and surrogates, respectively.
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Despite the presence of high noise amplitudes, the short length of the 

data set and even the non-existence of the dynamics in the surrogates, the 

reconstructions clearly resemble the Logistic map structure. For some noise 

levels, the Logistic structure is even more evident in the reconstruction of the 

state estimates obtained from surrogates than in the reconstruction of the 

noisy one obtained from Logistic data. The median estimates of the Logistic 

states tend to cluster around the stable point of the Logistic map. The order 

of the standard errors for the calculated posterior medians corresponding to 

each of the x t’s for t =  1, . . . ,  N  are consistently of the same order for both 

data sets, as can be seen for the state x 37 in Figure 3.13.

In addition, the Bayesian methodology provides a robust de-noising fea­

ture (see Figure 3.12), based not on embedded measurement variables [57, 

27, 48] but on the probabilistic structure of the state-space.

Posterior estimates for several components of the parameter vector 0 

are calculated and shown in Figures 3.14 to 3.17. These Figures shown 

the posterior estimations and their corresponding uncertainty measures for 

the same components of 0, namely: Logistic parameter a in Figure 3.14, 

initial condition x0 in Figure 3.15, absolute value of the initial condition in 

Figure 3.16 and dynamical noise amplitude a j  in Figure 3.17.

Each of these Figures displays two panels. The left panel plots posterior 

estimates for data type 1 and the right panel for data type 2. The summary
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Figure 3.13: Posterior mean estimates for 0 < cr̂  < 2 the Logistic state £37 for 

data type 1 (left) and 2 (right) as a function of the noise level 0 < at]2 < 2. Mean 

and median are displayed as a solid and dashed black line. The light grey area 

covers the values between the isopleths of 2.5% and 97.5% and the darker grey 

area covers values between the 25% and 75% isopleths. The true state value is 

marked with a horizontal line.

statistics calculated are the median and the mean, plotted in a solid and 

dashed black line, respectively. True parameter values are marked by a hor­

izontal dotted line. The light grey areas correspond to the values between 

the 2.5% and 97.5% isopleths of the resulting posterior distribution and the 

darker grey areas to the values between the 25% and 75% isopleths. All 

posterior estimations are calculated for only one realisation of measurement 

noise.

Posterior estimates for the Logistic parameter a in Figure 3.14, show that 

for both data types the Bayesian methodology produces a satisfactory value
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Figure 3.14: Logistic parameter, a, posterior mean estimates as a function of the 

noise level, 0 <  cr* <  2 for both data types, 1 (left) and 2 (right). Mean and 

median are displayed as a solid and dashed black line, respectively. The light grey 

area covers the values between the isopleths of 2.5% and 97.5% and the darker 

grey area covers values between the 25% and 75% isopleths. The true parameter 

value is marked w ith  a horizontal line.

of a for several noise levels. For both types of input data, the performance of 

the technique on parameter estimation is markedly superior in comparison 

with traditional methods (i.e. such as Least Squares, e.g. Figure 1 in [68]) 

and for high noise levels.

Surprisingly, the left panel in Figure 3.14 shows that the posterior esti­

mates obtained for the surrogates, where there is no dynamical information, 

are consistent in behaviour with the estimates in the right panel. In both 

cases, estimates stay close to the true value even for large noise levels. If one 

was given only Figure 3.14 in isolation then it would be very difficult task to
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discern which of the two of the original data sets corresponds to the Logistic 

observations (i.e. contains a chaotic structure in the state space), and the 

possible answer to that question might be certainly ambiguous.

Figure 3.15 clearly shows the multimodality of some of the posterior pro­

sections onto components of the parameter vector 0. Given a noise free 

Logistic map state at time t, calculation of the state at time t — 1 for a 

known value of a implies finding f ~ l (xt-i',a), i.e. x t~\ =  ± \ / l  — x t- For a 

noisy Logistic observation, the same calculation implies accounting for the 

experimental uncertainty of the observations by calculating the state at time 

t — 1 as for the case of the noise free Logistic state over an ensemble of val­

ues around the true state. In this case, the estimated value for the state at 

time t — 1 would result in a bimodal distribution around ± x t- 1. From this 

argument it is easy to see how the multimodality is natural in the posterior 

estimates of the latent Logistic states x t.

The resulting posterior values of the initial condition xq display multi­

modality and symmetry with respect to zero as expected for the Logistic 

map from the argument in the paragraph above and from the discussion of 

Berliner in [5] and in section 3.2.1.2. Going backwards in time to find the 

initial condition that generated the true trajectory involves binary decisions 

each time the inverse of the map is solved. For both data types, results are 

very similar even though the posterior distribution tends to be wider when
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surrogates are used to feed MCMC.
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Figure 3.15: Posterior mean estimates for 0 <  a2 <  2 the in itia l condition xq for 

data type 1 (left) and 2 (right) as a function of the noise level 0 <  arj2 <  2. Mean 

and median are displayed as a solid and dashed black line. The light grey area 

covers the values between the isopleths of 2.5% and 97.5% and the darker grey area 

covers values between the 25% and 75% isopleths. The true value of the in itia l 

condition is marked w ith  a horizontal line.

For this form of the Logistic map, f ( x t- 1; a) = 1 — ax2_x, and only in the 

PMS, it is valid to calculate estimates of the initial condition using the ab­

solute values of the posterior obtained by MCMC. All results presented here 

generalise to all one-dimensional quadratic maps since all are dynamically 

equivalent in behaviour when parameter values are in the chaotic regime [73].

Figure 3.16 shows posterior estimates for the absolute value of the Logistic 

map’s initial condition, |rc0|, for both data types used. In this case, location 

of the posterior modes is closer to |xo| =  0.3 for estimates obtained from noisy
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Figure 3.16: Posterior mean estimates for 0 < cr̂  < 2 the initial condition zo for 

data type 1 (left) and 2 (right) as a function of the noise level 0 < err)2 < 2. Mean 

and median are displayed as a solid and dashed black line. The light grey area 

covers the values between the isopleths of 2.5% and 97.5% and the darker grey 

area covers values between the 25% and 75% isopleths. The absolute value of the 

initial condition is marked with a horizontal line.

Logistic observations than for surrogates for all noise levels. It is surprising 

that estimates from surrogates oscillate around the true value and are always 

less than 1, i.e. even though there is no dynamical information in the data 

used, the methodology drifts initial chain states to the relevant domain for 

the values of x0.

Figure 3.17 shows the posterior estimates for the amplitude of the dynam­

ical noise parameter, a2. In both cases, as expected from prior information, 

the dynamical noise variance satifies 0 < a2 <C 1. The dynamical noise com­

ponent keeps close to zero for all noise levels when estimates are obtained
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Figure 3.17: Posterior mean estimates for 0 < a2 < 2 the initial condition for 

data type 1 (left) and 2 (right) as a function of the noise level 0 < ar]2 < 2. Mean 

and median are displayed as a solid and dashed black line. The light grey area 

covers the values between the isopleths of 2.5% and 97.5% and the darker grey 

area covers values between the 25% and 75% isopleth.

from noisy Logistic observations. Although, this is the case as well for es­

timates obtained from the surrogates for noise levels 0.4 < a2 <  2.0, the 

dynamical noise variance is 0 (a 2) = 1 for a 2 = 0, 0.2. Coincidentally, this 

behaviour corresponds to low estimates obtained for data type 2 of the Lo­

gistic parameter a, see Figure 3.14, for the same noise levels. This behaviour 

can be seen as a result of a particular realisation of the surrogates and from 

the non-uniform chain convergence (see Figure 3.9) obtained for surrogates 

for small noise levels.

In addition, this fact stresses the role of the dynamical noise inclusion 

in the Bayesian model of the Logistic map as a control parameter that ac­
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counts for model error. Therefore, posterior distribution width is interpreted 

as model uncertainty. It is evidence of the strain experienced by the MCMC 

simulation to obtain parameter estimates from observations that are repre­

sented by a model that is far away from the real system where the observa­

tions are obtained from.

Figure 3.18 shows the histograms of the posterior distributions obtained 

for the Logistic parameter a and the initial condition x0. The Figure is 

composed by four panels, each displaying two histograms, one corresponding 

to the posterior estimates using data type 1 in black and another using 

data type 2 in grey. The left column shows histograms for the Logistic 

parameter a and the right column for the initial condition Xq. The rows of 

the Figure display the posterior histograms for noise levels corresponding to 

cr% =  0.4,2.0, from top to bottom. Thus, for example, the panel in the top 

right corner corresponds to the histograms of the initial condition from data 

types 1 (grey) and 2 (black) with noise level of = 0.4. True parameter 

values are marked with a horizontal line.

The histograms are consistent with the convergence features discussed 

earlier and the ambiguity presented by the methodology when discerning 

between deterministic and random behaviour.

Histograms for the Logistic parameter a, show that the method is un­

able to distinguish between the deterministic data set and the surrogates.
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Histograms obtained for both data types are very similar in shape and lo­

cation of the mode or modes. Even more, wider posterior distributions are 

produced for noisy Logistic observations than when surrogates are used to 

generate estimates.

In the left column, the initial condition histograms clearly show the 

high complexity of the posterior obtained; posterior distributions with many 

modes and high,tails given the quadratic and chaotic nature of the map. As 

for the case of the Logistic parameter a, estimates from surrogates display a 

better and smoother behaviour than those observed for data type 1, even for 

high noise levels.

For both data sets and all noise levels, the positions of the modes are 

located in the close neighbourhood of the true value for a and Xq.

Multiple peaks and coarseness in the resulting densities are evidence of 

the slow and non-uniform convergence of the chain to the stationary distri­

bution [85] and of the inadequacy of the model used to represent the obser­

vations. In contradiction, it seems that the observations of type 1, the ones 

that contained dynamical observations, are more inaccurately represented by 

the Bayesian model than the surrogates..

If one was given only the convergence analysis, posterior estimates and 

histograms of the resulting chain obtained for both data types, and was asked
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Figure 3.18: Histograms of the posterior samples obtained by M CM C for the 

Logistic parameter a (left column) and the in itia l condition xq (right column). 

Histograms in the top row correspond to posterior components obtained for a 

noise level <r̂  =  0.4 and for <j  ̂ =  2.0 in the bottom row. Each panel displays two 

histograms, one for the posterior samples obtained from noisy Logistic observations 

in black and surrogates in grey. True parameter values are marked w ith  a vertical 

line.

to choose which of the two data types contains deterministic features from 

the MCMC chain it produces; the scale tends to point to a type 2 data

131



set as a candidate of containing deterministic features, even in the PMS. 

Current work [24] and future research is planned to tackle this ambiguity by 

formulating tests based in Ockham’s razor ideas [72, 65]. This ambiguity is 

directly related with the open problem of distinction from deterministic and 

random behaviour and also to the discussion presented in Chapter 5.

The Bayesian approach seems to provide too good estimates and features 

a correctness in the parameter estimates that seems to be too good as it is 

presented in the relevant literature [70, 12]. From the study performed here, 

it seems too good to be true.

Complexity of the analytical posterior [5, 89] as discussed in section 3.2.1.2, 

numerical issues related to the resolution of the initial condition [52], inclu­

sion of dynamical noise to solve numerically the posterior as discussed in 

section 3.2.1, and convergence issues [21, 24] of the resulting chains, make 

estimations obtained by MCMC techniques suspicious numbers that should 

be taken with caution.

Even more, it provides “good” and “close” estimates for parameter values 

in cases where it is known that they do not even exist. This study emphasises 

the care that should be taken when applying Bayesian methodologies to de­

terministic systems, as also discussed in Chapter 6 and in [24, 22]. Specially, 

in real cases where the existence of the model is questionable and model 

parameters may not have a correspond pair to the reality of the system [87].
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This work does not confirm that the Bayesian method, through MCMC 

techniques, provides “unbiased parameter estimations” for deterministic chaotic 

systems [70, 12]. Instead, it warns that the estimations are provided by a “bi­

ased numerical implementation” when applied to noisy chaotic observations. 

Remark that this is true only in the case that the observations used contain 

only measurement noise. Here, bias is understood in the sense that, for the 

probability model studied, the correct model is impossible to be implemented 

numerically, therefore, a Naive Statistic Approach is used instead.

3.4 Summary

The results described in this chapter clearly reflect a series of ambiguities 

when the Bayesian methodology is applied to a signal from nonlinear, poten­

tially, chaotic systems. In particular, Bayesian methodologies are correctly 

imported to the nonlinear framework to solve the problem of model parame­

ter estimation from experimental observations within the PMS. Remark that 

the parameter estimation problem is defined in the PMS defined precisely by 

two conditions: the model representing the data corresponds exactly to the 

system from which the observations are taken and experimental observations 

contain both measurement and dynamical noise, as described in section 3.1.

If observations of the system contain only measurement noise, the Bayesian
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formulation is forced to change fundamentally in interpretation since the ob­

servations are not obtained in the PMS. If the formulation is not changed 

and it is applied to observations with only measurement noise then is only 

done to make the problem numerically tractable. This fundamental change 

is made for the sake of numerical tractability, not with the interest of finding 

a way to model the observations in a “more realistic” way as argued in [70].

In section 3.2.1.2, the assumption of stochastic transition over time is seen 

as an unavoidable step in the Bayesian modelling process for deterministic 

chaotic time series. W ithout this assumption the chaotic Likelihood [5] is 

not well behaved, preventing the explicit calculations of the full conditionals.

Henceforth, several difficulties in the numerical implementation of the 

MCMC technique for chaotic models are implied since the resulting poste­

rior and full conditional distributions display multimodality. Multimodal 

densities are difficult to sample from and in addition deeply affect conver­

gence of samples as samples of the posterior [13, 95, 71, 21, 23], one of the 

major flaws of the version of WinBUGS used in 2002. As detailed in sec­

tion 3.2.1.3, multimodality makes the process slow and less reliable since the 

convergence is not uniformly reached in some components of the parameter 

vector 0 , and traces of the WinBUGS and MCMC output seem to jump in 

the state-space in an intermittent way.

Given these convergence issues, the MCMC algorithm is implemented in­
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dependently of the WinBUGS package, developing a sampling routine for 

the initial condition and the latent states [23] specially for these compo­

nents. Such a numerical routine is designed from the Accept/Reject al­

gorithm to samples from quartic exponential distributions, as described in 

section 3.2.1.4.

In summary, the estimations obtained for the Logistic parameter and the 

latent states resemble the Logistic dynamics. Even when the technique is 

applied to Logistic surrogate data (see Table 3.3 in section 3.3). Reasons for 

this correctness of the parameter estimations for the latent states had been 

argued in terms the length of the data and sensitive dependency on initial 

conditions [5, 70, 53].

Prom the results presented in section 3.3, the inability to distinguish 

random from deterministic behaviour is a natural feature of the Bayesian 

methodology, since no m atter how wide the posterior results in each case 

data type used to feed MCMC, it always generates samples that are consistent 

with the true trajectory of the Logistic map. This coincidence in dynamical 

behaviour obtained from estimates calculated from experimental observation 

of different nature is strongly related by the presence of the deterministic 

equations in the probabilistic model.

A deeper research to clarify the reasons of this ambiguity of identification 

is planned as a future research. The research is going to be focused to formu­
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late tests which can identify dynamical information of any sort by comparing 

the resulting posterior distributions.

As a first approach, it is going to be use ideas related to the Ockham’s 

razor approach [72, 65]. Instead of using it for choosing a model, it will 

cut the wider posterior given the same model class. Experiments and test 

performed in the PMS are promising at highlighting this difference since 

uncertainty sources are minimised.

Unfortunately, when faced with real scenarios (see chapter 6), it is almost 

impossible to decide which is the data set containing random or deterministic 

behaviour since the existence of a perfect model to represent the system is 

questionable (not to say such model does not exist) [87], and [86, 18] in [18].

It can also be argued that when a methodology is imported from one 

paradigm to another, misinterpretations are easily obtained, and the process 

of doing that, this should be made with care. Explicitly, Bayesian methodol­

ogy is imported from a statistical paradigm to the deterministic paradigm in 

the framework of nonlinear time series analysis. For example, the term noise 

is understood differently and plays a very different role in the nonlinear and 

statistical analysis of time series.

Once the methodology is imported to a different paradigm interpreta­

tion of results are often mislead. For example, it is strongly and incorrectly 

pointed out by Meyer and Christensen [70] that in order... “To develop this
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idea within a proper statistical paradigm requires treating the system states 

as stochastic instead of deterministic. It is therefore consider the more realis­

tic case that the system dynamics are subject to random disturbances.”. Se­

vere implicit assumptions on the nature of deterministic chaotic latent states 

are made when dynamical noise is introduced in the probability model.

One of the points of the study presented in this chapter is not to defend or 

attack the Bayesian paradigm, much more, it is to recognise the advantages 

of assuming the states to be stochastic instead of deterministic. Random­

ness introduces useful redundancy in the restricted observational information 

available and much more when the problem is not formulated in the PMS.

At the same time, probability perspectives included carefully in determin­

istic realms could help to account for sources of uncertainty in observations 

and model-reality pairing.

This discussion does not disqualify the Bayesian approach for parameter 

estimation. On the contrary, it brings new insights on its effectivness when 

combined with conventional linear and non-linear methods of parameter es­

timation and noise reduction as explored in chapter 6.

This work brings new insights on the effectiveness of the Bayesian ap­

proach when combined with conventional linear and nonlinear methods of 

parameter estimation and noise reduction.

Many thanks to Thomas Andrew of Imperial College for his useful dis­
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cussions, insights and comments related to the WinBUGS package and the 

MCMC technique and to Luis Fernandez of Universidad de los Andes at Bo­

gota, in the discussion and mathematical formalities in the development of 

the sampling routine to generate samples of Quartic Exponential densities.
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Chapter 4 

D istilling Information in the  

Param eter Space

Parameter estimation is typically formulated from a statistical point of view 

as the tunning of model parameters to mimic observations. In this framework, 

the problem of parameter estimation is seen as the problem of model fitting. 

Traditionally, estimates are obtained through calculation of the “best” model 

parameter values that fits the data and uncertainty measures are given by 

confidence intervals. In general, such estimations are related only to condi­

tional information contained in the experimental observations given a partic­

ular model structure. Therefore estimates are often biased when observations 

are perturbed with noise. In practice, noise is always present.

This chapter focuses on the idea that, in a nonlinear framework, sta-
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tistical methods should be introduced and combined with already existing 

methodologies in order to enhance the information content of the dynamical 

model trajectories and their distributions. The dynamical information con­

tent is enhanced by generating distribution of model states and parameter 

estimates instead of single “best” guesses.

“Better” parameter estimation for nonlinear models is pursued by bal­

ancing the contribution of information from the dynamical equations and 

the observations available following the ideas presented by McSharry and 

Smith in [68].

The information from the model and the observations is combined by the 

trajectories the model admits in the parameter space. When the balance is 

obtained, estimates cope simultaneously with both observational and model 

uncertainty for a given parameter value. In addition, the combination of 

information from both model and obsevartions in the parameter space gen­

erates model states and noise model estimates. If a parameter space region 

features biased parameter values it is because estimates for the system states 

and the noise model are also biased. On the contrary, “better” estimates 

might reflect a fine balance of dynamical and experimental information as 

discussed in section 4.1. Given the “quality” of a particular region, forecasts 

and/or condition monitoring of the system are deeply affected.

Even in the PMS when system and reality are matched with each other,
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i.e. the model’s functional form is known to match the system exactly, a 

value for the model parameters, must be estimated from corrupted infor­

mation contained in the observations of the state variables. Observational 

uncertainty has to be accounted for one way or another.

The simplest case of parameter estimation is to attem pt to solve the 

problem in the PMS where the parameter values that generated the data are 

known exactly. To solve the problem means finding the “true” parameter 

values and system trajectories to arbitrary precision. Unfortunately, even 

under PMS conditions and observations of sufficient length it is not possible 

to solve the problem with full certainty [68, 88]. It has been found that 

the inverse problem can only be solved when the dynamical system is known 

entirely, there are observations available for infinite duration into the past and 

the noise process is known exactly, as shown in [54] and references therein.

The challenge is then to find a consistent way of extracting useful infor­

mation when the noise model and the true functional form of the system are 

known exactly given that there is no available information on the parameter 

values that generated the observations. This work contributes to its solu­

tion by introducing a simple method for extracting significant information 

in the parameter space via the trajectories admited. The method extracts 

information of short to moderate time scale dynamics between a model and 

observations of the system. The information extracted is then combined with
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information of the long-term dynamics [68, 88]. It is interesting to note that 

fundamental questions of parameter estimation in nonlinear systems remain 

open [16, 36, 92, 12, 76], even in the PMS.

For this study, the problem of parameter estimation in the context of 

nonlinear dynamical models is stated in the sequence space. The sequence 

space is a higher dimensional space than the state-space. In contrast to the 

state-space where a point corresponds to a system’s state, a point in the 

sequence space is a sequence of states or a trajectory segment. A sequence 

of states or pseudo-orbits are generated by gradient descent [54, 55], which 

by definition, resemble the observations and the dynamics for a given param­

eter value. The quality of any parameter value is then viewed through the 

evaluation of particular properties in the parameter space or statistics that 

may contain dynamical information. The distribution of shadowing pseudo­

orbits, the implied noise level distribution and the pseudo-orbit mismatch 

distribution (see section 4.2.1 and sections therein) are calculated to explore 

the quality of the pseudo-orbits in the parameter space for a given value of 

0 .

This study is presented in two parts, in section 4.1 the statistical ap­

proach is described by a discussion of Maximum Likelihood techniques and 

how information of dynamical trajectories could be introduced. Following 

McSharry and Smith (Phys. Rev. Lett. 83, 1999) in [68], the statistical
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methodology for parameter estimation in nonlinear models focusing on the 

geometric properties of trajectories in the short term while capturing the 

global behaviour of the model is described in section 4.1.1.

In section 4.2, the geometric approach is presented. In that framework, 

for a given parameter value of 6 , both pseudo-orbits and true trajectories 

are identified via gradient descent in the extended state-space or sequence 

space. Both pseudo-orbits and the shadowing trajectories are contrasted with 

observations in order to obtain insight on both dynamical information and 

noise model parameters. A comparison with the- observations could be seen 

as a prosection of the sequence state into the parameter space which in turn 

induces a structure in the parameter space. Such structure highlights ar­

eas in the parameter space where the estimates are considered as candidates 

for “good” estimations (see section 4.2.1 for definition of “good”) and map­

ping between sequence space and parameter space is made through relevant 

distributions and its summary statistics.

Balance in the dynamical and experimental information of the estimation 

process is made though the study of relevant statistics that may contain 

dynamical information and noise process information as presented in 4.2.1.2 

and 4.2.1.1, for the time steps a trajectory that started in the state estimate 

shadows the dynamics and also is consistent with implied noise levels present 

in the signal. Advances in parameter estimation presented in this chapter
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are possible by improving the balance in extracting information from the 

dynamic equations and the observations.

All experiments fall within the PMS. Candidate parameter values are 

evaluated upon how well corresponding trajectories and pseudo-orbits mimic 

the observations. Trajectories are found by gradient descent [77, 26, 79, 54, 

55]. For each parameter value the trajectories obtained are quantified by

i. the ability of model trajectories to t-shadow [34, 87] uncertain obser­

vations,

ii. how well model pseudo-orbits approximate relevant trajectories,

iii. the consistency of an implied observational noise distribution with the 

noise model (when one is known [68, 76]),

and are described in section 4.2.

Even with perfect knowledge of both the dynamical and the noise model, 

it is not possible to disentangle uncertainty in the dynamics from uncertainty 

in a given set of observations. Perspectives including a relevant Bayesian 

formulation of the problem in the PMS are commented as here and in chap­

ter 3 but still there remain fundamental challenges of parameter estimation 

when a perfect model class is unavailable. In particular, both methodologies, 

Bayesian and nonlinear time series analysis, generate points in the sequence
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space during the process of parameter estimation with similar noise reduc­

tion characteristics. Both methodologies produce similar estimates of model 

parameters and system states, one should be able to discern which method 

is more relevant given the scope of any particular study. In other words, 

it is important to find which method is more efficient on providing reliable 

solutions to the problem of parameter estimation given the context of each 

study. To chose one method or the other, there are two possibilities, one in 

terms of parsimony or in terms of the dynamical informational content of the 

estimates whithin in nonlinear time series analysis framework. A more exten­

sive discussion of improper application of Bayesian techniques is presented 

in chapter 5, where results from the presentation of how proper Bayesian 

methodologies can be seen in the PMS in chapter 3 are contrasted with ones 

presented here.

Figure 4 shows a caricature of how the problem of parameter estimation is 

viewed in this chapter. Once de-noised segments of trajectories are generated 

given a particular noise model and dynamical equations of the system, they 

are represented in the sequence space by points, each point with as many 

components a,s the length of the trajectory.

For a given value of 0, in the parameter space a distribution of points 

in the sequence space is defined. For each distribution of points a relevant 

statistic g can be defined such that it maps distributions of points in the
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t ---------- >

Parameter Space

Sequence space

Figure 4.1: The diagram represents how the information form the dynamics and 

the observations is carried for particular values of the parameter vector 6 to the 

sequence state and finally to the parameter space via some mapping of relevant 

statistics represented by g.

sequence state to a point in the parameter space. From the value that g 

takes, structures in the parameter space are induced.

The procedure for parameter estimation can be easily generalised as an 

iterative process. The first iteration of that process are the results presented 

in this chapter where most of the effort is put on the quantification of the 

trajectories obtained given a parameter value and from there on distinguish­

ing “good” areas in the parameter space. Later iterations will shrink the 

chosen parameter space areas to narrow the set of candidates for parameter
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estimates.

This study is made in cooperation with Hailiang Du, Leonard A. Smith 

and Kevin Judd and some of the principal results are presented in [88] and 

summarised in the last section of this chapter.

4.1 Statistical Approach

In this section the statistical approach of point estimation to estimate model 

parameters using cost functions is discussed from Maximum Likelihood per­

spectives. In this framework, a probability density function is constructed 

for the observations given a known model of the system of interest and spec­

ified noise model. Parameter estimates are obtained by considering only the 

information content of the observations. Unfortunately, dynamical informa­

tion contained in the observations is corrupted by the presence of noise in 

the form of measurement and/or quantisation errors.

As presented in section 2.2, a PDF is constructed such that the probability 

of a set of observations given a dynamical model is maximised for a set of 

parameter values. Given a set of parameters the goal is to find the probability 

that the set of observations can occur as a function of the parameter 9. Such 

a probability function, P({s*}|0) is the conditional probability of the set of 

parameters 9  given a particular data set {st}. In turn, this probability is
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identified with the Likelihood L(0|{s*}) of a particular data set given a set 

of parameters. This identification translates to the problem of parameter 

estimation to find those values of 0 that maximise the Likelihood.

In this Chapter, the problem of parameter estimation is formulated in 

the PMS therefore the model and the system share the same mathematical 

structure. The temporal evolution of the model states are given by equation 

(1.2) and is reproduced in equation (4.1) as follows

x t+i = / ( x t;0), (4.1)

x t , for all t, are the model states and 0 G is the model parameter vector.

In a noise free setting, observations are a function of the model states 

st = H (x t), H (x t) G C2, where H (x t) is the measurement function. W ith no 

loss of generality, if the measurement function is the identity, i.e. H(x) = 1, 

then st = x t and it is easy to see that only a segment of I  +  1 observations is 

sufficient to estimate the true parameter value 0 [68].

In the presence of noise each of the N  observations of the model states is 

given by

st = x t + 7]U t =  1 , . . . ,  N  (4.2)

where each perturbation rjt is an IID Normal random variable, r)t ~  7V(0, cr2). 

It is known that the observations are generated by the perfect model for the 

true parameter vector 0. In order to find a Maximum Likelihood estimate
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of the parameter vector in the PMS, the Least Squares (LS) and Total Least 

Squares (TLS) are defined as functions of the model parameter vector 0.

The LS cost function can be seen to be related to the Likelihood prob­

ability function as follows. Assume the observations st are IID normally 

distributed with mean f ( s t-i\Q) and variance cr2, for t = 2, . . . , N.  There­

fore, at time t > 0, the probability of the data set given the parameters is 

written as:

P ( K } I 0 ) =  (2,J a )* /2  exP 2^2 S  (St+ i “  0 )) j  ' <4 -3)

The PDF in (4.3) is identified with the Likelihood function L(0\{st}). 

Maximising (4.3) with respect to 0 is equivalent to minimising the negative 

logarithm of (4.3) with respect to the parameter vector 0 , the parameters of 

the model / .  The Likelihood in equation (4.3) is written as

p ({ S t} |0 )  =  (2J y / 2 e x p { - ^ E ^ ) }  • (4 4 )

when dt (0) =  \st+i — f { s t ; 0)\ are Euclidean distances, and the cost function 

to be minimised is the so-called least squares cost function, C l s {&) given by

Cls(0) =  X > ? (0 ) .  (4.5)
t =  1

The LS cost function in equation (4.5) is the one-step prediction error of 

a observations segment of length N  and it is also known as the Root Mean 

Square (RMS) error.



Least squares is represented graphically in Figure 4.2. In the Figure, an 

observation segment of length N  is marked by black dots, the image under 

the model /(•) of the observation st is marked by white filled dots, and the 

distance between the observation st and the iteration of the map 

is represented by a vertical line. The LS cost function is the average of 

the one-step prediction error for a segment of observations and the solution 

of the minimisation of equation (4.5) is the parameter estimate of the true 

parameter vector. Due to sensitivity of the dynamics on initial conditions 

and the presence of noise, estimates are biased, for higher noise levels lead 

to larger errors once the map is iterated.

Figure 4.2: The LS cost function is the one-step prediction error. The black dots 

represent the observations, the white filled circles the iteration of the map /( • )

Cl s(O) for a given trajectory segment.

In the free noise PMS , the estimates converge to 6 in the limit of N  —* oo. 

In general, any cost function, C(0), could be minimised provided that a

t

from the observation St and the vertical lines are the distances d% (6 ) tha t defined
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relevant distance, d2(0 ), is defined in order to account for the uncertainty of 

the observations and the likely model state assumptions.

Throughout this Chapter, two 2-dimensional maps are considered as toy

systems to generate noisy observations, the Henon map [45] and the Ikeda

map [47] in equations (4.6) and (4.7), respectively. Noisy data is generated by

these maps with noise variances, 0.01 <  <r2 <  0.05 and N  = 512 observations.

—► R2, given by 

\
c -  axf + yt 

bxt

where the map is seen as a generalisation in two dimensions of the Logistic 

map (see equation (3.23) in Chapter 3, section 3.2.1.2). The parameter 

vector is 0 € R3 with components (a, 6, c). The true parameter vector is 

0 =  (1,1.4,0.3).

The Ikeda map is a complex map. The Real representation of the map is

The Henon map is a 2-dimensional map, /  :

/
f ( x t+iiVt+i) =

V /

(4.6)

2-dimensional map, /  : R2 —> R2, given by

(

f { x t+i,yt+i) =

\
a +  y (x t cos a  — yt sin a)

 ̂ li(xt sin a: — yt cos a) ^
(4.7)

where a  is given by

a  =  k, — V (4.8)
1 + x 2t + y l

The parameter vector is 0 G R4 with components (a, y, k, rj). The parameter 

vector is 0 =  (1,0.83,0.4,0.6).
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Each panel in Figure 4.3 plots the LS value as a function of one component 

of the parameter vector, a for Henon map (top) and fi for the Ikeda map 

(bottom), fixing the other components of 0  to their corresponding true values. 

The RMS error is plotted for two noise levels, 1% and 5%, in solid and dashed 

lines respectively. The true parameter value is marked with a vertical, line.

In each panel of Figure 4.3, it is clear how the minimum of the LS cost 

function and resulting parameter estimate, i. e. LS minimum, approaches to 

zero as the noise level increases for both maps and noise levels used.

In both cases, the higher the noise level the flatter the LS curve making 

more difficult the identification of parameter estimate by finding the min­

imum in the LS cost function. As the noise level increases, the estimated 

parameter value is more distant from the true value, as seen in Table 4.1.

Map Noise (%) \ e - e \

1 5.5 x l ( r 3
Henon

5 9.3 x 10" 2

1 1.3 x 10“3
Ikeda

5 6.6 x IQ" 1

Table 4.1: LS estimates for Henon and Ikeda map from noisy observations with 

noise levels of 1% and 5% for 6 = a, fi respectively to each map. The last column 

displays, \6 — 0|, the absolute value of the true parameter and the LS estimate.
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Figure 4.3 and Table 4.1, shows also that the Ikeda map to be more 

sensitive than the Henon map, to the noise level when estimating /a using 

the LS cost function since for the Ikeda map the LS minimum is located in 

values one order of magnitude less than the true value, fi = 0.83. In contrast, 

for the Henon map, the location of the LS minimum for both noise levels is 

differing only in the second decimal place, for each noise level. In any case, 

model parameter estimates are biased and show a dependency on the noise 

level present in the observations.

Results presented in Figure 4.3 confirm the features of the LS cost func­

tion commented upon by McSharry and Smith [68]. In addition, in [68] it 

is shown for the Logistic map that even for an infinite data set the LS a- 

estimator depends explicitly on the noise amplitude, as seen here for Henon 

and Ikeda estimates, numerically.

Another special case of the maximum Likelihood method, is the total 

Least Squares (TLS) cost function. The TLS cost function is given by

N —l

CrLsifi) = J 2  wmd?(x; ff )
t=  1

(4.9)

where G^(:r;0) is the Euclidean distance between the points (st , s t+1) and

min dj(x; 0) =  (st -  x f  +  (st+1 -  f (x ;  0 ) f (4.10)

where a; is a real value that minimises d% for a fixed 0, under the assumption
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0.6
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0.6

1  0.4
0.1686

0.2

0 0.25 1.250.5 0.83  1 1.5
Parameter p. -  Ikeda Map

Figure 4.3: LS cost function as a function of one parameter vector component, a 

for Henon map (top) and /z for the Ikeda (bottom). LS cost function is plotted 

for data sets of length N =  512 and noise levels of 1% (solid line) and 5% (dashed 

line). The true parameter value is marked with a vertical line. The LS estimator 

is written in place.

154



th a t st and s t+ 1 are independent. F igure 4.4 represents schem atically th is  

distance in  (4.10).

(x, fix; o))

Figure 4.4: The TLS cost function is the minimum average distance between the 

surface defined by the observation pairs, (st , s t+ i), and a point in the model hyper­

surface, (x, / ( ;  0)). For each pair and fixed value of 0, a value of x is found such 

tha t dt(x\0)  is minimum.

The minimum of Ctls(0) ,  0min> is identified with the maximum proba­

bility that the sequence of N  — 1 points, {(st , Sf+i) } ^ 1 corresponds to the 

set of model states (x , f (x \  0 min ) ) .

The TLS cost function ignores any dependency of the Likelihood of the 

system states x t since the only dependency is through the map f ( x ; Q). The 

corresponding Likelihood, when the TLS cost function is used, is

=  ( 27rC T 2 ) N - l / 2  e X P  { _ ^ C V l 's W }  • ( 4 ’ U )
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The dependency of the conditional probability (4.11) in the so-called la­

tent variables, x , (since the system states are not measured directly) is ac­

counted for in the TLS cost function (4.10) by making the dependency of the 

probability of observing (s t, st+1) explicit on the model parameters 0 , the 

model states x t and its image under the map f ( x t ; 0).

• For several realisations of the noise process, the distributions of the es­

timates are consistently biased for both the LS and TLS cost functions (see 

Figure 2. in [68]).

As discussed and presented in [68], in summary, the estimates are biased 

for the following reasons:

• In the case of LS estimates, not even complete knowledge of the dy­

namical equation of the system and the noise model are enough to 

obtained unbiased estimators. Non-linearities in /(•) combined with 

observational noise, make the estimator dependent on the noise ampli­

tude explicitly even for infinite data sets.

• The TLS cost function includes information regarding the latent vari­

ables or true system states, xt , but fails to provide unbiased estimates 

of 6  since no restrictions are imposed on the distributions of x  in (4.9) 

nor is the knowledge of the probability function of the system states 

(i.e. invariant measure) included in the Likelihood.
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• Both cost functions, LS and TLS ignore any explicit dependency of the 

Likelihood on the system states.

In [68], McSharry and Smith define a new cost function that improves LS 

and TLS cost functions by including dynamical information of the system 

contained in the model. This cost function includes the information about 

the system’s states x  by introducing the invariant measure, /i(x, 0), induced 

by the map /(•), explicitly in the Likelihood. The next section, section 4.1.1 

discusses the so-called Maximum Likelihood (ML) cost function.

Before introducing the ML cost function, it is interesting to point out an 

additional feature of the cost function approach. In addition to the parameter 

estimates obtained using the TLS cost function, model state estimates are 

obtained as well in the process. The estimates for model states are the result 

of the minimisation condition of equations (4.9) and (4.10) that defined the 

TLS cost function.

This feature is also present in other methodologies of parameter estima­

tion, model states estimates are produce as well as model parameter esti­

mates. This is the case of the Bayesian approach described in Chapter 3 and 

the new geometrical approach of parameter estimation described later in this 

Chapter in section 4.2.

Figure 4.5 shows a reconstruction of the model states estimates, x t (squares),
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th a t m inim ised C t l s ( O )  f o r  1-4 <  0 <  2.2, from  several realisations o f Logis­

t ic  noisy observations for Gaussian noise w ith  cr̂  =  0.2 and tru e  param eter 

value a =  1.85.

0 .5

+
x

- 0 . 5

=  1.7333
T L S

- 0 . 5 0 .5
x,

‘t

Figure 4.5: Reconstruction of TLS Logistic states estimates for 1.4 <  0 <  2.2 from 

several realisations of observations w ith  Gaussian noise w ith  noise of variance of 

0.2 and N  =  100 points. Grey dots: true Logistic states, grey crosses: noisy obser­

vations, black pluses: Logistic tra jectory using TLS estimate for a, and squares: 

TLS Logistic states estimates resulting from the minim isation of equation (4.10). 

The TLS estimate is c l t l s  — 1-7333.

F igure 4.5 shows several Logistic series w ith  N  =  99 po in ts reconstructed 

in  the same axes. The true  Logistic tra je c to ry  fo r a =  1.85 is p lo tted  w ith
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grey dots. Grey crosses are used to reconstruct the noisy observations with 

noise variance cr̂  =  0.2. For several realisations of the noise process, TLS 

estimates for a are calculated thus the mean value of the a-estimates for all 

noise realisations is taken as the TLS estimation for the Logistic parameter. 

The mean value is equal to c l t l s  — 1-7333 and is included as text in the plot. 

Using this value for a =  cltls a trajectory is generated from Xo = 0.3 and is 

plotted using black pluses. Finally, squares are used to plot the TLS model 

state estimates, i.e. the solution for the minimisation of equation (4.10), 

which makes interesting the Figure.

As it is clear in Figure 4.5, the Logistic structure appears in the plot 

when the TLS model state estimates are reconstructed (squares), it appears 

as in the TLS estimates some dynamical information is present. In fact, 

the minimisation process in (4.10) is performing a type of noise reduction, 

which is a false statement. The presence of the dynamics in the resulting 

estimates does not imply in any sense that the cost function is considering any 

temporal dynamical correlation of the system states, as commented in [68] 

and seen straightforwardly from the definition of the TLS cost function. As 

in section 3.3, the resulting estimates can be misleadingly taken as de-noised 

states instead as indicators of the presence of deterministic equations in the 

cost function.

Further more, several questions could be formulated to discover possible
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dynamical features of such model state estimates:

• Is this series of estimates, a pseudo-orbit that shadows the observations 

or a random sample that only looks like the attractor?

• Can the pseudo-orbit obtained by TLS estimates be considered as a 

shadowing pseudo-orbit of the model?

• In the case the state estimates are taken as a cleaned trajectory (i.e. 

with less implied noise than the originally present in the signal) of the 

model, is it useful for infering the future evolution of the system?

• In the case the state estimates are taken as a random sample of the 

model, do they sample of invariant measure of the model?

• Is it possible to extract any dynamical information of these system 

state estimates in either of the two cases above?

These and other questions related to the relevance of the content of dynam­

ical information in a time series are going to be left for future research. A 

discussion of these issues is presented in Chapter 5.

Given tha t it is known that the LS and TLS cost functions do not in­

clude explicitly the temporal correlation of the model states, the next section 

presents a way to include information about the invariant measure of the 

model in the Likelihood for the parameter vector 0 following [68].
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4.1.1 Inclusion of Global Behaviour

Solving the problem in the PMS provides the advantage of the knowledge 

of two facts: the model states, x t are correlated in time, and the invariant 

measure induce a measure on the state space. Ignoring these facts results 

in biased estimates of parameter values, as in the case of TLS estimates. 

McSharry and Smith [68] include this knowledge to obtain a consistent for­

mulation of the Maximum Likelihood approach for nonlinear models. Ex­

plicitly, the invariant measure weights the values of the model states in the 

Likelihood PDF.

Since the model is known exactly, the invariant measure //(rc, 0) of the 

latent variables x t of the model is always obtainable. This information is 

incorporated in (4.9) by integrating the dependency on the latent state x t 

out of d% in (4.10). Formally, in terms of the conditional probability of 0 given 

the pairs (s t, st+1) yields for alH  =  1, . . . ,  N  — 1 the following expression

for a fixed 6 from which the maximum Likelihood cost function is given by

N - 1

(4.12)

C m l (0) = _ Z l log/ exp{_ ^ } (4.13)

where d; is

d*(e) =  (*  -  x f  +  (st+1 -  /(* ; e ) f . (4.14)
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In Practice, the integral in (4.13) is replaced by a sum over a model tra­

jectory of length r  N,  where r  is as long as the computational constrains 

allows. Explicitly, the cost function in equation (4.13) is approximated by 

the following expression:

N - l  r  ,  i  s

Cm l (0) «  -  ^ l o g j ^ e x p ^  [(st -  x k)2 + (st+i -  f ( x k;0)2] >,
t= l  k = i  '  * >

(4.15)

an average over a long post-transient trajectory of the map /(•) for the dis­

tances between the point (st , si+i) and (x k, f ( x k+\\0))  for k = 1, . . . , r  where 

r  > >  N.

Despite Cm l(-)’s name being misleading, by requiring consistency be­

tween the data and the PDF, i.e. invariant measure, of the latent variables, 

the ML cost function outperforms estimates from the minimisation of the 

LS and TLS cost functions. The ML cost function consistently yields better 

estimates for all noise levels considered and for the Logistic [67], Moran- 

Ricker [73] and Henon [45] in comparison with LS and TLS cost functions 

(see Figures 2 and 3 in [68]).

Noted that the PMS conditions also include the fact that if the model, 

f(x]0) ,  which describes the system’s state evolution is an application /  : 

Rm —> Rm then all components of the state vector are measured making 

the observation st G Rm, otherwise the problem is formulated in the IMS.
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Observations and latent states must live in the same space Rm in order to 

consistently define the distance in (4.14).

For observations where not all components of x t G Rm are measured,

i.e. st G Rn for n < m, a representation of the map in delay coordi­

nates is required or a corresponding Nonlinear Auto-Regressive (NAR) pro­

cess representation of /(•). For /(•) following a NAR process, N A R (r )  — 

f ( x t- T, x t —r+lj • • • » x t — 1 i where r  is a time lag.

When a delayed version of the perfect model is available additional terms

in (4.13) should be included where the definition of the distance (4.15) re­

quires it. If a delayed version of the perfect model is not available, C m l (&) is 

not suitable to be used unless further delay reconstruction of the observations 

is constructed.

This subtle point is exemplified for the case of the Henon map. Consider 

the Henon m ap’s [45] formulation in delay coordinates

f ( x u x t- i ;0 )  = 1 - ax*+ bxt- i .  (4-16)

The delay version of Henon in (4.16) makes the map /  : R2 —> R. Only obser­

vations st of x t are available for 0 = (a, b). In the case that the formulation in 

equation (4.16) is considered as the perfect model instead of equation (4.6), 

the distance in the ML cost function (4.13) has to be defined as

^t(^) =  ist — x t)2 +  (st+i — /  ((^t, x t- \ ) ; 0))2 -1- (st~i — x t- i ) 2, (4.17)
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for consistency. The distance calculated in (4.17) is not the same distance 

as in (4.15) but the distance in a delay reconstructed sequence space, in 

other words, it is the distance between the point ({st-i, sf}, st+i) of delay 

reconstructed observations and the corresponding point in the hyper-surface 

defined by the delay coordinate version of the map given by ({xt~i, x t}, x t+i) 

where x t+i = f ( { x t- i , x t};0).

The correct calculation of of the C m l {&) cost function, for the PMS con­

ditions defined in Chapter 1 using the 2-dimensional version of the Henon 

map [45] in equation (4.6), is given by equation (4.14) and using approxima­

tion (4.15) for observations and system states living in R2 is written as

x—component

dt(0) = (sxt - x kf + (sxt+l- f x(xk,yk-,0))2+

(s* -  Vkf  +  (svt+1 -  f y{xk, yk\0 ) )2 . (4.18)
y —component

Equation (4.17) compared with equation (4.18) contains an additional 

term. Note that the third term in (4.17) requires information on the past 

two states of the system in order to obtain estimates.

Although the additional delay term is in (4.17), there are no major qual­

itative differences of the values the ML cost function takes in the parameter 

space Qh \ interpretations of those estimates have to be made carefully. Equa­

tion (4.17) can be seen as a formulation of the problem in the IMS where all 

system variables are not observed and the model is an approximation of the
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system, i.e. system and model do not belong to the same model class. Fig­

ure 4.6 shows the results for the calculation of (4.13) using (4.18) in the left 

panel, and using (4.17) in the right panel, for a two dimensional parameter 

space and a uniform grid of 201 nodes in each coordinate. The darker the 

colour in the plot, the lower the value of the ML cost function. The white 

plus marks the true parameter value 0.

In both plots, the information of the invariant measure of the map as 

a function of the parameter vector 0  is reflected as complex structures or 

“tongues” appearing for values of 0. When the parameter value is located in 

a non chaotic regime or the trajectories escape of the attractor, the value of 

the cost function is systematically higher than in other areas of the parameter 

space.

As pointed out earlier, both panels of Figure 4.6 look qualitatively similar 

but they axe fundamentally different. In the case that equation (4.18) is used 

in the right panel, the PMS scenario and each model state has a correspond­

ing observation, i.e. model states and observations at time t are dimension 2, 

producing a smaller area of minimum values containing the true parameter 

value than the one in the left panel. Uncertainty in the parameter estimates 

can be associated with the area in the level curves of the plots. Thus when 

equation (4.17) is used, uncertainty is higher since the problem is solved in 

the IMS.
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Figure 4.6: Value of the Cml cost function in Henon map’s 2-dimensional parame­

ter space, using equation (4.17) in the left and equation (4.18) in the right. Values 

of the cost function are calculated using N  =  512 observations and a noise level of 

0.05. The white plus marks the true parameter value.

Although, relevant dynamical information is being included successfully 

by the ML cost function for parameter estimation, there still remains some 

weak assumptions in the derivation and use of the ML cost function, in 

particular the fact that the pairs (st, s t+1) are taken as not correlated in 

time.

Work in this disection, not taking into account Bayesian perspectives 

but where statistical methods are melded with dynamical views are rare but 

appearing more frequently in the literature. For example [76] and references 

therein.

The maximum Likelihood approach fails to produce accurate single point 

estimations for nonlinear model parameters in the PMS even though dy­
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namical information is included as for the case of the ML cost function but 

still there is uncertainty entangle with the dynamics of interest. Disentan­

gling uncertainty from observations and model error is considered in the next 

section of this Chapter.

4.2 Geometric Approach

In the PMS, dynamical information is entangled with the observational un­

certainty. This section presents a new method to distil dynamical information 

for parameter estimation via characterisation of the parameter space by the 

trajectories the model admits.

Although the problem of parameter estimation is formulated and solved 

in the PMS, this new method is constructed in a way that future extensions 

outside the PMS are easily followed, even though are not detailed in this 

work.

Parameter estimation in the PMS by this new geometrical methodology 

is obtained by the following steps:

1. Measure a set of observations of the system for t =  1, . . . ,  N.

2. Generate a grid in the parameter space of the model.

3. Generate indistinguishable states for each observation available and
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parameter values 0 in the parameter space grid.

4. Use the indistinguishable states found for each time t and parameter 

value 0 , as initial conditions of model trajectories.

5. Characterise the parameter space by defining dynamical quality mea­

sures of the resulting model trajectories.

6. Choose parameter space areas with “desired” qualities as parameter 

estimates.

7. Start again in step 2 to increase resolution of interesting/special pa­

rameter space areas.

Steps 1 to 3 are explained below whilst the rest of the steps are explain 

in detail in section 4.2.1.

This new method is posed as an iterative process in which dynamical in­

formation is included in the estimation process and observational uncertainty 

is simultaneously accounted for. The methodology and results presented here 

correspond to the first iteration of that process which find parameter esti­

mates along with state estimates through a search in the parameter space 

and can be found in the work presented by L.A. Smith, M.C. Cuellar, H. 

Du and Kevin Judd in [88]. Results for further iterations of the method are 

planned for future work.
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The parameter space Q is understood as the space where the parame­

ter vector 0 lives, i.e. Q C  R*. In the PMS, each point 0 e  Q admits 

certain trajectories of the map /(• ;# )  given uncertainty in the observations 

Si , . . . ,  st, . . . ,  sat- For a given 0 E Q and initial condition, the map /(•; 0) 

generates a trajectory {x t E by ^-folding of the map.

The method focuses in trajectories generated by special candidates for 

initial conditions. An “optimal” candidate to generate a model trajectory 

is chosen in a way that it balances the trade-off of dynamical information 

between uncertainty sources present in the problem.

Following notation of Chapter 2, given a noise model and a segment of 

N  observations, indistinguishable states theory [54] provides that the point 

yt in the state space is indistinguishable from the true system state x t , if 

yt E H (xt), i.e. belongs to the set of of all possible indistinguishable states 

(see equation (2.45)). Indistinguishable for an observation st at time t, it is 

either a measurement of x t or yt.

For N  —> oo, states y ^  indistinguishable from the model state xn  are 

found with probability one. For N  < oo, a sequence of indistinguishable 

states, {yt E Rm}£L1? can be found by variational methods [54]. In particular, 

using a gradient descent (GD) method [79].

In this section, a GD algorithm is used to generate such a sequence of 

indistinguishable states in the PMS. The GD algorithm produces states from
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the set of indistinguishable states, H (xt) which are at the same time Maxi­

mum Likelihood states, consistent with equation (4.4) [54].

The gradient descent method is an iterative algorithm where one iteration 

produces a sequence of states as long as a set of observations is available. Such 

a sequence of states is a point in the sequence space. Let {ut € denote

the sequence of indistinguishable states generated by GD or GD states. Thus 

from now on, ut denotes an GD indistinguishable state of the true model state 

x t.

The {ut}^LiS in the sequence space are obtained by GD such th a t the 

one-step prediction error is minimum for a given segment of N  observations, 

and it shadows the true trajectory of the map /(•; 9).

The one step prediction error for points in the shadowing trajectory is 

given by

d2t = \ut+i -  f ( u t;0 ) l  (4.19)

where | • | is the Euclidean distance in the state-space. The one-step prediction

error, d*, is known also as the mismatch error.

If d% =  0 then the sequence of points in the state space is a

trajectory of the map /(•). Otherwise, { u t} ^  is no longer a trajectory and 

it is said to be a pseudo-orbit. A pseudo-orbit generated by GD is denoted 

by An example of pseudo-orbit is a sequence of noisy observations,
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5 i , . . • , St,  • • • , S]\[.

The GD algorithm (see [54, 55, 26, 79, 51] for details) is a minimisation 

algorithm and it is used in this context to minimise the the Mismatch cost 

function, Cm m (Q)> given by

a temporal average of the mismatch error over the time interval of interest.

Although there are no local minima for Cmm  in the sequence space, the 

GD algorithm is run for a pre-determined time T  and thus a trajectory is 

not obtained, only a pseudo-orbit.

For a suitable number of iterations, T, the resulting sequence of states, 

{ z ^ } ^ L i, is taken to be the pseudo-orbit that minimises (4.20), i.e. the 

pseudo-orbit with the lowest value of Cmm($) or df 1 for all t.

The GD algorithm can be applied on a temporal sliding window varying 

in sizes from 2 to N. Preliminary studies performed on the sensitivity of the 

GD and resulting estimates to the sliding window lengths, suggests that for 

medium range windows, i.e. between 2 and N , the combination of future 

and past information by GD is more efficient for points in the middle of a 

trajectory segment. Extensive studies on the sensitivity to the sliding window 

size of the GD algorithm and resulting quality of parameter estimates are 

planned for future research. Most of the results presented in this section

Cmm{0)
N - 1

(4.20)
t= i
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are from GD runs for a window with length equal to the duration of the 

observations.

For consistency and comparison with other results in [83, 26, 42, 68, 79, 

54, 76, 52, 55, 43], the Henon [45] and Ikeda [47] maps are considered as 

systems to generate noisy observations in the PMS. These maps are given by 

the equations (4.6) and (4.7) for Henon and Ikeda respectively.

The Henon map has a corresponding parameter space Qh C R 2 for the 

parameter vector 0 = (a, b).

In the case of the Ikeda map, the corresponding Real representation of the 

map has an associate parameter space, Qj C R4, i.e. the parameter vector 

is 0 =  ( a ,  f i ,  K , r ] ) .  From a study of the sensitivity of the Ikeda attractor to 

values of 0, the parameter space is reduced to be Q i  C R2 by setting a  =  1 

and T) = 0.6 leaving 0 =  (//, k). For further reduction in the dimension of 

Qz, k = 0.4, when estimations are performed in a parameter space Qi C R.

Observations of length N  are generated for several noise levels for both 

maps, with the true parameter vector as 0 = (0.83,0.4) and 0 = (1.4,0.3) 

for Ikeda and Henon respectively.

Pseudo-orbits zt are generated using gradient descent for a window size 

equal to the length of the observations available, N  = 512. In order to set 

the number of iterations, T, that the GD algorithm is to run, the mismatch 

cost function in (4.20) is used as an indicator of convergence. Convergence
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is considered to be achieved when C m m { 0 )  < 10~3 and when the difference 

between the pseudo-orbit state zt for an iteration T  is approximately equal 

to the same state in the last iteration T  — 1, i.e. \z[T  ̂ — z[T ^ < 10_12|.

Figure 4.7 shows the value of the Ikeda’s parameter /x identified by the 

location of the minimum of (4.20) as function of the number of times

the GD algorithm has been iterated, in a 1-dimensional grid of the parameter 

space. It shows /x estimates for two noisy Ikeda observations, 1% (solid line) 

and 5% (dashed line) noise levels.

0.84

0.835

0.83 

J  0.825

S.0.815

0.81

0.805

0.8
2000 

iteration time
3000 40001000

Figure 4.7: Location of the minimum of Cmm(m) cost function as a function of 

iteration time for the GD algorithm. Location is shown for two noisy observations 

of the Ikeda map, 1% noise level in solid line and 5% noise level in dashed lines. 

The true value of /x is marked w ith  a horizontal dotted line.
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It is clear from the figure, how the location of the minimum moves toward 

the true value of the Ikeda map {ji =  0.83) as the iteration time of the GD 

algorithm increases. For both noise levels shown, the minimum identifies the 

true value of /i up to 2 decimal places. From this plot and the fact that 

there is no minimum for a finite set of observations, satisfactory convergence 

is considered to be achieved after T  = 2048 iterations.

Figure 4.8 shows an example of how the ensemble of pseudo-orbits looks 

like compared with the observations of Ikeda with noise of 1% and for 0 = 0 

after T  = 2048 iterations of the map. The figure is composed by 4 panels, 

right panel show results for 1% noise level and left for 5%. In the top row, a 

segment of the true Ikeda trajectory is plotted with pluses and the mean of 

the distribution of pseudo-states is plotted with circles. The bottom row of 

the figure shows the reconstruction of the mean of the resulting pseudo-orbits 

plotted with grey dots and overlapped with the reconstruction of the true 

trajectory of Ikeda with pluses.

Although, for both noise levels the distribution of pseudo-states is very 

sharp, for a 1% noise level, the GD algorithm tends to a trajectory closer to 

the true trajectory than for the case of 5% noise level, in trace and in the 

reconstructed state space.
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Figure 4.8: The ensemble of the x component of the pseudo-orbits is plotted for 

the true parameter value fi =  0.83 in the top row for 512 Ikeda observations w ith 

noise levels of 1% (left) and 5% (right) after 2048 iterations of the GD algorithm. 

A true tra jectory segment of 64 points is plotted w ith  pluses and the pseudo-states 

w ith  circles. The 99.5% and 0.5% isopleths are plotted grey. The bottom  row plots 

the reconstruction of the median of the pseudo-orbits d istribution (grey dots) and 

the true states (+ ).

4.2.1 Search in th e  P aram eter Space

Once satisfactory pseudo-orbits have been generated for each point in the 

parameter space, a point in the sequence space is obtained. The point is a
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pseudo-orbit in the state space that the model admits for a particular param­

eter value. Then the parameter space is characterised in a way that for each 

parameter value study, a measure or summary statistic of the corresponding 

distribution is assigned to it to quantify the quality of the pseudo-trajectories 

compared with the observations or the model trajectory. Henceforth, each 

point in the parameter space is paired with an empirical distribution.

Clearly, pseudo-orbits obtained for a given parameter value and a given 

noise level are in fact shadowing the observations and a trajectory of the 

model since the GD algorithm is formulated to minimise the Mismatch cost 

function [54]. For points in the parameter space close to the true parameter 

value, the minimum value of is smaller than the value it takes in

other areas of the parameter space. Therefore, the quality of the trajectories 

the model admits in the parameter space will vary depending on how well 

the pseudo-orbits shadow the true trajectory and the observations simulta- • 

neously.

A quality measure is a function of the parameter vector 0. It is a sum­

mary statistic of the distribution of the calculation of a quality measure or a 

summary statistic of the transformation of this distribution.

The method uses quality measures of the pseudo-orbits defined by, for 

example, summary statistics of the shadowing time distribution of the model 

trajectories starting in each point of the pseudo-orbit (see section 4.2.1.2)
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and the implied noise level distribution given by the difference between the 

pseudo-orbits and the observations (see section 4.2.1.1).

The values of the quality measures, induce a structure in the parameter 

space. Such structure is then used to choose the estimator for the value of 

the model parameter.

Areas in Q are distinguished by the value a quality measure takes. The 

new method benefits the process of parameter estimation since dynamical 

information available in the PMS is made redundant in order to obtain a 

distribution instead of a single-guess estimate.

4.2.1.1 Implied Noise Level

In the PMS, the noise process is known and it is assumed to be additive (i.e. 

measurement noise) and I ID normal as in equation (4.2). The noise model 

is Gaussian with mean zero and known standard deviation cr̂ , and variance 

of the noise model, <r̂ , is referred as the noise level.

Figure 4.9 is a diagram of the noise model for a noise level of 1%. Given 

that the noise model is unbounded, any realisation of the observations is 

possible and in several cases it differs very much from the system state x t = 

xt . This means that the distance between the state xt and the observation 

st is bigger than crv/2  with a non negligible probability. The unfilled circles
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in the Figure represent five realisations of the observation of xt.

Note that in nonlinear systems it may be possible to extract a smaller 

implied noise level assuming an incorrect noise model through noise reduction 

techniques. For example, assuming that the noise process is uniform when 

it is known to be normally distributed. If apparent improvement of the 

observations is obtained in the case of low noise levels then it is completely 

justifiable to believe in an incorrect model noise, otherwise the use of an 

incorrect noise model set the problem outside the PMS.

- 0 . 4

Figure 4.9: The noise model is assume to be Normal w ith  standard deviation a. 

The Figure shows 5 realisations (white dots) of the observation of xt (black dot) 

w ith  a noise level of 1%.
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By gradient descent, pseudo-orbits {zt} ^ i are generated such that they 

are indistinguishable from the system trajectory segment {x t}™=1 given a 

noise model as equation (4.2) (see Figure 4.9) for values of 9. This implies 

that the {zt}^=l contain a net lower noise level than the original observa­

tions {s*}£i since they are constructed to be on average closer to the true 

trajectory of the system.

Figure 4.10 shows schematically the relative distance of a pseudo-orbit 

state, zt , an indistinguishable state yt) the true state x t, and the observation 

st. After several iterations of the GD algorithm a pseudo-orbit state zt is 

obtained. Since yt is indistinguishable from the system state x t given the

IN L

Figure 4.10: Diagram the relative location of a pseudo-orbit state zt with respect 

to the true state x t, an indistinguishable state yt and the observation st. The zt 

is located at least at half of the distance between yt and Xt-

noise model, zt should be located in the shaded area in the diagram.

Note that the GD algorithm could be seen as performing noise reduc­
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tion [26, 27], therefore the distance between the observation st and zt should 

be less than er̂ /2 for realisations of the observations inside the circle centred 

in the true state x t . For realisations of the observations outside the circle 

around x t , zt < x t + cr̂ /2 at least.

Figure 4.11 shows the value of the Mismatch and Least Squares (or RMS) 

cost functions for the Ikeda map in a 1-dimensional parameter space defined 

by 0.79 < fj, < 0.87, taking the at the iteration 2048 of the GD.

The vertical line marks the location of the true value of the Ikeda parameter. 

Broken lines correspond to RMS values and solid lines for the mismatch. The 

plots show results for two noisy observations of Ikeda map for noise level of 

1% in black and 5% in grey.

As expected, the location of the minimum for the MM cost function for 

both noise levels is closer to the true value than for the RMS cost function 

since the mismatch is minimised by gradient descent. This implies that the 

net noise level of the obtained pseudo-orbits zt is less than the one that the 

observations contain. Note that these curves for the Ikeda’s RMS values 

are the same as the ones in the bottom panel of Figure 4.3. The MM cost 

function is evaluated in the pseudo-orbits states zt .

The sensitivity of the estimate of ji, ji = min/iC'(/i), to the noise levels 

is lower when the C m m  is used instead of C l s . This fact confirms that the 

pseudo-orbits obtained from GD iterations contained less net noise level than
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Figure 4.11: Mismatch (solid lines) and RMS (dashed lines) cost function values 

for Ikeda’s parameter fi for observations w ith  1% (black lines) and 5% (grey lines) 

noise levels. The true parameter value is located w ith  a vertical line.

the original observations even for high noise levels as 5% (~  2.0 in variance). 

Table 4.2 shows the summary of estimates and errors for both cost functions 

plotted in Figure 4.11.

In order to quantify the quality of the pseudo-orbits as being less noisy 

than the observations, lets define the Implied Noise Level (INL) as one of the 

relevant quality measure of estimated points in the parameter space. The 

INL quality measure is going to be used, both for monitoring convergence of 

the GD algorithm and for highlighting dynamical information contained in 

the pseudo-orbits.
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1% 5%

A =  minM Cmm (/-*) 0.83000 0.83125

|A — Am m | 0 1.25 x 10-3

A =  minM CLS(fi) 0.82750 0.79000

IA -  Al s \ 2.5 x 10~3 4.00 x 10-2

Table 4.2: Estimates and error for the Ikeda’s parameter // for the MM and LS 

cost functions.

The implied noise level is defined as

INL(t-,9) = s / W - z t f ,  (4.21)

the distance between the observations and the pseudo-orbit state at time t for 

a given fixed parameter value 0, where | • |2 is the Euclidean distance in the 

state space. At T  = 2048 iteration of the GD algorithm, the calculation of

(4.21) generates an empirical distribution of N  = 512 values of the implied 

noise level for a segment of observations and a pseudo-orbit of the same 

length.

Figure 4.12 shows the summary statistics for the quality measure distri­

bution, I NL( 0)  resulting distribution for 1% (upper panel) and 5% (lower 

panel) noisy observations of the Ikeda map after approx. 2048 iterations of 

the GD algorithm. The names of the summary statistics calculated are in­
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eluded in the right hand axes at the same level of the corresponding curve. 

The standard deviation of the noise model is marked as “True” with a hori­

zontal line, the mean and median of the distribution are plotted in solid lines 

whilst the 95 and 99 isopleths in broken lines.

In both cases the mean and median of the distribution of the INL dis­

tribution are lower than the true noise level, confirming the lowest net noise 

level in the pseudo-orbit after T  = 2048 GD iterations. The minimum is 

located close to the true parameter value /} =  0.83. The location of the 

minimum of each summary statistic is marked with a dot and from the Fre- 

quentist perspective it could be used as an estimate of the parameter value 

and uncertainty in the parameter estimates.

The improvement of the estimation at this moment is made by the intro­

duction of dynamical information by the “pre-processing” of the observations 

by means of the GD algorithm. Estimates can be performed at this point but 

uncertainty in the model is still not accounted for despite the fact that GD 

algorithm exploits the dynamics of the model /(•) to improve the observa­

tions in the generated pseudo-orbits by minimising the Mismatch. Relevant 

dynamical information can still be extracted from the pseudo-orbits by se­

lecting the pseudo-orbits states that best shadow the model trajectory as 

presented in next section.

The calculation of the distributions of the INL and the shadowing times
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Figure 4.12: Implied noise level INL(0)  summary statistics for observations of 

1% (top) and 5% (bottom) noise levels. The mean and the median of the INL  

distribution are plotted w ith  solid lines, av is marked w ith  a horizontal line and 

the 95 and 99 isopleths w ith  broken lines. The minimum of each summary statistic 

is marked w ith  a dot.
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Figure 4.13: Pseudo-orbit information in the parameter space for the Henon map. 

GD on 1024 observations w ith  5% noise level. Mismatch (left) and implied noise 

level (right) standard deviations [88].

for dimensionality of the parameter space Q larger than one is presented 

in [88] for the Henon map and reproduced here in Figure 4.13. Results for 

Ikeda are also available.

Figure 4.13 shows the implied noise level for the resulting pseudo-trajectory’s 

mismatch (left) and noise level standard deviations (right) for the Henon map 

in a 2-dimensional parameter space. The true parameter value is located in 

the centre of the parameter space plotted, i.e. 0 = (1.4,0.3).

The structure of the parameter space points to a candidate area, that in 

fact contains the true parameter value which had generated the data. The 

minimum area for the implied noise level offers a well defined area from 

which to select the parameter estimates, information on the short term dy­

namics is reflected in the pseudo-orbits in the area where the mismatch is

185



minimised. Even though, the correct neighbours of the true parameter value 

are highlighted by the INL and MM cost function, further distilation of long 

to medium term dynamics has to be performed by calculating the shadowing 

time distributions.

4.2.1.2 Shadowing Distributions

The dynamical information contained in the model structure chosen to be 

the system under study (PMS) is extracted via the generation of shadowing 

trajectories.

Whether or not a model shadows the observations {st}£Li [58, 82, 34, 

87] as a goal of the study is similar to the one posed at this stage of the 

study, i.e. from suitable candidates, shadowing trajectories are generated. 

The difference is rooted in the fact that the shadowing trajectories start 

in pseudo-orbit states, zt, thus they will be admissible and consistent with 

the dynamical and noise model rather than to find any other shadowing 

trajectory. Details of this difference between shadowing and shadowing 

time distributions as function of parameter values are not addressed in depth 

here.

At this point, the uncertainty in the model has to be accounted for in order 

to obtain more reliable parameter estimates and in-sample forecasting. The
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task of finding shadowing trajectories is posed in a restricted sense. Given a 

segment of observations, the goal is to find the trajectories the system admits. 

A trajectory is admitted if the the residuals defined by the trajectory starting 

in a candidate initial state and the observations are consistent with the noise 

model. The largest admissible shadowing trajectory, starting at time £, is of 

length r  for some model states {£i}[=1, the distribution of its residuals r* for 

i = 1, . . . ,  r  is consistent with the dynamical noise model.

Formally, let {ci}[=1 be a shadowing trajectory starting at time t from a 

a candidate state. For simplicity, take the candidate for the initial state of 

the admissible shadowing trajectory as the pseudo-orbit state c\ — zt . The 

time series of the residuals Ti is defined by

n  = | 5 i - / l(ci,0)| ,  (4.22)

for i = 1, . . . ,  r .

In order to find the length r  of the admissible shadowing trajectory, the 

noise model plays a key role. For bounded (i.e. uniform) noise, a candidate 

ci generates a shadowing trajectory with shadowing time r  if the residuals 

Ti are less than the bound. In other words, there exists a cylinder around 

the observations {st}I=t+i such that it contains the shadowing trajectory for 

t  time steps.

For IID Normally distributed noise, as equation (4.2), there are a variety
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of approaches to calculate the shadowing time. The simple method used here 

is based on thresholds defined by the distribution of residuals for a candidate

Ci.

Given that the noise model is unbounded, any observation is conceivable, 

so relevant shadows are searched for within a certain probability bound [10]. 

The probability bound is defined by testing the null hypoThesis

0,(7=), (4.23)

for i +  j  =  1, . . . ,  ns, where ns <  N . The maximum shadowing time ns of 

the trajectory is calculated such that the following conditions hold:

1. The 90% isopleth of the residual distribution falls below the 99th per­

centile of the distributions of 0.90 isopleths given n s draws from a 

Gaussian distribution,

2. The median of the residual distribution falls below the corresponding 

90th percentile for the median of the noise model.

Holding these two conditions simultaneously implies a resection rate of

0.001 provided that ns < 100. This way of calculating the shadowing time 

distribution for unbounded noise is still open to development and refinement.

Figure 4.14 shows the results for the conditions described above. It shows 

the distribution of several isopleths for the Ikeda map demonstrating the 

resolution of the test.
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Figure 4.14: Shadowing Time D istribution for Ikeda observations w ith  5% noise 

level. The dotted line is the median, 90% and 99% shadowing isopleths in solid 

and dotted lines respectively [88].

For a given segment of observations, most interest is put in the longest 

shadowing trajectory, thus the shadowing time is defined as

t s =  max* [r(cj)], (4.24)

where the maximum is taken over all q  values tested. The results presented 

in Figure 4.14 only test three candidates: the pseudo-orbit q , the image of 

the previous point on the pseudo-orbit and the average of these

two. Thus a distribution of shadowing time for a given parameter vector 9 is 

obtained.

When the method is applied to a high dimensional parameter space, for 

example Q C K2, the results are compared with results obtained in [68]
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and section 4.1.1. The right panel of Figure 4.15 shows the 50th isopleth 

of the distribution of shadowing time obtained for 1024 Henon observations 

after using the GD algorithm. Similar results are obtained for Ikeda for the 

distribution of shadowing time. Further exploration of the shadowing time 

distributions as a function of the parameter space of two-dimensional chaotic 

maps is planned for future research.

Figure 4.15: Inform ation from a pseudo-orbit determined via gradient descent 

applied to a 1024 observations of the Henon map w ith  a noise level of 5%. (c) at 

the left is a cost function based on the model’s invariant measure (after Fig.4(b) 

of ref [68]). (d) at the right shows the median of shadowing time d istribution.

This result is one of the main results of this work and it is presented in [88] 

in collaboration with L.A. Smith, H. Du and K. Judd. The statistics of the 

shadowing time distribution provide a sharp indication of the location of 

the true parameter value. From Figure 4.14 it is clear that the information 

about the short term dynamics shows independently that the choice of a
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particular isopleth is not important. Despite the fact that refinements are 

to be performed in the calculation of the thresholds for the shadowing time, 

the location of the true parameter value can be robustly estimated.

In addition, it clarifies and complements the information obtained by 

estimating the invariant measure of the map by the calculation of the Cm l{0) 

cost function [68] discussed in section 4.1.1. As discussed in that section, the 

“tongues” and complex structure in the parameter space are due to sensitivity 

of the dynamics to the parameter values, although the minimum is located 

in the relevant regions of Q.

In addition, the methodology can be extended and improved on technical 

details such as the calculation of thresholds, the use of sliding windows with 

lengths shorter than that of the observations, and the implementation of 

subsequent iterations of the method. Additional iterations of the method 

imply re-applying the GD algorithm to candidates of shadowing trajectories 

in the relevant areas of the parameter space and/or calculating the shadowing 

time for higher resolution grids in the interesting areas in order to discover 

finer structure and to reduce the candidates of true parameters [88].

In the light of the IMS, this new methodology can give insight in the 

areas of the parameter space where a model performs better than others. 

W ith only one imperfect or inadequate model to represent the system of 

interest, the information provided by the corresponding invariant measure is
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not informative by itself. In the IMS, the quantification of the goodness of 

a parameter should be re-formulated in its usefulness rather than its error 

estimates. The existence of true parameter values is an utopian idea.

4.3 Summary

This Chapter focuses on how dynamical information can be introduced into 

traditional statistical methodologies of parameter estimation in the PMS, in 

particular in a cost function based approach. “Pre-processing” of observa­

tions exploiting the knowledge of the perfect model enhances the identifi­

cation of parameter estimates via the definition of new cost functions. In 

addition, once pseudo-orbits are found by gradient descent [79] using indis­

tinguishable states theory [54, 55], the calculation of shadowing time dis­

tributions for model trajectories starting in the pseudo-orbit states, distils 

dynamical information of the invariant measure of the model in the param- 

etei space [88].

Variations in the shadowing time distribution with parameter values yield 

mo:e insight than maps of root-mean-square forecast error, or other linear 

statistics which have well-known shortcomings in nonlinear models (see [68] 

and references therein) as discussed in section 4.1.

The problem of parameter estimation in nonlinear systems differs fun­
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damentally from its well-understood equivalent in linear systems. In linear 

stochastic systems, nearby parameter values result in similar short term dy­

namics and similar asymptotic distributions. In the nonlinear dynamical 

framework, the uncertainty on any parameter estimate is not necessarily 

completely described by the difference between true parameter and the es­

timates. Uncertainty measures determine how good a parameter estimate 

generates numerical data most resembling the observed data.

Within the PMS, the method presented in this Chapter might profitably 

be recast in a Bayesian framework as partly discussed in Chapter 5, where 

state estimates obtained by this geometrical approach to parameter estima­

tion and Bayesian methodologies are compared. Difficulties in traditional 

Likelihood based approaches in this context are clarified by Berliner [5] and 

listed in section 4.1. Coherent Bayesian formulations that condition the prob­

abilities extracted, upon all the information available [83, 42, 43] are still to 

be developed. This formulation explores a wide new research area of time se­

ries analysis where statistical methodologies enter in contact with nonlinear 

time series analysis as seen in [16, 36, 92, 12, 76, 88],

For the systems considered here, the information available includes the 

fact that the data is generated by a deterministic system whose mathemati­

cal form is known. To assume some stochastic model for the sake of applying 

a “Bayesian technique” is to fail to grasp the fundamentals of Bayesian anal­
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ysis. The dangers are discussed and illustrated in Chapter 3 and 5, [52], in 

addition results to be presented in [24].

Figure 4.15 shows clearly how the maps of shadowing time provide com­

plimentary information quantifying the time scales on which the model dy­

namics reflect the observed behaviour [88]. Better parameter estimates can 

be obtained by quantifying the realism of both the short term dynamics by 

the shadowing trajectories and the long term dynamics through the invariant 

measure mapped in the parameter space.

It is important to emphasise that only in the perfect model case is it 

certain that a balance between the information in the dynamic equations and 

the information in the observations exists. When in the IMS, the invariant 

measure is not expected to be informative.

By considering shadowing times, the identification of parameter values 

which can reproduce the dynamics, quantification of the time scales on which 

they can shadow, and extracting information for improving the model class 

itself can be performed. This is a significant step forward. It remains to ex­

plore in more detail the performance of this approach in a variety of systems, 

model classes and noise levels.

Many thanks to Hailiang Du for his collaboration in parallel calcula­

tions and plots showed in this Chapter, as well to Lenny Smith and Jochen 

Broecker for many discussions and insightful comments.
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Chapter 5 

Gradient Descent vs Markov 

Chain M onte Carlo

Given a set of observations and any model scenario, no m atter the model 

type and methodology used, parameter estimates are always obtained. Esti­

mates are numbers that only have meaning in the context of the application 

of interest. At one point, what it is interesting and challenging is the quan­

tification of the quality of the resulting estimates more than the process of 

generating estimates.

Throughout this Thesis, it has been studied and exemplified that any 

methodology to find parameter estimates is valid, if and only if it is con­

sistently formulated, interpreted and contrasted out-of-sample with the be­

haviour of the system not used for the estimation. Although the use of a
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particular methodology to estimate model parameters is always justifiable, 

it requires a detailed formulation of the problem scenario in which it is used 

(see Chapter 1 for the definitions of scenarios and approaches used in this 

Thesis). Both methodology and problem scenario formulation constitutes 

an approach for parameter estimation from time series. Failure to provide a 

consistent problem scenario results in misuses of a methodology and misin­

terpretation of the resulting estimates. In-sample performance of the model 

trajectories generated using estimated parameter values is only a safety check 

for the methodology used to generate estimates in the PMS. Whilst out-of- 

sample performance is a test for reliability and efficiency of the performance 

of the resulting estimates in forecasting and control monitoring tasks.

When the problem of parameter estimation is approached in the NSA. 

The PMS formulation clearly states that some model parameters are not 

paired with any system parameter. Thus, the estimates resulting for those 

“non-paired” parameters often are ignored or misinterpreted since they can­

not be translated in the context of the system, i.e. dynamical noise vari­

ance parameter introduced in the model for the Logistic map when the ob­

servations only have measurement noise. As discussed in Chapter 1, sec­

tion 3.2.1.2.

In the case that the system is complex and a Naive Realistic Approach 

(NRA) is necessarily used (see Chapter 6), consistent estimates may be found
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across several models in order to account for model impersection error. The 

interpretation of the resulting estimates in context of the system is impossi­

ble for the majority of model parameters. The perfect model of the system is 

unreachable, therefore system parameters are unknown [15, 86, 18]. Further­

more, system observations do not even correspond to any model parameter 

or variable. If other models are not used and cross-compared, parameter 

estimates lack meaning outside the context of the model.

The interest of this Thesis is focused on model parameter estimation for 

nonlinear models. Through the process of parameter estimation, parameter 

estimates are generated along with estimates of model states (see Chapter 3, 4 

and 6). Obtaining simultaneously, model state estimates and model param­

eter values, opens a new application of parameter estimation techniques to 

generate an ensemble of states and in-sample checks. In one way or another, 

most parameter estimation techniques produce additional traces of model 

trajectories for a given temporal window, i.e. exploring the model state 

space consistently with the observations and the model.

Depending on the methodology, some uncertainty measures are produced 

in the process of parameter estimation for both model state and parame­

ter estimates and in turn they can be used for ensemble characterisation. 

Without uncertainty measures, estimates for model states parameters are 

meaningless.
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In this chapter, the interest is put in the state estimates obtained through 

the process of parameter estimation instead of the parameter estimates them­

selves. Several questions can be asked about these state estimates produced 

naturally by a particular methodology of parameter estimation if they want 

to be seen from a dynamical perspective. Among other questions, it is rele­

vant to ask:

1. W hat are the set of state estimates?

i. A pseudo-orbit.

ii. A model trajectory segment.

iii. A random realisation of a certain stochastic process.

2. W hat is the dynamical information content of the state estimates?

3. Are the state estimates samples of the invariant measure of the model?

4. Is there any deterministic structure in the resulting state estimates for 

a given temporal window?

5. How uncertain are the state estimates?

To tackle these questions a comparative study is presented in this Chap­

ter. The state estimates produced by different methodologies are compared 

to each other and to the true trajectory.



State estimates are produced for the Logistic map from observations that 

are known to contain only measurement noise. The state estimates are pro­

duced using the following methods:

1. MCMC techniques are used to estimate parameters in the PMS. As 

noted in Chapter 3, the PMS is defined for observations containing both 

additive noise components, dynamical and observational. Therefore, 

parameter estimation is made using the NSA.

2. Parameter estimates are obtained in the PMS by the new geometric 

methodology described in Chapter 4 based on the indistinguishable 

states theory [54, 55].

This study aims to compare system state estimates obtained by GD and 

MCMC algorithms. The study of dynamical features of the TLS state esti­

mates are left to future work. Prom the results presented in Chapter 4, in 

the case of TLS state estimates there is evidence that the presence of any 

Logistic structure in the reconstructed state estimates is the result of the 

explicit inclusion of Logistic map equations in the Likelihood.

The comparison between GD and MCMC state estimates (items 1 and 2 

respectively) is set as a “blind” test. The test is blind since it is assumed 

that there is no information about the approach used to obtain the series of 

distributions of system states. Information about the methodology will imply
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a direct comparison of the methodologies. Comparing the methodologies is 

out of the scope of this work, GD and MCMC belong to non commensurable 

paradigms [59]. Here, only numbers are compared.

The empirical distributions of state estimates for a given temporal win­

dow can be seen as an ensemble of model states for all and each t. The 

goal of the study is to find out which of the ensembles of state estimates 

contains “more” dynamical information, i. e. how much they reflect the in­

variant measure of the model. Quality points are assigning from values that 

a quality measure takes. The rulers to measure “dynamical information” 

content in the resulting state estimates are defined based on geometric ideas 

described in Chapter 4, i.e. implied noise, mismatch values and shadowing 

time distributions, and it is open to further refinement.

The study proposed here is directly related to the problem of distinguish­

ing between random and deterministic behaviour even though it is directed

formulated as follows:

Given two empirical distributions o f state estimates, which o f the distri­
butions o f state estimates contains “more” dynamical information and 
reflects “better” the invariant measure o f the model?

Despite the fact that distinction between random and deterministic be­

haviour is open and likely unsolvable, in the context of this Thesis, is it 

possible to distinguish some dynamics in any of the sets by comparison of 

several pre-defined quality measures?
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Noisy Logistic observations are generated for t  = 1 , . . . ,  N  for N  = 100, 

with noise levels ranging from 0 to 2, and for the true parameter value a = 

1.85 and the initial condition xq = 0.3.

The noisy observations are used to generate system state estimates {zt\t=i 

using both GD algorithm and the Bayesian implementation for the Logistic 

map in the PMS and solved using a NSA. Both algorithms, GD and MCMC, 

are run for approximately 1.1 x 105 iterations. In order to assure conver­

gence, the first 1 x 104 iterations are discarded in both cases. Analysis of 

the estimates is made to empirical distributions composed by T  =  1 x 105 

values for each system state at time t =  1 , . . . ,  N . Each state estimate is a 

distribution of T  values.

Denote the state estimates generated using the geometric approach (i.e. 

GD algorithm) by {4 54 £ i  and estimates using the Bayesian perspective 

(i.e. MCMC algorithm) by { 4 ^ } ^ i*

Figure 5.1 shows the estimated Logistic states for observations with a 

noise level of 0.2 using GD in the left column and MCMC in the right column. 

The three states shown are x50 =  9.945 x 10-3 in the first row, x i8 =  —0.313 

in the second row, and x 88 = 0.548 in the last row. The mean of the resulting 

distribution of states is marked with a black solid vertical line and with a 

grey dashed line for the median. Each plot includes the error between the
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Figure 5.1: Histograms from three Logistic states estimated using GD (left) and 

MCMC (right). The three states are £50 — 9.945 x 10- 3  (first row), a?i8 =  -0.313 

(second row) and £68 — 0.548 (th ird  row). The mean and median of the resulting 

estimates are located w ith  a black solid and a grey dashed vertical lines respec­

tively. Note that the horizontal scales in each column are one order of magnitude 

different

true state and the mean of the estimates. This error at time t  is defined as

Et =  \xt - z t \, (5.1)
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where | • | denotes the Euclidean distance between the true state x t , and the 

state estimate zt at time t, for a Logistic trajectory starting in xq =  0.3 and 

for the true Logistic parameter a = 1.85.

In Figure 5.1, the width of the distributions obtained by GD algorithm is 

several orders smaller than the width observed in the states estimates gen­

erated by MCMC algorithm, in some cases more than 3 orders of magnitude 

smaller. Table 5.1 presents several summary statistics for the three states, 

one close to zero, one negative and one positive. Figure 5.1 and Table 5.1 

show typical results obtained using GD and MCMC techniques. In mean, 

both distribution of states estimates seem to perform similarly well, i.e. er­

rors are small, however MCMC distributions tend to be wider and bimodal 

with symmetry around zero. These results are consistent for all noise levels 

studied, 0 < < 2.

Figure 5.2 shows the summary statistics for the trace of several summary 

statistics of the estimates distribution for 32 < t  <  96. The estimations 

are obtained from Logistic observations with a noise level of crj =  0.2. The 

upper panel plots estimated states obtained using the GD algorithm whilst 

the lower panel plots the estimates obtained using MCMC. The plots show 

the 95th and 75th isopleths as light and dark grey areas respectively, the 

median is plotted with black crosses and the true states with black pluses.

203



Xt Type mean(zt) 50% 99% var(zt ) std(zt) Et

0.00995
GD 0.02346 0.02262 0.03287 1.37 x 10" 5 0.00370 0.01352

MCMC 0.02352 0.02628 0.20227 0.00691 0.08313 0.01358

-0.31293
GD -0.31275 -0.31280 -0.31235 1.58 x 10“ 8 0.00013 0.00019

MCMC -0.10694 -0.26327 0.36179 0.07140 0.26721 0.20600

0.54791
GD 0.54803 0.54803 0.54803 1.03 x 10" 12 1.02 x 10“ 6 0.00012

MCMC 0.55177 0.55227 0.61948 0.00077 0.02769 0.00386

Table 5.1: Summary statistics for the resulting distributions of state estimates 

obtained from observations of noise level 0.2 using GD and MCMC algorithms for 

three true states: £50, xis and x68-

The uncertainty in the MCMC estimates is bigger than the GD estimates. 

Wider distributions are obtained for the Logistic states estimates for all t 

when the MCMC is used.

Figure 5.3 plots the percentage of error calculated form equation 5.1 with 

respect to the true trajectory. In the Figure, the 95th isopleth of the resulting 

distribution of errors is plotted as a grey area, where the upper panel shows 

the errors for the GD algorithm whilst the lower panel the errors obtained 

using MCMC. The black dots represent the median of the error at time t 

whilst the coloured area the 95th isopleth of the error distribution.

The error is close to zero for most values of t  when the GD is used to 

generate state estimates however there are six events when the error suddenly
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Figure 5.2: Logistic state estimates for observations w ith  noise level of 0.2. The 

99th and 75th percentiles correspond to the light and dark coloured areas. The 

median of the state estimates is plotted w ith  black crosses and true Logistic states 

w ith  the black pluses.

increases to  values between 10% and 25% o f the  size o f the a ttra c to r. Despite 

these jum ps, the d is tr ib u tio n  o f errors is sharp enough to  reflect the complete 

convergence o f the GD a lgo rithm  after a num ber o f ite ra tions, i.e. the values 

obtained for state estimates can be considered as ind istingu ishable states 

from  the true  tra jecto ry .

W hen the M C M C  a lgorithm  is used, i t  is surpris ing th a t the median of
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Figure 5.3: Percentage of error as a function of t, for 0 <  t <  100, for the Logistic 

state estimates using GD (top) and MCM C (bottom). Estimates are obtained 

from observations w ith  noise level of 0.2. The 95th isopleth is the grey area and 

the black dots are the median of the resulting distribution of errors.

the estimates is never bigger than 15% of the size of the attractor, i.e. for 

1 < t  < 100. In fact, the GD state estimates are closer to the true trajectory 

in median than the MCMC estimates. At the same time error distributions 

are up to 2 orders of magnitude wider for the MCMC estimates than the 

ones obtained using GD.

Figures 5.1 and 5.3, clearly show how fast the GD algorithm is converging
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towards pseudo-orbits close to the true trajectory whilst the MCMC algo­

rithm is showing a weak and slow convergence to the true trajectory. As 

discussed in Chapter 3, convergence of the MCMC technique is not uni­

formly reached given the nonlinearities of the map and multimodality in the 

corresponding Likelihood. This behaviour is consistent with all noise levels 

studied, 0 < <7% <  2.

After inspecting summary statistics for the traces and errors with respect 

to the true trajectory to assess qualities of the resulting empirical distribu­

tions of states, the Average Implied Noise Level, AINL , is calculated for both 

state estimates, { ^ } £ i  and { 4 m̂ }£n in order to assess the performance 

of each algorithm as a noise reduction method.

where st is a noisy Logistic observation and zt the estimated state. The

as the model states x t and the noise deviation av. INL and AINL can be 

interpreted as an estimation of the original noise level present in the original 

observations in the case that the noise level is unknown.

For state estimates {zt}$Li closer to the true trajectory, the AINL value 

is closer to the square root of the original noise level of the observations, i. e.

The AINL is defined by

A I N L (5.2)

square root is taken in (5.2) in order to obtain the same dimensional units
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A I N L  = (Trj for perfect noise reduction.

Figure 5.4 shows the results for both, GD (left panel) and MCMC (right 

panel) algorithms, for each noise level a distribution of AINL values is ob­

tained. Each panel plots the 95th isopleth as a dark grey area whilst the 

75th isopleth as a light grey area. The median of the resulting distribution 

is plotted in a solid black line. The x-axis takes values for the deviation of 

the noise level, i.e. 0 < av < y/2. The diagonal dotted line represents the 

original noise standard deviation. The diagonal is the line connecting the 

points (a^^AINL)  =  (0,0) and ( a ^ A I N L )  =  (\/2, y/2).

In the case of the GD algorithm, the left panel of Figure 5.4 shows that 

the distribution of average distances between the estimated Logistic trajec­

tories and the observations is consistent with the original noise level. Noise 

reduction of the algorithm is consistent and effective for all noise levels, as it 

has been noted also in [26].

In contrast, the left panel of Figure 5.4 shows that the MCMC algorithm 

is systematically overestimating the noise present in the observations. Over­

estimation of the noise level in the signal can be interpreted in two ways:

1. The algorithm is outperforming as a noise reduction method and the 

resulting state estimates are closer to the true trajectory in average and 

in median as seen in Figure 5.3.
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Figure 5.4: Average Implied Noise Level d istribution summary for the GD (left) 

and MCM C (right) Logistic state estimates for noise levels form 0 to 2. The x-axis 

take values for the standard deviation of the noise level av. The median is plotted 

in a solid black line, the 95th and 75th isopleths are plotted as light and dark grey 

areas respectively. The dotted diagonal marks perfect noise reduction.

2. The algorithm is in fact “over-reducing” noise but the resulting state 

estimates cannot be compared to the true trajectory since dynamical 

information might have been destroyed in the process.

Also note that the AINL values obtained for all noise levels when the GD 

algorithm is used, estimation of the original standard deviation of the noise 

process present is made from distributions of values less dispersed than the 

ones obtained when the MCMC is used. Table 5.2 lists mean and variance 

of the resulting distribution of AINL values as a function of the noise level 

for both GD and MCMC cases.

In order to start distinguishing dynamical information in each of the
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Original Noise A I N L gd A I N L m c m c

(jff Mean Var. Mean Var.

0 9.16 x 10"4 4.35 x 10"12 9.72 x 10~4 4.75 x 10“9

0.44721 0.18516 6.17 x 10“8 0.19422 3.82 x 10~5

0.63246 0.30996 7.76 x 10~8 0.33260 1.73 x 10"4

0.77460 0.53204 1.85 x 10"7 0.57546 2.07 x 10"4

0.89443 0.73771 3.32 x 10-7 0.84599 2.35 x 10"4

1.00000 0.87741 3.36 x 10-8 1.06164 9.64 x 10"4

1.09545 0.96877 7.03 x 10"9 1.25728 9.92 x 10"4

1.18322 0.99885 1.22 x 10“6 1.37638 2.67 x 10"3

1.26491 1.18509 1.12 x 10"7 1.53418 1.39 x 10"3

1.34164 1.44311 5.15 x 10"7 1.75973 1.11 x 10"3

1.41421 1.47546 1.85 x 10~6 1.85194 3.84 x 10~3

Table 5.2: Mean and variance of AINL distributions as a function of the noise 

standard deviation for both GD and MCMC estimates.

estimated Logistic trajectories, the Squared Mismatch of the state estimates 

' for each noise level is calculated. The Squared Mismatch value is defined 

from a modified version of the Mismatch cost function defined in equation 

(4.20), section 4.2, Chapter 4. The squared Mismatch value over a trajectory
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is given by

1 N ~ x

C  = j r — r £  k + i -  f (zf ,  a) |2 . (5.3)
t = l

and it is calculated for all noise levels, 0 <  cr̂  <  2, for both the estimates 

I1 and An empirical distribution of Cm M(<t%) values is

calculated for each time t for each of the states estimated for the Logistic 

trajectory.

Figure 5.5 shows the summary statistics of the resulting C 2MM(cr%) dis­

tributions for both sets of state estimates. Squared Mismatch values are 

plotted in the left panel for estimates obtained using GD and in the right 

panel for estimates obtained using MCMC. Each panel plots the median in a 

black solid line and, the 95t/l and 75t/l isopleths in dark and light grey areas, 

respectively.

In the left panel of Figure 5.5, it is seen, for all noise levels, the GD squared 

mismatch values are less than 1 x 10-4, showing a robust convergence of the 

GD algorithm to a pseudo-orbit close to the true model trajectory. This 

behaviour is consistent with the results shown in Figures 5.1 to 5.4.

For the MCMC estimates distribution of the squared Mismatch error 

(right panel), the squared mismatch values are three orders of magnitude 

larger than those obtained for the GD estimates reflecting poor performance 

of the one-step prediction error.
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Figure 5.5: Mismatch d istribution summary statistics for the GD (left panel) and 

M CM C (right panel) Logistic state estimates for noise levels form 0 to 2. The 

median is the black solid line, the 95t/l and 75t/l isopleths are plotted as light and 

dark areas respectively. Note that the vertical scales are four order of magnitude 

different.

It is clear from Figures 5.3, 5.2 and 5.5, that the states estimates ob­

tained by the MCMC algorithm, and the ones obtained using GD,

{zt^}tL\i  are both in the neighbourhood of the true trajectory, i.e. in both 

cases the obtained trajectory is a pseudo-orbit of the model.

The difference in amplitude between the values taken by the squared 

Mismatch by GD and MCMC estimates is clear evidence that the estimated 

Logistic trajectory obtained using the GD algorithm is closer to the stable 

set [54] of each point in the true model trajectory segment. Whilst in the 

case of MCMC, the estimated trajectory includes “less” information on the

212



invariant measure of the Logistic map for a =  1.85. Estimated states ob­

tained by GD algorithm have a better prediction skill at one-step in time 

than those obtained using MCMC.

These results confirm that there is indeed a difference in the information 

content about the invariant measure between the two sets of estimates ob­

tained using GD and MCMC. It highlights the fact that by construction of 

the state estimates one should expect to find more dynamical information in 

one distribution of state estimates than in the other, at least when looking 

at the squared Mismatch values calculated over a distribution of estimated 

trajectories.

Figure 5.6 shows the invariant measure histograms for a very long tra­

jectory of the Logistic map (104 states) starting at Xo = 0.3 for a = 1.85 

in contrast to the histograms obtained from the state estimates produced 

by GD and MCMC algorithms. In the Figure, the true model trajectory’s 

histogram is plotted in a black solid line, and the corresponding histograms 

for the GD and MCMC cases are plotted in a grey solid line and a light grey 

dashed line respectively.

Despite the differences described in this Chapter between both set of 

estimates when comparing the values taken by the AINL (see Figure 5.4) 

and Squared MM (see Figure 5.5), the invariant measure histograms result­

ing from GD and MCMC are qualitatively similar to each other and to the
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true Logistic trajectory histogram. These similarities contradict conclusions 

drawn from Figures 5.1 to 5.5 about dynamical content of distributions of 

state estimates obtained by GD or MCMC. Reasons for this are still to be 

studied and should be tackled in future research.

Even though both MCMC and GD estimates can be seen as a (effective) 

samples of the invariant measure, MCMC estimates do not contain dynamical 

skill, i.e. shadowing time distribution is centered at longer times for GD 

estimates.

Further calculations planned in the disection of the proposed study in­

clude calculation of the shadowing time distributions in order to explore the 

forecasting skill of the state estimates obtained and their distance to the sta­

ble sets of the true trajectory. Forecasting skill of the state estimates provide 

insight from the dynamical point of view on the nature of both pseudo-orbits 

available from the iteration of both algorithms.

Although from the computational point of view, GD techniques are cheaper 

in computational and programming requirements than the MCMC algorithm, 

the interest of this study is the potential of the characterisation of the differ­

ence between the state estimates obtained. Such characterisation can then 

be exploited to efficiently meld statistical/probabilistic techniques and dy­

namical time series analysis techniques for parameter estimation, forecasting 

and control monitoring of dynamical systems.
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Figure 5.6: Invariant measure histograms for a long (104 points) true Logistic 

tra jectory segment is plotted in a black solid line, and the histograms for the the 

GD and MCMC state estimates are plotted in a grey solid line and a light grey 

dashed line, respectively.

The brief discussion presented in this Chapter is only a milestone in the 

disection of extracting useful dynamical information from ensembles of dy­

namical states in the PMS.

In addition, it can also be extended into the general problem of dis­

tinguishing random from deterministic behaviour from time series given a 

model structure in the PMS or IMS. In particular, future results regarding 

this problem could be used to distinguish dynamical behaviour from pseudo­

 MCMC



orbits generated using the MCMC when the observations do not contain 

deterministic components as presented in section 3.3 [24].

This discussion provides insight on how deterministic dynamical compo­

nents induced dynamical and deterministic structures in empirical probability 

distributions.
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Chapter 6 

Param eter Estim ation from  

Real Tim e Series: The UK  

Electricity Grid Case

The work presented in this Chapter aims to produce a characterisation of 

the grid system that National Grid Transco (NGT) can incorporate into 

their grid management system. It is proposed that this characterisation 

will be based on a model for the grid system dynamics, specifically the grid 

frequency model, described in section 6.2. The estimated parameters of this 

model will then form the basis for a characterisation. The main results 

are presented in the work, The Role of Operational Constraints on MCMC
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Parameter Estimation: The case of the UK electricity Grid, M.C. Cuellar, 

L. Clarke, L.A. Smith and M. Brown, submitted to the IJEPES [22], and 

technical details are discussed in the REMIND Report [20].

NGT is the company that ensures the delivery of electricity to consumers 

across England and Wales, and is required [1] among other things, to main­

tain the electrical grid frequency around 50Hz. NGT is interested in moni­

toring, the condition of the grid frequency, i.e. determining the state of the 

grid system from observations. Estimates of the current state of the system 

can then be used to inform operational action to regulate grid frequency, a 

procedure known as frequency response [46].

In the context of the Real-timE Modelling of Non-linear Data-Stream 

(REMIND) project [20], the problem of condition monitoring of the grid 

frequency dynamics is translated into the problem of estimating parameters 

from grid frequency observations for a physical model of the system. Those 

estimates will then be used by grid frequency managers to take operational 

decisions on grid manipulation. This industrial problem is described in detail 

in 6.1 and the observational data available is presented in 6.1.1.

Note that in this study of the grid frequency system, a Real Model Sce­

nario (ReMS) is used since the complexity of the system and all relevant 

degrees of freedom of the electrical grid cannot be completely captured in 

any physical model [15]. In addition, toy experiments are designed to esti­
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mate parameters using a NRA where the simple physical model developed to 

represent the system is taken as a Perfect Model. In other words, the model 

and observations produced from forward simulation of the model conformed 

aPMS.

Mathematical models are the basis of condition monitoring, and a de­

terministic structural model is developed in section 6.2 where the physical 

understanding of the grid behaviour is presented as a set of differential equa­

tions. The stability of the grid frequency is understood in terms of the energy 

balance between electrical generation and demand in the grid system.

The structural model is assumed to be a perfect model that describes 

the grid system and condition monitoring {i.e. parameter estimation) is 

attempted by looking for parameter values that best describe the observa­

tions. Two different methodologies are used for this purpose, namely, least 

squares (LS) estimations (section 6.4) and Bayesian parameter estimation 

(section 6.5).

In practice, any model is only an approximation of the system it aims to 

describe (model ^  system) then uncertainty in the state estimate is under­

stood to be due to two distinct sources: observational uncertainty and model 

uncertainty, i.e. ReMS.

Before any condition monitoring methodology is used, a Perfect Model 

Scenario (PMS) is defined from the physical understanding of the system.
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section 6.3 defines the PMS for the UK’s electricity grid as a numerical 

integration of the grid frequency model described in section 6.2. PMS high 

resolution observations are generated by means of a forward simulation of 

the grid frequency model for the true parameter vales.

Due to operational constraints, one of the most significant features of 

these data sets is its coarse temporal resolution. Grid frequency is sampled 

at a rate of 1Hz (every second) and demand state data is obtained in-situ at 

an average sampling time on the order of minutes.

The investigation of the condition monitoring of the grid system from 

the PMS to real operational conditions is planned in stages. In each stage, 

the perfect model and the high resolution observations are transformed such 

tha t they gradually loose quality and temporal resolution and start to mimic 

practical conditions. Such operational conditions mean that the parameters 

are estimated in the PMS using a NRA for the grid from observations with 

the same sampling characteristics as the ones available for the grid system.

Depending on the methodology used for parameter estimation, Frequen- 

tist or Bayesian, transformations for both model and observations applied to 

several experiments that produced estimations reflecting different character­

istic of the system. Sections 6.4 and 6.5 present those toy experiments and 

theircorresponding performance. In both cases, the first attem pt at condition 

monitoring the grid frequency, is made in the PMS by a re-formulation of the
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PMS using a NSA inside this NRA (see 6.5.1). Once consistent parameter 

estimates are obtained in the PMS, uncertainty is introduced to the param­

eter estimation process in two ways, to the observations (in section 6.4.1 

and 6.4.2) and to changes in the perfect model (in section 6.4.2 and 6.5.1) 

by introducing terms that account for model error.

section 6.4 presents each of the stages designed to reproduce the real 

operational conditions in the parameter estimates for traditional best guess 

estimates. Least squares estimates are able to recover the true parameter 

values for the grid frequency system/model in the PMS for high resolution 

data.

Uncertainty in the observations is introduced by sub-sampling the de­

mand data from which the perfect model is driven to obtain grid frequencies 

at 10Hz and sub-sampled at 1Hz. The missing demand values are interpo­

lated using different interpolating schemes whilst keeping the grid frequency 

sampling rate constant at 1Hz.

In contrast, model uncertainty is introduced by checking the consistency 

of parameter estimates when some components of the model are changed 

such as the frequency response function and the integration scheme. After 

the model changes are performed, high resolution data is generated and then 

use to estimate the true model parameters.

sections 6.4.1 and 6.4.2 describes each of these experiments separately.
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In all cases, “best guess” estimates fail to provide correct values for the true 

parameters and uncertainty measures of the estimates. There is no measure 

of the reliability of the methodology when the model is wrong.

All experiments presented in section 6.4 show that the Frequentist ap­

proach is unable to provide reliable estimates of the model parameters except 

when operating in the PMS with high temporal resolution data. In this ap­

proach, synthetic demand data is used to generate grid frequency from which 

the parameter values are tuned. Real demand data is available at operational 

rates and is insufficient for linear estimations of the parameters.

Bayesian parameter estimation offers an alternative methodology and 

seeks explicitly to account for uncertainty in the parameter values, obser­

vations and model error by taking a probabilistic approach. As presented in 

section 6.5, instead of producing a point estimate of the parameter value, the 

method produces a distribution of values that best resemble the data given 

a particular model.

section 6.5.1 describes one of the major thrusts of this Thesis, the devel­

opment of a Bayesian parameter estimation implementation using Markov 

chain Monte Carlo techniques, for both the deterministic grid frequency 

model and its probabilistic counter-part. Given the stochastic (or probabilis­

tic) nature of the approach, the PMS is re-defined in section 6.5.2 as an Euler 

approximation of the probabilistic version described in 6.5.1, i.e. NSA inside
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a NRA.

Applying MCMC techniques to the condition monitoring of the grid fre­

quency system made apparent a handful of fundamental difficulties related 

to the nature of the model and the quality of the data available [22, 20].

Most of the effort in this Chapter was placed on the investigation of meth­

ods to apply the MCMC algorithm to real data and to determine whether 

the lack of convergence of the parameter values were founded in:

1. The MCMC method itself.

2. The fact that the mathematical structure of the model is formulated 

in an NSA inside an NRA.

3. The quality of the operational data available, fails to provide the infor­

mation required.

Discussion related to similar issues for chaotic system is also found in Chap­

ter 3.

The MCMC approach works well in the PMS using a NRA when high 

resolution data is available, section 6.6 presents the attem pt to use the 

MCMC methodology when restricted to realistic sampling rates. In this 

case, it is shown that MCMC significantly degrades performance even when 

the model structure is perfect. Despite the fact that estimates obtained from 

the MCMC algorithm cannot be interpreted in terms of physically plausible
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parameter values, it is believed that the impact of these data quality issues 

may be generally under-appreciated within the MCMC parameter estimation 

community [22].

Implementing both methodologies (Frequentist and Bayesian) for param­

eter estimation, for model data sets with matching realistic sampling times, 

provides new insight into the role of the operational constraints on the pa­

rameter estimation. Reference [22] discusses the role of real operational con­

ditions reflected in the quality of the experimental observations available. 

This discussion highlights additional constraints and uncertainty sources to 

the process of model parameter estimation of grid frequency dynamics.

In section 6.7, a summary is presented of the main results and issues 

that arose as a result of this investigation and further work and research re­

lated to this study are listed. Principally, to account for uncertainty in both 

model inadequacy and estimation of model parameters, the failure of MCMC 

methodologies in real operational circumstances may condition, among oth­

ers, the quality of future data and the quantisation of model inadequacy by 

“stochastisation” of the deterministic model. It is important to note that 

the implementation of Gradient Descent (GD) techniques for parameter es­

timation as discussed in Chapters 4 and 5 has been left for future study.

To avoid confusion of scenarios and approaches, once the model of the 

grid frequency is formulated, it is assumed to be the system, the model is the
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perfect model. Parameter estimation is attempted then in the ReMS but it 

is going to be referred as PMS all over this Chapter. When Maximum Like­

lihood or Bayesian techniques are used to estimate parameters, as explained 

earlier, the methodology and the ReMS conformed a NRA for the latter and 

a NSA inside NRA for the latter, and it is not going to be referred to by 

these terms but by the methodology used.

The project was funded by the NGT through a EPSRC Faraday project 

administered by the Smith Institute in Oxford.

6.1 The Problem

NGT is tasked with maintaining the integrity of supplied electrical energy to 

industrial and domestic customers across England and Wales. An important 

aspect of its operation is ensuring that the grid frequency of the electrical 

system does not exceed pre-defined bounds, as set out in NGT’s transmission 

license [1]. Specifically this entails that the grid frequency be maintained 

at 50 ±  0.5 Hz. Grid frequency is itself dynamic, rising and falling with 

excess generation and excess demand respectively. To maintain a steady 

grid frequency, grid system operators schedule a proportion of generation to 

respond to changes in grid frequency. This feature of the grid system is called 

frequency response [46].
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To effectively manage the provision of frequency response, operators would 

benefit greatly from additional knowledge on the state of the grid system. 

In particular, grid system operators are interested in estimates of the grid 

system inertia and the output of frequency responsive generating sets. The 

grid inertia characterises how stable the grid system is and therefore how 

sensitive the grid frequency is to sudden changes in demand.

Deviations in grid frequency arise when generation does not match de­

mand exactly and since demand is continuously changing the grid frequency 

is rarely constant. Frequency response maintains the grid frequency within 

its prescribed limits by constantly adjusting generational output.

The provision of frequency response is produced by scheduling generators 

to run sub-optimally in order that they are able to increase their output if 

needed. This procedure results in large costs to NGT. Given an accurate 

picture of the state of the grid, response can be scheduled more efficiently.

The modelling process implies an idealisation of the grid frequency sys­

tem and the experimental observations obtainable from the system. In this 

project, the observations available are grid frequency and demand. The char­

acteristics of the data add constraints to the methodologies used to estimate 

parameters, and are discussed in 6.5.

The data available are extensive sets of grid frequency observations and 

demand data, and are described in the following section.
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6.1.1 The Real D ata

The data available is of grid frequency observations with a sampling rate 

of 1Hz for six months between July and December 2001, and two weeks 

in September 2004. Grid frequency data is sampled at a rate of 1Hz, i.e. 

one observation per second, with less than 0.5% of missing values and the 

same percentage of repeated values for a given time. Given the size of the 

electrical grid in the UK and the stability of the system, the grid frequency 

can be considered to be the same in all points of the grid [46].

Figure 6.1 shows the trace of grid frequency (upper panel) and demand 

(lower panel) for a window of 30 minutes on 1st September 2004, between 

15:17 to 15:47. The data points plotted in this Figure are adimensional 

values which represent fractional deviations from the operational point of the 

grid system Uq, whilst in the case of the demand, values are normalised with 

respect to the total load of the grid system Q.

The upper plot shows a trace of 1801 points corresponding to the fre­

quency values measured at each second during that half hour. The values 

clearly show finite resolution (2 x 10-4) and magnitude of the variations from 

the operational point of the order of 10-2 approximately.

The lower plot shows a trace of 1290 points measured during half an

hour at variable sampling times and where approximately 30% of values are
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Figure 6.1: Trace of a 30 min. on 1st September 2004 between 15:17 to 15:47. 

The grid frequency plotted in the upper panel is the fractional deviation from the 

operational point of the grid system uo and the demand plotted in  the lower panel 

is normalised w ith  respect to the tota l load of the grid Q.

missing. For example, before and after 15:29 evident gaps where observa­

tions are missing can be seen. In contrast with the frequency observations, 

observations for demand available are in principle sampled at 1 minute, cor­

responding to a sampling rate of 0.0167 Hz approximately, a frequency rate 

two orders of magnitude smaller that the grid frequency sampling rate. For
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the half an hour showed in Figure 6.1, the average sampling time is approx­

imately 2 seconds.

Note that demand observations are not an instantaneous measurement of 

electrical demand at a given time but instead are an aggregated colsection 

from a number of measurements of electrical generation loaded into the grid 

system at each electrical substation. Demand is estimated from these mea­

surements and “demand observations” are obtained by adding up collected 

values from all electrical substations to estimate demand for a particular mo­

ment in time. Sampling times in the real demand data set are a refsection 

of the time spent in the process of collecting measurements all over the elec­

trical substations, and the interval of time between successive experimental 

observations are recorded.

The fact that grid frequency and demand observations are sampled at 

different rates increases the uncertainty of the grid system state at times 

when measurements of variables is not available. In addition, this differ­

ence in experimental information will unavoidably affect eventual parameter 

estimates.

Figure 6.2 shows typical histograms of the sampling time, A t  in seconds, 

of one week of demand observations during September 2004. The top panel 

shows the A t  histogram at which demand observations were collected during
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Figure 6.2: D istribution of sampling times for a window of 30 min. of demand 

observations. Top panel: 1 Sep. to 7 Sep. Bottom  panel: 8 Sep. to 14 Sep.

the week between I st to 7th September 2004, and the bottom panel shows the 

corresponding histogram for the week between 8th to 14^ September 2004.
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The sampling times vary in both cases from 1 to 15 seconds for approx­

imately the 90% of the observations taken, corresponding to sampling rates 

varying from 1Hz to 0.067Hz. In both weeks, events were found where the 

time between two successive observations is larger than 1 minute. These 

events are listed in each panel where one of the events is a period of more 

than 3 hours with no demand observations (see top panel). Even though 

these events are rare, their cost is very high in terms of uncertainty of the 

grid system state at those times.

6.2 Grid Frequency Dynamics: Structural M odel

The model of grid frequency is based on the generation and demand balance 

and the changes in kinetic energy that result from deviations of that balance.

The constraints on grid frequency prescribed by NGT on the generation are 

then formulated within this framework.

A structural model is first developed, and expressed as a set of differential 

equations, to describe the generating mechanisms for various components of 

the grid system dynamics. Detailed formulation of the model can be found 

in [20].

The grid frequency model is composed by two parts. The first part de­

scribes the grid frequency dynamics - how grid frequency changes as the dif-
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ference between generation and demand changes. The second part describes 

frequency responsive generation.

The dynamics of grid frequency is understood in terms of energy changes. 

Changes in grid frequency are driven by the changes in the kinetic energy of 

the rotors of the grid system’s generators. All generators of the same type are 

seen as one generator. Therefore, the kinetic energy of the rotor is written 

as follows

E = \ l u \  (6.1)

where I  is the moment of inertia of the grid system and Q is the angular 

momentum of the generator’s rotor. Excess generation increases the kinetic 

energy and correspondingly excess in demand reduces the kinetic energy. 

Hence changes in kinetic energy reflect the mismatch between generation 

and demand.

d_ 
d t

d E(t) 
dt

(6 .2)

where G(t) and D(t) are instantaneous generation and demand, respectively. 

Replacing equation (6.1) in (6.2) and assuming the moment of inertia I  is a 

constant over time then

H/7) a  -  h
(6.3)

du> _  G - D  
dt IQ

The moment of inertia, / ,  of the system’s rotors is not observed and
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must therefore be expressed through other physical quantities. Let H  be the 

relaxation time taken for the grid frequency to be zero given no demand and 

a sudden lost of generation, written as

/r = l/£> V 1. (6-4)

where fi is the mega-volt Ampere (MVA) of the grid frequency, with physical 

dimensions of the inverse of electrical power which is a well known constant 

for the UK’s grid. Normally, the MVA is expressed as a constant per each 

type of generator.

Solving (6.4) for I  and replacing it into (6.3), it follows that:

t  -  m  (6 “>- *«>)• <«■'»

For practical reasons in the rest of this chapter H  absorbs the constants 

in (6.5) containing all the knowledge of the inertia of the grid system.

In practice grid frequency, demand and generation deviate around the 

corresponding operational point in the following way

u(t) =  u0( l +u( t ) ) ,  (6.6)

G(t) = G(l + G(t))t (6.7)

D(t) = g( l  + D(t)). (6.8)

where ljq = 27r(50Hz) is the operational point for grid frequency, and Q is 

the operational point for demand and generation, called nominal load. For
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the UK’s grid system, the nominal load is around 40 Giga W atts at peak 

demand.

Substituting these terms into equation (6.5), gives

dw _  u0g( l  +  u( t ) ) f„  ^
dF -  H  { G ~ D )'

where variables u, G and D  describe deviations from nominal levels. The 

changes in grid frequency are relatively small therefore second order terms 

on u  are neglected, e.g. u 0u)(t) ~  0.2 => u{t) ~  4 x 10-4. Thus equation

(6.9) is reduced to

£  -  ,6 ,0 ,

Equation(6.10) constitutes the simplest form of the grid frequency model.

To maintain the grid frequency stability, generation must be continually 

matched to demand. In order to respond to instantaneous changes in fre­

quency, some generators are prepared to respond to those changes, producing 

more or less energy. When grid frequency drops below the target frequency, 

frequency responsive generation increases. Conversely, generation is paired 

back when the grid frequency exceeds its target. For simplicity, the target 

frequency is taken to be constant and equal to cj0- In terms of the normalised 

variables of equations (6.6) to (6.8), the target frequency is zero. When grid 

frequency is balanced, normalised generation and demand are zero.



The demand is modelled as composed by two components, one resistive 

demand and one inductive demand. Resistive demand relates to the electri­

cal power delivered and used by consumers whilst inductive demand relates 

to  industrial and generating motors that “feedback” and consume electrical 

power [46]. Details on demand modelling can be found in the REMIND 

project report [20].

Generation is modelled by type of generator, i.e. coal, gas, nuclear etc. 

All individual generators of the same type are grouped in one set and the set 

is seen as one generator.

Given that the model of equation (6.10) is written in normalised vari­

ables, only frequency response happens; model variables are different from 

zero. Henceforth, frequency response has to be included in the model. Fre­

quency response is mostly scheduled on thermal generating plants, e.g. coal 

and gas fuelled generation [46]. Consequently, the model for frequency re­

sponsive generation is based on an understanding of the operation of thermal 

generating sets. Please refer to the technical report in [20] for details.

The power output from any thermal generating set is understood to be 

due to three components: the internal energy, p(t), the power source, Q(t) 

and stored energy, r(t). These three components are referred in this document 

as the internal variables of the grid frequency dynamics model.

Assuming there are Ig generator types, for the ith generating set, the
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deviation in power output into the grid system is

Pi(t) = Fi(u(tyi a i)+ PiP i{t)i (6.11)

where a*) describes the frequency scheduled power as a function

of the deviations from the operational point, i.e. how generation responds 

to changes in grid frequency, fa is a generation type specific parameter 

that measures the response of the delivered power to changes in the internal 

energy.

Note that Fj(o;(£); a*) is also called the frequency response function since 

it models the operation of frequency responsive generators. The frequency 

response function F {u \a )  is the nexus between the grid frequency dynamics 

and the dynamics of the internal variables of the model. It links changes in 

grid frequency to changes in generation. The parameter a  determines how 

fast the generating set responds to small changes in grid frequency.

Changes in the internal energy, P i ( t ) ,  are due to a combination of factors: 

energy input to the generating set from the energy source i.e. fuel, energy 

drawn off the generating' set by the grid system, and the transfer of stored 

energy. The change of internal energy is written as

{Qi{t) ~  Pi(t) +  cq (r»(*),p<(*))}, (6.12)

where is the internal energy parameter, Qi(t) is the power source, 0 i{ri(t), pi(t)) 

is the variable heat transfer function for the stored energy ri(t) and Pi(t) is
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the deviation in power delivered to (or drawn off by) the grid system.

The release of stored energy is modelled as a switch function

(sis)

where s* is the release rate of stored energy and p is the energy storage 

transfer as a fraction of release time. When the internal energy drops, en­

ergy is quickly released from the stored energy. Conversely, energy is slowly 

transferred from the internal energy to the stored energy.

The rate of change of the power source aims to capture the plant’s re­

sponse to short term changes in the internal energy of the system and is given

by

-d% —  =  ~-{r)iPi{t) +  Qi{t)), (6.14)
dt Ti

where t* is a time constant that describes how quickly fuel can be added to the 

generating set and rji describes the sensitivity of the controlling mechanism 

to  changes in the internal pressure.

The rate of change of stored energy is modelled as

Ci~ 3 t^  =  (6.15)

where c* is the capacity time constant of the energy store.

The power output to the grid by Ig) types of generating sets is expressed
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as

h
G(t) = y ,  Aip *w , (6 1 6 )

i=1

where A * is the proportion of generation attributable to the ith generating 

set. In addition, it is assumed that the conversion process is 100% efficient.

Note that only generating sets which are frequency responsive will con­

tribute to equation (6.16). Non-frequency responsive sets do not contribute 

to  changes in deviations of the generation from its operational point.

These equations represent a basic understanding of the physical processes 

th a t constitute grid frequency dynamics. At the same time, the adoption of 

this model for the characterisation of the grid frequency system does not 

imply that this description is complete; there are processes and aspects of 

the system not described by these equations.

Figure 6.3 shows a diagram of the relations between the grid frequency 

and the internal variables of the model, i.e. equations (6.10 to (6.16)), for 

a given time t , for a grid system composed by two generating sets, one fre­

quency responsive and one non-frequency responsive.

In the Figure 6.3, arrows pointing to a node, i.e. circles, squares and 

rounded squares, come from variables on which the node variable depends ex­

plicitly. Auto-dependencies are not included in the sketch. If auto-dependencies 

where included it would be represented by a loop leaving and arriving in the
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Figure 6.3: The diagram shows the dependency relations between the grid fre­

quency and the internal variables of the model. Arrows pointing to a node, i.e. 

circles, squares or rounded squares, come from variables on which the node depends 

explicitly.

same node. Despite the fact tha t the frequency response function, F ( u ( t ) ;  a ), 

is not a variable of the model, it is included to emphasise th a t it is the dy­

namical link between internal variables and grid frequency dynamics.

To be consistent with the notation used throughout this Thesis, let 6  be 

the parameter vector which is composed by all parameters of the grid system 

model. Thus for the model given by equations (6.10) to  (6.16), the parameter 

vector is

9 =  ({Hi,  Ai, a {, Ki, Pi, Ti, rji, Si, l5 p) , (6.17)

henceforth 6  G R 9/fl+1 for Ig types generating sets.
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6.3 ReMS: Forward Simulation

A study of the identifiability of the model parameters 6 and the effects of 

data  resolution is performed before carrying out an extensive program of 

Bayesian parameter estimation for the model using real data.

The study is done via a simulation approach, i.e. forward simulation 

of the structural model. In the forward simulation, the physical model of 

the grid frequency dynamics described in section 6.2 is taken to be the grid 

frequency system, i.e. theReMS is adopted (see Chapter 1).

The modelling process is made from considerations of continuous pro-, 

cesses representing the understanding of the dynamics of the grid. Instanta­

neous changes in demand produce instantaneous changes in generation and in 

turn  are reflected in instantaneous changes in grid frequency. Unfortunately, 

it is impossible to solve the grid frequency model analytically, therefore it has 

to be discretised when a numerical solution is sought. Analytical constraints 

makes it compulsory to use a version in discrete time from which the grid 

system is described. This discretised model is the one to be considered as 

the system itself.

Figure 6.4 shows a sketch for the ReMS forward simulation. Given that 

the model and the forward simulation are identified with the system and the 

state space of the system, respectively, the ReMS is taken to be a PMS only
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Figure 6.4: Sketch of the forward simulation for the grid frequency model. The 

synthetic demand data (pyramid in the right) drives the numerical integration of 

the model to obtained grid frequency (box in the left).

in this context thus a NRA is adopted. Whilst there is not any reference 

or comparison of any type with real observations, it can be said that model 

parameter estimation is attempted in the PMS.

Observations of the system are then generated by numerical integration 

of the model for a set of known parameter values, 0 , and synthetic demand 

data. This process of generating a “true” trace of the grid system using the 

demand data and the model, is the forward simulation of the perfect model 

for the grid frequency dynamics. From the forward simulation, the task will 

then be to estimate the value of 0 , the true parameter vector.

In detail, the system is composed by two generating sets, one frequency 

responsive and one not frequency responsive, representing the simplest con­
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figuration of the grid system. Figure 6.3 shows the dependency of the internal 

variables, generation, demand and grid frequency for this configuration of the 

grid system.

The perfect model for the grid frequency is defined to be the 4^-order 

Runge-Kutta approximation of the set of differential equations given by

(6.10) to (6.16). The model is solved using an integration step of h = O.lsec 

and is driven with synthetic demand at the same sampling rate of 10Hz (for 

details on how demand data is generated see REMIND report [20]) producing 

frequency data with a sampling rate of 10Hz (see Figure 6.4 for a schematic 

representation of the forward simulation).

Figure 6.5 shows typical traces of high resolution data, i.e. 10Hz sampling 

rate, of grid frequency in the upper panel and demand in the lower panel for 

a time interval of 30 minutes. High resolution in time translates to 1.8 x 104 

data points of grid frequency and demand.

The true parameter values are shown in Table 6.1 for the simplest con­

figuration of the grid model. Even though the non-frequency responsive 

generator set do not contribute to changes of grid frequency, corresponding 

parameter values are still listed.

From Table 6.1 there are only two generating sets, one frequency respon­

sive and one not. Note that from equation (6.16) the parameter a  describes 

how responsive is a set to changes in grid frequency, if there are non-frequency
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Figure 6.5: PMS high resolution grid frequency and demand observations sampled 

at 10Hz

responsive generating sets then grid frequency cannot be balanced i.e. it is 

always zero. The frequency responsive generating set produces 10% of the 

generation and is responsible for the changes in frequency when the mismatch 

between generation and demand is different from zero.

6.4 PM S Experim ents

A study of the identifiability of the model parameters 0and the effects of data 

resolution in Least Squares parameter estimates in the PMS is performed



Generator type Parameters

i T V k; 0 c s P A OL H

1 1 0 1.00 0.00 100 0 0.00 0.90 0 0.0373

2 60 50 1.30 0.80 100 100 0.01 0.10 25 0.0373

Table 6.1: Grid frequency model true parameter values that generate high resolu­

tion data in the PMS. Column in bold face highlights the parameter that deter­

mines which of the set is frequency responsive, i.e. a  /  0.

before carrying out an extensive program of Bayesian parameter estimation. 

Each experiment explores different issues concerning model structure and 

temporal resolution of the available PMS data.

The issues explored are:

1. Experiment 1: Data

section 6.4.1 presents this experiment where high resolution data is 

sub-sampled in a way that gradually starts mimicking real operational 

conditions. In one hand, section 6.4.1.1 studies the effect of lower 

sampling rates in grid frequency and demand. Whilst in the other, 

section 6.4.1.2 studies the effect when the PMS data has the same 

sampling resolution as the real data described in section 6.1.1.

2. Experiment 2: Model
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section 6.4.2 presents how LS parameter estimates are affected by slight 

changes in the model class that represents the grid system in equations

(6.10) to (6.16). In particular, sensitivity of estimates to choice of fre­

quency response function is studied in section 6.4.2.1 and to the integra­

tion scheme used to solve the set of differential equations that comprise 

the physical understanding of the grid system in section 6.4.2.2.

Given that this part of the Thesis was developed inside the REMIND 

project, LS estimates in the PMS and the experiments listed below, results 

are qualitatively commented upon to justify the final Bayesian implementa­

tion. Details can be found in the REMIND report [20].

All model parameters (except parameters c and p) of the frequency re­

sponsive generation type are chosen to be estimated by the LS methodology 

(see Table 6.1 for a list of parameters).

Table 6.2 shows tha t LS parameter estimation in the PMS leads to the 

correct results as well and there is no uncertainty in the point estimates. 

True parameter values are recovered with no uncertainty.

Unfortunately, a perfect model does not exist in most practical cases and 

it is important to remember that these perfect conditions do not reflect real 

conditions of the grid frequency system. This first estimation of parameters 

is a safety check that in the PMS conditions things to work. To adopt a
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Parameter r P K P P A a H

True Value 60 50 1.30 0.80 100 0.10 25 0.0373

Estimated Value 60 50 1.30 0.80 100 0.10 25 0.0373

RMS/a-2 0.00

Table 6.2: Table of fitted parameter values for experiment in the PMS showing: 

parameter, true value, estimated value and the fitting error

consistent NSA in which to use Bayesian techniques in this model of the grid 

system that later on can again be translated to an even more realistic NRA to 

estimate useful parameters values from real data. The following experiments 

explore sensible issues related to data and model.

6.4.1 Experiment 1: D ata

This section enumerates the experiments and results for the LS methodology 

and its shortcomings as a motivation to implement alternative techniques of 

condition monitoring in real operational circumstances. Further details and 

plots can be found in [20].
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6.4.1.1 Sub-sampled Frequency and Dem and

Grid frequency observations are generated in the PMS at a rate of 10Hz and 

sub-sampled at 1Hz (as is the real data). The perfect model is then driven 

with the synthetic demand data sub-sampled at several rates and the missing 

values were completed by means of a number of interpolation schemes. These 

three experiments produced three different grid frequency traces which are 

then contrasted with the PMS observations in order to tune model parameter 

values. The experiments are:

1. Demand data sub-sampled at 1Hz (every second). The sampling rate 

is 10Hz filling the gaps with a piecewise constant function.

2. Demand data sub-sampled every 15 seconds (0.067Hz, 6 times the av­

erage of the one in real demand data). The sampling rate of 10Hz is 

achieved by using a piecewise constant interpolatioh.

3. Demand data sub-sampled at 1Hz (every second) and the missing values 

are linearly interpolated to obtain 10Hz sampling rate.

In all cases, the correct values of the parameter vectore are not identified, 

even though the smallest errors are obtained for the case where the missing 

values of demand are linearly interpolated.
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6.4.1.2 Real operational Conditions

High resolution synthetic demand data is degraded to be sampled are in a 

typical 30 minute window. In other words, the real demand data sampling 

times distributions, as in Figure 6.2, is matched to the high resolution de­

mand data. In order to obtain a demand data with 10Hz resolution to drive 

the estimating model, the missing values are set to perturbed values linearly 

interpolated between consecutive missing demand values. The size of the 

perturbations is defined to be half the magnitude of the difference between 

the existing demand values.

The failure in LS to provide correct estimates is due to the fact that 

the observations are not sampled at a sufficiently high rate even though the 

estimating model itself is perfect. Independently of the length of the obser­

vations, the sampling rate is not high enough to get the relevant dynamical 

information from the system.’

6.4.2 Experiment 2: Perfect M odel

This experiment is motivated by the intention to implement MCMC tech­

niques to the grid frequency model. MCMC implementation imposes some 

constraints on the analytical forms used to model random variables, as de­

tailed in section 6.5.1. Two of the strongest changes in the explicit form of
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the model are related to the modelling of the frequency response function 

and the integration scheme.

6.4.2.1 Frequency Response Function

The observed grid frequency is generated using a 4t/l-order Runge-Kutta in­

tegration scheme and the frequency response function is taken to be

F(u;a) = — tanh(cjo;). (6.18)

The Taylor expansion around zero of (6.18) is

9 O'5
F(u; a) =  —a u  +  — u 3 — TTu5 + ----  (6.19)

o 10

Thus, given that the estimating model takes the frequency response func­

tion as a first order approximation; the estimating frequency response func­

tion is F(u\ a) = —au.

It is found that the correct parameter values of 0 are obtained when the 

high resolution data is used, and there is a strong indication that for a  =  25 

the frequency response function is indistinguishable from equation (6.18), 

given that locally both the estimating model and the perfect model behave 

like —au.

The values that the model variable takes in both cases are not the same 

since there is some fitting error as shown in Table 6.4.2.1. The method does
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however pick out the “correct” parameter values.

Parameter T V K & Rel A a H

True Value 60 50 1.30 0.80 100 0.10 25 0.0373

Estimated Value 60 50 1.30 0.80 100 0.10 25 0.0373

RMS/ a l 9.40 x 10“-4

Table 6.3: Table of fitted parameter values for Experiment 2 using a first order 

approximation of the frequency response function F{uj\ a)

The relevance of this scenario is clear when the Bayesian methodology is 

applied. In particular, this approximation is convenient for MCMC imple­

mentation as it simplifies some analytical calculations.

6.4.2.2 Integration Scheme

The effect of the integration scheme used on the LS estimatesis explored, 

instead of using a 4t/l-order Runge-Kutta integration scheme, an Euler ap­

proximation is used with same integration step used in the PMS, i.e. h = 0.1 

sec. The estimating model is now a first order approximation of the differ­

ential equations that generated the data.

The observations used to estimate parameters of the Euler approximation
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of the model are:

1. Observations of the grid frequency system are traces of u  from the 4th- 

order Runge-Kutta integration of the model for grid frequency driven 

with demand data at 10Hz.

2. Demand data at 10Hz is used to drive the estimating model to generate 

grid frequency at 10 Hz. Grid frequency is then sub-sampled at 1Hz 

(real sampling rate) and used to tune parameter values for the PMS 

observations.

The main finding is that the change of the integration scheme impacts 

the results of the parameter fitting. The parameters t , rj and k  are the most 

affected as by the change of integration scheme the strength of the relation 

with internal variables of the model is directly reduced.

Some information is lost in the temporal evolution of the internal variables 

when the approximation of the system is made linear. In practice, the true 

parameter values are unknown and the resulting Least Squares estimates 

correspond to optimal parameter values in the Maximum Likelihood sense,

i.e. those where the minimum of the LS cost function is located. Therefore, 

grid frequency system parameter estimates are biased.

As a result the LS method is unable to provide reliable estimates of the 

model parameters with corresponding uncertainty measures when the inte-
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gration scheme is coarse.

Prom the results of the two experiments performed, the most dramatic 

effects were observed when the perfect model chosen to represent the grid 

frequency dynamics is approximated at first order and when the temporal 

resolution of the data is like the real one.

Neglecting the fact that there exists a significant mismatch between the 

estimated values for the parameters and the model parameter true values, 

the following Bayesian formulation of parameter estimations for such model 

is made using a first order discretisation of equation (6.10) and PMS data is 

used many times such that it gradually resembles real operational conditions. 

The problem of parameter estimation is clearly an NRA. Relevance of the 

approach in this context, is justified in terms of the insight such implemen­

tation can provide in a real application, as for the UK electricity grid. The 

main results of this attempt are presented in the next section and in [22].

6.5 Bayesian parameter Estim ation for the  

U K ’s Grid System

The Bayesian methodology seeks to account for uncertainty in the parameter 

values and observations by taking, essentially, a probabilistic approach. In-
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stead of identifying the “correct” parameter values, probability distributions 

of parameters are sought that are consistent with the data and the model 

structure.

The model is understood to encode the understanding of the grid dynam­

ics; the equations describe the relationships between the variables. The most 

‘probable’ parameter values of the model given the observations are then 

sought. The parameters are estimated in an iterative fashion. One starts 

from some initial understanding of the parameter values, encoded as a prior 

distribution, and the methodology iterates this distribution to the resulting 

posterior distribution.

The prior distribution can be uninformative, with no particular value 

favoured. In addition the method can be used to estimate the distribution 

on uncertain observables or non observed variables (i.e. latent variables). 

Consequently, the method has the potential to produce a distribution on the 

demand variable.

There are a number of differences between LS and Bayesian methodologies 

that it is important to make clear. Unlike the simulation approach (LS 

estimation), the Bayesian methodology uses information in the grid frequency 

observations to estimate the parameters due to the explicit dependency on 

the model structure and the observation from the system.

Figure 6.6 shows a sketch of the Bayesian approach as it is implemented
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in this work. The model parameter distributions are conditioned on the 

observed demand data and the observed grid frequency.

Model

\
MODEL

Euler 
approximation 

+ noise

Figure 6.6: Sketch of the Bayesian implementation for the grid frequency model. 

Observations of demand and grid frequency are denoted by d and s respectively.

Comparing Figure 6.4 with Figure 6.6, Bayesian parameter estimation 

methodology does not use the perfect model but a realistic and “affordable” 

version of the model in order to make numerical implementation feasible and 

also include model error.

In addition, the Bayesian model for the grid frequency system needs both 

demand and grid frequency observations, denoted by d and s, respectively.

For parameter estimates it provides an estimate of each component in the 

parameter vector 6 , i.e. the “best” o most probable parameter value given 

the model and the observations. Each component estimate is the form of an 

empirical distribution formed by MCMC samples.
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As explained in detail in section 6.5.1, in the Bayesian framework the 

parameter vector does not only contain the model parameters of the physical 

encoding for the grid frequency dynamics in equation (6.17) but also all 

the non observables variables. Moreover, it also contains hyper-parameters 

associated with uncertainty of the components of 0.

The Bayesian methodology assumes that all observations, as well as any 

parameter or model variable not observed have associated uncertainties. This 

assumption enables the methodology to model the demand as a distribution. 

Given observations of the demand, the Bayesian methodology is then able 

to estimate unobserved values of demand, while at the same time estimating 

the uncertainty on those observations.

Bayesian parameter estimation proposes a coherent methodology within 

which model parameters, and the uncertainty in those estimates, can be 

determined despite the naive assumptions made in order to implement it 

numerically. In this work, the method is applied to a model for a real world 

physical system, namely the UK’s electrical grid system, and investigates the 

robustness of the method to operational data constraints.

Presenting parameter estimates as a distribution allows us to quantify, 

to some extent, how good the model is; where tight posterior distributions 

on the estimated model parameters provide reassurance that the model is 

describing the observed behaviour.
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Given high quality data and a model that is mathematically correct, 

estimations using the Bayesian technique in the PMS are found consistent 

with the known values as described in section 6.5.1.

section 6.6 shows that when the method is applied to operational data - 

using observations from the UK’s electrical grid, the resulting posterior dis­

tributions are uninformative. Moreover, it is found that similar ambiguities 

are observed in experiments where a perfect model is available but data is 

sampled at operational sampling rates. In short, there is insufficient informa­

tion in the available data to be able to identify the parameters in the context 

of the real system.

One of the most interesting aspects of this work is that it points out the 

need to meld physical and probabilistic modelling techniques to be applied 

in real applications where uncertainty is ironically a source of information.

In addition, it motivates to infuse more attention to the areas of research 

where the deterministic and stochastic approaches are in contact. Chapter 3 

also discussed this aspect when a nonlinear models are involved.

The state of the grid, like many complex physical systems, is not directly 

observable and must be inferred from understanding of the system and the 

information available from observations. Given a model structure with un­

determined parameters and observations of that system, the task is to seek 

those parameter values that “best” describe the observed behaviour. Here
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“best” is understood to be application specific.

For NGT the “best” parameter values are those that result in a more 

effective scheduling of frequency response. Implicitly, parameter estimation 

is often carried out in the perfect model scenario, whereby it proceeds as if 

the system is drawn from the model class being used [19]. The result is that 

a correct, or optimal, set of parameters is assumed to exist and is actively 

sought. When the model is known to be an approximation of the system, 

the true parameter values are known not to exist. In an effort to address this 

fact it is sought to quantify the uncertainty in the parameter estimates.

The method is illustrated by walking through the application of a Bayesian 

techniques to the simplified grid frequency model described in section 6.2. 

The version adopted does not include the internal variables, as seen in Fig­

ure 6.3, the left lower part of the diagram shows an island of variables inter­

related but only connected to the grid frequency u  by the frequency response 

function through the generation.

As a first attem pt to implement the Bayesian methodology, the proba­

bilistic model does not see the contribution of the internal variables as such 

but only through the high resolution data generated in the PMS.

This continuous model is then made discrete, dynamical noise is included - 

in order that Bayesian parameter estimation produces a way to monitor 

model error. The melding of these two modelling approaches results in a
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stochastic dynamical model.

The advantages of such an approach are two fold. Structural models, 

based on a physical understanding of the system, allow for the explicit inclu­

sion of prior knowledge, i.e. background information. Statistical models, on 

the other hand, offer a more direct treatment of noise and the uncertainties 

inherent in the modelling process.

It is difficult, however, to incorporate domain knowledge when the model 

parameters have no intrinsic physical meaning. This is often the case when 

describing observed phenomena using standard stochastic processes such as 

auto-regressive models.

Here, the physical knowledge encapsulated in a structural model is fused 

with uncertain information from observations, whilst at the same time main­

taining the uncertainty due to model impersection and inadequacy. The 

result is a probabilistic model with the advantage of probabilistic reasoning 

and the inclusion of domain specific information.

The model of equation (6.10) is a deterministic expression of the grid 

frequency dynamics. In the Bayesian framework the dynamics is modelled 

as a stochastic process and as such equation (6.10) must be formulated prob­

abilistically. To do this, it is necessary to specify a stochastic term V to

258



give

(6.20)

where T is a Weiner process [38]. The inclusion of this term makes the 

application of the MCMC techniques more tractable and hopefully makes it 

more useful in terms of uncertainty accounting, i. e. model inadequacy.

The model for the frequency responsive generation is left deterministic 

but in future work could also include further stochastic terms. As pointed 

out earlier, from the MCMC algorithmic representation of the parameter 

estimation process, the internal variables are invisible.

The following sections describe how Bayesian parameter estimation is ap­

plied to the grid frequency dynamics model of equation (6.20). Observables 

S  and, non-observable, 9 quantities are identified based in the background 

information, / ,  and available and appropriate prior distributions are speci-

data, s and d, respectively. The set of observations corresponding to these 

model variables is therefore

where st and dt correspond to observations of the model grid variables: grid 

frequency u t and demand Dt respectively. The observations of the grid fre­

fied.

The available observable quantities are the grid frequency and demand

(6 .21)
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quency, st , are not assumed to be the grid frequency variable, u t , themselves 

and are modelled as a sample from a normal distribution with mean u t and

variance a^.

Similarly, observations dt of the demand variable Dt are modelled as sam­

ples from a normal distribution Af(Dt, crj). As such as and ad represent the 

amplitude of the observational noise present in each data set.

Lets see how the inclusion of stochastic terms in (6.20) is revised step 

by step. Initially, a simple grid frequency model is considered in equation 

(6.10), reproduced as follows

£  =  £ k { G - D )- ( 6 - 2 2 )

The model described in section 6.3 only contains two generating sets there­

fore equation (6.22) can be reduced further. In general, the parameter related 

with the proportion of generation A* for i =  1,2 is constrained to the condi­

tion Ai +  A2 =  1, i.e. the proportion of generation types in the grid generate 

all the electrical power as in equation (6.16). Introducing that constraint to 

the equation (6.22), it is reduced to

I  -  <«-23>

assuming the inertia H  of each generating set is the same for both types of 

generators, and has absorbed the constants luq and Q.
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Given the discrete nature of the observations, (6.23) is integrated using 

the Euler approximation

ut+i =  ut +  — {Gt — Dt), (^-24)

for h = 0.1 sec, and higher order approximations results in posterior distri­

bution with a more complex analytical form. Higher order approximations

of equation (6.23) has not been used with MCMC techniques yet.

The continuous parametric model for grid frequency, described in section 

6.2, is made discrete in time, through the adoption of an Euler integration 

scheme, in order to apply the Bayesian parameter estimation algorithm giving

fl
u t+1 =  Ut +  ~ Dt) +  7t, (6.25)

where t is the time index, h is the integration step and is an independent 

and identically distributed random variable with mean zero and variance o 

The dynamical noise term described in equation (6.20) and (6.25) can be 

seen as well as accounting for uncertainty in the order of the approximation,

i.e. model error.

It remains to specify prior distributions for each of the unknown quanti­

ties. For constrained components of 0, , an informative prior reflects the

prior knowledge in the form of a probability density or a constant value. 

Whilst for unconstrained components of 0 , 0^, a non-informative prior is set
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L

with the hope that the uncertainty about Ok will shrink as new information 

is included in the updating process.

Based on prior knowledge, the following non-observable quantities are 

constrained to be constant values: the integration step h is set to the sampling 

time scale of the observations, Q to the scheduled load level, the operational 

point of the grid frequency u/0 to 2?r50.

Note that the only informative prior that is assigned to any component of 

0 is to the frequency states u t. The information reflected in equation (6.25) 

is the representation of the fundamental Bayesian assumption that u t is a 

random variable that evolves according to

p(vt+i k )  = A f ( w t + -  D t), <7̂  . (6.26)

The variables corresponding to generation Gt and demand Dt are assigned 

normal non-informative priors reflecting the range of values for the total 

generation and demand with corresponding variances ctq and a 2D. The inertia 

H  is positive and appears explicitly in the parametric model as an H ~l term 

and is chosen to be an informative inverted Gamma prior.

The variances of the observational noise processes of, cr̂ , and of the dy­

namical noise processes cr̂ , Gq and cr^, are assigned Gamma non-informative 

priors reflecting the knowledge that variances are positive and close to zero. 

From the considerations above, the parameter-vector 0 for the grid frequency
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equation is of 37V +  6 components given by

o = (W fcLi, {A }t=i, {G(}£Li, H, a*, Ug, a%, a h ) . (6.27)

Any inference of the parameter values and states of the grid will be made 

from the posterior distribution. Assuming independency between the com­

ponents of 0 and once the observations are available, from Bayes’ Theorem 

the full posterior distribution can be written as

N

p(e\S, I) = n P(st \ 6 , I ) p ( d t \ e , I ) x
t= 1

N - 1 N

IIp(«h-iK j) x np(A|/)p(Ctm xp(n\i) x
t = l  t = l

p(<T*\I) p(crf|7) p(aj\I) p{°2a \I) p (v l\I ) -  (6.28)

The first line in equation (6.28) corresponds to the Likelihood term, the 

second line to the prior distribution for the deterministic dynamical states 

represented in the probability model and the third line to the pure prior

terms. Priors reflecting the uncertainty in the dynamical states of the grid

system are represented by p(a^\I) p (oq\I) p(aj)\I), the ones representing the 

uncertainty in the observations are p(a^ |7) p(a%\I) whilst p(H\I)  is the prior 

for the system inertia.

Equation 6.28 is a high dimensional distribution with as many dimensions 

as components in 0 , (6.27). Once S  is observed, N  frequency and demand 

observations are available. When evaluating the posterior of equation 6.28
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using the observed set S , this inference problem consists of characterising 

a full posterior of dimension t  = 3N  +  6. Even for a small t  an analytical 

solution is not feasible and numerical solutions are required.

There are several possible numerical implementations to solve equation 

(6.28) such as the Laplace approximation (see for example [9] pages 340-345 

and references therein), Importance Sampling (see for example [9] pages 348- 

350) and Sampling-Importance-re-sampling [81], all known as non-MCMC 

techniques. Here, MCMC techniques are implmented as presented in the 

following section.

6.5.1 M CM C Implementation

This section deals with the intermediary steps needed to implement the 

MCMC algorithm with the Gibbs sampler of the posterior distribution for the 

grid frequency dynamics model in an iterative fashion, section 2.1.1 presents 

how the MCMC algorithm generates samples from the posterior distribution 

and here these ideas are going to be presented briefly again. Samples of each 

of the components are generated using the single component Metropolis- 

Hastings algorithm [40, 69, 30] with the Gibbs sampler [32, 30] which has 

been proved useful in a wide range of applications of Bayesian inference [95].

To implement MCMC, the following steps are carried out:
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1. Classification of model variables and parameters as observables or non­

observables, as in Section 6.5.

2. Construction of a probability model, i.e. a posterior distribution, as in 

Section 6.5, equation (6.28).

3. Set up prior and Likelihood terms for parameter in 0 and observables 

in S, (6.21), based on background information, I. Likelihood and prior 

terms are included explicitly in section 6.5.1.1 and section 6.5.1.2, re­

spectively.

4. Calculation of the full conditional distributions.

5. Implementation of the sampling algorithms for each of the components 

of the parameter vector 0 , where it is necessary, i.e. when the full 

conditional is not in a closed form. This is the case only for the Inertia 

parameter, H.

6. Convergence tests (e.g. GR-statistic [31, 95]) to determine a suitable 

burn-in time, r^, as in Section 6.5.2.

7. Iteration of the MCMC algorithm for j  > tq to obtain samples from 

the posterior distribution, section 6.5.2.

Specifically, MCMC generates samples for each component of the parame­

ter vector 0 in equation (6.27) individually by means of the single-component
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Metropolis-Hastings algorithm [69]. MCMC algorithmic representation of 

the high dimensional posterior distribution in equation (6.28) translates to 

obtaining samples from a suitable Markov chain for each component of the 

parameter vector 0.

MCMC is implemented for 30 minute windows of observations, given 

that 30 minutes is the largest time scale at which the relative populations of 

generation types are held “constant” [46], i.e. A* is constant. In this time 

interval, the parameter vector 0 is of dimension t  given by

i  =  (3 variables) x (30 min) x (60 sec) +  (6 parameters),

=  5406 components. (6.29)

In short, MCMC generates a sample of 0 £ from the posterior distri­

bution p(0\S, I)  once S  is observed. In order to do this, a Markov chain is 

generated such that its state space dimension is I  and whose equilibrium dis­

tribution is the posterior p(0\S, I) [66]. After sufficiently many iterations the 

resulting states of the Markov chain can be taken as samples from the pos­

terior of interest [66, 9]. Estimations for the expected value of any function 

g{0) is then made by means of a Monte Carlo approximation.

To construct a suitable Markov chain the algorithm due to Hastings [40] 

which is a generalisation of the method of Metropolis [69] is employed as 

follows.
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in R^ be the states for a suitable Markov

There are several ways to choose the proposal distribution #(-|-) [95, 91, 

61, 80]. Moreover the choice of the candidate distribution is an important 

issue for the implementation of MCMC. The proposal should be easily eval­

uated and sampled from as having a high probability of acceptance a(-) to 

ensure computational efficiency [95].

In this implementation, the proposal distribution is defined by the Gibbs 

sampler [32, 30]. The Gibbs sampler defines the proposal distribution to 

be the full conditional distribution [9, 95] defined in such a way that the 

candidates O' are accepted with probability a (0 ,O ' )  =  1.

The full conditional distributions, 7Ts(0.j| #._*), are easily calculated from 

equation (6.28) by just picking the terms which implicitly contain 0 Given 

an initial condition 0 ^  each iteration j  > to samples each component of 

the parameter vector from the full conditional distribution, i.e. 6^} ~

Note that the MCMC technique takes as an initial condition for the chain

chain. A candidate O' for chain state j  + 1, is drawn from a proposal distri­

bution q { 0 ^ \0 '  ) such that the new candidate is accepted with probability 

a  When the candidate is accepted 0(J+1) =  O' otherwise the chain

does not move, 0 ^ +1̂  = 0 ^ \  and the state is the same as in the last iteration.

section 2.1.1 for

details.
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a realisation of each of the components of 0 drawn from the corresponding 

priors, and data for a 30 minute window. The iteration time is denoted by 

j  € Z, the dynamical time by t G Z, and the components of the parameter 

vector 6  are denoted by i G Z.

It is important to keep in mind that the grid system dynamical variables,

i.e. uj) G and D, do not evolve in a deterministic way within an iteration 

of the MCMC algorithm. Instead, for the j th iteration of the algorithm, a 

realisation of the whole dynamics for the 30min-window is contained in 

After many iterations an ensemble of possible grid system states is avail­

able (see discussion of this interpretation of the traces obtained by MCMC 

techniques in Chapter 5). Unlike an ensemble approach, the probabilistic 

model i.e. the posterior distribution, explores the space of possibles states 

for the dynamics of the model during those 30 minutes consistently with the 

background information I.

For the purpose of calculating full conditionals, some terms already dis­

cussed in section 6.5 will be revisited and some that will not be relevant until 

sections 6.5.2 are going to be introduced, e.g. terms related to the inclusion 

of sub-sampled demand values that mimic operational constraints.

The next two sections list explicitly, Likelihood and prior terms in equa­

tion (6.28).
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6.5.1.1 Likelihood Terms

The Likelihood terms are defined for the observed variables. In this case, 

both the grid frequency observations, st , and the demand observations, 

are assumed to be independent for all t.

•  Grid Frequency Observations: { Sj}^ =1

Observations of grid frequency are available at a sampling time of lsec.

Assuming independence and normality for the st, the Likelihood term for 

the set of grid frequency observations in the 30min-window is

N

=  J[««V>,D (6-32)
t =  1

St ~ (6.30)

(6.31)

• Demand Observations: { d t }^L1

Assuming demand observations are available at a sampling time of lsec

(1Hz rate).

dt ~ N{Dual), (6.35)

P(dt\0) =  J —7 exp - A ( i i t - A ) 2 ■
y / 2  T t a j  [  2 a d

(6.36)
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In practice, observations of the demand are available at a variable sam­

pling time as described in section 6.1.1. The sampling time varies up to 40 

seconds due to some outlier sampling times (see Figure 6.2).

For missing demand observations, a process is defined to complete the 

gaps between existent demand observations while MCMC updates the com­

ponents of the parameter vector.

Let Q be the set of times where demand observations exist,

Q = { (̂k) £ Z| <?(k) =  t when dt is not a missing value},

where Q is an ordered set, i.e. q^) < Q(k+1)> and k =  l , . . . , d i m Q .  The 

dimension of the set Q, dimQ, is equal to the number of existing demand 

values in the 30min-window at 1Hz and it is assumed {^(i) =  l,(?(dimQ) — 

N }  G Q , i.e. the first and last point in the window are not missing.

Missing observations of the demand are contained in intervals of the form 

[dqw , d9(fc+1)], the straight line that joins the limits of the interval is given by

_  d Q(k+1) ~  d Q(k) t  +  Q(k+I)dqw  -  q (k ) d Q(k+1) ^

Q(k+1) — Q(k) Q(k+1) — Q(k)

Let Q* = { t  G Z}^;1 — Q be the complement of Q, the set of time indexes

of missing demand values. This set is

Q* =  {m  G Z| m  = t when dt is a missing value},

The missing demand observations, dm for m  G Q*, are completed by a per­
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turbed linear interpolation in the interval [d(gfc), d(qk+l)], independent and nor­

mally distributed over the straight line of equation (6.37), Figure 6.7 sketches 

this idea.

t=m

Figure 6.7: Graphical representation of the random linear interpolation process to 

generate missing demand observations.

The cL ’s are distributed as

p(dm\I) —
1
7T(7i

exp (dm -  d(m))‘

(6.38)

(6.39)

where d(m) is equation (6.37) evaluated at t = ra, and <rf is the amplitude 

of the random perturbation.

Assuming that dm s are independent for all m  G Q*,

p(d*)= n  /o~ 2 6XP rf(m ))2}  > ( 6  4°)

where d* is the set of missing values, i.e. d* = {dm\ Vm G Q*}.

Note that equation (6.40) is independent of any other component of 0 in
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equation 6.27, it only depends on demand observations. In addition, in each 

iteration of the algorithm, new realisations dm’s are drawn from (6.38).

After considering all observables in S  and the available background in­

formation / ,  the Likelihood term is:

p(s\e,i) =  p ({ * } £ 1|0 ,/)x p ({ < j(}{i1|0 , j) ,  (6.41)

= p({st} £ i |0 ,/ )  X  (6.42)

P({ I)p({dm}meQ*\I), (6.43)

in the case where demand observations are missing.

6.5.1.2 Prior Terms

At this stage of the probabilistic modelling the parameter vector 0 is

o =  { W e l l ,  ° i»  {<?t}tei> H,  {dm}vmeQ*} •

(6.44)

For each component in 0 a prior distribution is set according to the 

background information on the grid frequency system. In the process, addi­

tional hyper-parameters are introduced to refine the modelling of some priors 

and/or to account for uncertainty in some components of 6. In this section, 

each component of 0 in equation (6.44) is modelled in order of appearance.

• Grid Frequency States: {wt}£Li
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The prior for the grid frequency states is presented in section 6.26 and is 

given by

p (w ,+ iK J)  =  v ( u ; t +  - | ( G ( - A ) , ^ ) ,  (6.45)

reflecting the expectation that the grid frequency states should evolve close 

to the value of the Euler approximation of the simple model (6.24), and also 

to control model error, see equation (6.45). This term, is in general, referred 

to as additive dynamical noise with amplitude 

For u t , t  =  1 , . . . ,  N, the prior is

N - 1

P (H + i} fc i1|{wi}t=T1. -0 =  I I  P&t+Auiu I). (6.46)
t=  1

• Dynamical Noise Variance for u)t •

Regarding prior information about cr̂ , it is desirable to keep the model 

error close to zero and with small variation around the model state ujt . Hence, 

cr̂  follows an Inverse Gamma distribution:

^  ~  £ a(a7,/?7), (6.47)

^  = r £ ) ( ^ )  ’ exp{" ^ f} ' ( 6 ' 4 8 )

Mean and variance are set correspondingly to mean( <3) =  1 X  10 4 and

var(crj) =  1 x 10-3, which in turn, determine a 7 and /?7[17].

• Demand States: {A }£L i
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The Dt s correspond to the demand model variables. The difference be­

tween dt and Dt is that dt is the observation of Dt at time t. For each value 

of the model demand at time j  a non-informative prior distribution is set to

where =  1. Therefore, the demand state follows a density of the form:

The Dt s are independent and identically distributed, therefore for all 

t =  1 , . . . ,  N, the prior is:

be seen as “mirror” variables. The exact balance between G and D reflects 

no changes in the grid frequency u. On the contrary, unbalance between G 

and D  reflects into positive or negative deviations from the operational point 

of the grid.

Given this close relationship between generation and demand, the prior 

set for the generation state Gt is the same as the prior for the demand state

be

D j ~ U ( 0 ,< 7 2d ) (6.49)

(6.50)

(6.51)

• Generation States: { G t } ^

Demand and generation model variables given by equation (6.22) could
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Dt given in equation (6.49) as the background information about Gt and 

D t is the same since internal variables are not included explicitly in the 

implementation. Therefore, the prior for the generation states is

under independency and normality assumptions of the Gt s for all t in the 

3 Omin-window.

• Demand Observations Variance: <rJ

The variance of the demand observations appears in the demand Likeli­

hood term in equation (6.35). It describes how variable are the observations 

of demand. This hyper-parameter is set to be a known constant parameter. 

The prior associated with is constrained to be the variance of the existing 

demand observations:

• Missing Demand Observations Variance: cr%

The variance cr| appears in equation (6.40). It represents how spread the 

missing demand observations are around the line that joins existing demand

(6.52)

°d =  var (W vteo) ■ (6.53)

observations. The prior chosen reflects tha t is always positive and should
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be close to the variance of the existing demand observations. Hence

~2 ~  Ga{a6,(3s), (6.54)

^ 2 | / )  =  e x p { - ^ | } -  ( 6 ' 5 5 )

The parameters as and (5s are found from setting the mean and variance

equation (6.54) to mean(o-|) =  <r% and var(cr^) =  lOcrJ, respectively. Note 

that cr$ is the variance for the perturbation of the linearly interpolated values 

of the demand (see Figure 6.7).

• Frequency Observations Variance: a

The variance of grid frequency observations is set to be a constraint pa­

rameter. The prior associated with is set to be a constant value given 

by

a] = var ({«t}£Li) • (6-56)

• Inertia: H

The Inertia parameter H  appears explicitly as an H ~1 term in the model 

(6.20) and from background information, H  > 0 [46]. For convenience, the 

prior for H  is chosen to be and Inverted Gamma distribution given by:

i  ~  Qa(ctH,p tt), (6.57)

m i )  =  M r ) 0 d * exp{ ^ } -  (6-58)
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Prom the calculation of its full conditional distribution it turns out, as 

seen in next section, that /?# is constrained to be equal to

1 h N_1
T  = . i E  (w‘+1 "  ~  ■D()’ (6-59)

t =  1

in order to obtained a closed form of the corresponding full conditional for

H. The shape parameter is set to be a constant, i.e. a n  = 2.01.

After setting Likelihood and prior terms, the full conditionals of each of 

the components of 0 can be easily calculated from the posterior. The full 

posterior distribution is then explicitly written by replacing all probability 

densities described in the last two sections into equation (6.28).

277



6.5.1.3 Full Conditional Distributions

The full posterior distribution is written explicitly as

teQ
N-l
TT 1 -

i t  v '2™ 3
exp

2 <T*
h

Ut+I — Cdt — — D t ) X

n  exp ~  d(t))2} xtig* V 2™i  I 2ct4 j

{.3 }

{  / V ?  l  X

J X

r(aT) U  1 exp

r («<i)
Ph

To exp

a// 1 a//+l

r(a ir)  V #
exp

Ph H
(6.60)

Once the data S  is available, the posterior in equation (6.60) is evaluated. 

Therefore, a probability density that is only function of 0 is obtained, i.e. 

7ts{0), the full posterior distribution. Clearly, the posterior irs{&) is a high 

dimensional distribution. Any inference of 0 will involve calculations of its 

moments that in turn will involve high dimensional integration, in practice 

unachievable.

The definition of the full conditional distribution is given by equation
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(2.16), Chapter 2 in section 2.1 and can be calculated easily from (6.60).

In all components of 0, the terms containing the relevant component 

were extracted from the posterior in equation (6.60) and manipulated such 

that a density probability function could be identified in a closed form when 

possible. Note that each full conditional distribution is only used once in any 

given iteration time t.

• Grid frequency states,

e.i

ith Component

PDF 

Functional Form

PDF

Parameters

O.i = u i *{£■1)
1 1 

m ~ a 2 a 2
_ Si 1 

+
u)2 — — r>i)

0.3t-2 = Wt,

1 2
9 "P o<JS2 (Try

n St 1
Bujt = ---2 -̂----20S Ory 

1
---o u t+1 “(7̂

U>t~ 1 ~ H ^ t l ~  ^ * - 1) +  

~ ( G , ~ D t)

3II

1 1 
^ N~<J2 <7 2

_ s N 1 
a,2 a 2

h
u n - i  +  — {Gn - i — DN- i)

Table 6.4: Full conditionals for Grid Frequency states
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• D em and states, {D t}̂ =1\

0.i

ith Component

PDF 

Functional Form

PDF

Parameters

0.34-1 = Dt, 

for t E  Q and t ^ N "(S'.i)
,  i  h2

D <7d2 + H 2<jf
dt h hGt

B d ~  9 +  r r  o' Ut W4+1 1 tja,i H a ^  H

0.3JV—1 =  Dn
A d = —o +  1

°d2
n  _ d N 
B d ~

0.34—1 =  Dt , 

for t e Q *
'(ri) A d H 2ay2 + 1

h \ hGt 
B d H a ^ r  ^  + -h \

Table 6.5: Full conditionals for Demand states {Dt}^L1.

• G en era tio n  s ta te s , {G*}^:

PDFPDF

ith Component Functional Form Parameters

0.31 — G\ + 1

hD<
B g

Table 6.6: Full conditionals for Generation states {G f}^



• Grid Frequency Variance, <r72:

e.i PDF PDF

ith Component Functional Form Parameters

0.3JV+1 =  ^ 7 Bj)
A 7={N -  l  +  2a7)/2

[\ n - i r h i 2 1 1 -1 
2 ^ 2  Ut+1 ~ Ut ~  +

Table 6.7: Full conditional for Grid Frequency variance <t2.

Note that if X  ~  Qa(a, (5) and Y  = \ / X  then Y  ~  XGa(a, ft) [17], where 

XGa(-) is the Inverse Gamma Distribution [17].

•  M issing D em and V ariance, erf:

e.i

ith Component

PDF 

Functional Form

PDF

Parameters

+ to II q Oi 
to XQa(As, Bs)

As_ dirn m + as

( I ” 1
B s=2ps i  2 +  f a Y ,  W  -  dW) 2 f

I teQ* J

Table 6.8: Full conditional for Missing Demand Variance, erf.

•  G rid  System  Inertia , H:

The functional form of the full conditional PDF found for the Inertia 

parameter is not in a closed form, i  e. does not have the functional form of a
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“known” probability density function. To generate samples of H  from that 

PDF, there are two options:

1. Code a routine which generates random samples of such PDF found 

using, for example, the Acceptance/Resection algorithm [17].

2. Find a change of variable which will transform the PDF found into a 

closed form and then use an existing routine for random samples for a 

“known” probability density.

In order to avoid low convergence rates of the MCMC algorithm due to 

possible slow random generation [17, 9, 77, 14], option 2. is followed. In 

general, if such a change of variable is not found feasible then option 1. is 

the only choice.

e.i PDF PDF

ith Component Functional Form Parameters

&.N+ 3 — H
k (0.h \ 0 . - h ) &

GK) exp{_A}
&H  +  1

a  2
h 2 N ~ 1

a = — 2 E ^ - d ^ 2
a -l (=1

Table 6.9: Full conditional for the Grid System Inertia, H.

Let f x (x) be the density function corresponding to tha t associated with
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the functional form of the full conditional found for the Grid Inertia:

f x ( x)  a  e~A/x\  0 < x  < oo, (6.61)

where A  and a  are positive constants. Let y =  g(x) be the change of variable

chosen to transform (6.61) in a close form, where g(X)  = X 2. Therefore, 

d 1
g~l (y) =  J y  and -t-[<7-1(2/)] =  - y ~ 1̂ 2. From the theorem for distribution 

d y 2

transformation [17, 9] and for y G (0, oo), it is obtained that

d
f r ( y )  fx{g  (y ))

. y )  y/y'
l a + l /2

«  I e~A/v. (6.62)

From equation (6.62) is clear that 1/y  ~  Qa(ay,/3y). In other words, y 

follows an Inverse Gamma distribution with parameters a y = a  — 1/2 and 

j3y = 1/A. Replacing the PDF parameters in Table 6.9 into (6.62), it is 

obtained that

y ~  IQa  L )  . (6.63)

Generation of random samples of H  is made by generating random sam­

ples of y from (6.63), and a sample of the inertia parameter is given by 

H  = y/y-

Once full conditionals are available and samples can be drawn efficiently, 

the implementation of MCMC is now reduced to write two loops:
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i. The outer loop runs over the iteration time j .  Thus, after one iteration, 

the chain constructed for 0 has moved one step.

ii. The inner loop runs over the components of 0 , i. Each component is 

sampled from the corresponding full conditional distributions listed in 

Tables 6.4 to 6.9 and equation (6.63). At each iteration j , and for each 

component 0 *, the full conditionals are evaluated in 0 _i, updated in 

the present and past iteration j  — 1.

Remark that full conditionals are one dimensional PD F’s. Combination 

of chain components updated in the past and current iteration is key to 

understand chain mixing [13, 31]. The mixing of the chain takes place while 

the first several iterations of the algorithm combined posterior information 

thus convergence is approach [83, 66]. The mixing period is the burn-in time, 

70. As in previous Chapters, direct inssection of the resulting Monte Carlo 

estimates and parallel runs of the chain are both used and considered to find 

the burn-in time of the chain.

The next sections present the results obtain for several scenarios of the 

grid system posed in such a way that gradually real operational conditions 

are reflected in S.
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6.5.2 ReMS: M CM C Estim ates

To investigate the performance of MCMC for the problem of estimating the 

parameters of a model for grid frequency dynamics a number of experiments 

is carried out. All experiments are designed in a similar way to the ones 

presented in section 6.4 when sensitivity of LS estimates in the ReMS was 

explored. Note that even though the problem of parameter estimation is 

formulated for the simple model of the grid system using NR A, the use of 

ReMS is indistinguishable from the PMS. The use of the PMS here is made 

in the NSA since PMS data is not generated by stochastic processes but from 

the numerical integration of the deterministic grid model.

All experiments are run for approximately a 34 minutes window, i.e. 

N  =  20480 data points of demand and grid frequency data, the algorithm 

is initially run for an iteration time of T  = 1000. Preliminary studies on 

the initial iteration time to run the MCMC algorithm were performed during 

the REMIND project [20]. Given the high dimensionality of the parameter 

vector, i. e. 5406 components, computational time vastly increases when T  is 

increased. Real CPU time for 1000 iterations is approximately 2 hours for the 

simplest configuration of MCMC. The results of the experiments presented 

in this and following section are presented in [22].

1. Experiment 1: PMS High Resolution Data
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It is set as a convergence safety check of the methodology in the PMS. 

Given that the model is approximated using the forward Euler method 

for a time step of h = 0.1, PMS data is the numerical integration 

of the deterministic model described in section 6.2 using the same h . 

The resulting demand and grid frequency data is used to evaluate the 

posterior distribution in equation (6.28) to obtain n s {0 ) .

2. Experiment 2: PMS Sub-sampled Demand Data

Investigates the effects of using data with limited sampling rates by 

sub-sampling the PMS data at several slower rates. The sampling 

rates studied correspond to sampling times of A t = 0.2,0.4, 0.6,0.8,1 

seconds, respectively. For all cases, grid frequency data is kept at high 

resolution, i.e. 10Hz.

3. Experiment 3: Real Operational Conditions

It studies the performance of the MCMC technique to calculate pa­

rameter estimates in the PMS when real operational conditions are 

reproduced for both demand and grid frequency. MCMC output is 

generated using h =  lsec using PMS sub-sampled data and real data. 

Performance of the technique is studied by comparing estimates ob­

tained for both PMS sub-sampled data and real data. This experiment 

is presented in section 6.6.
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The set up for Experiment 1 is designed to asses convergence of the 

Markov chain, and to establish that a satisfactory level of mixing has been 

achieved by the calculation of the Gelman-Rubin (GR) statistic [31] for sev­

eral scalar summaries of the resulting posterior samples. The GR statistic 

is calculated for three parallel runs of the perfect model scenario implemen­

tation of MCMC. Here it is considered data generated by the deterministic 

model of equations (6.10) to (6.16) driven by synthetic demand. The param­

eter values for this model can be found in Table 6.1 of section 6.3.

The stochastic grid frequency dynamics model of equation (6.20) is then 

fitted to the data using the Bayesian techniques described in section 6.5.

Setting informative and uninformative priors on generation and demand 

for the perfect model case results in posterior distributions that not only 

converge but whose variances shrink on iterating the algorithm. Figure 6.8 

shows the convergence for two scalar summaries from the posterior. The 

GR statistics are calculated for the Grid Inertia parameter I  in the upper 

row (panels A and B) and for the Grid Frequency variance in the lower 

column (panels C and D). The GR statistic for the median is plotted in the 

left column (panels A and C) whilst the 97.5% percentile is plotted in the 

right column (panels B and D).

The variance of the dynamical noise and estimates for the model inertia 

H  both converge satisfactorily after approximately 500 iterations, indicated
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Figure 6.8: Convergence of Experiment 1 for the inertia H  (panels A and B), and 

dynamical noise variance cr̂  (panels C and D). Plot A  shows the GR statistic as 

a function of iteration for the median of the posterior for the inertia, H. P lot B 

shows the convergence of the 97.5th percentile of the posterior for H. Figures C 

&  D show the convergence in the median and 97.5th percentile for the posterior 

d istribution of the dynamical noise variance cr^, respectively.

by GR-statistic < 1.2. Similar convergence is achieved in all other compo­

nents. Consistently, the output of the MCMC algorithm, tends to stabilise 

after a burn-in time of tq = 500 iteration in this first experiment.
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In addition to displaying convergence, the estimates are close to the cor­

rect values. The estimated model inertia converges to the value used to 

generate the data; the mean of the posterior distribution is within 6% of the 

perfect model value. In addition, the estimated dynamical noise variance 

is of the order 10-7. These results are consistent across the three different 

realisations.

Figure 6.9 plots the GR-statistic for the grid frequency (panel A) and 

generation (panel B) states. For each dynamical state and for each t , the 

GR statistic is calculated as a function of the iteration time, j .  The panels 

plot the minimum and maximum of the GR statistic at iteration time j  over 

all t. After 500 iterations of the algorithm the GR-statistic is well below the 

pass mark of the test, i.e. GR  < 1.2, and is in the range of convergence for 

all t  and for each dynamical state, both grid frequency and generation.

Note that the left hand plot, corresponding to the grid frequency states, 

shows a strong convergence of the MCMC samples for all values of t in the 

30 minutes of interest. In the case of the generation states, convergence is 

achieved more slowly for all t given that an uninformative prior is set for the 

generation states, see (6.52). Note that after 100 iterations u t has already 

converged for all three runs whilst the corresponding generation states Gt 

have not.

It is clear, that given frequently sampled high resolution data the Bayesian
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param eter estim ation technique is able to  produce consistent estimates for 

the in e rtia  and generation. Moreover, uncerta inties in  the  p rio r d is tribu tions  

shrink and the means of the m arginal posterio r d is trib u tio n s  are close to  the 

true  values.
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Figure 6.9: Convergence of temporal grid model states. P lot A  shows convergence 

of the grid frequency wt, plot B shows convergence in the generation Gt as a 

function of iteration. The plots show the minimum and maximum GR statistics 

computed owe? all t.
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Experiment 1 demonstrates that the method works in the situation where 

the model has the same structure as the observed system.

The motivation for Experiment 2 is to study the sensitivity and robust­

ness of this MCMC implementation to changes in sampling rates. Sampling 

rates are decreased in a way that they resemble the operational conditions 

described in section 6.1.1. In practice, the rate at which data is sampled 

is constrained by the monitoring equipment in situ. Model demand data 

is sub-sampled at times ranging from 0.2 seconds to 1 second. This sub­

sampled demand data is then linearly interpolated so tha t the sampling time 

is effectively 1Hz and is commensurate with the grid frequency observations.

Figure 6.10 shows the effect of sampling time on MCMC performance. 

The mean value of the marginal posterior distribution for H  varies as the 

sampling time of demand is increased, increasing for sampling times greater 

than 0.6 seconds. In addition the variance of the posterior distribution in­

creases as the sampling time decreases, indicating that the obtained estimates 

of H  are less certain when sampling time is too coarse. The posterior distri­

butions are still consistent with the target values; the mean of the posteriors 

is are all within 7% of the value that generated the data. Moreover, the vari­

ance of the posteriors, although increasing, is still relatively small. As such, 

the quality of the estimates is degraded but there is still sufficient informa­

tion in the sub-sampled data stream that allows the identification of model
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Figure 6.10: Effect of sampling time on the marginal posterior d istribution for 

H. P lot A  shows the mean of the posterior d istribution for H.  The values have 

been normalised so that 1 corresponds to the value tha t generated the data. Plot 

B shows the variance of the posterior empirical d istribution for the inertia. I t  is 

clear, the mean varies as the sampling time changes and tha t the variance in the 

posterior increases as the sampling time decreases.

parameters demonstrating that the MCMC is of value in the PMS setting 

despite the fact that operational contrains were imposed.

Attempts to estimate parameters in this model scenario using a geomet­

ric approach as the one presented in Chapter 4 are planned for future work. 

Using this approach, uncertainty on both observations and model class is 

consistently generated while model trajectories are consistent with the ob­

servations and the impersection of the model. Gradient descent methods 

have been shown useful in characterisation of complex systems [51, 50] such 

as weather models.
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6.6 Real Operational Conditions:

MCMC Estimates

This section describes Experiment 3. This experiment uses real data and 

PMS data with the same operational conditions as the real data through the 

MCMC implementation.

In the third experiment, the practical constraints given the operationally 

available data are considered. In particular, it is examined the effect of 

operational sampling times on MCMC performance. To do this, parameter 

estimation is performed for two data sets. The first data set consists of 

observed grid frequency and demand data provided by NGT. The authors 

are grateful to Hai-Bin Wan and NGT for providing these data and assisting 

the interpretation of measured quantities.

The second data set consists of model data sampled at rates comparable 

with the observed data, that is, the sampling times are engineered to have 

the same distribution as the operational data.

A necessary condition for any meaningful analysis of operational data 

will be that adequate results are achievable using model data that is sam­

pled operationally. That is, it is required that the posterior distributions 

given operationally sampled model data, where the parameter values that 

generated the data are known, be consistent with the perfect model experi-
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ments of section 6.4. If this is not the case there is unlikely to be sufficient 

information in the operational data set to be able to identify the parameters.

The operational demand data sets have variable sampling times with a 

maximum sampling rate of 10Hz. A typical data set of demand observations 

contains several sampling times ranging from one second up to values of the 

order of minutes. For the same temporal window, corresponding grid fre­

quency observations are sampled at 1Hz. These sampling rates are roughly 

a factor of 10 smaller than those used in the perfect model experiments of 

section 6.4.1 and in section 6.5.2. The third experiment requires a mixing pe­

riod of 70 =  19500 of the MCMC algorithm before the resulting distributions 

are considered to have converged [20].
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Figure 6.11: Summaries of the marginal posterior distributions for the inertia H 

using observed and operationally sampled model data after convergence is assesed. 

P lot A  shows the mean of the posterior distributions. P lot B shows the variance 

of the posterior distributions.
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Figure 6.11 summarises the estimates for the inertia H  using observed 

data and operationally sampled model data. It is clear that the mean of 

the marginal posteriors are very far from 1 (in normalised values of the 

inertia), which corresponds to the value used to generate the model data. 

Moreover, the variance of the distributions is large compared to the perfect 

model experiment of section 6.4, Figure 6.10. Interpreting the estimated 

model parameters must be handled with care.

x 10'

• R e a l
• M C M C2.5

3
*

-0 .5

-1 .5

850 910670 730 790
time (sec)

Figure 6.12: G rid frequency trace for real observations (dots) and mean of the 

MCM C output for the grid frequency states u>t when using real observations. Solid 

lines correspond to the 99.5% and 0.5% percentiles of the d istribution of states 

obtained for each time t.

Clearly the mean of the posterior for the model’s grid inertia given sub­
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sampled model data is far from the known value. The corresponding es­

timates given observed data behave in a similar fashion, the mean of the 

posterior is small compared to the perfect model experiments and the vari­

ance is large. The failure of the method to provide reasonable results for 

operationally sampled model data suggests that parameter estimates from 

the operational data streamsx are also compromised.

Figure 6.12 shows the output from MCMC using observed demand and 

grid frequency. Even though the uncertainty in the estimates of inertia are 

large the grid frequency traces obtained by sampling the posterior distribu­

tion are consistent with the observations used. The variance in the estimates 

of the grid frequency, although consistent, are larger than for the PMS. In 

practice, highly consistent behaviour in some components can mislead one 

into thinking that the method has converged to meaningful results for all 

components when, in fact, the marginal posterior distributions contain very 

little information.

6.7 Summary

In the context of the REMIND project, control monitoring of the grid fre­

quency dynamics is translated into the problem of parameter estimation of 

a simple physical model presented in section 6.2 [20]. Model parameter esti­
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mates are sought in order to based a characterisation of the system that can
)

be incorporated into the National Grid Transco (NGT) management system.

Given the complexity of the grid system, model parameter estimation is 

performed in the ReMS, where the model adopted is only a representation 

of the system of interest it is assumed to be the Perfect Model. Therefore, 

the way parameter estimation is performed using any methodology is naively 

realistic (NRA) since some (if not all) parameters have no correspondent in 

the context of the system.

Observations of grid frequency and demand are provided by NGT. These 

observations reflect operational conditions of the grid system where data is 

gathered at 1Hz for grid frequency and demand is “observed” at variable 

sampling times. Uncertainty on the grid frequency dynamics is present in 

the available data therefore parameter estimation methodologies are used 

with the intent of obtaining meaningful parameter estimates in the limit 

that these operational conditions are reached.

Sensitivity of parameter estimates using traditional statistical methods,

i.e. Least Squares, is studied for several data and model configurations via 

forward simulation. Section 6.4 shows that LS estimates are sensitive to the 

temporal resolution of the data and to coarse integration of the forward sim­

ulation; observational and model uncertainty is not accounted for. The “best 

guess” estimates fail to provide correct values when operational conditions
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are reached.

In order to account for uncertainty on the model used to represent the 

system dynamics, a stochastic model is re-formulated based on the phys­

ical model developed in the context of Bayesian methodologies. Bayesian 

methodologies offer an alternative approach and seek to account for uncer­

tainty in the parameter values, observations and model error by taking a 

naive probabilistic view of the system (NSA). As presented in section 6.5, 

the Bayesian methodology can, through the use of MCMC techniques instead 

of producing a point estimate of the parameter value, produce distributions 

of values that best resemble the data given a particular model.

section 6.5.1 describes one of the major thrust of this Thesis: A devel­

opment of a Bayesian parameter estimation implementation using MCMC 

techniques for the deterministic model of the grid system.

Operational constraints on data quality, limit the application of MCMC 

in practice. Estimates of the parameters, and the uncertainty in those es­

timates, for the grid frequency dynamics can be achieved using Bayesian 

MCMC techniques given highly sampled data of demand and frequency. The 

quality of currently available operational data streams is critical: variations 

in the (multivariate) sampling rate lead to increases in the variance of the 

posterior estimates in the perfect model case.

Moreover, given operational sampling times, the posteriors are uninfor­
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mative for model data. Similar results are observed when fitting the model 

to operational observations. The results presented in Figure 6.11 indicate 

how the real-world constraints limit this Bayesian parameter estimation tech­

nique. Although the results appear to be reasonable there is little information 

in the estimated parameter values in the perfect model scenario, making any 

interpretation of the operational data ambiguous. In short, there is insuffi­

cient information in the operational data stream to identify the parameters 

using this method.

Convergence in the posterior is not a sufficient test of relevance when 

applying Bayesian techniques to real world data. The perfect model exper­

iment carried out above shows that the posterior distribution can converge 

even when the parameter values are effectively meaningless.

Further work will concentrate on the analysis of more complete opera­

tional data sets as they become available.

It is of fundamental interest to identify what exactly limits Bayesian 

techniques: the quality of the data, or structural errors in the underlying 

model. Resolving this issue on a case by case basis is of prime importance to 

the operational application of Bayesian techniques.

This work was supported by the EPSRC and National Grid Transco. 

Many thanks to Hai-Bin Wan and Ahmad Chebbo in NGT for providing 

the data and background information to develop the grid system model and
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Chapter 7

Summary and Further Work

This Chapter summarises the results found and remarks are made in each of

Chapters of this Thesis. A summary of new results and future work based

in this research is provided.

C h a p te r  3. Bayesian Inference and Chaotic Dynamics

1. A correct Bayesian formulation of the problem of parameter estimation 

for the Logistic map is presented in the PMS when the system is under 

dynamical noise and the observations are noisy.

2. A posterior distribution for the Logistic map is written but shown to be 

numerically intractable due to the high order polynomial of the initial 

condition in the resulting exponential distribution.

3. Numerical intractability of the posterior agrees with early qualitative
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properties of the “chaotic” Likelihoods described by Berliner in [5]. Mul- 

timodality and complex behaviour in the Logistic Likelihood are shown to 

depend explicitly on the initial condition and the length of the sequence 

of observations (see equation (3.36)).

4. Use of the Bayesian perspectives in the estimation of the parameter values 

of chaotic maps is correct when the system is under the influence of 

random perturbations, i.e. dynamical noise.

5. When the observations include only measurement noise, it is shown that 

the inclusion of a dynamical noise term is not a natural feature of the 

Bayesian approach but an artifact that makes the “chaotic” Likelihood 

numerically solvable by MCMC techniques.

6. The problem of parameter estimation presented by [68] is incorrectly 

formulated by Meyer and Christensen [70] in the Bayesian framework. 

Meyer and Christensen use a NSA to solve the problem in the PMS.

7. WinBUGS fail to provide convergent samples of the Logistic posterior.

8. Given the failure of WinBUGS to handle chaotic Likelihoods, numerical 

results presented in [70] and [12] are invalidated.

9. Prom this study, the WinBUGS development team took actions to correct 

deficiencies of the MCMC algorithm, specially, in order to cope with 

multimodal distributions.
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10. A MCMC tailored implementation for the Logistic map was developed in 

order to produce posterior samples for the NSA of the Bayesian perspec­

tives to solve the problem of parameter estimation for the Logistic map 

in the PMS.

11. A new sampling routine based on the Accept/Reject algorithm was de­

veloped to generate samples from the full conditional distributions of the 

initial condition and model states [23]. This routine is easily generalised 

to be used in any MCMC implementation of the Bayesian perspectives 

for quadratic maps.

12. Convergence of the Logistic posterior samples is improved by the MCMC 

tailored implementation.

13. Posterior estimates for the Logistic states generated for two types of noisy 

observations, statistically indistinguishable up to second order, resemble 

the Logistic structure in the delay reconstructed space even though one 

of the data types studied does not contain any deterministic component.

14. MCMC tailored implementation always generates pseudo-orbits of the 

Logistic map regardless the content of dynamical information of the ob­

servations used [24].

Prom the results of the study of the use of Bayesian methodologies in the

nonlinear time series analysis framework, the derived further work includes:
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1. Shadowing features of the MCMC technique are still to be studied and are 

partly tackled in Chapter 5. Is there any dependency of the width of the

- resulting posterior distributions if the surrogates correspond to Logistic 

observations in the chaotic or periodic regime? How can dynamical, (i.e. 

invariant measure), information be extracted from the estimates? Is it 

possible to find any trace of the deterministic/random behaviour in the 

estimates?

2. Reasons for good convergence of the MCMC parameter estimates for 

nonlinear systems are still to be found and they should be pursued further. 

Preliminary studies regarding this point include the work of Judd in [52].

Bayesian perspectives used in the nonlinear time series analysis framework 

provide insight in the importance of melding statistical and dynamical 

methodologies to find better parameter estimates. It explores the value 

of estimate distributions over “best guess” estimates. When estimate dis­

tributions are available, reliability and uncertainty measures are calculated 

from summary statistics. The NSA as the one use in Chapter 3 can also be 

used to find better forecasts and control monitoring techniques.

C h a p te r  4. Distilling Information in the Parameter Space

1. The use of pseudo-orbit states obtained by gradient descent [79] via indis­

tinguishable states theory [54] instead of the original noisy observations
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to estimate parameters using cost function based approaches produces 

better estimates that the traditional Maximum Likelihood estimates.

2. Summary statistics of the shadowing time distribution mapped into the 

parameter space yields more insight than maps of root-mean-square error 

(LS), which have well-known shortcomings in non-linear models (see [68] 

and references therein) as discussed in 4.1.

3. Figure 4.14 shows clearly how the maps of shadowing time provide com­

plimentary information quantifying the time scales on which the model 

dynamics reflect the observed behaviour [88].

4. Better parameter estimates can be obtained by mapping summary statis­

tics of the shadowing time distribution into the parameter space via ef­

fective quantification of the short and long term dynamics through the 

shadowing trajectories and the invariant measure respectively.

5. The balance between the information in the dynamic equations and the 

information in the observations exists only in the Perfect Model Scenario.

6. In the Imperfect Model Scenario, the invariant measure is not expected 

to be informative, only when other imperfect models are available.

7. This new method of parameter estimation, balances successfully the dy­

namical information of the model and the uncertainty in the observations. 

It is an example of the combination of nonlinear and statistical techniques
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in order to obtain better parameter estimates for nonlinear models.

Prom the results of the study of how to distil dynamical information in the

parameter space in the PMS, the derived further work includes:

1. Study of the information extraction from consideration of shadowing 

times, identification of parameter values which can mimic the dynam­

ics, and quantification of the time scales on which the model can shadow 

the observations for improving the model parameter estimates when it is 

known to be imperfect.

2. In the light of the results obtained in this Thesis, the recast of the 

Bayesian perspectives in the nonlinear framework in the PMS, is call­

ing for attention. Coherent Bayesian formulations that condition the 

probabilities extracted upon all information available [83, 4] are still to 

be developed.

3. Generalisations to more realistic and practical scenarios are still to be 

develop.

4. Refining the method to calculat shadowing time distributions when the 

noise model is unbounded.

5. Study the performance of the new geometric approach for a variety of 

nonlinear systems, model classes and noise levels to test robustness.
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Methods which include explicitly dynamical information by the trajectories 

both model and observations admit, presented in Chapter 4, contribute to 

highlight the importance of melding different approaches whilst generating 

dynamical consistent estimates and clearly motivates further interest in the 

area.

C h a p te r  5. Gradient Descent vs Markov Chain Monte Carlo

1. The results presented in this Chapter are a milestone in the di of extract­

ing useful dynamical information from ensembles of dynamical states in 

the PMS.

2. Through the process of parameter estimation, parameter estimates are 

generated along with estimates of model state estimates, as in the case 

of Total Least Squares, Gradient Descent and MCMC techniques.

3. A study of the value of state estimates, obtained through the process 

parameter estimation, as dynamical ensembles of states is proposed.

4. State estimates produced by MCMC, GD or TLS techniques explored 

the model state space consistently with the observations and the model 

chosen to represent the system of interest, here the Logistic map.

5. The quality “better” is defined based in the dynamical quality measures 

described in Chapter 4. Such quality measures include summary statis­

307



tics of empirical distributions of implied noise level, error between state 

estimates and true states, mismatch, and shadowing times.

6. Prom direct inspection of the resulting distributions, state estimates, for 

both MCMC and GD, the mean and median are close to the true states 

for all noise levels studied, see Figures 5.1 and 5.2 and Table 5.1.

7. W idth of resulting distributions of state estimates and quality measures 

tend to be wider when MCMC is used than widths obtained using the 

GD algorithm.

8. The MCMC estimates are closer in median to the true trajectory than 

the GD estimates even though error distributions are up to 2 orders of 

magnitude wider than the width of GD errors.

9. Convergence of the state estimates to a pseudo-orbit close to the true 

trajectory is faster when the GD algorithm is used, MCMC algorithm 

shows a weak and slow convergence as commented in Chapter 4 for all 

noise levels studied.

10. Implied noise level and average implied noise level are interpreted as an 

estimation of the original noise level of the signal and can be used as an 

estimator of noise level in the time series in cases where it is unknown.

11. GD estimates reflect closely the original noise level in the signal proving 

the value of the GD algorithm as a noise reduction method [79], see
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Figure 5.4.

12. Reasons of the over-performance of the MCMC techniques as a noise 

reduction method are still to be studied.

13. GD algorithm shows a robust convergence to a pseudo-orbit of the Logis­

tic map for all noise levels studied when compared with MCMC results.

14. There is evidence that the pseudo-orbit obtained by MCMC techniques 

do not include information on the invariant measure of the Logistic map 

at least when the mismatch is calculated for both sets of estimates.

15. The results listed above confirm a difference in invariant measure infor­

mational content in the both sets of states estimates.

16. Surprisingly, histograms of the state estimates from both techniques are 

qualitatively similar to each other and the histogram of a very long true 

trajectory of the system.

17. Shadowing time distributions are planned to be calculated in future work 

for both, GD and MCMC, state estimates sets to measure the forecasting 

skill of each set and obtain insight on the nature of the pseudo-orbits 

obtained.

18. This study and future work has the potential to provide insight on how 

. deterministic dynamical components induce dynamical and deterministic 

structures in empirical probability distributions. This study is directly
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related to the work presented in 3.3 of Chapter 4.

C h a p te r  6 . Parameter Estimation from Real Time Series:

The UK Electricity Grid Case

1. An implementation of the Bayesian methodology is obtained for the grid 

frequency model which via MCMC techniques produces consistent esti­

mates in the PMS with high resolution model data.

2. Operational constraints on data quality limit the application of MCMC 

in practice.

3. Useful estimates of the parameters, and the uncertainty in those esti­

mates, for the grid frequency dynamics can be achieved using Bayesian 

MCMC techniques given highly sampled data of demand and frequency.

4. The quality of currently available operational data sets prevents a com­

plete characterisation/deployment of the present state of the grid system 

for forecasting and/or monitoring purposes. Variations in the (multi­

variate) sampling rate lead to increases in the variance of the posterior 

estimates in the perfect model case. Moreover, given operational sam­

pling times the posteriors are uninformative for model data.

5. The perfect model experiments using the MCMC implementation and 

real data show that the posterior distribution converges to traces of the

310



system even when the model parameter values are not paired with system 

parameters.

6. Convergence in the posterior is not a sufficient test of relevance when 

applying Bayesian techniques to real world data.

Further work:

1. Analysis of some of the experiments posed in the PMS to test the per­

formance of the MCMC technique that are not presented in this Thesis.

2. Analysis of more complete operational data sets as they become available.

3. Estimate parameters of the simple model developed for the grid system 

using geometrical approaches, i.e. the GD algorithm.

It is of fundamental interest to identify what exactly limits Bayesian tech­

niques: the quality of the data, or structural errors in the underlying model. 

Resolving this issue on a case by case basis is of prime importance to the 

operational application of Bayesian techniques.

Finally, it can be said that any approach of parameter estimation has the 

potential to produce useful parameter estimates when properly formulated 

in a particular model scenario and methodology. If the model scenario is not 

stated before any attempt of parameter estimation, interpretation of resulting 

estimates axe useless in the context of the system of interest.
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The impossibility of knowing the perfect model of a system, finite and 

noisy observations, among other reasons, transforms the problem of param­

eter estimation in to challenging task where statistical and deterministic 

techniques are called upon to be melded. Uncertainty is the final source of 

information to obtain useful parameter estimates to then be used to produce 

informative forecasts and control monitoring strategies.

Efforts directed to develop methodologies that can produce reliable prob­

abilistic parameter estimates, forecast, control monitoring strategies, among 

others are still scarce. This Thesis’ principal contributions are aligned in 

this direction, to the goal of generating dynamical estimates from hybrid 

methodologies to effectively account for uncertainty in the modelling and 

characterisation of real systems.
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Glossary

C m l {6) Maximum Likelihood cost function.

Cm m {6) Mismatch cost function.

D  Demand, model variable.

G Generation, model variable.

S  Set of observations, time series.

Q Parameter space.

u  Grid Frequency, model variable.

uq = 27t50 Operational electricity grid frequency.

u(t) Instantaneous grid frequency.

D(t) Instantaneous demand.

G(t) Instantaneous generation.

ut Indistinguishable state.

zt Pseudo-orbit state.

0 Parameter vector
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AINL Average Implied Noise Level.

B U G S Bayesian inference Using Gibbs Sampling.

G D  Gradient Descent

IID  Identically and Independently Distributed.

IM S Imperfect Model Scenario.

IN L  Implied Noise Level.

LS Least Squares.

M C M C  Markov Chain Monte Carlo

M H  Metropolis-Hastings

N A R  Nonlinear Auto-Regressive process.

N G T  National Grid Transco Pic.

N R  A Naive Realist Approach.

N SA  Naive Statistical Approach.
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PDF

PMS

Probability Density Function. 

Perfect Model Scenario.

REMIND

ReMS

RMS

TLS

Real-timE Modelling of Nonlinear Data- 

st reams.

Real Model Scenario.

Root Mean Square.

Total Least Squares cost function.
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